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Abstract 

The mammalian pyruvate dehydrogenase complex (PDC) is a key multi-enzyme 

assembly linking the glycolytic pathway to the TCA cycle via the specific 

conversion of pyruvate to acetyl CoA and, as such, is responsible for the 

maintenance of glucose homeostasis in humans. PDC comprises a central 

pentagonal dodecahedral core of 60 dihydrolipoamide acetyltransferase (E2) and 

12 E3 binding protein (E3BP) subunits. Presently, two conflicting models of PDC 

(E2+E3BP) core organisation exist: the ‘addition’ (60+12) and ‘substitution’ 

(48+12) models. In addition to its catalytic role, the multi-domain E2/E3BP core 

provides the structural framework to which 30 pyruvate decarboxylase (E1) 

heterotetramers and 6-12 dihydrolipoamide dehydrogenase (E3) homodimers are 

proposed to bind at maximal occupancy. The formation of specific E2:E1 and 

E3BP:E3 subcomplexes are characteristic of eukaryotic PDCs and are critical for 

normal complex function. Despite the availability of limited structural data, the 

exact subunit organisation and mechanism of operation of the mammalian 

E2/E3BP core remains unknown. 

This thesis describes the large-scale purification of tagged, recombinant human 

PDC cores, full-length rE2 and rE2/E3BP, truncated E2/E3BP, peripheral rE3 

enzyme as well as native E2/E3BP core (bE2/E3BP) purified from bovine heart. 

The ability to purify large amounts of pure protein has enabled the 

characterisation of the individual cores as well as the E2/E3BP:E3 complex using 

a variety of biochemical and biophysical techniques. 

Full-length rE2/E3BP, rE2, bE2/E3BP, truncated E2/E3BP (tLi19/tLi30) and 

rE2/E3BP:E3 were analysed in solution by analytical ultracentrifugation (AUC). 

While AUC of the cores supported the substitution model of core organisation, 

the stoichiometry of interaction was determined to be 2:1 (rE2/E3BP:E3). This 

was further complemented by gel filtration chromatography (GFC) and small 

angle neutron scattering (SANS), implying the possible existence of a network of 

E3 ‘cross-bridges’ linking pairs of E3BP molecules across the surface of the E2 

core assembly. Low resolution solution structures obtained for rE2/E3BP, 

bE2/E3BP and tLi19/tLi30 by small angle x-ray scattering (SAXS) and SANS 

revealed the presence of icosahedral cores with open pentagonal faces favouring 
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the substitution model of core organisation. These solution structures also 

indicated high structural similarity between the recombinant and native cores, 

as well as with the crystal structure obtained previously for the truncated 

bacterial E2 core. In addition, homology modelling and superimpositions of high- 

and low-resolution structures of the core revealed conservation of the overall 

pentagonal dodecahedral morphology despite evolutionary diversity. Evidence 

for the substitution model of core organisation was further substantiated by 

negative stain EM of the recombinant and bovine E2/E3BP cores.  

SANS stoichiometry data indicated the binding of 10 E3 dimers per E2/E3BP core. 

Although this could correspond to approximately 1:1 stoichiometry between 

E2/E3BP:E3, subsequent radiolabelling studies suggested possible variation in 

core subunit composition between the native and recombinant E2/E3BP cores. 

Therefore, as opposed to the 48E2+12E3BP substitution model based on AUC and 

SAXS studies with the recombinant E2/E3BP core, rE2/E3BP cores produced in 

this study indicated a higher level of incorporation of E3BPs with a maximum 

core composition of 40E2+20E3BP. On the basis of this new finding we have 

proposed the ‘variable E3BP substitution model’, wherein the number of E3BPs 

within the core can range from 0 to a maximum of 20, thus resulting in variable 

populations of E2/E3BP cores. Despite this core variability, the highly controlled 

regulatory mechanisms in vivo may bias the core composition towards an 

average of 48E2+12E3BP. However, as the over-expression of the recombinant 

E2/E3BP core in our study is not as tightly regulated as in vivo, higher number of 

E3BPs (>12) is observed to be integrated into the core. This new level of 

architectural complexity and variable subunit composition in mammalian PDC 

core organisation is likely to have important implications for the catalytic 

mechanism, overall complex efficiency and tissue-specific regulation by the 

intrinsic PDC kinases (PDKs) in normal and disease states. 

The E2 cores of the PDC family are known to be highly flexible, exhibiting 

inherent size variability reflective of the ‘breathing’ of the core. Integration of 

E3BP into the E2 core assembly would then be expected to have significant 

consequences for the structural assembly, affecting the ‘breathing’ and in turn 

the function and regulation of the complex. Unfolding studies to assess core 

stability via circular dichroism (CD) and tryptophan fluorescence revealed lower 

stability of the rE2/E3BP core as compared to cores composed exclusively of rE2 
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subunits, thus implying the contribution of E3BP towards core destabilisation. In 

addition, crosslinking studies indicated weak dimerisation of rE3BP, which may 

be a key factor promoting core destabilisation. The lower stability of the 

E2/E3BP core may be of benefit in mammals where sophisticated fine tuning is 

required to obtain cores with optimal catalytic and regulatory efficiencies. 

SAXS solution structures of E2/E3BP cores obtained were unable to locate the 

exact positions of E3BP within the core. However, SANS in combination with 

contrast matching of selectively deuterated components as well as cryo-EM, EM 

tomography and single molecule studies could be used in future for 

determination of the exact locations of E3BP, and validating the importance of 

E2/E3BP core organisation and subunit composition for overall PDC function and 

regulation. 
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Chapter 1 
Introduction to PDC 

1.1 Multi-enzyme complexes 

Many enzymes are thought to associate into large multienzyme multifunctional 

complexes. The evolution of these macromolecular assemblies allows for 

simultaneous substrate channelling and active site coupling of multi-step 

reactions, thus decreasing the extent and time of diffusion, promoting the 

stabilisation of intermediates and increasing the overall efficiency of the 

reaction cycle. 

One such family of stable molecular machines is the mitochondrial 2-oxoacid 

dehydrogenase complexes, high Mr (4-10 million) multi-enzyme assemblies that 

serve as models for the study of protein-protein interactions, enzyme 

cooperativity and active site coupling. Principal members include the pyruvate 

dehydrogenase (PDC), 2-oxoglutarate dehydrogenase (OGDC) and branched-chain 

2-oxoacid dehydrogenase complexes (BCODC). All three of these massive 

assemblies are located in the mitochondrial matrix compartment, associated 

with the inner membrane (Perham, 1991). In the case of PDC and BCODC, they 

are composed of three enzymes E1, E2 and E3 and regulated by unique 

mitochondrial protein kinases and protein phosphatases. The lipoamide cofactor 

assists all three complexes in their catalytic function, via its ‘swinging arm’ 

mechanism visiting all the active sites during the multi-step reaction cycle 

(Perham, 1991; 2000). All three complexes have strategic roles in primary energy 

metabolism. PDC links glycolysis with the tricarboxylic acid (TCA) cycle, 

catalysing the irreversible decarboxylation of pyruvate to acetyl-CoA (Fig. 1.1). 

It serves as the primary regulator of glucose homeostasis in mammals (Sugden 

and Holness, 2003). Similarly OGDC is involved in the conversion of substrate 2-

oxoglutarate to succinyl-CoA (Sheu and Blass, 1999), while BCODC catalyses the 

catabolism of the branched chain amino acids valine, leucine and isoleucine 

(Patel and Harris, 1995).  
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Figure 1.1 Cellular metabolism of 2-oxo acid dehydrogenase complexes 
The three mitochondrial 2-oxoacid dehydrogenase multienzyme complexes (PDC, OGDC, 
BCODC) linking important pathways in energy metabolism are shown. The enzymes are 
represented in blue and their conversion products in green. The image was taken from 
Smolle (2005). 

 

This chapter will provide insights into the reaction mechanism, structure, 

macromolecular organisation, regulatory role and diseases associated with 

eukaryotic PDC. 

1.2 Reaction mechanism of PDC 

As indicated, PDC catalyses the decarboxylation of pyruvate, resulting in the 

formation of acetyl-CoA via three distinct steps as shown in Fig. 1.2.  

 

Figure 1.2 Multi-step reactions catalysed by PDC 
Taken from Milne, et al (2002). 
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Firstly, the thiamine diphosphate (ThDP)-dependent enzyme pyruvate 

decarboxylase (E1) catalyses the decarboxylation of pyruvate, as well as the 

subsequent transfer of the resulting acetyl group from ThDP onto the lipoamide 

moiety of dihydrolipoamide acetyltransferse (E2) in a reductive acetylation step. 

E2 then proceeds to catalyse acetyl group transfer in the presence of CoASH to 

form acetyl-CoA. In the absence of CoASH, acetyl groups remain bound to the 

lipoamide cofactor. In the final step, the dihydrolipoamide moiety of E2 is 

reoxidised by dihydrolipoamide dehydrogenase (E3), transferring electrons to the 

isoalloxazine ring of FAD and subsequently onto the electron acceptor NAD+, 

regenerating the lipoyl moiety to undergo another reaction cycle (Reed, 2001). 

The overall reaction is summarised thus 

Pyruvate + CoASH + NAD+ → acetyl-CoA + CO2 + NADH + H+

1.3 Insights into PDC architecture 

1.3.1 Organisation of the E2/E3BP core assembly 

PDC comprises multiple copies of three distinct enzymes E1, E2 and E3. In 

addition, eukaryotic PDC contains another unique subunit termed E3 binding 

protein (E3BP), or protein X (De Marcucci and Lindsay, 1985; Jilka, et al., 1986). 

The central core of PDC is made up of E2 (and E3BP in eukaryotes), to which all 

other constituent enzymes bind forming either a 24meric (in Gram-negative 

bacteria like Escherichia coli) or 60meric (in eukaryotes and some Gram-positive 

bacteria) core with octahedral (432) or icosahedral (532) symmetry, respectively 

(Fig. 1.3) (Oliver and Reed, 1982; Wagenknecht, et al., 1990). Thus the PDC core 

has the morphology of an octahedron in Gram-negative bacteria, while in 

eukaryotes and Gram-positive bacteria, it assembles as a pentagonal 

dodecahedron or icosahedron. In addition to its role in catalysis, E2 provides the 

structural and organisational framework upon which the assembly and function 

of the entire complex is dependent. The E2 core interacts with E1 and E3 across 

the edges and faces, respectively (Patel and Roche, 1990; Perham, 2000) and in 

eukaryotes with E3BP that specifically mediates E3 binding to the complex (De 

Marcucci and Lindsay, 1985; Jilka, et al., 1986).  
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Figure 1.3 E2 core of PDC 
(A) The octahedral core of Azotobacter vinelandii PDC is shown with views along the two, 
three- and four-fold axes of symmetry (from left to right). (B) Similarly, the icosahedral 
core of Bacillus stearothermophilus PDC is depicted with views along the two- , three- and 
five-fold axes of symmetry (left to right). In both cases, the three different subunits of a 
trimer are in different colours, readily seen on the three-fold views. In addition, every 
trimeric unit (8 in A. vinelandii and 20 in B stearothermophilus) is represented in a different 
colour. The image was taken from Perham (2000). 

 

1.3.2 The structure of PDC components 

1.3.2.1 Pyruvate decarboxylase (E1) 

E1 is a ThDP-dependent decarboxylase that catalyses the first rate-limiting 

irreversible step in the catalytic cycle (Berg, et al., 1998; Cate, et al., 1980; 

Danson, et al., 1978). The initial decarboxylation of pyruvate is succeeded by 

the transfer of the ThDP-bound acetyl group onto the E2-lipoamide via a 

reductive acetylation reaction (Kern, et al., 1997; Pan and Jordan, 1998). E1-

PDC forms an α2 homodimer in Gram negative bacteria and an α2β2 

heterotetramer in Gram positive bacteria and eukaryotes. Two active sites are 

located in E1, both requiring the ThDP cofactor and Mg2+ ions for activity. A 

number of E1 crystal structures have been determined in recent years including 

E1-PDC from E. coli (Arjunan, et al., 2002) and humans (Ciszak, et al., 2001; 
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2003). Comparison of these structures with other ThDP-dependent enzymes like 

transketolase (Fiedler, et al., 2002) indicates high similarity in structure and 

function (Hawkins, et al., 1989; Muller, et al., 1993; Schellenberger, 1998). 

E1 α and β subunits are related by a crystallographic two-fold symmetry axis and 

arranged in a tetrahedral manner (Fig. 1.4). The active sites that bind to ThDP 

are located in a 20 Å funnel-shaped tunnel at the α–β subunit interface. They are 

readily accessible to the lysine residue of the lipoyl moiety during the catalytic 

reaction.  

 

Figure 1.4 Structure of the human pyruvate decarboxylase 
(A) Front and (B) side views of the crystal structure of the human E1 heterotetramer (PDB 
ID 1NI4) are shown. The two α subunits (cyan and dark blue) and β subunits (dark pink 
and purple) are indicated. The figure was generated with Pymol (Delano Scientific, USA). 

 

Hydrophobic contacts maintain the stability of the interaction between the α 

and β subunits of E1. It is hypothesized that the catalytic action of E1 is induced 

by three critical residues (Glu59, Gly136, Val138) via movement of a pair of 

helices having the GΦXXG motif, where Φ is usually a β–branched chain amino 

acid (Ciszak et al., 2003). Biochemical, kinetic and spectral studies have shown 

that E1 carries out a flip-flop enzymatic action: while one active site is involved 

in the pyruvate decarboxylation reaction, the other is simultaneously carrying 

out the reductive acetylation of E2-lipoamide (Khailova and Korochkina, 1985; 

Khailova, et al., 1990; Kovina and Kochetov, 1998; Sergienko and Jordan, 2002; 

Sergienko, et al., 2000; Yi, et al., 1996). It is also proposed from the recent 
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crystal structure (Ciszak, et al., 2003) that both the E1 αβ heterodimers undergo 

concerted motion resulting in a “push and pull” conformational change in the 

active sites. However, recently Frank and colleagues (2004) showed a novel type 

of active site communication in E1 mediated by the shuttling of a single proton 

in a 20 Å tunnel lined with acidic residues connecting the two active sites. Thus 

it seems that communication between the two active sites in E1 is crucial for 

their coordinated action during the catalytic cycle. 

1.3.2.2 Dihydrolipoyl acetyltransferase (E2) 

In addition to the globular structure, E2 (and E3BP) has a similar multi domain 

modular structure (Fig. 1.5) (Borges, et al., 1990). The N-terminal domain 

contains one to three 80 residue lipoyl domains (LD), the exact number varying 

between species (Perham, 1991; Reed and Hackert, 1990); a peripheral subunit 

binding domain (SBD) responsible for association with E1 and/or E3 (Hipps, et 

al., 1994; Lessard and Perham, 1995; Packman and Perham, 1986; Westphal, et 

al., 1995); and finally a C-terminal domain (CTD) (about 250 residues) 

responsible for the catalytic action (acetyltransferase activity) and self-

association (Perham, 1991; Reed and Hackert, 1990). The domains are 

interconnected by long, highly flexible, extended linker regions of about 30 

residues in length, thus conferring a high degree of conformational flexibility to 

the N terminal lipoyl ‘swinging arm’, permitting it to visit all three active sites 

in turn during catalysis. 

1.3.2.2.1 The lipoyl domain (LD) 

The solution structures of E2-LD from B. stearothermophilus PDC (Dardel, et al., 

1993), E. coli PDC and OGDC (Green, et al., 1995; Ricaud, et al., 1996), A. 

vinelandii PDC and OGDC (Berg, et al., 1994; 1995; 1996; 1997) and human PDC 

(Howard, et al., 1998) have been solved using NMR spectroscopy. All structures 

are very similar despite low sequence identity (25% between E2-LD of A. 

vinelandii PDC and OGDC) (Berg, et al., 1997). In addition, no significant 

differences have been observed between the lipoylated and unlipoylated forms 

(Berg, et al., 1994; Dardel, et al., 1991). The LD forms a flattened β-barrel with 
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a symmetric 2-fold axis and a conserved DKA motif at the tip of a type I β-turn 

(Fig. 1.6). 

 

Figure 1.5 Modular structure of E2 and E3BP 
Schematic representation of the domain structure of E2 (A) and E3BP (B). The number of 
lipoyl domains (L) varies from one to three for different species. The lipoylation sites are 
indicated by a star. Subunit binding (SBD) and C-terminal domains (CTD) are also shown. 

 

 

Figure 1.6 Structure of the LDs of B. stearothermophilus and human E2 
NMR structures of the (A) B. stearothermophilus (PDB ID 1LAB) and (B) non-lipoylated 
inner human E2 (PDB ID 1FYC) LD are shown. The two β-sheets of B. 
stearothermophilus are depicted in light blue and blue, while the human sheets of LD are 
shown in green and blue. The lysine residue required for lipoylation is drawn in stick 
representation. Surface loops involved in E1 binding are coloured cyan and yellow in the 
human LD domain, while it is depicted in red in the LD of B. stearothermophilus. Images 
were drawn with Pymol (Delano Scientific, USA). 

 

The position of the lysine (K) residue at the tip of the turn is crucial for 

lipoylation; movement of K by a single residue towards the N- or C-terminus 



Introduction to PDC   32 

abolishes lipoylation (Wallis and Perham, 1994). The aspartate (D) and alanine 

(A) of the conserved motif are necessary for the acetylation reaction but are not 

required for lipoylation (Jones, et al., 2000a; Jones, et al., 2000b; Wallis and 

Perham, 1994). Despite structural similarities between all the LDs, interactions 

are very specific with their cognate E1 enzymes, mediated by the variable 

surface loop connecting strands 1 and 2. Deletion of this loop in  B. 

stearothermophilus results in the complete elimination of reductive acetylation 

and non recognition by E1 (Wallis, et al., 1996). 

1.3.2.2.2 The subunit binding domain (SBD) 

One of the smallest functional domains known to date, the SBD (aa 35-50) is 

required for interaction with the E1 and/or E3 enzymes. In B. 

stearothermophilus, the E2-SBD is capable of binding both E1 and E3, while in 

mammalian PDC it specifically interacts only with E1, whereas E3 binds to the 

related E3BP-SBD. The SBD structures of B. stearothermophilus on its own (Fig. 

1.7) (Kalia, et al., 1993) as well as in association with E1 (Frank, et al., 2005) or 

E3 (Mande, et al., 1996); and the human E3BP-SBD complexed with E3 have been 

determined (Ciszak, et al., 2006). The B. stearothermophilus and human SBD 

structures superimpose quite well and consist of two short, parallel α-helices 

connected by a very short 310-helix and two loops (Fig. 1.7). 

 
 

Figure 1.7 Structure of the E2-SBD of B. stearothermophilus 
Cartoon representation of the solution structure of E2-SBD of B. stearothermophilus  
(PDB ID 2PDD) . The two α-helices (H1, H2) and the two loops (L1, L2) are indicated. 
Image was drawn with Pymol (Delano Scientific, USA). 
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1.3.2.2.3 The C-terminal domain (CTD) 

The CTD of E2 forms the central core of PDC by its association into trimers 

located at each vertex. That the trimer is the morphological building block is 

indicative of its structural importance in the assembly of the complex. The 

octahedral core of A. vinelandii PDC (Mattevi, et al., 1993b; 1992a) consists of 8 

trimers, while the icosahedral cores of B. stearothermophilus (Izard, et al., 

1999; Milne, et al., 2002), yeast (Stoops, et al., 1992; 1997) and bovine PDC 

(Behal, et al., 1994; Zhou, et al., 2001b) are formed by the association of 20 

trimers. These trimers are loosely stacked, and their dynamic movements 

facilitate the ‘breathing’ motion of the core (Kong, et al., 2003; Zhou, et al., 

2001a). Interestingly, the inter-trimer contacts are much weaker than the intra-

trimer ones (Izard, et al., 1999), providing a flexible yet well connected core, 

characteristics that may be crucial for optimal PDC function. High resolution 

cryoelectron microscopy (cryo-EM) reconstructions of human (Yu, et al., 2008), 

bovine (Zhou, et al., 2001b) and S. cerevisiae (Stoops, et al., 1992) E2 cores, as 

well as crystal structures of the E2 cores of A. vinelandii (Mattevi, et al., 1992a) 

and B. stearothermophilus (Izard, et al., 1999) have been determined. The CTDs 

possess the conserved sequence motif DHRXXDG, with the histidine and 

aspartate necessary for catalysis (Radford, et al., 1987). In addition, the active 

site is located within a long channel (30 Å) that runs across the trimer on the 

CTD subunit interface. Interestingly, the two substrates that take part in the 

transacetylation reaction enter the E2 active site from opposite directions: 

CoASH enters from the inside (Izard, et al., 1999) while the acetylated LD enters 

from the outside (Mattevi, et al., 1993c; 1993b; 1992a). Furthermore, cryo-EM 

and x-ray crystal structures of the E2 core indicate a hollow and highly solvated 

particle (Fig. 1.3), with only about 20% of the total volume being occupied by 

protein residues (Stoops, et al., 1992). This hollow core may be inherently 

flexible, a property that may be crucial to mediate substrate channelling and 

active site coupling. 

1.3.2.2.4 The linker regions 

The LDs, SBD and CTD of E2 (and E3BP) are interconnected by sequences of 30-

50 amino acids, rich in alanine, proline and other charged amino acids, and are 

commonly referred to as ‘linker regions’. The abundance of alanine and proline 
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give rise to a solvent exposed, rigid and extended structure (Green, et al., 1992; 

Radford, et al., 1989a; Texter, et al., 1988). The linker regions possess an 

inherent flexibility, thereby allowing the LDs to visit all three active sites within 

the complex (Green, et al., 1992; Perham, et al., 1981). Mutation studies have 

also shown that the overall length of the linker regions can be manipulated to a 

considerable degree without affecting the activity of PDC (Miles, et al., 1988). 

1.3.2.3 Dihydrolipoamide dehydrogenase (E3) 

E3 is a flavoprotein belonging to a family of FAD-dependent disulphide 

oxidoreductases that catalyse the transfer of electrons between pyridine 

nucleotides and disulphides. The E3 component is the same in all the 2-oxoacid 

dehydrogenase complexes, although exceptions are found in prokaryotes where 

various E3 enzymes are encoded for the different complexes (Burns, et al., 1989; 

Carothers, et al., 1989). In PDC, E3 catalyses the oxidation of the 

dihydrolipoamide group attached to one of the LDs of E2 via a two-step ping-

pong mechanism. In the first step, electrons are transferred from the reduced 

lipoamide group via a reactive disulphide bridge onto the FAD, forming a stable 

intermediate complex. Subsequently, electrons from the intermediate complex 

are transferred to the electron acceptor NAD+ (Wilkinson and Williams, 1981; 

Williams, 1965; 1992).  

Three-dimensional structures of E3 from several different sources namely, A. 

vinelandii (Mattevi, et al., 1991; Schierbeek, et al., 1989), Pseudomonas putida 

(Mattevi, et al., 1992b), Pseudomonas fluorescens (Mattevi, et al., 1993a), B. 

stearothermophilus (Mande, et al., 1996), S. cerevisiae (Toyoda, et al., 1998b) 

and most recently from humans (Fig.1.8) (Brautigam, et al., 2006) have been 

solved by x-ray crystallography. Despite a low sequence identity (about 40%), 

the tertiary structures of prokaryotic and eukaryotic E3 are very similar. E3 

forms a dimer of identical subunits, each comprising four domains: the FAD 

domain (aa 1-150), the NAD domain (aa 151-208), the central domain (aa 281-

350) and the interface domain (aa 351-474). Each homodimer requires the non-

covalent binding of one FAD molecule per monomer for correct folding and self-

association (Lindsay, et al., 2000). The monomers are related by a non-

crystallographic two-fold axis, while the dimers are related via a 
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crystallographic two-fold axis. The FAD and NAD domains (as the names suggest) 

are responsible for binding FAD and NAD molecules. The interface domains are 

involved in dimerisation, while the central domain is pivotal for binding to E2 or 

E3BP. The two active sites on each homodimer are located separately at the 

subunit interface in an 11 Å deep cleft near the FAD cofactors.  

 
 

Figure 1.8 Crystal structure of human E3 
The structure of human E3 homodimer crystallised in the presence of NADH and FAD 
(PDB ID 1ZMC) is depicted. The domains of one monomer are coloured: FAD-binding 
domain (green); NAD-binding domain (purple); central domain (blue) and the interface 
domain (orange). The other monomer is coloured tan. Atomic representation of the bound 
FAD (red) and NADH (cyan) molecules for the first monomer and in tan for the second 
monomer are shown. The quasi-symmetric two-fold axis is indicated. The image was 
taken from Brautigam, et al (2006). 

 

All important active site residues as indicated by mutagenesis studies and 

structural comparison with other disulphide reductases are conserved within all 

E3 enzymes (Claiborn, et al., 1994). The pair of cysteines involved in disulphide 

bridge formation and the binding of FAD and NAD, along with key histidine and 

glutamine residues (His 452 and Glu 457 in human E3), play a crucial role in the 

efficient functioning of the E3 enzyme. Mutations of these residues in humans 

and other organisms significantly reduce or completely abolish E3 activity (Berry, 

et al., 1989; Deonarain, et al., 1989; Kim and Patel, 1992; Liu, et al., 1995; 

Williams, et al., 1989), confirming the importance and requirement for their 

high degree of conservation. The lipoamide enters the active site via a pocket on 

the cis side of the flavin plane, while the NAD associates with a pocket on the 

reverse side of the FAD (Mattevi, et al., 1993b). 
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1.3.2.4 E3 binding protein (E3BP) 

E3BP is an integral component of PDC present only in eukaryotes. It was initially 

thought to be an E2 proteolytic product in bovine PDC preparations. However, 

elegant proteolysis and immunological studies provided the first evidence that 

this protein (initially named protein X) contributed to the function of PDC (De 

Marcucci and Lindsay, 1985; De Marcucci, et al., 1986; Hodgson, et al., 1986; 

Jilka, et al., 1986; Neagle, et al., 1989). The cloning and sequencing of the Pdx1 

gene encoding E3BP in S. cerevisiae (Behal, et al., 1989) and human (Harris, et 

al., 1997), indicated a high sequence similarity between proteins E2 and E3BP, 

with the only significant difference being the presence of one LD in E3BP in 

comparison to two LDs in E2 (Fig. 1.5). The N-terminal amino acid sequences of 

human and yeast E3BP LDs and SBDs are 46% and 38% identical to their cognate 

E2 proteins, respectively. Similarly, the amino acid sequence of human E3BP CTD 

is 50% identical to that of E2, while the yeast E3BP is substantially different 

(Harris, et al., 1997). The active site motif DHRXXDG in E2 harbouring the 

histidine crucial for acetyltransferase activity is replaced by serine in human 

E3BP, while it is completely absent from yeast (Harris, et al., 1997) and 

therefore human E3BP does not possess acetyltransferase activity.  

Proteolytic studies carried out in order to ascertain the function of E3BP 

confirmed its primary role in high-affinity binding to E3 (Lawson, et al., 1991a; 

Neagle and Lindsay, 1991; Rahmatullah, et al., 1989a; Rahmatullah, et al., 

1989b). These observations were confirmed by subsequent in vitro binding 

studies (McCartney, et al., 1997). Furthermore, some studies had indicated a 

possible role of E3BP-LD in the reductive acetylation reaction (De Marcucci, et 

al., 1986; Jilka, et al., 1986; Rahmatullah and Roche, 1987). Deletion of E3BP-LD 

resulted in the loss of PDC activity (Gopalakrishnan, et al., 1989; Lawson, et al., 

1991b; Powers-Greenwood, et al., 1989; Rahmatullah, et al., 1990), but this was 

later shown to be primarily due to reduced E3 binding (Sanderson, et al., 1996a). 

However, other functions carried out by E3BP in the catalytic cycle remain 

undetermined. As PDC is a pivotal enzyme in the cellular metabolic pathway, it 

is possible that the evolution of E3BP in eukaryotes serves to increase the 

efficiency of the assembly by way of its specialised binding to E3. However, it is 
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possible that there are additional structural and enzymatic roles of E3BP that 

are yet to be elucidated.  

1.3.3 Subunit composition and association of PDC  

The fundamental metabolic and clinical importance of PDC has prompted the 

detailed examination of its structure, as it serves as a paradigm for multi-

enzyme complexes in general. The entire PDC is made up of multiple copies of 

enzymes E1, E2, E3 and E3BP (in eukaryotes). In Gram-negative bacteria like E. 

coli PDC is thought to comprise 24 E2s forming the inner octahedral core, which 

in turn is non-covalently associated with 12 E1 tetramers along the edges and 6 

E3 dimers across the core faces (Reed, 2001). Subsequent studies with yeast 

(Maeng, et al., 1994; 1996) and bovine (Sanderson, et al., 1996b) PDC 

established the presence of 12 E3BP molecules per 60meric core, thought to be 

associated with the 12 icosahedral faces. This was confirmed by cryo-EM 

reconstructions of S. cerevisiae PDC that located 12 copies of E3BP anchored 

inside the pentagonal openings of the E2 core along the vertices of the basic 

trimeric unit (Fig. 1.9A), with one E3 dimer bound per E3BP monomer (Stoops, et 

al., 1997). This resulted in an E2+E3BP core composition of 60+12 and was 

referred to as the ‘addition model’. In contrast, a recent study based on 

analytical ultracentrifugation (AUC) and small angle x-ray scattering (SAXS) has 

suggested that the inner core domain of human E3BP, which has a significantly 

longer CTD than its yeast counterpart, is integrated into the 60-meric core of 

human PDC to give an E2+E3BP composition of 48+12 (E2+E3BP) subunit 

stochiometry (Hiromasa, et al., 2004). This organisation of the mammalian core 

leads to a new ‘substitution model’, where 12 E2 molecules are replaced by 12 

E3BP instead of being added to the 60-meric core (Fig. 1.9B).  

Although the dissimilarity in sequence of yeast E3BP compared to its cognate E2 

and its human counterpart has been thought to result in the difference in their 

core organisations, further work is required to confirm this hypothesis. 

In eukaryotes the stability and overall macromolecular organisation of the 

complex is governed by specific and tight protein-protein interactions between 

E2-SBD and E1, and between E3BP-SBD and E3 respectively (Fig. 1.10). However,  
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Figure 1.9 Models of PDC core organisation 
The (A) addition (yeast) and (B) substitution (human) models of subunit composition of 
the PDC core comprising E2 and E3BP are shown. In the addition model 12 E3BPs (pink) 
bind in the 12 pentagonal faces of the 60-meric E2 (green), while in the substitution model 
12 E3BPs (red) are thought to replace 12 E2s (blue), resulting in core compositions of 
60E2+12E3BP and 48E2+12E3BP, respectively. Images were taken from Reed (2001) 
and Hiromasa, et al (2004). 

 

in B. stearothermophilus, owing to the absence of E3BP, E1 and E3 compete for 

binding sites on E2, and the interaction of E2 with either one prevents binding of 

the other (Fig. 1.10) (Mande, et al., 1996). Biochemical and structural data 

provide evidence of a 1:1 stoichiometry of E1 and E3 binding with the SBD of E2 

in B. stearothermophilus PDC (Frank, et al., 2005; Hipps, et al., 1994; Jung, et 

al., 2002a; 2002b; Lessard, et al., 1998; Mande, et al., 1996). The E2-SBD 

binding sites on E1 and E3 are located across and close to the two-fold axis of 

symmetry, respectively (Frank, et al., 2005; Mande, et al., 1996). Occupation of 

both binding sites brings about steric clashes in one of the loop regions.  

 

Figure 1.10 Association of E1 and E3 with E2-SBD in B. stearothermophilus 
Cartoon representations of the complexes formed by B. stearothermophilus (A) E1 (α, 
yellow/pink; β, green/purple) with E2-SBD (blue) (PDB ID 1W85) and (B) E3 (green/red) 
with E2-SBD (blue) (PDB ID 1EBD). Diagrams were taken from Frank, et al. (2005) and 
Mande, et al. (1996).  
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However, the exact stochiometry of association of E1 and E3 with the SBDs of E2 

and E3BP in mammalian PDC still remains unclear. While the recent crystal 

structure of the E3BP-SBD:E3 complex indicates a 1:1 stoichiometry (Brautigam, 

et al., 2006; Ciszak, et al., 2006) similar to the B. stearothermophilus PDC, 

some recent solution structural studies suggested a 2:1 binding stoichiometry 

(Smolle, et al., 2006). Such a stoichiometry may result in the formation of 

‘cross-bridges’ that would provide a well connected and robust networked 

surface (Fig. 1.11), and may in turn facilitate enhanced movement and transfer 

of intermediates of the catalytic reactions, thus increasing the efficiency of 

substrate channelling and active site coupling.  

 

Figure 1.11 ‘Cross-bridge’ model of human PDC 
Schematic representation of the formation of ‘cross-bridges’ spanning the core surface as 
a result of the 2:1 stoichiometries between E2:E1 and E3BP:E3 in human PDC. The CTD 
icosahedral core (from the cryo-EM reconstruction) extending outwards with the SBDs of 
E2 (green) associating with tetrameric E1 (blue), and E3BP (pink) associating with dimeric 
E3 (cyan) in a 2:1 stochiometry is indicated for a small subset of the core proteins. PDC 
kinase (PDK, violet) and phosphatase (PDP, magenta) interact with the inner E2 LD. The 
image was taken from Smolle, et al. (2006). 

 

Very interestingly, PDC-deficient patients who completely lack E3BP still possess 

10-20% PDC activity as compared to controls (Ling, et al., 1998). This has been 

attributed to the residual low affinity binding of E2 with E3 even in the absence 

of E3BP (Richards, 1999), thus providing clear evidence of the importance of 

E3BP in the activity of PDC. 

In this context, depending on the model of subunit organisation and binding 

stoichiometry, there are several possibilities for the actual macromolecular 
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organisation of mammalian PDC. Based on the addition model, PDC would 

comprise 60E2+12E3BP associated with 60 or 30 E1 and 12 or 6 E3 at maximal 

occupancy based on 1:1 or 2:1 stoichiometries of binding. Similarly, the 

substitution model would then comprise 48E2+12E3BP with respective binding to 

60 or 30 E1 and 12 or 6 E3 subject to binding stochiometries being 1:1 or 2:1. 

However further work is required to confirm and elucidate the precise molecular 

organisation and subunit composition of the mammalian PDC. 

1.4 PDC regulation 

As PDC is located at a significant point in the cellular metabolic pathway 

channelling intermediates into the TCA cycle, it controls a vital regulatory step 

in carbohydrate utilisation. PDC regulation is of crucial importance in balancing 

metabolism towards glucose or fatty acids and ketone bodies (Randle, 1986). 

Thus, it is down-regulated during starvation or diabetes in order to preserve 

carbohydrate reserves for various tissues that are dependent primarily upon 

glucose for their energy metabolism, while it is up-regulated after a full meal to 

maximise energy production and fatty acid biosynthesis. Control of PDC plays an 

important role in dictating the fuel used by various tissues of the body in 

different nutritional and hormonal states. Its regulatory mechanisms are 

sensitive and yet efficient enough to accommodate the complexities of tissue-

specific metabolic requirements. PDC is regulated by two major mechanisms: 

the first being through metabolite inhibition or the end-product inhibition, while 

the second involves covalent modification of the complex by means of a 

phosphorylation/dephosphorylation mechanism.  

Mediation of the activity state of PDC via phosphorylation/dephosphorylation 

and the factors associated with it are described as ‘acute or short term’ 

regulation (Fig. 1.12). This control is exercised by a specific PDC protein kinase 

(PDK; EC 2.7.1.99) tightly bound to the complex and a specific loosely bound 

PDC phosphatase (PDP; EC 3.1.3.43). Both PDK and PDP interact with the rate-

limiting E1 component of PDC (Harris, et al., 2002), phosphorylating any one of 

the three different serine residues (Ser264, Ser271, Ser203) of human E1α, 

resulting in enzyme inactivation (Bao, et al., 2004a; Kolobova, et al., 2001). The 
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dephosphorylation by PDP in the presence of Mg2+ and Ca2+ ions results in PDC 

reactivation (Linn, et al., 1969; Wieland, 1983).  

Four PDK isoforms (1-4) are expressed in various mammalian tissues. PDK1 and 4 

are highly expressed in the heart, liver and muscle, while PDK3 is prevalent in 

kidney, brain and testes and PDK2 is present in most tissues (Bowker-Kinley, et 

al., 1998; Gudi, et al., 1995; Sugden and Holness, 2003). These isoforms can 

form both homo- and heterodimers (Boulatnikov and Popov, 2003) and display 

different kinetic properties and specific activities (Bowker-Kinley, et al., 1998; 

Gudi, et al., 1995; Popov, et al., 1994; Rowles, et al., 1996). Although these 

kinases phosphorylate serine residues, interestingly they are markedly different 

from other serine/threonine protein kinases and do not exhibit any sequence 

similarity. However, they resemble the histidine protein kinases in their 

sequence (Popov, et al., 1992) and three-dimensional structures (Machius, et al., 

2001; Popov, et al., 1993; Steussy, et al., 2001), despite differences in their 

catalytic mechanisms (Harris, et al., 2002; Steussy, et al., 2001; Tuganova, et 

al., 2001). PDK1 phosphorylates all three Ser residues on E1α, while the other 

three isoforms can act only on sites 1 and 2. Moreover, all four kinases 

phosphorylate the three serine sites with different efficiencies (Korotchkina and 

Patel, 2001). Phosphorylation at a single site is sufficient for complete 

inactivation and is independent of the status of the two remaining sites 

(Kolobova, et al., 2001; Korotchkina and Patel, 1995; Korotchkina and Patel, 

2001; Patel and Korotchkina, 2001; Yeaman, et al., 1978). PDKs1-3 interact with 

the E2 inner LD while PDK4 interacts mostly with the E3BP-LD (Roche, et al., 

2003). The interaction with the LD brings about a conformational change in the 

PDK, thus causing an increase in its activity. Furthermore, NADH is thought to 

stimulate kinase activity by changing the reduced/acetylated state of the E2-LDs 

(Bao, et al., 2004a; Bao, et al., 2004b; Patel and Korotchkina, 2001; Roche, et 

al., 2003). Only 1-2 molecules of PDK are present per PDC complex (Yeaman, 

1989) and this limited number is sufficient to completely inactivate PDC. 

Previous binding experiments have also suggested the formation of transient 

cross-links between adjacent pairs of E2, that consequently result in a ‘hand-

over-hand’ mechanism of PDK migration on the surface of the complex (Liu, et 

al., 1995). 
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Dephosphorylation reactivates PDC, and is catalysed by two PDP heterodimeric 

isoforms (PDP1 and 2) each comprising a catalytic and regulatory subunit. 

Analogous to PDK, PDP expression is tissue-specific. PDP1 is expressed in muscle 

while PDP2 is predominantly present in liver and adipose tissue (Huang, et al., 

1998). PDP1 the dominant isoform, requires Mg2+ and is stimulated by 

micromolar concentrations of Ca2+ binding to E2-LD (Damuni and Reed, 1987; 

Denton, et al., 1972; Linn, et al., 1969; Pettit, et al., 1972; Reed, et al., 1996); 

this interaction is further enhanced by the presence of lipoamide (Chen, et al., 

1996; Pettit, et al., 1972). 

Pyruvate, NADH/NAD+ and acetyl-CoA/CoA ratios act as key effectors in 

feedback inhibition of PDC by influencing the oxidation reduction reaction and 

acetylation state of the lipoamide cofactors inducing ‘short term’ regulation of 

the complex. While pyruvate inhibits PDK and acts as a positive inhibitor, NADH 

and acetyl-CoA activate PDK and thereby act as negative effectors. This ‘short-

term’ feedback control mechanism is tightly regulated under normal body 

requirements as is shown schematically in Fig.1.12. 

 

 

Figure 1.12 Short-term regulation of PDC activity 
The various activators and inhibitors of PDC (PDHC) and its regulatory enzymes are 
shown. Adapted from Strumilo (2005). While thiamine diphosphate (TDP) acts as a key 
allosteric modulator, inducing conformational and functional changes in PDC, the divalent 
ions Mg2+, Ca2+ and Mn2+ significantly increase the effect of TDP towards this modulation.  
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Long-term regulation of PDC depends on hormonal or nutritional changes and 

involves the participation of transcriptional and translational mechanisms (Patel 

and Harris, 1995; Patel and Korotchkina, 2003). A major determinant of PDC 

activity under various physiological conditions is the amount of PDK. For 

example, starvation increases PDK2 expression in the liver and kidney only at the 

level of transcription, while dominant regulation of PDK4 expression in these 

tissues is at the level of translation (Harris, et al., 2001). In addition, PDK2 and 

PDK4 expression increases in many tissues during starvation, diabetes and 

hyperthyroidism. While insulin exposure in diabetic rats suppresses PDK2 

expression, it is less effective in decreasing PDK4 expression (in the presence of 

high levels of fatty acids), suggesting that PDK2 activity may account for short-

term inhibition of PDC, while PDK4 activity may correspond to long-term 

inhibition of the complex, leading to several disease states (Harris, et al., 2001). 

1.5 PDC defects 

1.5.1 Genetic defects 

PDC is involved in several pathological conditions. Aerobic glucose oxidation is 

an essential requirement for the brain, which is heavily dependent on PDC for 

energy production. Deficiency of PDC owing to defects in one or more of its 

constituent enzymes results in accumulation of lactate and causes primary lactic 

acidosis in infants and young children. The presentation of PDC deficiency is 

metabolic and neurological, as the muscle and brain tissues appear to be the 

primary affected sites. While the metabolic form manifests as lactic acidosis, 

the neurological manifestations include hypotonia, weakness, ataxia, spasticity, 

cerebellar degeneration, seizure, lethargy, blindness, mental retardation, Leigh 

syndrome and even death (Brown, et al., 1989a; 1994; De Vivo, 1998; Di Mauro 

and De Vivo, 1996; Robinson, 1995; Robinson, et al., 1987). However, mild cases 

where patients survive into adulthood are constantly being found, thus 

expanding the clinical spectrum of PDC deficiency disease (Brown, et al., 2002b; 

Head, et al., 2005; Seyda, et al., 2000). Current treatments include prescription 

of a carbohydrate-restricted high-fat ketogenic diet (Wexler, et al., 1997; 

Wijburg, et al., 1992), supplementation with thiamine/vitamin B1 or cofactors 

like lipoic acid or ThDP (Byrd, et al., 1989; Naito, et al., 1998; Naito, et al., 
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2002), and the administration of the PDK inhibitor dichloroacetate (DCA) that 

reactivates PDC (Morten, et al., 1999). However, all these treatments have met 

with only moderate success.  

In spite of the genetic and biochemical complexity, the great majority of cases 

of PDC deficiency are due to mutations in the gene encoding the E1α subunit 

(Robinson, 1995). More than 80 mutations have been identified so far, which 

have been classified into three categories: missense, nonsense and 

insertion/deletion mutations (Fouque, et al., 1998; Lissens, et al., 2000). The 

severity of the disease depends on the nature of the mutation. PDHA1 is located 

on the short arm of the X chromosome (Brown, et al., 1989b; Dahl, et al., 1992; 

Szabo, et al., 1990). Owing to X chromosome inactivation of the normal E1α 

gene, the expression pattern is mosaic in women. In contrast, males are 

hemizygous and likely to be more severely affected by disruptive mutations 

(Lissens, et al., 2000). The PDHA2 gene, exclusively expressed in the testes and 

encoding for E1α, has also been identified, and no mutations have been observed 

to date (Dahl, 1995; 1990). Only two missense mutations in the PDHB gene 

encoding E1β have been identified so far (Brown, et al., 2004). 

While the majority of PDC deficient patients harbour mutations in E1α, a few 

have mutations in the E2, E3BP or E3 proteins of PDC. Only two mutations have 

been reported in E2 to date: a missense mutation of phenylalanine (mutated to 

leucine) in the E2 active site, and the removal of a glutamic acid residue from 

the outer LD owing to a 3-bp ‘in frame’ deletion within the DLAT gene (Head, et 

al., 2005). However, a third E2 mutation of a valine (Val455) residue in the CTD, 

close to the active site has been recently investigated in our laboratory (Singh, 

2008). E3BP deficiency is an extremely rare inborn error of metabolism resulting 

from the premature termination of the PDX1 gene product encoding E3BP, with 

only 12 patients being identified so far (Aral, et al., 1997; Brown, et al., 2002b; 

De Meirleir, et al., 1998; Dey, et al., 2002; 2003; Geoffroy, et al., 1996; Ling, et 

al., 1998; Marsac, et al., 1993; Ramadan, et al., 2004). Premature termination 

of E3BP can be caused by deletions in the mitochondrial import sequence (Ling, 

et al., 1998) or coding regions (Aral, et al., 1997) or due to exon skipping (Aral, 

et al., 1997). Interestingly, patients with E3BP deficiency show significant PDC 

residual activity (10-20 % of controls) (Marsac, et al., 1993), suggesting that 
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mammalian E2 has retained a residual capacity to bind E3 even in the complete 

absence of E3BP. This was further confirmed by in vitro binding studies 

(McCartney, et al., 1997). The residual activity is thought to be the major factor 

responsible for prolonged survival, a feature exhibited by most E3BP deficient 

patients. Some cases of E3BP deficiency exhibit a milder form of the disease 

(Head, et al., 2005).  

E3 deficiency accounts for a number of well characterized cases with most 

mutations present in the FAD, central and interface domains, affecting FAD 

binding, catalysis and dimerisation (Odievre, et al., 2005). While over 20 cases 

having been identified, the majority of them are found among Ashkenazi Jews, 

exhibiting a single substitution of Gly194 with cysteine in the NAD domain (Hong, 

et al., 2003). As E3 is common to PDC, OGDC and BCODC, its impairment results 

in deleterious consequences with high levels of plasma and urine lactate being 

produced (Hong, et al., 1997; Shany, et al., 1999). 

1.5.2 Alzheimer’s disease 

Alzheimer’s disease (AD) is the most common age related neurodegenerative 

disease. The main pathway for glucose oxidation is the TCA cycle, which is 

initiated by acetyl-CoA generated by PDC. Therefore PDC activity is critical for 

providing energy to the brain. Decreased activity of metabolic enzymes like PDC, 

OGDC and isocitrate dehydrogenase have been associated with the development 

of AD (Bubber, et al., 2005; Hoyer, 2004; Sheu, et al., 1994). Diminished 

metabolism always accompanies clinical AD. However, reduction in glucose 

metabolism can precede overt clinical symptoms by decades (Reiman, et al., 

1996; Small, et al., 1995). Slight reductions in brain metabolism impair 

judgement, memory, orientation and other brain functions within seconds. 

Severe and prolonged impairments of brain glucose oxidation lead to more 

severe brain damage including permanent dementia (Plum and Posner, 1980). 

However, treatment with glucose and insulin improves memory in AD patients 

transiently (Craft, et al., 2000). Recent experiments suggest that abnormal 

glucose metabolism is critical to the pathophysiology of AD (Blass and Gibson, 

1999). Even slight reductions in brain metabolism reduce brain function, 

resulting in an increased production of amyloid beta peptide and 
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hyperphosphorylation of tau considered to be the hallmarks of AD (Gabuzda, et 

al., 1994; Planel, et al., 2004). The molecular mechanism behind the decrease 

of PDC activity in AD is still unclear but oxidative stress is suggested to be one of 

the possibilities (Blass and Gibson, 1999; Sims, et al., 2000), where the brain is 

unable to handle the increased production of reactive oxygen species (Shi, et 

al., 2005). Defects in PDC may also impair the production of acetylcholine and 

other neurotransmitters derived from the TCA cycle including glutamate and 

GABA (Blass and Gibson, 1991; Gibson and Blass, 1976; Klivenyi, et al., 2004; 

Shoffner, 1997).  

1.5.3 Primary biliary cirrhosis (PBC) 

Primary biliary cirrhosis (PBC) is a chronic progressive cholestatic autoimmune 

liver disease of uknown etiology. It is viewed both as a model and paradox for 

autoimmune diseases (Gershwin and Mackay, 1991). PBC is primarily a disease of 

middle-aged women, with most cases occurring between 40-60 years (Iwayama, 

et al., 1992; Mackay, et al., 2000). Histopathologically, PBC is characterized by 

chronic progressive destruction of the biliary epithelial cells lining the small 

intrahepatic bile ducts with portal inflammation, leading initially to fibrosis and 

later to cirrhosis (Nakanuma and Ohta, 1979; Nakanuma, et al., 1995). The 

diagnostic determinant of PBC is the presence of a high level of anti-

mitochondrial antibodies (AMA), long before clinical signs or symptoms appear 

(Gershwin, et al., 1998).  

A major advancement towards defining the pathogenesis of PBC has been the 

precise identification of the mitochondrial proteins that are targeted by the 

anti-mitochondrial antibodies. A puzzling feature of PBC is that the autoimmune 

attack is predominantly organ specific (in the liver), but the mitochondrial 

autoantigen is not tissue specific. Athough the AMA targets the E2 component of 

PDC, OGDC and BCODC, E3BP and in some cases E1α-PDC, its primary reactivity 

(> 95%) is directed against E2-PDC (Coppel, et al., 1988; Van de Water, et al., 

1988a; Yeaman, et al., 1988). In PDC, immunogenicity is brought about by the E2 

LDs, with the inner LD being the predominant epitope and the outer LD being a 

relatively weak one (Fussey, et al., 1990; Surh, et al., 1990; Van de Water, et 

al., 1988b). Several studies have shown the importance of bound lipoic acid in 
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AMA recognition (Fussey, et al., 1990; Leung, et al., 1990; Quinn, et al., 1993). 

An additional target of some AMA is the E1α subunit of PDC, with its autoepitope 

located at the phosphorylation and thiamine pyrophosphate binding site 

(Iwayama, et al., 1991). Cross-reactivities of sera have also been detected for E2 

from OGDC and BCODC (Fussey, et al., 1988; 1991), as well as E3BP-PDC (Surh, 

et al., 1989; Yeaman, et al., 1988) and both E1-PDC subunits (Fussey, et al., 

1989). Additionally, aberrant expression of E2 and E3BP antigens on the 

membrane of biliary epithelial cells has been observed in PBC affected 

individuals (Joplin and Gershwin, 1997; Joplin, et al., 1997). The break-down of 

tolerance and mechanisms of tissue injury and disease caused by these AMA in 

PBC is unclear and remain to be defined.  

1.5.4 Diabetes 

Diabetes is a consequence of the imbalance between glucose and lipid 

metabolism. PDC regulates fuel use and synthesis. In the well-fed state, liver 

PDC is active promoting the synthesis of fatty acids (FA), while during starvation, 

its activity is significantly reduced to conserve the 3-carbon compounds for 

gluconeogenesis. However, when there is an excessive production of glucose in 

the liver via gluconeogenesis, there is a highly significant increase in the blood 

glucose levels (in excess of 10 mM) (Boden, 2001; Randle, et al., 1994). 

Increasing the activity of PDC in the peripheral tissues is an attractive method 

for excessive glucose disposal. Studies in hepatoma cells showed elevated 

expression of PDK2 and PDK4 (upregulated by glucocorticoids and the 

peroxisome proliferator-activated receptor α ligand (PPARα) WY-14,643) during 

starvation and diabetes, which can be down-regulated by insulin to a certain 

extent (Huang, et al., 2002). While insulin reduces the glucocorticoid up-

regulated expression of PDK2 and PDK4, it is not effective in reducing the effects 

of the PPARα ligand WY-14,643, that acts as a mimic of FA. The diminished 

effect of insulin, characteristic of diabetes (Type II) is partly responsible for the 

failure of the liver to reduce gluconeogenesis, thus leading to hyperglycemia. 

Hence, diabetes is referred to as a condition of ‘starvation amidst plenty’, 

where the PDKs remain in the starvation mode in spite of the supplementation of 

nutrients by insulin. As PDK2 and PDK4 modulate the energy flux in the liver, 

they are attractive therapeutic drug targets for diabetes, as inhibition would 
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increase glucose uptake in both liver and peripheral tissues in the case of PDK2, 

and in peripheral tissues only in the case of PDK4 (Mayers, et al., 2005). Some 

PDK2 inhibitors developed recently lowered glucose levels and increased PDC 

activity in obese Zucker rats which are used as model animals for type II 

diabetes (Mayers, et al., 2003; Morrell, et al., 2003). The development of a 

sound and efficient PDK inhibitor for all PDK1-4 isoforms poses a challenging 

problem in the search for a therapy for type-II diabetes, as these PDKs possess 

different properties and structures.  

1.6 Project aims 

An abundance of structural, biochemical and biophysical information has been 

gathered over the years for the various components/enzymes of prokaryotic (B. 

stearothermophilus and A. vinelandii) and eukaryotic (S. cerevisiae, bovine and 

human) PDCs and serves as a useful background for this research project. 

Although several of the recently solved mammalian structures: namely human E1 

(Ciszak, et al., 2001; 2003), inner E2 LD (Howard, et al., 1998), E3 (Brautigam, 

et al., 2005) and E3 complexed with the E3BP-SBD (Brautigam, et al., 2006; 

Ciszak, et al., 2006) provide great insights into the binding and functioning of 

the individual enzymes, little is known of the mammalian PDC core that serves 

as the essential framework for the association and efficient functioning of the 

complex. In the light of the importance of PDC in cellular metabolism, 

elucidating the stoichiometry of association of the various components and the 

macromolecular organisation of the core is imperative for understanding its 

regulatory and metabolic functions in detail and the basis of its impairment in 

disease states. Previous microcalorimetry experiments (Brown, 2002a), AUC, 

SAXS and isothermal titration calorimetric (ITC) experiments (Brown, 2002a; 

Smolle, et al., 2006) have indicated a 2:1 binding stoichiometry between 

recombinant proteins E3BP:E3 and E2:E1 of human PDC. This implies the 

formation of so called ‘cross-bridges’ spanning the core surface, forming a well 

connected network of subunits that could potentially facilitate faster movement 

of the catalytic intermediates and regulatory molecules PDK and PDP. However 

these data were obtained from experiments conducted on monomeric E2 and 

E3BP constructs that possessed only the SBD or LD domains, and not the CTD. 

Therefore, it is of crucial significance and importance to test these binding 
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stoichiometries for fully-assembled core (using full-length E2 and E3BP) that may 

pose greater geometric constraints, and test the feasibility of a 2:1 (E3BP:E3 and 

E2:E1) binding stoichiometry in a more physiologically relevant system. 

Another important question to be answered in the field of human PDC research 

is what is the precise molecular organisation of the core that provides the basic 

structural and mechanistic framework for its underpinning optimal functioning of 

the entire complex? Two E2+E3BP models have been proposed: a 60+12 additive 

model based on cryo-EM analysis and a 48+12 substitution model based on AUC 

and SAXS studies. 

This project focussed on the characterisation and determination of the solution 

structures of recombinant human E2 and E2/E3BP cores (Chapter 5) and CTD 

truncated E2/E3BP core (Chapter 6) by means of biophysical techniques 

including AUC, SAXS, SANS and negative stain EM. The first ever solution 

structures of the full and truncated E2/E3BP cores were obtained using SAXS and 

SANS in combination with molecular modelling approaches. This project also 

includes investigation and confirmation of the stoichiometry of association (1:1 

or 2:1) of recombinant human E2/E3BP core:E3 by a range of techniques, 

including AUC, GFC and SANS (Chapter 7). In addition, validation of the exact 

subunit organisation of the E2/E3BP core was carried out using various 

approaches such as SANS, [14C] radiolabelling and mathematical modelling 

(Chapter 7). Finally, investigation of core stability (E2 and the full and truncated 

E2/E3BP cores) using circular dichroism (CD) and tryptophan fluorescence was 

also conducted and the data are presented in the relevant chapters. 

The design of new CTD truncated constructs involving standard molecular 

cloning techniques is described in Chapter 4. All biophysical methods (Chapter 2) 

require high yields of pure protein. This entailed large scale purification 

employing standard chromatographic techniques as described in Chapter 4. 
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Chapter 2 
Introduction to biophysical techniques 

2.1 Introduction 

This chapter summarises the biophysical techniques employed in this detailed 

investigation of subunit and structural variations in the human E2/E3BP core of 

PDC: analytical ultracentrifugation (AUC), small angle x-ray/neutron scattering 

(SAXS/SANS), circular dichroism (CD), tryptophan fluorescence and negative 

stain electron microscopy (EM). 

2.2 Analytical ultracentrifugation (AUC) 

Constructed by Theodor Svedberg in the 1920s, the first ultracentrifuge was 

extensively used in the field of polymer research during the 1940s and 1950s, but 

was superseded by simpler techniques like chromatography and gel 

electrophoresis in the 1970s. However, the development of modern, commercial 

computer-based AUCs in the 1990s by Beckman Instruments (Palo Alto, USA) in 

the form of the Optima XL-A and XL-I triggered a new era in solution interaction 

analysis. 

Ultracentrifugation involves the spinning of macromolecules at very high speeds, 

typically 3,000 to 60,000 rpm, resulting in the movement of particles through 

the solvent in the direction of the centrifugal force and sedimentation as a 

function of time, dependent on the particle’s mass, size and shape. 

Sedimentation results in depletion of the solute from the meniscus with the 

formation of a distinct solute/solvent boundary. The movement of this boundary 

can be observed by monitoring the solute concentration using absorbance (Fig. 

2.1) (Giebeler, 1992; Hanlon, et al., 1962; Schachman, et al., 1962), 

interference (Laue, 1994; Schachman, 1959; Yphantis, et al., 1994), schlieren 

(Svedberg and Pedersen, 1940), or fluorescence (Schmidt and Riesner, 1992) 
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optics. Although both absorbance and interference optics were used for the AUC 

experiments in this study, only interference data are presented in this thesis. 

 

Figure 2.1 Optical system of the XL-A analytical ultracentrifuge 
Schematic representation of the absorbance optical system in the XL-A analytical 
ultracentrifuge. Taken from Ralston (1993). 

 

AUC has several advantages over complementary biophysical methods. As 

molecules are characterised in solution without any isotope labelling, chemical 

modification or standards for comparison, this more closely matches the ionic 

and hydrated environment within a cell than most other biophysical techniques. 

In addition to being non-destructive, rapid and simple, the various optical 

systems used for data acquisition and the different sample cell path lengths 

permit analysis of the solution behaviour of any macromolecule over a large 

range of sample concentrations. Moreover, by adjusting the rotor speed, AUC 

can be used to analyse macromolecules over a large molecular weight range 

(Lebowitz, et al., 2002). 
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AUC provides two complementary views of macromolecule behaviour in solution, 

namely sedimentation velocity (SV) and sedimentation equilibrium (SE). SV 

provides first-principle hydrodynamic information about the size, shape and 

heterogeneity of the molecule. On the other hand first-principle thermodynamic 

information on the molar mass, association constants, stoichiometries of 

interaction and non-ideality are obtained from SE data. In this thesis, AUC was 

used to determine the homogeneity, sedimentation coefficient, apparent 

molecular weight and stoichiometry of constituent enzymes of PDC, in particular 

the oligomeric E2/E3BP core. 

2.2.1 Sedimentation velocity (SV) 

In a SV study the solute and solvent are loaded into separate channels of a two-

channel centrepiece (Fig. 2.2) and subjecting it to centrifugation at high rotor 

speeds (typically 20,000-60,000 rpm), with the exact rotor speed chosen 

dependent on the size of the macromolecule. At the beginning of the 

experiment the macromolecule is distributed homogeneously throughout the 

radial range recorded. However, during the run the high centrifugal force 

depletes most particles from the meniscus, forming a boundary that moves with 

time until all the particles form a pellet towards the bottom of the cell (Fig. 

2.2A). Macromolecules are separated as the result of their different rates of 

migration through the centrifugal field, and the concentration distribution across 

the cell at various times during sedimentation is monitored by a set of 

absorbance/interference boundary profiles (Fig. 2.2B). The rate of movement of 

this boundary gives the sedimentation coefficient ‘s’. This parameter is 

dependent both on the mass of the sedimenting species and the frictional 

coefficient, which in turn is a measure of its effective size, shape and 

hydrodynamic hydration. 

2.2.1.1 Theory 

The theory of sedimentation velocity can be derived in two ways, (1) mechanical 

and (2) thermodynamical (Tanford, 1961). The latter involves a rigorous 

treatment of components in a sedimenting system even in extreme conditions of 

non-ideality and polydispersity. An outline of the theory is summarized below. 
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Figure 2.2 Sedimentation velocity AUC 
(A) Schematic diagram of a double-sector centrepiece used in SV AUC. The sample and 
reference solvent are placed in different sectors. (B) The movement of the sedimenting 
boundary detected via interference or absorbance optics is indicated. Taken from www-
bioc.rice.edu/bios576/AU/AU_Page.html 

 

2.2.1.1.1 The mechanical picture of SV  

The theory given by Tanford (1961) is summarised here. A particle suspended in 

solvent and subjected to a gravitational field experiences several forces as 

shown in Fig. 2.3.  

The sedimenting or gravitational force, Fs, is proportional to the mass (m, g) of 

the particle and the acceleration. For a particle subjected to a rotation, this 

acceleration is determined by the distance from the axis of rotation, r (cm), and 

the square of the angular velocity, ω (rad s-1).  

The gravitational force on the particle is then  

rmF 2
hs ω=         (2.1) 

where mh is the hydrated mass of the particle (g) having a corresponding 

hydrated volume.  



Introduction to biophysical techniques   54 

 

Figure 2.3 Forces on a particle under the influence of a gravitational field 
The various forces experienced by a solvated particle of mass, m under the influence of a 
gravitational field. The centrifugal, buoyant and frictional forces are denoted as Fs, Fb and 
Ff respectively. Taken from www-bioc.rice.edu/bios576/AU/AU_Page.html 

 

The hydrated mass can in turn be defined as 

)1(
N
M

m 1
A

h δ+=          (2.2) 

where δ1 is the hydration (or solvation) of the particle (g of solvent per g of 

solute), M is the molar mass of the particle (g/mol) and NA is the Avogadro’s 

number (6.023 x 1023 mol-1). Substituting equation 2.2 into 2.1 gives 

r)1(
N
M

F 2
1

A
s ωδ+=

rmF 2
0b ω−=

         (2.3) 

From Archimedes principle, the buoyant force, Fb, is equal to the weight of the 

fluid displaced and expressed as, 

         (2.4) 

The mass of the solvent displaced by the particle (m0) in the case of infinite 

dilution can be defined in terms of uh and m0 with, 

( )0
11

A
h N

M
u υδυ +=          (2.5) 
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where uh is the velocity of the particle,  and ρ0 are the specific volume and 

density of the solvent, respectively.  

But 0
0
1 1 ρυ = , therefore 
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         (2.7) 

Now the total force acting on the particle is given by 

          (2.8) 

Substituting equations 2.3, 2.4 and 2.7 into equation 2.8 gives 
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        (2.9) 

This resultant force Ft opposes the frictional drag on the particle that moves 

through the viscous liquid with a constant velocity such that 

FF = ufFf =,         (2.10) 

where f is the frictional coefficient of the sedimenting particle 

Combining equations 2.9 and 2.10 gives 
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The sedimentation coefficient is then defined as 
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Simplistically, at a given radial position, r 

dt
dr

r
1

r
ur

s 22 ωω
==

pct E+=

         (2.12) 

However, the consideration of diffusion poses limitations to equation 2.12, but 

this is overcome by the thermodynamic treatment of sedimentation. 

2.2.1.1.2 The thermodynamic picture of SV 

The thermodynamic treatment of SV data as derived by Tanford (1961) is 

presented here. The high velocities employed during SV result in the 

establishment of equilibrium with the formation of a steep radial concentration 

gradient across the solution. At this equilibrium, the total chemical potential (µt) 

within the solution will be constant 

µµ           (2.13) 
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         (2.14) 

∂∂

∫ ∂=∂ rF

Here µc is the chemical potential and Ep is the mechanical potential energy. At 

mechanical equilibrium, the mechanical potential energy is exactly equal to the 

kinetic energy, Ek: 
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Substituting equation 2.15 into equation 2.14 yields 

2ct Mr
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ω
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∂
=

∂

∂
         (2.16) 

This can be expressed as a thermodynamic flow equation  
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Here J is the cross sectional flow (mol cm-2 s-1) and L is a coefficient that is a 

function of temperature, pressure and composition. Equation 2.17 can be 

reduced to the form (van Holde, 1971) 
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fNC A=where L , R is the gas constant, T is the temperature and C is the solute 

concentration. This gives the Lamm equation (Fujita, 1975)  
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From the above equation the sedimentation (s) and diffusion (D) coefficients are 

obtained and defined as 
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It is clearly seen from equation 2.20 that sedimentation opposes diffusion, and 

the coefficients of sedimentation and diffusion are related by the equation 
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−
=        (2.22) 

The sedimentation and diffusion coefficients, s and D are reported in Svedberg 

units, S (10-13 s) and cm2 s-1, respectively. 

Protein molecules in solution carry with them a volume of bound water owing to 

the polar interaction of surface residues with water, and also due to the 

entrapment of water within clefts/cavities present in the molecule. This is 
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known as hydration (δ) and, as it depends on the surface composition and 

structure of the protein, it is difficult to quantify theoretically (Squire and 

Himmel, 1979) or measure experimentally (Kuntz and Kauzmann, 1974) with a 

high degree of accuracy. Although the hydration of proteins has a negligible 

effect on some experimentally measured parameters such as the radius of 

gyration, Rg (as measured by small angle scattering), it significantly affects 

others such as the sedimentation coefficient, s. 

The frictional coefficient of an anhydrous sphere (f0) is given by Stokes’ Law 

(Tanford, 1961) 

00 R6f πη=           (2.23) 

where η is the viscosity of the solvent (Poise) and R0 is the anhydrous radius of 

the particle (cm)  

3
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The ratio of f0 to the experimentally measured frictional coefficient f can be 

considered to be the product of two terms (Squire and Himmel, 1979; Teller, 

1973) 
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The first term hff  represents the deviation of f from fh owing to hydrodynamic 

hydration, while the second term 0h ff  reflects the deviation from sphericity of 

the shape of the molecule and is known as the Perrin ratio, P (Perrin, 1936). 

The maximum value of hydration δmax can be determined by setting the Perrin 

function, P, to its minimum possible value (P = 1 for a sphere), and calculating 

the deviation of 0ff  due to hydration. 

From equations 2.23 to 2.25 
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The hydrated volume Vh and the anhydrous frictional coefficient f0 are described 

by the equations 
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The Svedberg equation in terms of the frictional coefficient of a molecule can be 

written as (van Holde, 1971) 
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Substituting equations 2.26-2.28 into equation 2.29, setting P = 1 and re-

arranging for δ gives 
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This δmax represents the maximum hydration that can be calculated for a 

molecule given, M, υ  and s0. Typically this value ranges from 0.15-0.50 g/g 

although most proteins are thought to have a hydration of about 0.3-0.4 g/g 

(García de la Torre, 2001). 

Based on the Svedberg equation, the anhydrous (s0) and hydrated (sδ) 

sedimentation coefficients are defined as (van Holde, 1971) 
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Rearranging equation 2.31 for sδ gives (Tanford, 1961) 
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Substituting for Vh from equation 2.27 into 2.32, gives the relationship between 

the hydrated (sδ) and the anhydrous (s0) sedimentation coefficients. 
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Combining the Svedberg (van Holde, 1971) and Stokes’ equations (Tanford, 1961) 

and substituting for all constants with values for water at 20oC, the 

sedimentation coefficient ssphere of an anhydrous spherical particle in terms of M 

(g/mol), υ  (ml/g) and ρ (g/ml) can be obtained. 
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Spherical proteins have minimal surface area exposed to solvent and 

consequently a low frictional coefficient f0. However, any asymmetry in particle 

shape increases the interaction of protein residues on the surface with the 

solvent, causing the value of s to decrease as a consequence. 

To compare sedimentation coefficients obtained under different experimental 

conditions, the value of s obtained experimentally is corrected to standard 

conditions (in water at 20oC) using the equation (van Holde, 1971) 
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where the subscripts T and b refer to the temperature and buffer conditions 

used in the experiment, and 20,w indicates standard conditions in water.  
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2.2.1.2 SV data analysis 

Although several approaches have been developed for the analysis of SV data 

e.g. SEDANAL (Stafford, 1992; 1994; Stafford and Sherwood, 2004), UltraScan 

(Demeler, 2004; 2005) LAMM (Behlke and Ristau, 1997), only methods used in 

this thesis will be described, namely the sedimentation coefficient distribution 

and finite element analyses as implemented in the program SEDFIT (Schuck, 

2000; Schuck, et al., 2002).  

The macromolecular concentration distribution χ as a function of time t and 

radial position r under the influence of sedimentation and diffusion processes in 

a sector-shaped sample cell is described by the Lamm equation (Lamm, 1929), 
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In SEDFIT the SV profiles are directly modelled with numerical finite element 

solutions of the Lamm equation. SEDFIT has advantages over other methods in 

terms of achieving a higher resolution and being able to model SV profiles even 

when no clear visible boundary is observed in the actual data due to the effects 

of diffusion (Lebowitz, et al., 2002; Schuck, 2000). Moreover, it is also capable 

of modelling a wide range of species, from salts (typically s < 0.1 S) to large viral 

capsids (s > 1000 S). SEDFIT also contains a comprehensive set of tools to adjust 

the analysis for the special noise structure of interference optical data (Schuck 

and Demeler, 1999). Several models are available to the user to best fit the 

data. Most commonly used ones include the ‘non-interacting species model’ that 

can be used to fit a maximum of 4 species, and the ‘interacting species model’ 

that is used for fitting self-association reactions such as monomer-dimer 

association etc. 

The differential sedimentation coefficient distribution, c(s) developed by Schuck 

(2000) requires no prior knowledge of the number of species present in the 

sample or their interaction(s). The c(s) deconvolutes diffusion effects by direct 

boundary modelling of the SV profiles as distributions of Lamm equation 

solutions. c(s) is defined as  
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where a(r,t) represents the observed sedimentation data, c(s) is the 

concentration of species with sedimentation coefficients between s and s+ds, 

χ(s, D, r, t) is the solution of the Lamm equation for a single species and ε is the 

noise component. In simple terms, the species present in an SV system have 

specific sedimentation (s) and diffusion (D) coefficients, and therefore 

contribute to the radial- and time-dependent absorbance/interference a(r,t) 

that is proportional to the Lamm equation solution χ(s, D, r, t) and the loading 

concentration. However, this approach assumes an average frictional ratio f/f0 

for all species in the sample, and that none of the species interact with one 

another on the time-scale of the experiment. The c(s) distribution can also be 

used to analyse mixtures of interacting proteins: however, the peaks in the c(s) 

profile may then correspond to interconverted species rather than any of the 

individual sedimenting macromolecules. This can be overcome by the analysis of 

various concentrations of the same protein mixture. The area under the peaks in 

the c(s) sedimentation coefficient distributions can be integrated to yield 

weight-average sedimentation coefficients. 

All SV analysis carried out in this thesis involved the use of the c(s) distribution 

as the first step to determine the number of species present in the experimental 

sample, and to obtain initial estimates of their sedimentation coefficients and 

loading concentrations. All c(s) analysis resulted in less than four species and the 

data were subsequently modelled using finite element analysis, via the non-

interacting species model to determine true sedimentation coefficients for all 

species. The sedimentation coefficients were then corrected for the effect of 

concentration by extrapolation to infinite dilution, to yield the value of s 

independent of concentration, . 

2.2.2 Sedimentation equilibrium (SE) 

In SE experiments, macromolecules are subjected to a lower centrifugal field 

(i.e. low rotor speeds). As the particles in the sample begin to sediment towards 

the bottom of the cell forming a concentration gradient, the process of diffusion 

opposes the force of sedimentation (Fig. 2.4A). After an appropriate period of 
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time, these two opposing forces reach thermodynamic equilibrium resulting in 

no net movement of molecules within the concentration gradient. At this stage 

the distribution of each species in the sample within this concentration gradient 

is described by an exponential as shown in Fig. 2.4B. As a consequence higher 

molecular weight species will be located at the bottom of the cell, while the low 

molecular species will dominate at the top. Parameters such as the molecular 

weight and association/dissociation constants can be determined from a typical 

SE run. As with SV, equations pertaining to SE can be derived from either a 

mechanical or thermodynamical standpoint.  

 

Figure 2.4 Schematic diagram of SE analytical ultracentrifugation 
(A) Schematic representation of the forces involved during an SE run. The increased 
sedimentation of the solute (black arrow) with radial distance is balanced by the reverse 
flow of diffusion (open arrow) that increases with the concentration gradient. (B) 
Characteristic SE profile a(r) as a function of radial position r. (A) was taken from 
http://www-bioc.rice.edu/bios576/AU/AU_Page.html 

 

2.2.2.1 Theory 

2.2.2.1.1 The mechanical picture of SE 

In SE, a state of equilibrium is attained by the balance of the opposing forces of 

sedimentation and diffusion. In this state, the concentration gradient of a 

homogeneous single ideal macromolecule in a two-component system is given by 

(Svedberg and Pedersen, 1940; Tanford, 1961; van Holde, 1971) 
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where c is the macromolecular concentration (M) and R is the gas constant 

(8.314 x 107 erg K-1 mol-1). Ideality here refers to particles in solution that do not 

interact with each other. Therefore, for the ideal single species plotting a graph 

of  versus r2, results in a straight line with the slope being M(1-υ ρ)ω2 /2RT. 

The molecular mass can then be easily obtained from this slope knowing the 

partial specific volume υ  of the macromolecule in question.  

However, complications arise when the above plot is not a straight line. A 

downward curving plot, reflecting the decrease in molecular weight with 

increasing concentration, indicates nonideality and concentration dependence of 

the molecular weight. On the other hand, an upward curvature is an indication 

that the sample is polydisperse, either owing to impurity or sample aggregation. 

In this case, 2dr)cln(d yields an average molecular weight Mw assuming that all 

the species in the sample have the same partial specific volume υ . If 

polydispersity is a reflection of a self-associating system, SE runs carried out at 

different rotor speeds will result in the overlap of Mw versus c plots, and 

consequently an average molecular weight independent of concentration can be 

determined with high accuracy.  

When the experimental sample contains more than one species, the 

sedimentation profile a(r) is given by the sum of the exponentials recorded for 

each species and takes the form (Lebowitz, et al., 2002) 

∑ +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

=

n

1i

2
0

2
2

ii
i0,i

)rr(
RT2

)1(M
expdc)r(a δ

ωρυ
ε     (2.39) 

Here, n represents the number of species, ci,0 and εi are the molar concentration 

and extinction coefficient of species i at the reference position r0, d denotes the 

optical path length used during the experiment (12 or 3 mm) and δ represents 

the baseline offset that compensates for all non-sedimenting material as well as 

small imperfections in the cell assembly and data acquisition. The extinction 
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coefficient in equation 2.39 is replaced by the specific signal increment (2.75 

fringes per mg/ml) when interference optics are used (Lebowitz, et al., 2002). 

The buoyant molar mass corresponds to the resulting mass of the molecule when 

displaced by the solvent and is given by Mb= M(1-υ ρ). The steepness of the 

concentration gradient in SE experiments is highly dependent on the square of 

the rotor speed and this buoyant molar mass of the macromolecule. Typically, SE 

experiments are carried out at 2-4 different rotor speeds and 7-10 sample 

concentrations in order to accurately determine the molecular weight of the 

experimental system. 

2.2.2.1.2 The thermodynamical picture of SE 

Although the kinetic derivation for SE is sufficient in most cases, real biological 

systems often exhibit significant nonideality. Hence, the thermodynamic 

approach provides a more natural description of a system at sedimentation 

equilibrium. In addition, from the measurement of concentration distribution, 

valuable information on the thermodynamic properties of the system can be 

obtained. The theory developed by Goldberg (1953) is summarized below. 

The Gibbs-Duhem equation of total potential for a system in equilibrium is given 

by 
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=

r

0i

)x(
i

)x(
i

)x( dndpV µ

)x(

)x( )x(
iµ

        (2.40) 

Here  is the number of moles of solute i in phase x that has a volume V. The 

change in pressure in the vicinity of this phase and the chemical potential of 

component i in phase x are denoted by dp  and , respectively. On solving 

equation 2.40, a general equation for equilibrium in a centrifugal field is 

obtained and takes the form 

in
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With  drmrdE 2
p ω=
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However, for dilute solutions µ can be expressed as a power series such that 
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where subscript 1 refers to solvent, V is the molar volume of the solute, c its 

concentration, B and C denote the second and third virial coefficients, 

respectively. The concentration c (M) becomes negligible beyond the first order 

and therefore c∂∂µ  can be expressed in terms of a sedimentation virial 

coefficient (Tanford, 1961) 
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Thus equation 2.42 becomes 
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An apparent molecular weight  can be defined as 

BMc
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=          (2.46) 

so that equation 2.45 takes the form 
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1 2app ωρυ−

=         (2.47) 

This is the fundamental expression for SE which clearly indicates that from the 

knowledge of the radial dependence of concentration of a macromolecule in 

equilibrium, its molecular weight can be determined. 
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2.2.2.2 SE data analysis 

The weight-average molecular mass Mw was determined by fitting the equation 

2.38 to the data via programs MicroCal ORIGIN (part of the Beckman XL-A/XL-I 

software suite) and SEDPHAT (Schuck, 2003; Vistica, et al., 2004). MicroCal 

ORIGIN was also used to determine estimates of the second virial coefficient, B, 

to improve fitting of the experimental SE data. However, inclusion of B seemed 

to worsen the fits and hence all further SE analysis was carried out using only 

SEDPHAT.  

Global analysis of SE data using SEDPHAT was performed by simultaneously 

fitting the data sets from all cells at each rotor speed. Global fitting improves 

consistency by fitting with the same baseline and ensures higher reliability of 

the obtained results. In addition, cells were also individually analysed to enable 

determination of the concentration-independent molecular weight, , from the 

plot of the inverse of the apparent molecular weight, M

0
wM

app versus protein 

concentration, c. Fitting models available in SEDPHAT that were used in this 

thesis include the non-interacting discrete species model (that fits with up to 

four species), and the monomer → n-mer self-association models. 

2.3 Small angle scattering 

Small angle scattering (SAS) probes the structure of native biological 

macromolecules in solution at low (10-20 Å) resolution. The solution sample is 

irradiated by a highly collimated beam of x-rays (SAXS) or neutrons (SANS) and 

the scattering intensity I is recorded by the detector. For dilute solutions 

(concentration of nM) the particles are randomly oriented and give rise to 

isotropic intensity that is dependent only on the scattering angle (2θ) between 

the incident and scattered beam. SAS here is based on elastic scattering and the 

wavelength of radiation λ remains unchanged. The SAS data provide direct 

determination of parameters such as molecular mass (M), radius of gyration (Rg), 

hydrated volume (V) and maximum diameter (Dmax). The intensity of scattering, 

I(s) is measured as a function of the scattering angle 2θ or momentum transfer s 

(s = 4π sinθ/λ) as shown in Fig. 2.5. 
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Figure 2.5 General features of a solution scattering curve 
X-ray scattering patterns of proteins with different folds and molecular masses are shown. 
The axes, s and lg I denote the scattering angle and logarithm of scattering intensity, 
respectively. The low angle (2-3 nm-1) region determines the particle shape, while higher 
angles (> 3 nm-1) yield information on the tertiary and quaternary structure of the 
macromolecules. Taken from Svergun and Koch (2002). 

 

At small angles, values of Rg and the forward scattering intensity at zero angle 

I(0) are obtained. At higher angles, further information on the overall fold and 

tertiary structure can be obtained.  

During the past decade the development of ab initio methods for three-

dimensional modelling of SAS data coupled with the advent of high brilliance x-

ray synchrotrons and high-flux nuclear reactors have paved the way for the 

present renaissance of SAS in structural biology. In addition, the measurement of 

structural data in solution over a wide range of molecular sizes reflects the 

advantage of SAS over complementary techniques like electron microscopy. 

The theoretical aspects, data treatment procedures and ab initio modelling of 

SAS data obtained using x-rays and neutrons are discussed below. 
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2.3.1 X-rays 

Small angle x-ray scattering (SAXS) is used to study the structure of materials 

that can vary in size from ten to several thousand Å, such as proteins and viral 

capsids (Heller, et al., 2004; Lee, et al., 2004). This technique is not limited to 

biological macromolecules and has been used widely to characterise synthetic 

polymers, nanoparticles, etc. SAXS exploits coherent scattering in which 

electrons oscillating under the influence of the electric field of the x-ray beam 

act as secondary sources, emitting x-rays with the same wavelength as the 

incident beam, but 180o out of phase. The typical wavelength of x-rays used for 

SAXS is 1.5 Å. SAXS has the advantage of probing structures of highly flexible 

proteins (in solution) that are very hard to crystallise. The following sections will 

focus only on aspects relevant to the work described in this thesis, namely the 

solution scattering of monodisperse systems of identical, non-interacting 

particles. 

2.3.1.1 Theory of SAXS 

Only the electrons in the sample scatter upon interaction with the x-rays. In an 

ideal monodisperse system all particles have the same chemical and shape 

composition and do not interact with each other. As a result upon scattering, all 

particles have the same non-directional (isotropic) scattering amplitude. 

Furthermore, the recorded scattering intensity is the sum of the intensities of all 

individual particles. The uniform particle distribution in solution and isotropic 

scattering leads to the spherical averaging of the single particle scattering and a 

one-dimensional scattering curve with low resolution. 

If ρ(r) is the electron density of the sample at a point r and s0 is the incident 

wave vector ( λ1s0 =

∫= −

rV
r

rsi2 dVe)r()s(F πρ

, where λ is the wavelength of the x-rays), then at 

distances much greater than the size of the sample the amplitude of the 

scattered radiation is (Vachette and Svergun, 2000)  

        (2.48) 
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where F(s) is the Fourier transform of the electron density distribution ρ(r), s 

denotes the scattering vector and Vr is the volume of the sample. The resultant 

scattering vector s is the difference between the scattered (s1) and incident (s0) 

wave vectors (s= s1-s0) (Fig. 2.6), and is 

λ
ϑ

λ
ϑ 2sin2

ss ≅==         (2.49) 

 

Figure 2.6 Schematic representation of SAXS  
Vectorial and schematic representation of an x-ray scattering experiment is shown. 
Incident x-rays (s0) on the sample in solution results in scattering due to the electrons 
present in the sample at an angle 2θ with a resultant scattering vector of s=s1-s0. The one 
dimensional scattering waveform as recorded by the detector is shown. Taken from 
Vachette and Svergun (2000) 

 

The scattered intensity I(s) is defined as, 

rr
s)rr(i2

V V

* dVdVe)r()r()s(F.)s(F)s(I
r r

′
′−−

∫ ∫ ′==
′

πρρ

)s(F *

    (2.50) 

where  is the complex conjugate of F(s), and r and r ′

r

denote radial vectors 

inside the particle. The integrals are over the particle volumes Vr and V ′  and 

ρ(r) is the electron density of the sample. 

Scattering of particles in solution originates from the contrast of electron 

density between the particle and the homogenous solvent (having electron 

density ρ
0
) (Vachette and Svergun, 2000), hence equation 2.48 takes the form 
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∫= −

rV
r

s.ri2 dVe)r()s(F πρ∆ 0
)r,   where ()r( ρρρ∆ −=   (2.51) 

Owing to Brownian motion only a spherical average intensity of the sample is 

obtained from SAXS; the isotropic scattering intensity I(s) expressed in terms of 

the distance distribution function p(r) is (Vachette and Svergun, 2000)  
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The p(r) distance distribution function is  

∫=
∞

0
dsrs2sin)s(Irs

1
)r(p π

π

2
0

22
r

V
r mmmdVdV)r()r()0(I −==∫∫ ′= ′ ∆ρρ∆

        (2.53) 

For the ideal monodisperse sample, p(r) is the histogram of distances between 

all pairs of points (volume elements) in the sample. The scattering intensity at 

zero angle I(0) can be derived from equation 2.50 

     (2.54) 

where m represents the total number of electrons in the particle and m0 denotes 

the number of electrons of the solvent displaced by the particle. 

The scattered intensity can be expanded in powers of s2 to give 
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However, close to the origin (at low angles), the expansion can be restricted to 

the first order term (Guinier and Fournet, 1955) 
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where Rg is the radius of gyration , 



Introduction to biophysical techniques   72 

∫
rV

r
g dV)r(ρ∆

3.1sR2.

∫
= rV

r
2

2

dVr)r(
R

ρ∆
         (2.57) 

Thus at very low scattering angles, the scattering pattern can be approximated 

by a Gaussian distribution, the width of which is proportional to the square of 

the radius of gyration, Rg of the particle (as defined by equation 2.56). This is 

known as the Guinier approximation (Guinier and Fournet, 1955). Rg is a measure 

of the (non)sphericity of the particle and is experimentally determined from the 

plot of ln I(s) versus s2, also commonly referred to as the Guinier plot. It can also 

be determined from the slope using linear regression, and the intensity at zero 

angle, I(0) is obtained by extrapolation to zero scattering angle. The Guinier 

region which represents the scattering angle range over which the Guinier 

approximation is valid, is usually defined as 0 g ≤≤  although values may 

differ for asymmetric particles (Perkins, 1988). As the Guinier approximation 

holds true only for ideal, monodisperse paticles, sample polydisperity due to 

aggregate formation, will greatly hamper accurate and reliable determination of 

Rg. To avoid this problem, scattering is usually recorded at several low sample 

concentrations. 

2.3.1.2 Data treatment 

Ideal single particle scattering intensities I(s) cannot be measured directly in 

SAXS. Instead, a discrete set of intensities )s(I iexp
 at i angles (i = 1,2,…N) within 

the angular range 
maxmin

sss ≤≤  is recorded (Vachette and Svergun, 2000). 

However, this data set contains statistical errors and smearing effects owing to 

beam divergence, polychromaticity and detector resolution (Feigin and Svergun, 

1987). Therefore, the main task of the data processing is in restoring the ideal 

scattering intensity I(s) from the experimental set . For monodisperse 

systems, I(s) is related to the particle distance distribution function p(r) by the 

Fourier transform  

)s(I iexp

∫=
maxD

0
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rs2
rs2sin

)r(p4)s(I
π

π
π        (2.58) 



Introduction to biophysical techniques   73 

where Dmax is the maximum particle dimension (Vachette and Svergun, 2000). 

The function p(r) has the same information content as I(s), and data processing 

can be done ‘indirectly’ by restoring p(r). This ‘indirect transform approach’ 

first used by Glatter (1977) introduces an important constraint, namely a 

‘boundedness’ of the characteristic function, and also forms the basis of the 

computer program GNOM (Semenyuk and Svergun, 1991; Svergun, 1992) that was 

used for the determination of distance distribution functions from SAXS data 

throughout this thesis. In addition, GNOM also employs a regularisation 

parameter, α that allows the user to compensate for the quality of fit to the 

data and the smoothness of the p(r) function (Svergun, 1992). The choice of α is 

crucial for the stability and validity of the solution: too small a value leads to 

unstable solutions, while too large a value results in systematic deviations from 

the experimental data. GNOM performs an automatic ‘visual’ search, with the 

solution characterized by a number of perceptual criteria such as discrepancy, 

systematic deviations, smoothness, compactness and positiveness of p(r) and 

solution stability of small changes in α (Svergun, et al., 1988; 1992). Hence 

GNOM either finds the optimal solution automatically or in the event of being 

unable to obtain a good solution, indicates that the user’s assumptions about the 

system (e.g. the value of Dmax) are incorrect. Generally, the accurate value of 

Dmax is not known, and hence several trial-and-error computations have to be 

carried out for different values of Dmax. GNOM automatically calculates the value 

of I(0) by back extrapolating I(s) as described in equation 2.55 to zero angle. In 

addition, it uses the p(r) function to determine Rg which is less sensitive to 

interparticle interactions and/or small amounts of aggregate, as the entire 

scattering curve is used for the calculation rather than just the Guinier region. 

As the scattering curves and their corresponding p(r) functions share the same 

information content, the particle shape can often be deduced by straightforward 

visual inspection of p(r) as shown in Fig. 2.7. For example, the scattering 

patterns of globular (sphere) and elongated (rod) shapes are significantly 

different with distinct minima. Very anisometric particles yield featureless 

scattering curves that decay much more slowly than those of globular particles 

(Svergun and Koch, 2003). 
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Historically, three-dimensional information from SAXS data was obtained by 

building simple low resolution models on a trial-and-error basis. These models 

consisted mainly of geometrical shapes such as spheres, cylinders or ellipsoids, 

and the calculated scattering curves and p(r) functions were compared with the 

experimental data (Glatter, 1980; Glatter and Kratky, 1982; Kratky and Pilz, 

1972). However, more recently calculation of theoretical scattering curves from 

high-resolution structures obtained from x-ray crystallography or NMR has been 

exploited for evaluation of SAXS data. This approach entails the inclusion of 

scattering atoms and the particle excluded volume effects during the scattering 

curve simulation and is given by the equation, 

Ω
ρ

2

buffer0particle )s(F)s(F)s(I −=       (2.59) 

where ρ0 is the average electron density of the buffer, Fparticle and Fbuffer represent 

the scattering amplitudes of the particle and reference buffer, respectively, and 

the symbol 
Ω

 denotes the spherical average.  

The primary problem in the scattering curve calculation is the estimation of the 

contribution to the excluded volume and various methods have been developed 

to deal with this problem. Most notable, is the spherical harmonics approach of 

Lattman (1989) that was further improved by Svergun and co-workers (1995) by 

the inclusion of a hydration shell of about 0.3 nm thickness and having a 

different electron density (ρh) to both that of the particle and the buffer: 

Ω
δρρ

2

hhexba )s(A)s(A)s(A)s(I +−=

bhh

      (2.60) 

Here, A
a
, A

ex
 and A

h
 are scattering amplitudes from the particle in vacuo, from 

the excluded volume and from the hydration shell, respectively. The scattering 

electron densities of the bulk solvent differs from that of the hydration shell, 

resulting in a non-zero contrast for the shell ρρδρ −= (Svergun, et al., 

1995). This method forms the basis of CRYSOL (Svergun, et al., 1995) that 

computes the scattering curve of any high- or low-resolution structure and fits it 

to the experimentally determined data. To improve the fits, CRYSOL allows for 
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variation in the hydration shell electron density and the average excluded 

solvent volume per atomic group. 

 

Figure 2.7 Scattering intensities and p(r) functions of various geometrical bodies 
Intensity scattering curves and p(r) distribution function of various geometrical bodies with 
the same maximum size are shown. While globular spherical particles (red) display bell-
shaped p(r) functions with a maximum at about Dmax /2, elongated particles (green) exhibit 
skewed distributions with a clear maximum at small distances corresponding to the radius 
of the cross-section. Similarly, a broad maximum with a distance less than Dmax /2 is 
displayed by flattened particles (yellow), while hollow particles (blue) show a maximum at 
distances larger than Dmax /2. Particles with well separated subunits, e.g. dumbell-shaped 
display multiple minima (pink), the first corresponding to the intrasubunit distances and the 
others yielding separation between the subunits. Image taken from Svergun and Koch 
(2003) 
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2.3.1.3 Ab initio modelling 

The extraction of the three-dimensional model of an object from its one-

dimensional scattering curve is a non-trivial problem. In the past, shape 

modelling from SAXS data was based on trial-and-error, computing the scattering 

patterns of different geometrical shapes, and that at times included additional 

information (e.g. from EM or hydrodynamic data).  

However, the development of more sophisticated and robust methods over the 

last 40 years has enabled restoration of more detailed 3D structural information 

from the analysis of SAXS data. The first ab initio approach developed by 

Stuhrmann (1970) involved the representation of the particle shape by an 

angular envelope function that was described by a series of spherical 

coordinates. This method was developed and implemented in the program SASHA 

(Svergun and Stuhrmann, 1991; Svergun, et al., 1997). SASHA generates unique 

solutions from random starting configurations indicating the stability of 

reconstructions modelled from the experimental data (Svergun, et al., 1996). 

The stability and resolution can be further improved if information on the 

particle symmetry is available (Vachette and Svergun, 2000). 

However, use of the angular envelope function was limited to relatively simple 

shapes with no internal cavities. Over the years, more comprehensive modelling 

methods were developed that used bead models via Monte Carlo-like searches. 

This type of approach was implemented in the program DAMMIN (Svergun, 1999), 

where a sphere of diameter Dmax is filled with closely packed dummy 

atoms/beads on a hexagonal lattice. Each dummy atom is either part of the 

particle (index = 1) or the solvent (index = 0), and the shape is thus described by 

a long binary string of atoms. Starting from a random distribution of atoms, the 

lowest energy configuration within the specified search space is attained by 

using a simulated annealing procedure. A penalty term is also implemented 

during the modelling process to ensure the compactness and connectivity of the 

resulting shape. Akin to SASHA, specification of the particle symmetry increases 

the resolution of the reconstructions. DAMMIN has been rigorously tested and 

evaluated for several experimental systems (Svergun, 1999; Volkov and Svergun, 

2003) and a huge number of papers with DAMMIN reconstructions have been 



Introduction to biophysical techniques   77 

published during the last few years. Although DAMMIN is mostly reliable, it does 

experience problems with some complicated structures containing internal 

cavities (like the PDC cores studied in this project) and is unable to satisfactorily 

restore the shape of the molecule (Volkov and Svergun, 2003). 

A similar approach was implemented in the program DALAI_GA (Chacón, et al., 

2000; Chacón, et al., 1998). Here, a sphere of maximum diameter Dmax is filled 

with a large number of closely packed dummy atoms that either belong to the 

particle or the solvent. From an initial random configuration, the lowest energy 

configuration that best fits the experimental data is obtained via a genetic 

algorithm. 

A more versatile approach to construct protein models from SAXS has been 

recently developed by Svergun and co-workers and implemented in the program 

GASBOR (Petoukhov and Svergun, 2003; Svergun, et al., 2001). The 

macromolecule is not represented by hexagonally closely packed beads; instead 

it is characterized by an assembly of dummy residues, DRs (with one dummy 

residue per amino acid). GASBOR starts with a random distribution of DRs in the 

spherical search volume specified by Dmax. As with DAMMIN, simulated annealing 

is then used to obtain the energy minimized conformation with best fits to the 

experimental data. In addition, GASBOR has encoded within it connectivity 

constraints to result in ‘chain-compatible’ spatial arrangements of DRs that form 

protein-like folds. In particular, as Cα atoms of neighbouring amino acids 

residues are separated by about 0.38 nm in the primary structure, each DR 

should have two neighbouring DRs each separated from it by 0.38 nm. Apart 

from particle and solvent DRs GASBOR also introduces a third kind corresponding 

to the particle hydration shell, where the water molecules bound form part of 

the primary hydration layer. While SAXS data include a contribution from a 

hydration layer due to bound water, it is significantly less than the hydration of 

a sedimenting particle. Furthermore GASBOR uses data at higher scattering 

angles than DAMMIN (s ≤ 0.5 Å-1) and therefore results in more detailed, higher-

resolution models (Svergun, et al., 2001).  

It is evident that different initial random configurations of these Monte Carlo 

based methods yield multiple solutions (spatial distribution of beads/DRs) with 
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essentially the same fit to the data (Svergun and Koch, 2003). These 

independent models can then be superimposed and averaged to obtain the most 

probable model using the program DAMAVER (Volkov and Svergun, 2003). 

However, this averaging is reasonable only for similar models. DAMAVER employs 

the program SUPCOMB (Kozin and Svergun, 2001) that aligns two (high- or low-

resolution) models (represented as an ensemble of points) and yields a measure 

of dissimilarity (represented by a normalised spatial discrepancy (NSD) factor) 

between them. In this thesis all pairs of independent ab initio models were 

aligned using SUPCOMB, where for every point (bead) in the first model, the 

minimum value among the distances between this point and all points in the 

second model was found, with the same being done for the second model. These 

distances are then added and normalised against the average distances between 

the neighbouring points for the two models. An NSD value close to 1 is indicative 

of model similarity. The model having the lowest NSD or smallest average 

discrepancy was then taken as the reference. All the other models were aligned 

with the reference model, and a density of DRs was computed and remapped 

onto a densely packed grid of beads, with each grid point characterised by its 

occupancy factor (number of beads present at a specific position in all the 

models). The average model was then constructed by filtering out low occupancy 

grid points with a threshold corresponding to the excluded particle volume. 

Although DAMAVER results in an average consensus model with all structural 

features of the individual models preserved in most cases, it does experience 

some problems with structures that are elongated and/or possess internal 

cavities (Volkov and Svergun, 2003).  

2.3.1.4 Instrumentation 

The SAXS work carried out in this project was performed at the x-ray 

synchrotron sources of EMBL/DESY and SRS. However as meaningful data were 

obtained only from the former, only the X33 beamline at EMBL/DESY 

(http://hasylab.desy.de/facilities/doris_iii/beamlines/e6000/index_eng.html) is 

described in the following. 

The EMBL/DESY X33 synchrotron is a bending magnet beamline equipped with 

tunable bent monochromators to obtain a small focus with large photon flux. 
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The horizontal focus monochromator is a monolithic Si (111) cut crystal that 

selects a fixed defined wavelength (1.5 Å) from the bending magnet radiation 

(Ec = 16.6 keV), with the wavelength of the reflected beam defined by Bragg’s 

law (Vachette and Svergun, 2000). Higher harmonics ( ,...3/,2/ λλ ) are 

eliminated by total reflection at the glancing angle using a rhodium coated 

Zerodur mirror with gravimetrical bending for vertical focus. The typical vertical 

beam displacement is of the order of 30 mm and hence considerably reduces the 

background radiation from the storage ring (Vachette and Svergun, 2000). A 

triangular monochromator (with a fixed energy of 8 keV) is also used for 

selecting a single Bragg reflection to obtain a more focussed beam (Lemonnier, 

et al., 1978) (Fig. 2.8). Parasitic scattering around the beam is reduced by using 

several guard slits made from highly absorbing material like tungsten or 

tantalum (Vachette and Svergun, 2000).  

The SAXS camera comprises three slits (two collimating and one guard) that 

confine the region around the primary beam, thus defining the beam-stop and 

the minimum observable scattering angle. The sample position is fixed while the 

sample-to-detector distances can be adjusted from 0.9-4 m by automatic 

movement of the MAR 345 detector inside a vacuum tube (Fig. 2.8) 

(http://hasylab.desy.de/facilities/doris_iii/beamlines/d12_embl_x33/experime

ntal_station/index_eng.html). The beam size on X33 is typically 1.2 x 0.21 mm2 

(v x h) at the sample position (http://hasylab.desy.de/facilities/doris_iii/ 

beamlines/d12_embl_x33/beamline/index_eng.html). Sample cells used are 

made of mica windows (thickness 10-20 µm) and are connected to a thermostat 

(-30 to 220°C) under vacuum to control the temperature of the sample cells 

during the course of the experiment (Vachette and Svergun, 2000). The X33 

beamline consists of two detectors: the MAR 345 image plate detector for SAXS 

and the linear gas filled delay line detector for wide angle neutron scattering 

(WAXS). These SAXS and WAXS detectors in turn give resolutions of 700 to 10 Å 

and 25 to 6 Å, respectively (http://hasylab.desy.de/facilities/doris_iii/beamline 

s/d12_embl_x33/experimental_station/index_eng.html). The entire beam layout 

is made of 2 parts: the optical and the experimental hutch (Fig. 2.8). Entrance 

to the experimental hutch (where the samples are placed) is possible only when 

the beam shutters are closed, the opening of which is regulated by an interlock 

system. The movement of various elements like the slits, sample holder, 

http://hasylab.desy.de/facilities/doris_iii/beamlines/d12_embl_x33/experimental
http://hasylab.desy.de/facilities/doris_iii/beamlines/d12_embl_x33/experimental
http://hasylab.desy.de/facilities/doris_iii/
http://hasylab.desy.de/facilities/doris_iii/beamline s
http://hasylab.desy.de/facilities/doris_iii/beamline s
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detector etc. for instrument alignment and operation are motorised and can be 

regulated via remote control. Data acquisition is achieved by CANBus control 

electronics driven by a workstation (http://hasylab.desy.de/facilities/doris_iii/ 

beamlines /d12_embl_x33/beamline/index_eng.html). Further processing of the 

data obtained was carried out as described in sections 2.3.1.1-2.3.1.3. 

 

 

 

Figure 2.8 Instrumentation layout and experimental hutch of the X33 beamline at 
the EMBL/DESY synchrotron 
Image was taken from http://hasylab.desy.de/facilities/doris_iii/beamlines/d12_embl_x33 
/beamline/index_eng.html 

 

http://hasylab.desy.de/facilities/doris_iii/
http://hasylab.desy.de/facilities/doris_iii/beamlines/d12_embl_x33
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2.3.2 Neutrons 

2.3.2.1 Small angle neutron scattering (SANS) 

Although the physical mechanisms of elastic x-ray (SAXS) and neutron (SANS) 

scattering by matter are fundamentally different the mathematical formalism 

and the underlying principles are the same. Hence, all methods described in 

section 2.3.1 also apply to the treatment and analysis of SANS data. However, 

additional information on macromolecular complex formation can be obtained 

from SANS experiments when compared to SAXS. 

While x-rays are scattered by the electrons in the particle, the interaction of 

neutrons is primarily with the nucleus. Neutron scattering depends on the 

nuclear mass, spin, and on the isotope present (Byron and Gilbert, 2000). The 

spin here represents the angular momentum of the nucleons (both protons and 

neutrons have spin 1/2). Nuclear spin results in two types of scattering: 

coherent and incoherent, the levels of which depend on the net spin of the 

nucleus concerned. While the coherent scattering provides information on 

structure and mass, molecular dynamics information is obtained via incoherent 

scattering (Byron and Gilbert, 2000). Furthermore, neutron scattering can be 

inelastic or elastic depending on kinetic energy transfer having taken place or 

not during the reaction, respectively (Svergun and Koch, 2003). SANS studies are 

based on the coherent elastic scattering of neutrons. As SANS causes no 

radiation damage, it offers advantages over SAXS. In addition, widely available 

quartz cuvettes are used as sample containers. 

The probability of scattering from a given nucleus is given by its scattering 

length b (fn/V, in units of 10-15 m or fm), that comprises two terms fp and fs such 

that fn = fp + fs (Svergun and Koch, 2003). While the first term corresponds to 

neutron interaction with the nuclear potential, the second term denotes a 

scattering length dependent on the alignment of nuclear spins between the 

incident beam and the marcromolecule under study (Stuhrmann, et al., 1986). In 

SANS fs , which results in a flat incoherent background (Svergun and Koch, 

2003). In contrast to x-rays, f

0≅

p does not increase with the atomic number and is 

highly sensitive to the isotopic content (Svergun and Koch, 2003) as shown in 
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Table 2.1. Two major differences between x-ray and neutron scattering lengths 

are observed from Table 2.1: (1) neutrons are more sensitive to lighter atoms 

than x-rays and (2) there is a significant difference in the scattering lengths of 

hydrogen (-0.374 × 10-12 cm) and deuterium (0.667 × 10-12 cm) (Svergun and 

Koch, 2003). The former difference is exploited in neutron crystallography to 

localise hydrogen atoms in the crystal (Shu, et al., 2000), while the latter 

provides an effective tool for selective labelling and contrast variation exploited 

in neutron scattering and diffraction (Chatake, et al., 2003; Snijder, et al., 

2003; Wall, et al., 2000; Zaccai and Jacrot, 1983).  

Atom H D C N O P S Au 

Atomic mass 1 2 12 14 16 30 32 197 
No. of 

electrons 1 1 6 7 8 15 16 79 

xf  (10-12 cm) 0.282 0.282 1.69 1.97 2.16 3.23 4.51 22.3 

nf  (10-12 cm) -0.374 0.667 0.665 0.940 0.580 0.510 0.28 0.76 

Table 2.1 X-ray and neutron scattering lengths of some elements 

xf nf and  denote the scattering lengths of x-rays and neutrons, respectively. 

 

2.3.2.2 Contrast variation 

The difference in scattering lengths between hydrogen and deuterium is 

exploited in contrast match experiments. It is possible to render one or more 

components of a multicomponent system ‘invisible’ to the incident neutrons. 

This is achieved by solvent exchange (H2O/D2O) (Ibel, 1975) or by selective 

deuteration of components (Engelman and Moore, 1972). In both cases the 

scattering density of one component of the macromolecular complex is exactly 

matched with that of the solvent by varying the D2O content in the buffer. 

Solvent exchange is used for analysing interactions between two different 

molecules in a system, such as the protein-DNA complex, owing to the different 

match points of protein (40%) and DNA (60%) as shown in Fig. 2.9. In addition, it 

also enables calculation of molecular weight, the molecular shape at infinite 

contrast and the internal arrangement of the constituents within the complex. 

Moreover, the usage of D2O results in high signal-to-background ratio, therefore 

experiments can be performed with low concentrations of sample.  
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On the other hand, selective deuteration of a specific subunit leads to the 

determination of its relative location within a multisubunit structure allowing, 

for example, investigation of protein-protein interactions. Typically, this 

involves the over-expression of one component in deuterated media before 

being reconstituted with the remaining protonated constituent(s). Exact 

D2O/H2O ratios can vary considerably for deuterated proteins, depending on the 

labelling efficiency. Scattering studies using D2O are based on the assumption 

that the structure of the macromolecule in question is not modified by changing 

the contrast conditions. Mathematically, the use of various D2O/H2O ratios or 

selective deuteration of components corresponds to effective variation in the so-

called contrast that is related to the molecule and solvent scattering densities, 

which in turn is proportional to the scattering intensity of the molecule.  

 

 

Figure 2.9 Scattering length densities of biomolecules in solvents of various 
D2O/H2O ratios 
The scattering length density for H2O and D2O are close to –5 × 109cm-2 and 64 × 109cm-2, 
respectively. The scattering length densities vary in a linear fashion with no scattering 
observed at about 8% D2O. Adapted from Jacrot (1976). 
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2.3.2.3 Instrumentation 

All SANS experiments in this thesis were undertaken at the D22 beamline of the 

Institut Laue Langevin (ILL) reactor source in Grenoble, France. The neutron 

wavelength is given by de Broglie’s relationship 

ν
λ 6.396

=           (2.61) 

where ν  is the group velocity of the neutrons (ms-1). Thermal neutrons with 

wavelength λ around 0.45-4.0 nm are typically used at the D22 beamline at ILL. 

A basic description of the instrumentation on D22 is outlined below 

(http://www.ill.eu/d22/characteristics/). The fission of U235 in a specially 

designed reactor core produces high energy neutrons, which then pass from the 

core into a moderator (such as D2O or graphite) at 300 K to lose energy via 

collision (Perkins, 1988). When these neutrons reach thermal equilibrium, 

further moderation is carried out using a cold source such as liquid deuterium at 

25 K. This further enhances the longer wavelengths (λ = 0.5 nm) that are useful 

for solution scattering and aid in the relaxation of the angular restrictions on the 

neutron camera (Perkins, 1988). The neutrons are then delivered by means of 

neutron guides from the reactor to the externally located instruments. The first 

section of the guide is bent in order to eliminate gamma rays and fast neutrons 

(Perkins, 1988). A high speed velocity selector on a rotating drum selects a 

narrow band of wavelength (velocity) that is transmitted and further collimated 

before reaching the sample (Fig. 2.10) (http://www.ill.eu/instruments-

support/instruments-groups/instruments/d22/h ome/). The virtual source-to-

sample distance is chosen by a collimation system consisting of eight sections. 

Each section comprises three tubes (http://www.ill.eu/d22/characteristics/), 

any one of which can be positioned on the beam axis. While the first tube 

contains a neutron guide of 40 x 55 mm; the second is equipped with an 

antiparasitic aperture and the third tube bears fixtures for installation of future 

neutron-optical equipment. D22 possesses the largest area multidetector (3He) 

of all SANS stations with an active area 1 m2 corresponding to a pixel size of 0.8 

x 0.8 cm, i.e. 16 K resolution elements. The detector comprises 128 linear 

Reuter-Stokes detector tubes arranged vertically with a spacing of 8 mm 

http://www.ill.eu/instruments-support/instruments-groups/instruments/d22/h
http://www.ill.eu/instruments-support/instruments-groups/instruments/d22/h
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(http://www.ill.eu/d22/characteristics/). The detector moves inside a 2.5 m 

wide and 20 m long vacuum tube covering a wide range of sample-to-detector 

distances from 1.1-17.6 m. This implies a total q range of 4 x 10-4 to 0.44 Å-1 (no 

detector offset) or 0.85 Å-1 (with detector offset) under standard conditions 

(http://www.ill.eu/d22/characteristics/). Neutron sources are much weaker 

than x-ray sources and even on D22, currently the world’s best SANS instrument, 

the neutron flux does not exceed 108 neutrons cm-2 s-1 

(http://www.ill.eu/d22/characteristics/). 

 

Figure 2.10 Instrumentation layout of D22 at the ILL nuclear reactor source 
The image was taken from the website http://www.ill.eu/instruments-support/instruments-
groups/instruments/d22/home/ 

 

2.3.2.4 Data treatment 

The raw data obtained from SANS are reduced by circular averaging of the 

symmetrical scattering about the beam stop to yield a 2D scattering curve. Data 

normalisation is then carried out by subtracting the sample scattering curves 

from their respective buffer scattering curves. Resultant sample scattering 

curves are in turn corrected and normalised by their corresponding neutron 

transmissions. In addition, transmission values of sample and buffer are 

corrected for maximum transmission through an empty sample cell and by a 

standard scattering material used as reference (such as cadmium in this 

project). All the above processing of raw data was carried out using GRASP 

(http://www.ill.eu/sites/grasp/grasp_main.html) written by Charles Dewhurst, 

ILL, to obtain the scattering curves. Further treatment of data to obtain the p(r) 

function and ab initio models was carried out as described in section 2.3.1.  

http://www.ill.eu/d22/characteristics/
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2.4 Circular dichroism (CD) 

Since the late 1980s CD has become an increasingly valuable tool to probe the 

structure of macromolecules in solution. Plane polarised light is made up of two 

circularly polarised components, one rotating clockwise (right handed, R) and 

the other counter-clockwise (left handed, L). CD is defined as the differential 

absorption of these two components (Kelly, et al., 2005). If L and R are equally 

absorbed, the resulting radiation is plane polarised, while unequal absorption of 

L and R gives rise to elliptical polarisation (Kelly, et al., 2005) (Fig. 2.11). A CD 

signal is observed when a chromophore is chiral or optically active. 

Spectropolarimeters measure the difference in absorbance between the L and R 

components (∆A = AL - AR, usually about 10-3 for biological samples), and is 

represented as ellipticity (θ ) in degrees. A simple numerical relationship 

connects θ and ∆A given by, θ = 32.98 ∆A (Kelly, et al., 2005). The CD spectrum 

is obtained with the measurement of dichroism as a function of wavelength.  

 

Figure 2.11 Origin of the CD effect 
The left (L) and the right (R) circularly polarised components of plane polarised radiation 
are shown. When (A) both components have same amplitude, they combine to generate 
plane polarised radiation. On (B) possessing different amplitudes, L and R combine to 
give rise to elliptically polarised radiation (represented by the dashed ellipse). Taken from 
Kelly, et al. (2005). 

 

In proteins, the absorption by various chromophores such as peptide bonds 

(absorption below 240 nm), aromatic amino acid side chains (absorption in the 

range 260-320 nm), disulphide bonds (weak absorption around 260 nm) results in 

specific spectral bands, generating signature patterns that reveal useful 

structural information. In addition, other non-protein cofactors (e.g. flavins, 
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haem groups etc.) can also absorb over a wide spectral range (Berova, et al., 

2000). 

The primary structural information obtained from the CD of proteins is related to 

its secondary structure and tertiary structural characteristics. While the former 

is due to the strong absorption of the peptide bonds at 240 nm and below, the 

latter arises from the aromatic amino acid absorptions between 240-290 nm 

(Kelly, et al., 2005). In addition, conformational changes in proteins upon ligand 

binding can also be extensively probed. 

Secondary structure estimates are obtained from CD signals in the spectral range 

of 170-240 nm, also known as the far-UV region. The different types of regular 

secondary structure found in proteins give rise to characteristic CD spectra in 

the far-UV as shown in Fig. 2.12.  

 

Figure 2.12 Far-UV CD of various secondary structural components 
Various types of secondary structures produce characteristic far UV CD spectra as 
shown. α–helix (solid line), anti-parallel β–sheet (long dashed line), type I β–turn (dotted 
line), extended 31-helix or poly (Pro) II helix (cross dashed line) and disordered irregular 
structure (short dashed line). Taken from Kelly, et al. (2005). 

 

The tertiary structure fingerprint on the other hand is obtained from the 

absorption of the aromatic amino acids in the near-UV region (240-290 nm). Each 
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of these amino acids tends to have a characteristic profile: tryptophan shows a 

peak at 290 nm with fine structure between 290-305 nm, tyrosine shows a peak 

between 275-282 nm with a shoulder at longer wavelengths and phenylalanine 

shows weak but sharp bands with fine structure between 255-270 nm (Kelly, et 

al., 2005). The actual shape and magnitude of the near-UV CD spectrum varies 

from protein to protein depending on the numbers of each aromatic amino acid 

present, their mobility, the nature of their environment (hydrogen bonding, 

polarisability etc.) and their spatial disposition within the protein.  

Changes in protein conformation can occur due to the binding of 

ligands/cofactors or due to folding or unfolding. Structural changes in proteins 

caused by the binding of ligands have been successfully detected by near- and 

far-UV CD (Hope, et al., 1996; Pandya, et al., 2004). Refolding of proteins under 

denatured conditions (in the presence of urea or guanidinium chloride (GdmCl) 

has also been extensively studied using CD (Dobson, 2004; Jemth, et al., 2004; 

Radford, 2000). These refolding studies have indicated that while small proteins 

(less than 100 amino acids) generally fold via a two state mechanism with no 

intermediates, the folding of larger proteins often involves a multi-stage 

pathway via intermediates thought to be of the ‘molten globule’ type, thus 

offering insights into the overall stability of protein folding (Kelly, et al., 2005). 

The accurate determination of protein concentration along with high purity and 

minimal nucleic acid contamination are important pre-requisites for structure 

determination via CD.  

2.5 Tryptophan fluorescence 

Fluorescence spectroscopy constitutes the most widely used experimental 

technique in the field of protein folding and conformational dynamics. 

Fluorescence can be extrinsic or intrinsic, the former due to external probes 

attached to the molecule, while the latter arises as a result of the number of 

aromatic residues (tryptophan, tyrosine and phenylalanine) present as well as 

their environments within the protein of interest. Only intrinsic fluorescence due 

to tryptophans (Trp) will be described here as it is within the scope of this 

thesis. Fluorescence has several advantages over other biophysical techniques 

that probe protein folding: fluorescence signals are sensitive to the local 
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environment around the Trp and can drastically change under certain 

circumstances; the signal-to-noise ratio is very high, therefore allowing small 

quantities of sample to be used; and the time scale of detection is in the low 

nanosecond range, which is faster than the time scales for folding and 

conformational transitions (Royer, 2006).  

As only a small number of Trps are present in most proteins, specific local 

structural information can be obtained by exciting them at 295 nm and 

measuring their fluorescence over a wide spectral range (typically 300-450 nm). 

Owing to its aromatic character, Trp is often (although not always) found fully or 

partially buried in the interior hydrophobic parts of the protein, at the interface 

between subdomains or at the subunit interface in oligomeric systems (Royer, 

2006). Upon disruption of the tertiary or quarternary structure, the side chains 

of the tryptophan become more exposed to solvent as shown in Fig. 2.13. The 

fully or partially buried tryptophans in the native protein are blue shifted 

resulting in emissions between 309-335 nm, while solvent exposure brings about 

a red shift with emission at longer wavelengths (355 nm) (Royer, 2006).  

 

Figure 2.13 Intrinsic tryptophan fluorescence  
Tryptophan emission of P13MTCP1 in buffer (full line) indicates blue shift, while in 3 M 
GdmCl (dotted line) complete solvent exposure of the intrinsic tryptophans brings about a 
red shift. Image was taken from Royer (2006) 

 

Although the energy of even partially buried tryptophans will invariably shift to 

the red upon unfolding, it is not possible to predict the quantum yield/total 

intensity of emission upon solvent exposure. This is primarily due to several 

amino acid chains, peptide bonds, prosthetic groups (e.g. haem groups, NADH 
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etc.) or other neighbouring tryptophans present in the protein that act as 

efficient quenchers of tryphtophan fluorescence via excited-state proton or 

electron transfer (Adams, et al., 2002; Chen and Barkley, 1998). Emission 

wavelength-dependent fluorescence studies during unfolding or refolding with 

denaturants like urea/GdmCl is carried out to assess the conformational stability 

of proteins (Beechem, 1992; Knutson, et al., 1982).  

2.6 Negative stain electron microscopy (EM) 

EM offers structural information complementary to other techniques such as x-

ray crystallography, SAXS/SANS and nuclear magnetic resonance (NMR) with 

resolution for biological specimens in the order of 10 Å (Serdyuk, et al., 2007). 

The principle of EM is based on the wave like behaviour of electrons. The 

operation of EM is similar to light microscopy with electrons instead of photons, 

focused by electromagnetic lenses. The observed structural features in the EM 

image are due to the interaction of the electrons with the electrostatic potential 

distribution of the atoms in the sample (Serdyuk, et al., 2007). 

EM is used to probe the structural and dynamic aspects of macromolecular 

assemblies. It can deal with particles of all shapes, ranging from asymmetric 

ones to helical filaments. In addition, 3D structural reconstructions at nm 

resolution can be obtained for molecules over a wide molecular weight range 

(500 kDa–several MDa). However, EM images contain considerable noise that 

arises due to the statistical fluctuations and inelastic scattering of electrons as 

they travel through the sample. In EM of biomolecules, the inelastic scattering 

outnumbers the scattering events by a factor of 3-4 (Serdyuk, et al., 2007). This 

problem is usually overcome by using energy filters or increasing the 

accelerating voltage. Current EM microscopes encompass thermoionic or field 

emission guns that serve as the primary source of electron beams (Serdyuk, et 

al., 2007). 

Negative staining EM is carried out on the transmission electron microscope 

(TEM), where the interference between electrons that have passed through and 

interacted with the sample and those that were unaffected by the sample 

produces a phase contrast image (Fig. 2.14). The interaction of the electrons 



Introduction to biophysical techniques   91 

with the sample is purely electrostatic, and therefore the EM image reflects the 

electrostatic potential distribution within the sample. The contrast in the image 

is approximately proportional to the atomic number of the atoms imaged 

(Serdyuk, et al., 2007). 

 

Figure 2.14 Schematic diagram of a transmission electron microscope (TEM) 
Image was adapted from Serdyuk, et al. (2007) 

 

Negative staining has been widely applied to the study of biological samples. 

Being relatively simple and rapid, it helps determine the overall morphology of 

the macromolecule via high-contrast images, whose 3D reconstructions result in 

structures with about 15 Å resolution (Serdyuk, et al., 2007). As the main 

constituents of biomolecules, namely oxygen, carbon and nitrogen do not 

interact strongly with electrons, samples are negatively stained by embedding in 

an electrodense material (like ammonium molybdate). As a result the sample in 

the micrograph appears as a light region surrounded by a dark background 

originating from the stains. The particle itself is not observed but its surrounding 

stain is, and hence its structure is inferred from the distribution of the heavy 

stain (Serdyuk, et al., 2007).  
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Chapter 3 
Materials and Methods 

3.1 Bacterial strains 

E. coli strain DH5α (Stratagene, USA) was used for plasmid propagation, while E. 

coli strains BL21 Star (DE3) and BL21 Star pLysS (Invitrogen, UK) were used for 

protein expression. The BL21 Star strains contain the λ DE3 lysogen that allows 

high expression levels of T7-regulated genes. Moreover, they also harbour the 

rne131 mutation that encodes a truncated RNase E endonuclease, thus lacking 

the ability to degrade mRNA and resulting in an increase in mRNA stability. 

Additionally, the pLysS strain contains the pLysS plasmid that encodes for the T7 

lysozyme and confers chloramphenicol (CamR) resistance. 

3.1.1 Chemicals and standard materials 

Some of the other general chemicals used in this study and the companies they 

were purchased from are listed in Table 3.1. 

3.1.2 Preparation of competent cells 

Cells were made chemically competent via the calcium chloride protocol as 

described by Maniatis, et al.(1987b). Typically, E. coli strains were streaked on a 

Lysogeny broth (LB, also commonly known as Luria broth) agar plate and grown 

overnight at 37oC. Single colonies picked from the plate were cultured overnight 

in 5 ml LB at 37oC via a shaker incubator. The 5 ml overnight cultures were then 

employed to innoculate fresh 100 ml LB cultures and grown at 37oC with 

constant shaking until the optical density (OD600) was about 0.5 AU. The cultures 

were cooled on ice for 5 min and thereafter spun at 655 g, 4oC for 10 min in an 

Allegra™ 6R centrifuge. The supernatant was discarded and the pellet gently  

 



Chemicals/Kits Source 
20 MC metal chelate resin, 20 HQ high capacity quaternized polyethyleneimine mono anion exchange resin, nitrocellulose 
membrane (ECL Hybond), thrombin protease. Amersham, USA 

ECL western blotting detection reagents, low molecular weight SDS marker kits, Amplify™. GE Healthcare, UK 
Ampicillin, kanamycin, chloramphenicol, rubidium chloride, lipoic acid, reduced form of nicotinamide adenine dinucleotide 
(NADH), nicotinamide adenine dinucleotide (NAD+), leupeptin, deoxyribonuclease (DNase), ethidium bromide, glutaraldehyde, 3-
(N-Morpholino) propane sulfonic acid (MOPS), benzamidine, polyethylene glycol 6000 (PEG 6000), Coomassie blue dye, 
phenylmethanesulphonylfluoride (PMSF), and N,N,N',N'-Tetramethylethylenediamine (TEMED). 

Sigma, UK 

Oligonucleotide primers MWG-Biotech, UK 
QIAquick gel extraction kit and QIAexpress® Penta-Anti His HRP kit. Qiagen, UK 
Vent® DNA polymerase, T4 DNA ligase, restriction enzymes. New England Biolabs (NEB), UK 
Wizard® SV DNA Minipreps, restriction enzymes, dNTP mix, 10 kb DNA ladders, Taq polymerase, GoFlexi® Taq DNA polymerase, Pfu 
DNA polymerase and T4 DNA ligase. Promega, USA 

HiPrep 16/60 Sephacryl S-300 high resolution column. Applied Biosystems, USA 
Zinc chloride (ZnCl2). Acros Organics, USA 
[N-ethyl-1-14C] maleimide, SOLVABLE™. Perkin Elmer, USA 
Halt™ protease inhibitor single-use cocktail ethylenediaminetetraacetic acid (EDTA) free (100x). Thermo Scientific, UK 
Precast NOVEX Bis-Tris gels, 20x MES SDS running buffer, BL21 Star™ (DE3) and BL21 Star™ (DE3) plysS one shot competent cells, 
TOPO/TA® cloning kits. Invitrogen, UK 

Protease inhibitor EDTA free mini tablets Roche, UK 
Imidazole, NaCl, KH2PO4, VWR (BDH Ltd), UK 
Centricon plus-20/Amicon ultra concentrators (membrane cutoffs of 30 kDa and 100 kDa), 40% (w/v) acrylamide, Tris base, Triton 
X-100, Fisher, UK 

Bradford reagent  Bio-Rad, UK 
Bacto-tryptone, bacto yeast extract, bacto-agar Formedium Ltd, UK 
1,4-Dithiothreitol (DTT), Isopropyl-beta-D-thiogalactopyranoside (IPTG) Melford Laboratories Ltd, UK 
Sodium azide (NaN3) Fluka, UK 

Polyclonal rabbit antisera of E2 and E3BP Generated in-house at the 
University of Glasgow. 

   

Table 3.1 List of common chemicals used and their sources 

http://www.medilexicon.com/medicaldictionary.php?s=nicotinamide+adenine+dinucleotide
http://www.medilexicon.com/medicaldictionary.php?s=nicotinamide+adenine+dinucleotide
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suspended in 20 ml of Buffer 1 (100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2, 15% 

(v/v) glycerol, 30 mM CH3COOK, pH 5.8). The suspended pellet was re-spun as 

before and the pellet resuspended this time in 2 ml of Buffer 2 (75 mM CaCl2, 10 

mM RbCl, 15% (v/v) glycerol, 10 mM MOPS, pH 6.5) via gentle pipette mixing. 

This mixture was then chilled for 15 min on ice and then dispensed into 100/200 

µl aliquots for storage at -80oC. 

3.1.3 Bacterial transformation 

To 50 µl of competent cells, 1 µl of the plasmid DNA was added and the sample 

chilled for 30 min on ice. Cells were thereafter subjected to heat shock at 42oC 

for 30 s (BL21 star (DE3)) or 90 s ((DE3) pLysS/DH5α) and then returned to ice for 

2 min. To these heat shocked cells, 450 µl of sterile LB was added and the cell 

suspension was incubated at 37oC for 40-60 min with continuous shaking. The 

suspensions were then plated (~100-200 µl) on LB plates containing the 

appropriate antibiotic and incubated at 37oC for 14-16 h. 

3.1.4 Bacterial media 

All the experiments in this study used LB as the primary medium for bacterial 

growth unless stated otherwise. LB was prepared by combining 10 g bacto 

tryptone, 10 g NaCl and 5 g bacto yeast extract per litre of distilled water. For 

LB agar plates, 15 g bacto-agar was additionally added to the LB. All media were 

autoclaved before use. The broth and LB agar plates were supplemented with 

ampicillin (100 µg/ml), kanamycin (25 µg/ml) and chloramphenicol (34 µg/ml) 

wherever necessary. 

3.1.5 Oligonucleotide primers 

All PCR primers with the required restriction sites for cloning were ordered from 

MWG-Biotech, UK (section 4.2.1). The primers were designed to have a higher 

GC (~65%) than AT content especially in the regions flanking the restriction sites 

to increase the stability of binding during the amplification process. 
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3.1.6 Ethanol precipitation of DNA 

Ethanol precipitation is an efficient method to concentrate DNA, typically for 

sequencing. 3 M C2H3O2Na (50 µl) and cold ethanol (300 µl) were added 

sequentially to 50 µl purified DNA and kept on ice for 30 min or overnight at 

20oC. The precipitated DNA was centrifuged at 14,000 g (15 min) in a benchtop 

centrifuge and the pellet resuspended in 250 µl ice cold 70% (v/v) ethanol. The 

suspension was subjected to another cycle of centrifugation as above. The 

supernatant of this spin was discarded and the tubes were left to air dry for 20-

30 min at room temperature. Ethanol precipitated DNA samples were sent to 

MWG-Biotech for sequencing and the results analysed via Gene-Jockey software.  

3.2 Molecular Biology  

3.2.1 Plasmid preparation 

From 10 ml overnight cultures, plasmid DNA was extracted using the Promega 

Wizard SV Miniprep DNA gel purification kit according to manufacturer’s 

instructions. DNA was eluted in 100 µl nuclease-free water and stored at –20oC. 

The yield and purity of the plasmids was assessed via agarose gel 

electrophoresis. Plasmids used in this study are listed in Table 3.2. 

3.2.2 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to assess the purity and yield of the 

plasmid DNA as described by Maniatis et al. (1987a). Typically, 1% (w/v) agarose 

gels were run in 1x TAE buffer (1 mM EDTA, 40 mM acetic acid, 40 mM Tris, pH 

7.5) with 5 µl DNA samples mixed with agarose loading dye (0.25% (w/v) 

bromophenol blue, 0.25% (v/v) xylene cyanol FF, 15% (w/v) Ficoll). Gels were 

run at 100 V/250 mA and were subsequently stained with ethidium bromide (0.5 

µg/ml) for 30 min before visualising on the UV transilluminator. 
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3.2.3 DNA extraction from agarose gels 

DNA bands cut from the agarose gels were extracted using the QIAquick gel 

extraction kit (Qiagen) according to manufacturer’s instructions. DNA was eluted 

in 40 µl elution buffer (10 mM Tris-HCl, pH 8.5) and its quality and yield analysed 

by agarose gel electrophoresis. 

Plasmid Name Vector Insert Source 

rE3 pET14b Human E3, aa 36-509 A. Brown (2002) 

rE211b pET11b Human E2, aa 87-613 A. Brown (2002) 

rE214b pET14b Human E2, aa 87-613 A. Brown (2002) 

rE3BP-28b pET28b Human E3BP, aa 54-501 A. Brown (2002) 

tE2Li19-11b pET11b Human E2, aa 398-613 S. Vijayakrishnan 

tE2Li19-14b pET14b Human E2, aa 398-613 S. Vijayakrishnan 

tE2Li27-14b pET14b Human E2, aa 390-613 S. Vijayakrishnan 

tE3BPLi30-28b pET28b Human E3BP, aa 245-501 S. Vijayakrishnan 

Table 3.2  Plasmids used in this study 

 

3.2.4 Polymerase chain reaction 

Polymerase chain reactions were carried out in a PTC 100TM thermocycler 

(Genetic Research Instrumentation, UK), typically in 50/100 µl volumes. The PCR 

reaction mixture consisted of 10x buffer (specific to the polymerase used), dNTP 

mix, 5’ and 3’ primers, DNA polymerase (Vent/GoFlexi Taq/Pfu), DNA template 

and sterile water (details of the reaction amounts and cycle times are described 

in section.4.2.1). Vent and Pfu are high fidelity polymerases possessing dual 

functionality, serving both as a polymerase and a highly efficient proofreading 

3’--->5’ exonuclease. Thus, they have a 5-15 fold greater fidelity in comparison 

with the Taq polymerase and facilitate accurate amplification of target DNA 

over a wide size range (0.1-20 kb). The GoFlexi Taq polymerase is robust and 

allows for optimisation of magnesium used in the reaction mix, a critical step for 

ensuring good yield and sensitivity. PCR products thus obtained were subjected 

to direct cloning or alternatively cloned via TOPO/ TA kits (Invitrogen). 
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3.2.5 Restriction digestion and plasmid ligation 

Restriction digests were performed before recombining the required DNA inserts 

and plasmids (50 µl) or for diagnostic purposes (10 µl). Restriction enzymes were 

purchased from Promega/New England Biolabs and used as per manufacturer’s 

instructions. Digestions were performed at 37oC for 3.5 h and the digests were 

subsequently analysed by 1% (w/v) agarose gel electrophoresis following 

subsequent purification of the digested gel bands of inserts and vectors. Ligation 

was carried out at various insert:vector ratios with T4 ligase (Promega/New 

England Biolabs) and the samples incubated 30 min/overnight at room 

temperature. Ligated mixtures were then transformed into chemically 

competent E. coli DH5α cells and grown overnight on LB ampicillin/kanamycin 

plates at 37oC. Details of the restriction enzymes and ligation conditions used in 

this study are described in section 4.2.1. 

3.3 Protein methods 

3.3.1 Over-expression and solubility 

Overnight cultures (20 ml) were set-up by inoculation of LB with the appropriate 

antibiotic(s) (Table 3.3) and a single bacterial colony obtained from 

transformation or previously made glycerol stocks stored at -80oC. Over-

expressions were carried out in 500 ml LB cultures inoculated with 20 ml of the 

overnight cultures and required antibiotics. Bacteria were grown at 37oC to an 

A600 of 0.6-0.8 and subsequently induced with 1 mM IPTG for 3 h at 30oC or 

overnight at 18oC/15oC. At induction rE2/E3BP, rE2 and rE3BP-28b (see Chapter 

4) were further supplemented with lipoic acid at a final concentration of 50 

µg/ml in order to maximise insertion of the cofactor. Cells were then harvested 

by centrifugation at 10,000 g for 12 min at 4oC (JA14 rotor, Beckman J2-21 

centrifuge) and the pellets stored at -20oC. Culture samples (1 ml) taken prior to 

(t0) and after induction (t4, t6, t17), were centrifuged at 15,300 g (Sanyo 

Microcentaur benchtop centrifuge, UK) for 10 min, resuspended in SDS loading 

buffer and checked for over-expression by SDS-PAGE (see section 3.3.6.1).  
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Antibiotic Plasmid Stock solution Concentration (µg/ml) 

Ampicillin pET 14b, 
pET11b 100 mg/ml in dH2O 100 

Kanamycin pET28b 25 mg/ml in dH2O 25 

Chloramphenicol pLysS 34 mg/ml in ethanol 34 

Table 3.3 Antibiotics and their final concentrations in over-expression studies 

 

Protein was solubilised by lysing pelleted cells (50 ml culture) in metal chelate 

binding buffer (about 3 ml) using a French press (4 times, 750 psi, Thermo 

Electron Corporation, UK). Lysed cells were then subjected to centrifugation at 

15,300 g for 15 min (Sanyo Microcentaur benchtop centrifuge, USA). The cell 

debris (insoluble fraction) was removed from the protein supernatant (soluble 

fraction), solubilised in SDS loading buffer and protein solubility assessed by SDS-

PAGE (see section 3.3.6.1). 

3.3.2 Protein purification 

Details of all buffers used during protein purifications can be found in Chapter 4, 

(section 4.2.3). 

3.3.2.1 Cell lysis 

Frozen cell pellets were resuspended in 20 ml of metal chelate binding buffer 

(20 ml/500 ml of bacterial culture) and supplemented with Complete EDTA-free 

protease inhibitor tablets, DNase and Halt protease inhibitor cocktail (10 µl/ml 

of binding buffer). Cells were lysed in a French pressure cell at 950 psi (4 times) 

and subsequently centrifuged at 10,000 g for 15 min at 4oC (JA17 rotor, Beckman 

J2-MC centrifuge). The soluble lysate was removed from the insoluble pellet and 

filtered via a 0.2 µm syringe filter (Sartorius, UK) prior to chromatography. 

3.3.2.2 Metal chelate affinity chromatography 

All His-tagged proteins were initially purified via metal chelate affinity 

chromatography on the BioCAD Sprint or BioCAD 700E workstations (Applied 

Biosystems, USA). Purification was carried out as follows: a 20MC (metal chelate) 
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column (manually packed in-house, Applied Biosystems USA) was buffer 

equilibrated and protein samples purified at a flow rate of 10 ml/min. The 

column was cleaned thoroughly with alternate washes of 4 column volumes (CV) 

of strip solution (50 mM EDTA, 1 M NaCl) and distilled water (dH2O) in succession 

for 3 cycles to remove any existing impurities from the column. The column was 

then primed with 35 CV of metal ions (0.1 M ZnCl2) followed by a 5 CV dH2O 

wash. Unbound zinc ions were then removed by a 7 CV wash step with 0.5 M 

NaCl, followed by equilibration with 5 CV of elution buffer (100 mM NaCl, 500 

mM imidazole, 50 mM KH2PO4, pH 6.0) and 7 CV of the binding buffer (100 mM 

NaCl, 10 mM imidazole, 50 mM KH2PO4, pH 8.0). Protein samples were injected 

onto the equilibrated 20MC column in 5 ml aliquots, with each injection followed 

by a 2 CV binding buffer wash step. Following the last injection, the column was 

further washed with 8 CV of binding buffer and thereafter the protein eluted 

employing a 0-100% (8 CV) gradient step of elution buffer. Elution fractions (1.5 

ml) were collected and analysed by SDS-PAGE. Pure protein fractions were then 

pooled and either subjected to dialysis or concentration for further purification.  

3.3.2.3 High-capacity HQ anion exchange chromatography 

Pooled pure protein fractions from the metal chelate chromatography were 

buffer exchanged into dialysis buffer (2 mM EDTA, 450 mM NaCl, 25 mM Tris HCl, 

pH 7.5), and then subjected to anion exchange chromatography (for removal of 

DNA) using a high-capacity quarternized polyethyleneimine 20HQ column 

(Applied Biosystems, USA). The column was initially washed with 10 CV of dH2O 

and 5 CV of 0.2 M NaOH at 5 ml/min to remove any pre-existing impurities. This 

was followed by a 10 ml/min 10 CV dH2O wash and 8 CV of elution buffer (2 mM 

EDTA, 2 M NaCl, 25 mM Tris, pH 7.5) to remove contaminants that failed to elute 

in the prior NaOH wash. The column was then washed with 10 CV of dH2O 

followed by equilibration with 15 CV of binding buffer (2 mM EDTA, 25 mM Tris 

HCl, pH 7.5) at 10 ml/min. Protein was loaded onto the column via the column 

tubing at 10 ml/min with simultaneous collection of the flow through. The 

column was then subsequently washed with 10-12 CV of binding buffer and 

protein eluted in 2 ml fractions via a 0-100% gradient of 100 CV elution buffer. 

Owing to buffer exchange in high salt prior to HQ anion exchange 

chromatography, most of the protein (95%) passed into the flow-through with a 
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very small amount eluting from the column (5%). Thus, the high salt buffer 

exchange prior to the anion exchange chromatography was instrumental in 

selective removal of DNA (that remained tightly bound to the 20HQ column and 

was subsequently eluted), from the protein that came into the flow-through. 

Protein purification was analysed using SDS-PAGE and peak fractions and flow-

through were pooled and concentrated for gel filtration. 

3.3.2.4 Gel filtration chromatography 

Gel filtration was carried out on a Sephacryl S-300 column (Amersham, USA) 

equilibrated with 1 CV (~120 ml) GFC buffer at 1 ml/min. The GFC buffer was 

either PEB (2 mM EDTA, 0.01% (w/v) NaN3, 50 mM KH2PO4, pH 7.5) or PEBS100 (2 

mM EDTA, 0.01% (w/v) NaN3, 100 mM NaCl, 50 mM KH2PO4, pH 7.5) depending on 

the protein being purified (for details see section 4.2.3). Elution fractions from 

earlier purifications were pooled and concentrated to approximately 1 ml and 

injected onto the Sephacryl S-300 column. Protein elutes were collected as 2 ml 

fractions in GFC buffer at 1 ml/min over 1.2 CV. 

3.3.2.5 PDC purification from bovine heart 

PDC was purified from bovine heart essentially as described by Stanley and 

Perham (1980) with some modifications: 600 g of bovine heart was blended for 7 

min in 800 ml of extraction buffer (2.7 mM EDTA, 3% (v/v) Triton X-100, 100 µM 

DTT, 1 mM PMSF, 1 mM benzamidine, 0.2% (v/v) silicone anti-foam A, 50 mM 

MOPS, pH 7.0) and the final volume made up to 2 l. The homogenate was then 

centrifuged at 10,000 g for 20 min and the pelleted debris discarded. The 

supernatant fractions were pooled, its pH lowered to 6.45 with 10% (v/v) acetic 

acid and subjected to a first round of PEG precipitation by the addition of 0.12 

vol of 35% (w/v) PEG 6000 and left stirring for 30 min on ice. This supernatant 

was then centrifuged at 20,000 g for 15 min, the pellets resuspended in 300 ml 

homogenisation buffer (2.7 mM EDTA, 1% (v/v) Triton X-100, 1.5 µM leupeptin, 1 

mM PMSF, 1 mM benzamidine, 50 mM MOPS, pH 6.8) and further clarified by 

centrifugation at 29,000 g for 40 min. The supernatant was filtered through 8 

layers of muslin after which 0.013 vol of 1 M MgCl2 and 0.05 volumes of 1 M 

Na2HPO4, pH 6.3 was added dropwise. The pH was prevented from falling below  
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pH 6.8 by adjustment with 0.5 M NaOH. Adjustment to pH 6.45 with 10% (v/v) 

acetic acid was then carried out prior to a second round of PEG precipitation 

(0.12 vol of 35% (w/v) PEG 6000) and left stirring for 30 min on ice. This 

supernatant was centrifuged at 25,000 g for 10 min and the pellets resuspended 

in 150-180 ml of homogenisation buffer. Protease inhibitors (1 mM PMSF, 1 mM 

benzamidine, 1.5 µM leupeptin, 100 µM DTT) were added to the suspension 

which was stored overnight at 4oC. The following day, the suspension was 

rehomogenised before centrifuging at 29,000 g for 60 min. The pH of the 

supernatant collected was lowered to 6.45 with 10% (v/v) acetic acid and the 

third and final round of PEG precipitation (0.06 vol of 35% (w/v) PEG 6000) was 

carried out followed by constant stirring for 30 min on ice. This was followed by 

centrifugation at 29,000 g for 10 min with the pellet of this spin containing 

highly-enriched OGDC. PDC was obtained by further ultracentrifugation 

(Beckman Coulter Optima XL-80K ultracentrifuge) of the supernatant in a Ti 70 

rotor at 116,000 g for 180 min. The OGDC and PDC pellets were resuspended in 

storage buffer (2 mM EDTA, 0.01% NaN3, 50 mM KH2PO4, pH 7.4) overnight at 4oC. 

The solubilised OGDC and PDC were homogenised the next day and protein 

concentrations determined using the Bradford or Biuret assays. PDC and OGDC 

were stored in small aliquots at a final concentration of 10 mg/ml in 50% (v/v) 

glycerol at -20oC 

3.3.2.6 Sucrose gradient centrifugation 

Discontinous sucrose gradients were carried out as described by Rahmatullah, et 

al. (1989b) with the following changes: 4 ml of 20% (w/v) sucrose, 2 ml of 10% 

(w/v) sucrose and 2 ml of 5% (w/v) sucrose in PEBS2M buffer (2 M NaCl, 2 mM 

EDTA, 0.01% (w/v) NaN3, 50 mM KH2PO4, pH 7.4) were layered one above the 

other. Protein samples (5-8 ml) were layered on the sucrose gradients and 

subjected to ultracentrifugation in a Beckman Ti 70 rotor at 182,000 g at 4oC for 

180 min. Supernatant fractions (1 ml) were collected from the top using a 

peristaltic pump, and the pellet suspended in the required buffer. 
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3.3.3 Dialysis 

Buffer exchange of proteins was achieved by dialysing against 5 l of the required 

buffer at 4oC, with a minimum of 3 buffer changes at 2 h intervals. Dialysis was 

carried out using a 12,000-14,000 MW cutoff (MWCO) dialysis membrane (size 9, 

Dia 36/32”, Medicell International Ltd, UK). The dialysis membranes were pre-

treated as described by Bollag, et al. (1996a). 

3.3.4 Protein concentration 

Proteins were concentrated using the Centricon Plus-20/Amicon Ultra 

concentrators (Fisher) with the required MWCO, namely 100,000 MWCO for 

rE2/E3BP, rE2 and truncated tLi19/tLi30 cores; 30,000 MWCO for rE3 and rE3BP-

28b; 10,000 MWCO for truncated C-terminal E3BP (tLi30). Samples were 

centrifuged at 3,000 rpm at 4oC in an Allegra 6R centrifuge (Beckman Coulter, 

UK) for several hours till the desired volume was achieved. 

3.3.5 Polyacrylamide gel electrophoresis (PAGE) 

3.3.5.1 Sodium dodecyl sulphate PAGE (SDS-PAGE) 

SDS-PAGE as described by Laemmli (1970) was used to assess the purity and 

concentration of proteins. Laemmli gels comprising a 4-6% stacking gel and a 10-

15% resolving gel were prepared (small: 9 cm x 9 cm x 1.5 mm, large: 17 cm x 15 

cm x 2 mm). Alternatively, pre-cast 4-12% gradient Bis-Tris NuPAGE gels 

(Invitrogen) were used according to manufacturer’s instructions. Protein samples 

were suspended in Laemmli sample buffer to which 150 mM DTT was added prior 

to boiling at 100oC for 13 min, with subsequent loading of samples (10-20 µl) 

onto the gel. While the homemade gels were run in SDS running buffer (Laemmli, 

1970) at 400 V, 50-65 mA per gel depending on the the gel size, the NuPAGE gels 

were run in 2-(N-morpholino) ethane sulfonic acid (MES) running buffer 

(Invitrogen) at 200 V, 125 mA per gel. Gel and buffer recipes are listed in table 

3.4. Gels were stained with 0.1% (w/v) Coomassie Brilliant Blue (G-250), 10% 

(v/v) acetic acid, 50% (v/v) methanol for about 30 min and subsequently 

destained with 10% (v/v) acetic acid, 10% (v/v) methanol overnight. 
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Recipie Ingredients 

Homemade SDS 
resolving gel 

8-15% (w/v) acrylamide, 0.1% (w/v) SDS, 0.1% (w/v) 
ammonium persulphate (APS), 0.1% TEMED, 0.5 M Tris-
HCl, pH 8.8 

Homemade SDS 
stacking gel 

4-6% (w/v) acrylamide, 0.01% (w/v) SDS, 0.1% APS, 
0.1% (w/v) TEMED, 0.06 M Tris-HCl, pH 6.8 

1x Laemmli SDS sample 
buffer 

2% (w/v) SDS, 10% (w/v) sucrose, trace of pyronin Y 
dye, 62.5 mM Tris-HCl, pH 6.8 

1x SDS running buffer 192 mM glycine, 1% (w/v) SDS, 1% (w/v) SDS, 25 mM 
Tris-HCl, pH 8.8 

1x MES running buffer 
(Invitrogen) 1 M MES, 1 M Tris-base, 69.3 mM SDS, 20.5 mM EDTA 

4-12% Bis-Tris gradient 
gel (Invitrogen) Proprietary 

Table 3.4 SDS-PAGE gel and buffer recipes used in this study. 

 

3.3.5.2 Native PAGE  

Native PAGE (Bollag, et al., 1996b) was carried out to determine the oligomeric 

state of the protein. This employed separation of proteins based on their size 

and charge. Stacking (5% (w/v) acrylamide, 0.1% APS, 0.1% (w/v) TEMED, 0.06 M 

Tris-HCl, pH 6.8) and resolving gels (6% (w/v) acrylamide, 0.1% (w/v) ammonium 

persulphate (APS), 0.1% TEMED, 0.5 M Tris-HCl, pH 8.8) were prepared and run 

with 1x Tris-glycine running buffer (192 mM glycine, 25 mM Tris-HCl, pH 8.8) at 

200 V and a constant current of 50 mA for 3 h. Typically, protein samples were 

resuspended in 5x sample buffer (50% (v/v) glycerol, 0.05% (w/v) bromophenol 

blue, 312.5 mM Tris-HCl, pH 6.8) before loading onto the gel. Alternatively the 

NuPAGE Novex Tris-glycine 4% native gels (Invitrogen) were used with 1x Tris-

glycine running buffer (Invitrogen) at 125 V, 6-12 mA. Gels were stained with 

Coomassie Brilliant Blue for 30-60 min at room temperature and subsequently 

destained overnight in 10% (v/v) acetic acid, 10% (v/v) methanol to enable clear 

protein band visualisation. 
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3.3.6 Glutaraldehyde crosslinking 

Glutaraldehyde is an amine-reactive homobifunctional crosslinker. It reacts with 

primary amine groups in the protein sidechain (e.g. amines of lysine) resulting in 

inter- and intra-molecular covalent bonds. These covalent interactions result in 

the formation of higher state oligomers that are usually assessed by SDS-PAGE. 

Proteins (20-30 µg) were treated with 2% (v/v) glutaraldehyde (Sigma) and 

incubated for 15-20 min at room temperature. Samples were then suspended in 

SDS loading buffer and their oligomeric state resolved by SDS-PAGE on a 4-12% 

gradient gel. 

3.3.7 Western blotting 

Proteins resolved by SDS-PAGE were electrophoretically transferred onto 

nitrocellulose membrane (ECL Hybond, Amersham) at 30 V, 170 mA using the X 

Cell II™ Blot module (Invitrogen, UK). Transfer was carried out in the presence of 

transfer buffer (192 mM glycine, 20% (v/v) methanol, 25 mM Tris-HCl, pH 7.2) 

and pre-stained marker (BioRad, USA). The use of pre-stained marker helped 

confirm efficient transfer onto the nitrocellulose membrane. The methodology 

varied slightly from this point depending on the antibody probe being used as 

follows. 

3.3.7.1 His-tag antibody 

The nitrocellulose membrane was washed rigorously with TBS buffer (150 mM 

NaCl, 10 mM Tris-HCl, pH 7.5) three times at 10 min intervals with constant 

shaking. The washed blot was then immersed in 10 ml blocking buffer (0.1 g 

blocking reagent (Qiagen), 1 ml blocking reagent buffer (Qiagen), 1% (v/v) 

Tween-20) with constant shaking for 1 h to remove excess binding sites. This was 

followed by 3 cycles of TBST buffer (20 mM Tris-HCl, 500 mM NaCl, 0.05% (v/v) 

Tween-20, 0.2% (v/v) Triton X-100) and a single wash of TBS buffer, each at 10 

min intervals. The membrane was then incubated with a 1:2000 dilution of the 

QIAexpress Penta-His HRP conjugate antibody (Qiagen, UK) for 1 h with vigorous 

shaking. The Penta-His HRP conjugate antibody has the secondary horseradish 

peroxidase (HRP) antibody attached to it; hence no secondary antibody is 
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required. After the antibody incubation, the blot is washed with 3 cycles of TBST 

and 1 cycle of TBS (10 min incubations). Detection was carried out using the ECL 

Western blotting reagents (GE Healthcare) according to manufacturer’s 

instructions and x-ray films (Kodak, UK) were developed at various exposures. 

3.3.7.2 Other antibodies 

The nitrocellulose membrane was incubated in blocking buffer (15 mM NaCl, 5% 

(w/v) non-fat milk, 0.2% (v/v) Tween-20, 20 mM Tris-HCl, pH 7.2) for 1 h at 

room temperature with constant shaking. It was then subjected to two washes 

each for 10 min, with wash buffer (15 mM NaCl, 1% (w/v) non-fat milk, 20 mM 

Tris-HCl, pH 7.2). This was followed by incubation with primary antibody 

solution (15 mM NaCl, 1% (w/v) non-fat milk, 0.1% (v/v) Tween-20, 20 mM Tris-

HCl, pH 7.2 at a 1:1000-5000 dilution of the primary antibody) at room 

temperature for 1 h. Excess antibody was removed by 4 wash cycles of wash 

buffer every 10 min, followed by incubation with anti-rabbit IgG secondary 

antibody conjugated to horseradish peroxidase (150 mM NaCl, 1% (w/v) non-fat 

milk, 20 mM Tris-HCl, pH 7.2 at a 1:2000-20000 dilution) for 1 h at room 

temperature. The membrane was then incubated (15 min) with wash buffer 

followed by a 30 min wash in high salt solution (150 mM NaCl, 20 mM Tris-HCl, 

pH 7.2). Detection was carried out with the ECL Western blot reagents (GE 

Healthcare, UK) and x-ray films (Kodak, UK) developed for suitable exposure 

times. 

3.3.8 Determination of protein concentration 

All three methods (given below) used for protein concentration determination 

resulted in concentration estimates that were consistent with each other. 

Concentration measurements by Bradford and Biuret were in good agreement (< 

5%) with the A280 (using the calculated extinction coefficient).  

3.3.8.1 Protein absorbance 

Protein absorbance was measured on an Ultrospec 4300 Pro UV/vis 

spectrophotometer over a range of 200-600 nm. Extinction coefficients were 
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calculated from the protein sequences via the PROTPARAM program of the 

EXPASY suite (http://expasy.org/tools/protparam.html). The molar protein 

concentrations were determined by dividing the net absorbance (that measured 

at 280 nm subtracted from that at 310 nm) by the molar extinction coefficient at 

280 nm. While all protein concentrations were based on protein absorbance at 

280 nm, E3 protein concentration was measured via FAD absorbance at 450 nm. 

As the protein sequence of bovine E2/E3BP is unknown, the extinction 

coefficient of recombinant E2/E3BP was used instead to estimate its 

concentration. Concentrations in mg/ml were calculated by multiplying the 

molar concentrations by the respective molecular weights of the proteins. The 

extinction coefficients and molecular weights of the various proteins are listed 

in Table 3.5. 

Protein Molar extinction coefficient 
‘ε’ at 280 nm (M-1cm-1) Molecular weight (Da) 

Recombinant E2/E3BP 
(48/12 model) 1,951,320 3.55 x 106

Recombinant E2 2,124,600 3.74 x 106

Truncated tLi19/tLi30 862,200 1.67 x 106

rE3BP-28b 20,970 (monomer), 
41,940 (dimer) 

51,636 (monomer), 
103,272 (dimer) 

tLi30 9,970 (monomer), 
19,940 (dimer) 

31,274 (monomer), 
62,548 (dimer) 

Bovine E2/E3BP Not known Not known 

FAD 11,300 507,000 

Recombinant E3 22,600 106,000 

Table 3.5 Extinction coefficients and molecular mass of proteins used in this 
study 

 

3.3.8.2 Bradford assay 

Bio-rad assays were performed to estimate protein concentrations of PDC and 

OGDC isolated from bovine heart. This method involves the conversion of 

http://expasy.org/tools/protparam.html
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Coomassie Brilliant Blue G-250 from red to blue on protein binding, resulting in 

an increase in absorbance at 595 nm. Standard curves were plotted using BSA 

and IgG from which unknown protein concentrations were determined. 

Measurements were performed on a Shimadzu UV-2100 PC UV-Vis scanning 

spectrophotometer. 

3.3.8.3 Biuret method 

The Biuret method was also used to determine protein concentration. The 

underlying principle is the formation of a purple complex between the protein 

peptide backbone and the copper ions in the Biuret reagent under alkaline 

conditions. Biuret reagent was prepared by initially mixing 79.7 mM 

KNaC4H4O6·4H2O, 30 mM CuSO4.5H2O and 75.3 mM KI in 100 ml of 0.2 M NaOH, 

and making up the final volume to 250 ml with dH20. While this method is 

extremely accurate with no interfering agents to affect protein concentration 

determination, it does require large amounts of material. Standard IgG (1-5 

mg/ml) absorbance curves at 550 nm were measured using a Shimadzu UV-2100 

PC UV-Vis scanning spectrophotometer. Unknown protein samples (1 ml) were 

mixed with 2 ml of Biuret reagent in 4 ml plastic cuvettes (Fisher, UK). Samples 

were thoroughly mixed by inverting cuvettes a few times followed by a 20 min 

incubation at room temperature. The absorbance (at 550 nm) of the protein-

Biuret mix was determined and converted to a concentration via the IgG 

standard curve. Concentrations of unknown proteins were then determined from 

this calibrated IgG standard curve. 

3.3.9 Determination of Radioactivity 

3.3.9.1 [14C] N-ethyl maleimide (NEM) labelling  

Protein samples (rE2/E3BP, rE3, bE2/E3BP and bE3) were radio-labelled with [N-

ethyl-1-14C] maleimide ([14C]-NEM) (0.1 mCi/ml, 33.2 mCi/mmol, PerkinElmer). 

3-4 µl of [14C]-NEM labelled protein (0.64 mM) were mixed with 0.5 mM NAD+ or 1 

mM NADH and incubated at room temperature for 30 min. Reactions were 

terminated by the addition of 50 mM DTT and further incubated for 12 min at 

room temperature, after which 6 µl SDS loading buffer was added. The labelled 
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samples were either immediately assessed by SDS-PAGE or stored at -80oC for 

future use. SDS-PAGE was carried out on 8% (w/v) slab gels (17 cm x 15 cm x 2 

mm) at 400 V and 65 mA. The SDS loading dye was left to run off the edge of the 

slab gels for at least 1 h, after which it was stained with Coomassie brilliant blue 

and destained overnight (section 3.3.6.1). 

3.3.9.2  Scintillation counting 

The required protein bands were excised from the destained radio-labelled gel 

(section 3.3.11.1) and solubilised overnight in 1 ml of SOLVABLE TM (PerkinElmer, 

UK) at 37oC. Gel pieces of similar dimensions were cut from blank tracks and 

used to estimate background radioactivity. Solubilised 1 ml aqueous samples 

were transferred to 20 ml capped plastic scintillation vials, followed by the 

addition of 6 ml of EcoScint TM A scintillant (National Diagnostics, UK). Samples 

were thoroughly mixed by vortexing and counted using a Beckman LS 6500 

scintillation counter, with a count period of 10 min/sample. 

3.3.9.3 Fluorography 

[14C]-NEM radiolabelled samples were run on 8% (w/v) SDS-PAGE gels, stained 

and fixed overnight in destain solution (see section 3.3.11.1). Fluorography was 

performed as described by Chamberlain (1979) with the following modifications. 

The overnight fixed gels were immersed in about 150 ml of Amplify™ (GE 

Healthcare) and incubated for 30 min at room temperature. Gels were then 

directly dried under vacuum on Whatman No. 3 filter paper at 80oC for 2 h. The 

dried gel was left to cool for about 30 min before transferring it to a cassette for 

storage at -80oC. Fluorographs were developed on x-ray films (Kodak, UK) using a 

Kodak X-OMAT S processor for exposure times ranging from 1 to 14 days. 

3.4 Biophysical methods 

3.4.1 Buffer density and viscosity calculations 

The densities and viscosities of buffers used in analytical ultracentrifugation 

(AUC) were calculated using the program SEDNTERP (Laue, et al., 1992) (http:// 
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www.jphilo.mailway.com/) and listed in Table 3.6. 

Buffer Buffer composition Temperature 
(oC) 

Density ‘ρ’ 
(g/ml) 

Viscosity 
‘η’ (Poise) 

PEB 2 mM EDTA, 0.01% NaN3, 
50 mM KH2PO4, pH 7.5 

4 
20 

1.00774 
1.00596 

0.01567 
0.01002 

PEBS100 
2 mM EDTA, 0.01% 
NaN3, 100 mM NaCl, 50 
mM KH2PO4, pH 7.5 

4 
20 

1.01188 
1.01009 

0.016141 
0.010322 

Table 3.6 Calculated densities and viscosities of buffers used in AUC. 

 

3.4.2 Sedimentation velocity (SV) 

Sedimentation velocity (SV) experiments were carried out in a Beckman Coulter 

Optima XL-I analytical ultracentrifuge (Palo Alto, USA) using an An-50 Ti 8 hole 

rotor. Samples (360 µl) of various concentrations were loaded into 12 mm path 

length, charcoal-filled, epon double sector centrepieces, spun at 20,000 rpm at 

4oC and a series of scans collected using either interference optics or absorbance 

optics or a combination of both. PEB or PEBS100 buffer were used as reference 

solvents depending on the experiment in question. Data were recorded over a 

radial range of 6.0-7.25 cm, and a radial step size of 0.002 was used in the case 

of absorbance optics. In the case of interference optics, 400-471 scans were 

recorded, 1 min apart (depending on the protein, details are described in the 

individual Chapters) and the laser delay was adjusted prior to the run to obtain 

high quality interference fringes. Data were analysed using SEDFIT (Schuck, 

2000; Schuck, et al., 2002). Sedimentation boundaries were initially modelled as 

size based distribution of Lamm equation solutions using the c(s) analysis. 

Apparent sedimentation coefficients were further obtained via the non-

interacting discrete species model that employs finite element analysis (see 

section 2.2.1.3 for details). The apparent sedimentation coefficients obtained at 

4oC were converted into s values at 20oC (s20,w) via standard theory (see section 

2.2.1.2.2). The sedimentation coefficient at infinite dilution  was then 

determined from the y intercept of a plot of sedimentation coefficient (s

0
w,20s

20,w) 

against concentration (nM or mg/ml). As data obtained from both SV absorbance  
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and interference data yielded the same results, only interference data have 

been presented in this thesis unless stated otherwise. 

3.4.3  Sedimentation equilibrium (SE) 

Sedimentation equilibrium (SE) experiments were conducted in a Beckman 

Coulter Optima XL-I analytical ultracentrifuge (Palo Alto, USA) using an An-50 Ti 

8 hole rotor at speeds of 3,000, 5,000 and 7,000 rpm. All experiments were 

carried out at 4oC with protein samples (80 µl) at various concentrations loaded 

into 12 mm path length charcoal-filled, epon double sector centrepieces. PEB or 

PEBS100 buffer was used as the reference solvent depending on the experiment 

in question (details are described in the various Chapters). After an initial delay 

period of 16-20 h, a series of scans (12-15) separated by 3 h was recorded using 

interference optics. Data were recorded over a radial range of 6.8-7.25 cm with 

the laser delay adjusted before the run. The program WinMATCH 

(www.biotech.uconn/edu/auf/) was used to confirm that the system had 

reached equilibrium by measuring no appreciable change in the root mean 

square deviation (rmsd < 0.1 x 10-2) as a function of time. SE data were analysed 

using the programs SEDPHAT (Schuck, 2003; Vistica, et al., 2004) and the 

Beckman Coulter XL-A/XL-I software that uses MicroCal Origin v6.0. Single data 

analysis was performed for every concentration within a single speed to obtain 

an apparent whole-cell weight average molecular weight, Mapp. SE analysis in 

MicroCal Origin v6.0 included the second virial coefficient B that represents a 

measure of non-ideality in the system. Initial starting estimates of B were 

calculated using the program COVOL (Harding, et al., 1999) (http://www. 

nottingham.ac.uk/ncmh/unit/method.html) based on the surface charge and 

molecular mass of the protein. However, inclusion of B worsened the fits and as 

a result Origin v6.0 was not used for further SE analysis. Alternatively, SEDPHAT 

was used to carry out single fit analysis at every sample concentration via the 

non-interacting species model that allows fitting a maximum of four species. The 

average molecular weight independent of concentration was determined by 

plotting 1/Mapp vs concentration (nM or mg/ml), with the y intercept denoting 

the whole-cell average molecular weight , at infinite dilution. 0
wM

http://www.biotech.uconn/edu/auf/
http://www. nottingham.ac.uk/ncmh/unit/method.html
http://www. nottingham.ac.uk/ncmh/unit/method.html
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3.4.4 Small angle x-ray scattering (SAXS) 

Small angle x-ray scattering experiments were carried out on beamline X33 of 

the EMBL/Deutsches Elektronen Synchrotron (DESY) at Hamburg and station 2.1 

of the SRS Daresbury Laboratory, UK.  

The X33 beamline at EMBL/DESY is a bending magnet beamline, with beam 

currents of 80-240 mA, a fixed wavelength of 1.54 Å and an electron energy of 2 

GeV. Data were collected in mica sample holders for various sample 

concentrations (details are given in Chapter 3) and temperatures (10ºC, 20ºC and 

37ºC) at a sample-to-detector distance of 4 m, over a momentum transfer range 

of 0.08 < s < 4.97 nm-1 (s = 4∏ sin θ/λ), where 2θ and λ denote the scattering 

angle and x-ray wavelength, respectively. The 345 mm 2D MAR image plate 

detector was calibrated using BSA as a standard prior to the experiment. In 

addition, all data scans were recorded over a period of 4 min each, with 

scattering data of buffer (PEBS100) collected before each sample run. Collected 

data were integrated, normalised to the main incident beam and detector 

response, and processed using the program PRIMUS (http://www.embl-

hamburg.de/ExternalInfo/Researc h/Sax/software.html) (Konarev, et al., 2003). 

Radiation damage was assessed at the various temperatures by checking for a 

change in the normalised scattering intensity between the first and last scans. 

Scattering curves unaffected by aggregation were then averaged, buffer 

subtracted and scaled for concentration using PRIMUS. The final average buffer 

subtracted curve was fed into GNOM (Semenyuk and Svergun, 1991; Svergun, 

1992) and the p(r) distance distribution plots and maximum dimensions, Dmax of 

the proteins were determined. The radius of gyration Rg was obtained from the 

Guinier approximation (in PRIMUS) and GNOM. 

SAXS experiments at station 2.1 of the SRS Daresbury, UK (operating at a fixed 

current and wavelength of 250 mA and 1.54 Å) was conducted in a similar 

manner as described above. However, owing to smaller detector size, two 

camera lengths (2.25 m and 6.25 m) were used to cover a momentum transfer 

range of 0.00017 < s < 0.0057 nm-1. The response of the quadrant detector used 

was calibrated using iron as the radiation source. All experiments were 

conducted at 10oC with various protein concentrations (see section 3.2.4 for  

http://www.embl-hamburg.de/
http://www.embl-hamburg.de/
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details) and the data acquired over a period of 30 min. Data obtained were 

integrated, normalised, checked for sample aggregation and processed using 

XOTOKO (Boulin, et al., 1988). Protein scattering curves were buffer subtracted, 

and thereafter the low angle region of the low concentration curve was merged 

with the high angle region of the high concentration curve using Origin v 6.0. 

Effective merging of the curves was ascertained by scaling appropriately, 

resulting in good superimposition in the overlap region. The scaled scans were 

then averaged (PRIMUS) to produce a final scattering curve for each protein 

sample. Further data analysis via Guinier approximation and GNOM were 

performed as detailed above. 

3.4.5 Small angle neutron scattering (SANS) 

SANS was conducted at the D22 beamline at the Institut Laue-Langevin (ILL) in 

Grenoble, France with a neutron wavelength of 6 Å. Samples were first 

measured in protein buffer (PEB/PEBS100) at detector distances of 4 m (low 

angle scattering) and 14 m (high angle scattering), and subsequently dialysed 

overnight in 40% and 100% deuterium buffer (D2O PEB), before re-measuring 

scattering at the same detector distances. All experiments were conducted in 1 

mm path length quartz cuvettes at 4oC. Transmission and scattering data of 

buffer and sample at both detector distances (4 m and 14 m) were collected 

over a time period of 4 min and 15 min, respectively thus covering an overall s 

range of 0.0034 < s < 0.143 Å-1. Data were recorded on a large two dimensional 

area gas detector and detector response was calibrated with background, water 

and cadmium transmissions. More details on the instrumentation can be found in 

section 2.3.2. While the Unix program MAD was used to control data acquisition, 

the GUI program GRASansP written by Charles Dewhurst, ILL, 

(http://www.ill.eu/sites/grasp/grasp_main.html) was employed for graphical 

inspection, analysis and reduction of the raw data. The p(r) distance 

distribution, maximum dimension (Dmax) and radius of gyration Rg of protein 

samples were obtained from programs PRIMUS and GNOM. All SANS experiments 

were carried out in collaboration with Dr. Phil Callow, ILL, Grenoble, France. 

http://www.ill.eu/sites/grasp/grasp_main.html
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3.4.6 Negative staining electron microscopy (EM) 

Negative staining EM was conducted on a 1200 EX scanning microscope (JOEL, 

Japan), with an operating magnification of 30,000x and acceleration voltage of 

120 kV. Samples were prepared as follows. Carbon coated copper grids (Agar 

Scientific Ltd., UK) were initially ionized in an ion chamber, after which 5 µl of 

protein was added to the non-shiny plastic surface of the grids. The grids were 

then sequentially washed with three 50 µl droplets of distilled water and one 50 

µl droplet of 2% (w/v) ammonium molybdate, pH 7.2 (negative stain, Agar 

Scientific Ltd., UK), all placed on a sheet of parafilm. These washes required the 

protein to stay afloat on the droplets for a couple of seconds without complete 

immersion. Excess liquid was then drained using a strip of Whatman filter paper 

at the edge of the grid. Grids were left to dry for a few min after which they 

were scanned to obtain good resolution micrographs. Stained micrographs were 

recorded at high magnifications (90,000x-120,000x) on Kodak S0163 film, 

developed at 5000 dots/inch (Nikon 4000 scanner) and the images processed 

using the software Digita Micrograph. Data collection and processing were 

performed in collaboration with Dr. David Bhella, MRC Virology Unit at the 

University of Glasgow. 

3.4.7 Circular dichroism (CD) 

CD studies were performed on rE2/E3BP, rE2 and tLi19/tLi30 core samples in 

either PB or PEBS100 buffer on a JASCO J-810 spectropolarimeter at 25oC. 

Experiments were carried out at 1 nm bandwidth and scan speeds and response 

times of 50 nm/min and 0.5 s (far-UV), and 10 nm/min and 2 s (near-UV), 

respectively. Quartz cells of 0.5 cm and 0.02 cm were used for the near- and 

far-UV, thus covering a wavelength range of 250-320 nm (near-UV) and 180-260 

nm (far UV), respectively. Data were analysed using the online data algorithm 

server, Dichroweb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) in 

order to obtain estimates of the secondary structure content. In addition, CD 

experiments (far and near UV) were carried out in the presence of denaturant 

(0-6M GdmCl) at room temperature to assess the stability of the rE2, rE2/E3BP 

and tLi19/tLi30 cores. CD experiments were conducted and analysed in 

collaboration with Dr. Sharon Kelly, University of Glasgow. 

http://dichroweb.cryst.bbk.ac.uk/html/home.shtml
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3.4.8 Tryptophan fluorescence 

Tryptophan fluorescence was monitored for rE2, rE2/E3BP and tLi19/tLi30 core 

samples during chemical denaturation in the presence of increasing 

concentrations of GdmCl (0 to 6M). Proteins in PEB buffer were excited at 295 

nm and the emission monitored over a range of 320-380 nm using a PerkinElmer 

L55OB spectrophotometer at room temperature. Quartz cells (1 cm path length) 

were used and data analysed by software provided by the manufacturer. All 

fluorescence experiments were conducted and data analysed by Dr. Sharon 

Kelly, University of Glasgow. 

3.5 Computational methods 

3.5.1 Sequence alignments 

Protein sequence alignments were carried out with the Unix version of Clustal, 

known as ClustalW (http://www.ebi.gla.ac.uk/clustalw) (Chenna, et al., 2003; 

Larkin, et al., 2007). Amino acid sequences were supplied in FASTA format and 

alignment was performed using default parameters.  

3.5.2 Ab initio modelling of SAXS and SANS data 

Initial attempts on ab initio reconstructions employed the program DAMMIN 

(Petoukhov and Svergun, 2003). However, fits to the experimental data were 

unsatisfactory probably owing to the large size of the dummy atoms that prevent 

restoration of the detailed structure. DAMMIN is also known to experience 

problems with detailed structure restoration of complex hollow structures 

(Volkov and Svergun, 2003). Therefore, subsequently all ab initio reconstructions 

of molecular envelopes from SAXS and SANS data carried out in this study were 

generated using the program GASBOR (Petoukhov and Svergun, 2003; Svergun, et 

al., 2001). GASBOR restores the structure as a collection of dummy residues 

(DR), with one DR per amino acid. With the search volume, particle symmetry 

and various penalties applied, GASBOR starts with a random configuration of DRs 

and via a simulated annealing procedure, gradually results in a meaningful 

http://www.ebi.gla.ac.uk/clustalw
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configuration having the lowest energy. However, as the proteins in this study 

are massive, GASBOR runs are extremely time intensive (10 days on a Desktop 

PC). To overcome this problem, 100-200 simulations were conducted per protein 

using the computer grid system SCOTGRID (www.scotgrid.ac.uk/). Managed by 

the Physics department at the University of Glasgow, SCOTGRID is a powerful 

computer hub comprising over 150 computer nodes (Dual core Opteron 280 

processor, 2.4 GHz) that are connected as a grid and fed into 8 powerful servers 

and 10 large data storage nodes. Each simulation on SCOTGRID took about 7 days 

to complete on a single computer node. GASBOR models were superimposed and 

averaged by DAMAVER (Volkov and Svergun, 2003). Further details on the ab 

initio modelling can be found in sections 2.3.1.3, 5.2.6 and 6.2.4. 

3.5.3 Homology modelling 

A homology model of the recombinant human truncated E2 (tE2) was obtained 

from SWISS-MODELLER server (http://swissmodel.expasy.org/) (Arnold, et al., 

2006; Guex and Peitsch, 1997; Peitsch, et al., 2000; Schwede, et al., 2003). The 

E2 crystal structure of B. stearothermophilus PDC (PDB ID 1B5S) (Izard, et al., 

1999) was used as the template and the model submitted via the project mode 

in the program Swiss-PDBViewer (spdbv; http://www.expasy.org/spdbv) (Guex 

and Peitsch, 1997). The amino acid sequence (FASTA format) was loaded into 

spdbv along with the bacterial E2 crystal structure template (1B5S.pdb), and 

fitted to the template via the ‘Fit raw sequence command’. After checking for 

good alignment the project was submitted via the ‘submit modelling request’ 

option in spdbv. The human tE2 model obtained from SWISS-MODEL was a 

pentamer and the complete oligomeric 60-mer was built using crystallographic 

symmetry in Pymol (Delano Scientific, USA). All structures were visualised using 

VMD (http://www.ks.uiuc.edu/Research/vmd/) (Humphrey, et al., 1996), Swiss-

PDBViewer (Guex and Peitsch, 1997) and Pymol (Delano Scientific, USA). 

3.5.4 Hydrodynamic modelling 

The programs HYDRO++ (García de la Torre, et al., 2007; García de la Torre, et 

al., 1994) and SUPCW (Spotorno, et al., 1997) were used to calculate the 

hydrodynamic properties of atomic resolution structures. HYDRO++ is an 

http://www.scotgrid.ac.uk/
http://swissmodel.expasy.org/
http://www.expasy.org/spdbv
http://www.ks.uiuc.edu/Research/vmd/
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improved version of an earlier program HYDRO with enhanced calculations for 

rotational properties and intrinsic viscosities. Hydrodynamic parameters 

including the sedimentation coefficient, were obtained by providing a 

hydrodynamic bead model (HBM) generated from atomic coordinates as an input 

to HYDRO++ and SUPCW. HBMs generated using programs AtoB (Byron, 1997) 

implemented within SOMO (Rai, et al., 2005) and TRANS2VORONOI (developed by 

M. Nöllmann, Centre de Biochimie Structurale Montpellier, France) were 

subsequently used as input for HYDRO++ and SUPCW, respectively.  

The HBM essentially is a representation of the macromolecule by an assembly of 

beads (or spheres) for which hydrodynamic parameters are computed. In this 

thesis, AtoB was used to construct HBMs from ab initio models obtained from SAS 

data as well as atomic resolution structures, while TRANS2VORONOI employed 

only the ab initio SAS models for its HBM generation. The atomic coordinates of 

the macromolecule supplied to AtoB are enclosed within a cuboid whose length 

equals the maximum dimension of the molecule. The cuboid is in turn divided 

into a number of cubes of user-specified dimension (the nominal resolution of 

the HBM), and spheres with radii proportional to the cube root of the mass 

contained within that cube are positioned at the centre of gravity (Byron, 2008). 

The HBMs thus obtained from AtoB comprised overlapping beads of equal radii. 

TRANS2VORONOI is essentially an extended version of AtoB and employs a similar 

cubic grid for bead modelling. Anhydrous sedimentation coefficients obtained 

from HYDRO++ and SUPCW, were adjusted for hydration as described by 

hydrodynamic theory (see section 2.2.1.2.2, equation 2.33) and compared to 

observed experimental values. More details on the modelling procedures can be 

found in the methods sections of Chapters 5 and 6. 

3.5.5 Calculation of scattering curves from crystal 

structures 

Scattering curves for high-resolution crystal structures or models and their fits to 

experimental scattering curves were obtained using the program CRYSOL 

(Svergun, et al., 1995) or CRYSON (Svergun, et al., 1998) with default parameter 

settings. The solvent contribution in scattering of a macromolecule consists of 

two terms, one due to the excluded volume (i.e. volume inaccessible to the 
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solvent) and the second due to the difference in scattering density of the solvent 

in the hydration shell and in the bulk (see section 2.3.1.2). CRYSOL and CRYSON 

take into account this scattering from the excluded volume as well as the 

hydration shell. CRYSON computes an angular envelope function of the particle 

with a 0.3 nm thick hydration layer with variable density (Koch, et al., 2003). In 

addition, the use of multipole expansion analysis considerably speeds up the 

computation process. Thus, on supplying the atomic coordinates, CRYSOL 

predicts the scattering profile or fits the experimental data by adjusting the 

particle excluded volume and density of the hydration layer (Koch, et al., 2003). 

CRYSON is an analogue of CRYSOL that computes neutron scattering curves 

taking into account contributions due to H/D exchange.  

3.5.6 Superimposition of ab initio and crystal structure 

models 

Superimposition of high-resolution atomic and low-resolution solution structures 

was done using the program SUPCOMB (Kozin and Svergun, 2001) employing 

default parameters. SUPCOMB allows superimposition of multiple low-resolution 

structures with each other as well as with high-resolution structures. It provides 

the best fit by maximising the search volume and is ideal for superimposition of 

structures having high similarity with variable numbers of atoms or between 

high- and low-resolution models. The models are represented as an ensemble of 

points and the superimposition is achieved by minimising a dissimilarity measure 

between two models, termed the normalized spatial discrepancy (NSD). For 

every point in the first model, the minimum value among the distances between 

this point and all points in the second model is found, and the same is done for 

the points in the second model (Koch, et al., 2003). All these distances are then 

added and normalized against the average distances between neighbouring 

points for the two models. The NSD value is close to 1 if two models are very 

similar (Koch, et al., 2003). 

3.5.7 Mathematical modelling of core subunit 

organisation 

The subunit organisation of the E2/E3BP core was mathematically modelled in  
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collaboration with Prof. David Gilbert (Bioinformatics, University of Glasgow) 

and Prof. Peter Kropholler (Department of Mathematics, University of Glasgow). 

The algorithm involves modelling of the subunit ogranisation based on the 

trimeric units that make up the icosahedral E2/E3BP core. As the E2/E3BP core 

is a 60-meric icosahedron, it comprises 20 trimers that form the vertices of the 

pentagonal dodecahedron and 30 edges that bridge these trimers together. In 

the 60-meric E2 core, all the 20 trimers are homotrimers comprising only E2 

subunits. However, the introduction of E3BP into the E2 only core (on the basis 

of the substitution model) results in heterotrimers (2E2 and 1E3BP) being formed 

in addition to the E2 homotrimers. Two important constraints are placed during 

the modelling process. The first one being that only one E3BP is present per 

heterotrimer and the second one being that the interaction of E3BP is mediated 

only by its dimerisation on the core surface, i.e. an E3BP that is part of one 

hetertotrimer can only interact with a neighbouring E3BP that is part of another 

heterotrimer. No direct interactions between E3BP and E2 are permitted 

between neighbouring trimers. On this basis, one can theoretically envisage core 

subunit organisation ranging from 60E2 + 0E3BP to a maximum of 40E2 + 20E3BP. 

The faces of the dodecahedron are defined in terms of the number of possible E2 

edges with the above constraints. Thus, the 3-edge, 4-edge and 5-edge faces of 

E2 are represented as unknown variables X, Y and Z. Linear equations based on 

these variables with the above constraints are then simultaneously solved to give 

a list of solutions for X, Y and Z for the various E2+E3BP subunit organisations. 

The linear equations used for modelling are given below, 

60Z5Y4X340
12ZYX

≤++≤
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Solving these linear equations simultaneously results in the equation, 

 

The algorithm was implemented using a logic programming language called 

Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/index.html) that uses 

constraints over finite domains. The solutions were generated by the constraint 

solver. 

http://www.sics.se/isl/sicstuswww/site/index.html
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3.6 Nomenclature for stoichiometry experiments 
used in this study 

The nomenclature adopted for the various stoichiometry experiments conducted 

in this project were slightly different and is explained below. 

 

Although stoichiometry experiments were performed on the rE2/E3BP:rE3 

complex, the binding stoichiometry (or ratio) refers to only stoichiometry 

between monomeric E3BP and dimeric E3 (E3BP:E3) that bind tightly to each 

other. In addition, concentration estimation of rE2/E3BP was based on the 

48E2+12E3BP model. 

• Stoichiometry experiments conducted using AUC and GFC are represented 

as ratios ranging from 3:1 to 1:3. In this case the ratio represents the 

number of rE3BP:rE3. i.e. a ratio of 1:1 represents equal numbers of rE3 

and rE3BP, i.e. 12rE3BP:12rE3. Similarly, while 3:1 represents 

12rE3BP:4rE3, the ratio 1:3 corresponds to 12rE3BP:36rE3.  

• Experiments conducted by SANS employed deuterated E3 (dE3). A 1:1 

ratio of E3BP:E3 (as described above) in this case was represented as 

12+12 (see Fig. 7.4), implying a subunit composition of 12dE3 dimers per 

12E3BPs (or per E2/E3BP core). SANS was carried out covering a range of 

E3BP+dE3 subunit compositions namely 12E3BP+2dE3 (12+2) to 

12E3BP+18dE3 (12+18). The ratio of observed dE3 per rE2/E3BP core is 

represented as dE3:rE2/E3BP. While 12:1 represents 12dE3 dimers bound 

per rE2/E3BP core (i.e. 12dE3 dimers per 12E3BP (12+12), indicating a 1:1 

binding ratio of dE3:E3BP), 10:1 corresponds to 10dE3 dimers per core 

(i.e. 10dE3 dimers per 12E3BP (12+10) or 10dE3:12E3BP) 

• Stoichiometry experiments conducted via [14C]-NEM radiolabelling follows 

a similar nomenclature as that carried out for the AUC and GFC data. 

Ratios in this case correspond to the ratio of rE3BP (or core):rE3, i.e. 2:1 

represents 12E3BP:6E3, while 10:1 corresponds to 12E3BP:1.2E3 
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Chapter 4 
Cloning, over-expression and purification 

4.1 Introduction 

Early research in biochemistry involved extraction and purification of proteins 

and enzymes from natural sources by procedures that were often extremely time 

consuming and laborious yielding relatively small amounts of protein. However, 

the arrival of recombinant DNA technology in the 1970s has revolutionised the 

face of molecular biology and served as the foundation for the rapid 

development of modern biomedical research on the analysis of clinically 

relevant proteins. Apart from serving as a pivotal scientific research tool, 

recombinant DNA technology has also had profound impacts on the diagnosis and 

treatment of genetic disorders. Several clinically important proteins like 

somatostatin (Itakura, et al., 1977), human growth hormone (Goeddel, et al., 

1979a), insulin (Goeddel, et al., 1979b), and follicle stimulating hormone 

(Olijve, et al., 1996) have been generated as recombinant products in large 

amounts and subsequently obtained at high levels of purity, thus advancing and 

enabling effective treatment of diseases. 

Genes encoding recombinant proteins are usually cloned into E. coli, yeast or 

mammalian vectors and then introduced into bacterial, yeast or mammalian 

cells. Many different bacterial expression systems are commercially available 

today for large-scale expression and purification of recombinant proteins in a 

cost-effective manner. Moreover, the greatest advantage of this technology is in 

the absolute control over the DNA sequence to be engineered, thus allowing for 

all types of genetic manipulations. Current major applications of recombinant 

DNA technology include in vitro mutagenesis studies, gene therapy, protein 

engineering and large scale production, structural and functional genomics, 

studies on single domain or multi-domain proteins in solution and medical 

diagnostics. 
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While protein engineering has been made possible by the advent of recombinant 

technology, large scale purification of recombinantly overexpressed polypeptides 

has been facilitated by the development of several protein tags and 

sophisticated chromatographic techniques. Protein tags (e.g. His tag) or fusion 

proteins (such as maltose binding protein (MBP), glutathione S-transferase (GST) 

are usually added onto the N- or C-termini of recombinant proteins aiding in 

shorter isolation times and greater efficiency in purification and detection. 

While MBP and GST fusion proteins are employed routinely for purification of 

small proteins or individual domains, the majority of protein purifications 

include the presence of a short His-tag. These tags comprise 6-10 histidine 

residues that are fused to the N- or C-termini of the protein via short linker 

regions. His-tag proteins are purified by metal chelate affinity chromatography 

exploiting the strong binding affinity of histidine residues for metal ions like Ni2+, 

Zn2+ or Co2+. The affinity column is packed with a negatively charged resin such 

as imidoacetate that binds to the loaded metal ions used for priming the 

column. These metal ions in turn interact with the His-tagged protein of interest 

and elution of the protein is achieved by using a strong metal binding competitor 

like imidazole. All the recombinant proteins purified in this study were N-

terminally His-tagged and purified by an initial metal chelate affinity 

chromatography step using Zn2+ as the metal ion. The sole protein complex to be 

purified from a natural source in this project was the bE2/E3BP core assembly 

that was obtained in large amounts from PDC purified from bovine heart. 

PDC represents the largest multi-enzyme system to be recombinantly produced 

to date. The individual constituent enzymes of PDC (E1, E3, [E2 or E2/E3BP]), 

from various organisms have been successfully over-expressed by recombinant 

DNA technology. These include PDC from human (Brautigam, et al., 2006; 

Ciszak, et al., 2001; 2003; 2006; Hiromasa, et al., 2004; Quinn, et al., 1993; 

Smolle, et al., 2006), pig (Toyoda, et al., 1998a), S. cerevisiae (Stoops, et al., 

1992; 1997; Toyoda, et al., 1998b), B. stearothermophilus (Allen, et al., 2005; 

Domingo, et al., 1999; Izard, et al., 1999; Kalia, et al., 1993; Lessard, et al., 

1998; Lessard and Perham, 1994; Mande, et al., 1996), E. coli (Allen, et al., 

1989; Arjunan, et al., 2002; Green, et al., 1995), Streptococcus faecalis (Allen 

and Perham, 1991), Streptococcus pneumoniae (Hakansson and Smith, 2007), A. 

vinelandii (Hengeveld, et al., 1997; Schulze, et al., 1991a; 1991b) and parasitic 
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nematodes (Chen, et al., 1998; 1999; Harmych, et al., 2002; Huang and 

Komuniecki, 1997; Huang, et al., 1998; Klingbeil, et al., 1996). As full-length E2 

and E3BP constructs of human PDC used in this study encompass the flexible N-

terminal SBDs and LDs that are not conducive to high resolution structural 

studies, truncated constructs comprising only the CTDs of E2 and E3BP were 

designed for facilitating structure determination by solution scattering and x-ray 

crystallography. This chapter describes the cloning, expression and purification 

of these truncated CTD constructs of E2 and E3BP as well as the large-scale 

overexpression and purification of the full-length versions of the various proteins 

used in this study. Over-expression of all proteins in this study was highly 

successful, with high yields of soluble proteins obtained. 

4.2 Materials and methods 

4.2.1 Cloning of C-terminal constructs: tE2 and tE3BP  

Primers were designed for PCR amplification of the C-terminal regions of mature 

E2 and E3BP (tE2 and tE3BP) lacking the N-terminal LDs and relevant SBDs. 

However, successful cloning of these constructs and subsequent attempts at 

protein over-expression resulted in the production of insoluble products. Hence, 

primers for truncated tE2 and tE3BP were re-designed and typically 

encompassed the C-terminal region and several additional residues of the 

preceding linker region that connected the SBD and CTD of these proteins. While 

tE2 was cloned via the TOPO/TA cloning kit (Invitrogen), tE3BP was successfully 

cloned directly into the vector of choice via the classical cloning approach. 

Primers to enable isolation of two clones of tE2: Li19 (19 residues of the linker 

region, aa 398-613) and Li27 (27 residues of the linker region, aa 390-613), and 

two clones of tE3BP: Li30 (30 residues of the linker region, aa 245-501) and Li58 

(58 residues of the linker region, aa 217-501) were obtained from MWG Biotech 

(UK). While tE2 clones included restriction sites NdeI and BamHI for insertion 

into vectors pET11b and pET14b, the tE3BP clones comprised restriction sites 

BamHI and XhoI for site-directed cloning into pET28b. The various forward and  
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reverse primers and their restriction sites (coloured and underlined) are shown 

in Fig. 4.1. 

 

Figure 4.1 Primer sequences for the truncated CTD constructs of rE2 and rE3BP  

 

PCR reactions were setup typically in 50-100 µl volumes. Initial PCRs employed 

the Pfu polymerase. However, owing to greater yields and higher stability, 

subsequent PCR reactions used either Vent or GoFlexi Taq polymerase unless 

stated otherwise. A typical 50 µl reaction included 50-100 ng of template DNA, 5 

µl MgCl2 (25 mM), 10x reaction buffer (5 µl), 1 µl dNTP mix (0.25 mM each of 

dATP, dCTP, dGTP and dTTP), 1 µl each of specific forward and reverse primers 

(300 nM) pre-heated to 95oC for 5 min, 1 µl Vent/GoFlexi Taq Polymerase (3.5 

U/µl) and sterile water (dH20). PCR cycles are shown in Table 4.1. 

Step Temperature (oC) Time 

1. Initial denaturation 95 2 min 

2. Denaturation 95 1 min 

3. Annealing 50 30 s 

4. Extension 72 4 min 

Repeat steps 2-4 for 24 cycles 

5. Extension 72 5 min 

6. Cooling 4 24 h 

Table 4.1 PCR cycle reactions 
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PCR products obtained were analysed on a 1% (w/v) agarose gel before 

extracting the DNA from the gel. From this point onwards, cloning proceeded via 

TOPO/TA (as done for tE2) or via the direct approach (as done for E3BP). In this 

project, cloning was carried out for both clones of tE2 (Li19 and Li27) and only 

one clone of tE3BP (Li30). 

• PCR amplified products of tE2 (Li19 and Li27) obtained using GoFlexi Taq 

polymerase were subjected to further TOPO/TA cloning (Invitrogen). The 

TOPO cloning system serves as a quick one-step method for direct 

insertion of PCR products containing 3’ deoxyadenosine (A) overhangs 

(created by Taq polymerase) into the linearized PCR 2.1-TOPO vector 

having overhanging 3’ deoxythymidine (T) by means of direct ligation. 

Typically, this involved a reaction mixture (total vol 6 µl) comprising 2 µl 

freshly purified PCR product (with 3’ A overhangs), salt solution (1 µl), 1 

µl TOPO vector (5 ng) and 2 µl sterile dH20. Following a 25 min incubation 

at room temperature, 2 µl of the mix was transformed into chemically 

competent TOP10 cells (supplied as part of the kit). Positive colonies 

were selected and purified (Wizard Plus mini prep kit) from a 10 ml 

overnight LB culture (section 3.2.1). 

• The PCR amplified inserts of tE3BP (Li30) obtained using the Vent 

polymerase were purified and subjected to further digestion. 

Purified inserts (Li19, Li27, Li30) and the recipient plasmids (pET11b, pET14b, 

pET28b) were digested with restriction enzymes NdeI and BamHI (for Li19 and 

Li27, NEB) and BamHI and XhoI (for Li30, Promega). Typically, 40 µl of plasmids 

and purified inserts were digested in a 50 µl reaction volume with 3 µl of the 

appropriate restriction enzymes (10 U/µl), 5 µl of 10x buffer (specific to the 

restriction enzyme pair and supplied by the manufacturer) and sterile dH20 at 

37oC for 3.5 h. Digested DNA (inserts and vectors) was extracted and purified 

(section 3.2.1 and 3.2.3) before carrying out 20 µl vol ligations at various 

insert:vector ratios.  
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Digested products corresponding to truncated E2 (Li19 and Li27) were ligated 

into vectors pET11b and pET14b respectively at insert:vector ratios of 1:1, 3:1 

and 5:1 using 1.5 ul of NEB T4 ligase (3 U/µl) and 2 µl 10x ligase buffer, followed 

by incubation for 20 min at room temperature. Similarly, digested truncated 

E3BP (Li30) was ligated into vector pET28b at insert:vector ratios of 1.6:1, 3.6:1 

and 5.6:1 with 1 µl Promega T4 ligase and 2 µl 10x ligase buffer at room 

temperature with overnight incubation. All ligation mixtures were subsequently 

transformed into E. coli DH5α cells. Negative controls in the ligations contained 

vector DNA only.  

Diagnostic digests were performed on the transformed purified ligated products 

using restriction enzymes NdeI-BamHI (for the tE2 clones) or BamHI-XhoI (for the 

tE3BP clone). Reactions were set up with 1 µg DNA, sterile dH20 and 5 U of 

enzymes in 10x Promega buffer D (for tE3BP-Li30) or 10x NEB buffer 4 (for tE2-

Li19/Li27) at 37oC for 2.5 h and subsequently analysed by agarose gel 

electrophoresis. The recombinant plasmids were then sent to MWG for 

sequencing to confirm the exact coding sequence. 

4.2.2 Protein over-expression 

All over-expression plasmids were transformed into BL21 star (DE3) cells except 

recombinant E3 (rE3) that was transformed into BL21 (DE3) pLysS cells as 

outlined in Table 4.2. Protein over-expression of recombinant proteins rE3, 

rE3BP-28b, rE2, tLi19-14b and co-expression of recombinant cores rE2/E3BP and 

truncated core tLi19/tLi30 were carried out using the standard procedure 

described in section 3.3.1.  

Plasmid E.coli strain AntibioticR Temp 
(oC) 

Time 
(h) 

IPTG 
(mM) 

Lipoic acid 
(µg/ml) 

rE2 Bl21 (DE3) star  Amp 18 17 1 50 
rE2/E3BP Bl21 (DE3) star  Amp, Kan 15 17 0.5 50 
rE3BP-28b Bl21 (DE3) star  Kan 15 17 0.5 50 

rE3 BL21 (DE3) plysS Amp, Cam 30 4 1 None 
tLi19/tLi30 Bl21 (DE3) star  Amp, Kan 18 17 1 None 
tLi19-14b Bl21 (DE3) star Amp 18 17 1 None 

Table 4.2 E. coli bacterial strains and conditions for protein over-expression 
The various antibiotics used namely, ampicillin (Amp), kanamycin (Kan) and 
chloramphenicol (Cam) are denoted. 
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While synthesis of all proteins was induced with IPTG, cultures for rE2/E3BP, rE2 

and rE3BP-28b production were additionally supplemented with lipoic acid prior 

to induction. Over-expressions were analysed on SDS-PAGE and solubility tested 

as outlined in section 3.3.1. 

4.2.3 Protein purification 

All recombinant over-expressed proteins were subjected to 2-3 rounds of 

chromatographic purification to obtain good yields of highly pure samples. 

Proteins rE3, dE3, rE3BP-28b and tLi19/tLi30 were purified by a combination of 

metal chelate and gel filtration chromatography. The purification of full-length 

cores namely, rE2/E3BP and rE2 involved a sequence of metal chelate, anion 

exchange and gel filtration chromatography steps. Metal chelate 

chromatography was carried out using 0.1 M ZnCl2 as the protein binding agent 

while a Sephacryl S-300 column was employed for gel filtration chromatography. 

Technical details of the various chromatographic techniques are described in 

sections 3.3.2.2 to 3.3.2.4. Details of the buffers used for the various 

chromatographic steps are outlined in Table 4.3. Bovine E2/E3BP (bE2/E3BP) 

was obtained from three rounds of sucrose gradient centrifugation of purified 

bovine heart PDC (refer sections 3.3.2.5 and 3.3.2.6) based on the method 

developed by McCartney (1998). Pellets of bE2/E3BP obtained from the first two 

rounds of sucrose gradient centrifugation were homogenised in PEBS2M buffer (2 

M NaCl, 2 mM EDTA, 0.01% (w/v) NaN3, 50 mM KH2PO4, pH 7.4), while the pellet 

obtained from the final round of centrifugation was suspended in PEB buffer (2 

mM EDTA, 0.01% (w/v) NaN3, 50 mM KH2PO4, pH 7.4) and subsequently used for 

further biochemical and biophysical studies. 

4.3 Results  

4.3.1 Cloning of truncated clones tE2 and tE3BP 

The full length clones ORFs for native E2 and E3BP have been previously cloned 

into vectors pET11b/pET14b and pET28b, respectively (Brown, 2002a). However, 

in addition to the CTD these full-length E2 and E3BP constructs include the  



 

Protein Purification Binding buffer Elution buffer Elution 
gradient 

rE2/E3BP MC 
 

100 mM NaCl, 10 mM imidazole, 50 mM KH2PO4, pH 8.0 
 

100 mM NaCl, 500 mM imidazole, 50 mM 
KH2PO4, pH 6.0 

0-100%    
8 CV 

 

 HQ 2 mM EDTA, 25 mM Tris HCl, pH 7.5 2 mM EDTA, 2 M NaCl, 25 mM Tris, pH 7.5 0-100% 
100 CV 

    GFC 2 mM EDTA, 0.01% (w/v) NaN3,100 mM NaCl, 50 mM KH2PO4, pH 
7.5 

rE2 MC 
 100 mM NaCl, 10 mM imidazole, 50 mM KH2PO4, pH 8.0 

100 mM NaCl, 500 mM imidazole, 50 mM 
KH2PO4, pH 6.0 

 

0-100%    
8 CV 

 

 HQ 2 mM EDTA, 25 mM Tris, pH 7.5 2 mM EDTA, 2 M NaCl, 25 mM Tris, pH 7.5 0-100% 
100 CV 

    GFC 2 mM EDTA, 0.01% (w/v) NaN3,100 mM NaCl, 50 mM KH2PO4, pH 
7.5 

tE2/tE3BP 
 

(tLi19/tLi30) 

MC 
 

100 mM NaCl, 10 mM imidazole, 50 mM KH2PO4, pH 8.0 
 

100 mM NaCl, 500 mM imidazole, 50 mM 
KH2PO4, pH 6.0 

0-100%    
8 CV 

    GFC 2 mM EDTA, 0.01% (w/v) NaN3,100 mM NaCl, 50 mM KH2PO4, pH 
7.5 

rE3BP-28b MC 
 

100 mM NaCl, 10 mM imidazole, 50 mM KH2PO4, pH 8.0 
 

100 mM NaCl, 500 mM imidazole, 50 mM 
KH2PO4, pH 6.0 

0-100%    
8 CV 

    GFC 2 mM EDTA, 0.01% (w/v) NaN3,100 mM NaCl, 50 mM KH2PO4, pH 
7.5 

rE3 MC 
 

100 mM NaCl, 10 mM imidazole, 50 mM KH2PO4, pH 8.0 
 

100 mM NaCl, 500 mM imidazole, 50 mM 
KH2PO4, pH 6.0 

0-100%   
8 CV 

 GFC 2 mM EDTA, 0.01% (w/v) NaN3, 50 mM KH2PO4, pH 7.5   

Table 4.3 Purification buffers used in this project 
CV is column volume while MC, HQ and GFC denote metal chelate, anion exchange and gel filtration chromatographies. 
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highly flexible SBD and LDs that are not favourable for high resolution structural 

studies. Therefore, truncated constructs encompassing only the CTD with a few 

residues of the preceding linker were successfully cloned into the following 

vectors: tE2 constructs Li19 and Li27 into pET11b and pET14b, and the single 

tE3BP construct tLi30 into pET28b. 

4.3.1.1 Cloning of tE2: tLi19 and tLi27 

Amplification of the DNA sequences corresponding to residues 290-613 and 298-

613 was successful and yielded the expected 753bp tLi19 and 777 bp tLi27 

products (Fig. 4.2A).  

The amplified truncated products were then successfully cloned into the TOPO 

vector. Purified DNA inserts tLi19 and tLi27 from the TOPO ligations were then 

digested along with pET11b and pET14b vectors (Fig. 4.2B) using restriction 

enzymes NdeI and BamHI.  

 
Figure 4.2 Cloning of truncated E2 constructs – tLi19 and tLi27 
(A) PCR amplified products of tLi19 (aa 290-613) and tLi27 (aa 298-613). (B) Undigested 
(U) and digested pET11b and pET14b with enzymes NdeI and BamHI (N + B) is shown. 
Band sizes are indicated in bp. 

 

Subsequent ligation of digested inserts (tLi19 and tLi27) and vectors (pET11b and 

pET14b) resulted in products tLi19-pET11b, tLi19-pET14b, tLi27-pET11b and 

tLi27-pET14b. The presence of the inserts was confirmed by diagnostic 

restriction digests with NdeI and BamHI. Furthermore analysis of the digests on a 

1% (w/v) agarose gel indicated successful cloning, resulting in single bands of  
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753 bp and 777 bp: tLi19 and tLi27, respectively. This was further confirmed by 

DNA sequencing (see Appendix).  

4.3.1.2 Cloning of tLi30 

The tLi30 DNA sequence corresponding to residues 245-501 was successfully 

amplified by PCR using Vent polymerase (Fig. 4.3A).  

 
 

Figure 4.3 Cloning of the truncated E3BP tLi30 construct 
(A) PCR amplified products tLi30 (aa 245-501) and tLi58 (aa 217-501). (B) Diagnostic 
digests of cloned product tLi30-pET28b with BamHI and XhoI (B + X), resulting in 775 bp 
tLi30 are indicated. Sizes of bands are indicated in bp. 

 

A slightly larger construct tLi58 (aa 217-501) was also amplified, but due to 

cloning difficulties and lack of time it was not pursued in this study. The PCR 

amplified inserts were digested with enzymes BamHI and XhoI and subsequently 

ligated into digested pET28b via a direct cloning strategy (Fig. 4.3B), resulting in 

the ligated product tLi30-pET28b. Successful cloning of tLi30 into pET28b was 

confirmed by setting up diagnostic digests with restriction enzymes BamHI and 

XhoI that yielded the expected 775 bp product (Fig. 4.3C).  

DNA sequencing of the tE3BP clone (tLi30) confirmed the absence of any 

mutations introduced into the nucleotide sequences (see Appendix). 
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4.3.2 Protein over-expression and purification  

4.3.2.1 Full-length recombinant E2/E3BP core (rE2/E3BP) 

Previous experiments have revealed the essential requirement for co-expression 

(dual expression) of rE2 and rE3BP in order to generate a functional rE2/E3BP 

core. This was achieved by co-transformation of two different plasmids having 

the two genes of interest (rE2 in pET11b and rE3BP in pET28b) into E. coli. The 

two components, rE2 and rE3BP integrate to form a functional rE2/E3BP 

assembly, but do not co-associate if mixed post-translationally. Over-expression 

of rE2/E3BP was performed at various temperatures (30oC, 22oC, 18oC and 15oC) 

and IPTG concentrations (0.5 mM, 0.8 mM, 1 mM) for 4 h (30oC) or 6 h (22oC) or 

17 h (18oC, 15oC) to find the best conditions for obtaining high yields of protein. 

While varying the IPTG concentration had no significant effect on expression, an 

interesting temperature dependent trend was observed, resulting in an increase 

in over-expression with decrease in temperature (Fig. 4.4A). In particular a 

relative increase in expression yields of E2 in comparison with E3BP was clearly 

observed with decrease in temperature. Although the various IPTG 

concentrations did not significantly alter the expression profile at the various 

temperatures, the highest levels of expression were consistently observed at an 

IPTG concentration of 0.5 mM (data not shown). 

Solubility studies carried out across the temperature range of 30oC-15oC showed 

a similar trend with increasing yields of soluble protein as the temperature was 

lowered, thus complementing the over-expression data (Fig. 4.4B).  

The E2 and E3BP migrate more slowly on an SDS-PAGE gel than would be 

expected for 62 kDa and 50 kDa proteins, respectively. This has been attributed 

to the elongated or swollen nature of the LDs (Bleile, et al., 1979) and/or 

anomalies in electrophoretic mobility induced by the inter-domain linkers rich in 

alanine and proline (Guest, et al., 1985; Miles, et al., 1988; Spencer, et al., 

1984).  

Purification of high quality rE2/E3BP was time consuming involving three 

chromatography steps. Over-expressed rE2/E3BP at low temperatures (15oC) 
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resulted in no precipitation or aggregation of the core during purification. Initial 

purification was carried out by metal chelate chromatography (Fig. 4.5A).  

 
 

Figure 4.4 Over-expression and solubility of rE2/E3BP at various temperatures 
(A) rE2/E3BP expression was induced with 0.5 mM IPTG at various temperatures ranging 
from 30oC to 15oC, and culture samples taken prior to induction (t0) and 4, 6 or 17 h after 
induction (t4, t6,t17) depending on the temperature. (B) Solubility of rE2/E3BP was tested 
with cell pellets grown at temperatures 30oC, 22oC and 15oC with 0.5 mM IPTG. All 
soluble protein is present in the supernatant (S), similar to t4, t6 or t17 and none is observed 
in the pellet (P) at any of these temperatures. Molecular weight of marker proteins (Mw) is 
shown in kDa.  

 

The metal chelate step of rE2/E3BP purification exploits the strong interaction 

between rE2 and rE3BP, as rE3BP alone possesses an N-terminal His-tag. Hence, 

rE2/E3BP core is selectively purified from any unbound rE3BP or rE2. However, 

protein purified at this stage contained significant amounts of other contaminant 

proteins and DNA. The DNA was removed by anion exchange chromatography via 

a modified approach. Pooled protein from the metal chelate chromatography 

was extensively dialysed in anion exchange binding buffer and high salt (450 mM 

NaCl, see section 3.3.2.3 for details). Owing to the differential binding affinity 

of DNA and rE2/E3BP for the column resin, while rE2/E3BP passed into the flow-

through, DNA remained bound to the column, thus ensuring selective removal of 

DNA from the purified protein (Fig. 4.5B). Any excess E3BP and contaminants 

present at this stage were removed by a final gel filtration purification step on a 

Sephacryl S-300 column (Fig. 4.5C). SDS-PAGE shows pure rE2/E3BP in the final 

preparation (Fig. 4.5D). It is to be noted that even after ion exchange 

purification, GFC-purified rE2/E3BP still contained residual traces of DNA (ratio 

of A280/A260 = 1.8 for a pure protein, while in the case of rE2/E3BP A280/A260 ~ 



Cloning, over-expression and purification  132 

1.2). Hence, the presence of DNA may have some slight effect on the results 

presented in the later chapters. 

 

Figure 4.5 Purification of rE2/E3BP 
(A) Metal chelate chromatography of rE2/E3BP eluted from 250-360 ml with an 8CV 
gradient of 0.5 M imidazole. Absorbances at 280 nm (black) and 260 nm (blue) are 
indicated. (B) Anion exchange chromatography of rE2/E3BP ensured selective removal of 
DNA from the protein that passed into the flow-through (data not shown). Elution was 
carried out over a vol of 0-100 ml with a 100CV gradient of 2M NaCl. (C) Gel filtration 
profile of rE2/E3BP being eluted at the void volume (about 40 ml). (D) SDS-PAGE 
analysis of flow-through (FL) and protein elution fractions (f) of metal chelate (MC), anion 
exchange (HQ) and gel filtration (GFC) are shown. Molecular weight of marker proteins 
(Mw) is shown in kDa.  

 

4.3.2.2 Full-length recombinant E2 core (rE2) 

Over-expression of rE2 was successfully carried out at 18oC after induction with 

1 mM IPTG for 17 h producing large yields of over-expressed protein as observed 

in Fig. 4.6A. The solubility of rE2 was determined by lysing cells grown at 18oC. 

SDS-PAGE analysis indicated all rE2 to be present in the soluble fraction (data 

not shown).  
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Purification of rE2 was very similar to the rE2/E3BP purification. Protein purified 

initially by metal chelate chromatography had minor DNA contamination (Fig. 

4.6B). Non-specifically bound DNA was selectively removed by a high salt dialysis 

step prior to anion exchange chromatography. rE2 fractions passing into the 

flow-through of the anion exchange column was then pooled and finally purified 

by gel filtration thus removing any minor protein contaminants present at this 

stage (Fig 4.6C). SDS-PAGE indicates anomalous migration of high yields of pure 

rE2 obtained from the final purification step, with bands running slightly higher 

than that predicted for a 62 kDa protein (Fig. 4.6D). 

 
 

Figure 4.6 Purification of rE2 
(A) Over-expression profile of rE2 at 18oC and 1 mM IPTG. Protein samples collected 
before (to) and after (t17) induction are shown. (B) Metal chelate chromatography of rE2. 
Bound material was elutied with a 0.5 M imidazole gradient (8CV) over a vol of 260-360 
ml. (C) Size exclusion chromatography of rE2 protein elution at the void volume. (D) SDS-
PAGE analysis of rE2 protein fractions obtained from metal chelate (MC) and gel filtration 
(GFC) along with rE2 flow-through (FL) collected from the anion exchange (HQ) column 
are shown. Molecular weights of marker proteins (Mw) are shown in kDa. 
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4.3.2.3 Recombinant E3 (rE3 and dE3) 

Over-expression of rE3 was induced with 1 mM IPTG at 30oC for 4 h. Subsequent 

analysis by SDS-PAGE revealed good yields of over-expressed protein as seen in 

Fig. 4.7A. 

Purification of rE3 was straightforward. It was first purified by metal chelate 

chromatography (Fig. 4.7B), and pooled protein fractions were then subjected to 

gel filtration to eliminate minor contaminants from the previous purification 

step. SDS-PAGE revealed greater than 98% pure protein in the final preparation 

(Figs 4.7C and 4.7D). 

 
Figure 4.7 Purification of rE3 
(A) Stable over-expression of rE3 at 30oC. Protein samples collected before (to) and after 
(t4) induction are shown. (B) Metal chelate chromatography of rE3. Protein elution was 
carried out with an 8CV gradient of 0.5 M imidazole over the vol 220-320 ml. (C) SDS-
PAGE of flow-through (FL) and pooled metal chelate (MC) fractions of rE3. Pure rE3 
protein fractions from gel filtration chromatography (GFC) are also shown (molecular 
weights of protein marker (Mw) are indicated in kDa). (D) Gel filtration profile of rE3. 
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Deuterated E3 (dE3) was overexpressed by Dr. Phil Callow at the Institut Laue 

Langevin (ILL), Grenoble France as follows. The plasmid encoding rE3 was 

transformed into BL21 (DE3) cells and subsequently used for over-expression. 

Bacterial cultures were grown in Enfors minimal medium using an Infors 

fermentation system at 30oC to an absorbance at 600 nm (A600) of 15. Glycerol 

was used as the carbon source to deuterate E3 to 75% (contrast matched with 

100% D2O). Water (H2O) in the buffer was replaced with 85% D2O. The dE3 cell 

pellets were then purified at the University of Glasgow in a manner similar to 

rE3 (as described above) via two chromatographic steps namely, metal chelate 

and gel filtration. The purity and yield of purified dE3 was thereafter assessed 

by SDS-PAGE. 

4.3.2.4 Truncated recombinant E2/E3BP core (tE2/tE3BP) 

Although truncated constructs of E2 (tLi19, tLi27) and E3BP (tLi30) were 

produced successfully, co-expression of truncated core was carried out using 

only constructs tLi19 and tLi30 unless stated otherwise, resulting in the 

formation of a truncated core tLi19/tLi30. This was achieved by the co-

transformation of two different plasmids encompassing the two genes of interest 

(tLi19-pET11b and tLi30-pET28b) into E. coli. Over-expression carried out at 18oC 

for 17 h with 1 mM IPTG produced stable high yields of tLi19/tLi30 (Fig. 4.8A).  

Only the E3BP (tLi30) is His-tagged and by virtue of its natural co-association 

with E2 (tLi19), purification of the tLi19/tLi30 core was achieved by a standard 

two-step process; an initial metal chelate chromatography step, followed by gel 

filtration chromatography. In contrast to full-length rE2/E3BP, the truncated 

tLi19/tLi30 contained negligible DNA contamination and gave a two peak profile 

during metal chelate chromatography, with the first peak being free tLi30 (E3BP) 

(Fig. 4.8B). Therefore, in the absence of significant DNA contamination, protein 

fractions from the second peak of the metal chelate column were pooled, 

concentrated and directly subjected to a final gel filtration step to remove 

residual protein contaminants and any excess tLi30 (Fig. 4.8C). Analysis by SDS-

PAGE shows good yields of pure protein as seen in Fig. 4.8D. 
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Figure 4.8 Purification of tLi19/tLi30 core 
(A) Over-expression of tLi19/tLi30 at 18oC, 1 mM IPTG. Protein samples collected before 
(to) and after (t17) induction are shown. (B) Metal chelate chromatography of tLi19/tLi30 
shows a dual peak elution profile, peak 1 (P1) being free E3BP (tLi30) and peak 2 (P2) 
being tLi19/tLi30. Protein elution was achieved using an 8CV gradient of 0.5 M imidazole 
over a vol of 220-340 ml. (C) Void volume protein elution of tLi19/tLi30 by gel filtration 
chromatography. (D) SDS-PAGE analysis of metal chelate (MC) flow-through (FL), protein 
(Peaks 1 and 2) fractions and gel filtration (GFC) fractions of purified tLi19/tLi30. 
Molecular weight of marker proteins (Mw) is shown in kDa. 

 

4.3.2.5 Truncated recombinant E2 core (tE2) 

Truncated construct tLi19 was cloned into pET14b to produce recombinant 

truncated E2 core ‘tLi19-14b’. Over-expression studies at 18oC with 1 mM IPTG 

for 17 h and subsequent SDS-PAGE analysis revealed poor expression (Fig. 4.9A). 

Despite several expression trials during which growth media, temperature and 

IPTG concentration were varied, it was not possible to successfully pinpoint 

conditions that resulted in high yields of over-expressed tLi19-14b. Initial metal 

chelate purification resulted in very low yields of protein with large amounts of 

DNA contamination (Fig. 4.9B). Poor protein yields may be a result of the linker 

region (preceeding the CTD) not being long enough to produce highly stable and 

soluble protein. The importance of the length of the CTD-preceeding linker 
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region towards the stability of the bacterial core has been previously shown 

(Titman, 2005). Owing to unsatisfactory over-expression and purification these 

constructs were not employed for subsequent experiments in this study. 

 
Figure 4.9 Purification of tLi19-14b 
(A) Expression studies showed very poor expression of tLi19-14b at 18oC. Protein 
samples collected before (to) and after (t17) induction are denoted. (B) Metal chelate 
chromatography of tLi19-14b produced very low amounts of protein contaminated with 
significant amounts of DNA. Bound tLi19-14b was eluted with a 0.5 M gradient (8CV) over 
a vol of 200-330 ml. Molecular weights of marker proteins (Mw) are shown in kDa. 

 

4.3.2.6 Full-length recombinant E3BP-28b 

Full-length His-tagged rE3BP cloned into pET28b was expressed at a low 

temperature (15oC), 0.5 mM IPTG for 17 h. Levels of over-expression were 

analysed by SDS-PAGE, indicating good yields of protein (Fig. 4.10A). On its own 

rE3BP has a tendency to precipitate on purification. However, over-expression of 

rE3BP at low temperatures ensured no precipitation, thus rendering greater 

solubility and possibly by improving folding and stability during over-expression. 

Purification of rE3BP was similar to purification of rE3. Following initial metal 

chelate affinity purification (Figs. 4.10B, 4.10C), a gel filtration (GFC) step was 

performed to remove residual protein contaminants (Figs. 4.10D, 4.10E). SDS-

PAGE of the multi-peak GFC profile showed the presence of intact rE3BP in peak 

1 (P1) and several low molecular weight bands in the latter peaks 2 and 3 (P2 

and P3). Western blotting confirmed these bands to correspond to various 

truncated species of rE3BP harbouring the N-terminal domains formed as the 

result of proteolytic cleavage (data not shown). Interestingly, despite being a 

monomer of 50 kDa, rE3BP elutes from the gel filtration column (P1) at a 

fraction volume close to that of a dimer (about 70 ml, Mr of rE3BP homodimer ~  
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Figure 4.10 Purification of rE3BP-28b 
(A) Over-expression of rE3BP at 15oC with samples collected before (to) and after (t17) 
induction. (B + C) Metal chelate chromatography of rE3BP. Protein fractions were eluted 
using a 0.5 M imidazole gradient (8CV) over a vol 210-320 ml and subsequently run on 
SDS-PAGE. (D + E) Gel filtration chromatography of rE3BP. GFC peak fractions analysed 
by SDS-PAGE showed the presence of pure rE3BP only in peak 1 (P1), and 
contaminating truncated forms of rE3BP in peaks 2 and 3 (P2 and P3). Molecular weights 
of marker proteins (Mw) are indicated in kDa. 
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105 kDa) similar to rE3; this may be attributed to the elongated structure of 

rE3BP. 

4.3.2.7 Purification of bovine E2/E3BP core (bE2/E3BP) 

Bovine E2/E3BP core (bE2/E3BP) was obtained from previously purified bovine 

PDC (see section 3.3.2.5) by sucrose gradient centrifugation (refer to section 

3.3.2.6 for details). The first round of centrifugation resulted in the top gradient 

fractions enriched with E3 and E1. However as the bE2/E3BP pellet retained a 

significant amount of E1, it was further subjected to two additional rounds of 

centrifugation. Furthermore, loss of E3 was checked by immunoblotting of 

bE2/E3BP (data not shown). 

Homogenised bE2/E3BP core obtained after three steps of centrifugation had 

most of the E1 removed. However, a slight contamination of 10-15% E1 was 

always observed in the final purified preparation of bE2/E3BP, and its total 

elimination was very difficult to achieve. The purified bE2/E3BP core was either 

used directly in experiments or stored in 50% (v/v) glycerol at -20oC for future 

use.  

 
 

Figure 4.11 Purification of bE2/E3BP 
SDS-PAGE of intact PDC sucrose gradient centrifugation (UC) fractions. The top 
(containing E1 and E3) and the bottom (comprising pellets of bE2/E3BP core from three 
rounds of centrifugation) fractions are shown. The positions of the various proteins are 
indicated and molecular weights of marker proteins (Mw) are shown in kDa. 
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4.4 Discussion 

All proteins used in this study were successfully over-expressed and purified. 

Studies have shown that low temperature expression improves plasmid stability 

by decreasing the activity of T7 RNA polymerase and thereby providing more 

time for the protein to fold correctly (Zhang, et al., 2003). In addition, low 

temperatures may prevent ribosome pausing and dissociation along with the 

concomitant decrease in rates of elongation and protein synthesis. These 

lowered rates of translation at low temperatures may be comparable to that 

occuring in vivo in mammalian cells, therefore resulting in the production of 

correctly folded proteins exhibiting greater stability.  

Over-expression of all proteins in this project was carried out at low 

temperatures and resulted in good yields of highly soluble protein. All 

recombinant full-length and truncated rE2/E3BP cores employed the co-

expression of rE2 and rE3BP, a mandatory requirement for the generation of a 

functional core. The truncated sequences of tE2 and tE3BP were successfully 

cloned and purified for use in low- and high-resolution structural studies, namely 

solution scattering and x-ray crystallography. This is the first time that a 

truncated human E2/E3BP core has been successfully produced using 

recombinant technology for structure determination studies. Interestingly, 

inclusion of a few residues from the preceding linker regions into the truncated 

constructs seems to be critical for the solubility and probably architectural 

stability of the tE2/tE3BP core. This complements previous studies in bacterial 

PDC showing the importance of the inner linker regions towards folding and 

architectural stability of the E2 core assembly (Titman, 2005). 

The His-tag is present only on the E3BP subunit, and therefore purification of the 

rE2/E3BP (full-length and truncated) core was achieved by exploiting the natural 

co-association between E2 and E3BP. Furthermore, the oligomeric state of 

isolated rE3BP was investigated: E3BP forms low molecular weight species as 

observed from its GFC profile, in direct contrast to rE2 that is capable of forming 

a 60-meric core on its own. Despite some proteins being susceptible to 

proteolytic cleavage, typical purification yields obtained for the majority of 

proteins was 3-5 mg/l with exceptions being rE3 (30-40 mg/l) and bE2/E3BP core 
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producing 100-150 mg of native PDC per kg of bovine heart. The purified 

proteins were then used for the various biophysical and biochemical experiments 

as described in the future chapters.  
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Chapter 5 
Characterisation of the full-length cores: 
E2/E3BP and E2 

5.1 Introduction 

PDC contains an oligomeric E2 assembly of distinctive morphology that forms the 

central core, thereby providing the framework for interaction with peripheral 

enzymes E1 and E3. In Gram-negative bacteria like E. coli, the core is octahedral 

comprising 24 E2 molecules with cubic (432) symmetry. In contrast, in 

eukaryotes and Gram-positive bacteria e.g. B. stearothermophilus, the core 

assembly is larger with 60 E2 molecules arranged in a pentagonal dodecahedron 

displaying 532 icosahedral symmetry (Reed and Oliver, 1968; 1982; 

Wagenknecht, et al., 1991). The high resolution crystal structure of the 

truncated core from B. stearothermophilus (PDB ID 1B5S) provides clear insights 

into its subunit organisation, with the basic building blocks, namely E2 trimers 

located at the 20 vertices of the icosahedron (Izard, et al., 1999).  

Eukaryotic PDCs contain an additional accessory subunit, E3 binding protein 

(E3BP, previously termed protein X) that is also involved in the formation of the 

icosahedral core (De Marcucci and Lindsay, 1985; Jilka, et al., 1986; 

Rahmatullah, et al., 1989b). Densitometry and radiolabelling studies on SDS-

PAGE gels of purified bovine E2/E3BP indicated the presence of 12 molecules of 

E3BP per core, suggestive of an icosahedral E2/E3BP assembly comprising 60 

copies of E2 and 12 copies of E3BP (Sanderson, et al., 1996b). Similarly, Maeng 

and colleagues (1994) showed the binding of 12-15 E3BP molecules to the PDC 

core of S. cerevisiae. As an icosahedron has 12 pentagonal faces, it was proposed 

that one copy of E3BP was positioned on each face. Comparative cryo-EM studies 

on truncated yeast E2 and E2/E3BP cores confirmed the suggested localisation of 

12 E3BPs, with the binding of each E3BP on the inside of the pentagonal faces, 

close to the tips of the E2 trimers (Stoops, et al., 1997; Zhou, et al., 2001b). 
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However, recent work based on AUC and SAXS by Hiromasa and co-workers 

(2004) has led to the concept of an alternative ‘substitution model’ for 

mammalian rE2/E3BP core organisation. Instead of 12 E3BPs binding to the 12 

faces (‘addition model’, 60E2+12E3BP), the new model proposes the 

replacement of 12 E2 polypeptides by 12 E3BP subunits, resulting in a 

substituted 48E2+12E3BP core assembly. 

Human E2 and E3BP have a similar modular domain organisation. E2 and E3BP 

each possess peripherally extended N-terminal LD(s), two on E2 and one on 

E3BP. Each LD carries a key lysine residue located within a highly conserved DKA 

motif at the tip of a type I β-turn (Wallis and Perham, 1994). The LD is followed 

by an SBD and finally a CTD that is involved in core assembly. While the active 

site (DHRXXDG) for the acetyltransferase reaction is located on the CTD of E2 

(Radford, et al., 1987), it is absent from the CTD of E3BP, rendering it incapable 

of catalysis. The modular domains are connected by flexible linker regions (rich 

in alanine, proline and a few charged amino acids) that allow the LDs to access 

all active sites in turn during the catalytic cycle. The amino acid sequences of 

the inner LD, SBD and CTD of E2 are 46%, 38% and 50% identical to those of 

E3BP. Variation in the subunit organisation of the eukaryotic PDC cores has been 

attributed to the dissimilarity of their E3BP sequences (Fig. 5.1). 

While in bacteria, E1 and E3 compete for binding to E2, specific binding is 

observed in eukaryotes: E1 binds to E2-SBD and, the equivalent SBD of E3BP 

binds to E3. E2 cores of patients who do not make E3BP retain a residual affinity 

for E3 binding (Marsac, et al., 1993). The overall complex activity in these 

patients is 10-20% of the controls, probably because the E2-SBD appears to have 

retained a limited capacity to bind to E3. Interestingly, while mammalian E2 can 

form a 60-meric core on its own, isolated E3BP is unable to do the same.  

Although a considerable amount of structural and biochemical information is 

available for the different components of mammalian PDC, relatively little is 

known about the mammalian E2/E3BP core, including its precise subunit 

composition and stoichiometry of binding to E1 and E3.  
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Figure 5.1  Sequence alignment of the domains of eukaryotic E2 and E3BP  
ClustalW (http://www.ebi.gla.ac.uk/clustalw) alignment of the amino acid sequences of E2 
and E3BP [human (h), yeast (y) and B. steraothermophilus (bst)]. Lipoyl domains (LD), 
linker regions (H1 and H2), subunit binding domains (SBD) and inner C-terminal domains 
(CTD) of human E2 and E3BP along with the consensus sequence (red) are indicated. 
Sequence numbers on the right indicate the end of domains, and the lipoylation site (*) 
and key residues mediating the ‘ball and socket’ interaction (# and †) between trimeric 
units are also indicated. The image was created using TEXshade (http://www.ctan.org/tex-
archive/help/Catalogue/entries/texshade.html).  

 

Moreover, as the mammalian E2/E3BP core provides the basic structural 

framework for ensuring efficient functioning of PDC, as well as being 

significantly different from its bacterial counterpart (E2), elucidating its 

structure and operation at the molecular level is essential for a complete 

understanding of this mammoth molecular machine. 

The research described in this chapter sets out to achieve this goal by 

conducting detailed in vitro biophysical and biochemical characterisation of the 

full-length recombinant E2/E3BP and E2 cores. The architecture and subunit 

organisation of the rE2/E3BP and rE2 cores was investigated using a range of 

biophysical methods including, AUC, SAXS, SANS and negative stain EM. 

Furthermore, bE2/E3BP core was characterised biophysically and the data 

compared with those determined for the rE2/E3BP core. Low resolution 

structures of rE2/E3BP and bE2/E3BP were obtained by SAXS.  

The icosahedral 60-meric cores are composed of 20 trimeric units. In the case of 

the bacterial E2 core: these 20 trimers are composed solely of E2 (homotrimers), 

http://www.ebi.gla.ac.uk/clustalw
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while, in the substitution model, the mammalian E2/E3BP core is made up of a 

mixture of homotrimers (all E2) and heterotrimers (2E2+1E3BP). Interactions 

between these trimeric building blocks are the primary factor responsible for the 

overall quarternary structure and stability of the core. This chapter also 

investigates the stability of the E2 core on introduction of E3BP via comparative 

CD and tryptophan fluorescence studies in the presence of the chemical 

denaturant GdmCl.  

5.2  Materials and methods 

5.2.1 Protein purification 

rE2/E3BP and rE2 core assemblies were over-expressed and purified as outlined 

in sections 4.2.2 and 4.2.3. Extraction of bE2/E3BP was performed as detailed in 

sections 3.3.2.5, 3.3.2.6 and 4.2.3. All cores (rE2/E3BP, bE2/E3BP and rE2) were 

solubilised in either PEB or PEBS100 buffer (see section 4.2.3) after the final gel 

filtration step and immediately used in biophysical studies. All concentration 

measurements for rE2/E3BP used in this study were based on the 48E2+12E3BP 

substitution model, unless stated otherwise. 

5.2.2 Sedimentation velocity 

SV experiments for all cores (rE2/E3BP, rE2, bE2/E3BP) were conducted with 

PEBS or PEBS100 as reference solvents (section 3.4.2). Sedimentation data from 

purified rE2/E3BP in PEBS100 buffer were recorded at 4oC and a rotor speed of 

20,000 rpm using interference optics. A total of 450 scans, 1 min apart were 

recorded employing sample volumes of 360 µl loaded into 12 mm double sector 

centrepieces. The concentrations of samples covered a range from 76 nM to 306 

nM (rE2/E3BP), 60 nM to 260 nM (rE2) and 1 mg/ml to 3.5 mg/ml (bE2/E3BP), 

respectively. All concentration estimates of bE2/E3BP carried out in this thesis 

are expressed in standard nomenclature (mg/ml), as the exact sequence of 

bE2/E3BP is not known; hence determination of its accurate molar concentration 

is not possible. The laser delay was adjusted prior to the run to obtain high 

quality interference fringes. 
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All sedimentation profiles were analysed using SEDFIT (Schuck, 2000) (see 

sections 2.2.1.3 and 3.4.2 for details). The partial specific volume υ  of 

rE2/E3BP and rE2 calculated from their amino acid compositions using SEDNTERP 

(Laue, et al., 1992) (http://www.jphilo.mailway.com/) was 0.744 ml/g at 20oC. 

Although the recombinant and bovine E2/E3BP cores are expected to have 

similar amino acid sequences, primary sequences of bovine E2 and E3BP of 

purified bE2/E3BP are not available. Hence the value of υ  for rE2/E3BP (0.744 

ml/g) was also adopted for bE2/E3BP. Initial analysis by fitting the Lamm 

equation solutions to the SV data via the differential sedimentation coefficient 

distribution, c(s), was performed to obtain a species distribution profile. The 

concentrations and sedimentation coefficients retrieved from the c(s) analysis 

were then used as the basis for the non-interacting discrete species model in 

SEDFIT that uses a finite element approach to determine the apparent 

sedimentation coefficients. These coefficients were then corrected to standard 

conditions of temperature and solvent (see section 2.2.1.2.2 and section 3.4.2 

for details) and subsequently extrapolated to infinite dilution to obtain a 

sedimentation coefficient independent of concentration, . 0
w,20s

5.2.3 Sedimentation equilibrium 

SE data were collected for rE2/E3BP, rE2 and bE2/E3BP using interference optics 

with PEB or PEBS100 as the reference solvents. All samples were used within 24 

h of purification. SE was carried out at 4oC with samples (80 µl) loaded into 12 

mm double sector centrepieces. Initial SE runs were conducted at rotor speeds 

of 3,000, 5,000 and 7,000 rpm. However, analysis of the data at 5,000 and 7,000 

rpm was unsatisfactory yielding very steep exponential equilibrium solute 

distributions indicating the formation of sample pellets at the bottom of the 

cell. Hence, all subsequent SE studies were performed at 3,000 rpm, unless 

stated otherwise. After an initial delay period of 20-24 h to allow the system to 

reach equilibrium 12-15 scans were recorded 3 h apart for samples with 

concentrations between 154 nM to 461 nM (rE2/E3BP), 60 nM to 260 nM (rE2) and 

1-5 mg/ml (bE2/E3BP), respectively. Attainment of equilibrium for all runs was 

ascertained using WinMATCH (www.biotech.uconn.edu/auf), when a minimal 

change in concentration gradients was observed via the measurement of the root 

mean square deviation (rmsd < 0.1 x 10-2) of scans recorded 3 h apart.  

http://www.jphilo.mailway.com/
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SE data from all the cores were analysed using the non-interacting species model 

in SEDPHAT (Vistica, et al., 2004) as described in sections 2.2.2.2 and 3.4.3. 

Single fits at all sample concentrations were carried out to determine the whole-

cell weight average molecular weight Mapp for each sample concentration. The 

value of the whole-cell weight average molecular weight independent of 

concentration, , was determined by plotting 1/M0
wM app against sample 

concentration (in nM or mg/ml), where  is the inverse of the y intercept. 

Alternatively, similar values for M

0
wM

0
wMapp and  were obtained via single fit analysis 

using the Beckman XL-A/XL-I software implemented in MicroCal ORIGIN. 

Additionally, this software allows for consideration of non-ideality by means of 

the second virial coefficient B. However, including fitting of B for rE2/E3BP and 

rE2 seemed to worsen the fits (data not shown) with uncertain estimates of Mapp. 

Hence, all SE analysis reported in this study was undertaken with SEDPHAT, 

unless stated otherwise. 

5.2.4 Small angle x-ray scattering 

SAXS data for rE2/E3BP and bE2/E3BP were collected on beamline X33 of the 

Deutsches Elektronen Synchrotron (DESY) at the EMBL outstation in Hamburg, 

Germany with a single camera length of 4 m. Scattering curves were obtained 

for rE2/E3BP concentrations of 0.5, 2.95 and 3.8 mg/ml, while bE2/E3BP data 

were recorded at 0.65 and 1.14 mg/ml. Scattering experiments were conducted 

at three temperatures (10oC, 20oC and 37oC) to look for temperature-mediated 

structural changes. Scattering data for rE2 were obtained on beamline 2.1 at the 

SRS Daresbury, UK using dual camera lengths of 2.25 and 6.25 m and sample 

concentrations of 0.6 and 1.2 mg/ml. More details are given in section 3.4.4.  

5.2.5 Small angle neutron scattering 

SANS of rE2/E3BP and rE2 was carried out at the D22 beamline at the Institut 

Laue-Langevin (ILL) in Grenoble, France with camera lengths of 4 and 14 m. 

Scattering data were recorded at 4oC at protein concentrations of 3.69 and 6.84 

mg/ml for rE2/E3BP and rE2, respectively. More details can be found in section 

3.4.5. 
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5.2.6 Ab initio modelling of SAXS and SANS data 

Initial ab initio reconstructions of rE2/E3BP and bE2/E3BP were carried out using 

the program DAMMIN (Petoukhov and Svergun, 2003). Although several models 

were obtained from a series of DAMMIN trials, none of these provided a 

satisfactory fit to the experimental scattering curve. This may be attributed to 

the large size of the dummy atoms used to fill the search space, resulting in 

failure to restore a detailed internal structure. Moreover, DAMMIN is known to 

have difficulty in restoring hollow structures (Petoukhov and Svergun, 2003). In 

this case the hollow nature of the cores coupled with icosahedral symmetry 

constraints posed too great a problem for DAMMIN. Therefore, all subsequent 

model reconstructions were performed using GASBOR (Svergun, et al., 2001) to 

restore biologically relevant models with very good fits. Since both cores possess 

dodecahedral morphology, the PICO symmetry option was enabled during the 

GASBOR modelling along with no application of penalties for the disconnectivity 

and peripheral constraints (for details refer to section 3.5.2). All runs were 

carried out in batch mode using the computer grid system SCOTGRID.  

Averaging 10 ab initio models of rE2/E3BP and bE2/E3BP to obtain a consensus 

structure for each using DAMAVER (Volkov and Svergun, 2003) posed huge 

problems on account of the existence of hollow cavities and elongated density 

(from the SBDs and LDs) within the same structure. As the number of amino 

acids (9879) in rE2/E3BP and bE2/E3BP cores greatly exceeds the maximum limit 

of dummy residues available (8000) to model in GASBOR, it was assumed that 

the ab initio restorations would be limited and result in E2/E3BP models 

occupying volumes much lower than the actual core volume. Interestingly, 

despite the greatly reduced number of dummy residues, there appears to be just 

enough residues per ab initio model (7879) to fit the data well, as volumes 

obtained from CRYSOL (Svergun, et al., 1995) (4.3-4.37 x 106 Å3) for each 

reconstruction compare favourably with the calculated volumes of the cores 

(4.38 x 106 Å3). Therefore, representing a consensus model of rE2/E3BP and 

bE2/E3BP cores by the superimposition of 10 ab initio GASBOR models each 

seems a rational approach to overcome the problem of structure restoration 

encountered with DAMAVER.  
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5.2.7 Hydrodynamic modelling 

The GASBOR ab initio model of rE2/E3BP core comprising 7879 dummy residues 

was converted to a hydrodynamic bead model (HBM) comprising 1990 beads 

employing a 15 Å cubic grid using the AtoB algorithm (Byron, 1997) implemented 

within SOMO (Rai, et al., 2005). Hydrodynamic parameters, namely the 

anhydrous sedimentation coefficient s0 and translational diffusion coefficient Dt 

of the HBM were then calculated using HYDRO++ (García de la Torre, et al., 

2007; García de la Torre, et al., 1994). Alternatively, a HBM with no bead 

overlaps utilising a 7 Å cubic grid was generated using the program 

TRANS2VORONOI, an extended version of AtoB, developed by M. Nöllmann 

(Centre de Biochimie Structurale Montpellier, France), resulting in a total of 

4343 beads. Identification of the percentage of surface exposed and buried 

beads in this HBM was performed using the ASAB1 utility of SOMO. Hydrodynamic 

computations from the resulting HBM were then independently performed using 

the SUPCW subroutine of BEAMS (Spotorno, et al., 1997). The HBMs used for 

calculations with HYDRO++ were corrected for the exact volume of rE2/E3BP, an 

estimate obtained from theoretical calculations taking into account the 

molecular mass M, partial specific volume υ  and Avogadro’s number NA (6.023 x 

1023 mol-1). The anhydrous sedimentation coefficients obtained from HYDRO++ 

and SUPCW were converted to their equivalent hydrated values employing a 

conversion factor of 0.8664 derived from hydrodynamic theory (refer to section 

2.2.1.2.2 for details). All models obtained from AtoB and TRANS2VORONOI were 

visualised with one of several programs: FreeWRL (http://freewrl.sourceforge 

.net), Pymol (Delano Scientific, USA), Rasmol (Sayle and Milner-White, 1995) 

(http://openrasmol.org) or Visual Beads (http://leonardo.fcu.um.es/macromol/ 

programs/visualbeads0b/visualbeads.htm). Further details on the modelling can 

be found in section 3.5.4.

5.2.8 Circular dichroism 

Far-UV (190-260 nm) and near-UV (250-320 nm) CD analyses were performed on 

rE2/E3BP and rE2 cores at 25oC in the presence of increasing amounts of GdmCl 

(see section 3.4.8 for technical details). The cores were suspended in PEB buffer 

and data recorded at sample concentrations of 0.2 mg/ml and 0.9 mg/ml for the 

http://freewrl.sourceforge/
http://openrasmol.org/
http://leonardo.fcu.um.es/macromol/ programs/
http://leonardo.fcu.um.es/macromol/ programs/
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far- and near-UV, respectively. The GdmCl concentration was accurately 

measured via refractrometry prior to each run. The percentage total change 

during unfolding/dissociation monitored at 285 nm (near-UV) and 222 nm (far-

UV) in the presence of increasing chemical denaturant was calculated via the 

following equation 

%total change on unfolding = x
EE

EE

minmax

minn

−

−
100  

where Emax is the ellipticity of the completely unfolded protein at 6 M GdmCl at 

285/222 nm, Emin is the ellipticity of the native folded protein at 0 M GdmCl at 

285/222 nm and En is the ellipticity obtained at every GdmCl concentration at 

285/222 nm, with n representing the various GdmCl concentrations. The extent 

of unfolding/dissociation independent of sample concentration for both 

rE2/E3BP and rE2 was obtained by plotting the %total change on unfolding 

against GdmCl concentration (in M). Additionally, the Gibbs free energy of the 

reaction, ∆G, at standard temperature (293 K) and pressure (1 atm) was 

computed via the following equation 

∆G = -RT ln K = -2434.83 ln K  

where free energy ∆G is in J/mol, R is the universal gas constant (8.31451 J/mol 

K-1), T is the temperature in K (293 K) and K is the equilibrium constant defined 

by the expression, 

⎥
⎦

⎤
⎢
⎣

⎡
proteinfoldedtotal%
proteinunfoldedtotal%

K =  

The free energy ∆G0 at infinite dilution was determined from the y intercept of a 

plot of ∆G against GdmCl concentration (in M).  

5.2.9 Tryptophan fluorescence 

Changes in tryptophan fluorescence for rE2/E3BP and rE2 were monitored at 

25oC in the presence of increasing GdmCl concentrations. Fluorescence emissions 
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for both cores were recorded over a spectral range of 310-450 nm at sample 

concentrations of 0.2 mg/ml (refer to section 3.4.8 for technical details).  

5.2.10 Negative stain electron microscopy 

Negative stain EM images were obtained for rE2/E3BP, bE2/E3BP and rE2 cores 

at very high magnification. Protein samples for imaging were prepared as 

described in detail in section 3.4.6. Images of rE2/E3BP and rE2 cores were 

recorded (magnification 90,000x and 120,000x) at sample concentrations of 70 

µg/ml and 61.5 µg/ml, respectively. A bE2/E3BP protein concentration of 1 

mg/ml was used to record images at a magnification of 90,000x and 120,000x. 

5.3 Results and modelling 

5.3.1 Recombinant E2/E3BP core (rE2/E3BP) 

5.3.1.1 Shape determination of rE2/E3BP core 

5.3.1.1.1  SV AUC 

Sedimentation velocity of rE2/E3BP (Fig. 5.2) confirmed the presence of a main 

species consistent with a 60-meric core (Fig. 5.2A). Additionally, a small amount 

(≤ 5% of the total protein concentration) of high molecular weight species was 

also observed denoted by the tail in Fig. 5.2A. Weight-average sedimentation 

coefficients sw were determined to be 29 and 43 S by integration of each peak in 

the c(s) analysis. The peak around 29 S is thought to correspond to intact 

rE2/E3BP core and its sw compares favourably with the sedimentation coefficient 

of 31.8 S obtained by Hiromasa and co-workers (2004). The observed tail around 

43 S may correspond to the presence of aggregates or a small fraction of possible 

dimer that was persistent in all SV runs. This trailing edge comprising the faster 

sedimenting species has been observed before (Hiromasa, et al., 2004). 

Moreover, the 29 S peak is quite broad and probably reflects inherent 

heterogeneity due to the presence of E2/E3BP cores of various sizes and/or 

subunit composition, more about which is discussed in Chapter 7. Therefore, it is 
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easy to envisage potential difficulties in producing a well-defined core 

representing a uniform single species. 

Finite element analysis on the SV interference data with the non-discrete 

species model in SEDFIT yielded sedimentation coefficients for rE2/E3BP at all 

experimental concentrations. These sedimentation coefficients were then 

extrapolated to infinite dilution, giving a concentration independent 

sedimentation coefficient of = 29.3 ± 0.04 S (Fig. 5.2B).  0
w,20s

 

Figure 5.2 Sedimentation velocity analysis of rE2/E3BP core 
(A) c(s) distribution from SV interference data for rE2/E3BP. The axes s and c(s) denote 
the sedimentation coefficient and the c(s) distribution model (from SEDFIT analysis), 
respectively. (B) Determination of concentration independent (29.3 ± 0.04 S) for 
intact rE2/E3BP core obtained from c(s) analysis. Error bars are shown, but are not clearly 
visible owing to their small size.  

0
w,20s

 

The calculated value of f/f0 (obtained from the ratio 0
w,200 ss

0s

0
w,20s

, i.e. ratio of the 

sedimentation coefficient of an anhydrous sphere of equivalent mass and volume 

as that of rE2/E3BP,  and the experimentally measured sedimentation 

coefficient, ) that measures the molecular elongation (and/or hydration) for 

rE2/E3BP is 2.69, consistent with values obtained from the SEDFIT analysis (2.56) 

of the SV data. The large value of f/f0 indicates a structure with large 

hydrodynamic radius and deviation from spherical symmetry. Calculated values 

of the various hydrodynamic parameters from the SV analysis of rE2/E3BP are 

listed in Table 5.1.  
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M  
(Da) 

υ  
(ml/g) 

0
w,20s  

(S) 
f/f0

R0 

(nm) 
Rs 

(nm) 
Ds 

(Å) 
Dt 

(cm2/s) 

3,551,100 
 

0.744 
 

 
29.3a 

 
79.0b

2.69 
 

10.2 
 

27.3 
 

546 
 

8.10 x 10-8 

 

Table 5.1 Hydrodynamic parameters for rE2/E3BP derived from SV data 
aexperimental and bcalculated sedimentation coefficients. M is the molecular mass based 
on the amino acid composition, υ  is the calculated partial specific volume at 20oC,  
is the sedimentation coefficient at infinite dilution, R

0
w,20s

0
wM

0 is the radius of the anhydrous sphere 
of equivalent mass and specific volume as rE2/E3BP, Rs is the hydrodynamic or Stokes 
radius, Ds is the diameter of the particle obtained from the Stokes radius and Dt is the 
translational diffusion coefficient. 

 

5.3.1.1.2 SE AUC 

SE data obtained for rE2/E3BP show a very small increase in the inverse of the 

apparent whole-cell weight-average molecular weight, 1/Mapp with increasing 

sample concentration, indicating minimal non-ideality in these water-filled, 

negatively charged cores (Fig. 5.3B). Global analysis of SE data in SEDPHAT 

(Schuck, 2003; Vistica, et al., 2004) with a single species model yielded very 

poor fits that were greatly improved upon using a two species model as seen in 

Fig. 5.3A, yielding molecular weights of 2.48 MDa and 6.01 MDa, respectively. 

Molecular weight of the predominant species (i.e. the first species, consistent 

with 60-meric rE2/E3BP core) independent of concentration, , was 

determined to be 2.57 ± 0.24 MDa, considerably lower than the value predicted 

from the amino acid sequence of 3.55 MDa (Fig. 5.3B).  

This discrepancy between the experimental and calculated molecular weights 

could reflect the formation of incomplete cores or proteolytic cleavage of the N-

terminal arms of rE2/E3BP over the experimental time period (~3 days) required 

for the SE runs. However, electron microscopy images (see section 5.3.1.4.1) 

point towards the presence of complete cores, indicating proteolytic cleavage to 

be the more likely explanation. The rE2/E3BP core is known to be highly 

susceptible to proteolysis over time, particularly the flexible linker regions 

connecting the various domains. In addition, GFC of an old preparation of 

rE2/E3BP (4-5 days) resulted in elution of several low molecular weight products 
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(apart from the void volume elution; data not shown), indicating the high 

susceptibility of rE2/E3BP towards proteolytic cleavage. 

 

Figure 5.3 Sedimentation equilibrium analysis of rE2/E3BP 
(A) SE interference data (dotted lines) at 3,000 rpm were fit (smooth lines) with a two 
species model in SEDPHAT (2.48 MDa and 6.01 MDa). Mapp was determined at each 
sample concentration. Residual plots of various samples are shown on different scales. 
(B) Extrapolation to zero of the 1/Mapp vs concentration plot yielded the molecular mass, 

 independent of concentration for the predominant species.  0
wM
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This significant proteolytic cleavage is apparent from SDS-PAGE of post-SE 

rE2/E3BP samples (Fig. 5.4). Apart from the expected monomeric rE2 (61 kDa) 

and rE3BP (50 kDa), SDS-PAGE also reveals possible truncated products of E2 and 

E3BP with molecular weights of 29 kDa (CTD cores) and 43 kDa (SBD-CTD cores). 

 

Figure 5.4 SDS-PAGE of post-SE rE2/E3BP core samples 
(A) Samples of rE2/E3BP after the SE run were analysed by SDS-PAGE (lanes 1-5 
represent various concentrations) and show several bands arising from proteolytic 
cleavage of rE2 and rE3BP (indicated by arrows). (B) Freshly purified rE2/E3BP is shown 
for comparison. Molecular weights of marker proteins (Mw) are indicated in kDa. 

 

However, there may be other minor proteolytic products not clearly visible on 

SDS-PAGE due to the relative insensitivity of the Coomassie blue stain. 

Additionally, estimation of the extent of proteolysis is difficult and prone to 

significant error, as the intact core has a larger molecular weight and therefore 

a higher capacity to bind to the dye as compared to the smaller proteolytic 

products. Owing to proteolysis, the samples may comprise a concoction of cores. 

Table 5.2 indicates several ways to obtain a 2.57 MDa rE2/E3BP core (from E2 

and E3BP subunits possessing different domains), reinforcing the issue of 

complexity and inherent variation in core organisation. It is important to note 

that these are only a few of the several combinations that could exist in the 

actual sample.  

The weight-average sedimentation coefficient of 43 S obtained from SV data for 

the faster sedimenting species was initially thought to correspond to a possible 

rE2/E3BP dimer or non-specific aggregate. However, fitting of SE data yielded a  
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% of rE2/E3BP 
with all domains 

(full core) 

% of rE2/E3BP with 
only CTD domain 
(truncated core) 

% of truncated 
rE2/E3BP having only 

SBD-CTD domains 

Resultant 
molecular 

weight M (MDa) 
100 - - 3.55 
- 100 - 1.67 
- - 100 2.64 

48 52 - 2.57 
40 17 33 2.57 
43 47 10 2.57 

Table 5.2 Variable core organisation of rE2/E3BP and its effect on molecular 
weight 
Some possible combinations towards obtaining the SE measured molecular weight ‘M’ 
(blue) of rE2/E3BP from a mixture of cores comprising various domains (full and 
truncated) are shown.  

 

molecular weight independent of concentration, , of 5.71 ± 0.11 MDa for the 

second species (data not shown), which is lower than expected for intact 

rE2/E3BP dimer (7.1 MDa), but in rough agreement with the predicted mass of a 

rE2/E3BP dimer (5.14 MDa) that comprises monomers of 2.57 MDa, as obtained 

from SE data. However, fitting with the self-association model in SEDPHAT was 

unsatisfactory, pointing instead to the presence of aggregates rather than higher 

order oligomers. Despite several attempts to minimise the extent of proteolytic 

degradation during purification by inclusion of protease inhibitors at all stages, 

the molecular mass of the core gave consistent values in the range of 2.50-2.70 

MDa.  

0
wM

5.3.1.2 Solution structure of rE2/E3BP core 

5.3.1.2.1 SAXS, SANS and ab initio modelling 

SAXS curves for purified rE2/E3BP were acquired at three different 

concentrations and temperatures. Inspection of the low angle region of the 

scattering curves revealed a tendency for rE2/E3BP to aggregate at 

concentrations greater than 3 mg/ml. In addition, the SAXS curve at the lowest 

concentration measured (0.5 mg/ml) was too noisy to yield satisfactory 

estimates of molecular weight at all temperatures (10oC, 20oC, 37oC). However, 

the scattering curve obtained at 2.95 mg/ml was devoid of aggregates or any 

inter-particle interference effects (Fig. 5.5A) and was hence used for ab initio 

modelling. The molecular weight estimate for rE2/E3BP obtained by 
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extrapolation of scattering intensity to zero angle, I(0), was 3.17 MDa, slightly 

lower than the calculated mass of 3.55 MDa from the protein sequence and 

higher than the mass determined by SE (2.57 MDa). This discrepancy in the 

molecular weight may be due to experimental errors, as molecular weight 

estimates in SAXS are not particularly accurate for very small or large molecules 

(Vachette and Svergun, 2000). Guinier analysis and GNOM (Semenyuk and 

Svergun, 1991; Svergun, 1992) were used to determine the radius of gyration, Rg, 

to be 147 ± 1 Å and 148 ± 1 Å, respectively. Additionally, no temperature 

induced conformational changes or radiation induced effects were observed for 

the core samples. 

 

Figure 5.5 Small angle x-ray scattering of rE2/E3BP 
The scattering curve for rE2/E3BP is shown in (A). The x-axis s denotes the scattering 
angle. The distance distribution function, p(r) vs r (B) was calculated using GNOM 
resulting in a Dmax of 472 Å. Error bars are shown, but not clearly visible owing to their 
small size. 

 

The distance distribution function for rE2/E3BP core, p(r) (Fig. 5.5B) shows a 

‘bell like’ shape. A slight deviation from a perfect Gaussian distribution symbolic 

of a spherical molecule, and the minor elongation in shape at large distances 

(high values of r) is readily observed. The maximum dimension of the particle, 

Dmax, was determined to be 472 Å. Although the value of Rg (147 ± 1 Å) is 

consistent with the published value of 151 ± 2 Å (Hiromasa, et al., 2004), the 

Dmax determined in this study is somewhat higher than the value (420 ± 10 Å) 

previously reported by Hiromasa and colleagues (2004). Variation in these values 

probably reflects the different approaches employed, but more importantly may 

be due to the size variation observed in eukaryotic PDC cores as a result of 
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variable distances between the trimeric building blocks, giving rise to the 

“breathing” of the core (Zhou, et al., 2001a).  

SANS curves for rE2/E3BP were obtained at a single concentration of 3.69 mg/ml 

owing to sample constraints (Fig. 5.6A). The molecular weight from the 

extrapolation of scattering intensity to zero angle, I(0), was estimated to be 

3.66 MDa, slightly elevated with respect to the calculated mass of 3.55 MDa, the 

elevation being well within experimental error. Moreover, this estimated mass 

(3.66 MDa) is much higher than the masses obtained by SE (2.57 MDa) and SAXS 

(3.17 MDa). The Rg determined using the Guinier approximation is 143 ± 2 Å. The 

distribution function p(r) is shown in Fig. 5.6B. The Dmax and Rg calculated from 

the p(r) function were found to be 462 Å and 144 ± 2 Å, respectively, agreeing 

favourably with the value obtained from the Guinier approximation. Thus, the 

values of Rg and Dmax obtained from SANS are in close agreement with the SAXS 

values. 

 

Figure 5.6 Small angle neutron scattering of rE2/E3BP 
(A) Intensity scattering curve with error bars for rE2/E3BP is denoted. The x-axis s 
denotes the scattering angle. (B) A Dmax of 462 Å was calculated from the distance 
distribution function, p(r), of rE2/E3BP using GNOM. 

 

Ab initio models of rE2/E3BP (from SAXS and SANS data) were produced with the 

program GASBOR (Petoukhov and Svergun, 2003; Svergun, et al., 2001), 

employing icosahedral symmetry and various penalty constraints during the 

modelling process (see section 3.5.4). The ab initio reconstruction of rE2/E3BP 

was not entirely straightforward owing to its massive size and large number of 
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amino acid residues exceeding the maximum limit of dummy atoms/residues 

that scattering shape restoration programs like DAMMIN (Svergun, 1999) and  

GASBOR can currently accomodate. Therefore, the modelling was performed 

employing fewer atoms than are present in the actual system. Initial ab initio 

reconstructions conducted with DAMMIN did not fit the experimental scattering 

curve satisfactorily and could not restore a biologically meaningful structure 

(see section 5.2.1.6). The algorithm in DAMMIN is known to pose considerable 

problems in restoring hollow structures (Volkov and Svergun, 2003). Thankfully, 

GASBOR modelling proved more fruitful, largely by virtue of the dummy residue 

having a smaller size, thereby allowing restoration of a more detailed internal 

structure for the core. Several GASBOR runs were conducted to obtain a 

consistent model: reconstructions were extremely time intensive (7-9 days/run). 

As GASBOR tries to best fit the experimental data with the imposed constraints, 

there was no unique solution and several structural models that satisfied the 

search volume were generated, but not all were biologically realistic. For 

instance, models were considered unrealistic if their appearance deviated 

substantially from that suggested by EM of mammalian PDC (Wagenknecht, et 

al., 1991), i.e. dodecahedral structures possessing large hollow cavities and 

empty pentagonal faces. Discarding the non-biologically relevant models, only 

those that appeared similar to published and our own EM images (section 

5.3.1.4.1) were chosen for further analysis to obtain a consensus model for 

rE2/E3BP.  

Ab initio models of rE2/E3BP obtained from SAXS and SANS are in good 

agreement with each other, with structural features such as hollow cavities and 

flanking arms observed in both models (Fig. 5.7). The positions of rE3BP within 

the core cannot be ascertained from the SAXS ab initio models. However, all 

reconstructions of the filtered subset result in structures having a maximum 

dimension of 472 Å and hollow empty faces, thus clearly lending support to the 

48+12 (E2+E3BP) substitution model of subunit organisation. Greater electron 

density is observed within the inner part of the core as compared with the 

peripheral flanking arms. This may possibly be a consequence of the GASBOR 

algorithm favouring compactness (i.e. stacking greater number of dummy 

residues within the centre), modulated via peripheral  
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Figure 5.7 Ab initio models of the rE2/E3BP core 
A single GASBOR reconstruction of rE2/E3BP obtained from SAXS data shown along the 
(A) 5-fold and (B) 2-fold axes of symmetry. (C) Complementary single GASBOR model of 
rE2/E3BP obtained from SANS data. 

 

and bond length constraints that were used in this study. 

On averaging 10 ab initio reconstructions via DAMAVER (Volkov and Svergun, 

2003), it was impossible to retrieve an average structure that preserved the 

intrinsic features of each of the individual reconstructions. The averaged 

rE2/E3BP core thus obtained was a solid icosahedron, and did not possess any 

hollow internal cavities or flanking peripheral arms as seen in the individual 

models. In the case of both full-length cores (rE2/E3BP and bE2/E3BP), the 

algorithm in DAMAVER seems unable to deal with the complexity of several large 

cavities and externally elongated domains within the same structure. Although 

averaged models generated by DAMAVER are consistent with the individual ab 

initio models in most cases reported in the literature, there are some instances 

when averaging has little effect and shows systematic deviations from the initial 

shape (Volkov and Svergun, 2003).  

However, as volumes obtained from CRYSOL (Svergun, et al., 1995) for each ab 

initio reconstruction compare favourably with the calculated volume for 

rE2/E3BP, a consensus model of rE2/E3BP was generated by the superimposition 

of 10 ab initio GASBOR models (Figs 5.8A to 5.8J) (refer to section 5.2.1.6 for 

details). It is interesting to note that the superimposition increases the overall 

electron density, particularly at the peripheral arms, whilst preserving the 

structural features such as the hollow cavities throughout all the models (Fig. 

5.8K). 
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Figure 5.8 Superimposition of 10 ab initio GASBOR models of rE2/E3BP core 
10 ab initio GASBOR reconstructions (A to J) of rE2/E3BP were superimposed to give 
rise to a consensus model of rE2/E3BP (K) preserving all the key structural features of the 
core. All models are shown along the 2-fold and the 5-fold axes of symmetry, with the 
diameter of each model being 472 Å. 
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5.3.1.2.2 Hydrodynamic modelling 

Hydrodynamic bead models (HBMs) of rE2/E3BP were independently generated 

from the ab initio GASBOR model using programs AtoB and TRANS2VORONOI as 

described in section 5.2.1.7 (Fig. 5.9). Assuming hydration of 0.4 g/g, a hydrated 

sedimentation coefficient of 28.3 S for rE2/E3BP was calculated using HYDRO++, 

in excellent agreement with the experimental value of 29.3 S obtained from SV 

data.  

 

Figure 5.9 AtoB generated model of rE2/E3BP core 
The rE2/E3BP model generated by AtoB retains the key features of the parent structure 
(i.e. Fig. 5.8K). Shown along the (A) 5-fold and (B) 2-fold axes of symmetry for 
convenience. 

 

5.3.1.3 Stability of rE2/E3BP core 

The trimeric building blocks that make up the cores of PDC serve as the key 

element for core stability (Izard, et al., 1999). Cryo-EM studies on the yeast E2 

core revealed variation in the inter-trimer distances resulting in ‘breathing’ of 

the core (Zhou, et al., 2001a). Interestingly, integration of E3BP as an additional 

core component in eukaryotic PDCs may result in structural changes that 

mediate inter-trimer distances and overall core stability. As we have been able 

to produce recombinant PDC cores successfully, a comparative study on core 

stability of full-length rE2/E3BP, rE2 (section 5.3.3.3) and truncated E2/E3BP 

(section 6.3.5) cores was conducted using CD and fluorescence in the presence 

of the chemical denaturant GdmCl.  
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The CD spectrum of a protein in the far-UV region (180-260 nm) provides a 

quantitative estimate of the secondary structure content, while the near-UV 

spectrum (250-320 nm) is sensitive to aspects of tertiary structure related to 

aromatic amino acid residue contributions.  

CD spectra of rE2/E3BP in the presence of increasing concentrations of GdmCl 

resulted in loss of minima at 285 nm and 222 nm (Figs 5.10A and 5.10D). At high 

concentrations, GdmCl absorbs strongly at wavelengths below 210 nm, therefore 

data below this wavelength were excluded from the analysis. 

Unfolding/dissociation was monitored by measuring changes in the CD signals at 

222 nm and 285 nm. The 285 nm signal was more sensitive to GdmCl-induced 

unfolding/dissociation than its 222 nm counterpart, indicating a higher degree of 

structural perturbation of rE2/E3BP in the near-UV region. The mid-points of 

unfolding were 2.70 M GdmCl at 285 nm and 2.92 M GdmCl at 222 nm (Figs 5.10 

B, 5.10E). This is consistent with the hypothesis that low concentrations of 

GdmCl cause overall destabilisation of local regions of tertiary structure, while 

the secondary structure is more resistant, requiring higher concentrations of 

GdmCl to unfold the structure completely. The peak at 285 nm corresponds to 

the spectral contribution from aromatic amino acid residues (such as tryptophan 

and tyrosine). This contribution is rapidly lost with increasing GdmCl. This may 

be attributed to conformational changes in the environment of aromatic residues 

resulting in alterations to the overall tertiary structure during 

unfolding/dissociation. In addition, the ‘sigmoidal’ curves suggest two-state 

unfolding (Fig. 5.10E). Earlier refolding studies on bE2/E3BP core demonstrated 

changes in the quaternary structure resulting in the formation of low molecular 

weight intermediates corresponding to trimers and monomers during the 

unfolding event (McCartney, et al., 1997). 

The Gibbs free energy of unfolding of a protein, ∆G, is assumed to be linearly 

dependent on the denaturant concentration. For a two-state reversible unfolding 

model (native state -----> unfolded state), the Gibbs free energy independent of 

concentration, ∆G0, can be obtained from the y-intercept of the plot of ∆G 

versus denaturant concentration. ∆G0 of rE2/E3BP unfolding was determined to 

be 17 kJ/mol and 16.2 kJ/mol from the near- and far-UV data, respectively (Figs 

5.10C and 5.10F), thus indicating almost comparable extents of destabilisation  



Characterisation of the full-length cores: E2/E3BP and E2 166 

 

 

Figure 5.10 CD spectra of GdmCl-induced denaturation of rE2/E3BP  
(A) Near-UV and (D) far-UV CD spectra of rE2/E3BP recorded in the presence of 
increasing quantities of GdmCl are shown. Best fits to the stability curves denoting the 
percentage of unfolding of rE2/E3BP via (B) near-UV and (E) far-UV CD monitored at 
fixed wavelengths of 285 and 222 nm are given. Free energy plots of unfolding of 
rE2/E3BP in the (C) near- and (F) far-UV regions result in ∆G0 values of 17 kJ/mol and 
16.2 kJ/mol, respectively. 
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of the secondary and tertiary structure, and a similar mode of unfolding of the 

core. 

Fluorescence spectra were recorded by monitoring the intrinsic fluorescence of 

tryptophans present in rE2/E3BP. A total of 7 tryptophans are found in the 

rE2/E3BP core, 4 in the rE2 subunit (1 outer LD, 1 inner LD, 2 CTD) and 3 in the 

rE3BP subunit (1 LD, 1 inner linker, 1 CTD) of the core. GdmCl-induced 

fluorescence emission spectra of rE2/E3BP recorded in the range 310-450 nm are 

shown in Fig. 5.11A. The maximum emission of rE2/E3BP in the fully folded 

native state in the absence of GdmCl is observed at 328 nm, indicative of 

tryptophans buried in the core. However, with the addition of increasing 

amounts of GdmCl, a gradual red-shift is observed.  

 

Figure 5.11 GdmCl-induced change in the fluorescence emission spectrum of 
rE2/E3BP 
(A) Fluorescence emission of tryptophans (excited at 295 nm) monitored at wavelengths 
310-450 nm in the presence of increasing amounts of the chemical denaturant GdmCl is 
shown. (B) The percentage change of unfolding monitored at 380 nm as a function of 
GdmCl concentration indicates 50% of unfolded rE2/E3BP core at 2.6 M GdmCl. This 
wavelength (380 nm) was chosen as it showed a progressive trend from 0 M to 6 M 
GdmCl. 

 

Interestingly, this red shift begins very early on with the addition of just 1.5 M 

GdmCl resulting in the shift of the maximum emission peak to 334 nm, 

suggesting local dissociation and partial exposure of tryptophans to the solvent. 

On increasing the concentration of GdmCl further, a dramatic shift of the 

maximum emission peak to 352 nm is observed at 2.5 M GdmCl, and this alters 

progressively to a maximum of 360 nm by 6 M GdmCl. The significant shift 
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towards 360 nm from 2.5 M GdmCl onwards suggests complete exposure of 

tryptophans to the solvent brought about by the overall unfolding of rE2/E3BP. 

As the fluorescence emission signal arises from all the tryptophans present in the 

rE2/E3BP core, contribution from specific tryptophans towards this signal as a 

consequence of unfolding or dissociation is difficult to assess at this stage.  

Early changes in the observed tryptophan fluorescence between 0-2 M GdmCl 

may be indicative of local perturbation in structure and/or formation of trimeric 

intermediates owing to the partial solvent exposure of tryptophans prior to any 

major disruption of secondary structure. This is consistent with previous studies 

on bE2/E3BP demonstrating the formation of trimeric intermediates between 

1.8-2 M GdmCl (McCartney, et al., 1997). This is immediately followed by a 

phase of rapid denaturation with about 50% unfolded/dissociated rE2/E3BP 

observed by 2.6 M GdmCl (Fig. 5.11B), corresponding to an overall unfolding 

event with major loss of quarternary and secondary structure of the core. 

5.3.1.4 Towards a high-resolution structure  

5.3.1.4.1  Negative stain EM 

Negative stain EM of rE2/E3BP reveals a uniform distribution of well formed 

icosahedral core structures with empty pentagonal faces (Fig. 5.12), consistent 

with previous EM data for bovine heart PDC (Wagenknecht, et al., 1991). As the 

flexible N-terminal arms of the core are likely to be fixed by the stain, they are 

poorly resolved on the EM micrograph. The observation of empty pentagonal 

faces with no density above or below them provides strong support for the 

‘substitution model’ of the rE2/E3BP assembly. Core structures are clearly 

visible, exhibiting the underlying 5-, 3-, and 2-fold structural symmetry (Fig. 

5.12); although the 5-fold cores are more common than the 3- and 2-fold 

structures, consistent with cryo-EM data for bE2/E3BP (Wagenknecht, et al., 

1991). 

5.3.1.4.2 Preliminary crystallisation trials 

Crystallisation of purified rE2/E3BP was also attempted, as a first step towards a 

high resolution structure. However, initial crystallisation screens yielded only 
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salt crystals. It is well known that highly mobile regions of proteins significantly 

hinder the process of crystallisation (Dale, et al., 2003; Sousa, 1995), and it is 

likely that the flexible N-terminal arms of the rE2/E3BP core hinder the 

production of protein crystals. 

 

Figure 5.12 Negative stain EM image of rE2/E3BP 
This negative stain image of rE2/E3BP shows uniformly distributed complete icosahedral 
cores with empty (pentagonal) faces. Orientation of cores along the 5- (arrow), 3- (square) 
and 2-fold (circle) axes along with the scale is also indicated. 

 

5.3.2 Bovine E2/E3BP core (bE2/E3BP) 

5.3.2.1 Shape determination of bE2/E3BP 

5.3.2.1.1 SV AUC 

It proved impossible to obtain homogenous bE2/E3BP core, and protein samples 

used for AUC analysis were contaminated by a small fraction of E1 (10-20%), as 
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estimated from visualisation after SDS-PAGE (see section 4.3.2.7) and 

densitometric analysis. SV experiments were conducted for various 

concentrations of bE2/E3BP (with E1) using interference optics and the 

sedimentation profiles modelled using c(s) analysis in SEDFIT (Schuck, 2000). The 

c(s) analysis shows a dual peak profile; a dominant peak with a weight average 

sedimentation coefficient of 41 S and a slightly smaller peak at 60 S (Fig. 5.13A). 

Finite element analysis with a two-species model yielded sedimentation 

coefficients at all experimental concentrations. These were then extrapolated to 

give a sedimentation coefficient for the major peak of bE2/E3BP independent of 

concentration, = 43.7 ± 0.03 S (Fig. 5.13B). The major peak has a 

sedimentation coefficient significantly greater than the already published value 

of 35 S for the bovine E2/E3BP core, but this is consistent with an expected 

increase due to bound E1. The smaller peak (60 S) may correspond to possible 

dimers of bE2/E3BP or aggregates, consistent with observations made by Roche 

and co-workers (1993). Hence, the major peak with sedimentation coefficient of 

43.7 S represents 60-meric bE2/E3BP populated with small amounts of bound E1.  

0
w,20s

 

Figure 5.13 Sedimentation velocity analysis of bE2/E3BP core 
(A) c(s) analysis for a range of concentrations of purified bE2/E3BP core. The axes s and 
c(s) denote the sedimentation coefficient and the c(s) distribution model (from SEDFIT 
analysis), respectively. (B) dDtermination of  for the major peak of bE2/E3BP. Error 
bars are shown, but are not clearly visible owing to their small size. 

0
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5.3.2.1.2 SE AUC 
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As the exact amino acid composition of bE2/E3BP is not known, it was assumed 

that bE2/E3BP is similar to the recombinant rE2/E3BP core in terms of subunit 

composition, extinction coefficient and other solvent properties for the purpose 

of this study.  

SE data obtained for bE2/E3BP were fitted with a two species model using the 

discrete species module in SEDPHAT (Schuck, 2003; Vistica, et al., 2004), 

yielding molecular masses of 3.59 MDa and 5.69 MDa for the first (predominant) 

and second (minor) species, respectively (Fig. 5.14A). A decrease in 1/Mapp of 

the predominant species with increasing sample concentration was clearly 

observed, indicative of self-association and/or aggregate formation (Fig. 5.14B). 

The molecular weight of the major species of bE2/E3BP independent of 

concentration, , was determined to be 3.33 ± 0.6 MDa (Fig. 5.14B).  0
wM

Although this value compares favourably with the molecular weight of 

recombinant E2/E3BP core as predicted from the amino acid sequence (3.55 

MDa), it is considerably less than that expected for bE2/E3BP bound with 20% E1 

(~4.47 MDa). This may be due to proteolytic degradation of the N-terminal arms 

of bE2/E3BP over the long time course of the SE experiment resulting in a low 

molecular weight core. Moreover, global fitting of the SE data yielded a 

molecular mass of 5.69 MDa for the second minor species which is lower than 

expected for intact bE2/E3BP (bound E1) dimer. Furthermore fitting to the self-

association model in SEDPHAT was unsatisfactory, indicating the presence of 

large aggregates, rather than higher order oligomers. 

It is to be noted that the SE data was extremely noisy for some bE2/E3BP 

samples. This may be due to protein sticking on the walls of the sample cells or 

time invariant noise that arisies owing to dust or scratches on the sapphire 

windows, variations in the interference optics etc. Therefore, SE experiments of 

bE2/E3BP will have to be conducted again in order to ensure reliability of data. 

5.3.2.2 Ab initio solution structure of bE2/E3BP 

SAXS data for purified bE2/E3BP were acquired at sample concentrations of 0.65 

and 1.14 mg/ml at temperatures 10oC and 37oC. However, measurements at 37oC  
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Figure 5.14 Sedimentation equilibrium analysis of bE2/E3BP 
(A) SE interference data (dotted) were analysed with SEDPHAT to obtain best fits 
(smooth) and Mapp at the various sample concentrations. Residual plots of the various 
samples (1-5 mg/ml) are represented on different scales. (B) 1/Mapp was plotted for the 
predominant species as a function of sample concentration and extrapolated to zero 
concentration to yield . 0

wM
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indicated sample aggregation. Scattering data obtained at the lower 

concentration (0.65 mg/ml) at 10oC revealed no apparent aggregates (Fig. 

5.15A) and were employed for further ab initio modelling. An attempt to 

estimate the molecular weight of bE2/E3BP obtained by extrapolation of 

scattering intensity to zero angle, I(0), did not provide satisfactory results.  

 

Figure 5.15 Small angle x-ray scattering of bE2/E3BP core 
(A) The scattering curve for bE2/E3BP is shown. The x-axis s denotes the scattering 
angle. (B) The distance distribution function, p(r), calculated using GNOM results in a 
maximum diameter, Dmax, of 480 Å. Error bars are shown in both plots, but not clearly 
visible in (B) owing to their small size. 

 

The radius of gyration Rg determined using the Guinier approximation is 158 ± 1 

Å. The particle distribution function p(r) is shown in Fig. 5.15B. The Dmax is 480 Å 

and Rg calculated from the p(r) function is 156 ± 1 Å which agrees well with the 

value obtained using the Guinier approximation. As the binding site of E1 is 

situated close to the inner part of the core, the maximum particle diameter of 

bE2/E3BP is unaffected in the presence of bound E1. The p(r) curves and values 

of Rg and Dmax determined in this study from scattering data of bE2/E3BP and 

rE2/E3BP compare favourably with each other, indicating a high degree of 

similarity in the molecular shape of these cores.  

Ab initio shape restoration of bE2/E3BP using GASBOR (Petoukhov and Svergun, 

2003; Svergun, et al., 2001) produced an icosahedral symmetrical core with 

empty pentagonal faces, further confirming the structural similarity with the 

rE2/E3BP core (Fig. 5.16). Ab initio modelling of bE2/E3BP was carried out in a 

manner similar to that for rE2/E3BP by imposing similar penalties and 
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icosahedral symmetry during the modelling process. More details on the 

modelling process can be found in section 5.3.1.2.  

 

Figure 5.16 Ab initio models of bE2/E3BP core 
A single ab initio GASBOR reconstruction of bE2/E3BP obtained from SAXS data shown 
along the (A) 5-fold and (B) 3-fold and (C) 2-fold axes of symmetry.  

 

All ab initio models of the filtered subset of bE2/E3BP generated structures 

having empty pentagonal faces and a maximum dimension of 480 Å, similar to 

the rE2/E3BP core. It was not possible to obtain an average structure using 

DAMAVER similar to the rE2/E3BP core (see section 5.3.1.2.1) (Volkov and 

Svergun, 2003), as the algorithm was unable to handle the structural complexity 

(hollow faces and elongated arms) posed by the modelled data. Therefore, akin 

to the modelling process for rE2/E3BP described in section 5.3.1.2, 10 ab initio 

GASBOR models of bE2/E3BP (Figs 5.17A-5.17J) were superimposed to obtain a 

consensus model, thus increasing the overall electron density and preserving all 

structural features of the core (Fig. 5.17K). 

5.3.2.3 Electron microscopy of bE2/E3BP core 

Negative stain EM of the bE2/E3BP core complements previous observations of 

the dodecahedral morphology exhibited by eukaryotic PDC cores (Fig. 5.18) 

(Wagenknecht, et al., 1991; Yu, et al., 2008). Despite the lack of uniform 

staining, icosahedral cores along the 2-fold, 3-fold and 5-fold axes are observed. 

However, the pentagonal faces of bE2/E3BP are not as clearly visible as those 

observed in the EM micrograph for rE2/E3BP (Fig. 5.12). This may be due to E1 

contamination in the purified preparation of bE2/E3BP. The heterotetrameric E1 

has dimensions of 70-100 Å (Hayakawa, et al., 1969; Junger and Reinauer, 1971)  
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Figure 5.17 Superimposition of 10 ab initio GASBOR models of bE2/E3BP 
The superimposition of 10 ab initio GASBOR models of bE2/E3BP (A to J) resulted in a 
consensus model of bE2/E3BP (K). Models are shown along the 5-fold and 2-fold axes, 
with maximum dimension of 480 Å. 
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and binds to the SBD of E2 at a distance of about 60 Å from the inner bE2/E3BP 

core across the pentagonal faces (Wagenknecht, et al., 1991). However, the 

hollow pentagonal face has a diameter of only about 50 Å (Wagenknecht, et al., 

1991), smaller than the maximum dimension of E1, hence contaminating E1 

seems to partially obscure these pentagonal faces. This is consistent with 

previous observations by Zhou and co-workers (2001b) based on cryo-EM of 

bovine kidney PDC complexed with E1. 

 

Figure 5.18 Electron micrograph of bE2/E3BP 
Negative stain image of bE2/E3BP indicates some icosahedral structures with empty 
pentagonal faces along their 5- (arrow), 3- (square) and 2-fold (circle) axes. bE2/E3BP 
core with bound E1 (hexagonal) is also shown.Scale bar of 250 Å is denoted.  

 

5.3.3 Recombinant E2 core (rE2) 

5.3.3.1 Shape determination of rE2 

5.3.3.1.1 SV AUC 

SV data show that rE2 is largely monodisperse at all concentrations, with a 

prominent major peak corresponding to intact 60-meric core, and a trailing edge 

of high molecular weight species that could possibly be rE2 dimer and/or 
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aggregates (Fig. 5.19A). Weight average sedimentation coefficients of 28.5 S and 

47 S were obtained by integration of each peak in the c(s) analysis. Finite 

element analysis of the SV data with a two-species model yielded sedimentation 

coefficients at all experimental concentrations. These were then extrapolated to 

infinite dilution to give  = 29.3 ± 0.02 S for the intact rE2 core (Fig. 5.19B), 

slightly lower than the value of 36.0 S reported by Hiromasa and co-workers 

(2004). This may reflect the different approaches employed in sample 

preparation and data analysis. 

0
w,20s

 

Figure 5.19 Sedimentation velocity analysis of rE2 
(A) c(s) distribution derived from SV interference data collected over a range of rE2 
concentrations. The axes s and c(s) denote the sedimentation coefficient and the c(s) 
distribution model (from SEDFIT analysis), respectively. (B) Determination of  of rE2 
using finite element analysis in SEDFIT. Error bars are shown, but are not clearly visible 
owing to their small size. 
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The value of f/f0 for rE2 calculated in a manner similar to rE2/E3BP (see section 

5.3.1.1.1) was found to be 2.79 and indicates significant deviation from 

spherical symmetry, consequently resulting in a core with large hydrodynamic 

radius, Rs. Some of the hydrodynamic values calculated for rE2 are tabulated 

below (Table 5.3). 

5.3.3.1.2 SE AUC 

SE data obtained for rE2 show a small increase in 1/Mapp with increasing sample 

concentration, possibly indicative of some non-ideality owing to the presence of  
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M  
(Da) 

υ  
(ml/g) 

0
w,20s  

(S) 
f/f0

R0 

(nm) 
Rs 

(nm) 
Ds 

(Å) 
Dt 

(cm2/s) 

3,741,780 
 

0.744 
 

 
29.3a 

 
81.9b

2.79 
 

10.33 
 

28.8 
 

576 
 

7.68 x 10-8 

 

Table 5.3 Hydrodynamic parameters of rE2 derived from SV analysis 
aexperimental and bcalculated sedimentation coefficients. M is the molecular mass based 
on the amino acid composition, υ  is the calculated partial specific volume at 20oC,  
is the sedimentation coefficient at infinite dilution, R

0
w,20s

0
wM

0 is the unhydrated radius of a sphere 
of equivalent mass and partial specific volume as that of rE2, Rs and Ds are the 
hydrodynamic radius and its equivalent diameter. Dt is the translational diffusion 
coefficient. 

 

hollow solvent-filled cavities found in these cores. SE data were globally 

analysed using a two species model in SEDPHAT (Schuck, 2003; Vistica, et al., 

2004) as shown in Fig. 5.20A and yielded molecular masses of 2.78 MDa and 4.59 

MDa for the first (predomiant) and second (minor) species, respectively.  

The molecular weight of rE2 (the predominant species) independent of 

concentration, , was determined to be 3.06 ± 0.25 MDa, lower than its 

predicted molecular weight (3.74 MDa) (Fig. 5.20B). This is probably due to a 

small fraction of incomplete cores or proteolytic degradation of rE2 over the 

long time period of the SE experiment (3-4 days); in particular the linker regions 

connecting the various outer N-terminal domains are highly susceptible to 

proteolysis. Proteolytic cleavage is also apparent in samples of rE2 analysed by 

SDS-PAGE after the SE run (Fig 5.21). SDS-PAGE indicates several low molecular 

weight bands that may correspond to various forms of cleaved rE2 (Fig. 5.21). 

However, the intact core being a larger molecule has a higher capacity to bind 

to the Coomassie blue stain than the smaller proteolytic products, thereby 

posing great difficulties in estimating the amount of truncated cores present in 

the samples. 

As proteolysis of 60-meric rE2 can result in cleaved cores comprising various 

domains, the actual sample may be a mixture of rE2 cores. As a result several 

possibilities exist towards formation of a 3.04 MDa rE2 core, some of which are 

listed in Table 5.4. Therefore, determination of the exact molecular weight of 
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rE2 is difficult owing to the underlying heterogeneity and inherent variation in 

core organisation.  

 

Figure 5.20 Sedimentation equilibrium analysis of rE2 
(A) Best fits (smooth lines) to the SE interference data (dotted lines) for rE2 at 3,000 rpm 
using a two species model in SEDPHAT. Residual plots of all the samples are 
represented on different scales. Mapp was determined at each sample concentration. (B) 
Extrapolation to zero of the 1/Mapp vs concentration plot of the predominant species yields 
the molecular mass, independent of concentration for rE2. 

0
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Figure 5.21 SDS-PAGE of post SE samples of rE2 
(A) Post SE samples of rE2 were analysed on SDS-PAGE (Lanes 1-4) and show several 
bands relating to proteolytic products (indicated by arrows) of rE2 . The different lanes 
represent various concentrations of samples used. (B) Freshly purified rE2 is shown for 
comparison. Molecular weights of marker proteins (Mw) are indicated in kDa. 

 

% of rE2 with all 
domains (full 

core) 
% of CTD rE2 cores % of truncated SBD-

CTD rE2 cores 

Resultant 
molecular 

weight M (MDa) 
100 - - 3.74 
- 100 - 1.74 
- - 100 2.79 

65 35 - 3.04 
26 - 74 3.04 
50 21 29 3.04 

Table 5.4 Variable core organisation of rE2 and its effect on molecular weight 
Possible combinations of the different rE2 cores possessing various domains (full and 
truncated) resulting in a molecular weight consistent with the value obtained from SE data 
(blue) for rE2. 

 

Global fitting of SE data yielded a molecular weight of 4.59 MDa for the second 

minor species (i.e. 47 S peak from rE2 SV analysis) lower than that expected for 

60-meric rE2 dimer (data not shown). Moreover, data modelled with the self 

association model in SEDHAT did not yield satisfactory results, indicating the 

presence of aggregates rather than rE2 dimers or other higher order oligomers. 

5.3.3.1.3 Negative stain EM 
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Negative staining EM of rE2 showed the presence of icosahedral cores with 

empty pentagonal faces (Fig. 5.22), in agreement with previously observed EM 

data for rE2/E3BP and bE2/E3BP (sections 5.3.1.4.1 and 5.3.2.3), and published 

cryo-EM data on the bE2/E3BP core (Wagenknecht, et al., 1991).  

 

Figure 5.22 Negative stain image of rE2 
This negative stain image of rE2 reflects icosahedral core structures with empty 
pentagonal faces along the 5-fold (arrow), 3-fold (square) and 2-fold (circle) axes of 
symmetry. Scale bar of 250 Å is denoted. 

 

5.3.3.2 Solution structure of rE2 core 

SAXS and SANS analysis of rE2 was problematic, owing to the formation of 

aggregate species as can be seen from the steep slope of the scattering curves at 

very low angles (Fig. 5.23). During the SAXS experiments, individual scattering 

frames were checked for x-ray induced aggregation, but no such process was 

observed. Therefore, it seems likely that aggregates had formed prior to the 

scattering experiments, perhaps as a consequence of high protein concentration. 

The data could not be fitted satisfactorily using GNOM (Semenyuk and Svergun, 

1991; Svergun, 1992) to yield sensible p(r) distribution curves, especially at low 

angles, thus further indicating the polydisperse nature of the samples. Using 

Guinier analysis, the radius of gyration, Rg, was determined to be 218 ± 5 Å and 
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Figure 5.23 Small angle scattering curves of rE2 
Scattering curves for rE2 obtained by (A) SAXS and (B) SANS show steep slopes at low 
angles (red circle), a usual sign of aggregates. The x-axis s denotes the scattering angle.  

 

222 ± 6 Å for the SAXS sample concentrations of 0.6 mg/ml and 1.2 mg/ml 

respectively, while the SANS data from the sample at 6.84 mg/ml yielded an Rg 

of 235 ± 8 Å. In comparison, rE2/E3BP that has a similar structure to rE2 has an 

Rg of only 143 Å. Owing to these problems ab initio modelling of rE2 was 

discontinued at this stage. 

5.3.3.3 Stability of the rE2 core 

The stability of rE2 core was assessed by chemical denaturation with GdmCl. 

Unfolding/dissociation of rE2 observed by near- and far-UV CD occurred with 

increasing concentration of GdmCl at 25oC with complete loss of structure 

observed by 6 M GdmCl (Figs 5.24A and 5.24D). The extent of unfolding or 

dissociation of rE2 was monitored at wavelengths of 285 nm and 222 nm (Figs 

5.24B and 5.24E). Negative changes in ellipticity are observed between 0-1 M 

GdmCl in the near-UV and 0-2 M GdmCl in the far-UV CD, respectively. This is an 

indicator of the loosening of protein structure as a result of solvent interaction. 

Between concentrations of 2-3 M GdmCl, some loss of structure was detected 

followed by gradual unfolding with increasing concentrations of GdmCl. This 

unfolding trend is consistent with previous refolding studies carried out on the 

bovine bE2/E3BP core (McCartney, et al., 1997). The initial structural change (2-

3 M GdmCl) may be attributed to the overall dissociation of the 60 meric rE2  
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Figure 5.24 CD analysis of GdmCl-induced denaturation of rE2 
The stability of rE2 was assessed by near- (A) and far-UV (D) CD in the presence of 
increasing amounts of GdmCl. The rate of unfolding is represented by means of change in 
ellipticity monitored at wavelengths 285 nm (near-UV) (B) and 222 nm (far-UV) (E). The 
Gibbs free energy (∆G) plots are shown for the unfolding of rE2 studied using near- (C) 
and far-UV (F) CD. 

 

core into trimers, which are then further disasembled to monomers before 

complete unfolding (> 3 M GdmCl). Hence, both the near- and far-UV CD indicate 
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3 M GdmCl) may be attributed to the overall dissociation of the 60 meric rE2 

core into trimers, which are then further disasembled to monomers before 

complete unfolding (> 3 M GdmCl). Hence, both the near- and far-UV CD indicate 

that the unfolding of rE2 does not follow a simple two state (native state ---> 

unfolded state) mechanism. 

The midpoint of unfolding for rE2 is 3.19 M and 3.21 M GdmCl for the near- and 

far-UV CD, respectively (Figs 5.24B and 5.24D). The free energy, ∆G plots are 

shown in Figs 5.24C and 5.24F and the data indicate that the two-state model is 

not strictly applicable and that there may be at least one intermediate state in 

the unfolding process. Any estimates of ∆G, such as those presented on the basis 

of a two-state analysis, can only be regarded as indicative. A more detailed 

analysis requires additional data points on the unfolding curve and the use of 

more elaborate models involving intermediate states. ∆G values of 23.6 kJ/mol 

and 17.1 kJ/mol were obtained from the near- and far-UV CD of rE2. 

Fluorescence spectra of rE2 were also recorded in the presence of GdmCl. A 

gradual shift of the maximum emission peak towards higher wavelengths is 

readily observed with increasing concentrations of GdmCl (Fig. 5.25A).  

 

Figure 5.25 GdmCl-induced change in the fluorescence emission spectrum of rE2 
(A) Fluorescence emission of tryptophans (excited at 295 nm) monitored at wavelengths 
310-450 nm in the presence of increasing amounts of GdmCl. (B) The percentage change 
of unfolding monitored at 380 nm indicates 50% of rE2 core unfolded by 3.1 M GdmCl. 
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A total of 4 tryptophans are present in monomeric rE2; 1 in the outer LD, 1 in 

the inner LD and 2 in the CTD. At 0 M GdmCl, the maximum peak of emission is 

seen to be at 331 nm indicating the semi-buried nature of the tryptophans. At 3 

M GdmCl, a significant peak shift to 351 nm is observed (Fig. 5.25A). 

Interestingly, this dramatic shift occurs at a lower concentration of GdmCl (2.5 

M) in rE2/E3BP as previously observed (section 5.3.1.3). With further increase in 

GdmCl concentration, the emission peak is gradually red shifted to a maximum 

of 360 nm at 6 M GdmCl, indicating solvent exposure of all tryptophans as a 

result of complete unfolding/dissociation of the rE2 core. The extent of 

unfolding monitored at 380 nm, may reflect a gradual trend of dissociation into 

potential trimeric intermediates with local regions of structural perturbations up 

to 3 M GdmCl, followed by rapid denaturation towards the completely unfolded 

state (Fig. 5.25B). This trend of GdmCl-induced rE2 unfolding by fluorescence 

correlates well with that observed in the near-UV CD data (Fig. 5.24B).  

5.4 Discussion 

The results presented in this chapter strongly support the ‘substitution model’ of 

subunit organisation of human PDC core proposed by Hiromasa and co-workers 

(2004) in which the subunit stoichiometry is 48E2+12E3BP. However, from our 

current knowledge of E2/E3BP core assembly, it is difficult to envisage why 

cores of uniform subunit composition (48E2+12E3BP) should be formed in which 

E3BP is distributed symmetrically around the core surface, and the authors fail 

to clearly explain this aspect of their model. The 60-meric cores are assembled 

from basic trimeric units that serve as building blocks to form the 20 vertices of 

the dodecahedron (Izard, et al., 1999). On this basis the 48E2+12E3BP model 

would imply core formation from a mixture of 12 heterotrimers (trimers with 

2E2+1E3BP) and 8 homotrimers (trimers with 3E2). However, previous 

densitometry studies on eukaryotic E2/E3BP core, suggested the binding of 10-15 

E3s to the core at maximal occupancy (Maeng, et al., 1996; Sanderson, et al., 

1996b). Moreover, E3BP is proposed to exist as weakly interacting dimers on the 

surface of the core (Hiromasa, et al., 2004). On this basis the number of E3BPs 

bound in the E2 core can theoretically range from 0 (an E2-only core) to a 

maximum of 20 (maximum number of E3BPs included in the core), consequently 

resulting in a range of 0-20 heterotrimers that assemble to form a 60 meric core. 
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Data obtained from our AUC studies point towards a possible inherent variation 

in the subunit composition of rE2/E3BP, reflected in the broad peaks obtained 

from SV and radiolabelling data (Chapter 7, section 7.3.2.1.2). This aspect of 

broad variation in subunit distribution of the core is further supported by 

quasielastic light scattering (QELS) studies on bE2/E3BP core (Roche, et al., 

1993).  

Evidence confirming the substitution model of core organisation is obtained from 

SE studies by virtue of the molecular mass of rE2/E3BP being lower than rE2; 

substitution of E3BP into 60-meric E2 core entails reduction of the overall 

molecular weight because E3BP has a greater mass (50 KDa) compared with E2 

(61 KDa). Both rE2 and rE2/E3BP cores have high frictional ratios (f/f0) resulting 

in structures having large hydrodynamic radii, Rs. The contribution to the large 

hydrodynamic size of these complexes is largely due to the solvent exposed 

elongated outer linker and LDs of E2, and the presence of alanine and proline 

residues in the linker regions (Roche, et al., 1993) that produces significant 

drag. Interestingly, it is observed that the f/f0 and Rs values obtained for rE2 in 

our study are higher than for rE2/E3BP; in direct contrast with previously 

observed data from AUC studies on these cores (Hiromasa, et al., 2004). 

Furthermore, the effects due to non-ideality, characterised by the large 

excluded volume, net charge and high degree of solvation are higher for rE2 than 

for rE2/E3BP from SE studies, in contrast with data obtained by Hiromasa and 

colleagues (2004). As these core structures are massive and highly solvated, it is 

likely that they would have high excluded volumes, indicating molecular 

crowding in the samples. The non-ideality exhibited by the 60-meric rE2 is 

indicative of a large excluded volume that may be a consequence of the heavy 

electrostatic repulsion between the highly anionic LDs of rE2 on the surface of 

the core. On the other hand, introduction of E3BP into a 60-meric E2 core (via 

substitution of E2 subunits) will result in these heavily charged E2 LDs being 

replaced by E3BP LDs, possibly giving rise to a significant change in the overall 

electrostatic nature on the core surface, and accordingly the non-ideality of the 

rE2/E3BP core. This also has major implications for the higher frictional 

coefficient of rE2 than rE2/E3BP. The highly anionic nature of the E2 LDs, the 

large number of amino acids (>120) in the flexible linker regions of E2 that 

connect the various domains and the high content of alanine and proline 
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residues in these linkers are thought to be the major factors contributing 

towards the large hydrodynamic radius, and as a result indirectly to the high 

frictional ratio of the rE2 core (Roche, et al., 1993) .  

Data reported by Hiromasa and colleagues (2004) involves analysis of SE data 

using the Beckman XL-A/XL-I software implemented in MicroCal ORIGIN. Their SV 

data show the presence of slight aggregates and this may have profound effects 

if not fitted satisfactorily. Although their data suggest high non-ideality for the 

human cores (E2/E3BP being specifically greater than E2) and use of the first 

virial coefficient, B2 in their data analysis, they fail to mention how exactly B2 

was implemented during data fitting and how consistent it was with its 

experimentally determined counterpart. In addition, the authors have performed 

their SE experiments at rotor speeds below 3,000 rpm, at which the AUC rotor is 

known to precess slightly.  

QELS and cryo-EM studies on the bovine heart and kidney PDC established the 

presence of the icosahedral structural framework possessing pentagonal faces 

and a maximum dimension of 401 Å for the E2/E3BP cores (Roche, et al., 1993; 

Wagenknecht, et al., 1991). However, owing to the high flexibility of the outer 

N-terminal domains of the E2/E3BP cores, it was extremely difficult to resolve 

them in the EM micrographs. Additionally, only the value of the maximum 

dimensions of bovine heart PDC and its associated E2/E3BP core were obtained 

from the QELS studies. The structural models presented in this chapter 

constitute the first solution structures for full-length rE2/E3BP and bE2/E3BP 

cores obtained by SAXS. Both rE2/E3BP and bE2/E3BP show excellent structural 

similarity between each other, and with previously published data 

(Wagenknecht, et al., 1991). Both SAXS structures (rE2/E3BP and bE2/E3BP) 

reveal an inner core with empty pentagonal faces and elongated arms emanating 

from the icosahedral core, lending further support to the ‘substitution model’ of 

subunit organisation. This is in direct contrast to the structure of the yeast 

E2/E3BP core, wherein 12 E3BP are located within the 12 pentagonal openings of 

the icosahedral E2-only core, giving rise to the ‘addition model’ of 60E2+12E3BP 

(Stoops, et al., 1997). Moreover, the dodecahedral morphology with empty 

pentagonal faces was further confirmed by negative stain EM of bovine and 

recombinant E2/E3BP cores.  
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Only 13-16% of the exterior volume (volume outside the E2/E3BP core volume, 

occupied by E3, E1, kinases, phosphatases and outer domains of E2 and E3BP) is 

occupied by the peripherally located constituents, while greater than 80% of the 

total volume (exterior + core volume) is actually occupied by the solvent 

(Wagenknecht, et al., 1991). Hence, being characteristic of large solvent filled 

near-spherical like particles, these cores have high frictional coefficients and 

large hydrodynamic radii. A direct consequence of this is the comparatively low 

value of radius of gyration, Rg as observed for these cores, indicative of the 

outer parts of these structures being lightly populated. The Rg values of SAXS 

structures of rE2/E3BP (144-148 Å) and bE2/E3BP (155 Å) compare favourably 

with previously published values of 150 Å and 153 Å for recombinant E2/E3BP 

and E2 cores (Hiromasa, et al., 2004). However, the maximum dimensions of 

rE2/E3BP (462-472 Å) and bE2/E3BP (480 Å) in solution are somewhat larger than 

previously reported values of 401 Å and 420 Å for the bovine and recombinant 

E2/E3BP cores, respectively (Hiromasa, et al., 2004; Roche, et al., 1993). 

However, these values are well within the 20% size variation observed for 

mammalian PDC cores (Borgnia, et al., 2004; Kong, et al., 2003; Zhou, et al., 

2001a). These differences in size have been linked to conformational changes in 

the trimeric units that are connected to each other via hydrophobic ‘ball and 

socket’ points, giving rise to thermally driven expansions and contractions, i.e. 

‘breathing’ of the core (Borgnia, et al., 2004; Kong, et al., 2003; Zhou, et al., 

2001a). Variation in core size, flexibility and subunit composition of rE2/E3BP 

has significant implications for the catalytic mechanism and regulation of the 

human PDC complex. As SAXS data for E2/E3BP yield only a time-averaged 

structure and are unable to distinguish between the E2 and E3BP subunits, more 

experiments are necessary to elucidate the extent of variation in the number 

and positions of E3BP bound within the core. Cryo-EM and cryo electron 

tomography of E2/E3BP core labelled with E3 or specific antibody that binds to 

E3BP should be able to provide more definitive insight towards understanding 

this problem of variation and inherent protein dynamics. Additionally, 

comparative studies to evaluate differences in the distribution of ‘breathing 

sizes’ and conformational flexibility observed between the rE2 and rE2/E3BP 

cores will shed more light on into their regulation, in particular of the rE2 core 

that is observed in patients lacking E3BP, while still retaining a residual capacity 

to bind E3 (Marsac, et al., 1993). 
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The dodecahedral core is made up of 20 trimers that act as building blocks. 

Based on the ‘substitution model’ of subunit organisation, human E2/E3BP core 

would comprise a mixture of homotrimers (3E2s) and heterotrimers (2E2+1E3BP) 

depending on the number of E3BP subunits that are integrated into the core. 

Alternatively, the 60-meric E2 core will consist of only 20 homotrimers. In 

contrast to the intensive interdigitated associations among the monomers within 

each trimer, the contact between adjacent trimers is very limited (Izard, et al., 

1999). Therefore, the inter-trimer contacts are comparatively weaker than the 

intra-trimer contacts. The addition of E3BP within a trimer is thought to further 

weaken the interaction between neighbouring trimers, as E3BP does not possess 

the key residues involved in the hydrophobic ‘ball and socket’ connection that 

holds neibhouring trimers together (Hiromasa, et al., 2004). Data presented in 

this chapter on the assessment of core stability via unfolding/dissociation studies 

monitored by CD and fluorescence are in agreement with the above hypothesis. 

Treatment of rE2/E3BP with denaturant revealed lower amounts of GdmCl was 

needed to induce destabilisation by way of unfolding/dissociation, as compared 

to the rE2 core. A similar trend was observed with the GdmCl-induced 

fluorescence of these cores, and can be attributed to the relatively weaker 

inter-trimer contacts present in rE2/E3BP as compared to rE2. Initial changes in 

rE2/E3BP and rE2 core fluorescence (at low concentrations of GdmCl) prior to 

large-scale disruption of secondary structure reflect the formation of potential 

trimers and dissociation of local regions of quarternary structure. Thus, these 

data strongly suggest that the introduction of E3BP into the E2 core has a natural 

tendency to destabilise the core. However, further experiments are necessary to 

substantiate this hypothesis. In addition, it will be of great interest to determine 

the extent and involvement of specific domains of E2 and E3BP in this core 

destabilisation. 
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Chapter 6 
Characterisation of the truncated C-terminal 
PDC core: tE2/tE3BP 

6.1 Introduction 

PDCs are amongst the largest (Mr ~ 4-9 x 106) and most complicated multimeric 

assemblies described to date and serve as a paradigm for analysis of protein-

protein interactions, substrate channelling and active site coupling. A central 

feature of these complexes is the 24-meric (Gram negative organisms) or 60-

meric (eukaryotes and some Gram positive organisms) E2 core with morphologies 

of a cube or pentagonal dodecahedron, respectively (Guest, et al., 1989; Patel 

and Roche, 1990; Reed and Oliver, 1968; 1982; Wagenknecht, et al., 1991). The 

E2 core has a structural and functional role in the overall organisation of the 

complex. In yeast and mammalian PDC an additional component, E3BP is 

present, and is also involved in core formation (De Marcucci and Lindsay, 1985; 

Jilka, et al., 1986; Rahmatullah, et al., 1989b). Both E2 and E3BP are 

multidomain polypeptides with high sequence similarity comprising LDs, SBD and 

an inner CTD that associates to form the icosahedral core.  

Apart from their exceptional size, these complexes have some of the most 

unusual features found in biology. E2 serves as the catalytic unit of the core 

involved in the acetyltransferase activity, and is one of two oligomeric enzymes 

known to be organised as a pentagonal dodecahedron. Additionally, the inner 

CTD dodecahedral core has an unusual feature: the trimers at each of its 20 

vertices are interconnected by 30 flexible bridges that enable the core to 

‘breathe’ as evidenced by the 20% size variability (Zhou, et al., 2001a). This 

breathing property is thought to be a common feature of PDC cores, suggesting 

the importance of protein dynamics for optimal functioning of these massive 

complexes. Moreover, the dodecahedral morphology favours a synchronous 

change in the length of the bridges that are responsible for the observed size 
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variation (Zhou, et al., 2001a). In addition to its catalytic role, E2/E3BP also 

provides the structural scaffold to which its cognate partner enzymes (E1 and 

E3) are tethered at specific locations.  

The amino acid sequence of of human E2 CTD is 50% identical to that of human 

E3BP CTD and 35% identical to that of B. stearothermophilus E2 CTD (Harris, et 

al., 1997). Each of the E2 trimers forming the dodecahedron has three active 

site channels located at the inter-subunit interfaces and serves as a conduit for 

the passage of acetyl groups (Mattevi, et al., 1992a). The CTD domain of E3BP 

associates with the CTD of E2 that forms the dodecahedron and this integration 

is reported to vary between yeast and mammalian PDC (Hiromasa, et al., 2004; 

Stoops, et al., 1992; Stoops, et al., 1997). This variation has been attributed to 

the differences between their E3BP sequences in comparison with their cognate 

E2s. Several structures of the individual domains of E2-PDC have been solved to 

high resolution by x-ray crystallography or NMR spectroscopy. Most notably of 

interest to this chapter, are the structures of the truncated CTD E2 (tE2) of A. 

vinelandii (Mattevi, et al., 1992a) and B. stearothermophilus (Izard, et al., 

1999) that have been determined by x-ray crystallography. A recent cryo-EM 

reconstruction of truncated human E2 has also been determined by Yu and co-

workers (2008). These structural data indicate significant evolutionary diversity 

imparting unique regulatory properties despite a common overall morphology 

and conserved enzymatic activities.  

Eukaryotic PDCs vary from their bacterial counterparts in many respects, two 

key aspects being the integration of E3BP into the inner core framework and the 

complex regulatory mechanisms associated with this massive assembly. 

However, there is no structure available for the human E2/E3BP complex to 

date. This is probably related to its massive size, significant flexibility of the N-

terminal flanking arms of E2 and E3BP and the subunit heterogeneity. 

Furthermore, with only limited structural data currently available on the 

truncated bacterial and human E2 cores, a detailed understanding of the 

architecture and functional properties of the human E2/E3BP core remains 

unclear.  

The work described in this chapter aims to address this problem by gaining 

greater insights into the organisation of the human truncated CTD E2/E3BP core. 



Characterisation of the truncated C-terminal PDC core: tE2/E3BP 193 

Truncated E2/E3BP (tE2/tE3BP) core was characterised with AUC, SANS, CD and 

EM in order to extend our knowledge of its overall architecture and key 

topographical features. Attempts were also made to crystallise the truncated 

E2/E3BP core to enable atomic resolution structure determination. Where 

possible, tE2/E3BP was compared with full-length rE2/E3BP and rE2 cores. 

6.2 Materials and methods 

6.2.1 Protein purification 

Truncated E2/E3BP ‘tLi19/tLi30’ (i.e. core composed of tLi19 and tLi30 

constructs, that comprise 19 aa and 30 aa, respectively of the linker region 

preceeding the CTD) was purified as outlined in section 4.3.2.4. Gel filtered 

tLi19/tLi30 was then buffer exchanged into PEBS100 buffer (see section 3.3.2.4) 

and immediately used for biophysical studies. All protein concentration 

measurements for tLi19/tLi30 were based on a 48E2+12E3BP subunit 

stoichiometry, unless stated otherwise. 

6.2.2 Sedimentation velocity  

SV experiments were performed as previously described in section 3.4.2. 

Sedimentation data for tLi19/tLi30 in PEBS100 buffer were recorded at 4oC and a 

rotor speed of 20,000 rpm using interference optics. Samples (360 µl) were 

loaded into 12 mm double sector centrepieces, and a total of 471 scans, 1 min 

apart were recorded. Sample concentrations covered a range from 116 nM to 730 

nM. Sedimentation profiles were analysed using SEDFIT (Schuck, 2000) (refer to 

sections 2.2.1.3 and 3.4.2 for details). The partial specific volume υ  of 

tLi19/tLi30 calculated by SEDNTERP (http://www.jphilo.mailway.com/) (Laue, 

et al., 1992) based on the amino acid composition was 0.746 ml/g at 20oC. After 

initial c(s) analysis, finite element analysis in SEDFIT was used to determine the 

sedimentation coefficients of all samples. These were extrapolated to infinite 

dilution to give a sedimentation coefficient independent of concentration, . 0
w,20s
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6.2.3 Sedimentation equilibrium 

SE data were collected for tLi19/tLi30 using interference optics. All samples 

used for the SE experiments were analysed within 24 h of purification. Samples 

(80 µl) were loaded into 12 mm double sector centrepieces and PEBS100 was 

used as the reference buffer. Further details can be found in section 3.4.3. SE 

runs for tLi19/tLi30 were carried out at 4oC and a rotor speed of 3,000 rpm. 

After an initial delay of 18-20 h to allow the system to approach equilibrium, 15 

scans were recorded 3 h apart for samples ranging in concentration from 251 nM 

to 726 nM. Attainment of equilibrium was ascertained with WinMATCH 

(www.biotech.uconn.edu/auf). SE data were analysed using single fit analysis 

with SEDPHAT (Vistica, et al., 2004) as described in sections 2.2.2.2 and 3.4.3. 

In order to determine the molecular weight of tLi19/tLi30 independent of 

concentration, , the whole cell weight average molecular weight M0
wM app, 

determined at each sample concentration, was extrapolated to infinite dilution 

via the 1/Mapp vs concentration plot. 

6.2.4 SANS and ab initio modelling 

SANS data for tLi19/tLi30 were collected on beamline D22 of the Institut Laue-

Langevin (ILL) in Grenoble, France. Scattering curves were obtained at 4oC for 

protein concentrations of 0.27, 0.59 and 1.19 mg/ml. Two camera lengths of 4 

and 10 m were used. More details can be found in section 3.4.5. 

Ab initio reconstructions of tLi19/tLi30 were generated using GASBOR (Svergun, 

et al., 2001) in batch mode via the computer grid system, SCOTGRID. Icosahedral 

(PICO) symmetry was applied with no constraint on the peripheral penalty during 

the modelling process. More details on modelling can be found in section 3.5.2. 

The ab initio models of tLi19/tLi30 were averaged using DAMAVER (Volkov and 

Svergun, 2003) to obtain a consensus average structure.  

6.2.5 Homology and hydrodynamic modelling 

A homology model of human truncated E2 (tE2) was obtained as described in 

section 3.5.3. The human tE2 homology model was generated with the B. 



Characterisation of the truncated C-terminal PDC core: tE2/E3BP 195 

stearothermophilus tE2 crystal structure (PDB ID 1B5S) (Izard, et al., 1999) as 

the template, and superimposed onto the ab initio GASBOR model of tLi19/tLi30 

using SUPCOMB (Kozin and Svergun, 2001). 

The ab initio model of tLi19/tLi30 was converted into a hydrodynamic bead 

model (HBM) comprising 1986 beads using a 5.7 Å cubic grid in the AtoB module 

(Byron, 1997) within SOMO (Rai, et al., 2005). Hydrodynamic parameters for the 

HBM were then calculated using HYDRO++ (García de la Torre, et al., 2007; 

García de la Torre, et al., 1994). The radii of beads in the HBM used for 

calculations with HYDRO++ were adjusted to give the volume of tLi19/tLi30 

obtained from theoretical calculations. Additionally, an HBM was generated 

using TRANS2VORONOI (developed by M. Nöllmann, Centre de Biochimie 

Structurale Montpellier, France) with a 7 Å cubic grid, resulting in a total of 1426 

beads. After identification of surface exposed and buried beads using the ASAB1 

module in SOMO, hydrodynamic computations for the HBM were independently 

performed using SUPCW (Rai, et al., 2005; Spotorno, et al., 1997). Anhydrous 

sedimentation coefficients obtained from HYDRO++ and SUPCW were converted 

to hydrated values via the conversion factor of 0.8666 derived from 

hydrodynamic theory (refer to 2.2.1.2.2 for details). The models obtained from 

AtoB and TRANS2VORONOI were visualised via Pymol (Delano Scientific, USA) and 

Rasmol (Sayle and Milner-White, 1995) (http://openrasmol.org). Further details 

on the modelling can be found in section 3.5.4.  

6.2.6 Negative stain electron microscopy 

Samples for imaging were prepared as described in detail in section 3.4.6. The 

negative stain micrograph of tLi19/tLi30 was recorded at high magnifications of 

90,000 and 120,000 at a sample concentration of 53.5 µg/ml. 

6.2.7 CD and tryptophan fluorescence 

Near-UV (250-320 nm) CD was conducted on purified tLi19/tLi30 (0.9 mg/ml) in 

PEB buffer at 25oC in the presence of increasing concentrations of GdmCl as 

described in section 3.4.7. GdmCl concentrations were measured by 

refractrometry. The extent of unfolding or dissociation in the presence of 
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increasing denaturant was monitored at 285 nm by calculating the percentage 

total change in ellipticity. More details on the calculations can be found in 

section 3.4.7. Additionally, the Gibbs free energy at infinite dilution, ∆G0, of the 

unfolding reaction of tLi19/tLi30 at standard conditions of temperature and 

pressure was also computed by plotting the values of ∆G as a function of GdmCl 

concentration (see section 3.4.7 for details). 

Changes in tryptophan fluorescence for tLi19/tLi30 were monitored at 25oC in 

the presence of increasing levels of GdmCl. Fluorescence emissions were 

recorded over the spectral range 310-450 nm at a sample concentration of 0.2 

mg/ml (refer to section 3.4.8 for technical details). 

6.3 Results and modelling 

6.3.1 Solution shape determination of tE2/tE3BP 

6.3.1.1 Sedimentation velocity analysis 

SV experiments conducted using interference optics reveal that the purified 

tLi19/tLi30 sample is not entirely monodisperse (Fig. 6.1). Sedimentation 

profiles modelled by c(s) analysis in SEDFIT (Schuck, 2000) indicate a distinctive 

main peak with a weight average sedimentation coefficient of 27 S (Fig. 6.1A). 

Additionally, a long trailing edge is evident with a minor peak at about 38 S. 

While the major peak may correspond to intact 60-meric tLi19/tLi30, the long 

tail could be attributed to the presence of low amounts of tLi19/tLi30 dimers, a 

small percentage of incomplete cores or aggregates. However, all these were 

negligible when compared to the total amount of intact tLi19/tLi30 (>96% of 

total protein concentration). Finite element analysis was conducted to 

determine the sedimentation coefficients of tLi19/tLi30 at all sample 

concentrations. Each dataset was modeled via the non-interacting discrete 

species model based on the c(s) distribution. The resultant values of  were 

then extrapolated to infinite dilution to give = 27.5 ± 0.31 S (Fig. 6.1B). As 

the crystal structure of truncated E2 of B. stearothermophilus has been solved 

(Izard, et al., 1999), its sedimentation coefficient was calculated using the 

w,20s

0
w,20s
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program HYDRO++ (García de la Torre, et al., 2007; García de la Torre, et al., 

1994). The atomic coordinates of the crystal structure of bacterial tE2 were 

initially converted to an HBM using AtoB (Byron, 1997), that in turn was 

employed in the calculation of the sedimentation coefficient using HYDRO++ 

(García de la Torre, et al., 2007; García de la Torre, et al., 1994). On applying 

the hydration factor (0.8666), a sedimentation coefficient of 29.9 S was 

obtained for bacterial tE2, higher than the experimentally determined value of 

27.5 S for tLi19/tLi30.  

 

Figure 6.1 Sedimentation velocity analysis of tLi19/tLi30 
(A) c(s) distribution derived from SV data for various concentrations of tLi19/tLi30. The 
axes s and c(s) denote the sedimentation coefficient and the c(s) distribution model (from 
SEDFIT analysis), respectively. (B) Determination of s (= 27.5 S) for the intact 60-
meric tLi19/tLi30 core. Error bars are shown, but are not clearly visible owing to their small 
size. 

0
w,20

 

This difference may indicate a more flexible, open conformation of tLi19/tLi30 

in solution in comparison to the bacterial tE2 crystal structure, stemming from 

so-called crystal packing effects. More importantly, it may also reflect slight 

differences in the overall structures arising as a consequence of the integration 

of E3BP into the human E2 core, as opposed to the bacterial core composed 

solely of E2 subunits. Some of the hydrodynamic parameters calculated from the 

SV data for tLi19/tLi30 are listed in Table 6.1. The f/f0 of tLi19/tLi30 is 1.73, 

smaller than the values obtained for full-length rE2/E3BP and rE2 cores (sections 

5.3.1.1.1, 5.3.3.1.1). Additionally, this f/f0 of 1.73 predicts a hydrodynamic 

radius, Rs of 13.7 nm. The Ds of 27.4 nm is slightly larger than previously 

reported values of the average diameter ranging from 21-24 nm (Junger and 
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Reinauer, 1971; Reed and Oliver, 1968; Wagenknecht, et al., 1991). However, 

this elevated value for the core diameter is well within the 20% variability 

attributed to the ‘breathing’ of the inner core (Zhou, et al., 2001a). At its N 

terminus, tLi19/tLi30 includes the 19 and 30 amino acid segments of the inner 

linker regions preceeding the CTDs of E2 and E3BP, respectively. These extra 

linker regions are presumed to be located on the outside of the dodecahedron 

and may contribute slightly to the hydrodynamic diameter of tLi19/tLi30. 

M  
(Da) 

υ  
(ml/g) 

0
w,20s  

(S) 
f/f0

R0 

(nm) 
Rs 

(nm) 
Ds 

(Å) 
Dt 

(cm2/s) 

1,671,348 
 

0.7458 
 

 
27.5a 

 
47.5b

1.73 
 

7.91 
 

13.7 
 

274 
 

1.569 x 10-7 

 

Table 6.1 Hydrodynamic parameters of tLi19/tLi30 derived from SV analysis 
aexperimental and bcalculated sedimentation coefficients. M is the molecular mass of 
tLi19/tLi30 core obtained from the amino acid composition, υ  is the calculated partial 
specific volume at 20oC, is the sedimentation coefficient at infinite dilution and R0

w,20s

0
wM

0 is 
the unhydrated radius of a sphere of equivalent mass and partial specific volume as that 
of tLi19/tLi30. Rs and Ds are the hydrodynamic radius and its equivalent diameter while Dt 
is the translational diffusion coefficient. 

 

Interestingly, the c(s) profile and sedimentation coefficient of tLi19/tLi30 (27.5 

S, Fig. 6.1A) is comparable with SV data for full-length rE2/E3BP (29.3 S, section 

5.3.1.1.1) and rE2 (29.3 S, section 5.3.3.1.1). Therefore, it can be inferred that 

the decrease in particle radius or elongation (and as a consequence the decrease 

in frictional drag) of tLi19/tLi30 is offset by the decrease in its molecular 

weight, thus causing it to sediment in a fashion similar (at the same speed) to 

the full-length rE2/E3BP and rE2 cores.  

6.3.2 Molecular weight determination of tE2/tE3BP 

6.3.2.1 Sedimentation equilibrium analysis 

Analysis of the individual SE data sets using a two species model in SEDPHAT 

(Schuck, 2003; Vistica, et al., 2004) (Fig. 6.2A) yielded Mapp. Extrapolation of 

1/Mapp to infinite dilution for the predominant first species gave a  = 1.65 ±  
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Figure 6.2 Sedimentation equilibrium analysis of tLi19/tLi30 
(A) Fits (smooth lines) of the SE interference data (dotted lines) of tLi19/tLi30 at 3,000 
rpm using the two species model in SEDPHAT. Residual plots of all samples are 
represented on different scales. Mapp was determined at each sample concentration. (B) 
Extrapolation to zero of the 1/Mapp vs concentration plot for the main component yielded 
the molecular mass,  (1.65 MDa) independent of concentration. 0

wM

 

0.03 MDa (Fig. 6.2B), in good agreement with the value predicted from the 

tLi19/tLi30 amino acid sequence (1.67 MDa). The observed decrease in 1/Mapp 

with increasing concentration is indicative of self-association or aggregate 

formation. Global analysis and fitting yielded a molecular weight of 2.29 MDa for 

the second minor species (data not shown), notably lower than that of possible 

tLi19/tLi30 dimer. In addition, fitting with the self-association model in 
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SEDPHAT did not yield satisfactory results, suggesting the formation of 

aggregates rather than the presence of higher order oligomers. 

Attempts were also made to determine the exact molecular weight of 

tLi19/tLi30 using mass spectrometry (MS) in collaboration with Prof. Carol 

Robinson at the University of Cambridge. However heterogeneity of the core and 

limited proteolysis made this unfeasible. 

6.3.3 Solution structure and modelling of tE2/tE3BP 

6.3.3.1 SANS and ab initio modelling 

SANS curves were acquired for purified tLi19/tLi30 at three protein 

concentrations to account for interparticle interference effects. However, 

protein aggregation was observed in the low angle region of the SANS curve for 

the highest sample concentration (1.19 mg/ml), while measurements at the 

lowest concentration measured (0.27 mg /ml) were too noisy to yield 

satisfactory estimates of molecular weight. However, the scattering intensity 

curve obtained at 0.59 mg/ml showed no evidence of aggregates (Fig. 6.3A), and 

hence was used as the data set for ab initio modelling.  

The molecular weight estimate obtained for tLi19/tLi30 by extrapolation of 

scattering intensity to zero angle, I(0), was 1.81 ± 0.15 MDa, slightly higher than 

the mass calculated from protein sequence (1.67 MDa). This difference may be 

the result of experimental error. However, it may also reflect the minor 

presence of larger species or aggregates, not apparent from the low angle 

regions of the intensity scattering curve. The radius of gyration, Rg, determined 

using the Guinier approximation is 107 ± 2 Å. The p(r) distribution function is 

shown in Fig. 6.3B. The Dmax is 300 Å and Rg calculated from the p(r) function is 

111 ± 2 Å, which agrees well with the value obtained from the Guinier 

approximation. 

The Dmax (300 Å) obtained is much higher than the previously published value of 

230 Å for bovine tE2/tE3BP (Wagenknecht, et al., 1991). As SANS data yield an 

average solution structure, it is likely that the experimental sample may 

comprise tLi19/tLi30 cores of variable diameters along with some aggregates.  
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Figure 6.3 Small angle neutron scattering of the tLi19/tLi30 core 
(A) Scattering curve recorded for tLi19/tLi30 at 4oC. The x-axis s denotes the scattering 
angle. (B) The distance distribution function p(r) was calculated using GNOM. 

 

Hence the elevated Dmax of 300 Å probably reflects the presence of these minor 

aggregate species. 

Ab initio restoration using GASBOR (Petoukhov and Svergun, 2003; Svergun, et 

al., 2001) produced an icosahedral core with hollow internal cavities and empty 

pentagonal faces (Figs 6.4A and 6.4B). No density was observed within or outside 

the pentagonal faces, as would occur if the CTD of E3BP was added to the inner 

or outer surface of the core, as observed in yeast (Stoops, et al., 1997), thus 

strongly supporting the ‘substitution’ model of core organisation. Moreover, the 

solution structure of tLi19/tLi30 is consistent with previously obtained ‘inner 

core’ SAXS structures of full-length rE2/E3BP and bE2/E3BP as described in 

Chapter 5 of this study, as well as with the structure of bE2/E3BP obtained from 

cryo-EM studies (Wagenknecht, et al., 1991). Ten ab initio GASBOR models were 

averaged using DAMAVER (Volkov and Svergun, 2003) to obtain a consensus 

average structure of tLi19/tLi30 (Figs 6.4C and 6.4D). 

6.3.3.2 Hydrodynamic modelling 

Hydrodynamic bead models (HBMs) of tLi19/tLi30 were generated (from the ab 

initio GASBOR model) using programs AtoB (Byron, 1997) and TRANS2VORONOI 

(M. Nöllmann, Centre de Biochimie Structurale Montpellier, France) as described 

in section 6.2.6. Assuming hydration of 0.4 g/g, hydrated sedimentation 

coefficients of 28.3 S and 28.2 S were calculated using HYDRO++ and SUPCW  



Characterisation of the truncated C-terminal PDC core: tE2/E3BP 202 

 

Figure 6.4 Solution structure of the tLi19/tLi30 core 
A single GASBOR ab initio model of tLi19/tLi30 is shown along the (A) 5-fold and (B) 2-
fold axes of symmetry. Superimposition of 10 ab initio models yielded an average 
consensus structure (blue, wire mesh) shown along the (C) 2-fold and (D) 5-fold axes of 
symmetry for convenience. 

 

(García de la Torre, et al., 2007; García de la Torre, et al., 1994; Rai, et al., 

2005; Spotorno, et al., 1997), respectively, in excellent agreement with the 

experimental value of 27.5 S obtained from SV data. The HBM obtained from 

AtoB (Fig. 6.5) retains the hollow icosahedral core structure of the ab initio 

model reconstructions generated from the scattering data. 

 

Figure 6.5 AtoB generated model of tLi19/tLi30 
The model of tLi19/tLi30 generated from AtoB retains the hollow icosahedral structure of 
its parent ab initio GASBOR model. Views are shown along the (A) 5-fold and (B) 2-fold 
axes of symmetry for convenience. 
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6.3.3.3 Homology modelling 

As no structural data are available for the human E2/E3BP core, homology 

modelling was carried out in addition to AUC and SAXS to gain more insight into 

the human tE2 (tLi19) structure. The homology model of tLi19 (Figs 6.6A and 

6.6B) was generated using the crystal structure of bacterial truncated E2 (Izard, 

et al., 1999) as the template (Fig. 6.6C) as described in section 3.5.3. 

Unsurprisingly, superimposition of the homology model of tLi19 and crystal 

structure of bacterial tE2 indicated a high degree of similarity in the overall 

secondary, tertiary and quarternary structures as seen in Fig. 6.6D, although 

tLi19 has a slightly greater diameter. 

 

Figure 6.6 Homology model of the tLi19/tLi30 core 
Homology model of tLi19/tLi30 (blue) shown along the (A) 5-fold and (B) 2-fold axes was 
generated via SWISS-MODEL (http://swissmodel.expasy.org/) (Arnold, et al., 2006) using 
the (C) crystal structure of B. stearothermophilus (green) truncated E2 as template. (D) 
Superimposition of the crystal structure of bacterial tE2 (green) and the homology model 
of tLi19/tLi30 (blue) is shown. 

 

6.3.4 Conserved C-terminal domains: superimposition 

of x-ray crystal and SAXS solution cores 
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The ab initio model of tLi19/tLi30 obtained from the scattering data was 

superimposed with the crystal structure of bacterial tE2 (Izard, et al., 1999) 

using SUPCOMB (Kozin and Svergun, 2001) as shown in Fig. 6.7. The 

superimposition of the cores along the 5-fold, 3-fold and 2-fold axes of symmetry 

(Figs 6.7A, 6.7B, 6.7C) shows reasonable overlap of the solution and crystal 

structures of the truncated cores. In addition, the overlay of the homology 

model of tLi19 and the ab initio SANS model of tLi19/tLi30 indicate good 

conservation of the gross structural features of the icosahedral core (Fig. 6.7D). 

 

Figure 6.7 Superimposition of the crystal structure of tE2 and the ab initio model 
of tLi19/tLi30  
The superimposition of the crystal structure of bacterial tE2 (green) with the solution 
structure of tE2/tE3BP (red) obtained from SANS is shown along the (A) 5-fold, (B) 3-fold 
and (C) 2-fold axes of symmetry. (D) Reasonable overlay of the homology model of tLi19 
(blue) and the ab initio model of tLi19/tLi30 (red) is also observed  

 

Thus, the superimpositions indicate that despite variable regulatory functions, 

the overall icosahedral framework of the CTD cores of human E2/E3BP and 

bacterial E2 are highly conserved. As atomic structural details cannot be 

obtained from SANS solution structures, obtaining information pertaining to 

specific differences in the fine structures of these cores is not possible; in 

particular the structural variations arising from the integration of E3BP into the 

human E2 core. However, some structural differences have been reported 

between the human and bacterial tE2 cores, mainly confined to the hairpin  
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domain and the N-terminal helix connected to the linker region preceeding the 

CTD (Yu, et al., 2008). 

6.3.5 Stability of the tE2/tE3BP core 

The stability of tLi19/tLi30 was assessed by chemical denaturation with GdmCl 

observed with near-UV CD and tryptophan fluorescence. The tLi19/tLi30 core 

assembly was unfolded or dissociated with increasing concentrations of GdmCl, 

with complete loss of structure taking place by 6 M GdmCl as shown in Fig. 6.8A. 

Monitoring the total change in ellipticity at 285 nm indicates the midpoint of 

unfolding at 2.88 M GdmCl (Fig. 6.8B). At concentrations less than 3 M GdmCl a 

gradual unfolding/dissociation event is evident reflected in the progressive 

decrease in ellipticity, followed by an abrupt change beyond 3 M GdmCl (Fig. 

6.8B). Therefore, the stability curve of tLi19/tLi30 denotes two-state unfolding 

possibly via some intermediates, consistent with data obtained for rE2/E3BP 

(section 5.3.1.3), as well as with previously published refolding studies on the 

bE2/E3BP core (McCartney, et al., 1997). The tLi19/tLi30 unfolding profile is 

comparable with that of rE2/E3BP and rE2 cores as illustrated in Fig. 6.8C.  

Interestingly, the full-length rE2/E3BP core (section 5.3.1.3) is less stable than 

the tLi19/tLi30 core, indicating the possible contribution of the N-terminal 

flexible arms towards its destabilisation. The stability curves obtained from 

near-UV CD for the truncated and full-length cores indicate that rE2 is more 

stable than tLi19/tLi30, which in turn is more stable than rE2/E3BP (as reflected 

in their midpoint values of unfolding: 2.7 M (rE2/E3BP), 2.88 M (tLi19/tLi30) and 

3.19 M GdmCl (E2), (Fig. 6.8C)).  

The free energy, ∆G versus GdmCl concentration plot for tLi19/tLi30 clearly 

indicates the two-state unfolding via some intermediates (Fig. 6.8D). This agrees 

well with the ∆G versus GdmCl concentration plot obtained for full-length 

rE2/E3BP that shows a similar trend (section 5.3.1.3). However, it is in marked 

contrast to data for a truncated N-terminal rE2 construct, E2DD that comprises 

the inner LD and SBD (Fig. 6.8E). The free energy profile for E2DD is completely  
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Figure 6.8 GdmCl-induced denaturation of tLi19/tLi30 
The stability of tLi19/tLi30 was assessed by (A) near-UV CD and (B) the extent of 
unfolding was monitored at 285 nm in the presence of increasing amounts of GdmCl. (C) 
Comparative unfolding curves of the full-length cores (rE2/E3BP and rE2) and tLi19/tLi30 
assessed by near-UV CD are also shown. Gibbs free energy (∆G) plots reflecting the two-
state unfolding profile for (D) tLi19/tLi30 (via intermediates) and the (E) truncated 
construct, E2DD (cooperative), respectively are shown for comparison. (F) GFC of purified 
protein (tLi19/tLi30 and rE2) with 2.85 M GdmCl indicates differences in the elution profile. 
Elution peaks corresponding to void volume (*) and putative trimers of tLi19/tLi30 (arrow) 
are shown.  
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linear, clearly indicating the cooperativity of unfolding (folded state ----> 

unfolded state) via no intermediates. ∆G0 values for tLi19/tLi30 and E2DD were 

determined to be 11 kJ/mol and 3.1 kJ/mol, respectively.  

In addition, the difference in stability between the E2 and E2/E3BP cores was 

confirmed by gel filtration of the purified cores in the presence of 2.85 M 

GdmCl, close to the midpoint of unfolding for tLi19/tLi30 (2.88 M), but relatively 

far from that for rE2 (3.19 M). Gel filtration profiles indicate void volume elution 

(40 ml) of the intact 60-meric cores of both tLi19/tLi30 and rE2 as seen in Fig. 

6.8F. However, an additional peak at an elution volume of 62 ml is observed only 

with tLi19/tLi30. Previous refolding studies by McCartney and co-workers (1997) 

showed the possible formation of trimers and monomers during the unfolding of 

bE2/E3BP. From its elution volume, Ve, this additional peak of tLi19/tLi30 has an 

apparent molecular weight of 185 kDa, consistent with the presence of E2 

homotrimers (183 kDa) and/or E2/E3BP heterotrimers (2E2+1E3BP, 174 kDa). It is 

interesting to note that at 2.85 M GdmCl, while the gel filtered tLi19/tLi30 

reveals subunit dissociation into trimers and/or monomers, rE2 remains almost 

intact (Fig. 6.8F), consistent with the greater stability of the E2-oligomeric 

assembly. 

GdmCl-induced changes in the fluorescence of tLi19/tLi30 display a similar trend 

to the fluorescence profile of full-length rE2/E3BP. The shift of the maximum 

emission peak towards higher wavelengths is readily observed with increasing 

concentrations of GdmCl (Fig. 6.9A). The tLi19/tLi30 core houses 3 tryptophans, 

2 in E2 (tLi19) and 1 in E3BP (tLi30). 

At 0 M GdmCl, the maximum peak of emission is observed at 328 nm, indicative 

of tryptophans buried in the core. At 1.75 M GdmCl, a significant peak shift to 

344 nm is observed indicating changes in the tryptophan environment brought 

about by partial dissociation, resulting in limited exposure of the tryptophans to 

the solvent (Fig. 6.9A). These changes between 0-2 M GdmCl may correspond to 

the dissociation of the overall quarternary structure of the core into trimeric 

intermediates. Moreover, this dissociation is solely due to the effect of the inner 

CTD Trps as the Trps associated with the LDs and SBDs are absent. Further 

increases in GdmCl concentration results in the shift of the emission peak to 360 
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Figure 6.9 GdmCl-induced fluorescence emission spectra of tLi19/tLi30 
(A) The tryptophan fluorescence emission of tLi19/tLi30 monitored at wavelengths 310-
450 nm in the presence of GdmCl shows a prominent red shift. (B) The percentage 
change of unfolding monitored at 380 nm as a function of GdmCl concentration for the full-
length (rE2/E3BP and rE2) and truncated (tLi19/tLi30) cores is shown for comparison. 

 

nm by 6M GdmCl, suggesting complete unfolding of the tLi119/tLi30 core. The 

percentage change in fluorescence monitored at 380 nm indicates marked 

alterations in the three-dimensional structure from 1.75 M GdmCl onwards for 

tLi19/tLi30, slightly higher in comparison to the equivalent profiles for rE2/E3BP 

and rE2 (Fig. 6.9B).  

It is also interesting to note that the intensity changes for the full-length 

(rE2/E3BP and rE2) cores differ from those of tLi19/tLi30 (see Figs 5.11 and 

5.25). Full-length rE2/E3BP cores exhibit an initial decrease in the fluorescence 

intensity at low GdmCl concentrations followed by a gradual increase, and this 

may primarily be associated with the exposure of the N-terminal domain 

tryptophans of these cores to the solvent, and thus likely to contribute greatly 

to the observed red shift. In contrast, the steady increase in the fluorescence 

intensity of tLi19/tLi30 with increasing GdmCl concentrations is probably due to 

the gradual exposure of the CTD tryptophans that may be largely quenched in 

the folded state (Fig. 6.9A). 
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6.3.6 High-resolution structure of tE2/tE3BP: the goal 

6.3.6.1 Negative stain EM of tE2/tE3BP 

The negative stain EM micrograph of tLi19/tLi30 shows a moderate distribution 

of icosahedral cores with no density in the pentagonal faces (Fig. 6.10), 

consistent with EM data on the recombinant and bovine E2/E3BP cores (sections 

5.3.1.4.1 and 5.3.2.3), as well as with previously reported EM studies on bovine 

heart PDC (Wagenknecht, et al., 1991). The presence of empty pentagonal faces 

supports the ‘substitution model’ of E2/E3BP core organisation. However, 

despite the lack of uniform staining, a reasonable percentage of open-faced 

icosahedral cores are observed. However, a greater proportion of core clusters 

can be clearly seen, e.g. dimers (Fig. 6.10). This is in direct contrast to the clear 

EM image comprising a uniform distribution of full-length rE2/E3BP (section 

5.3.1.4.1), and may reflect alterations in the surface charge of the tLi19/tLi30 

cores leading to a greater predisposition towards cluster formation. In addition, 

few huge ‘arc-like’ structures are also visible and may correspond to incomplete 

cores linking together to form long chain-like structures. 

6.3.6.2 Crystallisation of truncated E2/E3BP core 

As tLi19/tLi30 is devoid of the flexible N-terminal peripheral arms that pose 

significant problems for crystallisation, initial attempts at crystallisation of 

purified tLi19/tLi30 were made as a first step towards determination of its high-

resolution structure.  

Several conditions yielding crystals were obtained from the initial screens (Fig. 

6.11). However, testing those on an in-house Rigaku MicroMax 007 x-ray 

generator equipped with a Mar345 detector revealed salt crystal formation in 

the majority of cases (Figs 6.11A, 6.11B, 6.11C). Nevertheless, some protein 

crystals obtained in the initial screen (crystal condition: 2.2 M (NH4)2SO4, 0.1 M 

Na3C6H5O7) diffracted poorly owing to their minute size (Fig. 6.11D). Further 

work is required to optimize crystal growth conditions to obtain high quality 

diffracting crystals of a suitable size for x-ray analysis. 
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Figure 6.10 Negative stain EM of tLi19/tLi30 
Negative stain image of tLi19/tLi30 confirms the dodecahedral framework of these cores. 
Apart from isolated core structures (arrow), a small fraction of dimer clusters (circle) and 
‘arc-like’ structures (square) are also observed, indicating the presence of a small 
population of aberrant strucutres in the sample. 

 

 

Figure 6.11 Crystallisation of tLi19/tLi30 
Initial attempts on tLi19/tLi30 crystallisation resulted in several (A, B, C) salt crystals and 
possible (D) protein crystals.  
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6.4 Discussion 

Evidence presented in this chapter demonstrates the structural characterisation 

of the first ever recombinant human truncated E2/E3BP core. Although, 

structures of recombinant human and yeast truncated E2 cores have been 

determined by Cryo-EM (Stoops, et al., 1992; 1997; Yu, et al., 2008), there is no 

structure of the functional human E2/E3BP core (or any full-length E2/E3BP 

core). Human E2/E3BP core has resisted crystallisation to date owing primarily 

to the intrinsic flexibility of the N-terminal flanking regions of E2 and E3BP and 

the difficulties in obtaining high yields of truncated E2/E3BP; consequently our 

understanding of the structure-function relationships in human PDC core has 

remained limited. Attempts to obtain truncated E2/E3BP have always employed 

limited proteolysis of the core with trypsin (Rahmatullah, et al., 1989b). Yu and 

co-workers (2008) have been successful in producing only minimum yields of 

recombinant human truncated E2 for structural studies. High yields (5-8 mg/ml 

per L of bacterial culture) of pure recombinant truncated E2/E3BP were 

successfully obtained in this study and has been structurally characterised as 

presented in this chapter.  

The first solution structure of recombinant human truncated E2/E3BP 

(tLi19/tLi30) by neutron scattering was also successfully determined. The 

solution structure indicates a well formed pentagonal dodecahedron with 

icosahedral symmetry, consistent with previously obtained SAXS structures of 

rE2/E3BP and bE2/E3BP (sections 5.3.1.2 and 5.3.3.2), and published data on 

bE2/E3BP (Wagenknecht, et al., 1991). The icosahedral framework of truncated 

E2/E3BP is further confirmed by negative stain EM. In addition, no density within 

the pentagonal faces is observed, supporting the ‘substitution’ model of E2/E3BP 

core organisation. Interestingly, AUC studies indicate similar rates of 

sedimentation of the truncated E2/E3BP despite the absence of the N-terminal 

domains, as compared with the full-length rE2/E3BP and rE2 cores (sections 

5.3.1.1.1 and 5.3.3.1.1). This is primarily due to the decrease in molecular mass 

being offset by the decrease in frictional drag. Moreover, the SANS model 

reconstruction of tLi19/tLi30 reveals large internal solvent-filled cavities, a 

characteristic feature of these eukaryotic cores, essential for ensuring their 

flexibility and catalytic function.  
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The Dmax (300 Å) of truncated E2/E3BP core (obtained by SANS) being higher than 

the previously observed size variation (225-272 Å) in E2-PDC cores (Kong, et al., 

2003; Wagenknecht, et al., 1991; Zhou, et al., 2001a) could possibly reflect a 

greater extent of ‘breathing’ in E2/E3BP. As the concept of breathing has been 

studied only with the yeast E2 core (Zhou, et al., 2001a), it is unclear how 

breathing modulates the size, flexibility and function of human E2/E3BP and 

more specifically how the introduction of E3BP affects these processes. It has 

been proposed that breathing of the core enhances the movement of the lipoyl 

‘swinging arms’ towards the catalytic centres while additionally augmenting 

substrate channelling and overall rates of catalysis (Zhou, et al., 2001a).  

Incorporation of E3BP has been suggested to reduce the symmetry of the core 

resulting in quasi-icosahedral symmetry (Wagenknecht, et al., 1991). Some 

structural differences between the truncated human and bacterial E2 cores have 

also been reported (Yu, et al., 2008). The authors justify these structural 

changes as being a requirement for the human E2 to accommodate E3BP during 

core assembly. As SANS cannot distinguish between the E2 and E3BP subunits, it 

will be of interest to obtain evidence for the localisation of E3BP and its effect 

on core dynamics. This important question can be addressed by single molecule 

experiments and/or cryo-EM studies that may provide more definitive 

information on the localisation and distribution of E3BP within the core 

assembly. 

Superimpositions of the solution structure of tLi19/tLi30 with both the homology 

model of human tE2 and the crystal structure of bacterial tE2 show good overall 

similarity in the dodecahedral morphology of these cores, indicative of a 

conserved inner core structural template. Although recent work on the tE2 core 

demonstrates that the catalytic centre and trimeric building block unit are 

conserved across all organisms, subtle structural differences do exist between 

the human and bacterial truncated E2s, mainly confined to the inner linker 

region preceding the CTD of E2 (Yu, et al., 2008). These differences have been 

ascribed to the requirement for E3BP integration during core assembly. 

The findings on truncated E2/E3BP core stability presented here strongly support 

our hypothesis that incorporation of E3BP leads to an overall decrease in core 

stability. Near-UV CD in the presence of GdmCl clearly shows unfolding via 
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intermediates, in good agreement with data for the full-length rE2/E3BP core 

(section 5.3.1.3). Interestingly the truncated E2/E3BP also exhibits greater 

stability than full-length rE2/E3BP, suggesting a possible contribution of the 

flexible N-terminal arms in destabilisation. The higher stability of rE2 (compared 

with tE2/tE3BP) is clearly reflected in their midpoints of unfolding, further 

supporting the proposition that integration of E3BP into the E2 core is 

responsible for the decrease in core stability. This is also supported by 

fluorescence studies on truncated E2/E3BP. Interestingly, previous GdmCl-

induced denaturation studies on the truncated E2 core of B. stearothermophilus 

revealed a lower midpoint of unfolding (1.6 M) (Hiromasa, et al., 1998). The 

difference between the lower (1.6 M) and higher (3.19 M) midpoints of unfolding 

in the bacterial and human tE2, respectively, may be due to differences in 

experimental methodology (namely incubation times and temperature). Another 

possible and more interesting explanation may pertain to the subtle structural 

differences observed between these two cores, reflecting significant differences 

in their subunit interactions and overall flexibility. We propose that the extent 

of size variability or breathing may be considerably higher in the mammalian 

cores than their prokaryotic counterparts, posing significant implications for 

overall core flexibility and stability. It would be exciting to validate this 

hypothesis by cryo-EM or single molecule studies in the near future.  
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Chapter 7 
Binding stoichiometry of E2/E3BP:E3 and 
core variation – an investigation 

7.1 Introduction 

In eukaryotic PDC, the E2/E3BP icosahedral core forms the structural and 

mechanistic framework for the intact, native assembly, with its complement of 

E1 and E3 enzymes binding tightly, but non-covalently. The 60-meric E2/E3BP 

core is composed of 20 trimeric units that are located at the 20 vertices of an 

icosahedron. Interaction of E3BP with E2 is mediated by its inner CTD in a 

process that requires the nascent polypeptide chains to come together during 

core assembly. This was established by previous studies in our laboratory, 

showing that E2 and E3BP failed to interact in a post-translational fashion, 

implying a mandatory requirement for integration of E3BP into the core 

framework during its initial assembly (Singh, 2008). The structure and subunit 

composition of E2/E3BP is critical to the efficient functioning of PDC. While 

E3BP is proposed to bind to the 12 faces of the pentagonal dodecahedron in 

yeast in the ‘addition’ model (60E2+12E3BP) (Stoops, et al., 1997; Zhou, et al., 

2001b), it is thought to replace 12E2 subunits in the ‘substitution’ model 

(48E2+12E3BP) of mammalian PDC (Hiromasa, et al., 2004). These distinctive 

models of subunit organisation result in variable core composition in terms of its 

trimeric units. While 20E2 trimers constitute the 60-meric E2 core in yeast, the 

proposed mammalian E2/E3BP core would comprise a mixture of 8 homotrimers 

(only E2) and 12 heterotrimers (2E2 and 1E3BP). Moreover, the mammalian core 

model proposed by Hiromasa and colleagues (2004) suggests that 12E3BPs are 

symmetrically distributed within the core, although the authors do not clearly 

explain the grounds for such a distribution. The localisation of E3BP within the 

core and its overall subunit composition has significant implications for the 

structural stability, optimal operation and regulation of this macromolecular 

machine. 



Binding stoichiometry of E2/E3BP:E3 and core variation – an investigation 215 

The binding stoichiometry of the peripheral enzymes E1 and E3 to the core has 

proved to be controversial. While in bacteria, both E1 and E3 bind to E2, only E1 

binds E2 while E3 binds E3BP in eukaryotic PDCs. In B. stearothermophilus, both 

E1 and E3 bind to E2 with 1:1 stoichiometries in a mutually exclusive fashion 

(Hipps, et al., 1994; Jung, et al., 2002a; Lessard, et al., 1998). X-ray crystal 

structures of bacterial E1/E2-SBD (Frank, et al., 2005) and E3/E2-SBD (Mande, et 

al., 1996) subcomplexes as well as solution studies of these subcomplexes, show 

clearly that association of a second E2-SBD to either E1 or E3 is not possible, 

confirming the 1:1 stoichiometric relationship. A recent crystal structure for 

human E3 bound to E3BP-SBD shows the same 1:1 stoichiometry (Ciszak, et al., 

2006). However, a 2:1 stoichiometry between E1:E2 and E3:E3BP has been 

reported in mammalian PDC, with 30E1 and 6-12E3 bound to the E2/E3BP core at 

maximal occupancy (Sanderson, et al., 1996b). This was further supported by 

recent solution studies on human E3 complexed with a truncated E3BP construct 

comprising the LD and SBD (E3BP-DD) that showed a clear 2:1 (E3BP-DD:E3) 

binding stoichiometry (Smolle, et al., 2006).  

As E1 and E3 compete for overlapping binding sites on E2 in B. 

stearothermophilus, transient interactions governed by weak reversible 

interactions are probably more advantageous for optimal catalytic efficiency. 

However, owing to the specialised evolutionary role of E3BP in mammalian PDC 

and the lack of competition between E1 and E3 for binding sites, a stronger and 

tighter interaction between the respective subcomplexes might be preferable 

for efficient operation and regulation of this macromolecular assembly.  

This chapter is concerned with the investigation of the stoichiometry of 

interaction of the E2/E3BP core with E3 using AUC, SANS and SDS-PAGE. 

Substrate specific radiolabelling of the reduced lipoyl groups has been employed 

previously to obtain the ratio of E2 and E3BP subunits within the bovine core 

assembly (Sanderson, et al., 1996b). Comparative radiolabelling of bovine and 

recombinant E2/E3BP cores using [14C]-NEM and fluorography was carried out in 

this study in order to determine their precise subunit compositions. In addition, 

the structural and geometric constraints that govern core assembly and 

organisation have been explored via mathematical modelling. 

 



Binding stoichiometry of E2/E3BP:E3 and core variation – an investigation 216 

 

7.2 Binding stoichiometry of rE2/E3BP:E3 

7.2.1 Materials and methods 

7.2.1.1 Protein purification  

The full-length rE2/E3BP core was purified as outlined in section 4.3.2.2. 

Purified rE2/E3BP after gel filtration was exchanged into PEB buffer (see section 

3.3.2.4) and immediately used for stoichiometry experiments. All protein 

concentration measurements of rE2/E3BP were based on the 48E2+12E3BP 

stoichiometry unless stated otherwise. Recombinant protonated E3 (rE3) was 

purified by standard chromatography techniques (section 4.3.2.3). Recombinant 

deuterated E3 (dE3) was provided by Dr. Phil Callow, Institut Laue Langevin 

(ILL), Grenoble, France and purified as described in section 4.3.2.3. rE3 and dE3 

were suspended in PEB buffer and subsequently used for the stoichiometry 

experiments. The rE2/E3BP:rE3 or rE2/E3BP:dE3 complexes were reconstituted 

by mixing purified rE2/E3BP and rE3 (or dE3) at various molar ratios in PEB 

buffer depending on the experiment in question. 

7.2.1.2 Sedimentation velocity  

For the SV analysis of rE2/E3BP:rE3 complexes, samples were prepared by 

maintaining the rE2/E3BP concentration at 191.5 nM and varying the 

concentration of rE3 accordingly to achieve E2/E3BP:E3 ratios of 4:1 

(48E2/12E3BP:3E3) to 1:4 (48E2/12E3BP:48E3). All samples in PEB buffer (360 µl) 

were loaded into 12 mm double sector centrepieces. The experiment was 

carried out at a rotor speed of 20,000 rpm at 4oC. A total of 400 interference 

scans were recorded, 1 min apart until sedimentation was complete. 

Sedimentation profiles were analysed using c(s) analysis in SEDFIT (Schuck, 

2000). More details can be found in sections 2.2.1.3 and 3.4.2. 
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7.2.1.3 Gel filtration 

Samples of rE2/E3BP:rE3 were prepared by maintaining the rE2/E3BP 

concentration at 421 nM and varying the rE3 concentrations to satisfy ratios of 

rE2/E3BP:rE3 ranging from 3:1 (48E2/12E3BP:4E3) to 1:3 (48E2/12E3BP:36E3). 

All samples were analysed by gel filtration on a Sephacryl S-300 column 

(Amersham, USA). In addition uncomplexed rE2/E3BP (421 nM) and rE3 

(corresponding to 36E3) were also analysed and served as controls. 

7.2.1.4 SANS contrast variation 

rE2/E3BP and dE3 were both thoroughly dialysed in 40% D2O and 100% D2O to 

achieve maximum scattering contrast. However, owing to aggregation of the 

dialysed rE2/E3BP core, SANS data could not be collected for the contrast 

matched samples. Nevertheless, the scattering signal obtained from protonated 

rE2/E3BP and rE2/E3BP:dE3 was significantly different and subsequently 

exploited in stoichiometry studies with undialysed rE2/E3BP:dE3 complex.  

The rE2/E3BP:dE3 complex was prepared by maintaining the concentration of 

rE2/E3BP at 1.04 µM and initially adding dE3 at a concentration appropriate to 

give an E2/E3BP+E3 subunit composition of 48/12+2. Thereafter dE3 was added 

stepwise, with every step amounting to the addition of 2 more E3s thus covering 

the range of 48/12+2 to 48/12+18. Free rE2/E3BP (3.69 mg/ml) and dE3 (11 

mg/ml) were employed as controls. Scattering curves were recorded at dual 

camera lengths (4 and 14 m) at 4oC. Treatment of raw data was carried out as 

described in section 3.4.5.  

7.2.2 Results and analysis 

7.2.2.1 E2/E3BP:E3 binding indicates a 2:1 stoichiometry 

7.2.2.1.1 Gel filtration profile of E2/E3BP:E3 

The overlaid gel filtration profiles of a series of rE2/E3BP:rE3 mixtures covering 

a broad range of ratios from 48E2/12E3BP:4E3 (3:1) to 48E2/12E3BP:36E3 (1:3)  
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Figure 7.1 Gel filtration analysis of rE2/E3BP:rE3 binding stoichiometry 
Elution profiles from gel filtration chromatography of rE2/E3BP:rE3 at various ratios in the 
range 3:1 to 1:3, (i.e. 48E2/12E3BP:4E3 to 48E2/12E3BP:36E3) are shown. 
Uncomplexed rE2/E3BP and rE3 were used as controls. Protein absorbance was 
measured at 280 nm. Free E3 is observed from a ratio of 1:1 onwards. 

 

are shown in Fig. 7.1. Uncomplexed rE2/E3BP and rE3 (corresponding to 36E3) 

were used as controls. The dissociation constant, Kd, measured for human 

E3BP:E3 and E3BP-DD:E3 subcomplexes by ITC have been previously reported to 

be 6.3 nM and and 35.7 nM, respectively (Brown, 2002a; Smolle, 2005), 

indicating high affinity binding between E3BP and E3. Concentrations of E3 and 

E3BP used in all stoichiometry experiments in this study are significantly greater 

than the Kd, ensuring tight and complete binding between E3 and E3BP as well as 

reliability of all experimental data. 

While the void volume (38 ml) elution peaks for uncomplexed and complexed 

E2/E3BP are clearly seen at all ratios, the appearance of free E3 (Ve 65 ml) is 

evident only at a ratio of 1:1 and above. Therefore, it can be inferred that at a 

ratio of 2:1 (48E2/12E3BP:6E3) all the E3BP binding sites are fully saturated, 

with uncomplexed E3 being observed only at ratios higher than 2:1. These 

findings support previous data from our laboratory indicating that the 
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stoichiometry of binding between E3BP and E3 on the core surface is in the 

region of 2:1 (12E3BP:6E3) (Smolle, et al., 2006). In addition, the height and 

area of the pure rE3 peak were greater than that observed for rE3 remaining 

uncomplexed in the 1:3 sample (for which the total concentration of rE3 was 

equivalent). This further confirms significant but limited binding of rE3 to the 

rE2/E3BP core. 

7.2.2.1.2 SDS-PAGE of E2/E3BP:E3 

SDS-PAGE analysis (Fig. 7.2) was performed on the elution peak fractions of 

rE2/E3BP:rE3 complexes and free rE3 obtained from the gel filtration (GFC) 

stoichiometry studies (section 7.2.2.1.1). SDS-PAGE of void volume (38 ml) GFC 

samples (rE2/E3BP and rE2/E3BP:E3) clearly shows the presence of all 

constituent proteins (E2, E3BP and E3) in the complex (Fig. 7.2A). In addition, 

SDS-PAGE analysis of peak fractions of free rE3 (65 ml) further confirm the 

presence of excess E3 only at ratios greater than 2:1 (Fig.7.2B). 

 

Figure 7.2 SDS-PAGE analysis of E2/E3BP:E3 stoichiometry 
The GFC peaks of E2/E3BP:E3 stoichiometry samples were analysed by SDS-PAGE. (A) 
Void volume GFC peaks indicate the presence of E3 in the complex. (B) GFC peaks of E3 
taken at the elution volume of 65 ml show the appearance of excess E3 at a ratio of 1:1 
(arrow). Molecular weights (Mw) are shown in kDa. 



Binding stoichiometry of E2/E3BP:E3 and core variation – an investigation 220 

7.2.2.1.3 SV analysis of E2/E3BP:E3 

SV experiments were conducted for the various rE2/E3BP:rE3 ratios and the 

sedimentation profiles analysed using the c(s) model in SEDFIT (Schuck, 2000) as 

shown in Fig. 7.3. The apparent sedimentation coefficient of free E3 is seen to 

be 5.8 S, in excellent agreement with the previously published value of = 

5.9 S (Smolle, et al., 2006). In section 5.3.1.1.1 the sedimentation coefficient of 

uncomplexed rE2/E3BP was reported to be 29.3 S. Now, an increase in the 

sedimentation coefficient of rE2/E3BP upon rE3 binding (35.3 S) is observed. 

Moreover, Fig. 7.3 also shows the appearance of free E3 at a 1:1 ratio, 

consistent with the results obtained from GFC stoichiometry studies (section 

7.2.2.1.1).  

0
w,20s

 

Figure 7.3 Sedimentation velocity analysis of E2/E3BP:E3 stoichiometry 
c(s) analysis of SV interference data of various E2/E3BP:E3 stoichiometric mixtures 
indicate the binding stoichiometry to be 2:1. The axes s and c(s) denote the 
sedimentation coefficient and the c(s) distribution model (from SEDFIT analysis), 
respectively. 

 

7.2.2.2 10E3s bind to the rE2/E3BP core 

Purified protonated rE2/E3BP was reconstituted with deuterated E3 (dE3) to 

confirm the binding stoichiometry and accordingly determine the subunit 

composition of rE2/E3BP using SANS. The significant difference in the interaction 



Binding stoichiometry of E2/E3BP:E3 and core variation – an investigation 221 

of neutrons with hydrogen and deuterium is exploited in the technique of SANS 

‘contrast matching’. rE2/E3BP and dE3 were estimated to have matchpoints of 

40% and 100%, respectively. Therefore, dialysing both proteins against D2O 

buffers at their matchpoint percentages enables selective scattering of these 

components. In a solvent containing 40% D2O, scattering contribution of 

rE2/E3BP in reconstituted rE2/E3BP:dE3 is completely matched out. Similarly, 

when scattering data for rE2/E3BP:dE3 in 100% D2O are recorded, the scattering 

of dE3 in the complex will be the same as that of the solvent, and thus will be 

matched out. However, dialysis of rE2/E3BP at 40% and 100% D2O led to protein 

aggregation and consequently it was not possible to conduct the stoichiometry 

analysis with contrast-matched samples. 

However, as the scattering of undialysed reconstituted rE2/E3BP:dE3 was 

significantly higher than uncomplexed rE2/E3BP, SANS stoichiometry studies 

were successfully performed on undialysed rE2/E3BP:dE3 at various molar ratios 

by exploiting the difference between the scattering of the deuterated and 

protonated components (see section 7.2.1.4). Scattering curves obtained for 

rE2/E3BP and rE2/E3BP:dE3 at various ratios are shown in Fig. 7.4A.  

The increase in intensity, particularly in the low angle region can be clearly seen 

with the addition of E3, resulting in a subunit composition (E3BP+E3) range from 

12+0 (uncomplexed rE2/E3BP) to 12+18 (18 dE3 dimers per rE2/E3BP core). The 

scattering intensity at zero angle, I(0) and radius of gyration, Rg were 

determined using the Guinier approximation and are listed in Table 7.1. An 

increase in the number of dE3s results in the concomitant increase in Rg and I(0) 

values as expected upon binding of dE3 to rE2/E3BP. Moreover, the addition of 

dE3 results in a maximum Rg of 162 Å, consistent with the value of 161.5 Å 

obtained by Hiromasa and co-workers (2004). 

From Table 7.1, it is also apparent that I(0) tends to decrease at higher 

concentrations of E3, consistent with a decrease in the average molecular 

weight of the system upon generation of excess E3. The value of I(0) normalised 

for concentration and plotted against the ratio of dE3 to rE2/E3BP core is shown 

in Fig. 7.4B. Unexpectedly, at 10dE3 dimers per rE2/E3BP core (i.e. 10:1 of 

dE3:rE2/E3BP) the gradient of the curve changes significantly indicating 

saturation of binding.  
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Figure 7.4 Stoichiometry studies of dE3:rE2/E3BP using SANS 
(A) The SANS scattering curves of protonated rE2/E3BP complexed with dE3 at various 
ratios ranging from 0-18 E3 dimers per core were recorded. (B) I(0) normalised for 
concentration plotted against the ratio of dE3 per core indicates saturation at a ratio of 
10:1 of dE3:rE2/E3BP. Error bars are shown but are not visible due to their small size.  
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Subunit stoichiometry 

E2/E3BP+E3 
 

Radius of gyration Rg (Å) Intensity I(0) 

12+0 143 ± 2 4.3347 ± 1 
12+2 145 ± 1 6.3374 ± 1 
12+4 151 ± 1 8.0913 ± 1 
12+6 157 ± 1 10.922 ± 1 
12+8 160 ± 1 13.431 ± 1 
12+10 162 ± 1 14.838 ± 1 
12+12 162 ± 1 15.183 ± 1 
12+14 162 ± 1 15.108 ± 1 
12+16 162 ± 1 15.038 ± 1 
12+18 162 ± 1 14.965 ± 1 

Table 7.1 Rg of SANS rE2/E3BP:dE3 mixtures 

 

The observed saturation of binding at 10dE3 dimers per rE2/E3BP core is similar 

to the previously published value of 12:1 (12E3 dimers per core) (Hiromasa, et 

al., 2004). The small difference might be accounted for by experimental errors 

in the precise estimation of protein concentrations or possible aggregation of 

dE3. It was initially assumed that the observed value of 10:1 (i.e. 10E3+12E3BP) 

may in fact be 12:1 (i.e. 12E3+12E3BP), indicative of a 1:1 stoichiometry. 

However, the SANS stoichiometry experiment was conducted twice and gave the 

same result of 10 dE3 dimers per rE2/E3BP core. Nonetheless, this is an 

unexpected finding apparently conflicting with previously published data from 

our lab (Smolle, et al., 2006) and results presented earlier in this chapter. An 

alternative hypothesis is that the recombinant E2/E3BP core deviates 

significantly from the current 48E2+12E3BP model and this is tested later in this 

chapter by standard biochemical techniques.  

To rule out problems associated with dE3 aggregation, the scattering curve for 

free dE3 (11 mg/ml) was obtained (Fig. 7.5A). No signs of aggregation were 

observed, and from the extrapolation of intensity to zero angle, I(0), the 

molecular weight was estimated to be 110 kDa, in good agreement with the 

value predicted from the E3 amino acid sequence of 106 kDa. Guinier and GNOM 

(Semenyuk and Svergun, 1991; Svergun, 1992) analysis were employed to 

determine the radius of gyration, Rg, to be 33 ± 1 Å and 34 ± 1 Å, respectively. 

The distance distribution function, p(r), (Fig. 7.5B) reflects the slightly  
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Figure 7.5 Small angle neutron scattering of deuterated E3 
(A) The scattering curve of uncomplexed dE3 is shown. The x-axis s denotes the 
scattering angle. (B) The distance distribution p(r) calculated using GNOM yields a Dmax of 
130 Å. 

 

elongated shape of dE3 and was used to estimate the maximum particle 

dimension, Dmax of 130 Å.  

The values of Rg and Dmax of dE3 compare well with previously published values 

obtained for protonated E3 (Smolle, et al., 2006) (38 Å and 130 Å), indicating no 

major structural changes induced by the deuterium labelling of E3. Moreover, 

the scattering curve for dE3 reveals a less compact structure in solution relative 

to the E3 crystal structure, consistent with previously published findings (Smolle, 

et al., 2006). 

Fig. 7.6 shows the change in the p(r) distribution function of rE2/E3BP with 

addition of a saturating amount of 10dE3. Binding of dE3 to rE2/E3BP increases 

Dmax from 462 Å to 520 Å. In addition, the peak position of the bell-shaped 

function is shifted to a higher r. This indicates a radial outwards shift of mass 

distribution, with dE3 bound to the exterior of the rE2/E3BP dodecahedron as 

opposed to the reported distribution of E3 in yeast (Stoops, et al., 1997).  
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Figure 7.6 Size distribution p(r) analysis of dE3:rE2/E3BP at 10:1 saturation 
The p(r) distributions were calculated using GNOM for uncomplexed rE2/E3BP and 
dE3:rE2/E3BP complex at a binding saturating ratio of 10:1. The radial shift to higher r 
upon dE3 binding to the E2/E3BP core is denoted by an arrow. Error bars are shown but 
are not visible due to their small size. 

 

7.3 Subunit composition of the rE2/E3BP core 

7.3.1 Materials and methods 

7.3.1.1 Protein purification 

rE2/E3BP and rE3 were purified as described in sections 4.3.2.2 and 4.3.2.3. PDC 

was isolated from native bovine heart as outlined in section 3.3.2.5. Bovine E3 

(bE3) was obtained from sucrose gradient centrifugation of bovine PDC (section 

3.3.2.6). All purified proteins were exchanged in PEB buffer (see section 3.3.2.4) 

and subjected to immediate radiolabelling. The rE2/E3BP:rE3 complex was 

reconstituted by mixing purified rE2/E3BP and rE3 at various molar ratios. 

7.3.1.2 [14C]-NEM radiolabelling and counting 

The labelling of purified PDC and rE2/E3BP:rE3 suspended in PEB buffer with 

[14C]-NEM was carried out as outlined in section 3.3.11.1. While PDC was used at 
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concentrations of 40 µg, 60 µg and 120 µg, rE2/E3BP (20 µg and 40 µg) was 

mixed with rE3 at various molar ratios to achieve final stoichiometries of 2:1, 

10:1, 20:1 and 40:1 of rE2/E3BP:rE3. All samples were subsequently mixed with 

NAD+ (0.5 mM) or NADH (1 mM) and incubated for 10 min at room temperature. 

Radioactive [14C]-NEM (0.65 mM) was then added to all these protein mixtures 

and subjected to 30 min incubation at room temperature. Reactions were 

terminated by the addition of 50 mM DTT followed by incubation for 12 min. 

Thereafter, SDS loading dye was added resulting in final sample volumes of 20-25 

µl before being analysed on 8% SDS-PAGE slab gels. More details can be found in 

section 3.3.11.1. Gels were subsequently stained, destained and the radioactive 

bands excised and dissolved overnight in SOLVABLE (see section 3.3.11.2). 

Solubilised samples were then counted using a scintillation counter for 10 min 

per sample. Radiolabelling experiments were performed on four preparations of 

PDC and recombinant E2/E3BP:E3 complex. Incorporation of [14C] radioisotope 

into each sample was determined in triplicate. Data were analysed statistically 

be means of the following equations (Lynch and Walsh, 1997). 
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where and  represent the [14C] counts of rE2 and rE3BP, σ and 

are the errors on the [14C] counts of rE2 and rE3BP.  
BP3E

σ

7.3.1.3 Fluorography 

Radiolabelled rE2/E3BP (6 µg) complexed with rE3 at stoichiometric ratios of 

10:1 and 20:1 was used for fluorography experiments (see section 3.3.11.1 and 

7.3.1.2). SDS-PAGE gels with [14C]-NEM radiolabelled rE2/E3BP:rE3 (10:1, 20:1) 

in the presence of 0.5 mM NAD+ or 1 mM NADH were stained and fixed prior to 

drying under vacuum (see section 3.3.11.3). Fluorographs were stored at -80oC 

and developed on x-ray film after 7 days. 
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7.3.1.4 Mathematical modelling 

The subunit organisation of rE2/E3BP core was mathematically modelled as 

described in detail in section 3.5.7. Possible solutions were obtained for 

variables X, Y and Z that define the number of 3-edge, 4-edge and 5-edge E2 

faces, respectively for core subunit stoichiometries ranging from 40E2+20E3BP to 

60E2+0E3BP (60-meric E2 only core). Several solutions were obtained for each 

subunit stoichiometry based on constraints used during the modelling process, 

reflecting the various final states possible for each model of core organisation. 

Each solution is represented as a combination of the variables X, Y and Z, 

represented as [X, Y, Z].  

7.3.2 Results and analysis 

7.3.2.1 Distinctive subunit organisations: rE2/E3BP and 
bE2/E3BP cores 

7.3.2.1.1 Variable composition of rE2+rE3BP based on SANS 

As E3 specifically binds to E3BP in eukaryotic PDCs, it serves as a marker for the 

positions of E3BP within the E2/E3BP core, thereby providing information on the 

subunit composition of the core. The SANS stoichiometry data for rE2/E3BP:dE3 

clearly indicated the presence of 10dE3 dimers per rE2/E3BP core at maximal 

occupancy (section 7.2.2.2). However, as SANS is a time average technique, the 

saturation limit of 10dE3s per rE2/E3BP core would represent an average binding 

ratio. In addition, all other stoichiometry data show a 2:1 (6E3s per rE2/E3BP) 

binding of rE2/E3BP:rE3 (sections 7.2.2.1.1 and 7.2.2.1.3). Therefore, these 

data might imply different core compositions deviating significantly from the 

current 48E2+12E3BP model resulting in distinct apparent stoichiometries for 

rE2/E3BP:rE3 (1:1 or 2:1) as tabulated in Table 7.2. 
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2:1 1:1 E3BP:E3 stoichiometry 

Number of E3 dimers per rE2/E3BP core Core composition 

10 20 40E2+20E3BP 

6 12 48E2+12E3BP 

Table 7.2 Variable substitution core models of the rE2/E3BP core 
The value highlighted in blue denotes the ratio of dE3:rE2/E3BP obtained from SANS 
stoichiometry data. 

 

7.3.2.1.2  [14C]-NEM radiolabelling 

NADH-induced radiolabelling of E2 and E3BP was performed to measure 

differences in the subunit composition of the bovine and recombinant E2/E3BP 

cores. This was achieved by specifically labelling the reduced lipoyl groups of E2 

and E3BP with [14C]-NEM. Under reducing conditions (NADH) and in the presence 

of E3, the thiol groups of lipoic acid are covalently modified with NEM. As the E2 

and E3BP subunits have 2 and 1 LD, respectively, specific [14C] incorporation into 

the reduced lipoyl groups can yield direct information on their relative 

abundance within the purified core i.e. provide a direct estimate of E2:E3BP 

core subunit stoichiometry. Radiolabelling was carried out on triplicate samples 

of four fresh preparations of bovine PDC and human rE2/E3BP:E3, to prevent any 

uncertainties owing to batch variation or sample degradation. Additionally, data 

analysis was based on the assumption of equivalent and complete labelling of 

both E2 and E3BP subunits.  

The expected ratio of radiolabelled [14C] counts for E2:E3BP would differ 

significantly depending on the model of subunit organisation as shown in Table 

7.3, in particular the difference between the 48E2+12E3BP substitution model 

(Hiromasa, et al., 2004) and the proposed ‘variable E3BP substitution’ model 

(see section 7.4) based on SANS data (see section 7.3.2.1.1). It is also interesting 

to note that differences in predicted radiolabelling ratios for E2:E3BP over the 

subunit composition range of 46E2+14E3BP to 40E2+20E3BP are relatively minor 

(Table 7.3).  
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Model Subunit 
stoichiometry 

Ratio of LDs of 
E2:E3BP 

Theoretical ratio of  
radiolabelled 

E2:E3BP 

Addition 60E2+12E3BP 120:12 10:1 

Substitution 48E2+12E3BP 96:12 8:1 

46E2+14E3BP 92:14 6.5:1 

44E2+16E3BP 88:16 5.5:1 

42E2+18E3BP 84:18 4.6:1 

 
Proposed 

(Variable E3BP 
substitution model) 

 

40E2+20E3BP 80:20 4:1 

Table 7.3 Core stoichiometries and their theoretical [14C] radiolabelled E2:E3BP 
ratios 

 

Interestingly, analysis of the ratio of radiolabelled E2:E3BP subunits obtained 

from this series of experiments suggests a marked difference in core organisation 

between the recombinant and bovine E2/E3BP cores and is summarized in Table 

7.4. While the native bovine E2/E3BP core of PDC favours a subunit organisation 

of 48E2+12E3BP, recombinant E2/E3BP core contains a greater number of E3BPs 

(>12). Therefore, radiolabelling data suggest average core models of 

48E2+12E3BP and 40E2+20E3BP for bE2/E3BP and rE2/E3BP, respectively. 

A potential source of error in these estimates could stem from background 

labelling of cysteine residues in other PDC subunits in the presence or absence of 

NAD+ and NADH. This was investigated by fluorography as described in the 

following section. 

7.3.2.1.3 Fluorography 

Substrate specific labelling of the reduced lipoyl groups of E2 and E3BP of 

rE2/E3BP with [14C]-NEM was confirmed by fluorography. Previous studies by 

Hodgson and colleagues (1986) established selective labelling of E2 and E3BP in  
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Samples [14C] counts 
E2 

[14C] counts 
E3BP 

Ratio 
E2:E3BP 

bE2/E3BP1 6025 ± 489 752 ± 31 8.03 ± 0.53:1 

bE2/E3BP2 5640 ± 480 718 ± 66 7.92 ± 0.97:1 

bE2/E3BP3 2038 ± 95 250 ± 20 8.20 ± 0.57:1 

bE2/E3BP4 3230 ± 125 398 ± 40 8.19 ± 0.76:1 

rE2/E3BP1 7802 ± 568 1908 ± 230 4.15 ± 0.33:1 

rE2/E3BP2 19325 ± 1309 4558 ± 93 4.24 ± 0.09:1 

rE2/E3BP3 17967 ± 267 4364 ± 11 4.12 ±0.01:1 

rE2/E3BP4 4688 ± 110 832 ± 10 5.63 ± 0.02:1 

Table 7.4 Determination of subunit composition of bovine and recombinant 
E2/E3BP cores via [14C]-NEM radiolabelling  
Subscripts 1 to 4 denote different protein preparations used for the experiment, and ratios 
of radiolabelled E2:E3BP are colour coded based on substitution (blue) or the proposed 
variable E3BP substitution (violet) models. Average counts of triplicate samples ± SEM 
(standard error of the mean) are shown.  

 

bovine PDC. Their work also indicated that no radiolabelling of bE3 was 

detectable in the oxidised (NAD+) or reduced states (NADH) as shown in Fig. 7.7. 

In contrast E1α and E1β that contain several accessible Cys residues are readily 

modified under both oxidising and reducing conditions (in the presence of NAD+ 

and NADH).  

Labelling of the recombinant E2/E3BP core was performed at a 2:1 

(48E2/12E3BP:6E3) stoichiometry of rE2/E3BP:rE3 to ensure maximum reduction 

of E2 and E3BP. However, under these conditions human rE3 labelled quite 

strongly. To avoid cross contamination of excised E3BP with E3, subsequent 

experiments were conducted employing minimal amounts of rE3 where no 

detectable labelling was observed. The extent of radiolabelling of E2 and E3BP 

was unaffected over the entire range of rE3 concentrations used.  

The fluorograph obtained for rE2/E3BP:rE3 (rE2/E3BP complexed with rE3) 

indicates a similar result as compared with bE2/E3BP (Fig. 7.7). Selective 

labelling of E2 and E3BP within the complex is observed with no discernable 

labelling of the complexed E3 evident in the presence of NADH (Fig. 7.8). 

However, radiolabelling of uncomplexed rE3 is observed in the presence of  
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Figure 7.7 Incorporation of [14C]-NEM into bovine heart PDC 
Fluorography confirming [14C]-NEM incorporation into the various subunits of bovine PDC 
is shown . Samples were pretreated over various times (0h, 4h, 24h) with radioactive NEM 
in the presence of NAD+ (-) or NADH (+). Native PDC in the presence of NAD+ (Lane 1) 
and NADH (Lane 2) is indicated. Lanes 3-6 represent radiolabelled PDC treated with non-
radioactive NEM for 4h and 24 h in the presence of NAD+ (Lanes 3, 5) and NADH (Lanes 
4, 6). Denatured PDC labelled with [14C]-NEM is shown in Lane 7. The various subunits of 
PDC are indicated. The image was taken from Hodgson, et al. (1986). 

 

 

Figure 7.8 Incorporation of [14C]-NEM into rE2/E3BP core 
Fluorography of rE2/E3BP complexed with rE3 at molar ratios of 10:1 and 20:1 was 
carried out in the presence of NAD (-) and NADH (+) as shown. Uncomplexed rE3 at 
ratios of 10:1 and 20:1 under non-reducing (-) and reducing (+) was used as control. 
While rE2 and rE3BP labelling is observed in the presence of NADH, radiolabelling of rE3 
is evident only in the uncomplexed state and not when associated with the rE2/E3BP 
core. 
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NADH, directly in contrast to bovine E3 (Fig. 7.7), indicating exposure of thiol 

groups to NEM modification possibly those involved in the Cys disulphide pair 

that is integral to the catalytic mechanism. In addition, minimal background 

labelling (<5%) of rE2/E3BP was sometimes observed (Fig. 7.8) and could possibly 

represent spillover or contamination from adjacent tracks.  

As fluorography indicates selective labeling of rE2 and rE3BP (Fig. 7.8) under 

reducing conditions for the rE2/E3BP:rE3 complex, the ratio of E2:E3BP counts 

reflect a direct measure of the subunit composition of the rE2/E3BP core 

without any interference from rE3 labelling.  

7.3.2.2 E2/E3BP core composition: investigation by 
mathematical modelling 

Mathematical modeling of the possible subunit organisations of the E2/E3BP core 

was carried out on the basis of a mixture of homotrimers (all E2 subunits) and 

heterotrimers (2E2+1E3BP) constituting the total of 20 trimers that formed the 

60-meric core as listed in Table 7.5. 

Two fundamental constraints were used in the modelling process; the first was 

that only one E3BP can be present per heterotrimer, and the second that E3BPs 

of neighbouring trimers can interact only with each other. The first constraint 

stems from the fact that E3BP is incapable of forming a core on its own and 

there has been no evidence to date to suggest incorporation of 2E3BPs per 

heterotrimer. In addition, work in our laboratory has shown that despite high 

levels of E3BP expression relative to E2, purification of rE2/E3BP always results 

in a core with E2 as the major component as judged by SDS-PAGE and 

radiolabelling. The justification for the second constraint is based on the idea 

that E3BP lacks the key residues involved in the hydrophobic ‘ball and socket’ 

connection that mediate the inter-trimer interactions within the core. Hence, as 

a direct interaction between E3BP of one trimer and E2 of a second trimer is not 

possible, it is likely that E3BP would interact weakly with itself to form a dimer 

on the core surface (Hiromasa, et al., 2004), although there is no experimental 

evidence to support this hypothesis. 
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Core organisation No. of homotrimers No. of heterotrimers 

60E2 + 0E3BP 20 0 

58E2 + 2E3BP 18 2 

56E2 + 4E3BP 16 4 

54E2 + 6E3BP 14 6 

52E2 + 8E3BP 12 8 

50E2 + 10E3BP 10 10 

48E2 + 12E3BP 8 12 

46E2 + 14E3BP 6 14 

44E2 + 16E3BP 4 16 

42E2 + 18E3BP 2 18 

40E2 + 20E3BP 0 20 

Table 7.5 Various E2/E3BP core compositions and number of trimers 

 

Interestingly, glutaraldehyde crosslinking studies on full-length rE3BP showed a 

small fraction of dimer, although the majority of the protein remained 

monomeric (Fig. 7.9). It is possible that in comparison to free rE3BP, geometric 

constraints on the surface of the core could induce higher levels of rE3BP 

dimerisation, resulting in the formation of a stable E2/E3BP core. This could 

imply that the interactions governing E3BP as part of the heterotrimer may be 

stronger than free E3BP, but relatively weaker than those of an E2 homotrimer. 

 

Figure 7.9 Chemical crosslinking of full-length rE3BP 
SDS-PAGE of full-length rE3BP (-) chemically crosslinked with 2% glutaraldehyde (+) 
showed the presence of some rE3BP dimer. Homodimeric rE3 was used as a control. 
Molecular weights (Mw) are shown in kDa. 
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Fig. 7.9 indicates a lower molecular weight of monomeric rE3BP in the presence 

of glutaraldehyde than free (or uncrosslinked) rE3BP. This is attributed to the 

formation of internal crosslinks within the rE3BP monomer by glutaraldehyde, 

resulting in a more globular (and less elongated or open) structure, thereby 

causing it to migrate more rapidly on SDS-PAGE. 

Mathematical modelling based on the above defined constraints yielded several 

solutions of core organisation for each model (see Table 7.5). Each of these 

solutions represents an arrangement of E2 and E3BP that satisfies a particular 

model of core composition.  

Since they represent the most interesting cases with respect to this study, the 

different ways in which E2 and E3BP can be arranged to satisfy core 

compositions of 40E2+20E3BP and 48E2+12E3BP are illustrated in Fig. 7.10. 

Interestingly, while there are seven different solutions to obtain a complete 

48E2+12E3BP core (Figs 7.10C to 7.10I), only two arrangements exist for the 

40E2+20E3BP core (Figs 7.10A, 7.10B) model. The various arrangements are 

represented as [X,Y,Z], with X,Y and Z being the number of 3-edge, 4-edge and 

5-edge E2 faces (see section 3.5.7 and 7.3.1.4 for details).  

From analysis of mathematical modelling data, final states for various core 

models seem to follow a near Gaussian distribution as shown in Fig. 7.11. Very 

interestingly, while the 40E2+20E3BP model of core composition has only 2 final 

states (1 symmetric and 1 asymmetric), the maximum number of states peaks at 

the 48E2+12E3BP core model.  

7.4 Discussion 

The evidence presented in this chapter confirms the 2:1 binding stoichiometry of 

E2/E3BP:E3 on the surface of human PDC core. These findings are consistent 

with previous stoichiometry studies reported on the human E3BP-DD/E3 

subcomplex (Smolle, et al., 2006), but are in direct contrast to the 1:1 

stoichiometry observed in the crystal structures of bacterial E3/E2-SBD (Mande, 

et al., 1996) and human E3/E3BP-SBD (Ciszak, et al., 2006) subcomplexes. The 

crystal structure of the human E3/E3BP-SBD subcomplex indicates association of  
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Figure 7.10 Mathematical modelling of E2/E3BP core organisation 
Various arrangements of E2 (black) and E3BP (orange) on the basis of 3-edge, 4-edge 
and 5-edge E2 faces, [X,Y,Z] for core models with (A and B) 40E2+20E3BP and (C to I) 
48E2+12E3BP are shown. Integer values shown indicate the number of E2 faces (black), 
with the outermost face denoted by the arrow. The icosahedron schematic is drawn as a 
2D diagram looking down along the 5-fold axes of symmetry.  
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Figure 7.11 Various core models and their number of final states 
The various final states (solutions) obtained by mathematical modelling for the various 
core models are shown. The trend follows a near Gaussian distribution, with a maximum 
at the 48E2+12E3BP core stoichiometry. 

 

only a single SBD with E3, owing to steric hindrance of a loop in E3BP that 

prevents binding of a second E3BP. However as the results presented in this 

chapter were determined in solution, it is possible that the stoichiometry 

observed in the crystal structures may be a result of crystal packing effects 

and/or crystallisation buffer compositions. Moreover, it is possible that E3 

binding could be significantly affected by geometric constraints on the surface 

of the E2/E3BP core; therefore the stoichiometry data reported in this chapter 

represent a more physiologically relevant system as compared to analysis of 

subunit interactions employing free E3 and monomeric di-domain constructs of 

E3BP.  

The 2:1 binding stoichiometry of E3BP:E3 (and possibly E2:E1) in mammalian PDC 

suggests the possible presence of a network of ‘cross-bridges’ on the surface of 

the core (Fig. 7.12). Futhermore, the subunit composition of the core and its 

binding stoichiometry with the peripheral E1 and E3 components has significant 

implications for the efficient regulation of this massive complex. PDC regulation 

is mediated by PDK and PDP via phosphorylation and de-phosphorylation of three 

specific serine residues on E1. PDK phosphorylation of E1 renders the complex 

inactive, and only 1-3 molecules of PDK bound per complex have been reported 

(Yeaman, 1989). As these few molecules of PDK have to migrate around the 
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surface of the complex interacting with the entire population of bound E1 

molecules, the presence of E1 and E3 cross-bridges on the core surface could 

greatly facilitate PDK migration via a hand-over hand mechanism (Liu, et al., 

1995).  

 

Figure 7.12 Cross-bridge formation in human PDC 
Schematic representation of the cross-bridges formed between E2 (green) and E1 (blue), 
and E3BP (pink) and E3 (cyan) are shown. The substitution model of core organisation 
along with the PDC kinase (PDK, maroon) and PDC phosphatase (PDP, violet) are also 
depicted. Molecules are not drawn to scale. 

 

Based on the results presented in this chapter, a new ‘variable E3BP 

substitution’ model of rE2/E3BP core organisation is also proposed, wherein the 

number of E3BPs within the core exceeds the average of 12 (in this study) and 

can theoretically range anywhere from 0 to a maximum of 20. With SANS data 

indicating an average binding of 10dE3s per rE2/E3BP core, and AUC and GFC 

stoichometry studies indicating a 2:1 (rE2/E3BP:rE3) binding ratio, it can be 

inferred that the composition of the recombinant core is distinct from its native 

counterpart and comprises 40E2s and 20E3BPs at maximal occupancy. This 

suggests the integration of a higher number of E3BPs (>12) within the core (used 

in this study), contrary to the published 48E2+12E3BP substitution model of the 

human core (Hiromasa, et al., 2004). This proposition is further corroborated 

with [14C] radiolabelling data suggesting variation in core subunit composition 
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between bovine (favouring 48E2+12E3BP) and recombinant E2/E3BP (favouring 

40E2+20E3BP) cores. 

GFC purification of rE2/E3BP also yielded excess free E3BP in addition, 

indicating a maximum limit for integration of E3BP into the core (data not 

shown). However, as rE2/E3BP used in this study is produced recombinantly, 

over-expression of E2 and E3BP is driven to maximum capacity, in contrast to 

tightly coordinated expression of these subunits in vivo. As a consequence, it is 

suggested that there is a tendency to integrate higher numbers of E3BPs during 

the purification of rE2/E3BP, the maximum limit in this case being 20E3BPs. The 

justification for a maximum of 20E3BPs within the core (i.e. one E3BP per 

trimer) stems from the fact that E3BP is unable to form a 60-meric core on its 

own. Although it is theoretically possible to form trimers with 2E3BPs and 1E2, 

no experimental evidence for this has been reported to date. Additionally, 

formation of a core from this type of a heterotrimer would result in significantly 

large numbers of E3BP relative to E2. This would be non-optimal for efficient 

complex function, as E1 (that requires E2 as an anchoring site) catalyses the 

rate-limiting step in the overall PDC reaction.  

Intriguingly, data from mathematical modelling of core organisation presented in 

this chapter indicates that the 48E2+12E3BP model provides the maximal 

flexibility in that it could potentially exist in seven possible final states differing 

in E3BP distribution over its surface. This is complemented by radiolabelling data 

which indicates that the native E2/E3BP assembly in bovine heart has a subunit 

composition of 48E2+12E3BP. It is likely that the relative expressions of E2 and 

E3BP are tightly regulated in vivo to generate cores only with an average 

capacity of about 12E3BPs per core. However, as previous EM studies on PDC 

cores indicate inherent heterogeneity of these massive machines (Stoops, et al., 

1992; Wagenknecht, et al., 1991; Zhou, et al., 2001a), it is likely that a 

population of cores of several different subunit compositions are formed. 

Nonetheless, the probability of building complete E2/E3BP cores in the rapid 

folding times within the cell may be higher for the 48E2+12E3BP core model, as 

the maximum number of possible arrangements of the E2/E3BP core are 

permitted as shown in our modelling data. 
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Interestingly, the results in this chapter point towards an average bE2/E3BP core 

composition of 48E2+12E3BP, while the recombinant E2/E3BP used in this study 

can incorporate higher numbers of E3BP with an average core model biased 

towards 40E2+20E3BP. Hence, PDC may routinely comprise a range of cores of 

various compositions, rather than a single core with a uniquely defined 

composition. The variable incorporation of E3BPs resulting in different core 

compositions may serve to fine tune tissue-specific PDC regulation in vivo. The 

enzymes PDP and PDK control PDC regulation via E1 de-/phosphorylation. 

However, several isoenzymes (1-4) of PDK have been identified, and are 

observed to express in a tissue-specific manner displaying different specific 

activities (Bowker-Kinley, et al., 1998; Gudi, et al., 1995; Popov, et al., 1994; 

Rowles, et al., 1996). While PDK1-3 associate with the E2 inner LD, PDK4 is 

known to preferentially interact with the LD of E3BP (Roche, et al., 2003). 

Therefore, variation in the subunit composition of the core may have significant 

implications for the specific interactions of E2 and E3BP with these PDKs, 

altering the fine regulation of PDC in individual tissues in both normal and 

disease states.  
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Chapter 8 
Conclusions 

The 2-oxoacid dehydrogenase (OADC) family of multi-enzyme complexes has 

been extensively studied and characterised as it serves as a paradigm for 

analysis of protein-protein interactions, complex efficiency, enzyme 

cooperativity, active-site coupling and regulatory mechanisms. Despite having 

made considerable progress in our understanding of structural and functional 

aspects of these assemblies and their constituent enzymes, many questions still 

remain. A range of mutations, particularly in the E1α component, have been 

identified in PDC alone. Nevertheless it has been difficult to establish a clear 

link between the clinical disease and complex dysfunction at a molecular level. 

Similarly, although several atomic structures of these constituent enzymes have 

been solved over the last two decades, it remains unclear as to how all the 

individual components come together to form these massive highly-regulated 

assemblies. Additionally, the various OADCs exhibit species-and complex-specific 

variations in their modes of interaction with constitutent enzymes. For example 

in humans, while E1 specifically interacts with E2 in PDC, a direct association of 

E3 with E1 (and not E2) is observed in OGDC.  

In particular, with reference to PDC, considerable effort has been directed to 

the characterisation of PDC from B. stearothermophilus and a limited number of 

other Gram-positive and Gram-negative bacteria. Analysis of eukaryotic PDC in 

contrast has progressed more slowly, although many studies over the past 30 

years have revealed significant differences between the prokaryotic and 

eukaryotic assemblies, indicating the importance of structural evolution towards 

complex regulation and function of these massive machines. In addition, 

eukaryotic PDCs are distinct from their prokaryotic counterparts as they are 

transported into the mitochondria where they are assembled. However, with the 

discovery of E3BP as an additional subunit of eukaryotic PDC (De Marcucci and 

Lindsay, 1985; Jilka, et al., 1986) and the existence of specialised protein-

protein interactions within the complex, determining the precise subunit 

organisation of the E2/E3BP core and the nature and effect of its binding with E1 
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and E3 on overall PDC organisation, function and regulation has been at the 

forefront of eukaryotic PDC research. 

The research that is the subject of this thesis involves large-scale purification of 

individual PDC components from recombinant or native sources (Chapter 4) for 

subsequent use in biochemical and biophysical experiments. All proteins, with 

the exception of bE2/E3BP, were expressed as His-tagged products in order to 

aid purification. Purification of all proteins required two or three 

chromatography steps in order to obtain good yields of highly pure (>95%) 

samples, as judged by SDS-PAGE. In addition, new constructs encoding truncated 

CTD forms of E2 and E3BP were also designed and expressed using standard 

molecular cloning techniques (Chapter 4). 

Detailed structural characterisation employing a diverse range of biophysical 

approaches was conducted on recombinant full-length rE2 and rE2/E3BP 

(Chapter 5) as well as the CTD tE2/tE3BP (Chapter 6) cores. Determination of 

the stoichiometry of binding between E2/E3BP and E3 and its consequence on 

E2/E3BP core subunit composition was also investigated (Chapter 7). AUC and 

SAXS data for rE2/E3BP support the substitution model of core organisation. 

Solution structures of both recombinant (rE2/E3BP) and bovine (bE2/E3BP) cores 

determined by ab initio modelling of SAXS data indicate icosahedral hollow core 

structures with empty faces, reflecting their high structural similarity. In 

addition, their dodecahedral morphology was also confirmed by negative stain 

EM of rE2/E3BP, bE2/E3BP and rE2 cores. The maximum diameters (Dmax) of 

rE2/E3BP and bE2/E3BP obtained from SAXS are slightly greater than previously 

reported values, and probably reflect the inherent size variation (heterogeneity) 

that is symbolic of the ‘breathing’ of these massive complexes.  

The truncated E2/E3BP (tLi19/tLi30) core comprising only the CTD was designed, 

expressed, purified and characterised analogous to full-length rE2/E3BP 

(Chapter 6). Interestingly, a sedimentation coefficient similar to that for full-

length rE2/E3BP was obtained from AUC studies of tE2/tE3BP. Furthermore, 

while the SANS solution structure and negative stain EM of tE2/tE3BP confirmed 

the substitution model of core organisation, homology modelling with the tE2 of 

B. stearothermophilus (Izard, et al., 1999) revealed a highly conserved 

icosahedral framework. Initial crystallisation trials on tE2/E3BP proved 
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encouraging although further work is required to produce high quality diffracting 

protein crystals to examine the arrangement of E2/E3BP subunits within the 

central core assembly.  

In the case of the rE2/E3BP:rE3 complex, data obtained from AUC and GFC 

confirmed a 2:1 stoichiometry (Chapter 7). This is in agreement with previously 

published results from solution studies of the E3BP-DD:E3 sub-complex (Smolle, 

et al., 2006), and in contrast to the 1:1 stoichiometry observed in the crystal 

structure of the E3BP-XSBD:E3 sub-complex (Brautigam, et al., 2006; Ciszak, et 

al., 2006). However, given that the crystal structure involves a truncated 

construct of E3BP, it is possible that complex formation with E3 is mediated by 

different geometric constraints as opposed to those on the surface of the 

E2/E3BP core. Hence stoichiometry data obtained for the assembled E2/E3BP:E3 

complex are likely to be more biologically relevant. 

Interestingly, examination of a series of purified rE2/E3BP:dE3 complexes by 

SANS yielded 10E3 dimers bound per rE2/E3BP core at maximal occupancy, 

possibly indicative of a 1:1 stoichiometry. However, the 2:1 binding 

stoichiometry of E2/E3BP:E3 obtained using AUC and GFC along with subsequent 

biochemical [14C] radiolabelling studies indicated marked differences in core 

composition between the recombinant and bovine E2/E3BP assemblies (Chapter 

7). As a result of these studies and the quantitation of E3 binding sites by SANS it 

is proposed that recombinant core has an overall composition approaching 

40E2+20E3BP, in contrast to the 48E2+12E3BP substitution model proposed by 

Hiromasa and colleagues (2004). Thus evidence for variation in the composition 

between recombinant and bovine PDC cores has led us to propose a ‘variable 

E3BP substitution model’, wherein the number of E3BPs within the core can 

range from 0 to 20 depending on the availability of E3BP. While the rE2/E3BP 

used in this study possesses an increased number of E3BPs, approaching an 

average core composition of 40E2+20E3BP, the native bE2/E3BP assembly is 

estimated to have a stoichiometry of 48E2+12E3BP. This difference may be 

attributable to high levels of over-expression of E2 and E3BP in the recombinant 

system that drives maximum integration of E3BP, as opposed to conditions 

within the cell. Interestingly, mathematical models of core ogranisation reveal 

that 48E2+12E3BP cores could potentially exist in the highest number of final 

states differing in the distribution of E3BP around the icosahedron (Chapter 7), 
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further confirming the hypothesis that relative levels of expression of E2 and 

E3BP are tightly regulated in vivo (as opposed to the recombinant system), 

possibly in order to maximise formation of complete cores with optimal catalytic 

efficiency.  

As the icosahedral cores are composed of trimeric building blocks, an all E2 core 

(e.g. in B. stearothermophilus) is assembled from 20 E2 trimers. However, a 

substitution model of E2/E3BP core organisation entails the incorporation of 

heterotrimers (2E2+1E3BP), their number depending on the number of E3BPs 

within the core. The crystal structure of the truncated E2 core indicates strong 

inter-E2 trimer contacts being responsible for the stability of the overall 

icosahedral framework (Izard, et al., 1999). Moreover, changes in these inter-

trimer distances are proposed to be involved in the ‘breathing’ of these cores 

(Zhou, et al., 2001a). Analysis of the assessment of core stability of rE2/E3BP by 

unfolding studies using CD and fluorescence revealed interesting results with 

rE2/E3BP being less stable than rE2, indicative of a contribution of E3BP towards 

this destabilisation. Additionally, comparative analysis of recombinant full-

length and truncated E2/E3BP CD profiles pointed towards a significant 

contribution by the N-terminal flanking arms (comprising LDs, SBD and flexible 

linker regions) towards core destabilisation. To our knowledge, this is the first 

report demonstrating the influence of E3BP integration on overall core stability. 

Analysis of intrinsic tryptophan fluorescence during GdmCl-induced unfolding 

also indicated dissociation of the overall quarternary structure into possible 

trimers or monomers prior to the main unfolding event, complementing previous 

unfolding studies carried out on bE2/E3BP (McCartney, et al., 1997).  

The presence of a 2:1 stoichiometric arrangement on the core surface involving 

E2/E3BP interactions with E3 and possibly also E1 suggests the existence of 

‘cross-bridges’ that would precisely position the peripherally bound E1 and E3. 

Such an arrangement along with the empty pentagonal faces of E2/E3BP could 

facilitate interaction of the lipoyl swinging arms of E2 and E3BP with the active 

sites during catalysis. In addition to the LD of E3BP being active, it can interact 

individually with both E1 and E3 (Singh, 2008). This suggests a possible shared 

mechanism of interaction between the LDs, thus not requiring both E2- and 

E3BP-LDs to visit all active sites. It is also likely that the cross-bridge formation 
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would introduce constraints on the mobility of the N-terminal arms that may be 

necessary for efficient active site coupling and enhanced rates of catalysis.  

As PDC is regulated by 1-3 molecules of PDK and PDP, the cross bridge formation 

is proposed to enhance the migration of PDKs over the core surface via a 

suggested hand-over-hand mechanism (Liu, et al., 1995). Our ‘variable E3BP 

substitution model’ proposes the existence of a variable number of E3BPs 

( and ) within the E2/E3BP core. The various isoforms of PDK that 

regulate PDC are known to express in a tissue specific manner with differing 

specific activities (Bowker-Kinley, et al., 1998; Gudi, et al., 1995). While PDK1-3 

associate with E2-LD (inner or outer), PDK4 specifically interacts with E3BP-LD 

(Roche, et al., 2003). Hence, variation in core composition could have significant 

implications on these PDK interactions, possibly serving to fine tune PDC 

regulation in a tissue-specific manner. 

0≥ 20≤

A number of papers have been published on eukaryotic PDC core organisation 

over the last 20 years, with the aim of determining the exact locations of E3BP 

within the core. However, this is a challenging task and requires novel 

approaches to this problem. Furthermore, inherent heterogeneity of the core 

may pose problems for protein crystallisation. Although considerable progress in 

human PDC research has been made by our determination of the first ever SAXS 

solution structure of E2/E3BP core, the E2 subunits cannot be distinguished from 

E3BP within the core framework. However, SANS contrast variation, single 

molecule studies or cryo-EM of the E2/E3BP:E3 complex present viable 

alternatives for future experiments. These techniques would not only aid 

determination of the exact positions of E3BP within the core, but will further 

confirm our key finding of core variation implying that the PDC represents a 

population of assemblies containing a range of cores with different subunit 

compositions rather than a unique assembly with a defined composition. In 

addition, these techniques will confirm the hypothesis that the spatial 

organisation of PDC plays a crucial role in its efficient function and regulation. 



245 

Appendix 

 
 
Amino acid sequences of the cloned truncated constructs of E2 and E3BP are 

given below. The His-tag is denoted in blue. 

 
 
Truncated E2 – tLi19 in pET11b 
 
 
MAPAPAAVVPPTGPGMAPVPTGVFTDIPISNIRRVIAQRLMQSKQTIPHYYLSIDVNMGEVLLVR

KELNKILEGRSKISVNDFIIKASALACLKVPEANSSWMDTVIRQNHVVDVSVAVSTPAGLITPIVF

NAHIKGVETIANDVVSLATKAREGKLQPHEFQGGTFTISNLGMFGIKNFSAIINPPQACILAIGAS

EDKLVPADNEKGFDVASMMSVTLSCDHRVVDGAVGAQWLAEFRKYLEKPTTMLL 

 
 
Truncated E2 – tLi27 in pET14b 
 
 
MGSSHHHHHHSSGLVPRGSHMDSFVPSKVAPAPAAVVPPTGPGMAPVPTGVFTDIPISNIRRV

IAQRLMQSKQTIPHYYLSIDVNMGEVLLVRKELNKILEGRSKISVNDFIIKASALACLKVPEANSS

WMDTVIRQNHVVDVSVAVSTPAGLITPIVFNAHIKGVETIANDVVSLATKAREGKLQPHEFQGG

TFTISNLGMFGIKNFSAIINPPQACILAIGASEDKLVPADNEKGFDVASMMSVTLSCDHRVVDGA

VGAQWLAEFRKYLEKPITMLL 

 
 
Truncated E3BP – tLi30 in pET28b 
 
 
MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRDPSPLQATSGPSYPRPVIPPVSTPGQPNA

VGTFTEIPASNIRRVIAKRLTESKSTVPHAYATADCDLGAVLKVRQDLVKDDIKVSVNDFIIKAAA

VTLKQMPDVNVSWDGEGPKQLPFIDISVAVATDKGLLTPIIKDAAAKGIQEIADSVKALSKKARD

GKLLPEEYQGGSFSISNLGMFGIDEFTAVINPPQACILAVGRFRPVLKLTEDEEGNAKLQQRQLI

TVTMSSDSRVVDDELATRFLKSFKANLENPIRLA 
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