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Abstract 

Gravel filters are potentially a low cost, low maintenance water treatment solution. They 

require no mechanical or electrical parts and can operate without the addition of chemicals 

or the need for close supervision. As such, they are an appropriate technology for treating 

road runoff as a component of Sustainable urban Drainage Systems (SuDS) and as an 

initial stage of drinking water treatment in rural areas. However, the processes by which 

pollutant particles are removed in gravel filters are poorly understood and practical 

experience shows that many filters fail long before their expected design life is reached. 

For this reason gravel filters are little used for drinking water treatment and, when they are 

incorporated into SuDS, their removal efficiency and maintenance requirements are 

unpredictable. 

The aim of this thesis was to better understand particle removal processes and the 

implications for gravel filter design. This was achieved through a combination of lab-based 

experiments and numerical modelling. 

 The change in conservative tracer transport characteristics with pollutant particle 

accumulation was assessed through column experiments.  

 The spatial heterogeneity of particle accumulation was measured by collecting 3D 

data with magnetic resonance imaging (MRI). Multiple scans of filters allowed the 

temporal evolution of particle accumulation to be assessed. A method for 

processing the raw MRI data to yield the change in 3D pore geometry was 

developed, assessed and applied. 

 A simple method for extracting and comparing pore network characteristics at 

different stages of particle accumulation was applied to the MRI derived geometry. 

 Direct modelling of the 3D MRI pore geometry with the open source software 

OpenFOAM allowed correlation of flow velocities with particle accumulation at 

each point in the pore network. Lagrangian particle tracking was used to simulate 

the transport of a conservative tracer through the filter. 

Key findings were that spatial heterogeneity in particle accumulation was influenced by 

both initial pore geometry and the temporal evolution of the pore network with 



   

 

   

 

ii 

accumulation. This was attributed to the formation of high velocity preferential flow paths 

that were evident in both the 3D MRI data and the numerical model of that data. Pore 

networks exhibited a decrease in connectivity with accumulation and this was mirrored by 

a decrease in the volume of the filter that was accessible to a conservative tracer. 

Conclusions of this thesis are that MRI is a useful tool for non-invasively assessing the 

spatial variability of clogging in gravel filters and, when combined with numerical 

modelling of the pore geometry, for establishing the link between pore velocity and 

particle removal. The formation of preferential flow paths is detrimental to the pollutant 

removal efficiency of a filter and could explain why many filters fail to produce good 

quality effluent well before their physical pollutant storage capacity is reached. 

Keywords: magnetic resonance imaging, pore network, gravel filter, numerical modelling, 

tracer residence time distribution. 

 

  



   

 

   

 

iii 

Contents 

Abstract ......................................................................................................................... i 

Contents ...................................................................................................................... iii 

Acknowledgements .................................................................................................... vii 

Author’s Declaration ............................................................................................... viii 

Definitions & Abbreviations ..................................................................................... ix 

Chapter 1 – Introduction ............................................................................................. 1 

1.1 Context ................................................................................................................. 1 

1.1.1 Sustainable Drainage Systems ...................................................................... 1 

1.1.2 Roughing Filtration ....................................................................................... 4 

1.2 Current State of Gravel Filtration Research ......................................................... 5 

1.3 Thesis Aims & Layout ......................................................................................... 7 

Chapter 2 – Characterisation of Filter Clogging with Conservative Tracers ........ 9 

2.1 Abstract ................................................................................................................ 9 

2.2 Introduction .......................................................................................................... 9 

2.3 Tracer Theory ..................................................................................................... 10 

2.3.1 Tracer Residence Time Distribution ........................................................... 10 

2.3.2 Normalising the RTD of Steady-flow Systems ........................................... 11 

2.3.3 Hydraulic Efficiency ................................................................................... 12 

2.3.4 CXTFIT/Excel............................................................................................. 13 

2.4 Kaolin as Surrogate for Road & River Particulate Pollution ............................. 13 

2.4.1 River Particulate Matter .............................................................................. 13 

2.4.2 Road Runoff Particulate Matter .................................................................. 14 

2.4.3 Kaolin Properties ......................................................................................... 16 

2.4.4 Fluid Phase .................................................................................................. 19 

2.5 Hydraulic & Lifetime Sediment Loading on Filters .......................................... 20 

2.5.1 Roughing Filter Hydraulic & Sediment Loading Rates .............................. 21 

2.5.2 Highway SuDS Gravel Filter Hydraulic & Sediment Loading Rates ......... 22 

2.6 Gravel Media Physical Characteristics .............................................................. 28 

2.7 Experimental Setup & Procedure ....................................................................... 30 

2.7.1 Phase 1 – Column Preparation & Tracer Characterisation ......................... 33 

2.7.2 Phase 2, 4 & 6 – Kaolin Removal Efficiency & Size ................................. 33 

2.7.3 Phases 3 & 5 – Clogging & Tracer Characterisation .................................. 34 

2.7.4 Phase 7– Mass Balance ............................................................................... 35 



   

 

   

 

iv 

2.8 Results ................................................................................................................ 35 

2.8.1 Kaolin Turbidity/Concentration Relationships ........................................... 35 

2.8.2 Filter Sediment Loading .............................................................................. 37 

2.8.3 Kaolin Removal Efficiency ......................................................................... 41 

2.8.4 Tracer Characteristics & Repeatability ....................................................... 45 

2.8.5 Clean Bed Pore Volume Estimation from Tracer RTD .............................. 51 

2.8.6 Clogged Bed Pore Volume Estimation from Tracer RTD .......................... 52 

2.8.7 Intermediate Clogged Bed Pore Volume Estimation from Tracer RTD ..... 54 

2.8.8 Particle Size Breakthrough .......................................................................... 55 

2.9 Discussion .......................................................................................................... 58 

2.9.1 Kaolin as Surrogate for Road & River Particulate Pollution ...................... 59 

2.9.2 Kaolin Turbidity/Concentration Relationship ............................................. 60 

2.9.3 Tracers ......................................................................................................... 62 

2.10 Conclusions ...................................................................................................... 65 

Chapter 3 – Magnetic Resonance Imaging: a non-invasive tool to characterise and 

quantify spatial variation in particle accumulation ................................................ 67 

3.1 Abstract .............................................................................................................. 67 

3.2 Introduction ........................................................................................................ 68 

3.3 Data Collection Methodology ............................................................................ 69 

3.3.1 Experiment Setup ........................................................................................ 69 

3.3.2 Image Acquisition ....................................................................................... 72 

3.4 MRI Scan Quality .............................................................................................. 73 

3.5 Image Processing ............................................................................................... 76 

3.5.1 Segmentation Quality .................................................................................. 77 

3.5.2 Selection of Image Processing Method ....................................................... 83 

3.5.3 Sensitivity to Image Stack Processing Direction ........................................ 84 

3.5.4 Optimum Image Processing Method ........................................................... 87 

3.5.5 Quantification of Error & Uncertainty ........................................................ 88 

3.6 Image Analysis Results ...................................................................................... 91 

3.6.1 Bulk Porosity, Number of Regions and Surface Area Analysis ................. 92 

3.6.2 Slice-by-slice Porosity Analysis ................................................................. 96 

3.6.3 3D Region Analysis .................................................................................. 103 

3.6.4 Summary of Experimental Data ................................................................ 107 

3.7 Discussion ........................................................................................................ 108 

3.7.1 Suitability of MRI ..................................................................................... 108 

3.7.2 Image Processing ...................................................................................... 110 

3.7.3 Results Discussion .................................................................................... 112 

3.8 Conclusions ...................................................................................................... 119 



   

 

   

 

v 

Chapter 4 – Pore Network Analysis ....................................................................... 120 

4.1 Abstract ............................................................................................................ 120 

4.2 Introduction ...................................................................................................... 120 

4.3 Pore Network Analysis .................................................................................... 121 

4.3.1 Medial Axis Trimming .............................................................................. 121 

4.3.2 Maximal Balls ........................................................................................... 121 

4.3.3 Selection and Implementation of Skeletisation Method ........................... 122 

4.4 Methodology .................................................................................................... 124 

4.4.1 Quality of Pore Network Medial Axis ...................................................... 124 

4.4.2 Bulk Properties of Pore Network .............................................................. 124 

4.4.3 Change in Pore Network Properties with Clogging .................................. 125 

4.5 Results .............................................................................................................. 127 

4.5.1 Quality of Pore Network Medial Axis ...................................................... 127 

4.5.2 Bulk Properties of Pore Network .............................................................. 131 

4.5.3 Change in Pore Network Properties with Clogging .................................. 135 

4.6 Discussion ........................................................................................................ 139 

4.6.1 Quality of Pore Network Medial Axis ...................................................... 139 

4.6.2 Change in Pore Network Diameter ........................................................... 140 

4.7 Conclusions ...................................................................................................... 142 

Chapter 5 – Numerical Modelling of Flow in MRI Derived Pore Geometry ..... 143 

5.1 Abstract ............................................................................................................ 143 

5.2 Introduction ...................................................................................................... 143 

5.3 Methods and Method Development ................................................................. 145 

5.3.1 OpenFOAM Software ............................................................................... 145 

5.3.2 Geometry ................................................................................................... 146 

5.3.3 Eulerian Finite Volume Method................................................................ 150 

5.3.4 Lagrangian Particle Tracking .................................................................... 156 

5.3.5 Case Execution .......................................................................................... 160 

5.3.6 Parametric Study & Optimum Parameters ................................................ 161 

5.3.7 Full Volume Cases .................................................................................... 164 

5.4 Discussion ........................................................................................................ 173 

5.4.1 Model Accuracy ........................................................................................ 173 

5.4.2 Eulerian Flow Velocities ........................................................................... 175 

5.4.3 Lagrangian Particle Tracking of Tracer .................................................... 177 

5.5 Limitations and Further Work .......................................................................... 179 

5.6 Conclusions ...................................................................................................... 180 

Chapter 6 – Conclusions .......................................................................................... 181 



   

 

   

 

vi 

6.1 Chapter 2 .......................................................................................................... 181 

6.2 Chapter 3 .......................................................................................................... 182 

6.3 Chapter 4 .......................................................................................................... 183 

6.4 Chapter 5 .......................................................................................................... 184 

6.5 Reflection on Gravel Filter Design and Further Research ............................... 184 

References ................................................................................................................. 187 

Appendix A – Glossary of Image Processing ......................................................... 201 

A.1 Pre-segmentation Processing ........................................................................... 201 

A.2 Image Segmentation (Binary Thresholding) ................................................... 209 

A.3 Post-segmentation Processing ......................................................................... 218 

A.4 Selection of Image Processing Method ........................................................... 220 

Appendix B – Parametric Study Results ................................................................ 221 

B.1 Solution Scheme .............................................................................................. 225 

B.2 Turbulence & Surface Roughness ................................................................... 227 

B.3 Mesh Initial Resolution & Surface Refinement .............................................. 231 

B.4 STL generation and Viscosity ......................................................................... 237 

B.5 Lagrangian Dispersion ..................................................................................... 241 

B.6 Discussion........................................................................................................ 242 

Appendix C – OpenFOAM Model Files ................................................................. 243 

C.1 snappyHexMesh Dictionary File ..................................................................... 244 

C.2 fvSchemes – simpleFoam Solver Finite Volume Schemes .............................. 246 

C.3 fvSolutions – simpleFoam Solver Solution & Algorithm Control ................... 247 

C.4 kinematicParticleProperties – Lagrangian Particle Properties ....................... 249 

C.5 Example Bash Script – Eulerian Model .......................................................... 252 

C.6 Example Bash Script – Lagrangian Model ...................................................... 253 

  



   

 

   

 

vii 

Acknowledgements 

I would like to thank my supervisors for their time and support throughout my project, for 

allowing me the freedom to suspend my studies to volunteer in Ethiopia, and for helping 

me get back in to the PhD when I returned. 

William Holmes and Jim Mullin at the Glasgow Experimental MRI Centre for all their 

help with the MRI experiments and the technicians Anne, Bobby, Ian, Julie, Stuart and 

Tim with the experiments in the Department of Civil Engineering. 

I would also like to thank Becky and Grainne at the University of Strathclyde for their 

support, guidance and patience whilst writing up. 

Finally, a special thanks to my fellow PhD students at both the University of Glasgow and 

University of Strathclyde. You made the whole experience that much better.  



   

 

   

 

viii 

Author’s Declaration 

I declare that no portion of the work in this thesis has been submitted in support of any 

application for any other degree or qualification of this or any other university or institute 

of learning. I also declare that the work presented in this thesis is entirely my own 

contribution unless otherwise stated. 

James Minto  



   

 

   

 

ix 

Definitions & Abbreviations 

CFD – Computational Fluid Dynamics 

CLAHE – Contrast Limited Adaptive Histogram Equalization 

CT – Computer Tomography 

DMRB – Design Manual for Roads & Bridges 

FVM – Finite Volume Method 

GEMRIC – Glasgow Experimental Magnetic Resonance Imaging Centre 

LES – Large Eddy Simulation 

LPT – Lagrangian Particle Tracking 

MRI – Magnetic Resonance Imaging 

NTU – Nephelometric Turbidity Units 

PAHs – Polycyclic Aromatic Hydrocarbons 

PET – Positron Emission Tomography 

PSD – Particle Size Distribution 

PV – Pore Volume 

RARE – Rapid Acquisition Relaxation Enhanced 

RAS – Reynold’s Averaged Stress 

RANS – Reynold’s Averaged Navier Stokes 

RF – Radio Frequency 

ROI – Region Of Interest 

RPM – Revolutions Per Minute 

RTD – Residence Time Distribution 

SuDS – Sustainable (urban) Drainage Systems 

STL – STereoLithography file format 

TIFF – Tagged Image File Format 

TSS – Total Suspended Solids 

VTK – Visualization ToolKit file format 

3D – Three Dimensional 

3T – Three Tesla magnetic field strength 

 

 

 



 Chapter 1  

 

  

 

 

1 

Chapter 1 – Introduction 

1.1 Context 

It is often necessary to remove pollutants such as chemicals, pollutant metals and 

suspended solids from water either to render it potable, or to reduce the environmental 

pollution that results from human development. These two applications vary in the quantity 

of water to be treated, the types of pollutants, what constitutes an acceptable residual 

pollutant level, and when and where the water need be treated. However, they also share 

many similarities in terms of the processes that can be utilised to remove pollutants. This 

thesis considers the use of gravel filtration as a pollutant removal process for both reducing 

environmental pollution and producing potable water. 

1.1.1 Sustainable Drainage Systems 

As a region develops and urbanises, permeable soil is replaced with impermeable surfaces 

such as roads and buildings. This results in a shift in the hydrological balance of a 

catchment from a system dominated by infiltration and evapo-transpiration to a system 

dominated by surface runoff, as shown in Figure 1.1. The increased surface runoff is 

traditionally collected in artificial piped drainage systems and discharged as 

quickly/efficiently as possible to a watercourse. This has the effect of both increasing the 

flood hydrograph peak (potentially increasing the risk of flooding) and reducing baseflow 

which is often detrimental to the ecology of the watercourse. 

Increased levels of pollutant are also introduced to the runoff as a result of combustion 

processes, careless disposal of waste and general wear and deterioration of the built 

environment. Diffuse pollution is thought to account for 11% of polluted rivers and 31% of 

seriously polluted rivers in Scotland (D’Arcy et al., 2000). 
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Figure 1.1. Urbanisation results in a shift from permeable ground cover with high 

infiltration and low runoff to impermeable with low infiltration and high runoff (top 

left and right, adapted from Arnold & Gibbons (1996)). The consequences of this are 

illustrated with a river hydrograph: a shorter lag time between rain falling on a 

catchment and the peak river flow, higher river flow peaks (increasing flood risk) and 

lower river baseflow (with associated negative ecological impacts). 

Roads are the greatest source of polluted runoff (Deletic & Orr, 2005; Grant et al., 2003; 

Thorpe & Harrison, 2008). Types of pollutants found in road runoff include oils and 

hydrocarbons leaked from vehicles, pesticides from roadside weed control, pollutant 

metals from disintegration of vehicle brakes, tyres and body as well as from signs and 
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street furniture, and sediment washed or blown onto the road surface or created as a result 

of degradation of the road itself (Campbell et al., 2004). In addition to being a pollutant in 

its own right, sediments act as a surface onto which other pollutants can adsorb. These 

pollutants accumulate on the road surface during dry periods and are washed off by 

suitably intense rainfall (Richardson & Tripp, 2006; Sansalone et al., 1998; Shuster et al., 

2008). 

 

Figure 1.2. Typical types of SuDS: A) retention pond, B) detention basin, C) vegetated 

roadside swale and D) roadside filter trench with coarse gravel overlying finer filter 

media (to prevent gravel scatter onto the road). The pollutant removal processes that 

occur in each type of SuDS, to a greater or lesser degree, are sedimentation, filtration, 

biodegradation, adsorption and uptake by vegetation. 

Sustainable Drainage Systems (SuDS) are a method of mitigating the impacts of 

urbanisation at a catchment level. They attempt to preserve the natural hydrology by 

attenuating and infiltrating runoff, improving water quality and maximising the amenity 
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and biodiversity opportunities of the land the SuDS occupy. Figure 1.2 shows several 

typical types of SuDS.  

Under the Water Environment (Controlled Activities) (Scotland) Regulations 2005, the 

drainage of surface water from all new developments must be to “a SUD system or 

equivalent equipped to avoid pollution of the water environment” (HMSO, 2005b). Whilst 

regulation varies from country to country, regulatory requirement for some form of SuD 

system is becoming increasingly common; most notably in the USA where they are 

referred to as Best Management Practices (BMPs) and Australia where they are known as 

Low Impact Designs (LIDs). 

1.1.2 Roughing Filtration 

For water treatment by chlorination, ultra violet light or by slow sand filtration to be 

effective, the water must first have low suspended solids content. Roughing filtration has 

been developed as a means of removing suspended solids prior to further treatment. 

Roughing filters can operate in both vertical and horizontal flow configurations and 

generally consist of three or more compartments filled with progressively finer grades of 

gravel (Wegelin, 1996), as shown in Figure 1.3. 

 

Figure 1.3. Horizontal flow roughing filter with three gravel filled compartments. 

Reproduced from United Nations High Commissioner for Refugees (1992). 
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The gravel provides a large surface area onto which suspended solids can attach, reduces 

the distance a settling particle must travel before encountering such a surface, and provides 

a large pore volume for storage of removed particles. Due to the presence of the gravel, 

roughing filters occupy a much smaller land footprint than an equivalent plain 

settlement/sedimentation tank. Further advantages of roughing filters compared with other 

sediment removal methods are that they do not require the addition of chemicals such as 

flocculants (although flocculants have been used to improve performance (Dórea, 2005)), 

nor regular backwashing to restore permeability, and, where site topography permits, they 

can be operated entirely under gravity requiring no electricity for pumping. Roughing 

filters also have few mechanical components resulting in little maintenance or supervision 

and hence low operational costs. All of these factors increase the suitability of roughing 

filters for pollutant removal in locations without electricity, where the addition of 

chemicals is undesirable and where regular supervision and maintenance cannot be 

guaranteed. 

1.2 Current State of Gravel Filtration Research 

Both SuDS and roughing filters are established treatment techniques yet there is 

considerable scope for the performance of both to be improved. It is unclear what level of 

treatment gravel filter SuDS provide and typically a great variation in removal efficiencies 

of a variety of pollutants are observed. For instance Claytor & Schueler (1996) found the 

removal of metals, polycyclic aromatic hydrocarbons and total suspended solids in gravel 

SuDS filters to be in the range of 40-50%, 85% and 80% respectively whilst in the Design 

Manual for Roads and Bridges (DMRB), lower removal efficiencies of 7%, 52% and 38% 

are noted (HMSO, 2006). Possible reasons for such a discrepancy could be the result of 

different filter designs, hydraulic loading and pollutant characteristics between different 

countries (USA for Claytor & Schueler (1996), UK for DMRB). Nevertheless, this 

highlights the uncertainty in SuDS removal efficiency with the result that more modern 

guidance has moved away from stating percentage removal efficiencies in favour of 

ranking each different SuDS measure as low, medium or high relative to other SuDS 

measures (Scholes et al., 2008; Pittner & Allerton, 2010). 
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Research into gravel filter SuDS has focused on the following areas:  

1. The removal of containant metals by different filter media such as iron oxide 

coated gravel (Norris et al., 2013), limestone (Fernández-Barrera et al., 2010), 

woodchips (Syring et al., 2009) and zeolite (Wu & Zhou, 2009) to name a few. 

2. The “clean filter bed” removal efficiency of suspended solids (Barton & 

Buchberger, 2007). 

3. Monitoring of operational gravel filters (Schluter, 2005). 

4. Measuring the accumulation of pollutant metals and suspended solids on road 

surfaces (Herngren et al., 2006; Poleto et al., 2009; Pal et al., 2010). 

5. Measuring pollutant metal and suspended solids content of road runoff and rainfall 

event mean concentrations (Kayhanian et al., 2007; Crabtree & Whitehead, 2006; 

Lau et al., 2009). 

Little research has been carried out into the effects that filter clogging with accumulated 

sediment has upon filter operation. Siriwardene et al. (2007) attempted to develop a model 

of removal efficiency with sediment accumulation. The authors note that whilst their 

model was successful in estimating removal efficiency in clean filters, the model failed to 

predict sediment removal over time as sediment accumulated.  

Understanding filter clogging is crucial as filtration based SuDS are prone to failure within 

several years, well short of their anticipated 10 year design life (Rowlands & Ellis, 2007; 

Schluter, 2005). Lindsey et al. (1992) (in Emerson & Traver, 2008) found that, less than 

two years after installation, 67% of the filtration based SuDS surveyed in Maryland, USA 

were not functioning properly. After six years a follow up survey identified that 51% were 

not functioning at all with many of the observed problems relating to accumulated 

sediment.  

Research into roughing filters has progressed along a different route. Pollutant metals are 

less of a problem and so the main pollutant of concern is suspended solids. Far more 

progress into a theoretical and conceptual understanding of the transport and removal 

processes has been made culminating in a collection of approaches known as “filtration 



 Chapter 1  

 

  

 

 

7 

theory” which have been applied to slow sand filters (Iwasaki et al., 1937; Weber-Shirk & 

Dick, 1997) and to gravel roughing filters (Ahn et al., 2007; Ahsan, 1995; Boller, 1993; 

Lin et al., 2008; Wegelin et al., 1987). However filtration theory has its limitation: the 

trajectory approach (a microscopic approach originally developed for air filtration which 

considers how individual particles collide and adhere to a single collector surface (Yao et 

al., 1971)) is only valid for clean bed conditions in which no particles have been deposited 

within the filter (Amirtharajah, 1988). The phenomenological approach (a macroscopic 

approach that considers bulk filter characteristics) can model the whole filter cycle 

including clogging, but requires extensive experiments to determine the empirical 

constants of the model, cannot be used for predicting removal in systems that differ from 

the experimental setup, and does not provide a fundamental understanding of the 

mechanisms of deposition. 

1.3 Thesis Aims & Layout 

Both gravel filter SuDS and roughing filters could benefit from an improved understanding 

of how sediment accumulation affects filter pollutant removal efficiency. Such information 

could result in improved filter design (e.g. more efficient at removing pollutants or longer 

lasting filters), a better understanding of the level and frequency of maintenance required 

to ensure adequate filter operation, or perhaps a more realistic expectation of filter 

performance and design life based upon local conditions ensuring that filters are only used 

where appropriate. 

This thesis aims to better understand sediment accumulation within gravel filters through a 

combination of lab-based experiments and numerical modelling: 

 Chapter 2: the change in conservative tracer transport characteristics with 

pollutant particle accumulation was assessed through column experiments.  

 Chapter 3: the spatial heterogeneity of particle accumulation was measured by 

collecting 3D data with magnetic resonance imaging (MRI). Multiple scans of 

filters allowed the temporal evolution of particle accumulation to be assessed. A 

method for processing the raw MRI data to yield the change in 3D pore geometry 

was developed, assessed and applied. 
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 Chapter 4: a simple method for extracting and comparing pore network 

characteristics at different stages of particle accumulation was applied to the MRI 

derived geometry. 

 Chapter 5: direct modelling of the 3D MRI pore geometry with the open source 

software OpenFOAM allowed correlation of computer flow velocities with 

measured particle accumulation at each point in the pore network. Lagrangian 

particle tracking was used to simulate the transport of a conservative tracer through 

the filter. 
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Chapter 2 – Characterisation of Filter Clogging with 

Conservative Tracers 

2.1 Abstract 

Experiments were carried out in which gravel filters, similar to water treatment roughing 

filters and roadside SuDS filters, were clogged with kaolin clay. The removal efficiency of 

the kaolin was measured for clean filters prior to any deposition, after sediment loading 

equivalent to 20 days of roughing filter operation (for a given filter design) and finally 

after 40 days of operation. Conservative tracers were used to determine the change in filter 

hydraulics with clogging and it was found that, by fitting a convection-dispersion model to 

the tracer breakthrough curves, the mobile pore volume of the filter could be estimated to 

within at least 10% of the independently measured pore volume. With knowledge of filter 

sediment loading and sediment deposit bulk density, it was possible to estimate sediment 

removal efficiency from the change in pore volume between two tracers. It is proposed that 

this may be a useful tool for evaluating laboratory or pilot scale filter performance and as a 

diagnostic tool to analyse failing or under-performing filters. 

It was found that care must be taken when using turbidity as a surrogate for total suspended 

sediment concentration. Due to the preferential removal of larger particles within the filter, 

the influent and effluent particle size distributions differ. The kaolin turbidity/TSS 

relationship derived for the influent kaolin suspension was not appropriate for the effluent 

suspension. The use of a single turbidity/TSS relationship derived for the influent 

suspension under-predicted TSS removal efficiency by ~16%. It is therefore recommended 

that TSS removal efficiency be calculated from TSS measured by filtration through glass 

fibre filter papers rather than turbidity. In some situations it may be more appropriate to 

derive separate influent and effluent turbidity/TSS relationships to determine TSS removal 

efficiency from turbidity measurements.  

2.2  Introduction 

To understand filter removal efficiency and how it changes over the filter design life, it is 

necessary to understand how sediment particles are transported through and removed by 
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the filter and how this is affected by increasing amounts of retained sediment. The aim of 

this chapter was to evaluate conservative tracers as a monitoring or diagnostic tool to 

assess the volume of sediment retained within a gravel filter. Additionally, this chapter 

includes justification for aspects of the experiments used throughout the thesis such as flow 

rates and concentrations of sediment. 

The format of this chapter consists of a brief introduction to tracer theory, justification for 

the use of kaolin as the model pollutant for removal, justification for kaolin concentrations 

and experiment flow rates and a description of the gravel filter media. The experimental 

setup and operation is detailed together with results on filter removal efficiency, tracer 

transport characteristics and change in suspension particle size distributions. Finally, the 

utility of tracers as a diagnostic tool for gravel filters is assessed. 

2.3  Tracer Theory 

Conservative tracers have been used to establish dispersion coefficients in wetlands 

(Werner & Kadlec, 2000), in saturated soils (Pattanaik et al., 2004) and as tools for 

monitoring change in granular filter hydraulics with sediment accumulation (Pendse et al., 

1978; Rodier et al., 1997). In this thesis I evaluated the use of tracers as tools for 

measuring the change in pore volume of a gravel filter with sediment deposition and thus, 

to measure removal efficiency. 

2.3.1 Tracer Residence Time Distribution 

The residence time is the average time it takes a particle suspended in the flow to travel 

through the filter. Consequently, the residence time is important for pollutant treatment as 

longer residence equals longer contact/reaction times for particle removal, chemical 

degradation, bio-assimilation and adsorption.  

Filter residence time is calculated as the first moment of the residence time distribution 

(RTD) function (Kadlec, 1994). The residence time distribution curve is also known as the 

tracer breakthrough curve and is calculated by: 
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τa =
M1

M0
=

∫ t. Q(t). C(t). dt
tf

0

∫ Q(t). C(t). dt
tf

0

 Equation 2.1 

Where C(t) = effluent tracer concentration (kg/m3), 

 Q(t) = flow rate (m3/s), 

 M0 = effluent mass of tracer (area under breakthrough curve) (kg/s), 

 M1 = first moment of tracer effluent distribution (kg), 

 t = elapsed time (s), 

 tf = total time span of the effluent pulse (s), 

 τa = average (mean) tracer hydraulic residence time determined from RTD (s). 

The second moment of the RTD is the variance (the square of the spread of the 

distribution) and this is a measure of the dispersive processes occurring within the system 

and is expressed in units of time2 (Dierberg & DeBusk, 2005): 

σ2 =
∫ t2. Q(t). C(t). dt

tf

0

∫ Q(t). C(t). dt
tf

0

− 𝜏𝑎
2 Equation 2.2 

Where σ2= the variance (s2). 

The variance can be non-dimensionalised by dividing by the tracer detention time squared: 

σ2(φ) =
σ2

τa
2
 Equation 2.3 

Where σ2(φ) = the non-dimensionalised variance. 

2.3.2 Normalising the RTD of Steady-flow Systems 

In order to compare the RTDs between experiments carried out under different conditions, 

each RTD should be normalised by removing units of flow rate, tracer concentration and 

the volume of the system (Holland et al., 2004). Volume and flow are commonly used to 

normalise the time axis into dimensionless units. This is done by replacing the x-axis with 

dimensionless flow-weighted time, known as pore volumes (PV): 
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PV = ∫
Q(t)

V(t)

t

t0

dt2 Equation 2.4 

where Q(t)= flow rate (m3/s), 

t= time (s), 

 t0= the time of tracer introduction (s), 

 V(t)= the system volume (m3),. 

For perfect plug flow, the normalised residence time of the filter should occur at one pore 

volume. Pore volume is simply the total volume of fluid that can be contained within the 

porous media.  If there is significant short-circuiting and regions of immobile pore water, 

the normalised residence time will occur in less than one pore volume. 

The y-axis can be normalised with respect to the concentration of tracer injected and 

removal of background conductivity. 

C(t)′ =
C(t)

C0
−

CB

C0
 Equation 2.5 

where C(t)’= normalised concentration at time t (dimensionless), 

 C(t)= concentration at time t (kg/m3), 

 C0= tracer stock concentration (kg/m3), 

 CB= background concentration of column effluent (kg/m3). 

2.3.3 Hydraulic Efficiency 

The hydraulic efficiency is the ability of a system to distribute flow uniformly throughout 

its volume. This can be used to characterise the systems treatment efficiency as 

maximising the hydraulic efficiency maximises contact time of pollutants in the system, 

thus optimising the chance of pollutant removal (Holland et al., 2004). 

The theoretical residence time of the system can be calculated from the system pore 

volume divided by the flow rate (Dierberg & DeBusk, 2005): 

τ𝑇 =
PV

Q
 Equation 2.6 

Where: τT = the theoretical hydraulic residence time (s). 
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Thackston et al. (1987) (in Holland et al. (2004)) proposed dividing the theoretical 

residence time by the actual residence time calculated from the RTD curve to give the 

hydraulic efficiency. This is a measure of what proportion of the filter pore volume was 

accessible to the tracer. 

2.3.4 CXTFIT/Excel 

CXTFIT is a computer programme widely used to analyse the transport of solutes in 

subsurface tracer experiments (Tang et al., 2010; Zhang et al., 2010; Wang et al., 2008). A 

Microsoft Excel version of the original FORTRAN code, developed by Tang et al. (2010), 

was used to fit equilibrium and non-equilibrium convection-dispersion models to the tracer 

RTDs using a nonlinear least squares method. Convection-dispersion model parameters 

such as dispersivity, mobile water fraction, tracer mass transfer and pore volume can then 

be estimated for each RTD. 

2.4 Kaolin as Surrogate for Road & River Particulate Pollution 

When measuring the long-term particle removal efficiency of gravel filters, it is desirable 

that the particle properties be as consistent as possible during or between experiment runs. 

Collecting a sufficient quantity of homogenous road runoff and river particulate matter for 

all experiments would be problematic. In addition, the large variation in particle size and 

densities that would be present in the road particles would make analysis of the results 

challenging. Instead, kaolin clay (Imerys Kaolin SupremeTM) was used as a surrogate for 

both river particles and the finer fraction of road runoff particles.  

2.4.1 River Particulate Matter 

In drinking water treatment studies, kaolin has traditionally been used in place of the 

colloidal particles suspended in river water. Kaolin is suited to this purpose as it can be 

obtained in bulk and with a relatively uniform particle size. As both the size and surface 

charge of kaolin are similar to that of river particles, attachment mechanisms are similar 

hence removal efficiencies are similar. Researchers who have used kaolin as a surrogate 
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for river particles for these reasons include Wegelin et al. (1987), Rajapakse & Ives, 

(1990), Boller  (1993), Ahsan (1995), Rooklidge et al. (2002) and Lin et al. (2008). 

2.4.2 Road Runoff Particulate Matter 

Road runoff particles consist of those blown onto the road surface by wind, washed off 

vehicles and degradation of the road, road infrastructure and vehicles themselves. As such, 

road runoff consists of a diverse range of particles with a range of sizes and characteristics. 

Other pollutants such as polycyclic aromatic hydrocarbons (PAHs), pesticides and 

herbicides applied to roadside verges, bacteria and pollutant metals are contained within 

road runoff (Napier et al., 2008). A review of numerous studies from around the world 

reporting the particle size distribution in road runoff is summarised in Figure 2.1 together 

with the measurement of a sample collected from Great Western Road, a busy urban dual 

carriageway in Glasgow. 
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Figure 2.1. Review of reported particle size distributions in road runoff from around 

the world. Analysis of a single road runoff sample collected from a typical urban 

trunk road in Glasgow (labelled Minto) is presented for comparison. Specific Annual 

Average Rainfall (SAAR) is an indicator of average rainfall depth whilst Annual 

Average Daily Traffic (AADT) is an indicator of average traffic load. 
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As is evident from Figure 2.1, road runoff particle size typically covers a range from 

millimetres down to colloidal particles. Median (d50) particle sizes are in the range 19.8μm 

to 633μm. This highlights the variability in road runoff particle characteristics depending 

on location, road type, traffic characteristics, climate and geology as well as the intensity 

of the individual storms producing the runoff and antecedent dry period between rainfall 

events. 

Numerous researchers have reported increased pollutant loading associated with the finer 

fractions of road runoff particles such as clay sized particles (Bentzen & Larsen, 2009; 

German & Svensson, 2002; Herngren et al., 2006; McKenzie et al., 2008; Pal et al., 2010). 

This is most likely because, due to their large surface area and negative surface charge of 

the clay sized particles, pollutants such as pollutant metals and PAHs adsorb onto their 

surface (Li et al., 2006). When coupled with the difficulty in removing such fine particles 

in other SuDS components such as ponds and swales, any improvement in filter drain 

design so as to retain clay sized particles would reduce the greater volume of pollution 

passing through a SuD treatment system. As such, it is appropriate to use kaolin as a 

surrogate for road runoff particles when measuring the removal efficiency of clay sized 

particles. 

2.4.3 Kaolin Properties 

The kaolin particle size distribution was measured by dynamic light scattering with a 

Malvern Zetasizer ZS90 (Malvern Instruments). This instrument records the intensity of 

light scattered by particles in the suspension over discrete time steps. The change in 

intensity is a function of particle motion. Provided that temperature and viscosity of the 

suspension are known and constant, and the particles are small enough that settlement 

under gravity is not significant, the particle motion can be considered to be from Brownian 

motion alone. From this Brownian motion, the particle size distribution can be inferred. 

To ensure the particle size measurements were representative of the particles entering the 

gravel filters, multiple samples (totalling 31) were taken throughout the experiments from 

the kaolin suspension feed tank at the same level as the tank extraction tubes. This 

sampling method captured the natural flocculation of particles within the tank (i.e. the 
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flocculation occurring without the addition of a chemical coagulant) and for a change in 

average particle or particle floc size as the experiment progressed and tank volume 

decreased, as presented in Figure 2.2. 

Ideally particle size would remain constant throughout each experiment; however, despite 

vigorous mixing of the kaolin suspension feed tank with an overhead stirrer (details of the 

experimental setup can be found in Section 2.7), differential settlement of the naturally 

polydisperse kaolin led to a decrease in particle size over time. As shown in Figure 2.2 A), 

influent median particle size decreases from 1762nm when the tank is full (45 litres) to 

1126 when the tank is empty (5 litres remaining below extraction tube level). This change 

in particle size must be considered when analysing the particle removal efficiency results 

(Section 2.8.3).  

Particle size variation within the first 10 litres is, on average, 4.8% (reducing from 1762nm 

to 1682nm). The evaluation of size dependent particle breakthrough (Section 2.8.8) was 

limited to the first 10 litres. It is worth noting that none of the studies identified in the 

literature review that used a polydisperse particle such as kaolin reported influent particle 

size variation over time and the effect it may have on removal efficiency.  

Kaolin has a dry density of 2600g/l. Settling column tests established that a high 

concentration (80g/l) kaolin suspension settled with a bulk density of 1178g/l which is 

similar to the value of 1150g/l determined by Wegelin et al. (1987). It is assumed that the 

particle-by-particle accumulation of kaolin within the filter would result in a sediment with 

less trapped water and hence a higher bulk density than that observed in the settling 

column tests, similar to the values of 1264 and 1340g/l reported in Boller & Kavanaugh 

(1995) for 3μm diameter kaolin deposits. The settled bulk density of kaolin therefore lies 

within the range of 1178 to 2600g/l and must be determined experimentally. 
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Figure 2.2. Median (d50) size of kaolin particles entering filter over A) the entire removal efficiency 

measurement period from full tank (45 litres) to empty (0 litres)) and B) the particle size monitoring 

period (first 10 litres). Vertical bars in B denote range in particle size about the median from 5th to 95th 

percentile for each measurement. A reduction in median particle size entering the filter is evident 

when considering the entire removal period, yet is relatively minor when considering the first 10 litres, 

as shown by the exponential trendlines (solid black lines) fitted to each data set. 

The concentration of particles in suspension can be measured gravimetrically following the 

procedure outlined in standard method 2540D (American Public Health Association, 1999) 

in which a sample of known volume is filtered through a glass fibre filter of known mass, 

dried to constant mass and the increase in mass recorded. A far quicker method is to 

measure the turbidity of each sample.  
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Turbidity is an optical property of a particle suspension that primarily depends upon 

particle concentration. However, particle colour and particle size distribution also affect 

turbidity, as do environmental factors such as temperature (Lin et al., 2008). As such, the 

relationship between the turbidity and concentration of a kaolin suspension is not quite 

linear (Lin et al., 2008; Wegelin et al., 1987) and must be established for each batch of 

kaolin. Results of the turbidity/concentration relationship for the batch of kaolin used in 

this thesis are presented in Section 2.8.1. 

2.4.4 Fluid Phase 

Attachment properties of the kaolin particles and the suspension stability depend upon the 

chemistry of the fluid phase (O’Melia & Stumm, 1967). Measurements of pH and zeta 

potential were made for three concentrations of kaolin, each suspended in either deionised 

water (Millipore Milli-Q, 18MΩ/cm resistivity), tap water or SuDS water. The SuDS water 

was collected from a highway SuDS system (M77, East Ayrshire, UK) between filter drain 

outflow channel and sedimentation pond during a rainfall event. 

 

Figure 2.3. Variation in zeta potential and pH with kaolin suspension concentration 

and fluid type. 
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Results are presented in Figure 2.3 and show that both zeta potential and pH are 

independent of particle concentration, but are dependent on the fluid type. Ideally SuDS 

water or river water would be used in the experiments. However, the properties of the 

SuDS or river water would vary with each rainfall event and would change with time in 

storage hence could not reliably be collected and used. The zeta potential and pH of the tap 

water/kaolin suspensions more closely match those of the SuDS water than does the 

deionised water, however the difference is minimal. Tap water was chosen for the 

practicality of obtaining the large volumes (~225 litres) required for each filter run. 

2.5 Hydraulic & Lifetime Sediment Loading on Filters 

As the aim of this chapter is to evaluate changes in filter hydraulics over the life of a gravel 

filter as it clogs with sediment, the clogging process must be accelerated to ensure 

substantial clogging within a feasible timescale for lab based experiments. 

In the Trajectory Approach to modelling particle removal proposed by O’Melia & Stumm 

(1967), three methods by which particles may be transported to the gravel surface are 

considered: diffusion, interception and sedimentation. Transport by diffusion and 

sedimentation are both reduced as velocity increases. Velocity therefore cannot be 

increased so as to deliver a greater quantity of sediment to the filter and accelerate 

clogging without altering the deposition mechanisms under investigation. 

Particle concentration on the other hand should not influence particle transport to the 

gravel surface. This is provided that the particles can be considered dispersed with a bulk 

density approximately equal to the fluid density and no particle-particle interactions that 

would hinder settlement.  

Hindered settlement only occurs once the mass of particles in suspension exceeds several 

kilograms per cubic metre. Clear hindered settlement of kaolin was noted by Dankers & 

Winterwerp (2007) at concentrations of 27kg/m3 (2.7% weight for weight) and above 

whilst Nicholson & O’Connor (1986) used 25kg/m3 (2.5% w/w) to define the onset of 

hindered settlement in cohesive sediments based on laboratory studies. The maximum 

concentration of kaolin used in this study was 200g suspended in 30 litres of tap water 
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corresponding to a weight for weight ratio of 0.67% and no hindered settlement of the 

suspension was observed. 

Filter clogging was accelerated by increasing the concentration of kaolin entering the filter 

and, in the case of SuDS gravel filters, duration of flow entering the filter whilst 

maintaining realistic flow velocities. The influent kaolin concentration and flow duration 

were chosen to obtain a meaningful degree of clogging based on whether the filter would 

be operated as a roughing filter for potable water supply or SuDS gravel filter for treating 

highway runoff. 

2.5.1 Roughing Filter Hydraulic & Sediment Loading Rates 

2.5.1.1 Hydraulic Loading 

The hydraulic loading on roughing filters is normally expressed as a filtration rate which is 

the inflow rate divided by the cross-sectional area of the filter and is equivalent to the 

superficial flow velocity through the filter. The volume that must be treated by the 

roughing filter is determined by the required output of the water treatment works, which is 

often limited by other components of the treatment system such as slow sand filters. Cross-

sectional area of the filter can therefore be chosen to ensure the filtration rate falls within 

the desired range. 

Filtration rates used in pilot studies and full scale roughing filters generally fall within the 

range of 0.3 to 1.5m/hr (Ahsan, 1995; Sánchez et al., 2006; Nkwonta & Ochieng, 2009) 

and appear to be based upon the recommendations of Wegelin et al. (1987), perhaps 

because these are incorporated into the only comprehensive manual for roughing filter 

design and construction (Wegelin, 1996). 

2.5.1.2 Sediment Loading 

River water sediment loading varies with climate, geology and season (amongst other 

factors). Reported raw water concentrations of suspended solids entering roughing filters 

range from 10 to 800 NTU (nephelometric turbidity units, a standard measure of turbidity) 

(Wegelin, 1996; Galvis, 1999; Ochieng et al., 2004; Boller, 1993; Ahsan, 1995) under 
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normal conditions. During high river flows the total suspended solids load can be much 

greater. Sánchez et al. (2006) report that, over a 10 year period in Peru, peak turbidities 

exceeded 3600NTU, however 90% of the monitoring samples were below 80NTU whilst 

in Bolivia peaks of 1350NTU commonly lasted for two or three days. 

The sediment loading on a filter over its lifetime can be calculated as the suspended 

sediment concentration multiplied by the flow rate multiplied by the duration of operation 

before maintenance. A load factor is necessary to take account of filters that are only in 

operation for a fraction of a 24 hour period. It is preferable to use the filtration rate in place 

of flow rate as this way the cross-sectional area of the filter need not be known. The result 

is Equation 2.7 in which the sediment loading for a given unit of time (for instance 1 day) 

can be calculated. The units of Equation 2.7 are g/m2 i.e. the mass of suspended sediment 

entering each unit of cross-sectional area of the filter over the run duration. 

sediment load = TSS. Vf. T. LF
 

 Equation 2.7 

Where TSS = total suspended sediment concentration (g/m3), 

           Vf = filtration rate (m/hr) = flow rate divided by filter cross-sectional area, 

 T = filter run duration (hours), 

 LF = load factor on filter (dimensionless) = hours of operation per 24 hours. 

In the removal efficiency experiments, a known mass of kaolin passed through the filter at 

each stage of the experiment. Non-dimensionalising this mass by the cross-sectional area 

of the experimental filter column allows direct comparison with the roughing filter 

sediment loading in g/m2. 

2.5.2 Highway SuDS Gravel Filter Hydraulic & Sediment Loading Rates 

2.5.2.1 Hydraulic Loading 

SUDS for Roads (Pittner & Allerton, 2010) is a guidance manual that aimed to consolidate 

all the design guidance and information available on road application SuDS, specifically 

for Scotland. Together with The SUDS Manual (Woods-ballard et al., 2007) and the 

Design Manual for Roads and Bridges (DMRB) sections relevant to road drainage, these 

three documents constitute the main design guidance for roadside filters.  
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The hydraulic loading on roadside gravel SuDS filters is more complicated than for 

roughing filters. This is because inflow volume is usually not controlled; instead it is 

determined by the amount of rainfall, the “catchment” size and the design of the SuDS 

system. Roadside SuDS filters are designed to empty within 24 hours so that they have the 

capacity to attenuate the runoff from the next rainfall event. The water level in a SuDS 

filter therefore constantly varies between full and empty in response to rainfall. 

 

Figure 2.4. Total annual volume of road runoff entering each unit length of roadside 

filter drain for a single carriageway road. Approximately to scale with specific annual 

average rainfall (SAAR) of 1400mm (typical of West Scotland), road width of 3.65m 

and filter drain width of 0.5m. 

Roadside filter drains are linear structures that run parallel to the road. The catchment area 

that is connected to the SuDS can be described per metre length of road regardless of 

whether the flow enters the SuDS as lateral sheet flow from the road surface directly to the 

drain, as shown in Figure 2.4, or to kerbside gullies and then into the drain at specific 

points. 

The Scottish trunk road network consists of 3,405km of road, 559km of which is motorway 

of 2 to 4 lanes, 526km of which is dual carriageway A road and 2,320km of which is single 
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carriageway A road (National Statistics, 2008). The majority of the trunk road network is 

therefore single or dual lane. Using the standard lane widths given in the DMRB (HMSO, 

2005a) and assuming all roads have a camber that diverts the flow either to the left or the 

right of the central reservation, the catchment area is between 3.65m2/m length for a single 

lane with no hardshoulder to 10.60m2/m length for a dual carriageway with a 3.30m 

hardshoulder. 

 

Figure 2.5: Typical cross-section of UK urban dual carriageway road (HMSO, 2005a). 

Filter drain widths are a minimum of 0.2m (HMSO, 1998) with no upper limit set in the 

design guidance. This is because filter drain depth is often constrained by topography yet 

the filter must have sufficient capacity to attenuate the 1 in 30 year return period flow 

volume. The filter width, together with the porosity of the gravel media, is chosen to 

achieve this capacity. In practice they rarely exceed approximately 1m in width. 
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Figure 2.6. Histogram of event averaged rainfall intensities for all events exceeding 1mm 

total depth within the five year period (886 separate rainfall events). The annual volume of 

road runoff entering each meter length of filter can be calculated by multiplying the 

catchment area by the annual rainfall. This volume is useful when calculating the pollutant 

load on a filter over the course of a year but does not allow the flow rate entering the filter 

to be calculated as for much of the year there is no rainfall and hence no road runoff. The 

approach taken in this thesis to determine the range in potential filter flow rates was:  

1. use five years of 15 minute interval tipping bucket rain gauge measurements of 

rainfall at a location in Glasgow (175,000 measurements),  

2. divide this data series into discrete rainfall events using an inter-event dry period of 

three hours to define the end of one rainfall event and the start of a new event, 

3. remove all rainfall events with less than 1mm total precipitation as these events are 

unlikely to produce runoff with most of the rain water stored on the road surface 

(Ellis et al., 1986; Chin, 2000; Ostendorf et al., 2001), 

4. calculate the average intensity of each of the resulting  886 separate rainfall events 

(see Figure 2.6), 
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5. calculate the maximum intensity within each rainfall event by multiplying the 

average intensity by 3.9, termed the 50% summer profile and derived from analysis 

of UK summer storms (Faulkner, 1999), 

6. define five catchments:  

 “best case” filter design with a filter width of 1m, road width of 3.65m 

(single lane trunk road with no hardshoulder) and over-the-edge inflow;  

 “median case” with filter width of 0.5m, road width of 7.3m (two lane trunk 

road with no hardshoulder) and over-the-edge inflow; 

 “worst case” with filter width of 0.2m, road width of 10.6m (two lane trunk 

road with hardshoulder) and over-the-edge inflow; 

 median case with flow entering filter through road gullies spaced at 24m 

intervals corresponding to a road slope of 0.5° (HMSO, 2000), the 

minimum slope necessary to ensure drainage of the road surface; 

 median case with flow entering filter through road gullies spaced at 79m 

intervals corresponding to a road slope of 6° (HMSO, 2000), the maximum 

slope typically allowed for motorways; 

7. each catchment area was divided by the filter drain width and multiplied by both 

the 886 event averaged rainfall intensities and peak intensities to obtain a range in 

filtration rates.  

The range in average and peak filtration rates for each filter and road design are presented 

in Figure 2.7. It is apparent that the filtration rates in roadside SuDS filters span several 

orders of magnitude depending on the design of the filter, the road, the rainfall event and 

whether peak or average event intensities are considered. 
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Figure 2.7. The total volume of flow passing through the roadside SuDs filter over the 

five year period investigated is plotted against the range in filtration rates. Each data 

series corresponds to different filter widths, road widths, event averaged intensity or 

peak intensity, and, when flow into the filter is through road gullies, the slope of the 

road which determines gully spacing and hence catchment area between gullies.  

2.5.2.2 Sediment Loading 

Duncan (1999) reviewed the concentration of pollutants in urban stormwater runoff from a 

variety of land uses at locations throughout the world. Suspended solids from 37 locations 

were evaluated and found to vary between 60mg/l and 720mg/l with a mean of 210mg/l. 

Duncan (1999) notes a strong correlation between average suspended solids concentration 

and mean annual rainfall with a higher mean annual rainfall resulting in lower average 

concentrations leading to the conclusion that the runoff concentration is limited by the 

availability of sediment. 

The annual sediment loading on a roadside SuDS filter can be calculated as the annual 

average total rainfall depth of runoff producing events (in this case taken to be all events 

with a total rainfall depth greater than 1mm) multiplied by the average runoff suspended 

sediment concentration for a range of catchment sizes and filter widths:  
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sediment load =
∑ D>1mm

Years
TSS. WR. Gullies/AF

 

 Equation 2.8 

 

Where AF = area of filter drain for a unit length (m2), 

D>1mm = the depth of rainfall for each event exceeding 1mm (m),  

Gullies = spacing between roadside gullies (set as 1 if no gullies) (m), 

TSS = total suspended sediment concentration (g/m3), 

           WR = width of road carriageway (including hardshoulder) (m), 

 Years = number of years of data series from which rainfall depths were evaluated. 

2.6 Gravel Media Physical Characteristics 

Two types of gravel media were investigated: angular gabbro from a quarry that supplies 

aggregates for drainage and rounded beach pebbles supplied by Rowebb Garden 

Aggregates. The angular gabbro was divided into the two size ranges of 4-8mm and 8-

11.2mm with standard sieves and mechanical shaker, whilst the rounded beach pebbles 

were sieved to 8-11.2mm. Average gravel particle sizes were therefore 6mm and ~10mm.  

Roughing filters typically consist of several compartments, each filled with a different size 

of media e.g. 1.5-2mm, 3-5mm, 7-10mm and 15-25mm (Wegelin et al., 1987). For 

roadside SuDS filters, locally available graded stone/rock is recommended with a nominal 

size of 40-60mm (Woods-ballard et al., 2007) or locally available Type B (BS EN 13242) 

20-40mm gravel (HMSO, 1998). 

The average gravel sizes of 6mm and ~10mm used in this study were more appropriate for 

roughing filters than for roadside SuDS filters. Larger gravel sizes in the range 20-40mm 

were not investigated because, to avoid significant wall effects, the ratio of the column to 

the average gravel particle diameter should exceed 10:1. With the 100mm diameter column 

used, the maximum gravel diameter was 10mm. 

To measure the difference in angularity of the two types of gravel, an image-based method 

that related angularity to the geometry of each gravel grain was used, as described by 

Janoo (1998). The degree of angularity was calculated for 20 pieces of angular gravel and 

20 pieces of rounded gravel with Equation 2.9. 
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Figure 2.8: Parameters for determining the degree of angularity (Janoo, 1998). 

Ai = (180° − α)
x

r
 

 Equation 2.9 

where:  Ai = degree of angularity (degrees) 

α = measured angle (degrees) 

r = radius of the maximum inscribed circle (m) 

x = distance to the tip or the corner from the centre of the maximum  

inscribed circle (m) 

 

Figure 2.9. A) angular 10mm gravel grain B) rounded 10mm gravel grain. 

Average degree of angularity was 316 with a standard deviation of 133 for the angular 

gravel and 250 with a standard deviation of 81 for the rounded gravel. This shows that the 

angular gravel is indeed more angular than the rounded, but also is more heterogeneous 

with implications for gravel packing in the filter, pore throat size distributions, porosity 

and hence local variations in the interstitial pore velocity. 

A standard procedure was adopted for filling each column with gravel so as to minimise 

variations in porosity due to the placement of the gravel and ensure repeatable and 

comparable experiments. The procedure is described in Section 2.7.1. 
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Whilst only the physical properties of the gravel were investigated in this thesis, Norris et 

al. (2013) have shown that both gravel mineralogy and surface weathering are important 

for pollutant metal adsorption. Using the same angular gabbro as used in this thesis, they 

found that scrubbing the gravel clean resulted in removal of a weathered clay layer and a 

decrease in pollutant metal removal efficiency. It is therefore worth bearing in mind that, 

when selecting the most appropriate media for a filter, both the physical and mineralogical 

characteristics of the gravel must be considered.  

2.7 Experimental Setup & Procedure 

Figure 2.10. Experimental setup for two filter column experiments run in parallel.  

Figure 2.10 outlines the experimental setup and equipment used to deliver a kaolin 

suspension to the two gravel columns, measure removal efficiency, monitor change in 

particle size and measure conservative tracer breakthrough profiles. The experimental 

setup consisted of the following components: 
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A) Magnetic stirrer to mix stock of concentrated kaolin suspension.  

B) 50litre thermally insulated feed tank filled with 45litre kaolin suspension kept in 

suspension with an overhead stirrer and at constant temperature with a heater/cooler unit 

(ThermoFisher) connected to a copper heat exchange coil. Tracer stock kept in bottle in 

tank prior to tracer injection. 

C) Dual channel peristaltic pump (Watson Marlow 323E). 

D) Three-way valves controlling flow through tracer injector. 

E) Tracer injector system diverting flow from pump to ensure tracer delivered at a constant 

flow rate. Injector system must be connected directly to either column and alternated 

between tracer injections. 

F) Gravel filled column composed of sections of clear acrylic, sealed with silicone sealant 

and thermally insulated. 

G) Piezometer allowing measurement of inlet head. 

H) Multimeter (Hach HQ40D) with conductivity probe (Hach CDC401) allowing on-line 

measurement of conductivity. 

I) Sample collection area with three-way valves to direct flow to conductivity probe 

(during tracer breakthrough measurement) or free outflow (during clogging and removal 

efficiency measurement phases). 

J) Turbidimeter (Hach 2100N) for off-line measurement of kaolin concentration. 

K) Particle sizer (Zetasizer ZS90, Malvern Instruments) for off-line measurement of 

particle size. 

L) Balance to measure effluent mass per unit of time and hence flow rate. 

M) Return of column effluent to tank during recirculating phases. 

The experimental procedure consisted of seven phases outlined graphically in Table 2.1: 

1. filling and sealing the gravel column, characterising initial porosity and 

conservative tracer transport properties, 

2. first measurement of kaolin concentration and particle size breakthrough profiles 

together with removal efficiency from a once through flow of kaolin suspension, 
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3. first clogging of filter with high concentration kaolin suspension recirculated 

through tank and followed by a tracer transport measurement, 

4. second measurement of kaolin concentration breakthrough profile together with 

removal efficiency from a once through flow of kaolin suspension, 

5. second clogging of filter with high concentration kaolin suspension recirculated 

through tank and followed by a tracer transport measurement, 

6. third and final measurement of kaolin concentration breakthrough profile together 

with removal efficiency from a once through flow of kaolin suspension, 

7. dismantling filter, measuring mass of kaolin retained in gravel, in filter pore water 

and within the acrylic column. 

Table 2.1. Experiment procedure for clogging filter and acquiring measurements. 

 

Table 2.2. Experiment parameters. 

Name 
Run 

Identifier 

Parameters 

Shape Size Flow Rate Length 

Standard S Angular 8-11mm 0.35m/hr 2 sections 

Fine gravel FG Angular 4-8mm 0.35m/hr 2 sections 

Layered gravel LG Angular 8-11mm, 4-8mm 0.35m/hr 2 sections 

Rounded gravel RG Rounded 8-11mm 0.35m/hr 2 sections 

Low flow, long LF Angular 8-11mm 0.12m/hr 3 sections 

Five filter runs were performed, each with two identically prepared columns. The details of 

each run are provided in Table 2.2. The parameters investigated were gravel size, the effect 

of layering different sized gravels, gravel shape and the residence time within the column. 

Residence time (Run LF) was evaluated by reducing the flow rate and increasing the 

column length. To determine if “filter ripening” occurs during the initial periods of kaolin 

deposition, run LF was conducted with five once through removal efficiency phases (5x 

Phase 2) and a lower kaolin loading during clogging (Phases 3 & 5) of 2500mg/l in place 

of 5000mg/l. 

Flow

Kaolin

Tracer T1 T2 T3

Turbidity Measurement

Size Measurement

Samples for Filtering - - -

Once through Once through Recirculated Once through -

- - - -

-

-

- - - - - -

- - - - - -

- - -

Phase 7

667 mg/l- 667 mg/l 667 mg/l5000 mg/l 5000 mg/l -

Once through Recirculated

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6



 Chapter 3  

 

  

 

 

33 

2.7.1 Phase 1 – Column Preparation & Tracer Characterisation 

Columns were filled by hand with a known mass of washed and dried gravel. After every 

handful of gravel was placed in the column, the column was gently tapped to re-arrange 

and compact the gravel. Once full, silicone sealant was used to ensure a waterproof seal on 

each section of the column. 

The column was initially filled with water by slowly pumping from a container filled with 

a known mass of room temperature tap water. By filling from the base upwards and 

recording the change in mass of the container, the volume of water in the tubing and the 

pore volume of each section of the gravel column could be ascertained. 

After switching from upflow to a downflow configuration and running ten pore volumes of 

temperature regulated tap water through the filter at the experimental flow rate, a pulse of 

NaCl tracer was injected. The injection system consisted of a 10ml graduated pipette filled 

with 10ml of tracer (at feed tank temperature) connected at one end to the column influent 

line and at the other end to the column inlet (see E, Figure 2.10). During tracer injection, 

three-way valves divert the flow supplied by the peristaltic pump through the pipette 

forcing the tracer into the column at a constant flow rate. With this system tracer pulse 

volume and duration were precisely known. 

A conductivity probe connected to a meter with time-interval data logging capabilities 

allowed the conductivity of the column effluent to be measured at ten second intervals. The 

entire tracer breakthrough profiles were captured together with the volume of the profile 

and average concentration and was analysed with the Microsoft Excel implementation of 

CXTFIT. 

2.7.2 Phase 2, 4 & 6 – Kaolin Removal Efficiency & Size 

To measure kaolin removal efficiency, a constant inflow of kaolin from the feed tank was 

passed through the filters. Samples were taken from the feed tank and from the column 

outflow and turbidity was measured with a ratio turbidimeter then converted to a 
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concentration of kaolin using Equation 2.10 and Equation 2.11 for inflow and effluent 

respectively (see Section 2.8.1). 

Kaolin stock was prepared by adding 30g dry kaolin to 5l of tap water and mixing with a 

magnetic stirrer for 24 hours. The stock was then added to 40l of tap water in the 

temperature controlled feed tank and mixed with an overhead stirrer for one hour; enough 

time for a stable suspension and temperature to be reached. 

The peristaltic pump RPM was set to supply the required flow rate through the column. 

The flow rate was subsequently monitored at regular intervals by collecting the column 

effluent over a given time period and dividing the volume by the length of time.  

Particle size measurement was performed on a selection of the influent and effluent 

samples used for turbidity measurement. The selection of samples focused on the point of 

breakthrough so as to establish the change in particle size at breakthrough. 

When the kaolin suspension feed tank approached empty, flows were stopped and the 

remaining kaolin suspension in the feed tank was collected, the volume measured (~5l) and 

the concentration of kaolin measured by filtration so that a mass balance of kaolin passing 

through the filter could be calculated. 

Phases 4 and 6 were identical to Phase 2, only without the particle size measurement.  

2.7.3 Phases 3 & 5 – Clogging & Tracer Characterisation 

A kaolin stock of 200g in 5l of tap water was prepared and mixed for 24 hours prior to 

being added to the feed tank. After thorough mixing in the feed tank with 35l tap water, the 

clogging phase began in which the concentrated kaolin was re-circulated through the filter 

for 48 hours.  

At the end of the clogging phase, a 10ml tracer pulse was injected to establish the change 

in filter hydraulics due to the deposition of kaolin within the filter. 
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2.7.4 Phase 7– Mass Balance 

After the final measurement of removal efficiency (Phase 6), the columns were drained by 

pumping in air at the minimum flow rate of 3 RPM (~5ml/min). The volume of pore water 

in the columns was measured and the concentration of kaolin measured by filtration. The 

gravel from each column section was removed and dried at 103-105°C until a constant 

mass was reached, allowed to cool and then the mass of gravel and attached kaolin was 

measured. Finally, the acrylic components of the columns were rinsed with tap water. All 

rinse water was collected, the volume was measured and the concentration of kaolin in the 

rinse water was measured by filtration through glass fibre filter paper. 

As the mass of kaolin attached and retained by the gravel, the concentration of kaolin in 

the pore water (and washed out of the column during draining) and the amount of kaolin 

retained on the column itself was known, a mass balance of kaolin retained within the filter 

could be performed. 

2.8 Results 

2.8.1 Kaolin Turbidity/Concentration Relationships 

The relationship between turbidity and concentration of the kaolin suspension was 

established by taking 200mg of kaolin, suspending in 200ml of tap water (see Section 2.4.4 

for justification of using tap water) to obtain a concentration of 1000mg/l. The suspension 

was mixed by overhead stirrer for 24 hours to ensure a uniform distribution of kaolin 

before serial dilutions down to 10mg/l were performed. The turbidity of each dilution was 

measured using a Hach 2100N ratio turbidimeter with an EPA method 180.1 compliant 

filter installed and with signal averaging turned on. This created the range of 

turbidity/concentration values labelled as Standard in Figure 2.11 with values from 

Wegelin et al. (1987) presented for comparison. 
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Figure 2.11. Kaolin turbidity/concentration relationship for 1) standards in which 

known masses of kaolin were suspended in a known volumes of water, 2) the gravel 

filter effluent concentration measured by filtration through glass fibre filters and 3) 

the relationship reported by Wegelin et al. (1987). Turbidity was measured in 

nephelometric turbidity units. Polynomial trend lines were fitted to the Standard and 

Effluent data series. The Standard data series (and associated trend line) extended to 

1000mg/l (947NTU) but is only shown up to 500 for clarity. 

The Standard turbidity/concentration relationship was best fitted by a second order 

polynomial equation with an R2 value of 0.999 (Equation 2.10). This equation was used 

when determining the mass of kaolin entering the filter based upon measurements of 

turbidity. 

CInf = −0.0005NTU2 + 1.5642NTU Equation 2.10 

Where CInf = Influent kaolin concentration (mg/l), 

           NTU = measured turbidity (NTU). 

However, measurement of particle size (Section 2.8.8) entering and leaving the gravel 

filters showed a reduction in average particle size, thought to be due to the increased 

  . 
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removal of larger particles within the filters. Consequently, the particle suspension 

characteristics of the effluent differ from the influent. To test if this resulted in a different 

turbidity/concentration relationship for the effluent, 22 effluent samples were collected 

during filter runs and analysed with respect to turbidity and concentration as per standard 

method 2540D. Turbidity of the glass fibre filtrate was also measured and found to be 

within the range of pure tap water turbidities leading to the conclusion that that the glass 

fibre filters (Whatman GF/F, nominal pore size 0.7μm) retained all of the kaolin. The 

results are plotted in Figure 2.11 as series Effluent and clearly show that the effluent 

turbidity/concentration relationship differs from that of the influent. The Effluent 

relationship can be characterised by a polynomial equation with an R2 value of 0.939 

(Equation 2.11). 

CEff = −0.0013NTU2 + 0.8593NTU Equation 2.11 

Where CEff = effluent kaolin concentration (mg/l), 

           NTU = measured turbidity (NTU). 

For calculations of mass balance and removal efficiency, Equation 2.10 was used to 

transform influent turbidities into concentrations whilst Equation 2.11 was used to 

transform effluent turbidities. In all previous studies identified (in which kaolin was used 

as a particulate for removal), a single relationship between turbidity and concentration was 

utilised for calculating both influent and effluent concentrations. The significance of this 

upon removal efficiencies and mass of kaolin retained by the filter is discussed in Section 

2.9.2. 

2.8.2 Filter Sediment Loading 

The average sediment loading per column in the experiments was 9.5g per removal 

efficiency phase and 105.3g per clogging phase. Average cumulative sediment loadings 

over the entire seven phases of the filter run are presented in Table 2.3. Loadings have 

been non-dimensionalised by filter cross-sectional area so as to allow comparison with 

roughing filter and SuDS filter sediment loadings, hence a loading of 9.5g over a single 

column of diameter 100mm is equivalent to a loading of 1,212g/m2. 
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Table 2.3. Sediment loading on filter runs S, FG, LG and RG. 

Phase 1 2 3 4 5 6 7 

Loading (g/m2) 0 1,212 14,625 15,836 29,249 30,461 30,461 

 

Figure 2.12. White kaolin accumulating on grey angular gravel during Run LF. Flow 

direction from top to bottom. A) inlet after first clogging phase, B) inlet after second 

clogging phase, and C) entire column after second clogging phase showing increased 

removal closer to the inlet. 

As can be seen in Figure 2.12, greater removal occurred at the inlet of each filter. Figure 

2.13 shows deposition within inlet of Run RG after the column has been drained and the 

inlet cap removed. Although draining the column has disturbed the sediment, it is apparent 

that a considerable proportion of the filter had been blocked leaving only a few flow 

channels open. 
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Figure 2.13. Filter RG drained and with inlet cap removed during Phase 7 

(measurement of retained kaolin mass). A considerable amount of kaolin has been 

retained at the inlet with some areas of the filter completely blocked whilst, in other 

areas, narrow flow channels into the filter remain open. 

Indicative sediment loads on roughing filters were calculated using Equation 2.7 with a 

range of probable total suspended solids and filtration rates. The time unit used was 24 

hours hence sediment loads are per day. The filtration load factor was 1, hence the filters 

are assumed to operate 24 hours per day. The seven phases of kaolin removal and clogging 

simulated in the experiment would therefore be equivalent to 42.3 days of roughing filter 

operation at a flow rate of 0.3m/h and an average TSS of 100mg/l (100g/m3). Table 2.4 

shows a range of equivalent operating durations for a roughing filter with different 

combinations of influent TSS and filtration rate.  
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Table 2.4. Roughing filter sediment load and equivalent duration simulated by runs 

S, FG, LG and RG. 

TSS 

(g/m3) 

Vf 

(m/hr) 

T              

(-) 

LF               

(-) 

Sediment 

Load 

(g/m2) 

Average Duration of Filter Operation Simulated (days) 

1 2 3 4 5 6 7 

10 0.3 24 1 72 0.0 16.8 203.1 219.9 406.2 423.1 423.1 

10 0.7 24 1 168 0.0 7.2 87.1 94.3 174.1 181.3 181.3 

10 1 24 1 240 0.0 5.0 60.9 66.0 121.9 126.9 126.9 

10 1.5 24 1 360 0.0 3.4 40.6 44.0 81.2 84.6 84.6 

100 0.3 24 1 720 0.0 1.7 20.3 22.0 40.6 42.3 42.3 

100 0.7 24 1 1680 0.0 0.7 8.7 9.4 17.4 18.1 18.1 

100 1 24 1 2400 0.0 0.5 6.1 6.6 12.2 12.7 12.7 

100 1.5 24 1 3600 0.0 0.3 4.1 4.4 8.1 8.5 8.5 

500 0.3 24 1 3600 0.0 0.3 4.1 4.4 8.1 8.5 8.5 

500 0.7 24 1 8400 0.0 0.1 1.7 1.9 3.5 3.6 3.6 

500 1 24 1 12000 0.0 0.1 1.2 1.3 2.4 2.5 2.5 

500 1.5 24 1 18000 0.0 0.1 0.8 0.9 1.6 1.7 1.7 

Indicative sediment loads on roadside SuDS filters were calculated using Equation 2.8 with 

a range of probable total suspended solids, road widths, filter widths and gully spacing of 

1m (no gullies), 24m (dual carriageway, 0.5° slope) and 79m (dual carriageway, 6° slope). 

Only a single annual rainfall depth of runoff producing storms (total depth >1mm) derived 

from Glasgow rain gauge data was used because, as noted by Duncan (1999), TSS is 

linked to the availability of sediment on the road surface rather than the annual rainfall 

depth. Results are tabulated in Table 2.5 and show the huge variation in sediment loading 

on roadside SuDS filters depending on their design. The sediment loading in the 

experiment filter runs was equivalent to 10.3 years of operation of a 0.5m wide filter 

adjacent to a dual carriageway road in which the average TSS was 210g/l (210g/m3) and 

with over-the-edge drainage. 
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Table 2.5. Roadside SuDS filter sediment load and equivalent duration simulated by 

runs S, FG, LG and RG. 

TSS 

(g/m3) 

D>1mm 

(m/yr) 

WR 

(m) 

Gully 

spacing 

(m) 

AF 

(m2/m) 

Sediment 

Load 

(g/m2/yr) 

Average Duration of Filter Operation 

Simulated (years) 

1 2 3 4 5 6 7 

60 0.965 3.65 1 1 211 0 5.7 69.2 74.9 138 144 144 

720 0.965 10.6 1 0.2 36824 0 0.0 0.4 0.4 0.8 0.8 0.8 

210 0.965 7.3 1 0.5 2959 0 0.4 4.9 5.4 9.9 10.3 10.3 

210 0.965 7.3 24 0.5 71009 0 0.0 0.2 0.2 0.4 0.4 0.4 

210 0.965 7.3 79 0.5 233737 0 0.0 0.1 0.1 0.1 0.1 0.1 

The sediment load calculations show that a significant amount of clogging has taken place 

within the filter. This should be borne in mind when assessing the change in removal 

efficiency and tracer properties with clogging. 

2.8.3 Kaolin Removal Efficiency 

Kaolin removal efficiency was established at three points during the filter clogging 

process: the first flow of kaolin through a clean filter bed, after the first clogging phase and 

after the second clogging phase. Removal efficiency was measured at a further four stages 

during the low flow filter experiment to establish if and when an increase in removal 

efficiency due to “filter ripening” occurred. Samples from the kaolin suspension feed tank 

and the column effluent were collected at regular intervals, the turbidity measured and 

converted into kaolin concentrations, as shown in Figure 2.14. 
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Figure 2.14. Representative influent and effluent kaolin profiles (from Run S, 

Column A, Phase 6). Average influent concentration and stable average effluent 

concentration used to establish removal efficiency. 

Once a steady effluent concentration was reached, the average effluent concentration was 

divided by the average influent to obtain the removal efficiency. Kaolin breakthrough 

occurs before one pore volume, indicating short-circuiting and a deviation from perfect 

plug flow, and peaks after one pore volume indicating removal of kaolin within the filter 

(Figure 2.14). Kaolin effluent concentration rises by 33mg/l (19%) between four and 10 

pore volumes in Figure 2.14 and similar trends were visible in all kaolin breakthrough 

profiles. This rise in effluent kaolin concentration was attributed to the reduction in mean 

particle size in the kaolin stock tank over time (Section 2.4.3): smaller particles require a 

longer time to settle hence removal efficiency is reduced and kaolin effluent concentration 

rises. 
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Table 2.6. Removal efficiency, porosity and average velocity of filter runs S, FG, LG 

and RG. The increase in average velocity with clogging is due to the decrease in 

porosity. Porosity calculated based on mass balance of kaolin passing through filter 

and estimated kaolin bulk density of 1455g/l. 

  

Removal 

Efficiency (%) 

Mass of Kaolin 

Retained (g) 
Porosity (%) 

Average Velocity 

(m/hr) 

  

Phase Phase Phase Phase 

  

2 4 6 2 4 6 2 4 6 2 4 6 

S 
A 82.8 79.4 78.1 8.7 98.0 193.3 49.2 45.4 41.3 0.72 0.79 0.88 

B 82.6 79.6 78.3 8.5 102.0 207.0 51.0 47.0 42.5 0.68 0.76 0.85 

FG 
A 76.5 79.0 80.8 8.5 111.9 217.3 49.9 45.4 40.9 0.70 0.77 0.86 

B 76.7 79.6 81.6 8.1 106.9 212.4 50.5 46.3 41.8 0.68 0.73 0.82 

LG 
A 79.7 78.2 78.2 5.5 77.2 143.5 39.1 35.2 31.7 0.72 0.74 0.76 

B 80.3 77.2 78.1 4.9 71.0 130.7 38.7 34.4 30.6 0.73 0.78 0.79 

RG 
A 76.0 78.1 76.2 7.5 97.0 179.9 39.1 35.2 31.7 0.86 0.92 1.08 

B 75.5 77.6 76.9 8.1 107.1 195.5 38.7 34.4 30.6 0.91 0.98 1.16 

 

Table 2.7. Removal efficiency, porosity and average velocity of filter run LF. The 

increase in average velocity with clogging is due to the decrease in porosity. Porosity 

calculated based on mass balance of kaolin passing through filter and estimated 

kaolin bulk density of 1455g/l. 

Run 

LF 

Removal Efficiency 

(%) 

Mass of Kaolin 

Retained (g) 
Porosity (%) 

Average Velocity 

(m/hr) 

Phase A B A B A B A B 

1 - - - - 50.2 50.3 0.23 0.22 

2 84.0 82.8 10.1 9.2 49.9 50.0 0.24 0.23 

3 85.0 83.4 18.3 16.6 49.7 49.8 0.24 0.22 

4 84.8 83.9 26.4 24.1 49.5 49.6 0.24 0.22 

5 83.5 82.0 35.0 31.9 49.2 49.4 0.24 0.23 

6 84.3 83.6 43.6 39.8 49.0 49.1 0.24 0.23 

7 - - 87.2 83.0 47.7 47.9 0.24 0.24 

8 88.0 89.0 96.1 91.3 47.5 47.7 0.24 0.23 

9 - - 138.4 130.5 46.3 46.5 0.25 0.24 

10 90.4 90.5 148.3 139.2 46.0 46.3 0.26 0.24 

Table 2.6 and Table 2.7 show removal efficiencies of a clean gravel bed (Phase 2) vary 

between 75.5% and 84.0% with an average of 79.7% for all runs. Removal efficiency is 
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highest in Run LF which was attributed to flow velocities that were half that of the other 

runs and a column that was 1/3 longer. There is no clear “best” or “worst” filter 

configuration based on removal efficiency. However, on average, the rounded gravel had 

the lowest removal efficiency across all measurement phases (RG: 76.7%, S: 80.1%, FG: 

79.0%, LG: 78.6%). The rounded gravel had the lowest initial pore volume due to tighter 

packing of the individual gravel particles. This tighter packing may result in a higher total 

surface area of rounded gravel than angular gravel, however also results in pore velocities 

initially 25% higher than for angular gravel. Furthermore, the total gravel surface area may 

be increased but the surface area perpendicular to the flow direction on which deposition 

may take place is decreased (as shown in Figure 2.15) and, as this surface is rounded, 

deposition stability is reduced leading to a lower volume of kaolin that may be stored on 

each grain of gravel. 

 

Figure 2.15. A) angular gravel with kaolin deposits after second clogging phase, and 

B) rounded gravel with kaolin deposits after second clogging phase. The angular 

gravel presents a larger, flatter surface area perpendicular to the flow on which 

kaolin may deposit as well as maintaining a greater porosity, and hence lower 

average pore velocities, than does the rounded gravel. 

In runs S, FG, LG and RG there is no clear evidence for filter ripening (an increase in 

removal efficiency) or filter failure between the clean, intermediate (Phase 4) and clogged 

(Phase 6) stages: the maximum changes were a decrease in removal efficiency of 4.5% 
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(average of columns A & B) for Run S and in increase of 4.6% (average of columns A & 

B) for Run FG. 

In Run LF there is an increase in average removal efficiency from 84.0% to 88.5% after 

the first clogging stage and to 90.4% after the second stage of clogging with corresponding 

porosities of 49.1%, 47.6% and 46.1%. In Run LF, these clogging phases were preceded by 

five removal efficiency measurement phases over which the average porosity decreased 

from 50.3% to 49.1% and in which there was no discernible change in removal efficiency.  

Filter ripening therefore appears to occur only once there has been a substantial amount of 

deposited kaolin and only in the low flow run. A potential explanation for this is that in 

runs S, FG, LG and RG, kaolin deposition is coupled with a reduction in pore volume and 

an increase in pore velocity (due to the constant inflow rate) of, on average, 20.04%. This 

would act to reduce the removal efficiency at the same time as the increased surface area 

due to deposited kaolin would increase the surface area with the net effect of no discernible 

filter ripening. In the low flow velocity experiment, the increase in velocity was only 

10.2%. 

2.8.4 Tracer Characteristics & Repeatability  

Effluent conductivity measurements taken at 10 second intervals were used to determine 

the breakthrough and residence time distribution (RTD) of a 10ml pulse of NaCl tracer. 

Curve-fitting software CXTFIT/Excel was used to fit a convection-dispersion model to the 

data and estimate model parameters. Figure 2.16 shows the RTDs for Run S, column B for 

the clean filter (T1B) and clogged filters (T2B & T3B) as it was representative of all tracer 

RTDs in this study. 

The decrease in peak height and increasing skewedness of the RTDs with kaolin deposition 

is indicative of an increase in dispersion within the filter. This is borne out by the 

CXTFIT/Excel model parameters shown in Table 2.8 in which dispersivity increases from 

1.126cm to 3.873cm for column B (shown in Figure 2.16) with a similar increase for 

column A.  
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Figure 2.16 also shows a decrease in time to tracer breakthrough and peak with kaolin 

deposition and a decrease in the slope of the rising limb of the RTDs. The decrease in time 

to peak indicates that the average pore velocity has increased, as was estimated based on 

the fixed inflow rate but decreasing filter volume due to kaolin deposition. The decreasing 

slope of the tracer rising limb indicates that flow path heterogeneity is increasing within 

the filter: some paths are becoming disproportionately faster than others leading to earlier 

breakthrough of the tracer carried in these paths. It is hypothesised that this indicates a shift 

from uniform transport through the filter to transport dominated by preferential flow paths. 

 

Figure 2.16. Residence time distributions for Run S, column B with CXTFIT/Excel 

fitted convection-dispersion models. 

Table 2.8. CXTFIT/Excel parameters and estimated average pore velocity of tracers 

for Run S. 

Run S Pore Volume (ml) Dispersivity (cm) 
Estimated Average Pore 

Velocity (m/hr) 

Tracer A B A B A B 

T1 1758 1825 1.287 1.126 0.72 0.71 

T2 1770 1799 1.960 2.309 0.78 0.77 

T3 1694 1728 3.869 3.873 0.86 0.88 
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To be a useful tool for characterising changes in filter hydrodynamics with clogging, tracer 

RTDs must be consistent and reproducible. Potential sources of error and steps taken to 

remove or mitigate them are listed below. 

2.8.4.1 Tracer Volume 

Tracer pulse duration is an important factor for CXTFIT/Excel and dependent upon the 

volume of tracer injected as well as the injection flow rate. Tracer volume was controlled 

using a 10ml graduated pipette filled with 10ml of tracer. The level was judged by eye and 

typically with an accuracy of ±0.1ml. With the injector setup described in Section 2.7.1, 

the entire volume of tracer was injected into the column. 

2.8.4.2 Flow Rate 

As a result of the use of a peristaltic pump to deliver the flow, slight variations in flow rate 

over the duration of tracer breakthrough are possible. Due to the injector setup (Section 

2.7.1), the 10ml tracer is injected at exactly the same flow rate as the preceding and 

subsequent flows. The entire volume of effluent from the beginning of tracer injection to 

the end of the RTD was collected (between 3 and 5 litres) then weighed to determine the 

volume (with an allowance for temperature effects on density) and, with the known 

duration of the RTD, the average flow rate. This average flow rate was used for the 

CXTFIT/Excel model. 

2.8.4.3 Density 

If the tracer density were significantly different from the pore fluid then tracer transport 

would not be representative of the pore fluid flow. There are two sources of differing 

density: the concentration of NaCl in the tracer and the relative temperature difference 

between the tracer and the pore fluid. 

Any solution containing NaCl will be denser than the kaolin/tap water suspension. To 

minimise the effect of density driven flow, the tracer stock was prepared at as low a 

concentration as could reliably be measured at the column outlet after mixing with the 

column pore volume had taken place. This was 1000mg/l resulting in a specific gravity of 
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1.00053 and a stock concentration of ~1200µS/cm. The tap water/kaolin (background) 

conductivity showed little variation within each experiment (±0.1µS/cm) and the peak 

effluent concentration was between ~15.0µS/cm  greater than the background for the first 

tracer of each run (with minimum dispersion and mixing) and ~7.0µS/cm for the last tracer 

of each run (with greater dispersion and mixing). With a probe measurement accuracy of 

0.1µS/cm, this tracer concentration gave at least 70 distinguishable data points with which 

the increase in conductivity from the background to peak could be defined. This was 

sufficient to define the shape of the RTD at a high resolution. 

The effect of density difference due to temperature was minimised by keeping the tracer 

stock in a sealed container submerged within the temperature controlled kaolin suspension 

tank prior to injection into the column. By minimising the time between filling the 

injection pipette with tracer and injecting the tracer, the tracer was at the same temperature 

as the column pore fluid. 

2.8.4.4 Conductivity Probe 

Conductivity is temperature dependent. To prevent small variations in temperature from 

affecting the conductivity reading, the Hach HQ40D meter includes a range of temperature 

corrections methods. The NaCl specific non-linear method with reference temperature of 

20°C was found to perform best over the temperature range observed in the experiments 

(~18-21°C depending upon ambient room temperature). This was tested by heating a 

sample of column effluent containing tracer from 18 to 21°C over approximately 30 

minutes and recording both temperature and conductivity change (Figure 2.17). As there is 

little change in average conductivity, the temperature correction method is adequate. Note 

that the variation in conductivity shown in Figure 2.17 is larger than was observed in the 

experiments where the temperature was either constant or varied by a maximum of 0.3°C 

over the tracer measurement period and at a much slower rate. Background concentration 

rates were constant to within ±0.1µS/cm. 

A second potential source of error associated with the conductivity probe was the residence 

time of the measurement flow cell. Mixing within the flow cell would have an averaging 

effect on the conductivity reading that would smooth the RTD and reduce peaks. The 
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volume of the flow cell was approximately 2ml, hence at the tracer flow rate of 50ml/min, 

the residence time is 1.67 seconds. As readings are taken every 10 seconds, mixing within 

the flow cell is unlikely to have affected the RTDs. 

 

Figure 2.17. Relationship between tracer conductivity and temperature for NaCl non-

linear temperature correction with reference temperature of 20°C. The tracer sample 

of constant NaCl concentration was heated from 18 to 21°C whilst conductivity was 

monitored. 

2.8.4.5 Kaolin Concentration 

The presence of kaolin was found to have no influence on conductivity readings hence the 

concentration of kaolin did not affect the RTDs. High concentrations of NaCl were found 

to reduce the zeta potential of a kaolin suspension thus reducing stability and encouraging 

kaolin particles to flocculate. This in turn would lead to greater settlement and removal of 

kaolin within the filter. However, at the low tracer concentration of 1000mg/l, NaCl had no 

effect on zeta potential which remained in the range -21.1 to -28.7mV (average -24.7mV) 

and indicates incipient suspension stability verging on moderate stability (American 

Society for Testing and Materials, 1985). 
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2.8.4.6 Tracer Repeatability 

Taking into account the potential sources of error outlined in Sections 2.8.4.1 to 2.8.4.5, 

tracers were found to be highly repeatable, as can be seen from the tracer RTD shape in 

Figure 2.18 and the low standard deviation for each tracer RTD descriptive parameter in 

Table 2.9. The four tracers were performed on a single gravel column on four consecutive 

days prior to kaolin deposition. The slight differences between each tracer RTD are 

thought to be due to different flow rates from the peristaltic pump, tracer volumes and 

temperature. 

 

Figure 2.18. Tracer RTDs to evaluate repeatability of tracer procedure. All four 

RTDs overlap indicating consistent tracer transport through the clean filter and a 

consistent tracer delivery and breakthrough measurement procedure. 
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Table 2.9. Tracer RTD descriptive parameters and standard deviation. 

Tracer 

Filtration 

Rate 

(m/hr) 

% 

Recovery 

Residence 

Time (-) 

Variance 

(-) 

Minimum 

Travel Time 

(PV) 

Time to 

Peak (PV) 

Dispersivity 

(cm) 

Tracer 1 0.3223 96.3% 0.95 0.0507 0.432 0.87 1.039 

Tracer 2 0.3299 96.2% 0.95 0.0603 0.431 0.87 1.028 

Tracer 3 0.3434 98.2% 0.96 0.0604 0.464 0.86 1.047 

Tracer 4 0.3437 97.6% 0.96 0.0598 0.472 0.87 0.981 

St. Dev. 0.0105 1.8% 0.01 0.0047 0.021 0.01 0.029 

2.8.5 Clean Bed Pore Volume Estimation from Tracer RTD 

The pore volume of the filter is a critical parameter when evaluating the lifetime removal 

efficiency of a gravel filter as it determines the capacity for sediment storage. The initial 

pore volume of each filter was measured as described in Section 2.7.1; however pore 

volume then decreases as sediment is deposited within the filter.  

Initial pore volumes were also derived from fitting an equilibrium convection-dispersion 

model to each residence time distribution by using pore volume, in conjunction with 

dispersivity, as a parameter for fitting. The use of the equilibrium model assumes that the 

tracer does not adsorb onto the gravel media and that the entire pore volume is “mobile” 

i.e. there are no stagnant areas or disconnected pore regions. The first assumption can be 

verified as at least 95% of the tracer was recovered at the outlet. The second assumption 

cannot be verified. As the gravel is of a relatively uniform size (8-11mm, 4-8mm) and does 

not pack tightly, it is unlikely that there will be a significant volume of disconnected pore 

regions within the gravel body, however there may be small regions of stagnant, immobile 

pore regions, particularly close to the inlet and outlet. 

Comparing the initial measured pore volume with that estimated from curve fitting 

determines how accurate the use of the convection-dispersion model with pore volume as a 

fitting parameter can be. As can be seen from Table 2.10, the tracer derived pore volume 

(hereafter referred to as tracer PV) are, on average, 4.96% lower than the measured value 

and are all within ±10%. 
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Table 2.10. Comparison between measured pore volume and tracer PV estimated 

from fitting an equilibrium convection-dispersion model to tracer RTDs for the five 

experiments (S, FG, LG, RG & LF) and two columns (A & B). N.B. pore volumes 

include inlet and outlet mixing sections (approximately 350ml each) and tubing 

(approximately 40ml). 

 

Measured Pore 

Volume (ml) 
Tracer PV (ml) Difference (%) 

Run A B A B A B  

S 1967.0 1933.4 1863.2 1825.1 -5.28 -5.61 

FG 1894.0 1880.1 1915.0 1814.2 1.11 -3.50 

LG 1928.5 1961.9 1778.9 1783.2 -5.05 -4.30 

RG 1636.0 1560.9 1485.4 1458.0 -9.21 -6.59 

LF 2692.3 2664.8 2882.1 2660.0 7.05 -0.18 

 

2.8.6 Clogged Bed Pore Volume Estimation from Tracer RTD 

At the end of each filter run, the mass of kaolin retained within each filter was measured as 

described in Section 2.7.4. Results are presented in Table 2.11. 

Table 2.11. Comparison between tracer PV and mass balance PV. A settled kaolin 

bulk density of 1455g/l yielded the lowest total difference in pore volumes. Run RG 

was excluded from the analysis.  

 

Mass of Kaolin 
Retained (g) 

Tracer PV  
(ml) 

Mass Balance PV 
(ml) 

Difference in Pore 
Volumes (%) 

Run A B A B  A B  0 0 

S 132.2 151.5 1694.1 1728.5 1788.3 1728.5 -5.27 0.00 

FG 151.1 158.3 1689.4 1761.3 1689.7 1666.0 -0.02 5.72 

LG 106.4 100.2 1801.1 1780.6 1784.6 1826.4 0.92 -2.51 

RG 170.7 169.0 1097.4 1102.8 1405.2 1332.4 -21.90 -17.23 

LF 62.8 49.5 2614.7 2682.1 2607.4 2597.8 0.28 3.68 

The bulk density of kaolin deposited within the filter was not known, but could be 

determined based upon the volume that kaolin occupied, which in turn could be determined 

by the change in the pore volume within the filter. Similar to the estimation of initial pore 

volume, the final clogged pore volume can be estimated from equilibrium convection-

dispersion model parameters fitted to the clogged RTD. Again it is assumed that the tracer 
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is conservative (a valid assumption as once again at least 95% of the tracer was recovered) 

and that there are no disconnected pore regions. This second assumption may no longer be 

valid as it was possible that kaolin deposition led to the formation of significant 

disconnected pore regions or stagnant regions of no flow. 

The bulk density of settled kaolin was estimated by iteratively solving Equation 2.12 for 

each filter with an assumed bulk density until the sum of the residuals for all filter runs 

were minimised. 

PVF = PVI −
MKF

ρKS
 

 Equation 2.12 

Where PVF = final pore volume of clogged filter estimated from tracer RTD, 

           PVI = initial pore volume of filter measured when filling column with water, 

 MKF = final mass of kaolin retained in filter measured when column dismantled, 

 ρKS = assumed bulk density of kaolin settled within the filter. 

Results are presented in Table 2.11. Run RG columns A and B were excluded from the 

analysis as the mass balance PV was substantially larger than the tracer PV. This is thought 

to be because the rounded surface of the gravel led to less stable kaolin deposits and 

increased cascading of settled kaolin within the filter. Cascading kaolin would then be 

capable of entirely blocking pore channels leading to the formation of disconnected pore 

regions. 

Table 2.12. Bulk density of settled kaolin derived from central, upper and lower 

tracer RTD estimates of column pore volume. 

  
Bulk Density (g/l) 

Tracer 
Pore 

Volume 
Estimate 

Upper 1529 

Central 1455 

Lower 1434 

Upper and lower 95% confidence intervals were calculated for pore volume in 

CXTFIT/Excel. Combining all lower estimates of pore volume and solving Equation 2.12 

gives a lower estimate of the kaolin bulk density. Similarly, combining all upper estimates 

of pore volume and solving Equation 2.12 gives an upper estimate of the kaolin bulk 

density. Central, upper and lower estimates of settled kaolin bulk density are given in 
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Table 2.12. These fall within the expected range of 1178-2600g/l (Section 2.4.3), however 

are likely to be slightly lower than the true settled kaolin bulk density (hence 

overestimating the kaolin volume) as there was no way to distinguish immobile pore water 

from the volume of water displaced by settled kaolin. 

2.8.7 Intermediate Clogged Bed Pore Volume Estimation from Tracer RTD 

The mass of kaolin retained within the filters at the end of each phase was estimated from 

the removal efficiency mass balance in Section 2.8.3. The density of the settled kaolin was 

estimated within 95% confidence limits based on the mass of kaolin retained and the 

reduction in mobile pore volume in Section 2.8.6. It is therefore possible to calculate the 

pore volume within the filter after each phase based on the amount of kaolin retained. 

Table 2.13 shows a comparison between the intermediate tracer PVs (at the end of Phase 3, 

T2) and the removal efficiency mass balances. Unlike for the clogged filters (Phase 6, T3), 

the mass of kaolin retained within the filter was not known, hence the intermediate clogged 

RTDs could not be used to refine the estimate of settled kaolin bulk density. The central, 

upper and lower estimates of settled kaolin bulk density were used to reflect the 

uncertainty in this measurement. 

Tracer PV was, on average, 3.30% lower than the central pore volume estimate, 3.65% 

lower than the upper estimate, 2.93% lower than the lower estimate and all pore volumes 

fell within a range of -5.6% to +6.10% . Accuracy of the tracer PV at intermediate stages 

of clogging is therefore similar to that of the initial and final stages of clogging. 

Table 2.13. Tracer PVs compared with removal efficiency PVs (with upper, central 

and lower estimates of settled kaolin bulk density). 

 Tracer PV (ml) 
Removal Efficiency PV (ml) 

 
Upper Central Lower 

Run A B A B A B A B 

S 1770 1799 1853 1815 1835 1796 1828 1789 

FG 1786 1834 1764 1756 1743 1735 1735 1728 

LG 1841 1774 1839 1879 1824 1866 1819 1861 

RG 1456 1395 1523 1436 1505 1416 1498 1409 

LF 2671 2616 2591 2568 2574 2553 2569 2547 
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For the rounded gravel Run RG, the clogged tracer PV (Phase 6, T3) was far below that 

determined from the mass of kaolin retained within the filter (Section 2.8.6). This was 

attributed to the formation of disconnected pore regions reducing the volume of the filter 

accessible to the tracer. As shown in Table 2.14, the intermediate tracer (T2) was much 

more similar to the mass balance PV than the clogged tracer (T3). This suggests that the 

formation of disconnected pore regions only occurs during the second clogging phase. 

Table 2.14. Comparison between tracer PVs and mass balance PVs for rounded 

gravel filter Run RG. 

Run RG Tracer PV(ml) Mass Balance PV (ml) 
Difference in Pore 

Volume (%) 

Tracer A B A B A B 

T2 1456 1395 1514 1426 -3.86% -2.19% 

T3 1097 1100 1403 1308 -21.79% -15.89% 

2.8.8 Particle Size Breakthrough 

The change in particle size during kaolin breakthrough was measured from samples 

collected for turbidity analysis during the first addition of kaolin (Phase 2) of runs S, FG, 

LG and RG. Figure 2.19 shows the kaolin breakthrough profile for Run S, Column A 

(Kaolin C/C0) with tracer T1A breakthrough (Tracer C/C0), the average background 

effluent particle size (Background Size) and range in median background size for all filter 

runs, and the average influent kaolin suspension particle size (Influent Average Size) with 

range in influent median size for all filter runs. Finally, the effluent mean particle size is 

shown (Effluent Size).  
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Figure 2.19. Run S, Column A evolution of effluent particle size during kaolin 

breakthrough. Tracer breakthrough RTD T1A shown for reference along with 

average background particle size (with blue shading indicating the range in median 

sizes observed) and average influent particle size (with red shading indicating the 

range in median sizes). 

It is clear that immediately upon kaolin breakthrough (between 0.47 and 0.55 pore 

volumes), the median effluent particle size is higher than the median influent particle size 

(2815nm compared with 1762nm). By the time of the tracer peak, the median effluent 

particle size is equal to the median influent particle size and by full kaolin breakthrough 

(3.5 pore volumes and onwards) the median effluent particle size is lower than the median 

influent. 
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Figure 2.20. Run S, FG, LG & RG aggregated effluent median particle sizes. Run S, 

Column A kaolin breakthrough and tracer T1A breakthrough are shown for 

reference. 

Similar, although less pronounced trends are visible when aggregating the results for runs 

S, FG, LG and RG, as shown in Figure 2.20. This result first appears somewhat 

counterintuitive. The two main particle removal mechanisms for gravel filters are 

gravitational settlement and straining (sieving), both of which should result in an increased 

removal efficiency of larger particles and hence an effluent median particle size lower than 

the influent, as is the case after approximately two to three pore volumes. 

The initial peak in effluent median particle size can be explained by considering the 

transport properties of different particle classes through porous media. Carrigan et al. 

(1996) showed that of all the gas molecules released from an underground nuclear 

explosion, those with a higher atomic mass (larger molecules) and lower diffusivity were 

transported to the surface through faults and fractures more rapidly than those molecules 

with a lower atomic mass. Auset & Keller (2004) found that in artificial pore networks of 

varying pore size, larger colloids were confined to the centre streamlines of the pore 



 Chapter 3  

 

  

 

 

58 

channels due to their size whilst smaller colloids occupy both the central and peripheral 

streamlines. Due to friction with the pore walls, the central streamlines tend to have a 

higher velocity than the peripheral streamlines. 

Therefore, there are more opportunities for the smaller particles in a kaolin suspension to 

be transported in low velocity streamlines through the filter than large particles, leading to 

an enhanced transport and earlier breakthrough of large particles. Whilst many small 

particles will be transported in fast flow channels along with the large particles, this 

process affects the average particle size and skews the PSD towards larger particles in the 

initial breakthrough period. 

The first effluent samples containing kaolin (around 0.5 pore volumes in Figure 2.20) are 

composed of a greater proportion of large particles transported in central streamlines. 

Despite the increased removal efficiency of large particles, overall this leads to a median 

effluent particle size that is larger than the influent median particle size and closer to the  

upper value of the influent particle size distribution. 

At the point of full kaolin breakthrough (around three pore volumes), kaolin particles from 

the very first injection of kaolin that were transported through the filter in the lowest 

velocity streamlines, or which took a more tortuous path, exit the filter and both kaolin 

concentration and effluent particle size reach a steady state. Because of the increased 

removal of the larger particles, the median particle size at this point is lower than the 

influent median particle size. 

2.9 Discussion 

The aims of this chapter were to measure the efficiency of gravel filters at removing 

colloidal particles and determine how the removal efficiency varies with accumulation of 

deposited particles. Conservative tracers were used to determine change in filter hydraulics 

with clogging. Particle size measurement of the filter influent and effluent kaolin 

suspensions were made to determine how removal affects particle size distribution. 
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2.9.1 Kaolin as Surrogate for Road & River Particulate Pollution 

Kaolin is commonly used as a surrogate for river particles and is appropriate for analysing 

the removal efficiency of roughing filters (Ahsan, 1995; Wegelin et al., 1987). Kaolin is 

somewhat less ideal for roadside SuDS filters where there is typically a large range in 

particle sizes entering the filter from colloidal particles up to several millimetres; kaolin is 

entirely within the colloidal particle range. Removal mechanisms for colloidal particles are 

predominantly settling under gravity and direct interception (Boller, 1993). Straining and 

wedging between gravel particles would also occur but are likely to be insignificant due to 

the high ratio of gravel size to kaolin size. Straining is likely to become significant once 

particle size exceeds 928μm for 4-8mm gravel and 1547μm for 8-11mm gravel based upon 

the particle diameter to media diameter of Barton & Buchberger (2007), both of which are 

at the upper end of the road runoff particle size distribution.  

If particles larger than 928μm/1547μm were to enter the gravel filter, the system would be 

expected to switch from deep-bed filtration in which particles are able to penetrate deep 

into the filter media and utilise the entire volume for particle removal to straining 

dominated filtration. Particles removed by straining would alter flow paths through the 

filter as well as present additional surfaces for colloidal particles to attach. In straining-

dominated filtration the top several layers of gravel quickly block with strained particles 

and the pressure head could become high enough to prevent road runoff entering the filter. 

The blocking of the upper surface is a common failure mechanism in roadside SuDS filters 

(Pittner & Allerton, 2010) without pre-treatment. However, it is recommended that all 

roadside SuDS filters constructed in the UK include pre-treatment (Pittner & Allerton, 

2010) in the form of flow over a grass verge or through gully pots before entering the filter, 

both of which would be expected to remove the coarser particles. 

The effect of larger road runoff particles on roadside SuDS filter clogging and pollutant 

removal efficiency was not investigated in this study for the following reasons:  

1. The removal of colloidal particles was of more interest as these are both more 

difficult to remove and also contain other pollutants such as pollutant metals 
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adsorbed to their surface (Ellis & Revitt, 1982; Lau & Stenstrom, 2005; Stovin et 

al., 2010). 

2. Particles that would cause significant straining are likely to be removed by pre-

treatment hence deep-bed filtration would occur in SuDS and not surface straining. 

3. For the practical reason that turbidity and size distribution measurement of a 

rapidly settling suspension was not possible with the available equipment.  

2.9.2 Kaolin Turbidity/Concentration Relationship 

In the field of water treatment it is common practice to use turbidity measurement in 

conjunction with a calibration curve as a surrogate for directly measuring total suspended 

sediment (TSS) concentration. This is because turbidity measurement is quicker, cheaper, 

can be carried out in the field and allows many more samples to be analysed than the 

alternative which is filtration through a glass fibre filter paper. 

It is well known that, in addition to concentration, turbidity is dependent upon other 

particle suspension properties such as sediment colour, shape and size (Clifford et al., 

1995). In this study and others (Lin et al., 2008; Rooklidge et al., 2002; Wegelin et al., 

1987), a decrease in average particle size was measured between filter inlet and outlet 

which is entirely in line with filtration theory: larger particles are more likely to be 

removed by settlement and straining. Some studies measure both turbidity and TSS 

separately treating these parameters as unrelated and calculating the removal efficiency of 

each (Galvis, 1999; Ochieng et al., 2004; Rooklidge et al., 2002). Galvis, 1999 and 

Rooklidge et al. (2002) both found lower  removal efficiency for turbidity than TSS whilst 

Ochieng et al. (2004) found both to be comparable.  The approach taken by Wegelin et al. 

(1987) was to measure removal efficiency based on particle counts of each size class. 

Without access to a particle counter and with a desire to adequately characterise the kaolin 

breakthrough curve (requiring more samples than could conveniently be analysed by 

membrane filtration), the approach taken in this thesis was to derive two relationships 

between turbidity and TSS: one for the influent kaolin suspension and one for the effluent 

kaolin suspension. Had a single relationship based on the influent kaolin suspension been 
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used in this study, the effluent concentration would have been over-estimated, resulting in 

a removal efficiency of 66.3% instead of 82.8% for Run S, column A for example. 

Yet there are numerous studies in which removal efficiency is based upon the difference 

between influent and effluent turbidity (Ahn et al., 2007; Ingallinella et al., 1997; 

Losleben, 2008; Mahvi et al., 2004) or TSS derived from a single relationship between 

TSS and turbidity (Ahsan, 1995) and it is suspected that these studies and others like them 

underestimate removal efficiency.  

Lin et al. (2008) state that they initially used turbidity to determine TSS, but found that 

increasing the influent concentration increased turbidity derived removal efficiency by 7%. 

A membrane filtration derived measure of concentration showed no change in removal 

efficiency over the same increase in influent concentration. They attributed the difference 

to the non-linear relationship between turbidity and TSS and based all further removal 

efficiencies upon membrane filtration derived concentrations.  

Based upon the influent and effluent kaolin turbidity/TSS relationships of Equation 2.10 

and Equation 2.11 (shown in Figure 2.11, Section 2.8.1), it is clear that the curves 

converge at low concentrations and diverge as concentration increases. Hence, as 

concentration increases, the error caused by using a single turbidity/TSS relationship that 

does not take into account the change in particle size distribution between influent and 

effluent increases, as observed by Lin et al. (2008). 

Many studies may therefore have underestimated removal efficiency in filters and hence 

underestimated the mass of sediment retained, particularly at high suspended sediment 

concentrations. Often there will be situations in which removal efficiency based solely on 

turbidity is sufficient. For instance, if the purpose of monitoring removal is to determine if 

the roughing filter effluent is suitable for slow sand filtration, it is as useful for the operator 

to have empirical knowledge of how the sand filter behaves at a given turbidity as at a 

given TSS. In developing countries where roughing filters are most often used, the 

filtration equipment and operator skills necessary to measure TSS – vacuum pump, filter 

holder, drying oven, high precision (calibrated) balance and a large number of glass fibre 

filters – may not be available or would not be available for the long-term operation of the 
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treatment works. For this reason, there would be no benefit in developing a filter 

management strategy that relied on TSS measurement and turbidity is preferable. 

However, if the purpose of the study is to compare the removal efficiency of different filter 

designs that may produce different effluent particle size distributions (e.g. media of 

different shape, size or roughness), or accurate knowledge of the mass and volume of 

sediment retained is required, removal efficiencies based on turbidity are not suitable. 

The approach taken in this thesis in which an influent turbidity/TSS relationship and an 

effluent turbidity/TSS relationship were established is an improvement over a single 

turbidity/TSS relationship. It is also a compromise between accuracy of kaolin retained and 

high frequency of sampling necessary to define the kaolin breakthrough curve.  

2.9.3 Tracers 

A method for reliably delivering a known quantity of sodium chloride tracer and 

measuring the resulting tracer breakthrough profile in the effluent was devised. The 

method was found to be highly repeatable hence small changes in tracer residence time 

distribution (RTD) curves could be used to infer changes in filter hydraulics. 

With curve-fitting software CXTFIT/Excel, pore volume was used as a fitting parameter in 

a convection-dispersion model of tracer transport. Pore volume derived from the tracer 

RTDs (referred to as tracer PV) were compared with known pore volumes measured 

during filling of the gravel filters. It was found that, with knowledge of the influent tracer 

volume, concentration, flow rate and effluent tracer breakthrough profile, it was possible to 

predict the clean bed pore volume within at least 10% of the measured value for all 10 

filters. On average the tracer PVs were 4.96% lower than the measured value.  

Transport of tracer through the filter, and hence the RTD curve, is only influenced by the 

mobile pore volume: the volume of the filter that is accessible to the tracer by either 

convection or dispersion. The tracer PV is therefore a measure of the mobile pore volume, 

hence why it is lower than the physical measure of pore volume which includes regions 

inaccessible to a tracer. 
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The bulk density of the kaolin deposits within the filters was determined from the mass of 

kaolin retained within each filters (measured when dismantling the filter at the end of the 

filter run) divided by the reduction in mobile pore volume after kaolin deposition 

determined from tracer PVs. There are several sources of error within this measure of bulk 

density: error from the measure of kaolin retained (by filtration, drying and weighing), 

error associated with the tracer measurement (volume, concentration and flow rate) but 

most significant is the error associated with the tracer measure of pore volume. This 

measure only includes mobile pore water. Any increase in immobile pore water with 

clogging was attributed to displacement by deposited kaolin, hence over-estimating the 

bulk density of the kaolin deposits. 

Such an increase in immobile pore water could result from entire pore channels becoming 

disconnected from the main pore volume due to kaolin deposition, as shown in Figure 

2.21, B. Feedback between increasing flow velocity and decreasing deposition is expected 

to reduce the number of channels that block completely (see Chapter 5), however the 

downward drift of large kaolin deposits that have exceeded the limit of stability would be 

less affected by velocity and could block pore channels, as shown in Figure 2.21, C.  

Unstable deposits become more likely with increasing kaolin deposition and with rounded 

gravel (Ahn et al., 2007). The greatest error in clogged tracer PV was observed after the 

second stage of clogging of the rounded gravel filter. Here the pore volume was 

underestimated by, on average, -19.8% which was consistent with the increase in immobile 

pore volume described above. 
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Figure 2.21. A and B show two kaolin deposition patterns that result in a similar 

tracer accessible pore volume but require very different amounts of kaolin to be 

retained. The tracer PV would under predict the total pore volume for case B hence 

kaolin bulk density would be under predicted. C shows how the downward drift of 

deposited kaolin that has exceeded the stability limit could cause the deposition 

pattern in B. 

At intermediate stages of clogging neither pore volume nor mass of kaolin retained can be 

directly measured. The mass of kaolin retained can be inferred from the sediment loading 

and removal efficiency for each phase and then the settled kaolin bulk density used to 

estimate the decrease in pore volume due to kaolin deposition. Tracer PVs agreed with the 

removal efficiency mass balance PVs to within 6.1% and were 3.3% lower on average for 

all 10 filters, an improvement over the initial clean bed accuracy. A potential reason for 

this improved agreement is that the bulk density estimate of settled kaolin is too low as it 

incorporates immobile pore volume. This leads to an over prediction of settled kaolin 

volume and under prediction of total volume thus compensating for the tracer PVs inability 

to measure immobile pore volume. 
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In addition to measuring filter transport properties such as dispersivity, tracer residence 

time distributions have the ability to measure mobile pore volume within 10% of the true 

mobile pore volume. This allows the volume of sediment retained in a filter to be 

calculated over the period between two tracer injections and is an alternative to routine 

monitoring of influent and effluent concentrations to establish removal efficiencies on 

which retention can be based. The main setting in which this application of tracers may be 

useful is expected to be in laboratory or pilot-scale assessment of filter design parameters. 

In such a setting an understanding of how filter removal efficiency and head loss are 

related to the accumulation of sediment and reduction in mobile pore volume would be 

very useful, particularly if it would allow the frequency of these measurements to be 

reduced. 

In roughing filters operated for drinking water pre-treatment head loss, influent and 

effluent concentrations are used to assess if a filter is performing satisfactorily. It is 

therefore likely that they would be routinely monitored and there would be no value in 

additionally measuring mobile pore volume from tracer RTDs. However, should a filter be 

behaving incorrectly, tracers to establish the mobile pore volume may be a useful 

diagnostic tool. 

2.10 Conclusions 

Key findings of this chapter were that the change between influent and effluent turbidity of 

a kaolin suspension cannot be used as a proxy for TSS removal efficiency based on a 

single relationship between turbidity and TSS. This is because the mean particle size is 

reduced by filtration. Instead, a turbidity/TSS relationship for the influent and effluent 

suspensions can be used, provided that the change in effluent particle size over time is not 

significant. 

The mobile pore volume of a filter can be estimated to within 10% by using pore volume 

as a parameter for fitting a convection dispersion model to tracer breakthrough curves. 

Subsequent tracer derived pore volumes can be used to determine the change in mobile 

pore volume due to sediment accumulation within a filter and may be a useful tool for 

assessing filter status. 
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Enhanced transport of large particles through heterogeneous porous media has previously 

been observed by Carrigan et al. (1996) and Auset & Keller (2004). A similar phenomenon 

was detected in this study through monitoring filter influent and effluent PSD over time. 

This was attributed to the exclusion of large particles from the narrower, slower pore 

channels with the result that large particles were either removed or confined to larger, high 

velocity channels whilst small particles were transported in both fast and slow channels. 

The net result was a skewing of the effluent PSD towards large particles during the initial 

stage of filtration. The enhanced transport of larger particles is not thought to significantly 

affect filter removal efficiency or the longevity of the filter, but is worth considering when 

carrying out experiments and monitoring filter performance: the initial effluent suspension 

(and hence any measurement of concentration, turbidity or PSD made during this stage) is 

not representative of the general behaviour of the filter. 

Whilst the removal efficiency and tracer transport measurements provide information for 

characterising bulk filter performance, the change in tracer RTD and enhanced transport of 

large particles indicate that pore channels and spatial heterogeneity may be significant. 

Bulk measurement of filter performance cannot capture such spatial heterogeneity and so 

the remainder of this thesis focuses on techniques for measuring spatial variation in 

particle removal, understanding the processes involved, and how filter performance might 

be impacted. 
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Chapter 3 – Magnetic Resonance Imaging: a non-invasive tool 

to characterise and quantify spatial variation in particle 

accumulation 

3.1 Abstract 

Magnetic Resonance Imaging (MRI) offers the opportunity for non-invasive measurement 

of particle accumulation within a filter. Although increasingly being used for non-

biomedical applications, such studies on gravel filters have not been identified. In this 

study, MRI was used as a tool for characterising and quantifying fine particle accumulation 

within a gravel filter; the specific objective of which was to relate pore geometry and 

velocity to the spatial and temporal variation in clogging. To obtain this data at an 

appropriate scale and resolution for analysis, a high magnetic field strength MRI machine 

was used to image the filters. The filters consisted of 100mm diameter Perspex columns 

filled with 10mm dolomite gravel. MRI scans were performed sequentially on the filter 

before, during and after substantial clogging with kaolin clay at a high flow rate and a low 

flow rate. Scan resolution was 300μm with a maximum scan volume of 100mm wide, 

130mm high and 180mm long. 

An image processing methodology using the free and open source software ImageJ was 

developed. The method was able to segment the raw MRI intensity data into solid (gravel 

and kaolin) and fluid (water) regions and reproduce experimentally measured porosities to 

within 1.75%. Analysis of the segmented images allowed trends in clogging to be 

quantified, such as increased kaolin deposition at the inlet during low flows and more 

uniform deposition throughout the filter at high flow rates. The imaging and analysis 

procedures developed herein are shown to reliably differentiate between water, gravel and 

deposited kaolin. MRI thus provides a valuable tool for characterising the 3D spatial 

variation of particle deposition and is appropriate for answering an important aim of this 

thesis: to better understand the particle removal processes occurring during gravel 

filtration. 
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3.2 Introduction 

Magnetic resonance imaging (MRI) has traditionally been used in medical and veterinary 

applications as a non-invasive method for imaging the internal organs of patients in two or 

three dimensions. MRI has also been used in flow-particle applications: for instance 

Sederman et al. (1998) used MRI to measure flow velocities in 5mm diameter glass 

ballotini; Amitay-Rosen et al. (2005) measured porosity change over time during colloid 

particle deposition; Baumann & Werth (2005) measured colloid breakthrough in silica gel; 

Kleinhans et al. (2008) used MRI to measure sorting patterns in gravel and Haynes et al. 

(2012) used MRI to measure flow-related restructuring of bed particles in gravel bed 

rivers. 

The use of MRI to measure changes in porosity has been established (e.g. Amitay-Rosen et 

al., 2005) and the following advantages displayed: imaging is entirely non-invasive via the 

use of laboratory-based flow columns; spatial variation in sediment accumulation can be 

measured in any user-defined plane of orientation; and, there is the ability to measure 

propagation of a suitable tracer or direct measurement of flow velocities with suitably 

tailored MRI pulse sequences (Johns et al., 2000; Hingerl, 2013). Yet, this technique 

remains in its infancy in flow-sediment research and has not previously been applied to 

filters containing gravel-sized angular media, where fluid flow is likely more variable in 

velocity than that found in smaller grain filters. 

The wealth of data on pore network connectivity offered by a fully 3D scan has more often 

been collected using x-ray tomography (Gruber et al., 2012; Blunt et al., 2013; Cooper et 

al., 2003) than by MRI. Whilst a valuable technique offering excellent spatial resolution, x-

ray tomography is limited in the size of sample that can be scanned and hence is better 

suited for soil and rock samples than coarse grained gravel filters. Furthermore, MRI offers 

the potential for fluid velocity and tracer propagation measurement that x-ray tomography 

cannot match. It should be noted that the present investigation did not utilise velocity 

imaging, although it does serve as a precursor to such an experiment. 

Given these characteristics, it appears beneficial to employ MRI to image inside a SuDS or 

water treatment filter system in order to provide unprecedented detail of the 3D/4D internal 
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processes of sediment transport and deposition within.  Such enhanced understanding has 

the potential to lead to improved gravel filter and SuDS design. 

This chapter explores the use of MRI as a tool for non-invasive characterisation and 

quantification of the spatial variation in sediment accumulation in a gravel filter during 

clogging. The experiment setup and method of image acquisition are described, followed 

by data processing techniques, then data analysis examining how measurements of porosity 

and pore connectivity vary spatially across the filter. Discussion focuses on the quality of 

the MRI derived pore volume, the fundamental sediment removal processes at work, the 

use of MRI as a tool for elucidating these processes and potential improvements to the 

methodology.  

3.3 Data Collection Methodology 

The aim of the experiments was to determine how pore geometry affects the spatial 

variation of sediment deposition, how this changes over time and how it is influenced by 

pore velocity. Two experiments were run, one at a low flow rate and the other at a higher 

flow rate. 3D MRI scans of the clean gravel, after one week clogging with kaolin and after 

two weeks clogging were taken.   

3.3.1 Experiment Setup 

Due to restrictions of the MRI bore size and requirement for non-magnetic components, a 

bespoke plastic column was developed to be compatible with the MRI. The column had an 

internal diameter of 100mm, length of 210mm with mixing sections at inlet and outlet (to 

distribute flows evenly over the entire width of the column), a perforated plastic mesh to 

hold the gravel media in place at either end and an inlet and outlet manifold (Figure 3.1). 

The column was designed to fit tightly within a 2m long, 132mm internal diameter tube 

that in turn fitted tightly within the 152mm bore of the largest radio frequency coil 

available at the MRI facility. Inserting the column within a the larger plastic tube made it 

possible to place the column ±1mm (Section 3.3.2) within the MRI for each scan and 

ensured that, if any leaks were to occur, water would not come in to contact with the 

electric components of the MRI machine. 
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Figure 3.1. MRI column components. 

The column was filled with a known mass of sub-angular dolomite gravel sieved at 

standard ½ phi intervals to provide a range from 8mm to 11.2mm; this approximates to 10 

gravel particles per cross-section of the diameter of the column. Dolomite was used 

because it has a very low metal content and therefore limits any distortion or artefacts in 

the resulting MR image. Based on published rates of dolomite dissolution (Zhang et al., 

2007) at low temperatures (25°C), atmospheric pressure, neutral pH and a dolomite gravel 

surface area calculated from the MRI scans (Section 3.6.1), the mass loss within the filter 

due to dolomite dissolution was estimated to be 0.185g over the two week experiment. 

This is equivalent to 0.0072% of the initial filter mass hence dissolution of the dolomite 

media can be ignored.  

The column was filled by hand with care taken to place the gravel from a consistent height 

of approximately 5cm above the gravel surface and the column was gently tapped after 

every layer of gravel was placed. This was to ensure that the gravel was not compacted (as 

per roughing filter and SuDS filter construction), but was also not prone to shifting when 

the column was moved in and out of the MRI machine (as substantial movement would 

make it difficult to determine where sediment deposition occurred). 

Flow rates of 49.2 and 102ml/min were used equating to filtration rates of 0.376 and 

0.779m/hr which were within the expected range of flow rates in roadside filter drains and 
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well within those of gravel roughing filters (Lin et al., 2008). This flow rate was supplied 

by a peristaltic pump with two heads, each consisting of three rollers and set up out of 

phase. Small bore peristaltic pump tubing was used in each pump head and joined by a Y-

connector to a single larger bore tube connected to the column inlet. The combination of 

using two pump heads with the rollers out of phase and small bore tubing (requiring a 

greater number of revolutions per minute of the pump head) reduced the pulsation of the 

peristaltic pump, in comparison to a single pump head with large bore tubing. 

Kaolin was used as a surrogate for the river sediment and fine road runoff particles that 

roughing filters and roadside SuDS filters are designed to remove. The properties of kaolin 

which make it a suitable surrogate together with justification for using a high concentration 

to result in substantial clogging in a short period of time are discussed in Chapter 2, 

Sections 2.4 and 2.5. The experiments were run at the MRI facility so as to reduce the 

chance of deposited kaolin being disturbed whilst transporting the column into the MRI 

machine. The feed stock of kaolin was kept in suspension via magnetic stirrer and re-

circulated through the column as per the clogging phase of the removal efficiency 

experiments (Chapter 2, Section 2.7). Each day a one litre sample of tank water was taken 

for analysis of turbidity and particle concentration by filtration (Chapter 2, Section 2.4.3) 

and one replacement litre of concentrated kaolin stock was added to the tank. This allowed 

the amount of kaolin retained in the filter to be measured.   

The experiment programme is detailed in Table 3.1. A total of 130g of kaolin passed 

through each filter over a two week period with 74.24g and 89.70g calculated to have been 

retained in the low flow and high flow filters respectively. Scans took approximately 20 

hours and were scheduled so as to take place over the weekend. 



 Chapter 3  

 

  

 

 

72 

Table 3.1. Experiment programme. Each MRI scan has been assigned a label with L 

standing for low flow and H for high flow, a number corresponding to the phase of 

the experiment and either C or E to denote if the scan followed a clogging phase or an 

erosion phase. For example, L1C signifies the scan was for the low flow experiment 

during the first phase of clogging (the clean scan) whilst H4E signifies the high flow 

experiment in the 4th phase and after erosion. 

Phase Low Flow - 0.376m/hr High Flow - 0.779m/hr 

      

I L1C - clean gravel filter H1C - clean gravel filter 

II 

4.2 days of flow through filter 4.19 days of flow through filter 

42.5g kaolin accumulated in filter 54.24g kaolin accumulated in filter 

L2C - partially clogged H2C - partially clogged 

III 

4.2 days of flow through filter 4.02 days of flow through filter 

74.24g kaolin accumulated in filter 89.70g kaolin accumulated in filter 

L3C - clogged H3C - clogged 

IV 
  1hour clean water flow at 3.44m/hr 

  H4E - 1st stage of erosion 

V 
  1hour clean water flow at 4.58m/hr 

  H5E - 2nd stage of erosion 

3.3.2 Image Acquisition 

Scans were acquired using the Bruker 7T MRI machine at the Glasgow Experimental MRI 

Centre (GEMRIC) using the largest bore (152mm) radio frequency (RF) coil available. 

The scan type used was a 3D rapid acquisition relaxation enhanced (RARE) sequence. The 

RARE scan consisted of a train of RF pulses 90o
x [-te -180o

y –te -]n with an echo time (te) of 

11 ms, a RARE factor of n = 8 and a repetition time of 4000 ms. The bandwidth was set at 

200 kHz and anti-aliasing was set to 2 to reduce wraparound artefacts. The scan took 20 

hours in total with an additional hour to post-process the data. The resulting data is a 3D 

array composed of 333x433x600 voxels with each 15-bit voxel representing one of 32768 

possible signal intensities. The resolution was 300μm and so the field of view (total image-

able area) was 100mm wide, 130mm high and 180mm long. This data is most often viewed 

as a series of 2D (X-Y) slices in which the slice number is equivalent to the third 

dimension (Z). Image resolution was an appropriate compromise between scan time, the 



 Chapter 3  

 

  

 

 

73 

desired image extent and the volume that can be post-processed and viewed on a high-end 

desktop computer; scale dependency was not investigated in this study as it would have 

necessitated additional scans.  

Alignment points on the MRI machine, on the plastic tube and on the column, were used to 

ensure the column was positioned in exactly the same location (within ±1mm) for each 

scan. The MRI was then tuned to give optimum signal and a trial scan was used to ensure 

the selected field of view aligned with the actual position of the column in the MRI. 

3.4 MRI Scan Quality 

Artefacts in the MR image can occur due to the presence of ferromagnetic or paramagnetic 

materials, non-uniformity in the RF field, steep changes in signal, intensity inhomogeneity 

and gradient non-linearity (Sederman & Gladden, 2001; Kleinhans et al., 2008; Vovk et al., 

2007; Jelinkova et al., 2011). When medical MR imaging made the transition from 1.5T to 

3T (and higher) field strength scanners, many of these artefacts were found to be more 

pronounced. However, Dietrich et al. (2008) have shown that with small modifications to 

the RF pulse sequences, parallel imaging and raw data post-processing of 3T MRI, it was 

possible to reduce the effect of artefacts to the level of 1.5T whilst retaining the higher 

signal to noise ratio for a given acquisition time.  

As  the RARE sequence employed has previously successfully been used to image water 

within the pores of dolomite gravel by Haynes et al. (2012), it was used without further 

modification. The resulting MR image (e.g. Figure 3.2) shows no signs of paramagnetic or 

ferromagnetic artefacts due to the use of low metal content dolomite. However, gradient 

non-linearity is present; this refers to differences in the magnetic field created by the 

gradient coils and is particularly pronounced at their extremities as visible where the image 

becomes rounded towards the edge of the scan volume in the along-bore direction (shown 

in Figure 3.2). As indicated in Figure 3.2, only the undistorted volume was used in data 

analysis; this comprises a region of interest (ROI) 63.3mm x 100mm x 100mm. 
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Figure 3.2. Slice through centre of full scan volume showing MRI signal intensity. 

Signal intensity is linked to water concentration: water filled pore volumes result in 

high intensity (hot colours) whilst gravel, column components and areas outside the 

column result in low intensity (cool colours/black). Image dimensions are 180mm 

long, 130mm high and 100mm deep. The volume within the green box is not distorted 

and is 63.3mm long.  

Similarly, intensity inhomogeneity is also clearly visible in Figure 3.3. This occurs due to 

the imaged object itself or imperfections in the image acquisition process (Vovk et al., 

2007) and is manifest as a variation in intensity across the image. This has minimal effect 

on the data of the present study as the signal intensity of water is distinct enough from that 

of gravel as to allow segmentation between water and gravel in all but the outermost edges 

of the scan (located within Region C of Figure 3.3). With image post-processing (Section 

3.5), the unsegmentable area was reduced to just 25 voxels from the edge giving a good 

quality scan volume 282 voxels in diameter and 211 voxels deep (this translates as 84.9mm 

diameter by 63.3mm long). 
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Figure 3.3. Histogram of intensity values. The central segment of the scan is bi-modal 

(as shown by Region A), yet the overall histogram (Region B) is not bi-modal due to 

the overlap in water and gravel intensity at the edges of the image (Region C). N.B. 

the contrast of the image has been increased to aid visualisation, whereas contrast in 

the histograms was unaltered. 

Following pilot trials, all scanned data continued to be scrutinised after collection. Whilst 

the first scan (L1C) data was high quality, the second scan (L2C) suffered from poor 

quality (Figure 3.4); detailed review highlighted that this was due to the choice of Tx0, Tx1 

and Gain set during scan acquisition. These are set automatically by the Bruker Paravision 

4.0 controlling software after a short tri-pilot test scan with the aim of obtaining the best 

image quality possible; however, this automated procedure was unsuccessful for scan L2C. 

As a repeat of scan L2C with different settings would have necessitated re-running the 

experiment, with a notable cost implication, it was elected to continue the low-flow test 

focussing on scans L1C and L3C, with cautious and judicious interpretation of scan L2C 



 Chapter 3  

 

  

 

 

76 

being used if required. To mitigate against similar problems, all subsequent scans cross-

checked the automated setting selection to ensure they were similar to those for scan L1C; 

no further problems with image quality were encountered. The implications of the image 

quality, resolution and maximum ROI area are further discussed in Section 3.7.1. 

 
Figure 3.4. Scan L1C (left) showing good quality image. Scan L2C (right) showing 

poor quality image. In L2C the black regions present within the ROI represent 

locations of no MRI signal. In these regions it is impossible to distinguish solid from 

liquid and hence to determine the location of deposited kaolin. 

3.5 Image Processing 

For most types of further analysis (e.g. porosity and pore network structure) it is necessary 

to split the MRI image into water and non-water phases (known as segmentation). Image 

segmentation is inherently user subjective and image analysis experts can produce different 

results depending on the methods they use (Baveye et al., 2010). Automated algorithms 

exist, but they are used for different applications (counting number of cells, tracing 
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neurons, determining void space etc.) with data collected from different techniques (MRI, 

x-ray tomography, light microscopy) and even then, the data has often undergone very 

different pre- and post-processing. As such, there is not a standard image segmentation 

protocol and so a range of methods were investigated using the Java-based public domain 

software ImageJ developed by the National Institutes of Health; this software has been 

successfully applied to water-gravel MRI (Haynes et al., 2009; Haynes et al., 2012) and 

was selected for its open architecture approach to 3rd party plugins for image processing. It 

was not the goal of this project to develop new custom software or ImageJ plugins, but 

rather to evaluate existing software packages, plugins and their combinations so as to find 

the method most suitable for the data and for the end purpose: spatial measurement of 

porosity change within the ROI. 

In this section we assess the quality of a range of common image processing methods (and 

combinations of methods), select an optimum image processing method and quantify the 

uncertainty in porosity measurement associated with the MRI scan resolution. A detailed 

review of the underlying image processing theory and its application to the MRI scan data 

can be found in Appendix A, divided into pre-segmentation processing, segmentation and 

post-segmentation processing. 

3.5.1 Segmentation Quality 

To establish which combination of pre-processing, segmentation and post-processing was 

optimal, the most promising pre-processing methods identified in Appendix A, Section A.1 

were combined with the most promising segmentation and post-processing methods 

identified in Sections A.2 and A.3 and summarised in Figure 3.5 below. This resulted in 31 

methods with a total of 166 different combinations of settings. 
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Figure 3.5. Summary of image pre-processing, segmentation and post-processing 

procedures culminating in 31 methods for processing the images. 

To ascertain which was most suitable, the segmented image produced by each method was: 

 subjected to a visual assessment and comparison with nine manually segmented 

slices,  

 compared with a measured bulk porosity and  

 compared with the known diameter of the inlet mesh screen. 
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Table 3.2 provides a summary of data for this evaluation process and is found at the end of 

this section. In order to better understand the data generated, and debate its fitness for 

purpose, additional detail is first provided on each measureable utilised. 

3.5.1.1 Visual Assessment 

To reduce the image processing combinations into a more manageable quantity for 

numerical evaluation, nine image slices from scan L1C were processed and compared, by 

eye, with nine corresponding slices manually segmented with the software ArcGIS (ESRI) 

(see Appendix A, Section A.2.1 for details of manual segmentation). Each method was 

given a score out of three (1 = good, 2 = adequate and 3 = inadequate) in the following 

categories: area successfully segmented, lack of salt and pepper noise in resulting image 

and successful splitting of particles in close contact. Examples of these are shown in Figure 

3.6. The rationale behind performing this step first was that there is no value in further 

analysing a processing method that does not accurately represent the structure of the gravel 

and pore space, even if that method happens to produce an accurate bulk porosity. Methods 

that scored a 3 for any category were rejected whilst the remaining methods with the 

lowest combined scores were selected for further analysis resulting in the six methods 

tabulated in Table 3.2, Section 3.5.2. 
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Figure 3.6. first stage of the quality analysis with processed images showing pore 

space (white) and gravel (black) overlaid by manually segmented gravel outlines 

(red): Examples of (A) poor separation of particles in close contact, (B) noisy image, 

(C) low extent of area segmented and (D) good quality for all three measures. Some 

areas of poor quality are circled in green. 

3.5.1.2 Comparison with Measured Bulk Porosity  

The bulk porosity of the two columns was measured as detailed in Chapter 2, Section 2.7.1 

by filling with water from a tank of known mass and temperature and measuring the mass 

change. As the ROI of the MR image does not cover the entire column (see Figure 3.2), the 

porosity measured experimentally for the entire column may not be the same as the 

porosity of the ROI. However, as care was taken to fill each column uniformly, the 

porosities should be similar and this can be improved by averaging the results of the two 

bulk porosity measurements. The average bulk porosity measurement was 42.70%, but this 

includes the area close to the wall which would be expected to have a higher porosity than 
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the internal portions of the column due to “wall effects” (i.e. where gravel particles rest 

against the curved column wall rather than against another gravel particle, the packing 

density is lower hence porosity is higher). This was problematic as the MRI ROI did not 

include the area close to the wall and so was unaffected by wall effects. The bulk porosity 

measurement was corrected for these wall effects using the findings of Dudgeon and Aust 

(1968) where, for spherical particles, there is a 25% increase in porosity within a zone ½ a 

particle diameter thick against the wall (see Equation 1 & Equation 2). Once corrected for 

wall effects, the bulk porosity of the internal section of the column (within the MRI ROI) 

was determined to be 40.76%.  
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Equation 2 

Where L = column length 

           P = porosity in region unaffected by walls 

           Pbulk = experimentally measured bulk porosity 

           Vv = volume of voids (pore space) 

           D = diameter of column 

           DI = diameter of internal region of column unaffected by walls  

However, it should be borne in mind that the correction employed is for spherical particles. 

Irregular particles could, potentially, have tighter or looser packing at the wall depending 

on the ‘fit’ of the more angular shapes. Review of the MR images clearly show such local 

variability and, given the relatively small ROI, the corrected porosity will reflect this such 

that values are likely plus or minus a few percent of the theoretical value of 40.76%. 

Whilst this comparison between the corrected bulk porosity and the segmented image 

porosity is an important measure of the quality of the segmentation method, as the wall 

effects cannot be measured directly from the available data the corrected bulk porosity 

must not be the sole measure defining quality; thus, the other measures of quality must also 

be satisfied. 
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3.5.1.3 Comparison with Plastic Mesh Opening Diameter 

The plastic mesh at the inlet of the ROI consists of spherical openings 4.8mm diameter to a 

tolerance of ±0.05mm. Due to their regular shape and size and because they could be 

measured both physically and in the processed image, these openings are useful for 

assessing the quality of the processed image. The six image processing methods that met 

the initial quality requirements were evaluated based on the area and circularity of 10 

openings. Only openings that were not obscured by a piece of gravel in a neighbouring 

slice were selected and, so as to reduce user bias, these 10 unobscured openings were 

selected based on a geometric pattern as shown in Figure 3.7.  

 

Figure 3.7. (A) pixelated representation of a perfectly circular 4.8mm opening at 

resolution of 300μm, (B) geometrical arrangement of the 10 openings selected for 

analysis, (C) unprocessed MR image of an opening with ideal circular opening 

superimposed and (D) opening shown in C after a good quality segmentation method 

was applied. The area of the opening in D is underestimated by approximately 10%. 

(A) (B)

(C) (D)
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As the MR image is composed of pixels, the area and circularity of the segmented image 

openings are compared to a pixelated representation of a perfectly circular opening with a 

diameter of 4.8mm. If the processed image mesh openings (D in Figure 3.7) are equal to 

the known mesh opening characteristics (A in Figure 3.7) in terms of circularity and area, 

then the gravel particles are likely to have been segmented to a similar degree of accuracy.  

Such an additional measure of segmentation accuracy complements the visual assessment 

and use of bulk porosity for evaluating segmentation quality; whilst also allowing potential 

error in porosity measurement based on image resolution to be measured (Section 3.5.5). 

3.5.2 Selection of Image Processing Method 

After applying each measure of image quality in sequence to the 31 methods (and 166 

variants) identified in Section 3.5.1, the six methods that best met all criteria were selected 

and summarised in Table 3.2. The optimal image processing method was determined to be 

Method 2. Method 2 satisfies the quality criteria of segmenting a large area with low 

resulting noise and good separation of particles in close proximity. It also provided 

reasonably good replication of the measured bulk porosity (corrected for wall effects) and 

the area and shape of the openings in the plastic mesh. 

It was clear that contrast limited adaptive histogram equalisation (CLAHE) was the best 

contrast enhancement procedure as five of the top six methods use it whilst post-processing 

resulted in no improvement in quality for most methods. Method 1 best reproduced the 

bulk porosity as well as the area of the plastic mesh openings; yet did not perform as well 

with respect to area segmented, noise or circularity of the plastic mesh. The discrepancy 

between poor circularity and good area of the plastic mesh demonstrated that the geometry 

of the plastic mesh openings was poorly represented; a feature of the processing method 

that will likely apply to the representation of the gravel particles, hence making Method 1 

unsuitable. This highlights the need for multiple measures of quality that take into account 

geometry rather than relying purely on bulk porosity. 
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Table 3.2. Image processing quality evaluation procedure that, for the six selected 

methods 1) lists the steps in the processing and segmentation procedure, 2) details 

results of the visual assessment of segmentation quality, 3) states difference in 

porosity compared with experimentally measured bulk porosity, and 4) compares 

circularity and area of the plastic mesh openings with their measured values. Overall, 

Method 2 was deemed to be the optimum method. 

 

Of the remaining methods, Method 2 provided the best segmentation quality with respect 

to area and noise, the best bulk porosity quality and plastic mesh openings quality broadly 

comparable to the remaining methods. Method 2 was therefore the best method overall. 

3.5.3 Sensitivity to Image Stack Processing Direction 

With an optimum image processing method chosen, the 3D quality of the data can be 

assessed. As the data was collected in 3D, it should be processed in 3D so as to preserve 

the intra-slice structure of the data (Elliot & Heck, 2007). Yet some of the 3D steps for 

processing the data resulted in poorer quality segmentation than their 2D counterparts, and 

for some 2D processing steps a 3D equivalent was not available. To test the hypothesis that 

2D processing does not faithfully segment 3D data and may introduce errors, the raw MRI 

data was re-sliced into three orthogonal planes (i.e. X-Y, X-Z and Y-Z) and 2D processed 

images and 3D processed images were created for each plane. The methods used for each 

stage of the processing are summarised in Table 3.3. 

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Contrast enhancement CLAHE CLAHE CLAHE CLAHE CLAHE Equalised

Noise removal 3D median
Bilateral 

filter

Bilateral 

filter
3D median

Outlier 

removal

Bilateral 

filter

Segmentation 3D adaptive ALT-Niblack
ALT-

Bernson

ALT-

MidGrey

ALT-

Niblack
ALT-Mean

Post-processing None 3D median None None None None

Area 2 1 1 1 2 2

Noise 2 1 1 2 2 2

Edge segmentation 2 2 2 2 2 1

Reference value

40.76 -1.25 -1.36 -2.99 -3.69 -4.82 -5.02

Circularity 1 12.50% -5.10% -4.06% -4.38% -6.88% -1.56%

Area 208 1.59% -9.66% -9.68% -8.49% -13.56% -11.47%

Plastic 

mesh 

openings

Processing & 

segmentation 

procedure

Segmentation quality     

(1= good, 2= adequate,              

3= unsatisfactory)

Bulk porosity (%)

Difference between method value and reference value
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Table 3.3. Processing methods for each stage of 2D and 3D processing comparison. 

Stage 2D 3D 

Contrast enhancement CLAHE 3D CLAHE 

Noise removal Bilateral filter 3D median filter 

Segmentation Auto local threshold - Niblack Adaptive 3D threshold 

Post-processing Despeckle 3D median filter 

The bulk porosity of each orthogonal plane was measured leading to a set of three 

porosities for the 2D processed images and three for the 3D processed images. Porosity 

varied by a maximum of 2.20% (equivalent to a standard deviation of 1.21) for the 2D 

processed images, depending in which orthogonal plane was the Z-axis in which the 2D 

analysis was carried out, whilst the variation was a maximum of 0.04% (0.02 standard 

deviations) for the 3D processed images. Clearly this shows that 3D processing is far 

superior to 2D processing, yet the 3D processing was unable to accurately replicate the 

measured bulk porosity and manually segmented slice porosities, as shown in Table 3.4. 

To determine the relative degree to which each processing stage contributed to these errors, 

16 image sets consisting of every possible combination of 2D and 3D processing stages 

were created for each of the three orthogonal planes, as shown in Table 3.4. The resulting 

range in porosities for each image was calculated and shows that contrast enhancement is 

the most significant factor determining processing direction dependent error followed by 

segmentation method. Noise removal had a much smaller effect and post-processing noise 

removal an insignificant effect.  
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Table 3.4. 16 combinations of 2D and 3D processing (Methods A-P) ranked from low 

to high standard deviation of the bulk porosities of images processed in the x, y and z 

orthogonal planes. Range refers to the difference between the maximum and 

minimum porosities in the three orthogonal planes.  See Table 3.3 for details of each 

processing stage. 

Method 

Processing stage 
Standard 
deviation 

Range 
(%) 

Bulk 
porosity Contrast 

enhance 
Noise 

removal 
Segmentation 

Post-
processing 

A 3D 2D 3D 2D 0.006 0.01 -9.86% 

B 3D 2D 3D 3D 0.011 0.02 -9.74% 

C 3D 3D 3D 2D 0.013 0.03 -9.25% 

D 3D 3D 3D 3D 0.020 0.04 -9.13% 

E 3D 2D 2D 3D 0.168 0.33 -6.37% 

F 3D 2D 2D 2D 0.173 0.33 -6.51% 

G 3D 3D 2D 3D 0.189 0.34 -6.94% 

H 3D 3D 2D 2D 0.201 0.35 -7.05% 

I 2D 2D 3D 3D 0.916 1.82 -8.31% 

J 2D 2D 3D 2D 0.933 1.86 -8.43% 

K 2D 3D 2D 3D 1.068 1.92 -4.79% 

L 2D 3D 2D 2D 1.111 2.00 -4.86% 

M 2D 3D 3D 3D 1.120 2.22 -7.49% 

N 2D 3D 3D 2D 1.143 2.27 -7.59% 

O 2D 2D 2D 3D 1.144 2.08 -4.32% 

P 2D 2D 2D 2D 1.206 2.20 -4.38% 

        

Given the hierarchy of factor significance, it was surprising that the combination of 3D 

contrast enhancement and 3D segmentation with 2D noise removal and post-processing 

produced the highest bulk porosity error (despite having the lowest processing direction 

dependent error) (Method A in Table 3.4). The use of 3D contrast enhancement is thought 

to reduce the processing direction dependent error for the following reason: if two adjacent 

pixels in neighbouring slices have identical intensities, but one is surrounded by lower 

intensity pixels within its slice whilst the other is surrounded by higher intensity pixels, 

those two pixels will be treated very differently by a 2D contrast enhancement (that only 

considers surrounding pixels in one slice) than by a 3D contrast enhancement that will 

consider neighbouring pixels in both slices.  
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Figure 3.8: (A) 2D implementation of CLAHE, (B) 3D implementation of CLAHE 

and (C) histogram normalisation followed by 3D implementation of CLAHE. 

Upon further examination of the 3D CLAHE implementation, it was found that the 

histogram was not stretched to the same extent as with 2D CLAHE (see Figure 3.8) and 

that this accounted for the poor segmentation and large difference in porosity compared to 

the bulk porosity. By utilising histogram normalisation prior to 3D CLAHE, this deficiency 

was overcome and led to a refinement of Method 2, selected as the optimum image 

processing method in Section 3.5.2.   

3.5.4 Optimum Image Processing Method 

Taking into account the processing direction dependent error identified in Section 3.5.3, 

the selected image processing method (Method 2) can be refined by substituting CLAHE 

contrast enhancement with normalisation followed by a 3D implementation of CLAHE. 

This brings the advantage of lowering the processing direction dependent error to an 

acceptable value (a range of 0.76%) without the poor representation of bulk porosity 

associated with the all 3D processing method (-9.86%). Inherent in this compromise is a 

slight deterioration in segmented image quality; however, this is more than compensated 

for by the improvement in processing direction dependent error, as summarised in Table 

3.5. The refined Method 2 procedure, as summarised in Figure 3.9, was then applied to all 

MRI scans. 

(B) (C)(A)
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Table 3.5. Method 2 segmented image quality with refinement. 

Measure of Quality 
Reference 

value 

Difference between method 

value and reference value 

Method 2 
Refined 

Method 2 

Bulk porosity (%) 40.76 -1.36 -1.75 

Processing direction dependent 

range in bulk porosity (%) 
- 2.08 0.76 

Plastic mesh 

openings 

Circularity 1 -5.10% -5.94% 

Area (pixels2) 208 -9.66% -10.92% 

 

 

Figure 3.9. Summary of the image processing steps that constitute Refined Method 2, 

deemed to be the optimum method. 

3.5.5 Quantification of Error & Uncertainty 

Despite the care taken to develop an image processing methodology that most faithfully 

reproduced the structure and porosity of the data in 3D, some uncertainty and errors are 

likely to remain. As visible analysis showed no signs of paramagnetic distortion or 

artefacts within the region of interest and the porosity of the segmented image matches the 

experimentally determined bulk porosity to within 1.75% (when compared with the 

average bulk porosity of the two columns corrected for wall effects and assuming spherical 
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particles), the principle sources of error are due to the resolution of the image and the 

resulting delineation of the gravel particle edges. 

To elucidate, when collecting the MR signal, the MRI  uses the gradient coils to 

manipulate the magnetic field so that, with Fourier analysis of the data, the measurement 

volume can be discretised into voxels (in this case 300μm cubes) and the signal from 

individual voxels can be measured. The signal is proportional to the volume of water 

occupying each voxel and so if a voxel contains 50% water and 50% gravel, the signal 

from that voxel will be lower than one containing 100% water and higher than one 

containing 0% water. When segmenting an image, each pixel must be classified as either 

gravel or water and so a pixel containing 51% water would ideally be classified as water, 

depending on the segmentation algorithm. The edges between gravel and water are very 

sensitive to the choice of segmentation method and to the resolution of the image, as 

shown in Figure 3.10. 

Comparison between the actual gravel size and that calculated from the segmented image 

was not possible as each piece of gravel is unique and its shape is not known a priori. 

However, the mesh opening size was known and was also measured for the segmented 

image (Section 3.5.1.3) allowing an estimate of the edge uncertainty to be made which 

subsequently may be applied to the gravel slices. For the chosen image processing method, 

the area of each 4.8mm diameter mesh opening is 10.92% greater than the physical 

measurement. As this error only occurs where there is an abrupt interface between solid 

and water, it can be non-dimensionalised by the perimeter of the solid/water interface 

yielding a value of 0.3648 pixels. In other words, for every pixel of interface between solid 

and water, the area could be out by up to ±0.3648 pixels2. 
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Figure 3.10. Example of how resolution can affect the resulting porosity of an image 

after segmentation. A mock MRI signal is created for each pixel depending on the 

proportion of gravel (black) or water (white) in each pixel and a simple segmentation 

method applied whereby a signal >50% is taken to be water. Porosities shown are for 

the segmented image and are somewhat higher than the actual porosity of 29.84% 

although the finer the resolution, the closer the segmented image porosity approaches 

the actual porosity. 

The interface between gravel and water was measured for the nine manually segmented 

slices and, after the error was applied, it was predicted that the porosity of the segmented 

slices could vary up to a maximum of ±3.81% due to the effect of image resolution on the 

segmentation of interfaces. This error could explain why no segmentation method could 

perfectly replicate bulk porosity whilst satisfying the other measures of quality. 
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3.6 Image Analysis Results 

Two gravel filters were scanned in the MRI machine: one to investigate kaolin deposition 

at low flow rates and the other at higher flow rates. In total, there were eight MRI scans as 

part of this project (detailed in Table 3.1, Section 3.3.1), however Scan L2C was of poor 

quality and was removed from the analysis (Section 3.4). Columns were, firstly, scanned 

prior to any flow with kaolin, after one week of kaolin deposition and after two weeks of 

kaolin deposition; this was in order to analyse the temporal change in porosity with kaolin 

deposition. Secondly, additional scans were performed after two weeks of kaolin 

deposition for the high flow rate column only; these scans were subjected to two short 

duration, high velocity flows intended to erode some of the deposited kaolin. The aim of 

these second-stage erosion tests was to determine to what degree fine deposits are only 

temporarily stored (or vice versa, to what degree they are permanently captured) in gravel-

based SuDS and roughing filters.   

With the scans segmented and aligned as per the methodology of Section 3.5.4, it was 

possible to determine where the kaolin was deposited or eroded by subtracting the pore 

space of the initial clean scan from subsequent scans. Figure 3.11 shows such an operation 

for a representative slice through the high flow rate filter for each stage of deposition and 

erosion. The full 3D ROI for both filters were subjected to similar treatment and the data 

evaluated with respect to 1) bulk parameters of porosity, number of regions and surface 

area (Section 3.6.1); 2) slice-by-slice evaluation of porosity in the three orthogonal planes; 

and 3) analysis of change in porosity in 3D regions regularly spaced throughout the filter.   
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Figure 3.11. Change in pore space during the high flow experiment. The location of 

gravel (black), pore water (blue) and deposited kaolin (white) is shown after (A) one 

week deposition, (B) two weeks deposition, (C) first stage of erosion and (D) second 

stage of erosion. 

3.6.1 Bulk Porosity, Number of Regions and Surface Area Analysis 

Method of Analysis: The change in porosity over time is the simplest way of characterising 

the clogging of each filter. There are two methods available for this with results from each 

presented in Table 3.6: 1) using the porosity derived from the MRI scan and 2) using the 

experimentally measured bulk porosity for scans L1C and H1C together with estimated 

porosities for the remaining scans. The reason bulk porosities could not be measured for 

scans L3C, H2C, H3C, H4E and H5E was this would require draining of the column and 

disturbance of the settled kaolin. Instead, a mass balance approach was used to measure the 

mass of kaolin retained in the filter between each scan and, using a bulk density of 1455g/l 

for the deposited kaolin (determined in Chapter 2, Section 2.8.6), the decrease in porosity 

of the column as a result of kaolin deposition was estimated. As the MRI derived porosities 
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do not include the areas in proximity with the column walls, the measured bulk porosities 

in Table 3.6 have been corrected to remove the increased porosity at the walls (as per the 

methodology of Section 3.5.1) and allow comparison with the MRI derived porosities. The 

value in comparing the MRI derived porosity with the experimentally measured and 

estimated porosities is discussed in Section 3.7.3.  

Here we define a pore space region as a volume of the pore space that is connected such 

that it is possible for a particle of kaolin to travel from one point in the region to all other 

points. A pore space region is defined as active if it is connected to both the inlet and outlet 

of the ROI. The number of distinct pore space regions was measured for each scan using 

the Find Connected Regions plugin of ImageJ. This provides a measure of the change in 

active pore space available and is distinct from the total porosity measurements because 

kaolin deposition can cause some pores to become disconnected from the main pore body.  

In addition, gravel and gravel/kaolin surface area was measured with the IsoSurface plugin 

to ImageJ developed by Doube et al. (2010) and implementing the marching cubes 

algorithm of Lorensen and Cline (1987). In the active surface area measurement (Table 

3.6), pore space regions not connected to the main pore region were not included and so 

this surface area represents the area that would be available for the attachment of pollutants 

such as suspended particles, pollutant metals and dissolved substances. 
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Table 3.6. Experimentally measured (subscript M) and estimated (subscript E) bulk 

porosities for entire column compared with MRI derived parameters for the region of 

interest (ROI). Active porosity and active surface area refer to measurements for the 

single largest connected pore region.  

 
 

Low flow High flow 

 
 L1C L3C H1C H2C H3C H4E H5E 

Bulk porosity 

(entire cColumn) 
40.43 M 34.58 E 41.17 M 36.90 E 34.11 E 34.35 E 34.72 E 

MRI derived 

porosity (%) 
40.29 16.71 41.1 29.71 24.88 25.39 25.71 

Number of regions 388 3441 492 585 933 1192 998 

Active porosity (%) 40.27 16.18 41.07 29.65 24.76 25.11 25.52 

Surface area (mm2) 179,049 123,847 172,194 150,013 141,619 136,332 138,649 

Active surface area 

(mm2) 
178,610 115,284 171,534 148,865 139,303 132,021 135,095 

Results: The results show close agreement between the bulk porosity of the entire column 

and the MRI derived porosity of the ROI for the clean gravel scans L1C and H1C. This is 

to be expected as agreement between these porosity measurements and MRI scans was 

used as one of the criteria for selecting the optimum image processing method. With 

clogging, the bulk porosity and MRI porosity diverge. Table 3.6 shows the MRI porosity 

was consistently lower than the bulk porosity and the difference was more pronounced for 

the low flow scan L3C (17.87%) than the high flow scan H3C (9.23%). 

In the column experiments of Chapter 2, greater accumulation of kaolin at the inlet was 

clearly visible through the column side walls. A similar trend was observed through the 

walls of the MRI column and is in line with filtration theory in which particle removal is 

considered to be a first order process (Iwasaki et al., 1937). It is proposed that, as the MRI 

ROI is located closer to the column inlet, the lower MRI porosity than bulk porosity is the 

result of greater kaolin deposition at the inlet and within the ROI than the average 

deposition within the filter as a whole. This is supported by the greater difference for scan 

L3C than H3C: the higher velocity of scan H3C led to somewhat more uniformly 

distributed kaolin throughout the filter. 
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As pore channels fill with kaolin they become disconnected from the main pore volume, 

the number of distinct pore space regions increase and the active porosity decreases. These 

disconnected regions are typically small and amount to a difference between total porosity 

and active porosity of 0.53% for the low flow experiment and 0.13% for the high flow 

experiment. A similar trend is observed for the active surface area in which active surface 

area is 6.91% lower than the total surface area after low flow clogging (scan L1C to L3C) 

and only 1.64% lower after high flow clogging (scan H1C to H3C). The implications of 

this for gravel filters are a reduced potential for the removal of particles and pollutants 

such as pollutant metals due to the inaccessible pore volumes, discussed further in Section 

3.7.3.1. 

From visual analysis of the column outflow during the erosion stages prior to scan H4E 

and H5E, it was ascertained that erosion of settled kaolin only occurred immediately 

following an increase in flow rate and with no further erosion thereafter. The MRI data 

shows a 0.35% and 0.41% increase in porosity after H4E and H5E respectively, translating 

to a removal of 2.15% and 2.57% of the deposited kaolin. This is important as it indicates 

that the water quality of the outflow from a gravel filter SuDS will decrease during a high 

runoff event, potentially affecting the downstream SuDS components and watercourse. 

However, during the experiment it was observed that the particle dynamics associated with 

the re-entrainment of deposited kaolin was very different from the discrete particle and 

small floc process by which it originally settled. Instead, large aggregations of settled 

kaolin became dislodged and cascaded like an avalanche into the neighbouring pore with a 

predominant shift in kaolin from top to bottom, rather than from inlet to outlet. Thus it is 

important to note that the bulk measures of porosity presented here would show no change 

to porosity values in this case, as they do not account for the local spatial shifts of 

deposited kaolin within the filter. The degree of sediment movement within the filter under 

erosion can only be ascertained by 3D analysis of the MRI data. 

A further caveat is required for the MRI derived change in porosity during erosion; this 

method cannot account for material that has been eroded from near the column wall above 

the ROI and comes to settle within the ROI, or material that erodes within the ROI and 

settles below it. In the unlikely event that, upon erosion, all the deposited kaolin in the area 
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above the ROI becomes deposited within the ROI with no erosion within the ROI itself, or 

vice-versa, then this could lead to a change in porosity of ±6.28%. Whilst this makes 

analysis of the erosion scans difficult, the difference between deposition and erosion 

processes is in itself an interesting finding with implications further discussed in Section 

3.7.3.1. These limitations apply only to the analysis of the erosion scans and do not affect 

the clogging scans as, during clogging, kaolin deposition is much more uniform within and 

outwith the ROI. 

3.6.2 Slice-by-slice Porosity Analysis 

Analysing the change in average porosity on a slice-by-slice basis allows trends in 

clogging to be observed. The processed images were re-sliced in the three orthogonal 

planes as shown in Figure 3.12; this yielded three data sets: (i) longitudinal (Z plane), 

which showed trends from the inlet to the outlet; (ii) vertical (Y plane), which showed 

trends from top to bottom; and (iii) lateral (X plane), which shows any variability across 

the column. 

 

Figure 3.12. Scan L1C (left) and scan L3C (right) showing slices in each of the three 

orthogonal planes. 

Note that when analysing the data, the ROI was reduced so as to omit the first 31 slices in 

the Z plane where porosity is influenced by the plastic mesh. When measuring in the X and 

Y planes, the first and last 20 slices were omitted because, as the ROI is circular, the first 

and last slices are very small and so their porosities are very sensitive to small changes in 
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volume and are not truly representative. By the 21st slice, the area is 50% that of the ROI at 

its widest point and measurements were considered to be reliable. Figure 3.13 illustrates 

the reduced ROI for  X and Y plane measurement. 

 

Figure 3.13. Reduced ROIs for slice-by-slice analysis: A) X plane slices and B) Y 

plane slices. 

3.6.2.1 Trends in Porosity and Porosity Change 

For each phase of clogging and for each orthogonal plane, the average porosity of every 

slice was measured together with the change in average porosity, as presented in Figure 

3.14. Comparison between each scan can be made by fitting linear trend lines to the slice 

average porosities and measuring the gradient, then measuring the change in the gradient 

(hereafter referred to as the slope) between each scan (Table 3.7). 

Table 3.7. Change in gradient (slope) between each scan. A negative value denotes a 

decreasing slope with increasing slice number. The steeper the slope, the larger the 

trend. 

Scans Z plane Y plane X plane 

L1C-L3C -3.7x10-5 5.0 x10-5 2.7 x10-4 

H1C-H2C -1.4x10-4 4.0 x10-5 -6.0x10-5 

H1C-H3C -1.5x10-4 9.0x10-5 2.0x10-5 

H2C-H3C -2.0x10-6 5.0x10-4 8.0x10-5 

H3C-H4E -1.2x10-4 -6.0x10-5 2.0x10-4 

H3C-H5E 2.0x10-5 1.6 x10-4 2.2x10-4 

H4E-H5E 1.4x10-4 2.3x10-4 1.0 x10-5 
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Figure 3.14. Slice average porosities for each of the seven scans in three orthogonal 

planes: Z plane from inlet (slice 32) to outlet (slice 211); Y plane from top (21) to 

bottom (263); and X plane from right (21) to left (263). 

Z Plane Trends: 

Looking at Figure 3.14 it is clear that the clean scans L1C and H1C have higher porosities 

than the clogged and partially clogged scans in each and every slice. Variability in clean 

scan slice porosity was low with a range of 6.28% and standard deviation of 1.33% for 

L1C and 6.42% and 1.53% for H1C. 

It is evident that the greatest change in porosity with clogging occurs in the low flow 

experiment (shown by greater y-offset of the data between L1C and L3C compared with 
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H1C and H3C). In addition, variability increased for scan L3C with a range of 8.42% and 

standard deviation of 11.30% whilst the variability remained approximately constant for 

scan H3C with a range of 6.09% and standard deviation of 1.49%. 

It is clear that the erosion (scans H4E and H5E) results in very little change to the Z plane 

trend or porosity value compared to scan H3C. This is because most of the movement is 

from top to bottom as shown by vertical analysis. 

Using Table 3.7, the negative gradient from inlet to outlet shows that the porosity change is 

greatest at the inlet and hence there is more kaolin deposition at the inlet. This increased 

clogging at the inlet is more than twice as pronounced in the low flow experiment where 

the slope is -3.7x10-4 (scan L1C-L3C) than in the high flow experiment where the slope is -

1.5x10-4 (scan H1C-H3C). In the first stage of clogging in the high flow experiment (scan 

H1C-H2C), there is significantly greater change in clogging at the inlet than in the second 

stage of clogging (scan H2C-H3C) as shown by the slopes of -1.4x10-4 and -2.0x10-6 

respectively.  

In addition to linear trend lines, a logarithmic trend was also fitted to the inlet to outlet 

change in porosity data to determine if removal is a first-order process determined by 

distance into the filter. The regression coefficient of the trend lines are compared to 

determine which provides the better fit. Whilst neither produces a particularly strong fit, 

the linear trend was superior for all scans (Table 3.8).  

Table 3.8. Regression coefficients indicating “goodness of fit” for linear and 

logarithmic trend lines fitted to the change in porosity for each clogged scan. 

Scan 

R2 value 

Linear trend Logarithmic trend 

L1C-L3C 0.73 0.73 

H1C-H2C 0.68 0.58 

H1C-H3C 0.55 0.35 
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X and Y Plane Trends:  

Trends are visible in Figure 3.14 from top to bottom with more deposition at the bottom 

during low flows. At high flows there is no discernible top to bottom trend during 

deposition but during erosion there is clear removal of deposited kaolin from the top of the 

column and deposition at the bottom. 

There are no discernible X plane trends in deposition for both low and high flow 

experiments; however, during erosion, there is more change in the right side of the column. 

This is thought be due to the formation of preferential flow paths, evidence for which can 

be found in the analysis of the data in Section 3.6.3.  

3.6.2.2 Correlation of Initial Porosity with Change in Porosity 

To test the hypothesis that the slice initial porosity will influence the degree of clogging, 

the correlation between initial porosity and percentage change in porosity was determined. 

Percentage change in porosity was used instead of absolute change in porosity because 

slices with a high initial porosity would be expected to have a higher change in absolute 

porosity simply because there is a larger volume available for kaolin deposition. 

The correlations are summarised in Table 3.9 and Figure 3.15. The gradient describes the 

trend, whilst the P value gives an indication of the significance of the correlation. As the 

null hypothesis was for no correlation, a low P value indicates correlation between initial 

porosity and change in porosity. 

Table 3.9. Correlation between initial porosity and percentage change in porosity for each 

scan. A steep gradient (either positive or negative) equals a strong trend whilst the smaller 

the P value, the more significant the correlation.  

Scans 

Z Plane Y Plane X Plane 

Gradient P Value Gradient P Value Gradient P Value 

L1C-L3C -0.726 2.36x10-2 -0.734 9.02x10-21 0.533 3.88x10-4 

H1C-H2C -0.615 1.27x10-7 -0.542 5.72x10-34 -0.446 1.37x10-8 

H1C-H3C -0.343 3.44x10-3 -0.507 3.48x10-16 -0.332 1.46x10-5 

H2C-H3C 0.091 1.38x10-1 -0.120 4.44x10-2 0.207 9.65x10-3 

H3C-H5E -0.787 2.40x10-5 1.027 1.33x10-6 3.791 3.35x10-14 
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The predominantly negative gradients of the Z plane and Y plane correlations denote a 

negative correlation between initial slice porosity and percentage change in slice porosity 

with clogging: slices with a high initial porosity had a low change in porosity and vice 

versa. However, as can be seen from the P values in Table 3.9 and the spread of the data 

points around the trend lines in Figure 3.15, the Z plane correlation is weak. 

The X plane correlation shows no clear trend during deposition. During erosion there is 

considerable scattering of data points which skew the trend lines in Figure 3.15. This 

suggests that change in porosity due to erosion is not determined by slice initial porosity, 

but by another factor such as pore geometry or connectivity. 

As a result, the data of Table 3.9 and Figure 3.15 show that there is a correlation between 

initial porosity and change in porosity, but this correlation is weak. The spatial trends in 

clogged filter porosity therefore cannot be predicted based on slice averaged initial 

porosities and a more sophisticated method for analysing the change in porosity is 

required. 
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Figure 3.15. Relationship between initial porosity (x-axis) and percentage change in porosity (y-axis), 

both normalised by average initial porosity and average percentage change respectively. Positive 

gradient denotes correlation between large initial porosities and large percentage changes in porosity, 

as well as between small initial porosities with small percentage changes in porosity. For a negative 

gradient, the inverse is true whilst zero gradient or a large P number denotes no statistically significant 

correlation. Associated gradients and P values shown in Table 3.9. 
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3.6.3 3D Region Analysis 

3.6.3.1 Spatial Variation in Volume Change 

Some spatial trends are masked by the slice-by-slice approach because it is the average of 

an entire slice. To overcome this, an ImageJ script was written (making use of the 3D 

spherical crop function in the “3D Tools” plugin written by Thomas Boudier) that divided 

the ROI into an array of 1170 spherical regions, as shown in Figure 3.16. The volume 

change of each region before and after clogging was measured as well as the percentage 

change with respect to the initial volume. For the measurement method used in ImageJ, it 

was necessary for each spherical region to contain a minimum of one voxel of pore space. 

It was found that the minimum region diameter that satisfied this criterion was 20 voxels. 

As such, each region was 20 voxels in diameter with a 20 voxel centre-to-centre spacing so 

as to ensure the maximum number of valid regions for data analysis. 

 

Figure 3.16. Left: location of 3D circular regions (white spheres) within the ROI (red 

cylinder). Right: region volume represents initial pore volume within each region 

whilst colour represents percentage change in region volume between scan L1C and 

L3C. 
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Linear regression of the volume change of each region (using the X, Y and Z coordinate of 

the centre of each region for plotting purposes) shows if volume change is linked to its 

spatial location within the filter. Results of this correlation are presented in Table 3.10 

showing trends in volume change for each orthogonal plane.  

Table 3.10. Correlation between initial porosity and percentage change in porosity for 

each scan. A steep gradient (either positive or negative) equals a strong trend whilst 

the smaller the P value, the more statistically significant the correlation. 

Scans 

Z Plane Y Plane X Plane 

Gradient P Value Gradient P Value Gradient P Value 

L1C-L3C -10.42 4.81x10-26 0.17 8.19x10-1 2.54 4.46x10-4 

H1C-H2C -3.52 1.24x10-12 -0.51 1.54x10-1 -1.75 1.02x10-6 

H1C-H3C -3.47 9.77x10-6 -1.34 1.81x10-2 0.08 8.82x10-1 

H2C-H3C 0.04 9.25x10-1 -0.83 1.18x10-2 1.83 1.97x10-8 

H3C-H5E 1.51 7.86x10-2 -5.40 5.52x10-19 4.47 2.27x10-13 

In the low flow experiment (scans L1C-L3C) there is a strong Z plane trend with negative 

gradient indicating that as depth into the filter increases, change in porosity decreases i.e. 

there is more clogging at the inlet. A similar trend is visible in the first stage of clogging in 

high flow experiment (scans H1C-H2C); however both the gradient and the strength of the 

correlation are weaker than in the low flow experiment and are not apparent in the second 

stage of clogging (scans H2C-H3C). This suggests more uniform deposition of kaolin with 

distance through the filter in the high flow experiment than in the low flow experiment and 

that uniformity of deposition increases with time. A possible mechanism for this is an 

increase in flow velocities at the inlet due to deposition of kaolin and a reduction in pore 

volume, resulting is less subsequent deposition at the inlet. 

Y plane trends in the data are virtually non-existent. X plane trends show greater 

deposition at the bottom of the low flow filter (Table 3.10, scans L1C-L3C vertical). In the 

high flow experiment, there is initially greater deposition at the top of the filter (scans 

H1C-H2C) followed by greater deposition at the bottom (scans H2C-H3C) with a net 

effect of no vertical trend over the clogging period (scans H1C-H3C). This can be 

explained by preferential flow paths that change in response to the deposition of kaolin 

within the filter and the resulting modification to the morphology. 
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Linear regression of the percentage change in volume with respect to the initial volume for 

all regions shows if the degree of clogging is linked to the initial pore volume. Results of 

this correlation are presented in Table 3.11 and Figure 3.17. 

Table 3.11. Correlation between initial volume of each region and percentage change 

in volume for each scan. A steep gradient (either positive or negative) equals a strong 

trend whilst the smaller the P value, the more significant the correlation. 

Scans 

All regions 

Gradient P Value 

L1C-L3C -1.7x10-5 3.98E-18 

H1C-H2C -1.6x10-5 6.94E-64 

H1C-H3C -1.5x10-5 1.81E-27 

H2C-H3C -7.0x10-6 5.45E-10 

H3C-H4E -1.2x10-3 5.07E-05 

H4E-H5E 1.2x10-5 2.24E-22 

Note that P values are not directly comparable with the slice-by-slice approach because 

there were 1170 regions compared with 179 slices and, with this type of statistical test, a 

greater number of data points always results in lower P value. The 3D region method was 

considered more successful than the slice-by-slice approach as measurements were not 

averaged over an entire slice, but were instead averaged over a far smaller volume. 

Table 3.11 and Figure 3.17 show negative correlation between initial pore volume and 

percentage change in pore volume for each region indicating greater relative clogging of 

small pores. The correlation is most statistically significant in the first stage of clogging at 

high flows (H1C-H2C). This may be evidence that preferential flow paths exist in the 

larger pores and are more pronounced at higher flows. During the second stage of clogging 

the trend is weaker and less statistically significant suggesting that, as kaolin is deposited 

within the filter, the preferential flow paths are altered. 

During erosion, the negative correlation between initial pore volume and change in pore 

volume weakens (H3C-H4E) and finally reverses (H4E-H5E). This is further evidence that 

the erosion process is not simply the reverse of deposition. 
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Figure 3.17. Relationship between initial region volume (x-axis) and percentage 

change in region volume (y-axis) for all 1170 regions, both normalised by average 

initial volume and average percentage change respectively. Positive gradient denotes 

correlation between large initial volumes and large percentage changes in volume, as 

well as between small initial volumes with small percentage changes in volume. For a 

negative gradient, the inverse is true whilst zero gradient or a large P number denotes 

no statistically significant correlation. Associated gradients and P values shown in 

Table 3.11. 
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3.6.4 Summary of Experimental Data 

In summary, the above data set can be distilled into the following findings which warrant 

detailed discussion in Section 3.7 (or Chapter 4 and Chapter 5, where highlighted); these 

include: 

 MRI data is appropriate to porosity analysis. Clean gravel filters indicate variability 

in porosity of ~2.0% due to irregular packing arrangements of the sediment. 

Pixilation of grain boundaries was calculated to contribute up to a maximum of 

±3.81% error in porosity. 

 Porosity reduced by 58.5% and 39.5% within the ROI of the low flow and high 

flow experiments respectively. Active surface area reduced by 35.45% and 18.79% 

for low flow and high flow whilst number of pore regions increased by 786% and 

90% respectively. 

 Longitudinal (Z plane) deposition patterns during clogging indicate: (i) greater 

deposition in near-inlet locations under low flow conditions; and, (ii) more evenly 

distributed deposition along the filter length under high flow conditions. 

 Vertical (Y plane) deposition patterns relate to flow conditions, in that higher flow 

rates distribute kaolin at all depths within the filter, whilst lower flow rates result in 

greater deposition at the base.  

 Lateral (X plane) trends show slight preference towards preferential flow on the 

right of the columns; this is thought to be experiment-specific to the gravel packing 

used in the present thesis and is discussed in the flow modelling section of Chapter 

5. It is important to note that this was not considered to be indicative of upscaling to 

roughing filter or SuDS filter processes. 

 Change in porosity was correlated with initial porosity: greater percentage change 

in smaller pores. 

 Flushing flows only reinstate ~2% of porosity in the filter. 

 Under flushing flows, the erosion process of re-entraining and redistributing kaolin 

deposits is not the inverse of the sedimentation process. Instead, it indicates a 
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notable change to the vertical distribution of sediment, via the avalanching of 

sediment to lower regions of the filter. No longitudinal (Z plane) changes are 

observed. This process is not a function of initial porosity, rather related to the pore 

geometry and connectivity at the onset of flushing and is further investigated in 

Chapter 4. 

3.7 Discussion 

Key points that will be covered in this discussion are: use of MRI as a tool for 

characterising deposition within a gravel SuDS or water treatment filter; a critical review 

of the image processing methodology; and implications of the trends in filter clogging 

based on bulk analysis of porosity, slice-by-slice analysis and 3D region analysis. 

3.7.1 Suitability of MRI 

One aim of this chapter was to determine if MRI is a suitable technique for analysing the 

change in porosity of a gravel filter as it clogs with fine material such as kaolin. This 

chapter has clearly shown the technique viable and of merit in 2D and 3D analysis, but 

requires the user to be aware of certain limitations when conducting analysis. A brief 

description of each limitation and the implications for the experiment design are given: 

1. The sample must contain free protons to generate a signal. As such, only the fluid 

in the columns generated a signal and it was not possible to differentiate between 

the dolomite gravel, the settled kaolin and any air pockets within the column. Care 

was taken when filling the column to ensure air pockets were not introduced and 

markers were cut in to the plastic mesh within the scan ROI so that each scan could 

be aligned in 3D with the previous scan. By subtracting the volume of the filter 

from which there was no signal in the clean gravel scan from the volume of no 

signal in the clogged scan, it was possible to determine the volume of settled 

kaolin. This procedure is only valid provided the gravel does not alter position 

during or between scans. Great care was taken to very gently insert and remove the 

column from the MRI machine. The success of this method can be verified from 

analysis of the resulting scans: there were no regions that imaged as gravel/kaolin 
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in the first scan and water in the 1st or 2nd stage clogging scan showing that there 

was no discernible movement of gravel. 

2. Only samples with low metal content can be imaged at high field strengths. 

Samples that contain magnetic or paramagnetic elements disrupt the MR signal 

making some natural geological materials unsuitable (Chen et al., 2006).  As a 

result, dolomite gravel with a very low metal content was used as the filter media 

and the column was constructed entirely of plastic with nylon securing bolts. The 

resulting MR image was free from magnetic and paramagnetic distortions. 

3. Duration of the scan acquisition is directly related to scan resolution and scan 

volume (Haynes et al., 2009). The RARE scan sequence employed in this study 

took 20 hours at a resolution of 300μm. Often a compromise will need to be made 

between scan resolution and scan volume to suit the length of time the MRI 

machine is available. Scans documented herein were initiated on a Friday afternoon 

and allowed to run over the weekend when the MRI facility is not normally fully 

utilised.  

4. High field strength MRI machines are rare and more typically used for biomedical 

research. The RF coil used in this study is termed the “rabbit coil” as it was 

designed and tuned for scanning rabbits. With the initial setup, it was found that the 

signal arising from the water was greater than the maximum the rabbit coil could be 

tuned to. Rather than construct a new, smaller column or send the RF coil to the 

manufacturer for modification, we chose to fill the inlet and outlet mixing areas of 

the existing column with large round glass beads so as to reduce the volume of 

water and allow the existing RF coil to be tuned. Not only must suitable hardware 

be available but also the expertise to create custom MRI sequences applicable to 

porous media research is required. Fortunately this was available at the GEMRIC 

facility. 

5. MR signal intensity and image quality varies across the scan volume, particularly 

when working close to the maximum scan volume. This resulted in a maximum 

good quality scan volume 282 voxels in diameter and 211 voxels deep out of an 

original scan volume of 333 x 433 x 600 voxels. Much of this reduction was due to 

gradient non-linearity and the rounded distortion at the extremities of the image in 

the along-bore direction. Similar distortion has been corrected for by Jovicich et al. 
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(2006) for work on human imaging, allowing the good quality scan volume to be 

extended, but requires the use of a special MRI phantom to characterise the degree 

of distortion which is specific to each MRI machine. The reduced scan volume used 

in this study was still sufficient to analyse the spatial variation in clogging within 

the filter. 

Taking into account these limitations imposed by the nature of magnetic resonance 

imaging, it was possible to obtain a 3D image of sufficient size and resolution to define the 

pore space within a gravel filter and, with successive scans, measure the spatial variation in 

particle accumulation within that filter. Furthermore, although it was not implemented in 

this study, it is technically feasible to couple this pore volume measurement with tracer 

studies that allow the imaging of flow paths and flow velocities. 

Whilst the image resolution of 300μm is coarse compared with x-ray microtomography 

which can resolve features as small as 5μm (with synchrotron radiation), x-ray 

microtomography is limited by the size of sample that can be scanned (e.g. a core 6.35mm 

in diameter and 5.67mm long in the case of Iassonov et al. (2009)). In porous media 

research this limits the use of x-ray microtomography to soils and sands. Medical x-ray CT 

scanners do allow larger sample sizes and could be of use to gravel filters, but do not offer 

the ability to measure tracer propagation (Werth et al., 2010). PET (positron emission 

tomography) and SPECT (single photon emission computed tomography) scanners can 

measure both volumes large enough to be relevant to gravel filter research and the 

propagation of a radioactive tracer, but current state-of-the-art systems are limited to 

resolutions in the order of millimetres (Boutchko et al., 2012). 

As such, we can conclude that MRI is a very valuable tool for measuring the change in 

hydraulics of gravel filters (and indeed many other types of porous media) as they clog 

with particles. 

3.7.2 Image Processing 

Whilst the raw data output from the MRI acquisition was suitable for visualising the 

change in pore volume with clogging, substantial image processing was then required to 
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transform the raw data into a state suitable for quantitative analysis. Much of this 

processing was concerned with removing “noise” from the raw data and counteracting the 

variation in water signal intensity across the ROI so as to allow binary segmentation into 

water phase and solid phase. The present thesis developed a robust methodology for 

assessing the output of processed data using four measures of quality: visual, bulk porosity 

comparison of MRI and experimental data, mesh representation, and direction dependent 

errors. By ensuring good results for each measure of quality, we can be reasonably 

confident that the image processing and segmentation produces a pore volume that 

accurately represented both the structure of the sample and the porosity to within 1.75% 

(based on the corrected average bulk porosity measurement).  

The method developed in this chapter was considered an improvement over the methods 

commonly reported in the literature for analysing porous media MRI data such as Baldwin 

et al. (1996), Amitay-Rosen et al. (2005), Kleinhans et al. (2008), Haynes et al. (2009), and 

Haynes et al. (2012) to name a few, as these studies have several deficiencies:  

1. They use global segmentation methods that cannot account for variations in water 

signal intensity and which, based on the data collected in this thesis, would have 

limited the volume that could be segmented as well as introducing errors in the pore 

regions (e.g. over-segmentation in some regions and under-segmentation in others).  

2. They generally do not compare the MRI derived porosity to an independently 

measured porosity and, where they do, our bulk porosity error of 1.75% is very 

similar or better. Kleinhans et al. (2008) do make a comparison with estimated 

porosity based on geometrical models of spherical bead packing with errors ranging 

from -1.7% to +1%, depending upon bead size(s). Haynes et al. (2012) used a laser 

scanner to measure the surface of a gravel bed and found 1.3% difference in 

porosity of 2D slices compared to the MRI derived porosity for the same region, 

although if the error is due to pixels on the interface between gravel and water, then 

this error is likely to be larger when considered in 3D and fully within the gravel 

bed rather than on the surface. 

3. They all process the data entirely in 2D and do not consider 3D processing 

direction dependent errors which, in this study, were found to be significant: a 
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range in porosity of 2.20% was found when processing entirely in 2D which was 

reduced to 0.75% with the addition of 3D processing steps.  

4. Whilst they all recognise the importance of edge errors, none quantify them with 

the exception of Haynes et al. (2012) in which the influence of edge errors was 

determined by varying the thresholding value by ±5 bins (out of 255) resulting in a 

porosity change of up to 1.9%. In this thesis, the uncertainty due to the edge errors 

was quantified based on the plastic mesh and estimated to be ±0.3648pixels2 for 

each pixel of interface between gravel and water. This translates into a maximum 

error in the segmented image porosity of ±3.81% in the clean gravel scans. Clogged 

scans were expected to have a lower uncertainty due to the reduced interface 

between gravel and water (measured as a reduced pore surface area, Table 3.6, 

Section3.6.1) resulting in an uncertainty of ±2.64% for the low flow experiment 

and ±3.13% for the high flow experiment.  

In this regards, the method adopted in this chapter has more in common with those used in 

the field of x-ray and micro-CT data acquisition where the importance of 3D and locally 

adaptive processing techniques are recognised (Elliot & Heck, 2007; Iassonov et al., 2009), 

although edge effects are reduced in micro-CT due to the higher resolution of features and 

more homogenous signal intensity. 

Scan resolution could have been increased slightly by extending the scan time or by 

utilising a smaller RF coil and the processing method could be adapted to include a step to 

offset the edge error (such as 3D morphological erosion). However, using a smaller RF coil 

would require a new, smaller column and subsequently, a greatly decreased scan volume 

whilst increasing the resolution with the current coil may allow the resolution to be 

increased from 300μm to 200μm, but this would require increasing the scan acquisition 

time from 20 hours to a predicted 70 hours to scan the same volume and would greatly 

increase the time to perform each subsequent image processing step. 

3.7.3 Results Discussion 

The change in porosity as the filters clog and erode were measured by MRI on three levels: 

bulk properties of the entire ROI, a slice-by-slice analysis of the ROI in three planes and 
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by dividing the ROI into regularly spaced regions and measuring the change in porosity in 

each region. Each method has its advantages and limitations. 

3.7.3.1 Bulk Properties 

Bulk properties are quick and straightforward to measure and allow comparison with the 

experimentally measured bulk porosity. This can be useful for measuring the overall 

change in the filter and essential for validating the image processing, but it does not 

provide any information on the spatial variation of the change in porosity.  

The image processing method was chosen to ensure that the MRI derived bulk porosity for 

Scan L1C (low flow clean) closely matched the experimentally derived porosity (Table 

3.6), yet the Scan H1C (high flow, clean) porosities were also extremely close, showing 

that this method is generically applicable for similar clean gravels. MRI derived porosities 

for clogged scans were substantially different from the estimated bulk porosity (based on a 

mass balance approach). This was attributed to greater clogging within the MRI ROI 

(which is closer to the inlet) than at the outlet. 

Other bulk parameters that were measured were the number of regions and the surface 

area. Whilst pores in disconnected regions are still filled with water, they are not available 

for further kaolin deposition or the attachment and removal of other pollutants. It should be 

noted that some regions that appear disconnected may in fact be connected by paths 

smaller than the image resolution of 300μm or be linked by areas that may have been 

incorrectly segmented such as those between grains in close proximity. Nevertheless, the 

number of regions allows an estimate of the active porosity which is important for filter 

hydraulics and particle removal efficiency.  

In the low flow experiment, the total amount of kaolin removed was 1.5 times greater than 

in the high flow experiment whereas the change in pore volume associated with 

disconnected regions was 5.4 times greater. This suggests that, at lower flows, there is a 

disproportionate increase in disconnected regions and a decrease in active porosity. As 

such, clogging at higher flow velocities may make more efficient use of the pore volume 

available for kaolin storage. However, as the disconnected pore volumes are only 0.53% 



 Chapter 3  

 

  

 

 

114 

and 0.13% of the total pore volume in the low and high flow experiments respectively, this 

increased storage volume is likely offset by other factors such as a reduced removal 

efficiency resulting in the net decrease in removal efficiency observed in experiments.  

In low flow clogging experiments, surface area decreases by 30.8% and active surface area 

(the surface area of the active porosity) by 35.5%. After two weeks clogging at high flow, 

the decrease in surface area and active surface area is only 17.8% and 18.8% respectively. 

For the removal of pollutants such as pollutant metals, there must be an available surface 

site for adsorption. It has been shown that sand filters often go through a period of filter 

ripening in which the removal of particles either increases the surface area of the filter or 

creates conditions under which the removal of subsequent pollutants becomes more 

favourable in a process known as “filter ripening” (Bradford et al., 2003). If a ripening 

period occurred in this study, it had passed by the time of the clogged scans. The 

implication of this reduction in surface area is a reduction in the removal efficiency of 

dissolved pollutants. This is due to a reduction in the surface area available for adsorption 

and would be expected to be more pronounced in the low flow experiment. Removal of 

dissolved pollutants is also linked to removal of particulates, especially clays, as these 

provide a surface for adsorption. Coupling a decrease in surface area, a decrease in particle 

removal efficiency and a decrease in filter residence time leads to a further reduction in the 

removal efficiency of dissolved pollutants with clogging of the filter. 

3.7.3.2 Slice-by-slice Analysis 

Slice-by-slice analysis is also straightforward but allows some spatial variation in 

deposition to be observed as well as correlation between initial porosity and change in 

porosity. MRI was able to confirm there was greater deposition at the column inlet and at 

the base of the column. This shows direct evidence for what could only be inferred from 

the difference in bulk porosity between the estimated porosity and the MRI derived 

porosity (Section 3.6.1). The right sides of the columns showed increased clogging which 

was unexpected. Possibly this is due to the formation of high velocity preferential flow 

paths in the left side of the columns. 
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Iwasaki et al. (1937) and many subsequent studies considered particle removal within slow 

sand filters as a first-order process with depth into the filter. It therefore follows that the 

reduction in porosity of a filter due to kaolin accumulation should also be a first-order 

process with depth. To test if this was apparent in the MRI dataset, both linear and 

logarithmic trends were fitted to the Z-direction slice averaged porosity. The regression 

coefficients appear to show that a linear trend better fits the data. The kaolin mass balance 

(summarised in Table 3.12) shows that in the entire 200mm filter, 1.53 times more kaolin 

was deposited between scans H1C-H2C than between H2C-H3C, yet the porosity change 

within the MRI ROI was 2.36 times as great and the slope (change in gradient between 

scans) was 70 times as steep. Between scans H1C-H2C, more of the kaolin deposition 

occurred at the inlet resulting in the steeper gradient. Between scans H2C-H3C, a 

substantial amount of kaolin was retained within the filter, but the low porosity change 

signifies it was not retained within the ROI and the low slope signifies that what kaolin 

was retained within the ROI was retained closer to the outlet.  

Table 3.12. Summary of clogging in high flow experiment. Accumulated kaolin was 

calculated by mass balance and is for entire 200mm column (see Table 3.1). Change 

in porosity was derived from the MRI scan for the 63.3mm deep ROI (see Table 3.6). 

Slope is the change in gradient of average porosity of each slice from inlet to outlet 

(see Figure 3.14). Ratio is the ratio of the H1C-H2C value to the H2C-H3C value. 

Scans 

Accumulated 

Kaolin (g) 

Change in 

Porosity (%) Slope 

H1C-H2C 54.24 11.39 -1.4x10-4 

H2C-H3C 35.46 4.83 -2.0x10-6 

Ratio 1.53 2.36 70 

These MRI scans would appear to suggest that kaolin removal within these filters was not 

a first-order process, as was proposed by Iwasaki et al. (1937), adopted by later researchers 

such as Yao et al. (1971) and observed by Close et al. (2006) when monitoring the removal 

efficiency of colloidal microsphere at low concentrations in a clean gravel media. Criticism 

of the first-order removal of particles with depth have been made before (Amirtharajah, 

1988; Wegelin et al., 1987) and it has long been recognised that removal efficiency must 

also be a function of the specific deposit (the volume of sediment accumulated per unit of 
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pore volume): increasing initially in a process known as filter ripening, presumably due to 

the increase in surface area for attachment or reduction in pore throats promoting straining 

(Herzig et al., 1970); then decreasing, presumably as flow velocities increase or suitable 

attachment sites are saturated until particle breakthrough and the end of the filter run. 

As the first-order process view does not take into account changes in removal efficiency 

over time associated with filter ripening and increased velocities due to clogging, perhaps 

it can best be thought of as a first-order process zone that diminishes as the degree of 

clogging exceeds a threshold resulting in a clogging front that moves from inlet to outlet. 

Ahsan (1995) inferred a similar clogging front from headloss measurements along a filters 

length. As shown in Table 3.12, if a clogging front exists, then by the time of scan H3C it 

has progressed beyond the extent of the ROI.  

By correlating the initial porosity with the percentage change (i.e. normalized to the initial 

porosity) it was shown that slices with a low initial porosity clogged more (in percentage 

terms) than slices with a high initial porosity.  In other words, the low porosity slices were 

filling quicker. This suggests that areas in slices with a high initial porosity were becoming 

preferential pathways for kaolin transport, in which less deposition takes place due to the 

higher velocities. A limitation of the slice-by-slice approach is that it is not possible to 

identify the preferential pathways and their existence is muted, or indeed entirely masked, 

by the averaging effect of considering an entire slice that must contain a number of pores 

of differing initial diameter. 

3.7.3.3 3D Region Analysis 

The strength of the 3D region analysis is that regions of any size and spacing can be 

specified so as to capture the spatial variability in porosity and change in porosity. As with 

the slice-by-slice approach, it is possible to measure trends in the change in porosity both 

spatially and with respect to the initial porosity with similar results. However, the 3D 

regions approach is superior as measurements are averaged over a much smaller volume 

than with the slice-by-slice approach. 
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With the 3D region approach, spatial variations in kaolin deposition trends were identified 

for both the low flow and high flow experiment. Correlating region initial porosity with 

change in region porosity identified that preferential flow paths must play a role in 

kaolindeposition within the filter. Such preferential flow paths require further analysis with 

respect to pore network connectivity (Chapter 4) and pore network flow velocities (Chapter 

5) in order to characterise their relative importance to particle removal within gravel filters. 

3.7.3.4 Comparison of Analysis Methods 

Of the three analysis methods investigated in this chapter, the slice-by-slice approach is by 

far the most common method of analysing MRI data. This appears to be for several 

reasons:  

1. Conventionally MRI is used in a medical setting where 2D slices in each 

orthogonal plane are sufficient for medical diagnosis; hence MRI software is 

designed to provide these slices. 

2. The acquisition of multiple 2D slices at discrete locations along a sample are 

sufficient to describe, for instance, the average porosity of a column packed with 

polystyrene beads as shown by Amitay-Rosen et al. (2005) or a sandstone core 

(Sham et al., 2013). 

3. 2D slices are much quicker to acquire than full 3D volume. This often means that 

image resolution does not have to be sacrificed to complete a scan within the 

available time and that multiple scans can be taken in quick succession. This 

allowed Baumann & Werth (2005) to image the concentration of super-

paramagnetic colloids in a single longitudinal slice through a 10mm diameter, 

75mm long column filled with silica gel media at three minute intervals, and for 

Phoenix et al. (2008) to track copper diffusion through a biofilm. 

4. Finally, although a 3D image of the entire volume is collected, many authors, such 

as Sederman et al. (1998), Kleinhans et al. (2008) and Jelinkova et al. (2011) only 

use the 3D data to visualise the sample. For quantitative analysis they instead 

reduce the sample to a series of 2D slices, as was done in the slice-by-slice 

approach of Section 3.6.2. 
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Bulk porosity and pore volume measurements are rarer for MRI data because, as detailed 

above, 2D slice data is often collected in place on the full volume 3D scan. Kleinhans et al. 

(2008) used a 100% water reference sample and the strength of the MR signal to measure 

the bulk porosity of coarse sediments. In certain situations this method would be preferable 

to the method of determining bulk porosity used in this thesis as it does not rely on 

segmenting the data (which is a potential source of error). However, the authors noted that, 

each time a scan was initialised, the MRI software selects different initialisation settings 

depending upon the properties of the sample being measured (e.g. liquid volume). In order 

to get a consistent MR signal from a given volume of water, they had to “trick” the scanner 

into using the same initialisation settings by initialising a scan on the 100% water reference 

sample, then scanning all samples in succession without re-initialising. Such an approach 

was not feasible for this thesis as a week between scans was required to clog the gravel 

media and other researchers would need to use the MRI machine in the meantime. 

Bulk porosity and pore volume measurements were made from x-ray microtomography 

data of soils and porous asphalt by Munkholm et al. (2012) and Gruber et al. (2012) 

respectively. Munkholm et al. (2012) also measured surface area but did not distinguish it 

from active surface area, possibly because with their resolution of 20μm, it was not 

possible to identify small pores that would connect regions of the soil. Gruber et al. (2012) 

did make the distinction between porosity and active porosity and found the latter to be 

30% smaller. This is far greater than the 0.53% and 0.15% difference between porosity and 

active porosity of low flow and high flow experiments of this thesis, but this discrepancy is 

likely due to the graded gravel and bitumen disconnecting pore regions in the asphalt and 

highlights the importance of measuring active porosity as opposed to simply measuring 

porosity. 

Pore networks are sometime derived and used to describe 3D trends in the data (see 

Chapter 4), but no method as simple and straightforward to implement as the 3D regions 

method was identified in the literature. The “best” data analysis method will depend on the 

purpose of the study and the equipment available. For many studies, 2D slice data is 

sufficient and is often the easiest to acquire. However, for this study a combination of bulk 

properties of the entire 3D volume and 3D region analysis yielded the most beneficial data 

as it allowed the change in active porosity and surface area to be determined as well as the 
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3D spatial variation in clogging (without averaging across an entire slice which masks the 

importance of preferential flow paths) and the correlation between degree of clogging of a 

region with that regions location and initial porosity. 

3.8 Conclusions 

In this chapter we have shown that MRI is a suitable tool for monitoring porosity change 

within a gravel filter. With the image processing methodology developed, it was possible 

to reproduce experimentally measured porosities to within 1.75% over a region of interest 

84.9mm diameter and 63.3mm length. 

Analysis of the bulk change in pore volume showed flow rate affected clogging 

progression: more kaolin was removed at a lower flow rate but the reduction in active 

porosity per unit of kaolin was greater due to the formation of disconnected regions of pore 

volume. Surface area decreased with clogging from which we can infer reduced dissolved 

pollutant removal efficiency. 

Slice-by-slice analysis of the 3D volume showed that whilst there was increased kaolin 

deposition closer to the inlet of both high and low flow rate filters, a linear trend better 

fitted the data than the first-order trend proposed by Iwasaki et al. (1937). Between the first 

and second stages of clogging at high flows there was no trend in the change in deposition 

within the MRI region of interest. From this it was concluded that if removal is a first-

order process, this can only be during clean bed filtration supporting the definition of a 

mobile first-order process zone proposed by (Ahsan, 1995). By the first stage of clogging 

at high flows the front of the first-order process zone had passed outwith the MRI region of 

interest. 

The correlation between initial pore volume and percentage change in pore volume showed 

that small pores are more likely to clog with kaolin whilst large pores are more likely to 

form preferential flow paths with reduced clogging. This important finding of the role of 

preferential flow paths is investigated further in Chapter 4 and Chapter 5. 
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Chapter 4 – Pore Network Analysis 

4.1 Abstract 

In this chapter pore networks are derived from 3D topological data using the ImageJ plugin 

BoneJ to perform medial axis thinning, as appropriate to quantitative analysis. The 

topological data was collected by MRI scanning of a gravel media filter at progressive 

stages of clogging with kaolin clay, as detailed in Chapter 3. Network statistics such as 

connectivity density were calculated at each stage of kaolin deposition. A method by which 

the change in pore diameter between scans could be mapped onto the pore network was 

devised by defining common reference points between clean and clogged filter networks. 

This allowed spatial variation in pore diameter change along the pore network to be 

assessed. This methodology also allowed other data sources such as the change in velocity 

derived from numerical models (Chapter 5) to be mapped onto the pore network. 

4.2 Introduction 

Slice-by-slice and 3D region analysis of the kaolin deposition patterns within the gravel 

filter highlights spatial trends and variations in the data (Chapter 3), but information on the 

pore connectivity is lost with these methods. Pore connectivity is critical for determining 

the hydrodynamics of the filter (Lindquist & Venkatarangan, 2000; Peth, 2010) and hence 

for the spatial variation in kaolin deposition. To obtain data in a form conducive to analysis 

retaining connectivity, it is common to reduce the pore network to a skeleton; this has 

precedent from studies in soils (Vogel & Roth, 2001; Peth et al., 2008; Luo et al., 2010), in 

permeable rocks (Lindquist & Venkatarangan, 2000; Blunt et al., 2013) and even for 

medical applications such as quantifying the effects of osteoporosis in bones (Cooper et al., 

2003).  

The aims of this chapter were to identify and apply an appropriate pore network 

skeletisation algorithm, compare pore network connectivity for each MRI scan of the 

clogging filters and develop a method by which the change in pore diameter – and hence 

clogging – at each point in the network could be measured. 
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4.3 Pore Network Analysis 

A pore network skeleton consists of the two elements: a series of connected points which 

form the backbone of the pore between nodes; and the nodes where three or more pores 

meet. Two main methods for determining the pore network skeleton are medial axis 

trimming and maximal balls; the merit of each is discussed below with the intention of 

appropriate selection for analysis in the present thesis. 

4.3.1 Medial Axis Trimming 

Medial axis trimming consists of iteratively eroding the pore space in three dimensions 

until a single voxel remains. This voxel is the medial axis of the pore space and, if the 

number of erosive steps is recorded, also contains information on pore diameter. 

Performing this erosion for all regions in the pore space results in the series of connected 

medial axes that constitutes the pore backbone, as shown in Figure 4.1. After generating 

the pore network, ‘pruning’ can be applied to remove dead-end pore paths and short 

sections of pore network that are often the result of irregularities in the pore geometry 

(Lindquist & Venkatarangan, 2000). 

4.3.2 Maximal Balls 

In the maximal balls approach, a sphere centred on each pore space voxel of the image is 

expanded until it comes into contact with a solid (gravel) region or the image edge. The 

radius of each sphere is recorded and spheres that are entirely contained within larger 

spheres are removed. The largest balls represent pore nodes, whilst the smallest balls 

represent pore throats. This method has been shown to produce a more realistic 

representation of pore morphology (Silin et al., 2003). Al-Kharusi and Blunt (2007) 

extended the work of Silin et al. (2003) by including clusters to account for adjacent 

maximal balls of identical size and extracted pore networks from which absolute 

permeability could be calculated. 
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Figure 4.1. 2D example of skeletisation by medial axis trimming (left) and maximal 

balls (without removal of clusters of identical size, right) for a representative sample 

of pore geometry derived from the MRI data. Nodal points where three or more 

pores meet are highlighted in both methods; pore throats are identified in the 

maximal balls method. N.B. skeletisation is considerably more complicated in 3D 

than in this 2D representation. 

4.3.3 Selection and Implementation of Skeletisation Method 

The maximal balls approach is more suited to identifying pore morphology such as pore 

throat diameters and pore aspect ratio than medial axis trimming, yet the volume that can 

be processed is limited by the large amount of processing power and computer memory 

required. For example, the 300 by 300 by 300 voxels of Al-Kharusi & Blunt (2007) could 

not be analysed as a single section and had to be reduced to a volume 200 by 200 by 200 

voxels, despite powerful computing availability. Thus, as the present MRI data set is larger 

than this (283 by 283 by 211 voxel ROI), the maximal balls methodology would be 

unsuitable for this thesis. In comparison to maximal balls, the alternative medial axis 

trimming method, when applied to the MRI data, took a trivial amount of time (25 

seconds) to perform on a modern desktop computer. Whilst it may not offer as much 

information on pore throat sizes as the maximal balls approach, medial axis trimming was 

used in this study as it has been shown to perform adequately (Keller et al., 2011; Peth et 
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al., 2008) and, due to ease of implementation, it has become the standard skeletisation 

procedure in image processing software such as ImageJ. 

Medial axis trimming has been implemented in ImageJ in 2D and 3D in the BoneJ plugin 

(Doube et al., 2010). Originally designed for the analysis of trabecular and cortical changes 

in bone due to osteoporosis, this implementation of 3D medial axis trimming has since 

been used by Munkholm et al. (2012) to analyse soil pore networks and, in theory, is 

applicable to any porous media. The medial axis trimming algorithm used in BoneJ is 

based on the work of Lee et al. (1994) and a plugin to post-process and analyse the 

skeleton is also included, developed by Arganda-Carreras et al. (2010). Yet, this 

skeletisation method does not record the pore diameter along with the medial axis. To 

overcome this, a Euclidean distance transform with the Local Thickness ImageJ plugin 

(Dougherty & Kunzelmann, 2007) was used to calculate the thickness of the pore space 

which was then mapped on to the pore skeleton. 

Many studies use the pore skeleton, and morphological characteristics derived from the 

pore skeleton (such as number of skeleton sections, total skeleton length, number of nodes 

and connectivity), to compare different samples: for instance different types of rock 

(Lindquist & Venkatarangan, 2000; Blunt et al., 2013; Al-Kharusi & Blunt, 2007) or 

different soil samples (Luo et al., 2010; Munkholm et al., 2012). Often the morphological 

characteristics are then related to physical measurements such as strength or permeability 

or to inform numerical models of permeability, hydrodynamics and even the spread of 

microorganisms (Otten et al., 2010). Some papers then go on to use the numerical models 

to predict how pore network morphological characteristics may change over time (Boever 

et al., 2012). However, no papers have been identified in which the change in 

morphological characteristics of a pore skeleton have been measured over time. This is 

thought to be because analysis of dynamic processes within porous media remain rare due 

to material properties and associated limitations of equipment/techniques appropriate to 

taking multiple internal scans of a single sample over time. In this study, multiple scans of 

two samples at various stages of clogging were obtained by MRI making it possible to 

measure the change in pore skeletons with clogging, but also necessitating the 

development of a methodology for analysing this experimental data. 
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4.4 Methodology 

4.4.1 Quality of Pore Network Medial Axis 

First, the quality of the medial axis thinning algorithm was assessed for this specific 

application: determining the skeleton of a 3D MRI scan of 10mm gravel before and after 

kaolin deposition. The 3D pore space data was re-sliced and the skeleton calculated for 

each orthogonal plane so as to assess if image stack processing direction affected the 

resulting skeleton, skeleton properties were analysed and a visual comparison was made 

with the medial axis thinning algorithm employed in the proprietary software Avizo Fire 

7.0 (Visualization Sciences Group, France). 

4.4.2 Bulk Properties of Pore Network 

Measurements such as connectivity density, number of three connected and four connected 

nodes (points where three and four branches of the pore network meet), average branch 

length, average tortuosity and total pore length were made for the entire network. The same 

measurements were then made for the next scan and it is relatively straightforward to draw 

comparisons between each scan. Whilst the majority of these measurement terms are self-

explanatory, it is worth highlighting that connectivity density is a measure of the number 

of pore network branch connections per unit volume and is based on the Euler 

characteristic of the network. As noted by Cooper et al. (2003), connectivity density is 

preferable to purely topological descriptions of the network, such as number of branches or 

number of junctions, as it accounts for the number of connections in a given volume. Thus, 

analysis in the following sections places emphasis on this descriptor.  

In this thesis, each “skeleton section” is defined as the medial axis of a distinct pore region 

(see Chapter 3, Section 3.6.1 for a definition of pore regions). All the pore network 

branches of a single skeleton section are connected with each other, but are not connected 

with any other skeleton sections.  
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4.4.3 Change in Pore Network Properties with Clogging 

Measuring the change in pore diameter of the pore network and correlating this with the 

initial diameter and with the local topography was more complicated than measuring bulk 

properties of the entire network at a single point in time. This was because, by necessity, 

the medial axis of a clogged pore network will occupy a different spatial location to the 

clean pore network. As shown in Figure 4.2, in some areas (A) the only change is in the 

diameter of the pore network, in others (B & C) the clean and clogged pore networks run in 

tandem whilst in others (D) the pore space clogs completely hence there is no clogged scan 

medial axis at this point. 

 
Figure 4.2. Four possible configurations of the medial axes during clogging: A) kaolin 

deposition is equally distributed around the pore gravel surface resulting in a 

decreased pore diameter but the medial axis location does not change with clogging; 

B) kaolin deposition predominantly occurs at the channel base and the medial axis 

shifts with clogging; C) further deposition at the base means the clean pore medial 

axis is no longer within the pore region of the clogged MRI scan; and D) the pore is 

completely clogged with kaolin and so there is no pore space and no clogged medial 

axis. 
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To allow comparison between clean and clogged pore networks, the following 

methodology was developed, tested and validated on a simple representation of the four 

medial axis configurations (see Figure 4.2), and finally applied to the MRI pore space data: 

 A Euclidean distance transform was used to determine the local pore thickness of 

the clean scan (hereafter referred to as Clean Scan Thickness) and clogged scan 

(Clogged Scan Thickness). 

 Clogged Scan Thickness subtracted from Clean Scan Thickness to give Change in 

Thickness. N.B Sometimes negative values arise from this subtraction at the 

extreme edges of the pores. As they are at the pore edges, they do not affect the 

pore skeleton and can be removed in ImageJ with the macro code: if(v <0) v=0. 

 The skeleton of the clogged scan is calculated using the BoneJ plugin and the 

skeleton value set to 1. Multiplying the skeleton by Change in Thickness, the 

change in pore thickness was mapped on to each voxel of the skeleton. This 

correctly identified the change in thickness of regions A, B and C, but not D as 

there was no region D in the clogged scan (see Figure 4.2 for description of regions 

A, B, C and D). 

 Subtracting the clogged scan pore space from the clean scan pore space gave the 

volume of kaolin deposition. Calculating the thickness gave the Kaolin Deposition 

Thickness. 

 The skeleton of the clean scan was calculated with the skeleton value set to 1, then 

multiplied by the Kaolin Deposition Thickness. This resulted in no value for any 

voxel in regions A and B, and a value of the kaolin thickness for regions C and D. 

 Region C was not required as it already existed on the clogged scan skeleton and 

should not be duplicated. Dividing the skeleton by the Clean Scan Thickness 

resulted in values less than 1 for region C (as the Kaolin Deposition Thickness must 

be less than the Clean Scan Thickness for region C) and values of 1 for region D (as 

in region D the pore has become completely clogged and so Kaolin Deposition 

Thickness is equal to the Clean Scan Thickness). Region C can be removed with the 

macro script: if (v <1) v=0. 
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 The change in thickness of region D on the clean scan skeleton can now be 

reinstated by multiplying by Change in Thickness, Kaolin Deposition Thickness or 

Clean Scan Thickness as all will give the same result for region D. 

 Region D on the clean scan skeleton is added to regions A, B and C from the 

clogged scan skeleton resulting in the change in thickness for all regions of the pore 

network. 

 Change in thickness was expressed as a percentage change by dividing by the 

Clean Scan Thickness. The change in thickness for region D equals 100% whilst it 

is between zero and 100% for regions A, B and C.  

4.5 Results 

4.5.1 Quality of Pore Network Medial Axis 

To assess the quality of the medial axis thinning algorithm, visual inspection of the pore 

space and medial axis was made for a representative subsection (50x50x50 pixels) of MRI 

scan L1C (Figure 4.3 & Figure 4.4) and a quantitative assessment of the pore network 

properties of the entire ROI was made (Table 4.1).  

As discovered in the MRI image processing of Chapter 3, Section 3.5.3, processing a 3D 

dataset as a sequence of 2D images can introduce processing direction dependent errors. 

To determine if the medial axis trimming algorithm of BoneJ is affected by processing 

direction, the pore space was re-sliced and processed in each of the three orthogonal plains.  

The skeletisation algorithm of proprietary software Avizo Fire (VSG, www.vsg3d.com) is 

also shown for comparison (created during a free trial of the software). The reason for this 

comparison was that Avizo Fire has been used in numerous studies (Gruber et al., 2012; 

Luo et al., 2010; Boever et al., 2012; Keller et al., 2011) and appears to be an industry 

standard for creating a medial axis skeleton of a pore network. Shortcomings of Avizo Fire 

are that it is not open source and it is designed for visualisation of a pore network rather 

than for assessing the change in characteristics of a pore network with clogging. As such, 

the network statistics that Avizo Fire produces are limited to total network length, average 

skeleton section length and average skeleton section thickness. BoneJ provides more 
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network statistics, outputs the data in a format more conducive for further analysis and, if it 

could be shown to be as robust as Avizo Fire, would therefore be the preferred option. 

 

Figure 4.3. Medial axis thinning algorithm applied to a subsection of MRI scan L1C. 

Grey solid regions represent gravel, pore space is transparent. 1A is the medial axis 

from the Avizo algorithm whilst 1B is the same medial axis, this time showing pore 

diameters. 2A is the medial axis from the BoneJ algorithm whilst 2B is the pore 

diameters with all processing carried out in the Z plane. 
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Figure 4.4. Medial axis thinning algorithm applied to a subsection of MRI scan L1C. 

Grey solid regions represent gravel; pore space is transparent. 3A is the medial axis 

from the BoneJ algorithm and 3B is the pore diameters processed in the X plane. 4A 

is the medial axis from the BoneJ algorithm and 4B is the pore diameters processed in 

the Y plane. 

Processing the data in all three orthogonal planes with BoneJ and in the Z plane with Avizo 

Fire shows that the exact position of the medial axis within the pore is somewhat 
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influenced by processing direction but the general structure of the network is consistent 

(Figure 4.3 & Figure 4.4). 

Table 4.1 shows that the standard deviation of each pore network parameter between the 

three orthogonal planes is low. The number of skeleton sections was higher in the Z plane 

than X and Y planes (14% relative standard deviation) because of the cylindrical shape of 

the ROI leading to short (mostly two pixel) sections of pore network around the circular 

edge. The maximum tortuosity also exhibited a high relative standard deviation (6.3%) but, 

as shown by the much lower relative standard deviation of the average tortuosity (1.2%), 

this was likely to be due to a small number of outliers.  

Table 4.1. Network properties for pore network derived from the entire MRI scan 

L1C processed in X, Y and Z planes. Medial axis and network properties calculated 

by BoneJ skeletonize3D and Analyse Skeleton plugins respectively. 

  
Z Plane X Plane Y Plane 

Relative 

st. dev. 

Skeleton 

properties 

Number of skeleton sections 201 151 149 14% 

Number of branches 9,733 9,412 9,488 1.44% 

Number of junctions 5,229 5,136 5,196 0.74% 

Number of triple points 3,979 3,910 4,040 1.34% 

Number of quadruple points 882 913 826 4.12% 

Branch 

properties 

Average branch length (pixels) 12.24 12.36 12.31 0.38% 

Maximum branch length (pixels) 79.08 72.29 77.26 3.76% 

Total branch length (pixels) 119,140 116,288 116,799 1.06% 

Average tortuosity 1.23 1.26 1.23 1.19% 

Maximum tortuosity 7.86 8.45 7.23 6.34% 

Connectivity Connectivity density 1.46x10-4 1.48x10-4 1.48x10-4 0.75% 

The BoneJ medial axis trimming algorithm produced a structurally similar pore network to 

the industry standard Avizo Fire, output more useful network parameters and produced a 

network with a low processing direction dependent variation in network parameters. The 

BoneJ implementation of medial axis trimming was therefore suitable for the task of 

defining the change in pore network diameter and connectivity as the gravel media clogs 

with kaolin. 



 Chapter 4  

 

  

 

 

131 

4.5.2 Bulk Properties of Pore Network 

Visualising the network (as in Figure 4.5 and Figure 4.6) and describing the bulk network 

properties (as in Table 4.3, Table 4.4, Table 4.5 and Table 4.5) as they change with 

clogging is useful for assessing the overall change in the pore network connectivity. Figure 

4.5 and Figure 4.6 show the change in pore geometry with clogging. Despite a substantial 

reduction in porosity from 40.29% to 16.71%, the medial axis remains recognisable 

although there is a general reduction in the length of the pore network and number of 

connections with an increase in skeleton sections due to fragmentation of the network. 

 

Figure 4.5. Medial axis overlaid on pore space for representative subsection of MRI 

scan L1C and L3C. Pore networks are shown (green) together with gravel (white), 

pore space (blue) and kaolin deposition (red). 
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Figure 4.6. Comparison between pore network of scan L1C (left, clean) and L3C 

(right, clogged). The network medial axis is represented by grey spheres and branch 

junctions (nodes) by red spheres. Flow direction through the cylindrical MRI ROI is 

indicated by the black arrows. General trends visible are a reduction in the extent of 

the pore network and number of junctions with clogging, particularly at the inlet. 

Table 4.2 shows pore network descriptors for the clean scans L1C and H1C and the 

percentage difference between the two. As the two columns were prepared with a standard 

procedure, the pore network characteristics were similar. Greatest differences are for the 

measure of maximum branch length and maximum tortuosity, both of which were most 

likely affected by outliers: a single large or tortuous branch could increase the maximum 

length or tortuosity without affecting the average. In terms of the main findings of Table 

4.2, analysis of the number of skeleton sections and number of branches data showed that 

the majority of the pore space (98% of the branches) were connected to a single section of 

the pore network. Additional skeleton sections tended to be small (often a single branch) 

and, in the clean scans, were the result of an ROI smaller than the entire gravel volume 

leading to branches cut off from the network outside the ROI. For the clogged scans the 

increase in skeleton sections represented fragmentation of the pore network due to kaolin 

deposition. Characteristics such as number of branches and junction connectivity density 

were based on the single largest section of the pore network. Some parameters were also 

normalised by the ratio of the pore volume to that of the largest scan pore volume. This 

allowed, for instance, the number of junctions in scan H1C (which had the largest pore 
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volume) to be compared with scan L1C (with 98% of the largest pore volume) by pro-

rataing the data of L1C against the benchmark volume of H1C.  

Table 4.2. Comparison between initial clean scan pore networks for MRI scans L1C 

and H1C with percentage difference. Columns were prepared with a standard 

procedure hence the difference in pore network properties was due to the 

configuration of the gravel particles. 

   
L1C H1C 

Percentage 

Difference 

Skeleton 

properties 

All sections 
Number of skeleton sections 190 226 18.95% 

Number of branches 8,137 7,468 -8.22% 

Largest 

section 

Number of branches 8,015 7,314 -8.75% 

Number of junctions 4,301 3,951 -8.14% 

Number of triple points 3,273 3,056 -6.63% 

Number of quadruple points 720 665 -7.64% 

Connectivity density 1.46x10-4 1.30x10-4 -10.85% 

Branch 

properties 

Largest 

Section 

Average branch length (pixels) 12.11 12.19 0.65% 

Maximum branch length (pixels) 79.08 62.93 -20.43% 

Total branch length (pixels) 97,035 89,122 -8.15% 

Average tortuosity 1.24 1.24 -0.11% 

Maximum tortuosity 7.86 11.72 49.10% 

Properties normalised 

by pore volume 

Number of skeleton sections 194 226 16.62% 

Number of branches 8175 7314 -10.53% 

Number of junctions 4387 3951 -9.93% 

Total branch length (pixels) 98,970 89,122 -9.95% 

In general, similar data provided in Table 4.3 to Table 4.5 indicate that the number of 

branches, junctions, total branch length and connectivity density associated with the single 

largest skeleton section decrease with clogging. These values also decrease during erosion. 

This, together with visual inspection of the pore networks suggests that kaolin deposition 

was disconnecting pore branches and, as proposed in Chapter 2, section 2.9.3, the high 

flows of the erosive stages H4E and H5E re-mobilised deposited kaolin in large sections 

that then drift downwards and were able to clog pores; hence the large decrease in 

connectivity density during erosion despite there being no more kaolin entering the filter. 
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Table 4.3. Pore network properties derived from scans L1C and L3C (low flow, 

clogging) for entire ROI.  

   
L1C L3C 

Skeleton 

properties 

All sections 
Number of skeleton sections 190 1,588 

Number of branches 8,137 8,306 

Largest 

section 

Number of branches 8,015 7,234 

Number of junctions 4,301 3,637 

Number of triple points 3,273 2,724 

Number of quadruple points 720 658 

Connectivity density 1.46x10-4 9.35x10-5 

Branch 

properties 

Largest 

Section 

Average branch length (pixels) 12.11 10.63 

Maximum branch length (pixels) 79.08 60.00 

Total branch length (pixels) 97,035 76,910 

Average tortuosity 1.24 1.26 

Maximum tortuosity 7.86 9.09 

Properties normalised by 

pore volume 

Number of skeleton sections 194 4031 

Number of branches 8175 18,364 

Number of junctions 4387 9233 

Total branch length (pixels) 98,970 195,246 

 

Table 4.4. Pore network properties derived from scans H1C, H2C and H3C (high 

flow, clogging) for entire ROI.  

   
H1C H2C H3C 

Skeleton 

properties 

All sections 
Number of skeleton sections 226 291 517 

Number of branches 7,468 6,238 6,971 

Largest 

section 

Number of branches 7,314 6,021 6,574 

Number of junctions 3,951 3,230 3,389 

Number of triple points 3,056 2,525 2,547 

Number of quadruple points 665 541 593 

Connectivity density 1.30x10-4 9.96x10-5 1.00x10-4 

Branch 

properties 

Largest 

Section 

Average branch length (pixels) 12.19 12.46 11.69 

Maximum branch length (pixels) 62.93 56.80 61.92 

Total branch length (pixels) 89,122 75,011 76,844 

Average tortuosity 1.24 1.23 1.26 

Maximum tortuosity 11.72 10.80 13.16 

Properties normalised by 

pore volume 

Number of skeleton sections 226 403 858 

Number of branches 7314 8339 10,906 

Number of junctions 3951 4474 5622 

Total branch length (pixels) 89,122 103,894 127,481 
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Table 4.5. Pore network properties derived from scans H3C, H4E and H5E (high 

flow, erosion) for entire ROI. 

   
H3C H4E H5E 

Skeleton 

properties 

All sections 
Number of skeleton sections 517 708 634 

Number of branches 6,971 6,378 6,401 

Largest 

section 

Number of branches 6,574 5,819 5,918 

Number of junctions 3,389 3,003 3,080 

Number of triple points 2,547 2,385 2,441 

Number of quadruple points 593 458 498 

Connectivity density 1.00x10-4 7.59x10-5 8.01x10-5 

Branch 

properties 

Largest 

Section 

Average branch length (pixels) 11.69 11.88 12.02 

Maximum branch length (pixels) 61.92 59.61 62.02 

Total branch length (pixels) 76,844 69,110 71,110 

Average tortuosity 1.26 1.24 1.23 

Maximum tortuosity 13.16 18.85 9.41 

Properties normalised 

by pore volume 

Number of skeleton sections 858 1158 1021 

Number of branches 10,906 9516 9526 

Number of junctions 5622 4911 4958 

Total branch length (pixels) 127,481 113,022 114,468 

4.5.3 Change in Pore Network Properties with Clogging 

To view the relationships between the change in pore diameter with the initial pore 

diameter and X, Y and Z location, the methodology outlined in Section 4.4.3 was 

employed. When calculating the degree of clogging, it is helpful to convert the pore 

diameter to a pore volume; this is because a small change in diameter of a large sphere can 

lead to a larger change in volume than an equivalent change in diameter of a small sphere. 

Thus, this section focusses upon volume changes as presented by total volume change and 

percentage volume change. 

Figure 4.7 shows that, during the clogging process, there is 1) clearly spatial heterogeneity 

in particle deposition, even between neighbouring pores, and 2) overall trends in the data 

with more deposition at the inlet of both the high and low flow filters and substantially 

more deposition at the base of the low flow filter. 
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Figure 4.7. Spatial variation in absolute volume change (left) and percentage volume 

change (right) for the low flow experiment L1C-L3C (top) and high flow H1C-H3C 

experiment (bottom) for each point in the pore skeleton after two weeks clogging. The 

diameter of each sphere denotes the initial unclogged pore diameter (at a scale of 0.5 

to aid visualisation). N.B. each voxel is 0.3mm x 0.3mm x 0.3mm hence the volume of 

one voxel is 0.027mm3. 

Similar analysis of the erosion scans (Figure 4.8) shows a redistribution of deposited 

particles within the filter: the degree of clogging increases in some pores, decreases in 

others and there is a general movement of particles from top to bottom. 
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Figure 4.8. Spatial variation in absolute volume change (left) and percentage volume 

change (right) for the high flow experiment first stage of erosion (H1C-H4E, top) and 

second stage of erosion (H1C-H5E, bottom) for each point in the pore skeleton. The 

diameter of each sphere denotes the initial unclogged pore diameter (at a scale of 0.5 

to aid visualisation). N.B. each voxel is 0.3mm x 0.3mm x 0.3mm hence the volume of 

one voxel is 0.027mm3. 

General trends in how the pore network was altered by clogging were evident from such 

visual analysis of the networks; however, a quantitative measure of particle deposition 

within the network was required. As with the slice-by-slice approach (Chapter 3, Section 
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3.6.2) and the 3D region porosity (Chapter 3, Section 3.6.3), correlation between the 

degree of clogging with initial pore volume and spatial location was measured with linear 

regression. The degree of clogging was measured as a change in volume for each point in 

the pore skeleton (determined from the pore diameters before and after clogging) and as a 

percentage change in volume. 

Table 4.6. Correlation between volume change of pore network with initial pore 

volume and spatial location. A steep gradient (either positive or negative) equals a 

strong trend whilst the smaller the P value, the more significant the correlation. 

Correlation of volume 

change with: 

Scans 

L1C-L3C H1C-H2C H1C-H3C H1C-H4E H1C-H5E 

Initial 

volume 

Gradient 0.641 0.344 0.507 0.480 0.487 

P Value 0.00 0.00 0.00 0.00 0.00 

X 
Gradient -0.189 -0.256 -0.356 -0.201 -0.314 

P Value 1.56x10-11 7.68x10-29 1.41x10-33 3.58x10-10 6.43x10-22 

Y 
Gradient 0.235 -0.125 0.101 0.368 0.405 

P Value 1.35x10-17 3.42x10-8 6.06x10-4 1.18x10-28 7.83x10-33 

Z 
Gradient -0.462 -0.908 -0.711 -0.432 -0.424 

P Value 3.96x10-48 1.35x10-279 7.21x10-102 1.30x10-32 1.89x10-30 

The positive gradients for the linear regression between volume change and initial volume 

showed that larger pores have a larger volume change for all scans (Table 4.6). The 

strongest correlation between volume change and spatial location was in the Z axis (inlet to 

outlet) for all scans. These gradients were negative, showing that more deposition occurred 

at the inlet. For scans L1C-L3C, H1C-H4E and H1C-H5E, there was a stronger correlation 

between the Y axis (top to bottom) than the X axis (left to right) showing more deposition 

at the bottom than at the top. Scans H1C-H2C and H1C-H3C showed a stronger correlation 

between the X axis than the Y axis. 
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Table 4.7. Correlation between percentage volume change of pore network with 

initial pore volume and spatial location. A steep gradient (either positive or negative) 

equals a strong trend whilst the smaller the P value, the more significant the 

correlation. 

Correlation of % 

Volume Change 

with: 

Scans 

L1C-L3C H1C-H2C H1C-H3C H1C-H4E H1C-H5E 

Initial 

Volume 

Gradient -0.00007 -0.00012 -0.00008 -0.00011 -0.00011 

P Value 0.00 0.00 0.00 0.00 0.00 

X 
Gradient 0.00013 0.00016 0.00008 0.00031 0.00010 

P Value 2.01x10-31 4.31x10-27 2.55x10-8 1.88x10-78 1.62x10-9 

Y 
Gradient 0.00028 -0.00052 -0.00028 -0.00022 -0.00019 

P Value 3.41x10-144 3.20x10-280 2.48x10-90 1.99x10-37 4.32x10-28 

Z 
Gradient -0.00041 -0.00055 -0.00049 -0.00049 -0.00036 

P Value 4.23x10-228 2.54x10-242 2.75x10-212 3.84x10-150 9.96x10-83 

The negative gradients for the linear regression between percentage volume change and 

initial volume showed that smaller pores had a larger percentage volume change for all 

scans (Table 4.7). As with the volume change analysis, percentage volume change had a 

strong negative correlation with the Z axis showing increased deposition at the inlet. 

Visually the increased deposition at the inlet was much more apparent for the low than the 

high flow filter (Figure 4.7); however the linear regression denotes significant correlation 

at both flow rates. 

4.6 Discussion 

4.6.1 Quality of Pore Network Medial Axis 

Medial axis trimming, implemented in ImageJ by the plugin BoneJ (Doube et al., 2010), is 

a method for extracting pore network skeletons from 3D topological data. Maximal balls is 

an alternative method that provides more useful information on the pore network such as 

the location of pore throats, pore diameter and connections between pores. However, 

maximal balls is more difficult to implement and more computationally intensive. Al-

Kharusi & Blunt (2007) were limited to studying a volume 200x200x200 pixels and note 

that their algorithm was not suitable for extracting large networks with standard computer 
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resources. With advances in computing power since 2007 it is reasonable to assume that 

the maximal balls approach could have been used in this thesis for the ROI volume 

283x283x180 pixels, however medial axis trimming was chosen due to ease of 

implementation and the ability to extract networks from much larger volumes, should it be 

required in the future. 

One limitation of medial axis trimming – the inability to measure pore size – was 

overcome by calculating local pore thickness independently using a Euclidean distance 

transform. The resulting thickness was then mapped onto the medial axis allowing 

visualisation of the pore space with free visualisation software ParaView (Kitware, 

www.paraview.org). The accuracy of the resulting pore network was assessed by visual 

comparison of a 50x50x50 pixel subvolume with proprietary software Avizo Fire which 

uses a different skeletisation algorithm. Both skeletons were similar, particularly with 

regards to the main section of the pore network. The primary difference was in the exact 

placement of pore branch junctions within large and irregular pores (Figure 4.3 and Figure 

4.4). 

Further analysis of the pore network involved re-slicing the entire MRI data ROI in the 

three orthogonal planes then calculating the medial axis in each plane. The resulting 

network characteristics were very similar with respect to connectivity density (0.75% 

relative standard deviation), total and average branch lengths (1.06%, 0.38%), number of 

junctions (0.74%) and average tortuosity of each branch (1.19%). Differences were in the 

number of skeleton sections (14%), maximum branch length and maximum tortuosity 

(both of which may be the result of a single outlier) and number of quadruple points 

(4.12%). The range in number of skeleton sections was due to very short sections (often 

just two voxels) at the circular edge of the scan ROI. These skeleton sections made up a 

negligible proportion of the total pore network length and did not affect the measure of 

connectivity density as this was only measured for the single largest skeleton section.  

4.6.2 Change in Pore Network Diameter 

No studies have been identified which investigate the change in pore network diameter and 

characteristics over time due to particle deposition. This is thought to be because few 
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studies take multiple 3D tomographic scans of a single sample over time in which there is a 

structural change in the pore geometry. Most studies instead compare multiple samples of 

different soil types (Munkholm et al., 2012), rock cores of different origins (Blunt et al., 

2013) or investigate the transport of fluids through a porous network in which the porous 

media remains unaltered (Pini & Benson, 2013). One exception is the work of Chen et al. 

(2009) in which the accumulation of zirconia colloids within a spherical glass bead media 

was characterised over a 1.79mm3 region (299x299x299 voxels) by x-ray micro-

tomography with four successive scans. Lattice Boltzmann modelling of the resulting scan 

geometry was performed but no network analysis was undertaken. Another notable 

exception is the work of Amitay-Rosen et al. (2005) in which multiple MRI scans of a 

clogging filter were taken over time; however analysis of the results was limited to nine 2D 

sections throughout the volume and hence no pore skeleton or network properties were 

extracted. 

With no precedent found in the literature, it was necessary to develop a methodology for 

analysing and comparing the change in the pore network with clogging. Different pore 

networks were compared based on several bulk network characteristics such as 

connectivity density. These measures were useful for describing change in the networks 

with clogging. However, as they are a property of the entire network, they do not quantify 

spatial variability in kaolin deposition and network change, nor do they shed any light on 

how pollutants are transported through the network. 

Establishing the change in pore network diameter at each point in the network can allow 

quantification of the spatial variability in kaolin deposition throughout the network. This 

approach required a common reference point between the clean and clogged scan pore 

networks. As shown in Figure 4.2, the pore network shifts with clogging hence there was 

no common reference point but each point in the clogged pore network must be in one of 

four states relative to the original clean pore network. A method for assigning each point of 

the clogged network into one of the four states was devised (Section 4.4.3). Pore diameter 

for each point in the clean and clogged pore networks were calculated from a Euclidean 

distance transform and were mapped onto the assigned pore network allowing the change 

in diameter to be calculated.  
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Spatial trends in the absolute and percentage volume changes of each point in the network 

were analysed as well as correlation between change in volume and initial volume. Results 

showed that sections of the pore network with a small initial diameter were more likely to 

experience a high percentage volume change due to kaolin deposition or to clog 

completely than pores with a high initial porosity. 

4.7 Conclusions 

The main finding of this chapter was that medial axis pore skeletons derived from 

sequential 3D tomographic scans of a clogging filter provide useful information on 

changes in pore structure that can be used to define network connectivity. The medial axis 

skeleton can also be used as a reference point onto which changes in pore diameter, and 

hence amount of kaolin deposition can be mapped as well as for comparing changes in 

velocity derived from numerical modelling (Chapter 5). The assessment of clogging based 

on the change in pore network characteristics presented in this chapter is preferable to the 

assessment based purely on change in porosity presented in Chapter 3. This is because the 

aim of this thesis was to understand the mechanisms resulting in spatial heterogeneity in 

particle deposition and, from the data presented here, it is apparent that pore network 

connectivity was an important influence on particle deposition. 

  



 Chapter 6  

 

  

 

 

143 

Chapter 5 – Numerical Modelling of Flow in MRI Derived Pore 

Geometry 

5.1 Abstract 

In this chapter we explore the relationship between flow velocities derived from a 

numerical model and the spatial variation in kaolin deposition identified in the MRI scans 

of Chapter 3. A numerical model was directly applied to the pore geometry derived from 

MRI scans at various stages of clogging. The chosen numerical modelling software was 

OpenFOAM (OpenFOAM Foundation, www.openfoam.org) which proved to be a suitable 

tool for generating the computational mesh, solving for Eulerian flow fields and 

Lagrangian particle tracking. 

By evaluating the model output sensitivity to the choice of model configuration and input 

parameters with a parametric study, the optimum model setup was identified. Results of 

the model show a close relationship between local velocity and local kaolin deposition 

with greater deposition in areas of low velocity. Initially pore diameter determines pore 

velocity and this correlation strengthens with moderate clogging due to positive feedback. 

At high degrees of clogging the majority of the flow is confined to a few preferential flow 

paths and at this point pore connectivity appears to be the dominant factor determining 

velocity rather than pore diameter. This has important implications for particle transport 

and retention within the filter. 

Lagrangian particle tracking of tracer-like particles highlighted a predicted reduction in 

removal efficiency of both suspended particles and dissolved pollutants as the filter clogs 

and preferential flow paths form. 

5.2 Introduction 

Spatial variation in kaolin particle deposition was observed within a clogging gravel filter 

(Chapter 3). It appeared probable that this spatial variation resulted from spatial variation 

in flow velocities, which in turn are dependent upon the local pore geometry. As such, flow 

velocities will vary temporally and feedback between clogging and further deposition must 
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exist. Understanding flow velocity and how it changes over time is therefore crucial to 

understanding the pattern of particle deposition within the filter. 

Unlike alternative methods for capturing the pore geometry (such as x-ray tomography), 

MRI offers the capability of measuring fluid flow rates by tracking the progress of a tracer 

that alters the magnetic susceptibility of the fluid (Baumann & Werth, 2005; Ramanan et 

al., 2010) or with tailored pulse sequences (Johns et al., 2000; Hingerl, 2013). Suitable 

tailored pulse sequences have not currently been implemented at the Glasgow 

Experimental MRI Centre (GEMRIC) and the development of such a sequence was 

outwith the scope of this PhD. Paramagnetic tracers have been used at GEMRIC but, due 

to the high demand for time on the MRI machine, logistically it was not possible to 

incorporate an additional tracer scan prior to each of the 20 hour scans from which the pore 

geometry was obtained. Thus, this thesis focuses on developing a novel approach towards 

obtaining indicative flow velocities from numerical modelling of the detailed pore 

geometry obtained from the snapshot MRI scans reported in Chapter 3. The intention was 

that this reduces the time and cost outlay compared to that of undertaking further MRI-

based examination of fluid flow (by tracer or pulse sequences). 

Modelling of pore fluid flow is becoming more common (Blunt et al., 2013), particularly 

by the oil and gas industry and in the field of carbon capture and storage. Modelling 

approaches often applied are based on permeability (Hingerl, 2013), pore network models 

(Kress et al., 2012), lattice Boltzman simulations (Ahrenholz, 2008; Papafotiou et al., 

2008; Chen et al., 2009) and finite element/volume methods (also known as direct 

modelling) with software such as COMSOL Multiphysics (Narsilio et al., 2010), ANSYS-

CFX (Gruber et al., 2012) and similar packages. Yet studies modelling the temporal 

change in flow velocities resulting from particle deposition are rare: only the work of Chen 

et al. (2009) in which the deposition of colloidal zirconia particles on 210-300μm glass 

beads was monitored by X-ray difference microtomography and flow velocities obtained 

from a lattice Boltzmann simulation has been identified by the author. 

With this in mind, the aim of this chapter was to 1) determine if direct modelling of gravel 

filter flow velocities during clogging was possible and feasible; 2) establish correlations 

between flow velocities, kaolin deposition and the spatial variation of each; and 3) interpret 
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model results with respect to the transport and removal of pollutants within a gravel filter. 

Lagrangian particle tracking was incorporated into the model. The aim was not to model 

kaolin deposition and clogging over a filter lifetime, but to determine if 

phenomenologically similar breakthrough profiles could be obtained for simulated tracers 

as for the physical column breakthrough experiments of Chapter 2.  

This chapter covers the justification for the choice of modelling approach and numerical 

modelling software together with a description of the parameters used in the chosen 

software. A parametric study based on a representative sub-volume of pore geometry is 

presented; the purpose of which was to justify the modelling approach used for the full 

volume and identify potential sources of error in the results. Flow velocity and Lagrangian 

tracer particle transport results are presented for the full volume and interpreted with 

respect to pollutant transport through a clogging gravel filter. 

5.3 Methods and Method Development 

5.3.1 OpenFOAM Software 

The Open-source Field Operation And Manipulation (OpenFOAM) software released by 

OpenCFD Ltd. (www.openfoam.com) was used to simulate the physics involved in this 

study. OpenFOAM is a free and open source computational fluid dynamics (CFD) package 

comprising a flexible set of applications written in C++. These applications include utilities 

to perform pre-processing of the data, mesh generation and post-processing of results; 

solvers to solve for compressible, incompressible and multiphase flows, particle tracking 

flows, combustion and chemical reactions, heat transfer, electromagnetics and stress 

analysis of solids; and libraries that are accessible to both the package and user developed 

solvers and utilities (OpenFOAM Foundation, 2013). 

OpenFOAM was considered to be an appropriate package for the following reasons:  

 it is powerful, flexible and efficient, 

 it can solve for both flow velocities and particle transport, 
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 parallelization is built in at a low level allowing most applications to be run in 

parallel on multiple processors and for user developed applications to be run 

without parallel-specific coding (Ambrosino, 2011), 

 as it is open source, the user has full access to the underlying code, 

 there is an active community and forum for discussing model development,  

 the mesh generation utilities are capable of producing high quality meshes of very 

complex domains such as pore networks within a gravel filter. 

Disadvantages are that it is not commercial software and mistakes sometimes make it into 

the release version (although these are often picked up and reported as bugs by the 

OpenFOAM community), there is no graphical user interface and there is limited 

documentation on most solvers and utilities requiring the user to search the community 

forum and read the source code to understand the capabilities and limitations of each 

application. 

Despite these disadvantages, OpenFOAM (version 2.1.1) was chosen over the commercial 

software COMSOL Multiphysics (www.comsol.com) because of the strength of 

OpenFOAM’s mesh generation utility snappyHexMesh which allowed the generation of a 

high quality mesh of the filter pore network. 

5.3.2 Geometry 

3D depictions of the gravel filter pore volume were obtained by MRI scanning filters at 

three stages of clogging with kaolin clay particles: clean, partially clogged and clogged (as 

described in Chapter 3). With processing of the MRI images, it was possible to segment 

them into solid (gravel and kaolin) and pore volume (water) phases. This pore volume was 

the domain within which all numerical modelling was applied. Two domains were defined: 

the first covered the full MRI scan region of interest (84.9mm diameter and 63.3mm 

length), the second was a sub-volume extracted from this larger volume (15mm wide, 

15mm tall and 63.3mm long). The sub-volume was created so as to allow quicker testing 

of the parameters in the parametric study of Section 5.3.6. 
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Figure 5.1. Full and sub-volume gravel STLs derived from MRI scan H1C. The 

regularly spaced circular openings of the plastic mesh are visible on the top surface. 

A surface representing the solid phase of the MRI scan was created from a 3D stack of 

TIFF images and then exported as an ASCII STL (stereolithography) format using the 

graphics software Blender (Blender Foundation, www.blender.org) (shown in Figure 5.1). 

STL is a common 3D graphics format that describes a raw unstructured triangulated 

surface and was the input to the OpenFOAM mesh generation and refinement utility 

snappyHexMesh. 

The snappyHexMesh utility effectively cuts out the gravel surface from a specified 

computational domain and refines the cells adjacent to the surface (as shown in Figure 

5.2).  



 Chapter 6  

 

  

 

 

148 

 

Figure 5.2. snappyHexMesh process from A) background hexahedral mesh definition, 

B) generation of STL gravel surface edge mesh, C) splitting background mesh cells at 

surface intersections, and D) removal of cells within gravel regions and refinement of 

surface vertices. 

The snappyHexMesh process is as follows: 

1. Define a background hexahedral mesh consisting of regularly spaced cells. 

2. Generate an edge mesh file of the STL surface. 

3. Split background mesh cells at surface edges and insert additional levels of 

refinement. 

4. Remove cells in which more than 50% of their volume lies within the STL surface 

i.e. cells that lie within gravel regions. 

5. Snapping of cells adjacent to the STL surface by moving individual cell vertex 

points onto the surface. This is an iterative procedure that is repeated until the 

minimum user-specified mesh quality control requirements are met. 
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For the cuboid sub-volume, the background hexahedral mesh was created using the 

OpenFOAM utility blockMesh to define the extent of the computational domain along with 

base level mesh density. For the cylindrical full volume, blockMesh could be used, but it 

produced an uneven mesh over the cylinder diameter and some cells with a high aspect 

ratio, which was undesirable. Instead, 3rd party mesh generation software Cubit (Sandia 

National Laboratories, cubit.sandia.gov) was used for the full volume as this produced a 

much more even distribution of cells. Typical background meshes for each domain are 

shown in Figure 5.3. For both domains, the meshed volume extends above and below the 

gravel STL surface so that boundary conditions would not affect the solution within the 

gravel volume. 

 

Figure 5.3. Cylindrical full volume background mesh generated with Cubit and 

cuboid sub-volume background mesh generated with the blockMesh utility. 

Details of the snappyHexMesh dictionary file specifying the meshing parameters can be 

found in Appendix C.1. Parameters such as the base level mesh density and number of 
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refinement levels were investigated in the parametric study (Appendix B). Both parameters 

determine the resolution of the refined mesh. A greater resolution results in more accurate 

depiction of the pore network but requires more computing power to generate the mesh and 

to run the subsequent solvers. A high base level mesh density with low refinement levels 

produces a similar number of cells to a low base level mesh density with high refinement 

levels; the difference being the former has more cells within the centre of each pore whilst 

the later has more cells on the STL surface. The relative significance of each is evaluated 

in Appendix B, and summarised in Section 5.3.6. Figure 5.4 shows the effect of refinement 

levels. 

 

Figure 5.4. A) coarse base level mesh density with no surface refinement and B) the 

same coarse sub-volume mesh with three levels of surface refinement. 

The checkMesh utility checks the validity for the mesh and reports on the quality with 

measures such as aspect ratio, mesh non-orthogonality or skewness. Generally, 

snappyHexMesh produced a good quality mesh but if this is not the case then the either the 

quality parameters of snappyHexMesh can be made more stringent or the finite volume 

solution and discretisation schemes (fvSolution and fvScheme, Section 5.3.3.1) may need to 

be modified to ensure convergence with a sub-optimum quality mesh. 

5.3.3 Eulerian Finite Volume Method 

To understand the difference between Eulerian and Lagrangian frames of reference, an 

analogy is often made with observing a flowing river from a fixed point on the bank of the 



 Chapter 6  

 

  

 

 

151 

river (Eulerian) and from a boat floating down the river (Lagrangian). The difference is in 

the Eulerian approach the flow is measured as it passes through the point(s) of reference 

whereas with the Lagrangian approach each individual fluid parcel is tracked as it moves 

through space and time. As such, the Lagrangian frame of reference is very cumbersome to 

apply to fluid dynamics and is more suited to solid mechanics (Belytschko et al., 2000), 

hence a Eulerian frame of reference was adopted in this study to solve for fluid dynamics. 

In a finite volume method (FVM), the computational domain is divided into a finite 

number of control volumes over which the governing equations of the chosen solver are 

discretised and solved. Here, each control volume is equal to a mesh cell as defined in 

Section 5.3.2. 

5.3.3.1 Solver 

Numerous solvers exist within OpenFOAM. The gravel filter is fully submerged in water, 

potentially with turbulent flows, and the desired output was a steady state flow distribution. 

simpleFoam is a steady state, incompressible, single phase solver capable of accounting for 

turbulence and, as such, should be the most computationally efficient solver for our 

purpose. 

The SIMPLE in simpleFoam stands for Semi-Implicit Method for Pressure Linked 

Equations. This method allows the coupling of the Navier-Stokes equations with an 

iterative procedure that is summarised as follows (Various Contributors, 2013): 

1. Boundary conditions set. 

2. Discretised momentum equation is solved allowing computation of the intermediate 

velocity field. 

3. Mass fluxes at cell faces are computed. 

4. Pressure equation solved and under-relaxation applied. 

5. Correct the mass fluxes at cell faces. 

6. Velocities corrected on the basis of the new pressure field. 

7. Boundary conditions updated. 
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8. Process repeated from step 2 until convergence criteria are satisfied. 

The solver finite volume discretisation schemes are given in the fvSchemes file of 

Appendix C.2. Solution and algorithm control was specified in the fvSolution file of 

Appendix C.3. The pressure field was solved with a preconditioned conjugate gradient 

(PCG) solver with diagonal incomplete-Cholesky (DIC) preconditioner. The velocity field 

was solved with a smooth solver with Gauss-Seidel smoothing. Relaxation factors to 

control the amount of under-relaxation were specified but were not tailored so as to find 

the optimum compromise between highly stable computation and short run time. As all 

simulations were stable, the factors used were assumed to err on the safe side. 

5.3.3.2 Turbulence 

There are three types of turbulence model that may be implemented with the simpleFoam 

solver: laminar (no turbulence), Reynolds-averaged stress (RAS) modelling and large-eddy 

simulation. Large-eddy simulation was not investigated in this project for the reason that, 

at the low levels and scale range of turbulence expected in the model, there is little 

advantage of large-eddy simulation over RAS modelling.  

 






1
'Re

0 gDV
 Equation 5.1 

 

Where V0 = superficial approach velocity (m/s), 

           Dg = Effective gravel particle diameter (m), 

             ρ = fluid density (kg/m3), 

             µ = dynamic viscosity (Pa.S), 

             ϕ = porosity. 

Modified Reynolds numbers, Re’, have been used to predict the flow regime in porous 

beds such as soils (Hellström & Lundström, 2006), glass beads (Rodier et al., 1997) and 

quartz sand (Kemblowski & Mertl, 1974) assuming spherical particles and a Newtonian 

fluid. This approach was used to acquire indicative flow regimes in the gravel filter with 

Equation 5.1 whereby if Re’<10, the flow is considered to be laminar or turbulent if 

Re’>2000. For the MRI scan H1C (unclogged) porosity of 41.1% and the scan H3C 
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(clogged) porosity of 24.9%, the Re’ numbers were estimated to be 3.66 and 3.09 

respectively hence well within the laminar regime. 

However, there may be local regions of turbulent or transition flow, particularly in the 

clogged experiment where preferential pathways through the filter have formed leading to 

increased velocities. 

The main classes of RAS models available – also commonly known as Reynolds Averaged 

Navier-Stokes (RANS) models – were k-ε, k-ω and Spalart-Allmaras. An additional 13 

models were available in OpenFOAM v2.1.1, but as they were mostly variations of the k-ε 

model they were not investigated further. 

The k-ε model solves two differential equations: one for kinetic energy k and one for 

turbulent dissipation ε. Limitations of this model are that coefficients must be empirically 

derived and it is only truly valid for fully turbulent flows. Strengths are it is robust, easy to 

implement, computationally cheap and widely used (Nallasamy, 1987). 

k-ω models solve for kinetic energy k and turbulent frequency ω and appear to perform 

better at low Reynolds numbers and transitional flows; however, they require high mesh 

resolution near to the wall (Menter, 1994). The Spalart-Allmaras model is a one-equation 

model that was developed for aerodynamic flows (Spalart & Allmaras, 1994). 

Thus, the k-ε model was chosen to investigate the effects of turbulence on the simpleFoam 

solver as it is the most widely used and validated model. Reasonable estimates of the 

coefficients k and ε were made and used as boundary conditions for the case. The effect of 

the estimated coefficients was evaluated in the parametric study (Appendix B.2). 

5.3.3.3 Surface Roughness 

In OpenFOAM, it is possible to specify surface roughness as wall functions which are 

applied as boundary conditions to specific patches of the computational domain. This 

allows different wall function models to be applied to different surfaces and hence for each 

surface to have its own roughness. 
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The choice of wall function depends on the solver (compressible or incompressible) and on 

the turbulence model (LES or RAS) and is specified through the turbulent viscosity field 

nut. To test if the model was sensitive to the choice of wall function and surface roughness, 

the nutkWallFunction and nutkRoughWallFunction were run for both laminar flows and 

flows with a RAS model of turbulence in Appendix B.2. In addition, the 

nutkRoughWallFunction parameters Cs and Ks were varied. Cs is the roughness constant 

(generally set between 0.5 and 1) whilst Ks is the roughness height in metres, also known 

as the equivalent sand-grain height (Tapia, 2009). 

5.3.3.4 Boundary & Initial Conditions 

Boundary conditions in this study consisted of a fixed value velocity inlet and a fixed value 

pressure outlet. The inlet velocity was either 1.044x10-4m/s or 2.165x10-4m/s 

corresponding to the filtration rate of 0.376m/hr or 0.779m/hr in the low and high flow 

MRI experiments respectively. The outlet pressure was 0 which, for OpenFOAM 

incompressible solvers, corresponds to atmospheric pressure. 

In OpenFOAM, each field requires a file that specifies dimensions (units), the internal field 

initial condition and the boundary condition for each patch. Patches are groups of mesh 

cell faces that share a common characteristic. The patches in our case were: inlet, outlet, 

fixedWalls and surfaceGravel whilst the fields for a laminar model where pressure (p), 

velocity (U) and turbulent viscosity field (nut). Additional fields for a turbulent model 

were kinetic energy (k), turbulent dissipation (ε) and Reynolds stress tensor (R). 

surfaceGravel defines the boundary between the gravel surface and the computational 

domain whilst fixedWalls defines the outer edge of the computational domain that is 

neither inlet, outlet nor surfaceGravel. The boundary conditions are specified in Table 5.1 

and Table 5.2. To include surface roughness, nutkWallFunction is replaced with 

nutkRoughWallFunction. 
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Table 5.1. List of boundary conditions/initial values for each patch and fields 

required for both laminar and turbulent models. 

Patch 
Fields required for laminar & turbulent models 

p U nut 

internalField value uniform 0 uniform (0 0 0.0002165) uniform 0 

inlet 
type zeroGradient fixedValue calculated 

value -  uniform (0 0 0.0002165) uniform 0 

outlet 
type fixedValue zeroGradient calculated 

value uniform 0 -  uniform 0 

fixedWalls type zeroGradient fixedValue nutkWallFunction 

value  - uniform (0 0 0) uniform 0 

surfaceGravel 
type zeroGradient fixedValue nutkWallFunction 

value -  uniform (0 0 0) uniform 0 

 

Table 5.2. List of boundary conditions/initial values for each patch and additional 

fields required for turbulent models only. 

Patch 
Additional fields required for turbulent models 

k ε R 

internalField value uniform 0.001 uniform 0.1 uniform (0 0 0 0 0 0) 

inlet 
type fixedValue fixedValue fixedValue 

value uniform 0.001 uniform 0.1 uniform (0 0 0 0 0 0) 

outlet 
type zeroGradient zeroGradient zeroGradient 

value  - -  -  

fixedWalls 
type kqRWallFunction epsilonWallFunction kqRWallFunction 

value uniform 0.001 uniform 0.1 uniform (0 0 0 0 0 0) 

surfaceGravel 
type kqRWallFunction epsilonWallFunction kqRWallFunction 

value uniform 0.001 uniform 0.1 uniform (0 0 0 0 0 0) 

These boundary conditions specify a constant inlet velocity of 2.165x10-4m/s 

(corresponding to the filtration rate of 0.779m/hr in the high flow experiment) which drives 

flow through the computational domain. The fixedValue velocity set to a uniform value of 

(0 0 0) imposes a no-slip boundary on the fixedWalls and surfaceGravel boundaries. 

5.3.3.5 Constant Properties 

Some properties that remain constant throughout the simulation must be specified. For the 

simpleFoam solver these are the gravity vector of the computational domain and the 

kinematic viscosity of the fluid. The density of the fluid is implicit within the use of 
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kinematic viscosity (instead of dynamic viscosity) and so does not need to be specified, but 

as a consequence, all pressure output values are normalised by the density. 

5.3.4 Lagrangian Particle Tracking 

With Lagrangian particle tracking (LPT), each individual particle or parcel of fluid is 

tracked as it moves through space and time, either with respect to its point of origin or to 

its coordinates in the previous timestep. The particles are tracked within the computational 

domain defined by the mesh, yet as the Lagrangian equations are ordinary differential 

equations, they do not have to be discretised across the mesh and it is possible to track 

particles at below mesh resolution. 

The approach used in this study was linked Euler-Lagrangian modelling in which the flow 

field was derived from the steady state simpleFoam solution and particle positions, 

velocities and interactions from the Lagrangian model. Two types of particles were 

tracked: the first was intended to simulate tracer propagation through the filter, similar to 

the NaCl tracer used in the column experiments of Chapter 2, Section 2.3. These particles 

had negligible mass (and hence momentum) and were of the same density as the 

transporting fluid (water). The second type of particles were intended to represent kaolin 

transport through a filter. These particles had a density and size distribution equal to the 

kaolin used in the column experiments. How each class of particles interacted with 

surfaces is detailed in Section 5.3.4.2. 

5.3.4.1 Particle Properties 

Particles were modelled as rigid spheres. For the particles simulating a tracer, a negligible 

size of 1x10-30m and a density equal to that of the water was used. These particles therefore 

had negligible mass resulting in a very short particle response time: effectively they have 

no momentum and follow the flow streamlines like NaCl ions in solution. 

Particles simulating kaolin transport had a size distribution equal to that measured for the 

kaolin used in the column experiments (Chapter 2, Section 2.4.3) and a density of 
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2650kg/m3. These particles therefore can settle under gravity and have momentum 

allowing them to cross flow streamlines and come into contact with the gravel surface  

Details of particle properties, forces, interactions, injection and dispersion model can be 

found in the kinematicParticleProperties files of Appendix C.4. 

5.3.4.2 Solver and Model Definitions 

The icoUncoupledKinematicParcelFoam is a transient solver for the passive transport of a 

single kinematic particle cloud (OpenFOAM Foundation, 2013). This solver allows one-

way coupling in which the particles obtained their velocity from the internal flow, in this 

case already calculated by the simpleFoam solver, yet there is no interaction between 

particles and the internal field. This assumption of one-way coupling is valid when the 

particles are considered to be dispersed. 

The LPT algorithm implemented by OpenFOAM is the TrackToFace method (Macpherson 

et al, 2009): 

1. The fluid velocity, calculated for each cell face, is interpolated for the current 

particle position within a cell.  

2. The forces acting on the particle are computed and the equations of motion solved 

to determine its trajectory. 

3. The particle follows this trajectory until it crosses a new cell face. 

4. At the point of crossing, new fluid velocities are interpolated and forces are 

calculated based on the new particle position. 

5. The particle is once again moved until it crosses a new cell face. 

At every face crossing, the algorithm checks if the face forms part of a surface patch or if it 

is part of the internal field. If the face is part of a wall surface patch, the specified wall 

patch interaction is invoked. If the face is part of the outlet surface patch, the particle is 

removed from the computational domain. 
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Forces 

Forces acting on each particle are gravity and sphere drag (assuming spherical particles). 

These forces, together with the particle properties of mass, density, size and velocity 

obtained from the internal field are used to solve a set of ordinary differential equations 

known as the Basset, Boussinesq and Oseen (BBO) equations. 

Interactions 

In the icoUncoupledKinematicParcelFoam solver particles do not interact with the fluid 

phase, but can interact with patches and with each other. Patch interactions can be escape, 

stick or rebound. Patch interactions are invoked during the TrackToFace algorithm when 

the particle radius crosses a patch face. With the escape interaction, the particle is removed 

from the computational domain. This interaction was used for the outlet patch. With stick, 

the particle sticks to the patch face. With rebound, the particle rebounds from the patch 

face with a restitution coefficient, e, specifying energy loss from a rebound (where e=1 

describes a perfectly elastic rebound) and an energy loss due to friction with the wall 

specified by µ (where µ=0 describes zero energy loss due to friction). 

A relatively inelastic rebound from fixedWalls and SurfaceGravel patches was considered 

to be the most realistic interaction for particles simulating kaolin. By definition, a 

conservative tracer should not stick to surfaces and, given enough time, each particle of the 

tracer would be recovered at the outlet. Of the available surface interactions, rebound with 

no loss of energy would appear the most appropriate. However, due to the very low mass 

of the tracer particles, it was found that particles rebounding from a surface were unable to 

cross the flow streamlines that brought them into contact with the surface in the first place 

and either became impinged upon that surface or confined to the low velocity area adjacent 

to the surface. Effectively, rebounding tracer particles would stick to the gravel surface and 

hence were simulated as stick as it was computationally more efficient. Due to this 

limitation of the software, only that proportion of particles that passed through the outlet 

patch were analysed as conservative tracer particles. 
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Whilst particle-particle collision is an option, it is extremely computationally expensive for 

numerous particles in a complex geometry. As the kaolin particles, at their maximum 

concentration, make up 0.75% of the volume of the suspension, they may be considered 

dispersed. The probability of particle-particle interaction is therefore low and was not 

included in the simulations. 

Particle Injection 

Particle injection controls the number (or mass) of particles that enter the computational 

domain per time step, their initial location and their initial velocity and trajectory. Location 

can be either a specified patch or manually with a specified Cartesian coordinate for each 

particle. Manual injection was used so that initial conditions were identical for each case of 

the parametric study, even when mesh resolution was varied (Appendix B). A single 

injection inserted 2362 particles into the computational domain with an initial velocity 

equal to the superficial flow velocity.  

5.3.4.3 Dispersion Model 

To ascertain the effects of dispersion on the transport of tracer particles through the filter, 

some cases were run with the stochastic dispersion model stochasticDispersionRAS. This 

model only applies when a RAS turbulence model is included in the Lagrangian particle 

tracking model. 

5.3.4.4 Particle Tracks 

Particle tracks can be recorded using the particleTracks utility which records particle 

location at each timestep and exports the data for visualisation in ParaView. The tool was 

extended to record particle origin ID, time, velocity, diameter and particle fate along with 

location at each time step in a tool named myExtendedParticleTracks. Particle fate was 

defined as “escape” if the particle escaped the computational domain through the outlet 

patch, “stick” if the particle becomes inactive within the computational domain and “in-

transit” if the particle was still travelling through the computational domain by the end of 

the simulation. The additional data recorded by myExtendedParticleTracks allowed 

correlation between particle diameter with velocity, tortuosity and the fate of the particle to 
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be determined. This information could not be derived from the existing particleTracks 

utility. 

5.3.5 Case Execution 

Each OpenFOAM simulation requires a case directory. Within each case directory are 

initial conditions and boundary conditions contained within the 0 directory, mesh and 

constant properties contained within the constant directory and run control parameters 

contained within the system directory. 

With the mesh generated by snappyHexMesh, the simulation was executed as follows: 

1. Decompose mesh for parallel computation. 

2. Execute simpleFoam in parallel. 

3. Reconstruct converged simpleFoam solution. 

4. Calculate wall shear stress for converged case with wallShearStress utility. 

5. Export internal field to VTK format and visualise with ParaView. 

6. Run foamLog to generate details of solver convergence from the log file. 

7. Run sample to sample internal field values across specified lines and planes. 

8. Compare convergence details and sample values in spread sheet software. 

9. Use converged simpleFoam solution as initial conditions for Lagrangian particle 

tracking with mapFields utility. 

10. Decompose converged simpleFoam solution and execute (in parallel) 

icoUncoupledKinematicParcelFoam. 

11. Reconstruct velocity fields and Lagrangian fields for each timestep. 

12. Export Lagrangian fields to VTK and visualise with ParaView. 

13. Run myExtendedParticleTracks to generate particle tracks in VTK format for 

visualisation and in CSV data format for analysis with spread sheet software. 

14. Clean up unnecessary files from case such as decomposed folders and Lagrangian 

time directories to free hard disk space. 
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All cases were run on a desktop PC with AMD Phenom II x4 965 3.4GHz processor, 16GB 

DDR3 RAM (with an additional 32GB virtual RAM on SSD) and ATI Radeon HD 5700 

graphics card. The operating system was Ubuntu 12.10 and all figures were created in 

ParaView unless otherwise stated. 

Parallel runs were performed across four processors for snappyHexMesh, simpleFoam and 

icoUncoupledKinematicParcelFoam commands using the native message passing interface 

(MPI) of Ubuntu 12.10. Bash scripts were used to execute all the commands on multiple 

cases. Example bash scripts are contained in Appendix C.5 and C.6.  

Cases were split across each processor using decomposePar and were reconstructed using 

reconstructPar, or reconstructParMesh in the case of the snappyHexMesh generated mesh. 

Wall shear stress was calculated using wallShearStress and sample was used to extract 

field values across a specified line or plane through the computational domain. 

foamLog generated details on run time and convergence of the simulation from the 

simpleFoam log file whilst grep was used to extract details of particle fate at each timestep 

from the icoUncoupledKinematicParcelFoam log file. 

Finally foamToVTK was used to convert the simulation results to VTK format, a widely 

used data format supported by the free scientific visualisation software ParaView. As 

OpenFOAM has no graphical user interface, ParaView is used for visualising and 

analysing the results. VTK file size can be limited by only converting the internal field of 

the simpleFoam results at the converged timestep and by only converting the required 

Lagrangian fields of the icoUncoupledKinematicParcelFoam results. Otherwise the results 

take up excessive hard disk space and can be unwieldy to analyse. 

5.3.6 Parametric Study & Optimum Parameters 

The aim of the parametric study was to evaluate the sensitivity of the model to 1) physical 

parameters of the gravel filter that could not be measured, and 2) elements of the modelling 

approach that needed to be tested. The Eulerian simpleFoam parameters were: 
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 Solution scheme: linear or corrected 

 Turbulence and turbulent coefficients 

 Surface roughness and roughness coefficients 

 Interlinked turbulence with surface roughness 

 Mesh resolution and mesh surface refinement levels 

 Interlinked turbulence with surface refinement 

 Surface STL generation procedure 

 Viscosity 

The Lagrangian icoUncoupledKinematicParcelFoam parameters were: 

 Lagrangian dispersion, with and without Lagrangian turbulence 

 Turbulence 

 Surface Roughness 

 Interlinked Lagrangian turbulence with surface roughness 

 Mesh resolution and mesh surface refinement levels 

 Surface STL generation procedure 

 Viscosity 

From the results of the parametric study (which can be found in Appendix B), it is apparent 

that the solution scheme does not affect flow velocities, wall shear stress or particle 

transport and so the limited scheme is preferable as it is generally more stable.  

Turbulence, surface roughness, Lagrangian turbulence and the choice of their coefficients 

do not significantly affect flow velocities, wall shear stress or particle transport when 

considered individually. When considered together, turbulence and surface roughness have 

the capacity to significantly affect flow velocities (7.3% change in maximum velocity) and 

wall shear stress (1755% change in maximum wall shear stress), yet the surface roughness 

coefficients are not accurately known in this study. Hand calculations suggest that the flow 
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regime is laminar and so the need to accurately specify surface roughness coefficients can 

be avoided without compromising flow velocity computation by utilising a laminar model. 

Mesh resolution and the levels of surface refinement do affect flow velocities and wall 

shear stress. An initial size of 0.6mm with a maximum surface refinement of 2 levels 

appears to accurately capture all of the pore space and produces similar (0.72% difference) 

maximum velocities to a mesh with an initial size of 1.5mm and maximum surface 

refinement of 4 levels, yet run times were 3.4 times shorter. Such a mesh was therefore 

preferable. 

Smoothing the surface during STL generation produced a surface that looked more like a 

gravel surface. The resulting maximum velocities were 6.00% lower than an unsmoothed 

surface. The resolution of the MRI derived geometry and the pixelated representation of 

the gravel surface could therefore be affecting the model accuracy. However, as the 

smoothed surface had a different pore volume and pore network connectivity compared 

with the unsmoothed surface, an MRI scan at much higher resolution would be required to 

quantify the effect of geometry resolution on flow velocities. In this study, the unsmoothed 

surface should be used as this provides equivalent pore volume and pore network 

connectivity to those assessed in Chapter 3 and Chapter 4 respectively. 

Kinematic viscosity was shown to affect the flow velocities (3.4% difference in maximum 

velocity) and wall shear stress (93.3% difference in maximum wall shear stress) but had 

very little effect on Lagrangian particle transport. The kinematic viscosity of a water/kaolin 

suspension is thought to vary spatially and in time throughout the filter as the concentration 

of kaolin changes. It is not possible to incorporate a varying kinematic viscosity value 

without extensively re-writing the simpleFoam solver or utilising a two-phase solver such 

as twoPhaseEulerFoam and so a constant viscosity equal to 1.0x10-6 m2/s (water at 20°C) 

should be used. 

Lagrangian dispersion increases the sticking rate of particles. When simulating a 

conservative tracer, particle sticking is undesirable and so a Lagrangian dispersion model 

should not be included; whereas, when simulating kaolin particles for removal, the ability 
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for particles to cross flow stream-lines due to dispersion may be desirable and so, in this 

case, a Lagrangian dispersion model should be included. 

5.3.7 Full Volume Cases 

The full volume computational domains were derived from the MRI scans of two gravel 

filters (low flow rate and high flow rate) at various stages of clogging with kaolin clay. The 

pertinent details of each scan are given in Table 5.3, whilst full details are contained in 

Chapter 3, Section 3.3.1. After deposition of kaolin, the high flow filter was subjected to a 

high flow rate for approximately one hour before scan H4E and an additional higher flow 

rate for another hour prior to scan H5E. Scans H4E and H5E were modelled with an inlet 

flow velocity equivalent to the velocity under which the kaolin was deposited to allow 

comparison with scans H1C, H2C and H3C.  

Models of the full volume of each MRI scan were run with the optimum parameters 

identified in Section 5.3.6: limited solution scheme, laminar flow model, no surface 

roughness model, unsmoothed surface, kinematic viscosity of 1.0x10-6 m2/s and a mesh 

generated from an initial cell size of 600x600x600μm and maximum of two levels of 

surface refinement (150x150x150μm). 
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Table 5.3. Full volume MRI scan and numerical model details. Note that the 

computational domain pore volume is equivalent to the ‘active’ pore volume, defined 

in Chapter 3 as pore space connected to the main pore network. 

Case Experiment and stage 

Experiment 

flow rate 

(ml/min) 

Computational 

domain pore 

volume (litres) 

Modelled inlet 

flow velocity 

(m/s) 

L1C Low flow - clean 49.2 0.141 1.044x10-4 

L3C Low flow -clogged 49.2 0.055 1.044x10-4 

H1C High flow - clean 102 0.144 2.165x10-4 

H2C High flow – partial clogging 102 0.103 2.165x10-4 

H3C High flow - clogged 102 0.085 2.165x10-4 

H4E High flow - 1st Erosion 102/450 0.087 2.165x10-4 

H5E High flow - 2nd Erosion 102/600 0.088 2.165x10-4 

Lagrangian particle tracking was run with 2362 particles (so chosen to ensure an even 

radial distribution of particles at the inlet) to simulate the propagation of a tracer through 

the filter. As such, a model of Lagrangian dispersion was not included. 

Results were analysed with respect to flow velocities and flow paths within the entire 

computational domain (Section 5.3.7.1), flow velocities mapped onto the medial axis, as 

defined in Chapter 4 (Section 5.3.7.2) and the Lagrangian transport of tracer particles 

(Section 5.3.7.3). 

5.3.7.1 Eulerian Flow Characteristics 

By comparing velocities for each MRI scan, we can see how inflow rate affects maximum 

and average velocities within the gravel filter and how these change over time as the filter 

clogs. Table 5.4 and Figure 5.5 illustrate these effects: increasing the flow velocity from 

1.044x10-4m/s to 2.165 x10-4m/s doubles the average pore velocity (102% increase) in the 

clean gravel scans (case L1C compared with case H1C) whilst maximum velocities only 

increase by 78%. With clogging, the low flow filter average velocity increases by 232% 

whilst maximum velocity increases by 803% (case L1C compared with case L3C).  
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Table 5.4. simpleFoam results for full volume cases. 

Case 

Steps to 

convergence 

Convergence 

time (mins) 

Max Velocity 

(m/s) 

Average 

velocity (m/s) 

L1C 31 136.4 0.00257 0.00034 

L3C 27 134.3 0.02320 0.00114 

H1C 31 128.0 0.00459 0.00069 

H2C 31 142.8 0.01080 0.00108 

H3C 31 151.5 0.01820 0.00139 

H4E 31 150.3 0.02310 0.00138 

H5E 31 141.7 0.02310 0.00131 

 

 

Figure 5.5. simpleFoam maximum and average velocity results for full volume cases. 

The high flow filter average velocity increases by 102% whilst the maximum velocity 

increases by 297%. The greater increase in velocities during the low flow filter compared 

with the high flow filter is partially due to greater deposition of kaolin in the low flow 

filter. This results in a greater reduction in computational domain for the low flow filter 

and hence, with a constant inflow rate, a greater increase in flow velocities. Interestingly, 

the average flow velocities decrease during erosion (cases H4E and H5E compared with 

H3C, Table 5.4 and Figure 5.5) in line with the increase in pore volume caused by erosion, 

yet at the same time the maximum velocity increases. This has been attributed to the nature 

of the erosion process (which was witnessed through the clear side walls of the filter): the 
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high erosion flow rates washed some deposited kaolin out of the filter but also triggered 

“avalanches” of large clumps of kaolin that quickly became deposited elsewhere in the 

filter (Chapter 2, Section 2.9.3). This re-ordering of deposited kaolin appeared to block (or 

partially block) flow channels that could not be blocked under the lower deposition flow 

rates whilst unblocking other channels. The net result appeared to be a change in the flow 

paths, a decrease in network connectivity (Chapter 4, Section 4.5.2) and an increase in 

maximum flow velocities in the remaining open channels without significant change in 

pore volume. 

The spatial variation in flow velocity is illustrated for a single, representative slice of the 

low flow filter cases (Figure 5.6) and the high flow filter cases (Figure 5.7). The formation of 

preferential flow paths leads to an increase in velocity along the flow paths. In some 

regions (see Figure 5.6) flow velocity decreased as that path becomes partially blocked and 

flow was re-routed through alternative paths. 

 

Figure 5.6. Flow velocities in a slice perpendicular to the flow direction through the centre of A) case 

L1C and B) case L3C. The slices are representative of the velocity distribution throughout the filters. 

Colour (blue to red) denotes flow velocity within the pore space whilst grey denotes location of 

deposited kaolin. A logarithmic scale was necessary to display the range in pore velocities encountered. 

The red circles indicate an area in which velocity had increased with clogging and an area in which 

velocity had decreased with clogging. Changes in velocity were a function of initial pore diameter and 

flow velocity, relative change in diameter with clogging as well as changes in pore connectivity. 
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Figure 5.7. Flow velocities in a slice perpendicular to the flow direction through the centre of A) case 

H1C, B) case H2C, C) case H3C, D) case H4E and E) case H5E. The slices are representative of the 

velocity distribution throughout the filters. Colour (blue to red) denotes flow velocity within the pore 

space whilst grey denotes location of deposited kaolin. A logarithmic scale was necessary to display the 

range in pore velocities encountered. On average the velocity increases during clogging phases with 

relatively little change during erosive phases. 

5.3.7.2 Medial Axis Flow Velocities 

By mapping the calculated flow velocities onto the pore network medial axis, as defined in 

Chapter 4, Section 4.3, it was possible to establish correlation between the velocity and the 

degree of kaolin deposition at each point in the pore network (Figure 5.8). The hypotheses 

tested in this way were: 

A. In the clean scans, pore velocity will be positively correlated with pore diameter as 

the larger pores will be preferential pathways. The strength of the correlation 

between pore velocity and pore diameter will increase with increased clogging as 

smaller pores block with deposited kaolin. 
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B. There will be positive correlation between the initial velocity and final velocity. 

High velocity channels will be subject to less kaolin deposition whilst low velocity 

channels will clog. 

C. Percentage reduction in pore diameter will be negatively correlated with clean scan 

velocity, with clogged velocity and with percentage increase in velocity. Kaolin 

will be less likely to deposit in pores with a high initial velocity or in which 

velocity increases with clogging. 

 

Figure 5.8. Medial axis pore velocity for A) case L1C and B) case L3C. A logarithmic 

scale was necessary to display the range in pore velocities encountered. 

Table 5.5 summarises the correlations tested for hypothesis A, B and C. The p-value 

denotes the statistical significance of the correlation (with a number approaching 0 

indicating higher significance) whilst the gradient denotes the strength of the correlation. 

For hypothesis A it is apparent that pore velocity and pore diameter are positively 

correlated (due to a P-value of 0 and a positive gradient) and, with the exception of case 

H3C, the strength of the correlation increases with clogging. From this we infer that more 

kaolin is deposited in the initially small and slow flowing pore channels and less in the 

larger, faster channels with positive feedback between pore velocity and pore diameter as 

clogging progresses. The close-to-zero gradient of case H3C may suggest that as clogging 

progresses and velocities in the remaining open pores increase, pore velocity may have 

passed a tipping point at which it is no longer correlated with pore diameter. Instead, pore 

connectivity may be more important: a narrow pore channel aligned with the flow direction 
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may be able to transmit a higher flow than a collection of larger, but poorly connected 

pores and hence becomes the preferential pathway in place of the larger pores. 

Table 5.5. Correlations between pore flow velocities and pore diameters. 

Hypothesis Scan X Variable Y Variable Gradient P Value 

A 

L1C 

Pore velocity Pore diameter 

0.000033 0.00 

L3C 0.000127 0.00 

H1C 0.000076 0.00 

H2C 0.000109 0.00 

H3C -0.000005 1.63x10-1 

B 

L1C-L3C 

Clean scan velocity 
Clogged scan 

velocity 

3.438033 0.00 

H1C-H2C 1.618183 0.00 

H1C-H3C 1.970457 0.00 

C 

L1C-L3C 

Clean scan velocity 
% Reduction in 

pore diameter 

-3368.36 5.68x10-34 

Clogged scan velocity -1365.91 1.00x10-246 

Change in Velocity -1482.23 2.26x10-253 

H1C-H2C 

Clean scan velocity 
% Reduction in 

pore diameter 

-4519.22 0.00 

Clogged scan velocity -2629.08 0.00 

Change in Velocity -3481.59 0.00 

H1C-H3C 

Clean scan velocity 
% Reduction in 

pore diameter 

-3882.99 2.13x10-230 

Clogged scan velocity -1455.01 2.03x10-299 

Change in Velocity -1517.80 4.41x10-222 

For hypothesis B, the data of Table 5.5 clearly shows that the velocity of the initial clean 

scan is positively correlated with the velocity of the clogged scan. The strength of this 

correlation increases with clogging (see H1C-H2C compared with H1C-H3C) and is 

stronger for the low flow scan than the high flow scan (see L1C-L3C compared with H1C-

H3C). The most probable mechanisms for this are the positive feedback between initial 

velocity and change in diameter, and hence clogged velocity, coupled with the greater 

change in velocity in the low flow scans (see Figure 5.5). 

For hypothesis C there is a negative correlation between velocity and the percentage 

reduction in pore diameter. For both the high and low flow experiment, this correlation is 

stronger for the clean scan velocity than for the clogged scan velocity. This suggests that 

the influence of the initial pore geometry and flow paths on kaolin deposition are greater 

than the positive feedback between deposition and velocity change. 
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5.3.7.3 Lagrangian Tracer Analysis 

Analysis of the paths of 2362 tracer particles shows how the transport of tracer particles 

varies as clogging progresses. The change in tracer particle paths and velocities with 

clogging are shown in Figure 5.9, whilst the change in particle fate, average time of travel, 

average distance travelled and average tortuosity (split by fate) along with model 

simulation time are given in Table 5.6. 

 

Figure 5.9. Change in tracer paths and velocity with clogging for 2362 tracer 

particles. Clogging increases particle velocity to a greater degree in the low flow 

experiment due to the greater reduction in pore volume. Average particle velocity is 

greater in the H3C simulation but the maximum velocity of a small number of 

particles was greatest in the L3C simulation. 
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Table 5.6. Lagrangian particle tracking transport characteristics for tracer particles. 

Fate refers to whether particles stick to surfaces, escape through the outlet boundary 

or remain in transit at the end of the simulation. Residence time is measured in pore 

volumes so that clean, clogged, low flow and high flow experiments are comparable, 

and in seconds for interpretation of the results. 

  

 

L1C L3C H1C H2C H3C H4E H5E 

Fate 

Number of particles 2362 2362 2362 2362 2362 2362 2362 

Number stick 286 1152 470 836 1109 821 760 

Number escape 728 891 1490 1242 1016 1296 1332 

Number in-transit 1348 319 402 284 237 245 270 

Residence 

time  

(pore 

volumes) 

Average escape 1.37 2.25 1.68 1.94 1.86 2.00 1.97 

Minimum escape 0.89 0.99 0.82 0.91 0.87 0.64 0.79 

Maximum escape 3.34 4.27 3.37 4.72 5.31 5.16 5.33 

Average all 1.50 2.18 1.87 2.03 2.02 2.14 2.17 

Residence 

time  

(seconds) 

Average escape 328.5 210.3 197.8 164.0 130.9 142.7 142.6 

Minimum escape 214.0 93.0 97.0 77.0 61.0 46.0 57.0 

Maximum escape 799.0 799.0 398.0 399.0 373.0 368.0 386.0 

Average all 358.7 203.7 220.1 172.1 141.7 152.8 157.1 

Distance 

(mm) 

Average escape 104.4 130.1 105.6 113.6 117.2 120.4 117.0 

Minimum escape 94.8 107.9 95.1 95.5 99.5 97.9 97.4 

Maximum escape 121.9 178.8 126.6 146.6 162.0 184.2 163.2 

Average all 62.7 59.4 70.5 65.1 58.8 66.8 67.1 

Tortuosity Average escape 1.17 1.44 1.19 1.27 1.31 1.34 1.30 

  Minimum escape 1.07 1.14 1.07 1.08 1.12 1.10 1.10 

  Maximum escape 1.35 2.00 1.42 1.64 1.81 2.00 1.82 

  Average all 1.19 1.44 1.18 1.26 1.28 1.31 1.29 

Run time/ Clock time (mins) 192.5 94.7 98.4 67.5 62.4 60.4 61.7 

From Figure 5.9 it is apparent that, with clogging and a reduction in the pore volume, the 

velocity of the pore water and of the suspended tracer particles increased. This increase 

was greatest in the low flow experiment where the clogged porosity (case L3C) was 

16.71% compared with 24.88% for the high flow experiment (case H3C) (Chapter 3, Table 

3.6). A change in particle path was also notable with the relatively even distribution of 

particles in cases L1C and H1C reduced to a few fast channels. This illustrates the 
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importance of preferential flow paths on particle transport with implications upon particle 

removal discussed in Section 5.4.3. 

Table 5.6 shows the particle transport characteristics. Considering only those particles that 

escape through the outlet boundary, the average residence time (measured in pore 

volumes), distance travelled and tortuosity all increase with clogging. The increase in 

velocity with clogging was negated by the more tortuous and hence longer route the 

particles take through the filter together with the decrease in pore volume due to clogging. 

This resulted in an increase in average residence time. However, when escape time is 

measured in seconds as opposed to pore volumes, there was a decrease in the average 

residence time and a large decrease in the minimum residence time with clogging. This 

corresponds with the shift in behaviour of NaCl tracers observed in the column tracer 

experiments of Chapter 2, discussed further in Section 5.4.3. 

5.4 Discussion 

The aim of this chapter was to apply CFD modelling to the MRI scan data of clogging 

gravel filters and determine if meaningful relationships between the spatial variation in 

gravel structure, flow velocity and kaolin deposition existed. 

5.4.1 Model Accuracy 

Establishing the accuracy of any numerical model is crucial before conclusions can be 

drawn from the output. Ideally, experimentally measured calibration data would be 

available to compare with the model output. Running the model with an alternative CFD 

package and comparing the output for discrepancies can identify shortcomings in one of 

the packages. In addition, a parametric study to determine the sensitivity of the model to 

input parameters and assumptions can be carried out. 

With a paramagnetic tracer (Ramanan et al., 2010) or special pulse sequence (Hingerl, 

2013) it is possible to directly measure tracer propagation and flow velocity with MRI. 

Such a tracer was not carried out as it would necessitate an additional MRI scan whilst the 

development of a pulse sequence tailored to the GEMRIC facility and sample would be 
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challenging and outwith the scope of this PhD. As such, experimentally measured 

calibration data was not available. 

Two of the main commercial CFD packages comparable to OpenFOAM are ANSYS and 

COMSOL. OpenFOAM has been shown to be as accurate as ANSYS Fluent and ANSYS 

CFX (ANSYS Inc.) for both laminar and turbulent fluid flow (Nilsson, 2006; Kosík, 2013; 

Bayraktar et al., 2012; Andersen & Nielsen, 2008). COMSOL Multiphysics was trialled as 

an alternative to OpenFOAM, however the mesh generated by the OpenFOAM utility 

snappyHexMesh could not be converted into a form that could be imported into COMSOL 

and neither could the MRI scan data to allow use of the COMSOL native mesh generation 

utility. As such, COMSOL was not a viable alternative to OpenFOAM in this instance. 

A parametric study was carried out on a subvolume of the MRI scan. Due to the low flow 

rates of both the low flow and high flow experiment, flow through the filter was likely to 

be laminar. This was verified in the parametric study by the minimal difference between 

the flow velocities of a laminar model and a k-ε turbulence model (Appendix B, Section 

B.2). Flows were therefore modelled as laminar as this avoided the uncertainty associated 

with turbulence and surface roughness coefficients. However, a limitation of the laminar 

model was that accurate computation of wall shear stress requires a turbulent model and, as 

shown in Appendix B, Section B.2, was heavily dependent on the choice of wall roughness 

coefficients. For this reason wall shear stress was not reported in the results analysis and no 

conclusions regarding wall shear stress and kaolin deposition patterns could be made. 

A further finding of the parametric study was that a fine mesh (0.6mm) with 2 levels of 

surface refinement was preferable to a coarser mesh (1.5mm) with 4 levels of surface 

refinement. Both produced similar velocity profiles across a representative pore, yet the 

fine mesh consisted of far fewer cells and hence was quicker to solve. The reason for this 

was that high levels of surface refinement produced many more surface cells not necessary 

for calculating flow velocities in a laminar model. However, had a surface roughness 

model been included, then a high number of surface cells could well have been 

advantageous. 
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Whilst there is insufficient data to prove that the model accurately reproduces all of the 

flow features that occurred in the column experiments, its reproduction of bulk flow and 

sedimentation results, along with the CFD software’s proven track record, suggest that the 

model results on modification of flow pathways and clogging are qualitatively correct. 

Thus we can have confidence that the simulated correlations between pore geometry, 

modelled flow velocity and kaolin deposition are representative of what occurs in real 

gravel filters. 

5.4.2 Eulerian Flow Velocities 

The flow fields obtained from the Eulerian model illustrate the spatial variation in velocity 

and how this changes with clogging. As expected, velocities increase with a reduction in 

pore volume resulting from kaolin deposition. The percentage velocity increase is greatest 

in the low flow experiment, in line with the greater amount of kaolin deposited in this 

experiment.  

Somewhat unexpectedly, the maximum velocity was recorded in the low flow experiment 

(0.02320m/s, scan L3C compared with 0.01820m/s, scan H3C) despite an inflow rate half 

that of the high flow experiment. This is thought to be due to the deposition pattern at low 

flows in which more kaolin was retained close to the inlet which allowed for the creation 

of constrictions and regions of localised high velocity. At high flows there was a more 

uniform distribution of kaolin throughout the filter creating fewer constrictions. This 

observation is consistent with deep-bed filtration theory for clean gravel beds where the 

ratio of the suspended particle diameter to media diameter is small. In such a system, the 

removal of particles by straining is negligible (Barton & Buchberger, 2007; Close et al., 

2006) and sedimentation is the dominant process. At higher flow velocities, a greater 

transport distance through the filter is required for a particle to settle onto the media 

surface (Jegatheesan & Vigneswaran, 2005) hence the more even distribution of kaolin 

within the high flow experiment filter. 

In Chapter 4, a method for comparing the change in pore volume with clogging at each 

point in the pore network was developed utilising the medial axis of the pore network. 

Mapping the flow velocity onto the same pore network medial axis is a useful tool for 
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comparing the relationship between maximum pore velocity, pore volume and change due 

to kaolin deposition at each point in the pore network.  

Some care should be taken with the analysis of the medial axis velocities for three reasons: 

1. Due to the no-slip surface boundary, the maximum velocity is most often located at 

the medial axis. However, depending upon pore geometry and particularly in large 

or irregularly shaped pores, this may not always be the case. 

2. The velocity at the medial axis of a pore may not be representative of the velocity 

in the region of that pore in which the kaolin is deposited. Again, this is particularly 

true of large or irregularly shaped pores. 

3. Medial axis points are uniformly spaced (at 300μm intervals) and hence there are 

more medial axis points located within large pores than small pores. The effect of 

large pores is therefore slightly over-represented in any statistical analysis. 

Taking these limitations into consideration, there is clearly a positive correlation between 

pore diameter and maximum pore velocity for scans L1C, L3C, H1C and H2C and the 

strength of the correlation increases with clogging. Significantly, this may allow pore 

diameter to be used to predict where kaolin deposition is most likely to take place, which 

in turn may allow clogging characteristics to be inferred based on pore size distributions 

that can be obtained for some porous media samples by techniques such as mercury 

intrusion porosimetry.  

However, the correlation is not apparent in scan H3C. It is thought that by this point 

clogging within the filter has progressed to such an extent that flow velocities at a 

particular point are no longer defined by the pore diameter at that point; instead they are 

defined by the connectivity of the entire pore in which that point resides. For instance, a 

small diameter pore that is well connected and aligned with the principle flow direction 

would be expected to transmit a greater proportion of the flow than a collection of larger 

but isolated pores. The change from a system in which flow velocities are defined by pore 

diameter to one in which velocities are defined by pore connectivity is inextricably linked 

with the formation of preferential flow paths, discussed in Section 5.4.3. The significance 
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of this is that a prediction of clogging characteristics based on pore size distribution may 

only be valid up to a threshold, beyond which pore connectivity is important and there is 

no substitute for 3D data on pore geometry (e.g. from MRI or x-ray tomography) coupled 

with velocity measurements or flow velocity modelling. 

5.4.3 Lagrangian Particle Tracking of Tracer 

With Lagrangian particle tracking (LPT), it is apparent that flow paths through the 

relatively open and homogenous gravel filter prior to clogging are uniform. As the filter 

clogs, particle paths change dramatically with most particles confined to preferential flow 

paths through which they travel at an increased velocity. As a result of this, particles spend 

less time in the filter and there is a reduced surface area with which they can come into 

contact.  

It is expected that the removal efficiency of pollutants such as pollutant metals would 

greatly reduce with the formation of the observed preferential flow paths. This is because 

the metal ions must adsorb onto a surface, yet the only available surfaces are in the 

preferential flow paths in which the adsorption capacity is likely to be reached. In contrast, 

the entire surface area of the clean filter is available for adsorption and so it would take 

longer for the adsorption capacity to be reached. 

Likewise, it is expected that the removal efficiency of suspended particles would greatly 

reduce with the formation of preferential flow paths. An increase in velocity reduces the 

length of time a particle resides in the filter equating to a reduced chance that this particle 

will settle onto a collector surface (either gravel or deposited kaolin) under the influence of 

gravity. With the constant flow rate and kaolin (size and density) characteristics of the 

experiments, as the low flow areas of the filter continue to clog, velocities in the 

preferential flow paths will continue to increase. 

A logical conclusion from the preferential flow paths observed in the MRI data is that, in a 

system with constant flow rate and constant influent particle characteristics, eventually the 

velocity within the remaining open channels must exceed the kaolin deposition threshold. 
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At this point a dynamic equilibrium will be reached between deposition and erosion of 

already deposited kaolin and the removal efficiency of the filter will effectively be zero. 

Finally, LPT is a useful tool for understanding the change in behaviour of the conservative 

NaCl tracers observed in Chapter 2, Section 2.8.4 (reproduced in Figure 5.10 below). As 

the filter clogged, there was a progressive decrease in peak concentration of the NaCl 

tracer and an extension of the tail coupled with a shift in the centroid to the right. This was 

interpreted as showing more dispersion of the system and a decrease in hydraulic 

efficiency.  

 

Figure 5.10. Residence time distributions (RTDs) for three NaCl tracers at successive 

stages of gravel filter clogging: Tracer 1 is for a clean gravel bed, Tracer 2 after first 

stage of clogging and Tracer 3 after second stage of clogging. See Chapter 2, Section 

2.8.4 for experiment details. 

From the LPT data we can see the reason for this increase in dispersion is the increase in 

average tortuosity of the particles which, when the pore volume has been corrected for the 

reduction in volume due to deposited kaolin (as discussed in Chapter 2), results in a greater 
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residence time within the filter. Similarly, the early breakthrough of Tracers 2 & 3 with 

respect to Tracer 1 can be explained from LPT: the increase in residence time due to a 

slight increase in minimum tortuosity of some particle paths together with the decrease in 

residence time resulting from an increase in velocity (due to the constant flow rate and 

decreasing pore volume) had the net result of decreased residence time for a small 

proportion of the particles. 

5.5 Limitations and Further Work 

Whilst the MRI scan data and modelling approach were suitable for the aims of this study, 

there is scope for improvement: 

1. More frequent MRI scans would provide data on how rapidly the “clogging front” 

progresses through a filter whilst also better identifying the point at which pore 

velocity switches from being determined by pore diameter to being determined by 

pore connectivity in the high flow experiment. 

2. Further scans extending the duration and degree of clogging reached in the low 

flow experiment would be necessary to determine if/when the switch from pore 

diameter determined velocity to pore connectivity determined velocity takes places 

at low velocities. 

3. Including at least one tracer propagation scan would be very helpful in determining 

model accuracy and allow for calibration of model parameters. 

4. Reducing filter diameter and length so that the entire filter volume fits within the 

good quality scan area (Chapter 3, Section 3.4) would allow flow velocities in the 

entire volume to be modelled. This would remove the hazard of potentially 

erroneous velocities at the boundaries of the pore geometry. 

5. If surface roughness were adequately quantified then a surface roughness model 

could be applied. This would allow more meaningful calculation of wall shear 

stress which could in turn be used to predict where kaolin deposition might occur. 
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5.6 Conclusions 

In this chapter we have shown that direct numerical modelling at the pore scale is feasible 

on a desktop computer and is a valuable tool for understanding the relationship between 

the spatial variation in velocity and the resulting spatial variation in particle deposition 

within a gravel filter. 

OpenFOAM was suitable software for this task and a laminar flow model without surface 

roughness was appropriate. A parametric study revealed that the model was not sensitive to 

parameters such as viscosity, solution scheme, Lagrangian dispersion, mesh resolution and 

mesh refinement levels; however inappropriate turbulence and surface roughness 

coefficients did affect results, particularly in the zone close to surfaces.  

Correlating flow velocity with change in pore volume highlighted the positive feedback 

mechanism between initial pore diameter and velocity and hence negative feedback with 

particle deposition. Maximum flow velocities of 0.0232m/s were observed in the low flow 

experiment, compared with 0.0182m/s in the high flow experiment. This was attributed to 

greater deposition at the inlet at the lower flow rate which forced higher localised 

velocities. 

Lagrangian particle tracking helped establish the significance of preferential flow path 

formation on the removal of both suspended and dissolved pollutants. Preferential flow 

paths were particularly visible in the low flow experiment where flow was restricted to a 

few channels and the average tortuosity of the paths that the particles took increased from 

1.19 to 1.44 at low flow. The formation of preferential flow paths was also visible in the 

high flow experiment, although to a lesser extent and average tortuosity only increased 

from 1.18 to 1.28. 

With increasing particle retention, flow velocities increased and the active surface area 

decreased. Particles spent less time within the filter and, due to channelling into 

preferential flow paths, they would be expected to come into contact with a reduced 

surface area for removal. Numerical modelling of the filter pore volume therefore revealed 

this mechanism by which deposition affects particle removal.  
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Chapter 6 – Conclusions 

The aim of this thesis was to improve understanding of how sediment accumulation within 

gravel media filters affects filter performance. Key findings of each chapter are 

summarised below. 

6.1 Chapter 2 

The pore volume of a gravel filter is an important parameter determining how much 

sediment, and hence how much pollutant, can be retained within the filter. By using pore 

volume as a fitting parameter when fitting a convection-dispersion model to tracer 

breakthrough curves, it has been shown that the tracer accessible pore volume of a gravel 

filter can be estimated to within at least 10%. Subsequent tracer breakthrough curves can 

be used to measure the change in mobile pore volume due to sediment accumulation. Such 

a measurement could be a useful diagnostic tool for assessing the status of a filter and 

determining when maintenance or remedial works are likely to be necessary. 

Turbidity measurement are a quick alternative to measuring total suspended solids (TSS) 

gravimetrically and are far more practical when numerous measurements are required, or 

when measurements must be made in the field. However, a relationship between the 

concentration and turbidity of the suspended particles of interest (e.g. kaolin) are required 

to convert turbidity into TSS. It was found that a single relationship between kaolin 

concentration and turbidity was insufficient to calculate the mass of kaolin retained within 

the filter. This was because the mean particle size of the suspension decreases due to 

greater removal efficiency of larger particles within the filter hence influent and effluent 

suspensions had different light scattering properties and hence different turbidities. 

Deriving separate turbidity/TSS relationships for the influent and effluent particle 

suspensions was adequate for this thesis as effluent suspension characteristics were similar 

throughout and between filter runs; however this approach may not work when influent or 

effluent suspension characteristics vary considerably and gravimetric measurements of 

TSS should be used instead. 
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6.2 Chapter 3 

With the use of MRI, the 3D structure and porosity of a filter was measured throughout a 

region of interest (ROI) 84.9mm diameter and 63.3mm long at a resolution of 300μm. The 

resulting 3D volume was free from image artefacts and distortion and the bulk porosity of 

the entire ROI was within 1.75% of the experimentally measured clean bed filter porosity. 

With 2D processing of slices of raw MRI data it was possible to reproduce the 

experimentally measured bulk porosity giving the impression of accurate image 

segmentation into water and gravel phases. However, changing the orientation in which the 

2D slices were processed resulted in a change in bulk porosity of 2.08%. By using mostly 

3D processing steps, and most importantly performing the initial contrast enhancement in 

3D, it was possible to reduce this slice processing direction dependent variation in porosity 

down to 0.76%. This echoes the recommendation of Elliot & Heck (2007) who state that, 

when 3D data is available, the data should be processed in 3D. 

Changes in bulk properties of the filter indicated greater kaolin retention in the lower of the 

two flow rates investigated, in line with filtration theory. However, the data also indicated 

different kaolin accumulation characteristics. Even when taking account of the greater total 

amount of kaolin retained in the low flow rate filter, there was a greater reduction in active 

porosity and a similar decrease in active surface area. This was attributed to the formation 

of regions of pore volume disconnected from the main pore volume due to kaolin 

deposition. The implications of this for pollutant removal are reduced surfaces onto which 

particles can settle and dissolved pollutants can adsorb. 

Removal, and hence porosity change, did not exhibit a strong first-order trend with 

distance into the filter as was proposed by Iwasaki et al. (1937). Between the first and 

second kaolin clogging phase, there was very little change in porosity within the MRI ROI 

(which was located towards the inlet of the gravel filter), but a mass balance measure of 

kaolin retention confirmed continued kaolin removal elsewhere within the filter. This 

evidence supports the mobile first-order process zone concept of removal proposed by 

Ahsan (1995) in which first-order removal occurs during the initial clean bed filtration 
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stage, but as particles accumulate and the inlet porosity reduces, the first-order zone shifts 

into an ever diminishing volume approaching the filter outlet. 

Analysis of the change in porosity of discrete regions within the filter showed correlation 

between initial pore volume and percentage change in pore volume: small pores are more 

likely to clog whilst large pores are more likely to form preferential pathways in which 

velocities increase and subsequent particle removal becomes less likely. 

When 3D volume data is available, as in this study, it was found to be of more benefit to 

analyse changes in bulk properties of the entire volume (such as average porosity, pore 

volume and surface area) and in discrete 3D regions evenly distributed throughout the 

volume than to reduce the data to a series of 2D slices. This was primarily because 

averaging porosity across an entire slice masked the presence (or absence) of preferential 

flow paths making quantitative analysis of their effects and importance impossible. 

6.3 Chapter 4 

Creating a pore network medial axis from the 3D segmented MRI data allowed the change 

in network characteristics with clogging to be measured. Networks became smaller and 

less well connected with clogging, particularly in the low flow experiment, whilst average 

branch tortuosity increased. 

Analyses based upon the pore networks were better able to capture the presence of 

preferential flow paths. Without information on the volume of flow (and hence velocity) in 

each section of the network, it was not possible to identify preferential flow paths in the 

clean media scan, but by observing which sections of the pore network did not clog it was 

possible to infer sections with a higher velocity. 

No evidence of previous studies of porous media in which the pore network medial axis 

was used for measuring the change in pore diameter with clogging was found. This was 

thought to be because firstly the successive 3D volume scans of clogging media necessary 

to create the pore networks are rare; and secondly the spatial location of the pore network 

shifts with accumulation of sediment within that network resulting in no common reference 
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point with which to compare the change in pore diameter. A method of defining a common 

reference point between successive scans and assigning the correct pore diameter at each 

stage of clogging for each point in the pore network was developed. Visualisation of the 

change in pore diameter clearly showed preferential flow paths develop and become more 

pronounced with clogging. 

6.4 Chapter 5 

Using the open source CFD modelling software OpenFOAM, flow velocities within the 

MRI derived pore geometry were simulated for each stage of clogging. Mapping the flow 

velocity onto the same pore network medial axis used in Chapter 4 allowed correlation 

between the flow velocity and the degree of clogging. Initial diameter was positively 

correlated with velocity and resulted in negative feedback with particle deposition. In the 

high flow rate experiment the strength of this correlation decreased with clogging and I 

hypothesise that, with considerable clogging and a high flow velocity, pore geometry and 

connectivity becomes more important than initial pore diameter in determining where 

particle deposition occurs. 

Tracking of Lagrangian particles representing a conservative tracer allowed the transport 

of pollutants through a clogging filter to be assessed. The simulated pollutant breakthrough 

profiles and particle tracks showed that, with clogging, pollutant particles spend less time 

in the filter, are concentrated within preferential flow paths and encounter a reduced 

surface area during their journey though the filter, all of which is expected to result in a 

reduced removal efficiency of pollutants with clogging. 

6.5 Reflection on Gravel Filter Design and Further Research 

Gravel media SuDS must operate under very variable conditions: influent flow rates and 

suspended sediment characteristics vary from location to location depending on the road 

geometry and topography, local land use, amount of road traffic, climate, and pre-

treatment. In roughing filters for drinking water treatment, inflow rate can be strictly 

regulated and hence the flow velocity within the filter can be controlled; this leaves 
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suspended sediment size, concentration and characteristics as the main variable, together 

with the change in flow paths as sediment is deposited.  

Due to the variability in flow and sediment characteristics experienced by SuDS and 

roughing filters, it is neither possible nor of value to specify an “optimal” filter design that 

is appropriate for every situation. Instead, the approach taken in this thesis was to 

investigate the processes affecting fine sediment accumulation; in particular the link 

between local pore velocity, particle deposition and the formation of preferential flow 

paths. The understanding of filter operation gained from this approach has not led to a 

fundamental physical re-design of gravel filters (for practical reasons such as road slope 

and size, type and shape of gravel locally available, the physical design of SuDS filters are 

largely fixed) but has led to a better understanding of how filters clog: filter lifetime is not 

simply a function of the amount of sediment entering, the removal efficiency and the pore 

volume available for storage. Assuming a filter design life based on these parameters alone 

is incorrect and may explain why SuDS filters are predicted to operate for 10 years but 

many are considered to have failed after only a few years operation and why roughing 

filter effluent quality can be unpredictable from one filter run to the next. Filter design life 

and effluent quality are instead very much dependent on the formation of preferential flow 

paths, disconnected pore volumes and the subsequent increase in local pore velocity. A 

more realistic expectation of filter design life and effluent quality that takes these processes 

into account would allow better planning of maintenance activities. 

According to Wegelin (1996), roughing filters can be operated until either an unacceptably 

high inlet pressure head is reached (leading to overflow of the inlet structure), or effluent 

quality deteriorates to an unacceptable level (termed pollutant breakthrough). The filter 

must then be cleaned by excavating the gravel media, washing it and replacing it. The 

same should be true for gravel media SuDS although, as it is not a regulatory requirement 

for effluent quality to be measured, it is unlikely that pollutant breakthrough would be 

detected.  

Downward hydraulic flushing at a filtration rate of 10-30m/hr has been mentioned by 

Ahsan (1995) as an alternative method of removing retained sediment in direct horizontal 

roughing filtration. The erosion stages carried out in the current thesis (flow velocity of 
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3.44m/hr followed by 4.58m/hr) removed only ~2% of the deposited kaolin (Chapter 3, 

Section 3.6.1) suggesting that hydraulic flushing at lower flow rates is insufficient to 

meaningfully restore porosity. To flush at a filtration rate of 10-30m/hr would require a 

large volume of stored water, additional structures such as pipes and control valves 

connected to the filter and frequent maintenance of these structures. This would negate one 

of the major strengths of roughing filters which is their simplicity of design and operation 

and would be extremely costly to implement for SuDS filters. 

Ahsan (1995) also noted that surface washing was more effective at restoring porosity than 

downward hydraulic flushing. In effect, SuDS filters are subjected to surface washing 

every rainfall event when they fill and empty. For this reason, particle erosion in SuDS 

filters may differ from the constant erosional flow rates investigated in this thesis. Further 

experiments with a variable water level would be required to determine the impact of 

surface washing on the erosion of retained particles and on subsequent particle retention. 

The experiments in this thesis were carried out with kaolin as a surrogate for both 

suspended river sediment and road runoff particles. As noted in Chapter 2, Section 2.4, 

kaolin has a relatively narrow particle size distribution. Pre-treatment of road runoff (such 

as flowing over a grass verge or through a gully pot) is recommended in the design 

guidance. Pre-treatment would remove the larger particles but, despite this, kaolin may not 

be representative of road runoff particles entering a SuDS filter. Further experiments with 

different sized particle suspensions would be necessary to reveal how an operational SuDS 

filter might clog. 

The method of identifying the pore skeleton and correlating initial porosity with change in 

porosity proposed in this thesis gave valuable information on the spatial heterogeneity in 

particle deposition. However, more advanced skeletonisation and network analysis 

techniques that can identify pore bodies, pore throats and take into account their 

coordination number and aspect ratio may help arrive at a more mechanistic understanding 

of the particle removal and remobilisation processes.  
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Appendix A – Glossary of Image Processing 

The theory and methodology underlying the pre-processing, segmentation and post-

processing that resulted in the selection of an optimum MRI scan image processing method 

(Section 3.5.2) is documented in this appendix. 

A.1 Pre-segmentation Processing 

Pre-segmentation processing is an important step for improving the suitability of the data 

for the chosen segmentation method. Five methods were investigated as part of this 

research: 

 General: cropping to ROI and image alignment. 

 Contrast enhancement: histogram normalising, histogram equalising, local contrast 

enhancement and unsharp mask. 

 Noise removal: mean filter, median filter, bandpass filter, Gaussian blur, outlier 

removal and background subtraction. 

 Edge modification: sharpen and greyscale morphological erode/dilate sequence. 

 Edge preserving noise removal: Bi-exponential edge preserving smoother and 

bilateral filter. 

A.1.1 General 

Cropping the MRI data was necessary as the region of interest (ROI) was smaller than the 

total volume scanned in the MRI. The total scan area also included areas outside the 

column which, despite the lack of water there, produced “noise”. Cropping the image to 

the ROI before locally adaptive thresholding produced a poorer segmentation as the area 

outside the ROI still contains information (noisy pixels) used in the search radius with the 

effect of producing errors at the edge of the ROI. Some image cropping before 

segmentation is permissible so as to reduce the volume and hence processing time. 

However, cropping to the ROI should therefore only be carried out in post-processing 

(after segmentation) as this way the segmentation errors occur outside the ROI. 
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Accurate image alignment between the clean gravel scan and subsequent clogged scans 

was crucial for determining kaolin deposition. Using markers inside the column as control 

points, images were aligned in the X and Y planes by translation and rotation and in the Z 

plane by adding or deleting slices. By using the bicubic interpolation option in imageJ, 

translating the image by a fraction of a pixel and rotation by any angle was possible. 

Alignment in the z axis was possible in multiples of 0.3mm (the depth of each slice). Due 

to the use of interpolation, image alignment must be one of the very first pre-processing 

steps performed on the full grey-scale image; it is important to note that this step must 

come before binary processing as interpolating a black/white sediment/pore binary image 

would result in the creation of false grey pixels. 

A.1.2 Contrast Enhancement 

The MRI data was a 15-bit grey scale intensity histogram which was imported into ImageJ 

as 16-bit. As can be seen in Figure A.1 (left), the raw data does not cover the full range of 

possible intensities. As any automatic segmentation method relies on changes in intensity 

to determine the separate phases, increasing the contrast of the image is desirable. 

Normalising the histogram involves stretching the data linearly over the entire range of 

possible intensities. As the raw data was 16-bit, but the data used for the segmentation is 8-

bit, this stretching can be done without losing data and distorting the shape of the 

histogram, provided it was done before the conversion from 16-bit to 8-bit (see Figure 

A.1).  
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Figure A.1. (A) 16-bit unprocessed histogram of raw data. (B) normalised (i.e. 

contrast enhanced) 16-bit data. (C) 16-bit data converted to 8-bit, then normalised 

and (D) 16-bit data normalised then converted to 8-bit Whilst quite similar, D is 

preferable to C as the shape of the histogram is not altered and data is not lost. 

Equalising the histogram is more sophisticated than normalising as the stretching can be 

performed non-linearly or non-monotonically. A comparison of normalization and 

equalization is shown in Figure A.2.  In ImageJ, the equalising method uses the square root 

of the histogram (Ferreira & Rasband, 2012) and produces greater contrast between the 

water and gravel phases than normalising the histogram whilst also entirely altering the 

shape of the histogram. 
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Figure A.2: contrast enhancement with (A) normalisation, (B) equalisation, (C) 

unsharp mask and (D) contrast limited adaptive histogram equalisation. 

Unsharp masks are typically used in image processing to sharpen an image by amplifying 

the local contrast. By specifying a large local radius of 100 pixels and a high mask weight 

of 90%, the unsharp mask tool of ImageJ can be used to greatly increase the contrast over 

the entire image (Figure A.2). 

The local contrast enhancement method used was contrast limited adaptive histogram 

equalisation (CLAHE) (Figure A.2). The method employed in ImageJ is 2D, however a 3D 

version has also been implemented in the open-source software ICY created by the 

Quantitative Image Analysis Unit of the Institut Pasteur (www.bioimageanalysis.org). In 

CLAHE, the image is first divided into a number of square contextual regions. The 

histogram of each contextual region is enhanced and then a bilinear interpolation scheme is 

used to avoid visibility of region boundaries. Finally, the increase in image noise 

associated with contrast enhancement is reduced by limiting contrast enhancement in 

homogenous areas (Zuiderveld, 1994). 

Of the four contrast enhancement methods, three prove useful to gravel/water 

segmentation: equalisation, CLAHE and unsharp masks. These methods were selected for 

further investigation. 
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A.1.3 Noise Removal 

Noise removal (low pass/smoothing) filters are commonly applied to x-ray data to reduce 

the effects of beam hardening (Iassonov & Tuller, 2010) and to other types of data to 

remove outliers and make a more homogenous image (Tarquis et al., 2009).  

Mean filters replace the central pixel with the mean of its neighbours within a specified 

radius. Consequently mean filters remove noise, but also smooth the image, particularly at 

high contrast edges.  

Median filters are commonly used to remove noise (Christensen, 2006; Luo et al., 2010; 

Keller et al., 2011; Reingruber et al., 2011; Bera et al., 2011) and do this by replacing the 

central pixel with the median value of its neighbours, therefore reducing ‘salt and pepper’ 

noise and resulting in less smoothing than mean filters. Gaussian blur works by 

convolving the image with a Gaussian function. This smoothes the image and reduces 

noise. Gaussian blur is also a commonly used noise removal method (Iassonov et al., 2009; 

Tarquis et al., 2009; Elliot et al., 2010; Bera et al., 2011). 

3D bandpass filtering is implemented in ImageJ as a Fourier transform. It can be used to 

enhance or remove objects of a particular size and is therefore useful in removing both 

noise and scanning artefacts such as horizontal or vertical stripes. 

Outlier removal is similar to a median filter in that the value of a pixel is replaced by the 

median value of the neighbouring pixels. However, it is applied only if the pixel value 

deviates from the median by more than the threshold value. Outlier removal can therefore 

be used less invasively than a median filter and results in more discriminate smoothing of 

the image. A 3D implementation is not available in ImageJ. 

Background subtraction can be used to remove a 2D smooth continuous variation in image 

intensity, such as might be produced by MR intensity inhomogeneity, using the ‘rolling 

ball’ algorithm (Sternberg, 1983). 
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A.1.4 Edge Modification 

Edge modification can be used to restore edge detail that may be lost during noise removal. 

 Sharpening increases contrast, similar to an unsharp mask, and can partially restore edge 

detail lost by smoothing, but may also accentuate noise (Ferreira & Rasband, 2012).  

Greyscale erode/dilate filters replaces each pixel with the minimum/maximum pixel within 

the defined neighbourhood. Greyscale erode/dilate can be used to create a higher/lower 

porosity final image or a series of erosion steps followed by dilation can be used to remove 

small structures (e.g. noise) from the image. 

A.1.5 Edge Preserving Noise Removal 

Edge preserving noise removal attempts to remove noise from the image without 

smoothing sharp transitions in image intensity such as the boundary between gravel and 

water. One such edge preserving noise removal technique is the bilateral filter 

implemented in ImageJ by Chaudhury et al. (2011) in which a Gaussian bilateral filter is 

applied to smooth the image. An additional range filter restricts the averaging effect of the 

Gaussian filter to neighbouring pixels with an intensity close to the pixel of interest.  

Another technique is the bi-exponential edge-preserving smoother (BEEPS) implemented 

in ImageJ by Thévenaz et al. (2012) which uses a bi-exponential filter with adaptive 

weights. This filter is ‘edge-aware’ and is applied recursively so as to smooth the areas 

between edges whilst maintaining the edges themselves. Both methods can be 

implemented in 2D in ImageJ but not in 3D. 

A.1.6 Pre-Processing Evaluation 

Each pre-processing method stated above (and intuitive combinations of methods) were 

trialled and evaluated based on the shape of the resulting image histogram, the degree of 

preservation of the edges between gravel and water and their effect on the signal to noise 

ratio. The histogram shape (as shown in Figure A.3) was evaluated by eye: a bi-modal 

histogram with a clearly defined peak for gravel and a clearly defined peak for water is 
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preferable for image segmentation. Likewise a high signal to noise ratio and clearly 

defined edges are desirable. The edge definition was evaluated by comparing the pre-

processed image with the gravel outline from a single slice manually segmented by tracing 

the outline of each gravel particle (see Section A.2.1 for details on manual segmentation). 

The signal to noise ratio (SNR) and peak signal to noise ratio (PSNR) were measured using 

an ImageJ plugin created by Daniel Sage (bigwww.epfl.ch/sage/soft/snr) according to the 

method of Gonzalez & Woods (2008) where the processed image is compared to a 

reference image (in this case the un-processed image) on a slice-by-slice basis with the 

difference expressed in decibels (dB). 

  

Figure A.3. contrast enhance with edge preserving noise removal. (A) CLAHE with 

bilateral filter, (B) unsharp mask with bilateral filter, (C) unsharp mask with BEEPS 

and (D) equalisation with bilateral filter. 

Contrast enhancement can produce a bi-modal histogram, but, unfortunately, generally 

introduces noise. Noise removal can successfully remove noise but also causes blurring of 

the edges of gravel particles. Sharpening can restore some of the edge detail but can also 

enhance noise. Of the numerous combinations of pre-processing methods and parameters, 

the ten that best met the three criteria of creating a bi-modal histogram, increasing SNR 

and preserving edge details are outlined in Table A.1. 

http://bigwww.epfl.ch/sage/soft/snr/
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Table A.1. Pre-processing methods that improved the MRI data suitability for 

segmentation. Each method consists of cropping to the initial ROI, image alignment 

and contrast enhancement followed by either noise removal or edge preserving noise 

removal. 

Step 1 Step 2 Step 3 Step 4 

Cropping to 
Initial ROI 
75mm x     

130mm x  
100mm.        

Slices 170-420 
 

Image 
Alignment 
Translation 

Rotation 
Slice Number. 

(values 
determined for 

each scan) 

2D CLAHE                                
Block size = 127    
Histogram bins = 256    
Maximum slope = 10 

2D outlier removal 

Radius = 1 

Threshold = 1 

Bright removed, then dark 

3D median filter 

Radius = 1 

2D bilateral filter 

Implementation = Fiji 

Spatial radius = 3 

Range radius = 50 

2D Equalised        
Saturated pixels = 
0.4% 

2D outlier removal 

Radius = 1 

Threshold = 1 

Bright removed, then dark 

2D bilateral filter 

Implementation = Fiji 

Spatial radius = 3 

Range radius = 50 

2D Unsharp mask    
Radius (sigma) = 100    
Mask weight = 90% 

3D median filter 

Radius = 1 

2D BEEPS 

Range filter = Gauss 

Photometric st dev = 1000 

Spatial decay = 0.01 

Iterations = 50 

2D bilateral filter 

Implementation = Fiji 

Spatial radius = 3 

Range radius = 50 

3D CLAHE                               
XY block size = 127            

Z block size = 63      
Histogram bins = 256    
Maximum slope = 10 

3D median filter 

Radius = 1 

2D bilateral filter 

Implementation = Fiji 

Spatial radius = 3 

Range radius = 50 
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A.2 Image Segmentation (Binary Thresholding) 

Image segmentation, also known as binary thresholding, consists of dividing a grey scale 

image into a binary black and white image. A great number of image segmentation 

techniques exist (over 100 according to Iassonov et al. (2009). However, many of these 

were developed for purposes other than porous media research (such as optical character 

recognition of scanned documents or medical diagnosis from x-ray data). 

The methods applicable to porous media research have been grouped by Iassonov et al. 

(2009) and very briefly stated below: 

 Global thresholding – a single intensity value used to segregate areas of interest in 

the entire image. 

 Locally adaptive thresholding – local characteristics used to calculate a threshold 

that varies spatially across the image. 

 Region growing methods – initial “seed” regions are defined and a generic 

algorithm then iteratively adds neighbouring voxels to this region based on 

selection criteria such as similarity in intensity to the seed region. 

 Deformable surfaces – an iterative shape based approach that requires seed points 

and in which the final shape is already known. 

 Probabilistic fuzzy clustering – both voxel intensity and voxel connectedness 

within a cluster are used to segregate areas of interest. 

 Bayesian methods – probabilistic methods based on Bayesian decision theory. 

 Hybrid methods – a mixture of the other methods. 

 Manual segmentation – an operator segments images using their own judgement. 

Many studies use global thresholding and adjust the threshold value to match calculated 

and measured porosities whilst only a few more recent studies apply advanced 

segmentation techniques such as full 3D processing instead of 2D “slice-by-slice” 

processing (Iassonov et al., 2009). 



 Appendix A  

 

  

 

 

210 

Manual segmentation is time consuming, prone to user error, bias and inconsistencies. For 

that reason, automated segmentation programmes were used and manual segmentation was 

only used on a limited number of slices to verify the automated segmentation. Some of the 

segmentation tools available in ImageJ are given in Table A.2. Those methods investigated 

were Auto Threshold, Auto Local Threshold, Adaptive 3D Threshold, 3D Spot 

Segmentation and Connected Threshold Grower. 

Table A.2. Some automatic segmentation tools available in ImageJ.  

 

 

 

 

Name Domain Description

Auto Threshold 

v1.14

2D      

(semi 3D)

Global threshold set with algorithms based on histogram shape, 

clustering, entropy or manual value for single slice or entire stack

Auto Local 

Threshold v1.2
2D

Locally adaptive with several algorithms to choose from

3D Spots 

Segmentation
3D

Hybrid region growing/ locally adaptive method

Adaptive 3D 

threshold v1.22
3D

Locally adaptive with user specified radius and weighting

BoneJ Optimize 

Threshold
2D

Hybrid global thresholding of entire stack to minimise connectivity 

between slices and hence minimise noise

Multi Otsu 

Threshold
2D

Image histogram split into regions and global threshold set for each 

region using the Otsu clustering algorithm

K-means 

Clustering
2D

Global threshold with clustering algorithm to assign each pixel into 

regions

Seeded Region 

Growing
3D

Region growing

Interactive 3D 

Segmentation
3D

Region growing with manual selection of seeding points and some 

manual control over region growth

Watershed 

Segmentation
2D

Region growing with global threshold

Connected 

Threshold Grower
3D

Region growing where seed points and upper and lower global 

threshold for pixel intensity are manually specified

Advanced WEKA 

Segmentation

2D Global threshold where the threshold value can be trained by 

manually selecting areas

http://www.dentistry.bham.ac.uk/landinig/software/autothreshold/autothreshold.html

http://www.dentistry.bham.ac.uk/landinig/software/autothreshold/autothreshold.html

http://imagejdocu.tudor.lu/doku.php?id=plugin:segmentation:3d_spots_segmentation:start

http://www.pvv.org/~perchrh/imagej/thresholding.html

http://bonej.org/threshold

http://rsbweb.nih.gov/ij/plugins/multi-otsu-threshold.html

http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html

http://ij-plugins.sourceforge.net/plugins/segmentation/Howto-Seeded-Region-Growing-Segmentation.pdf

http://132.187.25.13/ij3d/?page=IntSeg_3D&category=Extensions

http://bigwww.epfl.ch/sage/soft/watershed/

http://ij-plugins.sourceforge.net/plugins/3d-toolkit/example-connected-threshold-growing.html

http://fiji.sc/wiki/index.php/Advanced_Weka_Segmentation
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A.2.1 Manual Segmentation 

To compare the performance, and ultimately to validate the choice of the segmentation 

method used, unprocessed slices from the Scan L1C (clean gravel) were manually 

segmented into gravel regions and water filled regions. First, the entire 211 slices were 

segmented automatically using Auto Local Threshold (Table A.2) with the threshold 

calculated from the mean intensity within a radius of 20 pixels. This method approximately 

reproduced the gravel structure and, after post processing by de-noising, yielded 

approximate average porosities for each slice. Nine slices from the 211 thick ROI were 

selected for manual segmentation: three slices of high porosity, three slices of low porosity 

and three slices of average porosity. 

The nine slices were manually segmented using ArcGIS to trace around the gravel particles 

and then the area of gravel was divided by the total area of the slice and subtracted from 

one to yield the porosity. Manual segmentation was slow, tedious, prone to user bias in 

setting the threshold between gravel and water and prone to user error in applying that 

threshold consistently. However, it also utilises the pattern recognition capabilities of the 

human brain allowing the segmentation at the image edges (where the water signal varies 

from being lower than the gravel to being higher than the gravel), ignoring potential image 

artefacts and producing a segmented image that did not require post processing such as de-

noising. Figure A.4 shows manual segmentation of a slice. Areas close to the column wall 

were difficult to threshold automatically as the signal from the water changes from being 

higher (lighter) than the gravel to lower (darker).  
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Figure A.4. manual segmentation of gravel (green hatched area) from water in an 

unprocessed MRI scan (Slice 155 of Scan 1 - Clean). Outer red ring is outer region of 

interest (ROI) and is the maximum extent of the image visible in all slices of the scan. 

Inner red ring is offset 25 pixels from the outer ring. 

A.2.2 Automatic Segmentation 

Analysis of the scan L1C intensity value histogram (Figure 3.3; histogram B) shows that 

the data is not distinctly bi-modal when considering the entire ROI. However, when 

looking at small regions of the image, the image is markedly bi-modal (Figure 3.3; 

histogram A) and it is possible for binary segmentation to split the image into gravel and 

water phases within these regions. This suggests that locally adaptive thresholding 

algorithms are more suitable for this data than global thresholding. Towards the edge of the 

image (around 25 pixels), the signal of the water drops and it is more difficult to 

distinguish water from gravel. For this reason, the area 25 pixels from the edge were not 

included further in the analysis reducing the ROI to 84.9mm diameter and 63.3mm length. 
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From the list of available automated segmentation methods (Table A.2), Auto Threshold, 

Auto Local Threshold, Adaptive 3D Threshold, 3D Spot Segmentation and Connected 

Threshold Grower were selected for further analysis. Each of the segmentation method, in 

combination with the pre-processing methods detailed in Table A.1, were used to segment 

scan L1C. The merits and suitability of each segmentation method are discussed below. 

A.2.3 Auto Threshold 

As global thresholding has been used in so many previous studies (Cooper et al., 2003; 

Elliot & Heck, 2007; Tarquis et al., 2009; Munkholm et al., 2012), it has been used in this 

study as the baseline with which other segmentation methods are compared. Figure A.5 

shows the raw data for Slice 155 together with a water/solid segmented image using the 

ISOData algorithm of Auto Threshold.  

 

Figure A.5. Raw MRI data for slice 155 (left) compared with slice segmented using a 

global threshold (right). Raw data contrast was increased for display but not for 

segmentation. ISOData algorithm was used based on entire stack histogram (211 

slices) resulting in a threshold value of 31 (on scale 0-255). No pre- or post-processing 

of images. 

The ISOData algorithm developed by Ridler & Calvard (1978) sets an initial threshold that 

is used to divide the image into object and background (in this case, water and gravel). In 

this method, the initial threshold is varied incrementally until it is larger than the average 
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of the average background minus average objects (implemented in ImageJ as Equation ). 

Out of the 16 algorithms available within Auto Threshold, the ISOData algorithm was 

chosen as it is relatively straightforward, was determined (by eye) to give an adequate 

result and gave the same threshold as other popular methods such as the Otsu thresholding 

clustering algorithm. 








 


2

objectsaveragebackgroundaverage
threshold  Equation A.1 

Global thresholds work well at the centre of the image, but it can be seen in Figure A.5 that 

they are inappropriate near the edge. This is because a single threshold value cannot be 

used over the entire range of intensities that represent water in this MRI scan. 

A.2.4 Auto Local Threshold 

To overcome the limitations of using a single global threshold, the 2D locally adaptive 

plugin Auto Local Threshold was investigated. This plugin allows selection from six 

algorithms that can be applied to set a global threshold within a user specified radius based 

on the histogram characteristics within that radius. In other words, every single pixel in the 

image is segmented based on a threshold determined from the pixels that surround it. This 

allows a very different threshold to be automatically set near the edges where the signal 

intensity of water is much lower than that at the centre. 

In general, the Bernsen and Niblack algorithms gave the best results (Figure A.6). 

However, depending on what pre- and post-processing was used, MidGrey and Mean at 

times gave better results. 

The Bernsen algorithm is based on the local contrast: if the local contrast is below the 

contrast threshold, the intensity threshold is set as the mean of the maximum and minimum 

intensities within the local search radius. In imageJ, the Bernsen algorithm is implemented 

according to the following equation (Sezgin & Sankur, 2004): 
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        njmiInjmiIjithreshold ww  ,min,max5.0,  Equation A.2 

provided the contrast, C, meets the following criteria: 

      15,,,  jiIjiIjiC lowhigh  Equation A.3 

Where I = pixel intensity, 

       (i,j) = pixel coordinates 

          w = local search radius 

      m, n = pixel coordinates range (defined by w) 

The Niblack algorithm is adapted from Niblack (1986) with the addition of an offset from 

the mean, c:  

      cjikjimjithreshold  ,.,,   Equation A.4 

Where k = is a constant (by default 0.2) 

           σ = standard deviation  

These algorithms perform similarly to the global threshold ISOData algorithm at the centre 

of the image, but perform far better at the edges where the contrast between gravel and 

water is much lower, as can be seen by comparing the right hand image in Figure A.5 with 

the right hand image in Figure A.6.  
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Figure A.6. Raw MRI data for slice 155 (left) compared with slice segmented using 

the locally adaptive Bernsen algorithm with a search radius of 30 pixels (right). Raw 

data contrast was increased for display but not for segmentation. No pre- or post-

processing of images. 

A.2.5 Adaptive 3D Threshold 

2D adaptive segmentation is an improvement over global thresholding, however the MRI 

data is 3D and so should be segmented with a 3D algorithm in order to maintain the slice-

to-slice features (Elliot & Heck, 2007). Adaptive 3D Threshold was the only 3D locally 

adaptive thresholding plugin found for ImageJ. The user sets a base threshold, a 3D search 

radius and a local weighting that determines the extent to which the local threshold can 

modify the base threshold. A search radius greater than 10 requires a huge amount of RAM 

to process the image stack (333x433x250 pixels) and, even with a local weighting factor of 

99% applied to a base threshold of 31 (the threshold calculated by the ISOData global 

thresholding algorithm), the local weighting is not strong enough and so the resulting 

segmented image is virtually indistinguishable from the global thresholding method. This 

method did better preserve the 3D nature of the data but the segmentable volume was no 

larger than that for Auto Threshold and was smaller than for Auto Local Threshold. 
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A.2.6 Connected Threshold Grower & 3D Spot Segmentation 

Connected Threshold Grower requires the selection of a single “seed point” and an upper 

and lower global threshold specified by the user (in this case specifying the upper and 

lower intensities of water in the MRI scan). Voxels adjacent to the seed point are evaluated 

and, if the intensity falls within the threshold band, those voxels are classed as water. If the 

intensity is outwith the threshold band, they are classed as part of the background. Voxels 

adjacent to the newly classed water voxels are then evaluated and segmented and the 

process repeats until the entire image has been segmented. Due to setting a global 

threshold, this method is not appropriate. Also, as only voxels that can be connected to the 

initial seed point are segmented, it would not be appropriate for analysing the clogged 

experiment results where some pore spaces were found to become entirely disconnected 

from the main pore network (and hence the initial seed point) after prolonged clogging. 

 

Figure A.7. Raw MRI data for slice 155 (left) compared with slice segmented using 

the 3D Spot Segmentation local mean algorithm with local search radii of 20, 21 and 

22 pixels and local weighting of 50% (right). Raw data contrast was increased for 

display but not for segmentation. No pre- or post-processing of images. 

3D Spot Segmentation uses multiple seed points. A local threshold is computed around 

each seed and voxels with values higher than this local threshold are classed as water. 

Three radii are set for the local weighting with the option of changing the weighting factor. 
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An initial background threshold is set (a global threshold) with the option of a local 

threshold calculated by the local mean method inside the local radii. This method is much 

slower than 2D Auto Local Threshold but gives comparable results (as can be seen by 

comparing Figure A.7 with Figure A.6) and as it is a 3D method it should, in theory, better 

preserve the 3D data. The method used to obtain the seed points was to threshold the image 

using Auto Local Threshold, invert the intensity values, calculate a 3D distance map of the 

gravel and use a 3D Fast Filter to extract the maximum points that roughly correspond to 

the centre of each grain of gravel. 3D Spot Segmentation was then applied on the raw 

image using these seed points. This is a time consuming process and limits the area that 

can be segmented by 3D Spot Segmentation to the area that can be segmented by Auto 

Local Threshold. It was found that the process of obtaining seed points and applying 3D 

Spot Segmentation was sensitive to the direction in which the stack of images was 

processed: porosity varied by 1.2% depending on whether the stack was processed from 

top to bottom, left to right or front to back. Despite initially looking promising in its ability 

to reduce the 3D edge effects, the 3D Spot Segmentation tool could not reliably be used to 

threshold the entire scan area and was not pursued further.  

A.3 Post-segmentation Processing 

Post-processing the segmented image consisted of removing noise, edge operations to fine 

tune the porosity and cropping to create the final 3D volume for analysis. Noise removal 

techniques used were 3D median filter (described in Section A.1), 3D isolated pixel 

removal which replaces only those voxels completely surrounded by those with a different 

value, and Despeckle, a form of 2D median filter. 3D region removal was used to remove 

regions of gravel smaller than 10 voxels as these must be the result of noise or incorrect 

segmentation (except at the image boundaries where 3D region removal was not applied). 

The edge operations investigated were erode/dilate sequences to remove small structures 

and increase porosity and quasi-3D watershedding. Watershedding has the potential to 

separate particles of gravel that are touching allowing individual particles to be counted 

and their size measured as well as increasing the porosity of the image and ensuring that 

very small pore spaces (smaller than the MRI resolution) are re-introduced into the final 

image. The watershedding procedure developed is shown in Figure A.8 and consists of 
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taking the segmented image and inverting the intensities so that the gravel has a high 

intensity, calculating the 3D local thickness of the gravel then re-slicing this data so there 

is a stack of slices for each orthogonal plane. The grey-level watershed segmentation 

plugin developed by Tsukahara et al. (2008) is then applied to each orthogonal stack and 

the resulting watershed lines combined to give what we refer to here as quasi-3D 

watershed lines. These watershed lines can then be subtracted from the segmented image to 

give the separated gravel particles. The reason this method is referred to as quasi-3D is that 

each set of watershed lines was generated with 2D algorithms applied slice-by-slice to the 

3D stack of images; but when combined, have properties more like a 3D watershedding 

algorithm. This method has some limitations as it results in over-segmentation of some 

gravel particles (resulting in the splitting of some particles) with concave sections and 

introduces some artefacts to the final image but also has the potential to compensate for an 

under-estimation of the pore volume during segmentation – particularly between gravel 

particles in close proximity – and so was evaluated as a post-processing tool. 
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Figure A.8. 3D watershedding can be used to separate gravel particles to a certain 

extent. The individual particles can then be measured. (A) segmented gravel image, 

(B) gravel local thickness, (C) 3D watershed lines overlaid upon gravel showing where 

lines intersect the gravel in red and (D) the separated gravel particles. 

A.4 Selection of Image Processing Method 

Combinations of pre-processing, automatic segmentation and post-processing were 

evaluated as described in Section 3.5.1. The optimum image processing method is 

presented in Section 3.5.4. 
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Appendix B – Parametric Study Results 

The aim of the parametric study was to evaluate the sensitivity of the model to 1) physical 

parameters of the gravel filter that could not be measured, and 2) elements of the modelling 

approach that needed to be tested. Both Eulerian (simpleFoam) and Lagrangian 

(icoUncoupledKinematicParcelFoam) parameters were evaluated. 

The flow field for each Lagrangian case in Table B.2 was derived from the converged 

simpleFoam cases in Table B.1. Consistent numbering of cases is used to show whence the 

flow field originated. Lagrangian cases were suffixed with upper case letters to denote 

different Lagrangian solution parameters. 

These parameters were assessed on the sub-volume geometry. An understanding of how 

these parameters affect the model solutions allowed a more informed choice of the most 

suitable parameter values for the full geometry simulations whilst increasing confidence in 

the modelling approach. It also allowed weaknesses and limitations of the adopted 

modelling approach to be identified. 

The sensitivity of the sub-volume cases to each parameter were compared based on 

convergence time and velocity magnitude across the pore channel located in Figure B.1 

and wall shear stress across the same pore channel. This channel was chosen because it is a 

typical channel with a medium flow rate. Visual inspection of the mesh was made to 

determine how well small diameter pores were represented for each mesh resolution and 

surface refinement level. 
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Table B.1. Euler FVM model runs for parametric study. 

 

Name

Initial Mesh 

Size (mm)

Surface Refinement 

Levels (min, max)

Number of 

Cells

1 H1C Limited Laminar None Mesh 1 1.5 4, 4 2,153,316 Standard

2 H1C
Linear 

corrected
Laminar None Mesh 1 1.5 4, 4 2,153,316 Scheme

3 H1C Limited
k-ε RASmodel, 

k=1x10
-3

, ε=0.1
None Mesh 1 1.5 4, 4 2,153,316

Turbulence, 

Scan 4

4 H3C Limited
k-ε RASmodel, 

k=1x10
-3

, ε=0.1
None Mesh 1 1.5 4, 4 2,153,316

Turbulence, 

Scan 6

5 H3C
Linear 

corrected

k-ε RASmodel, 

k=1x10
-3

, ε=0.1
None Mesh 1 1.5 4, 4 2,153,316

Scheme with 

turbulence

6 H1C Limited Laminar

Rough wall. 

Cs =0.5, 

ks=1x10
-4

Mesh 1 1.5 4, 4 2,153,316 Roughness

7 H1C Limited Laminar

Rough wall. 

Cs =0.5, 

ks=1x10
-3

Mesh 1 1.5 4, 4 2,153,316
Roughness 

coefficients

8 H1C Limited
k-ε RASmodel, 

k=1x10
-3

, ε=0.1

Rough wall. 

Cs =0.5, 

ks=1x10
-4

Mesh 1 1.5 4, 4 2,153,316

Roughness 

with 

turbulence

9 H1C Limited

k-ε RASmodel, 

k=1x10
-6

, 

ε=1x10
-4

Rough wall. 

Cs =0.5, 

ks=1x10
-4

Mesh 1 1.5 4, 4 2,153,316

Roughness 

with 

turbulence 

coefficients

10 H1C Limited Laminar None Mesh 2 1.5 2, 2 92,040
Initial mesh 

resolution

11 H1C Limited Laminar None Mesh 3 0.6 2, 2 823,441
Initial mesh 

resolution

12 H1C Limited Laminar None Mesh 4 0.3 2, 2 3,444,631
Initial mesh 

resolution

13 H1C Limited Laminar None Mesh 5 0.15 2, 2 15,235,272
Initial mesh 

resolution

14 H1C Limited
k-ε RASmodel, 

k=1x10
-3

, ε=0.1
None Mesh 3 0.6 2, 2 823,441

Turbulence 

with surface 

refinement

15 H1C Limited Laminar None Mesh 6 1.5 3, 4 2,080,870
Surface 

refinement

16 H1C Limited Laminar None Mesh 7 1.5 1, 4 2,073,944
Surface 

refinement

17 H1C Limited Laminar None Mesh 8 0.6 1, 4 3,229,119

Surface 

refinement 

with initial 

block size

18 H3C Limited

k-ε RASmodel, 

k=1x10
-6

, 

ε=1x10
-4

None Mesh 1 1.5 4, 4 2,153,316
Turbulence 

coefficients

19 H3C Limited Laminar None Mesh 1 1.5 4, 4 2,153,316
Turbulence 

coefficients

20
H1C, 

smoothed
Limited Laminar None Mesh 9 1.5 4, 4 2,089,939

STL 

generation

21 H1C Limited Laminar None Mesh 1 1.5 4, 4 2,153,316 Viscosity

SchemeCase

Parameter 

Tested

MeshSurface 

Roughness 

ModelGeometry

Turbulence 

Model
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Table B.2. Lagrangian model runs for parametric study. 

 

Case Turbulence Model

Surface 

Roughness 

Model

Mesh 

Name

Particle Dispersion 

Model

Lagrangian 

Turbulence Model

Particle-Wall 

Interaction

Parameter 

Tested

1A Laminar None Mesh 1 None Laminar Stick Standard

1B Laminar None Mesh 1
stochastic- 

DispersionRAS
Laminar Stick Dispersion

1C Laminar None Mesh 1 None Laminar Rebound Wall interaction

1D Laminar None Mesh 1 None Laminar
Rebound, e=1, 

mu=0

Wall interaction 

coefficients

1E Laminar None Mesh 1
stochastic- 

DispersionRAS

k-ε RASmodel, 

k=1x10-3, ε=0.1
Stick

Dispersion with 

Lagrangian 

turbulence

3A
k-ε RASmodel, 

k=1x10-3, ε=0.1
None Mesh 1 None Laminar Stick Turbulence

3B
k-ε RASmodel, 

k=1x10-3, ε=0.1
None Mesh 1

stochastic- 

DispersionRAS

k-ε RASmodel, 

k=1x10-3, ε=0.1
Stick

Lagrangian 

turbulence

6 Laminar
Rough wall. Cs  

=0.5, ks=1x10-4 Mesh 1 None Laminar Stick Roughness

9A
k-ε RASmodel, 

k=1x10-6, ε=1x10-4

Rough wall. Cs  

=0.5, ks=1x10-4 Mesh 1 None
k-ε RASmodel, 

k=1x10-3, ε=0.1
Stick

Lagrangian 

turbulence with 

roughness

9B
k-ε RASmodel, 

k=1x10-6, ε=1x10-4

Rough wall. Cs  

=0.5, ks=1x10-4 Mesh 1 None Laminar Stick
Turbulence with 

roughness

10 Laminar None Mesh 2 None Laminar Stick
Initial mesh 

resolution

11 Laminar None Mesh 3 None Laminar Stick
Initial mesh 

resolution

16 Laminar None Mesh 7 None Laminar Stick
Surface 

refinement

17 Laminar None Mesh 8 None Laminar Stick

Surface 

refinement with 

initial block size

20 Laminar None Mesh 9 None Laminar Stick STL generation

21 Laminar None Mesh 1 None Laminar Stick Viscosity
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Figure B.1. Location of pore channel (red line) relative to Y-Z slice through 

computational domain showing pore velocities (top) and glyphs of entire 3D 

computational domain pore velocities (middle) derived from Case1. Lagrangian 

particle tracks with particle velocity are also shown (bottom) derived from Case1A. 

Results for each parameter are presented in two stages: 1) Eulerian solution – the effect of 

the simpleFoam parameters (Table B.1) on the Eulerian flow field and, where appropriate, 

2) Lagrangian particle tracking – the effect of the flow field, the 

icoUncoupledKinematicParcelFoam parameters and combined Eulerian/Lagrangian 

parameters (Table B.2) on the particle paths.  

Those parameters that had little or no effect on the flow field or particle paths were 

identified whilst, for those that did, the magnitude of the effect was quantified. Finally, the 

optimum parameters for the full volume runs are selected in Section 5.3.7. 
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B.1 Solution Scheme 

Number of steps and time to convergence are similar for each solution scheme (Table B.3). 

Table B.3. Number of steps and time for convergence. 

Case Scan Solver Turbulence 

Steps to 

Convergence 

Convergence 

Time (mins) 

1 
H1C 

Limited Laminar 33 25.6 

2 Linear corrected Laminar 33 27.1 

4 
H3C 

Limited Turbulent 60 13.7 

5 Linear corrected Turbulent 56 12.8 

The choice of solution scheme had no impact on flow velocity or wall shear stress (Case1 

compared with Case2, Figure B.2, A and B) whilst solution scheme with turbulence 

produced a negligible increase of 0.18% for the maximum velocity (Case4 compared with 

Case5, Figure B.2, C and D).  
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Figure B.2. Maximum velocities and wall shear stress across the pore. Note that 

Case1 and Case2 (A and B) are for the clean scan geometry whilst Case4 and Case5 

(C and D) are for the clogged geometry. Details of each mesh can be cross-referenced 

with Table B.3. N.B. Curves on right overly each other hence only one is visible. 

From this we can conclude that both the linear corrected and limited solution schemes 

provide an adequate solution; yet the limited solution scheme is preferable as it is more 

stable (see Section 5.3.3.1), allowing convergence of meshes with non-orthogonal 

elements.  
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B.2 Turbulence & Surface Roughness 

B.2.1 Eulerian Solution 

Number of steps and time to convergence were longest for runs with both turbulence and 

surface roughness (Table B.4) which could result in excessively long run times for the full 

volume cases. 

Table B.4. Number of steps and time for convergence for turbulence, surface 

roughness and combined turbulence and surface roughness cases. Case parameters 

detailed in Table B.1. 

Case Scan Turbulence 

Surface 

Roughness 

Steps to 

Convergence 

Convergence 

Time (mins) 

4 

H3C 

Turbulent, High 

Coefficients 
None 60 13.7 

18 
Turbulent, Low 

Coefficients 
None 33 11.7 

19 Laminar None 33 10.9 

1 

H1C 

Laminar None 33 25.6 

6 Laminar 
Rough, Low 

Coefficient 
34 28.0 

7 Laminar 
Rough, High 

Coefficient 
34 28.1 

3 

H1C 

Turbulent, High 

Coefficients 
None 102 59.6 

8 
Turbulent, High 

Coefficients 

Rough, Low 

Coefficient 
500 109 

9 
Turbulent, Low 

Coefficients 

Rough, Low 

Coefficient 
500 114 

Turbulence with low k and ε coefficients had no impact on flow velocities compared with a 

laminar model of turbulence (Case18 compared with Case19, Figure B.) whilst high k and 

ε coefficients produced negligible change in velocities (Case4 compared with Case18, 

Figure B.). Likewise, wall shear stress was unaffected by turbulence model or turbulence 

coefficients. 



 Appendix B  

 

  

 

 

228 

 

Figure B. For turbulent with high k and ε coefficients (Case4), low coefficients 

(Case18) and laminar (Case19): A) maximum pore velocity and wall shear stress and 

B) variation in velocity across pore channel. Details of each case can be cross-

referenced with Table B.4. N.B. Curves on right overly each other hence only one is 

visible. 

Surface roughness produced no change in flow velocities, regardless of the roughness 

coefficients, for a laminar turbulence model (cases 6 & 7 compared with Case1), as shown 

in Figure B.3.  

 

Figure B.3. For laminar model with no surface roughness (Case4), roughness with 

low coefficients (Case6) and with high coefficients (Case7): A) maximum pore velocity 



 Appendix B  

 

  

 

 

229 

and wall shear stress and B) variation in velocity across pore channel. Details of each 

case can be cross-referenced with Table B.4. N.B. Curves on right overly each other 

hence only one is visible. 

With the k-ε turbulence model, surface roughness did change the flow velocities resulting 

in a maximum velocity increase of 7.3% (Case8 compared with Case3, Figure B.4, A). The 

velocity distribution across the measurement pore channel is plotted in Figure B.4, B. The 

change in velocity was entirely due to the surface roughness as changing the turbulence 

coefficients resulted in no velocity change (Case9 compared with Case8). However, 

turbulence coefficients (when combined with surface roughness) did affect the maximum 

wall shear stress: the high coefficients resulted in a 1785% increase in wall shear stress 

compared to laminar model (Case8 compared with Case3) whilst the low coefficients 

resulted in a 989% increase (Case9 compared with Case3). 

 

Figure B.4. For turbulent model with high coefficients and no surface roughness 

(Case3), turbulence with high coefficients and surface roughness (Case8) and 

turbulence with low coefficients and surface roughness (Case9): A) maximum pore 

velocity and wall shear stress and B) variation in velocity across pore channel. Details 

of each case can be cross-referenced with Table B.4. 

B.2.2 Lagrangian Particle Tracking 
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Lagrangian particle tracking of 2500 tracer particles showed that Eulerian turbulence 

(Case3A) and Eulerian surface roughness (Case6) had a minimal impact on particle fate, 

travel time, distance travelled or tortuosity compared with the laminar model with no 

surface roughness (Case1A), as shown in Table B.5.  

Combined Eulerian turbulence and surface roughness (Case9A) resulted in fewer particles 

sticking to surface patches and an increase in particles escaping from the model at the 

outlet patch or remaining in-transit after 400s run time - equivalent to 2.62 pore volumes 

passing through the filter. The distance and tortuosity of those particles that did escape 

increased by 0.85%, showing that they took a longer path through the filter as a result of 

the different flow field. 

Including a k-ε Lagrangian turbulence model with Eulerian turbulence and surface 

roughness resulted in no change in particle transport (Case9A compared with Case9B) but 

increased run times by 47%.  

Table B.5. Lagrangian particle tracking transport characteristics. 

  
Case1A Case3A Case6 Case9A Case9B 

Fate 

Number of 

particles 2500 2500 2500 2500 2500 

Number stick 326 338 340 87 87 

Number escape 2010 1974 1981 2176 2176 

Number in-transit 164 188 179 237 237 

Time       

(s) 

Average stick 98.90 97.26 98.06 91.64 91.64 

Average escape 124.11 120.52 123.11 121.76 121.76 

Average in-transit 400.00 400.00 400.00 400.00 400.00 

Average all 138.92 138.39 139.53 147.09 147.09 

Distance 

(mm) 

Average stick 38.6 38.1 39.0 30.4 30.4 

Average escape 84.3 84.4 84.3 85.0 85.0 

Average in-transit 37.4 40.6 40.4 45.9 45.9 

Average all 75.3 74.9 75.0 79.4 79.4 

Tortuosity 

Average stick 1.259 1.264 1.258 1.291 1.291 

Average escape 1.249 1.250 1.248 1.259 1.259 

Average in-transit 1.255 1.260 1.251 1.291 1.291 

Average all 1.250 1.253 1.250 1.263 1.263 

Run Time/ Clock Time (mins) 19.6 19.4 19.6 29.7 19.7 
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To summarise: 

 Eulerian turbulence and surface roughness have no effect on flow field velocity, 

wall shear stress or the transport of particles.  

 Combined Eulerian turbulence and surface roughness increases peak velocity by 

7.3%, decreases the number of particles that stick from 13.0% to 3.5% and 

increases wall shear stress by 989% to 1785%. 

 Lagrangian turbulence had no effect on particle transport but increased run times. 

From this we can conclude that surface roughness models are only implemented in 

conjunction with turbulence models. As turbulence alone does not affect flow velocities, 

wall shear stress or particle transport, flows in the model are laminar. Difficulties 

associated with accurately specifying surface roughness coefficients, and to a lesser extent 

the turbulence coefficients, can be circumvented by using a laminar model of turbulence. 

B.3 Mesh Initial Resolution & Surface Refinement 

Convergence time is highly dependent on the number of cells composing the 

computational domain and, as shown in Table B.6, does not scale linearly with the number 

of cells: Case13 has approximately 4.5 times more cells than Case12 and 18.5 times more 

than Case11, yet run times are 11.2 and 75.3 times greater respectively. For this reason, it 

is desirable to attain good representation of the flow velocity profile across the pore 

channel with a minimum number of cells. 
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Table B.6. Number of steps and time for convergence for initial mesh size (Cases 10, 

11,12 and 13), surface refinement levels (Cases 1, 10, 15 and 16) and combined initial 

mesh size surface refinement (Cases 1, 10, 11 and 17). Case parameters detailed in 

Table B.1. 

Case 

Initial Mesh 

Size (mm) 

Surface Refinement 

Levels (min, max) 

Number of 

Cells 

Steps to 

Convergence 

Convergence 

Time (mins) 

10 1.5 2, 2 92,040 22 0.2 

11 0.6 2, 2 823,441 31 7.6 

12 0.3 2, 2 3,444,631 42 51.0 

13 0.15 2, 2 15,235,272 76 569.9 

1 1.5 4, 4 2,153,316 33 25.6 

10 1.5 2, 2 92,040 22 0.2 

15 1.5 3, 4 2,080,870 34 27.8 

16 1.5 1, 4 2,073,944 34 28.0 

1 1.5 4, 4 2,153,316 33 25.6 

10 1.5 1, 4 92,040 22 0.2 

11 0.6 2, 2 823,441 31 7.6 

17 0.6 1, 4 3,229,119 36 53.3 

With respect to initial mesh size (cases 10, 11, 12 and 13), the velocity profile across the 

pore channel shows little change in maximum velocity (Figure B.5, A) between cases 11 

and 12 (0.39% difference) and in the velocity profile as a whole (Figure B.5, B). Cases 10 

and 13 differ from the case 11 and 12 average by 10.8% and 8.61% respectively suggesting 

that, outwith a certain range, initial mesh size can significantly affect velocities. 
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Figure B.5. For initial mesh size, A) Maximum pore velocity and wall shear stress and 

B) variation in velocity across pore channel. Details of each case can be cross-

referenced with Table B.6. 

Wall shear stress is greatly affected by initial mesh size with a large mesh size 

corresponding to high wall shear stress and a low size corresponding to a low wall shear 

stress. This is a consequence of the velocity in the cell adjacent to the surface: with a 

coarse mesh, the cell adjacent to a surface is an average velocity over an area that 

protrudes further from the surface into the pore channel than a fine mesh, and hence 

experiences a higher velocity. At the finest initial mesh size studied here (Case13), the 

average flow velocity in the cell adjacent to surface is lower than in all other cases 

resulting in the lowest wall shear stress, as shown in Figure B.6.  

 

Figure B.6. Cell averaged velocities at gravel surface boundary for A) Case11, 

medium/coarse mesh and B) Case 13, fine mesh. 
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The minimum level of surface refinement has little effect on pore channel velocities with 

cases 1, 15 and 16 producing meshes with similar numbers of cells (between 2,073,944 and 

2,153,316, Table B.6), similar convergence times and very similar pore channel velocities 

(Figure B.7). The maximum level of surface refinement does have a significant effect on 

pore velocity, as evinced by Case10 (in which the maximum surface refinement level was 

two) compared with cases 1, 15 and 16 (in which the maximum surface refinement level 

was 4). Wall shear stress is much greater for Case10 than for cases 1, 15 and 16 for the 

same reason wall shear stress was smaller for Case13: low surface refinement results in 

larger cells adjacent to the surface with a larger average velocity and hence larger shear 

stress. 

 

Figure B.7. For mesh surface refinement, A) Maximum pore velocity and wall shear 

stress and B) variation in velocity across pore channel. Details of each case can be 

cross-referenced with Table B.6. 

With respect to combined initial mesh size and surface refinement level, comparing Case1 

(low initial mesh size with high surface refinement levels) with Case11 (high initial mesh 

size with low surface refinement levels) results in a 0.72% difference in peak velocities 

(Figure B.8, A) and very little difference in pore velocity across the channel (Figure B.8B). 

As Case11 has 823,441 cells compared with the 2,153,316 cells of Case1, the time to 

convergence is 3.4 times shorter (Table B.6). A similar velocity profile can therefore be 
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obtained with a greatly reduced run time through the use of a high initial mesh size with 

low surface refinement.  

 

Figure B.8. For combined initial mesh size with mesh surface refinement, A) 

Maximum pore velocity and wall shear stress and B) variation in velocity across pore 

channel. Details of each case can be cross-referenced with Table B.6. 

Comparing Case10 (low initial mesh size, low surface refinement) with Case17 (high 

initial mesh size, high surface refinement) shows that there is a significant difference in 

maximum velocity of 16.24%. In Figure B.9 it can be seen that the mesh generated for 

Case10 is too coarse to resolve narrow pore channels and hence the modelled flow paths 

velocities would not replicate true flow velocities. Wall shear stress is also markedly 

different between Case10 and Case17 and is due to the size of the cell adjacent to surface, 

as discussed above. 
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Figure B.9. Extent of computational domain for a very narrow pore throat 0.6mm wide at the 

narrowest point. Each combination of initial mesh size and surface refinement level represented by 

Case1, Case11 and Case17 accurately depict the pore throat and the overall computational domain. 

This is not true for Case10 in which the initial mesh size and refinement levels do not allow the pore 

throat to be meshed. Case10 therefore under predicts the volume of the computational domain and the 

connectivity provided by narrow pore throats. 

In summary, initial mesh size and surface refinement affect flow velocities and wall shear 

stress throughout the model, as quantified by analysing a single chosen pore channel. The 

wall shear stress is dependent upon flow velocities in the cell adjacent to the wall surface 

and hence is very sensitive to the resolution of that cell. It is possible to obtain similar 

velocity profiles at a greatly reduced computational cost by utilising a high initial mesh 
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size with low surface refinement (Case11) in comparison to a low initial mesh resolution 

with high surface refinement (Case1). Figure B.9 shows that this is because Case1 produces 

more mesh cells adjacent to the surface. A high number of surface cells may be beneficial 

for models incorporating turbulence and surface roughness or in which the value of wall 

shear stress is critical; however, we have established that there is no turbulence in the 

model (Section B.2) and so the surface cells are superfluous. As such, model run time can 

be reduced and accurate flow velocities obtained by utilising a high initial mesh size 

(0.6mm) with low surface refinement levels (2, 2). 

B.4 STL generation and Viscosity 

As described in Section 5.3.2, the solid surface is created in STL format from the MRI 

data. The MRI data is composed of voxels 300μm to a side and so, when viewed at high 

resolution, the resulting solid surface consists of square blocks (see Figure B.10, A) whilst 

in reality the surface would be smoother. During STL creation, it is possible to smooth the 

surface (see Figure B.10, B) and this allows comparison between a smoothed mesh with an 

unsmoothed mesh. However, it must be noted that the smoothed surface is not necessarily 

a more accurate definition the pore space than the unsmoothed surface and this could only 

be settled with an MRI (or similar non-invasive scanning technique such as X-ray 

tomography) scan carried out at much higher resolution. 

 

Figure B.10. Gravel surface derived from MRI data with A) the standard method of 

no smoothing and B) with smoothing. Smoothing creates a more natural looking mesh 

yet also alters the pore volume and pore network connectivity. 
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Kinematic viscosity is a function of the fluid, the temperature and the concentration of 

suspended kaolin particles. In the temperature controlled experiments of Chapter 2, the 

fluid and temperature remain constant yet the kaolin concentration varies spatially within 

the filter with a higher concentration at the inlet and a lower concentration at the outlet 

(due to removal along the filter length). Viscosity can therefore be expected to vary 

spatially within the filter and in time as the filter removal efficiency changes. To test the 

sensitivity of the model to viscosity, two kinematic viscosity values were used: 1.0E-6 m2/s 

representing water at 20°C and, based on the measurements of Beazley (1972), 1.8E-6 m2/s 

representing water at 20°C with 5% kaolin by volume. Water at 0°C (without any kaolin) 

has a kinematic viscosity approximately 1.8E-6 m2/s and so this value serves to test the 

sensitivity of the model to viscosity change due to kaolin in suspension and due to the 

range in temperatures over which a gravel filter would be expected to operate. 

B.4.1 Eulerian Solution 

Table B.7. Number of steps and time for convergence for mesh generation method 

(Cases 1 and 20) and kinematic viscosity value (Cases 1 and 21). Case parameters 

detailed in Table B.1. 

Case 

STL Generation 

Method 

Kinematic 

Viscosity 

Steps to 

Convergence 

Convergence 

Time (mins) 

1 Standard 1.00E-06 33 25.6 

20 Smoothed 1.00E-06 33 22.4 

21 Standard 1.80E-06 34 25.5 

Convergence time is 12.26% quicker for the smoothed mesh (Case20) compared with the 

standard mesh (Case1) whilst a higher viscosity reduces convergence time by only 0.18% 

(Case21 compared with Case1), as shown in Table B.7. The smoothed mesh results in a 

6.00% decrease in maximum velocity across the pore channel (Figure B.11). This is 

thought to be caused by the change in geometry and connectivity of the computational 

domain as a result of smoothing, rather than due to an increase in velocity closer to the 

surface offsetting the reduction in peak velocity at the pore centre. No increase in velocity 

close to the surface is evident in Figure B.11. 
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Figure B.11. For mesh generation method and viscosity, A) Maximum pore velocity 

and wall shear stress and B) variation in velocity across pore channel. Details of each 

case can be cross-referenced with Table B.7. 

Increasing kinematic viscosity to account for a water/kaolin suspension increases 

maximum velocity by 3.40% and wall shear stress by 93.30%. 

B.4.2 Lagrangian Solution 

Smoothing the mesh decreased the number of sticking particles from 13.04% to 7.88% 

(Table B.8) and increased the average time to stick of these particles by 16.30% yet the 

distance they travelled increased by only 8.65%. This suggests that, on average, particles 

that did stick travelled at a lower velocity prior to reaching the surface. From this it is 

deduced that the smooth mesh provides fewer opportunities for particles to reach the 

surface and stick and only those travelling in the low velocity area close to the gravel 

surface were able to stick. Increasing the viscosity had little impact on the number of 

particles sticking, escaping or remaining in transit. 
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Table B.8. Lagrangian particle tracking transport characteristics for mesh generation 

method and viscosity. 

  
Case1A Case20 Case21 

Fate 

Number of particles 2500 2500 2500 

Number stick 326 197 334 

Number escape 2010 2123 1973 

Number in-transit 164 180 193 

Time       

(s) 

Average stick 98.90 115.02 97.58 

Average escape 124.11 127.67 122.20 

Average in-transit 400.00 400.00 400.00 

Average all 138.92 146.28 140.36 

Distance 

(mm) 

Average stick 38.6 42.0 38.5 

Average escape 84.3 83.8 84.4 

Average in-transit 37.4 41.2 40.5 

Average all 75.3 77.4 74.8 

Tortuosity 

Average stick 1.259 1.252 1.255 

Average escape 1.249 1.240 1.249 

Average in-transit 1.255 1.269 1.272 

Average all 1.250 1.243 1.252 

Run Time/ Clock Time (mins) 19.6 19.2 19.5 

From this we can conclude that the smooth surface looks more like a real gravel surface 

than the unsmoothed surface and the surface generation method affects flow velocities as 

well as the transport of particles close to the surface. However, smoothing the surface 

means the pore volume and pore network connectivity are no longer the same as those 

assessed in Chapter 3 and Chapter 4. For this reason, comparing smoothed and 

unsmoothed surfaces is useful for understanding the implications of the MRI derived 

geometry resolution on the model results, yet the unsmoothed surface should be used in all 

simulations as this provides equivalent pore volume and pore network connectivity to those 

assessed in Chapter 3 and Chapter 4 respectively. 

A further conclusion is that kinematic viscosity is an important parameter for both flow 

velocity and wall shear stress, but not Lagrangian particle transport. Quantifying the 

change in flow velocity due a change in kinematic viscosity, brought about by either a 

change in kaolin concentration or a change in temperature, helps to understand how the 

model can be applied to gravel filters operating outside of controlled laboratory conditions 

and the level of uncertainty associated with the results of the model. 
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B.5 Lagrangian Dispersion 

In this section we determine if dispersion significantly affects the transport of Lagrangian 

particles and explore the necessity for a turbulent Lagrangian solution and turbulent 

Eulerian solution. Case1B compared with Case1A determines the effect of Lagrangian 

dispersion with no turbulence model: the results show no change (Table B.9). Case1E 

includes Lagrangian dispersion with Lagrangian turbulence and proves that a turbulence 

model is necessary for the implementation of the dispersion model. In Case1E, the 

dispersion model results in 97.32% of particles sticking to a surface, as opposed to 13.04% 

for Case1A without dispersion. The dispersion model is thought to enable the tracer 

particles to cross flow streamlines and thus come in to contact with the surface, resulting in 

the increase in sticking particles. 

Table B.9. Lagrangian particle tracking transport characteristics for Lagrangian 

dispersion with turbulence.  

  
Case1A Case1B Case1E Case3A Case3B 

Fate 

Number of 

particles 2500 2500 2500 2500 2500 

Number stick 326 326 2433 338 2104 

Number escape 2010 2010 1 1974 285 

Number in-transit 164 164 66 188 106 

Time       

(s) 

Average stick 98.90 98.90 25.00 97.26 38.54 

Average escape 124.11 124.11 70.00 120.52 82.40 

Average in-transit 400.00 400.00 400.00 400.00 400.00 

Average all 138.92 138.92 34.91 138.39 58.91 

Distance 

(mm) 

Average stick 38.6 38.6 13.4 38.1 26.6 

Average escape 84.3 84.3 82.6 84.4 85.5 

Average in-transit 37.4 37.4 11.9 40.6 23.7 

Average all 75.3 75.3 13.4 74.9 33.2 

Tortuosity 

Average stick 1.259 1.259 1.268 1.264 1.334 

Average escape 1.249 1.249 1.216 1.250 1.290 

Average in-transit 1.255 1.255 1.253 1.260 1.383 

Average all 1.250 1.250 1.268 1.253 1.328 

Run Time/ Clock Time (mins) 19.6 19.5 20.3 19.4 28.6 

Case3B includes Lagrangian dispersion, Lagrangian turbulence and Eulerian turbulence. 

When compared with Case1E (Lagrangian dispersion and turbulence, no Eulerian 

turbulence), and Case3A (Eulerian turbulence, no Lagrangian dispersion or turbulence), 
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Case3B shows that Eulerian turbulence with Lagrangian dispersion has a significant 

impact on all aspects of particle transport.  

B.6 Discussion 

The significance of the parametric study results on model setup and reliability is discussed 

in Section 5.3.6. 
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Appendix C – OpenFOAM Model Files 
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C.1 snappyHexMesh Dictionary File 
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C.2 fvSchemes – simpleFoam Solver Finite Volume Schemes 
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C.3 fvSolutions – simpleFoam Solver Solution & Algorithm Control 
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C.4 kinematicParticleProperties – Lagrangian Particle Properties 
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C.5 Example Bash Script – Eulerian Model 
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C.6 Example Bash Script – Lagrangian Model 

 

 

 

 


