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Abstract 

Malaria, caused by the Apicomplexan parasite Plasmodium is a deadly disease 

which poses a huge health and economic burden over many populations in the 

world, mostly in sub-Saharan Africa and Asia. To design new intervention 

strategies and to improve upon existing drugs against malaria, it is important to 

understand the biochemistry of the Plasmodium parasite and its interaction with 

the host. 

We used metabolomics to dissect the biology of the reticulocyte preferring 

rodent malaria parasite Plasmodium berghei and showed that metabolic reserves 

in the reticulocytes can aid in survival of malaria parasites when their 

metabolism is genetically or chemically disrupted, pointing towards a direct role 

of host cell metabolism in parasite survival. These results have implications for 

currently used ways of intermediation in malaria infections which target only 

parasite metabolism against the human malaria parasites, Plasmodium vivax 

which prefers to infect reticulocytes and Plasmodium falciparum which is 

capable of infecting all erythrocytes.   

We also used metabolomics to show the biochemical differences between the 

asexual and sexual stages of P. berghei parasites and our data gave additional 

insights into the preparatory phase of the gametocyte stage at the metabolic 

level with the discovery of a phosphagen system which plays a role in 

gametogenesis. Targeted metabolomics of P. berghei life stages using isotopic 

labelling showed that TCA cycle metabolism is predominant in the mosquito 

stages. Discovery of a reductive arm of TCA metabolism in reticulocytes pointed 

towards the existence of rudimentary mitochondria in young erythrocytes.  

Another surprising discovery was the presence of up regulated γ-Aminobutyric 

acid (GABA) metabolism in the ookinete stage in P. berghei which may act as an 

energy source during the ookinete to oocyst transition in the mosquito. This 

pathway presented novel candidates for transmission blocking. 
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1 Introduction  

1.1 Malaria 

The Plasmodium falciparum parasite which causes malaria is a major killer in 

sub Saharan Africa and South East Asia. The World Health Organization (WHO) 

estimates that about 3.3 billion people (half of the world's population) are at 

risk of malaria (Figure 1-1).  

 

Figure 1-1 Global distribution of malaria and percentage population at risk (Mapper 2013, 

WHO 2013).  

According to the 2013 WHO World Malaria Report (WHO 2013), in 2012, there 

were around 207 million reported cases of malaria and it accounted for almost 

627,000 deaths. 90% of these deaths occurred in the WHO African region, mostly 

among young children under 5 years old (Figure 1-2). 

 

Figure 1-2 Distribution of reported malaria in patient deaths (Mapper 2013, WHO 2013) 
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However, the WHO relies on passive national reporting of malaria cases by 

governments and the number of cases could be up to 50% more than reported in 

Africa and up to 200% more in areas outside Africa  (Snow, Guerra et al. 2005) 

and it is possible that we are underestimating the impact of malaria on the 

world population. Widespread resistance to drugs against malaria (Travassos and 

Laufer 2009) adds to the problem and there is an urgent need for vaccine 

development to ease the burden malaria imposes.  

Plasmodium spp. parasites have a complex lifecycle (Figure 1-3) involving a 

mosquito vector and a mammalian host. Sexual development of the parasite 

takes place in the midgut of a female Anopheles mosquito where male and 

female gamete fusion leads to zygote formation, meiosis, ookinete development 

and subsequent oocyst and infective sporozoite formation which are transferred 

to a mammalian host with an Anopheline bite. It is the asexual development of 

parasites in the host, starting from an extra-erythrocytic cycle in the liver and 

then an erythrocytic invasion cycle that causes pathology. 

 

Figure 1-3 Life cycle of malaria parasite (Pain and Hertz-Fowler 2009) 

P. falciparum is the most deadly species, although Plasmodium vivax is now well 

recognized as an important contributor to the economic toll of malaria (Reyes-

Sandoval and Bachmann 2013) (Figure 1-4). Plasmodium malariae, Plasmodium 

ovale and Plasmodium knowlesi also account for a number of malaria cases and 

the latter commonly can be lethal.  
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Figure 1-4 Distribution of P. falciparum and P. vivax in the world (Mapper 2013, WHO 2013) 

It is not only important to study Plasmodium parasites because of their medical 

importance; they are also representative of the evolutionarily interesting group 

of protozoa, the Apicomplexans. They get their name from a specialized 

assembly of secretory and structural elements at the apical end called the apical 

complex, consisting of micronemes, rhoptries and dense granules (Baum, 

Gilberger et al. 2008, Gubbels and Duraisingh 2012). Another specialized 

organelle found in Apicomplexans is a rudimentary plastid called the apicoplast 

is a result of secondary endosymbiosis between a parasite ancestor and red algae 

(Fleige, Limenitakis et al. 2010). Having adopted an intracellular lifestyle, and 

being an obligatory mammalian pathogen, the apicomplexan parasite does not 

have the ability for photosynthesis but still the apicoplast is essential for 

parasite survival and harbors a number of important biosynthetic pathways more 

similar to plants and prokaryotes than to animals, which make it all the more 

fascinating (Baumeister, Winterberg et al. 2010). Also, recently it was shown 

that in P. falciparum parasites lacking a functional apicoplast, supplementation 

with isopentenyl pyrophosphate (IPP) rescued the parasites in in vitro cultures 

indicating that non-mevalonate isoprenoid precursor biosynthesis is the main 

function of apicoplast in this species during blood stage growth (Yeh and Derisi 

2011).  The parasite’s life cycle presents itself within two different host-vector 

environments which - has ensured adaptation in the process, including reduced 

metabolic capacity (Kafsack and Llinas 2010), an ability to undergo tremendous 

change in its cellular makeup during and after transmission (Aly, Vaughan et al. 

2009) and the development of strategies to avoid host defense mechanisms 

(Frevert 2004).  
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1.2 Plasmodium berghei as a model  

The study of malaria parasites and their complex interactions with the human 

host and Anopheline vectors has challenged medical research for more than 100 

years. One of the ways technology has evolved to address this problem is the use 

of animal models of malaria which facilitates studying topics such as drug 

resistance and new drug discovery, cytoadehrence, gene expression and 

immunogenicity to vaccine candidates. Animal models provide controlled 

systems for in vivo investigation of host-parasite interactions across the various 

stages of the life-cycle and are an invaluable tool for research. P. berghei is one 

of the four widely studied rodent malaria species (the other three being 

Plasmodium vinckei, Plasmodium chabaudi and  Plasmodium yoelii) which have 

been isolated from Central Africa and are useful malaria models with distinct 

morphological and developmental characteristics  (LMRG Online Resource 

accessed August 2007).The natural mammalian host of these parasites is the 

Thicket Rat (Grammomys surdaster) but they can grow in a number of laboratory 

mouse and rat strains and are transmitted by Anopheline mosquito vectors.  

The most deadly human malaria parasite P. falciparum has a genome of 

approximately 22.9 Mb with 14 chromosomes, a G+C content of approximately 

19% and about 5,369 genes (Gardner, Hall et al. 2002). The other economically 

important human malaria parasite P. vivax has a genome of 28.6 Mb with 14 

chromosomes, 42.3% G+C content and approximately 5,433 genes (Carlton, 

Adams et al. 2008).  P. berghei has an estimated genome size of 18-20 Mb, with 

14 chromosomes in the size range of 0.6 Mb to 3.8 Mb (Hall, Karras et al. 2005) 

with an average protein identity of 62.9%, average nucleotide identity of 70.3% 

and 3,890 orthologous gene pairs with P. falciparum.  (Hall, Karras et al. 2005). 

More up to date and accurate information about the genome of Plasmodium spp. 

is available on PlasmoDB, a functional genomic database for malaria parasites 

(accesible from http://PlasmoDB.org). This database is updated regularly with 

every release and also contains additional information about transcription 

profiles, proteomics and protein function, population biology and field studies of 

malaria parasites (Aurrecoechea, Brestelli et al. 2009). The similarity between 

rodent malaria causing species and important human parasites and easy 

availability of genetic manipulation strategies (de Koning-Ward, Janse et al. 

2000, Janse, Ramesar et al. 2006) make them useful models. Resources such as 

the Malaria Research and Reference Reagent Resource Center (MR4), Rodent 

http://plasmodb.org/
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Malaria genetically modified parasites database (RMgmDB) and the European 

Malaria Reagent Repository which archive useful plasmids and parasite lines with 

disrupted and tagged genes help make it an invaluable tool to study malaria 

under laboratory conditions. 

1.2.1 Pre-erythrocytic development 

The basic details of the life-cycle of Plasmodium spp. are conserved across the 

genus and P. berghei is described here as the model species used as the system 

of study here. A mosquito infected with P. berghei starts the pre-erythrocytic 

phase of the infection in a rodent as the sporozoite stage of the parasite is 

injected into the mammalian host when the mosquito takes the blood meal. In 

experimental conditions, upto 100 sporozoites are injected by a single mosquito 

bite and they are deposited mostly in the extra-cellular matrix of the skin where 

they move by gliding motility and then invade blood or lymphatic vessels 

(Menard, Tavares et al. 2013). The sporozoites enter into the blood circulation 

and reach the liver where they target Kupffer cells and endothelial cells lining 

the liver sinusoidal barrier and eventually invade hepatocytes (Tavares, 

Formaglio et al. 2013). Sporozoites then invade and migrate through multiple 

host cells before invading and settling in a hepatocyte by forming a 

parasitophorous vacuole (Mota, Pradel et al. 2001).  In approximately 47-52 

hours, after multiple rounds of DNA replication which starts around 20h post 

invasion and nuclear division, the sporozoite develops in to a mature schizont 

which is a syncytial cell with up to 1,500-8,000 merozoites (Meis, Verhave et al. 

1985). In P. berghei infected hepatocytes, membrane-bound vesicles devoid of 

host cell nuclei containing parasite merozoites are formed in detached infected 

cells called merosomes bulge into liver sinusoids and act as shuttles to ensure 

delivery of merozoites into blood circulation (Sturm, Amino et al. 2006). Such 

important findings have been results of work done in the animal model of 

malaria, P. berghei which is not possible to do in human malaria parasites and 

this underlines the usefulness of studying animal models of disease.  

In some Plasmodium species which infect monkeys, P. cynomolgi, P. fieldi and P. 

simiovale and two which infect humans, P. vivax and P. ovale, a few 

Plasmodium infected hepatocytes do not develop after reaching the early 

hepatic trophozoite stage and exist in a state of dormancy in which they can 
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persist for many years (Dembele, Gego et al. 2011). These forms are called 

hypnozoites and can cause recurring infections in the mammalian host.  

1.2.2 Asexual blood stages 

P. berghei merozoites, when released from an infected hepatocyte  enter the 

peripheral circulation, invade erythrocytes and show a strong preference for 

young erythrocytes (reticulocytes) (Janse, Boorsma et al. 1989). Inside the 

erythrocyte, the merozoite grows into a trophozoite which devours the 

hemoglobin and other nutrients present inside the host cell and grows in size 

with an increase in cytoplasm. The parasites produce crystals of brown hemozoin 

which are characteristic pigment granules that are concentrated as the 

trophozoite matures which takes about 16 hours post- invasion. A mature 

trophozoite starts replicating its DNA and undergoing nuclear division, thus 

entering the schizont stage which is finished by 24 hours post invasion resulting 

in a syncytium containing 8-24 nuclei. Schizonts usually are not seen in 

peripheral circulation and sequester in the capillaries of inner organs (Franke-

Fayard, Janse et al. 2005). This sequestration in the microvasculature of the 

brain in mammalian host is the main factor of cerebral malaria pathology in 

cases of P. falciparum infections in humans (Idro, Marsh et al. 2010). Models of 

experimental cerebral malaria (ECM) are also available for studies in P. berghei 

which although mechanistically different from P. falciparum  (Ramos, Bullard et 

al. 2013) still provide a system to study the pathology in in vivo conditions 

indicated to be caused by similar sequestration of infected erythrocytes in brain 

(Baptista, Pamplona et al. 2010).  Mature schizonts then rupture and release 

merozoites into the circulation. These invade more erythrocytes and the asexual 

development continues with a cyclic increase in parasitized erythrocytes.   

1.2.3 Gametocytes: the sexual precursor cells 

In each asexual developmental cycle in P. berghei, about 5-20% parasites stop 

asexual multiplication and develop into sexual precursor cells called 

gametocytes which take 26-30 hours to mature (Mons, Janse et al. 1985). 

Merozoites released from infected hepatocytes can also directly form 

gametocytes (Suhrbier, Janse et al. 1987). Gametocyte production is influenced 

by environmental and genetic factors (Janse, Ramesar et al. 1992) and 

gametocytes can be distinguished from mature trophozoites only after 18-22 

hours post-invasion and characterized by a single enlarged nucleus and the 
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presence of pigment granules. A mature gametocyte occupies the complete host 

cell.  

1.2.4 Mosquito stages 

Plasmodium infected erythrocytes are taken up during a blood meal if a 

mosquito bites an infected host and only mature gametocytes undergo further 

development in a mosquito midgut. Gametocytes prepare themselves for a 

relatively hostile environment within the mosquito mid-gut where a drastic 

change in environment (e.g. low temperature, increased pH) and other mosquito 

factors like xanthurenic acid give them cues to form haploid gametes (Billker, 

Lindo et al. 1998). Female gametocytes differentiate into a single, spherical 

macrogamete whereas each male gametocyte undergoes three rapid rounds of 

nuclear division within 8-12 minutes and forms eight microgametes (Janse, Van 

der Klooster et al. 1986). The gametes fuse to form a diploid apolar zygote 

which undergoes meiosis within four hours and after 18-24 hours develops into 

an invasive motile polarized form called ookinete which then traverses the mid-

gut wall of the mosquito and forms an oocyst on the basal lamina which then 

develops to form thousands of sporozoites (Sinden and Billingsley 2001). The 

sporozoites travel to the salivary glands of the mosquito ready for the next cycle 

of infection. 

1.3 Reticulocyte biology 

1.3.1 Reticulocytes vs normocytes 

Reticulocytes are young erythrocytes which are released from bone marrow into 

peripheral blood and undergo a lot of changes as they mature into normocytes in 

circulation. The maturation process has been found to be associated with 

simplification of the cell leading to the loss of a number of organelles such as 

mitochondria, ribosomes, vesicles and lysosomes, acquisition of a biconcave 

shape, increase in shear membrane resistance, change in membrane organisation 

of about 30 membrane proteins and about 20% loss of surface area and decrease 

in membrane cholesterol (Gronowicz, Swift et al. 1984, Liu, Guo et al. 2010). 

1.3.2 Reticulocytes as the preferred host cell type for some 

Plasmodium species 

Invasion of an erythrocyte is a prerequisite for establishment of infection by the 

malaria parasite and a number of parasite and host proteins have been studied 
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which facilitate this process. The most studied parasite proteins hypothesized to 

be involved in the invasion process in P. falciparum are merozoite surface 

proteins (MSPs), P. falciparum erythrocyte binding antigens or PfEBAs (which are 

related to P. vivax duffy binding protein) and PfRHs or P. falciparum 

reticulocyte binding protein (RBP) homologues (which are related to P. vivax 

RBPs) (Tham, Healer et al. 2012) (Harvey, Gilson et al. 2012). These proteins are 

stored in specialized organelles in the apical complex. MSPs are highly variable 

and their main function is adhesion to erythrocytes during the initial contact 

phase while PfEBAs and PfRHs are mobilized to the merozoite surface after the 

initial contact has been made.  The exact mechanism of invasion is not 

completely understood and there is apparently a functional redundancy in 

erythrocyte invasion pathways as these parasite protein families are highly 

diverse (Wright and Rayner 2014). Erythrocyte surface proteins have also been 

studied to understand the interaction between the parasite surface and host 

proteins which facilitate invasion.  P. falciparum merozoites have been shown to 

utilize sialic acid on glycophorins (Maier, Duraisingh et al. 2003, Mayer, Cofie et 

al. 2009) and more recently, basigin (Crosnier, Bustamante et al. 2011) as 

erythrocyte receptors whereas P. vivax, which prefers to invade reticulocytes, 

has been shown to express reticulocyte binding proteins (Galinski, Medina et al. 

1992) and require a host Duffy blood group glycoprotein for invasion (Barnwell, 

Nichols et al. 1989). The Duffy glycoprotein is present on both reticulocytes and 

normocytes and is not the reason for preferential invasion of reticulocytes by P. 

vivax parasites. Moreover, Duffy-negative populations have been shown to be 

susceptible to infection by P. vivax malaria (Mendes, Dias et al. 2011, Carvalho, 

Queiroz et al. 2012). The reason for this preferential invasion of reticulocytes 

could be more complicated than just surface protein interactions and is very 

intriguing. The in vivo model parasite   P. berghei is 150 times more likely to 

invade reticulocytes in the presence of equal numbers of mature erythrocytes 

and reticulocytes (Cromer, Evans et al. 2006) although it can also invade mature 

erythrocytes. 

1.4 Metabolism in Plasmodium and host erythrocytes 

Due to their parasitic and largely intracellular life-style, Plasmodium spp. have a 

comparatively reduced metabolic capacity as compared to higher independent 

organisms. They seem to have completely lost the ability to synthesize purines 

and amino acids de novo (Booden and Hull 1973, Sherman 1977) but have 
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retained many central metabolic pathways like glycolysis (Homewood 1977), the 

citric acid cycle (Macrae, Dixon et al. 2013), lipid synthesis (Holz 1977), the 

pentose phosphate pathway (though they lack transaldolase) (Barrett 1997), 

pyrimidine biosynthesis (Hyde 2007) and glycosylation (Macedo, Schwarz et al. 

2010). As Plasmodium parasites are intracellular, their metabolism is interlinked 

with the host cells and is dependent upon the availability of nutrients from the 

surrounding environment. Mature erythrocytes, which comprise of almost 98% of 

circulating red blood cells and are carriers of oxygen, have been shown to be 

metabolically active but somewhat simpler than the erythroid precursors present 

in the bone marrow (Chen, Liu et al. 2009). The major metabolic pathways in 

mature erythrocytes have been shown to be glycolysis (Chapman, Hennessey et 

al. 1962) and pentose phosphate pathway (Stromme and Eldjarn 1962).  

1.4.1 Glycolysis 

The main pathway for generating energy in Plasmodium parasites has been long 

considered to be glycolysis and although it is not a very efficient process 

(generating only 2 molecules of ATP from one molecule of glucose); the 

practically unlimited supply of glucose in mammalian blood seems to make up 

for the inefficiency of this anaerobic process. Erythrocytes have been shown to 

utilize glucose exclusively for their energy requirements through the glycolytic 

pathway converting glucose to lactate (Chapman, Hennessey et al. 1962). 

Normal erythrocytes internalize glucose mainly using glucose transporter 1 

(GLUT1) (Krishna, Woodrow et al. 2000) and consume glucose at a rate of 1–2 

mmol (1 cell) −1 h−1. In Plasmodium infected erythrocytes, the consumption of 

glucose increases by 50-100 fold as compared to uninfected erythrocytes, while 

most of the glucose still gets converted to lactate (Roth 1990) indicating the 

increased flux in the glycolytic pathway and ability of Plasmodium parasites to 

consume large quantities of glucose. All glycolytic enzymes are encoded by the 

Plasmodium genome and expressed during the intraerythrocytic blood stage 

development (Gardner, Hall et al. 2002) (Bozdech, Llinas et al. 2003).  Recently, 

it has been proposed that with this reliance on unrestricted glycolysis, 

Plasmodium metabolism has evolved to support rapid biomass generation in 

addition to ATP production for fulfilling its energy needs during the proliferative 

asexual phase (Salcedo-Sora, Caamano-Gutierrez et al. 2014). In addition, the 

presence of Plasmodium-induced new permeability pathways (NPP) on the host 
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cell membrane (Kirk, Staines et al. 1999) allow a wide range of low molecular 

weight solutes to enter the infected cell.   

Plasmodium parasites are neither capable of generating storage carbohydrates 

such as glycogen (Dasgupta 1960, Homewood 1977) nor of generating 6-carbon 

sugars like glucose from non-carbohydrate carbon substrates by gluconeogenesis 

as they lack the second last enzyme of gluconeogenesis- fructose-1-6-

biphosphatase (Gardner, Hall et al. 2002). Hence, Plasmodium parasites have 

evolved to survive in the specific, glucose rich anaerobic niche of mammalian 

erythrocytes for most of their proliferative asexual cycle. Although, energy 

requirements in the mosquito stages may also be quite demanding, especially 

during the oocyst stage where a proliferation of sporozoites takes place, it has 

been shown that following a blood meal, the sugar contents of mosquito 

hemolymph increase by 4 fold (Mack, Samuels et al. 1979) and can support the 

growth of Plasmodium parasites. 

1.4.2 TCA cycle 

The other glucose metabolism pathway, the tri-carboxylic acid (TCA) cycle which 

links cytosolic glycolysis to mitochondrial metabolism which is usually utilized by 

aerobic organisms to generate ATP from glycolytic end products, was long 

considered to be inactive in non-nucleated mature erythrocytes (Dajani and 

Orten 1958). The TCA cycle has recently been explored in some detail in 

Plasmodium (Macrae, Dixon et al. 2013) where in asexual stages, glycolysis and 

the TCA cycle pathways were found to be active although with a low flux in 

contrast to the gametocyte stage, where this pathway was found to be more 

active and essential for gametocyte maturation. The absence of a mitochondrial 

pyruvate dehydrogenase in Plasmodium doesn’t seem to stop glycolytic carbon 

skeletons from entering the TCA cycle and it was recently proposed that a 

mitochondrion located branched chain α-keto acid dehydrogenase (BCKDH) 

complex can catalyze the pyruvate (glycolytic end product) to acetyl-CoA (TCA 

cycle intermediate- entry point) conversion (Macrae, Dixon et al. 2013, 

Oppenheim, Creek et al. 2014).  

1.4.3 Electron Transport Chain 

Although the TCA cycle generates 2 additional molecules of ATP after glycolysis 

for each molecule of glucose, it is the Electron Transport chain (ETC) which 

classically generates 34 molecules and is the site of oxidative phosphorylation. 
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Yet, in Plasmodium parasites the ETC is dispensable (Hino, Hirai et al. 2012) in 

asexual blood stages and serves only one metabolic function, that of 

regenerating ubiquinone which is required as an electron acceptor for 

dihydroorotate dehydrogenase (DHODH), a pyrimidine biosynthesis enzyme 

(Painter, Morrisey et al. 2007). This minimalistic utilization of glucose for energy 

generation in a glucose rich environment is representative of an obligatory 

parasitic lifestyle. Parasites deficient in a fully functional ETC are not able to 

complete development in the mosquito stages (Hino, Hirai et al. 2012) and fail 

to transmit, pointing towards a possible switch to oxidative phosphorylation in 

the mosquito vector where seemingly unlimited supply of glucose unlike 

mammalian blood is not present. 

1.4.4 Fatty Acid synthesis 

The malaria parasite has at least three stages in its life-cycle where it undergoes 

asexual mitotic proliferation and produces numerous merozoites (in hepatocytes, 

it produces thousands of merozoites (Meis, Verhave et al. 1985), in asexual 

schizonts, it produces upto 36 merozoites depending on species (Cowman and 

Crabb 2006) and thousands of sporozoites in mature oocysts). The production of 

new daughter parasites requires the generation of copious quantities of 

membrane material, the main component of which are fatty acids. The parasite 

genome encodes all the enzymes which constitute the bacteria like Fatty Acid 

Synthesis type II (FAS II) pathway which are targeted to the apicoplast (Gardner, 

Hall et al. 2002). However, the FASII pathway has been shown to be essential 

only for liver stage development of the parasite and is dispensable in the blood 

stage where it is proposed that fatty acids can be scavenged from the host 

serum and cell (Vaughan, O'Neill et al. 2009). There is an important distinction 

between the rodent and human parasites here as in P. berghei and Plasmodium 

yoelii the FASII pathway is dispensable for sporozoites development as well while 

in P. falciparum, FAS II is essential for sporozoite development (van Schaijk, 

Kumar et al. 2013) indicating the presence of an undiscovered mechanism of 

fatty acid synthesis in mosquito stages in the rodent parasites. In the mature 

erythrocytes, fatty acid biosynthesis is not active but FAS type I has been shown 

to be present in immature erythrocytes (Pittman and Martin 1966). 
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1.4.5 Pentose Phosphate Pathway 

Another important metabolic pathway in eukaryotes is the pentose phosphate 

pathway (PPP) which utilizes carbohydrates as carbon source but rather than 

following a catabolic route, it takes the sugars to an anabolic path where it 

generates 5-C sugars for nucleic acid synthesis, NADPH required for maintaining 

redox balance of the cell and cofactors for other biosynthetic reactions (Berg JM 

2002).  This pathway is present in erythrocytes (Stromme and Eldjarn 1962) and 

all enzymes of this pathway except transaldolase (which links the pentose 

phosphate pathway to glycolysis) are encoded by the Plasmodium genome 

(Gardner, Hall et al. 2002). It has been shown that the PPP activity of a 

Plasmodium infected erythrocyte is almost 78 times more than an uninfected 

cell and the pathway is most active at the trophozoite stage and slows down in 

mature schizonts indicating that this pathway is utilized for combating the 

oxidative stress generated by reactive oxygen species produced from hemoglobin 

digestion in a growing parasite (Atamna, Pascarmona et al. 1994). Another 

interesting point in this study was that 82% of the PPP activity present in an 

infected erythrocyte was shown to be derive from the parasite, showing that the 

parasite’s pathway carried the major flux and also that the host PPP was 

increased by 24 times which is similar to when uninfected erythrocytes are 

subjected to oxidative stress.   

Importantly, individuals deficient in glucose-6-phosphate dehydrogenase 

(G6PDH) - the first enzyme of the PPP, are resistant to clinical malaria. Such 

individuals carry an X-linked, hereditary genetic defect caused by mutations in 

the G6PD gene and suffer from neonatal jaundice and acute haemolytic anaemia 

(Cappellini and Fiorelli 2008). The actual mechanism of this resistance to 

malaria in such individuals is not entirely understood as in vitro studies and field 

studies have produced conflicting results. However, in areas where this mutation 

is common, the incidence of P. falciparum malaria is relatively low (Ruwende 

and Hill 1998). This implies that the parasite requires the host cell to be viable 

for as long as it stays there and an impaired capacity to maintain the redox 

balance due to loss of production of NADPH from the erythrocyte PPP affects the 

parasite’s ability to establish a robust infection. 
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1.5 Metabolomics  

1.5.1 Metabolomics: a post genomics launch-pad  

The whole ‘omics’ technologies revolution has given us tools and means to 

develop a more comprehensive understanding of biological systems. 

Metabolomics is a powerful and unbiased approach to study these complex 

systems with a depth never measured before. It not only provides a way to look 

at the functional aspect of life right down to the cellular level but also paints a 

bigger picture of cellular dynamics of the same in most advanced forms.  The 

need for a more holistic approach to understanding systems stems from the 

realization that traditional reductionist methods like molecular biology and 

biochemistry alone cannot analyze biological systems as a whole (Goodacre 

2005). Metabolomics can contribute to our understanding of biological systems 

and typically, small molecule metabolites (less than 1500Da) constitute the 

‘metabolome’ of a specific cell, body part or organism (Wishart, Tzur et al. 

2007). Simply put, modern ‘metabolomics’ deals with the high through-put 

quantification and identification of small molecule metabolites, smaller than 

most proteins and other macromolecules, which usually exist in a living system. 

The origins of using metabolites to predict biological alterations date back to the 

middle ages when characteristics of body fluids like colour, smell and taste were 

linked to possible disease. A urine chart was published by German physician 

Ulrich Pinder in a book called Epiphanie Medicorum in 1506 which showed how 

disease could be diagnosed using these features of urine (Nicholson and Lindon 

2008). 

1.5.2 Metabolomics: what it has to offer? 

Although the field of metabolomics has emerged from the groundwork done by 

numerous biochemists over many years, the ability to measure an enormous 

number of metabolites at once from very complex biological samples and to use 

them to construct the ‘metabolic profile’ as a means to identify potential 

biomarkers of disease or drug response is a big leap forward (Griffin and Vidal-

Puig 2008). In spite of all the technological advances, the basic principle of 

functional metabolomics, i.e. finding a link between chemical patterns and 

biology is unchanged (Nicholson and Lindon 2008). A more modern take on the 

need for studying metabolomics is that it forms one of the pillars of systems 

biology and bridges the gaps between genome, transcriptome, proteome and the 
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ultimate phenotype of the organism studied. Being more downstream and closer 

to the actual phenotype of the organism it is a powerful tool for large scale 

functional analyses (Allen, Davey et al. 2003). Non targeted metabolic profiling 

is a rational progression that follows systematic analysis of DNA, RNA and protein 

in any organism (Weckwerth 2003) and if it is integrated with existing functional 

genomics information, the link between genotype and ultimate phenotype of an 

organism becomes clearer (Bino, Hall et al. 2004). 

1.5.3 Metabolomics: contributions in different biological systems 

The potential of metabolomics is now recognised across many disciplines in 

biological sciences and many experimental and model organisms have been 

metabolically profiled producing interesting data. The enormous metabolic 

complexity of one of the simplest model organisms, E.coli, has been well 

documented by Robert et al. (Robert M 2007) which only reiterates the fact that 

the existing biochemical knowledge about all life forms is far from complete. 

In another study in an extremophilic Archaea species, Pyrococcus furiosus 

(Trauger, Kalisak et al. 2008), metabolic profiling revealed altered occurrence 

and abundance of metabolites in response to suboptimal growing conditions. 

This was correlated to changed mRNA and protein levels, showing down-

regulation in a number of growth related genes, whereas other genes were up 

regulated. Another important finding of this study was the discovery of an 

alternative polyamine biosynthesis pathway which P. furiosus switched to during 

the suboptimal growth conditions. A non-Archaea bacterial species Thermus 

thermophilus, has the same pathway, providing clues for evolutionary links 

between two distinct species (Trauger, Kalisak et al. 2008). Phylogeny based on 

genome information has provided us with a lot of insight into how different 

species have evolved from common ancestors. A similar comprehensive 

comparison of metabolites and metabolic pathways across closely related or 

even diverse species can prove to be another stepping stone for evolutionary 

biologists. For example, E.coli and Saccharomyces cerevisiae are very divergent 

species which belong to different kingdoms and are very different in their 

cellular organization; yet metabolic responses to nutrient starvation are found to 

be conserved across the two species (Brauer, Yuan et al. 2006). 

Plant phytochemistry has interested scientists for hundreds of years and plant 

metabolomics has attracted many inputs so far as compared to other biological 
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systems. This is partly because plants produce many potential therapeutic 

agents e.g. the oldest anti-malarial known, Quinine was discovered in the 17th 

century from the bark of Cinchona tree and almost 400 years after its discovery, 

it remains an important drug (Achan, Talisuna et al. 2011). Artemisia annua (a 

Chinese herb also known as sweet wormwood or Qinghao) is the source of 

Artemisinin, now the standard treatment worldwide for P. falciparum malaria 

(Enserink 2005). Over 35,000 plant species have had their constituents analysed 

for anti-cancer activity (Saito and Matsuda 2010). Metabolite analysis 

complemented by gene expression studies in Arabidopsis has shed light on 

pleiotropic responses to environmental changes (Huang, Bhinu et al. 2009).  An 

Arabidopsis transgene expressed in tobacco leads to increased accumulation of  

a flavonoid ‘rutin’ conferring resistance against pests and this study has been 

validated by metabolite profiling and expression data (Misra, Pandey et al. 

2010). A web portal for plant metabolomics now exits where scientists all over 

the world can access, explore and download Arabidopsis metabolome data  

which is cross referenced to genetics, biochemistry and metabolic pathways of 

the model plant species (Bais, Moon et al. 2010). 

Pedersen et al. showed the effects of inbreeding on the physiology of a widely 

used model organism, Drosophila melanogaster, using metabolite profiling where 

fundamental metabolic processes are found to be different in inbred and 

outbred lines (Pedersen, Kristensen et al. 2008).  Novel metabolites related to 

insulin resistance have been discovered using metabolome analysis of liver tissue 

and plasma in mice (Li, Hu et al. 2010). Since its first release in 2007, the 

number of fully annotated metabolites in the human metabolome database 

(HMDB accessible at http://www.hmdb.ca/) increased by 300% from 2000 

metabolites (Wishart, Tzur et al. 2007) to close to 7000 metabolites in its second 

release (Wishart, Knox et al. 2009). The most recent release of HMDB (version 

3.0) has significantly expanded and the number of annotated metabolite entries 

has grown to more than 40,000 – an almost 600% increase since the second 

release (Wishart, Jewison et al. 2013). 

A number of protists of medical and economic importance are studied very 

extensively and attempts at complete metabolic profiling of some kinetoplastid 

and apicomplexan species have already been made (Coustou, Biran et al. 2008, 

Doyle, MacRae et al. 2009, Olszewski, Morrisey et al. 2009, Teng, Junankar et al. 
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2009, van Brummelen, Olszewski et al. 2009, Scheltema, Decuypere et al. 2010, 

Creek, Anderson et al. 2012). Such a widespread use of metabolomics underlines 

the importance of this field which has created new opportunities to look for new 

knowledge at the interface of genomics, biochemistry, biotechnology and 

chemical ecology (Dixon and Strack 2003). 

1.5.4 Metabolomics platforms 

The main challenge in metabolomics research is the vast diversity of chemicals 

and metabolites produced and processed by any living system. As an example, in 

the plant kingdom alone, there are an estimated 1 million metabolites (Saito and 

Matsuda 2010) and considering the number of organisms being analyzed today, 

very high-throughput, sensitive, quantitative and accurate techniques are 

required to aid metabolomics research. Since the chemical composition and 

relative abundance of all metabolites within a system is very variable, it is very 

difficult to extract and quantify all of them together (Kell 2004). Because of this 

chemical diversity of metabolites, specific methods of extraction are required 

for different classes. Polar and semi polar compounds are usually extracted using 

water and methanol and non-polar compounds are extracted using chloroform 

(Saito and Matsuda 2010). Sample extraction is followed by metabolite 

separation, detection and identification. 

 It is because of detection technologies like Mass Spectrometry (MS) and Nuclear 

Magnetic Resonance (NMR) that the field of metabolomics has come of age today 

(Griffiths 2008). Use of NMR to study effects of a number of variables on 

biological fluids like urine has been well reviewed by Bollard et al. (Bollard, 

Stanley et al. 2005). A number of metabolites from Cryptococcus neoformans 

cultures were identified using NMR spectroscopy with a view to identify 

virulence factors underlying human pathogenesis (Bubb, Wright et al. 1999).   

NMR has been mostly done using 1H (proton) - 1D spectroscopy, where spectral 

peaks usually give a direct indication of metabolite abundance and are easily 

acquired. However, spectral overlap is a big issue and more than one metabolite 

can sometimes give similar peaks. 2D NMR spectroscopy overcomes this problem 

but then spectra acquisition times are increased (Ludwig and Viant 2010). 

Amongst the most popular metabolomics methodologies, GC (Gas 

Chromatography), HPLC (High Performance Liquid Chromatography) and CE 
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(Capillary Electrophoresis) are mainly used for molecule separation and mass 

spectrometry (MS) is the most suitable detection technique (Terabe 2007). 

GC-MS has been a popular choice in metabolomics studies because of its ease to 

measure levels of primary metabolites such as sugars, amino acids and organic 

acids, since hydrophilic compounds like these can be easily derivatized (Lisec, 

Schauer et al. 2006). Tandem mass spectrometry (MS/MS) and GC-MS were used 

to quantitatively determine diagnostic markers for Phenylketonuria (Chace, 

Millington et al. 1993) which laid the foundation for use of tandem mass 

spectrometry for neo-natal clinical screening (Chace and Kalas 2005) and many 

laboratories around the world use GC-MS for diagnosis of metabolic diseases 

involving organic acids (Chace 2001), steroids and hormones (Want, Cravatt et al. 

2005). But GC-MS has its limitations with regards to sample preparation and 

types of samples that can be analyzed. The samples need to be able to be made 

volatile (for gas phase) and polar, non-volatile molecules are not detected. 

LC-MS overcomes some of the problems associated with using GC-MS alone. LC-

MS enables detection of more diverse chemicals with variable polarity, size and 

volatility and has better reproducibility, sensitivity and easier sample 

preparation (Want, Cravatt et al. 2005). CE-MS is another method to detect ionic 

metabolites such as nucleotides and phosphates, amino acids and organic acids 

(Monton and Soga 2007). CE requires minimum sample amount (usually in the 

nanolitre range) and has a low running cost. However, reproducibility in 

quantification and concentration sensitivity is low (Terabe 2001), a problem 

which can be partially overcome when fitted with an accurate mass 

spectrometer (Monton and Soga 2007). 

These technologies need to be used wisely and possibly in conjunction with each 

other to get a comprehensive dataset that has a lesser possibility of missing 

important metabolites in the system studied.  

1.5.5 Metabolomics: Untargeted and Targeted approaches 

The potential of metabolomics technologies can be realized in more than one 

manner and the methodologies can be divided into two broad categories: 

untargeted metabolomics involves a comprehensive analysis of all measurable 

analytes, which may include unknown compounds in a given system. Targeted 

metabolomics involves identification of pre-characterized and biochemically 
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annotated metabolites (Roberts, Souza et al. 2012). Untargeted metabolomics 

provides an unbiased approach to profile a biological system and may be used to 

compare all possible differences between two related biological systems or when 

looking within the same system, changes induced due to inherent biological 

processes, chemical interventions or genetic manipulations. It provides a 

powerful tool to develop hypotheses based on these observed differences which 

can then be followed up using classical reverse genetics, analyzing the 

biochemistry and ultimately answering novel biological questions which would 

not even be raised if it wasn’t for this extremely useful approach of 

metabolomics. 

Targeted metabolomics approaches are usually hypothesis driven and aim to 

investigate a specific biochemical question and focus on a known metabolic 

pathway or pathways (Patti, Yanes et al. 2012). These approaches are effective 

in answering queries regarding  drug metabolism pharmacokinetics and 

measuring the influence of therapeutics and genetic modifications on a specific 

enzyme (Nicholson, Connelly et al. 2002). Targeted metabolomics has played a 

vital role in the development of the field of metabolomics and there are 

numerous examples where using heavy isotope labelling of metabolites has led 

to qualitative and quantitative metabolite profiling leading to important 

biological discoveries ranging from apicomplexan biology (MacRae, Sheiner et al. 

2012, Macrae, Dixon et al. 2013) to cancer (Chaneton, Hillmann et al. 2012) to 

novel disease biomarkers (Griffiths, Koal et al. 2010). 

1.5.6 Metabolomics: Data generation, storage and interpretation 

Metabolomics technologies generate large amounts of data and organizing and 

analyzing the data is as important a task as generating it. The fundamental aim 

in dealing with raw metabolomics data is to identify metabolites from mass 

spectrum/chromatogram, determining their abundance/concentration and 

linking them to the metabolic pathways they are products of or participate in 

(Kell 2004). 

The post genomic era has seen the generation of enormous amounts of data and 

numerous databases have been set up for cataloguing and archiving this data for 

the scientific community across the globe. A number of genomic databases have 

been created for organisms whose genomes have been sequenced to date and 

protein coding genes are annotated using homology. The general conservation of 
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metabolic enzymes is such that it is possible to generate genome-scale models of 

metabolism in databases such as MPMP (Malaria Parasite Metabolic Pathways- 

accessible at http://mpmp.huji.ac.il/) (Ginsburg 2006),  KEGG (Kyoto 

Encyclopedia of Genes and Genomes, accessible at 

http://www.genome.jp/kegg/) (Kanehisa, Goto et al. 2006) and MetaCyc 

(accessible at http://metacyc.org/) (Caspi, Altman et al. 2014).  Recently, a 

metabolic model of Plasmodium integration information from functional genomic 

studies was published (Tymoshenko, Oppenheim et al. 2013). However, as some 

enzymes and their substrate specificities are not correctly annotated in the 

genome, many novel metabolites and pathways might exist which are yet to be 

discovered. 

A big hold up in early metabolome studies was accurate and reproducible 

identification of correct peaks from obtained spectra. This  has  been improved 

with new software capable of dealing with raw data and able to generate 

matrices with all signals in an order of their intensities (Saito and Matsuda 2010) 

leading to better identification and quantification of molecules (Scheltema, 

Jankevics et al. 2011, Creek, Jankevics et al. 2012). 

Just as genomics data is useful only when it is standardized, metabolomic data 

needs to be generated using standardized methods and operating conditions with 

properly calibrated instruments. Since the predicted number of compounds 

represented in a mass spectrum can easily run into thousands, in order to 

eliminate false positives and select the most likely and chemically correct 

compound, algorithms have been developed to filter the data and reduce noise 

(Kind and Fiehn 2007). It has been proposed that these approaches towards 

getting accurate information from the studied system can only be helped by 

proper standardization and common infrastructure development across 

metabolomics laboratories. The Metabolomics Society based in Ardmore, 

Oklahoma, USA has taken first steps to standardize the metabolic profiling 

strategies by recommending general ‘workflow’ models through The 

Metabolomics Standards Initiative (MSI) (Sansone, Fan et al. 2007). MSI has 

proposed to categorize reported metabolites using terms such as identified 

(previously characterized and reported in literature), putatively annotated (no 

chemical reference, based on physicochemical properties and comparison with 

spectral libraries), putatively characterized (based on characteristic 
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physicochemical properties of a chemical class or by spectral similarity to known 

compounds of a chemical class) and unknown (although unidentified, potentially 

quantifiable and differentiable using spectral data) (Sumner 2007). 

KEGG  initiated in 1995 (Kanehisa 1997) is an online resource with a number of 

different database components. The PATHWAY database component in KEGG 

consists of information in the form of maps representing metabolic pathways, 

genetic information flow, signal transduction and disease information (Kanehisa, 

Goto et al. 2006).  ApiCyc, LeishCyc, MPMP (Malaria Parasite Metabolic 

Pathways) and the metaTiger KEGG interface are repositories of metabolomics 

data collected from parasites (Kafsack and Llinas 2010). The human metabolome 

database’s current release (version 3.0) contains over 40,000 metabolites which 

includes both polar and non-polar molecules in nm to µm range and has links to 

KEGG, PubChem, MetaCyc, ChEBI, PDB, Swiss-Prot, and GenBank) (Wishart, 

Jewison et al. 2013). With such a rich source of information which is 

continuously growing, thanks to tremendous amount of work done in 

metabolomics laboratories all over the world, the application of metabolic 

information is beginning to show its true potential. 

1.5.7 Role of metabolomics in functional genomics 

For the true understanding of a complex biological system, it is necessary that 

its endogenous behavior and response to environmental changes be studied at 

the level of RNA, proteins and metabolites together. This is important if we are 

to move ahead from prediction to experimental validation of gene function (Stitt 

and Fernie 2003). As discussed above, the role of metabolomics cannot be 

underestimated in functional genomics where a number of orphan genes can be 

assigned functions using metabolomics data and integrating it with the 

transcriptomic and proteomic platforms (Hollywood, Brison et al. 2006).  

There is a current need to integrate different ‘omics’ datasets while addressing 

any computational issues that may arise. Efforts have been made in this 

direction with the development of methodologies like ‘integrOmics’, an R based 

portal which feeds in and analyses high dimensional data and gives graphical 

outputs which are easy to interpret (Le Cao, Gonzalez et al. 2009) and an excel 

based system called IDEOM which is a tool designed to help biologists visualize 

metabolomics data easily (Creek, Jankevics et al. 2012). Metabolic information 

of unknown or partially known pathways gained by using such platforms may also 
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lead to the discovery of genes which are not directly responsible for a particular 

function but may be associated with one already discovered (guilt-by-

association) (Altshuler, Daly et al. 2000). It is plausible that a shared regulatory 

system can control the expression of the set of genes involved in a biological 

process and if an unknown gene is co-expressed with a known gene found linked 

to metabolite accumulation, the unknown gene may have some role to play in 

the same pathway (Saito, Hirai et al. 2008).   

Once the gene to metabolite connection (whether direct or indirect) is 

established using the integrated ‘omics’ approach, experimental validation can 

be employed using reverse genetics or reverse biochemistry tools. For example, 

in a study done in an ascomycete, Stagnospora nodorum, the role of genes 

involved in arabitol metabolism and their functional redundancy was shown using 

reverse genetics approach coupled with metabolomics where mutant lines were 

created and MS analyses was done on them after exposure to similar 

environmental stress (Lowe, Lord et al. 2008).  

Forward genetics studies using quantitative trait locus analysis combined with 

metabolite profiling (mQTL) have also been made possible where metabolite 

levels can be linked to specific loci on the genome and the function of the genes 

spanning the loci deciphered. In a study on a model plant genus Populus, four 

mQTLs associated with flavonoid biosynthesis were mapped, they were assigned 

functions based on the related metabolite and known flavonoid pathway and by 

looking for homologues of flavonoid biosynthesis genes in Populus genome the 

corresponding genes were identified (Morreel, Goeminne et al. 2006). More 

recently, using  a similar mQTL analysis, reduced fitness of chloroquine-resistant 

P. falciparum parasites was shown to be linked to mutations in chloroquine 

resistance transporter which interfered with hemoglobin digestion (Lewis, 

Wacker et al. 2014).  

1.5.8 Role of metabolomics in systems biology 

For decades, scientists have studied living systems by breaking down the 

different components and looking at them part by part, going right down to the 

molecular level. Biological systems’ behavior, cannot be explained by studying 

discreet information obtained from molecular studies, but may be tractable by 

using the methods of systems biology (Goodacre 2005). A holistic view to study 

whole pathways from genes, transcripts, proteins to metabolites and their 
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interactions forms the basis of systems biology. It has the potential to bring out 

the information which may not be evident by studying individual components 

alone (Snyder and Gallagher 2009).  

Metabolomics has a huge potential to push systems biology forward and two 

approaches have been proposed to enable this: data-driven and model-driven 

(Saito and Matsuda 2010). The data-driven approach stems from an integrated 

analysis of whatever information is at hand (gained from different omics 

datasets) and using it to construct metabolic networks. Enzymes involved in 

metabolic networks (proteins) form the nodes or components and their 

interactions with other molecules form the links or edges (Yamada and Bork 

2009). Such metabolic networks can be constructed for a given living system and 

using functional genomics approaches as discussed above (e.g. using a mutant), 

metabolic perturbations can be compared at a large scale, spanning various 

nodes in a network, eventually getting leads for novel or missing components in 

the network.  

Rather than correlating components in the metabolomic network, the system’s 

behavior can also be predicted by constructing a mathematical model based on 

information from the system’s components and generating computer simulations 

to mimic the possible outcomes. For example, in an oncology study, a 

mathematical model of Ras signaling was developed which when supported by 

experimental data gave new insights into cytosolic GTPases activation (Stites, 

Trampont et al. 2007). Similarly, a dynamic model of energy metabolism in 

Trypanosoma brucei was used to predict possible outcomes when PPP was added 

to the existing standalone glycolytic model (Kerkhoven, Achcar et al. 2013) 

showing the importance of a systems approach when dealing with metabolism.  

1.5.9 Metabolomics of protozoan parasites 

Protozoan parasites are well known to cause serious infections in humans and 

animals which are often fatal. Malaria (Plasmodium spp.), Human African 

sleeping sickness (Trypanosoma spp.), Babesiosis (Babesia spp.), 

Cryptosporidiosis (Cryptosporidium spp.), Toxoplasmosis (Toxoplasma spp.) and 

Leishmaniasis (Leishmania spp.) are some of the life threatening parasitic 

diseases and pose a big burden on world economy. Toxoplasmosis and 

Cryptosporidiosis are very severe in immune-compromised patients and patients 

with HIV/AIDS suffer high mortality from these parasites (Abrahamsen, 
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Templeton et al. 2004, Kim and Weiss 2008). Trypanosomatid Parasites 

(Trypanosoma and Leishmania) are responsible for approximately 150,000 deaths 

every year and there is no vaccine but treatment solely depends on 

chemotherapeutic drugs which themselves have high toxicity related effects on 

patients (Nussbaum, Honek et al. 2010). 

The possibilities of discovering unorthodox metabolic pathways constituting 

existing or novel or derived metabolites is tremendous and metabolomics is a 

key technology that can be transferred across a number of biological disciplines 

to study numerous cell types, organisms and living systems.  

Protozoan parasites, particularly apicomplexans and kinetoplastids are now 

being studied using metabolomics approaches, and although in its infancy, the 

developments are rather encouraging (Besteiro, Vo Duy et al. 2009, Olszewski, 

Morrisey et al. 2009, Scheltema, Decuypere et al. 2010, Creek, Anderson et al. 

2012, MacRae, Sheiner et al. 2012, Macrae, Dixon et al. 2013). 

1.5.10 Metabolomics in malaria research: a road just taken 

The P. falciparum genome was published twelve years ago (Gardner, Hall et al. 

2002) which further led to the prediction of a number of biochemical pathways 

in the parasite. This information is  available through various web accessible 

databases like PlasmoDB, Brenda, KEGG, ApiCyc, Metatiger, Reactome and MPMP 

(Besteiro, Vo Duy et al. 2009). However, automatic reconstruction of metabolic 

pathways done in silico, using programs to run gene identities using known 

enzymes, is not perfect (Ginsburg 2009) and does not represent the truly 

functional metabolic network of the parasite. Moreover, the gene to metabolite 

ratio is not always 1:1 and the number of metabolites predicted can be 

underestimated where cellular enzymes have more than one substrate (Besteiro, 

Vo Duy et al. 2009). A better approach will be to identify the metabolites 

experimentally and then draw conclusions about the presence or absence of 

metabolic pathways in conjunction with genomic, transcriptomic and proteomic 

data. Since enzymes within biochemical pathways are potential drug targets 

(Travassos and Laufer 2009), new candidates can be identified or development 

of resistance to existing drugs can be studied in more detail in Plasmodium 

parasites with the help of metabolomics.  
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Some of the metabolomics approaches like NMR have been used to find 

biomarkers of Plasmodium infection in the infected host (Li, Wang et al. 2008) 

where urine and plasma samples were analyzed using 1H-NMR from P. berghei 

infected mice and markers of general infection were observed along with 

pipecolic acid which was found specific to P. berghei infection. Isotope labeled 

precursor NMR (13C) was used for metabolite profiling of host cell free parasites 

which showed that glycerol and glycerol-3-phosphate are major glucose 

metabolites in P. falciparum grown in an oxygen limited environment (Lian, Al-

Helal et al. 2009).  A number of different extraction protocols were tested in 

another study where 1H-NMR was used to profile P. falciparum metabolites 

where surprisingly accumulation of a culture buffering agent HEPES was seen 

inside parasites and extractions with perchloric acid were found to be better 

quenching as compared to methanol, methanol/water or 

methanol/chloroform/water (Teng, Junankar et al. 2009). NMR and 13C glucose 

were used to study the effect of Plasmodium infection on glucose utilization by 

host erythrocytes which showed that host metabolic pathways are greatly 

affected by the parasite and this serves as an example of the host parasite 

interaction where even uninfected erythrocytes were seen to have reduced 

glycolytic activity when treated with Plasmodium conditioned medium (Mehta, 

Sonawat et al. 2006).  

Mass-spectrometry based metabolomics was used to show why P. falciparum 

infected erythrocytes have elevated Nicotinamide adenine dinucleotide (NAD+) 

levels and study the parasite NAD+ metabolic pathway in detail (O'Hara, Kerwin 

et al. 2014). A similar analysis has also been used to reveal host-parasite 

interactions in P. falciparum infected erythrocytes where it was shown that 

systemic arginine depletion by the parasite might play some role in cerebral 

malaria pathogenesis (Olszewski, Morrisey et al. 2009). Using targeted 

metabolomics, mitochondrial metabolism (Macrae, Dixon et al. 2013), 

anaplerotic CO2 fixation and maintenance of cytosolic and mitochondrial redox 

balance in P. falciparum (Storm, Sethia et al. 2014) have also been explored. 

Malaria host-parasite interactions can be very interesting to study because there 

is a constant interplay of metabolites between host and parasite (Kafsack and 

Llinas 2010) and this dual system presents difficult challenges to profile 

individual metabolomes. The collective characterization of host-parasite 

metabolites has been called a co-metabolome by Holmes et al (Holmes, Wilson 
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et al. 2008) and it can be useful if baseline metabolomics data of uninfected 

host is available for quantitative and qualitative comparisons. 

 Metabolomics has a lot to offer and malaria research can benefit greatly from 

untargeted and targeted approaches to identify metabolic pathways which can 

lead to novel intervention strategies or improvement of existing ones. 

1.6 Aims and objectives 

1.6.1 Finding out metabolic differences between reticulocytes and 

normocytes 

It is known that the reticulocytes are the preferred host cells of P. berghei and P. 

vivax in vivo (Galinski, Medina et al. 1992, Cromer, Evans et al. 2006) and 

apparently have a more complex cellular structure than normocytes (Gronowicz, 

Swift et al. 1984, Liu, Guo et al. 2010). The anticipation that reticulocytes have 

a more complex metabolic profile than normocytes and have a lot to offer to the 

parasites in terms of their metabolic reserves was explored by performing an 

untargeted metabolomics study where the metabolic profiles of reticulocytes 

and normocytes was compared using LC-MS and GC-MS and the metabolic 

differences between the two cell types established.  

1.6.2 Elucidating the role of reticulocyte as a specialized host cell  

The apparent differences between reticulocytes and normocytes were assessed 

based on the metabolic pathways found to be present, enriched or reduced in 

either cell type. Parasite metabolism was then studied to elucidate which 

specific metabolic reserves contribute towards reticulocytes being the preferred 

choice for invasion and establishment of infection.   

1.6.3 Establishing key metabolic differences between Plasmodium 

asexual, gametocyte and mosquito stages 

Untargeted metabolomics was also performed to find out key metabolic 

differences between the asexual and sexual stages of P. berghei parasites with 

an emphasis on determining how a gametocyte may prepare itself for the hostile 

environment of a mosquito midgut at the metabolic level as previously seen at 

transcriptional and translational level (Mair, Braks et al. 2006).  

A targeted approach was also used to establish energy metabolism mechanisms 

in different stages in the life cycle of P. berghei. These studies provide 
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knowledge about novel and important biochemical host and parasite metabolic 

pathways and their interplay that offer potential routes to new intervention 

strategies against malaria.  
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2 Methods 

2.1 P. berghei methods 

2.1.1 Infection of laboratory animals with P. berghei parasites 

Infection of laboratory rodents (TO female mice 26-30g or Wistar female rats 

150-175 g) was performed with P. berghei infected reticulocyte enriched blood 

obtained from cryopreserved stocks or directly from heart or tail-blood, from 

other infected animals. As P. berghei has a preference for invading reticulocytes, 

0.1 ml of phenylhydrazine-HCl (12.5 mg/ ml solution) was administered to the 

mice by intraperitoneal injection 2 days prior to infection. For infection from 

cryopreserved parasites into a mouse, the contents of one cryotube containing 

0.5 ml blood suspension were thawed at room temperature and 0.02-0.5 ml of 

the suspension was injected intraperitoneally into a mouse. For mouse infection 

with blood stages obtained from an infected animal (also known as mechanical 

passage), one drop of tail blood (5 µl) from an infected animal with a 

parasitemia of 5-15% was collected in 10 ml PBS and 0.1 ml of this suspension 

was injected intraperitoneally into a mouse. 4-7 days, after injection, the 

parasitemia would typically increase from 0.1 to 5-20%. For infecting rats with 

blood stages obtained from an infected animal, 5-8 drops of tail blood (30-40 µl) 

were collected from an infected animal with a parasitemia of 5-15% in 1 ml PBS 

and the 1 ml suspension was injected intraperitoneally in a rat, usually 0.5 ml on 

both sides of the abdomen. On day 4 or 5 after injection the parasitemia would 

typically range between 0.5-3 percent. 

2.1.2 Transfection of P. berghei parasites 

Transfection of P. berghei parasites has been described in great detail earlier 

(Janse, Ramesar et al. 2006). Briefly, P. berghei infected reticulocyte enriched 

blood was used to set up in vitro schizont cultures as described in 2.1.7 and 

schizonts were purified as described in 2.1.8. Transfection was carried out by 

mixing 100 µl of Nucleofector® solution, 10 µl of DNA solution containing 5-10 µg 

DNA with the schizont pellet and transferring the suspension into an 

electroporation cuvette which was then placed in the Amaxa Nucleofector® 

device and program U-33 was used. Following this, 50 μl of medium was 

immediately added to the suspension and it was injected into a the tail vein of a 
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mouse kept in a 37°C warm box so that the veins were more accessible for 

injection. 

2.1.3 Selection of transfected parasites 

Since the selectable marker used for transformation of P. berghei parasites 

contains a pyrimethamine resistant form of the human DHFR/TS gene, animals 

were provided with drinking water containing pyrimethamine (at 70 µg/ ml), one 

day after transfected parasites were injected and this was continued for a 

period of 5-8 days. 

2.1.4 Cryopreservation of blood stage parasites 

Blood stages of parasite lines and clones were stored in liquid nitrogen. To 

obtain these blood stages from infected mice and rats, blood was collected by 

cardiac puncture and mixed 50:50 with a solution of 30% glycerol/PBS solution 

containing 0.05 ml of Heparin stock-solution (200 units/ml) and aliquoted into 

specially designed cryovials (Catalogue no. LW3534, Alpha laboratories) for 

storage at extremely low temperatures.  

2.1.5 Investigation of the course of parasitemia 

The course of parasitemia was determined in Giemsa stained blood films made 

from tail blood. For checking parasitemia every infected mouse was tail-pricked 

and a thin blood film was prepared from tail blood on a standard microscope 

slide. After the slide was air-dried, it was fixed with methanol for 5 seconds, 

dried again and then immersed in a Couplin jar containing 12% Giemsa solution 

for 15 minutes. The slide was then rinsed carefully with water, air-dried and 

observed under a standard light microscope with immersion oil and objective at 

100X. A minimum of 30 fields were visualized and infected cells were scored 

using a cell counter. 

2.1.6 Removal of leucocytes from blood or cultured parasites 

Leucocytes were removed from collected blood or cultured parasites using 

columns prepared by filling up a 20 ml syringe with just sufficient glass wool to 

gate the end or using a 10  ml Zeba Spin Column (Catalogue number PN89898, 

Fisher) and cellulose powder (Catalogue number C6288-100G,Sigma) filled up to 

the 3 ml mark. These columns were first washed with RPMI1640 culture medium 

or PBS, then blood or parasite culture was passed through the column and 

allowed to flow through by gravity and then the columns were washed using PBS 
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or RPMI1640 culture medium again. RPMI1640 culture medium was used in the 

filtering process if parasites were used for further in vitro cultivation. PBS was 

used if parasites were to be used for DNA extraction or protein preparation. For 

quick and time sensitive applications, leucocytes were removed by using 

Plasmodipur Filters (Catalogue number 8011Filter25u, EuroProxima) attached to 

a 10 or 20 ml syringe. The filter was prewashed with RPMI1640 culture medium 

or PBS and after infected blood was passed through it, eluted with RPMI1640 

culture medium or PBS. 

2.1.7 Short term in vitro culture of asexual blood stage parasites for 

making schizonts 

For preparing schizonts, 1 ml blood was collected from an infected mouse by 

cardiac puncture using a 2 ml syringe at a parasitemia of 1-3%. Blood was 

transferred to 5 ml of complete culture medium containing 0.3 ml of heparin 

stock solution (200units/ml). Cells were pelleted by centrifugation for 8 minutes 

at 450g and supernatant was removed. Cells were then resuspended in 100 ml of 

complete culture media in a flask (TC FLASK 150CM - Corning 430823) and gassed 

for 30 seconds with a gas mix containing 5% CO2, 5% O2, 90% N2. Similarly, when 

setting up big volume cultures from infected blood obtained from a rat, the cells 

were finally resuspended in 150 ml of complete culture media. The flask was 

then incubated overnight at 37˚C on a shaker at a minimal speed just to keep 

the cells in suspension. The next morning, 0.5 ml of the suspension was taken 

and a Giemsa-stained smear made from it to check for presence of mature 

schizonts. 

2.1.8 Purification of schizonts 

The culture suspension containing the schizonts was combined and spun for 8 

minutes at 450g and most of the supernatant was removed to resuspend the 

pellet in a final volume of 35 ml. A 55% Nycodenz/PBS solution was prepared and 

10 ml of the Nycodenz-solution was laid under the culture suspension carefully, 

so that a sharp contrasting division was visible between the two suspension 

layers. The suspensions were then centrifuged for 20 minutes without the use of 

the brake at 450g and the brown layer at the interphase between two 

suspensions containing schizonts and mature gametocytes was carefully 

collected. The schizonts and gametocytes were pelleted by centrifugation for 8 

minutes at 450g and for this washing step 10 ml culture medium obtained from 
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top of the gradient was used. The schizont pellet was resuspended in 500 µl of 

culture medium. 

2.1.9 Generation of knockout parasites  

P. berghei schizonts (from line RMgm-7 which expresses GFP constitutively under 

eef1a promoter and from line RMgm-164 which expresses GFP in male 

gametocytes and RFP in female gametocytes) were transfected with linear DNA 

constructs containing the yfcu-hdhfr selectable marker flanked by homology 

arms (generated using primers in Table 6) corresponding to 5’UTR and 3’UTR of 

the orf of the gene of interest respectively, injected intravenously in female 

Wistar rats and TO mice and selected by pyrimethamine in drinking water as 

described in (Janse, Ramesar et al. 2006). Resulting transfectants were analysed 

by PCR for 5’ and 3’ integration (using primers in Table 6) and cloned by limiting 

dilution and further confirmed by PCR by lack of orf in mutants. For further 

phenotypic analysis, due to reasons of cost effectiveness and ease of handling, 

all mutants generated in TO mice were used and experiments were done by 

obtaining parasites grown in TO mice.  

2.1.10 Cloning transfected parasite populations 

After transfection and selection by pyrimethamine, most of the parasites which 

are present in a rodent host were usually transfectants but some wild-type 

parasites survived drug treatment and transfected parasites had to be cloned to 

obtain a homogenous parasite line arising from a single parent. To achieve this, 

cloning by limiting dilution was done in 10 mice where 0.5-0.8 parasites were 

injected per mouse resulting in an infection rate of 20-60% of the mice. Briefly, 

a donor mouse was infected with the cryopreserved mixed population from 

which clones were to be obtained as described in 2.1.1 and parasitaemia was 

monitored until it reached 0.5% or above. Then from this mouse, 5 μl of tail 

blood was collected and diluted in 1 ml of complete culture medium/PBS, mixed 

well and 10 μl of this suspension was used for red blood cell counting using a 

Bürker cell counter haemocytometer. The concentration of erythrocytes in the 

cell suspension was determined and the sample was diluted to a final 

concentration of 0.5-0.8 parasites/0.2 ml culture medium/PBS. 0.2 ml of the 

suspension was injected per mouse intravenously in 10 mice. At day 10 after 

infection the mice were checked for parasites and usually 20 – 60% of mice 

became infected with a parasitaemia of 0.3 – 10%. Infected blood was collected 
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by cardiac puncture and used for cryopreservation or DNA extraction as 

described in 2.1.4 and 2.1.12 respectively. 

2.1.11 Preparation of purified parasites for isolation of DNA and 

protein 

For isolation of DNA, RNA or preparing protein lysate from the parasites, first 

leucocytes were removed from blood or culture as described in 2.1.6 and then 

cells were pelleted by centrifugation for 8 minutes at 450g and then 

resuspended in cold (4°C) 50 ml erythrocyte lysis buffer (15mM NH4Cl,1mM 

KHCO3, 0.1mM EDTA). The suspension was incubated on ice for 3-5min and then 

parasites were spun down by centrifugation for 8 minutes at 450g. 

2.1.12 Genomic DNA extraction 

Parasite pellet was resuspended in 700 µl TNE buffer (10 mM Tris pH 8.0, 5 mM 

EDTA pH 8.0, 100 mM NaCl) and to the suspension, 200 µg RNAase (ribonuclease 

A 20  µl of a 10 mg/ml solution, bovine pancreatic in origin, Invitrogen- 12091-

021) and 1% (v/v) SDS (100  µl of a 10% solution) was added. The mixture was 

incubated for 10 minutes at 37ºC. Then 200 µg Proteinase K (from Tritirachium 

album, 20 µl of a 10 mg/ml solution, Sigma- P6556) was added and mixture was 

incubated for 1 hour at 37ºC. Buffered phenol (Sigma- P9346) was added up to 

1.5 ml, tube was inverted several times and centrifuged for 5 minutes at 

maximum speed. The aqueous upper phase was transferred to a new tube and 

buffered phenol: chloroform: isoamylalcohol: 25:24:1(Sigma- P2069) was added 

up to 1.5 ml. The tube was inverted several times and centrifuged for 5 minutes 

at maximum speed. The aqueous upper phase was transferred to a new tube and 

chloroform: isoamylalcohol: 24:1 (Sigma- 25666) was added up to 1.5 ml. The 

tube was inverted several times and centrifuge for 5 minutes at maximum speed. 

The aqueous upper phase was transferred to a new tube and 0.1 volume of 3 M 

Sodium acetate, pH 5.2, and 2 volumes of 96% ethanol was added to it. The tube 

was inverted several times and DNA was precipitated at –20ºC overnight. Then 

the tube was centrifuged for 20 minutes at maximum speed at 4ºC, supernatant 

removed and DNA pellet was washed by adding 500 µl 70% ethanol and 

centrifuged 10 minutes at maximum speed at 4ºC. Supernatant was discarded, 

DNA pellet was air-dried and resuspended with 100 µl water. 
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2.1.13 Asexual growth competition assay  

Equal number of parasites (106) of wt population expressing RFP under 

constitutive promoter eef1a (RMgm-86) and mutant population made in a parent 

line expressing GFP under the same promoter (RMgm-7) were mixed and injected 

into a mouse on day 0 and peripheral blood from the infected mouse was 

monitored using FACS analyses for the proportion of RFP positive (wt) and GFP 

positive (mutant) parasites over the next 12 days.  Representative FACS 

screenshots  Figure 2-1  show left panel on day 0 when wt and mutant 

populations are roughly in equal proportions and right panel shows that over 

time (by days 6-12), wt population overgrows a slow growing mutant.  Infected 

blood was passaged into a new mouse when multiple infected cells started to 

appear in smears to allow for optimal growth. 

 

Figure 2-1 Competition growth assay of P. berghei wt line expressing RFP and a mutant line 

expressing GFP under eef1a promoter using FACS analysis 

2.1.14 Lethality experiments in C57/B6 mice 

104 iRBCs were injected intra-peritonially into female 8-10 weeks old C57/B6 

mice (n=5 per line) and parasitemia, disease pathology and mortality was 

monitored over 21 days. 

2.1.15 Gametocyte conversion monitoring by FACS during blood 

stage growth 

Mutants made in the RMgm-164 background which expresses GFP in male 

gametocytes and RFP in female gametocytes along with wt were grown in mice 

and peripheral blood was monitored by FACS analysis by checking for infected 
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erythrocytes (iRBCs) by Hoechst staining and the proportion of iRBCs expressing 

GFP and RFP, indicative of the presence of male and female gametocytes. 

2.1.16 Exflagellation assay and DNA quantification by FACS 

During exflagellation, male gametocytes undergo rapid endomitosis and DNA 

content is increased from n to 8n within 8 minutes after activation. During this 

process, they pull a number of surrounding cells and form exflagellation centres 

which were counted on haemocytometer.  DNA staining in exflagellating 

gametocytes was observed by fixing MACS-column purified activating 

gametocytes using 0.25% glutaraldehyde at 4 minute intervals, staining with 10 

µM Hoechst 33258 dye in PBS for 1 h at 37°C and doing FACS analysis on a CyAn 

ADP Analyser. UV excitation of Hoechst 33258 dye was performed with a violet 

laser (450/50 nm) and the gametocyte population was selected by gating on 

forward/side light scatter. The fluorescence intensity of a total of 100,000 cells 

was measured for each sample. The mean fluorescence intensity of the 

activating gametocyte is proportional to the mean DNA content of the parasites 

and activating male gametocytes and female gametocytes were gated based on 

DNA content at different time points based on the wt control. All data was 

plotted normalized to the controls. 

2.1.17 in vitro culture of ookinetes 

1 ml blood was collected from an infected mouse pre-treated with sulfadiazine 

in drinking water for 48 hours to remove asexual stages. This was done by 

cardiac puncture using a 2 ml syringe at a parasitemia (gametocytaemia) of 5-

20%. The cells were diluted in a total volume of 30 ml of ookinete culture 

medium in a 75cm2 flask. The ookinetes were cultured for 21 hours at 21˚C. 

Ookinete production (ookinete conversion) rates, defined as the percentage of 

female gametes that develop into mature ookinetes, were determined by 

Giemsa-stained smears analysis. 

2.1.18 in vitro sexual crosses 

Equal numbers of gametocytes from two P. berghei lines obtained from infected 

TO mice treated with sulfadiazine in drinking water were taken and mixed in 

activation media. The suspension was then incubated at 21°C for 21 hours and 

giemsa smears were made for counting mature ookinetes and female gametes. 
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2.1.19 Mosquito transmission experiments 

P. berghei infected reticulocyte enriched mice with a parasitemia of 5-10% were 

used to blood feed a cage of 250 mosquitoes for 10 minutes. Mature oocysts 

were counted in mosquito midguts between days 12-14 using a Leica M205 FA 

Fluorescence Stereomicroscope. Salivary gland sporozoites were checked 

between days 21-25. Infected mosquitoes were allowed to feed on naïve mice 

for 10 minutes between days 21-25 and these mice were observed for parasites 

by making giemsa stained blood smears between days 3-14 to check for 

successful transmission. 

2.1.20 Determination of IC50 value of P. berghei inhibitors in vitro 

2.1.20.1 Inhibition of asexual growth 

Inhibitors were used to perform in vitro drug susceptibility tests in standard 

short-term cultures of synchronized P. berghei blood stages. Cultured and 

purified schizonts/merozoites of the reference ANKA strain of P. berghei line 

cl15cy1, obtained by Nycodenz density gradient purification were injected i.v. 

into the tail vein of a TO (Theilers Original outbred strain) mouse. Injected 

merozoites invade within 4h after injection and newly infected blood was 

collected from the mouse by heart puncture at 4h after the injection of the 

purified schizonts/merozoites. Infected blood was washed once (450 g, 8 min) 

with complete culture medium (RPMI1640 + 25% FCS, pH 7.5) followed by mixing 

of infected erythrocytes with serially diluted solutions of inhibitors in complete 

culture medium and incubated in 24-well plates in triplicate at a final 

concentration of 1% at 37°C for 24h under special gas mix of 5% CO2, 5% O2, 90% 

N2, conditions that permit ring forms to develop into mature schizonts. Parasite 

development was analysed by FACS after staining iRBCs with DNA-specific dye 

Hoechst-33258. The cells were pelleted by centrifugation (450 g, 8 min) and 

after removal of supernatant, cells were fixed with 0.25% glutaraldehyde/PBS 

solution and stained with 10 µM Hoechst-33258 solution in PBS for 1h at 37°C. 

Stained cells were analysed using MACSQuant analyser (Miltenyi Biotec, 

Germany). UV excitation of Hoechst-33258 dye was performed with a violet laser 

(450/50 nm) and the iRBC population was selected by gating on 

forward/sidelight scatter. A total of 100,000 cells per samples were analysed 

and mature schizonts were gated based on their fluorescence intensity and 

counted in each sample. For determination of growth inhibition, the number of 

mature schizonts observed was set to correspond to 100% growth for no drug 
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controls and percentage growth was calculated accordingly for the drug treated 

samples. 100% growth values were in the range 60-75% conversion of ring stage 

parasites to schizonts (15-20% of ring stage parasites committed to making 

gametocytes do not undergo DNA replication).  Growth inhibitory curves were 

constructed in Graph pad Prism and based on data from three independent 

repeats, the IC50 value for blood stage inhibition of P. berghei parasites were 

calculated. Giemsa stained smears from drug treated cultures were also checked 

to determine the stage at which parasites were growth arrested.  

2.1.20.2 Inhibition of gametocyte activation 

Gametocytes from the reference ANKA strain of P. berghei line cl15cy1 infected 

TO mouse which was treated with 30mg/L sulfadiazine in drinking water for 48 

hours to kill asexual stages were obtained by cardiac puncture, suspended at 1% 

concentration in PBS (enriched with 20mM Hepes, 20mM Glucose, 4mM NaHCO3, 

0.1% BSA, pH 7.25) mixed with different concentrations of inhibitors and 

incubated at 37°C for 40 minutes in a 96 well-plate in triplicate samples. After 

this pre-treatment, cells were centrifuged at 400g for 5 min and supernatant 

was removed, washed twice with PBS and resuspended in fresh activation media 

(RPMI 1640 + 20% FCS +10µM Xanthurenic Acid, pH 7.5) at 1% concentration and 

incubated at 21 ˚C for 15 minutes. Exflagellation centres were counted in 

approximately 4000 visible cells on haemocytometer in triplicate. For calculation 

of exflagellation inhibition, the exflagellation percentage was set to 100% for no 

drug controls and was calculated accordingly for the drug treated samples. 

Inhibitory curves were constructed in Graph pad Prism. Based on counts from 

three independent repeats, the IC50 value for exflagellation inhibition of P. 

berghei was determined. 

2.1.20.3 Inhibition of ookinete development 

Gametocytes from the reference ANKA strain of P. berghei line cl15cy1infected 

TO mouse were obtained as above and infected blood was collected straight into 

ookinete growth medium (RPMI 1640 + 20% FCS +10µM Xanthurenic Acid, pH 7.5) 

at 1% concentration and incubated at 21 ˚C for 1hour 30 minutes to allow for 

activation and fertilization without any inhibitors. Then inhibitors were added to 

this suspension in different concentrations in triplicates and incubated at 21 ˚C 

for a further 24 hours in 24 well plates. Then giemsa stained smears were made 

from all samples and slides were counted for mature ookinetes and female 

gametes. Approximately a combined total of minimum 100 ookinetes and female 
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gametes were counted per smear. To calculate ookinete conversion rates, 

number of mature ookinetes was divided by the combined total number of 

ookinetes and female gametes which was found to be in the range of 65-70% 

conversion of female gametes to mature ookinetes in no drug controls. For 

determining ookinete maturation inhibition, the ookinete conversion rate was 

set to 100% for no drug controls and was calculated accordingly for the drug 

treated samples. Inhibitory curves were constructed in Graph pad Prism. Based 

on counts from three independent repeats, the IC50 value for ookinete 

maturation inhibition of P. berghei was determined. 

2.2 Determination of IC50 value of P. falciparum asexual growth 

inhibition in vitro 

P. falciparum 3D7 strain was used for determining IC50 values of inhibitors in in 

vitro cultures by measuring 3H-Hypoxanthine incorporation in the presence of 

inhibitors in increasing concentrations as described (Desjardins, Canfield et al. 

1979). Cultures were set up at 0.5 % parasitemia and approximately 2 % 

hematocrit in complete RPMI medium without hypoxanthine (IC50 medium). A 

serial dilution of 2x required inhibitor concentration was prepared in a 96 well 

plate in similar IC50 medium. In each well, 100 µl of inhibitor was mixed with 100 

µl of cells, creating a 1 x final concentration of the inhibitor. Incorporation of 

3H-Hypoxanthine in uninfected erythrocytes and parasites incubated without 

inhibitor was also measured as negative control. Plates were incubated for 48 

hours at 37°C in the presence of a specialized gas mix (5% CO2, 1% O2, 94% N2). 

After 48 hours of incubation, 100 µl of medium from each well was replaced with 

fresh medium containing 5 µCi 3H-Hypoxanthine/ml. Plates were incubated for 

further 24 hours and then frozen at -20°C. Then the plates were defrosted and 

harvested using a Tomtec Mach III harvester and Wallac Printed Filter Mat- A 

filter mats. The filter mats were dried at 60°C for one hour and sealed in a 

plastic bag with 4 ml scintillation liquid. Radioactive decay was measured in a 

Wallac Trilux MicroBeta counter for 1 min per well. IC50 values were calculated 

using GraphPad Prism software. 

2.3 Molecular biology 

2.3.1 Preparation of DNA constructs 

DNA constructs for making knock out vectors were prepared using standard 

molecular biology techniques. For knock out constructs, homology arms 
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(approximately 1-2 kb upstream and downstream of the open reading frame of 

the gene to be knocked out) were amplified using PCR on wild type P. berghei 

genomic DNA where primers were designed with the appropriate restriction sites 

or overlapping sequence in place. The general protocol used for doing PCR was 

as follows. 

PCR reaction mix:  

Component Volume ( µl) Final concentration 

10 X PCR Buffer  5 1 X 

25mM dNTPs  0.5 0.25mM 

100 pmol/l Sense primer  0.2 0.4 µM 

100 pmol/l Anti-sense primer 0.2 0.4 µM 

50mM MgCl2 2.0 2mM 

Taq Polymerase 0.2 1 unit 

DNA template 1 (10-100ng per reaction) 

MilliQ Water Up to 50 µl  

Thermo cycler program: 

 94˚C 94˚C  *Tm ˚C  72˚C  72˚C  4˚C 

 0:30 sec  0:30 sec  0:30 sec **1min 10 min ∞ 

  

30 cycles   

  *Tm- melting temperature of primer pair 

** 1 minute extension time is enough to amplify a 1kb fragment 

The obtained PCR products were purified using Qiaquick PCR purification kit 

(Qiagen) following manufacturer’s instructions. When doing molecular cloning, 

both PCR product and target plasmid were digested with appropriate restriction 

enzymes and then purified again either using Qiaquick PCR purification kit or by 

running on gel and extracting the appropriate band and purifying it using 

Qiaquick gel extraction kit (Qiagen) following manufacturer’s instructions. The 

concentration of both the insert and the vector was determined by Nanodrop 

spectrophotometer and ligation reactions were set up in a vector to insert molar 

ratio of 1:3 using Rapid DNA ligation kit (Roche Diagnostics). The ligation mix 

was used to transform fusion-blue competent E.coli cells, by mixing 2 µl ligation 

mix gently with cells and incubating them on ice for 30 minutes, followed by 
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heat-shock at 42˚C for 45 seconds and incubation on ice for 1 minute. The 

bacteria were then incubated at 37˚C with 400 µl LB broth for an hour and then 

the transformed bacteria were spread on pre-warmed LB agar plate with 100 

μg/ml ampicillin and incubated overnight at 37°C. The next day, individual 

bacterial colonies were inoculated in 3 ml LB medium with ampicillin (100 

μg/ml). After overnight incubation, the cultures were spun down and plasmid 

was extracted using the Qiaquick miniprep kit (Qiagen) following manufacturer’s 

instructions. The obtained plasmids were analysed by restriction enzyme 

digestion. The plasmids were then linearized and appropriate fragments gel 

purified. 5-10 µg of the purified fragment was used for transfecting P. berghei 

schizonts. 

When making PCR based knock-out vectors, homology arms were amplified using 

TaKaRa LA Taq® DNA Polymerase in the first reaction, cleaned as mentioned 

above and then used for a second (2 step) PCR reaction with TaKaRa LA Taq® 

DNA Polymerase where the overlapping ends complimentary to the selection 

cassette facilitated the amplification of the whole construct by a couple of 

external tag primers, ready for transfection which was then gel purified. 

PCR 1 was set up as: 

 

 

 

 

 

 

 

Thermo cycler program: 

98°C 98°C 65°C 60°C 55°C 72°C 72°C 10°C 

05:00 00:20 00:10 00:10 00:10 00:30 07:00 ∞ 

 

30 cycles 

   

LA Taq 0.25µl (1.25 U) 

LA PCR Buffer 2.5 µl 

dNTP mix (2.5mM each) 4 µl  

wt DNA 0.5 µl (50ng) 

Water 12.75 µl 

Primer 1 (10 pmol/l) 2.5 µl 

Primer 2 (10 pmol/l) 2.5 µl 

  25 µl 
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PCR2 was set up as:    

Step1  

Upstream homology arm  100 ng 

Downstream homology arm 100 ng 

pL0048 containing selection cassette  100 ng 

Buffer + MgCl2 5 µl 

dNTPs (2.5mM each) 8 µl 

LA Taq (2.5 U) 0.5 µl 

Water Upto 39  µl 

  

 Step 1 Thermo cycler program:  

95°C 95°C 42°C 72°C 72°C 10°C 

05:00 01:00 01:00 02:00 05:00 ∞ 

 

15 cycles 

   

Step2: with primers  

Then added to individual tubes were,  

5 µl external tag primer 1 + 5 µl external tag primer 2 + 0.5 µl La Taq 

Thermo cycler program: 

94°C 94°C 50°C 68°C 94°C 50°C 68°C 68°C 10°C 

02:00 00:15 00:30 04:30 00:15 00:30 
4:30 + 5 

sec/cycle 
07:00 ∞ 

 

15 cycles 20 cycles 

  
2.3.2 Checking for integration of transfectants by PCR 

Primers were designed to anneal to the genomic region outside the two 

homology arms and then to check for integration, a corresponding reverse or 

forward primer was designed to anneal to the selection cassette. After correct 

integration of the homology arms and the selection cassette into the genome, 

both 5’ and 3’ integration PCRs were performed using the standard PCR protocol 
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and diagnostic gels were run to confirm integration in the right orientation 

(Figure 2-2). 

 

Figure 2-2 Schematic representation of diagnostic PCR to detect correct integration in 

modified parasite genome. GOI- Gene of interest, SM- Selectable Marker. 

PCRs were also performed using primers which amplify the knocked out open 

reading frame (orf) in the wt control to see wt population background in the 

transfected lines and confirm clonality of new lines post cloning by limiting 

dilution.   

2.3.3 Western blot analysis 

Western blot analyses were performed on parasite pellets that were either 

freshly prepared or stored at -80°C obtained either from an infected rodent host 

or overnight in vitro culture. Pellets were resuspended in 1x lysis buffer 

containing (1% Triton in PBS and protease inhibitors), stored on ice for 10 

minutes, then mixed with 2x SDS gel-loading buffer (100 mM Tris-HCl pH 6.8; 200 

mM dithiothreitol; 4% SDS; 0.2% bromophenol blue; 20% glycerol). The samples 

were then run on a SDS-PAGE gel and transferred to a 

Whatman® Protran® nitrocellulose membrane, which was subsequently probed 

with a primary antibody of choice and a compatible HRP-labelled secondary 

antibody detectable by an Enhanced Chemiluminescence (ECL) detection system 

(see below). 

2.3.3.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

The Mini-PROTEAN® cell system (Bio-Rad) was used for gel preparation and 

running. A short-plate and a spacer-plate were cleaned with detergent, washed 

and then cleaned with ethanol and placed into the casting frame. The resolving 
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gel (12%) for standard protein analysis was prepared (Table 1) and cast. The top 

of the gel was cover with water saturated butanol and allowed to polymerise 

which took approximately 20 minutes. The stacking gel was prepared and 

following draining the water saturated butanol and a quick water washing, was 

immediately poured on the top. Then the comb was inserted and the gel was 

allowed to polymerise for 20 minutes.         

Components Resolving gel (12%) Stacking gel 

ddH2O 3.8  ml 2.03  ml 

40% Acrylamide/Bis 3.0  ml 0.38  ml 

Tris buffer 2.5  ml (1.5 M, pH 8.8) 0.38  ml (0.5 M, pH 6.8) 

10% SDS 0.1  ml 0.03  ml 

10% Ammonium per-

sulphate (APS) 

0.1  ml 0.03  ml 

Glycerol 0.5  ml 0.15  ml 

TEMED 4.0 l 3.0 l 

 

Table 1 SDS-PAGE resolving and stacking gel composition 

After the gel was polymerised, the gel cassette was removed from the casting 

frame and placed into the electrode assembly with the short plate facing inward 

and placed into the mini tank. The inner chamber was filled with approximately 

100 ml of running buffer. Approximately 200 ml of running buffer was added to 

the mini tank (lower buffer chamber). After removing the comb, the wells were 

quickly washed and the protein samples were loaded into the wells. The gel was 

run at 120V for 1.5 – 2 hours. 

2.3.3.2 Protein transfer onto the membrane 

The Trans-Blot® electrophoretic transfer cell system (Bio-Rad) was used for 

protein gel blotting onto a Whatman® Protran® nitrocellulose membrane in the 

following manner: 

1. The transfer buffer (Tris 2.8g, Glycine 2.9 g, Methanol 200 ml, ddH2O upto 

1 L) was chilled on ice 1 hour before blotting. The blot-cell was set up in 

the cold room. 

2. 4 pieces of Whatman 3MM filter paper were cut with dimensions 9 x 7 cm 

and soaked together with fibre pads in transfer buffer. 
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3. A piece of Whatman® Protran® nitrocellulose membrane was cut to the 

same size as that of the protein gel. 

4. The gel was removed from the electrophoresis apparatus and placed in 

transfer buffer. 

5. The transfer cassette was assembled as follows (black side down): fibre 

pad, 2 layers of Whatman® filter paper, gel (upside down and without 

bubbles), Whatman® Protran® nitrocellulose membrane (without bubbles), 

2 layers of Whatman filter paper, and fibre pad.  

6. The cassette was placed in the transfer cell (black on black), ice element 

was inserted and transfer buffer was filled in. 

7. The transfer cell was connected to the power source and run on 20V 

overnight in the cold room with the buffer stirring. 

2.3.3.3 Immuno-detection 

After the membrane transfer, the antigen of interest was detected by an antigen 

specific primary monoclonal or polyclonal antibody, which was then recognised 

by a secondary anti-IgG antibody conjugated to horseradish peroxidise (HRP). 

The complex was visualised using the ECL Plus Western blotting detection 

reagents (Amersham Biosciences), which utilises a technology based on the 

enzymatic generation of acridinium ester intermediates. These intermediates 

react with peroxide under slight alkaline conditions to produce a sustained, high 

intensity chemiluminescence.   

The Whatman® Protran® nitrocellulose membrane was first blocked in 2% non-

fat dried milk/0.1% Tween in PBS for 1 hour at RT or 4˚C overnight in order to 

block non-specific binding sites. The primary antibody was diluted in 2% non-fat 

dried milk/0.1% Tween in PBS (diluted 1:100 up to 1:5000 depending on the 

antibody; determined empirically) and the membrane was incubated overnight 

at 4˚C (with rocking) with this diluted antibody milk solution. The membrane 

was briefly rinsed in 0.1% Tween in PBS, and washed 3x for 15 minutes in the 

same buffer at room temperature. The secondary HRP labelled antibody (Dako 

UK Ltd.) was diluted either 1:1000 or 1:3000 in 2% non-fat dried milk/0.1% 

Tween in PBS. The membrane was incubated for 1 hour at room temperature 

(with rocking). The membrane was again rinsed in 0.1% Tween in PBS and 

washed 3 times for 15 minutes at RT. The detection solution (Amersham 

Biosciences) was prepared by mixing solutions A and B in a ratio of 1:1. The 
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washed membrane was placed on a sheet of Saran Wrap and the detection 

solution was pipetted onto the membrane. Following 1 minute incubation the 

excess detection reagent was drained and the membrane wrapped in Saran 

Wrap. Finally the membrane was placed in an X-ray film cassette. 

Chemiluminescence detection was carried out in a dark room using an X-ray film. 

Exposure times varied according to the signal strength. 

2.4 Immunofluorescence assay (IFA) 

IFAs were performed on fixed P. berghei infected reticulocyte enriched 

erythrocytes and mosquito stages. Smears from cultures were fixed with ice cold 

methanol for 10 minutes, washed twice in PBS and permeabilised with 0.1% 

Triton X-100/PBS for 10 minutes at room temperature. Slides were then blocked 

in 3% BSA/PBS for 1 hour at room temperature or overnight at 4˚C. The primary 

antibody was diluted to a desired concentration in 3% BSA in PBS and pipetted on 

to the slides and covered with a piece of Parafilm to keep it from drying. 

Incubation was carried out for 2 hours at room temperature or overnight at 4˚C. 

Slides were then washed three times in PBS for 10 minutes each to remove 

excess primary antibody. Secondary antibody was applied at 1:1000 to 1:2000 

dilutions (in 3% BSA/PBS) and allowed to incubate for 1 hour at room 

temperature. Slides were washed three times for 10 min. in PBS. The slides were 

mounted in Vectashield® mounting medium with DAPI (Vector labs) and sealed 

with transparent nail polish to prevent drying. Fluorescence was analysed and 

images acquired using the DeltaVision Epifluorescence Microscope Imaging 

System and analysed by the SoftWoRx Explorer Suite software. 

2.5 Reticulocyte methods 

2.5.1 Enrichment of reticulocytes in mice and rats 

Reticulocytes constitute 1-2% of RBCs in circulating peripheral blood. In mice 

and rats, the number of reticulocytes can be increased by depleting RBCs in 

blood inducing an erythropaenia which then leads to an accelerated 

erythropoiesis. This can be done either by controlled bleeding, erythropoietin 

administration or by administering phenylhydrazine-HCl which results in 

denaturation of haemoglobin and RBC lysis. Reticulocytosis evoked by 

phenylhydrazine-HCl administration is more rapid and is more easily controlled 
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for experimental purposes (Flanagan 1970), hence this method was used for 

experiments. 

2.5.2 Monitoring reticulocyte production 

In all experimental animals, reticulocyte production was monitored whilst they 

were under procedures to make sure that they were bled on the day when 

number of reticulocytes was at its peak. A brief description of the procedure is 

as follows:  

One female TO (Theilers Original) mouse (26-30 g) or a female Wistar rat (150-

175 g) was injected intraperitoneally once with phenylhydrazine-HCl dissolved in 

0.9% NaCl (w/v) at 100 mg/kg body weight and was monitored for production of 

reticulocytes for 9 days. Every day, 5 µl of tail blood was taken in 500 µl 

0.1%BSA/PBS (kept on ice) and mixed well. Erythrocytes were stained with 

reticulocyte markers: either CD71 or sodium-potassium ATPase antibodies. 

Briefly, for CD71 staining, erythrocyte suspension received 3.1 µl of 0.2 mg/ml 

CD71-APC (17‐0711, Ebioscience) conjugated antibody and 2.5 µl of 0.5 mg/ml 

Ter119 FITC (11‐5921 Ebioscience) conjugated antibody, incubated on ice for 30 

minutes, spun down for 15 seconds at 13000g, supernatant removed and 

resuspended in 0.1%BSA/PBS. For sodium-potassium ATPase staining, erythrocyte 

suspension received 5 µl sodium-potassium ATPase antibody (AB76020, Abcam), 

incubated on ice for 30 minutes, spun down for 15 seconds at 13000g, 

supernatant removed, washed with 0.1%BSA/PBS and resuspended in 500 µl 

0.1%BSA/PBS with 2.5  µl APC conjugated goat-anti-rabbit antibody (A-10931 

Invitrogen). It was incubated on ice for 30 minutes, spun down, supernatant 

removed and resuspended in 500  µl 0.1%BSA/PBS. Stained cells were analysed 

using a MACSQuant analyser (Miltenyi Biotec, Germany). 

2.5.3 Obtaining a pure population of reticulocytes 

The highest number of reticulocytes in peripheral blood was observed on day 5 

post single dose of phenylhydrazine-HCl. Hence reticulocytes were harvested on 

day 5 after phenylhydrazine-HCl injection for subsequent experiments. A pilot 

experiment was done to assess the number of reticulocytes which can be FACS 

sorted within a reasonable amount of time from a 42% CD71 positive population.  

Cells were prepared from a mouse treated with phenylhydrazine-HCl and cells 

stained with CD71 antibody as described in 2.5.2. Cells were sorted on BD FACS 

Aria cell sorter. Considering 2 continuous runs of about 1 hour 30 minutes, it was 
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found that from a 42% APC positive population, 4.5 to 5 million APC positive and 

6.5 to 7 million APC low/negative cells can be obtained in 1 hour. Therefore, to 

sort 107 cells, approximately 2 to 2.5 hours of sorting time will be required. 

Sorting of 108 cells would require, approximately 20 hours during which time the 

reticulocytes continue to mature to normocytes.  So being very time consuming, 

expensive and unconducive to experimental design, FACS sorting was ruled out 

as a method to get pure populations of reticulocytes for metabolomics 

experiments as at least 108 cells are needed for each replicate. The metabolic 

signature of reticulocytes was deduced by comparing erythrocytes containing 

98% or more normocytes to erythrocytes which were reticulocyte enriched (35% 

or more). Another way of obtaining pure reticulocytes could be in vitro culture 

of CD34+ peripheral mouse stem cells and differentiating them into erythroid 

precursors. This method is not established in our laboratory yet and is being 

explored as a future possibility with some collaboration. See chapter 3 for 

details of reticulocyte metabolomics data.  

2.6 Untargeted Metabolomics methods using LC-MS & GC-MS 

2.6.1 Uninfected reticulocyte enriched and un-enriched red blood cell 

preparation 

For collecting reticulocyte enriched red blood cells, three female Wistar rats 

were each injected with phenylhydrazine-HCl dissolved in 0.9% NaCl (w/v) at a 

dose of 100 mg/kg body weight and reticulocyte percentage in peripheral blood 

was monitored for 5 days as described in 2.5.2. In another three female Wistar 

rats, reticulocyte percentage in peripheral blood was monitored for five days as 

described in 2.5.2. On day five, all rats were bled by cardiac puncture and blood 

from each rat was collected in 10 ml RPMI1640 medium. Each suspension was 

passed through a prewashed Plasmodipur filter as described in 2.1.6. Cells were 

eluted with 10 ml RPMI1640, which gave a total volume of 20 ml which was 

divided into 2 falcon tubes with 10 ml each, tubes A and B. Both tubes were spun 

at 450g for 8 minutes (acceleration 9/ deceleration 2). Supernatant was 

removed from both the tubes. Pellet from tube A  was resuspended in 100 ml 

complete media containing 75% RPMI1640 and 25% FCS, transferred to a 150cm 

flask, gassed for 60 seconds with a gas mix containing 5% CO2, 5% O2, 90% N2. The 

flask was then incubated for 24 hours at 37˚C on a shaker at a minimal speed 

just to keep the cells in suspension. Pellet from tube B was resuspended in 40 ml 
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chilled enriched PBS (with 20 mM Hepes, 20 mM Glucose, 4 mM NaHCO3, and 

0.1% BSA) and kept on ice. 20 µl of this suspension was put on a haemocytometer 

and cells were counted. From the suspension kept on ice, 4 tubes of 108 cells 

(total 12 tubes from all replicates) were prepared and kept on ice until 

metabolite extraction. Next day, after about 24 hours of incubation at 37˚C, a 

thermometer was put in flask with sample A and the bottom of the flask was 

submerged in a dry ice ethanol bath and swirled around until temperature in 

thermometer read 8˚C. The flask was then taken out immediately and divided 

equally into two pre-chilled falcon tubes kept on ice.  Both tubes were spun at 

450g at 4°C for 8 minutes (acceleration 9/deceleration 2). Supernatant was 

removed from both the tubes. Pellets from both tubes were resuspended in 40 

ml chilled (4°C) enriched PBS and kept on ice. 20 µl of this suspension was put 

on a haemocytometer and cells were counted. From the suspension kept on ice, 

four tubes of 108 cells (total 12 tubes from all replicates) were prepared and 

kept on ice until metabolite extraction. 

2.6.2 P. berghei schizonts (Gametocyte Producer and gametocyte non-

producer) whole cells, lysed parasites and lysis supernatant 

preparation 

For schizonts from gametocyte producing and gametocyte non-producing 

parasites, three Wistar rats each were treated with phenylhydrazine-HCl as 

described in 2.5.1 on day one and next day were infected by mechanical passage 

of P. berghei parasites from mice infected with a gametocyte producing clone 

(820cl1m1cl1) and gametocyte non-producing clone (m9w21d) as described in 

2.1.1. On day five, at parasitemia levels 7-12% all rats were bled by cardiac 

puncture and blood from each rat was collected in 10 ml RPMI1640 medium. 

Each suspension was passed through a prewashed Plasmodipur filter as described 

in 2.1.6. Cells were eluted with 10 ml RPMI1640 and spun at 450g for 8 minutes 

(acceleration 9/deceleration 2). Supernatant was removed and pellet was 

resuspended in 150 ml complete media containing 75% RPMI1640 and 25% FCS, 

transferred to a 150cm flask, gassed for 60 seconds with a gas mix containing 5% 

CO2, 5% O2, and 90% N2. The flask was then incubated for 24 hours at 37˚C on a 

shaker at a minimal speed just to keep the cells in suspension.  Next day after 

about 24 hours of incubation at 37˚C, a thermometer was put in flask and the 

bottom of the flask was submerged in a dry ice ethanol bath and swirled around 

until the temperature in thermometer read 8˚C. After this the flask was taken 



47 
 

 Methods 

out immediately and divided equally into four pre-chilled falcon tubes kept on 

ice. 10 ml chilled 55% Nycodenz was laid down carefully at bottom of tubes and 

tubes spun at 450g at 4˚C for 20 min without using the brake. Schizonts were 

collected from the interface and pooled together from four tubes for each 

culture and topped up with culture medium up to 40 ml and kept on ice. 20 µl of 

this suspension was put on a haemocytometer and cells were counted. From the 

suspension kept on ice, four tubes of 108 cells (total 12 tubes from all replicates) 

were prepared and kept on ice until metabolite extraction. Another Falcon tube 

was prepared with 4x108 cells and spun at 450g at 4˚C for eight minutes. 

Supernatant was removed and cells were resuspended with 10 ml chilled 

erythrocyte lysis buffer and keep on ice for five min. The suspension was again 

spun at 450g at 4˚C for eight minutes. Four tubes were prepared (total 12 tubes 

from all replicates) with 10 µl supernatant each and keep on ice until metabolite 

extraction. The rest of supernatant was then removed and the pellet was 

resuspended in chilled ePBS. The pellet was divided into four tubes with 108 cells 

(total 12 tubes from all replicates) and kept on ice until metabolite extraction. 

2.6.3 P. berghei gametocytes: whole cell, lysed parasite and lysis 

supernatant preparation 

12 Wistar rats (three groups of four each) were treated with phenylhydrazine-

HCl chloride as described in 2.5.1 on day 1 and next day were infected by 

mechanical passage of P. berghei parasites from a mouse infected with a 

gametocyte producing clone (820cl1m1cl1) as described in 2.1.1. At parasitemia 

levels of 7-12% at the end of day 5, the animals were given sulphadiazine in 

drinking water at 25 mg/liter to kill asexual stages. Animals were bled early 

morning on day 8 by cardiac puncture and blood from each rat was collected in 

10 ml chilled enriched PBS. Each suspension was passed through a prewashed 

Plasmodipur filter as described in 2.1.6 and topped up with chilled enriched PBS 

to make a total volume of 35 ml per tube. 10 ml chilled 53% Nycodenz was laid 

down carefully at bottom of tubes and tubes were spun at 450g at 4˚C for 20 

min without brake. Gametocytes were collected from interphase and pooled 

together from four tubes for each group and topped up with enriched PBS up to 

40 ml and kept on ice. 20 µl of this suspension was put on a haemocytometer 

and cells were counted. From the suspension kept on ice, 4 tubes of 108 cells 

(total 12 tubes from all replicates) were prepared and kept on ice until 

metabolite extraction. Another Falcon tube was prepared with 4x108 cells and 
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spun at 450g at 4˚C for 8 minutes (acceleration 9/deceleration 2). Supernatant 

was removed and cells were resuspended with 10 ml chilled erythrocyte lysis 

buffer and keep on ice for 5 min. the suspension was again spun at 450g at 4˚C 

for 8 minutes (acceleration 9/deceleration 2). 4 tubes were prepared (total 12 

tubes from all replicates) with 10 µl supernatant each and keep on ice until 

metabolite extraction. The rest of the supernatant was removed and pellet was 

resuspended into chilled ePBS. The pellet was divided into 4 tubes of 108 cells 

(total 12 tubes from all replicates) and kept on ice until metabolite extraction. 

2.6.4 Metabolite Extraction, drying and storage 

All the tubes were kept cold while doing extractions. Tubes with 108 cells each 

were centrifuged at 4˚C for 10 minutes at 1300g and supernatant was removed. 

The pellet was resuspended with 500 µl cold enriched PBS and centrifuged at 

4˚C for five minutes at 2700g and supernatant removed again. Pellet was then 

resuspended in cold 200 µl of Chloroform/Methanol/Water (1:3:1) plus internal 

standards (5-fluorouridine, Cl-phenyl-cAMP, N-methyl glucamine, Canavanine, 

Piperazine all at 1 µM concentrations). The suspension was then mixed vigorously 

on cooled (4˚C) shaker for one hour and sonicated for two min in ice cold water 

bath. This was followed by centrifugation for five minutes at 15,300g at 4˚C. 180 

µl supernatant was taken and split in two tubes separately for LC-MS runs in the 

Glasgow Polyomics facility at the University of Glasgow and GC-MS runs in 

Metabolomics Australia facility at the University of Melbourne. Tubes for the 

Melbourne lab were dried down under nitrogen flow, capped tightly and put at -

80˚C before shipment on dry ice. Tubes for the Glasgow lab were topped up with 

nitrogen, capped tightly and kept at -80˚C. 

2.6.5 LC-MS analysis 

For LC-MS analysis, samples underwent hydrophilic interaction liquid 

chromatography-mass spectrometry with a 20mm x 2.1mm ZIC-HILIC guard 

column coupled to a 150 x 4.6mm ZIC-HILIC analytical column running at 

300ul/min which was attached to an Orbitrap Exactive (Thermo Fisher). The 

gradient ran from 20% H2O 80% acetonitrile to 80% H2O, 20% acetonitrile in 30 

minutes, followed by a wash at 5% acetonitrile, 95% H2O for 6 minutes, and 

equilibration at 20% H2O, 80% acetonitrile for 8 minutes. Raw mass spectrometry 

data was processed using the standard Glasgow Polyomics pipeline, consisting of 

XCMS for peak picking (Smith, Want et al. 2006), MzMatch for filtering and 
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grouping (Scheltema, Jankevics et al. 2011) and IDEOM for further filtering, post-

processing and identification (Creek, Jankevics et al. 2012). Core putative 

metabolite identifications were validated against a panel of unambiguous 

standards by mass and retention time. Matched mass and retention time is 

acceptable as a tier 1 identification according to the Metabolomics Standards 

Initiative (MSI) (Sansone, Fan et al. 2007). Additional putative identifications 

were assigned by mass and predicted retention time followed by manual data 

filtration for removing duplicates and false positives and for including false 

rejections.  

2.6.6 GC-MS analysis 

For GC-MS, dried extracts were reconstituted with extraction solvent containing 

an additional internal standard (scyllo-Inositol SI 1 nmol) and dried in vacuum. 

Methoximation and derivatisation was done automatically with the help of an 

auto-sampling robot, first by adding 20 µl of 20 mg/ml methoxyamine in pyridine 

and shaking at 37°C for 2 hours and then adding 20 µl of BSTFA + 1% TMCS 

Silylation reagent and shaking at 37°C for 1 hour. Samples were then rested at 

room temperature for 1 hour and then 1 µl was injected on an Agilent 7890A GC 

-5975 C mass-detector combination setup. Chromatography was done on a 30 m 

VF5-MS column with 0.25 mm inner diameter and helium as the carrier gas. The 

initial oven temperature was 70°C for 1 min, then 1°C/min oven temperature 

ramp to 76°C, then 5°C/min to 325°C and held for 10 min. Obtained raw data 

was fed through the Metabolomics Australia’s in-house Metabolomics software 

PyMS (O'Callaghan, De Souza et al. 2012) which allowed for pre-processing of 

data by peak-finding, integration and alignment and generated a data matrix of 

candidate metabolites showing their intensity representing abundance of a 

metabolite in a given sample and its unique retention time. Then using the 

Agilent Chemstation software, the chromatograms were manually checked and 

the peaks corresponding to the retention times in the PyMS matrix were analysed 

for their Electron Ionisation (EI) spectrum. Metabolites were assigned putative 

identities by matching their spectra (with a cut-off score of ≥90%) to Agilent 

Fiehn and NIST GC-MS Metabolomics libraries of metabolite GC-MS spectra which 

includes a searchable EI spectrum and retention index. 
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2.7 Targeted metabolomics methods using GC-MS 

2.7.1 Cultures using minimal media and labelled carbon source 

Based on the publications by Divo et al related to nutritional requirement of 

Plasmodium parasites in in vitro cultures (Divo, Geary et al. 1985, Geary, Divo et 

al. 1985, Geary, Divo et al. 1985), minimal media components were selected and 

prepared based on RPMI 1640 concentrations (Schuster 2002) using the following 

components available in the laboratory. 

Salts and other components: 

Components  mg/L (final concentration 1x)  mg/250 ml (for 10x stock) 

Ca(NO3)2.4H20 100 250 

KCl 400 1000 

MgSO4 (anhydrous) 48.8 122 

NaCl 5300 13250 

NaHCO3 2000 5000 

Na2HPO4 (anhydrous) 800 2000 

Hypoxanthine 4.1 10.2 

D-Glucose 2000 5000 

Glutathione 1 3.3 

HEPES 5958 14895 

Phenol Red 5 12.5 

 

All the components were mixed in ddH2O and stored at 4°C. 

Amino acids: 

Amino acids  mg/L (final concentration 1x)  mg/250 ml (for 10x stock) 

L-Cystine.2HCl 65 162.5 

L-Glutamic Acid 20 50 

L-Glutamine 300 750 

L-Isoleucine 50 125 

L-Methionine 15 37.5 
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L-Proline 20 50 

L-Tyrosine.2Na.2H2O 29 75 

 

All the components were mixed in ddH2O and stored at 4°C. 

Vitamins: Only Pantothenate was found to be essential by (Geary, Divo et al. 

1985). 

Vitamins  mg/L (final concentration 1x)  mg/ 10 ml (for 10,000x stock) 

Ca-Pantothenate 0.25 25 

 

Ca-Pantothenate was mixed in ddH2O and stored at 4°C. 

All components were mixed to 1x concentration and Pen-Strep antibiotic mix (1 

ml/l) was added just before use. AlbuMAX® (Life Technologies- 11020-021) was 

added to a concentration of 5g/l, pH was adjusted to 7.3 and complete media 

was then sterile filtered using a 0.22µ filter. When a labelled carbon source was 

to be used for cultures (e.g. 13C U-Glucose or 13C15N U-Glutamine), the 

corresponding component was replaced with the isotopically labelled form.  

2.7.2 Isotopic labelling of P. berghei asexual cultures 

Parasites from the line 820m9w21dm1cl1 (gametocyte non-Producer) were used 

to grow a synchronous culture. 2 TO mice were bled (approximately 3 ml blood 

was obtained) 5 mins post invasion (after purified schizonts were injected i.v.) 

at a parasitemia of 6.5% (all very young rings). The mice were pre-treated with 

phz 5 days before to induce reticulocytosis. Blood was passed through two pre-

washed Plasmodipur filters to remove leucocytes as described in 2.1.6. Blood 

from 2 mice was finally eluted in 30 ml ePBS. The suspension was observed by 

haemocytometer and then divided into 15 Falcon tubes such that each tube 

contained 6x108 RBCs. The tubes were spun at 450g for 8 mins, supernatant 

removed and cells were resuspended into 12 ml minimal media (plus albumax 

5g/l) with 5 flasks containing 13C U-Glucose (from Cambridge Isotope 

Laboratories), 5 flasks containing 13C15N U-Glutamine (from Cambridge Isotope 

Laboratories) and 5 flasks containing unlabeled media components. The flasks 

were gassed and kept at 37˚C with slight shaking as described in 2.1.7. Each 

flask was harvested to collect samples for 0h, 6h, 12h, 18h, and 24h time points 
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(the first time point was collected after allowing for cells to equilibrate for 2 

hours). 2 uninfected mice treated similarly were also bled at the same time and 

samples were processed exactly as for infected blood. 

2.7.3 Isotopic labelling of P. berghei gametocytes in vitro 

Parasites from line 820em1dcl2TBB (the parent producer line) were grown in 20 

TO mice (infection was started by mechanical passage to ensure similar 

parasitaemias as described in 2.1.1). The mice were given sulfadiazine in 

drinking water (30 mg/L) when the parasitaemia reached ~30% and the mice 

were kept on sulfadiazine for 48 hours which led to killing of all asexual stage 

parasites and left mature circulating gametocytes at a parasitaemia of 

approximately 6%. All mice were then bled (approximately 1.5 ml blood from 

each mouse was obtained) into warm ePBS kept at 37˚C to keep gametocytes 

unactivated. Blood was passed through two pre-washed Plasmodipur filters to 

remove leucocytes as described in 2.1.6. The suspension was then divided 

equally and passed through 16 prewashed MACS magnetic columns (Miltenyi 

Biotec, Germany) to get rid of uninfected cells, washed twice with 4 ml warm 

ePBS and eluted with warm ePBS by taking the column off the magnets and using 

a plunger twice. This whole process was done in the 37˚C incubator. The 

suspension was observed on haemocytometer and then divided into 15 tubes so 

that each tube contains 6x108 gametocytes. The tubes were then kept at 37˚C 

and just before setting up according to the following scheme, spun at 450g for 8 

mins, supernatant removed and resuspended.  

For unactivated gametocytes, cells from 3 tubes prepared above were 

resuspended in12 ml minimal media (plus albumax 5g/l) pre-warmed to 37°C 

with either 13C U-Glucose or with 13C15N U-Glutamine or with unlabeled media 

components. Each suspension was allowed to equilibrate for 2 hours at 37°C 

before harvesting. 

For activating gametocytes, cells from 4 tubes each prepared above were 

resuspended in 12 ml minimal media (plus 100 µM Xanthurenic acid, albumax 

5g/l) pre-warmed to 21°C with either 13C U-Glucose or with 13C15N U-Glutamine 

or with unlabeled media components. Cells suspension were then incubated at 

21°C and harvested at 1min, 10min, 20min and 30min time points.  
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2.7.4 Isotopic labelling of P. berghei ookinete cultures 

Parasites from line 820em1dcl2TBB (the parent producer line) and 137cl8 (48/45 

ko which does not produce ookinetes but females are viable) were grown in 16 

TO mice each (infection was started by mechanical passage to ensure similar 

parasitaemias as described in 2.1.1). The mice were given sulfadiazine in 

drinking water (30 mg/L) when the parasitaemia reached 30% and the mice were 

kept on sulfadiazine for 48 hours which led to killing of all asexual stage 

parasites and left mature circulating gametocytes at a parasitaemia of 

approximately 6%. All mice were then bled (approximately 1.5 ml blood from 

each mouse was obtained) into warm ePBS kept at 37˚C to keep gametocytes 

unactivated. Blood was passed through two pre-washed Plasmodipur filters to 

remove leucocytes as described in 2.1.6. Cells were then spun at 450g for 8 mins 

and resuspended in 600 ml minimal media (plus 100 µM Xanthurenic acid, 

albumax 5g/l) pre-warmed to 21°C. After checking on haemocytometer, the 

suspension was divided into 6 flasks so that each flask had 2x1010 total cells 

(2x6x108 gametocytes) in a final volume of 90 ml. The flasks were incubated at 

21˚C and harvested at 10h post activation and 21h post activation. 2 hours 

before harvesting, cells were spun at 450g for 8mins and supernatant was 

removed. The cells were resuspended with 12 ml minimal media (plus 100 µM 

Xanthurenic acid, albumax 5g/l) pre-warmed to 21°C with either 13C U-Glucose 

or with 13C15N U-Glutamine or with unlabeled media components. Cells 

suspensions were then incubated again at 21°C. After harvesting, cells from 

each flask were then passed through prewashed MACS magnetic columns 

(Miltenyi Biotec, Germany) to get rid of uninfected cells, washed twice with 4 ml 

unlabeled complete minimal media and eluted with the same by taking the 

column off the magnets and using a plunger twice in the final volume of 12 ml. 

Metabolite extractions were then carried out on cells. At 21hours, the ookinete 

cultures from the producer line were found to have ~70% ookinete conversion 

rate whereas 137cl8 showed unfertilized female gametes only. 

2.7.5 Metabolite Extraction, drying and storage 

At each time point, before harvesting, to quench metabolism, the tubes were 

immersed in a dry ice-ethanol bath. A thermometer was used to read the 

temperature and the flasks were taken out as soon as it reached 8˚C on the 

scale. The culture suspension from each tube was then split to 6 tubes (108 cells 

each) and the tubes were then spun at 1300g at 4˚C and supernatant was 
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removed (10ul of this supernatant was used for extractions in 100ul extraction 

solvent- done for only 3 out of 6 tubes). The cells were washed once- 

resuspended in 500ul cold ePBS by pipetting up and down and spun again at 

1300g at 4˚C and supernatant was removed. Then each pellet was resuspended 

in 150ul extraction solvent by pipetting up and down (Chloroform: methanol: 

water: 1:3:1 plus internal standards [5-fluorouridine, Cl-phenyl-cAMP, N-methyl 

glucamine, Canavanine, Piperazine all at 1uM concentrations]). The cells from 

unlabeled cultures were extracted in extraction solvent which also had labelled 

TCA cycle metabolites at following concentrations (U-13C-malic acid 5  mg/ ml; 

U-13C-fumaric acid 0.5 mg/ml; 1,4-13C-succinic acid 0.5 mg/ml; 2,4-13C-citric 

acid 1 mg/ml; 1,2,3,4-13C-ketoglutaric acid disodium, 5 mg/ml). The suspensions 

were mixed vigorously on shaker in cold room for 1 hour. This was done on a 

vortex with attachment for multiple tubes. The suspensions were sonicated for 

10mins in ice-cold water bath. The suspensions were then centrifuged for 5 

minutes at 15,300g at 4˚C. 50ul of the supernatant was then put into glass vials, 

dried under nitrogen flow at room temperature and stored at -80˚C before 

shipping to Metabolomics Australia. 

2.7.6 Targeted GC-MS analysis 

Samples were reconstituted, derivatized and run as described in 2.6.6. As a 

control, a mixture of known metabolites of glycolysis and TCA cycle at known 

concentrations was also derivatized and run with the samples to serve as a 

reference for retention time and spectrum during chromatographic separation. 

Data analysis was done manually on the Agilent Chemstation platform. First, 

every peak in the metabolite mix was checked against the Fiehn library and 

annotated with its retention time and major molecular ion post fragmentation. 

Then the major molecular ion for each metabolite of interest was worked out by 

looking at their possible fragmentations patterns and matched to this library. For 

doing individual ion extraction from the chromatogram of each sample, a 

molecular ion was chosen based on abundance and peak shape from the 

metabolite mix. Then for each sample, the chromatogram was scanned manually 

between the corresponding retention time ranges which were kept consistent at 

±0.3min. The mass of the molecular ion of interest and all possible isotopes 

(depending on the number of C atoms) was queried in the specified retention 

time window. Retention time alignment for each isotope was observed for 

integration and individual peak areas were noted which were representative of 
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abundance of individual isotopic forms of the metabolite. Background correction 

for naturally occurring isotopes was done by calculating and subtracting the 

percentage labelling of ions in the control metabolite mix. 
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3 Comparative metabolomics of erythroid lineage reveals 

that reticulocytes provide metabolic reserves for 

Plasmodium parasites  

3.1 Introduction 

The malaria causing apicomplexan parasite Plasmodium has a dynamic life cycle 

which is reflected in stage specific morphologies, transcriptomes, proteomes and 

most likely metabolomes (Bozdech, Llinas et al. 2003, Hall, Karras et al. 2005, 

Khan, Franke-Fayard et al. 2005, Llinas and del Portillo 2005, Olszewski, 

Morrisey et al. 2009, Kafsack and Llinas 2010). The latter reflects the type and 

extent of biochemical processes which take place in the parasite at any given 

time and in turn influences or is influenced by the host cell which may also be 

dynamic in its response to infection (Kafsack and Llinas 2010, Olszewski and 

Llinas 2011). Perhaps due to their parasitic life-style, Plasmodium spp. have a 

comparatively simplified and reduced metabolic capacity as compared to higher 

independent organisms. They are auxotrophic for purines and amino acids 

(Booden and Hull 1973, Sherman 1977) but have retained many central 

metabolic pathways like glycolysis (Homewood 1977), citric acid cycle (Macrae, 

Dixon et al. 2013), lipid synthesis (Holz 1977), pentose phosphate pathway 

(Barrett 1997), pyrimidine biosynthesis (Hyde 2007) and glycosylation (Macedo, 

Schwarz et al. 2010). As growing Plasmodium parasites are intracellular, their 

metabolism is interlinked with the host cells and is dependent upon the 

availability of external nutrients.  As a result intracellular Plasmodium establish 

uptake systems such as the new permeation pathways with the purpose of 

accessing host cell and environmental nutrients (Landfear, 2011) with the 

parasite encoding >120 predicted membrane transport proteins (Martin, 

Goldberg, Kirk, 2009) a subset of which is located on the plasma membrane.  

Mature erythrocytes are also simplified cells which comprise almost 98% of the 

circulating red blood cells that are metabolically active but less complex than 

the erythroid precursors present in the bone marrow (Chen, Liu et al. 2009) and 

reticulocytes (maturing erythrocytes) present in peripheral circulation 

(Gronowicz, Swift et al. 1984). The major metabolic pathways in mature 

erythrocytes have been shown to be glycolysis (Chapman, Hennessey et al. 1962) 

and pentose phosphate pathway (Stromme and Eldjarn 1962).  
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Reticulocytes undergo many changes as they mature into normocytes.  

Maturation is associated with simplification of the cell leading to the loss of 

organelles (mitochondria, ribosomes, vesicles and lysosomes), acquisition of a 

biconcave shape with consequent increase in shear membrane resistance and 

loss or reduced abundance of 30 membrane proteins, 20% decrease in surface 

area and decreased cholesterol (Gronowicz, Swift et al. 1984, Liu, Guo et al. 

2010). Reticulocytes are therefore, more complex than normocytes and should 

offer a more abundant and diverse nutrient base to an intracellular parasite than 

a normocyte which might be exploited by reticulocyte preferring Plasmodium 

spp. 

To establish whether there are metabolic differences between reticulocytes and 

mature erythrocytes that mirror the great specialisation of the erythrocyte, a 

non-targeted metabolomics approach was taken. Small molecule metabolites 

(typically less than 1500Da) constitute the ‘metabolome’ of an organism or 

system and the characterization of a metabolome can give a snapshot of the 

physiology of the cell (Gomase, Changbhale et al. 2008). A discovery-based study 

to perform a comprehensive comparison of the metabolomes of uninfected rat 

and human reticulocytes and normocytes was undertaken to understand 

differences in intracellular host cell environments and the different 

opportunities afforded to intracellular parasites.  The findings were then 

exploited using reverse genetics to disrupt parasite metabolism and establish the 

broad ability of P. berghei to utilise the products of host cell metabolism. 

3.2 Results 

3.2.1 The reticulocyte metabolome is more complex and abundant than 

the mature erythrocyte 

Induction of reticulocytosis was achieved through administration of 

phenylhydrazine-HCl (PHZ, 100 mg/kg body weight) to Wistar rats and cells were 

harvested when reticulocyte percentage in peripheral blood reached its 

maximum level (~35% reticulocytes 5 days after treatment). This was monitored 

by FACS analysis using reticulocyte specific marker surface protein transferrin 

receptor (CD71) which is lost as they mature (Liu, Guo et al. 2010).  Material was 

also collected for comparison with blood from non-enriched (~1% reticulocytes) 

animals (Figure 3-1).  
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Figure 3-1 (A) Dynamics of reticulocyte enrichment in peripheral blood in vivo followed by 
Phenylhydrazine-HCl (phz) treatment of mice. Reticulocytes were harvested at day 5 post 
phz treatment. The error is given as the SD of n=3 independent biological replicates. (B) 
CD71 (transferrin receptor) is a reticulocyte specific marker and is lost as RBCs mature. Left 
panels- day 4post phz treatment, right panels- day 9 post phz treatment. Top panels show 
Ter119-FITC staining in RBCs which stains all erythroid cells. Bottom pales show CD71-APC 

staining in a subset of RBCs which stains only reticulocytes. 
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Metabolome analysis was performed using two independent and complementary 

approaches, Liquid Chromatography Mass Spectrometry (LC-MS) and Gas 

Chromatography Mass Spectrometry (GC-MS). Briefly, raw LC-MS data was 

processed using the standard Glasgow Polyomics pipeline, consisting of XCMS, 

MZMatch and IDEOM and raw GC-MS data was processed using the standard 

Metabolomics Australia pipeline consisting of PyMS matrix generation and 

Chemstation Electron Ionisation (EI) spectrum match analysis (sections 2.6.5 and 

2.6.6). From a total number of 4560 peaks collected from the two platforms, 333 

putative metabolites (PM) were robustly identified (minimum confidence value 

was set to 5/10 for LC-MS data analysis by IDEOM and minimum ion-spectra 

match was set to 90% to Agilent Fiehn and NIST GC-MS Metabolomics libraries for 

GC-MS data analysis by Chemstation) in all erythrocytes, although many more 

probable metabolites were detected but were not readily assigned an identity. 

For the purpose of description from hereon, uninfected reticulocyte enriched 

erythrocytes are referred to as ‘reticulocytes’ and uninfected normocyte 

enriched erythrocytes are referred to as ‘normocytes’.  The volcano plot in  

Figure 3-2 shows the distribution of abundance of detected PMs in reticulocytes 

compared to normocytes.  

 

 

 

log2 fold change 
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Figure 3-2 Volcano plot showing distribution of putative metabolites according to their fold 
change in abundance in uninfected reticulocyte enriched erythrocytes vs uninfected 
normocyte enriched erythrocytes. All significant changes are represented above the broken 
horizontal line. Coloured dots indicate metabolites which are: Blue- significantly up-
regulated, Red- significantly down-regulated, Yellow- significant but little change, Brown- 

non-significant  

Almost half of all detected PMs (149, ~45%) were found to be enriched in 

reticulocytes by more than 2 fold with a statistical significance of p<0.05 ( 

Figure 3-2, Table 2)  

Only 5 (~1%) PMs were more abundant in mature erythrocytes by more than 2 

fold with a statistical significance of p<0.05, the majority being tri- -peptides, 

amino acid and sugar derivatives. Of all the raw metabolomic peaks, including 

the unassigned ones, ~23% were also observed to be similarly enriched in 

reticulocytes and ~2% were found to be reduced and the remaining were 

unchanged between reticulocytes and normocytes ( 

Figure 9-1 in appendix). Importantly, as the rat reticulocyte-enriched samples 

contained 65% normocytes, the level of metabolite enrichment in reticulocytes 

was actually much greater and reflected in table 2. All identified metabolites 

were charted on known metabolic pathways using databases such as MPMP 

(Malaria Parasite Metabolic Pathways- accessible at http://mpmp.huji.ac.il/) 

(Ginsburg 2006), Pathos (A metabolomics tool from Glasgow Polyomics- 

accessible at http://motif.gla.ac.uk/Pathos/) (Leader, Burgess et al. 2011), 

KEGG (Kyoto Encyclopedia of Genes and Genomes, accessible at 

http://www.genome.jp/kegg/) (Kanehisa, Goto et al. 2006) and MetaCyc 

(accessible at http://metacyc.org/) (Caspi, Altman et al. 2014).  Common key 

pathways in Plasmodium based on existing biochemistry of the malaria parasite 

(Kafsack and Llinas 2010, Olszewski and Llinas 2011), genomic data (Gardner, 

Hall et al. 2002) and mammalian host cell (based on data obtained in this study-  

Figure 3-2 and Table 2) were identified.  

3.2.2 The reticulocyte metabolome reflects its ongoing developmental 

programme 

Reticulocytes have been shown to possess mitochondria which are lost as the 

cells mature to normocytes (Gronowicz, Swift et al. 1984). We also found that 

almost all reticulocytes and a subset of normocytes (possibly erythrocytes which 
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have not reached terminal differentiation to normocytes yet) stain for 

Mitotracker® indicating the presence of mitochondria Figure 3-3. 

 

Figure 3-3 Presence of mitochondrial signal in reticulocytes. (A) IFA analysis of uninfected 
erythrocytes from peripheral rat blood shows presence of reticulocytes stained by anti-CD71 
(green) and presence of a Mitotracker® signal (red) in both reticulocytes and some 
normocytes. (B) Flow cytometry analysis showed that all reticulocytes and almost half of 
normocytes stain for Mitotracker® signal indicating the presence of mitochondria. 

In our metabolomics analysis in rat erythrocytes, we detected elevated TCA 

cycle intermediates in reticulocytes compared to normocytes which indicated 

the possibility of presence of a functional citric acid cycle and intermediary 

carbon metabolism in reticulocytes. Several intermediates in purine and 

pyrimidine metabolism were also found at elevated levels in reticulocytes 

compared to normocytes presumably originating either from biosynthesis in the 

preceding erythropoiesis stages or from catabolism of RNA to constituent 

nucleobases (Valentine and Paglia 1980). A number of metabolites of 

phospholipid (mainly phosphatidylcholines) metabolism were also observed in 

reticulocytes which were up regulated compared to normocytes. Many carnitine 

derivatives were also found to be up regulated in reticulocytes compared to 

normocytes which may relate to fatty acid breakdown by beta-oxidation in 

mitochondria or peroxisomes. Intermediates of pentose phosphate pathway, 

glutathione synthesis, arginine metabolism were notable among other pathways 

also found to be elevated in reticulocytes (Table 2) 
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Taken together the data demonstrated that the reticulocyte is a metabolically 

more complex cell than the erythrocyte.  It possesses richer small molecule 

reserves which the invading malaria parasite may access and exploit. 

Furthermore there was a marked overlap in metabolic pathways observed in the 

reticulocyte and those predicted in the parasite. We hypothesised that common 

pathways between the parasite and reticulocyte might be uniquely dispensable 

to the parasite during the intra-reticulocytic development of Plasmodium 

compared with growth in a normocyte where the host metabolites for these 

pathways are less abundant. Also, parasites with such disrupted metabolism 

would probably be able to survive in the reticulocyte but not in the exo-

erythrocytic stages such as in the mosquito (Figure 3-4). 

 

 

Figure 3-4 Hypothesis: Reticulocytes provide metabolic reserves to P. berghei parasites. (A) 
A reticulocyte is a complex cell with significant metabolic reserves and possibly active 
metabolism which overlaps with the malaria parasite and which it may exploit. (B) Key 
metabolic pathways which are common between the reticulocyte and the parasite may be 
dispensable in erythrocytic developmental stages in reticulocyte-resident Plasmodium spp. 
like P. berghei but not normocyte resident species e.g. P. falciparum in vitro. (C) However, 
disrupting parasite genes involved in these pathways might then affect parasite development 

at later stages of the life cycle (exo-erythrocytic mosquito stage development).   

Therefore two metabolic pathways were targeted in P. berghei whose 

intermediates were significantly enriched in reticulocytes. These were 

intermediary carbon metabolism (ICM) and pyrimidine biosynthesis. The 

enrichment of metabolites involved in these pathways in reticulocytes as 

compared to normocytes was found to be significant (Figure 3-5,Table 2). 
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Figure 3-5 Fold change of metabolites of central carbon metabolism and pyrimidine 

biosynthesis in rodent reticulocytes compared to normocytes. 

3.2.3 Features of intermediary carbon metabolism (ICM) are 

dispensable in asexual blood stage P. berghei 

Carbon sources are catabolised by two major pathways in eukaryotes, glycolysis 

and TCA cycle. The presence of intermediary cytosolic enzymes such as 

Phosphoenolpyruvate Carboxylase (pepc PBANKA_101790), Malate Dehydrogenase 

(mdh PBANKA_111770) and Aspartate Amino Transferase (aat PBANKA_030230) in 

Plasmodium spp. suggests the existence of an intermediary carbon metabolism 

(Figure 3-6). 
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Figure 3-6 Schematic representation of intermediary carbon metabolism (ICM) in 
Plasmodium. Genes marked with () were readily deleted in P. berghei blood stages and the 
ones marked with () could not be deleted even after repeated attempts. pepc: 
Phosphoenolpyruvate Carboxylase (PBANKA_101790), mdh: Malate Dehydrogenase 

(PBANKA_111770), aat: Aspartate Amino Transferase (PBANKA_030230).  

Production of aspartate via this pathway is important as it feeds into protein and 

nucleic acid synthesis. Malate either enters mitochondria to participate in the 

TCA cycle or is excreted (Olszewski and Llinas 2011).  In in vitro cultures of P. 

falciparum, pepc was found to be essential for normal intra-erythrocytic survival 

although mutants lacking pepc could be isolated in cultures that were 

supplemented by malate (Storm, Sethia et al. 2014). However, mdh and aat are 

essential in P. falciparum and cannot be deleted (personal communication Prof. 

Sylke Muller). Although the levels of glycolytic intermediates were not very 

different between reticulocytes and normocytes, metabolites involved in TCA 
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cycle and intermediary carbon metabolism (ICM) were found to be enriched in 

reticulocytes compared to normocytes (Figure 3-5,Table 2).  

It has been shown that disruption of the TCA cycle in P. berghei blood stages 

through deletion of flavoprotein (Fp) subunit, Pbsdha (PBANKA_051820) part of 

catalytic component for succinate dehydrogenase activity does not affect 

parasite viability in blood stage forms although ookinete development is 

impaired (Hino, Hirai et al. 2012). Attempts were made to delete the three 

genes which constitute the ICM, Phosphoenolpyruvate carboxylase, pepc 

(PBANKA_101790), Malate dehydrogenase, mdh (PBANKA_111770) and Aspartate 

amino Transferase, aat (PBANKA_030230) encoding components of ICM (Figure 

3-5). It proved possible to readily delete pepc and mdh (Figure 3-7), however aat 

proved refractory.  
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Figure 3-7 (A) Schematic representation of gene deletion strategy for (i) pepc 
(PBANKA_101790) and (ii) mdh (PBANKA_111770) in P. berghei parasites. (B) Gel 
electrophoresis of indicated PCR products to confirm integration of selection cassette, 
disruption of genes and clonality of mutant parasites. G670cl7 and G718cl1 were made in a 
wt parent line expressing GFP constitutively under the eef1a promoter (RMgm-7). G881cl1 
and G907cl1 were made in a wt parent line which expresses GFP in male gametocytes under 
the dynein heavy chain promoter and RFP in female gametocytes under the LCCL domain-

containing protein CCP2 promoter (RMgm-164). 

3.2.3.1 Asexual stage phenotypic analyses of ICM mutant parasites  

The mutant parasites survive in intra-erythrocytic stages but pepc- mutants were 

overgrown by the wt parasite in a competitive growth assay (performed as 

described in 2.1.13) in contrast to mdh- mutants which grew like wt (Figure 3-8 

A).The number of merozoites observed in mature schizont stages in both pepc ko 

(17.02±1.76) and mdh ko (17.41±1.68) are statistically indistinguishable to wt 

(17.45±1.75) (Figure 3-8B). The pepc- mutants take longer to develop in the 

asexual cycle (Figure 3-8C).  However, both mutants cause severe cerebral 
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malaria in C57/B6 mouse model and the dynamics of their lethality is similar to 

wild type, killing all mice within 8-10 days post infection (Figure 3-8D). 

 

Figure 3-8 Asexual stage phenotypic analyses of ICM mutants. (A) Competition growth assay 
using FACS analysis. Equal number of parasites wt population (RFP positive) and mutant 
population (GFP positive) were mixed and injected into a mouse on day 0 and peripheral 
blood from the infected mouse was monitored using FACS analyses over the next 12 days. 
mdh- parasites grow similar to wt but pepc- parasites were overgrown by wt by day 7. Arrows 
indicate mechanical passage into a new mouse (B) Number of merozoites per schizont grown 
in in vitro cultures as counted in giemsa stained smears. The error is given as the SD of n ≥ 
40 schizonts. Data representative of 3 independent biological replicates.  P-value:  ns: not 
significant, unpaired two tailed t-test. (C) Time taken for asexual parasites to grow to mature 
schizont stage. Coloured lines indicate non-linear fit of percentage of mature schizonts 
observed in in vitro synchronous cultures of wt and mutant P. berghei parasites 22 hours 
post invasion. n=3 independent biological replicates. (D) Lethality experiment in C57/B6 
mice by wt and mutant P. berghei parasites. 104 parasites were injected intraperitoneally in 
mice (n=5) on day 0 and they were monitored over 21 days. The mice were culled humanely 
when they showed severe malaria pathology. Both mutant parasites were found to be readily 
lethal to mice like wt.   

3.2.3.2 Analyses of gametocytogenesis and gamete formation in ICM mutant 

parasites  

The number of gametocytes formed in blood stages was found to be reduced in 

pepc- mutants by almost 50% but unaffected in mdh ko (p>0.05) compared to wt 

(Figure 3-9A). This defect in pepc- mutants was not found to be sex specific. 

Further phenotypic analyses of both pepc- mutants and mdh- mutants showed 

that exflagellation was also reduced in both mutants, more severely in pepc- 

mutants (84% less than wt, p<0.0005) than mdh- mutants (56% less than wt, 
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p<0.005) (Figure 3-9B). DNA replication in male gametocytes as observed by 

FACS analysis was found to be delayed in both mutants (Figure 3-9C).  

 

Figure 3-9 Effect on gametocytogenesis and gamete formation in ICM mutants. (A) 
Gametocyte conversion normalised to wt during blood stages in mutant P. berghei parasites 
over 5 days post infection. The error is given as the SD of observed gametocyte conversion 
over 5 days. Data representative of n=2 independent biological replicates. (Gametocyte 
conversion was observed using a wt parent line which has GFP expression in male 
gametocytes and RFP expression in female gametocytes (RMgm-164). P. berghei mutants 
were made in the same background and using FACS analysis, number of gametocytes was 
determined in infected blood. P-values: *p<0.05, **p<0.005, ***p<0.0005, paired two tailed 
t-test. (B) Exflagellation (male gamete formation) in mutant P. berghei parasites normalised 
to wt in in vitro activation assay. The error is given as the SD of n=3 independent biological 
replicates. P-values:  **p<0.005, ***p<0.0005, paired two tailed t-test. (C) Determination of 
DNA content of male gametocytes over 20 minutes post activation by FACS analysis in mutant 
P. berghei parasites normalised to wt. DNA content was determined in Hoechst-33258-
stained MACS purified gametocytes. Before activation (0mins) males show low DNA content 
with increasing amounts post activation reaching maximum levels between 8 to 12 minutes 
in wt.  The error is given as the SD of n=3 independent biological replicates.  P-values: 

**p<0.005, ***p<0.0005, unpaired two tailed t-test.   

3.2.3.3 Analyses of in vitro fertilisation and ookinete development in ICM 

mutant parasites 

Ookinete development in in vitro cultures of pepc- mutants was severely 

affected producing very few ookinetes, however in mdh- mutants, ookinetes 

were formed but the number was reduced by about 50% as compared to wt 

(Figure 3-10A). To determine if this defect was sex specific, crosses of pepc-  and 

mdh- were done with P. berghei lines RMgm-348 (Pb270, p47-) which produces 

viable male gametes but non-viable female gametes and RMgm-15 (Pb137, 
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p48/45-) which produces viable female gametes but non-viable male gametes. 

pepc- mutants were found to produce no ookinetes in either cross suggesting 

that gametes of both genders are affected. Similarly mdh- mutants crossing 

experiments showed that lack of mdh affected both genders and gave a parental 

phenotype producing 50% fewer mature ookinetes (Figure 3-10B). 

 

Figure 3-10 in vitro ookinete conversion in ICM mutants. (A) in vitro ookinete conversion of 
mutant P. berghei parasites as compared to wt. The error is given as the SD of n=3 
independent biological replicates. P-values:  **p<0.005, ***p<0.0005, unpaired two tailed t-
test. (B) in vitro ookinete conversion assay to measure fertility of mutant P. berghei 
gametocytes by analysing the capacity to form ookinetes by crossing gametes with RMgm-348 
(Pb270, p47-) which produces viable male gametes but non-viable female gametes and 
RMgm-15 (Pb137, p48/45-) which produces viable female gametes but non-viable male 
gametes. The error is given as the SD of n=2 independent biological replicates. P-values: 
*p<0.05, **p<0.005, unpaired two tailed t-test.   

3.2.3.4 Analyses of mosquito infectivity and transmission of ICM mutant 

parasites  

Transmission of pepc- parasites through mosquitoes failed forming small numbers 

of oocysts in mosquito midguts and no salivary gland sporozoites. However, 

parasites lacking mdh could complete transmission through the mosquito and 

infect mice generating blood stage asexual forms in 48-72 hours like wt despite 

producing reduced numbers of oocysts when compared to wt (Figure 3-11 and 

Figure 3-12).  
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Figure 3-11 Mosquito infectivity of ICM  mutant parasites compared to wt. (A)Number of 
mature oocysts at day 14 post infected blood feed in mosquito mid guts. n=40 mosquitoes 
cumulative of two independent biological replicates. ***p<0.0005, unpaired two tailed t-test. 
(B)Infection prevalence (percentage of observed mosquitoes found to be infected) and 
infection load (median of number of oocysts found per mosquito) in mutant P. berghei 

parasites compared to wt.  
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Figure 3-12 Representative images of mosquito infectivity of ICM  mutant parasites compared 
to wt. (A) Mosquito mid guts showing mature oocysts at day 14 post infection in wt, pepc- 
and mdh- P. berghei infected reticulocyte enriched mosquitoes. (B) Mosquito salivary glands 
showing sporozoites at day 21 post infection in wt, pepc- and mdh- P. berghei infected 

reticulocyte enriched mosquitoes. 

3.2.4 Pyrimidine biosynthesis pathway can be disrupted in asexual P. 

berghei development 

Plasmodium undertakes rapid nucleic acid synthesis during blood stage asexual 

growth and is auxotrophic for purines, therefore the pyrimidine biosynthetic 

pathway has been considered a promising drug target. A schematic 

representation of pyrimidine biosynthesis pathway is given in Figure 3-13. 
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Figure 3-13 Schematic representation of pyrimidine biosynthesis pathway. Genes marked 
with () were readily deleted in P. berghei blood stages and the ones marked with () could 
not be deleted even after repeated attempts. cpsII:  Carbamoyl phosphate synthetase II  
(PBANKA_140670) , act: Aspartate carbamoyltransferase (PBANKA_135770), dhoase: 
Dihydroorotase (PBANKA_133610), dhodh: Dihydroorotate dehydrogenase (PBANKA_010210), 
oprt: Orotate phosphoribosyltransferase (PBANKA_111240), ompdc: Orotidine 5′-
monophosphate decarboxylase (PBANKA_050740). 

Five out of six enzymes of this pathway have been shown to be potential targets 

against P. falciparum using inhibitors in standard in vitro cultures (Cassera, 

Zhang et al. 2011). However, most of these inhibitors have been markedly less 

potent in the in vivo model P. berghei and this difference has been attributed to 

reduced bio-availability of inhibitors in mice or apparent differences in target 

enzyme structure (Phillips, Gujjar et al. 2008, Gujjar, Marwaha et al. 2009). 
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Alternatively, the increased levels of pyrimidine biosynthesis intermediates 

observed in reticulocytes (Figure 3-5, Table 2) suggested that if P. berghei could 

access this resource it would be less affected by this class of inhibitors which 

work well on P. falciparum in vitro where host pyrimidine resources are low. 

Attempts to delete genes encoding enzymes involved in pyrimidine biosynthesis 

pathway carbamoyl phosphate synthetase II (cpsII) (PBANKA_140670), aspartate 

carbamoyltransferase (act) (PBANKA_135770), dihydroorotase (dhoase) 

(PBANKA_133610), dihydroorotate dehydrogenase (dhodh) (PBANKA_010210), 

orotate phosphoribosyltransferase (oprt) (PBANKA_111240), orotidine 5′-

monophosphate decarboxylase (ompdc) (PBANKA_050740) were therefore made 

in P. berghei to see if reticulocyte pools of pyrimidine biosynthesis 

intermediates could compensate for the loss of de novo pyrimidine synthesis. 

Only the genes encoding the final two steps of the pyrimidine biosynthesis 

pathway orotate phosphoribosyltransferase (oprt) and orotidine 5′-

monophosphate decarboxylase (ompdc) genes were readily deleted (Figure 3-14) 

whereas the others could not be deleted even after repeated attempts (Figure 

3-13).  
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Figure 3-14 (A) Schematic representation of gene deletion strategy of (i) oprt 
(PBANKA_111240) and (ii) ompdc (PBANKA_050740) in P. berghei. (B) Gel electrophoresis of 
indicated PCR products to confirm integration of selection cassette, disruption of genes and 
clonality of mutant. G717cl3 and G888cl3 were made in a wt parent line expressing GFP 
constitutively under the eef1a promoter (RMgm-7). G880cl1 and G884cl1 were made in a wt 
parent line which expresses GFP in male gametocytes under the dynein heavy chain 
promoter and RFP in female gametocytes under the LCCL domain-containing protein CCP2 

promoter (RMgm-164). 

3.2.4.1 Asexual stage phenotypic analyses of Pyrimidine synthesis mutant 

parasites  

The oprt- and ompdc- mutant parasites grow slowly and are rapidly outgrown in a 

competition growth assay with wt parasites (Figure 3-15A). Furthermore, both 

oprt- mutants (15.90±2.04, p<0.0005) and ompdc- mutants (15.17±2.45, 

p<0.0005) were found to make, on average, significantly fewer merozoites than 

wt (17.45±1.75) per schizont (Figure 3-15B) which took longer to mature (Figure 

3-15C) as well. Both mutants showed altered lethality in the C57/B6 mouse 
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model as the mice infected with the mutants did not manifest symptoms of 

experimental cerebral malaria (ECM) but died between days 14-20 as a result of 

severe anaemia and hyperparasitemia (Figure 3-15D). 

 

Figure 3-15 Asexual stage phenotypic analyses of Pyrimidine biosynthesis mutants. (A) 
Competition growth assay using FACS analysis. Equal number of parasites wt population (RFP 
positive) and mutant population (GFP positive) were mixed and injected into a mouse on day 
0 and peripheral blood from the infected mouse was monitored using FACS analyses over the 
next 12 days. Both oprt- and ompdc- parasites were overgrown by wt very quickly by day 3. 
Arrows indicate mechanical passage into a new mouse (B) Number of merozoites per schizont 
grown in in vitro cultures as counted in giemsa stained smears. The error is given as the SD 
of n ≥ 40 schizonts. Data representative of 3 independent biological replicates.  P-value:  ns: 
not significant, unpaired two tailed t-test. (C) Time taken for asexual parasites to grow to 
mature schizont stage. Coloured lines indicate non-linear fit of percentage of mature 
schizonts observed in in vitro synchronous cultures of wt and mutant P. berghei parasites 22 
hours post invasion. n=3 independent biological replicates. (D) Lethality experiment in 
C57/B6 mice by wt and mutant P. berghei parasites. 104 parasites were injected 
intraperitoneally in mice (n=5) on day 0 and they were monitored over 21 days. The mice 
were culled humanely when they showed severe malaria pathology. Both mutant parasites 
were found to be lethal to mice although they did not show symptoms of ECM. (E) oprt- & 
ompdc- mutants invade the youngest reticulocytes which stain the darkest in Giemsa stained 

smears. 
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3.2.4.2 Analyses of gametocytogenesis and gamete formation in Pyrimidine 

biosynthesis mutant parasites 

Gametocytaemia was slightly reduced only in oprt- parasites (Figure 3-16A) and 

unaffected in ompdc- mutants. There was no sex specific defect in production of 

gametocytes. Exflagellation (the production of male gametes) was found to be 

severely affected in oprt- and completely blocked in ompdc- parasites (Figure 

3-16B) and DNA replication during male gametogenesis was severely reduced for 

both mutants (Figure 3-16C).  

 

Figure 3-16 Effect on gametocytogenesis and gamete formation in Pyrimidine biosynthesis 
mutants. (A) Gametocyte conversion normalised to wt during blood stages in mutant P. 
berghei parasites over 5 days post infection. The error is given as the SD of observed 
gametocyte conversion over 5 days. Data representative of n=2 independent biological 
replicates. (Gametocyte conversion was observed using a wt parent line which has GFP 
expression in male gametocytes and RFP expression in female gametocytes (RMgm-164). P. 
berghei mutants were made in the same background and using FACS analysis, number of 
gametocytes was determined in infected blood. P-values: *p<0.05, **p<0.005, ***p<0.0005, 
paired two tailed t-test. (B) Exflagellation (male gamete formation) in mutant P. berghei 
parasites normalised to wt in in vitro activation assay. The error is given as the SD of n=3 
independent biological replicates. P-values:  **p<0.005, ***p<0.0005, paired two tailed t-
test. (C) Determination of DNA content of male gametocytes over 20 minutes post activation 
by FACS analysis in mutant P. berghei parasites normalised to wt. DNA content was 
determined in Hoechst-33258-stained MACS purified gametocytes. Before activation (0mins) 
males show low DNA content with increasing amounts post activation reaching maximum 
levels between 8 to 12 minutes in wt.  The error is given as the SD of n=3 independent 

biological replicates.  P-values: **p<0.005, ***p<0.0005, unpaired two tailed t-test.   
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3.2.4.3 Analyses of in vitro fertilisation and ookinete development in 

Pyrimidine biosynthesis mutant parasites 

Consistent with the relative defects in male gametogenesis, very few ookinetes 

were formed in in vitro cultures in oprt- parasites and no ookinetes were 

observed in ompdc- (Figure 3-17A).  Genetic crosses of oprt- and ompdc- mutants 

were performed with P. berghei lines RMgm-348 (Pb270, p47-) which produces 

viable male gametes but non-viable female gametes and RMgm-15 (Pb137, 

p48/45-) which produces viable female gametes but non-viable male gametes. 

This showed that interestingly RMgm-348 (Pb270) parasites were able to rescue 

the ookinete conversion defect in both mutant lines (Figure 3-17B) suggesting 

that viable male gamete formation is impaired in oprt- and ompdc- mutant 

parasites while female gametes remain unaffected.  

 

Figure 3-17 in vitro ookinete conversion in Pyrimidine biosynthesis mutants. (A) in vitro 
ookinete conversion of mutant P. berghei parasites as compared to wt. The error is given as 
the SD of n=3 independent biological replicates. P-values:  **p<0.005, ***p<0.0005, unpaired 
two tailed t-test. (B) in vitro ookinete conversion assay to measure fertility of mutant P. 
berghei gametocytes by analysing the capacity to form ookinetes by crossing gametes with 
RMgm-348 (Pb270, p47-) which produces viable male gametes but non-viable female gametes 
and RMgm-15 (Pb137, p48/45-) which produces viable female gametes but non-viable male 
gametes. The error is given as the SD of n=2 independent biological replicates. P-values: 
*p<0.05, **p<0.005, unpaired two tailed t-test.   

 

3.2.4.4 Analyses of mosquito infectivity and transmission of Pyrimidine 

biosynthesis mutant parasites  

Infectivity to mosquito was significantly reduced in oprt- and completely blocked 

in ompdc- mutants as seen by observing oocysts in infected mosquito midguts 

and salivary gland sporozoites (Figures 4 and S4) and infection to naïve mice was 

found to be completely blocked. 
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Figure 3-18 Mosquito infectivity of Pyrimidine synthesis mutant parasites compared to wt. 
(A) Number of mature oocysts at day 14 post infected blood feed in mosquito mid guts. n=40 
mosquitoes cumulative of two independent biological replicates. ***p<0.0005, unpaired two 
tailed t-test. (B) Infection prevalence (percentage of observed mosquitoes found to be 
infected) and infection load (median of number of oocysts found per mosquito) in mutant P. 

berghei parasites compared to wt.  
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Figure 3-19 Representative images of mosquito infectivity of Pyrimidine biosynthesis mutant 
parasites compared to wt. (A) Mosquito mid guts showing mature oocysts at day 14 post 
infection in wt, oprt- and ompdc- P. berghei infected reticulocyte enriched mosquitoes. (B) 
Mosquito salivary glands showing sporozoites at day 21 post infection in wt, oprt- and ompdc- 

P. berghei infected reticulocyte enriched mosquitoes. 

 

3.2.4.5 Pb270 rescued oprt- and ompdc- ookinetes do not transmit through 

mosquito 

Pb270 (p47-) crosses which rescued the ookinete stage phenotype in oprt- and 

ompdc- parasites pointing at male gamete specific defect (Figure 3-17B) were 

also performed in vivo. This was done by injecting mice with a mixed suspension 

of equal number (total 104) of schizont stage parasites from Pb270 and either 

oprt- or ompdc- parasites and after 48 hours at approximately 3-5% parasitemia, 

allowing mosquitoes to feed on these mice. Exflagellation, fertilisation and 

ookinete development took place in mosquito midguts and mosquitoes were then 

dissected to look for presence of oocysts on day 12-14. As the Pb270 parasites 

were made in non-fluorescent background, any oocysts resulting from Pb270 

self-fertilisation could not be observed quantitatively under the microscope. It 

was found that fluorescent oocyst production was blocked in both the crosses 

(Figure 3-20).  
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Figure 3-20 Mosquito infectivity as observed by counting mature fluorescent oocysts of in 
vivo crossed Pb270 x oprt- and Pb270 x ompdc- mutant parasites compared to wt and self-
fertilised Pb270 on day 14 post infected blood feed in mosquito mid guts. n=20 mosquitoes 
cumulative of two independent biological replicates. ***p<0.0005, unpaired two tailed t-test.   

Also, no florescent sporozoites could be observed in salivary glands in these 

mosquitoes. These mosquitoes were then allowed to bite naïve mice on day 21 

post infectious blood feed and mice were observed for parasites. By day 3-4, 

parasites could be observed in peripheral blood and were harvested to obtain 

genomic DNA to do genotypic characterisation. PCRs were performed to check 

for presence of oprt, ompdc and p47 orfs in the transmitted parasites (tbb lines) 

and it was observed that only Pb270 (p47-) parasites were transmitted (Figure 

3-21). 
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Figure 3-21 Genotypic analyses of transmitted parasites obtained after exposure of naïve 
mice to mosquitoes infected with in vivo crossed Pb270 x oprt- and Pb270 x ompdc- mutant 
parasites compared to wt and self-fertilised Pb270 (tbb: transmission bite back). (A) 
Schematic representation of expected PCR products for open reading frames indicating 
presence or absence of a gene. (B and C) p47 orf can be observed only in oprt- , ompdc- and 
wt tbb controls but not in self-fertilised Pb270 or crossed and transmitted [(Pb270 x oprt-

)tbb and (Pb270 x ompdc-)tbb   parasites. Also, oprt orf and ompdc orf can be observed in 
the respective crossed and transmitted parasites. This indicates that only Pb270 parasites 

alone can successfully be transmitted. 

It has been observed before that Pb270 (p47-)  parasites can form some 

ookinetes even though there is 10,000x reduction compared to wt and are able 

to transmit through mosquito (personal communication Chris Janse, LMRG). This 

implies that, not surprisingly, blocking the de novo pyrimidine biosynthesis in 

oprt- and ompdc- parasites also leads to defect in nucleotide synthesis in DNA 

replication required for establishment of a mature oocyst and complete 

sporogony in the mosquito.  

3.2.4.6 Pyrimidine biosynthesis inhibition sensitivity is different in P. berghei 

and P. falciparum  

We tested pyrimidine biosynthesis inhibition using a previously published 

inhibitor of this pathway in P. falciparum in parallel with P. berghei in vitro to 

test whether it had differential sensitivity between the species owing to P. 

berghei inhabiting reticulocytes which have metabolic reserves of the pyrimidine 
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biosynthesis pathway. This experiment was done in in vitro conditions to remove 

any discrepancy in findings which could potentially result from the issues of 

bioavailability of the inhibitor in mice if it were to be done in vivo. It is known 

that oprt can also use 5-fluoroorotate (5FOA) as an alternate substrate instead 

of orotate (Figure 3-13) and  5FOA has been shown to be an inhibitor of P. 

falciparum in in vitro cultures with very low IC50 in nano-molar range (Rathod, 

Khatri et al. 1989). We tested the activity of 5FOA against P. berghei and P. 

falciparum in vitro cultures (section 2.1.20.1 and 2.2) and found that the IC50 

value was almost 90 fold higher in P. berghei inhibition (32.2nM) compared to P. 

falciparum inhibition (0.37nM) (Figure 3-22). Dihydroartemisinin (DHA) activity 

was used as a control and there wasn’t any significant difference observed in its 

activity between P. berghei (6.6nM) and P. falciparum (2.8nM) Figure 3-22.  

 

 

Figure 3-22 P. berghei and P. falciparum inhibition by Dihydroartemisinin (DHA) and 5-

Fluoroorotic Acid (5FOA) in vitro. Error bars indicate SD from n=3 biological replicates.  

  

3.3 Discussion  

Protozoan parasites that live within their host cell are exquisitely adapted to 

derive maximum benefit from their intracellular niche. Most obviously blood 

stage malaria parasites import and catabolise haemoglobin and have developed 

sophisticated packaging systems to neutralise the potential damaging effects of 

the haem by-product.  However a number of malaria parasites infectious to both 
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human (P. vivax) and rodents (P. berghei) exhibit a strong preference to colonise 

more complex reticulocytes rather than mature erythrocytes which might offer 

additional advantages to the parasite.  The aims of this study were to investigate 

the anticipated metabolic differences between the two cell types and then to 

examine the possible functional consequences with regard to parasite survival 

and their exploitation of any differences. 

The reticulocyte metabolome is both enriched and more complex than that of 

the mature erythrocyte and it was shown by disrupting two pathways (ICM and 

pyrimidine biosynthesis) in P. berghei blood stages which are essential in P. 

falciparum blood stages. The P. berghei mutants could not develop in the exo-

erythrocytic mosquito stages, highlighting the importance of reticulocyte 

sourced metabolic reserves for their intracellular growth.  

3.3.1 Intermediary Carbon Metabolism (ICM) 

Glycolysis is the main pathway for carbon metabolism in erythrocytes (Chapman, 

Hennessey et al. 1962). Furthermore, there is proteomic evidence for residual 

TCA cycle and ICM enzymes in both human (Pasini, Kirkegaard et al. 2006) and 

rodent (Pasini, Kirkegaard et al. 2008) erythrocytes indicative of the more 

complex metabolism in the erythroid precursors which still has enzymatic 

footprints in erythrocytes which are devoid of nucleus and are released into 

peripheral circulation. The high levels of malate and aspartate in reticulocytes 

(Figure 3-5) could be a result of active production via ICM.  

Gene deletions of both pepc and mdh in P. berghei gave a severe phenotype in 

post-erythrocytic mosquito stages as anticipated, however pepc- mutant was 

found to be more severely affected than the mdh- mutant (Figure 3-8, Figure 

3-9, Figure 3-10, Figure 3-11 and Figure 3-12). This was because being an 

upstream gene in the pathway, pepc- mutant possibly had complete block in the 

production of both aspartate and malate via ICM (Figure 3-6) in mosquito stages 

in the extracellular parasite. Deleting mdh does not stop the development of all 

parasites in mosquito stages possibly because there are alternate ways of 

producing malate (e.g. TCA cycle). mdh has another function of generating 

reducing equivalents (NADH+H+) but there are other dehydrogenases in TCA cycle 

which can also generate them so this function is not exclusive to mdh. This 

further explains why mdh- mutants could still complete the life cycle. 
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Even after repeated attempts, aat could not be deleted in the blood stage 

(Figure 3-6). This could be because, the generation of aspartate is necessary not 

only for nucleic acid but also protein synthesis and this terminal step of 

intermediary carbon metabolism is critical in in vivo situations where aspartate 

levels are limiting (Olszewski and Llinas 2011). Failure to delete aat suggests 

that the apparent higher levels of aspartate observed in reticulocytes were not 

enough to meet all of the demands of a growing asexual stage parasite where a 

high turnover of nucleic acids and proteins is required and this can also explain 

the slow growth of asexual pepc- mutant parasites which seemed to take longer 

to develop.  

3.3.2 Pyrimidine biosynthesis 

DNA replication and RNA transcription require a continuously available and 

sufficient source of nucleotides in Plasmodium parasites whose lifecycle exhibits 

a wide variety of protein expression profiles and requires multiple replication 

steps both in mammalian host and mosquito vector. Both purines and 

pyrimidines make up the building blocks of these nucleotides and Plasmodium 

relies heavily on salvaging purines from the host as it doesn’t encode any 

enzymes for de novo purine synthesis (Downie, Kirk et al. 2008). The purine 

salvage pathway is well characterised in Plasmodium (Riegelhaupt, Cassera et al. 

2010) and once nucleosides are taken up  by erythrocyte nucleoside transporters 

(Cassera, Zhang et al. 2011) inside the infected erythrocyte, non-selective pores 

with a large diameter on the parasitophorous vacuole allow them to be 

internalised (Downie, Kirk et al. 2008) (Desai, Krogstad et al. 1993), cross the 

parasite plasma membrane by PfNT1 and a yet to be characterised AMP 

transporters (Cassera, Hazleton et al. 2008) and interconverted to end products 

to be utilised for nucleic acid syntheses.  

The situation is almost reverse when it comes to pyrimidines as it has been 

believed that unlike purines, pyrimidines exist in low concentrations in 

erythrocytes and Plasmodium encodes all enzymes necessary for de novo 

pyrimidine synthesis (Gardner, Hall et al. 2002), lacking transporters for salvage 

from the nutrient rich extra-cellular culture/host environment.  

Other apicomplexan parasites are capable of pyrimidine salvage- e.g. 

Cryptosporidium spp. encode a bifunctional protein uridine kinase-uracil 

phosphoribosyltransferase-UK-UPRT (EC 2.7.1.48, EC 2.4.2.9) to salvage uridine, 
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uracil and cytidine  and a thymidine kinase-TK (EC 2.7.1.21) to salvage 

thymidine. Toxoplasma spp. has partial salvage ability and has retained the 

monofunctional uracil phosphoribosyltransferase (UPRT) to take up uracil.  

All these enzymes are not present in Plasmodium and hence de novo pyrimidine 

synthesis has been considered a promising drug target for malaria intervention. 

But there is an annotated UDP-N-acetyl glucosamine: UMP antiporter in 

Plasmodium (PBANKA_110490) and such antiporters have been shown to 

transport nucleotide sugars in exchange for nucleotide monophosphates in 

human cells (Ishida and Kawakita 2004). This UMP antiporter is unique to 

Plasmodium spp. in apicomplexans as it does not have homologues in 

Toxoplasma or Cryptosporidium although they do have the usual UDP: sugar 

transporters (e.g. (TGVEG_108800) and (cgd2_590). Reticulocytes were found to 

have both UDP-N-acetyl glucosamine and UMP (Uridine monophosphate) in 

elevated amounts compared to normocytes (Table 2) 

The first six steps of pyrimidine biosynthesis (Figure 3-13) lead to production of 

UMP which is the precursor of all pyrimidine nucleotides. As shown in Figure 3-5 

and Table 2, in our metabolomics data, we found that a number of purine and 

pyrimidine biosynthesis intermediates were enriched in reticulocytes as 

compared to mature erythrocytes. As a reticulocyte resident parasite like P. 

berghei has ready access to these intermediates, we anticipated that the 

pyrimidine synthesis pathway may be dispensable for such a parasite in blood 

stages.  Because 5 of the these 6 enzymes have been shown to be potential drug 

targets in normocyte cultured P. falciparum, we targeted these genes for 

deletion and managed to get the last two genes, oprt and ompdc  knocked out in 

blood stages in the first attempt whereas the others could not be deleted 

(Figure 3-13).  

The oprt- and ompdc- mutant parasites survived in intra-erythrocytic stages but 

seemed to grow slower than wt (Figure 3-15A). They also inhabited the youngest 

reticulocytes (Figure 3-15E) because younger reticulocytes presumably will have 

higher proportions of metabolic precursors. As these mutants were exclusively 

reliant on reticulocyte pools of pyrimidines, this possibly also led to a reduction 

in number of merozoites produced (Figure 3-15B). Although this reduction is 

small, it is still significant compared to wt and in evolutionary terms it seems to 

have a huge implication on asexual growth. These mutants were also found to 

http://plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&source_id=PBANKA_110490&project_id=PlasmoDB


86 
 

 Comparative metabolomics of erythroid lineage 

take longer to mature to schizont stage (Figure 3-15C). Although in Plasmodium 

spp., asexual development via schizogony differs considerably from the usual  

G1, S, G2 and M phases of the cell cycle observed in other eukaryotes, more 

than 550 proteins have been found to be associated with cell cycle regulation 

(Cai, Hong et al. 2013) indicating the presence of a tightly controlled cell cycle. 

It is thus possible that oprt- and ompdc- mutants could be employing cell cycle 

check points which might limit the number of merozoites produced according to 

their ability to completely replicate their genomes, explaining their slower 

growth.  Yet, in spite of a disrupted de novo pyrimidine synthesis pathway and 

slow growth, these mutants were able to cause disease and severe pathology and 

death in C57/B6 mice by hyperparasitemia and anaemia (Figure 3-15D). 

oprt and ompdc gene deletions gave a severe phenotype in post-erythrocytic 

stages as expected (Figure 3-16, Figure 3-17, Figure 3-18 and Figure 3-19). It is 

interesting to note that in both Toxoplasma and Plasmodium spp., oprt and 

ompdc are mono-functional separate proteins but form a complex and catalyse 

the formation of UMP from orotate via Orotidine-mono-phosphate. The kinetic 

properties of this complex are different from that of a single protein in the 

mammalian host, UMP synthase which catalyses this whole inter-conversion 

(Krungkrai, DelFraino et al. 2005).  

The first defect in mosquito stages appeared to be in the process of viable male 

gamete formation which was severely impaired (Figure 3-16) and as quick DNA 

replication during the process of exflagellation requires rapid nucleotide 

synthesis and assembly, de novo pyrimidine synthesis becomes very crucial and 

reticulocyte pools of pyrimidines and their intermediates may not be enough for 

this process. This obviously had knock on effect on ookinete production as well 

(Figure 3-17A) which could be rescued when viable male gametes from Pb270 

(p47-) P. berghei parasites were used for in vitro crosses pointing to a male 

gamete specific defect (Figure 3-17B). Mature oocyst production was severely 

reduced in both mutants (Figure 3-18 and Figure 3-19) and even the ookinetes 

formed by in vitro crosses with Pb270 parasites could not form mature oocysts 

(Figure 3-20). This and Figure 3-21 implied that de novo pyrimidine synthesis is 

required also for establishment of a mature oocyst and complete sporogony in 

the mosquito phase development of the parasite.   



87 
 

 Comparative metabolomics of erythroid lineage 

When the oprt inhibitor, 5-fluoroorotate (5FOA) was found to be less potent 

against P. berghei as compared to P. falciparum in vitro (Figure 3-22), it further 

supported the notion that reticulocytes can indeed protect the parasites in the 

intracellular blood stage from the effects of genetic or chemical disruption of 

the de novo pyrimidine biosynthesis pathway. As this protective environment is 

not present in the mosquito stages, the parasites are not able to fulfil their 

metabolic needs and don’t survive.  

Even after repeated attempts, cpsII (PBANKA_140670), act (PBANKA_135770), 

dhoase (PBANKA_133610) and dhodh (PBANKA_010210) could not be deleted 

(Figure 3-13). Although the first three genes are mono-functional in Plasmodium, 

their activities are included in a single tri-functional protein in the mammalian 

host (Hyde 2007). cpsII activity can be inhibited by a positive feedback 

mechanism by increased amounts of the end product UTP (Gero, Brown et al. 

1984).  Both dhoase and dhodh are bidirectional enzymes and could also play a 

role in the generation of additional aspartate required for protein synthesis by 

taking their respective reactions in the reverse direction. dhodh is also linked to 

ubiquinone (CoQ) as an electron acceptor and apart from converting 

dihydroorotate to orotate it also has a role in electron transport chain. Owing to 

the essentiality of these genes in these additional functions, it is not surprising 

that we could not delete them in asexual stage parasites. 

It is also notable that homologues of some  more downstream pyrimidine 

synthesis enzymes which eventually catalyse steps in the formation of UTP, CDP, 

dCTP and dTTP, namely Nucleoside diphosphate kinase B (NDK B) 

(PBANKA_114240), CTP- CTP synthase (PBANKA_103230), dCDP, dUDP and dUTP- 

Ribonucleotide Reductase (RNR) large subunit (PBANKA_061160) have been found 

to be present in erythrocytes (Pasini, Kirkegaard et al. 2006, Pasini, Kirkegaard 

et al. 2008). This points towards the capability of the host cell in at least 

partially retaining some nucleotide synthesis pathways which the parasite can 

utilise. 

3.3.3 Other metabolic pathways enriched in reticulocytes 

3.3.3.1 Glutathione biosynthesis pathway  

Plasmodium spp. has to cope with oxidative stress caused by haemoglobin 

metabolism (formation of reactive oxygen species (ROS) and release of toxic 

ferriprotoporphyrin IX) and one of the ways it defends itself is by employing its 
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own fully functional Glutathione redox system (Muller 2004) and has a fully 

functional glutathione biosynthesis pathway (Figure 3-23A).  Both gamma-

glutamylcysteine synthetase (ɣ-GCS) and Glutathione Synthetase (GS) are 

essential for parasite survival in P. falciparum (Patzewitz, Wong et al. 2012). ɣ-

GCS and Glutathione Reductase (GR) can be deleted in P. berghei and intra-

erythrocytic asexual growth is unaffected but mosquito stage development is 

affected giving stunted oocysts and no sporozoites (Vega-Rodriguez, Franke-

Fayard et al. 2009, Pastrana-Mena, Dinglasan et al. 2010). The reason for this 

apparent difference between the observations in P. falciparum and P. berghei 

was not clear. 

 

Figure 3-23 (A) Schematic representation of Glutathione synthesis pathway in Plasmodium. 
ɣ-GCS (gamma-glutamylcysteine synthetase), GS (Glutathione Synthetase), GR (Glutathione 
Reductase) ɣ-GluCys (gamma-L-Glutamyl-L-cysteine), GSSG (Glutathione di-sulphide). (B) Fold 
change of metabolites of Glutathione biosynthesis in rodent reticulocytes compared to 
normocytes. 

Glutathione biosynthesis pathway has been shown previously to exist in 

erythrocytes (Majerus, Brauner et al. 1971) and the enzymes for this pathway 

have been shown to be present in both human (Pasini, Kirkegaard et al. 2006) 

and rodent (Pasini, Kirkegaard et al. 2008) erythrocytes.  Our data demonstrated 

that the levels of glutathione synthesis intermediates were higher in 

reticulocytes than in mature erythrocytes (Figure 3-23B and Table 2). Although 

reduced glutathione (GSH) was not detected in our data (probably oxidised 

during sample storage), glutathione disulphide (GSSG) was detected and it was 2 
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fold higher in reticulocytes than normocytes. The high levels of glutathione 

biosynthesis pathway intermediates in reticulocytes suggested that these 

reserves in reticulocytes rescue the phenotype in P. berghei ɣ-GCS and GR 

mutant intra-erythrocytic asexual stages and the mosquito stages don’t develop 

as they are exo-erythrocytic. This validated the metabolomics data against 

published observations and also lent weight to our hypothesis (Figure 3-4).  

3.3.3.2 TCA cycle  

As Plasmodium parasites rely on glycolysis (Homewood 1977) for energy 

production, TCA cycle has been expected to be non-essential in blood stages but 

has been found to be pivotal during mosquito stages (Hino, Hirai et al. 2012, 

Macrae, Dixon et al. 2013, Oppenheim, Creek et al. 2014) (See section 5 for 

detailed study of P. berghei TCA cycle metabolism). Reticulocytes contain 

mitochondria as explained above in section 3.2.2 and could potentially have a 

functional TCA cycle. It remains to be seen whether this would be a complete 

and canonical cycle or not (refer to section 5) as maturing reticulocytes are in 

the process of losing all their organelles and the mitochondria observed in them 

have been shown to be rudimentary (Gronowicz, Swift et al. 1984). However, if 

reticulocyte resident Plasmodium parasites required any metabolites resulting 

from the host TCA cycle, they have access to it.    

3.3.3.3 Phosphatidylcholine and Phosphatidylethanolamine synthesis 

The intermediates of Phospholipid (PL) (Phosphatidylcholine- PC and 

Phosphatidylethanolamine- PE) synthesis were observed to be enriched in 

reticulocytes compared to normocytes (Table 2). There is published evidence of 

phospholipid synthesis in reticulocytes (Ballas and Burka 1974) and as 

reticulocytes have been shown to remodel their membrane structure during 

maturation to normocytes (Gronowicz, Swift et al. 1984) (Liu, Guo et al. 2010), 

changes in the lipid profile were not unexpected. Interestingly, all PC and PE 

biosynthesis genes are essential in both P. falciparum and P. berghei blood 

stages and both these species have been shown to employ different methods of 

PC and PE synthesis, the most notable being the absence of a PfPMT orthologue 

(which converts phospho-ethanolamine to phospho-choline linking PE and PC 

synthesis in P. falciparum, thus providing an additional pathway to make PC) in 

P. berghei (Dechamps, Maynadier et al. 2010). However, this difference between 

the P. falciparum and P. berghei parasites cannot be attributed to the evolution 

of P. berghei to invade reticulocytes which have increased levels of PC and PE 
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intermediates because P. vivax which also invades reticulocytes possesses the 

PfPMT orthologue. Nevertheless, as P. falciparum has been shown to be 

susceptible to inhibitors of phospholipid (PL) synthesis (Ancelin, Calas et al. 

2003), even though PL synthesis pathways have been shown to be essential in P. 

berghei, it could still be interesting to test these inhibitors on P. berghei given 

that reticulocytes have elevated levels of PL synthesis intermediates. 

3.3.4 Phylogenetic analyses of the key metabolic enzymes 

A phylogenetic comparison of enzymes of the predicted metabolic capacities of 

the different Plasmodium species for which whole genome data is available 

indicates that they are each expected to be capable of the same basic metabolic 

processes (Figure 9-5 and Table 7). Therefore the enriched environment of the 

reticulocyte does not appear to have exerted an obvious selection pressure on 

those parasites that preferentially develop within them.  

3.4 Conclusions 

It was hence found that reticulocytes are metabolically enriched with a 

significant overlap in the metabolic profile with Plasmodium spp. and some 

aspects of parasite metabolism can be redundant in blood stage parasites like P. 

berghei. Although data is not shown here (due to author declaration purposes), 

in collaboration with Creek et al. from Monash University, Australia, we have 

also observed a similar enrichment in human reticulocytes grown from CD34+ 

haematopoietic progenitor stem cells compared to normocytes. The metabolic 

profile between human and rodent reticulocytes was found to be very similar as 

well. Therefore it can be speculated that the human malaria parasite P. vivax 

would also be capable of accessing reticulocyte pools like it was observed for P. 

berghei in this study. This advantage of inhabiting a metabolically rich host cell 

may offer P. vivax parasites, an edge against drugs used to target their 

metabolism to clear infection in human populations. P. vivax parasites are 

already difficult to eradicate effectively using existing drugs owing to their 

ability to form hypnozoites and it is therefore not surprising that compared to P. 

falciparum, only a fraction of vaccine candidates are currently at trial stage 

against P. vivax (Reyes-Sandoval and Bachmann 2013).  

P. falciparum parasites invade both reticulocytes and normocytes in the field 

and it is known that even in in vitro cultures, they grow better when using fresh 

blood which presumably has 1-2% reticulocytes (Personal communications Prof. 
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Lisa Ranford-Cartwright and Prof. Sylke Muller). It is thus possible that drugs 

targeting metabolism in P. falciparum that can be alleviated by scavenging of 

host reticulocyte metabolome might select for parasites that have developed a 

preference for invading reticulocytes and contribute to increase in resistance. 

Also, there is a possibility of recrudesce of parasites which can survive following 

a partially effective treatment by a metabolic inhibitor which could kill the 

parasites in the normocytes but not in the metabolically enriched younger 

reticulocytes.   

The findings in this study therefore have potential implications for existing drug 

therapies against blood stage malaria that target only parasite metabolism which 

should differ according to the target host blood cell distributions of human 

malaria. Moreover, as it is evident that the parasite utilises its host cell to a 

great extent, both using it as a structural niche for asexual replication, as a 

source of nutrients and for small molecule metabolites to supplement its 

biochemical requirements, the useful elements of host cell metabolism could be 

targeted to kill the parasite as it has been done elsewhere (Sicard, Semblat et 

al. 2011). The great advantage of this approach is that the parasite would be 

less able to use mutations in its own genome to escape the indirect but 

deleterious effects of targeting host metabolism. However, one will have to be 

careful in designing such approaches so that essential metabolism in the host 

cell is disrupted only in parasitized cells, leaving the uninfected cells untouched, 

which can be challenging.  
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4 Plasmodium metabolism is stage specific 

4.1 Introduction 

Apicomplexans, which include the malaria parasite Plasmodium, belong to the 

phylum Chromalveolata which also contains ciliates and dinoflagellates, many of 

them photosynthetic. This phylum diverged from the main eukaryotic lineage 

very early and members differ substantially from yeast and other metazoans 

(Talevich, Tobin et al. 2012). Even though they contain a relict plastid, the loss 

of photosynthetic ability seems to have resulted from the emergence of a 

parasitic lifestyle for other apicomplexans and Plasmodium (Kalanon and 

McFadden 2010).  

The Plasmodium parasite has a complex lifecycle (see section 1.2) where it 

resides in multiple environments, invades different cell types and undergoes 

asexual reproduction by mitotic division as well as sexual reproduction, 

fertilisation and meiosis. Across the life cycle, it uses a mosquito vector and a 

mammalian host with many different biochemical nutrient sources and ambient 

niches. 

The life stage responsible for initiating the life cycle in the mosquito vector is 

the gametocyte stage and P. berghei undergoes systematic production of these 

sexual precursor cells (gametocytes) in every cycle (almost 20% of all cells) 

unlike P. falciparum where gametocytogenesis is apparently (stress-) inducible. 

The gametocytes in Plasmodium are different from asexual stages in morphology 

and cell structure. In P. berghei, the asexual cycle takes 22-24 hours whereas 

gametocyte development takes slightly longer, at 26-30 hours, after which 

mature gametocytes enter a post-mitotic G1 stage and stay quiescent for up to 

further 24-30 hours before they degenerate and are removed from the 

circulation (Mons, Janse et al. 1985). Waiting to be picked up by a blood meal 

through a mosquito bite, gametocytes prepare themselves for a relatively hostile 

environment within the mosquito mid-gut where a drastic change in environment 

(e.g. low temperature, high pH) and other mosquito factors provide them with 

cues to form haploid gametes which fuse to form a diploid zygote. The 

apparently apolar zygote undergoes meiosis within 4 hours and after 18-24 hours 

develops into an invasive motile polar form called the ookinete which then 

traverses the midgut wall of the mosquito and forms an oocyst on the basal 
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lamina. The oocyst then develops to form thousands of sporozoites, ready for 

the next cycle of infection. 

Gametocytes prepare themselves for such a dynamic change by employing 

strategies such as Conditional Translational Repression (CTR) which allows for a 

number of transcripts which encode proteins required for zygote development to 

be stored as mRNA-protein complexes within the female gametocytes (Mair, 

Braks et al. 2006). These mRNP complexes hold the transcripts and release them 

in a programmed fashion in response to environmental factors as the parasite 

develops. 

It is anticipated that the preparation for the response to such a different 

environment and a dynamic structural remodelling should also be reflected at 

the metabolic level in the parasite. Comparing the metabolomes of gametocytes 

to asexual stages may thus give interesting insight into the metabolic machinery 

of a highly complex but conditionally terminally differentiated cell. Examples 

from other eukaryotic parasites like Trypanosoma brucei already exist where 

there is a shift in metabolism from glucose as a major carbon source in blood 

stages to proline in procyclic stages in the insect vector Tse-tse fly (Besteiro, 

Barrett et al. 2005). Identification of active metabolic pathways may provide 

alternate intervention strategies that the parasite is less able to evade. 

Initially, an untargeted metabolomics approach was used (whose results are 

described below and one of the most interesting leads is discussed in section 6) 

to delineate and compare metabolomes of uninfected reticulocyte enriched 

erythrocytes (as host cell background), P. berghei purified asexual schizonts and 

purified gametocytes using Liquid Chromatography Mass Spectrometry (LC-MS) 

and Gas Chromatography Mass Spectrometry (GC-MS). 

Also, a targeted metabolomics approach was used to study energy metabolism in 

different stages of P. berghei and the all the findings of this study are discussed 

in section 5. 

4.2 Results 

For the untargeted metabolomics study, briefly, raw LC-MS data was processed 

using the standard Glasgow Polyomics pipeline, consisting of XCMS, MZMatch and 

IDEOM and the raw GC-MS data was processed using the standard Metabolomics 

Australia pipeline consisting of PyMS matrix generation and Chemstation Electron 
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Ionisation (EI) spectrum match analysis (described in detail in section 2.6). The 

comparisons of metabolomes showed the following results:  

4.2.1 P. berghei schizonts vs uninfected reticulocyte enriched 

erythrocytes  

From a total number of ~5000 peaks collected from the two platforms, 482 

putative metabolites (PM) were robustly identified (minimum confidence value 

was set to 5/10 for LC-MS data analysis by IDEOM and minimum ion-spectra 

match was set to 90% to Agilent Fiehn and NIST GC-MS Metabolomics libraries for 

GC-MS data analysis by Chemstation- see sections 2.6.5 and 2.6.6) in this 

comparison group, although many more probable metabolites were detected but 

were not readily assigned an identity. Of these, 218 (~45%) were up-regulated by 

2 fold or more in schizonts, 181 (~38%) were unchanged with 83 (~17%) down-

regulated by more than 2 fold or absent as compared to uninfected reticulocyte 

enriched erythrocytes ( 

Figure 4-1 and Table 3).  

Of all the raw metabolomic peaks, including the unassigned ones, ~ 15% were 

also observed to be similarly up-regulated in schizonts and ~24% were found to 

be downregulated and the remaining were unchanged between schizonts and 

uninfected reticulocyte enriched erythrocytes ( 

 

Figure 9-2). 
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Figure 4-1 Volcano plot showing distribution of putative metabolites according to their fold 

change in abundance in P. berghei schizonts vs reticulocyte enriched erythrocytes. All 

significant changes are represented above the broken horizontal line. Coloured dots indicate 

metabolites which are: Blue- significantly up-regulated, Red- significantly down-regulated, 

Yellow- significant but little change, Brown- non-significant.  
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4.2.2 P. berghei gametocytes vs uninfected reticulocyte enriched 

erythrocytes 

From a total number of ~5000 peaks collected from the two platforms, 452 

putative metabolites (PM) were robustly identified (identification parameters 

were set as above). Of these190 (~42%) were found to be upregulated in 

gametocytes by 2 fold or more, 232 (~52%) were unchanged and 30 (~6%) were 

downregulated by more than 2 fold or absent as compared to uninfected 

reticulocytes ( 

Figure 4-2 and Table 4).  

Of all the raw metabolomic peaks, including the unassigned ones, ~ 9% were also 

observed to be similarly up-regulated in gametocytes and ~18% were found to be 

downregulated and the remaining were unchanged between gametocytes and 

uninfected reticulocyte enriched erythrocytes ( 

 

Figure 9-3). 

 

 

 

log2 fold change 
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Figure 4-2 Volcano plot showing distribution of putative metabolites according to their fold 

change in abundance in P. berghei gametocytes vs uninfected reticulocyte enriched 

erythrocytes. All significant changes are represented above the broken horizontal line. 

Coloured dots indicate metabolites which are: Blue- significantly up-regulated, Red- 

significantly down-regulated, Yellow- significant but little change, Brown- non-significant.  

4.2.3 P. berghei gametocytes vs schizonts 

From a total number of ~5000 peaks collected from the two platforms, 478 

putative metabolites were identified (identification parameters were set as 

above) and compared and 116 (~24%) were found to be upregulated in 

gametocytes as compared to schizonts whereas 210 (~44%) were unchanged. 152 

(~32%) putative metabolites were downregulated or absent in gametocytes as 

compared to schizonts ( 

Figure 4-3 and Table 5).  

Of all the raw metabolomic peaks, including the unassigned ones, ~ 24% were 

also observed to be similarly up-regulated in gametocytes and ~17% were found 

to be downregulated and the remaining were unchanged between gametocytes 

and schizonts ( 

 

Figure 9-4). 
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Figure 4-3 Volcano plot showing distribution of putative metabolites according to their fold 

change in abundance in Gametocytes vs Schizonts. All significant changes are represented 

above the broken horizontal line. Coloured dots indicate metabolites which are: Blue- 

significantly up-regulated, Red- significantly down-regulated, Yellow- significant but little 

change, Brown- non-significant.  

4.3 Observations 

The identified metabolites across these sample groups were then charted on to 

known metabolic pathways using metabolite search functions (which link a 

metabolite to the pathways it could potentially be a part of) on databases such 

as MPMP (Malaria Parasite Metabolic Pathways- accessible at 

http://mpmp.huji.ac.il/) (Ginsburg 2006), Pathos (A metabolomics tool from 

Glasgow Polyomics- accessible at http://motif.gla.ac.uk/Pathos/) (Leader, 

Burgess et al. 2011), KEGG (Kyoto Encyclopedia of Genes and Genomes, 

accessible at http://www.genome.jp/kegg/) (Kanehisa, Goto et al. 2006) and 

MetaCyc (accessible at http://metacyc.org/) (Caspi, Altman et al. 2014). This 

comprehensive comparison between the host and the parasite (at different life 

stages- sections 4.2.1 and 4.2.2) and within the parasite metabolome (at 

different life stages- section 4.2.3) revealed interesting insights into the 

log2 fold change 
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metabolism of the host cell and the parasite, some examples of which are given 

below.  

It was found that in P. berghei parasites, metabolites of the TCA cycle were up 

regulated in gametocytes when compared to asexual schizonts (Table 5). As 

previously published RNA expression data has shown that the enzymes of the TCA 

cycle are up-regulated in gametocytes (Young, Fivelman et al. 2005), this was 

not surprising. The role of TCA cycle in central carbon metabolism was further 

elucidated in detail using targeted metabolomics and isotopically labelled 13C U-

Glucose and 13C15N U-Glutamine , the results of which are discussed in section 5.  

Also, the discovery of elevated levels of phosphorylated creatine 

(phosphocreatine) in reticulocytes and gametocytes when compared to schizonts 

was extremely intriguing (Table 3, Table 4 and Table 5). Phosphocreatine serves 

as a rapidly mobilizable reserve of high-energy phosphates in higher organisms 

through a phosphagen system (Wallimann, Wyss et al. 1992) and this discovery 

indicated that gametocytes may store and employ the host phosphagen system 

to release energy at a later stage. The details of this study are discussed in 

section 6. 

Another interesting observation was that the first two metabolites of Coenzyme- 

A synthesis were differentially abundant in P. berghei gametocyte and schizont 

stages (Table 5). The levels of non-phosphorylated pantothenate were up-

regulated in gametocytes when compared to schizonts by about 13 fold and the 

levels of 4’-phospho-pantothenate were found to be up regulated in schizonts by 

about 8 fold when compared to gametocytes.  The possibility that Coenzyme A 

synthesis is silent in unactivated gametocytes in the mammalian host and starts 

later in the mosquito stage is being queried at the moment (see section 8.1). 

The data also showed elevated levels of acyl-carnitines in reticulocytes and 

gametocytes, compared to schizonts (Table 3, Table 4 and Table 5). As there are 

no annotated enzymes for β-oxidation of fatty acids in Plasmodium (Gardner, 

Hall et al. 2002), this suggested that gametocytes possibly store metabolites for 

fatty acid synthesis in the developing oocysts where new membranes are 

required for sporogony as the FASII pathway is dispensable for all stages of 

development except the liver stage and there is limited availability of fatty 

acids in the mosquito haemocoel compared to blood stage schizogony in a 
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mammalian host. This was not followed up further due to time constraints but 

has been considered for future work (see section 8.2). 
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5 Central Carbon metabolism in Plasmodium 

5.1 Introduction 

It has been widely accepted that the main energy generating pathway in 

Plasmodium parasites is glycolysis (Homewood 1977). By leading a parasitic life 

inside a host which has a practically unlimited supply of glucose, the 

intracellular parasite inside the mammalian host was thought to rely exclusively 

on glycolysis (Figure 5-1) for ATP generation. All enzymes involved in glycolysis 

are expressed during intraerythrocytic blood stage development in Plasmodium 

(Bozdech, Llinas et al. 2003).  

Furthermore, the TCA cycle (Figure 5-2) which operates in the mitochondria and 

uses glycolytic end products generated in the cytoplasm has recently been 

explored into some detail in Plasmodium (Macrae, Dixon et al. 2013) where using  

metabolomics, it was shown that in asexual stages the classical link between 

glycolysis and the TCA cycle via glycolytic pyruvate was present although with a 

low flux in contrast to the gametocyte stage where the TCA cycle was found to 

be more active and essential for gametocyte maturation.  

The role of anaplerosis (reactions involving intermediates of major metabolic 

pathways like glycolysis and TCA cycle) via the CO2 fixing enzyme pepc has 

recently been dissected in detail in P. falciparum along with confirmation of 

operation of a canonical full TCA cycle (Storm, Sethia et al. 2014). 
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Figure 5-1 Schematic representation of Glycolysis (accessed from 

http://en.wikipedia.org/wiki/File:Glycolysis2.svg ) 

 

 

Figure 5-2 Schematic representation of TCA cycle (accessed from 

http://en.wikipedia.org/wiki/File:Citric_acid_cycle_with_aconitate_2.svg) 

http://en.wikipedia.org/wiki/File:Glycolysis2.svg
http://en.wikipedia.org/wiki/File:Citric_acid_cycle_with_aconitate_2.svg
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The asexual blood stages of Plasmodium have been shown to have a minimally 

cristate mitochondrion (Das, Syin et al. 1997) as compared to other 

apicomplexan parasites like Toxoplasma gondii (Sinai, Webster et al. 1997) and 

other free living microorganisms, indicating they might be metabolically 

inactive. However, mitochondrion retention has been associated with 

essentiality for survival, possibly as a site for the electron transport chain (ETC) 

which is necessary for transport of metabolites, re-oxidation of inner membrane 

dehydrogenases as well as pyrimidine biosynthesis (Krungkrai 1995).  

Minimal oxygen consumption and CO2 production and conversion of most of the 

consumed glucose to lactic acid by fermentation have been attributed to the 

fulfilment of energy needs of asexual stage parasites (Olszewski and Llinas 

2011). However, the effectively unlimited supply of glucose present in the 

mammalian host is not available to the parasite in the mosquito vector, and as 

the parasite prepares itself for sexual reproduction in the mosquito mid-gut, 

there is predicted to be a switch from glycolysis to TCA cycle for energy 

production.  

This theory has been recently supported by a study which showed that disrupting 

an enzyme involved in the TCA cycle and the electron transport chain led to 

decreased production of ookinetes and failure to form oocysts in mosquito stages 

of P. berghei (Hino, Hirai et al. 2012). There is evidence suggesting this process 

starts in mammalian host itself where gametocytes develop more complex 

tubular mitochondrial cristae required for mitochondrial function (Krungkrai 

2004). RNA expression data also suggests that enzymes implicated in the TCA 

cycle are up-regulated in gametocytes (Young, Fivelman et al. 2005) and a 

proteomics study also found these enzymes to be present in gametocytes (Khan, 

Franke-Fayard et al. 2005) in keeping with the metabolomics studies (Macrae, 

Dixon et al. 2013).  

Even though the mitochondrion is present in both male and female gametocytes, 

it is inherited only maternally (Creasey, Mendis et al. 1994, Okamoto, Spurck et 

al. 2009). Until recently, the role of the TCA cycle had not been studied in great 

detail in mosquito stages, but became of enhanced interest in light of a study 

(Olszewski, Mather et al. 2010), which proposed that the canonical TCA cycle 

does not exist in P. falciparum blood stages but rather takes a branched 

architecture and the ‘reductive branch’ produces acetyl co-A moieties whose 
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function and localisation remained unclear. However this paper was later 

retracted (Olszewski, Mather et al. 2013).  

It is worth noting that a mitochondrial pyruvate dehydrogenase (PDH) is absent 

in Plasmodium (Oppenheim, Creek et al. 2014), yet glycolytic carbon skeletons 

enter the TCA cycle. This has been shown to occur via a mitochondrion-located, 

branched chain α-keto acid dehydrogenase (BCKDH) complex that can catalyse 

pyruvate (glycolytic end product) to acetyl-CoA (TCA cycle intermediate entry 

point) conversion in P. falciparum and P. berghei (Macrae, Dixon et al. 2013, 

Oppenheim, Creek et al. 2014) 

The complete role of the TCA cycle in P. berghei asexual and sexual stages is 

unresolved and the anticipated switch from glycolysis to the TCA cycle in 

mosquito stages is intriguing. In this study, the role of glycolysis and the TCA 

cycle in asexual stages, gametocytes and mosquito stages was investigated using 

targeted metabolomics.  

5.2 Results  

The central carbon metabolism of P. berghei asexual, gametocytes and ookinete 

stages was studied by performing metabolic labelling with 13C U-Glucose or 

13C15N U-Glutamine in cultures used to grow P. berghei parasites followed by 

analysis of isotopic enrichment in glycolysis and TCA cycle intermediates using 

GC-MS (see section 2.7 for details). 

To understand isotopomer analysis it is important to understand the flow of 

carbon skeletons through the glycolytic and TCA cycle pathways which is 

described in Figure 5-3. The absolute abundance presented for each data set 

reflects the total concentration of metabolites in nmoles detected in the sample 

volume of 1µl injected in the GC-MS and is equivalent of extract from 2.5x106 

cells. 
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Figure 5-3 Schematic representation of the flow of carbon skeletons through the glycolytic 
and TCA cycle pathways. Open circles indicate unlabelled carbon atoms and closed circles 

indicate isotopically labelled carbon atoms. 

While using 13C U-Glucose, provided the classical glycolysis to TCA cycle 

pathways operate in the canonical manner, starting from a completely labelled 
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6-C glucose molecule, all glycolytic intermediates should show a +6 or a +3 C 

labelling (Figure 5-3A and Figure 5-3B). All TCA cycle metabolites should then 

show a +2, +4 or +6 labelling (Figure 5-3C, Figure 5-3 D and Figure 5-3E). The 

expected abundance of +2 to +6 labelling will be in decreasing order as the 

carbon skeletons have to go round the TCA cycle three times to achieve maximal 

(+6) labelling.  Anaplerotic reactions undergoing intermediary carbon 

metabolism in the cytosol should also give rise to +3 labelled intermediates 

(Figure 5-3F).  While using 13C15N U-Glutamine in cultures, as glutamine 

interconverts with the TCA cycle intermediate alpha-ketoglutarate, glycolytic 

metabolites should show no labelling and if the canonical TCA cycle is operative, 

TCA intermediates should show +4 labelling (Figure 5-3G). In case of a reductive 

carboxylation of alpha-ketoglutarate, it is also possible to see a +5 labelling of 

TCA cycle intermediates (Figure 5-3H).     

A summary of the results is depicted in Figure 5-4.  

 

 Figure 5-4 Heat map showing enrichment (% labelling containing one or more 13C carbons) 

after correction for natural abundance (n=3). (Glc-13C U-Glucose, Gln-13C15N U-Glutamine, 

RBC- uninfected reticulocyte enriched erythrocytes, Schizonts- 24h mature asexual 

schizonts, Gams-Purified Gametocytes, Ook- 21h mature ookinetes, nd-not detected) 
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5.2.1 Asexual blood stages 

Uninfected RBCs and synchronised P. berghei gametocyte non-producer line 

(820m9w21dm1cl1) (Sinha, Hughes et al. 2014) ring stage infected RBCs (both 

enriched with ~35% reticulocytes prior to infection) were metabolically labelled 

with 13C U-Glucose or 13C15N U-Glutamine for 24 hours in culture and cells were 

harvested at 0, 6, 12, 18 and 24 h time points for rapidly quenching metabolism, 

metabolite extraction and quantification of 13C enrichment by GC-MS (see 

section 2.7.2) 

5.2.1.1 13C U-Glucose labelling 

In uninfected reticulocyte enriched erythrocytes (UIR) and P. berghei infected 

reticulocyte enriched erythrocytes (PBIR), it was found that 13C U-Glucose 

labelled glycolytic intermediates such as Glucose 6-phosphate (Glucose-6-P), 3-

Phosphoglycerate (PGA) and Phosphoenolpyruvate (PEP) to a high level, almost 

~70% or more. PEP was labelled almost 100% in both UIR and PBIR Figure 5-5B, C 

and D). This suggested that there is active glycolysis in both UIR and PBIR as 

expected. However, the absolute abundance of glycolytic intermediates in UIR 

was higher than in PBIR and especially the glycolytic end product PEP was found 

to be almost double in UIR than in PBIR (Figure 5-5E). This indicated that in 

PBIR, glycolytic products are turned over rapidly by the parasite into 

downstream metabolites possibly into TCA cycle or intermediary carbon 

metabolism (ICM) or for biomass synthesis to support rapid proliferation and 

shizogony (Salcedo-Sora, Caamano-Gutierrez et al. 2014).  Also, labelled glucose 

was consumed in PBIR more rapidly than in UIR as percentage labelling was only 

about 17% as compared to 70% in UIR (Figure 5-5A). As gluconeogenesis has not 

been reported in Plasmodium spp. to date, possibly due to the absence of a 

homologue of the enzyme fructose-1-6-biphosphatase, the presence of 

unlabelled glucose in these cultures could be due to gluconeogenesis in the host 

cell (reticulocytes) which seems to replenish the used up labelled glucose in 

infected cultures as there is no significant difference in absolute abundance of 

glucose in UIR and PBIR cultures at the 24 hour time point. 
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Figure 5-5 13C U-Glucose labelling of glycolytic intermediates in P. berghei asexual stages. 

Glycolytic intermediates were observed over the 24 hour asexual cycle (time points: 0, 6, 

12, 18, 24h) of P. berghei infected reticulocyte enriched erythrocytes (PBIR) and similarly 

incubated uninfected reticulocyte enriched erythrocytes (UIR). Panels A, B, C and D show 

percentage labelling of Glucose, Glucose 6-phosphate (Glucose-6-P), 3-Phosphoglycerate (3-
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PGA) and Phosphoenolpyruvate (PEP) respectively on the y-axis and time points on the x-

axis. Panel E shows absolute abundance of these metabolites at 24h time point in nmol in 

2.5x106 cells in PBIR and UIR. Error bars indicate SD of n=3 biological replicates.   

Looking at the TCA cycle metabolites, it was found that 13C U-Glucose labelled 

most TCA cycle intermediates actively as citrate, succinate, fumarate, malate 

and aspartate (proxy representative of oxaloacetate-OAA as they interconvert 

and OAA is not detected in GC-MS) were observed to be labelled in PBIR (Figure 

5-6). This suggested that pyruvate from glycolysis does enter mitochondria in the 

absence of a mitochondrial pyruvate dehydrogenase, possibly through the BCKDH 

complex as shown by recent studies (Macrae, Dixon et al. 2013, Oppenheim, 

Creek et al. 2014). Although TCA intermediates were detected in UIR, their 

labelling and abundance with 13C U-Glucose was found to be much lower than 

PBIR.  
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Figure 5-6 13C U-Glucose labelling of TCA cycle intermediates in P. berghei asexual stages. 

TCA cycle intermediates were observed over the 24 hour asexual cycle (time points: 0, 6, 

12, 18,24h) of P. berghei infected reticulocyte enriched erythrocytes (PBIR) and similarly 

incubated uninfected reticulocyte enriched erythrocytes (UIR). Panels A, B, C, D and E show 

percentage labelling of Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) 

respectively on the y-axis and time points on the x-axis. Panel F shows absolute abundance 

of these metabolites at 24h time point in nmol in 2.5x106 cells in PBIR and UIR. Error bars 

indicate SD of n=3 biological replicates.     

Isotopomer analysis of the TCA cycle metabolites at the 24 hour time point 

showed that the main isotopomers of citrate in 13C U-Glucose fed PBIR contained 

+2 and+4 labelled carbons indicating the presence of a canonical TCA cycle 

(Figure 5-7) where pyruvate feeds into the cycle via acetyl-coA as stated above. 

The absence of +6 labelled carbon atoms could be due to the accumulation of 

unlabelled glucose possibly from gluconeogenesis in the host reticulocytes and 

uninfected reticulocytes present in the cultures. Isotopomers containing +3 

labelled carbons were also detected for fumarate, malate and aspartate (Figure 

5-7C, D and E) suggesting the presence of intermediary carbon metabolism 

(Figure 3-6) and activity of P. berghei phosphoenolpyruvate carboxylase (pepc) 

which catalyses the carboxylation of 13C3-PEP to 13C3-oxaloacetate (Figure 5-3F). 

However the fraction labelling of these intermediates was found not to be very 

high - which could be due to the entry of other unlabelled carbon sources into 

the TCA cycle (possibly via the glutamine pathway - see section 5.2.1.2).  
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Figure 5-7 Fraction labelling of TCA cycle isotopomers at the 24h time point in P. berghei 

infected reticulocyte enriched erythrocytes (PBIR)- schizont stage and similarly incubated 

uninfected reticulocyte enriched erythrocytes (UIR)cultured in the presence of 13C U-

Glucose. ‘m (n)’ on the x-axis indicates the number of 13C atoms in each metabolite. Panels 

A, B, C, D and E show fraction labelling of Citrate, Succinate, Fumarate, Malate and 

Aspartate (Oxalo-acetate) respectively on the y-axis. Error bars indicate SD of n=3 biological 

replicates. 
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5.2.1.2 13C15N U-Glutamine labelling 

As expected, 13C15N U-Glutamine did not label any glycolytic intermediates 

(Figure 5-8) as it enters TCA cycle directly via the intermediate alpha-

ketoglutarate which feeds it into the TCA cycle (Olszewski, Mather et al. 2010, 

MacRae, Sheiner et al. 2012, Macrae, Dixon et al. 2013). The absolute 

abundance of glycolytic intermediates reflects their presence due to unlabelled 

glucose (Figure 5-8E). 
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Figure 5-8 13C15N U-Glutamine labelling of glycolytic intermediates in P. berghei asexual 

stages. Glycolytic intermediates were observed over the 24 hour asexual cycle (time points: 

0, 6, 12, 18, 24h) of P. berghei infected reticulocyte enriched erythrocytes (PBIR) and 

similarly incubated uninfected reticulocyte enriched erythrocytes (UIR). Panels A, B, C and D 

show percentage labelling of Glucose, Glucose 6-phosphate (Glucose-6-P), 3-
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Phosphoglycerate (3-PGA) and Phosphoenolpyruvate (PEP) respectively on the y-axis and 

time points on the x-axis. Panel E shows absolute abundance of these metabolites at 24h 

time point in nmol in 2.5x106 cells in PBIR and UIR. Error bars indicate SD of n=3 biological 

replicates.   

With 13C15N U-Glutamine  labelling, operation of a TCA cycle in P. berghei 

asexual stages was again confirmed as all TCA intermediates, citrate, succinate, 

fumarate, malate and aspartate (OAA) were found to be labelled (Figure 5-9). 

Labelling was also seen in UIR (which contained ~35% reticulocytes) and it was 

observed to be higher than what was seen with 13C U-Glucose (Figure 5-6). This 

is different from what has been shown for human normocytes which remain 

unlabelled in the presence of 13C15N U-Glutamine (Macrae, Dixon et al. 2013). 

This was not surprising as mitochondria in UIR were found to be present (section 

3.2.2) indicating that in reticulocytes, TCA metabolism might be operational but 

maximum flux comes from glutamine as the carbon source instead of glucose 

derived acetyl-coA. 

Additionally, it was notable that in P. berghei asexual stages labelled with 13C15N 

U-Glutamine, the labelling was found to be higher in succinate, aspartate (OAA), 

and to some extent, citrate compared to 13C U-Glucose labelling. This most 

probably was due to the presence of large cytoplasmic pools (as compared to 

mitochondrial) of unlabelled fumarate and malate coming from intermediary 

carbon metabolism (Figure 3-6) as the unlabelled glucose can also enter the 

cytoplasmic pools of malate and fumarate through the conversion of PEP to 

oxaloacetate via the cytoplasmic pepc, with succinate, oxaloacetate, and citrate 

being restricted to the mitochondrion (Figure 5-3F).  This observation fitted well 

when looking at the 13C U-Glucose labelling data (Figure 5-6), where this 

difference was not seen and also explained the observed higher labelling in 

aspartate (OAA) compared to the other TCA intermediates.  
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Figure 5-9 13C15N U-Glutamine labelling of TCA cycle intermediates in P. berghei asexual 

stages. TCA cycle intermediates were observed over the 24 hour asexual cycle (time points: 

0, 6, 12, 18,24h) of P. berghei infected reticulocyte enriched erythrocytes (PBIR) and 

similarly incubated uninfected reticulocyte enriched erythrocytes (UIR). Panels A, B, C, D 

and E show percentage labelling of Citrate, Succinate, Fumarate, Malate and Aspartate 

(Oxalo-acetate) respectively on the y-axis and time points on the x-axis. Panel F shows 

absolute abundance of these metabolites at 24h time point in nmol in 2.5x106 cells in PBIR 

and UIR. Error bars indicate SD of n=3 biological replicates.     

Isotopomer analysis of 13C15N U-Glutamine labelled asexual P. berghei at 24 

hours showed that all TCA cycle metabolites had the expected +2 and +4 

labelling but not +6 labelling possibly due to the presence of unlabelled glucose 

feeding in to TCA cycle via the BCKDH complex and the extra cycle required for 

achieveing maximal labelling . Surprisingly, citrate also showed +5 carbon 

labelling (Figure 5-10A). The observed +1 labelling in aspartate was due to the 

presence of an additional labelled 15N atom in 13C15N U-Glutamine.  
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Figure 5-10 Fraction labelling of TCA cycle isotopomers at the 24h time point in P. berghei 

infected reticulocyte enriched erythrocytes (PBIR)- schizont stage and similarly incubated 

uninfected reticulocyte enriched erythrocytes (UIR)cultured in the presence of 13C15N U-

Glutamine. ‘m (n)’ on the x-axis indicates the number of 13C atoms in each metabolite 

(Additional N15 atom in the case of aspartate). Panels A, B, C, D and E show fraction labelling 

of Citrate (black circle emphasises +5 label), Succinate, Fumarate, Malate and Aspartate 

(Oxalo-acetate) respectively on the y-axis. Error bars indicate SD of n=3 biological replicates. 
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In the retracted (Olszewski, Mather et al. 2013) paper which hypothesised the 

presence of a branched architecture of TCA cycle in Plasmodium parasites 

(Olszewski, Mather et al. 2010), the main argument was based on a similar 

observation where they detected the presence of +5 labelled citrate from 13C15N 

U-Glutamine fed cultures and assumed it to be coming from a ‘reductive arm’ of 

the TCA cycle of the parasite which supposedly takes alpha-ketoglutarate 

(interconverted from glutamine) into two different branches.  

 When looking at the isotopomer analysis of UIR incubated with 13C15N U-

Glutamine for 24 hours (Figure 5-10), it was discovered that the +5 citrate 

labelling was also present in UIR (Figure 5-10A), which constituted of ~35% 

reticulocytes containing apparently rudimentary mitochondria (Gronowicz, Swift 

et al. 1984). This probably means that there is indeed a ‘reductive arm’ of the 

TCA cycle present in reticulocytes which may explain the observation made by 

(Olszewski, Mather et al. 2010) as they used freshly obtained blood for culturing 

P. falciparum parasites which could have contained at least 1.5-2% 

reticulocytes. Reductive carboxylation like this has been observed before in 

cancer cells which have defective mitochondria (Mullen, Wheaton et al. 2012) or 

are under hypoxia (Metallo, Gameiro et al. 2012) and glutamine has specifically 

been shown to facilitate this reductive metabolism leading to production of 

lipogenic AcCoA (Fan, Kamphorst et al. 2013, Fendt, Bell et al. 2013). 

5.2.2 Gametocytes 

Magnetically purified P. berghei gametocytes (from gametocyte producer parent 

line 820em1dcl2TBB) were activated at 21°C in activation media (mimicking 

mosquito midgut conditions) where they were metabolically labelled with 13C U-

Glucose or 13C15N U-Glutamine in culture and cells were harvested at 1, 10, 20 

and 30 min time points for rapidly quenching metabolism, metabolite extraction 

and quantification of 13C enrichment by GC-MS. The unactivated gametocytes 

were incubated for 2 hours with the labelled carbon sources to allow for 

equilibration of metabolism in the presence of labelled glucose or glutamine and 

then harvested as for other time points (see section 2.7.3). This was done as it 

was not possible to inject labelled carbon sources in mice and we wanted to 

analyse carbon metabolism in unactivated gametocytes as well. For the purpose 

of the time course analysis during activation, unactivated gametocytes were 

considered to be time point 0. 
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5.2.2.1 13C U-Glucose labelling 

Using 13C U-Glucose, metabolic labelling of glycolytic intermediates was 

observed during the gametocyte activation process, however, the absolute levels 

of glycolytic intermediates were almost half of what was observed for the 

asexual stages (Figure 5-11) and the labelling of the glycolytic end product 

phosphoenolpyruvate (PEP) was not very strong compared to PBIR (section 

5.2.1.1) suggesting that glycolytic flux was low in the observed samples. Not 

surprisingly, incubation of mature gametocytes with labelled glucose did not 

result in high labelling at any time point also suggesting that glucose 

consumption in not as upregulated in mature gametocytes as the growing 

asexual stages. 
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Figure 5-1113C U-Glucose labelling of glycolytic intermediates in purified P. berghei 

gametocytes during activation. Glycolytic intermediates were observed over the 30min 

activation process (time points: 0, 1,10,20,30 min). Panels A, B, C and D show percentage 

labelling of Glucose, Glucose 6-phosphate (Glucose-6-P), 3-Phosphoglycerate (3-PGA) and 

Phosphoenolpyruvate (PEP) respectively on the y-axis and time points on the x-axis. Panel E 
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shows absolute abundance of these metabolites in unactivated gametocytes and 30 minutes 

post activation in nmol in 2.5x106 cells. Error bars indicate SD of n=3 biological replicates. 

The TCA cycle intermediates during gametocyte activation in presence of 13C U-

Glucose also showed labelling indicating the presence of a canonical TCA cycle 

and entry of glycolytic pyruvate into TCA cycle at this stage (Figure 5-12) as 

observed for the asexual stage. This was most probably facilitated through the 

BCKDH complex as shown in recent studies (Macrae, Dixon et al. 2013, 

Oppenheim, Creek et al. 2014). However the absolute abundance of the TCA 

cycle intermediates was very low as compared to that observed in the asexual 

stages.  
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Figure 5-12 13C U-Glucose labelling of TCA cycle intermediates in P. berghei gametocytes 

during activation. TCA cycle intermediates were observed over the 30min activation process 

(time points: 0, 1,10,20,30 min). Panels A, B, C, D and E show percentage labelling of 

Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) respectively on the y-

axis and time points on the x-axis. Panel F shows absolute abundance of these metabolites in 

unactivated gametocytes and 30 minutes post activation in nmol in 2.5x106 cells. Error bars 

indicate SD of n=3 biological replicates. 

Isotopomer analysis of gametocytes through the activation process showed that 

the main isotopomers were +2, +4 and +6 in case of citrate and +2 and +4 in case 

of other TCA intermediates indicating the presence of a canonical TCA cycle 

(Figure 5-13). Isotopomers containing +3 labelled carbons especially for 

fumarate and aspartate were also observed again indicating the presence of 

inter-conversions with the pepc mediated intermediary carbon metabolism (ICM) 

as observed for the asexual stages. Labelled aspartate disappears after 20 

minutes and could be totally converted to malate and/or fumarate after this 

time by ICM as both of these metabolites have the +3 isotopomer as the main 

labelled ions at 30 minutes post activation.  
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Figure 5-13 Fraction labelling of TCA cycle isotopomers in P. berghei gametocytes during 

activation in the presence of 13C U-Glucose. TCA cycle intermediates were observed over the 

30min activation process (time points: 0, 1,10,20,30 min).  ‘m (n)’ on the x-axis indicates 

the number of 13C atoms in each metabolite. Panels A, B, C, D and E show fraction labelling 

of Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) respectively on the y-

axis. Error bars indicate SD of n=3 biological replicates. 

5.2.2.2 13C15N U-Glutamine labelling 

Again, as expected, 13C15N U-Glutamine did not label any glycolytic 

intermediates (Figure 5-14) during gametocyte activation just as was observed in 

asexual stages.  
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Figure 5-14 13C15N U-Glutamine labelling of glycolytic intermediates in P. berghei 

gametocytes during activation. Glycolytic intermediates were observed over the 30min 

activation process (time points: 0, 1,10,20,30 min). Panels A, B, C and D show percentage 

labelling of Glucose, Glucose 6-phosphate (Glucose-6-P), 3-Phosphoglycerate (3-PGA) and 

Phosphoenolpyruvate (PEP) respectively on the y-axis and time points on the x-axis. Panel E 
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shows absolute abundance of these metabolites in unactivated gametocytes and 30 minutes 

post activation in nmol in 2.5x106 cells. Error bars indicate SD of n=3 biological replicates. 

With 13C15N U-Glutamine labelling, all TCA intermediates, citrate, succinate, 

fumarate, malate and aspartate (OAA) were found to be labelled (Figure 5-15) in 

activating gametocytes pointing towards the existence of a canonical TCA cycle 

with glutamine as a carbon source. However, the difference between succinate, 

aspartate (OAA), and citrate labelling on the one hand and malate and fumarate 

labelling on the other hand that was observed in asexual stages (where 

succinate, oxaloacetate, and citrate appeared to be restricted to the 

mitochondrion) was not seen in gametocytes. This suggested that ICM is present 

but is probably downregulated compared to asexual stages as unlabelled 

cytoplasmic pools of malate and fumarate (products of cytoplasmic glucose 

derived ICM) could not dilute the 13C15N U-Glutamine derived mitochondrial 

produced malate and fumarate. However, the absolute abundance of TCA 

metabolites was found to be quite low.  
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Figure 5-15 13C15N U-Glutamine labelling of TCA cycle intermediates in P. berghei 

gametocytes during activation. TCA cycle intermediates were observed over the 30min 

activation process (time points: 0, 1,10,20,30 min). Panels A, B, C, D and E show percentage 

labelling of Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) respectively 

on the y-axis and time points on the x-axis. Panel F shows absolute abundance of these 

metabolites in unactivated gametocytes and 30 minutes post activation in nmol in 2.5x106 

cells. Error bars indicate SD of n=3 biological replicates. 

Isotopomer analysis of 13C15N U-Glutamine labelled TCA cycle intermediates 

during gametocyte activation reiterated the presence of a canonical TCA cycle 

(Figure 5-16) as +2, +4 isotopomers of all TCA intermediates were seen. The 

absence of +3 isotopomers of fumarate and malate again suggested a down-

regulated ICM during gametocyte activation, unlike the asexual stages. The low 

abundance of TCA cycle intermediates of this pathway pointed towards down 

regulation of TCA metabolism as well, compared to the asexual and ookinete 

stages (see later). The observed +1 labelling in aspartate was due to the 

presence of an additional labelled 15N atom in 13C15N U-Glutamine. 
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Figure 5-16 Fraction labelling of TCA cycle isotopomers in P. berghei gametocytes during 

activation in the presence of 13C15N U-Glutamine. TCA cycle intermediates were observed 

over the 30min activation process (time points: 0, 1,10,20,30 min).  ‘m (n)’ on the x-axis 

indicates the number of 13C atoms in each metabolite (Additional N15 atom in the case of 

aspartate). Panels A, B, C, D and E show fraction labelling of Citrate, Succinate, Fumarate, 

Malate and Aspartate (Oxalo-acetate) respectively on the y-axis. Error bars indicate SD of 

n=3 biological replicates. 

5.2.3 Ookinetes 

Gametocytes from line 820em1dcl2TBB (the parent gametocyte producer line) 

and Pb137 (48/45- which produces gametocytes but only female gametocytes are 

viable) were used for in vitro ookinete cultures. The latter line was used to 

resolve the difference between unfertilised and fertilised female gametes at the 

metabolic level. Samples were collected at two time points at 10 hours (retort 

stage) and 21 hours (mature ookinetes). Two hours prior to collection, UIR were 

removed using magnetic columns and cells were incubated in the presence of 

either 13C U-Glucose or 13C15N U-Glutamine before rapidly quenching 

metabolism, metabolite extraction and quantification of 13C enrichment by GC-

MS (see section 2.7.4). 

5.2.3.1 13C U-Glucose labelling 

With 13C U-Glucose labelling, all glycolytic intermediates were found to be well 

labelled especially with the glycolytic end product PEP, where almost 80% 

labelling was observed both at 10 h and 21 h time points irrespective of 

fertilisation of female gametes. However, glucose labelling was quite low at 10 h 

and totally disappeared at the 21 hour time point suggesting a rapid turnover to 

downstream metabolites with time (Figure 5-17). The presence of unlabelled 

glucose in these cultures could be due to gluconeogenesis in the host cell 

(reticulocytes) present in the cultures as seen with the asexual stage data.  
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Figure 5-17  13C U-Glucose labelling of glycolytic intermediates in purified P. berghei 

ookinetes and unfertilised female gametes. Glycolytic intermediates were observed over 21 

h ookinete maturation process (time points: 10 h and 21 h). Panels A, B, C and D show 

percentage labelling of Glucose, Glucose 6-phosphate (Glucose-6-P), 3-Phosphoglycerate (3-

PGA) and Phosphoenolpyruvate (PEP) respectively on the y-axis and time points on the x-
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axis. Panel E shows absolute abundance of these metabolites in P. berghei ookinetes and 

unfertilised female gametes at the 21 h time point in nmol in 2.5x106 cells. Error bars 

indicate SD of n=3 biological replicates. 

All TCA cycle intermediates also seem to be labelled with 13C U-Glucose 

suggesting the presence of an active canonical TCA cycle (Figure 5-18). Labelling 

in citrate, succinate and aspartate (OAA) was found to be higher than in malate 

and fumarate, as seen in asexual stages and isotopomer analysis also suggested 

that apart from the usual +2, +4 and +6 isotopomers of TCA cycle intermediates, 

the presence of +3 labelled malate and fumarate suggested active ICM (Figure 

5-19), especially at the 21 h time point where somewhat more label was seen in 

unfertilised female gametes than in mature ookinetes.  
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Figure 5-18 13C U-Glucose labelling of TCA cycle intermediates in purified P. berghei 

ookinetes and unfertilised female gametes. TCA cycle intermediates were observed over 21 

h ookinete maturation process (time points: 10 h and 21 h). Panels A, B, C, D and E show 

percentage labelling of Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) 

respectively on the y-axis and time points on the x-axis. Panel F shows absolute abundance 

of these metabolites in P. berghei ookinetes and unfertilised female gametes at the 21 h 

time point in nmol in 2.5x106 cells. Error bars indicate SD of n=3 biological replicates. 
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Figure 5-19 Fraction labelling of TCA cycle isotopomers in purified P. berghei ookinetes and 

unfertilised female gametes in the presence of 13C U-Glucose. TCA cycle intermediates were 

observed over 21 h ookinete maturation process (time points: 10 h and 21 h).  ‘m (n)’ on the 

x-axis indicates the number of 13C atoms in each metabolite. Panels A, B, C, D and E show 

fraction labelling of Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) 

respectively on the y-axis. Error bars indicate SD of n=3 biological replicates. 

5.2.3.2 13C15N U-Glutamine labelling 

13C15N U-Glutamine does not label any glycolytic intermediates in ookinetes, as 

seen for other P. berghei stages described so far (Figure 5-20). Absolute 

abundance of glycolytic intermediates reflects their presence due to unlabelled 

glucose.  
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Figure 5-20  13C15N U-Glutamine labelling of glycolytic intermediates in purified P. berghei 

ookinetes and unfertilised female gametes. Glycolytic intermediates were observed over 21 

h ookinete maturation process (time points: 10 h and 21 h). Panels A, B, C and D show 

percentage labelling of Glucose, Glucose 6-phosphate (Glucose-6-P), 3-Phosphoglycerate (3-

PGA) and Phosphoenolpyruvate (PEP) respectively on the y-axis and time points on the x-
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axis. Panel E shows absolute abundance of these metabolites in P. berghei ookinetes and 

unfertilised female gametes at the 21 h time point in nmol in 2.5x106 cells. Error bars 

indicate SD of n=3 biological replicates. 

All TCA cycle intermediates showed labelling with 13C15N U-Glutamine indicating 

the presence of an active TCA cycle obtaining its carbon from glutamine (Figure 

5-21). Like asexual stages labelled with 13C15N U-Glutamine, the proportion 

labelled was higher in succinate, aspartate (OAA), and citrate pointing towards 

cytoplasmic pools of unlabelled fumarate and malate coming from pepc 

mediated intermediary carbon metabolism (from unlabelled glucose) and 

mitochondrial restriction of succinate, oxaloacetate, and citrate. This was not 

observed with 13C U-Glucose labelling data (Figure 5-18). Isotopomer analysis of 

13C15N U-Glutamine labelling data showed the expected +2 and +4 isotopomers 

strengthening the likelihood of the presence of a canonical TCA cycle during 

ookinete development (Figure 5-22). The absence of +6 labelled carbon atoms 

could be due to the accumulation of unlabelled glucose possibly from 

gluconeogenesis in the uninfected reticulocytes present in the cultures. The 

observed +1 labelling in aspartate was due to the presence of an additional 

labelled 15N atom in 13C15N U-Glutamine. 
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Figure 5-21 13C15N U-Glutamine labelling of TCA cycle intermediates in purified P. berghei 

ookinetes and unfertilised female gametes. TCA cycle intermediates were observed over 21 

h ookinete maturation process (time points: 10 h and 21 h). Panels A, B, C, D and E show 

percentage labelling of Citrate, Succinate, Fumarate, Malate and Aspartate (Oxalo-acetate) 

respectively on the y-axis and time points on the x-axis. Panel F shows absolute abundance 

of these metabolites in P. berghei ookinetes and unfertilised female gametes at the 21 h 

time point in nmol in 2.5x106 cells. Error bars indicate SD of n=3 biological replicates. 
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Figure 5-22 Fraction labelling of TCA cycle isotopomers in purified P. berghei ookinetes and 

unfertilised female gametes in the presence of 13C15N U-Glutamine. TCA cycle intermediates 

were observed over 21 h ookinete maturation process (time points: 10 h and 21 h).  ‘m (n)’ 

on the x-axis indicates the number of 13C atoms in each metabolite (Additional N15 atom in 

the case of aspartate). Panels A, B, C, D and E show fraction labelling of Citrate, Succinate, 

Fumarate, Malate and Aspartate (Oxalo-acetate) respectively on the y-axis. Error bars 

indicate SD of n=3 biological replicates. 

5.2.4 Evidence of a partial GABA shunt in P. berghei. 

There is evidence in Toxoplasma gondii of existence of a partial GABA (gamma-

Amino butyric acid) shunt as a means of energy storage (MacRae, Sheiner et al. 

2012). 13C15N U-Glutamine labelling of P. berghei parasites showed that during 

asexual development, only late stage and mature schizonts actively produce 

GABA and isotopomer analysis of these cells showed high level labelling of the +5 

isotopomer of GABA (including the +1 from the Nitrogen atom in the carbon 

source 13C15N U-Glutamine ) in the 24h schizont. No GABA was detected in UIR 

(Figure 5-23) indicating that the production of GABA was a parasite specific 

process. However absolute levels of GABA in asexual parasites were quite low 

compared to mosquito stages (see later). 
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Figure 5-23  13C15N U-Glutamine labelling of GABA in P. berghei asexual stages. (A) Labelling 

of GABA was observed over the 24 hour asexual cycle (time points: 0, 6, 12, 18,24h) of P. 

berghei infected reticulocyte enriched erythrocytes (PBIR) and uninfected reticulocyte 

enriched erythrocytes (UIR). (B) Absolute abundance of GABA at the 24h time point in nmol 

in 2.5x106 cells in PBIR and UIR. (C) Fraction labelling of GABA isotopomers observed at 24h 

stage in PBIR and UIR in the presence of 13C15N U-Glutamine. ‘m (n)’ on the x-axis indicates 

the number of 13C or 15N atoms and the y–axis indicates fraction labelled. Error bars indicate 

SD of n=3 biological replicates. 

Unactivated gametocytes showed almost 50% labelling of GABA in the presence 

of 13C15N U-Glutamine but activating stages didn’t label well and absolute levels 

of GABA were found to be much higher in unactivated gametocytes compared to 

activated gametocytes (Figure 5-24) or asexual stages seen above. However 

isotopomer analysis showed that +5 isotopomer was the most abundant species 

in both activated and unactivated gametocytes. 
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Figure 5-24 13C15N U-Glutamine labelling of GABA in purified P. berghei gametocytes during 

activation. (A) GABA labelling was observed over the 30min activation process (time points: 

0, 1,10,20,30 min) of P. berghei gametocytes. (B) Absolute abundance at 0min and 30min 

time points in nmol in 2.5x106 purified P. berghei gametocytes. (C) Fraction labelling of 

GABA isotopomers observed over the 30min activation process (time points: 0, 1,10,20,30 

min) of P. berghei gametocytes in the presence of 13C15N U-Glutamine. ‘m (n)’ on the x-axis 

indicates the number of 13C or 15N atoms and the y–axis indicates fraction labelled. Error bars 

indicate SD of n=3 biological replicates. 

The most abundant labelling of GABA by 13C15N U-Glutamine was seen during the 

ookinete development stage of P. berghei where at the 21 h time point in both 

mature ookinetes and unfertilised activated female gametes, absolute levels of 

GABA were the highest in the life cycle (almost 8 fold higher than unactivated 

gametocytes and more than a hundred fold higher than the asexual stages - 

figure 2-25 a). Isotopomer analysis also showed the +5 labelled isotopomer of 

GABA to be present in both mature ookinetes and unfertilised, activated female 

gametes (Figure 5-25) b).   
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Figure 5-25 13C15N U-Glutamine labelling of GABA in purified P. berghei ookinetes and 

unfertilised female gametes. GABA labelling was observed over the 21h ookinete maturation 

process (time points: 10h and 21h). (B) Absolute abundance at 21h in mature ookinetes and 

unfertilised female gametes in nmol in 2.5x106 cells. (C)Fraction labelling of GABA 

isotopomers observed over 21h (time points: 10h and 21h) in purified P. berghei ookinetes 

and unfertilized female gametes in the presence of 13C15N U-Glutamine.  ‘m (n)’ on the x-axis 

indicates the number of 13C or 15N atoms and y–axis indicates the fraction labelled. Error bars 

indicate SD of n=3 biological replicates. 

5.3 Discussion 

5.3.1 Asexual blood stages 

These results, amongst other interesting observations, confirmed the already 

known importance of glycolysis in P. berghei asexual stages as the main 

catabolic pathway to utilise glucose. Even though glycolysis was confirmed to be 

present in uninfected reticulocyte enriched erythrocytes (UIR), 13C U-Glucose 
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was found be consumed in P. berghei infected reticulocyte enriched 

erythrocytes (PBIR) much more rapidly than in UIR. The absolute abundance of 

glycolytic intermediates in UIR was found to be higher than in PBIR which was  

most likely due to the rapid turnover of glycolytic end products in PBIR to 

downstream metabolites via the TCA cycle or intermediary carbon metabolism or 

for rapid biomass generation to help in proliferative shizogony as seen in some 

cancer cells (Salcedo-Sora, Caamano-Gutierrez et al. 2014).  

Labelling of TCA cycle metabolites by 13C U-Glucose suggested the existence of a 

classical glycolysis to TCA cycle link via the glycolytic end product pyruvate, 

however, the absence of a mitochondrial pyruvate dehydrogenase (PDH) in 

Plasmodium spp. supported the proposed presence of a mitochondrion-located 

branched chain α-keto acid dehydrogenase (BCKDH) complex which is present in 

all apicomplexans, except Cryptosporidium spp. (Seeber, Limenitakis et al. 

2008). A very recent study confirmed that BCKDH indeed facilitates this process 

(Oppenheim, Creek et al. 2014). 

Isotopomer analysis showed the activity of pepc mediated ICM with 13C3-PEP 

becoming carboxylated to 13C3-oxaloacetate but the low labelling of these 

intermediates pointed towards the possibility of other carbon sources entering 

into the TCA cycle (this was further resolved by 13C15N U-Glutamine labelling of 

PBIR- see below). TCA cycle intermediates were also detected in UIR labelled 

with 13C U-Glucose (containing 35% reticulocytes) but their labelling and 

abundance was quite low. However, the importance of carbon metabolism in the 

host cell cannot be ignored, especially in the light of these data. 

13C15N U-Glutamine labelling showed that glutamine can be used as a carbon 

source in the TCA cycle during P. berghei asexual growth. Higher observed 

labelling in succinate, aspartate (OAA), and citrate suggested the presence of 

specific compartmentalisation of these metabolites to mitochondria as fumarate 

and malate, which can coexist in cytoplasmic pools made by pepc mediated ICM 

via PEP coming from unlabelled glucose, were shown to be present as labelled 

isotopomers of reduced abundance. 

5.3.2 Reductive carboxylation in reticulocytes during TCA metabolism 

With 13C15N U-Glutamine, in UIR, labelling of TCA metabolites was found to be 

higher than that observed with 13C U-Glucose. Isotopomer analysis of 13C15N U-

Glutamine incubated UIR revealed the possibility of presence of a ‘reductive 
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arm’ of TCA metabolism and provided an explanation for the presence of +5 

isotopomers of citrate in Plasmodium parasites as previously observed (Olszewski, 

Mather et al. 2010). Reductive carboxylation during TCA metabolism is a 

characteristic of cancerous cells with defective mitochondria (Mullen, Wheaton 

et al. 2012) or cells which are under stress (Metallo, Gameiro et al. 2012). 

Reticulocytes in the peripheral circulation are in a process of losing their 

organelles as they mature. The degeneration of mitochondria in reticulocytes 

takes place by a process of autolysis where they swell up, lose cristae and turn 

into single membrane bound vesicles, and then or fuse with lysosomes or are 

exocytosed (Gronowicz, Swift et al. 1984). It is also possible that these 

mitochondria in reticulocytes may use isoforms of NADP (+)/NADPH-dependent 

isocitrate dehydrogenase to produce glutamine-derived citrate and subsequently, 

acetyl-coenzyme A for lipid synthesis which is an active process in reticulocytes 

(Ballas and Burka 1974). 

5.3.3 Gametocytes 

Gametocyte activation is an energy demanding process and glycolysis has been 

considered to be the main energy contributor to male microgamete motility 

(Slavic, Delves et al. 2011) as with other parasite stages. During the activation 

process, female gametocytes differentiate into a single, spherical macrogamete 

whereas male gametocytes undergo three rapid rounds of nuclear division and 

within 8-12 minutes form eight microgametes each (Janse, Van der Klooster et al. 

1986). Gametes then emerge from the host cells which is an active process.  

Using 13C U-Glucose labelling, glycolytic intermediates in activating gametocytes 

were labelled but their absolute levels were found to be relatively low and the 

labelling of the glycolytic end product phosphoenolpyruvate (PEP) was found to 

be weak. Labelling of TCA cycle intermediates and their isotopomer analysis 

during gametocyte activation in the presence of 13C U-Glucose indicated the 

presence of a canonical TCA cycle. 

TCA cycle intermediates were also labelled by 13C15N U-Glutamine but the 

mitochondrial restriction of some metabolites as was observed in asexual stages 

was not seen in gametocytes. As +3 isotopomers of fumarate and malate were 

not detected, this also suggested a downregulated ICM during gametocyte 

activation, compared to the asexual stages. Although carbon skeletons from both, 

glucose and glutamine were found to enter the TCA cycle, the absolute 
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abundance of the intermediates of TCA cycle was quite low. However, as glucose 

derived glycolysis and subsequent TCA cycle operation is not the only manner in 

which activating gametocytes generate energy, there may be other pathways 

which facilitate this (section 0).  

Overall, it was found that gametocytes were not very active metabolically as 

compared to asexual developmental stages (section 5.3.1) or ookinetes (section 

5.3.4).  Gametocytes are quiescent cells which when matured, reach a stable G1 

cell cycle arrest stage (Lasonder, Ishihama et al. 2002) and circulate in the 

peripheral blood stream waiting to be picked up by the mosquito. Previous 

studies have also indicated that they are minimally active in terms of their 

metabolism (Sinden and Smalley 1979).  This sexual precursor stage of the 

parasite is in a preparatory phase for development in the mosquito stage and 

although it does seem to store factors for later use (Mair, Braks et al. 2006) 

(section 0), there was little active metabolism observed through the central 

carbon pathways in this study in the short window of 30 minutes of activation.   

5.3.4 Ookinetes 

The process of ookinete maturation leads to the formation of a motile parasite 

stage which traverses the midgut wall of the mosquito and forms an oocyst on 

the basal lamina of the midgut. Ookinete motility is an active process mediated 

by the actin-myosin motor complex (Siden-Kiamos, Ecker et al. 2006) which 

requires energy. It was concluded from our data that maturing ookinetes (and 

unfertilized female gametes) rapidly utilized glucose and turned it over to 

glycolytic intermediates with most labelling observed in the end product PEP 

with 13C U-Glucose labelling. All TCA cycle metabolites were also found to be 

labelled with 13C U-Glucose as a carbon source and the compartmentalization of 

citrate, succinate and oxaloacetate to mitochondria was observed, similar to 

asexual stages with fumarate and malate also present in the cytosol. 

13C15N U-Glutamine labelling also showed glutamine entering the TCA cycle as all 

intermediates were found to be labelled and operation of a canonical cycle. No 

+5 isotopomers of citrate were found in this exo-erythrocytic stage of the 

parasite, unlike the asexual stage, further strengthening the argument that the 

‘reductive arm’ of TCA metabolism was reticulocyte specific. The flux coming 

from glutamine through the TCA cycle was found to be more than that coming 

from glucose as a carbon source. This was confirmed by almost 90% labelling of 
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aspartate (OAA) in 13C15N U-Glutamine fed ookinete cultures compared to 20-30% 

in 13C U-Glucose fed cultures. Also, it was noted that unfertilized female gamete 

also undergoes similar metabolism as a fertilized ookinete, suggesting that 

fertilization is not a prerequisite for pre-programmed metabolism.   

It has been shown that blocking the TCA cycle in P. falciparum asexual stages by 

the chemical inhibitor Sodium fluoroacetate (NaFAc) (which combines with 

coenzyme A to produce fluoroacetyl CoA in turn, reacting with citrate synthase 

to produce fluorocitrate which binds very tightly to aconitase stopping the citric 

acid cycle (Proudfoot, Bradberry et al. 2006)) did not have any effect on cell 

viability (Macrae, Dixon et al. 2013). Also, deletion of a gene of flavoprotein (Fp) 

subunit Pbsdha (PBANKA_051820), one of the four components of complex II, a 

catalytic subunit for succinate dehydrogenase activity, did not have any effect 

on asexual growth in P. berghei (Hino, Hirai et al. 2012). However, in these 

studies, blocking aconitase stopped gametocytes from maturing and deletion of 

the succinate dehydrogenase subunit impaired the development of ookinetes and 

ookinete to oocyst transmission. It is possible that oxidative phosphorylation via 

the Electron Transport Chain (ETC), which is the most efficient step in producing 

ATP in the glycolysisTCA cycleETC carbon flow and also takes part in heme 

biosynthesis is necessary for ookinete maturation and deleting the complex II 

subunit of succinate dehydrogenase (which also takes part in the TCA cycle and 

is a link between TCA cycle and ETC) compromises both, the TCA cycle and the 

ETC. It was surprising then that this did not have any effect on development of 

gametocytes in P. berghei (Hino, Hirai et al. 2012).  

It was thought therefore that it would be interesting to delete aconitase in P. 

berghei to resolve this question. It was found that Aconitase (PBANKA_135520) 

can indeed be deleted in P. berghei (Figure 9-6) and functional characterization 

of the mutant is underway.  

5.3.5 GABA as an energy source in ookinete stage 

One of the most important observations in this study was the labelling of GABA 

(γ-Amino Butyric Acid) observed in 13C15N U-Glutamine enriched cultures in all P. 

berghei stages. GABA is stored as a short term energy reserve in the 

apicomplexan parasite Toxoplasma gondii where it takes part in a GABA shunt in 

which intermediates from the TCA cycle are used to synthesize glutamate, which 
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is subsequently decarboxylated to GABA which directly converts to succinate 

(MacRae, Sheiner et al. 2012).  

In our data, we found that with 13C15N U-Glutamine as the labelled carbon source, 

late stage and mature schizonts of P. berghei were found to label GABA, 

although the absolute levels in asexual stages were not very high. This was found 

to be exclusive to infected cells, ruling out this pathway in uninfected cells. 

Unactivated gametocytes seemed to accumulate GABA possibly in anticipation of 

the energy requirements during the mosquito stages. The most abundant and 

remarkable presence of GABA was seen in the ookinete developmental stages 

where 21 hours post activation, levels of GABA were the highest in the life cycle. 

Such high levels of GABA in the ookinete suggest a partial GABA shunt may 

operate in P. berghei as seen in Toxoplasma gondii and may play an important 

role in the mosquito stage transition and the establishment of the oocyst stage.  

It should be noted that there is an important distinction between Toxoplasma 

and Plasmodium in GABA metabolism as Toxoplasma encodes for an enzyme 

succinate semi-aldehyde dehydrogenase, which is required for the direct 

conversion of GABA to the TCA-cycle intermediate succinate (MacRae, Sheiner et 

al. 2012) whereas Plasmodium does not encode for this enzyme (Gardner, Hall et 

al. 2002). Also, GABA is formed by decarboxylation of glutamate but the genes 

orthologous to those representing canonical versions of the enzyme which 

catalyzes this reaction, glutamate decarboxylase were not found in Plasmodium 

or Toxoplasma genomes.  However, glutamate decarboxylases belong to an 

amino acid decarboxylase superfamily (Cook, Roos et al. 2007) and share 

conserved domains with other members of the same superfamily. A putative 

lysine decarboxylase (ldc) which usually converts lysine to cadaverine (not 

detected in our P. berghei metabolomics data or in Toxoplasma metabolomics 

data (MacRae, Sheiner et al. 2012)) is found in both Plasmodium (Gardner, Hall 

et al. 2002) and Toxoplasma genomes (Gajria, Bahl et al. 2008). ldc was shown 

to encode for a putative glutamate decarboxylase like protein (MacRae, Sheiner 

et al. 2012).  

It is thus possible that deleting the Plasmodium ldc (PBANKA_100340) will 

prevent the formation of GABA and show an ookinete stage phenotype. Potential 

transporters of GABA or glutamate to mitochondria e.g. Glutamate 

dehydrogenases (gdha-1,2,3) which are not required for asexual growth in P. 
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falciparum  (Storm, Perner et al. 2011), amino acid transaminases (e.g. 

Ornithine amino transferase: PBANKA_010740) and another putative transporter 

(PBANKA_030670) (MacRae, Sheiner et al. 2012) could also be targeted to stop 

ookinete mitochondria from accessing GABA as a potential energy source and 

halt the parasite at this stage. RNA seq data from our lab (A.Religa, unpublished 

data) shows that gdh1 is expressed at a high level in ookinetes and ldc shows 

high expression in the gametocyte stage. A simplistic possible model of GABA 

metabolism in P. berghei ookinete is represented in Figure 5-26. 

 

Figure 5-26 Model of GABA metabolism in P. berghei ookinetes. gdha- glutamate 

dehydrogenases: PBANKA_102620 (gdha1)  PBANKA_101400 (gdha2) PBANKA_122820 

(gdha3), oat- Ornithine amino transferase (PBANKA_010740), other transporter 

(PBANKA_030670), ldc- Lysine decarboxylase (PBANKA_100340) 

5.4 Conclusions  

This study elucidated the different roles of glucose and glutamine metabolism in 

P. berghei with both glycolysis and the TCA cycle found to be active in all stages 

although to varying degrees. The possibility of gluconeogenesis in reticulocytes 

was raised due to replenishment of unlabelled glucose in cultures and needs to 

be explored further.  The observation that reticulocytes possess a reductive arm 

of TCA metabolism was intriguing and explains the observation of this pathway in 

P. falciparum cultures in which reticulocytes were present (Olszewski, Mather et 

al. 2013). The flux through the glutamine derived TCA cycle was found to 

dominate over the glycolytic pyruvate derived TCA cycle in all stages. An 

important similarity between the asexual and ookinete stages was the observed 

restriction of citrate and succinate to mitochondria and presence of fumarate, 

malate and oxaloacetate in both the cytosol (derived via the active ICM 

pathway) as well as the mitochondria. This compartmentalisation was not 
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observed in gametocytes which were found to be less active in terms of classical 

carbon metabolism. The characterisation of aconitase deficient P. berghei 

parasites would reveal the role of the canonical TCA cycle in gametocyte 

development and maturation.  

The gametocytes did show GABA labelling by 13C15N U-Glutamine and the 

observed absolute abundance of GABA in unactivated gametocytes was slightly 

higher than asexual stages which seemed to decrease 30 minutes post activation. 

This suggested that gametocyte might employ GABA metabolism during 

activation but the levels observed during ookinete maturation were at least 15 

fold higher than unactivated gametocytes pointing towards ookinetes as the 

main stage for GABA metabolism in P. berghei life cycle. The proposed presence 

of alternative energy storage and generation system in gametocytes has been 

discussed in section 6. 

 The proposed role of GABA metabolism in the ookinete stage is of great interest 

with a number of genes implicated in this pathway as potential targets for 

dissecting the biology of energy metabolism at this stage. Extensive work to 

delete or conditionally knock out all the genes implicated in this pathway 

(Figure 5-26) is ongoing (we have successfully deleted five out of 6 genes- data 

not shown) which will be followed by phenotypic analyses and targeted 

metabolomics study of these mutants to further elucidate the role of GABA 

metabolism in P. berghei parasites. 
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6 Phosphocreatine is a potential energy reserve in P. 

berghei gametocytes 

6.1 Introduction  

The importance of energy metabolism in P. berghei has been emphasised in the 

previous chapter dealing with carbon metabolism. The gametocyte stage of 

Plasmodium parasites get ready for the hostile environment in the mosquito-mid 

gut and prepare themselves by using strategies like translational repression (Mair, 

Braks et al. 2006) to facilitate a quick turnover of proteins during development. 

The up-regulation of TCA function in gametocytes  also reflects an anticipation 

of increased energy demands in female gametes which prepare themselves for 

the post-fertilization stages when they convert from a non-motile apolar zygote 

to a polar and motile ookinete stage, during which access to glucose in the 

mosquito midgut and hemolymph may be limited (Talman, Domarle et al. 2004). 

The energy requirements of the male gametocyte are high and specific to the 

first few minutes after the mosquito takes the blood meal  when a drastic 

change in environment (e.g. low temperature, high pH) and other mosquito 

factors like xanthurenic acid give them cues to form haploid gametes (Muhia, 

Swales et al. 2001) (Arai, Billker et al. 2001). Female gametocytes differentiate 

into a single, spherical macrogamete whereas male gametocytes undergo three 

rapid rounds of nuclear division and within 8-12 minutes form eight 

microgametes each (Janse, Van der Klooster et al. 1986). During the formation 

of the male gametes, such rapid nuclear division and development of flagella 

which start beating violently to form exflagellation centers is one of the most 

spectacular events of the Plasmodium life cycle. It is a very active process, 

probably requiring a very rapid turnover of ATP production. Glycolysis has 

classically been considered to be the main pathway which facilitates this in 

Plasmodium (Slavic, Delves et al. 2011, Sinden, Carter et al. 2012).  

6.1.1 Phosphagen energy system 

Apart from glycolysis, the TCA cycle and oxidative phosphorylation, another 

energy system called the phosphagen system has been described to operate in 

higher organisms and is described as the quickest way to resynthesize ATP 

(Wallimann, Wyss et al. 1992) without oxygen and does not produce lactic acid 

and hence can be described as alactic anaerobic energy generation. The 

phosphagen system utilises phosphocreatine (PCr) which is stored as a rapidly 
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mobilizable reserve of high energy phosphate in metazoans and releases ATP in 

the reversible reaction catalysed by the enzyme creatine kinase (ck) (Figure 

6-1).  

 

Figure 6-1 Creatine kinase interconverts phosphocreatine into creatine releasing ATP in a 

reversible reaction (accessed from http://en.wikipedia.org/wiki/Creatine_kinase) 

In most muscles, the ATP regeneration capacity of ck is very high and 

considerably exceeds both ATP utilization as well as ATP replenishment by 

oxidative phosphorylation and glycolysis. For example, the maximal rate of ATP 

synthesis by the ck reaction in rat cardiac muscle (30 µmol/s/g) is much higher 

than the rate of ATP production by oxidative phosphorylation (2.5 µmol/s/g) 

(Wallimann, Wyss et al. 1992). 

6.1.2 Creatine kinase 

Creatine kinase (ck) belongs to a group of phosphagen kinases which has evolved 

by a gene duplication event from arginine kinase (followed by creatine 

specificity, quaternary structure and a mitochondrial targeting sequence for Mt 

isoforms) (Ellington and Suzuki 2007). There are four isoforms of this enzyme in 

vertebrates. 

1. Mtck1- Mitochondrial UMtck found ubiquitously in mitochondria in 

vertebrates. 

2. Mtck2- Mitochondrial SMtck found in sarcomeric mitochondria in 

vertebrates. 

3. Cytck-M- Cytoplasmic  M-ck Muscle type in muscle cells of vertebrates. 

4. Cytck-B- Cytoplasmic  B-ck Brain type in neuronal cells of vertebrates. 

A flagellar isoform is also found in primitive spermatozoa of protochordates and 

marine sponges (Tombes and Shapiro 1987). Plasmodium parasites do not encode 

for any obvious ck isoforms. 
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6.2 Results 

6.2.1 Gametocytes store phosphocreatine 

Comparative untargeted metabolomics of P. berghei mature gametocytes and 

mature schizonts revealed that gametocyte infected erythrocytes contain almost 

50 fold higher levels of phosphocreatine when compared to mature schizonts 

(Table 5). UIR were also found to store roughly 12 fold higher levels of 

phosphocreatine compared to normocytes (mature erythrocytes) (Table 2). The 

abundance of phosphocreatine in gametocyte infected reticulocytes was only 

marginally higher compared to uninfected reticulocytes (Table 4) and because it 

was detected in only whole cells and not lysed parasite pellets, it suggested that 

gametocytes probably store the host phosphocreatine for later use while 

schizonts seemed to have exhausted this resource (Figure 6-2).  

 

Figure 6-2 Fold change of Creatine and Phosphocreatine as observed in different sample 

groups compared in the untargeted metabolomics study. 

The discovery of phosphocreatine in gametocytes was of interest. However, 

since mass alone is insufficient to prove identity, MS/MS was performed on 

gametocyte extracts and the fragmentation pattern of the putative 

phosphocreatine was matched to commercially acquired phosphocreatine (Sigma 

P7936) which confirmed the validity of the identification (Figure 6-3). 
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Figure 6-3 MS/MS fragmentation for identification of phosphocreatine. The x-axis shows m/z 

ratio and the y-axis shows relative abundance of fragmented ions. Detected Molar mass of 

phosphocreatine 211.0355823. Left panel: Commercially acquired standard phosphocreatine 

(sigma P7936) with retention time 18.45 min. Right panel: phosphocreatine detected in 

gametocyte extract at retention time 18.57 min. Six major fragmentation ions were found to 

match between the standard and sample (90.0549, 114.0661, 132.0766, 167.0215, 

194.0324, and 212.0430) which confirmed the identification.   

6.2.2 Creatine kinase is not encoded by P. berghei. 

All creatine kinase isoforms in the P. berghei mammalian host, Mus musculus 

have two phosphagen kinase domains and two ATP binding domains. The two 

mitochondrial isoforms additionally contain one mitochondrial transit peptide 

and one cardiolipin binding domain each (Figure 6-4). 
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 Figure 6-4 Creatine kinase isoforms in Mus musculus 

Comprehensive bioinformatics analyses using whole enzyme isoform sequences 

and conserved phosphagen kinase and ATP binding domains failed to identify a 

closely related enzyme in Plasmodium spp. or other apicomplexans. 

6.2.3 Creatine kinase enzyme activity is present in UIR and PBIR 

The absence of ck enzyme in Plasmodium spp. suggested that if the parasites 

make use of the phosphagen system, they might hijack the enzyme from the host 

erythrocyte. To check for the presence of ck in erythrocytes, a ck activity assay 

was performed (using EnzyChromTM Creatine Kinase Assay Kit ECPK-100 from 

BioAssay Systems according to the manufacturer’s instructions) on uninfected 

erythrocytes (normocytes and reticulocyte enriched), purified schizonts (whole 

and lysed), purified gametocytes (whole, lysed and activated) and purified 

ookinetes. It showed the presence of ck activity in whole uninfected and 

infected erythrocytes but the activity was not detected in lysed parasites at 

either the schizont or gametocyte stage or in exoerythrocytic activated 

gametocytes or ookinete stages (Figure 6-5). However, the detected ck activity 

in these samples was at least 30 fold less than in positive controls (samples from 
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mouse muscle and brain homogenates where ck activity is supposed to be 

maximum). 

 

Figure 6-5 Creatine kinase activity assay. ck Activity was detected only in uninfected and 

infected whole erythrocytes. No ck activity was detected in lysed parasite pellet or activated 

gametocytes and ookinetes. Normalisation was done by matching protein concentration of 

positive controls (muscle and brain homogenates) to uninfected and infected erythrocytes 

and equal numbers of cells (1x106) were used for the lysate used for activity assay. Error 

bars indicate n=3 biological replicates. 

6.2.4 Creatine kinase could not be detected using a specific antibody 

An antibody (ab76506 Abcam) against a 91 amino acid fragment of human Mtck 

which was found to be conserved in a mouse Mtck isoform (Figure 6-6) was used 

for immuno-pull down and western blot analysis of uninfected erythrocytes 

(normocytes and reticulocytes), schizonts (whole and lysed), gametocytes 

(whole, lysed and activated) and ookinetes, however, the protein could not be 

detected in any of the samples despite detection of ck enzyme activity. The 

antibody detected the right sized band (46kDa) in brain and muscle homogenates 

of mouse which served as positive controls but a titration based on protein 

concentration showed that the limit of detection was quite high as lysate 

containing at least 1µg of protein from these homogenates had to be loaded on 

the gel to be able to see the chemi-luminescence signal (Figure 6-7). This 

suggested that ck might be present in very low quantities (enough to show 
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enzyme activity) in uninfected and infected erythrocytes but not enough to be 

detected by immuno-pulldowns or western blot analysis. 

 

 Figure 6-6 Antibody ab76506 from Abcam was raised against a 91 amino acid fragment of 

human Mtck (in red) conserved in the mouse mitochondrial isoform.  
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Figure 6-7 Western blot analysis using ab76506 showing titration of protein content from 

positive controls. Top panel- mouse muscle homogenate, bottom panel- mouse brain 

homogenate. 

Since the relative specific activity in the erythrocytes was only one-thirtieth that 

in the control cells, it seems possible that the quantity of ck present in the 

erythrocytes is below the limit of detection.  

6.2.5 Creatine kinase inhibition: effect on P. berghei development 

The finding of phosphocreatine in gametocyte infected erythrocytes and its 

conversion to creatine with release of ATP during exflagellation indicated a 

possible role for this metabolite in the development of gametes. FDNB (1-fluoro-

2,4-dinitrobenzene) is a membrane permeating reagent that forms a covalent 

derivative with a single cysteine residue to inactivate ck (Mahowald, Noltmann 

et al. 1962). As it is an amino and sulfhydryl group reagent (Sanger 1945) it has 

the potential to react with many targets (Tombes and Shapiro 1985). However, it 

has been shown that in specificity studies done in sea urchin sperm, ATPase and 

Myokinase activity as well as sperm respiration, motility and fertilisation were 

found to be totally resistant to FDNB even at concentrations of 20-50 µM while it 

inhibited ck activity with an IC90 value of around 10 µM (Tombes and Shapiro 

1985). Also in a study done on rabbit ck isoforms, it was found that FDNB had 

specific activity with an IC90 value of 10 µM and when calculated, the IC50 values 

for Cyt-ck and Mt-ck were found to be 101.8nM and 96.6nM respectively (Yang 

and Dubick 1977). Therefore FDNB can be used to inhibit ck specifically below 1 

µM range.  

Standard in vitro inhibition tests against different P. berghei stages (Section 

2.1.20) using FDNB showed that within the specificity range of under 1 µM, 

schizogony and ookinete development are not affected but exflagellation (a 

rapid process where post-activation, male gametocytes undergo three rounds of 
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endomitosis and an axoneme assembly finally releasing eight microgametes in 

just 10-12 minutes) is highly impaired with an IC50 of 23.7 nm (Figure 6-8A). 

Addition of exogenous ATP (100 nM) during incubation with the inhibitor before 

activation and during activation rescued exflagellation (Figure 6-8B) induced by 

the inhibitor. This suggested that ck mediated conversion of phosphocreatine to 

ATP and creatine is necessary for complete exflagellation and male gamete 

formation and a possible ATP transport mechanism between the host, the 

parasite and the extra-cellular environment must play a role. 

 

Figure 6-8 Exflagellation inhibition and rescue. (A) FDNB inhibits exflagellation with an IC50 

23.7nM. (B) Addition of exogenous ATP rescues exflagellation inhibition by FDNB). Error bars 

indicate n=3 biological replicates. 

Immunofluorescence staining was done using an anti-tubulin antibody to stain 

the male gametocytes and gametes and anti-Ter119 antibody to stain the 

erythrocyte surface to establish whether with ck inhibition, DNA replication 

takes place in male gametocytes post-activation and whether gametes emerge 

from the host erythrocyte. It showed that DNA replication is not affected by ck 

inhibition but the gametes did not emerge (Figure 6-9). 
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Figure 6-9 Immunoflorescence assay: ck inhibition during exflagellation. DIC (bright field), 

anti-Ter119 (green) stains the erythrocyte surface, anti-tubulin (red) stains male 

gametocytes and gametes, DAPI (blue) stains DNA. During exflagellation, DNA replication is 

completed by eight minutes and gametes emerge from host cell between 12-20 minutes. 

DAPI staining is not observed in 20mins p.a. no FDNB control because DNA is segregated into 

eight individual slender gametes.  

The ATP mediated rescue of exflagellation inhibition by FDNB lead to 

investigation of ATP transport by the infected erythrocyte or parasite 

membrane.  ATP-ADP translocase (usually present in the inner mitochondrial 

membrane) mediates ATP transport across the membrane. Bongrekic Acid (BA) 

blocks the ATP-ADP translocase from the inner side of the membrane, while 

Carboxyatractyloside (CA) blocks the ATP-ADP translocase from the outer side of 

membrane (Kunji and Harding 2003). Neither BA nor CA affected the 

exflagellation process. However when tested in the presence of FDNB and 

exogenous ATP, adding CA reversed the exogenous ATP mediated rescue of FDNB 

induced exflagellation inhibition while adding BA did nothing (Figure 6-10).  
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Figure 6-10 Effect of ATP/ADP translocase inhibition. (A) Carboxyatractyloside (CA) doesn’t 

affect the process of exflagellation but reversed the exogenous ATP mediated rescue of 



166 
 

 Phosphocreatine is a potential energy reserve in P. berghei gametocytes  

FDNB induced exflagellation inhibition. (B) Bongrekik Acid (BA) doesn’t affect the process of 

exflagellation and could not reverse the exogenous ATP mediated rescue of FDNB induced 

exflagellation inhibition. Error bars indicate n=3 biological replicates. 

6.3 Discussion 

The confirmed discovery of high levels of phosphocreatine in reticulocytes and 

gametocytes when compared to schizonts was intriguing and pointed towards 

storage in the host compartment. The absence of a ck homologue in Plasmodium 

suggested that host ck may play a role in utilising the phosphagen system and 

enzyme activity assays in uninfected and infected whole cells confirmed ck 

activity although to a much lower level compared to muscle or brain tissue 

where it is  a major contributor in energy metabolism. Although it was 

unexpected to find evidence of a phosphagen system in mammalian 

erythrocytes, it has been reported before in red blood cells of rainbow trout 

where significant ck activity was discovered, albeit at a lower level compared to 

glycolytic and TCA cycle enzymes (Walsh, Wood et al. 1990). One important 

similarity between trout erythrocytes (Tiano, Ballarini et al. 2000) and 

reticulocytes (Gronowicz, Swift et al. 1984) is the existence of mitochondria 

which are not present in mature normocytes and ck has two mitochondrial 

isoforms (Ellington and Suzuki 2007) and it is possible that this is the site of 

production of PCr in reticulocytes. ck is capable of phosphorylating creatine to 

produce phosphocreatine for storing energy derived from the ATP produced by 

the TCA cycle or oxidative phosphorylation. This Cr-PCr system has been shown 

to facilitate cellular energy transport from the site of ATP production to the site 

of ATP utilisation where ck can again release the phosphate group to transfer 

energy to demanding processes (Greenhaff 2001). It has been shown in our data 

in the previous section that reticulocytes are capable of both glycolysis and TCA 

cycle metabolism; whether they are capable of utilising the phosphagen system 

as well is unclear. 

Inhibition of ck activity by FDNB only affected exflagellation and male gamete 

formation in the parasite life cycle within the specificity range of under 1 µM the 

inhibitor FDNB (although schizogony and ookinete development were inhibited if 

FDNB was added at 10µM or more and off target effects cannot be ruled out). 

There was no notable effect on the emergence of female gametes either. 

Addition of exogenous ATP seemed to rescue exflagellation which was otherwise 

found to be inhibited by the ck inhibitor. This suggested either that 
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exflagellating cells need ATP beyond that which can be provided by 

glycolysis/the TCA cycle or that compartmentalisation of energy generation 

requires utilisation of host derived ATP for gamete emergence from the 

erythrocyte and host phosphagen system fulfils this need. It also pointed towards 

the existence of an ATP transporter in these cells. Experiments with CA showed 

that an ATP/ADP translocator may exist on the parasite membrane and while an 

adenylate translocase is present on the parasite mitochondrial membrane, its 

existence on the parasite membrane has also been previously speculated (Hatin, 

Jambou et al. 1992).  

6.4 Conclusion   

It was shown that gametocyte infected erythrocytes store phosphocreatine as a 

rapid-release energy source allowing exflagellation of male gametes during the 

mosquito stages. The high energy demanding process of exflagellation was shown 

to depend on this phosphagen system and targeting the host ck enzyme could be 

novel transmission blocking strategy as the parasite will not be able to develop 

resistance against host interventions. Such inhibitors will have to be designed so 

that they target only the infected host cells, possibly through the new 

permeability pathways as ck is indeed an important enzyme for host physiology 

in muscle and brain tissue. 
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7 Summary 
Metabolomics is a great tool for unravelling the biochemistry of biological 

systems and in light of the presented data, it became clearer that it can reveal 

new information about the system studied and add functional information to the 

data obtained from other ‘omics’ technologies. One of the first challenges for us 

was the identification and quantification of metabolites in our samples which 

was done by existing software and data analysis platforms such as IDEOM (Creek, 

Jankevics et al. 2012) and Agilent Chemstation. There is room for improvement 

in terms of scale and user interface in these software and these technologies are 

constantly improving, which will hopefully make future analyses easier.  

To establish the metabolite to pathway to gene connection was the next step 

which helped us focus on some very interesting aspects of host and parasite 

metabolism leading to new hypotheses generation and experimental validation 

using reverse genetics and/or reverse biochemistry experiments. One of the 

most exciting findings was the discovery of unexpected and novel metabolic 

pathways in the host reticulocytes and P. berghei gametocytes. The discovery of 

GABA metabolism in P. berghei ookinetes was another unexpected discovery 

which pointed towards the possibility of novel intervention strategies for 

transmission blocking.  

The metabolic profile of reticulocytes was found to be more complex than 

normocytes and P. berghei parasites were shown to have overlapping 

metabolism with their preferred host cell types.  A similar comparison study is 

being done with human reticulocytes and normocytes with our collaborators to 

be able to draw more conclusions about the biochemistry of the host-parasite 

interaction of the human reticulocyte preferring parasite P. vivax. However, the 

current difficulties in sustained in vitro culturing, genetic modification and 

phenotypic analyses of P. vivax parasites (Noulin, Borlon et al. 2013) are big 

challenges. Use of erythroid progenitor stem cells to generate laboratory 

adapted reticulocyte cultures which could be used for P. vivax propagation is 

being explored to help this (Panichakul, Sattabongkot et al. 2007, Noulin, Borlon 

et al. 2012). Nevertheless, it can still be concluded that because P. vivax 

parasites reside in a metabolically rich host cell, the host metabolism needs to 

be taken into consideration when designing new vaccines and drug targets. When 

it comes to P. falciparum which invade both reticulocytes and normocytes, our 
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data suggests that it is possible that targeting only parasite metabolism might 

put a selection pressure on parasites with a preference for invading reticulocytes 

and contribute to increased drug resistance.   

The metabolic differences between the asexual and sexual stages of P. berghei 

parasites emphasised on how the gametocyte prepares itself for the hostile 

environment of the mosquito midgut at the metabolic level by possibly 

employing the host phosphagen system. However, the localisation of the key 

enzyme, creatine kinase, which facilitates this process, has proved elusive so far 

in the infected erythrocyte and the potential for designing new antibodies to 

localise it is being explored.  The targeted metabolomics approach which was 

used to establish carbon metabolism in different stages in the life cycle of P. 

berghei surprisingly showed that GABA (γ-Aminobutyric acid) may act as an 

energy source during the ookinete stage and is being further investigated. 
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8 Future work 
Apart from the above mentioned work currently being carried out to further the 

knowledge in studies described in the previous sections, other interesting leads 

which were identified in section 4 but which could not be worked on completely 

due to time constraints are listed below. These could form the basis for future 

studies in Plasmodium metabolism. 

8.1 Pantothenate metabolism 

Pantothenate has been shown to be essential for P. falciparum blood stage 

survival and is required for the synthesis of coenzyme A (CoA), an enzyme 

cofactor involved in numerous metabolic reactions in the cell. Pantothenate is 

converted to CoA via five universal enzyme-mediated steps and in the first step, 

P. falciparum uses Pantothenate kinases (PanKs) to trap, phosphorylate and 

commit pantothenate to CoA synthesis and accumulate it (Spry and Saliba 2009). 

This however is not the case for many mammalian cells which can accumulate 

pantothenate in its non-phosphorylated form (Spry, van Schalkwyk et al. 2010) .   

There are two (PanKs) in Plasmodium and both are cytosolic. 

 1. PBANKA_102260 (P. falciparum homologue PF3D7_1420600) 

2. PBANKA_061140 (P.falciparum homologue PF3D7_1437400) 

By examining our metabolomics data (Table 5), it was found that the levels of a 

putative metabolite (PM) annotated as pantothenate were up-regulated in 

gametocytes when compared to schizonts by about 13 fold. However the levels 

of a PM annotated as 4’-phosphopantothenate were found to be downregulated 

in gametocytes by about 8 fold when compared to schizonts. Non-phosphorylated 

pantothenate was not detected in uninfected reticulocytes or normocytes. 4’-

phosphopantothenate was detected in uninfected erythrocytes but their levels 

were not different between reticulocytes and normocytes (Figure 8-1).   
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Figure 8-1 Fold change of Pantothenate and Phosphopantothenate as observed in different 

sample groups compared in the untargeted metabolomics study. 

It was intriguing that gametocytes had more of the non-phosphorylated version 

of pantothenate whereas schizonts had the phosphorylated version of 

pantothenate. RNAseq data generated in our lab (unpublished, A. Religa 

personal communication), showed that in P. berghei, expression levels  of PanK 

1 (PBANKA_102260) are low in all asexual stages but higher in gametocytes and 

ookinetes. Expression levels of PanK 2 (PBANKA_061140) are low in the asexual 

ring stage and gametocytes but higher in late trophozoite and schizonts and 

highest in ookinetes. This implied that there could be an additional role of 

pantothenate kinases in mosquito stage development.  

Preliminary experiments revealed that both pantothenate kinases could be 

readily deleted individually and a double knockout was also possible indicating 

that this enzyme activity is not required for blood stage development (data not 

shown). Gametocyte, gamete and ookinete production was similar to those 

achieved by wild type parasites, however, there was a defect observed in 

ookinete to oocyst transition resulting in a block in transmission in these mutant 

parasites (data not shown- not enough biological replicates done yet). This 

suggested that gametocytes could possibly phosphorylate pantothenate in 

mosquito stages where they utilise the co-A biosynthetic pathway during 

ookinete to oocyst transition. Phenotypic experiments with the double knock out 

and a planned targeted metabolomics experiment could reveal the extent of 
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dependence of gametocytes on pantothenate phosphorylation for mosquito 

transmission. We have also explored the possibility using PanK inhibitors as a 

malaria intervention strategy and are currently testing some of these inhibitors 

against the wt and PanK mutant P. berghei parasites.  

8.2 Carnitine derivatives 

Carnitine is synthesised from lysine and methionine in mammals in a four step 

pathway, the main enzymes for which are N-trimethyl-lysine dioxygenase 

(TMLD), 3-hydroxy- N-trimethyl-lysine aldolase (HTMLA), 4-tri-

methylaminobutyraldehyde dehydrogenase (TMABA-DH) and γ-butyrobetaine 

dioxygenase (BBD) (Vaz and Wanders 2002). The homologues of carnitine 

biosynthesis enzymes are not encoded by Plasmodium genome (Gardner, Hall et 

al. 2002).  Carnitine helps in transport of fatty acids from the cytosol into the 

mitochondria during the breakdown of lipids for the generation of metabolic 

energy by their beta oxidation (Steiber, Kerner et al. 2004). Elevated levels of 

acyl-carnitine derivatives were detected in reticulocytes when compared to 

normocytes (Table 2) and in P. berghei gametocytes when they were compared 

to P. berghei schizonts (Table 5) in the untargeted metabolomics study. As there 

are no obvious homologues of enzymes that facilitate the transfer of these acyl-

carnitine derivatives across the Plasmodium mitochondrial membrane (Carnitine 

palmitoyl transferases and translocases) or those which take part in β-oxidation 

in Plasmodium (Gardner, Hall et al. 2002), it is possible that, like 

phosphocreatine, these carnitine derivatives are host (reticulocyte) derived and 

are stored in gametocytes  but not in schizonts. It is therefore likely that 

gametocytes may utilise these carnitine conjugated acyl moieties in the 

mosquito stages where serum fatty acids are limiting to make or extend fatty 

acids.  

If the gametocytes are able to internalise these metabolites and carry them 

forward to the ookinete-oocyst stage, this could provide the answer to the long 

standing question of the source of fatty acid synthesis in P. berghei oocysts. In a 

newly formed oocyst on a mosquito basal lamina, after a growth phase, asexual 

mitotic replication results in the formation of a mature oocyst that contains 

thousands of daughter cells (sporozoites). The oocysts increase in size from 2-3 

µm in diameter to about 40 µm within 10-13 days. All of the daughter cells need 

new membranes and hence, fatty acids. The FASII pathway is dispensable for 
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blood stage schizogony as fatty acids can be scavenged from host serum which is 

rich in these lipids (Vaughan, O'Neill et al. 2009) but not for liver stage 

schizogony - comparable to oocyst sporogony where again it is dispensable. This 

is not true for P. falciparum where FASII is essential for oocyst development (van 

Schaijk, Kumar et al. 2013), but as P. falciparum is not a reticulocyte preferring 

parasite, it probably does not have access to the acyl-carnitine derivatives seen 

in our P. berghei data.  

Antibodies against specific acyl carnitine conjugates could be used to check for 

localisation in gametocytes, ookinetes and oocysts. Another way to test this 

hypothesis (although more difficult) would be to try labelling carnitines in the 

host animal by feeding heavy labelled methionine and lysine and infecting them 

with P. berghei, then doing a targeted metabolomics experiment with 

gametocyte and ookinete stages. It would still be very challenging to do any 

metabolomics studies on oocysts, due to logistical reasons and difficulty in 

getting enough material from mosquito dissections.  

8.3 Plasmodium specific metabolic pathways 

A number of metabolites which were specific to P. berghei schizont and 

gametocyte stage and absent or reduced in uninfected erythrocytes 

(reticulocytes) were observed in the untargeted metabolomics data (Table 3 and 

Table 4). Most notable of these were fatty acids and their derivatives specific to 

the parasite, metabolites of arginine and proline metabolism, folate biosynthesis 

and energy metabolism. Of these, the metabolites implicated in energy 

metabolism were studied in great detail using targeted metabolomics and the 

data is described in section 5 above. All the metabolites which were putatively 

identified were previously known and no novel drug targets could be highlighted 

from this comparison. However, it is possible to go back to the raw MS data and 

look for metabolite peaks which were detected specifically in parasite samples 

but could not be identified. If such peaks could be identified and charted on to a 

metabolic pathway, there is a potential for finding new metabolic pathway(s) 

specific to the parasite.  

This should however be done with caution as focussing on the parasite alone can 

lead to development of resistance and loss of efficacy of the potential inhibitor 

as from our data it is evident that host cell metabolism is of utmost importance. 
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9 Appendix 

 

 

Figure 9-1 Volcano plot showing the distribution of abundance of all 4560 peaks detected in 
uninfected reticulocyte enriched erythrocytes as compared to uninfected normocyte 
enriched erythrocytes in rodent blood.  All significant changes are represented above the 
broken horizontal line. Coloured dots indicate metabolites which are: Blue- significantly up-
regulated, Red- significantly down-regulated, Yellow- significant but little change, Brown- 
non-significant. 

 

 

 

Figure 9-2 Volcano plot showing the distribution of abundance of all ~5000 peaks detected in 
P. berghei schizonts as compared to uninfected reticulocyte enriched erythrocytes.  All 
significant changes are represented above the broken horizontal line. Coloured dots indicate 
metabolites which are: Blue- significantly up-regulated, Red- significantly down-regulated, 

Yellow- significant but little change, Brown- non-significant. 

 

log2 fold change 

log2 fold change 
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Figure 9-3 Volcano plot showing the distribution of abundance of all ~5000 peaks detected in 
P. berghei gametocytes as compared to uninfected reticulocyte enriched erythrocytes.  All 
significant changes are represented above the broken horizontal line. Coloured dots indicate 
metabolites which are: Blue- significantly up-regulated, Red- significantly down-regulated, 

Yellow- significant but little change, Brown- non-significant. 

 

 

 

Figure 9-4 Volcano plot showing the distribution of abundance of all ~5000 peaks detected in 
P. berghei gametocytes as compared to P. berghei schizonts.  All significant changes are 
represented above the broken horizontal line. Coloured dots indicate metabolites which are: 
Blue- significantly up-regulated, Red- significantly down-regulated, Yellow- significant but 
little change, Brown- non-significant. 

  

log2 fold change 

log2 fold change 
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(A) ICM enzymes: amino acid sequence alignment tree 

 

(B) Pyrimidine biosynthesis enzymes: amino acid sequence alignment tree 

 

(C) Glutathione biosynthesis enzymes: amino acid sequence alignment tree 
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(D) Phospholipid biosynthesis enzymes: amino acid sequence alignment tree 

Figure 9-5 Phylogenetic analyse of key metabolic enzymes in Plasmodium spp.  Pb- P. 
berghei, Pc- P.chabaudi, Pf- P. falciparum, Pv- P. vivax. See Table 7 for the complete list of 

metabolic enzymes used in these analyses. 
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Figure 9-6 (A) Schematic representation of gene deletion strategy for aconitase- 
(PBANKA_135520) in P. berghei parasites. (B) Gel electrophoresis of indicated PCR products 
to confirm integration of selection cassette, disruption of genes and clonality of mutant 
parasites. G882 was made in a wt parent line which expresses GFP in male gametocytes 
under the dynein heavy chain promoter and RFP in female gametocytes under the LCCL 
domain-containing protein CCP2 promoter (RMgm-164). G886 was made in a wt parent line 
expressing GFP constitutively under the eef1a promoter (RMgm-7). The presence of orf in 
both transfectants populations shows that the line is uncloned. Cloning and subsequent 

phenotypic characterisation of aconitase- P. berghei parasites is underway. 
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Table 2 Putative metabolites (PMs) represented in  

Figure 3-2 showing fold change in abundance in uninfected reticulocyte enriched 
erythrocytes compared to normocyte enriched erythrocytes. Column 4 shows fold change 
corrected for the presence of 65% normocytes in uninfected reticulocyte enriched 
erythrocyte extracts. PMs are listed in order of decreasing abundance (metabolites identified 

with authentic standards are highlighted bold) 

No. Metabolite Fold 
change 

Fold change 
(corrected for 
presence of 65% 
normocytes) 

P-value Platform 

1 Citric acid  >25 fold >25 fold 9.65E-07 GC-MS 

2 UMP >25 fold >25 fold 1.03E-02 GC-MS 

3  Nonanoylcarnitine >25 fold >25 fold 8.40E-06 LC-MS 

4 S-Methyl-L-methionine >25 fold >25 fold 1.01E-05 LC-MS 

5 Ala-Val-Pro-Ser >25 fold >25 fold 1.64E-06 LC-MS 

6 Dihydrobiopterin >25 fold >25 fold 9.59E-05 LC-MS 

7 N-Acetyl-aspartyl-glutamate >25 fold >25 fold 3.80E-11 LC-MS 

8 2-Amino-4-hydroxy-6-
hydroxymethyl-7,8-dihydropteridine 

>25 fold >25 fold 3.98E-06 LC-MS 

9 Aspartyl-L-proline >25 fold >25 fold 4.06E-05 LC-MS 

10 sn-glycero-3-Phospho-1-inositol >25 fold >25 fold 2.48E-06 LC-MS 

11 L-Aspartate >25 fold >25 fold 1.08E-05 LC-MS 

12 Dodecanoylcarnitine 23.92 >25 fold 6.91E-06 LC-MS 

13 CDP-choline 22.04 >25 fold 3.28E-04 LC-MS 

14 UDP-N-acetyl-D-glucosamine 21.79 >25 fold 2.95E-08 LC-MS 

15 O-Propanoylcarnitine 18.66 >25 fold 3.14E-06 LC-MS 

16 Glycerophosphoglycerol 18.45 >25 fold 9.04E-05 LC-MS 

17 L-Carnitine 17.81 >25 fold 3.18E-06 LC-MS 

18 L-Octanoylcarnitine 17.47 >25 fold 5.88E-07 LC-MS 

19 Glu-Asp 16.92 >25 fold 9.51E-07 LC-MS 

20 N6-Acetyl-N6-hydroxy-L-lysine 15.71 >25 fold 2.71E-04 LC-MS 

21 Orotate 15.68 >25 fold 1.00E-07 LC-MS 

22 dCMP-ethanolamine 14.45 >25 fold 5.94E-06 LC-MS 

23 Tetradecanoylcarnitine 13.99 >25 fold 4.84E-06 LC-MS 

24 Sedoheptulose 13.30 >25 fold 1.02E-06 LC-MS 

25 Gamma Glutamyl-glutamic acid 13.10 >25 fold 1.13E-04 LC-MS 

26 Creatinine phosphate 12.79 >25 fold 3.60E-03 LC-MS 

27 Phosphocreatine 12.32 24.64 4.50E-03 LC-MS 

28 [GP (16:0)] 1-hexadecanoyl-2-sn-
glycero-3-phosphate 

10.43 20.86 1.81E-06 LC-MS 

29 Glu-Pro 10.31 20.62 7.35E-05 LC-MS 

30 L-Tyrosine methyl ester 10.15 20.3 2.82E-07 LC-MS 

31 CDP-ethanolamine 10.03 20.06 3.21E-05 LC-MS 

32 Ala-Asp-Asp 9.86 19.72 3.46E-06 LC-MS 

33 dTTP 9.84 19.68 5.15E-07 LC-MS 

34 CMP 9.75 19.5 7.49E-06 LC-MS 

35 Prenyl-L-cysteine 9.73 19.46 5.95E-05 LC-MS 

36 N2-Succinyl-L-ornithine 9.68 19.36 3.84E-07 LC-MS 

37 N-(3S-hydroxydecanoyl)-L-serine 9.63 19.26 4.14E-05 LC-MS 
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38 Met-Thr-Asp 8.97 17.94 1.15E-05 LC-MS 

39 Malate 8.55 17.1 2.82E-05 LC-MS 

40 Ala-Ser-Tyr 8.46 16.92 5.50E-04 LC-MS 

41 2,3,4,5-Tetrahydrodipicolinate 8.05 16.1 6.81E-05 LC-MS 

42 IMP 7.75 15.5 5.83E-07 LC-MS 

43 Ala-Cys 7.53 15.06 5.07E-06 LC-MS 

44 Xanthine 7.36 14.72 1.10E-08 LC-MS 

45 Ribulose-5-phosphate 7.33 14.66 7.69E-03 GC-MS 

46 Acetylcholine 7.19 14.38 6.92E-06 LC-MS 

47 Choline phosphate 7.10 14.2 1.59E-04 LC-MS 

48 Glu-Gly 6.92 13.84 7.27E-06 LC-MS 

49 Fumarate 6.90 13.8 1.03E-04 LC-MS 

50 O-Butanoylcarnitine 6.84 13.68 2.96E-10 LC-MS 

51 N-Acetyl-D-mannosamine 6.80 13.6 9.13E-07 LC-MS 

52 N-Carbamoyl-L-aspartate 6.78 13.56 1.94E-05 LC-MS 

53 Dihydroorotate 6.76 13.52 1.82E-06 LC-MS 

54 Spermidine 6.71 13.42 2.74E-10 LC-MS 

55 allylcysteine 6.42 12.84 6.51E-07 LC-MS 

56 Glycine 6.41 12.82 1.50E-05 LC-MS 

57 Thiomorpholine 3-carboxylate 6.35 12.7 5.69E-06 LC-MS 

58 1-methylguanosine 6.11 12.22 1.89E-08 LC-MS 

59 Gly-Pro 6.06 12.12 1.32E-07 LC-MS 

60 Glu-Leu 5.95 11.9 1.50E-04 LC-MS 

61 Leu-Thr 5.86 11.72 2.49E-05 LC-MS 

62 Thr-Ala 5.85 11.7 1.05E-04 LC-MS 

63 gamma-L-Glutamyl-L-cysteine 5.77 11.54 1.66E-06 LC-MS 

64 1-Methyladenosine 5.69 11.38 9.08E-08 LC-MS 

65 3-Hydroxy-N6,N6,N6-trimethyl-L-
lysine 

5.60 11.2 1.67E-02 LC-MS 

66 O-hexanoyl-R-carnitine 5.54 11.08 5.41E-04 LC-MS 

67 O-decanoyl-R-carnitine 5.35 10.7 5.33E-06 LC-MS 

68 Malonylcarnitine 5.34 10.68 3.57E-04 LC-MS 

69 D-Ribose 5-phosphate 5.29 10.58 3.61E-11 LC-MS 

70 glucosamine-1,6-diphosphate 5.28 10.56 2.45E-11 LC-MS 

71 N2-Acetyl-L-aminoadipate 5.24 10.48 1.24E-04 LC-MS 

72 Leu-Pro 5.13 10.26 2.77E-06 LC-MS 

73 2-Hydroxyadenine 5.02 10.04 1.52E-06 LC-MS 

74 NG,NG-Dimethyl-L-arginine 4.99 9.98 2.55E-03 LC-MS 

75 Fructoselysine 6-phosphate 4.95 9.9 2.90E-10 LC-MS 

76 D-Gluconic acid 4.95 9.9 1.05E-04 LC-MS 

77 D-Xylulose 4.77 9.54 1.06E-06 LC-MS 

78 S-Methyl glutathione 4.72 9.44 1.54E-05 LC-MS 

79 sn-Glycerol 3-phosphate 4.67 9.34 4.01E-11 LC-MS 

80 Pseudouridine 4.64 9.28 3.97E-07 LC-MS 

81 Succinate 4.41 8.82 2.10E-03 LC-MS 

82 Cytidine 4.38 8.76 1.22E-03 LC-MS 

83 Monomethyl-arginine 4.32 8.64 5.82E-03 LC-MS 

84 Gamma-Aminobutyryl-lysine 4.30 8.6 1.56E-07 LC-MS 
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85 5-Methylcytidine 4.27 8.54 4.33E-09 LC-MS 

86 Glu-Val 4.25 8.5 7.05E-05 LC-MS 

87 Ala-Pro 4.22 8.44 5.39E-08 LC-MS 

88 Pro-Pro 4.10 8.2 2.73E-06 LC-MS 

89 [PC (16:0)] 1-hexadecanoyl-sn-
glycero-3-phosphocholine 

4.10 8.2 1.07E-04 LC-MS 

90 -Hydroxy-eicosatetraenoic acid 4.10 8.2 2.54E-03 LC-MS 

91 Xanthosine 4.05 8.1 8.44E-09 LC-MS 

92 N-Acetyl-D-glucosamine 6-sulfate 4.00 8 1.12E-07 LC-MS 

93 N-Acetyl-L-aspartate 3.91 7.82 4.80E-07 LC-MS 

94 Uridine 3.63 7.26 8.83E-07 LC-MS 

95 3',5'-Cyclic AMP 3.59 7.18 2.75E-05 LC-MS 

96 N1-Acetylspermidine 3.44 6.88 1.54E-05 LC-MS 

97 Glu-Ser 3.37 6.74 1.74E-05 LC-MS 

98 N-Acetylneuraminate 3.33 6.66 4.47E-05 LC-MS 

99 N-Acetyl-L-glutamate 5-
semialdehyde 

3.28 6.56 5.02E-06 LC-MS 

100 Val-Val 3.25 6.5 7.95E-07 LC-MS 

101 Asp-Asp 3.07 6.14 4.30E-10 LC-MS 

102 Erythrulose 1-phosphate 3.03 6.06 3.51E-05 LC-MS 

103 Glu-Cys-Gln-Gln 3.01 6.02 9.51E-06 LC-MS 

104 Choline 3.01 6.02 4.04E-05 LC-MS 

105 N-Acetylserotonin 3.00 6 2.80E-05 LC-MS 

106 Ala-Leu-Lys-Pro 2.99 5.98 1.31E-02 LC-MS 

107 (1-Ribosylimidazole)-4-acetate 2.97 5.94 4.71E-08 LC-MS 

108 O-Acetyl-L-homoserine 2.94 5.88 4.52E-04 LC-MS 

109 1-Methylnicotinamide 2.93 5.86 4.96E-04 LC-MS 

110 D-myo-Inositol 1,2-cyclic phosphate 2.92 5.84 7.41E-05 LC-MS 

111 2-Carboxy-D-arabinitol 1-phosphate 2.91 5.82 2.91E-06 LC-MS 

112 Glu-Thr 2.88 5.76 7.89E-05 LC-MS 

113 D-Erythrose 4-phosphate 2.86 5.72 5.47E-10 LC-MS 

114 Ala-Asp-Cys 2.82 5.64 3.04E-07 LC-MS 

115 N3-(4-methoxyfumaroyl)-L-2,3-
diaminopropanoate 

2.78 5.56 2.32E-06 LC-MS 

116 Ethanolamine phosphate 2.74 5.48 2.44E-03 LC-MS 

117 Taurine 2.71 5.42 1.13E-03 LC-MS 

118 Taurocyamine 2.70 5.4 2.20E-04 LC-MS 

119 N-(L-Arginino)succinate 2.64 5.28 5.09E-05 LC-MS 

120 L-Arginine 2.62 5.24 5.82E-06 LC-MS 

121 D-Glucose 6-phosphate 2.61 5.22 9.22E-05 LC-MS 

122 [SP] 3-dehydrosphinganine 2.60 5.2 8.90E-05 LC-MS 

123 [SP] Sphing-4-enine-1-phosphate 2.59 5.18 2.21E-10 LC-MS 

124 CMP-N-acetylneuraminate 2.53 5.06 1.72E-05 LC-MS 

125 N2-(D-1-Carboxyethyl)-L-lysine 2.53 5.06 1.59E-03 LC-MS 

126 Acetyl phosphate 2.51 5.02 1.02E-05 LC-MS 

127 Hexose-phosphate 2.47 4.94 1.08E-04 LC-MS 

128 Leucyl-leucine 2.46 4.92 4.24E-05 LC-MS 

129 N-(octanoyl)-L-homoserine 2.46 4.92 2.88E-07 LC-MS 

130 Putrescine 2.44 4.88 1.47E-06 LC-MS 
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131 AMP 2.44 4.88 6.68E-03 LC-MS 

132 3-sulfopropanoate 2.42 4.84 8.40E-04 LC-MS 

133 Leu-Val 2.39 4.78 4.89E-06 LC-MS 

134 D-Methionine 2.35 4.7 9.33E-04 LC-MS 

135 Ala-ala 2.31 4.62 3.03E-02 LC-MS 

136 Hypoxanthine 2.29 4.58 4.84E-02 LC-MS 

137 N5-Ethyl-L-glutamine 2.29 4.58 1.86E-02 LC-MS 

138 N-Acetylglutamine 2.28 4.56 4.27E-05 LC-MS 

139 L-Glutamate 2.22 4.44 1.01E-04 LC-MS 

140 L-Ornithine 2.22 4.44 2.29E-02 LC-MS 

141 Phe-Pro 2.20 4.4 1.27E-04 LC-MS 

142 DL-Glyceraldehyde 3-phosphate 2.20 4.4 1.46E-08 LC-MS 

143 L-Cystathionine 2.15 4.3 1.28E-02 LC-MS 

144 Cys-Gly 2.12 4.24 1.98E-03 LC-MS 

145 N-acetyl-(L)-arginine 2.09 4.18 1.33E-04 LC-MS 

146 N-Acetyl-D-fucosamine 2.03 4.06 8.88E-04 LC-MS 

147 Aminopropylcadaverine 2.01 4.02 6.77E-07 LC-MS 

148 Glutathione disulfide 1.99 3.98 1.34E-05 LC-MS 

149 L-2-Aminoadipate 1.94 3.88 1.42E-04 LC-MS 

150 (R)-S-Lactoylglutathione 1.93 3.86 9.10E-03 LC-MS 

151 pyrophosphate 1.91 3.82 3.05E-03 LC-MS 

152 2-Hydroxyethanesulfonate 1.90 3.8 2.44E-03 LC-MS 

153 L-Asparagine 1.90 3.8 8.75E-05 LC-MS 

154 GMP 1.88 3.76 1.68E-06 LC-MS 

155 Oleic acid 1.84 3.68 3.57E-01 GC-MS 

156 beta-Alanine 1.84 3.68 4.79E-03 LC-MS 

157 Guanine 1.83 3.66 2.80E-06 LC-MS 

158 NAD+ 1.82 3.64 2.96E-04 LC-MS 

159 3-oxo-5S-amino-hexanoic acid 1.81 3.62 1.61E-03 LC-MS 

160 Sucrose 1.80 3.6 1.00E-02 LC-MS 

161 N2-(D-1-Carboxyethyl)-L-arginine 1.80 3.6 1.50E-02 LC-MS 

162 succinamate 1.79 3.58 9.81E-04 LC-MS 

163 Fructose  1.79 3.58 1.83E-03 GC-MS 

164 Xanthosine 5'-phosphate 1.77 3.54 1.72E-02 LC-MS 

165 N6-Methyl-L-lysine 1.75 3.5 2.56E-03 LC-MS 

166 [FA trihydroxy(4:0)] 2,3,4-
trihydroxy-butanoic acid 

1.75 3.5 5.00E-02 LC-MS 

167 Guanosine 1.72 3.44 4.32E-04 LC-MS 

168 S-Adenosyl-L-methionine 1.72 3.44 4.04E-05 LC-MS 

169 Asp-Gly 1.68 3.36 4.82E-04 LC-MS 

170 Mannose 1.67 3.34 7.36E-03 GC-MS 

171 LysoPC(17:0) 1.66 3.32 1.60E-02 LC-MS 

172 1-Oleoylglycerophosphocholine 1.65 3.3 2.65E-02 LC-MS 

173 Glycyl-leucine 1.63 3.26 6.03E-05 LC-MS 

174 L-Tryptophan 1.62 3.24 3.93E-03 LC-MS 

175 D-Fructose 1,6-bisphosphate 1.61 3.22 5.77E-05 LC-MS 

176 Glu-Met 1.60 3.2 6.79E-03 LC-MS 

177 L-Tyrosine 1.60 3.2 2.25E-02 LC-MS 
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178 Adenosine 1.59 3.18 2.09E-03 LC-MS 

179 Glucopyranose 1.59 3.18 2.94E-01 LC-MS 

180 2,7-Anhydro-alpha-N-
acetylneuraminic acid 

1.58 3.16 9.48E-04 LC-MS 

181 S-glutathionyl-L-cysteine 1.57 3.14 3.31E-01 LC-MS 

182 Trehalose 1.55 3.1 6.67E-02 GC-MS 

183 Glu-Glu-Met 1.55 3.1 1.02E-02 LC-MS 

184 palmitic acid 1.55 3.1 3.72E-01 LC-MS 

185 3-Hydroxy-L-kynurenine 1.54 3.08 2.01E-02 LC-MS 

186 talose 1.53 3.06 1.23E-01 LC-MS 

187 Allantoin 1.53 3.06 7.03E-03 LC-MS 

188 [PC (18:0)] 1-octadecanoyl-sn-
glycero-3-phosphocholine 

1.53 3.06 5.89E-02 LC-MS 

189 Inosine 1.53 3.06 1.45E-01 LC-MS 

190 Hypotaurine 1.52 3.04 7.01E-03 LC-MS 

191 N-Methylnicotinate 1.52 3.04 7.37E-02 LC-MS 

192 L-Glutamate 5-semialdehyde 1.51 3.02 7.86E-04 LC-MS 

193 Hexadecasphinganine 1.47 2.94 4.54E-02 LC-MS 

194 5'-Methylthioadenosine 1.46 2.92 1.83E-01 LC-MS 

195 N-methyl glucamine 1.46 2.92 1.63E-01 LC-MS 

196 (R)-2-Hydroxyglutarate 1.45 2.9 4.72E-02 LC-MS 

197 Deoxyadenosine 1.44 2.88 1.83E-01 LC-MS 

198 L-pyroglutamic acid 1.44 2.88 8.91E-02 GC-MS 

199 L-Proline 1.42 2.84 4.43E-02 LC-MS 

200 L-Cystine 1.42 2.84 4.56E-01 LC-MS 

201 [PC (18:2)] 1-octadecadienoyl-sn-
glycero-3-phosphocholine 

1.41 2.82 6.86E-02 LC-MS 

202 Thr-Asp-Ser 1.40 2.8 6.09E-03 LC-MS 

203 L-Phenylalanine 1.40 2.8 2.19E-02 LC-MS 

204 Mannitol 1.39 2.78 3.58E-01 GC-MS 

205 Phosphoribosyl-AMP 1.39 2.78 9.82E-02 LC-MS 

206 L-Lysine 1.38 2.76 1.62E-02 LC-MS 

207 L-Kynurenine 1.38 2.76 5.58E-02 LC-MS 

208 Trimethylamine N-oxide 1.36 2.72 2.34E-03 LC-MS 

209 Malonate 1.36 2.72 1.18E-01 LC-MS 

210 Ala-Asp-Ser 1.36 2.72 9.62E-02 LC-MS 

211 Adenine 1.35 2.7 2.24E-01 LC-MS 

212 2-Naphthylamine 1.35 2.7 4.76E-02 LC-MS 

213 Methyloxaloacetate 1.34 2.68 1.31E-02 LC-MS 

214 L-Methionine S-oxide 1.34 2.68 1.21E-03 LC-MS 

215 (S)-Methylmalonate semialdehyde 1.34 2.68 2.26E-02 LC-MS 

216 Asp-Ser-Ser 1.34 2.68 2.95E-01 LC-MS 

217 Mannonic acid 1.34 2.68 8.58E-02 LC-MS 

218 N6,N6,N6-Trimethyl-L-lysine 1.32 2.64 1.66E-01 LC-MS 

219 Uracil 1.32 2.64 3.34E-04 LC-MS 

220 D-Galactofuranose 1.31 2.62 8.79E-02 LC-MS 

221 n-Pentadecanoic acid 1.31 2.62 9.48E-02 LC-MS 

222 L-cysteine sulfinate 1.31 2.62 1.16E-01 LC-MS 

223 O-Palmitoyl-R-carnitine 1.30 2.6 1.69E-01 LC-MS 
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224 Creatine 1.30 2.6 8.74E-02 LC-MS 

225 L-Threonine 1.30 2.6 1.43E-02 LC-MS 

226 Xylitol 1.30 2.6 1.91E-03 LC-MS 

227 Glu-Met-Thr 1.26 2.52 2.80E-01 LC-MS 

228 tetracosahexaenoic acid 1.22 2.44 1.62E-01 LC-MS 

229 Methylmalonate 1.21 2.42 1.00E-01 LC-MS 

230 alpha-ketoglutaric acid 1.20 2.4 2.01E-01 GC-MS 

231 L-Glutamine 1.20 2.4 8.17E-02 LC-MS 

232 Tyramine 1.19 2.38 2.40E-01 LC-MS 

233 N-Methylethanolamine phosphate 1.18 2.36 4.96E-01 LC-MS 

234 L-Alanine 1.17 2.34 2.07E-01 LC-MS 

235 Arg-Gln-Ser-Ser 1.17 2.34 4.77E-01 LC-MS 

236 L-1-Pyrroline-3-hydroxy-5-
carboxylate 

1.16 2.32 8.01E-02 LC-MS 

237 Creatinine 1.15 2.3 2.32E-01 LC-MS 

238 Maltose 1.13 2.26 4.76E-01 LC-MS 

239 3-Oxopropanoate 1.12 2.24 1.02E-01 LC-MS 

240 L-serine 1.11 2.22 1.58E-01 LC-MS 

241 5-6-Dihydrouridine 1.11 2.22 2.74E-01 LC-MS 

242 Ethyl (R)-3-hydroxyhexanoate 1.10 2.2 4.66E-01 LC-MS 

243 Cortisone 1.10 2.2 7.89E-01 GC-MS 

244 D-glucose 1.10 2.2 3.26E-01 LC-MS 

245 Methylimidazoleacetic acid 1.10 2.2 3.58E-01 LC-MS 

246 Phenylacetylglycine 1.10 2.2 5.97E-01 LC-MS 

247 D-Galactose 1.09 2.18 6.83E-01 LC-MS 

248 3-Phosphoglycerate 1.09 2.18 4.29E-01 LC-MS 

249 Propanoic acid 1.08 2.16 5.91E-01 LC-MS 

250 Sulfoacetaldehyde 1.08 2.16 6.24E-01 LC-MS 

251 Homocysteine 1.08 2.16 7.51E-01 LC-MS 

252 Orthophosphate 1.06 2.12 8.22E-01 LC-MS 

253 10-Hydroxydecanoic acid 1.05 2.1 4.54E-01 LC-MS 

254 Glycodeoxycholate 1.05 2.1 7.75E-01 LC-MS 

255 Dodecatetraenedioic acid 1.05 2.1 6.00E-01 LC-MS 

256 2-C-Methyl-D-erythritol 4-phosphate 1.04 2.08 9.17E-01 LC-MS 

257 Cys-Cys-His-His 1.04 2.08 7.96E-01 LC-MS 

258 phosphoenolpyruvic acid  1.03 2.06 8.48E-01 LC-MS 

259 5-Hydroxyindoleacetate 1.02 2.04 8.26E-01 LC-MS 

260 Phe-Asp 1.01 2.02 9.49E-01 LC-MS 

261 phosphoric acid 1.01 2.02 9.57E-01 LC-MS 

262 N-Acetyl-D-glucosamine 6-phosphate 1.00 2 9.84E-01 LC-MS 

263 Glu-Leu-Thr-His -1.01 -2.02 9.61E-01 LC-MS 

264 His-Phe-Val-Pro -1.01 -2.02 9.66E-01 LC-MS 

265 Phenylpyruvate -1.02 -2.04 8.64E-01 LC-MS 

266 hydroxy-octadecadienoic acid -1.03 -2.06 8.40E-01 LC-MS 

267 L-Noradrenaline -1.03 -2.06 8.39E-01 LC-MS 

268 di-n-Undecylamine -1.03 -2.06 9.42E-01 LC-MS 

269 Fructoselysine -1.04 -2.08 6.75E-01 LC-MS 

270 Acetamide, N,N-diethyl- -1.05 -2.1 3.12E-01 GC-MS 
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271 3-Butenoic acid -1.05 -2.1 1.99E-01 LC-MS 

272 glycolic acid -1.05 -2.1 3.77E-01 LC-MS 

273 Myo-inositol-3-phosphate -1.05 -2.1 8.44E-01 GC-MS 

274 Erucic acid -1.06 -2.12 7.49E-01 GC-MS 

275 5-Hydroxypentanoate -1.07 -2.14 4.88E-01 LC-MS 

276 [FA (20:4)] 5Z,8Z,11Z,14Z-
eicosatetraenoic acid 

-1.07 -2.14 6.04E-01 LC-MS 

277 Cholest-2-eno[2,3-b]indole, 1'-
acetyl-6'-methoxy- 

-1.08 -2.16 5.28E-01 GC-MS 

278 N3-methylcytosine -1.08 -2.16 6.50E-01 LC-MS 

279 D-Threose -1.08 -2.16 4.19E-01 LC-MS 

280 4-Methylene-L-glutamine -1.09 -2.18 6.82E-01 LC-MS 

281 2-Phenylacetamide -1.09 -2.18 5.21E-01 LC-MS 

282 Pyruvate -1.09 -2.18 1.13E-03 GC-MS 

283 Heptanedioic acid -1.10 -2.2 4.02E-01 LC-MS 

284 methyl-dihydroxy-pentanoic acid -1.12 -2.24 3.39E-01 LC-MS 

285 dioxo-octanoic acid -1.13 -2.26 3.67E-01 LC-MS 

286 amino-undecanoic acid -1.14 -2.28 3.49E-01 LC-MS 

287 L-Citrulline -1.17 -2.34 5.76E-01 LC-MS 

288 sn-glycero-3-Phosphocholine -1.17 -2.34 7.07E-01 LC-MS 

289 Methanesulfonic acid -1.18 -2.36 5.11E-01 LC-MS 

290 Tetradecanedioic acid -1.18 -2.36 3.52E-01 LC-MS 

291 P-DPD -1.18 -2.36 2.76E-01 LC-MS 

292 Phthalic acid -1.19 -2.38 6.18E-03 LC-MS 

293 4-Acetamidobutanoate -1.19 -2.38 1.49E-01 LC-MS 

294 myo-Inositol -1.20 -2.4 4.94E-01 LC-MS 

295 Cyclododecane -1.20 -2.4 3.07E-02 GC-MS 

296 Gamma-Glutamylglutamine -1.21 -2.42 1.26E-01 LC-MS 

297 N4-acetyl-N4-hydroxy-1-
aminopropane 

-1.22 -2.44 4.86E-01 LC-MS 

298 5-oxo-7-octenoic acid -1.22 -2.44 1.24E-01 LC-MS 

299 2-Acetolactate -1.24 -2.48 3.78E-01 LC-MS 

300 Urea -1.26 -2.52 4.61E-01 GC-MS 

301 Elaidiccarnitine -1.26 -2.52 2.77E-01 LC-MS 

302 d-Xylose -1.27 -2.54 4.61E-01 LC-MS 

303 D-Glycerate -1.28 -2.56 9.06E-02 LC-MS 

304 Lactate -1.29 -2.58 2.85E-01 LC-MS 

305 2-acetamidoglucal -1.30 -2.6 7.17E-03 LC-MS 

306 Heme -1.32 -2.64 3.71E-01 LC-MS 

307 D-4'-Phosphopantothenate -1.35 -2.7 5.89E-02 LC-MS 

308 Glycerol -1.39 -2.78 1.43E-03 LC-MS 

309 Met-Ala-Gly -1.40 -2.8 6.53E-02 LC-MS 

310 Urate -1.41 -2.82 1.34E-01 LC-MS 

311 Stearic acid -1.44 -2.88 8.78E-02 GC-MS 

312 4-Guanidinobutanoate -1.44 -2.88 3.24E-03 LC-MS 

313 Deoxycytidine -1.47 -2.94 1.75E-01 LC-MS 

314 2-monooleoylglycerol -1.53 -3.06 1.16E-02 LC-MS 

315 6-[3]-ladderane-1-hexanol -1.56 -3.12 9.22E-02 LC-MS 

316 4-Hydroxy-L-threonine -1.59 -3.18 1.30E-05 LC-MS 
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317 Val-Asp-Gly -1.60 -3.2 1.09E-04 LC-MS 

318 Ala-Ser -1.64 -3.28 3.31E-04 LC-MS 

319 Heptadecanoic acid -1.64 -3.28 4.55E-02 GC-MS 

320 Leu-Ala -1.76 -3.52 1.04E-04 LC-MS 

321 9,12-octadecadienal -1.79 -3.58 1.70E-01 LC-MS 

322 Thr-Ala-Asp -1.80 -3.6 9.52E-05 LC-MS 

323 N-Acetyl-D-glucosaminate -1.94 -3.88 1.55E-05 LC-MS 

324 D-Sorbitol -2.11 -4.22 8.20E-09 LC-MS 

325 L-Histidine -2.40 -4.8 2.99E-08 LC-MS 

326 N-Ribosylnicotinamide -2.42 -4.84 1.97E-03 LC-MS 

327 octadecenamide -2.76 -5.52 1.60E-01 LC-MS 

328 Valine -2.85 -5.7 2.69E-03 GC-MS 

329 Cellobiose -2.95 -5.9 9.12E-02 GC-MS 

330 N5-(L-1-Carboxyethyl)-L-ornithine -3.10 -6.2 1.01E-08 LC-MS 

331 Hexose phosphate -3.55 -7.1 5.65E-10 LC-MS 

332 3-beta-D-Galactosyl-sn-glycerol -5.38 -10.76 1.68E-06 LC-MS 

333 Leu-Lys-Asp -5.64 -11.28 1.04E-08 LC-MS 
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Table 3 Putative metabolites (PMs) represented in  

Figure 4-1 showing fold change in abundance in mature schizonts compared to uninfected 
reticulocyte enriched erythrocytes. PMs are listed in order of decreasing abundance 

(metabolites identified with authentic standards are highlighted bold) 

No. Metabolites Fold change 
(Schizonts/ 
reticulocytes) 

P-Value Platform 

1 Arg-Cys-Ser-Tyr > 25 fold 4.76E-03 LC-MS 

2 N-Acetyl-L-histidine > 25 fold 4.38E-07 LC-MS 

3 (S)-ATPA > 25 fold 7.49E-05 LC-MS 

4 CMP-N-trimethyl-2-aminoethylphosphonate > 25 fold 1.03E-04 LC-MS 

5 gamma-Glutamyl-gamma-aminobutyraldehyde > 25 fold 1.09E-04 LC-MS 

6 Carnosine > 25 fold 3.70E-06 LC-MS 

7 Proclavaminic acid > 25 fold 1.33E-03 LC-MS 

8 dTMP > 25 fold 4.12E-05 LC-MS 

9 Glu-Phe-Cys-Cys > 25 fold 3.15E-05 LC-MS 

10 UMP > 25 fold 1.12E-03 GC-MS 

11 Lys-Tyr > 25 fold 1.05E-03 LC-MS 

12 Ala-Gly-Pro > 25 fold 1.35E-03 LC-MS 

13 3-(Pyrazol-1-yl)-L-alanine > 25 fold 5.14E-08 LC-MS 

14 L-Rhamnose > 25 fold 6.81E-06 LC-MS 

15 Riboflavin > 25 fold 2.75E-05 LC-MS 

16 Propanoyl phosphate > 25 fold 3.25E-06 LC-MS 

17 Nalpha-Methylhistidine > 25 fold 8.69E-06 LC-MS 

18 S-Adenosyl-L-methionine > 25 fold 2.61E-04 LC-MS 

19 Volemitol > 25 fold 1.04E-05 LC-MS 

20 Glu-Asp-Pro > 25 fold 1.25E-06 LC-MS 

21 Trp-Pro > 25 fold 3.02E-06 LC-MS 

22 O-Phospho-L-serine > 25 fold 3.46E-04 LC-MS 

23 D-4'-Phosphopantothenate > 25 fold 1.38E-04 LC-MS 

24 [ST hydrox] N-(3alpha,7alpha-dihydroxy-
5beta-cholan-24-oyl)-taurine 

> 25 fold 6.20E-06 LC-MS 

25 Ala-Leu-Asn-Ser > 25 fold 4.71E-04 LC-MS 

26 DL-Methionine sulfone > 25 fold 2.17E-05 LC-MS 

27 Asn-Asn-Asp > 25 fold 3.93E-06 LC-MS 

28 Hypusine > 25 fold 9.86E-06 LC-MS 

29 4,5-seco-dopa > 25 fold 7.11E-06 LC-MS 

30 Choline phosphate > 25 fold 2.94E-05 LC-MS 

31 Phe-Asp-Gln > 25 fold 3.21E-04 LC-MS 

32 1-(5-Phosphoribosyl)imidazole-4-acetate > 25 fold 3.07E-06 LC-MS 

33 Asn-Pro > 25 fold 1.97E-05 LC-MS 

34 Pyrimidine nucleoside > 25 fold 9.12E-05 LC-MS 

35 CDP-choline > 25 fold 1.50E-03 LC-MS 

36 Phosphonoacetaldehyde > 25 fold 2.82E-06 LC-MS 

37 Met-Ser > 25 fold 1.78E-06 LC-MS 

38 Ala-Pro > 25 fold 2.55E-06 LC-MS 

39 Lys-Pro > 25 fold 9.13E-06 LC-MS 

40 Cytidine 2'-phosphate > 25 fold 3.79E-04 LC-MS 
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41 CDP-ethanolamine > 25 fold 4.13E-04 LC-MS 

42 L-rhamnitol > 25 fold 2.74E-07 LC-MS 

43 N-Ribosylnicotinamide > 25 fold 1.22E-05 LC-MS 

44 Lactate > 25 fold 3.19E-05 LC-MS 

45 2',3'-Cyclic UMP > 25 fold 2.31E-03 LC-MS 

46 Val-Asp-Gly > 25 fold 1.74E-05 LC-MS 

47 Pro-Pro > 25 fold 2.34E-03 LC-MS 

48 4,6-Dideoxy-4-oxo-dTDP-D-glucose > 25 fold 2.43E-03 LC-MS 

49 Glu-Glu-Gln-Pro > 25 fold 2.40E-06 LC-MS 

50 N(pi)-Methyl-L-histidine > 25 fold 8.38E-04 LC-MS 

51 D-Ribitol 5-phosphate > 25 fold 1.86E-06 LC-MS 

52 Leu-Asn-Asp > 25 fold 2.58E-06 LC-MS 

53 Cryogenine > 25 fold 2.52E-05 LC-MS 

54 5'-Methylthioadenosine > 25 fold 2.22E-04 LC-MS 

55 N1-Acetylspermidine > 25 fold 1.91E-06 LC-MS 

56 Sphinganine > 25 fold 9.17E-04 LC-MS 

57 Ethanolamine phosphate > 25 fold 3.32E-04 LC-MS 

58 Adenine > 25 fold 5.04E-05 LC-MS 

59 N2-(D-1-Carboxyethyl)-L-arginine > 25 fold 1.85E-05 LC-MS 

60 &alpha;-methylhistidine > 25 fold 4.90E-03 LC-MS 

61 GMP 24.46 1.31E-05 LC-MS 

62 L-Tyrosine 23.83 2.66E-05 LC-MS 

63 Fructoselysine 23.23 1.34E-05 LC-MS 

64 Glu-Thr 23.09 8.13E-04 LC-MS 

65 Folate 22.33 3.83E-06 LC-MS 

66 CMP-2-aminoethylphosphonate 22.05 8.33E-06 LC-MS 

67 Piperidine 21.57 1.29E-05 LC-MS 

68 Sedoheptulose 20.72 4.65E-06 LC-MS 

69 Glycylproline 20.01 2.49E-04 LC-MS 

70 hydrogen iodide 19.5 9.46E-07 LC-MS 

71 dAMP 19.47 1.89E-04 LC-MS 

72 [SP (2:0)] sphinga-4E,14Z-dienine 19.02 2.79E-04 LC-MS 

73 D-Methionine 18.17 1.69E-05 LC-MS 

74 L-Cystine 16.34 8.07E-03 LC-MS 

75 ADPribose 2'-phosphate 16.31 3.07E-06 LC-MS 

76 L-Histidine 16.25 1.58E-04 LC-MS 

77 L-Ornithine 16.02 1.41E-06 LC-MS 

78 L-Phenylalanine 15.66 1.16E-05 LC-MS 

79 gamma-L-Glutamyl-L-cysteinyl-beta-alanine 15 1.37E-05 LC-MS 

80 phosphinomethylmalate 14.77 8.14E-08 LC-MS 

81 Putrescine 14.56 1.14E-06 LC-MS 

82 Met-Thr-Asp 14.5 1.39E-06 LC-MS 

83 L-Tryptophan 14.34 2.74E-05 LC-MS 

84 2-Hydroxyadenine 14.21 1.46E-05 LC-MS 

85 Glycodeoxycholate 13.67 1.41E-05 LC-MS 

86 Betaine 13.47 8.92E-06 LC-MS 

87 Xanthosine 5'-phosphate 13.32 7.70E-04 LC-MS 
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88 CMP 13.16 1.14E-04 LC-MS 

89 Glu-Met-Thr 12.94 3.75E-07 LC-MS 

90 sn-glycero-3-Phospho-1-inositol 12.56 1.29E-05 LC-MS 

91 1-methylguanosine 12.46 9.01E-06 LC-MS 

92 Thr-Ala-Asp 12.34 1.55E-04 LC-MS 

93 Methylimidazoleacetic acid 12.31 5.36E-07 LC-MS 

94 N-hydroxy-N-isopropyloxamate 11.85 1.06E-04 LC-MS 

95 Ala-Cys 11.72 5.48E-05 LC-MS 

96 3-Oxopropanoate 11.65 6.80E-06 LC-MS 

97 Phenylacetylglycine 11.24 1.01E-05 LC-MS 

98 Pyridoxamine phosphate 11.23 6.61E-06 LC-MS 

99 sn-glycero-3-Phosphocholine 10.83 2.81E-04 LC-MS 

100 N-Acetyl-aspartyl-glutamate 10.81 3.58E-05 LC-MS 

101 Asp-Met-Asp-Gly 10.56 7.91E-03 LC-MS 

102 L-Glutamate 10.53 2.83E-06 LC-MS 

103 Ala-Ser 10.51 7.68E-05 LC-MS 

104 N6-Methyl-L-lysine 10.5 5.30E-06 LC-MS 

105 Leukotriene B4 10.13 3.28E-04 LC-MS 

106 D-Sorbitol 9.71 5.26E-07 LC-MS 

107 2,3,4,5-Tetrahydrodipicolinate 9.54 4.35E-05 LC-MS 

108 GammaGlutamylglutamicacid 9.33 1.67E-05 LC-MS 

109 succinamate 9.32 2.54E-04 LC-MS 

110 L-Gulonate 9 4.94E-05 LC-MS 

111 (S)-AMPA 8.99 5.43E-05 LC-MS 

112 D-Glucuronate 1-phosphate 8.94 1.07E-05 LC-MS 

113 dTDP-3-amino-2,3,6-trideoxy-D-threo-
hexopyranos-4-ulose 

8.76 9.52E-08 LC-MS 

114 IMP 8.72 4.40E-04 LC-MS 

115 DL-&beta;-hydroxynorvaline 8.47 1.31E-06 LC-MS 

116 [Fv Hydroxy,trimethoxy(9:1)] 4'-Hydroxy-
5,6,7-trimethoxyflavanone 

8.16 3.74E-04 LC-MS 

117 [FA hydroxy(20:4)] 15S-hydroxy-
5Z,8Z,11Z,13E-eicosatetraenoic acid 

8.1 5.77E-04 LC-MS 

118 Phosphoribosyl-AMP 7.9 2.62E-06 LC-MS 

119 Adenosine 7.77 3.63E-06 LC-MS 

120 D-Sedoheptulose 1,7-bisphosphate 7.68 3.91E-06 LC-MS 

121 Choline 7.54 8.54E-07 LC-MS 

122 Retronecine 7.5 4.78E-08 LC-MS 

123 Guanosine 7.47 1.91E-03 LC-MS 

124 Cytidine 7.46 1.24E-03 LC-MS 

125 Xylitol 7.3 1.06E-02 LC-MS 

126 Ala-Leu-His-His 7.3 2.69E-07 LC-MS 

127 alpha-aminopimelate 7.28 2.54E-06 LC-MS 

128 Uracil 7.18 1.06E-04 LC-MS 

129 Mevaldate 6.79 1.15E-05 LC-MS 

130 Uridine 6.69 9.72E-05 LC-MS 

131 Glycerone phosphate 6.67 3.38E-06 LC-MS 

132 [SP] 3-dehydrosphinganine 6.63 6.66E-04 LC-MS 

133 P-DPD 6.59 1.16E-06 LC-MS 
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134 D-Gluconic acid 6.42 7.81E-06 LC-MS 

135 siroamide 6.38 2.83E-06 LC-MS 

136 Ala-Leu-Lys-Pro 6.34 7.93E-06 LC-MS 

137 4-Acetamidobutanoate 6.29 1.85E-06 LC-MS 

138 Glu-Ser 6.16 1.25E-02 LC-MS 

139 NAD+ 5.94 2.01E-04 LC-MS 

140 sn-glycero-3-Phosphoethanolamine 5.92 4.49E-06 LC-MS 

141 NG,NG-Dimethyl-L-arginine 5.56 2.51E-05 LC-MS 

142 (1-Ribosylimidazole)-4-acetate 5.54 2.29E-03 LC-MS 

143 D-Alanyl-D-alanine 5.35 2.19E-05 LC-MS 

144 Arg-Lys-Ser-Ser 5.27 1.14E-06 LC-MS 

145 Pyrimidine 5'-deoxynucleotide 5.27 1.11E-05 LC-MS 

146 N-Formimino-L-glutamate 5.26 8.75E-05 LC-MS 

147 [FA (18:1)] 9Z-octadecenamide 5.26 3.09E-01 LC-MS 

148 Ala-Lys-Met-Gln 5.25 2.19E-06 LC-MS 

149 Guanine 5.2 3.93E-03 LC-MS 

150 Cys-Glu-Glu-Pro 5.12 1.55E-06 LC-MS 

151 N-Acetylglutamine 5.07 3.85E-04 LC-MS 

152 [FA (18:2)] 9,12-octadecadienal 4.89 1.69E-01 LC-MS 

153 Cys-Met-Ser-His 4.78 9.15E-07 LC-MS 

154 Phe-Asp 4.76 1.25E-04 LC-MS 

155 Palmiticamide 4.69 3.37E-01 LC-MS 

156 L-Kynurenine 4.69 9.27E-07 LC-MS 

157 [FA hydroxy,oxo(7:0/2:0)] 4-hydroxy-2-oxo-
Heptanedioic acid 

4.64 2.00E-03 LC-MS 

158 Ala-Asp-Asp 4.47 2.90E-05 LC-MS 

159 Glycerophosphoglycerol 4.4 5.28E-05 LC-MS 

160 N-(Carboxyaminomethyl)urea 4.32 1.19E-05 LC-MS 

161 Glycocholate 4.31 4.60E-05 LC-MS 

162 Gamma-Glutamylglutamine 4.31 4.94E-05 LC-MS 

163 3',5'-Cyclic AMP 4.28 1.28E-03 LC-MS 

164 Sorbitol 6-phosphate 4.26 2.37E-04 LC-MS 

165 [FA (20:4)] 5Z,8Z,11Z,14Z-eicosatetraenoic 
acid 

4.21 2.64E-03 LC-MS 

166 N6,N6,N6-Trimethyl-L-lysine 4.19 1.39E-06 LC-MS 

167 N1-(5-Phospho-alpha-D-ribosyl)-5,6-
dimethylbenzimidazole 

4.14 1.03E-02 LC-MS 

168 [FA (6:0)] 6-[3]-ladderane-1-hexanol 4.1 1.60E-01 LC-MS 

169 5-Hydroxyindoleacetate 4.07 1.44E-06 LC-MS 

170 Xanthine 3.97 1.01E-05 LC-MS 

171 UDP-N-acetyl-D-glucosamine 3.93 1.73E-04 LC-MS 

172 L-Proline 3.93 6.09E-06 LC-MS 

173 L-Hypoglycin 3.89 3.24E-09 LC-MS 

174 N2-(D-1-Carboxyethyl)-L-lysine 3.82 5.31E-05 LC-MS 

175 Glu-Val 3.82 1.54E-10 LC-MS 

176 (S)-2-Aminobutanoate 3.81 6.29E-02 LC-MS 

177 2-Deoxy-D-ribose 5-phosphate 3.79 1.23E-05 LC-MS 

178 sn-Glycerol 3-phosphate 3.79 4.40E-04 LC-MS 

179 Glu-Pro 3.78 8.86E-04 LC-MS 
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180 N6-Acetyl-N6-hydroxy-L-lysine 3.71 1.44E-03 LC-MS 

181 AMP 3.54 3.12E-04 LC-MS 

182 L-Tyrosine methyl ester 3.45 6.84E-04 LC-MS 

183 HEPES 3.44 9.39E-08 LC-MS 

184 Acetylcholine 3.41 1.80E-03 LC-MS 

185 [FA trihydroxy(4:0)] 2,3,4-trihydroxy-butanoic 
acid 

3.31 2.67E-07 LC-MS 

186 Glu-Leu 3.3 3.59E-04 LC-MS 

187 2-Carboxy-D-arabinitol 1-phosphate 3.27 1.06E-03 LC-MS 

188 Xanthosine 3.13 3.58E-04 LC-MS 

189 L-Fucose 1-phosphate 3.11 4.48E-04 LC-MS 

190 Succinate 3.07 1.55E-04 LC-MS 

191 L-Glutamate 5-semialdehyde 3.04 5.88E-05 LC-MS 

192 Fumarate 2.96 4.35E-05 LC-MS 

193 Phe-Pro 2.83 2.33E-04 LC-MS 

194 5-Acetamidopentanoate 2.83 3.23E-04 LC-MS 

195 Arg-Gln-Ser-Ser 2.78 7.94E-04 LC-MS 

196 [FA (7:0/2:0)] Heptanedioic acid 2.75 2.77E-04 LC-MS 

197 L-Cystathionine 2.73 6.33E-04 LC-MS 

198 Leu-Val 2.69 4.24E-02 LC-MS 

199 S-Methyl-L-methionine 2.61 1.49E-02 LC-MS 

200 N2-Acetyl-L-aminoadipate 2.61 3.65E-03 LC-MS 

201 O-Acetyl-L-homoserine 2.6 4.86E-06 LC-MS 

202 2-Aminoacrylate 2.58 4.90E-03 LC-MS 

203 Sucrose 2.56 5.41E-03 LC-MS 

204 Tiglic acid 2.52 2.20E-04 LC-MS 

205 (-)-Salsolinol 2.47 1.89E-02 LC-MS 

206 N-Dimethyl-2-aminoethylphosphonate 2.45 1.96E-03 LC-MS 

207 3-Amino-2-oxopropyl phosphate 2.45 2.51E-01 LC-MS 

208 N-Acetylneuraminate 2.43 3.64E-05 LC-MS 

209 5-6-Dihydrouridine 2.38 1.33E-04 LC-MS 

210 Sulfate 2.25 1.28E-04 LC-MS 

211 D-Threose 2.2 8.51E-06 LC-MS 

212 L-Aspartate 2.16 9.20E-04 LC-MS 

213 5-Hydroxypentanoate 2.09 2.24E-07 LC-MS 

214 1,3-benzenedisulfonate 2.08 7.09E-06 LC-MS 

215 N5-Ethyl-L-glutamine 2.07 2.67E-03 LC-MS 

216 (R)-AMAA 2.04 1.55E-03 LC-MS 

217 Sulfoacetaldehyde 2.03 1.26E-03 LC-MS 

218 allylcysteine 2.02 1.80E-02 LC-MS 

219 L-2-Aminoadipate 1.99 4.32E-05 LC-MS 

220 Hydroxymethylphosphonate 1.98 6.55E-02 LC-MS 

221 (S)-3-Methyl-2-oxopentanoic acid 1.97 1.41E-03 LC-MS 

222 L-Arabinonate 1.96 5.86E-04 LC-MS 

223 L-Noradrenaline 1.94 3.42E-03 LC-MS 

224 Val-Val 1.93 9.43E-03 LC-MS 

225 Acetyl phosphate 1.91 9.46E-04 LC-MS 

226 Thiomorpholine 3-carboxylate 1.9 1.98E-02 LC-MS 
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227 1-Oleoylglycerophosphocholine 1.89 4.93E-02 LC-MS 

228 S-glutathionyl-L-cysteine 1.87 4.70E-02 LC-MS 

229 N-Acetyl-D-glucosamine 6-phosphate 1.86 2.67E-03 LC-MS 

230 Ala-Asp-Ser 1.84 6.40E-02 LC-MS 

231 L-Lysine 1.82 3.86E-03 LC-MS 

232 Vinylacetylglycine 1.8 7.36E-03 LC-MS 

233 Linamarin 1.8 1.29E-02 LC-MS 

234 Thr-Asp-Ser 1.78 2.12E-03 LC-MS 

235 L-Methionine S-oxide 1.74 5.85E-02 LC-MS 

236 Asp-Gly 1.72 1.68E-04 LC-MS 

237 N-methyl glucamine 1.71 9.10E-02 LC-MS 

238 Biotin 1.7 7.00E-04 LC-MS 

239 D-Aspartate 1.68 2.88E-02 LC-MS 

240 D-Ribose 5-phosphate 1.67 3.38E-02 LC-MS 

241 [SP hydroxy,hydroxy,methyl(10:2/2:0)] 6R-(8-
hydroxydecyl)-2R-(hydroxymethyl)-piperidin-
3R-ol 

1.64 4.56E-02 LC-MS 

242 D-Mannosylglycoprotein 1.61 8.52E-02 LC-MS 

243 sodium chloride(aq) 1.61 6.92E-03 LC-MS 

244 D-Glycerate 1.61 2.17E-03 LC-MS 

245 D-Tryptophan 1.6 2.06E-01 LC-MS 

246 Cys-Cys-His-His 1.59 3.68E-04 LC-MS 

247 Fructoselysine 6-phosphate 1.58 4.70E-03 LC-MS 

248 L-Arginine 1.57 4.37E-04 LC-MS 

249 His-Phe-Val-Pro 1.57 3.93E-03 LC-MS 

250 L-Asparagine 1.55 1.42E-03 LC-MS 

251 Adipate 1.55 8.43E-04 LC-MS 

252 Piperideine 1.54 3.40E-02 LC-MS 

253 Leu-Lys-Asp 1.54 2.81E-01 LC-MS 

254 Leu-Ala 1.54 5.47E-02 LC-MS 

255 Prenyl-L-cysteine 1.53 8.28E-02 LC-MS 

256 L-Alanine 1.53 5.39E-03 LC-MS 

257 Gamma-Aminobutyryl-lysine 1.51 1.11E-02 LC-MS 

258 8-keto-7-aminoperlagonate 1.47 8.56E-02 LC-MS 

259 [FA hydroxy(18:2)] 9S-hydroxy-10E,12Z-
octadecadienoic acid 

1.47 8.16E-02 LC-MS 

260 gamma-L-Glutamyl-L-cysteine 1.47 1.44E-01 LC-MS 

261 Glu-Leu-Thr-His 1.44 6.27E-03 LC-MS 

262 3-Phosphoglycerate 1.43 5.99E-02 LC-MS 

263 N3-(4-methoxyfumaroyl)-L-2,3-
diaminopropanoate 

1.42 5.02E-01 LC-MS 

264 2-monooleoylglycerol 1.42 3.33E-02 LC-MS 

265 L-Threonine 1.41 6.86E-02 LC-MS 

266 N2-Succinyl-L-ornithine 1.39 5.14E-02 LC-MS 

267 Malate 1.39 8.90E-02 LC-MS 

268 Glu-Gly 1.38 4.02E-02 LC-MS 

269 L-1-Pyrroline-3-hydroxy-5-carboxylate 1.36 2.06E-03 LC-MS 

270 N-Acetyl-D-glucosamine 6-sulfate 1.35 1.11E-01 LC-MS 

271 [FA methyl,hydroxy(5:0)] 3R-methyl-3,5- 1.34 4.89E-02 LC-MS 
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dihydroxy-pentanoic acid 

272 Pyridoxal phosphate 1.31 1.10E-01 LC-MS 

273 Canavanine 1.31 2.71E-03 LC-MS 

274 L-5-benzyl-hydantoin 1.28 4.72E-01 LC-MS 

275 Heme 1.27 3.18E-01 LC-MS 

276 Orthophosphate 1.26 2.09E-01 LC-MS 

277 Homoarginine 1.24 4.31E-01 LC-MS 

278 Leu-Thr 1.23 1.99E-01 LC-MS 

279 Triethanolamine 1.22 4.24E-01 LC-MS 

280 3-Hydroxy-L-kynurenine 1.22 5.85E-01 LC-MS 

281 2-Naphthylamine 1.22 1.19E-01 LC-MS 

282 Chelilutine 1.21 2.36E-01 LC-MS 

283 Leucyl-leucine 1.21 2.40E-01 LC-MS 

284 [GP (16:0)] 1-hexadecanoyl-2-sn-glycero-3-
phosphate 

1.21 4.26E-01 LC-MS 

285 5-(chloromercuri)cytidine 1.2 5.52E-01 LC-MS 

286 N-(octanoyl)-L-homoserine 1.19 1.13E-01 LC-MS 

287 [FA (14:0/2:0)] Tetradecanedioic acid 1.18 2.87E-01 LC-MS 

288 (R)-S-Lactoylglutathione 1.18 4.05E-01 LC-MS 

289 Creatinine 1.17 3.07E-01 LC-MS 

290 N-Acetyllactosamine 1.16 1.89E-01 LC-MS 

291 Furfural diethyl acetal 1.14 4.95E-01 LC-MS 

292 Aminopropylcadaverine 1.12 3.52E-01 LC-MS 

293 [SP] Sphinganine-1-phosphate 1.12 5.52E-01 LC-MS 

294 2-acetamidoglucal 1.12 2.55E-01 LC-MS 

295 Methyl cinnamate 1.12 6.62E-01 LC-MS 

296 Glu-Cys-Gln-Gln 1.11 4.57E-01 LC-MS 

297 N-Acetyl-L-aspartate 1.1 6.35E-01 LC-MS 

298 [FA (24:6)] 4,8,12,15,19,21-
tetracosahexaenoic acid 

1.09 4.78E-01 LC-MS 

299 D-Lysine 1.09 6.37E-01 LC-MS 

300 Maltose 1.08 5.25E-01 LC-MS 

301 (R)-2-Hydroxyglutarate 1.07 7.77E-01 LC-MS 

302 [FA oxo(8:0)] 5-oxo-7-octenoic acid 1.07 7.71E-01 LC-MS 

303 (S)-Methylmalonate semialdehyde 1.06 8.19E-01 LC-MS 

304 [FA dioxo(8:0)] 4,7-dioxo-octanoic acid 1.06 7.25E-01 LC-MS 

305 Dodecanamide 1.06 7.47E-01 LC-MS 

306 2-hydroxysuccinamate 1.06 6.16E-01 LC-MS 

307 Sedoheptulose 7-phosphate 1.05 8.65E-01 LC-MS 

308 allopurinol 1.05 8.77E-01 LC-MS 

309 Cyclohex-2-enone 1.04 8.59E-01 GC-MS 

310 Methylmalonate 1.04 6.89E-01 LC-MS 

311 L-Glutamine 1.04 8.23E-01 LC-MS 

312 L-Erythrulose 1.04 7.83E-01 LC-MS 

313 [ST hydrox] 3alpha,7alpha-Dihydroxy-5beta-
cholan-24-oic Acid 

1.03 7.35E-01 LC-MS 

314 [PC (18:2)] 1-(9Z,12Z-octadecadienoyl)-sn-
glycero-3-phosphocholine 

1.03 8.91E-01 LC-MS 

315 [ST trihydrox] 3Alpha,7Alpha,12Alpha-
trihydroxy-5Beta-cholan-24-oic acid 

1.03 8.79E-01 LC-MS 
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316 Methyloxaloacetate 1.02 9.27E-01 LC-MS 

317 4-Oxocyclohexanecarboxylate 1.01 9.16E-01 LC-MS 

318 myristic amide 1.01 9.68E-01 LC-MS 

319 Hippurate 1.01 9.66E-01 LC-MS 

320 Mercaptoethanol -1 9.91E-01 LC-MS 

321 Asp-Asp -1 9.74E-01 LC-MS 

322 [ST hydroxy(3:0)] (5Z,7E)-(3S)-3-hydroxy-9,10-
seco-5,7,10(19)-cholatrien-24-oic acid 

-1.01 9.66E-01 LC-MS 

323 &alpha;-(2,6-anhydro-3-deoxy-D-arabino-
heptulopyranosid)onate 7-phosphate 

-1.01 9.71E-01 LC-MS 

324 Tyramine -1.02 9.16E-01 LC-MS 

325 &gamma;-aminobutyramide -1.02 8.92E-01 LC-MS 

326 Deoxyribonolactone -1.03 8.07E-01 LC-MS 

327 Tributyl phosphate -1.03 8.32E-01 LC-MS 

328 2-Acetolactate -1.04 7.75E-01 LC-MS 

329 N-Acetylserotonin -1.04 8.41E-01 LC-MS 

330 Furfural -1.04 8.21E-01 LC-MS 

331 Ethyl (R)-3-hydroxyhexanoate -1.04 6.61E-01 LC-MS 

332 gamma-Amino-gamma-cyanobutanoate -1.05 7.71E-01 LC-MS 

333 Inosine -1.05 8.50E-01 LC-MS 

334 3,4-Dihydroxy-trans-cinnamate -1.06 7.69E-01 LC-MS 

335 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-
phosphocholine 

-1.06 8.10E-01 LC-MS 

336 Spermidine -1.08 5.58E-01 LC-MS 

337 [FA amino(11:0)] 11-amino-undecanoic acid -1.08 7.46E-01 LC-MS 

338 (4E)-2-Oxohexenoic acid -1.09 6.88E-01 LC-MS 

339 N-Acetylisatin -1.09 6.21E-01 LC-MS 

340 [PK] 6-Methylsalicylic acid -1.09 2.74E-01 LC-MS 

341 Methanesulfonic acid -1.1 6.24E-01 LC-MS 

342 L-cysteine sulfinate -1.1 4.95E-01 LC-MS 

343 Urate -1.11 6.75E-01 LC-MS 

344 Deoxyadenosine -1.11 6.73E-01 LC-MS 

345 Hypoxanthine -1.11 7.40E-01 LC-MS 

346 2-Ethylhexyl phthalate -1.12 5.03E-01 LC-MS 

347 L-Serine -1.14 2.87E-01 LC-MS 

348 Monomethyl sulfate -1.14 6.74E-01 LC-MS 

349 MOPS -1.16 1.71E-01 LC-MS 

350 4-Hydroxybenzoate -1.16 2.12E-01 LC-MS 

351 Chlorate -1.17 3.40E-01 LC-MS 

352 N-(L-Arginino)succinate -1.17 2.97E-01 LC-MS 

353 D-Erythrose 4-phosphate -1.18 3.05E-01 LC-MS 

354 Glu-Asp -1.18 2.70E-01 LC-MS 

355 2-C-Methyl-D-erythritol 4-phosphate -1.18 5.99E-01 LC-MS 

356 3-Hydroxypropenoate -1.18 1.50E-01 LC-MS 

357 2',3'-Cyclic CMP -1.18 4.51E-01 LC-MS 

358 3-Methyleneoxindole -1.19 6.91E-02 LC-MS 

359 Erythrulose 1-phosphate -1.2 2.65E-01 LC-MS 

360 D-Mannose 1-phosphate -1.21 1.70E-01 LC-MS 

361 Hexadecasphinganine -1.22 2.86E-01 LC-MS 
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362 2-Butyne-1,4-diol -1.24 1.04E-01 LC-MS 

363 [FA (12:4/2:0)] 2E,4E,8E,10E-
Dodecatetraenedioic acid 

-1.28 1.12E-03 LC-MS 

364 2-Hydroxyethanesulfonate -1.28 8.08E-02 LC-MS 

365 Asp-Ser-Ser -1.3 3.68E-01 LC-MS 

366 Allantoin -1.31 6.54E-02 LC-MS 

367 Phenylpyruvate -1.32 1.42E-01 LC-MS 

368 2,7-Anhydro-alpha-N-acetylneuraminic acid -1.35 1.24E-01 LC-MS 

369 D-myo-Inositol 1,2-cyclic phosphate -1.35 5.19E-02 GC-MS 

370 di-n-Undecylamine -1.36 4.54E-01 LC-MS 

371 olomoucine -1.36 1.78E-01 LC-MS 

372 LysoPC(17:0) -1.36 1.40E-01 LC-MS 

373 Diketogulonicacid -1.36 3.74E-01 LC-MS 

374 Aspartyl-L-proline -1.37 1.28E-01 LC-MS 

375 5-Methylcytidine -1.4 1.82E-01 LC-MS 

376 myo-Inositol -1.41 2.62E-01 LC-MS 

377 3-Methoxy-4-hydroxyphenylethyleneglycol -1.41 4.41E-02 LC-MS 

378 2,3,5-Trihydroxytoluene -1.42 6.73E-02 LC-MS 

379 D-Glucose 6-phosphate -1.44 2.49E-02 LC-MS 

380 DL-Glyceraldehyde 3-phosphate -1.44 9.90E-04 LC-MS 

381 CPA(18:1(11Z)/0:0) -1.45 4.14E-01 LC-MS 

382 Lotaustralin -1.45 3.81E-02 LC-MS 

383 L-thiazolidine-4-carboxylate -1.53 1.10E-01 LC-MS 

384 10-Hydroxydecanoic acid -1.53 5.51E-05 LC-MS 

385 3-Hydroxy-N6,N6,N6-trimethyl-L-lysine -1.55 2.60E-01 LC-MS 

386 D-Glucose -1.57 9.40E-02 LC-MS 

387 [ST] (5Z,7E)-9,10-seco-5,7,10(19)-
cholestatriene 

-1.66 1.50E-01 LC-MS 

388 Taurine -1.7 2.55E-02 LC-MS 

389 4-Guanidinobutanoate -1.72 4.74E-04 LC-MS 

390 1-Aminocyclopropane-1-carboxylate -1.73 1.86E-03 LC-MS 

391 Miraxanthin-I -1.75 5.27E-02 LC-MS 

392 Leu-Pro -1.82 5.73E-04 LC-MS 

393 cis-(homo)2aconitate -1.84 4.64E-03 LC-MS 

394 beta-Alanine -1.84 4.52E-03 LC-MS 

395 N-Acetyl-D-fucosamine -1.85 2.09E-03 LC-MS 

396 Pseudouridine -1.91 6.22E-05 LC-MS 

397 beta-D-Fructose 2,6-bisphosphate -1.92 2.92E-06 LC-MS 

398 3,4',5-Trihydroxystilbene -1.99 9.12E-02 LC-MS 

399 Isocitrate -1.99 2.69E-01 GC-MS 

400 N5-(L-1-Carboxyethyl)-L-ornithine -2.02 1.08E-01 LC-MS 

401 glucosamine-1,6-diphosphate -2.06 3.19E-07 LC-MS 

402 Glutathione disulfide -2.09 7.55E-06 LC-MS 

403 Mesaconate -2.1 6.29E-04 LC-MS 

404 N-acetyl-(L)-arginine -2.22 8.79E-05 LC-MS 

405 Cys-Gly -2.24 1.36E-03 LC-MS 

406 Hypotaurine -2.28 7.05E-06 LC-MS 

407 CMP-N-acetylneuraminate -2.34 3.30E-05 LC-MS 
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408 Malonate -2.46 1.72E-03 LC-MS 

409 Deoxycytidine -2.47 7.94E-03 LC-MS 

410 N-Methylethanolamine phosphate -2.48 2.32E-03 LC-MS 

411 Bis(glycerophospho)-glycerol -2.5 1.13E-03 LC-MS 

412 Creatine -2.53 4.91E-05 LC-MS 

413 1-Methylnicotinamide -2.55 2.28E-03 LC-MS 

414 4-Methylene-L-glutamine -2.64 5.48E-04 LC-MS 

415 N-Acetyl-D-mannosamine -2.65 3.19E-05 LC-MS 

416 (R)-Malate -2.7 6.26E-03 LC-MS 

417 3-beta-D-Galactosyl-sn-glycerol -2.71 5.26E-02 LC-MS 

418 Glycine -2.72 1.69E-04 LC-MS 

419 [PC (18:0)] 1-octadecanoyl-sn-glycero-3-
phosphocholine 

-3.01 2.85E-04 LC-MS 

420 Tetradecanoylcarnitine -3.06 1.10E-04 LC-MS 

421 Elaidiccarnitine -3.08 1.87E-03 LC-MS 

422 [FA (6:0)] O-hexanoyl-R-carnitine -3.09 2.20E-03 LC-MS 

423 2-Phenylacetamide -3.11 2.33E-05 GC-MS 

424 gamma-Glutamyl-beta-cyanoalanine -3.13 8.16E-06 LC-MS 

425 DL-2-Aminooctanoicacid -3.39 2.00E-03 LC-MS 

426 Glycyl-leucine -3.49 1.88E-08 LC-MS 

427 N3-methylcytosine -3.53 4.79E-09 LC-MS 

428 Slaframine -3.56 2.08E-05 LC-MS 

429 O-Butanoylcarnitine -3.67 6.94E-10 LC-MS 

430 N-Acetyl-D-glucosaminate -3.71 1.21E-07 LC-MS 

431 Homostachydrine -3.83 3.73E-04 LC-MS 

432 2,3-Dimethylmaleate -4.1 4.61E-06 LC-MS 

433 3-sulfopropanoate -4.12 1.77E-07 LC-MS 

434 4-Hydroxy-2-butynal -4.14 1.29E-05 LC-MS 

435 4-Hydroxy-L-threonine -4.18 4.08E-07 LC-MS 

436 L-Carnitine -4.23 2.10E-05 LC-MS 

437 D-Xylulose -4.33 7.16E-07 LC-MS 

438 Orotidine -4.39 9.79E-06 LC-MS 

439 N4-acetyl-N4-hydroxy-1-aminopropane -4.74 2.53E-03 LC-MS 

440 L-Citrulline -5.64 9.10E-04 LC-MS 

441 [FA hydroxy(10:0)] N-(3S-hydroxydecanoyl)-L-
serine 

-5.7 8.26E-05 LC-MS 

442 N-Ethylglycocyamine -6.15 4.62E-06 LC-MS 

443 Orotate -6.64 2.47E-08 LC-MS 

444 Thr-Ala -6.89 7.75E-05 LC-MS 

445 Trimethylamine N-oxide -7.12 1.18E-08 LC-MS 

446 [FA] O-Palmitoyl-R-carnitine -7.79 3.37E-05 LC-MS 

447 (S)-Dihydroorotate -7.82 6.48E-07 LC-MS 

448 6-Acetyl-D-glucose -7.83 6.06E-05 LC-MS 

449 Ala-Asp-Cys -7.84 3.28E-09 LC-MS 

450 Met-Ala-Gly -8.49 3.34E-06 LC-MS 

451 [SP] Sphing-4-enine-1-phosphate -8.71 3.67E-15 LC-MS 

452 D-perosamine -8.89 4.37E-06 LC-MS 

453 Ala-Ser-Tyr -8.91 5.41E-04 LC-MS 
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454 N-Acetyl-L-glutamate 5-semialdehyde -8.91 7.25E-07 LC-MS 

455 2-Phenylethanolglucuronide -9.39 4.28E-06 LC-MS 

456 [FA (10:0)] O-decanoyl-R-carnitine -9.47 4.06E-06 LC-MS 

457 2-Isopropylmaleate -11.56 1.91E-06 LC-MS 

458 Ergothioneine -12.75 9.31E-09 LC-MS 

459 O-Propanoylcarnitine -13.46 3.85E-06 LC-MS 

460 cis-Aconitate -16.1 3.12E-05 LC-MS 

461 Phosphocreatine -17.16 3.85E-03 LC-MS 

462 Stachydrine -17.93 3.08E-04 LC-MS 

463 L-Octanoylcarnitine -18.16 6.64E-07 LC-MS 

464 1,2-dioctanoyl-1-amino-2,3-propanediol -19.83 7.85E-06 LC-MS 

465 Dihydrobiopterin -21.08 1.15E-04 LC-MS 

466 indole carboxyl thiazole -21.57 4.48E-08 LC-MS 

467 (S)-2-Amino-3-(3-hydroxy-4-oxo-4H-pyridin-1-
yl)propanoate 

-22.56 3.04E-09 LC-MS 

468 dTTP <25 fold 2.52E-07 LC-MS 

469 creatinine phosphate <25 fold 2.60E-03 LC-MS 

470 1-Methyladenosine <25 fold 2.51E-08 LC-MS 

471 N-Carbamoyl-L-aspartate <25 fold 6.29E-06 LC-MS 

472 IAA-phenylalanine <25 fold 7.00E-07 LC-MS 

473 Glu-Glu-Met <25 fold 5.19E-08 LC-MS 

474 Taurocyamine <25 fold 4.20E-06 LC-MS 

475 Ala-Val-Pro-Ser <25 fold 1.63E-06 LC-MS 

476 Glu-Met <25 fold 2.86E-08 LC-MS 

477 [FA oxo,amino(6:0)] 3-oxo-5S-amino-hexanoic 
acid 

<25 fold 1.49E-06 LC-MS 

478 2-6dimethylheptanoylcarnitine <25 fold 8.34E-06 LC-MS 

479 S-5-methylthiopentylhydroximoyl-L-cysteine <25 fold 2.27E-08 LC-MS 

480 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-
dihydropteridine 

<25 fold 3.23E-06 LC-MS 

481 2-Amino-4-hydroxy-6-(D-erythro-1,2,3-
trihydroxypropyl)-7,8- dihydropteridine 

<25 fold 1.22E-04 LC-MS 

482 N-Methylnicotinate <25 fold 7.96E-05 LC-MS 
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Table 4 Putative metabolites (PMs) represented in  

Figure 4-2 showing fold change in abundance in Gametocytes compared to uninfected 
reticulocyte enriched erythrocytes. PMs are listed in order of decreasing abundance 

(metabolites identified with authentic standards are highlighted bold) 

No. Metabolites Fold change 
(Gametocytes/ 
Reticulocytes) 

P-Value Platform 

1 Arg-Cys-Ser-Tyr > 25 fold 6.60E-03 LC-MS 

2 dTMP > 25 fold 8.39E-07 LC-MS 

3 D-Ribitol 5-phosphate > 25 fold 6.97E-08 LC-MS 

4 Asp-Met-Asp-Gly > 25 fold 2.48E-05 LC-MS 

5 UMP > 25 fold 6.00E-04 GC-MS 

6 L-Gulonate > 25 fold 3.38E-07 LC-MS 

7 O-Phospho-L-serine > 25 fold 1.05E-03 LC-MS 

8 CMP-N-trimethyl-2-
aminoethylphosphonate 

> 25 fold 3.99E-05 LC-MS 

9 Met-Ala-Asp > 25 fold 8.98E-06 LC-MS 

10 Lys-Tyr > 25 fold 2.51E-03 LC-MS 

11 Asn-Asn-Asp > 25 fold 8.71E-05 LC-MS 

12 Deoxyinosine > 25 fold 2.12E-06 LC-MS 

13 D-Gluconic acid > 25 fold 1.83E-07 LC-MS 

14 gamma-Glutamyl-gamma-
aminobutyraldehyde 

> 25 fold 2.27E-04 LC-MS 

15 sn-glycero-3-Phosphocholine > 25 fold 1.50E-09 LC-MS 

16 Pyrimidine nucleoside > 25 fold 1.34E-04 LC-MS 

17 4,5-seco-dopa > 25 fold 1.83E-05 LC-MS 

18 Val-Asp-Gly > 25 fold 5.19E-05 LC-MS 

19 Hypusine > 25 fold 1.59E-05 LC-MS 

20 Choline phosphate > 25 fold 2.76E-06 LC-MS 

21 Ala-Leu-Asn-Ser > 25 fold 9.01E-05 LC-MS 

22 dAMP > 25 fold 2.97E-04 LC-MS 

23 Propanoyl phosphate > 25 fold 3.59E-06 LC-MS 

24 Phosphonoacetaldehyde > 25 fold 3.94E-06 LC-MS 

25 Ala-Ser-Tyr 20.4 3.02E-07 LC-MS 

26 CDP-ethanolamine 19.99 1.60E-05 LC-MS 

27 hydrogen iodide 19.83 1.45E-07 LC-MS 

28 Leu-Asn-Asp 19.74 2.70E-06 LC-MS 

29 Cytidine 2'-phosphate 19.73 1.04E-05 LC-MS 

30 CDP-choline 18.57 2.01E-04 LC-MS 

31 4,6-Dideoxy-4-oxo-dTDP-D-glucose 18.37 6.48E-06 LC-MS 

32 Cryogenine 18.29 1.57E-04 LC-MS 

33 Glu-Thr 17.09 1.11E-04 LC-MS 

34 N-hydroxy-N-isopropyloxamate 16.51 2.87E-04 LC-MS 

35 N-Ribosylnicotinamide 16.09 1.93E-04 LC-MS 

36 2-Carboxy-D-arabinitol 1-phosphate 15.24 7.55E-05 LC-MS 

37 D-4'-Phosphopantothenate 14.61 4.81E-05 LC-MS 

38 Inosine 14.23 8.75E-07 LC-MS 

39 succinamate 14.22 3.96E-04 LC-MS 

40 Hypoxanthine 13.98 3.51E-08 LC-MS 
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41 Thr-Ala-Asp 12.54 7.21E-05 LC-MS 

42 Ala-Gly-Pro 12.49 4.15E-06 LC-MS 

43 Ethanolamine phosphate 12.35 2.32E-04 LC-MS 

44 O-Acetyl-L-homoserine 12.12 1.70E-05 LC-MS 

45 Choline 12.04 8.44E-12 LC-MS 

46 Pro-Pro 11.67 1.40E-02 LC-MS 

47 3',5'-Cyclic AMP 11.19 2.31E-05 LC-MS 

48 GammaGlutamylglutamicacid 10.93 1.06E-04 LC-MS 

49 Ala-Ser 10.65 4.91E-05 LC-MS 

50 Guanosine 10.32 5.88E-05 LC-MS 

51 N1-Acetylspermidine 9.83 4.67E-04 LC-MS 

52 sn-glycero-3-Phosphoethanolamine 9.56 9.17E-03 LC-MS 

53 [FA hydroxy(10:0)] N-(3S-
hydroxydecanoyl)-L-serine 

9.15 5.96E-04 LC-MS 

54 Fructoselysine 9.11 3.53E-05 LC-MS 

55 GMP 8.8 9.23E-06 LC-MS 

56 Piperideine 8.57 5.28E-05 LC-MS 

57 CMP 8.39 3.01E-05 LC-MS 

58 D-Sedoheptulose 1,7-bisphosphate 8.08 2.40E-05 LC-MS 

59 Lys-Pro 7.98 2.67E-03 LC-MS 

60 Glu-Met-Thr 7.8 5.13E-03 LC-MS 

61 Isocitrate 7.5 1.96E-06 GC-MS 

62 Leukotriene B4 7.39 1.64E-05 LC-MS 

63 &alpha;-methylhistidine 7.31 3.83E-07 LC-MS 

64 Tetradecanoylcarnitine 7.29 7.36E-04 LC-MS 

65 Glycerone phosphate 7.08 1.93E-07 LC-MS 

66 Ala-Leu-Lys-Pro 6.95 3.02E-06 LC-MS 

67 Cytidine 6.93 1.16E-03 LC-MS 

68 Ala-Pro 6.66 7.71E-05 LC-MS 

69 Glu-Gly 6.63 9.15E-04 LC-MS 

70 [GP (16:0)] 1-hexadecanoyl-2-sn-
glycero-3-phosphate 

6.53 1.12E-03 LC-MS 

71 Asn-Pro 6.44 1.14E-04 LC-MS 

72 [FA (6:0)] O-hexanoyl-R-carnitine 6.41 7.86E-04 LC-MS 

73 gamma-L-Glutamyl-L-cysteine 6.16 1.32E-05 LC-MS 

74 Sedoheptulose 6.06 2.61E-06 LC-MS 

75 [FA hydroxy(20:4)] 15S-hydroxy-
5Z,8Z,11Z,13E-eicosatetraenoic acid 

5.81 9.70E-05 LC-MS 

76 Carnosine 5.58 4.02E-03 LC-MS 

77 P-DPD 5.58 1.12E-04 LC-MS 

78 UDP-N-acetyl-D-glucosamine 5.56 8.25E-05 LC-MS 

79 Guanine 5.56 1.84E-03 LC-MS 

80 S-Adenosyl-L-methionine 5.46 3.01E-04 LC-MS 

81 Met-Thr-Asp 5.41 4.94E-04 LC-MS 

82 2-Deoxy-D-ribose 5-phosphate 5.37 4.21E-09 LC-MS 

83 Glu-Glu-Gln-Pro 5.32 1.35E-04 LC-MS 

84 L-Glutamate 5.31 7.35E-06 LC-MS 

85 Putrescine 5.21 1.10E-03 LC-MS 

86 Diketogulonicacid 5.15 3.19E-07 LC-MS 
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87 Elaidiccarnitine 4.99 2.02E-03 LC-MS 

88 cis-Aconitate 4.97 2.73E-07 LC-MS 

89 D-Alanyl-D-alanine 4.95 6.71E-06 LC-MS 

90 (S)-AMPA 4.87 2.44E-06 LC-MS 

91 dTDP-3-amino-2,3,6-trideoxy-D-threo-
hexopyranos-4-ulose 

4.72 2.87E-11 LC-MS 

92 Dihydrobiopterin 4.69 2.56E-06 LC-MS 

93 gamma-L-Glutamyl-L-cysteinyl-beta-
alanine 

4.64 1.87E-04 LC-MS 

94 N-Acetyl-aspartyl-glutamate 4.63 8.68E-05 LC-MS 

95 5-(chloromercuri)cytidine 4.53 4.84E-06 LC-MS 

96 N-Acetylglutamine 4.38 1.97E-04 LC-MS 

97 Pyridoxamine phosphate 4.32 1.37E-05 LC-MS 

98 Lactate 4.27 4.12E-08 LC-MS 

99 Hydroxymethylphosphonate 4.27 3.94E-03 LC-MS 

100 sn-Glycerol 3-phosphate 4.23 5.50E-04 LC-MS 

101 [FA trihydroxy(4:0)] 2,3,4-trihydroxy-
butanoic acid 

4.22 2.89E-07 LC-MS 

102 [PC (16:0)] 1-hexadecanoyl-sn-
glycero-3-phosphocholine 

4.18 6.64E-04 LC-MS 

103 L-Proline 4.15 1.23E-09 LC-MS 

104 CMP-2-aminoethylphosphonate 4.11 1.89E-04 LC-MS 

105 D-Glucuronate 1-phosphate 4.07 1.51E-04 LC-MS 

106 Ala-Cys 4.03 9.68E-05 LC-MS 

107 2-Aminoacrylate 3.93 3.24E-03 LC-MS 

108 L-Cystathionine 3.93 3.73E-06 LC-MS 

109 DL-&beta;-hydroxynorvaline 3.91 1.15E-05 LC-MS 

110 N-Acetyllactosamine 3.72 4.16E-06 LC-MS 

111 L-Tyrosine 3.68 2.12E-07 LC-MS 

112 Methylimidazoleacetic acid 3.65 4.43E-06 LC-MS 

113 [FA] O-Palmitoyl-R-carnitine 3.62 3.25E-03 LC-MS 

114 Ala-Asp-Asp 3.62 1.54E-05 LC-MS 

115 N-Formimino-L-glutamate 3.56 3.68E-04 LC-MS 

116 2,3,4,5-Tetrahydrodipicolinate 3.56 3.87E-06 LC-MS 

117 N(pi)-Methyl-L-histidine 3.56 6.06E-04 LC-MS 

118 Glu-Val 3.54 2.33E-08 LC-MS 

119 [SP] Sphing-4-enine-1-phosphate 3.49 3.08E-03 LC-MS 

120 2,3-Dimethylmaleate 3.47 4.85E-06 LC-MS 

121 N2-Succinyl-L-ornithine 3.44 1.11E-07 LC-MS 

122 4-Hydroxy-2-butynal 3.39 1.12E-06 LC-MS 

123 Pyrimidine 5'-deoxynucleotide 3.36 2.14E-06 LC-MS 

124 Mesaconate 3.29 1.41E-05 LC-MS 

125 L-Tryptophan 3.27 3.11E-08 LC-MS 

126 L-Alanine 3.23 2.51E-07 LC-MS 

127 1-Oleoylglycerophosphocholine 3.19 2.99E-03 LC-MS 

128 Phosphocreatine 3.11 8.81E-06 LC-MS 

129 Bis(glycerophospho)-glycerol 3.08 1.48E-04 LC-MS 

130 glucosamine-1,6-diphosphate 3.06 4.08E-04 LC-MS 

131 3-Oxopropanoate 3.05 4.22E-06 LC-MS 
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132 sn-glycero-3-Phospho-1-inositol 3.04 5.05E-06 LC-MS 

133 L-1-Pyrroline-3-hydroxy-5-carboxylate 3 1.65E-06 LC-MS 

134 N-(octanoyl)-L-homoserine 3 2.96E-04 LC-MS 

135 AMP 3 8.77E-03 LC-MS 

136 O-Butanoylcarnitine 2.99 8.13E-04 LC-MS 

137 Glycine 2.99 2.96E-05 LC-MS 

138 creatinine phosphate 2.89 7.69E-06 LC-MS 

139 [SP] 3-dehydrosphinganine 2.88 1.02E-03 LC-MS 

140 N-Acetylneuraminate 2.87 7.00E-05 LC-MS 

141 [PC (18:2)] 1-(9Z,12Z-
octadecadienoyl)-sn-glycero-3-
phosphocholine 

2.86 4.93E-03 LC-MS 

142 L-Aspartate 2.85 7.67E-07 LC-MS 

143 L-Erythrulose 2.79 9.23E-05 LC-MS 

144 [FA hydroxy(18:2)] 9S-hydroxy-
10E,12Z-octadecadienoic acid 

2.76 1.97E-03 LC-MS 

145 [PC (18:0)] 1-octadecanoyl-sn-glycero-
3-phosphocholine 

2.76 4.53E-03 LC-MS 

146 Fumarate 2.74 2.35E-08 LC-MS 

147 Glycerophosphoglycerol 2.72 4.41E-06 LC-MS 

148 [FA (18:1)] 9Z-octadecenamide 2.67 1.99E-02 LC-MS 

149 [FA (10:0)] O-decanoyl-R-carnitine 2.67 9.41E-03 LC-MS 

150 Adenine 2.66 6.42E-04 LC-MS 

151 Sphinganine 2.64 1.21E-02 LC-MS 

152 N6-Methyl-L-lysine 2.62 4.71E-04 LC-MS 

153 N-Acetyl-L-glutamate 5-semialdehyde 2.58 6.96E-06 LC-MS 

154 IMP 2.57 1.93E-03 LC-MS 

155 N-Acetyl-D-glucosamine 6-phosphate 2.53 1.44E-02 LC-MS 

156 Phe-Pro 2.5 1.22E-04 LC-MS 

157 5'-Methylthioadenosine 2.49 7.08E-03 LC-MS 

158 Gamma-Glutamylglutamine 2.48 4.35E-03 LC-MS 

159 LysoPC(17:0) 2.48 5.86E-03 LC-MS 

160 L-Fucose 1-phosphate 2.45 8.01E-04 LC-MS 

161 Malonate 2.43 2.22E-05 LC-MS 

162 (1-Ribosylimidazole)-4-acetate 2.42 3.75E-04 LC-MS 

163 [ST hydroxy(3:0)] (5Z,7E)-(3S)-3-
hydroxy-9,10-seco-5,7,10(19)-
cholatrien-24-oic acid 

2.4 2.24E-02 LC-MS 

164 [ST trihydrox] 3Alpha,7Alpha,12Alpha-
trihydroxy-5Beta-cholan-24-oic acid 

2.38 2.11E-02 LC-MS 

165 Fructoselysine 6-phosphate 2.37 2.63E-04 LC-MS 

166 allylcysteine 2.36 7.81E-04 LC-MS 

167 Erythrulose 1-phosphate 2.33 7.02E-06 LC-MS 

168 N2-Acetyl-L-aminoadipate 2.3 1.82E-05 LC-MS 

169 Malate 2.3 1.59E-05 LC-MS 

170 4-Acetamidobutanoate 2.29 9.27E-07 LC-MS 

171 Uridine 2.29 1.96E-07 LC-MS 

172 D-Threose 2.26 2.08E-04 LC-MS 

173 L-Octanoylcarnitine 2.26 8.68E-03 LC-MS 

174 N3-methylcytosine 2.25 1.31E-05 LC-MS 
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175 L-Phenylalanine 2.24 3.72E-08 LC-MS 

176 L-Tyrosine methyl ester 2.24 1.91E-03 LC-MS 

177 Taurine 2.2 5.42E-05 LC-MS 

178 Leu-Thr 2.17 2.69E-05 LC-MS 

179 D-Methionine 2.16 2.61E-05 LC-MS 

180 Prenyl-L-cysteine 2.14 2.33E-02 LC-MS 

181 1,2-dioctanoyl-1-amino-2,3-
propanediol 

2.12 1.55E-02 LC-MS 

182 [SP] Sphinganine-1-phosphate 2.12 1.63E-02 LC-MS 

183 D-Ribose 5-phosphate 2.11 2.57E-03 LC-MS 

184 Thr-Thr-Ser 2.1 5.52E-04 LC-MS 

185 Thiomorpholine 3-carboxylate 2.08 1.15E-03 LC-MS 

186 Lotaustralin 2.05 7.14E-05 LC-MS 

187 5-6-Dihydrouridine 2.05 1.37E-03 LC-MS 

188 D-Aspartate 2.02 1.60E-04 LC-MS 

189 S-Methyl-L-methionine 2.02 6.59E-03 LC-MS 

190 2-6dimethylheptanoylcarnitine 2.02 3.46E-02 LC-MS 

191 Palmiticamide 1.99 6.89E-02 LC-MS 

192 (R)-Malate 1.98 6.16E-04 LC-MS 

193 Adenosine 1.97 1.06E-03 LC-MS 

194 Betaine 1.97 1.58E-06 LC-MS 

195 Glu-Leu 1.97 6.11E-04 LC-MS 

196 D-perosamine 1.96 5.61E-03 LC-MS 

197 Glu-Pro 1.96 1.16E-04 LC-MS 

198 Aspartyl-L-proline 1.95 1.70E-02 LC-MS 

199 Piperidine 1.95 7.97E-06 LC-MS 

200 Sorbitol 6-phosphate 1.94 8.50E-03 LC-MS 

201 Sedoheptulose 7-phosphate 1.93 1.84E-04 LC-MS 

202 Phenylacetylglycine 1.93 1.25E-02 LC-MS 

203 2-Amino-4-hydroxy-6-hydroxymethyl-
7,8-dihydropteridine 

1.91 4.52E-02 LC-MS 

204 Phosphoribosyl-AMP 1.89 2.62E-03 LC-MS 

205 Xylitol 1.89 8.21E-04 LC-MS 

206 &alpha;-(2,6-anhydro-3-deoxy-D-
arabino-heptulopyranosid)onate 7-
phosphate 

1.87 7.18E-04 LC-MS 

207 D-Tryptophan 1.87 1.65E-01 LC-MS 

208 [FA (18:2)] 9,12-octadecadienal 1.85 3.45E-02 LC-MS 

209 2-hydroxysuccinamate 1.85 4.68E-02 LC-MS 

210 2-Isopropylmaleate 1.83 4.58E-04 LC-MS 

211 DL-2-Aminooctanoicacid 1.82 1.01E-01 LC-MS 

212 D-Erythrose 4-phosphate 1.81 4.23E-03 LC-MS 

213 Glycylproline 1.78 6.18E-05 LC-MS 

214 Sucrose 1.76 1.16E-02 LC-MS 

215 D-Glucose 6-phosphate 1.76 2.03E-04 LC-MS 

216 3-Phosphoglycerate 1.74 7.31E-04 LC-MS 

217 D-myo-Inositol 1,2-cyclic phosphate 1.74 8.79E-04 GC-MS 

218 L-Hypoglycin 1.74 6.23E-03 LC-MS 

219 4-Hydroxybenzoate 1.74 3.62E-01 LC-MS 
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220 Asp-Asp 1.74 6.96E-05 LC-MS 

221 N-(Carboxyaminomethyl)urea 1.73 3.59E-03 LC-MS 

222 beta-D-Fructose 2,6-bisphosphate 1.72 1.70E-03 LC-MS 

223 L-Methionine S-oxide 1.72 3.34E-02 LC-MS 

224 Acetylcholine 1.72 7.21E-03 LC-MS 

225 (R)-S-Lactoylglutathione 1.72 4.07E-02 LC-MS 

226 Aminopropylcadaverine 1.71 3.00E-03 LC-MS 

227 Retronecine 1.71 6.44E-04 LC-MS 

228 Hypotaurine 1.71 4.80E-02 LC-MS 

229 DL-Glyceraldehyde 3-phosphate 1.7 2.37E-02 LC-MS 

230 Chelilutine 1.69 2.44E-02 LC-MS 

231 allopurinol 1.69 1.23E-01 LC-MS 

232 Acetyl phosphate 1.68 9.03E-04 LC-MS 

233 L-Arabinonate 1.66 5.39E-03 LC-MS 

234 D-Mannose 1-phosphate 1.66 1.45E-03 LC-MS 

235 Glu-Met 1.65 1.70E-02 LC-MS 

236 D-Glucono-1,5-lactone 1.65 9.69E-02 LC-MS 

237 Pyridoxal phosphate 1.64 2.37E-03 LC-MS 

238 Phe-Asp 1.63 3.62E-02 LC-MS 

239 NAD+ 1.63 1.33E-02 LC-MS 

240 O-Propanoylcarnitine 1.62 5.64E-04 LC-MS 

241 (-)-Salsolinol 1.6 4.14E-02 LC-MS 

242 [FA (6:0)] 6-[3]-ladderane-1-hexanol 1.6 6.24E-02 LC-MS 

243 Allantoin 1.58 1.06E-02 LC-MS 

244 Uracil 1.58 3.06E-09 LC-MS 

245 Glu-Asp 1.58 4.83E-03 LC-MS 

246 5-Acetamidopentanoate 1.57 3.02E-01 LC-MS 

247 beta-Alanine 1.57 1.04E-03 LC-MS 

248 [Fv Hydroxy,trimethoxy(9:1)] 4'-
Hydroxy-5,6,7-trimethoxyflavanone 

1.57 1.41E-01 LC-MS 

249 Thr-Ala 1.55 9.28E-03 LC-MS 

250 Ala-Asp-Cys 1.54 1.64E-02 LC-MS 

251 Leucyl-leucine 1.54 6.02E-03 LC-MS 

252 Triethanolamine 1.54 2.31E-04 LC-MS 

253 L-Kynurenine 1.53 1.31E-03 LC-MS 

254 Leu-Val 1.52 7.32E-04 LC-MS 

255 Trimethylamine N-oxide 1.52 8.14E-05 LC-MS 

256 Val-Val 1.52 9.12E-04 LC-MS 

257 Asp-Gly 1.5 9.75E-03 LC-MS 

258 3-Amino-2-oxopropyl phosphate 1.49 8.31E-02 LC-MS 

259 Glu-Glu-Met 1.49 3.09E-02 LC-MS 

260 5-Hydroxypentanoate 1.48 3.75E-04 LC-MS 

261 2-monooleoylglycerol 1.47 4.87E-02 LC-MS 

262 Linamarin 1.47 2.25E-02 LC-MS 

263 2-Phenylethanolglucuronide 1.46 9.32E-03 LC-MS 

264 (R)-AMAA 1.45 9.26E-03 LC-MS 

265 Vinylacetylglycine 1.45 6.39E-03 LC-MS 

266 1-Methylnicotinamide 1.44 1.39E-01 LC-MS 



204 
 

 Appendix (Table 4)  

267 Xanthosine 5'-phosphate 1.44 1.79E-01 LC-MS 

268 N-Acetyl-L-aspartate 1.42 1.21E-01 LC-MS 

269 Mevaldate 1.41 1.02E-02 LC-MS 

270 Sulfate 1.39 1.25E-02 LC-MS 

271 Chlorate 1.35 7.69E-02 LC-MS 

272 5-Methylcytidine 1.33 2.19E-02 LC-MS 

273 gamma-Glutamyl-beta-cyanoalanine 1.33 3.25E-02 LC-MS 

274 Spermidine 1.32 7.42E-03 LC-MS 

275 Tyramine 1.32 2.85E-01 LC-MS 

276 HEPES 1.32 2.75E-01 LC-MS 

277 4-Methylene-L-glutamine 1.31 2.43E-01 LC-MS 

278 4-Guanidinobutanoate 1.31 1.94E-02 LC-MS 

279 Arg-Gln-Ser-Ser 1.31 2.72E-01 LC-MS 

280 N4-acetyl-N4-hydroxy-1-aminopropane 1.29 4.29E-01 LC-MS 

281 [FA (14:0/2:0)] Tetradecanedioic acid 1.29 1.51E-01 LC-MS 

282 5-Hydroxyindoleacetate 1.28 9.99E-03 LC-MS 

283 Glutathione disulfide 1.28 3.27E-02 LC-MS 

284 CMP-N-acetylneuraminate 1.27 1.08E-01 LC-MS 

285 [FA methyl,hydroxy(5:0)] 3R-methyl-
3,5-dihydroxy-pentanoic acid 

1.27 2.11E-01 LC-MS 

286 Gamma-Aminobutyryl-lysine 1.26 1.44E-01 LC-MS 

287 N5-Ethyl-L-glutamine 1.25 2.60E-01 LC-MS 

288 L-Threonine 1.24 6.33E-02 LC-MS 

289 Cys-Gly 1.22 1.49E-01 LC-MS 

290 N-Acetyl-D-fucosamine 1.22 9.69E-02 LC-MS 

291 L-5-benzyl-hydantoin 1.21 6.06E-01 LC-MS 

292 [FA (20:4)] 5Z,8Z,11Z,14Z-
eicosatetraenoic acid 

1.2 3.13E-01 LC-MS 

293 N-Acetylserotonin 1.19 3.12E-01 LC-MS 

294 2-Amino-4-hydroxy-6-(D-erythro-
1,2,3-trihydroxypropyl)-7,8- 
dihydropteridine 

1.18 3.90E-01 LC-MS 

295 4-Oxocyclohexanecarboxylate 1.18 1.67E-01 LC-MS 

296 2-Naphthylamine 1.18 2.00E-01 LC-MS 

297 1-Aminocyclopropane-1-carboxylate 1.17 2.39E-01 LC-MS 

298 2-C-Methyl-D-erythritol 4-phosphate 1.17 7.12E-01 LC-MS 

299 [SP 
hydroxy,hydroxy,methyl(10:2/2:0)] 
6R-(8-hydroxydecyl)-2R-
(hydroxymethyl)-piperidin-3R-ol 

1.17 4.62E-01 LC-MS 

300 [FA hydroxy,oxo(7:0/2:0)] 4-hydroxy-
2-oxo-Heptanedioic acid 

1.17 5.51E-01 LC-MS 

301 (4E)-2-Oxohexenoic acid 1.17 4.23E-01 LC-MS 

302 [FA (7:0/2:0)] Heptanedioic acid 1.16 3.16E-01 LC-MS 

303 NG,NG-Dimethyl-L-arginine 1.16 4.99E-01 LC-MS 

304 Glu-Ser 1.16 5.67E-01 LC-MS 

305 Pseudouridine 1.15 2.13E-01 LC-MS 

306 L-Carnitine 1.15 2.99E-01 LC-MS 

307 Dodecanamide 1.15 3.87E-01 LC-MS 

308 (S)-3-Methyl-2-oxopentanoic acid 1.13 2.19E-01 LC-MS 
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309 N-Ethylglycocyamine 1.12 4.03E-01 LC-MS 

310 Furfural diethyl acetal 1.11 5.11E-01 LC-MS 

311 L-Serine 1.11 3.11E-01 LC-MS 

312 L-Citrulline 1.11 7.38E-01 LC-MS 

313 Tiglic acid 1.11 4.11E-01 LC-MS 

314 L-Histidine 1.11 6.77E-01 LC-MS 

315 [FA dioxo(8:0)] 4,7-dioxo-octanoic 
acid 

1.1 5.53E-01 LC-MS 

316 Methylmalonate 1.1 4.58E-01 LC-MS 

317 Methyl cinnamate 1.09 6.52E-01 LC-MS 

318 2-Hydroxyadenine 1.08 5.03E-01 LC-MS 

319 6-Acetyl-D-glucose 1.08 6.08E-01 LC-MS 

320 (S)-2-Aminobutanoate 1.08 6.13E-01 LC-MS 

321 Deoxyadenosine 1.07 7.65E-01 LC-MS 

322 (R)-2-Hydroxyglutarate 1.07 7.72E-01 LC-MS 

323 L-thiazolidine-4-carboxylate 1.06 7.85E-01 LC-MS 

324 Taurocyamine 1.04 7.98E-01 LC-MS 

325 Cys-Cys-His-His 1.04 7.81E-01 LC-MS 

326 2-Acetolactate 1.03 8.37E-01 LC-MS 

327 Orotidine 1.03 8.04E-01 LC-MS 

328 3-Hydroxypropenoate 1.03 7.75E-01 LC-MS 

329 Canavanine 1.03 7.61E-01 LC-MS 

330 Succinate 1.01 9.73E-01 LC-MS 

331 (S)-2-Amino-3-(3-hydroxy-4-oxo-4H-
pyridin-1-yl)propanoate 

1 9.85E-01 LC-MS 

332 di-n-Undecylamine 1 9.95E-01 LC-MS 

333 [PK] 6-Methylsalicylic acid 1 9.83E-01 LC-MS 

334 Cyclohex-2-enone 1 9.95E-01 GC-MS 

335 Glu-Leu-Thr-His -1 9.86E-01 LC-MS 

336 1,3-benzenedisulfonate -1 9.79E-01 LC-MS 

337 L-cysteine sulfinate -1.01 9.58E-01 LC-MS 

338 1-methylguanosine -1.01 9.42E-01 LC-MS 

339 Orthophosphate -1.01 9.45E-01 LC-MS 

340 [FA oxo(8:0)] 5-oxo-7-octenoic acid -1.01 9.31E-01 LC-MS 

341 3-Methyleneoxindole -1.03 7.40E-01 LC-MS 

342 Adipate -1.03 8.19E-01 LC-MS 

343 His-Phe-Val-Pro -1.03 8.72E-01 LC-MS 

344 sodium chloride(aq) -1.04 8.92E-01 LC-MS 

345 [ST] (5Z,7E)-9,10-seco-5,7,10(19)-
cholestatriene 

-1.04 9.05E-01 LC-MS 

346 Leu-Ala -1.04 8.26E-01 LC-MS 

347 Tributyl phosphate -1.04 7.99E-01 LC-MS 

348 3,4-Dihydroxy-trans-cinnamate -1.04 8.10E-01 LC-MS 

349 D-Sorbitol -1.05 5.17E-01 LC-MS 

350 [FA oxo,amino(6:0)] 3-oxo-5S-amino-
hexanoic acid 

-1.06 6.67E-01 LC-MS 

351 N6,N6,N6-Trimethyl-L-lysine -1.06 7.77E-01 LC-MS 

352 Thr-Asp-Ser -1.06 7.33E-01 LC-MS 

353 D-Glycerate -1.06 6.75E-01 LC-MS 
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354 2-Butyne-1,4-diol -1.07 5.56E-01 LC-MS 

355 MOPS -1.08 4.96E-01 LC-MS 

356 Homoarginine -1.08 7.58E-01 LC-MS 

357 8-keto-7-aminoperlagonate -1.08 6.42E-01 LC-MS 

358 [FA (12:4/2:0)] 2E,4E,8E,10E-
Dodecatetraenedioic acid 

-1.09 2.98E-01 LC-MS 

359 3-Hydroxy-N6,N6,N6-trimethyl-L-
lysine 

-1.09 7.87E-01 LC-MS 

360 D-Xylulose -1.11 4.32E-01 LC-MS 

361 3-Methoxy-4-
hydroxyphenylethyleneglycol 

-1.12 4.79E-01 LC-MS 

362 Miraxanthin-I -1.13 6.65E-01 LC-MS 

363 myristic amide -1.14 4.03E-01 LC-MS 

364 cis-(homo)2aconitate -1.14 2.16E-01 LC-MS 

365 N-Acetylisatin -1.15 4.24E-01 LC-MS 

366 Ethyl (R)-3-hydroxyhexanoate -1.15 2.04E-01 LC-MS 

367 L-2-Aminoadipate -1.16 1.96E-01 LC-MS 

368 L-Ornithine -1.17 5.28E-01 LC-MS 

369 [FA (24:6)] 4,8,12,15,19,21-
tetracosahexaenoic acid 

-1.18 1.57E-01 LC-MS 

370 N-Acetyl-D-glucosamine 6-sulfate -1.18 3.45E-01 LC-MS 

371 N2-(D-1-Carboxyethyl)-L-arginine -1.18 4.03E-01 LC-MS 

372 Leu-Pro -1.19 2.68E-01 LC-MS 

373 Furfural -1.19 3.66E-01 LC-MS 

374 3-Hydroxy-L-kynurenine -1.19 6.90E-01 LC-MS 

375 2,3,5-Trihydroxytoluene -1.19 2.57E-01 LC-MS 

376 Deoxyribonolactone -1.2 1.92E-01 LC-MS 

377 phosphinomethylmalate -1.21 1.13E-01 LC-MS 

378 Ala-Asp-Ser -1.22 3.09E-01 LC-MS 

379 2-Ethylhexyl phthalate -1.22 1.38E-01 LC-MS 

380 N-methyl glucamine -1.23 4.00E-01 LC-MS 

381 L-Lysine -1.23 1.93E-01 LC-MS 

382 N-(L-Arginino)succinate -1.23 1.59E-01 LC-MS 

383 [FA amino(11:0)] 11-amino-
undecanoic acid 

-1.24 2.25E-01 LC-MS 

384 2-acetamidoglucal -1.24 6.34E-02 LC-MS 

385 Methanesulfonic acid -1.26 2.75E-01 LC-MS 

386 Slaframine -1.26 1.10E-01 LC-MS 

387 N1-(5-Phospho-alpha-D-ribosyl)-5,6-
dimethylbenzimidazole 

-1.27 3.04E-01 LC-MS 

388 Phenylpyruvate -1.29 1.35E-01 LC-MS 

389 [ST hydrox] 3alpha,7alpha-Dihydroxy-
5beta-cholan-24-oic Acid 

-1.29 2.10E-02 LC-MS 

390 Sulfoacetaldehyde -1.29 1.76E-01 LC-MS 

391 N3-(4-methoxyfumaroyl)-L-2,3-
diaminopropanoate 

-1.29 7.76E-02 LC-MS 

392 2',3'-Cyclic CMP -1.3 1.99E-02 LC-MS 

393 Maltose -1.31 8.75E-02 LC-MS 

394 2-Hydroxyethanesulfonate -1.33 5.70E-02 LC-MS 

395 Hexadecasphinganine -1.33 1.81E-01 LC-MS 

396 Monomethyl sulfate -1.37 1.46E-01 LC-MS 
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397 Heme -1.38 2.25E-01 LC-MS 

398 Stachydrine -1.39 1.87E-01 LC-MS 

399 N-Dimethyl-2-aminoethylphosphonate -1.4 4.25E-02 LC-MS 

400 IAA-phenylalanine -1.41 2.08E-02 LC-MS 

401 10-Hydroxydecanoic acid -1.43 2.97E-04 LC-MS 

402 Mercaptoethanol -1.44 2.39E-01 LC-MS 

403 Xanthine -1.47 1.76E-04 LC-MS 

404 4-Hydroxy-L-threonine -1.49 2.77E-03 LC-MS 

405 Xanthosine -1.53 3.83E-04 LC-MS 

406 N-acetyl-(L)-arginine -1.53 3.81E-03 LC-MS 

407 N-Methylethanolamine phosphate -1.54 6.29E-02 LC-MS 

408 N2-(D-1-Carboxyethyl)-L-lysine -1.57 2.80E-02 LC-MS 

409 L-Glutamine -1.59 2.04E-03 LC-MS 

410 Glycodeoxycholate -1.6 9.74E-03 LC-MS 

411 2-Phenylacetamide -1.67 6.71E-03 GC-MS 

412 gamma-Amino-gamma-
cyanobutanoate 

-1.69 2.02E-04 LC-MS 

413 D-Glucose -1.69 9.16E-02 LC-MS 

414 Creatinine -1.77 1.71E-03 LC-MS 

415 &gamma;-aminobutyramide -1.77 3.70E-04 LC-MS 

416 (S)-Methylmalonate semialdehyde -1.81 9.47E-04 LC-MS 

417 N-Acetyl-D-mannosamine -1.87 1.36E-03 LC-MS 

418 L-Glutamate 5-semialdehyde -1.87 1.49E-04 LC-MS 

419 L-Asparagine -1.88 1.12E-04 LC-MS 

420 Methyloxaloacetate -1.9 2.12E-04 LC-MS 

421 Urate -1.95 2.01E-02 LC-MS 

422 olomoucine -1.98 9.51E-04 LC-MS 

423 S-glutathionyl-L-cysteine -2.07 1.49E-01 LC-MS 

424 Ergothioneine -2.07 4.01E-04 LC-MS 

425 D-Lysine -2.13 3.82E-03 LC-MS 

426 Creatine -2.14 1.89E-03 LC-MS 

427 3-sulfopropanoate -2.15 9.59E-06 LC-MS 

428 2,7-Anhydro-alpha-N-
acetylneuraminic acid 

-2.17 1.30E-04 LC-MS 

429 Homostachydrine -2.64 1.37E-03 LC-MS 

430 1-Methyladenosine -2.72 1.85E-05 LC-MS 

431 N5-(L-1-Carboxyethyl)-L-ornithine -2.8 5.71E-06 LC-MS 

432 Leu-Lys-Asp -2.99 2.70E-03 LC-MS 

433 L-Arginine -3.05 1.52E-06 LC-MS 

434 Orotate -3.27 7.45E-07 LC-MS 

435 N-Acetyl-D-glucosaminate -3.39 3.25E-09 LC-MS 

436 3-beta-D-Galactosyl-sn-glycerol -3.62 7.84E-06 LC-MS 

437 myo-Inositol -3.74 1.02E-02 LC-MS 

438 Biotin -3.94 1.18E-06 LC-MS 

439 Hippurate -4.55 7.47E-08 LC-MS 

440 Glycyl-leucine -4.56 1.61E-08 LC-MS 

441 N-Methylnicotinate -4.69 5.59E-04 LC-MS 

442 3,4',5-Trihydroxystilbene -5 3.03E-03 LC-MS 
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443 Glu-Cys-Gln-Gln -5.54 1.37E-06 LC-MS 

444 S-5-methylthiopentylhydroximoyl-L-
cysteine 

-9.82 4.56E-08 LC-MS 

445 dTTP -11.11 2.32E-07 LC-MS 

446 (S)-Dihydroorotate -11.57 9.64E-07 LC-MS 

447 N-Carbamoyl-L-aspartate -15.49 9.06E-06 LC-MS 

448 indole carboxyl thiazole -18.71 4.24E-08 LC-MS 

449 Met-Ala-Gly <25 fold 3.84E-07 LC-MS 

450 L-Noradrenaline <25 fold 1.33E-09 LC-MS 

451 Ala-Val-Pro-Ser <25 fold 1.63E-06 LC-MS 

452 Deoxycytidine <25 fold 1.82E-04 LC-MS 

 



 209 
 

  

Table 5 Putative metabolites (PMs) represented in  

Figure 4-3 showing fold change in abundance in P. berghei gametocytes compared to P. 
berghei schizonts. PMs are listed in order of decreasing abundance (metabolites identified 

with authentic standards are highlighted bold) 

No. Metabolites Fold change 
(Gametocytes/ 
Schizonts) 

P-Value Platform 

1 2-Amino-4-hydroxy-6-(D-erythro-1,2,3-
trihydroxypropyl)-7,8- dihydropteridine 

> 25 fold 5.66E-07 LC-MS 

2 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-
dihydropteridine 

> 25 fold 5.29E-04 LC-MS 

3 Ala-Ser-Tyr > 25 fold 2.23E-07 LC-MS 

4 2-6dimethylheptanoylcarnitine > 25 fold 5.13E-04 LC-MS 

5 N-Methylnicotinate > 25 fold 4.47E-12 LC-MS 

6 Dihydrobiopterin > 25 fold 5.97E-07 LC-MS 

7 Glu-Met > 25 fold 1.78E-05 LC-MS 

8 Met-Ala-Asp > 25 fold 9.28E-06 LC-MS 

9 cis-Aconitate > 25 fold 9.60E-08 LC-MS 

10 creatinine phosphate > 25 fold 2.09E-08 LC-MS 

11 Glu-Glu-Met > 25 fold 9.25E-06 LC-MS 

12 Deoxyinosine > 25 fold 2.21E-06 LC-MS 

13 Phosphocreatine > 25 fold 1.53E-07 LC-MS 

14 [FA hydroxy(10:0)] N-(3S-
hydroxydecanoyl)-L-serine 

> 25 fold 2.82E-04 LC-MS 

15 [FA oxo,amino(6:0)] 3-oxo-5S-amino-
hexanoic acid 

> 25 fold 5.61E-09 LC-MS 

16 Asp-Met-Asp-Gly > 25 fold 2.92E-05 LC-MS 

17 1,2-dioctanoyl-1-amino-2,3-propanediol > 25 fold 2.25E-04 LC-MS 

18 L-Octanoylcarnitine > 25 fold 1.56E-04 LC-MS 

19 Taurocyamine > 25 fold 4.15E-06 LC-MS 

20 [SP] Sphing-4-enine-1-phosphate > 25 fold 3.36E-04 LC-MS 

21 [FA] O-Palmitoyl-R-carnitine > 25 fold 4.08E-04 LC-MS 

22 [FA (10:0)] O-decanoyl-R-carnitine > 25 fold 5.10E-04 LC-MS 

23 IAA-phenylalanine 22.74 2.68E-07 LC-MS 

24 Tetradecanoylcarnitine 22.31 3.36E-04 LC-MS 

25 (S)-2-Amino-3-(3-hydroxy-4-oxo-4H-
pyridin-1-yl)propanoate 

22.09 5.31E-04 LC-MS 

26 O-Propanoylcarnitine 21.84 1.97E-08 LC-MS 

27 2-Isopropylmaleate 21.19 4.72E-07 LC-MS 

28 [FA (6:0)] O-hexanoyl-R-carnitine 19.8 3.23E-04 LC-MS 

29 N-Acetyl-L-glutamate 5-semialdehyde 18.22 1.97E-07 LC-MS 

30 D-perosamine 17.43 3.24E-05 LC-MS 

31 Hypoxanthine 15.58 4.25E-08 LC-MS 

32 Elaidiccarnitine 15.37 6.51E-04 LC-MS 

33 D-Ribitol 5-phosphate 15.06 1.24E-07 LC-MS 

34 Inosine 14.98 7.36E-07 LC-MS 

35 2,3-Dimethylmaleate 14.21 5.97E-07 LC-MS 

36 Isocitrate 14.05 2.08E-06 GC-MS 

37 4-Hydroxy-2-butynal 14.04 1.84E-07 LC-MS 

38 L-Gulonate 12.99 5.96E-07 LC-MS 
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39 Stachydrine 12.91 1.19E-05 LC-MS 

40 Ala-Asp-Cys 12.08 1.07E-05 LC-MS 

41 2-Phenylethanolglucuronide 11.7 1.02E-07 LC-MS 

42 D-Gluconic acid 11.18 3.53E-07 LC-MS 

43 O-Butanoylcarnitine 10.98 6.52E-05 LC-MS 

44 Trimethylamine N-oxide 10.83 3.61E-09 LC-MS 

45 Thr-Ala 10.71 3.52E-07 LC-MS 

46 6-Acetyl-D-glucose 8.45 1.58E-09 LC-MS 

47 S-5-methylthiopentylhydroximoyl-L-
cysteine 

8.33 2.24E-06 LC-MS 

48 [PC (18:0)] 1-octadecanoyl-sn-glycero-3-
phosphocholine 

8.31 4.45E-04 LC-MS 

49 Glycine 8.12 3.27E-06 LC-MS 

50 N3-methylcytosine 7.95 1.23E-07 LC-MS 

51 Bis(glycerophospho)-glycerol 7.69 1.81E-05 LC-MS 

52 Thr-Thr-Ser 7.03 1.64E-08 LC-MS 

53 Diketogulonicacid 7.02 4.88E-07 LC-MS 

54 Mesaconate 6.92 2.87E-06 LC-MS 

55 N-Ethylglycocyamine 6.88 4.09E-07 LC-MS 

56 glucosamine-1,6-diphosphate 6.31 5.96E-05 LC-MS 

57 L-Citrulline 6.24 4.08E-03 LC-MS 

58 DL-2-Aminooctanoicacid 6.17 4.78E-03 LC-MS 

59 Ergothioneine 6.15 2.48E-03 LC-MS 

60 N4-acetyl-N4-hydroxy-1-aminopropane 6.12 4.12E-03 LC-MS 

61 Malonate 5.99 1.06E-06 LC-MS 

62 Piperideine 5.55 1.01E-04 LC-MS 

63 sn-glycero-3-Phosphocholine 5.51 2.17E-10 LC-MS 

64 [GP (16:0)] 1-hexadecanoyl-2-sn-glycero-
3-phosphate 

5.39 1.47E-03 LC-MS 

65 (R)-Malate 5.33 1.99E-07 LC-MS 

66 L-Carnitine 4.85 1.75E-07 LC-MS 

67 Glu-Gly 4.81 1.52E-03 LC-MS 

68 2-Carboxy-D-arabinitol 1-phosphate 4.66 2.94E-04 LC-MS 

69 O-Acetyl-L-homoserine 4.66 6.64E-05 LC-MS 

70 Orotidine 4.54 2.20E-07 LC-MS 

71 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-
phosphocholine 

4.44 5.59E-04 LC-MS 

72 gamma-L-Glutamyl-L-cysteine 4.19 2.02E-05 LC-MS 

73 gamma-Glutamyl-beta-cyanoalanine 4.15 1.10E-06 LC-MS 

74 Hypotaurine 3.9 1.92E-03 LC-MS 

75 D-Xylulose 3.89 1.30E-05 LC-MS 

76 5-(chloromercuri)cytidine 3.77 1.11E-05 LC-MS 

77 Taurine 3.74 9.33E-07 LC-MS 

78 1-Methylnicotinamide 3.69 1.62E-03 LC-MS 

79 4-Methylene-L-glutamine 3.48 1.58E-03 LC-MS 

80 LysoPC(17:0) 3.37 1.91E-03 LC-MS 

81 beta-D-Fructose 2,6-bisphosphate 3.3 1.93E-05 LC-MS 

82 N-Acetyllactosamine 3.21 6.66E-06 LC-MS 

83 Lotaustralin 2.98 3.10E-06 LC-MS 
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84 CMP-N-acetylneuraminate 2.98 3.62E-05 LC-MS 

85 beta-Alanine 2.89 2.31E-10 LC-MS 

86 Slaframine 2.82 4.82E-06 LC-MS 

87 Erythrulose 1-phosphate 2.8 1.59E-06 LC-MS 

88 4-Hydroxy-L-threonine 2.78 3.78E-06 LC-MS 

89 [PC (18:2)] 1-(9Z,12Z-octadecadienoyl)-
sn-glycero-3-phosphocholine 

2.77 5.80E-03 LC-MS 

90 Cys-Gly 2.74 9.35E-09 LC-MS 

91 L-Erythrulose 2.69 1.15E-04 LC-MS 

92 Aspartyl-L-proline 2.68 3.06E-03 LC-MS 

93 Glutathione disulfide 2.66 1.76E-06 LC-MS 

94 3',5'-Cyclic AMP 2.61 6.64E-04 LC-MS 

95 dTMP 2.55 6.57E-05 LC-MS 

96 D-Glucose 6-phosphate 2.53 1.85E-06 LC-MS 

97 N-(octanoyl)-L-homoserine 2.51 6.52E-04 LC-MS 

98 N2-Succinyl-L-ornithine 2.47 6.05E-07 LC-MS 

99 DL-Glyceraldehyde 3-phosphate 2.45 3.00E-03 LC-MS 

100 [ST hydroxy(3:0)] (5Z,7E)-(3S)-3-hydroxy-
9,10-seco-5,7,10(19)-cholatrien-24-oic 
acid 

2.41 2.09E-02 LC-MS 

101 N-Carbamoyl-L-aspartate 2.4 7.01E-05 LC-MS 

102 D-myo-Inositol 1,2-cyclic phosphate 2.35 2.82E-05 GC-MS 

103 [ST trihydrox] 3Alpha,7Alpha,12Alpha-
trihydroxy-5Beta-cholan-24-oic acid 

2.32 2.10E-02 LC-MS 

104 Asp-Ser-Ser 2.29 1.85E-02 LC-MS 

105 N-Acetyl-D-fucosamine 2.26 1.01E-08 LC-MS 

106 4-Guanidinobutanoate 2.26 1.24E-05 LC-MS 

107 Pseudouridine 2.2 1.40E-05 LC-MS 

108 L-1-Pyrroline-3-hydroxy-5-carboxylate 2.2 1.06E-05 LC-MS 

109 Hydroxymethylphosphonate 2.15 3.67E-02 LC-MS 

110 D-Erythrose 4-phosphate 2.13 1.77E-03 LC-MS 

111 L-Alanine 2.11 5.40E-06 LC-MS 

112 Allantoin 2.08 6.66E-04 LC-MS 

113 1-Aminocyclopropane-1-carboxylate 2.03 5.77E-05 LC-MS 

114 Orotate 2.03 5.97E-02 LC-MS 

115 4-Hydroxybenzoate 2.02 2.83E-01 LC-MS 

116 D-Mannose 1-phosphate 2.01 9.48E-05 LC-MS 

117 dAMP 1.94 3.29E-02 LC-MS 

118 3-sulfopropanoate 1.92 1.18E-02 LC-MS 

119 [SP] Sphinganine-1-phosphate 1.89 3.65E-02 LC-MS 

120 &alpha;-(2,6-anhydro-3-deoxy-D-arabino-
heptulopyranosid)onate 7-phosphate 

1.89 9.65E-04 LC-MS 

121 [FA hydroxy(18:2)] 9S-hydroxy-10E,12Z-
octadecadienoic acid 

1.88 1.88E-02 LC-MS 

122 5-Methylcytidine 1.88 1.44E-02 LC-MS 

123 Glu-Asp 1.87 7.04E-04 LC-MS 

124 2-Phenylacetamide 1.86 1.30E-02 GC-MS 

125 Sedoheptulose 7-phosphate 1.85 7.75E-03 LC-MS 

126 Leu-Thr 1.77 2.80E-04 LC-MS 

127 2-hydroxysuccinamate 1.75 6.46E-02 LC-MS 
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128 Asp-Asp 1.74 1.40E-04 LC-MS 

129 1-Oleoylglycerophosphocholine 1.68 7.84E-02 LC-MS 

130 Malate 1.66 1.75E-03 LC-MS 

131 allopurinol 1.61 2.06E-01 LC-MS 

132 L-thiazolidine-4-carboxylate 1.61 5.83E-02 LC-MS 

133 sn-glycero-3-Phosphoethanolamine 1.61 2.16E-01 LC-MS 

134 N-Methylethanolamine phosphate 1.61 2.43E-02 LC-MS 

135 cis-(homo)2aconitate 1.61 1.66E-02 LC-MS 

136 [ST] (5Z,7E)-9,10-seco-5,7,10(19)-
cholestatriene 

1.6 2.33E-01 LC-MS 

137 Choline 1.6 2.37E-05 LC-MS 

138 Chlorate 1.57 1.67E-02 LC-MS 

139 Miraxanthin-I 1.55 3.13E-01 LC-MS 

140 Leu-Pro 1.53 1.72E-02 LC-MS 

141 Aminopropylcadaverine 1.53 1.53E-02 LC-MS 

142 succinamate 1.53 1.28E-01 LC-MS 

143 2-Aminoacrylate 1.52 1.53E-01 LC-MS 

144 Fructoselysine 6-phosphate 1.5 1.96E-02 LC-MS 

145 (R)-S-Lactoylglutathione 1.45 1.28E-01 LC-MS 

146 N-acetyl-(L)-arginine 1.45 6.46E-05 LC-MS 

147 Homostachydrine 1.45 6.79E-03 LC-MS 

148 L-Cystathionine 1.44 3.42E-02 LC-MS 

149 Spermidine 1.43 1.06E-02 LC-MS 

150 3-Hydroxy-N6,N6,N6-trimethyl-L-lysine 1.42 3.97E-02 LC-MS 

151 N-Acetyl-D-mannosamine 1.42 2.05E-01 LC-MS 

152 UDP-N-acetyl-D-glucosamine 1.42 9.29E-02 LC-MS 

153 2-Deoxy-D-ribose 5-phosphate 1.41 7.65E-03 LC-MS 

154 Prenyl-L-cysteine 1.4 2.30E-01 LC-MS 

155 Chelilutine 1.4 1.31E-01 LC-MS 

156 N-hydroxy-N-isopropyloxamate 1.39 2.00E-01 LC-MS 

157 2-C-Methyl-D-erythritol 4-phosphate 1.38 4.41E-01 LC-MS 

158 Guanosine 1.38 2.05E-01 LC-MS 

159 N-Acetyl-D-glucosamine 6-phosphate 1.36 2.37E-01 LC-MS 

160 di-n-Undecylamine 1.36 3.37E-01 LC-MS 

161 Tyramine 1.34 2.60E-01 LC-MS 

162 L-Aspartate 1.32 5.11E-02 LC-MS 

163 N-Acetyl-L-aspartate 1.28 3.24E-01 LC-MS 

164 [FA trihydroxy(4:0)] 2,3,4-trihydroxy-
butanoic acid 

1.28 4.35E-02 LC-MS 

165 Leucyl-leucine 1.27 1.31E-01 LC-MS 

166 D-Ribose 5-phosphate 1.27 2.74E-01 LC-MS 

167 (4E)-2-Oxohexenoic acid 1.27 3.38E-01 LC-MS 

168 3-Methoxy-4-
hydroxyphenylethyleneglycol 

1.26 2.71E-01 LC-MS 

169 L-Serine 1.26 9.32E-02 LC-MS 

170 Triethanolamine 1.26 2.80E-01 LC-MS 

171 Pyridoxal phosphate 1.25 9.83E-02 LC-MS 

172 N-Acetylserotonin 1.24 2.97E-01 LC-MS 

173 3-Phosphoglycerate 1.22 2.27E-01 LC-MS 
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174 3-Hydroxypropenoate 1.22 1.21E-02 LC-MS 

175 D-Aspartate 1.2 1.87E-01 LC-MS 

176 2,3,5-Trihydroxytoluene 1.19 3.92E-01 LC-MS 

177 Deoxyadenosine 1.19 3.79E-01 LC-MS 

178 N-Acetylneuraminate 1.18 2.75E-01 LC-MS 

179 Creatine 1.18 5.78E-01 LC-MS 

180 [FA (12:4/2:0)] 2E,4E,8E,10E-
Dodecatetraenedioic acid 

1.17 1.08E-01 LC-MS 

181 GammaGlutamylglutamicacid 1.17 4.45E-01 LC-MS 

182 allylcysteine 1.17 4.79E-01 LC-MS 

183 D-Tryptophan 1.17 5.63E-01 LC-MS 

184 4-Oxocyclohexanecarboxylate 1.16 3.28E-01 LC-MS 

185 3-Methyleneoxindole 1.15 1.19E-01 LC-MS 

186 2-Butyne-1,4-diol 1.15 5.08E-02 LC-MS 

187 sn-Glycerol 3-phosphate 1.12 6.17E-01 LC-MS 

188 [PK] 6-Methylsalicylic acid 1.1 4.18E-01 LC-MS 

189 Ala-Leu-Lys-Pro 1.1 5.62E-01 LC-MS 

190 Thiomorpholine 3-carboxylate 1.1 6.60E-01 LC-MS 

191 L-cysteine sulfinate 1.09 4.05E-01 LC-MS 

192 N-Acetyl-D-glucosaminate 1.09 7.51E-01 LC-MS 

193 [FA (14:0/2:0)] Tetradecanedioic acid 1.09 6.31E-01 LC-MS 

194 Dodecanamide 1.08 6.58E-01 LC-MS 

195 Pyrimidine nucleoside 1.08 7.57E-01 LC-MS 

196 10-Hydroxydecanoic acid 1.07 5.60E-01 LC-MS 

197 MOPS 1.07 3.62E-01 LC-MS 

198 2-Acetolactate 1.07 6.46E-01 LC-MS 

199 Guanine 1.07 8.26E-01 LC-MS 

200 Val-Asp-Gly 1.07 7.57E-01 LC-MS 

201 Glycerone phosphate 1.06 6.42E-01 LC-MS 

202 Methylmalonate 1.06 6.10E-01 LC-MS 

203 L-Proline 1.05 6.36E-01 LC-MS 

204 D-Sedoheptulose 1,7-bisphosphate 1.05 7.63E-01 LC-MS 

205 2-monooleoylglycerol 1.04 8.38E-01 LC-MS 

206 [FA dioxo(8:0)] 4,7-dioxo-octanoic acid 1.03 8.52E-01 LC-MS 

207 D-Threose 1.03 8.28E-01 LC-MS 

208 Phenylpyruvate 1.03 8.99E-01 LC-MS 

209 hydrogen iodide 1.02 8.96E-01 LC-MS 

210 Thr-Ala-Asp 1.02 9.43E-01 LC-MS 

211 3,4-Dihydroxy-trans-cinnamate 1.02 9.49E-01 LC-MS 

212 Ala-Ser 1.01 9.50E-01 LC-MS 

213 (R)-2-Hydroxyglutarate 1 9.90E-01 LC-MS 

214 Tributyl phosphate -1.01 9.65E-01 LC-MS 

215 L-Methionine S-oxide -1.02 9.55E-01 LC-MS 

216 Methyl cinnamate -1.03 9.15E-01 LC-MS 

217 Furfural diethyl acetal -1.03 8.86E-01 LC-MS 

218 2-Naphthylamine -1.03 7.74E-01 LC-MS 

219 2-Hydroxyethanesulfonate -1.04 7.07E-01 LC-MS 

220 Cyclohex-2-enone -1.04 8.74E-01 GC-MS 
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221 N-Acetylisatin -1.05 7.81E-01 LC-MS 

222 N-(L-Arginino)succinate -1.06 7.19E-01 LC-MS 

223 [FA methyl,hydroxy(5:0)] 3R-methyl-3,5-
dihydroxy-pentanoic acid 

-1.06 7.55E-01 LC-MS 

224 L-5-benzyl-hydantoin -1.06 6.77E-01 LC-MS 

225 Cytidine -1.08 7.96E-01 LC-MS 

226 Glu-Val -1.08 3.56E-01 LC-MS 

227 D-Alanyl-D-alanine -1.08 6.46E-01 LC-MS 

228 D-Glucose -1.08 7.50E-01 LC-MS 

229 [FA oxo(8:0)] 5-oxo-7-octenoic acid -1.08 7.48E-01 LC-MS 

230 Fumarate -1.08 5.29E-01 LC-MS 

231 Hexadecasphinganine -1.09 6.66E-01 LC-MS 

232 2-Ethylhexyl phthalate -1.1 5.76E-01 LC-MS 

233 2',3'-Cyclic CMP -1.1 7.24E-01 LC-MS 

234 Ethyl (R)-3-hydroxyhexanoate -1.1 1.41E-01 LC-MS 

235 CPA(18:1(11Z)/0:0) -1.1 7.98E-01 LC-MS 

236 Asn-Asn-Asp -1.13 5.41E-01 LC-MS 

237 N2-Acetyl-L-aminoadipate -1.13 5.31E-01 LC-MS 

238 Phe-Pro -1.13 4.58E-01 LC-MS 

239 Acetyl phosphate -1.14 3.75E-01 LC-MS 

240 L-Threonine -1.14 4.47E-01 LC-MS 

241 Furfural -1.14 4.69E-01 LC-MS 

242 O-Phospho-L-serine -1.14 6.62E-01 LC-MS 

243 [FA amino(11:0)] 11-amino-undecanoic 
acid 

-1.14 6.48E-01 LC-MS 

244 Asp-Gly -1.15 2.81E-01 LC-MS 

245 myristic amide -1.15 6.03E-01 LC-MS 

246 Methanesulfonic acid -1.15 4.70E-01 LC-MS 

247 N-Acetylglutamine -1.16 5.11E-01 LC-MS 

248 5-6-Dihydrouridine -1.17 3.41E-01 LC-MS 

249 Deoxyribonolactone -1.17 2.20E-01 LC-MS 

250 L-Arabinonate -1.18 1.80E-01 LC-MS 

251 AMP -1.18 5.03E-01 LC-MS 

252 P-DPD -1.18 3.17E-01 LC-MS 

253 Monomethyl sulfate -1.2 6.49E-01 LC-MS 

254 Gamma-Aminobutyryl-lysine -1.2 2.62E-01 LC-MS 

255 Linamarin -1.23 2.18E-01 LC-MS 

256 Ala-Asp-Asp -1.23 2.02E-01 LC-MS 

257 Vinylacetylglycine -1.25 1.96E-01 LC-MS 

258 L-Fucose 1-phosphate -1.27 2.33E-01 LC-MS 

259 Canavanine -1.27 5.01E-03 LC-MS 

260 Orthophosphate -1.27 5.76E-03 LC-MS 

261 Val-Val -1.27 2.04E-01 LC-MS 

262 [FA (24:6)] 4,8,12,15,19,21-
tetracosahexaenoic acid 

-1.28 3.88E-02 LC-MS 

263 S-Methyl-L-methionine -1.29 3.59E-01 LC-MS 

264 Glycyl-leucine -1.31 6.85E-03 LC-MS 

265 [ST hydrox] 3alpha,7alpha-Dihydroxy-
5beta-cholan-24-oic Acid 

-1.33 4.75E-03 LC-MS 
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266 3-beta-D-Galactosyl-sn-glycerol -1.34 7.50E-01 LC-MS 

267 Homoarginine -1.34 1.61E-01 LC-MS 

268 Glu-Thr -1.35 2.96E-01 LC-MS 

269 Leukotriene B4 -1.37 1.91E-01 LC-MS 

270 2-acetamidoglucal -1.39 1.06E-02 LC-MS 

271 [FA hydroxy(20:4)] 15S-hydroxy-
5Z,8Z,11Z,13E-eicosatetraenoic acid 

-1.39 1.96E-01 LC-MS 

272 N5-(L-1-Carboxyethyl)-L-ornithine -1.4 6.25E-01 LC-MS 

273 (R)-AMAA -1.41 5.28E-02 LC-MS 

274 [SP hydroxy,hydroxy,methyl(10:2/2:0)] 
6R-(8-hydroxydecyl)-2R-(hydroxymethyl)-
piperidin-3R-ol 

-1.41 1.78E-01 LC-MS 

275 5-Hydroxypentanoate -1.41 4.98E-04 LC-MS 

276 Maltose -1.42 1.35E-04 LC-MS 

277 Mercaptoethanol -1.43 2.14E-01 LC-MS 

278 Glu-Leu-Thr-His -1.44 2.58E-04 LC-MS 

279 3-Hydroxy-L-kynurenine -1.45 2.66E-02 LC-MS 

280 Sucrose -1.45 1.32E-01 LC-MS 

281 olomoucine -1.46 2.33E-01 LC-MS 

282 N-Formimino-L-glutamate -1.48 6.79E-02 LC-MS 

283 (S)-Dihydroorotate -1.48 2.10E-01 LC-MS 

284 Cys-Cys-His-His -1.53 3.29E-05 LC-MS 

285 L-Tyrosine methyl ester -1.54 6.20E-02 LC-MS 

286 (-)-Salsolinol -1.54 1.50E-01 LC-MS 

287 CMP -1.57 5.98E-02 LC-MS 

288 Pyrimidine 5'-deoxynucleotide -1.57 1.13E-02 LC-MS 

289 8-keto-7-aminoperlagonate -1.58 7.04E-02 LC-MS 

290 UMP -1.59 1.78E-01 GC-MS 

291 Adipate -1.6 1.18E-03 LC-MS 

292 N-Acetyl-D-glucosamine 6-sulfate -1.6 4.83E-02 LC-MS 

293 Leu-Ala -1.6 5.06E-02 LC-MS 

294 2,7-Anhydro-alpha-N-acetylneuraminic 
acid 

-1.61 1.00E-01 LC-MS 

295 gamma-Amino-gamma-cyanobutanoate -1.61 3.22E-02 LC-MS 

296 Glycerophosphoglycerol -1.62 1.32E-02 LC-MS 

297 Sulfate -1.62 3.26E-03 LC-MS 

298 His-Phe-Val-Pro -1.62 4.59E-04 LC-MS 

299 3-Amino-2-oxopropyl phosphate -1.64 4.43E-01 LC-MS 

300 L-Glutamine -1.65 2.33E-02 LC-MS 

301 N5-Ethyl-L-glutamine -1.65 6.71E-03 LC-MS 

302 Glu-Met-Thr -1.66 3.55E-02 LC-MS 

303 sodium chloride(aq) -1.67 2.97E-03 LC-MS 

304 Glu-Leu -1.68 1.74E-02 LC-MS 

305 D-Glycerate -1.71 1.59E-03 LC-MS 

306 Gamma-Glutamylglutamine -1.73 1.26E-02 LC-MS 

307 &gamma;-aminobutyramide -1.73 2.14E-02 LC-MS 

308 (S)-3-Methyl-2-oxopentanoic acid -1.74 4.29E-03 LC-MS 

309 Leu-Asn-Asp -1.75 3.59E-03 LC-MS 

310 Heme -1.75 5.96E-02 LC-MS 
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311 Urate -1.75 5.98E-02 LC-MS 

312 Phosphonoacetaldehyde -1.76 3.83E-03 LC-MS 

313 Leu-Val -1.76 1.43E-01 LC-MS 

314 5-Acetamidopentanoate -1.8 6.42E-02 LC-MS 

315 N3-(4-methoxyfumaroyl)-L-2,3-
diaminopropanoate 

-1.84 3.10E-01 LC-MS 

316 (S)-AMPA -1.85 9.28E-03 LC-MS 

317 Cryogenine -1.85 1.26E-02 LC-MS 

318 dTDP-3-amino-2,3,6-trideoxy-D-threo-
hexopyranos-4-ulose 

-1.86 1.01E-04 LC-MS 

319 Thr-Asp-Ser -1.88 1.98E-03 LC-MS 

320 (S)-Methylmalonate semialdehyde -1.92 7.49E-02 LC-MS 

321 Glu-Pro -1.93 1.41E-02 LC-MS 

322 Methyloxaloacetate -1.94 7.08E-02 LC-MS 

323 [FA (18:1)] 9Z-octadecenamide -1.97 5.33E-01 LC-MS 

324 4,5-seco-dopa -1.97 2.98E-03 LC-MS 

325 L-Glutamate -1.98 6.09E-04 LC-MS 

326 Acetylcholine -1.98 1.75E-02 LC-MS 

327 4,6-Dideoxy-4-oxo-dTDP-D-glucose -2 7.42E-02 LC-MS 

328 D-Mannosylglycoprotein -2.03 1.04E-03 LC-MS 

329 Creatinine -2.07 2.66E-03 LC-MS 

330 N-methyl glucamine -2.09 2.79E-02 LC-MS 

331 1,3-benzenedisulfonate -2.09 2.23E-06 LC-MS 

332 Arg-Gln-Ser-Ser -2.12 4.17E-03 LC-MS 

333 DL-&beta;-hydroxynorvaline -2.16 1.18E-04 LC-MS 

334 D-Glucuronate 1-phosphate -2.2 7.65E-04 LC-MS 

335 Sorbitol 6-phosphate -2.2 3.59E-03 LC-MS 

336 L-Lysine -2.24 8.66E-04 LC-MS 

337 L-Hypoglycin -2.24 2.16E-07 LC-MS 

338 Ala-Asp-Ser -2.24 2.66E-02 LC-MS 

339 Tiglic acid -2.28 3.74E-04 LC-MS 

340 D-Lysine -2.28 4.34E-03 LC-MS 

341 Choline phosphate -2.29 2.69E-03 LC-MS 

342 (1-Ribosylimidazole)-4-acetate -2.29 2.13E-02 LC-MS 

343 [SP] 3-dehydrosphinganine -2.3 1.10E-02 LC-MS 

344 L-2-Aminoadipate -2.3 1.19E-05 LC-MS 

345 CDP-ethanolamine -2.33 1.55E-02 LC-MS 

346 Met-Ser -2.33 8.41E-04 LC-MS 

347 N-Acetyl-aspartyl-glutamate -2.33 1.56E-03 LC-MS 

348 Ethanolamine phosphate -2.35 1.29E-02 LC-MS 

349 [FA (7:0/2:0)] Heptanedioic acid -2.36 6.15E-04 LC-MS 

350 Palmiticamide -2.36 4.79E-01 LC-MS 

351 Cytidine 2'-phosphate -2.37 1.34E-02 LC-MS 

352 Hypusine -2.42 8.14E-04 LC-MS 

353 N-(Carboxyaminomethyl)urea -2.5 1.16E-04 LC-MS 

354 3,4',5-Trihydroxystilbene -2.5 1.65E-01 LC-MS 

355 Fructoselysine -2.55 5.99E-04 LC-MS 

356 Lys-Tyr -2.55 2.62E-02 LC-MS 
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357 [FA (6:0)] 6-[3]-ladderane-1-hexanol -2.56 2.52E-01 LC-MS 

358 Pyridoxamine phosphate -2.6 1.77E-04 LC-MS 

359 HEPES -2.61 4.02E-08 LC-MS 

360 Sulfoacetaldehyde -2.61 2.21E-04 LC-MS 

361 N-Ribosylnicotinamide -2.63 5.90E-04 LC-MS 

362 [FA (18:2)] 9,12-octadecadienal -2.64 2.77E-01 LC-MS 

363 myo-Inositol -2.66 4.82E-05 LC-MS 

364 2,3,4,5-Tetrahydrodipicolinate -2.68 7.94E-04 LC-MS 

365 Met-Thr-Asp -2.68 4.29E-05 LC-MS 

366 4-Acetamidobutanoate -2.75 2.25E-05 LC-MS 

367 GMP -2.78 3.81E-04 LC-MS 

368 Putrescine -2.79 2.79E-05 LC-MS 

369 Ala-Leu-Asn-Ser -2.83 8.83E-03 LC-MS 

370 CDP-choline -2.84 1.94E-02 LC-MS 

371 Ala-Cys -2.91 7.81E-04 LC-MS 

372 L-Asparagine -2.91 1.86E-06 LC-MS 

373 Phe-Asp -2.91 5.27E-04 LC-MS 

374 Uridine -2.93 7.64E-04 LC-MS 

375 Succinate -3.04 1.83E-04 LC-MS 

376 L-Kynurenine -3.06 6.92E-06 LC-MS 

377 5-Hydroxyindoleacetate -3.19 2.71E-06 LC-MS 

378 gamma-L-Glutamyl-L-cysteinyl-beta-
alanine 

-3.23 1.58E-04 LC-MS 

379 N1-Acetylspermidine -3.25 2.60E-05 LC-MS 

380 Pro-Pro -3.32 1.95E-02 LC-MS 

381 Methylimidazoleacetic acid -3.37 4.34E-06 LC-MS 

382 Arg-Cys-Ser-Tyr -3.37 3.39E-02 LC-MS 

383 IMP -3.39 2.32E-03 LC-MS 

384 Sedoheptulose -3.42 5.76E-05 LC-MS 

385 N-Dimethyl-2-aminoethylphosphonate -3.44 4.70E-04 LC-MS 

386 [FA (20:4)] 5Z,8Z,11Z,14Z-
eicosatetraenoic acid 

-3.51 4.08E-03 LC-MS 

387 (S)-2-Aminobutanoate -3.54 6.97E-02 LC-MS 

388 NAD+ -3.64 5.72E-04 LC-MS 

389 alpha-aminopimelate -3.72 1.45E-05 LC-MS 

390 &alpha;-methylhistidine -3.75 2.19E-02 LC-MS 

391 3-Oxopropanoate -3.82 4.19E-05 LC-MS 

392 S-glutathionyl-L-cysteine -3.87 1.66E-04 LC-MS 

393 Xylitol -3.87 2.31E-02 LC-MS 

394 Adenosine -3.94 1.17E-05 LC-MS 

395 [FA hydroxy,oxo(7:0/2:0)] 4-hydroxy-2-
oxo-Heptanedioic acid 

-3.97 2.81E-03 LC-MS 

396 N6-Methyl-L-lysine -4.01 2.26E-05 LC-MS 

397 siroamide -4.03 9.37E-05 LC-MS 

398 sn-glycero-3-Phospho-1-inositol -4.13 6.84E-05 LC-MS 

399 Phosphoribosyl-AMP -4.18 8.00E-06 LC-MS 

400 Glycocholate -4.37 4.35E-05 LC-MS 

401 Retronecine -4.38 1.95E-07 LC-MS 

402 L-Tryptophan -4.38 1.37E-04 LC-MS 
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403 N6,N6,N6-Trimethyl-L-lysine -4.43 1.64E-06 LC-MS 

404 Uracil -4.54 2.43E-04 LC-MS 

405 Hippurate -4.58 2.10E-05 LC-MS 

406 Leu-Lys-Asp -4.62 2.19E-02 LC-MS 

407 CMP-N-trimethyl-2-
aminoethylphosphonate 

-4.76 6.51E-04 LC-MS 

408 Xanthosine -4.77 1.03E-04 LC-MS 

409 NG,NG-Dimethyl-L-arginine -4.79 4.45E-05 LC-MS 

410 L-Arginine -4.79 5.02E-08 LC-MS 

411 Mevaldate -4.82 2.08E-05 LC-MS 

412 [Fv Hydroxy,trimethoxy(9:1)] 4'-Hydroxy-
5,6,7-trimethoxyflavanone 

-5.2 6.93E-04 LC-MS 

413 Glu-Asp-Pro -5.22 3.47E-06 LC-MS 

414 N1-(5-Phospho-alpha-D-ribosyl)-5,6-
dimethylbenzimidazole 

-5.26 7.02E-03 LC-MS 

415 Glu-Ser -5.32 1.49E-02 LC-MS 

416 CMP-2-aminoethylphosphonate -5.36 2.99E-05 LC-MS 

417 Biotin -5.47 3.10E-07 LC-MS 

418 L-Glutamate 5-semialdehyde -5.69 8.28E-06 LC-MS 

419 Phenylacetylglycine -5.84 2.00E-05 LC-MS 

420 Xanthine -5.85 4.33E-06 LC-MS 

421 Lys-Pro -5.96 2.73E-05 LC-MS 

422 N2-(D-1-Carboxyethyl)-L-lysine -5.98 1.72E-05 LC-MS 

423 Glu-Cys-Gln-Gln -6.16 4.58E-06 LC-MS 

424 L-Tyrosine -6.48 7.87E-05 LC-MS 

425 Propanoyl phosphate -6.63 1.26E-05 LC-MS 

426 Glu-Glu-Gln-Pro -6.73 6.63E-06 LC-MS 

427 Betaine -6.84 1.86E-05 LC-MS 

428 L-Phenylalanine -6.98 2.61E-05 LC-MS 

429 gamma-Glutamyl-gamma-
aminobutyraldehyde 

-7.05 3.61E-04 LC-MS 

430 Ala-Pro -7.15 7.11E-06 LC-MS 

431 D-4'-Phosphopantothenate -7.64 3.95E-04 LC-MS 

432 Ala-Ala-Ala -7.89 1.78E-03 LC-MS 

433 Arg-Lys-Ser-Ser -8.23 2.35E-07 LC-MS 

434 Cys-Met-Ser-His -8.4 4.31E-08 LC-MS 

435 D-Methionine -8.42 3.16E-05 LC-MS 

436 Asn-Pro -8.66 4.67E-05 LC-MS 

437 Cys-Glu-Glu-Pro -9.2 7.82E-08 LC-MS 

438 Xanthosine 5'-phosphate -9.28 9.97E-04 LC-MS 

439 Ala-Lys-Met-Gln -9.36 1.10E-07 LC-MS 

440 Lactate -9.9 6.59E-05 LC-MS 

441 N(pi)-Methyl-L-histidine -9.91 1.47E-03 LC-MS 

442 D-Sorbitol -10.25 4.87E-07 LC-MS 

443 Adenine -10.8 8.48E-05 LC-MS 

444 Piperidine -11.07 1.98E-05 LC-MS 

445 Ala-Leu-His-His -11.1 1.21E-07 LC-MS 

446 Glycylproline -11.25 3.49E-04 LC-MS 

447 Sphinganine -11.63 1.38E-03 LC-MS 
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448 1-methylguanosine -12.57 8.79E-06 LC-MS 

449 2-Hydroxyadenine -13.14 1.56E-05 LC-MS 

450 ADPribose 2'-phosphate -13.32 2.98E-06 LC-MS 

451 5'-Methylthioadenosine -13.36 3.22E-04 LC-MS 

452 L-Histidine -14.71 1.64E-04 LC-MS 

453 Proclavaminic acid -15.02 2.09E-03 LC-MS 

454 Folate -16.57 4.10E-06 LC-MS 

455 phosphinomethylmalate -17.86 7.66E-08 LC-MS 

456 Ala-Gly-Pro -18.19 1.94E-03 LC-MS 

457 L-Ornithine -18.75 1.45E-06 LC-MS 

458 Trp-Pro -20.44 3.46E-06 LC-MS 

459 Glycodeoxycholate -21.9 1.10E-05 LC-MS 

460 2',3'-Cyclic UMP <25 fold 2.42E-03 LC-MS 

461 Nalpha-Methylhistidine <25 fold 1.00E-05 LC-MS 

462 L-Rhamnose <25 fold 8.06E-06 LC-MS 

463 S-Adenosyl-L-methionine <25 fold 3.18E-04 LC-MS 

464 N2-(D-1-Carboxyethyl)-L-arginine <25 fold 1.76E-05 LC-MS 

465 L-rhamnitol <25 fold 2.91E-07 LC-MS 

466 [ST hydrox] N-(3alpha,7alpha-dihydroxy-
5beta-cholan-24-oyl)-taurine 

<25 fold 7.00E-06 LC-MS 

467 Deoxycytidine <25 fold 9.19E-05 LC-MS 

468 (S)-ATPA <25 fold 8.75E-05 LC-MS 

469 1-(5-Phosphoribosyl)imidazole-4-acetate <25 fold 3.21E-06 LC-MS 

470 Phe-Asp-Gln <25 fold 3.30E-04 LC-MS 

471 Carnosine <25 fold 4.08E-06 LC-MS 

472 L-Noradrenaline <25 fold 1.08E-05 LC-MS 

473 Volemitol <25 fold 1.06E-05 LC-MS 

474 Riboflavin <25 fold 2.77E-05 LC-MS 

475 3-(Pyrazol-1-yl)-L-alanine <25 fold 5.23E-08 LC-MS 

476 Glu-Phe-Cys-Cys <25 fold 3.17E-05 LC-MS 

477 DL-Methionine sulfone <25 fold 2.06E-05 LC-MS 

478 N-Acetyl-L-histidine <25 fold 4.39E-07 LC-MS 
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Table 6 List of Primers used for PCR 

Primer Sequence 

GU2051 GATAATGTCCTACTTTTTCTTTG 

GU2052 TATATAGCTGCTTGAGACAC 

GU2053 GCAAAATACCGGATAACTC 

GU2054 TTTAGGAAACCAATCAAAGAG 

GU2057 GGGCTTTATACTATTTTTTTGTC 

GU2058 TATCGTGGTAGAGTAAAACTG 

GU2059 CATGATTTATCCGAAAAATATAGTG 

GU2060 GTGCTTTATATACATATACAACAC 

GU2198 GGAATTATAATTCTTAACCCTAACATTTTAACCTCTC  

GU2199 CTTGTCGTATATGCACTCGGTGTTGG  

GU2200 CCTTAAAATGGATAGTCAAATTGATCGTACACAACTAA  

GU2201 CATCTCTAATTCGTTAGAATTTATTATAGACTACG  

GU2278 CCACTGTAATCATAGAACAGTTCAACTAC 

GU2279 CAAGATTAGTACACATTGGATTAATGGG 

GU2280 CATTAATAGGAAGTGGCCAAATAGGG 

GU2281 GATAGCAAGCTTGTTCTTCTTCTGTC 

GU2190 CCTTTTCCTTTTGTTTTATCCATCCATTTA  

GU2191 AATCTCAAATTGTGAAATAAACAATAAAAAATTTTGTC 

GU2192 CTGAGTTCTGTATTTACTTTCATAAGTTTTTAAACG  

GU2193 CCCACATAAGTAAATATACATACACATATTATTATGC  

GU2286 CTTAAATTAGCATTACTGCGTACATCCC 

GU2610 GAGCTAGCTGAAAGTTGCAAT 

GU2288 GATGAAGAATTACACAAAAAATACAATGAATTATGC 

GU2289 GTGAAATATCTTCTTCATAATTAAGGATGC 

GU2194 GATGCTCTCTCGTATATCCGTTTAAATTAC  

GU2195 GCTAGCTATGAATTTTAGTTGATAGATTTTTTATTTG  

GU2196 GAATACATTGAGTTTAACGGAACTCAATTTAATAGCC  

GU2197 GCATGCAATATTGGCAATACATGAAAACGAATTAATAT  

GU2282 GCACCCATATTTATATCAACATTTCTATCAG 

GU2283 GCACAATTTTACATATCGATATATGTACAATG 

GU2284 GTATTGGGTTGGATCCTGATGAAG 

GU2285 CTTGTTCAATATTACCACCATTTTCTATGTC 

GU2826 CAATCCGGGCAGTATTGTATATAGTAAAG 

GU2827 GAGGAAAATATCGAATATAATAATAGTCTTCG 

GU2828 GCTGGTGTGAATTTCAGTAACTATGTG 

GU2829 CTAAAGCTGGAGAAGCTAAATAATTTGC 

GU2061 GTAAACTTAAGCATAAAGAGCTCG 

GU0204 GTCTCTTCAATGATTCATAAATAG 
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Table 7 E-value for each metabolic enzyme compared between different species of Plasmodium after doing BLAST with the corresponding P. berghei amino 

acid sequence 

Query: P. berghei amino acid sequence 

 

P. berghei P.chabaudi P. vivax P. falciparum 

Metabolic pathway Enzyme OrthoMCL Group Accession no. E-value Accession no. E-value Accession no. E-value Accession no. E-value 

Intermediary Carbon 

Metabolism 

pepc OG5_130145 PBANKA_101790 0.00 PCHAS_101870 0.00 PVX_085200 0.00 PF3D7_1426700 0.00 

mdh OG5_126911 PBANKA_111770 0.00 PCHAS_111720 0.00 PVX_114050 e-177 PF3D7_0618500 e-158 

aat OG5_126737 PBANKA_030230 0.00 PCHAS_030450 0.00 PVX_003655 0.00 PF3D7_0204500 0.00 

Pyrimidine biosynthesis 

cpsII OG5_126835 PBANKA_140670 0.00 PCHAS_140860 0.00 PVX_122240 0.00 PF3D7_1308200 0.00 

act OG5_128535 PBANKA_135770 0.00 PCHAS_136230 0.00 PVX_083135 0.00 PF3D7_1344800 0.00 

dhoase OG5_130129 PBANKA_133610 0.00 PCHAS_134070 0.00 PVX_116830 0.00 PF3D7_1472900 e-172 

dhodh OG5_127289 PBANKA_010210 0.00 PCHAS_010280 0.00 PVX_113330 0.00 PF3D7_0603300 0.00 

oprt OG5_126793 PBANKA_111240 0.00 PCHAS_111200 e-131 PVX_080605 e-110 PF3D7_0512700 0.00 

ompdc OG5_126793 PBANKA_050740 0.00 PCHAS_050750 0.00 PVX_111555 e-139 PF3D7_1023200 e-141 

Glutathione biosynthesis 

γ-gcs OG5_128698 PBANKA_081980 0.00 PCHAS_082010 0.00 PVX_099360 0.00 PF3D7_0918900 0.00 

gs OG5_128131 PBANKA_111180 0.00 PCHAS_111140 0.00 PVX_080630 0.00 PF3D7_0512200 0.00 

gst OG5_128352 PBANKA_102390 e-151 PCHAS_102470 e-148 PVX_085515 e-125 PF3D7_1419300 e-124 

gr OG5_126785 PBANKA_102340 0.00 PCHAS_102420 0.00 PVX_085490 0.00 
PF3D7_1419800.1 & 

PF3D7_1419800.2 

0.00 (for both 

PfGR1 & PfGR2) 

Phospholipid synthesis etnk OG5_127649 PBANKA_092370 0.00 PCHAS_092070 0.00 PVX_091845 e-178 PF3D7_1124600 0.00 
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chok OG5_127835 PBANKA_104010 0.00 PCHAS_104090 0.00 PVX_086340 0.00 PF3D7_1401800 0.00 

ect OG5_127671 PBANKA_136050 0.00 PCHAS_136510 0.00 PVX_083280 0.00 PF3D7_1347700 0.00 

cct OG5_128351 PBANKA_141510 0.00 PCHAS_141690 0.00 PVX_122650 0.00 PF3D7_1316600 0.00 

cept OG5_126828 PBANKA_112700 0.00 PCHAS_112650 0.00 PVX_114515 e-154 PF3D7_0628300 e-147 

pmt (PfPMT as 

query sequence) 
OG5_132295 Not present Not present PVX_083045 e-128 PF3D7_1343000 0.00 
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Key points 
 Erythroid metabolism can ameliorate the impact of genetic or chemical disruption of 

metabolism in reticulocyte resident Plasmodium spp. 

 Blood stage malaria intervention strategies targeting parasite metabolism should be 

formulated according to the target host erythrocyte. 

Abstract 
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst 

Plasmodium vivax exhibits a strong preference for immature erythrocytes (reticulocytes), the more 

pathogenic P.falciparum primarily infects mature erythrocytes (normocytes). In order to assess if 

these two host erythrocyte cell types offer different growth conditions and relate them to parasite 

preference, we compared the metabolomes of human and rodent reticulocytes with those of their 

normocyte counterparts.  Reticulocytes were found to have a more complex, enriched metabolic 

profile than normocytes, indicating a higher level of metabolic redundancy between reticulocyte 

resident parasite stages and their host cell. This was further assessed by generating a panel of 

mutants of the reticulocyte preferent rodent malaria parasite P.berghei with defects in intermediary 

carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P.falciparum 

growth and survival in vitro in normocytes.  Aspects of both pathways proved redundant producing 

generally slow growing, virulent P.berghei that committed to sexual development yet failed to 

complete transmission. These findings imply that malaria parasites can partially salvage pyrimidines 

from host red blood cells and drug therapies that target blood stage Plasmodium metabolism should 

be specifically formulated according to Plasmodium red blood cell tropism. 

Introduction 
Plasmodium parasites have a dynamic life cycle which is reflected in stage-specific morphologies, 

transcriptomes, proteomes and metabolomes1-7. Due to their parasitic life-style, Plasmodium spp. 

have a reduced metabolic capacity compared to higher organisms. They are auxotrophic for purines 

and amino acids8,9, but have retained some central metabolic pathways including glycolysis10, citric 

acid cycle7,11, lipid synthesis12, pentose phosphate pathway13, pyrimidine biosynthesis14 and 

glycosylation15. Being obligate intracellular parasites, their metabolism is linked to the host 

erythrocyte and heavily dependent on the availability of external nutrients.  As a result, they 

establish systems such as the new permeation pathways with the purpose of accessing host cell and 

environmental nutrients16. 
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Normocytes (mature erythrocytes) comprise almost 98% of the circulating erythrocytes and can be 

considered “simplified” cells compared to the erythroid precursors present in the bone marrow17 

and reticulocytes (maturing erythrocytes) present in peripheral circulation18. The major metabolic 

pathways active in normocytes are glycolysis19 and pentose phosphate  pathway20. Reticulocytes 

undergo many changes in peripheral circulation as they mature into normocytes.  Maturation is 

associated with a decrease in surface area, acquisition of a biconcave shape, increase in shear 

membrane resistance, loss of organelles (mitochondria, ribosomes, vesicles and lysosomes), 

reduction of up to 30 membrane proteins and decrease in membrane cholesterol18,21. As this process 

is likely associated with a general streamlining of cellular metabolism, reticulocytes are expected to 

contain a richer repertoire of nutrients than normocytes which might be exploited or even required 

by reticulocyte preferent Plasmodium parasites. 

To establish whether there are metabolic differences between reticulocytes and normocytes, we 

undertook a non-targeted analysis of the metabolomes of these erythrocytes. Comparison of the 

metabolomes of uninfected rat and human reticulocytes and normocytes revealed major differences 

that could be exploited by intracellular parasite stages.  This was tested using reverse genetics to 

disrupt parasite metabolism and establish the broad ability of P.berghei to utilise the products of 

reticulocyte metabolism. 

Methods 

Metabolomics of rodent erythrocytes  
Induction of reticulocytosis was achieved through administration of phenylhydrazine-HCl (PHZ, 100 

mg/kg body weight) to Wistar rats and cells were harvested when reticulocyte percentage in 

peripheral blood reached its maximum level (~35% reticulocytes 5 days after treatment). This was 

monitored by FACS analysis using the reticulocyte surface marker surface protein transferrin 

receptor (CD71), which is lost as reticulocytes mature to normocytes21.  Material was also collected 

for comparison with blood from non-enriched (~1% reticulocytes) animals (Figures 1A and S1A). All 

samples were depleted of leucocytes. Metabolite extraction was done by using 

chloroform/methanol/water (1:3:1 v/v) and samples were analysed using LC-MS and GC-MS.  

Metabolomics of human CD34+ stem cell grown erythrocytes  
CD34+ cells obtained from blood from human volunteers were cultured in a three-stage protocol 

based on published methods22. Cultured reticulocytes and normocytes from matching donors were 

used for metabolite extraction with chloroform/methanol/water (1:3:1 v/v) and samples were 

analysed using LC-MS.  
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P.berghei methods  
Infection of laboratory mice, asexual culture of P.berghei stages and generation of knockout 

parasites was done as before23. Asexual growth competition assay was done by mixing wt and 

mutant parasites expressing different fluorescent markers and performing co-infections in recipient 

mice and monitoring the growth of the two populations by flow cytometry as done before24. 

Lethality of mutant P.berghei parasites was checked by injecting infected RBCs (104) into C57/B6 

mice and monitoring parasitaemia, disease pathology and mortality over 21 days. Gametocyte 

conversion was monitored by flow cytometry in mutants generated in parent line (820cl1m1cl1) 

expressing GFP in male gametocytes and RFP in female gametocytes25. DNA quantification during 

exflagellation was also monitored by flow cytometry in mutant P.berghei parasites. Development of 

ookinetes in wild type, mutants and sexual crosses was observed in standard in vitro cultures 

maintained at 21°C. Mosquito transmission experiments were done in 5-8 days old mosquitoes used 

for infected blood feeds at 21°C and monitored for oocyst and sporozoite development using a Leica 

M205 FA fluorescence stereomicroscope. 

Determination of IC50 value of inhibitors in vitro 
Inhibitors were used to perform in vitro drug susceptibility tests in standard cultures of synchronized 

P.berghei and P.falciparum blood stages. For testing P.berghei inhibition, inhibitors were used at 

increasing concentrations to culture ring stage P.berghei for 24 hours and parasite development to 

schizont stage was analyzed by flow cytometry after staining iRBCs with DNA-specific dye Hoechst-

33258. P.falciparum 3D7 strain was used for determining IC50 values of inhibitors in in vitro cultures 

by measuring 3H-Hypoxanthine incorporation in the presence of inhibitors in increasing 

concentrations.  

Results 

The reticulocyte metabolome is more complex than the mature erythrocyte 
Metabolite extracts from normocytes and reticulocyte-enriched erythrocyte populations (35% 

reticulocytes, Figure 1A) were analyzed in parallel by liquid chromatography mass spectrometry (LC-

MS) and gas chromatography mass spectrometry (GC-MS), with both platforms providing 

overlapping, as well as complementary coverage of their metabolomes. LC-MS data was processed 

using XCMS, MZMatch and IDEOM while GC-MS data was processed using PyMS matrix generation 

and Chemstation Electron Ionisation (EI) spectrum match analysis. A total of 333 metabolites were 

provisionally identified from a total of 4560 mass features and peaks. Almost half of all detected 

metabolites were found to be more than 2-fold more abundant in reticulocytes and similar changes 

were observed when all mass features and peaks were included in the analyses (Figures 1B, S1B & C, 
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Table S1). Importantly, as the rat reticulocyte-enriched samples contained 65% normocytes, the 

level of metabolite enrichment in reticulocytes was actually much greater. The top 20 metabolites 

up-regulated in rodent reticulocytes showed a similar trend towards up-regulation in human 

reticulocytes grown in vitro from CD34+ stem cells analysed using LC-MS (Figure 1C). All identified 

metabolites were charted on metabolic pathways known to exist in Plasmodium and mammalian 

host cell from biochemical studies6,7,11,26,27 and genomic data28. 

The reticulocyte metabolome reflects its ongoing developmental 

programme 
Fractions enriched in rodent reticulocytes contained elevated levels of glycolytic, pentose phosphate 

pathway and TCA cycle intermediates (Table S1).  The presence of the latter indicates that 

reticulocytes have a functional tricarboxylic acid (TCA) and associated intermediary carbon 

metabolism, consistent with the presence of a residual population of mitochondria in reticulocytes 

that are lost in normocytes18. Increases in the levels of intermediates of the purine and pyrimidine 

metabolic pathways in reticulocytes presumably originate either from biosynthesis in the preceding 

erythropoiesis stages or from catabolism of nucleic acid to constituent nucleobases29. A number of 

intermediates of phospholipid metabolism were also elevated in reticulocytes compared to 

normocytes. In addition, many carnitine derivatives were found to be up-regulated in rodent 

(although interestingly not in human) reticulocytes which may relate to fatty acid catabolism by -

oxidation in the mitochondria or peroxisomes of these cells. Other notable changes included 

elevated levels of intermediates in glutathione and arginine metabolism in reticulocytes. 

Taken together these data demonstrate that the reticulocyte contains elevated levels of many 

metabolites that could potentially be used by the invading malaria parasite. Furthermore there was 

a marked overlap in metabolic pathways observed in the reticulocyte and those predicted in the 

parasite27,28. Common pathways might therefore be uniquely dispensable to Plasmodium during its 

growth in the reticulocyte compared with that in normocytes where many host metabolites are 

depleted. To test this hypothesis, we used reverse genetics to target several metabolic pathways in 

intermediary metabolism and pyrimidine biosynthesis in P.berghei whose intermediates were 

significantly up-regulated in reticulocytes. 

Features of intermediary carbon metabolism are dispensable in asexual 

blood stage P.berghei 
Asexual red blood cell stages of Plasmodium spp. express the cytosolic enzymes, 

phosphoenolpyruvate carboxylase (pepc, PBANKA_101790), malate dehydrogenase (mdh, 

PBANKA_111770) and aspartate amino transferase (aat. PBANKA_030230) and are thought to 



SRIVASTAVA et al  Reticulocyte metabolism and malaria 

 6 

catabolize glucose via the intermediary carbon metabolic pathways depicted in figure 2A. Production 

of aspartate via this pathway is likely to be important for protein and nucleic acid synthesis as it has 

been shown that the α-amino group from aspartate is utilised in purine salvage and the carbon 

skeleton is used as a precursor in pyrimidine biosynthesis30 while inhibition of aat has been shown to 

be lethal to P.falciparum31.  Malate produced by these pathways either enters mitochondria to 

participate in the TCA cycle or is excreted7,26. 

Metabolites involved in TCA cycle and intermediary carbon metabolism (ICM), including malate and 

aspartate, were found to be substantially higher in reticulocytes compared to normocytes (Figure 

2A). The elevated levels of these intermediates may possibly explain the previous observation that 

disruption of the TCA cycle in P.berghei blood stages through deletion of flavoprotein (Fp) subunit, 

pbsdha (PBANKA_051820) part of the catalytic component for succinate dehydrogenase activity had 

little effect on parasite viability in blood stage forms, although ookinete development is impaired32.  

To further explore the possibility that P.berghei, a reticulocyte resident parasite has potential access 

to the anapleurotic substrates of host cell ICM, attempts were made to delete pepc, mdh and aat in 

P.berghei and assess the importance of these parasite enzymes throughout the life cycle (Figure 2A). 

It proved possible to delete pepc and mdh (Figures S2A and S2B), however aat proved refractory. 

The pepc- and mdh- mutant parasites survive in intra-erythrocytic stages but the pepc- mutants were 

overgrown by the wt parasite in a sensitive single host competitive growth assay. This was not the 

case when monitoring the growth of the mdh- mutants, which did not display a growth phenotype at 

this stage of their development (Figures 3A and S3A). Scrutiny of the growth phenotype detected in 

the pepc- mutants showed that they have a prolonged asexual cycle although there was no 

difference in merozoite numbers in mature schizonts (Figures S3B and S3C).  However, both mutants 

cause severe cerebral malaria in CD57/B6 mouse model and the dynamics of their lethality is similar 

to wt, killing all mice within 8-10 days post infection (Figure 3B).  The number of gametocytes 

formed in blood stages was reduced in pepc- mutants by almost 50% but unaffected in mdh- (Figure 

3C). Further phenotypic analyses showed reduction in exflagellation (the production of mature male 

gametes) and delay in DNA replication during this process which was more pronounced in the pepc- 

mutant (figures 3D, 3E and S3D).  Ookinete development in in vitro cultures of pepc- mutants was 

also severely affected while in mdh- mutants, ookinetes were formed but the number was reduced 

by about 50% compared to wt (Figure 4A). To determine if this defect was sex specific, crosses of 

pepc- and mdh- were performed with P.berghei lines RMgm-348 (Pb270, p47-) which produces viable 

male gametes but non-viable female gametes and RMgm-15 (Pb137, p48/45-) which produces viable 

female gametes but non-viable male gametes33. Mutants of pepc- were found to produce severely 

reduced number of ookinetes in either cross suggesting that gametes of both genders are affected 
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and that the activity of the protein is essential for gamete formation. This was not the case for mdh- 

mutants where although crossing experiments showed that lack of MDH protein affected both 

genders, they mimicked the parental phenotype producing 50% fewer mature ookinetes (Figure 4B). 

Transmission of pepc- parasites through mosquitoes failed forming small numbers of oocysts in 

mosquito midguts and no salivary gland sporozoites. However, parasites lacking mdh could complete 

transmission through the mosquito and infect mice generating blood stage asexual forms in 48-72 

hours similar to wt despite producing reduced numbers of oocysts when compared to wt (Figures 

4C, 4D and S4). Overall, these results suggest that two key enzymes in P.berghei ICM are at least 

partially redundant during stages of infection in which the parasites resides primarily in 

reticulocytes, but that they become essential as the parasite differentiates and proliferates within 

other host or vector cell types. 

Pyrimidine biosynthesis can be partially disrupted in reticulocyte-

preferent P.berghei 
Plasmodium spp. are heavily dependent on nucleic acid synthesis during blood stage asexual growth 

and either salvage (i.e purines) or synthesize (i.e pyrimidines) the requisite bases. A schematic 

representation of the pyrimidine biosynthesis pathway is given in Figure 2B. Five out of six enzymes 

of this pathway have been shown to be potential targets against P.falciparum using parasite specific 

inhibitors in standard in vitro cultures34. However, most of these inhibitors have been markedly less 

potent in the in vivo P.berghei model and this difference has been attributed to reduced bio-

availability of inhibitors in mice or apparent differences in target enzyme structures35,36. 

Alternatively, our study showing increased levels of all pyrimidine biosynthesis intermediates 

observed in reticulocytes (bar glutamine, Figure 2B) raised the possibility that if P.berghei could 

access this resource through pyrimidine salvage pathways leading to reduced dependency on de 

novo synthesis it would be less affected by this class of inhibitors compared to P.falciparum residing 

in mature normocytes14,34. Attempts to delete 6 genes encoding enzymes involved in the pyrimidine 

biosynthesis pathway in P.berghei such as carbamoyl phosphate synthetase II (cpsII, 

PBANKA_140670), aspartate carbamoyltransferase (act, PBANKA_135770), dihydroorotase (dhoase, 

PBANKA_133610), dihydroorotate dehydrogenase (dhodh, PBANKA_010210), orotate phospho-

ribosyltransferase (oprt, PBANKA_111240) and orotidine 5′-monophosphate decarboxylase (ompdc, 

PBANKA_050740) were therefore made to see if reticulocyte pools of pyrimidine biosynthesis 

intermediates could compensate for the loss of de novo pyrimidine synthesis in the parasites. 

Only the genes encoding the enzymes of the final two steps of the pyrimidine biosynthesis pathway, 

oprt and ompdc could be deleted (Figures S2A and S2B). The oprt- and ompdc- mutant parasites are 

rapidly outgrown in a competition growth assay with wt parasites (Figure 3A), grow slowly (figure 
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S3B), produce significantly fewer merozoites than wt (figure S3C), and seem to invade very young 

reticulocytes (figure S3E). Both mutants showed altered lethality in the CD57/B6 mouse model as 

the mice infected with the mutants did not manifest the symptoms of experimental cerebral malaria 

(ECM) but died between days 14-20 as a result of severe anaemia and hyperparasitemia (Figure 3B). 

The process of transmission was also affected by the loss of ompdc and oprt. Gametocytemia was 

significantly reduced only in oprt- parasites (Figure 3C). Exflagellation was found to be severely 

affected in oprt- and completely blocked in ompdc- parasites (Figure 3D) and DNA replication during 

male gametogenesis was severely reduced (Figure 3E). Consistent with the defects in male 

gametogenesis, very few ookinetes were formed in in vitro cultures in oprt- parasites and no 

ookinetes were observed in ompdc- (Figure 4A).  Genetic crosses of oprt- and ompdc- mutants were 

performed as above with P.berghei lines RMgm-348 and RMgm-15 which showed that viable male 

gametes were able to rescue the ookinete conversion defect in both mutant lines suggesting that 

formation of male gametes is impaired in both oprt- and ompdc- mutant parasites while female 

gametes remain unaffected (Figure 4B). Infectivity to the mosquito was significantly reduced in oprt- 

and completely blocked in ompdc- mutants as seen by observing oocysts in infected mosquito 

midguts and salivary gland sporozoites (Figures 4C, D and S4) and infection to naïve mice was found 

to be completely blocked. However, when ookinetes from p47- x oprt- or ompdc- crosses were fed to 

mosquitoes, they failed to develop into mature oocysts and did not complete sporogony and those 

mosquitoes could not infect naïve mice (data not shown). 

We also tested the effect of a previously published inhibitor of pyrimidine biosynthesis (5-

fluoroorotate, 5FOA37 in both P.falciparum and P.berghei. This was done to assess whether there is 

differential sensitivity towards interfering with pyrimidine biosynthesis between the species due to 

the reticulocyte preference of the latter. The comparisons were carried out in vitro to prevent 

bioavailability of the inhibitor confounding in vivo data in mice. We tested the activity and found 

that the IC50 value of 5FOA in vitro was almost 90-fold higher in P.berghei (32.2 ± 0.9 nM) compared 

to P.falciparum (0.37 ± 0.01 nM) (Figure 5). A dihydroartemisinin control showed no major 

difference in inhibition between P.berghei (6.6 ± 0.1 nM) and P.falciparum (2.8 ± 0.2 nM). These data 

strongly support our hypothesis that P.berghei can access pyrimidine precursors from the 

reticulocyte. 

Discussion  
Our data established that reticulocytes have a much more complex metabolome than normocytes, 

adding to previously well documented changes that occur during reticulocyte to normocyte 

differentiation in the peripheral circulation18,21. We predicted that malaria parasites infectious to 
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both human (P. vivax) and rodents (P.berghei) which exhibit a strong tropism for reticulocytes rather 

than normocytes may be more tolerant to the loss of key metabolic pathways because of 

redundancy with host pathways. Conversely, the down-regulation of key metabolic pathways in 

normocytes compared to reticulocytes may explain why several of the corresponding pathways in 

asexual blood stages of P.falciparum appear to be essential in vitro.  Our data strongly suggest that 

reticulocytes do indeed provide a highly enriched host cell niche for some Plasmodium species, with 

important implications for drug discovery strategies.  

Whilst glycolysis is the main pathway for carbon metabolism in erythrocytes19,  both human38 and 

rodent39 erythrocytes retain a residual proteomic signature of TCA cycle and ICM enzymes and our 

metabolomics data suggests that these pathways are much more active in reticulocytes.  The 

increased availability of these metabolites in reticulocytes likely explains the non-essentiality of the 

P.berghei pepc and mdh genes, which are involved in regulating intracellular levels of oxaloacetate 

and malate. In contrast, PEPC is essential for normal intra-erythrocytic survival of P.falciparum in 

vitro, although this can be by-passed by nutrient supplementation of P.falciparum infected 

normocytes26.  It should be noted that the pbpepc- mutant still showed a significant growth defect 

compared with wt parasites (similar to the P.falciparum mutant) in the asexual blood stage cycle as 

revealed by our sensitive single host competitive growth assay.  It would be interesting to use this 

assay to compare asexual growth dynamics of other available metabolic mutants such as the pbsdha- 

with wt which might reveal additional defects to those reported32.  The P.berghei pepc- mutant also 

failed to complete transmission through mosquitoes as a result of defects in gametocyte production, 

male gamete formation, female gamete viability resulting in trace oocyst formation and failure to 

enter sporogony, which extends our understanding of the importance of this metabolic enzyme for 

parasite development beyond the asexual blood stages previously investigated26. A possible 

explanation for this phenotype is that the pepc- mutant is unable to generate sufficient aspartate for 

nucleotide biosynthesis and is unable to scavenge aspartate from other host cells infected during its 

sexual and asexual life cycle (Figure 2A).  

In line with this suggestion is the repeated failure to delete P.berghei aat which generates aspartate, 

an essential precursor for nucleic acid and protein synthesis.  The essential nature of aat suggests 

that either the apparently higher levels of aspartate in reticulocytes are insufficient to meet the 

demands of a growing asexual stage parasite or that, as in P.falciparum intra-erythrocytic stages, 

P.berghei is not readily able to access host cytoplasmic pools of aspartate40. Production of aspartate 

in Plasmodium pepc- mutants can still be achieved through generation of the oxaloacetic acid 

precursor by mitochondrial malate:quinone oxidoreductase (MQO) or the reverse reaction of 
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cytosolic MDH.  However, this is apparently a suboptimal solution for the pepc- parasite resulting in 

slow growth in the blood and failure to develop in the mosquito. Plasmodium AAT can also generate 

methionine from aspartate, glutamate and other amino acids which can act as effective amino 

donors41 and regulate glutamine/glutamate metabolism. These functions may not be rescued by 

simple aspartate salvage from the host and further support the essentiality of aat as a key enzyme 

for the parasite.  

The P.falciparum gene encoding MDH has proved refractory to deletion, suggesting that it is 

essential for these parasites. In marked contrast, the P.berghei mutants lacking mdh were readily 

generated, suggesting that this species may scavenge reticulocyte pools of malate. The mdh- mutant 

exhibited a very modest growth phenotype and was able to develop into mosquito-infective stages, 

despite producing 1/3 fewer oocysts than wt. The continued viability of the mdh- mutants during 

transmission in the absence of reticulocyte-based compensatory sources of the metabolite can be 

explained by continued TCA derived production of malate and NADH+ H+ reducing equivalents given 

the increased flux through the TCA metabolism in gametocytes and probably later sexual stages7,11. 

Conditional silencing or disruption of P.falciparum mdh or degradation of MDH in mature 

gametocytes or later stages of P.falciparum would establish if MDH is required for transmission of 

the human parasite.  

Plasmodium spp. salvage their purine requirements form the host cell, but retain the ability to 

synthesise pyrimidines42. Purine nucleosides are taken up by the parasite PfNT1 and other, as yet, 

unidentified AMP transporters43 after they are delivered to the parasitophorous vacuole via the 

action of erythrocyte nucleoside transporters34,44 and a non-selective transport process42,45. In 

contrast, while other Apicomplexa (i.e Cryptosporidium spp., Toxoplasma spp.) retain the capacity to 

salvage pyrimidines14, Plasmodium spp. are thought to lack transporters required for host pyrimidine 

salvage28 and to be completely dependent on de novo pyrimidine synthesis for asexual growth34.  

The survival of P.berghei oprt-and ompdc- mutants has two possible explanations which are not 

mutually exclusive: 1. Exclusive reliance on reticulocyte pools of pyrimidines (also leading to a 

reduction in number of merozoites produced). 2. Conversion of parasite-produced orotate to UMP 

by host UMP synthase.  Both outcomes require transport of nucleosides or nucleotides from the 

host cytoplasm to the parasite. It is notable that Plasmodium spp., uniquely amongst the 

apicomplexa, contain an annotated UDP-N-acetyl glucosamine: UMP antiporter (PBANKA_110490, 

PF3D7_0505300) which might partially fulfil this need as such antiporters have been shown to 

transport nucleotide sugars in exchange for nucleotide monophosphates in human cells46 although 

location of this antiporter in Plasmodium is not yet clear. Both pyrimidine biosynthesis mutants 

http://plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&source_id=PBANKA_110490&project_id=PlasmoDB
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survive only in the youngest reticulocytes which might reflect either adequacy of supply of host UMP 

(or derivatives) or the capacity of the youngest reticulocytes to convert parasite-derived orotate. 

Indeed enzymes involved in the later stages of pyrimidine biosynthesis, nucleoside diphosphate 

kinase B, CTP synthase and ribonucleotide reductase large subunit have been identified in rodent 

and human erythrocytes38,39.  The possibility that host pyrimidine enzymes may have redundant 

functions with the parasite enzymes catalyzing late steps in pyrimidine biosynthesis is supported by 

the apparent essentiality of the P.berghei genes encoding the first five steps of pyrimidine 

biosynthesis. 

The reticulocyte metabolome also explains other species-specific differences between P.berghei and 

P.falciparum. Glutathione biosynthesis occurs in erythrocytes 38,39,47,48 and Plasmodium (Figure S5A)49 

where it is essential in blood stage P.falciparum50 but not P.berghei51,52. We demonstrated increased 

levels of glutathione synthesis intermediates in reticulocytes (Figure S5B) and that 10 fold excess of 

the IC50 for P.falciparum (~60µM)50 of buthionine sulphoximine an inhibitor of ɣ-glutamylcysteine 

synthetase had no inhibitory effect on P.berghei parasites (figure S5C). This is consistent with the 

reticulocyte-mediated rescue of chemical disruption of the glutathione synthesis pathway in 

P.berghei. 

Enzymes involved in Plasmodium intermediary carbon metabolism11,26 and pyrimidine biosynthesis34 

are considered attractive targets for drug development. The metabolome surveys and drug 

inhibition data presented here provide reasons to be cautious about extrapolating conclusions 

regarding gene essentiality in reticulocyte preferent parasites such as P.berghei as part of any drug 

discovery pathway that has been based initially upon screens in normocytes.  Bioavailability in 

mouse models and/or difference in target enzyme structures between species have been proposed 

as reasons for the relative ineffectiveness of drugs when tested in vivo using P.berghei35,36.  Our data 

shows that the reticulocyte metabolome may provide a reservoir of metabolites downstream of the 

point of action of a drug rendering the drug less effective.  This has a number of consequences: 

1. Good drug candidates for P.falciparum might be (or already have been) eliminated from 

further development due to misleading data from in vivo P.berghei testing. 

2. Normocyte preferent rodent parasites (e.g. P. yoelii YM)53 might provide a more accurate 

model to test drug candidates for P.falciparum malaria. 

3. P.berghei could provide an accurate model for the development of drugs against 

reticulocyte preferent P. vivax. 
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4. Recrudescence of P.falciparum infection during treatment with antimalarials that target 

parasite metabolism might result from their survival in a ‘protective’ reticulocyte niche, the 

existence of which cannot be predicted by standard in vitro cultures. 

5. Reticulocyte resident parasites exposed to anti-metabolites at levels determined by in vitro 

culture would be sub-optimal with the subsequent risk of being more conducive for the 

selection of drug resistant progeny.  
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Figure legends 
Figure 1. Comparison of reticulocytes and normocytes reveals metabolite enrichment in rodent 

and human reticulocytes.   

A. Dynamics of reticulocyte enrichment in peripheral blood in vivo followed by 

Phenylhydrazine-HCl (phz) treatment of mice. Reticulocytes were harvested at day 5 post 

phz treatment. The error is given as the standard deviation (S.D.) of 3 independent biological 

replicates. 

B. Volcano plot showing distribution of putative metabolites according to their fold change in 

abundance in reticulocyte enriched erythrocytes vs normocyte enriched erythrocytes in 

rodent blood. All significant changes are represented above the broken horizontal line. 

Coloured dots indicate metabolites which are: Blue- significantly up-regulated, Red- 

significantly down-regulated, Yellow- significant but little change, Brown- non-significant. 

n=3 independent biological replicates (with four internal technical replicates each). 

Significance tested by Welch’s T-test ( < 0.05).   Almost half of all detected metabolites 

(147, ~45%) were found to be more than 2-fold more abundant in reticulocytes. Only 5 

(~1%) metabolites were more than 2-fold more abundant in normocytes than in 

reticulocytes. The rest of the metabolites did not show a significant difference between 

reticulocytes and normocytes. See figure S1C and table S1 in supplementary data for the 

complete list of detected metabolites and their respective abundance fold changes. 

C. Representative metabolites up-regulated in reticulocytes compared to normocytes in human 

and rodent erythrocytes. Relative levels (peak intensities) are expressed as fold change 

observed in reticulocyte vs normocytes. Dotted line indicates no change and error bars 
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indicate R.S.D. (Relative Standard Deviation) of peak intensities from reticulocyte samples 

multiplied to the fold change values from n=3 independent biological replicates. 

 

Figure 2. Metabolites of intermediary carbon metabolism (ICM) and pyrimidine biosynthesis are 

up-regulated in reticulocytes. 

A. Top panel: Fold change of relative levels (peak intensities) of metabolites of carbon 

metabolism in rodent reticulocytes compared to normocytes. Dotted line indicates no 

change and error bars indicate R.S.D. (Relative Standard Deviation)  of peak intensities from 

reticulocyte samples multiplied to the fold change values from n=3 independent biological 

replicates. Bottom panel: Schematic representation of intermediary carbon metabolism 

(ICM) in Plasmodium. Genes marked with () were deleted in P.berghei blood stages and 

the ones marked with () could not be deleted even after repeated attempts. pepc: 

Phosphoenolpyruvate Carboxylase (PBANKA_101790), mdh: Malate Dehydrogenase 

(PBANKA_111770), aat: Aspartate Amino Transferase (PBANKA_030230). 

B.  Top panel: Fold change of relative levels (peak intensities) of metabolites of pyrimidine 

biosynthesis in rodent reticulocytes compared to normocytes. Dotted line indicates no 

change and error bars indicate R.S.D. (Relative Standard Deviation)  of peak intensities from 

reticulocyte samples multiplied to the fold change values from n=3 independent biological 

replicates. Bottom panel: Schematic representation of pyrimidine biosynthesis pathway. 

Genes marked with () were deleted in P.berghei blood stages and the ones marked with 

() could not be deleted even after repeated attempts. cpsII:  Carbamoyl phosphate 

synthetase II  (PBANKA_140670) , act: Aspartate carbamoyltransferase (PBANKA_135770), 

dhoase: Dihydroorotase (PBANKA_133610), dhodh: Dihydroorotate dehydrogenase 

(PBANKA_010210), oprt: Orotate phosphoribosyltransferase (PBANKA_111240), ompdc: 

Orotidine 5′-monophosphate decarboxylase (PBANKA_050740). 

(Also see Figures S2 A and B for gene deletion strategy and confirmation) 

Figure 3. Phenotypic analyses of blood stage mutant P.berghei parasites.  

A. in vivo growth assay of mutants in mixed infections in competition with wild type parasites 

over 12 days. Coloured lines represent non-linear fit of percentage of mutant parasites in 

total parasite population. Data representative of n=3 independent biological replicates.  

(Also see Figure S3 A, B and C)  
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B. Lethality experiment in C57/B6 mice by wt and mutant P.berghei parasites. 104 parasites 

were injected intra-peritoneally in mice (n=5) on day 0 and they were monitored for 21 days. 

The mice were culled humanely when they showed severe malaria pathology. All mutant 

parasites were found to be lethal to mice. 

C. Gametocyte conversions during blood stages in mutant P.berghei parasites over 5 days post 

infection. Data from 2 independent observed gametocyte conversion experiments are 

shown ± S.D. Gametocyte conversion was observed using a wt parent line which expresses 

GFP in male gametocytes and RFP in female gametocytes (RMgm-164). P.berghei mutants 

were generated in the same genetic background and analysed using FACS determining the 

number of gametocytes in infected blood. P-values: *p<0.05, **p<0.005, ***p<0.0005, 

paired two tailed t-test. 

D. Exflagellation (male gamete formation) in mutant P.berghei parasites normalised to wt in in 

vitro activation assay. The error is given as the SD of n=3 independent biological replicates. 

P-values:  **p<0.005, ***p<0.0005, paired two tailed t-test.  

E. Determination of DNA content of male gametocytes over 20 minutes post activation by FACS 

analysis in mutant P.berghei parasites normalised to wt. DNA content was determined in 

Hoechst-33258-stained MACS purified gametocytes. Before activation (0mins) males show 

low DNA content with increasing amounts post activation reaching maximum levels between 

8 to 12 minutes in wt.  Data from 3 independent biological replicates are given ± S.D.  P-

values: **p<0.005, ***p<0.0005, unpaired two tailed t-test. DNA replication in mutant 

P.berghei parasites was reduced by 50% compared to wt at the 8 minute time point and 

further delayed taking up to 16 minutes to complete. (Also see figure S3 D) 

 

Figure 4. Mosquito stage development of P.berghei mutant parasites (Also see figure S4).  

A. in vitro ookinete conversion of mutant P.berghei parasites as compared to wt. The error is 

given as the S.D. of n=3 independent biological replicates. P-values:  **p<0.005, 

***p<0.0005, unpaired two tailed t-test. 

B. in vitro ookinete conversion assay to measure fertility of mutant P.berghei gametocytes. 

Fertility of mutant P.berghei gametocytes was analysed by their capacity to form ookinetes 

by crossing gametes with RMgm-348 (Pb270, p47-) which produces viable male gametes but 

non-viable female gametes and RMgm-15 (Pb137, p48/45-) which produces viable female 

gametes but non-viable male gametes. The error is given as the S.D. of n=2 independent 

biological replicates. P-values: *p<0.05, **p<0.005, unpaired two tailed t-test.   
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C. Number of mature oocysts at day 14 post infected blood feed in mosquito mid guts. n=40 

mosquitoes cumulative of two independent biological replicates. ***p<0.0005, unpaired 

two tailed t-test.   

D. Infection prevalence (percentage of observed mosquitoes found to be infected) and 

infection load (median of number of oocysts found per mosquito) in mutant P.berghei 

parasites compared to wt. 

 

Figure 5. P.berghei and P.falciparum inhibition by dihydroartemisinin (DHA) and 5-fluoroorotic 

acid (5FOA) in vitro. Error bars indicate S.D. from n=3 biological replicates. 
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Supplementary methods 

Rodent erythrocyte sample preparation for metabolomics  
For collecting reticulocyte enriched red blood cells, 3 female Wistar rats were each injected with 

phenylhydrazine-HCl dissolved in 0.9% NaCl (w/v) at a dose of 100 mg/kg body weight and 

reticulocyte percentage in peripheral blood was monitored using reticulocyte marker CD71-APC 

antibody by FACS analysis performed on a MACSQuant analyser (Miltenyi Biotec, Germany). On day 

5, all rats showed reticulocyte population to be around 30-35% and were bled by cardiac puncture 

and blood from each rat was collected in RPMI1640 medium. Non reticulocyte enriched normocyte 

containing samples (with ~1.5% reticulocytes) were prepared similarly without phenylhydrazine-HCl 

treatment. Each suspension was quickly passed through a prewashed Plasmodipur filter to remove 

leucocytes and eluted with RPMI1640 medium. A thermometer was put in the bottom of the 

suspension and the tube submerged in a dry-ice ethanol bath with gentle agitation until the 

temperature reached 8˚C, at which point the tube was immediately immersed in an ice bucket. 

Using this protocol, the temperature of the cell suspension reached 0oC within 10-12 seconds. The 

chilled suspension was centrifuged at 450 g for 8 minutes, supernatant was removed and the 

volumes of equal number of reticulocyte enriched and un-enriched erythrocytes were found to be 

the same. The cell pellets were resuspended in ice-cold enriched PBS (containing 20 mM Hepes, 20 

mM Glucose, 4 mM NaHCO3, and 0.1% BSA). The cell density of the suspension was determined 

using a haemocytometer and replicates containing 1 x 108 cells were prepared in enriched PBS (up to 

2ml per tube) and kept on ice until metabolite extraction. After first wash (centrifugation at 4˚C for 

10 min at 1,300g) the pellet was resuspended with 500 µl cold enriched PBS for the second wash 

(centrifugation at 4˚C for 5 minutes at 2,700g) and supernatant was removed again. Finally, the 

washed pellets were suspended in cold 200 µl of chloroform/methanol/water (1:3:1 v/v) containing 

internal standards (5-fluorouridine, Cl-phenyl-cAMP, N-methyl glucamine, canavanine and 

piperazine) at 1 µM concentration. After vigorous mixing in a cooled (4˚C) shaker for 1 hour and 

sonication (2 min, 0°C), the suspension was centrifuged (at 4°C for 5 min at 15,300 g) and equal 

aliquots (90 µl) of the supernatant were transferred to separate tubes for LC-MS and GC-MS 

analyses. Tubes for LC-MS analyses were topped up with nitrogen, capped tightly and kept at -80˚C 

before running. Tubes for GC-MS analyses were dried down under nitrogen flow, capped tightly and 

put at -80˚C before reconstitution with chloroform/methanol/water (1:3:1 v/v) prior to 

derivatization. All experiments were performed according to the Home Office licence regulations 

and the local ethical committees. 
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Metabolomic analysis of rodent erythrocytes  
For LC-MS analysis, samples underwent hydrophilic interaction liquid chromatography (HILIC) 

(UltiMate 3000 RSLC, Thermo Fisher) with a 20mm x 2.1mm ZIC-HILIC guard column coupled to a 150 

x 4.6mm ZIC-HILIC analytical column running at 300 µl/min, coupled to an Exactive Orbitrap mass 

spectrometer (Thermo Fisher). The LC-MS method is based on a previously published HILIC method 

(Creek, Jankevics et al. 2011) with a gradient starting at 20% H2O with 0.1% formic acid (A) and 80% 

acetonitrile with 0.1% formic acid (B), decreasing to 20% B at 30 minutes, followed by a wash at 5% 

B for 6 minutes, and equilibration at 80% B for 8 minutes.  Raw mass spectrometry data was 

processed using the standard Glasgow Polyomics pipeline, consisting of XCMS for peak picking 

(Smith, Want et al. 2006), MzMatch for filtering and grouping (Scheltema, Jankevics et al. 2011) and 

IDEOM for further filtering, post-processing and identification (Creek, Jankevics et al. 2012). Core 

metabolite identifications were validated against a panel of unambiguous standards by mass and 

retention time. Additional putative identifications were assigned by mass and predicted retention 

time (Creek, Jankevics et al. 2011) .  Automatic metabolite identification was followed by manual 

data filtration for removing false positives and duplicate identifications and including false 

rejections. 

For GC-MS, dried samples were suspended in chloroform/methanol/water (1:3:3 v/v) and the upper 

methanol-water phase containing polar metabolites was retained for this study. Samples were dried 

under nitrogen and subjected to automated methoximation and TMS derivatisation using an Gerstal 

autosampler/sample preparation robot fitted to an Agilent- 7890A GC-5975 MSD instrument. Briefly, 

samples were methoximated in 20 mg/ml methoxyamine in pyridine (20 µl ) with shaking at 37°C for 

2 hours and then derivitized by addition of BSTFA + 1% TMCS (20µl) silylation reagent and shaking at 

37°C for 1 hr. After incubation at room temperature for 1 hour, sample (1µl) was analyzed on an 

Agilent 7890A GC -5975 C mass-detector instrument, equipped with a VF5-MS column (30 m, 0.25 

mm inner diameter) and helium as the carrier gas. The oven temperature was held at 70°C (1min), 

then ramped at 1°C/min to 76°C, then 5°C/min to 325°C and held for 10 min. GC/MS peaks were 

aligned using the Metabolomics software PyMS (O'Callaghan, De Souza et al. 2012) which generated 

a data matrix of candidate metabolites showing their intensity representing abundance of a 

metabolite in a given sample and its unique retention time.  Chromatograms were manually checked 

using Agilent Chemstation software and the peaks corresponding to the retention times in the PyMS 

matrix were identified based on their Electron Ionisation (EI) spectrum. Metabolites were assigned 

putative identities by matching their spectra (with a cut-off score of ≥90%) to Agilent Fiehn and NIST 

GC-MS Metabolomics libraries of metabolite GC-MS spectra.  
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From a total number of 4560 peaks collected from the two platforms, 333 metabolites were 

putatively annotated in erythrocytes, with identification in LC-MS data based on accurate mass and 

predicted retention time (minimum confidence value of 5/10 in IDEOM) (Creek, Jankevics et al. 

2012) and GC-MS based on spectral matching to Agilent Fiehn (Kind, Wohlgemuth et al. 2009) and 

NIST (National Institute of Standards and Technology, Gaithersburg, MD, USA) spectral libraries  

(minimum spectral match score of 90% in Chemstation). It is noted that many more probable 

metabolites were detected but were not readily assigned an identity according to these parameters. 

From all 333 metabolites, 293 metabolites were identified by LC-MS and 40 metabolites were 

identified by GC-MS, with 17 metabolites identified by both platforms (Table S1). Of the overlapping 

metabolites measured on both platforms, the fold-change values in abundance observed between 

reticulocytes and normocytes were found to be consistent in both direction and magnitude on both 

platforms. These metabolites were quantitated using the LC-MS data in order to avoid duplication. 

Metabolomics analysis of Human CD34+ stem cell grown erythrocytes  
Blood from human volunteers was supplied by the Australian Red Cross Blood Service and 

experiments approved by the Walter and Eliza Hall Institute Human Research Ethics Committee. 

Peripheral blood mononucleated cells were obtained from blood by Percoll density purification and 

CD34+ hemopoietic progenitor cells were isolated by magnetic bead separation according to the 

manufacturer's instructions (Miltenyi Biotec). CD34+ cells were cultured in a three-stage protocol 

based on the methods of (Douay and Giarratana 2009). Initially cells were cultured at 37°C in a 

humid atmosphere of 5% CO2 at a density of 1 x 104 cells/mL and then maintained in the range of 2-

10 × 105 cells/mL in IMDM (LifeTech) containing 5% (v/v) AB Serum (Interstate Companies 

Laboratories), 10μg/ml Insulin (Sigma), 3U/ml heparin (Pfizer), 200μg/ml Transferrin (Prospec), 

3U/ml EPO (Eprex). During stage one (days 0-8) this was supplemented with 10ng/ml SCF (GenScript) 

and 1ng/ml IL-3 (R&D systems); during stage two (days 8-11) with 10ng/ml SCF and additional 

800μg/ml transferrin and stage 3 (days 11-18) with 3U/ml EPO and additional 800 μg/ml transferrin. 

Cultured reticulocytes (cRetics) were filtered at day 18 using a PALL WBF leukocyte filter. Isogenic 

control red blood cells (RBCs) were retained from donor blood, washed in IMDM and stored in 

saline-adenine-glucose-mannitol solution (SAG-M) at 4°C prior to use. 

Cells were washed and cultured overnight in stage 3-supplemented IMDM (as outlined above). 

Metabolism was quenched by immersion of cultures in an ethanol/dry ice bath to 0-4 °C. Cells were 

pelleted by centrifugation (10,000 rpm for 1 minute) and washed in cold PBS (1 mL). Metabolites 

were extracted from 1 x 108 RBCs and 0.5 x 108 cRetics by addition of 300 µL 

chloroform/methanol/water (1:3:1 v/v) containing internal standards (CHAPS, CAPS, PIPES and TRIS; 

1 µM) and left for 30 min at 4 °C with periodic mixing and sonication. Cellular debris was removed by 
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centrifugation (16,000 rpm for 10 min) and the supernatant was dried under nitrogen gas prior to 

analysis. Samples were reconstituted in 80% acetonitrile for analysis by high resolution LC-MS with 

minor adjustments to the previously described ZIC-pHILIC-AC method (Zhang, Creek et al. 2012). The 

chromatography utilized a 4.6 x 150 mm, 5 µm ZIC-pHILIC column (Sequant) with 10 mM ammonium 

carbonate (A) and acetonitrile (B) mobile phase at a flow rate of 300 µL/min. The gradient ran from 

80% B (0 min) to 40% B (20 min), then to 5% B for 3 minutes (23-26 mins) followed by re-

equilibration at 80% B for 9 minutes (29-38 mins). Mass detection was performed on an Agilent Q-

TOF 6550 (Agilent Technologies) operating in negative mode electrospray ionisation with capillary 

voltage 3.5 kV and fragmenter voltage 175 V. Initial data analysis was conducted with the IDEOM 

package as described above (Creek, Jankevics et al. 2012) and peak areas for selected metabolites 

were extracted based on accurate mass and retention time and manually verified with the 

MassHunter software. Comparison of the average and median peak heights from all detected 

cellular metabolites demonstrated no significant difference between reticulocytes and normocytes, 

confirming that the cell number based normalization, with adjustment for cell size (i.e. twice as 

many normocytes than reticulocytes per sample), was appropriate. Two experiments were 

performed in triplicate, using cells (cRetics and corresponding isogenic RBCs) from two independent 

donors. 

Infection of laboratory animals with P. berghei parasites  
For mouse infections, female Theilers Original (TO) outbred mice of body weight 26-30g were used. 

Cryopreserved blood stages were thawed at room temperature and 0.02-0.5 ml of the suspension 

was injected intraperitoneally into a mouse. For mouse infection with blood stages obtained from an 

infected mouse (mechanical passage), one droplet of tail blood (5 µl) was collected from an infected 

animal with a parasitemia of 5-15% in 10 ml PBS and 0.1 ml of the suspension was injected 

intraperitoneally into a mouse. On day 4-7 after injection the parasitemia increased from 0.1 to 5-

20%. For rat infection, female Wistar rats of body weight 150-175 g were used. To infect these, 5-8 

droplets of tail blood (30-40 µl) were collected from an infected animal with a parasitemia of 5-15% 

in 1ml PBS and the 1ml suspension was injected intraperitoneally. On day 4 or 5 after injection the 

parasitemia ranged between 0.5-3%. 

Asexual cultures of P. berghei 
P. berghei cultures were maintained for one cycle using standard methods. RPMI1640 (containing 5 

g/L of  Albumax II ®) were used as the growing medium and flasks were gassed for 30 seconds with a 

gas mix containing 5% CO2, 5% O2, 90% N2 and incubated overnight at 37˚C on a shaker at a minimal 

speed just to keep the cells in suspension. Maturation of schizonts and number of merozoites per 

schizonts were analysed in Giemsa stained smears made from in vitro cultures. 
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Generation of knockout parasites and cloning 
P. berghei schizonts (from line RMgm-7 which expresses GFP constitutively under eef1a promoter 

and from line RMgm-164 which expresses GFP in male gametocytes and RFP in female gametocytes) 

were transfected with linear DNA constructs containing the yfcu-hdhfr selectable marker flanked by 

homology arms (generated using primers in table S2) corresponding to 5’UTR and 3’UTR of the orf of 

the gene of interest respectively, injected intravenously in female Wistar rats and TO mice and 

selected by pyrimethamine in drinking water as described in (Janse, Ramesar et al. 2006). Resulting 

transfectants were analysed by PCR for 5’ and 3’ integration (using primers in table S2) , cloned by 

limiting dilution and the absence of open reading frame in the mutants confirmed by PCR. For 

further phenotypic analysis, due to reasons of cost effectiveness and ease of handling, all mutants 

generated in TO mice were used and experiments were done by obtaining parasites grown in TO 

mice. 

Asexual growth competition assay  
Equal numbers of mutant parasites (106 cells) made in RMgm-7 background expressing GFP 

constitutively under eef1a promoter were mixed with wt parasites (106 cells) (RMgm- 86) expressing 

RFP under the same promoter and the mixture was injected into a mouse. The population of 

infected erythrocytes (iRBCs) was monitored by Hoechst staining and the proportion of iRBCs 

expressing GFP and RFP was recorded by FACS analysis over the course of two weeks. Infected blood 

from first mouse was sequentially passage into two or three mice to avoid multiple infections over 

this period.  

Lethality experiments in C57/B6 mice 
iRBCs (104) were injected intra-peritoneally into female 8-10 weeks old C57/B6 mice (n=5 per line) 

and parasitemia, disease pathology and mortality was monitored over 21 days.  

Gametocyte conversion monitoring by FACS during blood stage growth 
Mutants made in the RMgm-164 background which expresses GFP in male gametocytes and RFP in 

female gametocytes along with wt were grown in mice and peripheral blood was monitored by FACS 

analysis by checking for infected erythrocytes (iRBCs) by Hoechst staining and the proportion of 

iRBCs expressing GFP and RFP, indicative of the presence of male and female gametocytes.  

Exflagellation assay and DNA quantification by FACS 
During gametogenesis, male gametocytes undergo rapid endomitosis and DNA content is increased 

from 1n to 8n within 8 minutes after activation and adherent clumps of erythrocytes are formed 

around the activating gametocytes called exflagellation centres which were counted on 

haemocytometer.  DNA staining in exflagellating gametocytes was observed by fixing MACS-column 



SRIVASTAVA et al  Reticulocyte metabolism and malaria 

6 
 

purified activating gametocytes using 0.25% glutaraldehyde at 4 minute intervals, staining with 10 

µM Hoechst 33258 dye in PBS for 1 h at 37°C and doing FACS analysis on a CyAn ADP Analyser. UV 

excitation of Hoechst 33258 dye was performed with a violet laser (405 nm) and the gametocyte 

population was selected by gating on forward/side light scatter. The fluorescence intensity of a total 

of 100,000 cells was measured for each sample. The mean fluorescence intensity of the activating 

gametocyte is proportional to the mean DNA content of the parasites and activating male 

gametocytes and female gametocytes were gated based on DNA content at different time points 

based on the wt control. All data was plotted normalised to the controls.  

Ookinete cultures of P. berghei and conversions 
Mice infected with P. berghei were given sulfadiazine in drinking water which killed all asexual stage 

parasites in 48 hours and circulating gametocytes remain in blood. Mice were bled and infected 

blood was collected in RPMI1640 containing 5 g/L Albumax II® and 100 µM xanthurenic acid to 

activate gametocytes. Cultures were incubated at 21°C for 21 hours and giemsa smears were made 

for counting mature ookinetes and female gametes whose cumulative ratio to female gametes only 

gave the ookinete conversion rate.  

in vitro sexual crosses 
Equal numbers of gametocytes from two P. berghei lines obtained from infected TO mice treated 

with sulfadiazine in drinking water were taken and mixed in activation media. The suspension was 

then incubated at 21°C for 21 hours and Giemsa smears were made for counting mature ookinetes 

and female gametes 

Mosquito transmission experiments 
P. berghei infected mice with a parasitemia of 5-10% were used to blood feed a cage of 250 

mosquitoes for 10 minutes. Mature oocysts were counted in mosquito midguts between days 12-14 

using a Leica M205 FA Fluorescence Stereomicroscope. Salivary gland sporozoites were checked 

between days 21-25. Infected mosquitoes were allowed to feed on naïve mice for 10 minutes 

between days 21-25 and these mice were observed for parasites by making giemsa stained blood 

smears between days 3-14 to check for successful transmission.  

Determination of IC50 value of P. berghei inhibitors in vitro 
Inhibitors were used to perform in vitro drug susceptibility tests in standard short-term cultures of 

synchronized P. berghei blood stages. Cultured and purified schizonts/merozoites of the reference 

ANKA strain of P. berghei line cl15cy1, obtained by Nycodenz density gradient purification were 

injected i.v. into the tail vein of a TO mouse. Injected merozoites invade within 4h after injection and 

newly infected blood was collected from the mouse by heart puncture at 4h after the injection of 
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the purified schizonts/merozoites. Infected blood was washed once (450 g, 8 min) with complete 

culture medium (RPMI1640 + 25% FCS, pH 7.5) followed by mixing of infected erythrocytes with 

serially diluted solutions of inhibitors in complete culture medium and incubated in 24-well plates in 

triplicate at a final parasitaemia of 1% at 37°C for 24h under special gas mix of 5% CO2, 5% O2, 90% 

N2, conditions that permit ring forms to develop into mature schizonts. Parasite development was 

analysed by FACS after staining iRBCs with DNA-specific dye Hoechst-33258. The cells were pelleted 

by centrifugation (450 g, 8 min) and after removal of supernatant, cells were fixed with 0.25% 

glutaraldehyde/PBS solution and stained with 10 µM Hoechst-33258 solution in PBS for 1h at 37°C. 

Stained cells were analysed using MACSQuant analyser (Miltenyi Biotec, Germany). UV excitation of 

Hoechst-33258 dye was performed with a violet laser (450/50 nm) and the iRBC population was 

selected by gating on forward/sidelight scatter. A total of 100,000 cells per samples were analysed 

and mature schizonts were gated based on their fluorescence intensity and counted in each sample. 

For determination of growth inhibition, the number of mature schizonts observed was set to 

correspond to 100% growth for no drug controls and percentage growth was calculated accordingly 

for the drug treated samples. 100% growth values were in the range 60-75% conversion of ring stage 

parasites to schizonts (15-20% of ring stage parasites committed to making gametocytes do not 

undergo DNA replication).  Growth inhibitory curves were constructed in Graph pad Prism and based 

on data from three independent repeats, the IC50 value for blood stage inhibition of P. berghei 

parasites were calculated. Giemsa stained smears from drug treated cultures were also checked to 

determine the stage at which parasites were growth arrested.  

Determination of IC50 value of P. falciparum asexual growth inhibition in 

vitro 
P. falciparum 3D7 strain was used for determining IC50 values of inhibitors in in vitro cultures by 

measuring 3H-Hypoxanthine incorporation in the presence of inhibitors in increasing concentrations 

as described (Desjardins, Canfield et al. 1979). Cultures were set up at 0.5 % parasitaemia and 

approximately 2% hematocrit in complete RPMI medium without hypoxanthine (IC50 medium). 

Human erythrocytes were washed and stored in RPMI1640 (without AlbumaxII®) at 4°C for not more 

than a week. A serial dilution of 2 times of the required inhibitor concentration was prepared in a 96 

well plate in similar IC50 medium. In each well, 100 µl of inhibitor was mixed with 100 µl of cells, 

creating a 1 times final concentration of the inhibitor. Incorporation of 3H-hypoxanthine (1Ci/ ml, 

specific activity 20Ci/ mmol) in uninfected erythrocytes and parasites incubated without inhibitor 

was also measured as negative control. Plates were incubated for 48 hours at 37°C in the presence 

of a specialized gas mix (5% CO2, 1% O2, 94% N2). After 48 hours of incubation, 100 µl of medium 

from each well was replaced with fresh medium containing 0.4 µCi 3H-hypoxanthine per well. Plates 



SRIVASTAVA et al  Reticulocyte metabolism and malaria 

8 
 

were incubated for further 24 hours and then frozen at -20°C. Then the plates were defrosted and 

harvested using a Tomtec Mach III harvester and Wallac Printed Filter Mat- A filter mats. The filter 

mats were dried at 60°C for one hour and sealed in a plastic bag with 4 ml scintillation liquid. 

Radioactive decay was measured in a Wallac Trilux MicroBeta counter for 1 min per well. IC50 values 

were calculated using GraphPad Prism software. 

Supplementary tables 
Table S1. Metabolites represented in Figure 1B showing fold change in abundance in uninfected 

reticulocyte enriched erythrocytes compared to normocyte enriched erythrocytes. Metabolites are 

listed in order of decreasing abundance. Metabolites identified with authentic standards are 

highlighted bold, others are considered putative identifications. 

No. Metabolite Fold 
change 

P-value Platform 

1 Citric acid  >25 fold 9.65E-07 GC-MS 

2 UMP >25 fold 1.03E-02 GC-MS 

3  Nonanoylcarnitine >25 fold 8.40E-06 LC-MS 

4 S-Methyl-L-methionine >25 fold 1.01E-05 LC-MS 

5 Ala-Val-Pro-Ser >25 fold 1.64E-06 LC-MS 

6 Dihydrobiopterin >25 fold 9.59E-05 LC-MS 

7 N-Acetyl-aspartyl-glutamate >25 fold 3.80E-11 LC-MS 

8 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-
dihydropteridine 

>25 fold 3.98E-06 LC-MS 

9 Aspartyl-L-proline >25 fold 4.06E-05 LC-MS 

10 sn-glycero-3-Phospho-1-inositol >25 fold 2.48E-06 LC-MS 

11 L-Aspartate >25 fold 1.08E-05 LC-MS 

12 Dodecanoylcarnitine 23.92 6.91E-06 LC-MS 

13 CDP-choline 22.04 3.28E-04 LC-MS 

14 UDP-N-acetyl-D-glucosamine 21.79 2.95E-08 LC-MS 

15 O-Propanoylcarnitine 18.66 3.14E-06 LC-MS 

16 Glycerophosphoglycerol 18.45 9.04E-05 LC-MS 

17 L-Carnitine 17.81 3.18E-06 LC-MS 

18 L-Octanoylcarnitine 17.47 5.88E-07 LC-MS 

19 Glu-Asp 16.92 9.51E-07 LC-MS 

20 N6-Acetyl-N6-hydroxy-L-lysine 15.71 2.71E-04 LC-MS 

21 Orotate 15.68 1.00E-07 LC-MS 

22 dCMP-ethanolamine 14.45 5.94E-06 LC-MS 

23 Tetradecanoylcarnitine 13.99 4.84E-06 LC-MS 

24 Sedoheptulose 13.30 1.02E-06 LC-MS 

25 Gamma Glutamyl-glutamic acid 13.10 1.13E-04 LC-MS 

26 Creatinine phosphate 12.79 3.60E-03 LC-MS 

27 Phosphocreatine 12.32 4.50E-03 LC-MS 
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28 [GP (16:0)] 1-hexadecanoyl-2-sn-glycero-3-
phosphate 

10.43 1.81E-06 LC-MS 

29 Glu-Pro 10.31 7.35E-05 LC-MS 

30 L-Tyrosine methyl ester 10.15 2.82E-07 LC-MS 

31 CDP-ethanolamine 10.03 3.21E-05 LC-MS 

32 Ala-Asp-Asp 9.86 3.46E-06 LC-MS 

33 dTTP 9.84 5.15E-07 LC-MS 

34 CMP 9.75 7.49E-06 LC-MS 

35 Prenyl-L-cysteine 9.73 5.95E-05 LC-MS 

36 N2-Succinyl-L-ornithine 9.68 3.84E-07 LC-MS 

37 N-(3S-hydroxydecanoyl)-L-serine 9.63 4.14E-05 LC-MS 

38 Met-Thr-Asp 8.97 1.15E-05 LC-MS 

39 Malate 8.55 2.82E-05 LC-MS 

40 Ala-Ser-Tyr 8.46 5.50E-04 LC-MS 

41 2,3,4,5-Tetrahydrodipicolinate 8.05 6.81E-05 LC-MS 

42 IMP 7.75 5.83E-07 LC-MS 

43 Ala-Cys 7.53 5.07E-06 LC-MS 

44 Xanthine 7.36 1.10E-08 LC-MS 

45 Ribulose-5-phosphate 7.33 7.69E-03 GC-MS 

46 Acetylcholine 7.19 6.92E-06 LC-MS 

47 Choline phosphate 7.10 1.59E-04 LC-MS 

48 Glu-Gly 6.92 7.27E-06 LC-MS 

49 Fumarate 6.90 1.03E-04 LC-MS 

50 O-Butanoylcarnitine 6.84 2.96E-10 LC-MS 

51 N-Acetyl-D-mannosamine 6.80 9.13E-07 LC-MS 

52 N-Carbamoyl-L-aspartate 6.78 1.94E-05 LC-MS 

53 Dihydroorotate 6.76 1.82E-06 LC-MS 

54 Spermidine 6.71 2.74E-10 LC-MS 

55 allylcysteine 6.42 6.51E-07 LC-MS 

56 Glycine 6.41 1.50E-05 LC-MS 

57 Thiomorpholine 3-carboxylate 6.35 5.69E-06 LC-MS 

58 1-methylguanosine 6.11 1.89E-08 LC-MS 

59 Gly-Pro 6.06 1.32E-07 LC-MS 

60 Glu-Leu 5.95 1.50E-04 LC-MS 

61 Leu-Thr 5.86 2.49E-05 LC-MS 

62 Thr-Ala 5.85 1.05E-04 LC-MS 

63 gamma-L-Glutamyl-L-cysteine 5.77 1.66E-06 LC-MS 

64 1-Methyladenosine 5.69 9.08E-08 LC-MS 

65 3-Hydroxy-N6,N6,N6-trimethyl-L-lysine 5.60 1.67E-02 LC-MS 

66 O-hexanoyl-R-carnitine 5.54 5.41E-04 LC-MS 

67 O-decanoyl-R-carnitine 5.35 5.33E-06 LC-MS 

68 Malonylcarnitine 5.34 3.57E-04 LC-MS 

69 D-Ribose 5-phosphate 5.29 3.61E-11 LC-MS 

70 glucosamine-1,6-diphosphate 5.28 2.45E-11 LC-MS 

71 N2-Acetyl-L-aminoadipate 5.24 1.24E-04 LC-MS 
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72 Leu-Pro 5.13 2.77E-06 LC-MS 

73 2-Hydroxyadenine 5.02 1.52E-06 LC-MS 

74 NG,NG-Dimethyl-L-arginine 4.99 2.55E-03 LC-MS 

75 Fructoselysine 6-phosphate 4.95 2.90E-10 LC-MS 

76 D-Gluconic acid 4.95 1.05E-04 LC-MS 

77 D-Xylulose 4.77 1.06E-06 LC-MS 

78 S-Methyl glutathione 4.72 1.54E-05 LC-MS 

79 sn-Glycerol 3-phosphate 4.67 4.01E-11 LC-MS 

80 Pseudouridine 4.64 3.97E-07 LC-MS 

81 Succinate 4.41 2.10E-03 LC-MS 

82 Cytidine 4.38 1.22E-03 LC-MS 

83 Monomethyl-arginine 4.32 5.82E-03 LC-MS 

84 Gamma-Aminobutyryl-lysine 4.30 1.56E-07 LC-MS 

85 5-Methylcytidine 4.27 4.33E-09 LC-MS 

86 Glu-Val 4.25 7.05E-05 LC-MS 

87 Ala-Pro 4.22 5.39E-08 LC-MS 

88 Pro-Pro 4.10 2.73E-06 LC-MS 

89 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-
phosphocholine 

4.10 1.07E-04 LC-MS 

90 -Hydroxy-eicosatetraenoic acid 4.10 2.54E-03 LC-MS 

91 Xanthosine 4.05 8.44E-09 LC-MS 

92 N-Acetyl-D-glucosamine 6-sulfate 4.00 1.12E-07 LC-MS 

93 N-Acetyl-L-aspartate 3.91 4.80E-07 LC-MS 

94 Uridine 3.63 8.83E-07 LC-MS 

95 3',5'-Cyclic AMP 3.59 2.75E-05 LC-MS 

96 N1-Acetylspermidine 3.44 1.54E-05 LC-MS 

97 Glu-Ser 3.37 1.74E-05 LC-MS 

98 N-Acetylneuraminate 3.33 4.47E-05 LC-MS 

99 N-Acetyl-L-glutamate 5-semialdehyde 3.28 5.02E-06 LC-MS 

100 Val-Val 3.25 7.95E-07 LC-MS 

101 Asp-Asp 3.07 4.30E-10 LC-MS 

102 Erythrulose 1-phosphate 3.03 3.51E-05 LC-MS 

103 Glu-Cys-Gln-Gln 3.01 9.51E-06 LC-MS 

104 Choline 3.01 4.04E-05 LC-MS 

105 N-Acetylserotonin 3.00 2.80E-05 LC-MS 

106 Ala-Leu-Lys-Pro 2.99 1.31E-02 LC-MS 

107 (1-Ribosylimidazole)-4-acetate 2.97 4.71E-08 LC-MS 

108 O-Acetyl-L-homoserine 2.94 4.52E-04 LC-MS 

109 1-Methylnicotinamide 2.93 4.96E-04 LC-MS 

110 D-myo-Inositol 1,2-cyclic phosphate 2.92 7.41E-05 LC-MS 

111 2-Carboxy-D-arabinitol 1-phosphate 2.91 2.91E-06 LC-MS 

112 Glu-Thr 2.88 7.89E-05 LC-MS 

113 D-Erythrose 4-phosphate 2.86 5.47E-10 LC-MS 

114 Ala-Asp-Cys 2.82 3.04E-07 LC-MS 

115 N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoate 2.78 2.32E-06 LC-MS 
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116 Ethanolamine phosphate 2.74 2.44E-03 LC-MS 

117 Taurine 2.71 1.13E-03 LC-MS 

118 Taurocyamine 2.70 2.20E-04 LC-MS 

119 N-(L-Arginino)succinate 2.64 5.09E-05 LC-MS 

120 L-Arginine 2.62 5.82E-06 LC-MS 

121 D-Glucose 6-phosphate 2.61 9.22E-05 LC-MS 

122 [SP] 3-dehydrosphinganine 2.60 8.90E-05 LC-MS 

123 [SP] Sphing-4-enine-1-phosphate 2.59 2.21E-10 LC-MS 

124 CMP-N-acetylneuraminate 2.53 1.72E-05 LC-MS 

125 N2-(D-1-Carboxyethyl)-L-lysine 2.53 1.59E-03 LC-MS 

126 Acetyl phosphate 2.51 1.02E-05 LC-MS 

127 Hexose-phosphate 2.47 1.08E-04 LC-MS 

128 Leucyl-leucine 2.46 4.24E-05 LC-MS 

129 N-(octanoyl)-L-homoserine 2.46 2.88E-07 LC-MS 

130 Putrescine 2.44 1.47E-06 LC-MS 

131 AMP 2.44 6.68E-03 LC-MS 

132 3-sulfopropanoate 2.42 8.40E-04 LC-MS 

133 Leu-Val 2.39 4.89E-06 LC-MS 

134 D-Methionine 2.35 9.33E-04 LC-MS 

135 Ala-ala 2.31 3.03E-02 LC-MS 

136 Hypoxanthine 2.29 4.84E-02 LC-MS 

137 N5-Ethyl-L-glutamine 2.29 1.86E-02 LC-MS 

138 N-Acetylglutamine 2.28 4.27E-05 LC-MS 

139 L-Glutamate 2.22 1.01E-04 LC-MS 

140 L-Ornithine 2.22 2.29E-02 LC-MS 

141 Phe-Pro 2.20 1.27E-04 LC-MS 

142 DL-Glyceraldehyde 3-phosphate 2.20 1.46E-08 LC-MS 

143 L-Cystathionine 2.15 1.28E-02 LC-MS 

144 Cys-Gly 2.12 1.98E-03 LC-MS 

145 N-acetyl-(L)-arginine 2.09 1.33E-04 LC-MS 

146 N-Acetyl-D-fucosamine 2.03 8.88E-04 LC-MS 

147 Aminopropylcadaverine 2.01 6.77E-07 LC-MS 

148 Glutathione disulfide 1.99 1.34E-05 LC-MS 

149 L-2-Aminoadipate 1.94 1.42E-04 LC-MS 

150 (R)-S-Lactoylglutathione 1.93 9.10E-03 LC-MS 

151 pyrophosphate 1.91 3.05E-03 LC-MS 

152 2-Hydroxyethanesulfonate 1.90 2.44E-03 LC-MS 

153 L-Asparagine 1.90 8.75E-05 LC-MS 

154 GMP 1.88 1.68E-06 LC-MS 

155 Oleic acid 1.84 3.57E-01 GC-MS 

156 beta-Alanine 1.84 4.79E-03 LC-MS 

157 Guanine 1.83 2.80E-06 LC-MS 

158 NAD+ 1.82 2.96E-04 LC-MS 

159 3-oxo-5S-amino-hexanoic acid 1.81 1.61E-03 LC-MS 
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160 Sucrose 1.80 1.00E-02 LC-MS 

161 N2-(D-1-Carboxyethyl)-L-arginine 1.80 1.50E-02 LC-MS 

162 succinamate 1.79 9.81E-04 LC-MS 

163 Fructose  1.79 1.83E-03 GC-MS 

164 Xanthosine 5'-phosphate 1.77 1.72E-02 LC-MS 

165 N6-Methyl-L-lysine 1.75 2.56E-03 LC-MS 

166 [FA trihydroxy(4:0)] 2,3,4-trihydroxy-butanoic acid 1.75 5.00E-02 LC-MS 

167 Guanosine 1.72 4.32E-04 LC-MS 

168 S-Adenosyl-L-methionine 1.72 4.04E-05 LC-MS 

169 Asp-Gly 1.68 4.82E-04 LC-MS 

170 Mannose 1.67 7.36E-03 GC-MS 

171 LysoPC(17:0) 1.66 1.60E-02 LC-MS 

172 1-Oleoylglycerophosphocholine 1.65 2.65E-02 LC-MS 

173 Glycyl-leucine 1.63 6.03E-05 LC-MS 

174 L-Tryptophan 1.62 3.93E-03 LC-MS 

175 D-Fructose 1,6-bisphosphate 1.61 5.77E-05 LC-MS 

176 Glu-Met 1.60 6.79E-03 LC-MS 

177 L-Tyrosine 1.60 2.25E-02 LC-MS 

178 Adenosine 1.59 2.09E-03 LC-MS 

179 Glucopyranose 1.59 2.94E-01 LC-MS 

180 2,7-Anhydro-alpha-N-acetylneuraminic acid 1.58 9.48E-04 LC-MS 

181 S-glutathionyl-L-cysteine 1.57 3.31E-01 LC-MS 

182 Trehalose 1.55 6.67E-02 GC-MS 

183 Glu-Glu-Met 1.55 1.02E-02 LC-MS 

184 palmitic acid 1.55 3.72E-01 LC-MS 

185 3-Hydroxy-L-kynurenine 1.54 2.01E-02 LC-MS 

186 talose 1.53 1.23E-01 LC-MS 

187 Allantoin 1.53 7.03E-03 LC-MS 

188 [PC (18:0)] 1-octadecanoyl-sn-glycero-3-
phosphocholine 

1.53 5.89E-02 LC-MS 

189 Inosine 1.53 1.45E-01 LC-MS 

190 Hypotaurine 1.52 7.01E-03 LC-MS 

191 N-Methylnicotinate 1.52 7.37E-02 LC-MS 

192 L-Glutamate 5-semialdehyde 1.51 7.86E-04 LC-MS 

193 Hexadecasphinganine 1.47 4.54E-02 LC-MS 

194 5'-Methylthioadenosine 1.46 1.83E-01 LC-MS 

195 N-methyl glucamine 1.46 1.63E-01 LC-MS 

196 (R)-2-Hydroxyglutarate 1.45 4.72E-02 LC-MS 

197 Deoxyadenosine 1.44 1.83E-01 LC-MS 

198 L-pyroglutamic acid 1.44 8.91E-02 GC-MS 

199 L-Proline 1.42 4.43E-02 LC-MS 

200 L-Cystine 1.42 4.56E-01 LC-MS 

201 [PC (18:2)] 1-octadecadienoyl-sn-glycero-3-
phosphocholine 

1.41 6.86E-02 LC-MS 

202 Thr-Asp-Ser 1.40 6.09E-03 LC-MS 
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203 L-Phenylalanine 1.40 2.19E-02 LC-MS 

204 Mannitol 1.39 3.58E-01 GC-MS 

205 Phosphoribosyl-AMP 1.39 9.82E-02 LC-MS 

206 L-Lysine 1.38 1.62E-02 LC-MS 

207 L-Kynurenine 1.38 5.58E-02 LC-MS 

208 Trimethylamine N-oxide 1.36 2.34E-03 LC-MS 

209 Malonate 1.36 1.18E-01 LC-MS 

210 Ala-Asp-Ser 1.36 9.62E-02 LC-MS 

211 Adenine 1.35 2.24E-01 LC-MS 

212 2-Naphthylamine 1.35 4.76E-02 LC-MS 

213 Methyloxaloacetate 1.34 1.31E-02 LC-MS 

214 L-Methionine S-oxide 1.34 1.21E-03 LC-MS 

215 (S)-Methylmalonate semialdehyde 1.34 2.26E-02 LC-MS 

216 Asp-Ser-Ser 1.34 2.95E-01 LC-MS 

217 Mannonic acid 1.34 8.58E-02 LC-MS 

218 N6,N6,N6-Trimethyl-L-lysine 1.32 1.66E-01 LC-MS 

219 Uracil 1.32 3.34E-04 LC-MS 

220 D-Galactofuranose 1.31 8.79E-02 LC-MS 

221 n-Pentadecanoic acid 1.31 9.48E-02 LC-MS 

222 L-cysteine sulfinate 1.31 1.16E-01 LC-MS 

223 O-Palmitoyl-R-carnitine 1.30 1.69E-01 LC-MS 

224 Creatine 1.30 8.74E-02 LC-MS 

225 L-Threonine 1.30 1.43E-02 LC-MS 

226 Xylitol 1.30 1.91E-03 LC-MS 

227 Glu-Met-Thr 1.26 2.80E-01 LC-MS 

228 tetracosahexaenoic acid 1.22 1.62E-01 LC-MS 

229 Methylmalonate 1.21 1.00E-01 LC-MS 

230 alpha-ketoglutaric acid 1.20 2.01E-01 GC-MS 

231 L-Glutamine 1.20 8.17E-02 LC-MS 

232 Tyramine 1.19 2.40E-01 LC-MS 

233 N-Methylethanolamine phosphate 1.18 4.96E-01 LC-MS 

234 L-Alanine 1.17 2.07E-01 LC-MS 

235 Arg-Gln-Ser-Ser 1.17 4.77E-01 LC-MS 

236 L-1-Pyrroline-3-hydroxy-5-carboxylate 1.16 8.01E-02 LC-MS 

237 Creatinine 1.15 2.32E-01 LC-MS 

238 Maltose 1.13 4.76E-01 LC-MS 

239 3-Oxopropanoate 1.12 1.02E-01 LC-MS 

240 L-serine 1.11 1.58E-01 LC-MS 

241 5-6-Dihydrouridine 1.11 2.74E-01 LC-MS 

242 Ethyl (R)-3-hydroxyhexanoate 1.10 4.66E-01 LC-MS 

243 Cortisone 1.10 7.89E-01 GC-MS 

244 D-glucose 1.10 3.26E-01 LC-MS 

245 Methylimidazoleacetic acid 1.10 3.58E-01 LC-MS 

246 Phenylacetylglycine 1.10 5.97E-01 LC-MS 
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247 D-Galactose 1.09 6.83E-01 LC-MS 

248 3-Phosphoglycerate 1.09 4.29E-01 LC-MS 

249 Propanoic acid 1.08 5.91E-01 LC-MS 

250 Sulfoacetaldehyde 1.08 6.24E-01 LC-MS 

251 Homocysteine 1.08 7.51E-01 LC-MS 

252 Orthophosphate 1.06 8.22E-01 LC-MS 

253 10-Hydroxydecanoic acid 1.05 4.54E-01 LC-MS 

254 Glycodeoxycholate 1.05 7.75E-01 LC-MS 

255 Dodecatetraenedioic acid 1.05 6.00E-01 LC-MS 

256 2-C-Methyl-D-erythritol 4-phosphate 1.04 9.17E-01 LC-MS 

257 Cys-Cys-His-His 1.04 7.96E-01 LC-MS 

258 phosphoenolpyruvic acid  1.03 8.48E-01 LC-MS 

259 5-Hydroxyindoleacetate 1.02 8.26E-01 LC-MS 

260 Phe-Asp 1.01 9.49E-01 LC-MS 

261 phosphoric acid 1.01 9.57E-01 LC-MS 

262 N-Acetyl-D-glucosamine 6-phosphate 1.00 9.84E-01 LC-MS 

263 Glu-Leu-Thr-His -1.01 9.61E-01 LC-MS 

264 His-Phe-Val-Pro -1.01 9.66E-01 LC-MS 

265 Phenylpyruvate -1.02 8.64E-01 LC-MS 

266 hydroxy-octadecadienoic acid -1.03 8.40E-01 LC-MS 

267 L-Noradrenaline -1.03 8.39E-01 LC-MS 

268 di-n-Undecylamine -1.03 9.42E-01 LC-MS 

269 Fructoselysine -1.04 6.75E-01 LC-MS 

270 Acetamide, N,N-diethyl- -1.05 3.12E-01 GC-MS 

271 3-Butenoic acid -1.05 1.99E-01 LC-MS 

272 glycolic acid -1.05 3.77E-01 LC-MS 

273 Myo-inositol-3-phosphate -1.05 8.44E-01 GC-MS 

274 Erucic acid -1.06 7.49E-01 GC-MS 

275 5-Hydroxypentanoate -1.07 4.88E-01 LC-MS 

276 [FA (20:4)] 5Z,8Z,11Z,14Z-eicosatetraenoic acid -1.07 6.04E-01 LC-MS 

277 Cholest-2-eno[2,3-b]indole, 1'-acetyl-6'-methoxy- -1.08 5.28E-01 GC-MS 

278 N3-methylcytosine -1.08 6.50E-01 LC-MS 

279 D-Threose -1.08 4.19E-01 LC-MS 

280 4-Methylene-L-glutamine -1.09 6.82E-01 LC-MS 

281 2-Phenylacetamide -1.09 5.21E-01 LC-MS 

282 Pyruvate -1.09 1.13E-03 GC-MS 

283 Heptanedioic acid -1.10 4.02E-01 LC-MS 

284 methyl-dihydroxy-pentanoic acid -1.12 3.39E-01 LC-MS 

285 dioxo-octanoic acid -1.13 3.67E-01 LC-MS 

286 amino-undecanoic acid -1.14 3.49E-01 LC-MS 

287 L-Citrulline -1.17 5.76E-01 LC-MS 

288 sn-glycero-3-Phosphocholine -1.17 7.07E-01 LC-MS 

289 Methanesulfonic acid -1.18 5.11E-01 LC-MS 

290 Tetradecanedioic acid -1.18 3.52E-01 LC-MS 



SRIVASTAVA et al  Reticulocyte metabolism and malaria 

15 
 

291 P-DPD -1.18 2.76E-01 LC-MS 

292 Phthalic acid -1.19 6.18E-03 LC-MS 

293 4-Acetamidobutanoate -1.19 1.49E-01 LC-MS 

294 myo-Inositol -1.20 4.94E-01 LC-MS 

295 Cyclododecane -1.20 3.07E-02 GC-MS 

296 Gamma-Glutamylglutamine -1.21 1.26E-01 LC-MS 

297 N4-acetyl-N4-hydroxy-1-aminopropane -1.22 4.86E-01 LC-MS 

298 5-oxo-7-octenoic acid -1.22 1.24E-01 LC-MS 

299 2-Acetolactate -1.24 3.78E-01 LC-MS 

300 Urea -1.26 4.61E-01 GC-MS 

301 Elaidiccarnitine -1.26 2.77E-01 LC-MS 

302 d-Xylose -1.27 4.61E-01 LC-MS 

303 D-Glycerate -1.28 9.06E-02 LC-MS 

304 Lactate -1.29 2.85E-01 LC-MS 

305 2-acetamidoglucal -1.30 7.17E-03 LC-MS 

306 Heme -1.32 3.71E-01 LC-MS 

307 D-4'-Phosphopantothenate -1.35 5.89E-02 LC-MS 

308 Glycerol -1.39 1.43E-03 LC-MS 

309 Met-Ala-Gly -1.40 6.53E-02 LC-MS 

310 Urate -1.41 1.34E-01 LC-MS 

311 Stearic acid -1.44 8.78E-02 GC-MS 

312 4-Guanidinobutanoate -1.44 3.24E-03 LC-MS 

313 Deoxycytidine -1.47 1.75E-01 LC-MS 

314 2-monooleoylglycerol -1.53 1.16E-02 LC-MS 

315 6-[3]-ladderane-1-hexanol -1.56 9.22E-02 LC-MS 

316 4-Hydroxy-L-threonine -1.59 1.30E-05 LC-MS 

317 Val-Asp-Gly -1.60 1.09E-04 LC-MS 

318 Ala-Ser -1.64 3.31E-04 LC-MS 

319 Heptadecanoic acid -1.64 4.55E-02 GC-MS 

320 Leu-Ala -1.76 1.04E-04 LC-MS 

321 9,12-octadecadienal -1.79 1.70E-01 LC-MS 

322 Thr-Ala-Asp -1.80 9.52E-05 LC-MS 

323 N-Acetyl-D-glucosaminate -1.94 1.55E-05 LC-MS 

324 D-Sorbitol -2.11 8.20E-09 LC-MS 

325 L-Histidine -2.40 2.99E-08 LC-MS 

326 N-Ribosylnicotinamide -2.42 1.97E-03 LC-MS 

327 octadecenamide -2.76 1.60E-01 LC-MS 

328 Valine -2.85 2.69E-03 GC-MS 

329 Cellobiose -2.95 9.12E-02 GC-MS 

330 N5-(L-1-Carboxyethyl)-L-ornithine -3.10 1.01E-08 LC-MS 

331 Hexose phosphate -3.55 5.65E-10 LC-MS 

332 3-beta-D-Galactosyl-sn-glycerol -5.38 1.68E-06 LC-MS 

333 Leu-Lys-Asp -5.64 1.04E-08 LC-MS 
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Table S2. List of primers. 

Primer Sequence Comments  

GU2051 GATAATGTCCTACTTTTTCTTTG pepc  5’homology arm forward  

GU2052 TATATAGCTGCTTGAGACAC pepc 5’ homology arm reverse 

GU2053 GCAAAATACCGGATAACTC pepc  3’homology arm forward  

GU2054 TTTAGGAAACCAATCAAAGAG pepc 3’ homology arm reverse 

GU2057 GGGCTTTATACTATTTTTTTGTC pepc ko  5’ integration forward 

GU2058 TATCGTGGTAGAGTAAAACTG pepc ko 3’ integration reverse 

GU2059 CATGATTTATCCGAAAAATATAGTG pepc orf forward 

GU2060 GTGCTTTATATACATATACAACAC pepc orf reverse 

GU2198 GGAATTATAATTCTTAACCCTAACATTTTAACCTCTC  mdh  5’homology arm forward  

GU2199 CTTGTCGTATATGCACTCGGTGTTGG  mdh  5’ homology arm reverse 

GU2200 CCTTAAAATGGATAGTCAAATTGATCGTACACAACTAA  mdh  3’homology arm forward  

GU2201 CATCTCTAATTCGTTAGAATTTATTATAGACTACG  mdh  3’ homology arm reverse 

GU2278 CCACTGTAATCATAGAACAGTTCAACTAC mdh  ko 5’ integration forward 

GU2279 CAAGATTAGTACACATTGGATTAATGGG mdh  ko 3’ integration reverse 

GU2280 CATTAATAGGAAGTGGCCAAATAGGG mdh orf forward 

GU2281 GATAGCAAGCTTGTTCTTCTTCTGTC mdh orf reverse 

GU2190 CCTTTTCCTTTTGTTTTATCCATCCATTTA  oprt  5’homology arm forward  

GU2191 AATCTCAAATTGTGAAATAAACAATAAAAAATTTTGTC oprt  5’ homology arm reverse 

GU2192 CTGAGTTCTGTATTTACTTTCATAAGTTTTTAAACG  oprt  3’homology arm forward  

GU2193 CCCACATAAGTAAATATACATACACATATTATTATGC  oprt  3’ homology arm reverse 

GU2286 CTTAAATTAGCATTACTGCGTACATCCC oprt  ko 5’ integration forward 

GU2610 GAGCTAGCTGAAAGTTGCAAT oprt  ko 3’ integration reverse 

GU2288 GATGAAGAATTACACAAAAAATACAATGAATTATGC oprt orf forward 

GU2289 GTGAAATATCTTCTTCATAATTAAGGATGC oprt orf reverse 

GU2194 GATGCTCTCTCGTATATCCGTTTAAATTAC  ompdc  5’homology arm forward  

GU2195 GCTAGCTATGAATTTTAGTTGATAGATTTTTTATTTG  ompdc  5’ homology arm reverse 

GU2196 GAATACATTGAGTTTAACGGAACTCAATTTAATAGCC  ompdc  3’homology arm forward  

GU2197 GCATGCAATATTGGCAATACATGAAAACGAATTAATAT  ompdc  3’ homology arm reverse 

GU2282 GCACCCATATTTATATCAACATTTCTATCAG ompdc  ko 5’ integration forward 

GU2283 GCACAATTTTACATATCGATATATGTACAATG ompdc  ko 3’ integration reverse 

GU2284 GTATTGGGTTGGATCCTGATGAAG ompdc orf forward 

GU2285 CTTGTTCAATATTACCACCATTTTCTATGTC ompdc orf reverse 

GU2061 GTAAACTTAAGCATAAAGAGCTCG 5’ integration reverse (in plasmid) 

GU0204 GTCTCTTCAATGATTCATAAATAG 3’ integration forward (in plasmid) 
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Supplementary figures 
 

 

Figure S1A. Characterisation of the enriched reticulocyte population induced by Phenylhydrazine-

HCl (PHZ) by FACS analysis. CD71 (transferrin receptor) is a reticulocyte specific marker and is lost as 

erythrocytes mature. Left panels- day 4 post phz treatment, right panels- day 9 post phz treatment. 

Top panels show Ter119-FITC staining in RBCs which stains all erythroid cells. Bottom panels show 

CD71-APC staining in RBCs which stains only reticulocytes.  
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Figure S1B. Volcano plot showing the distribution of abundance of all ~4560 peaks detected across 

both LC-MS and GC-MS platforms in reticulocytes as compared to normocytes in rodent blood. All 

significant changes are represented above the broken horizontal line. Coloured dots indicate peaks 

which are: Blue- significantly up-regulated, Red- significantly down-regulated, Yellow- significant but 

little change, Brown- non-significant. n=3 independent biological replicates (with four internal 

technical replicates each). Significance tested by Welch’s T-test ( < 0.05). Of the ~4,230 unassigned 

mass features/peaks, 1051 (~23%) were up-regulated and 91 peaks (~2%) downregulated in the 

reticulocyte-enriched fraction. 
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Figure S1C. Fold change of metabolite abundance in rodent reticulocytes as compared to 

normocytes. See table S1 for metabolite names corresponding to numbers 
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Figure S2A. Schematic representation of gene deletion strategy.  
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Figure S2B. Gel electrophoresis of indicated PCR products to confirm integration of selection 

cassette, disruption of genes and clonality of mutant parasites (i) pepc (PBANKA_101790) (ii) mdh 

(PBANKA_111770) (iii) oprt (PBANKA_111240)  (iv) ompdc (PBANKA_050740) 
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Figure S3 Phenotypic characterization of blood stage mutant P. berghei parasites 

A. Competition growth assay using FACS analysis. Equal number of parasites (106) of wt 

population expressing RFP under constitutive promoter eef1a (RMgm-86) and mutant 

population made in a parent line expressing GFP under the same promoter (RMgm-7) were 
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mixed and injected into a mouse on day 0 and peripheral blood from the infected mouse 

was monitored using FACS analyses for the proportion of RFP positive (wt) and GFP positive 

(mutant) parasites over the next 12 days.  Representative FACS screenshots show left panel 

on day 0 when wt and mutant populations are in equal proportions and right panel shows 

that over time (by days 6-12), wt population overgrows a slow growing mutant.  Infected 

blood was passaged into a new mouse when multiple infected cells started to appear to 

allow for optimal growth. 

B. Time taken for asexual parasites to grow to mature schizont stage. Coloured lines indicate 

non-linear fit of percentage of mature schizonts observed in in vitro synchronous cultures of 

wt and mutant P. berghei parasites 22 hours post invasion. Data representative of n=3 

independent biological replicates. pepc-, oprt- and ompdc- mutants took 4-5 hours longer to 

mature to schizonts compared to wt. 

C. Number of merozoites per schizont grown in in vitro cultures as counted in giemsa stained 

smears. The error is given as the SD of n ≥ 40 schizonts. Data representative of 3 

independent biological replicates.  P-values:  ***p<0.0005, unpaired two tailed t-test. The 

number of merozoites observed in mature schizont stages in both pepc- (17.02 ± 1.8) and 

mdh- (17.41 ± 1.7) mutants are similar to wt (17.4±1.8). Both oprt- mutants (15.9 ± 2.0) and 

ompdc- mutants (15.2 ± 2.5) were found to generate, on average, significantly fewer 

merozoites than wt per schizont. 

D. FACS plots showing DNA replication in male gametocytes observed by FACS analysis at the 

start of and 12 min post activation. DNA content was determined in Hoechst-33258-stained 

purified gametocytes and flouroscence intensity is displayed on x-axis and cell counts on y- 

axis. Before activation (0 min) males and females are shown in a gate with the same low 

DNA content (M+F). At 12 mins, prior to the formation of free male gametes, the DNA 

content of males increases as shown in gate (M).  

E. Intensity of Giemsa staining in wt and mutant P. berghei infected reticulocytes. Intensity of 

the stain was found to be maximum in youngest reticulocytes. Smears were stained with 

12% Giemsa stain for 10 minutes after fixing and air drying with methanol. Image data was 

processed in ImageJ. Gray values were calculated in minimum 100 pixels across the whole 

host cell (parasites inside the cells were excluded) and staining intensities (Gray value-1) 

were plotted for n=20 infected cells. P-values: **p<0.005, ***p<0.0005, paired two tailed t-

test. 
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Figure S4. P. berghei infected mosquito midguts and salivary glands as observed on a Leica M205 

FA fluorescence stereomicroscope 

A. Mosquito mid guts showing mature oocysts at day 14 post infection in wt, pepc- and mdh- 

P.berghei infected mosquitoes. 

B. Mosquito salivary glands showing sporozoites at day 21 post infection in wt, pepc- and mdh- 

P.berghei infected mosquitoes.  

C. Mosquito mid guts showing mature oocysts at day 14 post infection in wt, oprt- and ompdc- 

P.berghei infected mosquitoes.  



SRIVASTAVA et al  Reticulocyte metabolism and malaria 

25 
 

D. Mosquito salivary glands showing sporozoites at day 21 post infection in wt, oprt- and 

ompdc- P.berghei infected mosquitoes. 

 

 

Figure S5. Glutathione biosynthesis pathway in Plasmodium 

A. Schematic representation of glutathione synthesis pathway in Plasmodium. ɣ-GCS (ɣ-

glutamylcysteine synthetase), GS (glutathionesSynthetase), GR (glutathione reductase) ɣ-

GluCys (ɣ-L-glutamyl-L-cysteine), GSSG (glutathione disulphide).  

B. Fold change of relative levels (peak intensities) of metabolites of glutathione biosynthesis in 

rodent reticulocytes compared to normocytes. Dotted line indicates no change and error 

bars indicate R.S.D. (Relative Standard Deviation) of peak intensities from reticulocyte 

samples multiplied to the fold change values from n=3 independent biological replicates. It is 

expected that under these metabolomics extraction conditions the oxidised forms of cystine 

and glutathione disulphide likely represent the sum of both oxidised and reduced forms of 

cysteine and glutathione.  

C. P. berghei inhibition experiment with buthionine sulphoximine (BSO) in vitro. Error bars 

indicate S.D. from n=2 biological replicates. 
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