
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Kelly, Alan (2014) The optimisation of finite element meshes. PhD thesis.

http://theses.gla.ac.uk/5730/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5730/

The Optimisation of Finite Element
Meshes

Alan Kelly

Infrastructure & Environment Research Division
School of Engineering

University of Glasgow

Submitted in fulfilment of the requirements for the Degree of Doctor of
Philosophy

November 2014

Declaration

I declare that this thesis is a record of the original work carried out by myself under
the supervision of Professor Chris Pearce and Doctor Lukasz Kaczmarczyk in the In-
frastructure & Environment Division of the School of Engineering at the University of
Glasgow, United Kingdom. This research was undertaken during the period of October
2010 to April 2014. The copyright of this thesis belongs to the author under the terms
of the United Kingdom Copyright acts. Due acknowledgment must always be made of
the use of any material contained in, or derived from, this thesis. The thesis has not
been presented elsewhere in consideration for a higher degree.

Alan Kelly

Abstract

Among the several numerical methods1 which are available for solving complex prob-
lems in many areas of engineering and science such as structural analysis, fluid flow
and bio-mechanics, the Finite Element Method (FEM) is the most prominent. In the
context of these methods, high quality meshes can be crucial to obtaining accurate
results. Finite Element meshes are composed of elements and the quality of an element
can be described as a numerical measure which estimates the effect that the size/shape
of an element will have on the accuracy of an analysis. In this thesis, the strong link
between mesh geometry and the accuracy and efficiency of a simulation is explored
and it is shown that poor quality elements cause both interpolation errors and poor
conditioning of the global stiffness matrix.

Numerical optimisation is the process of maximising or minimising an objective func-
tion, subject to constraints on the solution. When this is applied to a finite element
mesh it is referred to as mesh optimisation, where the quality of the mesh is the objec-
tive function and the constraints include, for example, the domain geometry, maximum
element size, etc. A mesh optimisation strategy is developed with a particular focus
on optimising the quality of the worst elements in a mesh. Using both two and three
dimensional examples, the most efficient and effective combination of element quality
measure and objective function is found.

Many of the problems under consideration are characterised by very complex geome-
tries. The nodes lying on the surfaces of such meshes are typically treated as unmovable
by most mesh optimisation software. Techniques exist for moving such nodes as part of
the mesh optimisation process, however, the resulting mesh geometry and area/volume
is often not conserved. This means that the optimised mesh is no longer an accurate
discretisation of the original domain. Therefore, a method is developed and demon-
strated which optimises the positions of surface nodes while respecting the geometry
and area/volume of a domain.

At the heart of many of the problems being considered is the Arbitrary Lagrangian
Eulerian (ALE) formulation where the need to ensure mesh quality in an evolving mesh
is very important. In such a formulation, a method of determining the updated nodal
positions is required. Such a method is developed using mesh optimisation techniques
as part of the FE solution process and this is demonstrated using a two-dimensional,

axisymmetric simulation of a micro-fluid droplet subject to external excitation. While
better quality meshes were observed using this method, the time step collapsed resulting
in simulations requiring significantly more time to complete. The extension of this
method to incorporate adaptive re-meshing is also discussed.

1e.g. The Finite Element Method (FEM), the Finite Difference Method (FDM), the Boundary
Element Method (BEM), the Discrete Element Method (DEM) and the Finite Volume Method (FVM)

Acknowledgments

I would like to thank both of my supervisors Professor Chris Pearce and Doctor Łukasz
Kaczmarczyk for their help and support throughout my PhD. They were a constant
source of guidance, ideas, motivation and support throughout this project. I would
also like to thank them for their belief in me during tough times. Their experience and
judgement also proved invaluable at many times over the course of this research.

I would also like to thank my parents Colm and Patricia Kelly for their continued
support throughout this project and indeed throughout my education in general.

My colleagues and friends, Caroline, Ross, Dimitrios X., Ignatios, Graeme, Michael,
Dimitrios K., Xue, Ali, Euan M., Julien and James all deserve many thanks for their
help with my research and for the many fun times we shared in our office.

I would also like to thank my girlfriend Jeanne for her support and patience, especially
during the final stages of this project.

Contents

1 Introduction 1

2 Motivation 4
2.1 Errors induced by poor meshes . 4

2.1.1 Interpolation errors . 4
2.1.2 The approximation of functions on anisotropic meshes 7

2.1.2.1 Curvature adaptive meshing 8
2.1.3 The calculation of a metric field 10
2.1.4 Construction of a metric tensor using error indicators 11

2.1.4.1 Calculation of the metric tensor in multiple dimensions 14
2.1.4.2 Combining multiple metrics 14

2.1.5 Stiffness matrix conditioning . 17
2.1.5.1 Conclusions and recommendations 19

2.2 A review of current mesh optimisation software 19
2.2.1 A comparison between Mesquite and Stellar 20
2.2.2 Other mesh optimisation software 26

2.3 Summary . 27

3 The Quality of Finite Elements, Meshes and the Optimisation Pro-
cess 28
3.1 Introduction . 28

3.1.1 Numerical optimisation . 28
3.1.2 Problem definition . 30

3.2 Quality measures . 31
3.2.1 Area-length and volume-length quality measures 31
3.2.2 Ideal weight inverse mean ratio quality measure 32
3.2.3 Sine and Cosine quality measures 33
3.2.4 Spire tetrahedra . 33
3.2.5 The first and second derivatives of quality measures 35

3.2.5.1 Implementation of quality measures using standard FE
procedures . 40

3.2.5.2 Expressing quality measures as a function of the gradi-
ent of deformation . 44

3.2.6 Anisotropic quality measures . 49
3.3 Mesh quality objective functions . 49

3.3.1 Penalising the worst element . 51
3.3.2 Optimising the objective function 52
3.3.3 Termination of the optimisation process 53

3.4 Meshes . 53
3.5 Summary . 56

4 Unconstrained Mesh Optimisation Results and Discussion 60
4.1 Introduction . 60
4.2 Results . 60
4.3 Discussion . 72

4.3.1 2D Results . 72
4.3.2 3D Results . 73

5 Optimising Boundary Nodes 76
5.1 Classification of boundary nodes . 77
5.2 Movement of straight segment node . 78
5.3 Movement of surface nodes . 80

5.3.1 Surface quadrics . 80
5.3.2 Generating surface constraints from the discretised domain . . . 81

5.3.2.1 Derivation of the constraint equation 81
5.3.2.2 Enforcing the constraints 84

5.4 Summary . 86

6 Constrained Mesh Optimisation Results and Discussion 87
6.1 Introduction . 87
6.2 Results . 87
6.3 Discussion . 98

6.3.1 2D Results . 98
6.3.2 3D Results . 99

6.4 Conclusions . 100

7 Mesh Optimisation as Part of the Finite Element Solution Process 102
7.1 Introduction . 102

7.2 Mesh adaption techniques for large deformations 103
7.2.1 ALE mesh update procedures 105

7.3 Calculating ALE mesh velocities using mesh quality optimisation . . . 107
7.3.1 Overview . 108
7.3.2 Problems associated with Laplacian smoothing 109
7.3.3 Deformation of the fluid droplet 109
7.3.4 The governing equations . 110

7.3.4.1 The Navier-Stokes equations 110
7.3.4.2 The weak form of the Navier-Stokes equations 116
7.3.4.3 Surface tension and contact angle 116
7.3.4.4 The weak form of the surface tension and contact line

forces . 117
7.3.5 Implementation of the computational framework 118

7.3.5.1 Overview of the computational model 118
7.3.5.2 Discretisation of the governing equations and the ele-

ment stiffness matrix and force vector 119
7.3.5.3 The mesh optimisation equations 121
7.3.5.4 Newton-Raphson iterative solver 123
7.3.5.5 Boundary conditions 123
7.3.5.6 Adaptive time-step algorithm 124
7.3.5.7 Re-meshing algorithm 125

7.3.6 Results . 127
7.3.7 Maintaining mesh quality . 129

7.3.7.1 Results . 130
7.3.7.2 Conclusions . 144

8 Conclusions 145
8.1 Future work . 147

Appendix A Derivation of F and T 149

References 153

List of Tables

2.1 Interpolation and gradient interpolation errors 6
2.2 Numerical integration errors for each mesh 7

3.1 Formulae to calculate quantities associated with triangles/tetrahedra . 37

4.1 Layout of Results . 62

7.1 Comparison of Laplacian smoothing and mesh optimisation 128

List of Figures

2.1 The three meshes used to approximate the function f (x , y) = x 2 + 1
2
y2 5

2.2 Plot of analytical function, f (x , y) = x 2 + 1
2
y2 5

2.3 The element with the greatest gradient interpolation errors in Mesh 3 . 6
2.4 Plot of f(x, y) = x2 . 8
2.5 Intersection of metric tensors . 15
2.6 Non-Smooth Optimisation . 22
2.7 2-3 flip and 3-2 flip . 25
2.8 Mesh untangling . 26

3.1 Dihedral angles . 29
3.2 Examples of elements with good and poor dihedral angles 29
3.3 Jacobian matrix . 32
3.4 Contour plots of quality measures . 35
3.5 Quantities associated with triangles/tetrahedra 36
3.6 Gradient of deformation . 41
3.7 Initial and improved element . 42
3.8 Plot of the Log-Barrier function . 51
3.9 The quality of a mesh at each iteration of the optimisation process . . . 54
3.10 Meshes before improvement . 57

4.1 Unconstrained mesh optimisation results for "Hanging Droplet" 63
4.2 Unconstrained mesh optimisation results for "Oscillating Droplet" . . . 64
4.3 Unconstrained mesh optimisation results for "Square" 65
4.4 Unconstrained mesh optimisation results for "Cow" 66
4.5 Unconstrained mesh optimisation results for "Dragon" 67
4.6 Unconstrained mesh optimisation results for "rand2" 68
4.7 Unconstrained mesh optimisation results for "Graphite Brick" 69
4.8 Unconstrained mesh optimisation results for "Bone" 70
4.9 Unconstrained mesh optimisation results for "Pullout test" 71

4.10 The unconstrained mesh surface . 75

5.1 Example of constrained mesh optimisation 76
5.2 Boundary node classification . 77
5.3 Constrained gradient . 79
5.4 Constrained gradient when the axes do not align with the edge 79
5.5 Star . 82
5.6 Discretised and continuous domain . 83

6.1 Constrained mesh optimisation results for "Hanging Droplet" 89
6.2 Constrained mesh optimisation results for "Oscillating Droplet" 90
6.3 Constrained mesh optimisation results for Square" 91
6.4 Constrained mesh optimisation results for "Cow" 92
6.5 Constrained mesh optimisation results for "Dragon" 93
6.6 Constrained mesh optimisation results for "rand2" 94
6.7 Constrained mesh optimisation results for "Graphite Brick" 95
6.8 Constrained mesh optimisation results for "Bone" 96
6.9 Constrained mesh optimisation results for "Pullout Test" 97
6.10 Effectiveness of surface mesh improvement 101

7.1 Lagrangian description of motion . 103
7.2 Eulerian description of motion . 104
7.3 ALE Domain Mapping . 106
7.4 Evolution in the shape of a fluid droplet subject 110
7.5 Illustration of the contact line . 117
7.6 Element stiffness matrix, vector of unknowns and force vector 121
7.7 Boundary Conditions. 124
7.8 Node insertion/deletion . 126
7.9 Edge flip . 126
7.10 Initial droplet shape. 129
7.11 The log-barrier function applied to the updated quality measure 131
7.12 Plot of pressure and fluid velocity . 141
7.13 x and y components of fluid velocity 142
7.14 Range of Angles . 143

Chapter 1

Introduction

The Finite Element Method (FEM) and its many variants (Boundary Element Method,
Finite Volume Method etc) are the methods most often used for solving complex prob-
lems in many areas of science and engineering. These methods involve discretising the
domain into a mesh which is composed of elements. The choosen mesh can have a
significant impact on the accuracy of the solution [1], therefore it is crucial that the
best possible mesh is used. The quality of a mesh is a function of the quality of its
elements and the quality of an element can be described as a numerical measure which
estimates the effect that the size/shape of an element will have on the accuracy of
an analysis [1]. There is a strong link between mesh geometry and the accuracy and
efficiency of a simulation and it can be shown that poor quality elements can result in
both interpolation errors and poor conditioning of the stiffness matrix. In the extreme,
a single poor element can render a problem intractable. Therefore, a high quality mesh
is crucial to performing an analysis.

Mesh optimisation is the process of relocating the nodes of a mesh to increase its
quality. It is based on the techniques of numerical optimisation which is the process of
maximising or minimising an objective function, subject to constraints on the solution,
for example, the boundary of the mesh or the maximum element size. The field of
mesh optimisation is complex and has now become an area of research in its own
right. It is important to recognise that an analyst will not generally be an expert in
mesh optimisation. Therefore, in order to make the process of mesh optimisation more
straightforward, this project aims to create a set of tools which make it possible for
an analyst to improve a complex meshes used in actual simulations, in as simple a
manner as possible. This involves simplifying a very complex process; in this thesis
the problems encountered are explained and proposed solutions to these problems are

2

presented.

The motivation for this project has come from the problems encountered by colleagues
in my research group. This group is concerned with the computational modeling of
materials and structures, including fracture, microfluids, surface tension and biological
materials. These problems are characterised by evolving surfaces which consequently
require an evolving mesh that will enable the problems to be solved accurately and effi-
ciently. The initial mesh in such cases may be adequate for its intended purpose, how-
ever, during deformation its quality can quickly deteriorate to such an extent that nu-
merical errors become unacceptably large. Additionally, for complex three-dimensional
domains, automatic mesh generators do not always create meshes of sufficient quality
to ensure a satisfactory level of accuracy in the solution. In the problems mentioned
above, many numerical issues have been traced back to poor quality meshes and, al-
though there are a number of tools already available for improving mesh quality, none
of them have matched the needs of the group. Therefore, the decision was made to
develop a new set of tools, either via the modification of existing open-source software
or through the development of new tools.

In FE simulations, the mesh is required to conform to the shape of the domain, even in
cases where this may be quite complex. In fact such are the problems associated with
generating meshes of complex domains, the mesh generation process is the bottleneck
in many FE simulations [2], thus, mesh generators often struggle to produce suitable
meshes. Such meshes must therefore be optimised before being used in simulations.
In other simulations, the initial shape may be relatively straightforward, however, as
the simulation progresses, the domain undergoes large deformations. The mesh must
therefore adapt to the deformed domain which can rapidly lead to a deterioration in
the quality of the mesh, meaning that it must be optimised.

The optimisation of meshes of complex domains often presents an additional difficulty
- the worst elements in the mesh often have nodes on the boundary of the domain. The
relocation of these nodes, for the purposes of optimisation, must not alter the domain
shape or volume as doing so would adversely affect the accuracy of the simulation.
For example, in the modelling of free surface problems in micro-fluids (e.g. droplet of
water), surface tension must also be modelled. The positions of the surface nodes are
determined by the physics of the problem and therefore their movement is constrained,
i.e. the shape and the volume of the domain must be preserved in any mesh optimi-
sation procedure. Therefore a method of improving mesh quality by moving surface
nodes but without changing the shape or volume of the domain is necessary. Such a
method has been developed and is described in Chapter 6.

3

The movement of mesh nodes in many of the problems under consideration is deter-
mined using an Arbitrary Lagrangian Eulerian (ALE) formulation, where the need to
ensure mesh quality in an evolving mesh is very important. This is a form of finite
element analysis where the positions of the mesh nodes may be determined in a La-
grangian manner, whereby they track a material point or an Eulerian manner where
the mesh is fixed and the continuum moves with respect to the mesh or in some arbi-
trary combination of these [3]. As the mesh evolves, elements may become distorted,
leading to numerical issues. Therefore, the mesh must be improved regularly during
the analysis to limit the numerical errors associated with it. The problems associated
with re-meshing are discussed in Chapter 2, and it is shown why it is desirable to limit
re-meshing. However, this conflicts with the need to ensure that the adapted mesh is
of adequate quality. Therefore, a method of ensuring that the adapted mesh is both
compatible with physical equilibrium and is of adequate quality is required. The devel-
opment of such a method is described in Chapter 7. This is an example of a situation
where mesh optimisation and the solution of the physical problem must be considered
as a holistic process, and not as separate processes.

Many FE simulations involving the approximation of highly anisotropic functions. In
Chapter 2 the relationship between a function and the mesh used to discretise it is
explored. A quality measure suitable for assessing anisotropic elements is presented in
Chapter 3 as well as a method of adapting isotropic quality measures for use with
anisotropic elements. Although the focus of this research is on isotropic meshes,
all of the algorithms and techniques presented are suitable for use with anisotropic
meshes.

Chapter 2

Motivation

The primary goal of this project is to develop a methodology to reduce the numerical
errors associated with poor quality meshes used in finite element analyses. In order
to achieve this, it is necessary to first understand the source of these errors and also
evaluate the strength and deficiencies of current mesh optimisation techniques and
software in order to focus the research in the correct direction. The next section will
show how the chosen mesh geometry directly affects the magnitude of interpolation
errors and the conditioning of the stiffness matrix assembled from the mesh.

2.1 Errors induced by poor meshes

2.1.1 Interpolation errors

The seminal paper of Shewchuk [1] derives bounds for both interpolation and gradient
interpolation errors. In this important paper, large angles are found to be the source of
both interpolation and gradient interpolation errors. Following Shewchuk [1], a simple
numerical experiment is presented here which demonstrates why large angles are so
detrimental to the accuracy of an interpolated function.

Let T be a triangular mesh with a continuous scalar function f (x , y), defined in the
domain of the mesh and let g(x , y) be a piecewise linear approximation of f (x , y)

with g(xi , yi) = f (xi , yi), where (xi, yi) is the Cartesian coordinate of node i. There-
fore, ∇g(x, y) is piecewise constant. Three different meshes, Figure 2.1, are used to
approximate the function f (x , y) = x 2 + 1

2
y2 in the domain −0.5 ≤ x ≤ 0.5 and

2.1. Errors induced by poor meshes 5

Figure 2.1: The three meshes used to approximate the function f (x , y) = x 2 + 1
2
y2 .

Each mesh is of the same domain which is indicated on the central mesh,
−0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5, and has 200 triangles.

Figure 2.2: Plot of analytical function, f (x , y) = x 2 + 1
2
y2

−0.5 ≤ y ≤ 0.5. Each mesh contains 200 triangles. The mesh on the left consists of
isosceles triangles with no extreme angles, the middle mesh has small angles but no
angle greater than 90◦ and the mesh on the right has both large and small angles. The
triangles in the central mesh are stretched in the x direction and squeezed in the y
direction. This effect is enhanced for mesh 3. The function being approximated is a
smooth, strictly convex function and it can be seen that mesh 1 provides a very good
approximation of the actual function, which is shown in Figure 2.2. Mesh 2 performs
only slightly worse than the first; when compared with Figure 2.2 it can be seen that it
provides a reasonable approximation of f(x, y), although not as good as that provided
by mesh 1. This is due to the presence of longer edges in mesh 2. However, it can
clearly be seen that mesh 3 performs very poorly. This is due to the presence of large
angles.

To quantify these interpolation errors, it is useful to compare the analytical function
with the interpolated function at the centroid of each triangle for all three meshes.
Similarly, it is helpful to compare the analytical gradient with its interpolated counter-
part. The greatest interpolation error and gradient interpolation error for each mesh

2.1. Errors induced by poor meshes 6

Mesh 1 Mesh 2 Mesh 3

%|f−gf |max 1.31 3.77 39.5

% |∇f−∇g||∇f | max
4.55 6.72 613.73

Table 2.1: The greatest percentage interpolation and gradient interpolation error for
each of the three meshes in Figure 2.1.

Figure 2.3: The element with the greatest gradient interpolation errors in Mesh 3.
Function values are indicated at the vertices and the interpolated function value is
shown.

is shown in Table 2.1. The largest interpolation error for mesh 1 is 1.3%, mesh 2 per-
forms slightly worse at 3.77% whereas the error for mesh 3 is almost 40%. The gradient
interpolation errors tell a similar story. Mesh 1 approximates the gradient within 5%

of the analytical value and mesh 2 is within 7% of the analytical value. However, the
greatest gradient interpolation error on mesh 3 is over 600%, rendering the approxi-
mation of this function and its gradient worthless. This simple example demonstrates
just how great an effect large angles can have on the accuracy of interpolated functions
and on their gradients. In many problems, for example, deformation of materials, the
gradient of the primary function (i.e. strain) is more important than the function itself.
Therefore the accuracy of the interpolated gradients are also of primary interest.

The source of these errors can be investigated by examining the element of Mesh 3
which gave the greatest gradient interpolation errors, Figure 2.3. The value of the
function is shown at each node and the value shown at the midpoint of the bottom
edge is the interpolated value, 0.255+0.005

2
. This interpolated value is independent of the

value of the top node. As the angle at the top node approaches 180◦, it becomes closer
and closer to the interpolated point. Therefore the vertical component of ∇g rapidly
becomes very large making it a very poor approximation of ∇f even though f = g at
each node.

Consider now the numerical integration of the function f over the domain. The effect of

2.1. Errors induced by poor meshes 7

Mesh 1 Mesh 2 Mesh 3

% error -2.0 -5.5 -20.874

Table 2.2: Numerical integration errors for each mesh

extreme internal angles is now demonstrated. A three point integration rule is adopted
which is sufficient to accurately integrate the function that is approximated using
linear interpolation functions. Thus any errors will be the result of an interpolation
error rather than insufficient integration points.

The larger an angle, the longer the edge opposite it, thus the larger the interpolation
error. It is trivial to analytically integrate the chosen function to get an exact answer.
Table 2.2 compares exact integration of the function with the numerical result. The
solutions for both Meshes 1 and 2 are reasonably accurate whereas the solution obtained
for Mesh 3 is very inaccurate. In the context of the Finite Element method, this
simple experiment clearly shows the need for high quality meshes as the quality of
the solution deteriorates rapidly as the quality of the mesh deteriorates. It is worth
noting that, in this very simple case, the use of quadratic elements instead of linear
elements would have yielded the correct solution. However in practice the function
being approximated can be orders of magnitude greater than the interpolation function
or not a polynomial.

These simple numerical experiments clearly demonstrate how the presence of large
angles in meshes can lead to errors in the FE solution.

2.1.2 The approximation of functions on anisotropic meshes

Many physical problems which are analysed using FEA involve functions whose so-
lutions vary significantly more in one direction than in the others [4]. Equilateral
elements are well suited to solution fields that vary equally in every direction however,
the use of isotropic elements in problems where the solution is highly anisotropic will
result in meshes which are prohibitedly large [5]. For example, problems involving
boundary layers and shock waves or flow problems with high Reynold’s number often
exhibit significant anisotropy. It may be advantageous to the accuracy and efficiency
of the numerical solution of such problems to use an anisotropic mesh. Furthermore,
the degree of anisotropy may vary over the entire mesh, meaning the definition of the
ideal element may be a function of the position of the element in the mesh. This is

2.1. Errors induced by poor meshes 8

Figure 2.4: (a) Plot of the function f(x, y) = x2. and (b) its discretisation using Mesh
3.

also true for functions which vary equally in each direction, as the magnitude of this
variation may change from point to point, meaning that although equilateral elements
may be suitable throughout the mesh, the size of the ideal element may vary according
to the position in the mesh.

In the previous section, the interpolation errors for three different meshes used to
approximate a function, f(x, y) = x2 + y2

2
, were quantified. The curvature of this

function is both a function of position and direction. It was concluded in the previous
section that large angles lead to interpolation errors, and thus errors in the FE solution.
This is because the edge opposite a large angle is much longer than the other two edges
of the element. However, if the function being approximated is constant or varies
linearly over this edge, the presence of the large angle does not introduce errors.

This concept may be demonstrated by examining the function f(x, y) = x2, Figure 2.4.
This function is constant in the y direction, therefore the approximation of this function
using Mesh 3 is in fact quite accurate, despite Mesh 3 between completely unsuitable
in the previous example. This means that the choice of mesh is heavily influenced
by the function it must approximate. If the curvature of the function is isotropic,
then isotropic elements should be used. For functions whose curvature is anisotropic,
anisotropic elements, when correctly orientated, may be the most suitable. This is
because elements can be stretched to adapt to features which are of equal or lower
dimensionality than the element shape functions [6]. This then leads to the concept
of curvature adaptive meshing where the size, shape and orientation of elements is
chosen so as to account for the curvature of the function being approximated on the
mesh.

2.1.2.1 Curvature adaptive meshing

In the previous section it was shown that the suitability of a mesh for interpolating
a function is intrinsically linked to the curvature of the function that the mesh is ap-

2.1. Errors induced by poor meshes 9

proximating. This means that the mesh generation and optimisation processes should,
where possible, take this into account. The curvature of the underlying function may be
accounted for by defining a metric field, which is discussed in detail in the Section 2.1.3,
based on a computed solution on an existing mesh of a domain [7]. This is then used
as an input to a suitable mesh generation or optimisation package [5]. For example, in
a steady-state problem, where the solution does not change with time, a solution may
be obtained using an isotropic mesh. Using this solution, a metric field is then defined
and used to either re-mesh all or part of the domain or to optimise the mesh. The
problem is then solved again using the new mesh. This process may be repeated until
a satisfactory solution is obtained. Such a technique is suitable for problems where the
computational cost is relatively low thus allowing for multiple iterations of the solution
process on continuously improving meshes. However, the computational cost of solving
many interesting problems is such that this technique would be too expensive.

Schoen [2] proposes an alternative technique where the problem is solved on a coarse
isotropic mesh to obtain a rough estimate of the solution. Using metrics derived from
this mesh, a finer anisotropic mesh may be generated and a much more accurate solution
obtained. However, important features of the solution may not be captured by the
coarse mesh [6], thus they would not be accounted for by this process. This method
may be quite effective for repetitive steady-state calculations but it is not at all suitable
for transient problems [6] where the solution changes with time, such as the problem
studied in Chapter 7. This is both for cost and accuracy reasons. In such a problem,
the solution is calculated at intervals, or time-steps, using the solution at the previous
time-step. The solution at the start time is calculated using the initial conditions. A
metric field is calculated using the computed solution and the mesh is adapted. At
this stage, either the solution is re-calculated using the adapted mesh, or the solution
at the following time-step is calculated. In either case, a solution must be transferred
from an existing mesh to the new mesh. As shown in Section 2.1.1, the interpolation
of a solution from one mesh to another is a source of errors, thus, this would lead to an
inaccurate solution. At the starting time, the inital conditions may be applied to an
adapted mesh, such as in a steady-state problem, without any errors. This is because
the intial conditions are generally defined on the undiscretised domain, and not on
the discretised domain as is the case at intermediate time-steps. This is also true for
some steady-state problems where the load may be applied in stages so that the entire
solution path may be traced and to limit the accumulation of solution errors [8]. In
the following sections, the process of calculating a metric field is explained and several
possible methods proposed in the literature of adapting a mesh based on the metric
field are described.

2.1. Errors induced by poor meshes 10

2.1.3 The calculation of a metric field

A metric tensor is a function for calculating the distance between any two points in a
space [9]. Therefore, the explanation of a metric tensor requires the formal definition
of length [10]. The definition of length in a metric space requires both the metric used
to define the space and a suitable definition of the dot product. For any point P in Rd,
a metric tensor is a d×d symmetric positive definite matrixM(P). In two dimensions,
M(P) takes the following form:

M(P) =

(
a b

b c

)
(2.1)

where a > 0 and c > 0 and its determinant ac−b2 > 0. This tensor must be symmetric
positive definite so that its geometric representation is an ellipse [5]. The coefficients
of the metric depend on the position P . This induces a Riemannian structure over Rd.
If the coefficients of this matrix do not depend on P then the classical Euclidean case
is defined, where the metric is not a function of position [10].

Using equation 2.1, the dot product for a given metric M(P) in Euclidean space for
two vectors u and v is defined as:

〈u,v〉M(P) = uTM(P)v (2.2)

Using the standard Euclidean norm, the norm of a vector is defined as:

‖u‖ =
√
〈u,u〉M(P) =

√
uTM(P)u (2.3)

The calculation of the length of a vector is more complicated when the metric is a
function of the point P . For example, take a vector u connecting points a and b. To
calculate the length of this vector, the metrics at both a and b and each intermediate
metric must be considered [11]. This is achieved by using a parameterised segment,
γ(t) = a+ tu. Therefore the length of a vector connecting two points, where the metric
is a function of position is defined in equation 2.4.

lM(u) =

∫ 1

0

√
uTM(t)u (2.4)

The is in contrast to the method presented by Thompson et al [7] where the length of
a vector is calculated using the average of the metric at both nodes.

2.1. Errors induced by poor meshes 11

2.1.4 Construction of a metric tensor using error indicators

The most common method of calculating metric tensors for use on finite element meshes
involves analysing error indicators. The simplest error indicator is obtained by evaluat-
ing the jump or absolute difference of the variable being interpolated along an edge [6].
A much more common method involves estimating the approximation error of the dis-
cretised function. Assuming the function is smooth, the error may be estimated to one
order greater than the order of the element shape functions [6]. The aim of this process
is to construct a metric which gives a homogeneous distribution of the interpolation
error over the entire mesh. This will be done in one dimension using a regular function
u which is defined on the segment [a, b]. Let h be the length of segment [a, b] which
is not necessarily small and Πhu be the P1 interpolation of the function u on [a, b]

meaning that it is linear and piecewise continuous [12].

The following derivation is adapted from Frey and George [10]. As the interpolation
scheme is of P1 type, the interpolation error is related to the variation of the various
variables being approximated on [a, b] and in particular, to their gradients and Hessians.
The function and its approximation are equal at a and b meaning that Πhu(a) = u(a)

and Πhu(b) = u(b). The approximation error is defined as e(x) = u(x)−Πhu(x).

Consider the function Πhu on the segment [Πh(a),Πh(b)]] which is the linear approx-
imation of the function u on the segment between a and b. It is assumed that the
computed solution is quite close to the actual solution. This analysis is based on a
variation of Taylor’s formula. Since h is not necessarily small, a formula of the type
shown in equation 2.5 is preferable to a standard Taylor series expansion [10].

f(x) = f(a) + (a− x)f ′(x) +
(a− x)2

2
f ′′(x+ t(a− x)) (2.5)

where t, defined on the segment [0, 1], is a function of both x and a. For this analysis,
f is defined as (u−Πhu)(x) = u(x)− uh(x) on the segment [a, b]. Therefore the error
at point a is approximated using equation 2.6.

e(a) = (u−Πhu)(a) = (u−Πhu)(x)+(a−x)(u−Πhu)′(x)+
(a− x)2

2
(u−Πhu)′′(x+t1(a−x))

(2.6)
However, as previously stated, the function u and its approximation Πhu are equal
at a meaning that the left hand side is zero. This yields the following simplified
expression:

0 = (u− Πhu)(x) + (a− x)(u− Πhu)′(x) +
(a− x)2

2
(u− Πhu)′′(x+ t1(a− x)) (2.7)

2.1. Errors induced by poor meshes 12

As the largest interpolation error is of interest here, the extremum x where (u −
Πhu)′(x) = 0 is sought. Therefore this expression may be further simplified.

0 = (u− Πhu)(x) +
(a− x)2

2
(u− Πhu)′′(x+ t1(a− x)) (2.8)

A similar expression for b may also be constructed:

0 = (u− Πhu)(x) +
(b− x)2

2
(u− Πhu)′′(x+ t2(b− x)) (2.9)

Adding equations 2.8 and 2.9 gives:

0 = 2(u−Πhu)(x)+
(a− x)2

2
(u−Πhu)′′(x+t1(a−x))+

(b− x)2

2
(u−Πhu)′′(x+t2(b−x))

(2.10)
Let M be the majorant of u′′ on the segment [a, b]. Therefore:

|(u− Πhu)(x)| ≤ 1

2

(
(a− x)2

2
+

(b− x)2

2

)
M (2.11)

Then:

|(u− Πhu)(x)| ≤ 1

4
max
x∈[a,b]

(
(a− x)2 + (b− x)2

)
M (2.12)

The maximum is reached for a+b
2
, implying that, ∀x ∈ [a, b]:

|e(x)| = |(u− Πhu)(x)| ≤ (b− a)2

8
M (2.13)

The value of (b−a)2

8
M is compared with a given value ε, which is the maximum allowable

error or the maximum allowed gap between the function u and its linear approximation
Πhu. In many transient problems this error tolerance may be required to vary over the
domain [6]. The calculation of M via the recovery of the Hessian on the segment [a, b]

is described in the next section.

Hessian recovery

The next step in developing a metric tensor based on error analysis involves recovering
the Hessian of the function being approximated. The following derivation is adapted
from Löhner [6]. This method involves the assumption that the Hessian may be ex-
pressed using shape functions Ñ. Therefore:

∂2u

∂s2
≈ Ñu′′ (2.14)

2.1. Errors induced by poor meshes 13

where u is the nodal values of u and u′′ is the nodal values of the Hessian of u. The
direction s at which the derivative is taken with respect to is arbitrary and could refer
to x, y or z. The second assumption is that the function u may be expressed using
shape functions. Therefore:

u ≈ Nu (2.15a)
∂u

∂s
≈ ∂N

∂s
u (2.15b)

∂2u

∂s2
≈ ∂2N

∂s2
u (2.15c)

Combining equations 2.14 and 2.15(c) gives:

Ñu′′ ≈ ∂2N

∂s2
u (2.16)

This is then weighted with shape functions w:∫
Ω

wT ÑdΩu′′ =

∫
Ω

wT ∂
2N

∂s2
dΩu (2.17)

The right hand side is then integrated by parts to give:∫
Ω

wT ÑdΩu′′ = −
∫

Ω

∂wT

∂s

∂N

∂s
dΩu +

∫
Γ

wTn
∂N

∂s
dΓu (2.18)

where n is the unit normal. For the special case corresponding to the Galerkin weighted
residual method, where W = Ñ = N:

Mu′′ =

∫
Ω

NTNdΩu′′ = −
∫

Ω

∂NT

∂s

∂N

∂s
dΩu +

∫
Γ

NTn
∂N

∂s
dΓu (2.19)

This derivation is valid in one, two or three dimensions.

Calculating a metric tensor using the Hessian

With the Hessian recovered on the segment [a, b], the error may now be calculated using
equation 2.13. If the error is below the threshold, ε, then the segment [a, b] provides
a suitable discretisation of the function u between a and b. If the calculated error
is greater than the threshold, then the target edge length h may be calculated using
equation 2.20.

h =

√
8ε

M
(2.20)

2.1. Errors induced by poor meshes 14

where M is the majorant of u′′ on [a, b]. The required metric is then calculated as
follows:

M =
Id
h2

(2.21)

2.1.4.1 Calculation of the metric tensor in multiple dimensions

The metric tensor may also be calculated in two or three dimensions [10] in the same
manner as for the one-dimensional case shown in the previous section. In two dimen-
sions the metric is a 2× 2 matrix which may be diagonalised as follows:

M = R

(
λ1 0

0 λ2

)
R−1 (2.22)

where R is a rotation matrix and λ1 and λ2 are the eigenvalues ofM. This corresponds
to an ellipse in the coordinate system defined by R:

λ1

ε
x2 +

λ2

ε
y2 = 1 (2.23)

where ε is the acceptable error. The interpolation error of the function u on any triangle
either lying on or within this ellipse is less than or equal to ε in any direction.

2.1.4.2 Combining multiple metrics

Many FE simulations involve solving for several variables on the same mesh. Therefore,
the mesh must be suitable for the interpolation of each variable, thus it must account
for the different anisotropy that each variable may exhibit. A metric must be calculated
for each variable and these must be combined into a unique metric which reflects the
nature of its constituent metrics [10].

Consider the intersection of two metrics in two-dimensions and their respective ellipses.
This may be extended to three dimensions using ellipsoids. The desired solution is a
metric associated with the two original metrics. In general, the result is not an ellipse,
therefore an ellipse which fits inside the intersection area is used [10]. This is referred
to as an intersection metric. Different solutions exist, depending on the choice of ellipse
within the intersection region. The largest ellipse fitting within this region may be used
or the direction of one of the initial ellipses may be preserved.

2.1. Errors induced by poor meshes 15

Figure 2.5: Intersection of two metrics,M1 ∩M2. (a) The simultaneous reduction of
two metrics and (b) the reduction of two metrics preserving the directions ofM2,
adapted from [10].

Simultaneous reduction of two metrics:

Let M1 and M2 be the two metrics and their respective ellipses may be expressed
as:

uTM1u = λ1x
2 + λ2y

2 = 1 uTM2u = µ1x
2 + µ2y

2 = 1 (2.24)

where λi and µi are the eigenvalues of M1 and M2 respectively. The intersection
metric, (M1 ∩M2), is defined as:

(M1 ∩M2) = P−T

(
max(λ1, µ1) 0

0 max(λ2, µ2)

)
P−1 (2.25)

As the two metrics may have different canonical bases, they must be mapped to that
associated with the simultaneous reduction of the two metrics using the matrix P. This
is illustrated in Figure 2.5(a). When more then two metrics are defined at a point, their
simultaneous reduction is defined as:

(M1 ∩ · · · ∩Mq) = ((· · · ((M1 ∩M2) ∩M3) ∩ · · ·) ∩Mq) (2.26)

2.1. Errors induced by poor meshes 16

Metric intersection preserving specific directions:

The simultaneous reduction of two metrics described above does not preserve the di-
rections of either of the initial metrics. If this is of interest, the directions of one of
the initial metrics may be preserved by finding the maximal ellipse with the required
directions within the intersection region. For example, in Figure 2.5(b) the directions
ofM2 are preserved. The intersection metric is defined as:

(M1 ∩M2) = ωM1 (2.27)

where ω = max(
µ1
λ1
, µ2λ2 , 1).

Modifying a mesh based on a metric field

In this section several methods of modifying a mesh based on a metric field are de-
scribed. The simplest method involves re-meshing the domain using the metric field
and a suitable mesh generator. Adaptive mesh refinement and coarsening may also be
used where nodes are added to zones of high curvature and removed from zones of low
curvature. A new triangulation is then calculated. Both of these methods involve large
amounts of interpolation from the original mesh to the new mesh.

A more sophisticated method is mesh adaptation which is the process of modifying a
mesh based on a computed solution so as to more accurately capture features of the
solution, without significantly increasing the number of degrees of freedom. Li et al [5]
describes a mesh adaptation procedure involving node insertions and removals and edge
and face swapping operations based on a calculated metric field. This algorithm takes as
input a minimum and maximum allowed edge length and iteratively corrects each edge
in the mesh until the length of as many edges as possible in the transformed space is
within the required range. The anisotropic mesh smoothing procedure described by Li
et al [13] is then applied. This mesh smoothing algorithm takes as input the piecewise
metric field defined on each node and a threshold value. It adjusts the position of
each node connected to an edge whose length is outside the required range. For the
purposes of mesh smoothing, several alternatives methods have been proposed in the
literature for calculating the length of an edge in a metric space to that presented in
equation 2.4. Jiao et al [14] propose taking the average value of the metric at every
neighbour of a node where as Buscaglia et al [15] propose taking the metric with the
greatest determinant.

In the previous sections the interpolation errors associated with poor quality meshes

2.1. Errors induced by poor meshes 17

were explained and the notion that the defintion of an ideal element, in terms of
interpolation errors, can vary from point to point and may not be isotropic. In the
following section, the effect that poor quality elements can have on the conditioning of
a finite element stiffness matrix is discussed.

2.1.5 Stiffness matrix conditioning

Shewchuk [1] also examines the mathematical relationship between both element shape
and size and the condition number of a FE stiffness matrix. In the FEM, the stiffness
matrix represents the system of linear equations that must be solved to obtain an
approximate solution to the governing partial differential equation:

Ku = −f (2.28)

where K is the global of system stiffness matrix. K is assembled from the stiffness
matrix of each element ki in the mesh.

K =
n

A
i=1

ki (2.29)

where A is the standard assembly operator and n is the number of elements in the
mesh. Shewchuk concludes that both large and small angles can cause the stiffness
matrix to be poorly conditioned. The condition number of a matrix, κ, is defined
as:

κ =
λmax
λmin

(2.30)

where λmax and λmin are the largest and smallest eigenvalues of the matrix. A matrix
with a large condition number means that the linear system is harder to solve. This is
because if κ = 10k, then one can expect to lose k digits of precision in solving the linear
system [16] for the type of sparse matrices generally encountered in FE simulations. If
the condition number is greater than machine precision, the system is unsolvable. As
it approaches machine precision, accuracy is lost by a direct solver and the time taken
for an iterative solver to obtain a solution increases.

λmin is tied to the properties of the physical system being modelled and to the sizes
of the elements with its lower and upper bounds proportional to the area/volume of
smallest/largest elements [1]. This suggests that mesh generators should aim to create
uniform mesh. However, this is not always possible as element size is often dictated

2.1. Errors induced by poor meshes 18

by physical and computational requirements. This is further complicated by the need
to require a mesh to reflect an evolving problem, such as the development of a large
strain. For efficiency and computational reasons it is not sensible to refine an entire
mesh to the level of local refinement required near these large gradients. Therefore, the
analyst typically has very limited control over the size of elements (and so λmin) during
the mesh generation and refinement stages. For this reason it is prudent to focus on
minimising λmax, which is largely influenced by element shape. λmax has been shown
to be limited to a scalar multiple of the greatest element stiffness matrix eigenvalue by
the expression, [1]:

max
i
λimax ≤ λKmax ≤ m max

i
λimax (2.31)

Where λimax is the largest eigenvalue associated with ith element’s stiffness matrix,
λKmax is the largest global stiffness matrix eigenvalue and m is the maximum number
of elements which correspond with one node. Therefore λmax can be made arbitrarily
large by one poorly shaped element. The mesh optimisation strategy adopted in this
thesis is drawn from this statement, to optimise a mesh so that the quality of the worst
element reaches an acceptable level.

Shewchuk [1] derives a quality measure which directly limits the magnitude of the
largest eigenvalue to a narrow bound. This is done for an element stiffness matrix
assembled from the Poisson equation which in two dimensions is 3 × 3 for triangular
elements and in three dimensions is 4 × 4 for a tetrahedral element. For the two
dimensional case, an expression for the roots of the characteristic polynomial, i.e. the
eigenvalues, is derived. In the three dimensional case, the characteristic polynomial is
too complex for the roots to be found. Furthermore, the first derivative and, depending
on the type of solver being used, the second derivative, of a function are required to
optimise a mesh based on that function. It will be shown in Chapter 3 how complex the
derivatives of multi-dimensional functions can be. A typical FE stiffness matrix for a
two dimensional element used in stress analysis is a 6×6 matrix, for a three-dimensional
tetrahedron it is a 12 × 12 matrix. The composition of this matrix strongly depends
on the physical equations being solved, thus making it impossible to derive a general
expression. Instead it would be necessary to derive a separate expression for every type
of analysis being performed. Also, the calculation of an expression for the eigenvalues
of such a matrix would be extremely complicated and such an expression, if successfully
derived, would be unsuitable for use as part of the mesh optimisation process due to its
complexity. Therefore, it is neither practicable nor realistic to optimise a mesh based
on an expression for its eigenvalues, although it is an interesting theoretical exercise.

2.2. A review of current mesh optimisation software 19

It is only possible to optimise a function which closely correlates to the maximum
eigenvalue of the element stiffness matrix. Many such measures exist and these are
discussed in the next chapter.

2.1.5.1 Conclusions and recommendations

It is clear from the previous two sections that poor quality meshes can lead to many
problems with FEA. Re-meshing is often used during an analysis to eliminate poor
quality elements; however, the data must be transferred using interpolation from the
poor mesh to the new mesh, thus introducing errors. This is also true if a poor mesh
is optimised, although the amount of interpolation will be less. Regardless of which
technique is used to heal poor quality meshes, numerical errors will be introduced.
Therefore it is desirable to begin an analysis with the highest quality mesh possible,
through a combination of a high quality mesh generation algorithm and optimisation.
In the case that a mesh is forced to evolve during an analysis, the mesh quality must
be maintained as much as possible throughout the evolution process.

2.2 A review of current mesh optimisation software

Perhaps the two state of the art mesh optimisation packages available today are
Mesquite [17] and Stellar [18] and this thesis will focus attention on them and compare
them with the algorithms and numerical tools developed herein. In this section, the
very different mesh optimisation strategies adopted by each of these packages will be
discussed and the reasons behind the decision to develop new tools will be explained.
The terms mesh optimisation, mesh improvement and mesh smoothing are often used
interchangeably. To ensure clarity in the rest of this thesis each of these terms shall be
defined using the definitions supplied by Knupp [19]:

• Mesh Smoothing: The term smoothing refers to methods for relocating a mesh’s
nodes which are not based on optimisation techniques.

• Mesh Optimisation: The process of finding the optimal position of mesh nodes
without changing the mesh connectivity.

• Mesh Improvement: The process of improving the quality of a mesh. This in-
cludes mesh optimisation and topological transformations.

Other terms which are used throughout this thesis are defined below:

2.2. A review of current mesh optimisation software 20

• Connectivity: An element’s connectivity is the list of nodes which define it.

• Topological transformation: The process of modifying the topology of a mesh.
This includes modifying the connectivity of elements and node insertion or re-
moval.

• Inverted element: An inverted element is an element whose Jacobian matrix has
a negative determinant.

• Solution space: All the elements which are affected by moving a node.

2.2.1 A comparison between Mesquite and Stellar

Overview

Stellar was written by Bryan Klingner as part of his PhD thesis, [18]. The goal of
Stellar is to bring the worst element in a three dimensional tetrahedral mesh to an
acceptable quality, regardless of the time taken to achieve this. Stellar uses both mesh
optimisation and topological transformations to improve a mesh. Stellar does not have
two dimensional functionality, although two dimensional analogues exist for most of its
algorithms.

The Mesh Quality Improvement Toolkit (Mesquite), is a software library which pro-
vides many mesh optimisation algorithms to improve the quality of meshes. Mesquite is
part of the Interoperable Tools for Advanced Petascale Simulations framework (ITAPS)
which aims to provide high quality, reusable, robust and reliable tools to manage the
complexities associated with sophisticated simulations [20]. Being part of this frame-
work allows for easy integration with any of the other components of the framework, for
example the Mesh Oriented Database (MOAB), [21], which provides a powerful inter-
face for accessing and modifying meshes. This eliminates many of the complexities and
inefficiencies associated with working with multiple libraries and greatly reduces the
time taken to build a simulation tool. Mesquite is compatible with many different ele-
ment types, both linear and quadratic, in two and three dimensions. Mesquite’s design
fully exploits the principles of object oriented programming making it easy to add new
components. For this reason it is the ideal platform for the testing and development
of new mesh optimisation algorithms.

2.2. A review of current mesh optimisation software 21

Quality measures

Quality measures are discussed in depth in Chapter 3, however, a brief overview of the
quality measures included in each package is given here. Stellar provides the user with
a choice of three quality measures, the volume-length ratio, the minimum sine measure,
which are discussed in detail in the following chapter, and the radius ratio which is
defined as the ratio of a tetrahedron’s circumsphere to to its insphere. Klingner [18]
concludes the radius ratio is not very effective and does not recommend its use. Good
results are demonstrated using the other two measures.

Mesquite incorporates a large selection of quality measures, for many element types in
both two and three dimensions. Different quality measures aim to optimise different
criteria depending on the user’s requirements. The user can easily add their own quality
measure if the existing ones do not adequately meet their needs.

Objective functions

An objective function is a means of expressing the quality of an entire mesh or a group
of elements as one number, a scalar. The choice of objective function is crucial to
obtaining high quality results.

Stellar uses the non-smooth optimisation algorithm developed by Freitag, Jones and
Plassmann [22]. Numerical optimisation is the process of maximising or minimising
an objective function. When this is applied to a mesh, it is referred to as mesh op-
timisation and the objective function is the quality of the mesh. A typical objective
function is composed of the sum of the quality of every element in the mesh. If such
an objective function is optimised, the average element quality will be increased. How-
ever, there is no guarantee that the worst element will be improved, it may even be
made worse, as one poor element will have little impact on the value of an objective
function where the average value dominates. In an extreme case, some elements may
even be inverted. Non-smooth optimisation was developed to counter this deficiency
of traditional objective functions.

Non-smooth optimisation defines the quality of a mesh, hence its objective function,
as the quality of its worst element. There may be more than one element with the
same worst quality. Such an algorithm attempts to improve the worst element until it
is no longer the worst. The is done by optimising the position of each of its connected
nodes, one by one. Figure 2.6 shows a 2D situation with 5 triangular elements, where

2.2. A review of current mesh optimisation software 22

Figure 2.6: Non-Smooth Optimisation

more than one element has the same worst quality connected to the free node. In this
case, the quality of elements 1,2 and 3 are equal, q1 = q2 = q3. Elements 4 and 5 are
of higher quality. The green arrows are vectors illustrating the relative gradient of the
quality of elements 1-3 for the free node. A convex hull (shown in blue) is constructed
using these vectors. The search direction, d, is the line connecting the free node and
the closest point on the boundary of the convex hull. At this stage, how the quality of
the elements is defined is not important. If the free node lies within the convex hull, it
is not possible to improve the elements [22]. As the objective function does not depend
on the quality of element’s 4 and 5, a method of determining when element’s 1,2 or 3
are no longer the worst in the solution space is needed. This is achieved using a Taylor
Series expansion to approximate how the quality of every element is affected as the
free node is moved along d. This gives an estimate of how far the free node may be
moved along d without reducing the quality of one of elements 1,2 or 3 or the quality
of element 4 or 5 becomes the worst in the solution space. This technique has been
shown to be very powerful by Freitag [23].

Mesquite provides the user with a choice of objective functions, including non-smooth
optimisation. However, objective functions studied in this thesis are restricted to those
which are compatible with Newton-type solvers, i.e. twice differentiable functions of
nodal positions, as algorithms which may be integrated into the FE solution process are
required. Non-smooth optimisation, although proven to be very effective, unfortunately
does not fall into this category. This means that Mesquite has only one objective
function which is suitable, the LP objective function:

Q =
n∑
i=1

qpi (2.32)

2.2. A review of current mesh optimisation software 23

where qi is the quality of the ith element, n is the number of elements and p is a user
defined integer power which is greater than or equal to one. This measure is a smooth,
twice differentiable function, as required. Extensive experimentation by the author
has shown that the use of a higher power than unity (p > 1) with the LP objective
function is of no benefit in terms of maximising the quality of the worst element in
a mesh. It has also been found by the author that using p > 1 is significantly more
computationally expensive. This may be due to the additional expense involved in
calculating the objective function, its gradient and its Hessian. This is demonstrated
in equations 2.33c(a-c) where expressions for the Lp objective function, its gradient and
Hessian are given. In the case where p = 1, these are significantly simplified. However,
when p > 1, it is clear that the calculation is much more complicated.

Q =
n∑
i=1

qpi (2.33a)

∇Q =
n∑
i=1

pqp−1∇qi (2.33b)

∇2Q =
n∑
i=1

p(p− 1)qp−2∇qi∇qTi + pqp−1∇2q (2.33c)

Boundary nodes

One of the most difficult aspects of mesh optimisation is the movement of boundary
nodes. This topic is covered in detail in Chapter 5. At present it is sufficient to say
that Stellar and Mesquite attempt to deal with boundary nodes in very different ways.
The movement of nodes on simple boundaries such as straight edges or planar surfaces
is straight forward and is explained in Chapter 5. However, the movement of nodes
on curved surfaces is much more difficult. Stellar moves boundary nodes by allowing
them to deviate from the original surfaces by a user defined tolerance. Stellar makes
no attempt to preserve domain volume when moving such nodes, it assumes that small
changes are acceptable. Mesquite, on the other hand, cannot move nodes which lie
on complex curved surfaces unless geometrical information relating to the continuous
domain is supplied. If no such information is available, these boundary nodes are
deemed unmovable.

2.2. A review of current mesh optimisation software 24

User control and ease of integration with existing projects

A configuration file is supplied with Stellar giving the user basic control over aspects
of the improvement process such as the choice of quality measure, which improvement
operations are used and element size control. However, the user has very limited
control over the optimisation process. To properly control many aspects of the mesh
optimisation process, the user must make modifications to the source code. Conversely,
Mesquite gives the user full control over the entire mesh optimisation process and when
it should terminate. Default options are preselected and wrapper classes are supplied
for novice users but more experienced users can easily control the entire process.

Many mesh generation packages (e.g. Cubit [24]) allow for data such as boundary
conditions to be added to the mesh as part of the generation process. This data will
be lost when a mesh is added to Stellar due to its inability to store such data. While
it is possible to overcome this disadvantage via modification of Stellar’s source code,
Stellar also makes changes to the mesh topology and adds/removes nodes (operations
the user has very limited control over) in a manner which is very difficult to track. The
use of computational techniques, such as a k-dimensional tree [25], to transfer the data
from the original mesh to the optimised mesh is theoretically possible, but in reality it
is both demanding in terms of time and user effort.

Mesquite is part of the ITAPS framework and thus is fully compatible with the ITAPS
common interface. This makes it simple to integrate efficiently into existing projects
built around this framework whilst minimising duplication of data stored in memory.
This is ideal if the user wishes to perform mesh optimisation outside of an existing
analysis, however, in the case where a user wishes to optimise a mesh whilst simulta-
neously solving a finite element problem is not so straightforward, as Mesquite uses
its own custom data types to store the optimisation data. From an efficiency stand-
point, the use of custom data types can be very beneficial, however, from a flexibility
and compatibility standpoint, they are problematic. These data types cannot simply
be cast to standard data types due to the particular intricacies of the chosen storage
pattern. This requires the user to extract the required data and manually convert it.
Although a competent programmer can comfortably do this, it is both laborious and
inefficient.

2.2. A review of current mesh optimisation software 25

Figure 2.7: 2-3 flip and 3-2 flip, adapted from [26].

Topological transformations

This is arguably Stellar’s defining feature. Stellar has very powerful topological trans-
formation functionality and it is the benchmark in this regard. There are two categories
of topological transformation: those that preserve the number of nodes in the mesh and
those that don’t. For example, a 2-3 or 3-2 flip, Figure 2.7, are performed when two
tetrahedrons share a face or three tetrahedrons share an edge. The numbers refer to the
number of original tetrahedrons and the number of tetrahedrons after the operation.
In the case of a 2-3 flip, two tetrahedrons which meet at a face are replaced by three
tetrahedrons sharing an edge. If the new configuration results in a better mesh, than it
is kept, otherwise the mesh is returned to its former state. Stellar employs many other
sophisticated topological transformations which are described in [26] and [18].

Mesquite does not currently support topological transformations although its archi-
tecture does allow for the future addition of such features. Mesquite documentation
states that this is a future goal but the developers are currently focused on further
development of the mesh optimisation algorithms. If one wishes to improve a mesh
independent of a finite element solution process, the use of topological transformations
may be beneficial once care is taken to limit the change in nodal density and the num-
ber of elements. However, if topological transformations are used as part of a finite
element solution process, non-linearities are introduced which may severely hinder or
even render the entire solution process intractable.

2.2. A review of current mesh optimisation software 26

Figure 2.8: Mesh untangling

Mesh untangling

Mesh untangling is required when the initial mesh contains inverted elements, for
example the two-dimensional case shown in Figure 2.8(a). Mesquite contains a quality
measure which aims to untangle meshes. It must be noted that after untangling a mesh
using this quality measure, the mesh may not be optimal, Figure 2.8(b) as this quality
measure only aims to untangle the mesh. The resulting mesh should then be optimised
using a standard quality measure. In contrast, it is a requirement of Stellar that the
initial mesh be untangled.

Summary

Although Stellar and Mesquite have the same end goal, they adopt very different
approaches. Stellar is very powerful and produces very high quality meshes. However,
it is not at all suited to the needs of a finite element analyst. Nevertheless, as an
academic resource to demonstrate the possibility of what may be achieved by mesh
improvement operations and as a comparison tool to appraise the quality of a mesh
improvement operation it is invaluable. It also worth noting that Stellar is the work
of one PhD student, Dr. Bryan Klingner, whereas Mesquite is developed by a team of
researchers and developers.

2.2.2 Other mesh optimisation software

CGAL: Computational Geometry Algorithms Library (CGAL) [27] is an open-source
computational geometry library developed by a partnership between several universi-
ties and industry. This library includes mesh generation and optimisation functionality.

2.3. Summary 27

Its optimisation routines are based on Lloyd’s algorithm which involves constructing
the Voronoi tessellation of the mesh nodes, computing their mass centroids and relo-
cating each node to the centre of its corresponding Voronoi cell [28]. The Delaunay
triangulation of the relocated nodes is then calculated.

2.3 Summary

In this section the sources of many errors associated with Finite Element meshes were
introduced and discussed. The use of anisotropic elements to reduce interpolation
errors was also discussed. In the following chapter, the quality of elements, meshes and
and the mesh optimisation process are described. Isotropic element quality measures
are focussed on, however, an anisotropic quality measure is proposed. All of the mesh
optimisation techniques proposed in this thesis are compatible with anisotropic quality
measures.

Chapter 3

The Quality of Finite Elements, Meshes
and the Optimisation Process

3.1 Introduction

Finite element meshes represent the discretisation of a domain and are composed of
elements, often triangles (2D) or tetrahedra (3D), and are used to form approxima-
tions of functions. The quality of an element is a measure of how suitable it is for
approximating a particular function. It is shown in Chapter 2 that, of all the factors
influencing the quality of the approximation of a function by an element, the internal
angles (triangular elements) and dihedral angles (tetrahedral elements) are of most
importance. A dihedral angle is the angle formed between two faces of a tetrahedron,
Figure 3.1. Examples of elements with dihedral angles ranging from very small to very
large are shown in Figure 3.2. Red elements have extreme dihedral angles (either very
small or very large) whereas green elements contain no extreme dihedral angles.

3.1.1 Numerical optimisation

Constrained optimisation is the process of maximising or minimising an objective func-
tion subject to some constraints. In the context of a mesh, optimisation is the process
of finding the best possible position for each of its nodes. In order to optimise a mesh it
is necessary to be able to quantify its quality in order to make an absolute and relative
assessment. This also allows the ideal element to be mathematically defined. There-
fore two things are required: first a means of expressing the quality of an element as a

3.1. Introduction 29

Figure 3.1: There are six dihedral angles in a tetrahedron. These are the angles
formed between the faces, for example, φ1.

Figure 3.2: Examples of elements with good and poor dihedral angles. The elements
on the left all contain either small or large dihedral angles. The elements on the right
contain no extreme dihedral angles.

3.1. Introduction 30

function of its nodal positions and second, a means of expressing the quality of a group
of elements using one number - the objective function. It is this objective function
which must be maximised or minimised, depending on the nature of the quality mea-
sure. In the following two chapters, various quality measures and objective functions
will be investigated in order to find the combination which best meets the author’s
needs.

3.1.2 Problem definition

Mesh optimisation:

In order to choose the best combination of quality measure and objective function, it
is necessary to define the aims of the optimisation process:

• To develop a general mesh optimisation framework which can be applied to a
wide variety of problems with little user intervention.

• To simplify as much as possible the mesh optimisation process to enable non-
expert users to quickly and reliably optimise meshes. For example, mesh gener-
ation packages often produce poor quality meshes when presented with complex
domains typical of many engineering problems.

• To address the limitations of the current state of the art mesh optimisation pack-
ages discussed in the previous chapter, thus making advancements and contribut-
ing to the field of mesh optimisation.

Mesh optimisation as part of the FE solution process:

An additional goal of this project is to optimise meshes as part of the FE solution
process. In particular, this thesis is concerned with physically non-linear problems
where the domain, and therefore also the mesh, evolves during the solution process.
This involves coupling the mesh optimisation equations with the physical equations.
The equations governing the physical problem and the optimisation process are solved
monolithically so as to maintain the quality of meshes during the analysis process,
in order to minimise the numerical errors induced by poor meshes. The range of
optimisation procedures available is greatly limited in this case due to the requirement
that the chosen optimisation strategy be compatible with the solution process for the
physical equations. For example, topology modification and node insertion/deletions

3.2. Quality measures 31

operations should generally be avoided as these can adversely affect the solution of the
physical equations by introducing large non-linearities which the solver may not be
able to overcome. Secondly, the chosen quality measure and objective function must
both be smooth, twice differentiable functions of the nodal positions in order to be
compatible with the Newton solver typically used to solve the non-linear systems of
equations governing the physical problem. Although this thesis aims to contribute to
the field of mesh optimisation as a separate process, the focus is on the limited range
of operations that are compatible with monolithic mesh optimisation. Although mesh
optimisation as a separate process is immensely useful, the eventual goal is to apply
the knowledge gained in implementing this, thus making it possible to perform mesh
optimisation as part of a monolithic solution process.

3.2 Quality measures

Finding a suitable quality measure that provides an accurate estimate of how well an
element approximates a function in terms of minimising the discretisation/interpolation
errors and stiffness matrix conditioning is challenging and is a very active area of
research in itself. The aim of this thesis dictates that any quality measures used must
be smooth, twice differentiable and reasonably cheap to calculate so that it may be
used as part of a monolithic FE simulation. In the following sections, several quality
measures will be examined. To aid visualisation, their 2D versions are studied, although
the conclusions drawn are applicable to 3D.

3.2.1 Area-length and volume-length quality measures

The area-length quality measure (AL), and its three-dimensional analogue the volume-
length quality measure (VL), is a smooth function of an element’s nodal positions,
it ranges between -1 and 1, is positive for non-inverted elements and is unity for an
equilateral element. The contour plot of the AL quality measure in Figure 3.4a is
created by fixing two of a triangle’s three nodes and moving the third in the x − y

plane. It reaches a maximum when the triangle is equilateral. This function is both
smooth and convex in the neighbourhood of its maximum. This means that its matrix
of second derivatives, or its Hessian, will be positive definite thus making it ideal for
use with an implicit solver.

3.2. Quality measures 32

Figure 3.3: Quantities for calculating the element Jacobian matrix.

3.2.2 Ideal weight inverse mean ratio quality measure

Mesquite provides several quality measures which are based on the element Jacobian
matrix are these are discussed in detail by Knupp [29]. The Jacobian is defined in
equation 3.1 for a 2D triangular element. The variables used in this equation are
illustrated in Figure 3.3.

J =

(
x0 − x2 x1 − x2

y0 − y2 y1 − y2

)
(3.1)

The Jacobian based quality measure most discussed in the literature is the Ideal
Weight Inverse Mean Ratio (IMR). It has been shown to be effective by Munson [30]
and is recommended in Mesquite’s User Guide [17]. For these reasons this measure is
studied here in further detail as an example of a Jacobian based measure. The IMR
quality measure is defined as:

q =
‖AW−1‖2

F

2|det(AW−1)|
(3.2)

where W is the Jacobian matrix of an ideal element, as defined by the user, and A

is the element Jacobian matrix. The norm used in the numerator of this equation is
a Frobenius norm which is defined for a matrix as (

∑
ij |aij|2)

1
2 . In general the ideal

element is taken to be equilateral. However, it is worth noting that this is not essential
if the application requires that elements have a particular bias. The IMR quality
measure varies from unity, when the original element is the same shape as the ideal
element, to infinity. In the contour plot of this measure, Figure 3.4g, we can see that
this function is very steep in the periphery of the ideal position and flattens rapidly

3.2. Quality measures 33

in proximity to the equilateral position. This means that it has very small gradients
when its quality is in the range 1-1.75, therefore only very poor quality elements are
punished. In a similar manner to the AL, this function is convex in the neighbourhood
of its minimum thus, making it ideal for use with implicit solvers.

3.2.3 Sine and Cosine quality measures

The two measures introduced so far do not directly attack poor internal or dihedral
angles, although it has been shown by [18] and [30] that these measures are effective.
Several quality measures exist which express the quality of an element in terms of
its internal or dihedral angles, for example the sines and cosines of these angles. In
these cases, each triangular element has three quality measures and each tetrahedral
element has six, corresponding to the number of internal or dihedral angles. This
clearly represents a large increase in the computational cost associated with optimising
meshes based on such measures. While the quality measures themselves are not hugely
expensive to calculate, this is not the case for their first and second derivatives. Both
sine and cosine measures vary between −1 and +1. With non-inverted elements, only
angles in the range 0◦ − 180◦ occur, so when using a sine measure, only values in the
range of 0 to 1 are encountered, whereas with the cosine measure the range is −1 to
+1. The latter has the advantage that of distinguishing between acute and obtuse
angles, whereas the former does not discriminate. This may be useful in some cases,
for example if one wishes to eliminate obtuse angles more than acute angles. However,
this may be achieved indirectly using a sine measure by applying relative weights to
acute/obtuse angles. Despite this disadvantage of the sine measure, it is significantly
easier to optimise meshes based on this measure as the sine of an angle is always
positive in the range 0 − 180◦, which is the range of interest, thus reserving negative
qualities for inverted elements. This means inverted elements are easily identified. The
sine of each of a triangle’s three angles is plotted in Figure 3.4(b)-(d). The sum of
these is shown in Figure 3.4e. Similar to the IMR quality measure, the magnitude of
the gradient of this function is relatively small in the neighbourhood of its minimum,
in contrast to the AL quality measure which is much larger.

3.2.4 Spire tetrahedra

It is well known that the sum of the angles in a triangle is always 180◦. However,
no such equivalent exist for tetrahedrons; instead, the sum of the dihedral angles of a

3.2. Quality measures 34

(a) Contour plot of the 2D area-length ratio for a triangle with vertices (0,0), (1,0) and
(x,y).

(b) θ0 (c) θ1 (d) θ2

Contour plot of the sine of each of a triangle’s three angles, θ0, θ1 and θ2, for a
triangle with vertices (0,0), (1,0) and (x,y).

(e) Contour plot of the sum of the three sines for a triangle with vertices (0,0), (1,0) and
(x,y). This function reaches a maximum when the triangle is equilateral and has been
divided by three to keep it in the range 0− 1.

(f) Element quality

Figure 3.4

3.2. Quality measures 35

(g) Contour plot of the ideal weight inverse mean ratio for a triangle with vertices (0,0),
(1,0) and (x,y). This function reaches a minimum when the triangle is equilateral.

Figure 3.4: Contour plot of element quality measures

tetrahedron lies in the range 2π − 3π. This means that poor quality spire tetrahedra
can form in locations where a node is free to move a very large distance without
affecting the boundary of the domain or the quality of neighbouring elements. Spire
tetrahedra are long and skinny and have very good dihedral angles. An example
of a spire tetrahedra is shown in Figure 3.2. The use of a quality measure which
only considers the dihedral angles, such as the sine quality measure, encourages their
formation whereas the VL quality measure and the IMR quality measure will severely
punish them. In certain applications spire tetrahedra do not cause any problems, [18],
but generally their presence causes severe problems. In practice, spire tetrahedra are
rarely encountered when using the sine measure as the quality of neighbouring elements
is usually very poor. They are generally only found when the surface of a mesh is
unconstrained and a surface node is associated with only one element. This means that
the node may move an arbitrarily long distance resulting in a spire tetrahedron.

3.2.5 The first and second derivatives of quality measures

In order to optimise a mesh using the three quality measures introduced in the pre-
vious section, the first and second derivatives (i.e. their gradients and Hessians) of
these functions must be derived. Although these may be approximated using finite
differences, calculating them analytically is much more accurate, especially in the case
of the second derivative, and generally much cheaper. The first derivative of the VL
quality measure and the sine quality measure in 3D are given in [18], however it was
necessary to derive the remaining first derivatives and all the second derivatives in

3.2. Quality measures 36

Figure 3.5: Quantities associated with triangles/tetrahedra. a, b, c and d are the
nodal coordinates, li is the length of edge i, Ai is the area of face i, t = a - d, u = b -
d, and v = c - d are the edge vectors, A is the area of a triangular element and V is
the volume of a tetrahedral element and ~n(not shown) are the outward pointing
normals from each face. Formulas for computing these quantities are given Table 3.1

order to complete this work. Mesquite is adopted as a platform for testing the qual-
ity measures as its modular architecture allows for the easy integration of additional
quality measures, as described in the previous chapter. The IMR quality measure is
included with Mesquite, so it is not necessary to calculate its derivatives.

Two dimensions

The sine of the angle formed between edges i and j can be expressed as:

qi,jsine =
2A

lilj (3.3)

3.2. Quality measures 37

Triangle Tetrahedron
t a− c t a− d

u b− c u b− d

v c− d

lac |t| lad |t|

lbc |u| lbd |u|

lab |a− b| lcd |v|

lab |a− b|

lac |a− c|

lbc |b− c|

lrms

√
1
3
(l2ac + l2bc + l2ac) lrms

√
1
6
(l2ad + l2bd + l2cd + l2ab + l2ac + l2bc)

~na u× v

~nb v× t

~nc t× u

~nd (u-v)× (t-v)

Aa
|~na|

2

Ab
|~nb|

2

Ac
|~nc|

2

Ad
|~nd|

2

A
|t×u|

2 V
det(tuv)

6

Table 3.1: Formulae to calculate quantities associated with triangles/tetrahedra

3.2. Quality measures 38

Its gradient, where the gradient operator (∇) of a function q is given as∇q =

(
∂q

∂x
,
∂q

∂y

)T
,

can be expressed as:

∇qi,jsine = 2

(
∇A
lilj
− A∇lj

lil2j
− A∇li

l2i lj

)
(3.4)

and its Hessian can be expressed as:

∇2qi,jsine = 2

(
∇2A

lili
−
∇A∇lTj
lil2j

− ∇A∇l
T
i

l2i lj

−
∇A∇lTj
lil2j

− A∇2lj
lil2j

+
A∇lj∇lTi
l2i l

2
j

+
2A∇lj∇lTj

lil3j

−∇A∇l
T
i

l2i lj
− A∇2li

l2i lj
+
A∇li∇lTj
l2i l

2
j

+
2A∇li∇lTi

l3i lj

) (3.5)

where: ∇2q =

∂2q

∂x2

∂2q

∂x∂y
∂2q

∂x∂y

∂2q

∂y2

The Area-Length (AL) quality measure can be expressed as:

qAL =
4√
3

A

l2rms (3.6)

Its gradient can be expressed as:

∇qAL =
4√
3

(
∇A
l2rms
− 2A∇lrms

l3rms

)
(3.7)

and its Hessian can be expressed as:

∇2qAL =
∇2A

l2rms
− 2∇A∇lTrms

l3rms

− 2∇A∇lTrms
l3rms

− 2A∇2lrms
l3rms

+
6A∇lrms∇lTrms

l4rms

(3.8)

3.2. Quality measures 39

Three Dimensions

The sine of the dihedral angle formed between faces i and j of a tetrahedron can be
expressed as:

qi,jsine =
3

2

V lij
AiAj (3.9)

where li,j is the length of the edge connecting node i and node j. Its gradient can be
expressed as:

∇qi,jsine =
3

2

(
lkl∇V
AaAb

+
V∇l
AaAb

− V lkl∇Ab
AaA2

b

− V lkl∇Aa
A2
aAb

)
(3.10)

and its Hessian can be expressed as:

∇2qi,jsine =
3

2

(
∇lkl∇V T

AaAb
+
lkl∇2V

AaAb
− lkl∇V∇TAb

AaA2
b

− lkl∇V∇TAa
A2
aAb

+
∇V T∇lkl
AaAb

+
V∇2lkl
AaAb

− V∇lkl∇TAb
AaA2

b

− V∇lkl∇TAa
A2
aAb

− l∇V∇A
T
b

AaA2
b

− V∇lkl∇ATb
AaA2

b

− V lkl∇2Ab
AaA2

b

+
V lkl∇Ab∇ATa

A2
aA

2
b

+
2V lkl∇Ab∇ATb

AaA3
b

− l∇V∇A
T
a

A2
aAb

− V∇lkl∇ATa
A2
aAb

− V lkl∇2Aa
A2
aAb

+
V lkl∇Aa∇ATb

A2
aA

2
b

+
2V lkl∇Aa∇ATa

A3
aAb

)
(3.11)

The Volume-Length (VL) quality measure can be expressed as:

qV L = 6
√

2
V

l3rms (3.12)

Its gradient can be expressed as:

∇qV L = 6
√

2

(
∇V
l3rms
− 3V∇lrms

l4rms

)
(3.13)

3.2. Quality measures 40

and its Hessian can be expressed as:

∇2qV L = 6
√

2

(
∇2V

l3rms
− 3∇A∇lTrms

l4rms

−3∇V∇lTrms
l4rms

− 3V∇2lrms
l4rms

+
12V∇lrms∇lTrms

l5rms

) (3.14)

It can be seen that the sine quality measure and its derivatives in both two and three-
dimensions is much more expensive to compute than the AL or VL quality measure.
It must also be calculated for each angle, thus in two-dimensions it must be calculated
three times and in three dimensions, six times. In the following chapter it is determined
if the additional computational expense associated with optimising a mesh using the
sine measure results in higher quality meshes.

3.2.5.1 Implementation of quality measures using standard FE procedures

Given the focus of this work on improving meshes for the Finite Element Method, it
is useful to draw a comparison between the mechanics of large deformations and the
process of modifying a mesh in order to improve its quality. This allows mesh opti-
misation to be implemented using standard finite element procedures that are already
used in the context of solid mechanics. This represents a novel contribution of this
thesis.

In solid mechanics, the deformation gradient H is a tensor that quantifies the 2D and
3D shape change of an element, as well as overall rotation. It is defined such that a
material line segment dχ deforms into the new line segment dX, so that:

H =
∂X

∂χ
(3.15)

This is shown graphically in Figure 3.6. Using standard isoparametric elements (with
n nodes per element) to discretise the domain, the geometry of the original elements

3.2. Quality measures 41

Figure 3.6: The gradient of deformation H, which is used to map from the original
mesh to the improved mesh is applied to each of the edge vectors. χ refers to the
edge vector of the original element and X to the edge vector of the improved element.

and the improved elements are defined as:

χ =
n∑

α=1

Nαχα (3.16a)

X =
n∑

α=1

NαXα (3.16b)

where χa are the nodal coordinates of the original element, Xa the nodal coordinates
of the improved element and Na are the standard finite element shape functions which

satisfy the condition
n∑

α=1

Na = 1. The shape functions are typically defined with respect

to a local coordinate system (ξ). For example, for a three noded triangular element,
Na are linear:

N1 = 1− ξ1 − ξ2

N2 = ξ1

N3 = ξ2

Given 3.16b, the deformation gradient is therefore:

H =
∂X

∂χ
=

n∑
α=1

Xα
∂Nα

∂χ
(3.18)

or more conveniently:

Hi,J =
n∑

α=1

Xα,i
∂Nα

∂χJ
(3.19)

3.2. Quality measures 42

Figure 3.7: Initial and improved element

Consider the following two-dimensional example where H is calculated.

The derivative of the shape functions, Nα, with respect to the initial coordinates, χ,
may be expressed as:

∂Na

∂χ
=

(
∂χ

∂ξ

)−T
∂Na

∂ξ
(3.20)

Given 3.16a,

∂χ

∂ξ
=

[
∂χ1

∂ξ1

∂χ1

∂ξ2
∂χ2

∂ξ1

∂χ2

∂ξ2

]
;

∂χI
∂ξa

=
n∑

α=1

χα,I
∂Nα

∂ξa
(3.21)

For this example,

∂N1

∂ξ1
= −1

∂N2

∂ξ1
= 1

∂N3

∂ξ1
= 0

∂N1

∂ξ2
= −1

∂N2

∂ξ2
= 0

∂N3

∂ξ2
= 1

(3.22)

3.2. Quality measures 43

Given the problem shown in Figure 3.7,

∂χ

∂ξ
=

[
0× (−1) + 4× 1 + 0× 0 0× (−1) + 4× 0 + 0× 1

0× (−1) + 0× 1 + 3× 0 0× (−1) + 0× 0 + 3× 1

]

=

[
4 0

0 3

] (3.23)

From 3.20,

∂N1

∂χ
=

1

12

[
3 0

0 4

](
−1

−1

)
=
−1

12

(
3

4

)
∂N2

∂χ
=

1

12

[
3 0

0 4

](
1

0

)
=

1

12

(
3

0

)
∂N3

∂χ
=

1

12

[
3 0

0 4

](
0

1

)
=

1

12

(
0

4

) (3.24)

Therefore, from 3.19 and 3.24,

H =
1

12

[
3× (−3) + 7× 3 + 5× 0 3× (−4) + 7× 0 + 5× 4

4× (−3) + 4× 3 + 5.752× 0 4× (−4) + 4× 0 + 5.732× 4

]

=
1

12

[
12 8

0 6.928

]
=

[
1 2

3

0 0.5773

]
(3.25)

This second order tensor can now be used to transform a vector from the initial mesh
to the improved mesh.

3.2. Quality measures 44

3.2.5.2 Expressing quality measures as a function of the gradient of deforma-
tion

In this section, expressions are developed for the AL and VL quality measures and
their derivatives as functions of the gradient of deformation. Consider the AL quality
measure, recalling equation 3.6:

q =
4√
3

A

l2rms

The area of the improved element may be expressed with respect to the area of the
original element using the gradient of deformation tensor:

A = A0 det(H) (3.26)

Therefore, by combining equations 3.6 and 3.26, the AL quality measure can be ex-
pressed as:

q =
4√
3

A0 det(H)

l2rms
(3.27)

The first and second derivatives of this equation are now required so that a mesh may
be optimised using this quality measure. Therefore, the derivatives of det(H) and l2rms
with respect to the gradient of deformation must be developed.

The following derivation is adapted from Bonet and Wood [31]. Here, the rate of change
of a function, f , in the direction of a vector v, is determined. This is the so-called
directional derivative, denoted as Df [v].

Ddet(H)[δX] =
∂

∂ε

∣∣∣
ε=0
det

(
H + ε

∂δX

∂χ

)
=

∂

∂ε

∣∣∣
ε=0

det

[
H

(
I + εH−1∂δX

∂χ

)]
= det(H)

∂

∂ε

∣∣∣
ε=0

det

(
I + εH−1∂δX

∂χ

) (3.28)

where I is the identity tensor,
∂δX

∂χ
is the derivative of Equation 3.15 and ε represents

an infinitely small change in the function [31]. The characteristic polynomial of a 3×3

3.2. Quality measures 45

matrix B with eigenvalues λB1 , λB2 and λB3 is

det(B− λI) = (λB1 − λ)(λB2 − λ)(λB3 − λ) (3.29)

Taking λ as −1 and B = εH−1 ∂δX
∂χ

gives

D det(H)[δX] = det(H)
∂

∂ε

∣∣∣
ε=0

(1 + ελ1) (1 + ελ2) (1 + ελ3) (3.30)

where λ1, λ2 and λ2 are the eigenvalues of εH−1δX. Using the product rule gives

D det(H)[δX] = det(H) (λ1 + λ2 + λ3) (3.31)

As the trace of a matrix is equal to the sum of its eigenvalues,

D det(H)[δX] = det(H)tr
(
H-1∂δX

∂χ

)
= det(H)

(
H-T :

∂δX

∂χ

) (3.32)

The double contraction operator (:) introduced above is defined as

A : B = tr(ATB)

In order to derive the derivative of l2rms with respect to the gradient of deformation, it
must first be possible to express it as a function of H. In two-dimensions, lrms may be
expressed as:

lrms =

√√√√1

3

3∑
i=1

l2i (3.33)

As shown in Table 3.1, li is simply the norm of the edge vector. A vector norm may
also be expressed using the square root of the dot product of the vector with itself.
Using the same notation as in Figure 3.6, the length of edge ∆Xi is

li =
√

∆XT
i ∆Xi (3.34)

From equation 3.15, ∆Xi = H∆χ. Therefore, li may be expressed as:

3.2. Quality measures 46

li =
√

∆χT
i H

TH∆χi (3.35)

and l2i as

l2i = ∆χT
i H

TH∆χi (3.36)

Using the standard product rule of differentiation the following expression is devel-
oped:

D(HTH)(δX) =

(
∂δX

∂χ

)T

H + HT
(
∂δX

∂χ

)
(3.37)

Using this expression, a derivative for li can now be developed.

D(li)[δX] =
1

2li

(
∆χT

i

(
∂δX

∂χ

T

H + HT∂δX

∂χ

)
∆χi

)
=

1

2li

(
∆χT

i

∂δX

∂χ

T

H∆χi + ∆χT
i H

T∂δX

∂χ
∆χi

)
=

1

2li

(
∆χT

i

∂δX

∂χ

T

∆Xi + ∆XT
i

∂δX

∂χ
∆χi

)
=

1

2li

((
∂δX

∂χ

)T

: ∆χi∆XT
i + ∆Xi∆χ

T
i :

(
∂δX

∂χ

))

=
1

li
∆Xi∆χ

T
i :

(
∂δX

∂χ

)
(3.38)

Therefore, the derivative of l2i may be expressed as:

D(l2i)[δX] = 2∆Xi∆χ
T
i :

∂δX

∂χ

T

(3.39)

Using equation 3.39, an expression for the derivative of l2rms may be developed.

lrms =

√√√√1

3

3∑
i=1

l2i (3.40)

3.2. Quality measures 47

D(lrms)[δX] =
1

3lrms

3∑
i=1

∆Xi∆χ
T
i :

∂δX

∂χ
(3.41)

D(l2rms)[δX] =
2

3

3∑
i=1

∆Xi∆χ
T
i :

∂δX

∂χ
(3.42)

Using equations 3.32 and 3.42 and the standard quotient rule of differentiation, an
expression for the first directional derivative of the AL quality measure can now be
developed:

D(qAL)[δX] =
4√
3

A0 det(H)

l2rms

(
H-T − 2

3l2rms

3∑
i=1

∆Xi∆χ
T
i

)
:
∂δX

∂χ
(3.43)

and the first derivative of the VL quality measure may be expressed as:

D(qV L)[δX] = 6
√

2
V0 det(H)

l3rms

(
H-T − 1

2l2rms

6∑
i=1

∆Xi∆χ
T
i

)
:
∂δX

∂χ
(3.44)

In order to derive the second directional derivative of the AL quality measure, a deriva-
tive of H-T must be found. This is achieved using the product rule and noting that
the directional derivative of the identity tensor is the null tensor and starting from the
expression below,

D(H-THT)[δX] = D(I) [δX] = 0

D(H-T)[δX]HT + H-TD(HT)[δX] = 0

D(H-T)[δX]HTH-T = −H-TD(HT)[δX]H-T

D(H-T)[δX] =−H-T
(
∂δX

∂χ

)T

H-T

(3.45)

The following expressions, which are developed in Appendix A, are required for the
derivation of the second derivative of the AL and VL quality measures:

H−T ⊗H−T :
∂δX

∂χ
−H−T

∂δX

∂χ

T

H−T = F(H−T) :
∂δX

∂χ
(3.46)

3.2. Quality measures 48

∂δX

∂χ
A = T (A) :

∂δX

∂χ
(3.47)

where both F and T are fourth order tensors, where ⊗ refers to the tensor outer
product defined as A⊗B = AijBkl. Using the following tensor invariant from Bonet
and Wood [31], (

H :
∂δX

∂χ

)
H = H⊗H :

∂δX

∂χ
(3.48)

the product and quotient rules of differentiation and Equations 3.45, 3.46 and 3.47, the
second derivative of the AL quality measure may be expressed as:

D2(qAL)[δX] =
∂δX

∂χ

T

:
4√
3

A0 det(H)

l2rms

[
F(H−T)− 2

3l2rms
H−T ⊗

(
3∑
i=1

∆Xi∆χ
-T
i

)

− 2

3l2rms

(
3∑
i=1

∆Xi∆χ
-T
i

)
⊗H−T

− 2

3l2rms
T

(
3∑
i=1

∆χi∆χ
-T
i

)

+
8

9l4rms

(
3∑
i=1

∆Xi∆χ
-T
i

)
⊗

(
3∑
i=1

∆Xi∆χ
-T
i

)]

:
∂δX

∂χ
(3.49)

and the second derivative of the VL quality measure may be expressed as:

D2(qV L)[δX] =
∂δX

∂χ

T

: 6
√

2
V0 det(H)

l3rms

[
F(H−T)− 1

2l2rms
H−T ⊗

(
6∑
i=1

∆Xi∆χ
-T
i

)

− 1

2l2rms

(
6∑
i=1

∆Xi∆χ
-T
i

)
⊗H−T

− 1

2l2rms
T

(
6∑
i=1

∆χi∆χ
-T
i

)

+
5

12l4rms

(
6∑
i=1

∆Xi∆χ
-T
i

)
⊗

(
6∑
i=1

∆Xi∆χ
-T
i

)]

:
∂δX

∂χ
(3.50)

These expressions for the first and second derivatives of the AL and VL quality mea-
sures with respect to the gradient of deformation tensor are used with the objective
functions introduced in the next section to construct the system of equations required

3.3. Mesh quality objective functions 49

for mesh optimisation.

3.2.6 Anisotropic quality measures

The quality measures described in the previous sections are not suitable for use with
anisotropic meshes. This is because the ideal elements are equilateral triangles or
tetrahedra in the case of all of the quality measures except for the ideal weight inverse
mean ratio, in which the ideal element is defined by the user. Although the user may
define the shape and size of the ideal element which may even be a function of the
position in the mesh, this measure is rotation invariant. This means that while it is
possible to optimise meshes using an anisotropic variant of this measure, the optimised
elements may not be correctly oriented.

The gradient of deformation tensor, introduced in Section 3.2.5.2, is not rotation invari-
ant meaning that an anisotropic quality measure could be developed using this tensor.
For example, the ideal weight inverse mean ratio could be modified to incorporate this
tensor, where AW−1 is replaced by H:

q =
‖H‖2

F

2|det(H)|
(3.51)

where H is the gradient of deformation calculated between the current element and
the ideal element at a particular position.

Barlow [32] develops measures of the deformation of elements based on the local coor-
dinate system. These are expressed in terms of rigid displacement, aspect ratio, skew
and in the case of quadratic and cubic elements, edge and face curvature. He concludes
that the suggested measures are suitable for evaluating element performance based on
convergence requirements but not for predicting the behaviour of an element in a given
stress field. However, a method of enforcing orientation dependence of distortion mea-
sures, and thus quality measures, is suggested. This involves measuring the geometry
in a non-orthogonal coordinate system and scaling those coordinates.

3.3 Mesh quality objective functions

Mesh quality optimisation requires an objective function which combines the qualities
of a group of elements into a scalar value. For example, one could express the quality,

3.3. Mesh quality objective functions 50

Q, of a mesh as the sum of the qualities of every element as:

Q =
k∑
i=1

qi (3.52)

where k is the number of elements in the mesh. Such an objective function is referred
to as a L1 norm. An L2 norm is given as:

Q =
k∑
i=1

q2
i (3.53)

As stated in Section 2.2.1, simple objective functions such as those described above
are very good at improving average element quality, however the worst elements may
suffer as a consequence as the improvement of many average quality elements has a
greater impact on the value of the objective function than the improvement of several
extreme elements. Such an objective functions may even invert some elements, as
one negative number may not sufficiently influence the objective function. However
as stated in Section 2.1.5, one poor element may render a Finite Element analysis
intractable. Therefore, it is desirable to use an objective function that targets the
quality of the worst element, rather than the average.

Given this discussion, at first glance, an infinity norm seems like an ideal objective
function. This is where the quality of a group of elements is expressed as the quality
of the worst element. In this case, any attempt to optimise the mesh will improve the
worst element. However, nodes are shared between elements. So if a node is moved to
increase the quality of one element, the quality of adjoining elements may be adversely
affected. As the infinity norm contains no information about the adjoining elements’
quality, there is no way of knowing when the element being improved is no longer
the worst element in the mesh. Therefore, such an objective function is described
as being non-smooth. A non-smooth optimisation algorithm was developed by [22],
which enabled the improvement of the worst element in a mesh and is described in
Section 2.2.1.

A genuinely smooth objective function which both contains information on the quality
of every element in the mesh and penalises the worst elements to such an extent that the
improvement process focuses on these elements should, in theory, yield better results in
a shorter analysis time since there is no requirement to approximate when the quality
of the worst element changes. Also, a much wider range of numerical optimisation
techniques may be used, since such an objective function is smooth. In the following
section an objective function that is both smooth and focuses on extreme elements is

3.3. Mesh quality objective functions 51

Figure 3.8: Plot of the Log-Barrier function

proposed.

3.3.1 Penalising the worst element

In order to address the deficiencies of existing objective functions, a new objective
function is proposed which involves using a log-barrier to penalise the worst elements
in a mesh. This is adapted from Scherer et al [33] where a barrier function is used
to ensure that elements do not become inverted. A log-barrier function expresses the
quality of every element in the solution space as a function of the worst element. This
function also has an invertibility guarantee as the quality of an element cannot be less
than the barrier as its quality would be undefined. The log-barrier objective function
is calculated as follows:

Q =
k∑
i=1

(
q2
i

2(1− γ)
− log(qi − γ)

)
(3.54)

where qi is the quality of element of i and γ is a constant in the range 0−0.99 times the
quality of the worst element, qmin, in the mesh. This is shown graphically in Figure 3.8,
where the objective function contribution of an element is plotted against its quality.

3.3. Mesh quality objective functions 52

3.3.2 Optimising the objective function

The next step in the optimisation process is to assemble the global matrix of second
derivatives, (S), and the global vector of first derivatives (f), of the quality measure.
These are analogous to the FE stiffness matrix and force vector. These are assembled
from the element gradients and Hessians, calculated in the previous sections. These
are vector and matrix quantities with f having n entries and S having n2 entries where
n is the number of degrees of freedom in the system. In two dimensions, n is equal to
twice the number of nodes in the mesh as each node is free to move in the x and y

direction. In three dimensions, n is three times the number of mesh nodes.

In general, S and f are assembled from the first and second derivatives of the operation
performed to calculate the objective function. For example, S and f for the |L1|
objective function are assembled as follows:

f =
k

A
i=1
∇qi (3.55)

S =
k

A
i=1
∇2qi (3.56)

where A is the standard assembly operator and k is the number of elements in the
mesh.

For the log-barrier objective function, these are assembled as follows:

f =
n

A
k=1

([
qk

1− γ
− 1

qk − γ

]
∇qk

)
(3.57)

S =
n

A
k=1

(
∇qk

[
1

1− γ
− 1

(qk − γ)2

]
∇qTk +

[
qk

1− γ
− 1

qk − γ

]
∇2qk

)
(3.58)

The assembled system of equations takes the following form:

SδX = −f (3.59)

where δX is the vector of unknown nodal displacements. This vector is then solved for
using a Newton-Raphson iterative solver.

3.4. Meshes 53

3.3.3 Termination of the optimisation process

As previously stated, the goal of the optimisation approach is to increase the quality
of the worst elements in a mesh to an acceptable quality. There is very little to
be gained by greatly increasing the quality of the average element as the problems
associated with poor meshes are specifically related to the worst elements. Numerical
optimisation is generally terminated when the solution is deemed to have converged,
convergence is commonly deemed to have occurred when the residual is below a user
defined value, generally in the range 10−3 − 10−12. Careful examination of Figure 3.9
provides some revealing insight into how the mesh optimisation process works. This
graph was created by examining the optimisation process of the two-dimensional square
mesh with 20,258 elements, "Square" shown in Figure 3.10. The mesh is examined at
each iteration of the optimisation process, with the range of angles shown on the left
y axis and the magnitude of the residual shown on the right logarithmic y-axis. The
time taken to reach each iteration is shown on a non-linear bar on top. After one
iteration the residual has been reduced by 90% and the range of angles has drastically
reduced. After the second iteration, the range of angles has reached its final value
and the residual is now less than 1% of its initial value. This is achieved after 5.08s.
Using standard convergence criteria, the optimisation process does not terminate for a
further 6.91s. The final mesh is negligibly better than the mesh after two iterations.
Therefore, it can be concluded from this that there is little benefit in continuing the
optimisation process past this stage, thus the optimisation process performed in the
following chapters is deemed to have converged when the increase in the quality of the
worst element between two successive iterations is below 0.1%.

This effect is increased when the log-barrier function is used. As previously stated,
with the log-barrier function the quality of an element is expressed as a function of
the quality of the worst element in the mesh. After each iteration of the optimisation
process, the quality of the worst elements changes, thus the function being minimised
changes. Therefore, the large improvement in the quality of the worst elements observed
in the first iterations in Figure 3.9, is repeated for several iterations.

3.4 Meshes

To demonstrate the effectiveness of the algorithms developed so far in this thesis and
those presented in subsequent chapters, nine meshes are considered, Figure 3.10, in-
cluding both 2D triangular meshes and 3D tetrahedral meshes. These mesh are the

3.4. Meshes 54

Figure 3.9: The quality of a mesh at each iteration of the optimisation process. The
range of angles in the mesh is shown in green and the magnitude of the residual is
shown in blue. The cumulative time taken for each iteration is shown on a non-linear
bar on top.

3.4. Meshes 55

product of different mesh generation algorithms, have a large variance in their initial
qualities and have many different boundary conditions and should therefore be a good
means of evaluating the effectiveness of the mesh optimisation algorithms. There is
also a wide variance in the number of elements in each mesh. Meshes with applications
in both FEA and computer graphics are used.

• "Square" comes included with Mesquite. The quality of this mesh was reduced
from its original state as a further test of each quality measure.

• "Hanging droplet" and "oscillating droplet" are meshes obtained from interme-
diate stages of various axi-symmetric FE simulations of surface tension on micro-
fluid droplets. These meshes are symmetric, thus optimisation is only performed
on one half of each. However, the reflected image is shown for clarity.

• "Rand2" is a modified version of a mesh generated by [23]. This mesh was
designed to demonstrate the effectiveness of flips and other topological changes.
Thus, in its original form it is impossible to optimise without these topological
changes. Several flips were performed to reach a configuration where optimisation
would be effective.

• "Dragon" and "Cow" were generated by [34].

• The crack surface in "Graphite Brick" was formed by simulating an external force
being placed on a graphite brick. As this mesh was obtained from an intermediate
stage of an analysis from which many problems were found to be caused by poor
quality elements, it is an ideal example of the class of problem from which the
motivation for this thesis was drawn. This mesh is characterised by poor quality
elements and its very complex crack surface. The crack surface is calculated by
solving the system of physical equations associated with the analysis. Therefore,
the only source of information relating to the shape of the domain is the mesh.
The algorithms developed in Chapter 5 were developed to deal with such cases.
As this mesh is of very poor quality, its optimisation would clearly be beneficial
to the results of the FE analysis performed on it. The challenges associated with
optimising this mesh are accentuated by the fact that all four nodes of the poorest
elements are on the mesh surface.

• "Bone" was used in an FE simulation of a femur subject to mechanical load-
ing [35]. The simulation of biological entities is very demanding on meshes. For
example, the simulation of bone growth requires the mesh to adapt in a very
complex manner.

3.5. Summary 56

• The crack surface in "Concrete Cylinder" was formed by simulating the pull-out of
a steel anchor encased in a concrete cylinder [36]. This is another perfect example
of the class of problem which could greatly benefit from mesh optimisation.

3.5 Summary

In this chapter, the quality measures and mesh optimisation algorithms which will be
applied in later chapters were developed and explained. In the cases where existing
algorithms were not suited to the problems at hand, new algorithms were developed.
In the following chapter the meshes presented in the previous section are optimised
using the algorithms presented in this chapter.

3.5. Summary 57

Hanging Droplet, 2126 Triangles

Oscillating Droplet, 2296
Triangles

Square, 20258 Triangles

Figure 3.10: Meshes before improvement with Histograms of the range of dihedral
angles (the height of blue columns have been divided by 20 due to the many
occurrences of these angles). Red tetrahedra have angles under 10◦ or greater than
170◦, orange tetrahedra have angles between 10◦ and 20◦ or 160◦ and 170◦, yellow
tetrahedra have angles between 20◦ and 30◦ or 150◦ and 160◦ and green tetrahedra
have angles between 30◦ and 40◦ or 140◦ and 150◦.

3.5. Summary 58

Rand2, 4372 Tetrahedra [37]

Dragon, 32959 Tetrahedra [38]

Cow, 42053 Tetrahedra

Figure 3.10: (contd.)

3.5. Summary 59

(a) Bone, 35832 Tetrahedra [35]

(b) Concrete Cylinder, 73684
Tetrahedra

(c) Graphite Brick , 100781
Tetrahedra

Figure 3.10: (contd.) Crack surfaces are shown in red.

Chapter 4

Unconstrained Mesh Optimisation
Results and Discussion

4.1 Introduction

In this chapter the algorithms and techniques developed in the previous chapter are
applied to the nine meshes introduced in Section 3.4. Each mesh was optimised using
the area-length quality measure (AL) in 2D or the volume-length quality measure (VL)
in 3D, the ideal weight inverse mean ratio (IMR) and the sine quality measure combined
with both an |L1| objective function and the log-barrier objective function. The goal
of this thesis is to develop algorithms and techniques to aggressively eliminate the
worst elements in meshes, as these were found to be source of the problems associated
with poor quality meshes. It was found in Section 3.3.3 that there is little benefit in
allowing the optimisation process to run until it converges to a tight tolerance, as the
worst elements are eliminated in the first iterations with only negligible improvement
occurring after this point. Therefore, the optimisation process is terminated when the
improvement in mesh quality between two successive iterations is less than a certain
percentage, in this case a 0.1% increase in the quality of the worst element.

4.2 Results

The optimised mesh produced by each quality measure and objective function combina-
tion are shown in Figure 4.1. Histograms show the distribution of internal (2D)/dihedral

4.2. Results 61

(3D) angles with the minimum and maximum angles and the range of angles shown.
It should be noted that:

• red triangles/tetrahedra have angles under 10◦ or over 170◦

• orange triangles/tetrahedra have angles under 20◦ or over 160◦

• yellow triangles/tetrahedra have angles under 30◦ or over 150◦

• green triangles/tetrahedra have angles under 40◦ or over 140◦

• the heights of blue columns in the histograms have been divided by 20 because
of the many occurrences of these angles

• Timings are given for a server running Linux with 16 dual core Intel Xeon pro-
cessors and 512 GB of ram

• Five timings were taken and the average time is shown

• In each case the boundaries were unrestrained

It is reiterated here that this investigation is focused on unconstrained mesh opti-
misation. Constrained mesh optimisation, whereby the shape of the domain and
area/volume is preserved throughout the optimisation process is investigated in the
following two chapters. The layout of the results presented in the following pages is
shown in Table 4.1.

4.2. Results 62

Initial Mesh
Initial range of

angles

XXXXXXXXXXXXQM
Obj Func |L1| LB

AL/VL

Optimised Mesh Optimised Mesh

Optimised range
of angles

Optimised range
of angles

IMR

Optimised Mesh Optimised Mesh

Optimised range
of angles

Optimised range
of angles

Sine

Optimised Mesh Optimised Mesh

Optimised range
of angles

Optimised range
of angles

Table 4.1: Layout of results presented in the following pages. QM refers to quality
measure, Obj Func refers objective function and LB refers to the log-barrier objective
function.

4.2. Results 63

Hanging Droplet, 2126 Triangles

AL, |L1|, t = 1.66s AL, LB, t = 0.47s

IMR, |L1|, t = 1.97s IMR, LB, t = 0.36s

Sine, |L1|, t = 3.846s Sine, LB, t = 0.93s

Figure 4.1: Unconstrained mesh optimisation results for "Hanging Droplet"

4.2. Results 64

Oscillating Droplet, 2296 Triangles

AL, |L1|, t = 2.60s AL, LB, t = 0.86s

IMR, |L1|, t = 1.78s IMR, LB, t = 0.95s

Sine, |L1|, t = 2.33s Sine, LB, t = 1.14s

Figure 4.2: Unconstrained mesh optimisation results for "Oscillating Droplet"

4.2. Results 65

Square - 20258 Triangles

AL, |L1|, t = 8.02s AL, LB, t = 2.16s

IMR, |L1|, t = 4.60s IMR, LB, t = 2.21s

Sine, |L1|, t = 7.28s Sine, LB, t = 4.18s

Figure 4.3: Unconstrained mesh optimisation results for "Square"

4.2. Results 66

Cow - 42053 Tetrahedra

VL, |L1|, t = 32.26s VL, LB, t = 21.52s

IMR, |L1|, t = 33.20s IMR, LB, t = 17.85s

Sine, |L1|, t = 45.11s Sine, LB, t = 30.08s

Figure 4.4: Unconstrained mesh optimisation results for "Cow"

4.2. Results 67

Dragon - 32959 Tetrahedra

VL, |L1|, t = 22.63s VL, LB, t = 13.78s

IMR, |L1|, t = 25.73s IMR, LB, t = 14.52s

Sine, |L1|, t = 31.13s Sine, LB, t = 19.18s

Figure 4.5: Unconstrained mesh optimisation results for "Dragon"

4.2. Results 68

rand2 - 4372 Tetrahedra

VL, |L1|, t = 3.19s VL, LB, t = 1.02s

IMR, |L1|, t = 2.63s IMR, LB, t = 0.62s

Sine, |L1|, t = 2.72s Sine, LB, t = 0.83s

Figure 4.6: Unconstrained mesh optimisation results for "rand2"

4.2. Results 69

Graphite Brick - 100781 Tetrahedra

VL, |L1|, t = 63.01s VL, LB, t = 42.43s

IMR, |L1|, t = 64.16s IMR, LB, t = 39.34s

Sine, |L1|, t = 77.63s Sine, LB, t = 41.23s

Figure 4.7: Unconstrained mesh optimisation results for "Graphite Brick"

4.2. Results 70

Bone - 35832 Tetrahedra

VL, |L1|, t = 28.44s VL, LB, t = 15.59s

IMR, |L1|, t = 25.24s IMR, LB, t = 15.15s

Sine, |L1|, t = 31.32s Sine, LB, t = 16.35s

Figure 4.8: Unconstrained mesh optimisation results for "Bone"

4.2. Results 71

Pullout Test - 73864 Tetrahedra

VL, |L1|, t = 36.27s VL, LB, t = 16.56s

IMR, |L1|, t = 39.25s IMR, LB, t = 14.35s

Sine, |L1|, t = 41.24s Sine, LB, t = 17.23s

Figure 4.9: Unconstrained mesh optimisation results for "Pullout test"

4.3. Discussion 72

4.3 Discussion

4.3.1 2D Results

It may be seen that each quality measure and objective function combination greatly
improved each of the three 2D meshes. However there remain clear differences be-
tween the results obtained and the time taken to obtain these. Firstly the results
obtained using each quality measure combined with an |L1| objective function will be
discussed.

In terms of eliminating small angles, the IMR quality measure was the most effective
for all three meshes. For each mesh, the use of the IMR quality measure resulted in a
significantly greater smallest angle. In terms of large angles, the sine quality measure
was overall the most effective. For both "Oscillating Droplet" and "Square", the sine
quality measure has a much smaller largest angle than the other two quality measures
and for "Hanging Droplet", the difference between the largest angle achieved by the
IMR and the sine quality measure is negligible. When the time taken is accounted for,
it must be concluded that when using an |L1| objective function, the IMR is the clear
choice of quality measure to use.

For the log-barrier objective function, the results obtained differ greatly from those
obtained using the |L1| objective function. In terms of effectiveness in eliminating
small angles, the sine quality measure is the most effective, contrary to what was
found for the |L1| objective function. Overall, both the AL and IMR perform equally
well at eliminating small angles. For "Hanging Droplet", all three quality measures
achieve very similar largest angles, however, for the other two meshes, the IMR is
best, followed closely by the AL. The sine quality measure is the poorest concerning
elimination of large angles.

In terms of time taken to optimise each mesh using the log-barrier objective function,
one observation is resoundingly clear: the log-barrier objective function is significantly
more efficient than the |L1| objective function. The decision to terminate the optimi-
sation process when the quality of the worst element increases by less than 0.1% along
with the log-barrier objective function harshly penalising the worst elements are the
reasons why this is so. During the first iterations of the optimisation process, the focus
is placed on the worst elements, thus meaning that these are eliminated much sooner
in the optimisation process.

The conclusions as to which quality measure is best to use in 2D is not as clear as

4.3. Discussion 73

that concerning objective function. The optimisation of meshes using the sine qual-
ity measure was found to be more expensive compared with the other two quality
measures. In terms of efficiency and quality of results achieved, there is very little
distinction between either the IMR or the AL, although overall, the IMR performed
slightly better.

4.3.2 3D Results

The examination of the optimised meshes produced by applying each of the three qual-
ity measures (VL, IMR and sine) and the |L1| objective function yields some interesting
conclusions. Firstly, in terms of eliminating both large and small angles, the IMR qual-
ity measure is clearly the best quality measure to use in 3D when combined with an
|L1| objective function. For every mesh except "Cow" and "rand2", it produced much
better quality meshes than the other quality measures. The mesh produced by apply-
ing the sine quality measure to "Cow" has a much smaller largest dihedral angle than
that produced by either the IMR quality measure or VL quality measure . The appli-
cation of the VL quality measure to "rand2" produced a mesh with a slightly larger
smallest angle, although this is not considerable. Similar to the timings observed in
two dimensions, the sine quality measure in almost every case is slower than the other
quality measures. The VL quality measure is marginally quicker than the IMR qual-
ity measure, although the IMR quality measure produces better meshes. Therefore,
it may be concluded that when combined with an |L1| objective function, the IMR
quality measure is the most effective of the three quality measures considered. It is
interesting to note that when the initial mesh was of intermediate quality, as it the
case for "Cow", "Dragon" and "Bone", optimisation using the sine quality measure
actually reduced the smallest angle in the mesh. This is in agreement with the predic-
tion made in Section 3.3, which stated that when mesh quality is measured using an
|L1| objective function, minor improvement of many average quality elements, even if
it occurs at the expense of harming the poorest quality elements, will result in a higher
mesh quality.

The optimisation of the six 3D meshes using the log-barrier objective function is now
examined. The sine quality measure is consistently the most effective at eradicating the
smallest angles in meshes. Interestingly, the effectiveness of the IMR quality measure
observed in two dimensions is it not observed here. The VL quality measure is much
more effective than the IMR quality measure at eliminating small angles in all six of
the meshes. For large angles, the VL quality measure is also very effective. For every

4.3. Discussion 74

mesh excluding "Graphite Block", where the sine quality measure is most effective, it
performs the best. Similar to small angles, the IMR quality measure is not as effective
at eliminating large angles in 3D as the other quality measures.

As was observed for the two-dimensional results, the sine quality measure is significantly
more expensive than the other two quality measures. The IMR quality measure is
slightly more efficient than the VL quality measure . However, the VL quality measure
produced considerably better quality meshes than the IMR quality measure, thus,
making this irrelevant.

One clear conclusion which may be drawn from the three-dimensional results studied
here, mirroring that from the two-dimensional case, is that the log-barrier objective
function is much more effective than the |L1| objective function, both in terms of
mesh quality and efficiency. A recommendation for the best quality measure for op-
timising meshes in 3D is not straightforward and depends strongly on the application
requirements, i.e. do small or large angles cause the greatest problems. The following
recommendations are made based on a generalist’s needs. Although the IMR quality
measure is the most efficient, it is not the best in terms of quality. If large angles and
efficiency are the greatest concerns, the use of the VL is recommended, if small angles
pose the greatest problems and efficiency is not a high priority, the sine measure is
recommended.

It is very interesting to note that although it the focus of this research is the improve-
ment of the worst internal/dihedral angles in meshes, quality measures which indirectly
measure these angles perform better in many cases than the sine measure which directly
targets poor angles.

As was predicted in the previous chapter, the use of the sine measure can cause spire
tetrahedra to form where a node is free to move a large distance without adversely
affecting the quality of its connected elements. "Bone" is the only mesh where this
phenomena does not occur. In constrained optimisation, which is discussed in the
following chapters, this phenomena does not occur as the boundary nodes are not free
to move in such a manner. It is advisable to check all meshes optimised using the sine
measure for spire tetrahedra if such elements are unsuited to the intended application.
If a mesh has all good dihedral angles, but is of poor quality when measured using
either VL or IMR quality measures, then spire tetrahedra are present.

Figure 4.10 shows the effect of not constraining the mesh surface. The boundary of the
domain has completely changed and spire tetrahedra can clearly be seen, meaning the
optimised mesh does not accurately discretise the original domain. In the following two

4.3. Discussion 75

Figure 4.10: The blue mesh is the original mesh and the red mesh is optimised.

chapters, the development of a method which preserves both the shape of the domain
and area/volume is discussed.

Chapter 5

Optimising Boundary Nodes

The goal of mesh optimisation is to produce higher quality meshes while ensuring that
the optimised mesh is suitable for its intended purpose. Therefore, nodes which lie on
the boundary of the domain require special treatment in order to conserve the shape of
the domain and its area/volume. This is illustrated in Figure 5.1. This requires moving
the free node, highlighted in red (Figure 5.1a), to its optimal position. However, both
the domain’s area and shape must be conserved. If this node is allowed to move freely
then the domain shape and area/volume are liable to change, similar to that shown in
Figure 5.1b. In order to conserve the shape of the domain and its area, the free node
can only be moved either to the left or right, Figure 5.1c. To achieve this, a method
must be developed that ensures that the calculated nodal search direction for boundary
nodes preserves the shape of the domain and its area/volume. This is referred to as a
constrained optimisation problem.

(a) (b) (c)

Figure 5.1: Example of constrained mesh optimisation, where the original mesh is
shown in (a), the unconstrained optimised mesh is shown in (b) and the constrained
optimised mesh is shown in (c).

5.1. Classification of boundary nodes 77

Figure 5.2: Boundary node classification. Each boundary node is classified according
to the type of surface it lies on.

5.1 Classification of boundary nodes

The challenge here is to develop a method of calculating nodal search directions which
both improve the quality of the mesh and preserves the domain boundary. It is impor-
tant to distinguish between boundary nodes whose movement would alter the domain
geometry and volume, for example the corner node of a cube, and other boundary nodes
that can move in certain directions without changing the domain geometry/volume.
Different types of domain boundaries present different challenges; therefore, a clas-
sification system for boundary nodes is required. The different boundary types are
highlighted on the mesh in Figure 5.2.

• Vertex node: A vertex node is a node without which the domain geometry cannot
be defined. Therefore, a vertex node cannot be moved without changing the
domain shape.

• Planar Surface node: lies on a planar surface. A planar surface node may be
moved in-plane without changing the domain shape.

• Straight Segment node: lies on a straight segment of a domain which is the

5.2. Movement of straight segment node 78

intersection of two planes. An straight segment node may be moved along the
line separating these two planes.

• Surface node: A surface node lies on a non-planar surface. A surface node is
difficult to move without changing the domain shape. Two methods for moving
such nodes are presented in Section 5.3.

In the following sections, a straight segment node and a planar surface node will be
treated as special cases. These are implemented separately as they represent a sig-
nificant computational saving compared to the general, but extremely sophisticated
process which is described after.

5.2 Movement of straight segment node

There are two main methods for moving straight segment nodes. The first involves
moving the node freely to its optimal position that does not conserve domain geom-
etry and then "snapping" it back to the closest point on the edge. This method has
several disadvantages, primarily because the mesh optimisation process is unlikely to
converge. Furthermore, if the mesh optimisation process is coupled with the solution
of a physical problem, the "snap" procedure could introduce additional and signifi-
cant residuals. Therefore, it is desirable to modify the system of mesh optimisation
equations so that the calculated search direction is compatible with the constraints.
In order to find the optimal nodal position, the optimisation procedure described in
Chapter 3 is implemented, whereby the first and second derivatives of the objective
function are used with a Newton solver. In 2D, the general system of equations for
mesh optimisation, SδX = −f , is given as:[

fxx fxy

fyx fyy

][
δx

δy

]
= −

[
fx

fy

]
(5.1)

where, for example, fx is the first derivative of the objective function with respect to
x, fxy is the second derivative of the objective function with respect to x then y and
δx is the unknown nodal search direction in the x direction. Consider the problem
shown in Figure 5.3, where the node cannot move in the y direction. The entries of the
Hessian matrix and the rows of the gradient vector corresponding to movement of the
constrained node in the y direction are replaced with zeros and the diagonal entries of
the Hessian matrix with 1, Equation 5.2. The system of equations is then solved in the
normal manner.

5.2. Movement of straight segment node 79

Figure 5.3: Constrained gradient.

Figure 5.4: Constrained gradient when the axes do not align with the edge. The axes
must be rotated so that it is aligned with the edge.

[
fxx 0

0 1

][
δx

0

]
= −

[
fx

0

]
(5.2)

For a more general case, such as that shown in Figure 5.4, it is necessary to rotate the
system of equations as follows:

TTSTδX = −Tf (5.3)

where in 2D,

T =

[
cosθ −sinθ
sinθ cosθ

]
(5.4)

and θ is the angle of the segment from the x-axis. The constraint is then applied as be-
fore and the matrix and vector are rotated back to the original coordinate system.

5.3. Movement of surface nodes 80

Planar surface nodes are dealt with in a similar manner to straight segment nodes,
thus this process is not described in detail here.

5.3 Movement of surface nodes

The challenge here is to increase the quality of meshes whilst preserving the domain
geometry and area/volume. A common way of dealing with this is to not move surface
nodes at all. However, this severely hinders the improvement process. As an example,
all four nodes of the poorest elements in the mesh "Graphite Brick" presented in
Section 3.4 are surface nodes. Therefore, it is not possible to optimise this mesh
without moving surface nodes. The complex crack surface of this mesh was created by
modelling physical equations, thus no continuous representation of the geometry exist.
Only information which may be determined from the mesh surface may be used when
optimising surface nodes. Therefore, an effective technique for moving surface nodes in
a manner which respects both the domain geometry and volume is required. Without
the ability to move surface nodes, meshes arising from the very class of problem from
which the motivation for this thesis is drawn cannot be optimised.

The techniques described in the following sections are very general techniques which
are effective when applied to both segment nodes and planar surface nodes. However,
since the techniques described in the previous section for specific cases are both straight
forward to implement and computationally efficient, it is much more sensible to utilise
them where possible.

5.3.1 Surface quadrics

Stellar [18] uses a technique called quadric smoothing to move nodes lying on curved
surfaces. This method assigns an error to a node which has been moved based on how
far it has moved from the planes created by the original triangular faces that adjoined
it [18]. This approach is summarised here. Let P be the set of planes created by the
surface triangular faces adjoining a node, v. The quadric error for a point x relative to
v is defined as:

Qv(x) = Στi(x)2 (5.5)

where τ i(x) is the perpendicular distance of x from the i th plane. This means that if a
node moves along a surface, there is no quadric error. However, if a node moves perpen-

5.3. Movement of surface nodes 81

dicular to a surface, the quadric error increases rapidly. By limiting the quadric error,
the amount by which a node may move from a surface is limited [18]. A penalty func-
tion is used to trade the quality of an element off against its quadric error. Klingner [18]
has shown that it is possible to greatly improve meshes by making small changes to
the surface.

Although using surface quadrics has been shown to be effective, this method has the
disadvantage that the geometry of the domain is being changed and there is no guar-
antee that the volume will remain constant. Therefore, a method which only uses
information which may be derived from the discretised domain and results in surface
node movements which conserve the geometry and area/volume of the domain is re-
quired.

5.3.2 Generating surface constraints from the discretised domain

The following sections described the development and implementation of an algorithm
capable of optimising surface nodes based only on information derived from the mesh
surface.

5.3.2.1 Derivation of the constraint equation

This section discusses the development and implementation of an algorithm which
allows for the movement of nodes on a non-planar surface. This algorithm does not
change the underlying mesh geometry as it is based on the hypothesis that for a given
shape, the volume to surface area ratio is a constant. Therefore:

V

A
= C0 (5.6)

where V is the domain volume, A is the surface area of the domain and C 0 is a constant.
Although in many FE simulations, the domain volume and surface area may change
throughout the simulation, these changes are governed by the physical processes being
simulated. It is of utmost importance that the mesh optimisation process does not
affect these, as this will affect the results of the simulation. A simple two-dimensional
example is shown in Figure 5.5. In two-dimensions, the same notation is used for
convenience even though the ratio conserved is actually δA

L
, where L is the length of

the domain boundary. If l = 10cm, then V = 60.35cm2 and V
A

= 0.6035. If l increases
to 15cm, V becomes 135.8cm2 and V

A
becomes 0.905.

5.3. Movement of surface nodes 82

Figure 5.5: Star

From Equation 5.6 ∫
V

dV = C0

∫
A

dA (5.7)

The following relation for the divergence of a vector will be used to modify the left
hand side of this equation:

∇ · (X) =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3 (5.8)

where X = (x, y, z) is a Cartesian coordinate of a point on the surface. Therefore:∫
V

1dV =
1

3

∫
V

3dV =
1

3

∫
V

∇ · (X)dV (5.9)

The divergence theorem states that [39]:∫
V

∇ ·XdV =

∫
A

X · 1

‖n‖
ndA (5.10)

where n is the outward pointing normal at this point. Combining equations 5.7, 5.9
and 5.10, the volume integral becomes a surface integral:∫

V

dV =
1

3

∫
V

∇ · (X)dV =
1

3

∫
A

X · 1

‖n‖
ndA (5.11)

Combining equations 5.7 and 5.11:

1

3

∫
A

X · 1

‖n‖
ndA = C0

∫
A

dA (5.12)

5.3. Movement of surface nodes 83

Figure 5.6: Discretised and continuous domain

Rewriting the above gives:

1

3

∫
A

(X · 1

‖n‖
n− C1)dA = 0 where C1 = 3C0.

which yields a local variant as follows:

X · n

‖n‖
= C1 (5.13)

A first order Taylor Series expansion yields:

Xi ·
ni
‖ni‖

+
ni

‖ni‖
· ∂Xi

∂Xi

δXi+1 + Xi ·
1

‖ni‖
∂ni
∂Xi

δXi+1 −

(Xi · ni)
ni
‖ni‖3

∂ni
∂Xi

δXi+1 = C1 (5.14)

Where δXi represents the change in position of point X between two successive itera-
tions, Xi is the surface of domain at iteration i and ni is the outward pointing normal
at iteration i. These quantities are illustrated in in Figure 5.6. The shape functions
(N) are shown in red and blue and these are used to calculate the coordinates of the
gauss point, shown in yellow.

Rearranging,

Ni

‖ni‖
· δXi+1 + Xi ·

1

‖ni‖
∂ni
∂Xi

δXi+1−

5.3. Movement of surface nodes 84

(Xi · ni)
ni
‖ni‖3

∂ni
∂Xi

δXi+1 = C1 −Xi ·
ni
‖ni‖

(5.15)

The second and third terms of the left hand side cancel out, leading to the following
surface constraint equation:

ni

‖ni‖
· δXi+1 = C1 −Xi ·

ni
‖ni‖

(5.16)

Equation 5.16 is enforced in a weighted residual sense:

n

A
k=1

∫
Ae

(
NT ni
‖ni‖

NδX

)
dA =

n

A
k=1

∫
Ae

(
NTC1 −NTXi ·

ni
‖ni‖

)
dA (5.17)

Equation 5.17 may be rewritten as:

CδX = g (5.18)

where C is a constraint matrix and g is a residual vector. This constraint equation
ensures that the volume to surface area ratio is conserved.

5.3.2.2 Enforcing the constraints

The mesh optimisation process involves solving the following non-linear system of equa-
tions:

SδX = −f (5.19)

where S is the global Hessian matrix of the objective function, δX is the unknown
nodal search directions and f is the global gradient vector of the objective function.
The assembly of S and f is described in Section 3.3. Ainsworth [40] presents a method
for modifying such a system of equations to account for the constraints of the form in
Equation 5.18 and the following summary of this method is adapted from this paper
and from Kaczmarczyk et al [41].

The mesh optimisation problem can be expressed as a constrained quadratic program-
ming problem:

min
δX

Q =
1

2
δXTSδX− δXTf

subject to CδX− g = 0
(5.20)

5.3. Movement of surface nodes 85

The Euler conditions for the stationary point of the Lagrangian are found to be

SδX + CTλ = −f

CδX = g
(5.21)

While it is possible to solve the constrained problem using this approach, the number of
unknowns is increased and the character of the system matrix is altered to an indefinite
saddle point problem. The numerical solution of such a system is very inefficient and
thus, not suitable for use with large problems with a constraint applied to each node.
The method developed by Ainsworth [40] does not modify the character of the system
matrix and it produces a matrix with approximately the same condition number as the
unconstrained stiffness matrix.

Assuming that the problem is well posed (that there exists a unique solution to the
constrained problem and that the constraint matrix is of full rank), then the following
matrices are well defined:

Q = I−CT (CCT)−1C R = CT (CCT)−1 (5.22)

where Q is a projection matrix and R is an auxiliary matrix. If the constrained matrix
S′ and the force vector f ′ are defined as:

S′ = CTC + QTSQ (5.23)

and

f ′ = CTg + QT (f − SRg) (5.24)

there exists a unique solution δX to the problem

δX = S−1f (5.25)

and the corresponding Lagrange multipliers can be recovered from

λ = RT (f − SδX) (5.26)

The system is modified as follows to explicitly account for the constraint equation:

S′δX = −f ′ (5.27)

5.4. Summary 86

where

S′ = CTC + QTSQ (5.28)

f ′ = CTg + QT (f − SRg) (5.29)

The solution obtained from solving this modified system of equations will respect any
constraints applied to it. This means that nodes which lie on complex surfaces may
now be moved whilst preserving the underlying mesh geometry and domain volume.
The ability to move such nodes permits the optimisation of meshes which previously
could not be. It is worth noting that this technique is equally effective when applied
to a curved segment node.

5.4 Summary

In this chapter, algorithms which allow the optimisation of boundary nodes whilst pre-
serving both shape of the domain and its area/volume were developed. In the following
chapter, these algorithms are applied to the nine meshes introduced in Section 3.4.

Chapter 6

Constrained Mesh Optimisation Results
and Discussion

6.1 Introduction

In this chapter, the constrained mesh optimisation algorithms developed in the previous
chapter are applied to the nine meshes introduced in Chapter 3. In a similar manner to
Chapter 4, each of the nine meshes was optimised using the area-length quality measure
(AL) in 2D or the volume-length quality measure (VL) in 3D, the ideal weight inverse
mean ratio (IMR) and the sine measure combined with both an L1 objective function
and the log-barrier objective function. As described in the previous chapter, the most
suitable set of constraints was applied to each surface node in order to ensure that
the shape and area/volume of the domain was conserved in the most efficient manner
possible. The same convergence criteria used in Chapter 4 were also used here, that is
that the optimisation process was terminated when the improvement in quality of the
worst element between two successive iterations is less 0.1%.

6.2 Results

The results presented on the following pages in Figures 6.1-6.9 are presented in the
same manner as in the previous results chapter. One piece of additional information
is included, that is the change in the volume to surface area ratio, δ V

A
. For the two-

dimensional meshes, the same notation is used for convenience even though the ratio

6.2. Results 88

conserved is actually δA
L
, where L is the length of the domain boundary. The layout

of the results is described in Table 4.1.

6.2. Results 89

Hanging Droplet, 2126 Triangles

AL, |L1|, t = 11.65s, δ V
A

= −0.37% AL, LB, t = 7.34s, δ V
A

= −0.78%

IMR, |L1|, t = 12.17s, δ V
A

= 0.99% IMR, LB, t = 5.55s, δ V
A

= 1.22%

Sine, |L1|, t = 13.86s, δ V
A

= 1.21% Sine, LB, t = 8.13s, δ V
A

= 1.27%

Figure 6.1: Constrained mesh optimisation results for "Hanging Droplet"

6.2. Results 90

Oscillating Droplet, 2296 Triangles

AL, |L1|, t = 10.65s, δ V
A

= 1.16% AL, LB, t = 7.08s, δ V
A

= 1.32%

IMR, |L1|, t = 11.06s, δ V
A

= −0.71% IMR, LB, t = 6.58s, δ V
A

= 0.65%

Sine, |L1|, t = 11.87s, δ V
A

= 1.03% Sine, LB, t = 8.13s, δ V
A

= −0.17%

Figure 6.2: Constrained mesh optimisation results for "Oscillating Droplet"

6.2. Results 91

Square - 20258 Triangles

AL, |L1|, t = 7.98s, δ V
A

= 0.0% AL, LB, t = 2.78s, δ V
A

= 0.0%

IMR, |L1|, t = 4.71s, δ V
A

= 0.0% IMR, LB, t = 2.38s, δ V
A

= 0.0%

Sine, |L1|, t = 7.47s, δ V
A

= 0.0% Sine, LB, t = 4.11s, δ V
A

= 0.0%

Figure 6.3: Constrained mesh optimisation results for Square"

6.2. Results 92

Cow - 42053 Tetrahedra

VL, |L1|, t = 68.14s, δ V
A

= −0.57% VL, LB, t = 41.24s, δV = −1.8× 10−9%

IMR, |L1|, t = 67.28s, δ V
A

= −0.31% IMR, LB, t = 37.74s, δ V
A

= −0.44%

Sine, |L1|, t = 88.20s, δ V
A

= −2.7% Sine, LB, t = 60.23s, δ V
A

= −1.89%

Figure 6.4: Constrained mesh optimisation results for "Cow"

6.2. Results 93

Dragon - 32959 Tetrahedra

VL, |L1|, t = 57.36s, δ V
A

= −3.93% VL, LB, t = 38.95s, δ V
A

= −0.61%

IMR, |L1|, t = 54.15, δ V
A

= −2.99% IMR, LB, t = 34.73s, δ V
A

= −2.18%

Sine, |L1|, t = 61.29s, δ V
A

= −1.16% Sine, LB, t = 42.56s, δ V
A

= 0.67%

Figure 6.5: Constrained mesh optimisation results for "Dragon"

6.2. Results 94

rand2 - 4372 Tetrahedra

VL, |L1|, t = 3.01s, δ V
A

= 0.0% VL, LB, t = 1.54s, δ V
A

= 0.0%

IMR, |L1|, t = 2.91s, δ V
A

= 0.0% IMR, LB, t = 0.93s, δ V
A

= 0.0%

Sine, |L1|, t = 2.84s, δ V
A

= 0.0% Sine, LB, t = 0.98s, δ V
A

= 0.0%

Figure 6.6: Constrained mesh optimisation results for "rand2"

6.2. Results 95

Graphite Brick - 100781 Tetrahedra

VL, |L1|, t = 180.57s, δ V
A

= 1.31% VL, LB, t = 67.13s, δ V
A

= 0.87%

IMR, |L1|, t = 194.34s, δ V
A

= −1.99% IMR, LB, t = 71.56s, δ V
A

= 0.54%

Sine, |L1|, t = 210.24s, δ V
A

= 1.67% Sine, LB, t = 81.94s, δ V
A

= 1.34%

Figure 6.7: Constrained mesh optimisation results for "Graphite Brick"

6.2. Results 96

Bone - 35832 Tetrahedra

VL, |L1|, t = 80.25s, δ V
A

= 1.51% VL, LB, t = 37.73s, δ V
A

= 1.36%

IMR, |L1|, t = 71.56s, δ V
A

= 1.37% IMR, LB, t = 33.29s, δ V
A

= 0.79%

Sine, |L1|, t = 89.01s, δ V
A

= −1.27% Sine, LB, t = 41.77s, δ V
A

= 1.21%

Figure 6.8: Constrained mesh optimisation results for "Bone"

6.2. Results 97

Pullout Test - 73864 Tetrahedra

VL, |L1|, t = 81.25s, δ V
A

= −0.85% VL, LB, t = 56.38s, δ V
A

= −1.12%

IMR, |L1|, t = 68.08s, δ V
A

= 1.89% IMR, LB, t = 49.74s, δ V
A

= 1.52%

Sine, |L1|, t = 96.83s, δ V
A

= −0.57% Sine, LB, t = 60.30s, δ V
A

= −1.11%

Figure 6.9: Constrained mesh optimisation results for "Pullout Test"

6.3. Discussion 98

6.3 Discussion

Examination of the optimised meshes shows that the algorithm described in the pre-
vious chapter for constraining surface nodes, based only on information obtained from
the initial mesh, is very effective. Despite the many complex surfaces present in these
meshes, including both surfaces used in computer graphics and those formed by the sim-
ulation of physical phenomena, the volume to surface area ratio, δ V

A
, was successfully

conserved throughout the optimisation process. The single greatest change observed in
the volume to surface area ratio is 3.93% in the case of "Dragon" optimised using the
|L1| objective function and the VL quality measure. In most cases, the change is much
less than this. The second significant observation is that the process of constraining
surface nodes is very expensive. All of surfaces of "Square" and "rand2" are planar
and this is reflected in the time taken to optimise them. The time taken to optimise
each of the other meshes is significantly greater than that taken in the unconstrained
case.

6.3.1 2D Results

Examination of the three 2D meshes optimised using the constrained optimisation
algorithm shows that, despite the constraints applied to the surface nodes, all meshes
were successfully optimised. The greatest change in the volume to surface area ratio
for all 2D meshes is 1.32%. This indicates that this algorithm is very effective in
two-dimensions.

Optimisation using the |L1| objective function combined with each quality measure
shows that the IMR quality measure was the most effective at eliminating small an-
gles, producing meshes with considerably greater smallest angles than either the sine
or the AL quality measures. Similar to what was observed with the unconstrained
optimisation results in Chapter 4, the sine quality measure actually reduced the small-
est angle in "Oscillating Droplet". In terms of elimination of large angles, the sine
quality measure achieved the best results for all three meshes. For both "Square" and
"Hanging Droplet" the sine quality measure was significantly more effective than the
other two quality measures at eliminating large angles. Interestingly, there is very lit-
tle difference in the time taken to optimise both "Hanging Droplet" and "Oscillating
Droplet" by all three quality measures. However, the use of the IMR quality measure
was significantly quicker when applied to "Square".

6.3. Discussion 99

The effectiveness and efficiency of the log-barrier objective function observed with the
unconstrained optimisation results is again realised with constrained mesh optimisa-
tion. In every case, the meshes optimised using the log-barrier objective function are of
higher quality than those optimised using the |L1| objective function. The optimisation
process was also completed in much less time, compared with the time taken to opti-
mise the meshes using the |L1| objective function. The sine quality measure was the
least efficient of the three quality measures. The optimisation process using the sine
quality measure required considerably more time than that using the other two quality
measures. However, in terms of small angle elimination, the sine quality measure was
the most effective for all three 2D meshes, albeit only slightly so for "Hanging Droplet"
and "Oscillating Droplet". The effectiveness of the sine quality measures at eliminat-
ing small angles is not repeated with large angles, with the largest angle present on
the optimised meshes being significantly larger than the other two quality measures,
save for "Square", where it is comparable. For "Hanging Droplet" the IMR quality
measure performs best and for "Oscillating Droplet" the AL quality measure performs
best.

6.3.2 3D Results

All six of the 3D meshes were successfully optimised, despite the challenges posed by the
complicated shapes of the domains and the poor quality of the initial meshes. Careful
scrutiny of the meshes optimised via a combination of the |L1| objective function and
each of the three 3D quality measures, shows that the IMR quality measure was the
most effective at eliminating small angles. The IMR quality measure was also very
effective at eliminating large angles, except for "Dragon" and "Graphite Brick", where
the sine quality measure was best. Note that the time taken to optimise all meshes,
except "rand2", is significantly greater than that taken in the unconstrained case. This
clearly demonstrates the expense associated with this algorithm. The time required
by the optimisation process using all three quality measures to optimise "rand2" is
approximately equal to that required by the unconstrained case.

As was the case with all of the 2D results and the unconstrained results, the use of
the log-barrier objective function produced meshes of much higher quality than those
produced using the |L1| objective function and in significantly less time. Interestingly
the effectiveness of the sine quality measure combined with the log-barrier objective
function in 2D is mirrored in 3D. By a clear margin, this quality measure was the
most effective at eliminating small angles. The sine quality measure was also the most

6.4. Conclusions 100

effective at eliminating large angles, although not as remarkable as its performance in
eliminating small angles. The spire tetrahedra which were formed by using the sine
quality measure with unconstrained optimisation were not observed in any of the 3D
meshes optimised using the sine quality measure. The results obtained indicate that
the IMR quality measure in 3D is not nearly as effective as it is in 2D. For those
whom efficiency is a great concern, the use of VL quality measure combined with the
log-barrier objective function is recommended. If the time taken by the optimisation
process is not as important as the quality of the optimised mesh, the sine quality
measure is the obvious choice.

6.4 Conclusions

The results presented in the previous section demonstrate the effectiveness of the shape
and volume preservation techniques developed in Chapter 5. The largest change in the
volume-surface area ratio observed was for "Dragon" optimised using the VL quality
measure combined with the |L1| objective function with a change of −3.93%. Interest-
ingly, the volume was completely preserved in every case, the largest change in volume
observed was less than one-thousandth of a percent. This is a very important for prob-
lems involving fluids as preservation of volume is crucial to obtaining accurate results.
The ability to preserve the domain shape and volume has enabled the optimisation of
meshes which previously could not be. In many of these complex meshes, the worst
elements are located on the surface of the domain, often with all nodes on the surface.
This means that these nodes are defining the surface and any movement of them will
results in unacceptable changes to the mesh shape and volume.

It is worth noting that the mesh optimisation routines included in the release version
of Mesquite could not improve these meshes due to all the nodes of the worst elements
being on the mesh surface. Every mesh apart from "Square" and "rand2", whose
surfaces are entirely planar, could not have been optimised as effectively by any other
software. For example, Stellar using surface quadrics to preserve the domain shape, can
alter the volume to surface ratio by up to 15% in some cases. Although the resulting
mesh in this case may visually be very similar, mathematically they are very different.
Whilst such a technique is very suited to computer graphics and animation, it is clear
that it is not applicable to scientific applications.

To demonstrate the effectiveness of the surface optimisation algorithm, the original
mesh and optimised mesh of the crack surface of "Graphite Brick" are overlain on

6.4. Conclusions 101

Figure 6.10: Effectiveness of surface mesh improvement: the red mesh is optimised
and the blue mesh is the original mesh

each other so that it is possible to see the movement of surface nodes, Figure 6.10.
Although large nodal displacements are observed in some places, the overall crack
shape is preserved. The results obtained from using this complex mesh demonstrate
how effective this the surface constraint algorithm is. Along with the preservation
of the shape of the domain, the volume is also completely preserved, meaning this
technique may be applied to many complex simulations. For the first time, complex
mesh surfaces may now be optimised whilst preserving both shape and volume using
only the mesh to define the surface.

Chapter 7

Mesh Optimisation as Part of the Finite
Element Solution Process

7.1 Introduction

Many physical processes involve domains which change with time. The simulation of
crack propagation in mechanics of materials and surface tension in fluid dynamics are
two examples where large deformations and evolving domains can occur. In order to
accurately model the physical processes at play, the mesh must adapt to the domain.
The problems associated with poor quality meshes are explained in Chapter 2 as are the
consequences of interpolating data from a poor quality mesh to an updated mesh of the
same domain. In this chapter a technique is developed to adapt a mesh to a deforming
domain, thus minimising the numerical errors induced by transferring data between
meshes. This is achieved by considering mesh quality optimisation as an integral part
of the overall Finite Element (FE) algorithm.

In Chapter 3, the meshes used to verify the mesh optimisation algorithms developed as
part of this research were introduced. Some of these were obtained from FE simulations
which suffered from many issues due to poor quality meshes. It is these problems from
which the motivation for this research was drawn. For example, "Hanging Droplet" and
"Oscillating Droplet" were obtained from a FE simulation of surface tension in a micro-
fluid droplet. "Graphite Brick" and "Pullout Test" were obtained from the intermediate
stages of FE simulations of crack propagation in graphite and concrete. The meshes
in these simulations must adapt to the complex and constantly evolving domains, thus
accommodating both large deformations in the case of both droplet meshes and crack

7.2. Mesh adaption techniques for large deformations 103

Figure 7.1: Lagrangian description of motion. Adapted from [42]

surface evolution in the case of "Graphite Brick" and "Pullout Test".

Although mesh optimisation and FE analysis are very closely related, both are often
treated as separate processes independent of one other. A novel aspect of this thesis
is the development of an integrated approach where mesh optimisation is undertaken
together with the FE analysis of the non-linear physical problem.

7.2 Mesh adaption techniques for large deformations

There are two standard formulations for FE simulations, these are Lagrangian and Eu-
lerian formulations. In a Lagrangian formulation each mesh vertex tracks a particular
material point, thereby the mesh deforms with the domain, Figure 7.1. This implies
that the motion of a particular material particle is tracked through time and its be-
haviour is always known. This method enables accurate surface tracking, such as crack
fronts and fluid free surfaces, throughout the deformation process. This method also
facilitates the modelling of materials with history-dependent constitutive relations [3],
for example a plasticity multiplier. However, elements can become very distorted when
a deforming domain is modelled using this configuration, thus requiring frequent re-
meshing, either after each time-step or when the quality of the domain deteriorates past
a certain point. Re-meshing involves the transfer of data from a poor quality, distorted
mesh to the new mesh. The numerical errors, discussed in Chapter 2, associated with
this transfer of data may be so punitive as to render the results of any simulation of a
large deformation which uses this method meaningless.

7.2. Mesh adaption techniques for large deformations 104

Figure 7.2: Eulerian description of motion. Adapted from [42]

Another method for dealing with large deformations and which is often used in Com-
putational Fluid Dynamics (CFD) is an Eulerian formulation. In this formulation, the
mesh vertices remain stationary as the continuum evolves and material properties are
calculated at each mesh node. Mesh quality is maintained during large deformations
but accurate surface tracking is not possible. This is illustrated in Figure 7.2. In
many simulations, the interesting and important physical processes occur at or near
the boundary and such a configuration would not accurately capture these physical
phenomena.

Dheeravongkit [43] proposes an alternative form of a Lagrangian configuration whereby
the initial mesh is pre-deformed so that it has approximately the opposite shape of the
final shape that it will deform to. Therefore the analysis starts with a non-optimal
mesh, which improves during the deformation process and then finally degrades again
to a lesser extent than it would have without the initial deformation. However, this
method is not compatible with the class of problem being considered here as knowledge
of the deformed shape must be known a priori. In the case of the fluid droplet studied
later in this chapter, the domain assumes many different shapes throughout the de-
formation process and the use of this method would require finding a mesh which can
adequately represent each of these.

In order to address the short comings of the above methods, a new method for defining
the relationship between the domain and the mesh called the Arbitrary Lagrangian
Eulerian (ALE) formulation [3] was developed. This method aims to combine the best
features of both Lagrangian and Eulerian formulations, whilst avoiding their respec-
tive drawbacks. This means that mesh vertices may move with the continuum in a
Lagrangian manner or remain stationary in an Eulerian manner or move in some ar-

7.2. Mesh adaption techniques for large deformations 105

bitrarily specified way [3]. The use of an ALE formulation allows the efficient and
accurate simulation of large deformations. This method is discussed in this chapter,
with particular reference to problems involving fluids. This freedom to arbitrarily move
mesh nodes allows for much more accurate modelling of complex surfaces with fewer
meshing issues than the other two formulations. However, the use of this method re-
quires solving for additional degrees of freedom, the mesh velocity. The mesh velocity
is used to determine the updated nodal positions.

In an ALE formulation, three configurations are defined: a reference configuration (χ),
a material configuration (X) and a spatial configuration (x), Figure 7.3. Each mesh
point relates to a material point and each material point refers to a point in space. The
user is free to choose the reference configuration independent of the material configura-
tion [44]. Typically one of two approaches is used, either taking the initial configuration
(Total ALE - T-ALE) or taking the configuration at the end of the previous time-step
as the reference configuration (Updated ALE - U-ALE). In a T-ALE formulation, all
derivatives are calculated with respect to the Lagrangian coordinates in contrast with
an U-ALE formulation where all derivatives are calculated with respect to Eulerian
coordinates [45] which are updated as the analysis progresses. The updated approach
is of more interest here as it is more suited to problems involving large strains and
flows [46]. In the updated approach, a means of calculating the spatial configuration
from the reference configuration is required. Mesh velocities are solved for during the
previous step and the reference configuration is updated to reflect these. Therefore at
the start of each time-step the reference configuration, the spatial configuration and
the material configuration coincide, x ≡ X ≡ χ.

7.2.1 ALE mesh update procedures

The use of an ALE formulation gives great flexibility in determining the location of
mesh nodes as a domain deforms. In order to calculate the positions of the nodes,
mesh velocities must be calculated at each time-step or load step of a calculation.
The method chosen to determine the updated positions of nodes greatly impacts the
success of the simulation [3]. In order to update the mesh at every iteration, a method
of calculating the mesh velocities and therefore the new nodal positions is required.
Several methods have been proposed to achieve this with ALE methods. The approach
taken by [47] involves breaking the process up into three steps. Firstly, a Lagrangian
step is taken in which the mesh nodes move in a Lagrangian manner: they track
the material point. Next, there is a rezone step in which the nodes move in order to

7.2. Mesh adaption techniques for large deformations 106

Material
domain Spatial

domain

Mesh
domain

ΩX Ωx Ωχ
ΩX Ωx Ωχ

ΩX Ωx Ωχ

material motion

convection

m
es

h
m

ot
io

n

Reference domain
Figure 7.3: ALE Domain Mapping. Adapted from [42]

improve mesh quality and then a remapping step where the solution is transferred from
the old mesh to the new one. Several iterations of this may be performed to ensure
physical equilibrium is reached [44]. The disadvantage of this method is that errors are
generated by the interpolation of the solution from the old mesh to the new mesh as
well the introduction of non-linearities due to the change in the mesh as described in
Chapter 2. This is referred to as staggered ALE or S-ALE [44].

An alternative form of ALE is the monolithic form (M-ALE) whereby the physical
equations and the mesh motion equations are coupled and therefore solved simulta-
neously. This results in a much larger matrix as the size of the system of equations
is proportional to the square of the number of degrees of freedom. However, if the
equations are properly linearised, quadratic convergence can be maintained [44]. This
method overcomes the disadvantages of the staggered approach as there is no need to
interpolate the solution from one mesh to another.

Several examples have been found in the literature of mesh optimisation being used to
calculate the updated mesh nodal positions when using S-ALE, [48] and [47], however,
no examples have been found of mesh optimisation being used in a M-ALE simulation.
Laplacian smoothing has been widely used to calculate the updated nodal positions
in M-ALE simulations. Laplacian smoothing involves moving a node to the average

7.3. Calculating ALE mesh velocities using mesh quality optimisation 107

of its connected neighbour’s positions. The idea behind Laplacian smoothing is that
the nodes of high quality meshes are separated by equal distances. However, the in-
verse is not true - good quality meshes need not consist of equidistant nodes. As a
result, Laplacian smoothing can induce excessive and unnecessary nodal displacements
in initially good meshes. Every nodal displacement generates non-linearities which
negatively effects the rate of convergence and the efficiency of a calculation. Lapla-
cian smoothing has been shown to be somewhat effective in two-dimensions when the
domain is convex, however, if the domain is non-convex, elements may easily become
inverted [3]. Techniques which aim to prevent the inversion of elements exist but these
are either computationally expensive or require the derivation of terms particular to
each geometry [3]. Three dimensional Laplacian smoothing is only effective in the most
simple of cases. Another disadvantage of Laplacian smoothing is that the user has no
control over nodal density meaning that local mesh refinement is not possible as the
nodes will disperse equally through the mesh.

More sophisticated mesh smoothing algorithms can be used once the mesh topology is
preserved [3] and such methods have been demonstrated in the S-ALE approach. Giu-
lani [48] developed a method which aims to minimise both the squeeze and distortion
of elements in the mesh and Sarrate [49] improved on this. Knupp [47] uses Jacobian
based mesh quality measures to calculate the mesh velocities for a S-ALE model. In
this next section, a new method is proposed which uses mesh quality optimisation to
calculate the mesh velocities as part of an M-ALE simulation. This method is then
applied to a simulation of a micro-fluid droplet.

7.3 Calculating ALE mesh velocities using mesh quality

optimisation

In this section, the development of a method of determining the mesh velocities in an M-
ALE simulation using mesh quality optimisation is discussed. This involves coupling
the physical equations governing the evolution of a micro-fluid droplet towards its
equilibrium position and the mesh quality optimisation equations so that the updated
mesh positions will be compatible with physical equilibrium. In order to successfully
couple both sets of equations, an understanding of the governing equations is required,
as well as a detailed knowledge of the general implementation of the simulation.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 108

7.3.1 Overview

The medical industry conducts vast amounts of research into the diagnosis of diseases.
Currently, the diagnosis of diseases via analysis of blood samples involves manually
taking a sample using a syringe, then loading it into a centrifuge and spinning it
in order to separate the sample into its constituent components so that these may
be tested. This process is both expensive and time-consuming. In many parts of
the developing world, demand for such tests is high whereas access to the required
equipment is limited. Therefore, there is a great interest in the development of more
efficient methods which are both cheap and suitable for use in the field. One proposed
solution to this problem is to use a lab on a chip. This consists of a microchip onto which
the blood sample is placed. The sample is then subject to external excitation in the
form of surface acoustic waves. Such devices are based on the premise that the external
excitation of a blood sample will cause the blood droplet to separate into its constituent
parts, thus enabling the testing of samples in field conditions and eliminating the
need for laboratory analysis. The development of this technology requires a thorough
understanding of the physical processes which cause the droplet to separate as well as
the actual separation process. The application of computational modelling to the study
of these phenomena is ideal for gaining insight into the behaviour of the blood droplet
at this scale. As is the case in many areas of engineering, the use of virtual prototypes
could greatly accelerate the development process as well significantly reducing the
cost.

A computational model of a micro-fluid droplet was developed by Mackenzie [42] which
aims to model the evolution and separation of a micro-fluid droplet subject to external
excitation. The first step in this process is to develop a computational model of the
evolution of a micro-fluid droplet from a non-equilibrium initial position to its final
equilibrium position. When this is successful, the surface acoustic waves which cause
the droplet to separate into its constituent parts will be added to the model. This
computational model is based on a M-ALE formulation and in its current form uses
Laplacian smoothing to calculate the change in mesh velocity. In the following sec-
tions, this computational model and the problems associated with the use of Laplacian
smoothing are described in detail. The process of replacing Laplacian smoothing with
mesh optimisation and the results of this is also described.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 109

7.3.2 Problems associated with Laplacian smoothing

In the current implementation of this computational framework, the change in mesh
velocity is calculated using Laplacian smoothing. The motivation for substituting
Laplacian smoothing for mesh optimisation fall into two categories. Firstly many issues
have been tracked to poor quality mesh. Analyses have been terminating prematurely
due to issues with meshes and the domain was being re-meshed too frequently. A
certain degree of re-meshing will always be required due to the large deformations
observed, however, this should be limited as much as possible. Volume loss was often
observed and it is desirable to minimise this as much as possible.

Secondly, the success of the simulation was found to be heavily dependent on a user
defined, artificial mesh viscosity parameter to limit the calculated mesh velocities.
This parameter is an analogue to the physical fluid viscosity. The greater the value
of this parameter, the more difficult it is for a mesh node to move. This parameter is
problem dependent and the only way to find a suitable value is by fine tuning. It is
also very difficult to choose this parameter correctly in situations where one part of the
fluid is moving quickly and the other slowly, thus large amounts of user intervention
are required. Experience has shown that if an incorrect value of this parameter is
chosen, the analysis may terminate immediately or it may continue for some time
before terminating prematurely. This use of this parameter is therefore both tedious,
time-consuming and an inefficient use of computing resources. The next stages of
this development process involves the 3D implementation of this model. Therefore
techniques which will translate to three dimensions are required and for this reason
it is necessary to replace Laplacian smoothing with a more effective, reliable and user
friendly algorithm.

7.3.3 Deformation of the fluid droplet

The initial testing stages of this project involved laboratory experiments to gain an
understanding of the behaviour of a micro-fluid droplet. This involved placing a droplet
of water on a speaker emitting waves of various frequencies. Water was used due to
the strict regulations governing the use of blood in laboratory testing. A high speed
camera captured the evolution of the shape of the fluid droplet, Figure 7.4. It is clear
from these images that the droplet undergoes large deformations, and thus a mesh of
the droplet must be able to adapt to accommodate these deformations. The first step
in this process is to understand the physical processes governing the behaviour of the

7.3. Calculating ALE mesh velocities using mesh quality optimisation 110

Figure 7.4: Evolution in the shape of a fluid droplet subject to external
excitation, [50]

droplet.

7.3.4 The governing equations

In the following sections, the physics of this problem are described as an appreciation
and understanding of this is essential to the successful implementation of mesh quality
optimisation into the existing computational model.

7.3.4.1 The Navier-Stokes equations

The Navier-Stokes equations for incompressible fluids are a set partial differential equa-
tions which describe fluid motion. They are derived by applying Newton’s Second law
to fluid motion whilst accounting for conservation of momentum, mass and energy.
Fluid stress is assumed to be the sum of a viscous term and a pressure term. There are
many derivations of the Navier Stokes equations available, for example Acheson [51]
and Farside [52].

The problem under consideration in this section is concerned with fluid motion at the
micro-scale. For this derivation it is assumed that the fluid is a continuum and that
there are no discrete particles in the fluid. Following the continuum hypothesis the
properties of the bulk of the fluid may be applied to any point in the fluid. In the

7.3. Calculating ALE mesh velocities using mesh quality optimisation 111

following sections, two important concepts for the understanding of the Navier-Stokes
equations are introduced: the material derivative and Reynold’s transport theorem.
Conversation of mass and momentum will then be discussed.

The material derivative:
The material derivative is the derivative of a property of the material, e.g. temperature
or velocity, under consideration with respect to a moving coordinate system [53]. The
property under consideration generally depends on time, t and its position of the fluid
element at that time.

f(t) = f(x, y, t) = f(s, t) (7.1)

where s is a position vector. At time t the fluid particle has coordinates x(t), y(t).
In the time interval δt, the element moves from (x, y) to (x + δx, y + δy). As f is
a function of x, y, t, there will thus be a corresponding change in f , denoted as δf .
Therefore:

δf =
∂f

∂t
δt+

∂f

∂x
δx+

∂f

∂y
δy (7.2)

The observed rate of change is therefore:

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
(7.3)

Velocity is defined as the rate of change of position s:

ds

dt
= (u, v) = u = (

dx

dt
,
dy

dt
) (7.4)

and

df

dt
=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
=
∂f

∂t
+ u∇ · f (7.5)

In fluid mechanics the rate of change of the property of a fluid element is normally
denoted as D

Dt . Therefore the material derivative of the property f of a fluid element
is defined as:

Df

Dt
=
∂f

∂t
+ u∇ · f (7.6)

Reynold’s transport theorem:
Reynold’s transport theorem is a conservation law concerning intensive properties of

7.3. Calculating ALE mesh velocities using mesh quality optimisation 112

a control volume. An intensive property is a physical property of a system which is
independent of the system size and the amount of material present [42]. It states that
the rate of change of an intensive property S defined over a control volume Ω is equal to
the sum of the loss or gain of the property through the boundaries of the control volume
plus what is created or destroyed by sources or sinks within the control volume [42].
Mathematically it is stated as follows:

∂

∂t

∫
Ω

sdV = −
∫
δΩ

sv · ndA−
∫

Ω

QdV (7.7)

where δΩ is the bounding surface of Ω, n is the unit outward pointing normal of δΩ
and Q is any sources or sinks within Ω. Using the divergence theorem, the area integral
may be changed into a volume integral. The divergence theorem states that the density
within a region of space may only change by flow into or away from the region through
its boundary [39]. Therefore:∫

δΩ

sv · ndA =

∫
Ω

∇ · (sv)dV (7.8)

Therefore:

∂

∂t

∫
Ω

sdV = −
∫

Ω

∇ · (sv)dV −
∫

Ω

QdV (7.9)

The left-hand side of equation 7.9 may be modified using Leibniz’s rule which is a for-
mula for differentiation of a definite integral whose limits are functions of the differential
variable [54]. Formally it states that:

∂

∂t

∫ b(x)

a(x)

f(x, t)dx =

∫ b(x)

a(x)

∂f

∂x
(x, t)dx (7.10)

Applying this to equation 7.9 results in:∫
Ω

∂s

∂t
dV = −

∫
Ω

∇ · (sv)dV −
∫

Ω

QdV (7.11)

Therefore: ∫
Ω

(
∂s

∂t
dV +∇ · (sv) +Q

)
dV = 0 (7.12)

However, this result is true irrespective of size, shape or location of volume V which is
only possible if this relation holds at every point in the fluid [52]. Therefore

∂s

∂t
+∇ · (sv) +Q = 0 (7.13)

7.3. Calculating ALE mesh velocities using mesh quality optimisation 113

Conservation of mass
Assuming that there are no sources or sinks of momentum within the control volume
(Q = 0) and using the density of the fluid as the intensive property, equation 7.13 may
be used to give an expression for conservation of mass:

∂ρ

∂t
+∇ · (ρv) =

∂ρ

∂t
+ tr

(
∂v

∂x

)
= 0 (7.14)

Conservation of momentum
Momentum per unit volume is the product of density and fluid velocity. Substituting
this into equation 7.13 gives:

∂

∂t
ρv +∇ · (ρvv) +Q = 0 (7.15)

A body force b, which may be considered as a source or sink of momentum per unit
volume is introduced. Equation 7.15 may be expanded using the chain rule of differ-
entiation giving:(

∂ρ

∂t
v +

∂v

∂t
ρ

)
+ (vv · ∇ρ+ ρv · ∇v + ρv∇ · v) = b (7.16)

v

(
∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v

)
+ ρ

(
∂v

∂t
+ v · ∇v

)
= b (7.17)

v

(
∂ρ

∂t
+∇ · (vρ)

)
+ ρ

(
∂v

∂t
+ v · ∇v

)
= b (7.18)

The term in the left parenthesis is simply the expression developed in the previous
section for conversation of mass. Therefore, using equation 7.15:

ρ

(
∂v

∂t
+ v · ∇v

)
= b (7.19)

As the term in parenthesis is the material derivative of the velocity:

ρ
Dv

Dt
= b (7.20)

This is a generalised form of the Cauchy momentum equation.

Strong form of the Navier-Stokes equations
Assuming that the body force term in equation 7.20 consists of two terms, a term to
describe forces resulting from stresses and a term to describe other forces present such

7.3. Calculating ALE mesh velocities using mesh quality optimisation 114

as gravity, or formally as

b = ∇ · σ + ρg (7.21)

where σ is the Cauchy stress tensor and g is gravity which in the vertical direction is
ρg. Substituting equation 7.21 into 7.20 gives:

ρ
Dv

Dt
= ∇ · σ + ρg (7.22)

The Cauchy stress tensor may be expressed as follows [31]:

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (7.23)

This may be decomposed into its volumetric and deviatoric components as follows:

σ = −

p 0 0

0 p 0

0 0 p

+

σxx + p τxy τxz

τyx σyy + p τyz

τzx τzy σzz + p

 (7.24)

or simply as:

σ = −pI + T (7.25)

where p is the pressure, I is the identity matrix and T is the deviatoric stress ten-
sor. The pressure in a fluid is equal to the negative of the mean normal stress [52].
Therefore:

p = −1

3
(σxx + σyy + σzz) (7.26)

Several assumptions may be made concerning the deviatoric stress tensor. For example
for Newtonian fluids, the viscous forces due to fluid flow are proportional to the strain
rate at every point in the fluid [51]. For a Newtonian fluid the following assumptions
can be made concerning the deviatoric stress tensor [42]:

• It is zero when the fluid is at rest. It also depends only on the spatial derivatives
of the fluid velocity.

• It may be expressed as the product of the flow velocity gradient∇v and a viscosity
tensor A or T = A (∇v).

• The fluid is isotropic, thus, the viscosity tensor A is isotropic.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 115

• It is symmetric and may be expressed in terms of two viscosity coefficients, µ
and λ, where µ is the first viscosity coefficient commonly referred to simply
as the viscosity and λ the second coefficient of viscosity often referred to as
the bulk viscosity. The bulk viscosity is difficult to determine and a common
approximation is 2

3
[55].

Following these assumptions, the deviatoric stress tensor may be expressed as:

T = 2µe + λ∆I (7.27)

where ∆ is the rate of expansion of the flow defined as [55]:

∆ = ∇ · v (7.28)

and e is the strain rate tensor defined as:

e =
1

2
(∇v) +

1

2

(
∇vT

)
(7.29)

This tensor is a measure of the rate of change of the velocity components in each
direction [56]. From equations 7.24 and 7.26 it is clear that the trace of this tensor is
zero. Consider an incompressible fluid, that is a fluid in which the density is constant
within an infinitesimal volume which moves with the fluid velocity. The following may
be assumed:

• viscosity µ is a constant

• the bulk viscosity λ is zero

• there are no sources or sinks of momentum within the control volume as the
density is constant. From equation 7.15, this means that ∇ · v = 0.

The deviatoric stress tensor therefore simplifies to:

T = 2µe (7.30)

where:

e =
1

2
∇v +

1

2
∇v′ (7.31)

Combining equations 7.22, 7.25 and 7.30 gives:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · (2µe) + ρg (7.32)

7.3. Calculating ALE mesh velocities using mesh quality optimisation 116

which is the final form of the momentum equation for an incompressible Newtonian
fluid.

7.3.4.2 The weak form of the Navier-Stokes equations

Equations 7.15 and 7.32 are what are referred to as the strong form of the Navier-
Stokes equations. These relationships must be satisfied at every point in the domain.
A weak form of these equations must be formulated in order to obtain approximate
solutions to them using the FEM. The weak form of a partial differential equation is
one which the solution is required to hold in an average sense over the entire domain.
In order to transform a partial differential equation into its weak form, its dot product
must be taken with a suitable weight function and then it must be integrated over the
domain [57].

The weak form of the mass equation is expressed as:∫
V

tr

(
∂v

∂x

)
wpdV = 0 (7.33)

where wp is a weight function. The development of the weak form of the momen-
tum equation involves taking the dot product of equation 7.32 with a suitable weight
function: ∫

V

(
ρ

(
∂v

∂t
+ v · ∇v

)
+∇p− 2µ∇ · e− ρg

)
wvdV = 0 (7.34)

where wv is a vector-valued weight function. There are two acceleration terms in
this equation, the unsteady acceleration ∂v

∂t and the convective acceleration v · ∇v.
These will be referred to collectively as the acceleration, a. The stress tensor term is
integrated by parts and recalling equation 7.21:∫

V

(wvρ · a− p∇ ·wv + 2µwv∇ · e−wv · b) dV = 0 (7.35)

7.3.4.3 Surface tension and contact angle

At the micro-scale under consideration here, surface tension is the dominant force, thus
it is essential that this is accounted for. In doing so, one of two approaches may be
taken [58]. It may be taken as a boundary condition at the fluid interface or it may be
included as forces that act at the fluid-gas interface. The first approach is appropriate
if the evolution of the interface is described explicitly whereas the second approach is

7.3. Calculating ALE mesh velocities using mesh quality optimisation 117

Figure 7.5: Illustration of the contact line. Adapted from [59]

suitable when the evolution of the interface is described implicitly [58], as is the case
in the problem under consideration here.

The Young-Laplace equation is used to calculate the pressure difference, ∆p, across an
interface between two fluids:

∆p = −γ∇s · n (7.36)

where γ is the surface tension, n is the outward pointing unit normal to the interface
and ∇s is the surface gradient operator defined as ∇s = (I − n ⊗ n)∇· [58]. The
pressure difference is therefore a function of the geometry of the interface. The angle
between the water and the solid surface is referred to as the contact angle, Figure 7.5.

7.3.4.4 The weak form of the surface tension and contact line forces

The following derivation is adapted from Saksono and Perić [58]. The standard Cauchy
stress tensor σ(x, t) is defined as:

t(x, t,n) = σn (7.37)

where t is the traction vector and n is the unit normal. Recalling equation 7.36, the
pressure difference may be expressed as the difference between the external pressure
and the internal pressure or ∆p = pext−pint. Using this, the continuity of forces across
the fluid-gas interface Γ may be expressed as:

σn = −pintn = pextn + 2γ∇sn on Γ (7.38)

7.3. Calculating ALE mesh velocities using mesh quality optimisation 118

Expressing equation 7.38 in its weak form:

σn =

∫
Γ

pextn ·wda−
∫

Γ

γ∇sn ·wda (7.39)

where w is a weighting function. The second integral may be further developed using
the divergence theorem on surface Γ.

−
∫

Γ

∇sn ·wda =

∫
Γ

∇swda−
∫
C

γw ·mds (7.40)

where C is the boundary curve of surface Γ and m is the bi-normal vector of C, which
is a vector which is both tangent to the surface and orthogonal to the curve and is a
function of the contact angle [58]. In this equation, the contribution of surface tension
is accounted for by the first term and the contribution of the contact line force by the
second.

7.3.5 Implementation of the computational framework

In the following sections, the computational framework is described in detail. In this
problem, the evolution of the fluid droplet towards its equilibrium position is traced
by calculating the change in the droplet over a very short period of time, or time-step,
and repeating for subsequent time-steps until it reaches its equilibrium position.

7.3.5.1 Overview of the computational model

The problem under consideration is a two-dimensional, axisymmetric model of a micro-
fluid droplet which simulates its evolution from an initial, non-equilibrium position to
its final equilibrium position. The governing equations consist of the Navier-Stokes
equations for incompressible fluids and the Young-Laplace equation for surface ten-
sion. The weak form of these equations, derived in the previous sections, are then
discretised using a monolithic arbitrary Lagrangian Eulerian formulation. An implicit
time integration scheme is used to calculate the droplet’s evolution in time, therefore,
the governing equations must be linearised. As a monolithic ALE scheme is used, the
updated positions of the mesh nodes are calculated, using the mesh quality optimi-
sation algorithms developed throughout this thesis, at the same time as the physical
equations.

As this thesis is concerned with mesh quality optimisation, the areas of greatest interest
are the application of the mesh quality optimisation equations introduced in Chapter 3

7.3. Calculating ALE mesh velocities using mesh quality optimisation 119

and the re-meshing algorithm which has a direct impact on the quality of the mesh
throughout the entire analysis. The Newton-Raphson solver and the adaptive time-step
algorithm also have a great impact on the success of the mesh optimisation process.
Therefore, these are also discussed in the following sections.

7.3.5.2 Discretisation of the governing equations and the element stiffness matrix
and force vector

The development of the time and space discretised form of the weak form of the gov-
erning equations for this problem in a cylindrical coordinate system is a significant
process completed by the author’s colleagues. As this thesis is concerned with mesh
quality optimisation, it is therefore far beyond its scope. This process is covered in
detail by Mackenzie [42]. The governing equations in their discretised form are given
below. Mackenzie [42] should be consulted for a full explanation.

Rv(v, v̂) = 2π

∫
r

∫
z

wprn
∂vi
∂χ

: Idrdz + ∆tπ

∫
r

∫
v

wp
∂vi
∂χ

: INrδv̂drdr

+ 2π

∫
r

∫
z

wprn
∂N

∂χ
: δv̂drdr − 2π2π

∫
r

∫
z

wrn
∆t

2

[
∂vi
∂χ

]T
:
∂N

∂χ
δv̂drdz

+ 2π

∫
r

∫
z

wp · (vi)rdrdz + 2π

∫
r

∫
z

(wp ·Nr) δv̂drdz

(7.41)
which may be written as:

Rv(v, v̂) = fpv + faxipv +
(
Kpv + Kaxi

pv

)
δv +

(
Kaxi

pv̂

)
δv̂ (7.42)

7.3. Calculating ALE mesh velocities using mesh quality optimisation 120

where K refers to a stiffness term, M a mass matrix and f a force vector.

Rv(v, v̂, p) = 2π

∫
r

∫
z

rnρwv

(
∆v

∆t
+
∂vi
∂χ

(vi − v̂i)

)
− rn(wv · b)dV rdz

+ ∆tπ

∫
r

∫
z

(
ρwv

(
∆v

∆t
+
∂vi
∂χ

(vi − v̂i)

)
− (wv · b

)
Nrδv̂drdz

+ 2π

∫
r

∫
z

rnρwv

(
N

∆t
+
∂vi
∂χ

N +
∂N

∂χ
(vi − v̂i))

)
δv̂drdz

+ 2π

∫
r

∫
z

rnρwv

(
∆t

2

∂vi
∂χ

∂N

∂χ
(vi − v̂i)−

∂vi
∂χ

N

)
δv̂drdz

+ 2π

∫
r

∫
z

rn
∂wv

∂χ
: Ipidrdz −∆tπ

∫
r

∫
z

(
∂wv

∂χ
: Ipi

)
Nrδv̂drdz

+ 2π

∫
r

∫
z

rn
∂wv

∂χ
: INδpdrdz + 2π

∫
r

∫
z

rn
δt

2

[
∂wv

∂χ

]T
: pi

∂N

∂χ
δv̂drdz

+ 2π

∫
r

∫
z

2µrn
∂wv

∂χ
: (e + δe + δê) drdz

+ ∆tπ

∫
r

∫
z

(
2µ
∂wv

∂χ
: ei

)
Nrδv̂drdz

− 2π

∫
r

∫
z

2µrn
∆t

2

(
∂wv

∂χ
eTi

)
:
∂N

∂χ
δv̂ − 2π

∫
r

∫
z

(wv · pi)drdz

− 2π

∫
r

∫
z

(wv ·Nr)δpdrdz + 2π

∫
r

∫
z

2µ

rn
(wv · vi)rdrdz

− 2π

∫
r

∫
z

2µ∆t

r2
n

(wv · vi)rNrδv̂drdz + 2π

∫
r

∫
z

2µ

rn
(wv ·Nr)δv̂drdz

(7.43)
which may be written as:

Rv(v, v̂, p) =
1

∆t
(Mvvδv + Mvv̂δv̂) +

(
Kvv̂ + Kaxi

vv̂

)
δvδv̂ +

(
Kvp + Kaxi

vp

)
δp

+
(
Kvpv̂ + Kvv̂ + Kaxi

vv̂ + Kfr
vv + Kfr

vm + Kfr
vp

)
δv̂

+ fvv + faxivv + fvm + fvp + faxivp

(7.44)
As previously stated each mesh node has five degrees of freedom, the change in fluid
velocity (δv) in the horizontal and vertical directions, the change in pressure (δp) and
the change in mesh velocity (δv̂). Three noded triangular elements are used, therefore
there are fifteen degrees of freedom associated with each element. The system of gov-
erning equations given above is shown diagrammatically in Figure 7.6, this represents
the element stiffness matrix, force vector and vector of unknowns. The terms refer-
enced in Figure 7.6 are explained below. Note the absence of Av̂v̂ and Fv̂ which refer
to the stiffness and force term respectively of the mesh quality optimisation equation,

7.3. Calculating ALE mesh velocities using mesh quality optimisation 121

Figure 7.6: Element stiffness matrix, vector of unknowns and force vector

which are explained in the following section.

Avv =
Mvv

∆t
+ Kvv + Kaxi

vv

Avp = Kvp + Kaxi
vp

Avv̂ =
Mvv̂

∆t
+ Kvv̂ + Kaxi

vv̂ + Kvpv + Kfr
vm + Kfr

vp

Apv = Kpv + Kaxi
pv

App = 0

Apv̂ = Kpv̂ + Kfr
pv̂

Av̂p = 0

Fv = fvv + faxivv + fvm + fvp + faxivp

Fp = fpv + faxipv

7.3.5.3 The mesh optimisation equations

In this section, the process of implementing mesh optimisation as part of the FE
solution process is discussed. In the current implementation of this computational
framework, the entries in the element stiffness matrix, Av̂v̂, and in the element force
vector, Fv̂, associated with the change in mesh velocity are calculated using Laplacian
smoothing. The goal of this project is to calculate these terms using mesh optimisation

7.3. Calculating ALE mesh velocities using mesh quality optimisation 122

due to the many issues already discussed associated with Laplacian smoothing. In
Section 3.2.5 element quality measures are introduced and in Section 3.3 the objective
functions used to optimise meshes based on these quality measures are described.

The mesh optimisation process is summarised here. For each element in a mesh, a
matrix of second derivatives, or the Hessian, and vector of first derivatives, or the
gradient, of the quality measure is calculated. Using an objective function, the system
of equations used to optimise a mesh is assembled. This system of equations is then
solved using a Newton-Raphson iterative solver. This process closely mirrors the typical
FE solution process, however instead of solving for physical degrees of freedom, new
nodal positions associated with the optimised mesh are solved for.

In the case of the micro-fluid droplet, both physical degrees of freedom and mesh
degrees are freedom are being solved for. Therefore, the entries in the element stiffness
matrix and force vector, illustrated in Figure 7.6, associated with the change in mesh
velocity are assembled using the exact same method as for mesh optimisation, that is
using the element quality objective function. However, as the change in mesh velocity
is being solved for, and not displacement for which these equations were derived for,
the entries in the Hessian matrix must be multiplied by 0.5∆t. In Chapters 4 and 6, the
log-barrier objective function was found to be both effective and efficient at optimising
meshes, therefore, it will be used here. In Section 7.3.5.2, it may be seen that the mass
matrix terms are divided by 2∆t. For reasons relating to numerical stability, rather
than dividing by a very large number, it was chosen to multiply all entries in the system
of equations by 2∆t, including the mesh optimisation terms. The stiffness and force
terms relating to mesh optimisation are defined as:

Av̂v̂ =

(
∇qk

[
1

1− γ
− 1

(qk − γ)2

]
∇qTk +

[
qk

1− γ
− 1

qk − γ

]
∇2qk

)
∆t2 (7.45)

where qk is the quality of element k, γ is the barrier term described in Section 3.3, ∆t

is the time-step, ∇2qk is the Hessian of the element quality measure and ∇qk is the
gradient of the element quality measure.

Fv̂ =

([
qk

1− γ
− 1

qk − γ

]
∇qk

)
2∆t (7.46)

Choice of quality measure

In equations 7.45 and 7.46, the qk, ∇qk and ∇2qk terms may be calculated using any
suitable quality measure, including anisotropic quality measures. There are two main

7.3. Calculating ALE mesh velocities using mesh quality optimisation 123

criteria to be considered in choosing the mesh quality measure. These are efficiency and
effectiveness. In Chapter 3, three quality measures were introduced, the area-length
(AL) quality measure, the ideal weight inverse mean ratio (IMR) quality measure and
the sine quality measure. In terms of efficiency, the sine measure was found to be
the most computationally expensive, thus this is eliminated. The choice is therefore
between the AL quality measure and the IMR quality measure, both of which were
found in Chapters 4 and 6 to be very close in terms of performance and efficiency.
The AL quality measure was chosen for convenience reasons. This measure and its
derivatives was derived by the author and then implemented in a general manner
allowing it to be easily integrated into multiple projects. The IMR quality measure
was derived and developed by the Mesquite development team and is implemented
using custom data types. This means that a wrapper is required in order to use the
Mesquite implementation. This would involve many memory allocations, deallocations
and copys, operations which are computationally very expensive. It is for these reasons
that the AL quality measure was chosen.

7.3.5.4 Newton-Raphson iterative solver

The Newton-Raphson iterative procedure is an effective and efficient means of solving
a system of non-linear algebraic equations resulting from a discretisation of a partial
differential equation [58]. Such a solver is used as part of an implicit method. This
procedure replaces F(X) by its first order expansion about the point F(Xtn)

F(Xtn) + K(Xtn)
[
Xtn+1 −Xtn

]
= 0 (7.47)

where K is the stiffness matrix which is defined by the directional derivative formula
introduced in Section 3.2.5.2.

K(Xtn)[U] =
∂

∂ε

∣∣∣
ε=0

F(Xtn + εU) (7.48)

Given the solution at time tn, the solution at time tn+1 may be iteratively calculated
using this scheme.

7.3.5.5 Boundary conditions

There are four different types of boundary nodes present in this simulation. These are
illustrated in Figure 7.7 and are described below.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 124

Figure 7.7: Boundary Conditions.

• Red: node is fully fixed.

• Blue: node is fixed in the x direction.

• Yellow: node is fixed in the y direction.

• Green: surface node.

The application of boundary conditions is described in Chapter 5 and the exact same
process is used here. It is possible to optimise the positioning of the surface nodes
using the constrained optimisation algorithm developed in Chapter 5. This algorithm
constrains nodes to complex surfaces based only on information obtained from the
mesh. However, the use of this algorithm was found to be very expensive. Therefore,
in the initial implementation of the coupling process, surface nodes will be treated as
Lagrangian, thus the mesh velocity at each surface node is equal to the fluid velocity.
If the coupling process is successful, then this algorithm will be implemented, thus
enabling the optimisation of surface nodes.

In the current implementation, the mesh velocity of the surface nodes is taken to be
equal to the fluid velocity, thus enforcing the Lagrangian condition. Therefore the Av̂v

entries of the element stiffness matrix enforce the condition that the mesh velocity is
equal to the fluid velocity or δv = δv̂ for all surface nodes.

7.3.5.6 Adaptive time-step algorithm

An adaptive time-step is used in this analysis so that the time-step can either increase
or decrease depending on the degree of non-linearity present. At the end of every time-

7.3. Calculating ALE mesh velocities using mesh quality optimisation 125

step, the magnitude of the next time-step is calculated using a relationship developed
by Mackenzie [42]:

∆tn+1 = ∆tn

(
ιd

ιn + 1

)
(7.49)

where ∆tn is the magnitude of the previous time-step, in is the number of Newton
iterations required for the previous time-step and ιd is the user defined desired number
of Newton iterations. More sophisticated adaptive time-step algorithms are presented
by Volker and Rang [60].

7.3.5.7 Re-meshing algorithm

Between time-steps, it may be necessary to re-mesh all or parts of the domain due to
the complex, constantly evolving domain, irrespective of the effectiveness of the mesh
updating algorithm used. The re-meshing algorithm used in this analysis is a two step
process. Firstly, areas of the mesh of high or low nodal density relative to the rest of
the mesh are targeted. In areas of high nodal density, unnecessary nodes are removed.
Conversely, in areas of low nodal density, new nodes are inserted. The second stage
involves computing a new triangulation of the domain.

Node insertion and deletion operations

The node insertion and deletion algorithm used in this analysis is based on the same
premise as Laplacian smoothing: that mesh composed of equidistant nodes are of good
quality. A new node is inserted at the middle of any edge if the length of the edge is
greater than 1.5 times the average edge length. If the length of an edge is less than 0.5

times the average edge length, one of its nodes is deleted along with all the edges which
are connected to that node. This is illustrated in Figure 7.8. The resulting cavity is
then re-meshed during the second stage of the re-meshing process.

Calculation of the new triangulation

A new triangulation is calculated after every time-step, even if no node insertions or
deletions have been performed. This is because the current triangulation may not be
the optimal triangulation for the new nodal positions. Therefore, the mesh connec-
tivity is deleted and the nodal coordinates are passed to the computational geometry

7.3. Calculating ALE mesh velocities using mesh quality optimisation 126

Figure 7.8: Node insertion and deletion. (a) A new node is inserted at the mid-point
of the long edge marked in red. (b) One of the nodes on the short edge, marked in
blue, is removed.

Figure 7.9: The edge marked in green is flipped, resulting in a higher quality mesh.

library CGAL [27] which computes the new triangulation. CGAL returns the Delaunay
triangulation of the set of nodes passed to it. In a Delaunay triangulation of a set of
nodes, no node may lie within the circumcircle of a triangle, they are only permitted to
lie on the boundary of a circumcircle [61]. Delaunay triangulations are typically very
high quality triangulations [61]. Although the entire domain is re-meshed after every
time-step, in practice changes to the mesh between time-steps are minimal. Changes
are generally reserved for regions of the mesh where node insertions or deletions have
been performed. However, edge flips, illustrated in Figure 7.9, may also be performed
in areas where no nodal insertions or deletions have occurred. This is because the
change in nodal positions during a time-step may result in a mesh which is no longer
a Delaunay triangulation.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 127

Solution adaptive re-meshing

Solution adaptive re-meshing, introduced in Section 2.1.2, is a process where either the
entire domain, or selected parts of it, are re-meshed periodically based on an estimation
of the solution error. This aims to give as accurate a solution as possible while limiting
the number of of degrees of freedom. This estimation may be used to calculate the
nodal density throughout the mesh, as used by Saksono and Perić [62], where the
norm of the gradient of the fluid velocity is used to determine which part of the mesh
requires refining or coarsening. Alternatively, the method described in Section 2.1.3,
where the shape, size and orientation of the ideal element at each point in the domain
is calculated by defining a metric field over the domain. In cases where the mesh is
used to solve for multiple variables, such as the problem under consideration here, the
method of combining multiple metric tensors described in Section 2.1.4.2 may be used.
The mesh optimisation process described in this chapter may then be combined with
a quality measure which measures the size, shape and orientation of an element, such
as that described in Section 3.2.6.

The overall goal of the mesh optimisation and re-meshing process is to limit the intro-
duction of errors caused by the mesh. The source of these errors is the interpolation of
variables using unsuitable elements and the transfer of data from one mesh to another.
Therefore, it is highly advantageous to limit re-meshing as much as possible, as each
re-mesh implies the transfer of data. In this problem, the direction of anisotropy is
not known a-priori and is subject to rapid change, meaning that a mesh which is ideal
at one time-step may not be ideal during subsequent time-steps. Therefore, isotropic
elements, whilst not ideal, may in fact reduce the amount of re-meshing required. How-
ever, there is definite merit in the further investigation of the both types of solution
adaptive re-meshing described in this section to later stages of this project.

7.3.6 Results

An analysis using the computational framework described in the previous sections was
performed on the micro-fluid droplet using the mesh optimisation algorithm described
above. For comparison, an analysis using Laplacian smoothing was run using the same
parameters. In this section the results of both analysis are compared to gauge the
effectiveness of the mesh optimisation algorithms. To-reiterate, mesh optimisation is
being used due to the problems associated with Laplacian smoothing. For example,
analysis were found to be terminating prematurely due to issues with the mesh and

7.3. Calculating ALE mesh velocities using mesh quality optimisation 128

Laplacian Smoothing Mesh Optimisation

Edge flips 271 167
Nodes added 121 76
Nodes removed 141 34
Area re-meshed 149.34% 81.83%
Volume change −0.139% −0.036%
Range of angles 8.07◦ − 163.06◦ 23.5◦ − 115.03◦

Table 7.1: Comparison of Laplacian smoothing and mesh optimisation

volume loss was observed. Laplacian smoothing also requires the use of an artificial
mesh viscosity parameter, which is not required when mesh optimisation is used. This
parameter was the source of many problems, thus a method which does not require its
use is desirable. It is also desirable to limit re-meshing as much as possible as this was
shown in Chapter 2 to cause numerical errors.

Each analysis is compared using the following criteria to give as broad a picture as
possible of the advantages and disadvantages of each method of calculating the change
in mesh velocity. Firstly the degree of re-meshing which occurred during the inter
time-step re-meshing process is assessed. This is done by tracking the cumulative
number of nodes added and removed and the number of edges flipped over the course
of the analysis. The cumulative area re-meshed is also calculated and is expressed as a
percentage of the area of the domain. If an edge is flipped, the area of the two triangles
on that edge is added to the total area re-meshed. If a node is added or removed, the
area of any elements defined by that node contribute to the cumulative area re-meshed.
The change in volume of the domain and the magnitude of the average time-step were
also used for comparison. It is desirable to have as large a time-step as possible as the
larger the time-step, the less time taken to run an analysis. Finally, to determine the
quality of the meshes over the course of the analysis, the range of angles observed in
the triangular elements over the course of each analysis was calculated. These results
are shown in Table 7.1.

It can be seen that the use of mesh quality optimisation instead of Laplacian smoothing
has reduced the amount of re-meshing required by almost half. Volume loss has been
reduced to a quarter of its previous value and there is a much tighter bound on the
range of angles present during the analysis. However, all this has come at a very
large cost - the magnitude of the time-step is less than one percent of its previous
value. These analyses typically take from several days to several weeks to terminate,
depending on the particular analysis. With this new reduced time-step, running an

7.3. Calculating ALE mesh velocities using mesh quality optimisation 129

Figure 7.10: Initial droplet shape.

analysis until it reaches its equilibrium position could take several years. This is clearly
not practicable, even though all of the initial goals have been achieved.

Careful scrutiny of the results of the analysis revealed that the mesh optimisation pro-
cess was too aggressive. The adaptive time-step algorithm described in Section 7.3.5.6
determines the magnitude of the next time-step based on the number of iterations the
previous time-step took to reach convergence. The greater the number of iterations
required, the greater the degree of non-linearity of the system of equations. The aggres-
sive mesh optimisation algorithms applied to this computational framework introduced
very large non-linearities into the system, thus causing the time-step to plummet. It
is clear that these algorithms in their current form are not at all suited to this appli-
cation. Therefore, a modified, less aggressive form of this algorithm which introduces
lesser non-linearities into the system, thus having a lesser effect on magnitude of the
time-step, is required. Such an algorithm is described in the next section. To ensure
that the time-stepping problem was not specific to the particular quality measure used
or analysis performed, several different analyses were performed using both the IMR
quality measure and AL quality measure. The results obtained were very similar to
those presented in Table 7.1.

7.3.7 Maintaining mesh quality

It was shown in the previous section that using mesh quality optimisation to calculate
the change in mesh velocity in an ALE analysis is quite effective, however this comes
at the expense of a significant reduction in the magnitude of the time-step. This
means that the time taken to perform an analysis increases drastically. In this section,
a modified version of the mesh optimisation algorithm is presented, which aims to
preserve the quality of the mesh during the deformation process, rather than optimising
it, thus having a lesser effect on the magnitude of the time-step.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 130

The initial mesh of the fluid droplet is generated using Cubit [24], a powerful mesh
generation package. All analysis involving the fluid droplet begin from an initial non-
equilibrium position, for example that shown in Figure 7.10. The initial mesh are
always of good quality due to the powerful meshing algorithms utilised by Cubit and
the simple domain shape. In Section 7.3.5.7, the inter time-step re-meshing process
is described. Therefore, the mesh is generally also of good quality at the beginning
of each time-step, and thus, only minor numerical and performance benefits may be
gained from aggressively optimising it. This means that instead of optimising the mesh,
it is only necessary to maintain the quality of the mesh during the deformation process.
This is achieved by re-defining the quality of an element so that it is a function of its
quality at the beginning of the time-step, Equation 7.50.

qk =
qik
q0
k

(7.50)

where qik is the quality of element k at the ith iteration and q0
k is the quality of element

k at the beginning of the time-step. The rest of the process remains identical to that
described for the mesh optimisation case. As before, the quality measure is combined
with the log-barrier objective function, Figure 7.11. If the quality of an element remains
unchanged during a time-step, then its quality is one and no effort is made to improve
it. If it improves during a time-step, its quality is greater than one and if it deteriorates,
its quality is less than one. Therefore, at the first iteration of every time-step, the mesh
velocity equations make no contribution to the element stiffness matrix and force vector.
This means that there are no residuals associated with mesh velocity at the beginning
at each time-step. It is only when changes are made to the mesh that these entries are
non-zero. There is a slight disadvantage associated with this approach. If the quality of
an element is improved during a time-step, this algorithm will attempt to restore it to
its previous quality. However, from Figure 7.11 it can be seen that the non-linearities
associated with restoring an element which has been improved to its original quality
are lesser than those generated when the quality of an element deteriorates. These
non-linearities are unnecessary and counter-productive. Nevertheless, the punishment
for improving an element is far less than that for damaging it, so whilst a disadvantage,
it is not debilitating.

7.3.7.1 Results

Similar to the previous section, the results obtained using mesh quality optimisation
and Laplacian smoothing are compared in this section. To reiterate, the aim of this

7.3. Calculating ALE mesh velocities using mesh quality optimisation 131

Figure 7.11: The log-barrier function used to maintain mesh quality

process is to limit the amount of re-meshing required throughout the analysis and to
minimise the change in volume of the domain. It is also desired to maximise the mini-
mum angle and minimise the maximum angle present in the mesh and to remove the
need for the mesh viscosity parameter, all whilst having as large a time-step as possible.
The results are presented in the following pages with the shapes of the two droplets
tracked throughout the entire analysis. When presenting the results, the two droplets
shown side by side could be either those from the same times during the analysis or
when they are at similar positions in the evolution of their shapes towards their re-
spective equilibrium positions and the shapes assumed by the droplets closely coincide.
The decision was made to present the two droplets side by side at similar stages of
their evolution towards equilibrium, for example approaching the maximum/minimum
height as this allows for comparison between the magnitudes of their amplitudes, the
differences in the shapes assumed by the droplets and the pressure distribution. It
can frequently be seen that the range of pressures in both droplets at similar stages of
the simulation differ extensively. However, strong conclusions cannot be drawn from
this as these pressures vary substantially between successive time-steps so the range
of pressures may be very different between successive time-steps even if the shape of
the droplet has only slightly changed. It was also decided to omit the mesh from this
diagram as the density of the mesh is such that it is impossible to distinguish indi-
vidual elements unless magnified by a great deal as each mesh contains approximately
two thousand elements. The plotting of the mesh also makes the pressure distribution
impossible to see. Therefore, it was decided that more information could be conveyed

7.3. Calculating ALE mesh velocities using mesh quality optimisation 132

in the diagram by omitting the mesh. The progression of the droplet throughout the
entire analysis has been presented so as to demonstrate the immense changes the do-
main undergoes and thus clearly show the magnitude of the problem of maintaining
mesh quality.

From the results it is clear that the use of mesh optimisation/preservation has had a
very large effect on the results of the analysis. The shape of the droplet, the amplitude
of its oscillations, the pressure fluctuations, the change in volume and the time taken
for it to reach its equilibrium position have all been affected by the addition of the
mesh quality preservation equations. It is clear that this computational framework has
a strong mesh dependence, although the differences in the results cannot be attributed
to a mesh dependence alone. The degree of re-meshing is determined in the same
manner as before, by tracking the number of nodes added and removed and by counting
the number of edge flips performed. The cumulative area re-meshed is also calculated
and expressed as a percentage of the area of the domain. The cumulative area of
the domain which is re-meshed in the analysis using mesh optimisation is 5.51 times
greater than that re-meshed by the analysis using Laplacian smoothing. As shown in
Chapter 2, the transfer of data from one mesh to another, which is required anytime re-
meshing is performed, leads to numerical errors. These certainly will have contributed
to difference between the two solutions. The inter time-step re-meshing algorithm is
re-examined in the following section to understand the reasons for such a dramatic
increase in the cumulative area being re-meshed.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 133

Laplacian Smoothing Mesh Optimisation

t = 0.0s t = 0.0s

flips = 0 flips = 0

Nodes Added = 0 Nodes Added = 0

Nodes Removed = 0 Nodes Removed = 0

Re-meshed = 0.0% Re-meshed = 0.0%

Volume Change = 0.0% Volume Change = 0.0%

t = 1.71× 10−5s t = 5.62× 10−6s

flips = 6 flips = 6

Nodes Added = 1 Nodes Added = 1

Nodes Removed = 0 Nodes Removed = 0

Re-meshed = 4.66% Re-meshed = 3.21%

Volume Change = 4.000× 10−7% Volume Change = 1.343× 10−5%

t = 2.95× 10−5s t = 1.07× 10−5s

flips = 17 flips = 6

Nodes Added = 1 Nodes Added = 1

Nodes Removed = 2 Nodes Removed = 0

Re-meshed = 13.51% Re-meshed = 3.21%

Volume Change = 1.000× 10−7% Volume Change = 2.686× 10−5%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 134

Laplacian Smoothing Mesh Optimisation

t = 6.90× 10−5s t = 2.88× 10−5s

flips = 48 flips = 12

Nodes Added = 3 Nodes Added = 2

Nodes Removed = 5 Nodes Removed = 0

Re-meshed = 36.61% Re-meshed = 7.04%

Volume Change = 2.005× 10−7% Volume Change = 0.732× 10−4%

t = 7.98× 10−5s t = 3.42× 10−5s

flips = 63 flips = 38

Nodes Added = 4 Nodes Added = 3

Nodes Removed = 7 Nodes Removed = 0

Re-meshed = 46.00% Re-meshed = 31.06%

Volume Change = 1.002× 10−6% Volume Change = 0.843× 10−4%

t = 1.27× 10−4s t = 7.65× 10−5s

flips = 122 flips = 76

Nodes Added = 9 Nodes Added = 6

Nodes Removed = 10 Nodes Removed = 1

Re-meshed = 85.35% Re-meshed = 61.79%

Volume Change = 1.938× 10−6% Volume Change = 1.918× 10−4%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 135

Laplacian Smoothing Mesh Optimisation

t = 1.74× 10−4s t = 1.31× 10−4s

flips = 199 flips = 126

Nodes Added = 16 Nodes Added = 13

Nodes Removed = 13 Nodes Removed = 2

Re-meshed = 138.30% Re-meshed = 92.02%

Volume Change = 3.675× 10−6% Volume Change = 3.384× 10−4%

t = 2.02× 10−4s t = 2.17× 10−4s

flips = 234 flips = 620

Nodes Added = 19 Nodes Added = 32

Nodes Removed = 15 Nodes Removed = 6

Re-meshed = 164.05% Re-meshed = 558.99%

Volume Change = 4.477× 10−6% Volume Change = 5.434× 10−4%

t = 2.26× 10−4s t = 2.63× 10−4s

flips = 301 flips = 1166

Nodes Added = 26 Nodes Added = 49

Nodes Removed = 18 Nodes Removed = 10

Re-meshed = 204.23% Re-meshed = 1042.40%

Volume Change = 5.279× 10−6% Volume Change = 6.646× 10−4%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 136

Laplacian Smoothing Mesh Optimisation

t = 2.73× 10−4s t = 3.00× 10−4s

flips = 436 flips = 2172

Nodes Added = 40 Nodes Added = 94

Nodes Removed = 22 Nodes Removed = 23

Re-meshed = 289.25% Re-meshed = 1873.32%

Volume Change = 0.668× 10−5% Volume Change = 0.907× 10−3%

t = 2.81× 10−4s t = 3.18× 10−4s

flips = 476 flips = 3129

Nodes Added = 46 Nodes Added = 111

Nodes Removed = 23 Nodes Removed = 29

Re-meshed = 308.12% Re-meshed = 2759.01%

Volume Change = 0.695× 10−5% Volume Change = 1.138× 10−3%

t = 2.93× 10−4s t = 3.35× 10−4s

flips = 605 flips = 4061

Nodes Added = 62 Nodes Added = 136

Nodes Removed = 33 Nodes Removed = 33

Re-meshed = 375.36% Re-meshed = 3675.41%

Volume Change = 1.331× 10−2% Volume Change = 1.206× 10−3%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 137

Laplacian Smoothing Mesh Optimisation

t = 4.13× 10−4s t = 3.82× 10−4s

flips = 1301 flips = 5942

Nodes Added = 138 Nodes Added = 201

Nodes Removed = 63 Nodes Removed = 43

Re-meshed = 805.36% Re-meshed = 5439.77%

Volume Change = 0.803× 10−1% Volume Change = 1.298× 10−3%

t = 4.55× 10−4s t = 3.97× 10−4s

flips = 1568 flips = 6471

Nodes Added = 168 Nodes Added = 223

Nodes Removed = 83 Nodes Removed = 50

Re-meshed = 961.03% Re-meshed = 5930.77%

Volume Change = 0.803× 10−1% Volume Change = 1.338× 10−3%

t = 5.73× 10−4s t = 4.63× 10−4s

flips = 2261 flips = 9416

Nodes Added = 235 Nodes Added = 335

Nodes Removed = 137 Nodes Removed = 78

Re-meshed = 1370.94% Re-meshed = 8543.45%

Volume Change = 0.939× 10−1% Volume Change = 2.183× 10−3%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 138

Laplacian Smoothing Mesh Optimisation

t = 5.84× 10−4s t = 4.73× 10−4s

flips = 2312 flips = 9713

Nodes Added = 239 Nodes Added = 346

Nodes Removed = 143 Nodes Removed = 79

Re-meshed = 1403.76% Re-meshed = 8820.28%

Volume Change = 0.939× 10−1% Volume Change = 2.199× 10−3%

t = 6.16× 10−4s t = 5.05× 10−4s

flips = 2459 flips = 10968

Nodes Added = 255 Nodes Added = 397

Nodes Removed = 150 Nodes Removed = 95

Re-meshed = 1490.96% Re-meshed = 9873.47%

Volume Change = 0.939× 10−1% Volume Change = 2.364× 10−3%

t = 7.91× 10−4s t = 5.72× 10−4s

flips = 3266 flips = 13310

Nodes Added = 320 Nodes Added = 478

Nodes Removed = 232 Nodes Removed = 131

Re-meshed = 1990.75% Re-meshed = 12008.71%

Volume Change = 1.624× 10−1% Volume Change = 2.402× 10−3%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 139

Laplacian Smoothing Mesh Optimisation

t = 8.04× 10−4s t = 5.89× 10−4s

flips = 3406 flips = 14023

Nodes Added = 329 Nodes Added = 490

Nodes Removed = 248 Nodes Removed = 140

Re-meshed = 2074.05% Re-meshed = 12749.40%

Volume Change = 1.696× 10−1% Volume Change = 2.438× 10−3%

t = 8.21× 10−4s t = 6.18× 10−4s

flips = 3938 flips = 15283

Nodes Added = 363 Nodes Added = 510

Nodes Removed = 311 Nodes Removed = 154

Re-meshed = 2412.84% Re-meshed = 13367.20%

Volume Change = 1.701× 10−1% Volume Change = 2.454× 10−3%

t = 8.43× 10−4s t = 6.05× 10−4s

flips = 3957 flips = 14746

Nodes Added = 364 Nodes Added = 532

Nodes Removed = 314 Nodes Removed = 161

Re-meshed = 2422.89% Re-meshed = 13792.30%

Volume Change = 1.701× 10−1% Volume Change = 2.589× 10−3%

7.3. Calculating ALE mesh velocities using mesh quality optimisation 140

Re-meshing

The inter time-step re-meshing process is described in Section 7.3.5.7. This re-meshing
algorithm is a two stage process consisting of node insertion and deletions followed
by the computation of the Delaunay triangulation of the nodes. Whilst a Delaunay
triangulation is generally of high quality, some of the changes made between time-
steps, for example edge flips, were observed to provide only marginal mesh quality
improvements. It was frequently observed that a flipped edge is flipped again after
the following time-step. This means that two unnecessary re-meshing operations are
performed, each introducing numerical errors. Therefore, it is recommended that the
frequency of re-meshing be reduced, perhaps only re-meshing when the quality drops
below a certain threshold. It is also recommended that each alteration to the mesh be
examined to ensure that it improves the mesh by a significant amount.

The node insertion/deletion algorithm used in this analysis is based on the same
premise as Laplacian smoothing: that meshes composed of equidistant nodes are of
good quality. Therefore, it has a strong bias for meshes which are optimised using
Laplacian smoothing. The basic premise of this algorithm is fundamentally flawed in
that it is purely based on heuristics, unlike mesh quality measures which are based
on strong mathematical foundations. This means that many node insertions and dele-
tions may be unnecessary. A more sophisticated insertion/deletion algorithm based
on mesh quality measures should be far more effective and would eliminate many un-
necessary mesh modification operations. It must be noted that in the analysis using
Laplacian smoothing, the number of mesh nodes remained relatively constant through-
out, whereas with quality preservation the number of nodes fluctuated greatly. It is
therefore strongly recommended that future versions of this model and similar models
utilise node insertion/deletion algorithms based on mesh quality measures and not on
empirical quantities.

Re-meshing based on the analysis results

The re-meshing algorithm in its current form is clearly not fit for purpose due to the
reasons described in the previous section. Solution adaptive re-meshing could lead
to significant reductions in the level of re-meshing required as well as a reduction in
numerical errors caused by the mesh. The results displayed on the previous pages could
be used in a solution adaptive re-meshing scheme. For example, in Figure 7.12, the
distribution of the pressure is shown on the left and the distribution of the magnitude

7.3. Calculating ALE mesh velocities using mesh quality optimisation 141

Figure 7.12: The magnitude of the pressure is plotted on the left and the magnitude
of the fluid velocity is plotted on the right.

of the fluid velocity is shown on the right. The pressure is relatively constant over much
of the domain. Large, isotropic elements would be very well-suited for the interpolation
of the pressure in this area. The magnitude of the fluid velocity is relatively constant
in the red and green areas, where again large isotropic elements would be suitable.
However, the region of rapid change, marked by the yellow boundary between the two
areas would require would require finer elements to ensure accurate interpolation of
the data.

The x and y components of the fluid velocity are plotted in Figure 7.13. Correctly
oriented anisotropic elements could be very effective in the blue region of the y velocity.
This is because the x velocity is relatively constant in this area but the y velocity
changes rapidly. Therefore, anisotropic elements, which are much longer in the x

direction than in the y direction may be most suited here.

Time-Step

The use of quality preservation in place of optimisation has increased the average
time-step from 1% of that of Laplacian smoothing to 10%. This is clearly a great
improvement, however it remains far from ideal. Several solutions are proposed to
alleviate the impact of the reduced time-step. Firstly, this simulation is implemented
using only one processor, thus, parallelisation could greatly reduce the time required.
This simulation is currently in development, thus the focus is on correctness and func-
tionality with little thought for performance. The use of modern compilers with full

7.3. Calculating ALE mesh velocities using mesh quality optimisation 142

Figure 7.13: The x component of the fluid velocity is plotted on the left and the y
component of the fluid velocity is plotted on the right.

optimisation enabled, experimentation with various implementations of mathematical
libraries such as Atlas [63] or Intel’s mkl [64] (both available freely for non-commercial
use) which have been shown to give significant performance boosts and profiling tools
to identity the most expensive sections of the code, thus enabling the optimisation of
inefficient code, could also greatly improve performance. The more sophisticated adap-
tive time-step algorithms described by Volker and Rang [60] could also ensure that the
most appropriate time-step is chosen, thus increasing performance.

Mesh quality

Figure 7.14 shows the range of angles in both simulations versus time. Both simulations
have a very similar bound on the smallest angle in the mesh, although it may be seen
that the range of angles for quality preservation is much smoother. Quality preservation
has a higher bound on the upper angle in the mesh, although again it may be seen
that this is much smoother. The sudden jumps in the range of angles correspond to
changes in the mesh topology, i.e. node insertions/deletions or edge flips. It is clear
that topological transformations are much more effective for Laplacian smoothing than
for quality preservation due to the sudden changes in the minimum and maximum
angles observed. Although much fewer topological transformation operations occur
for Laplacian smoothing, they are clearly much more effective. This again confirms
the suspicion that much of the re-meshing that is occurring for quality preservation is
unnecessary and may be eliminated.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 143

Figure 7.14: The range of angles in the droplet using Laplacian smoothing is shown
in red and using quality preservation in green.

Volume change

The problem of volume change has been greatly reduced using quality preservation
versus Laplacian smoothing. In fact with quality preservation the change in volume is
65 times less than that observed using Laplacian smoothing.

Stiffness matrix conditioning

Another goal of mesh quality optimisation is to reduce stiffness matrix conditioning
as it was shown in Chapter 2 that a higher quality mesh correlates with a better
conditioned stiffness matrix. However, this only refers to the physical portion of the
stiffness matrix. The stiffness matrix in this analysis is composed of a physical portion
and a mesh quality portion. Mesh optimisation introduces a coupling term between the
x and y components of mesh quality entries in the stiffness matrix which is not present
with Laplacian smoothing. This in turn increases the stiffness matrix conditioning.
The size of the stiffness matrix in this simulation, although small by many standards,
is still far too large to calculate the conditioning of at intermediate time-steps, thus
the difference in conditioning of the stiffness matrices for both simulations cannot be
quantified.

7.3. Calculating ALE mesh velocities using mesh quality optimisation 144

The optimisation of surface nodes

The results presented in the previous section show that the use of mesh quality opti-
misation has drastically increased the time taken for this simulation to run. Clearly,
adding the additional computational cost associated with using the constrained op-
timisation algorithm presented in Chapter 5 is not feasible at this time, thus, it is
recommended that efforts are focussed on alleviating the current efficiency issues be-
fore additional expensive operations are added.

7.3.7.2 Conclusions

It is clear from the results presented in the previous section that replacing Laplacian
smoothing with mesh quality optimisation was not the silver bullet hoped for: it did
not solve the many issues that it was hoped it would and it introduced several issues
of its own. Using mesh quality preservation, the time-step size reduced to 10% of
its previous value. If all the other indications were positive, this could be deemed
acceptable as parallelisation and other performance boosts as described above could
be implemented to negate the effect of the small time-step. However, several issues
must firstly be investigated. In order to comment further on the amount of re-meshing
performed with mesh quality preservation, more sophisticated node insertion/deletion
algorithms must be implemented as well as tight control placed on the use of edge
flips. This is because it is suspected that many unnecessary re-meshing operations are
occurring. The current re-meshing algorithm is not at all compatible with analysis
requiring non-uniform mesh refinement. This is yet another reason to change them.
The vast differences in the shape assumed by the droplet throughout both simulations
may be due to the degree of re-meshing occurring with quality preservation as well as a
mesh dependence in the unmodified simulation. Four clear positives may be drawn from
the use of mesh quality preservation. Firstly, the artificial mesh viscosity parameter has
been eliminated. This is a clear advantage of this algorithm due to the many problems
linked to this parameter. Secondly, the amount of volume change in the fluid droplet
has been greatly decreased. Thirdly, this technique is transferable to three dimensions
whereas Laplacian smoothing is not. Finally, this technique is also compatible with
analysis which require non-uniform mesh refinement. However, it must be concluded
that Laplacian smoothing is quite effective in two-dimensional, convex domains and
may in fact be the best solution for such simulations.

Chapter 8

Conclusions

Many problems in Finite Element (FE) simulations have been tracked to poor quality
meshes. In this thesis powerful algorithms to optimise these poor meshes have been
developed and implemented. The impact of poor quality meshes is wide ranging in an
analysis. For example, if a function is approximated on a poor quality mesh, many
interpolation and gradient interpolation errors are introduced, negatively affecting the
accuracy of the simulation. Stiffness matrices assembled from poor quality meshes may
suffer from very poor conditioning as this is strongly linked the underlying mesh. Both
of these consequences of poor quality meshes are discussed in depth in Chapter 2. The
use of anisotropic elements and methods to calculate the ideal element size, shape and
orientation at each location in a domain are also introduced.

As part of this thesis, a very effective mesh optimisation methodology has been de-
veloped and implemented. The powerful algorithms used as part of this methodology
are described in detail in Chapter 3. The results obtained from optimising meshes
based on this methodology are presented in Chapter 4. It is clear that the log-barrier
objective function is a very powerful tool which should be used in all instances of
mesh optimisation, both due to its effectiveness and its efficiency. Combined with each
quality measure discussed in this thesis, it produced significantly better meshes in less
time than any other objective function tried. This is a key recommendation of this
thesis.

Second derivatives (Hessians) for the Area/Volume-Length quality measure, and Sine
quality measure have been derived. No references to these were found in the literature.
Also, the gradient and Hessian of these quality measures have been derived with respect
to a pseudo gradient of deformation that relates the shape of an improved element to

146

its original shape. Again no reference to this has been found and the derivation of
these measures in this form represents a significant reduction in the effort required to
derive and implement them in a computer code as well as providing an expression for
them which is consistent with FE equations. A quality measure which is size, shape and
rotation variant, thus suitable for optimising meshes based on an underlying anisotropic
metric field derived from solution error estimates, is introduced in Chapter 3. This
quality measure may be used with the mesh optimisation methodology developed in
this chapter.

In Chapter 5, the challenges associated with optimising mesh nodes which lie on the
boundary of the domain are discussed. Nodes which lie on planar surfaces and straight
edges do not present significant difficulties, however, nodes which lie on non-planar
edges or surfaces are much more difficult to optimise. Surface quadrics, the technique
developed by Dr. Bryan Klingner for optimising such nodes whilst proven to be effective
has the disadvantage of modifying the domain shape and volume. This disadvantage
renders this technique unsuitable for use in many FE simulations. The technique
presented introduces constraints to the optimisation process which preserving both
domain shape and volume. The effectiveness of this novel approach has been clearly
demonstrated in Chapter 6.

The techniques developed were applied to an existing monotonic Arbitrary Lagrangian
Eulerian (ALE) FE simulation of surface tension on a micro-fluid droplet as a case
study. No examples in the literature were found of this being done previously. The mesh
optimisation equations were coupled with the physical equations in order to determine
the new nodal positions at each iteration. The existing implementation used Laplacian
smoothing to find the new nodal positions and there were several problems with this and
this also required the use of an artificial mesh viscosity parameter which was proving
to be very problematic. Mesh optimisation solved many of these problems, however
this came at the expense of a significantly reduced time step, and therefore increased
computational time. Although the main aims were achieved, the reduction in time step
made the use of mesh optimisation unfeasible. A technique to preserve the quality of
the mesh instead of optimising it was proposed instead. This increased the time step to
about 10% of its former value, a sacrifice which would be acceptable if all the project
goals were achieved. However, this resulted in large amounts of the domain being re-
meshed and a different evolution of the fluid droplet towards its equilibrium position.
This could be due to a mesh dependence in the underlying implementation or it could
be due to the numerical errors introduced by the re-meshing of the domain.

The example chosen was in fact a very difficult case which presented many challenges.

8.1. Future work 147

For example, the physical processes being modelled required the mesh the adapt to
a rapidly changing domain. Many other physical processes which are modelled using
similar techniques to this case study are much less demanding on the mesh so may ben-
efit greatly from the proposed approach. The re-meshing algorithms were also found to
be very largely biased towards Laplacian smoothing and thus much of the re-meshing
was unnecessary when mesh optimisation was used. In fact the re-meshing algorithms
used were found to be largely unfit for purpose. This also greatly reduced the effec-
tiveness of the proposed approach. With more sophisticated re-meshing algorithms,
this technique could prove to be very effective. The application of adaptive re-meshing
and the use of a quality measure derived from solution error estimates is proposed
as a possible solution to the issues encountered. A variation of the proposed method
whereby the optimisation algorithms are only applied to the poorest quality elements
may also remedy the issues associated with this algorithm. However, the proposed
method does have several very strong advantages. The artificial mesh viscosity param-
eter, which proved very problematic is no longer required and the volume loss observed
was significantly reduced. This method is also applicable to three dimensional analysis,
whereas Laplacian smoothing has been shown to be very ineffective in three dimensions.
This technique is also compatible with simulations involving selective mesh refinement,
something which Laplacian smoothing does not support. However, in some simulations,
involving two-dimensional convex domains, it was found that Laplacian smoothing may
be more effective than mesh optimisation at maintaining mesh quality.

8.1 Future work

The inclusion of the algorithms developed as part of this thesis into the release version
of Mesquite would greatly increase the impact of this research. This would also enable
other researchers to build upon this work, thus advancing the field of mesh optimisation
further.

Constraining nodes to the domain boundary is very expensive as shown by the results
presented in Chapter 6. Investigation of this has shown that a matrix inversion used as
part of the algorithm is the cause of this. Investigation of other techniques for applying
the constraints or the use of a more efficient algorithm for inverting the matrix would
be very useful.

The application of mesh optimisation techniques to an ALE simulation posed many
problems. A great deal of work remains to be done in order to eliminate all of these

8.1. Future work 148

problems such as the use of more sophisticated re-meshing algorithms and the investiga-
tion of the merits of focussing only on elements whose quality is below a certain thresh-
old. This analysis could also greatly benefit from the use of adaptive re-meshing.

Appendix A

Derivation of F and T
Derivation of F

An expression for H ⊗ H : U − HUTH which is linear in U is required in order to
derive the second derivative of the AL/VL quality measure. Both H and U are second
order tensors and H ⊗H is a fourth order tensor. In the following sections, a fourth
order tensor, A, is printed as follows

a0,0,0,0 a0,0,0,1 a0,0,0,2 a0,1,0,0 a0,2,0,2

a0,0,1,0 a0,0,1,1 a0,0,1,2 a0,1,0,0 a0,2,1,2

a0,0,2,0 a0,0,2,1 a0,0,2,2 a0,1,0,0 a0,2,2,2

a1,0,0,0 a1,0,0,1 a1,0,0,2 a1,1,0,0 a1,2,0,2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

a2,0,2,0 a2,0,2,1 a2,0,2,2 a2,1,0,0 a2,2,2,2

where ai,j,k,l is member i, j, k, l of A expressed using indicial notation. Therefore,
H⊗H : U may be expressed as follows:

150

H00H00 H00H01 H00H02 H01H00 H01H01 H01H02 H02H00 H02H01 H02H02

H00H10 H00H11 H00H12 H01H10 H01H11 H01H12 H02H10 H02H11 H02H12

H00H20 H00H21 H00H22 H01H20 H01H21 H01H22 H02H20 H02H12 H02H22

H10H00 H10H01 H10H02 H11H00 H11H01 H11H02 H12H00 H12H01 H12H02

H10H10 H10H11 H10H12 H11H10 H11H11 H11H12 H12H10 H12H11 H12H12

H10H20 H10H21 H10H22 H11H20 H11H21 H11H22 H12H20 H12H12 H12H22

H20H00 H20H01 H20H02 H21H00 H21H01 H21H02 H22H00 H22H01 H22H02

H20H10 H20H11 H20H12 H21H10 H21H11 H21H12 H22H10 H22H11 H22H12

H20H20 H20H21 H20H22 H21H20 H21H21 H21H22 H22H20 H22H12 H22H22

:

 U00 U01 U02

U10 U11 U12

U20 U21 U22

 (A.1)

and HUTH may be expressed as follows:

H00H00 H01H00 H02H00 H00H01 H01H01 H02H01 H00H02 H01H02 H02H02

H00H10 H01H10 H02H10 H00H11 H01H11 H02H11 H00H12 H01H12 H02H12

H00H20 H01H20 H02H20 H00H21 H01H21 H02H21 H00H22 H01H22 H02H22

H10H00 H11H00 H12H00 H10H01 H11H01 H12H01 H10H02 H11H02 H12H02

H10H10 H11H10 H12H10 H10H11 H11H11 H12H11 H10H12 H11H12 H12H12

H10H20 H11H20 H12H20 H10H21 H11H21 H12H21 H10H22 H11H22 H12H22

H20H00 H21H00 H22H00 H20H01 H21H01 H22H01 H20H02 H21H02 H22H02

H20H10 H21H10 H22H10 H20H11 H21H11 H22H11 H20H12 H21H12 H22H12

H20H20 H21H20 H22H20 H20H21 H21H21 H22H21 H20H22 H21H22 H22H22

:

 U00 U01 U02

U10 U11 U12

U20 U21 U22

 (A.2)

There are many equal terms in both fourth order tensors. The following fourth order
tensor is obtained by subtracting A.2 from A.1:

151

 0
0

0
0

0
0

0
0

0

0
H

0
0
H

1
1
−
H

0
1
H

1
0
H

0
0
H

1
2
−
H

0
2
H

1
0
H

0
1
H

1
0
−
H

0
0
H

1
1

0
H

0
1
H

1
2
−
H

0
2
H

1
1
H

0
2
H

1
0
−
H

0
0
H

1
2
H

0
2
H

1
1
−
H

0
1
H

1
2

0

0
H

0
0
H

2
1
−
H

0
1
H

2
0
H

0
0
H

2
2
−
H

0
2
H

2
0
H

0
1
H

2
0
−
H

0
0
H

2
1

0
H

0
1
H

2
2
−
H

0
2
H

2
1
H

0
2
H

2
0
−
H

0
0
H

2
2
H

0
2
H

2
1
−
H

0
1
H

2
2

0

0
H

1
0
H

0
1
−
H

1
1
H

0
0
H

1
0
H

0
2
−
H

1
2
H

0
0
H

1
1
H

0
0
−
H

1
0
H

0
1

0
H

1
1
H

0
2
−
H

1
2
H

0
1
H

1
2
H

0
0
−
H

1
0
H

0
2
H

1
2
H

0
1
−
H

1
1
H

0
2

0

0
0

0
0

0
0

0
0

0

0
H

1
0
H

2
1
−
H

1
1
H

2
0
H

1
0
H

2
2
−
H

1
2
H

2
0
H

1
1
H

2
0
−
H

1
0
H

2
1

0
H

1
1
H

2
2
−
H

1
2
H

2
1
H

1
2
H

2
0
−
H

1
0
H

2
2
H

1
2
H

2
1
−
H

1
1
H

2
2

0

0
H

2
0
H

0
1
−
H

2
1
H

0
0
H

2
0
H

0
2
−
H

2
2
H

0
0
H

2
1
H

0
0
−
H

2
1
H

0
0

0
H

2
1
H

0
2
−
H

2
2
H

0
1
H

2
2
H

0
0
−
H

2
0
H

0
2
H

2
2
H

0
1
−
H

2
1
H

0
2

0

0
H

2
0
H

1
1
−
H

2
1
H

1
0
H

2
0
H

1
2
−
H

2
2
H

1
0
H

2
1
H

1
0
−
H

2
1
H

1
0

0
H

2
1
H

1
2
−
H

2
2
H

1
1
H

2
2
H

1
0
−
H

2
0
H

1
2
H

2
2
H

1
1
−
H

2
1
H

1
2

0

0
0

0
0

0
0

0
0

0

:

 U
0
0

U
0
1

U
0
2

U
1
0

U
1
1

U
1
2

U
2
0

U
2
1

U
2
2

(A

.3
)

152

Each of the terms in this tensor is the determinant of a sub-tensor of H. Therefore,
this may be simplified as follows:

0 0 0 0 0 0 0 0 0

0 detHs
(2,2) detHs

(1,2) − detHs
(2,2) 0 detHs

(0,2) − detHs
(1,2) − detHs

(0,2) 0

0 detHs
(2,1) detHs

(1,1) − detHs
(2,1) 0 detHs

(0,1) − detHs
(1,1) − detHs

(0,1) 0

0 − detHs
(2,2) − detHs

(1,2) detHs
(2,2) 0 − detHs

(0,2) detHs
(1,2) detHs

(0,2) 0

0 0 0 0 0 0 0 0 0

0 detHs
(2,0) detHs

(1,0) − detHs
(2,0) 0 detHs

(0,0) − detHs
(1,0) − detHs

(0,0) 0

0 − detHs
(2,1) − detHs

(1,1) detHs
(2,1) 0 − detHs

(0,1) detHs
(1,1) detHs

(0,1) 0

0 − detHs
(2,0) − detHs

(1,0) detHs
(2,0) 0 − detHs

(0,0) detHs
(1,0) detHs

(0,0) 0

0 0 0 0 0 0 0 0 0

:

 U00 U01 U02

U10 U11 U12

U20 U21 U22

 (A.4)

where Hs
(a,b) is sub-tensor of H with column a and row b removed. Using indicial

notation, this may be expressed as:

F = det(Hs
(3−j−l),(3−i−k))γi,kγj,l (A.5)

where

γa,b =

1, if a ≤ b

−1, if b ≤ a

0, if a = b

Derivation of T

Similarly in the derivation of the second derivatives of the AL/VL quality measures
with respect to the gradient of deformation tensor, an expression for UA in the form
T (A) : U is required, where U and A are second order tensors and T (A) is a fourth

153

order tensor. The following expression when contracted is equal to UA

A00 A10 A20 A01 A11 A21 A02 A12 A20

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A00 A10 A20 A01 A11 A21 A02 A12 A20

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A00 A10 A20 A01 A11 A21 A02 A12 A20

:

 U00 U01 U02

U10 U11 U12

U20 U21 U22

 (A.6)

References

[1] Jonathan Richard Shewchuk. What is a Good Linear Element ? Interpolation
, Conditioning , and Quality Measures. In Proceedings of the 11th International
Meshing Roundtable, 2002.

[2] Jessica Schoen. Robust, Guaranteed-Quality Anisotropic Mesh Generation. Mas-
ter’s thesis, University of California, Berkeley, 2009.

[3] J Donea, A Huerta, J Ponthot, and A Rodr. Encyclopedia of Computational
Mechanics. John Wiley & Sons, Ltd, Chichester, UK, November 2004.

[4] Weizhang Huang. Metric tensors for anisotropic mesh generation. Journal of
Computational Physics, 204(2):633 – 665, 2005.

[5] Xiangrong Li, Mark S. Shephard, and Mark W. Beall. 3d anisotropic mesh adap-
tation by mesh modification. Computer Methods in Applied Mechanics and Engi-
neering, 194(48):4915 – 4950, 2005. Unstructured Mesh Generation.

[6] R. Löhner. Applied Computational Fluid Dynamics Techniques: An Introduction
Based on Finite Element Methods. Wiley, 2001.

[7] Hassan O. and E. J. Probert. Grid control and adaptation. In Joe F. Thompson,
Bharat K. Soni, and Nigel P. Weatherhill, editors, Handbook of Grid Generation.
CRC Press, 1999.

[8] Klaus Jürgen Bathe and Arthur P. Cimento. Some practical procedures for the
solution of nonlinear finite element equations. Computer Methods in Applied Me-
chanics and Engineering, 22(1):59 – 85, 1980.

[9] Metric tensor. http://mathworld.wolfram.com/MetricTensor.html. Accessed:
21-06-2014.

[10] P. Frey and P.L. George. Mesh Generation. ISTE. Wiley, 2010.

http://mathworld.wolfram.com/MetricTensor.html

References 155

[11] P.J. Frey and F. Alauzet. Anisotropic mesh adaptation for {CFD} computations.
Computer Methods in Applied Mechanics and Engineering, 194(49):5068 – 5082,
2005. Unstructured Mesh Generation.

[12] Francois Courty, David Leservoisier, Paul-Louis George, and Alain Dervieux. Con-
tinuous metrics and mesh adaptation. Applied Numerical Mathematics, 56(2):117
– 145, 2006.

[13] Xiangrong Li, Jean-Francois Remacle, Nicolas Chevaugeon, and Mark S. Shep-
hard. Anisotropic Mesh Gradient Control. In Proceedings of the 13th International
Meshing Roundtable, 2004.

[14] Xiangmin Jiao, Andrew Colombi, Xinlai Ni, and John C. Hart. Anisotropic mesh
adaptation for evolving triangulated surfaces. In Proceedings of the 15th Interna-
tional Meshing Roundtable, 2006.

[15] Gustavo C. Buscaglia and Enzo A. Dari. Anisotropic mesh optimization and
its application in adaptivity. International Journal for Numerical Methods in
Engineering, 40(22):4119–4136, 1997.

[16] Ward Cheney and David Kincaid. Numerical Mathematics and Computing. Inter-
national Thomson Publishing, 4th edition, 1998.

[17] Patrick Knupp, Lori Freitag-Diachin, and Boyd Tidwell. Mesh quality improve-
ment toolkit user’s guide. Technical report, Sandia National Laboratories, 2012.

[18] B Klingner. Tetrahedral mesh Improvement. PhD thesis, University of California
at Berkeley, November 2008.

[19] Patrick Knupp, Lori Freitag-Diachin, and Jason Kraftcheck. Mesh Quality Im-
provement Toolkit User’s Guide. Technical report, Sandia National Laboratories,
2008.

[20] Interoperable Technologies for Advanced Petascale Simulations (ITAPS), 2010.

[21] Timothy J. Tautges, Jason A. Jason A. Kratfcheck, Brandon M. Smith, and Hong-
Jun Kim. Mesh Oriented Database Version 4.0 User’s Guide, June 2011.

[22] Lori a. Freitag, Mark Jones, and Paul Plassmann. An Efficient Parallel Algorithm
for Mesh Smoothing. In Proceedings of the 4th International Meshing Roundtable,
1995.

References 156

[23] Lori a. Freitag and Carl Ollivier-Gooch. Tetrahedral mesh improvement using
swapping and smoothing. International Journal for Numerical Methods in Engi-
neering, 40(21):3979–4002, November 1997.

[24] Sandia National Laboratories. Cubit 13.2 User Documentation, 2012.

[25] Richard E. Ladner. K-D Trees. Technical report, University of Washington, 2002.

[26] Lori A Freitag and Carl Ollivier-Gooch. A Comparison of Tetrahedral Mesh
Improvement Techniques. In Proceedings of the 5th International Meshing
Roundtable, 1996.

[27] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[28] Qiang Du and Max Gunzburger. Grid generation and optimization based on cen-
troidal voronoi tessellations. Applied Mathematics and Computation, 133(2):591
– 607, 2002.

[29] Patrick M. Knupp. Algebraic Mesh Quality Metrics. SIAM Journal on Scientific
Computing, 23(1):193, 2001.

[30] Todd Munson. Mesh Shape-Quality Optimization Using the Inverse Mean-Ratio
Metric. Mathematical Programming, 110(3):561–590, 2004.

[31] Javier (Swansea University) Bonet and Richard (Swansea University) Wood. Non-
linear Continuum Mechanics for Finite Element Analysis. Cambridge University
Press, Cambridge, 2nd edition, 2008.

[32] John Barlow. More on optimal stress points, reduced integration, element dis-
tortions and error estimation. International Journal for Numerical Methods in
Engineering, 28(7):1487–1504, 1989.

[33] M Scherer, R Denzer, and P Steinmann. On a solution strategy for energy-based
mesh optimization in finite hyperelastostatics. Computer Methods in Applied Me-
chanics and Engineering, 197(6-8):609–622, January 2008.

[34] François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing: Fast
tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics,
26(3):57.1–57.10, July 2007. Special issue on Proceedings of SIGGRAPH 2007.

[35] L. Kaczmarczyk and C.J. Pearce. Efficient numerical analysis of bone remodelling.
Journal of the Mechanical Behavior of Biomedical Materials, 4(6):858 – 867, 2011.
Bone Remodeling.

References 157

[36] Lukasz Kaczmarczyk, Mohaddeseh Mousavi Nezhad, and Chris Pearce. Three-
dimensional brittle fracture: configurational-force-driven crack propagation, 2014.
http://arxiv.org/abs/1304.6136.

[37] Carl Olivier-Gooch. GRUMMP - Generation and Refinement of Unstructured
Mixed Element Mesh in Parallel.

[38] Bryan Matthew Klingner and Jonathan Richard Shewchuk. Agressive tetrahedral
mesh improvement. In Proceedings of the 16th International Meshing Roundtable,
pages 3–23, Seattle, Washington, October 2007.

[39] Divergence theorem. http://mathworld.wolfram.com/DivergenceTheorem.

html. Accessed: 3-07-2014.

[40] Mark Ainsworth. Essential boundary conditions and multi-point constraints in
finite element analysis. Computer Methods in Applied Mechanics and Engineering,
190(48):6323–6339, September 2001.

[41] Lukasz Kaczmarczyk, Chris J. Pearce, and Nenad Bicanic. Scale transition and
enforcement of rve boundary conditions in second-order computational homoge-
nization. International Journal for Numerical Methods in Engineering, 74(3):506
– 522, 2008.

[42] R. J. D. Mackenzie. A Computational Framework For Modelling Micro-scale Fluids
Subject to Surface Acoustic Waves. PhD thesis, University of Glasgow, August
2014.

[43] Arbtip Dheeravongkit and Kenji Shimada. Inverse adaptation of a hex-dominant
mesh for large deformation finite element analysis. Computer-Aided Design,
39(5):427 – 438, 2007. Geometric Modeling and Processing 2006 Geometric Mod-
eling and Processing 2006.

[44] Harm Askes, Ellen Kuhl, and Paul Steinmann. An ALE formulation based on
spatial and material settings of continuum mechanics. Part 2: Classification and
applications. Computer Methods in Applied Mechanics and Engineering, 193(39-
41):4223–4245, October 2004.

[45] W. K. Liu & B. Moran T. Belytschko. Nonlinear Finite Elements for Continua
and Structures. John Wiley & Sons, 2000.

[46] Carlos A Felippa. Review of Continuum Mechanics. In Nonlinear Finite Element
Methods, chapter 7. University of Colorado at Boulder, 2012.

http://mathworld.wolfram.com/DivergenceTheorem.html
http://mathworld.wolfram.com/DivergenceTheorem.html

References 158

[47] Patrick Knupp, Len G. Margolin, and Mikhail Shashkov. Reference jacobian
optimization-based rezone strategies for arbitrary lagrangian eulerian methods.
Journal of Computational Physics, 176(1):93 – 128, 2002.

[48] S. Giuliani. An algorithm for continuous rezoning of the hydrodynamic grid in
arbitrary lagrangian-eulerian computer codes. Nuclear Engineering and Design,
72(2):205 – 212, 1982.

[49] J. Sarrate and A. Huerta. An improved algorithm to smooth graded quadrilateral
meshes preserving the prescribed element size. Communications in Numerical
Methods in Engineering, 17(2):89–99, 2001.

[50] Water dripping. Still images taken from a video produced by Julien Reboud, John
Cooper, Rab Wilson et al. Bioelectronics Group, University of Glasgow.

[51] D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press, 1st edition,
1990.

[52] Richard Fitzpatrick. Surface tension. http://farside.ph.utexas.edu/

teaching/336L/Fluid.pdf. Accessed: 21-07-2014.

[53] Steve Tobias. The Material Derivative. In MATH3454, chapter 2. University of
Leeds, 2014.

[54] Leibniz integral rule. http://mathworld.wolfram.com/LeibnizIntegralRule.

html. Accessed: 29-06-2014.

[55] G. K. Batchelor. Equations governing the motion of a fluid. In An Introduction
to Fluid Dynamics, pages 131–173. Cambridge University Press, 2000. Cambridge
Books Online.

[56] M. Kit, Kevin. Mse 443: Polymer processing. Accessed: 12-06-2014.

[57] Andrew Hazel. In Numerical Computation, chapter Incompressible Fluid Flow.
University of Manchester. Accessed: 03-07-2014.

[58] P. H. Saksono and D. Peric. On finite element modelling of surface tension varia-
tional formulation and applications part i: Quasistatic problems. Computational
Mechanics, 38(3):265–281, 2006.

[59] Ross Mackenzie, Lukasz Kaczmarczyk, and Chris Pearce. An axisymmetric pres-
sure stabilised predictive model of surface tension in micro-fluids. In Proceedings
of the Interational Conference on Computational Mechanics (CM13), 2013.

http://farside.ph.utexas.edu/teaching/
http://farside.ph.utexas.edu/teaching/
336L/Fluid.pdf
http://mathworld.wolfram.com/LeibnizIntegralRule.html
http://mathworld.wolfram.com/LeibnizIntegralRule.html

References 159

[60] Volker John and Joachim Rang. Adaptive time step control for the incompressible
navier stokes equations. Computer Methods in Applied Mechanics and Engineer-
ing, 199(9–12):514–524, 2010.

[61] Jonathan Richard Shewchuk. Delaunay Refinement Algorithms for Triangular
Mesh Generation. Computational Geometry: Theory and Applications, 22(1-3):21–
74, 2002.

[62] P. H. Saksono, W. G. Dettmer, and D. Peric. An adaptive remeshing strategy
for flows with moving boundaries and fluidstructure interaction. International
Journal for Numerical Methods in Engineering, 71(9):1009–1050, 2007.

[63] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. Software: Practice and Experi-
ence, 35(2):101–121, February 2005.

[64] Intel math kernel library. http://software.intel.com/en-us/intel-mkl.

	Declaration
	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Errors induced by poor meshes
	Interpolation errors
	The approximation of functions on anisotropic meshes
	Curvature adaptive meshing

	The calculation of a metric field
	Construction of a metric tensor using error indicators
	Calculation of the metric tensor in multiple dimensions
	Combining multiple metrics

	Stiffness matrix conditioning
	Conclusions and recommendations

	A review of current mesh optimisation software
	A comparison between Mesquite and Stellar
	Other mesh optimisation software

	Summary

	The Quality of Finite Elements, Meshes and the Optimisation Process
	Introduction
	Numerical optimisation
	Problem definition

	Quality measures
	Area-length and volume-length quality measures
	Ideal weight inverse mean ratio quality measure
	Sine and Cosine quality measures
	Spire tetrahedra
	The first and second derivatives of quality measures
	Implementation of quality measures using standard FE procedures
	Expressing quality measures as a function of the gradient of deformation

	Anisotropic quality measures

	Mesh quality objective functions
	Penalising the worst element
	Optimising the objective function
	Termination of the optimisation process

	Meshes
	Summary

	Unconstrained Mesh Optimisation Results and Discussion
	Introduction
	Results
	Discussion
	2D Results
	3D Results

	Optimising Boundary Nodes
	Classification of boundary nodes
	Movement of straight segment node
	Movement of surface nodes
	Surface quadrics
	Generating surface constraints from the discretised domain
	Derivation of the constraint equation
	Enforcing the constraints

	Summary

	Constrained Mesh Optimisation Results and Discussion
	Introduction
	Results
	Discussion
	2D Results
	3D Results

	Conclusions

	Mesh Optimisation as Part of the Finite Element Solution Process
	Introduction
	Mesh adaption techniques for large deformations
	ALE mesh update procedures

	Calculating ALE mesh velocities using mesh quality optimisation
	Overview
	Problems associated with Laplacian smoothing
	Deformation of the fluid droplet
	The governing equations
	The Navier-Stokes equations
	The weak form of the Navier-Stokes equations
	Surface tension and contact angle
	The weak form of the surface tension and contact line forces

	Implementation of the computational framework
	Overview of the computational model
	Discretisation of the governing equations and the element stiffness matrix and force vector
	The mesh optimisation equations
	Newton-Raphson iterative solver
	Boundary conditions
	Adaptive time-step algorithm
	Re-meshing algorithm

	Results
	Maintaining mesh quality
	Results
	Conclusions

	Conclusions
	Future work

	Appendix Derivation of F and T
	References

