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Abstract

Orbital angular momentum (OAM) is one of the most recently discovered prop-

erties of light, and it is only in the past decade its quantum properties have been

the subject of experimental investigations and have found applications. Unlike

polarization, which is only bidimensional, orbital angular momentum provides,

with relative ease, unprecedented access to a theoretically unbounded discrete

state space.

The process of spontaneous parametric down-conversion has long been used

as a source of two-photon states that can be entangled in several degrees of free-

dom, including OAM. In this thesis, the properties of the natural OAM spectrum

associated with the entangled states produced by parametric down-conversion

were investigated. Chapters 2 and 3 describe the production and detection of

tunable high-dimensional OAM entanglement in a down-conversion system.

By tuning the phase-matching conditions and improving the detection stage,

a substantial increase in the half-width of the OAM correlation spectrum was

observed.

The conjugate variable of OAM, angular position, was also considered when

examining high-dimensional states entangled in OAM. In order to efficiently

determine their dimension, high-dimensional entangled states were probed

by implementing a technique based on phase masks composed of multiple

angular sectors, as opposed to narrow single-sector analysers. Presented in

chapter 4, this technique allows the measurements of tight angular correlations

while maintaining high optical throughput.

The states so produced were then used for a number of applications centred

around the concept of mutually unbiased bases. One can define sets of mutually
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unbiased bases for arbitrary subspaces of the OAM state space. Two bases are

mutually unbiased if the measurement of a state in one basis provides no infor-

mation about the state as described in the other basis. Complete measurements

in mutually unbiased bases of high-dimensional OAM spaces are presented

in chapter 5. Measurements in sets of mutually unbiased bases are integral to

quantum science and can be used in a variety of protocols that fully exploit the

large size of the OAM state space; we describe their use in efficient quantum

state tomography, quantum key distribution and entanglement detection.

Caution is however necessary when dealing with state spaces embedded in

higher-dimensional spaces, such as that provided by OAM. Experimental tests

of Bell-type inequalities allow us to rule out local hidden variable theories in the

description of quantum correlations. Correlations inconsistent with the states

observed, or even with quantum mechanics, known as super-quantum correla-

tions, have however been recorded previously in experiments that fail to comply

with the fair-sampling conditions. Chapter 6 describes an experiment that

uses a particular choice of transverse spatial modes for which super-quantum

correlations persist even if the detection is made perfectly efficient.

The sets of modes carrying OAM allow a complete description of the trans-

verse field. The ability to control and combine additional degrees of freedom

provides the possibility for richer varieties of entanglement and can make quan-

tum protocols more powerful and versatile. One such property of light, associ-

ated with transverse modes possessing radial nodes in the field distribution, can

be accessed within the same type of experimental apparatus used for OAM. In

chapter 7, the radial degree of freedom is explored, together with OAM, in the

context of Hong-Ou-Mandel interference.
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CHAPTER 1

Introduction

1.1 The quantum nature of light

Since its outset, quantum mechanics has been intimately intertwined with

the properties of electromagnetic radiation. Quantum theory originated in

the early 20th century with Max Planck’s attempts to treat and describe black-

body radiation [210]. In order to explain the spectral distribution of energy

radiated by a thermal source, Planck postulated that energy is exchanged in

multiples of the fundamental constant ~, multiplied by the angular frequency

ω of the radiation that mediates the exchange. The concept of photon was

thus introduced, although the term itself1 was coined only later, in 1926, by

Gilbert Lewis [164]. The shift from Planck’s original definition of a quantum

of light as the smallest discrete wave packet to the definition of the photon as

a particle-like entity, and back, is at the heart of quantum mechanics. While

the concepts of particle and wave are borrowed from classical mechanics, the

theoretical and experimental advances that brought about the paradigm shift

of particle-wave duality highlight the intrinsic complementarity of these two

ideas in the quantum world. Either of the two manifestations of the photon

can be observed, based on the formalism and measurement device employed

[48]. This duality is one of the facets of the complementarity principle, one

1Arthur Compton is also sometimes credited with introducing the term in 1923 [153].
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of the foundational notions of quantum mechanics, at least in the traditional

Copenhagen interpretation.

Farther still from the ideas of classical physics is the introduction of proba-

bility amplitudes in the description of wave packets. The use of probabilities to

describe the relationship between the interpretation of physical phenomena and

the manifestations of their inherent reality rendered quantum mechanics as a

whole a fundamentally statistical theory, and whose physical significance is still

debated [219]. However, it also finally allowed the descriptions of effects such as

single-particle interference – effects often demonstrated, since the early days

of quantum mechanics, by passing non-overlapping pulses of attenuated light

first, and later on individual photons, through a double slit or a Mach-Zender

interferometer.

Over the decades, light has therefore been instrumental in the experimental

studies that spurred the development of quantum theory, as well as the further

countless experimental tests of the very same theories. As a resource in quan-

tum science, light possesses several drawbacks: the interactions of photons

with most physical systems is negligible, and the efficient production of single

photons (though probabilistic) remains challenging. Since the inception of the

laser in the 1960s, however, many desirable properties of light have also emerged

or have become more easily accessible. In the theory of electromagnetic radi-

ation in an optical cavity, fields can only be excited in discrete spatial modes;

calculations and results obtained in this simplified framework can readily be

extended to more general unconfined systems that include laser cavities, linear

and nonlinear optical elements [170]. Developments in nonlinear and quantum

optics, and the introduction in experimental practice over the past half century

of technological advances, have made many photonic quantum experiment

possible. This, as well as the convenience and high degree of coherence and

monochromaticity of laser sources, have provided full control of the vast range

of quantum properties of light — some of which, like orbital angular momentum,

have started being explored only as recently as twenty years ago [9].
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1.2 Quantum entanglement

Entanglement is one of the defining features of quantum mechanics with no

classical equivalent. The concept of entanglement, which represents a depar-

ture from pre-existing notions of local relativistic causality and counterfactual

realism in classical mechanics, was made necessary by the impossibility to re-

produce some predictions of quantum mechanics by means of local theories.

In their seminal 1935 paper, Albert Einstein, Boris Podolsky and Nathan Rosen

(EPR) presented a thought experiment whose goal was to point out the apparent

incompleteness of quantum mechanics in the then current formulation [95].

EPR described two subsystems which have been made to interact in such a way

that their properties (such as position and momentum) remain correlated even

after the subsystems have been spatially separated. The predictions for an EPR

state cannot be reproduced by classical theories, like hidden-variable models; in

the assumption that quantum mechanics were indeed a locally causal theory,

Einstein, Podolsky and Rosen thus concluded that it must either fulfil local real-

ism or be considered incomplete — in the sense that the state wavefunction is

not a complete quantum-mechanical description of reality.

It was Erwin Schrödinger who, shortly afterwards, introduces the term en-

tanglement, first in a letter to Einstein, then in an influential paper in which he

tackled the apparent paradoxical nature of the EPR experiment and described

the newly christened term “the characteristic trait of quantum mechanics” [240].

It wasn’t until 1964 however that John Bell overturned one of the underlying as-

sumptions of the EPR argument, the principle of locality [34, 35]. Bell proposed

an inequality to test for the existence of local hidden variables, which would

allow correlations between two system that would otherwise require Einstein’s

“spooky action at a distance”. The outcomes of appropriate sets of measurements

define an upper bound for systems exhibiting locality. Nonlocal systems, which

include quantum states, violate Bell’s inequality and its alternative formulations,

thus ruling out the possibility of hidden variable theories [105]. Beginning only

in the early 1980s due to the challenging nature of experimental tests of local

realism, this has been shown in a vast number of experiments, pioneered by

Aspect, Grangier and Roger [17, 18, 16] and also aided by the reformulation of
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Bell’s bound in terms of the CHSH inequality2 [76, 75].

The main possible experimental loopholes affecting Bell-type tests, which

could mask the presence of hidden variables by introducing a statistical bias,

have by now been closed for different types of quantum systems [273, 232, 114].

While a completely loophole-free Bell test has still to be performed, the current

insight into the nature of entanglement seems to favour a nonlocal view [65]. It

has also been shown how shared randomness (that is, the presence of classical

communication between the parties prior to the measurement or established at

the source), while introducing a form of nonlocal correlations, is not enough for

the correlations to violate Bell-type inequalities [107].

It is important to highlight how nonlocality does not play any role in the

definition of entanglement. Entanglement is indeed a nonlocal phenomenon,

where separated systems share properties in a way that goes beyond classical

mechanics. It can however be defined simply in terms of tensor products of

states belonging to different Hilbert spaces. If the state of a physical system can

be in one of many configurations, then according to the superposition principle

the most general state is in fact expressed by a linear combination of all the

different possibilities. As an example, let us take a pure state |ψ〉 in the Hilbert

space H associated with the composite system described by H1⊗H2. By taking

as a basis for the system the tensor products of the d-dimensional basis vectors

in the subsystem spaces H1 and H2 respectively, we may write

|ψ〉 =
d∑

i , j=1
ci j |i 〉1 ⊗| j 〉2. (1.1)

The overall state |ψ〉 is said to be entangled if it cannot be expressed as a prod-

uct state of states describing the two subsystems. Conversely, it is said to be

separable if it can be expressed in the form

|ψ〉 = |ζ〉1 ⊗|θ〉2 (1.2)

in an appropriate basis. These ideas can of course be applied in theory to multi-

2CHSH stands for John Clauser, Michael Horne, Abner Shimony and Richard Holt, who
described the inequality in 1969.
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Figure 1.1: For circularly polarized light the electric and magnetic fields rotate around
the beam axis during propagation. Light is said to be (a) right- or (b) left-circularly
polarized based on the rotation direction of the fields, with spin in the propagation
direction sz =±~ respectively. Orbital angular momentum (OAM) is associated instead
with helical phase fronts, which lead respectively to values of OAM (c) +`~ and (d) −`~,
with ` the winding number of the propagating mode.

partite, multidimensional systems. As the dimension of the state describing the

composite system increases, however, analysing and characterizing entangle-

ment becomes increasingly more complex.

Producing physical systems entangled in large state spaces still presents

considerable experimental challenges. The use of high-dimensional systems,

however, reveals stronger nonlocality [79, 165], and can be used to boost channel

capacity and security in quantum communication systems [68, 92, 28].

1.3 The angular momentum of light

In this thesis, we will concern ourselves with the entanglement of single-photon

states. The resilience of photonic entanglement [258, 110], the versatility of
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quantum light and the wide range of physical properties experimentally accessi-

ble today make photonic entanglement an ideal testing ground for experiments

exploring the foundations of quantum mechanics as well as developing novel

applications and technologies.

In order to conduct experimental investigations of entanglement several

properties of light have been used in the past. One can exploit frequency [193],

position [131], and the temporal [84, 250] and spatial [172, 185, 198, 282, 81]

features of optical fields to produce states entangled in any such properties. By

combining the spaces provided by two or more of such degrees of freedom, it is

also possible to introduce entanglement between different properties of light,

known as hyperentanglement [154, 27], even within the same photon.

Each property of the photon gives access to a different state space with its

own defining features. Polarization, for instance, provides a complex linear vec-

tor space which has been used in countless applications. Since the electric and

magnetic fields ~E and ~H are mutually orthogonal, the direction of polarization is

traditionally taken to correspond with that of the electric field in the transverse

plane. This thus provides a convenient two-dimensional space that can act as

the simplest model space to carry out quantum experiments, as polarization

states can easily be manipulated and measured with combinations of conven-

tional linear optical elements. The binary outcomes of such measurements have

been used since the very early days of optical investigations of entanglement to

perform Bell-type tests and implement quantum protocols [53].

1.3.1 Spin and orbital angular momentum

The angular momentum of light can regarded as a property arising from the

circulating flow of energy in the electric field [192, 119]. As is well understood,

the macroscopic polarization is a feature emerging from the angular momen-

tum of the photon. Spin is however only one component of the total angular

momentum of light. Beyond polarization, the correspondence principle sug-

gests that other properties of classical light should have a quantum analogue

[50]. A richer and more promising property of light that can be used to realize
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high-dimensional entanglement with as few as two entangled photons is orbital

angular momentum (OAM). Unlike polarization, which as a physical quantity

is limited to values between −~ and ~, the orbital angular momentum of light

offers a theoretically unbounded state space spanned by an infinite number of

mutually orthogonal, distinguishable OAM eigenmodes characterized by the

winding number ` of the beam helicity. The OAM content of a single photon is

given by `~, with the winding number ` describing the spiralling of the phase

structure along the optical axis during propagation (fig. 1.1).

From both a classical and quantum standpoint, light possesses mechanical

properties. John Henry Poynting showed that an electromagnetic wave has linear

momentum and a well-defined energy flow in the transverse plane, the latter

equal to ~E × ~H and with dimensions of a linear momentum per unit of volume

[217, 201]. In a quantum framework, every photon associated with a plane-wave

field carries a linear momentum equal to ~~k, with ~ being the reduced Planck

constant di Planck and~k the wave vector of the photon. The angular momentum

density in the radial direction~r with respect to the direction of propagation is

then given by ε0~r ×(~E ×~B) or, for quantum light, by~r ×~~k. Poynting also showed

that circularly polarized light has a flow of angular momentum equal to λw/2π,

where λ is the wavelength and w the average energy density, that is w = n~ω
(with n the number of photons per unit of volume). The angular momentum

per photon is therefore ±~, depending on the sign of the circular polarization. It

can be shown that the rotation of the Poynting vector in a beam carrying orbital

angular momentum is proportional to the difference in the on-axis Gouy phase

ζ(z) = arctan(z/zR ) , (1.3)

from that at the beam waist z = z0 [201], where zR is the Rayleigh range

zR =πw 2
0/λ, (1.4)

and w0 is the 1/e2 beam size at z = 0 (fig. 1.2).
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Figure 1.2: Propagation of the Poynting vector associated with a Laguerre-Gaussian
mode with ` = 2, p = 0. For a fixed position z along the propagation direction of the
beam, the Poynting vector follows a spiralling path.

1.3.2 Measuring spin and orbital angular momentum

The motion of a revolving shaft was studied by Poynting in 1909 [218], when he

used mechanical analogies to establish that, for circularly polarized light, the

ratio of the optical energy to angular momentum corresponds to the angular

frequency. He proposed a possible experiment where one may be able to detect

the small torque exerted by circularly polarized light passing through a stack of

quarter-wave plates, as its polarization is converted into linear.

The measurement of torque induced on a birefringent plate by the angular

momentum of light was performed for the first time in 1936 by Beth [45], us-

ing a variant of the experiment suggested by Poynting that involved a tungsten

bulb and an arrangement of quarter-wave plates. A small transverse compo-

nent of linear momentum, such as that found in Hermite-Gaussian (HG) and

Laguerre-Gaussian (LG) modes, can in fact introduce a second angular momen-

tum components~L in the direction of propagation, in addition to spin ~S:

Si = 1

2µ0ω

∑
j ,k

∫
E∗

j (−iεi j k )Ek d~r (1.5)

Li = 1

2µ0ω

∑
j

∫
E∗

j (−i~r ×∇)i E j d~r , (1.6)

with indices i , j ,k taking values
{

x, y, z
}

for each of the three components of vec-

tors~S and~L [132, 80, 12]. The first component is called spin angular momentum,

independent from the frame of reference, while the second, dependent on the
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Figure 1.3: (a) A suspended birefringent half-wave plate undergoes a rotation when
transforming right-handed circularly polarized light into left-handed polarized light.
(b) A system of cylindrical lenses undergoes a rotation when converting a mode with
angular momentum −`~ per photon into one with +`~ per photon.

choice of frame of reference, from an analogy with quantum mechanics is the

orbital angular momentum.

The measurement of torque due to orbital angular momentum, presented by

Allen and co-workers in 1992, is analogous to that of spin angular momentum [9].

A pair of astigmatic optical elements, such as cylindrical lenses, allow to produce

classical light with precise values of orbital angular momentum. The torsion of

the fibre sustaining the lenses can be predicted in terms of the intensity of the

light and the orbital angular momentum `.

The quantum state of a photon can be described by a multipole expansion

of electromagnetic waves with a well-defined energy value of ~ω, total angular

momentum (made up of spin and orbital angular momentum components) and

a fixed projection of the angular momentum along a chosen axis (for instance,

the propagation direction z). Such decomposition is analogue to that of light,

either classical or quantum, in terms of a set of plane waves. In general, the spin

and orbital contributions cannot be examined separately; however, in the limit

of small beam divergence, called paraxial approximation, it is possible to show

that the two components can be measured and manipulated independently

[261, 260].
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1.3.3 The paraxial approximation

In the paraxial case, the spin and orbital components along the direction of

propagation can for instance be measured by observing the variation of angular

momentum in a medium that interacted with appropriate modes of the radiation

field. Beth’s experiment, in which a birefringent plate converts light with right-

handed circular polarization into left-handed polarized light, can be interpreted

as a measurement of the component of the spin angular momentum in the

direction of the wave vector [45]. In the experiment, the amplitude and phase

spatial distribution of the light was unchanged. An experiment like the one

performed by Allen et al. [9], however, or one where a Hermite-Gaussian mode

with zero orbital angular momentum is converted in the paraxial approximation

into a Laguerre-Gaussian mode by means of a system of two astigmatic lenses

[32], allows to measure the orbital angular momentum component along the

direction of propagation (fig. 1.3).

In the paraxial approximation for the wave equation, in the case of unpolar-

ized fields of the form A(r,φ, z) = u0(r, z)ei`φ, it is possible to show that the ratio

between density of angular momentum jz along the propagation direction and

energy density w takes the form

jz

w
= `

ω
, (1.7)

with angular frequency ω. The ratio between angular momentum and linear

momentum can be shown to be equal to ω`/ωk = `λ/2π, which highlights how

the field has orbital angular momentum `~ per photon [9]. Such result can be

extended to polarized light, even beyond the paraxial approximation. The ratio

`/ω is the equivalent, in the case of the orbital angular momentum component,

of the known ratio between spin orbital angular momentum and energy for

circularly polarized light, ±~/~ω=±1/ω [45].

For the Laguerre-Gaussian mode used in the experiment by Allen et al., the

azimuthal relation exp(i`φ) implies therefore a ratio between orbital angular

momentum and energy equal to `/ω. Since the angular momentum along the

propagation direction Lz is conserved, and since the polarization (and therefore
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the Sz component of spin) remains unchanged, the system of lenses should

undergo a torque due to the change in total momentum. It is then possible to

measure separately in the two experiments mentioned Lz and Sz , with results

that can be described in a classical framework.

The paraxial approximation appears to be the most convenient context in

which the orbital angular momentum can be studied. In this approximation,

the OAM of light provides a useful description of the degree of freedom associ-

ated with the transverse modes of photons, whose continuous nature defines

a Hilbert space inherently infinite-dimensional. Some aspects of the paraxial

approximation may be familiar, being the wave equation that emerges from

such treatment formally analogous to the Schrödinger equation, where time t re-

places the direction of propagation z. The term u∇u∗−u∗∇u that appears after

the application of the approximation to the Helmholtz equation resembles the

expression of the probability current of a wavefunction u; in the paraxial form,

the field is treated as if it were an eigenstate of the angular momentum operator

Lzu =−i~∂u/∂φ= `~u. It should be underlined that u is not the wavefunction

of a particle, but rather the classical distribution function of the amplitude and

phase of the field. It is however possible to use the analogy between quantum

mechanics and geometric optics to investigate the properties of the orbital angu-

lar momentum of light [261, 260]. In this formal scheme, the expectation value

for the orbital angular momentum for paraxial light can be expressed in terms

of contributions analogous to those of the angular momentum of an oscillator,

plus contributions related to the astigmatism of the beam considered.

The modes of a laser are stationary electromagnetic waves, with properties

defined by the geometry of the resonant cavity. Resonant optical cavities impose

two main conditions to the fields produced. The first requires the phase to

be periodic within the cavity, thus defining the longitudinal structure of the

field; for instance, one has nλ/2 = L in a cavity with length L, with n integer.

The second imposes that the intensity of the electromagnetic field goes to zero

away from the axis of the cavity, with the field being a solution of Maxwell’s

equations in the paraxial approximation. By studying a cross-section of a beam

perpendicular to the direction of propagation it is possible to observe amplitude

distributions called TEM (transverse electromagnetic modes, where the fields ~E
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and ~B have no components along the direction of propagation) and identified by

generic indices n, m and q for solutions of the Helmholtz equation in rectangular

coordinated, or `, p and q for cylindrical solutions. The last of the three indices

is usually associated with the longitudinal modes oscillating in an optical cavity,

and it will be omitted from now on.

Amongst the families of modes that are solutions of the Helmholtz equation

for the description of light propagation in the paraxial approximation, some

represent eigenstates of the quantum operator of orbital angular momentum

along the propagation direction. Such modes, called Laguerre-Gaussian, are

denoted by the azimuthal phase structure exp(i`φ) that characterizes the pres-

ence of well-defined values of OAM per photon. Laguerre-Gaussian modes form

a complete Hilbert basis, just like Hermite-Gaussian modes (solutions in carte-

sian coordinates of the wave equation) and hypergeometric-Gaussian modes

[235, 145]. The LG set of modes is defined as:

u`p (r,φ, z) =
√

2p !

w(z)π
(|`|+p

)
!

( p
2r

w(z)

)|`|
exp

(
− r 2

w 2(z)

)
L|`|

p

(
2r 2

w 2(z)

)

exp

(
−i k

r 2z

2
(
z2 + z2

R

))exp
(
i`φ

)
exp

[−i
(|`|+2p +1

)
ζ(z)

] (1.8)

expressed in polar coordinates r and φ, where ` is the azimuthal mode index

(corresponding to the winding number) and p is the radial mode index (corre-

sponding to the number of radial nodes in the field distribution). The beam

waist as a function of the propagation distance z is given by

w(z) = wo

√
1+ (z/zR )2, (1.9)

L|`|
p indicates a generalized Laguerre polynomial and ζ(z) is the Gouy phase. The

Gouy phase ζ(z) introduces an effective extra phase term proportional to the

mode order |`|+2p +1.

Each family of solutions provides a complete representation of transverse

spatial modes, as they are comprised of complete sets of orthonormal two-

dimensional complex functions. In addition, each basis can be expressed in

terms of the others, which allows for instance to obtain Laguerre-Gaussian
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modes, eigenstates of OAM, by linearly combining Hermite-Gaussian modes

[147]. It should be noted, however, that helical phase fronts also characterize

other families of modes that can be used to fully describe the transverse field,

such as Ince-Gaussian beams [21] and high-order Bessel beams [13], which

therefore also carry orbital angular momentum.

1.3.4 Duality relation between orbital angular momentum and
angular position

One of the offshots of the Englert-Greenberger duality relation in the context

of quantum mechanics is the concept of complementarity [137, 98]. Niels Bohr

disagreed with Einstein, Podolsky and Rosen’s definition of locality [95, 49]. In

Bohr’s point of view, some types of predictions are possible while others are not,

as they depend upon mutually incompatible tests. He defined this notion as

complementarity, and he proposed it as a means to clarify the apparent paradox

arising from the EPR experiment.

It is well known that momentum and position, or time and frequency, are

conjugate variables placed in relation to each other by Fourier transforms. Much

like position and momentum, angular position and orbital angular momentum

are Fourier-related [206].

A phase-shift operator that evolves a state |ψ〉 with well-defined azimuthal

angle and rotates its probability distribution can be introduced:

|ψ′〉 = exp
(−i L̂z∆φ

) |ψ〉, (1.10)

where L̂z induces a rotation of magnitude ∆φ in the phase probability distribu-

tion about the z axis [207]. A phase shift of exactly 2π does not alter the state,

which implies the rotational periodicity of the probability distribution and leads

to L̂z having integer eigenvalues. In the phase representation:

exp
(−i L̂z∆φ

)
ψ(φ) =ψ(φ+∆φ). (1.11)
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Expanding this into a Taylor series, the effect of L̂z can be rewritten as:

exp

(
∆φ

∂

∂φ

)
ψ(φ) =ψ(φ+∆φ) (1.12)

from which

L̂z =−i
∂

∂φ
, (1.13)

which shows how the generator or rotations L̂z and the angular position φ are

conjugate variables [207].

It must be pointed out how the position-momentum Fourier relation fun-

damentally differs from its angular equivalent. While the former case involves

continuous variables, for angular position and orbital angular momentum only

the position is continuous. In addition, angular position is cyclic with 2π period,

which has raised questions on its being a quantum-mechanical observable and

makes its standard deviation ill-defined [25]. By bounding the region of interest

within ±π, however, we can disregard most of these issues. Owing to the Fourier

relation between OAM and angular position, the amplitude of an OAM state can

then be expressed in terms of azimuthal angular states:

ψ̃(`) = 1p
2π

∫ π

−π
ψ(φ)e−i`φdφ. (1.14)

Correspondingly, states in the angular basis can be expressed in terms of those

with well-defined values of OAM:

ψ(φ) = 1p
2π

+∞∑
`=−∞̃

ψ(`)ei`φ. (1.15)

Although light can have a fractional net OAM content, it can always be expressed

as a series of integer OAM eigenstates [191, 117].
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(a) Poincaré sphere (b) Bloch sphere for |`| = 1

Figure 1.4: (a) Poincaré sphere and (b) Bloch sphere of first-order Hermite-Gaussian
modes expressed as superpositions of Laguerre-Gaussian modes with |`| = 1. Some
polarization and OAM states are indicated. In particular, the modes HG10, HG01, LG0,±1

and the diagonal first-order HG modes are shown in (b).

1.4 The angular momentum of light as a quantum re-
source

One of the most important properties of the orbital angular momentum of

light is that the Hilbert space associated with a general OAM quantum state is

theoretically unbounded. For any d-dimensional orbital angular momentum

subspace with arbitrary d , a complete orthonormal basis set can be defined and

the corresponding modes used as the elements of a high-dimensional quantum

information alphabet. Just as the two-dimensional state space of polarization

can be used to implement qubits (that is, two-level quantum bits), orbital angu-

lar momentum has been recognized as a convenient degree of freedom for the

physical realization of qudits (higher-dimensional qubits) in quantum informa-

tion applications.

The mathematical analogy between polarization and OAM subspaces was

recognized by Allen, Woerdman and co-workers in their seminal studies in the

early 1990s [9, 32]. Their mode converters based on cylindrical lenses, which

transform Hermite-Gaussian modes into Laguerre-Gaussian modes, are for OAM

the equivalent optical components to waveplates for polarization states. This

analogy was highlighted by Padgett and Courtial [202, 10], who represented a

two-dimensional OAM mode space with an analogy to the Poincaré sphere. The
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Poincaré sphere represents the complex superpositions of any two orthogonal

polarization states. Fig. 1.4a shows such a sphere with right- and left-circularly

polarized states located at the north and south poles of the sphere, respectively.

Their coherent superpositions that result in linear polarization states are placed

around the equator, with the longitude corresponding to the orientation of the

linear polarization, i.e. the relative phase between the right and left circular

components. Intermediate latitudes correspond to elliptical polarization states,

with the longitude denoting the orientation of the major axis.

While polarization provides a two-dimensional space, completely described

by the Poincaré sphere, the general OAM space is more complex. Transverse

modes can be grouped into subsets containing modes of the same mode or-

der, characterized by the same change in Gouy phase upon propagation [146].

For Laguerre-Gaussian modes, the mode order is given by m = |`|+2p +1; for

order m, there are m +1 distinct orthogonal modes. It follows that the Laguerre-

Gaussian modes with p = 0 and |`| = 1 constitute all the transverse modes of

order one, a two-dimensional subspace that can be fully represented on the sur-

face of a sphere analogous to the Poincaré sphere for polarization (fig. 1.4b). For

the Bloch sphere of this OAM subspace, the north and south poles are associated

with Laguerre-Gaussian modes with p = 0 and `=±1 respectively. Coherent su-

perpositions of these two modes produce first-order Hermite-Gaussian modes,

with an orientation that depends on the relative phase between the ` = ±1

components.

For Laguerre-Gaussian modes with |`| > 1, the situation is more complicated

since the number of modes of the same order is greater than two. However, it

is still possible to consider any subspace of just two modes and their superpo-

sitions, whichever their structure [229], and represent them on an appropriate

Bloch sphere. For modes with p = 0 and opposite values of `, for instance, the

states along the equator have intensity cross-sections consisting of a single ring

of 2` lobes, with orientation depending on the longitude. The Poincaré sphere

equivalent for two-dimensional OAM subspaces has also been used to analyse

the frequency shift introduced by a rotation of beams carrying OAM around the

propagation axis, where the dynamic phase shift is seen as a geometric or Berry

phase [202]. The clear analogy with polarization also lends itself to replicate
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experiments on quantum entanglement originally devised for or performed with

the polarization of entangled photons.

Photons in transverse modes carrying orbital angular momentum (e.g. sets

of Laguerre-Gaussian modes and their superpositions), as well as photons in

other degrees of freedom such as time-energy, path and continuous variables

[224, 231, 283], have attracted interest for the realization of multi-level quantum

systems. The implementation and manipulation of high-dimensional qubits

play an important role in several quantum information processes and protocols,

including quantum computing [270], quantum key distribution [97, 68, 186],

dense coding and teleportation [41, 38].
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CHAPTER 2

Production and measurement
of OAM-entangled two-photon states

Entangled photon pairs used in quantum optics experiments typically come

from the process of spontaneous parametric-down-conversion (SPDC) in a non-

linear crystal. High-dimensional entanglement between these photon pairs

can broadly be classified into two groups. The first exploits the spectral [19]

and temporal [84] degrees of freedom; an experimental system with at least 11

dimensions has been achieved for the latter [84]. The second exploits the spatial

degrees of freedom, such as transverse spatial profile [269] and transverse posi-

tion and linear momentum [285, 131]; an experimental system with a notable

channel capacity of 7 bits/photon, corresponding to roughly 128 dimensions,

has been reported for the latter [90]. Most relevant to our work are studies ex-

ploiting the angular position and the orbital angular momentum (OAM), which

relate to the modes with a spiral phase structure defined by the azimuthal index

` [161].

2.1 Spontaneous parametric down-conversion

Spontaneous parametric down-conversion (SPDC) is a quantum optical process

widely used in quantum optics for the preparation of entangled photons and

the implementation of probabilistic heralded single-photon sources. It is based

19
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on the use of nonlinear crystals, whose dielectric polarization does not vary

linearly with the electric field of the incident light. The process of parametric

down-conversion is related to the second-order dielectric susceptibility tensor

χ(2) that appears in the expansion of polarization

P (z, t )/ε0 ∝χ(1)E(t )+χ(2)E 2(t )+χ(3)E 3(t )+·· · . (2.1)

Parametric down-conversion was first described by Kleinman in 1968 as optical

parametric noise, in the context of low-gain optical parametric amplifiers and

frequency converters [149]. It is often treated in terms of a quantum-mechanical

decay process, in which the photons entering an optically nonlinear crystal give

rise to the probabilistic production of pairs of lower-energy photons. The three

interacting fields are commonly called pump (continuous or pulsed), signal and

idler. Since signal and idler and generated in pairs, detecting the idler implies

the presence of the signal (and vice versa).

2.1.1 Phase-matching

SPDC, being it a parametric process, therefore leaves the quantum state of the

medium unchanged. Energy conservation holds among the incoming photons

and the photon pairs produced:

ωp =ω1 +ω2. (2.2)

In addition, for an undepleted input beam, the efficiency of the emission is

highest when the following condition between the three wave vectors is satisfied

and the fields are coherent over the full length of the crystal:

~kp =~ks +~ki . (2.3)

Here k j = 2πn j /λ j , with j = {
p, s, i

}
, λ j is the wavelength and n j the wavelength-

dependent refractive index of the nonlinear medium.

Signal and idler photons are emitted within two different cones tangent
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χ(2)

~ks

~ki

~kp

(a)

Figure 2.1: In the process of parametric down-conversion, a pump photon probabilis-
tically induces the production of pairs of photons phase-matched in the frequency
domain and with correlated polarizations.

or partially overlapping, whose vertices correspond to the active spot in the

crystal (fig. 2.1). The importance of spatial correlations in two-photon sources

was pointed out as early as 1974 by Clauser and Horne, who highlighted the

relevance of direction correlations in addition to polarization correlations in

experimentally attainable tests of local hidden variables [75]. The frequencies of

the three fields, and the physical and geometrical properties of the crystal, are

such that at least condition (2.2) is always satisfied. When both relations (2.2)

and (2.3), known collectively as the phase-matching conditions, are met, we

are in what is called perfect phase-matching, i.e. ∆~k = 0 (fig. 2.2). The process

thus produces pairs of photons phase-matched in the frequency domain and

with correlated polarizations. It is thanks to the phase-matching conditions that

SPDC provides such spatial correlations for photons emitted within very narrow

cones.

In order to achieve phase matching in birefringent crystals, the highest-

frequency wave is polarized in the direction that encounters the lower refractive

index in the medium. Phase matching in SPDC can take place in two different

configurations. If the signal and idler photons are produced with the same polar-

ization, the SPDC process is said to be type I. In type-II down-conversion, on the

other hand, signal and idler are produced with orthogonal linear polarizations,

causing them to experience different refractive indices within the birefringent

crystal.

An experiment using SPDC for the production of polarization-entangled pho-

tons was first implemented in 1988 by Shih and Alley, using a monopotassium
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~ks
~ki

~kp

(a) Perfect collinear

~ks
~ki

~kp

δ

(b) Perfect noncollinear

~ks
~ki

~kp

∆kz

(c) Imperfect collinear

~ks
~ki

~kp

∆kz

(d) Imperfect noncollinear

Figure 2.2: Pump, signal and idler wave vectors in SPDC. (b) The phase-matching
conditions can be tuned such that the wave vectors of the signal and idler photons,~ks

and ~ki , point away from the direction of the pump vector. (d) The mismatch in the
longitudinal component z is denoted as ∆kz . The transverse momentum is however
conserved.

phosphate crystal [243]. Once the frequency and direction of the pump beam

have been chosen, and the geometrical properties of the crystal appropriately

tuned, the emission angles of the photons emitted by the crystal are well-defined.

The plane containing their propagation axes, however, remains undefined. By

imposing appropriate phase-matching conditions, the two emission cones can

be made to intersect. By selecting light from the intersection of the two rings,

this configuration has been used as a source of polarization-entangled photons

[155]. Only the entangled state of the photons produced in spatial modes A and

B , determined by the intersections of the cones symmetrical with respect to~kp ,

is therefore considered:

|ψ〉 = 1p
2

(
|HA,VB 〉+ eiφ |VA, HB 〉

)
, (2.4)

where H and V represent two orthogonal linear polarizations. The relative phase

between the two terms can be altered by inserting a waveplate in one of the two

paths, or changing the crystal orientation.

For the purposes of the experimental work presented in this thesis, we chose
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to use a type-I β-barium borate (BBO) crystal. In this down-conversion con-

figuration, the signal and idler photons, which have the same polarization, are

emitted in a single narrow cone coaxial with the pump beam axis. As previously

mentioned, the efficiency of the down-conversion process strongly depends on

the wave vector mismatch ∆~k =~kp −~ks −~ki between the three interacting fields.

In up-conversion processes, such as sum-frequency and second-harmonic gen-

eration, the concept of phase matching directly affects the intensity of the up-

converted beam. If the longitudinal length Lz of the nonlinear crystal is greater

than 1/∆k, the output wave can become out of phase with the driving polariza-

tion and the power can flow back into the two input waves. The phase-matching

conditions of down-conversion processes are less stringent.

A summary of the first-order perturbative approach of [127] is presented

here. Following the treatment given in [181], one can express the state produced

by SPDC in terms of the three wave vectors:

|ψ〉 = |0〉+A
∫

d~ks

∫
d~ki sinc

[
1

2

(
ωp −ωs −ωi

)
t

]
Φ(~ks ,~ki )|1,~ks〉|1,~ki 〉 (2.5)

where A is an arbitrary constant, |n,~ks〉 and |n,~ki 〉 are Fock states for the signal

and idler modes,

Φ(~ks ,~ki ) =
∫

d~qp v(~qp )

[
ωsωiωp

n2(~ks)n2(~ki )n2(~kp )

]1/2

× ∏
j={x,y,z}

sinc

[
1

2

(
~kp −~ks −~ki

)
L j

] (2.6)

and ~qp is the transverse component of the pump wave vector, v(~qp ) is the angu-

lar spectrum of the pump beam, n is the wave vector-dependent refractive index

of the nonlinear medium, and L j the three spatial dimensions of the crystal.

If we place appropriate narrow-band interference filters in front of the detec-

tors, as is usually the case in SPDC experiments, we only select the degenerate

frequencies of interest ωs and ωi . By considering this monochromatic case,

corresponding to (2.2), the time dependence in (2.5) disappears.

The transverse profile of the pump is usually smaller than the cross-section
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area LxLy of the nonlinear crystal. If one can effectively neglect boundary effects

and take the transverse dimensions to approach infinity, the process is invariant

with respect to transverse translation and the conservation of transverse linear

momentum ~qp =~qs +~qi holds unconditionally. If however the crystal has finite

length (i.e. comparable to the beam size), the process is not invariant to transla-

tion along the longitudinal direction z. The pump is also taken to have narrow

angular spectrum and the modes are examined for what will be referred to as

collinear or near-collinear phase matching conditions, that is, q ¿ k. In the

experimental context, the collinear case is taken to represent the maximum ex-

perimentally achievable collinearity conditions for a pump of finite size1. Under

these assumption, we can take the refractive indices encountered by the three

waves as constants in (2.6). Hence:

Φ(~ks ,~ki ) = v(~ks +~ki )sinc

[
1

2

(
kp,z −ks,z −ki ,z

)
Lz

]
. (2.7)

The effect of phase matching on the two-photon state |ψ〉 can be readily

observed in the far-field distribution of the down-converted light. The profile

of the down-conversion emission can be described as a function of the phase-

matching term in (2.6):

E ∝ sinc

[
1

2
∆kzLz

]
. (2.8)

If close to collinearity, we find that ωs 'ωi ' 2ωp and the phase mismatch can

be approximated by

∆kz ' kp −ks −ki + 1

2
(ki +ks)δ (2.9)

where δ is the angle between kp and either ki or ks within the crystal. In

case of perfect phase-matching (exact degeneracy) and collinearity, only the

δ-dependent term survives. The far-field intensity I can therefore be expressed

1The observable spiral bandwidth (sec. 3.1) associated with our experimental conditions is
therefore always non-zero, as opposed to theoretical collinear SPDC.
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in the form:

I ∝|E |2 ' sinc2 (
α+ cθ2) (2.10)

where θ = nδ is the external emission angle in air, c = (ks + ki )Lz/(2n)2 is a

constant depending on the experimental parameters and the refractive index n

for the signal and idler wavelengths, and α= (kp −ks −ki )L/2 determines the

degree of noncollinearity of the process [213].

One can image the far field of the crystal using a lens with focal length f

placed at distance f from the active spot of the nonlinear crystal. When looking

at the focal plane of the lens with a camera, for convenience of notation the

intensity profile (2.10) can be alternatively expressed as

I (r ) ∝ sinc2
[
α+ c

(
r

f

)2]
, (2.11)

where r indicates the radial coordinate in the focal plane of the lens. The inten-

sity profile so captured can be fitted using the mismatch parameter α as a free

parameter (fig. 2.3). Careful tuning of the temperature of the crystal (for lithium

niobate or potassium titanyl phosphate, for instance) or its angular orientation

with respect to the propagation direction of the incident light (for β-barium

borate) allows to control the phase-matching conditions to achieve the desired

wave vector mismatch and corresponding opening angle of the SPDC emission.

2.1.2 The Klyshko advanced wave model

In parametric down-conversion, a field is periodically transformed from a vac-

uum state to an excited state |ψ〉 that corresponds to the propagation of two

correlated photons. Earlier on, SPDC was not exploited as a source of entangle-

ment, a potential application that was only recognized in the late 1980s [243].

Using SPDC from an ammonium dihydrogen phosphate crystal as a source of

correlated photon pairs, in 1970 Burnham and Weinberg verified the underlying

physical interpretation of the parametric fluorescence process as two-photon

quantum decay by simultaneous detection of the signal and idler photons [64].
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(b) α=−2.2

Figure 2.3: (a) For collinear phase matching, the cross-section of the azimuthally av-
eraged intensity profile (inset) takes the form of a bright spot, with side lobes due to
the sinc phase-matching term. The detected intensity is shown in black, the theoretical
profile from eq. (2.11) in red. (b) In noncollinear SPDC, where signal and photons are
emitted with opposite transverse momenta, the light forms a bright ring, surrounded by
rings of decreasing brightness.

This simultaneous detection, possible if the detectors are arranged to satisfy en-

ergy and momentum conservation and to have equal time delays, is commonly

referred to as coincidence detection.

By setting the detectors to measure signal and idler in states |ψs〉 and |ψi 〉
respectively, the coincidence rate is proportional to the joint probability of

detection, which can be expressed as

P (ψs ,ψi ) = ∣∣〈ψi |〈ψs |ψ〉∣∣2 . (2.12)

In 1988, David Klyshko introduced an advanced-wave retrodiction model to

predict the outcome of coincidence experiments [150]. In a retrodictive model, a

quantum system at any point in time previous to the measurement is described

in terms of its measured state, evolved backwards in time [5, 6, 248]. Following

the treatment of retrodiction presented by Barnett et al. [26], one can view an

SPDC system in classical terms where one treats the signal detector as a light

source, the crystal as a mirror and the idler detector reading as a predictor for

coincidences (fig. 2.4).

Any measurement settings for the detection arms of the signal and idler pho-

tons will be collectively described in terms of detectors Ds and Di respectively.
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(b) Back-projection model

Figure 2.4: A generic experiment where photons are produced in parametric down-
conversion is shown in (a). In (b), the intensity detected by Di after the mode emitted
by Ds is propagated through the system is proportional to the coincidence count C
observed in (a).

In order to predict the coincidences in the Klyshko picture, the photons are

‘back-propagated’ from detector Ds in the mode corresponding to the pure state

|ψs〉, through the components along the path of the signal arm (such as lenses

and mirrors). The nonlinear crystal is replaced by a mirror, in the assumption of

a plane-wave pump and perfect phase matching. After the reflection, the mode

propagates forward through the components in the idler arm and is detected by

Di .

In this classical model, which considers an advanced wave rather than a two-

photon wavefunction, one can numerically predict the expected coincidence

rates from the Born rule. The coincidence probability is proportional to the over-

lap integral of the three modes at the crystal plane, with ψ̃s the back-propagated
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mode in the signal arm [102]:

P (ψs ,ψi ) ∝
∣∣∫ ∞

−∞ dr ψ̃∗
s ψ

∗
i ψp

∣∣2√∫ ∞
−∞ dr

∣∣ψ̃∗
s ψ

∗
p

∣∣2 ∫ ∞
−∞ dr

∣∣ψ∗
i ψ

∗
p

∣∣2
. (2.13)

Predictions based on this retrodiction model were used in classical simulations

(both numerical and experimental, using coherent light) of all the experiments

presented in this thesis, and allowed accurate alignment and optimization of

our detection system.

A more complete ‘double-Klyshko’ treatment able to account for any phase-

matching conditions, finite crystal length and the position of the foci of the

detection modes inside the bulk crystal, should include a volume integral over

the entire crystal of both back-propagated modes ψ̃s and ψ̃i , the pump ψp and

the phase-matching function W [88]:

P (ψs ,ψi ) ∝
∫ L/2

−L/2
d z

∫ ∞

−∞
dr ψ̃∗

s (r, z) ψ̃∗
i (r, z)ψp (r, z) W (z). (2.14)

2.2 Entanglement of orbital angular momentum

Since the first experiment that employed parametric down-conversion to pro-

duce polarization-entangled photons for which Einstein-Podolsky-Rosen-Bohm

correlations were observed [243, 95, 46], SPDC has been used as a source of

entangled photons in a wide range of experiments. The entanglement of down-

converted photon pairs has been investigated in several degrees of freedom

– including time-energy, linear momentum and spatial modes, such as those

carrying orbital angular momentum [131, 221, 252, 268].

The first experimental demonstration of the conservation of orbital angular

momentum for down-converted photon and OAM entanglement in the SPDC

process was carried out by Zeilinger and co-workers in 2001 [172]. In order to

verify the conservation of OAM, the photons were detected using a combination

of computer-generated holograms and single-mode fibres (see section 2.3.2

for details). In order to justify the conservation of OAM it could be enough
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to suppose the existence of classical correlations between the photon pairs

generated, without any need for quantum correlations. To confirm the presence

of entanglement between the photons in each pair it must be shown that they

are not just a a mixture of the permutations allowed by conservation of angular

momentum but rather a coherent superposition.

Zeilinger and co-workers confirmed that, for a Gaussian pump beam, the

signal and idler photons can take on a range of OAM values. However, once the

signal OAM was determined, the idler photon from the same pair always had

the opposite value. These results are in agreement with previous research by

Monken and co-workers, who showed that the angular spectrum of the pump

is transferred to the properties of the transverse correlation of the signal and

idler photons [181]. Since then, their group has investigated the conservation of

OAM in SPDC in more detail, showing that in fact it is the transfer of the pump

angular spectrum that leads to the conservation of OAM [268].

By considering a pump beam carrying no orbital angular momentum, `p = 0,

the entangled state that describes the generated pairs takes the general form

|ψ〉 = c0,0 |0〉 |0〉
+ c1,−1 |1〉 |−1〉+ c−1,1 |−1〉 |1〉
+ c2,−2 |2〉 |−2〉+ c−2,2 |−2〉 |2〉+ · · ·

(2.15)

where |`〉 |−`〉 = |`s〉⊗ |`i 〉 for brevity, in the general case of an arbitrary number

of OAM eigenstates for signal and idler, where coefficients c`s ,`i indicate the

probability amplitude associated with state |`s〉 |`i 〉.
While showing that OAM is conserved in down-conversion indicates cor-

relations between `s and `i , it does not constitute in itself a proof of OAM

entanglement. Unlike classical correlations, quantum correlations contain a

phase dependence that can be tested by showing correlations for both OAM

eigenstates and their superpositions. In the analogy with polarization, any linear

polarization state can be regarded as a superposition of right and left circularly

polarized states; the phase between the left and right components sets the ori-

entation of the resulting linear polarization. The strength of the polarization

correlations between signal and idler photons depends upon the relative orien-
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tation of the linear polarizers used in the measurements. This is equivalent to a

dependence on the relative phase between the circular state components of each

individual beam. For OAM, superposition states can be created by deliberately

moving the hologram so that the fork dislocation is no longer centred within the

beam. The relative phase of the modes in the superposition so produced is set

by the direction and magnitude of the transverse displacement.

Zeilinger and co-workers displaced the hologram in the signal arm and, with

the idler hologram removed, scanned the transverse position of the detector

in the idler arm. This resulted in a coincidence curve in which the position of

the minimum corresponding to the phase singularity was also displaced by the

same amount [172]. Had the correlation instead been classical, one would have

expected the coincidence minimum to remain at the centre, albeit washed out.

The shift in the minimum confirmed that the observed nonlocal correlations in

the measurement of the OAM content of the two photons are phase-dependent

and therefore quantum in nature: the state of the photon pair generated by

SPDC, expressed in the OAM basis, is an entangled state.

Determining the distribution of the orbital angular momentum modes over

which down-converted photons are entangled, that is, the experimentally acces-

sible subset of the terms of (2.15), is crucial in quantum information applications

based on the availability of specific quantum states. Experimentally, only a small

angular section of the SPDC emission cones is usually considered. The wave

vectors of signal and idler photons belong to small cones coaxial with the cor-

responding central wave vector, making it possible to neglect conditions of the

overall system that may lead to violations of the conservation rule [255, 102].

The condition `p = `s +`i is only valid for certain emission angles and Poynting

vector walk-off [257, 195]. The latter effect can be reduced by using a sufficiently

wide pump beam [172, 268]. In the opposite case, that is, using geometries

based on highly focussed pump beams, nonlinear effects can be accentuated.

Noncollinear SPDC configurations introduce ellipticity in the spatial modes

of the down-converted modes, which may lead to the observation of pairs for

which the selection rule on OAM is violated.

A complete characterization of the state of an entangled system can be

carried out using the Schmidt decomposition [96]. Expressing the state in the
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Schmidt basis highlights the type of correlation as well as the number of modes

involved. In the SPDC case, expressing the transverse components of the signal

and idler wave vectors as ~qs and ~qi , the two-photon state produced by SPDC

can be rewritten in the form

|ψ〉 =
∫

d~qs

∫
d~qi C (~qs ,~qi )|~qs ,~qi 〉 (2.16)

where C (~qs ,~qi ) is the amplitude of the two-photon state |~qs ,~qi 〉 [267]. The

Schmidt decomposition of C (~qs ,~qi ) can be shown to correspond to the expan-

sion

C (~qs ,~qi ) =
∞∑

n=0

p
enun(~qs)vn(~qi ), (2.17)

where un(~qs) and vn(~qi ) are Schmidt modes given by the eigenvectors of the

reduced density matrices for signal and idler, and en the corresponding eigen-

values [159]. Because density matrices always have finite trace, the Schmidt

decomposition is always discrete, even when the original is intrinsically contin-

uous or, such as in this case, doubly continuous.

The functions un and vn form a complete and orthonormal basis. With the

exception of Gaussian states, however, un and vn do not directly correspond

in general to states carrying well-defined orbital angular momentum that are

experimentally accessible in the detection for SPDC implementations. The

direct implementation-independent manipulation of Schmidt modes, which

in general are not associated with any physical property but represent funda-

mental entities in quantum information and characterize the structure of the

entanglement, remains an open problem.
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2.3 Experimental methods

2.3.1 Collinear parametric down-conversion with BBO crystals

Parametric down-conversion is used as a source of entangled photon pairs. We

employed a set of β-barium borate (BBO) crystals with different lengths, each of

which could be mounted onto a goniometric stage that allowed precise repeat-

able rotations around the horizontal axis (orthogonal to the pump direction)

with accuracy of around 0.1°, in order to tune the phase-matching conditions.

Down-converted light was produced by optically pumping the crystal with

a 2W mode-locked solid-state Coherent Paladin laser source at 355nm, with

120MHz repetition rate and a beam waist diameter at 1/e2 of 1mm. The pump-

ing power could be reduced to 1W using a system of ultraviolet broadband plate

beam splitters arranged at the output of the laser. The low beam divergence was

further improved by the use of a 4 f imaging system placed between the laser

output and the input face of the crystal. The high stability of the laser output

power and its low noise made the laser source employed ideal for measurements

in low-light conditions, which, in order to collect significant photon counts, can

take place over extended periods of time.

The BBO crystals were cut for type-I SPDC, for which the down-converted

photon pairs leave the crystal with an angle with respect to the pump prop-

agation direction determined by the orientation of the crystal, i.e. the phase-

matching conditions. The pump beam residue after the crystal was blocked by a

longpass reflective interference filter. The signal and idler fields at the output of

the crystal were imaged and magnified by a 4 f afocal imaging system composed

of lenses with focal lengths f1 = 200mm and f2 = 400mm (fig. 2.5).

In this configuration, the co-propagating signal and idler photons were sepa-

rated by a balanced non-polarizing beam splitter. In both conditions considered,

the aperture of the down-conversion cone was small enough to be effectively

negligible at the SLM plane. We used a pellicle beam splitter to suppress multiple

internal reflections and ghosting when operating the system in back-projection.

Using type-I down-conversion and a non-polarizing beam splitter reduces the
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Figure 2.5: Experimental set-up implementing SLM-based coincidence detection with
a parametric down-conversion source. A β-barium borate (BBO) crystal is pumped by a
355nm laser. The crystal can be rotated about the axis shown with a dashed line. The
pump is removed by a reflective interference filter (IF1) placed after the crystal. Signal
and idler are separated by a balanced non-polarizing beam splitter (BS), and imaged
by f1 and f2 onto two spatial light modulators (SLM1 and SLM2). The outputs of the
SLMs are then imaged onto single-mode fibres (SMFs) routed to coincidence-counting
electronics (C ). The first diffraction order of the SLMs is selected by pinhole apertures,
and bandpass filters centred at 710nm allow the collection of signal and idler near
degeneracy (IF2). The other diffraction orders are represented with semi-transparent
rays. A removable mirror placed in the beam path redirects the down-conversion output
to a camera at the focal plane of f1 (FF CCD). When running the experiment in back-
projection, another removable mirror redirects the light from the two objectives f4 to a
camera placed at the same distance as the crystal (NF CCD). The different sections of
the figure are not shown in the same scale.

overall efficiency by half, as only the events where each photon emerges from a

different output of the beam splitter are considered by the coincidence-counting

detection. Using collinear and near-collinear down-conversion, however, allows

the collection of all the light in the down-conversion spot.

The phase-matching conditions were monitored by imaging the far-field

intensity of the down-converted light, where the light distribution depends only

on the phase matching and pump divergence [86]. A movable mirror could

be placed in the beam path to redirect the SPDC output to a high-sensitivity

CCD camera at the focal plane of f1. A narrowband interference filter centred at

710nm selected photon pairs near degeneracy. The intensity pattern was then

fitted with (2.11), where the phase mismatch α was used as a fitting parameter

(fig. 2.3).
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2.3.2 Phase-flattening measurements with spatial light modula-
tors

In order to carry out measurements of OAM modes, we need to introduce a

component equivalent to a polarizer able to operate in the larger state space of

OAM. An OAM ‘polarizer’ should be able to perfectly discriminate between any

number of orthogonal OAM states, and let any light through only if the measure-

ment setting matches the OAM content of the incident transverse mode. In the

early 1990s, Soskin and co-workers [29] and Heckenberg and co-workers [125]

pioneered the use of diffractive optical elements for the generation of beams

with helical wavefronts. Their teams showed that, when a diffraction grating

containing an `-fold edge dislocation was illuminated with a Gaussian beam,

the first-order diffracted beam had an annular intensity cross-section consistent

with helical phase fronts described by a phase cross-section of the form exp(i`φ)

(eq. (1.8)). Beams carrying any amount `~ of OAM can be generated through

diffraction off a suitable hologram. When operated in reserve, these holograms

can also be used to detect the OAM of an incident mode.

In general, a grating hologram is obtained by adding a blazed linear grating

(modulo 2π) to a given phase distribution. These holograms operate by shifting

the desired phase information into the first diffraction order. By adding a blazed

grating modulo 2π to a phase distribution corresponding to a spiral phase with

topological charge ` [29], one obtains a ‘forked’ hologram where the fork dislo-

cation induces the phase singularity and the number of prongs correspond to

the charge ` of the hologram.

When a beam with an ` helical phase structure is diffracted by a forked

hologram with topological charge −`, it is converted in the first diffraction

order into a fundamental Gaussian beam, which can in turn be coupled into a

single-mode fibre (SMF). Varying the order ` of the singularity of the hologram

pattern until light is detected in the single-mode fibre allows the determination

of the charge ` of the incident light (fig. 2.6). If the detector is sensitive to low-

intensity signals in the single-photon limit, the combination of holographic

diffraction grating and single-mode fibre acts as a device that allows projective

measurements of the OAM eigenstates of single photons.
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Figure 2.6: Spatial light modulators (SLMs) are diffractive optical devices that can be
programmed with phase and amplitude holograms to transform a Gaussian mode into
any spatial mode of choice (red arrows). When operated in reverse, the same holograms
can efficiently couple the same complicated mode distribution back into a single-mode
fibre (grey arrows).

Using appropriate forked holograms, in 2001 Zeilinger and co-workers mea-

sured the OAM content of single photons produced by SPDC and investigated

quantum correlations in OAM [172]. They showed that OAM is conserved in

the parametric down-conversion process: as previously described, for a Gaus-

sian pump beam (carrying no angular momentum) they found highest coinci-

dence rates when the OAM of the signal photon (`i ) was opposite to that of the

idler photon (`s). More generally, they showed that the OAM was conserved,

`s +`i = `p , for pump beams with `p =−1,0 and +1. The conservation of OAM

can be understood as a direct consequence of phase matching in SPDC [102]. It

is important to point out that the signal and idler beams have independently low

spatial coherence, and both are a mixture of many different OAM eigenstates.

Correlations only emerge at the level of the individual photon pairs and are are

averaged out when the measurements consider many photon pairs. As a con-

sequence, the detection of quantum correlations has to rely on single-photon

detection.

Although computer-generated holograms printed on standard photographic

film proved efficient and versatile [14], they are also difficult to replace and align.

Spatial light modulators (SLMs) represent an alternative and an improvement

on the concept. SLMs are adaptive optical devices in which a matrix of liquid

crystals is enclosed within glass on one side and overlaid on top of a silicon chip
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on the other. The orientation of the liquid crystals can be controlled by changing

the voltage applied, thus inducing a spatially variable phase delay to the incident

light. The phase modulation ranges from 0 to 2π in 256 discrete voltage steps per

pixel. Even though the Hamamatsu LCOS-SLMs used only act on the phase of

the incoming transverse mode, they can also be used to modulate the intensity

of the light. In order to detect a spatial mode with phaseΦ(x, y) and normalized

amplitude A(x, y), the phase structureΦh(x, y) to be encoded on the hologram

that produces a Gaussian mode in the first diffraction order for the given input

can be calculated as:

Φh(x, y) = [
Φ(x, y)+Φg (x, y)

]
mod 2π× sinc

[(
1− A(x, y)

)
π
]

, (2.18)

whereΦg (x, y) corresponds to the phase distribution of the diffraction grating,

and the second term introduces an amplitude-dependent distortion [83, 15,

51]. The power redirected into the first order can be adjusted by changing the

greyscale contrast of the diffraction grating blazing function. The phase response

of the SLMs is not uniformly linear over the full 2π range. A greyscale calibration

curve was then produced by considering the measured count rates in the first

order as a function of the greyscale contrast, in order to modulate the pixel value

to obtain the desired phase.

By re-programming the holograms displayed on the computer-controlled

SLMs, any arbitrary phase structure can be produced or, if used with with single-

mode fibres, measured. This makes the use of SLMs particularly convenient

in systems where a large number of different holograms are used for phase-

flattening measurements. Once the pitch and the centre of the hologram have

been set to correctly couple the first-order output into the detection fibre, the

encoded phase distribution can be changed without introducing any misalign-

ment. The optimization of the grating angles and centre positioning can be

entirely automated, making it possible to acquire data over long periods of time

without any manual adjustment or drift compensation [134]. As shown, SLMs

can also be employed to measure not just the phase modulation of spatial modes,

but also their amplitude; this process however will naturally incur additional

loss, as the diffraction efficiency of portions of the hologram has to be artificially
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suppressed and part of the incoming light redirected into the zero diffraction

order. This is on top of the significant loss already introduced by SLMs, of the

order of 40%, which represents the main drawback to their flexibility.

The efficiency of SLMs depends on the transverse structure of the incident

light, namely on its OAM content and the presence of higher-order radial modes

[179, 234]. In phase-flattening measurements, the diffracted field does in fact

retain a ringed intensity pattern due to its being a non-trivial superposition

of radial modes. Only the fundamental mode with no radial discontinuities

couples into a SMF. For the measurement holograms presented, one can choose

appropriate beam waist sizes and radial indices such that most of the light is

diffracted into the first order [220].

To avoid pixellation and a reduction of diffraction efficiency, it is important

that a large enough number of pixels of the SLM are illuminated. This is the

reason the down-conversion output is expanded to fill more of the liquid crystal

layer of each of the two SLMs. Completely filling the diffractive window, however,

would introduce the need for aberration correction, as the liquid crystal layer is

not completely flat over the entire 1.9cm2, 800×600-pixel area. In addition, the

polarization of the incoming light is rotated in each arm using half-wave plates

to maximize to the first-order efficiency of the SLMs.

2.3.3 Coincidence detection

The first-order output of the SLMs were collected by single-mode fibres, onto

which the SLMs outputs were imaged by a combination of a lens with f3 =
600mm and an objective with f4 = 3.2mm. Bandpass filters of width 2nm and

centred at 710nm were placed in front of the fibres to ensure signal and idler

photons were measured near degeneracy. Each SMF was connected to a Perkin

Elmer silicon avalanche photodiode (APD), the output of which was fed to a

coincidence circuit with a timing window of 10ns. The APDs operated at 710nm

with a quantum efficiency of 60%, with a nominal dark count rate of 20s−1 and

an effective rate of about 200s−1 in our laboratory conditions.

Aligning the optical system in the single-photon regime can be a significant
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challenge. Back-propagation provides a method to simplify this process, leaving

the fine-tuning to be performed with down-converted light. When operating the

system in reverse, in the Klyshko model, a laser diode at approximately 710nm

was shone from both single-mode fibres of the coincidence detection set-up

back towards the SLMs. The light propagating through both arms of the system

could be observed at a plane located at the same distance f1 from the crystal

plane, by placing a removable mirror in the beam path that redirects the light

to a CCD camera (fig. 2.5). This allowed us to check the overlap of the signal

and idler beams as they propagated through the respective correct optical paths,

determined by apertures placed in the system. Observing the beam overlap

and the interference fringes at the crystal plane facilitated the alignment of the

optical system and to achieve the conditions that lead to coincidence counts.

The curvatures of the signal and idler beams can be mismatched, but must

complement each other (i.e., if the signal is concave, the idler must be con-

vex). This is because, in the back-projection model, the curvature of the back-

projected beams at the crystal plane must match the pump curvature (which is

flat). The set of lenses between the crystal and the SLMs imaged one onto the

other afocally, and made it unnecessary to encode field lenses on the SLMs to

adjust the curvature of signal and idler (sec. 3.1.4).
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Generation of high-dimensional
OAM-entangled states

Much attention has been directed to the two-dimensional state space of photon

polarization, which provides both a conceptually and experimentally accessi-

ble test bed [17, 113, 130, 107]. An even more fertile test bed, however, is d-

dimensional two-photon entanglement, wherein each photon is a d-level qudit

taking on any of d possible values. From a fundamental standpoint, higher-

dimensional entanglement implies stronger violations of locality [79, 81] and is

especially useful in the study of mutually unbiased bases in higher dimensions

[274]. More relevant to practical applications, higher-dimensional entanglement

provides increased security and robustness [30, 31, 285] and a higher informa-

tion capacity [31, 269, 90].

The entanglement of orbital angular momentum (OAM) in photons gener-
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Phys. Rev. A 86(1), 012334 (2012)

• J. Romero, D. Giovannini, M. G. McLaren, E. Galvez, A. Forbes and M. J. Padgett, “Orbital angu-
lar momentum correlations with a phase-flipped Gaussian mode as pump beam”, J. Opt. 14(8),
085401 (2012)

39

http://dx.doi.org/10.1140/epjd/e2012-20736-x
http://dx.doi.org/10.1103/PhysRevA.86.012334
http://dx.doi.org/10.1088/2040-8978/14/8/085401
http://dx.doi.org/10.1088/2040-8978/14/8/085401


40 CHAPTER 3

ated via spontaneous parametric down-conversion (SPDC) is firmly established

theoretically and experimentally [102, 172]. The interest in OAM stems from its

discrete and theoretically unbounded Hilbert space: since at least in principle `

could be any integer, the OAM state space offers a vast choice of d-dimensional

subspaces. Since the pioneering experiment of Mair et al. [172], OAM as well as

its conjugate variable, angular position, have been steadily gaining ground as a

mainstream variable in which to observe quantum correlations. Bell-type and

Leggett inequalities have both been violated in two-dimensional OAM subspaces

analogous to experiments previously carried out for polarization [162, 228].

The number of OAM spatial modes of the two-photon entangled state gener-

ated in SPDC is generally referred to as the spiral bandwidth [255]. Any practical

experiment utilizing the innate d-dimensional entanglement of the orbital angu-

lar momentum of photons is constrained by both the generation capacity of the

entangled photon source and the modal capacity of the detection system. The

generation spiral bandwidth is the number of OAM modes that are produced

by SPDC. The generation spiral spectrum of SPDC (i.e., the range of d entan-

gled OAM states and their respective generation probability amplitudes) has

previously been calculated analytically from the coincidence fringe obtained

from a clever angular equivalent of the Hong-Ou-Mandel interferometer using

bucket detectors [87]. On the other hand, the measurement spiral bandwidth is

the number of OAM modes that can be effectively detected, and it depends on

the generation spiral bandwidth and detection capability of the system.

Pors et al. [216] have calculated the size d of the measured spiral bandwidth

from coincidence fringes as angular phase plate analysers are rotated: d is

the inverse of the area under the peak-normalized coincidence fringe. Using

this technique, a dimensionality of d = 6 has been measured for a SPDC sys-

tem with a Schmidt number of 31. Another technique is to measure the OAM

states of the signal and idler photons directly by forked diffraction holograms

and build up a measurement spiral spectrum, as was done by Dada et al. [81],

where they have proved 11-dimensional OAM entanglement via generalized

Bell inequalities. Using angular slits and forked diffraction holograms, Leach et

al. successfully demonstrated the Einstein-Podolsky-Rosen paradox by measur-

ing angular position and 15 different OAM states, although they did not obtain



SECTION 3.1 41

the dimensionality of the measured OAM entanglement [161].

By tuning the phase matching, it is possible to demonstrate an increase of

the half-width of the OAM-correlation spectrum of a factor of two and above. Ad-

ditionally, we measured correlations in the conjugate variable, angular position,

and obtained high values of the entanglement measure known as concurrence.

The good entanglement measures in both OAM and angular position bases indi-

cate bipartite, d-dimensional entanglement where d is tunable. We quantified

the dimensionality of OAM entanglement via the quantum mutual informa-

tion capacity, the information that is shared by the entangled photons. This is

an especially meaningful quantity for quantum key distribution [90, 61, 163]

and has not been measured for OAM previously. An experimental quantum

mutual information capacity as high as 4.94 bits/photon, corresponding to a

dimensionality of around 30, was achieved (sec. 3.2).

3.1 Spiral bandwidth

Any projective measurement of OAM, wherein the OAM of the signal and idler

photons are directly measured using a mode transformer (with a hologram or

phase plate) and a single-mode fibre coupled to a photon detector, is inherently

sensitive to the radial field distribution [87, 262, 229]. Measuring the OAM

spectrum in this manner will inevitably result in a spiral bandwidth that is

different from the generation bandwidth [87].

To increase the number of measurable OAM modes, one can either optimize

the detection system or widen the OAM spectrum of the generated two-photon

state. These two are equally important, but optimizing detection is fruitless if the

OAM states are not being generated in the first place. The detection geometry

is more often fixed but can be designed optimally. The generation bandwidth

can be modified by changing the characteristics of the pump beam [255, 178]

or by tuning the phase-matching conditions as shown previously, for example,

by temperature tuning a periodically poled potassium titanyl phosphate crystal

[87].

When it comes to the generation bandwidth of spontaneous parametric-
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down-conversion, the frequencies of the pump, signal and idler photons in-

volved in the nonlinear interaction are related as ωp =ωs +ωi . There is a range

of wave vectors that will satisfy this energy conservation relation, and we can

define an on-axis phase mismatch ∆kz from the z components of the wave

vectors as ∆kz = kp,z −ks,z −ki ,z [149]. The significance of phase matching was

first realized in a seminal paper by Kleinman [149]. In any three-wave-mixing

process, 2/∆kz is the coherence length over which the three interacting fields

remain in phase. In SPDC, ∆kz has implications for efficiency (SPDC is brightest

when ∆kz ' 0), but more importantly it determines the spectral distribution of

the down-converted photons [54, 263]. Theoretical treatment of phase matching

is complicated and several approximations have been made [178, 159, 152], but

it is easy to do in practice by tuning either the temperature or angular orientation

of the crystal [54].

In the case of our bulk β-barium borate (BBO) crystal, changing the angular

orientation affects the index of refraction encountered by the pump beam and

hence ∆kz and the far-field intensity profile of the down-converted fields. The

intensity profile I we obtain mirrors the sinc-phase-matching term in SPDC and

is fitted with eq. (2.11)

I (r ) = sinc2
(

ar 2

f 2
+α

)
(3.1)

where r is the radial coordinate in the focal plane of a lens with focal length

f and α is a phase-matching parameter that determines the opening angle of

the SPDC emission [213]. In the case where the transverse momentum of the

photons is conserved, α is dominated by ∆kz ; we take this as a measure of our

on-axis phase mismatch. For the collinear case, α= 0.

It can be found that, for any given set of generation parameters (pump waist

wp , wavelength λ, crystal length L) the detection apparatus can be prepared in a

way that maximizes the measured number of entangled modes. Two important

parameters are γ, the ratio of the width of the pump beam to the width of the

detection modes, and LR , the length of the crystal normalised to the Rayleigh



SECTION 3.1 43

range of the pump beam:

γs,i =
wp

ws,i
and LR = L

zR
, (3.2)

where the Rayleigh range is given by zR =πw 2
p /λ. Here we assume that the signal

and idler modes have the same width, so that ws = wi and γs = γi = γ.

The precise calculation of ws,i depends on the details of the detection system.

Our analysis can be applied if the back-projected detection mode size, ws,i , is

approx- imately `-independent over the range of OAM of interest, and if the

modes with p 6= 0 couple only weakly with the fundamental mode of the fibre

that carries the signal to the coincidence counter.

We investigate the LR dependence of the OAM bandwidth, while recognizing

that many experiments operate in a regime where LR ¿ 1 [172, 27, 136, 191, 81].

In the short crystal limit and near to collinearity, the familiar sinc phase can be

dropped [235]. One can then obtain an analytical form for the down-converted

state [179, 42] and its extension to non-Gaussian pump beams [279]. Our aim

was to go beyond this type of analysis and explore regimes in which the sinc

phase matching term becomes significant, which leads to an exact analytical

expression and to the characterization of the detection parameters.

For a distribution of probabilities, in our case for the OAM of the signal or

idler photon in SPDC, we can define a number of statistical measures. For high-

dimensional entanglement we require as many modes as possible to contribute

to the state and, moreover, for these to contribute strongly, that is to have a

significant probability. A simple and convenient measure of this quantity is the

Schmidt number [160, 159, 216]:

K
({

pi
})= 1∑

i p2
i

, (3.3)

where the probabilities
{

pi
}

are, in our case, those for each of the OAM modes.

The measure K gives the effective number of contributing modes and hence

the effective dimensionality of the system. In experiments, it is typical to quote

the full-width at half maximum as the measure of the bandwidth (FWHM) so

as to include only modes that are well above the noise floor. FWHM should
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not be confused with K (fig. 3.1a). For simple, symmetrical and single-peaked

probability distributions, the Schmidt number provides a convenient measure

of the bandwidth. The precise relationship between the Schmidt number and

the FWHM depends upon the detailed shape of the distribution but typical of

our systems is that the K exceeds the FWHM. For a distribution like this we can

define an effective range of modes contributing to the state ranging from `max

to `min =−`max such that K = 1+2 |`max|.
The generation bandwidth is the effective number of entangled modes gener-

ated in the SPDC process. As it does not depend on the detection apparatus, it is

a function only of the crystal length and of the size of the pump beam, combined

into the quantity LR , defined in (3.2). This bandwidth can be thought of as the

dimensionality of the entanglement in OAM and can be calculated through the

Schmidt decomposition of the SPDC state [177].

The measurement bandwidth represents the number of modes that a detec-

tor will measure in an experiment and depends on both the generated modes

and on the overlap of these with the detection modes. In doing so, we need to

consider the optics used to image the light onto the detectors and any restriction

arising from this, such as a restriction to p = 0 Laguerre-Gaussian (LG) modes.

The overlap between the generated modes and the back-projected detection

modes needs to be maintained both in the image plane and in the far field plane

of the crystal: a set-up with high overlap in the image plane may still suffer from

low overlap in the far field or vice versa, and this would translate into a decreased

modal sensitivity. This overlap requirement plays a central role further on in the

derivation of eq. (3.10), which is based on the argument that the angular spread

of a generated mode cannot exceed the natural spread of the down-conversion

cone.

3.1.1 Analytical treatment of spiral bandwidth

A direct calculation of the measurement bandwidth needs to consider the over-

lap between the SPDC state and a pair of joint detection modes [255, 179]. This

yields a series of complex measurement amplitudes {C`}, where ` labels each
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value of the OAM that was measured. The measured Schmidt number (or the

measurement bandwidth) is therefore given by the measure K applied to the

set of projection probabilities K ({p`}), where p` = |C`|2. We seek to evaluate

this quantity for a Gaussian pump laser, taking full account of the sinc phase-

matching term and thus extending the regime of validity of earlier calculations.

We consider the measurement modes for the signal and idler fields to be a

pair of LG modes. The LG modes are characterized by two integers ` and p and a

real positive number w , which represent the OAM quantum number, the radial

quantum number and the Gaussian modal width, respectively. For simplicity,

we set p = 0, which limits our analysis to modes with a single bright ring in the

transverse plane. Many of our experiments are designed to detect p = 0 modes

with a higher efficiency than higher-order modes. We note however, that modes

with non-zero p are produced in the SPDC process and, indeed, it is these that

make it possible to observe entanglement of three-dimensional vortex knots in

SPDC [229].

The SPDC wave function ψ(~qs ,~qi ) in momentum space is written as follows,

where the subscripts s and i refer to signal and idler modes [255]:

ψ(~qs ,~qi ) ∝ exp

(
−

w 2
p

4

∣∣~qs +~qi
∣∣2

)
sinc

(
L

4kp

∣∣~qi −~qs
∣∣2

)
. (3.4)

Here ~q is the transverse component of the momentum vector~k, wp is the pump

width, L is the crystal thickness, kp is the wave vector of the pump. The first term

corresponds to the transverse wave vector components of the pump, while the

second term represents the phase-matching imposed on the down-conversion

process by the nonlinear crystal.

We consider each detection mode to be an LG mode with radial quantum

number p = 0. In polar coordinates (ρ,φ) in momentum space it has the form

LG`(ρ,φ) =
√

w 2

2π |`|!
(
ρwp

2

)|`|
exp

(
−ρ

2w 2

4

)
exp

(
i`φ

)
. (3.5)

The projection amplitude is therefore calculated by evaluating the overlap inte-

gral of ψ with two LG modes of opposite OAM (because of angular momentum
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conservation) [172, 102, 255]. For given LR and γ, the result is found to be

C`∝
1

LR

(
2γ2

1+2γ2

)|`| [
ξ|`|+1Φ

LR ,γ
`

−Φ0,γ
`

]
. (3.6)

We note that the first term in brackets corresponds to that obtained previously

[179], specialized to equal signal and idler widths and p = 0 modes. Here the

functionΦLR ,γ
`

is the Lerch transcendent function of order (1, |`|+1) and argu-

ment −2γ2ξ [271]:

Φ
LR ,γ
`

=Φ(−2γ2ξ, 1, |`|+1), (3.7a)

ξ= i +LR

i −2γ2LR
. (3.7b)

Note that ξ= 1 for LR = 0. Once LR and γ are specified, the amplitudes C` are

to be used in the definition of K ({P`}), in order to calculate the measurement

bandwidth. The dependence of the projection amplitudes on a transcendent

function makes further analytical calculation difficult, and a numerical approach

has to be employed. However, as the tails of the distribution of projection

probabilities have a slow decay and therefore an effect on the width even at high

|`|, the numerical approach is slow, if an accurate result is sought.

3.1.2 Geometrical argument

In this section we find upper and lower bounds for the generated and measured

OAM values. The measurement bandwidth that we calculate from such bounds

matches the analytic result of the previous section, and therefore allows us to

avoid a numerical calculation of the distribution of projection probabilities.

The phase-matching efficiency of the down-conversion process depends

upon the axial mismatch∆kz in wave vectors of the pump, signal and idler fields,

and it is given by sinc2(L∆kz /2). When optimized for degenerate, near-collinear

phase-matching, the signal and idler output is obtained over a narrow range of
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Figure 3.1: (a) An example of a distribution of |C`|2 for LR = 1mm and γ= 2, obtained
by calculating numerically the projection amplitudes between ` = −20 and ` = 20.
The FWHM and the measurement bandwidth K are shown. Note that K exceeds the
FWHM by about 2.3 times, giving an effective mode number of about 16 in this case.
(b) The thick line (uppermost) is the generation bandwidth defined in eq. (3.12), the
solid grey curves are calculated from our analytical treatment (considering the interval
from `=−100 to `= 100), and the dashed grey curves are the result of our geometrical
argument, eq. (3.20).

opening angles, α, for which L∆kz . π. With reference to fig. 2.2b, for small δ

(which corresponds to being near to collinearity) we can write

∆kz '
δ2kp

2
. (3.8)

It follows, therefore, that the allowed values of α are bounded from above:

δ2 .
2π

kp L
. (3.9)

For Laguerre-Gaussian modes in the paraxial regime, we can define an effective

local wave vector associated with the gradient of the phase. The helical form of

the wavefronts gives rise to an angular spreading of these such that at a distance

r from the mode axis, the angular spread is β= `/kr , which can be interpreted

as the local spreading angle from the optical axis [201]. The natural restriction on

α imposed by the phase matching therefore sets a limit β. δ on the efficiency of
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production of the OAM-carrying beams, imposing a restriction on the generated

OAM bandwidth. Such restriction is a natural consequence of the fact that a

generated mode cannot be more divergent than the down-conversion cone. The

relation β. δ, using the definitions and bounds given above for β and δ, can be

rewritten as

`. r

√
πkp

2L
, (3.10)

where we have made the approximation that ks,i ' kp /2. This relation is the

starting point to calculate the generation bandwidth and for the analysis in the

far field of the image plane of the crystal.

Generation bandwidth The beam size can be no larger than that of the pump

beam, i.e. r . wp . Applying this bound to (3.10), we obtain an upper bound for

the generated OAM value:

`g . wp

√
πkp

2L
=

√
π

LR
. (3.11)

It follows that the generation bandwidth is:

Kg = 1+2

√
π

LR
. (3.12)

This number represents the effective number of entangled OAM modes gener-

ated by the source obtained by removing the p = 0 restriction (as we are applying

such restriction only to the measurement bandwidth). Equivalently, it can be

thought of as the bandwidth obtained by removing the restriction on γ, i.e. if one

does detect p = 0, but with any γ. This way of thinking about Kg can be helpful,

as it relates to a measurement scheme. The relation between Kg and the overall

Schmidt number K or its azimuthal part Kaz is not straightforward, because Kg

can be thought of in terms of a measurement with any value of γ [262].

Image-plane bandwidth To calculate the measurement bandwidth we need to

consider the overlap of the generated field with the detection modes in the image
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plane of the crystal and in its far field. Intuitively, a detection system which has

a good overlap in the image plane, but that detects light that only comes from a

narrow spread of directions, would restrict the measured bandwidth. A similar

restriction would also occur for one that has a good overlap with the typical

incoming angles of LG beams, but that has a poor overlap with the intensity in

the image plane. It is clear that, in order to optimize a detection system, both

these quantities have to be taken into account.

To calculate the overlap in the image plane it suffices to note that a p = 0

Laguerre-Gaussian mode with OAM number ` and width w has its maximum

intensity at a radius

r = w

√
`

2
. (3.13)

For efficient conversion of pump to signal and idler we require that the pump,

signal and idler beams should all overlap, giving a restriction on the maximum

size of the down-converted beams (rs,i . wp ) and hence an upper bound to the

value of OAM in the plane of the crystal corresponding to

rs,i = ws,i

√
`

2
. wp . (3.14)

In terms of γ, this gives an upper bound on the value of the OAM in the plane of

the crystal:

`IP . 2γ2 (3.15)

and hence an image-plane bandwidth

KIP = 1+4γ2. (3.16)

Far-field bandwidth It is clear that in the far field of the plane of the crystal,

instead of a real space argument, we need to use the angular relationship β. δ,

expressed in eq. (3.10), where we apply the restriction for the maximum width
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of the detection modes given in (3.14):

`. ws,i

√
`

2

√
πkp

2L
. (3.17)

From which, replacing ws,i with wp /γ, we obtain an upper bound of the value

of the OAM in the far field of the plane of the crystal:

`FF .
π

2γ2LR
(3.18)

and therefore a far-field bandwidth

KFF = 1+ π

γ2LR
. (3.19)

Measurement bandwidth If KIP and KFF are very different from each other,

the resulting measurement bandwidth is given by the smaller of the two. For

cases where the bandwidths are similar it is sensible to combine them. The

convolution of two normal distributions of widths σ and σ′ gives a normal

distribution of width (σ−2 + (σ′)−2)−1/2. Similarly, we can get an estimate of the

total measurement bandwidth by considering the convolution of two normal

distributions of widths KIP and KFF. The bandwidth of the resulting distribution

is then

K = (
K −2

IP +K −2
FF

)−1/2 =
((

1+4γ2)−2 +
(
1+ π

γ2L2

)−2)−1/2

. (3.20)

3.1.3 Optimization of orbital angular momentum bandwidths

For a comparison between the analytic and geometrical arguments, we calcu-

lated the width of the distribution given by the modulus squared of the coeffi-

cients in (3.6) and compared it to (3.20). Fig. 3.1b shows the two bandwidths

as functions of LR for γ = 2, γ = 5 and γ = 7. Note that, in order to achieve

high-dimensional entanglement, the crystal length should be a small fraction of

the Rayleigh range.
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We see that the geometrical argument is in excellent agreement with the

numerical evaluation of the analytical result. The effect of increasing γ yields a

higher measurement bandwidth for very small values of LR . For large enough

values of γ and for fixed LR , however, the measurement bandwidth eventually

drops, reaching a maximum value for a particular crystal length. Under all con-

ditions the measurement bandwidth never reaches the generation bandwidth,

because we are restricting the measurement to modes with p = 0. Note, how-

ever, that the full generation bandwidth does not arise explicitly from additional

values of the OAM but rather from entanglement in the radial quantum number

p.

Differentiation of eq. (3.20) with respect to the crystal length gives an esti-

mate of the value of γ corresponding to the highest measurement bandwidth for

a given LR . From this we find:

γopt ' 4

√
π

4LR
. (3.21)

It is worth noting that, for such value ofγ, we have that KIP = KFF = Kg . Therefore,

in the optimal case we have K = Kg /
p

2.

We define short crystal lengths as LR ¿ π/4γ4, for which the generation

bandwidth is large, meaning that the measurement bandwidth is dominated

by the image plane overlap of the detection modes with the pump. This gives a

measurement bandwidth of

K ' KIP = 1+4γ2. (3.22)

Note that this short crystal limit is characterized by K being independent

from the crystal length. In fact, it can be seen in fig. 3.1b that the leftmost part

of the measurement bandwidth curves is flat1, and that the range of values of

LR over which they remain flat is inversely proportional to γ4. For much longer

crystals, LR Àπ/4γ4, the measurement bandwidth, as modified by the limiting

1This is not immediately apparent in the plot for γ= 7, but the slope of eq. (3.20) near the
origin is zero for any γ.
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overlap in the far field, becomes dominant, giving

K ' KFF = 1+ π

LRγ2
. (3.23)

For each choice of LR there is always an optimal value of γ that maximizes K ,

and it corresponds to the optimal value given in (3.21). It is not an easy matter to

determine the requisite parameters for existing experiments. The experiments

here presented, however, correspond to values of γ in the range 1.5 up to about

4. In order to achieve higher degrees of entanglement in OAM, corresponding to

larger Schmidt numbers, it appears to be desirable to increase the value of γ.

3.1.4 Optical étendue and dimensionality

A simple geometrical argument can elucidate why the spiral spectrum widens

as we tune the phase matching. This involves the concept of the optical étendue

E = AΩ, where A is the near-field beam area andΩ is the solid angle subtended

by the beam in the far field [262, 174]. In the treatment of noise in laser am-

plifiers, the étendue normalized with respect to the wavelength λ, E/λ2, is the

number of transverse modes that can be supported by the system. The étendue

E acts as a measure of the number of quantum states in a beam [174, 281]. It

is more often invoked in the discussion of light collection, but it is equally ap-

plicable in the case of SPDC where light is instead being emitted. Regardless

of the phase matching, A is the same in our experiment: the SLMs are in the

near field of a particular plane in the crystal and minute changes to crystal

orientation (typically 1/20 of a degree) do not change the image on the SLMs.

However, this changes the far-field opening angle: asΩ increases for α=−2.2,

the number of transverse (both azimuthal and radial) modes emitted increases

correspondingly.

In setting up a SPDC experiment, this has important practical implications.

One should ensure that the detection étendue is greater than the generation

étendue to maximize the overlap between the pump and detection modes. Using

the Klyshko picture as a guide, where the detected signal (or idler) mode is back-

propagated to the crystal, reflected off the crystal, and propagated to the other
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detector [150], the overlap is maximized by keeping all corresponding far-field

solid angles and near-field beam diameters in the signal and idler arms the same.

The reason we use two lenses to image the crystal onto the SLMs instead of one

is to match the far-field angles in both arms, thus acting as an effective detection

system.

3.2 Increasing the spiral bandwidth in parametric down-
conversion

We measured both OAM and angle correlations for two different phase-matching

conditions. To measure OAM, we encoded forked diffraction gratings of topolog-

ical charge `s on one SLM and `i on the other. These holograms transform the

incoming field to a fundamental mode, which is the only mode that can be cou-

pled to the fibres [172]. Since we were working in the collinear to near-collinear

regime, OAM was conserved in our SPDC system, hence we expected the OAM

of the signal and idler photon to be anticorrelated, i.e. the coincidence count

was high only when `s =−`i [196]. Ideally, to measure correlations in angular

position, we encoded angular slits of width δφ centred at angle φ in both SLMs

and rotated one with respect to the other, expecting high coincidence counts

when the two slits were aligned [161].

Because the angle and OAM are Fourier related [139], a wide spiral bandwidth

means a correspondingly narrow angular correlation that should be measured

with a narrow angular slit. This presents a limitation in practice because a nar-

row angular slit means fewer counts, which are difficult to discern against the

background. We solved this problem by using not one, but four narrow slits

(7° wide, almost twice as narrow as what was used previously [161]), thereby

enabling us to still measure tight angular correlations without sacrificing counts.

With one four-slit pattern oriented at φs and another oriented at φi , we mea-

sured the coincidences as a function of ∆φ=φs −φi . As a result of having four

slits, our angular position coincidence curves have more than one maximum

(insets of fig. 3.2c and 3.2d), from which the width of the angular correlation
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Figure 3.2: OAM and angular position measurements. (a) For collinear phase-matching,
with α= 0, the measured spiral spectrum has a half-width of∆`' 10, with d = 9. (c) The
central maximum (renormalized and background-subtracted) of the angular position
correlation measurement when the signal and idler slits have a relative orientation
of ∆φ, has a half-width of 12°. The inset shows the other maxima from the four-slit
pattern. (b) For noncollinear phase-matching conditions, α=−2.2, the measurement
spiral bandwidth is wider, with ∆`' 20, d ' 30. (d) The angular position correlation is
narrower, with a half-width of 8°. Dots and bars are experimental results, solid black
lines are fits that demonstrate consistency with a Fourier relation between OAM and
angle.

could be derived.

3.2.1 Experimental results

Orbital angular momentum and angular position measurements for two dif-

ferent phase-matching conditions are shown in fig. 3.2. We subtracted the
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accidental counts, estimated as

A = S × I ×∆t , (3.24)

where S and I are the single channel counts of the signal and idler arms, re-

spectively, and ∆t = 10ns is the coincidence timing window. We defined the

measurement spiral bandwidth∆` as the full width at half maximum of the mea-

sured spiral spectrum. For collinear phase matching α= 0 in eq. (3.1) (fig. 2.3a),

we found∆`' 10 (fig. 3.2a) and the corresponding half-width of the central peak

in the angular position coincidence curve was 12° (fig. 3.2c).

With the addition of an on-axis phase mismatch α = −2.2 in eq. (3.1), the

opening angle of the spot was then slightly increased (to ' 1.1° from the propa-

gation axis to the first minimum, compared to 0.9° for α= 0). There is a central

dip in the corresponding intensity distribution (fig. 2.3b). We found ∆` ' 20

(fig. 3.2b). The half-width of the corresponding angular position correlation was

narrower, as expected from the Fourier relationship [139, 135], and it was found

equal to 8°. The solid black lines in fig. 3.2a and 3.2b are Lorentzian and are

empirical fits to our data. Using these fits, we were able to calculate the expected

angular correlation from the Fourier relation, with the added consideration that

our angular masks have a finite slit width (solid line in fig. 3.2c and 3.2d). Angular

position measurements are very sensitive to alignment, and we attribute the

imperfect fits in fig. 3.2c and 3.2d to this.

We focussed on the OAM measurements and derived the mutual information

H . This can be calculated from the probabilities

H =−∑
`s

p(`s) log2 p(`s)−∑
`i

p(`i ) log2 p(`i )+ ∑
`s ,`i

p(`s ,`i ) log2 p(`s ,`i ) (3.25)

where p(`s ,`i ) is the probability of measuring `s and `i . We define

p(`s) =∑
`i

p(`s ,`i ) (3.26)
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as the probability of measuring `s , and

p(`i ) =∑
`s

p(`s ,`i ) (3.27)

is the probability of measuring `i . For φ= 0, the mutual information was 3.17±
0.60 bits/photon, corresponding to a dimensionality d = 2H ' 9. Adjusting

the phase matching to α=−2.2 results in a mutual information of 4.94±1.03

bits/photon, corresponding to d ' 30, twice the measurement range of results

attained in previous papers [161].

We remark that, apart from being detection limited, we have also defined our

dimensionality stringently by calculating it from the mutual information. In this

way we are sensitive to the level of noise and crosstalk even for measurements

where `s 6= `i , which becomes more apparent with higher-valued OAM states.

As such, we expect our dimensionality to be less than the Schmidt number K

for our system. We have independently measured K for our system via sector

phase plates and found these greater than our measured d (chap. 4). W obtained

K = 35±2 for φ= 0 and K = 49±2 for φ=−2.2 [109]. The values of K can also

be estimated from [159], which gives 35 for φ= 0 and 43 for φ=−2.2 with our

experimental parameters.

We also remark that K , being defined in terms of just probabilities, does not

provide any information about the shape of the spiral spectrum. A full decom-

position in terms of OAM modes has been treated elsewhere, although not for

the noncollinear case [179, 279]. The OAM spectrum, although not Lorentzian,

is Lorentzian-like in shape and this has motivated us to use a Lorentzian fit

[81, 279]. Theoretical fits for our results and hence estimates for ∆` can only be

obtained from a full model of our experiment, such as one based on the Klyshko

back-propagation picture [150].
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3.2.2 Angular two-photon interference and entanglement mea-
sures

Measuring entanglement in d dimensions is not as straightforward as measuring

the entanglement of two-dimensional systems. We can violate a Bell inequality

for higher dimensions, as implemented in [81], but this is difficult for d ' 30

because the intensity masking reduces the count rates considerably. Instead, we

employ the entanglement measure

E = ∑
`s ,`i

p(`s ,`i )−p(`s)p(`i ) (3.28)

proposed in [72], with , similar to the I -concurrence [126, 275, 276] or Rényi-2

entropy [223, 129], apart from numerical factors. Here E is zero for separable

states, based on the underlying assumption that the correlations considered are

non-classical. For our results, we calculated values of 0.8101±0.01 and 0.8097±
0.02 for φ= 0 and −2.2, respectively, indicating that our two-photon OAM states

are non-factorable and therefore entangled. The presence of crosstalk in the

higher OAM modes prevents us from getting a significantly higher entanglement

measure for φ=−2.2, as one might expect.

Furthermore, we exploited the Fourier relationship, or complementarity

between OAM and angle [139, 24], to quantify the entanglement in the angular

position basis. When a photon passes through an angular aperture we can

observe interference in the OAM distribution of the signal (or idler) field, the

modulation of which depends on the spiral spectrum of the photons [140]. We

can encode angular two-slit patterns on the SLMs and measure the resulting

OAM interference when SLM1 (idler) is set to measure `i = 0 and the value of

`s on SLM2 is scanned from −`max = −20 to `max. It has been shown that the

visibility of the resulting interference pattern is the same as the concurrence

(ranging from 0 to 1, 1 being the maximally entangled case) of the two-qubit

density matrix written in the angular position basis [140, 275]. We verified strong

angular position correlations, as shown in fig. 3.3a and 3.3b, where we measured

the coincidences when encoding only one slit (of width 18°) on each SLM for

each set of phase-matching conditions. As expected, we recorded appreciable
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Figure 3.3: We encoded two-slit patterns (width 18°, separated by 45°) on top of the
forked holograms of SLM1 and SLM2. With only one slit in each SLM (1 or 2), we verified
the strong angular position correlation. (a) For α = 0 we observed high coincidence
rates only when both SLMs had slits with the same angular position. (c) The measured
concurrence is 0.96. In (b) similar angular position correlations for α=−2.2 are shown
and, in 3.3d, fringes for a concurrence of 0.90.

coincidences only when we encoded the same slit positions for both SLMs.

Ideally, the diagonals should be 0.5, but, due to imperfect alignment, we still got

small off-diagonal probabilities.

The interference of the two-slit patterns with their corresponding OAM val-

ues leads to a modulation in the coincidences that can be measured in the

OAM basis. Fig. 3.3c and 3.3d show the coincidences for α = 0 and α = −2.2.

The measured concurrence is 0.96±0.07 for α= 0 and 0.90±0.12 for α=−2.2,

demonstrating that we indeed have entangled angular qubit states for both

phase-matching conditions. We remark that the decrease in the concurrence

value is counterintuitive considering that the latter case corresponds to a greater

number of OAM modes. This may be due to imperfect alignment, as measure-

ments in the angular position basis are more sensitive to this. We also emphasize
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that the measurements presented in fig. 3.3a and 3.3b (strong angular position

correlation) and fig. 3.3c and 3.3d (interference in the OAM basis) can be pro-

duced simultaneously only by OAM-angular position entangled sources. The

good correlation quantifiers in both OAM and angular position for both phase-

matching conditions are a signature of genuine two-photon d-dimensional

entanglement, where d is tunable.

In conclusion, we have demonstrated a system where we can generate and

detect high-dimensional two-photon entanglement. We have characterized

the entanglement in terms of the mutual information shared by the entangled

photon pairs. Minute changes to the angular orientation of a bulk BBO crystal

(' 1/20 of a degree) widens the OAM measurement spiral spectrum and nar-

rows the angular position correlation, as a consequence of phase matching in

SPDC. We have designed our detection system guided by the concept of the

optical étendue and we have achieved as much as 4.94 bits/photon, implying

30-dimensional OAM entanglement. We can obtain a relatively flat spectrum for

a few OAM modes, which could allow future protocols to forego entanglement

concentration. We note that our measurements, although in a high-dimensional

space, are still dichotomous, in contrast to a polarization beam splitter that sorts

the two possible polarization states into two possible outcomes. However, a

mode sorter that separates all of the d orthogonal OAM states has been recently

developed [43]. Coupled with the generation and detection geometry that we

have characterized in this work, this points to the possibility of new experiments

such as detection loophole-free Bell test experiments [266], superdense coding

[203, 28] and multivalued quantum walks [239] where a higher-dimensional

space is desirable.

3.3 Pump shaping

Besides the choice of crystal and the geometry of the SPDC system, other meth-

ods allow partial control of the orbital angular momentum spectrum or, in a

similar manner, the degree of entanglement of the OAM-correlated photon pairs.

One strategy is based on the manipulation of the spatial profile of the pump
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beam impinging on the nonlinear crystal. More complicated spatial profiles

that include, for instance, a superposition of several OAM eigenmodes other

than the fundamental Gaussian mode affect the quantum state of the photon

pairs generated in the down-conversion process [256]. An alternative method

involves an appropriate preparation of the down-conversion crystal, adopting

precise transverse quasi-phase-matching conditions [254]. The manipulation of

the amplitudes of the different OAM components of the down-converted state

can also be in part achieved after the crystal, using appropriate filtering methods

[264].

For some applications and protocols that rely on maximally entangled states,

generating OAM-entangled states and controlled superpositions of OAM states

can be of critical importance. The SPDC process, however, does not naturally

produce maximally entangled states in arbitrary subspaces of OAM. To overcome

this problem, it is possible to take advantage of some of the properties of the

nonlinear process. The conservation of OAM in SPDC guarantees that, for each

photon measured in a given autostate of OAM with +`, a second photon exists

with −`. The probability of producing a pair of photons in a given OAM state

depends on the superposition of the down-converted modes with the pump

beam. If the pump beam is Gaussian, photons with lower OAM content |`| will

be detected more frequently than those in higher-order modes (fig. 3.1a).

Exploring the higher dimensions afforded by OAM then generally involves

the design of holograms able to measure superpositions of different OAM states

[157, 265, 265, 229]. However, since SPDC is very much dependent on the pump

beam [279, 181], as mentioned one can also explore the high-dimensional OAM

state space by engineering the pump. Shaping the pump to prepare high-di-

mensional entangled OAM states with more complex modes has been proposed

[180, 256], although these have not previously been implemented experimen-

tally. For this purpose, we employed a non-Gaussian pump beam for SPDC and

analysed how the OAM and angle correlations changed as a result.

Within SPDC, a pump beam is usually approximated as a plane wave in-

cident on a nonlinear crystal, which results in the emission of two correlated

photons in definite directions. The bulk of the studies in SPDC has concentrated

on manipulating these two outgoing photons by letting them pass through polar-
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izers, slits, holograms, and other optical components, to observe various desired

quantum effects [172, 162, 136, 16, 17, 246]. Manipulating the pump field is also

an interesting enterprise, as the fields generated in SPDC are strongly related

to the pump field; this has been investigated theoretically and experimentally

[172, 279, 181]. Phase matching allows the amplitude and phase structure of

the pump to be transferred to the two-photon field, and fourth-order images re-

lated to the aperture in front of the pump can be formed by the down-converted

beams [181]. Focusing the pump beam in front of the crystal leads to two-photon

geometric-optics effects wherein the crystal acts like a spherical mirror in the

formation of the fourth-order images [208].

The shape of the pump is of consequence to correlations in the OAM and

the conjugate variable, angular position, in both the signal and idler fields. The

transfer of the plane-wave spectrum of the pump to the two-photon field leads

to conservation of OAM in both stimulated and spontaneous parametric down-

conversion [66, 175, 91, 268]. Thus, for near-collinear SPDC [268], the selection

rule `p = `s +`i holds, where `p~ is the OAM per photon of the pump beam and

`s~ and `i~ are the OAM contents of the modes into which the signal and idler

photons are projected [268, 196, 197]. This has been supported by coincidence

measurements in SPDC, wherein the crystal is pumped with Laguerre-Gaussian

beams of varying OAM [172, 268]. The entangled two-photon state generated in

this case is

|ψ〉 =
∞∑

`=−∞
c`

∣∣`p −`〉 |`〉 . (3.29)

3.3.1 SPDC with a phase-flipped Gaussian mode as pump

It is possible to generate other states, such as maximally entangled states with

only four modes (in contrast to the infinite OAM spectrum of eq. (3.29)), by

pumping the crystal with a suitable superposition of OAM modes [256], con-

taining a number of phase singularities. This entails the modulation of both

the phase and intensity of the pump, and has yet to be achieved experimen-
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π
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0 0

Table 3.1: Decomposition of the phase-flipped pump mode in terms of LG`p (with
p = 0).

tally. The first step towards the implementation of such schemes is to have an

element which will efficiently convert the fundamental mode of a pump laser

to the desired mode for SPDC. Several experiments [172, 268] have performed

this mode conversion with cylindrical lenses, holograms or with a cover slip

[187, 115]. Holograms, when encoded in a spatial light modulators (SLM) are

flexible and make possible complicated pump shapes, but they are less efficient

than other converters, with an efficiency of about 40%–50% [78].

Simple pump shapes could instead be implemented with simple mode con-

verters. For instance, HG modes can be created by placing one to two wires

inside a laser cavity [244]. Not having access to the laser cavity of our pump

laser, we instead used a cover slip placed in the pump beam path to introduce

a π-phase shift in half of the area of the Gaussian output of the pump beam

before this reaches the crystal. This imprints a phase flip to one half of the beam,

hence the name ‘flipped mode’ [85]. Following [85], the flipped mode u f ,0 is the

fundamental Gaussian mode with a phase flip at x = 0. This can be expressed as

an infinite sum of odd Hermite–Gaussian (HG) modes u2n+1(x)

u f ,0 =
∞∑

n=0
c2n+1u2n+1(x) (3.30)

where

c2n+1 = (−1)n(2n)!

n!
√
π22n−1(2n +1)!

(3.31)

giving
p

2/π' 0.80 as the contribution of the first-order HG10 mode. Since the
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LG modes form a convenient basis for OAM-carrying beams, it is instructive to

express u f ,0 in terms of Laguerre polynomials L j
k [147, 1]

u f ,0 =
∞∑

n=0

n∑
p=0

anp exp

[
−

( r

ω

)2
](p

2r

ω

)|2(n−p)+1|
L2(n−p)+1

p

(
2

r

ω

)
×exp

[
i (2(n −p)+1)

]+exp
[−i (2(n −p)+1)

] (3.32)

where an,p is

an,p = (−1)n+p

√
8

π

(2n)!

(2n +1)!

(n +1/2)!

2p !

2p !

π(p + (2(n −p)+1))!
. (3.33)

Hence, only the odd LG modes contribute. The decomposition in terms of the

LG`p modes for p = 0 is given in tab. 3.1.

The flipped mode has been used in SPDC to produce singlet states [187],

to demonstrate multimode Hong–Ou–Mandel interference and to generalize

genuine non-Gaussian entanglement [267, 115]. Since the combination of OAM

states |1〉 and |−1〉 makes the most significant contribution to the flipped mode,

in contrast to the usual Gaussian pump which is in the OAM state |0〉, we expect

different OAM and angle correlations from that in [161]. Specifically, we expect

coincidences when `s +`i is odd with the strongest correlations occurring when

`s +`i =±1.

Just as there is a Fourier relationship between position and linear momen-

tum, there also exists a Fourier relationship between OAM and angle [139]. This

allows us to determine the correlations in the angular position basis given that

we have knowledge of the OAM components of the entangled photons.

3.3.2 Experiment and results

Our SPDC set-up (fig. 2.5) consisted of a mode-locked ultraviolet (UV) pump

source at 355nm with 120MHz repetition rate. A cover slip was attached to a

tip-tilt mount to control the phase introduced into the pump, and placed on

a translation stage positioned such that it covered half of the UV beam. The

output of the laser was collimated by a telescope and directed onto a 5mm long
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(a) (b)

(c) (d)

Figure 3.4: OAM (`s , `i ) and angular position (φs , φi ) correlations for a phase-flipped
Gaussian pump. (a) Since the `=±1 components make the largest contribution to the
pump mode, we expect to see coincidence maxima for `s +`i = ±1. (b) The angular
position correlations also reflect the shape of the pump, and can be obtained via the
Fourier relationship between OAM and angular position. The coincidence rate is high
along the diagonal, when φs =φi , with minima corresponding to the angular position
of the phase discontinuity in the pump. The experimental results shown in (c) and (d)
do not include any background subtraction.

BBO crystal, cut for degenerate type-I, collinear SPDC. As in the previous experi-

ment, the front plane of the crystal was imaged onto two separate SLMs, which

determined the state into which the photon was to be projected. Both SLMs

were re-imaged, through 10nm wide interference filters, onto the input facets

of single mode optical fibres coupled to single-photon avalanche photodiodes.
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The coincidence rate was monitored from the output of the photodiodes by a

coincidence counting card with a gate time of 10ns.

To measure OAM, each SLM displayed a hologram with a fork dislocation of

order `s and `i corresponding to the OAM states |`s〉 and |`i 〉. The pump beam

consisted of superpositions of odd-valued OAM states, with |1〉 and |−1〉 making

the largest contribution. Hence following the selection rule for the conservation

of OAM in SPDC, we expect high coincidences when the sum of `s and `i is

±1, as shown in fig. 3.4a. We expect two diagonals symmetric about the main

diagonal, in contrast to SPDC with a fundamental Gaussian pump, wherein

only one main diagonal is present [161]. Fig. 3.4c shows the coincidences, as

a function of `s and `i , obtained from the experiment. Apart from a uniform

background (we did not perform any background subtraction in our results),

and residual on-axis coincidences (due to the imperfect conversion of the pump

laser output to a ‘flipped mode’) there is good qualitative agreement between

the values in 3.4a and 3.4c, showing the transfer of the pump OAM spectrum to

the entangled photons.

To measure angular position, we employed angular slits of width ∆θ, which

were oriented at positions φs and φi in the signal and idler SLMs respectively

(see fig. 3.4b). We can derive the expected angular position correlations from

the Fourier relationship, by performing a Fourier transform on fig. 3.4a we

obtain fig. 3.4b. Because the SLMs were at the image plane of the crystal, we

expect the coincidences to be high for φs =φi . In addition, due to the shape of

the pump, we see a modulation where coincidence minima correspond to an

alignment of the slit with the phase discontinuity in the pump. Fig. 3.4d shows

the experimental coincidence count as a function of the angular positions φs

andφi . There is good qualitative agreement between figures 3.4b and 3.4d, apart

from an almost uniform background.

We have shown the effect of the pump shape on OAM and angle correlations

exhibited by photon pairs from spontaneous parametric down-conversion. We

focussed on a particularly simple OAM superposition state, but more compli-

cated modes are also possible with combinations of cover slips (for HG pump

modes), specially fabricated components or programmable spatial light modula-

tors. More complicated pump shapes such as the vortex pancakes suggested in
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[256] can also be used for tailored entangled states. The correlations that arise re-

sult from the transfer of the OAM spectrum of the pump to the down-converted

photon pairs, as manifested in the OAM correlation matrix. We showed a mod-

ulation in the angular position correlation that is consistent with the Fourier

relationship between OAM and angle. The spatial structure of down-converted

light is a rich playground to observe correlations in a variety of spatial modes,

not just OAM. If efficiency is not a priority, the flexibility afforded by spatial

light modulators can be introduced not just in the measurement, but also in the

generation of entangled photons.
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Efficient determination of the
dimensionality of bipartite

OAM entanglement

The photon pairs generated by spontaneous parametric down-conversion (SPDC)

in a nonlinear crystal are correlated in their various properties, some of which

can exhibit high-dimensional entanglement. The orbital angular momentum

(OAM) of light is one such property, associated with phase structures of the form

e i`φ, where `~ is the OAM carried by each photon [9]. As ` is an integer and

is theoretically unbounded, OAM offers a natural discrete space for exploring

high-dimensional entanglement [280]. In SPDC with a Gaussian pump (with

`= 0), the spectrum of OAM correlations between the signal and idler photons

is peaked at `= 0, with tails towards high |`| values. As described in the previ-

ous chapters, the width and shape of the spectrum, and therefore the number

of OAM modes that constitute the two-photon entangled state, can be engi-

neered directly by manipulating the structure of the beam pumping the crystal

[256, 279, 179] or by tuning the phase-matching conditions in SPDC [87].

It is necessary to distinguish between the entanglement of the high-dimen-

This chapter includes material previously published in the following paper:

• D. Giovannini, F. M. Miatto, J. Romero, S. M. Barnett, J. P. Woerdman and M. J. Padgett,
“Determining the dimensionality of bipartite orbital-angular-momentum entanglement using
multi-sector phase masks”, New J. Phys. 14(7), 073046 (2012)
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sional OAM state generated by the SPDC process, whose dimensionality is de-

scribed by the Schmidt number K [159], and that detected by the measurement

stage of the system [215], with Shannon dimensionality M [216]. M is in fact

dependent upon both the generated down-conversion OAM spectrum and the

finite detection capability of our analysers. The latter is expressed in terms of the

number of modes D that an analyser has access to. By knowing the relation be-

tween these three quantities, we can infer K after measuring M with an analyser

characterized by a known D .

Determining the measured dimensionality M of tailored high-dimensional

entangled states can be carried out by performing appropriate selective pro-

jective measurements [40]. One such set of measurements is based on pairs of

binary multi-sector phase plates placed in the two arms of a down-conversion

system, a method first proposed by Woerdman and co-workers [215]. Each plate

has N azimuthal angular sectors, each of which introduces a π phase shift. The

number and angular width of the sectors of the phase analysers placed in each of

the signal and idler arms define the superposition of OAM eigenmodes in which

the two-photon state produced by down-conversion is projected. By optimizing

the binary phase profile of the phase analysers, it is possible to maximize the

Shannon dimensionality D of the measurement apparatus, for any number of

sectors N of the two plates.

By using angular phase analysers we infer the Schmidt number K , charac-

terizing the effective number of azimuthal entangled OAM modes. In contrast

to previous works, which used micromachined phase plates [214], we imple-

ment N -sector angular phase analysers using spatial light modulators (SLMs)

[162]. Computer-controlled SLMs provide a fast, convenient and reliable way of

producing holographic phase masks with arbitrary orientations and numbers

of sectors, to be used in the measurement of the Shannon dimensionality of

OAM entanglement. The use of multi-sector phase masks to probe high-di-

mensional states, as opposed to narrow single-sector analysers [161, 81], allows

the measurements of tight angular correlations whilst maintaining high optical

throughput.
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4.1 Angular slits and phase masks

The angular measurement of a light field can be achieved by employing an

angular slit. The idea behind this approach is the angular analog of a linear slit:

a linear slit measures a field at one linear coordinate, with an uncertainty that

depends on the width of the slit. An angular slit, on the other hand, measures a

field at one angular coordinate with an uncertainty that depends on the angular

width of the slit. As the angular position and orbital angular momentum form

a pair of conjugate observables, the tighter the angular correlations, the larger

the spread in the OAM observable [24, 103]. If one seeks high measurement

accuracy, the angular slit has to be very narrow and, in turn, this means that

much of the light is blocked, yielding the problem of a lower number of counts

as the measurement uncertainty decreases.

A practiced solution to this problem is to employ phase-only masks, instead

of amplitude masks. The design of the phase mask consists of an angular step

plate, which is characterized by a number of sectors N and by a set of angles

that describe the position and width of each sector [214]. Each alternate sector

applies aπ phase shift. The overall action of a phase plate of this kind is therefore

to imprint an azimuth-dependent phase retardation and flip the phase of a light

field in each π-phase sector, leaving the phase unchanged everywhere else. Note

that the action of a phase plate does not affect the radial degree of freedom, as

the design is radially invariant. This means that there is no coupling between

different eigenmodes of the radial degree of freedom, which allows us to restrict

ourselves to the azimuthal content of the measured state.

This effect can be described in terms of OAM. A plane wave is turned into

a superposition of different OAM eigenstates. The range of OAM eigenstates

of which the superposition consists depends on the number of sectors and

on their relative positions and widths [214]. Such effect is analogous to the

introduction of an amplitude mask, without the drawback of letting less and less

light through as the angular uncertainty is decreased. We consider an angular

state analyser composed of a multi-sector phase-only mask, a single-mode

fibre and and a detector. The projection state of this analyser is in general

an extended superposition of OAM eigenmodes, that depends on the exact
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number and distribution of the sectors, as well as the orientation of the phase

mask. By rotating the phase mask about its centre, the analyser probes a larger-

dimensional mode space [190, 215]. By producing phase masks with arbitrary

numbers of sectors N with the use of SLMs, we are not constrained by limitations

of the fabrication techniques, and can therefore probe the high-dimensional

OAM state produced by an appropriately tuned SPDC source with analysers that

have access to a comparable or larger number of modes.

4.2 Shannon dimensionality

We probe the two-photon state produced by down-conversion

|ψ〉 =
∞∑

`=−∞
c` |`〉s |−`〉i (4.1)

described in the OAM basis, where |`〉s and |`〉i correspond to the states of the

signal and idler photons respectively. By expressing the projection state asso-

ciated with a phase-mask analyser oriented at an angle θ as the superposition

|A(θ)〉 =∑
`

λ` |`〉 ei`θ, (4.2)

the coincidence probability for a pair of analysers A and B , oriented at θ and θ′

respectively, is given by

P (θ,θ′) = ∣∣〈A(θ),B(θ′)
∣∣ψ〉∣∣2 , (4.3)

where 〈A(θ),B(θ′)| = 〈A(θ)| ⊗ 〈B(θ′)|. The coefficients γ` = |〈`| A(0)〉|2 = |λ`|2
(with

∑
`γ` = 1), defined by the profile of the N -sector phase masks, determine

the respective OAM spectrum.

For an angular phase mask with phase profile f (φ−θ), rotated by angle θ

and with azimuthal coordinateφ, the projection mode corresponding to eq. (4.2)



SECTION 4.2 71

is given by

A(φ,θ) = 1p
2π

ei f (φ−θ). (4.4)

From this form, the coefficients {λ`} of the OAM expansion in eq. (4.2) can be

rewritten as Fourier coefficients of the phase mask profile:

λ` =
1p
2π

∫ 2π

0
A(φ,0)e−i`φdφ. (4.5)

The coupling strength γ` = |λ`|2 can thus be obtained from the mode overlap

between the corresponding mode and the projection mode A(φ,0) [214].

The maximum number of modes D that can in principle be measured by

each of such optimal N -sector masks can then be inferred from the theoretical

distribution of eigenvalues γ` as

D = 1
∞∑

`=−∞
γ2
`

. (4.6)

It is possible to design the distribution of 2N binary arc sectors of each N -sector

phase mask in a way that maximizes the Shannon dimensionality D of the

measured entanglement. Based on the numerical optimization results from

[214], for each N we used the optimal arrangement of sectors that yields the

largest D and, therefore, makes the largest number of modes accessible to the

angular analyser.

In contrast, the Shannon dimensionality D of each N -sector mask used

here was derived through a numerical model. The numerical model considered

the distribution of the overlap between two identical N -sector masks within a

two-dimensional region with a Gaussian profile, as the orientation θ′ of one of

the masks was rotated with respect to the other, θ. The maximum measurable

dimensionality D for each optimal N -sector mask is shown in fig. 4.3. It was

found that, for N at least up to 14, D increases approximately linearly with N .

Given the expected peak-normalized correlation distribution P (θ−θ′) obtained

from the numerical model, the Shannon dimensionality [215] can be directly
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calculated as

D = 2π∫ 2π
0 P (θ−θ′)d(θ−θ′)

, (4.7)

where angle θ′ is measured with respect to θ. We implemented multi-sector

masks with a number N of sectors between 1 and 16, choosing one optimal

arrangement of sectors, defined by 2N numerically obtained angles, for each

N . The dimensionalities D obtained from both the numerical model previously

described and the theoretical model, the latter obtained from the decomposition

of each N -sector mask into eigenmodes γ` and the sum over the first thousand

terms of each corresponding infinite series expansion [214], were found to differ

by less than 2.5%.

4.3 Experimental determination of the effective dimen-
sionality of bipartite OAM entanglement

4.3.1 Experimental set-up

Implementing phase-mask analysers using computer-controlled spatial light

modulators allows for quick and effective measurement of the Schmidt number

K of the entangled state produced by SPDC. No optical elements need to be

fabricated, physically rotated or replaced when using a different multi-sector

mask, as the measurement process simply involves displaying one of a set of

different rotated N -sector holograms on the SLMs and performing coincidence

detection.

A 5mm-thickβ-barium borate (BBO) nonlinear crystal cut for type-I collinear

SPDC acted as our source of entangled photon pairs. The crystal was pumped

by a 1W UV laser to produce frequency-degenerate entangled photon pairs

at 710nm. The co-propagating signal and idler photons were separated by a

non-polarizing beam splitter, and redirected to SLMs. The SLMs, onto which

the crystal output face was imaged by a 2× telescope, were encoded with N -
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Figure 4.1: Typical best Gaussian fits of coincidence probability distributions P (θ−θ′)
are shown for N = 5,8,10 and phase-matching parameter α= 0. The inset shows the full
−180° < θ−θ′ < 180° range used in the measurements, for the aforementioned values of
N . White sectors correspond to a π phase shift, black sectors correspond to no phase
shift. Background subtraction was performed by assessing the experimental accidental
coincidences.

sector phase holograms. The SLMs were then imaged onto single-mode fibres

(SMFs), which coupled the SLM output to single-photon photo-diode detectors

whose output was routed to coincidence-counting electronics. The coincidence

counting had a timing window of 10ns. Narrow-band, 2nm interference filters

were placed in front of the detectors to ensure that the frequency spread of the

detected down-converted fields was small compared to the central frequencies.

SLMs introduce great flexibility in our measurements, but this comes at the price

of an overall lower detection efficiency, as their diffraction efficiency is around

50%.

This detection configuration is insensitive to any overall phase factors. There-

fore, while the conservation of OAM in the SPDC process would require placing

mutually phase-conjugate N -sector phase masks in the detection arms (i.e., the

0 and π phase-shifted sectors are inverted between the two masks), two identical

phase masks can be used instead. These phase masks are self-conjugate in case

of a π phase shift. The finite pixel size of the SLMs places a restriction on the

width of the sectors that can be displayed on the holograms. We show that we

can implement optimal multi-sector phase masks with N = 1, . . .16. Suppressing
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Figure 4.2: Detected orbital angular momentum spectra with projective measurements
using traditional forked holograms. Shown is the coincidence probability P (`i ,`i =−`s)
for `s ∈ (−30,30), for collinear (α = 0) and near-collinear (α = −2.3) phase-matching
conditions.

the centres of the holograms, where the N angular sectors meet in a very limited

spatial region of the SLM displays, did not turn out to be necessary.

The phase-matching conditions of the down-conversion process for the BBO

crystal were adjusted by slightly changing the orientation of the crystal with

respect to the propagation direction of the pump beam [230]. This allowed us

to increase the width of the orbital angular momentum spectrum, and thus

decrease the width of the angular correlations distribution. Measurements were

performed for collinear (α= 0) and near-collinear (α=−2.3) phase-matching

conditions.

The coincidence probability distribution P (θ−θ′) was obtained by changing

the orientation θ′ of the second phase mask over the range θ±180°, where θ is

the orientation of the first. We found that, for the purposes of the experiment, a

Gaussian distribution is an excellent empirical fit for the coincidence probability

distributions (fig. 4.1). The detected number of modes M , dependent on both the

source and the detectors’ properties, was obtained by substituting the Gaussian

fit of the measured coincidences to P (θ−θ′) in eq. (4.7).
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Figure 4.3: (a) Collinear phase-matching conditions. Phase mask dimensionality D
from numerical model (blue points), measured M (red squares), and calculated dimen-
sionality K (grey circles). We observe that D < K for N < 7; therefore, the calculated
M saturates to D for any given N < 7. The solid grey line shows the best estimation
for the number of modes K of the source, 35±2. (b) Near-collinear phase-matching
conditions. Given the wider spiral bandwidth in the near-collinear regime, K saturates
to D for N < 9. The solid grey line shows the best estimation for the number of modes K
of the source, 49±2.

4.3.2 Experimental results and discussion

The phase masks used have no radial structure. Any sensitivity of the detection

apparatus to the radial quantum number p was therefore due to the spatial

selectivity of the SMF coupling. Unlike full projective measurements of the

down-conversion entangled state over a range of OAM eigenstates |`〉 (fig. 4.2),

a phase-mask determination of the dimensionality K of the source does not

provide any direct information on the shape of the OAM spectrum.

We considered the OAM spectrum generated by the source and the coinci-

dence probability obtained from the numerical model, both fitted with Gaussian

distributions, from which the dimensionalities K and D can respectively be

obtained. We performed projective measurements of idler and signal over |`〉
and |−`〉 respectively to verify the validity of the assumption concerning the

OAM spectrum (fig. 4.2). The numerical model, from which the values of D
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for different N are obtained, calculates the overlap in eq. (4.3). Although the

theoretical shape of the distribution of the coefficients γ`, which characterize

the action of a phase mask on a light field, has own distinctive features, its im-

plementation on an SLM makes it possible to approximate it with a Gaussian

distribution. In fact, as the hologram representing the phase plate is rotated on

the surface of the SLM, any imperfections (finite pixel size, surface roughness,

slight unevenness of the phase shift, electrical fluctuations) influence the effect

of the phase plate in a stochastic fashion. As this a very small overall effect, it

does not change the dimensionality of the phase plate but rather smooths out

the distribution of the γ` coefficients.

When the dimensionality K of the generated state is very different from the

dimensionality D accessible to the detection system, the resulting measured

dimensionality, M , is given by the smaller of the two. For cases where K and D

are comparable, M can be approximated by noting that all three distributions are

close to Gaussian in form and hence their contributing widths can be combined

as:

1

M 2
' 1

D2
+ 1

K 2
(4.8)

which gives:

M ' DKp
D2 +K 2

(4.9)

from which the Schmidt number K can be derived:

K ' DMp
D2 −M 2

. (4.10)

Consequently, the source dimensionality K can be inferred from the maximum

number of modes D that can be detected by the N -sector phase mask and the

width M of the measured coincidence distribution. The calculated dimensional-

ity for each N -sector phase mask is shown in fig. 4.3a (collinear phase-matching)

and 4.3b (near-collinear phase-matching). We measured Schmidt numbers of

35±2 for collinear down-conversion, and 49±2 in the near-collinear case. The
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results for source dimensionality obtained from the phase-mask analysis are

compatible with the Schmidt number derived from projective spiral bandwidth

measurement, with the assumption of perfect single-mode detection.

The mean visibility achieved in the experiment, defined here as the ratio

between the mean baseline of the measured coincidence probability and the

peak at θ−θ′ = 0, without background subtraction, is 90% for collinear phase-

matching, and 92% for near-collinear. Systematic errors due to misalignment

are found to be much larger than photon statistics uncertainties.

We have shown how multi-sector phase-mask analysers can be implemented

using spatial light modulators, and used them to probe the effective number of

modes in the high-dimensional bi-photon entangled state produced by para-

metric down-conversion. We used a set of several multi-sector analysers to infer

the Schmidt number for different phase-matching conditions, and therefore,

different widths of the OAM spectrum of the source.
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CHAPTER 5

Mutually unbiased bases in
high-dimensional subspaces of OAM:

measurement and applications

Measurements in sets of mutually unbiased bases (MUB) are integral to quan-

tum science. Two orthonormal bases are said to be mutually unbiased if the

measurement of a state in one basis provides no information about the state

as described in the other basis. Mutually unbiased bases have found several

applications, which include quantum error correction codes [118, 67], quantum

cloning [184, 182] and quantum cryptographic protocols [225]. The use of joint

local measurements in mutually unbiased bases allows efficient quantum state

reconstruction [277, 3, 100]. Defining MUB for arbitrary high-dimensional sys-

tems is however theoretically difficult, and measurements in such bases can be

experimentally challenging.

Up until recently, mutually unbiased bases have only been applied in experi-

mental quantum optics to optical states of polarization and continuous linear

This chapter includes material previously published in the following papers:

• D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes and M. J. Padgett, “Character-
ization of high-dimensional entangled systems via mutually unbiased measurements”,
Phys. Rev. Lett. 110(14), 143601 (2013)

• M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruc-
cione, N. Lütkenhaus and A. Forbes, “Higher-dimensional orbital angular momentum based
quantum key distribution with mutually unbiased bases”, Phys. Rev. A 88(3), 032305 (2013)
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momentum. We extended the use of MUB to high-dimensional finite subspaces

of the orbital angular momentum (OAM) of light, which provides a practical

degree of freedom to encode quantum information in higher-dimensional al-

phabets and offers a discrete and unbounded state space for which one can

define sets of mutually unbiased bases [277].

Only a subset of the unbounded space provided by OAM is experimentally ac-

cessible, as defined by the measurement spiral bandwidth. We employed spon-

taneous parametric down-conversion (SPDC) to produce two-photon states

entangled over a wide range of OAM modes [226]. We demonstrated a scalable

implementation of quantum measurements in MUB of high-dimensional OAM

subspaces by means of complex amplitude modulation in the single-photon

regime. Spatial light modulators allow measurements in any arbitrary superpo-

sition of OAM modes, giving access to different high-dimensional subspaces

within the same experimental apparatus.

By using this high-spiral bandwidth system and SLM-based detection, we

demonstrated single-photon measurements in high-dimensional MUB of OAM.

We also showed how these measurements can be used for efficient quantum

state reconstruction of bipartite entangled states in dimension d 2, by means of

minimal complete sets of tomographic measurements [111]. We used the full

sets of MUB of each of the two photons of an entangled pair to perform a tomo-

graphically complete reconstruction of the entangled state with precisely the

minimum number of measurements. The experimental procedure and the re-

construction technique presented can be readily extended to higher dimensions

and multi-partite systems, whenever MUB for the d-dimensional subsystems

can be defined.

The relative ease with which one can generate, manipulate and measure

high-dimensional OAM quantum superpositions paves the way to new appli-

cations of this degree of freedom and is instrumental in the realization of a

number of efficient high-dimensional quantum information protocols and effi-

cient entanglement detection schemes [245]. The implementation of such local

measurements also lays the groundwork for high-dimensional realizations of

quantum key distribution (QKD), where two parties rely on detection events

arising from independent choices among a set of mutually unbiased bases. Us-
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ing OAM-entangled photon pairs to encode information in higher-dimensional

MUB leads to an increase in the encoding density and secure key rate [171], an

area that has previously been explored using other degrees of freedom such as

time-energy [31, 253, 7, 188]. In addition, MUB serve as a test bed with which

one can explore fundamental topics in quantum information and could provide

important insight into the nature of information in physical systems.

5.1 Measuring high-dimensional orbital angular mo-
mentum states in MUB

The ability to characterize a quantum state is essential in quantum information.

Describing complicated high-dimensional quantum states is challenging but

can yield a very large set of states with which to encode information. It is difficult

to define MUB for large-dimensional systems, both because of theoretical limi-

tations and practical reasons connected with the experimental implementation

of a complete high-dimensional set of MUB. If, however, the system exhibits

bi- or multi-partite entanglement, it is possible to perform a reconstruction of

the state of the overall system by means of local measurements in MUB of its

subsystems. This procedure allows a complete tomographic reconstruction of

the overall state, with the same minimum number of measurements, that only

requires the definition of MUB in a much smaller Hilbert space (whose size is

the square root of the dimension of the overall bipartite system). An example of

this procedure is shown in the case of a photonic implementation of a bipartite

multi-level entangled system using the orbital angular momentum of light of a

pair of down-converted photons.

5.1.1 Mutually unbiased bases

Mutually unbiased bases [277, 133] are a key concept in quantum science, as

they are intimately related to the nature of quantum information [272, 23, 93].

Measurements made in one basis part of a set of MUB provide no informa-
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tion about the state, if the state was prepared in another basis from the same

set of MUB. In quantum mechanics, the amount of information that can be

extracted from a physical system is fundamentally limited by the uncertainty

relations [272, 23]. In this context, MUB acquire a fundamental relevance, be-

cause they serve as a test bed with which one can explore general uncertainty

relations and, ultimately, complementarity [241, 93]. Some important questions

related to MUB remain open [93, 272]: what is the number of MUB for an arbi-

trary dimension d and why is mutual unbiasedness not enough to guarantee a

strong uncertainty relation? While we do not seek to answer these questions, we

provide an accessible experimental platform for exploring these problems by

demonstrating measurements in complete sets of MUB.

Many quantum information protocols depend upon the use of MUB. For

example, quantum key distribution (QKD) relies on the fact that measurements

in one basis preclude knowledge of the state in any of the others [37, 141, 173].

In addition, MUB play an important role in the reconstruction of quantum states

[277, 101, 100], where they have been successfully used to enable the optimal

reconstruction of entangled states of polarization [3] and single-photon linear

momentum states [166].

It is known that a Hilbert space of dimension D will have at most D +1 MUB

[133, 277, 22]. In 1989, Wootters showed that if one can find D +1 mutually unbi-

ased bases in dimension D , these bases provide a set of measurements that can

be used to optimally determine the density matrix of a D-dimensional system

[277]. However, this approach rapidly breaks down for large D for two reasons:

first, defining MUB in high dimensions becomes increasingly difficult [93, 59],

and second, performing the measurements in a complete high-dimensional set

of MUB becomes experimentally challenging [3, 183]. This is especially relevant

for multi-level multi-particle systems, where the dimension of the overall system

scales as D = d N , with d the dimension of the Hilbert spaces of the N individual

subsystems.

We show experimentally that the alternative approach of performing local

measurements in the MUB of the single particles of a multi-particle system still

allows a complete reconstruction of the overall density matrix with a minimum

number of measurements [251]. The significant benefit of our procedure is that
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Figure 5.1: Illustration of the state spaces of a bipartite system, where the system has
dimension D and each subsystem d . Adamson and Steinberg performed measurements
in the Hilbert space HD of the composite system [3], while we perform joint local
measurements in the spaces Hd of the individual subsystems (for d = 2 to 5).

it only requires the definition of MUB in a Hilbert space of size d = D1/N , as the

state spaces of the individual photons are always smaller than the state space

of the composite system (fig. 5.1). We illustrated this approach in the case of a

photonic implementation of a bipartite, multi-level entangled system (d = D1/2)

using the orbital angular momentum of light.

Consider two operators in a d-dimensional Hilbert space with orthonormal

spectral decompositions. These operators, and their basis states, are said to be

mutually unbiased [133, 277] if

∣∣〈ψm,i
∣∣ψn, j

〉∣∣2 =
1/d for m 6= n

δi j for m = n
(5.1)

for all i and j . For any two bases m and n, the indices i and j indicate the basis

states within each of the two bases, respectively. Operators that are quantum-

mechanical observables are sometimes called mutually complementary, or

maximally noncommutative [241]. The name comes from the fact that, given

any eigenstate of one observable, the eigenvalue resulting from a measurement

of the other is completely undetermined. In other words, the state of a system

described in one MUB provides no information about the state in another. It is

known that the number of MUB in dimension d cannot exceed d +1 [277, 93],

and it is exactly d +1 if d is prime or a prime power [277, 148].

The simplest set of mutually unbiased observables can be found in dimen-

sion d = 2. For example, in the two-dimensional Hilbert space of polarization,

the bases of horizontal/vertical, diagonal/anti-diagonal and left/right circular
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Figure 5.2: Mutually unbiased modes for d = 2 in the |`| = 2 OAM subspace. The
brightness of the transverse profiles corresponds to the intensity of the modes; the
colour represents phase.

polarizations provide a set of three MUB. Two states belonging to the same

basis are orthonormal, while the square of the inner product of any two states

belonging to different bases is always 1/2. Equivalent mutually unbiased states

can be implemented using other two-dimensional state spaces, e.g. a subspace

of OAM (fig. 5.2).

5.1.2 Mutually unbiased bases for OAM subspaces

The unbounded Hilbert space of OAM is one example of a scalable high-dimen-

sional resource that can be used for quantum information science [172, 161, 121,

234]. For example, the entanglement of high-dimensional states provides imple-

mentations of QKD that are more tolerant to eavesdropping and can improve

the bit rate in other quantum communication protocols [52, 68, 31, 269, 90, 123].

One of the advantages of OAM is the ability to access d-dimensional sub-

spaces [81], for each of which we can define all existing MUB [124]. We imple-

mented measurements in high-dimensional MUB within the OAM degree of

freedom, and we showed that the MUB corresponding to d-dimensional sub-

spaces are readily accessible with simple laboratory procedures. Furthermore,

we showed that measurements in MUB of these subspaces can be used for the
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complete tomographic reconstruction of multipartite entangled systems with

the minimum number of measurements. We produced entangled photon pairs

by means of spontaneous parametric down-conversion that we then measured

in full sets of d +1 MUB for OAM, for dimensions ranging from d = 2 to 5. The

states belonging to the MUB are defined as superpositions of Laguerre-Gaussian

(LG) modes.

A general single-photon state in a d-dimensional subspace can be described

by an orthonormal basis set of OAM modes {|`〉} as

|ψ〉 =∑
{`}

c` |`〉 . (5.2)

The complex coefficients c` are subject to the normalization condition
∑

c2
`
= 1.

Defining MUB in a general d-dimensional space is a difficult problem [59]; how-

ever, for a number of low-dimensional cases, it is possible to find complete sets

of MUB using simple procedures [60]. For these cases, which include the dimen-

sions 2 to 5, the d orthogonal states {|`〉} can be chosen to be one of the MUB.

The states belonging to the remaining d MUB are found to be superpositions of

the basis states with coefficients of equal magnitude |c`| = 1/
p

d but differing

phases.

5.1.3 Experimental methods

A 3mm-thick BBO crystal cut for type-I collinear SPDC was used for the pro-

duction of frequency-degenerate entangled photon pairs at 710nm (fig. 2.5). In

order for the crystal to produce two-photon states entangled over a wider range

of OAM modes, we tuned the phase-matching conditions of the BBO crystal to

increase the OAM spectrum of the down-converted state [226]. The SLMs act

as reconfigurable computer-generated holograms (CGHs) that enabled us to

measure any arbitrary superposition of OAM modes. The SLMs were used to

modulate the phase and introduce a spatially dependent attenuation to discard

light into the zero diffraction order, allowing the manipulation of the complex

amplitude of the incoming light [15, 83, 124].
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We pumped the crystal with a plane phase front. In order to observe correla-

tions in all bases (instead of anti-correlations), the hologram displayed in one

of the two detection arms was phase-conjugate with respect to the other [172].

The projected Gaussian mode in each arm was then imaged onto a single-mode

fibre (SMFs) that was coupled to a single-photon photodiode detector. Each of

the two detector outputs were routed to coincidence-counting electronics with

a timing window of 10ns. Narrow-band, 10nm interference filters were placed

in front of the detectors to ensure that the frequency spread of the detected

down-converted fields is small compared to the central frequencies.

The combination of the two SLMs, single-mode fibres and coincidence-

counting electronics were used to perform projective measurements on the

entangled state of photons A and B described by the positive operators

Πm,i ;n, j =
∣∣ψm,i

〉
A

∣∣ψn, j
〉∗

B

〈
ψm,i

∣∣
A

〈
ψn, j

∣∣∗
B . (5.3)

Here, the single-photon states |ψ〉A and |ψ〉B belong to MUB in d dimensions

and are given by

∣∣ψm,i
〉=∑

{`}

cm,i ,` |`〉 , (5.4)

where cm,i ,` is a complex coefficient. The indices m and n, which correspond

to the basis indices, range from 1 to d +1; the indices i and j , which represent

the state within each basis, range from 1 to d . For each dimension d , we chose

one set of OAM states {|`〉}. The OAM values used were {`} = {−2, +2} for d = 2,

{−2, −1, +1, +2} for d = 4, and {−bd/2c, . . . , +bd/2c} for d = 3 and 5. Modes with

|`| = 2 were chosen for d = 2 to ensure the symmetry of the measured super-

positions and to reduce the crosstalk between the modes employed (inversely

proportional to ∆`). For each d , we took the orthonormal basis given above to

be the basis corresponding to m = 1; the remaining bases were composed of

superpositions of the m = 1 states with appropriate complex coefficients. For the

dimensions considered, the magnitude of these complex coefficients is 1/
p

d

for all i and `.

To determine the phase terms cm,i ,` that define the MUB (for m = 2 to d +1),
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m = 1 m = 2 m = 3 m = 4

i = 1

i = 2

i = 3

Figure 5.3: Mutually unbiased modes i for each of the 4 bases in d = 3. The greyscale
images represent the intensity; the colour images represent the phase. The first column,
m = 1, corresponds to the orthonormal three-dimensional Laguerre-Gaussian basis
with OAM ranging from `=−1 to +1.

we used the methods outlined in references [60, 58]: the coefficients were here

obtained from the mutually unbiased vectors derived from d × d dephased

Hadamard matrices. These matrices are unique for d = 2,3, 4 and 5. For d = 2,

the MUB obtained are the familiar set of bases that one usually associates with

polarization states. Consequently, the two-dimensional MUB for OAM [202] are

the analogue of those for polarization [63]. All the modes used for d = 3 and

d = 5 are shown in fig. 5.3 and 5.4 respectively. The complete sets of mutually

unbiased vectors used in the quantum state tomography, for dimensions from

d = 2 to 5, are reported in appendix A.

The experimental procedure and the reconstruction technique can be readily

extended to higher dimensions. The existence of full sets of d + 1 MUB has

however only been proven for dimensions d , where d is a prime number or a

power of a prime. Finding MUB in higher prime power dimensions, especially

sets that may be suitable for practical implementations, remains challenging.

It should also be noted that, despite MUB being particularly advantageous to

efficiently reconstruct the density matrix of an unknown state encoded in the

spatial modes of a single photon, as d increases the complicated structures of

the modes involved may negatively affect the detection efficiency.

After recording the coincidence count rates Ck for each choice of n,m, i and

j , and the single-channel count rates Ak and Bk , we converted the count rates
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i = 1 i = 2 i = 3 i = 4 i = 5

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

Figure 5.4: Mutually unbiased modes i for each of the 6 bases m in d = 5. The greyscale
images represent the intensity; the colour images represent the phase. The first row,
m = 1, corresponds to the orthonormal five-dimensional Laguerre-Gaussian basis with
OAM ranging from `=−2 to +2.

to detection probabilities through

pk =Υ
(

Ck − Ak Bk∆t

Ak Bk∆t

)
, (5.5)

where ∆t is the gate time of our coincidence-counting electronics and Υ an

appropriate normalization factor. The term Ak Bk∆t corresponds to the uncor-

related accidental count rate Uk and the normalization factor

Υ=Q/
d 2Q∑
k=1

Ck (5.6)

depends on the type of tomographic reconstruction performed, in order to

ensure proper normalization of the coincidence probabilities associated with

measurements in those bases where a number of basis states smaller than

d was considered. The factor Q indicates the number of d ×d quadrants in

the correlations matrix for the set of measurements of choice. The product
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(b) Complete QST

Figure 5.5: Sets of measurements for (a) overcomplete state tomography and (b) com-
plete state tomography, for d = 3 (D = 32). The shaded areas indicate quadrants of size
d ×d , for each of which we expect

∑
k pk = 1.

d 2Q corresponds to the total number of independent measurements. For an

overcomplete tomography, where we set
∑d 2

k pk = 1 for any given choice of m

and n, Q = (d +1)2 (fig. 5.5a). For a tomographically complete reconstruction

that uses the presented subset of MUB measurements, Q = [1+ (d −1)]2 = d 2

(fig. 5.5b).

5.2 Efficient high-dimensional quantum state recon-
struction with mutually unbiased bases

5.2.1 Mutually unbiased bases in quantum state tomography

In general, it is possible for a system to include more than one particle. If one

considers a d-dimensional state space for each particle, the dimension D of

a system of N particles will be D = d N . Such a system will be unambiguously

specified by its density matrix ρ, a positive-semidefinite unit-trace Hermitian
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operator that includes d 2N −1 independent real parameters (d 4−1 for a bipartite

system).

The determination of the density matrix of an unknown quantum system is

called quantum state tomography (QST) [138, 157, 11], a process in which MUB

play an important role. One approach to QST is to perform measurements in the

MUB of the D-dimensional state space of the composite system [277]. However,

such measurements are very challenging, as they require the definition of MUB

for Hilbert spaces of very high dimension and can require the implementation

of entangled observables [3]. Our approach is simpler, as we use the MUB of the

state spaces of the single particles.

Let us consider for simplicity a bipartite system. An overcomplete set of

measurements for the reconstruction of the D-dimensional system is provided

by the pairwise combinations of all single-particle MUB states. The total number

of independent measurements for this approach is equal to (d(d +1))2, which is

always greater than d 4 −1. We propose another suitable set of measurements,

given by pairwise combinations of states from an appropriate subset of the

overcomplete set. This subset contains all the states that constitute one of the

MUB and, for each of the remaining d MUB, all states but one. It can be shown

that the conditions for the completeness of a set of tomographic measurements

[11] are satisfied by this reconstruction strategy.

One can express the density matrix ρ as a linear combination of any complete

basis of d 2 ×d 2 matrices Γµ with complex coefficients γµ [251]:

ρ = Γ0

D
+

D2−1∑
µ=1

γµΓµ, (5.7)

where D = d 2 is the dimension of our bipartite system. The basis matrices Γµ

here chosen have the following properties:

Tr
(
Γµ ·Γν

)= δµ,ν (5.8a)
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κ=∑
µ

ΓµTr
(
Γµ ·κ

)
, (5.8b)

where κ is any d 2 × d 2 matrix. A suitable set of Hermitian matrices Γµ for

the decomposition of ρ is given by the generalized Gell-Mann matrices for

dimension D .

A necessary and sufficient condition for the completeness of the set of tomo-

graphic states
{∣∣ψµ

〉}
(associated with the two-qudit observablesΠµ) is given by

the invertibility of the matrix

Bµν =
〈
ψµ

∣∣Γν ∣∣ψµ

〉
, (5.9)

which allows us to express the complex coefficients γµ in terms of probabilities

pµ =
〈
ψµ

∣∣ρ ∣∣ψµ

〉
[11]:

γµ = d 2
d 4∑
ν=1

(B−1)µνpν. (5.10)

Let us define the orthonormal set of basis vectors ui in dimension d , whose

elements are given by (ui ) j = δi j . For a choice of two single-particle MUB vectors

for the qud it subsystems A and B

uA = (a1, . . . ad ) (5.11a)

uB = (b1, . . . bd ), (5.11b)

we can express the elements j = 1, 2, . . . D of the corresponding vector for the

D-dimensional state space of the bipartite system as

(v AB ) j = aαbβ, (5.12)

where (α, β) are all pairwise permutations of indices {1, . . . d}. From the D-
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dimensional vectors v AB we then define the states
∣∣ψµ

〉
that describe the mea-

surements on the composite system. After calculating the states
∣∣ψµ

〉
for the

subset of MUB measurements for complete tomography defined previously, we

find the invertible matrix B through eq. (5.9). This approach gives exactly the

d 4 independent measurements that can then be used for a tomographically

complete reconstruction of the D-dimensional system. While the number of

measurements still scales with d 4, our approach introduces a significant reduc-

tion of the number of measurements performed, as compared to other methods

(see tab. 5.1 for an example).

5.2.2 State reconstruction methods

An overcomplete set of measurements was obtained by scanning through all

possible values of m and i , for photon A, and n and j , for photon B . For every

combination of m,n, i and j , we recorded the coincidence counts and both the

single channel counts resulting from the projective measurement. From this

set of data, we extracted the tomographically complete set of measurements

previously described. These count rates are converted to detection probabilities

through the following relationship:

pk = d 2∑
Ck

Ck −Uk

Uk
, (5.13)

where the index k corresponds to a unique choice of measurement settings

m,n, i and j , Ck is the coincidence count rate and Uk is the anticipated un-

correlated coincidence rate, which is estimated by taking the product of the

single-channel count rates and the gate time (fig. 5.6). The normalization ap-

proach that we took accounts for different hologram efficiencies for different

modes. The non-perfect uniformity of the background probabilities for m 6= n

can be put down to the intensity-coding approach, which requires complex

amplitude modulation on phase-only SLMs. There are variations from basis to

basis, because the spatial functions to be reproduced can differ substantially,

and some are more difficult to implement on a pixellated device with finite
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Figure 5.6: Joint probabilities of detecting photon A in state |ψm,i 〉A and photon B
in state |ψn, j 〉B . The results are normalized such that the sum of the joint detection
probabilities for measurements in any two bases m and n are unity. Therefore, the prob-
abilities represented by the leading diagonal are expected to be 1/d , and all probabilities
for m 6= n are expected to be 1/d 2. We also display the quantum contrast QC, which is
given by the ratio of the measured coincidence rate to that of the expected accidental
coincidences. The arrows indicate the rows and columns of measurements not required
for the complete tomographic reconstruction of the density matrix.
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resolution.

The task of the fitting procedure is to find the optimal density matrix ρ of

the D-dimensional system that best reproduces the experimental results. The

parameters of the density matrix were established through numerical minimiza-

tion of the Pearson’s cumulative test statistic [194, 20]

χ2 =
d 4∑

k=1

(pk −p ′
k )2

p ′
k

, (5.14)

where pk are the probabilities from the experiment, and p ′
k = Tr[ρΠk ] are those

predicted from the reconstructed density matrix. The positivity of the recon-

structed density matrices was ensured through an appropriate choice of basis

matrices Γµ, given here by eqs. (5.8), which make the coefficients of the search

space γµ real. The density matrices so reconstructed were also checked to be

Hermitian and positive semi-definite, as rounding errors in the numerical opti-

mization may lead to non-physical results.

5.2.3 Results

The reconstructed density matrices for dimensions 2,3,4 and 5 are shown in

fig. 5.7. For each reconstructed density matrix ρ, we calculated the linear entropy

S = 1−Tr(ρ2) and the fidelity F = Tr[
√p

σρ
p
σ]2, where σ is the D-dimensional

maximally entangled density matrix associated with arbitrarily large spiral band-

width and perfect detection. The uncertainties were calculated by repeating

the reconstruction process for statistically equivalent copies of the original ex-

perimental data sets, each obtained by adding Poissonian fluctuations to the

measured counts.

The reconstructed density matrices have low entropies, indicating pure

states, and very high fidelities with respect to the maximally entangled state

(used for reference). Due to the finite spiral bandwidth of our generated state

[255, 226] and limitations in our measurement system, one would anticipate the

fidelities to decrease and the entropies to increase as the dimension increases.

Indeed, we observe this trend in our results.
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Figure 5.7: Results of tomographic reconstructions using complete sets of single-photon
mutually unbiased bases measurements. The real parts of the reconstructed density
matrices ρ are shown. Imaginary parts are smaller than 0.076 for d = 2, 0.059 for
d = 3, and 0.050 for d = 5,6. Also shown are the linear entropy S and fidelity F for the
reconstructed density matrices. Two-dimensional plots: real parts of the theoretical
density matrices for the maximally entangled states. (Continued on page 96.)

For comparison, we also implemented the approach described in [4]. We

find comparable entropies and fidelities between the two approaches. However,

our method requires significantly fewer measurements. For example, for d = 5,

the number of measurements required is d 4 = 625, compared to 2025 for the

procedure outlined in ref. [4]. Both methods rely on projective measurements

in appropriate superpositions of the basis states in the dimension of choice.

Neither is more experimentally demanding, as they can both be performed

using the same set-up and only differ in the choice of projection states.
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The number of joint measurements required to perform our reconstruction

procedure is given by:

MMUB = d 2 +2d 2(d −1)+d 2(d −1)2 = d 4, (5.15)

which corresponds to the minimum number of parameters required to perform

a complete quantum state tomography. The number of measurements required

by the overcomplete quantum state reconstruction strategy outlined in ref. [4]

requires instead the following total number of measurements:

MQST =
[

4

(
d

2

)
+d

]2

. (5.16)

The numerical optimization to find the density matrix ρ that provides the

best fit to the experimental probabilities from eq. (5.5) is carried out by per-

forming a random search over the parameter space of a complex left-triangular
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Method M S F

d = 2
MUB 16 0.025±0.008 0.979±0.004
QST 36 0.070±0.007 0.958±0.004

d = 3
MUB 81 0.178±0.003 0.886±0.002
QST 225 0.179±0.005 0.893±0.003

d = 4
MUB 256 0.234±0.005 0.853±0.003
QST 784 0.281±0.009 0.818±0.006

d = 5
MUB 625 0.324±0.003 0.793±0.002
QST 2025 0.364±0.008 0.764±0.006

Table 5.1: Linear entropy S and fidelity F (with respect to a maximally entangled density
matrix) for density matrices reconstructed from overcomplete quantum state tomog-
raphy (QST) and measurements in mutually unbiased bases (MUB). M represents the
number of measurements needed for the indicated reconstruction method.

matrix T [11], from which a physical guessed density matrix is derived:

ρ′ = T †T /Tr(T †T ). (5.17)

We reconstructed the states from d = 2 to 5 using both methods. A quantitative

comparison of the results is shown in tab. 5.1.

The MUB reconstruction method is applied here to almost maximally en-

tangled states. The density matrices of maximally entangled states have low

rank1, r < D, and could thus be efficiently reconstructed through compressed

sensing [122, 168]. In the general case, however, a complete quantum state

reconstruction by means of appropriately selected projection operators may be

more appropriate and produce results with higher fidelity.

We have thus demonstrated single-photon measurements for MUB in the

OAM degree of freedom and shown how these measurements can be used for

efficient quantum state reconstruction. The procedure of measuring combi-

nations of all single-photon states in one basis and all but one state in the

remaining bases gives a minimal complete set of tomographic measurements.

This experimental method can be readily applied to multi-level multi-partite

1That is, a small number of linearly independent rows or columns.
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systems.

The OAM degree of freedom is becoming an important resource for quantum

information science. Therefore, the ability to measure states in MUB is an

important step for quantum protocols implemented in this degree of freedom.

Measuring MUB in high-dimensional spaces is not just of practical importance

for QKD protocols, but it can also provide important insight into the nature of

information in physical systems.

5.3 Quantum key distribution with high-dimensional
OAM mutually unbiased bases

Quantum key distribution (QKD) is one of the first quantum protocols to have

been successfully demonstrated in several different laboratory and environ-

mental conditions [89, 258], as well as reaching an advanced level of technical

and theoretical development and becoming the first commercial application of

quantum cryptography. In quantum key distribution, two parties, commonly

named Alice and Bob, use a shared quantum channel to create a shared secret

key [113, 238]. The channel is not used to transmit information, but to establish

a random sequence of digits (the key) that can then be used as a one-time pad

to protect a subsequent classical communication between the two parties.

The first QKD scheme was proposed by Bennett and Brassard in 1984, and

it is now known as the BB84 protocol [37]. In the BB84 protocol, Alice and Bob

exchange polarized photons over a quantum channel. A classical channel (public

channel) allows them instead to compare the preparation and measurement

stages. While it should be assumed that an eavesdropper (Eve) is unable to

impersonate Bob when communicating classically with Alice, and Alice when

communicating with Bob, the fact that Eve may intercept any messages sent

over the public channel is to be taken into consideration.

Alice prepares a sequence of single photons, each randomly and uniformly

selected to be in a state belonging to one of a set of mutually unbiased bases.

In the polarization case, the bases can be taken to be the horizontal/vertical
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and diagonal/antidiagonal ones. She associates the bit value 0 with the former

basis and the bit value 1 with the latter. The photons are then transmitted to Bob

through a suitable quantum channel, for instance free space or an optical fibre.

Bob then randomly selects one of the two measurement bases to measure each

of the photons received. After the exchange, Bob communicates to Alice over

the public channel the basis choices for the measurement of each photon, and

Alice tells Bob in which cases they used the same preparation and measurement

bases. Uncorrelated preparation-measurement events are discarded; the bit

values for those measured in the same preparation basis constitute the sifted

key. The possibility of the presence of an eavesdropper must be considered by

examining the complete bit stream, and discussed over the public channel.

Quantum key distribution protocols can be classified in prepare-and-measure

(PM) schemes or entanglement-based (EB) schemes. Examples of PM schemes

are the BB84 [37], B92 [36], six-state [63] and SARG04 [237] protocols. In a

prepare-and-measure protocol, a system is prepared in state |ψ〉 and measured

in state |ψ′〉. Only if |ψ〉 and |ψ′〉 belong to the same basis in a set of MUB the

two parties share a conclusive outcome. In an entanglement-based scheme, on

the other hand, a projective measurement in state |ψ〉 is performed on one of

the two photons in an entangled two-photon state, and a measurement in state

|ψ′〉 is performed on the other, where |ψ〉 and |ψ′〉 are all possible states from the

same set of MUB for the first and second photons respectively. In general, PM

schemes can be translated into EB schemes: the entanglement-based QKD pro-

tocol proposed by Ekert in 1991 [97], for instance, can be shown to be equivalent

to the prepare-and-measure BB84 protocol [39].

Mutually unbiased bases are of fundamental importance in QKD, since pro-

jective measurements in one basis provide no information on the state as de-

scribed in any of the other bases [37, 93]. If Eve measures the photon transmitted

by Alice to Bob in the incorrect basis, either in a PM or EB scheme, she will obtain

no information and will introduce a disturbance in the system that will lead to

her detection. Although MUB offer fundamental security against eavesdropping

in QKD protocols, the key generation rate is limited by the number of MUB

one can define in a particular implementation. As an example, when using

the polarization degree of freedom of light, which is two-dimensional, only a
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maximum of one bit of information per photon can be transmitted.

It has been shown, however, that the exchange of systems that give access

to a high-dimensional Hilbert space allows more robust implementations of

QKD schemes in terms of abstract noise measures [242, 99]. Still, their actual

performance in terms of secure key rate, as the dimensionality of the system

is increased, depends on the increase in both noise rate and the robustness of

the system against noise. It has been shown theoretically that MUB for higher-

dimensional OAM states can be used to encode and transmit bit strings securely

using the BB84 protocol [68, 284]; three-state systems have received particular

interest in the past [30, 121, 57].

A standard PM implementation of a generalized, high-dimensional BB84

protocol has previously been reported [225]. The scheme relied on 11 OAM

modes and an orthonormal basis of 11 superposition of these modes, such

that one basis is unbiased with respect to the other. Therefore, only two of the

d +1 = 12 available MUB were employed. QKD entanglement-based schemes

can however also be experimentally implemented using complete sets of high-

dimensional MUB, if it can be proven that the detection efficiency depends only

on the basis choice and not the element within each basis [171].

5.3.1 Average error rate

A general EB quantum key distribution scheme involves two parties, each of

which receives one of a pair of entangled photons. They measure the states

received, and publicly announce the measurement basis. The average error

rate of the QKD protocol, which results from noise such as that introduced in

the transmission channel and by errors in the measurements, is estimated by

comparing a small portion of the measurements. Noise, however, could also

be introduced by the presence of an eavesdropper. The error rate refers to

the probability that Alice sends the state |ψm,i 〉, while Bob receives one of the

possible d −1 orthogonal states |ψm, j 〉. Given basis m from a set of mutually
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Figure 5.9: (a) Secret key rate rmin as a function of the average error rate Q. The data
points indicate the measured values and the curves the theoretical values calculated
from eq. (5.20). (b) Measured average error rate Q and maximum permissible error rate
(Qmax, evaluated for rmin = 0). (c) Shannon mutual information I (A : B) and secret key
rate rmin, plotted as a function of d . The shaded region denotes the mutual information
between Alice and Eve.

unbiased bases, the corresponding average error rate Qm is expressed as

Qm = ∑
i 6= j

Tr
[
|ψ∗

m,i 〉〈ψ∗
m,i |⊗ |ψ∗

m, j 〉〈ψ∗
m, j |ρAB

]
, (5.18)
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where ρAB is the density matrix of the joint two-photon state. The total average

error rate Q is defined as the average over the M different MUB employed [99]:

Q = 1

M

M∑
m=1

Qm . (5.19)

If the full set of available MUB for a prime dimension is used, M = d +1.

5.3.2 Secret key rate

A second important figure of merit for the performance of a QKD scheme is

the secret key rate, given by the amount of information that can be securely

transmitted. It is given by the number of key bits per photon securely generated

and measured in the same basis by both parties. The maximum secret key rate

that can be achieved is log2 d for a d-level system, but it is affected and limited

by two factors: a possible adversarial attack by Eve and the consequent error

observed by Alice and Bob, which requires them to perform error correction and

privacy amplification. Alice and Bob cannot therefore generate a secret key at a

rate higher than [242, 99]

rmin = log2 d + d +1

d
Q log2

[
Q

d(d −1)

]
+

(
1− d +1

d
Q

)
log2

[
1− d +1

d
Q

]
,

(5.20)

where Q is the average error rate from eq. (5.19). In addition to common attacks

by Eve, one should also consider the fact that an adversarial attack on a key

encoded in a d-dimensional state space embedded in a larger space, such as

in the case of OAM, may not be detectable in the d-dimensional state space of

choice. Some of the consequences of this subtler fair-sampling violation are

explored in chap. 6.

In order to assess the security of a QKD scheme, the concepts of Shannon

entropy, joint entropy and mutual information are employed. The Shannon

entropy gives a measure of the uncertainty for a random variable A with alphabet



SECTION 5.3 103

{a}, and it is defined as

H(A) =−∑
{a}

p(a) log2 p(a), (5.21)

where p(a) is the probability of outcome a. The Shannon entropy can also be

expressed as the asymptotic number of bits necessary to describe a series of

events, divided by the number of events. The classical mutual information is

defined as the amount by which the Shannon entropy on A decreases when one

learns about B [23], and it is a measure of the degree of correlation between

Alice and Bob’s data. The classical mutual information I (A : B) also provides an

upper bound for the secret key rate:

I (A : B) = H(A)+H(B)−H(A,B), (5.22)

where H (A,B) is the joint entropy. The joint entropy is used to measure the total

uncertainty for the pair (A,B). It is expressed as

H(A,B) =−∑
{a}

∑
{b}

p(a,b) log2 p(a,b). (5.23)

The quantum mutual information, or von Neumann mutual information, is the

quantum-mechanical analogue of the Shannon mutual information.

The effective secret key rate is then given by the difference between the

mutual information shared by Alice and Bob and the information shared by

Alice and Eve, as expressed by the quantum mutual information, also referred

to as the Holevo quantity [238]. The Holevo quantity measures the amount of

information on Alice’s bits that Eve acquires, as she interacts with the signal

directed to Bob. The secret key rate can be expressed as

r = I (A : B)−χ(A : E), (5.24)

where I (A : B) is the classical mutual information of Alice and Bob’s data, and

χ(A : E) = H(A)−S(E)−S(A,E) is the quantum mutual information between

Alice and Eve. H and S are commonly used to denote the Shannon entropy and

von Neumann entropy, respectively. The security assessment here presented
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does not consider any specific possible attack strategy by Eve, which may affect

the average error rate and therefore the effective secret key rate.

After data-processing, Alice and Bob map their respective data to raw keys K

and K ′. In this step, the total probability distribution remains unchanged but

the total classical mutual information changes to I (A′ : B), which is expressed as

I (A′ : B) = H(A′)+H(B)−H(A′,B). (5.25)

The limit on the tolerable error rate that is safe for secret key generation can

be improved by implementing a full set of d+1 MUB [99, 68]. This happens at the

cost of reducing the transmission rate, which is proportional to the probability

1/(d +1) that Alice and Bob choose the same basis. In a protocol that makes

use of the asymmetric basis choice, however, one does not pay the high cost of

sifting with MUB [169]. In order to calculate the maximum tolerable error rate,

Qmax, the secret key rate, rmin, is set to zero.

5.3.3 Experiment and result

An experiment was performed in which the dimension d was increased, in order

to increase both the secret key rate and the Shannon mutual information. The

improvement of these two figures of merit resulted, respectively, in higher key

generation rates and higher information capacity. The experiment was carried

out by Andrew Forbes and co-workers [171], using a system functionally and

technically equivalent to that presented in fig. 2.5.

For each combination of projective measurements performed by Alice and

Bob in the EB scheme, single count rates and coincidence count rates were

recorded and the normalized joint probabilities calculated for d = 2, 3, 4 and

5 (as shown in fig. 5.6 for the quantum state tomography experiment). The

average error rate Q was calculated from the normalized joint probabilities

according to eq. (5.19). For d = 2, 3, 4 and 5, the average error rates were found

to be Q = 0.016, 0.040, 0.088, and 0.14. Using these values of Q, together with

eq. (5.20), the secret key rates were calculated to be rmin = 0.7590, 1.123, 1.139

and 0.8606, respectively. Fig. 5.9a shows the measured secret key rates plotted as
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Figure 5.10: Mutual correlation Im , for dimensions d = 2 to 5, and a number of MUB
from 2 to d + 1 for each dimension considered. The red squares are experimental
points corresponding to the data presented in fig. 5.6, the black points define the bound
given by eq. (5.34) as 1+ (m −1)/d . The grey region corresponds to separable states.
Uncertainties for Im are between 0.018 and 0.032 and therefore not visible in the plots.

a function of the measured average error rates. For each curve, the intersection

with the horizontal axis rmin = 0 corresponds to the maximum permissible error

rate Qmax that guarantees the secure distribution of a secret key. Ideally, the

error rate Q should be minimized in order to maximize the secret key rate rmin.

These results are shown in a different format in fig. 5.9b, where it is evident that

all the measured error rates are well below the maximum permissible error rate.

The Shannon information for d = 2, 3, 4, and 5 was calculated to be I (A :

B) = 0.9999, 1.313, 1.478, and 1.487 (red points in fig. 5.9b). While the Shannon

mutual information increases monotonically, it levels off for d = 4 and 5. On the

other hand, rmin decreases for d = 5, indicating that a limit on the dimension in

which the protocol can encode has been reached, while still resulting in higher

generation rates per photon.

The difference between I (A : B) and rmin is the mutual information between

Alice and Eve (grey shaded region in fig. 5.9b). From these results, it is evident

that the noise introduced by a disturbance by Eve grows faster than the corre-

lations between Alice and Bob and can thus be used to generate a key. This

however is not expected theoretically and may be due to the complexity associ-

ated with encoding higher-dimensional states holographically on spatial light

modulators with finite resolution.
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5.4 Entanglement detection with mutually unbiased
bases

The concept of mutually unbiased bases can also be linked with the problem of

separability. A separable state can be expressed as a probability distribution over

uncorrelated product states. By relying on the maximum complementarity of

the associated observables, the properties of MUB can be used to define robust

entanglement criteria for arbitrary multipartite high-dimensional systems, for

both discrete degrees of freedom and continuous variables.

One such criterion, introduced by Hiesmayr and co-workers in 2012 [245],

is applicable to both prime and non-prime dimensions and, therefore, to both

complete and non-maximal sets of MUB. The entanglemend detection scheme

can be summarized as follows. In a bipartite system, for any two observables a

and b defined on subsystems A and B respectively, Pab(i , j ) is the joint probabil-

ity that a has outcome i and b has outcome j . The mutual predictability is then

defined as

Cab =
d−1∑
i=0

Pab(i , i ). (5.26)

The labelling of the outcomes {i } corresponds to a choice of measurement

bases. If observables a and b can be shown to be fully correlated for at least one

labelling, Cab = 1. If however they are fully uncorrelated, for any labelling we get

Cab = 1/d .

For a bipartite system with density matrix ρ, such as the one so far examined,

the probability Pab can be expressed as

Pab(i , j ) = 〈i |〈 j |ρ|i 〉| j 〉, (5.27)

from which:

Cab =
d−1∑
i=0

〈i |〈 j |ρ|i 〉| j 〉. (5.28)

An entangled bipartite state can be expressed in the orthonormal Schmidt bases
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of its subsystems, as

|ψ〉 =
r∑

i=0
λi

∣∣i s
a

〉∣∣i s
b

〉
, (5.29)

with r ≤ r ≤ d −1. For observables a and b corresponding to these bases, one

always obtains Cab = 1, as it is also the case for a classically correlated separable

state. Therefore, to detect entanglement, the state has to be measured in at least

two bases, that shall be taken to correspond to observables a, b, a′ and b′.
The treatment for d-level bipartite system proposed by Hiesmayr and co-

workers in ref. [245] will be outlined here. If both parties measure their respective

subsystems of a pure product state given in an arbitrary basis {|i1〉}

ρp = |01〉 |01〉〈01| 〈01| (5.30)

in the same basis {|i1〉}, they will obtain C1,1 = 1. For a second basis {|i2〉} taken

to be mutually unbiased with the first, they have

C2,2 =
d−1∑
i=0

P2,2(i , i ) =
d−1∑
i=0

〈i2| 〈i2|ρp |i2〉 |i2〉

=
d−1∑
i=0

|〈i2|01〉|2 |〈i2|01〉|2 =
d−1∑
i=0

(
1p
d

)2 (
1p
d

)2

= 1

d
.

(5.31)

For the two mutually unbiased measurement bases considered so far, the

mutual correlation Im is defined as

I2 =C1,1 +C2,2 (5.32)

and, for a pure state, it takes the value I2 = 1+1/d . In the general case where m

different MUB are employed,

Im =
m∑

k=1
Ckk = 1+ m −1

d
, (5.33)

since, when the mutual predictability Cab corresponds to 1 in one basis, it takes

the value 1/d in the other m−1 bases. Consequently, the following upper bound
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for separable states measured in m MUB can be set:

Im =
m∑

k=1
Ckk ≤ 1+ m −1

d
, (5.34)

where the inequality holds if the state is separable. For a complete set of m = d+1

MUB, one has:

Id+1 =
d+1∑
k=1

Ckk ≤ 2, (5.35)

a result that had already been obtained as an entropic uncertainty relation for

MUB in [278], as a generalization of [158].

The bound was applied to the data presented in fig. 5.6. While the optimal

quantum tomography scheme previously described does provide information

on the entanglement of the state considered, as it allows a reconstruction of

its density matrix, the entanglement detection scheme based on the mutual

predictability for any number of MUB m ≥ 2 offers a more direct and efficient

method to determine whether a state is non-separable. The calculated mutual

correlations Im for d = 2, 3, 4 and 5 are shown in fig. 5.10. Even using just two of

the available MUB in each dimension, the corresponding values of I2 place the

two-photon state produced by down-conversion well above the separable-state

bound.



CHAPTER 6

Fair sampling in
high-dimensional state spaces

The incompatibility between quantum mechanics and local hidden variable

(LHV) theories was first highlighted by the formulation of the Bell inequality in

1964, a milestone of modern quantum theory that made possible experimental

investigations of the principle of locality [33]. Such experiments have ruled out,

through violations of the Bell inequality, LHV theories [105, 17, 232, 107]. At

least one of two main loopholes thwart the violation of Bell’s inequalities in

all quantum systems. The locality loophole implies the possibility of informa-

tion travelling from one particle to another, while the detection loophole, so

far the more prominent one, involves measurements using less-than-optimal

detectors that may not be properly sampling all particles. Most of the experi-

ments implementing tests of Bell inequalities were performed with photons, for

which perfectly efficient detection remains a challenge. To interpret violations

of the Bell inequality as a demonstration of nonlocality, one has to assume some

form of fair sampling, i.e. the photons detected constitute a fair sample of all

the photon pairs produced by the source [107, 44]. Failure to comply with this

assumption opens a detection loophole.

This chapter includes material previously published in the following paper:

• J. Romero, D. Giovannini, S. M. Barnett and M. J. Padgett, “Tailored two-photon correlation
and fair-sampling: a cautionary tale”, New J. Phys. 15(8), 083047 (2013)

109

http://dx.doi.org/10.1088/1367-2630/15/8/083047
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Figure 6.1: (a) Two-channel Bell experiment, as originally proposed in [33]. S denotes
the source, D A and DB the detectors, and A A and AB the spatially analysers. (b) Four-
channel Bell experiment, as performed by Aspect and co-workers [17].

In general, detection loopholes can be exploited to design ad hoc LHV

theories that artificially violate Bell inequalities [205]. The advent of device-

independent quantum protocols, where conclusions are drawn exclusively from

measurement statistics, makes compliance with the fair-sampling assumption

highly relevant for practical applications [2]. One option to ensure fair sampling

is to use very efficient detectors that exceed the threshold efficiency needed for

detection loophole-free demonstrations, thus closing the detection loophole

[106, 94].

However, there are still cases when even perfectly efficient single-photon de-

tectors do not guarantee fair sampling. As in the work presented in this chapter,

a subtle choice of measurement states can in fact lead to an explicit violation of

the fair-sampling assumption and a non-physical correlation curve. Correlations

inconsistent with the states observed, or even with quantum mechanics, have

been recorded previously in experiments with photons that fail to comply with

the fair-sampling conditions. In our experiment, which used transverse spatial

modes, these super-quantum correlations would persist even if the detection

was made perfectly efficient. Our choice of measurement states can lead to

tuneable, seemingly super-quantum violations of Bell inequalities beyond the

Tsirelson bound for the system in question [71, 69], an interesting result in the

context of nonlocal boxes and communication complexity [212, 56].
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6.1 Fair sampling in Bell-type experiments

We focussed on the Clauser-Horne-Shimony-Holt (CHSH) inequality and its

variants, which are the most tested versions of the Bell inequality [76]. The

case considered is illustrated in fig. 6.1a. The basic experimental configuration

involves a source of particle pairs and two spatially separated analysers (A A and

AB ) and detectors (D A and DB ). The Bell parameter S in the CHSH inequality is

derived from the correlation function, E , of observables Q A and QB as a function

of the settings of the analysers. Q A and QB can each assume values ±1, which

can be taken to correspond to detection or non-detection of a photon. The

correlation function E as a function of analyser settings a and b in arms A and

B , respectively, can be written as

E(a,b) = P (Q A =QB |a,b)−P (Q A 6=QB |a,b), (6.1)

where P (Q A =QB |a,b) is the probability that Q A =QB for A A set to a and AB to

b. The same goes for Q A 6=QB and P (Q A 6=QB |a,b) [236].

More intuitively, E is the difference between the probability of recording

a coincidence count and the probability of not recording one, for the settings

{a,b}. The Bell parameter S is defined as

S = ∣∣E(a,b)−E(a,b′)+E(a′,b)+E(a′,b′)
∣∣ . (6.2)

Bell’s theorem states that LHV theories satisfy the inequality S ≤ 2, for any set

of orientations
{

a,b, a′,b′}. The inequality is violated by entangled states, from

which the maximum achievable value of S, 2
p

2, can be predicted – also known

as the Tsirelson bound [71]. Interestingly, the Tsirelson bound is smaller than

the maximum value obtained from simple algebraic arguments, which is 4;

this difference has been attributed to complementarity and compliance with

information causality [71, 69, 204]. Hence, experiments which exhibit values of

S beyond the Tsirelson bound would show super-quantum correlations.

Because the experiments considered can only measure count rates, prob-

abilities are obtained by normalizing these counts. Ideally, all count rates are

normalized with respect to the pair emission rate of the source, which can
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be measured by event-ready detectors [286]. However, event-ready detection

is prohibitive to implement, requiring, for example, two cascaded entangled

photon sources in the experiment of [286]. It was not used, in particular, in

the celebrated 1980s experiments by Aspect and co-workers [17], nor in the

vast majority of experiments thereafter. Instead, in each arm of a source of

polarization-entangled pairs, photons were sorted into two orthogonal polar-

izations and sent to two different detectors. This required two-fold coincidence

counting on four detectors, as shown in fig. 6.1b. The correlation function can

be defined in terms of the four count rates Ri j where
{
i , j

}
correspond to the ±

channels, each associated with one of the two possible outcomes of each arm:

E(a,b) = R+++R−−−R+−−R−+
R+++R−−+R+−+R−+

. (6.3)

One can associate the first two terms to the coincidence probabilities in de-

tectors ± respectively, and the last two to the probability of not recording a

coincidence, for settings {a,b}. In the ideal case of perfect detection, these two

correlation functions are the same if the sum at the denominator of (6.3) cor-

responds to the emission rate of the source. Since polarization is described in

a two-dimensional state space, it seems only natural for this equality to hold.

In this ideal case, Clauser notes, the experiments by Aspect and co-workers

were more similar to Bohm’s thought experiment [47] and therefore closer to the

original idealized experiment considered by Bell in his 1964 paper [73, 33].

For (6.3) and (6.1) to be considered equivalent, the detected four-fold coin-

cidences are assumed to be a fair sample of all photons emitted by the source.

Post-selection, however, is introduced: in calculating E , only the effective de-

tected outcomes are considered. Since the total four-fold count rates could

be related to the emission rate of the source in a nontrivial way, (6.3) is not

necessarily equivalent to (6.1).

Resulting coincidence curves may need to be renormalized in order to show a

violation of the Bell inequality [77]. In the literature, the normalization in (6.3) is

referred to as the CHSH normalisation. However, as Clauser pointed out in 2002,

this is “adamantly not” the 1969 CHSH normalisation [76, 73]. The difference

between the two may be subtle, but nevertheless important [73, 70, 75, 81].



SECTION 6.2 113

6.2 Synthesizing super-quantum correlations with spa-
tial modes

In the context of our experiment, sector states were defined as equally weighted

superpositions of modes carrying OAM with mutually opposite handedness. If

sector states are used to perform a Bell-type experiment, the resulting coinci-

dence curve is a sinusoidal function of the relative orientations of the sector-state

analysers. When choosing appropriate superpositions of such states, arbitrary

two-photon correlations can be produced. By choosing an appropriate nor-

malization, we examined the case of a non-physical square correlation curve

associated with a parameter S that violates a Bell inequality. A square wave corre-

lation curve was here chosen as an example of super-quantum correlations as it

approaches the case of a PR box [212] and can be synthesized from appropriate

post-selection on a two-state system embedded in a high-dimensional space. A

square wave can be approximated in terms of its first Fourier components, each

of which corresponds to a sinusoidal correlation function for an odd sector state.

By considering these states, we synthesized a coincidence curve that approx-

imates a square wave using its first four Fourier components and results in a

CHSH Bell parameter well beyond the upper limit of 2
p

2 for nonlocal quantum

correlations.

A common feature of all experiments that observed super-quantum corre-

lations with photons is their failure to comply with fair sampling. In [249], for

example, some of the photons were intentionally discarded, thus making the

denominator of (6.3) smaller that it should be. Other schemes involved thresh-

old detectors, amplification and fake state generation, all of which can repli-

cate both quantum and super-quantum violations with classical light sources

[211, 108]. The conceptual schematic of our experiment, however, was exactly

that of fig. 6.1a, where, instead of polarization, the analysers were set to mea-

sure specific spatial modes. There was no tampering with the photon detectors

or with the source. Moreover, the super-quantum Bell parameter so obtained

would persist even for perfectly efficient detectors.

Transverse spatial modes of single photons carrying optical orbital angular

momentum (OAM) have steadily risen as a practical degree of freedom for
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Figure 6.2: (a) A combination of sinusoidal curves with appropriate weights and odd
values of k can be used to synthesize (b) a Fourier series approximation of a square
wave, with x corresponding to the experimental parameter ∆θ.

observing quantum correlations. We denote a photon with OAM `~ as the state

|`〉, conveniently described by the Laguerre-Gaussian family of modes LG`,p .

The radial index p is here set to 0. We considered photon pairs generated via

spontaneous parametric down-conversion (SPDC). As OAM is conserved in the

process of SPDC [172], the general generated two-photon state |ψ〉 in the OAM

basis is

|ψ〉 =
∞∑

`=−∞
c` |`〉A |−`〉B . (6.4)

The quantity |c`|2 corresponds to the probability that the photon in arm A is in

the state |`〉A and the photon in arm B in |−`〉B . Bell tests on OAM-entangled

photons have been implemented via the measurement of equal-amplitude,

coherent superpositions of opposite-valued OAM modes exhibiting |`|-fold

symmetry, described by the state

|α`(θ)〉 = 1p
2

(
e i`θ |`〉+e−i`θ |−`〉

)
. (6.5)

The state |α`(θ)〉 corresponds to a 2|`|-sector state, oriented at an angle θ and

characterized by 2 |`| sectors of alternating 0 and π phase.

If sector states are probed in a Bell-type experiment, the resulting coinci-

dence curve is a sinusoidal function of the relative orientations of the sector
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state analysers, with a period of 2π/ |`| [162]. The convenience of the direct rela-

tionship between ` and the period of the coincidence curves can be exploited, in

light of the Fourier decomposition, for the synthesis of any arbitrary two-photon

correlation curve by an appropriate weighting of sinusoidal curves of varying

frequencies. We focus here on the case of a square wave-like coincidence curve,

because, after post-selection, this gives the algebraic maximum value of S = 4,

just as in the example presented by Popescu and Rohrlich [212].

Any function g (x) with period T and frequency ω0 can be expressed as a

Fourier series [116]:

g (x) =
∞∑

k=−∞
fk e iω0kx , (6.6)

where the coefficients fk are given by

fk = 1

π

∫ T /2

−T /2
g (x)e−iω0kxd x. (6.7)

The exponential form of the Fourier series was chosen to highlight the similarity

between a general superposition of sector states in (6.5) and the general Fourier

decomposition of function g (x).

For the square wave in fig. 6.2b (dashed line), ω0 = 2 and coefficients fk are

non-zero only for the odd values of k. We therefore considered the superposition

of four odd sector states,

|φ(θ)〉 =∑
`

b` |α`(θ)〉 , (6.8)

where {`} = {1,3,5,7}, θ is the azimuthal angle and b` are complex coefficients

b1 ' 0.778, b3 ' 0.467, b5 ' 0.389i and b7 ' 0.155, found by experimental opti-

mization. A π/2 rotation of the analyser for |φ(θ)〉 allows the measurement of

|φ(θ+π/2)〉, which is orthogonal to |φ(θ)〉. For brevity, we will refer to these as

|φ⊥〉 and |φ〉, respectively.

Photon pairs were produced by pumping a 3mm-thick β-barium borate

(BBO) crystal cut for type-I collinear SPDC with a 355nm Gaussian beam to

produce entangled photon pairs at 710nm (fig. 2.5). Signal and idler photons
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Figure 6.3: (a) Sample coincidence curves as a function of θB from our experiment
(black and red dots) for two values of θA (0 and 3π/4 respectively), and fit from theory
(black and red lines). A square coincidence curve is also shown for reference (dashed
grey line). (b) We achieved a Bell parameter S above the Tsirelson bound, using the
normalization in (6.3). Our experimental values agree very well with theory (grey line),
which predicts almost perfect Popescu-Rohrlich correlations with post-selection.

were separated by a beam splitter (BS) and directed to spatial light modulators

(SLMs), which allowed us to measure any arbitrary superposition of OAM modes

[83]. The appropriate phase and amplitude modulation for state (6.8) was en-

coded on the SLMs for both arms. The SLMs, used here as our analysers, were

placed in the image plane of the output face of the crystal. The output of the two

single-photon detectors were connected to a coincidence counting circuit, used

to monitor the coincidences as a function of the modes displayed on each SLM.

The accidental coincidences, typically ' 5% of the total counts, were subtracted

from the recorded counts (eq. (3.24)).

Fig. 6.3a shows the coincidences counts as a function of the orientations θB

of the analyser in arm B , for two orientations θA = 0 and 3π/4 of the analyser in

arm A [227]. By normalizing with respect to the maximum values, we fitted our

experimental coincidence curves with the expected coincidences as a function

of the relative orientation ∆θ = θA −θB (right scale in fig. 6.3a, solid lines). This

is given by

Cth(∆θ) = ∣∣
A〈φ(θ)|B 〈φ(θ+∆θ)|ψ〉∣∣2 , (6.9)

assuming an ideal OAM spectrum where all the |`〉A |−`〉B states are equally
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weighted. In contrast to usual Bell-type experiments, the coincidence curve is

not sinusoidal. Instead, as intended, it appears to be close to a square wave

(fig. 6.3a, dashed line). Measurements were not performed with the equivalent

of a polarising beam splitter for our OAM states, which would distinguish be-

tween |φ〉 and |φ⊥〉. With only one detector in each arm, in order to apply the

normalization (6.3) we had to measure |φ〉 and |φ⊥〉 sequentially instead, as

previously done in [162, 189]. With this normalisation procedure, we calculated

the correlations and obtained the value of S as a function of ∆θ, showing good

agreement with theory (fig. 6.3b). We obtained values of S above the Tsirelson

bound for a range of∆θ, with the maximum being S = 3.99±0.02, thus achieving

almost perfect Popescu-Rohrlich correlation.

It should be noted that the two-photon state |ψ〉 contains all other ` values.

However, because of the orthogonality of the OAM modes, the measurements

performed were only sensitive to ` = {±1,±3,±5,±7}. With the pump being

Gaussian and the OAM spectrum centred on `= 0, the values of |c`|2 decrease as

` increases. As we are dealing with low OAM values, however, this fact does not

significantly skew the experimental results, as can be seen in the comparison

with the theoretical curves calculated from an ideal OAM spectrum in fig. 6.3.

Caution is therefore needed when interpreting results of Bell-type tests per-

formed in a state space embedded in a higher-dimensional space, such as is

the case with OAM. As in the experiment here presented, super-quantum cor-

relations can be observed even in the case of otherwise perfect fair sampling.

Bell tests are currently used to verify the security of quantum communication

and cryptography systems; guaranteeing their reliability in the face of subtler

loopholes is therefore of paramount importance, especially with the advent of

device-independent quantum protocols.

6.3 Sampling high-dimensional state spaces

If the measurement states are known, it is possible to verify whether the choice of

measurement states satisfies fair sampling, thus avoiding the detection loophole

associated with subspaces of high-dimensional state spaces. However, if the
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Figure 6.4: (a) Theoretical coincidence probability for our measurement settings (red
line) as a function of ∆θ is less than that of the polarization case (black line). (b) Using
the correct normalization, the maximum value of S should have been 1.79 (red line), in
contrast to 2

p
2 and 3.99 for the wrong normalization (dashed red line).

experiment can be modelled as a black box and one is only presented with the re-

sulting coincidence curve and corresponding values for S, as in fig. 6.3, they may

wrongly conclude that it is a legitimate Bell experiment and the Tsirelson bound

was violated. We performed a two-setting, two-outcome experiment, which cor-

responds to the original experiment necessary to test a Bell inequality (fig. 6.1a).

As previously mentioned, the normalization (6.3) implies a dimensionality d = 2

for each of the two subsystems. Placing a bound on d from the measurement

statistics is possible in a device-independent manner by implementing dimen-

sion witnesses [62]. This requires testing Bell inequalities formulated for higher

dimensions, such as the Collin-Gisin-Linden-Massar-Popescu (CGLMP) inequal-

ity [79], which has been violated in [81].

Another way of assessing the effective dimensionality of the system is to

calculate the inverse of the area under the peak-normalized coincidence curve

[216, 191], as shown in chap. 4. Using this method for the coincidence curves in

fig. 6.3, resulting from sector-state measurements, one obtains d = 2.21. Unlike

the results of [191], which show parabolic coincidence fringes that immediately

hint at the high-dimensional nature of the measurements space, the dimension-

ality here recorded is not far from the assumption d = 2 of eq. (6.3). It should be

noted that d = 2.21 may not necessarily be the correct dimensionality, because

of the peak-normalization involved: normalizing with respect to the maximum
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recorded coincidence rate may be unjustified, when fair sampling is not satis-

fied. In order to realize that d = 2.21 may not involve the correct normalization,

however, one has to recognize that the fair-sampling conditions are not satisfied

in the first place.

A general CHSH-Bell experiment involves projecting onto a state
∣∣β〉〈

β
∣∣ and

the orthogonal state
∣∣β⊥〉〈

β⊥∣∣. The part of the Hilbert space sampled by these

measurements is given by

Ĥ = ∣∣β〉〈
β
∣∣+ ∣∣β⊥〉〈

β⊥∣∣ . (6.10)

This should be independent of the orientation of the analysers, in order for it

to satisfy fair sampling [81]. For a two-dimensional Hilbert space, Ĥ spans the

whole state space, as the sum in eq. (6.10) corresponds to the identity operator I.

For example, we can consider the case of |α`(θ)〉, defined previously in eq. (6.5)

and used in [162], to violate a Bell inequality. The state orthogonal to |α`(θ)〉 is∣∣α⊥`(θ)
〉= |α`(θ+π/2`)〉. One can check that, in fact,

Ĥα = |α`(θ)〉〈α`(θ)|+ ∣∣α⊥
` (θ)

〉〈
α⊥
` (θ)

∣∣= |`〉〈`|+ |−`〉〈−`| = I, (6.11)

which is independent of θ.

Calculating Ĥφ = |φ〉〈φ|+ |φ⊥〉〈φ⊥| for our settings, as a function of orienta-

tion θ, results in an 8×8 matrix with non-zero off-diagonal elements because

the values of ` do not always sum to zero. Looking at the top-left corner of the

matrix, one has:

Ĥφ =


b7b∗

7 0 b7b∗
3 e−i 4θ · · ·

0 b5b∗
5 0 · · ·

b3b∗
7 e i 4θ 0 b3b∗

3 · · ·
...

...
...

. . .

 (6.12)

which shows a dependence on the angle θ. As we rotate our analysers, Ĥφ

changes and we are sampling a different portion of the Hilbert space. Conse-

quently, fair sampling is not satisfied, regardless of light collection and detection

efficiencies. Even if a scheme equivalent to that of of fig. 6.1b was used, which
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would imply the use of a perfect sorter for the two orthogonal states and per-

fectly efficient detectors, one would still not satisfy fair sampling because of our

choice of measurement states.

The theoretical coincidence probability of our experiment (assuming an

ideal OAM spectrum) is compared in fig. 6.4a to that of a Bell-type experiment

for polarization, without renormalization. These curves could be derived experi-

mentally if the the pair emission rate of the source was known. The discrepancy

between the maximum probability recorded in our experiment (0.24) and that

of the polarization case (0.5) highlights the inherent loss due to the choice of

OAM measurement settings and the fact that they are not phase-conjugates of

each other, as in [162, 229]. Had the analysers been phase-conjugates of each

other, the maximum probability would also have been 0.5; the shape of the

coincidence curve, however, would not have been a non-physical square wave.

If we follow the prescription of CHSH and use the correlation function defined

in (6.1) to calculate the Bell parameter, we obtain the curves in fig. 6.4b. This

gives a maximum violation for our settings of S = 1.79, in contrast to S = 3.99,

obtained previously by incorrectly normalizing the count rates.

The choice of measurement states and imperfect detector efficiency intro-

duce different losses. The latter can be accounted for without violating fair

sampling, as it is in general independent of the measurement setting (e.g. the

orientation of the analysers in the two-dimensional polarization case) [44]. This

is not true, however, for our analysers, which act in a higher-dimensional state

space: a physical rotation of the analysers does not correspond to a rotation

in a given plane of the Bloch sphere spanned by states |ψ〉 and |ψ⊥〉. This in-

troduces an orientation-dependent post-selection, which is not immediately

obvious. Moreover, our tailored coincidence curves are possible only because

the two-photon OAM state space of |ψ〉 is high-dimensional. If |ψ〉 were only

described by a pair of phase-conjugated OAM states, one would get the usual

sinusoidal coincidence curve.

An analogous experiment could be implemented by replacing two-fold de-

tection with a mode sorter and multiple detectors for both Alice and Bob [43]. A

mode sorter arrangement able to separate and detect all the OAM states spanned

by the rotation of the analysers could thus close the fair-sampling loophole here
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presented.

From the point of view of nonlocality, the OAM experiment is a convenient

way of implementing tuneable Popescu-Rohrlich correlations, which can be

viewed as a nonlocal AND gate with the fidelity given by F = (S +4)/8 [249]. We

achieved fidelities as high as 99%, higher than the 90.8% upper bound above

which communication complexity is trivial [249, 56].
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CHAPTER 7

Extending the Hilbert space of
transverse modes using the radial

degree of freedom

So far, the transverse electromagnetic field of light has been described in terms

of modes carrying orbital angular momentum (OAM). The family of Laguerre-

Gaussian (LG) modes with no radial phase discontinuities, in particular, is es-

pecially convenient as it forms a complete orthonormal basis set of solutions

for paraxial light beams and such modes can be experimentally produced and

detected using a variety of methods. The OAM of photons whose states are de-

scribed by LG decompositions can in addition be used in conjunction with other

degrees of freedom, such as polarization or longitudinal momentum [27, 259].

Combining different degrees of freedom provides the opportunity to access

larger Hilbert spaces, without the complications that arise from employing

low-dimensional degrees of freedom (such as polarization) in multi-particle

scenarios.

This chapter includes material previously published in the following papers:

• D. Giovannini, J. Romero and M. Padgett, “Interference of probability amplitudes: a simple
demonstration within the Hong-Ou-Mandel experiment”, J. Opt. 16(3), 032002 (2014)

• E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett and R. W. Boyd,
“Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-
Mandel interference”, Phys. Rev. A 89, 013829 (2014)
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http://dx.doi.org/10.1088/2040-8978/16/3/032002
http://dx.doi.org/10.1103/PhysRevA.89.013829
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The ability to harness additional degrees of freedom adds power and flex-

ibility to quantum algorithms and protocols. One such degree of freedom is

the radial transverse mode of light which, together with the set of azimuthal,

OAM-carrying modes with a single on-axis phase singularity, provides a com-

plete description of the transverse field. Hong-Ou-Mandel (HOM) interference

is a quintessential quantum effect and the basic constituent of many quantum

protocols; the HOM interference between two photons appropriately labelled

with both the azimuthal index ` and the radial index p can be tuned by manipu-

lating their radial transverse modal profiles. This result points to the feasibility

of single-photon utilizations of the radial degree of freedom, and allows us to ex-

tend the dimension of the accessible state space provided by transverse modes,

as well as to achieve greater versatility of existing protocols and significantly

increase the information channel capacity.

7.1 The radial degree of freedom

If one ignores the vectorial characteristic of a paraxial optical field, associated

with its polarization, the transverse structure of the field can be decomposed

into the Laguerre-Gaussian basis, whose eigenstates form a complete basis

of transverse spatial modes in cylindrical coordinates. In general, Laguerre-

Gaussian modes LG`p are labelled by two independent parameters, ` and p,

which correspond to the azimuthal and radial quantum numbers [8, 142]. As

radial modes with the same value of ` are mutually orthogonal, they provide a

complete basis for the corresponding unbounded Hilbert space. Unlike OAM,

however, the symmetry group associated with the radial degree of freedom of an

optical field is a noncompact SU(1,1) Lie group [144]. It has been theoretically

proven and experimentally verified that considering the radial degree of freedom

of an entangled photon pair generated in parametric down-conversion can

greatly increase the entanglement strength and lead to hyperentangled states

involving both OAM and p index [234, 176]. Employing radial modes presents

some difficulties not associated with OAM, the main of which is the fact that the

chosen basis depends on the beam waist; an eigenstate for a specific beam waist
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turns into a superposition of p modes for any other beam waist. In addition, the

accurate generation of a specific LG`p is made challenging by the requirements

of intensity masking, on top of the azimuthal phase dependence introduced by

appropriate forked holograms, to achieve the desired amplitude distribution in

the transverse field.

If one only takes into account the radial profile of the optical field, by as-

suming all other quantum numbers as identical whenever photon pairs are

considered and taking `= 0, the field modes are exclusively labelled by the radial

number p:

|ψ〉 =
∞∑

p=0
cp |p〉, (7.1)

where |p〉 stands for a radial eigenmode of radial number p. The expansion

coefficients cp are normalized to one,
∑∞

p=0

∣∣cp
∣∣2 = 1. Since Laguerre-Gauss

modes are mutually orthogonal, we have 〈p|p ′〉 = δpp ′ .

Some of the properties of physical systems that manifest themselves at the

classical level, such as radial modes, can also be successfully used to label dis-

tinct single-photon states in the quantum regime. This feature of radial modes

can be assessed in the quintessentially quantum context of Hong-Ou-Mandel

interference, where any property that can help distinguish the photons leads to

a positive contribution to the probability of the photons leaving from different

ports of a balanced beam splitter. The quantum nature of radial modes and OAM

is quite different from that of Cartesian modes such as the Hermite-Gauss set,

although both describe transverse modes of optical fields. HOM interference

has been shown for degrees of freedom such as wavelength [128], polarization

[233], Hermite-Gaussian transverse modes [267] and OAM [184, 182]. Conse-

quently, several quantum gates and algorithms, such as the C-NOT gate and

Shor’s algorithm, were proposed or demonstrated with some of the degrees of

freedom just mentioned [74, 247, 151, 104], as well as the measurement of the

associated parametric down-conversion spectra [87]. Moreover, correlations in

radial modes of entangled photon pairs generated in down-conversion [179]

have recently been explored by Löffler and co-workers [234], arousing interest

in the use of this degree of freedom.
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7.2 Interference of probability amplitudes in the Hong-
Ou-Mandel effect

The Hong-Ou-Mandel (HOM) experiment is arguably the simplest and most

elegant multi-particle interference experiment in quantum physics. In the first

HOM experiment [128], each of the degenerate signal and idler photons (s and i

in fig. 7.1a) produced in spontaneous parametric down-conversion (SPDC) was

separately sent to an input of a beam splitter. Detectors at each of the outputs of

the beam splitter then recorded the coincidence rate as a function of the relative

path delay (∆z in fig. 7.1a) between the otherwise indistinguishable signal and

idler photons. The coincidence rate obtained shows a minimum (referred to as a

coincidence ‘dip’) when the optical paths of the signal and idler from the crystal

to the beam splitter are matched to within the coherence length L of the light.

Because the dip disappears as the relative path delay is increased to the point

that it becomes possible to distinguish between the signal and idler photons, it is

natural to think of the dip as arising from the interference between two individ-

ual photons entering the beam splitter. However, as previous works have already

highlighted [128, 156, 209], the interference in the HOM experiment is not the

result of interference between two single photons, but rather the interference

between probability amplitudes that describe the various alternatives that can

lead to a coincidence event. In the simple arrangement of fig. 7.1a, coincidences

are registered when the photons impinging on the beam splitter are either both

reflected or both transmitted. It is not the indistinguishability between the in-

dividual photons that is necessary, but rather, the indistinguishability between

alternatives that lead to the detectors clicking after the photons have passed

through the interferometer.

The interference of probability amplitudes has been demonstrated within the

Hong-Ou-Mandel experiment. In 1996, Pittman and co-workers [209] demon-

strated that any path difference between the photons entering the beam splitter

can actually be compensated for after the beam splitter. The HOM dip in their

experiment then cannot be interpreted as the interference of the two individual

photons because, for the two photons entering the beam splitter, ∆z À L. The

distinguishing information is not limited to path length. In the 1992 ‘quantum
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Figure 7.1: (a) Basic Hong–Ou–Mandel experiment. The signal (s) and idler (i ) photons
from SPDC combine in a beam splitter. When the optical path difference (∆z) between
the photons is zero, the two photons in each pair are detected in the same detector,
leading to a dip in the coincidence counts between the two detectors. (b) Experimental
set-up. Type-I SPDC in a BBO crystal results to signal and idler photons with the same
polarization; the pump residue is blocked by a longpass reflective interference filter
IF1. These photons are separately coupled to single-mode fibres (SMFs), which are
input to a fibre-optic beam splitter (BS). We considered two configurations: (1) The
photons are spectrally filtered by narrow-band bandpass filter IF2 before they combine
in the beam splitter. (2) The spectral filtering is done by IF2 filters placed just before
the detectors, after the photons have combined in the beam splitter. In both cases, the
coincidence count is monitored as the relative path difference (∆z) between the two
photons is varied.

eraser’ experiment by Kwiat and co-workers [156], one of the photons was la-

belled by rotating its polarization so that it was orthogonal to that of the other

photon. Polarizers were then placed right before the detectors, thus showing

that the visibility of the resulting dip depends on the relative orientation of

the polarizers. The polarizers placed before the detectors appear to ‘erase’ the

labelling of the photons after they have exited the beam splitter. Again, this

experiment can only be interpreted in terms of exchange symmetry, with the dip

being a result of the interference of indistinguishable probability amplitudes

rather than indistinguishable photons. HOM-type interference has also been

predicted and experimentally observed with photons that have different spectra

[120, 55, 199, 222, 167].

Our experiments was simpler than the experiments previously mentioned, in

that we do not try to label any of the photons combining in the beam splitter. We
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simply measure the width of the HOM dip for two different narrow-bandwidth

spectral filters [112]. In each case, the filter was placed before the beam splitter

(before the individual photons combine) or after the beam splitter (after the

photons have combined, just before they reach the detectors). For a given filter,

if the HOM effect was truly due to the interference of two photons, as opposed to

the interference of their probability amplitudes prior to detection, the width of

the dip should be unchanged regardless of where the bandwidth filtering takes

place.

The dip in the HOM experiment can be elegantly described as a result of the

destructive interference of the two indistinguishable events that lead to a coinci-

dence, i.e. when the individual photons are both reflected or both transmitted.

If we let r and t be the reflection and transmission coefficients respectively, the

probability of a coincidence count for a balanced beam splitter is given by

PC = |r × r + t × t |2 =
∣∣∣∣( i

2

)2

+
(

1

2

)2∣∣∣∣2

= 0. (7.2)

Indistinguishability between the alternatives leading to a coincidence is

the necessary condition for complete destructive interference. In many cases,

but definitely not always, this means that the photons entering the beam split-

ter should be indistinguishable themselves. The photons in many HOM-type

experiments come from parametric down-conversion. Here, a pump photon

(with frequency ωp ) incident on a nonlinear crystal decays into the signal and

idler photons (with frequencies ωs and ωi , respectively) with a small probability.

Being a parametric process, the total energy of the photons is conserved such

that ωp =ωs +ωi . The fact that the pump is not perfectly monochromatic, and

the phase-matching conditions due to the finite size of the nonlinear crystal,

introduce a spread in the frequencies of the signal and idler photons. Hence, to

ensure indistinguishability, most experiments of this type use nonlinear crys-

tals cut for degenerate SPDC (ωs =ωi ), and identical narrow-band interference

filters centred on the degenerate frequency are introduced to ensure that the

two photons have the same spectra. If we assume that the interference filters

have a Gaussian profile, of standard deviation σ in frequency, the two-photon
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coincidence count NC can be approximated as

Nc ' 1− 2RT

R2 +T 2
exp

[
− (σ∆z)2

2c2

]
, (7.3)

where R = r 2 and T = t 2 (the reflectivity and transmissivity of the beam splitter,

respectively), ∆z is the optical path difference between the two photons and c is

the speed of light [200].

The interference filters can be placed before the beam splitter or after the

beam splitter (e.g. right before the detectors). In the former case, the filters

ensure the indistinguishability of the photons before they combine in the beam

splitter. In the latter case, the filters are placed after the photons have com-

bined in the beam splitter. This second case induces a spectral filtering after

the interference of the two photons has taken place, if the two-photon HOM

interference can indeed be attributed to the interference of the the individual

photons. However, since the HOM dip in the coincidence between the detector

outputs is due to the interference of the probability amplitudes of the outcomes,

the width of the HOM dip with the filters placed before the detectors or before

the beam splitter is expected to be the same.

We used a 3mm long β-barium borate crystal (BBO) cut for type-I degen-

erate, collinear SPDC (fig. 7.1b) producing signal and idler photons having the

same polarization. To minimise background counts, a longpass interference

filter (IF1) blocks the pump beam after the BBO crystal. The 710nm down-

converted photons were focussed by a lens ( f1) onto a knife-edge prism mirror

(PM) aligned such that the signal and idler photons are directed to the facets

of separate polarization-maintaining single-mode fibres. One of the fibres was

mounted on a translation stage that allowed us to match the path lengths of the

signal and idler photons. For ease of alignment, we employed a balanced fibre-

coupled beam splitter, which consists of a 50/50 beam splitter connected to two

polarization-maintaining input single-mode fibres and two output single-mode

fibres. The signal and idler photons entered the beam splitter via the input fibres.

Interference filters (IF2) centred at 710nm were used to select the signal and

idler photons.

We considered two cases. In the first case, a filter (IF2) was placed just before
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Figure 7.2: The Hong-Ou-Mandel dips in the experiment are the same regardless of
where the interference filter is placed. (a) HOM dip for a 2nm filter placed before (blue)
and after (red) the beam splitter. Coincidence counts for each position were recorded
over 4s. Coincidence counts for completely distinguishable photon pairs are 2500s−1,
with average single-channel counts of 70000s−1 and approximately 1000s−1 dark counts.
(b) HOM dip for a 10nm filter placed before (blue) and after (red) the beam splitter.
Coincidence counts for each position were recorded over 2.5s. Coincidence counts
for completely distinguishable photon pairs are 3600s−1 with average single-channel
counts of 163000s−1. The width of the dip is inversely proportional to the bandwidth of
the filter. The shaded regions about the trace denote the uncertainty. The uncertainty in
the relative path difference is set by the stage and it corresponds to 0.055µm.

the mirror, thus making the spectra of the two photons identical before the

photons reach the beam splitter. The fibres at the output ports of the beam

splitter were then fed directly to avalanche photodiodes that served as single-

photon detectors. In the second case, no filter was present before the beam

splitter apart from IF1; instead, each of the fibres at the output port of the beam

splitter was connected to a short free-space fibre coupler which held one of an

idential pair of interference filters (IF2). The output of each fibre coupler was

then sent to a single-photon detector. The outputs of the detectors were in both

cases sent to a coincidence circuit, which allowed to monitor the coincidences

as the position of the translation stage was scanned.

Given the different efficiencies of the two configurations, each set of coinci-

dence counts was normalized with respect to the constant coincidence count

observed for ∆z À L. Fig. 7.2 shows the normalized coincidences as a function
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Figure 7.3: Hong-Ou-Mandel dips for filters with different bandwidths placed before
and after the beam splitter. The width of the HOM dip when a 10nm filter is placed
before and a 2nm filter is placed after the BS (red) is wider than the HOM dip that results
from having just a 10nm filter before the BS (blue). The FWHM for the former case
is 146.0µm, closer to the FWHM of an HOM dip resulting from a 2nm filter (fig. 7.2b).
The shaded regions denote the uncertainty. The Gaussian curves shown come from
least-squares fits.

of the relative path difference ∆z of the signal and idler photons, for two band-

pass filters with different widths. Fig. 7.2a shows the coincidences for a 2nm

filter placed before (blue) and after (red) the beam splitter. Fig. 7.2b shows the

coincidences for analogous placements of a 10nm filter. As expected, we found

a minimum in the coincidences for ∆z = 0. The results show that, regardless of

the position of the filter with respect to the beam splitter, the shape and width of

the HOM dip remains the same. The full width at half maximum (FWHM) of the

dip for a 2nm filter placed before or after the beam splitter is 141.5±1.2µm and

142.2±0.8µm respectively. As evident from eq. (7.3), the width of the HOM dip

is inversely proportional to the width of the interference filter. A narrower dip

is therefore expected for the 10nm filter. The FWHM for a 10nm filter placed

before and after the beam splitter is 41.7±0.5µm and 46.6±0.6µm respectively.

These values were calculated from a least-squares Gaussian fit of the data in

fig. 7.2. The actual shape of the HOM dip can be fully described by considering

the spectrum of the two-photon state, to which the dip shape is related by a

Fourier transform. The spectrum of the photon pair is here determined by the

bandpass filters inserted in the system. Were the bandpass filters ideal, with a
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perfectly rectangular frequency response, the dip would then assume the shape

sin(∆z)/∆z. For the filters used in the experiment, however, a Gaussian curve

provides an excellent approximation. Because the HOM interference arises from

an interference of probability amplitudes, rather than from the interference

of individual photon pairs at the beam splitter, the width of the HOM dip is

expected to be the same regardless of the position of the interference filters, as

supported by the experimental results.

We also considered the case where the filters placed before and after the

beam splitter have the same central wavelength but different bandwidths. A

10nm filter was placed before the beam splitter and 2nm filters after. The result

is shown in fig. 7.3. We compared the resulting HOM dip from this case (red) to

the earlier result that employed just a 10nm filter before the beam splitter (blue).

If the interference were due to the individual photons that have passed through

the 10nm bandwidth filters before reaching the beam splitter, one would expect

the width of the resulting HOM dip (red) to be unaffected by the 2nm filter. The

width of the dip will be the same as that of the blue curve, but with reduced

coincidences due to the presence of the the 2nm filters, which limit the number

of photons that reach the detectors. This is not what one can observe in the

experiment: the red curve is wider, with a FWHM of 146.0±3.0µm, similar to

the FWHM of the HOM dip when only the 2nm filter was present. The 2nm

filter placed after the beamsplitter seems to ‘retroactively’ alter the width of the

coincidence dip, after the individual photons have interfered, if one subscribes

to the most simplistic interpretation of the phenomenon.

This result highlights how the interference resulting to the HOM dip is not

simply an interference of the input photons. The fact that the width of the

dip appears to be affected by the 2nm filters placed just before the detectors

supports the notion that it is the interference of the probability of the outcomes

that leads to the HOM dip. The width and shape of the HOM dip are determined

by the filter with the narrowest bandwidth, regardless of where that filter is

placed.
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7.3 Exploring the quantum nature of the radial degree
of freedom

In order to study the properties of radial modes in a single-photon context

and show their potential for quantum applications, we employed Hong-Ou-

Mandel interference. An experiment was carried out in the laboratories of the

University of Ottawa, in collaboration with Robert Boyd’s research group [143].

In the experiment, we prepared photons pairs in a down-conversion process.

A frequency-tripled quasi-CW mode-locked Nd-YAG laser (repetition rate of

100MHz and average output power of 150mW at 355nm) was used to pump

a 3mm thick nonlinear BBO crystal cut for type-I phase matching in a near-

collinear regime to generate identical photon pairs with degenerate frequency of

λ= 710nm. The signal and idler photons so generated were each coupled into

one of two identical single-mode optical fibres, which selected the fundamental

transverse spatial mode. The fibres were then directed to the main part of the

experimental set-up, where the HOM interference was tested (fig. 7.4).

After the fibres, any spatial entanglement between the two photons was

erased but the photons remain synchronized in time. The radial modes of signal

and idler, initially a Gaussian mode with waist w0 = 954µm, were reshaped by

computer-generated holograms of 1920×1080 pixels displayed on two Holoeye

Pluto spatial light modulators. An overall quantum efficiency of 20% with a

coincidence rate of 37kHz was obtained by splitting the photon pairs with a

knife-edge prism mirror (PM) prior to the coupling into the SMFs. The polariza-

tion shift of signal and idler induced by the fibre propagation was compensated

for by a combination of quarter-wave and half-wave plates, also used to rotate

the polarization of the incoming photons to match the working polarization of

the SLMs, i.e. the polarization that provides the maximum diffraction efficiency.

The desired modes generated at the first order of diffraction of the blazed

holograms shown on the SLMs were then sent into a balanced nonpolarizing

beam splitter (BS1). Its output were coupled to low-mode optical fibres (MMFs)

with a core size of 10µm, after being spectrally filtered by an interference filter

with bandwidth 10nm. Photon pairs were detected by two silicon avalanche

photodiodes, connected to a data acquisition card that recorded photon counts
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Figure 7.4: The photon pairs generated via spontaneous parametric down-conversion
are made indistinguishable in all internal degrees of freedom by being coupled to SMFs,
where only the Gaussian transverse mode is selected. They are then sent to the main
apparatus in order to demonstrate the HOM interference. A quarter-wave (QWP) and
half-wave (HWP) plates are used to compensate and rotate the polarization state of
both signal and idler photons to horizontal (suitable to obtain a maximum efficiency
at the spatial light modulators). Appropriate kinoforms are displayed on both spatial
light modulators, SLM1 and SLM2, to manipulate the radial DOF of the two photons and
to render them completely indistinguishable, partially distinguishable or completely
distinguishable. The insets near the SLMs show two possible types of holographic
kinoforms. The two photons interfere on a 50:50 symmetric nonpolarizing beam splitter
(BS). Then, they are collected by low-mode optical fibres coupled to single-photon
counting modules (D A and DB ), and detected in coincidence. In order to check the
HOM coalescence enhancement, an additional non-polarizing BS is inserted in arm B,
and the coincidence counts are read between detectors DB and DB ′ .

and coincidences between the signal and idler detectors with a detection window

of 25ns. A tunable free-space delay line, controlled by a computer-controlled

movable stage with a step size of 1µm, was used to synchronize the arrival time

of the photons at the beam splitter and thus tune the temporal distinguishability.

Two tests of indistinguishability were performed. The first involved the

traditional visibility measurements of HOM interference, and the second what

we termed coalescence enhancement, an additional that is performed to verify

the quality of the interference. While two completely distinguishable photons do

not coalesce at a balanced BS and one-fourth of the times leave the BS together

from a specific port, in a configuration including a second beam splitter BS2

(right-hand side of fig. 7.4) two indistinguishable photons leave this BS from
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the same port together half of the times. Therefore, the coincidence counts

recorded by DB and DB ′ after the photons pass through the second BS will

double. In general, the enhancement C satisfies 1 ≤C ≤ 2 and is a function of

the distinguishability of the photons.

As a first step, the two MMFs were replaced with single-mode fibres and a

standard HOM dip between two Gaussian photons was observed with a visibility

of 0.987. With MMFs, due to non-perfect mode post-selection, a visibility of

0.725 was achieved within the same set-up. The visibility value was improved to

0.800 by setting up apertures at the far field of the MMFs, that is at the planes of

the SLMs, in order to emphasise how the indistinguishability can be recovered

by spatial filtering. Nonetheless, the coalescence enhancement was sufficiently

close to the maximum theoretical value, and as such it provides an indistin-

guishability test less affected by dark counts and experimental imperfections.

The combinations of wave plates and SLMs manipulate the signal and idler

photons and their transverse modes so that they become effectively indistin-

guishable in all degrees of freedom except for the radial one, which we can

adjust to be identical, partially different or completely orthogonal. As previously

mentioned, the radial states of each of the two photons, in general, are

|ψs〉 =
∞∑

p=0
c s

p |p〉 (7.4a)

|ψi 〉 =
∞∑

p=0
c i

p |p〉 (7.4b)

respectively, where c s
p and c i

p coefficients determine the distinguishability of

the photons. The two states are taken to be completely factorable after the

spatial filtering that takes place in the input single-mode fibres. They are indis-

tinguishable if the overlap of the two satisfies 〈ψs |ψi 〉 = 1 and, conversely, they

are entirely distinguishable if 〈ψs |ψi 〉 = 0. Partial distinguishability is expected

for a partial overlap between the two states. For instance, a state with only the

p = 0 component (a Gaussian state) is orthogonal to any superposition that has

no p = 0 component.



136 CHAPTER 7

0 40 80 120-40-80-120
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Displacement HΜmL

N
o
rm

al
iz

ed
co

in
ci

d
en

ce
co

u
n
ts

1.414 w0

0.588 w0

0.588 w0

(a)

0 40 80 120-40-80-120
0.0

0.5

1.0

1.5

2.0

Displacement HΜmL

N
o
rm

al
iz

ed
co

in
ci

d
en

ce
co

u
n
ts

(b)

Figure 7.5: (a) Experimental data of the Hong-Ou-Mandel interference in the radial
degree of freedom (coincidence detection with D A and DB ). The HOM dip shows in-
distinguishability between the two photons; the flat data (grey) corresponds to two
completely distinguishable radial states, while the other two curves correspond to par-
tially distinguishable and completely indistinguishable radial states. The visibilities of
the dips are V = 0.014±0.027, 0.465±0.030 and 0.646±0.026 respectively. The inset
shows the radius of each holographic kinoform displayed on the SLM which deter-
mined the value of the distinguishability. (b) Experimental data of the Hong-Ou-Mandel
coalescence enhancement (coincidence detection with DB and DB ′). The enhance-
ment increases for photons indistinguishable in the radial degree of freedom. The
enhancements due to coalescence are C = 1.113±0.093, 1.590±0.060 and 1.907±0.047
respectively. The error bars correspond to one standard deviation and were calculated
from a Poisson distribution. Coincidence counts were recorded over 100s in both cases.
Solid curves are the best theoretical Gaussian fits. Note that the normalization factors
for (a) and (b) are different.

Generating a beam in a specific radial mode, or superposition of radial

modes, with efficient phase-only SLMs requires intensity masking. The intensity

mask only employs part of the SLM surface, in order to diffract the excess power

across the desired mode into the first order. While this allows a versatile and

flexible use of the SLMs for the control of the full transverse field, the count rates

decrease linearly with the extent of the surface undergoing intensity masking,

thus affecting the coincidence count rate quadratically. In order to improve on

the hologram encoding used to far, in the first part of the experiment a different

type of holographic phase-only kinoform that uses the whole SLM surface was

introduced. As a consequence, the coincidence rate was kept constant during
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ρ0 |c0|2 Theoretical C Experimental C

0.000 1.000 C = 2.00 C = 1.973±0.051
0.353 0.310 C = 1.69 C = 1.590±0.060
0.588 0.000 C = 1.00 C = 1.113±0.093
1.414 0.928 C = 1.92 C = 1.907±0.047

Table 7.1: Theoretical value of expansion coefficients c0, and theoretical and experi-
mental HOM enhancements for various values of the circle radius ρ0.

all experimental tests. The kinoforms contain a blazed grating with a centred

disk of radius ρ0, which introduces a π phase shift with respect to the remaining

surface. The first-order diffracted mode from a Gaussian beam incident on such

a kinoform is given by

E (ρ) =
√

2

π
e−ρ

2 ×
−1 for ρ < ρ0

+1 for ρ > ρ0.
(7.5)

The beam can then be expanded in the LG basis with fixed `, in this case `= 0:

E (ρ) =∑∞
p=0 cp (ρ0)LGp (ρ), where we omit the azimuthal index. The LGp modes

in the dimensionless coordinate at the pupil are

LGp (ρ) =
√

2

π
e−ρ

2
Lp

(
2ρ2) , (7.6)

where Lp are the Laguerre polynomials of order p.

The expansion coefficients can be calculated by taking

cp (ρ0) = 2π
∫ ∞

0
dρρLG∗

p (ρ)E (ρ) (7.7)

and are given by

cp (ρ0) = 4ρ2
0 1F1

(
p +1, 2, −2ρ2

0

)−δp,0 (7.8)

where 1F1 is a hypergeometric function. The disk radius ρ0 can be adjusted

such that the Gaussian component of the diffracted beam is entirely suppressed,

which happens at ρ0 ' 0.588w0. We made the photon pairs completely distin-
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guishable by displaying a diffraction grating on SLM1 and a kinoform with a π

phase jump at radius ρ0 ' 0.588w0 on SLMB (grey data points in fig. 7.5a). In

this situation, the photon pairs do not interfere, and the coincidence counts are

effectively constant as a function of the trombone displacement, which yields a

visibility of the HOM dip of V = 0.014±0.027. Correspondingly, no coalescence

enhancement was observed between detectors D A and DB , placed after the first

beam splitter (grey data points in fig. 7.5b).

After having labelled the signal and idler quantum states using their radial

modes, we further increased the distinguishability of the two photons by chang-

ing the radial position of theπ step on the SLM toρ0 = 0.353w0 andρ0 = 1.414w0,

and measured corresponding visibilities of V = 0.465±0.030 and 0.646±0.026,

and coalescence enhancements of C = 1.590±0.060 and 1.907±0.047 (fig. 7.5).

Expected theoretical and observed coalescence enhancements and the first-

order expansion coefficient c0 for different values of circle radius are shown in

tab. 7.1.

We then observed the HOM interference between two identical spatial modes

with no Gaussian component. A coalescence enhancement of C = 1.946 was

observed, which shows an excellent indistinguishability between two photons

with identical superpositions of p ≥ 1 modes. This last test was performed using

a large portion of the Hilbert space of the radial degree of freedom. Imperfections

in the system, such as aberrations in the SLMs, alignment, dark count and

thermal drift prevented the minimum of the coincidence dip to reach exactly

zero. The limited sizes of the apertures in the system, mainly the microscope

objectives and the effective limited active areas on the SLMs, also affect the

radial states examined.

The mutual orthogonality of the radial modes associated with indices ps and

pi was examined by implementing intensity-masked holograms in both arms,

in order to generate different radial eigenmodes with very good approximation.

The overall fidelity of the generated states, however, is bounded the the pixel size,

the active area on the SLM and the SLM gamma function modulation (which

mediates the conversion of greyscale pixel data to pixel voltages). Despite these

limitation, a fidelity of about 98% was observed in previous work [82]. In this

case, low-mode optical fibres at the detection stage (D A and DB ) were replaced
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with multimode optical fibres with core size 200µm, which support a wider

range of spatial modes. The observed visibility of the dip obtained for radial

modes from p = 0 to 9 ranged from 62% to 32%. The effects introduced by

the experimental limitations previously listed were made in this case more

prominent by the necessary use of large-core multimode fibres.
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CHAPTER 8

Conclusions

Considerable interest has been shown in the generation and manipulation of

light carrying OAM, for the effective production of high-dimensional entangled

states and quantum information purposes. In this thesis, entanglement in the

unbounded discrete state space of the orbital angular momentum of light was

explored. A series of experiments were performed to study high-dimensional

states produced by parametric down-conversion, entangled in OAM and its

conjugate variable, angular position, which is continuous and periodic. By con-

sidering both variables we were able to produce experimentally a considerable

widening of the spiral bandwidth, defined as the correlation spectrum of ac-

cessible OAM modes produced by down-conversion. A wider spiral bandwidth,

and correspondingly narrower angular correlations, were produced by carefully

tuning the phase-matching conditions of down-conversion and designing a

versatile adaptive-optics detection system able to perform measurements over a

large range of OAM-carrying transverse modes. The observation of both conju-

gate variables allowed us to describe not just the correlation spectrum, but also

characterize the entanglement of the high-dimensional states so produced.

We have shown how the size of the spiral bandwidth can be affected by ap-

propriately tuning the ratio of pump width and detection-mode widths, and

the crystal thickness divided by the Rayleigh range of the pump. An appropri-

ate choice of these parameters, coupled with the convenience of spatial light

modulator-based measurements, allowed us to produce and detect correlations

consistent with a bi-photon state entangled in over thirty OAM modes, as well as

141
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angular position correlations compatible with the Fourier relationship between

angle and OAM. These correlations can also be tailored by manipulating the

pump beam used in down-conversion. We showed how the OAM spectrum of

a pump prepared in a superposition of transverse modes can be transferred to

the down-converted fields; their OAM and angular position correlations were

studied using the same techniques previously introduced.

A different method to determine the dimension of a two-photon state en-

tangled in multiple OAM modes, based on the same experimental techniques,

was also presented. Using complex superpositions of several OAM modes en-

coded in phase-only masks, we were able to effectively determine the effective

detected dimension of the down-conversion state without resorting to a series

of measurements in each of the states of interest. These masks were used to

measure a Schmidt number of about fifty. Similar holograms, prepared for su-

perpositions of full sets of mutually unbiased bases of Laguerre-Gaussian modes

in d-dimensional subspaces of the OAM degree of freedom, were also experi-

mentally implemented. As a full set of mutually unbiased bases provide exactly

the minimum number of measurements needed to fully reconstruct a quantum

state, we applied our measurements to the efficient tomographic reconstruction

of the state produced by our down-conversion source. An analogous experimen-

tal configuration in which measurements in the same mutually unbiased bases

were implemented was used to realize a proof-of-principle high-dimensional

QKD system. A security assessment and experimental implementations for full

mutually unbiased single-photon bases from d = 2 to 5 were presented.

The ability to generate and measure photons with complicated transverse

structures therefore makes the spatial modes of a photon an appealing resource

for quantum information processing and various quantum protocols. However,

new loopholes previously not fully recognized accompany the use of state spaces

embedded in a higher-dimensional space. A subtle form of fair-sampling loop-

hole has to be accounted for when performing Bell-type tests using OAM. We

outlined the importance of this consideration as device-independent quantum

protocols become available and new attack strategies have to be considered in

the context of QKD.

The techniques, theoretical treatments, experiments and results here pre-



CHAPTER 8 143

sented can represent the groundwork for future experiments exploring bipartite

high-dimensional entanglement and the foundations of quantum mechanics,

as well as applications in quantum information and technology. We have shown

how the OAM of light can be conveniently combined with its radial degree of

freedom, and how both can be manipulated within the same experimental ap-

paratus. Each stage of the experiments described throughout this thesis have

the potential to be used in different systems where manipulation and detec-

tion of OAM are required, including prospective generalizations to multi-partite

high-dimensional photonic states. The various theoretical and experimental

aspects of OAM provide a valuable experimental resource and an ever surprising

outlook on old and new fundamental problems in optics, electromagnetism and

quantum mechanics. We hope that the work here presented will be a useful

reference for others to learn more about the foundations of quantum mechan-

ics, but also to take advantage of the quantum nature of light and bring about

groundbreaking advances in information and communication technology.
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APPENDIX A

Mutually unbiased vectors

For each vector vmi , m indicates the basis among the d+1 available in dimension

d and i the vector within the basis. Each vector provides the corresponding set

of complex coefficients for the superposition of the basis modes of choice.

A.1 Coefficients for d = 2

m i c1 c2

1
1 1 0

2 0 1

2
1 1/

p
2 1/

p
2

2 1/
p

2 −1/
p

2

3
1 1/

p
2 i/

p
2

2 1/
p

2 −i/
p

2

A.2 Coefficients for d = 3

m i c1 c2 c3
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1

1 1 0 0

2 0 1 0

3 0 0 1

2

1 1/
p

3 1/
p

3 1/
p

3

2 1/
p

3 e2iπ/3/
p

3 e−2iπ/3/
p

3

3 1/
p

3 e−2iπ/3/
p

3 e2iπ/3/
p

3

3

1 1/
p

3 e2iπ/3/
p

3 e2iπ/3/
p

3

2 1/
p

3 e−2iπ/3/
p

3 1/
p

3

3 1/
p

3 1/
p

3 e−2iπ/3/
p

3

4

1 1/
p

3 e−2iπ/3/
p

3 e−2iπ/3/
p

3

2 1/
p

3 1/
p

3 e2iπ/3/
p

3

3 1/
p

3 e2iπ/3/
p

3 1/
p

3

A.3 Coefficients for d = 4

m i c1 c2 c3 c4

1

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

2

1 1/2 1/2 1/2 1/2

2 1/2 1/2 −1/2 −1/2

3 1/2 −1/2 −1/2 1/2

4 1/2 −1/2 1/2 −1/2

3

1 1/2 1/2 −i/2 i/2

2 1/2 1/2 i/2 −i/2

3 1/2 −1/2 i/2 i/2

4 1/2 −1/2 −i/2 −i/2

4

1 1/2 i/2 −1/2 i/2
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2 1/2 −i/2 −1/2 −i/2

3 1/2 i/2 1/2 −i/2

4 1/2 −i/2 1/2 i/2

5

1 1/2 i/2 i/2 −1/2

2 1/2 −i/2 −i/2 −1/2

3 1/2 i/2 −i/2 1/2

4 1/2 −i/2 i/2 1/2

A.4 Coefficients for d = 5

m i c1 c2 c3 c4 c5

1

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

2

1 1/
p

5 1/
p

5 1/
p

5 1/
p

5 1/
p

5
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p

5 e2iπ/5/
p
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p
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p
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p

5
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p
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p
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p
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p
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p
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p

5 e−2iπ/5/
p
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p
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p
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List of abbreviations

BBO β-barium borate

BS beam splitter

CGH computer-generated hologram

CHSH Clauser-Horne-Shimony-Holt (inequality)

EPR Einstein-Podolsky-Rosen

HG Hermite-Gauss mode

HOM Hong-Ou-Mandel (interference)

HWP half-wave plate

LG Laguerre-Gauss modes

LHV local hidden variable (theories)

MMF multi-mode optical fibre

MUB mutually unbiased bases

OAM orbital angular momentum

PBS polarizing beam splitter
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QST quantum state tomography

QWP quarter-wave plate

SMF single-mode optical fibre

SPDC spontaneous parametric down-conversion

TEM transverse electromagnetic mode

UV ultraviolet

WP wave plate
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