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Summary 

Vascular remodelling is an adaptive process that allows vessels to respond to 

changes in haemodynamic conditions, however this process also underlies the 

pathogenesis of atherosclerosis, vein graft failure following coronary artery 

bypass graft (CABG) surgery and restenosis following stent deployment to an 

atherosclerotic vessel. Injury to the vessel wall causes denudation of the 

endothelial cell (EC) layer and the resultant pathological vascular remodelling 

involves growth and migration of vascular smooth muscle cells (VSMC) and 

degradation and reorganisation of the extracellular matrix (ECM). Regeneration 

of the endothelial layer, known as re endothelialisation, is essential for healing 

of injured vessels and therefore therapies that specifically target VSMC growth 

and migration, without preventing re-endothelialisation are optimal in these 

pathologies. Dysregulation of the renin angiotensin system (RAS) is one of the 

key contributing factors to remodelling of the vasculature, with the majority of 

the pathological processes involved, being mediated by angiotensin II (Ang II) 

signalling at the angiotensin type I receptor (AT1R). A counter regulatory axis of 

the RAS has been identified, centred around the enzymatic actions of 

angiotensin converting enzyme 2 (ACE2), and the resultant production of 

Angiotensin-(1-9) [Ang-(1-9)] and Angiotensin-(1-7) [Ang-(1-7)] from Ang I and 

Ang II respectively. This axis counter-regulates the actions of Ang II via the AT1R, 

thereby providing a vasculoprotective role. Ang-(1-7) acts via the receptor Mas 

and inhibits Ang II induced VSMC cell migration, proliferation, and vascular 

remodelling in vivo. Comparatively, less is known about the actions of Ang-(1-9), 

however it has been identified as a functional ligand for the angiotensin type 2 

receptor (AT2R), inhibiting cardiac hypertrophy in vitro and cardiac fibrosis in 

vivo. However, the role of Ang-(1-9) in the vasculature is unexplored. Therefore, 

the main aim of this thesis was to investigate the interaction of Ang II and the 

counter-regulatory peptides Ang-(1-7) and Ang-(1-9) in the vasculature using 

primary human VSMC and EC, and to provide a direct comparison of Ang-(1-7) 

and Ang-(1-9) in order to further understand their signal transduction pathways. 

First, a model of VSMC proliferation was established in VSMC isolated from 

human saphenous vein tissue (HSVSMC). Here it was demonstrated that while 

Ang II had no effect on HSVSMC proliferation, foetal calf serum (FCS) induced 

HSVSMC proliferation in a concentration dependent manner. Ang-(1-7) and Ang-
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(1-9) blocked FCS induced proliferation of HSVSMC via Mas or the AT2R, 

respectively. Ang II-induced HSVSMC migration via the AT1R, and was inhibited 

by both Ang-(1-7) and Ang-(1-9) via Mas and the AT2R, respectively. Further 

investigation into the functional interplay of Ang II, Ang-(1-7) and Ang-(1-9) in 

HSVSMC migration identified alterations in extracellular signal-related kinase 1/2 

(ERK1/2) activity and matrix metalloproteinase 2 (MMP2) and MMP9 expression 

as potential mechanisms contributing to the observed results. Additionally, Ang 

II has recently been demonstrated to regulate expression of the microRNA-132/-

212 (miR-132/-212) cluster in rat aortic VSMC, thereby regulating a number of 

target genes involved in VSMC migration. This pathway was assessed in HSVSMC 

and it was found that Ang II-mediated HSVSMC migration was associated with an 

increase in miR-132 but not miR-212 expression, and a decrease in phosphatase 

and tensin homologue (PTEN) expression, a miR-132 target, at the messenger 

RNA level. These changes were found to be via the AT1R and were inhibited by 

Ang-(1-7) and Ang-(1-9). However, PTEN protein levels were unchanged and no 

changes were observed in key proteins involved in the downstream signalling 

pathways of PTEN, such as Akt and monocyte chemoattractant protein 1 ( MCP-

1). The role of miRNA-132 in Ang II induced HSVSMC migration was further 

investigated through the use of a miR-132 inhibitor and downregulation of DICER, 

a key enzyme involved in miRNA biogenesis. Here it was found that miR-132 or 

regulation of an alternative miRNA via DICER is not essential for Ang II induced 

HSVSMC migration. However, inhibition of miR-132 or DICER enhanced basal 

migration of unstimulated HSVSMC. 

Next, the effect of the RAS peptides, particularly Ang-(1-9), on EC growth, 

migration and function was assessed. Ang II, Ang-(1-7) or Ang-(1-9) have no 

effect on growth or migration of EC isolated from human saphenous veins 

(HSVEC). A direct effect of Ang-(1-9) on nitric oxide (NO) release from HSVEC 

and Chinese hamster ovary (CHO) cells expressing the AT2R was demonstrated. 

Although in cell culture Ang-(1-9) induced NO release in an AT2R sensitive 

manner, it was found that in vessels from AT2R knockout (AT2R
-/-) mice the 

biological effect of Ang-(1-9) was maintained and promoted vasodilation of both 

aortic and mesenteric artery rings. Furthermore, Ang-(1-9)-induced relaxation of 

AT2R
-/- aortic rings, but not mesenteric artery rings, was blocked by A779, 

suggesting that in large vessels Ang-(1-9) may mediate is vasodilatory effects via 
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conversion to Ang-(1-7) and signalling via Mas, while in resistance vessels Ang-(1-

9) promotes vasodilation through an alternative mechanism.  

The observation that Ang-(1-7) and Ang-(1-9) block HSVSMC, but not HSVEC, 

proliferation and migration, identified these peptides as potential therapeutic 

agents in vascular injury. A carotid artery wire injury model in mice was 

established, where injury to the carotid artery using a synthetic nylon fibre 

induced significant injury to the vessel, manifesting in the production of a large 

neointimal area at 28 days post injury. To assess the effects of Ang-(1-7) and 

Ang-(1-9), the peptides were delivered via subcutaneously via osmotic 

minipump. It was found that Ang-(1-7) infusion reduced neointimal formation 

and neointimal/media (NI/MA) ratio in comparison to control vessels via Mas. 

Similarly, Ang-(1-9) reduced neointimal formation and NI/MA ratio via the AT2R, 

as the AT2R antagonist PD123,319, but not the Mas antagonist A779,blocked the 

effects of Ang-(1-9), indicating that this was via a direct effect of Ang-(1-9), as 

opposed to conversion to Ang-(1-7) and signalling via Mas. 

An interesting finding from the in vivo study was that a large proportion of 

vessels from animals co-infused with Ang-(1-7) and A779, or Ang-(1-9) and 

PD123,319 developed more complex lesions with increased vessel remodelling 

and neovascularisation, largely within the media, in comparison to all other 

groups. Analysis of the composition of these complex lesions revealed that they 

were composed of disorganised ECM and were highly cellular, containing a large 

number of VSMC, macrophages and proliferating cells. Re-endothelialisation had 

occurred on the lumenal lining of these vessels and neovascularisation of the 

complex lesion was observed.  

In summary the data from this thesis demonstrates for the first time a direct 

biological role for Ang-(1-9) in the vasculature through inhibition of HSVSMC 

migration and proliferation, and increase NO bioavailability from HSVEC in vitro 

and reduced neointimal formation in an in vivo mouse model of vascular injury. 

Furthermore, this study provides a direct comparison of Ang-(1-9) and Ang-(1-7) 

in the vasculature and while the end biological effects are similar, they act via 

different receptors, the AT2R or Mas, respectively, and differences exist in their 

signal transduction mechanisms. These findings highlight the potential of Ang-(1-

9) and Ang-(1-7) as therapeutic agents in the setting of vascular remodelling. 
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1.1 Cardiovascular disease 

The term cardiovascular disease (CVD) encompasses all diseases involving the 

heart and circulatory system, including coronary artery disease (CAD), 

hypertension and stroke. CVD is the main cause of death in the UK, claiming the 

lives of approximately 180,000 people in 2010, around one third of all deaths 

that year (British Heart Foundation, 2012). Furthermore, CVD is one of the main 

causes of premature death in the UK (deaths before the age of 75), accounting 

for 28 % of premature death in men and 19 % in women in 2010 (British Heart 

Foundation, 2012). CVD also places a heavy burden on the UK economy; overall 

CVD is estimated to cost the UK £19 billion per year, with approximately 46% of 

this due to direct health care costs, 34% to productivity losses associated with 

death and illness in those of working age, and 20% of the informal care of people 

with CVD (British Heart Foundation, 2012). Although the numbers of people with 

CVD has been falling in recent years, there is still a vital need for continued 

research within this area leading to new prevention strategies and treatments.  

1.1.1 Cardiovascular remodelling 

CVD development and progression is associated with remodelling of the 

vasculature, the heart and other organs including the kidney. Remodelling is 

usually an adaptive process that occurs in response to long term-changes in 

haemodynamic conditions or following injury, which subsequently contributes to 

the pathogenesis of various CVD (Glagov et al., 1987, Pasterkamp et al., 2000).  

Changes in haemodynamic conditions result in structural alterations of the vessel 

wall, indicated by changes in wall diameter and thickness (Gibbons and Dzau, 

1994, Pasterkamp et al., 2004, Ward et al., 2000). While this is initially an 

adaptive process, eventually this leads to enhanced vessel reactivity or impaired 

relaxation, limiting blood pressure control and leading to the development of 

hypertension (Ward et al., 2000, Gibbons and Dzau, 1994). Additionally, chronic 

changes in haemodynamic conditions leads to the production of reactive oxygen 

species (ROS), which creates an inflammatory environment resulting in 

endothelial damage and the development of atherosclerosis (Cai and Harrison, 

2000). In fact, remodelling of the vasculature is one of the major causes of all 

CVD and ultimately promotes remodelling of the heart. For example, 
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hypertension causes an increase in haemodynamic load within the heart, 

resulting in an increase in left ventricular mass due to cardiomyocyte 

hypertrophy and ECM remodelling (Selvetella et al., 2004). While this is initially 

an adaptive process to compensate for the increased haemodynamic load, it 

eventually becomes maladaptive leading to a reduction in left ventricular 

performance, cardiac impairment and an increased risk of cardiac events, which 

eventually culminates in heart failure (Selvetella et al., 2004). Furthermore, the 

presence of atherosclerosis within the coronary arteries restricts blood flow to 

the heart, causing the myocardium to become ischaemic and resulting in chest 

pain and shortness of breath under resting conditions, symptoms characteristic 

of angina (Ross, 1999a). Rupture of the atherosclerotic plaque can lead to 

complete occlusion of the coronary artery, resulting in myocardial infarction 

(Ross, 1999a).  

1.1.2 Vascular remodelling 

The vascular wall is continuously exposed to haemodynamic forces such as 

luminal pressure and sheer stress. Alterations in these forces, either 

physiological or pathological, lead to both functional and structural alterations 

in the vascular wall (Glagov et al., 1987, Ward et al., 2000) (Figure 1.1). Acute 

changes in haemodynamic force, as in vasoconstriction or vasodilation, can 

modify vessel diameter. Chronic changes in haemodynamic forces result in 

structural alterations in the vessel wall, known as vascular remodelling, 

indicated by changes in wall diameter or thickness (Gibbons and Dzau, 1994). 

Vascular remodelling is therefore an adaptive process of structural remodelling 

that occurs in response to long-term changes in haemodynamic forces (Gibbons 

and Dzau, 1994). Vascular remodelling involves changes in at least four different 

cellular processes; cell growth, cell migration, cell death, and production or 

degradation of extracellular matrix (ECM) (Gibbons and Dzau, 1994). While 

vascular remodelling is initially an adaptive process within the vessel to cope 

with the altered haemodynamic force, it contributes to the pathology of various 

CVDs including hypertension and atherosclerosis. However, vascular remodelling 

is not solely determined by haemodynamic force, and a role for inflammatory 

responses and changes in ECM components has been identified (Hacking et al., 

1996, Pasterkamp et al., 2000, Pasterkamp et al., 2004). Furthermore, the 

vascular wall is also drastically changed following injury, when a neointima 
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forms as part of the reparative response, and its formation involves thrombosis, 

migration and vascular smooth muscle cell (VSMC) proliferation, matrix 

production, and the infiltration of inflammatory cells (Gibbons and Dzau, 1994). 
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Figure 1.1 Schematic overview of vascular remodelling 
Diagram outlining the remodelling that occurs in small resistance and large conduit arteries as a result of hypertension, and remodelling of large conduit arteries in 
atherosclerosis and following revascularisation due to in-stent restenosis and late vein graft failure. 
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1.1.3 Endothelial dysfunction 

While vascular remodelling largely involves changes in the structure and function 

of VSMC, the process by which pathological vascular remodelling occurs begins 

with damage to the endothelial layer. In the vasculature the endothelium exists 

as a cell monolayer on the luminal surface of the vessel wall. The importance of 

the endothelium was first recognised by its effect on vascular tone, achieved by 

the production and release of several vasoactive molecules as well as by 

response to circulating vasoactive mediators, resulting in vessel relaxation or 

contraction. The pioneering experiments of Furchgott and Zawadzki first 

demonstrated an endothelium-derived relaxing factor that was subsequently 

shown to be nitric oxide (NO) (Furchgott and Zawadzki, 1980). NO is generated 

from L-arginine by the action of endothelial NO synthase (eNOS) and diffuses to 

the VSMC where guanylate cyclase becomes activated, leading to cGMP-

mediated vasodilation. The endothelium also mediates hyperpolarization of 

VSMC via an NO-independent molecule, endothelial derived hyperpolarizing 

factor (EDHF), which increases potassium conductance and subsequent 

propagation of depolarization of VSMC, to maintain vasodilator tone (Feletou and 

Vanhoutte, 1988). During states of reduced NO bioavailability EDHF can 

compensate for loss of NO-mediated vasodilator tone, particularly in the 

microcirculation (Feletou and Vanhoutte, 1988, Shimokawa et al., 1996). The 

endothelium also promotes vasoconstriction via the local generation of 

endothelin and angiotensin II (Ang II) [via the actions of endothelial angiotensin 

converting enzyme (ACE)] (Saye et al., 1984, Kinlay et al., 2001).  

In addition to regulating vascular tone, NO plays a key role in maintaining the 

vascular wall in a quiescent state through inhibition of inflammation, cellular 

proliferation, and thrombosis [reviewed by (Deanfield et al., 2007)]. This is in 

part achieved by s-nitrosylation of cysteine residues in a wide range of target 

proteins, including the pro-inflammatory transcription factor nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFκB), cell cycle–controlling 

proteins, and proteins involved in generation of tissue factor, which reduces 

their biological activity (Stamler et al., 2001, Ghosh and Karin, 2002). However, 

when the endothelium is damaged, NO bioavailability is reduced leading to 

impaired vasorelaxation and a switch in the state of the cells from the quiescent 

state to the active state, termed endothelial cell activation (Willms-Kretschmer 
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et al., 1967). Endothelial activation leads to a change in the endothelium to a 

pro-inflammatory and pro-thrombotic phenotype (Deanfield et al., 2007). 

Increased endothelial inflammation occurs as a result of expression of adhesion 

molecules, such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and 

vascular cell adhesion molecule-1 (VCAM-1), which promote inflammatory cell 

adhesion to the endothelium and migration to VSMC (Tummala et al., 1999, 

Gauthier et al., 1995, de Graaf et al., 1992, Kaplanski et al., 1998). 

Additionally, synthesis of various cytokines including interleulin-6 (IL-6) and IL-8, 

and chemoattractants such monocyte chemoattractant protein-1 (MCP-1) further 

enhances a pro-inflammatory state (Porreca et al., 1997, Mantovani et al., 

1997).  The prothrombotic phenotype occurs due to a loss of surface anti-

coagulant molecules such as thrombomodulin and herparan sulphate, reduced 

fibrinolytic effects due to enhanced plasminogen activator inhibitor type 1 (PAI-

1) release, loss of the platelet anti-aggregatory effects of ecto-ADPases and 

prostacyclin, and production of platelet activating factor (Cines et al., 1998). 

Increased vascular inflammation and thrombosis is a key process that contributes 

to remodelling of the vasculature, particularly in the setting of atherosclerosis.  

Reduced NO bioavailability occurs as a result of increased NO degradation or 

reduced NO production, both of which are largely caused by oxidative stress, 

which is caused by a number of CVD risk factors including as hypertension, 

hypercholesterolaemia and smoking (Deanfield et al., 2007). During oxidative 

stress there is an enhanced production of ROS, particularly superoxide (O2
-), 

which rapidly reacts with NO reducing NO bioavailability and producing 

peroxynitrite (ONOO-), a potent ROS that nitrosylates cellular proteins and 

lipoproteins, thereby increasing vascular inflammation (White et al., 1994, 

Darley-Usmar et al., 1992, Gryglewski et al., 1986). Additionally, O2
- directly 

stimulates VSMC growth and reduces eNOS expression and activity in endothelial 

function, further contributing to reduced NO levels and vascular disease (Suh et 

al., 1999, Peterson et al., 1999). Nicotinamide adenine dinucleotide phosphate-

oxidase (NAD(P)H) oxidase has been shown to be the main source of O2
- 

production within the vasculature (Griendling et al., 1994, Rajagopalan et al., 

1996). Importantly, Ang II is a potent activator of NAD(P)H, demonstrating a key 

role for this peptide in the generation of oxidative stress (Griendling et al., 

2000, Rajagopalan et al., 1996, Yan et al., 2003, Lassegue et al., 2001). 
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Furthermore, vascular ROS can also be produced via eNOS (Vasquez-Vivar et al., 

2003). eNOS generates NO through oxidation of L-arginine, and this reaction 

requires the co-factor tetrahydrobiopterin (BH4) (Schmidt et al., 2001, Vasquez-

Vivar et al., 2003). However, in the absence of L-arginine or BH4, eNOS is 

uncoupled resulting in the production of O2
- and hydrogen peroxide (H2O2) 

(Vasquez-Vivar et al., 2003). Uncoupling of eNOS contributes to enhanced 

oxidative stress and endothelial dysfunction through diminished NO production 

and increased production of ROS. Additionally, it has been demonstrated that 

eNOS can be partially uncoupled, resulting in the simultaneous production of NO 

and O2
-, thereby enhancing the production ONOO- (Cai and Harrison, 2000). In 

summary, alterations in NO levels due to vascular injury and oxidative stress 

promotes changes in the vascular endothelium leading to reduced endothelial 

function, increased VSMC growth and increased vascular inflammation, all 

processes which underlie the pathology of vascular remodelling and disease. 

1.1.4 Hypertension 

Hypertension has been identified as one of the most important risk factors for 

CVD and is defined as a systolic blood pressure of 140mmHg or above, or a 

diastolic blood pressure of 90mmHg and above. In very simplistic terms, 

hypertension can either be caused as an increase in fluid volume or an increase 

in peripheral resistance. Hypertension is a risk factor for various other CVD 

inclusing atheroscelrosis, myocardial infarction and stroke and induces long term 

changes in the haemodynamic conditions within the vasculature, thereby 

contributing to vascular remodelling. Hypertension induced remodelling can 

occur in both large conduit arteries and small resistance arteries.  

1.1.4.1 Remodelling of large conduit arteries 

During hypertension, the large arteries exhibit an increased lumen size, a 

thickened media with increased collagen deposition, and decreased vascular 

compliance (Folkow, 1982, Lee et al., 1995, Schiffrin, 2001b, Schiffrin, 2001a) 

(Figure 1.1). The thickening of the arterial wall is considered to be one of the 

main compensatory mechanisms to preserve circumferential wall stress (Girerd 

et al., 1994). The outward hypertrophic vascular remodelling is thought to be  

progressive as it increased with age in the carotid arteries of patients with 
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untreated hypertension (Sasaki et al., 2002). Hypertension-induced vascular 

hypertrophy it thought to lead to increased atherosclerotic disease in vessels 

such as the carotid artery (Frohlich and Susic, 2007).  

1.1.4.2 Remodelling of small resistance arteries 

In contrast to the outward hypertrophic remodelling of the large arteries during 

hypertension, small resistance arteries exhibit a smaller lumen and external 

diameter, a normal or increased media thickness and an increased media-to-

lumen ratio (Schieffer et al., 2000) (Figure 1.1). VSMC hypertrophy or 

hyperplasia may be present depending on the species, vascular bed, or severity 

of the disease. For example, in hypertensive patients, rearrangement of VSMCs 

around a smaller lumen has been reported, however, in patients with 

renovascular hypertension, remodelling of resistance arteries resulting from 

VSMC hypertrophy was also present (Korsgaard et al., 1993, Rizzoni et al., 2000). 

Changes in ECM content are also involved in this remodelling, as collagen and 

fibronectin deposits are observed in the resistance arteries of experimental 

models and patients with hypertension (Intengan and Schiffrin, 2000). 

Remodelling of the resistance arteries during hypertension may be one of the 

first signs of organ damage found in mild hypertension in humans. It appears to 

precede the development of left ventricular hypertrophy and thickening of the 

intima–media of the large conduit arteries (Park and Schiffrin, 2001). Small 

artery remodelling is also involved in the clinical complications of hypertension, 

such as stroke and myocardial infarction (Schiffrin, 2001a).  

1.1.5 Atherosclerosis 

Atherosclerosis is a progressive disease of the vasculature that affects large 

(aorta) and medium-sized (carotid, coronary, etc) arteries of the cardiovascular 

system (Ross, 1999a). The narrowing or complete occlusion of the luminal area 

of these arteries results in reduced blood flow resulting in ischaemia due to a 

reduction in oxygen supply (Figure 1.1). It is the most common underlying cause 

for many CVDs and various risk factors associated with atherosclerosis, such as 

hyperlipidaemia, hypercholesterolaemia, hypertension, smoking and obesity, are 

common within the UK (British Heart Foundation, 2012). The pathology of 

atherosclerosis matures over many years from an initial fatty streak to the 
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formation of an advanced complex lesion. The first clinical manifestations of 

atherosclerosis usually occur when the lumen diameter is reduced by 70 % and 

most often manifest as angina-like symptoms such as chest, shoulder or neck 

pain, alongside shortness of breath (Brown and Dodge, 1982). 

Atherosclerosis is widely accepted as an inflammatory disease with the first step 

in disease progression identified as endothelial dysfunction (Ross, 1999b), which 

can be caused by several factors including hypertension, the presence of free 

radicals from tobacco smoke and modified low density lipoproteins (LDL) (Ross, 

1999a, Bassiouny et al., 1994). Compensatory mechanisms that change the 

homeostatic control of the endothelium subsequently occur to overcome the 

initial damage (Ross, 1999a). Damage to the endothelium and the presence of 

high plasma levels of circulating LDL leads to the deposition of these lipids in the 

subendothelial space of the arterial wall (Davignon and Ganz, 2004). The 

cholesterol rich LDL is then subject to oxidation, leading to the activation of 

endothelial cells and expression of inflammatory cell adhesion molecules, 

including P-selectin, VCAM-1 and ICAM-1, and the recruitment of blood borne 

monocytes (Shih et al., 1999, Glass and Witztum, 2001). This in turn facilitates 

the adherence of leukocytes to the damaged endothelium and results in the 

transmigration of these cells into the intimal layer by the actions of chemokines 

such as MCP-1. Once inside the arterial wall, migrated monocytes mature into 

activated intimal macrophages by the action of macrophage colony-stimulating 

factor, which also results in the upregulation of scavenger receptors (Yan and 

Hansson, 2007). Macrophages internalise oxidised LDL particles in an 

uncontrolled manner giving rise to lipid-rich foam cells which secrete a variety 

of pro-inflammatory cytokines such as IL 1β and tumour necrosis factor-α (TNF-

α), which worsen the inflammatory response and initiate VSMC proliferation and 

migration (Bevilacqua et al., 1984). These cytokines also transform the surface 

of the endothelium from an anti- to pro-thombotic state by reducing the 

production of tissue plasminogen activator and protein-S, and increasing 

production of matrix metalloproteinases (MMPs), endothelin 1, ICAM-1 and 

VCAM-1 (Isoda et al., 2006, Tedgui and Mallat, 2006). Accumulation of foam cells 

results in the formation of fatty streaks, the earliest form of atherosclerotic 

plaque which consist mainly of inflammatory cells (Stary et al., 1994). The 

artery can then undergo positive vascular remodelling causing the lumenal 



11 
 

diameter to be unaffected. However, these fatty streaks continue to grow with 

the accumulation of foam cells, lipids and VSMCs forming advanced 

atherosclerotic plaques. Additionally, macrophage apoptosis within advanced 

plaques increases inflammation within the plaque, contributing to the 

development of a necrotic core (Seimon and Tabas, 2008). Atherosclerotic 

lesions contain fibrous connective tissue which forms a fibrous cap, which 

initially offers protection to the vessel by stabilising the plaque. As the disease 

advances and cells accumulate further within the plaque the fibrous cap 

becomes thinner and more vulnerable (Ross, 1999a). Fibrous cap erosion exposes 

the plaque contents and necrotic core to the circulating blood causing 

thrombosis formation, potentially inducing a fatal cardiovascular event.  

1.1.5.1 The role of vascular smooth muscle cells 

While it is clear that atherosclerosis is an inflammatory disease, with 

inflammatory cells being integrally involved at all stages of disease 

development, VSMC also play an important role and become more dominant as 

atherosclerosis advances (Raines and Ross, 1993). The phenotype of intimal 

VSMC within atherosclerotic plaques differs from that of those in the medial area 

(Mosse et al., 1985). Medial VSMC usually express high levels of smooth muscle 

myosin heavy chain (SM-MHC) and α-smooth muscle actin (α-SMA), proteins that 

are involved in the contractile function of the cell (Owens et al., 2004). In 

contrast, intimal VSMC have a high proliferative index and express much lower 

levels of the contractile proteins. VSMC exhibit this plasticity as they are not 

terminally differentiated and can therefore undergo phenotypic switching from a 

quiescent contractile state to an active synthetic state (Campbell and Campbell, 

1994). This can occur in response to numerous pro-inflammatory and atherogenic 

stimuli including MMPs, cytokines and modified lipids (Thyberg and Hultgardh-

Nilsson, 1994, Hautmann et al., 1997, Pidkovka et al., 2007). In addition to 

macrophages, VSMC are responsible for stimulating foam cells generation in 

atherosclerosis due to increased expression of scavenger receptors, which 

promote lipid uptake and foam cell formation (Stary et al., 1994, Rong et al., 

2003). Synthetic VSMC also promote remodelling as they are able to migrate and 

proliferate more readily than those in a contractile state. In addition to 

proliferation and migration, apoptosis plays a critical role in vascular 

remodelling and contributes to the development of atherosclerosis (Gibbons and 
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Dzau, 1994). VSMC apoptosis in atherosclerotic lesions occurs via a number of 

pathways but most commonly through activation of the caspase cascade 

(Bennett and Boyle, 1998, Mallat and Tedgui, 2000), leading to increased 

inflammation within the plaque and thinning of the fibrous cap (Clarke et al., 

2008, Mallat et al., 2007). Therefore, VSMC, as well as inflammatory cells, are 

integral to the development and progression of atherosclerosis.  

1.1.6 Neointimal formation and vein graft failure 

One of the main interventions employed to treat atherosclerosis is coronary 

artery bypass graft surgery (CABG), where a healthy segment of blood vessel 

from another part of the body is engrafted to bypass the obstructed portion of 

the diseased vessel, thereby restoring blood flow to the heart. Despite the fact 

that arterial conduits, such as the radial artery or internal mammary artery, 

have more successful long term patency than the saphenous vein, with 10 year 

patency rates of approximately 85% compared to 61% respectively, the 

saphenous vein is most commonly used due to the need to bypass multiple 

occlusions (Goldman et al., 2004).  Approximately 25,000 CABG procedures are 

performed per year in the UK and this form of revascularisation has been 

associated with reduced morbidity and re-occurrence of incapacitating angina, 

and increased quality of life, particularly in patients with three-vessel or left 

main coronary artery disease, in comparison with medical therapy (British Heart 

Foundation, 2012, Mayou and Bryant, 1987, Herlitz et al., 2001, European 

Coronary Surgery Study Group, 1982, CASS Principal Investigators, 1983). While 

the benefits of this procedure are evident, surgical revascularization presents a 

significant limitation for a large proportion of patients as approximately 50% 

require further intervention to alleviate the symptoms of graft occlusion within 

10-15 years due to neointimal thickening and superimposed atherosclerosis (Hata 

et al., 2007, Parang and Arora, 2009) (Figure 1.1).  

Various cellular processes are initiated immediately following engraftment of 

the vein to the arterial system that underlie the pathogenesis of vein graft 

failure, both at an early and late stage. Early vein graft failure can occur within 

the first few days as a result of thrombosis, initiated by endothelial damage 

which exposes the blood to a thrombogenic surface (Bryan and Angelini, 1994). 

The process of late failure begins immediately following implantation when the 
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vein is exposed to a period of ischaemia followed by reperfusion, resulting in the 

generation of ROS, which in turn trigger an inflammatory response within the 

graft (Shi et al., 2001, West et al., 2001). Due to the damaged endothelium and 

cytotoxic environment within the graft VSMC migrate from the media to the 

intima and proliferate, and deposit ECM components, contributing to the 

formation of a neointimal area (Lerner et al., 1986, Newby, 1997). This 

neointimal area is highly susceptible to an accelerated form of atherosclerosis 

due to the infiltration of inflammatory cells, which creates a cytotoxic 

environment within the plaque encouraging the uptake of lipids (Schwartz et al., 

1995).  The atherosclerotic plaques that form within the graft are more diffuse 

and unstable due to poorly developed or absent fibrous caps, and are therefore 

more prone to rupture (Shelton et al., 1988, Virmani et al., 1988). 

1.1.7 Restenosis 

A non-surgical alternative treatment for atherosclerosis is percutaneous coronary 

intervention (PCI) where a balloon catheter is advanced from an accessible 

vessel such as the femoral or radial artery to the occluded area, then the 

balloon inflated at a controlled rate to expand the vessel, followed by the 

deployment of a stent, a metal mesh tube that acts as a scaffold to help 

maintain the resultant increase in lumen diameter. PCI is the most common form 

of revascularisation in the UK, with approximately 80,000 procedures performed 

per year, and while in comparison with pharmacological therapies, PCI has been 

shown to reduce reoccurrence of angina and improve quality of life, evidence to 

suggest this form of revascularisation improves morbidity is conflicting and 

varies depending on the stability of the patients CAD (King, 2005, Schomig et al., 

2008, RITA-2 trial participants, 1997). Furthermore, the long-term success of PCI 

is limited by restenosis, which is thought to be an exaggerated form of wound 

healing after injury. Restenosis is characterized by a recurrence of luminal 

narrowing resulting from neointimal hyperplasia and remodelling of the injured 

vessel (Inoue and Node, 2009) (Figure 1.1). The formation of neointima is largely 

due to excessive VSMC migration and proliferation in addition to remodelling of 

the ECM and an increased inflammatory response at the site of injury (Libby and 

Clinton, 1992, Inoue and Node, 2009).  
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In an attempt to circumvent the issue of restenosis following bare metal stent 

employment drug eluting stents were developed, which were coated with 

polymers to elute cell cycle inhibitory drugs, such as paclitaxel or sirolimus 

(Htay and Liu, 2005). Drug eluting stents have been shown to inhibit restenosis in 

comparison to bare metal stents, confirming that inhibition of VSMC proliferation 

is beneficial in this setting, however they do not come without complications of 

their own (Schampaert et al., 2006, Stone et al., 2009, Caixeta et al., 2009). 

Several studies have reported that drug eluting stents are associated with an 

increased risk of late stent thrombosis as the drugs they are coated with also 

inhibit endothelial cell proliferation, thereby inhibiting regeneration of the 

endothelial layer, increasing the incidence of late in-stent thrombosis (Luscher 

et al., 2007, Karha et al., 2006, Joner et al., 2007). Therefore therapies that 

specifically target VSMC growth and migration, without preventing re-

endothelialisation are optimal in vein graft failure and in-stent restenosis (Inoue 

and Node, 2009).  

1.2 The renin-angiotensin system 

The renin angiotensin system (RAS) is a key component of cardiovascular 

physiology, playing an important role in the regulation of vascular tone, blood 

pressure and volume, and electrolyte balance. However, dysregulation of the 

system largely contributes to the pathogenesis of cardiovascular remodelling and 

the development of various CVDs. The extent to which chronic dysregulation of 

the RAS contributes to cardiovascular disease is demonstrated by the fact that 

inhibitors of this system, including ACE inhibitors and angiotensin II type 1 

receptor (AT1R) antagonists are among the most effective treatments for CVD. 

Clinical trials blocking the RAS have widely demonstrated a reduction in target 

organ damage in the heart and vasculature, associated with reduced morbidity 

and mortality (The SOLVD Investigators, 1991, The SOLVD Investigators, 1992, 

Yusuf et al., 2000, Mancini et al., 1996, Fox, 2003). 

The link between renal disease and CVD was first reported by Bright et al in the 

early 1800’s where it was shown that cardiac hypertrophy was associated with 

increased resistance to blood flow within small renal vessels (Bright, 1836). This 

relationship between systemic hypertension and pathological alterations in the 

kidney was explored for a number of years, leading to the discovery of renin by 
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Tigerstedt and Bergman in 1898 (Tigerstedt and Bergman, 1898). Renin was 

identified as a pressor compound in renal tissue of the rabbit and through a 

series of studies it was demonstrated that the association between renal disease 

and cardiac hypertrophy was due to the release of a vasoactive compound that 

acted directly on blood vessels to induce vasoconstriction (Tigerstedt and 

Bergman, 1898). To further investigate this relationship a number of attempts 

were made to develop an experimental model of arterial hypertension by 

manipulation of renal function, however it wasn’t until 1934 when Goldblatt et 

al linked renal ischaemia with hypertension (Goldblatt et al., 1934), and using 

this experimental protocol the presence of a pressor agent in the venous blood 

of the ischaemic kidney was detected in 1938 (Fasciolo et al., 1938). This 

pressor protein, originally named hypertensin and now known as angiotensin, 

was then isolated from the blood in 1939 (Braun-Menendez et al., 1939) and 

described as a potent short duration pressor protein. In order to investigate the 

relationship between renin and hypertension, semi-purified kidney extract was 

incubated with plasma and a vasoconstrictor agent similar to hypertensin, but 

different from renin and other known pressor agents such as epinephrine and 

vasopressin, was identified (Braun-Menendez et al., 1939). Based on these 

results renin was, for the first time, described as a protease acting on a plasma 

protein to release hypertensin as the final product. Subsequently, it was 

demonstrated that renin was secreted by the kidney, and hypertensin was 

formed in the plasma from a protein substrate that was initially named 

hypertensinogen, and later angiotensinogen (Leloir et al., 1940). The hepatic 

origin of the renin substrate was first suggested by Page et al however 

conclusive experiments were performed by Leloir et al (Page et al., 1941, Leloir 

et al., 1942). Further investigation into the actions of angiotensin revealed that 

there were in fact two forms of angiotensin, one being the product of the action 

of renin on angiotensinogen, designated angiotensin I (Ang I) (Skeggs et al., 

1954b, Skeggs et al., 1954a). Ang I was shown to be a decapeptide which can 

then be converted by a plasma enzyme to the octopeptide, named Ang II, by 

cleavage of the histidyl-leucine from the C terminus (Skeggs et al., 1954a, Lentz 

et al., 1956). Initially both peptides were thought to elicit pressor responses 

however it was later shown that only Ang II was able to achieve this (Bumpus et 

al., 1957). Since these findings over 50 years ago the depth of our knowledge of 

the RAS has greatly expanded and continues to do so. 
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1.3 The classical RAS 

Traditionally, the RAS was viewed as a linear enzymatic cascade initiated by the 

release of renin from the juxtaglomerular cells of the kidney in response to 

sympathetic nerve activation of β1 adrenoreceptors, renal artery hypotension or 

decreased sodium delivery to the distal tubules of the kidney. Once secreted, 

circulating renin promotes the hydrolysis of the prohormone angiotensinogen, a 

453 amino acid glycoprotein produced by the liver, of which the first 12 amino 

acids are the most important for its function. Cleavage of angiotensinogen by 

renin results in the production of the decapeptide Ang I. Ang I is then converted 

to the octapeptide Ang II by cleavage of the N-terminal amino acid residue via 

ACE (Skeggs et al., 1956). ACE is a membrane bound peptidyl dipeptidase and 

was first discovered by Skeggs et al in 1956 (Skeggs et al., 1956). The ACE gene 

is located on chromosome 17 and encodes for two different isoforms, the 

somatic and the germinal form (Soubrier et al., 1988, Rigat et al., 1992). 

Somatic ACE is expressed in the endothelium of various tissues including the 

lung, heart, vasculature and kidney, while the germinal form is expressed mainly 

in the testes. The overall action of ACE results in an increase in blood pressure 

as ACE not only promotes the production of Ang II, it also inactivates bradykinin, 

a potent  vasodilator (Turner and Hooper, 2002, Erdos and Skidgel, 1987) (Figure 

1.2). 

1.3.1 Angiotensin II 

Ang II is the main active peptide of the RAS and has an important role in blood 

pressure homeostasis via its effects on the kidney to conserve sodium, 

stimulation of aldosterone release, actions on smooth muscle to mediate 

vasoconstriction, and sympathetic activation in the central nervous system 

(CNS), all actions which maintain blood pressure. Ang II also has important roles 

in individual tissues which promote cell signalling leading to growth and cell 

differentiation. Once generated, Ang II has a half life of 30 seconds in the 

circulation and 15 to 30 minutes in tissues (van Kats et al., 1997). Ang II levels 

have been described as 2.4 ± 1.2 µg/100mL in arterial blood under normal 

physiological conditions (Catt et al., 1969). The effects of Ang II are mediated by 

two transmembrane G protein-coupled receptors (GPCRs), the AT1R and 

angiotensin type 2 receptors (AT2R), that tend to have opposing actions (Figure 
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1.2).  The AT1R is mainly responsible for the classical actions of Ang II as 

described above, whereas Ang II stimulation of the AT2R is reported to promote 

vasodilation and reduce cellular growth, as discussed in sections 1.3.2 and 1.3.3.   
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Figure 1.2 The renin angiotensin system 
The traditional view of the RAS is as a linear enzymatic cascade beginning with the release of 
renin, the enzyme responsible for the conversion of angiotensinogen to Ang I. Ang I is then 
converted to Ang II, the main active peptide of the RAS, via the action of ACE. Ang II signals via 
two GPCRs, the AT1R and AT2R.  ACE: Angiotensin converting enzyme; AT1R: Angiotensin type 1 
receptor; AT2R: Angiotensin type 2 receptor 
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1.3.2 The angiotensin type 1 receptor 

Ang II classically mediates the majority of its effects via the AT1R, a 40 kDa 

receptor which is composed of 359 amino acids and belongs to the GPCR 

superfamily. The AT1R is ubiquitously expressed throughout the body and found 

in a number of tissues of the cardiovascular system including the heart and both 

vascular endothelial and smooth muscle cells. Upon stimulation with Ang II the 

AT1R interacts with multiple heterotrimeric G-proteins, including Gq/11, Gi, G12 

and G13 (Griendling et al., 1997), resulting in the production of various second 

messengers and initiation of downstream signalling cascades. Once activated the 

AT1R is rapidly desensitised, internalised by endocytosis, and then recycled to 

the cell surface (Griendling et al., 1987). Desensitisation of the AT1R involves 

phosphorylation of the AT1R by G-protein related kinases (GRK), which mediate 

receptor desensitisation by uncoupling of the receptor from its activated G 

protein (Mehta and Griendling, 2007). Following this the receptor is internalised 

into clathrin-coated pits via the action of β-arrestins, a group of multifunctional 

proteins that not only initiate receptor internalization, but also promote 

activation of various downstream signalling pathways  such as mitogen-activated 

protein kinases (MAPK) and c-Jun terminal kinases (JNK) (Gaborik et al., 2001, 

Kim et al., 1997, Lefkowitz, 1998). It has also been suggested that the AT1R can 

be internalised via caveolae, specialised noncoated vesicles associated with 

caveolin (Ishizaka et al., 1998). Recycling of the AT1R has been suggested to be 

mediated via Ras-related GTPases that regulate intracellular vesicular transport 

(Somsel Rodman and Wandinger-Ness, 2000, Li et al., 2008). Alternatively, it has 

been shown that AT1R recycling may also be mediated via the type 1 Ang II 

receptor-associated protein (ARAP1) (Guo et al., 2001). 

As well as mediating recycling of receptors, AT1R associated proteins have also 

been shown to influence receptor signalling, via interaction with the C-terminal 

cytoplasmic domain of the AT1R. In addition to ARAP1, two other AT1R associated 

proteins have been identified, namely AT1R -associated protein (ATRAP) and 

GEF-like protein (GLP) (Guo et al., 2003, Guo et al., 2004). ARAP1 has 

functionally been implicated in the control of blood pressure as well as receptor 

recycling, as mice that overexpress ARAP1 in the proximal tubules have 

hypertension, suggesting that renal ARAP1 increases blood pressure through 

enhanced AT1R signalling (Guo et al., 2006). Conversely, ATRAP has been 
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suggested to function as a negative regulator of AT1R signalling (Lopez-Ilasaca et 

al., 2003, Tsurumi et al., 2006). Overexpression of ATRAP in VSMC increased 

AT1R internalization upon Ang II stimulation, resulting in reduced proliferation 

associated with reduced signal transducer and activator of transcription (STAT) 3 

and Akt activation (Cui et al., 2000). Furthermore following vascular injury, 

neointimal formation was attenuated in ATRAP overexpressing mice compared to 

wild-type controls and this was associated with reduced extracellular-signal-

related-kinase1/2 (ERK1/2), STAT1 and STAT3 activity (Oshita et al., 2006).  

In addition to ligand mediated GPCR signalling, there is mounting evidence to 

suggest that receptors can interact directly to form heteromeric complexes and 

that these interactions could be important for receptor function and signalling. 

In this respect the AT1R is the most widely studied of the RAS receptors and was 

one of the first GPCRs shown to form heteromers with other receptors (Monnot 

et al., 1996). A number of studies since have shown that the formation of such 

heterodimers alters AT1R signalling. For example, the AT1R forms heterodimers 

with receptors from the kinin-kallikrein-(AbdAlla et al., 2001b, AbdAlla et al., 

2001a, AbdAlla et al., 2005), adrenergic- (Barki-Harrington, 2004), 

dopaminergic- (Zeng et al., 2003) system and the cannabanoid family (Rozenfeld 

et al., 2011) resulting in enhanced Ang II potency at the AT1R, contributing to 

the progression and pathology of cardiovascular disease. Conversely, other AT1R 

dimers have been shown to reduce signalling via the AT1R and the effects of Ang 

II. For example, the AT2R has been reported to act as a functional antagonist of 

the AT1R via formation of constitutive heterodimers between the two receptors 

(AbdAlla et al., 2001a). This was shown in cells transiently transfected with 

receptors, foetal fibroblasts and human myometrial biopsies (AbdAlla et al., 

2001a). Importantly, this functional antagonism was independent of ligand 

binding at the AT2R, as confirmed by the use mutant forms of the AT2R, which 

were unable to bind ligand or activate intracellular protein phosphatases, and 

which produced similar levels of antagonism of the AT1R as wild type AT2R 

(AbdAlla et al., 2001a). This interaction has also been shown to have functional 

consequences in vivo as in human female myometria it has been reported that 

AT2R expression is reduced during pregnancy and this is associated with 

increased AT1R signalling (AbdAlla et al., 2001b). Another receptor of the RAS, 

Mas, also acts as a functional antagonist at the AT1R via direct interaction 
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(Kostenis et al., 2005, Canals et al., 2006). Co-expression of the Mas receptor 

with the AT1R in Chinese hamster ovary (CHO)-KI cells antagonized Ang II 

mediated calcium signalling via the AT1R (Kostenis et al., 2005). This was shown 

to be independent of Mas activation by its endogenous ligand Ang-(1-7). To 

further investigate this interaction, a series of bioluminescence resonance 

energy transfer (BRET) experiments were performed, with the conclusion that 

Mas can hetero-oligomerize with the AT1R to act as a physiological antagonist 

(Kostenis et al., 2005). Finally, it was shown that Mas knockout mice have 

increased vasoconstriction in response to Ang II, indicating that his functional 

antagonism can be observed in vivo (Kostenis et al., 2005). This functional 

interaction between the AT1R and Mas was further confirmed by Canals et al who 

demonstrated that co-expression of Mas with the AT1R reduced AT1R signalling 

while simultaneously increasing AT1R expression (Canals et al., 2006). However, 

the results of this study indicated that the effects of Mas at the AT1R were not 

necessarily a result of dimerization but potentially a result of constitutive 

activity of Mas, leading to PKC dependent AT1R phosphorylation and concurrent 

receptor-desensitisation (Canals et al., 2006).  

Furthermore, Ang II effects mediated via the AT1R have also been shown to 

involve transactivation of other receptors such as the epidermal growth factor 

receptor (EGFR) or platelet-derived growth factor receptor (PDGFR), resulting in 

the activation of various cell growth pathways (Heeneman et al., 2000, Du et 

al., 1996, Eguchi et al., 1996, Eguchi et al., 1998). 

1.3.3 The angiotensin type 2 receptor 

The AT2R is also a member of the 7 transmembrane receptor family (Mukoyama 

et al., 1993). The AT2R is a 41 kDa protein consisting of 363 amino acids and 

shares 34% sequence homology with the AT1R (Mukoyama et al., 1993). Various 

rodent studies have demonstrated that the AT2R is highly expressed in foetal 

tissue, including foetal aorta, intestine, brain and adrenal medulla; however its 

expression declines rapidly after birth, suggesting that it may play an important 

role in foetal development and cellular growth and differentiation (Shanmugam 

et al., 1996, Akishita et al., 1999). In adults the AT2R is less expressed than the 

AT1R, yet had been shown to be expressed in the heart, kidney, brain, adrenal 

gland and both vascular endothelial and VSMC (Viswanathan et al., 1992, Leung 
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et al., 1997, Wang et al., 1999, Roulston et al., 2003). Furthermore, AT2R 

expression is increased in a number of cardiovascular pathologies such as 

hypertension, atherosclerosis and neointimal formation (Savoia et al., 2006, 

Touyz et al., 1999c, Widdop et al., 2008, Johansson et al., 2005, Zulli et al., 

2006, Nakajima et al., 1995, Suzuki et al., 2002, Wu et al., 2001). 

The AT2R is generally thought to counteract the effects of Ang II at the AT1R, for 

which signalling pathways have been well delineated, however, signalling via the 

AT2R remains poorly understood.  Various AT2R signalling pathways have been 

suggested, including regulation of the NO cyclic guanosine monophosphate 

(cGMP) system, stimulation of phospholipase A2 (PLA2) and release of 

arachidonic acid, and activation of protein phosphatases and protein 

dephosphorylation (Siragy and Carey, 1996, Hannan et al., 2003, Stoll et al., 

1995, Tsuzuki et al., 1996, Lokuta et al., 1994) however further work is required 

to fully investigate signalling pathways initiated by activation of the AT2R. 

While the AT2R is a member of the GPCR superfamily and displays the hallmark 

motifs and residues of a GPCR it is well recognised that AT2R signal transduction 

does not always occur via classical G-protein-dependent pathways. Furthermore, 

the AT2R fails to demonstrate most of the classic features of GPCR signalling 

such as typical second messenger responses and rapid desensitization or 

downregulation of the receptor following ligand binding (Porrello et al., 2009). 

These non-classical GPCR characteristics of the AT2R have contributed to our 

lack of understanding of its signalling mechanisms however, recent studies of 

ligand independent GPCR modulation and function, particularly within areas 

such as constitutive activity, receptor dimerisation, and interaction with 

receptor-associated proteins have highlighted novel insights into GPCR signalling 

and provide avenues of research that may assist in delineating signalling via the 

AT2R (Miura and Karnik, 2000, Miura et al., 2005, Jin et al., 2002, Nouet et al., 

2004, Bockaert et al., 2003).  

It has been demonstrated that the AT2R can induce cell signalling effects 

independent of ligand binding, indicating that it may possess constitutive 

activity. For example, overexpression of AT2R in cultured fibroblasts, CHO cells 

or VSMC, triggers apoptosis via p38 MAPK and caspase-3 signalling pathways, 

independent of receptor activation (Miura and Karnik, 2000). Additionally, 
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overexpression of AT2R in VSMC has also been shown to downregulate AT1R 

expression and signalling, again in a ligand-independent manner (Jin et al., 

2002). While in these studies the AT2R was overexpressed to levels which would 

far exceed those observed under both physiological and pathophysiological 

conditions, this work has demonstrated that the AT2R may function through some 

degree of constitutive activity, providing further information about the signalling 

of this receptor. 

The AT2R has also been shown to form both homo- and hetero-dimers 

independent of ligand binding.  Homodimerisation of AT2R via disulphide bonding 

was shown to occur in CHO cells overexpressing this receptor, resulting in 

apoptosis via increased caspase-3 activity (Miura et al., 2005). While this effect 

was independent of ligand binding, it was prevented by inhibition of disulphide 

bonding, suggesting that this was not an effect mediated by expression of the 

receptor, but by the formation of homo-dimers (Miura et al., 2005). In addition 

to hetero-dimerisation with the AT1R, the AT2R has also been reported to form 

hetero-dimers with the bradykinin B2 receptor (BK2R) (Abadir et al., 2006). The 

formation of AT2R-BK2R hetero-dimers was independent of ligand binding and 

resulted in an increase in NO production, demonstrating that this interaction 

results in functional signalling processes (Abadir et al., 2006). 

Accessory proteins that bind to the carboxyl terminal of the AT2R and modulate 

receptor trafficking to the cell membrane and signalling have been identified 

(Bockaert et al., 2003). AT2R-interacting protein 1 (ATIP1), also known as 

mitochondrial tumour suppressor-I (MTUSI), has been shown to mediate 

transactivation of tyrosine kinases via binding to the C-terminal tail of the AT2R 

(Mogi et al., 2007). Overexpression of AT2R has also been shown to inhibit ERK2 

through interaction with ATIP1, an effect which was found to occur in the 

absence of stimuli but was potentiated by ligand mediated activation (Nouet et 

al., 2004). A similar protein, AT2R-binding protein of 50 kDa (ATBP50) was also 

found to associate with the AT2R resulting in increased surface expression of the 

AT2R and reduced ERK1/2 activation, suggesting an anti-mitotic role for this 

interaction (Wruck et al., 2005). However, the AT2R has also been shown to 

promote cellular growth through interaction with accessory proteins. Upon 

stimulation with Ang II, the AT2R has been shown to interact with the 

transcription factor promyelocytic zinc finger protein (PLZF), leading to 
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increased expression of phosphatidylinoistol-3 kinase p85α and activation of 

p70S6 kinase activation, which has an important role in protein synthesis 

(Senbonmatsu et al., 2003). Taken together these findings indicate that the AT2R 

may have different effects on cell growth depending on what accessory protein 

it interacts with and provides further insight into the cellular effects of the 

AT2R. 

1.4 Angiotensin cell signalling  

In the vasculature, Ang II activates various signalling pathways via the AT1R 

resulting in both acute responses such as vasoconstriction and increased blood 

pressure, and longer term responses such as cell proliferation and structural 

remodelling.  

1.4.1 G-protein coupled pathways 

Upon activation by Ang II, the AT1R couples predominantly to the Gαq/11 

complex, activating the second messenger phospholipase C (PLC) (Heineke and 

Molkentin, 2006, Inagami, 1995, Ohtsu et al., 2008). However, the AT1R has also 

been shown to couple to both Gα12/13 and Gβγ complexes, activating PLA2 and 

phospholipase D (PLD), respectively (Macrez-Lepretre et al., 1997). Activation of 

PLC leads to the production of inositol-1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG), both of which have direct effects on calcium handling, 

resulting in VSMC contraction and vasoconstriction (Heineke and Molkentin, 

2006, Griendling et al., 1997). Additionally, DAG also activates protein kinase C 

(PKC), which as well as participating in the contractile response, also activates 

the Ras/Raf/MAPK pathway, which is integrally involved in VSMC proliferation 

and migration (Liao et al., 1996).  

1.4.2 Mitogen-activated protein kinases 

Ang II interaction with the AT1R also initiates activation of various MAPK, such as 

ERK1/2, JNK and p38 MAPK, which play important roles in VSMC proliferation, 

migration and differentiation (Sugden and Clerk, 1997, Mehta and Griendling, 

2007).  
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The ERK1/2 pathway in VSMC is well characterised. Activation of the AT1R 

results in Src and proline-rich tyrosine kinase 2 (Pyk2) phorphorylation of the 

EGFR, leading to the formation of the Shc/growth factor receptor-bound protein 

2 (Grb2) complex, which in turn promotes activation of Raf through association 

with the small G protein Ras or PKC. Raf activation leads to phosphorylation of 

the mitogen-activated protein kinase-kinase (MEK), which in turn phosphorylates 

ERK1/2 on threonine/tyrosine residues (Sugden and Clerk, 1997, Liao et al., 

1996, Liao et al., 1997). ERK1/2 activation promotes VSMC contraction, 

proliferation, differentiation, migration, and inhibits apoptosis (Touyz et al., 

1999d, Touyz, 2004, Allen et al., 2005). 

In addition to activation of ERK1/2, Ang II also promotes phosphorylation of 

stress-related kinases such as JNK and p38MAPK which effect cell survival and 

induce vascular inflammation (Force et al., 1996). During oxidative stress, ROS 

are produced, which through various signalling cascades, activate MEK4/7 and 

MEK3/6, leading to phosphorylation of JNK and p38MAPK, respectively (Tobiume 

et al., 2001, Seko et al., 2003, Touyz et al., 2004, Ohtsu et al., 2005).  

1.4.3 Tyrosine kinases 

Ang II signalling is also mediated via cross-talk between the AT1R and various 

non-receptor tyrosine kinases and receptor tyrosine kinases. Non-receptor 

tyrosine kinase signalling includes activation of the cSrc pathway, the Janus 

kinase/signal transducer and activator of transcription (JAK/STAT) pathway, and 

the focal adhesion kinase (FAK) pathway. c-Src is a tyrosine kinase that has been 

shown to be activated by Gβγ via ROS signalling, and is involved in a variety of 

downstream pathways, including Ras, PLC, JAK/STAT, and FAK, leading to cell 

growth, adhesion, migration and ECM formation (Berk and Corson, 1997, Sabri et 

al., 1998, Ishida et al., 1999, Taniyama et al., 2004).  

In addition to activation downstream of the cSrc pathway, Ang II activates 

JAK/STAT signalling through the association of JAK2 with the AT1R via Src 

homology domain containing tyrosine phosphatase 2 (SHP-2) (Marrero et al., 

1995, Marrero et al., 1998). JAK then activates STAT, leading to dimerisation of 

STAT proteins and translocation to the nucleus, resulting in transcription of early 
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growth response genes such as c-fos and c-myc (Ishida et al., 1999, Berk and 

Corson, 1997). 

Ang II promotes reorganisation of cytoskeletal structure, leading to cell adhesion 

and ECM remodelling, through interaction with the FAK pathway (Okuda et al., 

1995). AT1R mediated increase in intracellular calcium induces phosphorylation 

of FAK, thereby enabling activation of cytoskeletal proteins including Pyk2, 

p130Cas, paxillin and talin, all of which interact to regulate cell shape and 

movement (Eguchi et al., 1999, Leduc and Meloche, 1995, Sabe et al., 1997). 

Ang II also promotes VSMC proliferation and migration via AT1R mediated 

transactivation of tyrosine kinase receptors, such as the EGFR and PDGFR, which 

exhibit the intrinsic kinase activity that the AT1R lacks. Transactivation of EGFR 

is a major mechanism by which Ang II influences growth-related signalling 

pathways and occurs via calcium-dependent and -independent pathways (Eguchi 

et al., 1998). These pathways lead to activation of a disintegrin and 

metalloproteinase (ADAM), mainly ADAM 17, causing release of heparin-binding 

EGF (HB-EGF) (Andreev et al., 2001, Blobel, 2005, Mifune et al., 2005, Ohtsu et 

al., 2006). HB-EGF induces conformational changes the EGFR, allowing 

dimerization and autophosphorylation (Prenzel et al., 1999). Once activated, 

EGFRs interact with Shc/Grb2 complexes, inducing activation of the 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt pathway, leading  to 

cellular growth, survival, and remodelling, and the Ras/Raf/ERK pathway which 

leads to cell growth and inflammation. 

Ang II has been shown to transduce growth-related signalling, independent of 

platelet-derived growth factor (PDGF), via the PDGF receptor. While the exact 

mechanism of PDGFR transactivation has yet to be identified a number of 

signalling events have been suggested. For example, it has been shown that Ang 

II stimulates PDGF-β-receptor phosphorylation via formation of the Shc/Grb2 

complex, an effect which is independent of calcium and blocked by losartan 

(Heeneman et al., 2000, Linseman et al., 1995). It has also been demonstrated 

that AT1R-mediated PDGFR transactivation requires activation of a ROS-sensitive 

tyrosine kinase, distinct from Src or JAK (Heeneman et al., 2000). 

Transactivation of the PDGFR has been linked to increased ERK activity 

downstream (Linseman et al., 1995, Kim et al., 2000). 
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1.4.4 Reactive oxygen species 

ROS, generated by oxidative stress, have been implicated in the regulation of 

various signalling cascades resulting in increased inflammation, VSMC 

proliferation and migration and impaired endothelial function. Ang II is widely 

accepted as a potent mediator of oxidative stress and has been shown to 

produce ROS such as O2
- and H2O2 via activation of NAD(P)H oxidases (Griendling 

and Ushio-Fukai, 2000, Rajagopalan et al., 1996, Touyz et al., 2004, Zafari et 

al., 1998, Taniyama and Griendling, 2003, Yan et al., 2003, Lassegue et al., 

2001).  Ang II mediated activation of of NAD(P)H oxidases involves induction of 

various signalling pathways, including those discussed above such as G-protein 

dependent signalling, cSrc signalling, and EGFR transactivation. In VSMC NAD(P)H 

oxidase subunit (NOX) 1 and NOX4 are the main NAD(P)H subunits involved in 

ROS production (Lambeth et al., 2000). 

1.5 The counter-regulatory axis of the RAS 

Until recently, the RAS was considered a linear process with Ang II as the major 

active peptide.  However, the conventional view of the RAS has undergone 

significant change based on two fundamental discoveries.  The first was the 

expression of the RAS in specific tissues, highlighting the existence of a local RAS 

in which Ang II could be generated within individual tissues, without recruitment 

from the systemic circulation. Genes coding for various components of the RAS, 

including ACE, Ang I, Ang II and the angiotensin receptors, are expressed in 

various tissues such as the heart, blood vessels, kidney, and brain, suggesting 

the presence of a functionally active RAS at the tissue level (Bader et al., 2001, 

Paul et al., 2006).  However, the role of the tissue-specific RAS in humans is still 

unclear. For example, elements of the RAS are present in the vasculature, in 

veins and arteries, suggesting that Ang II can be synthesised within and act 

locally on vessels to regulate blood pressure and cell growth (Oliver and Sciacca, 

1984, Paul et al., 1993). In fact, the concept of the a vascular-specific RAS was 

first suggested in 1986 when it was shown in the rat two clip, one kidney model 

of hypertension, that there was an increase in vascular ACE activity during the 

chronic phase of hypertension and increased vasoconstriction of isolated vessels 

to Ang II (Okamura et al., 1986). Importantly, plasma renin levels were 

unchanged in these rats, indicated that elevated vascular ACE activity increases 



28 
 

local production of Ang II, which results in vasoconstriction by acting directly on 

the vessels (Okamura et al., 1986). It has since been shown that Ang II generated 

in the vasculature can stimulate synthesis of prostaglandins, endothelin-1 and 

aldosterone in the endothelium and vessel wall, which in turn influences 

vascular function (Paul et al., 1995, Paul et al., 2006). In addition to influencing 

vascular tone, increased activity of RAS specifically in the vasculature has also 

been implicated in the progression and development of atherosclerosis (Ribichini 

et al., 2006, Diet et al., 1996, Schieffer et al., 2000, Fukuhara et al., 2000). 

Furthermore, elements of the RAS have been identified in the eye, which may be 

important in physiological maintenance of ocular pressure but also in vascular 

pathologies associated with ocular vessel damage, as observed in hypertension 

and diabetes (Fletcher et al., 2010, Wilkinson-Berka et al., 2011). 

The second discovery was the identification of novel components of the RAS, 

most importantly the enzyme angiotensin converting enzyme 2 (ACE2), a 

homologue of ACE which differs in its substrate specificity (Donoghue et al., 

2000, Harmer et al., 2002, Vickers et al., 2002). The discovery of ACE2 led to 

the recognition of functionally active Ang-derived peptides, particularly 

angiotensin 1-7 [Ang-(1-7)], which was previously described in the 1990s, and 

more recently peptides such as angiotensin-(1-9) [Ang-(1-9)] (Santos et al., 1992, 

Donoghue et al., 2000). Further investigation into the actions of ACE2 and the 

alternative angiotensin peptides, primarily Ang-(1-7), has revealed that they 

generally antagonise the actions of Ang II, forming the basis for alternative 

pathways within the RAS known as the counter-regulatory axis (Santos et al., 

1992, Santos et al., 2004, Donoghue et al., 2000, Nagata et al., 2006). Since the 

discovery of the tissue-specific, counter-regulatory RAS many studies have been 

performed in an attempt to elucidate the mechanisms of action of their 

components and characterise their roles within both physiological and 

pathophysiological settings. Together this has greatly expanded our knowledge 

of the RAS leading to the current understanding of this system as a cascade with 

multiple mediators, multiple receptors and multifunctional enzymes (Figure 

1.3).  
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1.5.1 Angiotensin converting enzyme 2 

ACE2 is a zinc metalloproteinase that shares about 42% homology with ACE at its 

active site, and is highly expressed in a number of tissues including the heart, 

vasculature and kidney (Donoghue et al., 2000, Harmer et al., 2002). Due to 

structural differences ACE acts mainly as a peptidyl dipeptidase, while ACE2 acts 

as a carboxypeptidase (Vickers et al., 2002). ACE2 functions in the RAS by 

cleaving the C terminal residues from Ang I and Ang II, producing Ang-(1-9) and 

Ang-(1-7), respectively (Donoghue et al., 2000) (Figure 1.3). The actions of ACE2 

leads to reduced production of Ang II thereby lessening its deleterious effects, 

and also increased production of Ang-(1-7) and Ang-(1-9), both of which have 

been shown to protect against the actions of Ang II (Donoghue et al., 2000). 

Additionally, while ACE can also break down the potent vasodilator bradykinin, 

ACE2 has no effect on bradykinin (Donoghue et al., 2000). The expression and 

activity of ACE2 in the heart and blood vessels has also been shown to be 

protective in various models of CVD (Crackower et al., 2002, Lovren et al., 2008, 

Sluimer et al., 2008, Dong et al., 2009, Kassiri et al., 2009, Patel et al., 2012). 

These protective effects were associated with both reduced levels of Ang II and 

increased levels of Ang-(1-7), suggesting a key role for ACE2 in balancing the 

activity of both axes of the RAS in CVD. However, it has also been shown that 

ACE2 expression in the heart worsens the disease phenotype; therefore further 

work is required to fully investigate the role of ACE2 expression, particularly in 

the heart (Masson et al., 2009, Donoghue et al., 2003). 

1.5.2 Angiotensin-(1-7) 

Ang-(1-7) is a seven amino acid peptide first described to be generated in the 

endothelium (Santos et al., 1992) and is one of the most well studied peptides of 

the counter-regulatory axis of the RAS. The majority of Ang-(1-7) is produced via 

the actions of ACE2 and it is the main product since ACE2 has approximately 400-

fold greater affinity for Ang II than Ang I (Tipnis et al., 2000). Ang-(1-7) can also 

be produced less efficiently via hydrolysis of Ang-(1-9) by ACE or via the actions 

of alternative enzymes including prolyl endopeptidase (POP), neutral 

endopeptidase (NEP) or thimet oligopeptidase (TOP) (Donoghue et al., 2000, 

Chappell, 1994, Rice et al., 2004) (Figure 1.3). The half life of Ang-(1-7) in the 

circulation is approximately 10 seconds (Chappell et al., 1998) and circulating 
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levels of Ang-(1-7) are reported to be 20 pg/mL (Vilas-Boas et al., 2009). Ang-(1-

7) is then converted to the inactive metabolite Ang-(1-5) by ACE (Chappell et 

al., 1998). Since its discovery, there has been a vast amount of research into its 

actions as it has been shown to antagonise many of the effects of Ang II. This 

was first demonstrated by Roks et al when it was shown that in human blood 

vessels Ang-(1-7) inhibited Ang II induced vasoconstriction (Roks et al., 1999). 

Since then Ang-(1-7) has been shown to oppose the actions of Ang II in a number 

of tissues, mainly by inhibiting cell growth, migration, and inflammation that 

occur as a result of Ang II, ultimately preventing adverse remodelling and 

subsequent dysfunction of the cardiovascular system.  

Originally the mechanism by which Ang-(1-7) exerted its effects was unknown. It 

was first suggested that Ang-(1-7) mediated its effects via the classical 

angiotensin receptors, but research by Rowe et al suggested that due to low 

affinity for both angiotensin receptors, the effects of Ang-(1-7) were unlikely to 

be mediated by signalling via either of these receptors (Rowe et al., 1995). 

Receptor binding studies later showed that Ang-(1-7) could bind to the orphan 

GPCR Mas and further research in Mas-deficient mice identified Ang-(1-7) as the 

endogenous ligand for this receptor (Santos et al., 2003). The gene encoding Mas 

has been mapped to chromosome 6q and encodes for a 325 amino acid protein 

(Alenina et al., 2008). Mas is expressed in a number of tissues involved in 

cardiovascular physiology including the heart, blood vessels, brain and kidney 

(Metzger et al., 1995) and is largely accepted to be the receptor through which 

Ang-(1-7) exerts its effects [reviewed by (Gironacci et al., 2013, McKinney et 

al., 2014, Passos-Silva et al., 2013)]. However, despite the wealth of evidence 

that indicates Ang-(1-7) is a Mas ligand, there is also more recent evidence that 

despite its low affinity for the AT2R Ang-(1-7) may also elicit certain biological 

effects via the AT2R. For example, in stable cell lines generated to express 

either AT1R or AT2R, Ang-(1-7) was found to bind the AT2R with higher affinity 

than the AT1R (Bosnyak et al., 2011). The Ang-(1-7)/AT2R interaction has also 

been observed in vivo. In isolated mouse hearts exposed to the AT2R antagonist 

PD123, 319, Ang-(1-7) increased perfusion pressure, an effect not observed 

following Ang-(1-7) infusion alone and which was independent of both the AT1R 

and Mas. It was also observed that in the presence of AT1R blockade, Ang-(1-7) 

reduced blood pressure in both normotensive and spontaneously hypertensive 
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stroke prone rats (SHRSP), an effect mediated via the AT2R (Walters et al., 

2005). This effect was preserved in aged normotensive rats under similar 

experimental conditions; however, the vasodepressor effect was via both the 

AT2R and Mas receptor in the aged rats (Bosnyak et al., 2012). In addition to 

inhibiting the effects of Ang II via engagement with Ang-(1-7), the Mas receptor 

also acts as a functional antagonist at the AT1R via direct receptor interaction 

(Kostenis et al., 2005, Canals et al., 2006). 

1.5.3 Angiotensin-(1-9) 

Ang-(1-9) is a 9 amino acid peptide member of the counter-regulatory axis of the 

RAS formed from Ang I, mainly via cleavage of the terminal amino acid of Ang I 

by ACE2 (Donoghue et al., 2000) (Figure 1.3). However, it has also been shown 

that following incubation of Ang I with human heart homogenates Ang-(1-9) is 

formed through the activity of carboxypeptidase A (CPA2) (Kokkonen et al., 

1997). This was further confirmed in ACE knockout (ACE-/-) and ACE2 knockout 

(ACE2-/-) mice where Ang-(1-9) was the main product of carboxypeptidase 

mediated cleavage of Ang I (Garabelli et al., 2008). Furthermore, in human 

heart extracts it was shown that Ang-(1-9) generation from Ang I was mediated 

via cathepsin A (CpA) (Jackman et al., 2002). These reports provide conclusive 

evidence that Ang-(1-9) is generated by Ang I by a number of different enzymes.  

Once formed Ang-(1-9) can be further converted to Ang-(1-7) via ACE. 

Additionally, it has recently been demonstrated that Ang-(1-9) can be converted 

to angiotensin-(2-9) [Ang-(2-9)] by aminopeptidase A (AmpA) in glomerular 

podocytes, however, a biological role for this novel peptide has yet to be 

identified (Schwacke et al., 2013). Analysis of Ang-(1-9) levels has revealed that 

while in healthy subjects circulating levels of Ang-(1-9) have been reported to be 

around 2-6 fmol/mL, these levels are thought to increase in pathological states 

(Campbell et al., 1993, Kokkonen et al., 1997, Ocaranza et al., 2006), 

suggesting that in pathological conditions the heart functions to increase levels 

of Ang-(1-9). For example, in human heart failure patients, Ang-(1-9) is formed 

at a rate of 1nM/min/mg in the myocardium and a large proportion of available 

Ang I is rapidly converted to equal levels of Ang-(1-9) and Ang II (Kokkonen et 

al., 1997). While the half life of Ang-(1-9) within the circulation has yet to be 

identified, it has been demonstrated that in cells stably transfected with human 

ACE Ang-(1-9) was hydrolysed 18 times slower than Ang I and 30 % slower than 
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Ang-(1-7), suggesting that Ang-(1-9) may have a longer half-life compared with 

other RAS peptides (Chen et al., 2005). 

There is currently little known about the biological effects of Ang-(1-9) in the 

cardiovascular system. Originally it was thought to be biologically inactive, 

contributing indirectly to counteregulate actions of Ang II by competing with Ang 

II for the ACE active site, resulting in reduced Ang II and increased Ang-(1-7) 

levels (Snyder, 1986). Additionally, Ang-(1-9) has been shown to stimulate 

bradykinin release in cardiac endothelial cells and to enhance the effects of 

bradykinin by augmenting NO and arachidonic acid release (Erdos et al., 2002, 

Jackman et al., 2002). Importantly, it was shown that not only was Ang-(1-9) an 

active peptide but that it more potent than Ang-(1-7) in achieving these results 

(Jackman et al., 2002). Recent research has demonstrated that Ang-(1-9) exerts 

direct biological effects in the cardiovascular system, and these effects may be 

via the AT2R (Flores-Munoz et al., 2011) (Figure 1.3). Using radioligand binding 

assays it was demonstrated that Ang-(1-9) could bind to both the AT1R and AT2R  

and in cardiomyocytes Ang-(1-9) mediated anti-hypertrophic effects via the AT2R 

as PD123,319, an AT2R antagonist, blocked these effects (Flores-Munoz et al., 

2011). This suggests that despite having approximately 100 fold lower affinity for 

the AT2R than Ang II, Ang-(1-9) may elicit functional effects via this receptor. 

Further work is required to elucidate Ang-(1-9)-mediated cell signalling. 

Moreover, selective functional activity at the AT2R is possibly due to the 

pharmacological concept of functional selectivity where ligands may induce 

unique, ligand specific conformations resulting in differential activation of 

signalling pathways (Clarke and Bond, 1998, Galandrin et al., 2007, Smith et al., 

2011, Nagata et al., 2006). While the AT1R is reported to exist in a constrained 

conformation, the AT2R exists in a relaxed state (Miura and Karnik, 1999). 

Therefore, it has been postulated that the additional histidine present in Ang-(1-

9) may stabilise the AT2R in a distinct conformational state, leading to its 

enhanced activation, and hence counter-regulation of Ang II actions at the AT1R 

(Flores-Munoz et al., 2011). However, this remains to be demonstrated 

experimentally. Alternatively, Ang-(1-9) may be metabolized to Ang-(1-7) or 

another peptide, and act at the AT2R or an alternative  receptor which is 

sensitive to PD123, 319, as has previously been shown for the recently reported 
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counter-regulatory RAS receptor, Mas related gene D receptor (MrgD) (Lautner et 

al., 2013). 
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Figure 1.3 The counter-regulatory axis of the RAS 
With the discovery of the counter-regulatory axis of the RAS, the view of this system has changed 
to that of a cascade of interconverted peptides that are mainly generated by the actions of ACE 
and ACE2. The traditional axis of the RAS is via ACE-mediated generation of Ang II which signals 
mainly via the AT1R and also the AT2R. The counter-regulatory axis of the RAS is centered around 
the actions of ACE 2 and production of Ang-(1-7) and Ang-(1-9) from Ang II and Ang I, respectively, 
counteracts pathological effects of Ang II at the AT1R.  Ang-(1-7) exerts protective effects via Mas 
while Ang-(1-9) has recently been reported to act via the AT2R. ACE: Angiotensin converting 
enzyme; AT1R: Angiotensin type 1 receptor; AT2R: Angiotensin type 2 receptor. 
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1.5.4 Other angiotensin peptide metabolites 

1.5.4.1 Angiotensin-(1-12) 

Although it is now apparent that the RAS contains multiple functional peptides, 

until recently it was thought that angiotensinogen acted as a precursor for the 

production of Ang I, from which all other peptides are derived either directly or 

indirectly. However, this concept has since been challenged with the discovery 

of angiotensin-(1-12) [Ang-(1-12)], a 12 amino acid peptide containing an 

additional two amino acids at the C terminal of Ang I (Nagata et al., 2006) 

(Figure 1.4). Ang-(1-12) was initially isolated and identified from the rat small 

intestine and has since been found to be present in concentrations comparable 

with those of Ang I and Ang II in other tissues such as the aorta, heart and 

kidneys (Nagata et al., 2006, Nagata et al., 2010). Importantly, tissue levels of 

Ang-(1-12) have been shown to be unaltered in response to manipulation of the 

systemic RAS, indicating that it may function as part of the local RAS (Nagata et 

al., 2006, Nagata et al., 2010, Trask et al., 2008). While it is currently unknown 

how Ang-(1-12) is formed from angiotensinogen, previous studies have shown 

that renin is not involved in either the formation or metabolism of Ang-(1-12), 

suggesting that it might serve as an alternative substrate for local production of 

angiotensin peptides by circumventing the classical renin dependent conversion 

of angiotensinogen to Ang I (Bujak-Gizycka et al., 2010, Ahmad et al., 2011, 

Ahmad et al., 2013). Functionally, Ang-(1-12) induces a vasoconstrictor response 

in the rat aorta that could be blocked by either an ACE inhibitor or an AT1R 

antagonist, suggesting that Ang-(1-12) may act as a peptide precursor of Ang II 

(Nagata et al., 2006, Bujak-Gizycka et al., 2010). However, it is not clear if this 

conversion to Ang II in the vasculature is direct (as has been shown in the heart 

via the actions of chymase) or via initial generation of Ang I (by the actions of 

ACE or CPA2) (Bujak-Gizycka et al., 2010, Ahmad et al., 2011, Ahmad et al., 

2013). 

1.5.4.2 Angiotensin-(2-10) 

Angiotensin-(2-10), also known as Des Asp1 Ang I, is an octapeptide that was first 

identified as a metabolite of Ang I, formed by aminopeptidase-mediated 

metabolism of the N-terminal residue of Ang I, in the cat adrenal gland (Ackerly 

et al., 1976) (Figure 1.4). Since its discovery few studies have attempted to fully 
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elucidate its action in the cardiovascular system and existing studies supporting 

a role for this peptide in the vasculature are conflicting. For example, one of the 

earliest studies on the effects of Ang-(2-10) demonstrated that in conscious rats, 

Ang-(2-10) acted as a pressor agent, largely via conversion to angiotensin III (Ang 

III) (Campbell and Pettinger, 1976). Conversely, in normotensive and 

hypertensive rats Ang-(2-10) attenuated the vasoconstriction of mesenteric and 

renal arteries induced by the pressor peptide Ang III and it has been shown to 

block Ang II-induced proliferation of rat aortic VSMC, suggesting a protective role 

for Ang-(2-10) in the vasculature (Mustafa et al., 2004, Min et al., 2000). It has 

been suggested that Ang-(2-10) may also play an important role in the kidneys, 

functioning as part of the ‘intrarenal RAS’. A functional intrarenal RAS was first 

discovered in 1977 (Kimbrough et al., 1977) and has since been demonstrated to 

be important in the control of renal sodium excretion and blood pressure (Navar 

et al., 2011). The intrarenal RAS is one part of the ‘tissue specific RAS’ which 

functions independent of changes in circulating RAS components. However, 

similar to the circulating RAS, overactivation of the intrarenal RAS has been 

shown to play a pivotal role in glomerular injury which is implicated in 

progressive kidney diseases. It has recently been shown that Ang-(2-10) is one of 

the main products of Ang I metabolism, generated via the action of 

aminopeptidase A, suggesting that it may play an important, but yet undefined, 

role in the intrarenal RAS (Velez et al., 2009). 

1.5.4.3 Angiotensin III 

Ang III is generated from cleavage of the N terminus amino acid of Ang II by 

AmpA (Zini et al., 1996) (Figure 1.4). Ang III has been shown to act in a similar 

manner to Ang II in that its physiological effects are similar to those elicited by 

Ang II and it acts at the AT1R, albeit with 10 times lower affinity for this 

receptor than Ang II (Pendleton et al., 1989). Ang III has been shown to have 

similar effects on vasoconstriction and blood pressure as Ang II both centrally 

and peripherally (van Esch et al., 2008, Li et al., 1995). 

1.5.4.4 Angiotensin IV 

Angiotensin IV (Ang IV) is generated from cleavage of the N terminus amino acid 

by aminopeptidase N (AmpN) (Figure 1.4). Originally Ang IV was considered to be 
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biologically inactive however a wide range of physiological effects have now 

been identified. Ang IV has been shown to have an important role in the CNS, 

including regulation of blood flow, and cognitive and sensory functions in the 

brain such as learning and memory (Braszko et al., 1988, Wright et al., 1993, 

Albiston et al., 2001). Additionally, Ang IV has been shown to be involved in 

proliferation of cardiac fibroblasts, endothelial cells and VSMC (Wang et al., 

1995, Hall et al., 1993). Ang IV binds with high affinity to the angiotensin II type 

4 receptor (AT4R), which has recently been identified as the enzyme insulin-

related aminopeptidase, with Ang IV functioning to inhibit this enzyme (Swanson 

et al., 1992, Albiston et al., 2001). Ang IV specific binding sites have been 

identified in various tissues and cells including the brain, blood vessels and 

heart, consistent with the fact that Ang IV elicits effects in all of these tissues 

(Miller-Wing et al., 1993, Kerins et al., 1995, Hall et al., 1993, de Gasparo et 

al., 2000, Chai et al., 2000). While Ang IV is widely accepted to have functional 

effects in the vasculature, current evidence as to whether it contributes to or 

protects against vascular disease is conflicting. For example, in cultured VSMC 

Ang IV via AT4R activated the transcription factor nuclear factor kappa-light-

chain-enhancer of B cells (NF-κB) and upregulates related genes involved in 

cardiovascular damage, such as the adhesion molecule ICAM-1, the cytokines IL-6 

and TNF-α, the chemokine MCP-1, and the prothrombotic factor PAI-1 (Esteban 

et al., 2005), suggesting that Ang IV may contribute to development of vascular 

disease. In various rodent models of vascular disease including the rabbit balloon 

injury model and the mouse model of atherosclerosis (the apolipoprotein E 

knockout [ApoE−/−] mouse), the AT4R has been shown to be upregulated within 

the vessel wall indicating that it may play an important role in disease 

development (Moeller et al., 1999, Vinh et al., 2008). However, it is not clear 

whether increased expression of AT4R enhances or retards disease development 

at this stage. Conversely, Ang IV via the AT4R has also been linked to an 

improved vascular phenotype. Ang IV has been shown in a number of studies to 

activate eNOS, leading to increased NO bioavailability and vasodilation (Patel et 

al., 1998, Chen et al., 2000). Furthermore,  chronic administration of Ang IV to 

ApoE−/− mice resulted in improved endothelial function associated with increase 

eNOS activation and reduced oxidative stress, as well as reduced atherosclerotic 

lesion size (Vinh et al., 2008). Therefore, while it is evident that Ang IV plays an 
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important role in the vasculature, its exact function is still unclear and requires 

further investigation. 

1.5.4.5 Angiotensin-(3-7) 

Angiotensin-(3-7) [Ang-(3-7)] can be generated from Ang II, Ang-(1-7) or Ang IV 

via the action of both aminopeptidases and carboxypeptidases (Greene et al., 

1982, Chappell et al., 1990, Welches et al., 1991) (Figure 1.4). Little is known 

about the effects of Ang-(3-7) in the cardiovascular system. Ang-(3-7) can be 

generated in the heart and kidney, however it is unclear whether it has any 

functional activity or acts as a waste product. It has been suggested that some 

of the actions of Ang-(1-7) in the kidney might depend on metabolism to Ang-(3-

7) and subsequent activation of AT4R (Handa, 1999). It was found that Ang-(1-7) 

mediated generation of Ang-(3-7) inhibited nystatin-stimulated proximal tubule 

O2 consumption, indicative of reduced basolateral Na+,K+-ATPase activity. This 

effect was abolished by AT4R blockade (Handa, 1999). However, it has also been 

shown that Ang-(1-7) does not affect basolateral Na+,K+-ATPase activity, 

therefore further studies are required to fully understand the interaction 

between both Ang-(1-7) and Ang-(3-7), and angiotensin receptors within the 

kidney (Caruso-Neves et al., 2000). In fact, the majority of research on Ang-(3-7) 

has focussed on its role in the brain, particularly within the area of the brain 

that is involved in the central control of blood pressure, the rostral ventrolateral 

medulla (RVLM) (Ferreira et al., 2007). It has been shown that micro-injection of 

Ang-(3-7) into the RVLM induces an increase in mean arterial pressure and heart 

rate independent of AT1R, AT2R or Mas (Ferreira et al., 2007). While further 

work is required to identify the receptor for Ang-(3-7) in the RVLM it is possible 

it may initiate its effects via the AT4R as has been suggested in the kidney and 

through in vitro receptor binding studies (Handa, 1999, Albiston et al., 2001, 

Wright et al., 1993). 

1.5.4.6 Angiotensin A 

Angiotensin A (Ang A) was first identified in human plasma by Jankowski et al in 

2007 and is an octapeptide that differs from Ang II by the presence of an alanine 

residue in place of aspartate at its N-terminal residue (Jankowski et al., 2007) 

(Figure 1.4). Ang A is synthesised from Ang II by enzymatic decarboxylation of 
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aspartate in the presence of mononuclear leukocytes (Jankowski et al., 2007). 

Initially it was shown that Ang A possessed similar affinity to Ang II for the AT1R 

but higher affinity for the AT2R, however subsequent studies have revealed that 

the functional effects of Ang A are mediated via the AT1R (Jankowski et al., 

2007, Yang et al., 2011). Ang A was shown to promote renal vasoconstriction 

both ex vivo and in vivo in an AT1R dependent manner (Jankowski et al., 2007, 

Yang et al., 2011). Ang A has been shown to be elevated in human plasma of 

patients with end-stage renal failure compared to healthy patients, indicating 

that it may play a role in renal pathophysiology. However, the role of Ang A in 

the heart and vasculature, especially in pathophysiology, is poorly explored. 

Recently Coutinho et al demonstrated that in anaesthetised rats Ang A elevated 

systemic blood pressure via the AT1R in a concentration-dependent manner, to 

similar levels to those achieved by Ang II (Coutinho et al., 2013). Similarly, using 

an isolated heart preparation Ang A resulted in similar effects to those achieved 

by Ang II, as both peptides reduced cardiac flow, myocardial relaxation and 

contraction, and heart rate (Coutinho et al., 2013). However, while the effects 

of Ang II on cardiac function were fully blocked by losartan, the effects of Ang A 

were only partially blocked, indicating that Ang A may function at a different 

receptor in the heart (Coutinho et al., 2013). Furthermore, Ang II, but not Ang 

A, resulted in an increase in cardiac arrhythmias in the isolated heart and 

altered calcium handling in isolated cardiomyocytes, suggesting that these 

peptides may also function via separate receptors (Coutinho et al., 2013). 

Together these data provide further evidence as to the complexity of the RAS 

and identifies a potential new peptide, Ang A. However, more work is required 

to fully elucidate its role in the cardiovascular system.  

1.5.4.7 Alamandine 

The most recently discovered component of the RAS is alamandine (Lautner et 

al., 2013). Alamandine is a hectapeptide that differs from Ang-(1-7) only by the 

presence of an alanine residue in place of an aspartate residue at the amino 

terminus (Lautner et al., 2013). Alamandine can be formed either from catalytic 

hydrolysis of Ang A by ACE2 or via decarboxylation of the aspartate radical group 

of Ang-(1-7), as has previously been shown for Ang II (Lautner et al., 2013, 

Jankowski et al., 2007) (Figure 1.4). In addition to being structurally similar to 

Ang-(1-7), alamandine was also shown to produce several physiological actions 
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that resemble those induced by Ang-(1-7). For example, alamandine induces 

endothelium-dependent vasodilation in aortic rings of FVB/N mice and Wistar 

rats, an effect attenuated by pretreatment with the NOS-inhibitor, NG-nitro-L-

arginine methyl ester (L-NAME) (Lautner et al., 2013). Alamandine also reduced 

blood pressure when administered into the caudal ventrolateral medulla of 

anaethetised Fisher rats, as well as systemically in spontaneously hypertensive 

rat (SHR) (Lautner et al., 2013). Furthermore, an orally available form of 

alamandine produced an anti-hypertensive effect in the SHR and reduced 

cardiac remodelling in isoprotenelol treated rats (Lautner et al., 2013). 

However, despite being structurally and functionally similar to Ang-(1-7), 

alamandine was demonstrated to act independently of both Mas and the AT2R 

suggesting a different mechanism of action to that of Ang-(1-7) (Lautner et al., 

2013). While the vasodilator effects of alamandine in aortic rings were unaltered 

by the Mas antagonist A779 and in Mas receptor deficient mice, they were 

blocked by another Ang (1–7) antagonist, D-Pro7-Ang (1–7), suggesting that 

alamandine may act at an alternative receptor that is also sensitive to Ang-(1-7). 

Ang-(1-7) has previously been reported to act as a weak agonist of the MrgD 

therefore Lautner et al then investigated whether this could be the receptor 

through which alamandine acts (Lautner et al., 2013, Gembardt et al., 2008). 

Indeed, pre-incubation of aortic rings with β-alanine, an MrgD agonist, 

attenuated alamandine induced vasodilation. Furthermore, alamandine was 

shown to bind to MrgD-transfected cells, an effect which was competitively 

inhibited by D-Pro7-Ang (1–7) but not A779 (Lautner et al., 2013). Finally, in cells 

expressing MrgD, alamandine induced NO release, an effect which was not 

observed in cells expressing Mas. Although alamandine was shown to be present 

in human plasma and increased in patients with end-stage renal disease, the 

potential role of this peptide in humans requires further investigation (Lautner 

et al., 2013). Together, this data suggest that the novel peptide alamandine is a 

functionally active peptide within the RAS that acts via the MrgD receptor and 

indicates a novel interaction within the RAS that required further exploration. 
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Figure 1.4 Angiotensin peptide metabolites 
The discovery of the tissue specific and counter-regulatory axis of the RAS has resulted in the view 
of the RAS as a system of interconverted peptides, generated by a number of multifunctional 
enzymes. Black arrows indicate peptide formation via enzymatic metabolism. Blue dashed arrows 
indicate peptide formation via amino acid decarboxylation. ACE: angiotensin converting enzyme; 
ACE2: angiotensin converting enzyme 2 Amp A: aminopeptidase a; Amp N: aminopeptidase N; 
Ang: angiotensin; CpA: cathepsin A; CPA2: carboxypeptidase A2; Cx A: carboyxpeptidase A; 
NEP:Neutral endopeptidase; POP: Prolyl endopeptidase; TOP: Thimet oligopeptidase. 

  

Ang I (1-10)

ACE

Renin

Ang II (1-8)
ACE2

Ang-(1-7)

Ang-(1-9)

ACE

ACE2

Cp A, Cx A

NEP

TOP

POP

NEP

Ang III (2-8)

Ang IV (3-8)

Ang-(1-5)

Ang 2-10

Ang 1-12

Ang-(3-7)

A
R Y

V I  H
P F

Ang A

A R Y
V I  H

P

Alamandine

Amp A

Amp D
ACE2

D
R Y

H
P

H
F L

V I  

D
R Y

H
P FV I  D

R Y
H

P
V I  D

R Y
V I  

D
R Y

H
P

H
FV I  

D
R Y

H
P

H
F L

V I  L
Y

Angiotensinogen

D
R Y

H
P

H
F L

V I  L
V

Y
S

R Y
H

P
H

F L
V I  

R Y
H

P FV I  

Y
H

P FV I  

Y
H

P
V I  

ACE

ACE2 CPA2

?

Amp A

Amp A

R Y
H

P
H

FV I  

Ang-(2-9)

Amp A



42 
 

1.6 The renin angiotensin system and vascular 
remodelling 

Dysregulation of the RAS, resulting in increased Ang II activity via the AT1R, 

largely contributes to pathological remodelling of the vasculature in both 

hypertension and atherosclerosis, and contributes to the failure of 

revascularisation in coronary artery disease. 

1.6.1 Hypertension-induced remodelling 

The RAS has been shown to be one of the key pathways involved in hypertension-

induced vascular remodelling. In large, conduit arteries, Ang II has been shown 

to stimulate VSMC hypertrophy largely via interaction with NAD(P)H oxidases, 

resulting in ROS generation (Griendling et al., 1994). Additionally, Ang II 

mediates activation of various growth factors such as transforming growth 

factor-β (TGF-β) and PDGF (Naftilan et al., 1989a, Gibbons et al., 1992). Ang II–

induced VSMC hypertrophy and collagen deposition has been observed in various 

hypertensive animal models (Albaladejo et al., 1994, Levy et al., 1988). 

Similarly, various signalling pathways have been implicated for Ang II-induced 

resistance vessel remodelling in hypertension. In the SHR, ACE inhibitors or AT1R 

antagonists reduced blood pressure and vascular activity of ERK1/2, leading to 

improved endothelial function and Ang II-induced contractility of mesenteric 

resistance arteries, suggesting that Ang II induced changes in vascular function 

may be mediated by MAPK signalling (Kim et al., 1997, Touyz et al., 2002). 

Additionally, in Ang II–infused mice, inhibition of NAD(P)H oxidase by apocynin, 

attenuated blood presure elevation and prevented structural alterations, 

endothelial dysfunction, and collagen deposition in the media of small 

mesenteric arteries, indicating that NAD(P)H oxidase activity is also involved in 

Ang II–induced functional and structural alterations of the vascular wall (Virdis et 

al., 2004). 

1.6.2 Pro-atherogenic effects of angiotensin II 

It is largely accepted that Ang II is one of the key players involved in the 

development and progression of atherosclerosis; in fact ACE inhibitors are among 

the most commonly prescribed pharmacological therapies for atherosclerosis and 
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have been shown to reduce cardiovascular events in patients with multiple risk 

factors for atherosclerosis (Yusuf et al., 2000). Ang II regulates many processes 

implicated in atherogenesis, including ROS generation, VSMC growth, 

inflammatory responses, and ECM remodelling through activation of NAD(P)H 

oxidases, MAPK signalling and interaction with both receptor- and non receptor-

tyrosine kinase signalling pathways (reviewed by (Touyz and Schiffrin, 2000, 

Mehta and Griendling, 2007). Furthermore, in human atherosclerotic lesions the 

local RAS is activated, as evidenced by high lesion levels of ACE, Ang II and the 

AT1R (Schieffer et al., 2000). Additionally, inflammatory cells present in 

atherosclerotic lesions express high ACE activity (Diet et al., 1996).  

Ang II also influences the expression of a number of pro-inflammatory molecules 

in the vessel wall, contributing largely to the recruitment of inflammatory cells 

and ultimately the development of atherosclerosis. Through the AT1R, Ang II 

activates the transcription factor NF-κB, a protein that controls networks of 

chemokine-modulating, growth factor–modulating, translational control, and 

cellular survival genes (Ruiz-Ortega et al., 2000).  In endothelial cells, Ang II 

upregulates VCAM-1, ICAM-1, and E-selectin expression (Pueyo et al., 2000, 

Pastore et al., 1999, Grafe et al., 1997). In VSMCs, Ang II stimulates the 

production of VCAM-1, MCP-1, and the cytokine IL-6 (Tummala et al., 1999, 

Hernandez-Presa et al., 1997, Han et al., 1999). MCP-1 specifically attracts 

monocytes and memory T lymphocytes expressing the C-C chemokine receptor 2 

(CCR2) receptor, cell types that are present at all stages of the atherosclerotic 

lesion. MCP-1 is thought to function locally in the vessel wall by establishing a 

chemical gradient to attract adherent monocytes and T lymphocytes to the site 

of injury in the vessel media. IL-6 promotes VSMC proliferation involving the 

local production of PDGF (Ikeda et al., 1991). The ability of Ang II to induce 

coordinated expression of adhesion molecules and chemokines then ensures the 

recruitment of inflammatory cells into the vessel wall (Pastore et al., 1999). 

Furthermore, Ang II has been shown to be involved in cellular deposition of ECM, 

an important component in VSMC remodelling, migration and adhesion. Ang II-

induced EGFR- and MAPK-dependent pathways may participate in matrix 

formation and regulation (Matsubara et al., 2000, Touyz and Schiffrin, 2000). 

Ang II has also been shown to promote collagen synthesis within VSMC (Kato et 

al., 1991). Besides regulating structural components such as collagen, Ang II has 
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also been implicated in adhesive remodelling. Moriguchi et al reported that Ang 

II-mediated EGFR transactivation regulates fibronectin and TGF-β synthesis 

(Moriguchi et al., 1999). Furthermore, production of MMPs, for example, MMP-2, 

and breakdown of collagen IV is also modulated by Ang II (Libby and Lee, 2000). 

Thus, Ang II acts on several different components of ECM formation and 

deposition to influence matrix turnover.  

Furthermore, Ang II has also been reported to promote of macrophage mediated 

uptake of oxidised LDL via increased IL-6 production and expression of the 

scavenger receptor CD36 on macrophages (Keidar et al., 2001). Additionally, Ang 

II upregulated endothelial cell expression of the lectin-like oxidised LDL receptor 

1, which may result in increased oxidised LDL entry into the atherosclerotic 

lesion (Morawietz et al., 1999). While the exact mechanisms are unknown, these 

studies suggest that Ang II enhances the uptake of LDL and generation of foam 

cells.  

1.6.3 Vein graft failure 

Ang II is known to mediate a number of pathways involved in vein graft failure 

and through the use of animal models of vein grafting, has been directly 

implicated in its pathology. For example, administration of the ACE inhibitor 

captopril reduced neointimal formation following vein grafting in the rabbit 

(O'Donohoe et al., 1991). In a canine model, it was found that ACE activity was 

increased in grafted veins compared with control veins at 4 weeks post-

engraftment and this was associated with an increase in neointimal formation 

(Yuda et al., 2000). Furthermore, the AT1R antagonist L-158, 809, a non-peptide 

imidazopyridine derivative, significantly reduced neointimal formation and VSMC 

proliferation in comparison to control groups (Yuda et al., 2000). L158, 809 has 

also been shown to reduce neointimal formation in grafted veins in the rabbit 

when administered either systemically or directly to the vessel (Fulton et al., 

1998). Taken together, these findings suggest that local production of Ang II via 

increased ACE expression and activity enhances neointimal formation following 

vein grafting. 
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1.6.4 Restenosis 

Ang II is known to mediate a number of the cellular effects involved in 

restenosis, it has been directly implicated in the pathogenesis of restenosis and 

neointimal formation through the use of various rodent models of vascular 

injury. Increased levels of ACE have been observed in the neointimal area of 

balloon injured rat carotid arteries and in mouse femoral arteries following cuff 

induced injury, indicative of increased Ang II production within the remodelled 

vessel (Rakugi et al., 1994, Akishita et al., 2001). In line with these findings, 

ACE inhibitors have been shown to reduce neointima formation in response to 

vascular injury in several models and species, such as balloon catheter induced 

injury in rats, rabbits and guinea pig, and cuff induced injury in various strains of 

mice (Powell et al., 1989, Chen et al., 2003, Akishita et al., 2001). Increased 

expression of AT1R, indicative of increased Ang II signalling, has been observed in 

the neointimal following vascular injury of the rat carotid artery (Eto et al., 

2003). The role of the AT1R was further confirmed in this study as AT1R inhibition 

reduced neointimal thickening, associated with reduced collagen and elastin 

accumulation (Eto et al., 2003). In monkeys and rabbits, AT1R blockade also 

reduced in-stent restenosis, oxidative stress, proinflammatory factors (MCP-1, 

IL-1β, and TNF-α) and NAD(P)H oxidase expression suggesting that AT1R signaling 

is involved in neointimal formation (Ohtani et al., 2006).  

1.6.5 The counter-regulatory RAS and vascular remodelling 

While Ang II mediated effects via the AT1R are widely accepted to contribute to 

pathological remodelling of the vasculature, the components of the counter-

regulatory axis of the RAS, namely ACE2, Ang-(1-7) and Ang-(1-9) have been 

shown to exert protective effects on the vasculature.  

1.6.5.1  Vascular ACE2 

The expression and activity of ACE2 in the vasculature has beneficial effects, 

particularly in the setting of atherosclerosis, via reducing Ang II levels and 

increasing levels of Ang-(1-7). In atherosclerotic human carotid arteries, ACE2 

activity was found to be increased in early stage atherosclerosis or in unstable 

lesions in comparison to stable lesions, demonstrating differential activity of 

ACE2 at different stages of the disease (Sluimer et al., 2008). While it is 
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currently unclear how this differential activity is regulated, it may be that ACE2 

is increased in the early stages of atherosclerosis and in unstable lesions in an 

attempt to control the disease pathology and lessen injury by both reducing Ang 

II production and increasing production of Ang-(1-7) and Ang-(1-9). Additionally, 

over-expression of ACE2 using an adenoviral vector has been shown to reduce 

atherosclerotic lesion size in ApoE-/- mice (Lovren et al., 2008). Moreover, ACE2 

overexpression also stabilizes existing atherosclerotic lesions, inhibiting 

progression of lesion development at early stages of atherosclerosis, but not at 

advanced stages of the disease (Dong et al., 2009). These effects were 

associated with both reduced levels of Ang II and increased levels of Ang-(1-7), 

suggesting a key role for ACE2 in balancing the activity of both axes of the RAS in 

atherosclerosis. 

1.6.5.2 Effects of Ang-(1-7) on vascular remodelling 

To date a large proportion of the protective effects of the counter-regulatory 

axis of the RAS in the vasculature have been attributed to the production of Ang-

(1-7), and its resulting interaction with Mas (Figure 1.5). Numerous in vitro 

studies have shown that Ang-(1-7) signaling via Mas inhibits VSMC proliferation 

and migration via two main mechanisms: (1) inhibition of MAPK signaling 

pathways, for example reduced activity and expression of ERK1/2 (Tallant et al., 

1999, Zhang et al., 2010b) and (2) release of prostaglandins including 

prostacyclin (PGI2) and prostaglandin E2 (PGE2), resulting in increased cyclic 

adenosine monophosphate (cAMP) levels and inhibition of cyclo-oxygenases 

(Jaiswal et al., 1993b).  

The anti-proliferative and anti-migratory role of Ang-(1-7) is also observed in 

numerous rodent models of vascular disease. Ang-(1-7), via Mas, reduces 

neointimal formation following balloon injury (Strawn et al., 1999), stent 

implantation in rats (Langeveld et al., 2005), and angioplasty in rabbits (Zeng et 

al., 2009), and has been associated with reduced atherosclerotic lesion size in 

Apo E-/- mice (Tesanovic et al., 2010, Yang et al., 2013). Additionally, a non-

peptide agonist of Mas, AVE0991, which mimics the actions of Ang-(1-7) (Wiemer 

et al., 2002), inhibits rat VSMC proliferation in vitro (Sheng-Long et al., 2012).  
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Ang-(1-7) increases NO release, thereby acting as a vasodilator and improving 

vascular endothelial function (Brosnihan et al., 1996, Faria-Silva et al., 2005). 

Increased NO is achieved directly via Mas-mediated stimulation of eNOS and 

sustained Akt phosphorylation, or indirectly via production of bradykinin and 

receptor cross talk with the BK2R (Jackman et al., 2002, Sampaio et al., 2007a). 

Additionally, Ang-(1-7) has been shown to promote vasodilation via the AT2R in 

the SHRSP during AT1R blockade. This was shown to involve interaction between 

the AT2R and BK2R as vasodilation in response to Ang-(1-7) was prevented by 

both PD123,319 and HOE 140 (a BK2R antagonist) (Walters et al., 2005). In 

addition to promoting vasodilation, this increase in NO release was also 

demonstrated to inhibit platelet aggregation, demonstrating an anti-thrombotic 

role for Ang-(1-7) (Kucharewicz et al., 2002).  

An Ang-(1-7)-mediated increase in NO bioavailability has also been linked to 

reduced ROS production, thereby promoting improved vascular function and 

reduced atherosclerosis. In Apo E-/- knockout mice, chronic administration of 

Ang-(1-7) via osmotic mini pump restored renal endothelial function which was 

associated with increased NO bioavalibility (Stegbauer et al., 2011). To 

investigate the relationship between ROS levels and NO bioavailability in this 

setting, the ROS scavenger Tempol was used. While Tempol improved 

endothelial function in untreated Apo E-/-, it had no effect on Ang-(1-7) infused 

mice, indicating that these animals already have reduced ROS levels (Stegbauer 

et al., 2011). This was further suggested by reduced levels of H2O2 and NAD(P)H 

oxidase subunit expression in Ang-(1-7)-infused animals. In addition to reduced 

ROS activity, increased levels of eNOS were observed following treatment with 

Ang-(1-7), providing a further mechanism to support the findings of increased NO 

bioavailability (Stegbauer et al., 2011). 

In addition to Ang-(1-7)-mediated NO release from vascular endothelial cells 

(Sampaio et al., 2007a, Heitsch et al., 2001) it has recently been shown that 

Ang-(1-7) signalling mediates NO release from platelets, enhancing its anti-

thrombotic activities (Fraga-Silva et al., 2008). In vivo the anti-thrombotic 

effect of Ang-(1-7) was blocked by pharmacological Mas inhibition and is absent 

in Mas knockout (Mas-/-) mice (Fraga-Silva et al., 2008). It was not established 

whether this was due to the actions of Ang-(1-7) in endothelial cells or platelets, 

although it is likely to be a combination of both (Fraga-Silva et al., 2008). While 
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further work is required to fully dissect the mechanisms involved in the anti-

thrombotic properties, these findings have identified the Ang-(1-7)/Mas axis as a 

potential therapeutic target for the treatment of thrombotic events. The recent 

development of an orally available form of Ang-(1-7) (Ang-(1-7)-CyD), in which 

Ang-(1-7) has been incorporated into a cyclodextrin (CyD), a cyclic 

oligosaccharide that enhances drug stability, absorption across biological 

barriers and provides gastric protection (Uekama, 2004), has greatly increased 

the potential of utilising Ang-(1-7) in a therapeutic setting (Fraga-Silva et al., 

2011). This compound has been shown to be of particular use as an anti-

thrombotic intervention as it exerts antithrombotic effects in vivo, associated 

with increased plasma levels of Ang-(1-7) (Fraga-Silva et al., 2011). 
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Figure 1.5 Angiotensin-(1-7) signalling in the vasculature 
Ang-(1-7) via Mas increases NO release, thereby acting as a vasodilator and reducing thrombosis 
either 1) directly via activation of the PI3K/Akt signaling pathway resulting in increase 
phosphorylation of eNOS or 2) indirectly via cross talk with the BK2R, which increases PKA 
mediated phosphorylation of eNOS-this pathway may involve interaction with the AT2R also. Ang-
(1-7) via Mas also promotes vasodilation by stimulating PLA2 leading to increased release of AA, 
which in turn produces the prostanoids PGI2 and PGE2, both of which increase levels of cAMP. 
cAMP also reduces MAPK signaling and VSMC proliferation and migration. Ang-(1-7) via Mas also 
directly inhibits MAPK activity. AA: Arachidonic acid; AT2R: Angiotensin type 2 receptor; BK2R: 
Bradykinin 2 receptor; cAMP: Cyclic adenosine monophosphate; eNOS: endothelial nitric oxide 
synthase; NO: Nitric oxide; PI3K: Phosphoinositide 3-kinase; PGI2: Prostacyclin: PGE2: 
Prostaglandin E2; PKA: Protein kinase A. 

  

Thrombosis

MasBK2R

? 

NO

eNOS
P

Vasodilation

PKA

eNOS

P

PI3K

Akt
P

NO

PGI2

PGE2

PLA2

AA

cAMP

Vasodilation

MAPK

ERK1/2

VSMC Proliferation

VSMC Migration

AT2R

Ang-(1-7)

D
R Y

H
P

V I  



50 
 

1.6.5.3 Effects of Ang-(1-9) on vascular remodelling 

The role of Ang-(1-9) in the vasculature is relatively unexplored; however, as 

Ang-(1-9) can also exert biological effects, some of the previously described 

vasculoprotective effects of the counter-regulatory axis of the RAS may be 

attributed to production of both Ang-(1-9) and Ang-(1-7) (Figure 1.6). However, 

signalling via the AT2R in the vasculature is poorly defined and further work is 

required to delineate a role in this setting (Figure 1.6). Ang-(1-9) has been 

previously shown to indirectly contribute to improved vascular function through 

a number of pathways. For example, Ang-(1-9) promotes bradykinin release from 

endothelial effects and enhances the effects of bradykinin by augmenting NO 

and arachidonic acid release (Jackman et al., 2002). Additionally, inhibition of 

the RhoA/Rho-associated, coiled-coil containing protein kinase (ROCK) signaling 

pathway results in increased activity and expression of ACE2 in the aorta, and 

increased Ang-(1-9) plasma levels, associated with reduced blood pressure and 

vascular remodelling (Ocaranza et al., 2011). These effects were coupled with 

reduced ACE activity, Ang II levels and increased expression of eNOS, identifying 

that the ROCK pathway may interact with the ACE2/Ang-(1-9) axis as a novel, 

protective interaction in the vasculature.  

Ang-(1-9) has recently been demonstrated, for the first time, to have a direct 

beneficial effect on vascular function. In this study continuous infusion of Ang-

(1-9) improved aortic vasorelaxation and NO bioavailability in the SHRSP; 

importantly these effects were blocked by PD123,319, suggesting that these 

effects are due to Ang-(1-9) signalling via the AT2R (Flores-Munoz et al., 2012). 

Furthermore, Ang-(1-9) has recently been shown to induce relaxation of rat 

aortic rings in a concentration- and endothelium-dependent manner, an effect 

which was unaltered by A779 or losartan, but blocked by PD123,319 and L-NAME 

suggesting that Ang-(1-9) induces vasodilation via the AT2R and NO signalling 

(Ocaranza et al., 2014). While the mechanisms involved are currently unknown it 

is possible that Ang-(1-9) may increase NO bioavailability by stimulating 

bradykinin release, as previously documented in cardiac endothelial cells 

(Jackman et al., 2002), or by enhancing the activity of eNOS, as has been shown 

for Ang-(1-7) (Sampaio et al., 2007a).  
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Figure 1.6 Angioteinsin-(1-9) signalling in the vasculature 
Ang-(1-9) via the AT2R promotes vasodilation through increased NO either directly or via crosstalk 
with the BK2R. Ang-(1-9) mediated vasodilation is also associated with increased expression of 
NOX4. AT2R: Angiotensin type 2 receptor; BK2R: Bradykinin 2 receptor; eNOS: endothelial nitric 
oxide synthase; NO: Nitric oxide; NOX4: NADPH oxidase 4; PKA: protein kinase A. (Adapted from 
(McKinney et al., 2014)). 
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1.7 Hypothesis and aims 

Numerous studies in vitro and in vivo studies have demonstrated a 

vasculoprotective role for Ang-(1-7) signaling via Mas. The majority of this work 

has relied on the use of rodent cells and these effects have yet to be 

demonstrated in human cells. Furthermore, the cell signaling mechanisms 

involved in the effects of Ang-(1-7) have still to be fully delineated. We 

hypothesized that Ang-(1-7) also elicits protective effects in human cells 

relevant to vascular disease.  

While Ang-(1-9) has previously been demonstrated to have protective effects 

within the heart, the role of Ang-(1-9) in the vasculature remains undefined and 

the effects of this peptide in the setting of vascular remodeling have not 

previously been explored. However, as Ang-(1-9) has been demonstrated to 

antagonize the effects of Ang II, which contributes greatly to remodeling of the 

vasculature in a number of disease states, it is possible that Ang-(1-9) may also 

have protective effects within the vasculature. Furthermore, as ACE2, the 

enzyme responsible for the production of Ang-(1-9), and the AT2R, the receptor 

through which Ang-(1-9) has been demonstrated to act, have both previously 

been reported to be protective in the setting of vascular remodeling, it is 

possible that some of these previously described vasculoprotective effects of the 

counter-regulatory axis of the RAS could be attributed in part to Ang-(1-9). 

Therefore, we hypothesized that in addition to Ang-(1-7), Ang-(1-9) may also 

have protective effects in the setting of vascular remodeling.  

Therefore, the principal research aim of this thesis was to investigate and 

compare the effects of Ang-(1-7) and Ang-(1-9) in vascular remodeling. This was 

achieved through the following experimental study aims: 

 Characterise the effects of Ang-(1-7) and Ang-(1-9) on human saphenous 

vein SMC proliferation and migration, and assess the cell signalling 

pathways involved. 

 Investigate the effects of Ang-(1-7) and Ang-(1-9) on human saphenous 

vein on endothelial cell growth, migration and function. 
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 In vivo assessment of the effects of Ang-(1-7) and Ang-(1-9) on vascular 

remodelling and neointimal formation following vascular injury in mice. 

  



54 
 

 

 

 

 

 

 

 

 

Chapter 2 

Materials and Methods 
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2.1 Materials 

All chemicals, unless otherwise stated were purchased from Sigma-Aldrich 

(Poole, UK). Angiotensin peptides were purchased from Phoenix Pharmaceuticals 

(Karlsruhe, Germany). Receptor antagonists were purchased from Sigma-Aldrich 

(losartan and PD123,319) or Bachem (Rhein, Germany) (A779). All tissue culture 

reagents were obtained from Gibco (Paisley, UK), unless otherwise stated. All 

transfection, reverse transcription and quantitative real-time polymerase chain 

reaction (qRT-PCR) reagents were purchased from Life Technologies (Paisley, 

UK), unless otherwise stated. 

2.2 Human vascular tissue 

Saphenous veins were obtained from patients undergoing CABG surgery and 

stored in sterile saline solution by the surgical team at the Golden Jubilee 

National Hospital (Glasgow, UK). Saphenous veins were also obtained from 

patients undergoing elective varicose vein removal and were stored in the same 

way by the surgical team at Gartnavel General Hospital (Glasgow, UK). At the 

laboratory vessels were cleaned of any excess tissue under sterile tissue culture 

conditions. Endothelial cells were isolated from the vessels on the day of surgery 

and VSMC were isolated from the vessels within 24 hrs of the surgery. 

2.3 Cell and tissue culture 

All cell culture was performed under sterile conditions using class II biological 

safety vertical laminar flow cabinets (Holton Safe 2010). All cells were cultured 

in a humidified incubator at 37ºC with a constant supply of 5% carbon dioxide 

(CO2). Cells were cultured in 25cm2, 75cm2 or 150cm2 flasks with vented lids 

(Corning, Poole, UK). CHO cells used at the Federal University of Minas Gerais 

(UFMG) were gifted by Prof Robson. A Santos and cultured in Dulbecco’s 

Modified Eagles Medium (DMEM) (Invitrogen, Paisley, UK) supplemented with 10% 

(volume/volume [v/v]) foetal calf serum (FCS), 100 international units (I.U)/mL 

penicillin, 100 μg/mL streptomycin and 2 mM L-glutamine. 
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2.3.1 Isolation of primary endothelial cells from human 
saphenous veins 

Human saphenous vein endothelial cells (HSVEC) were isolated on the day of 

surgery by enzymatic collagenase digestion using a protocol based on the 

technique described by Jaffe et al (Jaffe et al., 1973). Briefly, saphenous veins 

were flushed of any remaining blood using wash media (DMEM supplemented 

with 100 I.U/mL penicillin, 100 µg/mL streptomycin, 2mM L-glutamine and 25mM 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). Veins were then 

filled with a solution of filter-sterilised collagenase (2 mg/mL in wash medium) 

and clamped at both ends to prevent any leakage of the solution. The vein was 

placed in a sterile petri dish and incubated in the presence of 5% CO2 for 15 

minutes at 37ºC. Endothelial cell suspensions were collected by flushing the vein 

with wash medium and collecting the eluate in a separate sterile petri dish. This 

process was repeated with fresh collagenase solution and the vein incubated for 

10 minutes at 37ºC. The cells and eluate were collected and pelleted by 

centrifugation at 12,000 g for 5 minutes at room temperature. Cells were 

resuspended in complete Large Vessel Endothelial Cell Basal Medium (TCS 

Cellworks Ltd, Botolph, Claydon, Bucks, U.K), supplemented with 20% (v/v) FCS, 

100 I.U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, 90 µg/mL 

heparin, 1 µg/mL hydrocortisone, 1 ng/mL basic fibroblast growth factor (bFGF) 

and 0.1 ng/mL epidermal growth factor (EGF), and then incubated for 24 hours 

before a complete medium change. Cells were cultured in complete growth 

medium and used below passage 7. 

2.3.2 Isolation of primary smooth muscle cells from human 
saphenous veins 

HSVSMC were isolated within 24 hours of surgery using the explant technique as 

described by Southgate and Newby (Southgate and Newby, 1990). Briefly, the 

vein was cut longitudinally and pinned lumenal side up. Remaining endothelium 

was removed by gentle rubbing of the lumenal surface. The medial layer was 

scored with a sterile scalpel, separated from the adventitial layer and then 

chopped into 1 mm2 segments using a McIlwain Tissue Chopper (Ted Pella Inc., 

California, USA). Explants were washed with media and incubated at 37ºC in 5% 

CO2 in minimal medium until they had adhered to the bottom of the flask 

(approximately 24 hours). Explants were cultured at 37ºC in the presence of 5% 
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CO2 in 5 mL complete Smooth Muscle Cell Growth Medium 2 supplemented with 

15% (v/v) FCS, 100 I.U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-

glutamine, 0.5 ng/mL EGF, 2 ng/mL bFGF and 5 µg/mL insulin. Medium was 

changed once a week until HSVSMC migrated from the explants and then every 3 

days once passaged. Cells were cultured in complete growth medium and used 

below passage 7. 

2.3.3 Cell passage 

Cells were grown as a monolayer and media was replenished every 2-3 days. 

Cells were routinely passaged when approaching confluence to prevent 

overgrowth. To passage cells were washed twice with sterile phosphate buffered 

saline (PBS) and incubated at 37oC in 3mL trypsin-ethylenediamine tetra-acetic 

acid (trypsin-EDTA) (0.05% trypsin, 0.02% EDTA) for approximately 5 minutes or 

until the majority of the cells had detached from the flask. The action of 

trypsin-EDTA was neutralised by the addition of an equal volume of complete 

growth media. Cells were harvested by centrifugation at 1,500 g for 5 minutes 

and resuspended in complete growth media for passaging or plating. Before 

plating cells were counted using a haemocytometer to ensure the required 

seeding density was met. 

2.3.4 Cryopreservation 

Cells were harvested as described in section 2.3.3. Following centrifugation cells 

were resuspended in 1mL of complete growth media supplemented with 10% 

dimethyl sulphoxide (DMSO) per culture flask of cells. Cell suspensions were 

collected in cryo-preservation vials and cooled at -80ºC in a freezer storage box 

containing isopropanol for 24 hours. Vials were then stored in the vapour phase 

of liquid nitrogen. Cryo-preserved cells were recovered by thawing at 37ºC and 

then adding drop wise to 15 mL of complete growth media. Cell suspensions 

containing primary cells were transferred directly to a 75cm2 flask. Cell 

suspensions from cell lines were harvested by centrifugation at 1,500 g for 5 

minutes and resuspended in complete growth media before being added to the 

relevant sized cell culture flask. Cells were incubated overnight at 37ºC in the 

presence of 5% CO2 and the media changed the following day. 
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2.4 Stimulation of HSVSMC and HSVEC 

In all in vitro experiments using HSVSMC or HSVEC cells were stimulated with 

Ang II, Ang-(1-7) or Ang-(1-9) at 200 nM, unless otherwise stated. Cells were 

incubated with Ang-(1-7) and Ang-(1-9) 30 minutes prior to the addition of Ang 

II. In experiments where receptor antagonists were used, cells were incubated 

with the AT1R antagonist losartan at 10 μM, the AT2R antagonist PD123,319  at 

500 nM or the Mas antagonist A779 at 100 μM for 15 minutes prior to the addition 

of Ang-(1-7) or Ang-(1-9). The concentrations of peptides and antagonists, and 

stimulation protocol were chosen based on previous experiments within our 

group and from the literature (Flores-Munoz et al., 2011, Sampaio et al., 2007a, 

Sampaio et al., 2007b, Zhang et al., 2010b, Freeman et al., 1996, Tallant and 

Clark, 2003, Zhu et al., 2002). 

2.5 Proliferation assay 

CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (Promega, 

Southampton, UK), also known as the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS) assay 

was used to measure cell proliferation. The MTS assay is a colorimetric method 

for determining the number of viable cells and is based on the conversion of the 

novel tetrazolium compound MTS to a soluble formazan product by viable cells. 

The absorbance of the formazan product can be measured and this is directly 

proportional to the number of viable cells.  

HSVEC or HSVSMC were seeded at 5x103 cells/well in 96 well plates and 

incubated overnight at 37ºC in the presence of 5% CO2. The cells were then 

rendered quiescent by incubation in serum free medium (HSVEC: 24 hours in 

DMEM, 100 I.U/mL penicillin and 100 µg/mL streptomycin; HSVSMC 48 hours in 

DMEM GlutaMAX, 100 I.U/mL penicillin and 100 µg/mL streptomycin). To induce 

proliferation, cells were then exposed to fresh media containing different 

concentrations of FCS (0%-20% (v/v) FCS in quiescing media) for 24 hours (HSVEC) 

or 48 hours (HSVSMC) at 37ºC in the presence of 5% CO2. A working solution 

containing MTS and phenazine sulphate (PMS, an electron coupling reagent) was 

prepared at a ratio of 20:1, respectively, and added to the cells in 100 µL media. 
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Cells were then incubated at 37ºC for 3 hours. Finally, absorbance was read at 

490 nm using the Wallac 1420 Victor2 plate reader (Wallac, Turku, Finland). 

To assess the effect of Ang II, Ang-(1-7) and Ang-(1-9) (all 200 nM) on cell 

proliferation, cells were incubated in either serum free medium or 5% FCS 

containing medium for 24 hours (HSVEC) or 48 hours (HSVSMC). To assess the role 

of angiotensin receptors in HSVSMC were incubated with losartan, PD123,319 or 

A779 as decribed in Section 2.4. Proliferation was then assessed as described 

above. 

2.6 Migration assay 

Cell migration was assessed in the form of a scratch assay as described by Liang 

et al (Liang et al 2007). Briefly, cells were seeded in 6 well plates at a density of 

3x105 cells per well and grown in complete culture medium at 37ºC in the 

presence of 5% CO2 until fully confluent. The cells were rendered quiescent by 

incubating in serum free medium as described in section 2.5. Horizontal lines 

were drawn on the outside bottom surface of each well to act as a guide for 

measurements. Three straight, vertical scratches were induced in the cell 

monolayer of each well using a sterile 200 μL pipette tip. Cellular debris was 

removed by gently washing cells once with 1 mL of PBS. Cells were incubated in 

serum free media with Ang II at 200nM to induce cell migration. To assess the 

effects of Ang-(1-7) and Ang-(1-9) on cell migration, cells were incubated in 

serum free media with Ang-(1-7) or Ang-(1-9) (200nM) alone for the duration of 

the experiment and 30 minutes before stimulation with Ang II. To assess the role 

of AT1R, AT2R and Mas, cells were incubated with losartan (10 μM), PD123, 319, 

500 nM or A779 (100 μM) for 15 minutes before Ang-(1-7) or Ang-(1-9), and 45 

minutes before Ang II. Cells in serum free media alone or complete growth 

medium were used as control samples. Images of the scratch were taken directly 

above the guide line using a Nikon Eclipse TS1000 microscope and imaged on 

QICAM Fast1394 camera (QImaging, Maidenhead, UK) at various time points 

between 0-30 hours post scratch. Image analysis was performed using Image J 

software where, to ensure unbiased measurements were made, a grid composed 

of 12 horizontal lines were placed over the image. The distance between the 

edges of the wound were measured along the grid lines and migration was 

expressed as a percentage of the original scratch width (0 hour).  
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In experiments which were performed to assess changes in gene and miRNA 

expression and protein activity, cells were subject to 8 scratches per well in 

order in increase the proportion of migrating cells and lysed as described in 

section 2.8 for RNA extraction or section 2.12 for protein extraction at 24 hours 

post scratch. 

2.6.1  Real time analysis of HSVSMC migration 

HSVSMC migration was also assessed in real-time using the xCELLigence system 

(Roche, Mannheim, Germany). The xCELLigence system monitors cellular events 

in a label free environment and provides quantitative information about the 

biological status of cells in real time (Atienza et al., 2006). This is achieved by 

measuring cellular impedance using specialised micro-titre plates, E-Plates, 

which have integrated gold electrodes covering 80% of the bottom of each well 

that measure impedence; changes in cellular impedance can be correlated to 

changes in cell morphology or growth (Atienza et al., 2006). In the absence of 

cells, background impedance is determined by the ionic environment of the 

culture media at the electrode-media interface and the media itself. When cells 

attach to the electrodes this alters the ionic environment at the electrode-

media interface resulting in an increase in impedance (Yu et al., 2006). As the 

cells begin to spread and proliferate, the impedance further increases. Short 

term changes in cell impedance can be correlated to changes in cell morphology 

while longer term changes in cell impedance are indicative of growth and 

movement (Atienza et al., 2006, Yu et al., 2006). Impedance measurements are 

expressed as an arbitrary unit, Cell Index (CI). CI is defined as (Rn-Rb)/15Ω, 

where Rn is the cell-electrode impedance of the well when it contains cells and 

Rb is the background impedance of the media alone (Atienza et al., 2006).  

To assess migration, HSVSMC were seeded at a density of 1x104 cells/well in an 

E-plate to create a confluent monolayer and incubated at 37ºC overnight to 

allow cells to adhere to the electrodes, resulting in a gradual increase in CI. 

Cells were rendered quiescent in serum free medium for 48 hours causing the CI 

to reach a stable plateau, indicating the cells had changed from a proliferative 

to a quiescent state. A scratch was induced in the cell monolayer as described in 

section 2.6 causing a rapid drop in CI due to the reduced electrode coverage. As 

changes in temperature can affect CI readings the cells were allowed to 
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equilibrate for 30 minutes then stimulated in serum free media as described in 

section 2.4. CI was measured every 15 minutes for 24 hours. CI was normalised 

at the time of stimulation with Ang II (referred to as 0 hour) and migration 

quantified as the fold change in normalised CI relative to 0 hour.  

2.7 Transfection of HSVSMC 

RNA interference (RNAi) techniques were used to assess the involvement of 

miRNA in HSVSMC migration. HSVSMC were transfected with a short interfering 

RNA (siRNA) designed to target human DICER or a specific miRNA-132 inhibitor 

(both Life Technologies). A siRNA designed to target GAPDH was used as a 

positive control and assess transfection efficiency. A non targeting Cy3 labelled 

siRNA or miR-inhibitor was used as a negative control. A list of all RNAi assays 

used can be found in Table 2.1. 

Table 2.1 List of RNAi assays used in HSVSMC  

 

RNA i Assay ID 

Silencer® Select DICER1 antisense RNA 1 n269596 

Silencer® Select GAPDH siRNA 4404024 

Silencer® Cy™3 Labeled Negative Control No. 1 siRNA AM4621 

Cy3™ Labeled Anti-miR™ Negative Control AM17011 

mirVana™ miRNA Inhibitor, Negative Control 4464076 

mirVana™ miR-132 Inhibitor MH10166 
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2.7.1 Transfection efficiency 

Cells were transfected using siPORTTM neoFXTM (Life Technologies) according to 

manufacturer’s instructions. Briefly, cells were plated at 3x105 cells/well in 6 

well plates and cultured in complete media at 37ºC in the presence of 5% CO2 

until 90% confluent.   For each well, 5 µL siPORTTM neoFXTM was diluted in 100 µL 

Opti-MEM® and incubated at room temperature for 10 minutes. SiRNA or miR 

inhibitors were diluted to 10, 30 or 60 nM in 100 µL Opti-MEM® and then 

combined with the diluted siPORTTM neoFXTM and incubated for a further 10 

minutes. The RNA/siPORTTM neoFXTM transfection complexes were added to 

culture media to a total volume of 2.0 mL, which was then added to the cells. A 

mock transfection control was also included where cells were treated with 

siPORTTM neoFXTM but not exposed to any RNA. The cells were incubated with the 

transfection reagents at 37ºC in the presence of 5% CO2 for 10 hours, after which 

cells were washed then incubated for a further 48 hours in serum free media. 

The media was changed to fresh serum free media and cells were incubated at 

37ºC in the presence of 5% CO2 for a further 24 hours. Transfection efficiency 

was first confirmed by visualisation of the Cy3 labelled control transfected well 

using a fluorescence microscope and then cells were lysed for RNA extraction as 

described in section 2.9 to allow for subsequent inhibition of target gene 

expression using q-RT-PCR as described in section 2.11. 

2.7.2 RNA interference in HSVSMC migration 

Cells were transfected as described with the optimal concentration of siRNA or 

miR-132 inhibitor as determined in section 2.7.1. Following a 48 hours 

quiescence period outlined cells were subject to the migration assay protocol as 

described in section 2.6. RNA was isolated at 24 hours post induction of scratch 

and stimulation as described in section 2.8. 

2.8 RNA and miRNA extraction from HSVEC and HSVSMC 

Total and miRNA was extracted using the miRNeasy mini kit (Qiagen, 

Manchester, UK), including on-column DNAse treatment to remove any DNA 

contamination, as per manufacturer’s instructions. Briefly, cells were washed in 

PBS to remove any residual media and lysed using 700 µL QIAzol lysis reagent. 

Lysates were briefly vortexed to homogenize prior to the addition of 140 µL of 
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chloroform to facilitate separation of the sample. Protein remains in the lower 

organic phase and DNA partitions to the interphase while the RNA partitions to 

the upper aqueous phase. The sample was partitioned fully by centrifugation at 

12,000 g for 15 minutes at 4ºC. The RNA containing aqueous phase was 

transferred to a fresh RNAse free microcentrifuge tube (Applied Biosystems) and 

1.5 volumes of 100 % ethanol added to facilitate binding to the RNeasy mini spin 

column. Samples were immediately added to the spin column and subjected to 

ultracentrifugation at 8000 g for 15 sec to bind the RNA to the spin column. To 

remove any contamination, columns were washed with 350 µL of buffer RWT for 

15 sec and 8000 g and the flow through discarded. Digestion of residual DNA was 

performed by incubating the spin columns with DNAse for 15 minutes at room 

temperature. The column was further washed with 350 µL buffer RWT, followed 

by two washes of 500 µL buffer RPE by centrifugation at 8000 g for 15 sec to 

remove any traces of salts from the sample. To dry, spin columns were 

subjected to centrifugation at 13,100 g for 1 minute. RNeasy spin columns were 

transferred to RNAse free microcentrifuge tubes and RNA was eluted using 50 µL 

of RNAse free water by centrifugation at 8000 g for 1 minute. This elution step 

was repeated using the original volume of RNAse free water to maximise the RNA 

yield. RNA samples were stored at -80ºC. 

2.9 Quantification of RNA 

Total RNA was quantified using a NanoDrop 1000 Spectrophotometer 

(ThermoScientific, Loughborough, UK). The NanoDrop measures the 

concentration of nucleic acid in solution by exposing the sample to a pulse of 

light at 260 nm and then measuring absorption. The relationship between the 

absorbance and the concentration of the sample is based on the Beer-Lambert 

law: 

c=A/(Θ x l) 
Where: 

c= nucleic acid concentration (ng/µL) 
A= absorbance 
Θ= molar absorptivity (constant for given solution) 
l= path length of light passing through (constant for given instrument 
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The purity of the sample was assessed by calculating the ratio of absorbance at 

260 and 280 nm. A 260/280 ratio of <2.0 was accepted as pure. 

 

2.10 Complementary deoxyribonucleic acid (cDNA) 
synthesis 

mRNA extracted from cells was reverse transcribed to cDNA to allow for analysis 

of gene or miRNA expression via qRT-PCR. For both gene expression and miRNA 

cDNA synthesis two negative control reactions were prepared: one containing 

water instead of mRNA and the other containing no reverse transcriptase, the 

enzyme responsible for cDNA synthesis.  

2.10.1 Gene expression 

mRNA extracted from cells was reverse transcribed to cDNA for gene expression 

analysis using the Taqman Reverse Transcription Reagents (Applied Biosystems, 

Warrington, UK) as per manufacturer’s instruction. A maximum of 1 µg (the 

same concentration of RNA used in each experimental repeat) was reversed 

transcribed in a reaction containing: 5.5 mM MgCl2, 2mM deoxyribonucleotide 

triphosphate (dNTP) mix (0.5 mM each), 2.5 µM random hexamers, 1x RT buffer, 

0.4 U/µL RNAse inhibitor and 1.25 U/µL multiscribe reverse transcriptase. 

Cycling conditions used were as follows: 25ºC for 10 minutes to allow annealing, 

48ºC for 30 minutes to allow for reverse transcription, followed by 95ºC for 5 

minutes to inactivate the reverse transcriptase. cDNA was stored at -20ºC. 

2.10.2 miRNA expression 

mRNA was reverse transcribed to cDNA for the detection of miRNA using specific 

stem-loop reverse transcription primers as per the Taqman miRNA Reverse 

Transcription kit (Applied Biosystems, Paisley, UK). Briefly, a 7.5 µL reaction was 

prepared containing: 1 mM dNTP mix (0.25 mM each), 1x RT buffer, 1x RT 

primer, 0.25 U/µL RNase inhibitor, 3.3 U/µL multiscribe reverse transcriptase 

and 2.5 µL of total RNA diluted to 2 ng/µL. The cycling conditions used were as 

follows: 16ºC for 30 minutes to anneal, 42ºC for 30 minutes to allow for reverse 

transcription to occur, followed by 95ºC for 5 minutes to inactivate the reverse 

transcriptase. cDNA was stored at -20ºC. 
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2.11 TaqMan
®
 quantitative real-time polymerase chain 

reaction (qRT-PCR) 

TaqMan® qRT-PCR was used to quantify relative expression levels of genes or 

miRNAs of interest. TaqMan® assays contain forward and reverse primers specific 

to the target DNA sequence between which a probe can anneal. The probe is 

labelled with a reporter fluorophore at the 5’ end and a non fluorescent 

quencher at the 3’ end, and when intact the quencher suppresses any 

fluorescence emitted by the reporter. In the presence of the target sequence 

the probe anneals and is then cleaved upon amplification of the target sequence 

via forward and reverse primers. This results in separation of the quencher from 

the reporter and therefore a detectable increase in fluorescence. Further 

reporter dye molecules are cleaved from their respective probes with each 

cycle, resulting in an increase in fluorescence intensity proportional to the 

concentration of the target product produced. Data is acquired whilst PCR is in 

the exponential phase and is measured when the reporter dye emission reaches 

a threshold, known as the cycle threshold (Ct). In all experiments a 

housekeeping gene is used, the expression of which remains stable to correct for 

any errors in RNA content. Results are shown relative quantification (RQ) to the 

experimental control using the -2∆∆Ct method as described by Livak and 

Schmittgen (Livak and Schmittgen, 2001). 

2.11.1 Gene expression 

For gene expression, q-RT-PCR was performed using inventoried TaqMan gene 

expression assays (Table 2.2). Expression of each gene was normalised to the 

housekeeping gene GAPDH (in experiments where GAPDH was the gene of 

interest, GAPDH expression was normalised to the housekeeping gene 18s). A 

reaction mixture of 12.5 µL was prepared for each sample containing 6.25 µL 

TaqMan Universal MasterMix II, 0.625 µL probe, 3.125 µL RNAse free water and 

2.5 µL cDNA, and then added in technical duplicate to a 384 well plate. For each 

probe tested the negative reverse transcription control was run in addition to a 

water only control. qRT-PCR was performed in simplex using the 7900HT 

sequence detection system (Applied Biosystems) using the following cycling 

conditions: 10 minutes at 95ºC for enzyme activation, 40 cycles of 15 seconds at 



66 
 

95ºC for denaturing of cDNA and then 60 sec at 60ºC for primer and probe 

annealing, and primer extension. 

2.11.2 miRNA expression 

For miRNA expression, qRT-PCR was performed using miR probes complementary 

to the mature miRNA sequence (Table 2.3). Expression of each miRNA was 

normalised to the housekeeper RNU48. A reaction mix of 10 µL was prepared for 

each sample containing 5 µL of TaqMan Universal MasterMix II, 0.5 µL probe, 

3.835 µL RNAse free water and 0.67 µL of miRNA RT product, and then added to 

a 384 well plate in technical duplicate. Controls were performed as above and 

the experiment performed using the 79000HT sequence detection system as in 

section 2.11.1. 
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Table 2.2 List of TaqMan Gene Expression Assays used in qRT-PCR 

 

Gene Assay ID RefSeq Gene ID 

AT1R Hs00258938_m1 NM_004835.4 

AT2R Hs01564134_g1 NM_000686.4 

Mas Hs00267157_s1 NM_002377.2 

PTEN Hs02621230_s1 NM_000314.4 

MCP-1 Hs00234140_m1 NM_002982.3 

RASA1 Hs00243115_m1 NM_002890.2 

MMP2 Hs01548727_m1 NM_001127891.1 

MMP9 Hs00234579_m1 NM_004994.2 

DICER1 Hs01651834_g1 NR_015415.1 

GAPDH Hs02758991_g1 NM_001256799.1 

18s Hs03003631_g1 
 

 
 
 

Table 2.3 List of TaqMan miRNA Expression Assays used in qRT-PCR 

 

miRNA Assay ID 
MIRBASE 

ID 

hsa-miR-132 000457 hsa-miR-132-3p 

hsa-miR-212 000515 hsa-miR-212-3p 

RNU48 001006 
NR_002745 

(NCBI accession) 
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2.12 Protein extraction 

To investigate early changes in protein activity or expression in response to 

peptide stimulation, HSVSMC were plated at 3x105 cells/well in 6 well plates and 

incubated at 37ºC in the presence of 5% CO2 overnight. Cells were then serum 

starved as described in section 2.5. The media was then changed to fresh serum 

free media and cells stimulated with Ang II alone or in combination with Ang-(1-

7) or Ang-(1-9) (all peptides 200 nM) for 5, 15, 30 or 60 minutes. Cells in serum 

free media alone or complete growth medium were used as control samples. 

Following stimulation, cells were washed using PBS and lysed for protein 

extraction. 

Total protein was extracted from cells grown in 6 well plates using 300 µL 

radioimmunoprecipitation assay (RIPA) lysis buffer (150 mM NaCl, 1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS, 50mM Tris pH 8) containing a 1x dilution of 

commercially available Complete Protease Inhibitor Cocktail (Roche Diagnostics, 

West Sussex, UK) and Phosphatase Inhibitor Cocktail (Sigma, Poole, UK). Cells 

were scraped using a cell scraper and frozen at -20°C overnight. The following 

day cells were thawed and then agitated on ice for 45 minutes at 4°C. Cell 

lysates were collected in a sterile microcentrifure tube and centrifuged at 

maximum speed at 4°C for 10 minutes. The supernatant containing protein was 

then transferred to a fresh microcentrifuge tube and stored at -20°C for short-

term storage or -80°C for long-term storage. 

2.12.1 Protein quantification 

Protein concentration was determined using bicinchoninic acid (BCA) Protein 

Assay Kit (Pierce, Rockford, USA), according to manufacturer’s instructions. This 

assay relies on a temperature dependent reduction of Cu2+ ions by protein 

peptide bonds, which then is chelated by the BCA to generate a purple coloured 

product. The absorbance of the developed colour is proportional to the protein 

content of the sample.  

Briefly, a standard curve was generated using the following bovine serum 

albumin (BSA) dilutions: 2000 µg/mL, 1500 µg/mL, 2000 µg/mL, 750 µg/mL, 500 

µg/mL, 250 µg/mL, 125 µg/mL and 25 µg/mL. Working reagent, which contains 
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copper sulphate and BCA, was prepared by mixing reagent A and reagent B at a 

ratio of 50:1, respectively. In a clear well 96 well plate, 200 µL of working 

reagent was added to 25 µL of each standard or sample in duplicate and the 

plate was covered to protect from light and incubated at 37ºC for 30 minutes. 

Absorbance was measured at 560 nm using the Wallac 1420 Victor2 plate reader 

(Wallac). Protein concentration was calculated using the linear equation based 

on the standard curve generated from the BCA protein standards. 

2.13 Western immunoblotting 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and 

western immunoblotting was performed to detect phosphorylation and 

expression of specific proteins.  

First, 15 µg of protein lysate was mixed with 4x LDS Sample Loading buffer 

(Pierce) supplemented with 2% (v/v) β-mercaptoethanol, and then heated at 

95°C to denature the protein. Samples were fractioned via SDS-PAGE using 10% 

polyacrylamide gels which were either purchased precast (10% Mini-PROTEAN® 

TGX™ Precast Gel; BioRAD, Hemel Hempstead, UK) or prepared within the 

laboratory (consisting of a non-restrictive 4% stacking gel containing 13.3% (v/v) 

N,N’-methylene-bis-acrylamide (polyacrylamide 30%), 25% 

tris(hydroxymethyl)aminomethane) (Tris) pH 6.8 (3.75 mM), 0.1% (v/v) SDS, 1% 

ammonium persulphate (APS) and 0.1% Tetramethylethylenediamine (TEMED) 

and a 10% resolving gel containing 33.3% (v/v) of polyacrylamide 30%, 25% of Tris 

pH 8.8 (11.25 mM), 0.1% (v/v) SDS, 1% APS and 0.1% TEMED). Samples and 10 µL 

of rainbow ladder (RPE 800 NE Amersham Bioscience UK Ltd, Buckingham, UK), a 

marker of protein size, were loaded to each well. 

Gels were electrophoresed in running buffer (25 mM Tris, 0.2 M glycine, 0.1% 

(v/v) SDS) at 80 V till samples left the well (and stacking gel of manually 

prepared gels), then switched to 120 V until the dye front was at the bottom of 

the gel.  

Proteins were transferred onto methanol charged Hybond-P membrane (GE Life 

Sciences, Buckingham, UK) overnight at 4°C at 90 mA in transfer buffer (25mM 

Tris, 0.2 M glycine, 0.1% (v/v) SDS, 20% (v/v) methanol). Membranes were then 
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blocked in 5% (w/v) BSA in TBS-T (150 mM w/v NaCl, 50 mM w/vTris, 0.1% v/v 

Tween-20) (blocking buffer) for at least 2 hours at room temperature with 

constant shaking. Membranes were then incubated with the primary antibody 

diluted in blocking buffer as outlined in Table 2.4, overnight with shaking at 

4°C. The following day membranes were washed 3 times in blocking buffer, 5 

minutes each wash, at room temperature prior to incubation with the secondary 

antibody. Swine anti-rabbit horse radish peroxidase (HRP) secondary antibody 

(DAKO, Cambridge, UK) was used at a 1:1000 dilution in blocking buffer and 

incubated with membranes for 1 hour at room temperature, with shaking. 

Membranes were then washed 3 times in blocking buffer, followed by 3 washes 

in TBS-T; all washes 15 minutes at room temperature. Protein bands were 

visualised using Amersham Enhanced Chemiluminescence (ECL) western blotting 

detection reagents (GE Life Sciences) as per manufacturer’s instructions. Briefly 

equal volumes of reagent A and reagent B were mixed, added to the membranes 

and incubated for 5 minutes at room temperature. Excess ECL was removed from 

the membranes and Kodak general purpose medical X-ray film was exposed for 

varying lengths of time and then developed using a Kodak X-Omat 1000 

developer.  

In all cases the membrane was incubated with a primary antibody to detect the 

phosphorylated protein first, and then stripped by incubation at 50°C for 30 

minutes in stripping buffer (62.5 mM Tris pH 6.8, 2% (v/v) SDS, 100mM 2-

mercaptoethanol). Membranes were washed 3 times, 10 minutes each wash, 

then incubated in blocking buffer for at least 2 hours and re-probed using a 

primary antibody for GAPDH for normalisation purposes. 

Films were scanned using Molecular Imager Chemidoc XRS+ System and the band 

intensity quantified using densitometry with Quantity One software. Bands were 

normalised to GAPDH loading control signal and presented as a ratio of the 

protein:GAPDH signal. 
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Table 2.4 List of primary antibodies used for Western Blotting 

 

Protein 
Host 

species 
Molecular 

Weight (kDa) 
Dilution 

Company 
(Catalogue number) 

(clone ID) 

Phospho 
ERK1/2 

Rabbit 42, 44 1:1000 
CST 

(9101s) 

Akt Rabbit 60 1:1000 
CST 

(4691) (C67E7) 

GAPDH Rabbit 37 1:1000 
CST 

(2118s) (14c10) 
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2.14 Detection of cellular nitric oxide release 

Release of NO was detected from cells using 4-amino-5-methylamino- 2’,7’-

difluorofluorescein diacetate (DAF-FM diacetate, Life Technologies), a non 

fluorescent compound that reacts with NO to form a fluorescent benzotriazole 

which is detectable upon excitation at 488nm.  DAF-FM diacetate enters the cell 

via passive diffusion and is then deacetylated by intracellular esterases to 

become DAF-FM, the compound that reacts with NO. 

2.14.1 NO release from HSVEC 

HSVEC were seeded at 3x105 cells/well in 6 well plates containing glass  

coverslips (22 mm diameter, #0 thickness) coated with Poly-l-lysine and 

incubated at 37ºC with 5% CO2 overnight. To diminish basal NO signalling cells 

were starved in phenol free, serum free medium (DMEM No Phenol Red, 100 

I.U/mL penicillin and 100 µg/mL streptomycin) for 2 hours at 37ºC. Cells were 

then incubated for 30 minutes at 37ºC in serum free, phenol free medium 

containing 5 µM DAF-FM diacetate. The media was then refreshed and cells 

stimulated with Ang-(1-9) (0.2 µM or 1 µM) or PD123, 319 (500 nM), alone or in 

combination for 15 minutes. When Ang-(1-9) and PD213,319 were used in 

combination, PD123,319 was was incubated with cells for 5 minutes prior to Ang-

(1-9) stimulation. Flourescent images were obtained using a Nikon TE2000-E 

inverted microscope (Nikon Instruments, Melville, NY) excited at 488 nm which 

was equipped with 63x oil immersion Plan Fluor lens and a cooled digital 

CoolSNAPHQ charge-coupled device camera (Photometrics, Tucson AZ, USA). 

Images were taken of at least 5 fields of view per coverslip and exported into 

Metamorph (version 7.7), then Image J for final image processing. 

2.14.2 NO release from transfected CHO cells 

CHO cells were cultured as described in section 2.3, and seeded at 3x105 

cells/well in 6 well plates containing glass coverslips (22mm diameter, #0 

thickness) coated with Poly-l-lysine, then incubated at 37ºC with 5% CO2 

overnight. To assess the involvement of the AT2R in Ang-(1-9) mediated NO 

release, cells were transfected with plasmid containing the human AT2R gene 

(generated by Daniel C. Villela, Federal University of Minas Gerais, Brazil) using 

Lipofectamine 2000 as per manufacturer’s instructions. Briefly, for each well, 10 
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µL lipofectamine 2000 was diluted in 250 µL Opti-MEM® and incubated for 5 

minutes at room temperature. Plasmid DNA (2 µg) was then diluted in 250 µL 

Opti-MEM®, mixed with the diluted Lipofectamine 2000 reagent and incubated 

for 20 minutes at room temperature. The DNA/Lipofectamine 2000 complexes 

were then added to 1.5 mL cell culture media and the total volume added to the 

cells. Untransfected cells were used as a control and were incubated with 5 µL 

Opti-MEM®, 500 µL Opti-MEM® and 1.5 mL culture media. Following 24 hours 

incubation cells were washed in PBS and incubated with 5 µM DAF-FM diacetate 

as described in section 2.14.1. Cells were then stimulated with Ang-(1-9), 

PD123,319 (as described in section 2.14.1) or the AT2R agonist compound 21 (1 

µM). Fluorescent images were then obtained using a Zeiss LSM 510 Meta laser-

scanning confocal microscope excited at 488 nm with an argon-ion laser (63x oil-

immersion lens; Carl Zeiss, Oberkochen, Germany). Images were taken of at 

least 4 fields of view per coverslip and exported to Image J software for image 

processing. 

2.15 Small vessel wire myography 

Wire myography experiments using vessels isolated from AT2R
-/- mice were 

performed at the Federal University of Minas Gerais. Krebs-Henseleit buffer 

(Krebs buffer) containing 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 25 mM 

NaHCO3, 1.03 mM KH2PO4, 11 mM glucose and 2.5 mM CaCl2 was prepared and 

gassed continuously through the experiment with 95% O2. Male AT2R
-/- mice of 8-

10 weeks old were sacrificed by decapitation, and the aorta and mesenteric 

arteries immediately excised and placed in ice cold Krebs buffer. All vessels 

were cleaned of any fat and connective tissue, and if required, denuded of the 

endothelial layer by gentle rubbing. The vessels were then cut into 2 mm 

segments and mounted on two stainless steel 40 µm stainless steel wires in a 4 

channel small vessel wire myograph (Danish Myo Technology, Aarhus, Denmark), 

with one of the wires connected to a force transducer and the other an 

adjustable jaw (Figure 2.1).  
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Figure 2.1 Schematic overview of a vessel segment mounted in a small vessel wire 
myograph 
Vessel segments were mounted on two 40 µm stainless steel wires with one connected to a force 
transducer to record changes in tension of exerted by the artery. The other wire was connected to 
an adjustable jaw to allow for application of tension to the vessel. 

Vessels were gradually warmed to 37ºC in Krebs buffer at resting tension. Due to 

the small diameter of mesenteric arteries a normalization step was then 

performed to calculate the internal circumference of the vessel and thereby 

determine the optimal active tension required. The internal circumference of 

the vessel was calculated based on the tension exerted by the vessel at rest and 

under transmural pressure of 100 mmHg; only vessels found to have an internal 

circumference of >150 µm were used. The optimal active tension required was 

calculated as the tension required to stretch the vessel to 90% of its internal 

circumference. A predetermined active tension of 0.6 g was applied to aortic 

rings. Active tension was applied to all vessels for 30 minutes.  To establish the 

viability of each segment and to sensitise the vessel prior to further 

pharmacological stimulation, the contractile response to 0.6 mM KCl was 

assessed. Once a stable plateau was reached the vessels were washed in Krebs 

buffer till the tension returned to the applied active tension. This was then 

repeated twice, with 30 minutes between each repeat. To assess the presence 

of functional endothelium vessels were contracted to 0.1 µM phenylephrine 

(Phe) until a stable plateau was reached and then treated with 10 µM 

acetylcholine. Endothelium was deemed viable if a relaxation of at least 70% was 

observed in response to acetylcholine. Vessels were then washed at least 3 times 

in fresh Krebs buffer till the applied active tension was achieved and incubated 

for 30 minutes prior to beginning each experimental protocol. 

To assess the effects of Ang-(1-9) on vascular tone, vessels were first contracted 

to 0.1 µM Phe until a stable plateau was achieved. Cumulative concentration 
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response curves were then performed to Ang-(1-9) using a range of 

concentrations (1x10-10 M to 1x10-6 M). This concentration range was chosen 

based on previous experiments conducted in Prof. Robson Santos laboratory and 

published reports (Ocaranza et al., 2014). In experiments where antagonists 

were used, 1x10-6M A779 or PD123, 319 was added to the organ bath 5 minutes 

prior to the first stimulation with Ang-(1-9). Lab ChartTM 5 Pro software 

(ADInstruments, Chalgrove, UK) was used to record and measure all responses. 

Data were expressed as a percentage of relaxation of the Phe induced 

contraction. 

2.16 In vivo experimentation 

All animal experiments were performed in accordance with the Animals 

Scientific Procedure Act 1986 under the project license, 60/4114, held by Dr 

Simon Kennedy (University of Glasgow, UK) and the personal license, 60/12207. 

Mice were housed at the Central Research Facility at the University of Glasgow 

and maintained on 12 hour cycles of light and dark, at ambient temperature. 

Mice were fed a standard chow diet and water provided ab libitum. 

2.16.1 Mouse carotid artery injury model 

Prior to surgery, 8-10 week old male C57BL/6 mice (Harlan, Oxon, UK) received 

an intraperitoneal injection of the analgesic buprenorphine (0.1 mg/kg) and 2.5 

mg of the antiplatelet therapy dipyridamole (Persantin). Sterile saline (0.5 mL, 

subcutaneous injection) was administered to prevent dehydration during the 

surgical procedure. General anaesthesia was induced by 3% (v/v) isoflurane 

supplemented with oxygen (0.5 L/minute) and maintained at 1.5% (v/v) 

isoflurane via a face mask throughout the procedure. Depth of anaesthesia was 

monitored throughout the surgery by assessment of hind limb reflex. Carotid 

artery injury was performed following an adapted method described by Lindner 

et al (Lindner et al., 1993). An incision was made in the ventral side of the neck 

and blunt dissection of the muscle and connective tissue was performed to 

expose the left common carotid artery. The vagus nerve was detached from the 

artery and two silk ligatures (size 6.0, Fine Science Tools, Heidelberg, Germany) 

were positioned at the proximal and distal ends of the vessel. The distal ligature 

was tightly tied and an arterial clip (Fine Science Tools, Heidelberg, Germany) 
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was positioned at the most proximal end to temporarily occlude blood flow. A 

small incision was made in the artery and a piece of modified flexible nylon 

wire, adapted by melting the end to create a blunt spherical tip, was inserted 

into the incision site and held loosely in place by tightening of the proximal 

ligature. The arterial clip was removed and the wire was advanced, while 

rotating, down the carotid artery into the thoracic aorta. This was repeated 3 

times to ensure the removal of the endothelium. The nylon wire was removed, 

the artery clip reapplied and the proximal ligature was tied and secured just 

below the incision site. Sham operated mice were used as controls, these 

animals were subjected to the same procedure except the ligatures were not 

tied, only secured in place, and blood flow occluded for 5 minutes (the 

approximate time required to perform the wire injury) using the distal ligature 

and an artery clip at the proximal end. No incision was made in the artery and 

the wire was not inserted. The ligatures were removed prior to wound closure. A 

continuous line of subcutaneous sutures (size 5.0, Vircyl, Ethicon, Edinburgh, 

UK) was used to close the skin incision. For post-operative care the mice were 

transferred to a heating mat and maintained at 37oC overnight.  

2.16.2 Osmotic mini pump implantation 

Ang-(1-7) and Ang-(1-9), alone or alongside A779 or PD123,319 (Ang-(1-9) only) 

were delivered subcutaneously via osmotic mini pump (Model 2004, Alzet, CA, 

USA) and the effects on neointimal formation assessed. Mini pumps filled with 

water were implanted into control animals. Osmotic mini pumps operate due to 

a difference in osmotic pressure between a compartment within the pump 

known as the salt sleeve and the tissue where the pump has been implanted. 

The salt sleeve has a high molarity and this causes water to enter the pump via a 

semipermeable membrane which forms the outer surface of the pump. As the 

water enters the salt sleeve, it compresses the reservoir containing the peptide, 

causing it to be released at a controlled rate predetermined by the water 

permeability of the pumps outer membrane (Theeuwes and Yum, 1976).  

Osmotic mini pumps secreted Ang-(1-7), Ang-(1-9) and A779 at a concentration 

of 48 μg/kg/hour and PD123,319 at a concentration of 200 ng/kg/minute, at a 

rate of 0.25 μL/hour for 4 weeks following implantation. Minipumps were primed 

by incubation in an isotonic solution at 37oC for 48 hours to ensure immediate 
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delivery of the peptides following vascular injury. Prior to implantation, the 

prepared mini pumps were assigned a code by an independent researcher to 

blind the study. To implant mini pumps a small incision was made in the flank 

and a subcutaneous pocket created to allow insertion of the pump. The wound 

site was closed using a continuous line of sutures (size 5.0, Vircyl, Ethicon, 

Edinburgh, UK).  

2.16.3 Pluronic gel studies 

To assess the effectiveness of local delivery of Ang-(1-7) or Ang-(1-9), the 

peptides were applied directly to the carotid artery immediately following injury 

using Pluronic F127 gel (BASF, Ludwigshafen, Germany). Pluronic F127 is a 

copolymer that when dissolved in aqueous solution displays the unique 

characteristic of reverse thermal gelation, as at room temperature Pluronic F127 

solution is a viscous liquid which is transformed to a semisolid gel at body 

temperature (Schmolka, 1972).  Therapies can therefore be dissolved in the 

Pluronic F127 solution when aqueous then be delivered locally to the animal to 

form a gel based depot of the therapeutic at the site of administration. 

Pluronic F127 was made to 22% (w/v) in sterile PBS and stored at 4°C at a liquid 

state. Immediately before administration, peptides were added to the gel to 

create a solution of 2.5 µg/µL and kept on ice. Gel only was used as a control. 

Following completion of wire injury, 100 µL of the pluronic gel was applied to 

the carotid artery using a pipette. Once it was observed that the pluronic 

solution had changed from a liquid state to gel state the wound was closed as 

described in section 2.5.1.  

Prior to assessing therapeutic effects of local delivery of Ang-(1-7) or Ang-(1-9), 

a pilot study was performed to confirm delivery of the peptides to the vessels. 

To do this, 9 animals received either gel only, Ang-(1-7) or a custom made 

biotinylated Ang-(1-9) as described above. Three animals per group were 

sacrificed as described in section 2.16.4 at 7, 14 and 28 days following injury and 

peptide application.  Peptide delivery to the vessel was assessed via 

immunohistochemistry (IHC), using a specific antibody for Ang-(1-7) and 

streptavidin for the biotinylated Ang-(1-9) as described in sections 2.17.4 and 

2.17.4.2, respectively.  
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Following this a blinded study was performed to assess the effects of local 

delivery of Ang-(1-7) and Ang-(1-9) on neointimal formation with 8 animals per 

group. 

2.16.4 Termination of procedure and tissue harvesting 

Mice were sacrificed 28 days and transcardially perfused by gravity flow with 

0.9% saline to exsanguinate. To ensure that no damage was done to the wire 

injured vessels, mice were perfused at 120 mmHg to represent physiological 

conditions. This was achieved by placing the perfusate 1.63 m above the animal, 

based on the fact that 1 mmHg equals 13.6 mm H20. For perfusion, animals were 

firstly deeply anaethetised using 4-5% isoflurane supplemented with oxygen (0.5 

L/minute) via face mask. A vertical midline incision was made through the skin 

and peritoneal cavity to expose the rib cage and internal organs, which were 

moved to expose the femoral artery of the left leg. The diaphragm was incised 

and the heart exposed.  To begin perfusion, a butterfly needle (23 g) connected 

to the perfusate was inserted into the left ventricle and held in position using 

mosquito clips and the left femoral artery cut to allow the blood to drain from 

the animal. Once the perfusate ran clear the heart was excised to confirm 

termination of the procedure. Tissues and vessels were collected and stored in 

10% (v/v) formalin for 24 hours followed by transfer to 70% ethanol. 

2.17 Histology 

2.17.1 Tissue fixation 

Tissue samples were dehydrated through an ethanol gradient to xylene and 

finally to paraffin wax using the Shandon Excelsior tissue processor (Thermo 

Scientific, Leicestershire, UK) in the sequence outlined in Table 2.5. 

Following the tissue processing sequence, vessels were held vertically in biopsy 

cassettes and embedded in paraffin wax using a Shandon Histocenter 3 

(ThermoFisher Scientific, Leicestershire, UK). Paraffin blocks were cut at 4 µm 

using a Leica microtome (ThermoFisher Scientific, Leicestershire, UK) to expose 

transverse sections of the embedded vessel and transferred to a 45oC water bath 

where they were mounted onto slides and then baked overnight at 60oC. 
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Table 2.5- Tissue processing sequence for embedding tissues in paraffin 

 

Solution Incubation Period

70% Ethanol 30 min

95% Ethanol 30 min

100% Ethanol 30 min

100% Ethanol 30 min

100% Ethanol 45 min

100% Ethanol 45 min

100% Ethanol 60 min

Xylene 30 min

Xylene 30 min

Xylene 30 min

Paraffin wax 30 min

Paraffin wax 45 min

Paraffin wax 45 min
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2.17.2 Elastin staining 

Elastin van Gieson (EVG) staining was performed to visualize the elastic lamina 

and facilitate neointimal measurements. Briefly, paraffin was removed from the 

tissue sections by immersion in HistoClear (Fisher Scientific Ltd, Leicestershire, 

UK) for 10 minutes (changed to fresh HistoClear after 5 minutes) and rehydrated 

through an alcohol gradient of 100%, 95% and 70% ethanol for 5 minutes each 

and washed in distilled water for 5 minutes. Tissue sections were oxidized by 

incubation with 0.5% (w/v) potassium permanganate for 10 minutes, washed in 

running tap water for 3 minutes followed by rinsing in dH2O for 30 sec. Sections 

were decolourised by placing in 1% (w/v) oxalic acid for 10 minutes, running tap 

water for 2 minutes and dH2O for 30 sec. Next, sections were immersed in 70% 

ethanol, and incubated for 3 hours with Miller’s elastin stain (VWR Chemicals, 

Leicestershire, UK) which stains elastin fibres black. To remove excess stain 

from the slide, sections were washed by dipping 7 times in 70% ethanol then 

dH2O for 5 minutes. Sections were counterstained with Van Gieson solution (0.1% 

acid fuchsin in saturated picric acid), which stains collagen red and muscle and 

cytoplasm yellow, for 10 minutes. Slides were dried at 60oC for 30 minutes and 

then rinsed in 100% ethanol for 10 minutes (changed to fresh ethanol after 5 

minutes). Slides were immersed in HistoClear for 10 minutes (changed to fresh 

HistoClear after 5 minutes) before being mounted with glass cover slips using 

DPX non-aqueous mounting medium. Sections were photographed using QCapture 

Pro 6.0 software and analysed using Image-Pro® Analyser 7.0 software (Media 

Cybernetics, Marlow, UK).  

2.17.3 Picrosirius red staining 

Picrosirius red staining was performed in order to visualise the collagen content 

of the injured vessels. Tissue sections were deparaffinised and rehydrated as 

described in section 2.17.2 and then placed in distilled water for 5 minutes. 

Weigert’s Haematoxylin was prepared by mixing equal parts Solution A (1% (v/v) 

haematoxylin I ethanol) and Solution B (ferric chloride 1.2% (w/v) and 1% (v/v) 

hydrochloric acid) and used to stain the nuclei for 10 minutes at room 

temperature. Slides were washed in running tap water for 10 minutes and 

incubated in 0.1% picrosirius red solution (0.1% (w/v) Sirius red F3B in saturated 

picric acid) for 90 minutes under dark conditions at room temperature. Slides 
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were then washed in acidified water (0.01N HCL (v/v) in distilled water) twice 

for 5 minutes each wash. Any remaining moisture was removed by vigorous 

shaking and then slides were dehydrated through an alcohol gradient of 70%, 90% 

and 100% ethanol for 5 minutes each. Slides were then immersed in Histoclear 

for 5 minutes and mounted as described in section 2.17.3.  

2.17.4 Immunohistochemistry 

Tissue sections were deparaffinised and rehydrated as described in section 

2.17.2 and then washed in running tap water for 5 minutes. Following 

rehydration heat induced antigen retrieval was performed by incubating sections 

in boiling 10 mM sodium citrate buffer pH 6.0 for 20 minutes. Sections were 

cooled by incubation at room temperature for 30 minutes followed by immersion 

in running tap water for 10 minutes. To block endogenous peroxidase activity 

slides were incubated in 20% (v/v) H2O2 in methanol for 30 minutes. Slides were 

then washed twice, 5 minutes each, in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.4). To reduce non-specific background staining 

sections were blocked using 20% (v/v) of the appropriate serum (all Vector Labs, 

Peterborough, UK) (Table 2.6) in PBS for 30 minutes at room temperature in a 

humidified chamber. Sections were then incubated in a humidified chamber with 

the primary antibody or with an equal concentration of isotype matched IgG non 

immune control (for primary antibodies whose host species is rabbit, normal 

rabbit IgG (Invitrogen, product number 10500c) was used, and for antibodies 

whose host species is rat, normal rat IgG (Invitrogen, product number 10700) was 

used) diluted in 2% blocking serum for 1 hour at room temperature or 4ºC 

overnight (Table 2.6).  This was the case for all antibodies outlined in Table 2.6 

with the exception of the Ang-(1-7) antibody as the concentration of this 

antibody was not provided by the manufacturer; therefore the correct 

concentration of IgG could not be calculated. In place of an IgG control, sections 

were incubated with PBS. Following incubation with the primary antibody 

sections were washed three times, 5 minutes each, in PBS. Sections were then 

incubated with the appropriate biotinylated secondary antibody diluted in 2% 

blocking buffer for 1 hour at room temperature in a humidified chamber as 

outlined in Table 2.7. Sections were then washed three times, 5 minutes each, 

in PBS followed by incubation with 1:200 (v/v) ExtraVadin®-peroxidase (Sigma) 

to facilitate binding of avidin (contained within the ExtraAvadin®-peroxidase) to 
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the biotinylated secondary antibody. Sections were then washed three times, 5 

minutes each, in PBS and the antigen detected using 3, 3’-diaminobenzidine 

(DAB) chomagen (Vector Laboratories) which produces a brown precipitate in the 

presence of peroxidase enzyme. Sections were incubated with DAB for 2-5 

minutes and placed in distilled water to neutralise the reaction. The nuclei were 

then counterstained with Mayer’s haematoxylin for 1 minute. Slides were then 

washed in running water for 5 minutes and then dehydrated and mounted as 

described in section 2.17.2. Sections were photographed using QCapture Pro 6.0 

software and analysed using Image J software. 

2.17.4.1 α-SMA 

Detection of α-SMA was performed using the VECTASTAIN® Elite ABC Kit 

(Universal) (Vector Labs) according to manufacturer’s instructions. Sections were 

deparaffinised and rehydrated as described in section 2.17.2 and then washed in 

distilled water for 5 minutes. Endogenous peroxidase activity was quenched by 

incubating slides in 20% hydrogen peroxidase for 30 minutes at room 

temperature. The sections were then blocked for 1 hr at room temperature in a 

humidified chamber with 1% (v/v) blocking serum (normal horse serum) in PBS. 

The sections were then incubated with primary antibody (Table 2.6) or an equal 

concentration of isotype matched rabbit IgG non immune control (Invitrogen) 

diluted in PBS 2% normal horse serum, for 1 hour at room temperature in a 

humidified chamber. Sections were washed three times, 5 minutes each, to 

remove any residual unbound primary antibody. Biotinylated horse anti-rabbit 

secondary antibody diluted 1 in 50 in 2% blocking serum was incubated with 

sections for 30 minutes at room temperature. VECTASTAIN® Elite avidin 

biotinylated enzyme complex (ABC), which binds to the biotin of the secondary 

antibody, was prepared by adding 2 drops reagent A and 2 drops reagent B to 5 

mL PBS and incubated for 30 minutes. Sections were washed three times, 5 

minutes each, and then incubated with the ABC complex for 30 minutes at room 

temperature. DAB detection and counterstaining of nuclei was performed as 

described in section 2.17.4 and then tissue sections were rehydrated and 

mounted as described in sections 2.17.2. 
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2.17.4.2 Detection of biotinylated Ang-(1-9) 

A custom made biotinylated version of Ang-(1-9) was used to confirm delivery of 

the peptides to the vessel via Pluronic Gel. As the biotin was already bound to 

the peptide no primary or secondary antibodies were required to detect peptide 

expression. To visualise biotin-labelled Ang-(1-9) sections were first 

deparaffinised and rehydrated as described in section 2.16.2. Heat induced 

antigen retrieval and quenching of endogenous peroxidase was performed as 

described in section 2.16.4. Sections were then incubated with ExtrAvadin 

peroxidase, the peptide detected using DAB and nuclei counterstained as 

described in section 2.17.4. Finally, tissue sections were then rehydrated and 

mounted as described in section 2.17.2. 

2.18 Statistical analysis 

Data are shown as mean ± standard error of the mean (S.E.M) and qRT-PCR data 

expressed as RQ ± RQmax of experiments which were repeated on at least 3 

seperate occasions using cells isolated from different patient samples, unless 

otherwise stated. Within each experimental repeat, migration assays included 9 

technical replicates, proliferation assays included 5 technical replicates, and 

western immunoblotting included 2 technical replicates. For each experiment 

the mean of the technical replicates was calculated and this value was used to 

generate the mean and S.E.M of the biological replicates. Within each 

experimental repeat, qRT-PCR included 3 technical replicates. The mean dCT of 

the technical replicates was calculated for each experiment and this value was 

used to generate the RQ and RQmax of the biological replicates. 

A power calculation was performed to assess the required group size for the in 

vivo studies. Using data with analogous experimental protocols, 8 mice per group 

gives 80% power at 5% significance level to detect a difference in neointimal 

area of at least 7.2 x 103 µm2 assuming a within group standard deviation of 3.55 

x 103 µm2 (Zimmerman et al, 2004). Therefore, with the exception of 

optimisation of peptide delivery via Pluronic gel, all in vivo experiments were 

performed with 8 animals per group and studies were blinded in advance by an 

independent researcher.  
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Statistical analysis was performed using GraphPad Prism software (California, 

USA). Unpaired students t-test was used when comparing two experimental 

groups. When more than two groups were compared, one way ANOVA (analysis of 

variance) was performed with Tukeys post-hoc correction for multiple 

comparisons applied. In all cases a p value of <0.05 was accepted as statistical 

significance. 
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Table 2.6 List of primary antibodies used in immunohistochemistry 

 

Protein 
Host 

species 
Concentration Dilution 

Incubation 
Period 

Company 
(Catalogue 

number, clone 
ID) 

Blocking 
Serum 

α-SMA Rabbit 0. 2 mg/mL 1:75 
1 hr at room 
temperature 

Abcam 
(ab5694) 

Normal 
Horse 

CD31 Rat 0.2 mg/mL 1:20 
Overnight at 

4°C 

Dianova 
(DIA-310, 

SZ31) 

Normal 
rabbit 

MAC-2 Rat 1 mg/mL 1:5000 
Overnight at 

4°C 

Cedarlane 
(CL8942AP, 

M3/38) 

Normal 
rabbit 

PCNA Rabbit 0.2 mg/mL 1:200 
Overnight at 

4°C 
Abcam, 

(Ab2426) 
Normal 

goat 

Active 
caspase 

Rabbit 0.2 mg/mL 1:50 
Overnight at 

4°C 
Abcam 

(ab2302) 
Normal 

goat 

Ang-(1-7) Rabbit n/a 1:100 
1 hr at room 
temperature 

Phoenix 
(H-002-24) 

Normal 
goat 

 
 

Table 2.7Secondary antibodies used in immunohistochemistry 

 

Protein Secondary  Antibody Concentration Dilution 
Company(Catalogue 

number) 

α-SMA 
Biotinylated Universal 
Antibody Horse anti 

rabbit IgG 
1.05 mg/mL 1:50 

Vector Labs 
(BA-1400) 

CD31 
Biotinylated rabbit 

anti rat IgG 
1.5 mg/mL 1:200 

Vector Labs 
(BA-4001) 

MAC-2 
Biotinylated rabbit 

anti rat IgG 
1.5 mg/mL 1:200 

Vector Labs 
(BA-4001) 

PCNA 
Biotinylated goat anti 

rabbit IgG 
1.5 mg/mL 1:200 

Vector Labs 
(BA-1000) 

Active 
caspase 

Biotinylated goat anti 
rabbit IgG 

1.5 mg/mL 1:200 
Vector Labs 
(BA-1000) 

Ang-(1-7) 
Biotinylated goat anti 

rabbit IgG 
1.5 mg/mL 1:200 

Vector Labs 
(BA-1000) 



 
 

 

 

 

 

 

 

 

Chapter 3 

The effects of Ang-(1-7) and Ang-(1-9) on 
HSVSMC proliferation and migration 
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3.1 Introduction 

Within the vasculature, VSMC in the medial layer normally exist in a quiescent 

contractile state, responding to various vasoactive substances such as Ang II, 

endothelin-1 and NO to regulate vascular tone. However, during states of 

vascular disease or injury, medial VSMC undergo phenotypic switching from the 

quiescent state to a synthetic state (Campbell and Campbell, 1994). This occurs 

in response to numerous stimuli involved in the pathogenesis of vascular 

remodelling, including growth factors such as Ang II and PDGF and pro-

inflammatory cytokines such as IL-1, IL-6, and TNF-α (reviewed by (Schwartz et 

al., 1990, Touyz and Schiffrin, 2000, Ross, 1993). The synthetic VSMC largely 

contribute to the progression and development of atherosclerosis and neointimal 

formation following stent implantation and vein grafting due to their ability to 

migrate and proliferate more readily than their quiescent counterparts. 

Proliferation of synthetic VSMC occurs through a regulated series of cell-cycle 

events (Pardee, 1989, Sherr, 1994a, Elledge, 1996). Under normal conditions 

quiescent VSMC are maintained in G0. After vessel injury, VSMC enter a gap 

phase (G1) in the cell cycle, leading to the production of various factors 

necessary for DNA replication in the subsequent synthetic phase (S). After S 

phase, the cells enter another gap phase (G2), when proteins are synthesized for 

mitosis (M phase). Restriction points at the G1-to-S and G2-to-M junctions ensure 

orderly progression through the cell cycle (Pardee, 1989, Sherr, 1994a, Elledge, 

1996). Growth factors, such as Ang II, PDGF, and basic fibroblast growth factor 

(bFGF), stimulate cells to enter the cell cycle and propel them to reach the 

restriction point in the late G1 phase. Cell cycle progression from the G2 phase 

to the M phase does not require further growth factor stimulation. On binding to 

their respective cell surface tyrosine kinase receptors, growth factors trigger 

cell cycle entry by transactivating nuclear factors such as c-fos and c-myc (Marx 

et al., 2011). These nuclear factors act as transcriptional factors which 

coordinate the expression and activity of a range regulatory proteins, including 

cyclins and cyclin-dependent kinases (CDK) (Sherr et al., 1994). Cyclins and their 

respective CDK form distinct complexes and are positive regulators of cell cycle 

progression. For example, CDK phosphorylation of the retinoblastoma gene 

product (Rb) at the R point at G1-S junction is an important step in the 

progression through the cell cycle to enable Rb to bind and inactivate the 
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transcription factor E2F to maintaining the cell in a quiescent state (Sherr, 

1994b). Phosphorylation of Rb in late G1 releases E2F, which in turn enhances 

the expression of genes encoding regulatory proteins necessary for cell cycle 

progression through S, G2, and M phases (DeGregori et al., 1995).  

Similarly, the process of VSMC migration is well defined and has been reviewed 

extensively (Gerthoffer, 2007, Schwartz, 1997, Abedi and Zachary, 1995). In the 

non-injured vessel, VSMC are non-migratory because of a combination of several 

factors including the relative absence of stimulatory factors, their quiescence 

from a proliferative standpoint, and because the matrix is highly adhesive 

(Gerthoffer, 2007). There are many pro-migratory molecules, including peptide 

growth factors, [such as Ang II, bFGF, and PDGF (Sato et al., 1991, Grotendorst 

et al., 1981, Jackson et al., 1993, Bell and Madri, 1990)], cytokines (such as IL-

1β, IL-6 and TNF-α), and ECM components, [such as collagen, fibronectin and 

osteopontin (Sibinga et al., 1997, Nelson et al., 1996, Liaw et al., 1994)]. Blood 

flow, sheer stress, and matrix stiffness can also affect the migration of VSMC 

(Ward et al., 2001, Li et al., 2003, Peyton and Putnam, 2005). VSMC migration 

begins with the stimulation of cell surface receptors that activate signal 

transduction pathways, triggering remodelling of the cytoskeleton, changes in 

their adhesiveness to the matrix, and activation of the motor proteins 

(Gerthoffer, 2007). VSMC extend lamellipodia toward the stimulus through actin 

polymerization (Gerthoffer, 2007). Focal contacts form just behind the leading 

edge to increase adhesion of the cell membrane to the matrix, and degradation 

of these focal contacts at the trailing edge is necessary for release of the cell 

from the matrix and therefore cell migration. The actin cytoskeleton is 

regulated by numerous signalling pathways and molecules, including trimeric G 

proteins, small G proteins, lipid kinases, Ca2+-dependent kinases, Rho kinase, 

and MAPK (Gerthoffer, 2007, Graf et al., 1997, Noma et al., 2006).  

Ang II is a powerful mitogen and is known to play an important role in VSMC 

proliferation and migration in vascular remodelling. One of the most well 

documented pathways involved in Ang II mediated VSMC migration and 

proliferation is activation of MAPK signalling, partly due to the fact that Ang II 

activates the MAPK signalling pathway at various intracellular levels. For 

example, Ang II directly stimulates tyrosine and threonine phosphorylation of 

ERK1/2, JNK and p38 MAPK in cultured VSMC from rat, mouse, rabbit and human 
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(Schieffer et al., 1996, Epstein et al., 1997, Touyz et al., 1999a, Xu et al., 1996, 

Lee et al., 2007, Kyaw et al., 2004, Yang et al., 2005, Mugabe et al., 2010). 

Furthermore, Ang II stimulates phosphorylation of various signalling molecules 

upstream from ERK1/2 such as Ras, Raf, Shc, Src and Pyk2, and it increases 

activity of MEK kinase (Eguchi et al., 1996, Liao et al., 1996, Griendling et al., 

1997, Touyz et al., 1999d). Ang II has also been shown to promote VSMC 

proliferation and migration through expression of various early response genes 

such as c-fos, c-jun and c-myc (Naftilan et al., 1989b, Lyall et al., 1992). 

Expression of these early response genes leads to the production of growth 

factors including PDGF, EGF, TGF-β and bFGF that are involved in Ang II 

mediated-VSMC proliferation and migration [reviewed in (Touyz and Berry, 

2002)].  

In addition to activation of MAPK signalling, Ang II has also been demonstrated to 

promote VSMC migration through activation of the FAK-dependent signalling 

pathway (Leduc and Meloche, 1995). In VSMC, FAK associates with paxillin and 

talin, and both FAK and paxillin can bind to the cytoplasmic tail of integrins, key 

molecules involved in attachment of the cell to the ECM (Leduc and Meloche, 

1995, Chen et al., 1995). Ang II induced activation of FAK results in its 

translocation to sites of focal adhesion within the ECM and phosphorylation of 

paxillin and talin, resulting in VSMC migration (Leduc and Meloche, 1995, Chen 

et al., 1995). While the upstream signalling pathways involved in Ang II mediated 

FAK activation are unknown, it has been suggested that Rho GTPases may play 

an important role (Rozengurt, 1995, Aspenstrom, 1999). Another tyrosine kinase 

involved in Ang II mediated VSMC migration is Pyk2 (Murasawa et al., 1998). Ang 

II-mediated stimulation of the AT1R results in an increase in intracellular calcium 

concentration, which in turn activates c-Src, leading to activation of Pyk2, which 

then promotes increased ERK activity, a key process in both VSMC migration and 

proliferation (Murasawa et al., 1998, Eguchi et al., 1999).  

Ang-(1-7) signalling via Mas is widely accepted to oppose the effects of Ang II via 

the AT1R, and this is also the case in VSMC proliferation (Freeman et al., 1996, 

Tallant et al., 1999, Tallant and Clark, 2003, Zhang et al., 2010b). Ang-(1-7) has 

been shown to exert anti-proliferative effects in VSMC via two main pathways; 

the first being through inhibition of MAPK signalling pathways (Zhang et al., 

2010b, Tallant and Clark, 2003) and the second through release of prostaglandins 
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such as prostacyclin (PGI2), resulting in increased cAMP levels (Jaiswal et al., 

1993b). The first study to identify a direct anti-proliferative role of Ang-(1-7) 

reported inhibition of proliferation of rat aortic SMC induced by Ang II, FCS or 

PDGF (Freeman et al., 1996). This anti-proliferative effect was unaltered by 

antagonism of either the AT1R or AT2R and, in the absence of identification of 

Mas at the time, it was concluded that an unknown receptor was responsible 

(Freeman et al., 1996). These findings were confirmed in a later study however, 

it was also established that the effect of Ang-(1-7) was blocked by D-Ala7-Ang-

(1-7) (A779), now widely accepted to be a Mas antagonist, suggesting Ang-(1-7) 

inhibits VSMC proliferation via Mas (Tallant et al., 1999).  

Further studies provided a detailed outline of various signalling pathways 

involved in the anti-proliferative effects of Ang-(1-7) in rat VSMC (Tallant and 

Clark, 2003). First, Ang-(1-7) blocked Ang II- and PDGF-induced activation of 

ERK1/2 signalling (Tallant and Clark, 2003). Inhibition of ERK1/2 signalling has 

also been demonstrated to be important in the anti-proliferative effects of Ang-

(1-7) in response to Ang II in mouse VSMC (Zhang et al., 2010b). However, the 

upstream mechanisms of Ang-(1-7) mediated inhibition of ERK1/2 have still to be 

established.  

Ang-(1-7) has been demonstrated to stimulate PGI2 release from VSMC (Jaiswal 

et al., 1993a, Jaiswal et al., 1993b, Muthalif et al., 1998, Tallant and Clark, 

2003), a prostaglandin which is widely accepted to prevent VSMC proliferation 

(Uehara et al., 1988, Morisaki et al., 1988). The anti-proliferative effect of Ang-

(1-7) in response to Ang II and PDGF was blocked by indomethacin, a cyclo-

oxygenase (COX) inhibitor that blocks prostaglandin production, suggesting that 

COX mediated production of prostaglandins is an important signalling cascade 

involved in the anti-proliferative effects of Ang-(1-7) in VSMC (Tallant and Clark, 

2003, Muthalif et al., 1998). 

Furthermore, Ang-(1-7) has been demonstrated to increase the VSMC content of 

cAMP to block serum-induced VSMC proliferation, an effect blocked by Rp-

cAMPS, an inhibitor of the cAMP-dependent protein kinase (Tallant and Clark, 

2003). Activated PGI2 receptors on VSMC stimulate adenylate cyclase to increase 

intracellular cAMP levels (Garg and Hassid, 1989), and as Ang-(1-7) results in an 

increase in both PGI2 and intracellular cAMP it is possible that these two 
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signalling events are part of the same pathway. For example, Ang-(1-7) 

mediated upregulation of PGI2 leads to activation of PGI2 receptors and thereby 

increased production of cAMP (Tallant and Clark, 2003). 

In comparison to its effects on VSMC proliferation, there is less known about the 

effects of Ang-(1-7) in VSMC migration and the signalling mechanisms involved. 

An anti-migratory effect for Ang-(1-7) has been demonstrated in rat aortic VSMC, 

where Ang-(1-7) directly inhibits Ang-II induced VSMC migration (Zhang et al., 

2010b). Through the use of the pharmacological antagonists losartan and A779, 

which block the AT1R and Mas, respectively, it was confirmed that the anti-

migratory effects of Ang-(1-7) were mediated via Mas (Zhang et al., 2010b). 

Furthermore, it was shown that Ang-(1-7) inhibits Ang II induced ERK1/2 

phosphorylation, providing evidence of a potential signalling pathway involved in 

the effects of Ang-(1-7) in VSMC migration (Zhang et al., 2010b).  

Comparatively, there is little known about the role of Ang-(1-9) in the vascular 

function or remodelling. Ang-(1-9) has been reported to signal via the AT2R, and 

while the signalling mechanisms employed by this receptor are currently poorly 

defined, the AT2R has been linked to reduced VSMC proliferation in vitro. For 

example, adenoviral-mediated over expression of the AT2R in rat VSMC resulted 

in a reduction in Ang II mediated VSMC proliferation via the AT1R, an effect 

which was linked to reduced MAPK activity (Nakajima et al., 1995, Stoll et al., 

1995). While further work is required to assess the Ang-(1-9)/AT2R interaction, 

these findings indicate that the AT2R may oppose the effects of Ang II in the 

VSMC. 

3.1.1 The role of microRNAs in Ang II-induced VSMC proliferation 
and migration 

In recent years it has also been suggested that Ang II may mediate a number of 

effects in the cardiovascular system through changes in expression levels of 

microRNAs (miRNA) (Zhu et al., 2011, Jin et al., 2012, Eskildsen et al., 2013). 

miRNAs are small non-coding RNA molecules 20~22 nucleotides in length that 

target the 3′-untranslated region (UTR) of mRNA to negatively regulate gene 

expression through inhibition of mRNA translation and/or mRNA degradation (van 

Rooij and Olson, 2007, Bartel, 2009). miRNA biosynthesis and maturation begins 
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with transcription of the primary miRNA (pri-miRNA) by RNA polymerase II (van 

Rooij and Olson, 2007). The pri-miRNA is then processed by the Rnase III enzyme 

Drosha to form the precursor miRNA (pre-miRNA), a ~60-nucleotide stem loop 

molecule (van Rooij and Olson, 2007, Bartel, 2009). Pre-miRNAs are then 

transported from the cell nucleus to the cytoplasm via exportin5, and once in 

the cytoplasm they are cleaved by the endonuclease DICER to produce a miRNA 

duplex (van Rooij and Olson, 2007, Bartel, 2009). This duplex is then bound to 

argonaute 2 (Ago 2) and the mature miRNA formed (Meister et al., 2004, Liu et 

al., 2004b). The mature miRNA is then incorporated into the RNA-induced 

silencing complex (RISC) leading to interaction with target mRNAs, resulting in 

regulation of a number of genes under a diverse range of patho/physiological 

conditions (Bartel, 2009). Importantly, various miRNAs have been implicated in 

the pathogenesis of vascular disease (Robinson and Baker, 2012). For example, 

miR-143 and miR-145 have been demonstrated to regulate VSMC differentiation 

and contractility and have been linked to reduced neointimal formation 

following vascular injury (Cordes et al., 2009, Boettger et al., 2009). 

Furthermore, miR-21 plays an important role in vascular remodelling and has 

been demonstrated to be elevated in human, pig and mouse models of vein graft 

failure (McDonald et al., 2013). Additionally, miR-133 has been shown to 

negatively regulate VSMC proliferation both in vitro and in vivo (Torella et al., 

2011).  

Recently, a role for miRNAs in vascular Ang II signalling has been identified. 

Through the use of small RNA deep sequencing it was demonstrated that Ang II 

stimulation of rat aortic VSMC led to increased expression of miR-132 and miR-

212 in a time and concentration dependent manner via the AT1R (Jin et al., 

2012). miR-132 and miR-212 have been shown to exist in a ‘cluster’, 

characterised by their close proximity to each other in the genome and the fact 

that they are transcribed together under the regulation of cAMP response 

element binding protein (CREB), a protein which is itself regulated by Ang II 

(Neyses et al., 1993, Jeppesen et al., 2011).The miR-132/-212 cluster has 

additionally been shown to be important in the development of blood vessels, 

mammary glands and neurons (Anand et al., 2010, Ucar et al., 2010, Wanet et 

al., 2012). Through the use of various target prediction software packages it was 

revealed that a number of predicted targets of Ang II-regulated miRNAs within 
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rat aortic VSMC were involved in proliferation and migration, including 

phosphatase and tensin homologue (PTEN), MCP-1, p120 Ras GTPase-activating 

protein 1(RASA1) (Jin et al., 2012). These targets were validated by Jin et al in 

the rat VSMC and it was found that Ang II mediated increase in mirR-132/-212 

resulted in decreased expression in PTEN and RASA1, leading to an increase in 

MCP-1 and phosphorylation of CREB, respectively (Jin et al., 2012). PTEN is a 

lipid and protein phosphatase which primarily acts to dephosphorylate 

phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby inhibiting the actions of 

PI3K (Carracedo and Pandolfi, 2008). This second messenger is important for Akt 

activation, which promotes cell survival and growth, therefore PTEN activity 

reduces activation of this pathway leading to reduced cell proliferation (Huang 

and Kontos, 2002). Overexpression of PTEN has previously been reported to 

prevent proliferation and migration of VSMC (Huang and Kontos, 2002). MCP-1 is 

a pro-inflammatory cytokine with a key role in the progression and development 

of atherosclerosis, largely through promoting migration of sub-endothelial 

monocytes to the vessel wall and VSMC migration from the media to the 

neointima (Nelken et al., 1991, Yu et al., 1992, Sung et al., 2001).  MCP-1 has 

also been demonstrated to induce proliferation and migration of both human and 

rabbit VSMC (Viedt et al., 2002, Ma et al., 2007). RASA1 functions to increase 

the GTPase activity of Ras, which is active when guanosine triphosphate (GTP) is 

bound, resulting in reduced activity of Ras and inhibition of various downstream 

signal transduction pathways that have been reported to promote VSMC 

migration and proliferation, including MAPK signalling (Pamonsinlapatham et al., 

2009).  

Furthermore, in Ang II-induced hypertension in the rat, miR-132 and miR-212 

were upregulated in the heart, aorta and kidney in an AT1R dependent manner 

(Eskildsen et al., 2013). Additionally, miR-132 and miR-212 expression has been 

reported to be reduced in mammary arteries from patients who have undergone 

coronary artery bypass surgery and treated with AT1R antagonists (Eskildsen et 

al., 2013).  

In comparison to Ang II, there is very little known about the counter-regulatory 

axis of the RAS and regulation of miRNAs, and a role for Ang-(1-9) in particular 

has yet to be identified. Ang-(1-7) has been demonstrated to exert protective 

effects in vascular endothelial cells through interaction with miR-146a (Wang et 
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al., 2013). The presence of plasma glycated albumin has been associated with 

vascular dysfunction in diabetes, partly through increased IL-6 expression on 

endothelial cells (Lu et al., 2009). In human coronary artery endothelial cells, 

Ang-(1-7) blocked glycated albumin-stimulated miR-146a down-regulation and 

the resultant increase in IL-6 expression, identifying a novel protective 

mechanism for Ang-(1-7) in diabetes (Wang et al., 2013).  
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3.2 Aims 

The aims of this chapter were: 

 To establish the optimal conditions for proliferation of HSVSMC and assess 

the effect of Ang II, Ang-(1-7) and Ang-(1-9), and the involvement of the 

AT1R, AT2R and Mas, in this setting. 

 To assess the effect of Ang II, Ang-(1-7) and Ang-(1-9), and the 

involvement of the AT1R, AT2R and Mas, on HSVSMC migration. 

 To investigate the mechanisms involved in Ang-(1-7) and Ang-(1-9)-

mediated inhibition of Ang II-induced migration. 

 To assess the involvement of Ang II mediated regulation of microRNA-

132/-212 in HSVSMC migration. 
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3.3 Results 

3.3.1 AT1R, AT2R and Mas expression in primary HSVSMC 

Prior to investigating the effects of Ang II, Ang-(1-7) and Ang-(1-9) in HSVSMC, it 

was first confirmed that the AT1R, AT2R and Mas were expressed in HSVSMC via 

qRT-PCR (Figure 3.1 A). Results were expressed as the average delta Ct (dCt) ± 

S.E.M, relative to the endogenous housekeeping gene GAPDH, therefore a 

smaller dCt value was indicative of increased expression. The AT1R was the most 

highly expressed in HSVSMC (dCt 8.6 ± 0.6), followed by Mas (dCt 9.15 ± 0.4) and 

then the AT2R (dCt 10.6 ±0.4). 

Next, it was established whether angiotensin peptides alter receptor expression 

as this may contribute any functional effect observed downstream. Stimulation 

of HSVSMC with Ang II, Ang-(1-7) or Ang-(1-9), alone or in combination, had no 

effect on AT1R, AT2R or Mas expression in comparison to unstimulated control 

HSVSMC (Figure 3.1 B-D), suggesting that the effects of the peptides in HSVSMC 

in this study were not due to alterations in receptor expression levels. 
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Figure 3.1 Expression of AT1R, AT2R and Mas in HSVSMC 
Expression levels of AT1R, AT2R and Mas in HSVSMC was assessed via qRT-PCR using specific 
Taqman probes for each receptor. (A) Receptor expression was confirmed in unstimulated 
HSVSMC and results are expressed as average dCt ±S.E.M, relative to the endogenous 
housekeeping gene GAPDH. The effect of the RAS peptides on (B) AT1R, (C), AT2R and (D) Mas 
was also assessed and results are expressed as RQ to unstimulated control cells. N=3.  
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3.3.2 Assessing the effects of Ang II, Ang-(1-7) and Ang-(1-9) on 
HSVSMC proliferation 

To establish the optimal conditions for HSVSMC proliferation, cells were 

quiesced for 48 hours to arrest them in the resting phase of the cell cycle (Go) 

and then exposed to fresh media containing increasing concentrations of FCS 

(from 0 to 20 % v/v) for 48 hours. HSVSMC proliferation was then assessed using a 

MTS assay. FCS induced HSVSMC proliferation in a concentration dependent 

manner, with concentrations of 5% FCS and above producing a significant 

increase in proliferation in comparison to unstimulated, serum free control cells 

(P<0.05) (Figure 3.2 A). For subsequent proliferation experiments 5% FCS was 

used to induce cell proliferation as this concentration significantly increased 

HSVSMC growth in comparison to control cells without causing over-growth 

within the well. 

To assess whether Ang-(1-7) or Ang-(1-9) blocked HSVSMC proliferation, 

quiescent cells were co-incubated with either Ang-(1-7) or Ang-(1-9) (both 200 

nM) and 5% FCS for 48 hours. As expected, 5% FCS caused a significant increase 

in HSVSMC proliferation in comparison to control cells (Figure 3.2 B). 

Interestingly, Ang-(1-7) and Ang-(1-9) significantly blocked 5% FCS induced 

HSVSMC proliferation to similar levels as control, unstimulated cells (P<0.05 vs. 

5% FCS).  

To investigate if Ang II, Ang-(1-7) or Ang-(1-9) stimulation alone were able to 

induce quiescent HSVSMC to proliferate, each peptide was added individually to 

quiescent HSVSMC in serum free media for 48 hours and then cell proliferation 

assessed. While 5% FCS induced a significant increase in cell proliferation in 

comparison to control cells (P<0.05), no significant difference was observed 

between control cells and cells stimulated with either Ang II, Ang-(1-7) or Ang-

(1-9) (Figure 3.2 C). 
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Figure 3.2 Assessment of the effects of Ang II, Ang-(1-7) and Ang-(1-9) on HSVSMC 
proliferation 
Proliferation of HSVSMC was assessed using the MTS assay. (A)To assess the concentration of 
FCS required to stimulated proliferation, HSVSMC were exposed to media containing increasing 
concentrations of FCS for 48 hours. (B) HSVSMC were incubated with Ang-(1-7) or Ang-(1-9) (200 
nM) and stimulated with 5% FCS for 48 hours to assess the effect of these peptides on 
proliferation. (C) To assess if Ang II, Ang-(1-7) or Ang-(1-9) (200 nM) induce proliferation of 
HSVSMC in the absence of serum, cells were exposed to the peptides in serum free media for 48 
hours; 5% FCS was used as a positive control. N=6. *P<0.05, **P<0.01 vs. control. 
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As both Ang-(1-7) and Ang-(1-9) were found to inhibit serum induced 

proliferation, next the involvement of the AT1R, AT2R and Mas was assessed. 

Cells were incubated with the pharmacological antagonists losartan, PD123,319 

or A779, which block the AT1R, AT2R and Mas, respectively, for 15 minutes prior 

to incubation with either Ang-(1-7) or Ang-(1-9). Cells were then stimulated with 

5% FCS and proliferation assessed at 48 hours. As expected, 5% FCS caused a 

significant increase in HSVSMC proliferation in comparison to control non 

stimulated cells (P<0.05) (Figure 3.3). However, neither losartan, A779 nor 

PD123,319 had any effect on basal non-serum stimulated HSVSMC proliferation 

(P>0.05 vs. control) (Figure 3.3 A).  

Next, the receptor through which Ang-(1-9) elicits its effects was assessed. As 

expected, Ang-(1-9) significantly reduced 5% FCS induced HSVSMC proliferation 

to similar levels as control (Figure 3.3 B). Importantly, this anti-proliferative 

effect was not altered by pre-incubation with losartan or A779 (P>0.05 vs. Ang-

(1-9) + 5% FCS), but was blocked by PD123,319 (P<0.05 vs. Ang-(1-9) + 5% FCS) 

(Figure 3.3 B), suggesting that in this setting Ang-(1-9) acts via the AT2R. Ang-(1-

7) significantly reduced 5% FCS induced HSVSMC proliferation, resulting in a 

similar level of proliferation as control cells (Figure 3.3 C). This anti-

proliferative effect was un-altered by pre-incubation with losartan or PD123,319 

(P>0.05 vs. Ang-(1-7) + 5% FCS), but was inhibited by A779 (P<0.05 vs. Ang-(1-7) 

+ 5% FCS), indicating that Ang-(1-7) acts via Mas (Figure 3.3 C). 
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Figure 3.3 The role of AT1R, AT2R and Mas in the anti-proliferative effects of Ang-(1-9) and 
Ang-(1-7) in HSVSMC.  
HSVSMC proliferation was assessed at 48 hours post stimulation with 5% FCS using the MTS 
assay. To assess the role of the RAS receptors in HSVSMC proliferation, cells were incubated with 
the pharmacological antagonists losartan (10µM), PD123,319 (500 nM) or A779 (100 µM) for 15 
minutes prior to stimulation with Ang-(1-9) or Ang-(1-7) (200nM), and then 5% FCS . (A) It was first 
established if the antagonists influence HSVSMC proliferation. The effect of losartan, PD123,319 
and A779 on the anti-proliferate effects of (B) Ang-(1-9) and (C) Ang-(1-7) was then assessed. All 
experimental conditions were included in replicate experiments and data has been separated into 3 
panels due to the large number of groups; therefore, the values for control and 5% FCS are the 
same in all three panels. N=3. *P<0.05, **P<0.01 vs control; 
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3.3.3 Assessing the effects of Ang II, Ang-(1-7) and Ang-(1-9) in 
HSVSMC migration.  

As VSMC migration is also largely involved in vascular remodelling, the effect of 

the RAS peptides on HSVSMC migration was assessed using a scratch assay. A 

confluent monolayer of cells was generated and then quiesced in serum free 

media for 48 hours. A wound in the cell monolayer was created with a pipette 

tip and cells were stimulated, in serum free media, with Ang II, Ang-(1-7) or 

Ang-(1-9) alone or in combination (200 nM each peptide). As a positive control 

for migration, cells were exposed to complete cell culture media containing 15% 

FCS for the duration of the experiment. Images of the scratches were taken at 

various time points, up to 30 hours so as to avoid induction of proliferation at 

later time points, and the reduction in scratch size was measured over time as a 

measure of cell migration (Figure 3.4 A).  

Migration of HSVSMC over the full time course was quantified as a percentage 

reduction in scratch width at each time point relative to the 0 hours 

measurements (Figure 3.4 B). There was an increase in control cell migration 

over time resulting in a 53.2 ± 4.7% reduction in scratch size by 30 hours. In 

serum stimulated cells, 15% FCS induced a significant increase in HSVSMC 

migration in comparison to control cells at each time point measured and by 24 

hours the wound had completely closed (P<0.01 vs. control) (Figure 3.4 B). 

Similarly, Ang II (200nM) induced a significant increase in VSMC migration from 

12 hours post scratch in comparison to control cells and at each time point 

thereafter (P<0.01); by 24 hours the wound had closed (98.23 ± 1.2% reduction in 

scratch size) (Figure 3.4 B). Ang-(1-9) and Ang-(1-7) (200nM) resulted in an 

increase in migration of HSVSMC over time at a rate similar to control cells and 

resulted in a 52.3 ± 3.5% and 53.2 ± 5.3% reduction in scratch size by 30 hours, 

respectively (Figure 3.4 B). Ang-(1-9) and Ang-(1-7) both significantly inhibited 

Ang II-induced HSVSMC migration, producing similar levels of migration as 

control cells, resulting in a 51.4 ± 4.7% and 49.6 ± 5.5% reduction in scratch size, 

respectively (P>0.05 vs control) (Figure 3.4 B). 
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Figure 3.4 The effect of Ang II, Ang-(1-7) and Ang-(1-9) on HSVSMC migration. 
HSVSMC migration was assessed using a scratch assay. Following a 48 hours quiescent period in serum free media, 3 scratches were induced in the cell monolayer 
in each well. Cells were stimulated with Ang II, Ang-(1-9) or Ang-(1-7) (200nM) alone or in combination in serum free media. Cells stimulated with 15% FCS were used 
as a positive control. Images of the scratch were taken at 0, 6, 12, 24 and 30 hours post scratch and the reduction in scratch size measured over time, as indicated by 
the red arrows. (A) Representative images of scratch at 0 hour and 24 hours. Scale bar = 40 µm. Magnification x10; (B) Migration was quantified as a reduction in 
scratch size (%) relative to 0 hour measurement. N=5.  **P<0.01 vs. control. 
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Based on the finding that Ang-(1-7) and Ang-(1-9) block Ang II induced HSVSMC 

migration, a subsequent set of experiments was performed to investigate the 

involvement of the AT1R, AT2R and Mas. HSVSMC were incubated with losartan 

(10 µM), PD123,319 (500 nM) or A779 (100 µM) for 15 minutes prior to incubation 

with either Ang-(1-7) or Ang-(1-9). Migration was assessed at 24 hours post-

stimulation (Figure 3.5) 

First, it was established if the antagonists themselves had an effect on HSVSMC 

migration by incubating the cells with each antagonist in serum free media. 

While 15% FCS resulted in wound closure at 24 hours (P<0.01 vs control), it was 

found that neither losartan, A779 nor PD123,319 had any effect on HSVSMC 

migration in comparison to control cells (P>0.05 vs. control) (Figure 3.5 A).  

Next the receptor through which Ang II induced migration occurs was assessed. 

Ang II caused a significant increase in HSVSMC migration at 24 hours in 

comparison to control cells (93.8 ± 8.0% vs. 52.8 ± 9.0% migration; P<0.05) which 

was significantly inhibited by losartan (53.3 ± 9.9% migration; P<0.05 vs. Ang II) 

but not PD123, 319 (92.4 ± 10.1% migration) nor A779 (93.2 ± 6.3% migration), 

indicating that Ang II induced migration is achieved via activation of the AT1R 

(Figure 3.5 B).  

As before, Ang–(1-9) significantly inhibited Ang II induced migration to similar 

levels as control cells (47.7 ± 8.9% migration; P<0.05 vs. Ang II) (Figure 3.5 C). 

While losartan and A779 did not alter the anti-migratory effect of Ang-(1-9) 

(52.7 ± 8.1% and 45.4 ± 12.7% migration respectively), PD123,319 blocked the 

inhibitory effects of Ang-(1-9), resulting in near complete wound closure (89.4 ± 

9.3% migration), indicating that Ang-(1-9) mediated inhibition of Ang II-induced 

HSVSMC migration is via the AT2R (Figure 3.5 C).  

Similarly, Ang-(1-7) significantly inhibited Ang II-induced migration to an 

equivalent level to control cells (53.6 ± 10.1% migration; P<0.05 vs. Ang II) 

(Figure 3.5 D). However, the receptor through which Ang-(1-7) acts was found to 

be different to Ang-(1-9) as A779 blocked the anti-migratory effects of Ang-(1-7), 

resulting in near complete wound closure (92.6 ± 5.3% migration), while losartan 

and PD123,319 had no effect (43.4 ± 10.1% and 44.2 ± 9.6% migration 
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respectively), indicating that Ang-(1-7) mediated inhibition of Ang II induced 

HSVSMC migration is via the Mas receptor (Figure 3.5 D). 

 

Figure 3.5 The role of the AT1R, AT2R and Mas in the effects of Ang II, Ang-(1-7) and Ang-(1-
9) on HSVSMC migration 
HSVSMC migration was assessed using a scratch assay. To assess the role of the RAS receptors 
in HSVSMC migration, cells were incubated with the pharmacological antagonists losartan (10µM), 
PD123,319 (500 nM) or A779 (100 µM) for 15 minutes prior to stimulation with Ang-(1-9) or Ang-(1-
7) (200nM). Cells stimulated with 15% FCS were used as a positive control. Images of the scratch 
were taken at 0 and 24 hours post stimulation and migration was quantified as a reduction in 
scratch size (%) relative to 0 hour measurement.  (A) It was first established if the antagonists 
influence HSVSMC migration. The effect of losartan, PD123,319 and A779 on the effects mediated 
by (B) Ang II, (C) Ang-(1-7) and (D) Ang-(1-9) was then assessed. All experimental conditions were 
included in replicate experiments and data has been separated into 4 panels due to the large 
number of groups. N=3. *P<0.05, **P<0.01 vs. control; 

†
P<0.05 vs. Ang II.  
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HSVSMC migration was also assessed using the xCELLigence system to allow for 

real time, automated analysis of migration, and corroboration of the results 

obtained using a traditional scratch assay. HSVSMC were seeded in specialised 

micro-titre plates (E-plates), allowed to adhere to the electrodes and establish a 

confluent monolayer overnight, and then quiesced for 48 hours. A scratch was 

induced in the cell monolayer causing a rapid drop in CI due to the reduced 

electrode coverage and cell migration measured as a change in CI due to 

movement of cells to the wounded area. Cells were stimulated with Ang II alone 

or in combination with Ang-(1-7) or Ang-(1-9) and cells in serum free media 

alone or complete growth medium (15% FCS) were used as control samples. CI 

was normalised at the time of stimulation with Ang II and is expressed relative to 

control cells; this time will hereafter be referred to as 0 hour. 

CI of unstimulated control cells remained constant until 8 hours post stimulation 

and then gradually reduced at a steady rate; however, this reduction in CI is 

minimal and may represent a small degree of cell movement over the 

electrodes. Following stimulation with Ang II or 15% FCS there was an initial 

increase in CI followed by a small dip, then a gradual, steady increase in CI over 

time, indicative of increased cell migration (Figure 3.6 A). Cells exposed to Ang-

(1-7) or Ang-(1-9) prior to stimulation with Ang II produced a similar level and 

pattern of migration to control cells, however, the reduction in CI from 8 hours 

post stimulation was less than that in control cells under these conditions (Figure 

3.6 A). 

The data was quantified as a fold change in normalised CI relative to control 

cells at 24 hours. A significant increase in CI in comparison to control cells was 

observed following stimulation with Ang II (1.9 ± 0.1 fold change in CI) or 15% 

FCS (2.0 ± 0.1 fold change in CI) (P<0.001 vs. control), indicative of enhanced 

HSVSMC migration (Figure 3.6 B). Ang II induced increased CI was significantly 

inhibited by Ang-(1-7) and Ang-(1-9), where a fold change in CI of 1.1 ± 0.1 and 

1.0 ± 0.1 was observed, respectively (Figure 3.6 B).  
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Figure 3.6 Analysis of the effects of Ang II, Ang-(1-7) and Ang-(1-9) on HSVSMC migration 
using the xCELLigence system 
HSVSMC migration was assessed in real time using the xCELLigence system. A scratch assay 
was performed as described in Section 2.5.1. Cells pretreated with Ang-(1-7) or Ang-(1-9) for 30 
minutes prior to stimulation with Ang II (all peptides 200nM). (A) Representative CI trace. Cell index 
(CI) was normalised to control following addition of Ang II and changes in CI monitored over time. 
(B) Migration was quantified as a fold change in normalised CI at 24 hours relative to control. N=3. 
***P<0.01 vs control, 

###
P<0.001 vs Ang II. 
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As in the traditional scratch assay, the involvement of the AT1R, AT2R and Mas in 

HSVSMC migration was also assessed using the xCELLigence system. The scratch 

assay was performed and analysed as described above, except cells were 

incubated with losartan (10 µM), PD123,319 (500 nM) or A779 (100 µM) for 15 

minutes prior to incubation with either Ang-(1-7) or Ang-(1-9).  

The findings from the scratch assay performed on the xCELLigence system were 

in line with the findings from the traditional scratch assay. While 15% FCS 

resulted in increased HSVSMC migration (P<0.001 vs. Control), stimulation of 

cells with losartan, PD123,319 or A779 resulted in a similar pattern and level of 

migration as control cells (losartan 1.0 ± 0.1; PD123,319 1.0 ± 0.1; A779 1.0 ± 

0.1 fold change in CI; P>0.05 vs. control) (Figure 3.7 A). 

Ang II caused a significant increase CI in comparison to control (2.0 ± 0.1 fold 

change in CI; P<0.001 vs. control) and this was significantly inhibited by Ang-(1-

9) (1.30 ± 0.02 fold change in CI; P<0.001 vs. Ang II) (Figure 3.7 B). The effects 

of Ang-(1-9) were unaltered by A779 [1.2 ± 0.1 fold change in CI; P>0.05 vs. Ang 

II + Ang-(1-9)] (Figure 3.7 B). The effects of Ang-(1-9) were blocked by 

PD123,319, resulting in a similar pattern and level of migration as cells 

stimulated with Ang II (1.8 ± 0.1 fold change in CI; P>0.05 vs. Ang II) (Figure 3.7 

B). Together, these findings confirm that Ang-(1-9) acts via the AT2R and not Mas 

to prevent Ang II induced HSVSMC migration.  

Conversely, while Ang-(1-7) significantly inhibited the Ang II induced increase in 

CI (2.0 ± 0.1 vs. 1.1 ± 0.1 fold change in CI; P<0.001 vs. Ang II) its effects were 

unaltered by PD123,319 [1.20 ± 0.1 fold change in CI; P>0.05 vs. Ang II + Ang-(1-

7)] but effectively blocked by A779, resulting in a similar pattern and level of 

migration as cells stimulated with Ang II alone (1.9 ± 0.1 fold change in CI; 

P>0.05 vs Ang II) (Figure 3.7 C). Together these findings corroborated those from 

the traditional scratch assay and demonstrated that Ang-(1-7) acts via Mas to 

block Ang II-induced HSVSMC migration. 

 

  



109 
 

 

Figure 3.7 Analysis of the role of the AT1R, AT2R and Mas in the effects of Ang II, Ang-(1-9) 
and Ang-(1-7) on HSVSMC migration using the xCELLigence system. 
HSVSMC migration was assessed in real time using the xCELLigence system. A scratch assay 
was performed as described in Section 2.5.1. To assess the role of the RAS receptors in HSVSMC 
migration cells were incubated with losartan (10 µM), PD123.319 (500 nM) or A779 (100 µM) for 15 
minutes prior to stimulation with Ang-(1-7) or Ang-(1-9) (200 nM). Cells were then stimulated with 
Ang II 30 minutes later (200nM). Representative traces of CI measurements over time. Migration 
was quantified as a fold change in normalised CI at 24 hours relative to control. All experimental 
conditions were included in replicate experiments and data has been separated into 3 panels due 
to the large number of groups; therefore, the values for control and Ang II are the same in all 
panels. N=3.  ***P<0.001 vs control; 

###
P<0.001 vs. Ang II. 
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3.3.4 Assessment of mechanisms involved in Ang-(1-7) and Ang-
(1-9) inhibition of Ang II induced HSVSMC migration 

In the current data set Ang-(1-7) and Ang-(1-9) have been demonstrated to 

prevent both HSVSMC proliferation and migration in response to FCS and Ang II, 

respectively. As one of the main aims of this thesis is to investigate the 

interaction of Ang II and the counter-regulatory peptides Ang-(1-7) and Ang-(1-9) 

in HSVSMC, it was decided that a more detailed assessment of the mechanisms 

involved in the effects of these peptides in HSVSMC migration would be 

performed, as there is clear modulation of the effects of Ang II by Ang-(1-7) and 

Ang-(1-9) in this setting. 

3.3.4.1 Effect of Ang II, Ang-(1-7) and Ang-(1-9) on ERK phosphorylation in 
HSVSMC 

Ang II via the AT1R activates a number of intracellular signal transduction 

pathways that are linked to long term regulation of VSMC function, such as cell 

growth and migration (reviewed by [(Touyz and Schiffrin, 2000)]). These 

processes are initiated within minutes and involve phosphorylation of a number 

of protein kinases, including MAPK, such as ERK1/2, JNK and p38 MAPK (Xi et al., 

1999, Ohtsu et al., 2005, Lee et al., 2007). Ang II mediated phosphorylation of 

ERK1/2 in particular has been demonstrated to be an important mechanism 

involved in VSMC growth and migration (Xi et al., 1999, Ohtsu et al., 2005, Jiang 

et al., 2008, Shen et al., 2014) and importantly Ang-(1-7) has been 

demonstrated to prevent Ang II induced migration of rat VSMC via inhibition of 

Ang II-mediated phosphorylation of ERK1/2 (Zhang et al., 2010b). However, as a 

role for Ang-(1-7) has yet to be defined in human VSMC migration and the effects 

of Ang-(1-9) on VSMC migration has yet to be explored it was first assessed if 

these peptides block Ang II induced HSVSMC migration through interaction with 

the ERK1/2 pathway.  

To investigate ERK1/2 phosphorylation, quiescent HSVSMC were stimulated with 

Ang II, Ang-(1-7) or Ang-(1-9), alone or in combination (all peptides 200nM) for 5, 

30 or 60 minutes; these time points were chosen as Ang II mediated ERK1/2 

phosphorylation has been demonstrated to be transient, with a peak at 5 

minutes (Eguchi et al., 1996, Touyz et al., 1999b). For ERK1/2, two bands were 

predicted at 42 and 44 kilodalton (kDa) and for GAPDH 1 band of 37kDa. 
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However, on the 30 minutes GAPDH representative blots 3 bands were present; 

this is due to residual detection of ERK1/2 following stripping of the membrane 

as opposed to non specific binding of the GAPDH antibody (Figure 3.8). 

Stimulation of HSVSMC with Ang II for 5 minutes resulted in a significant increase 

in ERK1/2 phosphorylation in comparison to control cells (P<0.05 vs. control) 

(Figure 3.8). This effect of Ang II was transient as no differences in ERK1/2 

phosphorylation were observed at the later time points (30 or 60 minutes). The 

transient Ang II mediated-increase in phosphorylation of ERK1/2 was blocked by 

Ang-(1-9) and Ang-(1-7), as in cells exposed to Ang II alongside either of these 

peptides ERK1/2 phosphorylation was similar to control levels (Figure 3.8). Ang-

(1-7) and Ang-(1-9) alone had no effect on ERK1/2 phosphorylation at 5 minutes, 

indicating that the inhibitory effect on Ang II was not due to Ang-(1-7) or Ang-(1-

9) directly reducing ERK1/2 phosphorylation but due to inhibition of Ang II 

signalling (Figure 3.8). At 30 minutes post stimulation, the RAS peptides, alone 

or in combination had no effect on phosphorylation of ERK1/2, as levels were 

comparable to control cells under all conditions, with the exception of the 

positive control 15% FCS, which was significantly increased in comparison to 

control (P<0.01) (Figure 3.8). In cells stimulated for 60 minutes with Ang II and 

Ang-(1-7), alone or in combination, no difference in ERK1/2 phosphorylation was 

observed in comparison to control (Figure 3.8). However, for Ang-(1-9), ERK1/2 

phosphorylation was significantly elevated in cells stimulated with Ang-(1-9) 

alone and in combination with Ang II for 60 minutes in comparison to control 

cells (P<0.05 vs. control). As ERK1/2 was elevated in cells stimulated with Ang-

(1-9) alone and alongside Ang II, but not in cells stimulated with Ang II alone this 

suggests that the increased ERK1/2 phosphorylation is induced by Ang-(1-9) 

(Figure 3.8). Cells were stimulated with FCS as a positive control and ERK1/2 

phosphorylation was increased at 30 and 60 minutes, but not at 5 minutes, post 

stimulation with FCS (P<0.01 vs control cells) (Figure 3.8). 
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Figure 3.8 Effect of Ang II, Ang-(1-7) and Ang-(1-9) on ERK phosphorylation in HSVSMC. 
Quiescent HSVSMC were stimulated with Ang II, Ang-(1-7) or Ang-(1-9), alone or in combination (all peptides 200nM) for 5, 30 or 60 minutes. Cells in serum free 
media alone or complete growth medium (15% FCS) were used as control samples.  Cells were lysed for protein extraction and then Western immunoblotting 
performed. Expression of phosphorylated ERK1/2 was normalised to expression of the protein loading control GAPDH and quantified as a fold change relative to 
control at each time point. Representative blots shown. N=3. *P<0.05, **P<0.01 vs. control.
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3.3.4.2 Effects of Ang II, Ang-(1-7) and Ang-(1-9) on matrix metalloproteinase 
expression in HSVSMC 

It has been well documented that MMP2 and MMP9 are key endopeptidases 

involved in VSMC migration (Southgate et al., 1996) therefore it was assessed if 

changes in MMP2 and MMP9 were involved. HSVSMC were subjected to a scratch 

assay and cells collected at 24 hours post-stimulation for RNA extraction and 

subsequent cDNA synthesis. Expression of MMP2 and MMP9 was assessed via qRT-

PCR. 

Ang II caused a significant reduction in MMP2 expression (P<0.05 vs. control), an 

effect significantly inhibited by Ang-(1-9) (P<0.01 vs. Ang II) but not Ang-(1-7) 

(Figure 3.9 A). The effect of Ang II was inhibited by losartan (P<0.05 vs. Ang II), 

resulting in similar expression levels to that observed in control cells, suggesting 

that Ang II acts via the AT1R to down-regulate MMP2 expression. Co-incubation of 

PD123,319 partially attenuated the effect of Ang-(1-9) however, while MMP2 

expression was lower than in both unstimulated cells and cells co-stimulated 

with Ang II and Ang-(1-9), this did not reach significance. Cells co-stimulated 

with Ang II and Ang-(1-7) and A779 had similar levels of MMP2 as cells stimulated 

with Ang II alone or alongside Ang-(1-7). 

MMP9 was not detected in control, unstimulated cells and for this reason MMP9 

expression is represented as average dCt and no statistical analysis has been 

performed (Figure 3.9 B). Stimulation of HSVSMC with Ang II results in induction 

of MMP9 expression, an effect blocked by Ang-(1-7) or Ang-(1-9). Similarly, Ang 

II-induced MMP9 expression was prevented by losartan, suggesting that this 

effect was dependent on interaction with the AT1R. The effect of Ang-(1-9) and 

Ang-(1-7) on Ang II induced MMP9 expression was blocked by PD123,319 and 

A779, respectively, as under these conditions MMP9 was detected at similar 

levels to those produced in response to Ang II, suggesting that Ang-(1-9) acts via 

the AT2R while Ang-(1-7) acts via Mas to prevent the effects of Ang II. 
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Figure 3.9 Differential regulation of MMP2 and MMP9 expression by Ang II, Ang-(1-7) and 
Ang-(1-9) in HSVSMC migration. 
A scratch assay was performed in quiescent HSVSMC with 10 scratches induced per well to 
increase the population of migrating cells. Cells exposed to Ang II and Ang-(1-7) or Ang-(1-9) 
(200nM) for 24 hours and then cells were isolated for RNA extraction and subsequent cDNA 
synthesis. MMP2 and MMP9 expression was analysed by qRT-PCR using Taqman assays and 
normalised to GAPDH expression. (A) MMP2 expression is quantified as RQ to unstimulated cells. 
(B) MMP9 was not detected in control cells therefore expression is quantified as average dCt ± 
S.E.M. N=3. *P<0.05 vs. control; 

†
P<0.05, 

††
P<0.01 vs. Ang II. 
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3.3.4.3 Effects of Ang II, Ang-(1-7) and Ang-(1-9) on miR-132/miR-212 
expression and its downstream target genes in HSVSMC migration. 

Ang II has previously been reported to regulate expression of the miR-132/-212 

cluster in rat VSMC, resulting in down-regulation of various target genes that 

have been linked to VSMC proliferation and migration, including PTEN, RASA-1 

and MCP-1 (Jin et al., 2012). Therefore, regulation of the mir-132/212 cluster 

and its downstream targets was assessed. HSVSMC underwent the scratch assay 

protocol, except multiple scratches were induced in the cell monolayer to 

increase the proportion of migrating cells. HSVSMC were then stimulated with 

Ang II alone or in combination with Ang-(1-7) or Ang-(1-9). Unstimulated cells 

and cells stimulated with complete culture media (15% FCS) were used as a 

control. Cells were lysed for miRNA and RNA extraction at 24 hours post 

stimulation, and then miRNA and mRNA levels were analysed using q-RT PCR.  

Both Ang II and 15% FCS induced a significant increase in miR-132 expression in 

comparison to control cells (P<0.001), suggesting miR-132 expression is increased 

during HSVSMC migration (Figure 3.10). Ang-(1-7) and Ang-(1-9) significantly 

reduced Ang II mediated increased miR-132 expression to similar levels as 

control cells (Ang II + Ang-(1-9) P<0.01; Ang II + Ang-(1-7) P<0.001 vs. Ang II) 

(Figure 3.10 A). 

No changes in miR-212 expression were observed in cells stimulated with Ang II 

alone or alongside Ang-(1-7) or Ang-(1-9), suggesting that RAS peptides do not 

influence miR-212 expression under these conditions (Figure 3.10 B). While miR-

212 expression in cells stimulated with 15% FCS appeared to be increased in 

comparison to control cells, this did not reach significance (Figure 3.10 B). This 

is unexpected as miR-132 and miR-212 have been reported to exist in a highly 

conserved cluster. However, the lack of regulation of miR-212 in comparison to 

miR-132 may be due to differences in basal expression of these miRNA’s in 

HSVSMC, as in unstimulated cells miR-132 (average Ct 29.5 ± 0.5) is expressed at 

significantly higher levels than miR-212 (average Ct 33.6 ± 0.4). 

Next, changes in miR-132 target gene expression; PTEN, RASA-1 and MCP1 was 

assessed (Figure 3.10 C-E). In line with increased miR-132 expression, HSVSMC 

stimulated with Ang II or 15% FCS displayed significantly lower expression of 
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PTEN in comparison to control cells (P<0.01 vs. control). Similarly, Ang-(1-7) and 

Ang-(1-9) blocked the effects of Ang II (P<0.01 vs Ang II) (Figure 3.11 C). 

Conversely, Ang II alone or in combination with Ang-(1-7) or Ang-(1-9) had no 

effect on either RASA-1 or MCP-1 expression in HSVSMC (Figure 3.10 D-E).  

  



117 
 

 

Figure 3.10 Effects of Ang II, Ang-(1-7) and Ang-(1-9) on miR-132/miR-212 expression and its 
downstream target genes during HSVSMC migration. 
Quiescent HSVSMC were subjected to a scratch assay where multiple scratches were induced in 
the cell monolayer to increase the proportion of migrating cells. HSVSMC were then stimulated with 
Ang II alone or in combination with Ang-(1-7) or Ang-(1-9) (200nM). Unstimulated cells and cells 
stimulated with complete culture media (15% FCS) were used as a control. Cells were lysed for 
miRNA and RNA extraction at 24 hours post stimulation, and then miRNA and mRNA levels were 
analysed using q-RT PCR. Expression of (A) miR-132, (B) miR-212, (C) PTEN, (D) RASA1 and (E) 
MCP-1 was normalised endogenous housekeeper (RNU48 in A and B; GAPDH in C-E) and 
expression is expressed as RQ to control. N=6. *P<0.05, **P<0.01  ***P<0.001 vs control; 

†
P<0.05, 

††
P<0.01, 

†††
P<0.001 vs 5% Ang II.  
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The effect of Ang II on miR-132 expression at 24 hours post stimulation in 

comparison to control cells (P<0.001 vs control), was significantly inhibited by 

losartan, suggesting that Ang II mediated increase in miR-132 expression was via 

the AT1R (Figure 3.11 A). The Ang II mediated increase in miR-132 expression 

was also blocked by Ang-(1-9) and Ang-(1-7) (Ang II + Ang-(1-9) P<0.01; Ang II + 

Ang-(1-7) P<0.001 vs Ang II) and similar levels of miR-132 were observed in cells 

stimulated with Ang II co-incubated with either Ang-(1-7) or Ang-(1-9) compared 

to control (Figure 3.12 A). The inhibitory effect of Ang-(1-9) was attenuated by 

PD123,319 (P<0.05 vs control, P>0.05 vs Ang II), and the effect of Ang-(1-7) was 

attenuated by A779 (P<0.01 vs control, P>0.05 vs Ang II), suggesting Ang-(1-9) 

may act via the AT2R and Ang-(1-7) via Mas (Figure 3.11 A). 

Ang II caused a significant reduction in PTEN expression in comparison to control 

cells, an effect blocked by losartan (P<0.05 vs Ang II) (Figure 3.11 B). Ang-(1-7) 

and Ang-(1-9) also prevented Ang II mediated reduction in PTEN expression, and 

cells stimulated with Ang II alongside either Ang-(1-7) or Ang-(1-9) displayed 

similar expression levels of PTEN as control (Figure 3.12 B). Again, the inhibitory 

effects of Ang-(1-7) and Ang-(1-9) were blocked by A779 and PD123,319, 

respectively (P<0.05 vs Ang II) (Figure 3.11 B). 
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Figure 3.11 The role of the AT1R, AT2R and Mas in the effects of Ang II, Ang-(1-7) and Ang-(1-
9) on miR-132 and PTEN expression in HSVSMC. 
Quiescent HSVSMC were subjected to a scratch assay where multiple scratches were induced in 
the cell monolayer to increase the proportion of migrating cells. To assess the role of the RAS 
receptors in regulation of miR-132 and PTEN expression cells were incubated with losartan (10 
µM), PD123.319 (PD) (500 nM) or A779 (100 µM) for 15 minutes prior to stimulation with Ang-(1-7) 
or Ang-(1-9) (200 nM). Cells were lysed for miRNA and RNA extraction at 24 hours post 
stimulation, and then miRNA and mRNA levels were analysed using q-RT PCR. Expression of (A) 
miR-132 and (B) PTEN was normalised endogenous housekeeper (RNU48 in A; GAPDH in B) and 
expression is expressed as RQ to control. N=3. *P<0.05, **P<0.01, ***P<0.001 vs control; 

†
P<0.05, 

††
P<0.01, 

†††
P<0.001 vs Ang II.  
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It was next assessed if Ang II induced reduction in PTEN protein levels and 

changes in downsteam targets including Akt (Huang and Kontos, 2002). Confluent 

HSVSMC were quiesced for 48 hours and then multiple scratches were induced in 

the monolayer followed by stimulation with Ang II alone or co-stimulated with 

Ang-(1-7) or Ang-(1-9) for 24 hours. Cells in serum free media or stimulated with 

15% FCS were used as a control. At 24 hours post stimulation cells were lysed for 

protein extraction and Western immunoblotting performed using specific 

antibodies for PTEN and Akt. Protein expression was quantified as a ratio of the 

total protein (PTEN or Akt) to GAPDH, the loading control.  No changes were 

observed in PTEN or Akt expression in HSVSMC stimulated with Ang II, alone or in 

combination with Ang-(1-7) or Ang-(1-9), or 15% FCS at 24 hours post stimulation 

in comparison to control cells (P>0.05 vs control) (Figure 3.12), indicating that 

the changes in PTEN expression observed at mRNA level were not apparent in 

protein levels at this time point.  
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Figure 3.12 Effects of Ang II, Ang-(1-7) and Ang-(1-9) on PTEN and Akt protein expression in 
HSVSMC migration 
Quiescent HSVSMC underwent a scratch assay with multiple scratches in the cell monolayer to 
increase the proportion of migrating HSVSMC. Cells were then stimulated with Ang II alone or 
alongside Ang-(1-7) or Ang-(1-9) for 24 hours. Cells in serum free media or stimulated with 
complete growth media (15% FCS) were used as a control. At 24 hours post stimulation cells were 
lysed for protein extraction and Western immunoblotting was then performed using speficic 
antibodies for PTEN and AKT. Protein expression was quantified as a ratio of the total protein 
expression of  (B) PTEN or (C) Akt, to the loading control GAPDH. Representative immunoblots of 
PTEN, Akt and GAPDH expression. N=2.  
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To assess the role of miR-132 in Ang II mediated HSVSMC migration, a specific 

miR-132 inhibitor was used. miRNA inhibitors are small, chemically modified 

single-stranded RNA molecules designed to specifically bind to and inhibit miRNA 

activity (Stenvang et al., 2008, Weiler et al., 2006). Therefore, these molecules 

are not designed to alter expression levels of the miRNA but prevent changes in 

target gene expression.  

First the transfection efficiency of the miRNA inhibitor was assessed in HSVSMC 

using a Cy3 labelled negative control. As expected, no fluorescence was 

observed in nontransfected, control HSVSMC (NTC). No Cy3 positive cells were 

observed in HSVSMC transfected with 10nM or 30nM of the labelled non targeting 

molecule and only a small proportion of cells transfected at 60nM were positive 

for Cy3, suggesting a low transfection efficiency (Figure 3.13 A). As cells 

transfected with 60nM of the Cy3 control displayed the highest positive cell 

number, this concentration was used for all subsequent experiments.  

Expression of PTEN was used to assess efficiency of the miR-132 inhibitor. In 

nontransfected cells, Ang II and 15% FCS induced a significant reduction in PTEN 

expression in comparison to control (Ang II P<0.01; 15% FCS P<0.05 vs control) 

(Figure 3.13 B). In cells transfected with the non targeting negative control 

(scramble), stimulation with either Ang II resulted in a significant reduction in 

PTEN expression (P<0.05), and while 15% FCS also reduced this was not 

significantly different to control (Figure 3.13 B). A similar effect was observed in 

cells transfected with the miR-132 inhibitor, with both Ang II and 15% FCS 

significantly reduced PTEN expression in comparison to control, suggesting that 

the transfection efficiency attained was possibly not high enough. (Figure 3.13 

B).  

Conversely, in nontransfected cells, Ang II and 15% FCS induced a significant 

increase in miR-132 expression in comparison to control (P<0.05) (Figure 3.13 C). 

In cells transfected with the non targeting negative control (scramble), 

stimulation with either Ang II resulted in a significant increase in miR-132 

expression (P<0.01), and while 15% FCS also increased miR-131 expression this 

was not significantly different to control (Figure 3.13 C). A similar pattern in 

response to Ang II and FCS was observed in cells transfected with the miR-132 

inhibitor, however, these changes were not significantly different to 
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unstimulated cells and miR-132 expression was lower under all stimulation 

conditions compared to non transfected cells and cells transfected with the non 

tragetting miRNA inhibitor (Figure 3.13 C). 

HSVSMC migration was quantified at 24 hours post stimulation, in untransfected 

cells and cells transfected with either the non targeting molecule or miR-132 

inhibitor. Under all conditions, both Ang II and 15% FCS caused a significant 

increase in HSVSMC migration at 24 hours post stimulation in comparison to 

control (P<0.001) (Figure 3.13 D). However, in unstimulated cells transfected 

with the miR-132 inhibitor, there was a significant increase in HSVSMC migration 

in comparison to unstimulated, untransfected cells (P<0.01). In both 

untransfected cells and cells transfected with scramble miR inhibitor basal 

HSVSMC migration at 24 hours was comparable at 52.8 ± 7.4 % and 52.2 ± 7.8 % 

migration, respectively (Figure 3.13 D). However, in unstimulated cells 

transfected with the miR-132 inhibitor, basal HSVSMC migration at 24 hours was 

significantly higher at 71.1 ± 12.1 % migration, suggesting that the miR-132 

inhibitor influenced basal HSVSMC migration (Figure 3.13 D).  
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Figure 3.13 Effect of mir-132 inhibition on PTEN expression and HSVSMC migration. 
HSVSMC were transfected with either a Cy3 labelled non targeting miRNA inhibitor or a miR-132 
inhibitor as described in section 2.7. (A) Transfection efficiency was assessed by visualisation of 
fluorescent cells. (B) Cells were transfected with either a scramble miR-inhibitor or the miR-132 
inhibitor at 60 nM described, then stimulated with Ang II or 15% FCS for 24 hours. Cells were then 
lysed for RNA extraction and subsequent synthesis to cDNA. (B) PTEN and (C) miR-132 
expression was assessed using qRT-PCR and expressed as RQ to control. (D) HSVSMC migration 
was quantified as a reduction in scratch width (%) at 24 hours relative to the 0 hour measurement. 
N=3. *P<0.05, **P<0.01, ***P<0.001 vs control. 
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3.3.4.4 The role of miRNA in Ang II induced HSVSMC migration 

Although Ang II increased miR-132 expression in HSVSMC, it was not essential for 

HSVSMC migration. Therefore, an alternative approach was taken to determine 

whether miRNA regulation essential for Ang II-mediated HSVSMC migration. To 

do this an experiment to inhibit DICER, the key enzyme involved in miRNA 

generation was undertaken. This was achieved through the use of a specific 

siRNA to knock down DICER expression within VSMC stimulated with Ang II.  

To assess the optimal concentration of siRNA required for maximal transfection 

of HSVSMC, cells were transfected with increasing concentrations (10-60 nM) of a 

Cy3 labelled control siRNA (Figure 3.14 A). In HSVSMC transfected with the Cy3 

labelled control siRNA, the number of Cy3 positive cells increased in a 

concentration-dependent manner, as indicated by increased red fluorescence 

(Figure 3.14 A). The majority of cells transfected at 60 nM were positive for Cy3. 

Next, to assess the optimal concentration of siRNA required for efficient knock 

down of gene expression in HSVSMC, cells were transfected with increasing 

concentrations of a siRNA against GAPDH. In HSVSMC transfected with the GAPDH 

siRNA, there was a reduction in GAPDH expression in a concentration dependent 

manner (Figure 3.14 B). GAPDH expression was significantly reduced in 

comparison to cells transfected with the scrambled siRNA at concentrations of 

30nM and above, however, maximal knockdown of GAPDH was observed in cells 

transfected with 60 nM siRNA (Figure 3.14 B). Cy3 labelled control siRNA 

transfection (scramble siRNA) did not lead to alterations in GAPDH expression 

(Figure 3.14 B). 

Transfection with the DICER targeting siRNA at 60 nM significantly reduced DICER 

expression in HSVSMC in comparison to untransfected cells or cells transfected 

with the non targeting siRNA (scramble) (P<0.001) (Figure 3.14 C).  
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Figure 3.14 Transfection efficiency of siRNA in HSVSMC 
The transfection efficiency of siRNAs in HSVSMC was assessed as described in section 2.7. (A) 
Cells were transfected with increasing concentration of a Cy3 labelled non targeting siRNA (10, 30, 
60 nM) and transfection efficiency assessed by visualisation of fluorescent cells. (B) To assess the 
optimal concentration for efficient gene knock down, cells were transfected with a siRNA targeting 
GAPDH (10, 30, 60 nM). GAPDH expression was normalised to 18s and expressed as RQ to the 
comparable concentration of the scrambled siRNA. (C) DICER expression following transfection of 

HSVSMC with 60 nM DICER siRNA. N=3. 
*
P<0.05, 

***
P<0.001 vs control; 
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P<0.01 vs scramble 
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Although it was previously demonstrated that Ang II mediated miR-132 

expression was not essential for HSVSMC migration, expression levels of this 

miRNA and its target PTEN were assessed to confirm that siRNA-mediated 

knockdown of DICER had functional biological effects on miRNA and mRNA 

expression. HSVSMC underwent a scratch assay following transfection and then 

stimulated with Ang II or 15% FCS to induce migration. Cells were lysed for RNA 

extraction at 24 hours post stimulation and miR-132 and PTEN expression 

assessed. In untransfected cells or cells transfected with a non targeting siRNA 

(scramble), there was a significant increase in miR-132 expression in HSVSMC 

stimulated with Ang II or 15% FCS in comparison to control (P<0.05 vs. control) 

(Figure 3.15 A). In cells transfected with the DICER siRNA, miR-132 expression 

was unaltered by Ang II in comparison to control, suggesting that knockdown of 

DICER blocked the Ang II mediated increase in miR-132 expression (Figure 3.15 

A). miR-132 expression was elevated in cells transfected with DICER siRNA when 

stimulated with 15% FCS in comparison unstimulated cells, however this change 

did not reach significance (Figure 3.15 A).  

Furthermore, in untransfected cells or cells transfected with the scramble siRNA 

there was a significant reduction in PTEN expression in HSVSMC stimulated with 

Ang II or 15% FCS in comparison to control (P<0.05 vs. control) (Figure 3.15 B). In 

cells transfected with the DICER siRNA, PTEN expression was unaltered in 

response to Ang II or 15% FCS, suggesting that Ang II mediated reduction in PTEN 

occurs via a mechanism dependent on DICER expression (Figure 3.15 B).  

In addition to assessing the effects of DICER siRNA on Ang II induced changes in 

miR-132 and PTEN expression, it was also established if knockdown of DICER had 

functional consequences on Ang II induced HSVSMC migration. In untransfected 

control cells, and cells transfected with a scramble siRNA or DICER siRNA, there 

was a significant increase in HSVSMC migration in response to Ang II and 15% FCS 

at 24 hours post stimulation in comparison to unstimulated cells (Figure 3.15 C). 

Under all transfection conditions, stimulation of cells with Ang II or 15% FCS 

resulted in wound closure by 24 hours. However, in cells transfected with DICER 

siRNA, there was a significant increase in basal migration of HSVSMC in 

comparison to untransfected cells and cells transfected with the scramble siRNA 

(P<0.01) (Figure 3.15 C). In both untransfected cells and cells transfected with 

scramble siRNA basal HSVSMC migration at 24 hours was comparable at 50.36 ± 
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5.3 % and 51.1 ± 4.0 % migration, respectively (Figure 3.16 C). However, in 

unstimulated cells transfected with DICER siRNA, basal HSVSMC migration at 24 

hours was significantly higher at 70.4 ± 14.4 % migration, suggesting that 

alterations in miRNA expression through reduced DICER expression promote 

HSVSMC migration in the absence of other stimuli (Figure 3.15 C). 
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Figure 3.15 Effect of DICER knockdown on Ang II-mediated regulation of miR-132 and PTEN 
expression, and HSVSMC migration. 
HSVSMC were transfected with 60nM scramble or DICER siRNA and then underwent the scratch 
assay protocol as described in section 2.7. Cells were stimulated with Ang II or 15% FCS for 24 
hours and then lysed for miRNA and RNA extraction. (A) miR-132 and (B) PTEN expression was 
assessed via qRT-PCR and expressed as RQ to control. (C) HSVSMC migration was quantified as 
a reduction in scratch width (%) at 24 hours relative to the 0 hour measurement. N=3. *P<0.05, 
**P<0.01, ***P<0.001 vs control. 
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3.4 Discussion 

This study is the first to report a role for Ang-(1-9) in human VSMC proliferation 

and migration, and to provide a direct comparison between Ang-(1-7) and Ang-

(1-9) in these processes. The data demonstrate that Ang-(1-7) and Ang-(1-9) 

inhibit serum induced proliferation of HSVSMC via Mas and AT2R, respectively. 

While Ang II was unable to induce proliferation of HSVSMC in this study, it was 

demonstrated to have potent pro-migratory effects. Ang II-induced HSVSMC 

migration via the AT1R in agreement with previous reports (Schieffer et al., 

1996, Epstein et al., 1997, Touyz et al., 1999a, Xu et al., 1996, Lee et al., 2007, 

Kyaw et al., 2004, Yang et al., 2005, Mugabe et al., 2010), and its effect was 

inhibited by both Ang-(1-7) and Ang-(1-9) via Mas and the AT2R, respectively. 

The effect of Ang-(1-7) via Mas agrees with previous reports in rat VSMC (Zhang 

et al., 2010b). Further investigation into the functional interplay of the RAS 

peptides in HSVSMC migration identified alterations in ERK1/2 activity and, 

MMP2 and MMP9 expression as potential mechanisms contributing to the 

observed results.  

Additionally, as Ang II has recently been demonstrated to regulate expression of 

the miR-132/-212 cluster in rat aortic VSMC, thereby regulating a number of 

target genes involved in VSMC migration including PTEN, MCP-1 and RASA-1 (Jin 

et al., 2012), this pathway was also assessed. Ang II-mediated HSVSMC migration 

was associated with an increase in miR-132 but not miR-212 expression, and a 

decrease in PTEN expression at the mRNA level. These changes were mediated 

via the AT1R and were inhibited by Ang-(1-7) and Ang-(1-9); the effects of Ang-

(1-7) and Ang-(1-9) were partially attenuated by antagonism of Mas and the 

AT2R, respectively, suggesting a role for these receptors in this setting. 

However, PTEN protein levels were unchanged. Similarly, there was no change in 

MCP-1 expression at mRNA or Akt at protein levels, both of which are key 

proteins involved in the downstream signalling pathways of PTEN, suggesting the 

changes in PTEN gene expression were not converted to changes in protein levels 

under these experimental conditions. Additionally, in contrast to the findings in 

rat aortic VSMC, no changes in RASA-1 were observed. While highlighting a 

potential mechanism involved in HSVSMC migration, these results also 

demonstrate key differences in the miRNA response to Ang II between rat and 

human VSMC (Jin et al., 2012).  The role of miRNA-132 in Ang II induced HSVSMC 
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migration was further investigated through the use of a miR-132 inhibitor, which 

blocks miR-132 activity and through siRNA-mediated downregulation of DICER, a 

key enzyme involved in miRNA biogenesis. It was found that Ang II mediated 

HSVSMC migration was not dependent on miR-132 or synthesis of an alternative 

miRNA. However, reduced miR-132 activity and DICER expression increased basal 

migration of unstimulated HSVSMC. 

Ang II is a potent mitogen and widely accepted to promote VSMC proliferation 

via stimulation of the AT1R [extensively reviewed by (Touyz and Schiffrin, 

2000)]. However, in the majority of the studies demonstrating a proliferative 

role for Ang II the cells used have been isolated from arteries and evidence for 

Ang II induced proliferation in human VSMC isolated from saphenous veins is 

conflicting (Mii et al., 1994, Patel et al., 1996). In the present study, Ang II had 

no effect on proliferation of quiescent HSVSMC following a 48 hours stimulation 

period. This is in line with previous findings from Mii and colleagues who 

demonstrated that Ang II (1-1000 nM) had no effect on HSVMC proliferation when 

stimulated in the presence of either 0.5 % or 10% FCS (Mii et al., 1994). In a later 

study by Patel et al, it was demonstrated that Ang II caused increased HSVSMC 

proliferation at 1 nM but not at higher concentrations (10 nM or 1 µM) and that 

this increase in proliferation was via the AT1R and associated with increased 

expression of c-fos (Patel et al., 1996).  

One possible explanation for the difference in the response to Ang II in cells 

isolated from arteries and veins may lie in their basal phenotypic differences. 

Primary VSMC cultures isolated from veins and arteries share many common 

features, including similarities in morphology and responses to mitogens and 

chemoattractants (Deng et al., 2006, Yang et al., 1998, Liu et al., 2004a). 

However, it has been demonstrated that although some responses are similar, 

VSMC from arteries and veins in culture maintain distinct cell lineage gene 

expression programmes and responses (Deng et al., 2006). For example, 

stimulation of human coronary artery smooth muscle cells (HCASMC) in culture 

with oxidised LDL led to reduced proliferation and migration, and increased 

expression of growth-inhibitory genes involved in cell cycle control such as 

cyclin-dependent inhibitors cyclin-dependent kinase inhibitor 1 (CDKN1a) and 

cyclin-dependent kinase 4 inhibitor C (CKDN2C) (Deng et al., 2006). Conversely, 

stimulation of HSVSMC under the same conditions resulted in increased 
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proliferation, partially via increase IGF-1 signalling and activation of NFkB (Deng 

et al., 2006). While this has yet to be demonstrated to be the case for Ang II, it 

may explain the differences observed in the proliferative response to Ang II 

documented in the literature.  

While Ang II had no effect on HSVSMC proliferation, stimulation with increasing 

concentrations of serum resulted in a concentration-dependent increase in 

HSVSMC proliferation. As Ang-(1-7) has previously been shown to inhibit serum 

induced proliferation (Tallant and Clark, 2003), FCS was used as the mitogen to 

assess the effects of Ang-(1-7) and Ang-(1-9) on HSVSMC proliferation. A serum 

concentration of 5% FCS was chosen as this was sufficient to induce a significant 

increase in proliferation in comparison to control, unstimulated cells but low 

enough to avoid overgrowth of the cells within the well.  

This study demonstrates for the first time an anti-proliferative role for Ang-(1-7) 

in human VSMC. In line with previously published data, Ang-(1-7) inhibits HSVSMC 

proliferation via Mas (Tallant and Clark, 2003, Tallant et al., 1999, Freeman et 

al., 1996, Zhang et al., 2010b). While in this current study the mechanisms 

involved in the anti-proliferative effects of Ang-(1-7) have not been defined, 

previous studies have identified inhibition of MAPK signalling pathways and 

release of prostacyclin as key in the anti-proliferative effects of Ang-(1-7) 

(Tallant and Clark, 2003, Zhang et al., 2010b). Ang-(1-7) blocked Ang II- and 

PDGF-induced activation of ERK1/2 signalling in rat aortic SMC and Ang II-

induced activation of ERK1/2 in mouse aortic VSMC (Tallant and Clark, 2003). 

However, the upstream mechanisms of Ang-(1-7) mediated inhibition of ERK1/2 

have still to be established. Additionally, Ang-(1-7) has been demonstrated to 

inhibit VSMC proliferation through stimulation of COX-mediated PGI2 release 

(Tallant and Clark, 2003, Jaiswal et al., 1993b, Jaiswal et al., 1993a, Muthalif et 

al., 1998).  

This study also demonstrates for the first time an anti-proliferative role for Ang-

(1-9) in human VSMC. In fact, these findings are the first to identify a direct 

effect of Ang-(1-9) in VSMC via the AT2R, and although signalling via this 

receptor is poorly defined, the AT2R has been linked to reduced VSMC 

proliferation in vitro. For example, adenoviral-mediated over expression of the 

AT2R in rat VSMC resulted in a reduction in Ang II mediated VSMC proliferation 
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via the AT2R, an effect which was linked to reduced MAPK activity (Nakajima et 

al., 1995, Stoll et al., 1995). While the mechanisms involved in the anti-

proliferative effects of Ang-(1-9) in HSVSMC proliferation have yet to be 

established, inhibition of MAPK signalling may be involved as data from this 

present study suggests that Ang-(1-9) modulates ERK1/2 phosphorylation, as 

discussed below. 

In addition to VSMC proliferation, Ang II is known to promote VSMC migration, 

another key process in vascular remodelling. The data from this study 

demonstrate that Ang II promotes HSVSMC migration via the AT1R. This finding is 

in line with previously published studies (Schieffer et al., 1996, Epstein et al., 

1997, Touyz et al., 1999a, Xu et al., 1996, Lee et al., 2007, Kyaw et al., 2004, 

Yang et al., 2005, Mugabe et al., 2010). The findings from this current study so 

far demonstrate that Ang-(1-7) and Ang-(1-9) prevent both HSVSMC proliferation 

and migration in response to FCS and Ang II, respectively. However, as one of 

the main aims of this thesis is to investigate the interaction of Ang II and the 

counter-regulatory peptides Ang-(1-7) and Ang-(1-9) in HSVSMC, it was decided 

that a more detailed assessment of the mechanisms involved in the effects of 

these peptides in HSVSMC migration would be performed, as there is clear 

modulation of the effects of Ang II by Ang-(1-7) and Ang-(1-9) in this setting. 

Ang II via the AT1R activates a number of intracellular signal transduction 

pathways that are linked to long term regulation of VSMC function, such as cell 

growth and migration. These processes are initiated within minutes and involve 

phosphorylation of a number of protein kinases, including MAPK, such as ERK1/2, 

JNK and p38 MAPK (Xi et al., 1999, Ohtsu et al., 2005, Lee et al., 2007). Ang II 

mediated phosphorylation of ERK1/2 in particular has been demonstrated to be 

an important mechanism involved in VSMC growth and migration (Xi, Graf et al. 

1999; Ohtsu, Mifune et al. 2005; Jiang, Bujo et al. 2008; Shen, Zhu et al. 2014) 

and importantly Ang-(1-7) has been demonstrated to prevent Ang II induced 

migration of rat VSMC via inhibition of Ang II-mediated phosphorylation of 

ERK1/2 (Zhang et al., 2010b). In this present study it was found that Ang II cause 

a transient increase in ERK1/2 phosphorylation at 5 minutes post-stimulation and 

ERK1/2 levels returned to similar levels as unstimulated cells by 30 minutes. This 

increase in ERK1/2 phosphorylation in the minutes following stimulation with 

Ang II is consistent with previous studies in rat VSMC where it was found that Ang 
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II induced ERK1/2 phosphorylation was maximal 3 to 10 minutes post stimulation 

(Eguchi et al., 1996, Touyz et al., 1999d, Kyaw et al., 2004, Mugabe et al., 

2010). However, in contrast with the findings from this present study, others 

have found that Ang II-induced phosphorylation of ERK1/2 remained elevated at 

both 30 at 60 minutes post stimulation (Zhang et al., 2010b, Eguchi et al., 1996, 

Touyz et al., 1999d), however, this may be due to variation between cells from 

different vascular beds and species.  

Interestingly, both Ang-(1-7) and Ang-(1-9) blocked Ang II-induced ERK1/2 

phosphorylation in HSVSMC at 5 minutes post stimulation. For Ang-(1-7) this is 

consistent with a previous study in rat VSMC using a scratch assay, where Ang-(1-

7) inhibited Ang II-induced VSMC migration via inhibition of ERK1/2 signalling 

(Zhang et al., 2010b). While the signalling mechanisms involved have yet to be 

defined, it is likely that Ang-(1-7) can activate a signalling pathway that leads to 

blockage of ERK1/2 activation or its downstream signalling and therefore can 

inhibit Ang II-induced ERK1/2 activation and Ang II-stimulated HSVSMC migration. 

For example, Ang II mediated activation of c-Src, a vital component in the 

regulation of focal contact formation, is blocked by Ang-(1-7) in human 

endothelial cells, and c-Src is upstream of ERK1/2 signalling (Sampaio et al., 

2007b). Therefore, a similar effect may occur in HSVSMC; however, further 

investigation is required to confirm this. 

Ang-(1-9) was shown to inhibit Ang II-mediated HSVSMC migration via the AT2R, 

therefore it is plausible that Ang-(1-9) also inhibits Ang II-induced ERK1/2 

phosphorylation via the AT2R. While signalling via the AT2R is poorly 

characterised, activation of various pathways that involve tyrosine or 

serine/threonine phosphatases has been suggested as potential signalling 

pathways (Horiuchi et al., 1999). Phosphatases suggested to be involved in AT2R 

signalling include mitogen-activated protein kinase phosphatase 1 (MKP-1), SH2 

domain containing phosphatase (SHP-1) and protein phosphatase 2A (PP2A) 

(Nouet and Nahmias, 2000). Interestingly, these phosphatases have been shown 

to interact with the ERK1/2 pathway, identifying them as potential regulators of 

Ang-(1-9)-mediated inhibition of ERK1/2 activation (Calo et al., 2010b). At 60 

minutes post-stimulation there was a significant increase in ERK1/2 

phosphorylation in cells stimulated with Ang-(1-9) alone or in combination with 

Ang II. As no changes were observed in ERK1/2 phosphorylation at this time point 
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in cells stimulated with Ang II alone, this increased phosphorylation is likely due 

to a direct action of Ang-(1-9). This is the first evidence of a direct effect of 

Ang-(1-9) in VSMC. ERK1/2 activation is most often associated with pro-

proliferative and pro-migratory effects in VSMC [reviewed by (Touyz and 

Schiffrin, 2000)], while Ang-(1-9) has been demonstrated to have no effect on 

HSVSMC migration alone and have anti-migratory and anti-proliferative effects in 

response to Ang II and serum, respectively. Therefore, it is unclear what the 

functional consequences of Ang-(1-9) mediated ERK1/2 phosphorylation are and 

further investigation is required. 

It has been well documented that MMP2 and MMP9 are involved in VSMC 

migration by degradation of the ECM and are upregulated in various pathologies 

involving VSMC migration (Southgate et al., 1996). The data in this current study 

suggest Ang II reduces MMP2 expression, an effect prevented by Ang-(1-9) but 

not Ang-(1-7), and AngII causes an increase in MMP9 expression, which is 

prevented by Ang-(1-9) and Ang-(1-7). While Ang II has previously been shown to 

upregulate MMP2 and MMP9 expression in cardiovascular pathology (Jung et al., 

2010), it has been shown that in the same cell type Ang II can cause a reduction 

in MMP2 expression and this effect is unaltered by Ang-(1-7), while MMP9 is 

upregulated by Ang II and this upregulation is inhibited by Ang-(1-7) (Pan et al., 

2008). This is consistent with the findings from this study. However, it is 

important to note that these changes have only been demonstrated at mRNA 

level and a further assessment of protein expression and activity would be 

required. These differential effects of Ang-(1-7) and Ang-(1-9) on MMP 

expression indicate that they may have differential mechanisms of actions, 

consistent with the use of different receptors.  

Ang II has recently been demonstrated to regulate expression of the miR-132/-

212 cluster in rat aortic VSMC, leading to alterations in various target genes 

relevant to VSMC migration, such as PTEN, MCP-1 and RASA-1 (Jin et al., 2012). 

Therefore, this was also assessed in the present study to investigate a role for 

Ang II-mediate miR-132/-212 regulation in HSVSMC migration. The data 

demonstrate that Ang II-mediated HSVSMC migration was associated with an 

increase in miR-132 but not miR-212 expression. As both miRNA’s exist in a 

cluster it would be expected that as one miRNA increases in expression the other 

would increase (van Rooij and Olson, 2007). However, this differential 
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expression of miR-132 and miR-212 in response to Ang II has also been observed 

in adult rat cardiac fibroblasts (Jiang et al., 2013). In these cells miR-132 was 

found to be increased in response to Ang II at 24 hours post stimulation, 

however, miR-212 was not found to be regulated (Jiang et al., 2013). It is 

possible that the miR-132 and miR-212 responses to Ang II differ between species 

and cell type. Based on the findings that Ang II regulated miR-132 in HSVSMC, 

expression of its validated targets PTEN and RASA-1 was assessed. While no 

changes were observed in RASA-1 expression, Ang II significantly reduced PTEN 

expression. Additionally, MMP9 and the AT1R have both been identified as 

potential targets of miR-132 in  cardiac fibroblasts and rat VSMC, respectively 

(Jiang et al., 2013, Elton, 2008), however, these findings were not replicated in 

this current data set as MMP9 expression was increased in response to Ang II 

while AT1R expression was unchanged.  

Increased PTEN levels are associated with reduced VSMC migration, due to 

inhibition of PI3K signalling (Huang and Kontos, 2002). Overexpression of PTEN 

via an adenoviral vector (AdPTEN) inhibited Ang II and PDGF mediated 

proliferation and migration of VSMCs (Huang and Kontos, 2002, Dong et al., 

2013).  Both these studies reported a reduction in phosphorylation of Akt and 

FAK as a result of PTEN expression. Interestingly, phosphorylation of Akt and FAK 

have previously been demonstrated to increase in a time dependent manner in 

response to Ang II stimulation of VSMC, highlighting the importance of Ang II 

induced reduction of PTEN expression in VSMC migration (Dong et al., 2013). 

Inhibition of Akt in VSMCs has been demonstrated to inhibit migration which is 

thought to occur due to prevention of cytoskeleton remodelling (Galaria et al., 

2005). FAK however is important for the generation of focal contacts in 

migration (Gerthoffer, 2007), therefore suggesting PTEN overexpression may also 

reduce focal contact formation. Furthermore, increased expression of PTEN has 

been linked to reduce expression of the pro-inflammatory cytokine MCP-1 

following cuff injury in rats (Koide et al., 2007). This was suggested to be linked 

to inactivation of NF-κB due to the reduced phosphorylation of inhibitor of kappa 

b-alpha (IκB-α), an inhibitory protein that dissociates from NF-κB when 

phosphorylated allowing activation, in AdPTEN transduced mice (Koide et al., 

2007). This pathway was further supported in a study using rat arterial VSMCs 
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which were deficient in PTEN, where increased cytokine production was 

inhibited by PI3K/Akt or NF-κB suppression (Furgeson et al., 2010). 

Due to the fact that Ang II stimulation of HSVSMC led to changes in PTEN at the 

mRNA level the PTEN pathway was investigated further, by assessing protein 

levels of PTEN and changes in expression levels of molecules downstream from 

PTEN in the signalling cascade. In this study, PTEN protein levels were 

unchanged at 24 hours following stimulation with Ang II. In a recent study, Ang II 

was found to reduce PTEN expression at the protein level in rat aortic VSMC at 

12 hours following stimulation. Along with the different origins of these cells, 

inconsistent PTEN regulation may be due to a greater reduction in PTEN mRNA 

levels in rat arterial VSMCs of approximately 0.4 fold after 12 hours in contrast 

to around 0.6 fold in the present study following 24 hours Ang II stimulation. The 

lack of change in PTEN protein does not however rule out the regulation of PTEN 

post-translation by Ang II. Dong et al demonstrated that Ang II increased ROS 

production in rat VSMC leading to rapid phosphorylation or oxidation of PTEN, 

resulting in its de-activation (Dong et al., 2013). However this regulation would 

be independent of miR-132 due to the temporal aspects of the reported de-

activation of PTEN; 30 minutes and 120 minutes for phosphorylation and 

oxidation respectively (Dong et al., 2013).  Similarly, there was no change in 

MCP-1 expression at mRNA or Akt at protein levels observed in the current study, 

both of which are key proteins involved in the downstream signalling pathways 

of PTEN, suggesting these changes in gene expression were not converted to 

protein within these experimental conditions. MCP-1 is known to promote VSMC 

migration (Ma et al., 2007) and mRNA levels of MCP-1 have been reported to be 

increased in a concentration-and time dependent manner in response to Ang II in 

rat arterial VSMC (Chen et al., 1998), which is inconsistent with the results from 

the present study where there was no change in MCP-1 mRNA expression 

following Ang II stimulation for 24 hours. This discrepancy may be due to the 

HSVSMC used in this study in comparison to rodent arterial VSMC used in other 

studies (Ma et al., 2007, Jin et al., 2012).  

The role of miRNA-132 in Ang II-induced HSVSMC migration was further 

investigated through the use of a miR-132 inhibitor, which blocks miR-132 

activity and through siRNA-mediated downregulation of DICER, a key enzyme 

involved in miRNA biogenesis (van Rooij and Olson, 2007, Bartel, 2009). It was 
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found that Ang II-mediated HSVSMC migration was not dependent on miR-132 or 

through synthesis of an alternative miRNA via DICER. However, this is not 

entirely unexpected as Ang II is a powerful mitogen and has been demonstrated 

to promote VSMC proliferation and migration through a cascade of various cell 

signalling pathways [reviewed by (Touyz and Schiffrin, 2000)]. Therefore, it is 

highly possible that Ang II mediate HSVSMC migration is via an alternative 

pathway independent of regulation of miRNA. However, reduced miR-132 

activity and DICER expression increased basal migration of unstimulated HSVSMC. 

There is no published evidence to support a role for alterations in miR-132 or -

212 in the absence of stimuli. However, a number of miRNAs have been 

demonstrated to be active during the phenotypic switching of VSMC from the 

synthetic to the quiescent state, and would therefore be active during serum 

starvation (Leeper et al., 2011). As HSVSMC were transfected with the DICER 

siRNA prior to being quiesced it is possible that during the 48 hours quiescent 

period, DICER levels were inhibited and as a result miRNAs involved in 

maintaining the cells in a quiescent state were not activated. However, further 

work is required to establish if this is the case and an assessment of miRNA 

levels in comparison to non-quiescent HSVSMC would be required. 

3.5 Conclusion 

In summary, the data demonstrate that Ang-(1-7) or Ang-(1-9),via Mas and the 

AT2R respectively, block FCS induced proliferation and Ang II-induced migration 

of HSVSMC. Investigation into the functional interplay of Ang II, Ang-(1-7) and 

Ang-(1-9) in HSVSMC identified regulation of ERK1/2 activity, and MMP2 and 

MMP9 as potential mechanisms contributing to the observed results. While 

further work is required to fully elucidate the signal transduction pathways of 

Ang-(1-7) and Ang-(1-9) in HSVSMC, this data demonstrates a functional role for 

of Ang-(1-9) in VSMC and is the first to directly compare the effects of Ang-(!-7) 

and Ang-(1-9) in the vasculature, identifying both peptides as potential 

therapeutic targets in acute vascular injury.  

Additionally, Ang II-mediated HSVSMC migration was demonstrated to be 

associated with an increase in miR-132 expression and downregulation of its 

target PTEN at the mRNA level, consistent with previous reports in rat VSMC (Jin 

et al., 2012). These changes were found to be via the AT1R and inhibited by Ang-
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(1-7) and Ang-(1-9). However, PTEN protein levels were unchanged and no 

changes were observed in key proteins involved in the downstream signalling 

pathways of PTEN, including Akt and MCP-1. The role of miR-132 in Ang II 

induced HSVSMC migration was further investigated through the use of a miR-132 

inhibitor and downregulation of DICER. While it was found that Ang-II mediated 

HSVSMC migration was not dependent on miR-132 or regulation of an alternative 

miRNA via DICER, it was found that inhibition of miR-132 or DICER expression 

increased basal HSVSMC migration. Together these findings demonstrate key 

differences in the miRNA response to Ang II between rat and human VSMC, and 

identify a further potential mechanism of HSVSMC migration independent of Ang 

II.  



 
 

 

 

 

 

 

 

Chapter 4 

The effects of Ang-(1-7) and Ang-(1-9) on vascular 
endothelial cell function 
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4.1 Introduction 

In the vasculature the endothelium exists as a single cell monolayer surrounding 

the lumenal surface of the vessel wall. The endothelium is able to respond to a 

large number of physical and chemical signals leading to the production of a vast 

number of factors that regulate vascular tone, cell adhesion, thrombogenicity, 

inflammation and VSMC proliferation (White et al., 1994, Furchgott and 

Zawadzki, 1980, Saye et al., 1984, Kinlay et al., 2001, Ghosh and Karin, 2002, 

Gryglewski et al., 1986, Darley-Usmar et al., 1992). With the endothelium 

playing such an important role in vascular homeostasis, it is no surprise that 

damage to the endothelial layer leads to the development and progression of 

various vascular pathologies. Reduced NO bioavailability occurs as a result of 

increased NO degradation or reduced NO production, both of which are largely 

triggered by oxidative stress and the production of ROS (White et al., 1994, 

Darley-Usmar et al., 1992, Gryglewski et al., 1986). ROS production is elevated 

by a number of CVD risk factors including hypertension, hypercholesterolaemia 

and smoking. This alteration in ROS levels leads to reduced endothelial function, 

increased VSMC growth and increased vascular inflammation, all processes which 

underlie the pathology of vascular remodelling and disease (Cai and Harrison, 

2000). 

Prolonged exposure to CVD risk factors, or physical endothelial denudation (as 

occurs during stent deployment in angioplasty procedures or surgical preparation 

of bypass grafts prior to CABG procedures), leads to reduced endothelial 

function and integrity, and untimately to remodelling of the vasculature and 

failure of revascularisation attempts (Kipshidze et al., 2004, Inoue et al., 2011, 

Van Belle et al., 1998). Importantly, the functioning and integrity of the 

endothelium not only depends on the extent of the injury but also on the 

endogenous capacity for repair (Deanfield et al., 2007). One mechanism through 

which the endothelial layer is repaired is by proliferation of adjacent mature 

endothelial cells, which can then migrate to the denuded area to replace the 

lost and damaged cells (Deanfield et al., 2007). Following vascular injury both 

endothelial cells and VSMC become activated, leading to the production and 

release of various growth factors, including bFGF and vascular endothelial 

growth factor (VEGF). These growth factors have been demonstrated to 
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contribute to enhanced endothelial cell growth (Schweigerer et al., 1987, 

Tsurumi et al., 1997, Lindner et al., 1990). 

Re-growth of the endothelial layer is essential in acute vascular injury and has 

been demonstrated to repress neointimal thickening and the occurrence of 

thrombosis. However, the new endothelial layer may also be dysfunctional, 

resulting in decreased vascular integrity, increased permeability and impaired 

vasodilation (Weidinger et al., 1990, Hamon et al., 1995, Hamon et al., 1996, 

Kipshidze et al., 2004). This impaired functioning of the neo-endothelial layer 

has been shown to be maintained for some time following the completion of re-

endothelialisation (Shimokawa et al., 1987, Weidinger et al., 1990). The 

dysfunctional neo-endothelial layer has been linked to impaired vasomotion and 

responses to both vasodilator and vasoconstrictor stimuli (Shimokawa et al., 

1989, Shimokawa et al., 1987, Mc Fadden et al., 1993, Hamon et al., 1996). For 

example, enhanced constrictor responses have been observed in human arterial 

segments previously subjected to angioplasty (Mc Fadden et al., 1993, Hamon et 

al., 1996). Furthermore, the neo-endothelial layer has also been demonstrated 

to have a reduced ability to generate NO, linking this dysfunctional re-growth to 

increased vascular remodelling, inflammation and thrombus formation 

(Weidinger et al., 1990, Saroyan et al., 1992, Hamon et al., 1995). Therefore, 

the optimal treatment strategy in acute vascular injury would not only allow 

complete re-endothelialisation but would contribute to improved functioning of 

the neo-endothelium.  

A role for Ang-(1-7) in improved endothelial function has been well established. 

Ang-(1-7) has been shown to increase NO release via two main mechanisms. 

First, directly through interaction with Mas, Ang 1-7 stimulates eNOS activation 

via reciprocal phosphorylation/dephosphorylation at Serine1177/Threonine495 

further leading to sustained Akt phosphorylation (Sampaio et al., 2007b). 

Second, Ang-(1-7) indirectly increases NO release via production of bradykinin 

and receptor cross talk with the bradykinin BK2R (Jackman et al., 2002, Sampaio 

et al., 2007a). Ang-(1-7)-mediated NO release has been linked to improved 

vascular endothelial function, vasodilation, and reduced ROS production, 

inflammation and thrombosis (Brosnihan et al., 1996, Faria-Silva et al., 2005, 

Stegbauer et al., 2011). Combined, these effects of Ang-(1-7) have been linked 
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to reduced atherosclerosis and improved endothelial function following vein 

grafting (Langeveld et al., 2008, Stegbauer et al., 2011). 

However, there is much less evidence from the literature in support of a direct 

effect of Ang-(1-9) in the endothelium. Ang-(1-9) has been shown to potentiate 

NO release indirectly via interaction with bradykinin signalling. For example, in 

human pulmonary artery endothelial cells Ang-(1-9) has been shown to stimulate 

bradykinin release and to enhance the effects of bradykinin in EC by augmenting 

NO and arachidonic acid release (Erdos et al., 2002, Jackman et al., 2002). 

Importantly, it was shown that not only was Ang-(1-9) an active peptide but that 

it is more potent than Ang-(1-7) in achieving these results (Jackman et al., 

2002). Ang-(1-9) has been demonstrated to have a direct beneficial effect in the 

vasculature by increasing NO bioavailability (Flores-Munoz et al., 2012). 

Continuous infusion of Ang-(1-9) improved aortic vasorelaxation in the SHRSP 

through increased NO bioavailability, an effect which was blocked by PD123,319, 

suggesting that these effects are due to Ang-(1-9) acting via the AT2R (Flores-

Munoz et al., 2012). More recently, Ang-(1-9) was found to induce relaxation of 

rat aortic rings in a concentration- and endothelium-dependent manner; this 

effect was inhibited by PD123,319 but not A779 or losartan, suggesting that in 

this setting Ang-(1-9) mediated vasdodilation of aortic rings via the AT2R 

(Ocaranza et al., 2014). However, the mechanisms through which Ang-(1-9) acts 

to achieve this is currently unknown and a direct effect of Ang-(1-9) on NO 

release in human endothelial cells has yet to be demonstrated.  

  



144 
 

4.1.1 Aims 

The aims of this chapter were to: 

 To establish the optimal conditions for proliferation of HSVEC and assess 

the effect of Ang-II, Ang-(1-7) and Ang-(1-9). 

 To assess the effect of Ang II, Ang-(1-7) and Ang-(1-9) on HSVEC 

migration. 

 To determine the effects of Ang-(1-9) on release of NO from HSVEC. 

 To investigate the effect of Ang-(1-9) on vascular tone in the aorta and 

mesenteric arteries of AT2R
-/- mice. 
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4.2 Results 

4.2.1 AT1R, AT2R and Mas expression in primary HSVEC 

Prior to investigating the effects of Ang-(1-7) and Ang-(1-9) in HSVEC, it was first 

confirmed that the AT1R, AT2R and Mas were expressed in HSVEC via qRT-PCR 

(Figure 4.1). The AT1R (dCt 12.1 ± 2.3) was the most highly expressed of the RAS 

receptors, followed by Mas (dCt 14.2 ± 0.1) and then the AT2R (dCt 16.3 ± 1.9) 

(Figure 4.1). 

  



146 
 

 

Figure 4.1 Expression of AT1R, AT2R and Mas in HSVEC. 
Expression levels of AT1R, AT2R and Mas in HSVEC was assessed via qRT-PCR using specific 
Taqman probes for each receptor. Results are expressed as average dCt ± S.E.M, relative to the 
endogenous housekeeping gene GAPDH. N=3.   
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4.2.2 Assessing the effects of Ang II, Ang-(1-7) and Ang-(1-9) on 
HSVEC proliferation 

To establish the optimal conditions for HSVEC proliferation, cells were quiesced 

for 24 hours and then exposed to fresh media containing increasing 

concentrations of FCS (0-20% v/v) for 24 hours and HSVEC proliferation assessed 

via the MTS assay. It was found that FCS induced HSVEC proliferation in a 

concentration-dependent manner, with concentrations of 5% FCS and above 

producing significantly increased proliferation in comparison to unstimulated, 

serum free control cells (P<0.05) (Figure 4.2 A). Therefore, for subsequent 

experiments 5% FCS was used to induce HSVEC proliferation.  

To assess whether Ang-(1-7) or Ang-(1-9) blocked HSVEC proliferation quiescent 

cells were incubated with either Ang-(1-7) or Ang-(1-9) (200 nM) and stimulated 

with 5% FCS for 24 hours. As expected, 5% FCS caused a significant increase in 

HSVEC proliferation in comparison to control cells (Figure 4.3 B). However, 

proliferation was unaffected by Ang-(1-9) and Ang-(1-7) and proliferation 

remained significantly increased in comparison to control cells (P<0.05 vs control 

cells) (Figure 4.2 B). 

To investigate if Ang II, Ang-(1-7) or Ang-(1-9) themselves were able to induce 

HSVEC proliferation, quiescent cells were stimulated with each peptide in serum 

free media for 24 hours and then cell proliferation was assessed. While 5% FCS 

induced a significant increase in cell proliferation in comparison to control cells 

(P<0.05), no significant difference was observed between control cells and cells 

stimulated with either Ang II, Ang-(1-7) or Ang-(1-9) (Figure 4.2 C).  
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Figure 4.2 Assessment of the effects of Ang II, Ang-(1-7) and Ang-(1-9) on HSVEC 
proliferation 
Proliferation of HSVEC was assessed using the MTS assay. (A) To assess the concentration of 
FCS required to stimulate proliferation, HSVEC were exposed to media containing increasing 
concentrations of FCS for 24 hours. (B) Cells were incubated with Ang-(1-7) or Ang-(1-9) for 24 
hours, and stimulated with 5% FCS to assess the effect of the peptides. (C) To assess if Ang II, 
Ang-(1-7) or Ang-(1-9) induced proliferation of HSVEC cells were exposed to the peptides in the 
absence of serum for 24 hours; 5% FCS was used as a positive control. N=3-4. *P<0.05, **P<0.01 
vs. control. 
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4.2.3 Effect of Ang II, Ang-(1-7) and Ang-(1-9) on HSVEC migration 

As migration of resident endothelial cells is an important process in re-

endothelialisation following vascular injury (Deanfield et al., 2007), the effects 

of Ang II, Ang-(1-7) or Ang-(1-9), alone or in combination, on HSVEC migration 

was assessed. This was achieved using a scratch assay where scratches were 

induced in the monolayer of quiescent HSVEC prior to stimulation with RAS 

peptides. HSVEC migration was quantified as a percentage reduction in scratch 

width over time. Cells in serum free media alone were used as a control and 

basal HSVEC migration over time resulted in a 43.7 ± 4.5 % reduction in scratch 

size by 30 hours (Figure 4.3). Ang II, Ang-(1-9) and Ang-(1-7), alone or in 

combination had no effect on HSVEC migration in comparison to control cells at 

any time point (P>0.05), suggesting they do not induce HSVEC migration (Figure 

4.3). HSVEC stimulated with complete HSVEC growth media containing 20% (v/v) 

FCS were included as a positive control and it was found that 20% FCS resulted in 

a significant increase in HSVEC migration in comparison to control cells at each 

time point (P<0.05) and by 24-30 hours the wound had completely closed (Figure 

4.3).  

To assess if Ang II, Ang-(1-7) or Ang-(1-9), alone or in combination, inhibited 

serum stimulated HSVEC migration, HSVEC were stimulated with 20% FCS and 

each peptide alone or in combination. The peptides alone or in combination did 

not affect FCS induced HSVEC migration, as there was an equivalent increase in 

HSVEC migration over time as 20% FCS alone and complete wound closure by 24 

hours for all combinations of peptides (Figure 4.4). 
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Figure 4.3 The effects of Ang II, Ang-(1-7) and Ang-(1-9) on HSVEC migration 
HSVEC migration was assessed using a scratch assay. Following starvation in serum free media for 24 hours, 3 scratches were induced in the cell monolayer of each 
well. Cells were then stimulated with Ang II, Ang-(1-9) or Ang-(1-7), alone or in combination (200nM each), in serum free media. Images of the scratch were taken at 0, 
6, 12, 24 and 30 hours post scratch. (A) Representative images of scratch at 0 hours and 24 hours. Scale bar = 40 µm. Magnification 10x.(B) Migration was quantified 
as a reduction in scratch size (%) relative to the 0 hour measurement (B). N=3. ***P<0.001 vs. control.   
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Figure 4.4 The effect of Ang II, Ang-(1-7) and Ang-(1-9) on serum induced migration of HSVEC 
HSVEC migration was assessed using a scratch assay. Following starvation in serum free media for 24 hours, 3 scratches were induced in the cell monolayer of each 
well. Cells were then stimulated with Ang II, Ang-(1-9) or Ang-(1-7), alone or in combination (200nM each), in the presence of 20% FCS. Images of the scratch were 
taken at 0 and 24 hours. Representative images of each condition from an individual experiment which was performed on 3 separate occasions. Scale bar = 40 µm. 
Magnification 10x.  
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4.2.4 Effects of Ang-(1-9) on nitric oxide release 

In order to investigate the effect of Ang-(1-9) on NO release the cell-permeable, 

fluorescent indicator of NO, DAF-FM, was used. All cells were serum starved for 

2 hours in phenol free media to minimise basal NO release, however, some NO 

activity was maintained in control, unstimulated HSVEC as evidenced by the 

observed fluorescence signal when cells were loaded with DAF-FM (Figure 4.5). 

In control cells the fluorescence signal was most intense in the centre of the 

cells, however, further cellular staining would be required to accurately assess 

NO localisation within the cell. When stimulated with Ang-(1-9) at 200 nM or 1 

µm, there was an increase in the intensity of the fluorescence signal within 

discrete central regions of the cell and there was a change in cell morphology, 

with cells becoming smaller and losing their characteristic cobblestone 

appearance, in comparison to unstimulated control cells at 15 minutes post-

stimulation (Figure 4.5). The Ang-(1-9)-induced increase in fluorescence and 

change in cell morphology was blocked by co-incubation with PD123,319, with 

cells exposed to both peptide and antagonist being similar to control cells 

(Figure 4.5). When HSVEC were stimulated with PD123,319 alone no changes in 

fluorescence or cell morphology in comparison to unstimulated cells were 

observed (Figure 4.5). 

To further assess the involvement of the AT2R in Ang-(1-9) mediated NO release, 

CHO cells were transfected with a plasmid engineered to express the human 

AT2R and then loaded with DAF-FM before being stimulated with Ang-(1-9) 

(Figure 4.6). Untransfected cells and cells transfected with the AT2R displayed 

no basal NO release, as evidenced by the lack of fluorescence signal observed 

(Figure 4.6) While Ang-(1-9) had no effect on untransfected CHO cells, in CHO 

cells expressing the AT2R stimulation with Ang-(1-9) led to generation or release 

of NO, evidenced by increased fluorescence when treated with Ang-(1-9) (Figure 

4.6). In cells expressing the AT2R, PD123,319 blocked the response to Ang-(1-9) 

but had no effect when added alone, providing further evidence to suggest that 

Ang-(1-9) acts via the AT2R in this setting (Figure 4.6).  
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Figure 4.5 Effect of Ang-(1-9) on NO release in HSVEC 
Ang-(1-9) mediated NO release from HSVEC was assessed using DAF-FM. Cells were serum 
starved in phenol free, serum free media for 2 hours to minimise basal NO signalling and then 
loaded with 5 µM DAF-FM for 30 minutes. Cells were stimulated with Ang-(1-9) (200 nM or 1 µM) 
alone or in the presence of PD123,319 (PD123) (500nM); cells were also exposed to PD123,319 
alone. Images of the cells were taken at 15 minutes post-stimulation with peptide or antagonist of 5 
individual areas per condition. Representative images of an experiment performed on 2 separate 
occasions. Scale bar = 25 µm.  
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Figure 4.6 Role of the AT2R in Ang-(1-9) induced NO release. 
CHO cells were transfected with a plasmid engineered to express the human AT2R. The following 
day cells were loaded with DAF-FM (5 µM) for 30 minutes and then stimulated with Ang-(1-9) 
(200nM) alone or in the presence of PD123,319 (500nM). Untransfected cells (NTC) control cells 
and cells stimulated with Ang-(1-9), and transfected cells unstimulated and stimulated with 
PD123,319 were used as negative controls. Images of the cells were taken at 15 minutes post 
stimulation of 5 individual areas per condition.  Representative images shown of an experiment 
performed on 2 separate occasions. Scale bar = 10 µm.  
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4.2.5 Effect of Ang-(1-9) on vascular reactivity in intact vessels 

Despite the data suggesting that Ang-(1-9) mediated NO release is via the AT2R, 

previous unpublished data from Prof Robson Santos’ group demonstrated that 

stimulation of pre-constricted aortic rings from AT2R
-/- mice with Ang-(1-9) 

resulted in significant vasorelaxation in an endothelium- and concentration-

dependent manner (Prof Robson Santos, Federal University of Minas Gerais, 

Brazil, personal communication). This finding was confirmed in the present study 

where it was demonstrated that Ang-(1-9) promoted vasodilation of pre-

constricted aortic rings from AT2R
-/- mice in a concentration and endothelium-

dependent manner, resulting in 19.2 ± 6.3 % relaxation of the vessel at the 

maximal concentration of 1 µM (Figure 4.7 A). As Ang-(1-9) is reported to be 

converted to Ang-(1-7) (Donoghue et al 2000), which is widely accepted to 

promote vasodilation via Mas, vessels were incubated with A779 prior to 

stimulation with Ang-(1-9). A779 blocked the response to Ang-(1-9) and a 

negligible response to Ang-(1-9) was observed both in endothelium intact and 

denuded aortic rings in the presence of A779. 

A similar set of experiments was also performed using mesenteric artery rings 

from AT2R
-/- mice to investigate if this phenotype also occurs in small resistance 

arteries. Similar to in the aorta, incubation with Ang-(1-9) mediated significant 

vasodilation of pre-constricted mesenteric artery rings in a concentration 

dependent manner (Figure 4.7 B). Importantly, this response was also found to 

be endothelium-dependent as vessels with an intact endothelium produced a 

25.8 ± 6.6 % relaxation at the maximum concentration of Ang-(1-9) (1 µM)  which 

was significantly different to the 5.7 ± 2.2 % relaxation observed when the 

endothelium was denuded. However, in contrast to the findings in aortic rings, 

A779 had no effect on the vasodilation induced by Ang-(1-9) in either 

endothelium intact or denuded vessels.  
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Figure 4.7 Effects of Ang-(1-9) on vascular tone in AT2R knockout mice 
Vasorelaxant response to increasing concentrations of Ang-(1-9) in AT2R

-/-
 (A) aortic or (B) 

mesenteric artery rings. Vessel rings were pre-contracted to phenylepherine (Phe) and 
vasorelaxant response to Ang-(1-9) assessed. Response is expressed as % relaxation of the Phe 
preconstriction. N=4-6.  
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4.3 Discussion 

In this chapter, the effect of Ang-(1-7) and Ang-(1-9) on endothelial cell growth, 

migration and function were assessed. It was found that Ang II, Ang-(1-7) or Ang-

(1-9) had no effect on growth or migration of primary, adult HSVEC. 

Furthermore, a direct effect of Ang-(1-9) on NO release from both HSVEC and a 

cell line that expressed the AT2R (CHO) was demonstrated. In vitro Ang-(1-9) 

induced NO release in an AT2R sensitive manner, however in vessels from AT2R
-/- 

mice the biological effect of Ang-(1-9) was maintained and led to vasodilation of 

both aortic and mesenteric artery rings.  

The findings from this current data set demonstrate that Ang II, Ang-(1-7) or 

Ang-(1-9) do not influence endothelial cell proliferation or migration. The 

effects of Ang II on endothelial cell growth and migration have been extensively 

studied and Ang II has been demonstrated to have both pro- and anti-

proliferative effects. For example, Ang II is a potent mediator of angiogenesis 

and has been demonstrated to promote proliferation and migration of 

endothelial cells, largely through increased VEGF expression, leading to vessel 

tube formation and neoangiogenesis (Herr et al., 2008, Zhu et al., 2013, Martini 

et al., 2010). Conversely, Ang II has been demonstrated to promote endothelial 

cell apoptosis, largely through the production of ROS and pro-inflammatory 

cytokines, leading to enhanced endothelial dysfunction and vascular remodelling 

(Dimmeler et al., 1997, Shan et al., 2008, Liu et al., 2013). These differential 

results are not entirely unexpected due to the vast array of cell signalling 

pathways induced by Ang II and are linked to differences in experimental 

protocols used to study different biological processes that occur in angiogensis 

and re-endothelialisation. There is currently no evidence from the literature to 

suggest that Ang-(1-7) or Ang-(1-9) would promote endothelial cell proliferation 

or migration and the majority of studies to date have focussed on the effects of 

these peptides on endothelial cell function (Sampaio et al., 2007a, Sampaio et 

al., 2007b, Jackman et al., 2002).  

In addition to endothelial damage, VSMC proliferation is a key process involved 

in late vein graft failure and in-stent restenosis. One therapeutic approach is 

targeting the VSMC proliferation that underlies the formation of the neointima 

through the use of cell cycle inhibitory drugs, such as rapamycin, paclitaxel or 
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cytochalasin D (Schachner et al., 2004, Murphy et al., 2007). While these drugs 

have been shown to have beneficial effects leading to reduced neointimal 

formation they have also been linked to impaired re-endothelialisation through 

inhibition of endothelial cell proliferation, leading to increased neointimal 

formation and late stage thrombosis which can have serious clinical implications 

(Karha and Topol, 2006, Murphy et al., 2007, Luscher et al., 2007, Douglas et 

al., 2013). Therefore therapies that specifically target VSMC growth and 

migration, without preventing re-endothelialisation are optimal in vein graft 

failure and in-stent restenosis (Inoue and Node, 2009). As demonstrated in 

Chapter 3, both Ang-(1-7) and Ang-(1-9) prevent VSMC proliferation and 

migration. Combined with the findings in this present study that they do not 

effect endothelial cell proliferation or migration, this data set identifies these 

two peptides as potential therapeutics in these pathologies.  

Re-growth of the endothelial layer is essential in acute vascular injury; however, 

the neo-endothelium is often dysfunctional due to an impaired ability to 

generate NO, which can lead to further vascular remodelling, increased 

inflammation and thrombosis (Kipshidze et al., 2004, Weidinger et al., 1990, 

Hamon et al., 1995). Therefore, the optimal treatment strategy would not only 

allow complete re-endothelialisation but would also contribute to improved 

functioning of the neo-endothelium through increased NO production.  

As discussed, Ang-(1-7) via Mas is known to increase NO production directly via 

increased eNOS activity and indirectly via interaction with the bradykinin system 

(Sampaio et al., 2007b, Jackman et al., 2002). This increased NO production has 

been linked to improved vascular endothelial function, vasodilation, and 

reduced ROS production, inflammation and thrombosis (Brosnihan et al., 1996, 

Faria-Silva et al., 2005, Stegbauer et al., 2011). Importantly, Ang-(1-7) has also 

been linked to improved endothelial function as well as reduced vascular 

remodelling following stent implantation in rats, identifying this peptide as an 

attractive therapeutic agent in acute vascular injury (Langeveld et al., 2008, 

Langeveld et al., 2005).  

Comparatively, there is much less known about Ang-(1-9) and for this reason the 

effect of Ang-(1-9) on NO release was assessed in this present study. Ang-(1-9) 

stimulated NO release in an AT2R sensitive manner in both primary HSVEC and in 
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cells transfected with AT2R. While this is the first in vitro evidence to suggest a 

direct effect of Ang-(1-9) signalling via the AT2R leading to production of NO, 

this has previously been demonstrated ex vivo where it was found that aortic 

rings from SHRSPs infused with Ang-(1-9) displayed improved vasorelaxation 

which was blunted by the NOS inhibitor, L-NAME (Flores-Munoz et al., 2012). 

Importantly, this effect was absent in SHRSP infused with Ang-(1-9) and 

PD123,319, suggesting Ang-(1-9) acts via the AT2R. Furthermore, Ang-(1-9) 

induced vasodilation of rat arotic rings in an concentration- and endothelium-

dependent manner, and was blocked by pre-incubation of the vessel with L-

NAME or PD123,319, suggesting that Ang-(1-9) mediated vasodilation via the 

AT2R and generation of NO (Ocaranza et al., 2014). 

In HSVEC, unstimulated cells displayed basal NO release, however, Ang-(1-9) 

stimulation led to increased NO release or generation, associated with a change 

in cell morphology and cellular location of NO. However, this change was 

difficult to quantify due to the level of basal NO activity and the lack of staining 

of different cellular structures, which would allow for a more in depth 

interpretation of the results observed. Additionally, a more thorough assessment 

of NO signalling pathways, over an extended time course, in Ang-(1-9) 

stimulated HSVEC through the use of western immunoblotting for key proteins 

involved, such as eNOS and Akt, is required to understand the mechanism of 

action of Ang-(1-9). This approach has previously been utilised to investigate the 

effects of Ang-(1-7) in primary endothelial cells and demonstrated that Ang-(1-7) 

signalling via Mas induces NO release through sustained Akt activation and 

reciprocal phosphorylation/dephosphorylation of eNOS at serine1177/threonine495 

(Sampaio et al., 2007b). Furthermore, as HSVEC express AT1R, AT2R and Mas, it 

would be worthwhile to extend these findings to include a comparison of the 

effects of Ang II, Ang-(1-7) and Ang-(1-9) on NO signalling in HSVEC to allow for 

an in depth investigation of the functional interplay between the RAS peptides 

and receptors in primary endothelial cells. 

Ang-(1-9) also stimulated release of NO from CHO cells expressing the AT2R. 

While the use of cell lines has less translational impact than the experiments 

performed in primary HSVEC, an artificial approach is beneficial to study the 

Ang-(1-9)/AT2R interaction and cell signalling pathways due to the fact that 

there are less variables. For example, there is no basal NO activity and the cells 
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only express the human form of the AT2R, while the HSVEC express AT1R, AT2R 

and Mas, allowing for interaction between receptors and potential signalling via 

receptors other than AT2R. In fact, the use of both primary cells and cell lines 

would be beneficial to investigate Ang-(1-9) signalling. This approach has 

previously been utilised to investigate the cell signalling mechanisms induced by 

Ang-(1-7) at Mas and to identify the functional effects of the novel RAS peptide 

alamandine and its receptor, MrgD (Sampaio et al., 2007b, Lautner et al., 2013). 

However, there are also some limitations of the cell line-based approach. For 

example, it is important to assess transfection efficiency of the receptor in each 

experiment. However, due to the lack of availability of specific AT2R antibodies, 

it was not possible to determine the transfection efficiency in this current data 

set. One way to overcome this would be to design a plasmid to express the AT2R 

with a fluorescent epitope tag, such as cyan fluorescent protein (CFP), which 

would allow the transfection efficiency to be determined parallel to visualisation 

of the fluorescent NO signal (Canals et al., 2006). One major limitation to 

experiments based on transiently transfected cells is the large variability in 

expression level of the gene of interest among population of cells and between 

experiments (Ward et al., 2011). Furthermore, due to differences in expression 

patterns this approach is not ideal to study receptor interactions. Therefore, it 

would be worthwhile to generate stable cell lines to express either the AT2R 

alone or co-expressed with another receptor to allow for the study of receptor 

interactions. Stable cell lines remove both the variability between populations 

and experiments as they as designed so that all cells express the receptor and 

from one parental stock of cells (Ward et al., 2011). Stable cell lines engineered 

to express the AT1R and Mas have proven utility in aiding the understanding of 

ligand-mediated signalling at each receptor as well as allowing the effects of 

receptor-receptor interaction to be assessed (Kostenis et al., 2005). 

While the data discussed above demonstrate that Ang-(1-9) stimulates NO 

release in an AT2R dependent manner in vitro, ongoing, unpublished studies 

from Prof. Robson A. Santos’ research group revealed that Ang-(1-9) induced 

vasodilation in pre-constricted aortic rings from both wild type and AT2R
-/- mice 

in an endothelium dependent manner, suggesting that at least ex vivo Ang-(1-9) 

may act on the endothelium via an alternative receptor or mechanism. These 

findings in the AT2R
-/- mice were confirmed in this present study in both aortic 
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rings and mesenteric artery rings, demonstrating that the effect is present in 

both large conduit vessels and small resistance arteries. However, it is important 

to highlight the low number of vessels/animals used in this study, therefore, 

further replicates are required. Additionally, it would be worthwhile to 

investigate differences in expression of other RAS receptors or enzymes within 

the vessels of the two strains of mice in order to gain further insight into any 

potential differences in the vasorelaxant response to Ang-(1-9) in the presence 

and absence of the AT2R. 

The fact that Ang-(1-9) elicits direct biological effect independent of the AT2R is 

somewhat unexpected as to date all previously published data suggests that Ang-

(1-9) acts via this receptor (Flores-Munoz et al., 2011, Flores-Munoz et al., 2012, 

Ocaranza et al., 2014, Cha et al., 2013). One possible explanation for this 

phenotype is that in the absence of the AT2R, Ang-(1-9) acts on an alternative 

receptor leading to vasodilation, however, further work would be required to 

investigate this fully. Another explanation is that Ang-(1-9) may be metabolised 

to an alternative peptide, such as Ang-(1-7) which also promotes vasodilation in 

an endothelium-dependent manner.  As Ang-(1-7) has been shown to promote 

vasodilation via Mas this potential mechanism of action was explored in the 

current study using the Mas antagonist A779. A779 blocked the vasodilator 

effects of Ang-(1-9) in aortic rings but not mesenteric artery rings, suggesting 

that in the aorta, but not mesenteric artery, Ang-(1-9) may be converted to Ang-

(1-7) which acts via Mas to induce vasodilation.  

It is currently unclear as to why this differential mechanism of action of Ang-(1-

9) between vascular beds occurs, one possibility is that levels of key enzymes 

involved in Ang-(1-9) metabolism, such as ACE, are differentially expressed 

within the aorta and mesenteric arteries of AT2R
-/- mice, and therefore future 

experiments should involve an assessment of ACE expression. Furthermore, the 

differential mechanism of relaxation is possibly linked to differences in the 

mechanisms of vasodilation in conduit and resistance vessels. In large conduit 

vessels such as the aorta, release of NO from the endothelium is the main 

mechanism of vasodilation, and in smaller resistance vessels, such as the 

mesenteric arteries, EDHF emerges as an important mediator of vasodilation in 

addition to NO. In fact, it has been demonstrated that the contribution of EDHF-

mediated responses as a mechanism for endothelium-dependent relaxation 
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increases as the vessel size decreases (Shimokawa et al., 1996), with the 

exception of the coronary and renal vasculature where EDHF plays a major role 

even in large conduit arteries (Feletou and Vanhoutte, 1988). In mice, EDHF-

mediated responses in resistance vessels are at least as important as NO in 

mediating endothelium-dependent vasodilatation, as demonstrated by the fact 

that neither inhibition of or genetic deletion of eNOS attenuates vasodilator 

responses both in vivo and in vitro (Waldron et al., 1999, Brandes et al., 2000). 

Therefore, it is possible that in the absence of the AT2R, in the aorta Ang–(1-9) is 

metabolised to Ang-(1-7), a peptide which has previously been demonstrated to 

promote vasodilation via NO, while in the mesenteric arteries Ang-(1-9) activates 

an alternative signalling pathway that is potentially involved in EDHF signalling. 

The findings from this data set highlight the need for accurate measurement of 

peptide levels and the use of a combination of RAS peptides and antagonists to 

fully understand the functional interplay involved. 

While the current data set suggests that neither Ang-(1-7) nor Ang-(1-9) would 

enhance regeneration of the endothelial layer through proliferation or migration 

of resident endothelial cells, it is possible that these peptides may promote re-

endothelialisation via an alternative mechanism. It has been suggested that 

while local endothelial cells would be sufficient to maintain vascular integrity 

throughout life in healthy circumstances, in the maintained presence of risk 

factors, loss of endothelial integrity would rapidly develop if local replication 

were the only repair mechanism (Op den Buijs et al., 2004). It has become clear 

that circulating endothelial progenitor cells (EPC) are an alternative mechanism 

for maintenance and repair of the endothelium (Asahara et al., 1997). These 

cells are recruited from the bone marrow, circulate in the peripheral blood, and 

can differentiate into mature cells with endothelial characteristics. In their fully 

developed state they are capable of endothelial outgrowth and tube or vascular 

sprout formation, and therefore are involved in re-endothelialisation and 

angiogenesis (Asahara et al., 1997). Although under physiological conditions EPC 

do not contribute significantly to endothelial cell turnover of blood vessels in 

normal adult tissue, there is a robust contribution of circulating EPCs to 

endothelial cells within vessels one month following vascular injury (Crosby et 

al., 2000).  Several factors, including VEGF, NO, estrogen and drugs such as 

statins can regulate the number of EPC in the circulation (Takahashi et al., 
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1999, Asahara et al., 1999, Dimmeler et al., 2001, Strehlow et al., 2003, Aicher 

et al., 2003). 

In recent years the effects of the RAS, in particular Ang II, on EPC population 

and function has been explored. Evidence from the literature suggests that Ang 

II can be both detrimental and beneficial to EPC functioning. For example, Ang II 

via the AT1R has been linked to reduced EPC population in a number of models, 

an effect which has been linked to inhibition of differentiation of bone marrow 

mononuclear cells (BM-MNC) to EPCs (Bahlmann et al., 2005, Yu et al., 2008, 

You et al., 2008). For example, in BM-MNC cultured from SHRs, AT1R inhibition 

increased the number of EPCs after a 7 day culture period (You, Cochain et al. 

2008). Additionally, chronic AT1R inhibition in vivo increased EPCs but not 

haematopoetic stem cells in diabetic patients, suggesting that the AT1R may 

inhibit their differentiation to EPCs (Bahlmann, de Groot et al. 2005). Ang II has 

also been linked to increased EPC senescence through increased ROS production 

(You et al., 2008, Imanishi et al., 2005). Stimulation of EPC senescence occurred 

due to increased activation of NADPH oxidase signalling leading to increased ROS 

and ONOO- production. Increased oxidative stress was associated with down-

regulation of the chromosomal telomere-extending enzyme telomerase, 

suggesting that Ang II may induce telomeric damage in EPC leading to 

senescence. However, in other cell types Ang II/ROS-induced senescence does 

not involve telomeres or telomerase activity, and therefore its effect could also 

be associated with global DNA damage (Herbert et al., 2008). Further 

investigation into the mechanisms of Ang II induced senescence is therefore 

required.  In contrast, it has also been demonstrated that Ang II improves EPC 

recruitment through stimulation of VEGF, which leads to increased eNOS 

signalling (Imanishi et al., 2005, Qian et al., 2009). However, while Ang II may 

have the potential to enhance the activity of EPC’s, increased Ang II is 

detrimental during vascular injury and it would therefore be unsuitable to utilise 

this peptide as a therapy. 

There is also mounting evidence to suggest a role for Ang-(1-7) in EPCs. For 

example, Ang-(1-7) has been shown to increase production of EPCs in a Mas 

dependent manner (Qian et al., 2009). Furthermore, Ang-(1-7) has recently been 

demonstrated to improve EPC migration and functioning in diabetic patients 

(Jarajapu et al., 2013). The mechanisms through which Ang-(1-7) increases EPC 
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population are still unknown; however, two potential pathways have been 

identified. First, Ang-(1-7) inhibits Ang II-induced ROS production through 

inhibition of c-Src signalling and therefore reduced NADPH oxidase activity 

(Sampaio et al., 2007a). Second, Ang-(1-7) has been demonstrated to stimulate 

eNOS activity through Akt (Sampaio et al., 2007b), and this pathway is also 

involved in VEGF signalling. Since these pathways play an important role in EPC 

senescence and angiogenic function, respectively, they may account for the 

stimulating effects of Ang-(1-7) on EPCs (Qian et al., 2009). 

An effect of Ang-(1-9) on EPC generation or function has yet to be identified, 

however, ACE2 has recently been linked to improved EPC function through 

increased eNOS expression and activity, and reduced production of ROS (Chen et 

al 2013). While the authors concluded that this was likely to be due to reduced 

Ang II and increased Ang-(1-7) production (Chen et al., 2013), as Ang-(1-9) is also 

synthesised by ACE2 it is possible that this peptide may also play a role in the 

observed results. While the involvement of EPCs in the protective effects of Ang-

(1-7) and Ang-(1-9) in acute vascular injury has not yet been explored, this novel 

interaction identifies a potential mechanism for enhanced re-endothelialisation. 

4.4 Conclusion 

In summary, the data demonstrate that Ang-(1-7) or Ang-(1-9) do not promote or 

inhibit proliferation or migration of primary HSVEC, suggesting that they would 

not limit re-endothelialisation following vascular injury. Furthermore, a direct 

role for Ang-(1-9) in production of NO has been identified, which appears to be 

mediated via the AT2R in vitro. However, studies using AT2R
-/- mice revealed 

that Ang-(1-9) retained its biological functions in the absence of the AT2R, 

suggesting that, at least in the absence of the AT2R, Ang-(1-9) can either act at 

an alternative receptor or is metabolised to an alternative peptide which 

promotes vasodilation. Importantly, in the aorta the vasodilator effect of Ang-(1-

9) was abolished by A779, indicating that in the aorta Ang-(1-9) may be 

converted to Ang-(1-7) to elicit its effects. Interestingly, this was not observed 

in the mesenteric arteries, identifying differential effects of Ang-(1-9) between 

vascular beds. While further work is required to fully elucidate the effects of 

Ang-(1-9) in the vasculature, this present study highlights both Ang-(1-7) and 

Ang-(1-9) as potential therapeutic targets in acute vascular injury. 



 
 

 

 

 

 

 

 

 

Chapter 5 

Effects of Ang-(1-7) and Ang-(1-9) on vascular 
remodelling in vivo 
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5.1 Introduction 

As atheroscelerosis develops, advanced complex plaques are formed that largely 

occlude the affected artery resulting in reduced blood flow through the vessel 

and tissue ischaemia (Ross, 1999a). Restoration of blood flow through an 

occluded blood vessel, known as revascularisation, is most commonly achieved 

through CABG surgery or PCI (Goldman et al., 2004, British Heart Foundation, 

2012, European Coronary Surgery Study Group, 1982, RITA-2 trial participants, 

1997, King, 2005). However, the long-term success of these treatments are 

significantly limited by failure of conduit grafts in CABG and restenosis of 

stented vessels in PCI, caused by neointimal formation, impaired re-

endothelialisation and thrombosis (Motwani and Topol, 1998, Mehilli et al., 

2011, Lopes et al., 2012, Schwartz et al., 1995, Mitra et al., 2006). 

Various cellular processes initiated during and immediately following 

engraftment of the vein to the arterial system underlie the pathogenesis of vein 

graft failure, both at an early and late stage. Surgical preparation of the vein 

causes significant denudation of the endothelial layer and immediately following 

engraftment to the arterial circulation the vein is exposed to a period of 

ischaemia following by reperfusion (Thatte and Khuri, 2001, Shi et al., 2001, 

West et al., 2001). Furthermore, the engrafted vein is subject to increased 

pressure and altered haemodynamic conditions within the arterial circulation 

resulting in further endothelial stress (Dobrin et al., 1989). Together, this results 

in the generation of ROS, which in turn trigger an inflammatory response within 

the graft, leading to recruitment of platelets and various inflammatory cells 

(West et al., 2001, Shi et al., 2001). Under these conditions, the remaining 

endothelial cells become activated, allowing adhesion of the circulating 

platelets and inflammatory cells. This exposes the circulating blood to a highly 

thrombogenic surface, resulting in thrombosis, the main cause of early vein graft 

failure (Bryan and Angelini, 1994).  These early events also predispose the vessel 

to neointimal formation and superimposed atherosclerosis, the main cause of 

reduced graft patency. Adherent platelets and leukocytes generate various 

growth factors and pro-inflammatory mediators which activate VSMC within the 

media, leading to VSMC migration to the intima where they proliferate and 

synthesise ECM, resulting in the formation of a large neointimal area (Lerner et 

al., 1986, Cooper and Newby, 1991, Segel et al., 2011). While VSMC migration 
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and proliferation is thought to be most prevalent within the first week following 

engraftment, these processes are key in vein graft patency and failure (Newby, 

1997). Furthermore, this neointimal area is highly susceptible to an accelerated 

form of atherosclerosis due to the infiltration of inflammatory cells, which 

creates a cytotoxic environment within the plaque encouraging the uptake of 

lipids (Schwartz et al., 1995). Adherent monocytes infiltrate the vessel wall and 

differentiate into resident macrophages which then transform into foam cells 

following lipid uptake. These resident macrophages also release various 

mediators that further enhance neointimal formation such as MMPs, growth 

factors and cytokines. The atherosclerotic plaques that form within the graft are 

diffuse and unstable due to poorly developed or absent fibrous caps, and are 

therefore more prone to rupture (Shelton et al., 1988, Virmani et al., 1988).  

Within four weeks the endothelial layer of the engrafted vein is repaired due to 

proliferation and migration of endothelial cells and recruitment of bone marrow 

derived EPCs, a process which is thought to repress VSMC growth and 

proliferation, and therefore neointimal thickening (Cross et al., 1988, Ku et al., 

1991). However, the function of the new endothelial layer is impaired, largely 

due to the increased arterial pressure and asymmetric neointimal area creating 

increased flow-induced stress, resulting in endothelial cell damage and 

enhanced platelet and leukocyte adhesion. This process ultimately leads to late 

stage thrombosis and enhanced neointimal thickening (Shimokawa et al., 1987, 

Dobrin et al., 1989, Caro et al., 2002). 

In the setting of in-stent restenosis, the neointimal growth that occurs is a 

multifactorial response to mechanical vessel injury at the time of stent 

deployment. The force required to dilate the vessel and deploy the stent results 

in denudation of the endothelium and often dissection of the medial layer of the 

arterial wall (Costa and Simon, 2005). Furthermore, the atherosclerotic plaque is 

compressed and the fibrous cap disrupted, exposing the sub-endothelial pro-

inflammatory core of the plaque to the circulating blood (Inoue and Node, 

2009). This initial damage stimulates an acute inflammatory response within the 

vessel, resulting in expression of adhesion molecules, recruitment and 

infiltration of various inflammatory cells and a cascade of cytokine and growth 

factor release (Costa and Simon, 2005, Welt and Rogers, 2002). The pro-

inflammatory environment within the vessel is sustained for several weeks 
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following injury and leads to migration and growth of VSMC, processes which 

underlie the pathogenesis of restenosis and neointimal growth (Libby et al., 

1992). While the VSMC closest to the region of injury undergo apoptosis, the 

surviving VSMC migrate from the media to the intima (Perlman et al., 1997, 

Hanke et al., 1990). Activated platelets at the site of injury and resident VSMC 

secrete growth factors promoting VSMC proliferation and migration (Walker et 

al., 1986). VSMC proliferation is thought to be maximal at 5 to 7 days after 

injury with around 10 to 20% of the total medial VSMC proliferating (Rogers et 

al., 1998). VSMC in the synthetic state are also key producers of ECM proteins, 

such as collagens and proteoglycans, resulting in increased neointimal volume 

due to the high rate of ECM synthesis which lasts for a number of months 

following injury (Inoue and Node, 2009, Lee et al., 1993).  

Re-endothelialisation of the vessel is thought to occur within three to four weeks 

following PCI with growth factors such as VEGF facilitating endothelial cell 

proliferation and migration (Brindle, 1993). While re-growth of the endothelial 

layer has been demonstrated to repress neointimal thickening and the 

occurrence of thrombosis, the new endothelial layer may also be dysfunctional, 

resulting in decreased vascular integrity, increased permeability and impaired 

vasodilation (Weidinger et al., 1990, Hamon et al., 1995, Kipshidze et al., 2004). 

One interventional approach to prevent late vein graft failure and in-stent 

restenosis is targeting the VSMC proliferation that underlies the formation of the 

neointima through the use of cell cycle inhibitory drugs, such as paclitaxel or 

sirolimus (Htay and Liu, 2005, Murphy et al., 2007). In the case of CABG surgery 

the vein graft can be incubated with these drugs prior to engraftment and 

several studies in animal models have shown that adopting this approach results 

in reduced neointimal formation, at least in the early phase of disease 

(Schachner et al., 2004, Murphy et al., 2007). For example, incubating pig 

saphenous veins for one hour with paclitaxel, sirolimus or cytochalasin D reduced 

neointimal formation at one but not three months following implantation 

(Murphy et al., 2007). Additionally, sirolimus reduced re-endothelialisation and 

increased the incidence of thrombosis (Murphy et al., 2007). In an attempt to 

circumvent the issue of restenosis following stent employment drug eluting 

stents were developed which were coated with polymers to elute the cell cycle 

inhibitory drugs (Htay and Liu, 2005). Drug eluting stents have been shown to 
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inhibit restenosis in comparison to bare metal stents, confirming that inhibition 

of VSMC proliferation is beneficial in this setting (Schampaert et al., 2006, Stone 

et al., 2009, Caixeta et al., 2009), however they do not come without 

complications of their own. Several studies have reported that drug eluting 

stents are associated with an increased risk of late stent thrombosis (Karha et 

al., 2006, Joner et al., 2007) as the drugs also inhibit endothelial cell 

proliferation, thereby inhibiting regeneration of the endothelial layer, enhancing 

neointimal formation and increasing the incidence of late in-stent thrombosis 

(Douglas et al., 2012). Therefore therapies that specifically target VSMC growth 

and migration, without preventing re-endothelialisation are optimal in vein graft 

failure and in-stent restenosis (Inoue and Node, 2009).  

As discussed in Chapter 3, Ang-(1-7) and Ang-(1-9) prevent VSMC migration and 

proliferation, via the Mas receptor and AT2R, respectively. Importantly, as shown 

in Chapter 4, these peptides did not affect endothelial cell proliferation and 

migration, indicating that they may prevent neointimal formation but not inhibit 

re-endothelialisation of the vasculature following injury in vivo, and are 

therefore attractive novel therapeutic targets in the setting of vascular 

remodelling. In this chapter the role of Ang-(1-7) and Ang-(1-9) in vivo in a 

mouse model of vascular remodelling, the carotid artery wire injury model, has 

been investigated. This model was first developed by Lindner et al in 1993 and 

involves isolation of the carotid artery and advancement of a guide wire into the 

vessel towards the aorta (Lindner et al., 1993). This causes endothelial 

denudation and in turn promotes intimal and medial VSMC proliferation and 

migration, and rapid platelet adherence to the subendothelial matrix, resulting 

in the formation of a large neointima within 2 to 4 weeks (Lindner et al., 1993). 

Repair of the endothelial layer is expected to be complete at 4 weeks following 

injury (Lindner et al., 1993). Based on the effects of Ang-(1-7) and Ang-(1-9) in 

vitro and the fact that this will be the first study to assess the role of Ang-(1-9) 

in this setting, this model was deemed to be ideal to investigate the role of Ang-

(1-7) and Ang-(1-9) in vascular remodelling.  

Additionally, this study includes an investigation into the involvement of the 

AT2R and Mas receptor in this setting. Ang-(1-7) is widely accepted to be the 

endogenous ligand at the Mas receptor (Santos et al., 2003) has been previously 

shown to exert its inhibitory effects on neointimal formation in rats by 
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interaction with Mas (Zeng et al., 2009) and therefore a group of animals were 

administered both Ang-(1-7) and A779 following vascular injury to assess this 

interaction in the mouse carotid artery injury model. The protective effects of 

Ang-(1-9) has been previously shown to be mediated via the AT2R and 

independent of conversion to Ang-(1-7) and signalling at Mas (Flores-Munoz et 

al., 2012, Flores-Munoz et al., 2011) (Chapters 3 and 4). However as very little is 

known about this peptide in the vasculature, one group of animals received Ang-

(1-9) and PD123, 319, and another Ang-(1-9) and A779 to investigate the possible 

conversion to Ang-(1-7). All peptide and antagonist combinations were delivered 

subcutaneously via osmotic mini pumps resulting in delivery of the peptide to 

the systemic circulation at a constant rate over the 28 day post-operative 

period. 

Furthermore, an additional study was performed to assess the effectiveness of 

locally delivered peptide in the mouse carotid artery wire injury model. Here 

the peptides were applied directly to the vessel immediately following injury to 

allow for local delivery through the use of Pluronic F127 gel. Pluronic F127 is a 

commercially available copolymer that when dissolved in aqueous solution 

displays the unique characteristic of reverse thermal gelation, as at room 

temperature Pluronic F127 solution is a viscous liquid which is transformed to a 

semisolid gel at body temperature (Schmolka, 1972).  Therapies can therefore 

be dissolved in the Pluronic F127 solution when aqueous then be delivered 

locally to the animal to form a gel based depot of the therapeutic at the site of 

administration. This approach has never been used to deliver Ang-(1-7) or Ang-

(1-9), and confirmation of delivery of the peptides was required prior to 

investigating their therapeutic potential. Therefore a pilot study was performed 

using an antibody against Ang-(1-7) and a biotinylated form of Ang-(1-9) to 

confirm their delivery prior to investigating the therapeutic effects of locally 

delivered peptides. 
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5.1.1 Aims 

The aims of this chapter were: 

 To determine the extent of neointimal formation and vascular 

remodelling following carotid artery injury in C57BL/6 mice. 

 To investigate the effect of subcutaneous delivery of Ang-(1-7) and Ang-

(1-9), and the role of Mas and the AT2R, on neointimal formation and 

vascular remodelling following carotid artery injury in C57BL/6 mice. 

 To assess the efficacy of Pluronic F127 gel as a method for local delivery 

of Ang-(1-7) and Ang-(1-9). 

 To determine the effects of local delivery of Ang-(1-7) and Ang-(1-9) on 

neointimal formation and vascular remodelling following carotid artery 

C57BL/6 mice. 

 

  



172 
 

5.2 Results 

5.2.1 Neointimal formation in C57BL/6 mice following vascular 
injury 

Total body weight was monitored throughout the wire injury study and no 

difference was observed between sham and injured mice (Table 5.1). Heart and 

kidney weight were assessed at 28 days and expressed a percentage of total 

body weight; no differences in heart or kidney were observed between sham and 

injured mice (Table 5.1). 

Table 5.1 Body and organ weight measurements following sham and vascular injury 
procedures. 

 

Histological analysis of EVG stained sections from carotid arteries at 28 days 

following wire injury revealed a significant increase in vascular remodelling in 

injured carotid arteries in comparison to sham operated arteries (Figure 5.1). 

This remodelling was associated with the formation of a significant neointimal 

area (23608.3 ± 5100.1 µm2 wire injury vs. 176.9 ± 136.4 µm2 sham; P<0.01), an 

increase in medial area (57300.5 ± 16051.3 µm2 wire injury vs. 23842.9 ± 1376.7 

µm2 sham; P<0.05) and neotintima/media (NI/MA) ratio (0.49 ± 0.13 wire injury 

vs.0.01 ± 0.01 sham; P<0.01) (Figure 5.1). Additionally, injured carotid arteries 

had a more disorganized elastic lamina in comparison to sham operated animals. 

The neointimal area observed in wire injured vessels appeared to have a large 

proportion of ECM as evidenced by the large proportion of elastin (black) and 

collagen (pink) staining (Figure 5.1).  
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Figure 5.1 Neointimal growth in the carotid artery 28 days after sham and vascular injury 
procedure.  
Representative histological sections of the left carotid artery from (A) sham and (B) injured mice 
using EVG staining. Elastin appears black and collagen pink. (C) Neointimal area (NI), (D) media 
area (MA), and (E) NI/MA ratio was assessed. Outer dotted line = external elastic lamina, middle 
dotted line = internal elastic lamina, inner dotted line = lumen. Scale bar =100 μm, magnification 
x20, red box = 3x zoom. ***P<0.001, **P<0.01, P<0.05 vs. sham. n=6-8. 
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5.2.2 Effects of subcutaneous delivery of Ang-(1-7) and Ang-(1-9) 
on vascular remodelling, in the absence and presence of 
Mas or AT2R inhibition,  

Total body weight was monitored throughout the study and no difference was 

observed between the experimental groups (Table 5.2). Heart and kidney weight 

was assessed at 28 days and expressed a percentage of total body weight; no 

differences in heart or kidney were observed between the experimental groups 

(Table 5.2). 

Table 5.2 Effects of subcutaneous delivery of water, Ang-(1-7) and Ang-(1-9) on body and 
organ weight measurements following vascular injury 

 
 
EVG staining was also performed to assess the extent of vascular remodelling 

following subcutaneous delivery of Ang-(1-7) and Ang-(1-9), in the absence and 

presence of Mas or AT2R inhibition (Figure 5.2). Delivery of Ang-(1-7) resulted in 

a trend towards reduced neointimal area (16538.0 ± 3487.3 µm2 Ang-(1-7) vs. 

30609.7 ± 2771.3 µm2 control) and a significant reduction in NI/MA ratio (0.40 ± 

0.07 Ang-(1-7) vs. 0.80 ± 0.07 control; P<0.05) in comparison to control vessels 

(Figure 5.2). Ang (1-7) had no effect on medial area (39178.3 ± 6051.23 µm2 Ang-

(1-7) vs. 38132.8 ± 2708.8 µm2 control) (Figure 5.2). To assess the involvement 

of Mas in the effect of Ang-(1-7), Ang-(1-7) and A779 were co-infused for 28 days 

following vascular injury. A779 abolished the effects of Ang-(1-7), resulting in a 

similar neointimal area as control vessels (28617.1 ± 3479.9 µm2 Ang-(1-7) 

+A779; P>0.05 vs control) (Figure 5.2).  

Ang-(1-9) also reduced vascular remodelling in comparison to control vessels, 

resulting in a significant reduction in neointimal area (6577.7 ± 3090.0 µm2 Ang-
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(1-9) vs. 30609.7 ± 2771.3 µm2 control; P<0.001) and NI/MA ratio (0.17 ± 0.10 

Ang-(1-9) vs. 0.80 ± 0.07 control; P<0.001), suggesting it may be more 

efficacious than Ang-(1-7) (Figure 5.2). Media area was unaltered by Ang-(1-9) 

(50664.8 ± 4847.1 µm2 Ang-(1-9) vs. 38132.8 ± 2708.8 µm2 control; P>0.05 vs 

control) (Figure 5.2).  

To assess the involvement of the AT2R in the effects of Ang-(1-9), Ang-(1-9) was 

co-infused with PD123,319 for 28 days following vascular injury. Co-infusion of 

PD123,319 with Ang-(1-9) blocked its effects, resulting in a significant increase 

in neointima area compared to Ang-(1-9) (32912.6 ± 6432.3 µm2 Ang-(1-

9)+PD123,319 vs 6577.7 ± 3090.0 µm2 Ang-(1-9); p<0.001) and NI/MA (0.58 ± 0.13 

Ang-(1-9)+PD123,319 vs 0.17 ± 0.10 Ang-(1-9);P,0.05) in comparison to animals 

who received Ang-(1-9) alone (Figure 5.2). PD123,319 blocked the effects of 

Ang-(1-9) on neointima area and NI/MA to similar levels as control vessels (Figure 

5.2). Furthermore, co-infusion of Ang-(1-9) and PD123,319 resulted in a 

significant increase in media area in comparison to control (61230.0 ± 7993.2 

µm2Ang-(1-9) + PD123,319 vs 38132.8 ± 2708.8 µm2 control; P<0.05) (Figure 5.2).  

Ang-(1-9) was also co-infused with A779 to address the possibility of conversion 

to Ang-(1-7) and/or interaction with Mas.  A779 did not alter the anti-

remodelling effects of Ang-(1-9), resulting in a comparable neointima area 

(13751.1 ± 2709.4 µm2) and NI/MA (0.34 ± 0.06) to Ang-(1-9) treated groups; 

both parameters were significantly different to control vessels (neointima area 

P<0.05 and NI/MA P<0.01 vs control). Co-infusion of Ang-(1-9) and A779 resulted 

in an equivalent medial area to control and Ang-(1-9) treated vessels [42175.2 ± 

3019.6 µm2; P>0.05 vs control or Ang-(1-9)] (Figure 5.2). 

During histological analysis of the vessels it was also observed that while co-

infusion of Ang-(1-7) with A779, and Ang-(1-9) with PD123,319 prevented the 

anti-remodelling effects elicited by the peptides alone, a large proportion of 

these two groups had increased vessel remodelling, largely within the media, in 

comparison to all other groups (Figure 5.3). This increased remodelling 

presented in the form of more complex lesions and was associated with positive 

vessel remodelling, medial hyperplasia, and stretching and often disruption of 

the elastic lamina (Figure 5.3).  
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Figure 5.2 Effects of subcutaneous delivery of Ang-(1-7) and Ang-(1-9) on neointima 
formation in the carotid artery at 28 days following vascular injury, in the absence and 
presence of Mas or AT2R inhibition. 
Representative histological sections of the injured left carotid artery from (A) control animals 
(water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-7)+A779, (E) Ang-(1-
9)+PD123,319 or (F) Ang-(1-9)+A779 stained using EVG staining. Elastin appears black while 
collagen is stained pink. (G) Neointima area, (H) media area and (I) NI/MA ratio was assessed. 
Scale bar =100 μm, magnification x20, red box = 3x zoom.  ***P<0.01 **P<0.01, P<0.05 vs. control 
(water); 
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Figure 5.3 Incidence of increased vessel remodelling 
Representative histological sections of the injured left carotid artery exhibiting (A) normal and (B) 
more complex vascular remodelling at 28 days post injury stained with EVG. Complex lesions 
presented with positive outward vessel remodelling and stretching of and/or disruption of the elastic 
lamia, as indicated by red arrows. (C) Number of mice per group with complex vessel remodelling 
at 28 days following vascular injury. Scale bar =100 μm, magnification x20. Red box = 3x zoom. 
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5.2.2.1 Structural composition of remodelled vessels. 

To further investigate the effects of Ang-(1-7) and Ang-(1-9) on vascular 

remodelling following injury the composition of the lesions was assessed using 

further histological analysis.  

5.2.2.1.i  Extracellular matrix 

EVG staining was performed to assess elastin content within the vessel (Figure 

5.2). At 28 days post injury, large areas of neointimal formation were present in 

control and Ang-(1-7) + A779 and Ang-(1-9) + PD123, 319 infused animals, with 

comparatively smaller neointimal area in Ang-(1-7), Ang-(1-9) and Ang-(1-9) 

+A779 treated animals. The neointima areas contained large amounts of ECM as 

indicated by the high degree of elastin staining. In control vessels, a high degree 

of elastin staining was observed within the media, this was unaltered in animals 

infused with Ang-(1-7) or Ang-(1-7)+A779, however reduced medial elastin 

content was observed in animals infused with Ang-(1-9) alone or Ang-(1-9) and 

PD123,319 or A779.  

Picrosirus red staining was used to assess collagen content within the remodelled 

vessels at 28 days post injury (Figure 5.4). Picrosirus red staining was present 

within the neointima, and a higher degree of positive staining was observed 

within the neointima compared to the media. However, positive collagen 

staining was similar in colour to the elastic lamina and much less than staining 

observed in the periadventitial connective tissue, therefore under these 

conditions it is unclear if the pink staining is truly new collagen deposition or 

whether stained elastic fibres were contributing to the observed results.  
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Figure 5.4 Picrosirus red staining of left carotid arteries at 28 days following vascular injury. 
Representative histological sections of the injured left carotid artery from (A) control animals 
(water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-7)+A779, (E) Ang-(1-
9)+PD123,319 or (F) Ang-(1-9)+A779 stained with picrosirus red and counterstained with Weigarts 
haemotoxylin. Collagen appears pink/red and nuclei appear purple/blue. Outer dotted line = 
external elastic lamina, middle dotted line = internal elastic lamina, inner dotted line = lumen. Scale 
bar =100 μm, magnification x20. Red box = 3x zoom. N = 6-10 animals per group.  
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5.2.2.1.ii. Vascular smooth muscle cell content 

As migration and proliferation of VSMC are key processes in neointimal 

formation, the contribution of VSMC to vascular remodelling following injury was 

assessed via the presence of α-SMA, a SMC marker (Figure 5.5). Vessels from all 

groups at 28 days displayed positive staining for α-SMA within both the media 

and neointima. Large neointimal lesions were observed in control, Ang-(1-

7)+A779 and Ang-(1-9)+PD123, 319 treated animals and these neointimal areas 

were largely composed of VSMC, as indicated by the high degree of positive 

detection of α-SMA. Overall these vessels contained a larger number of α-SMA 

positive cells due to the presence of a large neointima in comparison to vessels 

from animals infused with Ang-(1-7), Ang-(1-9) or Ang-(1-9) + A779.  
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Figure 5.5 α-SMA content of the left carotid artery at 28 days following vascular injury. 
IHC was performed using an anti-α-SMA antibody to assess VSMC expression within the injured 
vessel. DAB chromagen was used to detect α-SMA positive cells (brown), indicated by arrow head, 
and tissue sections were counterstained with haemotoxylin to visualise nuclei (blue). 
Representative histological sections of α-SMA content in the injured left carotid artery from (A) 
control animals (water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-
7)+A779, (E) Ang-(1-9)+PD123,319 or (F) Ang-(1-9)+A779 via osmotic minipump. (G) An isotype 
matched IgG was used as a control. Outer dotted line = external elastic lamina, middle dotted line = 
internal elastic lamina, inner dotted line = lumen Scale bar =100 μm, magnification x20, red box = 
3x zoom. n = 6-10 animals per group. 
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5.2.2.1.iii. Re-endothelialisation 

Re-endothelialisation of the vessels following vascular injury was assessed via 

immunostaining for CD31, an endothelial cell marker. At 28 days post-injury an 

intact endothelial cell layer was prevalent in all groups, as indicated by the 

brown staining surrounding the lumen (Figure 5.6).  
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Figure 5.6 CD31 content of the left carotid artery at 28 days following vascular injury. 
IHC was performed using an anti-CD31 antibody to assess endothelial cell expression within the 
injured vessel. DAB chromagen was used to detect CD31 positive cells (brown), indicated by arrow 
head, and tissue sections were counterstained with haemotoxylin to visualise nuclei (blue). 
Representative histological sections of CD31 content in the injured left carotid artery from (A) 
control animals (water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-
7)+A779, (E) Ang-(1-9)+PD123,319 or (F) Ang-(1-9)+A779 via osmotic minipump. (G) An isotype 
matched IgG was used as a control. Outer dotted line = external elastic lamina, inner dotted line = 
internal elastic lamina. Lumen is not outlined due to positive CD31 detection in this region. Scale 
bar =100 μm, magnification x20, red box = 3x zoom. n = 6-10 animals per group. 
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5.2.2.1.iv. Proliferation 

The degree of cell proliferation within the injured vessel at 28 days post injury 

was assessed using the proliferation marker proliferating-cell nuclear antigen 

(PCNA) (Figure 5.7). In control vessels and vessels from mice infused with Ang-

(1-7) or Ang-(1-9), few PCNA positive cells were detected, closely associated 

with the sub-endothelial cell layer. However, in vessels from animals co infused 

with Ang-(1-7) and A779 there was a significant number of PCNA positive cells 

observed in both the media and the neointimal area, however the highest 

proportion was within the neointima. A similar effect was observed in Ang-(1-9) 

+ PD123, 319 treated mice where a high proportion of PCNA positive cells was 

observed, particularly within the neointima. PCNA positive cells were also 

observed in vessels co-infused with Ang-(1-9) + A779, however this was to a 

much lesser extent than in mice co-infused with Ang-(1-9) + PD123,319 and 

where present was observed within the media.  
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Figure 5.7 PCNA content of the left carotid artery at 28 days following vascular injury. 
IHC was performed using an anti-PCNA antibody to assess cell proliferation within the injured 
vessel. DAB chromagen was used to detect PCNA positive cells (brown), indicated by arrow 
heads, and tissue sections were counterstained with haemotoxylin to visualise nuclei (blue). 
Representative histological sections of PCNA content in the injured left carotid artery from (A) 
control animals (water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-
7)+A779, (E) Ang-(1-9)+PD123,319 or (F) Ang-(1-9)+A779 via osmotic minipump. (G) An isotype 
matched IgG was used as a control. Outer dotted line = external elastic lamina, middle dotted line = 
internal elastic lamina, inner dotted line = lumen. Scale bar =100 μm, magnification x20, red box = 
3x zoom. n = 6-10 animals per group. 

Control Ang-(1-7)

Ang-(1-9) Ang-(1-7) + A779

Ang-(1-9) + PD123,319 Ang-(1-9) + A779

A                                                                B

C D

E                                                                F

100 um

100 um
100 um

100 um 100 um

100 um

G

IgG



186 
 

5.2.2.1.v. Inflammation 

To assess the presence of macrophages as a measure of inflammation within the 

remodelled vessels at 28 days post injury, immunostaining for the macrophage 

marker macrophage antigen-2 (MAC-2) was performed (Figure 5.8). In control 

vessels, a small number of MAC-2 positive cells were observed within the media 

and neointima. In Ang-(1-7) and Ang-(1-9) infused mice no significant differences 

were observed, however positive immunostaining did appear to be reduced in 

comparison to control animals. The effects of Ang-(1-7) were blocked by co-

infusion of A779 as there was a higher proportion of MAC-2 positive cells than 

both control or Ang-(1-7) infused mice. In Ang-(1-7) + A779 infused animals the 

largest proportion of MAC-2 positive cells were observed within the media, 

however, positive cells were also detected within the neointima. The effects of 

Ang-(1-9) were unaltered by co-infusion of A779 as vessels from animals infused 

with Ang-(1-9) + A779 displayed similar levels of MAC-2 positive cells to that 

observed in control or Ang-(1-9) infused mice. Conversely, co-infusion of Ang-(1-

9) + PD123,319 appeared to increase MAC-2 content within the injured vessels to 

a higher extent than control or Ang-(1-9) infused animals, as a higher number of 

MAC-2 positive cells were observed within the media and to a lesser extent in 

the neointima.  
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Figure 5.8 Mac2 content of the left carotid artery at 28 days following vascular injury. 
IHC was performed using an anti-Mac2 antibody to assess macrophage content within the injured 
vessel. DAB chromagen was used to detect Mac2 positive cells (brown), indicated by arrow head, 
and tissue sections were counterstained with haemotoxylin to visualise nuclei (blue). 
Representative histological sections of Mac2 content in the injured left carotid artery from (A) 
control animals (water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-
7)+A779, (E) Ang-(1-9)+PD123,319 or (F) Ang-(1-9)+A779 via osmotic minipump. (G) An isotype 
matched IgG was used as a control. Outer dotted line = external elastic lamina, middle dotted line = 
internal elastic lamina, inner dotted line = lumen. Scale bar =100 μm, magnification x20, red box = 
3x zoom. n = 6-10 animals per group. 
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5.2.2.1.vi. Apoptosis 

To assess the extent of cell apoptosis within the injured vessel, immunostaining 

was performed against the apoptosis marker active-caspase 3 (Figure 5.9). At 28 

days post injury negligible active caspase 3 activity was observed in all groups 

and no differences were apparent between any of the groups.  
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Figure 5.9 Active caspase-3 content of the left carotid artery at 28 days following vascular 
injury. 
IHC was performed using an anti-active caspase-3 antibody to assess cell apoptosis within the 
injured vessel. DAB chromagen was used to detect active caspase-3 positive cells (brown) and 
tissue sections were counterstained with haemotoxylin to visualise nuclei (blue). Representative 
histological sections of active caspase-3 content in the injured left carotid artery from (A) control 
animals (water) and animals administered (B) Ang-(1-7), (C) Ang-(1-9), (D) Ang-(1-7)+A779, (E) 
Ang-(1-9)+PD123,319 or (F) Ang-(1-9)+A779 via osmotic minipump. (G) An isotype matched IgG 
was used as a control. Outer dotted line = external elastic lamina, middle dotted line = internal 
elastic lamina, inner dotted line = lumen. Scale bar =100 μm, magnification x20, red box = 3x 
zoom. n = 6-10 animals per group. 
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5.2.2.2 Structural composition of complex lesions 

As detailed in section 5.2.2, it was observed that a large proportion of vessels 

from animals co-infused with Ang-(1-7) and A779, or Ang-(1-9) and PD123,319 

developed complex lesions with increased vessel remodelling, largely within the 

media, in comparison to other groups (Figure 5.3). To investigate the structural 

composition of these complex lesions the histology stains and IHC described in 

section 5.2.2.1 were employed. For all components of the vessels investigated 

there was no difference in the composition of the complex lesions observed in 

animals infused with Ang-(1-7)+A779 or Ang-(1-9)+PD123,319, therefore the 

following analysis describes the common features of the complex lesions which 

were found consistently in both groups. 

The complex lesions contained a high proportion of ECM content, as revealed by 

EVG staining for elastin and picrosirus red staining for collagen (Figure 5.10). 

Many vessels contained an intact internal elastic lamina, therefore it was clear 

to distinguish between the neointima and the media. However, even in vessels 

where the elastic lamina was disrupted the neointima could still be distinguished 

due to differences in the structural organisation. Similar to vessels without 

complex lesions, the neointima contained large amounts of elastin which 

appeared highly organised, more compact and matrix-like in structure. However, 

EVG staining within the medial area of the complex lesions was far less uniform 

in structure and composition. Picrosirus red staining revealed a similar pattern, 

with a higher degree of more organised positive staining for collagen within the 

neointima compared to the media. However, as outlined previously this staining 

was similar in colour to the elastic lamina and lighter than the periadventitial 

connective tissue, so it was unclear whether this is elastin or collagen.  
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Figure 5.10 Elastin and collagen content of the complex lesions observed in the injured 
vessels of Ang-(1-7) + A779 and Ang-(1-9) + PD123,319 infused mice. 
Representative histological sections of the complex lesions observed in the injured vessels of Ang-
(1-7) + A779 and Ang-(1-9) + PD123,319 infused mice stained with EVG and picrosirus red to 
assess elastin and collagen content within the vessel, respectively. In EVG stained sections elastin 
appears black while collagen is stained pink. In picrosirus red stained sections collagen appears 
pink/red and nuclei appear purple/blue due to counterstaining with Weigarts haemotoxylin. Outer 
dotted line = external elastic lamina, middle dotted line = internal elastic lamina, inner dotted line = 
lumen. Incomplete dotted line indicates disruption of elastic lamina. Scale bar =100 μm, 
magnification x20. n = 6-10 animals per group. 
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Immunostaining for VSMC using α-SMA revealed that the complex lesions 

contained a high proportion of VSMC within the media and neointima (Figure 

5.11).  

Re-endothelialisation of the complex lesions was confirmed by immunostaining 

for CD31 (Figure 5.11). An intact endothelial cell layer was present in all vessels, 

as indicated by the brown staining surrounding the lumen. However, CD31 

positive cells were also present within the media of the complex lesions, and 

appeared in a pattern of circular areas, indicative of small vessel formation with 

lumens, suggesting neovascularisation had occurred within the complex lesion.  

A high proportion of proliferating cells were present within the complex lesion, 

as indicated by positive immunostaining for PCNA (Figure 5.11). Most PCNA cells 

were localised within the media of the complex lesion and to a lesser extent 

within the neointima. However, the number of PCNA positive cells within the 

neointima of vessels with complex lesions was higher than in those without. 

Additionally, a number of PCNA positive cells were observed in areas of apparent 

neovascularisation. 

The complex lesions also contained a high number of cells positive for MAC-2, 

indicating increased presence of macrophages (Figure 5.11). Similar to cell 

proliferation, macrophage content was highest within the medial area and to a 

lesser extent within the neointima, and was higher in both areas than in vessels 

without complex lesions. 

Very few vessels with a complex lesion contained cells positive for active 

caspase-3 activity, and in any vessels where it was observed, the number of 

positive cells were very few and localised within the media of the lesion (Figure 

5.11).  
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Figure 5.11 Cellular composition of the complex lesions observed in the injured vessels of 
Ang-(1-7) + A779 and Ang-(1-9) + PD123,319 infused mice. 
Representative images of the IHC analysis of the cellular composition of the complex lesions 
observed in the injured vessels of Ang-(1-7) + A779 and Ang-(1-9) + PD123,319 treated mice was 
performed using anti-α-SMA, anti-CD31, anti-PCNA, anti-Mac2 and anti-active caspase-3 
antibodies to detect the expression of VSMC, VEC, proliferating cells, macrophages and cell 
apoptosis, respectively. DAB chromagen was used to detect positive antigen binding (brown), 
indicated by arrow heads, and tissue sections were counterstained with haemotoxylin to visualise 
nuclei (blue). Outer dotted line = external elastic lamina, middle dotted line = internal elastic lamina, 
inner dotted line = lumen, with the exception of CD31 images where the inner dotted line = internal 
elastic lamina and luminal outline is absent due to positive CD31 cells within this region. 
Incomplete dotted line indicates disruption of the elastic lamina. Scale bar =100 μm, magnification 
x20, red box = 3x zoom. n = 6-7 animals per group.  
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5.2.3 Local delivery of Ang-(1-7) and Ang-(1-9) via Pluronic F-127 
gel 

Prior to investigating the functional effects of local delivery of Ang-(1-7) or Ang-

(1-9) via Pluronic F-127 gel, the efficacy of delivery via this method was 

assessed.  Mice whose vessels were exposed to gel only were used as controls. 

Animals were sacrificed at 7, 14 and 28 days post-wire injury and peptide 

delivery to the vessel assessed via IHC, using a specific antibody for Ang-(1-7) 

and streptavadin for the biotin-labelled Ang-(1-9).  

Ang-(1-7) was detected in control and Ang-(1-7) treated vessels at all time 

points, as indicated by brown staining, and the level of detection was similar 

between both groups throughout the study (Figure 5.12). Detection of Ang-(1-7) 

was most prevalent in the adventitia and periadventitial connective tissue. Ang-

(1-7) was also detected in the neointimal of injured vessels, particularly in 

control vessels at 28 days post injury. Ang-(1-7) was not detected in the media 

of vessels from either group at any time point. While Ang-(1-7) was detected in 

the adventitia and neointima of vessels from all groups, the staining was diffuse 

and did not appear to be localised to specific cells. Furthermore, some positive 

staining was observed in the lumen in areas which were acellular, suggesting 

unspecific binding of the primary antibody. No positive staining was observed in 

the PBS control group.  

Positive detection of biotin-labelled Ang-(1-9), as indicated by brown staining, 

was observed at all time points; no positive staining was observed in control 

vessels (Figure 5.13). However, biotin-labelled Ang-(1-9) was only detected in 

the periadventitial connective tissue. Furthermore, detection levels declined 

over time, with the highest level of positive staining at 7 days post injury and 

application, and the lowest levels observed at 28 days.  
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Figure 5.12 Detection of Ang-(1-7) in left carotid arteries at 7, 14 and 28 days post vascular 
injury.  
IHC was performed using an anti-Ang-(1-7) antibody to assess peptide levels within the injured 
vessel following application of Ang-(1-7)-containing Pluronic F-127 gel. Tissue sections were 
incubated with PBS in place of primary antibody as a control. DAB chromagen was used to detect 
bound antigen (brown) and tissue sections were counterstained with haemotoxylin to visualise 
nuclei (blue). Representative histological sections of Ang-(1-7) in the injured left carotid artery from 
control animals and animals administered Ang-(1-7) at 7, 14 and 28 days post application via 
Pluronic F-127 gel. Outer dotted line = external elastic lamina, middle dotted line = internal elastic 
lamina, inner dotted line = lumen. Scale bar =100 μm, magnification x20. N = 3 animals per group. 
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Figure 5.13 Detection of biotinylated-Ang-(1-9) in left carotid arteries at 7, 14 and 28 days 
post vascular injury 
Delivery of biotinylated-Ang-(1-9) via Pluronic F-127 gel was assessed by incubation of tissue 
sections with ExtrAvadin peroxidase and the peptide detected using DAB chromogen (brown), 
indicated by arrow heads. Tissue sections were counterstained with haemotoxylin to visualise 
nuclei (blue). Representative histological sections of biotin-Ang-(1-9) detection in the injured left 
carotid artery from control (gel only) and peptide treated animals at 7, 14 and 28 days post 
application via Pluronic F-127 gel. Outer dotted line = external elastic lamina, middle dotted line = 
internal elastic lamina, inner dotted line = lumen. Scale bar =100 μm, magnification x20. N = 3 
animals per group. 
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5.2.4 Effects of local delivery of Ang-(1-7) and Ang-(1-9) on 
vascular remodelling 

Total body weight was monitored throughout the local peptide delivery study 

and no difference was observed between the experimental groups (Table 5.3). 

Heart and kidney weight was assessed at 28 days and expressed as a percentage 

of total body weight; no differences in heart or kidney weight were observed 

between the experimental groups (Table 5.3). 

Table 5.3 Effects of local delivery of Ang-(1-7) and Ang-(1-9) on body and organ weight 
measurements following vascular injury 

 Organ weight was taken as a percentage of the body weight, n=8.  

EVG staining was performed to assess the extent of vascular remodelling at 28 

days post vascular injury, following local delivery of Ang-(1-7) or Ang-(1-9) via 

Pluronic F-127 gel. Vessels coated in gel only were used as a control. The study 

was unblinded following morphometric analysis of the stained sections and 

revealed that there were no differences between control, Ang-(1-7) or Ang-(1-9) 

treated vessels for all parameters measured (Figure 5.14). Neointima formation 

was modest and similar in area in all experimental groups. Similarly, no 

differences were observed in medial area, and therefore NI/MA. There were no 

apparent differences in ECM deposition in the injured vessels of all three groups 

as indicated by the similar degree of elastin (black) and collagen (pink staining) 

(Figure 5.14). 

 

   

Control (gel only) Ang - (1 - 7) Ang - (1 - 9) 

Start weight (g) 24.0  ± 0.9 23.2  ± 0.2 24.0  ± 0.7 

Final weight (g) 26.8  ± 1.0 25.5   ± 0.7 26.3  ± 0.7 

Heart/Body weight (%) 0.7  ± 0.02 0.6  ± 0.03 0.7  ± 0.02 

Kidney/Body weight (%) 0.7  ± 0.01 0.7  ± 0.02 0.7  ± 0.02 
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Figure 5.14 Effects of local delivery of Ang-(1-7) and Ang-(1-9) on neointimal formation in the carotid artery at 28 days following vascular injury.    
Representative histological sections of the injured left carotid artery from (A) control animals and animals administered (B) Ang-(1-7), (C) Ang-(1-9) via Pluronic F-127 
gel stained using EVG stain. Elastin appears black while collagen is stained pink. Neointimal area (D), media area (E) and NI/MA ratio (F) was assessed. Scale bar 
=100 μm, magnification x20, red box = 3x zoom. n= 7-8 animals per group. 
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5.3 Discussion 

Prior to assessing the effects of Ang-(1-7) and Ang-(1-9) in vascular remodelling, 

a carotid artery wire injury model in mice was established. This is a commonly 

used model of acute vascular injury, where a nylon wire is inserted into the 

vessel causing endothelial denudation and mechanical stretching of the vessel 

wall, resulting in the formation of a neointima within 2 to 4 weeks (Lindner et 

al., 1993). Consistent with previous findings it was demonstrated that at 28 days 

post injury there was a significant increase in vascular remodelling in injured 

vessels compared to non-injured vessels (Lindner et al., 1993). This remodelling 

was associated with an increase in medial area and formation of a large 

neointimal area which was highly composed of ECM.  

In this present study it was found that Ang-(1-7) infusion reduced vascular injury 

in comparison to control vessels, as evidenced by the reduction in neointimal 

formation and NI/MA ratio. Ang-(1-7) had no effect on the medial area. 

Importantly, blockade of Mas using the pharmacological inhibitor A779 abolished 

the anti-remodelling effects of Ang-(1-7), resulting in a similar neointimal area 

and NI/MA ratio as control vessels. These findings are consistent with previous 

studies in various rodent models of vascular injury where Ang-(1-7) was shown to 

inhibit neointimal growth (Strawn et al., 1999, Langeveld et al., 2005, Langeveld 

et al., 2008, Zeng et al., 2009, Wu et al., 2011). For example, in a rat model of 

carotid artery injury induced by balloon embolectomy catheter, Ang-(1-7) 

infusion via osmotic mini pump was proven to reduce neointimal area without 

affecting medial area (Strawn et al., 1999). Furthermore, it was demonstrated 

that these effects were independent of the AT1R or AT2R (Strawn et al., 1999). 

In another study, where vascular injury in rabbits was induced by aortic 

angioplasty, Ang-(1-7) infusion, again via osmotic mini pump, resulted in 

inhibition of neointimal formation but no change in media area (Zeng et al., 

2009). Importantly, these effects were blocked by A779, indicating that Ang-(1-

7) acted via Mas. More recently, using the rat autologous jugular vein graft 

model it was demonstrated that Ang-(1-7) reduced vascular remodelling and 

neointimal formation within the vein graft (Wu et al., 2011).  

The findings from this study show for the first time a direct action of Ang-(1-9) 

in vascular remodelling. Here we show that Ang-(1-9) reduced neointimal 
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formation and NI/MA ratio following wire injury to the mouse carotid artery. 

Importantly, the effects of Ang-(1-9) were demonstrated to be via the AT2R, as 

PD123,319 blocked the effects of Ang-(1-9), resulting in a significant increase in 

neointima area, media area and NI/MA in comparison to animals who received 

Ang-(1-9) alone. Conversely, co infusion of A779 with Ang-(1-9) produced similar 

results to those observed with Ang-(1-9) alone, indicating that the Ang-(1-9) 

mediated inhibition of neointimal formation was achieved via a direct effect of 

Ang-(1-9), as opposed to conversion to Ang-(1-7) and signalling via Mas. No 

previous studies have been performed to assess the role of Ang-(1-9) in acute 

vascular injury, however, Ang-(1-9) has recently been shown to indirectly 

contribute to reduced aortic remodelling associated with hypertension (Ocaranza 

et al., 2011). In hypertensive deoxycorticosterone acetate (DOCA)-salt rats, it 

was demonstrated that inhibition of the RhoA/Rho-associated, coiled-coil 

containing protein kinase (ROCK) signalling pathway using Fausidil resulted in 

increased activity and expression of ACE2 in the aorta, and increased Ang-(1-9) 

plasma levels, as well as reduced blood pressure and reduced expression of key 

genes related to vascular remodelling, such as TGF-1, PAI-1 and MCP-1 

(Ocaranza et al., 2011). While this study identifies a potential novel pathway of 

Ang-(1-9) in the vasculature and an avenue for exploration in the current study it 

is worthwhile to highlight that the vascular remodelling observed in the study by 

Ocaranza et al was very mild as it was induced by hypertension as opposed to 

direct vessel injury (Ocaranza et al., 2011).  

The results from this present study indicate that the effects of Ang-(1-9) are 

mediated via the AT2R. While further work is required to fully understand the 

vasculoprotective effects of the Ang-(1-9)/AT2R interaction and corroborate 

these findings, there is evidence in the literature which supports a protective 

role for the AT2R in vascular injury. For example, over-expression of the AT2R 

following balloon injury in the rat results in attenuation of neointimal formation 

(Nakajima et al., 1995). Similarly, in an alternative model of vascular injury 

where a cuff is placed around the femoral artery to induce neointima formation, 

absence of the AT2R resulted in increased neointimal formation (Akishita et al., 

2000, Wu et al., 2001). Furthermore, following cuff placement AT2R
-/- mice have 

reduced apoptosis within the neointima, consistent with increased neointimal 

area (Suzuki et al., 2002). The AT2R has also been linked to reduced 



201 
 

atherosclerosis as deletion of the AT2R from Apo E-/- mice results in a worsened 

atherosclerotic phenotype associated with increased VSMC content within the 

lesion (Sales et al., 2005). Taken together these results demonstrate that the 

AT2R is important in the development of atherosclerosis and vascular 

remodelling following injury. 

Remodelling of the ECM and deposition of ECM proteins such as elastin and 

collagen occurs during the remodelling process and largely contributes to 

neointimal formation. This has been shown to be the case in the present study 

where large areas of neointimal formation containing a high proportion of ECM 

following vascular injury were observed. While Ang-(1-7) reduced neointimal 

formation there were no differences in the organization of the ECM within the 

media or small neointimal area present. The effects of Ang-(1-7) were shown to 

be achieved via Mas and these findings were consistent with previously published 

results suggesting that Ang-(1-7) reduces vascular remodelling in part through 

inhibition of ECM synthesis and deposition (Strawn et al., 1999, Langeveld et al., 

2005, Zeng et al., 2009). Similarly, Ang-(1-9) reduced neointimal formation and 

therefore ECM synthesis, an effect which was shown to be via the AT2R and 

independent of conversion to Ang-(1-7) and signalling via Mas. However, Ang-(1-

9) also reduced medial elastin content in comparison to control vessels, an 

effect which was unaffected by either AT2R or Mas inhibition. Although there is 

no information in the literature to suggest Ang-(1-9) can reduce ECM synthesis 

and deposition in the vessel in response to injury, it has been shown that Ang-(1-

9) can inhibit collagen expression in the heart in an Ang II infusion model of 

hypertension (Flores Munoz et al, unpublished) and in the SHRSP (Flores-Munoz 

et al., 2012). In the studies by Flores Munoz et al, these effects were 

demonstrated to be via the AT2R. Currently little is known about the cell 

signalling mechanisms employed by Ang-(1-9) and it is possible that in the 

vasculature this peptide reduces ECM deposition via an alternative receptor to 

the AT2R or can be metabolised to an alternative peptide that may lead to this 

reduced ECM content within the media following vascular injury.  

VSMC migration and proliferation is largely involved in the development of 

neointimal formation following vascular injury (Costa and Simon, 2005). The 

results from this current study confirm that vessels from all groups are largely 

composed of VSMC. Vascular injury results in the formation of a large neointimal 
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area, highly composed of VSMC, this neointimal formation is blocked by both 

Ang-(1-7) and Ang-(1-9) and therefore reduced VSMC content is observed within 

the total vessel. The effects of Ang-(1-7) were shown to be via Mas while the 

effects of Ang-(1-9) appeared to be via the AT2R and independent of conversion 

to Ang-(1-7) and signalling through Mas. While this anti-vascular remodelling 

effect of Ang-(1-9) has not previously been demonstrated, the anti-proliferative 

and anti-migratory role of Ang-(1-7) has been observed in numerous rodent 

models of vascular disease. Ang-(1-7), via Mas, reduces neointimal formation 

following balloon injury (Strawn et al., 1999), stent implantation in rats 

(Langeveld et al., 2005), and angioplasty in rabbits (Zeng et al., 2009) and has 

been associated with reduced atherosclerotic lesion size in Apo E-/- mice (Jawien 

et al., 2012). 

VSMC proliferation is one of the most important processes involved in the 

development of neointimal formation. In this present study, very little cell 

proliferation was observed at 28 days following vascular injury in control, Ang-

(1-7) and Ang-(1-9) groups. However, this is consistent with previous findings and 

likely to be linked to the 28 day time point studied. Cell proliferation is thought 

to be maximal within the first 5 to 14 days following vascular injury and then 

decline as the vessel becomes re-endothelialised, findings which are in line with 

this current study (Lindner et al., 1993). While no differences were observed in 

cell proliferation between control or Ang-(1-7) treated vessels at 28 days post 

injury, this may not have been the case at earlier time points where VSMC 

proliferation has been shown to be maximal, such as 5 to 14 days post-injury, 

and further investigation of these times would be required to assess the anti-

proliferative effects of Ang-(1-7). It has previously been demonstrated that Ang-

(1-7) infusion reduced VSMC proliferation within both the media and neointimal 

of normotensive Sprague-Dawley rats in comparison to saline infused animals at 

12 days following vascular injury (Strawn et al., 1999). However, in contrast to 

the findings of this present study, VSMC proliferation following rat autologous 

vein graft surgery was present at 28 days following vascular injury. The number 

of proliferating cells was reduced in comparision to control vessels and this was 

demonstrated to be via inhibition of the ERK1/2 and p38 MAPK pathways (Wu et 

al., 2011).  
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Increased cell proliferation was observed in vessels from animals co-infused with 

Ang-(1-7) + A779 or Ang-(1-9) + PD123, 319, and to a lesser extent Ang-(1-9)+ 

A779, in comparison to control vessels. It is unclear as to the reason for this as 

there were no differences in reendothelialisation however, a similar trend is 

observed in macrophage content of the vessels suggesting a link between the 

two. This is plausible since macrophages secrete a number of growth factors and 

cytokines which would in turn act on the VSMC causing cell proliferation (Assoian 

et al., 1987). Ang-(1-7) signalling via Mas has previously been linked to reduced 

macrophage content within injured and atherosclerotic vessels. For example, 

Ang-(1-7) has been demonstrated to reduce macrophage content within 

atherosclerotic lesions of Apo E-/- via Mas, thereby contributing to reduced VSMC 

content and plaque stability (Yang et al., 2013). While a role for Ang-(1-9) in 

reduced inflammation within the vasculature has yet to be demonstrated, 

administration of CGP42112, an AT2R agonist, to Apo E-/- mice resulted in 

reduced macrophage content within the plaque and increased plaque stability 

(Kljajic et al., 2013). Despite the fact that little macrophage expression was 

observed in control vessels, is it possible that inhibition of both endogenous and 

exogenous Ang-(1-7) or Ang-(1-9) signalling via Mas and the AT2R, by A779 and 

PD123,319, respectively, has led to increased expression of macrophages within 

the vessel. However, further investigation would be required to fully assess this.  

During vascular injury the endothelial lining of the vessel is denuded, with re-

endothelialisation complete by 28 days post injury (Lindner et al., 1993). The 

results from this study are consistent with these findings; an intact endothelial 

cell layer was present in all groups. As re-endothelialisation was complete by 

this stage it is unclear if Ang-(1-7) or Ang-(1-9) affect the rate at which re-

endothelialisation occurs and earlier time points would be required to 

investigate this further. Furthermore, the new endothelial cell layer is often 

markedly dysfunctional, so it would be worthwhile to explore whether of Ang-(1-

7) or Ang-(1-9) improved the function of the re-endothelialised vessel. Ang-(1-7) 

has been shown to increase NO release from endothelial cells, thereby acting as 

a vasodilator and improving vascular endothelial function (Brosnihan et al., 

1996, Faria-Silva et al., 2005). Increase of NO is achieved directly via Mas-

mediated stimulation of eNOS and sustained Akt phosphorylation, or indirectly 

via production of bradykinin and receptor cross talk with the BK2R (Jackman et 
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al., 2002, Sampaio et al., 2007b). Additionally, in the rat stent model, Ang-(1-7) 

infusion improved endothelial function through enhanced prostaglandin function 

(Langeveld et al., 2005). Similarly, Ang-(1-9) has also recently been shown to 

improve endothelial function (Flores-Munoz et al., 2012). Ang-(1-9) infusion in 

the SHRSP improved aortic vasorelaxation and NO bioavailability via the AT2R 

(Flores-Munoz et al., 2012). While the mechanisms involved are currently 

unknown it is possible that Ang-(1-9) may increase NO bioavailability by 

stimulating bradykinin release, as previously documented in cardiac endothelial 

cells (Jackman et al., 2002), or by enhancing the activity of eNOS, as has been 

shown for Ang-(1-7) (Sampaio et al., 2007b). 

Cell apoptosis is a key process in vascular remodelling, however, apoptosis was 

not apparent within the injured vessel in any group. This may be due to the 28 

day time point studied. Various studies have been performed in models of 

vascular injury that may provide more insight into the role of apoptosis. 

Following balloon injury in ApoE-/- mice, cell apoptosis was found to be elevated 

within the first 24 hrs (Matter et al., 2006). Similar findings were observed in 

balloon injured rabbits where it was demonstrated VSMC apoptosis was highest 

within 24 hrs and was via a caspase 3-dependent mechanism (Spiguel et al., 

2010). These findings are consistent with those in the present study where cell 

apoptosis was minimal at the later time points studied. An assessment of the 

involvement of apoptosis as a mechanism for reduced neointimal formation at 

earlier time points would be worthwhile, particularly as the AT2R-induced 

apoptosis has previously been linked to reduced neointimal formation. For 

example, in the cuff injury model of vascular injury, AT2R-/- mice displayed 

increased neointimal formation associated with reduced VSMC apoptosis and 

increased VSMC proliferation in comparison to wild type mice at 14 days post 

injury (Suzuki et al., 2002).  

An interesting, yet unexpected finding from this present study was that a large 

proportion of vessels from animals co-infused with Ang-(1-7) and A779, or Ang-

(1-9) and PD123,319 developed more complex lesions with increased vessel 

remodelling and neovascularisation, largely within the media, in comparison to 

all other groups. The formation of complex lesions was associated with positive 

vessel remodelling and stretching, often disruption, of the elastic lamina. 

Analysis of the structural composition of these complex lesions revealed that 
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they were largely composed of disorganised ECM and were highly cellular, 

containing a large number of VSMC, macrophages and proliferating cells. Re-

endothelialisation had occurred on the lumenal lining of the vessels and 

neovascularisation of the complex lesion was also observed. There was no 

difference in the composition of the complex lesions observed in animals infused 

with Ang-(1-7) and A779 or Ang-(1-9) and PD123, 319. It is unclear what has led 

to the development of these complex lesions, however, based on their 

histological profile one possible explanation could be that it was due to the 

presence of an intra-mural thrombus. During the wire injury procedure, the 

endothelial layer of the vessel is denuded, exposing the blood to a highly 

thrombogenic surface. Additionally, the vessel is stretched, which can cause 

disruption of the internal elastic lamina. Normally, the elastic lamina is repaired 

within 7 days, however in circumstances with high thrombogenesis; the 

thrombus can become encapsulated within the damaged vessel, more often in 

the medial area (Wilensky et al., 1995). This is known as an intramural 

thrombus. Within the media, VSMC and macrophages migrate into the thrombus 

and begin to proliferate, resulting in the intramural thrombus becoming highly 

cellular (Wilensky et al., 1995). While this proliferative stage is most prevalent 

within 7 to 14 days post injury, due to the presence of inflammatory cells 

various growth factors and cytokines are secreted which may explain why there 

is still a high degree of proliferation within these complex lesions in this present 

study. Within the intramural thrombus the VSMC can differentiate into 

myofibroblasts, and together the VSMC and myofibroblasts synthesise and 

deposit large proportions of ECM (Wilensky et al., 1995). Both VSMC and 

myofibroblasts are positive for α-SMA, and the high proportion of positive 

staining observed within the vessels may be indicative of expression of both cell 

types (Shi et al., 1997). Re-endothelialisation of the vessel is found to be 

complete by around 4 weeks in most models of vascular injury, and this was also 

found to be the case in vessels with complex lesions (Lindner et al., 1993, Zou et 

al., 1998, Ali et al., 2007). However, it was also noted that neovessels had 

formed within the complex lesions, as indicated by the positive CD31 staining 

within the vessels. This phenomenon of neovessel formation has previously been 

described in atherosclerotic vessels and from failed human saphenous vein 

bypass graft tissue, and has been demonstrated to be associated with 

atherosclerotic lesion formation and intramural thrombus (Bobryshev et al., 
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2001, Motwani and Topol, 1998, Nielsen et al., 1997). Intimal neovascularisation 

in atherosclerosis has been linked to the development of complications such as 

intimal haemorrhage, plaque rupture and the formation of an occlusive 

thrombosis (Zhang et al., 1993, O'Brien et al., 1994, Ignatescu et al., 1999). 

Furthermore, the newly formed vessels are associated with inflammatory cell 

infiltration and increased cell proliferation (Kumamoto et al., 1995). While in 

this current study the vessels did not contain atherosclerotic plaques, the 

appearance of the neovessels is consistent with those found in atherosclerosed 

vessels, in that cell proliferation and macrophage expression are found to be 

associated with these neovessels, suggesting that they may be formed in a 

similar manner. Investigation into the formation of neovessels within 

atherosclerotic arteries has revealed that VEGF plays an important role in this 

process, in fact advanced atherosclerotic plaques containing a large number of 

VEGF-positive cells are much richer in neovascularisation than atherosclerotic 

lesions containing fewer VEGF-positive cells (Couffinhal et al., 1997, Inoue et 

al., 1998, Chen et al., 1999). Therefore, to gain further insight into the 

mechanisms involved in the formation of complex lesions and neovascularisation 

observed in this present study it would be worthwhile to assess the expression of 

VEGF within these vessels. 

It is unlikely that these complex lesions have occurred as a result of either the 

antagonists or peptides singularly, as no complex lesions were observed in mice 

infused with the peptides on their own or co infused with Ang-(1-9) + A779. 

However, as only one group of animals received PD123,319, it cannot be ruled 

out that this compound is not having an effect on its own. Furthermore, while it 

is widely used as an AT2R antagonist, PD123, 319 has also been demonstrated to 

have non AT2R- specific effects, for example it has recently been shown to be an 

agonist of the MrgD receptor (Lautner et al., 2013). Furthermore, in a mouse 

model of abdominal aortic aneurysm (AAA), PD123,319 was demonstrated to 

augment Ang II-induced AAA formation through an AT2R-independent mechanism 

(Daugherty et al., 2013). 

In addition to blocking the effects of Ang-(1-9), PD123,319 will block endogenous 

AT2R activity, potentially contributing to increased vessel remodelling as the 

AT2R has been linked to reduced vascular injury, as previously discussed (Wu et 

al., 2001, Suzuki et al., 2002, Akishita et al., 2000). Furthermore, the AT2R has 
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been demonstrated to possess constitutive activity, leading to ligand-

independent activation of various cell signalling pathways, particularly those 

linked to increased cell apoptosis, a processes which could contribute to reduced 

vascular remodelling (Miura and Karnik, 2000, Jin et al., 2002). It is therefore 

possible that PD123,319 could contribute to increased vascular remodelling via 

inhibition of the constitutive activity of the AT2R. One possible explanation is 

that due to blockade of their endogenous receptors, the peptides are converted 

to alternative peptides or interact with an alternative receptor, which enhances 

thrombus formation. For example, while Ang-(1-7) has been demonstrated to 

have anti-thrombotic effects (Kucharewicz et al., 2002, Heitsch et al., 2001, 

Fraga-Silva et al., 2011, Fraga-Silva et al., 2008), it may be converted to an 

alternative peptide with potential prothrombotic effects, such as Ang-(3-7). 

While a direct pro-thrombotic role for Ang-(3-7) has not yet been established, it 

has been reported to interact with the AT4R, which is known to upregulate PAI-1, 

a key protein involved in thrombogenesis (Gesualdo et al., 1999, Numaguchi et 

al., 2009). Furthermore, AT1R activation is widely accepted to be prothrombotic, 

and while Ang-(1-9) appears to display functional selectivity at the AT2R, is has 

been shown to have equal affinity at both the AT1R and AT2R (Flores-Munoz et 

al., 2011). In a recent study by Kramkowski et al (2010) it was indicated that 

Ang-(1-9) enhances electrically stimulated thrombosis and increases platelet 

aggregation in rats via the AT1R (Kramkowski et al., 2010). However, it is 

worthwhile to point out that electrical stimulation was used to injure the vessel 

and initiate thrombosis which is somewhat different to the wire injury model. 

Also, the pro-thrombotic effect of Ang-(1-9) was much lower than that of Ang II, 

and was in fact found to be due to direct metabolism of Ang-(1-9) to Ang II 

(Kramkowski et al., 2010, Drummer et al., 1988, Singh et al., 2005). 

While the current data set highlights the potential of Ang-(1-7) and Ang-(1-9) as 

therapeutic agents in the setting of vascular remodelling, one factor limiting the 

translational impact of these results is the delivery method used. Subcutaneous 

delivery via osmotic mini pump results in peptide delivery to the systemic 

circulation and although minimum infusion is a commonly used drug delivery 

method in animal models, which ensures that the drug is delivered at a constant 

rate over a set period of time without the need to cause the animal additional 

stress by daily dosing, this would not represent the situation in the clinic 



208 
 

(Theeuwes and Yum, 1976). Therefore, to represent a more clinically relevant 

delivery approach it was also investigated whether Ang-(1-7) or Ang-(1-9) could 

be delivered locally to the vessel via Pluronic F-127 gel immediately following 

vascular injury, and if so what effect this would have on the resultant 

remodelling.  

Delivery of Ang-(1-7) detected using an antibody for the peptide and it was 

shown that peptide levels were comparable between control and Ang-(1-7) at all 

time points, and Ang-(1-7) detection did not change over time. If Ang-(1-7) was 

delivered efficiently via Pluronic F127 gel it would be expected that higher 

levels of peptide would be detected in the Ang-(1-7) treated vessels and the 

levels would decline towards control levels over the course of the study. It is 

possible that the Ang-(1-7) had already been fully delivered by the time points 

chosen, as previous studies have shown that drug delivery via this method is 

optimal within the first week following application (Villa et al., 1995, Grassia et 

al., 2010, Shi et al., 2014). Therefore in this present data it is unclear if Ang-(1-

7) was delivered to the vessel. Furthermore, some positive immunostaining for 

Ang-(1-7) was observed in the lumen in areas which were acellular, suggesting 

that there may be some unspecific binding of the primary antibody. Importantly 

no positive staining was observed in sections treated with PBS instead of the 

antibody, suggesting that this is not due to the presence of residual unbound 

secondary antibody. However, it has previously been demonstrated that this 

antibody is specific for Ang-(1-7) in different tissues such as the heart and 

kidney, therefore further testing of the antibody specificity, by preincubation of 

vessel sections with Ang-(1-7) peptide, for example, is required (Giani et al., 

2012, Calo et al., 2010a, Zhang et al., 2010a).  

At the time of this study an Ang-(1-9) antibody was not commercially available, 

therefore, delivery of this peptide was assessed using a biotinylated Ang-(1-9). 

One benefit to this approach over antibody based detection is that only the 

exogenous biotinylated Ang-(1-9) will be detected, therefore it can be 

distinguished from endogenous Ang-(1-9) within the vessel. Ang-(1-9) was only 

detected in vessels which had the peptide delivered and levels declined over 

time, with the highest level of positive staining observed at 7 days post-

application. However, Ang-(1-9) was only detected in the periadventitial tissue, 

with no positive staining observed within the media or neointimal area, where 
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present. Therefore it is unclear if the peptide was effectively delivered to the 

vessel. Pluronic F-127 gel has previously been reported to mediate sustained 

release and reduced degradation of peptides such as gonadotropin-releasing 

hormone (GnRH) and deslorlin (a GnRH agonist) both in vitro and in vivo (Wenzel 

et al., 2002), thereby providing sustained delivery over time.  While this 

increased bioavailability has yet to be demonstrated for angiotensin peptides, 

one possible explanation for the observed results is that while in the gel Ang-(1-

9) is more stable, but once dissolved from the gel to the vessel it is rapidly 

metabolised, and therefore unlikely to be observed within the different layers of 

the vessel. Biotinylated Ang-(1-9) was still present in the periadventitial tissue, 

although at very low levels, at 28 days post application, and while previous 

studies have suggested that Pluronic F-127 gel is dissolved within 3 to 7 days in 

vivo and that drug delivery is maximal within this time, this finding of sustained 

drug levels post-gel degradation is not unheard of. In a study where the cell 

cycle inhibitor cilostazol was delivered via Pluronic F-127 gel following balloon 

injury in rats it was found that while the gel was dissolved by 7 days post 

application, tissue levels of the drug were still increased within the vessel and 

surrounding tissue at 14 days (Ishizaka et al., 1999). Similarly, in a study 

investigating the effects of NF-κB inhibition on neointimal formation following 

wire injury, Grassia et al delivered a biotinylated NF-κB essential modulator–

binding domain peptide, an antagonist of the inhibitor of kappa b (IκB) kinase 

complex, via Pluronic F-127 gel and found that while the gel was dissolved at 3 

days post application, the biotinylated peptide was still observed at the 

termination of the study at 14 days (Grassia et al., 2010). 

In summary, from this pilot study, it is unclear if Ang-(1-7) and Ang-(1-9) can be 

delivered to the vessel via Pluronic F-127, however, the decline in Ang-(1-9) 

levels over time suggests that this may be possible. To provide more conclusive 

evidence it would be beneficial to measure peptide levels directly within the 

vessel, surrounding tissue and in the systemic circulation. This can be achieved 

through the use of high-performance liquid chromatography-based 

radioimmunoassay with amino-terminal-directed antisera, a method which has 

been demonstrated to effectively measure angiotensin peptide levels in various 

settings (Campbell et al., 1995, Ocaranza et al., 2006, Lawrence et al., 1990).  
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While it could not be proven conclusively that the peptides had been delivered 

to the vessel via Pluronic F-127 gel, the results from the Ang-(1-9) portion of this 

study suggested that it may have been possible. Therefore, a full blinded study 

was performed to assess the effect of local application of Ang-(1-7) and Ang-(1-

9) on vascular remodelling and neointimal formation.  However, in this study 

very little neointimal formation was observed in gel only control vessels. As 

these vessels were a vehicle control it would be expected that a similar 

neointimal area would be observed to that of the control animals in the 

minipump study, however, both neointimal area and NI/MA ratio of the gel only 

controls were significantly lower than those of the minipump controls. This 

finding was unexpected as this gel based delivery approach has been utilised in a 

number of studies using various in vivo models of vascular disease/remodelling 

and has been demonstrated to have no effect on neointimal formation (Ishizaka 

et al., 1999, Grassia et al., 2010, Wenzel et al., 2002, Shi et al., 2014). While 

vessel morphology in the previous study to determine peptide delivery to the 

vessel was not quantified due to low numbers, neointimal area was present in 

gel only treated vessels at all time points, particularly at 28 days, therefore 

there was no indication that this finding would be expected in this present 

study. It is unclear as to why this impaired neointimal formation has occurred 

within this group, however as this was the only study where minimal neointimal 

area was present in control vessels it may be due to variability in batches of 

animals. Ultimately, due to the limited neointimal formation in the control 

groups it could not be determined if the small neointimal area in the Ang-(1-7) 

and Ang-(1-9) treated vessels was as a result of the peptides.  

There are a number of advantages to the mouse carotid artery wire injury 

model, namely that it is highly reproducible, results in the formation of a large 

neointimal area and is low cost. However, this is a very simple model of vascular 

remodelling and as with all rodent models, has a number of limitations. While 

the injury induced is similar to that of PCI this model involves disruption of the 

flow of blood due to the ligation, an effect which would not occur clinically. 

Furthermore, alternative, more clinically relevant animal models of vascular 

injury exist; however, these also are not without limitation. Traditionally 

porcine models have been used to investigate vascular injury in response to 

CABG surgery or stenting due to the fact that pigs are physiologically a lot closer 
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to human than rodents and that their blood vessels and response to injury are 

very similar to those in humans, however, these studies are extremely expensive 

and perhaps more relevant for preclinical work as opposed to an early stage 

investigation (Taylor et al., 2001, Miller et al., 1996, Angelini et al., 1990). 

Mouse models of vascular disease are therefore advantageous due to the high 

throughput of these animals, the low cost and the ability to use genetically 

modified strains. Mouse models of stenting and vein grafting have been 

developed which are more representative of the type of damage observed in 

humans compared to wire injury (Zou et al., 1998, Ali et al., 2007), however 

both are very complex to perform, are expensive due to the requirement for a 

donor mouse and come with their own disadvantages. The mouse model of vein 

grafting was developed by Zou et al in 1998 and involved the engraftment of the 

vena cava or external jugular vein from a donor mouse to the carotid artery of a 

recipient mouse (Zou et al., 1998). While this model is useful for studying the 

mechanisms involved in vein graft failure and closely represents the disease 

observed in humans, there are some important considerations. For example, the 

formation of accelerated atherosclerosis, which is present in human grafts 

beyond the first year after CABG surgery, would be difficult to investigate in the 

mouse model due to the shorter life span and the fact that mice do not develop 

spontaneous atherosclerosis (Zou et al., 1998). The mouse stent model was 

developed by Ali et al and involves the deployment of a small stent into the 

aorta of the donor mouse, which is then engrafted to the carotid artery of a 

recipient mouse (Ali et al., 2007). However, in contrast to human disease this 

model does not involve stenting of an atherosclerotic plaque or contain the 

inflammatory component associated with atherosclerosis in humans, and due to 

the absence of a plaque the vessel is not restored to its original diameter, but 

expanded to a lot wider than normal. Additionally, in the wire injury model it is 

easy to obtain a large length of carotid artery that has been injured to use 

process for histological analysis, however, due to the small size of the stent 

there is a limited amount of tissue available and the presence of metal struts 

makes it very difficult to process (Bradshaw et al., 2009). This greatly reduces 

the amount of sections available for analysis and therefore can restrict the 

depth of the investigation. Taking into consideration the aforementioned 

advantages and disadvantages of each model and the fact that the studies 

presented here were the first exploration of the effects of the peptides on 



212 
 

vascular remodelling, it was decided the wire injury model was the most 

appropriate. 

5.4 Conclusion 

In summary, the data demonstrates that the carotid artery wire injury model is a 

highly reproducible model of neointimal formation to act as a platform to 

investigate the effects of Ang-(1-7) and Ang-(1-9) on vascular remodelling. In this 

study it was demonstrated that infusion of Ang-(1-7) via osmotic minipump 

prevents wire injury induced vascular remodelling via the Mas receptor. 

Importantly, this study also demonstrates for the first time that infusion of Ang-

(1-9) via osmotic minipump is similarly capable of inhibiting wire injury induced 

vascular remodelling and that its effects are via the AT2R, and independent of 

conversion to Ang-(1-7) and signalling via Mas. This reduction in vascular 

remodelling observed following treatment with Ang-(1-7) or Ang-(1-9) was 

associated with reduced neointimal formation and reduced proliferation and 

migration of VSMC. Importantly, reendothelialisation of the vessel was unaltered 

by either peptide, although further investigation is required to assess the 

functioning of this new endothelial cell layer. While further studies are required 

to fully understand the signalling mechanisms involved in this Ang-(1-9)/AT2R 

interaction within the vasculature, these results highlight a novel action of Ang-

(1-9) that may be exploited therapeutically.  

Furthermore, it was also observed that infusion of Ang-(1-7) during Mas blockade 

or Ang-(1-9) during AT2R blockade resulted in the formation of complex lesions 

which were potentially indicative of the formation of an intramural thrombus. As 

this only occurred within these two groups it suggests that this phenomenon may 

occur as a result of conversion of Ang-(1-7) and Ang-(1-9) to an alternative 

peptide and/or interaction with an alternative receptor that enhances the 

occurrence of thrombosis. However, further work is required to fully investigate 

the mechanisms leading to the formation of these complex lesions. 
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6.2 Overall summary 

The main focus of this thesis was to investigate the interaction of Ang II and the 

counter-regulatory peptides Ang-(1-7) and Ang-(1-9) in the vasculature using 

primary HSVSMC and HSVEC and an in vivo model of acute vascular injury. First, 

a model of HSVSMC proliferation was established where it was demonstrated 

that addition of serum induced HSVSMC proliferation in a concentration-

dependent manner. Stimulation with Ang-(1-7) or Ang-(1-9) inhibited serum-

induced proliferation of HSVSMC via Mas and AT2R, respectively. While Ang II was 

unable to induce proliferation of HSVSMC at the concentration used, it was 

demonstrated to have potent pro-migratory effects. Ang II-induced HSVSMC 

migration via the AT1R, and this effect was inhibited by Ang-(1-7) or Ang-(1-9) 

via Mas or the AT2R, respectively. Further investigation into the functional 

interplay of Ang II, Ang-(1-7) and Ang-(1-9) in HSVSMC migration identified 

alterations in ERK1/2 activity and, MMP2 and MMP9 expression as potential 

mechanisms contributing to the observed results.  

Additionally, as Ang II has recently been demonstrated to regulate expression of 

the miR-132/-212 cluster in rat aortic VSMC, thereby regulating a number of 

target genes involved in VSMC migration including PTEN, MCP-1 and RASA-1, this 

pathway was also assessed in this present study (Jin et al., 2012). The data 

demonstrate that Ang II-mediated HSVSMC migration was associated with an 

increase in miR-132 but not miR-212 expression, and a decrease in PTEN 

expression at the mRNA level. These changes were found to be via the AT1R and 

were inhibited following addition of Ang-(1-7) or Ang-(1-9); the effects of Ang-

(1-7) and Ang-(1-9) were partially attenuated by antagonism of Mas or the AT2R, 

respectively, suggesting a role for these receptors. However, PTEN protein levels 

were unchanged. Similarly, there was no change in MCP-1 expression at mRNA or 

Akt at protein levels, both of which are key proteins involved in the downstream 

signalling pathways of PTEN, suggesting these changes in gene expression were 

not converted to protein within these experimental conditions. Additionally, in 

contrast to the findings in rat aortic VSMC, no changes in RASA-1 were observed.  

The role of miRNA-132 in Ang II induced HSVSMC migration was further 

investigated through the use of a miR-132 inhibitor, which blocks miR-132 

activity, and through siRNA-mediated downregulation of DICER, a key enzyme 
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involved in miRNA biogenesis. It was found that miR-132 or regulation of an 

alternative miRNA via DICER is not essential for Ang II induced HSVSMC 

migration. However, inhibition of miR-132 or DICER enhanced basal migration of 

unstimulated HSVSMC. While highlighting a potential mechanism involved in 

HSVSMC migration, these results also demonstrate key differences in the miRNA 

response to Ang II between rat and human VSMC.   

Next, the effect of Ang II, Ang-(1-7) and Ang-(1-9) on endothelial cell growth, 

migration and function was assessed. Ang II, Ang-(1-7) or Ang-(1-9) had no effect 

on growth or migration of primary adult HSVEC. A direct effect of Ang-(1-9) on 

NO release from both HSVEC and a cell line transiently expressing the AT2R was 

demonstrated. Although in cell culture Ang-(1-9) induced NO release in an AT2R 

sensitive manner, it was found that in vessels from AT2R
-/- mice the biological 

effect of Ang-(1-9) was maintained and lead to vasodilation of both aortic and 

mesenteric artery rings. Further investigation revealed that Ang-(1-9) induced 

relaxation of AT2R
-/- aortic rings, but not mesenteric artery rings was blocked by 

A779, suggesting that in large vessels Ang-(1-9) may mediate is vasodilatory 

effects via conversion to Ang-(1-7) and signalling via Mas, while in small 

resistance vessels of AT2R
-/- mice Ang-(1-9) promotes vasodilation through an 

unknown mechanism.  

Since data from the previous chapters demonstrated that Ang-(1-7) and Ang-(1-

9) blocked VSMC proliferation and migration, without affecting endothelial cell 

growth or migration, they could be potential therapeutic agents in vascular 

injury and remodelling. Prior to assessing the effects of Ang-(1-7) and Ang-(1-9) 

on vascular remodelling, a carotid artery wire injury model in mice was 

established.  Injury to the carotid artery using a synthetic nylon fibre induced 

significant vessel injury, manifesting in the production of a large neointimal area 

and increase medial remodelling at 28 days post injury. The effects of Ang-(1-7) 

or Ang-(1-9) in this setting were assessed by delivery of the peptide for 4 weeks 

via subcutaneously implanted osmotic minipumps. It was observed that Ang-(1-7) 

infusion reduced vascular injury in comparison to control vessels, as evidenced 

by the reduction in neointimal formation and NI/MA ratio. Ang-(1-7) had no 

effect on the medial area. Importantly, blockade of Mas using the 

pharmacological inhibitor A779 abolished the anti-remodelling effects of Ang-(1-

7). Similarly, Ang-(1-9) reduced neointimal formation and NI/MA ratio following 
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wire injury to the mouse carotid artery and interestingly, Ang-(1-9) appeared to 

be more efficacious than Ang-(1-7). Importantly, the effects of Ang-(1-9) were 

demonstrated to be via the AT2R, as PD123,319 blocked its effects. Conversely, 

co infusion of A779 with Ang-(1-9) produced similar results to those observed 

with Ang-(1-9) alone, indicating that the Ang-(1-9) mediated inhibition of 

neointimal formation was achieved via a direct effect of Ang-(1-9), as opposed 

to conversion to Ang-(1-7) and signalling via Mas. 

An interesting, yet unexpected finding from the in vivo study was that a large 

proportion of vessels from animals co-infused with Ang-(1-7) and A779, or Ang-

(1-9) and PD123,319 developed more complex lesions with increased vessel 

remodelling and neovascularisation, largely within the media, in comparison to 

all other groups. The formation of complex lesions was associated with positive 

vessel remodelling and stretching, often disruption, of the elastic lamina. 

Analysis of the structural composition of these complex lesions revealed that 

they were largely composed of disorganised ECM and were highly cellular, 

containing a large number of VSMC, macrophages and proliferating cells. Re-

endothelialisation had occurred on the luminal lining of these vessels and 

neovascularisation of the complex lesion was also observed. 

6.3 Future perspectives 

Ang II is a key peptide involved in the development and progression of vascular 

remodelling, largely through promoting VSMC proliferation and migration (Mehta 

and Griendling, 2007, Touyz and Schiffrin, 2000). In this present study it was 

observed that when utilising the same concentration, Ang II enhanced migration 

but not proliferation of quiescent HSVSMC. These divergent effects of Ang II 

reveal potential differences in the cell signalling mechanisms employed in 

HSVSMC; however this has not yet been assessed and further investigation is 

required. While it is important to study the processes of proliferation and 

migration in isolation to gain a more in depth understanding of the mechanisms 

involved, in vivo these processes occur concurrently and together contribute to 

remodelling of the vasculature. Furthermore, as one of the main aims of this 

thesis was to investigate the interaction of Ang II and the counter-regulatory 

peptides Ang-(1-7) and Ang-(1-9) in HSVSMC, an in vitro assay where Ang II 

induced both proliferation and migration of VSMC would be of great use. One 
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such model is the ex vivo HSV organ culture model, where both HSVSMC 

proliferation and migration contribute to the development of a neointimal layer 

within 14 days (Soyombo et al., 1990). Importantly, Ang II has been shown to 

increase HSVSMC migration and proliferation within this model via the AT1R 

(Ibrahim et al., 2000). Therefore, further investigation of the inhibitory effects 

of Ang-(1-7) and Ang-(1-9) on Ang II signalling in HSVSMC would benefit from the 

use of the ex vivo organ culture model.   

In the vasculature, Ang II activates various signalling pathways, via the AT1R, 

resulting in both acute responses such as vasoconstriction and increased blood 

pressure, and more long term responses such as cell proliferation and structural 

remodelling. While the signalling mechanisms of Ang II have been well defined 

[reviewed extensively by (Touyz and Schiffrin, 2000, Mehta and Griendling, 

2007)] less is known about the signalling mechanisms employed by Ang-(1-7) and 

Ang-(1-9). For example, in VSMC Ang-(1-7) has been shown to inhibit Ang II-

induced VSMC proliferation and migration largely through inhibition of Ang II-

mediated ERK1/2 activation and this was also demonstrated to be the case in 

this present study. However, the signalling mechanisms evoked by Ang-(1-7) 

upstream of ERK1/2 in the MAPK signalling pathway are unknown (Tallant and 

Clark, 2003, Zhang et al., 2010b). Similarly, in this present study Ang-(1-9) has 

also been demonstrated for the first time to regulate ERK1/2 activity in HSVSMC; 

at early time points (5 minutes post stimulation) Ang-(1-9) inhibits Ang II induced 

ERK1/2 activation, however, at later time points (60 minutes post stimulation) 

Ang-(1-9) enhanced ERK1/2 activation. Similarly, a role for Ang-(1-7) in NO 

release from endothelial cells has previously been reported (Sampaio et al., 

2007a), and while this has been demonstrated to involve eNOS phosphorylation, 

again the upstream signalling pathways have yet to be detailed. In this present 

study Ang-(1-9) was found to increase NO release from both primary HSVEC and 

cell lines via the AT2R. Therefore it is of great importance that future studies 

focus on defining the cell signalling pathways involved in the observed effects of 

Ang-(1-7) and Ang-(1-9) in primary vascular cells in order to gain an 

understanding of their mechanisms of actions. One of the main reasons there is 

little known about the signalling mechanisms involved in the effects of these 

peptides is that, to date, only western blot-based studies have been used to 

interrogate Ang-(1-7) signal transduction. While this western-blot based 
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approach has a number of advantages, such as high-sensitivity and specificity if 

good antibodies are available, it also has a number of limitations (Verano-Braga 

et al., 2012). For example, the number of simultaneously analysed proteins is 

limited using this approach, and only a relatively few phospho-specific 

antibodies with high specificity exist (Verano-Braga et al., 2012). Furthermore, 

discovery of unknown components of a signalling pathway by western blot 

analysis alone is not possible. Alternative methods of signalling pathways 

analysis, for example through the use of commercially available protein arrays or 

mass-spectrometry-based phosphoproteomics have emerged as alternative 

approaches to overcome these issues (Kopf et al., 2005, Yaghooti et al., 2010, 

Verano-Braga et al., 2012, Christensen et al., 2010). Protein arrays allow for the 

analysis of multiple proteins simultaneously on both a small and a large scale. 

Small scale protein arrays, such as the PathScan Antibody Array from Cell 

Signalling Technology, allows for the investigation of activation of distinct 

signalling pathways, including tyrosine kinase, EGFR and Akt signal transduction. 

These small scale array kits allow for the simultaneous detection of around 30 

phosphorylated proteins and are based upon the sandwich ELISA principle (Kopf 

and Zharhary, 2007). Cells can be stimulated with ligands and then the cell 

lysates are incubated on the array slide followed by incubation with a 

biotinylated detection antibody cocktail. Bound antibody is then visualised by 

chemiluminescence and can be accurately quantified (Yaghooti et al., 2010, 

Ketsawatsomkron et al., 2010). This approach has been effectively utilised to 

investigate Ang II-induced MAPK and Akt signalling pathways in monocytes and 

rat VSMC, respectively (Yaghooti et al., 2010, Ketsawatsomkron et al., 2010).  

Larger scale protein arrays allow for analysis of a vast number of proteins and 

numerous signalling pathways, for example the Panorama array from Sigma 

contains over 200 antibodies for key cell proteins involved in signal transduction 

(Kopf et al., 2005). In this type of array, cell lysates are directly labelled with a 

fluorophore or biotin, applied to the protein array and then bound proteins are 

visualised. This approach has yet to be used to assess RAS signalling, however, 

has been proven to be extremely useful in investigating key signalling pathways 

involved in cancer (Kopf and Zharhary, 2007). While this method is advantageous 

to assess the involvement of a large number of signalling proteins, this method is 

less sensitive than the sandwich ELISA method and is not quantitative (Kopf and 
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Zharhary, 2007), therefore any positive proteins must be confirmed using 

traditional methods such as western Blotting. 

Mass-spectrometry-based phosphoproteomics has been identified as a powerful 

method for analysis of cell signalling pathways (Christensen et al., 2010, Verano-

Braga et al., 2012, Mann et al., 2002). This approach has previously been 

employed to study Ang II and Ang-(1-7), in cell lines and primary human 

endothelial cells, respectively, and revealed a number of previously unidentified 

signalling pathways that may be involved in the signalling mechanisms of these 

peptides (Verano-Braga et al., 2012, Christensen et al., 2010). In summary, the 

use of these non-biased approaches would be greatly advantageous to 

investigate the cell signalling mechanisms of Ang-(1-9) in both HSVSMC and 

HSVEC, and would allow for an in depth comparison between the signal 

transduction pathways of Ang-(1-7) and Ang-(1-9).  

Evidence from the literature and the results of this present study in primary 

HSVSMC and HSVEC suggest that Ang-(1-9) mediates its effects in the 

cardiovascular system via the AT2R (Flores-Munoz et al., 2011, Flores-Munoz et 

al., 2012, Ocaranza et al., 2014, Cha et al., 2013). However, evidence of this 

interaction has relied on the use of the pharmacological antagonist of the AT2R, 

PD123,319 which has been demonstrated to have non-AT2R effects in vitro 

(Lautner et al., 2013). For example, alamandine binding to MrgD and alamandine 

induced-vasodilation of aortic rings from AT2R
-/- mice were inhibited by 

PD123,319, suggesting that in addition to being an AT2R antagonist, PD123,319 is 

also a MrgD antagonist/ligand (Lautner et al., 2013). Therefore, future studies to 

confirm the functional interaction of Ang-(1-9) at the AT2R using non 

pharmacological approaches would be beneficial. One approach would be to 

repeat these experiments following knockdown of AT2R expression through the 

use of a specific siRNA. However, there are a number of limitations with this 

approach. For example, confirmation of the level of knockdown of the AT2R at 

the protein level is limited due to poor antibody specificity at GPCRs (Michel et 

al., 2009). Additionally, while the scratch assay is an accurate method to study 

cell migration, only a limited number of cells in each well are analysed and 

therefore it is imperative that these cells are efficiently transfected with the 

siRNA (Liang et al., 2007). Together, the advantages and disadvantages of each 
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approach highlight the need for a combination of experimental approaches to 

fully investigate the interaction of Ang-(1-9) and the AT2R. 

It has also been demonstrated that Ang-(1-9) retains its biological function in 

isolated vessels from AT2R
-/- mice, suggesting that at least ex vivo Ang-(1-9) may 

act on the vasculature via an alternative receptor or mechanism. Ang-(1-9) 

induced vasodilation in pre-constricted aortic rings from both wild type and 

AT2R
-/- mice in an endothelium dependent manner (Prof R. Santos, Federal 

University of Minas Gerais, Brazil, personal communication, 2013). These 

findings in the AT2R
-/- mice were confirmed in this present study in both aortic 

rings and mesenteric artery rings, demonstrating that this effect is present in 

both large conduit vessels and small resistance arteries.  

One possible explanation for this finding in AT2R
-/- mice is that in the absence of 

the AT2R, Ang-(1-9) acts on an alternative receptor leading to vasodilation. 

While further work is required to assess the involvement of an alternative 

receptor, this has previously been demonstrated to be the case with Ang-(1-7) 

(Bosnyak et al., 2011, Walters et al., 2005). For example, in stable cell lines 

generated to express either AT1R or AT2R, but not the endogenous receptor for 

Ang-(1-7) Mas, Ang-(1-7) was found to bind the AT2R with higher affinity than the 

AT1R (Bosnyak et al., 2011). The Ang-(1-7)/AT2R interaction has also been 

observed in vivo. In isolated mouse hearts exposed to the AT2R antagonist 

PD123, 319, Ang-(1-7) increased perfusion pressure, an effect not observed 

following Ang-(1-7) infusion alone and which was independent of both the AT1R 

and Mas. It was also observed that in the presence of AT1R blockade, Ang-(1-7) 

reduced blood pressure in both normotensive rats and the SHRSP, an effect 

mediated via the AT2R (Walters et al., 2005). Therefore, it is possible that Ang-

(1-9) may also engage an alternative receptor under certain experimental 

conditions. One approach to investigate this would be to assess the affinity of 

Ang-(1-9) at receptors previously identified to function as part of, or alongside, 

the RAS leading to vasodilation, such as Mas, MrgD and the BK2R, through the use 

of radioligand binding assays (Hornig et al., 2003, Gorelik et al., 1998, Lautner 

et al., 2013, Santos et al., 2003). However, as little is known about the 

signalling mechanisms induced by Ang-(1-9) it is possible that this peptide may 

engage a receptor that has not been implicated in the RAS and therefore a less 

targeted approach may be required, for example, through the use of a GPCR 
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microarray. This technology is based upon assessment of binding of a 

fluorescently labelled ligand to a large panel of GPCRs, and has been used to 

assess binding of novel ligands such as ICI118,551, a drug compound designed to 

target adrenergic receptors and screening of functional ligands at orphan GPCRs 

(Fang et al., 2002, Fang et al., 2003, Hong et al., 2006). The use of a GPCR 

microarray would enable an assessment of the affinity of Ang-(1-9) at a number 

of receptors and possibly identify hit targets that could be validated further 

through the use of functional cell signalling assays. Ang-(1-9) has previously been 

included as a candidate ligand in a previous GPCR array to identify natural 

ligands for orphan GCPRs, however no positive binding results were observed for 

Ang-(1-9) (Southern et al., 2013). However, in this screen the functional read 

out for GPCR activation relied on β-arrestin recruitment only and analysis of 

other GPCR signalling mechanisms is required (Southern et al., 2013). 

Alternatively, Ang-(1-9) may be metabolised to an alternative peptide, such as 

Ang-(1-7), which also promotes vasodilation in an endothelium-dependent 

manner (Brosnihan et al., 1996, Faria-Silva et al., 2005).  As Ang-(1-7) has been 

shown to promote vasodilation via Mas this potential mechanism of action was 

explored in the current study using the Mas antagonist A779. Here we show that 

A779 blocked the vasodilator effects of Ang-(1-9) in aortic rings but not 

mesenteric artery rings, suggesting that in the aorta, but not mesenteric artery, 

Ang-(1-9) may be converted to Ang-(1-7) which acts via Mas to induce 

vasodilation. As ACE is the main enzyme involved in the conversion of Ang-(1-9) 

to Ang-(1-7), future myography experiments would benefit from the inclusion of 

an ACE inhibitor, such as captopril, to further investigate the potential 

involvement of Ang-(1-7) (Donoghue et al., 2000). While it appears that in large 

vessels of AT2R
-/- mice, such as the aorta, Ang-(1-9) may elicit its biological 

effects via conversion to Ang-(1-7), it is entirely possible that within mesenteric 

arteries Ang-(1-9) is converted to an alternative, unidentified peptide that also 

promotes vasodilation. With the emergence of the RAS as a system of 

interconverted peptides generated by a number of multifunctional enzymes 

including ACE, ACE2, and numerous aminopeptidases, carboxypeptidases and 

endopeptidases, this is a possibility (Santos et al., 1992, Donoghue et al., 2000, 

Nagata et al., 2006, Lautner et al., 2013, Zini et al., 1996, Ackerly et al., 1976). 

However, with the exception of Ang-(1-7) (Donoghue et al., 2000), other 
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functional peptide metabolites of Ang-(1-9) have yet to be identified and 

therefore further investigation would be required. One method used previously 

to assess generation of novel angiotensin peptides is through the use of matrix-

assisted laser desprption/ionisation mass spectrometry (MALDI-MS) (Jankowski et 

al., 2007). The use of this technique has identified the generation of Ang A from 

Ang II, and Alamandine from Ang A and Ang-(1-7) (Jankowski et al., 2007, 

Lautner et al., 2013). Importantly, this technique allows for the measurement of 

peptide levels in samples following organ/tissue perfusion, and therefore it 

would be possible for the vessels used in this present study to be incubated with 

Ang-(1-9) prior to sample analysis (Jankowski et al., 2007). 

It is currently unclear as to why this differential mechanism of action of Ang-(1-

9) between vascular beds occurs, however it is possibly linked to the differences 

in the mechanisms of vasodilation in conduit and resistance vessels. While in 

large conduit vessels such as the aorta, release of NO from the endothelium is 

the main mechanism of vasodilation, in smaller resistance vessels, such as the 

mesenteric arteries, EDHF emerges as an important mediator of vasodilation in 

addition to NO (Shimokawa et al., 1996, Waldron et al., 1999, Brandes et al., 

2000). Therefore it is possible that in the absence of the AT2R, in the aorta Ang–

(1-9) is metabolised to Ang-(1-7), a peptide which has previously been 

demonstrated to promote vasodilation via NO, while in the mesenteric arteries 

Ang-(1-9) activates an alternative signalling pathway that is potentially involved 

in EDHF signalling. However, further investigation is required in order to 

elucidate the mechanisms of relaxation in response to Ang-(1-9) and future 

studies involving the use of pharmacological antagonists of NO and EDHF 

signalling, such as L-NAME and potassium channel antagonists [including apamin 

(an inhibitor of small-conductance Ca2+-activated K+ channels) and 

charbybdotoxin (an inhibitor of large- and intermediate-conductance Ca2+-

activated K+ channels)], respectively, would contribute to a more thorough 

understanding of the signalling mechanisms involved (Hinton and Langton, 2003).  

As discussed in Chapter 3, Ang-(1-7) and Ang-(1-9) prevented VSMC migration and 

proliferation, via the Mas receptor or AT2R, respectively. Importantly, as shown 

in Chapter 4, these peptides did not affect endothelial cell proliferation and 

migration, indicating that they may prevent neointimal formation but not inhibit 

re-endothelialisation of the vasculature following injury in vivo, and are 
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therefore attractive novel therapeutic targets in the setting of vascular 

remodelling. While Ang-(1-7) has previously been demonstrated to reduce 

neointimal formation in a number of acute models of vascular injury (Strawn et 

al., 1999, Langeveld et al., 2005, Langeveld et al., 2008, Zeng et al., 2009, Wu 

et al., 2011), this present study is the first to characterise the role of Ang-(1-9) 

in vascular remodelling following acute vascular injury in vivo and provides a 

direct comparison between Ang-(1-7) and Ang-(1-9) in this setting. Using the 

mouse carotid artery wire injury model we demonstrated that Ang-(1-7) or Ang-

(1-9) inhibited neointimal formation at 28 days post-injury via Mas or the AT2R, 

respectively. However, the link between Ang-(1-9) and the AT2R was again 

demonstrated through the use of the antagonist PD123,319, which, in addition to 

its effects at the MrgD in vitro and ex vivo, has also been demonstrated to have 

AT2R-independent effects in vivo. For example, in a mouse model of abdominal 

aortic aneurysm (AAA), PD123,319 was demonstrated to augment Ang II-induced 

AAA formation through an AT2R-independent mechanism (Lautner et al., 2013, 

Daugherty et al., 2013). Furthermore, through the use of PD123,319 the Ang-(1-

9)/AT2R interaction was in fact demonstrated to lead to the development of 

enhanced vascular remodelling through the development of complex lesions in 

response to injury in this present study. Due to the fact that no complex lesions 

were observed in animals infused with Ang-(1-9) or co-infused with A779, this 

phenotype is not due to Ang-(1-9) and therefore either occurs as a consequence 

of the Ang-(1-9)/AT2R interaction, or due to PD123,319 and therefore this study 

would benefit from the inclusion of a group of animals infused with PD123,319 

alone.  

As discussed previously, Ang-(1-9) was demonstrated to retain its biological 

function in AT2R
-/- mice, therefore future in vivo studies in these mice to assess 

the effects of Ang-(1-9) on neointimal formation would be valuable. However, it 

is well known that the AT2R plays an important role in the foetal and early post-

natal periods, and that the absence of the AT2R negatively affects cardiac and 

renal maturation and growth, limiting the use of the AT2R
-/- mouse (Price et al., 

1997, Biermann et al., 2012). Thus, further studies using tissue-specific and 

inducible AT2R knockout mice would be of value. Alternatively, use of a 

combination of wild type and AT2R
-/- mice would be of great benefit in other 

models of acute vascular injury such as the mouse model of vein graft failure or 
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in-stent restenosis, both of which rely on the use of a donor vessel (Ali et al., 

2007, Zou et al., 1998). In these models the vein or stented artery from AT2R
-/- 

mice could be engrafted to the recipient vessel of the wild type mouse, and vice 

versa, as VSMC from both the donor and the recipient vessel have been 

demonstrated to contribute to neointimal formation (Hu et al., 2002). This 

would enable a more in depth mechanistic investigation of the role of this 

receptor within the remodelled vessel.  

Osmotic mini pumps have been a useful tool to investigate the physiological and 

pathophysiological role of various pharmacological agents in vivo. Subcutaneous 

delivery via osmotic mini pump results in drug delivery to the systemic 

circulation at a constant rate over a set period of time without the need to 

cause the animal additional stress by daily dosing (Theeuwes and Yum, 1976). 

Osmotic mini pumps have been widely used to study the effects of angiotensin 

peptides in vivo in a number of different models of cardiovascular disease which 

has greatly contributed to our knowledge of the RAS (Flores-Munoz et al., 2012, 

Ocaranza et al., 2010, Grobe et al., 2006, Langeveld et al., 2005). Osmotic mini 

pumps have not only expanded our knowledge of the effects of administration of 

Ang II in a number of different in vivo models of cardiovascular disease, but have 

also led to the development of the Ang II-infusion model of hypertension. In this 

model, infusion of Ang II induces increased blood pressure, accompanied with 

remodelling of both the heart and vasculature. Ang-(1-7) has also been delivered 

through osmotic mini pumps in several studies, enhancing our knowledge of the 

in vivo effects of this peptide in hypertension, atherosclerosis and remodelling 

of numerous organs such as the heart, kidney and blood vessels (Tesanovic et 

al., 2010, Zeng et al., 2009, Langeveld et al., 2005, Grobe et al., 2006, Grobe et 

al., 2007, Stegbauer et al., 2011). Furthermore, the first studies outlining a 

functional biological effect of Ang-(1-9) in vivo involved the use of osmotic mini 

pumps and demonstrated that delivery of Ang-(1-9) via this route effectively 

reduced cardiac fibrosis and hypertrophy (Flores-Munoz et al., 2012, Ocaranza et 

al., 2010). Additionally, data from this thesis demonstrate that osmotic mini 

pump-mediated infusion of Ang-(1-7) and Ang-(1-9) inhibit neointimal formation 

following vascular injury.  

However, one disadvantage of osmotic minipumps is their limited translational 

impact, as this delivery approach would not represent the situation in the clinic 
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(Theeuwes and Yum, 1976). One delivery approach utilised clinically is local 

delivery of therapeutic agents directly to the vessel; this approach enhances 

drug delivery at the site of action and reduces off target effects at other 

organs/tissues (Inoue and Node, 2009). For example in the case of CABG surgery 

the vein graft can be incubated with therapeutic agents prior to engraftment 

and several studies in animal models have shown that adopting this approach 

results in reduced neointimal formation, at least in the early phase of disease 

(Schachner et al., 2004, Murphy et al., 2007). For example, incubating pig 

saphenous veins for one hour with paclitaxel, sirolimus or cytochalasin D reduced 

neointimal formation at one but not three months following implantation 

(Murphy et al., 2007). Therefore, to represent a more clinically relevant delivery 

approach the findings of this present study were extended to assess if Ang-(1-7) 

or Ang-(1-9) could be delivered locally to the vessel immediately following 

vascular injury through the use of Pluronic F-127 gel, and if so what effect this 

had on the resultant remodelling. However, it could not be confirmed that Ang-

(1-7) or Ang-(1-9) was in fact delivered to the vessel and it was found that very 

little neointimal formation was observed in gel only control vessels; for this 

reason an assessment of the effects of locally applied Ang-(1-7) or Ang-(1-9) 

directly to the injured vessel could not be performed within this present study. 

This finding was unexpected as this gel based delivery approach has been 

utilised in a number of studies using various in vivo models of vascular 

disease/remodelling and has been demonstrated to have no effect on neointimal 

formation (Bennett et al., 1994, Abe et al., 1994, Ishizaka et al., 1999, Grassia 

et al., 2010, Shi et al., 2014). Despite the advantages of locally applied 

therapeutic agents the use of this approach is limited to invasive procedures and 

the therapeutic window of the drug is often limited due to the fact that it is 

applied once at the time of surgery. 

While oral delivery of therapeutic agents for cardiovascular disease is optimal, 

many protein and peptide drugs cannot be administered orally because they are 

degraded by stomach and intestinal digestive enzymes (Uekama, 2004). In an 

attempt to address this limitation, an oral formation of Ang-(1-7) has recently 

been developed where Ang-(1-7) has been incorporated into a cyclodextrin 

compound [HPβCD/Ang-(1–7)] (Lula et al., 2007). Cyclodextrins are 

pharmaceutical tools that are used to enhance drug stability, absorption across 
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biological barriers and provide gastric protection (Uekama, 2004). This oral 

formulation of Ang-(1-7) has been shown to effectively deliver this peptide to 

the systemic circulation where it retains its biological function. For example, 

administration of HPβCD/Ang-(1–7) results in improved cardiac function and 

remodelling following MI in rats, reduced thrombosis in the SHRSP, improved 

diabetic outcomes in Type 2 diabetic rats and improved plaque stability in 

atherosclerotic mice (Marques et al., 2012, Santos et al., 2014, Fraga-Silva et 

al., 2011, Fraga-Silva et al., 2014). An oral formation of Ang-(1-9) is currently 

being developed and while its efficacy in vivo has yet to be demonstrated this 

represents an attractive therapeutic agent which could potentially be used so 

further investigate the effects of Ang-(1-9) in the vasculature.  

6.4 Conclusion 

In summary the data from this thesis demonstrates for the first time a direct 

biological role for Ang-(1-9) in the vasculature through inhibition of HSVSMC 

migration and proliferation, and increase NO bioavailability from HSVEC in vitro 

and reduced neointimal formation in an in vivo mouse model of vascular injury. 

Furthermore, this study provides a direct comparison of Ang-(1-9) and Ang-(1-7) 

in the vasculature and while the end biological effects are similar, they act via 

different receptors, the AT2R or Mas, respectively and differences exist in their 

signal transduction mechanisms. Further work is required to dissect the cell 

signal transduction pathway of Ang-(1-7) and Ang-(1-9) in the vasculature and 

assess their effects in more translational in vivo models of vascular disease; this 

study highlights Ang-(1-7) and Ang-(1-9) as potential therapeutic agents in 

vascular remodelling.  

  



227 
 

List of References 

ABADIR, P. M., PERIASAMY, A., CAREY, R. M. & SIRAGY, H. M. (2006) Angiotensin 
II type 2 receptor-bradykinin B2 receptor functional heterodimerization. 
Hypertension, 48, 316-22. 

ABDALLA, S., ABDEL-BASET, A., LOTHER, H., EL MASSIERY, A. & QUITTERER, U. 
(2005) Mesangial AT1/B2 receptor heterodimers contribute to angiotensin 
II hyperresponsiveness in experimental hypertension. J Mol Neurosci, 26, 
185-92. 

ABDALLA, S., LOTHER, H., ABDEL-TAWAB, A. M. & QUITTERER, U. (2001a) The 
angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem, 
276, 39721-6. 

ABDALLA, S., LOTHER, H., EL MASSIERY, A. & QUITTERER, U. (2001b) Increased 
AT(1) receptor heterodimers in preeclampsia mediate enhanced 
angiotensin II responsiveness. Nat Med, 7, 1003-9. 

ABE, J., ZHOU, W., TAGUCHI, J., TAKUWA, N., MIKI, K., OKAZAKI, H., 
KUROKAWA, K., KUMADA, M. & TAKUWA, Y. (1994) Suppression of 
neointimal smooth muscle cell accumulation in vivo by antisense cdc2 and 
cdk2 oligonucleotides in rat carotid artery. Biochem Biophys Res Commun, 
198, 16-24. 

ABEDI, H. & ZACHARY, I. (1995) Signalling mechanisms in the regulation of 
vascular cell migration. Cardiovasc Res, 30, 544-56. 

ACKERLY, J. A., FELGER, T. S. & PEACH, M. J. (1976) Des-Asp1-angiotensin I: a 
metabolite of angiotensin I in the perfused feline adrenal. Eur J 
Pharmacol, 38, 113-21. 

AHMAD, S., SIMMONS, T., VARAGIC, J., MONIWA, N., CHAPPELL, M. C. & 
FERRARIO, C. M. (2011) Chymase-dependent generation of angiotensin II 
from angiotensin-(1-12) in human atrial tissue. PLoS One, 6, e28501. 

AHMAD, S., WEI, C. C., TALLAJ, J., DELL'ITALIA, L. J., MONIWA, N., VARAGIC, J. 
& FERRARIO, C. M. (2013) Chymase mediates angiotensin-(1-12) 
metabolism in normal human hearts. J Am Soc Hypertens, 7, 128-36. 

AICHER, A., HEESCHEN, C., MILDNER-RIHM, C., URBICH, C., IHLING, C., 
TECHNAU-IHLING, K., ZEIHER, A. M. & DIMMELER, S. (2003) Essential role 
of endothelial nitric oxide synthase for mobilization of stem and 
progenitor cells. Nat Med, 9, 1370-6. 

AKISHITA, M., IWAI, M., WU, L., ZHANG, L., OUCHI, Y., DZAU, V. J. & HORIUCHI, 
M. (2000) Inhibitory effect of angiotensin II type 2 receptor on coronary 
arterial remodeling after aortic banding in mice. Circulation, 102, 1684-9. 

AKISHITA, M., SHIRAKAMI, G., IWAI, M., WU, L., AOKI, M., ZHANG, L., TOBA, K. & 
HORIUCHI, M. (2001) Angiotensin converting enzyme inhibitor restrains 
inflammation-induced vascular injury in mice. J Hypertens, 19, 1083-8. 

AKISHITA, M., YAMADA, H., DZAU, V. J. & HORIUCHI, M. (1999) Increased 
vasoconstrictor response of the mouse lacking angiotensin II type 2 
receptor. Biochem Biophys Res Commun, 261, 345-9. 

ALBALADEJO, P., BOUAZIZ, H., DURIEZ, M., GOHLKE, P., LEVY, B. I., SAFAR, M. 
E. & BENETOS, A. (1994) Angiotensin converting enzyme inhibition 
prevents the increase in aortic collagen in rats. Hypertension, 23, 74-82. 

ALBISTON, A. L., MCDOWALL, S. G., MATSACOS, D., SIM, P., CLUNE, E., 
MUSTAFA, T., LEE, J., MENDELSOHN, F. A., SIMPSON, R. J., CONNOLLY, L. 
M. & CHAI, S. Y. (2001) Evidence that the angiotensin IV (AT(4)) receptor 
is the enzyme insulin-regulated aminopeptidase. J Biol Chem, 276, 48623-
6. 



228 
 

ALENINA, N., XU, P., RENTZSCH, B., PATKIN, E. L. & BADER, M. (2008) 
Genetically altered animal models for Mas and angiotensin-(1-7). Exp 
Physiol, 93, 528-37. 

ALI, Z. A., ALP, N. J., LUPTON, H., ARNOLD, N., BANNISTER, T., HU, Y., MUSSA, 
S., WHEATCROFT, M., GREAVES, D. R., GUNN, J. & CHANNON, K. M. 
(2007) Increased in-stent stenosis in ApoE knockout mice: insights from a 
novel mouse model of balloon angioplasty and stenting. Arterioscler 
Thromb Vasc Biol, 27, 833-40. 

ALLEN, R. T., KRUEGER, K. D., DHUME, A. & AGRAWAL, D. K. (2005) Sustained 
Akt/PKB activation and transient attenuation of c-jun N-terminal kinase in 
the inhibition of apoptosis by IGF-1 in vascular smooth muscle cells. 
Apoptosis, 10, 525-35. 

ANAND, S., MAJETI, B. K., ACEVEDO, L. M., MURPHY, E. A., MUKTHAVARAM, R., 
SCHEPPKE, L., HUANG, M., SHIELDS, D. J., LINDQUIST, J. N., LAPINSKI, P. 
E., KING, P. D., WEIS, S. M. & CHERESH, D. A. (2010) MicroRNA-132-
mediated loss of p120RasGAP activates the endothelium to facilitate 
pathological angiogenesis. Nat Med, 16, 909-14. 

ANDREEV, J., GALISTEO, M. L., KRANENBURG, O., LOGAN, S. K., CHIU, E. S., 
OKIGAKI, M., CARY, L. A., MOOLENAAR, W. H. & SCHLESSINGER, J. (2001) 
Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal 
growth factor receptor (EGFR) but are not required for coupling to the 
mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem, 
276, 20130-5. 

ANGELINI, G. D., BRYAN, A. J., WILLIAMS, H. M., MORGAN, R. & NEWBY, A. C. 
(1990) Distention promotes platelet and leukocyte adhesion and reduces 
short-term patency in pig arteriovenous bypass grafts. J Thorac 
Cardiovasc Surg, 99, 433-9. 

ASAHARA, T., MUROHARA, T., SULLIVAN, A., SILVER, M., VAN DER ZEE, R., LI, T., 
WITZENBICHLER, B., SCHATTEMAN, G. & ISNER, J. M. (1997) Isolation of 
putative progenitor endothelial cells for angiogenesis. Science, 275, 964-
7. 

ASAHARA, T., TAKAHASHI, T., MASUDA, H., KALKA, C., CHEN, D., IWAGURO, H., 
INAI, Y., SILVER, M. & ISNER, J. M. (1999) VEGF contributes to postnatal 
neovascularization by mobilizing bone marrow-derived endothelial 
progenitor cells. EMBO J, 18, 3964-72. 

ASPENSTROM, P. (1999) The Rho GTPases have multiple effects on the actin 
cytoskeleton. Exp Cell Res, 246, 20-5. 

ASSOIAN, R. K., FLEURDELYS, B. E., STEVENSON, H. C., MILLER, P. J., MADTES, 
D. K., RAINES, E. W., ROSS, R. & SPORN, M. B. (1987) Expression and 
secretion of type beta transforming growth factor by activated human 
macrophages. Proc Natl Acad Sci U S A, 84, 6020-4. 

ATIENZA, J. M., YU, N., KIRSTEIN, S. L., XI, B., WANG, X., XU, X. & ABASSI, Y. A. 
(2006) Dynamic and label-free cell-based assays using the real-time cell 
electronic sensing system. Assay Drug Dev Technol, 4, 597-607. 

BADER, M., PETERS, J., BALTATU, O., MULLER, D. N., LUFT, F. C. & GANTEN, D. 
(2001) Tissue renin-angiotensin systems: new insights from experimental 
animal models in hypertension research. J Mol Med (Berl), 79, 76-102. 

BAHLMANN, F. H., DE GROOT, K., MUELLER, O., HERTEL, B., HALLER, H. & 
FLISER, D. (2005) Stimulation of endothelial progenitor cells: a new 
putative therapeutic effect of angiotensin II receptor antagonists. 
Hypertension, 45, 526-9. 



229 
 

BARKI-HARRINGTON, L. (2004) Oligomerisation of angiotensin receptors: novel 
aspects in disease and drug therapy. J Renin Angiotensin Aldosterone 
Syst, 5, 49-52. 

BARTEL, D. P. (2009) MicroRNAs: target recognition and regulatory functions. 
Cell, 136, 215-33. 

BASSIOUNY, H. S., ZARINS, C. K., KADOWAKI, M. H. & GLAGOV, S. (1994) 
Hemodynamic stress and experimental aortoiliac atherosclerosis. J Vasc 
Surg, 19, 426-34. 

BELL, L. & MADRI, J. A. (1990) Influence of the angiotensin system on 
endothelial and smooth muscle cell migration. Am J Pathol, 137, 7-12. 

BENNETT, M. R., ANGLIN, S., MCEWAN, J. R., JAGOE, R., NEWBY, A. C. & EVAN, 
G. I. (1994) Inhibition of vascular smooth muscle cell proliferation in vitro 
and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest, 93, 
820-8. 

BENNETT, M. R. & BOYLE, J. J. (1998) Apoptosis of vascular smooth muscle cells 
in atherosclerosis. Atherosclerosis, 138, 3-9. 

BERK, B. C. & CORSON, M. A. (1997) Angiotensin II signal transduction in vascular 
smooth muscle: role of tyrosine kinases. Circ Res, 80, 607-16. 

BEVILACQUA, M. P., POBER, J. S., MAJEAU, G. R., COTRAN, R. S. & GIMBRONE, 
M. A., JR. (1984) Interleukin 1 (IL-1) induces biosynthesis and cell surface 
expression of procoagulant activity in human vascular endothelial cells. J 
Exp Med, 160, 618-23. 

BIERMANN, D., HEILMANN, A., DIDIE, M., SCHLOSSAREK, S., WAHAB, A., GRIMM, 
M., ROMER, M., REICHENSPURNER, H., SULTAN, K. R., STEENPASS, A., 
ERGUN, S., DONZELLI, S., CARRIER, L., EHMKE, H., ZIMMERMANN, W. H., 
HEIN, L., BOGER, R. H. & BENNDORF, R. A. (2012) Impact of AT2 receptor 
deficiency on postnatal cardiovascular development. PLoS One, 7, e47916. 

BLOBEL, C. P. (2005) ADAMs: key components in EGFR signalling and 
development. Nat Rev Mol Cell Biol, 6, 32-43. 

BOBRYSHEV, Y. V., FARNSWORTH, A. E. & LORD, R. S. (2001) Expression of 
vascular endothelial growth factor in aortocoronary saphenous vein bypass 
grafts. Cardiovasc Surg, 9, 492-8. 

BOCKAERT, J., MARIN, P., DUMUIS, A. & FAGNI, L. (2003) The 'magic tail' of G 
protein-coupled receptors: an anchorage for functional protein networks. 
FEBS Lett, 546, 65-72. 

BOETTGER, T., BEETZ, N., KOSTIN, S., SCHNEIDER, J., KRUGER, M., HEIN, L. & 
BRAUN, T. (2009) Acquisition of the contractile phenotype by murine 
arterial smooth muscle cells depends on the Mir143/145 gene cluster. J 
Clin Invest, 119, 2634-47. 

BOSNYAK, S., JONES, E. S., CHRISTOPOULOS, A., AGUILAR, M. I., THOMAS, W. G. 
& WIDDOP, R. E. (2011) Relative affinity of angiotensin peptides and novel 
ligands at AT1 and AT2 receptors. Clin Sci (Lond), 121, 297-303. 

BOSNYAK, S., WIDDOP, R. E., DENTON, K. M. & JONES, E. S. (2012) Differential 
mechanisms of ang (1-7)-mediated vasodepressor effect in adult and aged 
candesartan-treated rats. Int J Hypertens, 2012, 192567. 

BRADSHAW, S. H., KENNEDY, L., DEXTER, D. F. & VEINOT, J. P. (2009) A 
practical method to rapidly dissolve metallic stents. Cardiovasc Pathol, 
18, 127-33. 

BRANDES, R. P., KIM, D., SCHMITZ-WINNENTHAL, F. H., AMIDI, M., GODECKE, A., 
MULSCH, A. & BUSSE, R. (2000) Increased nitrovasodilator sensitivity in 
endothelial nitric oxide synthase knockout mice: role of soluble guanylyl 
cyclase. Hypertension, 35, 231-6. 



230 
 

BRASZKO, J. J., KUPRYSZEWSKI, G., WITCZUK, B. & WISNIEWSKI, K. (1988) 
Angiotensin II-(3-8)-hexapeptide affects motor activity, performance of 
passive avoidance and a conditioned avoidance response in rats. 
Neuroscience, 27, 777-83. 

BRAUN-MENENDEZ, E., FASCIOLO, J., LELOIR, L. & MUNOZ, J. (1939) La 
substancia hipertensora de la sangre del rinon isquemiado. Rev Soc Arg 
Biol, 15, 420-425. 

BRIGHT (1836) Tubular view of the morbid appearances in 100 cases connected 
with albuminous urine: With observations. Guy's Hosp Rep, 1, 380-400. 

BRINDLE, N. P. (1993) Growth factors in endothelial regeneration. Cardiovasc 
Res, 27, 1162-72. 

BRITISH HEART FOUNDATION (2012) Coronary Heart Disease Statistics 2012. IN 
FOUNDATION, B. H. (Ed.). London, British Heart Foundation. 

BROSNIHAN, K. B., LI, P. & FERRARIO, C. M. (1996) Angiotensin-(1-7) dilates 
canine coronary arteries through kinins and nitric oxide. Hypertension, 
27, 523-8. 

BROWN, B. G. & DODGE, H. T. (1982) Unstable angina: guidelines for therapy 
based on the last decade of clinical observations. Ann Intern Med, 97, 
921-3. 

BRYAN, A. J. & ANGELINI, G. D. (1994) The biology of saphenous vein graft 
occlusion: etiology and strategies for prevention. Curr Opin Cardiol, 9, 
641-9. 

BUJAK-GIZYCKA, B., OLSZANECKI, R., SUSKI, M., MADEK, J., STACHOWICZ, A. & 
KORBUT, R. (2010) Angiotensinogen metabolism in rat aorta: robust 
formation of proangiotensin-12. J Physiol Pharmacol, 61, 679-82. 

BUMPUS, F. M., SCHWARZ, H. & PAGE, I. H. (1957) Synthesis and pharmacology 
of the octapeptide angiotonin. Science, 125, 886-7. 

CAI, H. & HARRISON, D. G. (2000) Endothelial dysfunction in cardiovascular 
diseases: the role of oxidant stress. Circ Res, 87, 840-4. 

CAIXETA, A., LEON, M. B., LANSKY, A. J., NIKOLSKY, E., AOKI, J., MOSES, J. W., 
SCHOFER, J., MORICE, M. C., SCHAMPAERT, E., KIRTANE, A. J., POPMA, J. 
J., PARISE, H., FAHY, M. & MEHRAN, R. (2009) 5-year clinical outcomes 
after sirolimus-eluting stent implantation insights from a patient-level 
pooled analysis of 4 randomized trials comparing sirolimus-eluting stents 
with bare-metal stents. J Am Coll Cardiol, 54, 894-902. 

CALO, L. A., SCHIAVO, S., DAVIS, P. A., PAGNIN, E., MORMINO, P., D'ANGELO, A. 
& PESSINA, A. C. (2010a) ACE2 and angiotensin 1-7 are increased in a 
human model of cardiovascular hyporeactivity: pathophysiological 
implications. J Nephrol, 23, 472-7. 

CALO, L. A., SCHIAVO, S., DAVIS, P. A., PAGNIN, E., MORMINO, P., D'ANGELO, A. 
& PESSINA, A. C. (2010b) Angiotensin II signaling via type 2 receptors in a 
human model of vascular hyporeactivity: implications for hypertension. J 
Hypertens, 28, 111-8. 

CAMPBELL, D. J., KLADIS, A. & DUNCAN, A. M. (1993) Nephrectomy, converting 
enzyme inhibition, and angiotensin peptides. Hypertension, 22, 513-22. 

CAMPBELL, D. J., KLADIS, A. & VALENTIJN, A. J. (1995) Effects of losartan on 
angiotensin and bradykinin peptides and angiotensin-converting enzyme. J 
Cardiovasc Pharmacol, 26, 233-40. 

CAMPBELL, J. H. & CAMPBELL, G. R. (1994) The role of smooth muscle cells in 
atherosclerosis. Curr Opin Lipidol, 5, 323-30. 

CAMPBELL, W. B. & PETTINGER, W. A. (1976) Organ specificity of angiotensin II 
and Des-aspartyl angiotensin II in the conscious rat. J Pharmacol Exp 
Ther, 198, 450-6. 



231 
 

CANALS, M., JENKINS, L., KELLETT, E. & MILLIGAN, G. (2006) Up-regulation of 
the angiotensin II type 1 receptor by the MAS proto-oncogene is due to 
constitutive activation of Gq/G11 by MAS. J Biol Chem, 281, 16757-67. 

CARO, C., JEREMY, J., WATKINS, N., BULBULIA, R., ANGELINI, G., SMITH, F., 
WAN, S., YIM, A., SHERWIN, S., PEIRO, J., PAPAHARILAOU, Y., FALZON, 
B., GIORDANA, S. & GRIFFITHS, C. (2002) The geometry of unstented and 
stented pig common carotid artery bypass grafts. Biorheology, 39, 507-12. 

CARRACEDO, A. & PANDOLFI, P. P. (2008) The PTEN-PI3K pathway: of feedbacks 
and cross-talks. Oncogene, 27, 5527-41. 

CARUSO-NEVES, C., LARA, L. S., RANGEL, L. B., GROSSI, A. L. & LOPES, A. G. 
(2000) Angiotensin-(1-7) modulates the ouabain-insensitive Na+-ATPase 
activity from basolateral membrane of the proximal tubule. Biochim 
Biophys Acta, 1467, 189-97. 

CASS PRINCIPAL INVESTIGATORS (1983) Coronary artery surgery study (CASS): a 
randomized trial of coronary artery bypass surgery. Quality of life in 
patients randomly assigned to treatment groups. Circulation, 68, 951-60. 

CATT, K. J., CAIN, M. D., ZIMMET, P. Z. & CRAN, E. (1969) Blood angiotensin II 
levels of normal and hypertensive subjects. Br Med J, 1, 819-21. 

CHA, S. A., PARK, B. M., GAO, S. & KIM, S. H. (2013) Stimulation of ANP by 
angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sci, 93, 934-40. 

CHAI, S. Y., BASTIAS, M. A., CLUNE, E. F., MATSACOS, D. J., MUSTAFA, T., LEE, 
J. H., MCDOWALL, S. G., PAXINOS, G., MENDELSOHN, F. A. & ALBISTON, 
A. L. (2000) Distribution of angiotensin IV binding sites (AT4 receptor) in 
the human forebrain, midbrain and pons as visualised by in vitro receptor 
autoradiography. J Chem Neuroanat, 20, 339-48. 

CHAPPELL, M. C., PIRRO, N. T., SYKES, A. & FERRARIO, C. M. (1998) Metabolism 
of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension, 31, 
362-7. 

CHAPPELL, M. C., TALLANT, E. A., BROSNIHAN, K. B. & FERRARIO, C. M. (1990) 
Processing of angiotensin peptides by NG108-15 neuroblastoma x glioma 
hybrid cell line. Peptides, 11, 375-80. 

CHAPPELL, M. C., TALLANT, E.A, BROSNIHAN, K.B, FERRARIO, C.M (1994) 
Conversion of angiotensin I to angiotensin-(1-7) by thimet oligopeptidase 
(EC3.4.24.15) in vascular smooth muscle cells. J Vasc Med Biol, 5, 129-
137. 

CHEN, H. C., APPEDDU, P. A., PARSONS, J. T., HILDEBRAND, J. D., SCHALLER, M. 
D. & GUAN, J. L. (1995) Interaction of focal adhesion kinase with 
cytoskeletal protein talin. J Biol Chem, 270, 16995-9. 

CHEN, J., XIAO, X., CHEN, S., ZHANG, C., YI, D., SHENOY, V., RAIZADA, M. K., 
ZHAO, B. & CHEN, Y. (2013) Angiotensin-converting enzyme 2 priming 
enhances the function of endothelial progenitor cells and their 
therapeutic efficacy. Hypertension, 61, 681-9. 

CHEN, R., IWAI, M., WU, L., SUZUKI, J., MIN, L. J., SHIUCHI, T., SUGAYA, T., 
LIU, H. W., CUI, T. X. & HORIUCHI, M. (2003) Important role of nitric 
oxide in the effect of angiotensin-converting enzyme inhibitor imidapril 
on vascular injury. Hypertension, 42, 542-7. 

CHEN, S., PATEL, J. M. & BLOCK, E. R. (2000) Angiotensin IV-mediated 
pulmonary artery vasorelaxation is due to endothelial intracellular 
calcium release. Am J Physiol Lung Cell Mol Physiol, 279, L849-56. 

CHEN, X. L., TUMMALA, P. E., OLBRYCH, M. T., ALEXANDER, R. W. & MEDFORD, 
R. M. (1998) Angiotensin II induces monocyte chemoattractant protein-1 
gene expression in rat vascular smooth muscle cells. Circ Res, 83, 952-9. 



232 
 

CHEN, Y. X., NAKASHIMA, Y., TANAKA, K., SHIRAISHI, S., NAKAGAWA, K. & 
SUEISHI, K. (1999) Immunohistochemical expression of vascular 
endothelial growth factor/vascular permeability factor in atherosclerotic 
intimas of human coronary arteries. Arterioscler Thromb Vasc Biol, 19, 
131-9. 

CHEN, Z., TAN, F., ERDOS, E. G. & DEDDISH, P. A. (2005) Hydrolysis of 
angiotensin peptides by human angiotensin I-converting enzyme and the 
resensitization of B2 kinin receptors. Hypertension, 46, 1368-73. 

CHRISTENSEN, G. L., KELSTRUP, C. D., LYNGSO, C., SARWAR, U., BOGEBO, R., 
SHEIKH, S. P., GAMMELTOFT, S., OLSEN, J. V. & HANSEN, J. L. (2010) 
Quantitative phosphoproteomics dissection of seven-transmembrane 
receptor signaling using full and biased agonists. Mol Cell Proteomics, 9, 
1540-53. 

CINES, D. B., POLLAK, E. S., BUCK, C. A., LOSCALZO, J., ZIMMERMAN, G. A., 
MCEVER, R. P., POBER, J. S., WICK, T. M., KONKLE, B. A., SCHWARTZ, B. 
S., BARNATHAN, E. S., MCCRAE, K. R., HUG, B. A., SCHMIDT, A. M. & 
STERN, D. M. (1998) Endothelial cells in physiology and in the 
pathophysiology of vascular disorders. Blood, 91, 3527-61. 

CLARKE, M. C., LITTLEWOOD, T. D., FIGG, N., MAGUIRE, J. J., DAVENPORT, A. 
P., GODDARD, M. & BENNETT, M. R. (2008) Chronic apoptosis of vascular 
smooth muscle cells accelerates atherosclerosis and promotes 
calcification and medial degeneration. Circ Res, 102, 1529-38. 

CLARKE, W. P. & BOND, R. A. (1998) The elusive nature of intrinsic efficacy. 
Trends Pharmacol Sci, 19, 270-6. 

COOPER, J. P. & NEWBY, A. C. (1991) Monocyte adhesion to human saphenous 
vein in vitro. Atherosclerosis, 91, 85-95. 

CORDES, K. R., SHEEHY, N. T., WHITE, M. P., BERRY, E. C., MORTON, S. U., 
MUTH, A. N., LEE, T. H., MIANO, J. M., IVEY, K. N. & SRIVASTAVA, D. 
(2009) miR-145 and miR-143 regulate smooth muscle cell fate and 
plasticity. Nature, 460, 705-10. 

COSTA, M. A. & SIMON, D. I. (2005) Molecular basis of restenosis and drug-eluting 
stents. Circulation, 111, 2257-73. 

COUFFINHAL, T., KEARNEY, M., WITZENBICHLER, B., CHEN, D., MUROHARA, T., 
LOSORDO, D. W., SYMES, J. & ISNER, J. M. (1997) Vascular endothelial 
growth factor/vascular permeability factor (VEGF/VPF) in normal and 
atherosclerotic human arteries. Am J Pathol, 150, 1673-85. 

COUTINHO, D. C., FOUREAUX, G., RODRIGUES, K. D., SALLES, R. L., MORAES, P. 
L., MURCA, T. M., DE MARIA, M. L., GOMES, E. R., SANTOS, R. A., 
GUATIMOSIM, S. & FERREIRA, A. J. (2013) Cardiovascular effects of 
angiotensin A: A novel peptide of the renin-angiotensin system. J Renin 
Angiotensin Aldosterone Syst. 

CRACKOWER, M. A., SARAO, R., OUDIT, G. Y., YAGIL, C., KOZIERADZKI, I., 
SCANGA, S. E., OLIVEIRA-DOS-SANTOS, A. J., DA COSTA, J., ZHANG, L., 
PEI, Y., SCHOLEY, J., FERRARIO, C. M., MANOUKIAN, A. S., CHAPPELL, M. 
C., BACKX, P. H., YAGIL, Y. & PENNINGER, J. M. (2002) Angiotensin-
converting enzyme 2 is an essential regulator of heart function. Nature, 
417, 822-8. 

CROSBY, J. R., KAMINSKI, W. E., SCHATTEMAN, G., MARTIN, P. J., RAINES, E. W., 
SEIFERT, R. A. & BOWEN-POPE, D. F. (2000) Endothelial cells of 
hematopoietic origin make a significant contribution to adult blood vessel 
formation. Circ Res, 87, 728-30. 



233 
 

CROSS, K. S., EL-SANADIKI, M. N., MURRAY, J. J., MIKAT, E. M., MCCANN, R. L. & 
HAGEN, P. O. (1988) Functional abnormalities of experimental autogenous 
vein graft neoendothelium. Ann Surg, 208, 631-8. 

CUI, T., NAKAGAMI, H., IWAI, M., TAKEDA, Y., SHIUCHI, T., TAMURA, K., DAVIET, 
L. & HORIUCHI, M. (2000) ATRAP, novel AT1 receptor associated protein, 
enhances internalization of AT1 receptor and inhibits vascular smooth 
muscle cell growth. Biochem Biophys Res Commun, 279, 938-41. 

DARLEY-USMAR, V. M., HOGG, N., O'LEARY, V. J., WILSON, M. T. & MONCADA, S. 
(1992) The simultaneous generation of superoxide and nitric oxide can 
initiate lipid peroxidation in human low density lipoprotein. Free Radic 
Res Commun, 17, 9-20. 

DAUGHERTY, A., RATERI, D. L., HOWATT, D. A., CHARNIGO, R. & CASSIS, L. A. 
(2013) PD123319 augments angiotensin II-induced abdominal aortic 
aneurysms through an AT2 receptor-independent mechanism. PLoS One, 
8, e61849. 

DAVIGNON, J. & GANZ, P. (2004) Role of endothelial dysfunction in 
atherosclerosis. Circulation, 109, III27-32. 

DE GASPARO, M., CATT, K. J., INAGAMI, T., WRIGHT, J. W. & UNGER, T. (2000) 
International union of pharmacology. XXIII. The angiotensin II receptors. 
Pharmacol Rev, 52, 415-72. 

DE GRAAF, J. C., BANGA, J. D., MONCADA, S., PALMER, R. M., DE GROOT, P. G. 
& SIXMA, J. J. (1992) Nitric oxide functions as an inhibitor of platelet 
adhesion under flow conditions. Circulation, 85, 2284-90. 

DEANFIELD, J. E., HALCOX, J. P. & RABELINK, T. J. (2007) Endothelial function 
and dysfunction: testing and clinical relevance. Circulation, 115, 1285-95. 

DEGREGORI, J., KOWALIK, T. & NEVINS, J. R. (1995) Cellular targets for 
activation by the E2F1 transcription factor include DNA synthesis- and 
G1/S-regulatory genes. Mol Cell Biol, 15, 4215-24. 

DENG, D. X., SPIN, J. M., TSALENKO, A., VAILAYA, A., BEN-DOR, A., YAKHINI, Z., 
TSAO, P., BRUHN, L. & QUERTERMOUS, T. (2006) Molecular signatures 
determining coronary artery and saphenous vein smooth muscle cell 
phenotypes: distinct responses to stimuli. Arterioscler Thromb Vasc Biol, 
26, 1058-65. 

DIET, F., PRATT, R. E., BERRY, G. J., MOMOSE, N., GIBBONS, G. H. & DZAU, V. J. 
(1996) Increased accumulation of tissue ACE in human atherosclerotic 
coronary artery disease. Circulation, 94, 2756-67. 

DIMMELER, S., AICHER, A., VASA, M., MILDNER-RIHM, C., ADLER, K., TIEMANN, 
M., RUTTEN, H., FICHTLSCHERER, S., MARTIN, H. & ZEIHER, A. M. (2001) 
HMG-CoA reductase inhibitors (statins) increase endothelial progenitor 
cells via the PI 3-kinase/Akt pathway. J Clin Invest, 108, 391-7. 

DIMMELER, S., RIPPMANN, V., WEILAND, U., HAENDELER, J. & ZEIHER, A. M. 
(1997) Angiotensin II induces apoptosis of human endothelial cells. 
Protective effect of nitric oxide. Circ Res, 81, 970-6. 

DOBRIN, P. B., LITTOOY, F. N. & ENDEAN, E. D. (1989) Mechanical factors 
predisposing to intimal hyperplasia and medial thickening in autogenous 
vein grafts. Surgery, 105, 393-400. 

DONG, B., ZHANG, Y. H., DONG, Q. L., YU, Q. T., ZHU, L., LI, S. Y., YANG, Y. P., 
ZHANG, C., FENG, J. B., LIU, C. X., SONG, H. D., PAN, C. M. & ZHANG, Y. 
(2009) [Overexpression of angiotensin converting enzyme 2 inhibits 
inflammatory response of atherosclerotic plaques in hypercholesterolemic 
rabbits]. Zhonghua Xin Xue Guan Bing Za Zhi, 37, 622-5. 

DONG, X., YU, L. G., SUN, R., CHENG, Y. N., CAO, H., YANG, K. M., DONG, Y. N., 
WU, Y. & GUO, X. L. (2013) Inhibition of PTEN expression and activity by 



234 
 

angiotensin II induces proliferation and migration of vascular smooth 
muscle cells. J Cell Biochem, 114, 174-82. 

DONOGHUE, M., HSIEH, F., BARONAS, E., GODBOUT, K., GOSSELIN, M., 
STAGLIANO, N., DONOVAN, M., WOOLF, B., ROBISON, K., JEYASEELAN, R., 
BREITBART, R. E. & ACTON, S. (2000) A novel angiotensin-converting 
enzyme-related carboxypeptidase (ACE2) converts angiotensin I to 
angiotensin 1-9. Circ Res, 87, E1-9. 

DONOGHUE, M., WAKIMOTO, H., MAGUIRE, C. T., ACTON, S., HALES, P., 
STAGLIANO, N., FAIRCHILD-HUNTRESS, V., XU, J., LORENZ, J. N., 
KADAMBI, V., BERUL, C. I. & BREITBART, R. E. (2003) Heart block, 
ventricular tachycardia, and sudden death in ACE2 transgenic mice with 
downregulated connexins. J Mol Cell Cardiol, 35, 1043-53. 

DOUGLAS, G., VAN KAMPEN, E., HALE, A. B., MCNEILL, E., PATEL, J., CRABTREE, 
M. J., ALI, Z., HOERR, R. A., ALP, N. J. & CHANNON, K. M. (2012) 
Endothelial cell repopulation after stenting determines in-stent neointima 
formation: effects of bare-metal vs. drug-eluting stents and genetic 
endothelial cell modification. Eur Heart J. 

DOUGLAS, G., VAN KAMPEN, E., HALE, A. B., MCNEILL, E., PATEL, J., CRABTREE, 
M. J., ALI, Z., HOERR, R. A., ALP, N. J. & CHANNON, K. M. (2013) 
Endothelial cell repopulation after stenting determines in-stent neointima 
formation: effects of bare-metal vs. drug-eluting stents and genetic 
endothelial cell modification. Eur Heart J, 34, 3378-88. 

DRUMMER, O. H., KOURTIS, S. & JOHNSON, H. (1988) Formation of angiotensin II 
and other angiotensin peptides from des-leu 10-angiotensin I in rat lung 
and kidney. Biochem Pharmacol, 37, 4327-33. 

DU, J., SPERLING, L. S., MARRERO, M. B., PHILLIPS, L. & DELAFONTAINE, P. 
(1996) G-protein and tyrosine kinase receptor cross-talk in rat aortic 
smooth muscle cells: thrombin- and angiotensin II-induced tyrosine 
phosphorylation of insulin receptor substrate-1 and insulin-like growth 
factor 1 receptor. Biochem Biophys Res Commun, 218, 934-9. 

EGUCHI, S., IWASAKI, H., INAGAMI, T., NUMAGUCHI, K., YAMAKAWA, T., 
MOTLEY, E. D., OWADA, K. M., MARUMO, F. & HIRATA, Y. (1999) 
Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle 
cells. Hypertension, 33, 201-6. 

EGUCHI, S., MATSUMOTO, T., MOTLEY, E. D., UTSUNOMIYA, H. & INAGAMI, T. 
(1996) Identification of an essential signaling cascade for mitogen-
activated protein kinase activation by angiotensin II in cultured rat 
vascular smooth muscle cells. Possible requirement of Gq-mediated 
p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase. 
J Biol Chem, 271, 14169-75. 

EGUCHI, S., NUMAGUCHI, K., IWASAKI, H., MATSUMOTO, T., YAMAKAWA, T., 
UTSUNOMIYA, H., MOTLEY, E. D., KAWAKATSU, H., OWADA, K. M., 
HIRATA, Y., MARUMO, F. & INAGAMI, T. (1998) Calcium-dependent 
epidermal growth factor receptor transactivation mediates the 
angiotensin II-induced mitogen-activated protein kinase activation in 
vascular smooth muscle cells. J Biol Chem, 273, 8890-6. 

ELLEDGE, S. J. (1996) Cell cycle checkpoints: preventing an identity crisis. 
Science, 274, 1664-72. 

ELTON, T. S. K., D.E; MALANA, G.E; MARTIN, M.M; NUOVO, G.J; PLEISTER, A.P; 
FELDMAN, D.S (2008) MiR-132 Regulates Angiotensin II Type 1 Receptor 
Expression Through a Protein Coding Region Binding Site (Abstract 5427). 
Circulation, 118, S_513. 



235 
 

EPSTEIN, A. M., THROCKMORTON, D. & BROPHY, C. M. (1997) Mitogen-activated 
protein kinase activation: an alternate signaling pathway for sustained 
vascular smooth muscle contraction. J Vasc Surg, 26, 327-32. 

ERDOS, E. G., JACKMAN, H. L., BROVKOVYCH, V., TAN, F. & DEDDISH, P. A. 
(2002) Products of angiotensin I hydrolysis by human cardiac enzymes 
potentiate bradykinin. J Mol Cell Cardiol, 34, 1569-76. 

ERDOS, E. G. & SKIDGEL, R. A. (1987) The angiotensin I-converting enzyme. Lab 
Invest, 56, 345-8. 

ESKILDSEN, T. V., JEPPESEN, P. L., SCHNEIDER, M., NOSSENT, A. Y., SANDBERG, 
M. B., HANSEN, P. B., JENSEN, C. H., HANSEN, M. L., MARCUSSEN, N., 
RASMUSSEN, L. M., BIE, P., ANDERSEN, D. C. & SHEIKH, S. P. (2013) 
Angiotensin II Regulates microRNA-132/-212 in Hypertensive Rats and 
Humans. Int J Mol Sci, 14, 11190-207. 

ESTEBAN, V., RUPEREZ, M., SANCHEZ-LOPEZ, E., RODRIGUEZ-VITA, J., LORENZO, 
O., DEMAEGDT, H., VANDERHEYDEN, P., EGIDO, J. & RUIZ-ORTEGA, M. 
(2005) Angiotensin IV activates the nuclear transcription factor-kappaB 
and related proinflammatory genes in vascular smooth muscle cells. Circ 
Res, 96, 965-73. 

ETO, H., BIRO, S., MIYATA, M., KAIEDA, H., OBATA, H., KIHARA, T., ORIHARA, K. 
& TEI, C. (2003) Angiotensin II type 1 receptor participates in 
extracellular matrix production in the late stage of remodeling after 
vascular injury. Cardiovasc Res, 59, 200-11. 

EUROPEAN CORONARY SURGERY STUDY GROUP (1982) Long-term results of 
prospective randomised study of coronary artery bypass surgery in stable 
angina pectoris. European Coronary Surgery Study Group. Lancet, 2, 1173-
80. 

FANG, Y., FRUTOS, A. G. & LAHIRI, J. (2002) G-protein-coupled receptor 
microarrays. Chembiochem, 3, 987-91. 

FANG, Y., LAHIRI, J. & PICARD, L. (2003) G protein-coupled receptor microarrays 
for drug discovery. Drug Discov Today, 8, 755-61. 

FARIA-SILVA, R., DUARTE, F. V. & SANTOS, R. A. (2005) Short-term 
angiotensin(1-7) receptor MAS stimulation improves endothelial function 
in normotensive rats. Hypertension, 46, 948-52. 

FASCIOLO, J., HOUSSAY, B. & TAQUINI, A. (1938) The blood-pressure raising 
secretion of the ischaemic kidney. J Physiol., 94, 281-293. 

FELETOU, M. & VANHOUTTE, P. M. (1988) Endothelium-dependent 
hyperpolarization of canine coronary smooth muscle. Br J Pharmacol, 93, 
515-24. 

FERREIRA, P. M., SOUZA DOS SANTOS, R. A. & CAMPAGNOLE-SANTOS, M. J. 
(2007) Angiotensin-(3-7) pressor effect at the rostral ventrolateral 
medulla. Regul Pept, 141, 168-74. 

FLETCHER, E. L., PHIPPS, J. A., WARD, M. M., VESSEY, K. A. & WILKINSON-
BERKA, J. L. (2010) The renin-angiotensin system in retinal health and 
disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye 
Res, 29, 284-311. 

FLORES-MUNOZ, M., SMITH, N. J., HAGGERTY, C., MILLIGAN, G. & NICKLIN, S. A. 
(2011) Angiotensin1-9 antagonises pro-hypertrophic signalling in 
cardiomyocytes via the angiotensin type 2 receptor. J Physiol, 589, 939-
51. 

FLORES-MUNOZ, M., WORK, L. M., DOUGLAS, K., DENBY, L., DOMINICZAK, A. F., 
GRAHAM, D. & NICKLIN, S. A. (2012) Angiotensin-(1-9) attenuates cardiac 
fibrosis in the stroke-prone spontaneously hypertensive rat via the 
angiotensin type 2 receptor. Hypertension, 59, 300-7. 



236 
 

FOLKOW, B. (1982) Physiological aspects of primary hypertension. Physiol Rev, 
62, 347-504. 

FORCE, T., POMBO, C. M., AVRUCH, J. A., BONVENTRE, J. V. & KYRIAKIS, J. M. 
(1996) Stress-activated protein kinases in cardiovascular disease. Circ Res, 
78, 947-53. 

FOX, K. M. (2003) Efficacy of perindopril in reduction of cardiovascular events 
among patients with stable coronary artery disease: randomised, double-
blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet, 
362, 782-8. 

FRAGA-SILVA, R. A., COSTA-FRAGA, F. P., DE SOUSA, F. B., ALENINA, N., BADER, 
M., SINISTERRA, R. D. & SANTOS, R. A. (2011) An orally active formulation 
of angiotensin-(1-7) produces an antithrombotic effect. Clinics (Sao 
Paulo), 66, 837-41. 

FRAGA-SILVA, R. A., PINHEIRO, S. V., GONCALVES, A. C., ALENINA, N., BADER, M. 
& SANTOS, R. A. (2008) The antithrombotic effect of angiotensin-(1-7) 
involves mas-mediated NO release from platelets. Mol Med, 14, 28-35. 

FRAGA-SILVA, R. A., SAVERGNINI, S. Q., MONTECUCCO, F., NENCIONI, A., CAFFA, 
I., SONCINI, D., COSTA-FRAGA, F. P., DE SOUSA, F. B., SINISTERRA, R. D., 
CAPETTINI, L. A., LENGLET, S., GALAN, K., PELLI, G., BERTOLOTTO, M., 
PENDE, A., SPINELLA, G., PANE, B., DALLEGRI, F., PALOMBO, D., MACH, 
F., STERGIOPULOS, N., SANTOS, R. A. & DA SILVA, R. F. (2014) Treatment 
with Angiotensin-(1-7) reduces inflammation in carotid atherosclerotic 
plaques. Thromb Haemost, 111, 736-47. 

FREEMAN, E. J., CHISOLM, G. M., FERRARIO, C. M. & TALLANT, E. A. (1996) 
Angiotensin-(1-7) inhibits vascular smooth muscle cell growth. 
Hypertension, 28, 104-8. 

FROHLICH, E. D. & SUSIC, D. (2007) Blood pressure, large arteries and 
atherosclerosis. Adv Cardiol, 44, 117-24. 

FUKUHARA, M., GEARY, R. L., DIZ, D. I., GALLAGHER, P. E., WILSON, J. A., 
GLAZIER, S. S., DEAN, R. H. & FERRARIO, C. M. (2000) Angiotensin-
converting enzyme expression in human carotid artery atherosclerosis. 
Hypertension, 35, 353-9. 

FULTON, G. J., DAVIES, M. G., BARBER, L., SVENDSEN, E. & HAGEN, P. O. (1998) 
Localized versus systemic angiotensin II receptor inhibition of intimal 
hyperplasia in experimental vein grafts by the specific angiotensin II 
receptor inhibitor L158,809. Surgery, 123, 218-27. 

FURCHGOTT, R. F. & ZAWADZKI, J. V. (1980) The obligatory role of endothelial 
cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 
288, 373-6. 

FURGESON, S. B., SIMPSON, P. A., PARK, I., VANPUTTEN, V., HORITA, H., 
KONTOS, C. D., NEMENOFF, R. A. & WEISER-EVANS, M. C. (2010) 
Inactivation of the tumour suppressor, PTEN, in smooth muscle promotes 
a pro-inflammatory phenotype and enhances neointima formation. 
Cardiovasc Res, 86, 274-82. 

GABORIK, Z., SZASZAK, M., SZIDONYA, L., BALLA, B., PAKU, S., CATT, K. J., 
CLARK, A. J. & HUNYADY, L. (2001) Beta-arrestin- and dynamin-
dependent endocytosis of the AT1 angiotensin receptor. Mol Pharmacol, 
59, 239-47. 

GALANDRIN, S., OLIGNY-LONGPRE, G. & BOUVIER, M. (2007) The evasive nature 
of drug efficacy: implications for drug discovery. Trends Pharmacol Sci, 
28, 423-30. 



237 
 

GALARIA, II, NICHOLL, S. M., ROZTOCIL, E. & DAVIES, M. G. (2005) Urokinase-
induced smooth muscle cell migration requires PI3-K and Akt activation. J 
Surg Res, 127, 46-52. 

GARABELLI, P. J., MODRALL, J. G., PENNINGER, J. M., FERRARIO, C. M. & 
CHAPPELL, M. C. (2008) Distinct roles for angiotensin-converting enzyme 2 
and carboxypeptidase A in the processing of angiotensins within the 
murine heart. Exp Physiol, 93, 613-21. 

GARG, U. C. & HASSID, A. (1989) Nitric oxide-generating vasodilators and 8-
bromo-cyclic guanosine monophosphate inhibit mitogenesis and 
proliferation of cultured rat vascular smooth muscle cells. J Clin Invest, 
83, 1774-7. 

GAUTHIER, T. W., SCALIA, R., MUROHARA, T., GUO, J. P. & LEFER, A. M. (1995) 
Nitric oxide protects against leukocyte-endothelium interactions in the 
early stages of hypercholesterolaemia. Arterioscler Thromb Vasc Biol, 15, 
1652-9. 

GEMBARDT, F., HERINGER-WALTHER, S., VAN ESCH, J. H., STERNER-KOCK, A., 
VAN VEGHEL, R., LE, T. H., GARRELDS, I. M., COFFMAN, T. M., DANSER, A. 
H., SCHULTHEISS, H. P. & WALTHER, T. (2008) Cardiovascular phenotype 
of mice lacking all three subtypes of angiotensin II receptors. FASEB J, 22, 
3068-77. 

GERTHOFFER, W. T. (2007) Mechanisms of vascular smooth muscle cell 
migration. Circ Res, 100, 607-21. 

GESUALDO, L., RANIERI, E., MONNO, R., ROSSIELLO, M. R., COLUCCI, M., 
SEMERARO, N., GRANDALIANO, G., SCHENA, F. P., URSI, M. & CERULLO, G. 
(1999) Angiotensin IV stimulates plasminogen activator inhibitor-1 
expression in proximal tubular epithelial cells. Kidney Int, 56, 461-70. 

GHOSH, S. & KARIN, M. (2002) Missing pieces in the NF-kappaB puzzle. Cell, 109 
Suppl, S81-96. 

GIANI, J. F., MIQUET, J. G., MUNOZ, M. C., BURGHI, V., TOBLLI, J. E., 
MASTERNAK, M. M., KOPCHICK, J. J., BARTKE, A., TURYN, D. & DOMINICI, 
F. P. (2012) Upregulation of the angiotensin-converting enzyme 
2/angiotensin-(1-7)/Mas receptor axis in the heart and the kidney of 
growth hormone receptor knock-out mice. Growth Horm IGF Res, 22, 224-
33. 

GIBBONS, G. H. & DZAU, V. J. (1994) The emerging concept of vascular 
remodeling. N Engl J Med, 330, 1431-8. 

GIBBONS, G. H., PRATT, R. E. & DZAU, V. J. (1992) Vascular smooth muscle cell 
hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 
expression determines growth response to angiotensin II. J Clin Invest, 90, 
456-61. 

GIRERD, X., MOURAD, J. J., COPIE, X., MOULIN, C., ACAR, C., SAFAR, M. & 
LAURENT, S. (1994) Noninvasive detection of an increased vascular mass 
in untreated hypertensive patients. Am J Hypertens, 7, 1076-84. 

GIRONACCI, M. M., LONGO CARBAJOSA, N. A., GOLDSTEIN, J. & CERRATO, B. D. 
(2013) Neuromodulatory role of angiotensin-(1-7) in the central nervous 
system. Clin Sci (Lond), 125, 57-65. 

GLAGOV, S., WEISENBERG, E., ZARINS, C. K., STANKUNAVICIUS, R. & KOLETTIS, 
G. J. (1987) Compensatory enlargement of human atherosclerotic 
coronary arteries. N Engl J Med, 316, 1371-5. 

GLASS, C. K. & WITZTUM, J. L. (2001) Atherosclerosis. the road ahead. Cell, 104, 
503-16. 

GOLDBLATT, H., LYNCH, J., HANZAL, R. F. & SUMMERVILLE, W. W. (1934) Studies 
on Experimental Hypertension : I. The Production of Persistent Elevation 



238 
 

of Systolic Blood Pressure by Means of Renal Ischemia. J Exp Med, 59, 347-
79. 

GOLDMAN, S., ZADINA, K., MORITZ, T., OVITT, T., SETHI, G., COPELAND, J. G., 
THOTTAPURATHU, L., KRASNICKA, B., ELLIS, N., ANDERSON, R. J. & 
HENDERSON, W. (2004) Long-term patency of saphenous vein and left 
internal mammary artery grafts after coronary artery bypass surgery: 
results from a Department of Veterans Affairs Cooperative Study. J Am 
Coll Cardiol, 44, 2149-56. 

GORELIK, G., CARBINI, L. A. & SCICLI, A. G. (1998) Angiotensin 1-7 induces 
bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol 
Exp Ther, 286, 403-10. 

GRAF, K., XI, X. P., YANG, D., FLECK, E., HSUEH, W. A. & LAW, R. E. (1997) 
Mitogen-activated protein kinase activation is involved in platelet-derived 
growth factor-directed migration by vascular smooth muscle cells. 
Hypertension, 29, 334-9. 

GRAFE, M., AUCH-SCHWELK, W., ZAKRZEWICZ, A., REGITZ-ZAGROSEK, V., 
BARTSCH, P., GRAF, K., LOEBE, M., GAEHTGENS, P. & FLECK, E. (1997) 
Angiotensin II-induced leukocyte adhesion on human coronary endothelial 
cells is mediated by E-selectin. Circ Res, 81, 804-11. 

GRASSIA, G., MADDALUNO, M., MUSILLI, C., DE STEFANO, D., CARNUCCIO, R., DI 
LAURO, M. V., PARRATT, C. A., KENNEDY, S., DI MEGLIO, P., IANARO, A., 
MAFFIA, P., PARENTI, A. & IALENTI, A. (2010) The I{kappa}B kinase 
inhibitor nuclear factor-{kappa}B essential modulator-binding domain 
peptide for inhibition of injury-induced neointimal formation. Arterioscler 
Thromb Vasc Biol, 30, 2458-66. 

GREENE, L. J., SPADARO, A. C., MARTINS, A. R., PERUSSI DE JESUS, W. D. & 
CAMARGO, A. C. (1982) Brain endo-oligopeptidase B: a post-proline 
cleaving enzyme that inactivates angiotensin I and II. Hypertension, 4, 
178-84. 

GRIENDLING, K. K., DELAFONTAINE, P., RITTENHOUSE, S. E., GIMBRONE, M. A., 
JR. & ALEXANDER, R. W. (1987) Correlation of receptor sequestration with 
sustained diacylglycerol accumulation in angiotensin II-stimulated 
cultured vascular smooth muscle cells. J Biol Chem, 262, 14555-62. 

GRIENDLING, K. K., MINIERI, C. A., OLLERENSHAW, J. D. & ALEXANDER, R. W. 
(1994) Angiotensin II stimulates NADH and NADPH oxidase activity in 
cultured vascular smooth muscle cells. Circ Res, 74, 1141-8. 

GRIENDLING, K. K., SORESCU, D. & USHIO-FUKAI, M. (2000) NAD(P)H oxidase: 
role in cardiovascular biology and disease. Circ Res, 86, 494-501. 

GRIENDLING, K. K. & USHIO-FUKAI, M. (2000) Reactive oxygen species as 
mediators of angiotensin II signaling. Regul Pept, 91, 21-7. 

GRIENDLING, K. K., USHIO-FUKAI, M., LASSEGUE, B. & ALEXANDER, R. W. (1997) 
Angiotensin II signaling in vascular smooth muscle. New concepts. 
Hypertension, 29, 366-73. 

GROBE, J. L., MECCA, A. P., LINGIS, M., SHENOY, V., BOLTON, T. A., MACHADO, 
J. M., SPETH, R. C., RAIZADA, M. K. & KATOVICH, M. J. (2007) Prevention 
of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J 
Physiol Heart Circ Physiol, 292, H736-42. 

GROBE, J. L., MECCA, A. P., MAO, H. & KATOVICH, M. J. (2006) Chronic 
angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of 
hypertension. Am J Physiol Heart Circ Physiol, 290, H2417-23. 

GROTENDORST, G. R., SEPPA, H. E., KLEINMAN, H. K. & MARTIN, G. R. (1981) 
Attachment of smooth muscle cells to collagen and their migration toward 
platelet-derived growth factor. Proc Natl Acad Sci U S A, 78, 3669-72. 



239 
 

GRYGLEWSKI, R. J., MONCADA, S. & PALMER, R. M. (1986) Bioassay of 
prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine 
aortic endothelial cells. Br J Pharmacol, 87, 685-94. 

GUO, D. F., CHENIER, I., LAVOIE, J. L., CHAN, J. S., HAMET, P., TREMBLAY, J., 
CHEN, X. M., WANG, D. H. & INAGAMI, T. (2006) Development of 
hypertension and kidney hypertrophy in transgenic mice overexpressing 
ARAP1 gene in the kidney. Hypertension, 48, 453-9. 

GUO, D. F., CHENIER, I., TARDIF, V., ORLOV, S. N. & INAGAMI, T. (2003) Type 1 
angiotensin II receptor-associated protein ARAP1 binds and recycles the 
receptor to the plasma membrane. Biochem Biophys Res Commun, 310, 
1254-65. 

GUO, D. F., SUN, Y. L., HAMET, P. & INAGAMI, T. (2001) The angiotensin II type 1 
receptor and receptor-associated proteins. Cell Res, 11, 165-80. 

GUO, D. F., TARDIF, V., GHELIMA, K., CHAN, J. S., INGELFINGER, J. R., CHEN, X. 
& CHENIER, I. (2004) A novel angiotensin II type 1 receptor-associated 
protein induces cellular hypertrophy in rat vascular smooth muscle and 
renal proximal tubular cells. J Biol Chem, 279, 21109-20. 

HACKING, W. J., VANBAVEL, E. & SPAAN, J. A. (1996) Shear stress is not 
sufficient to control growth of vascular networks: a model study. Am J 
Physiol, 270, H364-75. 

HALL, K. L., HANESWORTH, J. M., BALL, A. E., FELGENHAUER, G. P., HOSICK, H. 
L. & HARDING, J. W. (1993) Identification and characterization of a novel 
angiotensin binding site in cultured vascular smooth muscle cells that is 
specific for the hexapeptide (3-8) fragment of angiotensin II, angiotensin 
IV. Regul Pept, 44, 225-32. 

HAMON, M., BAUTERS, C., MCFADDEN, E. P., ESCUDERO, X., LABLANCHE, J. M. & 
BERTRAND, M. E. (1996) Hypersensitivity of human coronary segments to 
ergonovine 6 months after injury by coronary angioplasty: a quantitative 
angiographic study in consecutive patients undergoing single-vessel 
angioplasty. Eur Heart J, 17, 890-5. 

HAMON, M., BAUTERS, C., MCFADDEN, E. P., WERNERT, N., LABLANCHE, J. M., 
DUPUIS, B. & BERTRAND, M. E. (1995) Restenosis after coronary 
angioplasty. Eur Heart J, 16 Suppl I, 33-48. 

HAN, Y., RUNGE, M. S. & BRASIER, A. R. (1999) Angiotensin II induces 
interleukin-6 transcription in vascular smooth muscle cells through 
pleiotropic activation of nuclear factor-kappa B transcription factors. Circ 
Res, 84, 695-703. 

HANDA, R. K. (1999) Angiotensin-(1-7) can interact with the rat proximal tubule 
AT(4) receptor system. Am J Physiol, 277, F75-83. 

HANKE, H., STROHSCHNEIDER, T., OBERHOFF, M., BETZ, E. & KARSCH, K. R. 
(1990) Time course of smooth muscle cell proliferation in the intima and 
media of arteries following experimental angioplasty. Circ Res, 67, 651-9. 

HANNAN, R. E., DAVIS, E. A. & WIDDOP, R. E. (2003) Functional role of 
angiotensin II AT2 receptor in modulation of AT1 receptor-mediated 
contraction in rat uterine artery: involvement of bradykinin and nitric 
oxide. Br J Pharmacol, 140, 987-95. 

HARMER, D., GILBERT, M., BORMAN, R. & CLARK, K. L. (2002) Quantitative mRNA 
expression profiling of ACE 2, a novel homologue of angiotensin converting 
enzyme. FEBS Lett, 532, 107-10. 

HATA, M., SEZAI, A., NIINO, T., YODA, M., WAKUI, S., CHIKU, M., TAKAYAMA, T., 
HONYE, J., SAITOH, S. & MINAMI, K. (2007) What is the optimal 
management for preventing saphenous vein graft diseases?: early results 
of intravascular angioscopic assessment. Circ J, 71, 286-7. 



240 
 

HAUTMANN, M. B., THOMPSON, M. M., SWARTZ, E. A., OLSON, E. N. & OWENS, 
G. K. (1997) Angiotensin II-induced stimulation of smooth muscle alpha-
actin expression by serum response factor and the homeodomain 
transcription factor MHox. Circ Res, 81, 600-10. 

HEENEMAN, S., HAENDELER, J., SAITO, Y., ISHIDA, M. & BERK, B. C. (2000) 
Angiotensin II induces transactivation of two different populations of the 
platelet-derived growth factor beta receptor. Key role for the p66 
adaptor protein Shc. J Biol Chem, 275, 15926-32. 

HEINEKE, J. & MOLKENTIN, J. D. (2006) Regulation of cardiac hypertrophy by 
intracellular signalling pathways. Nat Rev Mol Cell Biol, 7, 589-600. 

HEITSCH, H., BROVKOVYCH, S., MALINSKI, T. & WIEMER, G. (2001) Angiotensin-
(1-7)-Stimulated Nitric Oxide and Superoxide Release From Endothelial 
Cells. Hypertension, 37, 72-76. 

HERBERT, K. E., MISTRY, Y., HASTINGS, R., POOLMAN, T., NIKLASON, L. & 
WILLIAMS, B. (2008) Angiotensin II-mediated oxidative DNA damage 
accelerates cellular senescence in cultured human vascular smooth 
muscle cells via telomere-dependent and independent pathways. Circ Res, 
102, 201-8. 

HERLITZ, J., KARLSON, B. W., SJOLAND, H., ALBERTSSON, P., BRANDRUP-
WOGNSEN, G., HARTFORD, M., HAGLID, M., KARLSSON, T., LINDELOW, B. 
& CAIDAHL, K. (2001) Physical activity, symptoms of chest pain and 
dyspnea in patients with ischemic heart disease in relation to age before 
and two years after coronary artery bypass grafting. J Cardiovasc Surg 
(Torino), 42, 165-73. 

HERNANDEZ-PRESA, M., BUSTOS, C., ORTEGO, M., TUNON, J., RENEDO, G., RUIZ-
ORTEGA, M. & EGIDO, J. (1997) Angiotensin-converting enzyme inhibition 
prevents arterial nuclear factor-kappa B activation, monocyte 
chemoattractant protein-1 expression, and macrophage infiltration in a 
rabbit model of early accelerated atherosclerosis. Circulation, 95, 1532-
41. 

HERR, D., RODEWALD, M., FRASER, H. M., HACK, G., KONRAD, R., KREIENBERG, 
R. & WULFF, C. (2008) Regulation of endothelial proliferation by the 
renin-angiotensin system in human umbilical vein endothelial cells. 
Reproduction, 136, 125-30. 

HINTON, J. M. & LANGTON, P. D. (2003) Inhibition of EDHF by two new 
combinations of K+-channel inhibitors in rat isolated mesenteric arteries. 
Br J Pharmacol, 138, 1031-5. 

HONG, Y., WEBB, B. L., PAI, S., FERRIE, A., PENG, J., LAI, F., LAHIRI, J., 
BIDDLECOME, G., RASNOW, B., JOHNSON, M., MIN, H., FANG, Y. & SALON, 
J. (2006) G-protein-coupled receptor microarrays for multiplexed 
compound screening. J Biomol Screen, 11, 435-8. 

HORIUCHI, M., AKISHITA, M. & DZAU, V. J. (1999) Recent progress in angiotensin 
II type 2 receptor research in the cardiovascular system. Hypertension, 
33, 613-21. 

HORNIG, B., KOHLER, C., SCHLINK, D., TATGE, H. & DREXLER, H. (2003) AT1-
receptor antagonism improves endothelial function in coronary artery 
disease by a bradykinin/B2-receptor-dependent mechanism. 
Hypertension, 41, 1092-5. 

HTAY, T. & LIU, M. W. (2005) Drug-eluting stent: a review and update. Vasc 
Health Risk Manag, 1, 263-76. 

HU, Y., MAYR, M., METZLER, B., ERDEL, M., DAVISON, F. & XU, Q. (2002) Both 
donor and recipient origins of smooth muscle cells in vein graft 
atherosclerotic lesions. Circ Res, 91, e13-20. 



241 
 

HUANG, J. & KONTOS, C. D. (2002) Inhibition of vascular smooth muscle cell 
proliferation, migration, and survival by the tumor suppressor protein 
PTEN. Arterioscler Thromb Vasc Biol, 22, 745-51. 

IBRAHIM, J., HUGHES, A. D. & SEVER, P. S. (2000) Action of angiotensin II on DNA 
synthesis by human saphenous vein in organ culture. Hypertension, 36, 
917-21. 

IGNATESCU, M. C., GHAREHBAGHI-SCHNELL, E., HASSAN, A., REZAIE-MAJD, S., 
KORSCHINECK, I., SCHLEEF, R. R., GLOGAR, H. D. & LANG, I. M. (1999) 
Expression of the angiogenic protein, platelet-derived endothelial cell 
growth factor, in coronary atherosclerotic plaques: In vivo correlation of 
lesional microvessel density and constrictive vascular remodeling. 
Arterioscler Thromb Vasc Biol, 19, 2340-7. 

IKEDA, U., IKEDA, M., OOHARA, T., OGUCHI, A., KAMITANI, T., TSURUYA, Y. & 
KANO, S. (1991) Interleukin 6 stimulates growth of vascular smooth 
muscle cells in a PDGF-dependent manner. Am J Physiol, 260, H1713-7. 

IMANISHI, T., HANO, T. & NISHIO, I. (2005) Angiotensin II accelerates endothelial 
progenitor cell senescence through induction of oxidative stress. J 
Hypertens, 23, 97-104. 

INAGAMI, T. (1995) Recent progress in molecular and cell biological studies of 
angiotensin receptors. Curr Opin Nephrol Hypertens, 4, 47-54. 

INOUE, M., ITOH, H., UEDA, M., NARUKO, T., KOJIMA, A., KOMATSU, R., DOI, K., 
OGAWA, Y., TAMURA, N., TAKAYA, K., IGAKI, T., YAMASHITA, J., CHUN, T. 
H., MASATSUGU, K., BECKER, A. E. & NAKAO, K. (1998) Vascular 
endothelial growth factor (VEGF) expression in human coronary 
atherosclerotic lesions: possible pathophysiological significance of VEGF in 
progression of atherosclerosis. Circulation, 98, 2108-16. 

INOUE, T., CROCE, K., MOROOKA, T., SAKUMA, M., NODE, K. & SIMON, D. I. 
(2011) Vascular inflammation and repair: implications for re-
endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc 
Interv, 4, 1057-66. 

INOUE, T. & NODE, K. (2009) Molecular basis of restenosis and novel issues of 
drug-eluting stents. Circ J, 73, 615-21. 

INTENGAN, H. D. & SCHIFFRIN, E. L. (2000) Structure and mechanical properties 
of resistance arteries in hypertension: role of adhesion molecules and 
extracellular matrix determinants. Hypertension, 36, 312-8. 

ISHIDA, T., ISHIDA, M., SUERO, J., TAKAHASHI, M. & BERK, B. C. (1999) Agonist-
stimulated cytoskeletal reorganization and signal transduction at focal 
adhesions in vascular smooth muscle cells require c-Src. J Clin Invest, 
103, 789-97. 

ISHIZAKA, N., GRIENDLING, K. K., LASSEGUE, B. & ALEXANDER, R. W. (1998) 
Angiotensin II type 1 receptor: relationship with caveolae and caveolin 
after initial agonist stimulation. Hypertension, 32, 459-66. 

ISHIZAKA, N., TAGUCHI, J., KIMURA, Y., IKARI, Y., AIZAWA, T., TOGO, M., MIKI, 
K., KUROKAWA, K. & OHNO, M. (1999) Effects of a single local 
administration of cilostazol on neointimal formation in balloon-injured rat 
carotid artery. Atherosclerosis, 142, 41-6. 

ISODA, K., YOUNG, J. L., ZIRLIK, A., MACFARLANE, L. A., TSUBOI, N., GERDES, 
N., SCHONBECK, U. & LIBBY, P. (2006) Metformin inhibits proinflammatory 
responses and nuclear factor-kappaB in human vascular wall cells. 
Arterioscler Thromb Vasc Biol, 26, 611-7. 

JACKMAN, H. L., MASSAD, M. G., SEKOSAN, M., TAN, F., BROVKOVYCH, V., 
MARCIC, B. M. & ERDOS, E. G. (2002) Angiotensin 1-9 and 1-7 release in 
human heart: role of cathepsin A. Hypertension, 39, 976-81. 



242 
 

JACKSON, C. L., RAINES, E. W., ROSS, R. & REIDY, M. A. (1993) Role of 
endogenous platelet-derived growth factor in arterial smooth muscle cell 
migration after balloon catheter injury. Arterioscler Thromb, 13, 1218-26. 

JAFFE, E. A., NACHMAN, R. L., BECKER, C. G. & MINICK, C. R. (1973) Culture of 
human endothelial cells derived from umbilical veins. Identification by 
morphologic and immunologic criteria. J Clin Invest, 52, 2745-56. 

JAISWAL, N., JAISWAL, R. K., TALLANT, E. A., DIZ, D. I. & FERRARIO, C. M. 
(1993a) Alterations in prostaglandin production in spontaneously 
hypertensive rat smooth muscle cells. Hypertension, 21, 900-5. 

JAISWAL, N., TALLANT, E. A., JAISWAL, R. K., DIZ, D. I. & FERRARIO, C. M. 
(1993b) Differential regulation of prostaglandin synthesis by angiotensin 
peptides in porcine aortic smooth muscle cells: subtypes of angiotensin 
receptors involved. J Pharmacol Exp Ther, 265, 664-73. 

JANKOWSKI, V., VANHOLDER, R., VAN DER GIET, M., TOLLE, M., KARADOGAN, S., 
GOBOM, J., FURKERT, J., OKSCHE, A., KRAUSE, E., TRAN, T. N., TEPEL, 
M., SCHUCHARDT, M., SCHLUTER, H., WIEDON, A., BEYERMANN, M., 
BADER, M., TODIRAS, M., ZIDEK, W. & JANKOWSKI, J. (2007) Mass-
spectrometric identification of a novel angiotensin peptide in human 
plasma. Arterioscler Thromb Vasc Biol, 27, 297-302. 

JARAJAPU, Y. P., BHATWADEKAR, A. D., CABALLERO, S., HAZRA, S., SHENOY, V., 
MEDINA, R., KENT, D., STITT, A. W., THUT, C., FINNEY, E. M., RAIZADA, 
M. K. & GRANT, M. B. (2013) Activation of the ACE2/angiotensin-(1-7)/Mas 
receptor axis enhances the reparative function of dysfunctional diabetic 
endothelial progenitors. Diabetes, 62, 1258-69. 

JAWIEN, J., TOTON-ZURANSKA, J., GAJDA, M., NIEPSUJ, A., GEBSKA, A., KUS, K., 
SUSKI, M., PYKA-FOSCIAK, G., NOWAK, B., GUZIK, T. J., MARCINKIEWICZ, 
J., OLSZANECKI, R. & KORBUT, R. (2012) Angiotensin-(1-7) receptor Mas 
agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J 
Physiol Pharmacol, 63, 77-85. 

JEPPESEN, P. L., CHRISTENSEN, G. L., SCHNEIDER, M., NOSSENT, A. Y., JENSEN, 
H. B., ANDERSEN, D. C., ESKILDSEN, T., GAMMELTOFT, S., HANSEN, J. L. & 
SHEIKH, S. P. (2011) Angiotensin II type 1 receptor signalling regulates 
microRNA differentially in cardiac fibroblasts and myocytes. Br J 
Pharmacol, 164, 394-404. 

JIANG, M., BUJO, H., OHWAKI, K., UNOKI, H., YAMAZAKI, H., KANAKI, T., 
SHIBASAKI, M., AZUMA, K., HARIGAYA, K., SCHNEIDER, W. J. & SAITO, Y. 
(2008) Ang II-stimulated migration of vascular smooth muscle cells is 
dependent on LR11 in mice. J Clin Invest, 118, 2733-46. 

JIANG, X., NING, Q. & WANG, J. (2013) Angiotensin II induced differentially 
expressed microRNAs in adult rat cardiac fibroblasts. J Physiol Sci, 63, 31-
8. 

JIN, W., REDDY, M. A., CHEN, Z., PUTTA, S., LANTING, L., KATO, M., PARK, J. 
T., CHANDRA, M., WANG, C., TANGIRALA, R. K. & NATARAJAN, R. (2012) 
Small RNA sequencing reveals microRNAs that modulate angiotensin II 
effects in vascular smooth muscle cells. J Biol Chem, 287, 15672-83. 

JIN, X. Q., FUKUDA, N., SU, J. Z., LAI, Y. M., SUZUKI, R., TAHIRA, Y., TAKAGI, 
H., IKEDA, Y., KANMATSUSE, K. & MIYAZAKI, H. (2002) Angiotensin II type 
2 receptor gene transfer downregulates angiotensin II type 1a receptor in 
vascular smooth muscle cells. Hypertension, 39, 1021-7. 

JOHANSSON, M. E., WICKMAN, A., FITZGERALD, S. M., GAN, L. M. & BERGSTROM, 
G. (2005) Angiotensin II, type 2 receptor is not involved in the angiotensin 
II-mediated pro-atherogenic process in ApoE-/- mice. J Hypertens, 23, 
1541-9. 



243 
 

JONER, M., FARB, A., CHENG, Q., FINN, A. V., ACAMPADO, E., BURKE, A. P., 
SKORIJA, K., CREIGHTON, W., KOLODGIE, F. D., GOLD, H. K. & VIRMANI, 
R. (2007) Pioglitazone inhibits in-stent restenosis in atherosclerotic 
rabbits by targeting transforming growth factor-beta and MCP-1. 
Arterioscler Thromb Vasc Biol, 27, 182-9. 

JUNG, H. O., UHM, J. S., SEO, S. M., KIM, J. H., YOUN, H. J., BAEK, S. H., 
CHUNG, W. S. & SEUNG, K. B. (2010) Angiotensin II-induced smooth 
muscle cell migration is mediated by LDL receptor-related protein 1 via 
regulation of matrix metalloproteinase 2 expression. Biochem Biophys Res 
Commun, 402, 577-82. 

KAPLANSKI, G., MARIN, V., FABRIGOULE, M., BOULAY, V., BENOLIEL, A. M., 
BONGRAND, P., KAPLANSKI, S. & FARNARIER, C. (1998) Thrombin-
activated human endothelial cells support monocyte adhesion in vitro 
following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) 
and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood, 92, 1259-
67. 

KARHA, J., BAVRY, A. A., RAJAGOPAL, V., HENDERSON, M. R., ELLIS, S. G. & 
BRENER, S. J. (2006) Relation of C-reactive protein level and long-term 
risk of death or myocardial infarction following percutaneous coronary 
intervention with a sirolimus-eluting stent. Am J Cardiol, 98, 616-8. 

KARHA, J. & TOPOL, E. J. (2006) Primary percutaneous coronary intervention vs. 
fibrinolytic therapy for acute ST-elevation myocardial infarction in the 
elderly. Am J Geriatr Cardiol, 15, 19-21. 

KASSIRI, Z., ZHONG, J., GUO, D., BASU, R., WANG, X., LIU, P. P., SCHOLEY, J. 
W., PENNINGER, J. M. & OUDIT, G. Y. (2009) Loss of angiotensin-
converting enzyme 2 accelerates maladaptive left ventricular remodeling 
in response to myocardial infarction. Circ Heart Fail, 2, 446-55. 

KATO, H., SUZUKI, H., TAJIMA, S., OGATA, Y., TOMINAGA, T., SATO, A. & 
SARUTA, T. (1991) Angiotensin II stimulates collagen synthesis in cultured 
vascular smooth muscle cells. J Hypertens, 9, 17-22. 

KEIDAR, S., HEINRICH, R., KAPLAN, M., HAYEK, T. & AVIRAM, M. (2001) 
Angiotensin II administration to atherosclerotic mice increases 
macrophage uptake of oxidized ldl: a possible role for interleukin-6. 
Arterioscler Thromb Vasc Biol, 21, 1464-9. 

KERINS, D. M., HAO, Q. & VAUGHAN, D. E. (1995) Angiotensin induction of PAI-1 
expression in endothelial cells is mediated by the hexapeptide angiotensin 
IV. J Clin Invest, 96, 2515-20. 

KETSAWATSOMKRON, P., STEPP, D. W., FULTON, D. J. & MARRERO, M. B. (2010) 
Molecular mechanism of angiotensin II-induced insulin resistance in aortic 
vascular smooth muscle cells: roles of Protein Tyrosine Phosphatase-1B. 
Vascul Pharmacol, 53, 160-8. 

KIM, S., MURAKAMI, T., IZUMI, Y., YANO, M., MIURA, K., YAMANAKA, S. & IWAO, 
H. (1997) Extracellular signal-regulated kinase and c-Jun NH2-terminal 
kinase activities are continuously and differentially increased in aorta of 
hypertensive rats. Biochem Biophys Res Commun, 236, 199-204. 

KIM, S., ZHAN, Y., IZUMI, Y., YASUMOTO, H., YANO, M. & IWAO, H. (2000) In vivo 
activation of rat aortic platelet-derived growth factor and epidermal 
growth factor receptors by angiotensin II and hypertension. Arterioscler 
Thromb Vasc Biol, 20, 2539-45. 

KIMBROUGH, H. M., JR., VAUGHAN, E. D., JR., CAREY, R. M. & AYERS, C. R. 
(1977) Effect of intrarenal angiotensin II blockade on renal function in 
conscious dogs. Circ Res, 40, 174-8. 



244 
 

KING, S. B., 3RD (2005) Angioplasty is better than medical therapy for alleviating 
chronic angina pectoris. Arch Intern Med, 165, 2589-92, discussion 2592-3. 

KINLAY, S., CREAGER, M. A., FUKUMOTO, M., HIKITA, H., FANG, J. C., SELWYN, 
A. P. & GANZ, P. (2001) Endothelium-derived nitric oxide regulates 
arterial elasticity in human arteries in vivo. Hypertension, 38, 1049-53. 

KIPSHIDZE, N., DANGAS, G., TSAPENKO, M., MOSES, J., LEON, M. B., KUTRYK, M. 
& SERRUYS, P. (2004) Role of the endothelium in modulating neointimal 
formation: vasculoprotective approaches to attenuate restenosis after 
percutaneous coronary interventions. J Am Coll Cardiol, 44, 733-9. 

KLJAJIC, S. T., WIDDOP, R. E., VINH, A., WELUNGODA, I., BOSNYAK, S., JONES, 
E. S. & GASPARI, T. A. (2013) Direct AT(2) receptor stimulation is athero-
protective and stabilizes plaque in apolipoprotein E-deficient mice. Int J 
Cardiol, 169, 281-7. 

KOIDE, S., OKAZAKI, M., TAMURA, M., OZUMI, K., TAKATSU, H., KAMEZAKI, F., 
TANIMOTO, A., TASAKI, H., SASAGURI, Y., NAKASHIMA, Y. & OTSUJI, Y. 
(2007) PTEN reduces cuff-induced neointima formation and 
proinflammatory cytokines. Am J Physiol Heart Circ Physiol, 292, H2824-
31. 

KOKKONEN, J. O., SAARINEN, J. & KOVANEN, P. T. (1997) Regulation of local 
angiotensin II formation in the human heart in the presence of interstitial 
fluid. Inhibition of chymase by protease inhibitors of interstitial fluid and 
of angiotensin-converting enzyme by Ang-(1-9) formed by heart 
carboxypeptidase A-like activity. Circulation, 95, 1455-63. 

KOPF, E., SHNITZER, D. & ZHARHARY, D. (2005) Panorama Ab Microarray Cell 
Signaling kit: a unique tool for protein expression analysis. Proteomics, 5, 
2412-6. 

KOPF, E. & ZHARHARY, D. (2007) Antibody arrays--an emerging tool in cancer 
proteomics. Int J Biochem Cell Biol, 39, 1305-17. 

KORSGAARD, N., AALKJAER, C., HEAGERTY, A. M., IZZARD, A. S. & MULVANY, M. 
J. (1993) Histology of subcutaneous small arteries from patients with 
essential hypertension. Hypertension, 22, 523-6. 

KOSTENIS, E., MILLIGAN, G., CHRISTOPOULOS, A., SANCHEZ-FERRER, C. F., 
HERINGER-WALTHER, S., SEXTON, P. M., GEMBARDT, F., KELLETT, E., 
MARTINI, L., VANDERHEYDEN, P., SCHULTHEISS, H. P. & WALTHER, T. 
(2005) G-protein-coupled receptor Mas is a physiological antagonist of the 
angiotensin II type 1 receptor. Circulation, 111, 1806-13. 

KRAMKOWSKI, K., MOGIELNICKI, A., LESZCZYNSKA, A. & BUCZKO, W. (2010) 
Angiotensin-(1-9), the product of angiotensin I conversion in platelets, 
enhances arterial thrombosis in rats. J Physiol Pharmacol, 61, 317-24. 

KU, D. D., CAULFIELD, J. B. & KIRKLIN, J. K. (1991) Endothelium-dependent 
responses in long-term human coronary artery bypass grafts. Circulation, 
83, 402-11. 

KUCHAREWICZ, I., PAWLAK, R., MATYS, T., CHABIELSKA, E. & BUCZKO, W. (2002) 
Angiotensin-(1-7): an active member of the renin-angiotensin system. J 
Physiol Pharmacol, 53, 533-40. 

KUMAMOTO, M., NAKASHIMA, Y. & SUEISHI, K. (1995) Intimal neovascularization 
in human coronary atherosclerosis: its origin and pathophysiological 
significance. Hum Pathol, 26, 450-6. 

KYAW, M., YOSHIZUMI, M., TSUCHIYA, K., KAGAMI, S., IZAWA, Y., FUJITA, Y., 
ALI, N., KANEMATSU, Y., TOIDA, K., ISHIMURA, K. & TAMAKI, T. (2004) Src 
and Cas are essentially but differentially involved in angiotensin II-
stimulated migration of vascular smooth muscle cells via extracellular 



245 
 

signal-regulated kinase 1/2 and c-Jun NH2-terminal kinase activation. Mol 
Pharmacol, 65, 832-41. 

LAMBETH, J. D., CHENG, G., ARNOLD, R. S. & EDENS, W. A. (2000) Novel 
homologs of gp91phox. Trends Biochem Sci, 25, 459-61. 

LANGEVELD, B., VAN GILST, W. H., TIO, R. A., ZIJLSTRA, F. & ROKS, A. J. (2005) 
Angiotensin-(1-7) attenuates neointimal formation after stent 
implantation in the rat. Hypertension, 45, 138-41. 

LANGEVELD, B. E., HENNING, R. H., DE SMET, B. J., ZIJLSTRA, F., DRIESSEN, A., 
TIJSMA, E., VAN GILST, W. H. & ROKS, A. (2008) Rescue of arterial 
function by angiotensin-(1-7): towards improvement of endothelial 
function by drug-eluting stents. Neth Heart J, 16, 291-2. 

LASSEGUE, B., SORESCU, D., SZOCS, K., YIN, Q., AKERS, M., ZHANG, Y., GRANT, 
S. L., LAMBETH, J. D. & GRIENDLING, K. K. (2001) Novel gp91(phox) 
homologues in vascular smooth muscle cells : nox1 mediates angiotensin 
II-induced superoxide formation and redox-sensitive signaling pathways. 
Circ Res, 88, 888-94. 

LAUTNER, R. Q., VILLELA, D. C., FRAGA-SILVA, R. A., SILVA, N., VERANO-BRAGA, 
T., COSTA-FRAGA, F., JANKOWSKI, J., JANKOWSKI, V., SOUSA, F., 
ALZAMORA, A., SOARES, E., BARBOSA, C., KJELDSEN, F., OLIVEIRA, A., 
BRAGA, J., SAVERGNINI, S., MAIA, G., PELUSO, A. B., PASSOS-SILVA, D., 
FERREIRA, A., ALVES, F., MARTINS, A., RAIZADA, M., PAULA, R., MOTTA-
SANTOS, D., KLEMPIN, F., PIMENTA, A., ALENINA, N., SINISTERRA, R., 
BADER, M., CAMPAGNOLE-SANTOS, M. J. & SANTOS, R. A. (2013) Discovery 
and characterization of alamandine: a novel component of the renin-
angiotensin system. Circ Res, 112, 1104-11. 

LAWRENCE, A. C., EVIN, G., KLADIS, A. & CAMPBELL, D. J. (1990) An alternative 
strategy for the radioimmunoassay of angiotensin peptides using amino-
terminal-directed antisera: measurement of eight angiotensin peptides in 
human plasma. J Hypertens, 8, 715-24. 

LEDUC, I. & MELOCHE, S. (1995) Angiotensin II stimulates tyrosine 
phosphorylation of the focal adhesion-associated protein paxillin in aortic 
smooth muscle cells. J Biol Chem, 270, 4401-4. 

LEE, H. M., LEE, C. K., LEE, S. H., ROH, H. Y., BAE, Y. M., LEE, K. Y., LIM, J., 
PARK, P. J., PARK, T. K., LEE, Y. L., WON, K. J. & KIM, B. (2007) p38 
mitogen-activated protein kinase contributes to angiotensin II-stimulated 
migration of rat aortic smooth muscle cells. J Pharmacol Sci, 105, 74-81. 

LEE, P. C., GIBBONS, G. H. & DZAU, V. J. (1993) Cellular and molecular 
mechanisms of coronary artery restenosis. Coron Artery Dis, 4, 254-9. 

LEE, R. M., OWENS, G. K., SCOTT-BURDEN, T., HEAD, R. J., MULVANY, M. J. & 
SCHIFFRIN, E. L. (1995) Pathophysiology of smooth muscle in 
hypertension. Can J Physiol Pharmacol, 73, 574-84. 

LEEPER, N. J., RAIESDANA, A., KOJIMA, Y., CHUN, H. J., AZUMA, J., 
MAEGDEFESSEL, L., KUNDU, R. K., QUERTERMOUS, T., TSAO, P. S. & SPIN, 
J. M. (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle 
cell function. J Cell Physiol, 226, 1035-43. 

LEFKOWITZ, R. J. (1998) G protein-coupled receptors. III. New roles for receptor 
kinases and beta-arrestins in receptor signaling and desensitization. J Biol 
Chem, 273, 18677-80. 

LELOIR, L. F., MUNOZ, J. M., BRAUN-MENENDEZ, E. & FASCIOLO, J. C. (1940) La 
secrecion de la renina y la formacion de hipertensina. Rev Soc Arg Biol, 
16, 75-80. 



246 
 

LELOIR, L. F., MUNOZ, J. M., TAQUINI, A., BRAUN-MENENDEZ, E. & FASCIOLO, J. 
C. (1942) La formacion del angiotensinogeno. Rev Argent Cardiol, 9, 269-
278. 

LENTZ, K. E., SKEGGS, L. T., WOODS, K. R., KAHN, J. R. & SHUMWAY, N. P. 
(1956) The Amino Acid Composition of Hypertensin-Ii and Its Biochemical 
Relationship to Hypertensin-I. Journal of Experimental Medicine, 104, 
183-191. 

LERNER, R. G., MOGGIO, R. A. & REED, G. E. (1986) Endothelial loss due to 
leukocytes in canine experimental vein-to-artery grafts. Blood Vessels, 
23, 173-82. 

LEUNG, P. S., CHAN, H. C., FU, L. X., ZHOU, W. L. & WONG, P. Y. (1997) 
Angiotensin II receptors, AT1 and AT2 in the rat epididymis. 
Immunocytochemical and electrophysiological studies. Biochim Biophys 
Acta, 1357, 65-72. 

LEVY, B. I., MICHEL, J. B., SALZMANN, J. L., AZIZI, M., POITEVIN, P., CAMILLERI, 
J. P. & SAFAR, M. E. (1988) Arterial effects of angiotensin converting 
enzyme inhibition in renovascular and spontaneously hypertensive rats. J 
Hypertens Suppl, 6, S23-5. 

LI, C., WERNIG, F., LEITGES, M., HU, Y. & XU, Q. (2003) Mechanical stress-
activated PKCdelta regulates smooth muscle cell migration. FASEB J, 17, 
2106-8. 

LI, H., LI, H. F., FELDER, R. A., PERIASAMY, A. & JOSE, P. A. (2008) Rab4 and 
Rab11 coordinately regulate the recycling of angiotensin II type I receptor 
as demonstrated by fluorescence resonance energy transfer microscopy. J 
Biomed Opt, 13, 031206. 

LI, Q., ZHANG, L., PFAFFENDORF, M. & VAN ZWIETEN, P. A. (1995) Comparative 
effects of angiotensin II and its degradation products angiotensin III and 
angiotensin IV in rat aorta. Br J Pharmacol, 116, 2963-70. 

LIANG, C. C., PARK, A. Y. & GUAN, J. L. (2007) In vitro scratch assay: a 
convenient and inexpensive method for analysis of cell migration in vitro. 
Nat Protoc, 2, 329-33. 

LIAO, D. F., DUFF, J. L., DAUM, G., PELECH, S. L. & BERK, B. C. (1996) 
Angiotensin II stimulates MAP kinase kinase kinase activity in vascular 
smooth muscle cells, Role of Raf. Circ Res, 79, 1007-14. 

LIAO, D. F., MONIA, B., DEAN, N. & BERK, B. C. (1997) Protein kinase C-zeta 
mediates angiotensin II activation of ERK1/2 in vascular smooth muscle 
cells. J Biol Chem, 272, 6146-50. 

LIAW, L., ALMEIDA, M., HART, C. E., SCHWARTZ, S. M. & GIACHELLI, C. M. (1994) 
Osteopontin promotes vascular cell adhesion and spreading and is 
chemotactic for smooth muscle cells in vitro. Circ Res, 74, 214-24. 

LIBBY, P. & CLINTON, S. K. (1992) Cytokines as mediators of vascular pathology. 
Nouv Rev Fr Hematol, 34 Suppl, S47-53. 

LIBBY, P. & LEE, R. T. (2000) Matrix matters. Circulation, 102, 1874-6. 
LIBBY, P., SCHWARTZ, D., BROGI, E., TANAKA, H. & CLINTON, S. K. (1992) A 

cascade model for restenosis. A special case of atherosclerosis 
progression. Circulation, 86, III47-52. 

LINDNER, V., FINGERLE, J. & REIDY, M. A. (1993) Mouse model of arterial injury. 
Circ Res, 73, 792-6. 

LINDNER, V., MAJACK, R. A. & REIDY, M. A. (1990) Basic fibroblast growth factor 
stimulates endothelial regrowth and proliferation in denuded arteries. J 
Clin Invest, 85, 2004-8. 



247 
 

LINSEMAN, D. A., BENJAMIN, C. W. & JONES, D. A. (1995) Convergence of 
angiotensin II and platelet-derived growth factor receptor signaling 
cascades in vascular smooth muscle cells. J Biol Chem, 270, 12563-8. 

LIU, B., ITOH, H., LOUIE, O., KUBOTA, K. & KENT, K. C. (2004a) The role of 
phospholipase C and phosphatidylinositol 3-kinase in vascular smooth 
muscle cell migration and proliferation. J Surg Res, 120, 256-65. 

LIU, J., CARMELL, M. A., RIVAS, F. V., MARSDEN, C. G., THOMSON, J. M., SONG, 
J. J., HAMMOND, S. M., JOSHUA-TOR, L. & HANNON, G. J. (2004b) 
Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305, 
1437-41. 

LIU, T., SHEN, D., XING, S., CHEN, J., YU, Z., WANG, J., WU, B., CHI, H., ZHAO, 
H., LIANG, Z. & CHEN, C. (2013) Attenuation of exogenous angiotensin II 
stress-induced damage and apoptosis in human vascular endothelial cells 
via microRNA-155 expression. Int J Mol Med, 31, 188-96. 

LIVAK, K. J. & SCHMITTGEN, T. D. (2001) Analysis of relative gene expression 
data using real-time quantitative PCR and the 2(-Delta Delta C(T)) 
Method. Methods, 25, 402-8. 

LOKUTA, A. J., COOPER, C., GAA, S. T., WANG, H. E. & ROGERS, T. B. (1994) 
Angiotensin II stimulates the release of phospholipid-derived second 
messengers through multiple receptor subtypes in heart cells. J Biol 
Chem, 269, 4832-8. 

LOPES, R. D., WILLIAMS, J. B., MEHTA, R. H., REYES, E. M., HAFLEY, G. E., 
ALLEN, K. B., MACK, M. J., PETERSON, E. D., HARRINGTON, R. A., GIBSON, 
C. M., CALIFF, R. M., KOUCHOUKOS, N. T., FERGUSON, T. B., LORENZ, T. 
J. & ALEXANDER, J. H. (2012) Edifoligide and long-term outcomes after 
coronary artery bypass grafting: PRoject of Ex-vivo Vein graft ENgineering 
via Transfection IV (PREVENT IV) 5-year results. Am Heart J, 164, 379-386 
e1. 

LOPEZ-ILASACA, M., LIU, X., TAMURA, K. & DZAU, V. J. (2003) The angiotensin II 
type I receptor-associated protein, ATRAP, is a transmembrane protein 
and a modulator of angiotensin II signaling. Molecular Biology of the Cell, 
14, 5038-50. 

LOVREN, F., PAN, Y., QUAN, A., TEOH, H., WANG, G., SHUKLA, P. C., LEVITT, K. 
S., OUDIT, G. Y., AL-OMRAN, M., STEWART, D. J., SLUTSKY, A. S., 
PETERSON, M. D., BACKX, P. H., PENNINGER, J. M. & VERMA, S. (2008) 
Angiotensin converting enzyme-2 confers endothelial protection and 
attenuates atherosclerosis. Am J Physiol Heart Circ Physiol, 295, H1377-
84. 

LU, L., PU, L. J., ZHANG, Q., WANG, L. J., KANG, S., ZHANG, R. Y., CHEN, Q. J., 
WANG, J. G., DE CATERINA, R. & SHEN, W. F. (2009) Increased glycated 
albumin and decreased esRAGE levels are related to angiographic severity 
and extent of coronary artery disease in patients with type 2 diabetes. 
Atherosclerosis, 206, 540-5. 

LULA, I., DENADAI, A. L., RESENDE, J. M., DE SOUSA, F. B., DE LIMA, G. F., PILO-
VELOSO, D., HEINE, T., DUARTE, H. A., SANTOS, R. A. & SINISTERRA, R. D. 
(2007) Study of angiotensin-(1-7) vasoactive peptide and its beta-
cyclodextrin inclusion complexes: complete sequence-specific NMR 
assignments and structural studies. Peptides, 28, 2199-210. 

LUSCHER, T. F., STEFFEL, J., EBERLI, F. R., JONER, M., NAKAZAWA, G., TANNER, 
F. C. & VIRMANI, R. (2007) Drug-eluting stent and coronary thrombosis: 
biological mechanisms and clinical implications. Circulation, 115, 1051-8. 

LYALL, F., DORNAN, E. S., MCQUEEN, J., BOSWELL, F. & KELLY, M. (1992) 
Angiotensin II increases proto-oncogene expression and phosphoinositide 



248 
 

turnover in vascular smooth muscle cells via the angiotensin II AT1 
receptor. J Hypertens, 10, 1463-9. 

MA, J., WANG, Q., FEI, T., HAN, J. D. & CHEN, Y. G. (2007) MCP-1 mediates 
TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell 
migration. Blood, 109, 987-94. 

MACREZ-LEPRETRE, N., KALKBRENNER, F., MOREL, J. L., SCHULTZ, G. & 
MIRONNEAU, J. (1997) G protein heterotrimer Galpha13beta1gamma3 
couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2+ in 
rat portal vein myocytes. J Biol Chem, 272, 10095-102. 

MALLAT, Z., AIT-OUFELLA, H. & TEDGUI, A. (2007) Regulatory T-cell immunity in 
atherosclerosis. Trends Cardiovasc Med, 17, 113-8. 

MALLAT, Z. & TEDGUI, A. (2000) Apoptosis in the vasculature: mechanisms and 
functional importance. Br J Pharmacol, 130, 947-62. 

MANCINI, G. B., HENRY, G. C., MACAYA, C., O'NEILL, B. J., PUCILLO, A. L., 
CARERE, R. G., WARGOVICH, T. J., MUDRA, H., LUSCHER, T. F., KLIBANER, 
M. I., HABER, H. E., UPRICHARD, A. C., PEPINE, C. J. & PITT, B. (1996) 
Angiotensin-converting enzyme inhibition with quinapril improves 
endothelial vasomotor dysfunction in patients with coronary artery 
disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. 
Circulation, 94, 258-65. 

MANN, M., ONG, S. E., GRONBORG, M., STEEN, H., JENSEN, O. N. & PANDEY, A. 
(2002) Analysis of protein phosphorylation using mass spectrometry: 
deciphering the phosphoproteome. Trends Biotechnol, 20, 261-8. 

MANTOVANI, A., SOZZANI, S., VECCHI, A., INTRONA, M. & ALLAVENA, P. (1997) 
Cytokine activation of endothelial cells: new molecules for an old 
paradigm. Thromb Haemost, 78, 406-14. 

MARQUES, F. D., MELO, M. B., SOUZA, L. E., IRIGOYEN, M. C., SINISTERRA, R. D., 
DE SOUSA, F. B., SAVERGNINI, S. Q., BRAGA, V. B., FERREIRA, A. J. & 
SANTOS, R. A. (2012) Beneficial effects of long-term administration of an 
oral formulation of Angiotensin-(1-7) in infarcted rats. Int J Hypertens, 
2012, 795452. 

MARRERO, M. B., SCHIEFFER, B., PAXTON, W. G., HEERDT, L., BERK, B. C., 
DELAFONTAINE, P. & BERNSTEIN, K. E. (1995) Direct stimulation of 
Jak/STAT pathway by the angiotensin II AT1 receptor. Nature, 375, 247-
50. 

MARRERO, M. B., VENEMA, V. J., JU, H., EATON, D. C. & VENEMA, R. C. (1998) 
Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles 
of SHP-1 and SHP-2. Am J Physiol, 275, C1216-23. 

MARTINI, A., BRUNO, R., MAZZULLA, S., NOCITA, A. & MARTINO, G. (2010) 
Angiotensin II regulates endothelial cell migration through calcium influx 
via T-type calcium channel in human umbilical vein endothelial cells. Acta 
Physiol (Oxf), 198, 449-55. 

MARX, S. O., TOTARY-JAIN, H. & MARKS, A. R. (2011) Vascular smooth muscle 
cell proliferation in restenosis. Circ Cardiovasc Interv, 4, 104-11. 

MASSON, R., NICKLIN, S. A., CRAIG, M. A., MCBRIDE, M., GILDAY, K., 
GREGOREVIC, P., ALLEN, J. M., CHAMBERLAIN, J. S., SMITH, G., GRAHAM, 
D., DOMINICZAK, A. F., NAPOLI, C. & BAKER, A. H. (2009) Onset of 
experimental severe cardiac fibrosis is mediated by overexpression of 
Angiotensin-converting enzyme 2. Hypertension, 53, 694-700. 

MATSUBARA, H., MORIGUCHI, Y., MORI, Y., MASAKI, H., TSUTSUMI, Y., 
SHIBASAKI, Y., UCHIYAMA-TANAKA, Y., FUJIYAMA, S., KOYAMA, Y., NOSE-
FUJIYAMA, A., IBA, S., TATEISHI, E. & IWASAKA, T. (2000) Transactivation 
of EGF receptor induced by angiotensin II regulates fibronectin and TGF-



249 
 

beta gene expression via transcriptional and post-transcriptional 
mechanisms. Mol Cell Biochem, 212, 187-201. 

MATTER, C. M., CHADJICHRISTOS, C. E., MEIER, P., VON LUKOWICZ, T., 
LOHMANN, C., SCHULER, P. K., ZHANG, D., ODERMATT, B., HOFMANN, E., 
BRUNNER, T., KWAK, B. R. & LUSCHER, T. F. (2006) Role of endogenous 
Fas (CD95/Apo-1) ligand in balloon-induced apoptosis, inflammation, and 
neointima formation. Circulation, 113, 1879-87. 

MAYOU, R. & BRYANT, B. (1987) Quality of life after coronary artery surgery. Q J 
Med, 62, 239-48. 

MC FADDEN, E. P., BAUTERS, C., LABLANCHE, J. M., QUANDALLE, P., LEROY, F. 
& BERTRAND, M. E. (1993) Response of human coronary arteries to 
serotonin after injury by coronary angioplasty. Circulation, 88, 2076-85. 

MCDONALD, R. A., WHITE, K. M., WU, J., COOLEY, B. C., ROBERTSON, K. E., 
HALLIDAY, C. A., MCCLURE, J. D., FRANCIS, S., LU, R., KENNEDY, S., 
GEORGE, S. J., WAN, S., VAN ROOIJ, E. & BAKER, A. H. (2013) miRNA-21 is 
dysregulated in response to vein grafting in multiple models and genetic 
ablation in mice attenuates neointima formation. Eur Heart J, 34, 1636-
43. 

MCKINNEY, C. A., FATTAH, C., LOUGHREY, C. M., MILLIGAN, G. & NICKLIN, S. A. 
(2014) Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and 
vascular remodelling. Clin Sci (Lond), 126, 815-27. 

MEHILLI, J., PACHE, J., ABDEL-WAHAB, M., SCHULZ, S., BYRNE, R. A., TIROCH, 
K., HAUSLEITER, J., SEYFARTH, M., OTT, I., IBRAHIM, T., FUSARO, M., 
LAUGWITZ, K. L., MASSBERG, S., NEUMANN, F. J., RICHARDT, G., 
SCHOMIG, A. & KASTRATI, A. (2011) Drug-eluting versus bare-metal stents 
in saphenous vein graft lesions (ISAR-CABG): a randomised controlled 
superiority trial. Lancet, 378, 1071-8. 

MEHTA, P. K. & GRIENDLING, K. K. (2007) Angiotensin II cell signaling: 
physiological and pathological effects in the cardiovascular system. Am J 
Physiol Cell Physiol, 292, C82-97. 

MEISTER, G., LANDTHALER, M., PATKANIOWSKA, A., DORSETT, Y., TENG, G. & 
TUSCHL, T. (2004) Human Argonaute2 mediates RNA cleavage targeted by 
miRNAs and siRNAs. Mol Cell, 15, 185-97. 

METZGER, R., BADER, M., LUDWIG, T., BERBERICH, C., BUNNEMANN, B. & 
GANTEN, D. (1995) Expression of the mouse and rat mas proto-oncogene 
in the brain and peripheral tissues. FEBS Lett, 357, 27-32. 

MICHEL, M. C., WIELAND, T. & TSUJIMOTO, G. (2009) How reliable are G-protein-
coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol, 379, 
385-8. 

MIFUNE, M., OHTSU, H., SUZUKI, H., NAKASHIMA, H., BRAILOIU, E., DUN, N. J., 
FRANK, G. D., INAGAMI, T., HIGASHIYAMA, S., THOMAS, W. G., ECKHART, 
A. D., DEMPSEY, P. J. & EGUCHI, S. (2005) G protein coupling and second 
messenger generation are indispensable for metalloprotease-dependent, 
heparin-binding epidermal growth factor shedding through angiotensin II 
type-1 receptor. J Biol Chem, 280, 26592-9. 

MII, S., WARE, J. A., MALLETTE, S. A. & KENT, K. C. (1994) Effect of angiotensin 
II on human vascular smooth muscle cell growth. J Surg Res, 57, 174-8. 

MILLER-WING, A. V., HANESWORTH, J. M., SARDINIA, M. F., HALL, K. L., 
WRIGHT, J. W., SPETH, R. C., GROVE, K. L. & HARDING, J. W. (1993) 
Central angiotensin IV binding sites: distribution and specificity in guinea 
pig brain. J Pharmacol Exp Ther, 266, 1718-26. 

MILLER, D. D., KARIM, M. A., EDWARDS, W. D. & SCHWARTZ, R. S. (1996) 
Relationship of vascular thrombosis and inflammatory leukocyte 



250 
 

infiltration to neointimal growth following porcine coronary artery stent 
placement. Atherosclerosis, 124, 145-55. 

MIN, L., SIM, M. K. & XU, X. G. (2000) Effects of des-aspartate-angiotensin I on 
angiotensin II-induced incorporation of phenylalanine and thymidine in 
cultured rat cardiomyocytes and aortic smooth muscle cells. Regul Pept, 
95, 93-7. 

MITRA, A. K., GANGAHAR, D. M. & AGRAWAL, D. K. (2006) Cellular, molecular 
and immunological mechanisms in the pathophysiology of vein graft 
intimal hyperplasia. Immunol Cell Biol, 84, 115-24. 

MIURA, S. & KARNIK, S. S. (1999) Angiotensin II type 1 and type 2 receptors bind 
angiotensin II through different types of epitope recognition. J Hypertens, 
17, 397-404. 

MIURA, S. & KARNIK, S. S. (2000) Ligand-independent signals from angiotensin II 
type 2 receptor induce apoptosis. EMBO J, 19, 4026-35. 

MIURA, S., KARNIK, S. S. & SAKU, K. (2005) Constitutively active homo-
oligomeric angiotensin II type 2 receptor induces cell signaling 
independent of receptor conformation and ligand stimulation. J Biol 
Chem, 280, 18237-44. 

MOELLER, I., CLUNE, E. F., FENNESSY, P. A., BINGLEY, J. A., ALBISTON, A. L., 
MENDELSOHN, F. A. & CHAI, S. Y. (1999) Up regulation of AT4 receptor 
levels in carotid arteries following balloon injury. Regul Pept, 83, 25-30. 

MOGI, M., IWAI, M. & HORIUCHI, M. (2007) Emerging concepts of regulation of 
angiotensin II receptors: new players and targets for traditional receptors. 
Arterioscler Thromb Vasc Biol, 27, 2532-9. 

MONNOT, C., BIHOREAU, C., CONCHON, S., CURNOW, K. M., CORVOL, P. & 
CLAUSER, E. (1996) Polar residues in the transmembrane domains of the 
type 1 angiotensin II receptor are required for binding and coupling. 
Reconstitution of the binding site by co-expression of two deficient 
mutants. J Biol Chem, 271, 1507-13. 

MORAWIETZ, H., RUECKSCHLOSS, U., NIEMANN, B., DUERRSCHMIDT, N., GALLE, 
J., HAKIM, K., ZERKOWSKI, H. R., SAWAMURA, T. & HOLTZ, J. (1999) 
Angiotensin II induces LOX-1, the human endothelial receptor for oxidized 
low-density lipoprotein. Circulation, 100, 899-902. 

MORIGUCHI, Y., MATSUBARA, H., MORI, Y., MURASAWA, S., MASAKI, H., 
MARUYAMA, K., TSUTSUMI, Y., SHIBASAKI, Y., TANAKA, Y., NAKAJIMA, T., 
ODA, K. & IWASAKA, T. (1999) Angiotensin II-induced transactivation of 
epidermal growth factor receptor regulates fibronectin and transforming 
growth factor-beta synthesis via transcriptional and posttranscriptional 
mechanisms. Circ Res, 84, 1073-84. 

MORISAKI, N., KANZAKI, T., MOTOYAMA, N., SAITO, Y. & YOSHIDA, S. (1988) Cell 
cycle-dependent inhibition of DNA synthesis by prostaglandin I2 in 
cultured rabbit aortic smooth muscle cells. Atherosclerosis, 71, 165-71. 

MOSSE, P. R., CAMPBELL, G. R., WANG, Z. L. & CAMPBELL, J. H. (1985) Smooth 
muscle phenotypic expression in human carotid arteries. I. Comparison of 
cells from diffuse intimal thickenings adjacent to atheromatous plaques 
with those of the media. Lab Invest, 53, 556-62. 

MOTWANI, J. G. & TOPOL, E. J. (1998) Aortocoronary saphenous vein graft 
disease: pathogenesis, predisposition, and prevention. Circulation, 97, 
916-31. 

MUGABE, B. E., YAGHINI, F. A., SONG, C. Y., BUHARALIOGLU, C. K., WATERS, C. 
M. & MALIK, K. U. (2010) Angiotensin II-induced migration of vascular 
smooth muscle cells is mediated by p38 mitogen-activated protein kinase-



251 
 

activated c-Src through spleen tyrosine kinase and epidermal growth 
factor receptor transactivation. J Pharmacol Exp Ther, 332, 116-24. 

MUKOYAMA, M., NAKAJIMA, M., HORIUCHI, M., SASAMURA, H., PRATT, R. E. & 
DZAU, V. J. (1993) Expression cloning of type 2 angiotensin II receptor 
reveals a unique class of seven-transmembrane receptors. J Biol Chem, 
268, 24539-42. 

MURASAWA, S., MORI, Y., NOZAWA, Y., MASAKI, H., MARUYAMA, K., TSUTSUMI, 
Y., MORIGUCHI, Y., SHIBASAKI, Y., TANAKA, Y., IWASAKA, T., INADA, M. & 
MATSUBARA, H. (1998) Role of calcium-sensitive tyrosine kinase 
Pyk2/CAKbeta/RAFTK in angiotensin II induced Ras/ERK signaling. 
Hypertension, 32, 668-75. 

MURPHY, G. J., JOHNSON, T. W., CHAMBERLAIN, M. H., RIZVI, S. I., WYATT, M., 
GEORGE, S. J., ANGELINI, G. D., KARSCH, K. R., OBERHOFF, M. & NEWBY, 
A. C. (2007) Short- and long-term effects of cytochalasin D, paclitaxel and 
rapamycin on wall thickening in experimental porcine vein grafts. 
Cardiovasc Res, 73, 607-17. 

MUSTAFA, M. R., DHARMANI, M., KUNHEEN, N. K. & SIM, M. K. (2004) Effects of 
des-aspartate-angiotensin I on the actions of angiotensin III in the renal 
and mesenteric vasculature of normo- and hypertensive rats. Regul Pept, 
120, 15-22. 

MUTHALIF, M. M., BENTER, I. F., UDDIN, M. R., HARPER, J. L. & MALIK, K. U. 
(1998) Signal transduction mechanisms involved in angiotensin-(1-7)-
stimulated arachidonic acid release and prostanoid synthesis in rabbit 
aortic smooth muscle cells. J Pharmacol Exp Ther, 284, 388-98. 

NAFTILAN, A. J., PRATT, R. E. & DZAU, V. J. (1989a) Induction of platelet-
derived growth factor A-chain and c-myc gene expressions by angiotensin 
II in cultured rat vascular smooth muscle cells. J Clin Invest, 83, 1419-24. 

NAFTILAN, A. J., PRATT, R. E., ELDRIDGE, C. S., LIN, H. L. & DZAU, V. J. (1989b) 
Angiotensin II induces c-fos expression in smooth muscle via 
transcriptional control. Hypertension, 13, 706-11. 

NAGATA, S., KATO, J., KUWASAKO, K. & KITAMURA, K. (2010) Plasma and tissue 
levels of proangiotensin-12 and components of the renin-angiotensin 
system (RAS) following low- or high-salt feeding in rats. Peptides, 31, 889-
92. 

NAGATA, S., KATO, J., SASAKI, K., MINAMINO, N., ETO, T. & KITAMURA, K. (2006) 
Isolation and identification of proangiotensin-12, a possible component of 
the renin-angiotensin system. Biochem Biophys Res Commun, 350, 1026-
31. 

NAKAJIMA, M., HUTCHINSON, H. G., FUJINAGA, M., HAYASHIDA, W., MORISHITA, 
R., ZHANG, L., HORIUCHI, M., PRATT, R. E. & DZAU, V. J. (1995) The 
angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the 
AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad 
Sci U S A, 92, 10663-7. 

NAVAR, L. G., PRIETO, M. C., SATOU, R. & KOBORI, H. (2011) Intrarenal 
angiotensin II and its contribution to the genesis of chronic hypertension. 
Curr Opin Pharmacol, 11, 180-6. 

NELKEN, N. A., COUGHLIN, S. R., GORDON, D. & WILCOX, J. N. (1991) Monocyte 
chemoattractant protein-1 in human atheromatous plaques. J Clin Invest, 
88, 1121-7. 

NELSON, P. R., YAMAMURA, S. & KENT, K. C. (1996) Extracellular matrix proteins 
are potent agonists of human smooth muscle cell migration. J Vasc Surg, 
24, 25-32; discussion 32-3. 



252 
 

NEWBY, A. C. (1997) Molecular and cell biology of native coronary and vein-graft 
atherosclerosis: regulation of plaque stability and vessel-wall remodelling 
by growth factors and cell-extracellular matrix interactions. Coron Artery 
Dis, 8, 213-24. 

NEYSES, L., NOUSKAS, J., LUYKEN, J., FRONHOFFS, S., OBERDORF, S., PFEIFER, 
U., WILLIAMS, R. S., SUKHATME, V. P. & VETTER, H. (1993) Induction of 
immediate-early genes by angiotensin II and endothelin-1 in adult rat 
cardiomyocytes. J Hypertens, 11, 927-34. 

NIELSEN, T. G., JENSEN, L. P. & SCHROEDER, T. V. (1997) Early vein bypass 
thrombectomy is associated with an increased risk of graft related 
stenoses. Eur J Vasc Endovasc Surg, 13, 134-8. 

NOMA, K., OYAMA, N. & LIAO, J. K. (2006) Physiological role of ROCKs in the 
cardiovascular system. Am J Physiol Cell Physiol, 290, C661-8. 

NOUET, S., AMZALLAG, N., LI, J. M., LOUIS, S., SEITZ, I., CUI, T. X., ALLEAUME, 
A. M., DI BENEDETTO, M., BODEN, C., MASSON, M., STROSBERG, A. D., 
HORIUCHI, M., COURAUD, P. O. & NAHMIAS, C. (2004) Trans-inactivation 
of receptor tyrosine kinases by novel angiotensin II AT2 receptor-
interacting protein, ATIP. J Biol Chem, 279, 28989-97. 

NOUET, S. & NAHMIAS, C. (2000) Signal transduction from the angiotensin II AT2 
receptor. Trends Endocrinol Metab, 11, 1-6. 

NUMAGUCHI, Y., ISHII, M., KUBOTA, R., MORITA, Y., YAMAMOTO, K., 
MATSUSHITA, T., OKUMURA, K. & MUROHARA, T. (2009) Ablation of 
angiotensin IV receptor attenuates hypofibrinolysis via PAI-1 
downregulation and reduces occlusive arterial thrombosis. Arterioscler 
Thromb Vasc Biol, 29, 2102-8. 

O'BRIEN, E. R., GARVIN, M. R., DEV, R., STEWART, D. K., HINOHARA, T., 
SIMPSON, J. B. & SCHWARTZ, S. M. (1994) Angiogenesis in human coronary 
atherosclerotic plaques. Am J Pathol, 145, 883-94. 

O'DONOHOE, M. K., SCHWARTZ, L. B., RADIC, Z. S., MIKAT, E. M., MCCANN, R. L. 
& HAGEN, P. O. (1991) Chronic ACE inhibition reduces intimal hyperplasia 
in experimental vein grafts. Ann Surg, 214, 727-32. 

OCARANZA, M. P., GODOY, I., JALIL, J. E., VARAS, M., COLLANTES, P., PINTO, 
M., ROMAN, M., RAMIREZ, C., COPAJA, M., DIAZ-ARAYA, G., CASTRO, P. & 
LAVANDERO, S. (2006) Enalapril attenuates downregulation of 
Angiotensin-converting enzyme 2 in the late phase of ventricular 
dysfunction in myocardial infarcted rat. Hypertension, 48, 572-8. 

OCARANZA, M. P., LAVANDERO, S., JALIL, J. E., MOYA, J., PINTO, M., NOVOA, 
U., APABLAZA, F., GONZALEZ, L., HERNANDEZ, C., VARAS, M., LOPEZ, R., 
GODOY, I., VERDEJO, H. & CHIONG, M. (2010) Angiotensin-(1-9) regulates 
cardiac hypertrophy in vivo and in vitro. J Hypertens, 28, 1054-64. 

OCARANZA, M. P., MOYA, J., BARRIENTOS, V., ALZAMORA, R., HEVIA, D., 
MORALES, C., PINTO, M., ESCUDERO, N., GARCIA, L., NOVOA, U., AYALA, 
P., DIAZ-ARAYA, G., GODOY, I., CHIONG, M., LAVANDERO, S., JALIL, J. E. 
& MICHEA, L. (2014) Angiotensin-(1-9) reverses experimental hypertension 
and cardiovascular damage by inhibition of the angiotensin converting 
enzyme/Ang II axis. J Hypertens, 32, 771-83. 

OCARANZA, M. P., RIVERA, P., NOVOA, U., PINTO, M., GONZALEZ, L., CHIONG, 
M., LAVANDERO, S. & JALIL, J. E. (2011) Rho kinase inhibition activates 
the homologous angiotensin-converting enzyme-angiotensin-(1-9) axis in 
experimental hypertension. J Hypertens, 29, 706-15. 

OHTANI, K., EGASHIRA, K., IHARA, Y., NAKANO, K., FUNAKOSHI, K., ZHAO, G., 
SATA, M. & SUNAGAWA, K. (2006) Angiotensin II type 1 receptor blockade 



253 
 

attenuates in-stent restenosis by inhibiting inflammation and progenitor 
cells. Hypertension, 48, 664-70. 

OHTSU, H., DEMPSEY, P. J. & EGUCHI, S. (2006) ADAMs as mediators of EGF 
receptor transactivation by G protein-coupled receptors. Am J Physiol 
Cell Physiol, 291, C1-10. 

OHTSU, H., HIGUCHI, S., SHIRAI, H., EGUCHI, K., SUZUKI, H., HINOKI, A., 
BRAILOIU, E., ECKHART, A. D., FRANK, G. D. & EGUCHI, S. (2008) Central 
role of Gq in the hypertrophic signal transduction of angiotensin II in 
vascular smooth muscle cells. Endocrinology, 149, 3569-75. 

OHTSU, H., MIFUNE, M., FRANK, G. D., SAITO, S., INAGAMI, T., KIM-MITSUYAMA, 
S., TAKUWA, Y., SASAKI, T., ROTHSTEIN, J. D., SUZUKI, H., NAKASHIMA, 
H., WOOLFOLK, E. A., MOTLEY, E. D. & EGUCHI, S. (2005) Signal-crosstalk 
between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of 
vascular smooth muscle cells stimulated by angiotensin II. Arterioscler 
Thromb Vasc Biol, 25, 1831-6. 

OKAMURA, T., MIYAZAKI, M., INAGAMI, T. & TODA, N. (1986) Vascular renin-
angiotensin system in two-kidney, one clip hypertensive rats. 
Hypertension, 8, 560-5. 

OKUDA, M., KAWAHARA, Y., NAKAYAMA, I., HOSHIJIMA, M. & YOKOYAMA, M. 
(1995) Angiotensin II transduces its signal to focal adhesions via 
angiotensin II type 1 receptors in vascular smooth muscle cells. FEBS Lett, 
368, 343-7. 

OLIVER, J. A. & SCIACCA, R. R. (1984) Local generation of angiotensin II as a 
mechanism of regulation of peripheral vascular tone in the rat. J Clin 
Invest, 74, 1247-51. 

OP DEN BUIJS, J., MUSTERS, M., VERRIPS, T., POST, J. A., BRAAM, B. & VAN 
RIEL, N. (2004) Mathematical modeling of vascular endothelial layer 
maintenance: the role of endothelial cell division, progenitor cell homing, 
and telomere shortening. Am J Physiol Heart Circ Physiol, 287, H2651-8. 

OSHITA, A., IWAI, M., CHEN, R., IDE, A., OKUMURA, M., FUKUNAGA, S., YOSHII, 
T., MOGI, M., HIGAKI, J. & HORIUCHI, M. (2006) Attenuation of 
inflammatory vascular remodeling by angiotensin II type 1 receptor-
associated protein. Hypertension, 48, 671-6. 

OWENS, G. K., KUMAR, M. S. & WAMHOFF, B. R. (2004) Molecular regulation of 
vascular smooth muscle cell differentiation in development and disease. 
Physiol Rev, 84, 767-801. 

PAGE, I. H., MCSWAIN, B., KNAPP, G. M. & ANDRUS, W. D. (1941) The origin of 
renin-activator. American Journal of Physiology, 135, 0214-0222. 

PAMONSINLAPATHAM, P., HADJ-SLIMANE, R., LEPELLETIER, Y., ALLAIN, B., 
TOCCAFONDI, M., GARBAY, C. & RAYNAUD, F. (2009) p120-Ras GTPase 
activating protein (RasGAP): a multi-interacting protein in downstream 
signaling. Biochimie, 91, 320-8. 

PAN, C. H., WEN, C. H. & LIN, C. S. (2008) Interplay of angiotensin II and 
angiotensin(1-7) in the regulation of matrix metalloproteinases of human 
cardiocytes. Exp Physiol, 93, 599-612. 

PARANG, P. & ARORA, R. (2009) Coronary vein graft disease: pathogenesis and 
prevention. Can J Cardiol, 25, e57-62. 

PARDEE, A. B. (1989) G1 events and regulation of cell proliferation. Science, 
246, 603-8. 

PARK, J. B. & SCHIFFRIN, E. L. (2001) Small artery remodeling is the most 
prevalent (earliest?) form of target organ damage in mild essential 
hypertension. J Hypertens, 19, 921-30. 



254 
 

PASSOS-SILVA, D. G., VERANO-BRAGA, T. & SANTOS, R. A. (2013) Angiotensin-(1-
7): beyond the cardio-renal actions. Clin Sci (Lond), 124, 443-56. 

PASTERKAMP, G., DE KLEIJN, D. P. & BORST, C. (2000) Arterial remodeling in 
atherosclerosis, restenosis and after alteration of blood flow: potential 
mechanisms and clinical implications. Cardiovasc Res, 45, 843-52. 

PASTERKAMP, G., GALIS, Z. S. & DE KLEIJN, D. P. (2004) Expansive arterial 
remodeling: location, location, location. Arterioscler Thromb Vasc Biol, 
24, 650-7. 

PASTORE, L., TESSITORE, A., MARTINOTTI, S., TONIATO, E., ALESSE, E., BRAVI, 
M. C., FERRI, C., DESIDERI, G., GULINO, A. & SANTUCCI, A. (1999) 
Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) 
expression by human vascular endothelial cells and increases soluble 
ICAM-1 release in vivo. Circulation, 100, 1646-52. 

PATEL, J. M., MARTENS, J. R., LI, Y. D., GELBAND, C. H., RAIZADA, M. K. & 
BLOCK, E. R. (1998) Angiotensin IV receptor-mediated activation of lung 
endothelial NOS is associated with vasorelaxation. Am J Physiol, 275, 
L1061-8. 

PATEL, M. K., BETTERIDGE, L. J., HUGHES, A. D., CLUNN, G. F., SCHACHTER, M., 
SHAW, R. J. & SEVER, P. S. (1996) Effect of angiotension II on the 
expression of the early growth response gene c-fos and DNA synthesis in 
human vascular smooth muscle cells. J Hypertens, 14, 341-7. 

PATEL, V. B., BODIGA, S., BASU, R., DAS, S. K., WANG, W., WANG, Z., LO, J., 
GRANT, M. B., ZHONG, J., KASSIRI, Z. & OUDIT, G. Y. (2012) Loss of 
angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular 
complications and leads to systolic and vascular dysfunction: a critical 
role of the angiotensin II/AT1 receptor axis. Circ Res, 110, 1322-35. 

PAUL, M., POYAN MEHR, A. & KREUTZ, R. (2006) Physiology of local renin-
angiotensin systems. Physiol Rev, 86, 747-803. 

PAUL, M., WAGNER, J. & DZAU, V. J. (1993) Gene expression of the renin-
angiotensin system in human tissues. Quantitative analysis by the 
polymerase chain reaction. J Clin Invest, 91, 2058-64. 

PAUL, M., ZINTZ, M., BOCKER, W. & DYER, M. (1995) Characterization and 
functional analysis of the rat endothelin-1 promoter. Hypertension, 25, 
683-93. 

PENDLETON, R. G., GESSNER, G. & HORNER, E. (1989) Studies on inhibition of 
angiotensin II receptors in rabbit adrenal and aorta. J Pharmacol Exp 
Ther, 248, 637-43. 

PERLMAN, H., MAILLARD, L., KRASINSKI, K. & WALSH, K. (1997) Evidence for the 
rapid onset of apoptosis in medial smooth muscle cells after balloon 
injury. Circulation, 95, 981-7. 

PETERSON, T. E., POPPA, V., UEBA, H., WU, A., YAN, C. & BERK, B. C. (1999) 
Opposing effects of reactive oxygen species and cholesterol on 
endothelial nitric oxide synthase and endothelial cell caveolae. Circ Res, 
85, 29-37. 

PEYTON, S. R. & PUTNAM, A. J. (2005) Extracellular matrix rigidity governs 
smooth muscle cell motility in a biphasic fashion. J Cell Physiol, 204, 198-
209. 

PIDKOVKA, N. A., CHEREPANOVA, O. A., YOSHIDA, T., ALEXANDER, M. R., 
DEATON, R. A., THOMAS, J. A., LEITINGER, N. & OWENS, G. K. (2007) 
Oxidized phospholipids induce phenotypic switching of vascular smooth 
muscle cells in vivo and in vitro. Circ Res, 101, 792-801. 

PORRECA, E., DI FEBBO, C., REALE, M., CASTELLANI, M. L., BACCANTE, G., 
BARBACANE, R., CONTI, P., CUCCURULLO, F. & POGGI, A. (1997) 



255 
 

Monocyte chemotactic protein 1 (MCP-1) is a mitogen for cultured rat 
vascular smooth muscle cells. J Vasc Res, 34, 58-65. 

PORRELLO, E. R., DELBRIDGE, L. M. & THOMAS, W. G. (2009) The angiotensin II 
type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front 
Biosci (Landmark Ed), 14, 958-72. 

POWELL, J. S., CLOZEL, J. P., MULLER, R. K., KUHN, H., HEFTI, F., HOSANG, M. 
& BAUMGARTNER, H. R. (1989) Inhibitors of angiotensin-converting 
enzyme prevent myointimal proliferation after vascular injury. Science, 
245, 186-8. 

PRENZEL, N., ZWICK, E., DAUB, H., LESERER, M., ABRAHAM, R., WALLASCH, C. & 
ULLRICH, A. (1999) EGF receptor transactivation by G-protein-coupled 
receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 402, 
884-8. 

PRICE, R. L., CARVER, W., SIMPSON, D. G., FU, L., ZHAO, J., BORG, T. K. & 
TERRACIO, L. (1997) The effects of angiotensin II and specific angiotensin 
receptor blockers on embryonic cardiac development and looping 
patterns. Dev Biol, 192, 572-84. 

PUEYO, M. E., GONZALEZ, W., NICOLETTI, A., SAVOIE, F., ARNAL, J. F. & 
MICHEL, J. B. (2000) Angiotensin II stimulates endothelial vascular cell 
adhesion molecule-1 via nuclear factor-kappaB activation induced by 
intracellular oxidative stress. Arterioscler Thromb Vasc Biol, 20, 645-51. 

QIAN, C., SCHOEMAKER, R. G., VAN GILST, W. H. & ROKS, A. J. (2009) The role 
of the renin-angiotensin-aldosterone system in cardiovascular progenitor 
cell function. Clin Sci (Lond), 116, 301-14. 

RAINES, E. W. & ROSS, R. (1993) Smooth muscle cells and the pathogenesis of 
the lesions of atherosclerosis. Br Heart J, 69, S30-7. 

RAJAGOPALAN, S., KURZ, S., MUNZEL, T., TARPEY, M., FREEMAN, B. A., 
GRIENDLING, K. K. & HARRISON, D. G. (1996) Angiotensin II-mediated 
hypertension in the rat increases vascular superoxide production via 
membrane NADH/NADPH oxidase activation. Contribution to alterations of 
vasomotor tone. J Clin Invest, 97, 1916-23. 

RAKUGI, H., WANG, D. S., DZAU, V. J. & PRATT, R. E. (1994) Potential 
importance of tissue angiotensin-converting enzyme inhibition in 
preventing neointima formation. Circulation, 90, 449-55. 

RIBICHINI, F., PUGNO, F., FERRERO, V., BUSSOLATI, G., FEOLA, M., RUSSO, P., DI 
MARIO, C., COLOMBO, A. & VASSANELLI, C. (2006) Cellular immunostaining 
of angiotensin-converting enzyme in human coronary atherosclerotic 
plaques. J Am Coll Cardiol, 47, 1143-9. 

RICE, G. I., THOMAS, D. A., GRANT, P. J., TURNER, A. J. & HOOPER, N. M. (2004) 
Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 
and neprilysin in angiotensin peptide metabolism. Biochem J, 383, 45-51. 

RIGAT, B., HUBERT, C., CORVOL, P. & SOUBRIER, F. (1992) PCR detection of the 
insertion/deletion polymorphism of the human angiotensin converting 
enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res, 
20, 1433. 

RITA-2 TRIAL PARTICIPANTS (1997) Coronary angioplasty versus medical therapy 
for angina: the second Randomised Intervention Treatment of Angina 
(RITA-2) trial. RITA-2 trial participants. Lancet, 350, 461-8. 

RIZZONI, D., PORTERI, E., GUEFI, D., PICCOLI, A., CASTELLANO, M., PASINI, G., 
MUIESAN, M. L., MULVANY, M. J. & ROSEI, E. A. (2000) Cellular 
hypertrophy in subcutaneous small arteries of patients with renovascular 
hypertension. Hypertension, 35, 931-5. 



256 
 

ROBINSON, H. C. & BAKER, A. H. (2012) How do microRNAs affect vascular 
smooth muscle cell biology? Curr Opin Lipidol, 23, 405-11. 

ROGERS, C., EDELMAN, E. R. & SIMON, D. I. (1998) A mAb to the beta2-leukocyte 
integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty 
or stent implantation in rabbits. Proc Natl Acad Sci U S A, 95, 10134-9. 

ROKS, A. J., VAN GEEL, P. P., PINTO, Y. M., BUIKEMA, H., HENNING, R. H., DE 
ZEEUW, D. & VAN GILST, W. H. (1999) Angiotensin-(1-7) is a modulator of 
the human renin-angiotensin system. Hypertension, 34, 296-301. 

RONG, J. X., SHAPIRO, M., TROGAN, E. & FISHER, E. A. (2003) 
Transdifferentiation of mouse aortic smooth muscle cells to a 
macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A, 
100, 13531-6. 

ROSS, R. (1993) Atherosclerosis: current understanding of mechanisms and future 
strategies in therapy. Transplant Proc, 25, 2041-3. 

ROSS, R. (1999a) Atherosclerosis--an inflammatory disease. N Engl J Med, 340, 
115-26. 

ROSS, R. (1999b) Atherosclerosis is an inflammatory disease. Am Heart J, 138, 
S419-20. 

ROULSTON, C. L., LAWRENCE, A. J., JARROTT, B. & WIDDOP, R. E. (2003) 
Localization of AT(2) receptors in the nucleus of the solitary tract of 
spontaneously hypertensive and Wistar Kyoto rats using [125I] CGP42112: 
upregulation of a non-angiotensin II binding site following unilateral 
nodose ganglionectomy. Brain Res, 968, 139-55. 

ROWE, B. P., SAYLOR, D. L., SPETH, R. C. & ABSHER, D. R. (1995) Angiotensin-(1-
7) binding at angiotensin II receptors in the rat brain. Regul Pept, 56, 139-
46. 

ROZENFELD, R., GUPTA, A., GAGNIDZE, K., LIM, M. P., GOMES, I., LEE-RAMOS, 
D., NIETO, N. & DEVI, L. A. (2011) AT1R-CB(1)R heteromerization reveals 
a new mechanism for the pathogenic properties of angiotensin II. EMBO J, 
30, 2350-63. 

ROZENGURT, E. (1995) Convergent signalling in the action of integrins, 
neuropeptides, growth factors and oncogenes. Cancer Surv, 24, 81-96. 

RUIZ-ORTEGA, M., LORENZO, O., RUPEREZ, M., KONIG, S., WITTIG, B. & EGIDO, 
J. (2000) Angiotensin II activates nuclear transcription factor kappaB 
through AT(1) and AT(2) in vascular smooth muscle cells: molecular 
mechanisms. Circ Res, 86, 1266-72. 

SABE, H., HAMAGUCHI, M. & HANAFUSA, H. (1997) Cell to substratum adhesion is 
involved in v-Src-induced cellular protein tyrosine phosphorylation: 
implication for the adhesion-regulated protein tyrosine phosphatase 
activity. Oncogene, 14, 1779-88. 

SABRI, A., GOVINDARAJAN, G., GRIFFIN, T. M., BYRON, K. L., SAMAREL, A. M. & 
LUCCHESI, P. A. (1998) Calcium- and protein kinase C-dependent 
activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth 
muscle. Circ Res, 83, 841-51. 

SALES, V. L., SUKHOVA, G. K., LOPEZ-ILASACA, M. A., LIBBY, P., DZAU, V. J. & 
PRATT, R. E. (2005) Angiotensin type 2 receptor is expressed in murine 
atherosclerotic lesions and modulates lesion evolution. Circulation, 112, 
3328-36. 

SAMPAIO, W. O., HENRIQUE DE CASTRO, C., SANTOS, R. A., SCHIFFRIN, E. L. & 
TOUYZ, R. M. (2007a) Angiotensin-(1-7) counterregulates angiotensin II 
signaling in human endothelial cells. Hypertension, 50, 1093-8. 

SAMPAIO, W. O., SOUZA DOS SANTOS, R. A., FARIA-SILVA, R., DA MATA 
MACHADO, L. T., SCHIFFRIN, E. L. & TOUYZ, R. M. (2007b) Angiotensin-(1-



257 
 

7) through receptor Mas mediates endothelial nitric oxide synthase 
activation via Akt-dependent pathways. Hypertension, 49, 185-92. 

SANTOS, R. A., BROSNIHAN, K. B., JACOBSEN, D. W., DICORLETO, P. E. & 
FERRARIO, C. M. (1992) Production of angiotensin-(1-7) by human vascular 
endothelium. Hypertension, 19, II56-61. 

SANTOS, R. A., FERREIRA, A. J., NADU, A. P., BRAGA, A. N., DE ALMEIDA, A. P., 
CAMPAGNOLE-SANTOS, M. J., BALTATU, O., ILIESCU, R., REUDELHUBER, T. 
L. & BADER, M. (2004) Expression of an angiotensin-(1-7)-producing fusion 
protein produces cardioprotective effects in rats. Physiol Genomics, 17, 
292-9. 

SANTOS, R. A., SIMOES E SILVA, A. C., MARIC, C., SILVA, D. M., MACHADO, R. P., 
DE BUHR, I., HERINGER-WALTHER, S., PINHEIRO, S. V., LOPES, M. T., 
BADER, M., MENDES, E. P., LEMOS, V. S., CAMPAGNOLE-SANTOS, M. J., 
SCHULTHEISS, H. P., SPETH, R. & WALTHER, T. (2003) Angiotensin-(1-7) is 
an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl 
Acad Sci U S A, 100, 8258-63. 

SANTOS, S. H., GIANI, J. F., BURGHI, V., MIQUET, J. G., QADRI, F., BRAGA, J. F., 
TODIRAS, M., KOTNIK, K., ALENINA, N., DOMINICI, F. P., SANTOS, R. A. & 
BADER, M. (2014) Oral administration of angiotensin-(1-7) ameliorates 
type 2 diabetes in rats. J Mol Med (Berl), 92, 255-65. 

SAROYAN, R. M., ROBERTS, M. P., LIGHT, J. T., JR., CHEN, I. L., VACCARELLA, 
M. Y., BANG, D. J., KVAMME, P., SINGH, S., SCALIA, S. V., KERSTEIN, M. D. 
& ET AL. (1992) Differential recovery of prostacyclin and endothelium-
derived relaxing factor after vascular injury. Am J Physiol, 262, H1449-57. 

SASAKI, R., YAMANO, S., YAMAMOTO, Y., MINAMI, S., YAMAMOTO, J., 
NAKASHIMA, T., TAKAOKA, M. & HASHIMOTO, T. (2002) Vascular 
remodeling of the carotid artery in patients with untreated essential 
hypertension increases with age. Hypertens Res, 25, 373-9. 

SATO, Y., HAMANAKA, R., ONO, J., KUWANO, M., RIFKIN, D. B. & TAKAKI, R. 
(1991) The stimulatory effect of PDGF on vascular smooth muscle cell 
migration is mediated by the induction of endogenous basic FGF. Biochem 
Biophys Res Commun, 174, 1260-6. 

SAVOIA, C., EBRAHIMIAN, T., HE, Y., GRATTON, J. P., SCHIFFRIN, E. L. & TOUYZ, 
R. M. (2006) Angiotensin II/AT2 receptor-induced vasodilation in stroke-
prone spontaneously hypertensive rats involves nitric oxide and cGMP-
dependent protein kinase. J Hypertens, 24, 2417-22. 

SAYE, J. A., SINGER, H. A. & PEACH, M. J. (1984) Role of endothelium in 
conversion of angiotensin I to angiotensin II in rabbit aorta. Hypertension, 
6, 216-21. 

SCHACHNER, T., HOFER, D., LAUFER, G. & BONATTI, J. (2004) A variation of the 
radial artery and its clinical implications for coronary artery bypass 
grafting. J Cardiovasc Surg (Torino), 45, 123-4. 

SCHAMPAERT, E., MOSES, J. W., SCHOFER, J., SCHLUTER, M., GERSHLICK, A. H., 
COHEN, E. A., PALISAITIS, D. A., BREITHARDT, G., DONOHOE, D. J., 
WANG, H., POPMA, J. J., KUNTZ, R. E. & LEON, M. B. (2006) Sirolimus-
eluting stents at two years: a pooled analysis of SIRIUS, E-SIRIUS, and C-
SIRIUS with emphasis on late revascularizations and stent thromboses. Am 
J Cardiol, 98, 36-41. 

SCHIEFFER, B., PAXTON, W. G., MARRERO, M. B. & BERNSTEIN, K. E. (1996) 
Importance of tyrosine phosphorylation in angiotensin II type 1 receptor 
signaling. Hypertension, 27, 476-80. 

SCHIEFFER, B., SCHIEFFER, E., HILFIKER-KLEINER, D., HILFIKER, A., KOVANEN, P. 
T., KAARTINEN, M., NUSSBERGER, J., HARRINGER, W. & DREXLER, H. 



258 
 

(2000) Expression of angiotensin II and interleukin 6 in human coronary 
atherosclerotic plaques: potential implications for inflammation and 
plaque instability. Circulation, 101, 1372-8. 

SCHIFFRIN, E. L. (2001a) Effects of antihypertensive drugs on vascular 
remodeling: do they predict outcome in response to antihypertensive 
therapy? Curr Opin Nephrol Hypertens, 10, 617-24. 

SCHIFFRIN, E. L. (2001b) Small artery remodeling in hypertension: can it be 
corrected? Am J Med Sci, 322, 7-11. 

SCHMIDT, P. P., LANGE, R., GORREN, A. C., WERNER, E. R., MAYER, B. & 
ANDERSSON, K. K. (2001) Formation of a protonated trihydrobiopterin 
radical cation in the first reaction cycle of neuronal and endothelial nitric 
oxide synthase detected by electron paramagnetic resonance 
spectroscopy. J Biol Inorg Chem, 6, 151-8. 

SCHMOLKA, I. R. (1972) Artificial skin. I. Preparation and properties of pluronic 
F-127 gels for treatment of burns. J Biomed Mater Res, 6, 571-82. 

SCHOMIG, A., MEHILLI, J., DE WAHA, A., SEYFARTH, M., PACHE, J. & KASTRATI, 
A. (2008) A meta-analysis of 17 randomized trials of a percutaneous 
coronary intervention-based strategy in patients with stable coronary 
artery disease. J Am Coll Cardiol, 52, 894-904. 

SCHWACKE, J. H., SPAINHOUR, J. C., IERARDI, J. L., CHAVES, J. M., ARTHUR, J. 
M., JANECH, M. G. & VELEZ, J. C. (2013) Network modeling reveals steps 
in angiotensin peptide processing. Hypertension, 61, 690-700. 

SCHWARTZ, S. M. (1997) Smooth muscle migration in vascular development and 
pathogenesis. Transpl Immunol, 5, 255-60. 

SCHWARTZ, S. M., DEBLOIS, D. & O'BRIEN, E. R. (1995) The intima. Soil for 
atherosclerosis and restenosis. Circ Res, 77, 445-65. 

SCHWARTZ, S. M., HEIMARK, R. L. & MAJESKY, M. W. (1990) Developmental 
mechanisms underlying pathology of arteries. Physiol Rev, 70, 1177-209. 

SCHWEIGERER, L., NEUFELD, G., FRIEDMAN, J., ABRAHAM, J. A., FIDDES, J. C. & 
GOSPODAROWICZ, D. (1987) Capillary endothelial cells express basic 
fibroblast growth factor, a mitogen that promotes their own growth. 
Nature, 325, 257-9. 

SEGEL, G. B., HALTERMAN, M. W. & LICHTMAN, M. A. (2011) The paradox of the 
neutrophil's role in tissue injury. J Leukoc Biol, 89, 359-72. 

SEIMON, T., TABAS, I. (2008) Mechanisms and consequences of macrophage 
apoptosis in atherosclerosis. J Lipid Res, S50, S382-387 

SEKO, T., ITO, M., KUREISHI, Y., OKAMOTO, R., MORIKI, N., ONISHI, K., ISAKA, 
N., HARTSHORNE, D. J. & NAKANO, T. (2003) Activation of RhoA and 
inhibition of myosin phosphatase as important components in 
hypertension in vascular smooth muscle. Circ Res, 92, 411-8. 

SELVETELLA, G., HIRSCH, E., NOTTE, A., TARONE, G. & LEMBO, G. (2004) 
Adaptive and maladaptive hypertrophic pathways: points of convergence 
and divergence. Cardiovasc Res, 63, 373-80. 

SENBONMATSU, T., SAITO, T., LANDON, E. J., WATANABE, O., PRICE, E., JR., 
ROBERTS, R. L., IMBODEN, H., FITZGERALD, T. G., GAFFNEY, F. A. & 
INAGAMI, T. (2003) A novel angiotensin II type 2 receptor signaling 
pathway: possible role in cardiac hypertrophy. EMBO J, 22, 6471-82. 

SHAN, H. Y., BAI, X. J. & CHEN, X. M. (2008) Apoptosis is involved in the 
senescence of endothelial cells induced by angiotensin II. Cell Biol Int, 32, 
264-70. 

SHANMUGAM, S., CORVOL, P. & GASC, J. M. (1996) Angiotensin II type 2 receptor 
mRNA expression in the developing cardiopulmonary system of the rat. 
Hypertension, 28, 91-7. 



259 
 

SHELTON, M. E., FORMAN, M. B., VIRMANI, R., BAJAJ, A., STONEY, W. S. & 
ATKINSON, J. B. (1988) A comparison of morphologic and angiographic 
findings in long-term internal mammary artery and saphenous vein bypass 
grafts. J Am Coll Cardiol, 11, 297-307. 

SHEN, Y. J., ZHU, X. X., YANG, X., JIN, B., LU, J. J., DING, B., DING, Z. S. & 
CHEN, S. H. (2014) Cardamonin inhibits angiotensin II-induced vascular 
smooth muscle cell proliferation and migration by downregulating p38 
MAPK, Akt, and ERK phosphorylation. J Nat Med, 68, 623-9. 

SHENG-LONG, C., YAN-XIN, W., YI-YI, H., MING, F., JIAN-GUI, H., YI-LI, C., WEN-
JING, X. & HONG, M. (2012) AVE0991, a Nonpeptide Compound, 
Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell 
Proliferation via Induction of Heme Oxygenase-1 and Downregulation of p-
38 MAPK Phosphorylation. Int J Hypertens, 2012, 958298. 

SHERR, C. J. (1994a) Growth factor-regulated G1 cyclins. Stem Cells, 12 Suppl 1, 
47-55; discussion 55-7. 

SHERR, C. J. (1994b) The ins and outs of RB: coupling gene expression to the cell 
cycle clock. Trends Cell Biol, 4, 15-8. 

SHERR, C. J., KATO, J., QUELLE, D. E., MATSUOKA, M. & ROUSSEL, M. F. (1994) 
D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of 
the mitogenic response. Cold Spring Harb Symp Quant Biol, 59, 11-9. 

SHI, X., CHEN, G., GUO, L. W., SI, Y., ZHU, M., PILLA, S., LIU, B., GONG, S. & 
KENT, K. C. (2014) Periadventitial application of rapamycin-loaded 
nanoparticles produces sustained inhibition of vascular restenosis. PLoS 
One, 9, e89227. 

SHI, Y., O'BRIEN, J. E., JR., MANNION, J. D., MORRISON, R. C., CHUNG, W., 
FARD, A. & ZALEWSKI, A. (1997) Remodeling of autologous saphenous vein 
grafts. The role of perivascular myofibroblasts. Circulation, 95, 2684-93. 

SHI, Y., PATEL, S., DAVENPECK, K. L., NICULESCU, R., RODRIGUEZ, E., MAGNO, 
M. G., ORMONT, M. L., MANNION, J. D. & ZALEWSKI, A. (2001) Oxidative 
stress and lipid retention in vascular grafts: comparison between venous 
and arterial conduits. Circulation, 103, 2408-13. 

SHIH, P. T., ELICES, M. J., FANG, Z. T., UGAROVA, T. P., STRAHL, D., TERRITO, 
M. C., FRANK, J. S., KOVACH, N. L., CABANAS, C., BERLINER, J. A. & 
VORA, D. K. (1999) Minimally modified low-density lipoprotein induces 
monocyte adhesion to endothelial connecting segment-1 by activating 
beta1 integrin. J Clin Invest, 103, 613-25. 

SHIMOKAWA, H., AARHUS, L. L. & VANHOUTTE, P. M. (1987) Porcine coronary 
arteries with regenerated endothelium have a reduced endothelium-
dependent responsiveness to aggregating platelets and serotonin. Circ 
Res, 61, 256-70. 

SHIMOKAWA, H., FLAVAHAN, N. A., SHEPHERD, J. T. & VANHOUTTE, P. M. (1989) 
Endothelium-dependent inhibition of ergonovine-induced contraction is 
impaired in porcine coronary arteries with regenerated endothelium. 
Circulation, 80, 643-50. 

SHIMOKAWA, H., YASUTAKE, H., FUJII, K., OWADA, M. K., NAKAIKE, R., 
FUKUMOTO, Y., TAKAYANAGI, T., NAGAO, T., EGASHIRA, K., FUJISHIMA, 
M. & TAKESHITA, A. (1996) The importance of the hyperpolarizing 
mechanism increases as the vessel size decreases in endothelium-
dependent relaxations in rat mesenteric circulation. J Cardiovasc 
Pharmacol, 28, 703-11. 

SIBINGA, N. E., FOSTER, L. C., HSIEH, C. M., PERRELLA, M. A., LEE, W. S., 
ENDEGE, W. O., SAGE, E. H., LEE, M. E. & HABER, E. (1997) Collagen VIII is 



260 
 

expressed by vascular smooth muscle cells in response to vascular injury. 
Circ Res, 80, 532-41. 

SINGH, R., SINGH, A. K. & LEEHEY, D. J. (2005) A novel mechanism for 
angiotensin II formation in streptozotocin-diabetic rat glomeruli. Am J 
Physiol Renal Physiol, 288, F1183-90. 

SIRAGY, H. M. & CAREY, R. M. (1996) The subtype-2 (AT2) angiotensin receptor 
regulates renal cyclic guanosine 3', 5'-monophosphate and AT1 receptor-
mediated prostaglandin E2 production in conscious rats. J Clin Invest, 97, 
1978-82. 

SKEGGS, L. T., JR., KAHN, J. R. & SHUMWAY, N. P. (1956) The preparation and 
function of the hypertensin-converting enzyme. J Exp Med, 103, 295-9. 

SKEGGS, L. T., MARSH, W. H., KAHN, J. R. & SHUMWAY, N. P. (1954a) The 
Existence of 2 Forms of Hypertensin. Journal of Experimental Medicine, 
99, 275-282. 

SKEGGS, L. T., MARSH, W. H., KAHN, J. R. & SHUMWAY, N. P. (1954b) The 
Purification of Hypertensin-I. Journal of Experimental Medicine, 100, 363-
370. 

SLUIMER, J. C., GASC, J. M., HAMMING, I., VAN GOOR, H., MICHAUD, A., VAN 
DEN AKKER, L. H., JUTTEN, B., CLEUTJENS, J., BIJNENS, A. P., CORVOL, 
P., DAEMEN, M. J. & HEENEMAN, S. (2008) Angiotensin-converting enzyme 
2 (ACE2) expression and activity in human carotid atherosclerotic lesions. 
J Pathol, 215, 273-9. 

SMITH, N. J., BENNETT, K. A. & MILLIGAN, G. (2011) When simple agonism is not 
enough: emerging modalities of GPCR ligands. Mol Cell Endocrinol, 331, 
241-7. 

SNYDER, S. H. (1986) Brain enzymes as receptors: angiotensin-converting enzyme 
and enkephalin convertase. Ann N Y Acad Sci, 463, 21-30. 

SOMSEL RODMAN, J. & WANDINGER-NESS, A. (2000) Rab GTPases coordinate 
endocytosis. J Cell Sci, 113 Pt 2, 183-92. 

SOUBRIER, F., ALHENC-GELAS, F., HUBERT, C., ALLEGRINI, J., JOHN, M., 
TREGEAR, G. & CORVOL, P. (1988) Two putative active centers in human 
angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl 
Acad Sci U S A, 85, 9386-90. 

SOUTHERN, C., COOK, J. M., NEETOO-ISSELJEE, Z., TAYLOR, D. L., 
KETTLEBOROUGH, C. A., MERRITT, A., BASSONI, D. L., RAAB, W. J., 
QUINN, E., WEHRMAN, T. S., DAVENPORT, A. P., BROWN, A. J., GREEN, 
A., WIGGLESWORTH, M. J. & REES, S. (2013) Screening beta-arrestin 
recruitment for the identification of natural ligands for orphan G-protein-
coupled receptors. J Biomol Screen, 18, 599-609. 

SOUTHGATE, K. & NEWBY, A. C. (1990) Serum-induced proliferation of rabbit 
aortic smooth muscle cells from the contractile state is inhibited by 8-Br-
cAMP but not 8-Br-cGMP. Atherosclerosis, 82, 113-23. 

SOUTHGATE, K. M., FISHER, M., BANNING, A. P., THURSTON, V. J., BAKER, A. H., 
FABUNMI, R. P., GROVES, P. H., DAVIES, M. & NEWBY, A. C. (1996) 
Upregulation of basement membrane-degrading metalloproteinase 
secretion after balloon injury of pig carotid arteries. Circ Res, 79, 1177-
87. 

SOYOMBO, A. A., ANGELINI, G. D., BRYAN, A. J., JASANI, B. & NEWBY, A. C. 
(1990) Intimal proliferation in an organ culture of human saphenous vein. 
Am J Pathol, 137, 1401-10. 

SPIGUEL, L. R., CHANDIWAL, A., VOSICKY, J. E., WEICHSELBAUM, R. R. & SKELLY, 
C. L. (2010) Concomitant proliferation and caspase-3 mediated apoptosis 



261 
 

in response to low shear stress and balloon injury. J Surg Res, 161, 146-
55. 

STAMLER, J. S., LAMAS, S. & FANG, F. C. (2001) Nitrosylation. the prototypic 
redox-based signaling mechanism. Cell, 106, 675-83. 

STARY, H. C., CHANDLER, A. B., GLAGOV, S., GUYTON, J. R., INSULL, W., JR., 
ROSENFELD, M. E., SCHAFFER, S. A., SCHWARTZ, C. J., WAGNER, W. D. & 
WISSLER, R. W. (1994) A definition of initial, fatty streak, and 
intermediate lesions of atherosclerosis. A report from the Committee on 
Vascular Lesions of the Council on Arteriosclerosis, American Heart 
Association. Circulation, 89, 2462-78. 

STEGBAUER, J., POTTHOFF, S. A., QUACK, I., MERGIA, E., CLASEN, T., 
FRIEDRICH, S., VONEND, O., WOZNOWSKI, M., KONIGSHAUSEN, E., SELLIN, 
L. & RUMP, L. C. (2011) Chronic treatment with angiotensin-(1-7) 
improves renal endothelial dysfunction in apolipoproteinE-deficient mice. 
Br J Pharmacol, 163, 974-83. 

STENVANG, J., SILAHTAROGLU, A. N., LINDOW, M., ELMEN, J. & KAUPPINEN, S. 
(2008) The utility of LNA in microRNA-based cancer diagnostics and 
therapeutics. Semin Cancer Biol, 18, 89-102. 

STOLL, M., STECKELINGS, U. M., PAUL, M., BOTTARI, S. P., METZGER, R. & 
UNGER, T. (1995) The angiotensin AT2-receptor mediates inhibition of cell 
proliferation in coronary endothelial cells. J Clin Invest, 95, 651-7. 

STONE, G. W., LANSKY, A. J., POCOCK, S. J., GERSH, B. J., DANGAS, G., WONG, 
S. C., WITZENBICHLER, B., GUAGLIUMI, G., PERUGA, J. Z., BRODIE, B. R., 
DUDEK, D., MOCKEL, M., OCHALA, A., KELLOCK, A., PARISE, H. & MEHRAN, 
R. (2009) Paclitaxel-eluting stents versus bare-metal stents in acute 
myocardial infarction. N Engl J Med, 360, 1946-59. 

STRAWN, W. B., FERRARIO, C. M. & TALLANT, E. A. (1999) Angiotensin-(1-7) 
reduces smooth muscle growth after vascular injury. Hypertension, 33, 
207-11. 

STREHLOW, K., WERNER, N., BERWEILER, J., LINK, A., DIRNAGL, U., PRILLER, J., 
LAUFS, K., GHAENI, L., MILOSEVIC, M., BOHM, M. & NICKENIG, G. (2003) 
Estrogen increases bone marrow-derived endothelial progenitor cell 
production and diminishes neointima formation. Circulation, 107, 3059-
65. 

SUGDEN, P. H. & CLERK, A. (1997) Regulation of the ERK subgroup of MAP kinase 
cascades through G protein-coupled receptors. Cell Signal, 9, 337-51. 

SUH, Y. A., ARNOLD, R. S., LASSEGUE, B., SHI, J., XU, X., SORESCU, D., CHUNG, 
A. B., GRIENDLING, K. K. & LAMBETH, J. D. (1999) Cell transformation by 
the superoxide-generating oxidase Mox1. Nature, 401, 79-82. 

SUNG, F. L., SLOW, Y. L., WANG, G., LYNN, E. G. & O, K. (2001) Homocysteine 
stimulates the expression of monocyte chemoattractant protein-1 in 
endothelial cells leading to enhanced monocyte chemotaxis. Mol Cell 
Biochem, 216, 121-8. 

SUZUKI, J., IWAI, M., NAKAGAMI, H., WU, L., CHEN, R., SUGAYA, T., HAMADA, 
M., HIWADA, K. & HORIUCHI, M. (2002) Role of angiotensin II-regulated 
apoptosis through distinct AT1 and AT2 receptors in neointimal formation. 
Circulation, 106, 847-53. 

SWANSON, G. N., HANESWORTH, J. M., SARDINIA, M. F., COLEMAN, J. K., 
WRIGHT, J. W., HALL, K. L., MILLER-WING, A. V., STOBB, J. W., COOK, V. 
I., HARDING, E. C. & ET AL. (1992) Discovery of a distinct binding site for 
angiotensin II (3-8), a putative angiotensin IV receptor. Regul Pept, 40, 
409-19. 



262 
 

TAKAHASHI, T., KALKA, C., MASUDA, H., CHEN, D., SILVER, M., KEARNEY, M., 
MAGNER, M., ISNER, J. M. & ASAHARA, T. (1999) Ischemia- and cytokine-
induced mobilization of bone marrow-derived endothelial progenitor cells 
for neovascularization. Nat Med, 5, 434-8. 

TALLANT, E. A. & CLARK, M. A. (2003) Molecular mechanisms of inhibition of 
vascular growth by angiotensin-(1-7). Hypertension, 42, 574-9. 

TALLANT, E. A., DIZ, D. I. & FERRARIO, C. M. (1999) State-of-the-Art lecture. 
Antiproliferative actions of angiotensin-(1-7) in vascular smooth muscle. 
Hypertension, 34, 950-7. 

TANIYAMA, Y. & GRIENDLING, K. K. (2003) Reactive oxygen species in the 
vasculature: molecular and cellular mechanisms. Hypertension, 42, 1075-
81. 

TANIYAMA, Y., USHIO-FUKAI, M., HITOMI, H., ROCIC, P., KINGSLEY, M. J., 
PFAHNL, C., WEBER, D. S., ALEXANDER, R. W. & GRIENDLING, K. K. (2004) 
Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation 
in vascular smooth muscle cells. Am J Physiol Cell Physiol, 287, C494-9. 

TAYLOR, A. J., GORMAN, P. D., KENWOOD, B., HUDAK, C., TASHKO, G. & 
VIRMANI, R. (2001) A comparison of four stent designs on arterial injury, 
cellular proliferation, neointima formation, and arterial dimensions in an 
experimental porcine model. Catheter Cardiovasc Interv, 53, 420-5. 

TEDGUI, A. & MALLAT, Z. (2006) Cytokines in atherosclerosis: pathogenic and 
regulatory pathways. Physiol Rev, 86, 515-81. 

TESANOVIC, S., VINH, A., GASPARI, T. A., CASLEY, D. & WIDDOP, R. E. (2010) 
Vasoprotective and atheroprotective effects of angiotensin (1-7) in 
apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 30, 1606-
13. 

THATTE, H. S. & KHURI, S. F. (2001) The coronary artery bypass conduit: I. 
Intraoperative endothelial injury and its implication on graft patency. Ann 
Thorac Surg, 72, S2245-52; discussion S2267-70. 

THE SOLVD INVESTIGATORS (1991) Effect of enalapril on survival in patients with 
reduced left ventricular ejection fractions and congestive heart failure. 
The SOLVD Investigators. N Engl J Med, 325, 293-302. 

THE SOLVD INVESTIGATORS (1992) Effect of enalapril on mortality and the 
development of heart failure in asymptomatic patients with reduced left 
ventricular ejection fractions. The SOLVD Investigattors. N Engl J Med, 
327, 685-91. 

THEEUWES, F. & YUM, S. I. (1976) Principles of the design and operation of 
generic osmotic pumps for the delivery of semisolid or liquid drug 
formulations. Ann Biomed Eng, 4, 343-53. 

THYBERG, J. & HULTGARDH-NILSSON, A. (1994) Fibronectin and the basement 
membrane components laminin and collagen type IV influence the 
phenotypic properties of subcultured rat aortic smooth muscle cells 
differently. Cell Tissue Res, 276, 263-71. 

TIGERSTEDT, R. & BERGMAN, P. (1898) Niere und Kreislauf. Skand Arch Physiol, 
8, 223-271. 

TIPNIS, S. R., HOOPER, N. M., HYDE, R., KARRAN, E., CHRISTIE, G. & TURNER, A. 
J. (2000) A human homolog of angiotensin-converting enzyme. Cloning 
and functional expression as a captopril-insensitive carboxypeptidase. J 
Biol Chem, 275, 33238-43. 

TOBIUME, K., MATSUZAWA, A., TAKAHASHI, T., NISHITOH, H., MORITA, K., 
TAKEDA, K., MINOWA, O., MIYAZONO, K., NODA, T. & ICHIJO, H. (2001) 
ASK1 is required for sustained activations of JNK/p38 MAP kinases and 
apoptosis. EMBO Rep, 2, 222-8. 



263 
 

TORELLA, D., IACONETTI, C., CATALUCCI, D., ELLISON, G. M., LEONE, A., 
WARING, C. D., BOCHICCHIO, A., VICINANZA, C., AQUILA, I., CURCIO, A., 
CONDORELLI, G. & INDOLFI, C. (2011) MicroRNA-133 controls vascular 
smooth muscle cell phenotypic switch in vitro and vascular remodeling in 
vivo. Circ Res, 109, 880-93. 

TOUYZ, R. M. (2004) Reactive oxygen species and angiotensin II signaling in 
vascular cells -- implications in cardiovascular disease. Braz J Med Biol 
Res, 37, 1263-73. 

TOUYZ, R. M. & BERRY, C. (2002) Recent advances in angiotensin II signaling. 
Braz J Med Biol Res, 35, 1001-15. 

TOUYZ, R. M., DENG, L. Y., HE, G., WU, X. H. & SCHIFFRIN, E. L. (1999a) 
Angiotensin II stimulates DNA and protein synthesis in vascular smooth 
muscle cells from human arteries: role of extracellular signal-regulated 
kinases. J Hypertens, 17, 907-16. 

TOUYZ, R. M., DESCHEPPER, C., PARK, J. B., HE, G., CHEN, X., NEVES, M. F., 
VIRDIS, A. & SCHIFFRIN, E. L. (2002) Inhibition of mitogen-activated 
protein/extracellular signal-regulated kinase improves endothelial 
function and attenuates Ang II-induced contractility of mesenteric 
resistance arteries from spontaneously hypertensive rats. J Hypertens, 20, 
1127-34. 

TOUYZ, R. M., EL MABROUK, M., HE, G., WU, X. H. & SCHIFFRIN, E. L. (1999b) 
Mitogen-activated protein/extracellular signal-regulated kinase inhibition 
attenuates angiotensin II-mediated signaling and contraction in 
spontaneously hypertensive rat vascular smooth muscle cells. Circ Res, 
84, 505-15. 

TOUYZ, R. M., ENDEMANN, D., HE, G., LI, J. S. & SCHIFFRIN, E. L. (1999c) Role 
of AT2 receptors in angiotensin II-stimulated contraction of small 
mesenteric arteries in young SHR. Hypertension, 33, 366-72. 

TOUYZ, R. M., HE, G., DENG, L. Y. & SCHIFFRIN, E. L. (1999d) Role of 
extracellular signal-regulated kinases in angiotensin II-stimulated 
contraction of smooth muscle cells from human resistance arteries. 
Circulation, 99, 392-9. 

TOUYZ, R. M. & SCHIFFRIN, E. L. (2000) Signal transduction mechanisms 
mediating the physiological and pathophysiological actions of angiotensin 
II in vascular smooth muscle cells. Pharmacol Rev, 52, 639-72. 

TOUYZ, R. M., YAO, G., VIEL, E., AMIRI, F. & SCHIFFRIN, E. L. (2004) Angiotensin 
II and endothelin-1 regulate MAP kinases through different redox-
dependent mechanisms in human vascular smooth muscle cells. J 
Hypertens, 22, 1141-9. 

TRASK, A. J., JESSUP, J. A., CHAPPELL, M. C. & FERRARIO, C. M. (2008) 
Angiotensin-(1-12) is an alternate substrate for angiotensin peptide 
production in the heart. Am J Physiol Heart Circ Physiol, 294, H2242-7. 

TSURUMI, Y., KEARNEY, M., CHEN, D., SILVER, M., TAKESHITA, S., YANG, J., 
SYMES, J. F. & ISNER, J. M. (1997) Treatment of acute limb ischemia by 
intramuscular injection of vascular endothelial growth factor gene. 
Circulation, 96, II-382-8. 

TSURUMI, Y., TAMURA, K., TANAKA, Y., KOIDE, Y., SAKAI, M., YABANA, M., 
NODA, Y., HASHIMOTO, T., KIHARA, M., HIRAWA, N., TOYA, Y., KIUCHI, 
Y., IWAI, M., HORIUCHI, M. & UMEMURA, S. (2006) Interacting molecule of 
AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal 
tubules. Kidney Int, 69, 488-94. 



264 
 

TSUZUKI, S., MATOBA, T., EGUCHI, S. & INAGAMI, T. (1996) Angiotensin II type 2 
receptor inhibits cell proliferation and activates tyrosine phosphatase. 
Hypertension, 28, 916-8. 

TUMMALA, P. E., CHEN, X. L., SUNDELL, C. L., LAURSEN, J. B., HAMMES, C. P., 
ALEXANDER, R. W., HARRISON, D. G. & MEDFORD, R. M. (1999) Angiotensin 
II induces vascular cell adhesion molecule-1 expression in rat vasculature: 
A potential link between the renin-angiotensin system and 
atherosclerosis. Circulation, 100, 1223-9. 

TURNER, A. J. & HOOPER, N. M. (2002) The angiotensin-converting enzyme gene 
family: genomics and pharmacology. Trends Pharmacol Sci, 23, 177-83. 

UCAR, A., VAFAIZADEH, V., JARRY, H., FIEDLER, J., KLEMMT, P. A., THUM, T., 
GRONER, B. & CHOWDHURY, K. (2010) miR-212 and miR-132 are required 
for epithelial stromal interactions necessary for mouse mammary gland 
development. Nat Genet, 42, 1101-8. 

UEHARA, Y., NUMABE, A., HIRAWA, N., ISHIMITSU, T., TAKADA, S., SUGIMOTO, T. 
& YAGI, S. (1988) Alterations to the vascular vasodepressor prostaglandin 
system in DOCA-salt hypertensive rats and their enzymatic analysis. J 
Hypertens Suppl, 6, S392-4. 

UEKAMA, K. (2004) Design and evaluation of cyclodextrin-based drug 
formulation. Chem Pharm Bull (Tokyo), 52, 900-15. 

VAN BELLE, E., BAUTERS, C., ASAHARA, T. & ISNER, J. M. (1998) Endothelial 
regrowth after arterial injury: from vascular repair to therapeutics. 
Cardiovasc Res, 38, 54-68. 

VAN ESCH, J. H., OOSTERVEER, C. R., BATENBURG, W. W., VAN VEGHEL, R. & 
JAN DANSER, A. H. (2008) Effects of angiotensin II and its metabolites in 
the rat coronary vascular bed: is angiotensin III the preferred ligand of the 
angiotensin AT2 receptor? Eur J Pharmacol, 588, 286-93. 

VAN KATS, J. P., DE LANNOY, L. M., JAN DANSER, A. H., VAN MEEGEN, J. R., 
VERDOUW, P. D. & SCHALEKAMP, M. A. (1997) Angiotensin II type 1 (AT1) 
receptor-mediated accumulation of angiotensin II in tissues and its 
intracellular half-life in vivo. Hypertension, 30, 42-9. 

VAN ROOIJ, E. & OLSON, E. N. (2007) MicroRNAs: powerful new regulators of 
heart disease and provocative therapeutic targets. J Clin Invest, 117, 
2369-76. 

VASQUEZ-VIVAR, J., KALYANARAMAN, B. & MARTASEK, P. (2003) The role of 
tetrahydrobiopterin in superoxide generation from eNOS: enzymology and 
physiological implications. Free Radic Res, 37, 121-7. 

VELEZ, J. C., RYAN, K. J., HARBESON, C. E., BLAND, A. M., BUDISAVLJEVIC, M. 
N., ARTHUR, J. M., FITZGIBBON, W. R., RAYMOND, J. R. & JANECH, M. G. 
(2009) Angiotensin I is largely converted to angiotensin (1-7) and 
angiotensin (2-10) by isolated rat glomeruli. Hypertension, 53, 790-7. 

VERANO-BRAGA, T., SCHWAMMLE, V., SYLVESTER, M., PASSOS-SILVA, D. G., 
PELUSO, A. A., ETELVINO, G. M., SANTOS, R. A. & ROEPSTORFF, P. (2012) 
Time-resolved quantitative phosphoproteomics: new insights into 
Angiotensin-(1-7) signaling networks in human endothelial cells. J 
Proteome Res, 11, 3370-81. 

VICKERS, C., HALES, P., KAUSHIK, V., DICK, L., GAVIN, J., TANG, J., GODBOUT, 
K., PARSONS, T., BARONAS, E., HSIEH, F., ACTON, S., PATANE, M., 
NICHOLS, A. & TUMMINO, P. (2002) Hydrolysis of biological peptides by 
human angiotensin-converting enzyme-related carboxypeptidase. J Biol 
Chem, 277, 14838-43. 

VIEDT, C., VOGEL, J., ATHANASIOU, T., SHEN, W., ORTH, S. R., KUBLER, W. & 
KREUZER, J. (2002) Monocyte chemoattractant protein-1 induces 



265 
 

proliferation and interleukin-6 production in human smooth muscle cells 
by differential activation of nuclear factor-kappaB and activator protein-
1. Arterioscler Thromb Vasc Biol, 22, 914-20. 

VILAS-BOAS, W. W., RIBEIRO-OLIVEIRA, A., JR., PEREIRA, R. M., RIBEIRO RDA, C., 
ALMEIDA, J., NADU, A. P., SIMOES E SILVA, A. C. & DOS SANTOS, R. A. 
(2009) Relationship between angiotensin-(1-7) and angiotensin II 
correlates with hemodynamic changes in human liver cirrhosis. World J 
Gastroenterol, 15, 2512-9. 

VILLA, A. E., GUZMAN, L. A., POPTIC, E. J., LABHASETWAR, V., D'SOUZA, S., 
FARRELL, C. L., PLOW, E. F., LEVY, R. J., DICORLETO, P. E. & TOPOL, E. 
J. (1995) Effects of antisense c-myb oligonucleotides on vascular smooth 
muscle cell proliferation and response to vessel wall injury. Circ Res, 76, 
505-13. 

VINH, A., WIDDOP, R. E., DRUMMOND, G. R. & GASPARI, T. A. (2008) Chronic 
angiotensin IV treatment reverses endothelial dysfunction in ApoE-
deficient mice. Cardiovasc Res, 77, 178-87. 

VIRDIS, A., NEVES, M. F., AMIRI, F., TOUYZ, R. M. & SCHIFFRIN, E. L. (2004) Role 
of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. 
J Hypertens, 22, 535-42. 

VIRMANI, R., ATKINSON, J. B. & FORMAN, M. B. (1988) Aortocoronary saphenous 
vein bypass grafts. Cardiovasc Clin, 18, 41-62. 

VISWANATHAN, M., STROMBERG, C., SELTZER, A. & SAAVEDRA, J. M. (1992) 
Balloon angioplasty enhances the expression of angiotensin II AT1 
receptors in neointima of rat aorta. J Clin Invest, 90, 1707-12. 

WALDRON, G. J., DING, H., LOVREN, F., KUBES, P. & TRIGGLE, C. R. (1999) 
Acetylcholine-induced relaxation of peripheral arteries isolated from mice 
lacking endothelial nitric oxide synthase. Br J Pharmacol, 128, 653-8. 

WALKER, L. N., BOWEN-POPE, D. F., ROSS, R. & REIDY, M. A. (1986) Production 
of platelet-derived growth factor-like molecules by cultured arterial 
smooth muscle cells accompanies proliferation after arterial injury. Proc 
Natl Acad Sci U S A, 83, 7311-5. 

WALTERS, P. E., GASPARI, T. A. & WIDDOP, R. E. (2005) Angiotensin-(1-7) acts as 
a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. 
Hypertension, 45, 960-6. 

WANET, A., TACHENY, A., ARNOULD, T. & RENARD, P. (2012) miR-212/132 
expression and functions: within and beyond the neuronal compartment. 
Nucleic Acids Res, 40, 4742-53. 

WANG, H. J., LO, W. Y. & LIN, L. J. (2013) Angiotensin-(1-7) decreases glycated 
albumin-induced endothelial interleukin-6 expression via modulation of 
miR-146a. Biochem Biophys Res Commun, 430, 1157-63. 

WANG, L., EBERHARD, M. & ERNE, P. (1995) Stimulation of DNA and RNA 
synthesis in cultured rabbit cardiac fibroblasts by angiotensin IV. Clin Sci 
(Lond), 88, 557-62. 

WANG, Z. Q., MILLATT, L. J., HEIDERSTADT, N. T., SIRAGY, H. M., JOHNS, R. A. 
& CAREY, R. M. (1999) Differential regulation of renal angiotensin subtype 
AT1A and AT2 receptor protein in rats with angiotensin-dependent 
hypertension. Hypertension, 33, 96-101. 

WARD, M. R., PASTERKAMP, G., YEUNG, A. C. & BORST, C. (2000) Arterial 
remodeling. Mechanisms and clinical implications. Circulation, 102, 1186-
91. 

WARD, M. R., TSAO, P. S., AGROTIS, A., DILLEY, R. J., JENNINGS, G. L. & BOBIK, 
A. (2001) Low blood flow after angioplasty augments mechanisms of 



266 
 

restenosis: inward vessel remodeling, cell migration, and activity of genes 
regulating migration. Arterioscler Thromb Vasc Biol, 21, 208-13. 

WARD, R. J., ALVAREZ-CURTO, E. & MILLIGAN, G. (2011) Using the Flp-In T-Rex 
system to regulate GPCR expression. Methods Mol Biol, 746, 21-37. 

WEIDINGER, F. F., MCLENACHAN, J. M., CYBULSKY, M. I., GORDON, J. B., 
RENNKE, H. G., HOLLENBERG, N. K., FALLON, J. T., GANZ, P. & COOKE, J. 
P. (1990) Persistent dysfunction of regenerated endothelium after balloon 
angioplasty of rabbit iliac artery. Circulation, 81, 1667-79. 

WEILER, J., HUNZIKER, J. & HALL, J. (2006) Anti-miRNA oligonucleotides (AMOs): 
ammunition to target miRNAs implicated in human disease? Gene Ther, 
13, 496-502. 

WELCHES, W. R., SANTOS, R. A., CHAPPELL, M. C., BROSNIHAN, K. B., GREENE, 
L. J. & FERRARIO, C. M. (1991) Evidence that prolyl endopeptidase 
participates in the processing of brain angiotensin. J Hypertens, 9, 631-8. 

WELT, F. G. & ROGERS, C. (2002) Inflammation and restenosis in the stent era. 
Arterioscler Thromb Vasc Biol, 22, 1769-76. 

WENZEL, J. G., BALAJI, K. S., KOUSHIK, K., NAVARRE, C., DURAN, S. H., RAHE, 
C. H. & KOMPELLA, U. B. (2002) Pluronic F127 gel formulations of 
deslorelin and GnRH reduce drug degradation and sustain drug release and 
effect in cattle. J Control Release, 85, 51-9. 

WEST, N., GUZIK, T., BLACK, E. & CHANNON, K. (2001) Enhanced superoxide 
production in experimental venous bypass graft intimal hyperplasia: role 
of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol, 21, 189-94. 

WHITE, C. R., BROCK, T. A., CHANG, L. Y., CRAPO, J., BRISCOE, P., KU, D., 
BRADLEY, W. A., GIANTURCO, S. H., GORE, J., FREEMAN, B. A. & ET AL. 
(1994) Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci 
U S A, 91, 1044-8. 

WIDDOP, R. E., VINH, A., HENRION, D. & JONES, E. S. (2008) Vascular 
angiotensin AT2 receptors in hypertension and ageing. Clin Exp Pharmacol 
Physiol, 35, 386-90. 

WIEMER, G., DOBRUCKI, L. W., LOUKA, F. R., MALINSKI, T. & HEITSCH, H. (2002) 
AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the 
endothelium. Hypertension, 40, 847-52. 

WILENSKY, R. L., MARCH, K. L., GRADUS-PIZLO, I., SANDUSKY, G., FINEBERG, N. 
& HATHAWAY, D. R. (1995) Vascular injury, repair, and restenosis after 
percutaneous transluminal angioplasty in the atherosclerotic rabbit. 
Circulation, 92, 2995-3005. 

WILKINSON-BERKA, J. L., MILLER, A. G. & BINGER, K. J. (2011) Prorenin and the 
(pro)renin receptor: recent advances and implications for retinal 
development and disease. Curr Opin Nephrol Hypertens, 20, 69-76. 

WILLMS-KRETSCHMER, K., FLAX, M. H. & COTRAN, R. S. (1967) The fine structure 
of the vascular response in hapten-specific delayed hypersensitivity and 
contact dermatitis. Lab Invest, 17, 334-49. 

WRIGHT, J. W., MILLER-WING, A. V., SHAFFER, M. J., HIGGINSON, C., WRIGHT, 
D. E., HANESWORTH, J. M. & HARDING, J. W. (1993) Angiotensin II(3-8) 
(ANG IV) hippocampal binding: potential role in the facilitation of 
memory. Brain Res Bull, 32, 497-502. 

WRUCK, C. J., FUNKE-KAISER, H., PUFE, T., KUSSEROW, H., MENK, M., SCHEFE, 
J. H., KRUSE, M. L., STOLL, M. & UNGER, T. (2005) Regulation of transport 
of the angiotensin AT2 receptor by a novel membrane-associated Golgi 
protein. Arterioscler Thromb Vasc Biol, 25, 57-64. 

WU, J. G., TANG, H., LIU, Z. J., MA, Z. F., TANG, A. L., ZHANG, X. J., GAO, X. 
R. & MA, H. (2011) Angiotensin-(1-7) inhibits vascular remodelling in rat 



267 
 

jugular vein grafts via reduced ERK1/2 and p38 MAPK activity. J Int Med 
Res, 39, 2158-68. 

WU, L., IWAI, M., NAKAGAMI, H., LI, Z., CHEN, R., SUZUKI, J., AKISHITA, M., DE 
GASPARO, M. & HORIUCHI, M. (2001) Roles of angiotensin II type 2 
receptor stimulation associated with selective angiotensin II type 1 
receptor blockade with valsartan in the improvement of inflammation-
induced vascular injury. Circulation, 104, 2716-21. 

XI, X. P., GRAF, K., GOETZE, S., FLECK, E., HSUEH, W. A. & LAW, R. E. (1999) 
Central role of the MAPK pathway in ang II-mediated DNA synthesis and 
migration in rat vascular smooth muscle cells. Arterioscler Thromb Vasc 
Biol, 19, 73-82. 

XU, Q., LIU, Y., GOROSPE, M., UDELSMAN, R. & HOLBROOK, N. J. (1996) Acute 
hypertension activates mitogen-activated protein kinases in arterial wall. 
J Clin Invest, 97, 508-14. 

YAGHOOTI, H., FIROOZRAI, M., FALLAH, S. & KHORRAMIZADEH, M. R. (2010) 
Angiotensin II Differentially Induces Matrix Metalloproteinase-9 and Tissue 
Inhibitor of Metalloproteinase-1 Production and Disturbs MMP/TIMP 
Balance. Avicenna J Med Biotechnol, 2, 79-85. 

YAN, C., KIM, D., AIZAWA, T. & BERK, B. C. (2003) Functional interplay between 
angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler 
Thromb Vasc Biol, 23, 26-36. 

YAN, Z. Q. & HANSSON, G. K. (2007) Innate immunity, macrophage activation, 
and atherosclerosis. Immunol Rev, 219, 187-203. 

YANG, J. M., DONG, M., MENG, X., ZHAO, Y. X., YANG, X. Y., LIU, X. L., HAO, P. 
P., LI, J. J., WANG, X. P., ZHANG, K., GAO, F., ZHAO, X. Q., ZHANG, M. 
X., ZHANG, Y. & ZHANG, C. (2013) Angiotensin-(1-7) dose-dependently 
inhibits atherosclerotic lesion formation and enhances plaque stability by 
targeting vascular cells. Arterioscler Thromb Vasc Biol, 33, 1978-85. 

YANG, R., SMOLDERS, I., VANDERHEYDEN, P., DEMAEGDT, H., VAN EECKHAUT, 
A., VAUQUELIN, G., LUKASZUK, A., TOURWE, D., CHAI, S. Y., ALBISTON, 
A. L., NAHMIAS, C., WALTHER, T. & DUPONT, A. G. (2011) Pressor and 
renal hemodynamic effects of the novel angiotensin A peptide are 
angiotensin II type 1A receptor dependent. Hypertension, 57, 956-64. 

YANG, X., ZHU, M. J., SREEJAYAN, N., REN, J. & DU, M. (2005) Angiotensin II 
promotes smooth muscle cell proliferation and migration through release 
of heparin-binding epidermal growth factor and activation of EGF-
receptor pathway. Mol Cells, 20, 263-70. 

YANG, Z., OEMAR, B. S., CARREL, T., KIPFER, B., JULMY, F. & LUSCHER, T. F. 
(1998) Different proliferative properties of smooth muscle cells of human 
arterial and venous bypass vessels: role of PDGF receptors, mitogen-
activated protein kinase, and cyclin-dependent kinase inhibitors. 
Circulation, 97, 181-7. 

YOU, D., COCHAIN, C., LOINARD, C., VILAR, J., MEES, B., DURIEZ, M., LEVY, B. I. 
& SILVESTRE, J. S. (2008) Combination of the angiotensin-converting 
enzyme inhibitor perindopril and the diuretic indapamide activate 
postnatal vasculogenesis in spontaneously hypertensive rats. J Pharmacol 
Exp Ther, 325, 766-73. 

YU, N., ATIENZA, J. M., BERNARD, J., BLANC, S., ZHU, J., WANG, X., XU, X. & 
ABASSI, Y. A. (2006) Real-time monitoring of morphological changes in 
living cells by electronic cell sensor arrays: an approach to study G 
protein-coupled receptors. Anal Chem, 78, 35-43. 

YU, X., DLUZ, S., GRAVES, D. T., ZHANG, L., ANTONIADES, H. N., HOLLANDER, 
W., PRUSTY, S., VALENTE, A. J., SCHWARTZ, C. J. & SONENSHEIN, G. E. 



268 
 

(1992) Elevated expression of monocyte chemoattractant protein 1 by 
vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl 
Acad Sci U S A, 89, 6953-7. 

YU, Y., FUKUDA, N., YAO, E. H., MATSUMOTO, T., KOBAYASHI, N., SUZUKI, R., 
TAHIRA, Y., UENO, T. & MATSUMOTO, K. (2008) Effects of an ARB on 
endothelial progenitor cell function and cardiovascular oxidation in 
hypertension. Am J Hypertens, 21, 72-7. 

YUDA, A., TAKAI, S., JIN, D., SAWADA, Y., NISHIMOTO, M., MATSUYAMA, N., 
ASADA, K., KONDO, K., SASAKI, S. & MIYAZAKI, M. (2000) Angiotensin II 
receptor antagonist, L-158,809, prevents intimal hyperplasia in dog 
grafted veins. Life Sci, 68, 41-8. 

YUSUF, S., SLEIGHT, P., POGUE, J., BOSCH, J., DAVIES, R. & DAGENAIS, G. 
(2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on 
cardiovascular events in high-risk patients. The Heart Outcomes 
Prevention Evaluation Study Investigators. N Engl J Med, 342, 145-53. 

ZAFARI, A. M., USHIO-FUKAI, M., AKERS, M., YIN, Q., SHAH, A., HARRISON, D. G., 
TAYLOR, W. R. & GRIENDLING, K. K. (1998) Role of NADH/NADPH oxidase-
derived H2O2 in angiotensin II-induced vascular hypertrophy. 
Hypertension, 32, 488-95. 

ZENG, C., ASICO, L. D., WANG, X., HOPFER, U., EISNER, G. M., FELDER, R. A. & 
JOSE, P. A. (2003) Angiotensin II regulation of AT1 and D3 dopamine 
receptors in renal proximal tubule cells of SHR. Hypertension, 41, 724-9. 

ZENG, W., CHEN, W., LENG, X., HE, J. G. & MA, H. (2009) Chronic angiotensin-
(1-7) administration improves vascular remodeling after angioplasty 
through the regulation of the TGF-beta/Smad signaling pathway in 
rabbits. Biochem Biophys Res Commun, 389, 138-44. 

ZHANG, C., ZHAO, Y. X., ZHANG, Y. H., ZHU, L., DENG, B. P., ZHOU, Z. L., LI, S. 
Y., LU, X. T., SONG, L. L., LEI, X. M., TANG, W. B., WANG, N., PAN, C. 
M., SONG, H. D., LIU, C. X., DONG, B., ZHANG, Y. & CAO, Y. (2010a) 
Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by 
targeting vascular cells. Proc Natl Acad Sci U S A, 107, 15886-91. 

ZHANG, F., HU, Y., XU, Q. & YE, S. (2010b) Different effects of angiotensin II 
and angiotensin-(1-7) on vascular smooth muscle cell proliferation and 
migration. PLoS One, 5, e12323. 

ZHANG, Y., CLIFF, W. J., SCHOEFL, G. I. & HIGGINS, G. (1993) 
Immunohistochemical study of intimal microvessels in coronary 
atherosclerosis. Am J Pathol, 143, 164-72. 

ZHU, M., CHEN, D., LI, D., DING, H., ZHANG, T., XU, T. & ZHANG, Y. (2013) 
Luteolin inhibits angiotensin II-induced human umbilical vein endothelial 
cell proliferation and migration through downregulation of Src and Akt 
phosphorylation. Circ J, 77, 772-9. 

ZHU, N., ZHANG, D., CHEN, S., LIU, X., LIN, L., HUANG, X., GUO, Z., LIU, J., 
WANG, Y., YUAN, W. & QIN, Y. (2011) Endothelial enriched microRNAs 
regulate angiotensin II-induced endothelial inflammation and migration. 
Atherosclerosis, 215, 286-93. 

ZHU, Z., ZHONG, J., ZHU, S., LIU, D., VAN DER GIET, M. & TEPEL, M. (2002) 
Angiotensin-(1-7) inhibits angiotensin II-induced signal transduction. J 
Cardiovasc Pharmacol, 40, 693-700. 

ZIMMERMAN, M.A., REZNIKOV, L.L, RAEBURN, C.D., SELZMAN, C.H. (2004) 
Interleukin-10 attenuates the response to vascular injury. J Surg Res, 121, 
206-213. 

ZINI, S., FOURNIE-ZALUSKI, M. C., CHAUVEL, E., ROQUES, B. P., CORVOL, P. & 
LLORENS-CORTES, C. (1996) Identification of metabolic pathways of brain 



269 
 

angiotensin II and III using specific aminopeptidase inhibitors: 
predominant role of angiotensin III in the control of vasopressin release. 
Proc Natl Acad Sci U S A, 93, 11968-73. 

ZOU, Y., DIETRICH, H., HU, Y., METZLER, B., WICK, G. & XU, Q. (1998) Mouse 
model of venous bypass graft arteriosclerosis. Am J Pathol, 153, 1301-10. 

ZULLI, A., BURRELL, L. M., WIDDOP, R. E., BLACK, M. J., BUXTON, B. F. & HARE, 
D. L. (2006) Immunolocalization of ACE2 and AT2 receptors in rabbit 
atherosclerotic plaques. J Histochem Cytochem, 54, 147-50. 

 
 


	Microsoft Word
	2014McKinneyPhd
	Clare thesis to hard bind
	Clare review
	Clarkeetal


