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Abstract 

Rheumatoid Arthritis (RA) is a common chronic autoimmune disease that is 

characterized by synovial tissue inflammation eventually leading to joint destruction 

with severe functional deterioration and increased mortality – the underlying 

pathogenesis of RA remains unsolved.  The principle of new therapeutic 

development is to define and characterize a molecular pathway both in terms of its 

basic biology and also its context-dependent effects in the synovial compartment. A 

hallmark pathological feature of RA is a rapid influx and accumulation of immune 

cells such as monocytes/macrophages into the synovium.  Monocytes/ macrophages 

are major effector cells in RA synovitis, principally acting by releasing TNF-α, IL-6 

and other inflammatory cytokines and chemokines.  The recruitment of effectors 

cells is an important step in RA progression and is mediated by chemokines and their 

receptors. Two pathways will be studied in this project, both with potential relevance 

to the accumulation and activation of inflammatory leukocytes to the synovium, 

namely microRNAs and sphingolipid enzymes. 

 

MicroRNAs are a recently discovered class of post-transcriptional regulators that 

induce mRNA target degradation or translation inhibition. They have been shown to 

be involved in the regulation of the immune response and the development of 

autoimmunity.  Of particular interest in the context of RA is miR-155, which is 

upregulated in RA synovial macrophages where it regulates cytokine expression such 

as TNF-α.  Until now little was known about the role of miR-155 in regulating 

monocyte migration.  Therefore, we sought to focus on the functional contribution of 

miR-155 in monocyte migration by the modulation of the expression of chemokines 

and their reciprocal chemokine receptors.  Firstly the absolute copy numbers of miR-

155 transcripts in peripheral blood (PB) and synovial fluid (SF) monocytes of RA 

and healthy controls were assessed.  To examine the role of miR-155 in monocyte 

migration and retention in the joint space, I overexpressed miR-155 in PB CD14
+
 

monocytes of healthy controls and RA patients and examined the expression of 

chemokines and chemokine receptors mRNA levels by taqman low-density array 

(TLDA) and quantified the production of these chemokines in culture supernatant by 

multiplex assay.  The role of miR-155 was investigated further using bone marrow 

monocytes (BMMO) from miR-155
−/−

 and wild type (WT) mice.  RA PB and SF 

CD14
+
 monocytes expressed higher copy numbers of miR-155 compared with 

healthy controls.  RA SF monocytes exhibited the highest expression levels of miR-

155.  The copy number of miR-155 expression was significantly increased in anti-

citrullinated protein antibody (ACPA) positive RA compared with ACPA negative 

RA.  The RA PB monocyte miR-155 copy number correlated positively and 

significantly with DAS28.  Overexpression of miR-155 in PB monocytes led to an 

increased production of chemokines (CCL3/MIP-1α, CCL4/MIP-1β, CCL5/ 

RANTES, and CCL8/MCP2) and a reduction in expression of inflammatory 

chemokine receptors CCR2 and CCR3 while homeostatic CCR7 was up regulated. 

Commensurate with this, these receptors were expressed in an opposite direction in 
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BMMO from miR-155 deficient cells; CCR7 was significantly down regulated and 

CCR2 and CCR3 expression levels were increased.  These observations suggest that 

CCR2, CCR3 and CCR7 were under the tight control of miR-155 and that this 

regulation is preserved across the species; together suggesting that miR-155 can act 

as an important regulator of these receptors.  We conclude that deregulation of miR-

155 in RA monocytes contributes to monocyte retention at sites of inflammation due 

to induction of chemokine production and down-regulation of inflammatory 

chemokine receptors.  Furthermore, these data imply that miR-155 levels may reflect 

RA disease activity and could be a potential diagnostic or clinical disease activity 

biomarker for RA.  

 

Sphingosine kinases (SPHKs), SPHK1 and SPHK2, are isozymes that phosphorylate 

sphingosine into sphingosine-1- phosphate (S1P).  S1P, a pleiotropic lipid mediator 

of inflammation, subsequently binds with any of the five G-protein coupled protein 

S1P receptors (S1PR
1-5

) and stimulates an array of cellular responses.  Defects in 

S1P/S1PRs signalling have been shown to be associated with various pathologies.  

Until now however, no comprehensive analysis of expression of its components in 

RA has been performed.  My data show that S1P concentrations were significantly 

elevated in the serum of RA patients with active disease compared to RA patients in 

remission and in healthy controls.  Moreover, S1P1, S1P3, S1P5 and SPHK1 were 

differentially regulated in RA immune cell subsets, such as neutrophils, monocytes 

(CD14
+
), lymphocytes (CD4

+
 and CD8

+
) compared to healthy controls.  In addition, 

compared with osteoarthritis (OA) pathological control, RA synovial tissues were 

strongly positive for the SPHK1, S1P1, and S1P3.  Interestingly, RA patients treated 

with biological DMARDs had attenuated levels of SPHK1, S1P3 and S1P5, but not 

S1P1, when compared with patients treated with conventional DMARDs.  Therefore, 

my study warrants further investigation of the clinical significance of S1P as a 

biomarker for disease activity and to explore the utility of novel therapeutic tools 

available to modulate the SPHK/S1PR/S1P axis in RA with a view to defining new 

therapeutic possibilities. 
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Chapter I 20 

1.1 Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease of unknown 

aetiology, mainly affecting the synovial membranes of joints, leading inexorably to 

damage of the cartilage and bone as well as bursa and tendon sheaths (1, 2).  The 

prevalence of RA in the general population is 0.8-1% and usual age of onset is 40-60 

years (1, 3).  However, RA may begin at any age and occurs in all races and ethnic 

groups.  There is a female predominance of about 3:1, although the female to male 

ratio declines with increasing age to 1:1 for onset after sixty years of age.  Patients 

with RA may have insidious onset of symmetric joint pain, swelling that deteriorates 

over several weeks associated with morning stiffness persisting for over 30 minutes 

that subsides during the day (4).  RA may onset via acute or sub acute presentations 

in about 25% of patients.  On rarer occasions, onset is of a palindromic nature, 

characterised by recurrent episodes of oligoarthritis with no residual radiological 

damage (5). Although any joint may be involved in RA, classically synovitis afflicts 

the proximal inter-phalangeal and metacarpal phalangeal joints as well as wrist, 

knees, shoulders, ankles, feet, hips and cervical spine (4).  These characteristic 

manifestations are accompanied by symptoms of malaise, weight loss, fever and 

fatigue.  

 

The inflammatory process of RA can spread to other systems or organs, particularly 

in patients with severe joint disease and results in extra articular manifestations; 

these can occur in up to 40% of patients during the course of disease (6).  The extra-

articular manifestations of RA are many; for example, subcutaneous nodules, 

pulmonary nodules, pulmonary interstitial fibrosis, pleural effusion, pericarditis, 

pericardial effusion, vacuities, skin ulceration, Felty’s syndrome as well as 

neurological and haematological complications.  The presence of extra articular 

manifestations are important in determining RA outcomes; RA patients with these 

manifestations have five-fold increase in mortality as compared to those without 

extra articular manifestations (6).  Thus, RA has a wide clinical spectrum with 

considerable variability in joint and extra-articular manifestations.  However, with 

early and effective treatment these manifestations are less common.  Indeed, there is 

clear evidence based on recent data suggesting that starting treatment earlier leads to 

better outcome and even improved rates of disease remission.  Therefore, early 

recognition and aggressive treatment to limit disease sequelae is essential.  The 



Chapter I 21 

severity of disease may range from mild to very intense; involving multiple organ 

systems and leading to aggressive damage that causes significant morbidity and 

mortality. Although RA was once considered to be a relatively benign disorder, it is 

now known to be a disease with a strong tendency to shorten the lifespan and cause 

severe disability to a varying degree; accordingly RA is associated with a high social 

burden and economic cost due to unemployment (7). 

 

Although there is no specific laboratory test to exclude or confirm RA, several lab 

parameters are associated with diagnosis.  These include: erythrocyte sedimentation 

rate (ESR) and C-reactive protein (CRP), which provides simple indicators about the 

acute phase response, correlated with clinical assessment of the disease.  Moreover, 

Rheumatoid factors (RF), immunoglobulins directed against the Fc fragment of IgG, 

are present in the sera of more than 75% of RA patients.  Recently, antibodies against 

citrullinated peptides antigens (ACPA) have been linked to RA, they are highly 

specific to RA and have been identified in up to 90% of RA patients and they can 

correlate with disease severity (8).  Due to their superior specificity and predictive 

capabilities for future development of RA, compared to RF, RA patients can be 

divided serologically into 2 major clinical subtypes, namely ACPA positive and 

ACPA negative RA.  The plain radiography is the most specific and standard 

investigation in RA diagnosis and pathology.  The earliest changes occur in the 

wrists, feet and consist of soft tissue (s) swelling and juxta-articular demineralization, 

while later changes include narrowing of joint spaces and erosion.  Other imaging 

diagnostic techniques including magnetic resonance imaging, computed tomography, 

power Doppler ultrasound and scintigraphy may be used to assess the extent of 

anatomical changes in RA patients with higher degrees of sensitivity and as such 

they may in due course replace plain X-rays as the investigation of choice. 

 

Clinical manifestations of RA vary depending on the involved joints and the disease 

stage.  In order to facilitate the consistent identification of patients classification 

criteria have been developed.  Table 1.1 summaries the 1987 American Rheumatism 

Association revised criteria for RA classification.  Until recently, diagnosis of RA 

should have four or more of these criteria and must be present for at least six weeks 

to exclude other differential diagnosis of arthritis such as degenerative arthritis 

(osteoarthritis (OA)) and connective tissue arthritis (4).  
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Table 1.1 1987 American College of Rheumatology Revised Criteria for rheumatoid arthritis adapted from 

(4).  

 

Criteria Definition 

Morning stiffness Morning stiffness ≥ 1 hour for at least 6 weeks 
 

Arthritis ≥ 3 joints 

 

Synovitis in ≥ 3 joint areas simultaneously  

Arthritis of hand and 

wrist 

Wrist or hand MCP or PIP joints for at least 6 weeks 
 

Symmetric arthritis 

 

Same joint areas on both sides of the body, for at least 6 weeks 

Rheumatoid nodules Non tender subcutaneous nodules situated over bony 

prominences 

Serum rheumatoid 

factor 

IgM Autoantibody directed against the Fc fragment of IgG 

Radiographic changes Typical of rheumatoid arthritis soft tissue swelling and juxta- 

articular demineralization, uniform joint space narrowing and 

erosion 
Four of seven criteria are needed for diagnosis of RA and the 14 possible joint areas include hand proximal 

inter-phalangeal (PIP) and metacarpal phalangeal (MCP), wrist, elbow, knee, ankle, and foot metatarsal 

phalangeal (MTP) on either side for at least 6 weeks. 

 

 

Table 1.2 2010 American College of Rheumatology/European League Against Rheumatism classification 

criteria for rheumatoid arthritis adapted from (9).  

 

Criteria Score 

Joint involvement 

1 large joint  

 

0 

2-10 large joints  1 

1-3 small joints (with or without involvement of large joints)  2 

4-10 small joints (with or without involvement of large joints)  3 

>10 joints (at least 1 small joint) 5 

  

Serology (at least 1 test result is needed for classification)  

Negative RF and negative ACPA  0 

Low-positive RF or low-positive ACPA  2 

High-positive RF or high-positive ACPA  3 

  

Acute-phase reactants (at least 1 test result is needed for classification)  

Normal CRP and normal ESR  0 

Abnormal CRP or abnormal ESR  1 

  

Duration of symptoms   

<6 weeks  0 

≥6 weeks 1 

 

Score of ≥6/10 is needed for classification of a patient as having definite RA.  Joint involvement refers to 

any swollen or tender joint during examination and is also classified according to location and number of 

involved joints. Serology, low positive and high positive are equivalent to ≤3 and >3 times the upper limit 

of normal, respectively and are based on the reference range of the laboratory that assesses the biomarker. 
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Although these criteria provide the gold standard for disease definition they may 

have significant limitations in allowing earlier RA classification.  Recently, 

therefore, a joint working group have updated these criteria; the 2010 American 

College of Rheumatology /European League Against Rheumatism (2010 

ACR/EULAR) criteria are designed to facilitate the identification of patients who 

would benefit from early intervention as shown in Table 1.2 (9).  A patient with 

synovitis, not explained by another disease, and who meets these initial criteria with 

a score of ≥6/10 can be classified as having “definite RA”. 

 

1.2 Rheumatoid Arthritis and Co-Morbidity  

RA is a chronic inflammatory disease that mediates many complex effects on 

patients. Recently, awareness has been increased for the importance of co-

morbidities associated with RA. Some co-morbidities of particular concern are 

cardiovascular disease (CVD), respiratory disease, osteoporosis, risk of infection 

and some forms of cancer; however, all co-morbidities have a substantial impact on 

RA disability and mortality.  

 

1.2.1 Cardiovascular Co-Morbidity 

Like other autoimmune diseases, RA patients are more likely to develop CVD, and 

although the exact nature of association is still unclear, the presence of chronic 

inflammation is considered to be the main link (10).  The shared risk may thus reflect 

a direct impact of RA per se and chronic inflammation or could be due to a high 

prevalence of traditional CVD risk factors such as smoking and diabetes mellitus, 

both of which are risk factors for development of RA (11).  Additionally, 

management used for RA provide another possible mechanism.  Avina-Zubieta et al. 

have reported that patients with RA have increased risk of CVD deaths (12).  RA 

increases the risk of heart failure and the one-year mortality rate after heart failure is 

higher in patients with RA compared with non-RA controls (13).  Moreover, there is 

strong evidence that patients with RA have higher rates of ischemic heart disease and 

myocardial infraction (14, 15).  Interestingly, patients with RA may have a different 

clinical course of myocardial disease; they are more prone to recurrent myocardial 

infarctions with higher rates of mortality than control populations.  
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Furthermore, associations have been reported between a number of therapies used in 

RA and CVD. For instance, use of some non-steroidal anti-inflammatory drugs 

(NSAIDs) has been associated with increasing risk of myocardial infraction (16). 

Another example is corticosteroids although this dataset is contradictory as the 

impact reflects a balance of anti-inflammatory and pro metabolic risk overall (17).  

However, use of methotrexate (MTX) in RA patients reduces the risk of CVD by 

21%, including an 18% lower risk for myocardial infarction (18).  Of interest, TNF 

inhibitors appear to reduce the CVD event such as myocardial infarction, strokes and 

heart failure in patients with RA.  However, the impact of TNF inhibitors in cardiac 

events is not seen as consistently as the effects seen with MTX (19). 

 

1.2.2 Respiratory Co-Morbidity 

Similarly, the respiratory system is frequently involved in RA and includes pleural 

disease, pulmonary nodules, interstitial lung disease (ILD) and airway disease (AD) 

(20-22).  It is now well recognised that RA is associated with reduced life expectancy 

and although CVD is responsible for majority of RA related deaths, respiratory 

complications account for 10-20% of overall mortality (23).  Recently, Wilsher et al. 

have shown a significant correlation between lung function parameters and high-

resolution computed tomography (HRCT) abnormalities with serological markers 

(RF and ACPA) in newly diagnosed RA (24). Interestingly, antibody against cyclic 

citrullinated peptides is more highly associated with physiologic parameters or 

HRCT abnormalities than RF.  Furthermore, some studies have suggested that shared 

epitope (SE) (discuss in genetic factors section) -positive human leukocytes antigen 

(HLA)-DRβ1 is significantly associated with the presence of obstructive AD (25, 

26).  Other studies found carriage of HLA-DR4 in RA patients with pulmonary 

abnormalities, either ILD or AD, was not significantly different from that in patients 

without this complication (27, 28).  This discrepancy in genetic predisposition of 

pulmonary disease strongly suggests the possibility of contribution by genetic 

backgrounds other than SE-positive alleles.  Most recently, Mori et al. clearly 

showed that carriage of HLA-DRβ1*1501 and *1502 (SE negative alleles) have 

opposite influences on the incidences of ILD and AD in RA patients; HLA-

DRβ1*1502 alleles may confer special predisposition for ILD, while AD is 

negatively associated with this allele (29).  
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Furthermore, several studies have demonstrated a significant association between 

serum levels of anti-CCP and pulmonary disease in RA patients (29-31).  Long 

standing RA; >10 years duration, have positive association with ILD and AD but the 

association was more stronger with age (29).  Finally, ILD in RA is not only related 

to the disease itself, but may be caused by the treatments used for RA such as MTX, 

leflunomide and NSAIDs which may directly cause the development of interstitial 

pneumonitis (32, 33).  There are other important issues regarding the potential 

association of pulmonary disease with RA and lung has been suggested as the site 

primarily responsible for citrullinated protein production by peptidyl-arginine 

deiminases, particularly in cigarette smokers (34, 35).  In turn these proteins are 

implicated in triggering the immune system response in genetically susceptible 

patients.  

 

1.2.3 Osteoporosis  

Patients with RA are more likely to develop osteoporosis and osteopoenia.  

Osteoporosis reflects disease activity in early arthritis and most likely results from 

the release of cytokines that induce bone resorption such as tumour necrosis factor 

alpha (TNF-α), interleukin (IL)-1 (IL-1) and IL-6 from inflamed synovium (36).  In 

general, bone metabolism in patients with RA is disturbed; while bone formation is 

reduced in both patients with and without joint destruction only bone resorption is 

increased in patient with joint destruction (37).  Many studies agree that increase in 

risk of fracture of RA patients is associated with disease activity and severity and 

part of this is due to reduction of bone mineral density and concomitant steroid 

therapy as well as disease duration (38, 39).  Interestingly, TNF inhibitors appear to 

decrease the overall fracture rate (40).  

 

1.2.4 Infection  

RA is associated with an increased risk of serious infection.  There are a number of 

mechanism that may promote this phenomenon: (i) underlying mechanisms of the 

disease itself and presence of immune dysregulation (ii) sequelae of co-morbidity 

conditions, (iii) impact of immune suppressive therapy and induced decreases in 

immune function as well as (iv) the life style of RA patients such as smoking (41).  

Infection is one of three leading causes of premature death (42, 43).  RA patients 
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have other serious co-morbid conditions such as lung and kidney disease and 

diabetes mellitus as well as functional limitation and disability, all of which are also 

implicated in increased infection risk in RA (41).  Most deaths from infectious 

diseases are of respiratory origin, especially in women.  TNF inhibitors and long 

term use of glucocorticoids have also been implicated in increasing the risk of 

serious infections up to 2 and 4-fold, respectively in a dose-dependent manner (41, 

44).  

 

1.2.5 Malignancy 

Although, malignancy remains relatively uncommon, there is some evidence that 

patients with RA and with high disease activity are estimated to have up to a 25.8-

fold increased risk of lymphoma as compared with controls with low inflammatory 

activity (45).  Furthermore, patients with RA have substantial increase risk of 

lymphoma and lung cancer, with some evidence for a protective effect against breast 

and colorectal cancer (46).  There has been considerable recent interest in the 

relationship between increased risks of malignancy, skin cancer and lymphoma in 

particular, in patients receiving immune suppressive therapy (47).  

 

These observations have highlighted the crucial importance of co-morbidity in 

determining RA outcomes, and also the necessity to consider the impact of RA on 

the presence and management of co-morbidity.  Furthermore, routine screening for 

co-morbid disease in newly diagnosed RA is important because some of these 

abnormalities may be present early in the course of the disease despite the patients 

being asymptomatic or having few symptoms. 

 

1.3 Current Therapies of Rheumatoid Arthritis 

Treatment of RA has improved dramatically over the past 1-2 decades.  In brief, 

management of RA has shifted from initial treatment with NSAIDs and 

corticosteroids to more aggressive and early use of DMARDs (48-50).  DMARDs are 

categorised into two groups - conventional DMARDs (cDMARDs) and biological 

DMARDs (51).  Table 1.3 summarizes the variety of cDMARDs and biological 

DMARDs that currently used in the treatment of RA.  MTX is the drug of choice of 

initial therapy either as mono-therapy or when used in combination (52) with other 
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treatment.  Other cDMARDs including hydroxychloroquine, sulfasalazine (SSZ) and 

leflunomide have been shown to be effective in RA either as mono-therapy or in 

combination with other cDMARDs such as MTX (53).  A robust evidence base 

shows that cDMARDs either in single use or combination improve the symptoms 

and clinical manifestation as well as control joint destruction in the majority of RA 

patients.  However, although the most commonly used agents and may be clinically 

effective - their use does not always suffice to prevent joint destruction (54).  

 

A major improvement in outcomes of RA arose with the introduction of biological 

therapies. Five TNF inhibitors are approved for clinical use; four are monoclonal 

antibodies (infliximab, adalimumab, golimumab and certolizumab) while one 

(etanercept) is a soluble receptor fusion protein and (Table 1.3) summarizes the 

variety of biological DMARDs and related drugs approved for treating RA.  Multiple 

trials have established the efficacy of various TNF inhibitors. They have shown in 

further improvement in disease activity and provided earlier functional improvement 

and less progression of radiographic joint damage particularly in combination with 

methotrexate (55-63).  Nevertheless, with TNF inhibitors relatively low numbers of 

patients achieve sustained remission or are intolerant to this treatment (64, 65).  

Rituximab is another therapeutic option in the treatment of patients with active and 

long-standing RA who demonstrate an inadequate response to currently available 

TNF inhibitors (55, 66).  Rituximab is a monoclonal antibody that targets CD20 

positive B cells (67).  Additionally, abatacept and tocilizumab have been used in the 

treatment of active RA alone or in conjugation with MTX and they exhibit 

impressive efficacy in patients with an inadequate response to MTX or after TNF 

inhibitor (68, 69).  Abatacept selectively modulates the co-stimulatory signal 

required for full T-cell activation, while tocilizumab directly inhibits the IL-6 

receptor and thereby inhibits the effector biology of IL-6. 

 

A further accelerated improvement began with the introduction of the 2010 ACR 

criteria for identifying patients with a relatively short duration of symptoms who may 

benefit from early institution of DMARD therapy.  Several studies have confirmed 

that early diagnosis and early DMARD treatment increases the chance of achieving 

remission and reduced joint damage and also improved functional status, which is 
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strongly associated with radiographic joint damage compared with patients with 

delayed treatment (54, 70, 71).  

 

So far, it is clear that identification and treatment of early RA is beneficial, but 

choosing specific treatment regimens for early RA are an equally important issue.  In 

this regard, multiple studies have evaluated this issue, for example the PREMIER 

study has compared initial combination therapy with initial mono-therapy and shown 

that the clinical outcomes (ACR20) were higher for MTX than adalimumab, but 

radiographic progression was less with adalimumab alone than MTX alone.  While, 

the combination group shown better in both measures (72).  Crucial data has 

emerged from the BeSt trial, which was designed with a step-up arm approach, and 

showed that combination therapy (MTX, SSZ and prednisone, or another option is 

MTX and infliximab) is, overall, superior to sequential mono-therapy or step-up 

combination DMARD therapy in early RA (73).  This study demonstrated that initial 

combination therapy resulted in small but significant reductions in the progression of 

joint destruction and improvements in function at 1 year compared with control 

group.  Similarly, the Finnish Rheumatoid Arthritis Combination Therapy study 

found that increased remission rates in RA patients who were started on combination 

DMARD therapy (SSZ, MTX, hydroxychloroquine and prednisolone), as compared 

with single DMARD therapy at 2 year follow up (50, 74).  However, other studies 

have demonstrated that a proportion of patients respond well to initial therapy with 

mono-therapy such MTX (57, 75).  The ACR’s 2012 updates of treatment for RA 

recommended starting DMARD mono-therapy in any early-RA patient without poor 

prognostic factors such as functional limitations, extra-articular disease, sero-

positivity, or erosions; while in early-RA patients with moderate to high disease 

activity and poor prognostic factors they recommend initial combination DMARDs 

or TNF inhibitors with or without MTX within the first 6 months of disease.  

 

1.3.1 Unmet Need 

Despite the considerable expanded improvement in therapeutic strategies (synthetic 

and biological DMARDs) of RA, a substantial proportion of patients remain as 

partial responses and fail to achieve sustained remission.  For example, cDMARDs 

in general and MTX in particular are the hallmark treatment of RA they have a 

limited efficacy and toxicity problems.  Not all patients tolerate these therapies and 
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many of them fail to achieve an adequate or sustained response to these drugs and 

consequently fail to improve their outcomes. 

 

Similarly, although TNF inhibitors have undoubtedly and significantly advanced the 

treatment of RA, a population of patients with refractory RA remains.  Of interest, 

20-40% of patients treated with TNF inhibitors fail to achieve an adequate response 

(64, 65). Furthermore, observational studies have shown that TNF inhibitors are 

associated with a variety of toxicities for example infection.  Serious infection, 

defined as life- threatening or requiring hospitalization or intravenous antibiotics is 

one of leading cause of morbidity and mortality in RA patients.  The proportion of 

serious infections such as primary tuberculosis (76) and histoplasmosis (77) is 

significantly greater in patients treated with monoclonal TNF inhibitors (infliximab) 

than in control groups.  Other TNF inhibitors including golimumab and 

certolizumab, rapidly and significantly ameliorate the manifestations of RA, 

however, there are increasing incidences of serious infection such as tuberculosis 

when compared to control population (62, 63).  Notably, TNF inhibitor use is also 

occasionally associated with decreases in the mean white blood cell and platelet 

counts (78). 

 

Additionally, observational data suggest that malignancies are more common with 

TNF inhibitors.  For example, there is evidence of malignancies occurring in those 

on infliximab 10mg/kg every 4 weeks; including carcinoma of the breast, squamous 

cell carcinoma and melanoma and B cell lymphoma (56).  Furthermore, patients 

receiving infliximab or adalimumab also presented with antibodies to double-strand 

DNA and some patients were diagnosed as having a drug-induced lupus syndrome 

after two treatments with infliximab at 10mg/kg (56, 78, 79).  Multiple sclerosis is 

now recognized as a complication of TNF inhibitors, particularly etanercept (80).  

Moreover, anti-TNF therapy is a high cost treatment and may not be appropriate for 

all patients (81). 

 

Similar to TNF inhibitors, rituximab and abatacept are associated with an increased 

risk of serious infection.  For example, incidence of infections is higher in patients 

treated with rituximab than in control group with 41% and 38%, respectively and 

upper respiratory tract infections, nasopharyngitis, urinary tract infections, 
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bronchitis, and sinusitis are the most common infections in both groups (55).  

Furthermore, lung cancer risk is higher in patients treated with abatacept than in the 

general population but it was equivalent to that in the RA population (82). 

Thus, even with the advanced management and several therapeutic strategies; either 

by switching to another TNF inhibitor or by adding rituximab or abatacept or 

tocilizumab to existing combination therapy, a substantial proportion of patients with 

refractory RA still exist and fail to respond to therapy (53).   

 

Taken together there remains a significant unmet clinical need in the treatment of 

RA. There is a need to discover new therapeutics that can maximise the rate of 

remission and minimize toxicity risk.  In addition, tractability of new targets must 

also come with the advent of biomarkers that can predict those most likely to respond 

or exhibit toxicity as one moves towards stratified or personalized medicine.   
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Table 1.3 Conventional, biological DMARDs and related drugs approved for treating rheumatoid arthritis adapted from (51, 83, 84). 

 

Therapy Max. Dose Effect Comments Main side effects 

Conventional DMARDs 

Methotrexate 20mg/week 4-6 weeks  Gold Standard therapy  Gastric irritation, hepatic toxicity and interstitial 

pneumonitis  

Hydroxy- 

chloroquine 

400-600 mg/day 2-6 months Antimalarial drug Relatively safe but can lead to eye toxicity 

Sulfasalazine 2-3 grams/day 2-6 months  Second most common DMARD Hypersensitivity, neutropenia and 

thrombocytopenia  

Leflunomide 20 mg/day 4-8 weeks Efficacy is similar to methotrexate Diarrhea, reversible alopecia and hepatic 

toxicity  

D-pencillamine  2-6months Very rarely used now Bone marrow suppression, rash, renal toxicity  

Gold Salt 50mg/ week 4-6 months Rarely used  Dermatitis, rash, stomatitis and neutropenia 

Azathioprin 2.5-3 mg/kg 8-12 weeks Purine analogy Immunosuppression and opportunistic infection  

Cyclosporine   Potent immune suppressive  Infection and renal insufficiency 

Biological DMARDS Target Properties  

Etanercept 50mg S/C once/week 2-4 weeks TNF-α TNF-α receptors II and Fc fusion protein TNF inhibitors increase risk of infection and 

malignancy  

Infliximab IV infusion3-10 mg/kg 

Day 1, 14,42 then every 8 weeks 

2-4 weeks TNF-α Chimeric monoclonal antibody to TNF-α  

Adalimumab 40mg S/C once every 2 weeks 2-4 weeks TNF-α Recombinant monoclonal antibody TNF-α  

Certolizumab 400mg loading dose then at 2 4 

weeks 

2-4 weeks TNF-α Fab pegylated anti TNF-α  

Golimumab 50mg every 4 weeks 2-4 weeks TNF-α Monoclonal antibody to TNF-α  

Tocilizumab IV infusion 4-8 mg/kg, every 4 

weeks 

4-8 weeks 

 

IL-6 

 

Humanised anti-IL-6 Receptor monoclonal 

antibody 

Infection, GI perforation also increased lipid 

parameters and neutropenia  

Anakinra S/C 100mg/ day  2-4 weeks IL-1 Recombinant IL-1Receptor antagonist  Injection site reaction, increase risk of infection 

Rituximab IV 1000mg followed by two doses 

within 2 weeks apart 

After 3 months 

 

B cells 

 

Chimeric monoclonal antibody anti CD20 Infusion reactions also increase risk of infection 

and neurological syndromes 

Abatacept 

 

IV<60kg/500mg 60-100kg/75mg, 

>100kg/1gram Or S/C 125mg 

Within 3 months  T cells co-

stimulation 

Human fusion protein (CTLA4-1g) Infection, malignancy and infusion reaction 
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1.4 Pathogenesis of Rheumatoid Arthritis 

RA is one of a family of autoimmune disorders, where the underlying cause remains 

incompletely understood. So far, epidemiological as well as genetic and 

environmental factors have been proposed to have associations with the 

susceptibility and severity of RA (Figure 1.1). Therefore, identification as well as 

understanding of these risk factors is extremely important to recognize their 

contribution to disease development. 

 

1.4.1 Genetic Factors 

The crucial role of genetic factors in the etiology of RA development has been 

highlighted for many years.  There are multiple genetic factors that have been 

associated with disease and estimates of the genetic contribution to RA have ranged 

between 30% and 60% (85).  Some twin studies provided valuable tools to underpin 

the extent of genetic influence on heritability and concordance of disease 

development in humans.  The heritability of RA among twins is approximately 65%, 

whereas the estimated concordance, representing the frequency with which a twin  

sibling with RA were also affected, in monozygotic twins is four times that observed 

in dizygotic twins (86, 87).  Recently, van der Woude et al. have estimated the 

contribution of heritability and concordance between ACPA-positive and ACPA-

negative RA twins revealed almost identical heritability rates for both disease 

subsets.  However, the concordance of these 2 subsets was different (88).  HLA 

alleles are known to be associated with RA in many different populations and are 

thought to account for 50% of the genetic component of RA susceptibility (89).  

Several studies have showed a substantial genetic association of RA with HLA-DR 

family alleles (including the DR subtype Dw4 and Dw14) within the class II major 

histocompatibility complex (MHC) region of chromosome 6 (90, 91).  In the human 

class II region, there are at least 14 different genes, generally found in one of three 

major sub regions; DR, DQ and DP, and each sub region contains one functional α 

and β chain to constitute a functional molecule (92).  The N-terminal domain of class 

II β chains is the site of most variability, DRβ chains contain 3 major region of 

variability and the third is the site of most sequence difference between the DR4 

subtypes.  The specific alleles associated with RA vary according to population; 

among the most frequently reported alleles are HLA-DR4 and HLA–DRβ1 alleles.  
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Figure 1.1 Schematic representation of emerging concepts in pathogenesis and onset of rheumatoid 

arthritis. Environment–gene interactions result in loss of tolerance to self-proteins that may lead to RA-

related autoimmunity and disease.  For example, smoking triggers the production of anti-citrullinated 

peptide antibodies (ACPAs), which is generated by post-translational modification in individuals who 

carry the ‘shared epitope’.  At this stage, serum concentrations of rheumatoid factor/ACPA and acute 

phase proteins, along with cytokines and chemokines start to increase years prior to the onset of clinical 

disease.  The triggers for transition from this period of gradually increasing inflammation “asymptomatic 

autoimmunity” to development of clinical rheumatoid arthritis with localization of the inflammatory 

response at joint space “clinically-apparent RA” has not been identified. Patients often report infections, 

trauma and stress as preceding factors.  Adapted from (93). 
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This complex pattern of association of MHC class II haplotypes with RA led to the 

proposal of the SE hypothesis, based on the observation that there are shared 

common amino acid sequences (QRRAA, RRRAA and QKRAA) spanning position 

70-74 in the third hyper-variable region of the HLA-DRβ molecule (92).  Variation 

in the frequency of SE alleles (DRB1*0101, *0102, *0104, *0401, *0404, *0405, 

*0408, *0413, *0416, and *1001) in different populations accounts for variation of 

RA susceptibility and global prevalence of disease (92).  Hence, individuals who 

have the class II HLA-DRβ chain; with a shared identical five amino acid sequence 

(SE hypothesis) are more likely to have RA than those without (90-92).  It is unclear 

how SE contributes to the development of RA but there is a possibility that structural 

differences between the β chains of the MHC class II molecules may affect the 

immune response, either during T cell receptor (TCR) repertoire selection, or via 

antigen/MHC class II interactions during T cell differentiation in the thymus.  In 

addition, single-nucleotide polymorphism (SNP) mapping has shown independent 

loci within the MHC region, outside the HLA-DRβ1, which are implicated in RA 

susceptibility.  

 

Recently, striking differences in the pattern of the SE alleles of MHC have been 

observed to associate only with the risk of ACPA-positive RA but not with ACPA-

negative RA (94). Thus, according to ACPA status, there are distinct genetic patterns 

of MHC associations in the two major clinical subtypes of RA.  This observation 

cannot be entirely accounted for by the SE and clearly indicates that the difference in 

the serological subtype of disease may be reflected in the difference in genetic 

predisposition.  Indeed, Ding et al. have demonstrated that additional loci at HLA-

DPβ1, C2-DOM3Z and MICA were associated with MHC, independent of HLA-

DRβ1 in ACPA positive RA (94).  In contrast, the genetic risk factors of ACPA 

negative RA are still unclear, although two studies have provided evidence for 

association of ACPA negative RA with HLA-DR3 and interferon regulatory factor -5 

(IRF-5) (95, 96).  

 

On the other hand, genomic wide association studies (GWAS) groups using the 

Swedish Epidemiological Investigation of Rheumatoid Arthritis and North American 

RA Consortium, and data from the Wellcome Trust Case–Control Consortium have 

provided further confirmation that there is are significant differences in genetic 
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association, mainly found in HLA regions, between the two clinical disease subsets.  

GWAS confirmed that the HLA-DRβ1 contains the most important risk factor alleles 

accounting for 30-50% of the overall risk and is strongly attributed to the aetiology 

of ACPA-positive RA.  It also provides the clearest demonstration of the presence of 

a number of genes outside the HLA-DRβ1 gene that are associated with RA 

susceptibility, such as protein tyrosine phosphatase non-receptor type 22 (PTPN22), 

cytotoxic T lymphocyte associated antigen-4 (CTLA-4), TRAF1-C5, and STAT4 

(97).  Although, several genetic susceptibility loci have now been associated with 

RA, HLA-DRβ1 remains the strongest.  Interestingly, most of the well-established 

genetic variations (PTPN22, CTLA-4, TRAF1-C5 and STAT4) are associated with 

ACPA positive RA, while IGFBP1 and IRF5 loci are associated with ACPA negative 

RA (90, 93, 97, 98).  These observations suggested a complex hierarchy and multiple 

molecular pathways that may contribute to the development of RA.  

 

1.4.2 Epigenetics  

The preceding literature review clearly indicates that genetic factors in general and 

HLA-DRβ1 in particular contributes to RA susceptibility.  However, identical twins 

have a concordance rate of 12-15%, which clearly points to other critical elements 

that may be implicated in RA pathogenesis: epigenetic factors are therefore worthy 

of consideration (86, 87, 99).  In recent years, many complementary lines of 

evidence suggest that epigenetic changes occurring in RA synoviocytes may play a 

key role in RA pathogenesis.  Epigenetic factors may also operate in immune cell 

lineages and potentially occur before clinical disease and thereby contribute to 

susceptibility, e.g. induced by smoking, or other toxin exposure.  The term 

epigenetics refers to changes in gene expression caused by mechanisms other than 

alteration of the nucleotide sequence (100).  Although epigenetic modifications may 

be reversible, they can critically contribute to chromatin structure stability, genome 

integrity, modulation of gene expression, embryonic development, genomic 

imprinting and X-chromosome inactivation in females (101).  Epigenetic 

modification of gene expression is mediated by several mechanisms that include 

DNA methylation, acetylation, phosphorylation, and sumoylation and also via the 

elaboration and post-transcriptional regulatory function of microRNAs (miRNAs).  

DNA methylation and acetylation are the most intensively studied pathways 

therefore I shall discuss them and what is known of their role in RA. 
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1.4.2.1 Methylation 

DNA methylation is generally associated with gene silencing.  In mammalian 

species, DNA methylation is a covalent biochemical modification that occurs by the 

attachment of a methyl group at the 5
th
 position in the pyrimidine ring of a cytosine 

within the cytosine-guanine dinucleotide (CpG) resulting in 5-methylcytosine.  These 

may often be grouped in large clusters called CpG islands and are mainly located in 

the promoter or first exon region of genes.  Patterns of DNA methylation reflect 

activity of DNA methyl-transferases (DNMTs) that catalyse the transfer of a methyl 

groups from S-adenosyl-methionine (SAM) onto cytosine (101, 102).  The 

mammalian DNMTs family consist of five members (DNMT1, DNMT2, DNMT3a, 

DNMT3b and DNMT3L) that can be divided into de novo and maintenance 

methylation enzymes.  DNMT1 is the major enzyme involved in the maintenance of 

DNA methylation patterns during replication, which recognise established 

methylation markers and copies them to a newly formed DNA strand.  While, 

DNMT2 is the smallest DNA methyl-transferase and has very weak methylating 

activity that mainly involved in the recognition of DNA damage.  DNMT3 family 

members DNM3a, DNMT3b and DNMT3L (the latter lacks an active methyl-

transferase site) are responsible for de novo DNA methylation during embryogenesis 

and germ cell development acting by introducing methyl groups into previously 

unmethylated CpG dinucleotides (101-104).  Interestingly, human genome 

methylation is not uniform and the majority of CpG islands are unmethylated in 

transcriptionally active genes, with acquired abnormal methylation within the 

promoter region leading to transcriptional silencing.  Indeed, genes silenced by DNA 

methylation either due to decreased affinity for binding to transcription factors or 

methyl group recruitment of methyl-CpG binding proteins (MBP) to the promoter 

region lead to impaired transcriptional processes (105).  On the other hand, global 

hypo-methylation is attributed to chromosomal instability and less imprinting.  Thus, 

inappropriate DNA methylation may lead to various diseases particularly cancers 

(101). 

 

Recently, there is growing evidence suggesting an important role for DNA 

methylation in normal biological processes, in the pathogenesis of human diseases in 

general and RA in particular.  In this context, Karouzakis et al. showed in situ and in 

vitro, that there is significant global genomic hypomethylation in RA synovial 
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fibroblasts (RASFs), as reflected by the lower nuclear staining of 5-methylcytosine, 

than in OA synovial fibroblasts (OASFs). This hypomethylation remained 

significantly reduced even in the presence of TNF-α or IL-1.  Furthermore, they 

point out that in OASFs, stimulation of cell proliferation was accompanied by an 

increase in DNA methylation but this was not the case in RASFs.  The DNMT1: 

PCNA ratio, proliferating cell nuclear antigen, was significantly lower even in the 

presence of inflammatory cytokines (106). This observation suggests that there is 

either a deficiency of production or a decrease in half-life of DNMT1 in RASFs.  

Indeed, the global DNA methylation was shown to be due to increased polyamine 

catabolism in RASFs compared with OASFs resulting in increased consumption of 

SAM, which was 3.3 fold lower in RASFs than that of OASFs (107).  This 

observation of RASFs hypo-methylation is compatible with the study by Nakano et 

al. who demonstrated that genes strongly implicated in RA pathogenesis including 

inflammation, matrix regulation, leukocyte recruitment and immune response were 

associated with hypomethylated loci in RASFs (108).  

 

Likewise, global DNA hypomethylation has been observed in peripheral blood 

mononuclear cells (PBMCs) obtained from RA patients compared with healthy 

controls (109).  Moreover, ACPA-positive RA patients had impaired DNA 

methylation and lower levels of DNMT1 mRNA than those patients with ACPA-

negative disease (109).  A further critical observation was reported by Nile et al. that 

contrary to global DNA methylation changes, a single CpG motif at -1099 in the IL-

6 promoter region was significantly less methylated in PBMCs from RA (58%) 

compared to healthy controls (98%) and remained hypomethylated even after IL-6 

mRNA induction using bacterial lipopolysaccharide (LPS) (110).  Altered patterns of 

DNA methylation are also observed in proximal CpG motifs of the IL-10 promoter 

region in RA PBMCs and hypomethylation of this region is inversely correlated with 

IL-10 mRNA and protein levels in serum (111). Further evidence comes from 

another study, which employed RA patients as a disease control; they demonstrated 

that methylation of IL-10 and IL-1 receptor (IL1R2) genes were low in PBMCs of 

RA patients.  These changes were more significant in the latter and are inversely 

correlated with disease activity of systemic lupus erythematosus (SLE) (112). 

Recently, it was reported CXCL12/SDF-1 (stromal derived factor-1) expression 

might be regulated by epigenetic mechanisms.  Karouzakis et al. have demonstrated 
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the CXCL12/SDF-1 promoter region is hypomethylated in RASFs compared to 

OASFs and normal lung fibroblasts (113).  Thus, altered DNA methylation in 

promoter regions of cytokines and chemokines may regulate their expression at 

transcriptional levels and be responsible for the development or progression of RA in 

a subpopulation of patients.  

 

DNA methylation also regulates the expression of Death Receptor 3 gene (DR3), a 

member of the apoptosis inducing tumour necrosis receptor family, in RA synovial 

cells.  Takami et al. have demonstrated that there is a striking difference in the 

methylation pattern of the DR3 promoter region; in contrast to OA synovial cells that 

were either unmethylated or partially methylated; RA synovial cells were constantly 

hypermethylated.  Furthermore, the expression of DR3 protein was down-regulated 

in RA synovial cells compared with OA synovial cells.  However, genomic analysis 

studies using PBMCs from healthy controls and RA patients revealed that this region 

was consistently unmethylated (114).  

 

1.4.2.2 Acetylation  

Histones are the main components of chromatin and the DNA strand wraps around 

histones to generate the nucleosomes; the fundamental organization of chromatin 

structure.  Adding or removing acetyl groups to the N-terminal tail of nuclear histone 

in nucleosome gene promoters has been implicated in the activation of gene 

expression (115). Addition of an acetyl group to lysine residues within the histone 

tail eliminates the positive charge on lysine thus leading to altered interaction with 

negatively charge DNA.  Consequently, the condensed chromatin loosens its 

structure and this permits a greater level of gene transcription.  The extent of gene 

transcription is dependent on the balance between histone acetylation and histone 

deacetylation (105, 115, 116).  Thus, this post-translational modification of histone 

occupies an essential part of gene regulation.  Histone acetylation and deacetylation 

are highly regulated by two antagonizing enzymes; histone acetyltransferases 

(HATs) and histone deacetylases (HDACs) (117).  HAT enzymes catalyze the 

transfer of acetyl groups from acetyl-coenzymes A to lysines and, based on their 

subcellular localization (either in the nucleus or cytoplasm), they are divided into 

two subgroups namely A and B, respectively.  The former is closely linked to the 
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transcriptional regulation of gene expression, while the latter is mainly implicated in 

the acetylation of newly synthesized histones that are free in the cytoplasm (118).  

 

On the other hand, HDACs counterbalance the HAT and are associated with gene 

silencing.  Furthermore, HDACs are classified into four classes depending on their 

homology to yeast proteins.  Class I of HDACs is expressed in all cell types and 

includes HDAC 1, 2, 3 and 8, sharing homology to yeast transcriptional regulatory 

reduced potassium dependency gene 3. While, Class II include HDAC 4-7, 9 and 10 

and are restricted to tissue specific expression.  Class III is closely related to yeast 

silent information regulatory 2 family of NAD, and include sirtuins 1-7, while 

HDAC 11 is sub grouped as class IV (117).  Altering the distribution pattern of 

HATs or HDACs on chromatin is associated with either upregulation or the down 

regulation of gene transcription, respectively.  

 

In recent years, several studies have investigated the relationship of RA and histone 

acetylation/deacetylation as an important potential contributor to pathogenesis.  The 

majority of these studies have been conducted using HDAC inhibitors (HDACI) in 

animal models; for instance in autoantibody mediated arthritis beneficial effects arise 

from HDACI FK228 administration - it inhibits joint swelling, synovial 

inflammation and joint destruction and causes significant decrease in TNF-α and IL-

1β concentrations in synovium (119).  However, Huber et al. have clearly 

demonstrated that there was a significant down regulation of HDAC activity in RA 

synovial tissues and this decrease was not compensated by a decrease in HAT 

activity as compared with OA or normal synovial tissue.  Thus, the balance of 

HAT/HADC is strongly shifted towards histone acetylation in RA synovial tissues.  

Furthermore, protein expression of HDAC1 and HDAC2 were significantly 

diminished in RA synovium (118).  In this context, the beneficial effect of HDACI in 

RA is unclear.  These inhibitors may target other proteins beyond histone; therefore, 

illustration of the functional role of individual HDAC in SFs is needed.  

 

However, Horiuchi et al. (120) have shown that there was a higher expression of 

HDAC1 and HDAC2 mRNA level in RASFs than OASFs - targeting of these 

enzymes enhanced apoptosis and decreased cell counts and proliferation.  In 

addition, silencing the HDAC1 enzyme resulted in decreased matrix 
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metalloproteinase-1 (MMP) production (120).  Likewise, a total increase of nuclear 

HDAC activity, with no change in HAT activity, is also reported in RASFs 

compared to OA and normal tissues and is positively correlated with amounts of 

cytoplasmic TNF-α.  Indeed, there was no shift towards histone hyper-acetylation.  

Moreover, HDAC1 is highly expressed in RASFs at both protein and mRNA level 

compared to OASFs, while HDAC4 mRNA level is down regulated compared with 

normal control (121).  More recently, increased HDAC has been observed in PBMCs 

obtained from RA and interestingly both selective and non-selective HDACI 

regulates the TNF-α and IL-6 production (122).  All these studies suggested HDACI 

seem to have a beneficial effect and could be a possible therapeutic modality for RA; 

however, these effects might be different between mice and humans and further 

clinical characterization and evaluation for side effects are required. 

 

1.4.3 Environmental Factors  

An accumulation of epidemiological data suggests an important role for 

environmental risk factors in RA development including smoking, hormones and 

infection.  The most important environmental risk factor is smoking together with 

other forms of bronchial mucosal stress such as exposure to air pollution and silica-

containing dust (123-125).  These have been implicated as triggering factors of RA 

in genetically susceptible individuals (126).  Compared with a never smoker, the 

relative risk of developing RA among smokers is 1.5 fold higher in the general 

population (127).  Smoking contributes to 35% of ACPA positive RA (128). 

Furthermore, increased risk of developing RA comprises a cumulative dose effect, 

observed particularly after long duration of smoking >20 years and also affected by 

the amount of cigarettes smoked per day (129).  Interestingly, this risk for RA 

remains for about 10–19 years even after cessation of smoking (130).  Even more 

intriguingly, among patients with early RA, cigarette smoking is associated with 

greater disease activity and with higher radiological damage - they develop RA at a 

younger age than the never smokers (131). 

 

Of recent interest related to pathogenesis of RA, several studies have reported that a 

gene-environment interaction lead to RA-related autoimmunity and disease.  For 

example, Padyukov et al. have proposed smoking as a central driver of gene - 

environmental interactions in seropositive RA and have shown that relative risk is 
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2.8 for RF seropositive RA.  Indeed, smoking individuals with double SE genes 

exhibit a substantially higher risk of developing RF seropositive RA than individuals 

with single SE alleles and those who have never smoked or are smokers without SE 

associate MHC alleles (127).  When considering ACPA positive RA, but not ACPA 

negative RA, it is believed to occur as a result of the synergistic interaction between 

the major genetic risk factor; HLA-DR and smoking (132, 133).  Indeed, there is a 

dose response emerging between intensity of smoking determined as pack-years and 

elevated levels of anticitrulline antibody at the onset of RA.  Furthermore, the 

combination of a history of smoking with the presence of single or double SE genes 

increases the relative risk of developing RA to 6.5 and 21 fold, respectively 

compared to those who had never smoked and have a single or double SE ACPA 

positive RA (132).  More recently, Kallberg et al. showed that there is a dose 

dependent association between smoking and SE allele status, and the smoking 

contributed to 55% in ACPA positive RA that carried a double copy of HLA-DRβ1 

SE (128).  While, in undifferentiated arthritis, SE allele did not increase the risk of 

development of RF or ACPA status (133).  Interestingly, SE associated genes and 

smoking are primarily associated with presence of ACPA rather than positivity of 

RF.  Taken together these observations suggest that smoking may represent a 

significant risk factor of RA development and progression, although the mechanisms 

underlying this are unclear. 

 

Hormonal and reproductive factors are implicated in the development of RA.  The 

prevalence of RA is greater among woman therefore it is possible that hormonal and 

reproductive factors may play a role in RA development and expression.  Numerous 

studies have suggest that using the oral contraceptive pill may offer a potentially 

protective affect either by reducing the risk of developing severe RA or may delay 

the onset of RA (134).  Although the incidence of RA decreases by 70% during 

pregnancy it can dramatically increase by five fold in the first 3 months post partum 

(135).  Furthermore, breast-feeding is also associated with the onset of RA; 

breastfeeding woman have a five times higher risk than non-breastfeeding women, 

however the mechanism is not known but could be due to increased secretion of the 

proinflammatory hormone prolactin (136).  Prolactin, which is known to be 

proinflammatory, may play a role in the onset of post‐partum RA.  Another 

intriguing finding is that people who develop RA have a genetically determined 
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abnormality of the hypothalamic pituitary adrenal axis, which prevents them from 

developing an adequate anti‐inflammatory response to immune stimulation (137). 

 

Another prominent environmental factor that increases the risk of RA is infection. 

Several studies have established a possible association between intestinal bacteria 

and RA.  The importance of bacterial flora emerged when rats raised under germ-free 

conditions developed severe articular inflammation while conventionally raised 

controls showed only mild disease in an adjuvant-induced arthritis model (138).  A 

variety of studies implicate several infectious agents such as Epstein–Barr virus 

(EBV), Cytomegalovirus, Proteus species, and Escherichia coli (E. coli) and their 

products heat shock proteins (Hsps) in the onset and persistence of RA.  EBV has 

long been linked with RA, although the mechanism behind this remains unclear.  It is 

a potent B cell stimulator and antibodies in RA cross-react with EBV nuclear 

antigens.  Furthermore, EBV DNA is expressed 10 times higher in PBMCs of RA 

than controls (139, 140).  EBV is also detected in RA patients synovial fluid (SF) 

(141).  

 

E. Coli and their product Hsps have been suspected to participate in the autoimmune 

response during pathogenesis of RA.  Hsps are a group of major bacterial antigens; 

Hsp40, Hsp60 and Hsp70 families. Hsp40 protein represented the one most 

commonly associated with autoimmune diseases (142).  In particular, E. coli Hsp40 

(DnaJ) and human (DNAJA1 and DNAJA2) are suspected of participating in the 

pathogenesis of RA.  Elevated levels of antibodies against the E.coli DnaJ have been 

shown in serum of the RA patients (143).  Furthermore, over expression of human 

Hsp40s results in increased levels of the anti-DNAJA1 and anti-DNAJA2 antibodies 

in the synovial tissue and sera of RA patients, respectively (143, 144). Interestingly, 

DnaJ and DNAJA2 modulate the inflammatory cytokine secretion in PBMCs of RA 

patients compared to healthy controls (143).  Recently, Kotlarz et al. demonstrated a 

significant immunological similarity, not restricted to the conserved J domains but 

also present in the C-terminal variable regions, between DnaJ and 

DNAJA1/DNAJA2 proteins.  The levels of anti-DnaJ also significantly correlated 

with anti-DNAJA1 antibodies in the sera of RA patients (145).  Although the exact 

role of bacterial and human Hsp40s in the autoimmune response requires further 
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elucidation, these observations suggest infection may be involved in arthritis and 

those proteins have relevance in the induction of RA.  

 

So far, multiple lines of evidence have suggested a link between periodontitis and the 

risk of RA (146-148).  This proposed association between periodontal disease (PD) 

and RA has been supported by pathological and immunological evidence.  

Periodontitis is a general term used to describe the chronic destructive inflammation 

of soft and hard periodontal tissues and ultimately results in tooth loss and is caused 

by chronic bacterial infection of the gingiva (149).  Porphyromonas gingivalis (P. 

gingivalis), a highly pathogenic bacterium of the oral flora is currently the only 

known bacterium with expression of peptidyl arginine deiminase, which is capable of 

generating citrullinated peptides in periodontium (150).  In this context several 

studies have demonstrated that patients with RA have greater risk of gingival 

bleeding, calculus formation and tooth and alveolar bone loss than observed in 

controls (147, 151, 152).  Controversially, Mercado et al. have reported no 

association between RA and gingival bleeding and plaque accumulation although 

they found that patients with RA have greater numbers of missing teeth than controls 

(153).  Furthermore, there is a significant correlation between the severity of PD and 

RA disease duration (151). Potikuri et al. showed that PD is more frequent and 

severe in non-smokers, disease-modifying anti rheumatic drug (DMARD)-naive RA 

patients compared with healthy controls (147). Strong evidence suggests that there is 

a role for smoking as a potential risk factor in the pathogenesis of both RA and also 

in PD hence raising the possibility of shared aetiology.  Moreover, patients with RA 

have a significant correlation with mean tooth gingival pocket depth that is more 

pronounced in ACPA positive than ACPA negative RA. Intriguingly, disease activity 

and autoantibodies (ACPA and RF) titres are higher in RA patients with PD than 

without PD (147).  More recently, data from a case-control study showed a 

significant association between history of periodontitis and newly diagnosed RA in a 

Taiwanese population (148).  Overall, these data imply that there is a relationship 

between the presence of PD and the development of RA however there are still 

uncertainties as to how this operates at a mechanistic level, for example it is 

intriguing that citrullination in the mouth might create an environment for breach of 

tolerance. I shall now address this issue in detail. 
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1.4.4 Autoantibodies and Breach of Tolerance  

Antibodies against cyclic citrullinated peptides are highly specific and predictive for 

RA and widely used in clinical practice as diagnostic markers (154-156).  Based on 

the presence and absence of ACPA, RA disease is categorized into two distinct 

clinical subtypes.  Interestingly, these clinical subtypes are associated with distinct 

genetic risk factors.  Importantly, the HLA-DRβ1 alleles that predispose to RA are 

predictive of anti-CCP status.  Indeed, in positive SE, HLA-DRβ1 alleles are the 

only risk factors for RA that is positive for anti-CCP antibodies.  

 

The understanding of RA pathogenesis has increased significantly over recent years. 

It is increasingly clear that in RA as well as other autoimmune diseases 

asymptomatic autoimmunity is present years prior to the onset of clinical disease.  In 

this context, multiple studies have clearly demonstrated that autoantibodies; either 

RF or ACPA and serum cytokines or other inflammatory markers are detectable 

years before the clinically manifested RA (157-161).  Of interest, the titre of these 

autoantibodies, and their specificity profile, as well as the concentration of serum 

cytokines increases as the onset date of RA approaches (162).  For example, del 

Puente et al. and Aho et al. observed that RF is present long before overt disease.  

Similarly, Jorgensen, et al. and others have shown that ACPA and RF preceded the 

onset of clinically apparent RA.  Sokolove et al. found evidence of autoantibody 

targeting of several citrullinated proteins including histones, fibrinogen, and biglycan 

prior to the development of anti-CCP autoantibody (162).  Furthermore, Majka et al. 

demonstrated that individuals who were older at the time of diagnosis of RA had 

longer duration of pre-clinical positivity of autoantibodies (159).  

 

Additionally, several studies have demonstrated elevation of inflammatory markers 

such as CRP and cytokines in preclinical RA diagnosis samples (163).  Rantapaa-

Dahlqvist et al. showed that the monocyte chemotactic protein-1 (MCP-1) which is 

implicated in the regulation of the chemotactic activity of leucocytes, was also up 

regulated in positive autoantibodies patients prior to disease onset compared to 

control group (164).  Jorgensen et al. showed that RF/ACPA and TNF-α were 

elevated in the pre-RA period of 5 years before the onset of clinically apparent 

disease (165).  Furthermore, a later study also showed that many of cytokines that are 

strongly implicated in RA pathogenesis (TNF-α, IL-6, IL-12p70, interferon (IFN), 
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IL-2, and IL-15) are highly elevated with increased ACPA epitopes (162).  

Interestingly, Sokolove et al. were also able to demonstrate the utility of ACPA and 

cytokine profiling to identify individuals at a higher risk for progression to RA (162).  

However, not all RA patients have detectable circulating pre-RA autoantibodies and 

indeed, some patient develops positivity for RF 6 years after clinically diagnosis of 

disease (160).  

 

The earliest event that ultimately leads to development of RA is breach of self-

tolerance; this is a phenomenon that means loss of ability to differentiate self-protein 

from non-self protein.  As a consequence of loss of tolerance, patients with RA 

develop autoantibodies that recognize citrullinated self-proteins including α-enolase, 

keratin, fibrinogen, fibronectin, collagen, and vimentin.  These autoantibodies can 

present a long period before the symptomatic onset of RA.  However, the exact cause 

of loss of tolerance and development of autoantibodies is not yet clear. Importantly, 

several studies have examined interactions between genetic and environmental 

factors that may lead to RA-related autoimmunity and disease.  For example, 

smoking and gingival inflammation have important roles in modifying either the 

susceptibility to RA or disease severity.  Indeed, smoking and infection with 

tuberculosis was associated with increased RF/ACPA positivity in individuals 

without RA (166-168).  Although, the exact role of the environmental and genetic 

risk factors in development of RA-specific autoimmunity is not clear there is 

emerging evidence of an initial immune dysregulation and breach of tolerance at 

mucosal surfaces.  For example, infection with p. gingival has been implicated as a 

potential risk factor in pathogenesis of RA.  Taken together these finding suggests 

that factors such as genetic risk or environmental exposure influences the 

relationship between the development of RA-related autoantibodies and clinically 

apparent disease.  However, at the earliest stages of disease the break of 

immunologic tolerance to endogenous citrullinated antigens predisposes to the 

development of anti-CCP-positive RA.  

 

1.4.5 Synovitis  

Normal synovium is a thin membrane that lines the joint capsule and acts as a 

lubricating tissue between solid tissues so that movement can occur smoothly 
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without friction.  It also participates in normal articular nutrition.  This membrane is 

made up of two layers (subintima and intima) as well as intimal cells, which are 

generally fibroblasts and macrophages.  In RA, joints are characterized by 

infiltration of inflammatory cells into the synovium and hyperplasia of the synovial 

lining cells with new blood vessel result in pannus formation (proliferating synovial 

cells that penetrate the cartilage and bone) (169). Pannus formation leads to the 

destruction of the adjacent cartilage and sub-chondral bone leading to 

radiographically detectable erosions as well as ligament and tendon laxity (Figure 

1.2).  The trigger for synovitis is still unclear but the inflammatory synovitis in RA 

patients is characterized by a rapid influx and proliferation of inflammatory cells 

such as monocytes, T and B-lymphocytes as well as neutrophils, leading to increased 

local concentrations of cytokines, chemokines and proteases.  This in turn, results in 

the acute phase (warmth, redness, swelling, and pain) reaction, effusion and other 

manifestations of inflammation.  Interestingly, multiple studies have demonstrated 

that the concentration of pro-inflammatory cytokines (e.g. TNF-α, IL-1β IL-6) 

exceed those of anti-inflammatory mediators (e.g. IL-1Ra, IL-10) in the RA synovial 

membrane and this disparity of cytokines most likely contributes to the sustained 

inflammation of joints that leads to cartilage destruction and bone erosion (170, 171). 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic represents synovial joint inflammation 
This figure shows the difference of a normal synovial joint compared to an inflammed rheumatoid 

arthritis synovial joint, which are represented as synovial membrane hyperplasia, cartilage and bone 

erosion and angiogenesis.  Adapted and modified from www.proteinlounge.com.  
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1.4.5.1 Synovial T Cell Subsets in Synovitis  

The involvement of T cells in the pathophysiology of RA is a matter of debate.  

Although T cells are abundant in synovium their derived cytokines such as IL-2 and 

INF-γ are rarely detected in either synovium or synovial fluid (SF) (172, 173).  More 

recently the discovery of the novel lineage of T helper 17 cells (Th17) has enabled 

this view be reconsidered (see below). Several key pieces of evidence implicate the 

pathogenic role of T cells in RA including mouse data, human genetic associations 

and targeted therapies.  The most convincing evidence for the role of T cells in 

synovitis is provided by the association of disease severity with HLA-DR alleles 

within the MHC class II and with lymphoid-specific PTPN22.  Moreover, although 

direct targeting of T cells by cyclosporine or depleting T cells showed limited or no 

clinical efficiency (174), significant clinical and functional benefit have been 

observed with the advent of abatacept.  Abatacept, a fusion protein containing 

CTLA-4-immunoglobulin Fc fusion protein, interferes with T cell-antigen presenting 

cell contact through selective co-stimulation modulation that in turn prevents T cell 

activation (175, 176).  Thus, its clinical efficacy implicates T cells directly in the 

pathogenesis of RA.  

 

Furthermore, CD4
+
 T helper (Th) cells and their cytokines play a role in initiating 

and maintaining diverse immune responses within the synovium.  Naive CD4
+
 T 

cells differentiate into diverse phenotypes of effector Th subsets, such as Th1, Th2, 

Th17, and regulatory T cells (Tregs) under the influence of a network of 

inflammatory cytokines signals (177, 178).  Classically, cytokines regulate the 

phenotype of effector cells in the synovium; Th1 cells differentiate in the presence of 

IL-12, and produce IFN-γ and IL-2, while Th2 cells are differentiated by IL-4 and 

are characterized by the secretion of IL-4, IL-5 and IL-13.  

 

Recently a further effector Th cell lineage has been described and named Th17 that is 

capable of producing a group of distinctive cytokines IL-17A, IL-17F, IL-22 and IL-

21 (179)  In addition to Th1, Th2, precursor T cells can differentiate into Th17 cells 

under the control of transforming growth factor beta (TGF-β) and other cytokines 

including IL-1β, IL-6, IL-21 and IL-23 (178).  Although, Th1 and Th2 cells have 

been considered as disease-associated this concept has evolved and now RA is 

thought to be a primarily a Th17 driven disease.  The first evidence for the 
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importance of Th17 cells and IL-17 in RA was documented by showing elevated 

levels of IL-17, detected in the serum, SF and synovial tissue of RA patients (180-

182).  Further evidence for the pathogenic role of Th17 in RA came from several 

studies that showed acceleration of experimental collagen-induced arthritis (CIA) in 

mice deficient in the specific p35 subunit of IL-12, which is the main cytokine for 

the induction of Th1 differentiation.  These mice develop severe arthritis and this is 

associated with increased expression of many inflammatory cytokines in the joint, 

including TNF-α, IL-1β, IL-6 and IL-17 (183).  Additionally, in the CIA model, 

serum levels of IL-17 were increased shortly after immunization and IL-17A mRNA 

was also up regulated in the synovium after the onset of arthritis (184).  In contrast, 

neutralization or deletion of IL-17 caused significantly lessened arthritis with less 

histological changes such as cellular infiltration and cartilage and bone erosion (185, 

186).  Of relevance in the current context, TNF-α is mainly involved in the 

pathogenesis of the early stages of the disease, while IL-17 has been implicated 

throughout all stages of disease and might contributes to the chronicity of RA (187). 

 

Overall, T cells contribute to inflammation (synovitis) either directly through the 

production of cytokines (Table 1.4) or interaction with neighboring cells directly or 

mediated by cytokines and promote their activation.  Once activated, T cells are 

capable of producing cytokines such as INF-γ, lymphotoxin-β, TNF-α and IL-17.  

IL-17 in turn potentially triggers RA synoviocytes to produce a variety of 

proinflammatory mediators including IL-1β, IL-6, TNF-α, CXCL8/IL-8, colony-

stimulating factor (CSF) and prostaglandin E2 (PGE2) (188, 189).  Furthermore, IL-

17 stimulates fibroblasts to produce neutrophil and T cell attracting chemokines such 

as CXCL8/IL-8, CCL20/MIP-α, CXCL1/growth related oncogene-α and 

CXCL2/growth related oncogene-β.  Furthermore, IL-17 also induces macrophages 

to secrete IL-1β, TNF-α, cyclooxygenase-2 (COX-2), MMP-9 and PGE2.  IL-17 is 

also capable of mediating monocyte migration via CCL2/MCP-1 (190-193). In 

addition, T cells can stimulate neighbouring cells (monocytes/macrophages and 

endothelial cells) in synovium to secret TNF-α, IL-1β IL-6, IL-12, IL-15, IL-18, IL-

23, and TGFβ through direct cell contact, which in turn further promotes T cell 

differentiation (194). Moreover, interaction between T cells and fibroblasts could 

activate the latter and contribute to sustained inflammation of the joints (195).  T 

cells exclusively activated by cytokines such as IL-6, IL-2, IL-15, IL-7 and TNF-α, 
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may form an important component of synovial T cell populations and promote the 

production of IL-6, IL-8 and PGE2 by synovial fibroblasts (196, 197).  Further, TNF-

α induces IL-1β, IL-6, and CXCL8/IL-8IL-8, and stimulates fibroblasts to express 

adhesion molecules that play an important role in recruiting leukocytes to 

inflammatory sites.  Finally, there is evidence that in the synovium, apart from Th1, 

Th2 and Th17 subsets, there are CD4
+
/CD25

+
 regulatory T cells (Tregs) that express 

forkhead box p3 (Foxp3) that can suppress effector T cells through production of 

immuno-suppressive IL-10 and TGFβ.  Although the precise mechanisms that 

support Treg differentiation are not clear they appear to include at least IL-10, IL-35 

and TGFβ.  Tregs that have been detected in the synovium and SF exhibit impaired 

regulatory function (198, 199).  

 

In addition to CD4
+ 

T cells there are CD8
+
 T cells in the synovium.  The natural 

function of these cells is related to protection against viral infections and tumours.  

Activated CD8
+ 

T cells can produce very high levels of TNF-α and IFN-γ that may 

contribute to target cell destruction.  Compared with CD4
+
 T cells, CD8

+
 T cells 

have a limited role in disease progression as described so far, however, synovial 

CD8
+
 T cell population contains a significant proportion of IFN-γ producing effector 

cells that might contribute to sustained inflammation by secreting pro-inflammatory 

cytokines (200).  Moreover, CD8
+
 T cells may also contribute to the functional 

activity of germinal center-like structures in ectopic lymphoid follicles within the 

synovial membrane (201).  

 

1.4.5.2 Monocytes/Macrophages in Synovitis 

Monocytes/macrophages play a central role in the pathogenesis of RA, via the 

secretion of pro-erosive cytokines and other inflammatory mediators.  Monocytes are 

derived from hematopoietic stem cells, via a granulocyte-macrophage progenitor, 

which gives rise to monoblasts and subsequently to monocytes that circulate in the 

blood stream and then move into peripheral tissues for further maturation and 

differentiation.  The process of maturation and differentiation is under the control of 

a number of cytokines and growth factors for example CSFs, including macrophage 

colony-stimulating factor (M-CSF) and GM-CSF (202, 203).  Monocytes may 

further differentiate in the tissue depending on the cytokine milieu; for example 

exposure to IL-4 and GM-CSF drives DC differentiation, irrespective of their subset 
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(204), and exposure to IL-6 and M-CSF induce macrophage differentiation (205). 

Macrophages are categorised by their activation status into two distinct subsets; M1 

(classical, inflammatory) and M2 (alternative, anti-inflammatory). The former are 

activated by IFN-γ, GM-CSF, and TNF-α and this M1 subset is also differentiated in 

response to stimulation with Toll Like Receptor (TLR) ligands e.g. LPS.  Whereas 

M2 subset are induced upon exposure to IL-4, IL-13, M-CSF, immune complexes 

and IL-10 (206).  

 

Macrophage phenitypes are classified based on their function such as host defense, 

wound healing, and immune regulation (207).  In regard to synovitis, 

classical/inflammatory monocytes are detected in high numbers within inflamed 

synovial tissues and express a high level of cytokines and chemokines that are 

strongly implicated in the pathogenesis of RA synovitis, namely TNF-α, IL-1β, IL-6, 

IL-23, IL-12, type I IFN, CXCL9-11 as well as reactive nitrogen and oxygen 

intermediates (207, 208).  However, there is accumulating evidence that blood 

monocytes exist in several functional subsets that exert specific roles in homeostasis 

and inflammation (209).  Interestingly, macrophages serve as a sensitive biomarker 

of disease because the number of infiltrating macrophages within the inflamed 

synovial membrane correlates with joint destruction and scores for local disease 

activity as well as with clinical improvement independent of the therapeutic strategy 

(210-212).  Additionally, macrophages infiltrate the synovial space with other cells; 

therefore, interaction between the different cell types is likely to be critical.  

Macrophages also contribute to synovial inflammation via the activation of 

fibroblasts to induce the secretion of GM-CSF, IL-6 and CXCL8/IL-8.  Similarly, 

they can induce CD4
+
 T cell activation through MHC class II. Monocytes are not 

only implicated in synovitis but also promote bone resorption by inducing early 

differentiation of osteoclasts (194). Osteoclasts have been reported to be derive from 

circulating mature monocytes under the influence of M-CSF and receptor-activator-

of-nuclear-factor-κB ligand (RANKL) (209).  

 

1.4.5.3 Synovial Fibroblast in Synovitis 

Synovial fibroblasts (SFs) form the intimal lining of the synovial membrane that in 

turn lines the joint and contribute directly to the pathogenesis of RA by producing 

key inflammatory cytokines and proteases (213, 214).  The activated phenotype of 
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RASFs is characterized by a change in morphology, anti-apoptotic behavior and 

increased invasion properties (215). Available data from severe combined 

immunodeficiency (SCID) mouse models show RASFs have aggressive behaviour 

and can migrate between joints, thereby serving as a mechanism that spreads the RA 

phenotype and consequent cartilage damage to distant sites (216).  This unique 

aggressive phenotype of RASFs appears to be partly responsible for the cytokine rich 

milieu and ongoing joint inflammation and destruction that are characteristics of the 

RA synovium.  Although several mechanisms have been implicated in generation of 

the aggressive phenotype, recently, epigenetic changes in RASFs that might alter 

gene expression and thus function have emerged.  RASFs differ from other types of 

fibroblast such as OASFs and normal-SFs; they highly express proto-oncogenes and 

specific metallo-proteinases as well as cytokines and adhesion molecules (217-220).  

Within the joint space SFs reside in close proximity to T cells and macrophages, so 

interaction between these cells is an important amplification pathway for local 

inflammation. Activation of fibroblasts is driven by TNF-α and IL-1β, that in turn 

induce the secretion of a variety of cytokines and chemokines including IL-1, IL-6, 

TNF-α and MMPs (194, 221).  Many of these pathways are further amplified by 

TLR agonists.  Moreover, RASFs are implicated in angiogenesis via elaboration of 

proangiogenic factors including fibroblast growth factor (FGF), and vascular 

endothelial growth factor (VEGF).  In addition, SFs can contribute to joint 

destruction directly by invading the cartilage surface or indirectly by producing 

matrix-degrading enzymes (222).  

 

1.4.5.4 Cytokines in Rheumatoid Arthritis 

Although cytokines are a diverse group of proteins, they share a number of 

properties: they are produced during the effector phase of innate and adaptive 

immunity, are generally not stored as preformed molecules (some do exist as pro-

molecules that can be enzymatically cleaved to active forms), and many of them are 

produced by multiple diverse cell types.  Cytokines act upon many different cells 

types in turn and often have multiple different effects on the same target. In RA, pro-

inflammatory cytokines such as TNF-α, IL-1β, and IL-6, have multiple influences on 

disease pathogenesis and appear to be responsible for ongoing joint inflammation 

and destruction.  The crucial cytokines that are implicated in RA pathogenesis are 

presented in Table 1.4.  
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Table 1.4 Cytokines implicated in the pathogenesis of rheumatoid arthritis adapted from (170).  

 

Cytokine Cell source Primary effect in the pathogenesis of RA 

IL-1 

 

Monocytes, B cells, 

synovial fibroblasts  

Promotes cytokine and chemokines secretion from 

fibroblasts and monocytes  

IL-6 Monocytes, B cells, T 

cells, synovial 

fibroblasts 

Induces Th17 cell differentiation and promotes 

antibody production from B cells 

IL-10 Monocytes, T cells, B 
cells, DCs, epithelial 

cells 

Suppresses the inflammation by down regulating 
proinflammatory cytokines, also inhibits T cell 

proliferation and contributes to Treg cell 

differentiation  

IL-12 Macrophages, dendritic 

cells (DCs) 

Th1 cells proliferation and maturation and B cells 

activation 

IL-15 Monocytes, synovial 

fibroblasts, mast cells, 
neutrophils, DCs 

Promotes activation of T cells, fibroblasts, 

macrophages and neutrophils and B cell 
differentiation  

IL-17A Th cells, innate 

lymphoid cells, 
synovial fibroblast 

Promotes inflammatory cytokines from synovial 

fibroblasts, monocytes and T cells 

IL-18 Monocytes, DCs, 

platelets, endothelial 
cells  

Promotes differentiation of T cells and cytokines 

secretion also increase the cytotoxicity  

IL-23 Macrophages, DCs Induce the Th17 proliferation and survival 

IL-32 Epithelial cells Induces TNFα, IL-1β, IL-6, and chemokines also 
promote PGE2 release  

TNF-α Monocytes, T cells, B 

cells, fibroblasts, mast 
cells 

Stimulates monocytes/ macrophages endothelial 

activation also induces endothelial cell adhesion 
molecule expression and increases cytokine release, 

inhibits the regulatory function of regulatory T cell.  

INFs Widespread Increase MHC expression, enhance macrophages 

and lymphocytes activation, differentiation, survival 
also cytoskeletal alternation 

APRIL Monocytes, T cells Promotes B and T cell proliferation 

BAFF Monocytes, T cells, 

DCs 

B cell proliferation and T cell co stimulation also 

induce antibody secretion 

GM-CSF Monocytes, T cells, 

fibroblasts 

Regulate myeloid cell, neutrophil and macrophage, 

production, differentiation and activation 

M-CSF Monocytes, T cells, 

fibroblasts  

Promote monocyte differentiation, proliferation and 

macrophage survival 

TGF-β Synovial fibroblasts, T 
cells, monocytes and 

platelets  

Induce Th17 and Treg cell differentiation 
 

FGF 

family 

Synovial fibroblasts, 

monocytes 

Regulate growth and differentiation of 

mesenchymal epithelial cells 

VEGF Monocytes, platelets, 

synovial fibroblasts 

Angiogenesis 

PDGF Monocytes, platelets, 
synovial fibroblasts, 

endothelial cells 

Growth factor for various lineages; wound healing 

Interleukin (IL), tumour necrosis factor α (TNFα), interferon (IFN), a proliferating inducing ligand 

(APRIL), B cell activating factor (BAFF), granulocyte/macrophage colony-stimulating factor (GM-CSF), 

macrophage colony stimulating factor (M-CSF), transforming growth (TGFβ), fibroblast growth factor 

(FGF), vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). 
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1.4.5.5 Chemokine System and Cell Migration  

A further critical element of the RA pathogenic sequence is the necessity to recruit 

and retain leukocytes in the synovial compartment.  I shall first discuss the core 

biology of chemokines and chemokine receptors and then refer to what is known of 

their role in RA. 

 

1.4.5.5.1 Leukocyte Migration 

Leukocyte traffic is a highly coordinated process and a breakdown of the underlying 

control mechanism might contribute to immune dysregulation and autoimmune 

disease. Recruitment of circulating leukocytes to the site of inflammation is a key 

step in the development of an inflammatory process.  The control of the traffic of 

these cells to sites of inflammation involves multiple regulatory steps involving 

several protein families, including proinflammatory cytokines, adhesion molecules, 

MMPs and chemokines (223-227).  In brief, cells once are activated by inflammatory 

mediators (e.g. damage associated molecular pattern containing molecules), the 

leukocytes migrate to the site of inflammation. This involves extravasation and 

chemotaxis.  Extravasation and chemotaxis of leukocytes are highly complex 

processes which begin with rolling of cells along the endothelial surface of the 

luminal side of blood vessels and during the process of rolling the leukocytes are 

triggered by endothelial surface bound chemokines, which result in firm but transient 

leucocyte adhesion, a processed termed as activation dependent stable arrest.  

Subsequently, cells transmigrate through the endothelial layer and underlying 

basement membrane and are finally released to the tissues in response to chemokine 

mediated chemo-kinetic signals – whether true gradients exist is currently debated in 

the field (225, 228, 229).  Recruitment or migration of effector inflammatory cells 

from peripheral blood (PB) to the joint space is therefore a complex process that 

depends on a cascade of events, mediated by chemokines and their receptors and 

adhesion molecules. 

 

1.4.5.5.2 Chemokines and Chemokine Receptors 

Chemokines play a role in a number of inflammatory diseases through induction of 

chemotactic activity directing neutrophils, lymphocytes and monocytes and 

promoting their migration to the inflamed tissues.  In addition, chemokines enhance 
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other cellular responses; they contribute to virus-host interaction, cell survival and 

angiogenesis.  Chemokines are classified in a large subfamily of chemotactic 

cytokines and are distinguished from other cytokines because they are the only 

cytokines that act on G-protein-coupled serpentine receptors (230, 231).  To date, the 

human chemokine system comprises about 50 chemokines with a shared homology 

of between 20 and 80% in amino acid sequence, and 19 chemokine receptors as 

shown in Table 1.5 (232).  Chemokines are small proteins with 60-130 amino acids 

and based on structural homology they have been classified into four distinct families 

(CC, CXC, CX3C and C), regarding the number and spacing of conserved cysteine 

residues in the N-terminal region (228, 233-236). The majority of chemokines 

belong to CC or CXC subfamilies 

 

1.4.5.5.2.1 CC Chemokines  

The CC chemokine subfamily has two adjacent cysteines and have at least 27 

members 1 to 28, (CCL10 is the same as CCL9), and bind to at least one of the nine 

CC Receptors (CCRs).  Chemokines of this subfamily usually control the migration 

of PB cells to sites of tissue inflammation.  For instance, CCL2/MCP-1, CCL7/MCP-

3, CCL8/MCP-2 and CCL13/MCP-4 are chemo-attractant for monocytes, while 

CCL3/MIP-1α and CCL5/RANTES are involved in controlling the migration of 

eosinophils, macrophages and mast cells (225, 236-239).  

 

1.4.5.5.2.2 CXC Chemokines 

The CXC subfamily has one non-conserved amino acid (represented by X) located 

between two conserved cysteines; this chemokine subfamily consists of 17 members 

and serves as ligands for the six receptors known as CXCRs (225, 236, 237).  These 

groups of chemokines are classically involved in chemotaxis of neutrophils; 

additionally CXCL4/PF4 and CXCL10/IP-10 also contribute to monocyte and T cell 

chemotaxis.  Additionally, CXCL12/SDF-1, CXCL13/BCA-1 and CXCL16/GCP-2 

bind their respective homeostatic receptors and are involved in lymphoid neogenesis, 

and are also implicated in the ingress of lymphocytes into the tissues. 

 

CXC chemokines are further subdivided based on the presence and absence of the 

glutamyl-leucyl-arginly (ELR) motif at the NH2-terminal region.  Those CXC 

http://en.wikipedia.org/wiki/CCL9
http://en.wikipedia.org/wiki/Monocyte
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chemokines carrying the ELR motif, such as CXCL1/Gro-α, CXCL5/ENA78, 

CXCL6/GCP-2 and CXCL8/IL-8 are specifically implicated in the migration of 

neutrophils and promote angiogenesis.  While, the subgroup without an ELR motif is 

chemo-attractant for lymphocytes and inhibits neovascularisation, and these include 

CXCL4/PF4, CXCL9/MIG, CXCL10/IP-10 and CXCL13/BCA-1.  However, 

CXCL12/SDF-1 lacks the ELR motif but is an angiogenic chemokine (240-243).  

 

1.4.5.5.2.3 CX3C And C Chemokines  

The last two subfamilies are CX3C and C; in the former family the two conserved 

cysteines are separated by three amino acids and CXC3L1 is the only member of this 

group and is expressed on endothelial cells.  While the C subfamily has two cysteine 

residues and two members XCL1 and XCL2, both are involved in T cell migration 

and accumulation at the site of inflammation (238, 243-245). 

 

1.4.5.5.2.4 Chemokine Receptors 

Chemokine receptors are 7-transmembrane, G-coupled proteins and are expressed in 

cell membranes.  Apart from structural classification according to their sequence 

similarities that correspond to the chemokine it binds (see below), chemokine 

receptors are categorised into two classes, according to their expression; constitutive 

(homeostatic) or inducible upon cell activation (inflammatory).  CXCR1, CXCR2, 

CXCR3, CCR1, CCR2, CCR3, CCR4 and CCR5 CCR6 are considered as inducible 

(inflammatory) chemokine receptors.  In contrast, CXCR4, CXCR5, CXCR6, CCR7 

CCR9, CCR10, CCR11, XCR1 and CX3CR1 have a role in basal cell trafficking and 

homing (246).  However, this classification is not absolute and chemokine receptors 

are extremely complicated.  For example, CCR6 is expressed on immature DCs for 

their response to inducible chemokines, such as CCL20/MIP-3α and CCL5/RANTES 

by which they are attracted to sites of inflammation, but this receptor is down 

regulated as the DCs mature (246, 247).  Furthermore, mature DCs lose their 

responsiveness to most of the inflammatory chemokines through receptor down-

regulation, but instead express CCR4 and CCR7 during the antigen recognition 

process for constitutive chemokines that allow their homing to lymph nodes.  Thus, 

CCR7 is a unique chemokine receptor that governs trafficking of DCs under both 

inflammatory and homeostatic conditions (248).  Another exception, CCR8 

http://en.wikipedia.org/wiki/Monocyte
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expression is primarily restricted to a subset of human CD4 memory T lymphocytes 

but is upregulated during T cell activation and is a marker of Th2 cells.  

 

Of interest, the chemokine system appears to have redundant specificity.  Many 

chemokines can bind multiple chemokine receptors with high affinity and one 

receptor can bind many chemokines within a subgroup.  However few chemokine 

receptors bind single ligands such as CXCR4 and CXCR5.  In general, the 

redundancy is mainly associated with inflammatory chemokines since they involve 

multiple receptors within the same family rather than homeostatic chemokines that 

are selective for single receptors (223, 235, 236).  As shown in Table 1.5 this unusual 

relationship between ligands and their receptors is mainly observed in receptors and 

chemokines implicated in inflammatory (inducible) leukocyte migration such as 

CCR3.  In contrast, receptors involved in homeostatic chemokine functions are much 

more limited and restricted to their specific ligands such as CCR9.  However, CCR4, 

CCR7, and CCR10 are homeostatic chemokine receptors and each has two ligands 

(249). 

 

1.4.5.5.3 Nomenclature of the Chemokine System 

There are two systems for naming chemokines.  An older system reflected their 

assumed function or cell type that produced them, while the latter combines 

structural motifs with the letter L for ligand and a number, as shown in Table 1.5 

(235, 236).  However, due to the large number of chemokines discovered and to 

prevent molecules being given multiple names, a more convenient systematic system 

of nomenclature was devised.  Thus, chemokine receptors have a systematic 

classification system in which receptors are named according to the subfamily of 

chemokines they bind, followed by R (for receptor) and a number (235, 236, 238, 

243).  

 

In addition to structural classification, chemokines are sub-grouped into two 

categories depending on their function in inflammation and immunity; 

homeostatic/constitutive and inflammatory/inducible chemokines (Table 1.5) (223, 

231).  The homing chemokines are expressed constitutively within lymphoid and 

non-lymphoid tissues to control physiological leukocyte traffic and development.  

For example, CCL19/MIP-3β, CCL21/6Ckine and CCL25/TECK are considered to 
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be constitutive chemokines.  Inducible chemokines, in contrast, are those 

chemokines that have broad target cell selectivity and act on both innate and adaptive 

immune cells.  The main function of these chemokines is to control the recruitment 

of effector cells including granulocytes, monocytes, natural killer (NK) cells, and 

effector lymphocytes in infection, inflammation, tissue injury and tumour sites.  

However, several chemokines cannot be categorised to either of these two functional 

groups; they are upregulated under inflammatory conditions and also target non-

effector leukocytes (precursor and resting cells), therefore they are referred to as dual 

function chemokines (223).  

 

Finally, chemokines have been grouped into acute and chronic inflammation 

categories.  CXC subfamily members recruit neutrophils to inflammation sites and 

thereby are considered as acute inflammation chemokines.  On the other hand the CC 

subfamily are responsible for recruiting the cells that mediate chronic inflammation 

such as monocyte/macrophage, eosinophil and T cells and were considered to be 

chronic inflammation chemokines (231). However, recent findings that CXCR3 is 

expressed in effector T cells indicate that this acute and chronic classification is 

unsatisfactory and should not be adopted for wider use (231).  
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Table 1.5 Human chemokines and their receptors is adapted from (236, 246). 

 

Systemic 

name 

Traditional 

name 
Expression Chemokine Receptors 

CCL1 I-309 Dual CCR8 

CCL2 MCP-1 Inflammatory CCR2 

CCL3 MIP-1α Inflammatory CCR1, CCR5 

CCL4 MIP1-β Inflammatory CCR5 

CCL5 RANTES Inflammatory CCR1, CCR3, CCR5  

CCL7 MCP-3 Inflammatory CCR1, CCR2, CCR3 

CCL8 MCP-2 Inflammatory CCR1, CCR2, CCR3, CCR5 

CCL11 Eotaxin-1 Inflammatory CCR3 

CCL13 MCP-4 Inflammatory CCR1, CCR2, CCR3 

CCL14 HCC-1 Inflammatory CCR1 

CCL15 MIP5/HCC-2 Inflammatory CCR1, CCR3 

CCL16 LEC/HHC-4 Inflammatory CCR1 

CCL17 TARC Dual CCR4 

CCL18 PARC Homeostatic Unknown 

CCL19 ELC/MIP-3β Homeostatic CCR7 

CCL20 LARC/MIP-3α Dual CCR6 

CCL21 SLC/6Ckine Homeostatic CCR7 

CCL22 MDC Dual CCR4 

CCL23 MPIF-1 Inflammatory CCR1 

CCL24 MPIF-2 Inflammatory CCR3 

CCL25 TECK Dual CCR9 

CCL26 Eotaxin-3 Inflammatory CCR3 

CCL27 CTACK/ILC Inflammatory CCR10 

CCL28 MEC Inflammatory CCR3, CCR10 

CXCL1 Gro-α Inflammatory CXCR2 

CXCL2 Gro-β Inflammatory CXCR2 

CXCL3 Gro-γ Inflammatory CXCR2 

CXCL4 BRAK Inflammatory CXCR3B 

CXCL5 ENA78 Inflammatory CXCR2 

CXCL6 GCP-2 Inflammatory CXCR1, CXCR2 

CXCL7 NAP-2 Inflammatory CXCR2 

CXCL8 IL-8 Inflammatory CXCR1, CXCR2 

CXCL9 MIG Dual CXCR3 

CXCL10 IP-10 Dual CXCR3 

CXCL11 I-TAC Dual CXCR3 

CXCL12 SDF-1 Homeostatic CXCR4 

CXCL13 BCA-1 Homeostatic CXCR5 

CXCL14 BRAK Homeostatic Unknown 

CXCL16 GCP-2 Dual CXCR6 

CX3CL1 Fractalkine Homeostatic CX3CR1 

XCL1 Lymphotactin Homeostatic XCR1 

XCL2  Homeostatic XCR1 

I-TAC, interferon-inducible T-cell α-chemo-attractant; MCP, monocyte chemo-attractant protein 1; 

RANTES, regulated on activation, normal T-cell expressed and secreted; BCA-1, B-cell-attracting 

chemokine 1;CTACK cutaneous T-cell-attracting chemokine; ELC, Epstein–Barr-virus-induced gene 1 

ligand chemokine; ENA78, epithelial-cell-derived neutrophil-activating peptide 78; GCP-2, granulocyte 

chemotactic protein 2; Gro, growth-regulated oncogene; IL-8, interleukin-8; IP-10, interferon-inducible 

protein 10; MDC, macrophage-derived chemokine; MEC, mucosae-associated epithelial chemokine; MIG, 

monokine induced by interferon; MIP, macrophage inflammatory protein; NAP-2, neutrophil-activating 

peptide 2; SDF-1, stromal-cell-derived factor 1; SLC, secondary lymphoid-tissue chemokine; TARC, 

thymus and activation-regulated chemokine; TECK, thymus-expressed chemokine. 
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1.4.5.5.4 Chemokines in Rheumatoid Arthritis  

As mentioned above, the inflamed synovium, synovial fluid and tissues are 

characterized by infiltration of a mixture of inflammatory cells that include 

neutrophils, macrophages, T cells, B cells, mast cells and DCs.  There is also 

increased vascularity, including new blood vessel formation and thickening of the 

intimal layer, which in turn results in destruction of cartilage and the underlying bone 

(169).  Within the synovium of RA patients, the infiltrating inflammatory 

mononuclear cells and other cells produce various inflammatory mediators such as 

cytokines and chemokines and matrix degrading enzymes (250).  It is not surprising 

therefore that various chemokines are found in abundance in RA synovium and these 

have been implicated in inflammatory cell recruitment and angiogenesis (251, 252).  

In this regard, multiple studies have shown that synovial tissue and fluid as well as 

serum from RA patients contains high levels of inflammatory and some homeostatic 

chemokines; a further critical element underlying the pathogenesis of RA.  These 

include CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL1/GROα, CXCL8/IL-

8, CXCL5/ENA-78 and CXCL12/SDF-1.  Moreover, their functional importance has 

been confirmed by several studies of animal models of inflammatory arthritis.  

However, other group of chemokines are proposed to exert anti-angiogenic effects, 

including CXCL4/PF4, CXCL9/MIG and CXCL10/IP-10 (237, 243, 253-264).  

 

The CC chemokines exert mainly inflammatory functions and are implicated in RA 

pathogenesis via recruitment and retention of monocytes and T lymphocytes into 

joint spaces. These include CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, 

CCL5/RANTES, CCL7/MCP-3, CCL8/MCP2, CCL13/MCP-4, and CCL20/MIP-3α 

(253, 255, 256, 265).  These chemokines are strongly expressed in the SF and tissues 

as well as chondrocytes (MCP-4/CCL13) of arthritis patients.  Of interest, RASFs 

produce these inflammatory mediators in response to TNF-α and IL-1β.  

Furthermore, CC chemokines involved in haemostatic trafficking, such as 

CCL17/TARC, CCL18/PARC, CCL19/ELC and CCL21/SLC, are expressed 

constitutively and contribute to both the physiological formation of lymphoid 

structures and lymphoid neogenesis in RA (266, 267).  Angiogenesis is an early and 

further critical event in the pathogenesis of RA by promoting a rapid influx of 

leucocytes and pannus formation. 
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The CXC chemokines mainly exert inflammatory rather than haemostatic functions, 

and synovial macrophages represent a major source of this subfamily.  The SF and 

tissues from RA patients contain elevated levels of CXCL1/GROα, CXCL8/IL-8 

and CXCL5/ENA-78, which are primarily neutrophil chemoattractants and mediators 

of angiogenesis. CXCL8/IL-8 is also important in regulating the expression of 

leukocyte adhesion molecules (259-261, 268-272).  In addition, CXCL4/PF4, 

CXCL9/MIG, and CXCL10/IP-10, which are chemoattractants for monocytes and T 

cells rather than neutrophils, inhibit synovial neovascularization perhaps due to their 

lack of the ELR amino acid motif (240).  Intriguingly, there is a unique group of 

chemokines that have also been implicated in synovial inflammation although they 

are homeostatic chemokines. These include CXCL12/SDF-1, CXCL13/BCA-I and 

CXCL16/GCP-2 (273-275). These chemokines bind their respective homeostatic 

receptors CXCR4, CXCR5 and CXCR6, and are involved in the synovial lymphoid 

neogenesis underlying arthritis and are also implicated in the ingress of lymphocytes 

into the RA synovial tissues. 

 

Fractalkine/CX3CL1 is up-regulated in macrophages, fibroblasts, endothelial cells 

and DCs of RA synovial tissues, while the soluble form is present in SF (276, 277).  

This chemokine plays a dual role as a chemotactic molecule for monocytes and 

lymphocytes and it also serves as an adhesion molecule for T cells, an angiogenic 

mediator, and has been associated with rheumatoid vasculitis (276-279).  

Lymphotactin/XCL1 is mainly implicated in T cell recruitment to RA joints and 

Blacschke et al. demonstrated that in RA synovium it is localised mainly in CD3
+
 

sub-lining cells (280).  Interestingly, in RASFs lymphotactin/XCL1 is significantly 

down regulated by MMP-2 production.  Thus, in addition to T cell recruitment; it 

might have an additional function in regulating the mechanisms of disease 

progression in RA.  

 

1.4.5.5.5 Chemokine Receptors in Rheumatoid Arthritis  

The synovium of RA joints express numerous chemokine receptors including 

homeostatic and inflammatory family members.  Among CCRs, the entire group are 

abundantly expressed in RA synovial tissue and cells and include CCR1, CCR2, 

CCR3, CCR4, CCR5, CCR6 and CCR7.  CCR2 and CCR3 are also expressed on 

articular chondrocytes (281).  CCR4 and CCR6 have been respectively implicated in 
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leukocyte and Th17 lymphocyte ingress into the RA synovium (282, 283).  Among 

these chemokines CCR5 is strongly expressed in RASFs and may be critical for 

lymphocyte recruitment into the joint (284).  Furthermore, CCR7 localizes the 

lymphocytic infiltration and DCs in the RA synovium and plays a crucial role in 

maturation and homing of DCs to lymphocytic aggregates (285). Additionally, CCR7 

deficient mice with antigen-induced arthritis are protective against disease due to 

impaired development and organization of tertiary lymphoid tissues (286).  

Interestingly, in comparison between peripheral blood and SF monocytes, CCR1 and 

CCR2 are highly expressed in circulating monocytes and are important for cell 

recruitment from the circulation to the synovium, while CCR3 and CCR5 are 

expressed mainly in SF monocytes and implicated in cell retention in the joint spaces 

(287). 

 

Regarding CXCRs; CXCR1 and CXCR2 are expressed on RA synovial neutrophils 

and macrophages and these receptors recognize the most relevant inflammatory and 

angiogenic CXC chemokines (288, 289).  CXCR3 is highly expressed in RA 

synovial tissue and represents the most important receptor in the homing of 

leukocytes into the RA synovium (290, 291).  While other CXC chemokine 

receptors, CXCR4, CXCR5 and CXCR6 which ligate the homeostatic chemokines 

CXCL12/SDF-1, CXCL13/BCA-1 and CXCL16/GCP-2 respectively, have been 

implicated in synovial inflammation and lymphoid neogenesis (228, 262, 289, 292).  

 

Among the XCR1 and CX3CR1 chemokines receptors, XCR1 expression is present 

in RA synovial lymphocytes, macrophages and RASFs (280).  CX3CR1 has been 

implicated in monocyte and lymphocyte recruitment into joint space.  Additionally, 

CX3CR1 is predominately expressed in synovial macrophages and DCs and also on 

RA SF lymphocytes and macrophages (245, 277). 
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1.5 Pathogenesis Leads Discovery 

The principle of new therapeutic development in RA is to define and characterize a 

molecular pathway both in terms of its basic biology and also its context-dependent 

effects in the synovial compartment.  Two pathways will be described forthwith.  I 

shall now introduce molecular pathways that may offer such therapeutic utility in 

future and upon which I have chosen to investigate in my PhD. 

 

1.5.1 MicroRNA  

1.5.1.1 Introduction  

MicroRNAs (miRNAs) are a recently discovered class of gene expression regulators 

that are active in many biological systems (293).  They are small, single strand non-

coding RNA molecules of 19-24 nucleotides long that negatively regulate gene 

expression of protein-coding genes at the post-transcription level by affecting the 

degradation or translation of target mRNA.  MiRNAs mediate their regulatory 

actions by directly binding to 3’ untranslated regions (3’UTRs) of specific target 

mRNA through nucleotides 2-7 in the 5’ region of miRNA, known as the miRNA 

seed regions (294).  They have been shown to be involved in the regulation of 

immune responses and the development of autoimmunity. 

 

1.5.1.2 Biogenesis and Regulation of miRNA  

MiRNA biogenesis and target mRNA repression is a complex process starting in the 

nucleus and ending in the cytoplasm, and involves several different enzymes.  

Processing and regulation of miRNA occurs at three levels: transcription, processing 

and subcellular localization throughout many post-transcriptional modifications 

(295).  Recent emerging data show that the processes of biogenesis and regulation 

are influenced by inflammation and other stress factors.  The interesting aspect of 

miRNA genes is related to their genome position, approximately more than half of 

miRNA coding genes are found within the introns of protein-coding genes or as 

independent transcription genes; the exons of untranslated genes (296).  

Alternatively, while most human miRNA are genomically single, certain miRNAs 

are grouped in clusters and expressed together such that they may be functionally 

related or may be involved in the same metabolic pathway (297).  A typical example 
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is provided by the miR17-92 family, which comprises six miRNAs (miR-17, miR-

18a, miR-19a, miR-19b-1, miR-20a and miR-92a-1). 

 

MiRNAs are derived from large genomic DNA and transcribed by RNA polymerase 

II to generate long (several hundred to thousand nucleotides) primary transcripts with 

a stem-loop structure, referred to as primary miRNA (pri-miRNA) with a 5’ cap and 

a 3 poly A tail (298, 299).  Similarly, nuclear RNase III enzyme Drosha along with a 

double-stranded-binding protein DGCR8 (DiGeorge syndrome critical region gene 8) 

cleaves the long pri-miRNA to a shorter~ 70 nucleotide stem loop structure known 

as the precursor miRNA (pre-miRNA) (300).  Alternatively, some intronic miRNA 

precursors, termed mitrons, enter the miRNA biogenesis, bypass the Drosha 

endonuclease pathway and are processed in the nucleus by RNA splicing machinery 

(301, 302).  In either case, this hairpin structure is recognized by exportin-5, a 

member of the karyopherin family of protein transport, and is actively transported 

from nucleus to cytoplasm, where the second processing step is carried out (303). 

Once in the cytoplasm, pre-miRNA undergo further processing and removal of the 

hairpin loop by the cytoplasmic endonuclease Dicer (RNAase III enzyme) together 

with other proteins to generate a short 19-24 nucleotides double stranded miRNA 

(miRNA: miRNA*) duplex (304, 305).  The miRNA duplex is further processed, one 

“guide strand” is selectively, based on the stability of its 5’ end, loaded into the 

RNA-induced silencing complex (RISC) and functions as the mature miRNA, while 

the other strand (passenger strand, miRNA*) is degraded (306, 307).  Mature 

miRNA then guides the RISC to cognate target genes, miRNA base pair with their 

complementary mRNA molecules, and represses the target gene expression by either 

degrading target mRNA (perfect complementarity) or repressing their translation 

(imperfect complementarity) and the end result is reduction in the total of amount of 

target protein (308, 309).  A single miRNA is able to target a large number of genes 

and surprisingly a single miRNA is able to bind ~200 different transcripts (310). 

Although the miRNAs expression from the transcription of miRNA genes until 

loading of the RISC complex have been established; understanding the regulation of 

this process is still incomplete and many questions remain to be answered. 
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1.5.1.3 MiRNA in Development and Regulation of Immune System 

Function 

1.5.1.3.1 MiRNA in Immune Cell Development 

Several studies have highlighted the regulatory role of miRNAs in immune cell 

development (311-315).  Originally, studies were conducted to study the expression 

profiling of hematopoietic cells during their development; they reported that 

miRNAs are dynamically regulated during the development of T cells, B cells and 

granulocytes, and are involved in the regulation of these processes.  For instance, 

miR-181a is one of the miRNAs involved in immune cell development; it is highly 

expressed in thymus cells and to a lower extent in heart, lymph node and bone 

marrow and was reported as a positive regulator of B cell differentiation.  Moreover, 

miR-181a has been implicated in thymic T cell differentiation and affects the 

sensitivity of T cells to antigens by modulating TCR signalling (316, 317).  In 

contrast to miR-181a, miR-105 was linked to B cell differentiation by inhibiting the 

transition of pro-B cells to the pre-B cell stage (318).  MiR-142s and miR-223 are 

miRNAs reported to have a critical role in T cell and granulocyte differentiation 

respectively, (316, 319).  Taken together these observations provided important 

insights as to how the miRNA network could impact immune cell development and 

differentiation. 

 

1.5.1.3.2 MiRNA and Innate Immunity  

The innate immune system and their immune cells such as granulocyte, monocyte/ 

macrophage and DCs provide a primary first line of defence against infection and 

represent the primary initiators of inflammatory responses.  Innate immune system 

and inflammatory signalling is mostly mediated by binding of pathogen associated 

molecular patterns, found in different pathogens, to TLRs (320, 321).  TLRs are 

expressed at high levels on macrophages and DCs and are implicated in the 

recognition of a wide range of distinct chemical structures conserved in microbes. 

For instance, TLR3 and TLR4 recognize double stranded RNA virus and bacterial 

endotoxin lipopolysaccharide, respectively (322).  Emerging studies show the 

contribution of miRNA networks in the development and function of innate immune 

system cells (323, 324).  For example, miR-17-5p, miR-20a, member of miR17-92 

cluster, and related miR-160a have been implicated in macrophages and myeloid 
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derived DCs differentiation and maturation through the transcription factor acute 

myeloid leukaemia-1 (AML1; also known as runt-related transcription factor 1, 

Runx1) (323, 325, 326).  The expression levels of these miRNAs are down regulated 

during the differentiation of hematopoietic progenitor cells into monocytes, while the 

AML1 is upregulated at protein level.  Furthermore, enhanced expression levels of 

these miRNAs strongly promote blast-cell proliferation and inhibits monocytic 

differentiation and maturation (327).  

 

Another miRNA shown to promote monocyte and macrophage differentiation is 

miR-424; enforced expression of this miRNA in NB4 cells induced monocyte 

maturation by inhibition of nuclear factor I/A (NFIA) expression (328, 329).  

Moreover, miR-223 has also been shown to profoundly affect granulopoiesis (330).  

MiR-223 negatively regulates progenitor proliferation and granulocyte 

differentiation and activation and mice deficient to miR-223 exhibit exaggerated 

tissue destruction and develop more inflammatory lung lesions as a result of hyper-

functional neutrophils (324). 

 

Furthermore, several efforts have also been made to demonstrate the role of miRNAs 

during the activation of the innate immune system.  A number of miRNAs are 

upregulated during innate immune cell activation.  In this regard, functional studies 

show that some miRNAs are induced by bacterial and viral TLR ligands as well as 

inflammatory cytokines.  For instance, miR-146a, miR-155 and miR-132, were 

found to be upregulated after exposure of human monocytic THP-1 cells to LPS 

(331).  Furthermore, miR-146a over expression was found to be inducible in cells 

expressing surface TLRs that sense bacterial components (TLR2, 4 and 5) but not 

intracellular TLR (TLR3, 7 and 9) which sense viral components (331).  

Additionally, expression of miR-146a was also found after exposure to pro-

inflammatory cytokines such as TNF-α and IL-1β in an NF-kB dependent manner 

(331).  Further, miR-146 expression upon pro-inflammatory cytokine challenge is 

not only restricted to immune cells but is also observed in alveolar epithelial cells of 

the lung as well as in SFs (332, 333).  

 

Like miR-146, miR-155 expression has been identified in response to a wide range 

of inflammatory mediators; including TLR ligands and pro-inflammatory cytokines 
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TNF-α and INF-γ (331, 334-337).  MiR-155 can positively regulate the inflammatory 

response via repressing the level of SH2 domain containing inositol-5-phosphatase 

(SHIP-1), an important negative regulator of phosphoinositide 3-kinase (PI3K) and 

the downstream AKT pathway, in turn increasing the AKT pathway (338-341).  

Furthermore, miR-155 targets suppressor of cytokine signalling-1 (SOCS-1), which 

similar to SHIP-1, is a negative regulator of the TLR pathway and is important in 

controlling the inflammatory response (339, 341).  Notably, miR-155 deficient mice 

have shown upregulation in the expression of SHIP-1 and SOCS-1, while miR-155 

over-expression lead to further down-regulation of their expression.  Indeed, mice 

deficient in miR-155 have suppressed immune response capabilities whereas 

enforced expression of miR-155 in the bone marrow compartment of mice leads to 

myelo-proliferative disorders similar to that which occurs after LPS stimulation (340, 

342, 343).  In addition, targeting either SHIP-1 using small interfering RNA against 

SHIP-1 or deletion of SOCS-1 in mice resulted in a hematopoietic phenotype that in 

part reflects miR-155 over-expression (341, 344, 345).  Taken together, these 

observations show that miR-155 can serve as positive regulator of innate immunity. 

 

Although the inflammatory response is important to eradicate microbial pathogens, 

resolution of inflammation in a timely manner is also important to avoid excessive 

damage to the host.  In addition to the vital role of miRNA network in inflammatory 

responses, miRNA is also capable of acting as an effector molecule in driving a 

negative feedback mechanism.  For example, miR-146a, miR-9 miR-21 and miR-155 

have evolved to limit intense inflammatory states and participate in negative 

feedback regulation of inflammatory pathways (331, 346-349).  Taganov et al. 

showed that miR-146 could function as an effector molecule in driving a negative 

feedback mechanism to attenuate the TLR response, preventing excess inflammation.  

MiR-146a/b directly targets TNF-α receptor-associated factor-6 (TRAF6) and IL-1 

receptors-associated kinase-1 (IRAK1), which are key molecules downstream of 

TNF-α and IL-1β signalling in the TLR4 signalling pathway and all promote 

inflammation (331, 350, 351).  MiR-146a is induced by bacterial pathogens in an 

NF-kB dependent manner and elevated miR-146 in turn suppresses the activity of 

inflammatory pathways by down regulation of TRAF6 and IRAK1, and subsequent 

results in downstream regulation of TNF-α, IL-6 and IL-1β (331, 350, 351).  MiR-



Chapter I 67 

146a therefore appears to play a role in a negative feedback mechanism and prevents 

excess inflammation. 

 

Furthermore, miR-9 is upregulated in both monocytes and neutrophils after TLR4 

activation via LPS and proinflammatory cytokines such as TNF-α and IL-1β.  MiR-9 

induction operates feedback control on the NF-kB-dependent responses to maintain a 

constant level of NF-kB1 protein expression (346).  In addition miR-21 was recently 

identified as a negative regulator of inflammatory responses through down regulation 

of NF-kB signalling, driving a switch to anti-inflammatory responses via secretion of 

IL-10 (349).  MiR-21 is upregulated in response to TLR4 activation of macrophages 

and operates through targeting mRNA encoding PDCD4, a tumour suppressor 

inflammatory protein, which leads to activation of NF-kB by unknown mechanisms 

(349).  

 

MiR-155 is part of the negative feedback loop, however, its role seems to be 

complex, possibly owing to its controlling expression of both pro and anti-

inflammatory mediators or due to a wide range of relevant targets (352).  For 

example, miR-155 may participate in a negative feedback loop in human myeloid 

derived DCs, miR-155 deletion showed significantly increased expression of IL-1β 

and other proinflammatory cytokines in response to LPS stimulation (337).  

Furthermore, miR-155 represses the expression of the signalling protein TAK1- 

binding protein 2, which promotes inflammation, which may be key for its anti-

inflammatory effects (337).  However, miR-155 in certain settings can positively 

regulate the inflammatory pathway by negatively regulating SHIP-1, which is a 

potent inhibitor of many inflammatory pathways including the AKT pathway.  

Interestingly, AKT signalling has recently been shown to negatively regulate miR-

155 and miR-125b expression but positively regulates miRNAs let-7e and miR-181c 

expression in macrophages (353).  More recently, miR-155 has been shown to 

conveys atheroprotective effects; hematopoietic deficiency of miR-155 leads to more 

inflammatory atherosclerotic lesions by increasing leukocyte recruitment to plaque 

and also decreased plaque stability (354).  It clearly suggests the existence of miR-

155 in a negative feedback loop and thereby miR-155 may diminish instead of 

enhancing the inflammatory response. 
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DCs are important components in the innate immune system and serve a crucial 

function in initiating and regulating immunity.  MiRNAs have been implicated in 

regulation of distinct aspects of DCs biology.  For instance, miR-34 and miR-21 are 

shown to be important for proper DCs differentiation by targeting WNT1 and JAG1, 

whereas miR-155 regulates their maturation by targeting the transcription factor 

PU.1 (355, 356).  In addition, another study reported that myeloid DCs from miR-

155 deficient mice show impaired ability to support T cell activation, despite 

expressing normal levels of MHC class II and co-stimulatory molecules, which 

indicates that miR-155 is not required for maturation (357).  However, miR-155 may 

participate in a negative feedback loop in myeloid derived DCs as mentioned above. 

 

Taken together the aforementioned information strongly suggest that miRNA 

network are important in controlling innate immune responses, which are induced by 

bacterial or viral TLR ligands, as well as inflammatory cytokines.  In addition, 

miRNAs have a vital role in coordinating the appropriate behavior of the immune 

system; influencing both aspects of positive and negative feedback. 

 

1.5.1.3.3 MiRNA and Adaptive Immunity  

Similarly, miRNAs also have an important role in regulating the adaptive immunity 

response. In the immune system, miRNA appear to play a key role in lineage 

induction pathways of T cells and also have a strong role in the induction, function 

and maintenance of the regulatory T-cell lineage.  T cell development in the thymus 

and their activation in the periphery is controlled by a complex protein signalling and 

miRNA network.  Several studies shown that the miRNA expression profiling in T 

cells vary between T cells subsets and stage of development (312, 358, 359).  Adding 

to this complexity, the level of miRNA expression appears to be inversely correlated 

with the activation status of the cells (312).  For example, proliferating T cells 

express mRNAs with shortened 3′ UTRs and fewer miRNA target sites than those 

seen with resting T cells, suggesting they are at that stage less susceptible to 

regulation by miRNAs (360).  Additional evidence that confirms the importance of 

miRNA in the development of mature T cells comes from observation that mice with 

specific deletion of Dicer have hypo-cellularity and the severity of the phenotype is 

dependent on the stage of development at which Dicer is removed (361, 362).  

 



Chapter I 69 

So far, two specific miRNAs have been implicated in T cell development and 

differentiation namely, miR-181a and the miR-17-92 cluster (311, 312, 363).  The 

best evidence for miR-181a playing a role in T cell development and differentiation; 

its level is correlated inversely with the activation status of T cells – such levels are 

dysregulated across naïve, effector and memory CD8 T cells (311, 312).  

Furthermore, miR-181a controls thymic development of immature T lymphocytes for 

differentiation into mature cells by modulating the strength of TCR signalling.  MiR-

181a increases the sensitivity of TCR signalling by directly targeting multiple protein 

phosphatases involved in the attenuation of signal transduction (311, 317).  While, 

the miR17-92 cluster targets the mRNA encoding pro-apoptotic proteins, leading to 

increased T cell survival during development (363).  This suggested that the hypo-

cellularity of thymic and peripheral T cells might be mediated in part by loss of miR-

17-92. 

 

Once the mature naive T cell is in the periphery, the regulatory role of miRNA is 

more clear; to control the differentiation of T helper cells into distinct effector T 

helper cell subsets (364). For instance, Rodriguez et al. have clearly demonstrated 

that CD4
+
 T cells deficient in miR-155 are biased towards Th2 differentiation and 

enhanced production of Th2 cytokines (IL4) via targeting the transcription factor c-

Maf (a potent trans-activator of the IL-4 promoter) (357).  Consistently, Bnaerjee et 

al. showed that over expression of miR-155 in CD4
+ 

T cell promotes Th1 

differentiation, while its inhibition enhances T cell bias towards the Th2 phenotype 

(365). Moreover, mice with the T cell deletion in SHIP-1, an important negative 

regulatory of many inflammatory pathways, exhibit defective Th2 differentiation 

(365).  These findings were confirmed by using miR155
-/-

 mice in CIA and 

experimental autoimmune encephalomyelitis (EAE) models in which defective Th1 

and Th17 cells responses were observed (343, 366, 367).  However, other studies 

show that miR-155 is not involved in Th1 differentiation and as such more studies 

are required and thus the precise molecular mechanism for the discrepancy between 

these studies is still not well characterized (357, 366).  Further, miR-326 promotes 

Th17 cell development by targeting ETS1, which is an established repressor of Th17 

cell development (368).  
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MiRNAs are also important in regulating differentiation of Treg, that function to 

suppress inflammatory responses.  For instance, mice with global deletion of either 

Drosha or Dicer in Treg expressing cells results in the reduction of Foxp3 Treg cells 

induction and is disproportionate to that of other T-cell subsets both in the thymus 

and the periphery (369-372).  This numerical loss leads to systemic and lethal 

inflammatory lesions.  

 

Further, miRNAs play a crucial role in controlling Treg function and miR-155 has 

the best evidence for miRNA playing a role in this regard.  MiR-155 is directly 

regulated by Foxp3 and is critical for maintaining cell homeostasis and overall 

survival; miR-155 deficient mice have impaired development of Tregs (373-375).  

This likely operates via SOCS1, a negative regulator of the IL-2 signalling pathway.  

Additionally, over expression of miR-155 during thymic differentiation is essential 

to maintain Treg proliferation activity and increase their sensitivity to their principle 

growth factor IL-2 (374).  However, other miRNAs expressed by Treg cells that 

enhance suppressive function have yet to be identified and further studies are 

required.  

 

In B cells, miRNAs appear to have a key role in early and effector cell 

differentiation, i.e. at both levels of antigen-independent development in the bone 

marrow and antigen-dependent selection in secondary lymphoid organs.  For 

example, absence of Dicer enzyme during early B cell development led to a complete 

developmental block in early B cell progenitors and have also a survival defect at the 

progenitor to precursor B cell transition (376).  Similarly, absence of miR-17-92 

leads to a developmental block at the pro-B to pre-B transition due to an increase in 

Bim expression (377).  While, ectopic over-expression of the miR-17-92 family 

results in enhanced B-cell proliferation and survival by down regulating the 

expression of pro-apoptotic gene Bcl-2/Bim (377).  Indeed, the miR-17-92 cluster 

has been associated with lympho-proliferative disease both in human and mice and 

this is thought to involve the direct targeting of transcription factors; Bcl-2 (378).  

Unlike, the miR-17-92 family, miR-155 controls important aspects of B-cell biology 

particularly during the stage of B cells response such as development of germinal 

centre B cells, the generation of isotype- switched, high-affinity IgG1 antibodies and 

memory responses (357, 379, 380).  
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1.5.1.4 MiRNA in Diseases of Immunological Origin 

MiRNAs dysregulation has been linked to the pathogenesis of many diseases of 

immunological origin by their wide regulatory role in basic cell biology, metabolism 

and in specific elements of innate and adaptive immune function.  Therefore, it is 

becoming increasingly clear that miRNAs regulation may be involve in a broad 

spectrum of immunological disorders, including the autoimmune diseases.  However, 

the role of miRNAs are only beginning to be explored in the context of 

autoimmunity but it is accepted that they are involved in variety of cellular processes 

such as apoptosis, differentiation, immune cells development and immune responses.  

Although, the exact impact of miRNAs in pathologies of autoimmune disease have 

yet to be fully understood but several mechanisms have been suggested include loss 

or down regulation of particular miRNA due to mutation or transcriptional down 

regulation, as well as upregulation of certain of miRNA either due to mutation or 

consequent to gene amplification.  Moreover, mutation at the 3’UTR of the target 

mRNA or its gene may influence the binding site or transcription upregulation and 

this result in suppressed production of its target proteins.  Interestingly, there is now 

compelling evidence that links dysregulation of miRNAs network and pathogenesis 

of autoimmune disease, include RA, systemic lupus erythematosus (SLE), multiple 

sclerosis (MS), primary biliary cirrhosis (PBC), ulcerative colitis (UC), and psoriasis.  

 

1.5.1.4.1 Multiple Sclerosis  

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory demyelinating 

disease of the central nervous system (CNS), in which myelin specific CD4
+
 T cells 

becomes activated in the peripheral immune compartment, cross the blood brain 

barrier and promote neurological damage (381).  Only recently, publications 

underscoring the role of miRNAs in the molecular mechanism of MS, have 

investigated miRNAs profiles in the PB of MS patients and some were conducted in 

the brain lesions of different disease activity of MS patients (382-388).  For example, 

miR-155 is over expressed 10 fold higher in active MS brain white matter lesions 

than normal brain white matter (387).  As I mention before, due to its various 

functions in the immune system, it is likely that miR-155 also has different functions 

in MS pathology by controlling the immune cells development and differentiation.  

MiR-155 promotes the differentiation of inflammatory T cells, including the Th17 

cell and Th1 cell subsets via targeting and down regulation of the transcription factor 
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C-Maf, which has an important role in the development of Th2 cells, where the 

differentiation is shifted towards the Th1 phenotype (343, 357).  Indeed, the miR-

155
-/-

 mice were highly resistant to EAE, a model system for studying MS (343).  

 

Furthermore, miR-326 is one of the most upregulated miRNAs in active MS lesions 

versus normal brain white matter and is also over expressed in PB leukocytes of MS 

patients with relapses than comparable cells from normal controls (384).  

Interestingly, miR-326 is also able to promote Th17 differentiation and promoting of 

T cell- dependent tissue inflammation, therefore, mice lacking miR-326 show a 

reduction of symptoms in EAE by preventing Th17 cell differentiation through 

targeting Ets-1, a known negative regulator of Th17 differentiation (384).  While 

both miR-148a and miR-126 are upregulated in the inactive MS brain lesion 

compared to control brain tissue, the latter is also down regulated in blood samples 

from MS patients versus healthy controls (382, 383, 387).  

 

Recently, there are several lines of evidence that suggest that a certain number of 

miRNAs are not only involved in pathophysiology of MS by regulating the innate 

immune response, but are also critical for relapse of the disease.  Otaegui et al. 

examined miRNA expression in the PBMCs of MS patients in relapse and remission 

status compared to controls and demonstrated that miR-18b and miR-559 are related 

in some way to the relapse while the miR-96 play a role in remission (386).  Thus, 

miRNAs are of potential importance in the molecular mechanisms of disease and 

their expression could be useful as a biomarker of the relapse status.  By contrast, 

miR-124 is expressed only in resident macrophages of brain and spinal cord 

(microglia), but not in other PB monocytes and macrophages, both in the normal 

CNS and during EAE (389).  Interestingly, miR-124 promotes cellular quiescence by 

directly targeting the mRNA encoding C/EBP-α and reduces expression of this 

protein under steady state conditions, while in EAE miR-124 is down regulated and 

thus contributes to CNS inflammation (389).  These observations clearly implicated 

miRNAs in the regulation of neuro-inflammation and can alter the magnitude of the 

inflammatory response.  
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1.5.1.4.2 Inflammatory Bowel Disease  

Ulcerative colitis (UC) and Crohn’s disease (CD), collectively termed Inflammatory 

Bowel Disease (IBD), are chronic complex disorders characterized by wide variation 

in clinical presentation with a relapsing and remitting clinical course (390, 391).  

Although, both UC and CD are involved in gastro-intestinal inflammation, they 

differ in location and the nature of the inflammation.  UC is limited to the mucosal 

layer of the rectum and colon; in contrast, CD is mainly transmural inflammation and 

can affect any part of the gastrointestinal tract from the mouth to the anus (390, 391).  

Recently growing evidence indicates that there is altered expression of the tissue 

miRNAs profile in UC and CD as well as in PB (392-394).  Several of these studies 

have examined miRNA expression in epithelial cells of patients with crohn’s ileitis, 

crohn’s colitis and active ulcerative colitis and suggest that abnormalities in miRNA 

expression may contribute to the molecular mechanisms of disease as well as 

distinguishing between diseases states.  Comparison of miRNA profiles isolated 

from colonic biopsies for healthy controls and patients with active UC, inactive UC 

and chronic active CD revealed that active UC was associated with differential 

expression of 11 miRNAs; 3 (miR-192, miR-375, and miR-422b) were significantly 

decreased, whereas the other 8 miRNAs were significantly increased in active UC 

tissues compared to healthy control tissues (392).  Particularly, miR-192 and miR-21 

were the most highly expressed in active UC tissue compared to healthy controls.  

Interestingly, miR-192 correlated inversely with the expression of MIP-2α, 

(chemotactic cytokine) and immunohistochemistry confirmed its expression in 

colonic epithelial cells (392).  

 

Furthermore, differential miRNA expression pattern in patients with active versus 

inactive UC are distinct, for instance, the miRNAs were increased in active UC, 4 of 

the 8, miR-23a, miR-16, miR-24, and miR-29a, were increased in colonic tissues of 

both active and inactive UC, while the expression of the other 4 was mostly 

consistent with healthy control levels.  In contrast, miRNAs decreased in active UC 

exhibited increased expression of miR-375 and miR-422b in inactive UC compared 

to healthy control, while miR-192 was unchanged in inactive UC (392).  On the other 

hand, differential miRNAs profiling in the subgrouping crohn’s iletis and crohn’s 

colitis reveals that 3 miRNAs: miR-23b, miR-106, and miR-191 were significantly 

increased in active Crohn’s colitis and are not UC-associated miRNAs (393).  

http://www.emedicinehealth.com/script/main/art.asp?articlekey=25976
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Furthermore, that study similarly reported that miRNAs profiling in Crohn’s ileitis 

versus healthy control and showed that miR-16, miR-21, miR-223, and miR-594 

were over-expressed in active terminal ileal CD tissues (393).  

 

Comparison of miRNA expression profiles in PB of active CD and inactive CD with 

those from healthy controls revealed that five miRNAs, were significantly over 

expressed while two miRNAs, miR-149* and miRplus-F1065 were significantly 

down regulated in active CD compared to healthy controls (394).  In particular, four 

of the five miRNAs including miRs-199a-5p, 362-3p, 532-3p and miRplus-E1271 

were over expressed in PB of active CD compared with inactive CD, while the miR-

340* was significantly expressed in both active and inactive CD.  In contrast, miR-

149* expression was significantly decreased in PB of both active and inactive CD 

but miRplus-F1065 was decreased only in active CD (394).  Similarly, analysis of 

the miRNA expression in PB samples of active UC patients and healthy controls 

demonstrated that twelve miRNAs, includes miR-28-5p, miR-151-5p, miR-199a-5p, 

miR-340*, miR-3180-3p, -miRplus-E1271, miRplus-F1159 miRplus-E1035, 

miRplus-1153, miR-523-3p miR-103-2* and miR-362-3p, were significantly 

upregulated in active UC patients with miR-103-2* and miR-362-3p being most 

highly expressed compared with controls (394, 395).  Notably, the first 9 miRNAs 

were increased in PB of active UC but not in blood of patients with inactive UC, and 

miR-505* was decreased in both active and inactive UC compared to healthy 

controls (394, 395).  Interestingly, PB profiling of miRNAs expression can 

distinguish the active CD and active UC and further analysis indicates that 10 

miRNAs were significantly increased in active UC compared to active CD and only 

miR-505* was significantly decreased in active UC (394).  Overall, differentially 

expression of miRNAs in PB could be useful tools for diagnosis and early 

biomarkers methods to determine patient’s disease course.  

 

1.5.1.4.3 Systemic Lupus Erythematosus  

Systemic lupus erythematosus (SLE) is a chronic inflammatory systemic 

autoimmune disease that affects multiple organs or systems, including skin, joints, 

kidneys, and the CNS. The clinical manifestations of SLE are secondary to 

autoantibody mediated destruction of host cells or trapping of antigen-antibody 

complexes in capillaries of organs resulting in inflammation and tissue damage 
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(396).  It is becoming increasingly clear that miRNAs may play an important role in 

SLE pathogenesis. Dai et al. revealed that comparison of the miRNA profile in SLE 

patients and healthy controls identified a group of 16 miRNAs that are differentially 

regulated in SLE PBMCs; 7 miRNA (miR-196a, miR-17-5p, miR-409-3p, miR-141, 

miR-383, miR-112, and miR-184) were down regulated, while 9 miRNA (miR-189, 

miR-61, miR-78, miR-21, miR-142-3p, miR-342, miR-299-3p, miR-198, and miR-

298) were upregulated, compared to healthy controls (397).  The same group has 

analysed the miRNA profiling of kidney biopsies taken from lupus nephritis patients 

versus controls and revealed 66 miRNA were differentially expressed compared to 

controls; 36 miRNAs were upregulated and 30 were down regulated (398).  

Furthermore, Tang et al. examined the miRNA expression in the PBMCs of SLE 

patients during a relapse and remission, versus normal controls, demonstrating that 

the decrease expression of miR-146a in SLE patients inversely correlated with 

clinical disease activity and over activation of the type I IFN pathway (399). 

Interestingly, over-expression of miR-146a inhibits the induction of type I IFNs 

pathway in PBMCs of SLE patients, this suggested that miR-146a could be the 

causal factor in abnormal activation of type I IFN in SLE (399).  These data highlight 

the potential important role of miRNA expression both as diagnostic markers and as 

factors implicated in the pathogenesis of SLE. 

 

1.5.1.4.4 Rheumatoid Arthritis  

Abnormalities of miRNA expression may contribute to the molecular mechanisms 

that underpin RA pathogenesis.  After the first report provided by Stanczyk in 2008 

describing dysregulation of miRNA networks in RASFs, several investigators 

examined miRNAs either in circulation, plasma and PBMCs, or within the SF or 

synovium tissue and suggested there is a link between miRNA function and RA 

pathogenesis (Figure 1.3).  Pauley et al. clearly demonstrated the PBMCs of RA 

patients exhibited between 1.8 fold and 2.6 fold increase in miR-146a, miR-155, 

miR-132 and miR-16 expression compared to healthy controls and increased miR-

146a and miR-16 expression correlated with disease activity (400).  These 

observations supported the notion that miR-146a could be a promising diagnostic 

biomarker of autoimmune disease.  Similarly, Murata et al. provide the first 

description of increased concentrations of miR-16, miR-146a, miR-155 and miR-223 

in RA SF, where as miR-132 was not significantly different, as compared to OA SF.  
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Interestingly, increased plasma concentration of these miRNAs inversely correlated 

with tender joint counts and plasma miR-16 also inversely correlated with 28-joint 

disease activity score (401).  Additionally, miR-146a expression in RA CD4
+
 cells 

was positively correlated with the levels of TNF-α in both PB and SF (402).  

 

Of relevance in the current context, several studies have also evaluated miRNA 

profile expression in RA synovial tissue and RASFs in particular.  It is becoming 

increasingly clear that many miRNAs are either upregulated or down regulated in 

rheumatoid tissues.  Among these; miR-124a is significantly under expressed 

compared with OA synovial tissue and over expression of miR124a in RASFs results 

in arrested cell cycle at the G1 phase and suppressed MCP-1 (403).  Koch et al. 

reported that MCP-1 was highly expressed in both synovial tissue and SF, which is 

important for monocyte migration and retention in joint spaces; thus, low levels of 

miR-124a may promote leukocyte migration (404).  More recently, Niederer et al. 

have demonstrated that basal expression of miR-34a*, the passenger strand of miR-

34a, was also down regulated in RASFs compared with OASFs and negatively 

correlated with X-linked inhibitor of apoptosis protein expression in SFs.  However, 

expression levels of miR- 34a, miR-34b/b*, and miR-34c/c* did not differ between 

RASFs and OASFs (405). 

 

In contrast, miR-155 and miR-146a were more highly expressed in SFs of RA 

patients than those from patients with OA (332, 406).  Furthermore, in situ 

hybridization and double immunofluorescence staining revealed RA synovial lining 

and sub lining layers are positive for miR-146a and miR-155 and primarily in CD68
+
 

macrophages (332, 367).  In addition, Stanczyk et al. reported that RA SF monocytes 

displayed higher levels of miR-155 compared with RA PB monocytes (406).  

Induction of miR-155 in RASFs significantly suppress MMP-3 and 1, these data 

suggested a possible role of miR-155 in modulating downstream tissue damage 

(406).  Recently, our group showed that RA SF CD14
+ 

monocytes express higher 

levels of miR-155 as compared with RA PB CD14
+ 

monocytes and inhibition of 

miR-155 significantly increased the expression of SHIP-1 mRNA, a potential target 

of miR-155, in RA SF CD14
+
 monocytes (367).  Taken together these observations 

suggest a dysregulation of miRNA expression in RA patients that may contribute to 

disease pathology.  Moreover, these data suggest a possible role of miRNAs to serve 
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as a diagnostic and/or prognostic marker in an array of inflammatory disorders, 

including but not limited to RA. 

 

 

 

 

 

Figure 1.3 Schematic diagrams represents dysregulation of miRNAs levels in rheumatoid arthritis either in 

circulation (PBMCs) or within the synovial fluid (SF) or synovium tissue and synovial fibroblast (SFs). 
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1.5.1.5 MiRNAs in Cell Migration  

A hallmark pathological feature of RA is infiltration and accumulation of 

inflammatory cells in the synovium of the joint.  The recruitment and retention of 

effectors cells, including monocytes to the joint space is a critical element of the 

pathogenetic sequence in RA progression and is mediated by chemokines and their 

receptors.  Thus far it has not been known whether miRNAs regulate this element of 

pathology.  Increasing our understanding of RA pathogenesis and miRNAs has 

become one of the necessary elements to answer many questions as well as clarify 

the story of RA pathogenesis.  

 

Recently, many members of the miR family have been implicated directly or 

indirectly in the regulation of cell movement and migration.  Of particular interest 

are emerging studies showing the contribution of miRNA networks to monocyte 

migration and chemokine/chemokine receptor system.  For instance, miR-124a in 

RASFs significantly suppresses MCP-1 as mention in details in section 1.5.1.4.4. 

(403).  Another miRNA implicated in cell movement, miR-34a, is under expressed in 

CD44
+ 

prostate cancer cells, initiating and metastatic cells, and overexpression of 

miR-34a in these cells leads to suppressed tumour regeneration and metastasis, 

whereas targeting miR-34a expression in CD44
- 
cells resulted in tumour expansion 

and metastasis (407).  

 

Additionally, miR-155 has been detected in human pulmonary fibroblasts in 

response to TNF-α and IL-1β and could also alter their migration.  Ectopic 

expression of miR-155 in these cells leads to induction of caspase-3 activity and 

results in increases in fibroblast migration on a type I collagen substrate (408).  

 

Likewise, Dagan et al. reported that, miR-155 directly represses native human 

germinal center associated lymphoma (HGAL) expression by binding to its 3'-UTR 

mRNA in human lymphoma cell lines (409).  Enforced expression of miR-155 

decreases expression of HGAL protein and increases SDF-1 stimulated lymphoma 

cell motility (409).  HGAL is a specific gene involved in negative regulation of 

lymphocyte and lymphoma cell motility by directly interacting with actin and 

myosin and by activating the RhoA signalling pathway (410, 411).  
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However, in pre-eclampsia miR-155 suppresses trophoblast movement.  Pre-

eclampsia is a placental dependent disorder causing maternal and perinatal morbidity 

and mortality and incomplete invasion of extra villous cytotrophoblasts that invade 

the uterine arterioles has been recognized as a common pathological feature of pre-

eclampsia.  Recently miRNA profiling in two studies showed that seven miRNAs 

were upregulated including miR-155 (412, 413).  Compared with placentas from 

woman with normal pregnancies, the placenta from woman with severe pre-

eclampsia displayed higher levels of miR-155.  Dai et al. showed manipulation of 

miR-155 levels in trophoblasts by forcing their expression reduced the ability of 

these cells to migrate, while transfection with miR-155 anti-miR reversed the 

negative effect on migration. (414).  Overall these observations strongly suggested 

that miR-155 regulates multiple genes involved the cell biological processes 

including cell migration.   

 

The foregoing literature clearly shows that miRNAs in general and miR-155 in 

particular regulate several inflammatory pathways including cell movements, of 

relevance to the synovial immune response. Thus far the ability miRNAs to directly 

regulate leukocyte recruitment to the synovial lesion have not been extensively 

investigated beyond the few datasets alluded to above. Therefore in my thesis I 

sought to explore a potential link between miRNAs in general and miR-155 in 

particular with chemokine and chemokine receptor expression in RA.  
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1.5.2 Novel Signal Pathways in Rheumatoid Arthritis  

There is increasing interest in identifying signalling pathways that might offer 

therapeutic utility in RA. This has been pioneered by the advent of Janus kinase 

(JAK) inhibitors but more studies are required to gain a fuller understanding of the 

potential of such pathways to offer therapeutic value.  I have elected to focus on one 

such pathway that offers promise as a future therapeutic target. 

 

The Sphingosine kinases/sphingosine 1 phosphate (SPHKs/S1P) axis have been 

proposed to have a significant role in the induction of various types of inflammatory 

responses and disease pathologies i.e. cancer, arthritis, asthma and ulcerative colitis 

(415).  Recent investigations in animal experimental arthritis (CIA) have clearly 

demonstrated that serum S1P levels an elevated and SPHK1 expression increased in 

the synovial membrane of mice with arthritis (416, 417).  Further evidence supports 

S1P’s key role via S1P receptors (S1PRs) in promoting synoviocyte proliferation, 

induced cyclooxygenase-2 (COX-2) expression and PG2 production (418).  

Additionally, S1P levels were elevated in RA SF (416). The SPHK2 is highly 

expressed in RASFs (419) and its targeting in CIA models results in increased 

disease activity and also increase serum levels of pro-inflammatory mediators such 

as IL-6, TNF-α, and IFN-γ (417).  Thus, SPHK1 and SPHK2 have distinct role in in 

regulating the development of inflammatory arthritis (417).  Therefore, sphingolipid 

enzymes and their products may have a different role in the pathogenesis of RA.  

Until now however, no comprehensive analysis of expression of its components in 

RA has been performed. 

 

1.5.2.1 Synthesis and Metabolism of Sphingolipids 

Over the past decade, sphingolipids and their metabolites have emerged as a new 

class of potent bioactive molecules, regulating diverse pathophysiological processes 

(420-422). Sphingolipids are important chemical structures in the cell membrane and 

formation of these molecules is mediated through one of two pathways; the de novo 

synthesis or through a salvage pathway.  The de novo synthesis of sphingolipids 

begins with the condensation of serine with palmitoyl CoA at the cytoplasmic face of 

the endoplasmic reticulum (ER) to create 3-keto-sphinganine catalysed by serine 

palmitoyl transferase (423).  This product (3-keto-sphinganine) then undergoes two 

rapid enzymatic reactions; firstly it is reduced to sphinganine (dihydro-sphinganine 
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(DHS)) by 3-keto-sphinganine reductase and subsequently acetylated to dihydro-

ceramide by dihydroceramide synthase.  The latter is converted to ceramide by 

desaturase (424, 425).  Once the dihydro-ceramide and/or ceramide are formed they 

are translocated from the ER to the lumen side of the Golgi apparatus, where they 

can be converted to dihydro-sphingomyelin (DH-SM) and sphingomyelin (SM) 

respectively, by SM synthase (424-426).  Otherwise, the dihydro-ceramide and/or 

ceramide are converted to dihydroglucosylceramide and glucosylceramide on the 

cytosolic surface of the Golgi apparatus, after translocation into the lumenal side of 

the Golgi; these molecules are converted into lactosylceramide and more complex 

sphingolipids (424).  

 

1.5.2.2 Sphingomyelin Cycle 

SM is an important membrane sphingolipid molecule formed as a precursor of 

essential lipid intermediate molecules in the sphingomyelin cycle, particularly 

ceramide (Cer), sphingosine (Sph) and S1P, which have been implicated in cell 

differentiation, proliferation and apoptosis (420, 421).  The metabolism of SM is 

regulated by the activity of different sphingomyelinase (SMase) isoforms (421, 427, 

428).  The function of each isoform is entirely related to its intracellular localisation 

and mechanisms of activation. 

 

The hydrolysis of SM by SMase leads to the generation of Cer (429).  Once the Cer 

is generated it can be phosphorylated by ceramide kinase to form ceramide-

phosphate or it can be a substrate for SM synthase to yield SM or degraded further 

by ceramidase to generate Sph.  In the same manner, Sph can be either 

phosphorylated by sphingosine kinases (SPHKs) to S1P or can be utilised by 

ceramide synthase to generate Cer (420-422, 424).  While, S1P degradation is 

achieved via two different pathways, either by the dephosphorylation backs to Sph 

via S1P phosphatase or irreversible cleavage by S1P lyase to hexadecenal and 

phosphoethanolamine and removal from the sphingomyelin cycle Figure 1.4 (430, 

431).  Therefore, formation and degradation of sphingolipids are interconnected and 

interdependent and the dynamic balance between ceramide and S1P in the 

sphingomyelin cycle can drive cellular processes either into cell survival or cell 

death. 
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1.5.2.3 Sphingosine Kinase 

Sphingosine kinases (SPHKs) are recently discovered enzymes which belong to the 

lipid kinase family that includes ceramide kinase, diacylglycerol kinase (DAGK) and 

phosphatidylinositol 3- kinase (PI3K).  SPHKs modulate diverse cellular responses 

(415).  To date, two isoforms of SPHKs, namely SPHK1 and SPHK2, have been 

cloned in humans and mice (432-435).  These isoforms contain five conserved 

domains (C1-C5) and the ATP binding site is present within C2, the C1-C3 contains 

a unique catalytic domain, which is also found in DAG kinase and ceramide kinase; 

however, C4 appear to be unique to SPHKs (432-437).  Though SPHK1 and SPHK2 

are highly homologous, the latter has 200 additional amino acids and four predicted 

trans membrane regions, while the former, has three calcium and calmodulin binding 

sequences and several protein kinase-binding sites (432-437). 

 

 

 

Figure 1.4 Diagrammatic representation of the pathways of Sphingomyelin metabolism.  The hydrolysis of 

sphingomyelin (SM) by sphingomyelinase (SMase) leads to the generation of ceramide (Cer).  Cer is then 

phosphorylated by ceramide kinase to form ceramide-phosphate or it can be a substrate for SMase to yield 

SM or degraded further by ceramidase to generate sphingosine (Sph). The Sph is then phosphorylated by 

sphingosine kinases (SPHKs) to S1P or it can be utilised by ceramide synthase to generate Cer. The S1P 

degradation is caused by two different pathways; either by the dephosphorylation back to Sph via S1P 

phosphatase or irreversible cleavage by S1P lyase to hexadecenal and phosphoethanolamine and removal 

from the sphingomyelin cycle (adapted from Wong et al., 2009 (429)). 
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Northern-blot and quantitative real-time polymerase chain reaction (QPCR) analyses 

demonstrated that SPHK1 and SPHK2 have different kinetics, tissue expression as 

well as temporal expression patterns during development, which gives a clue that 

they regulate distinct cellular and molecular functions, and could be regulated by 

different mechanisms (424).  SPHK1 is predominantly found in lung, spleen, kidney 

and blood whereas SPHK2 is highly expressed in heart, liver, brain and kidney (438).  

In humans, SPHK1 and SPHK2 are localised to chromosomes 17q25.2 and 19q13.2, 

respectively (439).  These isoforms are predominately present in the cytoplasm; 

however, recent studies have shown that the SPHKs have distinct subcellular 

distribution, which varies according to the tissue types.  SPHK1 is a ubiquitous 

cytosolic protein that rapidly translocates to the plasma membrane after activation, 

while the SPHK2 is mostly localised to the nucleus.   

 

Moreover, the SPHK isoforms differ in their substrate preferences; SPHK1 prefers 

D-erthro- sphingosine and D-erthro-dihydro sphingosine, while SPHK2 prefers 

erthro phyto-sphingosine and threo-dihydrosphingosine.  The most well known 

competitive inhibitors of SPHK1 are threo-dihydrosphingosine (DHS) and N, N 

dimethylsphingosine (DMS), while SPHK2 is inhibited by DMS (436, 440, 441). 

 

1.5.2.3.1 Mechanism of Activation and Regulation of Sphingosine Kinase 

There is a growing list of agonists that have been reported to increase SPHKs activity 

namely: 

 Agonists of G-protein coupled receptors (GPCR) such as acetylcholine, 

bradykinin, lysophosphatitic acid (LPA) and S1P. 

 Agonists of receptor tyrosine kinase-like platelet derived growth factor 

(PDGF) (442), nerve growth factor (NGF) (443), epidermal growth factor 

(EGF) (444) and VEGF (445). 

 Cross linking of immunoglobulin receptors (446, 447) and other biological 

agents such as IL-33, TNF-α, C5a and Ca
2+

 increasing agents as well as 

phorbol esters (415, 448-450).  

 

Many of these stimuli cause a rapid onset and transient activation of SPHKs.  

Although, modulation of SPHK activity by these agonists is not well understood, the 

regulation of SPHKs appears to be occurring at both transcriptional and post-
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transcriptional levels, including phosphorylation, protein-protein interaction, 

phosphatidic acid, Ca2
+
 and subcellular localization (448, 451-453).  The exact 

pathway and molecular mechanisms by which SPHKs isoforms are activated is still 

under intensive investigation and there are some challenging clues postulated by 

various studies (432, 433, 436, 454).  One of the important clues is that both SPHK1 

and SPHK2 are found in the cytosol while their active substrate Sph is found in the 

cell membrane, thus there is translocation of SPHK either by direct association with 

membrane components or by bringing it close to its substrate.  However, 

translocation to the plasma membrane could be one of the regulatory processes for 

SPHK1 activation, but not for SPHK2 (432, 433, 436, 454). 

 

Furthermore, regulation of SPHK1 by TNF-α, requires it to bind to TNF receptor-

associated factor-2 (TRAF2) resulting in activation of the enzyme, which in turn is 

required for TRAF2 mediated activation of NF-kB and subsequently prevents 

apoptosis by TNF-α (450).  In addition, it was shown that deletion of the TRAF2 

binding consensus site prevents the interaction of SPHK1 with TRAF2 and the 

stimulation of SPHK1 by TNF-α (450).  Likewise both phorbol ester, phorbol 12-

myristate 13-acetate (PMA) also induce protein kinase C mediated phosphorylation 

of SPHK1 and its translocation to the plasma membrane (448).  Taken together these 

observations show that both TNF-α and phorbol ester induce phosphorylation of 

SPHK1 at serine-225.  This is mediated by extracellular signal-regulated kinase 

(ERK1/2) and this phosphorylation was required for agonist stimulation of SPHK 

activity and translocation of SPHK1 to the plasma membrane (453).  

 

Similarly, C5a which is produced following activation of the complement system and 

stimulates C5aR; CD88 in human macrophages is capable of inducing a rapid and 

transient increase of SPHK1 activity and membrane translocation with elevation of 

the S1P level (455).  However, previous studies have compared a number of physical 

and enzymatic properties between the SPHK1 from human placenta and from E. coli 

and demonstrated little difference indicating that human SPHK1 is not post-

translationally modified and SPHK1 has a substantial basal activity (435).  

 

Whereas, in some cells these stimuli (agonists) induce a more sustained increase of 

SPHK activity, which lasts for hours or days; such as NGF mediated SPHK activity 



Chapter I 85 

in neuronal cells and stimulation of fibroblasts with TNF-α (456, 457).  The biphasic 

course of SPHK activation is most likely consistent with a first rapid increase in 

enzymatic activity, which is then followed by increased transcription. 

 

Several studies have shown that Ca
2+

 regulates SPHK1 activity by initiating an 

increase in cytosolic Ca
2+

 that is required for catalytic activity (458-460).  Though 

the Ca2
+
 modulation of SPHK activity is unclear, some of the studies have shown 

that SPHK1 binds to Ca
2+

/calmodulin and enhanced the translocation of SPHK1 to 

the plasma membrane, but not its catalytic activity (432, 433, 461).  Furthermore, it 

was shown that the Ca2
+
 induced activation of SPHK, using Ca

2+
 increasing agents 

that enhanced basal S1P formation, whereas chelating agents of intracellular Ca
2+ 

inhibited the stimulation of S1P production in HL-60 and HEK-293 cells (458, 460).  

On the other hand, SPHKs are involved in the receptor-induced Ca
2+

 mobilization 

from intracellular stores; indicating some complexity of Ca
2+

 /SPHKs interaction 

(462). 

 

Several protein-protein interaction studies suggested that the activity of SPHK1 was 

also enhanced by proteins that directly interact with SPHK1 such as protein kinase 

A, platelet endothelial cell adhesion molecule-1 and others (437, 463, 464).  

However, the physiological significance of this interaction has not been well 

understood.  For example, tyrosine kinases Lyn and Syk were recently identified 

proteins in mast cells that directly interact with SPHK1 (neither of these kinases 

phosphorylate the SPHK1), which results in increased activities of both these kinases 

and the recruitment of SPHK1 to FcԑRI shortly after stimulation (465). Although 

much less information is available about the regulation of SPHK2 activity, many 

reports have suggested that it can be stimulated by various agonists and also interacts 

directly with several intracellular proteins (466).  

 

1.5.2.4 Sphingosine 1-Phosphate (S1P) 

S1P is a pleiotropic sphingolipid identified in the early 1990s as a potent second 

messenger (467, 468).  It has emerged as a novel lipid mediator (469) and found to 

be associated with regulation of biological activities, like cell migration, 

proliferation, survival, suppression of apoptosis (470, 471) and cytoskeletal 

organization (424, 472-477).  The cellular S1P concentration is tightly regulated by 
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its formation from sphingosine by the activity of SPHKs and by its degradation 

through two distinct mechanisms; reversible dephosphorylation of S1P into 

sphingosine by S1P phosphohydrolases as well as lysophospholipid phospho-

hydrolases and irreversible degradation by a pyridoxal phosphate dependent S1P 

lyase to trans-2 hexadecanal and ethanolamine phosphate Figure 1.5 (430, 431). 

 

In the basal state, S1P generation and degradation is well balanced and results in low 

cellular concentrations of S1P (478, 479).  The S1P concentration in human blood 

ranges from 100nM to 4µM.  Furthermore, it depends on the detection methods used 

as well as the type of species under investigation (480).  In the serum, S1P is bound 

to albumin and other plasma proteins (481, 482).  In the blood, S1P is chiefly found 

in erythrocytes and thrombocytes since these cells lack S1P lyase and erythrocytes 

lack S1P phosphohydrolases (483).  Recent studies have observed that erythrocytes 

and vascular endothelial cells could be responsible for maintaining S1P 

concentrations in plasma (480, 484-487).  However, thrombocytes contain a much 

higher concentration of S1P (487, 488).  Importantly, a physiological gradient exists 

between human tissues as well as plasma and interstitial fluids (489), which is 

required for the homing of immune cells to lymphoid tissue and regulating their 

egress to lymphatic and blood circulation.  

 

1.5.2.5 S1P/S1PRs 

S1P is a pleiotropic cytokine that mediates an array of important biological processes 

(490-497) by binding specifically with G protein-coupled S1P receptors (S1PRs) 

(498-500).  In addition, S1P acts as a second messenger independent of its receptors 

(501-503) and also weakly binds to other LPA receptors like P2Y receptor (504-

506).  These GPCRs also called the endothelial differentiation gene (EDG) family of 

proteins (507-509) with low nM affinity.  The EDG receptors were recently 

classified as S1PRs (490, 510-512).  To date, the S1PR family has five members 

namely, EDG1/S1P1, EDG5/S1P2, EDG3/S1P3, EDG6/S1P4 and EDG8/S1P5.  The 

S1P and di-hydro S1P specifically bind with these receptors to elicit various 

biological processes (513).  In mammals, these receptors display tissue specific 

expression pattern, S1P1-3 are found in all tissues while SIP4 is restricted to lymphoid 

hematopoietic tissues and lung and SIP5 are mainly localized to brain and skin (447, 

501-503). 
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S1P acts in an autocrine or/paracrine way to induce an array of cellular and 

molecular functions (Figure 1.5) (470, 514-516).  S1P has shown to be transported 

from the intracellular space to the extracellular space via an ATP binding cassette 

transporter, ABCC1 in fibroblasts and mast cells (517, 518).  All the five types of 

S1PRs, like other GPCRs, undergo various regulatory processes like the removal 

from the cell membrane into the cytoplasm and vice versa.  The S1PRs are 

phosphorylated by specific GPCR kinases (GRKs) on their serine and threonine 

residues by Akt/PKB that occur within minutes of the receptor activation.  This leads 

to the recruitment of -arrestins that binds with the agonist bound S1PRs (519, 520) 

to uncouple the S1PRs from the G-proteins and cause the internalization of the 

S1PRs, which is called desensitization.  Internalized S1PRs are either recycled back 

to the plasma membrane, which is called re-sensitization or transported to lysosomes 

for degradation and ultimately causes the down-regulation of S1PRs (415, 521). 

 

1.5.2.6 An Overview of S1P/S1PRs in Health and Disease  

1.5.2.6.1 S1P1  

(Synonyms: S1PR1, EDG1) 

S1P1 is expressed in most immune cells and tissues (415).  It binds to S1P with high 

specificity and affinity, and regulates an array of cellular and molecular events such 

as cytoskeletal rearrangements and migration of mast cells toward antigen and 

FcRI-triggered degranulation (511), migration of resident stem cells in the skeletal 

muscle to improve tissue regeneration (522), differentiation of endothelial cells 

(498), inhibition of sprouting angiogenesis during vascular development (523), 

egress of immature B cells from bone marrow into blood (524) and  induction of 

inflammation (488).  S1P1 is essential for vascular maturation (525) and the loss of 

S1P1 during embryonic development leads to malformed embryonic hearts and early 

death of mouse embryos (526).  The impaired expression of S1P1 prolongs the 

survival of chronic lymphocytic leukaemia B-cells in patients with unfavourable 

prognosis (527).  The upregulation of S1P1 in peripheral T cells significantly reduces 

the progress of EAE in mice (528).  On the other hand, over expression of S1P1 was 

observed in diseases such as gall bladder adenocarcinoma (529), thyroid cancer and 

neoplasia (530), cell migration and invasion in Wilms tumour (531), lymphatic 
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metastasis in tumours (532), haemorrhage (533) and synovial hyperplasia, 

inflammation and RANKL- induced osteoclastogenesis in RA (534, 535).  

 

1.5.2.6.2 S1P2  

(Synonyms: S1PR2, EDG5) 

S1P2 is expressed consistently in many tissues and cells such as mouse bone marrow 

derived mast cells (511), T lymphocytes (536), primary human bronchial epithelial 

cells (537), glioma cell lines (538) and stria vascularis of cochlea (539).  It plays a 

role in cellular processes such as survival, growth, proliferation, migration, 

transformation, activation and mast cell degranulation (511).  It plays a vital role in 

the wound healing process during acute lung injury by inducing the proliferation of 

hepatic myofibroblasts (540). S1P2 plays a pivotal role in the function of the 

vasculature and is an important agent for the proper maintenance of hemodynamic 

(541) and myogenic differentiation (542), proper functioning of the auditory and 

vestibular systems (543), and counteracting the effect of IL-1β in human 

chondrocytes in OA patients (544).  However, it was found to be associated with 

pathological retinal angiogenesis (545), pathogenesis of endothelial injuries in 

diabetic nephropathy (546) and vasodilatation associated with anaphylactic shock 

(547). 

 

1.5.2.6.3 S1P3  

(Synonyms: S1PR3, EDG3) 

S1P3 binds to various molecules including S1P with variable affinity.  It was found 

that S1P1, S1P2, and S1P3 function co-ordinately during embryonic angiogenesis 

(548).  It plays a role in the recruitment of anti-inflammatory monocytes to micro-

vessels during implant arteriogenesis (549), Ca
2+

 release from internal stores (550), 

cell proliferation and survival (551, 552).  S1P3 is chiefly involved in the 

remodelling, proliferation, and differentiation of cardiac fibroblasts, cardio-

protection from ischemia/reperfusion injury in vivo (553).  However, it was 

associated with the development of diseases such as oedema, lymphoid cancer, 

angio-immunoblastic T cell lymphoma, and neoplasia (554).  The activation of S1P3 

by S1P and FGF may play a key role in glial proliferation, reactive gliosis and brain 

tumour formation (555).  
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Figure 1.5 S1P/S1PR axis mediated signalling. The agonists (IL-33, PDGF, TNF-) induce the expression 

of SPHK1/2 that subsequently converts sphingosine into S1P. Ceramide and sphingosine inhibit 

proliferation and induce apoptosis, while S1P stimulates growth and suppresses apoptosis, regulates 

angiogenesis, which is critical for the tumour progression. Furthermore, S1P goes outside the cell through 

ATP binding cassette (ABC) transporter C1 (ABCC1) and exerts its action through the G-protein coupled 

S1PR 1-5 in an autocrine and/or paracrine fashion to regulate cell proliferation, growth, differentiation, 

migration, apoptosis and other cellular processes (adapted and modified from Aarthi et al. 2011(415)). 

(Image is kindly supplied by Dr Peter Pushparaj). 
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1.5.2.6.4 S1P4  

(Synonyms: S1PR4, EDG6) 

S1P4 binds to S1P and involved in cell signalling in various cell types (552).  S1P4 is 

highly expressed in blood cells compared to other tissues.  It is coded by an intron 

less gene and is mainly expressed in lymphoid tissues (552).  It regulates various 

intracellular molecules, release of Ca
2+

 from internal stores (556), chemotaxis (557), 

regulation of immune response, activation of adenylate cyclase and phospholipase C 

(PLC) (556, 558) and inhibition of T cell proliferation as well as secretion of 

effector cytokines such as IL-2, IL-4 and IFN and increased production of anti-

inflammatory cytokine, IL-10 in S1P4 only T cells (559).  Until now, S1P4 is not 

associated with any disease pathologies (415). 

 

1.5.2.6.5 S1P5  

(Synonyms: S1PR5, EDG8) 

Like other S1P receptors, S1P5 interacts with S1P and is involved in cellular 

signalling processes in a variety of cells (552).  S1P5 is highly expressed in NK cells 

and oligodendrocytes of the CNS compared to other tissues (560).  Unlike other 

S1PRs, S1P5 is chiefly restricted to the brain and the skin (552).  It plays a role in the 

egress of NK cells from lymph nodes and bone marrow (561).  Like S1P4, it is also 

not associated with any disease pathologies (415).  

 

1.5.2.7 SPHK/S1PRs and Axis in Rheumatoid Arthritis  

Recently, several efforts have also been made to demonstrate the role of SPHKs/S1P 

in autoimmune disease in general and RA in particular (416, 417, 562, 563).  

Multiple studies have clearly demonstrated that the expression of SPHK1/2 was 

increased in RA synovium.  In addition, the levels of S1P in the SF of RA patients 

were found to be significantly higher than those of OA patients (416).  Of relevance 

in the current context, elevated SPHK1, S1P, and S1P1 levels have been detected in 

RA synovium and the S1P/S1P1 axis played a role in synovial proliferation and 

induced cyclooxygenase-2 COX-2 expression (418).  Also, S1P was required for the 

ability of the TNF-α to induce COX-2 leading to PGE2 production (418).  Also the 

increased level of SPHK2 in the RASFs was found to be contributing to the 

proliferation (419). 
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The role of SPHKs/S1P in RA has been studied using a non-specific SPHKs 

inhibitor, DMS, and RNA interference (RNAi) approach against SPHKs.  

Additionally, DMS significantly reduced the levels of TNF-α, IL-6, IL-1β, 

CCL2/MCP-1, and MMP-9 in cell-contact assays using both Jurkat-U937 cells and 

RA PBMCs.  Furthermore, intraperitonieal administration of DMS in the CIA model, 

significantly inhibited disease severity and reduced articular inflammation and joint 

destruction.  Furthermore, similar reduction in incidence and disease activity was 

observed in mice treated with SPHK1 knock-down using the RNAi method (417).  

These results provide us with a clue that the S1P/S1PRs axis modulation may 

provide a novel approach in treating or managing chronic autoimmune conditions 

like RA. 

 

Since, the pleiotropic modulator S1P and its five receptors may have a role in the 

pathogenesis of RA, the understanding of sphingolipid signal transduction pathway 

will be essential for the development of novel therapeutic for RA.  Until now 

however, no comprehensive analysis of expression of its components in RA has been 

performed.  

 

1.6 Aim  

The purposes of the present study are to; 

1) Explore a role for a novel miR-155 regulatory pathway for monocyte 

migration in RA via modulation of chemokine and chemokine receptor 

system. This study investigated the role of miR-155 on chemokine and 

chemokine receptor expression using human blood monocytes and bone 

marrow derived monocytes and macrophages from miR-155
-/-

 and WT mice.  

 

2) Explore the differential expression of SPHK1/2, S1P and its five receptors in 

the blood cells and the synovium of RA patients compared to healthy controls 

and OA patients. 
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2.1 Reagents 

Histo-hypaque gradient-1107 and leukocyte separation-1119 were purchased from 

Sigma-Aldrich, USA.  Human CD8
+
, CD4

+
, and CD14

+ 
micro beads, human CD15-

FITC, CD14-FITC, CD8-FITC, CD4 PE, Mouse IgG2a-FITC and mouse IgG2a-PE, 

auto-MACS running buffer, auto-MACS rinsing solution all were purchased from 

Miltenyi Biotec Inc.  SPHK1, S1P1, S1P2, S1P3 and S1P5 primary antibodies from 

Abcam plc, Cambridge, UK, while SPHK2, S1P4 antibodies were purchased from 

Santa Cruz Biotechnology.  BD Cytofix/Cytoperm and Fixation/Permeabilization 

Solution Kit were purchased from BD Biosciences.  High Capacity cDNA Reverse 

Transcription Kit and Fast SYBR Green Master Mix were ordered from AB Applied 

Biosystems, USA.  The Sphingosine 1 Phosphate ELISA Kit (S1P) K-1900 was 

purchased from Echelon Biosciences Inc and QPCR primers for SPHK1/2 and 

S1PR1-5 were ordered from Integrated DNA Technologies BVBA.  The Fc Receptor 

blocker was purchased from Wako Chemicals GmbH. 

 

miRIDIAN mimic hsa-miR-155, miRIDIAN microRNA mimic negative control, 

miRIDIAN microRNA mimic transfection control with Dy547 were purchased from 

ABgene Limited.  N-TER
™

 nanoparticle siRNA transfection system (Sigma), 

ammonium chloride solution, Stem cell Technologies, while, RNeasy mini kit, 

miScript reverse transcription Kit, Hs_miR-155_1 miScript primer assay, 

Hs_RNU1A_1 miScript primer assay, miScript SYBR Green PCR Kit, all purchased 

from Qiagen Germany.  Mouse CD11b micro beads and mouse CD115 micro beads 

kit were purchased from Miltenyi Biotec Inc.  Further, APC anti-mouse CD115 

(CSF-1R) antibody, PE/Cy7 anti-mouse Ly-6C antibody, FITC anti-mouse CD11b 

antibody, PE anti-mouse Ly-6G antibody, FITC Rat IgG2b, κ Isotype Ctrl antibody 

were all purchased from Biolegend.  Murine M-CSF was purchased from Peprotech. 

 

Human cytokine panel I milliplex catalog ID MPXHCYTO-60K-12 and human 

cytokine panel II milliplex catalog ID MPXHCYP2- 62K-05 were purchased from 

Merck Millipore. 
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2.2 Collection of Peripheral Blood and Synovial Fluid Samples 

Peripheral blood (PB) samples were obtained from healthy controls and RA patients, 

who were older than 18 years of age and capable of providing informed consent.  All 

the RA patients recruited to this study met the diagnostic criteria of 2010 

ARC/EULAR.  All procedures received Ethics Approval.  Groups were age and sex 

matched.  Dr. David McCrery, a rheumatologist at Rheumatology clinic, Glasgow 

Royal Infirmary (Glasgow, U.K.) and I within the department, collected blood 

samples from arthritis patients and controls respectively.  Blood samples were 

collected into lithium heparin vacuettes and were transferred to the research unit.  

Diagnosis of RA was made based on classification criteria described in the 

introduction.  Healthy donors did not have a history of any diseases.  Further, SF 

samples were collected from RA patients at various routine outpatient Rheumatology 

Clinics at Glasgow Royal Infirmary or Glasgow Stobhill Hospital (Glasgow, U.K.).  

All samples were collected into lithium heparin vacuettes. 

2.3 SPHK1/2 and SIPR1-5 Study  

For the SPHK1/2 and SIPRs study the total amount of blood sample taken from both 

healthy controls and RA patients was thirty-five ml; thirty ml of which were used for 

cell isolation and sorting while the other five ml of blood was used for serum 

separation to measure S1P levels. 

 

2.3.1 Isolation of Serum Samples 

Five ml of PB was collected in a serum separation tube and allowed to clot and then 

centrifuged (3000 RPM) at room temperature for 10 minutes.  Serum was aliquoted 

and stored at 80°C until analysis.  Serum samples from healthy controls (n=20) and 

RA patients (n=40) were used to assay the S1P level by using a competitive S1P 

ELISA KIT (S1P) K-1900 (Echelon Biosciences Inc., USA) as per manufacturer’s 

instructions.  Samples were analysed in triplicates. 

 

2.3.2 Isolation and Purification of Human Leukocytes from Blood 

For isolation of CD14
+
 monocytes, T lymphocytes (both CD4

+
 and CD8

+
 cells) and 

neutrophils, density gradient centrifugation of 30 ml heparinized blood was 

performed.  This was done using Histo-Hypaque gradient-1107 and leukocyte 
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separation-1119 (Sigma-Aldrich, USA) according to manufacturer’s instructions 

with minor modification.  In brief, 3ml of Histo-Hypaque gradient-1107 was 

carefully layered on top of 3ml of leukocyte separation -1119 in 15ml conical 

centrifuged tubes.  Then approximately 6ml of diluted PB (diluted 1:1 with 

phosphate buffered saline (PBS)) was carefully layered on top and centrifuged at 

2500 RPM at room temperature for 25 minutes.  After centrifugation two distinct 

layers were obtained, the interface mononuclear cell-rich buffy coat layer and the 

opaque layer containing neutrophils were collected using a Pasteur pipette and 

transferred to clean tubes labelled as PBMCs and neutrophils respectively.  After that 

cells were washed with cold PBS and centrifuged at 1500 RPM for 5 minutes.  This 

step can be repeated two to three times for better cell purification, and numbers of 

viable cells from both tubes were counted by using haemocytometer and trypan blue 

staining.  Finally, PBMCs and neutrophils cells were resuspended in the appropriate 

amount of PBS until further serial purification. 

 

2.3.2.1 Serial Purification of CD14
+
 Monocytes, CD4

+
 and CD8

+ 
T 

Lymphocytes from PBMCs  

Purification of CD14
+ 

monocytes and both subset of T lymphocytes (CD4
+
 and CD8

+ 

cells) were carried out in cascades by magnetic-activated cell sorting (MACS) using 

the Auto-MACS separator according to manufacturer’s protocol (Miltenyi Biotec).  

The PBMCs were isolated as previously described and washed with MACS buffer 

(PBS containing calcium and magnesium, 2% Foetal Calf serum (FCS) and 

100U/mL penicillin and 100g/ml streptomycin) and incubated at 4°C with anti-

CD16/CD32 (Fc Block) to reduce non-specific binding by Fc receptors.  Cells were 

then incubated with 80µl of MACS buffer and 20µl of human CD8
+
 micro beads 

(Miltenyi Biotech) per 1x10
7
 cells for 15 minutes at 4°C.  After the incubation cells 

were washed with approximately 10ml of MACS buffer and centrifuged at 1500 

RPM for 5 minutes.  Supernatant were discarded and the cells were resuspended in 

5ml of MACS buffer and purified by positive selection on an Auto-MACS separator 

using the “possel” programme.  The positive fraction was run through the “possel” 

program again in order to increase the cell purity, which ranged between 95-98%, as 

assessed by flow cytometry.  The numbers of viable CD8
+
 cells were counted using a 

haemocytometer and trypan blue staining.  Cells was resuspended in the appropriate 

amount of MACS buffer and incubated on ice until further analysis.  
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The number of viable cells from the negative fraction of purified CD8
+
 cells were 

counted and incubated with 80µl of MACS buffer and with 20µl of human CD14
+
 

micro beads (Miltenyi Biotec) per 1x10
7
 cells for 15 minutes at 4°C.  After the 

incubation cells were washed and centrifuged as previously described and then 

purified by positive selection on Auto-MACS separator using the “possel” 

programme twice.  The number of viable CD14
+
 cells were counted using trypan 

blue staining and resuspended in the appropriate amount of MACS buffer until 

further analysis.  The purity of enriched CD14
+
 monocytes from the second passage 

was assessed by FACS analysis.  The number of viable cells from the negative 

fraction of purified CD14
+
 cells were counted and incubated with 80µl of MACS 

buffer and with 20µl of human CD4
+
 micro beads (Miltenyi Biotech) per 1x10

7
 cells 

for 15 minutes at 4°C.  The cells were washed, centrifuged and purified as previously 

described, and finally the number of viable CD4
+
 cells were counted using trypan 

blue staining and resuspended in the appropriate amount of MACS buffer until 

further analysis.  The procedure for the cascade purification of CD14
+
monocytes, 

CD4
+ 

and CD8
+
 T lymphocytes from PBMCs using the MACS and Auto-MACS 

separator are shown on Figure 2.1.   

 

 

 

Figure 2.1 Cascades purification of CD14
+
monocytes and both CD4

+
 and CD8

+ 
T lymphocytes from 

PBMCs using magnetic-activated cell sorting (MACS) Auto-MACS separator. 

 

After isolation and purification of (CD15
+
 neutrophils, CD14

+
monocytes, CD4

+ 
and 

CD8
+
 T cells) from PB, the cell suspension was split into three tubes. One tube was 

used to assess the cell purity (on the same day), while the second and third tube were 

used to examined the intracellular expression and mRNA levels of SPHK1/2 and 

SIP1-5 using FACS technique and QPCR, respectively. 

PBMCs

CD8
+

Cells
Negative 

fraction

CD14
+ 
Cells

Negative 

fraction

CD4
+
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Negative 
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CD 8 micro beds

CD 14 micro beds

CD 4 micro beds
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2.3.2.2 Assessment of Cell Purity 

Assessment of cell purity was performed on the same day of cells purification.  The 

100µl of enriched cell suspension (approximately 1x10
6 

cells) was stained with 10µl 

of specific antibodies or appropriate isotype control.  The CD15
+
 neutrophils, CD14

+ 

monocytes and CD8
+
 T cells were stained with CD15, CD14 and CD8 FITC 

antibodies, respectively and isotype control (mouse IgG2a FITC).  While CD4
+
 cells 

were stained with CD4 PE antibody and isotype control mouse IgG2a PE.  All were 

incubated for 15 minutes in dark at 4°C.  The cells were washed with 2ml of FACS 

buffer (PBS containing calcium and magnesium, + 2% FCS + 0.1mM EDTA) and 

centrifuged 1500 RPM for 5 minutes.  The cells were then resuspended in 300-500µl 

of FACS buffer and acquired use a FACS caliber (BD Biosciences) with Cell Quest 

Pro Software (BD Bioscience, USA) and data analysed via FlowJo software (Tree 

Star Inc., USA) (Figure 5.2). 

 

2.3.2.3 Intracellular Protein Staining 

For intracellular protein levels of SPHK1/2 and SIPR1-5 1ml of cell suspension 

(1x10
7
) of each type of purified cells: CD15

+
 neutrophils, CD14

+ 
monocytes and 

both CD4
+
 and CD8

+
 T lymphocytes were washed with PBS and centrifuged at 1500 

RPM for 5 minutes and then cells were fixed by addition of 1ml of 4% 

paraformldehyde (Sigma) and incubated for 20 minutes at 4°C.  After incubation the 

cells were then washed twice with 2ml FACS buffer and resuspended in 1ml of 

FACS buffer and stored at 4°C until the analysis. 

 

On the day of analysis, each tube of purified cells were washed with FACS buffer 

and centrifuged at 1500 RPM for 5 minutes and supernatant discarded completely.  

To fix and permeabilize cells, the cells were incubated with 300µl/tube with cytofix 

cytoperm (BD Biosciences, USA) for 30 minutes at 4°C.  The cells were then 

washed twice with 1ml cytoperm wash (BD Biosciences, USA), and then 

resuspended in 1ml of wash buffer.  Aliquot of 100µl of each type of cells were 

incubated for 30 minutes at 4°C with primary antibodies for SPHK1/2 or SIPR1-5 or 

appropriate isotype controls; the SPHK1, SIP1, S1P3 and S1P5 share the same isotope 

control (primary rabbit antibody), while the other share the primary goat antibody as 

isotype control (Table 2.1).  Incubation followed by 1ml wash with cytoperm wash 

and then cells incubated with appropriate secondary antibody labelled with FITC for 
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30 minutes at 4°C.  Finally cells were washed with 1ml cytoperm followed by 2ml 

washing with FACS buffer, and then resuspended in 300-500µl of FACs buffer and 

acquired using a FACs calibre with Cell Quest Pro Software and data analysed using 

Flowjo software.  

 

Table 2.1 Primary antibodies for intracellular SPHK1/2 and SIPR1-5 staining and appropriate secondary 

antibodies and isotype controls. 

 

Primary antibody Supplier Isotype control 2
nd

 antibody 

Human SPHK1 Abcam plc Rabbit antibody Anti Rabbit FITC 

Human SPHK2 Santa Cruz inc Goat antibody Anti Goat FITC 

Human SIP1 Abcam plc Rabbit antibody Anti Rabbit FITC 

Human S1P2 Abcam plc Rabbit antibody Anti Rabbit FITC 

Human S1P3 Abcam plc Rabbit antibody Anti Rabbit FITC 

Human SIP4 Santa Cruz inc Goat antibody Anti Goat FITC 

Human SIP5 Abcam plc Rabbit antibody Anti Rabbit FITC 

 

2.3.3 Immunohistochemistry Staining for SPHK1/2 and SIPR1-5  

Synovial tissue specimens were obtained from RA and OA patients at the time of 

arthroscopic biopsy or total joint replacement surgeries.  All RA and OA patients 

fulfilled the diagnostic criteria for RA and OA classification respectively, and written 

consent form was obtained from all subjects.  Synovial tissue specimens were 

preserved in 10% formalin, embedded in paraffin and then serially sectioned onto 

microscope slides at 5µm thickness.  Immunohistochemistry staining (IHCs) 

procedure was performed at room temperature over two days by using a primary 

antibody and a biotinylated secondary antibody with Avidin/Biotin Complex and 

DAB chromagen (ABC) method.  

 

Briefly, tissue sections from the RA and OA patients were heated in a tissue drying 

oven (GenLab) for 30-35 minutes at 60°C and deparaffinised twice in xylene for 5 

minutes.  After that tissues were rehydrated twice through descending series alcohol 

for 30 seconds.  For antigen retrieval, slides where immersed in 0.01M-citrate buffer, 

pH 6.0 and boiled in a microwave for 20 minutes.  Slides were then left to cool for 

15 minutes before being washed in distilled water for 5 minutes and washed twice in 

TBST for 5 minutes.  Later, sections were incubated for 30 minutes with 20% horse 

serum in TBST containing diluent of avidin D (from Avidin blocking kit) at room 

temperature in a humidified box.  To prevent non-specific binding section were 
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incubated with Fc Receptor blocker (Wako Chemicals GmbH, Germany) for 30 

minutes after tapping off the Blocking serum.  After that slides were incubated over-

night with primary antibodies to SPHK1/2 or SIPR1-5 or appropriate isotopes control 

(Table 2.2). The next day, sections were washed and incubated with 0.05% hydrogen 

peroxidase in methanol for 30 minutes to block any endogenous peroxidase activity 

and sections were further washed and incubated with appropriate biotinylated 

secondary antibody diluted in 2.5% human serum in TBST (1:200) for 30 minutes.  

Sections were incubated with Avidin/Biotin Complex for 30 minutes.  Complex was 

made by mixing 2 drops of solution A with 5mls TBST mixed followed by 2 drops 

of solution B, from the Standard Vectastain ABC kit.  Sections were washed twice in 

TBST for 5 minutes and stained with DAB chromagen following manufacturer’s 

instructions.  Finally, sections were washed with water for 5 minutes and 

counterstained with Harris Heamatoxyline for 15 second and then washed in running 

water for 2 minutes and then dehydrated through an ascending series of alcohol to 

xylene.  The sections were mounted using DPX mounting solution and were allowed 

to air dry before covering with coverlids.  Pictures of sections were taken using an 

Olympus BX 41 microscope, DP 25 camera and Axiovision software.  The extent 

and intensity of staining in synovial lining cells, sub-lining layer and vascular 

endothelial cells were graded on a scale of 0-4+ (0= no cells, 1= < 25%, 2= 25-50%, 

3= 50-75%, 4= 75%) by two observers blind to the nature of the samples, on 2 

separate occasions.  

 
Table 2.2 Antibodies for immuno-histo chemistry staining show antibody target of SPHK1/2 and SIPRs 

and their working concentration for each antibody with appropriates isotype controls and secondary 

antibodies.  Dilutions were not mentioned as stock concentration of antibodies can vary. 

 

Primary  

Antibodies 

Working 

Concentration 

Supplier Isotype  

Control 

Secondary 

antibodies 

Rabbit Polyclonal 

human SPHK1 

2.5μg/ml Abcam plc Rabbit IgG Biotinylated 

antiRabbit (1:200) 

Goat Polyclonal 

human SPHK2 

2.5μg/ml Santa Cruz  Goat IgG  Biotinylated 
antiGoat (1:200) 

Rabbit Polyclonal 

human SIP1 

2.5μg/ml Abcam plc Rabbit IgG Biotinylated 

antiRabbit (1:200) 

Rabbit Polyclonal 

human SIP2 

2.5μg/ml Abcam plc Rabbit IgG Biotinylated 

antiRabbit (1:200) 

Rabbit Polyclonal 

human SIP3 

1.8μg/ml Abcam plc Rabbit IgG Biotinylated 

antiRabbit (1:200) 

Rabbit Polyclonal 

human SIP5 

2.5μg/ml Abcam plc Rabbit IgG Biotinylated 

antiRabbit (1:200) 
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2.3.4 Gene Expression in Purified Cells 

2.3.4.1 RNA Extraction and Reverse Transcription 

The third aliquot from freshly isolated CD15
+
 neutrophils, CD14

+
monocytes and 

both CD4
+
 and CD8

+
 T lymphocytes were centrifuged at 1500 RPM for 5 minutes 

and then lysed for total RNA extraction using the 350µl buffer RLT (Qiagen RNeasy 

mini kit, Qiagen, Germany) according to the manufacturer’s instructions.  The 

quality of the RNA was determined spectrophometrically at 260 nm.  RNA samples 

were stored at -80°C until further analysis.  The total RNA was reverse transcribed 

into cDNA according to the manufacturer’s instructions using the High Capacity 

cDNA reverse transcription kit obtained from Applied Biosystems, UK. 

 

2.3.4.2 Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

Quantitative RT-PCR was performed on triplicate samples using the ABI 7900HT 

Fast Real Time PCR System (Applied Biosystems, UK) with human SPHK1/2, 

S1PR1-5 primers using the SYBR green method.  Primers were all designed using 

Primer Express software (Applied Biosystems).  The PCR reaction was carried out 

according to the manufacturer's protocol (Applied Biosystems, UK).  Reaction 

mixtures of 20μl contained 10μl SYBR green master mix with the ROX dye as the 

passive reference, 5mM MgCl2, 200μM dATP, dCTP, dGTP, 400μM dUTP, 1.25 U 

AmpliTaq Gold DNA polymerase, 0.5U AmpErase uracil N-glycosylase (UNG), 

300nM forward and reverse primers (each 3.6μl), distilled water (0.8μl) and 2μl 

cDNA.  All reagents were obtained from Applied Biosystems, UK. 

 

To compensate for variation in amount of RNA taken, expression of target genes was 

normalized to an endogenous control (-actin).  For this analysis the comparative Ct 

method (ΔCt) was used (564).  The ΔCt values were generated via the subtraction of 

Ct value of target gene from CT value of -actin control. Next, ΔΔCt values were 

obtained by calibrating the ΔCt of target gen against mean ΔCt of caliber (mean ΔCt 

healthy control).  

 

ΔΔCt = (Ct target – Ct reference) Calibrator – (Ct target – Ct reference) Sample 

Relative quantitative values were calculated as 2^-ΔΔCt and results are expressed as 

fold change over healthy control.  
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2.4 MicroRNA study 

For the miRNA study, 35-40ml of PB from RA patients (n=24) and from age and sex 

matched healthy controls (n=22) were used for in vitro experiments.  In addition, SF 

samples were collected (n=11).  The characteristic clinical and laboratory 

information of RA patients are presented in detail within Chapter III. 

 

2.4.1 Purification of Human CD14
+ 

Monocytes from PB and SF 

Blood samples were placed into sterile 50ml centrifuge tubes with an equal volume 

of wash medium (RPMI 1640 medium [Gibco, Invitrogen, Carlsbad, CA, USA] 

containing 100U/mL penicillin and 100g/ml streptomycin).  Diluted blood was 

slowly layered on top of 3ml Histo-Hypaque gradient-1107 in a 15ml centrifuge 

tubes.  Samples were spun at 2500 RPM for 25 minutes at room temperature, which 

separates the blood samples into three layers.  The very bottom layer is red blood 

cells then Histo-Hypaque, followed by a white ring layer, which contains PBMCs.  

PBMCs layers was carefully taken up and transferred to new tubes and mixed with 

wash media and spun at 1500 RPM for 5 minutes.  The supernatant was carefully 

taken off, and the cell pellet was resuspended in the appropriate amount of wash 

media and numbers of viable cell were counted by using haemocytometer and trypan 

blue staining.  

 

SF samples were centrifuged at 3000 RPM for 10-15 minutes at room temperature.  

The SF supernatant was carefully taken off using a Pasteur pipette, and the cell 

pellets resuspended in wash medium.  Cell suspension was pipetted up and down 

several times and passed through Nitex mesh (Cadisch and Sons, London, UK).  

Next, cells suspension was carefully layered on top of 3ml Histo-Hypaque gradient-

1107 and centrifuged 2500 RPM for 20 minutes at room temperature.  Cell pellets 

were washed by addition of 10 ml wash media and the numbers of viable cells were 

counted using a haemocytometer and trypan blue staining.   

 

Purification of CD14
+
 monocytes was carried out from isolated PBMCs and SF 

pellets using the CD14 micro beads and Auto-MACS separator according to 

manufacturer’s protocol (Miltenyi Biotec) as we mentioned before.  The positive 

selection of purified CD14
+
 cells was run using the “possel” program in order to 
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increase the cell purity, which ranged between 95-98% (Figure 3.1).  Number of 

viable CD14
+
 cells was determined via a haemocytometer with trypan blue staining.  

Cells were cultured at 37
o
C in 5% CO2 controlled environment and treated as 

described below. 

 

2.4.2 Cells Culture and Transfection 

Enriched PB CD14
+
 monocytes were seeded in 24-well plates at a concentration of 

0.35x10
6
 cells per 600L of complete RPMI 1640 medium (RPMI 1640 medium 

[Gibco, Invitrogen, Carlsbad, CA, USA] containing 10% FCS, 100U/mL penicillin 

and 100g/ml streptomycin L-Glutamine (2mM).  PB CD14
+
 monocytes were either 

transfected with hsa-miR-155 mimic, or mimic negative control/miRNA mimic 

transfection control labelled with Dy547, at 20nM concentration using the N-TER 

nanoparticle siRNA transfection protocol or were left un-transfected, as an additional 

control.  It is important to mention that preliminary studies in our lab optimized the 

transfection efficiency and concluded that the 20nM was the optimal transfection 

concentration based on unpublished QPCR data (Kurowska-Stolarska et al.).  After 

transfection, cells were incubated at 37
o
C in 5% CO2 controlled environment for 24 

h. 24 h later some wells were stimulated with different doses (2, 10 or 100ng/ml) of 

LPS.  Cells were cultured for 16-18 h further.  After that culture supernatants were 

transferred into 1.5 Eppendorf tubes and centrifuged at 1500 RPM for 5 minutes at 

4C.  The culture supernatants were collected for cytokine and chemokine analysis 

(see below) and stored at -20C, while the cells were lysed in 700µl of Qiazol for 

RNA extraction and gene expression analysis (see below) and store at -20C. 

 

Efficiency of CD14
+
 monocytes transfection with miRNA mimic was monitored 

with miR-155 mimics and control mimic labelled with Dy547 using FACS analysis.  

Any experiments where the transfection efficiency was below 60% were excluded 

from further analysis.  In addition, in those experiments with transfection efficiency 

≥60% TNF-α production from cultured CD14
+
 monocytes transfected with miR-155 

mimics was measured using the TNF-α ELISA to serve as an additional control for 

the efficiency of CD14
+
 monocytes transfection.  Furthermore, analysis was carried 

out to examine whether transfection influenced cells viability, therefore, cell viability 

was assessed before and after transfection by trypan blue staining. 
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2.4.3 Animal Experiment 

2.4.3.1 Mice 

Male miRNA-155 deficient (miR155
−/−

) mice on a C57BL/6 (B6) background were 

purchased from Jackson Laboratories.  Wild Type (WT) control littermates were 

produced by back crossing miR-155
−/−

 mice with B6 mice.  Experiments were 

carried out according to the guidelines of the UK Home Office. 

 

2.4.3.2 Optimization of Bone Marrow Monocytes Isolation  

 

2.4.3.2.1  CD11b
+ 

Cells Isolation and Culture 

Bone marrow cells were isolated from the femurs and tibia of mice (WT and 

miR155
−/−

 mice).  In brief, bones were cleaned of muscle, then cut through the top 

and the bottom of each bone, and bone marrow was flushed out with sterile PBS into 

sterile petri dish using a 0.3mm needle and 2.5ml syringe.  Bone marrow suspension 

was pipetted up and down several times and passed through Nitex mesh (Cadisch 

and Sons, London, UK) and spun down at 1500 RPM for 10 minutes.  The 

supernatant discarded completely while the cell pellet was resuspended in complete 

media after incubation on ice with ammonium chloride solution (0.8% 

NH4Cl/0.1mM EDTA; Stem Cell Technologies, Grenoble, France) for 10 minutes to 

lyse red blood cells (RBC).  Cells were washed twice with MACS buffer and number 

of viable cells was assessed using a haemocytometer and trypan blue staining.  

 

Cells were then incubated at 4°C with anti-CD16/CD32 (Fc Block) to reduce non- 

specific binding by Fc receptors, for 10 minutes.  Bone marrow cells from both WT 

and miR155
−/−

 mice were incubated with 80µl of MACS buffer and 20µl of mouse 

CD11b
+ 

micro beads (Miltenyi Biotech) per 1x10
7
 cells for 15 minutes at 4°C.  After 

the incubation, cells were washed, centrifuged and purified by positive selection on 

an Auto-MACS separator using the “possel” programme.  The positive selection 

process was then repeated to increase cell purity. Purity of cells was greater than 

97% as assessed by FACS analysis staining with anti mouse CD11b antibody. 
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Cells were cultured in 12–well plates (2x10
6
 cells in 600µl complete media) at 37

o
C 

in 5% CO2 controlled environment.  After 24 h some wells were stimulated with 

100ng/ml LPS for a further 24 h and other wells stimulated with media (control 

group).  Similar to human experiments, culture solutions were transferred into 1.5ml 

Eppendorf tubes and spun down 1500 RPM for 5 minutes at 4C.  Culture 

supernatants were collected (for cytokine and chemokine analysis) and stored at -

20C, while cells were lysed in 700µl of Qiazol (for RNA extraction and gene 

expression analysis) and stored at -20C.  

 

The enriched CD11b
+
 cells were stained with anti mouse CD11b, Ly6C, Ly6G and 

CD115 antibodies and analysis was performed by FACS techniques.  Thus, CD11b
+
, 

proved not to be a good marker for bone marrow monocytes as CD11b
+
 positive 

fractions were contaminated with neutrophils. Therefore, bone marrow monocyte 

was isolated based on their expression of CD115, another bone marrow monocyte 

marker. 

 

2.4.3.2.2 CD115
+ 

Cells Isolation and Culture 

To obtain bone marrow monocyte with appropriate purity, bone marrow cells 

suspensions were prepared as described above and cells were sorted based on their 

expression of CD115 using mouse CD115
+
 micro beads Kit (Militenyi Biotech) and 

Auto-MACS separator.  Likewise, CD115 was not a good marker to sort the bone 

marrow monocyte population.  At this stage I decided to sort the bone marrow 

enriched CD115
+
 cells using FACS Aria sorter. Although, the purity was acceptable 

but the number of cells was very low.  I therefore decided to sort fresh whole bone 

marrow on the basis of CD11b, Ly6C, Ly6G and CD115 expression using the FACS 

Aria sorter only. 

 

2.4.3.2.3 Sorting Whole Bone Marrow using the FACS Aria sorter  

Bone marrow cells suspensions were prepared as described above. FACS Aria-based 

sorting and analysis was used to isolate bone marrow monocytes and verify their 

quality and the quantity.  The cell yield from whole bone marrow isolations reached 

40±4 x10
6 
cells/donor mouse (n=4) each experiment.  To reduce non-specific binding 

by Fc receptors bone marrow cell suspensions were incubated with anti-CD16/CD32 
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at 4°C for 10 minutes.  After that, cells were stained with cell linage specific 

antibodies; CD11b, Ly6C, Ly6G and CD115 (Table 2.3) and incubated for 15-20 

minutes at 4°C.  All experiments were controlled with appropriate isotype antibodies 

and unstained cells.  

 

Firstly, dead cells were excluded from analysis by adding 10μl 7-aminoactinomycin 

D (7-AAD; BD Biosciences) to each sample before acquisition and cells were then 

sorted on the basis of CD11b, Ly6C, Ly6G and CD115
 
expression by live-gated cells 

under sterile conditions.  In general, lymphocytes and granulocytes were identified 

based on their forward-/side-scatter properties and subsequently analysed for lineage 

specific markers.  CD11b is a marker of myeloid population on mouse including 

monocytes/macrophage and granulocyte.  Lymphocytes were negative for the 

granulocyte markers CD11b and Ly-6G.  Ly-6G is lymphocytes antigen 6 complex 

loci G (L6G) expressed by the myeloid lineage during their bone marrow 

development; monocytes only express L6G transiently during their development, 

while granulocytes expressed this marker in bone marrow and periphery.  Post 

sorting purity of bone marrow monocytes (CD11b, Ly6C and CD115 and a lack of 

Ly6G) was performed in all experiments and all data generated were analysed using 

FlowJo software (Tree Star Inc, OR, USA). 

 

In some experiments, total RNA samples were extracted directly after sorting from 

bone marrow monocytes (2 mice/group in a total of 4 experiments) and samples 

sorted at -20C until further analysis. In other experiments, freshly purified cells 

were seeded in 12-wells plates in complete media; and after 24 h some wells were 

stimulated with LPS (100ng/ml) or left un-stimulated and cultured for further 24 h (4 

mice/group in a total of 2 expts).  The analysis was performed on culture supernatant 

and total RNA samples harvested post-culture. 

 

Table 2.3 Monoclonal primary antibodies were used for sorting bone marrow monocytes using FACS Aria 

sorter.  

 

Antibody Isotype Source/ Cat No. 

FITC anti-mouse CD11b Antibody Rat IgG2b Biolegend/101206 

PE/Cy7 anti-mouse Ly-6C Antibody Rat IgG2c Biolegend/128017 

APC anti-mouse CD115 (CSF-1R) Antibody  Rat IgG2a Biolegend/135509 

PE anti-mouse Ly-6G Antibody Rat IgG2a Biolegend/127607 

http://www.biolegend.com/pe-cy7-anti-mouse-ly-6c-antibody-6063.html
http://www.biolegend.com/apc-anti-mouse-cd115-csf-1r-antibody-6336.html
http://www.biolegend.com/pe-anti-mouse-ly-6g-antibody-4777.html
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2.4.3.3 Generation of Bone Marrow Macrophages 

To generate macrophages from bone marrow precursors of WT and miR-155
−/−

 mice 

(n= 4/groups), total bone marrow cells were plated (2x10
6
 cells/ml) into Petri dishes 

(Sterilin, UK) in total volume of 5ml complete medium supplemented with 20ng/ml 

mouse M-CSF and cultured at 37
o
C in 5% CO2 for 6 days. On day 3 of culture, non-

adherent cells were removed and replaced with fresh media supplemented with 

20ng/ml mouse M-CSF.  On day 6 of culture, media and non-adherent cells were 

removed by washing with RPMI 1640 and the adherent cells were collected with cell 

scrapers (Costar).  After counting, cells were seeded into 6 well plates (1.5x10
6
/ml) 

in complete media supplemented with 0.5ng/ml mouse M-CSF.  24 h thereafter, 

(100ng/ml) LPS was added to some wells for a further 24 h.  Culture supernatants 

were collected and total RNA samples were harvested using 700µl of Qiazol and 

samples sorted at -20C until further analysis.  

 

2.4.4 Cytokine and Chemokine Analysis 

2.4.4.1 ELISA Assay 

Enzyme Linked Immunosorbent assay (ELISA) was used to measure production of 

mouse and human TNF-α concentration in culture supernatants according to 

manufacturer’s protocol.  Capture antibody diluted in PBS buffer was coated onto 

Immunol microtiter (Thermo Labsystems) plate and incubated overnight at 4
o
C.  

Plates were then washed with 0.05% Tween/PBS before being blocked with blocking 

buffer (0.5% bovine serum albumin; BSA in PBS), to block non-specific binding, 

and incubated for 1 h at room temperature.  Following washing, 100μl samples and 

standards were added in triplicate to the plate and incubated for 2 h at room 

temperature.  Standard was made using recombinant mouse or human cytokine 

dissolved in complete media at a maximum concentration of 2000pg/ml and serially 

diluted 1:2 including two wells containing only medium (blank) to obtain an eight 

point standard curve. Plates were washed again; detection antibody was added and 

incubated for a further 1 h at room temperature.  Plates were then washed and 

streptavidin-HRP was added to each well and plates were incubated at room 

temperature for 30 minutes.  The plates were washed and substrate solution (TMB) 

(Biosource) was added for 30 minutes. 100μl stop solution (Biosource) was used to 

stop the reaction.  Plates were read at 450nm in a microplate reader (Dynex 
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Technology). A list of human and mouse capture and detection antibodies are 

presented in Table 2.4. 

 

Table 2.4 Cytokine analysis by ELISA   and concentration antibodies and appropriate secondary and 

detection antibodies in assay.  

 

Cytokine Supplier  Capture 

antibodies  

Detection antibodies Stre. 

HRPABs 

Hu. TNF-

  

Invitrogen  Anti human TNF- 
0.250mg/0.125ml 

Anti human TNF-  
Biotin  

0.250mg/0.125ml 

0.25ml 

Mu. TNF eBiosciene  Anti mouse TNF- 

1/250 for 1 plate  

Biotin-conjugated  

Anti human TNF- 
(polyclonal) 

1/250 for 1 

plate 

 

2.4.4.2 Luminex Assay 

The culture supernatants of human CD14
+
 monocytes were examined for a set of 

cytokines and chemokines using the Multiplex Kit panel I and II (Millipore UK) on a 

Bio-Plex system (Bio-Rad).  The predesigned plates were used to assess the effect of 

overexpression regulation of miR-155 on the secretion of inflammatory cytokines 

and chemokines from culture of PB CD14
+
 monocytes of healthy controls (n=15) 

and RA patients (n=16).  All samples were tested in triplicate.  The predesigned 

plates measured TNF-α, IL-1β, IL-10, CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, 

CCL5/RANTES, CCL7/MCP-3 CCL8/MCP-2, CCL13/MCP4, CCL17/TARC, 

CCL19/MIP-3β, CCL20/MIP-3-α, CCL21/6CKINE, CCL22/MDC, CXCL1/GRO, 

CXCL5/ENA-78, CXCL7/NAP-2, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, 

CXCL11/I-TAC, CXCL12/SDF-1, CX3CL1/Fractalkine, lymphotactin and VEGFA.  

 

In brief, 96-well filter plates were pre-wet with assay buffer and shaken on a plate 

shaker for 10 minutes at room temperature.  Next, assay buffer was gently removed 

by vacuum. Samples and standards were added into appropriate wells and beads with 

immobilized antibodies were added to all wells and incubated overnight at 4°C on a 

plate shaker.  Plates were then washed twice with wash buffer after removing fluid 

with vacuum.  Detection antibody was added to each wells and incubated on a plate 

shaker for 1 h at room temperature; streptavidin-HRP was added for a further 30 

minutes and agitated at room temperature.  Plates were washed twice and fluid 

removed with vacuum.  Following washing, 150μl of fluid sheath was added to all 

wells and plates were run on Luminex 100
TM

.  Data were analysed using the Bio-

Plex software. 
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2.4.5 Gene Expression Analysis 

2.4.5.1 RNA Extraction from Cell  

Total RNA was extracted from PB monocytes after transfection with miR-155 

mimic/negative mimic controls using miRNeasy mini Kit (Qiagen) following 

manufacturer’s instructions.  In addition, RNA was extracted from PB or SF 

monocytes of RA patients and PB monocytes of healthy controls to evaluate the 

absolute copy number of miR-155.  In brief, cells were lysed and disrupted with 

700μl Qiazol and gently agitated and stored at -80
o
C until required for RNA 

extraction.  Frozen samples were placed on the bench top at room temperature for 5 

minutes until samples completely thawed.  After that 140μl chloroform was added to 

tubes and shaken vigorously then centrifuged for 15 minutes at 1200 rpm at 4
o
C.  

This separated the samples into three different layers.  The bottom layer (red) 

corresponded to the organic phase then a white interphase and the upper (colourless) 

aqueous phase containing RNA.  One and half volumes of 100% ethanol was added 

to upper aqueous phase after transferring to new collection tube and mixed 

thoroughly before applying to the RNeasy spin column.  The columns were 

centrifuged for 15 seconds at 8000g and the flow through discarded. Wash buffer, 

RWT, (350μl) was then applied to the column, centrifuged (15 seconds, 8000g) and 

the flow through discarded followed by 15 minutes incubation with DNase at room 

temperature.  The columns were washed with 350μl of wash buffer RWT, 

centrifuged and the flow through was discarded.  Buffer RPE (500μl) was applied to 

the column, which was then centrifuged at 8,000g.  A second volume of RPE was 

added, to ensure all contaminants were removed, and the column was centrifuged at 

8000g for 2 minutes.  RNA was eluted in RNase-free water (30-50μl) and 

centrifuged at 8000g for 1 minute. 

 

The quantity and quality of RNA was determined using a spectrophotometer.  The 

absorbance of the RNA is measured at 260 and proteins at 280nm.  The ratio of these 

readings give an indication of the quality of the RNA, a ratio of 1.8 to 2.1 indicates 

that the RNA is good quality and has limited contamination with protein.  Also we 

checked the RNA integrity number (RIN) and I included only samples with RIN 

above 7 for further analysis.  
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2.4.5.2 cDNA Synthesis 

cDNA was transcribed from RNA using miScript Reverse Transcription Kit (Qiagen) 

according to manufacturer’s instruction.  For each sample, 60ng template RNA was 

placed in an RNase free tube containing reverse-transcription master mix, required 

for first-strand cDNA synthesis, then mixed and placed on ice.  Briefly, RT master 

mix was made up to contain 4μl miScript RT buffer 5X, 1μl miScript Reverse 

Transcriptase Mix and made up to a final volume of 20μl with RNAase-free water.  

Samples were incubated at 37°C for 60 minutes, followed by a 5 minutes incubation 

at 95°C.  Samples were either stored on ice for immediate analysis by qPCR or 

stored at -20°C. 

 

2.4.5.3 Generating Standards for qPCR 

Standard Real time-PCR allows relative differences in gene expression between 

samples to be evaluated but does not allow for absolute quantification.  To assess the 

absolute levels of miR-155 transcript in RA samples (PB/SF) and healthy controls 

we generated standard curves for miR-155 and U1.   

 

To prepare the template cDNA: 5μl of 20μM miR-155 mimic (10pmoles) was added 

to 10μl of RNase free water and denaturated for a 5 minutes at 95°C (using standard 

PCR machine) and then quickly cooled down in ice for 5 minutes.  After that a 

mixture of 4μl miScript RT buffer 5X and 1μl miScript Reverse Transcriptase Mix 

was added and mixed with the denatured miR-155 mimic and made up to a final 

volume of 20μl.  The mix was incubated at 37°C for 60 minutes, followed by a 5 

minute incubation at 95°C.  Calculation of copy number of miR-155 was done as 

described below.  The house-keeping standard gene probe, RNU1A was kindly 

provided by Dr. Derek Gilchrist. 

 

2.4.5.4 Calculating Transcript Copy Numbers 

Transcript copy numbers within each standard was calculated using a series of 

formulae and facts as follows: 

5μl of 20μM mimic = 0.1nmoles 

Then, to convert moles into copy number, the number of molecules per mole is 

6.023x10
23

 copies (Avogadro’s constant) 
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No. of Copies DNA            = Avogadro’s Constant x moles  

         = 6x10
23

 x 1x10
-10

 

         = 6x10
13

 

To obtain a standard curve, purified PCR products were diluted in serial 10-fold 

dilution in nuclease-free water to generate a range of standards from 1x10
3
 to 1x10

9
.  

Each of these standards was used as a template cDNA in each QPCR assay. 

 

2.4.5.5 SYBR Green Quantitative Polymerase Chain Reaction 

The qPCR protocol assessing target transcript expression was based on a SYBR 

Green method.  Master mix and miScript primer assay (MS00003605) (all from 

Qiagen) were used according to manufacturer’s protocol.  The expression of RNU1A 

(MS00013986) was used as endogenous control.  Briefly, cDNA samples were 

prepared as previously described and assessed in triplicate in 20μl final reaction 

volumes in a 96 well plate format using the ABI 7900HT Quantitative Real Time 

PCR System (Applied Biosystems, UK).  Reaction mixtures of 20μl contained 10μl 

SYBR green master mix with 2μl of each Universal primers and Assay primers, 5μl 

distilled water and 1μl cDNA or template standard cDNA.  In all assays, the samples 

and standards were tested in triplicate.  To compensate for the amount of RNA in 

reaction mix, normalisation of the target genes with an endogenous control (RNU1A) 

was performed.  

 

2.4.5.6 Normalising QPCR Data 

To permit effective comparison of miR-155 gene levels between samples, the 

amount of RNU1A was used as a comparator housekeeping gene.  In general, the 

amount of gene transcripts can vary between samples due to a variety of factors 

including differential rates of RNA degradation, varying efficiency of the RNA 

extraction procedure and the efficiency of the reverse transcription reaction.  

Therefore, to control for the amount of miR-155 transcripts, it was normalized to 

RNU1A.  To calculate the absolute transcript levels for miR-155 we used the 

formula below:  

Copy number of gene of interest/copy number of RNU1A gene x 10
6
 

This gives the copy number of the gene of interest per 1,000,000 copies of RNU1A 
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2.4.5.7 TaqMan Low Density Arrays 

TaqMan Low-Density Arrays (TLDA) is 384-well microfluidic plate that allows 

multiplex qPCR.  Specific primers for chemokines and chemokine receptors 

expressed in murine bone marrow monocytes/macrophages or human PB CD14
+
 

monocytes and 18S as an internal control were used.  Total RNA was extracted from 

WT and miR-155
-/-

 bone marrow monocytes either directly after sorting or after 24 h 

culture and LPS stimulation using miRNeasy mini kit (Qiagen) as described before. 

Similarly, total RNA was extracted from PB CD14
+
 monocytes of healthy controls 

and RA after transfection with miR-155 mimics.  In both case, a total of 550ng RNA 

was reverse-transcribed with High Capacity RNA-to cDNA Kit (Applied 

Biosystems) following manufacturer’s guidelines.  An RT master mix was made up 

per reaction to contain 10μl RT buffer, 1μl 20X Enzyme Mix and 550ng template 

RNA the reaction made up to a final volume of 20μl with RNAase-free water.  

Samples were mixed and run on a PCR machine: 37°C for 60 minutes; 95°C for 5 

minutes and finally hold at 4°C.  The cDNAs were made up to a final volume of 

100μl with RNAase- free water.  The cDNA was then loaded onto TLDA plates after 

1:1 dilution with TaqMan PCR Master Mix No AmpErase (ABI Ltd), and was run on 

7900HT TaqMan reader using SDS software.  ΔCt values were generated using 18S 

as an endogenous control, and ΔΔCt values were obtained by normalizing the mean 

ΔCt with the untreated control.  Results are expressed as fold change over control. 

 

2.5 Statistical analysis 

The data were analysed by Graph Pad Prism version 5.0 software and all values were 

presented as mean ± standard error mean (SEM).  Statistics used in this thesis were 

Mann-Whitney U test, student’s t-test and a Krusal Wallis test with Dunn’s multiple 

comparison tests.  A P value less than or equal to 0.05 has been used as a cut-off 

value to assign the statistical significance. 
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CHAPTER III  

THE ROLE OF MIR-155 IN CHEMOKINE AND 

CHEMOKINE RECEPTOR EXPRESSION 
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3.1 Introduction and Aim 

Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by 

synovial tissue inflammation eventually leading to joint destruction.  

Monocytes/macrophages are believed to be major effector cells in RA synovitis, 

operating primarily by producing cytokines e.g. TNF-α, IL-6, IL-1β, prostaglandins, 

e.g. PGE2 and variety of matrix metalloproteinases (170).  The recruitment of 

effector cells, including monocytes to the joint space is an important step in RA 

progression and is mediated by chemokines and their receptors.  Chemokines provide 

an evolutionarily conserved molecular mechanism that allows cells to move from 

one tissue compartment to another.  They are implicated in RA pathogenesis as 

proinflammatory mediators that regulate leukocyte recruitment and retention within 

the synovial and articular space.  Monocytes/macrophages in RA constitutively 

express many chemokines, while SFs produce only lower level of chemokines in the 

normal state. Chemokines are abundantly expressed in synovial tissue, SF and PB of 

RA patients (237).  A number of chemokines, including CCL2/MCP-1, CCL3/MIP-

1α, CCL4/MIP-1β, and CCL5/RANTES, are implicated in RA pathogenesis and are 

expressed in SF (254-256).  Furthermore, a number of specific chemokine receptors 

including CCR1, CCR2, CCR3, and CCR5 are highly expressed in RA PB and SF 

monocytes (287).  Moreover, expression of CXCR4 is much higher in RA synovium 

than in OA (565). Chemokines and their receptors are important for each stage of 

migration; some play a role in monocytes recruitment from circulation, and other 

may be involved in monocytes retention in the joints (566).  Understanding the 

regulation of monocytes/macrophage accumulation in RA synovium is important and 

will provide insight into the inflammatory nature of rheumatoid synovitis.  

 

MiRNAs are a recently discovered class of post-transcriptional regulators (293, 294).  

They have been shown to be involved in the regulation of immune responses and the 

development of autoimmunity.  Of particular interest are emerging studies showing 

the contribution of miRNA network to monocyte migration and the chemokine/ 

chemokine receptor system.  For instance, induction of miR-124a in RA synovial 

fibroblasts significantly suppresses CCL2/MCP-1, which is important for monocyte 

migration and retention in joint space (403).  
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In a recent study, we have performed an array analysis of the expressed miRNAs in 

RA SF CD14
+
 cells (367).  One of the miRNAs are shown to be highly expressed in 

SF CD14
+ 

cells was miR-155.  Our interest was particularly taken by the role of 

miR-155 in this regard.  To characterize the mechanism by which miR-155 might 

contribute to the pathogenesis of RA, we demonstrated that miR-155 is upregulated 

in synovial membrane and SF macrophages from patients with RA (367).  Further we 

overexpressed miR-155 in PB CD14
+
 monocytes and found that this led to an 

increase in the production of pro-inflammatory cytokines such as TNF-α (367).  This 

observation suggested that miR-155 might be involved in regulating the biology of 

these cells.  Until now, little has been known of the role of miR-155 in regulating 

chemokine production, chemokine receptor expression in monocytes and their 

consequent migration.  In the current study, I tested the hypothesis that miR-155 may 

regulate monocyte migration in RA patients through modulating the expression of 

the chemokine and chemokine receptor system. 

 

We have chosen monocytes to characterize the mechanism by which miR-155 might 

contribute to pathogenesis of RA.  Monocytes/macrophages are central effectors of 

synovitis and considered as key producers of proinflammatory cytokines and 

chemokines.  Further, monocyte/macrophages expressed higher levels of miR-155 

than lymphocytes in blood from patients with RA (400).  The clinical significance of 

these cells is that they positively correlate with clinical symptoms and the degree of 

joint damage (212).  They also represent a sensitive biomarker to change after 

effective treatment; reduced sub-lining CD68 expression in synovial biopsies 

correlates with efficacy of anti-rheumatic treatment independently of the therapeutic 

strategy (567).  Further, monocytes/macrophages are a major source of cytokines in 

RA synovium such as TNF-α and IL-6 and targeting these cytokines has yielded a 

marked clinical impact on RA treatment.  

 

To understand the role of miR-155 in monocyte migration and retention in the joint 

space, I overexpressed miR-155 in PB CD14
+
 monocytes of healthy controls and RA 

patients and examined the expression of chemokines and chemokine receptors at 

mRNA levels by TLDA as well as the production of chemokines in culture 

supernatants by multiplex assay.   
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3.2 Results  

3.2.1 Patient Characteristics 

Demographic data as evaluated at the time of PB collection from RA patients from 

the routine outpatient Rheumatology Clinic, Glasgow Royal Infirmary (Glasgow, 

U.K.) are listed in Table 3.1.  Available data included age, sex, disease duration, 

tender joint (TJ) and swollen joint (SJ) counts as well as laboratory parameter such 

as ESR, CRP, RA factor and ACPA positivity.  Disease activity of RA patients 

recruited to this project was calculated using the Disease Activity Score (DAS28).  

DAS28 is combined index that assess the number of swollen and tender joints and 

measure the ESR or CRP and provide a number between 0 and 10, indicating the 

disease activity and represented as thresholds for high and low disease activity.  All 

the patients recruited to this project were RF positive. 

Table 3.1 Demographic, clinical and laboratory information of rheumatoid arthritis patients.  

Subject Age Sex DD ACPA ESR CRP DAS28 Treatment 

RA1 59 F 16 + 22 9 3.5 HCQ+MTX+SSZ 

RA2 61 M 8  75 46 3.85 MTX 

RA3 62 F 13 + 60 11 5.16 LEM 

RA4 73 F 33  12 0.5 2.89 MTX+ Adal 

RA5 63 M 27  16 8.6 4.38 MTX+ Inflix 

RA6 67 M 27  7 3.7 2.2 HCQ+MTX+SSZ 

RA7 70 F 15 + 40 12 4.6 MTX+ Etan 

RA8 62 F 22 + 26 7 3.8 SSZ 

RA9 53 M 10  38 3.3 4.7 SSZ 

RA10 67 M 4  14 3 3.9 MTX+ Gold 

RA11 59 M 17 + 19 5 3.9 MTX 

RA12 67 F 41 + 31 5.2 4.36 LFM+HCQ 

RA13 55 F 8 + 10 2.4 2.95 SSZ 

RA14 75 F 9  20 5.1 2.4 MTX+ SSZ 

RA15 58 M 5 + 41 27 5.3 HCQ+MTX+SSZ 

RA16 71 F 10 + 31 1.2 3.36 HCQ+MTX+SSZ 

RA17 70 F 13 + 34 10 5.2 MTX+ Adal 

RA18 62 F 22 + 10 5 2.5 MTX 

RA19 58 M 20 + 60 22 5.8 MTX+ SSZ+ Adal 

RA20 36 F 4 + 30 6.6 4.6 MTX+ SSZ 

RA21 63 F 30 + 60 11 4.8 SSZ 

RA22 74 F 37 + 40 13 4.95 SSZ+HCQ 

RA23 60 F 15 + 12 1.6 3.2 MTX+ SSZ+ Inflix 

RA24 76 F 21 + 15 5.6 4.4 MTX+ SSZ 

DD; disease duration, ACPA; Anti-citrullinated protein antibody, ESR; erythrocytes sedimentation rate 

and the normal ESR is <20mm/h for female and <10 mm/h for male CRP; C-reactive protein and the 

normal CRP is < 4.9mg/l, ESR, SSZ; Sulfasalazine, HCQ; Hydroxychloroquine, MTX; Methotrexate, 

LEM; Leflunomide, Adal; Adalimumab, Inflix; Infliximab, Rifux; Rifuxumab, Etan; Etanerecept 
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3.2.2 Purity of Sorted CD14
+
 PB and SF Monocytes 

PB and SF monocytes comprised a homogeneous population that uniformly 

expressed CD14 –and this was achieved by using the gating strategy against isotype 

control.  Isolation of CD14
+ 

monocytes from PB of healthy controls (n=22) or PB 

and SF of RA patients (n= 24 and 11 respectively), was conducted using CD14
+ 

micro beads and purified by positive selection on an Auto-MACS separator using the 

“possel” programme as described in Materials and Methods.  To confirm that sorted 

PB CD14
+
 monocytes from healthy controls or RA patients were monocytes, cell 

purity was checked using FACS to identify CD14
+
 positive cells and the number of 

cells in each quadrant (%) was determined.  In an average of all experiments from 

both healthy controls and RA PB, the purity of CD14
+
 monocyte populations was 

95% and 93% as shown in Table 3.2.  The dot plot presented in Figure 3.1A, B and C 

shows a representative plot of positive CD14
+
 monocytes from PB of healthy 

controls and RA as well as SF, respectively.  Figure 3.1D shows a representative 

histogram of cells that stained positive for CD14
+ 

from healthy controls and RA PB 

as well as SF.  

 

 

Figure 3.1 Percentages of CD14
+
 monocytes positivity was determined by flow cytometry analysis.  

Representative dot plots of enriched CD14
+ 

monocyte population from PB of A) healthy controls, B) RA 

and C) SF of RA patients after auto-MACS sorting.  With gating strategy the percentage of cells in each 

quadrant was determined to calculate the purity of the isolated cells.  D) Representative histogram analysis 

of the number of cells that stained positive for CD14
+ 

monocytes
 
from healthy controls and RA PB and SF 

against isotype control (red, green and light blue lines are isotype control, while dark blue, orange and 

purple lines are HC, RA and SF respectively).  
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Table 3.2 Cell purity and transfection efficiency of PB CD14
+
 monocytes isolated from both healthy 

controls and RA patients.  Cell purity was determined using flow cytometry analysis to identify CD14
+
 

positive cells and presented as %.  PB CD14
+ 

cells were transfected with miR-155 mimic or control mimic 

and transfection efficiency of cells were monitored with control mimic labelled with fluorescence dye 

Dy547 using flow cytometry.  Based on previous experiment in the lab we set threshold for transfection 

efficacy at 60%.  While any experiment with transfection efficiency below 60% (Red marked) was 

withdrawn from further analysis.  Data were presented as %.  TE; transfection efficiency, HC; healthy 

control, RA; Rheumatoid arthritis  

 

Healthy controls Rheumatoid Arthritis 

Subject CD14
+ 
Purity TE Subject CD14

+ 
Purity TE 

HC1 97 86 RA 1 99 41 

HC2 97 59 RA 2 94 76 

HC3 95 50 RA 3 97 64 

HC4 97 64 RA 4 93 69 

HC5 97 76 RA 5 92 82 

HC6 96 85 RA 6 90 65 

HC7 96 43 RA 7 90 51 

HC8 98 63 RA 8 92 40 

HC9 98 71 RA 9 93 70 

HC10 98 87 RA 10 94 86 

HC11 97 37 RA 11 97 40 

HC12 98 35 RA 12 97 60 

HC13 98 85 RA 13 96 65 

HC14 95 40 RA 14 97 64 

HC15 90 78 RA 15 94 82 

HC16 93 74 RA 16 90 37 

HC17 93 40 RA 17 92 73 

HC18 98 78 RA 18 98 25 

HC19 93 80 RA 19 85 87 

HC20 98 81 RA 20 90 88 

HC21 92 85 RA 21 92 31 

HC22 90 81 RA 22 94 48 

   RA 23 92 82 

   RA 24 90 64 
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3.2.3 MiR-155 is Upregulated in PB and SF Monocytes of RA 

Patients 

3.2.3.1 MiR-155 Copy Number is Highly Expressed in PB and SF 

Monocytes of RA Patients 

MiR-155 expression has been confirmed recently to be strongly elevated in RA 

synovial biopsies, and is upregulated in RA SF-derived CD14
+
 monocytes.  However 

prior studies are potentially confounded by the use of relative expression calculations 

and as such may be subject to errors arising from uncontrolled variables, particularly 

affecting ‘control’ miR species against which comparison is drawn for relative 

expression.  Absolute quantification is thus preferable to relative expression.  I 

therefore calculated the absolute copy numbers of miR-155 transcripts in PB and SF 

CD14
+
 monocytes of RA patients and compared this with the copy number of 

healthy controls.  I did this by generating standard curves for miR-155 and RNU1A; 

the latter was used as a housekeeping gene, and transcript levels were assessed by 

quantitative PCR using SYBR green.  In all assays, samples/standard transcript copy 

numbers were calculated as described in Materials and Methods.  The analysis was 

performed on total RNA samples harvested 48 h after culture of CD14
+ 

PB and SF 

monocyte of RA patients (n= 24 and 11 respectively), while healthy control CD14
+ 

monocyte PB were used for comparison (n=22).  It is important to mention that I 

calculated the miR-155 copy numbers after 48 h culture and do not show the baseline 

expression - this was because I decided to evaluate absolute copy numbers after the 

original experimental design was set – I thus was required to work with the cell 

populations and a sample cohort by then already gathered.  Reassuringly, and 

consistent with recent studies in which fold change was only examined, RA PB and 

SF monocytes/macrophages showed statistically significantly higher copy number of 

miR-155 than cells from controls.  RA SF macrophages contained the highest copy 

number compared with healthy controls (P<0.0001) Figure 3.2A.  Additionally, the 

mean miR-155 copy number was also significantly higher in samples from RA SF-

derived CD14
+ 

cells compared with RA PB CD14
+
 monocytes (P<0.009) (Figure 

3.2A).  
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3.2.3.2 MiR-155 Copy Number after Challenge with Different Doses of 

LPS 

MiR-155 has been previously shown to be upregulated by TLR ligands in PB CD14
+ 

monocytes (367).  I therefore analysed the copy number of miR-155 in both healthy 

controls and RA patients’ PB CD14
+
 monocytes before and after treatment with 

different doses (2 and 10ng/ml) of LPS.  Purified PB CD14
+
 monocytes were 

cultured on 24-well plates, after 24 h LPS was added to some wells for a further 16-

18 h.  Total RNA was extracted to examine the transcript levels of miR-155.  

Overall, copy numbers of miR-155 was significantly increased in PB CD14
+ 

monocyte
 
of healthy controls and RA patients after challenge with different doses of 

LPS Figure 3.2B compared with transcript levels obtained with no LPS treatment.  In 

healthy controls CD14
+
 monocyte treated with LPS expressed significantly greater 

levels of miR-155 transcript than those observed in cells without stimulation 

particularly with 10ng/ml LPS.  Importantly, miR-155 copy number in RA PB 

CD14
+ 

monocytes
 
treated with 2 and 10ng/ml

 
were expressed almost two and four 

times higher than those observed in cells without LPS stimulation respectively.  

Compared to healthy controls, RA CD14
+
 monocytes treated with LPS or without 

LPS stimulation displayed a significantly higher copy number of miR-155.  The 

highest difference was observed with LPS stimulation at a concentration of 10ng/ml.  

 

3.2.3.3 Seeking Correlation of PB Monocyte miR-155 with a Variety of 

Clinical Indices and Lab Biomarkers 

Next, PB monocyte miR-155 copy number was correlated against a variety of 

clinical indices and lab biomarkers using the RA patient’s characteristic data (Table 

3.1).  It was noted that miR-155 copy number were positively and significantly 

correlated with DAS28 of RA patients according to the two-tailed Pearson 

Correlation Coefficient (R=0.728 and p= 0.0001) (Figure 3.2C).  Further analyses 

revealed that miR-155 copy number was positively and significantly correlated with 

TJ and SJ counts (Table 3.3).  Because miR-155 is associated with TJ/SJ, a 

correlation of miR-155 levels with disease activity and lab biomarkers would be 

expected.  Next, miR-155 copy number was plotted against lab biomarkers of 

inflammation namely CRP and ESR.  A significant positive correlation was found 

between ESR and miR-155 copy number (R=0.546, P=0.006) whereas this analysis 
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did not show any significant correlation with CRP (Figure 2D).  Finally, as expected, 

there was a positive and significant correlation between the CRP and ESR (R=0.672, 

P=0.0001) in RA patients’ samples recruited to this project as shown on Table 3.3 

and Figure 3.2E).  

 

Further statistical analysis revealed that the copy number of miR-155 was 

statistically higher in patients with high (n=4) or moderate (n=15) disease activity 

(according to DAS28) (p<0.007 as determined by 1 way ANOVA test/Kruskal-

Wallis test) than those patients with remission state (n=5) or healthy controls (n=22) 

Figure 3.2F.  Patients with high disease activity demonstrated the highest copy 

number compared with healthy controls and RA patients with remission.  

Furthermore, miR-155 copy number was significantly elevated in patients with high 

disease activity compared with those with moderate disease activity (p=0.015) or 

remission state (p=0.04). 

 

Next I analysed the expression of miR-155 copy number within ACPA expression 

categories. There was a significantly increased expression of miR-155 copy number 

in ACPA positive RA compared with ACPA negative RA (p=0.033) Figure 3.2G.  

So far, ACPA have been linked to RA and, indeed are highly specific to RA and 

have been identified in up to 90% of RA patients and they in turn correlate with 

disease severity.  However, there was no correlation between the observed increase 

in the miR-155 copy number and the patients’ age, disease duration or medication.   

In our clinical data of patients, all of the RA patients were being treated with 

cDMARD; 6 patients were also receiving a biological DMARD.  Further analysis 

was conducted to examine whether drug therapy influenced miR-155 copy number. 

There was no significant difference in miR-155 copy number between patients 

receiving treatment with biological treatments such as Etanercept, Adalimumab or 

Infliximab plus cDMARD and those RA patients treated with cDMARD alone 

Figure 3.2H. 
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A)      B) 

 
C)      D) 

          
E)      F) 

  
G)      H) 

      
Figure 3.2 A) Absolute copy numbers of miR-155 transcripts in PB and SF CD14

+
 monocytes of RA 

patients (n= 24 and 11 respectively) and compared this with the copy number of healthy controls (n=22).  

Total RNA samples of CD14
+
 monocytes were converted to cDNA and the levels of miR-155 transcripts 

were assessed by quantitative PCR measuring absolute copy numbers using the SYBR green and 

preparing standard curves for miR-155 and RNU1A as described in Materials and Methods.  The copy 

numbers of miR-155 is normalized to 1x10
6
 copies of RNU1A as housekeeping gene.  B) MiR-155 copy 

numbers in PB CD14
+ 

monocytes of
 
healthy controls and RA patient in absence (HC=22, RA=24) and 

presence of different doses of LPS (2ng/ml (HC=18, RA=22) and 10ng/ml (HC=9, RA=16)).  The statistical 

difference from control was determined using Kruskal-Wallis test and Mann-Whitney U test between the 

groups.  C) Correlation between miR-155 copy number and DAS28, each dot represents patient disease 

activity versus their miR-155 copy number.  D) Correlation miR-155 copy number with ESR of RA 

patients.  E) Correlation between the lab biomarkers of inflammation CRP and ESR of RA patients.  F) 

Copy number of miR-155 against disease activity state based on DAS28 (Remission, Low, Moderate or 

high Disease activity) compared with healthy controls and difference were determined by 1 way ANOVA 

test/Kruskal-Wallis test.  G) MiR-155 transcript levels versus clinical disease subsets (ACAP positive vs. 

negative) RA.  H) MiR-155 copy number between the RA patients receiving treatment with the cDMARD 

or biological DMARD.  The statistical difference was determined using Kruskal-Wallis test and Mann-

Whitney U test between the groups,  *= p ≥ 0.05, **= p ≥ 0.005 and ***= p ≥ 0.0005.  While, (†) is marked 

statistically different between patients with high disease activity and those either with moderate disease 

activity or remission status.   
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Table 3.3 Correlation analysis of miR-155 copy number against a variety of clinical indices and lab 

biomarkers.  Data were skewed by log or square-root transformation to restore normality.  R-value on top 

with corresponding p-values on the lines below 

 

 MiR155 copy no Age  DD ESR CRP ACPA TJ SJ DAS28 

Age  -0.239         

 0.260         

DD -0.064 0.464        

 0.766 0.022        

ESR 0.546 -0.136 -0.108       

 0.006 0.526 0.615       

CRP 0.186 -0.169 -0.095 0.672      

 0.384 0.429 0.659 0.000      

TJ 0.631 -0.035 0.127 0.261 0.197 0.480    

 0.001 0.872 0.555 0.218 0.356 0.018    

SJ 0.503 -0.232 -0.301 0.565 0.472 0.067 0.529   

 0.012 0.276 0.152 0.004 0.020 0.756 0.008   

DAS28 0.728 -0.193 -0.055 0.759 0.600 0.367 0.781 0.803  

 0.000 0.366 0.797 0.000 0.002 0.078 0.000 0.000  

 
DD; disease duration, ESR; erythrocytes sedimentation rate, CRP; C-reactive protein, TJ; tender joint, 

SJ; swollen joint and DAS28; Disease Activity Score 28.  The correlation of miR-155 copy number against 

a variety of clinical indices and lab biomarkers is kindly done by Dr. Charles McSharry. 
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3.2.4 Transfection Efficiency of CD14
+
 Monocytes  

In order to evaluate the functional implications of the increased miR-155 expression 

described in the experiments above, I sought to optimize a transfection method that 

would deliver a mimic to a majority of cells without compromising viability.  I 

monitored transfection efficiency with control mimic (C.elegans miR-67) labelled 

with fluorescence dye Dy547.  There was no labelled miR-155 at the time of my 

experiments.  This control miR has similar length and nucleotide composition 

(different sequence) to miR-155 mimic.  Therefore, efficiency of transfection of 

human CD14
+
 monocytes with miR-155 mimic was monitored by miR-155 mimics 

and control mimic labelled with Dy547 by flow cytometry.  Transfection efficiency 

of healthy controls’ varied between 35- 87% and the mean was 67% (Table 3.2 and 

Figure 3.3A).  For RA patients, transfection efficiency ranged between 25-88% with 

a mean 62% (Figure 3.3B).  Based on previous experiments in the lab, we set the 

threshold for transfection efficiency at 60%, in both healthy controls (n=15) and RA 

(n=16) samples.  Any cell culture with transfection efficiency below 60% (Red 

marked) was withdrawn from further analysis (we set this rule a priori).  In 

experiments that showed transfection efficiency above 60%, TNF-α level was 

measured using ELISA to serve as an additional control for the efficiency of 

transfection Figure 3. 3C.  Consistent with previous studies (367), overexpression of 

miR-155 triggered the production of TNF-α compared to cells transfected with 

control mimic. 

 

Next, I assessed if the transfection affected the cells’ viability.  Therefore, CD14
+
 

monocytes were transfected with miR-155 mimic or left un-transfected and cell 

viability determined by haemocytometer and Trypan Blue staining.  Transfected cells 

were analyzed to determine the percentage of dying and viable cells before and 

directly after transfection and also over next 48 h compared to the that un-transfected 

cells.  As shown in Figure 3.3D, transfection of CD14
+
 monocytes with miR-155 

were not associated with any significant alteration in cell viability, compared to 

control cells left un-transfected.  
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A)     B) 

   

C)     D) 

 

 

 
Figure 3.3 Efficiency of transfection of PB CD14

+ 
monocytes with miR-155 mimic was monitored in 

transfected cells with miR-155 mimics or control mimic by control mimic labelled with fluorescence dye 

Dy547 using flow cytometry as described in Material and Method.  A representative histogram analysis of 

A) healthy controls, B) RA patients of the CD14
+
 monocytes that transfected with miR-155 mimics or 

control mimic labelled with Dy547.  C) TNF-α level within culture supernatants of experiments with 

transfection efficiency above 60% after transfection with miR-155 mimic or control mimic derived from 

healthy control (HC) and patients with RA (RA) (n=5) using ELISA.  D) A representative experiment 

(n=1) of viability of CD14
+
 monocytes before and after the transfection with miR-155 was measured with 

Trypan Blue staining.  Transfected cells were counted to determine the percentage of dying and viable cells 

before and directly after transfection and also over next 48 h compared to that un-transfected cell.  Values 

presented as mean ± SEM and marked bars are statistically different from control using Kruskal-Wallis 

test *= p≤ 0.05 and **= p≤ 0.005. HC: healthy controls, RA: Rheumatoid arthritis, Cm: control mimic and 

miR155m: miR-155 mimic. 
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3.2.5 Cytokine and Chemokine mRNA Expression by PB 

Monocytes after Overexpression of miR-155 

Expression the mRNA of inflammatory cytokines and chemokines after experimental 

over-expression of miR-155 in PB CD14
+
 monocytes of healthy controls and RA 

patients (n=8/group) was assessed using predesigned TLDA plates with specific 

primers to candidate cytokines and chemokines Figure 3.4A and B, respectively.  

Analysis was performed on total RNA samples harvested 48 h after culture from PB 

CD14
+
 monocytes transfected either with miR-155 mimic or control mimic and 

converted to cDNA.  Cytokine and chemokine transcription levels were expressed as 

fold change relative to control mimic transfected cells and after normalization to 18S 

as housekeeping gene.  In healthy controls, miR-155 transfected CD14
+
 monocytes 

expressed higher levels of CCL3/MIP-1α, CCL4/MIP-1β, CCL22/MDC, 

CXCL1/GRO, CXCL8/IL8, TNF-α, IL-1β, IL-6 and VEGFA but not CCL2/MCP-1, 

CCL5/RANTES, CCL7/MCP-3 and CCL8/MCP-2 compared to control mimic 

transfected cells Figure 3.4A.   

 

Similarly, in RA patients, over-expression of miR-155 in CD14
+
 monocytes induced 

the expression of mRNAs encoding CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, 

CCL5/ RANTES, CCL7/MCP-3, CCL8/MCP2 and CXCL8/IL8.  As observed, over-

expression of miR-155 did not significantly affect the levels of CCL22/MDC, 

CXCL1/GRO, and VEGFA (Figure 3.4B).  The mRNA levels of other pro-

inflammatory cytokines, such as TNF-α, IL-1β and IL-6, were also determined in PB 

CD14
+
 monocytes after over-expression of miR-155 Figure. 3.4B.  Although, TNF-

α, IL-1β and IL-6 mRNA levels were increased this was not statistically significant.  

Supernatants were collected from PB CD14
+
 monocytes after over-expression of 

miR-155 or control mimics and analysed by pre-designed luminex assay.  Although 

the exact molecular mechanism is unknown, this observation suggested that miR-155 

can contribute to the development of pro-inflammatory response in both healthy 

controls and RA patients, but could do so in a discrete manner in patients with RA.  
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A. Cytokine and chemokine expression at the transcript level in PB CD14
+ 

monocytes 

of healthy controls after overexpression of miR-155  

 

 

 

 

 

B. Cytokine and chemokine expression at the transcript level in PB CD14
+ 

monocytes 

of patients with RA after overexpression of miR-155  

 

  

 

 

 

Figure 3.4 Cytokine and chemokine mRNA expression in PB CD14
+
 monocytes from A) healthy controls 

and B) RA patients (n=8/group) after transfection either with miR-155 mimic or control mimics using the 

N-TER nanoparticle siRNA transfection system as described in Materials and Methods.  Total RNA was 

extracted 48 h after culture and TLDA plates with specific primers to determined transcript levels of 

candidate cytokine and chemokine.  Transcript levels are expressed as fold change after normalization to 

18S as housekeeping gene and calibrated to levels detectable in control mimics transfected cells.  These 

data are representative of 8 separate experiments for each group.  Bars show the mean of 3 replicates of 

total 8 experiments from each group ± SEM.  Marked bars are statistically different from control mimics 

transfected cells using Mann-Whitney U test; *=p≤ 0.05 and **=p≤ 0.005. 
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3.2.6 Overexpression of miR-155 in RA PB Monocytes Significantly 

Enhanced the Production of Cytokines at the Protein Level  

Next, I looked for the impact of over-expression of miR-155 as an important 

regulator of inflammatory cytokine release.  To investigate this, a pre-designed 

luminex assay was used to assess the effect of over-expression of miR-155 on the 

production of a set of inflammatory cytokines and chemokines.  PB CD14
+
 

monocytes from healthy controls (n=15) and RA patients (n=16) were transfected 

either with a miR-155 mimic or negative control mimic or were left un-transfected as 

controls.  The concentration levels of pro-inflammatory cytokines were measured 48 

h after transfection.  There was no statistically significant increase in cytokine 

production in cells transfected with control mimic compared to untouched cells; thus 

serving as an additional negative control (Figure 3.5A and B), suggesting that the 

transfection protocol itself has no significant stimulatory effect on cytokine 

production and justifying the use of a control mimic transfection in all experiments 

as a control. 

 

In healthy controls, overexpression of miR-155 in CD14
+
 monocytes induced the 

production of TNF-α, and IL-10, but did not significantly affect the production of IL-

1β Figure 3.5A. While in RA patients, consistent with our previous study, 

overexpression of miR-155 significantly increased the concentration of multiple pro-

inflammatory cytokines, including TNF-α, and IL-1β.  In addition, over-expression 

of miR-155 triggered production of anti-inflammatory IL-10 in culture supernatants, 

likely as a part counter-balance mechanism Figure 3.5B. 

 

Of interest, RA CD14
+
 monocytes after over-expressing miR-155 displayed higher 

levels of IL-1β than that produced by healthy controls cells under the same 

conditions; 233±42 pg/ml and 111±23 pg/ml respectively (P<0.04) Figure 3.5C. 

Likewise, TNF-α level showed a trend to be higher in RA CD14+ monocytes but this 

increase did not reach the level of significance.  

 

These observations suggest that miR-155 can promote an inflammatory response 

although how it interacts with such inflammatory pathways to promote cytokine 

secretion in monocytes is unclear. 
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A. Cytokine production from PB CD14
+
 monocyte of healthy controls after over expression 

miR-155 

 

 

 

 

B. Cytokine production from PB CD14
+
 monocyte of RA patients after over expression miR-

155 

 

 

 

 

 

C. Cytokine production from PB CD14
+
 monocyte of RA patients compared with healthy 

controls after over expression miR-155 

 

 

 

 

 

Figure 3.5 Cytokines concentration within culture supernatants of PB CD14
+
 monocyte from A) healthy 

controls (n=15) and B) RA patients (n=16) after transfection either with miR-155 mimic (miR-155m) or 

control mimic (CM) using the N-TER nanoparticle siRNA transfection system or left un-transfected (M) as 

described in Materials and Methods. The concentration levels of proinflammatory cytokines were 

measured using predesigned multiplex assay and tested in triplicate.  The statistical different from the 

control using Wilcoxon test *=p≤ 0.05 and **=p≤ 0.005.  C) Cytokine concentrations produced by RA 

CD14
+
 monocyte in compare to healthy controls after over expression miR-155.  Values are presented as 

mean ± SEM and marked bars are statistical different from the control using Kruskal-Wallis test, *=p≤ 

0.05 and **=p≤ 0.005.  HC: healthy controls, RA: Rheumatoid arthritis, Cm: control mimic, miR155m: 

miR-155 mimic and M; Media.  
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3.2.7 Overexpression of miR-155 in RA PB Monocytes Induces 

Production of Chemokines at the Protein Level 

 

I then investigated whether miR-155 over-expression in PB CD14
+
 monocytes could 

alter their chemokine production.  I monitored the effect of miR-155 on chemokine 

production by transfecting PB CD14
+
 monocytes from healthy controls (n=15) and 

RA patients (n=16) were transfected with either miR-155 mimic or negative control 

mimic or were left un-transfected as control. 48 h after transfection the cell culture 

supernatants were collected, and chemokine production was quantified using 

multiplex analysis as described in Materials and Methods.  Production of some 

chemokine was significantly increased in cells transfected with miR-155 mimic; 

however, other chemokine production was not affected by transfection.  Therefore, 

based on chemokine concentrations within culture supernatants of PB CD14
+
 

monocytes after over-expression miR-155, the impact of miR-155 can be categorized 

into 2 groups: (i) chemokines that were significantly up-regulated in response to 

miR-155 overexpression; CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES and 

CCL8/MCP-2, (ii) chemokines either unchanged (see below) or below the limit of 

assay detection, namely CCL13/MCP4, CCL17/TARC, CCL19/MIP-3β, 

CCL20/MIP-3α, CXCL9/MIG, CXCL11/I-TAC, CXCL12/SDF-1 and lymphotactin.  

 

3.2.7.1 Chemokines Significantly Upregulated in Response to miR-155 

Overexpression  

As expected on the basis of mRNA data, the concentration levels of multiple 

chemokines were significantly increased in culture supernatants of miR-155 

transfected cells.  First of all, no significant differences were found in chemokine 

production between non-transfected CD14
+
 monocytes and cells transfected with 

control mimics, which further confirms the specificity of the effects observed with 

the miR-155 mimics. 

 

In healthy controls, there were no significant differences observed in the majority of 

chemokines tested between cells transfected with miR-155 in comparison to cells 

transfected with control mimic except for CCL3/MIP-1α.  The concentration of 

CCL3/MIP-1α was significantly increased in culture supernatants of healthy controls 
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PB CD14
+
 cells transfected with miR-155 compared with supernatants from cells 

transfected with control mimic Figure 3.6A.  In RA patients, over-expression of 

miR-155 in PB CD14
+
 monocytes triggered the production a variety of chemokines, 

including CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES and CCL8/MCP-2 

compared with control mimic transfected cells Figure 3.6B.  Notably, CCL8/MCP-2 

production (mean ± SEM) from RA CD14
+ 

monocyte in response to miR-155 over-

expression was statistically higher than that produced from healthy controls miR-155 

transfected cells (801±164pg/ml vs 245±55pg/ml) (P<0.03).  

 

These observations suggest that miR-155 in RA CD14
+
 monocytes could be involved 

in posttranscriptional control of the inflammatory pathways via triggering chemokine 

production that was implicated in RA synovitis and recruitment and retention of 

inflammatory cells in the joints space. 

 

3.2.7.2 Chemokines not Affected by miR-155 Overexpression 

Some chemokines were unchanged either in healthy controls or in RA PB CD14
+
 

culture supernatants of cells transfected with miR-155 compared to control mimic or 

in control cells left un-transfected. This group of chemokines included CCL2/ MCP-

1, CCL7/ MCP-3, CCL21/6CKINE, CCL22/MDC, CXCL1/GRO, CXCL5/ENA-78, 

CXCL8/IL-8, CXCL7/NAP-2, CXCL10/IP-10 and CX3CL1/Fractalkine (Figure 3.7 

and 3.8).  This observation suggested that these chemokines were not regulated by 

miR-155. 
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A. Chemokines production from PB CD14
+
 monocytes of healthy controls after overexpression 

of miR-155  

  

 

B. Chemokines production from PB CD14
+
 monocytes of RA patients after overexpression of 

miR-155 

  

 

 

Figure 3.6 Chemokines upregulated in response to miR-155 overexpression.  Chemokines concentration 

within culture supernatants of PB CD14
+
 monocyte from A) healthy controls (n=15) and B) RA patients 

(n=16) after transfection with miR-155 mimic (miR-155m) or control mimic (CM) using the N-TER 

nanoparticle siRNA transfection system or left un-transfected (M) as described in materials and methods.  

The concentration levels of inflammatory chemokines were measured 48 h after culture using pre designed 

multiplex assay and were tested in triplicate.  Statistical significance are determined using Wilcoxon test 

compare to the control mimic, *=p≤ 0.05 and **=p≤ 0.005. HC: healthy controls, RA: Rheumatoid 

arthritis, Cm: control mimic, miR155m: miR-155 mimic and M; Media.  
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Figure 3.7 Chemokines unaffected by miR-155 overexpression.  Chemokine levels within culture 

supernatants of PB CD14
+
 monocyte from healthy controls (n=15) after transfection with miR-155 mimic 

(miR-155m) or control mimic (CM) using N-TER nanoparticle siRNA transfection system or left un-

transfected (M) as described in Material and Method.  The concentrations of chemokines were measured 

using pre designed multiplex assay and were tested in triplicate.  HC: healthy controls, RA: Rheumatoid 

arthritis, Cm: control mimic, miR155m: miR-155 mimic and M; Media.  
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Figure 3.8 Chemokines were unaffected by miR-155 overexpression. Chemokine concentrations within 

culture supernatants of PB CD14
+
 monocyte from RA patients (n=16) after transfection with miR-155 

mimic (miR-155m) or control mimic (CM) using N-TER nanoparticle siRNA transfection system or left 

un-transfected (M) as described in Material and Method.  The concentrations of chemokines were 

measured 48 h from culture using predesigned multiplex assay and were tested in triplicate.  HC: healthy 

controls, RA: Rheumatoid arthritis, Cm: control mimic, miR155m: miR-155 mimic and M; Media.  
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3.2.8 Cytokine and Chemokine Production in PB Monocytes after 

miR-155 overexpression and their Modulation by TLR 

Agonism (LPS) 

 

Our preliminary study using luminex analysis revealed that the TLR4 agonist (LPS) 

led to a strong induction of candidate cytokines and chemokines from PB CD14
+
 

monocytes, from both healthy controls and RA patients, transfected with miR-155.  

MiR-155 has been shown to be upregulated by TLR ligands in PB CD14
+ 

monocytes 

(367).  I therefore analysed the potential interaction between LPS and miR-155 for 

cytokine and chemokine production from PB CD14
+
 monocytes after miR-155 over-

expression.  PB CD14
+ 

monocytes derived from healthy controls and RA patients 

(n=5/group) were transfected either with miR-155 mimics or negative control 

mimics or were left un-transfected.  After 24 h, LPS (100ng/ml) was added to some 

wells for a further 16-18 h.  The concentration of cytokines and chemokines in the 

cell culture supernatants were measured by predesigned luminex assay.  

 

In healthy controls, LPS (100ng/ml) strongly triggered the CD14
+
 monocytes to 

produce all the cytokines and chemokines tested, and there were no differences 

observed between the concentrations produced by cells transfected with miR-155 

mimic or control mimic and cells that were left un-transfected (Figure 3.9).  

Likewise, in RA derived CD14
+
 monocytes there were no significant differences 

observed in the majority of cytokines and chemokines tested between cells 

transfected with miR-155 in comparison to cells transfected with control mimic or 

cells that were left un-transfected (Figure 3.10).  

 

Thus, the presence of LPS abrogated the effect of miR-155 and no distinct difference 

was observed in cytokine and chemokine production between monocytes transfected 

with miR-155 mimics or control mimics.  However, CD14
+
 monocytes were treated 

with a particularly high dose; 100ng/ml of LPS, which might have masked any 

difference in cytokine production. Therefore I suggest that this experiment should be 

repeated with a lower concentration range of LPS.   
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Figure 3.9 Cytokines and chemokines concentration within culture supernatants of PB CD14
+
 monocyte of 

healthy controls (n=5) after transfection either with miR-155 mimic (miR-155m) or control mimic (CM) 

using the N-TER nanoparticle siRNA transfection system or left un-transfected (M) as described in 

Materials and Methods.  24 h thereafter transfected cells were stimulated with (100ng/ml) LPS for a 

further 16-18 h.  Culture supernatants were collected, and cytokines and chemokine production were 

measured using predesigned multiplex assay and tested in triplicate.  Values are presented as mean ± 

SEM, HC: healthy controls, RA: Rheumatoid arthritis, Cm: control mimic, miR155m: miR-155 mimic and 

M; Media.  
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Figure 3.10 Cytokines and chemokines concentration within culture supernatants of PB CD14
+
 monocyte 

of RA patients (n=5) after transfection either with miR-155 mimic (miR-155m) or control mimic (CM) 

using the N-TER nanoparticle siRNA transfection system or left un-transfected (M) as described in 

Materials and Methods.  24 h thereafter transfected cells were stimulated with (100ng/ml) LPS for a 

further 16-18 h.  Culture supernatants were collected, and cytokines and chemokine production were 

measured using predesigned multiplex assay and tested in triplicate. HC: healthy controls, RA: 

Rheumatoid arthritis, Cm: control mimic, miR155m: miR-155 mimic and M; Media. 
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3.2.8.1  TNF-α Production by PB Monocytes overexpressing miR-155 

and their modulation by different doses of LPS  

As I mention above, presence of LPS (100ng/ml) led to a strong induction of 

candidate cytokines and chemokines from PB CD14
+
 monocytes and there was no 

distinct difference was observed in production between monocytes transfected with 

miR-155 mimics or control mimics.  Therefore I decided to titrate the LPS dose (0.5, 

2, 10ng/ml) and measure TNF-α levels using ELISA.  To this end, PB CD14+ 

monocytes derived from both healthy controls and RA patients (n=4) were 

transfected with miR-155 mimic or control mimic or left un-transfected and 24 h 

thereafter some cells were stimulated with different doses (0.5, 2 and 10ng/ml) of 

LPS.  Culture supernatants were collected 16-18 h after LPS addition.  

 

First of all, I examined the impact of different LPS doses on TNF-α production from 

CD14
+ 

monocytes that were left un-transfected in both healthy controls and RA 

patients using ELISA.  Overall TNF-α production was significantly higher within 

culture supernatants of cells that derived from RA patients than healthy controls in 

all conditions (Figure 3.11A).  However, levels of TNF-α production were not 

correlated with increasing the LPS doses.  Indeed, even 0.5ng/ml of LPS was 

sufficient to maximally stimulate cells and trigger TNF-α production. 

 

Next, I looked to TNF-α production from CD14
+ 

monocytes transfected with miR-

155 mimics or control mimics in response to different LPS doses in both healthy 

controls and RA patients.  Reassuringly, and consistent with previous data generated 

by multiplex assay, TNF-α levels were significantly higher in supernatants from cells 

transfected with miR-155 mimic than those transfected with control mimic with no 

LPS stimulation in both healthy controls and RA patients (Figure 3.11B and C), 

respectively.  In healthy controls, TNF-α levels were significantly increased in 

CD14
+ 

monocytes transfected with miR-155 and treated with 0.5ng/ml LPS 

compared to those cells transfected with control mimic.  Consistent with preliminary 

data, TNF-α concentration in response to 2 and 10ng/ml LPS were also increasing 

within culture supernatants of miR-155 transfected cells in comparison with control 

mimic transfected cells but did not reach levels of significance Figure 3.11B.  While 

in RA patients, there was no distinction in TNF-α concentration between cells 

transfected with miR-155 mimic in comparison with control mimic in response to 
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different LPS doses Figure 3.11C.  Together, this data indicate that LPS leads to a 

strong induction of TNF-α and the addition of increased expression of miR-155 did 

not affect its production. Thus, the presence of high concentration of LPS has 

masked the affect of miR-155 on TNF-α production. 

A)  

 

B)  

 

C)  

 

 

Figure 3.11 A) Concentration of TNF-α within culture supernatants of PB CD14+ monocytes of healthy 

controls and RA patients (n=4) in absence and presence of different doses (0.5, 2 and 10ng/ml) of LPS as 

were determined by ELISA.  While, B) and C) represented the TNF-α levels within the culture 

supernatants of PB CD14+ monocytes that derived from healthy control and RA patients (n=4), 

respectively and after transfection either with miR-155 mimic or control mimic as described in Materials 

and Methods.  24 thereafter transfection, cells either un-stimulated or stimulated with a different LPS 

doses (0.5, 2 and 10ng/ml.  Values are presented as mean ±SEM and statistical significance are determined 

using Kruskal-Wallis test, *=p≤ 0.05 and **=p≤ 0.005. HC: healthy controls, RA: Rheumatoid arthritis, 

Cm: control mimic, miR155m: miR-155 mimic and M; Media.  
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3.2.9  MiR-155 Regulates Chemokine Receptors mRNA Expression 

 

Altered monocyte trafficking and migration in RA patients is under the control of 

chemokine receptors.  Therefore, I investigated the impact of over-expression of 

miR-155 on chemokine receptor expression in PB CD14
+
 monocytes mRNA of both 

RA patients and healthy controls. 

 

The role of miR-155 on chemokine receptor expression was investigated using 

TLDA plates that allow simultaneous measurement of multiple PCR with specific 

primers for distinct chemokine receptors.  In brief, total RNA was extracted from PB 

CD14
+
 monocytes of healthy controls and RA patients (n=8/group) 24 h after 

transfection either with miR-155 mimic or control mimics as described in Materials 

and Methods.  After cDNA synthesis and normalization using 18S; a house-keeping 

gene as a standard, the transcript levels of candidate chemokine receptors were 

presented as fold-changes after calibration to transcript levels of control mimic 

transfected cells.  

 

In healthy controls CCR3 and CXCR4 expression was increased in miR-155 

transfected CD14
+
 monocytes compared with control mimic transfected cells.  While 

other receptors were slightly upregulated in CD14
+
 monocytes transfected with miR-

155 over control mimic transfected cells, none of these differences were statistically 

significant Figure 3.12A.  In RA derived CD14+ monocytes, we noted some 

differences.  Interestingly, miR-155 transfected RA PB CD14
+
 monocytes revealed 

an increase in transcript levels of CCR7; almost three times higher than their control 

mimic transfected cells Figure 3.12B.  In contrast, over-expression of miR-155 

induced down-regulation of CCR2 and CCR3, with CCR2 being the most 

significantly affected.  Other chemokine receptors including, CCR4, CCR6, CCR8, 

CCR9, CCR10 and CX3CR1 were below the limit of assay detection.  
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A. Chemokine receptors expression in PB monocytes of healthy control after transfection with 

miR-155 

 

 

 

 

B. Chemokine receptors expression in PB monocytes of RA patients after transfection with 

miR-155 

 

  

 

 

Figure 3.12 Chemokine receptors mRNA expression in PB CD14
+
 monocytes of A) healthy controls and 

RA patients (n=8/group) after transfection with either miR-155 mimic or control mimics using the N-TER 

nanoparticle siRNA transfection system.  Total RNA was extracted and converted to cDNA as described in 

Material and Methods and transcripts levels of chemokine receptors were determined using TLDA plates 

with specific primers for distinct chemokine receptors.  The transcript levels of candidate chemokine 

receptors were presented as fold changes after normalization to 18S as housekeeping gene and calibrated 

to transcript levels of control mimic transfected cells.  Bars show the mean ± SEM of 3 replicates of total 8 

experiments from each group plus or minus SEM.  Marked bars are statistically different from control 

mimics transfected cells using Mann-Whitney U test; *=p≤ 0.05.  
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3.3 Discussion 

There is intense interest in unravelling those factors that coordinately regulate 

cytokine and chemokine production by macrophages in RA synovitis.  In addition 

there is evidence that circulating monocytes in patients with RA are already in a 

primed or pre-activated state that is somehow implicated in their subsequent 

recruitment to the synovial space and participation therein to the inflammatory 

cascade.  The factors that regulate such priming in these cells are also poorly 

understood.  Prior studies have implicated miR-155 in the regulation of cytokines in 

macrophages of synovial origin and strongly suggest that it can play an important 

role.  No studies however have addressed the role of miR-155 at the level of absolute 

copy number.  Moreover no studies have addressed the potential role for miR-155 

beyond this to the regulation of chemokine or chemokine receptor expression.  

Herein I have dissected the role of miR-155 to address each of these issues. 

 

Among various miRNAs, miR-155 has been found to be highly expressed in various 

samples derived from patients with RA.  For example, PBMCs exhibit higher 

expression of miR-155 in RA patients than OA patients and healthy controls (400).  

Therefore, this study was initiated to determine if miR-155 could mediate regulatory 

effects upon chemokine production, chemokine receptor expression in monocytes 

and their consequent migration.  To test this hypothesis, it was important first to 

focus on exact copy number expression in the PB and SF of RA patients compared to 

healthy controls.  Several studies reported that miR-155 was upregulated in RA 

PBMCs, RA SF-derived CD14
+
 monocytes and also strongly expressed in RA 

synovial biopsies (367, 400, 568).  However, prior studies only reported levels of 

miR-155 by calculating the relative expression using quantitative RT-PCR.  I now 

demonstrate that miR-155 copy number is upregulated significantly in both PB and 

SF CD14
+
 monocytes, particularly in SF, compared with PB monocytes of healthy 

controls.  Further, I provide evidence that miR-155 copy number is also significantly 

upregulated in both RA patients’ and healthy control subjects’ PB monocytes 

following cell activation upon exposure to the TLR4 ligand LPS.  Importantly, 

induction of miR-155 was significantly higher in patients with RA.  These data are 

consistent with previous studies, in which only the fold-change was examined 

suggesting that they are internally valid (569).  In future studies I would like to 

evaluate whether this early, enhanced copy number is essential upon cell activation 
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by LPS for the progression of the immune response and the production of 

inflammatory mediators downstream. 

 

The increased miR-155 observed in cells from RA patients suggests that it could 

have clinical significance.  I therefore sought correlations between miR-155 with 

parameters of clinical relevance.  MiR-155 copy number positively correlated with 

the total joint (TJ) and swollen joint (SJ) counts, and also correlated with DAS28.  In 

my cross-sectional cohort, all of the RA patients were being treated with cDMARDs, 

and 6 patients were also being treated with a biological DMARD.  Analysis of the 

influence of drug therapy on miR-155 copy number expression revealed no 

difference between the two treatment categories.  However, due to the small sample 

size in this study it is recommended that this be re-evaluated in a larger study 

appropriately powered for biomarker discovery.  Thus, whether or how drug therapy 

influences miR-155 expression must at present remain speculative.  Notably, despite 

the small sample size of RA patients in this study, it was observed that the ACPA 

positive RA patients have a higher copy number than ACPA negative RA patients. 

The nature of this interesting relationship between the miR-155 and ACPA has yet to 

be clearly understood.  Since ACPA formation is an early event in the pathogenesis 

of arthritis observed prior to onset of clinically established RA, and also since 

miRNAs including miR-155 may be involved in the post-transcriptional modification 

of proteins and activation of the immune system it will be important in an 

appropriately powered prospective study to define the exact role of miR-155 in the 

formation of ACPA.  Finally, I demonstrated that the miR-155 copy-number 

correlated with the ESR; which is a biomarker of acute inflammation.  These data 

collectively imply that miR-155 is involved in the pathogenesis of RA, or its clinical 

manifestation and could be a promising biomarker for early diagnosis and 

therapeutic intervention.  As proof of principal, several studies have emphasized the 

clinical significance of miRNA in cancer as highly specific and sensitive non-

invasive biomarkers.  Recent studies suggest that miRNAs in plasma can be 

biomarkers for the diagnosis, and predict the drug response of lung, breast, prostate 

and colorectal cancer.  For example, increased concentration of serum miR-155 is a 

potential clinical biomarker for chronic lymphocytic leukaemia and Waldenstrom’s 

macroglobulinemia (570). Similar studies measuring serum miR-155 in RA patients 

are therefore indicated. 
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As a next step, it was essential to address the functional consequence of increased 

miR-155 in inflammatory arthritis.  Few reports so far have addressed this issue.  

One recent report demonstrated that miR-155 is crucial for the pro-inflammatory 

activation of human myeloid cells and antigen-driven inflammatory arthritis (367).  

In the present work, the functional role of miR-155 was explored by creating an 

over-expression system.  There were several important reasons to generate an over-

expression miR-155 system: 

(i) SF monocytes/macrophages have particularly high copy-numbers of miR-

155 so I aimed to create a system that mimics this.   

(ii) I had access to miR-155
-/-

 mice, which are an appropriate experimental 

control strain.   

(iii) It is more convenient to get PB than SF from RA patients  

(iv) There are opportunities to get PB from a broader clinical spectrum of RA 

patients due to major improvement in disease outcomes arousing from 

early diagnosis and introduction of biological therapies.  

(v) This work was an extension of pilot work in our lab which demonstrated 

that miR-155 over-expressed in RA PB monocytes strongly triggered the 

mRNA expression and production of cytokines TNF-α and IL-1β 

implicated in RA synovitis.  

In this study, I confirm the previous observation that enhanced miR-155 expression 

in RA PB monocytes strongly increased the production of TNF-α and IL-1β, and 

their levels were significantly increased at the protein level.  I did not see elevation 

of mRNA levels compared to control suggesting that the level of regulation may be 

at the post transcriptional stage of cytokine expression, or in cytokine processing. 

 

The next part of my study extended the scope of the effects of increased miR-155 in 

RA beyond cytokine production to include that of chemokines.  Given the regulatory 

interactions that link the chemokine system (chemokines and chemokine receptors) 

and cytokines such as TNF-α and IL-1β, I hypothesized that miR-155 would also 

exert regulatory effects therein.  To our knowledge, this is the first study providing 

systematic evidence that miR-155 has a role in chemokine and chemokine receptor 

expression in RA PB monocytes that are implicated in cell recruitment and migration 

at the joint spaces.  I have shown that miR-155 over-expression significantly 

increased the expression and production of CCL3/MIP-1α, CCL4/MIP-1β, 
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CCL5/RANTES and CCL8/MCP-2 from RA PB at both mRNA and protein levels.  

These data are consistent with previous studies showing that these chemokines 

through their receptors, CCL3/MIP-1α (ligand for CCR1, CCR3 and CCR5), 

CCL4/MIP-1β (CCR5), CCL5/RANTES (CCR1 and CCR5) and CCL8/MCP-2 

(CCR2), are considered to be implicated in RA pathogenesis via recruitment and 

retention of monocytes and T cells in joints (571).  Thus, miR-155 might be involved 

directly or indirectly in monocyte recruitment and retention, which in turn resulted in 

progression and persistence of synovitis.   

 

In the present study we observed that CCL2/MCP-2, CCL7/MCP-3 and IL-8/CXCL8 

mRNA levels were significantly increased following miR-155 over-expression but 

there was no corresponding increase in protein levels.  This was in contrast to the 

observations in this lab by Kurowska-Stolarska et al (367) in which IL-8/CXCL8 

protein as well as mRNA was increased in response miR-155 over-expression. The 

differences between the two studies may reflect minor methodological differences 

such as processing time prior to purification of cells from PB or the relatively small 

sample size previously employed in the Kurowska-Stolarska et al study.  The 

implication from the different observations suggests that miR-155 is acting as a fine 

tuner rather than obligate partner in chemokine production such that rather subtle 

differences in approach may alter its assessed functional significance.  This will be 

important to explore prior to therapeutic interventions going forward.   

 

To summarize, the above data suggest that within the synovium the significant 

higher expression of miR-155 might mediated chronic synovitis through increase 

expression and local production of cytokines and chemokines that play a critical role 

in articular inflammation and recruitment of inflammatory cells into the joint space 

that are necessary for driving disease pathology.  However, to address a potential 

mechanism by which the cytokines and chemokines are secreted in response to miR-

155 over-expression, we hypothesised that this could be due to a direct functional 

effect of the TNF pathway.  Although the intracellular signalling pathway for 

activation of cytokines and chemokines is complex, the TNF pathway has a 

fundamental role and could be one candidate pathway for investigation.  Preliminary 

experiments determined the effects of anti-TNF (adalimumab at 10μg/mL) on miR-

155 induced the production of cytokines and chemokines from PB monocytes in 
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vitro.  These unpublished results demonstrated that anti-TNF induced the down-

regulation of production of cytokines and chemokines from PB monocytes that over-

expressed miR-155.  Adalimumab efficiently neutralized the production of TNFα, 

IL-1β, MIP-1α and MIP-1β.  Although the results suggested that this down-

regulation could be due to a direct functional effect of adalimumab, future studies 

will be required to define the range of pathways that might mediate such effects.  We 

cannot, however, exclude a role of miR-155–regulated targets in the modulation of 

monocytes/macrophage cytokine responses.  Compelling experimental evidence 

identifies miR-155 target transcripts that are of potential interest in regulation of 

inflammation e.g. SHIP-1 and SOCS-1.  Recently our group showed that miR-155 

regulated the expression of SHIP-1 and a novel tyrosine kinase receptor (AXL) in 

RA PB and SF CD14
+ 

monocytes.  Both represent potent inhibitors of many 

inflammatory pathways such as PI3K AKT that may lead to increased production of 

pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6, which are in turn 

implicated in the development of chronic arthritis (367, 572).  

 

In contrast, other potential monocyte chemokines did not appear to be regulated by 

miR-155 pathway in PB RA monocytes.  Theses include CCL2/MCP-1, 

CCL7/MCP-3, CCL21/6CKINE, CCL22/MDC, CXCL1/GRO, CXCL5/ENA-78, 

CXCL8/IL-8, CXCL7/NAP-2, CXCL10/IP-10 and CX3CL1/Fractalkine.  The 

functional significance of this should be explored in future studies using selective 

inhibitors, or gene-silencing, when such reagents become available.  I conclude, 

however, that other miRs will likely co-regulate the range of chemokines expressed 

in monocytes.  This is rational from an evolutionary point of view in terms of host 

defence in which critical checkpoints could be vulnerable to subjugation by 

microbial species to the detriment of effective protection. 

 

Chemokine receptors govern the directional movement of cells toward their 

chemokine ligands.  Inflammatory chemokine receptors in RA patients fall into 2 as 

yet loosely defined categories. Some are involved in cell recruitment (e.g. for 

monocyte; CCR1 and CCR2), and others are important in cell retention (e.g. 

monocytes at joint spaces; CCR3 and CCR5) (287).  In the present work, I showed 

that in RA PB monocytes over-expressing miR-155 there was a reduction in mRNA 

expression of the inflammatory chemokine receptor CCR2, and in contrast there was 
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an increased mRNA expression of CCR7.  CCR7 is a homeostatic chemokine 

receptor that is involved in the release of monocytes from the bone marrow to 

periphery and into draining lymph nodes (209).  These observations suggest that not 

only does TLR-4 stimulation induce a switch of chemokine receptor expression from 

inflammatory receptors to homeostatic receptors (573), but also that miR-155 might 

mediate this same effect.  Commensurate with this, some of these receptors showed 

the opposite reciprocal expression patterns in mouse monocytes that were deficient 

for miR-155 (chapter IV); bone marrow monocytes of miR-155
 
deficient mice 

expressed significantly higher mRNA transcript levels of inflammatory chemokine 

receptors CCR2 and significantly lower mRNA transcript levels of CCR7.  This 

suggests that endogenous miR-155 may act as an important regulator of chemokine 

receptors in monocytes leading to their retention at sites of inflammation.  The 

mechanism of this regulation is currently unknown. Analysis of 3’UTRs of 

chemokine and chemokine receptors (using online Target Scan software; 

http://www.targetscan.org/) shows that none of the affected chemokine/chemokine 

receptors are directly targeted by miR-155.  This finding suggests that miR-155 most 

likely functions by regulating proteins in the signalling pathways implicated in 

chemokine and chemokine receptor system expression.   

 

Thus, dysregulation of miR-155 in RA monocytes can contribute to the production of 

pro-inflammatory chemokines by these cells and to their accumulation at the sites of 

inflammation through the autocrine/paracrine patterns (Figure 3.13).  A possible 

scenario is that miR-155, expressed at high copy number in RA SF 

monocyte/macrophages, triggers chemokine production that in turn leads to 

recruitment of monocytes and other cells such as T cell into the joint space and 

synovium.  In parallel, miR-155 suppresses the expression of the inflammatory 

chemokine receptor CCR2 that may play a role in the retention of cells expressing it 

in joint spaces.  In addition, my data indicate that CCR7 is positively regulated by 

miR-155.  CCR7 and its corresponding ligands have been implicated in lymphoid 

neogenesis.  In RA synovium, CCR7 is mainly expressed in infiltrating lymphocytes 

and DCs and plays a crucial role in maturation and homing of DCs to lymphocytic 

aggregates (285).  Consistent with a crucial role of CCR7 in the regulation of 

development and organization of tertiary lymphoid tissues, CCR7 deficient mice are 

protected against collagen induced arthritis (286).  Thus, I can speculate that 
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inflammatory monocytes expressing high levels of miR-155 and CCR7 can give rise 

to inflammatory DCs that are directed to ectopic lymphoid structures in the 

synovium. 

 

Together, these data provide preliminary evidence that miR-155 modulates the 

mRNA expression of chemokines and chemokine receptors in monocytes; however, 

to characterize their functional consequences appropriate chemotactic assays are 

required.  To address this, some experiments were conducted in our lab to evaluate 

monocyte migration using the method of Matrix Gel slide and Two Photon 

Microscopy.  Purified PB CD14
+
 monocytes were transfected with control oligo or 

miR-155 or anti-miR-155 labelled with different fluorochromes CFSE (Green) or 

with CMTPX (Red) and incubated overnight to allow their movement into a matrix 

gel.  The next day the distance the cells moved was examined with Two-Photon 

Microscopy under fluorescent light, but unfortunately, the cells did not attach to 

collagen matrix and we could not quantify the movement.  We tried to identify what 

caused lack of adhesion and considered and tested the following factors: processing 

during separation causing cell stress; selection by micro-beads that might affect their 

adherence, cell stress caused by staining and finally degree of adherence to collagen 

IV.   We identified that positive selection using micro-beads affected the adherence 

of monocytes to collagen therefore monocytes prepared by a more labour-intensive 

negative selection method was developed (data not presented).  Thus, optimization of 

a matrix slide migration assay took longer than expected and we did not have enough 

time to carry out further experiments.  We recommend that evaluation of functional 

role of miR-155 in cell migration could be performed using a trans-well system.  

 

In conclusion, the precise mechanism by which miR-155 might govern articular 

inflammation is not clear.  The data presented in this chapter suggest that miR-155 in 

part has the ability to exacerbate the secretion of pro-inflammatory cytokines and 

chemokines as well as to modulate the expression of chemokine receptors and 

thereby enhance the recruitment of inflammatory cells to the site of inflammation 

and their local retention and activation.   

To gain a better understanding of this process, in chapter IV a similar analysis of 

chemokines and chemokine receptors was carried out using bone marrow monocytes 

(BMM) from miR-155-/- and WT mice. 
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Figure 3.13 Schematic diagrams show a potential role of miR-155 pathway for autocrine and paracrine 

regulation of monocyte activation and migration and retention in the synovium.  In RA synovium, TLR 

ligands strongly up regulate the miR-155 expression in synovial monocytes/macrophages and this leads to 

production of pro-inflammatory cytokines and chemokines.  Chemokines production subsequently 

increases monocytes and other cells migration from peripheral circulation to synovium tissues.  

Simultaneously, high expression of miR-155 leads to down regulation of chemokines receptors in synovium 

monocytes/macrophages and retention of cells within synovium. 
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CHAPTER IV 

EXPRESSION OF CHEMOKINES AND CHEMOKINE 

RECEPTORS IN MIR-155 DEFICIENT MOUSE 

MONOCYTES AND MACROPHAGES 
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4.1 Introduction and Aims 

Recently, miR-155 has been implicated in the differentiation and activation of cells 

of both the innate and the adaptive immune systems (323).  Furthermore, its 

overexpression has been linked to autoimmune disease in general and RA in 

particular.  In humans, upregulated expression of miR-155 in PBMCs and articular 

tissues of RA patients has been observed (400, 574).  Experimental overexpression 

of miR-155 in monocytes and macrophages triggered the production of TNF-α and 

IL-6 that are strongly implicated in RA synovitis.  Most importantly, inhibition of 

endogenous levels of miR-155 in synovial macrophages inhibited TNF-α production.  

Also our group showed that mice deficient for miR-155 developed neither synovial 

inflammation nor cartilage and bone destruction in CIA model (367).  Furthermore, 

bone marrow-derived macrophages of miR-155 deficient mice exhibit lower 

expression of some pro-inflammatory mediators, including TNF-α, IL-1β and 

chemokines (CXCL1 and CXCL9) compared with WT mice (367).  This observation 

suggested a pro-inflammatory role of miR-155 in articular inflammation.  

 

Recruitment of effectors cells to the joint space is an important step in articular 

inflammation and is mediated by chemokines and their receptors.  Chemokines are 

characterized by their common ability to direct leukocyte migration via interaction 

with the chemokine receptors on the leukocytes surface (223).  There is an increasing 

number of evidences suggesting that disruption of this interaction may offer a 

potential therapeutic approach (289).  Thus revealing the mechanism of chemokine 

and chemokine receptor regulation is an important point in understanding the 

aetiology and pathogenesis of RA.  

 

In RA synovial tissue, monocytes/macrophages are believed to be major effector 

cells in synovitis operating by production of cytokines such as TNF-α, IL-6 and IL-

1β and also serving as important producers of chemokines, thereby facilitating entry 

of immune cells into tissue (170).  Furthermore, PB monocytes express many 

different chemokine receptors (such as CCR1, CCR2, CCR5, CCR8, CXCR1, and 

CXCR4), facilitating their migration into the synovium to bind their respective 

ligands that are abundantly expressed in RA synovial tissue (575).  I previously 

demonstrated that in PB monocytes of RA patients, miR-155 modulates the 

chemokine and chemokine receptor expression system.  To further investigate the 
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role of endogenous miR-155, similar experiments were carried out on bone marrow 

monocytes cells from miR-155
-/-

 and WT mice.  

 

No previous studies have highlighted chemokine and chemokine receptor expression 

in miR-155 deficient mice.  This part of my work was performed to characterize the 

expression of chemokine receptors in bone marrow monocytes/macrophages of miR-

155 deficient
 
mice compared to WT mice.  We hypothesized that monocytes from 

miR-155
-/- 

mice would show dysregulation of the chemokine or chemokine receptor 

system and thereby oppose the phenotype of human monocyte overexpressing miR-

155. 

 

Several methods and techniques were used to identify and sort bone marrow 

monocytes.  Initially, for the characterization of monocyte populations in bone 

marrow, markers such as CD11b and CD115 were used as those were previously 

thought to be specific for monocytes.  Later, it is becoming increasingly apparent 

that CD11b or CD115 alone were inadequate for the identification of bone marrow 

monocyte populations.  It was therefore important to optimize the isolation method 

of monocytes from the bone marrow of mice to obtain appropriate purity, viability 

and adequate number of cells allowing to run experiments.  Thereafter, I was able to 

address the primary question of interest namely the impact of miR-155 on chemokine 

and respective receptor expression. 
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4.2 Results 

4.2.1 Optimization of bone marrow monocytes isolation  

To study chemokine receptor expression on bone marrow monocytes (from now 

onwards mentioned only as BMMO), it was important first to establish a method to 

isolate pure monocytes from bone marrow with good viability and adequate number.  

Male miRNA-155 deficient (miR155
−/−

) mice on a C57BL/6 (B6) background were 

used for this study.  In brief, bone marrow cells were isolated from the femurs and 

tibia of mice (WT and miR155
−/−

 mice).  Cells were washed and incubated with RBC 

lysis buffer and number of viable cells was assessed by Trypan Blue dye as described 

on Materials and Methods. 

 

4.2.1.1 Preliminary Identification of BMMO using CD11
+
 marker  

Previous studies in the laboratory enriched mouse BMMO using CD11b
+
 purification 

Kit (Militenyi Biotech).  It is known that mouse CD11b antigen is strongly expressed 

on monocytes/macrophages and to a lower extent on granulocytes and NK cells.  In 

my initial experiments, isolation of BMMO from WT and miR155
−/−

 mice (n=4) was 

conducted using mouse CD11b
+ 

micro beads and positive selection on an Auto-

MACS separator as shown on Figure 4.1.  Purity of isolated CD11b positive cells 

was greater than 97% as assessed by FACS analysis staining with anti mouse CD11b 

antibody.  In brief, sorted CD11b
+
 cells were seeded in 12–well plates (2x10

6
).  24 h 

later 100ng/mL LPS was added to some wells for a further 24 h.  Total RNA was 

extracted from CD11b
+
 cells and transcript levels of investigated chemokine 

receptors were determined by TLDA plates with specific primers as described in 

Materials and Methods.  The transcript levels of expressed chemokine receptors were 

presented as fold changes after normalization to 18S (housekeeping gene) and then 

calibrated to WT transcript levels.  In the absence of LPS, CD11b
+
 cell of miR-155

−/−
 

expressed higher levels of CCR1, CCR2, CCR5 and CXCR4 compared to WT as 

shown in Figure 4.2.  LPS suppressed expression of all chemokine receptors in both 

WT and miR-155
−/−

 CD11b
+
 cells.  Particularly, LPS significantly down regulated 

inflammatory chemokine receptor expression namely, CCR1, CCR2, CCR5 and 

CXCR4 (Figure 4.2).  However, there was no significance difference in the levels of 

down-regulation of majority of chemokines receptors between the WT and miR-

155
−/−

 mice.  Expression of CCR4, CCR6, CCR8, CCR9, CXCR1, CXCR5 and 
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CXCR6 were below the limit of assay detection.  Table 4.1 summarizes expression 

of chemokine receptors in CD11b
+
 cells of miR155

−/−
 compared to WT mice.  

 

Table 4.1 Summary of chemokine receptors expression in bone marrow CD11b
+
 cells of miR-155

-/-
 

compared to WT mice.  CD11b
+
 cells were isolated from WT and miR-155

-/-
 mice (3 mice/group) using 

CD11b
+
 micro beads and Auto-MACS separator.  (+), Increased; (-) Un-changed and (*) are statistically 

different from controls. Data were analysed with student t test * = p ≥ 0.05. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

  CHR Increased ≥ 0.05 

C-CR CCR1 + * 

CCR2 + * 

CCR3 +   

CCR4 -   

CCR5 + * 

CCR6 -   

CCR7 +   

CCR8 -   

CCR9 -   

CCR10 +   

CXCR CXCR1 +   

CXCR2 +   

CXCR3 + * 

CXCR4 -   

CXCR5 -   

CXCR6 -   

 CXCR7   

CX3CR FKR +   

XCR1 XCR1 -   
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Figure 4.1 Experimental setup for enriched murine bone marrow monocytes usig CD11b
+
 micro beads and 

Auto-MACS separator.  Enriched CD11b
+
 cells were seeded in 12–well plates (2x10

6
).  24h later they were 

either treated or untreated with LPS (100ng/mL) for a further 24 h. Total RNA were extracted from 

CD11b
+
 cells and transcript levels of candidate chemokine receptors were determined by TLDA plates 

with specific primers.  Representative histograms of CD11b
+
 positive fraction from WT and miR155

−/−
 

mice (red and green lines are FITC isotype control, while dark blue and orange lines are CD11b
+
 cells

 
for 

miR155
−/−

 and WT, respectively) are shown. 
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Figure 4.2 Chemokine receptors expression in bone marrow CD11b
+
 positive cells from miR-155

-/- 
and WT 

mice.  CD11b
+
 cells were isolated from WT and miR-155

-/-
 mice (4 mice/group) usig CD11b

+
 micro beads 

and Auto-MACS separator.  Enriched CD11b
+
 cells were cultured for 24 h. after that some cells were 

treated with (100ng/mL) LPS for further 24 h.  Total RNA was extracted and TLDA plates with specific 

primers determined transcript levels of candidate chemokine receptors.  Transcript levels are expressed as 

fold change after normalization to 18S as housekeeping gene and calibrated to one mouse from WT group.  

All bars for the transcript data show mean fold changes of 3 replicates from each group ± SEM and 

marked bars are statistically different from WT untreated LPS group and determined by Kruskal-Wallis 

test, * = p ≤0.05. 
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I made a late surprising discovery that many of the CD11b
+
 cells were not 

monocytes/macrophages (Figure 4.3).  Although the purity of CD11b positive cells 

was 95% using anti mouse FITC antibody (histogram Figure 4.1), not all of them 

were monocytes.  The majority of the CD11b
+
 population consisted of neutrophils 

(dot plot Figure 4.3B and D).  The analysis was done with 4 colour flow cytometry 

techniques.  Enriched CD11b
+
 cells were stained with anti-mouse CD11b, Ly6C, 

Ly6G and CD115 antibodies as shown in Figure 4.3.  It revealed that CD11b
+
 cells 

consisted of two populations; LY6C
+
 LY6G

-
 fraction (monocytes) and LY6C

-
 

LY6G
+
 (neutrophils).  A representative experiment demonstrated that WT and miR-

155
-/- 

CD11b
+
 cells consisted of 17% and 12.7% monocytes, respectively (Figure 

2B).  Thus, CD11b
+
 was not a good marker for sorting monocyte from bone marrow 

as CD11b
+
 positive fractions were contaminated with neutrophils.  Therefore, I 

decided to isolate BMMO based on their expression of CD115 (the M-CSF receptor; 

another monocyte marker) using CD115
+
 kits (Militenyi Biotech) and the Auto-

MACS separator.  

 

 

 

Figure 4.3 A represntative purity of CD11b
+
 cells populations from miR-155

-/-
 mouse experiment that were 

defined by Ly6C, Ly6G and CD115 expression.  CD11b
+
 cells were isolated from WT and miR-155

-/-
 mice 

usig CD11b
+
 micro beads and Auto-MACS separator and analysed for the expression of Ly6C, Ly6G and 

CD115 by flow cytometry.  A) Representative dot plot expression of CD11b staining cells and FSC profile.  

B) The percentages of LY6C and LY6G positive cells in CD11b
+
 population C & D) Representative dot 

plots demonstrate the expression of CD115/LY6C (monocytes) and CD115/LY6G (neutrophils) on CD11b 

positive cells.  Results are representative of 2 experiments from each group.  
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4.2.1.2 Identification of BMMO using CD115 marker 

CD115 is expressed on monocytes, macrophages, and osteoclasts.  CD115 is a 

receptor for colony stimulating factor-1 (CSF-1) and signalling through CSF-1R 

regulates monocytes/macrophages proliferation and differentiation.  Thus I decided 

to use CD115 to identify BMMO in mice.  Therefore, bone marrow suspensions (as 

described above) from WT and miR155
−/−

 mice (n=2) were labelled with CD115
+
 

micro beads and purified by positive selection on an Auto-MACS separator using the 

“possel” programme as described in Materials and Methods.  To validate that sorted 

CD115 positive cells from WT and miR155
−/−

 mice were BMMO, cell purity was 

checked by FACS analysis after staining cells with antibodies against, CD11b, Ly6C, 

Ly6G and CD115.  Data were analyzed using FlowJo software.  Interestingly, BM 

enriched CD115
+
 cells population contained only 51.9% and 55% in WT and 

miR155
−/−

 mice of LY6C
+ 

(monocytes), respectively.  So, the purity of monocyte 

population was still contaminated with LY6G
+
 neutrophils (Figure 4.4B and D).  

Results are representative of one individual experiment. 

 

Next, I decided to add LY6C marker for my purification strategy.  I sorted the bone 

marrow enriched CD115
+
 cells using the FACS Aria sorter.  In brief, CD115

+
 cells 

suspensions from WT and miR155
−/−

 mice (n=2) were stained with antibodies 

against CD11b, Ly6C, Ly6G and CD115 expression.  Monocyte was sorted based on 

the expression of CD115
+
CD11b

+
Ly6C

+
 and a lack of the expression Ly6G.  From 

the representative data in Figure 4.5C, almost 79% of enriched CD115
+
 cells 

population expressed the CD11b
+
; and Ly6C and CD115 (monocytes) constituted 

70% from this fraction after sorting based on the expression of 

CD115
+
CD11b

+
Ly6C

+
 and a lack of the expression Ly6G (Figure 4.5E).  Post-

sorting purity of BMMO were 95% and 96% for WT and miR-155
-/-

, respectively 

(Figure 4.5F and G).  Cells viability was also good and determined by using Trypan 

Blue staining.  Although purity and viability were good the total number of BMMO 

from sorting was very low and was not enough to set up experiments.  This was 

likely due to long and multistep selection process that included micro beads sorting 

and subsequent processing through FACS Aria that could lead to cell stress and 

death.  I therefore decided to sort fresh whole bone marrow on the basis of CD11b, 

Ly6C, Ly6G and CD115 expression using FACS Aria sorter only. 
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Figure 4.4 A representative WT mouse experiment shows purity of CD115
+
 cells populations that were 

defined by Ly6C, Ly6G and CD115 expression.  CD115
+
 cells were isolated from WT and miR-155

-/-
 mice 

using CD115
+
 micro beads and Auto-MACS separator and analysed for the expression of Ly6C, Ly6G and 

CD115 by flow cytometry.  A) Representative dot plot expression of CD11b staining cells and FSC profile.  

B) The frequency of subpopulations of CD11b
+
 cells identified on the basis of LY6C and LY6G expression 

by flow cytometry.  C & D) Representative dot plots demonstrate the expression of CD115/LY6C 

(monocytes) and CD115/LY6G (neutrophils) on CD11b positive cells.  Results are representative of one 

experiment. 

 

 

Figure 4.5 A representative miR-155
-/-

 BMMO population defined by CD11b
+
, LY6C, LY6G and CD115 

expression on enriched CD115
+
 cells.  CD115

+
 cells were enriched from WT and miR-155

-/-
 mice 

(n=2/group) usig CD115
+
 micro beads and Auto-MACS separator.  Live cells were sorted on the basis of 

the expression of CD11b, Ly6C, CD115 and lack of Ly6G using a FACS Aria.  A) Representative dot plot 

expression of enriched CD115 using forward (FSC) and side scatter (SSC) parameters compared to 

unstained cells (B).  C) The frequency of subpopulations of CD11b
+
 cells identified on sorted CD115 

positive cells.  D & E) Representative dot plots demonstrate the expression of CD115/LY6C (monocytes) 

and CD115/LY6G (neutrophils) on CD11b
+
 fraction from enriched CD115 cells.  F & G post-sorting purity 

BMMO (based on their expression of Ly6C and CD115) was 95%.  Results are representative of one 

experiment. 
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4.2.1.3 Sorting Whole Bone Marrow using the FACS Aria Sorter  

Whole bone marrow cells suspensions were prepared as described in Materials and 

Methods from WT and miR155
−/−

 mice (n=2).  Cells were incubated with anti-

CD16/CD32 at 4°C to reduce non- specific binding via Fc receptors after lysing red 

blood cells.  After that cells were labelled with cell lineage specific antibodies 

(CD11b, Ly6C, Ly6G and CD115) as shown on Table 2.3 and incubated for 15-20 

minutes at 4°C.  All experiments were controlled with appropriate isotype antibodies 

and unstained cells.  Furthermore, all acquisition was performed under sterile 

conditions. 

 

First I used CD11b expression to identify the entire myeloid population on total 

whole bone marrow cells.  This gating strategy resulted in far superior separation of 

CD11b
+
 populations (Figure 4.6C) and revealed that, there were two populations in 

total BMMO; CD11b negative and CD11b positive that comprised (48% and 45%) 

and (41% and 53%) for WT and miR155
−/−

 mice, respectively of the total of BM 

cells.  Next, live CD11b
+ 

cells were identified by gating on the 7-AAD negative 

fraction (Figure 4.6D).  Monocytes were then sorted based on their expression of 

CD11b, Ly6C and CD115 and a lack of Ly6G (Figure 4.6E and F).  BMMO post 

sorting purity was performed for both WT and miR155
−/−

 mice (n=2) (Figure 4.6G 

and H).  Post sorting purity and viability of BMMO from WT and miR155
−/−

 mice 

were (92% and 98%) and (96% and 98%) respectively.  Furthermore, the total 

number of sorted monocytes was suitable to run my experiments.  All data generated 

were analysed using FlowJo software. 

 

Finally, analysis confirmed my earlier conclusions that most of the CD11b
+
 subset 

was not monocytes, as some of them lacked LY6C expression (Figure 4.6D).  Also 

my experiments revealed that the CD11b and CD115 couldn’t be used to identify 

pure monocytes in bone marrow.  Sorting monocytes based on all three markers 

CD11b, Ly6C and CD115 expression and a lack of Ly6G is the best methods for the 

identification of BMMO population. 
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Figure 4.6 A representative of miR-155
-/-

 BMMO population defined by CD11b
+
, LY6C, LY6G and CD115 

expression on whole bone marrow cells suspension.  BM murine cells suspensions were prepared from WT 

and miR-155
-/-

 mice (n=2/group) as described in Materials and Methods.  Cells were labelled with cell 

lineage specific antibodies then sorted for the expression of CD11b, Ly6C, Ly6G and CD115 by live-gated 

cells using a FACS Aria.  A) Representative dot plot expression of whole bone marrow cells using forward 

(FSC) and side scatter (SSC) parameters compared to unstained cells (B).  C) CD11b
+
 expression on whole 

bone marrow cells demonstrate entire myeloid population on 7-AAD negative cells also show CD11b
+
 

subpopulations; CD11b negative fraction versus CD11b positive populations.  D & E) Representative dot 

plots demonstrate the expression of CD115/LY6C (monocytes) and CD115/LY6G (neutrophils) on CD11b
+
 

fraction from enriched CD115 cells.  F & G post-sorting purity BMMO (based on their expression of Ly6C 

and CD115) were 92% Results are representative of 6 experiments. 
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4.2.2 Chemokine Receptor mRNA Expression in BMMO from 

miR155
−/−

 Mice 

4.2.2.1 Basal expression of chemokine receptors in miR155
−/−

 mice 

The result obtained from the preliminary analysis of chemokine receptors expression 

on miR155
−/−

 mouse CD11b
+
 cells suggested that endogenous miR-155 could be a 

negative regulator of the expression of chemokine receptors.  MiR-155
-/-

 bone 

marrow CD11b
+
 expressed significantly higher level of the inflammatory receptors 

CCR1, CCR2, CCR5 and CXCR4.  Similar analysis was performed on pure 

monocyte populations from WT and miR-155
-/-

 mice.  In brief, the basal expression 

of chemokine receptors was examined in RNA of BMMO that were sorted on the 

basis of CD11b, Ly6C, CD115 and lack of Ly6G expression using FACS Aria sorter 

as described above.  Total RNA samples were extracted directly after sorting 

(2mice/group/of total 4 exps).  After cDNA synthesis TLDA plates were performed 

with primers specific for mice chemokines receptors.  In miR-155
−/− 

mice 

transcription levels of chemokine receptors within BMMO were presented as fold 

change.  Their expression was normalization to 18S (housekeeping gene) and then 

calibrated to transcript levels of WT mice. 

 

Consistent with the preliminary data on CD11b
+
 cells, analysis of the chemokine 

receptors expression in miR-155
−/− 

BMMO confirmed the upregulation of a number 

of chemokine receptor transcripts levels compared with WT.  As shown in Figure 

4.7, miR-155
−/−

 BMMO expressed significantly higher levels of CCR1, CCR2, 

CCR3, CCR5, CCR9, CXCR3, CXCR4 and CX3CR1.  In contrast CCR7 was 

statistically down regulated in miR-155
−/− 

BMMO compared to WT mice (Figure 

4.7).  No alterations in CXCR2, CXCR5 and CXCR6 expression were observed.  

Other chemokine receptors (CCR6, CCR8, CCR10, CXCR1 and XCR1) were below 

the limit of detection in both WT and miR-155
−/− 

BMMO.  Together these data 

suggested that endogenous miR-155 is a negative regulator of the expression of 

chemokine receptors and might be one the factors that contributes to optimal 

expression of some chemokine receptors in BMMO and could therefore be involved 

in regulating the biology of these cells.  
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Figure 4.7 Chemokine receptor expression in BMMO that were sorted on the basis of CD11b, Ly6C, 

CD115 and lack of Ly6G expression.  Total RNA samples were extracted directly after sorting 

(2mice/group/of total 4 exps.) and transcripts levels of chemokine receptors expression were determined by 

QPCR using TLDA plates.  Chemokine receptors expressions in miR-155
-/- 

BMMO were presented as fold 

change after normalization to 18S as house keeping gene and then calibrated to transcript levels of WT 

mice.  All bars for the transcript data show mean fold changes of 3 replicates of total 4 experiments from 

each group ± SEM, and statistical significances were evaluated by using Mann-Whitney test * = p ≤0.05.  
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4.2.2.2 Chemokine Receptor Expression after LPS Stimulation  

LPS stimulation is known to down regulate inflammatory chemokine receptor 

expression in monocytes (576-578).  Next I tested whether miR-155 is involved in 

that process.  BMMO were sorted as described earlier from both WT and miR-155
−/− 

mice (4mice/group/of total 2 exps.).  Likewise, freshly purified cells were seeded in 

12-wells plates (2x10
6
) and after 24 h some wells were stimulated with LPS 

(100ng/ml) or left un-stimulated and cultured for further 24 h.  The analysis was 

performed on total RNA.  Chemokine receptors transcription levels were 

normalization to 18S.  I examined the impact of LPS on chemokine receptor 

expression in WT and miR-155
-/-

 monocytes. 

 

First, to study the impact of LPS on expression of chemokine receptor expression in 

either the WT or miR-155 deficient mice, the transcript levels of chemokine 

receptors expressed in BMMO of WT or miR-155
−/−

 LPS treated samples were 

calibrated by WT or MiR-155
−/−

 LPS un-stimulated transcript levels (Figure 4.8A 

and B), respectively.  Overall, exposure of BMMO to LPS resulted in down 

regulation of expression of a majority of inflammatory chemokine receptor 

transcripts in both WT and miR-155
−/− 

monocytes compared to respective LPS un-

treated monocytes.  For example, BMMO of WT mice exhibited down regulation of 

inflammatory chemokine receptors, with CCR1, CCR2, CXCR2 and CXCR4 being 

most highly down regulated after the treatment with LPS Figure 4.8A.  BMMO of 

miR-155
−/−

 mice showed a trend to down regulation of the same receptors (CCR1, 

CCR2 and CXCR4) after treatment with LPS compared to non-LPS miR-155 

deficient monocytes (Figure 4.8B).  However, its important to mention here I 

conducted two experiments therefore its was impossible to determined levels of 

significance.  In contrast, in neither WT nor MiR-155
−/−

 mice LPS did not affect the 

expression levels of CCR5, CCR7 and CCR9. 
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A) 

 

 

 

B) 

 

 

 

Figure 4.8 Quantitative analysis to study the impact of LPS in chemokine receptor mRNA expression by 

BMMO of miR-155 deficient mice or WT after LPS treatment.  BMMO were sorted on the basis of CD11b, 

Ly6C, CD115 and lack of Ly6G expression from whole bone marrow cells of WT and miR-155
-/- 

mice
 

(4mice/group/of total 2exps) using FACS Aria.  BMMO were seeded in 12-wells plates (2x10
6
) and after 24 

h stimulated with LPS at 100ng/mL or left untreated for further 24 h and chemokine receptors expression 

determined by TLDA plates.  Transcripts of chemokine receptors expressed in cells of WT or miR-155
-/-

 

after LPS treated were calibrated to (A) WT LPS untreated or B) KO LPS untreated, respectively.  All 

bars show mean fold change of 2 replicates ± SEM compared with controls.  Its important to mention here 

I conducted two experiments therefore its was impossible to determined levels of significance. 
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Next I examined whether the expression level of chemokine receptors differed 

between WT and miR-155
−/−

 mice after LPS stimulation.  I used one mouse from the 

LPS un-treated group of WT as a calibrator control (Figure 4.9).  Firstly, in contrast 

to freshly sorted monocytes, WT and miR-155
-/- 

monocytes cultured for a total time 

of 48 h (24 h before and 24 h after LPS stimulation) in complete media did not differ 

in chemokine receptor expression (Figure 4.9).  Indeed, both WT and miR-155 

deficient monocyte showed similar phenotype in terms of chemokine receptor 

expression once incubated in culture media, likely due to effect of serum.  Therefore, 

I decided to examine the effect of culture and media on chemokine receptor 

expression in comparison to basal expression (see below, Figure 4.10).  While, 

analysis of LPS-treated cultures demonstrated that BMMO of WT and miR-155
−/−

 

mice showed significantly lower magnitude of down-regulation of CCR1, CCR2, and 

CXCR4 transcripts compared to WT untreated cells (Figure 4.9).  Notably, CXCR2, 

CXCR3 and CX3CR1 were also down regulated after LPS stimulation but compared 

to controls; did not reach the levels of significance.  No alterations in CCR5, CCR7 

and CCR9 expression were observed.  Taken together these observations suggested 

that miR-155 does not contribute to LPS induced down-regulation of inflammatory 

receptor in monocytes as the same effect where observed in both WT and miR-155
−/−

 

BMMO. 

 

Chemokine receptor expression in BMMO both WT and miR-155
−/−

 mice after 48 h 

cultures was compared to basal expression.  One mouse from WT or miR-155
−/−

 

basal expression were used to calibrate the transcript levels of chemokine receptors 

expression in BMMO of WT or miR-155
−/−

 after 48 h culture (Figure 4.10A and B), 

respectively.  Up regulation of CCR3, CCR7 and CXCR2 in WT monocytes and 

CCR3, CCR7, CCR9 and CXCR2 in miR-155 deficient cells were observed.  Of 

interest, CCR1 and CCCR2 show either unchanged or a trend of down regulation 

after 48 h culture compare to basal expression.  
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Figure 4.9 Quantitative analysis to study the impact of LPS in chemokine receptor mRNA expression by 

BMMO from miR-155 deficient mice or WT after LPS treatment.  BMMO were sorted on the basis of 

CD11b, Ly6C, CD115 and lack of Ly6G expression from whole bone marrow cells of WT and miR-155
-/- 

mice
 
(4mice/group/of total 3exps) using FACS Aria.  BMMO were seeded in 12-wells plates (2x10

6
) and 

after 24 h stimulated with 100ng/mL LPS or left untreated for further 24 h and chemokine receptors 

expression determined by TLDA plates with candidate chemokine receptors.  Transcripts levels of 

chemokine receptors expressed in cells of WT or miR-155
-/-

 before and after LPS treated were calibrated 

by one mouse from of WT LPS untreated group.  All bars show mean fold change of 2 replicates ± SEM 

compared with controls.  Marked bars are statistically different from WT LPS un-stimulated cells and 

determined by Kruskal-Wallis test, *P ≤.05. 
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A)  

 

 

 

 

B) 

 

 

 

 

Figure 4.10 Quantitative analysis of chemokine receptors mRNA expression in BMMO of WT and miR-

155 deficient mice that directly after sorting or after 48 h of culture.  RNA from freshly sorted cells 

(2mice/group/of total 4exps) and 48 h cultured (4mice/group/of total 3exps) were isolated and TLDA plates 

were performed with primers specific for mice chemokine receptors.  Cells cultured for 48 h were 

calibrated against the transcript levels of one mouse from basal expression A) WT and B) KO, 

respectively.  All bars show mean fold change of 2 replicates ± SEM compared with controls.  Marked bars 

are statistically different from control group and determined by Kruskal-Wallis test; *P ≤.05. 
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4.2.3  Cytokine and Chemokine Production by BMMO of miR-

155
−/−

 Mice 

Next, I looked at the production of soluble mediators by miR-155 deficient BMMO.  

After 24 h from culture, cells were stimulated with 100ng/ml of LPS and supernatant 

collected 24 h later.  Cytokine and chemokine levels were measured by Luminex 

assay (Figure 4.11).  Overall, miR-155 deficient cells showed a tendency towards 

lower production of pro-inflammatory cytokines and chemokines.  However, IL-6 

was the only cytokine significantly decreased in miR-155 deficient cells compared to 

WT.  Furthermore, miR-155
−/−

 BMMO produced significantly less IL-6 upon 

stimulation with LPS.  Similar trends were observed with TNF-α, IL-12 and 

CCL2/MCP-1.  IL-1α, IL-1β IL-2, IL-4, IL-5, IL-10, IL-13, IL-17, IFN-γ, KC, 

CXCL9/MIG, VEGF, FGF and GM-CSF were below the limit of detection.  
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Figure 4.11 Cytokines and chemokines level produced by BMMO of miR-155 deficient mice.  BMMO were 

sorted on the basis of CD11b, Ly6C, CD115 and lack of Ly6G expression from both miR-155
-/-

 and WT 

mice (4mice/group/of total 2exps).  Cells were cultures 24 h and then stimulated with (100ng/mL) LPS or 

left untreated for 24 hours and cytokines and chemokines level were measured in the supernatant by 

Luminex assay.  All bars show mean of 2 replicates ± SEM compared with controls. Marked bars are 

statistically different from control group using Kruskal-Wallis test; *P ≤.05. 
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4.2.4 Chemokine Receptor Expression in miR-155
-/- 

Macrophages  

I then investigated the expression of chemokine receptors in bone marrow–derived 

macrophages of both WT and miR-155
−/−

 mice using TLDA plates.  Macrophages 

were grown from murine bone-marrow precursors in complete medium 

supplemented with mouse M-CSF for 6 days.  On day 3 of culture, media with non-

adherent cells were removed and replaced with fresh media.  After that cells were 

seed on 6 wells plates (1.5x10
6
/ml) for 24 h.  Some wells were stimulated with LPS 

(100ng/ml) or left un-stimulated and cultured for further 24 h.  One mouse was used 

to generate WT LPS un-treated macrophages and was used as a calibrator in analysis.  

 

Bone marrow–derived macrophages of miR-155 deficient mice expressed higher 

levels of CCR1 and CXCR4 compared to WT macrophages (Figure 4.12).  In 

addition, CCR3 expression was increased in miR-155
−/− 

mice macrophages 

compared to the WT but did not reach the levels of significance (P=0.06) (Figure 

4.12).  

 

Next, exposure of bone marrow–derived macrophages to LPS resulted in a down 

regulation of expression of the majority of inflammatory chemokine receptor 

transcripts in both WT and miR-155
−/− 

macrophages compared to un-treated cells.  

As shown in Figure 4.12, LPS treated bone marrow–derived macrophages of WT 

displayed significant down-regulation in the expression of CCR1, CCR2, CCR3, 

CXCR3 and CXCR4 with CXCR4 being the most highly down regulated.  Likewise, 

LPS treated miR-155
−/− 

macrophages exhibited down-regulation of the CCR1, 

CCR2, CCR5, CXCR3 and CXCR4 compared to un-treated WT macrophages 

(Figure 4.12).  Interestingly, CCR1 was significantly down regulated in miR-155 

deficient macrophages in comparison to WT after LPS stimulation. 
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Figure 4.12 Chemokine receptors expression in bone marrow derived macrophages of miR-155
−/− 

and WT 

mice.  Bone marrow-derived macrophages either from WT or miR-155 deficient mice (n=3 mice/groups) 

were seed on 6 wells plates (1.5x10
6
/ml) for 24 h.  After that cells were either left untreated or were 

stimulated with 100ng/mL LPS for 24 h.  Total RNA was extracted post cultures and QPCR and TLDA 

plates were performed with primers specific for mice chemokine receptors.  Transcript levels of chemokine 

receptors in miR-155
-/- 

macrophages were presented as fold change after standardization against 18S and 

calibration to transcript levels of WT -treated cells.  All bars for data show mean ± SEM.  Marked bars are 

statistically different from LPS un-stimulated WT cells determined by Kruskal-Wallis test; *P≤.05, 

**P≤.005, while • sign mean there is a significant difference between the LPS stimulated cells.  
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4.3 Discussion  

 

Monocyte traffic from blood into tissue occurs constitutively and this is increased 

during inflammation where they then can play a central role in pathogenesis.  In RA 

infiltration and accumulation of monocytes/macrophages in synovial tissue is a key 

first step of the complex process that ultimately leads to joint destruction.  Therefore 

identification of molecules involved in cell migration may facilitate the development 

of new therapeutic strategies.  An increasing number of reports demonstrate a crucial 

role for miR-155 in the pro-inflammatory activation of human myeloid cells and 

antigen-driven inflammatory arthritis but its effects on inflammatory cells migration 

and accumulation at sites of inflammation have not been defined yet.  In the previous 

chapter, I showed that overexpression of miR-155 would enhance inflammation via 

dysregulation of chemokine or chemokine receptors expression in human PB 

monocytes.  Therefore, the main aim of this chapter was to examine chemokine 

receptors expression in BMMO of miR-155 deficient mice compared to WT mice in 

steady state condition and upon LPS stimulation.   

 

First of all, it was important to establish a method to isolate pure monocytes from the 

bone marrow of miR-155 deficient mice with good viability and adequate numbers. 

Monocytes comprise heterogeneous populations that are defined on the basis of 

differential expression of various myeloid markers.  CD11b is highly expressed on 

monocytes but is also abundant on neutrophils (579, 580).  Similarly, the Gr-1 

(Ly6C-Ly6G) family of antigens has been used to identify neutrophils, monocytes 

and DCs.  The Ly-6G is almost exclusively neutrophil specific, while Ly-6C is 

expressed on monocytes (579, 580).  Furthermore, monocyte colony–stimulating 

factor receptor CD115 is expressed on monocytes, macrophages and DCs (581, 582).  

In our study we sorted BBMO based on the combinations of expression of CD11b, 

Ly6C and CD115 and lack of expression of the neutrophil marker Ly6G using the 

FACS aria sorter, and that approach gave us a high purity monocyte population. 

 

For many years, it has been appreciated that monocytes are a highly dynamic 

population; both mobilization from bone marrow to bloodstream or recruitment from 

blood to sites of inflammation is mainly regulated by chemokine–chemokine 

receptor interactions.  Recent reports suggest that blood monocytes consist of several 
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functionally diverse subsets characterized by distinct chemokine receptor expression 

(209).  In this study, we observed that BMMO of miR-155
−/−

 mice express higher 

levels of many chemokine receptors, including CCR1, CCR2, CCR3, CCR5, CCR9, 

CXCR3, CXCR4 and CX3CR1, while CCR7 is significantly down regulated as 

compared to WT cells.  In summary, this suggests that endogenous miR-155 plays a 

role in regulation of monocyte trafficking in a homeostatic manner (583-585).  This 

effect is likely to be mediated in steady state since in many of my experiments I did 

not seek to up regulate miR-155 a priori yet noted effects in the miR-155 knockout 

state.  

 

Although it is well established that CCR2 is necessary for the recruitment monocytes 

to sites of inflammation, namely “synovial tissue” (287), recent evidence 

demonstrates that CCR2 is also essential for the mobilization of newly-formed 

monocytes out the bone marrow to the peripheral circulation.  Tsou et al. have 

clearly demonstrated that CCR2
–/–

 mice have a marked reduction in a subset of 

circulating blood monocytes due to failure of monocytes to exit the bone marrow 

with a concomitant increase in bone marrow monocytes and monocyte precursors 

(584). This suggests that CCR2 expressed on monocytes is not only required in 

response to inflammation but also appears to be important in the mobilization of 

monocytes from the bone marrow to the blood under normal homeostatic state and 

for normal monocyte homeostasis.  Our data suggest that miR-155 may act as an 

important negative regulator of CCR2 expression in monocytes affecting the 

migration of monocytes out of bone marrow to the periphery. 

 

Another two chemokine receptors that appear under control of miR-155 are CCR5 

and CX3CR1.  They are thought to contribute to monocyte homeostasis by 

decreasing monocyte numbers in PB (586, 587).  One possibility is that CX3CR1 

directs monocyte trafficking from PB into non-inflammatory tissue (588).  

Interestingly, Geissmann et al. demonstrated existence of at least two major subsets 

of circulating murine monocytes; firstly, a short-lived inflammatory subset 

CX3CR1
low

CCR2
+ 

that selectively home to inflamed tissue.  Their phenotype 

resembles that of classical human CD14
+
CD16

-
 monocytes.  The second subset of 

patrolling monocytes is characterized by longer half-life and high expression of 

CX3CR1
high

CCR2
–
.  This subset homes constitutively to non–inflamed tissues where 
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they can differentiate into resident macrophages (588).  This subset is analogous to 

human CD14
+
CD16

+
CD64

-
 monocytes.  Given that miR-155 deficient monocytes 

express higher levels of both CCR2 and CX3CR1, miR-155 may orchestrate 

homeostatic trafficking of both monocyte populations.  Consistent with my data 

Etzrodt et al. have demonstrated that miR-155 is highly expressed in Ly-6C
low

 

monocytes (CX3CR1
high

CCR2
–
) (589).  Like miR-146, miR-155 could be one the 

factors that may regulate the balance between monocyte subset in the circulation. 

 

In addition, miR-155 deficient monocytes showed upregulation of CXCR4 

expression.  Although, it is well established that SDF-1/CXCR4 interactions play a 

role in migration and retention of monocytes in RA synovium (565), CXCR4 also 

seems to be important in the regulation of monocyte trafficking to and retention in 

the bone marrow under homeostatic conditions as demonstrated by Wang et al. 

(585).  Our data suggest that balance between monocyte migrations in and out of 

bone marrow is regulated by miR-155.  To functionally explore the contribution of 

miR-155 to the regulation of monocytes migration, monocyte mobilization in and out 

of bone marrow in response to their ligands should be tested.  One attractive 

experiment would be to perform adoptive transfer of bone marrow from WT and 

miR-155KO with congenic allele CD45.1 in 1:1 ratio to irradiated WT mice and then 

evaluate blood and bone marrow monocyte populations 8 weeks after bone marrow 

reconstitution.  

 

I also demonstrate that miR-155
−/−

 bone marrow derived macrophages express higher 

CCR1 and CXCR4 compared to WT mice.  Thus, miR-155 might have a dominant 

role in regulation of the CCR1 and CXCR4 in both monocytes
 
and macrophage.  

 

Consistent with higher expression of various chemokine receptors in miR-155 

deficient monocytes that I presented in this chapter, Donners et al. showed more 

inflammatory monocytes (LY-6C
high

) and reduced number of resident subsets in the 

circulation of miR-155 deficiency mice (354).  These findings indicate that 

endogenous miR-155 may act as an important homeostatic regulator of chemokine 

receptors in monocytes.  Furthermore, this study confirms previous observations that 

the lack of miR-155 is sufficient to reduce the production of the IL-6, by resting and 

LPS stimulated monocytes, which is of particular importance in the RA pathogenesis 



Chapter IV 175 

as IL-6 is validated clinical therapeutic targets (366, 367).   However, understanding 

the biological significance of endogenous miR-155 as a negative regulator of these 

receptors in homeostatic state needs further evaluation.  Most of these queries will be 

answered in the future by investigating receptors’ protein expression using FACS 

and by performing cell migration assays in which the particular contribution of miR-

155 to the regulation of monocytes migration can be dissected.  For example, to 

determine whether this change in receptor transcript levels is associated with an 

altered in chemokine responsiveness, BMMO should be examined for their ability to 

migrate toward ligands.  

 

We next hypothesized that altered chemokine receptor expression in miR-155 

deficient mice may underpin the inflammatory effects of TLR4 and therefore 

investigated the impact of LPS on chemokine receptor expression in BMMO from 

these mice compared to WT mice.  Several studies have reported regulation of 

inflammatory chemokine receptor expression by ligands for TLR2 and TLR4 

through many mechanisms including inhibition of transcription or receptor 

internalization induced by TLR induced chemokine(577).  The data obtained from 

these experiments demonstrated that TLR4-ligand (LPS) induced reduction in 

transcript levels of some chemokine receptors in both miR-155 deficient monocytes
 

and macrophage.  Interestingly, LPS suppressed the inflammatory chemokine 

receptors such CCR1, CCR2, and CXCR4, however, it did not affect the expression 

of homeostatic e.g. CCR7.  Of interest, there was the same degree of down regulation 

of a majority of chemokine receptor in both WT and miR-155 monocytes suggesting 

that miR-155 is not obligatory in this process. According to the microRNA 

prediction algorithms none of chemokine receptors are predicted to be a direct target 

of miR-155.  Thus future work needs to be done to identify a target or set of multiple 

targets responsible for the miR-155 mediated effect on chemokine receptor system.  

One of the possibilities to be tested is whether the changes to the composition of 

chemokine receptors on miR-155KO cell are due to the fact that miR-155 is 

predicted to target M-CSFR, a survival and maturation factor for monocyte and 

macrophages.  

 

In summary, our study demonstrated that under steady-state conditions, endogenous 

miR-155 attenuated inflammatory chemokine receptor expression and drives CCR7 
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expression.  This implicates the positive role of miR-155 in recruitment of 

monocytes to LN, where they can differentiate towards DCs.  Upon LPS stimulation, 

most inflammatory chemokine receptors (e.g. CCR1, CCR2, CXCR4) were down 

regulated regardless of the expression of miR-155.  In contrast inflammatory soluble 

mediators were reduced (e.g. IL-6) in miR-155 deficient BMMO suggesting a 

positive role of miR-155 in regulation of proinflammatory cytokines and 

chemokines.  



 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V 

ROLE OF SPHK/S1PR AND THE S1P AXIS IN RHEUMATOID 

ARTHRITIS  
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5.1 Introduction and Aims  

My prior studies focussed on miRNA mediated regulation of intracellular effector 

function in leukocytes in RA.  I wished in parallel studies to also address a candidate 

signal cascade for expression and potential functional importance.  The increasing 

interest in the development of small molecular inhibitors for the treatment of RA 

lead me to consider this as an area for further investigation.  I now report a series of 

experiments addressing the expression of a family of lipid kinases in RA tissues.  

 

One particular success of human genome sequencing by Next Generation 

Sequencing technologies was the revelation that the human “kinome” consists of 518 

kinases (590).  The kinases or phosphortransferases are enzymes that biocatalyze the 

transfer of a phosphate group to their specific substrate proteins and regulate an array 

of cellular processes (590).  SPHK, a type of lipid kinase, may be activated by 

various stimuli (415).  SPHK is ubiquitous and has two isozymes, SPHK1 and 

SPHK2.  Both isozymes have five highly conserved domains (415).  The sphingosine 

backbone of the sphingolipds, a key structural part of plasma membrane in 

mammalian cells, forms ceramide by the coupling of a fatty acid by an amide bond.  

Ceramide is deacylated by ceramidase to release sphingosine that is subsequently 

phosphorylated either by SPHK1 or SPHK2 to produce the highly pleiotropic 

cytokine, S1P.  S1P binds with any one of the five S1PRs on the plasma membrane 

in an autocrine or paracrine manner to promote different types of cellular and 

molecular responses (415).  To maintain homeostasis, the cellular concentration of 

S1P is critically controlled in low concentrations.  S1P phosphohydrolases, 

lysophospholid phosphohydrolases or S1P lyase enzymes degrade SIP into 

ethanolamine and hexadecenal (430, 431, 478, 479). 

 

Studies have indicated that the S1P/SPHK axis plays a significant role in the 

induction of various types of inflammatory responses and disease pathologies in 

cancer, arthritis, asthma, and ulcerative colitis (415).  Recent investigations in animal 

experimental arthritis using the CIA model have clearly demonstrated that the serum 

S1P level are elevated and the SPHK1 expression was increased in the synovial 

membrane of mice with arthritis (416, 417).  Furthermore, SF of RA patients 

exhibited higher levels of S1P than those with OA (416).  It was observed that the 

S1P/S1P1 axis played a role in synovial proliferation and induced COX-2 expression 
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(418). S1P was also required for the ability of the TNF-α to induce COX-2 leading to 

PGE2 production (418) and the level of SPHK2 are found to be increased in synovial 

fibroblasts contributing to increased proliferation (591).   

 

Moreover, defects in the S1P/S1PR signalling have been shown to be associated with 

various pathologies.  Hence, in our present study, we have investigated the critical 

role and clinical significance of S1P/S1PR axis in PB cells and the synovium of RA 

patients in comparison to healthy controls and OA patients, respectively.  

 

To explore the role of S1P/S1PR axis in the pathogenesis of RA we examined the 

intracellular expression and mRNA levels of SPHK1/2 and S1PRs in isolated PB 

CD15
+ 

neutrophils, CD14
+ 

monocytes and both CD4
+
 and CD8

+
 T lymphocytes of 

RA patients compared to healthy controls (n=10) using FACS technique and QPCR, 

respectively.  Sorting of PB cells was performed using density gradient with different 

density of Histo-Hypaque gradient.  Followed by serial purification of CD14
+ 

monocytes and both CD4
+
 and CD8

+
 T lymphocytes using micro beads and an Auto-

MACS separator as described in Materials and Methods.  Next I extended this work 

to study the SPHK1/2 and S1PRs expression in PB cells of RA patients receiving 

different therapeutic regimens, including SSZ (n=11), MTX (n=10) biological 

DMARDs (n=9) and compared these to healthy controls (n=10).  Furthermore, I 

examined the expression and localization of SPHK1/2 and S1PRs in the synovial 

tissues from patients with RA and compared to OA (n=4) by single IHCs analysis 

and Vector Elite ABC Methods.  Competitive ELISA assessed SIP level in serum of 

RA patients compared with healthy controls. 
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5.2 Results  

5.2.1 Patient characteristics 

PB samples were obtained from healthy controls and patients with RA who met the 

diagnostic criteria of 2010 ARC/EULAR (592).  Patients’ samples were derived from 

the routine outpatient Rheumatology Clinic, Glasgow Royal Infirmary (Glasgow, 

UK).  Patient demographics and clinical details such as the disease duration, 

treatment regimens and biochemical parameters are presented in Table 5.1.  Disease 

activity of RA patients recruited in this project was calculated using the DAS28.  All 

the RA patients involved in this study were sero-positive for RF. 

 

5.2.2 Detection of S1P in RA serum 

The levels of S1P in the serum of PB obtained from healthy controls (n=20) and RA 

patients (n=40) were measured using a competitive ELISA on triplicate samples.  

S1P was significantly higher in RA patients’ serum up to 58.9 ± 8.1µM (mean ± 

SEM) than those observed in serum of healthy controls (16.5±2.9µM) (P=0.0001) 

Mann-Whitney U test (Figure 5.1A).  Further analysis was carried out to examine 

whether drug therapy influenced SIP levels.  Therefore, S1P concentration was 

examined in the serum of RA patients who were receiving different therapeutic 

regimes including SSZ (n=11), MTX (n=10), biological DMARD (n=9) compared to 

healthy controls who were receiving no immune modifying therapeutics (n=10).  RA 

patients treated with conventional or biological DMARDs (Infliximab, Adalimumab, 

Tocilizumab, Rifuxumab) showed statistically significantly higher levels of S1P than 

that observed from healthy controls (Figure 5.1B).  Additionally, RA patient treated 

with biological DMARD expressed the highest levels compared with healthy 

controls.  Although, SIP levels tended to be high in RA treated with biological 

DMARD than those treated with cDMARD (SSZ and MTX) there were no 

significant differences in S1P levels between the three treated groups (Figure 1B).  

This may reflect an underpowered study. 

 

Next, I examined the serum concentrations of S1P and its relationship with RA 

disease activity.  From the data presented in Table 5.1, patients with RA were 

categorised to remission state (n=9) or low (n=7), moderate (n=18) and high (n=6) 

disease activity according to the DAS28 score measured cross sectionally in the 
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clinic.  Overall, serum S1P levels were significantly higher in RA patients with 

(Low, Moderate and High) disease activity (P<0.0001 as determined by 1 way 

ANOVA test/Kruskal-Wallis test) than those found in RA patients with remission 

statue or healthy controls (Figure 5.1C).  Patients with high disease activity 

demonstrated the highest levels compared with healthy controls and RA patients with 

remission or low disease activity.  Additionally, S1P levels were significantly 

elevated in patients with high or moderate disease activity (99±13.8µM and 

69±2.75µM) compared with those with low disease activity or remission state 

(35.4±2.5µM and 29±2.5µM), respectively (Figure 5.1C). 

 

I sought correlation between S1P levels and DAS28 and other lab parameters using 

the RA patient’s characteristic data presented in Table 5.1.  A significant positive 

correlation was found between S1P (µM) levels and the DAS28, according to the 

two-tailed Pearson Correlation Coefficient (Pearson Correlation 0.523, P=0.001) 

(Figure 5.1D).  The correlation analysis of S1P levels against a variety of clinical 

indices and lab biomarkers (Table 5.2) showed that S1P positively correlated with TJ 

and SJ counts.  Furthermore, SIP levels were correlated positively with ESR 

(Pearson Correlation 0.327, P=0.018) (Figure 5.1E).  However, there was no 

correlations between serum S1P and CRP in RA patients.  
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Table 5.1 Demographic, clinical and laboratory information of rheumatoid arthritis patients recruited in 

this study.  

 

Subject Sex Age DD CRP ESR DAS 28 Medication 

RA1 F 61 12 17 50 5 SSZ 

RA2 F 62 8 32 16 4.5 HCQ+MTX 

RA3 F 66 23 1.8 20 5.2 HCQ+MTX 

RA4 F 75 16 26 55 6 Non 

RA5 F 50 23 21 70 5.5 HCQ+MTX+SSZ 

RA6 F 41 14 0.6 17 1.77 HCQ+MTX+Adal 

RA7 F 53 16 1.8 17 2.3 HCQ+MTX+SSZ 

RA8 M 73 13 2.5 14 2.96 HCQ+MTX+SSZ 

RA9 F 48 17 1.9 12 3.2 MTX 

RA10 F 53 10 5 27 4.9 HCQ+MTX+SSZ 

RA11 F 62 13 7.6 35 5.3 HCQ+SSZ 

RA12 F 77 47 51 60 6 SSZ 

RA13 M 54 26 21 16 3.1 HCQ+SSZ 

RA14 M 64 29 20 44 4.9 HCQ 

RA15 M 64 36 4.3 12 2.6 SSZ 

RA16 F 79 17 7.6 16 1.97 MTX 

RA17 F 81 22 9.1 7 2.4 MTX 

RA18 F 70 29 5.4 7 2.2 SSZ 

RA19 F 58 5 8.3 40 3.3 MTX 

RA20 F 79 35 16 54 3.6 MTX 

RA21 F 60 13 18 46 5 SSZ 

RA22 F 67 19 2 21 2.6 SSZ 

RA23 M 67 26 16 20 3.1 MTX 

RA24 F 51 34 2.2 15 3.9 MTX+ Tocil 

RA25 F 64 12 2.3 9 4 SSZ 

RA26 F 75 48 13 37 4.6 SSZ 

RA27 F 68 32 4 26 4.6 MTX+ Adal 

RA28 F 68 27 1.2 40 2.9 MTX+ Adal 

RA29 F 75 27 6 30 4.08 MTX 

RA30 F 80 35 8.6 40 5.5 SSZ 

RA31 F 52 28 0.6 10 2.8 MTX 

RA32 F 73 13 2.9 12 3.9 SSZ 

RA33 F 76 22 3.2 10 3 MTX 

RA34 M 59 17 2.1 22 3.8 SSZ 

RA35 F 74 22 0.5 16 2.5 MTX 

RA36 F 49 17 13 14 2.1 MTX+ Inflix 

RA37 F 69 29 71 73 4.97 MTX+ Inflix 

RA38 F 65 32 5.4 25 2.5 MTX+ Adal 

RA39 F 59 28  3512 4.9 MTX+ Rifux 

RA40 F 43 12 4 22 3.3 MTX+ SSZ+Adal 

DD; disease duration, ESR; erythrocytes sedimentation rate and the normal ESR is <20mm/h for female 

and <10 mm/h for male CRP; C-reactive protein and the normal CRP is < 4.9mg/l, ESR, SSZ; 

Sulfasalazine, HCQ; Hydroxychloroquine, MTX; Methotrexate, Adal; Adalimumab, Tocil; Tocilizumab, 

Inflix; Infliximab, Rifux; Rifuxumab,  
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Table 5.2 Correlation analysis of S1P levels against a variety of clinical indices and lab biomarkers.  Data 

were skewed by log or square-root transformation to restore normality.  Data were presented as R-value 

and P-value below.  R-value on top with corresponding p-values on the lines below 

 

 SIP Age DD CRP ESR TJ SJ 

Log age -0.172       

 0.289       

Log DD -0. 150 0.348      

 0.356 0.028      

Log CRP 0.107 0.251 0.103     

 0.513 0.118 0.526     

Log ESR 0.372  0.089 0.017 0.620    

 0.018  0.584  0.920 0.000    

Sqrt TJ 0.563  0.086  -0.036  0.388 0.371   

 0.000 0.598  0.824 0.013 0.019   

Sqrt SJ 0.566 0.124 -0.113 0.355 0.520 0.824  

 0.000 0.445 0.486 0.025 0.001 0.000  

DAS28 0.523 0.171 0.072 0.544 0.689 0.841 0.892 

 0.001 0.292 0.660 0.000 0.000 0.000 0.000 

DD; disease duration, ESR; erythrocytes sedimentation rate, CRP; C-reactive protein, TJ; tender joint, 

SJ; swollen joint and DAS28; Disease Activity Score 28.  The correlation of miR-155 copy number against 

a variety of clinical indices and lab biomarkers is kindly done by Dr. Charles McSharry. 
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A)     B) 

  
C) 

  
 

D)    E) 

 

  

 

 

Figure 5.1 A) S1P levels (log S1P) in the serum of both healthy controls (n=20) and RA patients (n=40) 

using competitive S1P ELISA on triplicate samples as described in Materials and Methods.  The values are 

presented with a mean ± SEM p <0.0001. Statistical significance was determined using a Kruskal-Wallis 

test.  B) S1P levels (log S1P) in the serum of
 
RA patients receiving different treatment regimens such as 

Sulfasalazine (n=11), Methotrexate (n=10), Biological agents (n=9), and healthy controls (n=10) using 

competitive S1P ELISA on triplicate samples.  C) S1P levels against disease activity state in RA patients 

based on DAS28 (Remission, Low, Moderate or High Disease Activity) compared to healthy controls and 

difference were determined by Kruskal-Wallis test.  Values presented with a mean ± SEM and marked 

dots are statistically different from healthy controls (* =p<0.05, ** =p<0.005 and ***=p<0.0005), while the 

marked dot  indicate the statistical difference between patients with high disease activity and those either 

with remission or low disease status.  Correlation of S1P levels to D) DAS28 and (E) ESR of RA patients.  
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5.2.3 Optimization and Purity of Sorted Cells from PB of RA 

patients  

To study the differential expression of SPHK1/2 and SIPRs expression in PB of 

healthy controls and RA patients, it was important first to set out a method to isolated 

pure cells with good viability and an adequate number of cells.  Several methods and 

techniques were tested for sorting PB cells.  In our lab, initially the polymorpho-

nuclear cells (CD15
+
 neutrophils) were isolated by density gradient centrifugation 

using histopaque gradient-1119.  As shown on (Figure 5.2) purification of 

mononuclear cells (CD14
+
 monocytes and both CD4

+
 and CD

+
 T lymphocytes) were 

carried out in cascades using MACS and the Auto-MACS separator as described in 

Materials and Methods.  With this protocol, sorted cells (CD15
+
, CD14

+
, CD8

+
, and 

CD4
+
) were enriched to high purities from the PB of RA patients and health controls. 

The purity of isolated cells was determined by two-colour flow cytometry as 

described previously elsewhere and the number of cells in each quadrant (%) were 

determined; and the protocol yielded purity for all cells between 93-99%. 

 

Figure 5.2 Cascade purification of CD14
+
monocytes and both CD4

+
 and CD8

+ 
T lymphocytes from PBMCs 

of both healthy controls and RA patients (n=10) using magnetic-activated cell sorting (MACS) and Auto-

MACS separator.  Purity post sorting was determined by two-colour flow cytometry as described in 

Materials and Methods.  Representative dot plots of CD15
+
 neutrophils, CD14

+ 
monocyte and both CD4

+
 

and CD8
+ 

T lymphocytes, and after gating strategy the percentage of positivity cells in each quadrant was 

determined to calculate the purity of the isolated cells using the Flowjo software. 
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5.2.4 SPHK1/2 Expression in the PB and Synovium of RA Patients  

5.2.4.1 SPHK1 Expression 

The differential intracellular expression of SPHK1 in the PB cells (CD15
+
, CD14

+
, 

CD8
+
, and CD4

+
) of RA patients and healthy controls (n=10) was performed by 

FACS analysis.  Over all, SPHK1 protein was expressed at high levels in all purified 

cells of healthy controls and RA patients.  The percentage change in the intracellular 

SPHK1 expression was found to be significantly higher only in CD4
+
 T cells of RA 

patients compared to the healthy controls. SPHK1 expression was increased about 

1.4 fold in RA derived CD14
+
 monocytes and CD8

+
 T cells compared to the healthy 

controls, but these values did not reach my pre-determined levels of significance 

(Figure 5.3A).  I also evaluated the mean fluorescence intensity (MFI) of SPHK1 

expression in the purified cells from RA patients, this reflecting target protein 

density, compared to healthy controls.  It was evident that SPHK1was upregulated in 

RA CD4
+
 T cells compared to healthy controls.  In an average of ten experiments, 

MFI for SPHK1 in the CD4
+
T cells was significantly higher in RA patients 21.6±5.1 

(mean ± SEM) when compared to healthy controls 11.5±9.2 and (P<0.01 Mann-

Whitney U test) (Figure 5.3B and C and Table 5.3).  However, there were no 

significant differences observed in the MFI for SPHK1 in other cells.  

 

In order to assess the expression as well as the precise localization of SPHK1 in RA 

synovial tissue, I performed IHC analysis.  RA and OA synovial tissues (n=4 each 

disease) were stained with rabbit polyclonal human SPHK1 antibody in order to 

characterize the expression and localization of the SPHK1 in RA compared to OA 

tissue.  I used respective isotype controls at the same concentration as the specific 

primary antibodies to differentiate from non-specific staining.  I found that SPHK1 

protein was clearly over expressed in RA synovium compared to OA tissue (Figure 

5.4A).  In particular, SPHK1 expression was markedly elevated in the synovial lining 

layer (SLL), sub-lining layer (SULL) including the infiltrating inflammatory cells 

and vascular endothelial layer (VEL) (Figure 5.4A) compared to the OA synovial 

tissues.  Although SPHK1 was expressed in synovial tissue of OA patients, it was 

weak in intensity compare to that expression noted in RA synovium.  

 

To quantitate the extent and intensity of SPHK1 expression in SLL, SULL and VEL 

of RA and OA synovium tissues, staining scores were calculated using a semi-
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quantitative scale.  Staining scoring was performed by selection of three 

representative high power fields per slide and graded on a scale of 0-4+ by 2 

‘disease-blinded’ observers on 2 separate occasions. The numbers of cells with 

positive staining in each area were then counted manually.  Analysis was repeated 

for 4 patients (RA and OA) synovial tissues respectively.  There was a significantly 

increased expression of SPHK1 in the SLL (P=0.026), SULL including the 

infiltrating inflammatory cells (P=0.03) and VEL (P=0.037) of the RA synovial 

tissue compared with finding in OA synovium tissues (Figure 5.4C).  

 

To test whether the intracellular expression of SPHK1 in RA patients was 

accompanied by differences in mRNA expression, I conducted RT-qPCR.  Analysis 

was performed on total RNA samples obtained from the PB cells (CD15
+
, CD14

+
, 

CD8
+
 and CD4

+
) of RA patients (n=35) and healthy controls (n=10).  The 

transcription levels of SPHK1 is presented as fold change after normalization to β-

actin as a housekeeping gene and then calibrated to healthy controls.  The mRNA 

levels of SPHK1 in all the isolated PB cells of RA patients were significantly 

upregulated compared to healthy controls.  In particular, I noted that RA PB CD4
+
 

lymphocytes showed an increase in transcript levels of SPHK1; almost five times 

higher than their healthy controls (Figure 5.5A). 

 

Next I extended this work to study the gene expression in the same cells of RA 

patients receiving different treatment regimes, namely SSZ (n=11), MTX (n=10), 

biological agent (n=9) and compared these individually to healthy controls (n=10).  

Compared to healthy controls, mRNA levels of SPHK1 in all PB cells were 

significantly upregulated in patients receiving cDMARDs such as SSZ and MTX 

than those patients receiving the biological treatment (Figure 5.5B).  This result may 

indicate that the biological treatment may have a role in attenuating SPHK1 mRNA 

towards levels found in the healthy controls. 

5.2.4.2 SPHK2 Expression 

SPHK2 was not differentially regulated in any of the isolated immune cells from the 

PB of RA patients compared to the healthy controls (Figure 5.3D).  Although, 

expression and localization of SPHK2 in both RA and OA synovial tissue was weak 

compared to SPHK1, it still appeared over expressed in synovial lining cells of RA 

synovium tissues compare with finding in OA synovial tissues (Figure 5.4B).  
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However, quantitative analysis of SPHK2 showed no significant differences between 

the RA and OA synovial tissues (Figure 5.4D).  

 

mRNA levels of SPHK2 were clearly and statistically upregulated in all RA PB cells 

compared to healthy controls (Figure 5.5C).  Like SPHK1, in those RA patients 

treated with biological agent there were no significant differences observed in 

transcript levels of SPHK2 in PB cells of healthy controls except CD4
+
.  CD4

+
 cells 

show SPHK2 upregulation in both RA patients treated with conventional and 

biological DMARDs compared to healthy controls (Figure 5.5D).  In contrast, 

mRNA levels were significantly higher in RA patients treated with cDMARD.  

 

A)      B) 

  

C)      D) 

 

Figure 5.3 Intracellular expression of (A) SPHK1, (D) SPHK2, proteins in neutrophils (CD15
+
), monocytes 

(CD14
+
) and both (CD8

+
 and CD4

+
) T lymphocytes cells derived from PB of healthy controls and RA 

patient (n=10) using FACS analysis.  Cells were enriched from PB using micro beads and an Auto-MACS 

separator using the “possel” programme as described in Materials and Methods.  Cells were incubated 30 

minutes at 4°C with primary antibodies for SPHK1/2 or appropriate isotype and then incubated with 

appropriate secondary antibody labelled with FITC.  After 30 minutes, cells resuspended in FACS buffer 

and analysed using FACs caliber and Cell Quest Pro Software and Flowjo software.  (B) MFI of SPHK1 

expression in CD4
+
 T lymphocytes of RA patients, which represent the protein density, compared to 

healthy controls.  C) A representative histogram analysis of the number of PB CD4
+
 cells that stained 

positive for SPHK1 from healthy controls and RA patients against isotype controls (Blue and green lines 

are isotype controls, while red and orange lines are HC and RA respectively).  Values presented as mean ± 

SEM and marked bars are statistically different from control using Kruskal-Wallis test; P ≤0.05 has been 

used as a cut-off value to assign the statistical significance *= p ≤ 0.05.  
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     10X      40X 

 

C)     D) 

 

 

Figure 5.4 A representative of single IHC staining of synovial tissues of RA and OA patients (n=4).  

Synovium tissues were stained with appropriate primary antibodies for (A) SPHK1, (B) SPHK2 in order to 

characterize their expression and localization in RA patient compared to OA with respective isotype 

controls at the same concentration as the specific primary antibodies.  The positive staining was indicated 

by brown deposits in the background appears purple and appropriate isotype controls were negative, 

(original magnification 10X and 40X).  Quantitative analysis of (A) SPHK1 and (B) SPHK2 in the immune-

stained RA synovial tissues compared to OA.  The extent and intensity of staining with respective 

antibodies in synovial lining layer (SLL), Sub-lining layer (SULL) and vascular endothelial layer (VEL) 

from 4 patients with RA and OA were evaluated by 2 blinded observers on 2 separate occasions and 

graded on a scale of 0-4+ (0= no cells, 2= < 25%, 2= 25-50%, 50-75%, 4=75%).  Values are presented as 

mean ± SEM.  P <0.05 has been used as a cut-off value to assign the statistical significance using Kruskal 

Wallis test.  
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A)      B) 

  

 

 

C)      D) 

 

 

 

 

Figure 5.5 The mRNA levels of (A) SPHK1 and (C) SPHK2 in PB cells neutrophils (CD15
+
), monocytes 

(CD14
+
) and both (CD8

+
 and CD4

+
) T lymphocytes cells derived from healthy controls (n=10) and RA 

patient (n=35).  RNA samples were harvested directly after sorting and converted to cDNA and the levels 

of target transcripts were assessed by RT-QPCR as described in Materials and Methods.  The transcript 

levels of target gene (SPHK1/2) where presented as fold change after normalization to β-actin as a 

housekeeping gene and then calibrated to healthy controls.  While, B and D represented the mRNA levels 

of SPHK1/2 expression, respectively in PB cells of RA patients receiving different therapeutic regime, 

Sulfasalazine (n=11), Methotrexate (n=10), biological agent (n=9) and compare to healthy controls (n=10). 

Values presented as mean ± SEM and marked bars are statistically different from control and determined 

by Kruskal -Wallis test; P ≤0.05 has been used as a cut-off value to assign the statistical significance *= p ≤ 

0.05 and **= P ≤ 0.005. 
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5.2.5 S1P Receptor(s) Expression in PB and Synovium of RA 

Patients  

I next decided to systematically evaluate the reciprocal receptors through which S1P 

may be mediating effect in the RA lesion. 

5.2.5.1 S1P1 Expression 

Expression of S1P1 protein was clearly upregulated in the CD15
+
 neutrophils of RA 

patients compared with the healthy controls (Figure 5.6A).  The MFI of S1P1 in 

neutrophils CD15
+
 was significantly higher in RA patients when compared to 

healthy controls (P<0.011) (Table 5.3 and Figure 5.6B and C).  Furthermore, S1P1 

expression in CD8
+ 

T lymphocytes was elevated, as opposed to healthy controls, but 

did not reach the level of significance (P=0.06).  

 

S1P1 expression and localization in RA synovium tissues showed a similar cellular 

distribution as SPHK1 and clearly localized in the SLL, SULL and VEL (Figure 

5.7A) in a more extensive pattern than that observed in OA synovial tissues.  

Quantitative analysis showed that S1P1 was significantly expressed in SLL (P<0.04) 

and SULL (P<0.029) of the RA synovial tissue but there were no significant 

differences in VEL compared with OA synovial tissues (Figure 5.8A).  

 

Next, I examined S1P1 mRNA levels in PB cells from both healthy controls and 

patients with RA.  As shown in Figure 5.9A, the RA patients’ PB cells exhibited 

markedly increased expression of S1P1 compared with healthy controls.  When I 

examined S1P1 expression in PB cells of RA patients receiving different treatment 

regimes, I found that although it was highly expressed in RA compared with healthy 

controls, it was not differentially expressed on any of the groups receiving distinct 

treatment regimens (Figure 5.9B).  

 

5.2.5.2 S1P2 Expression 

S1P2 protein was not differentially expressed in any of the isolated PB cells of RA 

patients when compared to the healthy controls (Figure 5.6D).  IHC analysis revealed 

that S1P2 was modestly expressed in synovial tissue, mainly in the SLL of RA 

synovium tissues (Figure 5.7B).  However, quantitative localization showed that 

S1P2 was significantly overexpressed in SLL (P<0.047) on RA synovium but I found 
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no significant expression difference evident in SULL and VEL comparing RA to OA 

synovial tissues (Figure 5.8B).  

 

Analysis of mRNA expression in RA PB cells showed no difference in S1P2 

expression in RA compared with healthy controls cells (Figure 5.9C).  Similarly, 

there was no significant difference observed for mRNA levels of S1P2 in PB cells 

either in RA patients treated with cDMARDs or biological agents compared to the 

healthy controls except in the CD4
+
 cells (Figure 5.10D).  Levels of mRNA in the 

CD4
+
 cells exhibited markedly increased expression of S1P2 in patients treated with 

MTX compared with healthy controls.  

 

5.2.5.3 S1P3 Expression 

S1P3 was expressed in very low levels in all sorted PB cells in both healthy controls 

and RA patients (Figure 5.6E) compared to that observed for other S1PRs.  The 

percentage change in the intracellular S1P3 staining and FACS analysis revealed that 

it was significantly upregulated only in the CD15
+
 neutrophils of RA patients when 

compared to the healthy controls.  However, MFI of S1P3 in CD15
+
 cells was 3.9±2 

and 2±9.6 (mean ± SEM) for healthy controls and RA patients, respectively (Table 

5.3).  I am therefore uncertain of the significance of this at a functional level. 

 

Next I turned to analyses of S1P3 expression of RA synovial tissues.  S1P3 staining 

exhibited some similarity to SPHK1 and S1P1 expression.  It was highly expressed in 

the synovium of RA patients compared to OA patients (Figure 5.7C), and 

quantitative analysis for S1P3 staining showed that it was expressed in SLL 

(P=0.028), SULL (P=0.029) and VEL (P =0.028) of the synovium of RA patients in 

levels that were higher than those observed in the synovium of OA patients (Figure 

5.8C). 

 

The mRNA levels encoding S1P3 expression were significantly higher in RA PB cells 

than in those from healthy controls (Figure 5.9E).  The mRNA of SPKH1 and S1P3 

expression exhibited some similarity, as both were over expressed in RA patients 

receiving cDMARDs such as SSZ and MTX than those patients receiving the 

biological treatment compared to healthy controls.  However, with respect to mRNA 

levels encoding S1P3 expression in CD14
+
 monocytes the analysis showed no 
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differences between patients treated with cDMARDs or biological agents compared 

to the healthy controls (Figure 5.9F).  

 

5.2.5.4 S1P4 Expression 

In contrast to other S1P receptors, S1P4 was down regulated in CD15
+
, CD14

+
, CD4

+ 

and
 
CD8

+
 cells of RA patients compared with healthy controls although this only 

reached significance for CD4
+
 T cells (Figure 5.6F).  I analysed the MFI for S1P4 in 

the CD4
+ 

T lymphocytes in average of ten experiments.  The MFI for S1P4 in the 

CD4
+ 

T lymphocytes although decreased in RA patients compared to healthy 

controls (54±20 and 65 ±20) but did not reach the level of significances (P<0.08 

Mann-Whitney U test) (Table 5.3).  I was not able to detect S1P4 using IHC in 

synovial membrane.  I did not have a suitable positive control and as such I cannot 

conclude that this is true down regulation of the receptor.  It is equally possible that 

methodological failure accounts for my observations.  A variety of methods were 

employed (Materials and Methods) but none elicited tissue staining. 

 

In addition, mRNA levels were not differentially expressed in any of the isolated RA 

PB cell subsets when compared to the healthy controls (Figure 5.9G).  Moreover, 

there was no significant difference for mRNA S1P4 expression in PB cells in patients 

receiving conventional or biological DMARDs compared to healthy controls (Figure 

5.9H). 

 

5.2.5.5 S1P5 Expression 

The intracellular expression of S1P5 showed about 2-fold upregulation in PB cells of 

RA patients compared with healthy controls.  As shown in (Figure 5.6G), the 

percentage changes in S1P5 expression in RA patients were significantly upregulated 

in CD14
+
 monocytes and both CD4

+
 and CD8

+
 T lymphocytes (39±310%, 30±8.5% 

and 28±8.9%) (Mean ± SEM) compared with healthy controls (15.9±9%, 4.4±1.8% 

and 1.3±0.6%), respectively.  Further analysis for MFI was conducted, compared to 

healthy control, although its still high in RA patients derived cells but there were no 

significant difference observed (Table 5.3).  

 



Chapter V 194 

S1P5 was slightly over expressed in the SLL and SULL - the majority of S1P5 

expression was present in infiltrating inflammatory cells of the synovium in both RA 

and OA biopsies examined (Figure 5.7D).  However, quantitative analysis showed no 

significant differences for S1P5 in SLL, SULL and VEL of RA synovial tissues as 

compared to OA synovial tissues (Figure 5.8D). 

 

mRNA levels of S1P5 were only upregulated in RA PB CD14
+
 monocytes (P< 0.043) 

but not in the other PB subsets compared with healthy controls (Figure 5.9I).  

Moreover, there was no significant difference in the S1P5 expression in CD15
+
 and 

CD8
+
 cells either in patients receiving cDMARDs or biological agents compared to 

healthy controls (Figure 5.9J). However, S1P5 expression in CD4
+
 and CD14

+
 cells 

was significantly upregulated in RA patients receiving cDMARDs than those 

patients receiving the biological treatment compared to healthy controls (Figure 

5.9J). 
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A)    B)    C) 

 
 

D)    E)    F) 

 
 

G) CD15
+
 S1P1    H) CD4

+
 S1P2   I) CD15

+
 S1P3 

 
J) CD4

+
 S1P4    K) CD4

+
 S1P5    

 
 

Figure 5.6 Intracellular expression of (A) S1P1, (C) S1P2 (D) S1P3 (E) S1P4 and (F) S1P5 in neutrophils 

(CD15
+
), monocytes (CD14

+
) and T lymphocytes (CD8

+
 and CD4

+
) cells derived from PB of healthy 

controls and RA patients (n=10) using FACS analysis.  Cells were enriched from PB using micro beads and 

an Auto-MACS separator using the “possel” programme as described in Materials and Methods.  Cells 

were incubated 30 minutes at 4°C with primary antibodies for S1PRs or appropriate isotype and then 

incubated with appropriate secondary antibody labelled with FITC.  After 30 minutes, cells resuspended in 

FACS buffer and analysed using FACs calibre and Cell Quest Pro Software and Flowjo software.  (B) MFI 

of S1P1 expression in CD15
+
 neutrophils of RA patients compared to healthy controls.  G-K) A 

representative histogram analysis of the number of cells that stained positive for CD15
+
 S1P1, CD4

+
 S1P2, 

CD15
+
 S1P3, CD4

+
 S1P4 and CD4

+
 S1P5 respectively, from healthy controls and RA PB against isotype 

control (green and orange lines are isotype control, while red and blue lines are HC and RA respectively).  

Values presented as mean ± SEM and marked bars are statistically different from control using Kruskal -

Wallis test and P ≤0.05 has been used as a cut-off value to assign the statistical significance *= p ≤ 0.05. 
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Figure 5.7 A representative of single IHC staining of synovial tissues of RA and OA patients (n=4).  

Synovium tissues were stained with appropriate primary antibodies for (A) S1P1, (B) S1P2, (C) S1P3 and 

(D) S1P5 in order to characterize their expression and localization in RA patient compared to OA with 

respective isotype controls as same concentration as the specific primary antibodies. The positive staining 

was indicated by brown deposits in the background appears purple and appropriate isotype controls were 

negative, (original magnification 10X and 40X). 
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A)      B) 

  
 

C)      D) 

   
 

 

 

Figure 5.8 Quantitative analysis of (A) S1P1, (B) S1P2, (C) S1P3 and (D) S1P5 in the immune-stained RA 

compared with OA synovial tissues.  The extent and intensity of staining with respective antibodies in 

synovial lining layer (SLL), Sub-lining layer (SULL) and vascular endothelial layer (VEL) from 4 patients 

with RA and OA were evaluated by 2 blinded observers on 2 separate occasions and graded on a scale of 0-

4+ (0= no cells, 2= < 25%, 2= 25-50%, 50-75%, 4=75%).  Values are presented as mean ± SEM and P <0.05 

has been used as a cut-off value to assign the statistical significance using Kruskal Wallis test.  
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A)      B) 

 
C)      D) 

 
E)      F) 

 
G)      H) 

 
I)      J) 

 
Figure 5.9 mRNA levels of (A) S1P1, (C) S1P2, (E) S1P3, (G) S1P4 and (I) S1P5 in PB cells CD15

+
, CD14

+
, 

CD4
+
 and CD8

+ 
from healthy controls (n=10) and RA patient (n=35).  RNA samples were harvested 

directly after sorting and converted to cDNA and the levels of target transcripts were assessed by RT-

QPCR as described in Materials and Methods. The transcript levels of target gene (SIPR1-5) where 

presented as fold change after normalization to β-actin and then calibrated to healthy controls.  While, B, 

D, F, H and I represented mRNA levels of SIPR1-5 expression, respectively in PB cells of RA patients 

receiving different therapeutic regime, Sulfasalazine (n=11), Methotrexate (n=10) biological agent (n=9) 

and compare to healthy controls (n=10).  Values presented as mean ± SEM and marked bars are 

statistically different from control using Kruskal Wallis test and P ≤0.05 has been used as a cut-off value to 

assign the statistical significance *= p ≤ 0.05 and **= P ≤ 0.005.  
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Table 5.3. SPHK1/2 and S1PRs intracellular expression in peripheral blood cells of rheumatoid arthritis 

patients 

 

Cells type CD15 CD14 CD8 CD4 

P 

value* 
Subject HC RA HC RA HC RA HC RA 

SPHK

1 

% 87.4±2 91.6±1 57±12 79.4±4 46±11 63.5±8 35.7±8 59±9 *CD4 

MFI 32.5±7 48.2±7 18.5±4 34.8±9 12.9±5 9.5±3 11.5±9 21.6±5 *CD4 

SPHK

2 

% 10.5±3 13.2±6 16.8±4 25±10 19±5.5 21.6±7 19±4 23.4±7  

MFI 19±13 11±6 1.9±1 2.1±1 58±20 24±10 26.9±12 11±4.6  

S1P1 

% 7.6±5 33.6±7 10.5±5 14.5±6 0.6±0.4 3.6±2 1.2±0.8 4.3±4 **CD15 

MFI 1±0.7 4±1 0.7±.04 0.3±.02 1.3±0.7 0.8±0.5 1.7±1.4 1±0.9 *CD15 

S1P2 

% 9.2±7 15.6±9 28±8 32±4 63±8 69.9±8 40±8 57±9  

MFI 0.6±.5 1.4±.6 1.8±0.7 2.8±0.9 7.8±3 11.8±3 6.9±1.8 7.7±2  

S1P3 

% 0.4±.1 1±0.2 0.2±.1 0.4±.1 0.3±.6 0.34±.1 0.4±0.2 0.3±.1 *CD15 

MFI 3.9±2 2±9.6 3±2.4 1.9±1 2.7±1 3.4±1.7 2.1±1 5.9±3  

S1P4 

% 12.9±3 8.5±3 52±6 46.4±6 61±6.5 48±9 56±4.7 34.7±5 *CD4 

MFI 26±13 3.8±1 10.9±5 19±7 56±18 90±36 65±20 54±20  

S1P5 

% 15.7±9 32.7±7 15.9±9 39±10 4.4±1.8 30±8.5 1.3±0.6 28±8.9 
*CD14, 

8 and 4 

MFI 18±16 21±9 9.8±3 18±6.8 14±5.6 19±7.6 6±3.5 12±4  

 
Peripheral blood cells (CD15

+
, CD14

+
, CD8

+
, and CD4

+
) from RA patients (n=10) and healthy controls 

(n=10) were stained with hSPHK1/2 and hS1PRs monoclonal antibodies or appropriate isotype controls 

and were analysed by flow cytometry.  Positive cells were gated and positive expression of SPHK1/2 and 

S1PRs cells was analysed.  In average of ten experiments, both the number of positive cells (presented as 

mean per cent) and MFI were determined and were varied between the healthy control and RA patients as 

shown.  The red bars were highlighted to show that S1P3 was expressed in very low levels in all sorted PB 

cells in both healthy controls and RA patients. While, S1P4 was down regulated in CD15
+
, CD14

+
, CD4

+ 

and
 
CD8

+
 cells of RA patients compared with healthy controls.  Values are presented as mean ± SEM P, 

<0.05 has been used as a cut-off value to assign the statistical significance. 
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5.3 Discussion 

 

RA is a chronic systemic inflammatory disease - the aetiology is not clearly defined 

(590, 592, 593).  Although several genetic and environmental factors have 

specifically been shown to play a role in RA, a critical shift towards the increased 

production of proinflammatory cytokines compared with anti-inflammatory 

cytokines in the synovial membranes of joints is closely attributed to the 

pathogenesis of RA (170).  Recent studies have clearly demonstrated that the 

expression of SPHK1 was increased in RA synovium (416-418).  SPHK1 and 

SPHK2 catalyse biochemical conversion of sphingosine into S1P (415) and in turn 

can cause the release of proinflammatory mediators from SFs, endothelial cells, and 

immune cells (416, 594). 

 

In my study, S1P levels were elevated in the serum of RA patients compared with 

healthy controls.  Additionally, patients with active disease exhibited higher levels of 

serum S1P than patients with low disease activity and were significantly reduced in 

RA patients in remission. These data collectively imply that S1P levels are 

implicated at some level in the pathogenesis of RA, or its clinical manifestation and 

could be a promising biomarker for disease activity. Consistent with previous 

studies, serum S1P levels were found to be predictor of both the occurrence and 

severity of coronary disease (595).  Analysis of the influence of drug therapy on S1P 

serum concentration however, revealed no difference between the patients treated 

with cDMARDs and those receiving biological agents.  Moreover, RA patients 

taking biological agents had highest increased levels of serum S1P compared with 

healthy controls.  Larger studies are therefore required to formally test the utility of 

this as a clinically useful marker. 

 

S1P is a pleiotropic molecule and has ability to induce an array of intracellular 

biochemical reactions leading to the activation of transcription factors such as NFkB, 

c-Fos, c-Jun, AP-1 and induce the production of proinflammatory mediators (415, 

416).  SPHK1 expression, but not SPHK2, was elevated in circulating CD4
+
 T 

lymphocytes and in the synovium of RA patients.  Moreover, SPHK1 overexpression 

was specifically located in the SLL, SULL including mainly infiltrating 

inflammatory cells and VEL.  Increased production of S1P, a potent chemokine, by 
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SPHK1 in the RA synovium, could therefore be one of the contributing factors for 

production of inflammatory mediators and the influx of immune cells into joints of 

RA patients with active disease.  The SPHK1 transcript was highly overexpressed 

particularly in CD4
+
 cells in RA patients.  However, SPHK1 expression was 

attenuated in PB cells of RA patients treated with biological agents.  These data may 

indicate that the inflammation in RA was well controlled in patients treated with 

biological therapies rather than cDMARDs.  Though SPHK2 expression was also 

found to be relatively higher in all the PB cells of RA patients and lower in RA 

patients treated with biological agents, SPHK2 protein expression was not observed 

in synovium of RA patients. 

 

Neutrophils play a key role in the pathogenesis of various autoimmune diseases 

(596).  Neutrophil recruitment is one of the main characteristics of RA.  A very 

recent study has shown that C5a receptor (C5aR) and Fcγ receptors (FcγR) pathways 

independently play a role in the recruitment of neutrophils in an animal model of 

inflammatory arthritis (597).  Moreover, neutrophils have been shown to form 

neutrophil extracellular trap (NET) termed as NETosis (598) in the serum and SF of 

RA patients (599).  It was also observed that NETosis correlated with the levels of 

ACPAs and systemic inflammatory markers in RA patients compared with healthy 

controls and OA patients (599).  In our study, S1P1 and S1P3 were significantly 

overexpressed in the neutrophils of RA patients.  In addition, S1P1 and S1P3 were 

also elevated in SLL, SULL and VEL of the RA synovium.  Overexpression of S1P1 

and S1P3 in neutrophils in RA patients may drive the recruitment of neutrophils 

towards S1P gradient in the synovial membranes of joints.  However, the role of 

S1P/S1PR axis in NETosis is yet to be established in autoimmune inflammatory 

diseases.  Similarly, S1P1 and S1P3 transcripts were highly overexpressed in the PB 

cells of RA patients receiving both cDMARDs and biological treatments.  It has 

clearly indicated that gene expression of S1P1 in PB cells of RA patients are poorly 

controlled by different treatment regimens and it would be useful to devise a therapy 

to control levels of S1P1 to specifically attenuate inflammatory signals or pathways 

initiated through the S1P/S1PR axis in RA. 

 

S1P4 is highly expressed in blood cells as well as lymphoid tissue (552, 559).  

Interestingly, S1P4 was down regulated in all the immune cells in RA.  It was shown 
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that unlike S1P1, S1P4 could not induce the T lymphocytes to produce cytokines and 

chemokines (559) and S1P/S1P4 axis mediates immunosuppressive effects by 

inhibiting proliferation of T lymphocytes.  Besides, it hampers secretion of effector 

cytokines such as IFN-γ, IL-4, and IL-2 and promotes the secretion of anti-

inflammatory cytokines such as IL-10 from T lymphocytes (559).  Hence, down 

regulation of S1P4 receptor on neutrophils, monocytes, and both CD4
+
 and CD8

+
 T 

cells may lead to the uncontrolled secretion of effector cytokines and the decreased 

production of anti-inflammatory cytokines and subsequently contributing to the 

pathogenesis of RA. 

 

The expression of S1P5, a T-bet regulated gene, is greatly limited to brain, skin and 

oligodendrocytes of the CNS (560, 561).  S1P5 is highly expressed in NK cells and 

plays a key role in NK cell egress from lymph nodes and bone marrow to the sites of 

inflammation (560).  In our study, S1P5 expression was elevated in CD14
+
 

monocytes, CD4
+
 and CD8

+
 T cells of RA patients.  In addition, S1P5 transcripts 

were upregulated in CD14
+
 cells in RA patients.  The upregulation of S1P5 was 

observed in both CD14
+
 and CD4

+
 cells in RA patients treated with cDMARDs 

compared with RA patients treated with biological agents.  Along with S1P1, the 

S1P5 could play a vital role in trafficking of T lymphocytes to the sites of 

inflammation and promote RA pathogenesis. 

 

In conclusion, our study demonstrated that the S1P/S1PR axis was dysregulated in 

RA patients.  S1P levels were elevated in RA patients under relapse compared with 

patients under remission.  Furthermore, SPHK1 expression was upregulated in 

crucial innate immune cells such as neutrophils as well as in the RA synovium.  

Increased expression of S1P1, S1P3, S1P5 and decreased expression of S1P4, in PB 

cells and RA synovium, could potentially recruit innate immune cells such as 

neutrophils, monocytes, T lymphocytes, NK cells from blood, lymph nodes as well 

as bone marrow to the synovium of the joints and cause production of 

proinflammatory cytokines and attenuate synthesis and secretion of anti-

inflammatory cytokines to perpetuate the RA pathogenesis.  Hence, our results merit 

further consideration, on the clinical significance of S1P as a possible biomarker for 

disease severity and to explore all the novel therapeutic avenues currently available 

to modulate SPHK/S1P/S1PR axis in RA. 
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Though progress has been achieved in the understanding of many different aspects of 

RA treatment, the aetiology of RA still remains elusive.  Although there are an 

increasing number of effective biotherapies, a substantial number of RA patients still 

do not respond sufficiently to current treatment options, and this warrants the 

identification of new therapeutic targets and the development of novel therapies for 

RA.  The principle of new therapeutic development heavily relies on the 

characterization of a tractable molecular pathway both in terms of its basic biology 

and its clinical implications in RA pathogenesis.  In this thesis, I have studied two 

different molecular pathways initiated by miR-155 and S1P, both in terms of their 

basic biology and clinical relevance to RA.   

 

Recently, the role of miRNAs has been intensively studied in many different fields 

including RA.  There are several lines of evidence suggesting that miRNAs are a 

novel class of biomarkers and offer potential targets for the treatment of RA.  One 

miRNA that appears to be implicated in RA is miR-155.  Its expression is induced by 

inflammatory cytokines and TLR ligands.  I aimed to understand how miR-155 

accounts for chronicity of RA mediated by chemokine and chemokine receptors.  

MiR-155 has been detected in the joints and SFs of patients with RA and has been 

found to be involved in the regulation of MMPs (406).  It also exerts powerful 

regulatory functions in promoting the production of pro inflammatory cytokines such 

as TNF-α, IL-1β and IL-6, which are strongly implicated in RA synovitis (572).  

Furthermore, evidence from animal models has suggested that miR-155 is critically 

involved in the adaptive and innate immune reactions leading to autoimmune 

arthritis (366).  Indeed, miR-155 deficiency in mice completely prevents the 

development of CIA and ameliorates local cartilage and bone destruction.  

Additionally, deficiency in miR-155 in mice showed reduced expression of articular 

TNF-α, VEGF and other chemokines, which play a critical role in articular 

inflammation, neo-angiogenesis of hyperplastic synovium, and recruitment of 

inflammatory cells into the joint space (366, 572).  Recruitment and accumulation of 

immune cells is an essential element in both onset and chronicity of RA and is 

mediated by chemokines and their receptors.  Chemokines are key molecules in the 

development of synovial inflammation and regulate cell traffic; their key role is 

indicated by the fact that many chemokines are highly expressed in RA synovium. 

My initial aim was to examine the functional contribution of miR-155 in monocyte 
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migration through the modulation of chemokines and chemokine receptors both in 

humans and miR-155 deficient mice. 

 

Previous studies have examined miR-155 expression both in PB and RA synovium 

tissues.  To our knowledge, this is the first study to examine the exact copy number 

of miR-155 in PB and SF CD14
+
 monocytes of RA patients.  In accordance with 

various publications, I have demonstrated that PB and SF CD14
+
 monocytes of RA 

patients expressed higher levels of miR-155 compared to PB monocytes of healthy 

people.  RA SF monocytes exhibit the highest levels of miR-155.  This strongly 

supports the concept that miR-155 indeed plays a significant role in inflammatory 

arthritis pathogenesis.  In addition, I confirmed our previous observation that pro-

inflammatory cytokines, such as TNF-α and IL-1β, are increased in response to 

overexpression of miR-155 in RA PB CD14
+
 monocytes.  Moreover, PB CD14

+
 

monocytes overexpressing miR-155 exhibit increased production of chemokines 

(CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, and CCL8/MCP-2), of which 

several have been found to be expressed in RA synovial tissue (575)  likely 

facilitating entry of immune cells into the tissue.  Thus, increased levels of miR-155 

in patients with RA particularly in SF monocytes might be responsible in part for 

excessive proinflammatory cytokine and chemokines production from monocytes 

leading to persistent joint inflammation and destruction.  

 

Monocytes are known to express many different chemokine receptors such CCR1, 

CCR2, CCR5, CCR8, CXCR1, and CXCR4.  In this study I demonstrated that 

overexpression miR-155 increases CCR7 and suppress CCR2 and CCR3 expression 

in PB monocytes.  The mechanism of this regulation is currently unknown but these 

observations suggest that miR-155 may act as an important regulator of chemokine 

receptors in monocytes leading to retention of cells at the sites of inflammation in 

“joint space”.  This is of particular relevance considering that TNF-α inhibitors are 

clinically effective in the treatment of approximately 75% of people with RA, but 

about 25% of patients still do not respond to this treatment, and subsequent 

proportional failures to distinct modes of action, mean that a significant subset of RA 

patients are only partially or not treated (58).  These data reinforce rather than 

weaken the hypothesis that miR-155 may represent an important target for RA 
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therapy; it regulates both cytokine and chemokine production up on its 

overexpression.  

 

Together with the pro-inflammatory effects of miR-155 and significant higher copy 

number was present in RA patients compared to healthy controls PB monocytes; 

miR-155 might have some important clinical significance.  This has highlighted the 

clinical significance of miR-155 by virtue of its association with clinical markers, 

DAS28, TJ/SJ counts and ESR in RA.  Additionally, the present study also 

demonstrated that RA patients with active disease (on the basis of DAS28) exhibit a 

higher copy number in monocytes than those with mild disease activity or remission 

status.  These data indicate that miR-155 levels may be a useful marker of RA 

disease activity, perhaps included as part of a poly factorial algorithm.  This 

observation is consistent with very exciting independent publications, where plasma 

and SF as well as PBMCs miRNAs expression correlated with RA disease activity.  

By extension from the oncology field, disease specific miRNAs for RA are expected; 

therefore, further studies may be required for comprehensive analysis of miRNAs in 

PBMCs, plasma and SFs in large cohorts of patients.  

 

Additionally, I studied chemokine receptor expression and chemokine production 

from BMMO of miR-155
−/− 

mice.  Some progress had been made in examining the 

functional role of miR-155 in the pathogenesis of autoimmune arthritis using miR-

155
−/−

 mice in the CIA model, which develops neither synovial inflammation nor 

cartilage and bone destruction.  However, no previous report demonstrated the 

differential expression of chemokine receptors in miR-155 deficient BMMO or 

macrophages.  This study indicates that the BMMO and macrophage of miR155
−/−

 in 

steady state express several chemokine receptors that play an important role in 

controlling cells homing and migration.  Of interest, ectopic expressions of miR-155 

in PB CD14
+
 monocytes blunting of their migration by functionally down regulating 

CCR2 and increase the CCR7 expression (under section 3.2.9).  Moreover these 

receptors are expressed in an opposite way in BMMO of miR-155 deficient cells; 

CCR7 is significantly down regulated and CCR2 and CCR3 expression are 

increased.  This observation suggests that CCR2, CCR3 and CCR7 seemed to be of 

under the tight control of miR-155 that is preserved across the species.  In addition, 

dysegulation of chemokine receptor expression in BMMO of miR-155
–/–

 mice raises 
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the question of whether miR-155 can be involved in the maintenance of monocyte 

homeostasis under normal homeostatic conditions.  Thus, miR-155 could act as an 

important regulator of these receptors in homeostatic state. 

 

Interestingly, analysis of the cytokine profile in these experiments demonstrated that 

deficiency in miR-155 leads to the suppression of majority of cytokines and 

chemokines, which are strongly implicated in RA pathogenesis.  The most profound 

was inhibition of IL-6 in LPS stimulated miR-155 deficient cells as compared to WT 

mice.  Cytokine production and effector function are now a matter of primary 

importance and represent a crucial factor for disease pathogenesis.  Therefore, this 

reduction in cytokine/chemokine production also supports the hypothesis that miR-

155 is involved in RA pathogenesis.  

 

Since studies have shown that the S1P/SPHK axis plays a significant role in the 

induction of various types of inflammatory responses and disease pathologies, in my 

second objective, I investigated the potential role as well as the clinical significance 

of the S1P/S1PR axis in PB cells and the synovium of RA patients compared to 

healthy controls and OA patients, respectively.  I have observed significant positive 

correlation with serum S1P (µM) levels, the DAS28, a variety of clinical indices, 

TJ/SJ counts and ESR.  S1P levels were increased in RA patients undergoing relapse 

compared with patients in remission.  This suggests that serum S1P could be a 

potential clinical biomarker for RA disease activity and at least suggests that S1P 

dependent pathways are implicated in the elevated levels of RA associated 

inflammation. 

 

To further explore the role of S1P/S1PR axis in the pathogenesis of RA, I examined 

the intracellular protein expression and mRNA levels of SPHK1/2 and S1PR1-5 in the 

isolated PB cells of RA patients.  SPHK1, S1P1 and S1P3 levels were significantly 

higher at mRNA levels in PB cells of RA patients.  IHC analysis further indicated 

elevated expression of SPHK1, S1P1 and S1P3 in the synovium.  SPHK1 was 

significantly expressed in CD4 lymphocytes at protein level.   While, S1P1 and S1P3 

were specifically elevated in RA neutrophils and S1P5 was elevated in RA CD14
+
 

and both CD4
+
 and CD8

+
 T cells.  On the other hand, S1P2 was unchanged compared 

to healthy controls, while S1P4 was found to be down regulated in all the PB cells of 



Chapter VI 208 

RA patients particularly in CD4
+ 

cells.  Since S1P/S1P4 axis is immunosuppressive, 

down regulation of S1P4 in PB cells of RA patients could hamper the secretion of 

immunosuppressive cytokines and chemokines and ‘de-repress’ immune function.  

Moreover, increased expression of S1P1, S1P3, S1P5 and the decreased expression of 

S1P4 in PB cells and the RA synovium, could potentially recruit innate immune cells 

such as neutrophils, monocytes, T lymphocytes, NK cells from the blood, lymph 

nodes as well as bone marrow to the synovium of the joints and cause the production 

of proinflammatory cytokines and attenuate the synthesis and the secretion of anti-

inflammatory cytokines to perpetuate the RA pathogenesis.  

 

Furthermore, I have observed that compared to the cDMARDs, RA patients treated 

with biological agents have reduced expression of SPHK1 and S1P3 in the PB cells 

of RA patients.  These results may indicate that biological treatments may have an 

important role in the attenuation of SPHK1 mRNA expression similar to the normal 

levels observed in the healthy controls.  Hence, our study demonstrated that the 

S1P/S1PR axis was indeed dysregulated in RA patients and our results merit further 

consideration, on the clinical significance of S1P as a possible biomarker for disease 

severity and to explore all the novel therapeutic avenues currently available to 

modulate S1P/S1PR/SPHK axis in RA. 

 

Taken together I have embarked on an ambitious series of experiments designed to 

explore the potential biology and therapeutic or biomarker tractability of two 

independent inflammatory moieties in the context of RA pathogenesis.  My data 

offer rich detail to each subject area and as such have enhanced the possibilities for 

therapeutic targeting and diagnostic developments on the basis of both lines of 

investigation. 
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