A University
of Glasgow

Singleton, Andrew G (2014) Analysing landslides in the Three Gorges
Region (China) using frequently acquired SAR images. PhD thesis.

http://theses.gla.ac.uk/5676/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk



http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5676/

ANALYSING LANDSLIDES IN THE
THREE GORGES REGION (CHINA) USING

FREQUENTLY ACQUIRED SAR IMAGES

ANDREW G. SINGLETON

B.SC (DUNELM)

THESIS SUBMITTED TO THE UNIVERSITY OF GLASGOW

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

AucusT 2014

VIA VERITAS VITA

SCHOOL OF GEOGRAPHICAL AND EARTH SCIENCES

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

SUPERVISED BY

PROF. ZHENHONG LI, PROF. TREVOR HOEY AND PROF. SIMON WHEELER



Declaration

The contents of this thesis are the result of my own work, except where material from
other sources has been properly and fully acknowledged. The thesis has not been
submitted for any other degree at the University of Glasgow or any other institution. The
views and opinions expressed herein are mine and not necessarily those of any other

person or organisation, unless so attributed.

Selected text and figures within Chapters 4 & 5 are, in part, a reformatted version of

material appearing in Singleton, A., Li, Z., Hoey, T., Muller, J-P. (2014) Evaluating sub-

pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide

movements in vegetated terrain. Remote Sensing of Environment 147: 133 — 144. The

thesis author was the principal researcher and author of the paper, whilst the co-authors

listed in this publication directed and supervised the research.

This thesis also cites work from Tomés, R., Li, Z., Liu, P., Singleton., A., Hoey, T., and

Cheng. X. (2014) Spatiotemporal characteristics of the Huangtupo landslide in the Three

Gorges region (China) constrained by radar interferometry. Geophysical Journal

International 197(1): 213 — 232. The thesis author (and paper co-author) assisted with the

data interpretation, but did not take an active role in data processing or analyses.

Andrew Singleton

August 2014

Thesis Citation: Singleton, A.G. (2014) Analysing landslides in the Three Gorges region

(China) using frequently acquired SAR images. PhD thesis, University of Glasgow, School
of Geographical and Earth Sciences, Glasgow, UK.


http://www.sciencedirect.com/science/article/pii/S0034425714000686
http://www.sciencedirect.com/science/article/pii/S0034425714000686
http://www.sciencedirect.com/science/article/pii/S0034425714000686
http://gji.oxfordjournals.org/content/197/1/213
http://gji.oxfordjournals.org/content/197/1/213
http://gji.oxfordjournals.org/content/197/1/213
http://gji.oxfordjournals.org/content/197/1/213

Abstract

Analysing landslides in the Three Gorges region (China)
using frequently acquired SAR images

Andrew G. Singleton

University of Glasgow
Keywords: Synthetic Aperture Radar (SAR), Differential SAR Interferometry (D-InSAR),
SAR Sub-Pixel Offsets, Time-Series Analysis, TerraSAR-X Spotlight, TerraSAR-X
Stripmap, ENVISAT Stripmap, Corner Reflectors (CRs), Three Gorges region (China),
Slow-Moving Landslides, Landslide Characterisation, 2D Limit Equilibrium Slope Stability

Analysis, Reservoir Drawdown.

Spaceborne Synthetic Aperture Radar (SAR) sensors obtain regular and frequent
radar images from which ground motion can be precisely detected using a variety of
different techniques. The ability to remotely measure slope displacements over large
regions has many uses and advantages, although the limitations of an increasingly
common technique, Differential SAR Interferometry (D-InSAR), must be considered to
avoid the misinterpretation of results. Areas of low coherence and the geometrical effects
of mountainous terrain in SAR imagery are known to hinder the exploitation of D-InSAR
results. A further major limitation for landslide studies is the assumption that variable
rates of movement over a given distance cannot exceed a threshold value, dependent upon
the SAR image pixel spacing, the radar sensor wavelength and satellite revisit frequency.

This study evaluates the use of three SAR image modes from TerraSAR-X and
ENVISAT satellites for monitoring slow-moving landslides in the densely vegetated Three
Gorges region, China. Low coherence and episodically fast movements are shown to exceed
the measureable limit for regular D-InSAR analysis even for the highest resolution, 11-day
interferograms. Subsequently, sub-pixel offset time-series techniques applied to corner
reflectors and natural targets are developed as a robust method of resolving time-variable
displacements. Verifiable offsets are generated with the TerraSAR-X imagery and the
precise movement history of landslides is obtained over a period of up to four years.

The capability to derive two-dimensional movements from sub-pixel offsets is used
to infer a rotational failure mechanism for the most active landslide detected, and a
greater understanding of the landslide behaviour is achieved through comparisons with

likely triggering factors and 2D limit equilibrium slope stability analysis.
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Analysing landslides in the Three Gorges region (China)
using frequently acquired SAR images

Andrew G. Singleton

University of Glasgow
Keywords: Synthetic Aperture Radar (SAR), Differential SAR Interferometry (D-InSAR),
SAR Sub-Pixel Offsets, Time-Series Analysis, TerraSAR-X Spotlight, TerraSAR-X
Stripmap, ENVISAT, Corner Reflectors (CRs), Three Gorges region (China), Slow-
Moving Landslides, Landslide Characterisation, 2D Limit Equilibrium Slope Stability

Analysis, Reservoir Drawdown.

Landslides have long been the most frequent and widespread geological hazard in the
Three Gorges region, China, predominantly because of high slope gradients, geological
weaknesses, heavy rainfall and human activities. Over the last decade, the construction
and operation of the Three Gorges Project (TGP) dam has created a 600 km long
reservoir with a bi-annually fluctuating water level which has been shown to reactivate
ancient landslide deposits (Wang et al., 2008a). Communities within the Three Gorges are
continuing to relocate due to the residential safety problems associated with slope
instabilities. Therefore it is important to identify, measure and understand the

mechanisms of landslide movements to help current and future land-use planning.

Probabilistic hazard assessments over large areas are possible using geostatistical methods
applied to optical imagery and secondary data, while in-situ methods such as GNSS
receivers or extensometers can precisely monitor existing landslides. However, the
development of Differential Interferometric Synthetic Aperture Radar (D-InSAR)
techniques makes it possible to remotely monitor ground displacement phenomena, such as
landslides (reviewed by Colesanti and Wasowski, 2006; Rott, 2009), across the areal
coverage of a radar image. This can reduce the cost and complexities of field-based
monitoring and offers a potential method for remotely detecting, monitoring and

characterising landslides throughout the Three Gorges region.
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Extended Abstract

The Three Gorges region is commonly defined as the land bordering a 193 km section of
the Yangtze River between Fengjie and Yichang, and this research focuses on a 30 km
stretch in Zigui Country between the Wu and Xiling gorge. These “inter-gorge” areas are
characterised by less resistant rocks (Fourniadis and Liu, 2007) where slope failures
measurable using D-InSAR are likely to be concentrated. However, D-InSAR techniques in
the Three Gorges region are potentially limited by steep slopes and temporal decorrelation
between SAR image acquisitions caused by dense orange tree vegetation. This has led to
previous studies focusing on time-series D-InSAR methods applied to unstable slopes in
urban areas (e.g. Liu et al., 2013; Tomas et al., 2014) or the installation of corner
reflectors (e.g. Xia et al., 2004). This study therefore aims to develop techniques which
can extend the use of frequently acquired SAR data to rural parts of the Three Gorges
region. Further analysis of active landslides could then be undertaken (by comparison to
data on triggering factors and the use of 2D limit equilibriums models) to determine

dominant controls on a slope’s factor of safety.

Within the study area, a large amount of Synthetic Aperture Radar (SAR) data are
available in three different imaging modes which overlap in time and space. These include:
(i) 57 TerraSAR-X (TSX) Spotlight images between February 2009 — February 2013;
(ii) 23 TSX Stripmap images between April — December 2009; and, (iii) 14 ENVISAT
Stripmap images between December 2008 and May 2010. Given the variability in SAR
sensor wavelength and pixel spacing for the different image modes, this study provides one
of the most detailed assessments on the capabilities and limitations of SAR data for

investigating landslides in such a densely vegetated region as the Three Gorges.

Interferometric coherence (required for reliable D-InSAR analysis) is shown to be low for
all image modes over the whole duration of each data set. However, TSX Spotlight and
Stripmap data display seasonally higher coherence values compared with the ENVISAT
data, attributed to their higher spatial resolution and greater acquisition frequency. The
annual variations in coherence are also shown to be related with fluctuations in rainfall

(and therefore soil moisture) as well as summer vegetation growth.

In the best circumstances (i.e. short repeat intervals and low perpendicular baselines),
TSX Spotlight interferograms can detect, map and measure slope movements in the Three
Gorges region. This helps to identify previously unknown instabilities and accurately
(re)define the boundary of active landslides. However, the highest SAR resolution also

highlights a significant danger of using D-InSAR techniques for landslide monitoring.
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Fast and episodic movements of the Shuping landslide are shown to exceed the
measureable spatial displacement gradient, particularly around the landslide boundary
where complete coherence is lost. Any D-InSAR time-series technique spanning this event
would erroneously underestimate the landslide displacement. This is believed to cause the
disparities between previous D-InSAR studies of the Shuping landslide (Xia, 2010; Liao et
al., 2012), and in-situ extensometer data (Wang et al., 2013b).

A robust sub-pixel offset technique is developed and applied to corner reflectors installed
across the Shuping landslide, which help recover non-linear vertical displacements of
~0.6 m/yr. Corner reflectors provide a very consistent radar return allowing precise sub-
pixel offset measurements to be obtained, with RMSE values of 0.024 m and 0.038 m in
range direction for the TSX Spotlight and Stripmap data, respectively. However, the
acceptable cross-correlation threshold of 0.78 (required to generate precise sub-pixel offset
measurements from natural features in the landscape) is only applicable to the TSX
Spotlight imagery. A regional coverage of point-like pixel offsets across the TSX Spotlight
image frame helps identify one previously unknown active landslide, although the density

of measurements remains relatively sparse.

With precise sub-pixel offset measurements from corner reflectors capable of measuring
displacements in the two dimensions of SAR images (in range and azimuth directions), it
is possible to estimate vertical and horizontal movements to characterise the likely failure
mechanism of the Shuping landslide. Time-series displacement curves can be compared
with potential triggering factors and the Shuping landslide is shown to be most influenced
by the fastest periods of reservoir drawdown, compared to heavy rainfall or seismic
activity. Scenarios of reservoir drawdown are analysed using a 2D limit equilibrium model
which shows the factor of safety for the landslide decreases when the reservoir quickly

falls, most likely due to high pore water pressures which remain within the slide body.

Combining the regional detection of active landslides with site-specific characterisation of
individual slope movements should help develop appropriate remedial measurements to
protect the communities and infrastructure within the boundary of active landslides. The
developed techniques which employ frequently acquired SAR data are applicable to
different types of terrain, and future studies are recommended to use the highest possible
spatial and temporal resolution SAR data. Higher resolution SAR data reduces the spatial

displacement gradient constraints and helps achieve the greatest sub-pixel offset precision.



Extended Abstract

This research also helps explore the dynamics of reactivated landslide deposits and
consistent displacements in the Three Gorges region are shown to be caused by the
annually-occurring trigger of reservoir drawdown. No long-term acceleration or
deceleration is detected, although additional acquisitions of TSX Spotlight data would be
beneficial for continued monitoring beyond the four year period covered in this study. This
work also has significant implications for the monitoring of slopes bordering large

reservoirs in other parts of the world.
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Chapter 1 : Introduction

A simple and widely accepted definition of landsliding was given by Cruden (1991) and
Cruden and Varnes (1996), referring to a landslide as the downslope movement of rock,
earth or debris. Despite being used interchangeably, the term ‘landslide’ belongs to a
much broader group of slope processes referred to as mass movement — defined as “the
outward and downward gravitational displacement of slope forming materials” (Gutiérrez

et al., 2010 p. 95).

Landslides are the failure of a slope which occurs when forces and stresses acting upon it
exceed the strength of the ground materials. Processes influencing landslide occurrence can
be separated into two categories, conditioning factors and triggers, based on the timescale
over which the process operates. Over longer time-periods, landslides are conditioned by a
variety of factors (e.g. relief, lithology, weathering, deforestation, tectonic movements,
environmental change, and human activity) and initiated by short-term effects (such as
heavy rainfall, earthquake shaking and slope undercutting) (Glade and Crozier, 2005). The
combination of these factors determines the behaviour of the unstable mass and therefore

dictates the duration, form and run out distance of slope failure (Thiebes, 2012).

Various classifications exist which commonly divide landslides based upon the slope
material (e.g. rock, debris, earth) and the process type (e.g. fall, topple, slide, flow, creep)
(e.g. Cruden and Varnes, 1996; Dikau et al., 1996). Soil is distinguished from rock, being
subdivided into earth and debris depending on the grain size, and landslides which exhibit

multiple failure modes are described as complex movements (Lu and Godt, 2013).

Given the large range of potential landslide magnitudes, slope failures can also be ranked
in terms of their velocity (Table 1-1). The impact of a landslide is often considered
proportional to its volume and velocity (Lee and Jones, 2004) and appropriate
management strategies are dependent upon the magnitude of movement. Even for slow-
moving landslides, the effects are related to the amount of displacement per unit time
given the destructive nature of earth pressure and differential surface shearing, as opposed

to the collision impact of faster moving failures (Glade and Crozier, 2005).

1
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Table 1-1: Landslide classification based on the displacement velocity (adapted from Australian-
Geomechanics-Society, 2002 p. 76).

Class Description Typical Physical Damage Human Losses
Velocity
Catastrophic and violent Population killed by impact
1 Extremely > 5 m/sec disaster, buildings of displaced material or
Rapid ’ destroyed by landslide disaggregation of the
impact. displaced mass.
. . Some lives lost since
. . M : f . .
2 Very Rapid > 5 m,/min bu?igirn(izstructlon © landslide velocity does not
= permit all persons to escape.
3 Rapid ~ 1 m/hour Structures and equipment Esca.pe and evacuation is
destroyed. possible.
Temporary structl.lres n Full escape and evacuation is
front of the landslide can be | .. .
. . likely. Injury or death would
> 10 maintained in the short .
4 Moderate . only be attributable to
m/month | term. Extensive damage for
secondary effects such as
structures located on the buildine collapse
landslide. O pse.
Remedial construction
possible and temporary
structures can be
o Slow > 1 m/year maintained with frequent
work if episodic movements
are not too great.
6 Very Slow > 10 Some permanent structures
mimn/year undamaged by movement.
Fxtremely - 10 .Imperceptlble Wlthout.
7 Slow mm / oar struments, construction
Y possible with precautions.

Landsliding is one of many natural processes that shape the landscape, noted for its
prevalence and effectiveness in all parts of the world (Lu and Godt, 2013). Not only are
landslides an important control on local hillslope evolution, the interplay of rock uplift and
heterogeneous landslide erosion (particularly from coseismic failures) can affect the
evolution of whole orogens (Densmore et al., 1997; Korup et al., 2010; Parker et al., 2011).
Variations in the mechanisms and hillslope location of landslides are also dependent upon
tectonic and climatic regimes (Densmore and Hovius, 2000; Meunier et al., 2007). The risk
from landslides is significantly increased for populated areas and when indirect impacts

occur, such as tsunamis, soil depletion or river channel blocking.

1.1 Global Landslide Hazards

Catastrophic and low-frequency landslides often receive the greatest media attention,
although the cumulative effects of smaller and more frequent landslides have significant

social and economic implications. Recognised as the most widespread natural hazard on
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Earth (McGuire et al., 2002; Bryant, 2004), landslides cause billions of dollars worth of
damage and thousands of deaths each year (Hong et al., 2006). The significance and
documentation associated with landslide hazards is also often undervalued given their
common association with other triggering events such as earthquakes, typhoons or
volcanic eruptions. It should be noted that landslides are becoming increasingly ‘quasi-
natural” or ‘hybrid’ in origin given the effects of human activity on slope instability (Lee

and Jones, 2004).

Despite the global distribution of landslide-prone slopes, the pattern of fatal landslides is
strongly heterogeneous (Figure 1-1). Fatal landslides (recorded for the 7-year period from
January 2004 — December 2010) show significant clusters in areas such as the southern
edge of the Himalayan Arc, in the mountain chains of Indonesia and the Philippines (with
21% of global landslide fatalities combined), and in the coastal/central parts of China
(also with 21% of global fatalities). The reasons for such clustering is driven by the
availability of significant relief in which a landslide can occur, the availability of

precipitation to trigger landslides and the density of potential victims (Petley, 2012).

180° 135°W 90°W 45'W 0° 45°E 90°E 135°E

-30°N

180° 135°'W 90'W 45'wW 0* 45°E 90'E 135°E

Figure 1-1: Global distribution of fatal landslides. Each dot represents a single fatal landslide.
Clustering of fatal landslides is attributed to areas of high relief, heavy precipitation and population
density. Note this database explicitly excludes coseismic landslides due to the high levels of
uncertainty associated with these events (Petley, 2012).

The impact of these geohazards is highly dependent upon the economic development of
the affected country. The vast majority of landslide-related casualties occur in less
developed countries whereas economic losses are concentrated in more developed nations

(Gutiérrez et al., 2010). Using economic losses as an indicator of landslide impact would
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significantly alter the spatial pattern shown in Figure 1-1, although economic losses are
also relatively higher in less developed countries given the cost constitutes a higher

proportion of a country’s national income.

This study focuses on the Three Gorges region, central-eastern China, in an area shown to
have a high landslide concentration (Figure 1-2) as well as a history of fatal landslides
(e.g. Wang et al., 2004). The less developed nature of the inhabited, yet rural study area
means that many other economic and social factors can outweigh the risk of living on or
close to unstable slopes. Additionally, the displacement of entire village/town populations
to higher ground following inundation of the Three Gorges reservoir has already triggered
several large landslides (Liu et al., 2004). Improving understanding on the location and

activity state of landslides in this region is therefore an important aim.

Landslid
<7 Landslides
River Baishuihe Landslide |
Elevation (m) — e .
Maximum:2000 Minimum:80 | Qianjiangping Landslide |
0 5 10
& & & & s ) KM N

Figure 1-2: Distribution and elevation of landslides in the eastern part of the Three Gorges region
(Peng et al., 2014 p. 290).

1.2 Slow-Moving Landslides

While rapid landslides are the most dangerous, deep-seated and slow-moving landslides are
capable of destroying buildings and infrastructure particularly on reactivated ancient
landslide deposits (Sassa et al., 2009). A comprehensive review of more than 50 slow- and
very slow-moving landslides with varying velocities (Mansour et al., 2011) shows that
movement as low as 100 mm/yr can still have significant impacts through the disruption

of service utilities, buckling house walls and human losses caused by building collapse.

Slow-moving landslides present many problems in the prediction of their future behaviour
and are also scientifically interesting phenomena which require important consideration.

Deformation within the landslide body can affect the hydrological and mechanical
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properties of the sliding mass and slow-moving landslides commonly have complex and

episodic responses to hydrological influences (van Asch et al., 2007).

If the lifetime of a landslide follows four distinct phases (Figure 1-3), a good understanding
of its current activity state is important to understand the likelihood and character of any
future movements. A pre-failure stage is associated with changing stresses and internal
deformation which reflect an accelerating progressive failure. This is followed by complete
failure when a continuous shear surface develops through the entire landslide mass, often
generating rapid displacements. Post failure relates to movement from the onset of failure
until it ceases and a final reactivation stage can be observed over significant time periods
when soil or rock masses slide along pre-existing shear surfaces (Leroueil et al, 2001).
Such reactivation is usually episodic, with limited displacements associated with each

phase of movement (Lee and Jones, 2004).

?first failure

| reactivation landslide |

pre-failure

= i
o I I
& = ) : |
£ = occasional active

@ ©

& o

) 172

@ ]

=)

WAVAVARN

Time
Figure 1-3: Different stages of landslide movement (Leroueil et al., 1996).

This model of landslide movement matches observed movements of various landslides in
the Three Gorges region. Accelerated movements of the Xintan landslide were detected as
a pre-failure warning, allowing the town to be evacuated before its catastrophic failure in
1985 (Xue, 2009). The ancient deposits of the Shuping landslide have also been reactivated

and experience episodic displacements of relatively small magnitudes (Wang et al., 2013b).

Landslides, mainly deep and slow-moving, are the most frequent and widespread
geohazard in the Three Gorges region, predominantly caused by high slope gradients,
geological weaknesses, heavy summer rainfall and human activities (Liu et al., 2004). Over
the last decade, construction of the Three Gorges Project (TGP) has created a 600 km
long reservoir with a bi-annually fluctuating water level (range ~ 30 m) which has been

shown to reactivate ancient landslides (Wang et al., 2008a).



Chapter 1 Introduction

Even prior to the construction of the TGP, slow-moving landslides had been identified and
monitored in the region. In the case of the Xintan landslide, a 7-year ground-monitoring
campaign documented the gradual and step-wise increase in very slow landslide behaviour
before its catastrophic failure on 12" June 1985 (Du et al., 2013). The long-term prior
monitoring and subsequent awareness of the landslide prevented any loss of life during its

sudden failure due to adequate understanding, warning and evacuation.

Reactivated landslides can be triggered much more readily than first-time failures (Lee
and Jones, 2004) and ancient landslides with the potential for reactivation have been
identified in the Three Gorges region. Knowledge of reactivated landslide behaviour is
limited and could be improved if regular high precision measurements were available over
time periods of years rather than the most published timescales of days — months (Massey
et al., 2013). An improved understanding of the behaviour of currently deforming slopes

should help inform and protect communities living on these landslides.

1.3 Remote Monitoring of Landslides

In the best cases of landslide management, Early Warning Systems (EWS) have been
developed and employed to minimise harm and loss. The nature of EWS and the landslide
risk is strongly dependent upon landslide type, classified by the initial mechanism of
motion and the associated velocity. Whilst an EWS is composed of several social and

technical components, one aspect involves the detailed monitoring of potential hazard(s).

This thesis uses the term ‘landslide monitoring’ in reference to numerous steps which can
improve knowledge of local landslide risks. Landslide monitoring therefore involves the:
(i) detection; (ii) rapid mapping; (iii) characterisation; and (iv) long-term monitoring of
landslides (Tofani et al., 2010). Each of these four stages must be achieved for landslide
monitoring to be deemed successful and this thesis aims to evaluate the use of remotely-

acquired Synthetic Aperture Radar (SAR) data in monitoring slow-moving landslides.

Real-time in-situ monitoring systems can observe individual landslides (e.g. Malet et al.,
2002; Li et al, 2010) but are costly to operate over large areas and require prior
knowledge on landslide locations. Regional hazard susceptibility maps are increasingly
available (e.g. Bai et al, 2010), although the results are strongly dependent upon the
included causal factor maps. The generic benefits of using remote sensing data are well

known, and a sub-report from the European SAFELAND Project (Stumpf et al, 2010)
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compares the merits of numerous remote sensing techniques for monitoring different types
of landslides. Airborne LiDAR surveys can provide useful data in terms of spatial
resolution, precision and the capacity to measure a variety of displacement rates, although
the cost and logistics required for regular repeat acquisitions are barriers for its routine

use.

Satellite radar imagery has been recognised as a powerful tool for measuring surface
motions over large regions and offers the capability to remotely monitor unstable slopes
(Rott, 2009; Tofani et al., 2010). Synthetic Aperture Radar (SAR) images from the most
recent generation of SAR satellite sensors (e.g. TerraSAR-X and COSMO SkyMed) can
acquire regular data (up to every four days), over regional areas (e.g. 10 — 1000 km?), at a
high resolution (up to 1 m ground resolution) and in the case of slow-moving landslides,
can potentially meet the four requirements of landslide monitoring mentioned above. The
relatively short repeat interval and the ability to collect data over many years may also
help reveal patterns of slow-moving landslide displacement which has previously been
difficult because of limitations with data recording facilities (Mansour et al., 2011). Whilst
the repeat interval may not be short enough to provide timely warnings to vulnerable
populations, it is possible to detect individual landslide accelerations over large regions

and then direct monitoring equipment and warning systems to areas at risk.

More detailed information on the development of remote sensing data for landslide studies

is presented in Sections 2.2.3, 2.3.3, and 3.3.

1.4 Research Motivation

The measurement of superficial displacement induced by slope failure is often the most
useful information to define its behaviour, particularly when observations can be compared
with likely triggering factors in the region (Tofani et al., 2013). Rapid advances in the
capability of satellite sensors and available processing algorithms have led to an
exponential growth in the number of landslide studies using SAR imagery although the
application of Differential Interferometry (D-InSAR) techniques for the monitoring of

slow-moving landslides is still a relatively new and challenging topic.

Many limitations either related to the specification of the SAR missions (e.g. incidence
angle, revisit frequency, spatial resolution) or the properties of the landslides (e.g. densely
vegetated, in areas of high rainfall, exhibiting relatively large non-linear movements) make

the application of such techniques difficult (Farina et al, 2006). An insufficient
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appreciation of the theoretical constraints associated with SAR data, coupled with the
complexities of landslide movements can result in significant misinterpretations of
D-InSAR results (Colesanti and Wasowski, 2006; Peduto et al, 2010). In the Three
Gorges region, previous studies using SAR data to monitor the Shuping landslide over the
same time period display conflicting results (Xia, 2010; Liao et al., 2012; Wang et al.,

2013b) and this promotes further investigation into the cause of these discrepancies.

D-InSAR analyses are also limited by the amount of spatially-variable movement that can
be measured over the time interval of repeated SAR acquisitions, particularly in densely
vegetated regions. This might be wrongly interpreted to result from temporal decorrelation
between radar signals when the real reason was a landslide movement exceeding the
spatial displacement gradient. Subsequently, any D-InSAR time-series technique spanning
this fast event would erroneously underestimate the landslide displacement. Such a
scenario is shown to occur in the Three Gorges and motivates this research to find a
complimentary technique capable of extracting verifiable landslide measurements from

frequently acquired SAR images.

This study also aims to advance the use of SAR data throughout the Three Gorges region.
Major technical limitations in this area include steep slopes, heavy rainfall and temporal
decorrelation between SAR image acquisitions caused by rapid changes in the surface
properties of very dense vegetation. Previous studies have therefore focused on installing
corner reflectors around unstable slopes (e.g. Xia et al., 2004) or the use of time-series
D-InSAR techniques in urban areas (e.g. Wang et al, 2008e). This study develops
appropriate techniques and evaluates the use of remote landslide monitoring in non-urban

areas resulting in greater exploitation of SAR imagery within the Three Gorges region.

Finally, the high availability of data over the Three Gorges region provides the ideal
circumstances to further understand slow-moving landslides. The relationship of
(potentially reactivated) landslide movements to changes in the Yangzte River water level
can be assessed using archived SAR data that have been collected over the same time
period as the development of the Three Gorges reservoir. The relative effects of different
hydrological conditions on landslides can also be quantified through the use of 2D limit

equilibrium slope stability analyses, to help further understand landslide mechanisms.

The results of this work can be divided into two categories. The first part involves
significant application and evaluation of both D-InSAR and sub-pixel offset methods to

monitor landslides in the Three Gorges region using a variety of SAR data modes. The
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second part concentrates on the most active landslide detected (the Shuping landslide),

investigating its most likely triggering mechanism(s) and failure mode.

1.5 Aim and Research Questions

It is interesting to note an increase in the scientific literature on landslides and risk
mitigation has been accompanied by an increase in the number of damaging landslide
events throughout the world (Gutiérrez et al, 2010). The thesis focuses on various
recommended aspects aimed at helping to address this coincidence: (1) Where are
landslides and their exact limits? (2) What is the kinematic history of landslides? (3) Are
landslides currently active? (4) What is the relevant contribution of the factors that
influence landslide development? and, (5) How will landslides behave in the future?

(Gutiérrez et al., 2010).

This thesis focuses on evaluating various SAR data sets for the purpose of remotely
investigating landslides in the Three Gorges region, China. The overall aim of this
research and the associated research questions (in the order they were investigated) are

outlined below.

151 Research Aim

To evaluate the use of frequently acquired SAR imagery for detecting,
mapping, monitoring and understanding the mechanisms of slow-moving

landslide hazards in the Three Gorges region.

It is important to note this aim does not solely focus upon the use of D-InSAR techniques
for landslide monitoring. D-InSAR methods are evaluated, but an alternative method
using frequently acquired SAR imagery is also developed and assessed. Numerous SAR
data sets with overlapping spatial extents are available over the same time period which
permits detailed comparisons to be made. For each employed technique, the different data
characteristics associated with the SAR imaging modes are considered, in order to

determine the optimal data for the requirements of investigating landslides.
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1.5.2 Research Questions

(1) To what extent can Differential InNSAR (D-InSAR) methods monitor landslides in the

Three Gorges region?

(2) To what extent can Sub-Pixel Offset Time-series (SPOT) techniques monitor

landslides in the Three Gorges region?

(3) Can regularly-acquired SAR data be used to characterise active landslide mechanisms

and determine the associated triggering factors?

(4) What are the dominant geotechnical parameters controlling slope instability?

1.6 Thesis Outline

This thesis is divided into two background information chapters which summarise the
employed techniques and the study area. Three result chapters answer the above research
questions in order and this is followed by a discussion/conclusion chapter which evaluates
this research and provides recommendations for future work. Each chapter is briefly

summarised below.

Chapter 2 reviews the theory behind SAR image formation and the general
processing steps for D-InSAR methods. The associated limitations of SAR images and
D-InSAR processing are outlined with a particular focus on landslide applications.
Secondly, sub-pixel offset methods are explained. The historical developments specifically
applied to landslide hazards are reviewed for both techniques which highlights how this
research is the first study to develop pixel offset time-series methods to measure landslide

movements over a period of up to four years.

Chapter 3 provides a general background to the Three Gorges region as well as
documenting the hydrological triggering factors of landslides in the study area. A review of
the most important remote sensing studies investigating landslides in the Three Gorges is
carried out as well as presenting conflicting results which employ D-InSAR techniques for
landslide monitoring. For the first time, sub-pixel offset measurements from SAR images
are shown to be capable of measuring annual landslide displacements in the order of

metres.
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Chapter 4 focuses on answering the first research question and evaluates three
different SAR data sets regarding their ability to monitor landslides within the Three
Gorges region using D-InSAR techniques. Interferometric coherence is assessed, along with

geometric distortions and decorrelation from episodically large landslide movements.

Chapter 5 presents the results of Sub-Pixel Offset Time-series (SPOT) techniques
to answer the second research question. The three different SAR data sets are evaluated
again, as well as determining the optimal sub-pixel offset processing parameters. The
quality of results is also compared in relation to offsets derived from installed corner

reflectors and natural point-like targets.

Chapter 6 answers both the third and fourth research questions. The ability of
SPOT techniques to monitor spatially large, two-dimensional movements can help identify
the possible failure mechanisms of active landslides. Comparison of displacement time-
series curves with external data relating to triggering factors also helps determine the
initiating factors of instability. This is further investigated with 2D limit equilibrium

analysis.

Chapter 7 summarises the original findings of this research and critically evaluates
the techniques used in answering the research questions. The limitations and wider
implications of this study are outlined, along with recommendations on future research

directions following the outcomes of this work.

11



Chapter 2 : Principles of D-InNSAR and SAR Sub-Pixel Offsets

Advances in spaceborne geodesy over the last three decades can be characterised by three
major trends. The first relates to the definition of global reference systems which enables
substantial areas on Earth to be mapped from satellites acquiring data over increasingly
large areas. Secondly, technological developments of the sensors onboard satellite
platforms have made geodetic measurements more accurate, reduced the repeat
measurement interval and increased the spatial resolution. As a result, geodetic
observations have become a crucial source of information for geophysical interpretation
leading to a better understanding of surface deformation processes such as those associated

with earthquakes, volcanoes, landslides and glaciers (Hanssen, 2001).

Characteristics of radar remote sensing are significantly different to those of optical
images. Operating at microwave frequencies in the electromagnetic spectrum, Synthetic
Aperture Radar (SAR) images reflect the electrical and geometrical properties of the
surface, providing all-weather imaging capabilities independent of solar illumination
(Massonnet and Feigl, 1998; Fletcher, 2005). As the number of published studies using
SAR data continue to grow exponentially, Differential Interferometric techniques applied
to SAR images (D-InSAR) have been transformed from a largely interpretive science to a
quantitative tool (Rosen et al., 2000). This enables surface deformation to be measured
with increasing levels of precision and has revolutionised a range of earth science fields

(Biirgmann et al., 2000).

Given the wealth of currently available literature on D-InSAR and its applications, this
chapter specifically outlines elements of SAR image formation and D-InSAR processing
most relevant to landslide studies. A review of significant developments in landslide-
related applications using radar remote sensing is also provided. Finally, SAR sub-pixel
offset techniques are introduced and evaluated, followed by a review of major
developments in this field. These are shown to be associated with seismic and volcanic

case studies, although such techniques have only been applied to landslides very recently.

12
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2.1 Synthetic Aperture Radar

Synthetic Aperture Radar is a pulsed radar system that alternates between transmitting a
pulse and receiving echoes of electromagnetic frequency. Images are produced by actively
illuminating the ground and receiving the reflected energy from targets, the amplitude of
which depends on the local incidence angle, roughness and dielectric properties of the
surface. A SAR system uses a side-looking configuration to avoid ambiguous returns from
either side of the satellite flight path (Figure 2-1), whereby the timing of the returned

echoes relates to the range (i.e. distance) of the target from the sensor.

SATELLITE
TRAJECTORY

INCIDENCE ANGLE 6

BEAMWIDTH
NADIR TRACK

/

RADAR PULSES =— |

GROUND FOOTPRINT

Figure 2-1: The configuration of a regular SAR antenna and its imaging footprint, reproduced from
Curlander and McDonough (1991). L, = antenna length, W, = antenna width, 8 = incidence angle,
Tp = transmitted pulse duration, W, = swath width.

Common radar frequencies and wavelengths include X band (~0.03 m or ~10 GHz), C
band (~0.06 m or ~5.3 GHz) and L band (~0.24 m or ~1.25 GHz). Backscatter is strongly
dependent upon the SAR wavelength (1) as this determines the relative roughness of the
imaged surface, and when combined with the different satellite platform orbital cycles, can

influence the choice of SAR data used for a particular application (Table 2-1).
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Table 2-1: List of SAR satellite missions and the viewing/orbit parameters.

Principles of D-InSAR and SAR Sub-Pixel Offsets

Frequency | SAR Satellite Lifetime Ground Incidence Swath Repeat
Band Range Angle (%) Width Cycle
Resolution (km) (days)
(m)
L JERS-1 1992 - 1998 18 35 75 44
ALOS 2006 — 2011 10 - 100 8 — 60 30 — 350 46
PALSAR-1
ALOS 2014 - 3-100 8—-170 25 — 490 14
PALSAR-2
S HJ-1C 2012 - 20 25 — 47 100 4-31
C ERS-1 1991 — 2000 20 23 100 3/35/336
ERS-2 1995 — 2011 20 23 100 35
RadarSat-1 1995 — 2013 8 — 100 20 — 49 45 - 500 24
ENVISAT 2002 — 2010 20 — 150 15— 45 100 — 400 35
ASAR
RadarSat-2 2007 - 3 - 100 20 — 49 10 — 100 24
Sentinel-1A 2014 - 5—-40 20 — 45 20 — 400 12
X TerraSAR-X 2007 - 1-18 20 — 55 10 — 100 11
COSMO 2007 - 1-100 25 — 50 10 — 200 1-16
SkyMed
TanDEM-X 2010 - 1-18 20 — 55 10 - 100 11
KOMPSAT-5 2013 - 1-20 20 — 45 5 — 100 28

More detailed information can be found in comprehensive reviews of SAR image
processing by Curlander and McDonough (1991), Bamler and Hartl (1998), Massonnet and
Feigl, (1998), Biirgmann et al. (2000), Rosen et al. (2000), Hanssen (2001) and Richards
(2009).

2.1.1 Range and Azimuth Resolution

Resolution in range direction (7

y) from a single radar pulse is dependent upon the

transmitted pulse duration (7p) as the ability to separate targets from the received signal

will be impossible if echoes overlap (Equation 2-1):

- = CTp Equation 2-1: Ground range resolution for real aperture
97 2 sin6 radar without the use of chirp pulses.

where c is the speed of light and 6 is the local incidence angle.
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Whilst very short pulse durations would increase range resolution, the transmitted energy
would be below the radar’s sensitivity. Using linearly frequency modulated (FM) pulses
(i.e. chirps), shorter effective pulse lengths are achieved, inversely proportional to the
chirp bandwidth (1 /Bg). Therefore the ground resolution (r;) can be improved without

reducing transmission power (Equation 2-2):

ro= ¢ Equation 2-2: Ground range resolution for synthetic
9 2Bg sinf aperture radar which employs chirp pulses.

where Bj is the bandwidth of the chirp pulses.

With the ENVISAT ASAR sensor, a chirp bandwidth of 16.5 MHz and scene-centre
incidence angle of 23° results in a ground range resolution of ~23 m. For the TerraSAR-X
satellite, the high-resolution Spotlight mode has a chirp bandwidth of 300 MHz and a

scene-centre incidence angle of 44°. This generates a ground range resolution of ~0.70 m.

Azimuth resolution (Aziy) (spatial resolution in the direction parallel to the satellite

motion) in real aperture radar systems is calculated by Equation 2-3:

Equation 2-3: Real aperture radar azimuth resolution,

Azlg =B Ry determined by the beamwidth (f = A/l,) and range distance.

where f is the azimuth beamwidth and R, is the target distance in range.

Therefore azimuth resolution deteriorates across the swath width from near to far range.
Due to the dependence upon range and antenna length, the achievable resolution from real

aperture radar is only satisfactory for airborne platforms rather than satellite sensors.

Using the Doppler frequency shift of the received pulses, induced from the satellite along-
track motion illuminating a target for longer (Figure 2-2), the azimuth resolution limit is

equal to half the antenna length (Equation 2-4):

Equation 2-4: Azimuth resolution, determined by half the

Azig = 1o /2 length of the antenna (I,).

However, to unambiguously sample the Doppler spectrum, the Doppler bandwidth must
not exceed the pulse repetition frequency (Hanssen, 2001). The maximum Doppler

bandwidth (Bp) is calculated as (Equation 2-5):



Chapter 2 Principles of D-InSAR and SAR Sub-Pixel Offsets

Equation 2-5: The maximum variation of Doppler frequency

Bp=2vp/2=2v /1, during illumination from the SAR antenna.

where v is the satellite orbiting velocity, f is the azimuth beamwidth, A is the radar
wavelength and [, is the length of the real antenna. Given Bj is dependent upon the

beamwidth, the antenna length cannot be reduced beyond a threshold limit.

/ length of synthetic
/ 5 antenna (aperture)

¥
beamwidth of the ; \ -
real (short) antenna__--*_
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Figure 2-2: The synthetic aperture (antenna) generated by the platform motion of a SAR sensor.
The antenna footprint is shown as rectangular for simplicity (Richards, 2009 p. 62).

For the ENVISAT ASAR sensor with an antenna length of ~10 m, the maximum
achievable azimuth resolution is ~5 m. With an orbiting velocity of 7.45 km/s, the
Doppler bandwidth is therefore 1500 Hz, below the typical pulse repetition frequency of
1650 Hz for the Image Swath 2 (IS2) imaging mode.

After SAR focusing, the radar image is a two-dimensional matrix carrying amplitude and
phase information associated with each pixel, the spacing defined by the ground range and
azimuth resolution. The coherent imaging property of the radar means both the amplitude
of the returned signal and its phase component are recorded as complex numbers in Single
Look Complex arrays (Figure 2-3). Since the range resolution cell is very large relative to
the SAR wavelength, a single pixel is likely to contain thousands — millions of individual
targets resulting in random phase values throughout an SLC image. A modulo 2m
ambiguity also prohibits exact distance measurements from sensor to target.

Interferometric SAR (InSAR) differences two SAR images with the intention of cancelling
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this unpredictable phase response, assuming coherent behaviour of the ground pixel over

the time period of image acquisitions.
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Figure 2-3: Single Look Complex (SLC) image matrix, defined by the ground range and azimuth
resolution. Adapted from Richards (2009 p. 69).

2.1.2 Speckle

The amplitude of a SAR image is also dependent upon the relationship between target
size, image resolution and SAR wavelength. When a large reflective surface exists within
the resolution cell, its amplitude appears very bright compared to objects that restrict the
reflected energy and appear dark. Such dominating objects relative to the image resolution
are known as point-like targets and may consist of passive objects (e.g. buildings, bridges)

or specifically installed devices (e.g. corner reflectors or transponders).

However, natural terrain targets such as grass, forest trees and loose debris are typically
smaller than the resolution cell. In such cases, the echo from one pixel is therefore the
superposition of multiple individual echoes and in the same way phase values can vary
randomly throughout an image, the amplitude may also be highly varied leading to
‘speckle’. Whilst methods exist to reduce speckle in amplitude images, the accuracy of
SAR sub-pixel offset measurements can be improved when coherence is retained and the
speckle pattern of two images is correlated due to the increased contrast in backscatter
(Strozzi et al., 2002). For incoherent image pairs, sub-pixel offset measurements are still

feasible, but require larger image matching patches (explored further in Section 2.3).
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2.1.3 Spotlight Imaging Mode

Generally landslides are small features in comparison to the length and width of SAR
image frames. For such small features where strong spatial filtering would obscure
landslides, the highest resolution images are optimal to increase interferometric coherence,
raise the spatial displacement gradient threshold and improve the precision of SAR sub-
pixel offset measurements. Spotlight SAR operational modes can achieve a higher

resolution in the azimuth direction compared with Stripmap imaging modes (Figure 2-4).

antenna beam v
is steered
electronically

Figure 2-4: Geometry of the Spotlight SAR imaging mode. A larger synthetic aperture length is
created by steering the sensor to focus on a small footprint for a longer period of time, increasing
the azimuth resolution. The right-hand diagram indicates the increased synthetic antenna length
which results from antenna steering in Spotlight mode, compared with a static antenna in Stripmap
mode (Richards, 2009 p. 74).

The antenna is steered throughout the image acquisition from forward to backward as the
satellite platform moves along track. A larger synthetic aperture length is achieved which
therefore improves resolution of the azimuth pixel spacing (Eineder et al., 2009; Ren et al.,
2012). For example TerraSAR-X Spotlight data have an azimuth resolution of ~1 m,
compared to the Stripmap data equivalent of ~3 m. Greater detail can be achieved for
landslide studies with the use of a Spotlight imaging mode, although the high resolution of
the target region is only possible at the expense of resolution (i.e. areal coverage) in the
remainder of the imaged domain. As such, this mode is most beneficial to target known

landslide areas rather than identifying landslides over a wider region.

18



Chapter 2 Principles of D-InSAR and SAR Sub-Pixel Offsets

2.14 Geometrical Image Distortions

For all image modes, the side-looking configuration of the SAR sensor has implications for
image distortions. As range measurements reflect the sensor — target distance, significant
topography causes various geometrical problems limiting the use of SAR imagery. The

main distortions are termed the layover effect and shadowing (Figure 2-5).
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Figure 2-5: Layover and shadow effects. Depending on the terrain slope and the viewing geometry,
layover exists when targets at increasing ground range positions are imaged in reverse order by the
SAR system (e.g. points D, E and F). Targets not illuminated by the radar (i.e. in shadow) lead to
dark gaps in the radar image. Reproduced from Ferretti et al. (2007 p. A-12).

Layover is caused by different ground targets having the same range distance/time,
resulting in multiple targets being mapped into the same resolution cell in the slant range
SLC image. Layover is dependent upon the local incidence angle and range resolution of
the SAR sensor. It can be further divided into active layover (points producing layover
effects) and passive layover (points upon which active layover is imposed) (Kropatsch and
Strobl, 1990). Often layover areas appear bright in amplitude images whereas shadows are
markedly dark regions where targets are not illuminated by any radar beam (either due to
the local incidence angle exceeding 90° or being blocked by another object).

Foreshortening exists when the terrain slope is towards the sensor line-of-sight which
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increases the ground range cell dimension. Layover is an extreme form of foreshortening

when the terrain slope exceeds the look angle of the sensor.

Areas of foreshortening, layover and shadow display unreliable pixel values, reducing the
likelihood of successful D-InSAR and SAR sub-pixel offset results (Gelautz et al., 1998;
Colesanti and Wasowski, 2006; Plank et al., 2012). Given the majority of landslide sites
are in steep terrain, the imaging mode and SAR satellite configuration is an important
consideration prior to ordering data. In contrast to these problems, slopes facing away
from the SAR sensor (at inclinations less than the incidence angle) are imaged at higher

resolutions and are often best suited for monitoring landslides (Strozzi et al., 2010).

2.2 Differential Interferometry (D-InSAR)

SAR interferometry is based upon the differencing of phase components between two SAR
images acquired at different times or from slightly different viewing positions to generate
an interferogram (for more information, see Bamler and Hartl, 1998; Massonnet and Feigl,
1998; Biirgmann et al., 2000; Rosen et al., 2000; Hanssen, 2001). If the satellite orbit and
imaging geometries of two SAR images are identical, any phase difference in the
interferogram is caused by changes over the time of the SAR system clock, variable
propagation delay or surface motion in the radar line-of-sight (LOS) (Rosen et al., 2000).
However, because orbit positions are rarely this precise, interferograms commonly contain
both topographic information as well as surface motion. Removal of topographic fringes
using an external digital elevation model (DEM) (Massonnet et al, 1993b) is now
commonplace, with the aim of generating a differential interferogram principally
containing ground displacement information. This is the basis of differential interferometry

(D-InSAR).

The residual phase (A¢¢orq;) in an interferogram is proportional to the SAR wavelength
(4) and the difference in the range distance between satellite passes. This range difference

is made up of numerous components (Equation 2-6):

Equation 2-6: The components of residual

A¢total = A(l)pos + A(l)topo + A¢disp + A¢atm + A¢noi5e phase (Wasowski and Bovenga, 2014).

where A¢y,s is the sensor position, A¢iop, is the ground elevation, Adg;s, refers to
displacement, A¢ge, is path changes in atmospheric refractivity and Agyise are

decorrelation sources.
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Through the use of satellite orbit data and independent elevation models, the first two
terms of Equation 2-6 can be minimised leaving contributions from displacement,
atmospheric differences and decorrelation. Whilst decorrelation sources remain significant
(outlined in Section 2.2.2), atmospheric effects are likely to be smaller than displacement
signals for individual landslide studies given the localised nature of landslides relative to

the scale of long-wavelength atmospheric effects (Liu et al., 2013).

2.2.1 Processing Overview

Many open source and commercial software packages exist to generate a differential
interferogram from two SAR images (e.g. ROI_PAC, DORIS, GMTSAR, NEST,
GAMMA, SARscape), which all follow a similar general procedure (Figure 2-6).
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Figure 2-6: A typical D-InSAR processing chain, reproduced from Dong and Huang (2011).
After generating SLC images acquired at different times, the first step of coregistration
requires alignment of these images with sub-pixel accuracy such that phase interference is

related to the same ground target. In the ideal case of parallel orbits and aligned

acquisitions, coregistration would only need to compensate for the differing geometry due
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to the different view angle, however in practice coregistration should account for orbital
crossing and shifts in attitude and/or velocity (Ferretti et al, 2007). Coregistration is
usually achieved using a gross shift estimate from the image acquisition times and orbital
information, followed by a coarse coregistration calculated from windowed cross-
correlation results from numerous points throughout an image. Once the relative shifts
between two SAR images have been determined within tens of pixels in azimuth and a few
pixels in range, fine coregistration is performed to obtain an accurate transformation to

resample the slave image onto the master geometry.

To generate the interferogram, each complex pixel of the master image is multiplied by
the complex conjugate of the same pixel in the slave image, differencing the phase and
making it possible to measure accumulated displacement between observation times
(Blirgmann et al., 2000). Phase contributions from the Earth’s curvature and topography

must also be subtracted to generate the differential interferogram.

At this stage it is also recommended to apply filtering to reduce the noise in the
interferogram and to enhance the signal prior to phase unwrapping. Goldstein and Werner
(1998) proposed a filter which adapts to the local phase gradient, enhancing the
components with the highest power. However, a stronger filter reduces the resolution of
interferometric phase. This has been modified to incorporate interferometric coherence
(Baran et al., 2003), ensuring low coherence areas are filtered more and the maximum

resolution in high coherence areas is maintained.

An important condition of interferometry assumes the complex reflectivity of the pixel as
a whole (i.e. the reflectivity of all targets and their sensor-target distance) does not change
in the time between image acquisitions, therefore cancelling out in the interferometric
phase (Colesanti and Wasowski, 2006). In such circumstances the process would not suffer

any decorrelation, otherwise known as full coherence.

The degree of coherence within an interferogram is measured as the magnitude of the

complex cross-correlation between radar signals (Equation 2-7):

I(s15,7) Equation 2-7: Interferometric coherence (y) calculated from
- (5151") (5,5,") time-separated radar signals (s; and s,).

Ideally, the coherence should be obtained using an ensemble average from a record of
simultaneous observations for each pixel, requiring a large number of interferograms

acquired in identical circumstances. However this procedure is not feasible as every full-
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resolution element is observed only once during each SAR acquisition (Hanssen, 2001).
Therefore, spatial averaging is used (shown by ( ) in Equation 2-7), typically using small
windows (e.g. 5 x 5 pixels). Point-like stable targets have a coherence y — 1 whereas
independent and uncorrelated signals result in incoherent areas y — 0. Pixels may

become incoherent for a variety of reasons, as described in the following section.

2.2.2 Decorrelation Sources

In reality, a residual differential reflectivity term always affects the interferometric phase,
referred to as decorrelation noise (Equation 2-6). Defining decorrelation as the noise
caused by error sources with a correlation length smaller than the coherence estimation
window (Hanssen, 2001), the main contributions reducing coherence include large
differences between SAR acquisitions in terms of viewing geometry, Doppler centroid,

volume scattering or rates of surface movement (Equation 2-8):

Equation 2-8: Components of coherence include spatial
terms (geometric  Ygeom and Doppler centroid ypc
coherence), temporal coherence and thermal noise (Zebker
and Villasenor, 1992).

Y= yspatial * ytemporal * Vthermal

Spatial (Vspatiar) and temporal (Veemporar) decorrelation sources are explored below,
whereas thermal noise (Vipermar) 1S assumed negligible and insignificant (Biirgmann et al.,
2000). Determining the dominant cause of decorrelation is often difficult and whilst time-
series D-InSAR techniques have been developed to identify slowly decorrelating pixels (e.g.
Hooper et al, 2007; Hooper, 2008), resolving episodic and time-varying landslide

displacements remains a difficult task.

2.2.2.1 Geometric Decorrelation

The cross-track orbital separation is referred to as the interferometric baseline and a
critical parameter is the perpendicular baseline (B, ), defined as the baseline component
perpendicular to the SAR slant range direction. Complete decorrelation across an
interferogram will occur if the perpendicular baseline exceeds a maximum threshold. The
perpendicular baseline controls the phase change associated with changing incidence angles
and therefore larger baselines result in a more sensitive interferometer and increasing
topographic fringe frequency. However, if the phase change across a resolution element is
greater than 2m (due to an excessively large antenna baseline), the interferometric signal
decorrelates and prohibits the use of the interferogram (Gatelli et al., 1994; Biirgmann et

al., 2000). This becomes clear from a plot of theoretical phase difference across a flat earth
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in relation to a range of perpendicular baselines (Figure 2-7), using the physical
parameters of the ERS satellite (altitude = 785 km, incidence angle = 23°, ground range
resolution = 25 m and wavelength = 0.056 m). Whilst the theoretical limit is reached
when a 2m change occurs within a single resolution cell, the reconstruction task gets

increasingly difficult up to the point when it becomes impossible.
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Figure 2-7: Interferometric phase difference for the ERS configuration across a flat earth distance
of 5 ground range pixels. 2w jumps can be compensated for with small baselines. However, for
baselines exceeding 1000 m, at least one phase jump exists within each ground resolution cell
(Richards, 2009 p. 194).

The critical baseline (above which the change in look angle between the two satellite
passes is large enough to cause the pixel backscatter to be completely uncorrelated) is
dependent upon the wavelength and incidence angle of the SAR sensor and topographic

slope of the imaged ground features (Equation 2-9):

1R Equation 2-9: Critical baseline, dependent upon the
B.ritical =W(60—Sl) wavelength (1), range (R,), ground range resolution (1),
9 incidence angle (8) and topographic slope (SI).
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Subsequently, geometrical decorrelation can be simply defined as in Equation 2-10:

Beriticat — By for B, < B Equation 2-10: Geometrical coherence loss as
_ Britical 1 = Feritical a function of perpendicular baseline (Hanssen,
Ygeom = 2001 p. 102).
0, fOT BJ. > Bcritical

For deformation studies, the lowest perpendicular baseline is optimal to minimise

geometrical decorrelation and topographic errors.

2.2.2.2 Doppler Centroid Decorrelation

With geometrical decorrelation a purely range geometry phenomenon, large differences in
the Doppler centroid frequencies between two SAR acquisitions can also lead to complete
decorrelation. A difference in the Doppler frequencies could be caused by non-parallel
satellite orbits and the coherence factor (yp¢) associated with Doppler centroid differences

(AD;) decreases at a linear rate (Equation 2-11):

1 _% for AD; < By, Equation 2-11: Doppler centroid coherence
D loss as a function of Doppler centroid difference

'}/ =
pe and Doppler bandwidth (Hanssen, 2001 p. 103)

0, for AD: > By

The critical value is reached when the Doppler centroid is equivalent to the Doppler
bandwidth. However, this is rarely a limiting factor of coherence when generating

interferograms using SAR data acquired in the same mode and from the same sensor.

2.2.2.3 Temporal Decorrelation

One of the most frequent and significant limitations in repeat-pass D-InSAR used for
landslide monitoring is the loss of coherence through temporal decorrelation (Herrera et
al., 2011; Perissin and Teng, 2012). Temporal decorrelation results from significant
changes in the distribution or electrical properties of wavelength-scale scatterers within a
resolution cell, between SAR image acquisitions (Hanssen, 2001). Processes such as
vegetation growth, vegetation movement, erosion and cultivation can cause scatterers to
become rearranged in an effectively random manner over time, resulting in the

decorrelation of images (Rosen et al., 2000).
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Choice of sampling interval should be tuned to the deformation phenomena under
investigation as coherence can be lost incredibly quickly (e.g. over hours-days for glacier
flow) although this is dictated by the orbit cycle of the various SAR sensors.
Consequently, areas of exposed bedrock and urban areas have been the focus of most
D-InSAR studies as these features often maintain interferometric coherence over long

time-spans.

Variation in the SAR wavelength is also a factor determining the levels of temporal
decorrelation. C-band interferograms display higher fringe rates and decorrelate relatively
easily in lightly vegetated areas whereas L-band interferograms are commonly reported as
providing more coherent results as the longer wavelength can penetrate further through
vegetation (Zebker et al., 1997; Strozzi et al., 2003; Metternicht et al., 2005; Bovenga et
al., 2006). However, the choice of a longer wavelength decreases the sensitivity to ground
movements and shorter revisiting times makes the detection of low velocity displacements

more difficult (Colesanti et al., 2003; Bovenga et al., 2006; Herrera et al., 2013).

Additionally, wavelength is not independent from the satellite revisit frequency and
resolution of the SAR images. L-band sensors such as ALOS PALSAR can acquire images
every 46 days and has been shown to generate better results compared with the ENVISAT
sensor with a repeat cycle of 35 days. However, despite more recent sensors (e.g.
TerraSAR-X) operating at shorter X-band wavelengths, the higher resolution and lower

repeat interval may be beneficial for both vegetated and faster moving landslides.

Temporal decorrelation is difficult to estimate within a single interferogram, although it is
possible if other decorrelation components can be isolated and subtracted from the total
coherence equation (Equation 2-8) (Ahmed et al, 2011). Using a stack of SAR images,
amplitude and phase characteristics can be observed over time providing an estimate of
the phase stability of a pixel and hence its degree of temporal decorrelation. This provides

the basis upon which most persistent scatterer time-series D-InSAR algorithms operate.

2.2.2.4 Spatial Displacement Gradient and Scale Constraints

A very significant factor leading to complete decorrelation is the spatial displacement
gradient measureable by interferometry. To reliably observe interferometric fringe patterns
without ambiguity, the maximum displacement between two neighbouring pixels in a

wrapped interferogram must not exceed A/2 (Massonnet and Feigl, 1998), with
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wavelengths (1) typically in the order of 30 — 300 mm. D-InSAR can therefore only map
displacements at the temporal and spatial scales dictated by the sensor resolution and
repeat imaging interval (Massonnet and Feigl, 1998; Metternicht et al, 2005).
Subsequently, D-InSAR is not capable of measuring rapid slope movements, being most
commonly applied to deformation phenomena within the spatial gradient limits such as
very slow-moving landslides, city subsidence and earthquake deformation patterns. With
the original ERS C-band sensors, the best achievable measurements were in the order of
less than 0.02 m per month in areas of sparse vegetation (Canuti et al, 2004).
Subsequently, it is practically impossible to derive measurements of fast moving
phenomena with sharp velocity boundaries such as glaciers or co-seismic deformation along

faults, resulting in complete decorrelation (e.g. Figure 2-8).

Easting, km

Figure 2-8(a): Wrapped phase for 1999 Hector Mine earthquake. Each colour cycle represents
0.028 m of motion in the LOS direction, indicated by the black arrow. The fringe frequency
significantly increases with distance towards the fault (Simons et al., 2002 p. 1392).

Figure 2-8(b): Corresponding coherence map showing decorrelation close to the fault in areas of
the highest fringe frequency (Simons et al., 2002 p. 1392).

Sharp boundaries between stable and unstable ground are characteristic of landslides,
along with the possibility of episodic and spatially variable movements which may lead to

the spatial displacement gradient being exceeded. Dependent upon the SAR wavelength,
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image resolution and revisit frequency, L-band data have been preferred over shorter
wavelengths due to the ability to reduce this intrinsic ambiguity of phase measurements to
some extent (Strozzi et al., 2005). However, the characteristics of X-band sensors are likely
to be more influential given the higher revisit frequency and spatial resolution which
increase the likelihood of non-linear landslide displacements (i.e. acceleration and

deceleration) being resolved (Herrera et al., 2011).

At the scale of a SAR image, landslides are relatively localised features and scale
constraints imposed by the resolution of SAR data must finally be considered. Unstable
areas should include at least a few hundred resolution cells. For a C-band imaging system,
this could be 10 — 20 pixels in range and 50 — 100 pixels in azimuth which corresponds to
200 — 400 m and 200 — 400 m in range and azimuth, respectively (Colesanti and
Wasowski, 2006). All these effects in terms of the spatial displacement gradient and scale
constraints have been summarised in Figure 2-9, although it highlights the potential
ability of higher resolution SAR data (e.g. from TerraSAR-X and COSMO SkyMed
satellites) to monitor smaller and faster landslide movements than traditionally possible

with older SAR sensors.
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Figure 2-9(a): The range of applications for C-band deformation mapping in terms of the size and
the magnitude of movement. Measurable phenomena are shown in the white polygon, whereas light
grey bounding areas indicate the four limitations of (i) spatial displacement gradient, (ii) pixel size,
(iii) wavelength precision, and (iv) swath width (Elliot, 2009 p. 101), adapted from Hanssen (2001)
and Massonnet and Feigl (1998).

Figure 2-9(b): Classification of displacement signals by rate and duration. The product of these
quantities gives the total amount of deformation in a given interval of time, shown by the black
dashed lines. Detectable amounts are found to the right of the red lines for a C-band SAR sensor
(Elliot, 2009 p. 101), adapted from Hanssen (2001) and Massonnet and Feigl (1998).
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2.2.2.5 InSAR Time-Series Methods

A major and common limitation with traditional D-InSAR methods is the loss of
coherence between image acquisitions, particularly in areas of dense vegetation. Using a
stack of interferograms created by a large number of SAR images (e.g. >12), pixels with
the highest signal-to-noise ratio can be selected in order for point-based measurements to
be extracted from areas previously suffering from significant decorrelation. The scattering
return from these pixels are normally dominated by non-vegetated objects such as bare
rock, buildings or tree trunks and have led to the development of Permanent/Persistent
Scatterer (PS) D-InSAR (e.g. Ferretti et al, 2001; Hooper et al., 2004; 2007). This
characteristic has also led to the occasional installation of corner reflectors in known areas

of deformation, which provide an artificially persistent response to incoming radar signals.

Using a network of ‘small baseline’ (SBAS) interferograms (minimising the perpendicular
and temporal baselines to improve coherence) also enables time-series displacement curves
and mean-velocity maps to be generated (e.g. Berardino et al, 2002; Hooper, 2008).
However, none of these techniques can overcome the theoretical limitations which
commonly arise from geometrical decorrelation or exceeding the spatial displacement

gradient and careful consideration is required to improve the validity of time-series results.

2.2.3 D-InSAR Landslide Applications

The ability to map surface displacements with centimetre-scale precision over wide areas
(i.e. >tens of kilometres-wide) was first demonstrated for the coseismic and postseismic
phases of the 1992 Landers earthquake, California (Massonnet et al., 1993a; 1994). This
technological breakthrough revolutionised the measurement of many geophysical processes,
including very slow-moving landslides. The widely cited first instance of a landslide
monitored using SAR interferometry is the Saint-Etienne-de-Tinée translational slope
failure (Carnec et al., 1996; Fruneau et al., 1996), from which cm/day displacements were
measured over a two week period using five ERS-1 tandem images. Subsequently, research
at this time began to assess the capabilities of D-InSAR for measuring other landslides
with widely varying spatial scales, velocities and controlling mechanisms (Squarzoni et al.,

2003; Singhroy and Molch, 2004; Catani et al., 2005).
Rott et al. (1999) applied a similar D-InSAR technique to a far slower moving landslide

(cm/year) in the Austrian Alps, concluding D-InSAR can generate complementary

information to conventional ground-based techniques by providing spatially continuous

29



Chapter 2 Principles of D-InSAR and SAR Sub-Pixel Offsets

maps of surface deformation capable of highlighting inter-annual variations on landslide
movements. However, some currently well-known benefits and limitations were also

proposed for the first time.

D-InSAR has been employed to monitor the slow motion of many landslides and compared
with (typically sparse) GPS point measurements (e.g. Wen-Yen et al., 2012; Akbarimehr
et al., 2013), D-InSAR techniques are especially useful for providing spatially continuous
coverage of surface displacement which can help define the boundaries of active landslides
(Yin et al, 2010b). Additional advantages over other conventional techniques are the
possibility of very precise displacement measurements over large areas at a reasonable
cost, along with the possibility of assessing historical movements if archive SAR data exist

(Metternicht et al., 2005).

Following the development of multi-temporal interferometry (e.g. Ferretti et al., 2001;
Berardino et al., 2002; Hooper et al., 2007), there has been an exponential growth of
landslide-related investigations making a reference list of such papers beyond the initial
studies (i.e. Colesanti et al., 2003; Hilley et al., 2004; Bovenga et al., 2006; Colesanti and
Wasowski, 2006) an almost arbitrary task. The development of new SAR sensors reducing
the revisit time and improving the resolution provides many enhancements in terms of
reduced temporal decorrelation and the ability to provide a denser network of
measurement points which have generated successful results for landslide applications (e.g.

Notti et al., 2010; Prati et al., 2010; Bovenga et al., 2012; Herrera et al., 2013).

Regardless of the sensor, these applications are considerably opportunistic in nature as
they can offer valuable information only in areas mostly beyond the control of the user
(Hanssen, 2005). The use of D-InSAR and multi-temporal techniques as operational tools
are also limited by the large variability of slope movements (relating to the mechanism,
geometry, material, vegetation cover, size and velocity) as well as the acquisition
parameters of the SAR platforms and decorrelation sources (Rott et al., 1999; Hilley et al.,
2004; Strozzi et al., 2005). Whilst D-InSAR methods offer the possibility to detect and
monitor landslides over large regions, landslide displacement should be considered slope-
specific given their limited spatial extent relative to potential error sources. The
insufficient appreciation of the inbuilt SAR configuration and processing techniques,
coupled with the natural complexities of landslide movements can result in significant
misinterpretations of D-InSAR results (Colesanti and Wasowski, 2006; Peduto et al.,
2010) and constitutes a serious threat to successful D-InSAR time-series applications

(Bovenga et al., 2006). This failure to recognise the technical difficulties is perhaps behind
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the continued scepticism among practitioners and end-users on the use of D-InSAR for

landslide investigations (Wasowski and Bovenga, 2014).

More detailed information is found in comprehensive overviews of interferometric SAR
techniques for landslide studies by Colesanti and Wasowski (2006) and Rott and Nagler
(2006) for sensors such as ENVISAT and RadarSat. However it should be noted these
reviews pre-date the launch of the most recent commercial SAR sensors. Rott (2009) and
Wasowski and Bovenga (2014) provide a slightly updated summary with reference to the
TerraSAR-X (TSX) and COSMO SkyMed satellites.

2.3 SAR Sub-Pixel Offset Techniques

Although less precise than D-InSAR techniques, sub-pixel offset measurements using the
SAR image amplitude information can partially overcome the limit on the spatial
displacement gradient for mapping large surface movements and are far more robust (not
requiring phase unwrapping, not limited to regions of high coherence and less affected by
atmospheric water vapour (Raucoules et al., 2013)). Sub-pixel offset techniques can also
provide complimentary information since conventional interferograms are only sensitive to
displacements in the sensor’s line-of-sight direction (Michel et al., 1999). Using just two
images acquired at different times, displacement vectors can be decomposed into the
sensor look direction (i.e. range) as well as the satellite flight (i.e. along-track or azimuth)
direction. This is achieved by measuring the row and column offsets between the two
acquisitions at defined intervals in range/azimuth in order to generate a sufficient

coverage of offset measurements (Pathier et al., 2006).

2.3.1 Overview

Correlation methods are often the most appropriate to estimate offsets as they can achieve
sub-pixel level precision providing the displacement field can be estimated locally by a
translation that varies smoothly over multiple pixels (Michel et al., 1999; Hu et al.,
2014a). Normalised cross-correlation (NCC) algorithms were developed in order to
calculate the line/column offset with the normalisation element accounting for differences
in the brightness and contrast between two images (Lewis, 1995). An image (I;) taken at
time T; is compared with a second image (I,) acquired at time T, (Figure 2-10). The term
f(x,y) stands for the intensity values of a subset area of I; and t(x —u,y — v) stands for

the identically-sized area in I,, offset by u and v in the x and y directions respectively.
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The area f(x,y) is also referred to as the reference template and t(x —u,y —v) is the

search template (Debella-Gilo and Ké&éb, 2011).

To find the reference template within I,, the maximum normalised cross-correlation
coefficient (p) is found between f(x,y) and all possible values of t(x —u,y — v) within the

search window (Equation 2-12):

Equation 2-12: The normalised cross-

Zx,y(f(xvy) - f—) tx—uy—v)—1t) correlation function (see also Figure

2 _ 2-10). f and t = the mean of the

\/ Zx,y(f (xy) - f) Zx,y(t(x —u,y—v)—t)? intensities within the reference template
and search window, respectively.

p(x,y) =

The Euclidean distance between the centre pixel in the reference image and the highest
correlated matching point in the search image is therefore considered as the horizontal

displacement with the magnitude d(x,y).
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Figure 2-10: SAR pixel offset schematic showing the investigated pixel within the reference
template and searching window (Debella-Gilo and Kaéab, 2011 p. 132).

The parameters controlling the cross-correlation window size and sampling frequency
should be carefully tuned with regard to the scale of the deformation features and the
pixel size of the SAR images. The size of the search template should be large enough to
maximise the signal-to-noise ratio whilst minimising the spatial velocity gradient, and the
search window should be large enough to include the furthest moving distance whilst

minimising the required processing time.
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The accuracy of pixel-offsets can be expressed as the standard deviation (o) of the pixel
offset estimation error in pixel units, where N is the number of samples in the estimation

window and p is the cross-correlation coefficient (Equation 2-13).

Equation 2-13: The achievable accuracy with incoherent

1 3 J1—p? cross-correlation methods (i.e. excluding phase values from
azﬁ 2N 1p the calculations) (Bamler and Eineder, 2005; Hu et al,
2014b).

The accuracy can be improved when the cross-correlation is high and the number of
samples in the reference template is increased. With a high cross-correlation close to 1, the
precision in the offset fields can reach between 1/10 — 1/30 of a single-look pixel (Hanssen,
2001; Casu et al., 2011; Hu et al., 2014a). The advent of very high resolution SAR data
with ground pixel spacings around 1 m therefore increases the sensitivity and precision

achievable using NCC techniques.

General limitations with the NCC approach controlling its accuracy have been well
documented (Delacourt et al., 2004; Debella-Gilo and K&ab, 2011; 2012). The surface
properties of the reference template must not be significantly changed, rotated or sheared
between image acquisitions; merely shifted in position. NCC techniques can also be
sensitive to noise in the images and requires the displacement to be greater than the mean
error of the image registration. Finally other limiting factors also applicable to SAR
interferometry such as high Doppler centroids, large perpendicular baselines, DEM errors
and long temporal intervals can contribute to the loss of cross-correlation which
subsequently affects the pixel-offset accuracy and increases the likelihood of spurious offset

measurements.

2.3.2 Early Applications

Past studies using SAR pixel offset methods have been dominated by coseismic and glacial
applications, due to the widespread decorrelation in conventional interferograms from high
displacement gradients across ruptured faults or rapidly changing ice surfaces. As such,
accurate fault traces have been revealed using pixel offset techniques applied to just two
SAR images spanning coseismic events (e.g. Michel et al, 1999; Fialko et al., 2001;
Jonsson et al., 2002; Funning et al., 2005; Pathier et al., 2006; de Michele et al., 2010; Li
et al, 2011b; Feng et al, 2013). Similarly, studies have been successful in remotely
measuring glacier/rock glacier flow (e.g. Scambos et al., 1992; Strozzi et al., 2002; Quincey

et al., 2005; Luckman et al., 2007; Haug et al., 2010).
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More recently, developments have seen pixel offset methods used for increasingly diverse
purposes. One example includes the use of range offset fields to correct interferograms
where the spatial displacement gradient is exceeded due to large and episodic volcanic
movements (Yun et al., 2007). Range offsets contain the same information as a differential
interferogram and can be used to reduce the interferometric phase gradient which

increases the likelihood of successful phase unwrapping.

In a similar development to D-InSAR time-series methods, a SBAS inversion scheme
applied to a stack of SAR images has been suggested to reduce errors arising from large
perpendicular baselines in order to generate a time-series of offset displacement (Casu et
al., 2011). Similarly to PS point selection, point-like pixel offset measurements have most
recently been developed to reduce processing time by only calculating offsets from the

highest correlation points which display the greatest accuracy (Hu et al., 2014b).

2.3.3 Application to Landslides

To date, only a relatively small number of studies have used pixel offset techniques for
monitoring slope movements, the majority of which use optical imagery from airborne and
spaceborne platforms (K##db, 2002; Yamaguchi et al, 2003; Delacourt et al, 2004;
Wangensteen et al., 2006; Leprince et al., 2008; Delacourt et al., 2009; Debella-Gilo and
K#éb, 2011; Travelletti et al., 2012; Gance et al., 2014; Lucieer et al., 2014).

The sensitivities of normalised cross-correlation have been considered by Delacourt et al.
(2004) and Debella-Gilo and K&&b (2011) which include: (i) noise in the images; (ii)
rotation/shearing between the images to be correlated; and, (iii) the relationship between
the pixel size and the precision of measurements. Additionally, the correlation of optical
data require orthorectification of both images (ideally using different DEMs relating to the
time period of image acquisition) as the accuracy is inversely related to the difference in
viewing angles between images (Delacourt et al, 2007). Given the high resolution
available from various optical image products, NCC techniques can detect large motions
over much longer time periods that would be decorrelated in interferograms spanning the

same duration.

However, optical images can only be used to assess purely horizontal movements (north-

south and east-west directions) without consideration of the vertical component and they
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also suffer from variable solar conditions generating different shadow sizes/orientations

(Berthier et al., 2005).

Sub-pixel offset techniques applied to SAR images are of significant interest given their
geometrical acquisition stability, independence from cloud cover and SAR image
resolutions of ~1 m being equivalent to that of optical sensors. A sub-pixel offset technique
was first applied to TerraSAR-X Spotlight SAR data by Li et al. (2011a) with promising
results for monitoring the Shuping landslide in the Three Gorges region, although only
four sets of measurements were shown in the paper (corresponding to four offset pairs).
Sub-pixel offset techniques using the similar high resolution SAR data have subsequently
been applied to La Valette, Montescaglioso and Vallcebre landslides with high correlation
values and accuracies down to 0.01 pixels (Monserrat et al., 2013; Raucoules et al., 2013;

Manconi et al., 2014).

This motivates the investigation of high resolution TerraSAR-X Spotlight data for
monitoring densely vegetated landslides with a temporal resolution up to every 11 days
over a time period of several years. The ability to compare sub-pixel offset and D-InSAR

techniques applied to lower resolution SAR data is also of interest for landslide studies.

2.4 Summary

Chapter 2 provides a fundamental introduction to the acquisition and properties of
Synthetic Aperture Radar (SAR) images. Radar images are significantly different to
optical satellite data due to the presence of speckle and side-looking image distortions
which result in layover, shadow and foreshortening effects. A variety of spaceborne SAR
sensors exist with different radar wavelengths, each capable of acquiring SAR data in

different image modes with varying image resolutions.

A general processing chain of Differential Interferometry (D-InSAR) is outlined along with
major sources of decorrelation between SAR image acquisitions. Causes of coherence loss
are particularly focused on landslide applications as well as the implications of using
different image mode data. The concept of a spatial displacement gradient threshold is

explained and subsequently illustrated for a coseismic fault rupture.

Finally, a theoretical background to SAR sub-pixel offset techniques is provided. For both
D-InSAR and offset methods, a review a major technological developments is provided

along with a summary of literature specifically focused on landslide applications.



Chapter 3 : Landslides in the Three Gorges Region

At a length of ~6,300 km, the Yangtze River is the third longest in the world and has a
catchment area of ~1.8 x 10° km® (Dai and Lu, 2010). Originating from the Tibetan
Plateau, the river flows eastwards across south-western, central and eastern China before
reaching the East China Sea at Shanghai. The Three Gorges region is located in the
middle reaches of the Yangtze River which separate the Sichuan and Jinghan Basins

(Fourniadis et al., 2007a).

From west to east, the Three Gorges are comprised of the Qutang, Wu and Xiling Gorge,
with the Three Gorges region defined as a 193 km stretch of the Yangtze River from
Fengjie (the most westerly point of Qutang Gorge) to Yichang (the most easterly point of
Xiling Gorge) (Figure 3-1). Most of the Three Gorges is underlain by carbonate rocks
although the Three Gorges Project (TGP) was purposely constructed within the granitic
outcrop of the Huangling anticline. The region has a subtropical monsoonal climate with

rainfall heaviest in the summer and mean temperatures in January between 2 — 4 °C.

Between Badong and the TGP, hillslopes are steep-sided and densely vegetated with
orange trees (Figure 3-2), the relief exceeding 2500 m within a 30 km buffer of the
Yangtze River channel. The slopes exhibit shallow soils < 0.75 m (Fu et al, 2012)
overlying a variety of parent material, with land-use dominated by mixed-deciduous forest

and cultivated land (Wang et al., 2008c).

This chapter introduces the geological and hydrological situation of landslides within the
Three Gorges region. A review of previous remote sensing applications for landslides in
this area is also provided, particularly those using SAR images and D-InSAR techniques.
Major discrepancies in SAR studies monitoring the Shuping landslide are outlined, which
motivates a significant part of this research. Finally, geotechnical information about the
Shuping landslide is reviewed, along with a consideration of previous modelling studies

which aim to understand landslide mechanisms and triggering factors.
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Figure 3-1: The Three Gorges region from Fengjie in the west to Yichang in the east. TGP
represents the location of the Three Gorges Project dam.

Figure 3-2: Typical land cover of orange trees in the Three Gorges region. The picture shows dense
vegetation on and around the Shuping landslide (30.99N 110.62E), 200 m in diameter.

3.1 Geological Background of the Three Gorges

The Central Asian Foldbelt is a combination of Precambrian microcontinents (Qiu et al.,
2000) and the geology of China is highly diverse, recording a history of crustal evolution

from the Archean core of the Sino-Korean Platform to the active continental collision in
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Tibet. South East China is composed of the Yangtze Platform in the west and the
Cathaysian foldbelts (which include the Cenozoic mountain ranges of Taiwan) in the east
(Chen and Jahn, 1998). The Three Gorges region is located at the western edge of the
Yangtze Platform and several first-order geophysical contrasts are observed, such as
variations in topography, crustal thickness and lithospheric thickness (Figure 3-3). From
west to east, the topography decreases from an average surface elevation of 1000 —
2000 m a.s.] (herein referred to as ‘m’) to less than 500 m; the thick western crust (40 —
46 km) is separated from the thinner (30 — 36 km) crust by the north-south seismic belt;
and the lithospheric thickness decreases from >200 km to 80 km (Zhang et al., 2009a).
These divisions within the Three Gorges region separate central China into a western
region dominated by crustal shortening and mountain building related to the India-Asia
collision, and an eastern region predominantly affected by the east-west compression of

Pacific and Eurasian plates (Zhang et al., 2009a).

River cutting of massive limestone mountains of Palaeozoic and Mesozoic age created the
Three Gorges, but the timing is poorly constrained and disputed. The majority of
discussion relates to the Yangtze’s origins and when the drainage basin of the relatively
smaller Paleo-Yangtze (Figure 3-4) was reorganised to include water originating from the

eastern Tibetan Plateau, capable of incising the Three Gorges (Clark et al., 2004).

Initial studies suggested the Three Gorges formed through incision along narrow fault
zones in response to Quaternary uplift of the Sichuan basin, dating the gorges between 3.6
and 1 Ma B.P. (Late Pliocene to Early Pleistocene) (Li et al., 2001; Yang et al., 2006).
However there is no direct onshore evidence for the timing of the Yangtze’s expansion and

offshore records are obscured by sediment storage in the lower Yangtze basin (Clift, 2006).

More recent studies suggest the long-term diversion of the upper/middle Yangtze away
from the Red River occurred during the Cenozoic, induced by complex tectonic
movements (Fan and Li, 2008). Such movements induced intense uplift of the Tibetan
Plateau in the west and sustained subsidence of onshore and offshore plains in the east,
triggering a topographic reversal and reorganisation of the Yangtze. Incision of the Three
Gorges has therefore been proposed to occur over a much greater timescale, initiating in

the Eocene, 56 — 34 Ma (Zheng and Li, 2009; Richardson et al., 2010).

38



Chapter 3 Landslides in the Three Gorges Region

95 100 105 110 115

8000 m " '17,% north-south gravity lineament (in mGal)

- (after Ma, 1989) w—  Three Gorges region
. : North-south seismic belt
" topographic front (500 m Isoline;
ROErap ( J /- === (crustal thickness in km)
om region of thick lithosphere (in km) (after Li et al., 2006)

(after Lebedev and Nolet, 2003) —eo———— tectonic boundaries

Figure 3-3: First order geophysical contrasts in topography, crustal thickness and lithospheric
thickness around the Three Gorges region (Zhang et al., 2009a p. 424).
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Figure 3-4: Hypothetical Paleo-Yangtze drainage basin with the original watershed close to the
Three Gorges region (Fan and Li, 2008 p. 303).

3.1.1 Local Geology

The Yantgze Platform and the Three Gorges region have a doubled-layered rock

construction, consisting of a crystalline baseline and a sedimentary cover (Wu et al.,
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2001). The most widespread sedimentary cover (0 — 8.2 km thick), comprises interbedded
carbonate, sandstone and shale formations of Paleozoic and Mesozoic age (Richardson et
al., 2010) whereas the Proterozoic crystalline basement (7 — 14 km thick) is composed of
magmatic and metamorphic rocks (Zhang et al, 2009a). This igneous-metamorphic
basement complex consists of Precambrian granite, dioritic schist and black mica gneiss
(Fourniadis and Liu, 2007) and only outcrops in the core of the Huangling anticline

(Figure 3-5) where the TGP is located.
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Figure 3-5: Geological setting of the Three Gorges region along the Yangtze River. The Huangling
anticline forms a major NNE-SSW orientated structure ~50 km in length (to the far east of the
map, near Zigui County) where the TGP is located (Wu et al.; 2013 p. 1310).

The Three Gorges are formed in massive limestone mountains, interbedded with reddish
siltstone, shale and mudstone. As such, the limestones are characterised by steep slopes
and ridges which can be heavily jointed and sheared where traversed by tectonic faults
and lineaments. These lithological formations have been classified according to their
competence into: (i) massive limestones and dolomites; (ii) sandstone-shale-marl
interbeddings, and (iii) mudstone, slope deposits and Quaternary sand and gravel

(Fourniadis and Liu, 2007).

Between the gorges, rocks are much less resistant and the valley is wider with shallower
slope angles than in the gorges (Liu et al., 2004). Sequences in these ‘inter-gorge’ areas

comprise interbedded mudstone and sandstone, shale and interbedded marl and limestone,
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while the major soil type is colluvium derived from these bedrocks (Wen et al., 2007).
Sandstones, shales and marls form complex interbeddings where lithologies of contrasting
physical properties (such as shear strength and permeability) are frequently juxtaposed
(Fourniadis and Liu, 2007). Additionally, mudstones are often weathered and comprise
loose bedrock fragments within a matrix of finer material while Quaternary deposits tend
to be locally distributed on gentler slopes or along the river valley where they form easily
erodible terraces. Subsequently riverbank erosion, terrain dissection and slope failures tend

to be concentrated in these inter-gorge areas (Wu et al., 2001; Liu et al., 2004).

Finally, the underlying lithology has been considered to determine the characteristics of
slope failure. Rock falls are expected on steep limestone slopes whereas block slides along
near-planar slip surfaces are expected to dominate steep slopes of sandstone and shale
interbeddings (Fourniadis et al., 2007a). Three categories of landslide types within the
Three Gorges have been suggested (Wen et al., 2007): (i) landslides located at the contact
between colluvium and bedrock; (ii) major parts of the slip zone occurring along bedding
planes of weak rocks; and, (iii) slip zones following joints or faults cutting across bedrock
bedding planes. Type-l1 landslides (colluvial landslides) are by far the most common
(accounting for more than 50% of all large-scale landslides in the region) and often formed
in areas of interbedded mudstone and sandstone (Wen et al., 2007). Combining knowledge
of the lithology and slope failure type can improve susceptibility mapping (e.g. Fourniadis
et al., 2007b) compared to previous studies which assume a uniform influence of geological

parameters on all modes of slope failure.

3.1.2 Tectonic Setting

Currently the Yangtze Platform and the South China block represent stable continental
regions that behave as rigid blocks, with only minor internal deformation which lacks
seismicity (Chen, 1999; Wang et al., 2001; Calais et al., 2006; Richardson et al., 2010; Jia
et al., 2013). Previous studies have concluded the Three Gorges are in an area of low
seismicity (e.g. Mason, 1999) with no earthquakes exceeding magnitude Mg 4.0 between

the monitoring period of 2001 — 2006 (Mei et al., 2013).

Historical records show 2910 events with a magnitude > 1 occurred in the past 2000 years
within 300 km of the TGP, of which only a few exceeded a magnitude of 4 (Wang et al.,
2005b). Construction design ensures the dam has a high capability to resist earthquakes
with a magnitude of My 7 (Li et al, 2005) and seismic risk analysis indicates the

recurrence period for the dam site encountering a magnitude 6 earthquake is 10,000 years.
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This is equivalent to a 1% chance of a magnitude 6 event occurring in the next 100 years

— the same anti-seismic standard for a nuclear power station (Chen, 1999).

The location of the TGP was selected from 15 candidate positions due to its good
conditions for construction and its width which offers greater structural flexibility, along
with “plenty of geologic and seismologic conditions being well suited for building such a
large dam” (Chen, 1999 p. 183). Located on the ancient crustal landmass in the core of the
Huangling anticline, the site of the TGP has good integrity, no strongly active fractures
nearby, integral middle-upper crust, distanced from the epicentres of moderately strong
historical earthquakes and has not experienced a seismic event greater than magnitude 5.1

which suggests the site is highly suitable (Tan et al., 1997).

In the planning and construction of the TGP, the possibility of increased seismicity after
the additional water loading on the landscape was considered (Yi et al., 2012). The
location of the TGP and associated 600 km reservoir means the reservoir area will lie on
the granitic core of the Huangling anticline but also the limestone beds which have been
associated with reservoir-induced seismicity (Chen and Talwani, 1998). Predictive models
of surface deformation suggested a reservoir water level of 175 m would lead to 1- 48 mm
of vertical displacement, useful for correcting engineering surveys using height data

collected before and after reservoir filling (Wang, 2000; Wang et al., 2002).

The frequency of seismic activity following reservoir filling has increased from 2003
onwards, demonstrating a significant positive correlation with the reservoir water level.
The annual average frequency of seismic events over the 2003 — 2009 period was 1,288
events compared to the annual average frequency of just 29 for the period 1959 — 2003
(Xu et al., 2013) and no event exceeded magnitude M; 4.9. Patterns of reservoir-induced
seismicity demonstrate an increased frequency of low magnitude events, with no increasing
trend for earthquakes above magnitude M; 4 (Xu et al, 2013). There are no historical
reports of significant earthquake-induced landsliding in the region, although this risk is
heightened with increased seismic activity (Keefer, 1984). More direct causes of landsliding
may include the hydrological influences of the fluctuating reservoir water level or heavy

summer monsoonal rainfall.

3.2 Hydrological Influences on Landslides

Landslides located at the banks of reservoirs are well known to be influenced by periodic

water level fluctuations as well as seasonal rainfall (Iverson, 2000; Paronuzzi et al., 2013).
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The groundwater table, pore-water pressures within the landslide body and the landslide
failure surface are directly affected by reservoir levels and precipitation, resulting in the
decrease of effective normal stress and the shear strength of soils (Luo et al., 2009; Miao et
al., 2014). Catastrophic landslides in the Three Gorges region have been attributed to the
initial reservoir inundation (Wang et al., 2004; 2008b) and the reactivation of dormant
landslides due to fluctuating water tables (Wang et al., 2008a; Yin et al., 2010b). With
5,386 potentially dangerous sites within the Three Gorges region and 70% more
landslides/bank collapses than predicted after reservoir inundation (Li, 2012), hydrological

factors affecting landslides need careful consideration.

3.21 Rainfall Patterns in the Three Gorges Region

The Three Gorges region experiences a subtropical wet monsoonal climate with significant
differences in rainfall between the winter and summer months. Rainfall is mostly
concentrated from late spring to mid-autumn with peak monthly rainfall in July (250 —
300 mm) compared with rainfall < 50 mm/month for the period September — March (He
et al., 2010). Rainfall is also spatially variable with the lowest annual values of ~990 mm
around the TGP and Zigui County, compared with the highest values of ~1,200 mm
around Fengjie (He et al., 2008).

Rainfall-induced landsliding is the most common triggering mechanism in the Three
Gorges region and the monthly distribution of landslides closely follows the months of
heaviest rainfall between April and August (Figure 3-6). Given the lagged process of
infiltration and saturation, landslides have been found to occur up to 10 days after a
heavy rainfall event (He et al., 2009), although this is heavily dependent upon the rainfall
duration and prior cumulative rainfall. A critical cumulative rainfall value of 70 mm over

10 days has been proposed for when landslide alerts should be issued (He et al., 2008).

Importantly, the above analysis is only applicable to shallow slope failures rather than
blocks with deep failure planes (>10 m). Infiltration of rainfall is unable to affect sliding
zones at depth and it has also been found that cracks in shallow blocks help facilitate

infiltration, decreasing the stability of the upper most sliding mass (Xia et al., 2013).
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Figure 3-6: Relationship between landslide occurrence and precipitation in the Three Gorges
reservoir region, 1971 — 2003 (He et al., 2010 p. 1268).

3.22 The Three Gorges Project (TGP)

The Three Gorges Project (TGP) is currently the world’s most powerful hydroelectric
power station which brings valuable advantages of downstream flood protection,
hydropower generation and improved navigation from the dam to Chongqing (Tullos,
2009). While these benefits are substantial, it has been a controversial project due to its

environmental and social impacts (Gleick et al., 2013).

The dam increased the water depth of the Yangtze River by more than 100 m, creating a
600 km long reservoir which reaches the city of Chongqing. The visible impact of water
level rise is clear (Figure 3-7), increasing the likelihood of old (and previously elevated)
landslide deposits being reactivated as well as triggering new landslides (Liu et al., 2004).
In addition, the displacement and relocation of whole towns results in land clearing and

farming on newly occupied ground that may further destabilise slopes (Tullos, 2009).

2006

Figure 3-7: Impact of the Three Gorges reservoir impoundment on the Dragon Gate Bridge (31.1N,
109.9E). The bridge was overtopped by the reservoir, destroyed, and replaced by a higher bridge.
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The reservoir water level annually fluctuates between 145 and 175 m.a.s.] (m herein),
being lowered in the winter during power generation and increasing in the summer to
accommodate monsoonal rainfall (Figure 3-8). It was predicted that the period of slower
reservoir drawdown (January — June) should only have relatively small impacts upon slope

instability as opposed to the shorter rapid drawdown in July — August (He et al., 2008).
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Figure 3-8: Annual operations of the Three Gorges reservoir and the associated water level changes
(Yuan et al, 2013 p. 7095). The short-lived reservoir increase and rapid drawdown in July —
August following monsoonal rain has occurred annually since 2009.

Around 2,490 landslides were identified in the Three Gorges region before construction of
the dam, although a more detailed survey after reservoir impoundment revealed more than
5,700 landslides, many of which have been reactivated (He et al., 2009; Liu et al., 2009;
Miao et al., 2014). It is well known that reservoir water level fluctuation plays a key role
in the initiation of slope instability due to the change in water content and seepage

conditions in the slope (Miao et al., 2014).

The fluctuating reservoir water level has been shown to be the dominant triggering factor
for numerous landslides, e.g. the Baishuihe, Shiliushubao and Shuping landslides (Li et al.,
2010; Wang et al., 2013b; Xia et al, 2013). For these deep-seated landslides, all

displacement was most highly correlated with the slower, yet sustained, drawdown in the



Chapter 3 Landslides in the Three Gorges Region

January — June window which contradicts the prediction of (He et al, 2008). The
significant degree of reservoir fluctuation, combined with widespread landslide hazards in
the region, warrants further investigation and provides a good opportunity to observe the

response of landslides to such large water level changes.

3.3 Remote Sensing of Landslides

The past two decades have seen an increasing amount of studies focused on the
applicability of Earth Observation (EO) satellite data for investigating slope instability
(Tralli et al., 2005). This rise is due to launches of both optical and radar platforms (e.g.
Landsat TM, IKONOS, QuickBird, ERS-1/2, RADARSAT, ENVISAT, TerraSAR-X),
improved capabilities of space sensors and the development of more advanced data

processing techniques (Colesanti and Wasowski, 2006).

Observations from satellite platforms are complementary to both in-situ and airborne
surveys, being capable of detecting and monitoring landslides over wide areas with a
regular repeat interval. Particularly for preliminary investigations, these data are cost-
effective and reduce the risk/time spent in the field. Additionally, archived satellite
imagery can also provide useful information on past movement episodes (Hervas et al.,
2003), either assessing the terrain prior to failure or interpreting the landslide morphology

post-failure from the source/deposition area.

The distinction between optical and radar imagery is also significant. Optical imagery (e.g.
stereo aerial photography or high resolution satellite imagery) is mostly used to
qualitatively determine landslide characteristics over large areas, describing the
distribution and classification of landslide types in relation to factors such as slope, aspect,
lithology, land cover (Hervas et al., 2003; Metternicht et al., 2005). This spatial analysis
often results in the generation of regional maps of known landslides and/or landslide
susceptibility. Active monitoring of landslide activity (e.g. determining mean annual
velocities) has mostly used radar imagery and D-InSAR techniques, although this is
restricted by the limitations outlined in Chapter 2. Given the absence of a remote sensing
technique applicable to all situations (Scaioni, 2013), further data/sensor integration is
encouraged to extract the maximum amount of information from remotely-sourced data

products.

A comprehensive and very well documented evaluation of all remote sensing techniques

applied to a wide variety of landslide types is available from the EU-funded SafeLand
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Project (Michoud et al., 2010; Stumpf et al., 2010). Subsequently, this section only reviews
previous work within the Three Gorges region which uses either spaceborne optical or

radar imagery for landslide investigations.

3.3.1 Spaceborne Optical Imagery

An initial group of studies employed imagery and elevation data from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite sensor to
produce susceptibility /hazard maps of different landslide types for slopes bordering the
Yangtze River from Wushan to Zigui (Liu et al., 2004; Fourniadis et al., 2007a, b). The
high spatial and spectral resolution of the ASTER sensor (14 spectral bands, up to 15 m
resolution) in the visible and infrared bands is well suited to geological and
geomorphological interpretation. Following the extraction of regional parameters affecting
slope stability (namely slope, bedding dip angle, bedding aspect, slope-drainage distance,
lithology), these are combined to create an index of stability and a regional landslide
hazard map (e.g. Figure 3-9). Slopes bordering the Yangtze River between Badong and
the TGP are mostly classified as having intermediate — high susceptibility to landsliding
which reinforces the focus of this study to detect, map, monitor and characterise landslides

in this region.
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Figure 3-9: Susceptibility to block-type landslides between Wushan in the west and Zigui in the
east. The enlarged left inset focuses on Wushan, the right inset focuses on Badong (Fourniadis et
al., 2007b p. 272).
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These landslide hazard models have developed to include variable susceptibility maps
adapted for different landslide failure mechanisms. Combined with socio-economic
information on the affected populations, industry and transport networks, areas of greatest

potential landslide impact can then be mapped.

Similar susceptibility approaches have been applied to the Three Gorges region over
smaller scales to generate a spatial forecast of landsliding at varying degrees of resolution

(Wang and Niu, 2009; Bai et al., 2010; Austin et al., 2013).

The most recent study employed 20 categorical variables believed to influence landslide
susceptibility, obtained from a DEM, satellite and aerial imagery (Peng et al., 2014). The
final result (Figure 3-10) is relatively consistent with that in Figure 3-9, although with a
different number of classification categories, direct comparisons are difficult. The steepest

areas closest to the Yangtze River are generally deemed most at risk of landslides.
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Figure 3-10: Landslide susceptibility mapping of the Three Gorges from Badong in the west to
Zigui in the east (Peng et al., 2014 p. 296).

Despite the use of susceptibility maps for land-use planning, the maps are strongly
influenced by the choice of parameter inclusion which often lack information on triggering
factors (Petschko et al, 2014). Additionally, the frequency/time dependence of landslide
events is rarely considered and the designation of susceptibility classes remains a
qualitative process relative to the geographical region under study. Finally, verification of
these results is always difficult since known landslide sites are typically used to determine
the highest risk parameter classes. The division of landslide observations in both space and
time is necessary for modelling and verification (Fourniadis et al., 2007b), although this

also becomes a qualitative process.
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3.3.2 Spaceborne Radar Imagery

Rather than assessing the probability of slope failure across the Three Gorges region,
D-InSAR techniques are capable of detecting and measuring the displacement of active
instabilities. However, the terrain in the Three Gorges region is very challenging for

D-InSAR primarily due to the dense vegetation affecting the interferometric coherence.

From the handful of studies that exist, the installation of corner reflectors over known
landslide sites has been used to generate consistent D-InSAR results using ENVISAT data
(Xia et al., 2004; Fu et al., 2010; Xia, 2010). An old landslide deposit of the Xintan
landslide is one such site with corner reflectors installed which was found to be stable over
the period November 2000 — November 2001. The stable Kaziwan landslide has also been
measured following the same method, along with the Shuping landslide which was found

to be active between September 2005 and June 2007 at a rate of 10 — 30 mm/yr.

In the Three Gorges region, the most successful case of D-InSAR monitoring without the
use of corner reflectors has been the Huangtupo landslide in Badong, using ENVISAT
SAR data (Perissin and Wang, 2011; Liu et al, 2013; Tomaéas et al., 2014) and ALOS
PALSAR data (Tantianuparp et al, 2013). A variety of Persistent Scatterer (PS)
techniques have been applied, with all results matching those presented by Liu et al.
(2013). Two subsidence regions are evident, with the fastest moving (Huangtupo slope) to
the east of Badong (Figure 3-11). Division of the landslide body into various slumping
masses was possible by interpreting the various measurement points, and the most active
mass can be decomposed into linear creep movement (governed by geological conditions)
as well as seasonal fluctuation (related to factors such as reservoir changes) (Tomés et al.,
2014). The success of these studies is mostly related to the extremely slow rate of
movement and the density of built infrastructure on the slope. The lack of dense
vegetation therefore permits the generation of high-coherence interferograms of varying

time intervals.

Finally, the launch of the TerraSAR-X sensor in 2007 offers the highest resolution of SAR
data which are better suited for monitoring landslides in the Three Gorges region (Xia,
2010). The finer pixel spacing and its more frequent 11-day revisit frequency can increase
the interferometric coherence, although its spatial coverage is limited. Both TerraSAR-X
(TSX) Spotlight and Stripmap image mode SAR data exist over the Shuping landslide,
overlapping in time with some ENVISAT data. Exploitation of this TSX data for

monitoring the Shuping landslide has been the focus of the most recent studies.

49



Chapter 3 Landslides in the Three Gorges Region

31°03'N

31°02'N §
110°19'E

110°20'E 110°21'E 11022 110°23'E 110°24'E B

Figure 3-11: Mean Line-of-Sight (LOS) velocity of the Huangtupo landslide (right landslide block),
between August 2003 and July 2010 (Liu et al., 2013 p. 257).

3.3.2.1 Shuping Landslide Observations

Previous studies monitoring the Shuping landslide using D-InSAR techniques have yielded
highly varied results. Fu et al. (2010) used 12 corner reflectors installed over the landslide
to obtain a single measurement of displacement between September 2005 and March 2006
using ENVISAT data. Good agreement with GPS measurements was reported, but it
should be noted this result did not cover the months of April — June where the fastest
movements are normally observed (and when the assumptions for reliable D-InSAR

analysis are most likely to be broken).

Extensometer measurements over the time period of September 2005 and June 2007 show
minimal displacements until around May — June 2007 when there is a rapid increase of
~0.4 m in the accumulated movements (Wang et al, 2013b). Whilst recognising the
different vectors of measurement sensitivity, this contradicts the results of Xia (2010) who
used the same 12 corner reflectors to calculate a time-series of displacement over the same

time period, presenting very linear rates of downward movement for all points.

This landslide has been divided into eastern and western parts with the eastern block, also
known as Block 1 (Figure 3-12), found to be most active (Wang et al., 2008a). The motion
of Block 1 has been recorded primarily using 21 extensometers from 2004 until 2010
(Wang et al., 2008a; 2013b) and these results display high spatial variability along with a
stepped behaviour in time. Particularly using the longest record from August 2004 until
May 2010, the periods of greatest movement have been suggested to relate to the

drawdown of the Three Gorges reservoir (Wang et al., 2008a).
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Figure 3-12: Published boundaries of Block-1 and Block-2 for the Shuping landslide (red dashed
lines). Extensometers used between 2004 — 07 have been installed on Block-1 (red solid lines). Ten
more extensometers were added to Block-1 for the period 2007 — 2010 (Wang et al, 2008a p. 323).

(2012) used Persistent Scatterer (PS) interferometry with TerraSAR-X

Liao et al
Stripmap data to show movement up and down in the LOS direction in the order of

+ 5 mm between February 2008 and January 2010 (Figure 3-13). These measurements are
unusual given they are an order of magnitude lower than the extensometer data (< 10 mm
displacement in 2009 compared to ~500 mm from extensometer data). The highly non-

linear velocity trend revealed by in-situ measurements and the disparities between D-

InSAR studies promotes further analysis of the Shuping landslide using SAR data

Most recently, four months of TSX Spotlight data have been processed using PS-InSAR
2014). Velocities up to

techniques between January and April 2012 (Perski et al
250 mm/yr are reported which more accurately reflects the magnitude of extensometer

measurements over the same time period. However, this D-InSAR study also fails to
obtain measurements over the fastest period of displacement from May-June and therefore

underestimates the total annual displacement by extrapolating just four months of data
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Figure 3-13(a): Noisy mean velocity map over the Shuping landslide for the period January 2008 —
January 2010 (Liao et al., 2012 p. 597).

Figure 3-13(b): Noisy time-series curves of displacement, in relation to variation of the Three
Gorges reservoir (Liao et al., 2012 p. 597). The magnitude of measurements is within the expected
uncertainty associated with the technique.

A sub-pixel offset technique was first applied to TerraSAR-X SAR data by Li et al
(2011a) with promising results for monitoring the Shuping landslide, although only four
sets of measurements were shown in the paper (corresponding to four offset pairs). This
study attempts to recover landslide movements from TerraSAR-X data with a temporal

resolution up to every 11 days over a time period of four years.

For this research, the Shuping landslide was selected as a case study and regular SAR
data were commissioned in three different image modes over the landslide and over the

same time period. The landslide is densely vegetated with orange trees, representative of
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the majority of hillslopes in the surrounding areas of the Three Gorges region, making the
application of D-InSAR techniques very difficult. The north facing landslide orientation
also makes it insensitive to LOS measurements. Independent of this study, corner
reflectors have been installed over the landslide which aids the analysis of SAR data

(shown in Appendix A, Figure A-1).

Given the active state of the Shuping landslide, continued monitoring is required to
determine periods of abnormal acceleration which may indicate an upcoming propensity to
catastrophically fail. The case of the Xintan landslide closer to the TGP is an example of
successful monitoring as increased activity was detected and followed by the installation of
a comprehensive in-situ displacement monitoring system. This led to the successful
evacuation of the affected population prior to its catastrophic failure on 12™ June 1985

(Huang et al., 2009; Xue, 2009).

Overall, there is scope for further investigation of SAR imagery applied to landslides in
the Three Gorges region, particularly comparing significant archives of SAR data from
three different spaceborne sensors. In addition to the possibility of identifying previously
unknown landslides, there is a demand for increasing the application of D-InSAR
techniques beyond the most urbanised areas in the region. Finally, the development of
sub-pixel offset techniques using SAR images will be a new application for landslide
monitoring and may be applicable for many other landslide prone regions. These

techniques can make use of SAR images which may be unsuitable for D-InSAR.

3.4 Large Colluvial Landslides

Colluvium refers to loose, heterogeneous regolith deposits formed by biologic, pedogenic
and gravitational slope processes (Schulz et al., 2008), generally characterised by a loose
composition, high porosity and high permeability (He and Wang, 2006). Because of
complex boundaries and variable compositions of the sliding mass, colluvial landslides
have deformation and slippage properties which are different from other types of
landslides. The flanks of movement may often be indistinct as shear displacement is
distributed over a wide area and for landslides in thick colluvium, movements are typically
in the range of centimetres to one metre per episode often in response to above-average
rainfall (Fleming and Johnson, 1994). The non-linear and episodic nature of failures in
colluvial landslides also means they cannot be easily evaluated by simply considering a

mean displacement velocity (He and Wang, 2006).
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In the Three Gorges region, colluvial landslides refer to landslides in Quaternary
sediments. With slip zones located at the contact between colluvium and bedrock, these
landslide types are most common, accounting for more than 50% of all large-scale
landslides in the region (Wen et al, 2007). Around 30 large colluvial landslides exist
within the Three Gorges (He et al, 2008), examples including the Anlesi, Baishuihe,
Bazimen, Xintan and Yuhuangge landslides (He and Wang, 2006; Jian et al., 2009; Yin et
al., 2010a; Du et al., 2013).

In the Three Gorges region, displacement curves of most colluvial landslides show a
stepwise evolution (Figure 3-14) influenced by precipitation and reservoir fluctuations,
often prior to catastrophic failure (Du et al., 2013). For continuously creeping landslides,

periods of (sometimes sharp) acceleration and deceleration are also evident.
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Figure 3-14: Conceptual model for the slow and episodic movement of landslides observed in the
Three Gorges region (Miao et al., 2014 p. 62).

Areas of thick colluvium may be formed in mountainous regions from large and ancient

catastrophic landslides. Reactivation of these landslide deposits may then be triggered by
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external factors such as groundwater changes or increased loading on the slope. The river
level rise and fluctuation of the Three Gorges reservoir has been proposed for the

reactivation of the colluvial Shuping landslide (Wang et al., 2008a).

3.4.1 Geological Description of the Shuping Landslide

The Shuping landslide is located on the southern banks of the Yangtze River,
approximately 45 km upstream from the TGP. The sliding body is approximately 500 m
wide and 600 m long, extending from the Yangtze River level (the toe of the landslide is
most likely submerged by the reservoir) up to an elevation of ~400 m. The overall slope of

the landslide ranges from 10 to 35°.

A gully divides the whole landslide site into an eastern and western block (labelled Block
1 and 2 respectively), although both have similar geological characteristics. It is a multi-
period landslide with complicated material composition. The colluvial nature of this
ancient landslide deposit is characterised by a body of sliding material (a product of the
Triassic Badong group, consisting of brown-red sandy mudstone, muddy siltstone and dust
coloured marlite) which sits above a bedrock of fragmented Triassic sandstone, siltstone

and shale (Ailan et al., 2008; Qin et al., 2010).

A borehole (Figure 3-15) has indicated the depth of the sliding surface is between 40 —
70 m (Wang et al, 2008a), allowing its volume to be estimated around 26 million m*
(Wang et al., 2008d). Reactivated in 2003 following reservoir inundation, the landslide has
been monitored using extensometers until 2010 (Wang et al., 2013b). During this period

the landslide has appeared most susceptible to periods of reservoir lowering.

This description summarises all the known geological information on the Shuping landslide
making further interpretations difficult. The use of frequently acquired SAR images for
particular monitoring of the Shuping landslide is also encouraged given how in-situ results

cease in 2010 despite the active nature of the landslide.
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Ut



Chapter 3 Landslides in the Three Gorges Region

No. SPZK-1 Elevation: 185 m
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Yellow and brown silty clay, with
10% gravel.
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supplied by Yichang Geological Institute, CGS

Figure 3-15: Lithological column diagram of the borehole located towards the middle/bottom of
Block 1 in the Shuping landslide (Wang et al., 2005a p. 318).

3.5 Slope Stability Modelling

Calculating the Factor of Safety (Fg) for a specific slope is a common engineering practice
and an important step in assessing the stability of slopes. An index of stability for an
appropriate geotechnical model can be classified by various approaches, such as limit
equilibrium or finite element methods. Lacking detailed and spatially varied geotechnical
measurements of soil properties, most slope stability analysis employs a 2D limit
equilibrium method which requires values for the strength of soil/rock but does not need

information about their shear-strain behaviour (Wang et al., 2007).

Within the Three Gorges, very few modelling studies have been published related to the
stability of known landslides within the region. In a similar respect to remote sensing
applications, the most modelled landslide is the Huangtupo slope in Badong due to its well
known geotechnical parameters for various subsurface layers. Using limit equilibrium and
finite element methods, the slope has been assessed under both static conditions and

dynamic situations of fluctuating reservoir levels (Cojean and Cai, 2011; Hu et al., 2012b).

With the reservoir at its lowest level of 145 m the factor of safety value for the Huangtupo
slope is ~1.24, compared with a value of ~1.22 when the reservoir is at 175 m (Cojean and

Cal, 2011). In the case of a rapid reservoir drawdown, the factor of safety is shown to
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decrease up to 3% compared with the static scenarios of stable water levels, although this
may be small given the uncertainties of estimating Fs. Additionally, the toe of the
landslide within the reservoir fluctuation zone exhibits the greatest simulated displacement

due to its increased sensitivity to hydraulic effects (Hu et al., 2012b).

The same effects of reservoir drawdown were found in another slope modelling study of
the Qiaotou landslide (30.1N, 110.8E) in the Three Gorges region (Jiang et al., 2011a).
Numerical simulation using a finite difference method was applied to the slope after
detailed fieldwork, in-situ testing and laboratory experiments. Assuming drawdown of
0.25 m/day, a maximum displacement of 0.24 m was found with vulnerable landslide areas
migrating from the head to the toe of the landslide. This may reflect a mechanism change

from initial seepage forces causing displacement, to later stages of soil consolidation.

Both these results, along with the famous Vajont landslide and other major events
highlight the potential influence of reservoir fluctuations on slope stability (Petley, 2013)
which will be explored as a potential triggering factor for landslides identified in this

study.

3.6 Summary

Chapter 3 provides a background to landslides in the Three Gorges region. The geological
setting and the local geology of the region is outlined as well as descriptions of the
different landslide types. Hydrological influences on landslides in the region are considered,
such as the annual rainfall regime and also the development of the Three Gorges Project.
The 600 km long reservoir generated by the dam has significant implications on the

landscape, along with its operational annual fluctuation of ~30 m in elevation.

A review of significant remote sensing studies on landslides in the Three Gorges is
provided. The use of optical imagery combined with a DEM is most commonly used for
hazard assessments whereas radar imagery has been used to measure displacements, albeit
with a focus on urban areas. Conflicting D-InSAR results over the same time period for

the Shuping landslide are presented, warranting further investigation.

The progression of temporally variable, stepwise movements for colluvial landslides are
explored and previous modelling results in the Three Gorges show these are linked to
reservoir fluctuations. A greater understanding of landslide behaviour in response to such

influences is required and has generic implications for slopes bordering other reservoirs.
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Despite the advantages of D-InSAR methods outlined in Chapter 2, limitations should
always be considered, namely: geometric decorrelation; temporal decorrelation;
atmospheric artefacts; scale constraints; limits on the spatial displacement gradient;
geometric distortions; and, a 1-dimensional Line-of-Sight (LOS) measurement sensitivity
(Colesanti and Wasowski, 2006). Whilst time-series D-InSAR methods developed over the
last 15 years can partly overcome some of these limitations using a long series of SAR
images (e.g. Ferretti et al., 2001; Berardino et al., 2002; Hooper et al., 2007; Hooper, 2008;
Perissin and Teng, 2012), fundamental theoretical constraints still exist given the SAR
data characteristics and D-InSAR processing strategies. An insufficient appreciation of
these inherent limitations, combined with the natural complexities of landslide movements
can lead to the misrepresentation of satellite SAR data (Colesanti and Wasowski, 2006;
Peduto et al., 2010). Consequently, end-users may lack confidence in these remotely-
sensed results unless verified with ground data, thereby negating some of the benefits of
using remotely collected data. It is important to understand controlling factors upon the
quality of D-InSAR results specifically in relation to the phenomena under investigation,

the landcover / climatic conditions of the study area and the available SAR image data.

To address the first research question (page 10), this chapter investigates the capabilities
and limitations of D-InSAR techniques for monitoring slopes in the Three Gorges region
that border a ~30 km stretch of the Yangtze River. The availability of three spatially and
temporally overlapping SAR data series in various image modes (TSX Spotlight, TSX
Stripmap and ENVISAT Stripmap) allows useful comparisons to be made between the
data sets since the differences (particularly in the radar wavelength, range/azimuth
resolution and the satellite revisit time) often have significant implications for successful
landslide monitoring (Metternicht et al., 2005; Herrera et al., 2011; 2013). For each image
mode, the ability to detect unstable slopes, map landslide boundaries and acquire regular
measurements is assessed whilst considering the limitations of geometric and temporal
decorrelation, scale constraints, geometric distortions and the spatial displacement

gradient.
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4.1 Study Area and Data Sets

The Three Gorges were formed by incision along narrow fault zones of massive limestone
mountains interbedded with siltstone, shale and mudstone (Wang et al., 2008c), although
between gorges the lithologies are much less resistant. Dominated by weathered
mudstones, these inter-gorge areas favour river bank erosion, terrain dissection and the

development of slow-moving slope failures (Liu et al., 2004).

This study focuses on a ~30 km stretch of the Yangtze River in the eastern Three Gorges
region, predominantly located between the Wu Gorge and Xiling Gorge (Figure 4-1). This
area was selected because regular SAR data in three different image modes have been
acquired, overlapping in both time and space. The mountainous area is densely vegetated
with orange trees and, being representative of the majority of hillslopes in the Three
Gorges region, makes the application of D-InSAR techniques a very difficult task. Small
villages can be found on slopes bordering the Yangtze River, but these typically have low
populations of 50-200 people, housed in small buildings amongst the dense vegetation.
Therefore, any permanent/persistent scatterer (PS) analysis would only generate a sparse

network of points throughout the region.

There are at least eight previously known landslides within the TSX Stripmap data
coverage (Figure 4-1) and the most recent published monitoring data cease in early 2010.
Continued monitoring of these landslides is required and the use of SAR satellite data can

measure slope movements as well as potentially detect previously unknown landslides.

Figure 4-1 and Table 4-1 give the locations of many known landslides within the TSX
Stripmap coverage. The predominant north-south sliding direction coupled with the
orientation of the descending SAR data makes six of the landslides quite insensitive to
LOS measurements from conventional D-InSAR techniques (explored further in
Section 4.6). This provides an additional opportunity to test the suitability of D-InSAR

for monitoring these landslides.



Chapter 4 Evaluating D-InSAR Use in the Three Gorges Region

Shanghai

/
1000 km
o 5
\{"5
&

%"v © 31°N-

J
//me

""”’%Wa%%

A
Yichang

Figure 4-1: Location map and elevation of the eastern TG region. TSX Spotlight data coverage is
shown by the solid box and TSX Stripmap data coverage is shown by the dashed box. Descending
ENVISAT data covers the whole map. Red hatching indicates the two gorges in this area, Wu
gorge to the west of Badong and Xiling gorge further east. Black stars indicate known landslides,
listed in Table 4-1 in the order they appear from east-west.

Table 4-1: Basic information about previously known (i.e. published) landslides in the study area.
These are shown in Figure 4-1 and are listed by location, from east-west.

. . Distance from Volume
Landslides Location (N/E) TGP (km) (10° m?) Reference
Xintan 30.944°  110.805° 26 30 (He et al., 2008)
Bazimen 30.967° 110.761° 30 2 (Du et al., 2013)
Kaziwan 31.013° 110.698° 40 34 (Xue et al., 2009)

. . . (Wang et al., 2008e;
Shuping 30.993° 110.619 46 20 Wang et al., 2013b)
e . . (Wang et al., 2004;

Qianjiaping 30.970° 110.607 47 20 Wang et al., 2008b)
Xietan 31.009° 110.595° 48 9 (Zhang et al., 2009b)
Baishuihe 31.024° 110.540° 54 12.6 (Li et al, 2010; Du et
al., 2013)
Fanjiaping 31.034° 110.497° 58 125 (He et al., 2008)
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Finally, various studies monitoring the Shuping landslide using D-InSAR techniques were
shown in Chapter 3 to yield highly varied results over the same time period of the
available SAR data (Fu et al., 2010; Xia, 2010; Liao et al., 2012). Given the highly non-
linear velocity trends revealed by in-situ extensometer measurements (Wang et al., 2013b)
and the disparities with previous D-InSAR studies, this prompts particular analysis of the
Shuping landslide using SAR data.

411 TerraSAR-X Spotlight Data

The longest series of data over this study area was obtained in High Resolution Spotlight
(HS) image mode from the TSX sensor. A total of 57 HH-polarised images were available
between 21* February 2009 and 23" February 2013 acquired from a right-looking sensor
orientation on a descending orbit with a scene-centre incidence angle of 44° (from 43.5° to
44.4°, east-west). The majority of images were acquired at 11-day intervals, although there
is a gap in the data series between 15" April 2010 and 2" January 2012. It should also be
noted that around half of the second data series was acquired at monthly (~33-day)

intervals (Figure 4-2b).

With a chirp bandwidth of 300 MHz, the data have a slant range resolution of 0.6 m and
an azimuth resolution of 1.1 m, although this imaging mode subsequently has the smallest
areal extent of ~38.5 km® (7 x 5.5 km, range x azimuth). Figure 4-2 shows the temporal,
spatial and Doppler Centroid (D.) separation between subsequent image acquisitions. The
constant and precise orbit control has always kept the satellite platform within its
predefined orbital tube of 250 m (Yoon et al., 2009) which ensures any interferometric

image pair has a perpendicular baseline far below the critical baseline value of ~17,700 m.

Finally, the D, difference between image pairs was considered since this is of particular
importance in forming a coherent TSX Spotlight interferogram. The ground projected
range-spectra of both SAR images must overlap (Gatelli et al., 1994) as well as the
received Doppler frequency spectra (Bamler and Hartl, 1998). Fulfilling the second
condition is more difficult in a spotlight imaging mode since both images may have
different acquisition start times and different squint angles even if the beam sweep rates
are equal (Eineder et al, 2009). Incorporating real-time GPS measurements and star
trackers to control the antenna’s position and look direction (which determines the D
frequency), the pointing error is less than 20 m on the ground which generates D,

differences typically less than 120 Hz (Eineder et al., 2009). The D, differences within the
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TSX Spotlight data set are consistently below this threshold and the maximum value of
100 Hz corresponds to < 2% of the azimuth bandwidth in high-resolution spotlight mode
(focused azimuth bandwidth ~7300 Hz). As complete decorrelation occurs when the D¢

difference equals the azimuth bandwidth, all image pairs fall well within this threshold.
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Figure 4-2(a): Baseline plot of TSX Spotlight data from 2009 — 2010. The Doppler Centroid (D)
difference (Hz) is shown by the different colours linking consecutive image pairs.

Figure 4-2(b): Baseline plot of TSX Spotlight data from 2012 — 2013.

412 TerraSAR-X Stripmap Data

The shortest series of SAR images over this study area was Stripmap (SM) image mode

data from the TSX sensor. A total of 23 VV-polarised images were available between 22™
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April 2009 and 31" December 2009, acquired from a right-looking sensor orientation on a
descending orbit with a scene-centre incidence angle of 23° (from 24.5° to 28.2°, east-west).
Except for the very last image acquisition, every image was acquired at 11-day intervals

(Figure 4-3) and falls completely within the temporal coverage of the TSX Spotlight data.
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Figure 4-3: Baseline plot of TSX Stripmap data. The Doppler Centroid (D) difference (Hz) is
shown by the different colours linking consecutive pairs.

With a chirp bandwidth of 150 MHz, the data have a slant range resolution of 1.2 m and
an azimuth resolution of 3.3 m, covering an area of ~1500 km* (30 x 50 km, range x
azimuth). The baseline plot for the TSX SM data (Figure 4-3) again shows the TSX
satellite remained within its 250 m orbital tube ensuring any interferogram image pair has
a perpendicular baseline far below the critical baseline value of ~4,000 m. The D,
differences are also comnsistently below 4+ 100 Hz, which is far below the total focused

azimuth bandwidth of ~2765 Hz.

413 ENVISAT ASAR Stripmap Data

Finally, a series of data covering a very large area of the Three Gorges region was
obtained in Stripmap (SM) mode from the ENVISAT sensor. A total of 14 VV-polarised
images were available between 28" December 2008 and 2" May 2010 acquired from a
right-looking sensor orientation on a descending orbit with a scene-centre incidence angle
of 22.8°. Again, except for the very last image acquisition, every image was acquired at the
shortest possible repeat interval of 35-days (Figure 4-4) and completely covers the first
half of the TSX Spotlight data series.
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Figure 4-4: Baseline plot of ENVISAT Stripmap data. The Doppler Centroid (D) difference (Hz)
is shown by the different colours linking consecutive pairs.

With a chirp bandwidth of 16 MHz, the data have a slant range resolution of 7.8 m and
an azimuth resolution of 4.22 m, covering both the TSX HS and SM image areas. The
baseline plot for the ENVISAT SM data (Figure 4-4) shows the ENVISAT satellite stays
within an orbital tube of 400 m which results in far higher perpendicular baselines
between interferometric pairs, although they all stay below the critical baseline value of
~930 m. Finally the D, differences are far smaller than TSX interferometric pairs, with

differences always less than + 20 Hz and well below the critical D, value of ~1500 Hz.

4.2 Coherence Analysis

The principles of interferometric coherence (y) and decorrelation have been outlined in
Chapter 2. The success of D-InSAR analysis is highly related to coherence since
interference phenomena such as deformation fringes can only be observed when there is at
least partial coherence between two SAR images (Wegmuller and Werner, 1995).
Decorrelation sources have been well documented (Zebker and Villasenor, 1992; Bamler
and Hartl, 1998; Hanssen, 2001) and this section specifically analyses coherence factors
influencing the quality of D-InSAR results for the available data over the Three Gorges
study area. Defining decorrelation as the noise caused by error sources with a correlation
length smaller than the coherence estimation window (Hanssen, 2001), factors such as

orbit errors and atmospheric heterogeneities are excluded from this section.
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Using D-InSAR techniques to investigate landslides, geometrical and temporal
decorrelation are considered the dominant factors reducing coherence (Rott and Nagler,
2006). Particularly in densely vegetated areas such as forests and agricultural areas,
signals can decorrelate within a few days due to plant growth and disturbance by wind
(Colesanti and Wasowski, 2006; Rott and Nagler, 2006; Ahmed et al., 2011) causing the
distribution of wavelength-scale scatterers within a resolution cell to change between SAR
acquisitions, uncorrelated with other resolution cells (Hanssen, 2001). In addition to
vegetation properties, variable quantities such as rainfall between image acquisitions can
alter the dielectric properties of the ground, reducing coherence (Askne and Santoro, 2005;
Ahmed et al., 2011). L-band SAR data can penetrate vegetation to a greater extent than
shorter wavelengths and can achieve higher coherence interferograms (Raucoules et al.,
2003; Strozzi et al., 2005), although these data were unavailable for this study.
Subsequently, the coherence of three data modes from the TSX and ENVISAT ASAR
sensors was analysed to understand the most suitable data for D-InSAR landslide

monitoring in the Three Gorges region.

4.2.1 Coherence Processing

Differential interferograms were generated with a multi-look factor of two applied in both
range and azimuth directions for the TSX data, and factors of 2 and 10 in range/azimuth,
respectively were applied to the ENVISAT data. The topographic phase component was
removed using the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) v2, a product of METI and NASA

(http://earthexplorer.usgs.gov/). No spectral shift filter, Doppler filter or post-processing

filter was applied during the processing. Finally, a sample estimate of the coherence was
measured using a 9 x 9 window which provides an adequate statistical sample for
coherence analysis since the number of resolution elements is >50 (Rott and Nagler, 2006)
and the large number reduces the inherent bias in coherence estimation which often tends

to overestimate low coherence values (Bamler and Hartl, 1998; Touzi et al., 1999).

The mean coherence value was obtained from a 5 km’ area of land adjacent to, but
excluding, the Shuping landslide. The slope and land cover in this area are very typical of
many landslides within the study area. Seasonal patterns were assessed by plotting the
mean coherence for every 11-day (TSX) or 35-day (ENVISAT) image pair over time and
effects of the perpendicular baseline (Bpgzp) were considered by plotting the mean

coherence for the same 11-day / 35-day image pairs with respect to the Bpggpp. Temporal
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decorrelation was assessed by plotting the mean coherence for all pairs with a Bpggp less
than 25 m (TSX data) or 50 m (ENVISAT data) with respect to the time interval

between image acquisitions.

All the results presented below were produced using the SARscape®) software package
(SARMAP, 2012) which includes interferometry modules capable of processing all the

necessary data formats included in this study.

4.2.2 Coherence Results

The coherence for all 11-day or 35-day image pairs between December 2008 and May 2010
for all image modes (Figure 4-5a: left-hand column) is very low throughout the 1.5 years,
never exceeding 0.37, although a consistent seasonal pattern is shown for the TSX imagery

with the highest coherence found between November and February each year.

Plotting the coherence against 10-day accumulated rainfall values (Figure 4-5a: left-hand
column, black bars), the months of November — February had a far lower mean monthly
rainfall (~19 mm/month) compared to the other months (~100 mm/month). Given the
sensitivity of radar backscatter to the dielectric effects of changing surface moisture
content (Smith, 2002), it is very likely this reduction in coherence between March and

October is attributable to the heavy rainfall.

The seasonality in coherence and rainfall may also be interrelated with the dense orange
tree vegetation throughout the region. A Normalised Difference Vegetation Index (NDVI)
map from Landsat 8 shows the dominance of vegetation throughout the Three Gorges
region (Figure 4-6a). After the ENVI®) calibration procedure converting digital numbers
to reflectance values, seasonal vegetation change between December 2008 and May 2010
can be visualised (Figure 4-6b). For all Landsat 5/7 cloud-free images acquired over the
SAR data time period, cumulative NDVI values follow a clear gradient with lowest values

in December/January, and highest values in May.

66



Chapter 4 Evaluating D-InSAR Use in the Three Gorges Region

0.4 T 100 0.4 — -
a(i) b(i) |x c(i)
o 5P 032« X
(3] — (&) x x x x
& > 6 X% %
] 50 = o 02 B3 x T
L Lyl — x
[} 3 © ok Y e LI I
i 253 ©o1
0 0
3 - 1 0.4 T —
04 a(ii) 00 b(ii) c(ii)
g 03 75 g g 03 1 2
q:) I a 5 xx x
S 0.2 | 50 2 502 A
= L —
] 3 ¢ PR x x \&...*ﬂ
© 0.4 r 25 3 ©Ooa x 1% x e
o+ ! i 0 0

0.4 1o 100 0.4 ——
a(iii) b(iii) c(iii)
© 0.3 758 03
Q —d (%)
o 3 5
& 0.2 5 £ 502
2 33 .
x ]
O 0.1 15 ¢ 7l 25 3 o1 < —
-« I' x € x
S 8 & 8 = 0 100 200 300 400 0 22 44 66 88 110
8§ & & & o
< 8 8 &€ 8 Bpgpe (M) Time Interval (days)
S & & ©o© o

Figure 4-5: Coherence analysis for the three SAR imaging modes from December 2008 — May 2010.
(i) TSX Spotlight data; (i) TSX Stripmap data; (iii) ENVISAT Stripmap data.

(a) Mean coherence of all 11-day (TSX) or 35-day (ENVISAT) interferograms showing the highest
values between November and February when rainfall (values plotted every 10 days) and
vegetation cover are at a minimum. The coherence standard deviation varies between 0.08 — 0.15
for TSX Spotlight data; 0.07 — 0.1 for TSX Stripmap data; and, 0.02 — 0.06 for ENVISAT data;
(b) Mean coherence of all 11-day/35-day interferograms plotted against Bpggp; (¢) Mean coherence
of interferograms (all B, < 30/50 m for TSX/ENVISAT data) with respect to the time interval of
image acquisitions showing a decline after ~33 days.

The NDVI is commonly used to provide information about the spatial and temporal
distribution of vegetation and its biomass. Whilst the NDVI is not able to differentiate
between plant species (Pettorelli et al., 2005), the fluctuation of median NDVI values
between ~0.2 and ~0.5 is consistent with chaparral/forest vegetation values as opposed to
tall grasses and crops (Reed et al, 1994). The seasonal variation also matches the
conclusion of Dzikiti et al (2011) who found canopy reflectance of citrus trees changes
significantly over a year even if orange trees are evergreen. It is difficult to separate the

combined effects of rainfall and vegetation change on interferometric coherence, but the
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variation in coherence shows the importance of choosing the optimal image mode, time

interval, perpendicular baseline or season to generate the best quality interferograms.
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Figure 4-6(a): NDVI map of the eastern TG region from the Landsat 8 OLI sensor. Image taken
on 22™! June 2013. Values closer to +1 result from healthy vegetation reflecting a higher proportion
of near-infrared light than visible (red) light, highlighting the density of vegetation throughout the
region. There are very few urban areas or exposures of bare rock.

Figure 4-6(b): Cumulative distribution of NDVI values in the TG region. These values were
extracted from all pixels within the TSX Stripmap image coverage, shown by the dashed box in
Figure 4-6(a). Acquisitions on 23/11/2009 and 02/05/2010 were Landsat 5 TM images, the
remainder being Landsat 7 ETM+ images.

Despite its shorter wavelength, TSX data display consistently higher coherence values
than the ENVISAT data, most likely due to the significantly higher resolution and much
shorter repeat interval of the TSX satellite compared with ENVISAT. The coherence for
each 11-day (TSX) or 35-day (ENVISAT) interferogram with respect to the perpendicular
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baseline (Figure 4-5b: middle column) shows no definitive trend over the range of
relatively short baselines (up to 400 m), and coherence values > 0.2 are always from the

TSX interferograms created in the dry winter period.

The right-hand column of Figure 4-5 shows the coherence for all interferograms with a
baseline less than 25 m (TSX) or 50 m (ENVISAT) in relation to the time interval
between acquisitions. A relatively fast fall in coherence is seen with the TSX data until
the interval exceeds ~33 days where it remains at a constant non-zero level. This constant
value is considered to represent the natural bias in estimating the coherence correlation
magnitude (Touzi et al, 1999). The almost complete loss of coherence beyond 33 days
could also explain why no significant seasonal coherence pattern is observed from the
ENVSIAT data as ground vegetation and moisture are likely to be more varied over a 35-

day interval compared with the 11-day interval of TSX data.

Lastly, the same analysis was carried out for the extra TSX data acquired between
January 2012 and February 2013 (Figure 4-7). Very similar patterns are generally
observed although some important distinctions should be noted. Given the 11-day
acquisitions do not continue between April and December 2012 (reduced to one image per
month), it is not possible to obtain measurements during this period. However, higher
coherence values are mostly observed during the same winter months of November to
February each year (Figure 4-7Ta: left-hand column). Unfortunately no suitable rainfall
data are available for this period, but the exceptionally high value between the 4 — 15"
February 2012 could be caused by a complete absence of rainfall. Similarly, the two
exceptionally low points in January/February 2013 could be caused by heavy rainfall on
or around the shared middle date of February 1" 2013, in addition to these pairs having

the highest perpendicular baseline values.

For the 2012/13 data, care should be taken when assessing the effects of the perpendicular
baseline on coherence (Figure 4-7b: middle column) and the effects of different time
intervals (Figure 4-Tc: right-hand column) since >80% of 1l-day image pairs were
acquired in the winter months. However, since image pairs with an equal time interval and
perpendicular baseline have varied coherence values, this supports the argument that
seasonality and the variable vegetation/ground moisture are dominating factors. Also,
coherence is shown to quickly decline for time intervals beyond the shortest 11-day
interval, although the time taken to reach a ‘stable’ non-zero level is longer perhaps due to

the skewed distribution of images being acquired in the winter period.
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Figure 4-7: Coherence analysis for TSX Spotlight data from January 2012 — February 2013.

(a) Mean coherence of all 11-day interferograms; (b) Mean coherence of all 11-day interferograms
plotted against Bpgrp; (¢) Mean coherence of interferograms (all B, < 30 m) with respect to the
time interval of image acquisitions.

4.3 Identifying Landslides from D-InSAR Analysis

To remotely monitor landslides with high precision, the optimal approach would employ
high coherence interferograms with minimal geometric distortions which cover the whole
time period. Given the low values of coherence presented above, this section presents
interferograms from all three image modes to demonstrate the capabilities and limitations

of D-InSAR data for detecting and monitoring landslides in the Three Gorges region.

The processing of all interferograms followed the same steps as the coherence analysis,
with the addition of a spectral shift filter to account for the difference in incidence angles
between master and slave images (Gatelli et al., 1994), a Doppler filter to remove the non-
overlapping azimuth spectra and a Goldstein filter (Goldstein and Werner, 1998) applied

to the interferograms prior to geocoding.

4.3.1 DEM Selection

The ASTER GDEM v2, a product of METI and NASA, was selected as the best available
DEM in the region in terms of accuracy and spatial resolution. The DEM has an RMSE of
12.1 m and a correlation of 0.97 compared with 121 GPS benchmarks around the Badong
area of the Three Gorges region, which is a good improvement in relation to SRTM data
(RMSE = 24.5 m and r = 0.92) (Li et al., 2012). This agrees with the conclusion from a
national study in Japan that found ASTER GDEM is superior to SRTM for most
landforms, including steep mountainous areas, due to its higher resolution and less missing

data which leads to more realistic representations of topography (Hayakawa et al., 2008).

70



Chapter 4 Evaluating D-InSAR Use in the Three Gorges Region

Extending the analysis for the whole study area, the ASTER DEM was also compared
with the Shuttle Radar Topography Mission (SRTM) DEM v4 and a 16-bit GeoTIFF
Raw DEM with a pixel spacing of 40 m initially generated by the German Aerospace
Centre (DLR) from a TanDEM-X (TDX) image pair. The results are presented in Figure
4-8. The single TDX image pair was not processed to a full resolution DEM as it is
commonly accepted that dense vegetation and mountainous areas increase the
interferometric phase uncertainty and susceptibility to unwrapping errors (Martone et al.,
2013) reducing the quality of the final DEM. Additional acquisitions from a variety of
different viewing positions are required to improve the accuracy of the final TDX DEM

and will be acquired in a dedicated mission phase (Borla-Tridon et al., 2013).
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Figure 4-8: DEM comparisons between STRM, ASTER and TanDEM-X (TDX) data.

(a) Linear regression analysis between the three data sets over the full coverage area of TDX data;
(b) Absolute difference between SRTM and ASTER elevation values, over the full coverage area of
TDX data. Solid box represents TSX Spotlight data; dashed box represents TSX Stripmap data.
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The RMSE, correlation values and the bias (shown by the trend line intercept) for
TanDEM-X data comparisons are worse than the relationship between ASTER and
SRTM data (Figure 4-8a). Although some data from the ASTER elevation model appear
to diverge from the y = x trend line (approximately when SRTM = 1000 m and ASTER
= 700 m), these absolute differences in elevation values are not apparent over the study
area, only being found to the eastern areas of the TDX coverage (Figure 4-8b). This is
where the Xiling gorge starts and where almost vertical slopes are likely to generate the
largest differences between elevation values. For these reasons, the ASTER DEM is

deemed the most accurate and suitable available DEM for use in D-InSAR processing.

4.3.2 'TSX Spotlight Interferograms

Results from the coherence analysis (Section 4.2.2) help inform decisions on how to
generate the best quality interferograms; namely using the highest resolution SAR data
pairs with short time intervals (< 33 days) acquired during the winter period between
November and February. However, given that useful landslide monitoring strategies must
be capable of detecting, mapping, characterising and obtaining regular long-term
measurements throughout the year, the remainder of Chapter 4 demonstrates the

capabilities and limitations of TSX Spotlight, Stripmap and ENVISAT interferograms.

Continuing to explore the significance of seasonality, temporal separation and
perpendicular baseline between SAR data pairs, Figure 4-9 to Figure 4-14 present a
sensitivity analysis for TSX Spotlight data varying one parameter at a time, as shown in
Table 4-2. The strategic variation of parameters should help visualise and compare the
best possible interferograms (in winter, separated by 11-days, with a short perpendicular
baseline) with less optimal interferograms. If the interferogram quality is not satisfactory
for all parts of the year, D-InSAR time-series analysis becomes a less favoured and

potentially unviable technique.

Table 4-2: Parameter selection to assess the impact of seasonality,
perpendicular baseline and time interval on interferogram quality.

Season Time Interval Bpgrp
Figure 4-9 Winter 11-days < 30 m
Figure 4-10 Winter 11-days > 30 m
Figure 4-11 Summer 11-days <30 m
Figure 4-12 Summer 11-days > 30 m
Figure 4-13 Winter Various < 30 m
Figure 4-14 Summer Various > 30 m
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15" — 26™ Dec 2009:

4™ — 15" Feb 2012:

26™ Feb — 8™ Mar 2012:

12" — 23" Feb 2013:

[T 4
Figure 4-9: TSX Spotlight, wrapped winter 11-day interferograms with B, < 30 m. White circles
show displacement in independent interferograms. (a) 15" — 26™ Dec 2009 [B,=29.8 m]; (b) 4™ —
15" Feb 2012 [24.3 m|; (c) 26™ Feb — 8™ Mar 2012 [12.5 m]; (d) 12" — 23! Feb 2013 [14.2 m)|.
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4™ — 15™ Dec 2009:

26™ Dec 2009 — 6™ Jan 2010:

15" — 26™ Feb 2012:

1% — 12™ Feb 2013:

Figure 4-10: TSX Spotlight, wrapped winter 11-day interferograms with B, > 30 m. (a) 4™ — 15"
Dec 2009 [B, = 51.0 m|; (b) 26™ Dec 2009 — 6™ Jan 2010 [170.1 m];  (c) 15™ — 26™ Feb 2012
[92.5 m|;  (d) 1% — 12" Feb 2013 [143.5 m)].
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26" Mar — 6™ Apr 2009:

28™ Apr — 9™ May 2009:

18™ — 29™ Sep 2009:

24™ Mar — 4™ Apr 2010:

AN ()

Figure 4-11: TSX Spotlight, wrapped 11-day interferograms outside the winter months with B, <
30 m. (a) 26™ Mar — 6™ Apr 2009 [B, = 26.8 m|; (b) 28" Apr — 9™ May 2009 [27.3 m]; (c) 18™ —
29™ Sep 2009 [23.0 m|; (d) 24™ Mar — 4™ Apr 2010 [10.5 m].
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15" — 26™ Mar 2009:

17" — 28™ Apr 2009:

27" Aug — 7™ Sep 2009:

13™ — 24™ Mar 2010:
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Figure 4-12: TSX Spotlight, wrapped 11-day interferograms outside the winter months with B, >
30 m.

(a) 15™ — 26™ Mar 2009 [B,= 152.9 m]; (b) 17" — 28" Apr 2009 [42.1 m]; (c) 27" Aug —
7% Sep 2009 [77.9 m]; (d) 13™ — 24" Mar 2010 [119.2 m].
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4™ — 26™ Dec 2009:

17" Jan — 19™ Feb 2010:

13" Jan — 26™ Feb 2012:

21 Jan — 26™ Feb 2012:

Figure 4-13: TSX Spotlight, wrapped winter interferograms of different time intervals with B, <
30 m. (a) 4™ - 26™ Dec 2009 [B,=23.9 m, 22 days|; (b) 17" Jan — 19" Feb 2010 [22.7 m, 33 days];
(c) 13™ Jan — 26™ Feb 2012 [17.1 m, 44 days|; (d) 2"! Jan — 26™ Feb 2012 [21.6 m, 55 days].
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25" Jul — 16™ Aug 2009:

22" Jun — 25™ Jul 2009:

14™ Jul - 27" Aug 2009:

U (c)

Figure 4-14: TSX Spotlight, wrapped interferograms of different time intervals outside the winter
months with B, < 30 m. (a) 25" Jul — 16™ Aug 2009 |[B, = 22.7 m, 22 days]|; (b) 22" Jun — 25"
Jul 2009 [29.2 m, 33 days|; (c) 14™ Jul — 27™ Aug 2009 [10.6 m, 44 days].

It is very clear that 11-day, winter interferograms with perpendicular baselines < 30 m
generate very high quality measurements (Figure 4-9) due to the high interferometric
coherence. Given the small baselines, sharp localised colour changes allow areas of surface
displacement to be easily identified and mapped. The largest circled feature corresponds to
the Shuping landslide. Furthest east, movement of the Dujiawu landslide can be observed
which was confirmed in the field (Figure A-2). There are other smaller features of surface
displacement mapped in the area (i.e. the two furthest west circles) which illustrates a

significant advantage of this highest resolution SAR data, and since these interferograms
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are independent (i.e. they do not share any SAR images), repeated identification of

movement in different interferograms boosts confidence in these observations.

To assess the effects of increasing perpendicular baselines, four more interferograms were
generated using 11-day SAR image pairs also acquired in the winter months (Figure 4-10).
The level of coherence has slightly decreased, albeit not drastically and some displacement
features can still be observed in the same locations as Figure 4-9. However, the biggest
issue is the phase noise concentrated on east-facing slopes. In these areas of both active
and passive layover (and to a far lesser extent radar shadow), it becomes clear that both
SAR amplitude and phase data are of very limited use (Colesanti and Wasowski, 2006)
making the application of D-InSAR very unreliable for these slopes. This terrain distortion
at such small scales results from DEM errors, known to increase linearly with the

perpendicular baseline (Ducret et al., 2014).

Figure 4-11 displays 11-day interferograms with perpendicular baselines < 30 m outside
the winter months of November — February. These interferograms are acceptable,
although there is a definite increase in noise compared to the winter interferograms in
Figure 4-9. Consistent displacement signals are also observed in Figure 4-11a,d. For 11-
day image pairs outside the winter months with baselines > 30 m (Figure 4-12), a further
increase in noise is observed with similar layover and shadow problems as seen in Figure
4-10. Large parts of these interferograms are dominated by incoherence, particularly in
August/September when heavy monsoonal rains are common and when the vegetation
coverage is most dense. These interferograms could be used as input to some form of
D-InSAR time-series analysis, however it is suggested that any final mean velocity map

would have a very sparse network of Persistent Scatterer (PS) points or coherent pixels.

Finally, the impact of the time interval between image acquisitions is assessed. Figure 4-13
shows interferograms with increasing time intervals, all acquired in the winter months
with a perpendicular baseline < 30 m. Even with a 55-day separation, significant
coherence remains within these longer interferograms with clear displacement signals at
the previously identified locations. It is also interesting to note how displacement signals
related to the Shuping landslide are lost between Figure 4-13c and d. Given the 55-day
interferogram covers the full time period of the 44-day interferogram, it is assumed the
displacement magnitude of the Shuping landslide over 55-days exceeds the spatial
displacement gradient and therefore causes this loss of coherence. Even when coherence is
generally maintained over the whole image, shorter time intervals are therefore optimal to

avoid loss of coherence due to large movements.
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Carrying out the same analysis for varying time intervals outside the winter months
(Figure 4-14), a significant loss of coherence becomes increasingly apparent beyond 22-day
image pairs. Therefore, if one or two SAR images are skipped in the acquisition schedule
outside the winter months (such as with this TSX Spotlight data set), it becomes very
difficult to obtain reliable measurements over this gap. Any D-InSAR time-series network
would have to rely upon long time interval interferograms (of 33 days or more) which are
likely to be dominated by incoherence. It might be advisable to process data separately for
the two epochs either side of any data gap, however to increase the accuracy of the
estimated look angle error (and in turn the estimated deformation signal), it is desirable to
use as many images as possible during the time-series analysis (Hooper et al., 2007). Also,
splitting any time-series into two different epochs does not enable measurements to be

obtained over the data gap.

4.3.3 TSX Stripmap Interferograms

A brief assessment was also undertaken for the TSX Stripmap data. A full sensitivity
analysis of seasonality, time interval and perpendicular baseline could not be undertaken
due to the far shorter acquisition length of the SAR images (and with only five images
collected in the winter months). However, the full capability of these data can be

demonstrated using only 11-day acquisitions with baselines < 30 m (Figure 4-15).

Despite the larger pixel spacing of TSX Stripmap data compared to the Spotlight data,
very similar patterns in coherence can be observed which matches the initial coherence
analysis (Figure 4-5). An 11-day image pair with a perpendicular baseline of only 26 m
acquired at the end of the summer period shows almost complete decorrelation (Figure
4-15a) and the same level of coherence (or worse) is observed for other 11-day pairs
around this time. In contrast, 11-day pairs with similarly small baselines acquired in
winter show markedly greater coherence. In these cases no displacement signals are
obvious, but this is consistent with the TSX Spotlight data covering the same time period
of late Nov — early Dec 2009 (Figure 4-10a). Again the most significant problem caused by
the lower resolution and incidence angle of the TSX Stripmap data is the dominant

layover effects found on all east-facing slopes.
Given the 9-month period of TSX Stripmap data collection, low coherence outside the

winter months and large layover effects, time-series analysis of these data is not deemed

feasible and would likely result in a sparse network of PS points or coherent pixels.
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21° Aug - 1% Sep 2009:

17" — 28% Nov 2009:

28% Nov — 9% Dec 2009:

110.53°

Figure 4-15: TSX Stripmap, wrapped 1l-day interferograms with B, < 30 m showing the
difference between summer/winter coherence. The white box shows the TSX Spotlight coverage.
(a) 21 Aug — 1* Sep 2009 [B,= 15.6 m]; (b) 17™ — 28" Nov 2009 [21.0 m]; (c) 28" Nov — 9" Dec
2009 [26.0 m].

4.3.4 ENVISAT Stripmap Interferograms

The third available data set which covers the same region and time period as the TSX
data is ENVISAT Stripmap-mode SAR data. Given its less frequent repeat cycle of 35-
days, the ENVISAT data series contains the fewest SAR images again preventing a full
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sensitivity analysis from being undertaken. However, the same issues of summer

decorrelation and significant image distortions are evident (Figure 4-16).

28" Dec 2008 -
1" Feb 2009:

12 Apr 2009 -
17" May 2009:

17" May 2009 —
21% Jun 2009:

Figure 4-16: ENVISAT Stripmap wrapped 35-day interferograms showing the difference between
summer,/winter coherence. The solid black box outline shows the TSX Spotlight coverage, and the
dashed black line shows the western edge of TSX Stripmap coverage. (a) 28" Dec 2008 - 1% Feb
2009 [B, = 224.7 m]; (b) 12" Apr - 17" May 2009 [149.6 m]; (c) 17™ May - 21" June 2009 [333.8 m]

Despite a baseline of 225 m, the 35-day image pair in the winter months (Figure 4-16a)
shows the best coherence along with a significant displacement signal (~2 c¢m) on the

western border of the TSX Stripmap image corresponding to the Fanjiaping landslide

82



Chapter 4 Evaluating D-InSAR Use in the Three Gorges Region

(circled in white). This cannot be assessed with higher resolution imagery as no TSX data
were collected before February 2009. The other ENIVSAT interferograms were generated
from SAR images outside the winter period and coherence is completely lost by May —
June (Figure 4-16c). Given the lower resolution of this descending ENVISAT SAR
imagery, layover continues to dominate east facing slopes and even if signals were
observed, accurate landslide boundary delineation would be far more difficult compared to

higher resolution data.

Overall, it is concluded that resolution and the SAR orbit repeat cycle are more influential
factors on interferogram quality than the SAR sensor wavelength, with the highest
resolution TSX Spotlight data providing the best results. Compared to the ENVISAT
data, the shorter revisit frequency of 11-days is definitely beneficial in reducing temporal
decorrelation. But the improvement shown by the TSX Spotlight data relative to the
Stripmap data also demonstrates the known advantage of high resolution Spotlight data
(Iglesias et al., 2012), most likely caused by small point-like targets being focused to
individual pixels with a far smaller percentage of incoherent surrounding clutter (Eineder
et al., 2009). Subsequently the stable phase of these targets will dominate the phase of

clutter in the resolution cell and lead to higher overall coherence.

435 Geometrical Distortions

Steep-sided hillslopes and imaging geometry of the various SAR sensors have been
interpreted as a significant issue in the interferograms displayed in Sections 4.3.2 - 4.3.4.
To confirm this explanation, the ‘R-index’ (proposed by Notti et al., 2010) was calculated
for each SAR image mode coverage and used to assess the best slopes for applying

D-InSAR techniques.

The R-index equation (Equation 4-1):

Equation 4-1: The ‘R-index’ equation (from Notti et al.,
2010). Sl = Slope derived from a DEM. A = DEM-derived

R = —sin(tan™*(tan Sl - sin4) — 6) aspect corrected with the difference between north and the
satellite heading, e.g. A = aspect — 10° for TSX descending
mode images. 8 = Local incidence angle.

is the ratio between the slant range and the ground range considering the acquisition
geometry of the radar sensor and the geometry of the ground surface (employing the slope
and aspect modelled from a DEM). The maximum value of R occurs when the slope is

parallel to the sensor LOS and therefore the best geometry to detect PS in mountainous
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areas (Notti et al., 2010). Negative values are the worst, highlighting areas of layover and
shadow effects, whilst those just above 0 are also far from optimal, indicating cases of
foreshortening. It has been suggested that values above 0.33 should be used to select
slopes with a favourable geometry for D-InSAR analyses in relation to the satellite

acquisition geometry (Bianchini et al., 2013).

The results in Figure 4-17 are very consistent between all (descending) imaging modes and
illustrate the problem of layover throughout this mountainous region. Matching the
interferograms in earlier sections and the conclusions of Notti et al. (2010), descending

geometry is best for west-facing slopes and problematic for east-facing slopes.

4.4 Spatial Displacement Gradient Limitations

Introduced in Chapter 2, one major limitation of D-InSAR techniques is their inability to
measure high spatial gradients of rapid deformation. To observe interferometric fringes
without ambiguity, the theoretical maximum displacement between two neighbouring
pixels in a wrapped interferogram () must not exceed one fringe per pixel (Massonnet
and Feigl, 1998; Metternicht et al., 2005), or the dimensionless ratio of the pixel size to

the sensor wavelength (Equation 4-2):

Equation 4-2: Ratio of the pixel size to half the sensor

wavelength. Q is the maximum spatial displacement

2n gradient (m/m); A is the SAR sensor wavelength; n is the
width of the smallest pixel dimension.

Hanssen (2001) explains the maximum proportion of fringes per pixel is reduced to 0.822
for the ERS sensor given the increased noise due to non-overlapping parts of the spectrum
and from the viewpoint of successful unwrapping, the maximum displacement gradient
should be less than 0.5 fringes per pixel (Spagnolini, 1995; Michel et al., 1999; Jiang et al.,
2011b) (Equation 4-3):

Equation 4-3: Dimensionless ratio of the pixel size to a
1 quarter of the sensor wavelength. Q is the maximum
4n spatial displacement gradient (m/m); A is the SAR sensor

wavelength; 1 is the width of the smallest pixel dimension.

These theoretical limits do not consider noise in the radar observations caused by
temporal decorrelation effects (Zebker et al, 1997) and hence the maximum realistic
measureable displacement gradient should be reduced even further (Baran et al, 2005;

Jiang et al., 2011b).
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Figure 4-17: R-index calculated for the three different satellite imaging modes, showing the degree
of image distortion. (a) TSX Spotlight; (b) TSX Stripmap; (¢) ENVISAT Stripmap. Smallest box
in (b) & (c) shows the TSX Spotlight coverage, whilst the black dotted line in (¢) shows the TSX
Stripmap coverage.
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For the three different available image modes, the maximum spatial displacement

gradients were calculated from the metadata shown in Table 4-3.

Table 4-3: Metadata for the available stacks of SAR images used in this study. The second half
shows the data used to find the smallest pixel dimension (the highlighted figures) which was
subsequently used to calculate the displacement gradients in Table 4-4. The parameters come from
the first image for each image mode, although the values remain very similar for all subsequent

image acquisitions.

TSX TSX ENVISAT
Spotlight Stripmap Stripmap
Pixel ratio (range : azimuth): 1:1 1:1 1:5
Wavelength (m): 0.031 0.031 0.056
Range pixel spacing (m): 0.46 0.91 7.80
Incidence angle (°): 43.7 26.26 22.81
Ground range pixel size (m): 0.66 2.06 20.13
Azimuth pixel size (m): 0.86 1.97 21.10 (after 1:5 ratio)

The ground range pixel size (1) was calculated according to Equation 4-4:

Equation 4-4: Calculating the ground range resolution (ry);
= 7, is the pixel spacing in slant range; 6 is the incidence
angle.

and compared with the azimuth size to select the smallest pixel dimension for the

displacement gradient calculations.

Table 4-4 shows the displacement gradients for an interferogram produced at the original
SLC resolution and after considering a small multi-look factor of two (as applied to the
interferograms in Section 4.3). From these results, even for the highest resolution TSX
Spotlight imagery, it would not be possible to measure a difference in displacement of
more than 0.12 m (or 0.06 m after multi-looking) over a distance of 10 m between image
acquisitions. Considering the SAR sensor wavelength with respect to the variation in pixel
sizes between image modes, the pixel spacing controls the maximum measurable
displacement and despite the slightly longer wavelength of ENVISAT data, the larger
pixel size is a significant disadvantage for measuring spatially variable movements over

short distances.

Recognising the limits on the spatial displacement gradient are theoretical maxima
assuming the radar observations are unaffected by noise from temporal decorrelation, the
low coherence throughout the time period under investigation suggests the maximum

displacement gradient is below the theoretical values presented in Table 4-4.
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Table 4-4: Displacement gradients for the three image modes used in this study. Displacement
gradients are shown for the original resolution interferograms and for interferograms with a small
multi-look factor of 2. These values should be multiplied by the distance between two points on the

ground to calculate the maximum detectable difference in the rates of displacement.

Sensor / Image Mode

Maximum Displacement

Gradient (Q)

Q after multi-looking
(using a small factor of 2)

TSX Spotlight 0.01177 m/m 0.00589 m/m
TSX Stripmap 0.00394 m/m 0.00197 m/m
ENVISAT Stripmap 0.00070 m/m 0.00035 m/m

45 Decorrelation from Landslide Movements

Having processed every 11-day image pair for all TSX data, important observations were
made regarding the Shuping landslide. Figure 4-18 shows three (wrapped) interferograms
for adjacent 11-day intervals between the 9™ May and 11™ June 2009. The landslide
boundary is mapped by the black line following the sharp colour changes, and this remains
consistent over the 33-day period (i.e. 3 x 11-day interferograms). The boundary of active
slope movement for Block 2 of the landslide, obtained from D-InSAR results, is also less
extensive than the original assessment made by Wang et al. (2008a) — shown by the black
dashed line. This could indicate a change in landslide behaviour over time, or the
advantage of using high resolution SAR data capable of generating a high density of

ground measurements compared to geomorphological interpretations.

An increase in the fringe rate can also be observed from Figure 4-18 a(ii) — c(ii), left to
right, which relates to an increase in landslide movement over each time interval. The
landslide moves approximately 1.6 cm, >5 ¢m and >6 cm for the three consecutive time
intervals, respectively, However, Figure 4-18 b(ii) and c(ii) show a loss of coherence
particularly towards the head of the landslide that is most likely due to displacements
exceeding the maximum measurable limit of 0.00589 m/m (see Table 4-4) across the sharp
boundary between stable ground and the active landslide. The sole use of these TSX
Spotlight images for any D-InSAR time-series analysis would erroneously underestimate
the true magnitude of the landslide displacement and further investigation is required to

verify if this coherence is lost due to the fast landslide movement or other factors.
Verification from the TSX Stripmap data is not possible due to increasing coherence loss

across the whole scene for each subsequent 11-day period (Figure 4-19). However, given

the reduced maximum spatial displacement limits for the TSX and ENVISAT Stripmap
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data (Table 4-4), these would be unable to recover the larger landslide movements given

that coherence is lost even for the highest resolution TSX Spotlight data.

If the theoretical maximum spatial displacement gradient is broken by the magnitude of
landslide movement, this invalidates long-term regional D-InSAR analysis. It would be
impossible to accurately unwrap any interferogram which spanned this movement episode
without the use of in-situ data or independent data such as range offsets (Yun et al.,
2007). This issue can perhaps explain the variety of D-InSAR measurements for the
Shuping landslide outlined in Chapter 3. Certainly this time-period should not be analysed
using D-InSAR time-series methods since an even sparser network of measurements
(relative to the original interferograms) generated from any form of persistent scatterer

interferometry would be less able to resolve such spatially variable measurements.

Compared to C-band, the use of L-band SAR data have been preferred for mapping rapid
displacements particularly in vegetated regions (Strozzi et al, 2005) since the
decorrelation is lower and in some cases can avoid problems related to the intrinsic
ambiguity of phase measurements (Strozzi et al, 2004). Despite no L-band data being
available for investigation, assuming a wavelength of 0.235 m and a 10 m ground pixel size
for ALOS data in fine resolution mode (single polarisation), the spatial displacement
gradient would be 0.0059 without any multi-looking. Combined with a far longer revisit
frequency of 46-days, it is unlikely these data would be capable of resolving the ambiguity
of fast Shuping landslide movements towards the end of May 2009, providing no

improvement upon the TSX Spotlight results over the same time period.
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Figure 4-18: TSX Spotlight wrapped 1l-day consecutive interferograms showing the Shuping
landslide exceeding the spatial displacement gradient. (i) Whole scene; (ii) Shuping landslide crop.

(a) 9 — 20" May 2009 [B, = 7.3 m]; (b) 20" — 31 May 2009 [B, = 26.2 m|; (c) 31 May — 11
June 2009 [B, = 60.4 m|. Dashed line shows the previously mapped boundary (Wang et al., 2008a).
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Figure 4-19: TSX Stripmap wrapped 11-day consecutive interferograms showing incoherence over
the Shuping landslide over the same period as Figure 4-18. (i) Whole scene; (ii) Shuping landslide
crop. (a) 3" — 14™ May 2009 [B, = 29.9 m]; (b) 14™ — 25™ May 2009 [B, = 63.3 m|; (c) 25"
May — 5™ June 2009 [B, = 85.3 m].
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4.6 Downslope Sliding Velocities

A final consideration assesses the use of scaling factors for re-projecting line-of-sight
measurements into other directions. Assuming a purely translational failure mechanism
parallel to the slope surface, sliding velocities can be projected into the downslope sliding
direction (e.g. Hilley et al., 2004). However, given these SAR sensors have quasi-polar
orbits, radar systems are limited in their ability to measure translational displacement in a
north-south direction from individual ascending or descending tracks (Cascini et al., 2010;

Plank et al., 2012).

A three dimensional displacement vector (dg) with components [dg dy dy] representing
east, north and up directions, respectively is projected into one Line-of Sight dimension.
For a satellite orbit with an azimuth heading (a) and incidence angle (@), this is

calculated by Equation 4-5 with the results for each image mode presented in Table 4-5.

dg = dy cos(0) —sin(6) [dy cos(a — 3”/2) + dg sin(a — 3”/2)]

Equation 4-5: Decomposition of the 3-dimensional displacement vector di (Massonnet and Feigl,
1998; Hanssen, 2001). a — 3”/2 corresponds with the angle to the azimuth look direction, which is
perpendicular to the satellite for a right-looking geometry.

Table 4-5: Parameters and unit vectors of the satellite look direction and the downslope
sliding direction. The unit vectors are specified in relation to a positive up, left-handed
coordinate system.

TSX TSX ENVISAT
Spotlight Stripmap Stripmap
Satellite heading;: 190° 190° 195°
Incidence angle: 44° 26° 23°
Sl ok | - - i
[—0.68 0.12 — 0.72] [—0.43 0.08 — 0.90] [—0.38 0.10 — 0.92]
[de dy dy]
Landslide body heading: 25°
Average slope angle: 22°

Unit vector of downslope sliding direction [ug uy uyl: up = [0.39 0.84 — 0.37]

The larger incidence angle for TSX Spotlight data shows similar sensitivity to both east
and vertical movements, whereas smaller incidence angles for the TSX Stripmap and
ENVISAT data are mostly sensitive to vertical changes. However, very little north-south
displacement is projected in the satellite Line-of-Sight for all image modes which is a

disadvantage for the majority of slopes bordering the Yangtze River in this study area.
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The amplification scaling factor (§) is calculated using Equation 4-6

1 Equation 4-6: Computing the amplification of the range
S = IZIETN] change rate when projected into the downslope landslide
(dg up) direction (Hilley et al., 2004).

where dk is the transposed three dimensional displacement vector (dg) and up is the
downslope sliding direction unit vector. For the TSX Spotlight, TSX Stripmap and
ENVISAT Stripmap mode, the scaling factors are 9.8, 4.3 and 3.6, respectively. Given this
assumes a completely translational slide mechanism along the unit vector direction
specified in Table 4-5, these amplification factors would yield the maximum rate of

downslope displacement.

However, using a scaling factor impacts on the precision of measurements (Colesanti and
Wasowski, 2006; Cascini et al., 2010). For ENVISAT and ALOS data, an upper scaling
factor threshold of ~3.3 was applied to select suitable ‘projectable’ PS points (Cascini et
al., 2013; Herrera et al, 2013), beyond which downslope displacement velocities are
deemed unreliable. For the Shuping landslide orientation, all data modes exceed this
scaling factor threshold, further demonstrating the difficulty in extracting useful

displacement information — beyond the Line-of-Sight dimension — from D-InSAR results.

4.7 Summary

Chapter 4 outlines the available SAR data sets and known landslide sites for the study
area within the Three Gorges region, before presenting the results and limitations of
D-InSAR analyses. Assessing the interferometric coherence for all SAR image modes shows
the highest values for TSX Spotlight data due to its higher spatial resolution and revisit
frequency, particularly compared to the ENVISAT sensor. Seasonal variations show the
highest coherence values between November — Feburary each year, linked to the lowest

amounts of rainfall (i.e. soil and atmospheric moisture) and density of vegetation.

The best interferograms were produced from 11-day TSX Spotlight data with baselines
< 30 m which allow the detection, mapping and measurement of various active landslides.
Lower coherence or greater image distortions are predominantly observed for other TSX
Spotlight image pairs or other image modes. Most significantly, large movements of the
Shuping landslide are shown to exceed the spatial displacement gradient, highlighting a

general danger of using D-InSAR time-series techniques for landslide applications.
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A range offset map from SAR pixel offset methods contains the same information as a
differential interferogram (Jonsson et al., 2005; Furuya, 2011), except that it has a
different noise character and magnitude (Yun et al., 2007). Range offsets therefore provide
complementary results to D-InSAR techniques especially since they are capable of
measuring larger, more complex displacement patterns (Fielding et al., 2013; Raucoules et
al., 2013) and are less restricted by the assumption of a low spatial displacement gradient.
SAR images are also well suited to cross-correlation methods given the ubiquitous
presence of speckle which results in sharp correlation peaks, providing speckle patterns are
similar in both images (Michel et al., 1999). As such, cross-correlation offsets have been
successfully applied to estimate single displacement episodes (e.g. Scambos et al., 1992;
Peltzer et al., 1999; Fialko et al., 2001; Strozzi et al., 2002; Luckman et al., 2007; Yun et
al., 2007; Giles et al., 2009; Grandin et al., 2009; Li et al., 2011b).

Although less sensitive and accurate than conventional D-InSAR methods (Pathier et al.,
2006), sub-pixel offset techniques using SAR amplitude images can overcome the D-InSAR
limitation on the spatial displacement gradient and are far more robust (not requiring
phase unwrapping; not limited to regions of high interferometric coherence; significantly
less affected by atmospheric water vapour due to an independence on the use of phase
values; and capable of extracting measurements from longer time interval image pairs).
Additionally, pixel offset data provide complimentary information since conventional
interferograms are only sensitive to displacements in the sensor’s LOS direction (Michel et
al., 1999). Using just two images acquired at different times, displacement vectors can be
measured in the sensor look direction (range) as well as the satellite flight (along-track, or
azimuth) direction (Furuya, 2011). The two-dimensional movements are obtained by
measuring the row and column offsets between the two image acquisitions at defined
intervals in range/azimuth in order to generate sufficient coverage of offset measurements
(Pathier et al., 2006). Using multiple SAR images, Sub-Pixel Offset Time-series (SPOT)
approaches are possible, helping identify acceleration and deceleration episodes of

displacement at a high spatial resolution (e.g. Raucoules et al., 2013).
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To address the second research question (page 10), this chapter investigates the
capabilities and limitations of SPOT techniques for long-term monitoring of slopes in the
Three Gorges region. The availability of three data modes (TSX Spotlight, TSX Stripmap
and ENVISAT Stripmap) allow useful comparisons to be made especially since the
variable pixel spacing in range and azimuth strongly influences the precision of
measurements (Michel et al., 1999; Bechor and Zebker, 2006). For each data set, the
robust selection of SPOT processing parameters is considered, and very high cross-
correlation values attributed to installed corner reflectors demonstrate movement of the
Shuping landslide exceeds the spatial displacement gradient for valid D-InSAR analysis.
Other landslides in the region with corner reflectors are measured, before exploring
suitable time-series approaches for stacks of SAR data. Finally the precision of sub-pixel
offset measurements from natural terrain (i.e. beyond corner reflector points) is

investigated for the densely vegetated terrain of the Three Gorges.

5.1 SAR Sub-Pixel Offset Parameter Selection

SPOT techniques are capable of measuring more spatially variable movements than D-
InSAR although the results from sub-pixel offset methods are highly dependent upon the
various processing parameters; notably the cross-correlation window size and oversampling
factor (Casu et al., 2011). These should be carefully tuned to the pixel spacing of the SAR
image mode and the scale of deformation feature(s) under study (Bechor and Zebker,
2006; Yun et al., 2007). Consequently, the size of the moving window should be large
enough to maximise the signal-to-noise ratio whilst minimising the spatial velocity
gradient. The search area must also be large enough to include the fastest moving distance

whilst minimising the computational cost of the process (Debella-Gilo and K&éb, 2011).

Following an approach outlined by Yun et al. (2007), the cumulative distribution for a
land area of 2 km® (adjacent to the Shuping landslide site and believed to be stable from
the TSX Spotlight interferograms in Section 4.3.2) was analysed with a combination of
different processing parameters, at intervals of two pixels in both range and azimuth
(Figure 5-1 - Figure 5-4). Visual inspection from these tests provided a heuristic way of
tuning the moving window size and oversampling parameters to suitable values,
considering the data characteristics and the phenomenon under study. Contrary to Yun et
al. (2007), a piecewise linear fit was not used to exclude extreme values in the final offset
maps since large landslide movements would be concentrated in one tail of the distribution

and therefore at risk of being filtered out.
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All the offset results presented in this chapter were produced using the SARscape®)
software package (SARMAP, 2012) which includes an Amplitude Tracking module
capable of processing all the necessary data formats included in this study. Prior to
generating the sub-pixel offset measurements, SAR images were aligned using a simple
translational shift based on the orbital data and the digital elevation model. A standard
normalised cross-correlation procedure based on the optimal window size and oversampling
factor (shown below) was then applied without any filtering in any part of the processing.
Estimated offsets were also corrected for image distortions given that the images were not
acquired from exactly the same position (Pathier et al, 2006). For range offsets,

distortions were modelled using the ASTER GDEM and precise orbital data.

Over a completely stable area, offset values should be normally distributed with a mean
and high concentration of values around zero. However, with no oversampling and small
moving window sizes (4 — 16 pixels), the distribution of values is determined by the size of
the moving window (Figure 5-la-c — Figure 5-4a-c) due to spurious correlation. As the
oversampling factor increases, the range of possible offset values increases to eradicate the
step-like behaviour of the cumulative distribution, although the linear trend shows no
concentration around zero for the small window sizes. Using a window size of 32 x 32
pixels, ~75% of the offset values are between + 0.5 pixel units and the oversampling factor
was increased until no observable improvement is seen (i.e. an oversampling factor of 16 is
identical to an oversampling factor of 24). The tests for TSX Spotlight and TSX Stripmap
data are very consistent and the same optimal parameters are used for both data sets.
This parameterisation is matched by previous studies using other data (e.g. Michel et al.,
1999; Jonsson et al., 2002; Delacourt et al., 2004; Jénsson et al., 2005; Yun et al., 2007,
Giles et al., 2009; Casu et al., 2011; Travelletti et al., 2012; Raucoules et al., 2013) who
found 32 x 32 pixel window sizes and oversampling factors of 16 generated a dense
coverage of independent measurements and best meets the assumption of displacements

modelled locally by a translation that varies smoothly over a number of pixels.

Increasing the window size and oversampling factor does improve the results, but the
processing time should also be considered. For example, doubling the window size from 32
x 32 pixels to 64 x 64 pixels increases the processing time for each offset pair from 01:41
hours to nearly 05:37 hours (Table 5-1). Given these processing times for one range and
azimuth offset map, the final selection of a 32 x 32 pixel window size and an oversampling
factor of 16 was deemed preferable. Larger window sizes also reduce the resolution and can
increase the size of artefacts from cross-correlation procedures (Yun et al., 2007). Keeping
the parameters as multiples of two was important to maintain computational efficiency

when using the Fast Fourier Transform (FFT) for the normalised cross-correlation.
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Figure 5-1: Cumulative percentage of TSX Spotlight sub-pixel offset values in azimuth direction
for different window sizes: (a) 4 x 4 pixels (b) 8 x8 (c) 16 x
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Figure 5-2: Cumulative percentage of TSX Spotlight sub-pixel offset values in range direction for
different window sizes: (a) 4 x 4 pixels (b) 8 x 8
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Figure 5-3: Cumulative percentage of TSX Stripmap sub-pixel offset values in azimuth direction
for different window sizes: (a) 4 x 4 pixels (b) 8x8 (c) 16 x16 (d) 32x32 (e) 64 x 64.
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Table 5-1: Time taken to process TSX Spotlight offsets (HH:MM) using different parameter
settings for a reference area assumed to be stable, adjacent to Shuping landslide. The grey
highlighted number shows the time of the chosen parameter set. For the same areal coverage,
times for the TSX Stripmap data are greatly reduced due to its larger pixel spacing.

Processor Speed: 2.93 GHz

RAM: 16 GB

Operating System: Windows 7 — 64 bit

Area of stable ground: 2 km?

Image dimensions (Spotlight): 2238 (range) x 1294 (azimuth)

Pixels processed: Offsets calculated for every 2™ pixel in range & azimuth

Oversampling 4 x 4 pixels 8x 8 16 x 16 32 x 32 64 x 64
Factor

1 00:34 00:35 00:41 01:03 02:07
4 00:36 00:37 00:41 01:06 02:15
8 00:36 00:38 00:43 01:23 02:53
16 00:40 00:43 01:00 01:41 05:37
24 00:42 00:48 01:07 02:41

The SARscape®) Amplitude Tracking module also permits coherence tracking, but this
was not pursued given the substantially low coherence results in Section 4.2.2. Results
were processed using only the amplitude (intensity) data and therefore required large

cross-correlation window sizes (Strozzi et al., 2002).

5.2 TerraSAR-X SPOT-CR Results for the Shuping Landslide

Having observed decorrelation within the boundary of the Shuping landslide potentially
caused by movements exceeding the spatial displacement gradient, SPOT processing was
initially focused on this site. Following the results of the first offset pair, the cross-
correlation values associated with each offset measurement (Figure 5-5a) show that points
with very high correlations (> 0.92) are distributed across the landslide in positions which
correspond to corner reflector locations (cf. Fan et al, 2010). Given the significant
contrast in radar backscatter between the corner reflectors and natural terrain (shown in
Appendix Figure A-1), these points result in a very high cross-correlation value when they
are within the total area covered by the moving window used in the offset calculation. For
this reason, use of larger window sizes (e.g. 64 x 64 pixels) would also reduce the spatial

coverage of measurements from natural features surrounding the corner reflectors.

Following the numbering scheme displayed in Figure 5-5b, the final offset values were
taken as the mean from a small window of 10 x 10 pixels within these high correlation

areas to generate a Sub-Pixel Offset Time-series applied to Corner Reflectors (SPOT-CR).
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The same window position in rows/columns was used to extract measurements from every
subsequent slave image for the time-series. It is clear that most corner reflectors are within
the landslide boundary, although a number of points are situated outside the landslide on
ground that is assumed to be stable which may help identify the potential noise level of

the offset measurements.

A final step in the processing strategy considered how best to generate a time-series of
measurements. The two simplest approaches are to: (i) use the same master image with
subsequent slave images; or, (ii) process every 11-day offset pair to generate a cumulative
time-series of displacement. The first of these possibilities was preferred since the temporal
decorrelation from the corner reflector points is believed to be negligible, and this strategy
ensures that errors in each offset measurement are independent from the results of
previous image pairs. For example, using consecutive image pairs, the first measurement
would be the result of just one offset pair, whereas the last measurement would be
calculated as the sum of all previous offset measurements. A large error in one offset map
would therefore have consequences on the remaining time-series. The simplest approach
(i.e. (i) above) of using one constant master image for all the offset pairs therefore met the

requirements of this SPOT-CR analysis.

Figure 5-5(a): The value of peak correlation used for the TSX Spotlight offset measurements. 11-
day pair, 21st Feb — 4th Mar 2009, showing the minimum temporal decorrelation. The high
correlations (the white areas) are caused by a high-contrast feature (corresponding to corner
reflector locations) within the cross-correlation window. The same features are observed for the
TSX Stripmap offset measurements.

Figure 5-5(b): The numbering of corner reflectors used to extract time-series of displacement,
overlain on an interferogram showing the landslide boundary. 11-day interferogram, 9th May — 20th
May 2009. Point 1 is outside the landslide and used as the reference for all other points. Points 2 —
6 are also outside the landslide boundary. Points 7 — 11 ascend up the east part of the landslide.
Points 12 — 17 ascend up the west part of the landslide. Point 3 was excluded from analysis after
results suggested it had shifted unnaturally (see Appendix Figure A-3).
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5.2.1 TerraSAR-X SPOT-CR Results: 2009 - 2010

The corner reflector offset time-series graphs from TSX Spotlight and Stripmap data
(Figure 5-6) show a significant step in landslide movement in both range and azimuth
directions towards the end of May 2009 and the start of June 2009. Movements of more
than 0.1 m recorded towards the head of the landslide over an 11-day period confirm the
loss of coherence from the interferograms presented in Figure 4-18 was caused by the
spatial displacement gradient threshold being exceeded. It would be impossible to unwrap
any interferograms over this time period and means the previous D-InSAR results over the

same period (outlined in Chapter 3) are likely to be erroneous.
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Figure 5-6: Offset displacements for the corner reflectors labelled in Figure 5-5 from Feb 2009 —
April 2010. (a — b) Range and azimuth offsets measured from TSX Spotlight data. (¢ — d) Range
and azimuth offsets measured from TSX Stripmap data. The positive scale is away from the sensor
in range dimension and the reverse along-track direction (i.e. predominantly northwards) in
azimuth dimension.
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Considering the topographical location of the corner reflectors, a strong association is
found between elevation and the range displacement. Displacement in the LOS (which
includes a vertical component of movement) is up to ten times greater towards the head of
the landslide and no such topographic dependence is shown by the azimuth offset results.
These patterns in both range and azimuth are very consistent between the TSX Spotlight
and Stripmap data and given the independence of the data sets, the duplicate
measurements over the same time period help verify the results without the requirement

for ground data.

From the time-series curves for CRs outside the landslide boundary (lines 2 — 6 in Figure
5-6), the variability of these assumedly stable points in the azimuth direction exceeds the
variability in the range direction, a result caused by the larger azimuth pixel spacing.
Additionally the variability in the corresponding offset values from the TSX Stripmap
data is greater than the Spotlight data, which is another likely consequence of the larger

pixel spacing.

Confidence in the SPOT-CR results is boosted by a qualitative comparison to
extensometer data over the same time period (Figure 5-7) presented by Wang et al.
(2013b). The maximum step-like displacement of ~0.5 m occurred in May 2009 before
stabilising for the remainder of the year. Despite these extensometer measurements being
located at different points within the landslide boundary, the magnitude and timing of
movements recorded by the extensometers closely follow the SPOT-CR results presented
in Figure 5-6. Additionally, the magnitude and linearity of repeated GPS measurements
closely follow the range offset results for the survey period August 2009 — April 2010 (Liao
et al., 2013).
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Figure 5-7: Accumulated displacement of all extensometer monitoring points on the Shuping
landslide, August 2006 to May 2010 (from Wang et al., 2013b p.238).

5.2.2 TerraSAR-X SPOT-CR Results: 2009 - 2013

Clearly the Shuping landslide has experienced significant episodic movements from
February 2009 — April 2010 and should continue to be monitored. A second series of TSX
Spotlight images was acquired between January 2012 and February 2013 for this purpose
and the use of SPOT-CR techniques with a single master image allows landslide
movement over the data gap to be recovered, albeit without the high sampling interval
achieved using regularly acquired SAR images. Again it should be noted SAR images for
the majority of the second period of TSX Spotlight data were only acquired at monthly

intervals, reducing the temporal resolution at which landslide movements can be observed.

Figure 5-8 shows the continued monitoring of TSX Spotlight range and azimuth offsets
beyond April 2010. Another large, episodic landslide movement episode is observed in both
range and azimuth directions at the end of May and the start of June 2012. The large
movement in 2012 (of similar magnitude to that in 2009), coupled with the reduced
frequency of SAR image acquisitions (33-days), again suggest this movement would be

irretrievable using standard D-InSAR or D-InSAR time-series techniques due the spatial
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displacement gradient being exceeded. The variability of the stable points (lines 2 — 6) also

remains consistent over the whole 4-year time period.
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Figure 5-8: TSX Spotlight offset displacements for the corner reflectors labelled in Figure 5-5 from
Feb 2009 — Feb 2013. (a) range and (b) azimuth displacements. The positive scale is away from the
sensor in range dimension and the reverse along-track direction (i.e. predominantly northwards) in
azimuth dimension. The dotted line shows the gap of TSX Spotlight data.

As the vast majority of lines in Figure 5-8 do not cross each other for the whole time
period, the patterns of displacement from the landslide head to toe are shown to be

consistent in time. The only time-series curve to change order from 2009 to 2013 (in both
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range and azimuth graphs) is corner reflector 17, with a greater relative movement after
April 2010. Given its location at the head of the landslide, the increased movement of
corner reflector 17 could be explained by a small degree of undercutting and/or headward

erosion at the upper boundary.

The concurrence of movements at the same time of year could suggest a seasonal
triggering factor such as hydrological events, seasonal rainfall or seismic activity. However,
if the largest movements of ~0.6 m are assumed to occur every year in May-June, the
inferred offsets between April 2010 and January 2012 (shown by the dashed lines in Figure
5-8) are much lower than expected. The data gap spans 20 months containing two periods
of May-June, and therefore displacement up to 1.2 m could have been anticipated.
Potential triggering factors and further investigation into the period of no data are further

investigated in Chapter 6.

5.2.3 TerraSAR-X SPOT-CR Precision

An assessment of the SPOT-CR errors was undertaken using two independent offset pairs
which significantly overlap in time. The offsets were measured between the first and
penultimate available images, and compared with the offsets between the second and last
images (covering ~9 months for the first TSX Spotlight period, ~4 years for the whole
TSX Spotlight period and ~5 months for the TSX Stripmap data). Since using two
independent offset pairs to assess the error assumes the displacement between first/second
image and penultimate/last image is equal, all images were chosen at times when the

landslide velocity had significantly reduced.

The differences between the independent offset measurements from these overlapping
image pairs are shown in Table 5-2. Using the differences between 17 corner reflector
points to generate the statistics, the RMS errors are all less than 0.038 m and 0.071 m in
range and azimuth directions respectively. This matches the relative measurement errors
found with ERS, ALOS and COSMO SkyMed Stripmap data (Jonsson et al., 2002; Strozzi
et al., 2002; Feng et al., 2013; Fielding et al., 2013).

The errors are always lower for the TSX Spotlight imagery than for the Stripmap imagery
and the errors are also consistently lower for the range offsets than for the azimuth offsets.
Again these are likely consequences of the reduced pixel spacing between TSX
Spotlight /Stripmap data and the range/azimuth dimensions. In all cases, the range and

azimuth error values are order of magnitudes lower than the total accumulated landslide
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displacement. Finally, comparing the difference between the ~9 month and ~4 year TSX
Spotlight statistics, it is apparent there is no significant difference which highlights the
benefits of corner reflectors for generating precise, 2-dimensional SPOT measurements as
well as reinforcing the choice using a single master image to generate the SPOT-CR time-

series curves.

Table 5-2: Comparison of all CR offset measurements between two independent offset
calculations from two image pairs significantly overlapping in time. The first two images
in August were used as the two master images, with the last two available images used as
the respective slave images. This can help assess the errors between different SAR image
modes and time periods.

Range Offsets Azimuth Offsets
Sensor / Mean Difference RMS Error Mean Difference RMS Error

Image Mode (m) (m) (m) (m)
TSX Spotlight: 0.008 0.011 0.055 0.060
(2009 — 2010)
TSX Stripmap: 0.040 0.038 0.059 0.071
TSX Spotlight: 0.018 0.024 0.050 0.070
(2009 — 2013)

5.3 TerraSAR-X SPOT-CR results for other landslides

SPOT-CR techniques were applied to the Shuping landslide to demonstrate the significant
advantages of SPOT methods over D-InSAR analysis. The precision statistics for TSX
Spotlight and Stripmap data (Table 5-2) show that SPOT-CR techniques provide precise
offset measurements for points with a very high cross-correlation value, such as those
associated with installed corner reflectors. Mean differences and RMS error values for both
sensors in each dimension are in the order of 1/20™ — 1/30™ of a pixel. This also justifies
wider analysis of other similar landslides using TSX Spotlight or Stripmap data, although
the reliance upon installed corner reflectors is an obvious disadvantage for wider

investigations.

Within the study area of this investigation, two other landslides have corner reflectors
installed; the Kaziwan landslide (Xia, 2008; 2010) and the Xintan landslide (Xia et al.,
2004; Xia, 2010; Liao et al., 2012). Unfortunately both these landslides are located outside
the TSX Spotlight coverage (see Figure 4-1) and therefore only TSX Stripmap SPOT-CR

measurements with a lower precision than TSX Spotlight data are possible.
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5.3.1 Kaziwan and Chalukou Landslide Complex

Bordering a tributary of the Yangtze River, the Kaziwan and Chalukou landslide complex
is shown covering most of Figure 5-9a. Data prior to 2008 showed most corner reflectors
are stable, although points 3 and 4 moved up to 0.38 m and 0.08 m respectively in range

direction over a time-period of nearly two years (Xia, 2010).

The SPOT-CR analysis for the Kaziwan landslide throughout 2009 (Figure 5-9b) shows no
significant displacement for any corner reflector. Whilst corner reflector 2 deviates from
the main group towards the end of the time period, this is not significantly different from

other corner reflectors when considering the RMS error is ~0.04 m in range direction.
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Figure 5-9: TSX Stripmap range offsets across the Kaziwan and Chalukou landslide complex
showing no significant displacement. Point 1 is outside the landslide and used as a reference for
other points.
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5.3.2 Xintan Landslide

The most easterly known landslide in this study area is the Xintan landslide (location
shown in Figure 4-1). Following its catastrophic failure in 1985, continued monitoring has
been attempted to detect periods of reactivation. Corner reflectors were installed on the
landslide in 2000 (Figure 5-10a) and short-term analysis over four dates in 2000/2001
showed the landslide was stable (Xia et al., 2004). The same conclusion stating the
landslide was “very stable” was also found by ground monitoring data spanning almost two

years (Xia, 2008 p.1242).

The SPOT-CR analysis for the Xintan landslide throughout 2009 (Figure 5-10b) shows no
significant displacement for any corner reflector, suggesting the landslide remains stable

and has not reactivated over the various monitoring periods.
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Figure 5-10: TSX Stripmap range offsets across the Xintan landslide showing no significant
displacement. Point 1 is outside the landslide and used as a reference for other points.
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54 Measuring Landslides with Point-Like Pixel Offsets

Using SPOT-CR techniques from SAR data are beneficial to generate precise offset
measurements. However this assumes knowledge of currently or potentially active
landslide locations and the subsequent installation of corner reflectors. The application of
SPOT techniques to natural terrain beyond corner reflectors could generate a wider
coverage of measurements with the potential to detect previously unknown areas of slope
instability. Using a cross-correlation threshold of 0.92 (matching the minimum correlation
found for the corner reflector offsets) does not increase the coverage of measurements
across the whole SAR scenes for either TSX data modes. The cross-correlation threshold
should be relaxed to increase the density of measurements by including natural point-like
pixel offset features, although given how lower cross-correlation values increase the pixel
offset estimation error (Hu et al., 2014b), a lower limit on the acceptable measurement

precision should be found.

To assess the relationship between cross-correlation values and the precision of
measurements, a similar approach to the validation statistics in Section 5.2.3 was applied
to the whole TSX Spotlight scene. Using independent image pairs with master images
acquired in August (away from the main deformation period), pixels were classified into
cross-correlation bins with a width of 0.04. Where pixels in the same cross-correlation bin
were found in both independent offset maps, the offsets were compared in both range and
azimuth dimensions. This was done for all possible time intervals (see Figure 5-11) to
assess any effects of temporal decorrelation on the SPOT measurements. The overlapping
time period obviously increases for longer time intervals and assumes that displacement
between first/second image and penultimate/last image is equal. However, the difference
between independent offset maps should still be very small for the shortest image pairs

outside the periods of greatest deformation.

| 11-days | | 11-days |

[22-days | ) 22-days|

[ 33-days | J 33-days |

| 44-days L | 44-days |
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Figure 5-11: Schematic diagram of significantly overlapping, independent SAR offset pairs. The
difference and standard deviation between the two independent offset maps for each time interval
helps assess the effects of temporal decorrelation and perpendicular baseline.
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The results of four different time intervals (Figure 5-12) helped select the lowest
acceptable cross-correlation threshold in order to obtain precise offset values beyond the
corner reflectors. For all time intervals, the mean differences and associated standard
deviations remain low for pixels with high cross-correlation values, suggesting the precision
of these points does not significantly decrease over time. As the cross-correlation values
decrease, the mean difference and standard deviation between offsets of independent pairs
increase, indicating a reduction in the precision of measurements. Noting the different
vertical axis scales used for range and azimuth plots, the lower precision of azimuth offsets

with respect to the range dimension is also apparent.

To quantitatively determine an acceptable cross-correlation threshold, a 3-part piecewise
linear regression function is fitted to the standard deviation values (shown by the
background colour changes in Figure 5-12). The upper boundary is used to determine the
‘breaking point’ beyond which the standard deviations are low enough to provide an
acceptable precision for offset values. For all time intervals these values are relatively
consistent, ranging from 0.70 — 0.86 in both range and azimuth dimensions. The mean and
median cross-correlation is ~0.78 and used as the lowest cross-correlation threshold for

producing a regional coverage of offset measurements across the TSX Spotlight scene.

The standard deviation for range offsets estimated from the cross-correlation of amplitude
images has been derived for homogenous (i.e. featureless) patches (Bamler, 2000; Bamler

and Eineder, 2005) (Equation 5-1):

Equation 5-1: Standard deviation from cross-correlation
3 (\/1 — rz) (Xg /2) operations for homogenous regions (Bamler, 2000). N is the

Goffset =\ 2N Tr number of samples in the cross-correlation block; r is the
cross-correlation; and, y is the oversampling factor.

Using the selected processing parameters, a cross-correlation value of 0.78 and range pixel
spacing of 0.455 m, this produces a range offset uncertainty of 0.28 m. This theoretical
value is far higher than the standard deviations of the TSX Spotlight data (Figure 5-12),
indicating many features exhibiting a cross-correlation above 0.78 are likely to be point-

like targets rather than areas of homogenous ground cover.
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Figure 5-12: Mean difference between two independent TSX Spotlight offset maps overlapping in
time, classified by offset cross-correlation values. (i) range and (ii) azimuth directions. (a) 11-day
(b) 33-day (c¢) 242-day (d) 1287-day image pairs. Points are plotted for correlation bins, with a
width of 0.04. Error bars represent one standard deviation. Colour changes represent cut-off values
for a 3-part linear regression on the standard deviation values.
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An increasing negative gradient of points with lower cross-correlation values is observed as
the time interval increases (Figure 5-12), signifying lower cross-correlation values are
subject to temporal decorrelation and decreasing precision over time. However the
precision remains consistently high for pixels with a cross-correlation above the threshold

of 0.78, even over the longest time interval of 1287 days.

Having reduced the cross-correlation threshold to include natural point-like targets in a
regional offset map, the strategy of generating a time-series of measurements should also
be reconsidered. In addition to a single-master approach or using consecutive image pairs
(as discussed in Section 5.2), another alternative method considers inverting a small-
baseline (SBAS) network of offset pairs, as proposed by Casu et al. (2011). Using
ENVISAT data, Casu et al. (2011) attempted to reduce the perpendicular baselines of
offset pairs which influenced the quantity of reliable measurements generated. The
following results assess the effects of temporal decorrelation and perpendicular baseline
upon the precision and density of offset measurements for different cross-correlation

values.

The error bars in Figure 5-12, showing the standard deviation of the difference between
independent offsets overlapping in time, were used as a measure of precision. Having
processed these results for all image pairs, the variation of standard deviation with respect
to the time interval was plotted to assess the effects of temporal decorrelation (Figure
5-13). The high cross-correlation pixels are again shown to maintain a consistent precision
level over the whole time period, whereas for cross-correlation values < 0.78, the standard
deviations increased over time. This pattern would be amplified if cross-correlation values
below 0.5 were included in the graphs. The conclusion remains that pixel offsets with a
cross-correlation > 0.78 do not significantly suffer from temporal decorrelation (Hu et al.,

2014a), also agreeing with the results of Casu et al. (2011).

111



Chapter 5 SAR Sub-Pixel Offset Time-Series Results

0.7
(a)
A
0.6 A
A
E 05 ‘
s 4 I |
_g 0.4 I : 1
8 A 2| Is
o 0.3
% A A e 1 A |
g s A A ﬂ B A 4 ’ y
8021 t= " .
@ 1 A A, | ata]a A
Al f 2 A A )\ A
+ A A A A A A
L VI 51 Y " —
;E 4 E X dg % ¥ A
NELEE ST HITIIIEIIETIIE I
2 X 0.96-1.00
(b) .96 — 1.
s X 0.92-0.96
L . X 0.88-0.92
= A
E 14 _ 1 X 0.84-0.88
S 4 i A 1 X 0.80-0.84
- . Y i
% 1 Pl 4 A 2 X 0.76 - 0.80
Q A = 4 4 + 0.72-0.76
.E 08 A A
g T " 4 4 L+ 1 + 0.68-0.72
A L,
z *° ‘ A ) A 0.64-0.68
@ A A A4 A A A
0.4 TP Ia 2 2 > S 7Y x 7y A 0.60-0.64
0.2 ¥faf0 « e . 8 1x+t A 0.56-0.60
' % XE XL XER i " %igiggi?;g § ;5 ) )
I XM RXEEXESRRAF XA XRXE 3 A 052-0.56

0 22 44 66 88 110 132 154 176 198 220 242 880 1287
Time Interval (days)

Figure 5-13: Standard deviation of the difference in offset values from independent TSX Spotlight
offset maps overlapping in time, in relation to offset correlation values and SAR image time
interval. (a) range and (b) azimuth directions. For pixels with high correlation offset values
(approx. r > 0.78), the standard deviation of the difference between two independent offset maps
does not increase over time. This illustrates the robustness of these offset measurements which do
not experience significant temporal decorrelation effects.

For the TSX Spotlight data in this study, no significant dependence upon the
perpendicular baseline is observed. For all the time intervals shown in Figure 5-13, the
same standard deviation data were plotted against the larger of the two perpendicular
baselines values associated with the independent offset pairs (Figure 5-14). No significant
dependence upon the perpendicular baseline is shown, most likely due to the consistently
short perpendicular baseline values of the TSX satellite which never exceeded 300 m. This
is not contradictory to the results of Casu et al. (2011) who only found a degradation in
pixel reliability for ENVISAT data when the perpendicular baseline exceeded 400 m. For
this principal reason, the benefit of inverting a SBAS network of offset maps to generate a

time-series of displacement is limited for TSX data with a small orbital tube.
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Figure 5-14: Standard deviation of the difference in offset values from independent TSX Spotlight
offset maps overlapping in time, in relation to offset correlation values and perpendicular baseline.
(a) range and (b) azimuth directions. There is no apparent relationship between the standard
deviation and perpendicular baseline, particularly for pixels with a high correlation value (approx.
r > 0.78) showing counsistently low standard deviations.

Whilst the precision of pixels with a cross-correlation > 0.78 is not dependent upon the
time interval or perpendicular baseline of the image pair, Figure 5-13 and Figure 5-14 fail
to consider the number of pixels (and therefore the coverage of measurements) within each
cross-correlation bin. Offset measurements selected using the cross-correlation threshold

may not deteriorate in quality over time, but could decrease in number.

Figure 5-15 shows the number of pixels within each cross-correlation bin related to the
image pair time interval. The first noticeable feature is the large number of pixels
associated with the highest cross-correlation bin (0.96 — 1.00). This reflects the dominance
of a corner reflector within the search area and a disadvantage of using a large window

size parameter. Every pixel within the search window around the corner reflectors (or
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other point-like targets) will be characterised by the same offset and high cross-correlation
values, resulting in this large number of pixels for the highest cross-correlation bin. The
number of pixels for this category does not decrease significantly over time supporting the

above strategy for SPOT-CR analysis.

For lower cross-correlation values (e.g. 0.52 — 0.56) there are significant temporal
decorrelation effects caused by increasing time intervals, with pixel numbers dropping
from ~2,300 pixels after 11-days to just ~800 pixels after 66-days. This would support the
use of consecutive image pairs to generate a greater coverage of points for time-series
analysis, however the precision of offsets with this level of cross-correlation is unacceptable
(even over 11-days) for monitoring the magnitude of Shuping landslide movements (Figure

5-12a).

4900 X 0.96—1.00
4000 > X 0.92-0.96
3500 X A T e e X 0.88-0.92
X g X 3 X 0.84-0.88
2 3000
X X 0.80 - 0.84
g 2500 X 0.76 - 0.80
o A
E 2000 [ + 0.72-0.76
£ ! _
3 1500 n + 0.68-0.72
i B A 0.64-0.68
1000 =& T | A 0.60-0.64
i + * * A ﬂ A A A A A A : A A A
500 - LT a g A 0.56-0.60
JHDLBITUHITHE
B P ETAT NATHR] TSFN . A 0.52-0.56

0 22 44 66 88 110 132 154 176 198 220 242 880 1287

Time Interval (days)

Figure 5-15: The number of mutual pixels with similar correlation values from independent TSX
Spotlight offset maps overlapping in time, in relation to SAR image time interval. For high
correlation values (approx. r > 0.78), there is no significant decrease in pixels until the time
interval exceeds 1-year. For corner reflector correlations (i.e. r > 0.96), there is very little decrease
in the number of pixels even after 1287 days (i.e. using the first and last available SAR image).

For higher cross-correlation values (> 0.78), the number of pixels over the TSX Spotlight
scene does not decrease up to the 242-day interval (the whole duration of the first series of
TSX Spotlight data). However, the number of pixels appears to drop beyond the 242-day
limit when the master and slave images span the TSX Spotlight data gap. There are two
possible causes for this, either changing terrain properties or an artefact caused by changes

in the SAR acquisition plan for the second period of TSX Spotlight data. The imaging
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mode, relative orbit and SAR beam are identical for both data collection periods, although
the exact areal coverage and incidence angle are altered very slightly. Regardless of the
cause, using one single master to generate regional offset maps for all SAR acquisition
dates is not optimal and would lead to a reduction in measurement density by the end of
the time-series. Subsequently different master images were used to generate the time-series
for each data period (i.e. 21* February 2009 for the first period of TSX Spotlight data and
2" January 2012 for the second period) to maintain a consistent density of measurements.
The gap of TSX Spotlight data was spanned using the minimum time-interval image pair;
15™ April 2010 as the master and 2" January 2012 as the slave. It was assumed the vast
majority of selected point-like targets in one data series will remain observable in other

time-periods unless there is a physical change in its backscattering properties.

In all cases, no seasonal signals related to the offset precision or number of pixels across
the scene were identified, suggesting these point-like targets are mostly artificial and

therefore unrelated to vegetation changes.

5.5 TerraSAR-X Spotlight Regional Point-Like Pixel Offsets

Using a cross-correlation threshold of 0.78 and the above time-series strategy, various
regional offset maps were produced for the following periods; 21* February 2009 — 15™
April 2010; 15™ April 2010 — 2" January 2012, and, 2™ January 2012 — 23" February 2013
(Figure 5-16 — Figure 5-18). A final offset map was produced using the first and last
available Spotlight images, from 21* February 2009 — 23" February 2013 (Figure 5-19).

The coverage now extends beyond the 17 corner reflector points installed over the Shuping
landslide (shown in the lower inset of Figure 5-16 — Figure 5-19) although the density of
measurements is sparse for the whole scene, illustrating the difficulty obtaining precise
offsets in densely vegetated terrain (Jomsson et al., 2005; Grandin et al, 2009). To
generate time-series measurements using three different master images as opposed to one
single master is also beneficial, shown by the greater density of measurements in Figure
5-16 — Figure 5-18 compared with Figure 5-19 (see the upper insets for a detailed view).
To ensure the three-master approach was not influencing the final measurements, the
time-series of corner reflector displacement was compared to the results from the single-
master approach (Figure 5-8). For the 312 potentially different measurements, the mean
difference and RMSE was 0.010 m and 0.014 m respectively for range offsets, 0.035 m and

0.043 m for azimuth offsets. These are within the noise levels presented in Table 5-2.
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Very similar patterns for the range and azimuth displacements are observed across the
Shuping landslide for each shorter time interval (lower inset of Figure 5-16 — Figure 5-18)
as well as the accumulated displacement over the whole period of TSX Spotlight SAR
data (lower inset of Figure 5-19). Range offsets are always greatest for corner reflectors 9
& 10, whilst the azimuth offsets are more consistent across the whole landslide body

matching the results from Section 5.2.2.

Displacement signals are additionally found to the west of the Shuping landslide between
January 2012 and February 2013 (lower inset of Figure 5-18 — Figure 5-19). These are
unrelated to the Shuping landslide given the stable corner reflectors separating these areas
of displacement, although evidence of new slope movements was found during a fieldtrip
to the region in April 2012 (see Appendix Figure A-4). GPS-tagged photos were used to
match the building damage to the offset displacement signals to the west of the Shuping
landslide.

Finally, an area of instability that has not previously been reported is identified on the
opposite riverbank to the Shuping landslide (upper inset of Figure 5-17). Note the azimuth
displacement displays a negative value due to southerly movements towards the river. The
slope appears stable between 21% February 2009 — 15™ April 2010; becomes unstable
between 15™ April 2010 — 2™ January 2012, and stabilises between 2™ January 2012 — 23™
February 2013. However, the sum of accumulated displacement over these three time
intervals is ~70% lower than the magnitude of displacement calculated from the first and

last available TSX Spotlight image (Figure 5-19).

Using a single-master approach for the whole time-series, the range and azimuth
displacement was plotted for the whole 4-year period of data (Figure 5-20). The slope is
stable for the first time interval (matching Figure 5-16), shows displacement of 0.4 m in
range and 0.5 m in azimuth for the second time interval (matching Figure 5-17), but
shows a large displacement for the third time interval which contradicts the results of

Figure 5-18.

Three geo-tagged photos of this slope (in the years 2007, 2009 and 2011), appear to show
a tall building on this slope has been evacuated and partially demolished whilst concrete
slope reinforcements have been engineered to stabilise this slope (Figure 5-21). It is
hypothesised the building was demolished prior to 2009 (otherwise it would appear as a
large range displacement of several metres in the time-series measurements). The slope
must have moved and been reinforced with concrete sometime between 15" April 2010 —

2" January 2012.
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Figure 5-16: Regional offset maps for the TSX Spotlight scene from 21st Feb 2009 until 15" April
2010. (a) range and (b) azimuth directions. Positive range values correspond with movement away
from the sensor and positive azimuth values correspond with predominantly northwards movement.
Upper inset focuses on a new riverbank instability, lower inset focuses on the Shuping landslide.
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Figure 5-17: Regional offset maps for the TSX Spotlight scene from 15" April 2010 until 2"! Jan
2012. (a) range and (b) azimuth directions. Positive range values correspond with movement away
from the sensor and positive azimuth values correspond with predominantly northwards movement.
Upper inset focuses on a new riverbank instability, lower inset focuses on the Shuping landslide.
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Figure 5-18: Regional offset maps for the TSX Spotlight scene from 2! Jan 2012 until 23'* Feb
2013. (a) range and (b) azimuth directions. Positive range values correspond with movement away
from the sensor and positive azimuth values correspond with predominantly northwards movement.
Upper inset focuses on a new riverbank instability, lower inset focuses on the Shuping landslide.
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Figure 5-19: Regional offset maps for the TSX Spotlight scene from 21st Feb 2009 until 23rd Feb
2013. (a) range and (b) azimuth directions. Positive range values correspond with movement away
from the sensor and positive azimuth values correspond with predominantly northwards movement.
Upper inset focuses on a new riverbank instability, lower inset focuses on the Shuping landslide.
Note the larger colour bar scale compared with Figure 5-16 — Figure 5-18.
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Figure 5-20: Offset displacements for the new riverbank instability identified in Figure 5-17 &
Figure 5-19, from Feb 2009 — Feb 2013. (a) range and (b) azimuth offsets measured from TSX
Spotlight data. The positive scale is away from the sensor in range dimension and in the along-
track direction (i.e. predominantly southwards) in azimuth dimension.

This newly indentified slope instability has experienced significant man-made changes as
management strategies were implemented. The large displacement shown in June 2012
(black line in Figure 5-20) is most likely to be a spurious offset between partially
demolished buildings and newly constructed slope reinforcements over the 4-year period of
TSX Spotlight data. This demonstrates another advantage of dividing this time-period

into three since the probability of correlating the same ground features increases.
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Photo taken: 5t" December 2007

SAR Sub-Pixel Offset Time-Series Results
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Figure 5-21: Online photos of the new riverbank instability area in three different years, from
Panoramio & Google Maps. The red box highlights the same building to aid comparisons between
images. The slope cutting above the road appears to have been reinforced by concrete and a tall
building towards the base of the slope has been reduced in height, but not totally demolished.
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5.6 TerraSAR-X Stripmap Limitations

The same process of determining an acceptable cross-correlation threshold (see Section
5.4) was attempted for TSX Stripmap data (Figure 5-22). The patterns are quite different
to the TSX Spotlight data, with mean differences and standard deviations between offset
maps rising sharply below cross-correlation values of 0.92. This is caused by the greater
pixel spacing and the relatively homogenous vegetation cover in the region. For this
reason, generating regional offset maps from points beyond the corner reflectors is not
viable. A far greater contrast in the ground terrain backscatter at similar scales to the
window size parameter, much faster ground movements or consistent movements over a
larger area would all increase the likelihood of obtaining reliable SPOT results from TSX
Stripmap offsets of natural terrain. Such circumstances could include monitoring m/day
glacier movements (e.g. Fallourd et al., 2010), earthquake movements covering large areas

(e.g. Fielding et al., 2013) or more rapid landslide movements (Manconi et al., 2014).
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Figure 5-22: Mean difference between two independent TSX Stripmap offset maps overlapping in
time, in relation to offset correlation values. (a) range and (b) azimuth directions. Error bars
represent one standard deviation. The time interval was 110-days between the first and last
suitable images. Below a correlation value of 0.92 (i.e. beyond the correlation values associated with
corner reflectors), the mean difference and standard deviations exceed the magnitude of seasonal
landslide movements.

5.7 ENVISAT Limitations

ENVISAT data failed to produce successful offset results due to its significantly larger
pixel spacing covering the relatively small landslide area. Faster-moving phenomena or

more contrasting terrains (as stated in Section 5.6) would make the use of ENVISAT data

123



Chapter 5 SAR Sub-Pixel Offset Time-Series Results

more feasible. All previous studies mentioned in this chapter employing ENVISAT offsets
have measured either larger magnitude displacements or displacements over much wider

areas, relative to the Shuping landslide.

5.8 Summary

Chapter 5 evaluates the use of Sub-Pixel Offset Time-series (SPOT) techniques applied to
three different SAR image modes for monitoring landslides in the Three Gorges region. A
heuristic technique for selecting the optimal parameters, aimed at reducing spurious
correlations and the duration of processing, resulted in a square moving window size of 32

pixels and an oversampling factor of 16 being applied to the data.

Compared to D-InSAR, SPOT techniques are capable of measuring two dimensions of
displacement (in range and azimuth directions) and are more robust given their
independence from phase values. Corner reflectors (CRs) installed on landslides are shown
to be beneficial for SPOT techniques, due to the significant contrast of high amplitude
values compared to the vegetation. The Shuping landslide is covered by both TSX data
sets and verifiable displacement time-series measurements were generated from the TSX
Spotlight and Stripmap image modes. Episodic and non-linear displacement trends match
the magnitude and timing of extensometer measurements presented by Wang et al
(2013b). The concurrence of movements suggests the same triggering factor affects the

whole landslide, although the displacements are spatially variable in elevation.

The use of corner reflectors in SPOT analysis generates precise results with RMSE values
of 0.038 m and 0.071 m in range and azimuth directions, respectively for TSX Stripmap
data. The difference between the displacement dimensions is attributed to the varying
pixel spacing, also evident for the higher precision generated from TSX Spotlight data.
Expanding the SPOT-CR analysis to other landslides in the study area shows the Xintan

and Kaziwan landslides to be stable over the nine months of the TSX Stripmap data.

Finally, a minimum cross-correlation threshold with an acceptable level of precision is
investigated in order to generate a regional coverage of measurements beyond the corner
reflectors. The cross-correlation is set at 0.78 for the TSX Spotlight data and shows no
significant dependence on perpendicular baselines or the time interval of the offset pair
over periods of 1-2 years. Only a sparse network of measurements is generated, although a
potentially unknown slope instability is discovered. The precision of TSX Stripmap and

ENVISAT data is not high enough to measure landslides without CRs.
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A well-developed early warning system for landslides should include various elements such
as understanding the local knowledge of risks, communicating timely and reliable
warnings, and building local capacity to respond to warnings (UN-ISDR, 2004). However,
one other important technical component involves monitoring the hazard(s) which requires
the (i) detection; (ii) rapid mapping; (iii) characterisation; and, (iv) long-term monitoring

of landslides (Tofani et al., 2010).

Frequently acquired SAR imagery has been identified as a useful tool for investigating
landslides and also as part of a warning system. Chapters 3, 4 and 5 comprehensively
evaluated D-InSAR and SPOT techniques, illustrating SPOT techniques applied to point-
like targets can extract numerous measurements of displacement across a landslide body.
These measurements can not only identify and map the actively deforming slopes
(significantly reducing uncertainty in landslide inventory maps (e.g. Cascini et al., 2010)),
but can also help to characterise the landslide mechanism (Berardino et al., 2003; Tofani
et al, 2013). Deduction of the failure surface geometry and triggering mechanisms is
possible by combining information on the landslide topography, boundaries and

displacement (Carter and Bentley, 1985; Tofani et al., 2010).

Further interpretations of landslide processes can then be inferred by comparing a time-
series of displacement with potential triggering factors such as rainfall, seismicity and site-
specific factors such as fluctuating reservoir water levels (e.g. Tolomei et al., 2013). Whilst
these methods will not replace the value of in-situ investigations, landslide characterisation
from remote sensing imagery can help target field analyses using geophysical profiles or

boreholes within the landslide body (Casson et al., 2005).

Further investigation of slow-moving, reactivated landslides is also necessary. For these
cases, the hydrology is often very complex and display erratic and complex displacements
due to the presence of small-scale anisotropy and large-scale heterogeneity in their
permeability (van Asch et al, 2007; 2009). Repetitive patterns of faster and slower

displacement, separated by periods of rest are very common to slow, reactivated landslides

125



Chapter 6 Investigating the Shuping Landslide

and can help to determine dominant mechanisms such as basal sliding, plastic deformation

or (recoverable) seasonal shrinkage/swelling of sediments (Massey et al., 2013).

To answer the third and fourth research questions (page 10), this chapter investigates the
triggering factors and geotechnical controls of the Shuping landslide. The Shuping
landslide is by far the most active within the study area and further investigation is
required to determine why this landslide continues to be active, particularly since a

resident population still lives inside the landslide boundary.

The long time-series of displacement obtained from SPOT-CR techniques allows useful
comparisons with potential triggering mechanisms including reservoir water level change,
rainfall or regional seismicity. Since SPOT-CR techniques can measure 2-dimensions of
movement (in range and azimuth directions), it is possible to estimate the purely vertical
and horizontal movements of the Shuping landslide and subsequently characterise the
most likely failure surface. Finally, with the use of published geotechnical parameters from
nearby landslides, a 2D limit equilibrium method is applied to establish the most likely
failure depth and the model’s sensitivity to principal controlling factors (e.g. water table
position and cohesion, internal friction angle or unit weight of the subsurface materials).
An understanding of these factors would help determine suitable remedial measures and

help target future in-situ geotechnical analysis.

6.1 Landslide Triggering Factors

Processes leading to landslides can be separated into causes and triggers, with landslides
being caused by morphological, geological and historical factors that set the stage for a
landslide to occur (Lu and Godt, 2013). Landslide triggers are the events that initiate
landslide motion and shift the slope from being marginally stable to actively unstable. The
trigger and cause can be classified by the timescale of the associated processes, although
often it is difficult to identify the precise trigger for a given landslide (Evans et al., 2007).
In other cases, the trigger can be easily identified by a correlation between the
displacement and potential triggering factors, particularly for slopes already in a

marginally stable state (Glade and Crozier, 2005).

The Shuping landslide has been divided into two parts: eastern and western blocks with a
combined width of about 600 m (Wang et al., 2008a). Whilst the rates of displacement are
different over the whole landslide body, the timing of faster and slower episodes (Figure

5-8) is very consistent for all measurement points, suggesting the same causal factors are

126



Chapter 6 Investigating the Shuping Landslide

affecting the whole landslide body. The variation in displacement rates is more likely to be
caused by the relationship between the geometry of the landslide’s failure surface relative

to the sensor Line-of Sight (LOS) direction, rather than a variation in causal factors.

A wide range of geological, meteorological and hydrological factors can trigger landslides
such as volcanic eruptions, earthquakes and heavy precipitation. In addition human
activities such as slope excavation, reservoir operations and irrigation may also initiate
landsliding. The slope is predisposed to landsliding given the ancient origin of the Shuping
landslide (Wang et al., 2008a), matched with evidence in the field (Figure 6-1). This
makes the landslide very susceptible to smaller perturbations from landslide triggers
compared to first time failures (Lee and Jones, 2004). In this section, the potential
triggering factors assessed include changes in the Three Gorges reservoir water level,
rainfall and regional seismicity within a 50 km radius of the landslide — far above the

expected area affected by earthquakes of magnitude five (Keefer, 2002).

Figure 6-1: Large boulders found amongst a finer matrix of softer sediments within the boundary
of the Shuping landslide. Indicative of an ancient landslide deposit.

6.1.1 Reservoir Drawdown

Riverbanks connected to rivers and reservoirs often experience instability as a result of
fluctuations in water levels adjacent to the slope (Fujita, 1977; Jia et al, 2009). When
landslide deformation is slow, understanding how changing groundwater level influences

slope behaviour is important for its management (Kalenchuk et al, 2013) and many
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examples exist where groundwater is a common controlling factor in the deformation of
large active landslides, e.g. Aknes (Nordvik and Nyrnes, 2009); Beauregard (Barla et al.,
2010); Huangtupo (Tomaés et al., 2014); La Clapiére (Cappa et al., 2004); Ruinon (Crosta
and Agliardi, 2003); and, Vajont (Hendron and Patton, 1987; Semenza and Ghirotti,
2000).

The Three Gorges reservoir was created in three stages. The first stage raised the water
level from 68 — 135 m between 1* — 15™ June 2003. In September 2006 the water level
reached 156 m and following completion of the Three Gorges dam, the reservoir reached
its final height of 175 m in October 2010 (Luo et al., 2009; Jiang et al., 2011a). At the
dam, the fully-functional Three Gorges reservoir annually fluctuates from 145 m in the
summer (May — October) up to 175 m in the winter (November — April) for downstream
flood control and power generation, respectively (Zhang and Lou, 2011). The catastrophic
failure of the nearby Qianjiangping landslide is attributed to the first stage impoundment
in 2003 (Wang et al., 2004; 2008b) as is the slow reactivation of the Shuping landslide
(Wang et al., 2013b).

The period of most rapid landslide displacement around May-June each year corresponds
with the annual lowering of the Three Gorges reservoir (Figure 6-2). The faster the rate of
change in the reservoir level, the longer the groundwater levels take to adjust. When water
levels are lowered, drainage of the landslide lags the reservoir drop which results in high
downslope hydraulic gradients and favours slope instability (Wang et al, 2008d).
Displacement appears proportional to the rate of reservoir lowering, as the initial reservoir
lowering from January to May each year results in small landslide displacements, whereas
the fastest drop in the months of May and June corresponds with the fastest landslide
movement. This matches the conclusions of Wang et al. (2013a). It should also be noted

that increases in the reservoir water level are not shown to encourage slope instability.

These patterns match the results of Xia et al. (2013) who found a similar relationship of
the nearby Shiliushubao landslide to fluctuations in the Three Gorges reservoir. Assuming
a high cohesiveness and low permeability coefficient for both landslides, a decline in
groundwater level will lag behind a sudden drop in the reservoir water level. This favours
slope instability by maintaining high pore pressures and generating high seepage forces
away from the landslide body. If the reservoir water level was stabilised for a significant
period of time, pore water pressures and seepage forces would reach a stable state

conducive to landslide stability.
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Following the same logic, rising reservoir water levels have the effect of generating high
seepage forces towards the landslide body and provide a force resisting slope movements
which is beneficial for landslide stability. However, eventual saturation from the lagged
rise of the water table would saturate the sliding mass, decreasing the effective strength
and increasing the likelihood of slope movement relative to a lower static reservoir water

level (Xia et al., 2013).

As mentioned in Section 5.2.2, displacements in the years 2010 and 2011 (0.66 m in total)
were not at the same magnitude as in 2009 and 2012 (i.e. 0.60 — 0.65 m each year).
Qualitatively, this may be related to shorter periods of the most rapid reservoir lowering.
By the month of May in 2010 and 2011, the water level had already been gradually
lowered to ~157 and 155 m, respectively before a more rapid drop down to 145 m. This
contrasts the years 2009 and 2012 where the range in reservoir water level change was

more than 15 m over the months of May — June.

From studies of the Shuping landslide using extensometers up to February 2010, the
displacement rate is shown to be highly related to the patterns of water level fall and this
rate of reservoir lowering is postulated as a predictor of landslide movement (Wang et al.,
2008a; 2013a; 2013b). Given the temporal resolution at which the water level data are
plotted, this thesis finds landslide movement most significant when the reservoir is
persistently lowered at the rate of 0.5 — 0.8 m per day. A more gradual lowering of the
reservoir water level would likely reduce the magnitude of Shuping landslide displacement,

such as the case of the Canelles landslide (Pinyol et al., 2012).

Finally, comparing the water level change with the landslide displacement (Figure 6-3),
the fastest rate of reservoir lowering consistently occurs in August. However, this very
large and rapid fall is always preceded by an equivalently large increase in water level as
downstream areas are most likely protected from flooding during the rainy season. The
time lag of landslide movements and groundwater variation in response to reservoir
change must exceed 10 days given no increase in landslide displacement is observed over

the same time period.
Both the managed and natural changes in reservoir water level are related to the seasonal

variations in rainfall, so an analysis of landslide movement in relation to both factors is

required to fully understand the mechanisms of movement for the Shuping landslide.
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Figure 6-2: Range displacement of the fastest moving corner reflectors (CRs 9 & 10), in relation to
water level changes of the Three Gorges reservoir. The largest, episodic landslide movements occur
in May-June each year (grey columns), which correspond to the fastest lowering of the Three
Gorges reservoir. Location of CRs found in Figure 5-5b and daily water level data are available
from the China Three Gorges Project Corporation website (www.ctgpe.com.cn).
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Figure 6-3: Range displacement of the fastest moving corner reflector (CR 10) in relation to the 5-
day water level change. There are 5-day periods with very significant reservoir lowering, but these
are always preceded by a significant reservoir rise. The largest, episodic landslide movements
correspond to significant and persistent lowering of the reservoir (also see Figure 6-2).
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6.1.2 Rainfall

Precipitation is known as one of the major landslide triggers and the temporal occurrence
of landslides can be controlled by rainfall patterns and duration (van Asch et al., 1999).
The most direct relationship between rainfall and landsliding often refers to highly mobile
debris flows and shallow landslides, where researchers look for a threshold in rainfall
duration, intensity, or other property as a landslide predictor (e.g. van Asch et al., 1999;
Guzzetti et al., 2007). In the Three Gorges region where annual rainfall can exceed 1000
mm, 80% of shallow landslides occur between April and August (He et al., 2008; 2010).
However other landslides respond slowly to rainfall and move at imperceptible speeds (e.g.
Iverson, 2000; Herrera et al, 2011; Tomaéas et al., 2014). Figure 6-4 shows the same
landslide displacement data as Figure 6-3, in relation to the accumulated rainfall over a
10-day period from January 2009 until June 2011, as measured from a meteorological

station less than 25 km away.
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Figure 6-4: Range displacement of the fastest moving corner reflector (CR 10) in relation to 10-day
accumulated rainfall. Significant rainfall is observed during the months of May-June when the
landslide movement is greatest. However, equivalent rainfall quantities during other months do not
have the same effect on landslide movement, indicating that rainfall is at most a secondary
triggering factor behind reservoir drawdown. Rainfall data come from the Meteorological Station at
Badong, less than 25 km away from the Shuping landslide.
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During the months where landslide movement is greatest, significant rainfall is also
observed (Figure 6-4), making it difficult to fully separate the effects of reservoir water
level fluctuations from precipitation. However, other periods of equally heavy rainfall
outside the months of May-June are also evident which do not appear to increase the rate
of landslide displacement. Given the very direct link between landslide movement and
reservoir drawdown shown in the previous section, it is believed rainfall plays a far lesser
role in triggering the Shuping landslide. This could be due to the depth of the sliding
surface — between 45-75 m (Wang et al., 2008a) — being unaffected by the infiltration of
precipitation as well as large surface gullies which help drain the landslide surface and
prohibit the pooling of water. Note the rainfall record beyond June 2011 was not available

to compare with the 2012 — 2013 monitoring data.

6.1.3 Seismicity

A final consideration investigates whether regional seismic events could trigger the
episodic landslide movements. Earthquakes have caused widespread landsliding due to the
addition of gravitational and seismic accelerations which cause short lived stresses in
excess of the cohesive and frictional strength of landslides (Densmore and Hovius, 2000;
Meunier et al., 2007). The creation of the Three Gorges reservoir has also been
hypothesised to induce seismicity (Xu et al., 2013). Whilst seismic activity has increased
since 2003, 96% of these events were less than magnitude M; 2.0 and the seismic condition

remains weak given no major faults exist in the reservoir area (Xu et al., 2013).

Figure 6-5 shows the greatest landslide displacement curve plotted against all detectable

earthquake events within a 50 km radius of the Shuping landslide (obtained from the

China Seismic Network (CSN): www.csndmc.ac.cn/newweb/data/csn_catalog_p001.jsp).
The frequency of earthquakes appears relatively constant over time, and they are all low
magnitude events with only one exceeding M; 3.5. The epicentres of all events within the
highlighted months of May-June are also more than 25 km away from the landslide,

indicating that any influence from ground accelerations are likely to be very small.

The distance and the low magnitude of earthquakes within the months of May-June
suggest this is an unlikely landslide triggering factor. Earthquakes of the same magnitude
and frequency also occur outside the period of greatest landslide displacement which again

suggests the dominant control upon the landslide is reservoir drawdown.

132


http://www.csndmc.ac.cn/newweb/data/csn_catalog_p001.jsp

Chapter 6 Investigating the Shuping Landslide

0.30 4.2
X
0.25 : 3.5

% X X y x; ?':

< 0.20 X XX X X x | X » X X x T 28 -3

E U X X - X X - X X x KXX X X < m

= x x* % X X X x| x 2

5 % R x xRk F X 3

E 0.15 [ dor T x o s B

§ ' x X% TR X %x % ixxxggf K AR, ‘9 )OQ(xx -1

KL o
o

n =

a 0.10 1.4 2

[} 3.

[=2] -

c — c

2 07 &

=

[

oo L2l L ﬂ”[Lll o B,

Figure 6-5: Range displacement of the fastest moving corner reflector (CR 10) in relation to
seismicity within a 50 km radius of the Shuping landslide. No large event or cluster of events
appears to trigger the landslide movement in May-June. All seismic events in the months of May-
June are small (<3.5 M) and occurred more than 25 km away from the Shuping landslide. Seismic
data are available from the China Seismic Network Centre website (www.csndmec.ac.cn).

6.2 Landslide Failure Mechanism

The subsurface geometry of a landslip is defined by the shape, orientation and depth of a
slip surface and these are essential for stability analysis or the design of remedial works
(Carter and Bentley, 1985). Without the use of costly site investigation employing pits
and boreholes, it is intuitive to estimate the slip surface geometry at depth from
movements obtained from the landslide surface. This requires the use of cumulative
displacements to categorise the style of movement displayed by a landslide (Petley et al.,

2005) and enables the landslide typology to be classified (e.g. Tofani et al., 2013).

Two major types of slow-moving landslides are categorised by the geometry of the slip
surface (Varnes, 1978): rotational landslides with curved slip surfaces and translational
landslides with planar (or near planar) slip surfaces. Assuming the landslide behaves as a
rigid block along each cross-profile, internal deformation is negligible, and a single failure
surface exists, the distribution of directional displacement vectors and any topographic
variation is a function of the slip surface geometry (Casson et al., 2005). This method also

requires multiple surveying points to be available across the landslide body over a period
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of time sufficiently long to accumulate movements larger than the errors inherent in the
surveying procedures (Carter and Bentley, 1985). The Shuping landslide has a good
distribution of corner reflectors from which the precise SPOT-CR analysis was used to

measure relatively large movements (Figure 5-5).

Surface displacements are most easily interpreted in vertical and horizontal orientations,
although D-InSAR results only provide sensitivity in the sensor’s LOS direction. To obtain
vertical and horizontal movements, D-InSAR measurements have been combined from
different SAR viewing angles (e.g. Wright et al., 2004) or employing the multi-aperture
D-InSAR approach (e.g. Bechor and Zebker, 2006; Hu et al., 2012a).

A useful capability of sub-pixel offset measurements allows the displacement vectors from
the range and azimuth directions to help estimate the purely northward (dy) and vertical
(dy) components of displacement. The measured LOS displacement represents a projection
of the 3D displacements (dg, dy & dy) onto the satellite look vector (see Equation 4-5).
The azimuth offsets are a projection of a horizontal displacement component onto the

satellite heading vector (Equation 6-1):

Equation 6-1: Decomposition of the azimuth offsets
(dazimyrh) into its horizontal components (dy & dp)
(Fialko et al., 2001). a represents the azimuth of the
satellite heading vector.

dazimurn = dy cos(@) + dg sin(a)

Assuming landslide movement in the east-west direction (dg) is zero (a relatively safe
assumption given the orientation of the Shuping landslide with respect to the TSX
Spotlight sensor), the following system of equations (Equation 6-2) can be solved to
estimate the accumulated vertical and horizontal components of displacement for every

corner reflector around the Shuping landslide:

Equation 6-2: System of equations used

T _ T
drangs = [-0.680.12 — 0.72] [dp dy dy] to estimate the vertical and horizontal

landslide displacement from the
— I T
dazimurn = [=0.170.98 0] [d; dy dy] accumulated range and azimuth offset
results.

dE=O

The results shown in Figure 6-6 have been divided into three different time periods to
potentially observe any temporal change in the vertical and horizontal movements. These

intervals correspond to the two sets of TSX Spotlight data and the data gap in between.
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6.2.1 Vertical Movement (dy)

The estimated vertical measurements (Figure 6-6a) show the total accumulated
displacement increasing with elevation and distance from the Yangtze River. The
topographic trend is very consistent for each of the three time periods with the head of the
landslide moving downwards at least 25 times more than the toe of the landslide. This

suggests the mechanism and principal triggering factor does not change over time.

6.2.2 Horizontal Movement (dy)

In contrast to the vertical movements, the northward displacement results (Figure 6-6b)
do not show the same topographic trend as the vertical dimension, instead displaying the
greatest movements towards the middle of the landslide. The patterns are also quite
consistent over time, although the velocity of corner reflector 17 (at the head of the

western block) increases, compared with the first period, possibly due to gravitational

failure on steep local slopes such as slope undercutting or headward erosion.

0 01 02 0 01 02 0 01 02
km — 1km = km

Figure 6-6: Accumulated displacement in (a) vertical direction and (b) horizontal direction, for
three different time periods. (i) 21% Feb 2009 — 15™ April 2010 (ii) 15" April 2010 — 2™ Jan 2012
(iii) 2" Jan 2012 — 23" Feb 2013. Positive values indicate downward and northward motion. Exact
values can be found in Appendix A — Supplementary Tables & Figures.
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6.2.3 Rotational Failure

The above surface data presented in Figure 6-6 can be used to qualitatively analyse the
slip surface geometry of the Shuping landslide. Under the assumptions listed in Section
6.2, a uniform translational landslide would exhibit similar displacement vectors along a
profile of the landslide from top to bottom whereas a rotational landslide would exhibit

decreasing vertical displacements (Dikau et al., 1996; Tofani et al., 2013).

A rotational failure mechanism along a curved plane would be consistent with these 2-
dimensional movements and is proposed as a first-order interpretation of the data. The
head of the landslide shows the highest rates of vertically-downward movement for each
time period whereas the middle section has the highest rates of horizontal movement,
matching the displacements expected from a rotational slide (Figure 6-7). The designation
of two adjacent blocks is also supported by these data as displacement rates at similar
altitudes are mnot equal. However, the synchronicity of accelerated periods for all
measurement points is evidence for a single, deep failure plane. Boreholes and

inclinometers should be installed to more accurately determine the failure surface depth.

For significant degrees of rotation, landslides can be classified into zones of depletion,
transfer and accumulation (Casson et al., 2005). A zone of depletion and transfer could be
delineated using these point data, however it is difficult to identify the toe of the landslide
due its connectivity with the Yangtze River. It is suggested the toe of the landslide is close
to the river bank given the very low vertical displacement rates at the lowest points,
although geomorphological mapping from aerial images predating the reservoir

impoundment would be required to accurately identify the lower landslide boundary.

Movement normals

Bisection lines; drawn
midway between movement
normals

Movement directions of
ground stations

Predicted slip surface Ground stations

Figure 6-7(a): Schematic diagram of a rotational failure mechanism, as inferred from the results in
Figure 6-6 (Lu and Godt, 2013 p. 8).

Figure 6-7(b): Construction of slip surface using ground station movements, relative to the SAR
sensor Line-of-Sight (LOS) direction (adapted from Carter and Bentley, 1985 p. 235).
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6.3 2D Limit Equilibrium Slope Stability Analysis

Quantitatively assessing the stability of the Shuping landslide can now proceed following
the identification of the landslide failure plane geometry and the most likely triggering
factor. Slope stability analysis commonly employs a limiting equilibrium approach for a
two-dimensional model since extensive computing and concerns about laboratory soil tests

have limited the use of finite element approaches to only a few cases (Abramson, 2002).

This section employs a classical non-linear method of slices to assess the stability of the
Shuping landslide under different water level scenarios and the application of more
complex methods such as Finite Element Methods (FEM) are not pursued given an almost
complete lack of subsurface data at this location. An approach such as FEM would
subsequently generate high levels of uncertainty and potentially not represent the real-
world situation adequately. All slope stability calculations in this section used the
Rocscience 2D limit equilibrium slope stability software ‘Slide’

(www.rocscience.com/products/8/Slide) which considers a plane strain situation.

Many soil mechanics and engineering geology textbooks introduce the concepts used in
limit equilibrium methods of stability analysis (e.g. Anderson and Richards, 1987;
Abramson, 2002; Aysen, 2002; Smith, 2006; Cheng and Lau, 2008; Lu and Godt, 2013),
although a brief explanation adapted from these sources is provided here for completeness.

A source of detailed information may also be found in the thesis of Aryal (2006).

The concept of limit equilibrium defines the limiting state when the shear stress in a slope
is in a critical stable mechanical equilibrium with the shear strength of the slope material.
Shear stress develops in a slope due to gravity and topographic relief and the ability of
hillslope materials to resist this shear stress along the potential failure plane can be
quantified using the shear strength of the materials (Lu and Godt, 2013). Therefore,
stability of hillslopes can be assessed using the ratio of shear strength of the soil (77) to
shear stress developed for mechanical equilibrium (74), termed the factor of safety, Fg
(Equation 6-3). A Fs greater than one indicates the slope is stable, whereas the slope will
fail if the value is less than one. Most modern building codes require both manufactured
and natural slopes to have a long-term Fg greater than 1.5, which provides a margin of

error in the measurements and overall calculations (Pipkin et al., 2010).

Equation 6-3: Factor of safety (Fs) showing the
Fg=— ratio of available shear strength (77) to shear
stress (7,) required for stability.
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The shear strength behaviour of hillslope materials () under saturated conditions can be
approximated using the Mohr-Coulomb failure criterion and the effective stress principal
(Equation 6-4):

Equation 6-4: Mohr-Coulomb failure criterion for

7 =c' +0'tang’ )
f ¢ effective stress analyses.

where the effective normal stress (¢', in N/m* = Pa) equals (Equation 6-5):

Equation 6-5: Effective normal stress (o') acting
o'=0c"—-u on any plane. o7 represents total normal stress
and u represents pore pressure.

Therefore the Mohr-Coulomb criterion (Equation 6-4) leads to a material’s shear strength
that is described by two components; effective cohesion (¢') and the effective friction angle
(¢"). However, effective strength may also include apparent cohesion due to plant roots
which is not considered in this analysis. The effective stress between soil particles can be
reduced by the pressure of water, particularly in fine-grained soils where a low
permeability might cause the drainage/water movement to be lower than the rate at
which total stress is changed. This can lead to the development of increased (i.e. excess,
non-hydrostatic) pore water pressures. Effective stress analysis is more suitable for long-
term natural scenarios as no additional loading is placed on the slope and undrained

conditions need to be considered (Anderson and Richards, 1987).

Lu & Godt (2013) explain non-linear methods of slope stability assessment divide slopes
into a number of (usually equal-width) slices separated by vertical boundaries. The
geometry of slopes is predetermined, while the location of potential failure surfaces with
the minimum Fs is found through an iterative process using a grid of different rotation

centres (introduced in Figure 6-8) from which different radius surfaces are plotted.

Fellenius (1927) initially developed the Ordinary Method of Slices which only considered
the forces acting on the potential failure surface and body forces in moment equilibrium.
To improve the accuracy of stability analysis, Bishop (1955) considered the inter-slice
forces (i.e. Ep, Ep X;,Xp in Figure 6-8), with the full detailed formulation shown in

Equation 6-6:

¢'l —tan @' ul] sin ®
W= (- x,) - (L=t gl utlsin @)
tango’tantb)
Fs

Ylc'l+tang’ —ul

cosq.')(1+
> Wsin®

FS=

Equation 6-6: Bishop’s Simplified Method of Slices
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Given how Fs appears on both sides of this equation, it is solved iteratively starting with a
high factor of safety (e.g. Fs = 5) until the convergence between subsequent iterations falls

below a threshold value (e.g. 0.005).

Force equilibrium implies the summation of all forces in both the horizontal direction and
vertical direction should be zero. However, the above formulation Equation 6-6 is
indeterminate and Bishop’s Simplified Method of Slices only satisfies horizontal
equilibrium by assuming that the resultant vertical shear forces between slices are zero
(i.e. Xg— X, =0). Therefore Bishop’s Simplified Method only fully satisfies overall

moment equilibrium, and not overall force equilibrium.

f——— O (assumed centre of rotation)

777 \N\

¢

Figure 6-8: Illustration of the method of slices for limit equilibrium analysis. Forces acting on a
typical slice are also shown (Anderson and Richards, 1987 p. 38).

0 = centre of rotation

R = radius of failure surface

b = width of slice

l = length of slice base

o = slice inclination

d = distance of slice central axis to the centre of rotation
u = pore pressure at the slice base centre

E; and Eg = horizontal lateral forces between slices

X, and Xp = vertical shear forces between slice

w = weight of slice

P = o7 x | = total normal stress x slice length
T = 7, X | = total shear stress x slice length

Limit equilibrium methods can be broadly classified into two main categories of
‘simplified’ and ‘rigorous’. Simplified methods satisfy either force or moment equilibrium,

but not both at the same time. For rigorous methods, both force and moment equilibrium
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are satisfied but the analysis is longer and may sometime experience non-convergence

problems (Cheng and Lau, 2008).

The chosen method for the following slope stability analysis is Spencer’s rigorous method
which satisfies both moment and force equilibrium by an additional iterative step to
estimate Xp — X; by assuming the resultant angle of both horizontal and vertical interslice
forces is constant throughout the slope (Anderson and Richards, 1987). This method is
best suited to circular failure surfaces and whilst no method is considered better than
others, rigorous methods (which more carefully consider internal forces) will often give
better results than simplified methods (Cheng and Lau, 2008). The most commonly used
rigorous methods generally give very similar results as the inter-slice forces only have a
small effect on the overall factor of safety and to ensure this analysis is not biased by the

use of Spencer’s Method, many other approaches are also tested for comparison.

Despite its widespread use, fundamental assumptions are also recognised in the use of
these techniques. These include assuming the failure mass acts as a single rigid body, the
base normal force acts at the middle of each slice, the FOS along the entire slip surface is
constant and that stress-deformation components are ignored (Abramson, 2002).
Combined with the significant uncertainty and spatial variability in the material
parameters (explored in the next section), this approach is not aimed at calculating
absolute Fs values. Instead the relative differences between various model scenarios are

used to assess the stability of the Shuping landslide under different real-world conditions.

6.3.1 Model Parameter Selection

Limit equilibrium is not an inverse technique, and therefore relies upon a priori
specification of boundary conditions and input parameters such as the slope morphology,
geological details, material parameters and pore water pressures (Abramson, 2002). The
rotational failure mechanism of the Shuping landslide means a circular failure plane is
employed in this model, although for most two-dimensional analyses, the failure surface is
simplified allowing representative cross-sections to be drawn and divided into slices

(Anderson and Richards, 1987).

The slope geometry shown by the cross profile in Figure 6-9 is taken from the centre of
Block 1 (the eastward half of the landslide), shown in Chapter 5 to be the most active.
The surface topography is extracted every 30 m (Figure 6-9) from the ASTER GDEM v2
DEM, a product of METI and NASA, and the initial reservoir water level is set at 145 m.
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The uncertainty increases for the submerged portion of the slope where no DEM data
were available. Classification of the subsurface into one slide body above bedrock is
strongly supported by cross sections for the Shuping landslide found in other publications
(Wang et al., 2005a; Ailan et al., 2008; Wang et al., 2008d; Qin et al., 2010) and the exact
line is digitised from a scaled figure in Shimei et al. (2008d p. 986).

N<——
Model Setup ———
Slices = 50 200 m
Radii = 30

Grid increments = 50
F, tolerance = 0.005

Figure 6-9: Geometry and parameterisation of a 2D profile through the centre of Block 1 of the
Shuping landslide. Topographic profile was extracted from the ASTER GDEM v2, the landslide
body was digitised from Wang et al. (2008d) and more detailed information on the parameters is
shown in Table 6-1.

Data from one borehole at the toe of Block 1 has been published (Wang et al., 2005a) and
found the water table (at the time of survey) was 8.8 m beneath the surface. This helps
constrain the water table at the lowest elevations, although uncertainty in the water table
significantly increases towards the head of the landslide. Whilst this is not the optimal

approach, uncertainty in the water table location is considered in later sections.

Finally, geotechnical parameters for the two distinct materials are required. Published
information on the Shuping landslide was found (see Table 6-1 and Qin et al. (2010))
although these were not from laboratory or in-situ tests and are potentially quite
unreliable. A literature search was conducted of other landslides within a 20 km radius of
the Shuping landslide, from which effective mechanical parameters of cohesion (c'), friction

angle (¢') and unit weight (yy or ys) had been obtained from laboratory or in-situ tests

(Table 6-1).

Bedrock parameters appear to be varied and unrealistically high, although these artificial

conditions are input to reduce the likelihood of failure surfaces within this highly resistant
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layer. Values for the cohesion and friction angle within the slide body itself are also quite
varied, although they are relatively consistent for the unit weight. For all parameters in
both layers the median value is taken as the best estimate and uncertainty in these

geotechnical values are dealt with in later sections.

The following analysis is divided into regular deterministic models, probabilistic analysis
to allow for parameter uncertainty, sensitivity analysis and finally Fg calculations under

rapid reservoir drawdown scenarios.

Table 6-1: Published geotechnical parameters for the Shuping landslide and from other landslides
close to the Shuping landslide.

Landslide Distance to Cohesion (c) Friction Angle Unit Weight
Shuping (km) kPa) () () (y)* (kN/m’)
Body | Bedrock | Body | Bedrock | Body | Bedrock
Huangtupo 20 100 3000 30 45 21.5 25.5
(Cojean and Cai, 2011)
Zhujiadian 20 34 350 36 52 21 26
(Hu et al, 2013)
Xiangshanlu 3.9 18 13
(Miao et al., 2014)
Qianjiangping 3 28.3 18 21
(Zou et al., 2013)
Xietan 3 30 22 17.5
(Loo, 2006)
Shuping** 0 36 1500 28.5 80 19.82 24.5
(Qin et al., 2010)
Median: | 32 1500 25 52 21 25.5

* Assumed unsaturated unit weight

** Parameters for the Shuping landslide do not come from geotechnical or in-situ investigations.
These parameters are “parameters proposed by the engineering geological model, compared to
mechanical parameters of similar landslides, and agrees with regression of deformation observations”
(Qin et al., 2010 p. b41).

6.3.2 Deterministic Analysis

The model uses a large grid of 50 x 50 nodes and ensured the minimum Fg rotation centre
is far from the grid boundaries. Each node also considers 30 radii between the minimum
and maximum possible circular failure surfaces. The results are then calculated for static
scenarios with the minimum and maximum reservoir water levels of 145 m and 175 m

respectively, using a convergence value of 0.005 for the iterative Fg procedure.
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6.3.2.1 145 m Water Level

The results of the first calculations are shown in Figure 6-10. With a Fs very close to 1.0,
this suggests the Shuping landslide is in a critical condition even under the static scenario
when the Three Gorges reservoir is at its lowest. The rotation axis is in the centre of the
grid nodes (considering the grid in Figure 6-10 has been cropped from the top), indicating
the solution is robust. This can also be seen by the predominance of minimum Fg planes
from each grid node with values between 1 — 1.4 located in the slide body (Figure 6-10).
The artificially high geotechnical parameters for the bedrock cause very few minimum

failure planes to be located in this material.

The borehole towards the lower part of Block-1 (the eastern block) indicates the rupture
zone surface is at a depth of 65 — 75 m, a zone where numerous slickensides were evident
(Wang et al., 2005a). This would also match the geometry and location of the weakest

predicted failure plane, although the uncertainty in this measurement remains high.

Figure 6-10: Factor of safety calculation using Spencer’s method for a reservoir water level of
145 m. The factor of safety is very close to 1.0, indicating the slope is vulnerable to failure. Note
the grid search window has been cropped from the top to save space.

6.3.2.2 175 m Water Level

With a stable, higher water level of 175 m, the Fg drops to 0.991 (Figure 6-11) indicating
the likelihood of slope failure is higher when the reservoir level is at its maximum. The

magnitude of decrease in Fg matches the findings of Cojean and Cai (2011) who analysed
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the effects of rising water levels for the nearby Huangtupo landslide following reservoir

impoundment.

The higher water level and increased weight of water will increase the resistance against
slope movement. However, given the drop in Fg, this indicates that higher pore water
pressures within the slide body lead to a greater reduction in effective normal stress in the
toe of the slope and ultimately, slope failure. This reasoning has been used to explain
many shallow landslides which followed the initial reservoir impoundment, as well as the
large catastrophic failure of the Qianjiangping landslide (only 3 km away from the
Shuping landslide) which occurred after the first stage of water level rise in 2003 (Wang et
al., 2004; 2008b).

W=175m

Figure 6-11: Factor of safety calculation using Spencer’s method for a reservoir water level of
175 m. The factor of safety drops below 1, indicating the landslide is active under these conditions.
Note the grid search window has been cropped from the top to save space.

The above analysis used Spencer’s Method to calculate Fg, although many other
formulations were tested (Figure 6-12). Notably, four methods (Bishop, Spencer, Corps of
Engineers & Morgenstern-Price) result in almost identical factors of safety for both
previous scenarios with different water levels. Only the Fellenius and Janbu Simplified
method result in slightly lower values, although it has been found that simplified methods
generally give conservative values for Fg when compared to more rigorous methods
satisfying complete equilibrium (Carpenter, 1985). The choice of Spencer’s Method is

believed to be satisfactory for the purpose of this comparative analysis, the most
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important feature being the method remains consistent for the different scenarios being

investigated.
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Figure 6-12: Comparison of factor of safety values from different methods. Bishop, Spencer, Corps
of Engineers and Morgenstern-Price methods all produce very similar values under the two different
reservoir water levels.

6.3.3 Probabilistic Analysis

Given the significant uncertainty in the geotechnical parameterisation, probabilistic
analysis is undertaken in the form of a Monte Carlo simulation. For a range of possible
values and a statistical distribution, random parameter combinations are selected for 2000

model runs to assess the impact upon the Fg results.
The Monte Carlo simulation uses the maximum and minimum values (symmetrical around

the median) shown in Table 6-2 and Figure 6-13. A uniform distribution is employed to

ensure all values are equally weighted and not concentrated around the initial median.
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Table 6-2: The range of parameters, varied randomly and following a uniform distribution,
for both the probabilistic and sensitivity slope stability analysis. Variation of the water table
is displayed in Figure 6-13.

Section Parameter Distribution | Median | Minimum | Maximum
Slide Body Cohesion (kPa) Uniform 32 12 52
Slide Body Friction Angle (°) Uniform 25.25 20.25 30.25
Slide Body | Unit Weight (kN/m?) Uniform 21 19 23

Bedrock Cohesion (kPa) Uniform 1500 350 2650

Bedrock Friction Angle (°) Uniform 52 42 62

Bedrock Unit Weight (kN/m") Uniform 25.5 22.5 28.5

Water Table (m) | Uniform | - 10 * 50

Figure 6-13: Upper and lower limits of the water-table for the probabilistic and sensitivity analysis.
The position goes from the upper extreme (following the surface topography) and is reflected in the
initial water table location to determine the lower extreme. The water table is varied randomly,
following a uniform distribution.

Figure 6-14a displays the results of the probabilistic analysis, with the water level at
145 m. Recalculating the mean factor of safety after each run shows a convergence after 50
runs around the final mean Fg of 1.04. This is not significantly different to the

deterministic analysis which gave a Fg of 1.06 (Figure 6-10).

146



Chapter 6 Investigating the Shuping Landslide

1.80 140 5
@ Mean F, = 1.04
120
F,<1
> 1:60 A:I - =43.75%
8 s 100
®
- >
2 1.40 g go
§
Q
S 1.20 S 60
]
2 k,wo* 40
1.00 Stable
Unstable 20
Unstable Stable
0.80 0
0 500 1000 1500 2000

0.50 0.75 1.00 1.25 1.50

Samples Factor of Safety

Figure 6-14(a): Convergence plot of 2000 samples following the random variation in model
parameters. The mean factor of safety converges to 1.04 after approximately 500 samples, and the
factor of safety falls below 1.0 in 43.75% of the samples.

Figure 6-14(b): Histogram of the minimum Fs calculated for each random variation in model
parameters.

The probability of failure (defined by the ratio of Fg < 1 to all Fg values) is also high at
43.75% (see Figure 6-14a-b), although this is dependent upon the wide range of parameter
values specified. Overall this test reinforces the conclusion that the Shuping landslide is

very close to failure, allowing for significant variation in the geotechnical model inputs.

6.3.4 Sensitivity Analysis

Following a similar strategy to the probabilistic analysis, it is also important to
understand the most influential parameters on the Fg calculation. Using the same
parameter ranges specified in Table 6-2, each parameter is individually varied 2000 times

between the maximum and minimum values whilst all other parameters stay constant.

The results are normalised to show the Fg calculations related to the percentage of the
range in parameter values, allowing the factors to be plotted simultaneously (Figure 6-15).
In terms of the material parameters, the steepest gradient relates to the friction angle and
cohesion of the slide body indicating these are most influential on the final result,
matching the conclusions of Baek et al. (2008). However, variations in the water table

height are shown to have the greatest influence on the stability of the Shuping landslide.

One limitation of this technique is how the gradient of lines is fully dependent on the

parameter range as specified by the minimum and maximum values under consideration.
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However, it is believed reasonable parameter values and distributions have been defined

and the three steepest lines represent the most influential parameters.
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Figure 6-15: Sensitivity plot of the factor of safety, across the range of parameters specified in
Table 6-2. As the water table exhibits the highest gradient, the factor of safety is most variable
over the range of water table values, followed by the internal angle of friction and cohesion of the
landslide body. At the mid-point (50% of range), the factor of safety will be identical to the
deterministic calculation.

6.3.5 Rapid Drawdown Scenario

Slopes adjacent to reservoirs often experience instability as a result of fluctuations in
water levels adjacent to the slope. There have been numerous reports of slope failure
associated with reservoir drawdown (Jia et al, 2009). With the Shuping landslide shown
to be dominantly affected by rapid reservoir drawdown, this situation was also modelled
to compare the Fg values with the static scenarios in Section 6.3.2. These previous cases
only considered steady-state conditions, whereas the following analysis considers the most

unfavourable transient situation.

The sudden reservoir drawdown modelling uses the initial high reservoir water table,
whilst the lower reservoir level removes a buttressing load at the landslide toe. This
assumes that pore pressures within the slope remain high and require some period of time
to dissipate following rapid drawdown (Kalenchuk et al, 2013). This is a reliable

assumption given the time-delayed response to reservoir changes found in Section 6.1.1.

A drawdown of the full reservoir (from 175 — 145 m) is shown to produce the minimum Fg

(Figure 6-16). More realistically, the fastest reservoir changes can be around 5 m and this
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smaller drop is still shown to generate the lowest factor of safety (Figure 6-17), lower than
both static scenarios in Section 6.3.2. A reduction in the Fg by a factor of ~3% was also
found by Cojean and Cai (2011). Together this provides further evidence on how the

Shuping landslide is dependent on the fluctuations in reservoir water level.

When the water in the Three Gorges reservoir has been kept at its highest level for some
time, the groundwater level in the slope will have reached a high elevation. However
before the summer monsoonal season, the reservoir is dropped rapidly. The groundwater
level within the sliding zone will not fall at the same rate (dependent upon the coefficient
of permeability) and this difference causes residual pore water pressure within the slope

capable of perturbing its stability (Fujita, 1977).

Given the vulnerable situation of the Shuping landslide, preventative measures could
include lowering the Three Gorges reservoir at a slower rate prior to the months of heavy
rainfall. Whilst this may not completely stop displacements, the landslide movement is
likely to be proportional to the drawdown magnitude and rate and therefore will not
experience such significant episodic movements. If the reservoir operations are not flexible,
then it may be possible to install a efficient drainage system (similar to that proposed for
the Qiaotou landslide in the Three Gorges (Jiang et al., 2011a)) in order to avoid the

development of residual pore pressure in the landslide body during rapid drawdown.

AW =-30m

4+

Figure 6-16: Factor of safety following the complete and rapid lowering of the Three Gorges
reservoir from 175 m — 145 m. This is the lowest factor of safety compared with all previous
examples.
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4+

Figure 6-17: Factor of safety following a rapid, realistic 5 m drop in the Three Gorges reservoir.
Compared to the static deterministic models (Figure 6-10 & Figure 6-11), the 5 m reservoir drop
produces a lower factor of safety.

6.4 Summary

Chapter 6 investigates the slow-moving and reactivated sediment deposit associated with
the Shuping landslide. Potential triggering factors of reservoir fluctuations, rainfall and
seismicity are assessed given the increased susceptibility of ancient landslides to
reactivation. Landslide movements are most highly correlated with long periods of
reservoir drawdown and when a drop in water level is not preceded by an equivalent rise.
There is no evidence to support seismically-triggered displacements and the effects of

rainfall are considered at least secondary to the factor of reservoir drawdown.

Surface movements from the SPOT-CR analysis are estimated in the vertical and
horizontal directions, helped by the Shuping landslide’s north-south downslope sliding
orientation. The spatial variation of movements can help infer a rotational landslide
failure mechanism for the Shuping landslide and justifies the use of a circular failure

surface for 2D limit equilibrium analyses.

The geometry and inferred geotechnical properties of the Shuping landslide show it is very
vulnerable to failure given the Fg values are close to 1.0. Hydrological scenarios of
reservoir drawdown produce the lowest Fg values and explain the periods of most rapid
displacement. These movements are believed to represent block sliding along the plane
separating colluvium and bedrock, although uncertainty and spatial variability in model

parameters warrant further in-situ investigation to understand future landslide behaviour.
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The overall aim of this investigation was:

To evaluate the use of frequently acquired SAR imagery for detecting,
mapping, monitoring and understanding the mechanisms of slow-moving

landslide hazards in the Three Gorges region.

Landslides are complex natural phenomena which often exhibit non-linear and spatially
variable displacement patterns. The use of frequently acquired Synthetic Aperture Radar
(SAR) imagery provided an opportunity to remotely monitor slow-moving landslides
within the areal coverage of a radar image, reducing the cost and complexities of in-situ
field-based monitoring. However significant limitations of the most potentially precise
technique, Differential Interferometry (D-InSAR), required important considerations
particularly in a low coherence environment. The more robust, although less precise,
technique of SAR sub-pixel offset time-series analysis had not previously been applied to

landslides for time periods of more than 1 year, meriting further research.

Many interesting landslides exist within the Three Gorges region, China (Section 3.3),
which can benefit from regular monitoring and thorough investigation. However the
characteristic densely vegetated slopes were challenging terrain for the exploitation of SAR
data. The availability of three different SAR imaging modes which covered the same area
and the same time period (Section 4.1), allowed for one of the most comprehensive

comparisons of SAR data analyses to be undertaken in such a densely vegetated region.

Successful cases of monitoring active landslides require the detection, mapping,
characterisation and long-term monitoring of slope movements (Tofani et al., 2010) and
this was achieved for the fastest-identified landslide within the study area — the Shuping
landslide — which was covered by the highest resolution SAR data. Further analysis was

then undertaken to characterise the landslide mechanism and triggering factors which
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included a 2D limit equilibrium slope stability model to determine dominant controls on

its factor of safety.

This chapter initially discusses each of the three results chapters, assessing the wider
implications of the research findings and critically evaluating the strengths and weaknesses
of the research strategy. This is followed by the main conclusions which directly answer
the research questions outlined in Chapter 1. Finally, future research directions are
suggested which aim to inform prospective research proposals on the remote investigation
of landslides using SAR imagery. Recommendations for further, targeted work within the

Three Gorges region are also outlined.

7.1 Discussion
7.1.1 D-InSAR use in the Three Gorges Region

A Dbetter consideration of the limiting factors to landslide analysis using D-InSAR
techniques and selection of the most appropriate SAR imaging mode (albeit on a case-by-
case basis) are required to achieve reliable and optimal results, avoiding the
misrepresentation and over-interpretation of data (Colesanti and Wasowski, 2006). The
rapid development and availability of D-InSAR time-series analysis methods allows fast
and automated processing to derive a grid of points displaying their mean velocity and
movement history over the time period of SAR data (e.g. Ferretti et al., 2001; Hooper et
al., 2007). D-InSAR has been successfully applied in the Three Gorges region, particularly
for E-W slope orientations which generally have the best geometry with respect to the
satellite Line-of-Sight (LOS). However, many checks are recommended if this technique is

selected given the apparent dangers highlighted in Chapter 4.

The mean coherence for consecutive image pairs gives an indication of the average annual
coherence level for a region, along with any significant seasonal variations. Whilst the
factors controlling coherence could be difficult to ascertain, periods of higher coherence
may be evident which will generate the best results. Additionally the mean coherence of
image pairs with varying time intervals may highlight the duration over which the
coherence is lost for the majority of the image, helping to design the optimal baseline

network for any small baseline (SBAS) time-series analysis.
Given the side-looking geometry of SAR sensors and the mountainous regions where

landslides are most commonly located, an assessment of the likely image distortions should

also be carried out. The R-index equation applied to a DEM (Notti et al, 2010) can
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calculate areas of foreshortening, layover and shadow which are unsuitable for D-InSAR
analysis. Landslides in these areas cannot be measured using SAR imagery, although it is
possible that one orbiting direction (i.e. ascending or descending) is more suitable than the
other, depending on a specific landslide’s orientation. This can be calculated and decided

upon prior to ordering SAR data.

Visual inspection of interferograms is also important, particularly over known landslide
sites. This approach identified a landslide with increasingly fast movements which
eventually lost coherence due to the speed of its movement relative to the 11-day revisit
time of the TerraSAR-X sensor (Section 4.5). Depending upon the resolution and
wavelength of the desired image mode, the spatial displacement gradient (Baran et al.,
2005; Jiang et al., 2011b) can be calculated to determine the maximum rate of measurable
movement over a specified distance (Section 4.4). This rate should be compared with
expectations or any previous observations (either terrestrial or spaceborne) to establish
whether all historic movements are within the measureable threshold (recognising this
assumes future movements will have similar magnitudes to historic movements). Such
work can also be completed prior to ordering data. As the revisit time of SAR sensors is
improving (e.g. four days for the COSMO SkyMed constellation or six days for Sentinel-

1A and 1B SAR sensors), the measurable limits on displacement will improve.

The most important decision end users can make in terms of successful landslide
monitoring relates to the choice of SAR imaging mode. Technical considerations are
required regarding the sensor characteristics (e.g. wavelength, resolution, revisit frequency,
data availability), the landslide properties (e.g. size, speed, geometry) and the desired

monitoring strategy (e.g. regularity of measurements, areal coverage, resolution).

In the densely vegetated Three Gorges region, whilst ENVISAT data have a wavelength of
~0.056 m, TerraSAR-X data with a shorter wavelength of ~0.031 m have much higher
coherence values. This is attributed to the higher resolution imaging modes and more
frequent revisit frequency. In such a region, the frequency of image acquisitions is far more
important than the baseline separation (given the precise orbital control of the TSX
satellite) and gaps in the acquisition schedule of SAR images can be very problematic for

D-InSAR time-series analysis (Section 4.2).

As the image resolution increases, the capability of mapping the boundaries of active
landslides improves as well as increasing the spatial displacement gradient threshold. TSX
data can also be acquired three times more frequently compared to ENVISAT data which

allows more temporally-variable landslide movements to be resolved. However, a trade off
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intrinsically exists between the resolution of the SAR image mode and the areal extent of
the data frame. Whilst the resolution of TSX data is much higher, the length and width of
the image scene is much smaller. Despite this fact, the highest resolution TSX Spotlight
data are recommended given the complete loss of coherence for TSX Stripmap and
ENVISAT Stripmap data over the summer months in the Three Gorges region (Sections
4.3 and 4.5).

Differences also exist in terms of developing a routine monitoring system using the TSX
and ENVISAT platforms. Whilst the ENVISAT platform is no longer operational, it
acquired images regularly (mostly every 35 days) in a background mode. In contrast, the
TSX sensor only acquires images over an area once this has been tasked, i.e. there is no
background acquisition mode. This means a long-term project proposal with frequent
image acquisitions in the same mode over the same area is required for operational
landslide monitoring. The ENVISAT background acquisition strategy generated a far
larger archive of SAR images for assessing historic landslide movements. An obvious
limitation of using SAR data for landslide monitoring is the opportunistic nature of image
acquisitions, i.e. measurements can only be obtained at the time of imaging which is

beyond control of the end users.

It is important to recognise this study has considered landslides in one type of terrain.
Landslides with different surface features, in different topographic regimes, orientated
differently with respect to the SAR sensor and with different movement behaviours may
require different forms of analysis. Areas with less vegetation (either with more buildings
or bare rock) which move at slower rates may be more successfully monitored using
D-InSAR time-series techniques given the likelihood of higher coherence and staying
within spatial displacement limits. Larger landslides with displacements spread over a
bigger area, or moving less episodically, would also be more suited to D-InSAR time-series
analysis. Finally, landslides more orientated in east-west directions would be suitable for
estimating translational downslope sliding velocities, providing they are not in areas which

suffer from geometrical image distortions.

7.1.2 SPOT use in the Three Gorges Region

Sub-Pixel Offset Time-series (SPOT) techniques using only the SAR amplitude
information makes use of frequently acquired SAR images without some of the limitations
associated with D-InSAR techniques. Unaffected by a threshold on the spatial

displacement gradient, SPOT techniques are far more robust and should be undertaken
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first to judge the suitability of using more precise D-InSAR methods. If fast, episodic and
small-scale movements are identified, this could help assess the (un)reliability of other
methods which exploit interferometric phase values. However just as changes in the
surface reflectance between image acquisitions reduce interferometric coherence, cross-
correlation of pixel offsets also decreases and subsequently reduces the precision of
measurements. This makes velocity measurements impossible for catastrophic landslides

and highly mobile failures such as debris flows.

The selection of parameters in the processing of SPOT techniques plays an important role
in the quality of results (Casu et al., 2011). Processing parameters were heuristically
optimised to the study area in this study by testing many different combinations
principally relating to the moving window size and oversampling factor (Section 5.1).

However it is worth considering the application to other study areas.

Generally a larger window size and higher oversampling factor will generate more precise
results, however the computation time should be considered. The size of the processing
area and the density of measurements are therefore important decisions which will be
determined by the desired landslide application. If a landslide is small (relative to the
number of pixels within the sliding body) and slow-moving, then the processing area can
be small and the density of measurements can be very high (e.g. every 1-2 pixels in range
and azimuth). If a larger area is being covered or a landslide is moving fast then a larger
processing area with less dense measurements (e.g. every 4-5 pixels) might be more
suitable. Regardless of these factors, all parameters should be kept as multiples of two to
maintain the computational efficiency of the Fast Fourier Transform (FFT) used in the

cross-correlation calculations.

Verifiable and precise offset measurements were generated from TSX Spotlight and
Stripmap data where corner reflectors are installed (Section 5.2). However, independent
verification of the SAR-derived displacements should be conducted once such data become
available. The approach employed in this study to estimate measurement precision
provides good relative comparisons between data sets and image pairs with different
properties (e.g. time interval and perpendicular baseline), but accuracy should be
estimated by comparisons to independent data since some common errors may exist when

an identical processing chain is used.

Contrasting features such as corner reflectors also pose problems relating to the window
size parameter due to artefacts in data processing. The cross-correlation and offset value

will be very similar when the searching window contains a dominant feature such as a
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corner reflector (see the white squares in Figure 5-5a). The larger the moving window size,
the larger the white squares which causes points surrounding the corner reflector to be
effectively obscured from the offset calculations. Such processing artefacts will also have

implications on the precise geolocation of the offset features being measured.

Extension of the SPOT-CR technique applied to natural point-like targets was only
possible for the highest resolution TSX Spotlight data (Sections 5.4 and 5.5). Precision is
dependent upon the pixel spacing of each image mode and in such a densely vegetated
region as the Three Gorges, the pixel spacing of TSX Stripmap and ENVISAT Stripmap
data exceeded that required to reliably measure the magnitude of landslide movements
detected by the TSX Spotlight data. Even when setting a correlation threshold to obtain
precise offset measurements across the whole TSX Spotlight scene, the density of points is
still low which suggests the application of such techniques to densely vegetated areas is
limited. At least one distinguishing feature (a building, large rock etc) is required within a
landslide body to extract a measurement of its velocity. However where high correlation
points exist, the offsets are not significantly affected by perpendicular baseline separation
or temporal decorrelation (at least over periods of 1-2 years) and therefore provide a useful
capability to cover SAR image gaps within a series of SAR data that would be

irrecoverable using D-InSAR time-series techniques.

SPOT techniques should achieve better results for landslides with more contrasting surface
features (either natural or constructed) or where the movement is greater with respect to
the SAR image pixel size (up to the point when movement induces significant changes in
the earth’s surface and therefore changes in the radar backscatter). ENVISAT data
acquired every 35 days would have an improved chance of success in less vegetated areas,
measuring larger displacement fields and/or where the magnitude of movement is greater
than a couple of metres. In all cases, the same image distortions which limit the spatial

coverage of D-InSAR results affect the use of SPOT techniques.

7.1.3 Landslide Characterisation in the Three Gorges Region

The fastest moving landslide detected by frequently acquired SAR data, and with the
longest series of observations, was the focus of further investigations aiming to understand
its mechanism and response to triggering factors (Sections 6.1 and 6.2). A lack of
published geotechnical studies and in-situ measurements of the Shuping landslide meant
potential conditioning factors were not assessed, although its classification as an ancient

landslide deposit (Wang et al, 2008a) meant it was vulnerable to reactivation and
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promoted the importance of assessing likely triggering factors. The most important local
triggering factors included reservoir water level fluctuation, rainfall and seismic activity
since other potential factors such as snowmelt, heavy construction works or volcanic

activity were absent in this area.

Assessment of likely triggering factors was limited by the spatial and temporal resolution
of secondary data. Reservoir water level was recorded at the Three Gorges dam site,
45 km away from the Shuping landslide. Data were also plotted at five-day intervals
which could mask periods of faster reservoir lowering over periods of hours or individual
days. Rainfall was recorded at the County Town of Badong and assumed to be
representative of the rainfall regime at the Shuping landslide, 25 km away. Accumulative
rainfall data were only recorded every 10 days and could again mask periods of more

torrential rainfall.

Compared to the maximum 11-day frequency of SAR data, the frequency of available
secondary data is acceptable as individual landslide movements are not identifiable at the
exact time of occurrence and could not be matched with more precise timings of reservoir
drawdown or rainfall episodes. The direct relationships apparent between landslide
movement, reservoir drawdown and rainfall also indicate potential lag effects are included
within the temporal averaging of measurements. Analysis is limited when the frequency of
SAR image acquisitions is reduced (particularly in the 2012 — 2013 TSX Spotlight data

set) and when the available rainfall data stop in 2011.

Patterns of surface movement were used to interpret the likely failure mode of the
Shuping landslide. Significant uncertainty is associated with the limits and behaviour of
the landslide toe given its submergence by the Three Gorges reservoir, which only field
surveys could improve. The orientation of the Shuping landslide’s downslope direction is
also advantageous for this analysis. Its predominant south-north orientation permits the
assumption that east-west movement is essentially zero, therefore allowing the vertical and
northwards movement to be estimated from the range and azimuth offsets. Such an
approach would be unsuitable for landslides with greater components of NE/NW/SE/SW
movement. In these cases, three-dimensions of movement should be estimated which
requires at least three independent observations of displacement from different viewing
geometries. Both ascending and descending SAR data modes either from two incidence
angles or in combination with azimuth offsets are required to generate a three-dimensional
model of displacement (e.g. Fialko et al., 2001; Wright et al., 2004; Funning et al., 2005).
The ability to generate three-dimensional displacements places stricter demands on

imaging modes and such available archive data sets are unlikely to exist in many cases.

157



Chapter 7 Discussion and Conclusions

Finally, assumptions on the factor of safety calculations for the Shuping landslide are
acknowledged. A lack of detailed geological information for this site meant the subsurface
landslide structure was solely based on previous studies which use one borehole to
estimate the depth of soil/rock layers (Section 6.3.1). The model is only based on a single
central profile through the most active landslide block, although the topography and

subsurface properties are believed to be very similar for cross-profiles at other locations.

The general assumptions remain for factor of safety calculations (outlined in Section 6.3)
and the parameterisation of the model was not based upon in-situ geotechnical analysis of
Shuping landslide materials. However, rather than trying to achieve the most accurate and
absolute measurements on slope stability, the relative differences between different

scenarios were used to assess the conditions under which slope movement is most likely.

7.2 Conclusions

The above discussion assessed the limitations of this research as well as the wider
implications of D-InSAR, SPOT and modelling techniques with respect to other SAR
sensors and study areas. This section below presents the most important conclusions from
the results of this investigation, directly related to the four research questions outlined in
Section 1.5. The major contributions of this study to related research fields are outlined,

followed by recommendations for future research directions.

Research Question (1): To what extent can Differential InSAR (D-InSAR) methods

monitor landslides in the Three Gorges region?

D-InSAR measurements have been successfully used to detect slope movements in the
Three Gorges region, although there were significant limitations that prohibit long-term
D-InSAR monitoring wusing single-pair and time-series techniques. Interferometric
coherence in the Three Gorges was always low for the image modes in this study due to
the density of vegetation, the limited satellite revisit time and the steep slopes. However
when the sampling frequency was high enough (e.g. from 11-day TSX image pairs),
seasonal signals were evident. Coherence was highest for 11-day TSX Spotlight
interferograms between November and February each year when rainfall and vegetation
coverage was at a minimum. Annual reductions in coherence between the months of

March and October were attributed to seasonal summer rainfall, the subsequent soil
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moisture and increased vegetation density (Section 4.2). For all image modes, natural
factors affecting temporal decorrelation appear more significant than coherence losses

associated with large perpendicular baselines or Doppler centroid differences.

Despite problems of low coherence, at least four active landslides were reliably identified
and mapped using the highest resolution D-InNSAR measurements when the movement did
not exceed the spatial displacement gradient (Section 4.3.2). This included the Shuping
and Dujiawu landslides, as well as much smaller riverbank movements less than 200 m in
diameter. Such high resolution SAR data also helped redefine the boundaries of the
Shuping landslide (c.f. Wang et al., 2005a; 2008a) to show that part of Block 2 is actually
stable (Figure 4-18), a potentially useful conclusion for the authorities. The ENVISAT
Stripmap data identified movement and the boundary of the Fanjiaping landslide,
although this was prior to the start of TSX acquisitions from which no further movement
was observed (Section 4.3.4). Both TSX Stripmap and ENVISAT interferograms exhibited
complete coherence loss for the months between March and October, warranting the use of

corner reflectors to extract measurements over this period.

At times, episodic and faster movements for the Shuping landslide in May — June
exceeded the spatial displacement gradient (most notably around the landslide boundary)
due to the high contrast in displacement rate between stable and moving land (Section
4.5). The pixel spacing of each image mode was the dominant factor on the displacement
gradient threshold, but large movements of the Shuping landslide invalidated the use of
D-InSAR and time-series methods for all three available SAR data sets. This is the most
plausible explanation for conflicting results found in previous studies of the Shuping
landslide (Xia, 2010; Liao et al., 2012; Wang et al., 2013b) or why the months of May —
June are excluded from other D-InSAR analyses (Fu et al., 2010; Perski et al., 2014).

The R-index (Notti et al., 2010) assessed slopes most suitable for D-InSAR analysis and
highlighted the major problem of layover and shadow on east-facing slopes for the
descending data used in this study (Section 4.3.5). Predominantly north-south facing
slopes also prohibited the estimation of downslope sliding velocities from the one-
dimensional line-of-sight measurements as the amplification scaling factor for all three
image modes were above the recommended threshold value of 3.3 (Cascini et al., 2013;

Herrera et al., 2013).
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Research Question (2): To what extent can Sub-Pixel Offset Time-series (SPOT)

techniques monitor landslides in the Three Gorges region?

To overcome the difficulties of using D-InSAR techniques, a Sub-Pixel Offset Time-series
(SPOT) approach was investigated as a robust method to resolve time-varying landslide
displacements. This was one of the first studies to generate time-series measurements from

frequently acquired SAR imagery, particularly focused on landslide applications.

A quantitative, heuristic approach shows how the distribution of offset values for a stable
reference area helped reduce the likelihood of spurious correlation effects (Section 5.1).
Considering the pixel spacing of SAR data as well as the expected landslide movement
enabled suitable sub-pixel offset parameters to be selected for the Three Gorges region. A

moving window size of 32 x 32 pixels was used with an oversampling factor of 16.

Offset measurements from corner reflectors located amongst dense vegetation were shown
to generate verifiable and precise cross-correlations for both TSX Spotlight and Stripmap
data (Section 5.2). The RMS errors between two significantly overlapping and
independent offset pairs were 0.038 m and 0.071 m in range and azimuth directions
respectively for the Stripmap data (related to the different pixel spacing), and significantly
lower for the Spotlight data due to its higher resolution. These errors were also at least
one order of magnitude lower than the accumulated displacement for the Shuping
landslide and the use of two independent series of SAR data helped verify the final results
without ground data. This is the first demonstration of how corner reflectors are

significantly beneficial for pixel offset techniques.

From the final SPOT-CR analysis, it is clear that large, episodic movements were
responsible for a loss of interferometric coherence and the range offset displacement in
May 2009 and 2012 towards the head of the Shuping landslide was shown to exceed the
displacement gradient measurable by D-InSAR. Other landslides with installed corner
reflectors and within the TSX Stripmap coverage (Kaziwan and Xintan landslides) were

stable over the data coverage from April — December 20009.

To extend the spatial coverage of measurements beyond the installed corner reflector
points, all TSX Spotlight pixels with a cross-correlation above 0.78 were used to represent
point-like scatterers from which precise offset values could be extracted (Section 5.4). Over
1-2 years, these points did not display significant decorrelation due to perpendicular

baseline or temporal effects, justifying the use of a single master image to calculate the
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displacement time-series from subsequent slave images. This avoided the propagation of
errors associated with an accumulative time-series curve generated from consecutive image
pairs. Given the small range of TSX perpendicular baselines, the use of a small baseline

approach for generating time-series displacement curves was not required.

The regional point-like offset measurements across the whole TSX Spotlight scene
identified a potentially new slope instability although precise time-series measurements
were not possible due to the (assumed) demolition and construction work within the

landslide boundary (Section 5.5).

Without the use of corner reflectors, TSX Stripmap and ENVISAT data were not able to
precisely measure the slow-moving landslides of the same magnitude shown by the TSX
Spotlight results (Sections 5.6 and 5.7). The application of these techniques and data to
less vegetated regions is expected to yield a greater coverage and precision of offset

measurements.

Research Question (3): Can regularly-acquired SAR data characterise active landslide

mechanisms and determine the associated triggering factors?

After obtaining precise two-dimensional offset vectors in range and azimuth directions
over the four year period of TSX Spotlight data, characterisation of the Shuping landslide

was possible.

Assuming the E-W component of displacement was zero, the range and azimuth offsets
were decomposed into estimates of vertical and horizontal movement (Fialko et al., 2001;
Funning et al., 2005) to help infer a rotational component of the Shuping landslide
(Section 6.2). Vertical movements were greatest towards the head of the landslide,
whereas the largest horizontal movements were in the middle of the landslide and this was
consistent over the four year period from February 2009 — 2013. Differences between the
eastern and western sides of the landslide imply the movements were spatially variable
and related to different landslide blocks, however consistent timing of episodic movements
suggested they were related to the same triggering factor. This is the first time a failure
mechanism has been proposed for the Shuping landslide and the first time variations in

block movement have been quantified.

Availability of secondary data sets for the potential triggering factors of reservoir

drawdown, rainfall and seismicity were used for comparisons to the time-series of
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displacement from SPOT-CR analysis. Landslide displacement was most obviously related
to the faster rates of reservoir lowering (~0.5 — 0.8 m per day) in the first half of the year
between May — June. More severe periods of reservoir drawdown occurred in August,
although these were preceded by an equivalent rise in water level and did not increase the
propensity of the landslide to move. It is also hypothesised that greater magnitudes of
reservoir drawdown in 2009 and 2012 led to larger displacements than those estimated for

2010 and 2011 (Section 6.1.1).

Periods of heavy rainfall were also apparent during the months of fastest displacement in
May — June 2009 (Section 6.1.2). However, equivalent (if not greater) periods of rainfall at
other times did not lead to the same amount of landslide movement, supporting the
argument that reservoir drawdown is the dominant triggering factor for the Shuping
landslide. The low magnitude of earthquakes within a 50 km radius and their distance
away from the landslide (obtained from the China Seismic Network, CSN [in Chinese];

www.csndme.ac.cn/newweb/data/csn_catalog p001.jsp) explains why no relationship was

observed between regional seismicity and periods of greatest displacement (Section 6.1.3).

Research Question (4): What are the dominant geotechnical parameters controlling slope

instability?

To assess the stability of the Shuping landslide under different reservoir water level
scenarios, a 2D limit equilibrium model was employed (Section 6.3). The results are
summarised in Table 7-1. The factor of safety (Fs) was 1.06 under static conditions when
the reservoir was at its lowest level of 145 m. The Fs decreases to 0.99 when the water-
level is maintained at 175 m, most likely due to the high pore water pressures within the
slide body. In both cases the Fs indicates the critical state of the landslide and reflects the

ease at which this ancient landslide can be reactivated.

Table 7-1: Summary table for factor of safety results for different
hydrological scenarios affecting the Shuping landslide.

Water Level Factor of Safety (Spencer’s Method)
145 m (Static) 1.06
145 m (Probabilistic analysis) Mean = 1.04
175 m (Static) 0.99
175 — 170 m (Partial drawdown) 0.97
175 — 145 m (Full drawdown) 0.95
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There was significant uncertainty in the geotechnical properties of the model materials as
well as the water table location. A probabilistic Monte Carlo analysis converges at a value
very close to the deterministic analysis and a sensitivity analysis highlighted the most
influential parameter on landslide stability was groundwater level, followed by the internal

angle of friction of the slide body.

By far the lowest Fs values were calculated from reservoir drawdown scenarios. A full
drawdown from 175 — 145 m generated the lowest Fg, but even a more realistic drawdown
of 5 m led to a lower Fs than static water level scenarios. This was attributed to residual
pore water pressures within the slope as the groundwater level lags behind the fall in the

reservoir.

7.3 Research Contributions

The main contributions are summarised below:

(1) The largest evaluation of SAR image modes (TerraSAR-X Spotlight, Stripmap
and ENVISAT Stripmap) applied to the challenging terrain of the Three Gorges
region was undertaken.

(2) The boundary of active slope movement for the Shuping landslide was redrawn
(Figure 4-18), relative to the study by Wang et al. (2008a).

(3) Episodic and occasionally fast moving movements of the Shuping landslide were
discovered to break a theoretical assumption for reliable D-InSAR analysis,
highlighting the dangers of using time-series D-InNSAR techniques for landslide
monitoring. This explains the conflicting results from previous studies employing
D-InSAR time-series techniques (Xia, 2010; Liao et al., 2012; Wang et al., 2013b).

(4) A robust Sub-Pixel Offset Time-series (SPOT) technique was developed and
applied to landslides for the first time. This provided a solution to some identified
limitations of D-InSAR analyses and permitted landslide monitoring for a period
of up to four years, although the density of measurements remained low.

(5) The benefits of using corner reflectors for offset measurements were presented for
the first time.

(6) SPOT-CR results showed the Kaziwan and Xintan landslides were stable between
April — December 2009.

(7) The application of sub-pixel offset techniques to point-like scatterers in rural areas

detected a potentially unknown slope failure using TSX Spotlight data.
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(8) For the first time, a rotational failure mechanism for the Shuping landslide was
inferred, most related to periods of reservoir drawdown. The episodic landslide
movements were shown to occur when the reservoir is lowered at a rate exceeding
0.5 m per day, when this lowering has not been preceded by a significant rise in

the water level.

Given the assumptions of conventional D-InSAR analyses can be broken by the
characteristic features of landslides (i.e. the sharp boundary between stable/active ground,
non-linear displacements and the range of temporally-variable velocities), the use of sub-
pixel offset time-series techniques is recommended prior to D-InSAR analysis, particularly
where CRs are available, since the measured displacement could judge the suitability of

more precise and complex techniques.

7.4 Future Research Directions

This independent research has made several original contributions to the field of landslide
remote sensing and the results have generated valuable information to help further
mitigate the landslide hazard in the Three Gorges region. Limitations of this research have
been highlighted, and this section provides suggestions for future analyses in order of

priority and impact.

A comprehensive assessment of X- and C-band data was undertaken, although the
inclusion of L-band data for further comparisons would boost the evaluation of SAR data
for landslide monitoring in the Three Gorges region. Applying the optimal analysis
methods found in this study to L-band SAR data (more able to penetrate vegetation)
would help determine whether this imaging mode can overcome the limitations found in
this study. For D-InSAR analyses, it is hypothesised the resolution and revisit frequency
(relative to the T'SX Spotlight imagery) would not avoid the spatial displacement gradient
constraints. However, the longer wavelength L-band SAR data may help identify more

point-like pixels which could generate a higher density of pixel offset measurements.

Given the success of TSX Spotlight imagery for monitoring the Shuping landslide and
detecting smaller instabilities within the SAR data frame, continued acquisitions of this
data is proposed. Since the TerraSAR-X satellite does not acquire images in a background
mode, the data collection has currently ceased for this study area. If remote and near real-

time landslide monitoring systems are to be developed, they require the continued
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acquisition of high quality data. Despite the current lack of data, SPOT techniques
developed in this study demonstrate how the accumulated displacement over this gap in
SAR data could still be recovered if image acquisition was restarted. A combination of
ascending and descending data may also determine three-dimensional movements for the

Shuping landslide and help assess areas previously obscured by SAR image distortions.

For the calculation of sub-pixel offset values, this analysis chose a thorough and a
posteriori approach which analysed all processed pixels after calculation of the cross-
correlations. To reduce processing time and necessary computing power, a recent coseismic
study detected and thresholded point-like pixels from a single SAR image before the pixel-
offset calculations (Hu et al., 2014b). Determining point-like pixel targets a priori would
make for an interesting comparison to the high cross-correlation points selected in this
study. Application of the SPOT techniques developed in this investigation should also be
applied to areas of different land cover to determine whether the cross-correlation
threshold of 0.78 can generate a denser coverage of measurements or whether the

threshold can be reduced in some cases whilst maintaining the same level of precision.

Future work could also assess whether the ability of the SPOT measurements of large
displacements in this study could be used to aid phase unwrapping of interferograms. A
reduced phase displacement gradient has previously been obtained by subtracting range
offset measurements (Yun et al., 2007). However in the case of retrieving fast and small-
scale landslide movements with X-band D-InSAR results, the success might be restricted
by the density of SPOT measurements and their precision relative to the wavelength of

the SAR sensor.

It would be relatively straightforward to apply D-InSAR time-series techniques to the
Kaziwan and Xintan landslides which were found to be stable by the SPOT-CR results of
TSX Stripmap data. However the data set is limited to 9 months between April and
December 2009 and would still be limited by the constraints on the spatial displacement
gradient. Even if more SAR data were available, there is still a risk that episodic and

relatively fast landslide movements would not be detected from such analysis.

Finally, the use of Multiple Aperture InSAR (MAI e.g. Bechor and Zebker, 2006) to
improve the precision of azimuth-dimension measurements may be attractive to
researchers given the rate and orientation of the Shuping landslide. However this was
attempted in the course of this investigation and the small scale displacements, coupled
with the very high noise level of MAI interferograms in the Three Gorges region,

prohibited any useful measurements from being obtained.
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This research also has specific implications for the management of landslides within the
Three Gorges region. The rate of continued reservoir drawdown between January and July
should be carefully considered to minimise movement of landslides. As the reservoir must
be lowered to a certain height each year to account for summer rainfall, the drawdown

could begin slightly earlier to reduce the required rate of lowering.

A detailed geotechnical investigation of the Shuping landslide is also required. Additional
boreholes and geological investigation should improve understanding on the spatial
variability of the sliding surface and may provide a better insight into the possibility of
any catastrophic failure. The stabilisation of the Kaziwan and Xintan landslide may
indicate movements of the Shuping landslide will not be a long-term issue, although it is

equally possible other slope deposits might be reactivated.

The episodic and regularity of landslide movements in the months of May — June also
promote further investigation. Detailed instrumentation of the Shuping landslide for this
two-month period using GNSS receivers, extensometers and subsurface instruments such
as piezometers would provide the best opportunity to understand the response of the

Shuping landslide to reservoir drawdown and associated groundwater changes.

A database of Global Reservoirs and Dams (GRanD) records all reservoirs > 0.1 km®
(Lehner et al., 2011) and shows the completion of dams in North America and Northern
FEurope since 1990 has been limited. Very large reservoirs with storage volumes greater
than 1 km® are generally located in areas with comparatively low landslide fatalities,
except in Asia where a different higher level of hazard is associated with such large
construction programmes (Petley, 2013). A wider assessment of slopes bordering reservoirs
is recommended, particularly in Asia where high resolution SAR data (< 3 m pixel
spacing) are available. Similar approaches to this research may help identify reactivated
ancient landslide bodies during the construction of dams. To date, there has been
insufficient recognition of potential landslide bodies on reservoir slopes, occasionally

leading to catastrophic failures such as the famous Vajont disaster.

Overall the integration of spaceborne D-InSAR and SPOT techniques can help assess the
stability of slopes over a wider region compared to ground-based techniques. When active
landslides are discovered, geotechnical and geomorphological investigations can then be
carried out to provide the most comprehensive assessment of current and future landslide

behaviour.
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Appendix A — Supplementary Tables & Figures

Figure A-1: Installed corner reflectors at the toe of the densely vegetated Shuping landslide. Edge
lengths are approximately 1.5 m long.
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Figure A-2: Landslide warning sign (displaced!) at the site of the Dujiawu landslide.
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Figure A-3: Offset displacement of Point 3 measured from TSX Spotlight data. The displacement
between 28/04/09 and 09/05/09 significantly contrasts with all the other stable points (points 2, 4,
5 & 6) and given this point is assumed to be on stable ground outside the landslide boundary,
perhaps some external influence (unrelated to the landslide movement) has caused it to shift. For
this reason Point 3 was excluded from all analyses in subsequent results.

0.3

Figure A-4: Building damage indicative of land movements and confirmed in communication with
residents. Photos were taken on 4™ April 2012 and located at 30° 59° 31N 110° 36’ 41 E. The
longest edge of the yellow notebook is ~0.16 m.
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Table A-1: Individual estimates of the vertical (dy) and horizontal (dy) components of landslide
movement for the numbered corner reflectors shown in Figure 5-5.

Corner Reflector 2009 - 2010 2010 - 2012 2012 — 2013

dy (m) dy (m) dy (m) dy (m) dy (m) dy (m)
2 0.003 -0.050 0.013 0.032 -0.021 0.012
4 0.006 -0.023 0.008 0.102 0.019 -0.040
5 0.008 0.032 -0.021 0.023 0.048 0.034
6 0.019 -0.023 -0.042 0.017 -0.009 0.038
7 -0.012 0.743 -0.078 0.709 -0.005 0.726
8 0.171 0.761 0.141 0.833 0.049 0.862
9 0.728 0.925 0.618 0.903 0.638 0.794
10 0.722 0.705 0.792 0.732 0.707 0.693
11 0.453 0.316 0.252 0.204 0.212 0.078
12 0.037 0.700 0.014 0.677 0.023 0.742
13 0.111 0.735 0.092 0.682 0.100 0.757
14 0.106 0.809 0.122 0.779 0.101 0.863
15 0.134 0.749 0.129 0.720 0.135 0.764
16 0.263 0.491 0.209 0.520 0.204 0.547
17 0.245 0.640 0.267 1.012 0.239 0.910
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Spaceborne Synthetic Aperture Radar (SAR) sensors obtain regular and frequent radar images from which
ground motion can be precisely detected using a variety of different techniques. The ability to measure slope
displacements remotely over large regions can have many uses, although the limitations of the most common-
place technique, differential InSAR (D-InSAR), must be considered prior to interpreting the final results. One
such limitation is the assumption that different rates of movement over a given distance cannot exceed a thresh-
old value, dependent upon the pixel spacing of the SAR images and the radar wavelength. Characteristic features
of landslides (i.e. the sharp boundary between stable/active ground and the range of temporally-variable veloc-
ities) can exhibit high spatial displacement gradients, breaking a fundamental assumption for reliable D-InSAR
analysis. Areas of low coherence are also known to hinder the exploitation of InSAR data. This study assesses
the capability of TerraSAR-X Spotlight, TerraSAR-X Stripmap and Envisat Stripmap images for monitoring the
slow-moving Shuping landslide in the densely vegetated Three Gorges region, China. In this case study, the epi-
sodic nature of movement is shown to exceed the measurable limit for regular D-InSAR analysis even for the
highest resolution 11-day TSX Spotlight interferograms. A Sub-Pixel Offset Time-series technique applied to cor-
ner reflectors (SPOT-CR) using only the SAR amplitude information is applied as a robust method of resolving
time-varying displacements, with verifiable offset measurements presented from TSX Spotlight and TSX
Stripmap imagery. Care should be exercised when measuring potentially episodic landslide movements in dense-
ly vegetated areas such as the Three Gorges region and corner reflectors are shown to be highly useful for SPOT
techniques even when the assumptions for valid D-InSAR analysis are broken. Finally the capability to derive
two-dimensional movements from sub-pixel offsets (in range and along-track directions) can be used to derive

estimates of the vertical and northwards movements to help infer the landslide failure mechanism.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

particularly on reactivated ancient landslide deposits (Sassa, Picarelli, &
Yueping, 2009).

Satellite radar imagery has been recognised as a powerful tool for mea-
suring surface motions over large regions and offers the capability to re-
motely monitor unstable slopes (Rott, Scheuchl, Siegel, & Grasemann,
1999; Tofani, Segoni, Catani, & Casagli, 2010). In the best cases of landslide
management, Early Warning Systems (EWS) have been developed and
employed to minimise harm and loss. The nature of EWS and the landslide
risk is strongly dependent upon landslide type, which is often classified by
the initial mechanism of motion and the associated velocity (Cruden &
Varnes, 1996). Whilst rapid landslides are the most dangerous, deep and
slow landslides are capable of destroying buildings and infrastructure

* Corresponding author.
E-mail addresses: a.singleton.1@research.gla.ac.uk (A. Singleton),
zhenhong li@newcastle.ac.uk (Z. Li).

http://dx.doi.org/10.1016/j.rse.2014.03.003

A well-developed EWS should include various elements such as
understanding the local knowledge of risks, communicating timely
and reliable warnings, and building local capacity to respond to
warnings (UN-ISDR, 2004). However, one other technical component
involves monitoring the hazard(s) which requires: (i) detection;
(ii) rapid mapping; (iii) characterisation; and, (iv) long-term monitor-
ing of landslides (Tofani et al., 2010). The generic benefits of using
remote sensing data are well known, and a sub-report from the
European SAFELAND Project (Stumpf, Kerle, & Malet, 2010) compares
the merits of numerous remote sensing techniques for monitoring dif-
ferent types of landslides. Airborne LiDAR surveys can provide useful
data in terms of spatial resolution, precision and the capacity to measure
a variety of displacement rates, although the cost and logistics required
for regular repeat acquisitions are barriers for its routine use. Synthetic
Aperture Radar (SAR) images from the most recent generation of SAR

0034-4257/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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satellite sensors (e.g. TerraSAR-X and COSMO SkyMed) can acquire reg-
ular data (up to every 4 days), over regional areas (e.g. 10-1000 km?),
at a high resolution (up to 1 m ground resolution) and in the case
of slow-moving landslides (i.e. several metres per year; Cruden &
Varnes, 1996), can meet the four requirements of landslide moni-
toring mentioned above. Whilst the repeat interval may not be
short enough to provide timely warnings to vulnerable popula-
tions, it is possible to detect individual landslide accelerations
over large regions and then direct monitoring equipment to areas
at risk. The ability to make numerous point measurements of dis-
placement over the landslide body can not only identify and map
the actively deforming slopes (significantly reducing uncertainty
in landslide inventory maps; e.g. Cascini, Fornaro, & Peduto,
2010), but also help to characterise the landslide mechanism
(Tofani, Raspini, Catani, & Casagli, 2013). Further interpretations
of landslide processes can then be inferred when comparing a
time-series of displacement with potential triggering factors such
as rainfall, seismicity and site-specific factors such as fluctuating
reservoir water-levels (e.g. Tolomei et al., 2013). Finally, historic
landslide movements can be measured from SAR satellite imagery
using archived data scenes.

Whilst differential InSAR (D-InSAR) analysis is capable of mapping
and measuring landslide movements, a major limitation is dense vege-
tation which can lead to rapid decorrelation between SAR acquisitions
even for the highest resolution TSX Spotlight image mode with a revisit
time of 11-days. Episodic and spatially variable landslide movements
can also lead to decorrelation between SAR acquisitions when the spa-
tial displacement gradient is exceeded. Determining the cause of
decorrelation is often difficult and whilst time-series InSAR techniques
have been developed to identify slowly decorrelating pixels in vegetat-
ed areas (e.g. Hooper, 2008; Hooper, Segall, & Zebker, 2007), resolving
episodic and time-varying displacements remains a difficult task.

In this paper, Sub-Pixel Offset Time-series techniques applied to
corner reflectors (SPOT-CR) using frequently acquired SAR images
from a variety of sensors are quantitatively evaluated and com-
pared for landslide monitoring. The measured landslide displace-
ments are then used to help judge the suitability of using more
precise D-InSAR time-series techniques in situations where as-
sumptions of conventional D-InSAR analyses can be broken by the
characteristic features of landslides (i.e. the sharp boundary between
stable/active ground, the non-linear nature of the displacements and
the range of temporally-variable velocities). The benefits and limita-
tions of SPOT-CR techniques are assessed for studying landslides on
densely vegetated slopes and their ability to monitor spatially large 2-
dimensional movements using the installed corner reflectors is shown
to infer a possible failure mechanism of the Shuping landslide within
the Three Gorges region, China.

2. Investigating landslides using SAR observations

D-InSAR has been employed to monitor the slow motion of many
landslides and compared to (typically sparse) GPS point measurements
(e.g. Akbarimehr, Motagh, & Haghshenas-Haghighi, 2013; Wen-Yen,
Chih-Tien, Chih-Yuan, & Jyun-Ru, 2012), D-InSAR techniques are espe-
cially useful for providing spatially continuous coverage of surface dis-
placement which can help define the boundaries of active landslides
(Yin, Zheng, Liu, Zhang, & Li, 2010). Rott et al. (1999) used D-InSAR to
examine a slow moving landslide (up to 4 cm/yr) in the Austrian Alps
highlighting the inter-annual variability of displacements, and the limi-
tations of D-InSAR techniques for landslide monitoring were proposed
for the first time. Over the last decade, the number of InSAR applications
to landslide studies has grown significantly following initial studies (e.g.
Berardino et al., 2003; Fruneau, Achache, & Delacourt, 1996; Strozzi
et al., 2005), with comprehensive overviews of interferometric SAR
(InSAR) techniques for landslide studies presented by Colesanti and
Wasowski (2006) and Rott and Nagler (2006) for sensors such as

Envisat/ASAR and RADARSAT. However, it should be noted these re-
views pre-date the launch of the most recent commercial SAR sensors.
Rott (2009) provides a slightly updated summary with reference to
the TerraSAR-X and COSMO SkyMed satellites.

Despite the advantages of D-InSAR methods these continue to have
limitations that should always be considered, such as geometric
decorrelation, temporal decorrelation, atmospheric artefacts, scale
constraints, a limit on the spatial displacement gradient, geometric dis-
tortions and a 1-dimensional Line-of-Sight (LOS) measurement sensi-
tivity (Colesanti & Wasowski, 2006) and assumptions of linearity in
the displacement process. A range of techniques have been developed
to help minimise some of these effects (e.g. time-series analysis to esti-
mate various phase components; Berardino, Fornaro, Lanari, & Sansosti,
2002; Ferretti, Prati, & Rocca, 2001, using external data to reduce atmo-
spheric path delays; Foster et al., 2013; Li, Fielding, Cross, & Muller,
2006; Li, Muller, Cross, & Fielding, 2005; Onn & Zebker, 2006), although
fundamental theoretical constraints still exist. It has been suggested
that the inherent limitations of SAR data, coupled with the complexity
of landslides, may be insufficiently appreciated which results in the
misrepresentation of landslide measurements (Peduto, Cascini, &
Fornaro, 2010). Consequently, end-users can lack confidence in these
remotely-sensed results unless verified with ground data (thereby
negating some of the benefits of using remotely collected data).

To illustrate a potential problem with D-InSAR analysis, consider the
loss of coherence which often occurs between two time-adjacent SAR
acquisitions in a densely vegetated region. This might be wrongly
interpreted to result from temporal decorrelation when the real reason
was a landslide movement exceeding the spatial displacement gradient.
Subsequently, any D-InSAR time-series technique spanning this fast
event would erroneously underestimate the landslide displacement.
Such a scenario is shown to occur in the Three Gorges and motivates
this research to find a complimentary technique to extract verifiable
landslide measurements from SAR images.

A range offset map from SAR pixel offset methods contains the same
information as a differential interferogram (Yun, Zebker, Segall, Hooper,
& Poland, 2007) and being less restricted by the assumption of a low
spatial displacement gradient, provides a useful comparison with
InSAR results. Past studies using SAR pixel offset methods have been
dominated by co-seismic and glacial applications, due to the wide-
spread decorrelation in conventional interferograms from high defor-
mation gradients across ruptured faults or rapidly changing ice
surfaces. As such, accurate fault traces have been revealed using pixel
offset techniques (e.g. Funning, Parsons, Wright, Jackson, & Fielding,
2005; J6énsson et al., 2002; Li, Elliott, et al., 2011; Michel, Avouac, &
Taboury, 1999) along with the capability to remotely measure glacier/
rock glacier flow (e.g. Haug, Kdab, & Skvarca, 2010; Quincey et al.,
2005; Scambos, Dutkiewicz, Wilson, & Bindschadler, 1992).

To date, only a small number of studies have used pixel offset
techniques for monitoring slope movements, the majority using
optical imagery from airborne and spaceborne platforms
(Debella-Gilo & Kddb, 2011; Delacourt, Allemand, Casson, &
Vadon, 2004; Kdab, 2002; Leprince, Berthier, Ayoub, Delacourt, &
Avouac, 2008; Wangensteen et al., 2006; Yamaguchi, Tanaka,
Odajima, Kamai, & Tsuchida, 2003). The sensitivities of normalised
cross-correlation were considered by Delacourt et al. (2004) and
Debella-Gilo and Kddb (2011) which include: (i) noise in the im-
ages; (ii) rotation/shearing between the images to be correlated;
and (iii) the relationship between the pixel size and the precision
of measurements. However, optical images can only be used to as-
sess purely horizontal movements (north-south and east-west
directions) without consideration of the vertical component. A
sub-pixel offset technique was first applied to (TerraSAR-X Spot-
light) SAR data by Li, Muller, et al. (2011) with promising results
for monitoring the Shuping landslide, although only 4 sets of mea-
surements were shown in the paper (corresponding to 4 offset
pairs). This study attempts to recover landslide movements from



A. Singleton et al. / Remote Sensing of Environment 147 (2014) 133-144 135

TerraSAR-X data with a temporal resolution of up to every 11 days
over a time period of 15 months.

3. Landslides in the Three Gorges region

Landslides, mainly deep and slow-moving, are the most frequent
and widespread geohazard in the Three Gorges region, predominantly
caused by high slope gradients, lithological susceptibilities, heavy sum-
mer rainfall and human activities (Liu et al., 2004). Over the last decade,
the construction of the Three Gorges project (TGP) has created a 600 km
long reservoir with a bi-annually fluctuating water level (range ~ 25 m)
which has been shown to reactivate ancient landslides (Wang, Zhang,
et al., 2008). The Three Gorges were formed by incision along narrow
fault zones of massive limestone mountains interbedded with siltstone,
shale and mudstone (Wang, Harvey, et al., 2008), although between the
gorges the lithologies are much less resistant. Dominated by weathered
mudstones, these inter-gorge areas favour river bank erosion, terrain
dissection and the development of slow-moving slope failures (Liu
et al., 2004).

This study focuses on the Shuping landslide located towards the
eastern end of the Three Gorges (Fig. 1), the toe of which is connected
to the Yangtze River. The Shuping landslide was selected as a case
study and regular SAR data were commissioned in three different
image modes over the landslide over the same time period. These data
allow robust comparisons between data modes and the application of
D-InSAR or sub-pixel offset techniques. The landslide is densely vegetat-
ed with orange trees, representative of the majority of hillslopes in the
Three Gorges region, which makes the application of D-InSAR tech-
niques very difficult. The north facing landslide orientation also makes
it insensitive to LOS measurements. Independent of this study, corner
reflectors have been installed over the landslide which aid the analysis
of SAR data.

Previous studies that have monitored the Shuping landslide using
D-InSAR techniques have yielded highly varied results. Fu, Guo, Tian,
and Guo (2010) used 12 corner reflectors installed over the landslide
to obtain a single measurement of displacement between September
2005 and March 2006 using Envisat data. Good agreement with GPS
measurements was reported, although this result did not cover the
months of April-June where the fastest movements are normally ob-
served (and when the assumptions for reliable D-InSAR analysis are
most likely to be broken).

Extensometer measurements over the time period of September
2005 and June 2007 show minimal displacements until around May-

June 2007 when there is a rapid increase of ~0.4 m in the accumulated
movements up to June 2007 (Wang et al., 2013). Whilst recognising
the different vectors of measurement sensitivity, this contradicts the
results of Xia (2010) who used the same 12 corner reflectors to calculate
a time-series of displacement over the same time period, presenting
very linear rates of downwards movement for all points.

This landslide has been divided into eastern and western parts with
the eastern block (also known as Block 1) shown to be most active
(Wang, Zhang, et al., 2008). The motion of Block 1 has been recorded
primarily using extensometers from 2004 until 2010 (Wang, Zhang,
et al.,, 2008; Wang et al., 2013) and these results display high spatial
variability along with a stepped behaviour in time. Particularly using
the longest record of movement, from August 2004 until May 2010,
the periods of greatest movement have been suggested to relate to the
drawdown of the Three Gorges Reservoir (Wang, Zhang, et al., 2008).
Liao, Tang, Wang, Balz, and Zhang (2012) used Persistent Scatterer
(PS) interferometry with TerraSAR-X Stripmap data to show move-
ments up and down in the LOS direction in the order of +5 mm be-
tween February 2008 and January 2010 which is unusual given that
these measurements are an order of magnitude lower than the exten-
someter data. The highly non-linear velocity trend revealed by in-situ
measurements and the disparities between previous D-InSAR studies
prompts further analysis of the Shuping landslide using SAR data.

4. Methods
4.1. Data

The availability of 36 commissioned TerraSAR-X (TSX) Spotlight SAR
images, 23 TSX Stripmap images as well as 17 Envisat Stripmap images
all covering the same Shuping landslide (and significantly overlapping
in time; see Fig. 1 and Supplementary material Table S1), also enables
comparison of D-InSAR and SPOT-CR techniques which both aim to
remotely monitor the landslide without the use of ground data. All re-
sults presented below were produced using the SARscape® software
package (SARMAP, 2012), which includes an interferometry module
capable of processing the above image modes along with an amplitude
tracking tool for calculating sub-pixel offsets.

4.2. Maximum spatial displacement gradients and coherence analysis

One major limitation of D-InSAR techniques is their inability to
measure high spatial gradients of rapid deformation. To observe

Shanghai

Fig. 1. Elevation of the eastern Three Gorges (TG) region. The star indicates the site of the Shuping landslide, ca. 45 km upstream of the Three Gorges Project (TGP). TSX Spotlight data
coverage is shown by the solid box and TSX Stripmap data coverage is given by the dashed box. Envisat data covers the whole map.
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interferometric fringes without ambiguity, the maximum displacement
between two neighbouring pixels in a wrapped interferogram must not
exceed N\ /2 (Massonnet & Feigl, 1998), with wavelengths (\) typically
in the order of ~30-300 mm. However, from the viewpoint of phase
unwrapping, the maximum displacement gradient should be less than
0.5 fringes per pixel (Jiang, Li, Ding, Zhu & Feng, 2011; Spagnolini,
1995) making the limit of displacement between neighbouring pixels
N\ /4. As such, D-InSAR has most commonly been applied to deformation
phenomena measureable within these limits, such as very slow moving
landslides, city subsidence, volcanoes and far-field earthquake deforma-
tion patterns. This theoretical limit does not consider noise in the radar
observations caused by decorrelation effects (Zebker, Rosen, & Hensley,
1997) and hence reduces the maximum realistic measureable displace-
ment gradient (Baran, Stewart, & Claessens, 2005; Jiang et al., 2011). Itis
therefore practically impossible to derive measurements of fast-moving
phenomena with sharp boundaries between stable and moving areas
such as glaciers, co-seismic deformation near faults and landslides mov-
ing beyond a threshold limit. The capability of D-InSAR to measure such
movements is primarily determined by the pixel spacing and the wave-
length of the SAR sensor.

The limits on the spatial displacement gradient are the theoretical
maxima when the radar observations are unaffected by noise.
Decorrelation between SAR acquisitions can be a major problem in the
use of D-InSAR techniques particularly in densely vegetated regions
(Ahmed, Siqueira, Hensley, Chapman, & Bergen, 2011) such as the
Three Gorges. To assess the decorrelation effects, interferometric coher-
ence was analysed for all three image modes. Differential interfero-
grams were generated with a multi-look factor of 2 applied in both
range and azimuth, and the topographic phase component was re-
moved using the ASTER GDEM v2, a product of METI and NASA, with a
RMSE of 12.1 m compared to 121 GPS benchmarks in the Three Gorges
area (Li et al., 2012). To measure the interferometric coherence, a
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sample estimate using a 9 x 9 window was employed for an area of
5 km? adjacent to but excluding the landslide body, from which a
mean coherence could be obtained. Seasonal patterns were assessed
by plotting the mean coherence for every 11-day (TSX) or 35-day
(Envisat) pair over time. Effects of the perpendicular baselines were
considered by plotting the mean coherence for the same pairs with re-
spect to the baseline and to assess the temporal decorrelation, the
mean coherence for all pairs with a baseline less than 25 m (TSX data)
or 50 m (Envisat data) was plotted with respect to the time interval be-
tween image acquisitions (Fig. 2). For the generation of the final inter-
ferograms, a spectral shift filter accounting for the difference in
incidence angles between master and slave images (Gatelli et al.,
1994) was applied, along with a Doppler filter to remove the non-
overlapping azimuth spectra between the master and slave images.

4.3. Sub-pixel offset techniques

Although less precise than conventional InSAR methods, pixel offset
techniques using SAR amplitude images can overcome the D-InSAR lim-
itation on the spatial displacement gradient and are far more robust
(not requiring phase unwrapping, not strongly limited to regions of
high coherence and significantly less affected by atmospheric water
vapour due to an independence on the use of phase values). Additional-
ly, pixel offset data can provide complimentary information since con-
ventional interferograms are only sensitive to displacements in the
sensor's LOS direction (Michel et al., 1999). Using just two images ac-
quired at different times, displacement vectors can be measured in the
sensor look direction (range) as well as the satellite flight (along-
track, or ‘azimuth’) direction. The 2-dimensional measurements are
obtained by measuring the row and column offsets between the two ac-
quisitions at defined intervals in range/azimuth in order to generate
sufficient coverage of offset measurements (Pathier et al., 2006).
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Fig. 2. (a) Coherence of temporally-adjacent SAR images showing highest values between November and February each year. (b) Coherence of 11-day (TSX) or 35-day (Envisat) interfer-
ograms plotted against perpendicular baseline showing no significant patterns. (c) Coherence of interferograms with respect to time interval showing a decline by ~30 days. (i) TSX

Spotlight data (ii) TSX Stripmap data (iii) Envisat data.
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SPOT-CR techniques are capable of measuring more spatially vari-
able movements than D-InSAR although the results from pixel offset
methods are highly dependent upon the various processing parameters
(notably the cross-correlation window size and oversampling factor)
which should be carefully tuned with regard to the scale of the deforma-
tion feature(s) and the pixel size of the SAR images (Bechor & Zebker,
2006; Yun et al., 2007). Consequently, the size of the moving window
should be large enough to maximise the signal-to-noise ratio whilst
minimising the spatial velocity gradient. The search area size must
also be large enough to include the fastest moving distance whilst
minimising the computational cost of the process (Debella-Gilo &
Kddb, 2011). Following an approach outlined by Yun et al. (2007), the
cumulative distribution for an area of 2 km? (adjacent to the landslide
site and assumed to be stable) was analysed with a combination of dif-
ferent parameters. Visual inspection from these tests provides a heuris-
tic way of tuning the moving window size and the oversampling
parameters, considering the data characteristics and the phenomenon
under study. However, contrary to Yun et al. (2007), no piecewise linear
fit was used to exclude any offset value since valid landslide offsets
would be concentrated in one tail of the distribution when considering
the stable ground also within the offset map.

Prior to generating the sub-pixel offset measurements, SAR images
were aligned using a simple translational shift based on the orbital
data and the digital elevation model. A standard normalised cross-
correlation procedure based on the optimal window size and over-
sampling factor was then applied without any filtering in any part
of the processing, and the final offset values used to generate the
time-series curves were taken as the mean from a small window of 10
x 10 pixels at various locations around the landslide. The same window
position in rows/columns was used to extract measurements from
every subsequent slave image for the time-series.

5. Results and analyses
5.1. Maximum spatial displacement gradients and coherence analysis

For the three different image modes employed in this study, the
spatial displacement gradients were considered. Table 1 displays the
displacement gradients for an interferogram produced at the original
SLC resolution and when considering a small multi-look factor of two.
The pixel size controls the maximum measurable displacement and,
even for the highest resolution TSX Spotlight imagery, it would not be
possible to measure a difference in the displacement between image ac-
quisitions of more than 0.12 m (or 0.06 m after multi-looking) over a
distance of 10 m. Despite the slightly longer wavelength of Envisat
data, the greater pixel size is a significant disadvantage for measuring
spatially variable movements over short distances.

The results of the coherence analysis are presented in Fig. 2. The co-
herence between temporally-adjacent SAR images over the time period
of available acquisitions for all image modes (Fig. 2: left hand column) is
low throughout the 1.5 years, although a consistent seasonal pattern is
shown for the TSX imagery whereby coherence increases between
November and February each year. Given the sensitivity of radar back-
scatter to the dielectric effects of changing the surface moisture content

Table 1

Displacement gradients (m/m) for original resolution interferograms and for
interferograms with a small multi-look factor of 2. The data used in these calculations
are shown in the Supplementary material (Table S1). Multiply these values by the distance
between two points to calculate the maximum detectable difference in the rates of dis-
placement.

Sensor/image mode Displacement gradient DG after multi-looking

(DG) (using a small factor of 2)
TerraSAR-X/Spotlight 0.01177 0.00589
TerraSAR-X/Stripmap 0.00394 0.00197
Envisat ASAR/Stripmap 0.00070 0.00035

(Smith, 2002), the seasonal coherence pattern could be attributable to
the heavy summer rainfall after comparing the coherence trends with
the mean monthly rainfall values for the winter (~19 mm/month for
November-February) and the rest of the year (~100 mm/month for
March-October). The seasonality in coherence and rainfall may also be
interrelated with the dense orange trees in the area since the canopy re-
flectance can change significantly over the year even if the orange trees
are evergreen (Dzikiti et al., 2011).

Despite its shorter wavelength, the TSX data display higher coher-
ence than the Envisat data due to its higher resolution and shorter re-
peat interval. Coherence for each 11-day (TSX) or 35-day (Envisat)
interferogram with respect to the perpendicular baseline (Fig. 2: middle
column) shows no definitive trend over the relatively short range of
baselines (up to 400 m), and the coherence values > 0.2 are from inter-
ferograms created in the dry winter period. The right hand column of
Fig. 2 shows coherence for all interferograms with a baseline of less
than 25 m (TSX) or 50 m (Envisat) in relation to the time-interval be-
tween acquisitions. A relatively fast fall in coherence is seen with the
TSX data until the interval exceeds ~33 days where it remains at a con-
stant non-zero level. This constant value is considered to represent the
natural bias in estimating the coherence correlation magnitude (Touzi,
Lopes, Bruniquel, & Vachon, 1999). The almost complete loss of coher-
ence beyond 33 days also explains why no significant seasonal coher-
ence pattern is observed from the Envisat data. The low coherence
throughout the time period suggests that the maximum measurable
spatial displacement gradient is below the theoretical values presented
in Table 1.

5.2. D-InSAR analysis

To remotely monitor landslides with high precision, the optimal ap-
proach would use high coherence interferograms with minimal geomet-
ric distortions which cover the whole time period. Given that the shortest
time intervals gave the best coherence, every 11-day TSX Spotlight pair
was processed using a Goldstein filter (Goldstein & Werner, 1998) prior
to geocoding. Fig. 3 shows three of these (wrapped) interferograms for
adjacent 11-day intervals. The landslide boundary is indicated by the
sharp colour changes as shown by the black line, and this boundary is
consistent over the 33-day period (3 x 11-day interferograms).

Assuming a purely translational failure mechanism parallel to the
slope surface, sliding velocities can be projected into the downslope
sliding direction (e.g. Hilley, Biirgmann, Ferretti, Novali, & Rocca,
2004) although using a scaling factor impacts on the precision of mea-
surements (Colesanti & Wasowski, 2006). The SAR geometry is typically
incapable of measuring translational movements on ascending or de-
scending orbits for slope aspects close to 0° and 180° (Cascini et al.,
2010) and for Envisat ascending data a scaling factor threshold of 3.3
was used to select suitable ‘projectable’ PS points (Cascini et al., 2013).
Projection of the TSX Spotlight D-InSAR data in Fig. 3 was not undertak-
en primarily due to the high scaling factor (9.8 for the north-facing
Shuping landslide).

In Fig. 3 an increase in the fringe rate can also be observed from left
to right, which relates to an increase in the landslide movement over
each interval. However, Fig. 3b and c shows a loss of coherence particu-
larly towards the head of the landslide that is most likely due to the dis-
placements exceeding the maximum measurable limit of 0.00589 m/m
(see Table 1). The sole use of these TSX Spotlight images (or lower res-
olution X-band or C-band SAR images) for any D-InSAR time-series
analysis would subsequently underestimate landslide displacement
and a technique is required to verify whether this coherence is lost
due to the fast landslide movement or other factors.

5.3. Sub-pixel offset observations

Over a completely stable area, the offset value should be randomly
distributed around a mean of zero, although with small moving window
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Fig. 3. Wrapped, 11-day TSX Spotlight interferograms covering the time periods: (a) 09/05/09-20/05/09; (b) 20/05/09-31/05/09; and (c) 31/05/09-11/06/09. Colour cycles represent
modulo-2m phase changes and therefore each cycle represents ~0.016 m of displacement in the radar Line-of-Sight (LOS) direction. Assuming the main landslide movement is northwards
(downslope towards the river), the LOS direction is perpendicular to the landslide direction and must be most sensitive to vertical surface changes, shown by the unit vector defining
the look direction of the TSX Spotlight imagery u = [dg dy dy] = [—0.68 0.12 —0.72] (positive up, left-handed coordinate system). This shows only around 12% of possible north-
south displacement is recorded by TSX Spotlight D-InSAR data. The white arrow shows the flow direction of the Yangtze River.

sizes and no oversampling, the distribution of values is determined by
the size of the moving window (Fig. 4) due to spurious correlation. As
the oversampling factor increases for the small window sizes, the
range of possible offset values increases to eradicate the step-like be-
haviour of the cumulative distribution, but the linear trend shows no
concentration around zero. For a window size of 32 x 32 pixels, ~75%
of the offset values are between 4 0.5 pixel units and the oversampling
factor was increased until no observable improvement is seen (an
oversampling factor of 16 is identical to an oversampling factor of 24).
As the window size and oversampling factors are increased, the results
improve but the processing time should also be considered. For exam-
ple, doubling the window size from 32 x 32 pixels to 64 x 64 pixels in-
creases the processing time for each offset pair from 01:41 h to nearly
05:37 h (detailed processing timings shown in Supplementary material
Table S2). Given the associated times for generating one offset measure-
ment using different parameters, the final selection of a 32 x 32 pixel
window size and an oversampling factor of 16 was deemed preferable.

Following the processing of the first offset pair, the correlation
values associated with each offset measurement (Fig. 5) show that

points with very high correlations (>0.9) are distributed across the
landslide in positions which correspond to the corner reflector loca-
tions. Given the significant contrast in the radar backscatter between
the corner reflectors and the natural terrain, these points result in a
very high cross correlation value when they are within the total area
covered by the moving window used in the calculation. Following the
numbering scheme displayed on the right of Fig. 5, it is clear that most
are within the landslide boundary, although a number of points are sit-
uated outside the landslide on ground that is assumed to be stable
which can then help identify the potential noise level of the offset
measurements.

5.4. Results of Sub-Pixel Offset Time-series techniques applied to corner
reflectors (SPOT-CR)

A final step in the processing strategy considered how to generate
a time-series of measurements. The two simplest approaches are to:
(i) use the same master image with subsequent slave images; and,
(ii) process every 11-day offset pair to generate a cumulative time-
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Fig. 4. Cumulative percentage of TSX Spotlight sub-pixel offset values in the azimuth direction over a stable area of ground (1.75 km?) adjacent to the landslide. This is plotted for
different pixel-oversampling factors and also different cross-correlation window sizes: (a) 4 x 4, (b) 8 x 8, (c) 32 x 32, and (d) 64 x 64. A window size of 16 x 16 was also
assessed (Supplementary material Fig. S1). The final parameter set used a window size of 32 x 32 since this results in >80% of the area being characterised with values around
zero. A larger window size increases precision but the processing time is significantly longer (see Supplementary material Table S2). An oversampling factor of 16 was chosen,

above which no improvement is observed as shown by the inset of Fig. 4c.
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Fig. 5. (a) The value of peak correlation used for the TSX Spotlight offset measurements (11-day pair, 21st Feb-4th Mar 2009, showing the minimum temporal decorrelation). The high
correlations (the white areas) are caused by a high-contrast feature (mostly corner reflectors) within the cross-correlation window. The same features are observed for the TSX Stripmap
offset measurements. (b) The numbering of corner reflectors used to extract time-series of displacement in Fig. 7(a-d), overlain on an interferogram showing the landslide
boundary (11-day pair, 9th May-20th May 2009). Point 1 is outside the landslide and used as the reference for all other points. Points 2-6 are also outside the landslide boundary. Points
7-11 ascend up the east part of the landslide. Points 12-17 ascend up the west part of the landslide. Point 3 was excluded from analysis after results suggested it had unnaturally shifted

(see Supplementary material Fig. S4).

series of displacement. The first of these possibilities is preferred since
the temporal decorrelation from the corner reflector points is believed
to be very small, and this strategy ensures that errors in each offset mea-
surement is independent from the results of previous image pairs. For
example using time-adjacent pairs, the first measurement would be
the result of just one offset pair whereas the last measurement would
be calculated as the sum of all previous offset measurements. An alter-
native to both the above strategies is to create a small-baseline (SBAS)
network of offset pairs, similar to that proposed by Casu, Manconi,
Pepe, and Lanari (2011). Using Envisat data, Casu et al. (2011)
attempted to reduce the perpendicular baselines of the offset pairs
which influenced the amount of reliable measurements generated.
When considering the TSX data used here, no significant dependence
upon the perpendicular baseline is observed (Fig. 6) most likely due to
the consistently short perpendicular baseline values which never ex-
ceed 300 m. Additionally, no significant decay in the amount of reliable
pixels is observed over time and so the benefit of inverting a SBAS net-
work of offset maps to generate a time-series of displacement is limited.
The simplest approach ((i) above) of using one constant master image
for all the offset pairs therefore meets the requirements of this
investigation.

The offset time-series graphs from TSX Spotlight and Stripmap
data (Fig. 7) show a significant step in landslide movement in
both the range and azimuth directions towards the end of May
and the start of June. Movements of more than 0.1 m recorded

towards the head of the landslide over an 11-day period further ex-
plain the loss of coherence from the interferograms presented in
Fig. 3. Additionally, considering the curves related to the points
outside the landslide boundary, it is noted that the noise in the
azimuth direction measurements exceeds that in the range direc-
tion, a result that is assumed to be caused by the larger azimuth
pixel spacing. Additionally, the variability in subsequent offset
values from the Stripmap data is greater than the Spotlight data
which is another likely consequence of the larger pixel spacing.
Considering the topographical location of the corner reflectors, a strong
association is found between elevation and the range displacement. Dis-
placement in the LOS (which includes a vertical component of movement)
is up to ten times greater towards the head of the landslide which may re-
flect the failure mechanism. No such topographic dependence is shown in
the azimuth offset results. These patterns in both range and azimuth are
very consistent between the Spotlight and Stripmap data and given the in-
dependence of the datasets, the duplicate measurements over the same
time period validate the results without the requirement for ground
data. Confidence in the SPOT-CR results is boosted by a qualitative compar-
ison to extensometer data over the same time period (Wang et al., 2013).
The maximum step-like displacement of ~0.5 m occurred in May 2009 be-
fore stabilising for the remainder of the year. Despite this extensometer
measurement being taken at the eastern boundary of the landslide, the
magnitude and timing of movements recorded by the extensometer close-
ly follow the results presented here. Additionally, the magnitude and
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Fig. 6. Percentage of pixels with a correlation above an arbitrary value of 0.25 with respect to (a) the time interval between master and slave image and (b) the perpendicular baseline. This
is shown for both the TSX Spotlight offsets (blue) and TSX Stripmap offsets (red). No obvious deterioration is seen with respect to increasing perpendicular baselines which contrasts the
pattern shown by Envisat data in Casu et al. (2011), most likely due to the far smaller range in perpendicular baselines of the TSX data.
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linearity of repeated GPS measurements closely follow the range offset re-
sults for the GPS survey period August 2009-April 2010 (Liao, Zhang, &
Balz, 2013).

5.5. Accuracy assessment of SPOT-CR results

An assessment of the offset errors is undertaken using two indepen-
dent offset pairs significantly overlapping in time. The offsets were mea-
sured between the first and penultimate available image, and compared
to offsets between the second and last image (~9 months for TSX Spot-
light and ~5 months for TSX Stripmap data). Since using these data to
assess errors assumes that the displacements in these two time periods
are equal, the two master images were chosen at the start of August
since this is when the landslide velocity had significantly reduced. The
differences between offset measurements from these overlapping
pairs for both the TSX Spotlight and TSX Stripmap imagery are shown
in Table 2. Using the corner reflector points to generate the offset mea-
surements, the RMS errors are all less than 0.038 m and 0.071 m in the
range and azimuth directions, respectively. The errors are significantly

Table 2

lower for the TSX Spotlight imagery than for the Stripmap imagery,
and the errors are also consistently lower for the range offsets than for
the azimuth offsets. In all cases, both range and azimuth error values
are an order of magnitude lower than the total accumulated landslide
displacement.

To assess offset errors from the natural terrain, areas of land adjacent
to the corner reflector points were used to carry out the same analysis.
Table 2 shows that the RMS errors for the two offset pairs from natural
terrain are at least 20 times higher than from the corner reflector points
and are the same order of magnitude as the recorded landslide move-
ments, which therefore suggests natural terrain areas of dense vegetation
are not optimal for generating reliable offset measurements in the Three
Gorges region. Regardless of the displacement magnitude, corner reflec-
tors remain beneficial for generating precise, 2-dimensional sub-pixel
offset measurements only using the SAR amplitude data. Envisat data
failed to produce successful offset results given its significantly larger
pixel spacing covering the relatively small landslide area. A far greater
contrast in the ground terrain backscatter, much faster ground move-
ments or consistent movements over a larger area would all increase

Comparison between two independent offset calculations from two image pairs significantly overlapping in time (the first two images in August were used as the two master images, with
the last two available images used as the respective slave images). This can help assess the errors between different SAR image modes and also between the offsets calculated from corner

reflectors and densely vegetated terrain (directly adjacent to the corner reflector points).

Range offsets

Azimuth offsets

Sensor/image mode Mean difference (m) RMS error (m) Mean difference (m) RMS error (m)
TSX Spotlight (corner reflectors) 0.008 0.011 0.055 0.060
TSX Stripmap (corner reflectors) 0.040 0.038 0.059 0.071
TSX Spotlight (vegetated terrain) 0.574 0912 1.146 1478
TSX Stripmap (vegetated terrain) 1.198 1.394 3.044 3.979
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the likelihood of obtaining reliable SPOT results from natural terrain in all
image modes.

6. Discussion

The movements of the Shuping landslide in May-June 2009, re-
vealed by the SPOT-CR results, demonstrate how the spatial
displacement gradient assumption is broken and invalidates long-
term D-InSAR analyses. It would be impossible to accurately un-
wrap any interferogram which spanned this movement episode
(without the use of in-situ data) and this issue can perhaps explain
the variety of D-InSAR measurements of the Shuping landslide
outlined in Section 3. Certainly this time-period should not be
analysed using D-InSAR time-series analyses since an even sparser
network of measurements (relative to the original interferograms)
generated from any form of persistent scatterer interferometry
would be less able to resolve such spatially variable measurements.

The SPOT-CR technique is robust when applied to corner reflectors,
although it is limited by the rate of movement in relation to the pixel
spacing of the SAR data, size of the search window used in the cross-
correlation calculation and any significant change in the surface reflec-
tance between image acquisitions. With the use of highly contrasting
ground features (i.e. installed corner reflectors in this case), verifiable off-
set measurements were generated from TSX Spotlight and TSX Stripmap
data. When such point-like targets exist over a landslide, it would be
beneficial to run SPOT-CR analysis for a stack of SAR images prior to any
D-InSAR analysis to assess if any movements exceed the spatial displace-
ment gradient.

Identified as an ancient landslide (Wang, Zhang, et al., 2008), the
Shuping landslide is underlain by sandy mudstones and muddy sand-
stones of the Triassic Badong Formation, a unit within which many land-
slides are concentrated (Wen, Wang, Wang, & Zhang, 2004). This
landslide has been divided into two parts: eastern and western blocks
with a combined width of about 600 m. A borehole towards the lower
part of Block-1 (eastern) indicated the surface of the rupture zone was
at a depth of 65 and 75 m, a zone where numerous slickensides were
evident (Wang et al., 2005).

Whilst the rates of displacement are different over the landslide body,
the timing of faster and slower episodes (Fig. 7) is very consistent which
suggests the same causal factors are affecting the whole landslide.
Another capability of sub-pixel offset measurements is the ability to esti-
mate the displacement vectors from the range and azimuth directions to
resolve the purely northwards (dy) and vertical (dy) components of dis-
placement (Fialko, Simons, & Agnew, 2001). This derivation assumes
that landslide movement in the east-west direction (dg) is zero which

is a relatively safe assumption given the orientation of the Shuping land-
slide with respect to the SAR sensor:

deance = [—0.68 012 —0.72][d; dy dUT]T
danna = (=017 098 0](dy dy dy]
=

By solving this system of equations, Fig. 8 shows the estimated accu-
mulated vertical and horizontal components of displacement for the
Shuping landslide between 21st Feb 2009 and 15th April 2010. A clear
topographic trend is visible for the vertical measurements with the
total accumulated displacement increasing with elevation. The head of
the landslide moved downwards at least 25 times more than the toe
of the landslide. The northwards displacement data does not show
this trend, but has the greatest movements towards the middle and
toe of the landslide. A rotational failure mechanism along a curved
plane would be consistent with these 2-dimensional movements and
is proposed as a first-order interpretation of the data.

Additionally, the period of most rapid displacement around May-
June 2009 corresponds to the annual lowering of the Three Gorges Res-
ervoir (Fig. 9) which accommodates the heavy summer rainfall and
helps prevent flooding downstream. The faster the rate of change in
the reservoir level, the longer the water table levels take to adjust.
When the water-level is lowered, drainage of the landslide lags the res-
ervoir drop which results in high hydraulic gradients and favours slope
instability (Shimei, Huawei, Yeming, & Jun, 2008). The biggest displace-
ments appear to correspond to the greatest rates of reservoir lowering,
whilst periods of slower reservoir lowering do not lead to an increased
propensity of slope failure. However, both the managed and natural
changes in the reservoir water-level are related to the seasonal varia-
tions in rainfall, so an analysis of landslide movement in relation to
both factors is required to fully understand the mechanisms of move-
ment for the Shuping landslide. Corroboration from the analysis of
other nearby landslide sites is a subsequent stage of this work.

7. Conclusions

Recognising that landslides often exhibit non-linear and complex
displacement patterns, this paper assesses the capability of various
SAR image modes (TSX Spotlight, TSX Stripmap and Envisat data) to re-
liably identify, map, monitor and characterise landslide movement
using D-InSAR and a Sub-Pixel Offset Time-series technique applied to
corner reflectors (SPOT-CR). The Shuping landslide within the densely
vegetated Three Gorges region (China) is used to test these methods
on account of the data availability from numerous SAR image modes

Fig. 8. Using the azimuth and range offset corner reflector measurements (calculated from the first and last TSX Spotlight images), the displacement vectors can be
decomposed to calculate the total accumulated vertical (a) and (b) northwards displacement between 21st Feb 2009 and 15th April 2010. The exact values can be found

in Supplementary material (Table S3).
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Fig. 9. Range displacement from TSX Spotlight in relation to the water-level changes of the
Three Gorges Reservoir.

and the network of corner reflectors installed in and around the land-
slide body.

D-InSAR measurements can be successfully used to detect move-
ments of the Shuping landslide, although there are significant limita-
tions that prohibit long term D-InSAR monitoring using single-pair
and time-series techniques. Interferometric coherence in the Three
Gorges region is always low due to the density of vegetation and the
limited satellite revisit times, but there are seasonal signals (Fig. 2)
most likely caused by consistent annual variations in rainfall and soil
moisture. Particularly for TSX imaging modes, it is found that the coher-
ence is highest between November and February each year when rain-
fall and vegetation coverage is at a minimum.

Despite the problems of low coherence, landslides can be reliably
identified and mapped using high resolution D-InSAR measurements
providing the movement does not exceed the spatial displacement gra-
dient. However, episodic and faster landslide movements can exceed
the displacement gradient (most likely around landslide boundaries)
due to the potentially high contrast in displacement rates between
stable and moving land (Fig. 3). High displacement gradients identified
for the Shuping landslide invalidate the use of D-InSAR time-series
approaches for the data stacks from all three SAR image modes used
in this study.

Subsequently, a Sub-Pixel Offset Time-series approach applied to
corner reflectors is used as a robust method to resolve time-varying
landslide displacements. A quantitative, heuristic approach shows
how the distribution of offset values for a stable reference area close
to the landslide can help reduce the likelihood of spurious correlation
and after considering the pixel spacing of SAR data as well as the expect-
ed movement of the phenomenon under study, enables suitable sub-
pixel offset parameters to be selected (Fig. 4). Additionally the same
initial master image is chosen to calculate the displacement time-
series from subsequent slave images in order to avoid the propagation
of errors associated with an accumulative time-series curve from
time-adjacent image pairs. Given the small range in TSX perpendicular
baselines (Fig. 6), the use of a small baseline approach for generating
time-series displacement curves was not pursued.

Offset measurements from corner reflectors are shown to generate
verifiable cross-correlations when located amongst dense vegetation
(Fig. 5) and Table 2 shows the errors associated with the corner reflector
offsets from TSX data are at least an order of magnitude lower than the

landslide displacements. It is also clear that higher resolution SAR data
reduces the offset errors.

From the final SPOT-CR analysis, it is clear that large, episodic move-
ments are responsible for a loss of interferometric coherence and the
range offset displacement in May 2009 towards the head of the Shuping
landslide (Fig. 7) is shown to exceed the displacement gradient measur-
able by D-InSAR. Assuming the E-W component of displacement is zero,
the range and azimuth offsets can be decomposed into estimates of the
vertical and horizontal measurements (Fig. 8) to help infer a rotational
component of the Shuping landslide and differences between the east-
ern and western sides of the landslide imply the movements are highly
variable and not moving in a uniform manner. Finally, the main epi-
sodes of landslide movement appear to occur at the same time as the
rapid drawdown of the Three Gorges Reservoir in May/June 2009
(Fig. 9).

This study has considered one landslide in a specific type of terrain.
Landslides with different surface features, orientated differently with
respect to the SAR sensor and with different movement behaviours,
may require different forms of analysis. Areas with less vegetation
(either with more buildings or bare rock) which move at slower
rates may be more successfully monitored using D-InSAR time series
techniques. Larger landslides with displacements spread over a big-
ger area or moving less episodically would also be more suited for
D-InSAR time series analysis. SPOT techniques should achieve better
results for landslides with more contrasting surface features (natural
or man-made) or where the movement is greater with respect to the
SAR image pixel size, up to the point when movement induces signif-
icant change in the Earth's surface (and therefore change in the radar
backscatter). The application of SPOT techniques to more landslide
sites using different SAR data types should be the focus of future
studies, and the use of time-adjacent (or small baseline) pairs may
be optimal for extracting time-series data from areas of lower corre-
lation. Independent verification of the SAR-derived displacements
for the CRs should also be conducted once such data becomes avail-
able along with comparing the observed displacement patterns of
the Shuping landslide to potential causal factors such as rainfall,
groundwater and reservoir water-levels.
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SUMMARY

The Huangtupo landslide is one of the largest in the Three Gorges region, China. The county-
seat town of Badong, located on the south shore between the Xiling and Wu gorges of the
Yangtze River, was moved to this unstable slope prior to the construction of the Three Gorges
Project, since the new Three Gorges reservoir completely submerged the location of the
old city. The instability of the slope is affecting the new town by causing residential safety
problems. The Huangtupo landslide provides scientists an opportunity to understand land-
slide response to fluctuating river water level and heavy rainfall episodes, which is essential
to decide upon appropriate remediation measures. Interferometric Synthetic Aperture Radar
(InSAR) techniques provide a very useful tool for the study of superficial and spatially vari-
able displacement phenomena. In this paper, three sets of radar data have been processed to
investigate the Huangtupo landslide. Results show that maximum displacements are affecting
the northwest zone of the slope corresponding to Riverside slumping mass I#. The other main
landslide bodies (i.e. Riverside slumping mass II#, Substation landslide and Garden Spot
landslide) exhibit a stable behaviour in agreement with in sifu data, although some active
areas have been recognized in the foot of the Substation landslide and Garden Spot landslide.
InSAR has allowed us to study the kinematic behaviour of the landslide and to identify its
active boundaries. Furthermore, the analysis of the InSAR displacement time-series has helped
recognize the different displacement patterns on the slope and their relationships with various
triggering factors. For those persistent scatterers, which exhibit long-term displacements, they
can be decomposed into a creep model (controlled by geological conditions) and a superim-
posed recoverable term (dependent on external factors), which appears closely correlated with
reservoir water level changes close to the river’s edge. These results, combined with in situ
data, provide a comprehensive analysis of the Huangtupo landslide, which is essential for its
management.

Key words: Time series analysis; Spatial analysis; Radar interferometry; Geomorphology;
Creep and deformation.

1 INTRODUCTION

The Three Gorges (TG) Dam, located along the Yangtze River
in Central China (Fig. 1), has become one of the most important
hydraulic projects in the world. The dam is 175 m high and 2335 m
long, and the reservoir has a capacity of 3.93 x 10'® m? and covers
an area of 1084km?. In addition to its size, the TG Dam is the
largest power plant in the world and has caused the displacement
of more people than any other hydraulic project (Jackson & Sleigh
2000; Suo et al. 2012). The aim of the project was to generate
hydropower, reduce the potential of floods downstream and increase

© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

the Yangtze River’s upstream shipping capacity. The project also had
a significant socioeconomic impact, such as the relocation of over
1.3 million people (Jackson & Sleigh 2000; Jiazhu 2002). Since the
first impoundment of the reservoir in 2003 June and even during
prior relocation tasks, there were significant environmental impacts
(e.g. induced seismicity, trapping of sediments and nutrients behind
dams that promotes downstream erosion, river system fragmentation
that causes multilevel effects throughout the aquatic ecosystem)
including landslides (Tullos 2009). Slope instabilities are the most
common natural hazard associated with the TG project. Over 2000
unstable areas, mostly triggered by rain and water storage, have
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Figure 1. Location of (a) the study area, (b) the Badong County and the coverage of Envisat tracks T068, T075 and T347 and (c) the Huangtupo landslide.
The white box in (c) corresponds to the spatial coverage of the InNSAR processing, presented below. The boundary of the landslide plotted in (c) is based on

Xie (2009).

been identified in the TG region (Liu et al. 2004; He et al. 2008);
some of them in a state of active displacement.

The Huangtupo slope is one of the largest landslides with prob-
lems related to the residential safety of inhabitants in the reservoir
area of the TG Project (Deng et al. 2000). This slope is located
on the southern shore of the transition between the Xiling and Wu
gorges of the Yangtze River in Badong County (Hubei Province,
China; Fig. 1). The town of Badong was moved from its original
location to a site overlying the Huangtupo landslide in 1982 because
of the construction of the Gezhouba Dam. During the construction
of the new town, many complex environmental and geological is-
sues were discovered and two main interpretations of the landslide
were presented (Wu et al. 2006): (i) there are two isolated ancient
slide bodies in the new town site; (ii) the entirety of Huangtupo is a
large superficial layer from an ancient slide body. More recently, Xie
(2009) and Hu ef al. (2012a,b) stated that the landslide composed
of multiple slumps recognizing more than 10 different slide bodies
(4 main bodies and 12 minor shallow landslides).

In 1995 June and October, after the city was partially relocated
over the Huangtupo slope, reactivation of the main slide body led
to two shallow landslides (Sandaogou and Erdaogou landslides;
see location in Fig. 2) on the surface of the Huangtupo complex
deep-seated landslide, causing nine injuries and five fatalities (Deng
et al. 2000; Wu et al. 2006; Deng & Wang 2009). Tang et al.
(2009) and Deng et al. (2000) attributed the occurrence of the
Erdaogou landslide to the loading of solid waste and wastewater
at the back of the landslide and attributed the triggering of the
Sandaogou landslide to rainfall and the fluctuation of the Yangtze
River water level. As a result, in 2002 the authorities permanently
started to evacuate inhabitants from the Huangtupo slope and built a
reinforced concrete retaining wall at the toe of the Huangtupo slope
with the aim of reducing the risk of movements and preventing new
shallow landslides caused by the reactivation of the main bodies
which could affect inhabitants.

Rainfall and reservoir water level changes, especially rapid draw-
down, are important triggering factors of landslides in the TG region
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Figure 2. (a) Geological sketch and displacement monitoring network, (b) landslides mapping and (c) cross-section of the Huangtupo slope (adapted from
Tang et al. 2009; Xie 2009; Chai ef al. 2013).

(He et al. 2008). Therefore, their influence on the Huangtupo slope with millimetre precision and complementing regional scale investi-
movement must be assessed to provide a complete understanding gations (Massonnet & Feigl 1998; Metternicht et al. 2005; Colesanti
of the landslide and its evolution, which is essential for landslide & Wasowski 2006). Many successful examples of InSAR applica-
management. tions to landslide studies can be found in the literature (e.g. Fruneau

In the last two decades, Interferometric Synthetic Aperture Radar et al. 1996; Singhroy et al. 1998; Colesanti et al. 2003; Squarzoni
(InSAR) has become a powerful tool for studying landslides, capa- et al. 2003; Tarchi et al. 2003a,b; Catani et al. 2005; Strozzi et al.

ble of generating wide-area maps of ground surface displacements 2005; Herrera et al. 2011; Bovenga et al. 2012; Zhao et al. 2012;
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Herrera et al. 2013), with some of them focused on the monitoring
of landslides in the TG region (Wang et al. 2008; Liao et al. 2012;
Liu et al. 2013).

In this paper, we use a small baseline subset of interferograms pro-
cessed using the Stanford Method for Persistent Scatterers (StaMPS;
Hooper 2008) to assess the spatiotemporal patterns of surface move-
ment and the active boundaries of the large complex Huangtupo
landslide. Moreover, the temporal relationships of displacements
with rainfall and reservoir water level changes are analysed after
being validated with comparisons to in situ data. Combination of
InSAR and geological data sets provides a whole new spatial and
temporal insight of the Huangtupo landslide.

The paper is organized as follows: Section 2 describes the geo-
logical setting of the study area, Section 3 details the InSAR pro-
cessing strategy and time-series validation, Section 4 analyses the
Huangtupo landslide surface displacement data set obtained from
InSAR, Section 5 discusses the long- and short-term trends from
the InSAR data and Section 6 presents the main conclusions.

2 GEOLOGICAL DESCRIPTION
OF THE STUDY AREA

The Huangtupo landslide is located on the southern shore of the
Yangtze River, 66 km upstream from the TG Dam and about 1 km
upstream from the old city of Badong. The slide body extends up to
600 m from 50 m a.s.l. (the foot of the landslide is submerged) and
has a slope of about 20° that increases towards the east. Two flat areas
can be recognized at an elevation of 285-310 and 430-455m a.s.l.,
respectively (Deng & Wang 2009, Deng et al. 2000). The whole
landslide body is cut by three 1000-2000 m long ravines, up to 50 m
deep (Xie 2009) where rock substratum and some sliding zones can
be recognized (Fig. 2). From a structural point of view the slope
is placed over the south flank of the Guandukou syncline (Deng
et al. 2000; Deng & Wang 2009). The rock basement bedding dips
downhill with a variable dip angle that reduces towards the fold axis.
The rock mass is also affected by an east—west cleavage direction
(see rose diagram in Fig. 2) related to the fold. The upper portion
of the rock mass belongs to the middle Triassic rock basement and
is composed of purplish red pelite alternating with pelitic siltstone
in T,b? unit and grey pelitic limestone in T,b* unit in the upper and
middle-lower part of the slope, respectively (Fig. 2). The landslide
body is mostly covered by loose debris (delQ) of variable thickness
up to 92m (Fig. 2). The upper and the lower part of the debris
deposits are composed of loose purplish-red and pelitic limestone
debris, respectively, that originated from the degradation and sliding
of the original rock mass. Some disorganized grey pelitic limestone
(T,b*) blocks are recognizable in the pelitic limestone debris. These
blocks present different orientations than the original substratum
indicating that they have been transported during landslide events
(Deng et al. 2000; Deng & Wang 2009).

Deng et al. (2000) stated that the Huangtupo landslide origi-
nated more than 103 yr BP from a succession of complex deep
gravitational processes affecting the south flank of the Guandukou
syncline which were initiated by river incision. They also stated
that nowadays, the ancient Huangtupo landslide is stable as a whole
due to the partial cementation of the deep original sliding zones,
and the possibility of the whole landslide failing is very low be-
cause the main body has been divided into different sliding bodies
by the deep ravines. As a consequence, current geological con-
ditions are only favourable for the development of partial failure
across other weak zones instead of reactivating the entire Huangtupo
landslide.

3 HUANGTUPO LANDSLIDE FEATURES
AND AVAILABLE DATA

The Huangtupo landslide is a complex deep-seated landslide formed
by the superposition of several slumps (Jiang ef al. 2007; Chen et al.
2008; Xie 2009; Hu et al. 2012a,b; Chali et al. 2013), which cover a
total area of 1.358 x 10° m? mobilizing a volume 0f 6.934 x 107 m>.
Four main slumping bodies can be recognized in the slope (Fig. 2):
Riverside slumping mass I#, Riverside slumping mass 1I#, Garden
Spot landslide and Substation landslide.

Riverside slumping mass I# is located at the northwest side of
the slope between Sidaogou and Sandaogou ravines and has its toe
under the water level of the Yangtze River. Riverside slumping mass
II# is placed between Sandaogou and Erdaogou ravines, northeast
of the slope, and also has its toe submerged under the river water
level. Garden Spot landslide is boot shaped and located southwest of
the slope and with a front edge covering the upper part of Riverside
slumping mass I#. The fourth slumping mass is the Substation land-
slide that is located northeast of the slope and partially placed over
Riverside slumping mass II#. Several more recent smaller landslides
can also be recognized in the slope (Fig. 2; Jiang et al. 2007; Chen
et al. 2008; Xie 2009; Hu ef al. 2012a,b). The main characteristics
of the landslides are summarized in Table 1.

Deng et al. (2000) recognized three main fracture clusters in the
Huangtupo slope. The first and second clusters of surface cracks
were found in the vicinity of Erdaogou and Sandaogou landslides,
respectively (Fig. 2b), predominantly trending northwest—southeast.
These two clusters of cracks were probably caused by the preced-
ing/subsequent deformations associated to the shallow landslides
in 1995. The strike of the cracks of the third clustering is also
predominantly northwest—southeast. It was located in the centre of
the urban area of Huangtupo, just in the vicinity of the Sandagou
ravine. Numerous crack clusters can still be recognized in this area
(Fig. 3), which consist of opened (more than 5 cm), slipped (even
more than 5 cm) and long (even longer than 100 m) fractures with a
predominant NW-SE orientation that is perpendicular to the slope
dip direction.

Table 1. Main characteristics of the Huangtupo landslide (based on Xie 2009; Hu et al. 2012a,b).

Landslide (see location  Elevation Mean dimensions,  Mean thickness Area x 10*  Volume x 107
in Fig. 2) (ma.s.l.) length—width (m) (minimum and maximum) (m) (m?) (m?)
Slumping Mass I# ~70-300 ~770-500 69.4 (60-80) 325 2.2555
Slumping Mass I1# ~50-270 ~ 400-500 61.1(35-92) 32.0 1.9921
Garden Spot ~220-520  ~1100-220x% 30.0 (20-82) 32.6 1.3529
Substation ~160-600  ~1200-440x:x 35.0 (20-58) 38.1 1.3335

*The width increases up to 530 m downbhill.
**The width increases up to 860 m downhill.

¥T0zZ ‘TE AInc uo mobse |9 Jo Aisieaiun e /Blo'sfeulnolploxo1iBy/:dny woly pspeojumog


http://gji.oxfordjournals.org/

InSAR observation for the Huangtupo Landslide 217

Figure 3. Cracks in Badong caused by the Huangtupo landslide. Note that north arrows, which approximately indicate the downhill direction, have been shown

in the pictures.

The Huangtupo landslide has been intensely monitored by
Chinese authorities using ground-based techniques, including GPS,
borehole inclinometers, horizontal short-baseline extensometers
and groundwater level monitoring (Jiang et al. 2007; Xie 2009;
Hu et al. 2012a,b; Fig. 2a). This monitoring network has been oper-
ational since 2003 and provides more than 40 000 observations each
year. Unfortunately, the monitoring data are confidential and only
few published displacement data available in the scientific literature
have been used in this work for validating DInSAR data (Fig. 2).
Ground water time-series between 2003 and 2006 from different
monitoring wells are also available, indicating that the groundwater
level for the rear edge of the slope is clearly controlled by rainfall
while the front edge of talus is controlled by the reservoir wa-
ter level. Ground-based displacement monitoring data reveal that
only Riverside Slumping mass I# is clearly active while Riverside
Slumping mass I1#, Garden Spot landslide and Substation landslide
displacements are not significant (Jiang 2005; Jiang et al. 2007;
Xie 2009; Hu et al. 2012a,b). These in situ monitoring data also
revealed that Riverside slumping mass I# shows an almost identical
pattern of displacement at the surface and at depth (at the sliding
surface; Xie 2009), which indicates that the landslide exhibits a pre-
dominantly translational behaviour over a sliding surface composed
of clay and gravel soil (Chai et al. 2013). Wen & Chen (2007) and
Chai et al. (2013) studied the properties of the multiple incompetent

layers existing in the Huangtupo slope, stating that they are mainly
composed of illite, chlorite, quartz and calcite. These authors also
observed that active chemical and physical interactions between the
pre-existing weak zones and groundwater resulted in shear strength
reduction of the weak zones causing them to become slip zones of
the landslide.

4 SAR INTERFEROMETRY PROCESSING
AND TIME-SERIES ANALYSIS

InSAR is a remote sensing technique which uses two or more com-
plex SAR images acquired by satellites for the generation of in-
terferograms that represent the differences in the range changes
(i.e. phase) in the radar line of sight (LOS). This phase change
can be expressed as the sum of several terms: topographical term,
ground surface displacements, atmospheric artefacts, orbital errors
and other noises (Hanssen 2001). Various InSAR techniques can be
used to separate the displacement phase term from other terms (e.g.
Ferretti et al. 2001; Berardino et al. 2002; Hooper et al. 2007). In
this study, ground movements were obtained using a small baseline
subset of interferograms with the StaMPS technique. A detailed
description of the technique can be found in Hooper (2008) but a
summary is included here for completeness.
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4.1 Small baseline InSAR

Our processing is based on a small baseline subset approach
(Berardino et al. 2002). This uses interferograms with small spatial
and temporal baselines and reduced Doppler centroid frequency dif-
ferences. These are respectively defined as the physical separation
between the two satellite acquisition positions perpendicular to the
LOS, the separation in time and the difference between the Doppler
centroids of acquisition pairs. Minimizing these components helps
minimize spatial and temporal decorrelation and topographic errors
(Hooper 2008). StaMPS selects the slowly decorrelating filtered
phase (SDFP) pixels (i.e. pixels whose phase hardly decorrelates
over short time intervals) from small baseline interferograms to
maintain coherence over a long time interval (Just & Bamler 1994;
Hooper 2008). Because SDFP phase stability can be estimated us-
ing the amplitude difference dispersion, an initial threshold is set to
select a high number of points. This set of candidate pixels is then
refined to generate the final set of SDFP pixels using the algorithm
set out in Hooper et al. (2007).

The refinement process aims to assess the phase stability of the
initial candidate pixels, selecting those where the noise is small
enough not to completely mask deformation signals. Phase changes
due to deformation, atmospheric delay differences, satellite orbit
inaccuracies and look angle error are dominant relative to the noise
term (which is mainly related to scattering, thermal noise and coreg-
istration error). Assuming that the deformation signals under inves-
tigation, variations in atmospheric delay and satellite orbit inaccu-
racies are spatially correlated, it allows these terms to be estimated
through the use of an adaptive bandpass filter, which adjusts to any
phase gradient present in the data (Hooper et al. 2007). This filter is
combined with a lowpass filter with a cut-off wavelength of 800 m,
which is not only the recommended distance thought to be spatially
correlated for the phase values according to Hooper ef al. (2007),
but also has limited impacts on localized landslide movements. The
look angle errors are estimated for each pixel with its perpendicular
baselines. Removing these terms from the original wrapped phase
(from flattened and topographically corrected interferograms) pro-
vides an estimate for the noise term, which can then be used to
weight the contribution of each pixel to its reestimation via an itera-
tive process that stops when the noise term drops below a specified
value (0.005). After the robust process of SDFP selection and cor-
recting for spatially uncorrelated look angle errors, the remaining
step estimates the integer cycle ambiguities from the wrapped phase
of SDFP pixels using the 3-D statistical-cost network-flow algorithm
for phase unwrapping (SNAPHU; Hooper & Zebker 2007). The un-
wrapped interferograms are finally inverted using a least-squares
method to obtain the time-series of phase change of SDFP pixels.
From these values, long-wavelength atmospheric effects and orbit
error are estimated from the SDFP pixels using a best-fit plane.

4.2 Data set and processing details

The SAR data set analysed in this study consists of 41 Envisat
ASAR images collected between 2003 August and 2010 July from
descending track 075 (T075), 31 images collected between 2004
January and 2010 April from descending track 347 (T347) and 13
images collected between 2008 December and 2010 March from
ascending track 068 (T068; see a detailed list of the used images
in the Supporting Information). We extracted a 2.5 x 8 km area for
processing that corresponds to Badong. This selection of interfero-
grams has been restricted to those interferograms with spatial and
temporal baselines smaller than 1070 m and 1500 d. In addition,

only those interferograms with a mean coherence greater than
0.4 are selected for time-series analysis. The topographic phase
contribution was removed using the Shuttle Radar Topography
Mission (SRTM) 3-arcsecond (~90 m) spacing digital elevation
model (DEM) that has the voids filled with other data sources (Jarvis
et al. 2008). The amplitude dispersion index threshold was set at
0.6 as this was the highest threshold (and therefore generates the
largest set of candidate pixels) above which the numerically sim-
ulated interference between a set of Gaussian scatterers has been
shown to result in high levels of decorrelation (Hooper 2008). At-
mospheric signals are present in most (if not all) of interferograms
in the study area and can be estimated using spatial and time fil-
tering in StaMPS, assuming atmospheric signals are correlated in
space and uncorrelated in time. However, in cases where the defor-
mation and atmospheric signals follow similar patterns, the removal
of an estimated atmospheric error term can cause problems in the
estimation of deformation signals (Peltier e al. 2010). Therefore, in
this study, a simple best-fit plane was estimated for each unwrapped
interferogram to account for orbit errors and long-wavelength at-
mospheric effects since the area of study is small (~2.5 x 8.0km).
For the two descending tracks, the greatest consistency between the
deformation results was achieved when a best-fit plane was applied
to account for atmospheric effects, rather than using time-series
atmospheric filtering.

For validation, comparisons between the two adjacent descending
tracks in their overlapping area were used due to their similar inci-
dence and azimuth angles, and since both cover a long time interval
from 2004 and 2010. An rms estimate can be derived from the dis-
placement differences between the estimated displacement values
from T347 and the interpolated displacement values for TO75 (at
the same acquisition dates of T347) for every pixel. For many dif-
ferent pixels, the rms values are much smaller than the magnitude of
deformation, which suggests the displacement time-series are con-
sistent between the two tracks. Pixels between T075 and T347 with
time-series rms differences below 3, 5 and 10 mm, account for 16,
64 and 95 per cent of the total common pixels, respectively. 57 per
cent of the common pixels have a mean velocity difference of less
than 1 mmyr~! (over the whole processed area). This suggests that
the displacement time-series and velocities in our study are reliable
and it is worth noting the differences within the landslide boundary
are all <2.5mmyr~!.

4.3 Results

Fig. 4 shows the results for the three tracks over the Badong area.
Although the area is partially vegetated, 22, 25 and 24 persistent
scatterers per square kilometre were detected for tracks T068, TO75
and T347, respectively. The Huangtupo landslide exhibits a higher
concentration of SDFP pixels with an average density of 60 SDFP
pixels per square kilometre due to its urbanized areas and a high
population density (Gao & Yin 2014). The Huangtupo landslide
also exhibits high displacement rates with an average velocity of up
to 15.6mmyr~! in the LOS direction.

The standard deviations of the mean velocity at each pixel were
calculated using a bootstrapping method (Efron & Tibshirani 1986)
in StaMPS. The standard deviations of the mean velocity at each
coherent pixel provide an estimation of the precision of the mean ve-
locity. This statistic increases when the precision of the mean veloc-
ity is low and/or when the persistent scatterer exhibits a non-linear
behaviour. The average standard deviation of the mean velocities

per point computed for the study area is 2.9, 0.4 and 0.7 mmyr~',
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Figure 4. Mean LOS displacement rates derived from different tracks: (a) Track T068 (ascending); (b) track TO75 (descending) and (c) track T347 (descending).
The plotted landslide boundaries are based on the works of Cojean & Cai (2011) and Chai et al. (2013). The background is a shaded relief map derived from

the SRTM DEM.

reaching maximum values of 7.1, 0.8 and 0.8mmyr~! in the

Huangtupo landslide for the T068, TO75 and T347, respectively.
The standard deviations of the mean velocity per pixel for track
T068 exhibits some pixels located on the northwest sector of the
processed area with standard deviation values up to 7.1 mmyr~"'.
This variability in T068 can be caused by the short data period (15
months) and a limited number of SAR images (13 images) used in
the InSAR time-series analysis. The coefficient of variation (CV),
defined as the ratio of the standard deviations to the mean velocities,
has been also computed in order to estimate the robustness of the
processing results. The computed CV values vary from 0 to 0.4 for

the 7.3, 51.7 and 47.3 per cent of the SDFP pixels of the tracks
T068, TO75 and T347. CV values have been found to be especially
robust for tracks TO75 and T347, mainly due to the longer time
coverage than for track T068, providing a better estimation of mean
velocity and a lower standard deviation.

To interpret the displacement signals in the next sections, the dif-
ferent viewing geometries of the ascending and descending tracks
have to be taken into account. Track 068 has an ascending orbit and
a LOS oriented towards the northeast (N76.7°E) while tracks T075
and T347 have descending orbits and the LOS oriented towards
the northwest (N283.3°E). Taking into account the predominant
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strike of the Huangtupo slope (N100—110°E), the ascending track
LOS means that the vertical and horizontal components of land-
slide movements are additive, where the descending LOS has them
partially cancelling each other out being more sensitive to vertical
displacements. Therefore, the T068 LOS mean displacement rates
in the Huangtupo landslide are far greater than those in tracks T075
and 347 (Fig. 4).

4.4 InSAR data versus in situ monitoring information

In this section, InSAR data are compared with available ground-
based information. For this purpose, the nearest SDFP pixels to
the instrumental ground monitoring point have been selected. Also,
displacement rates between +2 and —2 mmyr~! and accumulated
deformations between +5 and —5 mm have been considered to be
stable (motionless) since they are in the level of the sensitivity of
the technique (Herrera et al. 2009; Prati ef al. 2010; Ferretti et al.
2011).

As mentioned in Section 3, although the Huangtupo displace-
ment monitoring network includes GPS, inclinometers and hori-
zontal short-baseline extensometers (see location in Fig. 5) only
few published displacement monitoring data are available for the
Huangtupo landslide. InSAR time-series from the two longer In-
SAR time-series (i.e. tracks T075 and T347) have been compared
with inclinometers (BDZKS, HZ6, HZK4 and HZKS5) and horizon-
tal short-baseline extensometers (TP3) data-series from Riverside
Slumping Mass I#, projecting ground data along the satellite LOS
(Fig. 6) considering the geometry of the satellite system and the
type of ground-based data (Colesanti & Wasowski 2006; Farina
et al. 2006; Tofani et al. 2013). Note that comparisons are possible
because deep displacement measurements (i.e. the ones provided
by inclinometers and horizontal short-baseline extensometers) and
surface displacements (i.e. those provided by GPS) are consistent
(Jiang 2005; Jiang et al. 2007; Chen et al. 2008; Xie 2009). As
shown in Fig. 6, InSAR data are consistent with inclinometers and
horizontal short-baseline extensometers since all of them exhibit
a similar deformation trend with a similar displacement rate (i.e.
the slope of the displacement plot). The agreement between InSAR
and ground-based time-series shown in Fig. 6 has been evaluated
through their respective displacement rates projected along the LOS
(vLos) for Slumping Mass I#. InSAR displacement rates have been
computed by means of a linear least-square fitting for the same time
period for which ground monitoring data are available, and then
both velocities have been compared. Note that as a minimum, five
points from the InSAR time-series have been considered in order
to avoid local temporal changes. The comparison from these data
shows a mean difference of 2.2 & 2.5mmyr~! and a maximum
difference of 6.4 mmyr~! for TO75. Note that if we do not consider
the outlier value corresponding to PS295 for the statistic, the mean
difference reduces to 1.1 £ 0.9 mmyr~'. For T347, the mean and
maximum differences are 1.0 &+ 0.4 and 1.6 mmyr~!. These dif-
ferences are similar to those computed by other authors (Colesanti
et al. 2003; Ferretti et al. 2011).

Ground-based data from the monitoring network placed on River-
side Slumping Mass II# (Fig. 5), consisting of one inclinome-
ter HZK21, six GPS stations and one horizontal short-baseline
extensometer (TP3; Jiang et al. 2007), have been also used for
validating InSAR results. Inclinometer HZK21, placed on River-
side Slumping Mass II# (Fig. 5) did not show any obvious dis-
placement in 2006 (Jiang et al. 2007; Xie 2009). The nearest se-
lected SDFP pixel (PS260 and PS263 in Fig. 5) shows accumulated

displacements for this year of 1.4 and 3.7 mm and a displacement
rate for the whole processing time period of —0.4 and +1.7 mm yr~!
for tracks TO75 and T347, respectively. Taking into account that
these values are below the sensitivity of the technique we can as-
sume that they are stable in agreement with in situ data. GPS station,
G4, also placed on Riverside Slumping Mass II# (Fig. 5), exhibited
an accumulated displacement of 12.9 mm (5.1 mm along LOS) in
2005 and no obvious displacement in 2006 (Xie 2009; Hu et al.
2012a). The nearest persistent scatterer from track T075 (PS 270 in
Fig. 5) shows 6.1 mm of displacement for 2006, which is slightly
higher than that provided by GPS projected along LOS. Note that
there is no persistent scatterer near G4 in track T347 and as a conse-
quence no comparison was performed. Other GPS stations placed
on Riverside Slumping Mass II# (see location in Fig. 5) are sta-
ble in agreement with the information represented in Fig. 5 (Xie
2009; Hu et al. 2012a). The horizontal short-baseline extensometer
TP4 (Fig. 5) shows a displacement of 3.0 mm (1.2 mm along LOS)
in 2005 and no obvious displacements afterwards (Xie 2009; Hu
et al. 2012a). The nearest persistent scatterers from tracks T075 and
T347 provide —0.57 (PS179) and 0.2 (PS200) mm of displacement
for 2005 and practically zero displacement from 2005 to the end of
the displacement time-series in agreement with instrumental data.
Thus, the monitoring results show that the slumping mass [I# was
basically stable with no obvious deformation from 2003 to 2006.

Xie (2009) also stated that GPS (see location of GPS stations
in Fig. 5) showed great fluctuations in amplitude and irregular-
ity in direction while inclinometers showed non-obvious deforma-
tion at depth for Substation and Garden Spot landslides. InSAR-
derived results provide mean LOS displacement rates of —4.7 4.3,
—22+29and —2.2 £ 2.7 mmyr*1 for tracks T068, TO75 and
T347, respectively, on Substation landslide and —5.2 + 4.2, —2.4 +
2.9 and —1.9 & 2.3 mmyr~! for tracks T068, TO75 and T347, re-
spectively, on Garden Spot landslide (Fig. 5). Note that most of
the activity of Garden Spot and Substation landslides is located in
their foot, coinciding with the overlapping area among them and
Riverside Slumping Mass I#. However, these two landslides exhibit
a general stability in agreement with in situ monitoring data (Xie
2009). Note that the displacement rate derived from track T068 dif-
fers from those obtained from tracks T075 and T347. This can be
mainly due to the smaller number of images and the shorter time
span that can under- or overestimate the linear component of the pro-
cessing which provides the displacement rate as well as considering
a different LOS direction relative to the landslide movements.

5 DISPLACEMENT PATTERNS OF THE
HUANGTUPO LANDSLIDE

In this section, we analyse the InNSAR-derived surface displacements
for the Huangtupo landslide. Different InNSAR products are used
in the analysis: displacement rates (mean velocities), cumulative
displacements and displacement time-series measurements.

5.1 2-D velocity of the Huangtupo landslide

Fig. 5 shows the LOS mean velocity maps for all the three tracks.
Descending and ascending tracks have different incidence and az-
imuth angles and, as a result, they can be used to recover 2-D or
3-D displacement patterns. In the case of the Huangtupo landslide,
3-D displacement and/or velocities cannot be recovered due to the
similarity in the TO75 and T347 satellite geometries, but 2-D (south—
north and vertical velocities) can be obtained assuming the absence
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of a displacement component in the east—west direction by means
of next expression (Liu et al. 2013):

V=B-LOS, 1

where Vis the 2-D velocity field matrix, LOS is InNSAR LOS velocity
matrix and B is:

B=(A" A" A", )

where 4 is the coefficient matrix of the satellite geometry (dependent
on the incidence angles) and T and ()~! represent matrix transpose
and inversion, respectively.

This assumption seems to agree with the slope aspect and field ob-
servations that show a predominant southwest—northeast displace-
ment field on the Huangtupo landslide with negligible east—west dis-
placements. Note that GPS data show azimuth directions of 9-108°
for Riverside Slumping Mass I# and 16-48° for Riverside Slump-
ing Mass II#, while the horizontal short-baseline extensometer TP3
show a 20—45° displacement azimuth (Xie 2009) in agreement with
the adopted assumption. The resulting 2-D displacement rates in
vertical and south—north directions are shown in Figs 7(a) and (b).

It is clear in Figs 5 and 7(a) that the highest displacements
are concentrated between Sidaogou and Sandaogou ravines from
the riverside to an elevation below 350m a.s.l., coinciding with
the location of the Riverside Slumping Mass [# and the foot of the
Garden Spot landslides. Note that displacements in the foot of this
landslide are greater than those of the middle and head areas and
the displacement of the central axial part is significantly greater
than the traction area on both flanks in agreement with inclinome-
ters and GPS stations (Xie 2009). The maximum computed total
velocity of the landslide, considering the two components of the

Sign of displacement

Subsidence

200 m

500 m

Scale
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displacement (south-north and vertical), is 17.2mm yr~!. This ve-
locity corresponds to ‘Very slow’ landslides (IGUS/WGL 1995) al-
though most of the SDFP pixels located on the sliding body exhibit
‘Extremely slow’” (IGUS/WGL 1995) total velocities. Maximum
vertical and north—south displacements measured in the Huangtupo
slope exhibit displacement rates up to —14.3 and +12.8 mmyr~!,
respectively. The upper part of the slope that corresponds to the
landslide head shows a lower activity with maximum displacement
rates of —2.7 and +4.1 mmyr~! for the vertical and south-north
displacement components.

5.2 Long-term displacements

Reservoir water level changes, mainly rapid drawdowns, have an
important impact on the stability of the slopes located along their
shores, acting as triggering factors of landslides (He et al. 2008).
Water level in the TG reservoir has drastically increased from 65
to 175m a.s.l. in the last decade. The first reservoir water level
rise started on 2003 June 1, and the reservoir water level reached
135m on 2003 June 15 (Stage 1, Fig. 8). On 2006 October 27, the
water level of the reservoir increased to 156 m a.s.1. (Stage 2) and in
2008 November rose to 175 m a.s.l. (Stage 3, Fig. 8). This increase
in reservoir water level from 2003 June is affected by seasonal
fluctuations (Fig. 8) that have major impacts on the stability of
slopes. These seasonal fluctuations correspond with amplitudes over
5, 10 and 25 m for the first, second and third stages, respectively.
In this paper, long-term displacement refers to net displacements
during the period from 2003 to 2009 while short-term displacement
is used for referring to the interannual displacement evolution of

wom _ | | | | | | _

Deformation rate (mm/year)

Figure 7. Vertical (a) and south—north (b) interpolated displacement components maps of the Huangtupo landslide. Black dots indicate the location of SDFP
pixels where displacement information is available and the thick black curve delineates the four main landslides boundaries. Note: Negative displacement
rates represent subsidence in (a) while positive values in (b) indicate horizontal displacements towards the river. As a consequence, negative and positive
displacement rates of vertical (a) and horizontal (b) components indicates that landslides towards the river in both vertical and horizontal components. The

information is superposed on the SRTM topography.

feusno[pioxor116//:dny wouy papeojumoq

¥10¢ ‘TE AInc uo mobse |9 Jo A1sse


http://gji.oxfordjournals.org/

224  R. Tomas et al.

1 1

200 . .
(a) 65-135 ma.s.l. 135-156 m a.s.l. 156-175 m a.s.|. €— Reservoir water level
JASeasonal fluctuation =& 5m 10m - 25m
Stage 0 T Stage 1 ‘ Stage 2 Stage 3
160 — —
Track 347
Track 075
E
®©
E
T 120 ~
o Legend
1] Water level
g l:‘ 068 180 | | |
[ J 347 Track 347
X 075 :: 170 4 T L
e t
80 T 160 — [ Track07s Track 068 - |
<
§ 150 -
(b)
140 T T T T
18-Dec-08 28-Mar-09  6-Jul-09 14-Oct-09  22-Jan-10
40 T T T | T | \ | | T
- N [ < Yo} © N~ oo} (2] o
o o o o o o o o o ~—
< < < & = < < = < <
© © (] © © © © © © (]
2 = - = = = - = = =

Figure 8. Images selected for (a) long-term and (b) short-term spatial analysis of the Huangtupo landslide marked on with water level fluctuations of the
Yangtze River (blue line). Note that the images selected from InSAR processing time-series are represented using squares, circles and crosses for tracks T068,

T347 and TO75.

the Huangtupo landslide related to seasonal reservoir water level
changes. In this section, the long-term displacement evolution of
the Huangtupo landslide is analysed. Since Envisat ASAR images
are only available for the study area since 2003 August, after the
first impoundment had occurred, displacements related with the first
impoundment cannot be measured using Envisat.

Fig. 9 shows the temporal evolution of mean displacements for
Riverside Slumping Mass I# and 1I#, Garden Spot landslide and
Substation landslide. Note that the mean time-series shown in Fig. 9
have been computed averaging all displacement values from all
SDFP pixels contained in the contour area defined by the different
landslides (Figs 2 and 5) and thus in the overlapping areas of differ-
ent landslides the pixels are considered for the computation of the
time-series from both landslides. Reservoir water level fluctuations
(blue line) and a 10-d average of rainfall (grey bars) have also been
plotted in the figures. It can be seen that the long-term behaviour
is slightly different for the different parts of the slope. Riverside
Slumping Mass [# exhibits a general negative deformation trend for
the long-term period with lower superimposed oscillations related
with the seasonal reservoir water level changes (Fig. 9). As it can be
easily recognized, Riverside Slumping Mass [# time-series exhibit
a downhill (mainly detected by T068 which is more sensitive to
both vertical and N-S horizontal displacements) and vertical dis-
placement (mainly detected by tracks T075 and T347 which are
insensitive to N-S displacement horizontal components due to the
parallel relative orientation of their LOS azimuth (N283.3°E) to
the NW-SE slope strike). Furthermore, a clear acceleration of the
landslide is recognizable during reservoir water level lowering in
agreement with the numerical models performed on the landslide

by different authors (Bin ef al. 2007; Cojean & Cai 2011; Hu et al.
2012a,b; Jin et al. 2012). It should be noted in Fig. 9 that we have
included the displacement rates for Riverside Slumping Mass I#
and II# associated with the ascending and descending branches of
the different reservoir water level cycles (WLC). The displacement
rates have been computed after a linear fitting to the points from the
displacement time-series associated to the considered branch from
each WLC. Riverside Slumping Mass 1I# shows a general stable
behaviour with seasonal displacements also related with river water
level fluctuations (Fig. 9). These periodic displacements are mainly
correlated with reservoir water level increasing when water level
falls and being totally or partially recovered when the level recovers
(Fig. 9).

Substation and Garden Spot landslides exhibit a quite stable kine-
matic behaviour, although some displacements are detected on the
landslide foot areas which overlays Riverside Slumping Mass I#
(Figs 5 and 9). Note that these two landslides mainly show a clear
stable long-term behaviour only with seasonal displacement pat-
terns associated with rainfall at elevations higher than 350400 m
a.s.l., which cause displacement acceleration episodes (interpreted
as uplift phenomena caused by soil expansion due to soil effec-
tive stress reduction caused by pore pressure changes) when water
infiltration from rainfall begins (Fig. 9). The general long-term be-
haviour of the upper part of the slope (crown) presents a more stable
component and a low amplitude seasonal displacement superposed
to the general trend (Fig. 9). These displacements seem also to be
related with rainfall, suffering low seasonal vertical displacement
oscillations during the wet and dry seasons, respectively. Note that
seasonal correlations observed on Huangtupo’s non-creeping areas
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Figure 9. Mean LOS displacement time-series of the different slumping masses from the Huangtupo landslide: Riverside Slumping Mass I# and 11#, Substation
landslide and Garden Spot landslide for tracks T075 and T347. Shadowed areas delimitate reservoir water level cycles (WLC) and rainfall cycles (RFC). Note
that the displacement rates values marked with an asterisk have been computed only using two points from the time-series. SMI#, Riverside Slumping Mass

I#; SMII#, Riverside Slumping Mass II#.

among soil displacements, reservoir water level and rainfall have
been also observed for other zones from the study area off the
Huangtupo landslide affected by the same triggering factors. These
observations are in agreement with Xie (2009) and Jiang ef al.
(2007) who pointed out that the water table shows that the groundwa-
ter of the foot of the Huangtupo slope varies with the water level of
the Yangtze River almost simultaneously but fluctuations barely in-
fluence the water table of the middle or upper part of the Huangtupo
slope while in the middle and back part of the Huangtupo slope
displacements are mainly influenced by precipitation with a lag
of about 10 d (Jiang et al. 2007; Xie 2009) as InSAR data show
(Fig. 9).

So, it can be concluded that only Riverside Slumping Mass I# and
Substation and Garden Spot feet areas overlaying Slumping Mass
[# are clearly active and their seasonal behaviour depends on the
distance to the riverside, being conditioned by Yangtze River water
level in the foreside areas and by rainfall in the middle and upper
zones. These effects will be discussed in greater details in Section 6.

Fig. 10 shows the interpolated accumulated displacements mea-
sured along the radar LOS over the Huangtupo area for tracks T075

and T347, considering a spacing in both directions equal to 25 m
and using the kriging method. Track T068 only covers the period
between 2008 December and 2010 March and thus does not pro-
vide long-term information. Areas without SDFP pixels have been
masked (grey shadow). Using the time-series of data, it would be
possible to build interpolated displacement maps overlaid to the
3-D topographical surface for each SAR acquisition to investigate
the long-term behaviour of the landslide. In this case, we have gen-
erated the interpolated displacement maps at approximately yearly
intervals. As it can be seen in Fig. 10, the spatial distribution of LOS
displacements for TO75 and T347 presents a similar shape with a
clear concentration of displacement in the nearby western areas of
Sandaogou.

This landsliding area mainly corresponds to Riverside Slumping
Mass I#. Other small areas of displacement are recognized along the
Huangtupo landslide although a clear pattern cannot be established
for them and/or have not been measured by both tracks. The main
landsliding area seems to be quite similar from 2006 for both tracks
although new small areas of instability are recognized mainly in the
foot zone.
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5.3 Short-term displacements

Short-term displacements are considered in this paper as displace-
ments related with (interannual) seasonal changes. For the analysis
of short-term displacements, the period between 2008 December
and 2010 April, has been analysed when the water level declined by
over 25m (Stage 3 in Fig. 8). He ef al. (2008) stated that the high
oscillations of reservoir water level in Stage 3 (Fig. 8) can cause
landslides.

Fig. 11 shows the interpolated, cumulative LOS displacements
of the Huangtupo landslide for 2008-2009 period for tracks T068,
T075 and T347. Using the whole data time-series, interpolated dis-
placement maps overlaid to the 3-D topographical surface for each
SAR acquisition have been generated at approximately monthly (35
d) intervals as shown in Fig. 11 (see Fig. 8 for SAR image locations)
to study the short-term behaviour of the landslide. Tracks T068 and
T347 cover the whole temporal seasonal cycle with nine images in
total, while track TO75 only covers the water decrease section with
four images.

Due to the different azimuth angles of ascending and descending
tracks, their displacement patterns are not identical. However, for all
the three tracks the maximum displacements seems to be concen-
trated in the lower part of the Huangtupo slope coinciding with the
nearby area of the wetting—drying zone affected by reservoir water
level changes during the water lowering period (Fig. 11). More-
over, although limited SAR acquisitions were collected for tracks
T068 and T347 during the period that water descended (Fig. 8b),
the displacement shape seems to change, being the displacements
mainly concentrated in the west areas of the Sandaogou ravine af-
fecting upper bounds (Fig. 11). Fig. 9 shows that the lower part of
the slope exhibits a close relationship between water level change
in the reservoir and the displacement evolution for the cyclical
changes. Although a general displacement tendency can be recog-
nized (high displacement rate for Riverside Slumping Mass I# and
stability for the rest of the slope), minor periodic displacements
above 20 mm amplitude clearly correlated with reservoir water
level changes are superimposed to this trend (Fig. 9). However, the
deformation behaviour of the upper part of the slope does not ex-
hibit any correlation with reservoir water level changes from 350 to
400 m a.s.l. elevation. Nevertheless, seasonal displacements above
£10mm superposed to the general trend of the slope movement
seem to exhibit a slight correlation with the available rainfall time-
series (Fig. 9) in this area. These observations confirm that the lower
zones of the landslide are affected by the seasonal reservoir water
level changes while the top area exhibits an independent behaviour
on these short-period oscillations (Jiang et al. 2007; Xie 2009).

6 DISCUSSION

It is well known that water (including both rainfall and reservoir
water level changes) has several effects on landslides: (i) physical
and chemical interactions between the slip zones’ materials and
groundwater result in shear strength reduction of the weak zones
(Wen & Chen 2007; He et al. 2008); (ii) increased water gradient
and seepage force of landslide mass during reservoir water level
rise (Jiang et al. 2011); (iii) the reduction of effective stresses on
landslide mass causes consolidation processes (Jiang et al. 2011).
Many published works have discussed the above-mentioned effects
on landslides (e.g. Iverson 2000; Bin ef al. 2007; He et al. 2008;
Cojean & Cai 2011; Jiang et al. 2011; Hu et al. 2012a,b; Jin et al.
2012).
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In this study, our InSAR results suggest that the Huangtupo slope
exhibits predominantly downward movements for Riverside Slump-
ing Mass I# (Fig. 7) whose activity can be classified as ‘Very slow’
to ‘Extremely slow’ (IGUS/WGL 1995) and relatively general sta-
bility for the rest of the landslide.

InSAR results (Figs 5 and 9-11) also confirm that the lower part
of the Huangtupo slope is more sensitive to Yangtze River hydraulic
effects while the water table in the middle and back part is mainly
influenced by precipitation. This fact is in agreement with other
works (Jiang et al. 2007; Xie 2009) which show that groundwater
of the front part of the Huangtupo slope varies with the water level
of Yangtze River almost simultaneously, while water fluctuations
barely influence the water table of the middle or upper part of the
slope located at elevations higher than 350400 m a.s.l., which is
mainly influenced by precipitation.

Riverside Slumping Mass I1# shows a quite long-term stable be-
haviour, although seasonal displacements associated with river wa-
ter level can clearly be recognized in the InNSAR time-series (Fig. 9).
The top area of the Huangtupo slope (upper part of Garden Spot
and Substation landslides and the slope crown) also exhibits a sta-
ble long-term behaviour with a superposed deformational seasonal
cycle. Nevertheless, the seasonal displacements of these areas are
not correlated with reservoir water level changes but are linked with
rainfall (Fig. 9). This fact was observed by Jiang et al. (2007) and
Xie (2009) considering the piezometric level time-series of several
wells located in the slope.

Riverside Slumping Mass I# exhibits a general long-term dis-
placement trend with annual displacements. These seasonal dis-
placements, which are closely related with reservoir water level
changes (Fig. 9) may be caused by consolidation—expansion
geotechnical processes of the soils from the slope subjected to ef-
fective stress increase—reduction. This process can be derived from
the effective stress change due to soil watering and dewatering pro-
duced by the phreatic level variation along the slope as a result of
reservoir water level changes (Bin et al. 2007; Jiang et al. 2011).
Note that the amplitude of the seasonal displacements affecting the
foot of the slope is higher for Stage 3 (reservoir water level varying
from 135 to 175 m a.s.l.) and the relation with reservoir water level
is also clearer for this period with higher seasonal reservoir water
level variations (Fig. 9). This fact probably happens because the
soil thickness affected by the soil effective stress changes due to
groundwater level variations is higher towards the middle part of
the landslide (Xie 2009) only affected by the highest river water
level changes.

Fig. 12 shows the overlapped mean time-series from tracks T347
and TO75 and different triggering factors (rainfall, reservoir water
level and groundwater piezometric level) for 2003-2007 period.
From this figure it can be seen that for this period the groundwater
level was slightly related with the reservoir water level near the
river (i.e. the lower part of the Riverside Slumping Masses [# and
II#) acting as a triggering factor of displacements (Figs 12a and
b). However, for higher elevations (Figs 12¢ and d), groundwater
level is mainly related with rainfall and as a consequence, reservoir
water level has a limited influence on the displacement patterns.
Note that the rainfall time-series and the corresponding groundwater
levels are more variable and irregular. However, correlation between
displacements (which are only available at a frequency of 35 d
or more) and rainfall (available every 10 d) can be observed and
higher displacements are recognized during rainy periods in which
groundwater levels rise (Figs 12c and d).

The kinematic behaviour of Riverside Slumping Mass I# can be
expressed as the addition of general displacement trend controlled
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Figure 11. Short-term LOS displacements measured from tracks T068, T075 and T347. Note that symbols plotted in black axis shows image acquisition dates
and blue axis indicates the different reservoir water level stages shown in Fig. 8. Temporal distribution of used images and the reservoir water level evolution
corresponding to the different stages are also shown in Fig. 8(b). sa, Sandaogou ravine; si, Sidaogou ravine; er, Erdaogou ravine.
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Figure 12. Mean InSAR time-series from tracks T347 (circles) and

TO75 (triangles) overlapped to the different triggering factors for 2003-2007 period:

rainfall (bars), reservoir water level (blue line) and groundwater piezometric level (different colours). Elev., elevation of the borehole; Depth, depth of the

borehole. See Fig. 5 for piezometers location.

by geological conditions and a seasonal displacement dependent on
external factors which fluctuate in the short term (Du et al. 2012).
Since several authors pointed out that Huangtupo long-term deep
displacements correspond to creep phenomena (Deng et al. 2000;

Bing et al. 2008; Chen et al. 2008; Song et al. 2009; Xie 2009;
Chai et al. 2013) a rheological model is adopted for reproducing
displacement behaviour. Bing et al. (2008) tested undisturbed soil
samples from Huangtupo slip band concluding that creep behaviour
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of'the Huangtupo landslide can be explained by means of a Burgers’
creep model. Consequently, in this work, a generalized Kelvin mate-
rial with a superimposed Maxwell viscoelastic (Burgers’ material)
has been fitted using a least-square method to the displacement
time-series and the non-linear component has been computed as the
residuals (Pytharouli & Stiros 2010):

5:A(1—e—%)+1<-t+c, 3)

where § is the LOS displacement, 4, B, K and C are constants and ¢
is the time.

The original InSAR time-series, the fitted creep model (eq. 3)
and the residuals of different selected SDFP pixels from Riverside
Slumping Mass I# are plotted in Fig. 13. The fitted models provide
correlation coefficients () varying from 0.75 to 0.95. Although
there exist some time gaps in the time-series, residuals exhibit a
correlation with reservoir water level changes mainly recognizable
for Stages 2 and 3 (Fig. 8) when the reservoir water level increased
from 135 to 156 m a.s.l. and 156 to 175m a.s.l. Note that for the
two tracks, some displacement peaks related with rainfall seem to
be overlapped to the main displacement trend caused by reservoir
water level changes.

It can be concluded that the Huangtupo slope appears to exhibit a
continuous and irrecoverable downward gravitational displacement
rate for Riverside Slumping Mass I#, not correlated with reservoir

water level changes that can be defined as a creep deformation.
This deformation is accompanied by minor elastic and recover-
able seasonal displacement closely linked with reservoir water level
variations and to a lesser extent with rainfall. These seasonal dis-
placements also affect the rest of the slope being mainly related
with river water level and rainfall episodes in the lower and upper
part of the slope, respectively, in agreement with groundwater data
derived from monitored wells (Xie 2009).

7 CONCLUSIONS

In this paper, three tracks of Envisat ASAR images have been em-
ployed to investigate the Huangtupo slope, one of the most active
landslides in the TG region. Ascending and descending images
have been used to retrieve north—south and vertical displacements
and time-series displacements given a good density of persistent
scatterers in the Huangtupo slope and its surrounding areas due to
its dense urbanization. The reliability of InSAR results has been
shown through the cross-validation of adjacent tracks and the com-
parisons with ground-based data (GPS, horizontal short-baseline
extensometers and inclinometers).

Once InSAR data have been validated, the spatial and tempo-
ral displacement data have been analysed. These results show that
the whole slope is affected by seasonal displacements related with
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rainfall in the upper part and Yangtze River water level fluctua-
tions in the lower part. Furthermore, a general long-term displace-
ment is recognized in the northwest area of the slope corresponding
to Riverside Slumping Mass I#. The measured velocity along the
radar LOS on this landslide indicates that it is a ‘Very slow’ land-
slide (IGUS/WGL 1995) although most of the SDFP pixels located
on the sliding body exhibit ‘Extremely slow’ (IGUS/WGL 1995)
total velocities. The dynamics of the Riverside Slumping Mass [#
landslide has been successfully explained by the means of a gravita-
tional creep deformation, only controlled by geological conditions,
with superposed minor vertical displacement oscillations related to
consolidation—expansion processes caused by ground water changes
induced by the river fluctuations. The rest of the slope (i.e. Riverside
Slumping Mass II#, Substation and Garden Spot landslides) exhibits
a stable behaviour with only minor seasonal displacements related
with river water level and rainfall in the lower and upper areas of the
slope, respectively. Note that the amplitude of the referred seasonal
deformations affecting the foot of the slope is higher for reservoir
water level varying from 135 to 175m a.s.l. (Stage 3) and the re-
lation with water level is clearer for this period of higher seasonal
water level variations and for those areas placed under 350400 m
a.s.l.

To summarize, InSAR data have helped understand the kinematic
behaviour of the landslide complementing ground monitoring mea-
surements and identifying the active boundaries and monitoring
its activities. Furthermore, the analysis of the displacement time-
series has helped recognize the different displacement patterns on
the slope and their relationships with various triggering factors.
Finally, displacements on active areas (i.e. Riverside Slumping Mass
I#) have been explained as the addition of seasonal elastic and in-
elastic creep displacements. This work highlights the feasibility
to use InSAR and in situ data for investigating landslides. Fur-
thermore, the use of satellite images with a higher resolution (e.g.
TerraSAR-X or COSMO SkyMED) and longer ground monitoring
data time-series in the future, will provide a more detailed under-
standing of the landslide that is essential for its management and
decision making.
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Additional Supporting Information may be found in the online ver-
sion of this article:

Table S1. List of Envisat ASAR images used in the processing. Mas-
ter image is in bold (http://gji.oxfordjournals.org//lookup/suppl/
doi:10.1093/gji/ggu017/-/DC1).
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