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Abstract 
 
 
The importance of the ubiquitin-proteasome pathway in eukaryotic cellular 

regulation has become increasingly apparent during the last decade.  In 

plants, regulated degradation by the ubiquitin/26S proteasome has been 

implicated in diverse signalling events including embryogenesis, hormone 

signalling and disease resistance.  Ubiquitin moieties are ligated to target 

proteins through the sequential activities of E1, E2 and E3 enzymes leading 

either to proteasomal degradation or other regulatory outcomes in the 

cell.  It is now established that ubiquitination is a reversible process and 

that removal of ubiquitin from target proteins by deubiquitinating enzymes 

(also termed ubiquitin proteases) can also serve a regulatory function. 

Deubiquitinating enzymes are proteases with specificity for the isopeptide 

linkages formed during ubiquitin ligation events. 

Current understanding of deubiquitinating enzyme function in plants is 

relatively limited and the aim of this project was to establish novel 

findings in this emerging field.  This study reports an extensive analysis of 

the deubiquitinating enzymes in the Arabidopsis thaliana genome and 

functional characterisation of two closely related Arabidopsis Ubiquitin 

Specific Proteases: AtUBP12 and AtUBP13 and their respective orthologs in 

the solanaceous plants tobacco (Nicotiana tabacum) and Nicotiana 

benthamiana. 

Previous work suggested the potential involvement of NbUBP12 in disease 

resistance, in this study, established methodologies in Arabidopsis, 

tobacco and Nicotiana benthamiana were applied to investigate this 

possibility. Transcript induction studies in Arabidopsis reported the 

induction of both AtUBP12 and AtUBP13 by avirulent Pseudomonas and 

exogenously applied Salicylic acid (SA).  Pathology assays in single allele 

Arabidopsis ubp12 and ubp13 mutants reported no alteration in resistance 

against virulent and avirulent strains of Pseudomonas, raising the 

possibility that AtUBP12 and AtUBP13 are functionally redundant.  

Investigations into redundancy between AtUBP12 and AtUBP13 were 

conducted using transgenic RNAi based cosupression and the isolation of 
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genetic crosses between ubp12 and ubp13 mutant alleles.  Collectively 

these approaches provide the first report that AtUBP12 and AtUBP13 are 

functionally redundant and are required for normal plant development 

with homozygous ubp12 ubp13 double mutants exhibiting a seedling lethal 

phenotype.  Phenotypic analysis of ubp12 and ubp13 mutants indicated 

that functional redundancy between these genes was not complete with 

the novel observation of early flowering in ubp12 alleles under both long 

and short day photoperiods.  Short day early flowering in ubp12 mutants 

was accompanied by the development aerial rosettes and suggests the 

crucial involvement of deubiquitination in the floral transition. 

The cDNA sequence of the tobacco AtUBP12 ortholog NtUBP12 was 

determined and utilised for VIGS based NbUBP12 gene silencing studies 

during disease resistance signalling in N. benthamiana.  Loss of function 

studies indicated that NbUBP12 functions as a negative regulator of 

hypersensitive cell death (HR) induced by the Cladisporium fulvum elicitor 

Avr9 and R gene independent viral resistance against TMV.  These findings 

represent the first reported link between deubiquitination and plant 

disease resistance.  Respective cDNAs for AtUBP12 and NtUBP12 were 

cloned and expressed to demonstrate the function of their gene products 

by in vitro  ubiquitin protease activity assays.  Ubiquitin protease activity 

of UBP12 was directly implicated in C.fulvum Avr9 elicited cell death 

during tobacco transient overexpression assays.  This experimental 

approach confirmed that UBP12 activity negatively regulates the Avr9 

elicited HR with overexpression of AtUBP12 causing HR suppression and the 

corresponding AtUBP12 C208S active site mutant conferring a dominant 

negative HR promotion effect. 

Overall the presented data reports several novel insights which implicate 

Arabidopsis UBPs: AtUBP12 and AtUBP13 in plant development and 

suggests they also may stabilise common substrates which regulate disease 

resistance.  AtUBP12 is also specifically implicated as a floral suppressor 

and in vitro assays have demonstrated that AtUBP12 and NtUBP12 encode 

functional ubiquitin proteases.  In solanaceous plants, UBP12 activity 

negatively regulates the defence associated HR and virus resistance. 



 

Chapter 1 - Introduction 

1.1 Plant defence against pathogen attack 

1.1.1 Plant immunity 

Plants are subject to attack by a diverse range of microbial pathogens and 

insect herbivores.  Disease resulting from pathogen infection results in 

large crop losses and contributes to worldwide hunger and malnutrition.  

Consequently, the control of plant diseases is of fundamental importance 

and is the principle objective of plant-breeding and pathology programs 

with relevance to the agriculture industry.  Plants resist pathogen attacks 

both with preformed defences such as ‘waxy’ cuticular layers and anti-

microbial compounds and by inducing multilayered defence responses 

(Martin et al., 2003).  Plant pathogens fall into two categories which either 

derive nutrients from dead or dying cells (necrotrophs) or living host 

tissues (biotrophs).  Biotrophic plant pathogens use diverse life strategies.  

Pathogenic bacteria proliferate in the plant apoplast after entering 

through existing wounds, stomata or hydathodes (Glazebrook, 2005).  From 

the apoplast, bacterial pathogens access the plant cell through a type III 

secretion pilus (Glazebrook, 2005).  Pathogenic and symbiotic fungi and 

oomycetes can invaginate feeding structures (haustoria) into the host cell 

plasma membrane (Glazebrook, 2005).  Aphids and nematodes feed from 

stylets directly inserted into host plant cells (Dangl and McDowell, 2006).  

Early pathogen perception events occur at the extracellular matrix and 

host cell plasma membrane where the outcome of the interaction is 

determined (Jones and Dangl, 2006).  To influence host defence responses 

and enhance microbial fitness, these diverse pathogen classes all deliver 

effector molecules (avirulence factors) into the plant cell (Dangl and 

McDowell, 2006). 

Plants lack the mobile defender cells and adaptive immune system found 

in mammals, relying instead on cellular innate immunity and the induction 

of systemic signals emanating from sites of infection (Jones and Dangl, 

2006).  Current research suggests that the inducible plant immune system 

can be broadly divided into two branches (Jones and Dangl, 2006).  One of 
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these mediates the perception of microbial- or pathogen-associated 

molecular patterns (MAMPS or PAMPs respectively) such as flagellin through 

transmembrane pattern recognition receptors (PRRs) (Schwessinger and 

Zipfel, 2008). Defence responses activated by PAMPs are collectively 

termed PAMP triggered immunity (PTI) or basal resistance (Schwessinger 

and Zipfel, 2008).  The second branch acts primarily inside the cell using 

disease resistance (R) proteins which recognise pathogen delivered 

effectors or their effects on host proteins.  R protein mediated defenses 

are termed effector triggered immunity (ETI) or gene-for-gene resistance 

(Jones and Dangl, 2006). 

Activation of PTI by PAMP recognition is proposed to be the plant’s first 

inducible response to microbial perception (Schwessinger and Zipfel, 

2008).  In the majority of cases, PTI halts pathogen growth at an early 

infection stage due to the induction of pathogen-responsive genes, 

production of reactive oxygen species and deposition of callose to 

reinforce the cell wall at sites of infection (Schwessinger and Zipfel, 2008). 

Biotrophic pathogens deploy effector proteins which disrupt plant immune 

responses and  promote successful infection.  Direct or indirect recognition 

of effectors by R proteins initiates ETI which is an amplified and 

accelerated PTI response resulting in disease resistance (Jones and Dangl, 

2006).  ETI is usually accompanied by a localised hypersensitive cell death 

response (HR) at the infection site (Jones and Dangl, 2006).  R proteins 

have been classified into five distinct classes (as discussed below), most of 

which contain characteristic leucine rich repeat (LRR) domains.  LRR 

domains are detected in diverse proteins and function as sites of protein-

protein interaction, peptide-ligand binding and protein-carbohydrate 

interaction (Kajava, 1998).  The majority of plant R proteins contain LRR 

domains and comparative sequence analysis indicates that R gene 

specificity results primarily from hypervariability in this region (Dangl and 

Jones, 2001).  R proteins mediate perception of effectors from diverse 

kingdoms and integrate recognition of bacterial, viral, fungal and 

oomycete pathogens to activate similar downstream defence responses 

which result in disease resistance (Dangl and Jones, 2001). 
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In the majority of cases, ETI triggered during gene-for-gene resistance is 

proposed to be most accurately described by the ‘guard hypothesis’ (Dangl 

and Jones, 2001).  In the guard hypothesis, R proteins are proposed to 

monitor the integrity of host effector targets (Dangl and Jones, 2001).  

Alteration of host targets by pathogen derived effectors is perceived by 

specific R proteins leading to the activation of ETI (Jones and Dangl, 2006).  

This current view of plant immunity depicts the relationship between 

biotrophic pathogens and their hosts as a molecular ‘arms race’ which was 

recently described by Jones and Dangl using a four phased ‘zig zag’ model 

to illustrate the relationship between PTI and ETI (Figure 1.1) (Jones and 

Dangl, 2006).  During phase 1, early PAMP based perception of pathogen 

components causes PTI that can stop further infection.  In phase 2, 

successful pathogens promote virulence by releasing effectors into the 

plant cell which suppress PTI resulting in effector-triggered susceptibility 

(ETS). In phase 3, direct or indirect perception of pathogen effectors by R 

proteins leads to the activation of ETI resulting in disease resistance.  

Phase 4 depicts the ongoing natural selection that drives pathogens to 

avoid ETI either by discarding or diversifying the recognised effector gene, 

or by lateral acquisition of additional ETI suppressors.  Ultimately, 

selection favours the generation of new R gene alleles that recognize novel 

effectors allowing the restoration of ETI (Jones and Dangl, 2006). 

1.1.2 PAMP triggered immunity  

As previously discussed, perception of conserved microbe structural 

components termed PAMPs leads to the prompt activation of plant 

defences through PTI.  PTI signaling in plants has been most extensively 

characterised in the case of the flagellin which is an archetypal PAMP and 

triggers defence responses in various plants (Schwessinger and Zipfel, 

2008).  Flagellin subunits collectively form the bacterial flagellum required 

for motility and virulence and distinct conserved flagellin domains are 

recognised by mammalian and plant receptors TLR5 and FLS2 respectively 

(Zipfel and Felix, 2005). Arabidopsis FLS2 (FLAGELLIN-SENSING2) is a LRR 

receptor kinase which directly binds the 22 amino acid flagellin epitope 

flg22 (Zipfel and Felix, 2005) and fls2 mutants exhibit enhanced 

susceptibility to bacterial infection (Zipfel et al., 2004).  Characterisation  
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Figure 1.1 Zigzag model to represent plant immune system output. 

In this model, the ultimate amplitude of disease resistance or susceptibility is 

proportional to [PTI – ETS + ETI].  In phase 1, plants detect microbial / 

pathogen-associated molecular patterns (MAMPs/PAMPs, red diamonds) 

via PRRs to trigger PAMP-triggered immunity (PTI).  In phase 2, successful 

pathogens deliver effectors that interfere with PTI, or otherwise enable 

pathogen nutrition and dispersal, resulting in effector-triggered susceptibility 

(ETS).  In phase 3, one effector (indicated in red) is recognized by an NB-

LRR protein, activating effector-triggered immunity (ETI), an amplified 

version of PTI that often passes a threshold for induction of hypersensitive 

cell death (HR).  In phase 4, pathogen isolates are selected that have lost 

the red effector, and perhaps gained new effectors through horizontal gene 

flow (in blue) — these can help pathogens to suppress ETI.  Selection 

favours new plant NB-LRR alleles that can recognize one of the newly 

acquired effectors, resulting again in ETI. Taken from Jones and Dangl 

(Jones and Dangl, 2006). 
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of other flg22 insensitive mutants led to the elucidation of downstream 

MAP kinase cascade and WRKY signaling pathways that function 

downstream of flagellin perception (Asai et al., 2002).  Similar signaling 

responses have been reported during the perception of  bacterial 

elongation factor Tu (EF-Tu) by the LRR receptor kinase EFR and the 

elicitation of PTI in fls2 efr-1 double mutants indicates the existence of 

other PAMP receptors in Arabidopsis (Zipfel et al., 2006). Molecules with 

PAMP activity have also been identified in fungal and oomycete plant 

pathogens. 

PAMP response activators have also been identified in fungal and oomycete 

pathogens. Characteristic PAMP molecules include the cell wall 

components ergosterol and chitin from fungi and heptaglucoside from 

oomycetes (Nurnberger et al., 2004). 

1.1.3 Effector triggered immunity  

Beyond the amplified induction of PTI responses, activation of ETI by 

pathogen effectors results in rapid production of reactive oxygen 

intermediates (ROI) termed the oxidative burst and development of 

localised programmed cell death known as the hypersensitive response 

(HR) (Nimchuk et al., 2003).  ETI activation causes elevated salycilic acid 

(SA) accumulation which induces transcription of various pathogenesis-

related (PR) genes and the activation of systemic acquired resistance (SAR) 

(Durrant and Dong, 2004).  The oxidative burst is proposed to serve a 

direct antimicrobial effect and also initiates signal activation for other 

downstream defence responses (discussed below) whilst the  HR is thought 

to act to suppress biotroph infection by restricting pathogen access to 

water and nutrients (Nimchuk et al., 2003).  The activation of common 

disease resistance signaling pathways results from the perception of 

bacterial, viral, fungal, oomycete, and nematode pathogen effectors by 

their associated R proteins (Dangl and Jones, 2001).  Despite the broad 

taxonomic origins of known plant pathogens and the presumed diversity in 

their effector molecules, only five structural classes of R protein have 

been reported (Figure 1.2) with the presence of LRR domains being a 

recurring theme in the majority of cases (Dangl and Jones, 2001). 
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NB-LRR R proteins 

In the model plant Arabidopsis thaliana, the largest group of R proteins is 

the cytoplasmic ‘Nucleotide Binding Site plus Leucine Rich Repeat’ (NB-

LRR) encoded by ~150 distinct R genes (Dangl and Jones, 2001).  Within the 

NB-LRR R protein structure, the NB domain is part of a larger region (NB-

ARC) with shares sequence similarity with the apoptosis regulators CED4 

from Caenorhabditis elegans and Apaf-1 from animals (van der Biezen and 

Jones, 1998).  Nucleotide binding and hydrolysis by the NB domain has 

been reported in a number of cases and nucleotide exchange from ADP to 

ATP is proposed to be regulated by conformational changes induced by 

recognition of pathogen effectors or effector targets through the LRR 

domain (Takken et al., 2006).  In the NB-LRR R proteins, the C-terminal 

LRR domain is highly variable in terms of repeat number and sequence 

diversity (Dangl and Jones, 2001).  The LRR are under diversifying selection 

and play a central role to generate specificity for different effectors or 

effector targets within the conserved structure of the R protein (Dangl and 

Jones, 2001). 

The NB-LRR proteins can be subdivided into two classes on the basis of TIR 

or CC domains present in the N-terminus.  The TIR domain is implicated in 

signaling by its similarity to Drosophila Toll mammalian interleukin (IL)-1 

receptors and is detected in 40% of the Arabidopsis NB-LRR proteins (Dangl 

and Jones, 2001).  Numerous TIR-NB-LRR proteins have been characterised 

including the N from tobacco and RPS4 from Arabidopsis which mediate 

resistance against Tobacco Mosaic Virus and Pseudomonas syringae 

respectively (Whitham et al., 1994) (Gassmann et al., 1999).  The 

remaining Arabidopsis NB-LRR proteins contain a CC (coiled coil) domain 

which is a repeated heptad sequence with interspersed hydrophobic amino 

acids (Martin et al., 2003).  The CC domain consists of two or more alpha 

helices which interact to form a supercoil, it is found in diverse proteins 

and is implicated in protein-protein interactions (Martin et al., 2003).  CC-

NB-LRR proteins mediate resistance against diverse pathogen classes and 

examples include potato Rx and Arabidopsis RPM1 which enable resistance 

against Potato Virus X and Pseudomonas syringae (Martin et al., 2003). 
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Figure 1.2 Classes of plant disease resistance protein. 

Schematic models of structure and location of the five main classes of plant 

disease resistance (R) proteins.  The proposed cytoplasmic NB-LRR R 

proteins can be subdivided on the basis of distinct Coiled Coil (CC - purple) 

or Toll Interlukin Receptor (TIR - red) domains present in the N-terminus.  

The LRR RLP Cf R proteins carry transmembrane domains and extracellular 

LRRs.  The Pto gene encodes a cytoplasmic Ser/Thr kinase (STK) and 

forms a single member R protein class. The LRR RLK proteins FLS2 and 

Xa21 have a similar organisation to RLP proteins but carry an additional 

cytoplasmic Ser/Thr kinase in their C-terminus.  The RPW8 genes encode a 

distinct class of transmembrane R proteins that carry a proposed Coiled Coil 

domain in their N-terminus. Adapted from Dangl and Jones (Dangl and 

Jones, 2001). 
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LRR receptor-like proteins 

LRR Receptor-like Proteins (RLP) are distinct R proteins comprised of 

extracytoplasmic LRR domains, a transmembrane region and a short 

cytoplasmic domain (Figure 1.1) with no obvious signaling function (Rivas 

and Thomas, 2005).  The LRR RLP family is highly elaborated plants 

relative to their mammalian orthologs and is implicated in the regulation 

of development as well as disease resistance (Shiu and Bleecker, 2003).  

Two subfamilies of tomato LRR RLP R genes have been reported  which 

mediate resistance against the fungal pathogens Cladisporium fulvum (Cf 

genes) and Verticillium dahliae (Ve genes) (Rivas and Thomas, 2005) 

(Kawchuk et al., 2001). 

The tomato Cf genes (Cf-2, Cf-4, Cf-5 and Cf-9) encode the best 

characterised LRR RLP R proteins (Rivas and Thomas, 2005).  Cf proteins 

indirectly perceive the apoplastic presence of effectors (Avr2, Avr4, Avr5 

and Avr9) from  different races of the tomato fungal pathogen 

Cladisporium fulvum (Rivas and Thomas, 2005).  As seen in the NB-LRR 

proteins, recognition specificity in the Cf proteins resides in variations 

between the number of repeats and solvent exposed amino acid 

composition within the LRR domain (Rivas and Thomas, 2005).  Cf R 

proteins are proposed to conform to the guard hypothesis of effector 

target surveillance (Rivas and Thomas, 2005) and current research efforts 

are aimed at establishing their interacting partners and how they 

transduce extracellular effector perception signals to inside the cell. 

LRR Receptor-like kinases 

LRR receptor-like kinases (RLK) are structurally related to LRR receptor-

like proteins but contain an additional cytoplasmic serine/threonine 

protein kinase in the C-terminal region (Jones and Takemoto, 2004).  LRR 

RLK proteins from Arabidopsis have been implicated plant development 

where the LRR RLK CLV1 forms part of the CLAVATA complex and PAMP 

perception through FLS2 which senses flagellin (as previously 

discussed)(Shiu and Bleecker, 2003).  The only currently known LRR RLK 

gene with a role in disease resistance is the Xa21 gene from rice which 



 

 9 

confers resistance to the Xhanthomonas oryzae pv. oryzae through specific 

perception of the avirulence factor avrXa21 (Lee et al., 2006). 

Ser/Thr kinases 

Identification and characterisation of the tomato R gene Pto as a cytosolic 

Ser/Thr kinase established an atypical class of R protein which lacks any 

LRR domains or transmembrane region (Figure 1.2) (Pedley and Martin, 

2003).  Pto is reported to directly interact with the Pseudomonas syringae 

pv. tomato effector avrPto to enable resistance against bacterial speck 

disease (Pedley and Martin, 2003).  Whilst Pto does not contain LRR 

domains, it does require interaction with the NB-LRR protein Prf to initiate 

resistance against avrPto and Prf is proposed to ‘guard’ Pto against the 

avrPto effector (Pedley and Martin, 2003). 

Membrane bound coiled-coil 

Another atypical R gene class was established by the identification of the 

RPW8 genes in Arabidopsis (RPW8.1 and RPW8.2) which confer broad 

spectrum resistance to powdery mildew pathogens (Xiao et al., 2001).  The 

RPW8 proteins are small basic proteins with a putative N-terminal 

transmembrane region and a coiled-coil domain (Figure 1.2) (Xiao et al., 

2001).  RPW8 R proteins have been shown induce resistance through 

established disease resistance signaling pathways but are atypical as they 

do not appear to exhibit a gene-for-gene interaction with specific fungal 

effectors (Xiao et al., 2005). 

1.2 Signal transduction during plant defence 

Plant defence mechanisms have been characterised as a multilayered 

system consisting of preformed physical barriers and inducible defences 

(Dangl and Jones, 2001). Inducible defences can be activated by the 

extracellular recognition of general PAMP elicitors such as bacterial 

flagellin during PTI or intracellular recognition events resulting from 

perception of pathogen delivered effectors by their cognate R proteins 

(Martin et al., 2003). 
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1.2.1 Signal transduction during PTI 

Basal resistance (PTI) triggered by PAMP perception represents the 

frontline of inducible defense and triggers diverse signaling responses. 

These include the rapid changes in intracellular Ca2+ flux, induction of an 

oxidative burst, transcriptional reprogramming, cell wall reinforcement 

and receptor endocytosis (Schwessinger and Zipfel, 2008) (Altenbach and 

Robatzek, 2007).  PAMP perception results in SA accumulation and recent 

reports indicate that disruption SA biosynthesis in the Arabidopsis sid2 

mutant results in compromised PTI defences against virulent Pseudomonas 

syringae (Tsuda et al., 2008).  PAMP triggered PTI induction also results in 

the activation of MAPK kinase cascades and the Arabidopsis MKK1 – 

MPK3/MPK6 kinase module has been shown to act downstream of the 

flagellin receptor FLS2 leading to the activation of WRKY22/29 

transcriptional targets (Asai et al., 2002).  Microarray analysis indicates 

that PAMP perception induces rapid changes in gene expression with a 

significant expression overlap during PTI induced by fungal or bacterial 

PAMPs (Zipfel et al., 2006).  Significant overlap has also been reported 

between PTI and ETI transcriptomes underscoring the fact that ETI includes 

amplified aspects of the PTI response (Zipfel et al., 2006).  

1.2.2 Signal transduction during ETI 

Gene-for-gene resistance (ETI) is superimposed onto basal resistance 

mechanisms and is characterised by a sustained burst of reactive oxygen 

intermediates (ROI), induction of localised cell death (HR) with activation 

of defence gene expression and resistance in systemic tissues (systemic 

acquired resistance) (Jones and Dangl, 2006).  Key proteins that regulate 

ETI have been identified in Arabidopsis with isolated mutants indicating 

that R protein activation leads to activation of the oxidative burst, causing 

a change in cellular redox status which induces HR and SA accumulation 

(Nimchuk et al., 2003).  Elevated SA levels potentiate the HR and lead to 

the induction of defense genes and the subsequent development of SAR 

(Nimchuk et al., 2003).  Signal transduction events which cause disease 

resistance following R protein activation during ETI occur through multiple 

interacting pathways which are regulated by increased transmembrane ion 
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flux (Ca2+, K+ and H+), nitric oxide production and increased salycilic acid 

(SA) accumulation amongst many other factors (Hofius et al., 2007). 

Genetic screens for loss of resistance to Peronospora parasitica and 

Pseudomonas syringae identified NDR1 (NON-RACE SPECIFIC DISEASE 

RESISTANCE) and EDS1 (ENHANCED DISEASE SUSCEPTIBILITY) as components 

required to mediate signaling by distinct R genes (Aarts et al., 1998).  It is 

now established that NDR1 is required for resistance mediated by most CC-

NB-LRR R genes whilst EDS1 mediates resistance signaling through the TIR-

NB-LRR R gene class (Dangl and Jones, 2001). 

Numerous components of the SA linked disease signaling pathway have 

been identified including EDS1 and its interacting partner PAD4 (Wiermer 

et al., 2005).  EDS1 and PAD4 (PHYTOALEXIN DEFICIENT4) function as key 

regulators of biotic and oxidative stress which exert an early activity in 

TIR-NB-LRR resistance acting upstream of the oxidative burst and HR 

(Wiermer et al., 2005).  EDS1 and PAD4, together, are required for SA 

accumulation and defence signal propagation involving the processing of 

ROI signals around the infection site (Wiermer et al., 2005). 

Following activation of ETI, local SA levels are dramatically increased 

through the isochorismate synthesis pathway and regulate HR development 

and downstream signaling events which induce defence gene expression 

leading to SAR (Durrant and Dong, 2004).  SA is proposed to function 

through feedback loops both upstream and downstream of the HR 

establishing an SA dependent gradient which restricts cell death 

development to the initial infection site (Hofius et al., 2007). 

HR development is also subject to positive and negative feedback 

regulation through the interacting effects between SA, ROI, ET (ethylene) 

and JA (jasmonate). Together, SA and ROI are proposed to trigger cell 

death initiation causing an increase in ET which stimulates further ROS 

production and SA synthesis in surrounding cells to effect cell death 

propagation (Hofius et al., 2007).  JA has been reported to exert both 

inhibitory and pro-cell death regulation through perception of distinct ROI 
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species but is proposed to function primarily through antagonistic effects 

on ET signaling to promote lesion containment (Hofius et al., 2007). 

Regulation by phosphorylation through MAPK (mitogen-activate protein 

kinase) cascades has also been implicated in the development HR and SAR 

and a central role of MAPKs in the onset of pathogen defense is firmly 

established (Pedley and Martin, 2005).  In tobacco two parallel MAPK 

cascades have been found that are activated downstream of TMV 

perception by the R protein N,  One pathway consists of NtNPK1, NtMEK1, 

and Ntf6 whilst  the other consists of an unknown MAPKKK, NtMEK2, and 

NtSIPK and NtWIPK (Pedley and Martin, 2005).  Orthologous pathways have 

also been detected in tomato which regulate Pto mediated resistance 

(Pedley and Martin, 2005) . 

Avirulent pathogen perception typically leads to increased SA accumulation 

in local infected and systemic non-infected tissue which results in the 

expression of defence associated PR (PATHOGENESIS-RELATED) genes 

which are collectively implicated in SAR development (Durrant and Dong, 

2004).  Transduction of the SA signal to activate PR gene expression and 

SAR requires the function of NPR1 (NON-EXPRESSOR OF PR GENES 1).  

Several Arabidopsis npr1 alleles have been isolated in genetic screens for 

non-expression of PR genes after SAR induction (Durrant and Dong, 2004).  

Analysis of the npr1 mutant indicates its role in multiple  disease signaling 

pathways including Induced Systemic Resistance (ISR) and the regulation of 

crosstalk between SA and JA mediated pathways (Durrant and Dong, 2004). 

The function of NPR1 in PR gene expression has been extensively 

characterised and it is now established that cytosolic NPR1 oligomers are 

conformationally sensitive to a change in cellular redox status resulting 

from pathogen induced SA accumulation (Durrant and Dong, 2004).  SAR 

induction causes redox sensitive reduction of inactive NPR1 oligomers to 

active NPR1 monomers (Pieterse and Van Loon, 2004).  Monomeric NPR1 is 

translocated to the nucleus where it interacts with numerous TGA 

transcription factors to activate the expression of PR-1 and several other 

defense associated genes (Pieterse and Van Loon, 2004).   
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Regulatory feedback and cross-regulation between signaling pathways are 

recurring themes in plant disease resistance signaling.  Current analysis 

suggests that defence responses are highly regulated in timing and 

amplitude against specific pathogens or general elicitors by the interaction 

of many discrete pathways including hormone signaling, redox control and 

transcriptional reprogramming (Hofius et al., 2007).  

1.3 The ubiquitin 26S proteasome system 

1.3.1 Discovery and background 

All aspects of plant physiology and development are controlled by  

regulated synthesis of new polypeptides and degradation of existing 

proteins.  Within this ‘protein cycle’ the intricate transcriptional and 

translational events leading to protein synthesis are relatively well 

characterised (Vierstra, 2004).  Studies conducted in the last decade have 

greatly improved our appreciation of the corresponding catabolic processes 

that regulate protein degradation.  Protein degradation serves  key 

housekeeping functions by removing misfolded proteins and in the 

maintenance of free amino acids during growth and starvation (Vierstra, 

1996).  It is also essential for the many aspects of cellular regulation by 

removing rate-limiting enzymes and suppressing regulatory networks to 

fine-tune homeostasis and adapt to new environments (Vierstra, 2004).   

Current research indicates that the ubiquitin (Ub)/26S proteasome 

pathway functions as the principle proteolytic system in eukaryotes and is 

extensively involved in plant cellular signaling (Vierstra, 2003).  In this 

pathway, the 76 amino acid protein ubiquitin serves as a reusable tag 

which serves to direct target proteins for selective turnover (Hershko and 

Ciechanover, 1998).  Polymeric chains of ubiquitin are covalently attached 

to protein targets through the iterative action of a three step (E1  E2  

E3) enzyme conjugation cascade (Figure 1.3) (Hershko and Ciechanover, 

1998).  Resulting ubiquitinated target proteins are directed to the 26S 

proteasome for degradation with the concomitant release of ubiquitin 

moieties for reuse (Hershko and Ciechanover, 1998) 
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In the 1970s, initial work aimed at understanding protein turnover 

indicated that different proteins had widely varying cellular half-lifes, 

which were, in some cases, altered by exogenous stimuli (Schimke, 1973).  

Subsequent development of a cell free lysate from rabbit reticulocyte 

capable of selective protein degradation in the presence of ATP allowed 

dissection of the process, as described in studies by Hershko and 

colleagues (Hershko and Ciechanover, 1998).  This work led to the 

identification of ubiquitin and the discovery that covalent modification of 

substrates by ubiquitin was critical for their degradation.  The subsequent 

purification of a protease capable of degrading poly-ubiquitinated targets, 

the 26S proteasome, established the mechanistic framework for ubiquitin 

dependant proteolysis via the ubiquitin - 26S proteasome pathway (Hough 

et al., 1987).  The fundamental role of the ubiquitin – 26S proteasome 

pathway in various cellular processes was first made clear by Varshavsky 

and coworkers in mammalian cells and yeast (Finley and Varshavsky, 1985).  

Using molecular genetics, numerous aspects of the ubiquitin system and 

the diverse processes it affects have since been extensively investigated 

(primarily in yeast) (Hershko and Ciechanover, 1998).   

The implication of the ubiquitin – 26S proteasome system in a wide range 

of cellular contexts reflects the advantages conferred by selective protein 

degradation over other types of regulatory mechanism.  The main 

advantages relate to the speed and commitment of ubiquitin based 

signaling.  Ubiquitin tagged substrates can have their half-lifes swiftly 

reduced (to the order of minutes) with rapid changes in steady state level 

induced by specific stimuli (Vierstra, 2004).  The irreversible removal of 

substrates also prevents the effects of inappropriate reactivation and 

correlate with the frequent involvement of selective protein degradation 

in signaling processes requiring explicit timing control such as: cell cycle 

progression, embryogenesis and cell lineage specification (Gottesman and 

Maurizi, 1992). 

The cost to the cell of maintaining such a rapid and sensitive system to 

regulate protein levels is the large overall energy consumption required to 

continually degrade and resynthesise proteins (Gottesman and Maurizi, 

1992).  This is offset however, by the relatively small fraction of proteins 
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(most of which are key regulatory proteins) that normally undergo 

continuous turnover in the cell (Vierstra, 2004). 

1.3.2 The ubiquitin protein 

Ubiquitin is a 76 amino acid globular protein found in all eukaryotes,  its 

sequence is highly conserved and only three residues differ between yeast 

and human species (Callis et al., 1995).  It is the prototypical member of 

the ubiquitin like (Ubl) protein family which covalently modify target 

proteins to alter various aspects of their regulation (Jentsch and 

Pyrowolakis, 2000).  Ubiquitin assumes a compact structure with a five-

strand mixed β sheet forming a cavity into which a single α helix fits 

diagonally to form a characteristic 'Ub fold' (Vierstra, 1996).  Numerous 

intramolecular hydrogen bonds impart ubiquitin with high stability, 

presumably to encourage recycling rather than proteolysis during the 

conjugation/ degradation process (Vierstra, 2004).  The flexible C-terminus 

of ubiquitin protrudes from the Ub fold and terminates with an essential 

glycine residue.  The carboxy group of this glycine functions as an 

initiation site for the covalent attachment of ubiquitin to substrates 

(Vierstra, 2004). 

Ubiquitin gene family members (UBQs) are detected either as Ub polymers 

in which multiples (typically 4-6 in Arabidopsis) of the 228 bp coding 

region are concatenated head-to-tail or as one of three different fusion 

proteins (Callis et al., 1995).  The Ub-fusion genes encode either one of 

two different ribosomal subunits or the Ubl RUB-1 (Related to Ubiquitin) 

protein fused to the C-terminus of ubiquitin (Callis et al., 1990).  In all 

cases ubiquitin-fusion precursors are cleaved at the terminal glycine by 

deubiquitinating enzymes (DUBs) to release active monomers (Amerik and 

Hochstrasser, 2004).   

Ubiquitin contains seven lysines (K6, K11, K27, K29, K31, K48 and K63).  To 

target substrates for degradation by the proteasome, covalent inter-

ubiquitin linkages are made from the C-terminal glycine to the K48 of the 

previous ubiquitin moiety (i.e. G76-K48 isopeptide bond) to form ubiquitin 

chains (poly-Ub) (Fushman and Pickart, 2004).  Poly-Ub chains of at least 
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four ubiquitin moieties (tetra-ubiquitin) are required to provide an 

efficient proteasome delivery signal (Thrower et al., 2000).   

1.3.3 The ubiquitin conjugation cascade 

Attachment of free ubiquitin moieties to appropriate substrates proceeds 

by an ATP dependent E1  E2  E3 enzyme conjugation cascade (Figure 

1.3).  The cascade starts with E1 ubiquitin activating enzyme.  The E1 

enzyme catalyses the formation of an acyl phosphoanhydride bond 

between the ATP adenosine monophosphate (AMP) of ATP and the C-

terminal glycine carboxy group of ubiquitin (Hershko and Ciechanover, 

1998).  Activated ubiquitin then forms a stable intermediate by binding 

directly to an E1 cysteine via a thiolester linkage (Hershko and 

Ciechanover, 1998).  This activated ubiquitin is transferred from E1 to E2 

ubiquitin conjugating enzyme by transesterification.  The E2-ubiquitin 

intermediate delivers ubiquitin onto a substrate acceptor lysine using an E3 

ubiquitin ligase (Hershko and Ciechanover, 1998).  E3 enzymes impart 

substrate recognition to the process and either promote direct transfer of 

Ub to substrates from E2 or form a final E3-Ub intermediate prior to 

transfer (Vierstra, 2004).  The end product is a ubiquitin-protein conjugate 

containing an isopeptide bond between the C-terminal glycine of ubiquitin 

and lysyl ∈-amino group in the substrate (Hershko and Ciechanover, 1998).   

After attachment of an initial ubiquitin moiety to a substrate, additional 

Ubs are a ligated to specific internal lysine residues on the first Ub to form 

poly-Ub chains.  Whether ubiquitin chains are extended by ligation of pre-

assembled poly-Ub or by iterative rounds of E3 based ligation is currently 

unclear (Vierstra, 2004).  Whilst linkages through all seven Ub lysines have 

been detected in vivo, poly-Ub chains linked through lysine 48 (K48) 

predominate in the cell and present a proteasome targeting/recognition 

signal (Fushman and Pickart, 2004).  Upon delivery to the proteasome, 

ubiquitinated substrates have poly-Ub chains removed by deubiquitinating 

enzymes prior to unfolding, import and proteolysis (Hartmann-Petersen et 

al., 2003). 
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Figure 1.3  Ubiquitin conjugation cascade.   

(1) ATP dependent activation of Ub by E1. Activated Ub binds to a 

conserved cysteine in E1 via a thiolester linkage from a carboxy group in its 

terminal glycine.  (2) Transfer of Ub to Ubiquitin conjugating enzyme (E2) 

forming an E2-Ub thiolester linkage.  (3) The E2 carries the activated 

ubiquitin to the ubiquitin ligase (E3), which facilitates the transfer of the 

ubiquitin from the E2 to a lysine residue in the target protein, often by 

forming an intermediate complex with the E3 and the target.  (4) Initial 

ubiquitination of target forming a Ub-protein conjugate linked by a isopeptide 

bond.  (5) Additional Ubs are ligated to form poly-Ub chains.  Proteins 

tagged with K48 linked poly-Ub chains are targeted to the proteasome.      

(6) Poly-Ub chains are disassembled by a proteasome associated 

deubiquitinating activity (DUB) and free Ub moieties are released.  

Proteasome localised substrates are then unfolded, imported and degraded 

into peptide fragments. 
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Although ubiquitin was first identified in the context of  proteolysis 

(Hershko and Ciechanover, 1998), it has become increasingly clear that the 

addition of single Ub moieties (mono-ubiquitination) (Hicke, 2001b) or 

alternative Ub chain linkage configurations can impart diverse 

consequences on substrates (Fushman and Pickart, 2004).  Other than the 

archetypal K48 linkage, non-proteolytic signaling by K63 linked poly-Ub 

chains has been shown to mediate DNA repair, trafficking and kinase 

activation (Fushman and Pickart, 2004).  Whilst ubiquitin chains linked 

through K29 have been shown to function in lysosomal targeting and 

protein degradation (Chastagner et al., 2006).   

E1 Ubiquitin activating enzyme 

E1 enzymes initiate the Ub conjugation cascade but have a negligible 

effect on its regulation.  The enzyme is a single polypeptide of ∼1100 

residues that contains a positionally conserved cysteine to bind activated 

Ub and a nucleotide binding motif that interacts with either ATP or AMP-

Ub intermediates (Hatfield et al., 1997).  There are two E1 isoforms in 

Arabidopsis, one of which may be nuclear localised (Hatfield et al., 1997). 

E2 Ubiquitin conjugating enzyme 

The E2 enzymes contain a diagnostic 150 residue catalytic core that 

surrounds the active site cysteine.  Using this conserved region, 37 E2 

isoforms (UBCs) have been identified in the Arabidopsis genome (Vierstra, 

1996). Outwith the core E2 domain, many detected isoforms contain 

various N and C-terminal extensions that are proposed to influence target 

recognition and localisation (Hamilton et al., 2001).  The elaboration of 

E2s is presumed to ensure equality in the distribution of activated Ub to 

the vast array of E3s.  Individual E2 isoforms in yeast and animals have 

distinct functions including: cell cycle regulation, DNA repair and 

degradation of ER translocated proteins (Pickart, 2001).  Sequence analysis 

has clustered Arabidopsis E2s into 12 distinct subfamilies (Vierstra, 1996) 

but the majority of subtypes currently await functional classification. 
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E3 Ubiquitin ligases  

There are currently five types of known E3 ubiquitin ligase:  VBC-Cul2, 

HECT, RING/U-box, SCF and APC, the latter four of which have been 

identified in the Arabidopsis genome (Vierstra, 2004).  The E3s all share a 

common requirement for a specific E2 interaction domain and a substrate 

recognition domain (Vierstra, 2004). In order to confer substrate selectivity 

for an extensive range of substrates, the E3s are the most diverse proteins 

in the ubiquitination cascade (Vierstra, 2004).  A specialised case of 

substrate recognition relates to degradation by the 'N-end Rule' where the 

half-life of a protein is influenced by the identity of its N-terminal residue 

(Varshavsky, 1996).  N-terminal residues cluster by their capacity to 

reduce protein half-life and are termed N-degrons (Varshavsky, 1996).  

Specific ubiquitin ligases have been linked to the N-end rule, the best 

characterised of which in Arabidopsis is PRT1 (Potuschak et al., 1998).  

The Arabidopsis genome contains over 1300 genes that encode putative E3 

subunits equating to approximately 5% of the proteome . 

E3 ubiquitin ligase subclasses can be broadly defined by subunit 

composition and mechanism of action.  HECT E3s are monomeric enzymes 

with a diagnostic 350 residue region termed the HECT (Homology to E6AP 

C-Terminus) domain first detected in the founding member, human E6AP 

(Huibregtse et al., 1995).  HECT E3s are unique as they form an thiol-ester 

intermediate E3-Ub on a conserved cysteine during Ub transfer.  The N-

terminal region of the HECT domain forms a stable binding pocket for the 

E2-Ub intermediate and the C-terminal region contains the active site 

cysteine (Huibregtse et al., 1995).  A variety of protein-protein interaction 

domains upstream of the HECT domain are thought to participate in 

substrate recognition and localisation (Vierstra, 2004).  Genome analysis 

has identified  7 HECT E3s in Arabidopsis, 5 in yeast and over 50 in humans 

(Downes et al., 2003). 

The remaining E3s interact with E2-Ub intermediates using variants of a 

zinc-finger structure termed the RING (Really Interesting New Gene) 

domain (Kosarev et al., 2002).  The RING finger motif consists of four 

ligand pairs (either histidine or cysteine) which coordinate two zinc ions in 
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a spatially conserved arrangement (Freemont, 2000).  The RING finger 

assumes a cross braced structure formed by the octet of zinc binding 

histidines and cysteines in either a C3H2C3 (RING-H2) or C3H1C4 (RING-HC) 

configuration.  RING finger proteins have been implicated in a broad range 

of cellular processes with an expanding subset of these being assigned 

ubiquitin ligase activity (Kosarev et al., 2002). 

RING/U-box E3s are single subunit ubiquitin ligases that interact with E2-

Ub via the RING finger domain (RING E3s) or a structurally analogous motif, 

the U-box (U-box E3s).  The U-box motif lacks the specific zinc 

coordinating residues of the RING finger and has been shown to instead 

stabilise a RING finger type structure through conserved electrostatic 

interactions (Ohi et al., 2003).  Numerous RING/U-box proteins have been 

detected in the Arabidopsis proteome with around 500 RING and 130 U-box  

proteins currently identified (Mudgil et al., 2004).  Genetic analysis of 

several indicate their diverse roles in plant physiology, including 

photomorphogenesis (Osterlund et al., 2000), self incompatibility (Stone et 

al., 2003) and the removal of misfolded peptides (Yan et al., 2003). 

SCF E3s are heterotetrameric ubiquitin ligases with subunits named after 

those of the founding member: SKP1, CUL1/Cullin and an F-box protein 

(Deshaies, 1999).  A fourth subunit, RBX was subsequently discovered and 

found to contain a RING H2-type domain.  The architecture of the SCF 

complex divides E2-Ub interaction, substrate recognition and complex 

assembly between its different subunits.  The RBX subunit interacts with 

E2-Ub via its RING domain and as part of the Cullin-RBX-SKP1 subcomplex 

confers Ub transferase activity (Deshaies, 1999).  Substrate specificity is 

provided by the F-box subunit which is anchored to SKP1 via an N-terminal 

F-box motif and targets proteins through C-terminal protein-protein 

interactions motifs (Gagne et al., 2002).   

F-box proteins constitute the largest single protein family in Arabidopsis 

containing almost 700 members (Gagne et al., 2002) with wide target 

specificity conferred by various C-terminal substrate recognition domains 

including: leucine-rich repeats, Arm repeats, and tetratricopeptide repeats 

(Gagne et al., 2002).  In many cases, substrate phosphorylation is known to 
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be a prerequisite for recognition by  F-box proteins, potentially implicating 

many plant kinases in the regulation of proteolysis (Deshaies, 1999).  Plant 

SCF components show a greater degree of divergence than their 

mammalian counterparts (Vierstra, 2003), in Arabidopsis the diversity of F-

box proteins coupled with 2 RBX1 subunits, five Cullins (CUL1, 2, 3a, 3b 

and 4) and 21 possible SKPs (termed ASKs in Arabidopsis) could potentially 

assort in over 100,000 distinct SCF complexes (Vierstra, 2004).  SCF E3s are 

implicated in numerous plant signaling pathways including responses to the 

plant hormones, cell cycle progression and photomorphogenesis 

(Schwechheimer and Villalobos, 2004). 

The APC (Anaphase Promoting Complex) is the most elaborate known E3 

ligase, consisting of 11 subunits (APC1-11).  The APC was first identified in 

a yeast screen for mutants unable to degrade the mitotic cyclin Clb2 

(Wasch and Cross, 2002).  Subsequently, the role of APC in degrading other 

crucial cell cycle regulators was discovered (Capron et al., 2003) and the 

name cyclosome was assigned to the complex.  Arabidopsis orthologs have 

been detected for most APC subunits (Capron et al., 2003) which are 

predominantly present in single copy suggesting a limited number of APC 

isoforms are assembled.  APC subunits APC2 and APC11 are related to SCF 

subunits CUL1 and RBX1 respectively (Capron et al., 2003).  These subunits 

are presumed to have analogous structural (CUL1) and E2-Ub transferase 

(RBX1) roles in APC complex.  The function of the remaining subunits is 

largely unknown although two proteins, CDC20 and CDH1, that are crucial 

for substrate recognition have been identified (Vodermaier, 2001).  

1.3.4 The 26S proteasome 

The 26S proteasome is a 2 MDa ATP dependent proteolysis complex which 

degrades ubiquitin tagged substrates.  Whilst initial characterisation of the 

complex was derived from studies of yeast and mammalian proteasomes, 

subsequent studies in rice and Arabidopsis indicate a similar design (Hu et 

al., 1998).  The 26S proteasome is comprised of 31 subunits divided into 

two subcomplexes, the 20S core protease (CP) and 19S regulatory particle 

(RP) (Hu et al., 1998).  The CP functions as a non-specific ATP and Ub-

independent protease which assumes a cylindrical structure by the 
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assembly of four heptameric rings (Wolf and Hilt, 2004).  The peripheral 

rings are composed of seven related α subunits and the central rings are 

composed of seven related β subunits in a α1-7 β1-7 β1-7 α1-7 configuration 

(Wolf and Hilt, 2004).  Initial crystallography studies of the CP in yeast 

reported a large central chamber into which face protease active sites 

contributed by the β1 β2 and β5 subunits (Wolf and Hilt, 2004). 

These three proteases generate peptidylglutamyl, trypsin-like and 

chymotrypsin-like activities, imparting the capacity to cleave most peptide 

bonds (Wolf and Hilt, 2004).  Entry into the CP chamber is restricted by a 

pore formed at the periphery by the seven α-subunits (Hartmann-Petersen 

et al., 2003).  The narrow pore requires entering proteins to be unfolded 

and flexible extensions in each α-subunit provide a channel gating function 

to control substrate entry (Hartmann-Petersen et al., 2003). CP entry 

channel gating and the requisite unfolding of substrates provides a 

demarcation between protease activity and the cellular milieu, meaning 

that degradation of proteins is limited to those unfolded and imported into 

the proteasome (Hartmann-Petersen et al., 2003). 

The RP associates with either end of the CP and confers ATP dependence 

and poly-Ub recognition to the proteasome (Hartmann-Petersen and 

Gordon, 2004).  The RP is composed of seventeen subunits which form two 

subcomplexes termed Lid and Base (Fu et al., 2001).  The Base sits directly 

over the CP α-ring channel and  comprises a ring of six related AAA-

ATPases (RPT1-6) and three non-ATPase subunits (RPN1, 2 and 10).  The 

Lid interacts with the Base via RPN10 and contains the remaining non-

ATPase subunits (RPN 3, 5-9 and 11-12) (Fu et al., 2001).  The overall 

structure function relationships between RP subunits remain to be 

clarified, but key functions have been ascribed to individual subunits 

(Hartmann-Petersen and Gordon, 2004). 

Cooperatively the RP Base and Lid mediate recognition of K48 linked poly-

Ub chains, removal of covalently bound Ub moieties, unfolding of targeted 

substrates, pore gating and substrate import to the proteasome 

(Hartmann-Petersen and Gordon, 2004).  K48 poly-Ub recognition by RPN10 
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has been observed but is non-essential in yeast and Arabidopsis suggesting 

is not the sole poly-Ub binding determinant (Hartmann-Petersen and 

Gordon, 2004).  RPN11 is a zinc metalloprotease with deubiquitinating 

activity that disassembles/recycles Ub chains during target degradation 

(Verma et al., 2002b).  ATPase subunits in the Base (RPT1-6) contact the 

CP pore gating α-subunits and are presumed to facilitate substrate 

unfolding and pore opening (Vierstra, 2004).   

Two evolutionary relatives of the lid complex in the proteasome RP have 

been identified in  plants and animals.  These complexes (COP9 and eIF3) 

contain eight subunits synonymous to those in the proteasome lid.  COP9, 

termed the signalosome (CSN) assists in numerous eukaryotic signaling 

pathways (Wei et al., 1998) whereas eIF3 is involved in translational 

control (Dunand-Sauthier et al., 2002).  Experimental evidence indicates 

that both COP9 and eIF3 can associate with the proteasome CP to create 

functionally distinct particles (Dunand-Sauthier et al., 2002).   

1.3.5 Deubiquitinating enzymes 

The ligation of ubiquitin to substrates is a reversible process and all known 

peptide linkages made from ubiquitin moieties are efficiently cleaved by 

deubiquitinating enzymes (DUBs) (Amerik and Hochstrasser, 2004).  

Following the identification of various classes of DUBs it is thought that 

ubiquitin removal is a dynamic process with proposed constitutive and 

regulated DUB activates in the cell (Amerik and Hochstrasser, 2004).  DUB 

enzymes perform several important functions in the ubiquitin – 26S 

proteasome pathway (Figure 1.4) (Amerik and Hochstrasser, 2004).   

To ensure normal rates of targeted proteolysis DUB enzymes maintain a 

sufficient pool free of ubiquitin in the cell.  To achieve this, DUBs function 

to process precursor ubiquitin fusions from translation products and 

release poly-Ub chains bound to proteasome RP (Amerik and Hochstrasser, 

2004).  In processing ubiquitin fusion proteins and ubiquitin tagged targets, 

DUB activities that cleave either peptide or isopeptide bonds (or both) 

have been reported  (Amerik and Hochstrasser, 2004).  Following 

activation, ubiquitin is susceptible to attack by abundant intracellular 
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Figure 1.4   Functions of Deubiquitinating enzymes (DUBs) in ubiquitin  

metabolism.  

 

(1) Processing of ubiquitin precursors. (2) Editing or rescue of ubiquitin 

conjugates, which are generally linked to other proteins in the cell but may 

also be ligated to abundant small nucleophiles such as glutathione. (3) 
Recycling of ubiquitin or poly-Ub chains from ubiquitin–protein conjugates 

targeted for degradation. (4) Disassembly of unanchored poly-Ub chains 

Adapted from (Amerik and Hochstrasser, 2004). 
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nucleophiles such as glutathione and polyamine.  To prevent loss of 

activated ubiquitin through such pathways DUBs function to prevent 

titration by these compounds (Amerik and Hochstrasser, 2004).   

Beyond roles in basic ubiquitin metabolism, DUBs also serve to negatively 

regulate protein degradation.  The commitment of substrates to 

proteasomal degradation by ubiquitination can be reversed by DUBs, 

altering the half-life of specific targets in response to signaling events 

(Amerik and Hochstrasser, 2004).  More generally, DUB enzymes have been 

proposed to function as a final proof reading mechanism for degradation, 

rescuing proteins that are inappropriately targeted to the proteasome 

(Lam et al., 1997).  The distinct  metabolic and substrate specific roles 

performed by different DUBs remains to be clarified and the known DUB 

target repertoire is a focus of current research. 

DUB enzyme families 

The DUBs are broadly classified into five subfamilies on the basis of 

sequence homology and catalytic mechanism.  Four of the families 

represent specialised cysteine proteases adopting a classic ‘papain type’ 

fold (Makarova et al., 2000), whilst the final subfamily represents a novel 

zinc metalloprotease specific for protein linked ubiquitin.  The cysteine 

protease DUBs consist of two well established subgroups: UCH (ubiquitin 

carboxy hydrolase) and UBP (ubiquitin specific protease) and two more 

recently identified subgroups: OTU (ovarian tumour) related proteases and 

Ataxin-3 (Amerik and Hochstrasser, 2004). 

For the UCH family,  crystal structures have been determined for two 

family members (human UCH-L3  and yeast Yuh1) allowing the diagnosis of  

catalytic residues and structurally conserved motifs (Amerik and 

Hochstrasser, 2004).  From such analysis, it is known that UCH enzymes 

contain four conserved motifs usually spanning around 200 amino acids.  

Two of these motifs contain catalytic cysteine and histidine/aspartate 

residues respectively termed His and Cys boxes (Amerik and Hochstrasser, 

2004).  In the case of the UBP family, equivalent catalytic residues to UCH 

enzymes are seen in different configuration within a 400 residue catalytic 
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‘core region’ (Hu et al., 2002a).  UBPs bear key histidine and cysteine 

boxes and four less stringently conserved regions (Q, G, L and F motifs), 

one of which includes the remaining catalytic aspartic acid residue (Hu et 

al., 2002a).  From structure determination of human UBP proteins, clear 

fold and active site homology with papain and UCH enzymes is apparent 

(despite limited sequence identity) (Hu et al., 2002a).  The UBP enzymes 

are greater in size and sequence diversity than the UCHs with 27 versus 3 

known examples in Arabidopsis (Yan et al., 2000b). Steric restrictions 

within the active site of most UCHs are proposed to limit their substrates 

to unfolded peptides or small adducts to the C-terminus of ubiquitin 

(Amerik and Hochstrasser, 2004). 

Recently identified from a bioinformatics analysis, the ovarian tumour 

related (OTU) proteases have emerged as an additional class of DUB 

enzyme (Makarova et al., 2000).  Following the structure determination of 

a human OTU, Otubain2, limited structural homology to other cysteine 

protease DUBs was observed in the catalytic core of the enzyme (Nanao et 

al., 2004).  Five OTU type proteins have been detected in the human 

genome, of which three have experimentally confirmed DUB activity 

against poly-Ub chains (Balakirev et al., 2003).  

Ataxin-3 currently represents a single member DUB family in mammals, 

plants and yeast (Scheel et al., 2003).  Originally identified as a causative 

factor in the human polyglutamine expansion disease spinocerebellar 

ataxia type 3, Ataxin-3 exhibits typical DUB enzyme properties and is 

characterised by a region termed the Josephin domain (Burnett et al., 

2003).  Over thirty examples of Josephin domain proteins are known in 

mammals many of which contain regions of weak similarity to the Cys and 

His boxes of UCH and UBP enzymes (Amerik and Hochstrasser, 2004). 

The JAMM proteases represent a recently identified class of novel zinc 

metalloprotease DUBs (Amerik and Hochstrasser, 2004).  Classified within 

the established JAB1/MPN/Mov34 domain a putative metal ion binding site 

motif: EXnHS/THX7SXXD, termed the JAMM domain is now recognised as the 

determinant of isopeptidase activity (Ambroggio et al., 2004a).  JAMM 

domain subunits have been identified as key components of the 
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proteasome regulatory particle (RPN11) (Verma et al., 2002b), COP9 

signalosome (CSN5) (Cope et al., 2002), eIF3 translation initiation complex 

(Glickman et al., 1998) and STAM endocytotic regulatory complex 

(McCullough et al., 2004b).  In the above cases JAMM domain proteins have 

been proven to facilitate hydrolysis of ubiquitin or Ubiquitin-like moieties 

(e.g. RUB-1) with RPN11 proving to be essential for viability in yeast 

(Verma et al., 2002b).   

1.4 Ubiquitination in plant defence signalling 

The ubiquitin – 26S proteasome system has been broadly implicated in 

plant cell signaling pathways linked to hormone signaling, growth and 

development (Vierstra, 2003).  In accordance with these findings, current 

research also indicates the regulatory involvement of ubiquitination at 

multiple levels of plant defence signaling (Dreher and Callis, 2007).   

1.4.1 Involvement of E3 ubiquitin ligases in plant defence 

Regulation of defence gene expression by signaling hormones ethylene (ET) 

and jasmonate (JA) has been linked to ubiquitination.  The EIN3 (ETHYLENE 

INSENSITIVE 3) transcription factor family are key components of ethylene 

signaling and have been reported to control transcription of numerous 

defence related genes including oxidative burst regulators and a subset of 

PR genes (Dreher and Callis, 2007).  The stability of EIN3 type transcription 

factors is regulated by ubiquitin SCF E3 ligase complexes containing the F-

box subunits EBF1 or EBF2 (EIN3 binding F-box) (Delauré et al., 2008).  JA 

signaling has also been linked to ubiquitination through the identification 

of the coi1 mutant in Arabidopsis.  COI1 is an SCF F-box subunit which is 

implicated in most JA mediated signaling responses including  defence 

against herbivores and biotrophic pathogens (Turner et al., 2002). 

Positive and negative regulators of plant defence signaling pathways have 

been identified in multiple E3 ubiquitin ligase classes resulting from 

elicitor/avirulence induction studies and genetic screens for pathogenesis-

related phenotypes (Dreher and Callis, 2007). 
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Reported F-box defense regulators include SON1 (SUPRESSOR OF NIM1-1). 

The Arabidopsis son1 mutant was identified in the npr1/nim1 background 

as negative defence regulator which is implicated in SAR independent 

resistance against virulent Peronospora parasitica and Pseudomonas 

syringae strains (Kim and Delaney, 2002).  Tobacco transcript profiling 

experiments during ETI elicited by the Cladisporium fulvum effector Avr9 

led to the identification of numerous upregulated ACRE (Avr9/Cf9 Rapidly 

Elicited) genes several of which encode ubiquitin E3 ligases (Durrant et al., 

2000).  One such gene is ACIF1 (Avr9/Cf-9-INDUCED F-BOX 1) which 

encodes an F-box protein that has been implicated as a positive regulator 

of HR and resistance mediated by the R genes Cf-9, Pto and N against their 

associated fungal, bacterial and viral pathogens (van den Burg et al., 

2008). 

Despite the large number of RING domain E3 ligases identified in plants, 

few have been implicated in defence signaling to date.  The RING domain 

E3 ubiquitin ligase ACRE132 was identified in the ACRE screen reported by 

Durrant et al. (Durrant et al., 2000).  ACRE132 is the proposed tobacco 

ortholog of the Arabidopsis ATL2 gene, which is transcriptionally induced 

by fungal chitins during basal resistance suggesting a possible conservation 

in function for these proteins in plant fungal response pathways (Delauré 

et al., 2008). 

Several studies have indicated a prominent role for U-box E3 ubiquitin 

ligases during plant defence both in PTI and ETI.  Trujillo et al. recently 

reported the cumulative involvement of Arabidopsis U-box proteins PUB22, 

PUB23 and PUB24 (PLANT U-BOX 22-24) as negative regulators of  basal 

resistance (Trujillo et al., 2008).  In this study single, double and triple 

ubp22 ubp23 ubp24 mutants exhibited progressive loss of suppression in 

the flg22 induced ROI burst, MPK3 MAPK kinase activation and downstream 

PTI marker gene expression  (Trujillo et al., 2008).   

U-box E3 ubiquitin ligases were also identified in the previously discussed 

ACRE screen resulting in the implication of ACRE276/PUB17 and 

ACRE74/CMPG1 as positive regulators of ETI (Yang et al., 2006) (Gonzalez-

Lamothe et al., 2006). Gene silencing approaches demonstrated that 
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tobacco ACRE276 is required for efficient HR development mediated by the 

R proteins Cf-9 and N and that the tomato ACRE276 ortholog is required for 

full resistance against Cladisporium fulvum (Yang et al., 2006).  PUB17, 

the Arabidopsis ortholog of ACRE276, was also implicated in defense with 

pub17 mutants demonstrating increased susceptibility against avirulent 

strains of Pseudomonas syringae (Yang et al., 2006).  Similar experimental 

approaches have also demonstrated that the tobacco U-box protein CMPG1 

mediates Cf-9 triggered HR and resistance (Gonzalez-Lamothe et al., 

2006).  Mutant screening programs in rice led to the identification of lesion 

mimic mutant spl11 which negatively regulates basal resistance against 

rice pathogens Magnoporthe grisea and Xanthomonas oryzae (Yin et al., 

2000).  Subsequent studies led to the characterisation of SPL11 and 

demonstration of its in vitro activity as a functional U-box E3 ubiquitin 

ligase (Zeng et al., 2004). 

1.4.2 RAR1/SGT1 mediated R gene resistance 

The finding that several defense associated E3 ubiquitin ligases regulate 

disease resistance against distinct pathogen species supports the idea that 

multiple pathogen perception systems converge on common ubiquitination 

based signaling pathways (Devoto et al., 2003).  The identification of RAR1 

and SGT1 has defined one such convergence point between ubiquitination 

and resistance mediated by multiple R genes in monocot and dicot plant 

species (Muskett and Parker, 2003).  RAR1 encodes a predicted cytosolic 

protein of unknown function which contains two similar cysteine and 

histidine-rich (CHORD) Zn2+ binding domains (Shirasu et al., 1999). RAR1 is 

conserved in all eukaryotes except yeast and was initially implicated in 

disease resistance against powdery mildew in barley mediated by the R 

genes Mla6 and Mla12 (Shirasu et al., 1999).  Plant RAR1 proteins were 

found to interact through their C-terminal CS motif with SGT1 (SUPRESSOR 

OF THE G2 ALLELE OF SKP1) which has multiple functions in yeast by 

association with several distinct protein complexes (Schadick et al., 2002).   

One function of SGT1 in yeast is to regulate SCF ubiquitin E3 ligase 

complexes with which it associates through the SKP1 subunit (Kitagawa et 

al., 1999).  Similar interactions have been reported in Arabidopsis, barley 
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and N. benthamiana (Azevedo et al., 2002).  Association of SGT1 with the 

SCF complex in plants is supported by the finding that F-box mediated 

Auxin and JA dependent signaling is disrupted in Arabidopsis sgt1b mutants 

suggesting that SGT1b is a key component of multiple SCF-regulated 

pathways (Gray et al., 2003).  Mutant analyses in Arabidopsis and silencing 

experiments in barley and N. benthamiana have demonstrated that SGT1 is 

required for responses that are mediated by diverse R gene structural 

types to induce resistance against a variety of pathogens (Azevedo et al., 

2002) (Liu et al., 2002b) (Peart et al., 2002b).   

Additional evidence which supports the role of ubiquitin mediated 

degradation in defence signaling has come from silencing genes encoding 

SKP1 and subunits of the COP9 signalosome (CSN) in N. benthamiana, 

resulting in the loss of N mediated TMV resistance (Liu et al., 2002b).  As 

discussed previously, the CSN is an evolutionarily conserved multiprotein 

complex which is closely related to the lid subcomplex of the 26S 

proteasome, interacts with RAR1 and SGT1 and regulates ubiquitination by 

SCF E3 ubiquitin ligases (Muskett and Parker, 2003). 

SGT1 has also been shown to interact with HSP90 (HEAT SHOCK PROTEIN 

90) which has been implicated in resistance mediated by several R genes 

(Takahashi et al., 2003).  Current research suggests that SGT1 and RAR1 

associate as cochaperones with HSP90 and are proposed to function in 

close proximity to R proteins, possibly to assist in the maintenance of 

conformation sensitive signaling states during R protein activation (Shirasu 

and Schulze-Lefert, 2003).  Collectively, SGT1 and RAR1 are thought to 

function in disease resistance through participation in multiple protein 

complexes where they are proposed to influence the conformation of R 

gene complexes and regulate ubiquitination by several classes of E3 ligase 

(Shirasu and Schulze-Lefert, 2003). 

1.4.3 Target of ubiquitination linked to plant defence 

Beyond the reported interactions of RAR1 and SGT1 discussed above, 

relatively few defence associated ubiquitination targets have been 

identified in plants.  A potential link between ubiquitination and defence 
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has been established in the case of the Arabidopsis R protein RPM1 which 

is degraded coincident with the onset of the HR elicited by Pseudomonas 

syringae carrying the avrRpm1, avrB, avrRps4 or avrRpt2 avirulence genes 

(Boyes et al., 1998).  RPM1 has been found to interact with the proteins 

RIN2 and RIN3 (RPM1-interacting proteins) which both demonstrate in vitro 

E3 ubiquitin ligase activity and collectively contribute to pathogen elicited 

RPM1-dependent ion leakage (Kawasaki et al., 2005).  HR associated 

degradation of RPM1 is not altered in rin2 rin3 double mutants suggesting 

that whilst RIN2 and RIN3 are linked to defence signaling, they may not 

directly control RPM1 stability (Kawasaki et al., 2005). 

Manipulation of host ubiquitination signaling by several viral and bacterial 

plant pathogens which mimic host proteins to suppress defense and 

promote their own survival have been reported (Dreher and Callis, 2007).  

The Pseudomonas syringae pv. tomato (Pst) effector protein avrPtoB 

represents one such example which functions to suppress immunity by 

inhibiting the plant HR.   

The Pst effectors avrPto and avrPtoB are delivered into the plant cell 

through the type III secretion system and are both recognised by the 

tomato resistance protein Pto to initiate HR and resistance (Pedley and 

Martin, 2003).  In N. benthamiana, avrPtoB has been shown to be a 

SUPRESSOR of HR induced by avrPto/Pto recognition as well as HR induced 

by fungal elicitors and other bacterial effectors (Abramovitch et al., 2003).  

AvrPtoB is a modular protein for which deletion and structural analysis has 

established that the C-terminal domain triggers HR whilst the N-terminal 

domain controls hypersensitive cell death suppression and possesses the 

structural features of a U-box E3 ubiquitin ligase (Janjusevic et al., 2006).  

The avrPtoB C-terminal domain exhibits in vitro E3 ubiquitin ligase activity 

and structural or catalytic mutations within this domain result in reduced 

HR suppression and virulence of Pseudomonas syringae in vivo (Janjusevic 

et al., 2006). 

AvrPtoB uses its E3 ligase activity to ubiquitinate and degrade the host R 

protein Fen, a Ser/Thr kinase that is able to physically interact with the N-

terminal region of AvrPtoB that is lacking its C-terminal domain (Rosebrock 
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et al., 2007).  The proposed relationship between avrPtoB, Fen and Pto 

illustrates the evolving relationship between plant effectors and R proteins 

and how host ubiquitination can be exploited to benefit pathogen virulence 

(Rosebrock et al., 2007).  Firstly, the pathogen encoded avrPtoB (N-

terminal domain only) evolved to suppress plant  basal defences.  Next, 

the plant Fen kinase evolved to bind avrPtoB (N-terminal domain only), 

leading to activation of R gene mediated resistance.  Subsequently, the 

pathogen responded by incorporating an E3 ubiquitin ligase domain into 

avrPtoB (forming full length avrPtoB) that targets the Fen kinase for 

degradation.  Finally, the plant kinase Pto, which is not susceptible to 

avrPtoB mediated ubiquitination, evolved to bind avrPtoB, thus restoring 

host immunity through R gene mediated resistance (Rosebrock et al., 

2007). 

Opportunistic acquisition of host genetic material by pathogens such as 

Agrobacterium tumefaciens represents an alternative virulence strategy to 

the U-box structural mimicry demonstrated by avrPtoB which was 

generated through convergent evolution. 

Agrobacterium tumefaciens uses a type IV secretion system to translocate 

effectors and single-stranded DNA (T-DNA) into eukaryotic cells, resulting 

in genetic colonization of the host (Tzfira et al., 2004). During infection, 

Agrobacterium tumefaciens translocates the F-box protein VirF into host 

cells and utilizes host components to form a functional SCF complex 

required for degradation of VirE2 and host VIP1 (Schrammeijer et al., 

2001).   VirE2 and VIP1 proteins must be eliminated to allow integration of 

the Agrobacterium T-DNA into the host genome (Tzfira et al., 2004).  VirF 

was the first prokaryotic protein reported to contain a conserved F-box 

domain (Schrammeijer et al., 2001) and demonstrates the utilisation of 

host functional domains obtained by lateral gene transfer to improve 

pathogen virulence. 
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1.5 Study objectives  

Many previous studies have implicated ubiquitination in diverse plant 

signalling pathways, establishing its role as a fundamental regulatory 

mechanism.  Knowledge of plant deubiquitinating enzymes and their 

function is comparatively limited with prior studies limited primarily to the 

UBP subclass as described by Yan et al. (Yan et al., 2000b).  This study 

aims to identify the full complement of Arabidopsis deubiquitinating 

enzymes based on current knowledge of other eukaryotic DUBs and 

establish novel data on their function using established reverse genetic 

approaches. 

As there is accumulating evidence which implicates ubiquitination at 

various levels of plant defence and disease resistance signalling, the 

primary aim of this study is to establish the potential involvement of 

deubiquitinating enzymes in plant defence.  Model plant-pathogen systems 

in Arabidopsis, tobacco and N. benthamiana will be utilised to examine the 

role of candidate DUB genes in defence signalling during gain and loss of 

function assays. 
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Chapter 2 – Materials and Methods 

2.1 Materials  

2.1.1 Enzymes and Reagents 

All chemicals were provided by Sigma-Alrich Ltd (Poole, UK), Fisher 

Scientific UK (Southampton, UK) or VWR International Ltd. (Poole, UK) 

unless otherwise stated.  Agarose MP (cat# 11388983001), Restriction 

endonucleases, 2nd generation RACE kit (cat# 03353621001), Expand 

HiFidelity polymerase (cat# 04738250001 ) and Complete® protease 

inhibitor cocktail Tablets (EDTA-free, cat# 11836170001) were supplied by 

Roche.  Phusion™ High-Fidelity polymerase (cat# F530S) Thermopol Taq 

polymerase (cat# M0267S), PCR marker (cat# N343S) and Protein molecular 

weight markers (cat# P7708S) were provided by New England Biolabs Ltd. 

(Hitchin UK).  Ponceau S powder (cat# P3504), Coomassie Brilliant Blue 

stain (cat# B8647), His-Select affinity purification columns (cat# H7787), 

GenElute plant genomic DNA miniprep kit (cat# NA1111), Triton X-100 

(cat# T8787), Tween20 (cat# P5927), Murashige and Skoog Basal Medium 

(cat# M5519) and Rifampicin (cat# R3501) were provided by Sigma-Aldrich.  

QIAprep plasmid miniprep kit (cat# 27104) and  QIAquick gel extraction kit 

(cat# 28704) were provided by Qiagen Ltd. (Crawley, UK).  29:1 

acrylamide:bis-acrylamide solution (cat# 161-0156) and Polyvinylidene 

flouride PVDF membrane (cat# 162-0177) were provided by BioRad 

Laboratories. Chemiluminescent HRP substrate (cat# WBKLS0500) was 

provided by Millipore Ltd.  SuperscriptII reverse transcriptase (cat# 

18064022), TRIzol RNA extraction (cat# 15596026), RnaseOut inhibitor 

(cat# 10777019), Insect cell media (cat# 10902088), LR Clonase (cat# 

11791100) and PENTR D-TOPO kit (cat# K240020) were provided by 

Invitrogen Ltd. (Paisley, UK).  T4 DNA ligase (cat# M1801), dNTPs (cat# 

U1330), AMV reverse transcriptase (cat# M510A) and RNasin Ribonuclease 

Inhibitor (cat# N2111) were provided by Promega (Southampton, UK).  

DNA-free DNAse (cat# 1906) and Nuclease-free H20 (cat# 9930) were 

provided by Ambion.  Brilliant SYBR Green QPCR Master Mix (cat# 600548) 

was provided by Stratagene Ltd.  Proteose Peptone salts (cat# LP0085) was 
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provided by Oxoid Ltd.  BD BaculoGold™ baculovirus transfection kit (cat# 

554740) was supplied by BD Biosciences (CA, USA).  Cell culture flasks (cat# 

43072) provided by Corning (NY, USA). His-Bind affinity purification resin 

(cat# 69670), Alkali-soluble Casein (cat# 70955) and BugBuster cell lysis 

reagent (cat# 70584) were provided by Novagen (Nottingham, UK).  

Isopeptidase T (cat# UW8560),  Ubiquitin chains (cat# UW8860) and 

Diubiquitin (cat# UW9800) were supplied by Affiniti Research (Exeter, UK). 

2.1.2 Antibiotics 

Antibiotic Solvent Stock 
Concentration 

Working 
Concentration 

Kanamycin H20 50 mg/ml 50 µg/ml 
Rifampicin Methanol 10 mg/ml 100 µg/ml 

Carbenicillin H20 100 mg ml 100 µg/ml 
Hygromycin B PBS 50 mg/ml 50 µg/ml 

Chloramphenicol H20 100 mg/ml 100 µg/ml 
Tetracyline Ethanol 5 mg/ml 5 µg/ml 

Spectinomycin H20 100 mg/ml 100 µg/ml 
 
Table 2.1 Antibiotics used for plasmid and bacterial selection. 

2.1.3 Bacterial Strains 

E. coli strains DH5α and BL21(DE3) Star (Invitrogen) were transformed with 

various plasmid constructs for sub-cloning, expression and amplification.  

Agrobacterium strains GV3101 and LBA440 were used for plant 

transformation and transient expression. Pseudomonas  syringae pv. 

tomato DC3000, DC3000 avrB and DC3000 avrRpt2 were used to infect 

Arabidopsis.  Pseudomonas syringae pv. tabaci and  Pseudomonas syringae 

pv. tabaci avrPto were used for Nicotiana benthamiana infections. 
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2.1.4 Antibodies. 

Antibody Dilution Source Incubation Supplier 
Anti-Ubiquitin 1:10000 Mouse 60 min Covance P4D1 
Anti-Histidine 1:4000 Rabbit 90 min Santa Cruz sc-803 

Anti-Mouse HRP 1:20000 Goat 60 min Sigma A5278 
Anti-Rabbit HRP 1:10000 Goat 60 min Sigma A6154 

Anti-GFP 1:4000 Rabbit 90 min AbCam ab6556 
 
Table 2.2 Antibodies used for Western blots in this study. 

 
 
2.1.5 Plasmid Vectors 

Plasmid Vector Description Source 
pGEM-T Easy Sequencing & Sub-cloning Promega 

pENTR D-TOPO Gateway entry cloning Invitrogen 
pENTR4 Gateway entry cloning Invitrogen 

pHellsgate12 Gateway RNAi Dr P. Waterhouse 
pTV00 VIGS RNA2 Prof D. Baulcombe 

pBINTRA6 VIGS RNA1 Prof D. Baulcombe 
pSA-rep VIGS helper plasmid Prof D. Baulcombe 

pCf9 Cf-9 R gene Prof J. D. Jones 
pAvr9 Avr9 avirulence gene Prof J. D. Jones 

pDEST17 Gateway Histidine tag Invitrogen 
pACHLT Baculovirus transfer BD Biosciences 
pGWB6 Gateway GFP tag Prof T. Kimura 

pCR BLUNT II TOPO Sub-cloning Invitrogen 
p19 Gene silencing SUPRESSOR Prof P. Birch 

 
Table 2.3 Plasmid DNA vectors used in this study. 

2.2 General Laboratory Procedures 

2.2.1 pH Measurment  

The pH of solutions and media were measured using a Metler Toledo MP220 

pH meter and glass electrode. 
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2.2.2 Autoclaving 

Solutions and equipment were sterilised in a benchtop (Prestige Medical, 

Model 220140) or free-standing (Laboratory Thermal Equipment Autoclave 

225E) autoclaves. 

2.2.3 Filter sterilisation 

Solutions that were heat sensitive or of small volume were sterilised by 

filtration using a Sartorius Minisart disc filters (0.2 μM). 

2.3 Plant materials 

2.3.1 Arabidopsis seed stocks 

Wild-type Arabidopsis thaliana ecotype Columbia-0 (Col-0) seeds were 

obtained from The National Arabidopsis Stock Centre (NASC, Nottingham, 

UK).  T-DNA insertional mutant lines in the Col-0 genetic background were 

obtained from NASC (Nottingham, UK) and GABI-Kat (Cologne, Germany). 

2.3.2 Growth of Arabidopsis plants on soil 

Arabidopsis seeds were vernalised in water and dark conditions at 4°C for 

3 days prior to sowing.  Seeds were sown onto pots or trays containing 

compost soaked in a 0.15 g/l solution of the insecticide Intercept (Scotts 

UK).  Plants were grown in growth chambers at 22°C and were kept under 

clingfilm for 1 week after germination.  Plants were grown under white 

light (80 µmol/m2/s) on either a long day photoperiod (16 hours light/8 

hours dark) or short day photoperiod (8 hours light/16 hours dark) at 60% 

relative humidity. 

2.3.3 Surface sterilisation of Arabidopsis seeds 

Arabidopsis seeds were surface sterilised using an ethanol solution (70% 

(v/v) ethanol, 0.05% (v/v) Triton X-100).  Seed was shaken for 5 minutes in 

this solution, then washed twice for 3 minutes in 100% ethanol.  Seed was 

resuspended in 100% ethanol and pipetted onto sterile filter paper.  After 
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sufficient drying time, seeds were deposited onto agar plates by gentle 

tapping. 

2.3.4 Growth of Arabidopsis plants on agar plates 

For segregation studies of transgenic or genetically crossed Arabidopsis 

plants, surface sterilised seeds were sown on 0.8% agar plates containing 

7.5 g/l sucrose and 2.2 g/l Murashige and Skoog salts with appropriate 

antibiotics.  Seeds were vernalised on the plates for 3 days at 4°C and 

grown under long day conditions. 

2.3.5 Cross-Pollination of Arabidopsis  

For genetic crosses, parent lines of Arabidopsis were grown under long day 

conditions for 3 – 4 weeks until the initiation of flowering.  Fine forceps 

where used to emasculate female parent plants and open or budding 

flowers not selected for crossing were removed.  Unopened buds selected 

for crossing were dissected using fine forceps and a stereo microscope 

where all organs were removed except the pistil.  Female parents were 

fertilised with pollen from an open male flower and returned to long day 

growth conditions.  F1 seed from successful crosses was harvested after 

elongated siliques had begun to brown.  

2.3.6 Nicotiana tabacum and Nicotiana benthamiana seed stocks 

Transgenic N. tabacum seeds carrying either the L. esculentum resistance 

gene Cf-9 or C. fulvum avirulence gene Avr9 were provided by Prof J. D. 

Jones (Sainsbury Laboratory, Norwich).  Transgenic N. benthamiana seeds 

carrying the L. esculentum resistance gene Pto were provided by Dr J. P. 

Rathjen (Sainsbury Laboratory, Norwich). 

2.3.7 Growth of Nicotiana tabacum and Nicotiana benthamiana on soil 

N. tabacum and N. benthamiana seeds (~50) were sown on a single pot of 

compost soaked with a 0.15 g/l solution of the insecticide Intercept (Scotts 

UK) and covered in clingfilm.  Plants were grown at 24°C under long day 
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conditions (48 µmol/m2/s) at 60% relative humidity, and 1 week after 

germination seedlings were transferred to individual pots and covered with 

a humidifier.  For transient gene expression assays, N. tabacum plants 

were grown for 5-6 weeks.  For Virus Induced Gene Silencing (VIGS), N. 

benthamiana plants were grown for 3-4 weeks  prior to Agrobacterium 

inoculation, then a further 3 weeks whilst gene silencing developed. 

2.4 DNA and RNA methods 

2.4.1 Preparation of competent  E. coli cells for heat-shock 
transformation. 

A 50 µl aliquot of E. coli DH5α cells were inoculated into 10 ml LB media 

and grown overnight at 37°C.  Following overnight growth, 1 ml of culture 

was used to inoculate 250 ml of SOB media (20 g/L bacto-tryptone, 5 g/L 

yeast-extract, 8.5 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4) 

which was grown at 18°C to an OD600 of 0.6.  Cell culture was cooled on ice 

for 15 minutes then pelleted by centrifugation at 2500 g for 10 minutes at 

4°C.  Pelleted cells were gently resuspended in 80 mls of ice cold TB 

buffer (10 mM HEPES pH 6.7, 15 mM CaCl2, 55 mM MnCl2, 250 mM KCl) and 

chilled on ice for 10 minutes.  Cells were pelleted by centrifugation at 

2500 g for 10 minutes at 4°C and gently resuspended in 20 mls of ice cold 

TB buffer.  Filter sterilised DMSO was added to a final concentration of 7% 

and cells were incubated on ice for 10 minutes.  Cells were aliquotted in 

200 µl volumes into pre-chilled eppendorfs on dry ice and stored at –80°C. 

2.4.2 Transformation of E. coli competent cells 

Competent E. coli cells were placed on ice to thaw for ten minutes.  

Approximately 5 µl of plasmid DNA or DNA ligation reaction was added to 

the competent cells which were then incubated on ice for 20 minutes.  The 

cells and DNA were heat-shocked in a waterbath at 42°C for 35 seconds 

then immediately placed on ice.  After a 2 minute incubation on ice, 700 µl 

of LB media was added to the cells and DNA which were then incubated at 

37°C for 1 hour with shaking at 200 rpm.  Transformations were plated out 
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on LB agar plates with appropriate antibiotic and incubated overnight at 

37°C until colonies developed. 

2.4.3 Isolation of plasmid DNA 

Plasmid DNA purification from E. coli was performed using Qiagen Plasmid 

MiniPrep kits.  Cells from a single bacterial colony were inoculated into a 

10 ml overnight LB medium culture with appropriate antibiotics and grown 

at 37°C with shaking at 200 rpm.  Bacterial culture (3 ml) was pelleted by 

centrifugation at 2500 g for 1 minute and supernatant was discarded.  Cell 

lysis and DNA purification was carried out according to the manufacturer's 

instructions.  The purified plasmid DNA was eluted with dH20 in a final 

volume of 50 µl.  Plasmid DNA was stored at –20°C. 

2.4.4 Agarose gel electrophoresis of DNA 

All DNA agarose gels contained 0.8 % - 1.0 % (w/v) agarose melted in TAE 

buffer (40 mM Tris-acetate, 1 mM EDTA).  SYBR Safe (Invitrogen) was 

added to the agarose solution at 1:10,000 dilution for DNA labelling.  DNA 

samples were mixed with 5 x loading buffer (0.25 % (w/v) bromophenol 

blue, 0.25 % (w/v) xylene cyanol FF, 30 % (w/v) glycerol) and separated by 

agarose gel electrophoresis in TAE buffer at 100 V. 

2.4.5 DNA extraction and purification from agarose gel 

DNA bands were separated by electrophoresis in agarose gels and bands of 

the expected size were excised on a UV illuminator.  DNA was extracted 

and purified using the Qiaquick Gel Extraction Kit in accordance with the 

manufacturer’s instructions.  Purified DNA was eluted in 50 µl dH20. 

2.4.6 DNA ligation 

DNA obtained from PCR amplification or restriction digest was ligated in a 

final volume of 10 µl.  Aliquots of plasmid and insert DNA were examined 

on an agarose gel to establish their relative concentrations.  Typically 

insert and vector fragments were mixed in a 5:1 ratio (500 ng: 100 ng) with 
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1 x ligation buffer (Promega), 1 unit of T4 DNA ligase (Promega) and sterile 

water to a final volume of 10 µl.  The ligation mix was incubated at 22°C 

for 20 hours.  Typically, 5 µl of ligation reaction was used for 

transformation of E. coli cells.    

2.4.7 Restriction Endonuclease digest of plasmid DNA 

Plasmid DNA was digested with restriction enzymes either for analysis (20 

µl reaction) or in preparation for cloning (50 µl reaction).  Analytical 

restriction digests were performed on 7 µl of plasmid DNA in a 20 µl 

reaction volume with 5 - 8 units of each enzyme.  Preparative restriction 

digests were performed on 20 µl of plasmid DNA in a 50 µl reaction volume 

with 10-15 units of each enzyme.  When sequential preparative digests 

were performed, initial 50 µl digests were diluted 2 fold into secondary 

digest reactions (i.e. 25 µl initial digest into 50 µl secondary digest).  All 

enzymes and 10 x buffers  were supplied by Roche and digest reactions 

were incubated at the appropriate temperature for 4 hours. 

2.4.8 Quantification of DNA 

Purified plasmid DNA concentration was assessed by absorbance 

measurment at 260 and 280 nm.  DNA samples were diluted 50 fold in dH20 

(2 µl in 100 µl), transferred to a quartz cuvette and absorbance at 260 and 

280 nm were measured against a dH20 blank sample.  Plasmid DNA 

concentration in ng/µl was calculated by the following formula:  

Plasmid DNA (ng/µl) = (OD260 x 50) x Dilution Factor 

The ratio of 260/280 nm absorbance values indicated the purity of the 

samples (optimal purity being 260/280 =1.8) (Sambrook and Russel, 2001). 

2.4.9 Polyadenylation of PCR products 

Blunt ended PCR products produced by Phusion polymerase were 

polyadenylated to allow ligation into pGEM-T Easy vector.  Polyadenylation 

reactions contained 8 µl of PCR product, 2 mM dATP, 1 x Thermopol Taq 
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polymerase buffer (NEB) and 0.5 units Thermopol Taq polymerase (NEB) in 

final volume of 10 µl.  Reactions were incubated at 72°C for 30 minutes, 

chilled on ice then transferred directly to DNA ligation (typically 7 µl 

polyadenylation reaction in a 10 µl ligation). 

2.4.10 pENTR D-TOPO based DNA ligation 

PCR products destined for ligation into pENTR D-TOPO (Invitrogen) were 

amplified with appropriate primers containing CACC in the 5’ primer 

termini.  Purified PCR products (typically 500 ng DNA) were ligated into 

pENTR D-TOPO using TOPO directional cloning based on the manufacturer’s 

instructions.  Ligation reactions contained upto 4 µl PCR product, 1 µl salt 

solution (Invitrogen), 1 µl D-TOPO vector (Invitrogen) and dH20 to a final 

volume of 6 µl.  D-TOPO ligation reactions were incubated at 22°C for 30 

minutes then transformed (typically 3 µl ligation) into E. coli (Section 

2.4.2). 

2.4.11 Gateway recombination based cloning 

DNA fragments were cloned into pENTR D-TOPO or pENTR4 entry vectors to 

facilitate Gateway® recombination based cloning into a variety of 

destination vectors.  Recombination reactions contained 5 µl (500 ng) entry 

plasmid, 1 µl destination vector, 2 µl LR clonase enzyme mix (Invitrogen) 

and 2 µl dH20.  Reactions were incubated at 22°C for 1 hour then 

inactivated by the addition of 1 unit Proteinase K (Invitrogen) for 10 

minutes at 37°C.  Recombination reactions (typically 5 µl) were 

transformed into E. coli (Section 2.4.2). 

2.4.12 DNA sequencing 

Sequencing of DNA was carried out by Dundee Sequencing Service 

(University of Dundee) in accordance with their instructions.  Sequencing 

was carried out on plasmid DNA to verify sequence insert integrity of all 

experimental constructs generated for this study. 
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2.4.13 Isolation of genomic DNA from Arabidopsis plants 

Genomic DNA was extracted from Arabidopsis plant tissue using GenElute 

Plant Genomic DNA Miniprep kits (Sigma) according to the manufacturer’s 

instructions.  Approximately 200 mg of Arabidopsis tissue was powdered 

under liquid N2 and transferred to an eppendorf tube.  Cell lysis and 

genomic DNA purification were carried out in accordance with the 

manufacturer’s protocol.  Purified genomic DNA was eluted in a final 

volume of 100 µl and stored at –20°C. 

2.4.14 Isolation of plant RNA 

Total RNA was extracted from plant tissue using TRIzol RNA extraction 

reagent (Invitrogen) in accordance with the manufacturer’s instructions.  

Approximately 200 mg of plant tissue was powdered under liquid N2 and 

transferred to an eppendorf tube.  Cell lysis and total RNA extraction were 

carried out in accordance with the manufacturer’s protocol.  RNA pellets 

were gently resuspended in 30 µl of autoclaved dH20 and stored at –80°C. 

2.4.15 Quantification of RNA 

RNA concentration and purity was assessed by absorbance measurment at 

260 and 280 nm.  DNA samples were diluted 50 fold in dH20 (2 µl in 100 µl), 

transferred to a quartz cuvette and absorbance at 260 and 280 nm were 

measured against a dH20 blank sample.  RNA sample concentration in ng/µl 

was calculated by the following formula: 

RNA ng/µl = ((OD260 x 0.33) x Dilution factor))/1000 

The ratio of 260/280 absorbance values indicated the purity of the samples 

(optimal purity being 260/280 =2.0) (Sambrook and Russel, 2001). 

2.4.16 DNAse treatment of RNA 

To abolish possible genomic DNA contamination, RNA extracts (Section 

2.4.14) were treated with DNAFree (Ambion) in accordance with the 

manufacturer’s instructions.  Recovered RNA fractions were incubated with 



 

 45

2 units of DNase I (Ambion) in 1 x DNase buffer (Ambion) at 37°C for 30 

minutes.  DNase I was inactivated by the addition of 0.1 volumes DNase 

inactivation reagent (Ambion) which was mixed for 2 minutes at room 

temperature.  Treated RNA samples were centrifuged at 10,000 g for 1 

minute and supernatants were transferred to a fresh eppendorf tube. 

2.4.17 cDNA synthesis  

cDNA synthesis for cloning (Section 2.4.6) and semi-quantitative RT-PCR 

(Section 2.5.3) was completed using Superscript II Reverse Transcriptase 

(Invitrogen) in accordance with the manufacturer’s instructions.  DNAse 

treated RNA (1.5 µg) was prepared for cDNA synthesis by incubation with 1 

µM oligo dT (dTTTP15) in a 10 µl volume at 70°C for 10 minutes.   Samples 

were then cooled on ice for 1 minute before the addition of a 9 µl master 

mix containing 1 x RT buffer (Invitrogen), 10 mM DTT, 1 mM dNTPs 

(Promega) and 40 units RnaseOut (Invitrogen).  Following a 2 minute 

incubation at 42°C, 100 units of Superscript II reverse transcriptase was 

added to each cDNA synthesis reaction  to a final volume of 20 µl.  

Reactions were incubated at 42°C for 90 minutes and then 70°C for 10 

minutes to deactivate the reverse transcriptase enzyme. After cDNA 

synthesis, 30 µl of  autoclaved dH20 was added to each reaction which was 

stored in 15 µl aliquots at –20°C. 

2.4.18 cDNA synthesis for Realtime PCR 

cDNA synthesis for Realtime PCR was completed using AMV Reverse 

Transcriptase (Promega) in accordance with the manufacturer’s 

instructions.  DNAse treated RNA (2.5 µg) was prepared for cDNA synthesis 

by incubation with 5 µM oligo dT (dTTTP15) in a 15.9 µl volume at 70°C for 

10 minutes.  Samples were then cooled on ice for 1 minute before the 

addition of a 9.1 µl master mix containing 1 x AMV Reverse Transcriptase 

buffer (Promega), 1 mM dNTPs (Promega), 25 units of RNAse inhibitor 

(Promega) and 10 units of AMV Reverse Transcriptase (Promega).  Samples 

were incubated for 45 minutes at 48°C followed by 5 minutes at 95°C to 

inactivate the reverse transcriptase enzyme.  All volumes were completed 
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with nuclease free water (Ambion).  Synthesised cDNA was diluted 4 fold 

for Realtime PCR analysis and stored at –20°C. 

2.5 PCR methods 

2.5.1 Oligonucleotide primer design 

Primer oligonucleotides were either designed de novo or using Primer3 

software (Rozen and Skaletsky, 2000) as appropriate.  Typically, Primer3 

designed oligonucleotides were 21 bp in length with a melting temperature 

(TM) of 60°C and GC content ≥40%.  Primers were synthesised by MWG and 

supplied as 100 µM stocks.  Primers used in this study are listed in appendix 

Table A2. 

2.5.2 Amplification of DNA by Polymerase Chain Reaction 

Polymerase chain reactions (PCR) were completed using a MJ Research DNA 

Engine PTC-200 Peltier Thermal Cycler (Genetic Research Instrumentation, 

Essex, UK).  Typical PCR reactions were completed in a final volume of 20 

µl.  Template DNA (0.2-0.01 ng) was added to 1 x Thermopol buffer (NEB) 

with 0.5 µM of each primer, 250 µM dNTPs and 1 unit of Taq DNA 

polymerase (NEB).   

PCR Annealing temperature (TA) was calculated using the following 

formula: 

TA = (2 x (A + T) + 4 x (G + C)) - 5 

Amplification was performed using a suitable number of cycles after an 

initial denaturation step of 2 minutes at 94°C.  A typical cycle consisted of 

denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds and 

extension at 72°C for 1 minute per Kb of DNA in the target amplicon.  This 

basic program was modified as required to use specific DNA templates or 

primers.  PCR for cloning applications was completed using proofreading 

Phusion DNA polymerase (NEB) in accordance with the manufacturers 

instructions.  Amplification was performed using a suitable number of 
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cycles following an initial denaturation for 30 seconds at 98°C.  A typical 

cycle consisted of denaturation at 98°C for 15 seconds, annealing at 58°C 

for 20 seconds and extension at 72°C for 30 seconds per Kb of DNA in the 

target amplicon. 

2.5.3 Semi-Quantitative Reverse Transcriptase PCR 

cDNA for semi-quantitative RT-PCR was prepared using Superscript II 

reverse transcriptase (Section 2.4.17).  PCR amplification of cDNA for 

semi-quantitative RT-PCR measurment of mRNA was completed in a final 

volume of 20 µl using Taq DNA polymerase (Section 2.5.2).  cDNA samples 

were checked by PCR using appropriate Actin2  primers with 2 µl cDNA and 

sufficient cycles (typically 24) to achieve product amplification in the 

linear range (Sambrook and Russel, 2001).  PCR reactions (16 µl) were 

resolved on TAE agarose gels (Section 2.4.4) and cDNA content in each PCR 

reaction was then normalised by comparative analysis based on Actin2 

amplification.  cDNA volumes were adjusted based on initial Actin2 

analysis and the Actin2 PCR was repeated to check the normalisation of 

cDNA content in each reaction.  cDNA normalisation PCRs using Actin2 

primers were repeated until all samples were suitably equalised.  RT-PCR 

to investigate a particular gene of interest was completed on normalised 

cDNA samples with an appropriate number of cycles.  Actin2 primers for 

Arabidopsis, Tobacco and all other RT-PCR primers used in this study are 

listed in Appendix Table A2. 

2.5.4 Quantitative Real-Time RT PCR 

cDNA for quantitative real-time RT-PCR was prepared using AMV reverse 

transcriptase (Section 2.4.18).  mRNA levels were assessed  by quantitative 

PCR using a Stratagene MX4000 real-time PCR machine (Stratagene).  

Reactions were carried out in a final volume of 25 µl using Stratagene 

Brilliant SYBR Green QPCR master mix in accordance with the 

manufacturer’s protocol.  Each 25 µl reaction contained  2 µl of cDNA and 

primer concentrations were 0.2 µM.  PCR conditions were 10 minute 

denaturation at 95°C followed by 40 cycles of 30 seconds at 95°C, 30 

seconds at 55°C and 1 minute at 72°C.  Reactions were carried out in 
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duplicate for each biological sample and 2 biological samples were 

analysed for each data point.  The Arabidopsis gene Actin2 was used as an 

internal reference to normalise cDNA samples.  Regression lines were 

generated from external standards using template plasmid DNA containing 

cDNA encoding Actin2 or the amplicon from the gene of interest.  The 

concentration of amplified cDNA amplicons was calculated by normalising 

the recorded data values against recorded Actin2 concentrations.  Primers 

used for real-time PCR in this study are listed in appendix Table A2. 

2.5.5 Site-directed mutagenesis of plasmid DNA 

Site-directed mutagenesis was completed using the QuikChange 

(Stratagene) method using specific primers bearing a mutagenic codon.  

Proof reading PCR was completed with Phusion DNA polymerase using 

appropriate template DNA and mutagenic primers.  Primers were designed 

to contain ~10 - 15 base pairs either side of the mutated codon with 

allowances made such that the GC content was at least 40%.  The melting 

temperature (TM) of each primer was ≥78°C according to the following 

formula: 

TM = 81.5 + 0.41(%GC) - 675/N - %mismatch 

where %GC and %mismatch are expressed as whole numbers and N is the 

primer length (in bases). Primers used for site-directed mutagenesis 

reactions are listed in appendix Table A2.  Following PCR the template DNA 

was removed by restriction digest with DpnI (10 units) for 1 hour at 37°C.  

Undigested mutated plasmid was transformed into E. coli and resultant 

clones were completely sequenced to confirm introduction of the desired 

mutation and sequence integrity.  

2.5.6 RACE PCR 

5’ Rapid Amplification of cDNA Ends (RACE) was performed using RACE 2nd 

Generation Kit (Roche) and Expand HiFi DNA polymerase (Roche) in 

accordance with manufacturers instructions.  Total RNA from tobacco (2 

µg) was used as source material for RACE PCR reactions with primers: 
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NtUBP12_942RC, NtUBP12_762RC and NtUBP12_554RC in SP1, SP2 and SP3 

reactions respectively (appendix Table A2).  RACE PCR products were 

cloned into pGEM T-Easy vector and 2 independent clones were sequenced. 

2.6 Generation of stable Arabidopsis transgenics 

2.6.1 Preparation of competent Agrobacterium cells for 
electroporation 

Cells from a single colony of Agrobacterium tumifaciens strain GV3101 

were inoculated into a 10 ml overnight culture of LB media containing 

rifampicin (100 µg/ml).  Following overnight growth at 28°C, the 10 ml 

culture was inoculated into 1000 ml of LB media containing rifampicin (100 

µg/ml) and grown at 28°C for 4-5 hours to OD600 0.5.  Cells were pelleted 

by centrifugation at 2500 g for 10 minutes at 4°C.  Cells were resuspended 

on ice in 100 mls of 10% (v/v) glycerol then pelleted by centrifugation at 

2500 g for 10 minutes at 4°C.  Cells were resuspended on ice in 10 mls of 

10% (v/v) glycerol then pelleted and resuspended as above in a final 

volume of 1 ml 10% (v/v) glycerol.  Resuspended cells were then divided 

into 50 µl aliquots in pre-chilled eppendorfs and frozen on dry ice prior to 

storage at –80°C. 

2.6.2 Transformation of competent Agrobacterium cells by 
electroporation 

Competent cells of Agrobacterium strain GV3101 (as prepared in 2.6.1) 

were thawed on ice.  1 µl (100-200 ng) of plasmid DNA was added to the 

cells and incubated on ice for 5 minutes.  The cells containing DNA were 

transferred to an electroporation cuvette and pulsed with 1800 V using an 

electroporator.  1 ml of LB medium was added immediately to the cells 

which were then transferred to an eppendorf and incubated for 2 hours at 

28°C with shaking (200 rpm).  Transformed cells were plated out on LB 

agar containing rifampicin (100 µg/ml) and antibiotics appropriate for the 

transformed plasmid.  Plates were incubated at 28°C for two days until 

colonies developed. 
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2.6.3 Agrobacterium mediated transformation of Arabidopsis by floral 
dip 

Arabidopsis transgenic lines were generated in the Col-0 ecotype by means 

of Agrobacterium mediated transformation.  Col-0 Arabidopsis plants were 

grown under long day conditions (Section 2.3.2) for 4-5 weeks until flowers 

developed.  Cells from a single colony of Agrobacterium GV3101 containing 

the plasmid of interest were inoculated into a 10 ml overnight culture of 

LB media with rifampicin (100 µg/ml) and plasmid specific antibiotic.  

Following overnight growth at 28°C, 5 mls of culture was used to inoculate 

500 mls of LB media containing rifampicin (100 µg/ml) and plasmid specific 

antibiotic. This culture was grown overnight at 28°C to a final OD600 ~0.6-

0.8.  Cells were pelleted by centrifugation at 2500 g for 10 minutes and 

resuspended in Infiltration medium (5% w/v sucrose, 0.03% v/v Silwet L-

77).  Plants were immersed in the Agrobacterium solution for 1 minute and 

then placed in a sealed bag for 24 hours.  Plants were then returned to 

standard growth conditions and allowed to set seed (2-3 weeks growth). 

2.6.4 Screen for homozygous Arabidopsis lines 

T1 seed from transformed Arabidopsis plants was selected on 0.8% agar MS 

plates (Section 2.3.3) containing appropriate antibiotics.  T2 generation 

plants demonstrating 3:1 (75%) segregation on antibiotic selection were 

selected.  Multiple independent homozygous T3 plant lines were selected 

from plants demonstrating 100% antibiotic resistance.  Homozygous T3 

plant lines were used in all experiments unless other wise stated. 

2.7 Virus Induced Gene Silencing (VIGS) in Nicotiana benthamiana 

2.7.1 Plasmid and Agrobacterium materials for VIGS 

VIGS based gene silencing in N. benthamiana plants was achieved using the 

pTV00 tobravirus vector based on RNA2 of Tobacco Rattle Virus (TRV) 

strain PPK20 (Ratcliff et al., 2001).  VIGS infection requires proteins 

encoded by TRV PPK20 RNA1 which has been cloned under a 35S promoter 

in the vector pBINTRA6 (Ratcliff et al., 2001).  Replication of pTV00 in 
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Agrobacterium also requires the helper plasmid pSA-rep (Hellens et al., 

2000).  VIGS vectors were kindly provided by Prof D. Baulcombe.  

pBINTRA6 was transformed into Agrobacterium strain LBA440 by 

electroporation (Section 2.6.2) and transformants selected on kanamycin 

(50 µg/ml) LB agar plates.  pSA-rep was transformed into Agrobacterium 

strain GV3101 by electroporation and transformants were selected on 

rifampicin (100 µg/ml) and tetracycline (5 µg/ml) LB agar plates.  

Electrocompetent Agrobacterium stocks were prepared from pSA-rep 

GV3101 (section 2.6.1) and transformed with respective individual pTV00 

plasmids by electroporation to generate Agrobacterium stocks resistant to 

rifampicin (100 µg/ml), tetracycline (5 µl/ml) and kanamycin (50µg/ml) 

containing pSA-rep and pTV00 vectors. 

2.7.2 Inoculation of VIGS constructs on N. benthamiana 

All Agrobacterium stocks for VIGS experiments were maintained on fresh 

LB agar plates and used for no more than 10 days.  Overnight 10 ml LB 

cultures of  pBINTRA6 and various pTV00 constructs were grown at 28°C 

(shaking at 200 rpm).  Following overnight growth, 1 ml of Agrobacterium 

culture was used to inoculate three 10 ml LB cultures which were 

subsequently grown for 4-5 hours at 28°C to an OD600 1.0.  Cultures were 

pooled and cells pelleted by centrifugation at 2500 g for 10 minutes.  

Pelleted Agrobacterium were resuspended in 10 mM MgCl2 and culture 

OD600 was adjusted to 1.0.  Resuspended cultures of pTV00 and pBINTRA6 

were mixed in a 1:1 ratio and acetosyringone was added to a final 

concentration of 150 µM.  Mixed Agrobacterium cultures  were incubated 

at room temperature for 2 hours prior to plant inoculation.  N. 

benthamiana plants were grown for 3-4 weeks (Section 2.3.7) prior to 

inoculation of VIGS cultures which were infiltrated using a blunt syringe on 

the abaxial surface on the 2nd and 3rd emerging leaf.  Following culture 

inoculation,    N. benthamiana plants were grown for a further 21 - 24 days 

to allow the development of gene silencing. 
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2.8 Plant pathology methods 

2.8.1 Pressure inoculation of Pseudomonas syringae on Arabidopsis 

For timecourse transcript analysis during pathogen infection, virulent and 

avirulent strains of Pseudomonas syringae pv. tomato (Pst) were used to 

infect 5 – 6 week old Arabidopsis plants grown under short day conditions.  

Bacterial strains P. s. pv. tomato DC3000, P. s. pv. tomato DC3000 avrB 

and P. s. pv. tomato DC3000 avrRpt2 were grown in overnight cultures of 

Kings media with rifampicin (100 µg/ml) and kanamycin (50 µg/ml) as 

described by Katagiri et al. (Katagiri et al., 2002).  Bacterial cultures were 

resuspended in 10 mM MgCl2 and adjusted to a density of 1 x 106 colony 

forming units (cfu)/ml then infiltrated into the abaxial leaf surface using a 

blunt syringe. 

2.8.2 Bacterial growth assay of Pseudomonas syringae on 
Arabidopsis 

Bacterial growth assays were performed on 5 – 6 week old Arabidopsis 

plants following spray inoculation of virulent and avirulent Pseudomonas 

syringae pv. tomato (Pst) strains described in section 2.1.3.  Overnight Pst 

cultures were resuspended in 10 mM MgCl2 supplemented with 0.05% (v/v) 

Silwet L77 and adjusted to a density of 1 x 108 cfu/ml then sprayed using a 

fine aerosol pump onto the adaxial leaf surface as described by Zipel et al. 

(Zipfel et al., 2004).  Plants were kept under high humidity and short day 

growth conditions prior to bacterial growth measurement at 72 hours post 

inoculation.   Bacterial growth was measured from 1 cm2 leaf discs by 

maceration in 10 mM MgCl2 followed by serial dilution and plating on Kings 

media with appropriate antibiotic selection.  Plates were incubated at 

28°C for 36 hours and bacterial growth was calculated from colony counts 

based on 6 independent replicates. 

2.8.3 HR cell death assay elicited by transient expression of Cf-9/Avr9 

For analysis of Cf-9-mediated HR development, Agrobacterium carrying 

binary constructs containing either Cf-9 or Avr9 genes as described by Van 
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der Hoorn et al. (Van der Hoorn et al., 2000) were mixed equally and 

inoculated in 5 – 6 week old N. benthamiana leaves.  Agrobacterium 

cultures were prepared as described in Section 2.7.2 and adjusted to a 

final OD600 of either 0.4 or 0.2  prior to patch infiltration in                     

N. benthamiana leaves using a blunt syringe.  HR development was scored 

at 4 – 5 days after infiltration. 

2.8.4 HR cell death assay triggered by Avr9 elicitor infiltration 

For analysis of Cf-9-mediated HR development in tobacco, various dilutions 

of Avr9 peptide solution were infiltrated into leaves of 7 week old 

transgenic tobacco expressing the Cf-9 gene as described by Hammond-

Kossack et al. (Hammond-Kosack et al., 1998). 

2.8.5 HR cell death assay triggered by avrPto  

To analyse Pto-mediated HR development, Pseudomonas syringae pv. 

tabaci avrPto was inoculated into leaves of 5 – 6 week old transgenic       

N. benthamiana plants expressing the Pto gene as described by Rommens 

et al.. (Rommens et al., 1995).  Following overnight growth at 28°C, 

bacterial cultures were resuspended in 10 mM MgCl2 at various optical 

densities between 3 x 106 cfu/ml and 1 x 107 cfu/ml.  Pseudomonas 

cultures were patch infiltrated into transgenic 35S Pto N. benthamiana 

leaves using a blunt syringe.  HR development was scored at 4 – 5 days 

after bacteria infiltration. 

2.8.6 Bacterial growth assay of Pseudomonas syringae on                   
N. benthamiana 

Bacterial growth assays were performed on 5 – 6 week old N. benthamiana 

plants following infection with Pseudomonas syringae pv. tabaci.  

Following overnight growth at 28°C, bacterial cultures were resuspended 

in 10 mM MgCl2 at 1 x104 cfu/ml and were patch infiltrated into               

N. benthamiana leaves with a blunt syringe.  Infected plants were kept at 

22°C and bacterial growth was measured at 24 and 72 hours after 

inoculation.  Bacterial growth was measured from 1 cm2 leaf discs by 
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maceration in 10 mM MgCl2 followed by serial dilution and plating on Kings 

media with appropriate antibiotic selection.  Plates were incubated at 

28°C for 36 hours and bacterial growth was calculated from colony counts 

based on 8 independent replicates. 

2.8.7 TMV U1 virus inoculation on N. benthamiana 

Twelve days after inoculation of VIGS silencing cultures, N. benthamiana 

plants were dusted with carborundum and rub inoculated with TMV U1 

virion preparation.  TMV virion preparation from TMV U1 infected             

N. benthamiana was conducted as described by Gooding and Herbert 

(Gooding and Herbert, 1967) and final preparations were adjusted to 20 

mg/ml.  Diluted TMV virion preparations (5 µl at 0.2 mg/ml) were rub 

inoculated onto silenced N. benthamiana leaves. 

2.8.8 TMV-GFP virus inoculation on N. benthamiana 

Transcript RNA corresponding to TMV carrying an inserted GFP coding was 

transcribed from a template vector TMV(30B)-GFP described by Ryabov et 

al. (Ryabov et al., 1999) using the mMESSAGE mMACHINE T7 kit (Ambion).  

TMV-GFP transcription reactions (5ul) were combined with sodium 

phosphate diluted TMV U1 virion preparation (60 µl, 1.5 mg/ml) overnight 

at 25°C.  Following incubation, 5 µl of virion/transcript preparation was 

rub inoculated onto N. benthamiana as previously described (2.8.8). 

2.9 Protein expression and purification from E. coli  

2.9.1 Protein expression using E. coli 

Expression of UBP12 fusion proteins with an N-terminal histidine tag was 

carried out using BL21 Star (DE3) E. coli cells.  DNA fragments were cloned 

by Gateway recombination from pENTR4 entry clones to the pDEST17 

destination vector and transformed into BL21 Star (DE3) E. coli for 

expression studies.  Bacterial cells from a single colony were inoculated 

into a 10 ml LB overnight initial culture which was grown at 37°C with 

shaking (200 rpm).  A 50 ml expression culture was inoculated with 1 ml of 
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initial culture and grown at 37°C for approximately 2 hours until it reached 

OD600 0.6.  Protein expression was induced by the addition of isopropyl β-D-

galactopyranoside (IPTG) to a final concentration of 1 mM.  Culture 

aliquots (1 ml) were taken prior to, then at 1, 2 and 3 hours post induction 

for fusion protein expression analysis.  Following induction, expression 

cultures were grown for 3 hours at 37°C then E. coli cells were pelleted  

by centrifugation at 2500 g for 10 minutes. 

2.9.2 Protein purification from E. coli 

Recovered E. coli cell pellets were lysed using BugBuster (Novagen) in 

accordance with the manufacturer’s instructions to yield the soluble 

fraction in a 2.5 ml volume.  Soluble expressed proteins were purified 

using His-Bind nickel affinity resin (Novagen) using a bed volume of 500 µl.  

His-Bind resin was loaded on Poly-prep chromatography column (BioRad) 

then charged and equilibrated by washing in 3 volumes dH20, 5 volumes of 

Charge buffer (50 mM NiSO4 ) and 3 volumes of Binding buffer (20 mM Tris-

HCl pH 7.9, 500 mM NaCl, 5 mM imidazole).  Soluble protein extract was 

loaded onto the column which was then washed with 10 volumes of Binding 

buffer and 6 volumes of Wash buffer (20 mM Tris-HCl pH 7.9, 500 mM NaCl, 

20 mM imidazole).  Proteins were eluted with 6 volumes of Elution buffer 

(20 mM Tris-HCl pH 7.9, 500 mM NaCl, 1 M imidazole) in 500 µl aliquots.  

Column flow-through, wash  and elution fractions were kept and protein 

elution was checked by SDS-PAGE (Section 2.11.1).  Purified protein 

fractions were pooled and dialysed into HEPES deubiquitination assay 

buffer (Section 2.12.1) using Slydalyzer cassettes (30 kDa MWC). 

2.10 Protein expression and purification from S. frugiperda 

2.10.1 Protein expression in S. frugiperda  

Spodoptera frugiperda (Sf9 cells, Invitrogen) were used for the expression 

of UBP12 proteins.  Recombinant baculovirus encoding N-terminal histidine 

tagged UBP12 fusion proteins were generated using the BaculoGold™ 

Transfection Kit (BD Biosciences) in accordance with the manufacturer’s 

instructions.  Recombinant baculovirus was titred by end point dilution and 
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used to infect additional Sf9 cells.  Infected cells were grown in serum free 

medium (Invitrogen) supplemented with 10% (v/v) fetal bovine serum 

(Biosera) at 27°C for three days in cell culture flasks (Corning, UK).  Cells 

were harvested through gentle washing of the flask floor. Harvested cells 

were centrifuged (1000 g, 1 minute) and the supernatant removed before 

pelleted cells were resuspended in 100 μl Lysis Buffer (37.5 mM Tris-HCl, 

5.3 mM MgSO4, 150 mM NaCl, 1 mM EGTA, 1 mM DTT, pH 7.5). Cells were 

lysed by sonication (using a MSE Soniprep) and cell debris removed by 

centrifugation (16 000 g) for 3 minutes. The crude soluble fraction was 

removed to a fresh tube and stored on ice before use. 

2.10.2 Protein purification from S. frugiperda  

Histidine tagged UBP12 fusion proteins were purified directly from crude 

Sf9 cell lysate using His-Select affinity columns (Sigma).  Cell lysates were 

diluted to a final volume of 600 µl in Lysis buffer and purified in 

accordance with manufacturer’s instructions.  His-Select columns were 

equilibrated with Equilibration buffer (50 mM NaH2PO4, 300 mM NaCl, pH 

8.0), loaded with Sf9 cell lysate, washed twice with Wash buffer (50 mM 

NaH2PO4, 300 mM NaCl, 5 mM imidazole pH 8.0) and proteins eluted in 200 

µl Elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole pH 

8.0).  All centrifugation steps were performed at 325 g for 2 minutes.  

Purification fractions were analysed by SDS-PAGE (Section 2.11.1) and 

purified UBP12 proteins were immediately tested for activity in vitro 

(Section 2.12.2). 

2.11 Protein methods 

2.11.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples were denatured by boiling at 100°C for 10 minutes 

following resuspension in 1 x SDS Loading Buffer (25 mM Tris-HCl pH 6.8, 

10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) B-mercaptoethanol, 0.001% 

bromophenol blue).  Denatured proteins were electrophoresed at 100 V 

according to the method initially outlined by Laemmli (Sambrook and 

Russel, 2001) using SDS-PAGE gels containing separating gels ranging from 
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8% - 15% polyacrylamide and a 5% polyacrylamide stacking gel.  Protein 

molecular weights estimated by loading ‘Broad Range Pre-stained 

Molecular Weight’ marker (New England Biolabs) alongside the samples. 

2.11.2 Western blotting 

Antibodies were sourced as indicated in Table 2.2.  SDS-PAGE resolved 

proteins were electro-transferred at either 100 V for 1 hour or 30 V for 16 

hours onto PVDF membrane in Transfer Buffer (25 mM Tris-HCl, 190 mM 

glycine, 20% (v/v) methanol).  Following electro-transfer, membranes were 

blocked for 1 hour in either 5% milk powder or 1% casein dissolved in TBST 

(15 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1%  (v/v) Tween 20).  After 

blocking, primary antibodies were incubated with the membrane at the 

dilutions and durations indicated in Table 2.2.  The membrane was then 

washed 5 times for 5 minutes in TBST before secondary antibodies were 

added at the dilutions indicated in Table 2.2 for 1 hour.  The membrane 

was then washed 5 times for 5 minutes in TBST prior to treatment with 

chemiluminescent substrate.  All secondary antibodies used in this study 

were horseradish peroxidase (HRP) conjugates and were developed using 

Millipore chemiluminescent substrate in accordance with the 

manufacturer’s instructions. 

2.11.3 Staining of SDS-PAGE gels and PVDF membranes 

Coomassie staining of SDS-PAGE gels was completed after removal of the 

stacking gel. The resolved gel was stained in Coomassie Stain Solution 

(0.1% (w/v) Coomassie Brilliant Blue R-250, 50% (v/v) methanol, 10% (v/v) 

acetic acid) for 30 minutes. The stained gel was then destained in several 

changes of Destain Solution (50% (v/v) methanol, 10% (v/v) acetic acid).  

Electro-transferred PVDF membranes were stained in Ponceau Solution 

(0.1% (w/v) Ponceau S, 1% (v/v) acetic acid) for 30 minutes then washed in 

dH2O for 10 minutes. 
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2.12 in Vitro Deubiquitination activity assays 

2.12.1 in vitro Deubiquitination assays using Ubiquitin chains substrate 

Partially purified UBP12 proteins (10 µl of extract) were incubated with     

1 µg of a mixture of oligo-ubiquitin chains (Affiniti UW8860) in  30 µl buffer 

(150 mM KCl, 50 mM Hepes,  10 mM DTT, 5% glycerol, pH 7.4) for 20 hours 

at 37°C.  Recombinant human Isopeptidase T (Affiniti UW8560) was used as 

a positive experimental control, where 0.8 µg was incubated with oligo-

ubiquitin chains under standard assay conditions.  Assay reactions were 

stopped by the addition of 4 x SDS buffer and  aliquots were analysed by 

western blotting using anti-ubiquitin and anti-Histidine antibodies 

2.12.2 in vitro Deubiquitination assays using Diubiquitin substrate 

Purified UBP proteins (0.2 - 3 µg) were incubated with 2 µg of diubiquitin 

(Affiniti UW9800) in 30 µl buffer (25 mM Tris HCl, 100 mM NaCl, 2 mM DTT, 

BSA 100 µg/ml, pH 8.0) for 20 hours at 37°C.  Recombinant human 

Isopeptidase T (Affiniti UW8560) was used as a positive experimental 

control, where 0.8 µg was  incubated with diubiquitin under standard assay 

conditions.  Assay reactions were stopped by the addition of 4 x SDS buffer 

and aliquots were analysed by western blotting using anti-ubiquitin and 

anti-Histidine antibodies. 

2.13 Transient expression of gene constructs in Nicotiana species 

Gene constructs were transiently expressed in N. tabacum and N. 

benthamiana plants using Agrobacterium mediated transformation.  Cells 

from a single colony of recently transformed Agrobacterium were 

inoculated into an overnight 10 ml culture of LB media with rifampicin (100 

µg/ml) and kanamycin (50 µg/ml) which was grown at 28°C with shaking at 

200 rpm.  Following overnight growth, cells were pelleted by 

centrifugation at 2500 g for 10 minutes then resuspended in 10 mM MgCl2.  

Cultures were adjusted to OD600 0.5 unless otherwise stated and 

acetosyringone was added to a final concentration of 150 µM prior to a 2 

hour incubation at 22°C.  Cultures were infiltrated into the abaxial leaf 
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surface by pressure inoculation using a blunt 1 ml syringe.  Following 

culture inoculation, plants were incubated at 22°C for 2 or 3 days before 

experimental analysis. 

2.14 Plant protein methods 

2.14.1 Total protein extraction from Nicotiana species 

Plant tissue samples (approx 1 g) were frozen under liquid N2 prior to 

grinding with 100 mg PVPP (Sigma).  Ground tissue (100 mg) was 

transferred into eppendorf tubes and vortexed with chilled protein 

extraction buffer (25 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 10% 

(v/v) Glycerol, 5 mM DTT) containing  a protease inhibitor tablet (Roche) 

for 30 seconds.  Homogenised plant tissue samples were centrifuged at 

12,000 g and 4°C for 20 minutes and supernatants was transferred to a 

new eppendorf tube. 

2.14.2 Quantification of protein concentration 

Protein content of samples was determined using Bradford reagent as 

described in Sambrook et al. (Sambrook and Russel, 2001).  Extracted 

protein samples were diluted 25 and 50 fold in 100 µl dH20 then mixed in 

an eppendorf tube with 900 µl Bradford  reagent by vortexing.  Protein 

standards for assay calibration were diluted from stock bovine serum 

albumin (2 mg/ml) and prepared at 0.04, 0.08, 0.16 and 0.2 mg/ml.  The 

absorbance at 550 nm of a blank sample (no protein added) was recorded 

and protein concentrations were estimated based on the curve gradient 

calculated from protein standards. 

2.14.3 Protein precipitation with Trichloroacetic acid  

Protein samples were concentrated prior to SDS-PAGE separation using 

Trichloroacetic acid precipitation.  Required volumes of extracted protein 

solution were mixed by pipetting in an eppendorf tube with 20 µl of 2% 

sodium deoxycholate (w/v), followed by the addition of 700 µl dH2O with 

mixing then 250 µl of 24% trichloroacetic acid (w/v) with mixing.  Protein 
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precipitation was performed on ice for 1 hour prior to centrifugation at 

12,000 g and 4°C for 20 minutes.  After centrifugation, the supernatant 

was discarded and precipitated proteins were resuspended in 20 µl of 1 x 

SDS PAGE loading buffer (Section 2.11.1) and 2 µl 2M Tris-HCl. 

2.15 Confocal Microscopy 

The subcellular localisation of GFP was visualised using a confocal laser 

scanning microscope (Zeiss LSM 510) under water with a 10 x objective 

lens.  GFP tags were excited using an argon laser at 488 nm.  GFP emission 

was collected between 505-530 nm to avoid cross-talk with chloroplast 

autofluorescence. 

2.16 Computational methods 

2.16.1 Sequence Alignment analysis 

Alignment based analysis and sequence database interrogation was 

performed using the BLAST algorithm as described by Altschul et al 

(Altschul et al., 1997).  Protein and nucleotide sequence queries were 

performed against genome and EST sequence repositories at the TAIR 

(http://www.arabidopsis.org) and TIGR (http://www.tigr.org) websites 

using BLASTP and BLASTN programs with default search parameters.  

Protein sequence alignments for phylogenetic analysis were generated with 

the ClustalW program using default parameters as described by Chenna et 

al (Chenna et al., 2003). 

2.16.2 Protein sequence domain analysis using Pfam 

Protein sequences were analysed for the presence of known domains and 

motifs against the Pfam database (http://pfam.sanger.ac.uk) using default 

search parameters as described by Finn et al.. (Finn et al., 2006).  
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2.16.3 Protein structure modelling 

Three-dimensional protein structures were obtained from the RCSB Protein 

Data Bank (http://www.rcsb.org) and rendered using Pymol 

(http://pymol.org) (Hodis et al., 2007). 

2.16.4 Protein localisation prediction 

Proteins were analysed for potential nuclear localisation signals using 

NLSPredict (http://cubic.bioc.columbia.edu/predictNLS) with default 

settings (Cokol et al., 2000).  Proteins were analysed for potential 

targeting signals using TargetP (http://www.cbs.dtu.dk/services/TargetP) 

with default settings and the plant specific database (Emanuelsson et al., 

2007).  

2.16.5 Phylogenetic analysis using MEGA 

Phylogenetic relationships were inferred from protein sequence alignments 

using the MEGA program suite (Tamura et al., 2007).  Phylogenetic trees 

were constructed using the neighbor-joining method and inferred 

relationships were tested with 10,000 bootstrap replicates. 

2.16.6 Densitometry analysis using Scion Image 

Image data from semi-quantitative RT-PCR experiments was analysed using 

Scion Image software (http://www.scioncorp.com). 
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Chapter 3 – Arabidopsis Deubiquitinating Enzymes 

3.1 Introduction  

The most complete analysis of plant deubiquitinating (DUB) enzymes was 

reported by Yan et al. (Yan et al., 2000a) and was based on analysis of the 

near complete genome sequence in the model plant Arabidopsis thaliana 

(referred to hereafter as Arabidopsis). Subsequent studies have 

characterised a limited number of DUBs from Arabidopsis but the majority 

still await function assignment.  Whilst additional classes of DUB enzyme 

have recently been identified in other model eukaryotes (Amerik and 

Hochstrasser, 2004), equivalent orthologous plant classes remain to be 

established.  As a starting point in this study, knowledge of mammalian 

DUB enzymes was utilised to comprehensively identify all currently known 

classes of DUB enzyme in the Arabidopsis genome. 

This chapter reports a preliminary characterisation of the two paralogous 

Arabidopsis UBP enzymes: AtUBP12 and AtUBP13.  On the basis of recently 

reported microarray data examining pathogen associated signalling in 

Nicotiana benthamiana (Kim et al., 2006), the potential role of Arabidopsis 

genes AtUBP12 and AtUBP13 in disease resistance signalling was 

investigated.   

The Arabidopsis-Pseudomonas interaction was utilised to examine the 

transcriptional response of AtUBP12 and AtUBP13 during pathogen 

infection.   Transcriptional responses of AtUBP12 and AtUBP13 to the 

disease resistance signalling hormone salicylic acid were also examined.  

Homozygous mutant alleles of ubp12 and ubp13 were isolated and 

alterations in their resistance to virulent and avirulent strains of 

Pseudomonas were assessed. 

Potential functional redundancy between AtUBP12 and AtUBP13 was 

investigated using approaches based on transgenic RNA interference and 

the generation of genetic crosses between ubp12 and ubp13 mutant 

alleles. 
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The principal findings in this chapter support three main conclusions.  Both 

AtUBP12 and AtUBP13 are transcriptionally responsive to avirulent 

Pseudomonas syringae expressing avrB and exogenously applied salicylic 

acid.   That AtUBP12 and AtUBP13 proteins share functional redundancy in 

the regulation of development with ubp12 ubp13 double homozygotes 

exhibiting a seedling lethal phenotype.  Finally, that mutant ubp12 alleles 

demonstrate an significant reduction in flowering time when grown under a 

short day photoperiod. 

3.2 Identification of Arabidopsis Deubiquitinating enzymes 

The complete sequencing and publication of the Arabidopsis genome has 

facilitated identification and classification of many new genes based on 

existing knowledge of conserved protein domains and motifs.  Sequence 

analysis of the Arabidopsis genome has identified different ubiquitin 

metabolism enzyme classes and established the elaboration of different E3 

ubiquitin ligase classes relative to sequenced animal genomes (Vierstra, 

2003).  Plant deubiquitinating enzymes (DUBS) were initially identified on 

the basis of biochemical activity in tissue extracts (Sullivan et al., 1990) 

but the first extensive genetic analysis of these enzymes was reported by 

Yan et al. and was based on screening of the near complete Arabidopsis 

genome (Yan et al., 2000a).  In the initial Arabidopsis study Yan et al. 

queried available sequence data using the yeast UBP4 cDNA sequence to 

report 27 distinct Ubiquitin Specific Protease (UBP) genes.  Having 

implicated AtUBP1 and AtUBP2 in canavanine resistance, Yan et al. 

acknowledged the presence of Ubiquitin C-terminal Hydrolases (UCH) in 

Arabidopsis but concluded that the UBP enzymes were likely to be the 

most functionally diverse DUB enzymes based on the extensive divergence 

of UBP sequences outside their catalytic regions (Yan et al., 2000a). 

Subsequent studies, focussed primarily on yeast and human genomes, have 

identified other DUB classes and current research indicates the existence 

of five distinct DUB enzyme families: UCH, UBP, Otubain, Ataxin and JAMM 

(Amerik and Hochstrasser, 2004).  As has been previously discussed, UCH, 

UBP, Otubain and Ataxin DUBS are all variant cysteine proteases (Nijman 
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et al., 2005) whilst the JAMM family are zinc metalloproteases (Ambroggio 

et al., 2004b).   

At the initiation of this study, the Arabidopsis UBP enzyme analysis 

published by Yan et al. represented the most extensive analysis of plant 

DUBs but only reported the existence of UBP and UCH enzymes.  As a 

starting point in this study, the Arabidopsis genome was screened for 

potential DUBS using sequence data from each currently defined class of 

DUB enzyme. 

The Arabidopsis genome database at TAIR (Swarbreck et al., 2008) was 

queried using yeast, human and Arabidopsis protein sequences retrieved 

from Swiss-Prot (Bairoch et al., 2005) that represented each class of DUB 

enzyme (listed in appendix Table A1) and high scoring sequences were 

rescreened to obtain any further matches.  All significant hits were 

checked for the presence of the appropriate ubiquitin protease domain 

using the Pfam database (Finn et al., 2006) and detected DUB genes from 

each subfamily are reported in Table 3.1. 

This analysis of Arabidopsis DUBS confirmed that the UBP family represent 

the largest subclass with 27 members (Figure 3.2).  The UCH class of DUBs 

comprises 3 closely related members two of which (AtUCH1 and AtUCH2) 

have recently been implicated in the regulation of shoot development and 

architecture (Yang et al., 2007).  Based on studies of animal orthologs, the 

plant UCH DUBs are also proposed to have housekeeping functions related 

to ubiquitin metabolism (Larsen et al., 1998).  In Arabidopsis, the Otubain 

and Ataxin DUB classes have 1 and 2 members respectively.  There is 

currently no published data relating to the potential function of the 

Otubain or Ataxin DUBs in plants but comparative genome analysis using 

InParanoid (Remm et al., 2001) indicates they have orthologs in other 

model eukaryotes suggesting a fundamental role for these proteins.   

The recently identified JAMM class of DUBS has 10 members in Arabidopsis 

(Figure 3.1).  The JAB1/MPN/Mov34 (JAMM) domain DUBs were initially 

characterised with the identification of RPN11 as a key deubiquitinating 

subunit of the 26S proteasome lid complex and two homologous JAMM 
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subunits that cleave the ubiquitin-like protein RUB (Related to Ubiquitin) 

were also identified in the COP9 signalosome (Ambroggio et al., 2004b).   

The remaining detected Arabidopsis JAMM DUBs exhibit conservation in 

most or all of the JAMM active site residues (Figure 3.1 A) but have yet to 

be experimentally characterised as deubiquitinating enzymes.  

Phylogenetic analysis of the detected JAMM enzymes was conducted based 

on an alignment of the full JAMM domain (as detected by Pfam – PF01398) 

(Figure 3.1 B).  The resulting phylogeny reported four distinct clades 

within the Arabidopsis JAMM proteins (Figure 3.1 B).  The proteasome 

/signalosome associated subunits RPN11, CSN5A and CSN5B form a distinct 

clade with high bootstrap support.  Proteins encoded by AT1G80210 and 

AT3G06820 cluster within the same overall clade as proteasome 

/signalosome JAMM enzymes but are not closely related to them (Figure 

3.1 B).  AT1G80210 and AT3G06820 lack annotation and do not contain 

other domains to suggest their possible functions, however the high scoring 

Pfam JAMM domain match indicates that they are putative deubiquitinating 

enzymes.   

Proteins encoded by AT1G80070 and AT4G38780 form a distinct clade 

(Figure 3.1 B) within which the former has been characterised and is 

annotated as SUS2.  The sus2  mutant is one of three reported suspensor 

mutants (sus1, sus2 and sus3) which cause early embryo arrest due to 

improper suspensor development (Zhang and Somerville, 1997).  

AT1G80070 and AT4G38780 are located on chromosomes 1 and 4 

respectively and exhibit 100% sequence identity, Pfam analysis indicates 

the presence of JAMM ubiquitin protease and several nuclear RNA 

spliceosome interaction domains.  JAMM domain DUBs AT4G16144, 

AT1G48790 and AT1G10600 form a distinct clade (Figure 3.1 B) and are 

most closely related to the recently characterised yeast AMSH protein 

which regulates receptor sorting at endosomes through deubiquitination 

(McCullough et al., 2004a).   

Having identified the UBP enzymes as the largest subfamily of DUBs, their  

phylogenetic relationships were inferred (Figure 3.2).  The phylogeny was 

based on an alignment of conserved catalytic His and Cys box regions and   
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Figure 3.1 Analysis of the Arabidopsis JAMM domain ubiquitin proteases. 

(A) Alignment of JAMM domain active site region in detected Arabidopsis 

JAMM domain proteins.  Pfam analysis of Arabidopsis matches to known 

JAMM domain ubiquitin proteases detected 10 high scoring JAMM domain 

proteins: RPN11, CSN5A, CSN5B, AT1G80210, AT3G06820, AT1G80070, 

AT4G38780, AT4G16144, AT1G48790 and AT1G10600.  JAMM domain 

catalytic active site residues are highlighted in green. (B) Phylogeny of 

Arabidopsis JAMM ubiquitin proteases inferred from an alignment of the 

JAMM domain of detected JAMM proteins.  The phylogeny was inferred by 

neighbor joining using MEGA from an alignment of the catalytic JAMM 

domain from recovered Arabidopsis JAMM proteins.  Node values represent 

percentage support values estimated from 10,000 bootstrap replicates and 

scale bar represents evolutionary distance as amino acid substitutions per 

site. 
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for clarity, only clade relationships with significant bootstrap support 

values over 70% (Soltis and Soltis, 2003) were reported (Figure 3.2).  In the 

phylogeny of all 27 Arabidopsis UBP enzymes, five closely related pairs 

corresponding to AtUBP1 and AtUBP2, AtUBP3 and AtUBP4, AtUBP6 and 

AtUBP7, AtUBP12 and AtUBP13 and AtUBP20 and AtUBP21 were inferred. 

Two five member UBP subfamilies were reported one of which contained 

AtUBP5, AtUBP8, AtUBP9, AtUBP10 and AtUBP11 where the other contained 

of AtUBP15, AtUBP16, AtUBP17, AtUBP18 and AtUBP19.  All remaining UBP 

enzymes were present as singletons demonstrating no significant clustering 

with other family members (Figure 3.2). 

Outside the conserved UBP enzyme core functional motifs (Figure 3.2 - 

Cys, His, Q, G, L and F boxes) described by Yan et al. (Yan et al., 2000a), 

additional domains were detected by Pfam analysis.  A zinc finger domain 

(PF01753) was found in all members of the UBP subfamily containing 

AtUBP15, AtUBP16, AtUBP17, AtUBP18 and AtUBP19 which was identified 

as belonging to the MYND subclass (Masselink and Bernards, 2000).  A 

MATH/TRAF domain (PF00917) was detected in the paired AtUBP12 and 

AtUBP13 subfamily which is predicted to mediate protein-ligand 

interactions (Uren and Vaux, 1996). Ubiquitin-like domains (UBL) and 

ubiquitin associated domains (UBA) which are associated with targeting 

and recognition of ubiquitinated proteins (Welchman et al., 2005) were 

detected in AtUBP6, AtUBP7, AtUBP14 and AtUBP26 (Figure 3.2). 

In the first analysis of Arabidopsis UBP enzymes, Yan et al. reported the 

involvement of AtUBP1 and AtUBP2 in resistance to the synthetic arginine 

analog canavanine (Yan et al., 2000a).  The absolute requirement of 

AtUBP14 for embryogenesis has been established with studies of ubp14 

aborted embryos indicating accumulation of uncleaved ubiquitin chains 

(Doelling et al., 2001).  Arabidopsis UBP enzymes AtUBP3 and AtUBP4 have 

been found to regulate pollen development where the loss of 

AtUBP3/AtUBP4 activity in ubp3 upb4 double mutants abrogates mitosis 

progression during male gametogenesis (Doelling et al., 2007).  In a more 

recent analysis of Arabidopsis UBP enzymes, Liu et al. reported the 

involvement of AtUBP15 and AtUBP16 in cell proliferation and leaf 

development (Liu et al., 2008). 
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Figure 3.2 Domains and phylogeny of Arabidopsis UBP enzymes.  

Domain structure of the Arabidopsis Ubiquitin Specific Protease (UBP) 

family.  Locations of functional Cys, Q, G, L, F and His motifs are indicated. 

Phylogeny was inferred by neighbour joining using MEGA to define UBP 

subfamilies.  Phylogeny was inferred from an alignment of catalytic His and 

Cys boxes where node values represent percentage support values 

estimated from 10,000 bootstrap replicates.  Scale represents evolutionary 

distance as amino acid substitutions per site.  Putative zinc fingers are 

denoted by black diamonds, Ubiquitin-like domains are denoted by black 

circles, Ubiquitin associated domains are denoted by white triangles and 

MATH/TRAF domains are denoted by white circles. UBP domain figures 

adapted from Yan et al. (Yan et al., 2000a).   
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Protein TAIR gene code DUB Class Pfam domain Pfam E-value 

AtUBP1 AT2G32780 UBP PF00443 4.3 x 10-63 
AtUBP2 AT1G04860 UBP PF00443 1.8 x 10-63 

AtUBP3 AT4G39910 UBP PF00443 1.1 x 10-98 

AtUBP4 AT2G22310 UBP PF00443 5.9 x 10-105 

AtUBP5 AT2G40930 UBP PF00443 3.2 x 10-125 

AtUBP6 AT1G51710 UBP PF00443 7.5 x 10-74 

AtUBP7 AT3G21280 UBP PF00443 1.2 x 10-75 

AtUBP8 AT5G22030 UBP PF00443 3.5 x 10-114 

AtUBP9 AT4G10590 UBP PF00443 1.7 x 10-121 

AtUBP10 AT4G10570 UBP PF00443 8.8 x 10-122 

AtUBP11 AT1G32850 UBP PF00443 8 x 10-117 

AtUBP12 AT5G06600 UBP PF00443 1.9 x 10-77 

AtUBP13 AT3G11910 UBP PF00443 1.1 x 10-77 

AtUBP14 AT3G20630 UBP PF00443 2.3 x 10-59 

AtUBP15 AT1G17110 UBP PF00443 9.1 x 10-54 

AtUBP16 AT4G24560 UBP PF00443 2.3 x 10-54 

AtUBP17 AT5G65450 UBP PF00443 8.1 x 10-49 

AtUBP18 AT4G31670 UBP PF00443 2.5 x 10-46 

AtUBP19 AT2G24640 UBP PF00443 2.3 x 10-43 

AtUBP20 AT4G17895 UBP PF00443 2.8 x 10-78 

AtUBP21 AT5G46740 UBP PF00443 5.1 x 10-66 

AtUBP22 AT5G10790 UBP PF00443 5.2 x 10-62 

AtUBP23 AT5G57990 UBP PF00443 7.6 x 10-61 

AtUBP24 AT4G30890 UBP PF00443 1 x 10-56 

AtUBP25 AT3G14400 UBP PF00443 1.1 x 10-66 

AtUBP26 AT3G49600 UBP PF00443 4.9 x 10-55 

AtUBP27 AT4G39370 UBP PF00443 9.8 x 10-38 

AtUCH1 AT4G17510 UCH PF01088 1.2 x 10-92 
AtUCH2 AT5G16310 UCH PF01088 1.8 x 10-90 
AtUCH3 AT1G65650 UCH PF01088 2.7 x 10-102 
Q8LG98 AT1G28120 Otubain PF02338 0.036 
Q9M391 AT3G54130 Ataxin PF02099 2.2 x 10-34 
O82391 AT2G29640 Ataxin PF02099 5.4 x 10-148 
RPN11 AT5G23540 JAMM PF01398 1.6 x 10-51 

CSN5A AT1G22920 JAMM PF01398 3.9 x 10-52 

CSN5B AT1G71230 JAMM PF01398 3.2 x 10-51 

Q8VYB5 AT1G48790 JAMM PF01398 8.2 x 10-22 

Q6NKP9 AT1G10600 JAMM PF01398 3.2 x 10-19 

Q8RW94 AT1G80210 JAMM PF01398 1.6 x 10-14 

Q8RY58 AT3G06820 JAMM PF01398 5 x 10-16 
Q5PNU3 AT4G16144 JAMM PF01398 1.3 x 10-24 
Q9T0I6 AT4G38780 JAMM PF01398 1 x 10-14 
Q9SSD2 AT1G80070 JAMM PF01398 4.1 x 10-13 

 
Table 3.1 Deubiquitinating enzymes identified in the Arabidopsis genome. 

DUB enzymes of each respective subclass (UBP, UCH, Otubain, Ataxin and 

JAMM) were identified in the Arabidopsis genome by screening with known 

DUB sequences listed in appendix Table A1.  Uniprot ID numbers are 

reported in cases where a given match has no designated protein name.  

Entries were screened against the Pfam database and corresponding 

ubiquitin protease domain E-value scores are reported. 
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3.3 Gene Expression analysis of AtUBP12 and AtUBP13  

The activation of the plant defence response requires coordination of 

multiple signalling pathways to alter changes in hormone balance, ion flux, 

redox status and gene expression (Katagiri, 2004).  A recent study by Kim 

et al. described a microarray study comparing programmed cell death (HR) 

elicited by Pseudomonas infection and induced proteasome malfunction in 

the model solanaceous plant N. benthamiana (Kim et al., 2006).  

The results published by Kim et al. highlighted genes showing HR specific 

induction behaviour including established marker genes such as 

pathogenesis related 1 (PR-1) and several genes encoding ubiquitination 

enzymes (Kim et al., 2006).  Of particular relevance to this study was the 

reported suppression of a DUB gene specifically during Pseudomonas 

elicited HR corresponding to the N. benthamiana ortholog of Arabidopsis 

AtUBP12.  In the Arabidopsis genome, AtUBP12 is paired with a close 

evolutionary relative AtUBP13 (Figure 3.2).  These two UBP genes share 

86% nucleotide identity and form a distinct clade within the Arabidopsis 

UBP enzymes (Figure 3.2). 

3.3.1 Analysis of AtUBP12 and AtUBP13 gene expression during 
disease resistance signalling 

In this study, the established model plant-pathogen interaction between 

Arabidopsis and Pseudomonas syringae was used to investigate plant 

disease resistance signalling (Katagiri et al., 2002).  Pseudomonas syringae 

pv. tomato (Pst) strain DC3000 is virulent on tomato and Arabidopsis and 

infection causes bacterial speck disease (Alfano and Collmer, 1996).  The 

introduction of cloned avirulence genes into Pst DC3000 has also facilitated 

its application to the study of gene-for-gene disease resistance 

mechanisms in Arabidopsis (Dong et al., 1991).  Following their delivery 

into the plant cell via a type-III secretion system (TTSS) (Dangl and Jones, 

2001), bacterial effector proteins can trigger gene-for-gene resistance.  In 

this study, disease resistance was triggered by Arabidopsis R genes RPM1 

(Grant et al., 1995) and RPS2 (Bent et al., 1994) upon specific recognition 
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of Pst strains expressing the cognate avirulence genes avrB and avrRpt2 

(Katagiri et al., 2002).  

Virulent and avirulent Pst DC3000 strains were used to investigate the 

transcriptional induction of Arabidopsis UBPs AtUBP12 and AtUBP13 during 

disease resistance signalling.  Defence responses were induced by the high 

titre (1 x106 cfu/ml) inoculation (Katagiri et al., 2002) of either Pst 

DC3000, Pst DC3000 avrB or Pst DC3000 avrRpt2 onto 5 week old 

Arabidopsis plants.  Leaf samples were taken at various timepoints then 

AtUBP12 and AtUBP13 gene expression was analysed by RT-PCR (Figure 

3.3).  The cDNA content of timecourse samples corresponding to four 

treatments with either MgCl2 (wounding control), Pst DC3000 (virulent), 

Pst DC3000 avrB or Pst DC3000 avrRpt2 were normalised by PCR analysis of 

the constitutively expressed Actin2 gene (Laval et al., 2002).  The 

Pathogenesis Related 1 (PR-1) defence marker gene demonstrated the 

expected induction (Volko et al., 1998) in each treatment condition and 

provided a positive experimental control (Figure 3.3). 

RT-PCR was conducted on the respective normalised cDNA samples with 

primers specific for AtUBP12 (AtUBP12RT_5 and AtUBP12RT_3) and 

AtUBP13 (AtUBP13RT_5 and AtUBP13_RT3) (Figure 3.3).  Densitometry 

analysis indicated that both genes were induced by wounding.  In the 

wounding control, AtUBP12 and AtUBP13 gene induction peaked 6 hours 

after MgCl2 infiltration (Figure 3.3) with AtUBP12 demonstrating a greater 

fold induction from initial levels (3.2 fold increase versus 1.3 fold increase 

for AtUBP13).  Both genes demonstrated increased expression during avrB 

elicited HR relative to the wounding control.  From initial to peak 

expression (at 6 hours post infiltration), AtUBP12 expression was increased 

15.6 fold whilst AtUBP13 expression increased 2.4 fold (Figure 3.3 B). 

During avrRpt2 elicited HR, early fold changes in AtUBP12 and AtUBP13 

expression (1-6 hours) were similar to those observed during wounding 

(Figure 3.3 C) and didn’t indicate a clear pathogen associated induction.  

The initiation of HR by avrRpt2/RPS2 is slower (14-18 hours) than by 

avrB/RPM1 (4-6 hours) (Mackey et al., 2003) (as confirmed by PR-1 

induction) and this may explain the wounding associated level of gene 
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induction compared to Pst DC3000 avrB treatment between 1 an 6 hours.  

PR-1 gene expression is induced at 24 hours post Pst DC3000 avrRpt2 

infiltration, at this timepoint AtUBP12 and AtUBP13 both show a minor 

induction with a 1.4 and 1.8 fold increase in expression respectively. 

Infiltration of virulent Pst DC3000 was used to trigger PAMP associated 

basal defence signalling responses.  Following Pst DC3000 treatment, gene 

expression profiles of AtUBP12 and AtUBP13 exhibited mild induction that 

was similar in magnitude and timing to that seen during wounding (Figure 

3.3 A). 

The observed transcriptional induction of AtUBP12 and AtUBP13 following 

avirulent Pseudomonas syringae pv. tomato avrB infection is at odds with 

the suppression of their N. benthamiana ortholog during pathogen 

Pseudomonas induced HR reported by Kim et al. (Kim et al., 2006).  The 

reported suppression of NbUBP12 was relatively low (1.6 fold) but was 

detected in a high stringency microarray analysis of transcript alterations 

(p value ≤ 0.01) at 24 hours post inoculation of avirulent Pseudomonas 

syringae pv. syringae 61 (Kim et al., 2006).  The respective difference 

between timecourse experiments reported in this study and the single 

timepoint analysis reported by Kim et al. limits further comparison but 

both studies demonstrate the transcriptional alteration of plant UBP12 

genes during pathogen associated defence responses.   
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Figure 3.3   Transcript analysis of AtUbp12 and AtUbp13 during infection 

with virulent and avirulent Pseudomonas.  

 

Arabidopsis Col-0 plants were inoculated with Pst DC3000 (A), Pst DC3000 

avrB (B) or Pst DC3000 avrRpt2 (C) at 1 x106 cfu/ml, and leaves sampled at 

time points indicated. Total RNA was isolated and used for RT-PCR with 

specific primers for AtUbp12 (27 cycles), AtUbp13 (27 cycles), PR-1 (27 

cycles) and Actin (24 cycles). 
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3.3.2 Analysis of AtUBP12 and AtUBP13 gene expression following 
exogenous application of Salycilic Acid 

Following the observed transcriptional induction of AtUBP12 and AtUBP13 

during Pst DC3000 avrB stimulated HR, their induction by exogenous 

Salicylic Acid (SA) treatment was investigated using quantitative realtime 

RT-PCR. 

A key signal during the induction of plant disease resistance is the 

accumulation of SA in both local and systemic tissues.  SA has been 

implicated in the potentiation of localised pathogen induced HR (Alvarez, 

2000) and the induction of systemic acquired resistance (SAR) in response 

to a broad range of pathogens (Durrant and Dong, 2004).  The perception 

of elevated SA levels leads to redox status changes in the cell which causes 

induction of pathogenesis-related (PR) genes leading to the activation of 

SAR (Durrant and Dong, 2004).   

The activation of PR gene expression and SAR can be induced by the 

exogenous application of SA instead of pathogen inoculation (Dong, 2004).  

In this study, cDNA prepared from Arabidopsis Landsberg erecta (L. er) leaf 

tissue at various timepoints after spraying with 1mM SA (kindly donated by 

Dr A. Love) was analysed by realtime RT-PCR to investigate the 

transcriptional induction of AtUBP12 and AtUBP13 following SA treatment 

(Figure 3.4).  Samples were normalised by analysis of the constitutively 

expressed Actin2 gene (Actin2_REAL5 and Actin2_REAL3) and increased 

expression of the SA responsive PR-1 defence marker gene (Volko et al., 

1998) was analysed as a positive control in this experiment using specific 

primers (AtPR1_REAL5 and AtPR1_REAL3).  At 6 hours after SA treatment,  

PR-1 demonstrated a 200 fold increase in expression confirming the 

expected induction of a defence response.  

The transcriptional response of AtUBP12 and AtUBP13 to SA treatment was 

analysed using specific primers for AtUBP12 (UBP12_REAL5 and 

UBP12_REAL3) and AtUBP13 (UBP13_REAL5 and UBP13_REAL3).  Realtime 

PCR data indicated a similar, strong induction of both genes with an 

expression peak at 6 hours post SA treatment corresponding to an  
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Figure 3.4   Expression pattern of AtUbp12 and AtUbp13 following salicylic 

acid treatment. 

 

Arabidopsis Ler plants aged 4 weeks were sprayed with 1mM salicylic acid 

and leaves were sampled at timepoints indicated.  Total RNA was isolated 

and used for quantitative real-time RT-PCR.  Expression of AtUbp12 (A) and 

AtUbp13 (B) was normalised against Actin2.  Each data point represents the 

mean of two biological replicates each analysed in duplicate, error bars 

represent one standard deviation.  The PR-1 defence marker gene was 

analysed as a positive experimental control. 
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approximate 70 fold and 40 fold change in expression level for AtUBP12 and 

AtUBP13 respectively (Figure 3.4).  Measurement of transcript levels at 1 

hour after SA spraying indicated a consistent, approximately 2 fold ‘dip’ in 

expression from initial levels for both AtUBP12 and AtUBP13 prior to the 

significant induction of both genes after 6 hours.  Following the peak of 

induction, both AtUBP12 and AtUBP13 exhibited a limited reduction in 

expression by 12 hours post treatment (approximately 1.7 and 1.3 fold 

change respectively) (Figure 3.4).     

The relatively heightened induction of AtUBP12 and AtUBP13 by exogenous 

SA application compared to avirulent Pseudomonas syringae infection may 

reflect the artificial nature of plant defence stimulation by exogenous 

hormone application.  That expression of both AtUBP12 and AtUBP13 are 

highly induced following SA treatment suggests that they may be involved 

in disease resistance signalling.  The timing of AtUBP12 and AtUBP13 

expression corresponds to the ‘late’ class (4-8 hours) of SA responsive gene 

induction typically seen in the case of PR gene induction (Blanco et al., 

2005).  This data indicates that AtUBP12 and AtUBP13 may function 

together or redundantly to perceive the SA signal during disease 

resistance. 

Key components of the SA signalling machinery including EDS1, PAD4 and 

NPR1 have been extensively characterised to establish the role of lipid 

signalling, redox status and reactive oxygen species in disease resistance 

signalling (Dong, 2004).  That AtUBP12 and AtUBP13 are responsive to SA 

indicate that they may function downstream of signalling events that 

stimulate SA accumulation.  The use of mutant Arabidopsis lines for 

further gene induction studies may provide further insight into the function 

of AtUBP12 and AtUBP13.  Using mutants of known SAR signalling 

components such as sabp2 and npr1 (Dong, 2004) for similar SA spraying 

experiments would allow assessment of AtUBP12 and AtUBP13 induction 

and their possible placement within specific disease signalling pathways. 
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3.3.3 Tissue distribution of AtUBP12 and AtUBP13 expression 

RT-PCR analysis was performed on cDNA derived from different Arabidopsis 

tissues to examine expression of AtUBP12 and AtUBP13.  Gene expression 

was analysed in rosette leaf, cauline leaf, stem and unopened bud tissue 

from 4 week old wildtype Col-0 Arabidopsis grown under long days.  Root 

tissue from plate grown Col-0 Arabidopsis seedlings was harvested three 

weeks after germination on vertical plates grown under long days.  Gene 

expression was analysed using primers specific for AtUBP12 (AtUBP12_RT5 

and AtUBP12_RT3) and AtUBP13 (AtUBP13_RT5 and AtUBP13_RT3).  RT-PCR 

analysis detected expression of AtUBP12 and AtUBP13 in all tissues and 

indicated that expression of both genes was markedly higher in bud 

derived cDNA than any other tissue (Figure 3.5).  

The reported RT-PCR data indicates a similar trend of expression for 

AtUBP12 and AtUBP13 in each respective tissue but suggests that AtUBP13 

is more highly expressed than AtUBP12 (Figure 3.5).  This relative 

difference in expression was not observed in rosette leaves where 

measurments conducted during realtime PCR analysis (Figure 3.4) 

indicated comparable expression levels of AtUBP12 and AtUBP13.  

Differences in primer efficiency are a plausible explanation for the 

apparent difference in expression levels between AtUBP12 and AtUBP13 

which could be more accurately assessed by northern blot or realtime PCR.  

3.3.4 Promoter analysis of AtUBP12 and AtUBP13 

An analysis of Arabidopsis segmental genome duplication reported at The 

Institute for Genome Research (TIGR) confirmed the historic pairing of 

chromosomal regions containing AtUBP12 and AtUBP13 (Haas et al., 2004).  

The segmental duplication between their respective locations on 

chromosomes 5 and 3 was assigned to a larger polyploidy event occurring 

at some point between the Arabidopsis-Brassica split and Arabidopsis-

cotton split estimated at 92 Mya  (Blanc et al., 2003). The plant specific 

duplication of an ancestral UBP gene generating AtUBP12 and AtUBP13 is    

supported by the detection of single copy orthologs of AtUBP12 in other 
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Figure 3.5  Expression pattern of AtUbp12 and AtUbp13 in plant tissues. 

RT-PCR analysis of total RNA extracted from various Arabidopsis tissues 

(bud, stem, rosette leaf, cauline leaf and root).  Gene expression in tissue 

specific cDNA was analysed by PCR using specific primers for AtUbp12 (27 

cycles), AtUbp13 (27 cycles) and Actin (25 cycles). 
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model eukaryotes.  Gene annotation for AtUBP12 and AtUBP13 entries at 

TAIR based on InParanoid orthology genome analysis (Remm et al., 2001) 

reports the detection of single copy gene orthologs in model eukaryotes 

including S. cerevisiae, C. elegans, D. melanogaster and  H. sapiens. 

Analysis of upstream genomic regions for AtUBP12 and AtUBP13 indicates 

the presence of neighbouring genes within approximately 2000 base pairs.  

Alignment of upstream genomic DNA detected a putative common 

promoter region of approximately 300 bp demonstrating numerous regions 

of conservation between AtUBP12 and AtUBP13 (Figure 3.6).  Data 

reported in this chapter indicates that AtUBP12 and AtUBP13 are 

differentially expressed in various untreated plant tissues but that both 

demonstrate induction in response to Pst DC3000 avrB and SA spraying.  

AtUBP12 appears to be more responsive to tested stimuli than AtUBP13.  

These results indicate that transcriptional control of AtUBP12 and AtUBP13 

may be a determinant in discriminating between cellular functions that are 

distinct, collaborative or redundant.   

The promoter regions of AtUBP12 and AtUBP13 were screened for known 

pathogen associated W-box (TTGAC) and TGA-bZIP (TGACG) binding 

elements (Rowland and Jones, 2001) and also using the Arabidopsis 

promoter analysis tool Athena (O'Connor et al., 2005).  Alignment 

approaches detected no TGA-bZIP or W-box binding sites in either 

promoter.  Analysis using Athena indicated no significant enrichment of 

known promoter elements in the 1000 bp upstream of either AtUBP12 or 

AtUBP13. There was also no significant conservation of any known 

promoter elements between AtUBP12 and AtUBP13.  

Despite the demonstration of coordinated transcriptional responses and 

regions of upstream conservation between AtUBP12 and AtUBP13, this 

analysis failed to detect promoter sequence based evidence of their 

association.  The association of AtUBP12/AtUBP13 induction with 

established pathogen signalling may be easier to clarify by performing gene 

induction experiments in known disease resistance signalling mutants as 

previously discussed (Section 3.3.2). 
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Figure 3.6   Alignment of 5' UTR promoter regions from AtUbp12 and 

AtUbp13. 

 

Alignment of genomic DNA region 300 bp upstream of AtUbp12 and 

AtUbp13  start codons (ATG boxed grey).  Alignment colours indicate 

conservation (red), non-conservation (blue) or insertion (black). 
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3.4 Characterisation of ubp12 and ubp13 mutants alleles during 
Pseudomonas syringae infection 

The potential function of the Arabidopsis UBPs AtUBP12 and AtUBP13 in 

disease resistance signalling was analysed using a loss of function reverse 

genetics approach.  In Arabidopsis, the principle reverse genetics approach 

is based on Agrobacterium tumifaciens transformation to insert T-DNA into 

the plant genome causing disruption of gene function (Krysan et al., 1999).  

The availability of large populations of T-DNA transformed Arabidopsis 

lines enables reverse genetic analysis of most genes.  Multiple T-DNA 

insertion alleles for AtUBP12 and AtUBP13 were isolated and alterations in 

their response to virulent and avirulent strains of Pseudomonas were 

investigated.   

3.4.1 Isolation of homozygous UBP gene T-DNA insertion lines 

T-DNA insertional mutant lines for AtUBP12 and AtUBP13 were part of a 

larger collection of Arabidopsis DUB T-DNA insertion lines isolated during 

the initial stages of this study.  Arabidopsis T-DNA insertion lines 

corresponding to 18 UBP genes were obtained from either the European 

Arabidopsis Stock Centre (NASC – Nottingham, UK) or GABI-Kat (Cologne, 

Germany) repositories and genotyped by PCR.  From the obtained T-DNA 

insertion lines, 7 homozygous lines were isolated corresponding to 

insertions in AtUBP8 (ubp8-1), AtUBP11  (ubp11-1), AtUBP12 (ubp12-1 and 

ubp12-2), AtUBP13 (ubp13-1 and ubp13-2) and AtUBP25 (ubp25-1) 

(Respective gene polymorphism identifiers from SALK and GABI-Kat are 

reported in appendix Table A3).  

The zygosity of T-DNA insertion mutants was confirmed by PCR using 

internal T-DNA left border and gene specific primers.  For genotyping 

purposes, gene specific primers were designed to flank the genomic T-DNA 

insertion site using protocols specified by SALK and GABI-Kat.  To confirm 

the presence of T-DNA insertions, products  were PCR amplified using a 

gene specific primer in combination with a T-DNA left border primer 

(SALK_Lba1 or GK_T-DNA).  Zygosity status was confirmed using T-DNA 
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insertion flanking primers and PCR conditions that prevented product 

amplification in homozygous lines. 

T-DNA insertion lines and genotyping primers are reported in appendix 

Tables A3 and A2 and genotyping results for ubp8-1, ubp11-1, ubp12-1, 

ubp12-2, ubp13-1, ubp13-2 and ubp-25 are presented in Figures 3.7 - 3.11.   

The single allele mutants ubp8-1, ubp11-1 and ubp25-1 contain T-DNA 

insertions in their 6th, 8th and 4th introns respectively (Figure 3.7), 

disruption in expression of each corresponding gene remains to be 

established.  The ubp12-1 and ubp12-2 alleles contain a T-DNA insertion 

within the 15th intron (Figure 3.8 A) and 28th exon (Figure 3.9 A) 

respectively.  The ubp13-1 and ubp13-2 alleles contain a T-DNA insertion 

within the 5th exon (Figure 3.10 A) and 21st exon (Figure 3.11 A) 

respectively.  For each ubp12 and ubp13 allele, insertion bands were 

cloned and sequenced to verify the location of the T-DNA insertion.   

Disruption of mRNA expression was checked in ubp12 and ubp13 alleles by 

RT-PCR.  Primers were designed from respective cDNAs to amplify products 

corresponding to full length transcript (FL) or upstream (5’) and 

downstream (3’) regions relative to the T-DNA insertion site (Figures 3.8 – 

3.11).  Given the high level of nucleotide identity between AtUBP12 and 

AtUBP13 cDNAs (86%), a primary consideration in RT-PCR primer design was 

the possibility of cross hybridisation of AtUBP12 primers to AtUBP13 mRNA 

and vice versa.   

To avoid this scenario, regions of insertion and maximum degeneracy 

between AtUBP12 and AtUBP13 cDNAs were selected for primer design and 

maximum primer annealing temperatures were established by gradient 

PCR.  There were typically at least 5 base pair mismatches between 

AtUBP12 and AtUBP13 cDNAs in each RT-PCR primer designed for transcript 

analysis.  Primer details and a full length alignment between AtUBP12 and 

AtUBP13 cDNAs are reported in appendix Table A2 and Figure A1. 
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Figure 3.7 Genotyping ubp8-1, ubp11-1 and ubp25-1 alleles. 

(Ai) Gene structure of AtUBP8 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp8-1 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp8-1 insert flanking 

primers (ubp8-1 Flank) and ubp8-1 insert specific primers (ubp8-1 Insert) are 

indicated by white boxes.  (Aii) PCR genotyping results for ubp8-1 allele.  

Appropriate PCR reactions were completed using Col-0 and ubp8-1 genomic 

DNA with primers for Actin (30 cycles), ubp8-1 Flank (30 cycles) or ubp8-1 

Insert (30 cycles). 

(Bi) Gene structure of AtUBP11 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp11-1 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp11-1 insert 

flanking primers (ubp11-1 Flank) and ubp11-1 insert specific primers (ubp11-

1 Insert) are indicated by white boxes.  (Bii) PCR genotyping results for 

ubp11-1 allele.  Appropriate PCR reactions were completed using Col-0 and 

ubp11-1 genomic DNA with primers for Actin (30 cycles), ubp11-1 Flank (30 

cycles) or ubp11-1 Insert (30 cycles). 

(Ci) Gene structure of AtUBP25 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp25-1 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp25-1 insert 

flanking primers (ubp25-1 Flank) and ubp25-1 insert specific primers (ubp25-

1 Insert) are indicated by white boxes.  (Cii) PCR genotyping results for 

ubp25-1 allele.  Appropriate PCR reactions were completed using Col-0 and 

ubp25-1 genomic DNA with primers for Actin (30 cycles), ubp25-1 Flank (30 

cycles) or ubp25-1 Insert (30 cycles). 
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RT-PCR analysis failed to detect near full length AtUBP12 mRNA species in 

both ubp12-1 and ubp12-2 alleles relative to wildtype control cDNA (Figure 

3.8 B and Figure 3.9 B).  PCR products corresponding to upstream and 

downstream AtUBP12 mRNA regions were not detected in the ubp12-1 

allele (Figure 3.8 B).  In the case of the upb12-2 allele, PCR products 

corresponding to upstream and downstream mRNA regions were amplified 

(Figure 3.8 B), but their accumulation was strongly reduced in comparison 

to wild type cDNA (cDNA content was considered comparable based on 

Actin2 PCR product amplification).  Examination of AtUBP13 mRNA 

expression in ubp13-1 and ubp13-2 alleles by RT-PCR failed to detect full 

length, upstream or downstream PCR products relative to wildtype control 

cDNA (Figures 3.10 B and 3.11 B). 

Gene models of AtUBP12 (AT5G06600.1) and AtUBP13 (AT3G11910.1) 

reported at TAIR indicate the existence of 2 splice variants of AtUBP12 

(AT5G06600.2 and AT5G06600.3) but no splice variants of AtUBP13.  Splice 

variants of AtUBP12 correspond to a 3 bp deletion (AT5G06600.2) resulting 

in the loss of amino acid residue Q11 or the premature termination of 

transcription after exon 27 (AT5G06600.3) resulting in a truncated 2958 bp 

transcript compared to 3351 bp in full length AtUBP12 (AT5G06600.1).  The 

truncated mRNA produced from the AtUBP12 (AT5G06600.3) splice variant 

produces a corresponding protein lacking 132 amino acids at the C-

terminus relative to full length AtUBP12.   

The T-DNA insertion in ubp12-2 is located in exon 28 (Figure 3.9) and may 

potentially allow expression of the AtUBP12 (AT5G06600.3) splice variant 

as opposed to the ubp12-1 allele which has a T-DNA insertion in intron 15 

and  should consequently disrupt the expression of full length AtUBP12 and 

both of its splice variants (Figure 3.8).   

The 5’ upstream amplicon detected in RT-PCR analysis of AtUBP12 mRNA 

expression in ubp12-2 (Figure 3.9 B) may correspond to the AtUBP12 

(AT5G06600.3) splice variant rather than reduced levels of full length 

AtUBP12 (AT5G06600.1).  In this case, RT-PCR analysis suggests that 

expression of the AtUBP12 (AT5G06600.3) splice variant is significantly 

lower than full length AtUBP12 although the relative expression levels of 
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full length and splice variant AtUBP12 in a non-mutant background remain 

to be established.   

Analysis of cDNA derived from ubp12 and ubp13 mutant lines indicated 

that all four alleles had disrupted gene expression resulting from T-DNA 

insertion.  In all cases, full length mRNA was not detectable indicating that 

each line was suitable for loss of function studies for the respective gene.  

Based on the location of T-DNA inserts, the isolated ubp12-2 allele may not 

alter expression of the AtUBP12 (AT5G06600.3) splice variant whereas the 

ubp12-1 allele abolishes full length and splice variants to equal effect.  

The possibility of additional, distal T-DNA insertion events in each allele 

was not investigated as the potential influence of additional insertions 

could be discounted based on the phenotypic assessment of multiple 

isolated alleles.  

 

 

 

UBP 
allele 

mRNA region 5’ primer 3’ primer Amplicon 
size (bp) 

ubp12-1 ubp12-1 FL U12-1_FL_5 U12-1_FL_3 3162 
ubp12-1 ubp12-1 5’ U12-1_FL_5 U12-1_5P_3 1910 
ubp12-1 ubp12-1 3’ U12-1_3P_5 U12-1_FL_3 505 
ubp12-2 ubp12-2 FL U12-1_FL_5 U12-1_FL_3 3162 
ubp12-2 ubp12-2 5’ U12-1_FL_5 U12-1_5P_3 1910 
ubp12-2 ubp12-2 3’ U12-2_3P_5 U12-1_FL_3 126 
ubp13-1 ubp13-1 FL U13-1_FL_5 U13-1_FL_3 3348 
ubp13-1 ubp13-1 5’ U13-1_5P_5 U13-1_5P_3 401 
ubp13-1 ubp13-1 3’ U13-1_3P_5 U13-1_3P_3 1207 
ubp13-2 ubp13-2 FL U13-1_FL_5 U13-1_FL_3 3348 
ubp13-2 ubp13-2 5’ U13-2_5P_5 U13-2_5P_3 1977 
ubp13-2 ubp13-2 3’ U13-2_3P_5 U13-2_3P_3 803 

 
    

Table 3.2  Primers for RT-PCR transcript analysis in ubp12 and ubp13  

alleles. 
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Figure 3.8  Genotyping and AtUBP12 transcript analysis of the ubp12-1  

allele. 

 

(Ai) Gene structure of AtUBP12 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp12-1 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp12-1 insert 

flanking primers (ubp12-1 Flank) and ubp12-1 insert specific primers (ubp12-

1 Insert) are indicated by white boxes.  (Aii) PCR genotyping results for 

ubp12-1 allele.  Appropriate PCR reactions were completed using Col-0 and 

ubp12-1 genomic DNA with primers for Actin (28 cycles), ubp12-1 Flank (28 

cycles) or ubp12-1 Insert (28 cycles).   

(Bi) AtUBP12 mRNA diagram indicating position of amplicons analysed by 

RT-PCR to examine AtUBP12 mRNA expression in the ubp12-1 allele.  

AtUBP12 mRNA and internal RT-PCR amplicons are represented as black 

and white boxes respectively.  Amplicons corresponding to near full length 

mRNA (ubp12-1 FL), upstream of the T-DNA insertion (ubp12-1 5’) and 

downstream of the T-DNA insertion (ubp12-1 3’) are indicated.  (Bii) RT-

PCR transcript analysis in ubp12-1.  Appropriate PCR cycles were 

completed using Col-0 and ubp12-1 cDNA with primers for Actin (25 cycles), 

upb12-1 FL (38 cycles), ubp12-1 5’ (36 cycles) and ubp12-1 3’ (31 cycles).  
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Figure 3.9  Genotyping and AtUBP12 transcript analysis of the ubp12-2  
allele. 

 

(Ai) Gene structure of AtUBP12 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp12-2 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp12-2 insert 

flanking primers (ubp12-2 Flank) and ubp12-2 insert specific primers (ubp12-

2 Insert) are indicated by white boxes.  (Aii) PCR genotyping results for 

ubp12-2 allele.  Appropriate PCR reactions were completed using Col-0 and 

ubp12-2 genomic DNA with primers for Actin (28 cycles), ubp12-2 Flank (28 

cycles) or ubp12-2 Insert (28 cycles).   

(Bi) AtUBP12 mRNA diagram indicating position of amplicons analysed by 

RT-PCR to examine AtUBP12 mRNA expression in the ubp12-2 allele.  

AtUBP12 mRNA and internal RT-PCR amplicons are represented as black 

and white boxes respectively.  Amplicons corresponding to near full length 

mRNA (ubp12-2 FL), upstream of the T-DNA insertion (ubp12-2 5’) and 

downstream of the T-DNA insertion (ubp12-2 3’) are indicated.  (Bii) RT-

PCR transcript analysis in ubp12-2.  Appropriate PCR cycles were 

completed using Col-0 and ubp12-2 cDNA with primers for Actin (25 cycles), 

upb12-2 FL (38 cycles), ubp12-2 5’ (36 cycles) and ubp12-2 3’ (35 cycles). 
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Figure 3.10  Genotyping and AtUBP13 transcript analysis of the ubp13-1  

allele. 

 

(Ai) Gene structure of AtUBP13 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp13-1 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp13-1 insert 

flanking primers (ubp13-1 Flank) and ubp13-1 insert specific primers (ubp13-

1 Insert) are indicated by white boxes.  (Aii) PCR genotyping results for 

ubp13-1 allele.  Appropriate PCR reactions were completed using Col-0 and 

ubp13-1 genomic DNA with primers for Actin (28 cycles), ubp13-1 Flank (28 

cycles) or ubp13-1 Insert (28 cycles).   

(Bi) AtUBP13 mRNA diagram indicating position of amplicons analysed by 

RT-PCR to examine AtUBP13 mRNA expression in the ubp13-1 allele.  

AtUBP13 mRNA and internal RT-PCR amplicons are represented as black 

and white boxes respectively.  Amplicons corresponding to full length mRNA 

(ubp13-1 FL), upstream of the T-DNA insertion (ubp13-1 5’) and 

downstream of the T-DNA insertion (ubp13-1 3’) are indicated.  (Bii) RT-

PCR transcript analysis in ubp13-1.  Appropriate PCR cycles were 

completed using Col-0 and ubp13-1 cDNA with primers for Actin (25 cycles), 

upb13-1 FL (45 cycles), ubp13-1 5’ (33 cycles) and ubp13-1 3’ (43 cycles). 
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Figure 3.11  Genotyping and AtUBP13 transcript analysis of the ubp13-2  

allele. 

 

(Ai) Gene structure of AtUBP13 where exons and introns are represented as 

black and grey boxes respectively.  Location of ubp13-2 T-DNA insertion is 

indicated by a red triangle within which a white box indicates the position of 

the T-DNA left border.  PCR genotyping amplicons for ubp13-2 insert 

flanking primers (ubp13-2 Flank) and ubp13-2 insert specific primers (ubp13-

2 Insert) are indicated by white boxes.  (Aii) PCR genotyping results for 

ubp13-2 allele.  Appropriate PCR reactions were completed using Col-0 and 

ubp13-2 genomic DNA with primers for Actin (28 cycles), ubp13-2 Flank (28 

cycles) or ubp13-2 Insert (28 cycles).   

(Bi) AtUBP13 mRNA diagram indicating position of amplicons analysed by 

RT-PCR to examine AtUBP13 mRNA expression in the ubp13-2 allele.  

AtUBP13 mRNA and internal RT-PCR amplicons are represented as black 

and white boxes respectively.  Amplicons corresponding to full length mRNA 

(ubp13-2 FL), upstream of the T-DNA insertion (ubp13-2 5’) and 

downstream of the T-DNA insertion (ubp13-2 3’) are indicated.  (Bii) RT-

PCR transcript analysis in ubp13-2.  Appropriate PCR cycles were 

completed using Col-0 and ubp13-2 cDNA with primers for Actin (25 cycles), 

upb13-2 FL (45 cycles), ubp13-2 5’ (34 cycles) and ubp13-2 3’ (36 cycles). 
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3.4.2 Pseudomonas syringae growth assays in ubp12 and ubp13 null 
mutants 

Isolated ubp12 and ubp13 mutant lines were infected with virulent and 

avirulent strains of Pseudomonas syringae pv. tomato DC3000 to assess 

perturbations in disease resistance.  As previously discussed, to trigger HR 

through RPM1 or RPS2 R genes, plants were infected with Pst DC3000 

expressing avrB and avrRpt2 avirulence factors respectively. 

Short day grown plants, aged 5 - 6 weeks were infected by spray 

inoculation of high titre Pseudomonas strains (1 x 108 cfu/ml) as described 

by Zipfel et al. (Zipfel et al., 2004).  Infected plants were returned to 

short day growth conditions under high humidity and bacterial growth was 

measured after 72 hours by colony counting (Figures 3.12 and 3.13).  In 

each experiment, plants were infected with virulent Pst DC3000 to test for 

alterations in basal PAMP triggered defence and serve as an empty vector 

control for comparison against tested avirulent Pst strains. 

Colony count data indicated no significant difference in resistance 

between Col-0 control and ubp12 and ubp13 mutant alleles during 

Pseudomonas infection.  Virulent Pst DC3000 demonstrated approximately 

7.5 log cfu/cm2 growth on each plant line at 72 hours post infection in two 

independent experiments (Figures 3.12 and 3.13).  Avirulent Pst DC3000 

strains containing avrB or avrRpt2 demonstrated 4 and 5.5 log cfu/cm2 

growth respectively on each plant line at 72 hours post infection (Figure 

3.12 and Figure 3.13).  Bacterial growth measurements were based on six 

independent replicates and t-tests confirmed that observed differences in 

mean growth were not significant (Figure 3.12 and Figure 3.13). 

Bacterial growth assays were previously conducted on ubp12-1 and ubp13-1 

mutant lines using pressure inoculation to deliver virulent and avirulent 

Pseudomonas strains into the apoplast.  Bacterial growth measurments 

were recorded at two time points during infection (72 and 96 hours post 

infection), results obtained in these experiments indicated no significant 

difference in bacterial growth (data not shown) and were in agreement 

with results presented in Figures 3.12 and 3.13. 
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Figure 3.12  Bacterial growth assay of Pst DC3000 and Pst DC3000 avrB  

on ubp12 and ubp13 mutant lines. 

 

Growth of Pst DC3000 (A) and Pst DC3000 avrB (B) on Arabidopsis Col-0, 

ubp12-1, ubp12-2, ubp13-1 and ubp13-2 lines.  Bacterial growth was 

measured three days after spray inoculation, each data point represents the 

mean and standard deviation of six replicates.  Statistical significance of 

observed growth differences were assessed by two sided t-test where a p 

value equal to or less than 0.05 was considered significant.    
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Figure 3.13   Bacterial growth assay of Pst DC3000 and Pst DC3000 

avrRpt2 in ubp12 and ubp13 mutant lines. 

 

Growth of Pst DC3000 (A) and Pst DC3000 avrRpt2 (B) on Arabidopsis    

Col-0, ubp12-1, ubp12-2, ubp13-1 and ubp13-2 lines.  Bacterial growth was 

measured three days after spray inoculation, each data point represents the 

mean and standard deviation of six replicates.  Statistical significance of 

observed growth differences were assessed by two sided t-test where a p 

value equal to or less than 0.05 was considered significant. 
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3.5 ubp12 mutants exhibit an early flowering phenotype 

In the initial stages of this study, homozygous T-DNA insertion alleles of 

several UBP genes were isolated (Section 3.4).  Growth of ubp8-1, ubp11-1 

and ubp25-1 under long day conditions indicated no obvious morphological 

differences to Col-0 WT plants (data not shown).  These findings were 

confirmed in a recent screen for Arabidopsis developmental phenotypes in 

a collection of 39 mutant alleles corresponding to 25 of the 27 UBP genes 

(Liu et al., 2008).  Liu et al. reported no detectable phenotype in ubp8, 

ubp11 and ubp25 mutants (Liu et al., 2008) (where ubp8 and ubp11 mutant 

alleles were identical to SALK ubp8-1 and ubp11-1 alleles isolated in this 

study – appendix Table A3) 

Mutant ubp12 lines were not analysed by Liu et al. (Liu et al., 2008), but 

results obtained in this study demonstrate that ubp12-1 and ubp12-2 

alleles exhibit an early flowering phenotype which is particularly prevalent 

under short day growth conditions (Figure 3.14). 

The angiosperm shoot can be described as a series of repeating units 

termed phytomers that are formed sequentially by the shoot apical 

meristem (SAM).  The basic phytomer structure consists of a node with the 

associated leaf, axillary meristem and internode region (Schultz and 

Haughn, 1991).  In Arabidopsis the SAM undergoes phase change, first 

producing rosette phytomers consisting of a large vegetative leaves 

separated by short internodes.  At the floral transition, several lateral 

shoot bearing phytomers are produced with smaller cauline leaves and 

elongated internodes followed by the determinate floral meristem 

(McSteen and Leyser, 2005). 

The transition from the vegetative phase to flowering and reproductive 

growth is governed by the interplay of endogenous signalling pathways and 

environmental cues.  Molecular characterisation of Arabidopsis mutants 

with altered flowering phenotypes has led to a current model of flowering 

control which is regulated by the interplay of physical, chemical and 

biological signals.  Currently, four genetic flowering pathways have been 

defined termed: light dependent pathway, gibberellin pathway, 
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vernalisation pathway and the autonomous pathway (Komeda, 2004).  

Separate environmental signals are perceived by these distinct pathways 

but they eventually converge to initiate expression of common downstream 

floral morphogenesis genes (Komeda, 2004).  Arabidopsis is a facultative 

long day plant which flowers in response to long days (16 hour 

photoperiod) but also eventually flowers under short days (8 hour 

photoperiod) after a prolonged vegetative growth phase (Mouradov et al., 

2002).   

The early flowering phenotype of ubp12 mutants was scored as an index of 

the number of rosette leaves present at the initiation of flowering under 

long and short day photoperiods (Figure 3.15).  Early flowering was 

apparent in both mutant alleles of ubp12 under long day photoperiods but 

was far more conspicuous under short day conditions (Figure 3.15).  Under 

short days, ubp12-1 and ubp12-2 alleles flowered with an average of 14 

and 13 rosette leaves respectively compared to 67 rosette leaves in Col-0 

WT controls (Figure 3.15 A).  Under long days, ubp12-1 and ubp12-2 alleles 

both flowered with an average of 7 rosette leaves compared to 8 in Col-0 

WT controls (Figure 3.15 B).  T-test analysis confirmed that ubp12 early 

flowering was significant under short days (average p = 0.0001) and 

significant under long days (average p = 0.0158). 

The flowering of ubp13 mutant alleles was also scored under short and long 

days (Figure 3.15).  Under short days ubp13-1 and ubp13-2 alleles both 

flowered with an average of 70 rosette leaves compared to 67 in Col-0 WT 

controls (Figure 3.15 A).  The significance of the observed difference in 

rosette leaf number between Col-0 and ubp13 alleles by was assessed by t-

test and found to be significant (p values: ubp13-1 – 0.0539 and ubp13-2 – 

0.0637).  The flowering phenotype of ubp13 mutants under short days is 

clearly comparable to Col-0 controls rather than ubp12 mutants (Figure 

3.15 A) despite the paralogous relationship between AtUBP12 and 

AtUBP13.  Under long days ubp13-1 and ubp13-2 alleles both flowered with 

an average of 8.5 rosette leaves compared to 8.1 in Col-0 controls (Figure 

3.15 B) although t-test analysis indicated this difference was not 

significant (p values: ubp13-1 – 0.15 and ubp13-2 – 0.23). 
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Figure 3.14 Early flowering of ubp12 mutants under short days. 

Representative examples of Col-0, ubp12-1, ubp12-2, ubp13-1 and ubp13-2  

plants 5 weeks after germination following growth under a short day 

photoperiod (8 hours light/16 hours dark). 
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Short day grown ubp12 mutants also developed aerial rosette structures 

instead of a single subtending cauline leaf (Figure 3.14 C).  Aerial rosettes 

were consistently observed at each node on the primary infloresence in 

ubp12 mutants.  Axillary infloresences of ubp12 mutants exhibited wild 

type lateral shoot growth with aerial rosettes being restricted to the 

primary infloresence (Figure 3.15 C).  The observed transition to flowering 

under short days was far earlier in ubp12 alleles than Col-0 plants with the 

corresponding early development of axillary and secondary inflorescences.  

Floral morphology in upb12 and ubp13 mutants appeared normal. 

As with many aspects of plant physiology, regulation by ubiquitin-26S 

proteasome mediated degradation has been heavily implicated in the 

control of flowering (Vierstra, 2003).  In flowering, ubiquitin E3 ligases 

have been linked to the vernalisation pathway (Dong et al., 2006), 

gibberellin pathway (Swain and Singh, 2005), light dependent pathway 

(Turck et al., 2008) and maintenance of circadian rhythms (Fujiwara et al., 

2008).   

The clear early flowering of ubp12 mutants under short days invites further 

scrutiny of disruption to established floral signalling pathways in these 

lines.  Further characterisation of early flowering in ubp12 mutants aims to 

examine altered behaviour of known floral signal integrators such as CO 

and FLC in the ubp12 background (Turck et al., 2008).  Linkage of the 

observed phenotype to known flowering pathways will also be investigated 

by making genetic crosses with established mutants that exhibit late 

flowering under short days. 

The reported early flowering phenotype of ubp12 mutants should be 

amenable to transgenic complementation approaches to restore wild type 

function.  In vitro DUB assay results reported in Chapter 5 have proven the 

ubiquitin protease activity of expressed full length AtUBP12 WT protein 

and that activity is abolished in a corresponding AtUBP12 C208S active site 

mutant.  To facilitate complementation studies, transgenic ubp12-1 lines 

overexpressing either AtUBP12_WT or AtUBP12_C208S cDNAs under a CaMV 

35S promoter are currently being generated. 
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Figure 3.15 Flowering time of ubp12 and ubp13  mutants under long and  

short days. 

 
(A) Flowering time of Col-0, ubp12-1, ubp12-2, ubp13-1 and ubp13-2 under 

short days expressed as rosette leaf number counted after opening of the 

first flower.  Plants were grown for approximately 5 weeks under a short day 

photoperiod (8 hours light/16 hours dark).  Measurments represent the mean 

of 10 individuals and error bars indicate one standard deviation. 

(B) Flowering time of Col-0, ubp12-1, ubp12-2, ubp13-1 and ubp13-2 under 

long days expressed as rosette leaf number counted after opening of the 

first flower.  Plants were grown for approximately 4 weeks under a long 

day photoperiod (16 hours light/8 hours dark).  Measurments represent the 

mean of 10 individuals and error bars indicate one standard deviation. 

(C) Aerial rosette structures seen on the primary infloresence of ubp12 

mutant alleles compared to Col-0 plants grown under a short day 

photoperiod (8 hours light/16 hours dark).  Photographs taken following 

approximately 14 weeks of growth under short day conditions. 
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3.6 RNAi based silencing of AtUBP12 and AtUBP13 

3.6.1 RNAi in Arabidopsis using pHELLSGATE 

As discussed previously, reverse genetic approaches to study gene function 

in Arabidopsis rely primarily on insertional mutagenesis approaches based 

on  T-DNA insertion.  Results presented in Section 3.5 demonstrate that T-

DNA insertion mutants can effectively abolish mRNA accumulation for 

specific genes allowing the characterisation of novel phenotypes.  

However, the use of insertion mutants has associated limitations when 

studying duplicated genes.  Duplicated genes often exhibit functional 

redundancy that invalidates the T-DNA approach as the potential 

phenotype of a null allele is obscured by the presence of a functional 

sibling (Gu et al., 2003). 

One approach that can circumvent such limitations exploits the biological 

phenomenon of RNA induced gene silencing, variously termed RNA 

interference (RNAi) in animals or Post Transcriptional Gene Silencing 

(PTGS) in plants (Waterhouse and Helliwell, 2003).  Initial studies 

established the mechanistic similarity between gene silencing and plant 

anti-viral defence (Ratcliff et al., 1997).  Non-host double stranded RNA 

(dsRNA) produced during viral replication is recognised by the host and 

degraded into ~21 nucleotide fragments termed small interfering RNAs 

(siRNAs) (Baulcombe, 2005).  The incorporation of siRNAs into a nuclease 

complex called RISC (RNAi silencing complex) guides the homology 

dependent degradation of the corresponding viral mRNA causing gene 

silencing (Baulcombe, 2005). 

The mechanism of gene silencing has been applied to plant genomics using 

various approaches to deliver dsRNA into the plant cell (Helliwell and 

Waterhouse, 2005).  Introduction of user defined exogenous dsRNA 

sequences has allowed recruitment of gene silencing machinery to 

efficiently silence specific host genes (Waterhouse and Helliwell, 2003). 

Presentation of dsRNA in the plant cell can occur from naturally occurring 

viral RNA (the replication of which produces dsRNA). This principle is 
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commonly applied in Virus Induced Gene Silencing (VIGS) to initiate 

transient gene silencing in virus compatible host plant species (Ratcliff et 

al., 2001).  To facilitate gene silencing in Arabidopsis, self-complementary 

single-stranded ‘hairpin’ RNA (hpRNA) corresponding to a target host gene 

can be stably introduced as a transgene to initiate heritable gene silencing 

(Helliwell and Waterhouse, 2005).   

This hairpin RNAi approach was utilised to address potential functional 

redundancy between AtUBP12 and AtUBP13.  The generation of hairpin 

RNA expressing constructs has been simplified by the recent development 

of the Gateway compatible pHELLSGATE vector (Helliwell and Waterhouse, 

2003).  The pHELLSGATE vector allows recombination based transfer of 

DNA fragments from attL1-attL2 sites in a Gateway entry clone into 

pHELLSGATE12 which carries two attR1-attR2 cassettes under a CaMV 35S 

promoter (Helliwell and Waterhouse, 2003). The attR1-attR2 cassettes are 

separated by an intron and are in opposite sense orientations with respect 

to the promoter giving rise to inverted repeat constructs.  Expression of 

gene fragments transferred to pHELLSGATE in planta produces a hairpin 

RNA with the intron spliced out.  This hpRNA will present the requisite 

dsRNA signal to initiate gene silencing targeted against host gene (or 

genes) corresponding to the pHELLSGATE expressed cDNA fragment. 

3.6.2 RNAi based silencing of AtUBP12 and AtUBP13  

Data presented in this chapter indicates that AtUBP12 and AtUBP13 are 

differentially expressed in various plant tissues and that both are 

transcriptionally activated by pathogen stimuli and exogenously applied 

SA.  The high level of amino acid identity between AtUBP12 and AtUBP13 

(86%) coupled with their coordinated induction suggests a potential 

redundancy in their function. 

To investigate this possibility, a pHELLSGATE12 construct was generated 

using a cDNA fragment from AtUBP13 which would generate siRNAs with 

homology to AtUBP12 and initiate silencing of both genes (construct – 

UBP_RNAi).  The ability to silence multiple genes simultaneously is a key 

benefit of the gene silencing method but does require consideration of 
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potential ‘off target’ silencing effects.  In the case of AtUBP12 and 

AtUBP13, if siRNAs were generated from the conserved His and Cys box 

catalytic regions they could potentially initiate gene silencing of any of the 

27 UBP enzymes.   

To avoid this outcome, a 420 bp region unique to AtUBP12 and AtUBP13 

was selected from the cDNA sequence of AtUBP13 (Figure 3.16 A).  

Alignment analysis of the selected AtUBP13 cDNA fragment indicated 

multiple regions over 21 nucleotides in length with continuous identity to 

AtUBP12 (Figure 3.16 B) indicating it could initiate silencing of both genes.  

To assess potential off target silencing effects, the selected UBP_RNAi 

cDNA fragment was BLAST queried against the Arabidopsis genome and 

recovered AtUBP13 and AtUBP12 as top scoring matches (E-values of 0 and 

4e-84 respectively) followed by a low scoring third non-UBP match to 

AtATMAP65-1 (E-value 0.023).  There were no additional UBP genes 

recovered using this cDNA fragment and the extent of continuous sequence 

match to AtATMAP65-1 was limited to a single region of 13 base pairs.  

This analysis indicated that the cDNA region selected for the UBP_RNAi 

construct was unlikely to cause ‘off target’ cross silencing effects.   

The UBP_RNAi cDNA fragment was amplified from Arabidopsis cDNA using 

Gateway compatible primers (UBP_RNAi_5 and UBP_RNAi_3) and TOPO 

cloned into the appropriate Gateway entry vector (pENTR D-TOPO).  Using 

Gateway recombination, the UBP_RNAi fragment was transferred to 

pHELLSGATE12 and the resulting inverted repeat construct was confirmed 

by restriction digest and PCR using insert fragment and vector specific 

primers (HG12_35S and HG12_int).  Arabidopsis UBP_RNAi and empty 

pHELLSGATE12 (pHG12) control transgenic lines were made by floral dip 

transformation and T1 transformants were identified on kanamycin 

selective plates (Figure 3.17).   

The expression of hairpin RNA fragments from a 35S promoter in 

pHELLSGATE12 confers a genetically dominant effect therefore any 

phenotypic effects should be apparent in the T1 generation (Helliwell and 

Waterhouse, 2003).  Comparison of resistant UBP_RNAi and pHG12 T1 

seedlings at 20 days post germination on kanamycin selection indicated a  
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Figure 3.16 Selection of a cDNA fragment to initiate hpRNAi gene silencing  

of AtUbp12 and AtUbp13. 

 

Hairpin based RNAi silencing of AtUbp12 and AtUbp13. (A) Domain 

diagrams of AtUbp12 and AtUbp13, red box indicates AtUbp13 cDNA region 

selected for UBP_RNAi silencing construct.  (B) Sequence alignment of 

RNAi_UBP cDNA fragment from AtUbp13 and corresponding region in 

AtUbp12.  Nucleotide conservation is indicated in red. 
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AtUbp12  --CCTGGATT TACGTCCTAT TCCTCCTCCT GAAAAATCAA AAGAA
AtUbp13  GGACCGGATG ACCTTCCTAT TCCTCCCCCA GAAAAAACTT CTGAG

UBP_RNAi  GGACCGGATG ACCTTCCTAT TCCTCCCCCA GAAAAAACTT CTGAG

AtUbp12  GATATTCTTC TTTTCTTCAA GCTTTATGAC CCCGAGAAGG CAGTA
AtUbp13  GATATCCTTC TTTTCTTTAA ACTCTATGAC CCTGAGAACG CAGTA
UBP_RNAi  GATATCCTTC TTTTCTTTAA ACTCTATGAC CCTGAGAACG CAGTA 

AtUbp12  TTAAGCTATG CTGGCAGGCT GATGGTGAAA AGTTCCAGTA AGCCT
AtUbp13  CTAAGATATG TTGGCAGGCT AATGGTGAAA AGTTCCAGTA AGCCC

UBP_RNAi  CTAAGATATG TTGGCAGGCT AATGGTGAAA AGTTCCAGTA AGCCC  

AtUbp12  ATGGATATAA CTGGAAAACT GAATGAAATG GTTGGCTTTG CTCCT
AtUbp13  ATGGATATAG TAGGGCAATT GAATAAAATG GCTGGTTTTG CTCCT

UBP_RNAi  ATGGATATAG TAGGGCAATT GAATAAAATG GCTGGTTTTG CTCCT

AtUbp12  GATGAAGAAA TAGAACTTTT TGAGGAAATC AAGTTTGAAC CTTGT
AtUbp13  GATGAGGAAA TAGAACTTTT TGAGGAAATA AAGTTTGAAC CTTGC

UBP_RNAi  GATGAGGAAA TAGAACTTTT TGAGGAAATA AAGTTTGAAC CTTGC

AtUbp12  GTTATGTGCG AACACTTGGA TAAGAAAACT TCATTCAGAT TGTGT
AtUbp13  GTAATGTGTG AACAGATTGA TAAGAAGACT TCTTTCAGGC TGTGT
UBP_RNAi  GTAATGTGTG AACAGATTGA TAAGAAGACT TCTTTCAGGC TGTGT

AtUbp12  CAAATTGAAG ATGGAGATAT CATTTGCTTT CAGAAACCTC TTGTT
AtUbp13  CAAATTGAAG ATGGAGATAT CATTTGTTAT CAGAAACCTC TTTCT

UBP_RNAi  CAAATTGAAG ATGGAGATAT CATTTGTTAT CAGAAACCTC TTTCT

AtUbp12  AACAAGGAGA TTGAATGCCT CTACCCAGCT GTGCCTTCGT TTCTT
AtUbp13  ATCGAGGAGA GTGAATTTCG ATACCCAGAT GTGCCATCAT TTTTG

UBP_RNAi  ATCGAGGAGA GTGAATTTCG ATACCCAGAT GTGCCATCAT TTTTG 

AtUbp12  GAATATGTCC AGAATAGACA GCTGGTCCGG TTTCGTGCTC TGGAA
AtUbp13  GAGTATGTAC AGAATCGAGA GCTGGTGCGT TTTCGCACAC TGGAA

UBP_RNAi  GAGTATGTAC AGAATCGAGA GCTGGTGCGT TTTCGCACAC TGGAA

AtUbp12  AAACCTAAAG AAGATGAGTT TGTTCTGGAG TTGTCGAAGC AGCAC
AtUbp13  AAACCAAAAG AGGATGAGTT TACTATGGAG CTGTCAAAGC TGCAC
UBP_RNAi  AAACCAAAAG AGGATGAGTT TACTATGGAG CTGTCAAAGC TGCAC

AtUbp12  ACTTATGACG ATGTTGTGGA GAAAGTGGCT GA
AtUbp13  ACTTATGATG ATGTAGTGGA AAGGGTGGCT GA

UBP_RNAi  ACTTATGATG ATGTAGTGGA AAGGGTGGCT GA

A

B

AtUbp13

AtUbp12

UBP_RNAi
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clear inhibition of growth and accumulation of anthocyanin in UBP_RNAi 

silencing lines (Figure 3.17).  Control transgenic T1 lines carrying empty 

pHELLSGATE12 appeared healthy and developmentally unaffected (Figure 

3.17) suggesting the observed phenotype was due to the specific co-

silencing of AtUBP12 and AtUBP13.   

From the recovered T1 transgenic seedlings, 30 UBP_RNAi plants and 10 

pHG12 plants were transferred to soil and grown to harvest seeds.  After 

transfer to soil, growth of T1 UBP_RNAi plants was initially slower than 

pHG12 controls but they ultimately grew to equivalent size, without 

further obvious morphological differences then flowered and set seed.   

Independent lines of T2 UBP_RNAi (10 lines) and pHG12 (2 lines) seed were 

grown on selective plates. In kanamycin resistant seedlings of the T2 

generation, no clear difference in growth or anthocyanin accumulation was 

seen between the UBP_RNAi and pHG12 seedlings (data not shown) and 

individual plants from each line were transferred to soil and grown to 

harvest seeds.   

Co-silencing of AtUBP12 and AtUBP13 genes was assessed in isolated T2 

plants by RT-PCR (Figure 3.18).  Total RNA was extracted from rosette 

leaves of 4 week old T2 UBP_RNAi and pHG12 plants then the relative 

expression of AtUBP12 and AtUBP13 mRNA was assessed by RT-PCR using 

primers specific for AtUBP12 (AtUBP12_KD5 and AtUBP12_KD3) or AtUBP13 

(AtUBP13_KD5 and AtUBP13_KD3).  AtUBP12 KD and AtUBP13 KD RT-PCR 

amplicons were selected from cDNA regions outside the UBP_RNAi 

fragment to ensure amplification from endogenous mRNAs rather than the 

overexpressed transgenic UBP_RNAi fragment (Figure 3.18 A). 

Ten independent T2 UBP_RNAi lines were analysed as the efficiency of 

hpRNAi has been reported to vary significantly between different 

transgenics (Helliwell and Waterhouse, 2003).  RT-PCR analysis of the 10 

independent UBP_RNAi lines demonstrated a clear reduction in mRNA 

levels of both AtUBP12 and AtUBP13 relative to pHG12 controls in at least 

5 of the selected UBP_RNAi  individuals (Figure 3.18 B, UBP_RNAi #1, #2, 

#6, #9 and #10).  In UBP_RNAi lines #2 and #6, densitometry analysis  
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Figure 3.17  Arabidopsis UBP_RNAi T1 transgenics demonstrate reduced  

growth and increased anthocyanin accumulation relative to 

pHG12 controls. 

 
Arabidopsis T1 UBP_RNAi transformants (upper panel) and pHG12 vector 

transformants 21 days post germination on kanamycin selective plates 

(kanamycin resistant seedlings were transferred to fresh selective plates 14 

days post germination). 
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Figure 3.18   Expression analysis of AtUbp12 and AtUbp13 in Arabidopsis  

UBP_RNAi T2 generation. 

 

RT-PCR analysis of Arabidopsis UBP_RNAi T2 plants. (A) Domain diagrams 

of AtUbp12 and AtUbp13 indicating the respective locations of RT-PCR 

amplicons (white boxes - AtUbp12 KD and AtUbp13 KD) amplified to 

analyse gene silencing and cDNA fragment (red box) selected for 

UBP_RNAi silencing construct.  Total RNA was extracted from T2 kanamycin 

selected, 5 week old Arabidopsis plants: UBP_RNAi (ten independent lines) 

and HG Vector (two independent lines).  RNA was used for RT-PCR and 

gene expression was analysed (B) using specific primers for AtUbp12 (30 

cycles), AtUbp13  (30 cycles) and Actin (25 cycles). 
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indicated mRNA level reductions of 69% and 65% for AtUBP12 and 83% and 

81% for AtUBP13 respectively (Figure 3.18 B).  Having identified transgenic 

plants with efficient co-silencing of AtUBP12 and AtUBP13 in the T2 

generation, 10 individual T2 seedlings from UBP_RNAi lines #2 and #6 and 

pHG12 control lines were transferred to soil and grown to set T3 seed.  

Homozygous T3 lines of UBP_RNAi and pHG12 were identified on kanamycin 

selective plates and confirmed homozygous lines were grown for further 

characterisation.   

Selected homozygous T3 lines of UBP_RNAi #2 and #6 and pHG12 were 

genotyped by PCR and the efficiency of AtUBP12 and AtUBP13 co-silencing 

was assessed by RT-PCR as before (Figure 3.19 A).  RT-PCR analysis of 

selected T3 lines indicated a large reduction in silencing efficiency of both 

AtUBP12 and AtUBP13 genes relative to pHG12 controls (Figure 3.19 B).  

Densitometry analysis indicated that in the T3 generation mRNA levels 

were reduced in UBP_RNAi lines #2 and #6 by 7% and 0% for AtUBP12 and 

43% and 13% for AtUBP13 respectively (Figure 3.19 B).  The marked 

reduction in silencing efficiency indicated AtUBP12 expression levels were 

effectively the same as wildtype and suggested that the expression of the 

HELLSGATE12 transgene was affected in the later T3 generation.   

Previous reports indicate that transgene expression in transformed 

Arabidopsis lines is highly variable due to the effect of gene silencing 

targeted against the transformed vector (Matzke et al., 1996).  This 

possibility could have been investigated using PCR with pHELLSGATE12 

vector specific primers to compare transgene expression in each respective 

transgenic generation.  An alternative northen blotting strategy could also 

have been employed to investigate pHELLSGATE12 efficiency by examining 

the accumulation of AtUBP12/AtUBP13 specific siRNAs in each generation 

of UBP_RNAi transformants.  The efficiency of AtUBP12 and AtUBP13 

silencing in the T1 generation was not assessed by RT-PCR but the reduced 

growth/anthocyanin accumulation phenotype of T1 UBP_RNAi 

transformants was not observed in the T2 and T3 generations.  These 

results suggests the possibility that co-silencing efficiency of AtUBP12 and 

AtUBP13 was maximal in the T1 generation and then reduced in the 

subsequent generations to a level that was less deleterious to the plant.  
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This possibility may explain why no reduced growth/anthocyanin 

accumulation phenotype was seen in T2 UBP_RNAi transgenic lines. 

The overall reduction in co-silencing efficiency observed between T2 and 

T3 UBP_RNAi lines may reflect the fundamental requirement for either 

AtUBP12 or AtUBP13 to allow normal plant development.  If the 

introduction of a silencing vector to reduce levels of endogenous AtUBP12 

and AtUBP13 is deleterious to the plant then the transgene maybe silenced 

in a shorter number of plant generations than is typically reported (Matzke 

et al., 1996).  The observed phenotype of the T1 UBP_RNAi transgenics 

suggests that AtUBP12 and AtUBP13 are functionally redundant particularly 

as no such phenotype was observed in the single gene T-DNA knockout 

lines of either gene.  No further studies were undertaken using the 

selected UBP_RNAi lines on the basis of their weak co-silencing of AtUBP12 

and AtUBP13 in the T3 generation. 
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Figure 3.19   Expression analysis of AtUbp12 and AtUbp13 in Arabidopsis  

UBP_RNAi T3 generation. 

 

RT-PCR analysis of Arabidopsis UBP_RNAi T3 plants.  Domain diagrams of 

AtUbp12 and AtUbp13 (A) indicating the respective locations of RT-PCR 

amplicons (white boxes - AtUbp12 KD and AtUbp13 KD) amplified to 

analyse gene silencing and cDNA fragment (red box) selected for 

UBP_RNAi silencing construct.  Total RNA was extracted from T3 kanamycin 

selected, 5 week old Arabidopsis plants: UBP_RNAi #2, UBP_RNAi #6 and 

pHG12.  This RNA was used for RT-PCR and gene expression was 

analysed in duplicate (B) using specific primers for AtUbp12 (27 cycles), 

AtUbp13 (27 cycles) and Actin (24 cycles). 
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3.7 Generation of ubp12-1 ubp13-1 double mutant lines  

To circumvent the issues of weak co-silencing identified in T3 UBP_RNAi 

lines, a double mutant line was created by cross-fertilising ubp12-1 and 

ubp13-1 plants.   

Arabidopsis ubp12-1 and ubp13-1 plants were grown to the appropriate 

developmental stage and cross-fertilisation was performed between 

female upb12-1 and male ubp13-1 parents.  Seeds were harvested from 

four successful crosses and the presence of respective T-DNA insertions in 

F1 ubp12-1 ubp13-1 plants was confirmed by PCR using genotyping primers 

as previously described (Figure 3.20 A).  Having established the presence 

of both T-DNA insertions in four independent upb12-1 ubp13-1 F1 plants, 

the zygosity of F2 seedlings from an individual F1 parent (line #1 Figure 

3.20 A) was assessed by PCR (Figure 3.20 B).     

Homozygous ubp12-1 ubp13-1 double mutants should segregate 1:16 in the 

F2 generation. Thirty F2 progeny of a single F1 ubp12-1 ubp13-1 parent 

were genotyped by PCR to isolate homozygous ubp13-1 lines (data not 

shown).  From this analysis, a single homozygous ubp13-1 line was 

recovered (ubp12-1 ubp13-1 F2 #24) which was found to be heterozygous 

for ubp12-1 (Figure 3.20 B).  The identification of a single ubp13-1 

homozygote in the F2 generation was lower than expected from the 1:4 

segregation ratio (which would predict at least 7 individual homozygotes in 

30 plants).  This outcome was assumed to result from variability in 

genomic DNA recovery which led to failed amplification in some genotyping 

reactions (data not shown).  Rather than screen more F2 progeny, seeds 

from the isolated cross line #24 were grown to characterise the F3 

population.   
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Figure 3.20 Genotype confirmation of ubp12-1 ubp13-1 genetic cross lines  

in the F1 and F2 generation. 

 
(A) Genomic DNA was isolated from F1 progeny of four independent ubp12-

1 ubp13-1 genetic crosses and checked by PCR for the presence of ubp12-1 

T-DNA (Ai) and ubp13-1 T-DNA (Aii) T-DNA insert amplicons.  (B) Genomic 

DNA was isolated from the F2 progeny (F2 plant #24) of the upb12-1 upb13-1 

(F1 plant #1) genetic cross and checked by PCR to confirm ubp12-1 (Bi) and 

ubp13-1 (Bii) zygosity. 
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During the isolation of ubp12-1 mutants, the suitability of sulfadiazene 

resistance segregation as an indicator of zygosity was confirmed.  During 

growth on selective sulfadiazene plates, PCR confirmed ubp12-1 

homozygotes exhibited 100% resistance whereas ubp12-1 heterozygotes 

exhibited 75% resistance (data not shown). This data confirmed the 

Mendelian co-segregation of sulfadiazene resistance with the ubp12-1 T-

DNA insertion rather than an unlinked T-DNA insertion effect.  

In the F3 generation, progeny of ubp12-1 ubp13-1 F2 #24 were expected to 

be segregating for the ubp12-1 allele and homozygous for the ubp13-1 

allele.  F3 progeny of ubp12-1 ubp13-1 F2 #24 were grown on sulfadiazene 

selection and twelve resistant seedlings were transferred to soil.   

The selected seedlings were expected to be segregating for the ubp12-1 

homozygotes:heterozygotes in a 1:2 ratio after the removal of sulfadiazene 

sensitive WT plants.  PCR genotyping of selected F3 ubp12-1 ubp13-1 lines 

indicated the expected homozygosity of ubp13-1 (Figure 3.21 A) but that 

all twelve lines were heterozygous for ubp12-1 (Figure 3.21 B).  Based on 

the removal of WT plants by sulfadiazene selection, 1 in 3 resistant F3 

plants should be homozygous for ubp12-1.  With an allele segregation ratio 

of 1:2, the probability of finding a homozygous ubp12-1 individual in 

twelve F3 progeny is over 99%.  This finding indicated that double mutant 

lines of ubp12-1 ubp13-1 were not viable and were probably embryo lethal. 

To confirm the PCR genotyping of F3 ubp12-1 ubp13-1 lines and examine 

potential embryo lethality, F4 progeny of each selected F3 line were 

examined on selective sulfadiazene plates.  Segregation of sulfadiazene 

resistance and thus ubp12-1 zygosity was observed in progeny of all twelve 

F3 lines (Table 3.3).  This result confirmed that all 12 selected F3 lines 

were heterozygous for ubp12-1 and indicated that homozygous double 

mutant ubp12-1 ubp13-1 lines are not viable.  For each selected ubp12-1 

ubp13-1 F3 line, 100 F4 individuals were germinated on sulfadiazene plates.  

Within each population of F4 individuals, ubp12-1 homozygotes, 

heterozygotes and WT were expected to segregate in 1:2:1 ratio with the 

according resistance or susceptibility to sulfadiazene (Figure 3.22). 
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Figure 3.21 Genotype confirmation of F3 ubp12-1 ubp13-1 genetic cross 

lines. 

   
Genomic DNA was isolated from the F3 progeny of upb12-1 upb13-1 #24 F2 

genetic cross (twelve independent lines) and checked by PCR to confirm 

ubp12-1 (A) and ubp13-1 (B) zygosity.  Flk denotes mutant allele specific T-

DNA flanking amplicon, Ins denotes mutant allele specific T-DNA insert 

amplicon. 
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Plant 
line 

Resistant 
Sulf 20 

Sensitive 
Sulf 20 

Non 
germinants

Aborted 
seedlings 

Non-germinants + 
Aborted seedlings (%)  

   
ubp12-1 91 0 3 0 3 

Col-0 0 53 12 0 18 
      

F4 #1 49 35 12 4 16 
F4 #2 52 29 10 9 19 
F4 #3 59 24 13 4 17 
F4 #4 51 32 11 6 17 
F4 #5 46 36 15 3 18 
F4 #6 50 26 12 12 24 
F4 #7 33 41 20 6 26 
F4 #8 46 34 18 2 20 
F4 #9 38 28 29 5 34 
F4 #10 47 28 21 4 25 
F4 #11 39 33 25 3 28 
F4 #12 48 29 22 1 23 

 
 
Table 3.3 Segregation analysis of ubp12-1 ubp13-1 F4 seedlings 20 days 

after germination on sulfadiazine plates. 
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A subset of F4 seedlings on each plate were phenotypically distinct from 

resistant and susceptible individuals (Figure 3.22 A and B) and were instead 

classified as aborted seedlings (Table 3.3 and Figure 3.22 C).  In the 

majority of cases, aborted seedlings developed green cotyledons of 

reduced size and limited root tissue but failed to grow beyond this stage 

(Figure 3.22 C).  Other individuals demonstrated even more severe 

developmental arrest, failing to progress beyond limited radicle 

emergence (Figure 3.22 C).   

The observed aborted seedling phenotypes did not resemble the chlorotic 

phenotype of sulfadiazene sensitive plants (Figure 3.22 B), indicating 

resistance was due to the presence of ubp12-1 and that aborted seedlings 

were double mutants of ubp12-1 and ubp13-1.  Sulfadiazene segregation 

data of the F4 progeny supported the proposition that aborted seedlings 

were homozygous ubp12-1 ubp13-1 double mutants. 

In this analysis, a segregating population of ubp12-1 alleles in a 

homozygous ubp13-1 background exhibited distinct phenotypes 

corresponding to the 1:2:1 WT:heterozygote:homozygote ratio.  As 

reported in Table 3.3, from each parental F3 line approximately 25% of F4 

progeny were sulfadiazene sensitive, 50% were sulfadiazene resistant and 

the remaining 25% were either non-germinants or aborted seedlings.  The 

segregation data indicates that collectively, non-germinants and aborted 

seedlings account for the expected number of ubp12-1 ubp13-1 

homozygotes in the F4 population and that double mutants have a range of 

developmental arrest phenotypes ranging from non-germination to seedling 

lethality.   

The observed differences in seedling abortion phenotype may reflect 

incomplete genetic penetrance in one or both of the T-DNA mutants.  

Variations in penetrance may allow sufficient AtUBP12 or AtUBP13 gene 

expression to facilitate the limited development of the seedling seen in F4 

progeny.  The variable number of aborted seedlings seen in different F4 

populations (Table 3.3) suggests that homozygous ubp12-1 ubp13-1 double 

mutants may actually be embryo lethal and fail to germinate with aborted  
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Figure 3.22  Segregation analysis of ubp12-1 ubp13-1 F4 plants on 

sulfadiazene selective plates. 

 
F4 generation seedlings of ubp12-1 ubp13-1 genetic cross twenty days after 

germination on sulfadiazine selective agar plates. (A) ubp12-1, (B) Col-0 

and (C) ubp12-1 ubp13-1 F4. 
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seedlings representing partial escapes from this phenotype.  Visual 

inspection of T4 seed harvested directly from drying T3 siliques indicated no 

morphological differences to suggest embryo lethality (data not shown).  The 

reported data indicates that ubp12-1 ubp13-1 double mutants are not viable, 

an equivalent genetic cross between ubp12-2 and ubp13-2 alleles was 

subsequently made and F2 generation plants are currently being grown for 

analysis (data not shown).   

3.8 Discussion 

3.8.1 The Arabidopsis deubiquitinating enzymes 

Arabidopsis, like other eukaryotes, contains a large number of 

deubiquitinating enzymes which function to hydrolyse the various peptide 

and isopeptide bonds formed by ubiquitin in the cell.  Current research 

indicates that five distinct subclasses of deubiquitinating enzyme exist, 

four of which are variant cysteine proteases whilst the fifth class are zinc 

metalloproteases (Amerik and Hochstrasser, 2004). 

Using the sequences of various eukaryotic members of the UBP, UCH, 

Ataxin, Otubain and JAMM DUB families, a comprehensive analysis of DUBs 

present in the Arabidopsis genome was completed.  This analysis detected 

45 distinct Arabidopsis genes that encode DUB enzymes including newly 

discovered members of the Ataxin and JAMM classes that lack annotation 

to indicate their function as putative ubiquitin proteases. 

The characterised Arabidopsis JAMM domain DUBs correspond to RPN11, a 

regulatory subunit of the 26S proteasome (Verma et al., 2002a) and the 

related paralogs CSN5a and CSN5b which function as de-rubylating enzymes 

in the COP9 signalosome (Gusmaroli et al., 2007).  The crucial importance 

of RPN11 and CSN5a/CSN5b for Arabidopsis development has been 

established (Verma et al., 2002a) (Gusmaroli et al., 2007)  and the 

homology of other Arabidopsis JAMM domain enzymes to known regulators 

of RNA splicing (Staub et al., 2004) and protein trafficking (McCullough et 

al., 2004a) also suggests a fundamental role for these enzymes.  



 

 136

This analysis confirmed that the Arabidopsis UBP family is the largest and 

most divergent class of DUB with 27 members many of which fall into 

distinct subfamilies of between 2 and 5 members.  Previous studies have 

established that members of the UBP family regulate shoot development 

(Yang et al., 2007), male fertility (Doelling et al., 2007) and cell 

proliferation (Liu et al., 2008).  Redundancy of function has also been 

demonstrated within several UBP subfamilies (Liu et al., 2008) and that 

mutation of AtUBP14 confers a embryo lethal phenotype (Doelling et al., 

2001).  The remaining 20 UBP enzymes, of which 6 are single copy genes, 

are currently not functionally characterised. 

3.8.2 Potential involvement of UBPs AtUBP12 and AtUBP13 in disease 
resistance signalling 

Following the reported transcriptional suppression of a solanaceous UBP 

gene during HR in N. benthamiana (Kim et al., 2006), experiments were 

conducted to investigate possible involvement of the orthologous 

Arabidopsis UBP enzymes AtUBP12 and AtUBP13 in disease resistance.  A 

prior analysis of segmental chromosome duplication (Blanc et al., 2003) 

indicated that AtUBP12 and AtUBP13 arose from a gene duplication event 

and their recent evolutionary divergence was confirmed in a phylogenetic 

analysis of the Arabidopsis UBP enzymes. 

Time course induction studies indicated a clear upregulation of both 

AtUBP12 and AtUBP13 in response avirulent Pseudomonas syringae 

expressing avrB  and following treatment with salicylic acid.  The large 

transcriptional induction of both AtUBP12 and AtUBP13 in response to SA 

treatment suggests a more general role for these proteins in disease 

resistance signalling.  The extent of AtUBP12/AtUBP13 gene induction 

following SA treatment provides a clear molecular phenotype which could 

be further characterised using realtime PCR and mutant lines that are 

disrupted at different signalling nodes within SA responsive SAR activation 

pathways (Durrant and Dong, 2004).  The induction of AtUBP12 and 

AtUBP13 in response to other established disease signalling hormones such 

as jasmonate and ethylene (Bostock, 2005) could also be investigated using 

this system.   
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The reported data suggests that transcriptional control of AtUBP12 and 

AtUBP13 expression may be relevant to their function and the 

identification of a shared promoter region between the two genes 

appeared to support this possibility.  Despite detectable conservation of 

upstream regions between AtUBP12 and AtUBP13, formal promoter analysis 

failed to detect conserved promoter elements between these genes. 

Differences in the extent of induction between AtUBP12 and AtUBP13 

indicate that whilst both genes respond to specific stimuli, their respective 

promoters may also confer specific regulation on each gene.  Unconserved 

regions either within the reported ‘minimal’ promoter region or further 

upstream of each respective gene may confer such specific regulatory 

effects.  Based on the induction of AtUPB12 and AUBP13, delineation of an 

approximate promoter region would aid future transgenic studies allowing 

the design of own-promoter or promoter-reporter constructs for each 

respective gene. 

Characterisation of single gene ubp12 and ubp13 mutant alleles during 

infection with virulent and avirulent Pseudomonas syringae indicated no 

alteration in the disease resistance of either allele.  This finding raises the 

possibility that either AtUBP12 and AtUBP13 are not involved in resistance 

against the Pseudomonas syringae strains used in this study or that they 

regulate a specific aspect of resistance which has a minimal consequences 

during Pseudomonas syringae infection. 

The potential involvement of AtUBP12 and AtUBP13 in disease resistance 

was investigated by using Pseudomonas syringae expressing either avrB or 

avrRpt2 avirulence genes to initiate resistance through RPM1 or RPS2 R 

genes respectively.  As previously discussed, the NBS-LRR R-genes are 

broadly divided into two functional subclasses based on the N-terminal 

presence of either a Toll interleukin1 domain (TIR-NBS-LRR) or a coiled-coil 

domain (CC-NBS-LRR) (Dangl and Jones, 2001).  Disease resistance 

signalling associated with TIR-NBS-LRR and CC-NBS-LRR R proteins is 

mediated by distinct pathways utilising either NDR1 or EDS1 respectively 

(Aarts et al., 1998).  Both RPM1 and RPS2 belong to the CC-NB-LRR class of 

R genes which are associated with signalling through the NDR1.  It is 
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possible that AtUBP12 and AtUBP13 are functioning specifically in the TIR-

NBS-LRR signalling pathway although induction of both genes by Pst 

DC3000 avrB suggests otherwise.  Using experimental gene induction and 

resistance assays described in this study, the role of AtUBP12 and AtUBP13 

in EDS1 mediated signalling could be assessed using Pseudomonas 

expressing avrRps4 which triggers disease resistance through the TIR-NBS-

LRR class R gene RPS4 (Gassmann et al., 1999). 

The reported gene induction data warrants a broader investigation into the 

involvement AtUBP12 and AtUBP13 in resistance against different pathogen 

and R gene classes.  Established pathogen systems are available to test 

defence against bacteria, fungi, oomycetes and viruses in Arabidopsis 

(Kunkel, 1996) allowing the further analysis of basal and gene-for-gene 

defence in AtUBP12 and AtUBP13 mutants. 

The bacterial growth assays performed in this study specifically examined 

local resistance to Pseudomonas rather than perturbations to systemic 

acquired resistance (SAR).  Given that both AtUBP12 and AtUBP13 are 

highly induced by SA treatment, their potential role in SAR development 

could be investigated further.  Gene induction studies using ubp12 and 

ubp13 mutant lines and established SA responsive PR marker genes would 

be a suitable starting point for such studies. 

3.8.3 Functional redundancy between AtUBP12 and AtUBP13 

The detection of altered downstream signalling or perturbations in 

pathogen resistance in ubp12 and ubp13 mutants may be obscured by 

functional redundancy between the two genes.  Functional redundancy 

typically results from incomplete speciation between duplicated genes 

(Pickett and Meeks-Wagner, 1995) and has been previously reported 

between the Arabidopsis UBPs: AtUBP15 and AtUBP16 which regulate cell 

proliferation and leaf development (Liu et al., 2008).  In this study, 

potential functional redundancy between AtUBP12 and AtUBP13 was 

investigated using approaches based on transgenic RNAi silencing and 

genetic crossing to obtain double mutants. 



 

 139

Results obtained using transgenic expression of a AtUBP13 hpRNA fragment 

to induce co-silencing of AtUBP13 and AtUBP12 indicated a functional 

overlap between these genes.  The reduced growth/anthocyanin 

accumulation phenotype seen specifically in T1 UBP_RNAi transformants 

indicated the requirement of either AtUBP12 or AtUBP13 for normal plant 

development.  Careful consideration of the AtUBP13 mRNA region selected 

to induce co-silencing of AtUBP12 and AtUBP13 makes off-target silencing 

an improbable explanation for the phenotype seen in UBP_RNAi T1 plants.   

The UBP_RNAi T1 phenotype was observed in plants derived from different 

transformation events thus excluding the possibility that observed 

phenotypes were linked to the disruption of an existing gene by transgene 

insertion event.  The loss of reduced growth phenotype seen in the T2 and 

T3 generations suggests a possible depletion in transgene expression 

leading to a decrease in co-silencing efficiency in latter transgenic 

generations.  The silencing of inserted transgenes is frequently observed 

and represents an obstacle to the development of stable transgenic lines in 

many cases (Matzke et al., 1996).    

RT-PCR analysis of different T2 generation UBP_RNAi lines demonstrated 

marked variability in the extent of co-silencing.  Despite co-silencing levels 

of AtUBP12 and AtUBP13 of at least 70% in some UBP_RNAi T2 lines, there 

was no development of the growth reduction phenotype seen in the T1 

generation.  This observation suggests that T1 co-silencing efficiency of 

AtUBP12 and AtUBP13 was potentially higher than that seen in the most 

efficient T2 lines to cause the resulting phenotype.   

On the basis of these observations, it would seem that endogenous 

AtUBP12 and AtUBP13 mRNA levels need to be reduced beyond 70% to 

demonstrate the observed growth reduction phenotype and that markedly 

depleted levels of AtUBP12 and AtUBP13 in the cell are still sufficient to 

provide wild type signalling capacity.  Further characterisation of 

UBP_RNAi lines is being undertaken to establish if co-silencing effects vary 

within the life-cycle of the plant and to what extent transgene expression 

is affected in latter generations. 
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Attempts to isolate homozygous ubp12-1 ubp13-1 double mutant lines 

indicated that simultaneous abolition of transcript from both genes 

conferred a seedling lethal phenotype and supported the conclusion from 

the UBP_RNAi experiments that collectively, AtUBP12 and AtUBP13 serve a 

key function in development. 

Analysis of the F4 cross population where upb13-1 was homozygous and 

ubp12-1 was segregating demonstrated a range abortion phenotypes in 

approximately 25% of plants suggesting that double homozygotes were  

developmentally impaired.  Issues related to the genetic penetrance of the 

ubp12-1 or ubp13-1 mutations could be obscuring the fact that double 

mutant lines lacking AtUBP12 and AtUBP13 may  actually be embryo lethal 

rather than seedling lethal. 

The observed seedling lethal phenotype of proposed ubp12-1 ubp13-1 

double mutant plants is currently being confirmed in ubp12-2 ubp13-2 

cross plants (data not shown).  The reported seedling lethal phenotype in 

the F4 generation of ubp12-1 ubp13-1 plants does suggest that reproductive 

events leading to the development of F3 embryos of double homozygotes is 

intact and that observed lethality is not a sex-linked effect.  Issues related 

to the potential sex linkage of the observed lethality phenotype will need 

to be examined in future reciprocal male and female crosses between each 

ubp12 and ubp13 mutant line. 

The conservation of AtUBP12/AtUBP13 orthologs in other sequenced 

eukaryotes implies that they may function to serve an essential signalling 

role in the cell.  On this basis, lethality resulting from the disruption of 

both AtUBP12 and AtUBP13 genes is entirely plausible and has been 

previously reported for the Arabidopsis UBP enzyme AtUBP14 which is also 

conserved in eukaryotes rather than plants (Doelling et al., 2001). 

3.8.4 AtUBP12 regulates the floral transition signal  

The observed early flowering phenotype of upb12 mutant lines indicates 

that functional redundancy between AtUBP12 and AtUBP13 is not 

complete.  Early flowering in multiple ubp12 null alleles was particularly 
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evident under short day growth conditions and future work aims to 

complement this phenotype with transgenic AtUBP12 overexpressing lines. 

The importance of ubiquitination in the maintenance of circadian rhythms 

and regulation of flowering pathways is well established (Turck et al., 

2008) and AtUBP12 represents the second reported DUB to be implicated in 

flowering regulation (Liu et al., 2008). 

The phenotypic observations suggest that AtUBP12 functions to stabilise a 

floral repressor which is presumably ubiquitinated appropriately under long 

day conditions as part of the floral signal.  The loss of AtUBP12 in ubp12 

mutant alleles presumably results in the increased ubiquitination of the 

target repressor causing its degradation and resulting in floral induction.  

The severe abolition of short day induced floral repression seen in ubp12 

mutants suggests that AtUBP12 may function as a regulator of photoperiod 

perception.  Future studies aim to investigate disregulation of the light 

dependent pathway in ubp12 mutants focussing initially on temporal 

CONSTANS accumulation (Turck et al., 2008).   

The contributions of the autonomous and vernalisation pathways to the 

regulation of flowering are also well characterised (Komeda, 2004).  A 

major point of integration between the autonomous and vernalisation 

pathways is at the FLOWERING LOCUS C (FLC) locus.  FLC is a MADS-box 

transcription factor which functions as a key floral repressor (Rouse et al., 

2002).  Elevated levels of FLC are associated with late flowering and during 

the floral transition FLC expression is repressed by components of the 

autonomous and vernalisation pathways (Rouse et al., 2002).  FLC 

repression is mediated by chromatin modification where changes in 

chromatin condensation status affect expression of FLC (He and Amasino, 

2005).  Previous studies have identified numerous signalling proteins that 

influence chromatin status through histone modification to induce FLC 

repression (Bastow et al., 2004) (He et al., 2003).  A recent discovery 

reported the direct involvement of ubiquitination in chromatin based FLC 

activation implicating the E2 ubiquitin conjugating enzymes AtUBC1 and 

AtUBC2 as FLC transcriptional regulators which promote floral repression 

(Xu et al., 2008).  
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Future work aims to clarify if the early flowering phenotype of ubp12 

mutants can be linked to the established knowledge of FLC’s role in floral 

signalling.  Initial experiments to examine early suppression of FLC 

transcript levels in ubp12 mutants under long and short days would be a 

start point for such studies.   

Future studies may also investigate potential linkage of AtUBP12 to FLC 

chromatin status using chromatin immunoprecipitation (ChIP) assays.  

Chromatin is modified by a variety post-translational modifications 

including acetlyation, methylation, sumoylation and ubiquitination 

(Berger, 2001) to exert regulatory outcomes on gene expression.  In 

ubiquitination, regulation of chromatin status of histones H2B and H2A by 

monoubiquitination is the most frequently detected mode of modification 

(Weake and Workman, 2008).  Corresponding regulatory deubiquitination 

of histones has also been reported (Weake and Workman, 2008), and it is 

possible that AtUBP12 functions as regulator of chromatin architecture at 

the FLC locus to modify FLC expression . 

The observation of aerial rosette structures on short day grown ubp12 

mutants also suggests linkage of AtUBP12 to FLC signalling.  Previous 

studies in the Arabidopsis Sy-0 ecotype have established that FLC 

expression regulates late flowering and the formation of aerial rosettes is 

due to its synergistic activation by FRI (FRIGIDA) (Poduska et al., 2003) and 

HUA2 (Doyle et al., 2005).  

Studies by Wang et al. indicated that overexpression of FLC caused late 

flowering in primary and axillary meristems and that this late flowering 

causes the distinctive Sy-0 morphology (Wang et al., 2007).  The 

observation of aerial rosettes in ubp12 mutants suggests analogy to the Sy-

0 phenotype whilst the observed early flowering phenotype is the reverse 

of that seen in Sy-0 plants.  It remains a possibility that AtUBP12 functions 

in the leaf to regulate FLC expression to control flowering time and the 

axillary meristem to perceive an FLC induced signal that influences lateral 

shoot morphology.  The local and meristematic function of FLC signalling 

has been established (Searle et al., 2006) but the possible involvement of 

AtUBP12 requires further investigation. 
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Genetic approaches to link AtUBP12 to known flowering pathways may also 

form the basis of future studies.  The generation of crosses between ubp12 

and known late flowering mutants from the autonomous, giberrellin, 

vernalisation and light dependent pathways (Turck et al., 2008) would 

allow phenotypic analysis of alterations in ubp12 associated early 

flowering. 

3.8.5 Potential targets of AtUBP12 and AtUBP13 

Phenotypes seen in UBP_RNAi and proposed ubp12-1 ubp13-1 double 

mutant lines indicate that both AtUBP12 and AtUBP13 proteins can 

recognise and deubiquitinate common targets which regulate plant 

development.  Conversely, the induction of early flowering seen only in 

ubp12 mutants suggests the existence of a specific additional target (or 

targets) for AtUBP12 which, when stabilised, promote the transition to 

flowering.  Induction data also indicates a coordinated response of 

AtUBP12 and AtUBP13 to pathogen and SA signals implying a further 

possible target (or targets) that is stabilised during disease resistance 

signalling.   

The simplest interpretation of these results suggests that AtUBP12 and 

AtUBP13 function redundantly to regulate plant development and 

potentially disease resistance by stabilising target substrates that are 

presumably distinct.  Functional overlap between AtUBP12 and AtUBP13 

gene products presumably occurs due to the conservation of signal 

responsive elements in their promoters following gene duplication and the 

extent of retained amino acid similarity between the proteins.  The high 

level of amino acid identity between AtUBP12 and AtUBP13 presumably 

facilitates deubiquitination of common target proteins giving rise to 

functional redundancy.  As one member of a partially redundant pair of 

UBP enzymes, AtUBP12 has gained additional substrate specificity to 

stabilise a floral suppressor. 

Given that thousands of distinct target proteins can potentially be 

ubiquitinated by the Arabidopsis ubiquitination machinery (Vierstra, 2003), 

the promiscuity of deubiquitinating enzymes (45 identified in this study) 



 

 144

for multiple target substrates is entirely plausible.  Specificity of DUBs for 

multiple targets has been previously reported for HAUSP (Herpesvirus 

Associated Ubiquitin Specific Protease) (Hu et al., 2006), which is the 

human ortholog of AtUBP12/AtUBP13 and is proposed to stabilise different 

substrates in response to specific stimuli (Li et al., 2004). 

How AtUBP12 and AtUBP13 are potentially regulated to stabilise distinct 

substrates in response to different signalling cues remains unclear.  

Previous studies have reported that the conformational activation of UBPs 

prevents inappropriate stabilisation of targets suggesting a role for 

interacting partners to modulate enzyme activity (Amerik and 

Hochstrasser, 2004).  The presented data suggests that transcriptional 

activation of AtUBP12 and AtUBP13 may confer a degree of regulation on 

their function and raises the possibility that regulation of flowering time 

by AtUBP12 could also be controlled by tissue specific expression.  

Alternatively, the distinction between different substrates of AtUBP12 and 

AtUBP13 may be based on the post-translational modification of function  

specific target proteins.  In the case of the human UBP HAUSP, Hu et al. 

(Hu et al., 2006) suggest that substrate recognition may be analogous to 

the required phosphorylation of F-box substrates prior to their 

ubiquitination (Cardozo and Pagano, 2004).  Hu et al. suggest that 

conserved serine residues found in the binding motifs of all currently 

characterised HAUSP substrates may actually be phosphorylated and that 

their stabilisation by HAUSP is modulated by dephosphorylation (Hu et al., 

2006). 

The results presented in this chapter indicate that AtUBP12 and AtUBP13 

proteins have redundant and non-redundant roles serving key functions in 

distinct plant signalling pathways.  Presumably, AtUBP12 and AtUBP13  

function to stabilise multiple (and in some cases distinct) targets.  The 

observed seedling lethality of ubp12-1 ubp13-1 double knockouts indicates 

that a subset of these targets are essential for plant development.    

4 TEST 
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Chapter 4 – Solanaceous UBP12 orthologs 

4.1 Introduction 

Results reported in Chapter 3 suggest that genetic redundancy between 

AtUBP12 and AtUBP13 in Arabidopsis may be obscuring potential disease 

signalling phenotypes.  The finding that ubp12 ubp13 double mutants are 

developmentally impaired indicated that alternative approaches to study  

the potential functions of UBP12 in disease resistance signalling would be 

required. 

Investigations were conducted to identify solanaceous orthologs of 

AtUBP12 and AtUBP13 which would facilitate UBP12 loss of function studies 

in N. benthamiana using Virus Induced Gene Silencing (VIGS).  There have 

been no previous reports which identify or characterise Solanaceous 

deubiquitinating enzymes and this chapter describes experiments leading 

to the identification of a novel full length cDNA encoding NtUBP12, the 

tobacco ortholog of AtUBP12. 

As discussed previously in Chapter 3.6, plant perception of non-host 

dsRNAs causes initiation of homology dependent mRNA degradation termed 

post transcriptional gene silencing (PTGS).  VIGS is the principle method 

for loss of function studies in N. benthamiana and utilises viral expression 

of cloned host cDNA fragments to trigger transient PTGS against 

corresponding endogenous host mRNAs (Ratcliff et al., 2001).  VIGS is 

commonly used to investigate plant disease resistance signalling and has 

previously been applied successfully to characterise defence regulators 

such as SGT1 (Peart et al., 2002b) and EDS1 (Peart et al., 2002a). 

This chapter reports the application of VIGS to perform reverse genetic 

studies of NbUBP12 function in N. benthamiana during disease resistance 

signalling.  Solanaceous EST data and various PCR approaches were used to 

determine the full length cDNA sequence of UBP12 from tobacco. Using 

derived NtUBP12 sequence data, VIGS silencing vectors were generated 

and the efficiency of gene silencing was established. 
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Having generated constructs for efficient gene silencing of NbUBP12, 

experiments were performed to investigate its potential role in disease 

resistance signalling.  Cell death assays were conducted during NbUBP12 

silencing to examine its role in HR signalling mediated by R genes 

associated with fungal (Cf-9) and bacterial (Pto) disease resistance.  

Alterations to basal resistance by NbUBP12 silencing was investigated by 

bacterial growth assays following infection with virulent Pseudomonas 

syringae pv. tabaci.  This chapter also reports data from our collaborators 

who have utilised these NbUBP12 silencing constructs to examine its role in 

viral resistance against Tobacco Mosaic Virus (TMV).  

4.2 Identification of solanaceous UBP12 orthologs 

4.2.1 Solanaceous EST analysis 

To investigate the function of NbUBP12 using VIGS, sequence data for 

solanaceous orthologs of Arabidopsis AtUBP12 was required.  The existence 

of at least a single AtUBP12 ortholog was confirmed in a recent microarray 

study comparing transcript changes during HR and PCD in N. benthamiana 

(Kim et al., 2006).  The putative UBP12 EST KS01043A12 was recovered 

from the hot pepper EST database at the Korea Research Institute of 

Bioscience and Biotechnology (http://genepool.kribb.re.kr).  This EST and 

the AtUBP12 cDNA sequence were used to query various solanaceous plant 

EST databases at The Institute for Genome Research (TIGR) 

(http://www.tigr.org).   

Detected EST matches to AtUBP12 cDNA are presented in Table 4.1, only 

high-scoring ESTs (probability score < 1e-10) were included for further 

analysis.  Due to the current absence of a completely sequenced 

solanaceous genome, genomic approaches instead rely on the availability 

of EST database resources such as TIGR.  The gene indices at TIGR report 

groups of GenBank published ESTs that correlate to single genes described 

with comparative annotation as Tentative Consensus (TC) entries 

(Quackenbush et al., 2001).  EST  libraries  from tobacco (N. tabacum), N. 

benthamiana and potato (S. tuberosum)  were queried with AtUBP12 cDNA 
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which detected 13, 5 and 8 high scoring EST matches respectively (Table 

4.1).   

Within the EST matches, ORF regions were identified by alignment against 

AtUBP12 and corresponding DNA regions were excised from the respective 

EST sequence.  Plausible sequence regions obtained using this approach 

(Figure 4.1 A) were used for subsequent alignment analysis and primer 

design.  Extracted sequence regions from recovered ESTs were aligned to 

investigate the possibility that two copies of UBP12 also exist in 

solanaceous plants (data not shown).  Alignment of 7 tobacco ESTs 

indicated no consistent sequence variations indicating that each cDNA 

originated from the same genomic template.  This result supports the prior 

conclusion that an ancestral UBP12 gene underwent duplication after the 

divergence of the Solanaceae (Chapter 3.3). 

Sequence coverage from the recovered UBP12 ESTs was insufficient to 

reconstruct full length cDNA so primer sequences were instead derived for 

5’ and 3’ termini to amplify the complete 3.3 kb NtUBP12 coding sequence 

from tobacco cDNA.  A schematic alignment of the extracted solanaceous 

EST regions against AtUBP12 cDNA is presented in Figure 4.1.  For the 3’ 

termini of NtUBP12, a consensus sequence was derived from three tobacco 

and N. benthamiana ESTs (Figure 4.1 A) from which a 21 bp primer 

(NtUbp12_TAG) was designed.  Sequence coverage of the 5’ start codon 

region was provided by a single potato EST (Figure 4.1 A) from which a 21 

bp primer was designed (StUbp12_ATG).  The use of a potato cDNA as a 

template for primers to amplify tobacco cDNA was considered appropriate 

based on sufficiently close phylogenetic relationship between these species 

which typically allows DNA hybridisation to occur (Brigneti et al., 2004). 

Attempts to PCR amplify NtUBP12 from tobacco cDNA using the designed 

primers generated limited quantities of full length 3.3 kb product.    

Instead, an alternative cloning strategy was adopted whereby overlapping 

fragments from 5’ and 3’ region of NtUBP12 (Figure 4.1 B) were cloned and 

sequenced. Using EST sequence data, internal NtUBP12 primers were 

designed (NtU12_2176_3 and NtU12_1677_5) and used in combination with 

NtUBP12 5’ and 3’ termini primers to PCR amplify 5’ (NtUbp12_5PF) and 3’
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Species TIGR  
TC Number 

Genbank 
Associated 

ESTs 

Tissue of  
Origin 

N. tabacum TC8160 EB682588 
EB426207 
DV160278 
CV021553 

Seedling 
Flower 

Seedling 
Mixed 

N. tabacum TC35889 EB428655  Flower 
N. tabacum TC13270 EB450063 

DW002122 
Leaf 
Root 

N. tabacum TC9908 
 

DW002622 
BP130546 
AM824168 
EB445701 

Root 
BY-2 Cells 
Seedling 

Root 

N. tabacum Singleton EB430524 Leaf 
N. benthamiana TC9007 CK280687 

CK280688 
CK280689 
CK280686 

Mixed 
Mixed 
Mixed 
Mixed 

S. tuberosum TC160358 BQ117852 
BG890341 
BF052779 
BM113079 

Mixed 
Tuber 
Leaf 
Root 

S. tuberosum Singleton CK640776 Leaf 

 

Table 4.1 Solanaceous UBP12 ESTs recovered from TIGR gene indices. 

TIGR gene indices for Nicotiana tabacum, Nicotiana benthamiana and 

Solanum tuberosum where queried with the AtUBP12  cDNA sequence and 

high scoring TC entries were recovered. 
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(NtUbp12_3PF) cDNA fragments (Figure 4.1 B).  Amplified NtUBP12 

fragments were cloned and sequenced in duplicate to obtain a final 

consensus cDNA sequence for NtUBP12. 

4.2.2 RACE PCR to determine NtUBP12  5’ terminus sequence 

The final cDNA sequence obtained for NtUBP12 was derived entirely from 

tobacco cDNA amplified products with the exception of the 5’ terminal 

primer region which was designed using sequence data from a potato EST 

(CK640776 – Figure 4.2 A).  Rapid Amplification of cDNA Ends (RACE) PCR 

was performed using tobacco cDNA to verify the NtUBP12 cDNA sequence 

in the 5’ terminal primer region.  Using the established NtUBP12 sequence, 

internal primers were designed for sequential SP1, SP2 and SP3 RACE PCR 

reactions (Figure 4.2 A).  RACE primers were designed to hybridize against 

NtUBP12 cDNA at 903 bp (NtUbp12_903RC), 742 bp (NtUbp12_742RC) and 

554 bp (NtUbp12_554RC) relative to the established start codon (Figure 4.2 

A).  Using tobacco total RNA, NtUBP12 specific cDNA was synthesised and 

used as a template for sequential RACE PCR reactions to obtain a final 554 

bp product (Figure 4.2 A).  The final RACE PCR product was cloned and two 

individual clones were sequenced to confirm the NtUBP12 cDNA sequence 

in the 5’ terminal region.  The final verified cDNA sequence of NtUBP12 

was deposited into GenBank under the accession number FJ264198.   

Based on an alignment of the catalytic domains of AtUBP1, AtUBP2, 

AtUBP3, AtUBP4, AtUBP5, AtUBP6, AtUBP12, AtUBP13 and NtUBP12 a 

phylogeny was inferred using MEGA (Figure 4.2 B).  The phylogeny 

demonstrated significant clustering (bootstrap confidence 100%) of 

AtUBP12 and AtUBP13 with NtUBP12 conforming that these genes are 

orthologous (Figure 4.2 B).  Sequence analysis of NtUBP12 indicated it 

shared 83% amino acid identity with AtUBP12 and Pfam analysis confirmed 

the presence of an N-terminal MATH/TRAF domain (PF00917) as detected 

in the Arabidopsis orthologs (Figure 4.2 B). 
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Figure 4.1  NtUBP12 EST summary and full length cDNA determination. 

(A) Summary of sequence regions extracted from Solanaceae EST matches 

(reported in Table 4.1) based on alignment to AtUBP12.  (B) NtUBP12 full 

length cDNA amplicons, relating to the 5' end (Nt Ubp12_5PF) and 3' end 

(Nt Ubp12_3PF) of NtUBP12. 
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500 bp

TC8160 
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TC13270 
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500 bp
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AtUBP12 cDNA

AtUBP12 cDNA

ATG

ATG
A

B
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Figure 4.2 RACE PCR strategy to establish 5' region of NtUBP12. 

(A) NtUBP12 amplicon locations for 5' RACE. NtUbp12_903, NtUbp12_742 

and NtUbp12_554 fragments were amplified in RACE SP1, SP2 and SP3 

reactions respectively.  (B) Phylogeny of NtUBP12 with a subset of 

Arabidopsis UBP enzymes.  Phylogeny inferred by neighbor joining from an 

alignment of UBP Cys and His box catalytic regions.  Phylogenetic tree 

accuracy was tested with 10,000 bootstrap replicates represented by 

percentage values at respective nodes.  Tree scale bar represents 

substitutions per site.  UBP protein domain diagrams indicate catalytic 

regions.  Additional domains as confirmed by Pfam analysis: Ubiquitin-like 

domain (black circle), Potential zinc finger (black diamond) and MATH/TRAF 

domain (white circle).  Corresponding alignment of Cys box region from 

AtUBP12, AtUBP13 and NtUBP12 with active site cysteine (highlighted in 

red) is indicated. 
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4.3  NtUBP12 transcript analysis during Cf-9/Avr9 elicited HR 

To investigate the potential involvement of NtUBP12 in plant disease 

resistance signalling, the Cf-9/Avr9 elicitor system was used to elicit 

hypersensitive cell death in tobacco.  As previously described, the protein 

expressed from C. fulvum avirulence gene Avr9 triggers disease resistance 

in host tomato (L. esculentum) plants mediated by the product of host R 

gene Cf-9.  The cloning of Cf-9 and Avr9 genes has allowed the 

development of non-host systems to facilitate convenient study of the 

plant hypersensitive response (HR) (Hammond-Kosack et al., 1998).  In this 

study, transgenic tobacco lines overexpressing the C. fulvum Avr9 gene 

were used to obtain Avr9 peptide in solution (recovered by vacuum 

extraction) (Hammond-Kosack et al., 1998).  Various dilutions of extracted 

Avr9 peptide were infiltrated into transgenic tobacco overexpressing the 

tomato Cf-9 gene to elicit the hypersensitive response.   

To  examine changes in NtUBP12 transcription during the hypersensitive 

response, NtUBP12 mRNA levels were measured by RT-PCR during Avr9 

elicited hypersensitive cell death in Cf-9 tobacco.  The HR was elicited in 

Cf-9 tobacco using a titrated stock of Avr9 peptide solution to cause 

complete tissue necrosis in 8 – 10 hours following infiltration.  A parallel 

wounding control experiment was conducted using Avr4 peptide solution to 

infiltrate Cf-9 tobacco where no HR was induced (Thomas et al., 2000).  

Leaf tissue samples were taken at 0, 30, 60, 120 and 240 minutes after 

infiltration and corresponding cDNA samples were normalised using primers 

for tobacco ACTIN2 primers as constitutively expressed control gene 

(Figure 4.3).  Transcript levels of the tobacco cell death marker gene 

hsr203J (Pontier et al., 1998) during cell death were measured as a 

positive experimental control using specific primers (Hsr203J_5 and 

Hsr203J_3).  The hsr203J marker underwent a marked induction following 

Avr9 treatment (maximal at 240 minutes) and lesser induction following 

Avr4 treatment (Figure 4.3).  The sensitivity of hsr203j to both wounding 

and cell death signals has been established (Durrant et al., 2000) and 

demonstrated the expected positive induction pattern in this study.  

NtUbp12 mRNA levels were measured using specific primers 

(NtU12_742_KD_5 and NtU12_742_KD_3) and displayed differential  
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Figure 4.3     NtUBP12 is suppressed during Avr9 HR elicitation. 

Cf9 tobacco plants were infiltrated with solution containing either Avr4 or 

Avr9, and leaf samples were harvested at the time points indicated.  Total 

RNA was isolated and used for RT-PCR with specific primers for NtUBP12 

(28 cycles), hsr203J (28 cycles) and ACTIN (24 cycles). 
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expression in response to wounding and cell death signals.  NtUbp12 

transcript levels were unaltered during the Avr4 elicited wounding response 

but demonstrated a marked supression in the latter stages of the Avr9 

induced cell death timecourse (Figure 4.3).  Densitometry analysis indicated 

an Avr9 induced 6.5 and 2 fold decrease in NtUbp12 transcript levels at 240 

and 360 minutes respectively after Avr9 elicitor relative to the wounding 

control (Figure 4.3).   

The reported data indicates that NtUBP12 transcript levels are suppressed 

in the latter stages (240 minutes post infiltration) of Avr9/Cf9 elicited HR 

suggesting that the transcriptional control of NtUBP12 does not contribute 

to cell death initiation occurring in the 0 – 120 minute stage of the 

timecourse.  

4.4 VIGS based silencing of NbUbp12 

Having established the cDNA sequence of NtUBP12, this data was used to 

design constructs for VIGS that would facilitate transient reduction of 

UBP12 mRNA levels in the close tobacco relative N. benthamiana.  VIGS 

exploits an inherent plant anti-viral defence mechanism which leads to the 

sequence specific post-transcriptional gene silencing (PTGS) based on 

recognition of ‘foreign’ RNA molecules (Wang and Metzlaff, 2005).  In this 

study the Tobacco Rattle Virus (TRV) based system was used to initiate 

gene silencing through Agrobacterium mediated delivery of TRV vectors 

RNA1 and RNA2 into the plant cell (Ratcliff et al., 2001).  Following TRV 

culture inoculation, expressed viral progeny then spread into systemic 

emerging leaves.  The pTV00 vector encoding TRV RNA2 contains a cloned 

cDNA fragment from the silencing target gene and 21 – 24 days after virus 

culture inoculation PTGS causes depletion of target gene mRNA levels in 

new systemic leaves.   

When using the VIGS system, the progress and efficiency of silencing is 

typically monitored using positive control genes which cause a visible 

phenotype upon transcript depletion.  In this study, a 409 bp cDNA 

fragment of the Phytoene Desaturase (PDS) gene from N. benthamiana was 

cloned into pTV00 for use as a gene silencing positive control (Ratcliff et 
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al., 2001).  Silencing of PDS causes a photobleaching phenotype (Kumagai 

et al., 1995) as demonstrated in N. benthamiana plants 21 days after virus 

culture inoculation (Figure 4.4).  PDS gene silencing was used as a positive 

control for every VIGS experiment in this study and based on the 

development of photobleaching after 21 days the 4th, 5th and 6th emerging 

leaves were considered to be efficiently silenced (Figure 4.4).   

VIGS based gene silencing is typically initiated using sense cDNA fragments 

sized 200 – 800 bp from the target gene (Liu and Page, 2008).  To use the 

VIGS method, allowances should be made for potential silencing of related 

genes which may have homology to the target gene, causing so called ‘off 

target’ silencing.  Gene silencing of NbUBP12 was initiated using two non-

overlapping cDNA fragments (Figures 4.5 A and 4.6 A) which were selected 

from outside the protease catalytic region that is conserved in all UBP 

enzymes.   

Two pTV00 constructs were made, each containing a distinct NtUBP12 

cDNA fragment.  Constructs were named based on insert size with 

TRV:U12_562 containing a 562 bp fragment (product amplified using 

NtUbp12_562_5 and NtUbp12_562_3 primers) and TRV:U12_742 containing 

a 742 bp fragment (product amplified using NtUbp12_742_5 and 

NtUbp12_742_3 primers) (Figures 4.5 A and 4.6 A).  The potential for off 

target silencing from each NtUBP12 cDNA fragment was assessed by BLAST 

analysis against TIGR tobacco and N. benthamiana gene indices.  Querying 

the TIGR EST databases with the NtUBP12 562 bp and 742 bp fragments 

retrieved only high scoring TC entries previously identified in the initial 

solanaceous EST screen (Chapter 4.2).  NtUBP12 VIGS fragments were also 

BLAST queried against the Arabidopsis genome as a further screen for off 

target matches from a complete plant genome.  In this case AtUbp12 and 

AtUbp13 were recovered as top scoring matches (E values ~1e-25) with the 

third match having insignificant homology to the query sequence (E value 

~0.1).  No matches with significant homology to sequences other than 

Ubp12 were detected in this analysis, indicating that NtUBP12 VIGS 

constructs designed for this study should not induce off target gene 

silencing.
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Figure 4.4 Development of photobleaching in PDS silenced N. benthamiana 

N. benthamiana plants were inoculated with Agrobacterium carrying 

TRV:PDS silencing constructs and photographed following 21 days of 

growth under standard conditions.  Photographs represent 4th , 5th  and 6th 

new emerging leaves as indicated. 
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The efficiency of NbUBP12 silencing by TRV:U12_562 and TRV:U12_742 

constructs was assessed by RT-PCR using specific primers to amplify an 

NbUBP12 product upstream of the TRV expressed fragment (Figures 4.5 A 

and 4.6 A).  RT-PCR was performed to compare NbUBP12 mRNA levels in 

leaves from three independent plants infected with empty pTV00 (TRV:00 

control) against leaves from three independent plants infected  with 

TRV_U12 silencing constructs at 24 days after TRV culture inoculation 

(Figures 4.5 B and 4.6 B).   

Independent cDNA samples for RT-PCR were normalised using primers for 

the constitutively expressed ACTIN2 gene (NtActin2_5 and NtActin2_3) and 

specific NtUBP12 primers were used to quantify  silencing caused by 

TRV:U12_562 (NtUBP12_562KD_5 and NtUBP12_562KD_3) (Figure 4.5 A) and 

TRV:U12_742 (NtUBP12_742KD_5 and NtUBP12_742KD_3) (Figure 4.6 A).  

Gene silencing using both TRV:U12_562 and TRV:U12_742 constructs 

caused a significant decrease in NbUBP12 mRNA levels relative to TRV:00 

control (Figures 4.5 B and 4.6 B).  Densitometry analysis indicated that 

NbUBP12 mRNA levels were reduced by approximately 69% using 

TRV_U12_562 and 74% using TRV_U12_742 relative to TRV:00 infected 

controls.  Characterisation of the gene silencing by NbUBP12 TRV 

constructs confirmed that they were suitable for loss of function studies in 

N. benthamiana. 

After the requisite growth period to allow the systemic silencing 

development, NbUBP12 silenced plants (TRV:U12_562 or TRV:U12_742 

infected) appeared morphologically indistinct from control plants (TRV:00 

infected). 
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Figure 4.5 VIGS based silencing of NbUBP12 using TRV:U12_562. 

(A) Schematic alignment against full length NtUBP12 cDNA indicating 

location of NtUBP12 fragment cloned into TRV:U12_562 and location of RT-

PCR primers used to examine gene silencing by TRV:U12_562.  (B) RT-

PCR demonstrating reduction in NbUBP12 mRNA levels 24 days after 

introduction of TRV:U12_562. Total RNA was isolated and from three 

independent plants infected with either TRV:00 or TRV:U12_562 and used 

for RT-PCR with specific primers for NtUBP12 (NtUBP12_562KD, 28 cycles) 

and ACTIN (24 cycles). 
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Figure 4.6 VIGS based silencing of NbUBP12 using TRV:U12_742. 

(A) Schematic alignment against full length NtUBP12 cDNA indicating 

location of NtUBP12 fragment cloned into TRV:U12_742 and location of RT-

PCR primers used to examine gene silencing by TRV:U12_742.  (B) RT-

PCR demonstrating reduction in NbUBP12 mRNA levels 24 days after 

introduction of TRV:U12_742.  Total RNA was isolated and from three 

independent plants infected with either TRV:00 or TRV:U12_742 and used 

for RT-PCR with specific primers for NtUBP12 (NtUBP12_742KD, 28 cycles) 

and ACTIN (24 cycles). 
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4.5 Avr9 elicited cell death assay during VIGS silencing of NbUbp12  

The potential involvement of NbUBP12 in Cf-9/Avr9 triggered HR was 

assessed using Agrobacterium mediated transient expression of Cf-9 and 

Avr9 genes during VIGS based silencing of NbUBP12 in N. benthamiana.    

Phenotypic assessment of the hypersensitive response (HR) is often 

estimated by the extent of tissue necrosis within a leaf patch infiltrated 

with the appropriate cell death elicitors (Peart et al., 2002b).  To study  

Cf-9/Avr9 elicited HR in N. benthamiana, individual constructs expressing 

either Cf-9 or Avr9 genes under the 35S Cauliflower Mosaic Virus promoter 

(Thomas et al., 2000) were transformed into Agrobacterium and equalised 

culture inoculums were mixed and infiltrated into N. benthamiana leaves.  

Following agroinoculation, Cf-9 R gene and Avr9 elicitor gene products 

were expressed and targeted to the plasma membrane (Cf-9 protein) or 

secreted (Avr9 peptide) before triggering the HR (Thomas et al., 2000).   

Typically, agroinoculation of Cf-9/Avr9 constructs results in a visible cell 

death patch developing 3 – 4 days post infiltration.  The HR signalling 

response to an inoculated titre of elicitor can be measured in accordance 

with the development of hypersensitive cell death.  In this study, HR 

responses were estimated as a percentage coverage of necrotic cell death 

area within the total infiltration patch.  Cell death scores were classified 

into three categories of either: No HR (no visible cell death), Weak HR 

(limited cell death development, typically upto 40% of the infiltration 

area) or Confluent HR (confluent cell death development, typically in 70 – 

100% of the infiltration area).   

To elicit the HR, Cf-9/Avr9 constructs were agroinoculated into               

N. benthamiana at final OD600 titres of 0.4 and 0.2.  Agroinoculation of    

N. benthamiana plants aged 5 – 6 weeks at these titres typically elicited a 

weak HR response with cell death scores ranging between No HR and Weak 

HR categories (Figures 4.8 and 4.10).  Having established an appropriate 

sensitivity range for Cf-9/Avr9 agroinoculation, the HR assay was 

performed on N. benthamiana plants undergoing VIGS based NbUbp12 

silencing.   
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HR cell death assays were performed on N. benthamiana plants 22 days 

after TRV infection.  Experiments included negative control plants infected 

with TRV:00 (empty pTV00 vector), positive control plants infected with 

TRV:SGT1 to silence NbSGT1 and plants infected with TRV:U12_742 and 

TRV:U12_562 to silence NbUbp12.  As previously described, SGT1 is a 

positive HR regulator, the silencing of which compromises HR and disease 

resistance in a broad range of host and non-host plant-pathogen 

interactions (Peart et al., 2002b). 

The HR was triggered in TRV infected plants by agroinoculation of          

Cf-9/Avr9 constructs and the resulting hypersensitive cell death was 

recorded at 5 days post infiltration.  Independent VIGS experiments were 

conducted to silence NbUbp12 using TRV:U12_562 (Figures 4.7 and 4.8) and 

TRV:U12_742 constructs (Figures 4.9 and 4.10). 
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Figure 4.7  Cf-9/Avr9 elicited HR is increased during NbUBP12  

silencing by TRV:U12_562. 

 
(A) Cf-9/Avr9 construct agroinoculation scheme indicating final 

Agrobacterium titres in patch infiltration sites on silenced N. benthamiana 

leaves.  Cf-9/Avr9 constructs were patch inoculated on TRV silenced          

N. benthamiana leaves at final OD600 of 0.4 (upper patch) or 0.2 (lower 

patch).   

(B) Cf-9/Avr9 elicited HR cell death development in VIGS silenced              

N. benthamiana infected with TRV:00, TRV:U12_562 or TRV:SGT1.  Images 

taken at 5 days post elicitor infiltration.  
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Figure 4.8 Scoring of the increased Cf-9/Avr9 elicited HR during 

NbUBP12 silencing by TRV:U12_562. 

 

Cf-9/Avr9 elicited HR cell death development in VIGS silenced                    

N. benthamiana infected with TRV:SGT1, TRV:00 or TRV:U12_562.  HR 

elicited by agroinoculation of Cf-9/Avr9 constructs at final OD600 of 0.4 (A) or 

0.2 (B).  HR development scored at 5 days post elicitor infiltration. 
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Figure 4.9  Cf-9/Avr9 elicited HR is increased during NbUBP12 silencing 

by TRV:U12_742. 

 

(A) Cf-9/Avr9 construct agroinoculation scheme indicating final 

Agrobacterium titres in patch infiltration sites on silenced N. benthamiana 

leaves.  Cf-9/Avr9 constructs were patch inoculated on TRV silenced          

N. benthamiana leaves at final OD600 of 0.4 (upper patch - L1) or 0.2 (lower 

patch - L2).   

(B) Cf-9/Avr9 elicited HR cell death development in VIGS silenced              

N. benthamiana infected with TRV:00, TRV:U12_742 or TRV:SGT1.  Images 

taken at 5 days post elicitor infiltration.  
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Figure 4.10 Scoring of the increased Cf-9/Avr9 elicited HR during 

NbUBP12 silencing by TRV:U12_742. 

 

Cf-9/Avr9 elicited HR cell death development in VIGS silenced                    

N. benthamiana infected with TRV:SGT1, TRV:00 or TRV:U12_742.  HR 

elicited by agroinoculation of Cf-9/Avr9 constructs at final OD600 of 0.4 (A) or 

0.2 (B).  HR development scored at 5 days post elicitor infiltration.  
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In all experiments, negative and positive controls exhibited the expected 

phenotypes with the development of either no HR or limited HR symptoms 

in TRV:00 infected plants and no visible HR development in TRV:NbSGT1 

infected plants (Figures 4.8 and 4.10).   

Increased sensitivity to the Cf-9/Avr9 elicited HR signal was observed in 

NbUbp12 silenced plants.  Following agroinoculation of Cf-9/Avr9 

constructs at OD600 0.4 on TRV:NtU12_562 infected plants, 58% of leaves 

tested demonstrated confluent HR compared to 6% of leaves in TRV:00 

infected controls  (Figures 4.7 and 4.8).  Similar results were observed in 

TRV:NtU12_742 infected plants where 53% of leaves tested demonstrated 

confluent HR compared to 0% of leaves in TRV:00 infected controls (Figures 

4.9 and 4.10).  Equivalent HR development trends were observed in each 

silencing experiment using lower Cf-9/Avr9 construct titres at OD600 0.2 

(Figures 4.8 and 4.10). 

Reduced accumulation of NbUbp12 transcript in three phenotypic leaves 

was confirmed by RT-PCR for TRV:U12_562 and TRV:U12_742 silencing 

constructs compared with TRV:00 control (Figures 4.5 and 4.6).  The 

increased HR phenotype was observed almost exclusively in NbUbp12 

silenced plants suggesting its role as a negative regulator of Cf-9/Avr9 

mediated HR in N. benthamiana 
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4.6 AvrPto/Pto mediated HR cell death assay during NbUbp12 
silencing 

The potential involvement of NtUBP12 in R gene mediated bacterial 

resistance was assessed using the avrPto/Pto interaction.  Breeding studies 

established that resistance to Pseudomonas syringae pv. tomato, the 

causative agent of tomato bacterial speck disease, was mediated by the 

tomato R gene Pto (Pedley and Martin, 2003).  Comparison of P. s. pv. 

tomato strains with differential virulence on tomato expressing Pto led to 

the identification of the avrPto gene and the subsequent definition of a 

gene-for-gene interaction between avrPto and Pto (Ronald et al., 1992).  

Pto-mediated resistance to avrPto expressing P. s. pv. tomato is associated 

with a typical localised HR response and reduced bacterial growth (Ronald 

et al., 1992). 

In this study avrPto/Pto-mediated HR was elicited in transgenic               

N. benthamiana expressing Pto under a 35S promoter following infection 

with P. s. pv. tabaci expressing the avrPto gene (Rommens et al., 1995).  

HR cell death assays were conducted by patch infiltration of P. s. pv. 

tabaci avrPto at intermediate and low titres (Figure 4.11 A).  Bacterial 

inoculation titres were adjusted to cause an intermediate HR with limited 

cell death (intermediate titre - 6 x 106 cfu/ml) or a minimal HR response  

(low titre - 3 x 106 cfu/ml).  These intermediate and low bacterial titres 

defined a sensitivity range for the development of hypersensitive cell 

death to allow analysis of how silencing NbUbp12 may suppress or promote 

the avrPto/Pto-mediated HR.  

NbUbp12 was silenced by infection of 35S Pto N. benthamiana plants using 

the TRV:U12_562 construct.  After 22 days the upper leaves (emerging 

leaves 4, 5 and 6) were patch infiltrated with intermediate and low P. s. 

pv. tabaci avrPto titres and scored for HR development compared to 

TRV:00 infected controls after 4 days (Figure 4.11 B).  HR scoring criteria 

was based on percentage development of necrotic cell death within the 

infiltrated patch (as described in Section 4.2).   



 

 176

Figure 4.11  avrPto/Pto elicited HR is unchanged during NbUBP12 silencing  

by TRV:U12_562. 

 

(A) P. s. pv. tabaci avrPto infiltration scheme indicating final pathogen titres 

in patch infiltration sites on silenced N. benthamiana leaves.  P. s. pv. tabaci 

avrPto was patch infiltrated into TRV-silenced leaves at 3 x 106 cfu/ml (upper 

patch – L1) and 6 x 106 cfu/ml (lower patch – L2).  (B) avrPto/Pto elicited HR 

cell death development in VIGS silenced N. benthamiana infected with 

TRV:00 or TRV:U12_562.  Images taken at 4 days post P. s. pv. tabaci 

avrPto (6 x106 cfu/ml) infiltration. 
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Figure 4.12  avrPto/Pto elicited HR is unchanged during NbUBP12 silencing  

by TRV:U12_562. 

 

avrPto/Pto elicited HR cell death development in VIGS silenced                  

N. benthamiana infected with TRV:00 or TRV:U12_562.  HR elicited by 

infiltration of P. s. pv. tabaci avrPto at 6 x 106 (A) or 3 x 106 (B) cfu/ml.  HR 

development scored at 4 days post P. s. pv tabaci avrPto infiltration. 
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Following inoculation of P. s. pv tabaci avrPto there was no discernable 

alteration in hypersensitive cell death development between NbUbp12 

silenced and control plants (Figures 4.11 B and 4.12).   

HR scoring data was similar at each bacterial titre for NbUbp12 silenced 

and control plants with the expected decrease in overall HR development 

scores for the low titre inoculated patches relative to intermediate titres 

(Figure 4.12).   

4.7 Induction of basal disease resistance during NbUBP12 silencing 

As has been previously discussed, the plant defence response can be 

broadly divided into basal and gene for gene resistance.  A major 

component of basal defence responses relates to the broad host 

recognition of pathogen associated ligands termed PAMPs (Pathogen 

Associated Molecular Patterns) (Zipfel and Felix, 2005).  PAMP perception 

induces numerous defence signalling pathways many of which overlap with 

‘gene for gene’ resistance (Navarro et al., 2004) but is thought to function 

primarily through early events that function to halt microbe colonisation 

(Chisholm et al., 2006). 

To investigate the potential involvement of NbUBP12 in basal disease 

resistance, the growth of virulent Pseudomonas syringae pv. tabaci was 

measured in N. benthamiana plants undergoing VIGS based NbUBP12 

silencing.  N. benthamiana plants were infected with TRV:00, TRV:U12_562 

or TRV:U12_742 VIGS constructs and after the development of systemic 

silencing, new leaves were infected with a low titre of P. s. pv. tabaci (1 

x104 cfu/ml).  Bacterial growth was measured at 1 and 3 days post 

infection based on colony counts from serially diluted plant tissue extracts 

(Figure 4.13). 

Silencing NbUBP12 did not significantly alter growth of P. s. pv. tabaci 

after 3 days (Figure 4.13).  Control and NbUBP12 silenced plants all 

demonstrated 7 logs cfu/cm2 of bacterial growth with no significant 

difference in mean growth based on paired t-test analysis (Figure 4.13). 
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Figure 4.13 Growth of virulent P. s. pv. tabaci is unaltered in NbUBP12 

silenced N. benthamiana. 

 

Growth of P. s. pv. tabaci was measured in N. benthamiana undergoing 

NbUBP12 silencing after infection with either TRV:00, TRV:U12_562 or 

TRV:U12_742.  Gene silencing was allowed to develop for 22 days then 

silenced leaves (emerging leaf #5) were infected with P. s. pv. tabaci at 

1x104 cfu/ml. Growth was measured by bacterial colony counts at 24 (T1) 

and 72 (T3) hours post infection.  Data points represent the mean of six 

replicates and error bars represent one standard deviation.  Statistical 

significance of observed growth differences were assessed by two sided       

t-test where a P value equal to or less than 0.05 was considered significant. 
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4.8 NbUBP12 silencing increases resistance against TMV 

The potential role of NbUBP12 in anti-viral resistance was investigated 

using the model tobamovirus Tobacco Mosaic Virus (TMV) (Scholthof, 

2004).  The tobacco TIR-NBS-LRR class R gene N confers resistance to TMV 

and the genetic interaction between TMV and N confers resistance in 

accordance with the gene-for-gene principle (Whitham et al., 1994). 

TMV spreads systemically in tobacco cultivars lacking the N gene, causing  

mosaic disease symptoms characterised by intermingled areas of light and 

dark green leaf tissue (Erickson et al., 1999).  Conversely, TMV infection of 

N-containing tobacco cultivars typically induces HR within 48 hours which 

restricts virus particles to the region immediately surrounding induced 

necrotic lesions and is accompanied by systemic acquired resistance (SAR) 

(Erickson et al., 1999). 

The tobacco N gene has been introduced into N. benthamiana (transgenic 

A310 line) to facilitate VIGS based reverse genetic studies during N 

mediated TMV resistance (Bendahmane et al., 1999).  Whilst the 

fundamental activation of TMV induced HR and SAR is observed in N 

transgenic N. benthamiana, absolute resistance levels to the TMV U1 

isolate are reduced (Peart et al., 2002a).  Consequently the development 

of TMV induced lesions is typically reduced in A310 N. benthamiana 

compared to resistant tobacco cultivars and after initial infection events 

TMV U1 moves systemically in A310 plants (Peart et al., 2002a).  HR 

development against systemic TMV in A310 lines results in systemic 

necrosis during the latter stages of infection (Peart et al., 2002a). 

Using TRV:U12_742 and TRV:U12_562 VIGS silencing constructs, 

collaborators from the laboratory of Dr. M. Taliansky (SCRI, Dundee) 

examined TMV induced symptom development and virus replication during 

NbUBP12 silencing in A310 and wildtype N. benthamiana plants.  N 

mediated HR symptoms were elicited by rub inoculation of purified TMV U1 

virus onto control and NbUBP12 silenced A310 plants 12 days after the 

agroinoculation of VIGS constructs (Figure 4.14).  At 6 dpi (days post  
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Figure 4.14 Silencing of NbUBP12 reduces TMV induced HR symptoms in 

A310 N transgenic N. benthamiana. 

 

(A) TMV induced local lesions on A310 N transgenic N. benthamiana during 

silencing with either TRV:00 or TRV:U12_742.  Plants were rub inoculated 

with 10 µl of purified TMV U1 at 0.2 µg/µl 12 days after the agroinoculation 

of TRV:00 or TRV:U12_742 silencing constructs.  Pictures taken at 6 days 

after TMV U1 infection.  

(B) TMV induced systemic necrosis on A310 N transgenic N. benthamiana 

during silencing with either TRV:00 or TRV:U12_742.  Plants were rub 

inoculated with 10 µl of purified TMV U1 at 0.2 µg/µl 12 days after the 

agroinoculation of TRV:00 or TRV:U12_742 silencing constructs.  Pictures 

taken at 10 days after TMV U1 infection. 

 
 

Figure reproduced with consent of Dr M. Taliansky 
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infection), the development of TMV induced local lesions was markedly 

reduced in A310 plants undergoing NbUBP12 silencing (Figure 4.14 A).  

Reduced lesion formation was consistently observed in multiple plants 

silenced with TRV_U12_742 (data not shown) and the phenotype was 

clearly distinct from light necrosis/damage symptoms caused by rub 

inoculation of the virus (Figure 4.14 A).  The reduction in TMV induced 

local lesion development was robust and remained apparent during the 

latter stages of infection at 10 dpi (data not shown).   

The development of TMV induced systemic necrosis was largely abolished 

in NbUBP12 silenced A310 plants at 10 dpi (Figure 4.14 B).  The reduction 

in systemic necrosis symptoms was clear in comparison to TRV:00 controls 

and was consistently observed in multiple plants silenced with 

TRV:U12_742 (Figure 4.15 B).  Mild TMV induced wilting symptoms were 

seen in systemic tissues of NbUBP12 silenced plants at 10 dpi (Figure 4.14 

B) but an equivalent degree of systemic tissue collapse was not observed 

until at least 15 dpi (data not shown).  The reduction in local and systemic 

HR related symptoms indicated that silencing NbUBP12 increased 

resistance against TMV U1 infection.   

Alterations in resistance to TMV during NbUBP12 silencing were assessed by 

measuring TMV accumulation following infection.  TMV accumulation was 

monitored in A310 and wildtype plants during NbUBP12 silencing using a 

GFP tagged TMV vector (Ryabov et al., 1999) (Figure 4.15).  TMV:GFP was 

rub inoculated onto control and NbUBP12 silenced A310 plants (12 days 

after VIGS construct agroinoculation) and virus accumulation was assessed 

by GFP fluorescence at 6 dpi (Figure 4.15 A).  In accordance with the 

reported reduction in HR symptoms (Figure 4.14), accumulation of 

TMV:GFP was also markedly reduced in NbUBP12 silenced A310 plants 

(Figure 4.15 A).  At 6 dpi, most of the detectable GFP foci were of a lower 

size and intensity in NbUBP12 silenced A310 plants compared to equivalent 

TRV:00 controls (Figure 4.15 A).  Reduced TMV:GFP accumulation was 

consistently observed in multiple A310 plants following silencing of 

NbUBP12 with TRV:U12_742 
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Figure 4.15  Silencing NbUBP12 reduces TMV:GFP virus accumulation 

independent of N triggered TMV resistance. 

 

(A) TMV:GFP accumulation on A310 N transgenic N. benthamiana during 

silencing with either TRV:00 or TRV:U12_742.  Plants were rub inoculated 

with 5 µl of reconstituted TMV:GFP virion 12 days after the agroinoculation 

of TRV:00 or TRV:U12_742 silencing constructs.  Pictures taken at 6 days 

after TMV:GFP infection.  

(B) TMV:GFP accumulation on wildtype N. benthamiana during silencing 

with either TRV:00 or TRV:U12_742.  Plants were rub inoculated with  5 µl of 

reconstituted TMV:GFP virion 2 days after the agroinoculation of TRV:00 or 

TRV:U12_742 silencing constructs.  Pictures taken at 4 days after TMV:GFP 

infection.  

 
Figure reproduced with consent of Dr M. Taliansky 
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TMV:GFP accumulation assays were also conducted in NbUBP12 silenced 

wild type N. benthamiana plants to clarify the contribution of N triggered 

HR to the observed TMV resistance phenotype (Figure 4.15 B).  At 4 dpi, 

wild type N. benthamiana undergoing NbUBP12 silencing also 

demonstrated a marked reduction in TMV:GFP accumulation based on the 

development of GFP foci compared to TRV:00 controls (Figure 4.15 B).  

Silencing of NbUBP12 in wild type N. benthamiana with TRV:U12_742 and 

TRV:U12_562 resulted in TMV:GFP foci of reduced size and intensity at 4 

dpi compared to TRV:00 controls (Figure 4.15 B).  This phenotype was 

observed in multiple NbUBP12 silenced plants (data not shown) and 

suggested that reduced TMV infection was independent of N triggered 

gene-for-gene resistance.   

The reported results suggest that reduced HR symptoms seen in NbUBP12 

silenced A310 plants during TMV infection are a secondary consequence of 

increased resistance mediated by an uncharacterised response to TMV.  

These results indicate that NbUBP12 contributes to the uncharacterised 

TMV resistance mechanism without (and presumably also with) the 

occurrence of N triggered gene-for-gene resistance.  In A310 plants, the 

marked reduction in TMV accumulation resulting from NbUBP12 silencing 

results in weaker induction of local lesions and a significant delay in 

systemic viral movement.  Further characterisation of TMV infection during 

NbUBP12 silencing is currently being undertaken by collaborators in the 

laboratory of Dr. M. Taliansky (SCRI, Dundee). 

4.9 Discussion 

Results presented in this chapter report the application of VIGS to achieve 

transient but robust silencing of N. benthamiana gene NbUBP12, allowing 

assessment of its potential role in disease resistance signalling.  Data from 

HR assays indicate that silencing NbUBP12 increases hypersensitive cell 

death elicited by the fungal avirulence factor Avr9 but not by the bacterial 

avirulence factor avrPto.  Data reported by our collaborators indicates that 

silencing NbUBP12 either increases N independent resistance to TMV 

infection or reduces the movement potential of TMV. 
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EST database analysis and cloning approaches established the full length 

cDNA sequence of NbUBP12 allowing the selection of VIGS silencing regions 

that were unlikely to cause 'off target' cross-silencing effects.   

Similar experimental results were observed during NbUBP12 silencing 

initiated using two distinct cDNA regions, confirming that specific gene 

silencing of endogenous NbUBP12 is the probable cause of the respective 

HR promotion and viral resistance phenotypes.  The lack of a complete    

N. benthamiana genome sequence precludes absolute identification of 

other potential NbUBP12 homologs but tobacco EST analysis suggests that 

UBP12 is a single copy gene in the Solanaceae.  

Silencing NbUBP12 promotes Cf-9 triggered hypersensitive cell death 

suggesting the enzyme functions as a negative regulator of cell death.  

Based on the demonstration of in vitro activity of NtUBP12 against K48 

linked ubiquitin (Chapter 5), it is likely that NbUBP12 stabilises, through 

deubiquitination, a target substrate (or substrates) that suppresses the cell 

death signal during Cf-9 mediated HR. 

As has been discussed previously, ubiquitination has been implicated in 

diverse  plant signalling pathways including responses to pathogen 

perception (Devoto et al., 2003).  Various  E3 ligases that regulate the HR 

and disease resistance have been described including SPL11 (Zeng et al., 

2004), CMPG1 (Gonzalez-Lamothe et al., 2006) and ACRE276 (Yang et al., 

2006).  That such proteins confer either positive or negative control over 

the HR is analogous to the involvement of ubiquitin signalling in animal 

apoptosis where regulated protein degradation of pro- and anti-apoptotic 

factors is essential for the execution of programmed cell death (Lee and 

Peter, 2003). 

CMPG1 and ACRE276 were identified as genes upregulated rapidly during 

Avr9/Cf-9 triggered HR (Durrant et al., 2000).  Subsequent studies 

established that CMPG1 and ACRE276 both function as positive regulators 

of the Cf-9 mediated HR, presumably by the specific degradation of 

substrates that are negative HR regulators (Gonzalez-Lamothe et al., 

2006).  It is possible that NbUBP12 confers negative HR regulation by 
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directly stabilising substrates of CMPG1 or ACRE276.  In this model of 

function, UBP12 could serve to attenuate the early pro-HR signal provided 

by CMPG1 or ACRE276 as one of the negative feedback mechanisms that 

prevent runaway cell death (Rusterucci et al., 2001). 

Two recent studies have reported transcript profiling analysis in 

solanaceous plants following HR induction.  As described in Chapter 3, a 

comparative transcript analysis of avirulent Pseudomonas induced HR and 

programmed cell death induced by proteasome disruption in N. 

benthamiana (Kim et al., 2006) reported a significant suppression of 

NbUBP12 only during pathogen induced cell death.  The suppression of 

NbUBP12 mRNA reported by Kim et al. correlates with the NtUBP12 

expression pattern observed in this study during Cf-9 mediated HR.  The 

fact that Kim et al. report transcript changes based on a single timepoint 

at 24 hours post HR induction limits the value of further comparison 

between these experiments but provides additional preliminary data 

supporting the involvement of NbUBP12 in HR signalling by non-fungal 

pathogens. 

Durrant et al. report transcript analysis focussed on early transcript 

changes after 30 minutes during Cf-9/Avr9 mediated HR in tobacco cell 

cultures (Durrant et al., 2000).  This screen reported the induction of 

numerous ubiquitin E3 ligases but no deubiquitinating enzymes. The non-

induction of NtUBP12 at early time points following Avr9 elicited HR 

observed in this study correllates with the ACRE expression data published 

by Durrant et al..   

Data presented in Chapter 3 reports the transcriptional induction of 

NtUBP12 orthologs in Arabidopsis by avirulent bacterial pathogens and 

salycilic acid whilst transcript analysis of NtUBP12 demonstrates its late 

suppression in a fungus associated HR.  Each experimental induction trend 

is supported by the expected expression of an appropriate marker gene 

suggesting a genuine induction of AtUBP12/AtUBP13 but suppression of 

NtUBP12 during HR.  Given that salycilic acid accumulation is one of the 

primary signalling cues in plant disease resistance (Alvarez, 2000) it would 



 

 191

be informative to test the transcriptional response of NtUBP12 to 

exogenously applied salycilic acid.   

4.9.1 NbUBP12 - links to known resistance signalling pathways 

Plant disease resistance is activated through numerous interacting 

signalling pathways involving the ROI perception, hormone signalling, ionic 

fluxes and induction of defence genes (Thomma et al., 2001).  Classical 

studies of plant lesion mimic mutants with deregulated cell death have 

established distinct classes of gene function that regulate cell death 

initiation and propagation (Lorrain et al., 2003).  The discovery that 

NbUBP12 is a negative regulator of Avr9 elicited HR suggests its function is 

associated with the propagation class of the HR signalling components.  

Further analysis to establish which disease resistance signalling pathways 

are perturbed by NbUBP12 silencing could be assessed by induction studies 

of known marker genes specific to various aspects of the HR. 

The presented data indicates that silencing NbUBP12 promotes 

hypersensitive cell death mediated by the transmembrane LRR R gene 

product Cf-9 but not protein kinase R gene product Pto and influences TMV 

infection independent of N triggered resistance.  It is possible that 

NbUBP12 also regulates HR signalling from Pto but that the extent of 

NbUBP12 silencing was insufficient to see an alteration in the development 

of cell death.  Silencing of NbUBP12 using either of the generated VIGS 

constructs typically yielded an approximate 70% mRNA knockdown so 

residual NbUBP12 protein expressed from remaining endogenous NbUBP12 

transcript will be present in the cell and provide wild type signalling 

capacity.  Alternative VIGS approaches based on the expression of hpRNA 

to improve silencing efficiency have been described (Lacomme et al., 

2003) and may be applicable in future loss of function studies of NbUBP12. 

The presented data does indicate a specific role for NbUBP12 in Cf-9 

mediated HR and invites speculation on where it might function in the 

currently established order of disease resistance signalling pathways.  The 

point at which distinct R gene mediated pathways converge to initiate 

disease resistance requires clarification, but signalling by mitogen 
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activated protein kinases (MAPK) has been identified as a key regulatory 

component (Pedley and Martin, 2005).  Previous studies have established 

that Cf-9 mediated HR signalling activates MAPK proteins NtSIPK and 

NtWIPK (Romeis et al., 1999) which are regulated by the upstream MAPKK 

NtMEK2 (Yang et al., 2001).  The finding that tomato orthologs of NtMEK2, 

NtSIPK and NtWIPK are essential components of the Pto mediated disease 

resistance (del Pozo et al., 2004) suggests convergence of Cf-9 and Pto 

signals at this MAPK cascade.  That NbUBP12 silencing does not alter Pto 

mediated HR suggests that Cf-9 specific signalling by NbUBP12 may occur 

upstream of MEK2 and maybe proximal to the transduction of Avr9 

perception rather than conserved between different R gene classes.  Such 

hypothesis could be tested both by examining perturbations in early Cf-9 

mediated signalling events which are becoming increasingly well 

characterised (Nekrasov et al., 2006) and analysing HR induction using 

Avr/R gene products from different pathogens and R gene classes using 

methodologies described in Peart et al. (Peart et al., 2002b). 

The NtMEK2-SIPK/WIPK pathway has also been implicated in N mediated 

resistance against TMV (Pedley and Martin, 2005) but data reported by our 

collaborators suggests that elevated TMV resistance due to NbUBP12 

silencing is independent of the N triggered HR.  These findings invite 

further investigation into the contribution of NbUBP12 to increased TMV 

resistance during compatible infection.   

One possibility is that NbUBP12 negatively regulates resistance triggered 

by perception of a TMV associated PAMP type molecule.  In this case, 

silencing of NbUBP12 may deregulate TMV associated PAMP defence 

signalling to cause increased resistance.  TMV associated PAMP type 

responses have been reported (Allan et al., 2001) and PAMP triggered 

immune responses also lead to the activation of the NtMEK2-SIPK/WIPK 

pathway (Pedley and Martin, 2005).  This raises the possibility that 

silencing NbUBP12 activates the MEK2-SIPK/WIPK pathway to increase the 

Cf-9 triggered HR and TMV associated PAMP triggered resistance. 

Based on the resistance assay performed in this study using P. s. pv. 

tabaci, NbUBP12 does not appear to influence PAMP triggered resistance 
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against bacteria, however data reported by our collaborators suggests the 

potential involvement of NbUBP12 in early events associated with TMV 

perception. 

The implication of NbUBP12 in Cf-9 triggered HR and N independent TMV 

responses may be coincidental, suggesting instead its distinct roles in 

regulating HR execution and the TMV life cycle.  NbUBP12 may be directly 

modulated during TMV infection to permit virus replication, trafficking or 

movement between cells such that silencing of NbUBP12 reduces viral 

pathogenicity.   

Previous studies have implicated the ubiquitin 26S proteasome system 

directly and indirectly in TMV resistance.  Initial studies established that 

perturbation of ubiquitin ligation by competitive titration of a mutant 

ubiquitin variant led to reduced TMV infection (Bachmair et al., 1993).  

Further evidence was provided by the characterisation of SGT1 which is a 

key regulator of non-host and R gene mediated resistance including N 

triggered resistance against TMV (Peart et al., 2002b).  The proven 

interaction between SGT1 and the SCF complex subunit SKP1 indicates its 

role in degradative processes and broadly implicates ubiquitination in 

disease resistance signalling (Azevedo et al., 2002).  Ubiquitination has 

also been directly linked to the TMV lifecycle by Reichel et al. who 

reported that the TMV encoded movement protein (MP) was ubiquitinated 

and degraded at a specific stage of TMV infection (Reichel and Beachy, 

2000).  Regulated ubiquitination of the TMV MP is proposed to promote 

viral pathogenicity by minimising post-replicative disruption to the host 

cell (Reichel and Beachy, 2000).  It is possible that NbUBP12 may function 

as a regulatory factor to oppose TMV associated ubiquitination events to 

influence defence signalling.  The TMV resistance phenotypes reported in 

this study are apparently independent from N triggered HR defences and 

future studies aim to clarify how NbUBP12 silencing compromises 

compatible infection by TMV.   



 

 194

4.9.2 Does NbUBP12 regulate the HR and disease resistance?  

Previous studies have highlighted the fact that many HR regulators 

identified by reverse genetic approaches do not necessarily influence 

disease resistance against the HR inducing pathogen (Lu et al., 2003).  

These observations reflect the fact that disease resistance activation 

depends on the distinct signalling events that are coordinated by a 

hierarchy of signals (Thomma et al., 2001).  Whilst cross-talk and feedback 

regulation between signalling pathways  has been established, (Kunkel and 

Brooks, 2002) the identification of plant mutants that can initiate disease 

resistance but not HR (Yu et al., 1998) highlights the fact that 

hypersensitive cell death is not a definitive outcome of the plant defence 

response.  It is entirely plausible, based on such observations, that 

NbUBP12 functions specifically within the HR signalling pathway and does 

not regulate other branches of disease resistance.   

To assess the potential involvement of UBP12 in Cf-9 mediated disease 

resistance requires infection assay experiments using C. fulvum on host 

tomato plants.  Tomato is also a suitable host for VIGS based gene silencing 

studies using the adapted tobacco rattle virus vector pYL156 (Liu et al., 

2002a).  Having identified a tomato EST exhibiting 83% amino acid identity 

to NtUBP12 (data not shown), a 200 bp region was cloned into pYL156 to 

facilitate gene silencing of LeUBP12 in tomato.  To establish if LeUBP12 

regulates Cf-9 mediated disease resistance as well as the HR, C. fulvum 

resistance assays in LeUBP12 silenced tomato are currently being 

performed in collaboration with the lab of Prof. J.D.G Jones (Sainsbury 

Laboratory, Norwich).  The generated NbUBP12 VIGS could be applied in 

future studies to examine its role in HR and resistance against different 

classes of pathogen and Avr/R gene combinations using Agrobacterium 

based transient expression as described by Peart et al. (Peart et al., 

2002b). 

5 Test 
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Chapter 5 - In vitro DUB activity assays of plant UBP12 
proteins 

5.1 Introduction 

The majority of known deubiquitinating enzymes are cysteine proteases 

with specificity for the isopeptide bond made either between ubiquitin and 

a substrate protein or two linked ubiquitin moieties.  DUB enzymes are 

classified into several subfamilies most of which exhibit catalytic core 

structures that match closely to the classical cysteine proteases such as 

papain (Amerik and Hochstrasser, 2004).  The active site is composed of a 

catalytic triad made up of cysteine, histidine and aspartate residues.  

During catalysis the aspartate polarises the histidine which in turn 

deprotonates the cysteine, this cysteine can then perform a nucleophilic 

attack on the scissile isopeptide bond to release the linked target 

substrate or ubiquitin moiety (Nijman et al., 2005). 

Whilst active site geometries are conserved between each DUB family, 

their catalytic core sequences are not.  Despite having largely conserved 

catalytic triad residues, the individual DUB families have distinct catalytic 

motifs (Amerik and Hochstrasser, 2004).  In the case of the UBP family, the 

catalytic residues are all found in two short motifs termed the Cys and His 

boxes (Figure 5.1) present in all UBP enzymes (Yan et al., 2000a).   

This chapter reports the in vitro demonstration of DUB activity of UBP12 

proteins from Arabidopsis and tobacco.  In each case constructs were 

made to express full length wild type UBP12 and the corresponding active 

site cysteine mutant proteins.  Numerous assay systems are available to 

test DUB activity (Kang et al., 2005), the majority of these exploit 

cleavage of ubiquitin linked to a reporter substrate protein via an 

isopeptide linkage.  Cleavage can then typically be monitored by 

spectroscopy (Dang et al., 1998) or western blot (Yan et al., 2000a). 

To demonstrate the DUB activity of AtUBP12 and NtUBP12 proteins, two 

different assay systems were used in this study.  Both DUB assay systems 

rely on the digestion of isopeptide linked Ub oligomers with subsequent  
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Cys Box

At UBP5  GLTGLLNLGNTCFMNSAIQCLVHTP
At UBP8  GLTGLQNLGNTCFMNSSLQCLAHTP
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Figure 5.1  Active site cysteine conservation in UBP enzymes 

(A) Domain diagram illustrating conserved catalytic motif regions of UBP 

enzymes.  (B) Alignment of catalytic Cys box region of UBP enzymes, active 

site cysteine shown in red. 
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analysis by western blot using anti-ubiquitin antibodies.  Different 

substrates were used in each assay where the Ub chain method used a 

mixture of varying length Ub oligomers and the DiUb method used only 

diubiquitin substrate. 

5.2 In vitro activity assay of E. coli expressed AtUBP12 

5.2.1 Generation of Histidine tagged AtUBP12 proteins for E. coli 
based expression 

To demonstrate the specific activity of AtUBP12, Histidine tagged fusion 

constructs corresponding to wild type and active site mutant versions of 

Arabidopsis AtUBP12 cDNA were generated.  AtUBP12 fusion proteins were 

expressed and purified from E. coli then incubated with Ub-chain oligomer 

substrate.  Assay reactions were analysed by western blot to confirm chain 

hydrolysis. 

AtUBP12 His tagged fusion proteins were made using the Gateway 

compatible pDEST17 destination vector.  Full length AtUBP12 was PCR-

amplified from Arabidopsis cDNA using primers to introduce NotI 

(AtUBP12_5_NotI) and Asp718I (AtUBP12_3_Asp718I) restriction sites at the 

respective 5' and 3' termini.  The amplified product was cloned into 

pGEMT-Easy and subcloned into pENTR4 at NotI and Asp718I restriction 

sites to generate the AtUBP12 WT entry clone.  Site-directed mutagenesis 

was used to generate AtUBP12 C208S active site mutant entry clone.  

Mutagenesis was completed using the QuikChange method with pENTR4 

AtUBP12 WT template DNA and specific primers (AtUBP12_5_C208S and  

AtUBP12_3_C208S). 

Full length cDNA from each respective entry clone was transferred into the 

pDEST17 destination vector by Gateway LR based recombination to 

generate N-terminal Histidine tagged AtUBP12 WT and AtUBP12 C208S 

fusion constructs. 
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5.2.2 Expression and purification of AtUBP12 proteins from E. coli 

His-AtUBP12 constructs were transformed into BL21(DE3) E. coli and 

protein expression was induced in 50 ml growth cultures with IPTG.  

Aliquots of induced E. coli culture were analysed by SDS-PAGE to confirm 

the expression of the ~133 kDa AtUBP12 WT and C208S fusion proteins 

(Figure 5.2 A and B).  After a three hour expression period at 37°C, cells 

were recovered by centrifugation and soluble extracts were prepared using 

BugBuster cell lysis solution.   

His-AtUBP12 WT and His-AtUBP12 C208S proteins were affinity purified 

from crude cell lysate using nickel affinity resin (Figure 5.2 A and B).  

Comparison of the recovered nickel purification fractions (Figure 5.2 A and 

B) indicated that both fusion proteins had bound to the affinity column but 

had been eluted in the low imidazole wash rather than final elution 

fractions.   

The premature elution of each respective fusion protein suggested a 

relatively low binding efficiency to the affinity column.  Poor binding 

efficiency usually requires empirical optimisation and is influenced by 

buffer conditions, fusion protein size and the size of the histidine tag 

(hexa-histidine in the case of pDEST17).  Despite the early elution, both 

AtUBP12 fusion proteins were considerably enriched in comparison to 

crude cell lysate (Figure 5.2 A and B) and were dialysed into Ub-chain 

assay reaction buffer.  Previously published data suggests that recombinant 

DUB proteins expressed in E.coli do not necessarily  need to be purified to 

demonstrate activity (Evans et al., 2003) and that there is no genuine DUB 

activity in E.coli (Iyer et al., 2006) therefore semi-purified AtUBP12 fusion 

protein extracts were analysed for DUB activity in vitro.   
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Figure 5.2  Expression and purification of His-AtUBP12 WT and His-At  

UBP12 C208S proteins from E. coli 

 

Coomassie stained PAGE gel lanes indicate: Pre-induction (1), 3 hours 

Post-induction (2), Soluble cell lysate (3), Column loading FT (4), Column 

wash #1 (5), Column wash #2 (6), Elution #1 (7), Elution #2 (8), Elution #3 

(9), Elution #4 (10), Elution #5 (11) for His-AtUBP12 WT (A) and His-

AtUBP12 C208S (B) respectively. 

 

 



 

 200

 

 

 

 

 

 

 



 

 201

5.2.3 In vitro Ub-chain cleavage assay of E. coli expressed AtUBP12 
proteins 

AtUBP12 WT and C208S fusion protein extracts (10 µl) were incubated with 

2 µg of Ub-chain oligomers for 20 hours at 37°C, assay reactions were 

analysed by western blot (Figure 5.3).  Recombinant Isopeptidase T (Reyes-

Turcu et al., 2008) was used as a positive control for DUB activity and 

demonstrated clear cleavage of oligomeric Ub-chains down to 

monoubiquitin (Figure 5.3).  There was no discernable difference in Ub-

chain cleavage between AtUBP12 WT and C208S DUB assay reactions 

(Figure 5.3), indicating that either the purified AtUBP12 WT had no DUB 

activity or the activity present was insufficiently high to be detected using 

the Ub-chain assay protocol.  Domain analysis of AtUBP12 using Pfam (Finn 

et al., 2006) indicates its authenticity as a deubiquitinating enzyme, 

suggesting that technical issues with either the E. coli based expression or 

the Ub-chain assay conditions/sensitivity were causing the lack of 

detectable activity. 

The viability of E. coli as a host for the expression of functional 

recombinant eukaryotic proteins is often limited by the lack of appropriate 

chaperones, cofactors and post-translational modification enzymes 

required to ensure solubility and correct folding (Baneyx and Mujacic, 

2004).  Whilst a wide variety of modified E. coli based expression systems 

are available to address some of these limitations (Baneyx, 1999),  

optimisation of recombinant protein expression conditions usually requires 

empirical adjustment. 

The use of oligomeric Ub-chains as a DUB enzyme substrate presented 

some technical issues during the assay experiments.  Ub-chain loading was 

highly inconsistent for a given volume, where two lanes loaded with 2 µg of 

substrate might differ twenty fold in apparent chain content when 

analysed by western blot (data not shown).   

The diagnostic principle of the assay is based on cleavage of the isopeptide 

linkages in oligomeric Ub-chains, the consequent decrease in Ub oligomer 

content is detectable by western blot.  In the case of Isopeptidase T 
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(positive control Figure 5.3) the high specific activity of the enzyme clearly 

hydrolyses all of the Ub-chain substrate.  In testing the purified AtUBP12 

fusion proteins it became apparent that limited substrate cleavage (10-

20%) in comparison to controls would be difficult to demonstrate on a 

western blot.  Further to this, variability in absolute substrate loading 

would further complicate attempts to quantify differences by densitometry 

analysis. 

5.3 In vitro activity assay of S. frugiperda expressed AtUBP12 

5.3.1 Generation of Histidine tagged AtUBP12 proteins for    
S. frugiperda based expression 

To circumvent the potential limitations of using the prokaryotic E. coli 

based system for protein expression, AtUBP12 proteins were instead 

expressed using the eukaryotic insect cell - baculovirus system.  

Recombinant baculovirus encoding AtUBP12 fusion proteins were expressed 

in Spodoptera frugiperda (Sf9) cells which, in comparison to bacterial 

expression systems, utilise many of the protein modifications and 

processing present in higher eukaryotic cells (Murphy and Piwnica-Worms, 

2001).  To demonstrate the specific activity of AtUBP12, histidine tagged 

fusion constructs corresponding to wild type and active site mutant 

versions of Arabidopsis UBP12 cDNA were generated.  

Full length AtUBP12 was PCR amplified from Arabidopsis cDNA with 

primers containing NotI and Asp718I restriction sites (AtUBP12BAC5_NotI 

and AtUBP12BAC3_Asp718I) then cloned into pGEM T-Easy.  Site-directed 

mutagenesis was used to generate the AtUBP12 C208S active site mutant 

construct.  Mutagenesis was completed using the QuikChange method with   

pGEM T-Easy AtUBP12 WT template DNA and specific primers                     

(AtUbp12_5_C208S and AtUbp12_3_C208S).  Full length cDNA from each 

respective  AtUBP12 WT and AtUBP12 C208S construct was subcloned into 

pACHLT baculovirus transfer vector at NotI and Asp718I restriction sites (5' 

and 3' respectively) to generate N-terminal Histidine tagged AtUBP12 WT 

and AtUBP12 C208S fusion constructs. 



 

 203

Figure 5.3  DUB activity assay of AtUBP12 WT and AtUBP12 C208S  

proteins. 

 
His-At UBP12 WT and His-At UBP12 C208S proteins were expressed and 

partially purified from E. coli and assayed for deubiquitinating activity.  A 

mixture of in vitro synthesised ubiquitin chains with lengths 1-7 units (Ub-

Ub7) (1 µg) were incubated alone (negative control), with Isopeptidase T 

(positive control), with His-AtUBP12 WT (10 µl) or with His-At UBP12 C208S 

(10 µl) protein extracts in lanes 1, 2, 3 and 4 respectively.  The reactions 

were analysed by Western blot using anti-Ubiquitin antibody (A) or anti-

Histidine antibody (B). 
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5.3.2 Expression and purification of AtUBP12 proteins from                 
S. frugiperda 

Recombinant baculovirus encoding either AtUBP12 WT or AtUBP12 C208S 

were generated using the BaculoGold transfection kit and Spodoptera 

frugiperda cells (Sf9) were used for expression of each fusion protein.  Sf9 

cell lysate was obtained by sonication and His-AtUBP12 fusion proteins 

were recovered by nickel affinity purification.  AtUBP12 WT and AtUBP12 

C208S purification fractions were analysed by SDS-PAGE and western blot 

(Figure 5.4) and purified proteins were immediately assayed for activity 

against diubiquitin substrate. 

5.3.3 In vitro diubiquitin cleavage assay of S. frugiperda expressed 
AtUBP12 proteins 

Purified AtUBP12 WT and C208S fusion proteins were incubated with 2 µg 

diubiquitin substrate for 20 hours at 37°C then assay reactions were 

analysed by western blot (Figure 5.5).  Recombinant human Isopeptidase T 

was used as a positive control for DUB activity and demonstrated complete 

cleavage of diubiquitin to monoubiquitin (Figure 5.5).  Purified AtUBP12 

WT protein demonstrated DUB activity with a significant fraction of 

diubiquitin being cleaved to monoubiquitin.  Despite being present at a 

two fold higher concentration (~3.0 µg vs 1.5 µg per reaction) no activity 

was detected for the AtUBP12 C208S active site mutant protein (Figure 

5.5). 
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Figure 5.4  Expression and purification of His-AtUBP12 WT and His-At  

UBP12 C208S proteins from S. frugiperda. 

 

His-AtUBP12 WT (A) and His-AtUBP12 C208S (B) proteins were expressed 

and purified from S. frugiperda.  PAGE gel lanes indicate: Sf9 cell lysate (1), 

Column loading FT (2), Column wash FT (3) and Column elution (4).  PAGE 

gels were analysed by coomassie staining (Ai & Bi) and Western blot using 

anti-Histidine antibody (Aii & Bii). 
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Figure 5.5  AtUBP12 is a deubiquitinating enzyme and mutations in its  

active site abolish its activity. 

 

His-AtUBP12 WT and His-AtUBP12 C208S proteins were expressed and 

purified from S. frugiperda and tested for deubiquitinating activity.  A mixture 

of in vitro synthesised ubiquitin chains with lengths 1-7 units (Ub-Ub7) were 

loaded as a sizing control (lane 1).  Di-Ubiquitin substrate (2 µg) was 

incubated alone (negative control), with Isopeptidase T (positive control), 

with AtUBP12 WT (~1.5 µg) or with AtUBP12 C208S (~3 µg) in lanes 2, 3, 4 

and 5 respectively.  The reactions were analysed by Western blot using anti-

Ubiquitin antibody (A) or anti-Histidine antibody (B).   
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5.4 In vitro activity assay of S. frugiperda expressed NtUBP12 

5.4.1 Generation of Histidine tagged NtUBP12 proteins for                    
S. frugiperda based expression 

To demonstrate the specific activity of NtUBP12, histidine tagged fusion 

constructs containing wild type and active site mutant versions of tobacco 

NtUBP12 cDNA were generated.  Having established the full length cDNA 

sequence of NtUBP12 (Chapter 4), primers were made to PCR amplify an 

NtUBP12 cDNA containing appropriate restriction sites for directional 

cloning into the pACHLT baculovirus transfer vector (NtUBP12BAC5_NotI 

and NtUBP12BAC3_Asp718I).  Extensive optimisation of the PCR strategy 

failed to produce sufficient NtUBP12 product for cloning purposes, so 

instead full length cDNA was commercially synthesised and cloned by blunt 

ligation into the pCR2.1TOPO vector.   

Site-directed mutagenesis was used to generate NtUBP12 C206S active site 

mutant construct. Mutagenesis was completed using the QuikChange 

method with pCR2.1 TOPO NtUBP12 WT template DNA and specific primers 

(NtUBP12_5_C206S and NtUBP12_3_C206S).  Full length cDNA from each 

respective  NtUBP12 WT and NtUBP12 C206S cDNA construct was subcloned 

into pACHLT baculovirus transfer vector at NotI and Asp718I restriction 

sites (5' and 3' respectively) to generate N-terminal Histidine tagged 

NtUBP12 WT and NtUBP12 C206S fusion constructs. 

5.4.2 Expression and purification of NtUBP12 proteins from                
S. frugiperda 

Recombinant baculovirus encoding either NtUBP12 WT or NtUBP12 C206S 

were generated using the BaculoGold Transfection kit and Spodoptera 

frugiperda cells (Sf9) were used for expression of each fusion protein.  Sf9 

cell lysate was obtained by sonication and His-NtUBP12 fusion proteins 

were recovered by nickel affinity purification.  NtUBP12 WT and NtUBP12 

C206S purification fractions were analysed by SDS-PAGE and western blot 

which detected potential His-tagged breakdown products in the case of 

purified NtUBP12 (Figure 5.6).  Despite the observed additional bands, 
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purified NtUBP12 proteins were immediately assayed for activity against 

diubiquitin substrate. 

5.4.3 In vitro diubiquitin cleavage assay of S. frugiperda expressed 
NtUBP12 proteins 

His-NtUBP12 WT and His-NtUBP12 C206 fusion proteins were incubated 

with 2 µg diubiquitin substrate for 20 hours at 37°C then assay reactions 

were analysed by western blot (Figure 5.7).  Recombinant human 

Isopeptidase T was used as a positive control for DUB activity and 

demonstrated complete cleavage of diubiquitin to monoubiquitin (Figure 

5.7).  Purified NtUBP12 WT protein demonstrated DUB activity with a 

significant fraction of diubiquitin being cleaved to monoubiquitin, no 

activity was detected for the NtUBP12 C206S active site mutant protein 

(Figure 5.7).   

Differences in the growth rate of Sf9 cell cultures used for expression of 

NtUBP12 WT and NtUBP12 C206S resulted in different amounts of purified 

protein being added to each respective assay (NtUBP12 WT ~ 1.0 µg and 

NtUBP12 C206S ~ 0.2 µg) (Figure 5.7).  To circumvent potential protein 

stability issues which may compromise protein activity, purified NtUBP12 

proteins were immediately assayed for DUB activity rather than after 

quantification and equalisation.  Time constraints precluded further 

purification experiments to obtain equalised assay samples but 

nonetheless, active site mutant NtUBP12, which was present at 

approximately 5 fold lower levels than wildtype NtUBP12 (~0.2 µg vs 1.0 

µg) (Figure 5.7), demonstrated no cleavage of diubiquitin substrate.  Had 

the NtUBP12 C206S mutant retained wildtype activity levels then a 

proportional hydrolysis of diubiquitin would have been expected in the in 

vitro assay.  The effect of the DUB UBP12 active site mutant was also 

confirmed by Sf9 expressed AtUBP12 proteins where variability in Sf9 cell 

growth resulted in the addition of more AtUBP12 C208S than AtUBP12 WT 

(~3.0 µg vs 1.5 µg) to the in vitro ubiquitin protease assay (Figure 5.5).  

Despite containing of two fold more AtUBP12 C208S than AtUBP12 WT, 

assays indicated that AtUBP12 C208S proteins were unable to cleave 

diubiquitin substrate. 
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Figure 5.6  Expression and purification of His-NtUBP12 WT and His- 

NtUBP12 C206S proteins from S. frugiperda. 

 

His-NtUBP12 WT (A) and His-NtUBP12 C206S (B) proteins were expressed 

and purified from S. frugiperda.  PAGE gel lanes indicate: Sf9 cell lysate (1), 

Column loading FT (2), Column wash FT (3) and Column elution (4).  PAGE 

gels were analysed by coomassie staining (Ai & Bi) and Western blot using 

anti-Histidine antibody (Aii & Bii). 
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Figure 5.7  NtUBP12 is a deubiquitinating enzyme and mutations in its 

active site abolish its activity. 

 

His-NtUBP12 WT and His-NtUBP12 C2086 proteins were expressed and 

purified from S. frugiperda and tested for deubiquitinating activity.  A mixture 

of in vitro synthesised ubiquitin chains with lengths 1-7 units (Ub-Ub7) were 

loaded as a sizing control (lane 1).  Di-Ubiquitin substrate (2 µg) was 

incubated alone (negative control), with Isopeptidase T (positive control), 

with NtUBP12 WT (~1 µg) or with AtUBP12 C206S (~0.2 µg) in lanes 2, 3, 4 

and 5 respectively.  The reactions were analysed by Western blot using anti-

Ubiquitin antibody (A) or anti-Histidine antibody (B).   
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5.5 Phylogenetic analysis of eukaryotic UBP12 proteins 

There are several distinct classes of DUB enzyme found in eukaryotes, but 

in most cases the UBP family is the largest and most diverse (Nijman et al., 

2005).  Despite this diversity, a core group of archetypal ‘eukaryotic DUBs’ 

can be detected which are the proposed evolutionary ancestors of the 

current UBP families (Amerik et al., 2000).  To confirm if the plant UBP12 

genes in this study were specific to plant or  eukaryote lineages, the best 

scoring BLAST hits to AtUBP12 from various model eukaryotes were 

subjected to phylogenetic analysis. 

High scoring matches to AtUBP12 from yeast (S. cerevisiae), worm (C. 

elegans), fly (D. melanogaster), mouse (M. musculus) and human (H. 

sapiens) were recovered from the UniProt protein database (Bairoch et al., 

2005) and their respective His and Cys boxes were extracted from each 

sequence.  Extracted catalytic regions from the recovered sequences, 

AtUBP12, AtUBP13, NtUBP12 and a subset of other Arabidopsis UBP 

enzymes were aligned using ClustalW.  A phylogeny of the aligned UBP 

sequences was inferred using MEGA with neighbour joining based tree 

construction (Figure 5.8).   

The phylogeny presented in Figure 5.8 indicates that plant UBP12 proteins 

form a clade with other apparent eukaryotic counterparts.  The node 

values on the tree represent bootstrap confidence percentage (based on 

10,000 replicates) which are typically required to be over 70% to provide 

significant support for a particular phylogenetic relationship (Soltis and 

Soltis, 2003).  Bootstrap analysis provides strong support (bootstrap 97%) 

for the clustering of plant UBP12 proteins with orthologous eukaryotic 

proteins.  The relative positioning of Yeast UBP15 and Worm Math-33 

proteins within this clade is poorly supported (bootstrap 50% and 64% 

respectively).  This observation probably results from the limited amount 

of sequence data in the alignment (80-100 residues) which is insufficient to 

place all the sequences in a relevant order.  In this case the ordering of 

sequences in the UBP12 clade is of limited relevance, however the strong 

overall support for the cluster is indicative of their common ancestry. 
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Figure 5.8 Plant UBP12 proteins cluster with their eukaryotic orthologs. 

Neighbour Joining phylogeny of plant and model eukaryote UBP proteins.  

Phylogeny was inferred from an alignment of catalytic regions of UBP 

proteins (recovered from UniProt) of Arabidopsis: AtUBP1 (Q9FPT5), 

AtUBP2 (Q8W4N3), AtUBP3 (O24454), AtUBP4 (Q8LAM0), AtUBP5 

(O22207), AtUBP6 (Q949Y0), AtUBP7 (Q84WC6), AtUBP8 (Q9C585), 

AtUBP9 (Q93Y01), AtUBP10 (Q9ZSB5), AtUBP12 (Q9FPT1), AtUBP13 

(Q84WU2), Tobacco: NtUBP12 (established in this study), Yeast: ScUBP15 

(P50101), Fly: DmUBP7 (Q9VYQ8), Worm: CeMath-33 (O45624), Mouse: 

MmUBP7 (Q6A4J8) and Human: HsUBP7 (Q93009).  Phylogenetic tree 

accuracy was tested with 10,000 bootstrap replicates represented as 

percentage values at respective nodes.  Tree scale bar represents 

substitutions per site.  UBP protein domain diagrams indicate catalytic 

regions and additional domains as confirmed by Pfam analysis. 
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Recovered eukaryotic UBP12 orthologs were also analysed using Pfam 

which confirmed the presence of an N-terminal MATH domain (accession 

PF00917) in all cases (Figure 5.8). 

The inferred phylogeny confirms that UBP12/13 proteins investigated in 

this study are not specific only to plants and that they form a significant 

clade with other eukaryotic orthologs rather than other plant UBPs (Figure 

5.8).  The eukaryotic conservation of UBP12 type DUB proteins suggests a 

potentially fundamental role for this enzyme in the cell.  Functional 

characterisation of orthologous eukaryotic proteins may yield insights that 

are applicable or at least relevant to the study of the plant UBP12 

proteins. 

5.6 Discussion  

5.6.1 In vitro activity assay of AtUBP12 and NtUBP12 proteins 

The current chapter focused on the demonstration of genuine in vitro 

ubiquitin protease activity for Arabidopsis and tobacco orthologs of UBP12.  

Proof of this activity correllates with the loss of function data observed 

during VIGS based NtUBP12 gene silencing in N. benthamiana (Chapter 4) 

and gain of function during transient AtUBP12 overexpression in tobacco 

(Chapter 6).  Purified AtUBP12 and NtUBP12 fusion proteins exhibit 

ubiquitin protease activity against K48 linked diubiquitin substrate, 

whereas active site mutant versions of each respective protein do not.  

Expression of recombinant AtUBP12 proteins in E. coli yielded a soluble but 

apparently inactive product.  This is a frequently encountered problem 

when expressing eukaryotic proteins in prokaryotic hosts which lack many 

of post-translational processing enzymes typically required to guide 

protein modification and folding (Baneyx and Mujacic, 2004).  Active 

UBP12 proteins were instead obtained by using eukaryotic insect Sf9 cell 

based expression. 
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5.6.2 UBP12 linkage specificity  

Both Arabidopsis and tobacco UBP12 proteins demonstrated cleavage 

activity against K48 linked diubiquitin.  This substrate is composed of two 

ubiquitin monomers linked by an isopeptide linkage from the terminal 

glycine (G76) of one Ub moiety to an internal lysine (K48) of the other.  In 

the cell, substrate proteins that are tagged with K48 linked ubiquitin 

chains are targeted for degradation by the 26S proteasome (Chau et al., 

1989).  Whilst classical studies established that post-translational 

modification by ubiquitin dramatically alters a proteins stability, recent 

data indicate that variation in ubiquitin chain length and structure 

correspond to differing signalling outcomes (Pickart and Fushman, 2004).   

Proteomic approaches to dissect ubiquitination in yeast (Peng et al., 2003) 

have reported distinct ubiquitin chains linked through all seven available 

lysine residues (K6, K11, K27, K29, K33, K48 and K63).  Biochemical and 

structural data suggest that distinct ubiquitin chain topologies adopt 

markedly different three-dimensional conformations and discrimination 

between these various chain structures is presumed to confer distinct 

signalling outcomes (Pickart and Fushman, 2004).  In addition to the 

canonical K48 linkage, the best characterised alternative ubiquitin chain 

topologies are linked through lysines K63 and K29.  In mammalian cells, 

K63 linked ubiquitin has been implicated in numerous signalling processes 

that include DNA damage tolerance and protein trafficking (Zapata et al., 

2001).  Recent data indicates that K29 linked ubiquitin chains function in 

lysosomal protein degradation where K29 tagged substrates are targeted to 

lysosomes via the Ubiquitin Fusion Degradation (UFD) pathway (Chastagner 

et al., 2006).  In addition to chain based signalling, ligation of a single 

ubiquitin moiety (monoubiquitination) can influence protein activity or 

localisation (Hicke, 2001a).   

Further to the regulatory aspects of ubiquitin chain linkage, unbranched 

ubiquitin fusions are generated as translation products from their 

respective genes.  Translated ubiquitin gene products are linear fusion 

proteins (poly-Ub or Ub-protein) linked by peptide bonds (Finley and Chau, 

1991).  In the cell, these fusion proteins are cleaved by deubiquitinating 
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enzymes to generate mature ubiquitin moieties (Amerik and Hochstrasser, 

2004). 

The emerging variety of peptide and isopeptide linked ubiquitin fusions 

made in vivo reflects the diversity of signalling pathways in which 

ubiquitination is involved.  Accordingly, numerous different cellular DUB 

activities hydrolyse the various ubiquitin linkages and it is now becoming 

clear that many DUB enzymes cleave specific linkage types whilst others 

have promiscuous activities (Nijman et al., 2005). 

Ubiquitin binding sequence motifs have been identified within most DUB 

enzymes but the determinants of branch mode preference are unclear.  

Current research suggests that both active site architecture and the 

regulatory influence of non-catalytic domains may influence branch mode 

selection and efficiency (Nijman et al., 2005) (Komander et al., 2008).  In 

the case of the UBP enzyme family, no generic determinants of chain 

linkage specificity have been determined and current insights into enzyme 

function are being determined experimentally on a case by case basis 

(Komander et al., 2008) (Hu et al., 2002b). 

Sequence analysis indicates that UBP12 belongs to a subset of plant UBP 

genes which are conserved in other eukaryotic genomes.  Phylogenetic 

analysis confirms that AtUBP12 forms a significant cluster with eukaryotic 

orthologs including yeast USP7 and human USP7/HAUSP.  The human 

ortholog HAUSP is one of the most extensively characterised UBP proteins 

and in vitro activity assays indicate its specificity for K48 linked ubiquitin 

isopeptide bonds (Hu et al., 2002b). 

Based on the genetic conservation of UBP12 in various model eukaryotes 

(Figure 5.7), it is likely that orthologs also share core structural features 

and some aspects of function.  The established activity of human HAUSP 

against K48 linked ubiquitin was suggestive that plant UBP12 may exhibit a 

similar specificity.  This prediction was borne out in assay experiments on 

AtUBP12 and NtUBP12 with K48 linked diubiquitin and is indicative that 

UBP12 functions in vivo to stabilise its biological substrates against 

proteasomal degradation. 
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In vitro assays indicate that HAUSP has no detectable activity against K63 

linked ubiquitin chains (Hu et al., 2002b) and this linkage specificity is 

probably conserved in plant UBP12 orthologs.  This prediction could be 

tested by in vitro assay experiments using K63 linked diubiquitin which is 

commercially available. 

Ultimately, the use of ubiquitin oligomer substrates provides a suitable 

tool to demonstrate DUB enzyme activity and linkage specificity.  

However, assays of in vitro activity provide only approximate insight into 

in vivo enzyme function when considering the role of conformational 

changes and interacting partners in enzymatic regulation.  Further 

consideration should also be made for the potential in vivo preference of 

DUB enzymes for isopeptide bonds that are proximal to ubiquitinated 

substrates or distal within poly-Ub chains. 

5.6.3 Structural aspects of HAUSP and plant UBP12 function 

Extensive biochemical characterisation of HAUSP has identified three 

biological substrates, established the crystal structure of the core protease 

and substrate binding TRAF-like domains (Hu et al., 2006) and that the 

active site undergoes significant conformational rearrangement to bind and 

then hydrolyse linked ubiquitin moieties (Hu et al., 2002b).  Phylogenetic 

analysis indicates that HAUSP and plant UBP12 proteins share a common 

evolutionary ancestor (Figure 5.7) and it is plausible that aspects of 

enzymatic function have been retained.  Current research suggests that 

HAUSP adjusts from inactive to active conformations to become a 

functional protease against K48 linked ubiquitin (Hu et al., 2002b).  HAUSP 

activation is likely to be concerted and mediated by the perception of 

signalling events but the role of the  C-terminal domain (which has not 

been crystallised) or the role of interacting regulatory proteins in this 

activation is unclear.   

In this study, active plant UBP12 proteins were purified from Sf9 cells 

suggesting a constitutive activity which maybe suppressed or regulated 

through the influence of interacting proteins that are not present in Sf9 

host cells.  An alternative explanation is based on the possibility that Sf9 
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expressed plant UBP12 proteins were constitutively inactive but that basal 

activity from non-specifically activated enzyme was sufficient to cleave 

the available diubiquitin substrate.  The regulatory role of conformational 

activation for deubiquitinating enzymes is an active research topic (Amerik 

and Hochstrasser, 2004) typically requiring structural data from NMR and 

crystallography studies (Hu et al., 2005).  In the case of plant UBP12 

proteins, it is plausible that conformational activation may contribute 

some degree of regulation based on studies of the orthologous human 

protein HAUSP. 
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Chapter 6 - Transient overexpression of AtUBP12 proteins 

6.1 Introduction 

During loss of function studies reported in Chapter 4, N. benthamiana 

plants undergoing NbUBP12 silencing demonstrated an increased Cf-9 

triggered HR phenotype.  This chapter reports gain of function experiments 

to investigate the effect of increased in vivo UBP12 activity during disease 

resistance signalling in tobacco and N. benthamiana.  Gain of function 

studies were conducted using Agrobacterium based transient 

overexpression of full length N-terminal GFP-AtUBP12 fusion proteins.  

Transient expression systems exploit the ability of Agrobacterium 

tumefaciens to efficiently transfer DNA constructs from the bacterial Ti 

plasmid into the plant cell (Cazzonelli and Velten, 2006).  Following 

infiltration of Agrobacterium carrying DNA constructs, expression of the 

corresponding proteins typically occurs within 2 – 4 days in the majority of 

plant cells within the infusion area (Sparkes et al., 2006).  Transient 

expression is compatible with a range of host plant species but is typically 

conducted in Solanaceous plants where it has been previously applied to 

study gene silencing, promoter structure and disease resistance (Cazzonelli 

and Velten, 2006). This approach can circumvent the requirement for 

stable transgenics and allows rapid assessment of gene function during 

biotic and abiotic treatments. 

Based on the in vitro activity of AtUBP12 proteins reported in Chapter 5, 

wildtype and active site mutant GFP-AtUBP12 fusion proteins were 

transiently expressed from a 35S promoter in tobacco and N. benthamiana.  

The timing of GFP-AtUBP12 transient expression was established and cell 

death responses during Cf-9 and Pto triggered HR were characterised. 

Results reported in this chapter establish that elevations of in vivo UBP12 

activity resulting from transient overexpression of GFP-AtUBP12 suppress 

the cell death component of Cf-9 triggered HR in tobacco but do not alter 

Pto triggered HR in N. benthamiana. 
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6.2 Transient overexpression of AtUBP12 proteins in tobacco 

Having established that VIGS based silencing of NbUBP12 caused an 

increased HR response following elicitation by Cf-9/Avr9, transient 

overexpression was used to investigate possible gain of function 

phenotypes associated with UBP12 activity during Cf-9 triggered HR. 

At the initiation of overexpression experiments, the full length NtUBP12 

cDNA sequence was not determined.  To circumvent this issue, the cDNA 

sequence of AtUBP12, the Arabidopsis ortholog of NtUBP12 was cloned for 

overexpression studies.  The validity of this transgenomic approach was 

based on two assumptions.  First, that AtUBP12 is transcriptionally induced 

by Pseudomonas syringae and SA and may have a general role in disease 

resistance signalling.  Second, that based on the high degree of amino acid 

conservation between AtUBP12 and NtUBP12 (86% identity), AtUBP12 could 

respond to in vivo stimuli and stabilise the same target substrates as 

NtUBP12 during Cf-9 triggered HR. 

6.2.1 Generation and expression of GFP-AtUBP12 fusion proteins 

For overexpression studies, the Gateway compatible pGWB6 vector 

(Nakagawa et al., 2007) was used to generate an N-terminal GFP-AtUBP12  

fusion construct expressed under a CaMV 35S promoter.  Results presented 

in Chapter 5 confirm that the active site mutant protein AtUBP12 C208S 

lacks ubiquitin protease activity.  The corresponding GFP-AtUBP12 C208S 

fusion construct was generated for use as a negative control in transient 

overexpression experiments.  Subcloning of cDNA fragments corresponding 

to AtUBP12 and AtUBP12 C208S into the Gateway entry vector pENTR4 was 

described in Chapter 5 (Section 5.2.1).  Full length cDNA from each 

respective AtUBP12 entry clone was transferred into the pGWB6 

destination vector by Gateway LR based recombination to generate N-

terminal GFP tagged AtUBP12 WT and AtUBP12 C208S fusion constructs. 

Transgenic tobacco lines overexpressing the tomato R gene Cf-9  (as 

described in Chapter 4 – Section 4.3) (Hammond-Kosack et al., 1998) were 

used for transient overexpression of AtUBP12 proteins.  Protocols for 
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transient overexpression of proteins using Agrobacterium in tobacco are 

established (Sparkes et al., 2006) and the utilisation of transgenic Cf-9 

lines allows efficient triggering of the HR following infiltration of extracted 

Avr9 peptide solution (Hammond-Kosack et al., 1998).   

Agrobacterium mediated transient gene expression in Nicotiana species 

typically results in the accumulation of corresponding protein from two 

days until upto five days after construct inoculation (Sparkes et al., 2006).  

To establish the peak of transgene expression for GFP-AtUBP12 fusion 

constructs, a timecourse analysis of GFP-AtUBP12 protein expression in 

tobacco was conducted (Figure 6.1).  Tobacco leaf sections were 

inoculated with Agrobacterium containing GFP-AtUBP12 constructs at 

either OD600 0.2 or 0.5 (Figure 6.1).  Protein expression was analysed in 

duplicate using anti-GFP antibodies on leaf samples taken either two 

(Figure 6.1 A) or three (Figure 6.1 B) days after agroinoculation of GFP-

AtUBP12 constructs.   

The calculated molecular weight of AtUBP12 is ~133 kDa which when fused 

to the 27 kDa GFP tag (Niwa, 2002) in pGWB6 produces a ~160 kDa fusion 

protein.  In day two samples, anti-GFP analysis indicated the expected 

GFP-AtUBP12 band migrating slightly faster than the 175 kDa marker in 

GFP-AtUBP12 extracts which was not present in GFP (empty pGWB6) 

controls (Figure 6.1 A).  In all cases 100 µg of total protein extract was 

resolved on SDS-PAGE gels and western blot analysis indicated that GFP-

AtUBP12 fusion protein expression levels were highest two days after 

Agrobacterium infiltration (Figure 6.1).  GFP-AtUBP12 expression was not 

detectable in 75% of leaf samples taken three days after Agrobacterium 

infiltration and where detected, was markedly reduced compared to the 

majority of day two expression samples (Figure 6.1 B). 

Western blotting results indicated higher expression of GFP-AtUBP12 at day 

two compared to day three but also that the absolute level of expression 

was highly variable between individual replicates (Figure 6.1 A).  An 

approximate 20 fold difference in GFP-AtUBP12 expression was seen 

between duplicate day two samples infiltrated at OD600 0.5 (Figure 6.1 A).  

Despite the variability in expression, GFP-AtUBP12 was detectable in all  



 

 227

Figure 6.1   GFP-AtUBP12 fusion protein accumulation peaks on day 2  

during transient overexpression in tobacco. 

 

Western blot analysis of total protein extract (100 µg) from tobacco leaves 

either two (A) or three (B) days after agroinoculation of 35S GFP-AtUBP12 

or 35S GFP at OD600 0.2 and OD600 0.5.  Samples were analysed in 

duplicate and western blots were probed with anti-GFP antibody.  Upper and 

lower panels of film images represent different exposure times of a single 

western blot.  Upper panel represents long exposure (10 minutes) and lower 

panel represents short exposure (5 seconds).  Ponceau stain of rubisco 

large subunit (rbcL) was used as a loading control. 
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day two samples and this timepoint was considered the peak of expression.  

For transient overexpression studies, Agrobacterium cultures containing 

GFP-AtUBP12 fusion constructs were infiltrated into Cf-9 tobacco at OD600 

0.5 and HR cell death assays were conducted two days later at the 

established peak of transgene expression. 

6.2.2 Cf-9/Avr9 triggered HR assay during transient overexpression of 
AtUBP12 proteins 

Using transgenic Cf-9 tobacco lines, an efficient HR response can be 

triggered following infiltration of extracted Avr9 peptide as described by 

Hammond-Kossack et al (Hammond-Kosack et al., 1998).   

Extracted Avr9 peptide stock was adjusted by titration to elicit HR in Cf-9 

tobacco leaves such that confluent cell death and severe tissue necrosis 

were established approximately 12-16 hours after infiltration.  Using Avr9 

peptide diluted to either 2 or 4 fold from a stock solution elicited an 

appropriate HR response in the majority of Agrobacterium treated Cf-9 

tobacco leaf sections tested (data not shown).  The oldest (first 4-5) and 

youngest (last 3-4) leaves in 6 week old Cf-9 tobacco plants were not used 

for transient expression based on the respective hypersensitivity and 

hyposensitivity to established Avr9 peptide titres typically observed in 

these leaves (data not shown).   

Overexpression of GFP-AtUBP12 and GFP-AtUBP12 C208S fusion constructs 

was conducted in Cf-9 tobacco plants and accumulation of corresponding 

GFP-AtUBP12 and GFP-AtUBP12 C208S proteins on day two was confirmed 

by western blotting with anti-GFP antibodies (Figure 6.2). 

GFP-AtUBP12 fusion GFP control constructs were infiltrated into 

appropriate Cf-9 tobacco leaf segments as indicated (Figure 6.3 A).  Two 

adjacent segments left of the main vein were infiltrated with the GFP-

AtUBP12  construct (L1 and L2 Figure 6.3 A) whilst corresponding segments 

right of the main vein were infiltrated with GFP only (R1 and R2 Figure 6.3 

A).  Two days after infiltration, during the peak of transgene expression,  
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Figure 6.2   Expression GFP-AtUBP12 WT and GFP-AtUBP12 C208S in  

tobacco. 

 

Western blot analysis of total protein extract (100 µg) from tobacco leaves 

two days after agro-inoculation of 35S GFP-AtUBP12 WT (A) or 35S GFP-

AtUBP12 C208S (B).  Samples were analysed in duplicate and western blots 

were probed with anti-GFP antibody.  Upper and lower panels of film 

images represent different exposure times of a single western blot.  Upper 

panel represents long exposure (5 minutes) and lower panel represents 

short exposure (5 seconds).  Ponceau stain of rubisco large subunit (rbcL) 

was used as a loading control. 
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Cf-9 tobacco leaf segments were infiltrated with Avr9 peptide at 2 and 4 

fold dilutions in upper and lower respective leaf segments to elicit the HR 

(Figure 6.3 A and B).  After Avr9 peptide infiltration, a clear reduction in 

the development of hypersensitive cell death was observed in numerous 

GFP-AtUBP12 expressing leaf segments relative to GFP expressing controls 

(Figure 6.3 B).   

HR assays were conducted in 28 independent leaves expressing GFP-

AtUBP12 and GFP (as indicated in Figure 6.3 A) and the development of 

cell death in GFP-AtUBP12 overexpressing segments was scored relative to 

the corresponding GFP control (Figure 6.3 C).  Based on hypersensitive cell 

death coverage in the infiltrated leaf segment, HR was scored as: 

suppressed (at least 50% less cell death compared to corresponding GFP 

control), unchanged (no clear difference in cell death compared to 

corresponding GFP control) or increased (at least 50% more cell death 

compared to corresponding GFP control).   

During GFP-AtUBP12 overexpression experiments in 28 leaves, HR 

elicitation by 2 fold diluted Avr9 peptide was suppressed in 39%, 

unchanged in 57% and increased in 4% of leaves (Figure 6.3 C).  A similar 

trend following HR elicitation with 4 fold diluted Avr9 peptide was 

observed where HR was suppressed in 43%, unchanged in 53% and increased 

in 4% of leaves (Figure 6.3 C). 

Equivalent transient overexpression assays were conducted using the GFP-

AtUBP12 C208S active site mutant construct (Figure 6.4).  In 21 

independent leaves, no HR suppression was observed during overexpression 

of GFP-AtUBP12 C208S (Figure 6.4 B and C).  Scoring indicated that 

following elicitation by 2 fold diluted Avr9 peptide, the HR was suppressed 

in 0%, unchanged in 95% and increased in 5% of leaves (Figure 6.4 C).  A 

similar scoring trend was observed following HR elicitation with 4 fold 

diluted Avr9 peptide where the HR was suppressed in 0%, unchanged in 90% 

and increased in 10% of leaves (Figure 6.4 C). 
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Figure 6.3  Transient overexpression of AtUBP12 in Cf-9 tobacco 

suppresses Avr9 elicited HR. 

 

(A) Agroinoculation and Avr9 peptide infiltration scheme in Cf-9 tobacco leaf 

sections.  35S GFP-AtUBP12 and 35S GFP constructs were agroinoculated 

at OD600 0.5 into left (L1 and L2) and right (R1 and R2) tobacco leaf 

segments respectively.  Two days after agroinoculation, upper leaf segments 

(L1 and R1) and lower leaf segments (L2 and R2) were infiltrated with Avr9 

elicitor at x 0.5 and x 0.25 dilutions respectively. 

 

(B) HR development in Cf-9 tobacco leaf segments overexpressing  GFP-

AtUBP12 (left segments) and GFP (right segments) following Avr9 elicitor 

infiltration. Pictures taken five days after Avr9 elicitor infiltration. 

 

(C) Avr9 elicited HR cell death assay during GFP-AtUBP12 overexpression. 

Extent of cell death in GFP-AtUBP12 overexpressing segments was scored 

against the corresponding GFP overexpressing control segment five days 

after infiltration of Avr9 elicitor at x 0.5 and x 0.25 dilutions. 
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Figure 6.4  Transient overexpression of the non-catalytic mutant AtUBP12 

C208S in Cf-9 tobacco fails to suppress Avr9 elicited HR. 

 

(A) Agroinoculation and Avr9 peptide infiltration scheme in Cf-9 tobacco leaf 

sections.  35S GFP-AtUBP12 C208S and 35S GFP constructs were 

agroinoculated at OD600 0.5 into left (L1 and L2) and right (R1 and R2) 

tobacco leaf segments respectively.  Two days after agroinoculation, upper 

leaf segments (L1 and R1) and lower leaf segments (L2 and R2) were 

infiltrated with Avr9 elicitor at x 0.5 and x 0.25 dilutions respectively. 

(B) HR development in Cf-9 tobacco leaf segments overexpressing  GFP-

AtUBP12 C208S (left segments) and GFP (right segments) following Avr9 

elicitor infiltration. Pictures taken five days after Avr9 elicitor infiltration. 

(C) Avr9 elicited HR cell death assay during GFP-AtUBP12 C208S 

overexpression.  Extent of cell death in GFP-AtUBP12 C208S 

overexpressing segments was scored against the corresponding GFP 

overexpressing control segment five days after infiltration of Avr9 elicitor at x 

0.5 and x 0.25 dilutions. 
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Having confirmed that overexpression of mutant AtUBP12 C208S failed to 

suppress the Cf-9 triggered HR, further experiments were conducted to 

investigate possible competitive substrate binding effects of the mutant 

protein.  Avr9 peptide levels were titrated to establish if overexpression of 

AtUBP12 C208S resulted in increased sensitivity to the HR elicitor.  

Equivalent transient overexpression assays were conducted with the GFP-

AtUBP12 C208S active site mutant construct but HR was elicited using 12 

fold and 20 fold diluted Avr9 peptide in upper and lower respective leaf 

segments (Figure 6.5 A).   

Transient assays were conducted in 18 independent leaves and an 

increased HR phenotype was observed in leaf segments overexpressing the 

GFP-AtUBP12 C208S protein (Figure 6.5 B and C).  Scoring indicated that 

following elicitation by 12 fold diluted Avr9 peptide, the HR was 

suppressed in 0%, unchanged in 67% and increased in 33% of leaves (Figure 

6.5 C).  A similar scoring trend was observed following elicitation with 20 

fold diluted Avr9 peptide where the HR was suppressed in 0%, unchanged 

in 55% and increased in 45% of leaves (Figure 6.5 C).  These findings 

indicate that overexpression of an active site mutant AtUBP12 C208S 

protein confers a dominant negative effect to promote the development of 

Cf-9 triggered HR. 

The suppression of Cf-9 triggered HR during AtUBP12 overexpression 

correlates with loss of function data presented in Chapter 4 where VIGS 

based silencing of NbUBP12 causes an increase in Cf-9 triggered HR.  The 

presented results indicate that AtUBP12 overexpression can enhance the 

function of its solanaceous ortholog in N. tabacum to regulate Cf-9 

triggered disease resistance signalling.  Overexpression of an inactive 

AtUBP12 mutant fails to suppress the Cf-9 triggered HR, confirming that 

the elevated levels of UBP12 activity are responsible for the observed HR 

suppression phenotype.   

Based on loss and gain of function approaches, solanaceous UBP12 proteins 

apparently function to deubiquitinate and stabilise a negative HR 

regulator.  Overexpression of AtUBP12 in tobacco presumably leads to a 

‘hyper-stabilisation’ of target substrates with increased levels of negative  
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Figure 6.5  Transient overexpression of AtUBP12 C208S in Cf-9 tobacco 

promotes Avr9 elicited HR through a dominant negative effect. 

 

(A) Agroinoculation and Avr9 peptide infiltration scheme in Cf-9 tobacco leaf 

sections.  35S GFP-AtUBP12 C208S and 35S GFP constructs were 

agroinoculated at OD600 0.5 into left (L1 and L2) and right (R1 and R2) 

tobacco leaf segments respectively.  Two days after agroinoculation, upper 

leaf segments (L1 and R1) and lower leaf segments (L2 and R2) were 

infiltrated with Avr9 elicitor at x 0.08 and x 0.05 dilutions respectively. 

(B) HR development in Cf-9 tobacco leaf segments overexpressing  GFP-

AtUBP12 C208S (left segments) and GFP (right segments) following Avr9 

elicitor infiltration. Pictures taken five days after Avr9 elicitor infiltration. 

(C) Avr9 elicited HR cell death assay during GFP-AtUBP12 C208S 

overexpression.  Extent of cell death in GFP-AtUBP12 C208S 

overexpressing segments was scored against the corresponding GFP 

overexpressing control segment five days after infiltration of Avr9 elicitor at x 

0.08 and x 0.05 dilutions. 
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regulators leading to the observed HR suppression phenotype.  The 

dominant negative effect (Veitia, 2007) seen during overexpression of 

AtUBP12 C208S indicates that the mutant protein competes with 

endogenous NtUBP12 to bind a ubiquitinated negative HR regulator (or 

regulators).  As the mutant AtUBP12 C208S protein lacks ubiquitin protease 

activity, it presumably fails to stabilise its ubiquitinated substrate.  By 

competitively binding NtUBP12 substrates AtUBP12 C208S effectively 

maintains the ubiquitination status of negative HR regulators thereby 

promoting their proteasomal degradation to cause the reported increased 

HR phenotype. 
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6.3 Transient overexpression of AtUBP12 proteins in N. benthamiana 
during Pto/avrPto triggered HR 

Loss of function results reported in Chapter 4 indicated that silencing of 

NbUBP12 did not alter the development of HR triggered mediated by the 

Pto R gene.  To investigate possible gain of function phenotypes during 

avrPto/Pto triggered HR, AtUBP12 fusion proteins were transiently 

overexpressed in transgenic 35S Pto N. benthamiana plants.  The HR was 

elicited in transgenic N. benthamiana expressing the Pto R gene under a 

CaMV 35S promoter as described in Chapter 4 (Section 4.6) by high titre 

inoculation of Pseudomonas expressing the avrPto avirulence gene. 

The efficiency of Agrobacterium based transient gene expression is 

normally reduced by the induction of RNA mediated anti-viral plant 

defence mechanisms which act to silence the transgene (Johansen and 

Carrington, 2001).  Many viral genomes encode silencing suppressors which 

overcome gene silencing effects by inhibiting different aspects the gene 

silencing process (Silhavy and Burgyan, 2004).  Disruption of siRNA binding 

to silencing effector complexes prevents the initiation of gene silencing 

and increases virus pathogenicity.  Numerous silencing suppressors have 

been identified (Silhavy and Burgyan, 2004), some of which have been 

employed to yield considerable improvements during transient gene 

expression (Voinnet et al., 2003).  In this study, the tomato bushy stunt 

virus silencing suppressor P19 (Voinnet et al., 2003) was utilised to 

increase transient expression levels of GFP-AtUBP12 constructs in N. 

benthamiana. 

6.3.1 Transient overexpression of AtUBP12 proteins in                               
N. benthamiana  

To examine the effect of P19 on GFP-AtUBP12 transgene expression in                     

N. benthamiana, a timecourse protein expression analysis was conducted 

(Figure 6.6).  GFP-AtUBP12 fusion protein constructs (described in Section 

6.2.1) were agroinoculated into N. benthamiana leaves at a final OD600 of 

0.5.  Agrobacterium containing the P19 silencing suppressor construct was 

coinfiltrated with GFP-AtUBP12 constructs at a final OD600 of 0.2.  
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Timecourse studies of GFP-AtUBP12 fusion protein accumulation were 

conducted both with and without P19 for five days after agroinoculation 

(Figure 6.6).  Timecourse expression samples were analysed in duplicate 

where in all cases, 100 µg of total protein extract were resolved on SDS-

PAGE gels and analysed by western blotting using anti-GFP antibodies 

(Figure 6.6).  As expected, coinfiltration of the P19 silencing suppressor 

caused a major improvement in GFP-AtUBP12 protein expression (Figure 

6.6).  In accordance with prior tobacco overexpression experiments 

(Section 6.2.2), without P19 coinfiltration accumulation of GFP-AtUBP12 

fusion protein peaked at two days after construct infiltration (Figure 6.6 

B).  Coinfiltration of the P19 silencing suppressor led to increased GFP-

AtUBP12 expression at two days after infiltration (approximately 10 fold 

higher) and a further elevation in fusion protein accumulation expression 

during subsequent timepoints upto five days after infiltration (Figure 6.6 

A).   

Coinfiltration of P19 during transient overexpression caused an 

approximate 50 fold increase in GFP-AtUBP12 accumulation at day 3 

compared to the day 2 peak of expression observed without P19 (Figure 

6.6).  The observed approximate 50 fold increase in protein accumulation 

was maintained at days four and five and appeared to be slightly increased 

in some samples (Figure 6.6 A).  As there was no major difference in P19 

associated fusion protein accumulation at three, four and five days after 

construct agroinoculation the peak of GFP-AtUBP12 expression was 

considered to be during day three (Figure 6.6 A). 
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Figure 6.6   Coinfiltration of the P19 silencing suppressor enhances  

transient  overexpression of GFP-AtUBP12 in N. benthamiana. 

 

Western blot analysis of total protein extract (100 µg) from N. benthamiana 

leaves sampled for five days (T0-T5) after agroinoculation of 35S GFP-

AtUBP12 or 35S GFP constructs at OD600 0.5 either without (A) or with (B) 

coinfiltration of P19 silencing suppressor.  Samples were analysed in 

duplicate and western blots were probed with anti-GFP antibody.  Upper and 

lower panels of film images represent different exposure times of a single 

western blot.  Upper panel represents a longer exposure (20 seconds in A 

and 10 seconds in B) and lower panel represents short exposure (2 seconds 

in A and B).  Ponceau stain of rubisco large subunit (rbcL) was used as a 

loading control. 
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6.3.2 avrPto/Pto triggered HR during overexpression of AtUBP12 
proteins in N. benthamiana 

Results reported in Section 6.2 indicated that transient ectopic expression 

of AtUBP12 can functionally enhance NtUBP12 activity to confer a gain of 

function HR suppression phenotype during Cf-9 triggered HR.  An 

equivalent approach was taken to overexpress GFP-AtUBP12 fusion proteins 

during avrPto/Pto triggered HR in N. benthamiana. 

To investigate the potential involvement of UBP12 activity in Pto mediated 

HR, various titres of avirulent Pseudomonas syringae pv. tabaci avrPto 

were inoculated onto 35S Pto N. Benthamiana during transient 

overexpression of GFP-AtUBP12 proteins. 

Inoculation of high titre P. s. pv. tabaci avrPto at 4 x 107 cfu/ml on 35S Pto 

N. benthamiana typically elicits a strong HR response with confluent cell 

death between 14 – 18 hours after infiltration.  In this study, P. s. pv. 

tabaci avrPto inoculations were conducted at three different titres to 

examine potential AtUBP12 associated suppression or promotion of the Pto 

triggered HR (Figure 6.8 A).   

High P. s. pv. tabaci avrPto titres of 4 x 107 cfu/ml were used to elicit a 

strong HR response, HR suppression by GFP-AtUBP12 overexpression would 

cause a corresponding decrease in visible cell death at this titre.  Low P. s. 

pv. tabaci avrPto titres of 6 x 106 cfu/ml were used to elicit a weak HR 

response, HR promotion by GFP-AtUBP12 overexpression would cause a 

corresponding increase in visible cell death at this titre.  An intermediate    

P. s. pv. tabaci avrPto titre of 1 x 107 cfu/ml was included for comparative 

purposes during HR elicitation (Figure 6.8 A).  This range of P. s. pv. tabaci 

avrPto titres defined a suitable sensitivity range for HR cell death assays 

during transient overexpression of GFP-AtUBP12 fusion proteins. 

Transient overexpression assays were conducted in individual                     

N. benthamiana leaves with agroinoculation of entire half leaves to 

express GFP-AtUBP12 fusion proteins left of the main vein or the GFP 

control right of main vein (Figure 6.8 A). 
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Data is reported for avrPto/Pto triggered HR development during transient 

overexpression assays of GFP-AtUBP12 vs GFP (Figure 6.8) and the 

corresponding control experiment with active site mutant GFP-AtUBP12 

C208S vs GFP (Figure 6.9).  Equivalent transient overexpression assays 

were also conducted with coinfiltration of the P19 silencing suppressor to 

achieve increased expression during GFP-AtUBP12 vs GFP (Figure 6.11) and 

GFP-AtUBP12 C208S vs GFP experiments (Figure 6.12). 

Transient overexpression of GFP-AtUBP12 and GFP-AtUBP12 C208S fusion 

proteins without P19 was conducted in 13 and 14 independent leaves of 

35S Pto N. benthamiana respectively (Figures 6.8 and 6.9).  Fusion protein 

accumulation at day 2 was confirmed by western blot analysis of duplicate 

samples with anti-GFP antibodies (Figure 6.7).  As previously described, 

transient expression of GFP-AtUBP12 fusion proteins demonstrated marked 

variability between samples.  Even though 100 µg of total protein extract 

was resolved for western blot analysis, relatively low amounts of fusion 

protein accumulation were observed (Figure 6.7) with one GFP-AtUBP12 

C208S sample demonstrating no detectable expression (Figure 6.7 B). 

During the second day of transient GFP-AtUBP12 expression without P19 

coinfiltration, avirulent P. s. pv tabaci avrPto was patch inoculated onto 

35S Pto N. benthamiana leaves expressing GFP-AtUBP12 and GFP at three 

titres to elicit a weak (6 x106 cfu/ml), intermediate (1 x107 cfu/ml) or 

strong (4 x 107 cfu/ml) HR response (Figures 6.8 A).  Analysis of the 

resultant HR in 13 leaf replicates indicated no clear trend of cell death 

promotion or suppression relative to GFP controls at any of the inoculated 

bacterial titres (Figure 6.8 B and C).  Equivalent transient assays were 

conducted with active site mutant GFP-AtUBP C208S and GFP in 14 leaves 

(Figure 6.9).  Analysis of the resultant HR indicated no alteration in the 

development of cell death relative to GFP controls (Figure 6.9 B and C). 
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Figure 6.7   Transient overexpression GFP-AtUBP12 and GFP-AtUBP12 

C208S in N. benthamiana. 

 

Western blot analysis of total protein extract (100 µg) from N. benthamiana 

leaves two days after agroinoculation of 35S GFP-AtUBP12 (A) or 35S GFP-

AtUBP12 C208S (B) constructs with corresponding 35S GFP controls at 

OD600 0.5.  Samples were analysed in duplicate and western blots were 

probed with anti-GFP antibody.  Upper and lower panels of film images 

represent different exposure times of a single western blot.  Upper panel 

represents long exposure (8 minutes) and lower panel represents short 

exposure (10 seconds).  Ponceau stain of rubisco large subunit (rbcL) was 

used as a loading control. 
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Figure 6.8  Overexpression of AtUBP12 in N .benthamiana does not  

effect avrPto/Pto elicited HR. 

 

(A) Agroinoculation and P. s. pv. tabaci avrPto infiltration scheme in 35S Pto  

N. benthamiana leaves.  35S GFP-AtUBP12 and 35S GFP constructs were 

agroinoculated at OD600 0.5 into left and right leaf halves respectively.  Two 

days after agroinoculation, P. s. pv. tabaci avrPto infiltration patches were 

made on each leaf half at 4 x 107 (L1 and R1), 1 x 107 (L2 and R2) and 6 x 

106 (L3 and R3) cfu/ml respectively. 

(B) HR development in 35S Pto N. benthamiana leaves overexpressing 

GFP-AtUBP12 (upper panels) and GFP (lower panels) following infiltration of 

P. s. pv. tabaci avrPto at 1 x 107 cfu/ml. Pictures taken four days after P. s. 

pv. tabaci avrPto infiltration. 

(C) avrPto elicited HR cell death assay during GFP-AtUBP12 

overexpression.  Extent of cell death in GFP-AtUBP12 overexpressing 

sections was scored against the corresponding GFP overexpressing control 

sections four days after infiltration of P. s. pv. tabaci avrPto at 4 x 107, 1 x 

107 and 6 x 106 cfu/ml respectively. 
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Figure 6.9  Overexpression of AtUBP12 C208S in 35S Pto                         

N .benthamiana does not effect avrPto/Pto elicited HR. 

 

(A) Agroinoculation and P. s. pv. tabaci avrPto infiltration scheme in 35S Pto  

N. benthamiana leaves.  35S GFP-AtUBP12 C208S and 35S GFP 

constructs were agroinoculated at OD600 0.5 into left and right leaf halves 

respectively.  Two days after agroinoculation, P. s. pv. tabaci avrPto 

infiltration patches were made on each leaf half at 4 x 107 (L1 and R1), 1 x 

107 (L2 and R2) and 6 x 106 (L3 and R3) cfu/ml respectively. 

(B) HR development in 35S Pto N. benthamiana leaves overexpressing 

GFP-AtUBP12 C208S (upper panels) and GFP (lower panels) following 

infiltration of P. s. pv. tabaci avrPto at 1 x 107 cfu/ml. Pictures taken four 

days after P. s. pv. tabaci avrPto infiltration. 

(C) avrPto elicited HR cell death assay during GFP-AtUBP12 C208S 

overexpression.  Extent of cell death in GFP-AtUBP12 C208S 

overexpressing sections was scored against the corresponding GFP 

overexpressing control sections four days after infiltration of P. s. pv. tabaci 

avrPto at 4 x 107, 1 x 107 and 6 x 106 cfu/ml respectively. 
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Transient overexpression of GFP-AtUBP12 fusion proteins conferred no 

detectable alteration in the development avrPto/Pto triggered HR.  The 

results of these experiments suggest that UBP12 activity is either not 

required or not rate limiting in the cell death component of avrPto/Pto 

triggered HR.   

Initial experiments established that coinfiltration of the P19 silencing 

suppressor could exert a significant improvement in the transient 

expression of GFP-AtUBP12 with an approximate 50 fold increase in 

expression at 3 days post infiltration (Figure 6.6).  Transient 

overexpression of GFP-AtUBP12 and GFP-AtUBP12 C208S fusion proteins 

with P19 was conducted in 11 and 12 independent leaves of 35S Pto N. 

benthamiana respectively (Figures 6.11 and 6.12).  Expression of GFP-

AtUBP12 fusion proteins was analysed in duplicate 3 days after P19/GFP-

AtUBP construct agroinoculation by western blotting with anti-GFP 

antibodies (Figure 6.10).  As expected, elevated expression of GFP-

AtUBP12 (Figure 6.10 A) and GFP-AtUBP12 C208S (Figure 6.10 B) proteins 

was detected when compared to previous experiments without P19 

coinfiltration (Figure 6.7). 

Potential side effects of P19 expression on the Pto triggered HR were also 

investigated.  HR was induced by inoculation of three P. s. pv tabaci 

avrPto titres (as previously described) on 35S Pto N. benthamiana leaves 

three days after agroinoculation of either GFP alone or GFP and P19 

constructs (data not shown).  Results indicated that expression of P19 did 

not alter the development of Pto triggered hypersensitive cell death (data 

not shown).  Three days after P19/GFP-AtUBP12 construct agroinoculation, 

HR was induced by patch inoculation with three P. s. pv. tabaci avrPto 

titres as previously described (Figure 6.11 A) in 11 independent 35S Pto                    

N. benthamiana leaves.  Analysis of resulting HR indicated no alteration in 

the development cell death at any of the inoculated bacterial titres 

relative to GFP controls (Figure 6.11 B and C).  Equivalent transient assays 

were conducted with active site mutant GFP-AtUBP C208S and GFP in 12 

leaves (Figure 6.9).  Similar results were observed and analysis of resultant 

the HR indicated no alteration in the development of cell death relative to 

GFP controls (Figure 6.12 B and C). 
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Figure 6.10  Transient overexpression GFP-AtUBP12 and GFP-AtUBP12 

C208S with P19 coinfiltration in N. benthamiana. 

 

Western blot analysis of total protein extract (50 µg) from N. benthamiana 

leaves two days after agroinoculation of 35S GFP-AtUBP12 (A) or 35S GFP-

AtUBP12 C208S (B) constructs with corresponding 35S GFP controls at 

OD600 0.5 and coinfiltration of P19 silencing suppressor.  Samples were 

analysed in duplicate and western blots were probed with anti-GFP antibody.  

Upper and lower panels of film images represent different exposure times of 

a single western blot.  Upper panel represents long exposure (2 minutes in A 

and 3 minutes in B) and lower panel represents short exposure (10 

seconds).  Ponceau stain of rubisco large subunit (rbcL) was used as a 

loading control. 
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Figure 6.11  P19 enhanced transient overexpression of AtUBP12 in 35S 

Pto N. benthamiana does not effect avrPto/Pto elicited HR. 

 

(A) Agroinoculation and P. s. pv. tabaci avrPto infiltration scheme in 35S Pto  

N. benthamiana leaves.  35S AtUBP12 and 35S GFP constructs were 

agroinoculated at OD600 0.5 into left and right leaf halves respectively with 

coinfiltration of P19.  Two days after agroinoculation, P. s. pv. tabaci avrPto 

infiltration patches were made on each leaf half at 4 x 107 (L1 and R1), 1 x 

107 (L2 and R2) and 6 x 106 (L3 and R3) cfu/ml respectively. 

(B) HR development in 35S Pto N. benthamiana leaves overexpressing 

GFP-AtUBP12 (upper panels) and GFP (lower panels) following infiltration of 

P. s. pv. tabaci avrPto at 1 x 107 cfu/ml. Pictures taken four days after P. s. 

pv. tabaci avrPto infiltration. 

(C) avrPto elicited HR cell death assay during GFP-AtUBP12 

overexpression.  Extent of cell death in GFP-AtUBP12 overexpressing 

sections was scored against the corresponding GFP overexpressing control 

sections four days after infiltration of P. s. pv. tabaci avrPto at 4 x 107, 1 x 

107 and 6 x 106 cfu/ml respectively. 
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Figure 6.12  P19 enhanced transient overexpression of AtUBP12 C208S in                  

35S Pto N. benthamiana does not effect avrPto/Pto elicited HR 

 

(A) Agroinoculation and P. s. pv. tabaci avrPto infiltration scheme in 35S Pto  

N. benthamiana leaves.  35S AtUBP12 C208S and 35S GFP constructs 

were agroinoculated at OD600 0.5 into left and right leaf halves respectively 

with coinfiltration of P19.  Two days after agroinoculation, P. s. pv. tabaci 

avrPto infiltration patches were made on each leaf half at 4 x 107 (L1 and 

R1), 1 x 107 (L2 and R2) and 6 x 106 (L3 and R3) cfu/ml respectively. 

(B) HR development in 35S Pto N. benthamiana leaves overexpressing 

GFP-AtUBP12 C208S (upper panels) and GFP (lower panels) following 

infiltration of P. s. pv. tabaci avrPto at 1 x 107 cfu/ml. Pictures taken four 

days after P. s. pv. tabaci avrPto infiltration. 

(C) avrPto elicited HR cell death assay during GFP-AtUBP12 C208S 

overexpression.  Extent of cell death in GFP-AtUBP12 C208S 

overexpressing sections was scored against the corresponding GFP 

overexpressing control sections four days after infiltration of P. s. pv. tabaci 

avrPto at 4 x 107, 1 x 107 and 6 x 106 cfu/ml respectively. 
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6.4 Analysis of GFP-AtUBP12 localisation during transient expression 
by confocal microscopy  

The application of fluorescent proteins as fusion tags allows in vivo 

analysis of many aspects of protein function including:  trafficking, 

turnover, interactions and movement (Sparkes et al., 2006).  The 

subcellular distribution of GFP-AtUBP12 during transient overexpression in 

N. benthamiana was analysed by laser-scanning confocal microscopy to 

detect GFP fluorescence (Figure 6.13).  

Fusion protein localisation was analysed during the observed peak of 

transient expression at two days after agroinoculation of GFP-AtUBP12, 

GFP-AtUBP12 C208S and control GFP constructs without coinfiltration of 

the P19 silencing suppressor.  Confocal analysis detected GFP-AtUBP12 and 

GFP-AtUBP12 C208S fluorescence in both the nucleus and cytoplasm of all 

cells examined (Figure 6.13). 

The weak transient expression of GFP-AtUBP12 constructs relative to GFP 

controls seen in western blot analysis (Figure 6.7) was reflected in a 

correspondingly low GFP signal strength detected during confocal analysis 

(Figure 6.13).  Despite the weak transgene expression, GFP fluorescence 

was clearly visible in both nuclear and cytoplasmic cell compartments 

during transient expression of both wildtype and active site mutant GFP-

AtUBP12 proteins.  Analysis of chloroplast autofluorescence confirmed that 

weak detection of cytoplasmic GFP signals was genuine and not a cross 

excitation artefact (Figure 6.13).  No difference in distribution was 

observed by between wildtype and active site mutant GFP-AtUBP12 fusion 

proteins indicating that ubiquitin protease activity is not required for 

nuclear localisation (Figure 6.13). 

In silico analysis of AtUBP12 and NtUBP12 protein sequences using the 

predictive localisation programs NLSPredict and TargetP indicated no 

significant likelihood of either sequence being targeted to any specific 

organelle based on known motifs in the primary sequence. 
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Figure 6.14 GFP-AtUBP12 and GFP-AtUBP12 C208S fusion proteins are 

localised in the cytoplasm and nucleus during transient 

overexpression in N. benthamiana. 

 

Confocal images of GFP fluorescence (left) and composite images of GFP 

(green) and chloroplast autofluorescence (red) channels (right) during 

transient overexpression of GFP (A), GFP-AtUBP12 (B) and GFP-AtUBP12 

C208S (C).  Samples were analysed during the peak of protein expression, 

two days after agroinoculation of constructs into N. benthamiana leaves. 
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The observed nuclear localisation of 160 kDa GFP-AtUBP12 fusion proteins 

(Figure 6.13 B and C) is presumably concerted as passive uptake at the 

nuclear pore complex is typically restricted to proteins smaller than 

approximately 50 kDa (Poon and Jans, 2005).  Conversely, the unfused 27 

kDa GFP protein is sufficiently small to enter the nucleus through passive 

diffusion (Niwa, 2002) and its nucleocytoplasmic localisation pattern 

reflects this (Figure 6.13 A).  During western blot analysis, no GFP-AtUBP12 

breakdown products were detected (Figure 6.7) suggesting that the 

observed nuclear signal results from accumulation of intact full length 

GFP-AtUBP12 fusions rather than passive  diffusion of fragments containing 

GFP.   

Despite lacking clear nuclear localisation signals, GFP-AtUBP12 fusion 

proteins are detected in the nucleus.  This is  presumably due to either 

unmasking/post-translational modification of a cryptic localisation signal 

(Poon and Jans, 2005) or interaction with nuclear shuttling factors in the 

cytoplasm (Xu and Massague, 2004).  Either of these scenarios imply 

interaction of the AtUBP12 protein with N. benthamiana host components 

thereby suggesting that AtUBP12 is sufficiently similar to its                     

N. benthamiana ortholog to make functional interactions in the cell.   

The reported suppression of Cf-9 mediated HR by AtUBP12 overexpression 

(Section 6.2) provides evidence of the functional conservation between 

Arabidopsis and tobacco UBP12 proteins.  The presented localisation data 

provides further evidence of this conservation, suggesting that AtUBP12 

mimics NbUBP12 interactions to be specifically targeted to the nucleus. 

The observed localisation data raise further questions regarding the 

subcellular location of UBP12 proteins in the cell.  Transient 

overexpression of the Arabidopsis AtUBP12 protein in the heterologus      

N. benthamiana system from a CaMV 35S promoter represents only an 

approximation of in vivo conditions.  Future experiments aim to clarify the 

subcellular localisation of solanaceous UBP12 proteins using an equivalent 

GFP tagging and overexpression approach with the NtUBP12 cDNA 

sequence determined in this study.   
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Further issues may arise from the use of the strong CaMV 35S promoter 

where overexpression of fusion proteins may potentially disrupt their 

trafficking behaviour (Sparkes et al., 2006).  In the case of UBP12 proteins, 

targeted localisation of NbUBP12 to the nucleus may be constitutive.  

Elevated levels of introduced GFP-AtUBP12 may saturate the endogenous 

NbUBP12 cytoplasmic-nuclear trafficking pathway with residual GFP-tagged 

proteins remaining evident in the cytoplasm.  One possible alternative is 

that UBP12 proteins are targeted to the nucleus at a critical  UBP12 

concentration threshold in the cytoplasm (providing sensitivity to 

transcriptional activation of the UBP12 gene or increased stability of the 

UBP12 protein), overexpression approaches may potentially obscure such 

stimuli dependent movements. 

Expression of GFP tagged UBP12 fusion proteins from their own promoter 

may overcome such limitations and provide a potentially more accurate 

view of their localisation patterns and movements.  Identification and 

cloning of putative promoter elements for solanaceous UBP12 genes will 

require further RACE PCR based approaches to identify 5’ UTR regions 

owing to the incomplete sequencing of any solanaceous genomes.   

Promoter related effects on UBP12 localisation could be investigated more 

easily in Arabidopsis where putative upstream promoter regions have 

already been identified (Chapter 3 Section 3.3.4).  Generation of AtUBP12 

GFP fusion constructs containing various truncations of the 5’ UTR region 

could be used for stable transgenic transformation of Arabidopsis as a 

starting point to define the functional AtUBP12 promoter region.  Despite 

the potential limitations of 35S mediated overexpression, the reported 

data does indicate that AtUBP12 proteins are specifically rather than 

passively targeted to the nucleus.  The lack of obvious localisation signals 

suggests that AtUBP12 (and by inference, NbUBP12) interact with other 

cytoplasmic trafficking regulators to undergo nuclear localisation. 

Western blotting experiments confirmed that coinfiltration of the P19 

silencing suppressor significantly enhanced transient overexpression of 

GFP-AtUBP12, indicating that post transcriptional gene silencing was 

reducing transgene expression efficiency in the absence of P19.  Whilst P19 
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coinfiltration clearly improved transient expression efficiency of GFP-

AtUBP12, the correct subcellular localisation of fusion proteins may be 

disrupted or masked at high overexpression levels (Joelle Mesmar – 

unpublished data).  For this reason, P19 coinfiltration was not used for  

localisation studies during transient overexpression. 

Collectively, silencing and overexpression based approaches report UBP12 

associated gain and loss of function phenotypes during Cf-9 triggered HR 

signalling.  Future experiments to investigate changes in the localisation of 

NtUBP12 or AtUBP12 and AtUBP13 during disease resistance signalling in 

tobacco and Arabidopsis respectively may provide further insight into the 

regulatory function of these proteins. 

6.5 Discussion 

6.5.1 Overexpression of AtUBP12 suppresses the Cf-9 triggered HR in 
tobacco 

Results presented in this chapter confirm that solanaceous UBP12 proteins 

function to stabilise a negative regulator (or regulators) of the Cf-9 

triggered HR.  Transient overexpression of AtUBP12 proteins in tobacco 

demonstrates a gain of function HR suppression phenotype that correlates 

with the loss of function HR promotion phenotype reported during Cf-9 

triggered HR in NbUBP12 silenced plants (Chapter 4).  

The reported results indicate a conservation of substrate binding between 

NtUBP12 and its Arabidopsis ortholog AtUBP12 and suggest that 

overexpression of AtUBP12 leads to hyper-stabilisation of NtUBP12 targets 

to suppress the Cf-9 triggered HR.  Overexpression of the AtUBP12 C208S 

active site mutant fails to suppress Cf-9 triggered HR, confirming that 

increased in vivo UBP12 activity is the specific cause of suppression.  

Having subsequently established the full length cDNA sequence of NtUBP12 

(Chapter 4), equivalent wildtype and active site mutant GFP fusion 

constructs are currently being generated.  Future studies aim to 

recapitulate the observed HR suppression phenotype by overexpressing 

tobacco rather than Arabidopsis UBP12 proteins. 
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Technical issues relating to the reproducibility of transient assays are 

frequently caused by environmental variables and differences in the 

developmental stage of infiltrated leaves (Cazzonelli and Velten, 2006).  

Issues pertaining to hypo- and hypersensitivity of different aged tobacco 

leaves to standardised Avr9 peptide concentrations were encountered in 

this study. Despite the selection of developmentally equivalent leaves, 

Avr9 elicitor sensitivity issues probably masked the AtUBP12 induced HR 

suppression in a significant fraction of assays where an unchanged HR 

result was recorded. 

The complementary dominant and dominant negative effects associated 

with  respective overexpression of wildtype and active site mutant GFP-

AtUBP12 proteins indicate that steady state levels of its substrate directly 

regulate Cf-9 triggered HR.  Identification of NtUBP12 substrates will be 

essential to clarify the role of this UBP enzyme during disease resistance 

signalling.  The application of GFP-AtUBP12 overexpression approaches 

may benefit future attempts to identify such substrates, the quantities of 

which are presumably elevated by increased in vivo UBP12 activity.  

Biologically relevant substrates of NtUBP12 could potentially be identified 

using co-immunoprecipitation against the GFP epitope of GFP-AtUBP12 

during its transient or stable overexpression in tobacco. 

6.5.2 Overexpression of AtUBP12 does not alter Pto triggered HR 
development 

Transient overexpression of AtUBP12 caused no detectable alteration in HR 

elicited by avrPto/Pto.  Transient overexpression experiments were 

conducted both with and without coinfiltration of P19 which is a silencing 

suppressor that is compatible with N. benthamiana (Voinnet et al., 2003). 

Whilst absolute levels of GFP-AtUBP12 fusion protein expression showed 

marked variation between leaves in tobacco, a clear overexpression effect 

was observed during Cf-9 triggered HR.  Phenotypic results seen in tobacco 

during GFP-AtUBP12 transient overexpression without P19 were considered 

sufficient evidence to conduct equivalent overexpression assays without 

P19 during avrPto/Pto triggered HR in N. benthamiana.  The reported data 
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indicates that AtUBP12 overexpression does not alter avrPto/Pto triggered 

HR following inoculation with weak, intermediate and high strength HR 

inducing bacterial titres. 

P19 was used to achieve significant improvements in AtUBP12 fusion 

protein expression where coinfiltration of the silencing suppressor caused 

an approximate 50 fold increase in expression.  Whilst the use of P19 to 

improve transient expression is an established protocol (Voinnet et al., 

2003), silencing suppressors may also have unwanted side effects either as 

avirulence factors (Scholthof et al., 1995) or through binding to 

endogenous micro RNAs (miRNAs) which regulate gene expression (Silhavy 

and Burgyan, 2004).  Expression of P19 in tobacco is reported to cause HR 

symptoms (Scholthof et al., 1995) and potentially activates other 

associated defence pathways.  For these reasons, potential effects of P19 

alone on Pto mediated HR development were investigated and transient 

overexpression assays were conducted both with and without the P19 

silencing suppressor.  Despite the marked improvement in GFP-AtUBP12 

expression resulting from P19 coinfiltration, no gain of function phenotype 

was seen during avrPto/Pto triggered HR in 35S PtoN. Benthamiana. 

Collectively, these results are in agreement with those reported for 

NbUBP12 loss of function experiments during avrPto/Pto triggered HR 

(Chapter 4) which indicated no clear avrPto/Pto induced HR phenotype 

associated with NbUBP12 silencing.  The reported data suggests that either 

solanaceous UBP12 proteins are not involved in avrPto/Pto triggered 

defence, or are not rate limiting for the development of avrPto/Pto 

triggered cell death. Alternatively, the level of amino acid similarity 

between AtUBP12 and NbUBP12 may be insufficient to bind and stabilise 

relevant N. benthamiana substrates during avrPto/Pto triggered cell 

death.  As discussed previously in Chapter 4, the reported results support 

the possibility that solanaceous UBP12 proteins function within selected R 

gene signalling pathways to regulate the HR rather than as downstream 

mediators of the integrated HR signal. 

 



 

 268

6.5.3 AtUBP12 overexpression approaches prove that solanaceous 
UBP12 functions as a negative HR regulator 

The transient overexpression approach has successfully demonstrated a 

GFP-AtUBP12 associated gain of function phenotype in Cf-9 triggered HR.  

This finding confirms that solanaceous UBP12 proteins stabilise a negative 

HR regulator (or regulators) and that increased in vivo UBP12 activity by 

GFP-AtUBP12 overexpression can directly influence regulated stability of 

substrates to alter HR signalling.  Similar results would be expected during 

overexpression of solanaceous UBP12.  

Despite post transcriptional silencing effects reducing the efficiency of 

transgene expression, transiently expressed GFP-AtUBP12 proteins 

demonstrated a clear nucleocytoplasmic localisation pattern.  The large 

size of GFP-AtUBP12 fusion proteins precludes their passive accumulation 

in the nucleus suggesting instead that their nuclear targeting is concerted.  

As neither AtUBP12 or NtUBP12 contain known nuclear localisation signals,  

the nuclear targeting of GFP-AtUBP12 presumably requires interaction with 

host trafficking machinery.  This predicted interaction suggests functional 

conservation between AtUBP12 and NtUBP12 proteins and that NtUBP12 

may also undergo nuclear targeting.   

The most plausible interpretation of reported localisation data is that 

during overexpression, GFP-AtUBP12 is able to functionally mimic 

solanaceous host UBP12 proteins to stabilise negative HR regulators in the 

nucleus thus causing the observed suppression of Cf-9 triggered HR.  The 

functional relevance of UBP12 nuclear localisation could be investigated 

using an engineered nuclear export signal (NES) (Stacey et al., 1999) within 

the GFP-AtUBP12 fusion protein.  By using a GFP-AtUBP12-NES fusion 

protein in the described transient overexpression system, the functional 

consequences of nuclear exclusion on the Cf-9 triggered HR suppression 

phenotype could be investigated.    

7 Test 
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Chapter 7 – Final Discussion 

7.1 Introduction  

Signalling by ubiquitination is implicated in diverse aspects of plant 

physiology and enzymes of ubiquitin metabolism are overrepresented in 

the Arabidopsis genome compared to other model eukaryotes (Vierstra, 

2003).  It is now established that deubiquitinating (DUB) enzymes, which 

reverse the process of ubiquitination, can potentially confer regulatory 

outcomes in many signalling pathways with which ubiquitination has been 

associated (Nijman et al., 2005).  This primary aim of this study was to 

contribute to existing knowledge of plant DUB enzymes using molecular 

genetic approaches. 

Data reported in this study updates the existing knowledge of plant DUB 

enzyme families having identified several novel putative plant DUBS using 

sequence data from animal genomes.  Preliminary pathogen associated 

gene induction data invited the further characterisation of two closely 

related Arabidopsis DUB enzymes: AtUBP12 and AtUBP13.  Various loss of 

function approaches were taken to study AtUBP12 and AtUBP13 which 

established that AtUBP12 specifically regulates the transition to flowering 

but that AtUBP12 and AtUBP13 also function redundantly to regulate plant 

development.   

The solanaceous AtUBP12 ortholog NtUBP12 was identified and transient 

loss and gain of function approaches were employed to examine its role in 

disease resistance signalling.  Using gene silencing and transient 

overexpression demonstrated that solanaceous UBP12 proteins function as 

negative regulators of the Cf-9 triggered HR and also influence TMV 

resistance.   

In this final discussion, consideration is given as to how the plant UBP12 

proteins may function in distinct signalling pathways, what the key results 

of this study contribute to existing knowledge of regulatory 

deubiquitination and how existing knowledge of eukaryotic UBP12 

orthologs may be of relevance to future studies.   
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7.2 AtUBP12 and AtUBP13 regulate multiple pathways 

Results presented in this study indicate that AtUBP12 has orthologs in other 

model eukaryotes and belongs to a subset of UBP enzymes that are 

eukaryotic rather plant specific deubiquitinating enzymes (Yan et al., 

2000a).  Phylogenetic analysis confirmed paralogy between AtUBP12 and 

AtUBP13 and synteny analysis conducted by Blanc et al. suggests that 

AtUBP13 was part of a larger DNA region that arose from segmental 

chromosome duplication in a recent Arabidopsis ancestor (Blanc et al., 

2003).  

Gene induction experiments conducted in this study indicated that both 

AtUBP12 and AtUBP13 are transcriptionally activated by avirulent 

Pseudomonas expressing avrB and exogenously applied SA.  The pathogen 

inducibility of AtUBP12 and AtUBP13 is contrary to the reported 

suppression of their N. benthamiana ortholog NbUBP12 during HR induced 

by avirulent Pseudomonas (Kim et al., 2006). However, the lack of multiple 

time point samples in HR induction experiments described by Kim et al. 

(Kim et al., 2006) may limit the value of such comparisons.  Tobacco 

NtUBP12 transcript levels were also suppressed in the later stages of the 

Avr9 elicited HR. 

The apparent inconsistency between defence associated induction of 

Arabidopsis AtUBP12/AtUBP13 and suppression of tobacco NtUBP12 may be 

a result of different signalling requirements between avrB and Cf-9 

mediated HR or the timing and extent of the induced HR.  The principle 

difference between the experimental HR induction systems in Arabidopsis 

and tobacco was the use of an intact pathogen (Pseudomonas syringae) 

versus a purified HR elicitor (Avr9 from Cladisporium fulvum).  One 

possibile explanation may be that additional Pst effectors actaually 

activate AtUBP12/AtUBP13 induction to promote HR supression and 

pathogen virulence.  On this basis, NtUBP12 supression may reflect the 

reduced requirement for negative HR regulation by NtUBP12 during cell 

death development.  Whilst the respective timecourse studies examined 

similar timepoints during HR induction, differences in the actual timing 
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and magnitude of HR may explain the observed differences in 

transcriptional behaviour between AtUBP12/AtUBP13 and NtUBP12. 

Based on their close evolutionary relationship, similar patterns of induction 

and conserved 5’ UTR regions it appears that AtUBP13 has retained the 

stimuli response characteristics of AtUBP12.  Despite this, no significant 

enrichment of known transcription factor binding sites was detected either 

upstream of or between each respective gene.  These findings do not 

preclude the possibility that AtUBP12 and AtUBP13 are coordinately 

regulated by uncharacterised transcription factor or chromatin 

modification effects which may be amenable to future analysis using 

chromatin immunoprecipitation methods. 

Bacterial resistance assays in ubp12 and ubp13 mutant lines indicated no 

alteration in susceptibility to virulent and avirulent Pseudomonas strains.  

This outcome may indicate that neither AtUBP12 or AtUBP13 regulate 

bacterial resistance or that functional redundancy between the two 

proteins is obscuring potential loss of function phenotypes.  The latter 

possibility is supported by the finding that transient overexpression of 

AtUBP12 in the heterologus tobacco system suppresses the HR induced by 

the C. fulvum avirulence factor Avr9.  The ability of AtUBP12 to function in 

a transgenomic functional assay suggests that is a conserved signalling 

component of plant disease resistance and that overexpression of either 

AtUBP12 or AtUBP13 in Arabidopsis my also yield novel HR associated 

phenotypes.  Corresponding transgenic Arabidopsis AtUBP12 

overexpression lines are currently being isolated for this purpose. 

The developmental phenotypes observed in Arabidopsis AtUBP12 and 

AtUBP13 T1 co-silencing and ubp12 ubp13 T4 double mutant lines clearly 

indicate that both proteins stabilise common targets and sets a precedent 

for their potential redundancy in other signalling pathways.  Chromosome 

duplication events have shaped the Arabidopsis genome extensively (Blanc 

et al., 2003) and frequently result in masking of potential phenotypes due 

to genetic redundancy between closely related genes such as AtUBP12 and 

AtUBP13 (Pickett and Meeks-Wagner, 1995). 
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Attempts to circumvent functional redundancy using stable transgenic 

AtUBP12/AtUBP13 RNAi cosupression lines were compromised by apparent 

transgene silencing effects in the T3 generation whereas homozygous 

ubp12 ubp13 double mutants exhibit a seedling lethal phenotype.  As 

constitutive abolition of AtUBP12 and AtUBP13 results in early 

developmental arrest, an alternative approach based on inducible RNAi 

may be applicable to conduct loss of function studies in mature 

Arabidopsis plants.  Such studies could be conducted using the 

dexamethsone inducible HELLSGATE RNAi vector described by Wielopolska 

et al. (Wielopolska et al., 2005) to induce silencing of AtUBP13 in a ubp12 

mutant background.  The generation of such stable lines may be essential 

to clarify the association of AtUBP12/AtUBP13 with disease resistance 

signalling, providing a robust alternative system to the Solanaceae based 

transient gain and loss of function approaches described in this study.   

Robust depletion of AtUBP12 and AtUBP13 transcript levels in mature 

Arabidopsis plants may be required to cause altered resistance against 

Pseudomonas and associated disease signalling events may also be subject 

to redundant regulation by both AtUBP12 and AtUBP13.  Based on the SA 

responsiveness of both AtUBP12 and AtUBP13, future studies aim to 

investigate alterations in established SA dependent downstream marker 

gene induction in ubp12 and ubp13 mutant lines.  Functional redundancy 

between AtUBP12 and AtUBP13 could also potentially obscure such 

alterations in SA dependent marker gene behaviour thus the described 

inducible RNAi lines would be beneficial in this application.     

7.3 AtUBP12 regulates the floral transition 

Results reported in this study have shown that ubp12 mutants demonstrate 

early flowering under long and short days indicating that functional 

redundancy between AtUBP12 and AtUBP13 is not complete.  This finding 

suggests that AtUBP12 has acquired additional substrate specificity over 

AtUBP13 and functions in this context to stabilise a floral suppressor.  

As the Vernalisation, Autonomous, Gibberellin and Light-dependent 

flowering pathways that integrate biological and environmental signals are 
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well characterised (Mouradov et al., 2002), future studies aim to clarify 

within which pathway AtUBP12 may function to promote flowering.  The 

prominent effect of ubp12 mutants on flowering time under short days may 

be caused by deregulation of photoperiod perception, the gibberellin 

pathway or reduced activation of the floral repressor FLC (FLOWERING 

LOCUS C) (Mouradov et al., 2002).  The association of AtUBP12 function 

with established short day early flowering mutants would be a viable line 

of investigation for future studies.  Prevalent short day early flowering 

phenotypes have previously been described in elf4 (early flowering 4) 

(McWatters et al., 2007), esd4 (early flowering in short days 4) (Murtas et 

al., 2003) and ebs1 (early bolting in short days 1) (Pineiro et al., 2003) 

mutants and approaches described in these studies may also be applicable 

in the characterisation of ubp12 mutants.   

The association of AtUBP12 function with FLC regulation seems plausible 

based on the observation of aerial rosettes in ubp12 mutants.  The 

development of aerial rosettes is observed to occur naturally in the 

Arabidopsis Sy-0 ecotype and has previously been associated with late 

flowering due to the synergistic activation of FLC by functional FRI and 

HUA2  alleles in the Sy-0 background (Poduska et al., 2003) (Wang et al., 

2007).  The possibility that AtUBP12 interacts with FLC based repression of 

flowering is intriguing as ubp12 mutants exhibit an FLC gain of function 

aerial rosette phenotype and an FLC loss of function early flowering 

phenotype (Wang et al., 2007).  The association of AtUBP12 with flowering 

time established in this study is a novel finding as is the decoupling of late 

flowering from aerial rosette development seen in short day grown ubp12 

mutants. 

7.4 Solanaceous UBP12 proteins regulate the Cf-9 triggered HR and 
TMV infection 

Virus induced gene silencing (VIGS) was used to circumvent the issues of 

functional redundancy encountered between AtUBP12 and AtUBP13 to 

allow reverse genetic study of NbUBP12 function in mature N. 

benthamiana. 
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Analysis of tobacco EST data suggested the existence of a single copy 

NtUBP12 gene, supporting the conclusions of Blanc et al. that large scale 

gene duplication events led to the generation of ancestral AtUBP12 and 

AtUBP13 genes at a point subsequent to the divergence of Solanaceae 

within the Brassicaceae (Blanc et al., 2003).  InParanoid genome analysis 

indicates that orthologs of NtUBP12 are also present in other sequenced 

eukaryotes as single copy genes.  This study reports the identification of 

the novel full length tobacco NtUBP12 cDNA sequence and the application 

of VIGS to investigate NbUBP12 loss of function phenotypes in N. 

benthamiana during disease resistance signalling. 

Silencing of NbUBP12 by VIGS initiated from two distinct NbUBP12 TRV 

silencing constructs resulted in the promotion of cell death during Cf-

9/Avr9 triggered HR.  This novel finding suggests that NbUBP12 is a 

negative regulator of the Cf-9 triggered HR which functions to stabilise 

target proteins that suppress cell death.  Complementary gain of function 

studies based on transient overexpression of AtUBP12 in tobacco 

demonstrated a corresponding suppression of cell death during Cf-9 

triggered HR indicating that AtUBP12 and NtUBP12 activities were 

interchangable in this context and may function in a conserved signalling 

pathway.   

In vitro biochemical assays demonstrated the genuine ubiquitin protease 

activity of S. frugiperda expressed AtUBP12 and NtUBP12 proteins and that 

corresponding active site mutant proteins were catalytically null.  

Transient overexpression of the corresponding AtUBP12 C208S null mutant 

in tobacco failed to suppress cell death development during Cf-9 triggered 

HR and conferred a dominant negative effect at reduced Avr9 titres to 

promote cell death.  These observations confirm that increased in vivo 

UBP12 activity specifically suppresses the Cf-9 triggered HR and that 

alterations in the steady state level of Solanaceous UBP12 targets can 

directly regulate hypersensitive cell death suppression or promotion. 

Investigations by our collaborators have established novel results indicating 

that NbUBP12 silenced N. benthamiana plants exhibit increased TMV 
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resistance which is independent of the established gene-for-gene 

resistance conferred by the N resistance gene. 

Elevated resistance against TMV during NbUBP12 silencing in wildtype          

N. benthamiana plants lacking the N resistance gene suggests that 

NbUBP12 may regulate basal defence responses elicited by TMV or directly 

influence virus movement.  Early defence responses due to the perception 

of the TMV coat protein (CP) have been reported (Allan et al., 2001) and 

future work aims to determine if the reported phenotypes reflect the 

perturbation of a single disease resistance pathway or if NbUBP12 functions 

to stabilise multiple targets in discrete pathogen signalling responses.   

As is the case for the majority of deubiquitinating enzymes, target 

substrates of the plant UBP12 proteins are currently unknown.  The 

reported data raises the question of whether the Cf-9 and TMV associated 

phenotypes seen during NbUBP12 silencing result from the reduced 

deubiquitination of single or multiple target proteins.  The reported data 

implicates NbUBP12 in Cf-9 triggered HR but also a HR independent 

resistance mechanism against TMV, suggesting the possibility that NbUBP12 

regulates distinct pathways to achieve this outcome.  However, as 

discussed previously, it may also be possible that NbUBP12 functions at a 

point of overlap between gene-for-gene and basal defence to regulate Cf-9 

and TMV associated signalling through a single deubiquitination event.  

The presented data reports a novel association between deubiquitination 

and the plant HR and emphasises the established regulatory involvement of 

ubiquitination in disease resistance signalling  (Dreher and Callis, 2007).  

Negative HR regulation by UBP12 may oppose positive HR regulation 

conferred by E3 ubiquitin ligases such as CMPG1 (Gonzalez-Lamothe et al., 

2006) and ACRE276   (Yang et al., 2006) to prevent runaway activation of 

disease resistance. 

7.5 NbUBP12 orthologs and their substrates 

The reported phenotypes of Arabidopsis ubp12 mutants and ubp12 ubp13 

double mutants do suggest stabilisation of distinct substrates that regulate 
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different signalling pathways.  By analogy, the solanaceous UBP12 proteins 

may also have multiple specificities which regulate distinct signalling 

events. 

As has been previously discussed, UBP12 orthologs have been detected in 

other eukaryotic genomes including the human protein HAUSP 

(Herpesvirus-associated Ubiquitin Specific Protease) also termed HsUSP7 

(Ubiquitin Specific Protease 7) (Everett et al., 1997).  Established functions 

of the HAUSP protein may have relevance to its plant orthologs in regard to 

its affinity for multiple biological substrates and its mode of substrate 

interaction.  HAUSP has been extensively characterised and is reported to 

promote apoptosis through the stabilisation of the major tumour 

suppressor protein p53 and its cognate E3 ubiquitin ligase MDM2 (Li et al., 

2004), binding to substrates through its N-terminal TRAF/MATH domain (Hu 

et al., 2006).  HAUSP is also targeted by Herpes simplex virus and Epstein 

barr virus (EBV) proteins ICP90 and EBNA1 (Everett et al., 1997) (Holowaty 

et al., 2003).  Stabilisation of the ICP90 transcription factor by HAUSP 

promotes Herpes genome transcription and is proposed to promote virus 

infection (Sheng et al., 2006).  High affinity binding of EBNA1 to HAUSP 

outcompetes binding of p53 protein leading to reduced apoptosis and is 

proposed to promote latent EBV infection by indirectly reducing p53 

stability (Saridakis et al., 2005). 

Studies of HAUSP set a precedent for the direct functional manipulation of 

deubiquitinating enzymes during virus infection (Sheng et al., 2006) and 

establish that NbUBP12 orthologs stabilise multiple targets.  By analogy, 

TMV may directly target NbUBP12 to promote replication or movement 

between plant cells and the reported resistance phenotype during 

NbUBP12 silencing may be a consequence of such cooperative interactions 

rather than a specific increase in viral resistance.  The TMV movement 

protein (MP) has been shown to undergo multiple post-translational 

modifications including ubiquitination which promotes its proteasomal 

degradation at a post-replicative stage during virus infection (Reichel and 

Beachy, 2000).  It is possible that NbUBP12 functions to directly oppose 

ubiquitination of TMV-MP during the early stages of TMV infection and that 

reduced TMV-MP stability caused by silencing NbUBP12 causes the reported 
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reduction of TMV accumulation.  Future studies aim to investigate the 

possible role of NbUBP12 in stabilising the TMV-MP. 

Based on the eukaryotic conservation of UBP12 orthologs and the 

fundamental involvement of HAUSP in apoptosis regulation, it is tempting 

to speculate that plant UBP12 proteins perform an evolutionarily conserved 

function to regulate PCD during the Cf-9 triggered HR.  The programmed 

cell death that occurs during the induced plant HR response is thought to 

be mechanistically similar to apoptosis (Hofius et al., 2007) and numerous 

plant HR regulators have been identified on the basis of animal orthologs 

that function to control apoptotic cell death including cathespin B and the 

caspase-like vacuolar processing enzymes (Gilroy et al., 2007) (Chichkova 

et al., 2004).   

However, the conservation of UBP12 function between animal and plant 

kingdoms is not clear based on in silico analysis as plant orthologs of the 

HAUSP substrates p53 and MDM2 are not detected in the Arabidopsis 

genome or solanaceous EST resources.  If there is a trans-kingdom 

conservation of UBP12 substrates then functional equivalence may be 

retained at the protein structural rather than sequence level.  It is also 

possible that UBP12 proteins may regulate other conserved eukaryotic 

pathways through the stabilisation of orthologous substrates that have yet 

to be identified.     

Structural analyses of HAUSP conducted by Hu et al. established that its 

MATH/TRAF domain forms a typical eight stranded beta sheet TRAF domain 

structure but lacks canonical TRAF domain residues in its peptide binding 

cleft (Hu et al., 2006).  On this basis, Hu et al. accurately described the 

HAUSP TRAF domain as TRAF-like and previous studies have established 

that TRAF-like domains are protein-protein interaction domains of ancient 

eukaryotic origin which are the likely evolutionary precursors of the 

classical TRAF domain (Zapata et al., 2001). 

Hu et al. reported crystal structures of the TRAF-like and ubiquitin 

protease domains of HAUSP (Figure 7.1) and demonstrated that its 

substrates: p53, MDM2 and EBNA1 all bind to HAUSP via a substrate binding 
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groove in the TRAF-like domain (Figure 7.1 B) (Hu et al., 2006).  All three 

HAUSP substrates contain four residue binding motifs of (X/E)-G-(X/G)-S 

(where X is a polar residue) which were found to make critical hydrogen 

bond and van der Waals contacts with HAUSP residues DWGF164-167 in the 

substrate binding groove (Figure 7.1 B) (Hu et al., 2006). 

Whilst sequence analysis does not detect plant orthologs of the HAUSP 

substrates p53 and MDM2, alignment of the TRAF-like domains from of 

NbUBP12 and its eukaryotic orthologs (Figure 7.1 C) suggests that the 

substrate binding mechanism has been conserved.  Despite limited overall 

amino acid conservation in this domain, the HAUSP substrate binding 

residues DWGF164-167 are conserved in orthologs from mouse, worm, yeast, 

Arabidopsis, potato, tobacco and rice (Figure 7.1 C).  Hu et al. propose a 

functional mechanism for HAUSP whereby four residue motifs in 

ubiquitinated substrates are coordinated by interactions with DWGF164-167 

in the substrate binding groove of the TRAF-like domain, this coordination 

allows substrate deubiquitination to occur at the ubiquitin protease 

domain leading to the stabilisation of HAUSP substrates. 

This knowledge may be applicable in future structure-function studies of 

the plant UBP12 proteins and also benefit attempts to identify their in vivo 

substrates.  Mutations in the DWGF motif of plant UBP12 TRAF-like domains 

would presumably disrupt substrate interactions.  Such interaction-null 

mutant proteins could be examined using in vivo transient overexpression 

gain of function assays during Cf-9 triggered HR in tobacco and in vitro 

deubiquitination assays as described in this study.  The reported structure 

of HAUSP suggests that TRAF-like domain mutations are unlikely to affect 

the enzymatic activity of ubiquitin protease domain.  On this basis, in vitro 

expressed plant UBP12 interaction-null proteins would be expected to 

retain ubiquitin protease activity against model diubiquitin substrates but 

fail to reproduce the in vivo Cf-9 triggered HR suppression phenotype seen 

during transient overexpression of wildtype UBP12 proteins.  UBP12 

interaction-null proteins may also be utilised as a negative control in 

coimmunoprecipitation experiments to identify the genuine biological 

targets of plant UBP12 proteins. 
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Figure 7.1 Substrate interaction determinants in the TRAF-like domain of  

HAUSP are conserved in its eukaryotic orthologs. 

 
(A) Domain structure of HAUSP (Herpesvirus-associated Ubiquitin Specific 

Protease).  HAUSP TRAF-like domain and catalytic Cys and His boxes are 

indicated by pink, blue and green boxes respectively. 

(B) Structural model of HAUSP TRAF-like and ubiquitin protease domains 

produced from 2f1z.pdb and rendered with PyMOL.  TRAF-like and ubiquitin 

protease domains are labelled with respective substrate binding groove and 

ubiquitin binding pocket and circled in green and blue.  TRAF-like domain 

interacting peptide from HAUSP substrate p53 is represented by grey stick 

model. 

(C) Alignment of TRAF-like domain from eukaryotic HAUSP orthologs.  

Corresponding protein regions from human HAUSP (GI:1545951) and its 

orthologs in mouse (MmUSP7 - GI:33334630), worm (CeUSP7 - 

GI:2414214), yeast (ScUSP15 – GI:798940), Arabidopsis (AtUBP12 - 

AT5G06600), potato (St_CK6407 – TIGR:CK6407), tobacco (NtUBP12 – 

GI:FJ264198) and rice (Os_TC3040 – TIGR:TC3040) were aligned using 

ClustalX and HAUSP substrate interacting motif DWGF164-167 is highlighted 

by coloured residues. 
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The conservation of substrate binding residues may also be relevant to 

future localisation studies of plant UBP12 proteins.  A previous study by 

Zapata et al. using HAUSP deletion mutants indicated that the TRAF-like 

domain of HAUSP was necessary and sufficient for nuclear localisation in 

human COS7 cells (Zapata et al., 2001).  This raises the possibility that 

HAUSP binds a substrate through its N-terminal TRAF-like domain which 

facilitates nuclear targeting.  Based on these findings, mutation of the 

substrate binding DWGF motif in the TRAF-like domain would presumably 

prevent such interactions causing a loss of nuclear localisation.  In this 

study, transiently overexpressed GFP-AtUBP12 showed a nucleocytoplasmic 

localisation pattern in tobacco epidermal cells despite its lack of canonical 

nuclear localisation signals.  The functional requirement of an intact DWGF 

motif for nuclear targeting in plant UBP12 proteins could also be tested 

using the transient assay approach with the GFP tagged UBP12 interaction-

null fusion protein. 

7.6 Conclusions 

By undertaking functional characterisation of the Arabidopsis UBPs 

AtUBP12/AtUBP13 and their solanaceous orthologs, this study has 

established several novel findings that contribute to existing knowledge of 

the plant deubiquitinating enzymes.   

AtUBP12 and AtUBP13 are closely related paralogs that function 

redundantly to regulate plant development with simultaneous abolition of 

their respective transcripts causing seedling lethality.  Gene induction data 

suggests that AtUBP12 and AtUBP13 may also function to regulate disease 

resistance.  Resistance to bacterial pathogens was not compromised in 

single  ubp12 and ubp13 mutant alleles but the reported data suggests that 

functional redundancy may obscure genuine loss of function phenotypes for 

these genes. 

The reported functional redundancy between AtUBP12 and AtUBP13 is not 

complete with ubp12 mutants demonstrating an early flowering 

phenotype.  The early flowering of ubp12 mutants is most prevalent under 

a short day photoperiod where it is accompanied by the development of 
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aerial rosettes.  The development of aerial rosettes has been previously 

reported in the Arabidopsis Sy-0 ecotype and suggests a potential 

involvement of AtUBP12 in FLC based floral repression. 

Having cloned the novel tobacco AtUBP12 ortholog NtUBP12, UBP12 gain 

and loss of function studies were conducted in tobacco and N. 

benthamiana respectively during  HR cell death assays using VIGS and 

transient overexpression.  These experiments established that UBP12 

proteins negatively regulate the HR elicited by the C. fulvum fungal 

elicitor Avr9.  Similar studies indicated no alteration to the HR elicited by 

the bacterial avirulence factor avrPto.  NbUBP12 loss of function studies 

also indicated no alteration in PAMP triggered basal resistance during P. s. 

pv tabaci bacterial growth assays.  Our collaborators have established that 

NbUBP12 silencing results in reduced TMV accumulation through a 

mechanism independent of N triggered gene-for-gene resistance. 

7.7 Future work  

Future studies aim to recapitulate HR suppression reported during 

transient Arabidopsis AtUBP12 overexpression with the corresponding 

tobacco NtUBP12 protein.  Stable transgenic Arabidopsis AtUBP12/AtUBP13 

gain of function lines will also be utilised for further analysis of their 

functions in disease resistance signalling. 

Transgenic approaches could also investigate proposed UBP12 interaction-

null proteins in localisation and overexpression studies to examine if 

mutations in the TRAF-like domain disrupt nuclear targeting or disease 

signalling events.  Corresponding AtUBP13 gain of function lines may also 

be required for future studies as the extent of functional redundancy 

between AtUBP12 and AtUBP13 is not clear. 

Ultimately, transgenic Arabidopsis AtUBP12/AtUBP13 loss and gain of 

function lines could be applied to investigate the role of these genes in a 

broad range of model plant-pathogen interactions.  Established model 

Arabidopsis pathogens include: Peronospora parasitica and Erysiphe 

cruciferarum (fungal), Cauliflower Mosaic Virus and Tobacco Mosaic Virus 
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(viral) and Pseudomonas syringae and Xhanthomonas campestris (bacterial) 

(Kunkel, 1996).  Use of these pathogen systems would allow investigation 

into whether AtUBP12/AtUBP13 have broad or specific roles in the disease 

resistance. 

Transgenic AtUBP12 overexpression lines are also being generated in the 

ubp12 mutant background to allow complementation of the reported early 

flowering and aerial rosette phenotypes.  Future attempts to characterise 

the molecular basis of early flowering in ubp12 mutants will initially focus 

on deregulation in the behaviour of key floral integrators such as FLC and 

CO at the transcript and protein level respectively. 

Future work aims to more fully characterise the role of NbUBP12 in TMV 

infection using TMV:GFP resistance assays to quantify the observed 

phenotypes.  The possibility that the reported TMV resistance phenotype 

results from a direct interaction between the TMV movement protein and 

NbUBP12 will also be investigated using coimmunoprecipitation 

approaches. 

Putative interactors of AtUBP12 have been identified by yeast two-hybrid 

analysis (by commercial screening – data not shown) but these interactions 

have yet to be experimentally verified.  Future attempts to identify 

biological UBP12 substrates may utilise knowledge of proposed TRAF-like 

domain substrate binding residues in combination with 

immunoprecipitation and yeast two-hybrid approaches to identify 

interactions that occur specifically during disease resistance signalling 

events. 
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Table A1  Initial DUB protein sequences used to query the Arabidopsis  

proteome. 
 

DUB Organism Swissprot code UBP Class 
YUH1 S. Cerevisiae P35127 UCH 
UBP1 A. thaliana Q9FPT5 UBP 
USP14 H. sapiens P54578 UBP 

Ataxin-3 H. sapiens P54252 Ataxin 
RPN11 S. Cerevisiae P43588 JAMM 

 
 

 
 
Table A2   PCR primers used for RT-PCR and cloning. 
 
Primer Primer Sequence 
AtActin2_5 CTTACAATTTCCCGCTCTGC 
AtActin2_3 GTTGGGATGAACCAGAAGGA 
AtPR-1_5 TTCTTCCCTCGAAAGCTCAA 
AtPR-1_3 ACTTTGGCACATCCGAGTCT 
AtUBP12_RT5 CCAGAAACAGACACCATTTCAA 
AtUBP12_RT3 GTGTTCGCACATAACACAAGGT 
AtUBP13_RT5 GATGCACCTACCGCTAGTATCC 
AtUBP13_RT3 TCCTTCTGCATGGTATTTGTTG 
AtActin2_REAL5 CTAAGCTCTCAAGATCAAAGGCTTA 
AtActin2_REAL3 ACTAAAACGCAAAACGAAAGCGGTT 
AtPR1_REAL5 TCAGTGAGACTCGGATGTG 
AtPR1_REAL3 CCTGCATATGATGCTCCTT 
UBP12_REAL5 GACCCCGAGAAGGCAGTATT 
UBP12_REAL3 TCGCACATAACACAAGGTTCA 
UBP13_REAL5 GGCAAAGCGTCAAAACCATA 
UBP13_REAL3 TCTGGGGGAGGAATAGGAAG 
SALK_Lba1 TGGTTCACGTAGTGGGCCATCG 
GK_T-DNA ATATTGACCATCATACTCATTGC 
ubp8-1_FLK5 TTCTGTGACAGGTGGTTTTGG 
ubp8-1_FLK3 GCAAGTCAGACGCACAAAAAG 
ubp11-1_FLK5 TCCATTAGAAGCGGAACTCAAG 
ubp11-1_FLK3 ACTAGGAAACCAGTGCCTTCG 
ubp12-1_FLK5 ATTTTGACAGGTGAGGCTAAAGAA 
ubp12-1_FLK3 AACTCGCATATCCAGAAGAAAGAG  
ubp12-2_FLK5 TAGGCTGCACCTTGTATTTTTCTT 
ubp12-2_FLK3 GCCCTCTTAGGAGTAGTGTCAGC 
ubp13-1_FLK5 TTGTTCCCTCCACAACAGTTC 
ubp13-1_FLK3 GGAATGGAGTCAAGTTACCGC 
ubp13-2_FLK5 CAAGGACTGTATTTGCATAAGCC 
ubp13-2_FLK3 AGCCACCCTTTCCACTACATC 
ubp25-1_FLK5 TTTCATGTAAGAGAACTTGGAAGC 
ubp25-1_FLK3 GTGCGGAGTCTAATAAAGCCG 



 

 xx

U12-1_FL_5 AACCCGAGACTGCTGCGAGTA 
U12-1_FL_3 GCATGCTCCAACCCGAGGTAC 
U12-1_5P_3 TAAATCCAGGTGCTCTACTTC 
U12-1_3P_5 CTACCTAAACAAAGCACGGTC 
U12-2_3P_5 CCAAGTGGAAGTTTGCGTTCA 
U13-1_FL_5 ATGACTATGATGACTCCGCCGCCGCTAG 
U13-1_FL_3 ATTGTATATTTTCACCGGCTTCTCGTA 
U13-1_5P_5 AAACTGATCCTGCTGCTACCG 
U13-1_5P_3 CCTCGAGTGGGTTCATAGAGC 
U13-1_3P_5 GATGTACAAGAACTCAACAGA 
U13-1_3P_3 TAGGAAGGTCATCCGGTCCAC 
U13-2_5P_5 TTGGTCGAGGGACCTCAGCCT 
U13-2_3P_5 TATGATGATGTAGTGGAAAGG 
U13-2_3P_3 CTTTTAGGAGCATTATCAATG 
UBP_RNAi_5 CACCGGACCGGATGACCTTCCTAT 
UBP_RNAi_3 TCAGCCACCCTTTCCACTAC 
HG12_35S ATCCCACTATCCTTCGCAAGA 
HG12_int CTTCGTCTTACACATCACTTGTCA 
AtUBP12_KD5 ATGACTATGATGACTCCGCCTCCC 
AtUBP12_KD3 CCAAGGTGCAACAAGCTACATGAATT 
AtUBP13_KD5 GATGCACCTACCGCTAGTATCC 
AtUBP13_KD3 TCCTTCTGCATGGTATTTGTTG 
NtUbp12_TAG AAGCCTGTTCGGATCTACAACTAG 
StUbp12_ATG ATGACTATGATGACTCCTCCCCCC 
NtU12_2176_3 CAGGAGCAAATCCAGCCAATTCA 
NtU12_1677_5 AGAGGCTCACCTTTATACAATAATCAAG 
NtUbp12_903RC GATGAAGGGAACCGTTGTAGAG 
NtUbp12_742RC CCTTTGGCTCTTCAGAGTTTGT 
NtUbp12_554RC CTGTGCGTAGGGTCATTGATTA 
NtACTIN2_5 CTATTCTCCGCTTTGGACTTGGCA 
NtACTIN2_3 ACCTGCTGGAAGGTGCTGAGGGAA 
Hsr203J_5 TCCCGTCATTCTTCACTTCC 
Hsr203J_3 ATCTTTCTCCGCCACACAGT 
NtUbp12_562_5 GCGTGGAAGCTTACATAGCAGAGCATCTCAGGGTA 
NtUbp12_562_3 GCCTACGGTACCGTTAATATCTCCATCGGCTTGC 
NtUbp12_742_5 GCGTGGAAGCTTGATGCCAATAAAGTATCAAGG 
NtUbp12_742_3 GCCTACGGTACCATGTCGGTTCTGGTTGCTAGC 
NtUBP12_562KD_5 AAGAAGGAGACGGGTTGTGTT 
NtUBP12_562KD_3 ATCACGACACCCTTTGACATC 
NtUBP12_742KD_5 GAATTGGCTGGATTTGCTCCTG 
NtUBP12_742KD_3 CGCCACTCTCTCCACTACATC 
AtUBP12_5_NotI TATACTGCGGCCGCGAATTGTATATTTTTACCGGCTT 
AtUBP12_3_Asp718I GTAAGAGGTACCGAATGACTATGATGACTCCGCCT 
AtUBP12_5_C208S CTCAAGAACCAAGGTGCAACAAGCTACATGAATTCTCTCCTACAG 
AtUBP12_3_C208S CTGTAGGAGAGAATTCATGTAGCTTGTTGCACCTTGGTTCTTGAG 
AtUBP12BAC5_NotI GTAAGAGCGGCCGCGATGACTATGATGACTCCGCCTCCCG 
AtUBP12BAC3_Asp718I TATACTGGTACCGAATTGTATATTTTTACCGGCTT 
NtUBP12BAC5_NotI GTAAGAGCGGCCGCGATGACTATGATGACTCCTCCCCCC 
NtUBP12BAC3_Asp718I TATACTGGTACCGAGTTGTAGATCCGAACAGGCTTCT 
NtUBP12_5_C206S GCCTTAAGAATCAGGGAGCTACTAGTTATATGAACTCTCTCCTCC 
NtUBP12_3_C206S GGAGGAGAGAGTTCATATAACTAGTAGCTCCCTGATTCTTAAGGC 
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Figure A1  Alignment of AtUBP12, AtUBP13 and NtUBP12 cDNA  

sequences. 
 
AtUBP12    1 ATGACTATGATGACTCCGCCTCCCGTTGATCAGCCAGAAGATGAGGAGATGCTTGTGCCG 
AtUBP13    1 ATGACTATGATGACTCCGCCGCCGCTAGATCAGCAGGAAGACGAGGAGATGCTTGTTCCG 
NtUBP12    1 ATGACTATGATGACTCCTCCCCCCGTAGATC---CAGAAGAGGACGAGATGCTCGTTCCT 
 
AtUBP12   61 AATTCAGATTTGGTCGACGGTCCTGCTCAGCCCATGGAAGTTACCCAACCCGAGACTGCT 
AtUBP13   61 AATCCGGATTTGGTCGAGGGACCT---CAGCCTATGGAAGTTGCCCAAACTGATCCTGCT 
NtUBP12   58 AATTCAGATTTTCCCGTTGAAGGTCCTCAGCCAATGGAAGTTGC---GACTGCGGATACA 
 
AtUBP12  121 GCGAGTACTGTGGAGAACCAGCCAGCTGAGGATCCTCCTACTCTGAAATTCACGTGGACT 
AtUBP13  118 GCTACCGCTGTGGAGAATCCACCACCCGAGGATCCTCCAAGTCTGAAATTCACGTGGACC 
NtUBP12  115 GCTAGTACGGTGGATGGACCGCCAGTGGATGATCCGCCATCTGCTCGGTTCACATGGACA 
 
AtUBP12  181 ATCCCTAATTTCTCTAGGCAAAACACCAGGAAGCATTACTCCGATGTATTTGTCGTTGGA 
AtUBP13  178 ATCCCAATGTTCACTAGGCTCAATACCAGGAAGCATTACTCTGACGTATTTGTTGTAGGC 
NtUBP12  175 ATAGAGAACTTTTCAAGGTTGAATTCAAAGAAGCTATACTCGGATGTTTTCCATGTGGGA 
 
AtUBP12  241 GGTTACAAATGGCGCATATTAATTTTCCCGAAAGGGAACAATGTTGATCATTTGTCCATG 
AtUBP13  238 GGTTATAAGTGGCGTATATTGATTTTTCCCAAAGGAAACAATGTCGACCATTTGTCAATG 
NtUBP12  235 GGATATAAATGGAGGATATTGATATTTCCTAAAGGGAACAACGTGGACCATTTGTCTATG 
 
AtUBP12  301 TACTTGGATGTTTCTGATGCTGCGAGTTTGCCGTACGGTTGGAGCAGATATGCTCAGTTC 
AtUBP13  298 TACTTGGATGTTGCTGATGCTGCGAATTTGCCGTACGGGTGGAGCAGATATTCACAGTTC 
NtUBP12  295 TATTTAGATGTTGCAGATTCGCCGGCATTGCCTTACGGGTGGAGTAGACATGCTCAGTTT 
 
AtUBP12  361 AGTCTGGCTGTAGTCAATCAAATCCACACCAGATATACCGTTAGAAAAGAGACGCAACAT 
AtUBP13  358 AGTCTGGCTGTAGTGAATCAAGTCAACAACCGATATTCCATCAGAAAGGAGACGCAACAT 
NtUBP12  355 AGCTTAGCTGTTCTCAACCGAGTCCATAACAAGTTTACAGTGAGAAAAGATACTCAACAC 
 
AtUBP12  421 CAATTCAATGCTAGAGAAAGCGATTGGGGATTTACATCATTCATGCCACTTAGCGAACTT 
AtUBP13  418 CAATTCAATGCAAGAGAAAGCGACTGGGGGTTTACATCATTCATGCCTCTCAGCGAGCTC 
NtUBP12  415 CAGTTTAATGCAAGAGAGAGTGACTGGGGTTTCACGTCCTTCATGCCTCTTAGTGAATTA 
 
AtUBP12  481 TATGATCCTAGTAGAGGATATTTAGTGAATGATACTGTTTTGGTTGAAGCTGAAGTCGCT 
AtUBP13  478 TATGAACCCACTCGAGGATATTTAGTGAATGACACTGTTCTGATTGAAGCTGAAGTTGCT 
NtUBP12  475 TATGATCCTATCAGAGGTTATCTTGTGGATGATACAGTAATAGTTGAAGCTGATGTTGCT 
 
AtUBP12  541 GTACGTAAGGTTCTTGATTACTGGTCATATGACTCTAAAAAAGAGACTGGTTTTGTTGGA 
AtUBP13  538 GTGCGTAAAGTTCTTGATTATTGGTCATATGACTCAAAAAAAGAGACAGGTTTTGTTGGA 
NtUBP12  535 GTGCGTAGGGTCATTGATTACTGGTCTCACGACTCGAAGAAGGAGACGGGTTGTGTTGGC 
 
AtUBP12  601 CTCAAGAACCAAGGTGCAACATGCTACATGAATTCTCTCCTACAGACACTATACCACATA 
AtUBP13  598 CTAAAAAACCAAGGTGCTACCTGTTACATGAATTCTCTCCTGCAGACTTTATACCACATA 
NtUBP12  595 CTTAAGAATCAGGGAGCTACTTGTTATATGAACTCTCTCCTCCAAACATTGTACCATATT 
 
AtUBP12  661 CCTTACTTCAGAAAGGCTGTATACCACATGCCAACAACTGAGAATGATGCACCCACAGCA 
AtUBP13  658 CCTTACTTTAGAAAGGCTGTTTACCACATGCCAACGACTGAAAATGATGCACCTACCGCT 
NtUBP12  655 CCTTACTTTAGAAAGGCTGTGTATCATATGCCAACAACTGAGAATGACAATCCATCCGGG 
 
AtUBP12  721 AGTATACCGTTGGCTCTCCAAAGTTTGTTTTACAAGCTCCAATACAATGACACTAGTGTT 
AtUBP13  718 AGTATCCCATTGGCGCTCCAGAGTTTATTTTACAAGCTTCAGTATAATGATACCAGTGTA 
NtUBP12  715 AGCATCCCTTTGGCTCTTCAGAGTTTGTTTTATAAGCTACAATACAGTGACACTAGTGTA 
 
AtUBP12  781 GCAACAAAAGAGCTGACAAAGTCGTTTGGTTGGGATACATATGATTCCTTCATGCAGCAT 
AtUBP13  778 GCGACAAAGGAGCTGACAAAGTCGTTTGGTTGGGATACATATGATTCTTTTATGCAACAT 
NtUBP12  775 GCAACAAAAGAATTGACAAAGTCCTTTGGATGGGATACCTATGATTCTTTCATGCAGCAT 
 
AtUBP12  841 GATGTGCAAGAACTCAATCGGGTTCTCTGCGAAAAGCTTGAGGACAAAATGAAGGGAACT 
AtUBP13  838 GATGTACAAGAACTCAACAGAGTTCTCTGTGAAAAGCTTGAGGACAAGATGAAGGGAACT 
NtUBP12  835 GATGTACAAGAACTTAACAGGGTTCTTTGTGAAAAACTTGAAGATAAGATGAAGGGAACC 
 
AtUBP12  901 GTTGTGGAGGGAACAATACAACAACTTTTTGAGGGCCACCATATGAATTACATTGAGTGC 
AtUBP13  898 GTTGTGGAGGGAACAATACAAAAGCTATTTGAAGGTCACCACATGAATTACATTGAGTGC 
NtUBP12  895 GTTGTAGAGGGCACAATACAACAATTATTCGAGGGGCATCATATGAATTATATTGAATGT 
 
AtUBP12  961 ATAAATGTAGATTTTAAATCTACACGGAAAGAATCATTTTACGACCTTCAGCTGGATGTT 
AtUBP13  958 ATTAATGTAGATTACAAATCTACACGGAAAGAGTCATTTTATGACCTCCAGCTTGATGTT 
NtUBP12  955 ATCAATGTGGACTATAAATCAACAAGAAAAGAATCTTTTTATGATTTGCAGCTTGATGTC 
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AtUBP12 1021 AAAGGCTGCAAGGATGTTTATGCTTCTTTTGACAAGTATGTTGAAGTTGAACGTCTTGAA 
AtUBP13 1018 AAAGGCTGCAAAGATGTATATGCTTCTTTTGACAAGTATGTTGAAGTTGAACGCCTTGAA 
NtUBP12 1015 AAAGGGTGTCGTGATGTCTATGCTTCTCTTGACAAGTATGTTGAAGTAGAACGCCTTGAG 
 
AtUBP12 1081 GGAGACAACAAATATCATGCAGAAGGACATGGTTTACAGGATGCAAAAAAAGGTGTTCTT 
AtUBP13 1078 GGAGACAACAAATACCATGCAGAAGGACATGATTTGCAGGATGCAAAAAAAGGTGTTCTA 
NtUBP12 1075 GGTGATAATAAGTACCATGCAGAAAAGTATGGTTTACAGGATGCTCGAAAAGGTGTGCTT 
 
AtUBP12 1141 TTCATTGACTTTCCACCGGTTCTTCAACTCCAGCTCAAGAGGTTTGAATATGACTTTATG 
AtUBP13 1138 TTCATAGACTTTCCACCAGTTCTTCAACTTCAGCTCAAGAGGTTTGAATACGATTTTATG 
NtUBP12 1135 TTCATTGATTTCCCCCCTGTTCTTCAGCTTCAGTTAAAACGATTTGAATATGATTTTGTT 
 
AtUBP12 1201 AGGGACACCATGGTGAAGATAAATGATCGGTATGAGTTTCCGCTTGAACTGGATCTTGAT 
AtUBP13 1198 AGGGACACAATGGTGAAGATTAATGATCGGTATGAGTTTCCTCTCCAACTGGATCTCGAC 
NtUBP12 1195 CGGGATACTATGGTCAAGATAAACGACAGATATGAGTTTCCTTTAGAACTCGATCTTGAT 
 
AtUBP12 1261 AGAGAAGATGGAAAGTATCTGTCGCCTGATGCTGACAGGAGTGTCCGCAACCTTTATACT 
AtUBP13 1258 AGAGAAGATGGAAGATATTTATCCCCTGATGCAGACAAGAGTGTCCGCAATCTCTACACC 
NtUBP12 1255 AGAGAGAATGGCAAATACTTATCTCCTGATGCAGATCGAAGTGTTCGCAATCTCTATACG 
 
AtUBP12 1321 CTTCACAGTGTTTTAGTTCATAGTGGAGGAGTACATGGTGGGCACTATTATGCTTTTATA 
AtUBP13 1318 CTCCACAGTGTCTTGGTTCACAGTGGAGGAGTGCATGGAGGGCATTATTATGCTTTTATT 
NtUBP12 1315 CTTCACAGTGTTTTGGTTCATAGTGGTGGGGTCCACGGGGGACACTATTATGCTTATATC 
 
AtUBP12 1381 AGGCCTACGCTCTCAGATCAGTGGTATAAATTTGATGATGAACGAGTAACCAAGGAAGAT 
AtUBP13 1378 AGGCCAACACTTTCAGATCAGTGGTATAAATTTGACGATGAACGGGTCACGAAAGAAGAT 
NtUBP12 1375 AGGCCAACACTCTCTGATCAATGGTTTAAATTTGATGATGAGCGTGTGACAAAAGAAGAT 
 
AtUBP12 1441 TTGAAAAGGGCTTTGGAGGAGCAATATGGTGGTGAAGAAGAGCTACCACAGACTAATCCT 
AtUBP13 1438 GTCAAAAGAGCACTGGAAGAGCAATATGGTGGTGAAGAAGAGTTACCGCAGAATAATCCT 
NtUBP12 1435 TCGAAGAGGGCTTTGGAAGAACAATATGGTGGTGAGGAAGAGTTACCTCATGCAAACCCT 
 
AtUBP12 1501 GGTTTCAATAATAACCCTCCTTTCAAATTCACAAAGTACTCGAATGCTTACATGCTTGTA 
AtUBP13 1498 GGTTTCAATAAT---CCACCTTTCAAATTCACAAAATACTCGAATGCATACATGCTTGTT 
NtUBP12 1495 GGGTTCAACAAT---TCACCGTTCAAATTTACAAAATATTCAAATGCATATATGCTTGTT 
 
AtUBP12 1561 TATATCCGAGAAAGTGACAAAGATAAAATAATCTGCAACGTTGATGAGAAAGACATAGCA 
AtUBP13 1555 TATATTCGGGAAAGTGACAAGGATAAGATAATCTGCAACGTTGATGAGAAAGACATTGCG 
NtUBP12 1552 TATATACGTGAAAGTGACAAAGAAAAGATTATATGCAATGTGGATGAAAAGGACATAGCA 
 
AtUBP12 1621 GAACATTTAAGGGTGAGGCTAAAGAAAGAGCAAGAAGAAAAGGAAGATAAAAGAAGATAC 
AtUBP13 1615 GAACATTTGCGGGTGAGGCTGAAAAAAGAACAAGAAGAAAAGGAAGATAAAAGAAAATAC 
NtUBP12 1612 GAGCATCTCAGGGTAAGGCTGAAGAAAGAGCAAGATGAAAAGGAGCAAAAGAGAAAGGAA 
 
AtUBP12 1681 AAGGCACAAGCTCACTTATATACCATAATTAAGGTTGCAAGAGATGAAGACCTTAAGGAA 
AtUBP13 1675 AAGGCTCAAGCTCACCTTTTCACGACAATCAAGGTCGCAAGAGATGATGACATCACTGAG 
NtUBP12 1672 AAAGCAGAGGCTCACCTTTATACAATAATCAAGGTTGCTCGCGATGAAGACCTTGGTGAA 
 
AtUBP12 1741 CAAATTGGGAAGGATATATATTTTGATCTTGTGGATCATGACAAAGTTCGCAGTTTCCGT 
AtUBP13 1735 CAAATTGGAAAGAATATATATTTTGATCTTGTTGATCATGAAAAAGTGAGGAGTTTTCGA 
NtUBP12 1732 CAAATTGGAAAGGATATTTATTTTGATCTCGTAGATCATGACAAAGTCCGTAGTTTCCGT 
 
AtUBP12 1801 ATCCAGAAACAGACACCATTTCAACAGTTTAAGGAGGAGGTAGCAAAAGAATTTGGTGTA 
AtUBP13 1795 ATCCAGAAACAGACCCCCTTTCAACAATTTAAGGAAGAGGTAGCCAAAGAGTTTGGTGTC 
NtUBP12 1792 ATCCAGAAACAGATGGCATTTACACAATTCAAGGAGGAAGTTGCTAAGGAATTGGGTATA 
 
AtUBP12 1861 CCTGTTCAGTTACAGAGGTTCTGGATTTGGGCAAAGAGACAAAACCATACCTATCGTCCC 
AtUBP13 1855 CCGGTTCAACTACAGCGGTTCTGGATCTGGGCAAAGCGTCAAAACCATACTTACCGCCCC 
NtUBP12 1852 CCGGTGCAATTTCAGCGTTATTGGCTATGGGCAAAACGACAAAACCACACTTATCGGCCT 
 
AtUBP12 1921 AATCGCCCCCTTACGCCTCAAGAGGAATTACAACCGGTTGGACAAATAAGGGAAGCATCT 
AtUBP13 1915 AATCGTCCCCTATCACCTAATGAAGAATTACAGACGGTTGGACAAATACGAGAGGCATCT 
NtUBP12 1912 AATCGGCCATTGACACCTCAAGAGGAAACTCAATCTGTTGGACAACTGAGAGAGGTCTCT 
 
AtUBP12 1981 AATAAGGCAAACACTGCAGAACTCAAGCTTTTTTTGGAAGTAGAGCAC---CTGGATTTA 
AtUBP13 1975 AACAAGGCAAACAATGCTGAGCTAAAGCTGTTTTTGGAAATAGAGCGTGGACCGGATGAC 
NtUBP12 1972 AATAAAGCAAATAACGCTGAGCTAAAACTTTATTTGGAAGTTGAATTTGGCCTGGATTTG 
 
AtUBP12 2038 CGTCCTATTCCTCCTCCTGAAAAATCAAAAGAAGATATTCTTCTTTTCTTCAAGCTTTAT 
AtUBP13 2035 CTTCCTATTCCTCCCCCAGAAAAAACTTCTGAGGATATCCTTCTTTTCTTTAAACTCTAT 
NtUBP12 2032 CGACCTTGTCCTCCACCTGAGAAGACCAAAGAAGATATTCTTCTATTTTTCAAACTGTAT 
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AtUBP12 2098 GACCCCGAGAAGGCAGTATTAAGCTATGCTGGCAGGCTGATGGTGAAAAGTTCCAGTAAG 
AtUBP13 2095 GACCCTGAGAACGCAGTACTAAGATATGTTGGCAGGCTAATGGTGAAAAGTTCCAGTAAG 
NtUBP12 2092 GACCCTCTGAAAGAGGAGATGAGGTATGTTGGGCGGCTCTTTGTAAAAGGTAGTGGCAAG 
 
AtUBP12 2158 CCTATGGATATAACTGGAAAACTGAATGAAATGGTTGGCTTTGCTCCTGATGAAGAAATA 
AtUBP13 2155 CCCATGGATATAGTAGGGCAATTGAATAAAATGGCTGGTTTTGCTCCTGATGAGGAAATA 
NtUBP12 2152 CCATTGGAGATATTGACCAAGCTAAATGAGCTGGCTGGCTTTTCGCCTGACGAAGAGATT 
 
AtUBP12 2218 GAACTTTTTGAGGAAATCAAGTTTGAACCTTGTGTTATGTGCGAACACTTGGATAAGAAA 
AtUBP13 2215 GAACTTTTTGAGGAAATAAAGTTTGAACCTTGCGTAATGTGTGAACAGATTGATAAGAAG 
NtUBP12 2212 GAACTCTTTGAGGAAATAAAACTTGATCCCAACGTGATGTGTGAACCCATTGACTGGAAG 
 
AtUBP12 2278 ACTTCATTCAGATTGTGTCAAATTGAAGATGGAGATATCATTTGCTTTCAGAAACCTCTT 
AtUBP13 2275 ACTTCTTTCAGGCTGTGTCAAATTGAAGATGGAGATATCATTTGTTATCAGAAACCTCTT 
NtUBP12 2272 CTAACATTTCGCGGCAGTCAGCTTGAAGATGGGGACATTATTTGCATTCAGAAACCCCTT 
 
AtUBP12 2338 GTTAACAAGGAGATTGAA---TGCCTCTACCCAGCTGTGCCTTCGTTTCTTGAATATGTC 
AtUBP13 2335 TCTATCGAGGAGAGTGAA---TTTCGATACCCAGATGTGCCATCATTTTTGGAGTATGTA 
NtUBP12 2332 CGAAGTCAAACTAGTGAACAATATCGATTTCCTGACGTTCCTTCATTTTTAGAGTACGTG 
 
AtUBP12 2395 CAGAATAGACAGCTGGTCCGGTTTCGTGCTCTGGAAAAACCTAAAGAAGATGAGTTTGTT 
AtUBP13 2392 CAGAATCGAGAGCTGGTGCGTTTTCGCACACTGGAAAAACCAAAAGAGGATGAGTTTACT 
NtUBP12 2392 CACAATCGCCAGGTTGTTCGCTTCCGCTCATTGGAGAAACCCAAAGAGGATGATTTCAGT 
 
AtUBP12 2455 CTGGAGTTGTCGAAGCAGCACACTTATGACGATGTTGTGGAGAAAGTGGCTGAGAAGCTT 
AtUBP13 2452 ATGGAGCTGTCAAAGCTGCACACTTATGATGATGTAGTGGAAAGGGTGGCTGAGAAGCTT 
NtUBP12 2452 CTTGAGTTGTCGAAGCAGGATACATATGATGATGTAGTGGAGAGAGTGGCGCAACGGCTT 
 
AtUBP12 2515 GGTCTTGACGATCCATCCAAACTTAGGCTTACATCTCACAATTGCTATTCCCAGCAACCC 
AtUBP13 2512 GGCCTTGACGATCCATCAAAACTTAGGCTTACATCTCACAATTGCTACTCTCAGCAACCC 
NtUBP12 2512 GGTGTGGATGATCCCTCCAAAATTAGGCTTACTCCACACAACTGCTACTCACAGCAGCCA 
 
AtUBP12 2575 AAGCCTCAGCCTATCAAGTACCGTGGAGTAGACCATTTGTCAGATATGTTAGTTCATTAC 
AtUBP13 2572 AAGCCTCAGCCAATCAAATACCGTGGAGTAGATCATCTTTCAGATATGTTAGTTCACTAT 
NtUBP12 2572 AAACCTCAGCCAATAAAGTATCAAGGAGTGGACCGTCTTACAGAAATGCTTGTTCACTAT 
 
AtUBP12 2635 AATCAGACGTCTGACATTTTGTATTATGAAGTTCTGGACATCCCTCTTCCAGAATTACAA 
AtUBP13 2632 AATCAGACGTCTGACATATTGTATTATGAAGTTTTGGATATTCCTCTTCCAGAATTGCAA 
NtUBP12 2632 AATCAGACTTCAGACATTTTGTATTATGAAGTCCTCGATATTCCGTTACCAGAGCTGCAG 
 
AtUBP12 2695 GGTCTTAAAACCTTAAAAGTTGCTTTCCATCATGCCACGAAGGAAGAAGTGGTAATCCAC 
AtUBP13 2692 GGTCTTAAGACTCTAAAAGTAGCTTTCCATAGTGCCACAAAGGATGAAGTGATAATCCAC 
NtUBP12 2692 TGCTTAAAAACTCTCAAAGTCGCCTTCTATAATTCTGCAAAAGATGAAGTGACAATCCAT 
 
AtUBP12 2755 AATATCAGACTACCTAAACAAAGCACGGTCGGAGATGTTATTAATGAACTTAAAACAAAG 
AtUBP13 2752 AATATCAGACTACCTAAGCAGAGTACTGTTGGAGATGTTATTAACGAACTGAAAACAAAG 
NtUBP12 2752 ACTATTAGATTGCCGAAACAAAGTACTGTAGATGATGTCCTTAATCATCTCAAGACAAAG 
 
AtUBP12 2815 GTGGAGCTTTCGCATCCAGATGCAGAACTGAGATTGCTCGAGGTGTTTTACCACAAGATC 
AtUBP13 2812 GTGGAGCTTTCGCATCAAGATGCAGAACTGAGGTTACTTGAGGTCTTTTTCCACAAGATC 
NtUBP12 2812 GTTGAGTTGTCACATCCAGATGCTGAACTGAGATTGCTGGAAGTTTTCTACCACAAAATA 
 
AtUBP12 2875 TACAAGATTTTCCCATCAACTGAAAGAATTGAGAATATAAATGACCAGTACTGGACTTTA 
AtUBP13 2872 TACAAGATCTTTCCATCTACTGAACGAATTGAAAACATCAATGACCAGTACTGGACTTTA 
NtUBP12 2872 TATAAGATTTTTCCACCAACTGAGAGAATTGAGGACATAAATGATCAATACTGGACCTTG 
 
AtUBP12 2935 CGAGCTGAGGAGATTCCGGAAGAAGAGAAGAATATTGGTCCAAATGATCGCTTAATTCTT 
AtUBP13 2932 CGAGCAGAGGAGATACCTGAAGAAGAGAAGAATATTGGTCCCAATGATAGGTTAATTCAC 
NtUBP12 2932 CGTGCAGAGGAGATCCCCGAAGAGGAGAAAAACCTGGGTCCTCATGATCGCTTGATTCAT 
 
AtUBP12 2995 GTGTACCATTTTGCCAAGGAGACTGGACAAAACCAG---CAAGTGCAAAACTTTGGCGAG 
AtUBP13 2992 GTATATCATTTTACTAAAGAGGCCGGACAAAATCAG---CAAGTTCAAAATTTTGGGGAA 
NtUBP12 2992 GTTTACCATTTTATGAAGGACACGACTCAAAATCAAGCACACGTACAAAACTTTGGGGAG 
 
AtUBP12 3052 CCCTTCTTCTTGGTAATCCATGAAGGTGAAACTCTTGAAGAAATCAAGAACCGTATCCAA 
AtUBP13 3049 CCCTTCTTTTTGGTAATCCACGAAGGTGAAACTTTAGAAGAAATCAAGACCCGTATCCAA 
NtUBP12 3052 CCCTTCTTCCTGGTTATTCATGAGGGTGAGACACTGACTGAAGTTAAAGCGCGCATCCAG 
 
AtUBP12 3112 AAGAAGCTTCATGTATCTGATGAAGATTTTGCCAAGTGGAAGTTTGCGTTCATGTCAATG 
AtUBP13 3109 AAGAAACTCCATGTCCCTGATGAGGACTTTGCCAAGTGGAAGTTTGCATCGTTTTCAATG 
NtUBP12 3112 AAAAAATTGCAGGTTCCAGATGAGGAGTTTTCGAAGTGGAAGTTTGCGTTTTTGTCCATG 
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AtUBP12 3172 GGGCGTCCAGAGTACTTGCAGGACACAGATGTTGTTTATAATCGCTTCCAGAGAAGAGAT 
AtUBP13 3169 GGACGTCCTGATTACTTGCTGGACACAGATGTTGTTTATAATCGCTTTCAGAGAAGAGAT 
NtUBP12 3172 GGCCGTCCTGACTACCTCCAGGATTCAGATGTTGTGTCCAATCGCTTTCAGAGGAGAGAT 
 
AtUBP12 3232 GTCTATGGTGCTTTTGAGCAGTACCTCGGGTTGGAGCATGCTGACACTACTCCTAAGAGG 
AtUBP13 3229 GTATACGGTGCGTGGGAGCAGTATCTTGGGTTGGAGCACATTGATAATGCTCCTAAAAGG 
NtUBP12 3232 GTTTATGGTGCTTGGGAGCAGTATCTTGGATTAGAGCATGCTGACAATGCTCCTAAAAGG 
 
AtUBP12 3292 GCTTATGCTGCAAACCAGAACCGCCATGCTTACGAGAAGCCGGTAAAAATATACAATTAG 
AtUBP13 3289 GCTTATGCTGCAAATCAGAACCGACACGCATACGAGAAGCCGGTGAAAATATACAATTAG 
NtUBP12 3292 TCATATGCTAGCAACCAGAACCGACATACTTTTGAGAAGCCTGTTCGGATCTACAACTAG 
 
 
 
 
 
 
Table A3  Arabidopsis T-DNA lines isolated in this study. 
 
Mutant allele TAIR code T-DNA  identifier KO origin 

ubp8-1 AT5G22030 SALK_149329 SALK 
ubp11-1 AT1G32850 SALK_043515 SALK 
ubp12-1 AT5G06600 GK_244E11 GABI-Kat 
ubp12-2 AT5G06600 GK_742C10 GABI-Kat 
ubp13-1 AT3G11910 SALK_128312 SALK 
ubp13-2 AT3G11910 SALK_130784 SALK 
ubp25-1 AT3G14400 SALK_111336 SALK 
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