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ABSTRACT 

Multiple Sclerosis (MS) is a chronic inflammatory, demyelinating disease of the 

central nervous system which currently affects approximately 107, 000 people in the 

UK, with around 5,000 people being newly diagnosed each year. Here, in Scotland, is 

the highest disease incidence in the world with around 1 in 170 women in Orkney 

currently living with the disease. These statistics emphasise the importance of 

researching and understanding this disease, so as to develop better therapeutics to 

fight MS. 

This thesis focused on the role of antibodies in MS, a widely studied area. There is 

already a great deal of published data supporting the presence and function of 

autoantibodies in disease pathogenesis. A more recent development was the 

discovery that a significant proportion of paediatric MS and acute disseminated 

encephalomyelitis (ADEM) patients have autoantibody responses directed against 

the extra-cellular domain of myelin oligodendrocyte glycoprotein (MOG). It has been 

shown that MOG-specific autoantibodies can induce demyelination in animal models 

but as yet, the clinical significance of these antibodies in human disease remains 

unknown. In animal models, MOG-specific antibodies exacerbate disease and 

mediate demyelination and it was hypothesis that this would also be the case in 

patients with multiple sclerosis. This hypothesis was investigated throughout this 

thesis via two main approaches: 

(1) Explore the pathogenicity of patient derived IgG using a well-characterised in 

vitro bioassay. 

(2)  Based on the hypothesis determine the efficacy of depleting or tolerising 

MOG-reactive B cells in vivo. 

To study this, the effects of patient sera, which were positive for MOG reactivity, 

were tested on myelinating neural cell cultures. These studies showed no correlation 
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between the presence of MOG antibodies and demyelination, therefore suggesting 

that these antibodies did not mediate myelin loss.  

MOG-specific antibodies were also studied in vivo using MOG-induced experimental 

autoimmune encephalomyelitis (EAE), a model which reproduces many of the clinical 

and pathological features of paediatric MS. Two MOG-specific therapeutic 

approaches were analysed: (i) induction of antigen-specific tolerance using low doses 

of soluble MOG, and (ii) treatment with a MOG-specific B cell immunotoxin. They 

both demonstrated MOG-specific immunotherapies can be efficacious.  However, 

increasing evidence indicated full clinical protection would require targeting both 

MOG-specific T and B cell dependent patho-mechanisms. 

As these antibodies did not affect the myelin in the bioassay and the MOG-specific 

treatments had limited beneficial effect in vivo, it raised the question are these 

autoantibodies irrelevant to human disease? This was addressed by investigating the 

effects of low titres of MOG-specific antibodies in the absence of complement. The 

data presented in this thesis showed that autoantibodies, independent of 

complement, mediated myelin loss, microglial activation and induced chemokine 

production, processes which could all contribute to disease pathogenesis. Therefore, 

revealing a new perspective role for antibodies in MS. 
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1 GENERAL INTRODUCTION 

1.1 PAEDIATRIC MULTIPLE SCLEROSIS 

1.1.1 Introduction to paediatric multiple sclerosis 

Multiple Sclerosis (MS) was first described as a combination of ataxia, tremor and 

speech disturbances by Charcot (Charcot, 1868), but he himself credits a fellow 

professor, Jean Cruveilhier, for his earlier illustrations of lesions and clinical 

definition of the disease [Anatomie pathologique du corps humain (1835-42). 

(Field, 1980)]. Today MS is described as a chronic, inflammatory demyelinating 

disease of the central nervous system (CNS), characterised by the formation of 

demyelinated plaques of gliotic scar tissue associated with varying degrees of 

axonal injury and loss. This pathology is attributed to the effects of repeated 

episodes of focal inflammation and demyelination. These lesions may develop in 

virtually any region of the CNS and may lead to any of a wide range of motor, 

sensory and/or cognitive deficits. However, there is a predilection for lesions to 

develop in the optic tract, periventricular and spinal cord white matter, and 

cortical grey matter. Clinical deficits in MS are due to the culmination of acute 

inflammation, demyelination and axonal injury and loss.  

Until recently MS was considered a disease of young adults, which were diagnosed 

in their second or third decade of life. In 1868 Charcot himself set 14 as the lowest 

age of disease onset, but  less than 30 years later Eichorst confirmed a case of 

childhood MS in a 9 year old boy who, amongst other symptoms, presented with 

muscle weakness and paralysis affecting both legs before death (Eichorst, 1896).  

Since then a substantial body of evidence has accumulated confirming that MS can 

indeed manifest prior to puberty (Schupfer, 1902, Low and Carter, 1956). This 

included a large cohort of 125 children with disease onset below the age of 16 

(Duquette et al., 1987).  Despite these early findings, it is only in the past 10 to 20 

years that any significant advances have been made in our understanding of this 

juvenile neurological disease (Hanefeld, 2007). However, paediatric MS is now 
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recognised as one of the most common juvenile diseases of the CNS and recent 

studies indicate it accounts for 3 to 5% of all cases of MS (Fernandez Carbonell and 

Chitnis, 2013).  

1.1.2 Diagnosis of paediatric multiple sclerosis 

In adults MS is diagnosed using the McDonald Criteria, which were initially 

presented in 2001 by the International Panel (McDonald et al., 2001). Data driven 

revisions of these criteria were made in 2005 (Polman et al., 2005), and again in 

2010 (Polman et al., 2011), but the core criterion for a diagnosis of MS remains the  

dissemination of lesions in time and space. Other paraclinical criteria are based on 

magnetic resonance imaging (MRI) studies and analysis of cerebrospinal fluid. 

These can be used to support a diagnosis of MS, but making a definitive diagnosis 

in paediatric patients is more challenging than in adult-onset cases because the 

clinical presentation can be much more variable. This is a particular problem with 

respect to two other inflammatory demyelinating diseases of the CNS, acute 

disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). In 

children these diseases often mimic the clinical and radiological features of MS. 

The lack of clear diagnostic criteria to differentiate paediatric MS from other 

neurological conditions is not a trivial problem, as treatments that are beneficial in 

MS may be counter-productive in other diseases and vice versa. To resolve this 

problem the National MS Society (NMSS) established the International Paediatric 

MS Study Group to develop a common diagnostic consensus for childhood-onset 

MS (Krupp et al., 2013).  

MS is now classified as paediatric when the first neurological signs of disease occur 

under the age of 18. This can occur in children as young as two, although disease is 

rarer in pre-pubertal children and accounts for only 20 - 30% of paediatric MS 

cases (Chitnis, 2013).  A diagnosis of paediatric MS requires the patient to develop 

two clinical incidents of CNS demyelination separated in space and time (at least 

30 days apart from each other), as required for the diagnosis of adult MS (Krupp et 

al., 2007). MRI scans play a pivotal role in the diagnosis of paediatric MS and may 
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even  be used alone to meet the McDonald criteria providing  three of the 

following features are present; 1) one gadolinium enhancing lesion or nine or more 

white matter lesions 2) three of more periventricular lesions 3) a juxtacortical 

lesion 4) an infratentorial lesion. MRI techniques still have a long way to go before 

being able to accurately distinguish MS from other neurological diseases, 

particularly as many juvenile demyelinating disorders feature variable and ill-

defined lesions (Hynson et al., 2001, Chabas et al., 2010). However, MRI can also 

be used in conjunction with cerebrospinal fluid (CSF) analysis to confirm diagnosis 

(Yeh et al., 2009).  The CSF must show either oligoclonal bands (OCBs) or an 

elevated IgG index (Krupp et al., 2007). Importantly the child’s first clinical events 

must clearly exclude a diagnosis of ADEM, which is defined as a multifocal disease 

(full diagnostic criteria is discussed in section 1.2.1). Further revisions of the 

guidelines set out by the International Paediatric MS Study Group were made in 

2013, which  highlighted differences in the clinical presentation between younger 

(under the age of 12) and older children with MS. It highlighted the need at time of 

diagnosis to take into consideration the observation that earlier attacks are more 

“ADEM-like” (Krupp et al., 2013). 

1.1.3 Paediatric multiple sclerosis pathogenesis and etiology 

Studying paediatric MS provides a novel opportunity to address questions related 

to the role of environmental factors in disease development, as there is only a 

limited time interval between exposure to environmental factors believed to 

trigger disease development and diagnosis.  Moreover, the immune mechanisms 

underlying disease development in childhood MS are broadly identical to those 

involved in adult onset disease. There are however subtle differences between 

paediatric and adult onset MS. 

1.1.3.1 Pathogenesis and clinical presentation 

Paediatric MS can present in two clinical phenotypes as defined by their disease 

course; (1) relapsing-remitting MS (RRMS) and (2) primary progressive MS (PPMS). 
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RRMS is characterised by repeated, unpredictable episodes of disability followed 

by periods of complete or partial recovery, whereas PPMS is characterised from its 

onset by accumulation of disability in the absence of obvious clinical relapses or 

remissions (Renoux et al., 2007). PPMS has several features that make it different 

from RRMS. In addition to the different disease course, there is also no female 

dominance in PPMS and the average age of onset is later (Koch et al., 2013). 

Children rarely develop PPMS, therefore paediatric disease is almost solely RRMS 

(98% compared to 84% in adult onset-MS). This phenotypic bias in children with 

MS to a relapsing-remitting disease course was first observed in  1987 (Duquette 

et al., 1987) and was recently confirmed (Gorman et al., 2009).  

A MRI study investigating differences in lesions in paediatric MS patients compared 

early-onset (<11 years) and later-onset (≥11 years) MS plaques (Chabas et al., 

2008). The results revealed that the overall numbers of lesions were similar 

between groups but the lesions were less well-defined and confluent in the 

younger patients. In addition 92% of the early-onset patients had a decrease in T2-

bright lesion load at their second scan, compared to their initial scan, which was 

taken soon after the first clinical event. This was significantly more than in the 

older patient group, suggesting there are different pathological processes 

occurring in adolescent lesions. These results, although from a small cohort of 

patients, shed light on lesion dynamics in patients less than 11 years of age and 

have implications with respect to using MRI scans for diagnosis in these very young 

patients. The areas of the brain most affected also appear to differ between 

paediatric and adult patients, the former tending to develop less inflammation  in 

the spinal cord but more in the posterior fossa of the brain (Mowry and Waubant, 

2010). Taken together these data indicate lesions in early-onset paediatric MS 

have distinct characteristics that differentiate them from post-pubertal lesions 

which appear to resemble adult-onset MS lesions. 

Studies analysing CSF samples revealed early-onset paediatric MS was associated 

with  increased infiltration of white blood cells compared to post-pubertal patients 
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(Yeh et al., 2009, Chabas et al., 2010).  Most markedly, there was a selective 

increase in the number of neutrophils observed in younger patients, as well as 

fewer OCBs and autoantibodies. Correspondingly, fewer young patients had an 

increased IgG index compared to the later-onset patient cohort (Chabas et al., 

2010). Overall, these studies led to the proposal that disease activity in MS 

patients below the age of 11 was associated with a more pronounced innate 

immune component compared to post-pubertal and adult-onset patients. 

1.1.3.2 Disease progression 

Disease progression and disability outcomes are only slightly different in paediatric 

and adult onset MS. Although the short-term prognosis can be favourable, more 

than 50% of patients diagnosed with MS in childhood will develop secondary 

progressive MS (SPMS) associated with severe physical and/or cognitive disabilities 

by the age of 30 (Banwell et al., 2007, Renoux et al., 2007). Comparing time of 

conversion to SPMS with adult-onset MS, paediatric patients take approximately 

10 years longer to develop  SPMS than adult onset patients, but this end point is 

reached approximately 10 years earlier (Renoux et al., 2007). Moreover, they have 

a significantly higher rate of relapse compared to patients with adult-onset MS 

(Gorman et al., 2009), which could be an indication that there is more 

inflammatory activity occurring in the CNS of these younger patients. However, 

this does not result in a faster accumulation of disability compared to older 

patients. This observation has led to the suggestion that the functional and 

structural plasticity of the developing CNS in young MS patients’ may compensate 

for damage caused by inflammatory demyelination.   

1.1.3.3 Cognitive and social interaction deficits 

Paediatric MS patients face significant cognitive impairment and they often start to 

develop neurophysiological symptoms at the critical time of schooling. The cause 

of these deficits has not yet been elucidated. It could be related to poor school 

attendance; around 40% of children with MS struggle with school and recreational 
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activities due to severe fatigue (Banwell et al., 2007), therefore disrupting their 

education and compromising their sociological development.  On the other hand it 

could also be due to direct functional effects related to neurodegeneration, loss of 

neural connectivity and compromised development of white matter pathways 

required for cognitive tasks. These deficits will also have psychosocial effects. In a 

small cohort of children with MS, neuropsychological tests identified deficits 

specific to certain cognitive tasks in every patient (Banwell and Anderson, 2005).  

In particular they had problems with self-generated organisational strategies and 

tasks requiring efficient processing speed or working memory. These observations 

paralleled the children’s increasingly poor performance in high school as these 

cognitive skills became more important in higher education. Interestingly, this 

study did not find a link between disease severity, quantified by the Expanded 

Disability Status Scale (EDSS), and cognitive impairment. Problems with cognitive 

function are documented in around 30% of children with MS and this percentage 

increased with decreasing age of disease onset (MacAllister et al., 2005, Yeh et al., 

2011, Banwell and Anderson, 2005). The evident effect of MS on cognition makes 

early, effective treatment for these children even more crucial. 

1.1.3.4 Epidemiology 

Studies investigating links between ethnicity and paediatric MS interestingly 

showed that Hispanic children had a more severe disease and did not respond as 

well to therapies (Yeh et al., 2009). This pattern was not observed with African 

American patients, which is in contrast to adult MS studies. These investigations 

found that African Americans had an increased rate of disease progression, 

increased tissue damage and number of lesions (Kister et al., 2010, Weinstock-

Guttman et al., 2010).  

In addition to the differences in ethnic distribution of disease between adult and 

childhood disease, there are also differences in gender dominance. Prevalence of 

MS in children under the age of 10 or pre-pubertal shows no gender bias, but 

disease becomes more common in females around the age of puberty and 
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afterwards, suggesting  a role for sex hormones in disease susceptibility (Chitnis, 

2013). In adult onset MS it is much more prevalent in women (2:1 female to male 

ratio; (Whitacre, 2001)) and this ratio appears to be increasing as more recent  

population based studies indicate the female:male ratio is now around 3:1 (Orton 

et al., 2006, Maghzi et al., 2010).  

1.1.4 Potential treatments of paediatric multiple sclerosis 

With emerging evidence highlighting the significant impact of childhood MS on 

cognitive and physiological function the need for early and effective treatments 

tailored for these children is exceedingly important. Treatment of juvenile 

patients’ needs careful consideration as with children as young as 2, short and long 

term side effects could be very different from adults. Thus far, there is no evidence 

showing that the current treatments used in adults have any detrimental effects in 

children. However, treatment of young patients is still in its infancy and as yet 

adverse effects and tolerability of long-term treatment has not yet been 

established. This is of particular concern as there is no data on how the treatments 

will affect processes like puberty and growth. 

A retrospective collaborative study assessed the treatment of 258 children with 

RRMS, (Yeh et al., 2009). The study highlighted that it was important to start 

treatment as soon as possible, which unfortunately can be problematic as 

diagnosis is often difficult. The patients in this study were all treated initially with 

first-line therapies, interferon beta (IFNβ) or glatiramer acetate, which were well 

tolerated and were predominantly efficacious. Some patients had to switch to 

second-line disease modulating therapies (DMTs) or immunosuppressants as they 

had breakthrough relapses or MRI changes. In some cases treatments were used in 

combination. Overall, this study showed paediatric patients tolerated and 

responded well to adult MS treatment regimens.  

As yet no DMTs are officially approved for paediatric patient use as patients under 

the age of 18 are usually not involved in clinical trials but due to the apparent 
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overlap in disease pathogenesis young patients are already receiving these 

treatments (Pohl et al., 2007). Currently there are 7 approved drugs for RRMS in 

adults: -   

- IFNβ is available in two formulations; IFN-β1a (Rebif or Avonex) and IFN-β1b 

(Betaseron or Extavia), both of which inhibit T cell activation and decrease 

blood-brain barrier (BBB) permeability but have slightly different 

pharmokinetics. In 1993 IFN-β1b was the first drug to be licensed for 

treating MS.  Since then all these IFNβ drugs have been approved for 

treatment of RRMS as they have been shown to reduce disease activity and 

clinical exacerbations (Lim and Constantinescu, 2010). A retrospective study 

investigating effects of IFN-β1a used at adult doses in paediatric-onset 

patients showed that the drug was well tolerated and that it reduced the 

annual relapse rate (Tenembaum et al., 2013). 

- Glatimer acetate (Copaxone) is a synthetic co-polymer which has a very 

similar structure to myelin basic protein (MBP), a significant protein 

component of the myelin sheath. This drugs mode of disease suppression is 

not fully understood but is believed to modulate the immune response by 

blocking MBP-specific T cells (Scott, 2013). It has been approved for the 

treatment of RRMS and clinically isolated syndrome (CIS) patients. 

- Natalizumab (Tysabri) is a humanised monoclonal antibody against the 

integrin α4β1, which is an essential adhesion molecule required by the 

immune cell to migrate into the CNS. It first was approved by the FDA in 

2006. Clinical trials showed that the drug reduced relapses, lesion load and 

decreased the risk of disability progression (Polman et al., 2006a). They also 

showed that IFN-β1a treatment plus natalizumab was a more effective 

treatment than IFN-β1a alone (Polman et al., 2006b). 

- Mitoxantrone (Novantrone) is a cytotoxic agent with immunosuppressive 

properties. This drug is believed to suppress inflammation through a variety 
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of ways; inhibition of T cell activation, decreased T and B cell and 

macrophage cell division, defective antigen presentation and reduction of 

macrophage-mediated demyelination and cytokine production (Lim and 

Constantinescu, 2010). Clinical studies revealed it supressed disease in 

worsening RRMS patients and SPMS patients and has been approved for 

treatment of both (Scott and Figgitt, 2004). 

- Fingolimod (Gilenya) is a drug targeting the sphingosine 1-phosphate 

receptor which is needed for immune cells to leave the lymph nodes; 

therefore this treatment retains cells in these lymphoid structures inhibiting 

them from entering the CNS. Clinical trials with this drug showed significant 

decreases in relapse rates (Devonshire et al., 2012). It is currently FDA 

approved for the use in patients with RRMS. 

- Teriflunomide (Aubagio) is a pyrimidine synthesis inhibitor, which inhibits 

the enzyme dihydroorotate dehydrogenase essential for DNA synthesis, 

therefore reduces lymphocyte proliferation and activation. It was approved 

by the FDA in 2012 for the treatment of RRMS after a successful phase III 

clinical trial (O'Connor et al., 2011). 

- Dimethyl fumarate (Tecfidera™) was approved by the FDA in 2013 for a 

first-line therapy in RRMS patients. Two large phase III trials showed 

reduction in relapses, MRI lesions and disability progression (Fox et al., 

2012, Gold et al., 2012). How it suppresses disease is still unknown but it is 

thought to be due to the enhancement of an antioxidant response via 

activation of nuclear factor (erythroid-derived 2)-like 2 (Scannevin et al., 

2012). 

Progressive forms of MS have few treatment options as only Mitoxantrone and 

IFN-β1b are licensed for the treatment of SPMS and as yet there are no FDA 

approved treatments for PPMS. There are however many drugs currently in 

development. Monoclonal antibodies under investigation include Alemtuzumab, 
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Rituximab and Daclizumab, which are against CD52 on all lymphocytes, CD20 on B 

cells and CD25 on activated T cells, respectively. Other treatments include plasma 

exchange, which is only used in severe cases of adult MS. Therapeutic plasma 

exchange for the treatment of paediatric patients has only been documented in 

one case (Takahashi et al., 1997).  The patient responded markedly to the 

treatment, suggesting it may be an effective, alternative therapy for certain 

children with severe MS. 

The future of clinical trials needs to be multinational and have clear guidelines on 

defining adequate therapies to improve disease control. In addition, further 

research needs to investigate advanced ways to differentiate paediatric MS from 

other juvenile neurological disorders, which can have very similar presentation. 

 

1.2 OTHER JUVENILE DEMYELINATING DISEASES 

1.2.1 Acute disseminated encephalomyelitis (ADEM) 

ADEM is defined as a monophasic immune-mediated clinical event that affects 

multifocal areas of the brain and spinal cord leading to a polysymptomatic disease, 

which includes some type of encephalopathy. It features widespread 

demyelination centred on the white matter of the brain and spinal cord, with 

particular damage occurring in the perivenous region (Wender, 2011). ADEM can 

occur at any age but is predominantly a juvenile disease with diagnosis commonly 

occurring between the ages of 5 and 8 (Tenembaum et al., 2007). Unlike MS, 

ADEM studies have shown that disease is more prevalent in boys rather than girls 

(Murthy et al., 2002, Tenembaum et al., 2002).  

Although the definitive cause of ADEM is unknown it is commonly preceded by a 

viral infection or immunisation, which has been reported in around 70-77% ADEM 

cases (Tenembaum et al., 2007). After onset the disease progresses rapidly over 
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hours and peaking within days. Due to lack of biomarkers the disease is diagnosed 

based on clinical presentation and radiology. A follow-up study of 84 ADEM 

patients showed prominent presenting features were acute hemiparesis, unilateral 

of bilateral long tract signs and a change in mental state (Tenembaum et al., 2002). 

Other symptoms included visual loss because of optic neuritis, impairment of 

speech and seizures. Like MS, the initial symptoms were dependent on the area of 

the brain being damaged. 

Diagnosis of ADEM relies heavily on neuroimaging. These lesions are normally 

large and many, with an asymmetric pattern. Follow-up MRI scans are crucial in 

establishing if the disease is monophasic or multiphasic. ADEM is predominantly a 

monophasic disease but there have been cases of recurrent or multiphasic 

courses, which produces difficulties in determining ADEM from childhood MS. 

There is a great need to be able to definitively distinguish between MS and the 

multiphasic ADEM phenotype, most importantly for therapeutic reasons, as ADEM 

patients are treated with corticosteroids whereas MS patients require early 

treatment with immunomodulators to reduce disease activity and future disability. 

Currently MS cases are frequently misdiagnosed as ADEM initially (9.5% - 27%) 

(Dale et al., 2000, Leake et al., 2004), which means these patients are missing out 

on getting the early treatment they need. This highlighted a great need to have 

clear guidelines defining and distinguishing these very similar disseminated 

demyelinating disorders. The International Paediatric MS Study Group was formed 

to address this issue. It concluded that mulitphasic ADEM requires subsequent 

clinical events to occur either within 3 months of initial event or 1 month after 

cessation of treatment and to involve new anatomic areas of the CNS with full or 

partial resolution of initial lesions (Krupp et al., 2007, Krupp et al., 2013). In 

addition to this it must also satisfy standard ADEM criteria of being 

polysymptomatic, involving encephalopathy. Recurrent ADEM is a reoccurrence of 

the original disorder and was defined the same as multiphasic ADEM with the 

exception of no new areas of brain being involved.  
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Also highlighted in this report was that CSF results often show increases in protein 

and white blood cells counts, which is less common in MS. Interestingly OCBs are 

not a common feature in ADEM, unlike MS, but can still be present (Menge et al., 

2005a). Overall there is still a great need to identify more reliable biologic markers 

so diagnosis is not dependent on clinical and radiological features as these are not 

definitive for each demyelinating disorder. 

1.2.2 Neuromyelitis optica  

Neuromyelitis optica (NMO) is another paediatric demyelinating disorder of the 

CNS. It is defined by the amalgamation of monophasic or recurrent episodes of 

optic neuritis and longitudinally extensive transverse myelitis (LETM) (Banwell et 

al., 2008). This is evident as clinical features commonly include severe optic 

neuropathy with fixed visual loss of 20/200 or more and muscular weakness 

succeeding an acute event (Krupp et al., 2007). The criteria for diagnosis of NMO 

include; optic neuritis, acute myelitis and two of the three; 1) spinal cord MRI 

monolesion extended over three vertebral segments, 2) brain MRI not in 

accordance with diagnostic criteria for MS, 3) anti-aquaporin-4 (AQP4) IgG 

seropositive (Krupp et al., 2007, Krupp et al., 2013).  A unique feature of this 

disease is its association with a definitive antibody target –AQP4, a regulatory 

water channel protein. This was a fantastic breakthrough that has significantly 

aided NMO diagnosis. In adults anti-AQP4 antibodies (termed NMO-IgG) are 

detected in a significant group of NMO patients (73%) (Lennon et al., 2004, Jarius 

et al., 2007). Historically it was debated that NMO was a variant of MS but the 

identification of NMO-IgG has defined NMO as a distinct disease entity. 

NMO is considered an antibody-mediated disease. Pathological evidence strongly 

suggests that these autoantibodies play a role in disease as immunohistological 

studies have shown deposition of immunoglobulins and complement (Wingerchuk, 

2006). In addition to this, antibody and B cell targeted therapies such as plasma 

exchange and Rituximab have been partially effective (Kim et al., 2013a, Kim et al., 

2013b). There is evidence that the AQP-4 antibodies may cause pathology, these 
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include; loss of AQP4 from spinal cord lesions (Roemer et al., 2007), disruption of 

the BBB, astrocyte and oligodendrocyte loss/injury (Jarius et al., 2008, Saikali et al., 

2009, Wrzos et al., 2014). However, it remains to be fully determined if these 

autoantibodies are pathologically relevant. Studies in vitro where patient-derived 

IgG was injected intrathecally with complement into naïve animals led to 

pathological lesions associated with antibody-mediated damage after 7 days 

(Asgari et al., 2013, Asavapanumas et al., 2014). In addition these studies also 

showed there was also loss of AQP4 and glial fibrillary acidic protein (GFAP) (an 

astrocyte marker). Therefore, evidence reinforcing a pathologic role for these 

antibodies in disease. 

The NMO-IgG status was investigated in paediatric NMO in the hope of this also 

being a biologic marker for the childhood disease. A study of 17 children with 

definitive NMO revealed 8 to be NMO-IgG seropositive (47%). Therefore, these 

autoantibodies are present but not as prevalent in the childhood disease, 

highlighting NMO-IgG is not as useful for the diagnosis of children as it is for adults 

(Banwell et al., 2008). However, children with the relapsing NMO phenotype have 

much higher frequencies of NMO-IgG than the monophasic, 78% and 12.5%, 

respectively. 

 Another difficulty in NMO diagnosis is with lesion characteristics. In adults, 

longitudinally extensive spinal cord lesions are a very useful diagnostic tool for 

differentiating between NMO and MS. Unfortunately in childhood MS they can 

also present this type of lesion (Hahn et al., 2004), therefore it is not specific to 

NMO. In conclusion, similar to the other juvenile disorders described previously 

NMO can present as a spectrum of disorders and resemble features associated 

with childhood ADEM and MS (Lotze et al., 2008). 
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1.2.3 Idiopathic acute transverse myelitis 

Acute transverse myelitis (ATM) is an immune-mediated disorder that targets the 

spinal cord and is associated with a rapid onset of motor, sensory and autonomic 

dysfunction. It can exist in three different forms:- 

- As an isolated, monophasic entity (idiopathic) 

- As part of a multifocal CNS demyelinating disorder e.g. ADEM, MS and NMO 

- As part of a multi-systemic disease e.g. systemic lupus erythematosus (SLE)  

At first presentation of the patient they are diagnosed under the umbrella term of 

ATM. Initial steps are to exclude cases with associated diseases. Remaining 

patients with no identifiable cause are termed idiopathic ATM. These patients 

must present evidence of spinal cord involvement, through either an enhancing 

spinal cord lesion, increased white blood cell count or increased IgG index in the 

CSF (Wolf et al., 2012). In addition, time till peak disability must be between 4 

hours and 21 days. Reasons for onset of idiopathic ATM are unknown, as with the 

other demyelinating diseases discussed in this thesis, but inflammation is 

accompanied by cellular infiltration into the parenchymal and perivascular region 

associated with myelin loss and neuronal damage (Kerr and Ayetey, 2002). 

Approximately 20% of ATM cases occur in children, with disease incidence peaking 

between the ages of 0-2 and 5-17 (Banwell et al., 2009, Pidcock et al., 2007).  

Commenting on the literature as a whole, ATM along with ADEM and NMO can all 

present very similar clinical characteristics to paediatric onset MS. This contributes 

to the difficulty of making the correct diagnosis, essential for early and effective 

treatment of these patients. 
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1.3 MULTIPLE SCLEROSIS – A T CELL-MEDIATED AUTOIMMUNE 

DISEASE? 

Virtually all our mechanistic concepts of adult MS are derived from an animal 

model; experimental autoimmune encephalomyelitis (EAE).  The pathology of MS 

is still incompletely understood but is thought to involve the convergence of 

genetic susceptibility and undefined environmental factors that initiate 

autoimmune T cell and B cell responses directed against self CNS antigens. The 

concept that MS is an autoimmune disease derives primarily from studies in EAE 

that demonstrate this “MS-like” disease in terms of its pathology and clinical 

course can be induced in rodents and other species by breaking self-tolerance to 

CNS myelin antigens. This has shaped the development of therapeutic strategies 

for MS over the past thirty years, resulting in a range of disease modifying 

treatments that significantly reduce disease activity and frequency of relapses by 

disrupting the development of inflammatory response within the CNS. 

1.3.1 Evidence of CD4+ T cells in multiple sclerosis 

EAE studies led to MS generally being considered as a CD4+ TH1 cell dependent 

disease of the CNS. An important study performed in 1981 adoptively transferred T 

cells specific to MBP, a major CNS myelin protein, into rats (Ben-Nun et al., 1981). 

This highlighted effector T cells as possessing a central role in EAE as the T cells 

induced neuroinflammation in the CNS. Subsequently adoptive transfer of 

syngenic CD4+ T cells specific for a wide variety of different myelin and non-myelin 

CNS antigens was shown to induce focal inflammatory infiltrates in the brain and 

spinal cords of susceptible species  (Zamvil et al., 1985), indicating this arm of the 

immune response may play a major role in the development of MS lesions 

(Lassmann et al., 2001).   

EAE and MS pathology have a similar cellular composition in the active lesions 

(Lassmann, 1983). Early immunohistological studies of MS lesions from patients 

have identified the cellular infiltration of T cells over three decades ago, indicating 



Chapter 1 – General Introduction  16 
  
their role in MS pathology (Prineas and Wright, 1978, Traugott et al., 1983). An in 

depth collaborative study investigating the cells present in active MS lesions 

elucidated that T cells were ubiquitously found in all lesions of MS patients 

(Lucchinetti et al., 2000). Despite this, the lesions could be segregated into four 

distinct patterns. Pattern I was dominated by T cell and macrophage mediated 

inflammation and was evident in 12.3% of patients (Table 1.2). Evidence of T cells 

has also come from studies isolating T cells from the blood and CSF of MS patients, 

which revealed myelin-reactive T cells to be present (Allegretta et al., 1990, Chou 

et al., 1992, Soderstrom et al., 1993).  

1.3.1.1 TH1 T cells in MS 

TH1 cells have been the main focus of T cell studies in MS. Many features observed 

in MS lesions indicate a TH1-mediated inflammatory process particularly that MS 

pathology is similar to the pathology observed in TH1-mediated EAE. They 

predominantly cause damage and inflammation by activating macrophages via the 

secretion of interferon-γ (IFNγ) (Hendriks et al., 2005). Early studies in MS showed 

that numbers of IFNγ–secreting cells were higher in patients compared to controls 

(Olsson et al., 1990). In addition, the expression patterns of pro-inflammatory 

chemokines and chemokine receptors identified in MS lesions resembles that 

observed in EAE (Sorensen et al., 1999). However, since the discovery of TH1 cells T 

cell subsets have become increasingly more complex (Figure 1.1). 

1.3.1.2 TH17 T cells 

Having presumed TH1 cells to be the main drivers of MS pathogenesis it was then 

realised that there were other CD4+ T cell subsets involved; in particular IL-17 

secreting TH17 cells. A fundamental study by Cua et al. (2003) highlighted TH17 

cells role in EAE due to the discovery of IL-23, a structurally related cytokine to IL-

12, both having the subunit p40. Their experiments revealed that IL-23 was 

responsible for EAE, and not IL-12, which drives TH17 and TH1 differentiation, 

respectively (Yamane and Paul, 2013) (Figure 1.1). TH17 drives pathogenesis  
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Figure 1.1. Summary of the major CD4+ T cell subsets. 

Naïve CD4+ T cell is activated via its T cell receptor by its cognate antigen-derived peptide 
presented in the context of MHC class II (MHC II) on a dendritic cell (DC). The T cell then 
proliferates extensively and differentiates into a distinct T helper (TH) cell subset depending on the 
cytokine milieu; TH1, TH2, TReg or TH17 cells. These four subsets have distinct transcription factors 
and secrete unique cytokines, therefore providing them each with a different function in the immune 
response. Diagram was adapted from Yamane and Paul (2013). 
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primarily through the secretion of IL-17, but also through other pro-inflammatory 

cytokines like IL-6 (Langrish et al., 2005). Induction of EAE through passive transfer 

of TH17 has suggested they may have a role in neuroinflammation (Langrish et al., 

2005).  

Further evidence in EAE studies showed using IL-17 neutralising antibody and IL-

17-/- mice led to amelioration of disease (Hofstetter et al., 2005, Komiyama et al., 

2006). Studies in MS have not been conclusive but IL-17 producing cells are 

present in active lesions and in the peripheral blood of MS patients (Tzartos et al., 

2008, Fletcher et al., 2010). 

1.3.1.3 TH2 T cells 

It is commonly assumed that TH2 cells play an immuno-modulatory role in disease 

and that skewing the T cell response this way would have beneficial therapeutic 

effects, however this approach has been problematic (Hohlfeld, 1997). EAE studies 

have provided evidence as to why this might be, they identified that the transfer of 

TH2 cells into immunodeficient mice can induce disease with similar lesions to that 

observed in NMO patients (Lafaille et al., 1997). In addition, the presence of 

eosinophils and granulocytes at active MS lesion sites is also suggestive that a 

potentially harmful TH2 immune response is occurring (Lassmann et al., 2001, Rook 

et al., 2000). These studies contribute to the increasing heterogeneity and 

complexity observed in EAE and MS pathogenesis.  

1.3.1.4 T regulatory T cells 

The final major subset of CD4+T cells is FoxP3+ T regulatory T cells (TRegs) (Figure 

1.1). These cells have an important role in disease modulation, predominantly 

through the production of immunosuppressing cytokine IL-10 (Fujio et al., 2010). 

EAE models have shown that TRegs are capable of modulating neuroinflammation, 

but the extent of their role in MS is still unclear as histological studies of post 

mortem brain tissue did not find any TReg cells in active lesions (Venken et al., 
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2010). However, the relevance of all these T cell subsets in vivo is questionable as 

dissecting the roles of these different subsets in disease is compromised by their 

plasticity (Bluestone et al., 2009, Mucida and Cheroutre, 2010). 

1.3.2 Evidence of CD8+ T cells 

The adoptive CD4+ T cell transfer animal studies led to many predictions being 

been made about disease mechanisms occurring in MS lesions however it now 

appears that the pathogenesis of MS lesions may be more complex than originally 

presumed (Lassmann and Ransohoff, 2004). Firstly, immunohistological analysis of 

T cell subsets present in MS lesions found that CD8+ T cells outnumbered CD4+ T 

cells (Booss et al., 1983), and several other pathological studies have identified 

that clonal expansion is more prominent in CD8+ T cell compared to CD4+ T cells 

(Monteiro et al., 1995, Babbe et al., 2000). These data taken together indicate 

CD8+ T cells also play a significant role in disease pathogenesis (Johnson et al., 

2007, Denic et al., 2013). Experiments in EAE showed CD8+ T cells were capable of 

inducing a severe form of EAE through studies using the adoptive transfer of 

enriched MOG-specific CD8+ T in C57BL/6 mice (Sun et al., 2001). Another 

investigation recorded disease severity in CD4 and CD8 deficient mice after being 

immunised with MOG. This experiment led to both groups developing a milder 

disease course, suggesting both cell groups have a function in disease 

pathogenesis (Abdul-Majid et al., 2003).  

In general, the observation that T cells have a major role in MS has led to and 

shaped the development of many successful FDA approved T cell targeted 

therapies including IFNβ, glatiramer acetate and mitoxantrone, which are thought 

to specifically target T cells. In addition fingolimod, natalizumab and teriflunomide 

target lymphocytes and immune cells generally. These therapeutic approaches, 

however, are limited by non-responding patients, adverse effects and their 

inadequate efficacy in PPMS patients. 
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1.4 B CELLS IN MULTIPLE SCLEROSIS  

Although adoptive transfer of CNS-specific T cells provides an effective animal 

model of neuroinflammation in MS, it fails to recapitulate all the pathological 

features of MS. In particular disease activity in rat and marmoset models of T cell 

mediated EAE is not associated with extensive demyelination, a pathological 

hallmark of MS in humans. It is now recognised these models failed to develop 

significant primary demyelination because they lack autoantibodies targeting the 

myelin surface. This was resolved by the development of a ‘two-hit’ model using 

the co-transfer of T cells and pathogenic antibodies, which increased EAE severity 

and primary demyelination (Linington et al., 1988, Genain and Hauser, 2001). The 

experiment revealed that to reconstruct the immunopathology observed in MS 

these models required encephalitogenic T cells to inflame and breech the blood 

brain barrier (BBB), which allowed primary demyelinating autoantibodies to gain 

access to the CNS. These studies rekindled interest in B cell research in MS. 

1.4.1 Evidence of B cells in multiple sclerosis 

There is a wealth of evidence supporting a role for B cells in the pathology of MS, 

which is summarised in Table 1.1 and will be discussed in more detail below.  

1.4.1.1 Intrathecal synthesis of antibodies 

Intrathecal antibody production is used in the diagnosis of MS and analysis of CSF 

offers a novel insight into what immune mechanisms are acting in the CNS. OCBs 

are visualised using isoelectric focusing (IEF) and IgG immunoblotting (Luque and 

Jaffe, 2007). Preliminary studies by Kabat first described the presence of 

antibodies in the CSF of patients with MS (Kabat et al., 1942). Four decades later 

studies investigating a large patient cohort showed that greater than 90% of these 

patients had OCBs present in their CSF (Ebers and Paty, 1980). This feature is now 

a standard diagnostic tool for MS in addition to MRI scans (McDonald et al., 2001, 

Krupp et al., 2013). Subsequent studies have further tried to determine the clinical 
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Table 1.1. Evidence of B cell presence and role in patients with multiple sclerosis. 
This table details significant findings over the past 60 years that support B cells presence and 
importance in MS disease pathogenesis. Table adapted from Boster et al., 2010. 

 

significance of these OCBs but this still remains debated (Link and Huang, 2006). In 

one study one thousand CSF samples were screened in an attempt to find a 

correlation between the patient OCB profile and a specific disease phenotype but 

none was found (Ebers and Paty, 1980). However, other investigations showed an 

association between an increased number of OCBs and poorer disease prognosis 

(Zeman et al., 1996, Villar et al., 2002). The antigen specificity of these OCBs 

remains unknown although reports include viral and autoantigen targets. 

1.4.1.2 Evidence of clonally expanded B cells in the CNS of MS patients 

It is now evident that OCBs are derived from a clonally expanded B cell population 

sequestered in the CNS. To confirm this a study analysed the variable region of the 

IgG heavy chain genes of B cells isolated from the CSF of patients who had 

experienced clinical episodes suggestive of MS (Qin et al., 2003). This revealed that 

a substantial number of the patients’ B cells were clonally expanded and had also 

undergone somatic hypermutation, suggestive of positive selection via their B cell 

receptors. Subsequent investigations revealed that CSF Ig proteomes 

corresponded with the B cell transcriptomes. This indicated that the CNS 

sequestered B cells were responsible for the intrathecal antibody synthesis 
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observed, as opposed to peripheral B cells (Obermeier et al., 2008). These studies 

present strong evidence indicating that B cells are expanding and synthesising 

antibodies as part of a local antigen-driven response. This suggests that the CNS of 

patients with MS provides a niche that can support the long-term survival and 

differentiation of B cells. 

Early immunohistological studies highlighted the presence of B cells in the CNS of 

MS patients. Investigations analysed plaques from ten patients with MS and 

confirmed the presence of immunoglobulin-containing cells (Esiri, 1977). Further 

studies showed large numbers of plasma cells appeared to be particularly 

associated with patients who had chronic MS (Prineas and Wright, 1978). More 

recent investigations have focused on determining what B cell subsets are present 

in patient with MS. Using molecular studies, B cells present in MS lesions have 

been analysed providing evidence that they were clonally expanded (Owens et al., 

1998, Baranzini et al., 1999). B cell subsets have also been investigated in the CSF 

of MS patients which revealed the CSF to be enriched with a B cell subset found in 

secondary lymphoid organs and memory B cells (Corcione et al., 2004). Therefore, 

again promoting the idea that the B cell response compartmentalised within the 

CNS during neuroinflammation is capable of the mimicking of peripheral B cell 

differentiation. 

1.4.1.3 Ectopic follicles in the CNS 

The source of these clonally expanded B cells is still under debate and unlikely to 

be derived directly from the periphery. An immunohistological study of post-

mortem brain and spinal cord samples from patients with MS were stained for B 

cells, T cells and follicular dendritic cells. They found these cells and CXCL13, a 

chemokine constitutively expressed in the follicles of lymphoid tissue, was 

continually expressed in the cerebral meninges, suggesting this area has ectopic 

germinal centres (Serafini et al., 2004). Other investigations found lymphotoxin-α, 

CXCL12 and CXCL13 in the CSF of MS patients, all crucial mediators for lymphoid 

neurogenesis, (Corcione et al., 2004). It has also been discovered that B 
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lymphocytes can release lymphotoxin-α (Fu et al., 1998, Lorenz et al., 2003), and 

further studies showed that it was secreted selectively by the memory B cell 

subset (Duddy et al., 2007).  

Interestingly, in this study these ectopic structures were only found in SPMS 

patients and not RRMS (Serafini et al., 2004). Another study investigated the 

presence of B cell follicles in PPMS and SPMS patients, which again revealed that 

these ectopic lymph node structures only occurring in SPMS samples (Magliozzi et 

al., 2007). This suggests that B cell follicles are associated with a more progressive 

disease phenotype. These ectopic germinal centres are also found in other 

progressive autoimmune diseases like rheumatoid arthritis and Sjogren’s 

syndrome (Weyand and Goronzy, 2003, Salomonsson et al., 2003). 

1.4.1.4 Evidence of therapeutic effects of B cell depletion 

Although current first line treatments for MS use broad immunosuppression to 

relieve disease symptoms the need for more specific treatments and the 

knowledge that B cells have a function in MS has led to B cell depletion emerging 

as a new treatment for this neurological disease.  

Initial studies in this field used rituximab, a monoclonal chimeric anti-CD20 

antibody. It was first approved to treat rheumatoid arthritis and lymphoma and 

then researchers turned to investigate its effects in MS. These studies discovered 

that rituximab can be efficacious in RRMS patients (Hauser et al., 2008).  The initial 

clinical trial in RRMS patients demonstrated very promising results, where patients 

in the treatment group exhibited a significant decline in the number of gadolinium-

enhancing lesions and a reduction in relapses (Hauser et al., 2008). Importantly 

there were no significant safety issues with these trials. Intriguingly, these studies 

also revealed that although rituximab decreased disease these clinical effects 

preceded any decrease in antibody serum levels, suggesting the clinical effect of B 

cell depletion was independent of any direct effects on antibodies. Analysis of 

patient CSF 6 months after treatment using flow cytometry showed a diminution 
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of B cells, which was also associated with a reduction in T cells (Cross et al., 2006). 

Rituximab was also trialled in PPMS but overall comparison between the placebo 

and treated group showed no significant improvement in disease. However, 

analysis of subgroups showed significant benefits in younger patients (< 51 years 

old) (Hawker et al., 2009).  

These very promising results fuelled the development of a second generation of 

anti-CD20 monoclonal antibodies; ocrelizumab and ofatumumab (Deiss et al., 

2013). Encouraging results in RRMS patients have been seen with ocrelizumab, 

which is a humanised anti-CD20 monoclonal antibody (Kappos et al., 2011). The 

study showed that gadolinium-enhancing lesion numbers were reduced 89% in the 

treated group. Another anti-CD20 monoclonal antibody under investigation is 

ofatumumab, which is a fully human monoclonal antibody (Castillo et al., 2009). A 

phase II study of in RRMS patients has just been published, which showed B cells 

were selectively diminished in parallel with suppression of lesion activity (Sorensen 

et al., 2014). This new drug was also well tolerated with no adverse effects. 

These studies all support the role of B cells in MS disease pathogenesis, as 

depletion of CD20+ B cells resulted in a significant decrease in active lesion 

numbers. The mechanisms by which this disease suppression is induced is still 

unclear (Hawker, 2008). It has become apparent that the clinical benefits are not 

due to the removal of antibodies as antibody-secreting plasma cells are CD20-, 

therefore are not depleted and serum Ig levels remain unaffected. However, B 

cells do have other significant functions in disease pathogenesis. 

1.4.2 The functional significance of B cells in multiple sclerosis 

Studies on the functional role of B cells in MS have traditionally concentrated on 

their antibody production and patho-mechanisms associated with these antibodies 

(which will be discussed in section 1.5) but in addition to this they also have 

important functions independent of antibody production (Boster et al., 2010). 
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Interest has focused on two major mechanisms of B cell-mediated immune 

modulation. 

1.4.2.1 Production of cytokines by B cells in MS 

B cells can secrete a range of cytokines that play a role in modulating immune 

responses. It has been found that B cells produce different cytokines depending on 

their environment. They can be induced to produce IFNγ when cultured with TH1 

cells (Harris et al., 2005a), or IL-4 when cultured with TH2 cells (Harris et al., 

2005b). This dichotomy has been described as two different B cell effector subsets, 

namely, Be1 and Be2, where each subset produces a distinct cytokine profile 

(Harris et al., 2000). B cells have also been shown to produce IL-6 which was shown 

to contribute to EAE severity as when B cell-specific IL-6 production was deleted 

EAE disease burden was ameliorated (Barr et al., 2012). In addition to this TH17 

cells were decreased suggesting B cell secreted IL-6 was supporting TH17 cells. 

They have also been shown to produce other pro-inflammatory cytokines such as 

TNFα, IL-12, and LTα, a cytokine involved in lymphogenesis (Lund, 2008). Overall, 

these data suggest that B cell cytokines play a role in supporting effector T cell 

differentiation, thereby potentiating disease. 

In contrast to their pro-inflammatory functions very early studies provided 

evidence of B cells having a regulatory function. These studies in guinea pigs 

revealed that B cells could delay hypersensitivity responses (Katz et al., 1974, Neta 

and Salvin, 1974). Later, Janeway and colleagues performed the first experiment in 

EAE models to reveal an increased disease severity in B cell deficient mice (Wolf et 

al., 1996). Therefore, suggesting that these cells are needed to regulate disease. 

Further studies showed that B cells modulated the immune system through 

supressing effector T cells (Akdis and Blaser, 2001), and it has been identified that 

they do this predominantly via the secretion of IL-10 (Fillatreau et al., 2002, 

Matsushita et al., 2010). However, they can also modulate the immune response 

through a variety of other ways like inhibiting cytokine secretion from monocytes 

and macrophages (Fiorentino et al., 1991). B cells may also mediate immune 
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suppression via TGF-β1 secretion, which has been shown to modulate TH1 cells 

(Tian et al., 2001). 

There have been multiple studies attempting to characterise this regulatory 

population. One study defined these B cells as a small population of splenic B cells 

which are phenotypically distinct, CD1dhighCD5+ (Yanaba et al., 2008, Matsushita et 

al., 2008). Most recently it has been identified that BRegs may be a subset of plasma 

B cells and in addition to IL-10 also secrete immunosuppressing IL-35 (Shen et al., 

2014). Interestingly, studies in MS patients showed that their B cells were skewed 

as their ability to produce IL-10 was significantly reduced (Duddy et al., 2007), 

suggesting that the reduction in regulatory B cells may contribute to disease 

severity.   

1.4.2.2 B cells are efficient antigen-presenting cells 

For T cells to adopt their encephalitogenic effector functions in an immune 

response they must first encounter their cognate antigen in the periphery, then 

migrate to the CNS and be presented with it again. B cells are thought to play an 

important role in driving disease via antigen presentation to primed cognate T cells 

in the CNS. It is now established that B cells are exceedingly efficient antigen 

presenting cells (APCs) and can potentiate disease by promoting antigen-specific 

pro-inflammatory T cell responses (Lehmann-Horn et al., 2013). Antigen-specific B 

cells are specialised in processing and presenting protein antigen, which they 

uptake via their B cell receptor (Lanzavecchia, 1985, van der Veen et al., 1992).  

Experimental studies suggest that disease reduction in EAE is most likely due to the 

loss of antigen-specific B cells that act as highly efficient APCs for their cognate 

antigen. Furthermore, T cell priming and proliferation was greatly impaired in B 

cell deficient mice, suggesting that T cells were dependent on B cell antigen 

presentation (Rivera et al., 2001). This study also showed that B cell presentation 

was necessary for T cell priming when there were low levels of antigen available. 

Subsequent investigations reinforced the crucial role of B cells APC function in EAE 
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by using mice deficient in MHC II in B cells only. This revealed that these mice were 

resistant to MOG-induced EAE (Molnarfi et al., 2013). They also made a transgenic 

mouse with MOG-specific B cell receptors, which could not secrete antibody. 

These mice were not resistant to MOG-induced EAE, again indicating B cells have a 

pivotal cellular function during disease pathogenesis which is independent of 

autoantibody-mediated inflammation. 

B cell antigen presentation may not only serve to activate antigen-specific T cells 

but could also establish a feedback loop. Research showed products were secreted 

by the activated T cells, CD40L and IL-4,  which directly induced changes in the B 

cells, which appeared to be crucial for their ability to process and present antigen 

to T cells (Harp et al., 2008).  Although the exact mechanisms underlying the 

clinical benefits observed with Rituximab and other anti-CD20 drugs are still not 

clear, it is thought that the effects are due to loss of B cell antigen presentation 

function (Weber et al., 2010). Here, B cell depletion led to a decrease in MOG-

specific TH1 and TH17 cells during MOG-induced EAE. This suggests that antigen 

presentation by these activated B cells induced T cell differentiation into pro-

inflammatory effector T cells. Overall, it is now apparent that B cells have an 

important role as APCs during neuroinflammation, aiding T cell activation and 

polarisation, which should be taken into account when investigating B cell 

therapies. 

 

1.5 AUTOANTIBODIES IN MULTIPLE SCLEROSIS  

1.5.1 Evidence of antibody-dependant mechanisms in MS 

In addition to the presence of OCBs and intrathecal synthesis of antibodies 

previously discussed, there are several other observations that implicate 

autoantibodies in the pathology of MS. These are derived from a number of 

sources:- 
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- Immunoglobulin deposition in MS lesions 

- The benefits of therapeutic plasma exchange (TPE) 

Evidence of immunoglobulin deposition and complement activation in MS lesions 

was described in a crucial paper by Lucchinetti et al. In this international 

collaborative study large numbers of autopsy and biopsy material was acquired to 

try and identify immuno-pathologic correlates to demyelination (Lucchinetti et al., 

2000). Previous investigations had involved only small cohorts, resulting in very 

heterogeneous outcomes. Therefore, this large, collaborative effort revealed that 

despite all lesions ubiquitously showing infiltration of T cells and macrophages 

there were four distinct patterns that existed within these lesions (Table 1.2). The 

pattern varied between patients but was consistently found within an individual 

patient. This was a fascinating discovery as it reflected the clinical heterogeneity 

seen in the diverse presentations of MS and also offered insights into how to treat 

individual patients. Interestingly the most common pattern was pattern II, 

deposition of antibodies and complement activation, which was found in around 

50% of the patients in the study. Thus, this study highlighted antibody and 

complement-mediated demyelination as an immuno-dominant mechanism in 

disease pathogenesis.  

The interpretation of this study remains controversial and debated by other 

researchers but the results remain a pivotal finding of great importance with many 

subsequent studies being based on it. One study to dispute these findings was 

Barnett et al. (2009), as they observed the presence of co-deposition of antibodies 

and activated complement (pattern II) in autopsy tissue from patients with other 

neurological diseases as well as MS patients, therefore presenting it as a non-

specific feature and questioning the exclusivity of this pathology to MS. In addition 

to this, another study in contrast to Lucchinetti’s did not find any heterogeneity in 

active demyelinating lesions amongst patient brain tissue samples (Breij et al., 

2008). They uniformly observed activated complement and antibodies present in 
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all their autopsy samples, suggesting there are no different subtypes of lesions in 

MS patients.  

It is currently not known if these four lesion patterns are relevant to paediatric MS 

but in one rare case where a biopsy sample was attained showed the patient had 

pattern I lesion with infiltration of foamy macrophages and T cells. The sample did 

not show any evidence of immunoglobulin or complement deposition and 

activation (Hoche et al., 2011).  

Evidence for the role of antibodies in disease also comes from the beneficial 

clinical effects observed in a subset of MS patients after therapeutic plasma 

exchange (TPE). This process involves the removal of blood from a patient and  
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Table 1.2. Heterogeneity of MS lesions described by Luccinetti et al., 2000. 
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then plasma is separated from blood cells and replaced without the pathogenic 

antibodies and other harmful immune factors (Schroder et al., 2009). TPE is 

commonly used and a well-established therapy in other neurological diseases with 

autoantibody involvement such as myasthenia gravis and Guillain-Barré syndrome, 

but is not as well described in MS treatment. 

Clinical studies investigating the effects of TPE with SPMS patients, with EDSS score 

varying from 5 to 6.5, revealed that this approach could help stabilise and reduce 

subsequent neurological defects in this patient group, who commonly don’t 

respond as well to other treatment regimens (Grapsa et al., 2008). In fact many 

studies have shown efficacy with TPE in progressive patients who haven’t 

responded to conventional therapies like IFNβs or steroid methylprednisolone 

(Khatri, 2009, Trebst et al., 2009, Meca-Lallana et al., 2013). TPE was well tolerated 

and had a clear beneficial effect on these steroid-unresponsive RRMS patients 

(Trebst et al., 2009).  However, TPE does not work in every patient case and this is 

likely due to the heterogenic nature of MS. A retrospective study of patients who 

were treated with TPE discovered a very interesting correlation (Keegan et al., 

2005). They revealed that patients with pattern II lesions, i.e. with complement 

and antibody deposition, responded much more favourably to the treatment than 

patients with other lesion classifications. Therefore this study related TPE efficacy 

with the presence of autoantibodies.  

The pathological relevance of antibodies in MS has been questioned in vitro using 

myelinating cultures and treating them with patient derived IgG and complement 

(Elliott et al., 2012). This study demonstrated that approximately 30% of the MS 

patients had antibodies that had demyelinating properties in vitro and that some 

patient IgG samples also mediated axonal loss. Myelin loss was only seen in a 

subset of patients, which offers an explanation as to why TPE and B cell depleting 

treatments are only effective in some patients. These pathogenic antibodies were 

targeting antigens on myelinating oligodendrocytes and myelin sheaths. Although 

the most likely antibody target was MOG, demyelination still occurred after the 
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MOG-specific repertoire had been depleted. This study provided evidence that 

autoantibodies could have a demyelinating role in MS pathogenesis.  

1.5.2 Potential targets for autoantibody mediated demyelination  

Experimental studies demonstrate autoantibodies targeting epitopes exposed on 

the surface of oligodendrocytes and their myelin sheaths exacerbate 

demyelination and disease severity in EAE. The identity of antigen(s) recognised by 

pathogenic, in this case demyelinating, autoantibodies in MS remains controversial 

with many antigens being implicated (Table 1.3). The crucial point to bear in mind 

is that in order to induce primary demyelination any relevant target must be 

accessible to the antibody in the extracellular milieu. However, it should be 

documented that antibody responses recognising epitopes which become exposed 

once demyelination is initiated may have an indirect role in mediating further 

tissue damage. 

The molecular composite of the CNS oligodendrocyte myelin continuum is now 

well characterised. Compact internodal myelin is a multi-lamellar structure derived 

from the oligodendrocyte plasma membrane containing 20-30% protein (dry 

weight) (Figure 1.2). Due to its multi-lamellar structure not all of its proteins and 

lipids are readily accessible to autoantibodies. Potentially pathogenic antibodies 

will have far greater access to the outermost components of the myelin sheath 

and associated membrane which are enriched in a larger number of proteins and 

glycolipids. 

There are a variety of screening protocols implicated to identify potential 

candidate antigens, ranging from direct analysis of serum or CSF to generating 

recombinant antibodies from clonally expanded plasma cells from MS patients. 

Despite great efforts the elusive antibody target(s) in MS is still unknown but many 

candidate antigens have been identified in the process.  
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Table 1.3. Candidate autoantibody targets in multiple sclerosis. 

 

(Gresle et al., 2014, Fialova et al., 2013a, Fialova et al., 2013b, Amor et al., 2014, 

Reindl et al., 1999, Egg et al., 2001, Chiba et al., 2006, Mansilla et al., 2012) 
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Figure 1.2. The composition of the myelin sheath within the central nervous system. 
This myelin sheath composite diagram summarises the main proteins in the myelin sheath, all of 
which are candidate targets for the immune response during MS, including oligodendrocytes and 
axons. The myelin sheath is a multi-layer membrane synthesised by oligodendrocytes. It is mainly 
composed of lipids (80%); cholesterol (not represented), phospholipids (small light green circles) 
and glycosphingolipids (blue circles). 30% of the sheath is made up of proteins including; MAG, 
myelin-associated glycoprotein; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid 
protein; MBP, myelin basic protein. MOG is the only protein found on the outermost surface of the 
myelin sheath, therefore making it a candidate antigen for primary demyelination. PLP is a 
transmembrane protein although may transiently be expressed on the surface during development. 
MBP makes up 30% of the myelin membrane. It is located in the cytoplasm apposition (yellow), 
and is required for the compaction of the cytoplasmic glia surfaces at the major dense lines. MAG 
is located at the periaxonal side of the myelin sheath. Figure adapted from Hemmer et al. (2002). 
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1.5.2.1 Myelin lipids as pathogenic targets in MS 

The lipid content of myelin is made up of three components; cholesterol, 

phospholipids and glycolipids in a ratio of approximately 2:2:1 (Podbielska and 

Hogan, 2009, Greer, 2013). Glycolipids constitute 27.5% of the dry weight of the 

myelin sheath and consist of three main constituents; sulfatides, 

galactocerebroside (GalC) and gangliosides.  

Sulfatide is enriched in the CNS myelin sheath and is expressed on the outermost 

surface, therefore leaving it exposed to autoantibody attack. Sulfatide and GalC 

play an essential role in the maintenance and function of CNS myelin as 

demonstrated in studies using genetically modified mice in which the enzyme 

essential for their biosynthesis (ceramide galactosyltransferase) is knocked out 

(Bosio et al., 1996, Bosio et al., 1998). These mice showed conduction 

abnormalities due to dissolution of the myelin sheath. Many research groups have 

reported the presence of anti-sulfatide IgM and IgG antibodies in CSF and/or 

serum from MS patients (Ryberg, 1978, Ilyas et al., 2003, Kanter et al., 2006, 

Brennan et al., 2011). Pathologic potential of this response was demonstrated by 

focal demyelination as a result of the implantation of O4 monoclonal antibody 

secreting hybridoma into the spinal cord of rats (Rosenbluth et al., 2003).  Further 

animal studies also showed that co-immunisation with sulfatide and myelin 

peptide induced a more severe EAE than with myelin peptide alone and that the 

addition of anti-sulfatide antibodies increased disease severity (Kanter et al., 

2006). However, sulfatide antibody reactivity has also been detected in other 

autoimmune diseases (Aotsuka et al., 1992, Ilyas et al., 1991), and in healthy 

controls (Avila et al., 1993).  

GalC accounts for around 25% of the myelin lipid and is also situated on the outer 

surface of the myelin bilayer, so like sulfatide, is exposed to a pathogenic antibody 

attack. Studies in human disease have shown the presence of GalC-specific 

autoantibodies in RRMS patients, compared to CIS, SPMS and PPMS (Menge et al., 

2005b). Again, their role in immune-mediated demyelination is unknown but EAE 
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studies have revealed that GalC has encephalitogenic properties (Raine et al., 

1981, Moore et al., 1984), and that anti-GalC antibodies can augment EAE (Fierz et 

al., 1988), therefore suggesting that these antibodies are potentially pathogenic. 

A very complex group of glycolipids is the gangliosides, which are sialic acid-

bearing glycolipids present in the myelin sheath in many different structural forms. 

They are of interest as they are one of the main lipids found on the surface of the 

myelin sheath. Anti-ganglioside reactivity has been detected in numerous MS 

studies; namely anti-GD2, GM3, GM4 and GD1a (Kasai et al., 1986, Sadatipour et 

al., 1998, Mata et al., 1999, Marconi et al., 2006). However, their relevance in 

disease is still unknown. 

1.5.2.2 Major proteins as pathogenic targets in MS 

Numerous antibody responses to myelin associated proteins have been reported 

in MS (Table 1.3). However, only a few candidates are of particular interest due to 

having significant supporting evidence. MBP was originally thought to be a major 

autoantibody target as it comprises around 30% of the myelin sheath; however it is 

only present within compact myelin, therefore is not readily accessible. The most 

important protein is MOG and it is a well characterised target for antibody-

mediated demyelination in EAE. Recently, MOG-specific antibodies have been 

found to be present in a subgroup of MS patients (McLaughlin et al., 2009, Reindl 

et al., 2013b)(MOG will be discussed in detail in the next section). 

A very exciting autoantibody target most recently identified is the potassium 

channel KIR4.1, which is expressed on glial cells and is thought to function in 

oligodendrocyte and myelin development (Neusch et al., 2001), and maintaining 

the electro-chemical gradient in the cell membrane of astrocytes (Kucheryavykh et 

al., 2007).  It was demonstrated that 47% of the MS patients analysed had KIR4.1 

reactive antibodies (Srivastava et al., 2012). They further went on to show that 24 

hours after anti-KIR4.1 patient derived antibodies were injected into the cisterna 

magna of mice there was disruption of GFAP architecture, loss of KIR4.1 staining 
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and deposition of C9neo, a marker of complement activation, suggesting these 

antibodies have pathogenic potential in vivo. More recent studies analysing brain 

tissue from MS patients showed evidence of an immune response being mounted 

against KIR4.1 (Schirmer et al., 2014). Its reactivity has also been investigated in 

paediatric demyelinating disorders, which observed that 57.5% patients had serum 

antibodies to KIR4.1 (Kraus et al., 2014). Therefore, these data highlight KIR4.1 as a 

new, potentially important antibody target in both adult MS and in juvenile 

demyelinating disorders. 

Other antigens may not normally be accessible in mature myelin sheaths but may 

be expressed on the outermost surface of the oligodendrocyte myelin continuum 

during myelination/remyelination. Potential targets here include; PLP, neurofascin 

and myelin-associated glycoprotein (MAG). 

PLP is the main protein component of the CNS myelin, which makes up around 

17% of the protein constituent. It plays a role in the spacing of myelin lamellar at 

the intraperiod lines (Figure 1.2). There is not a vast amount of evidence 

supporting PLP autoantibodies in MS, however, B cells secreting PLP-specific 

antibodies were detected more frequently in the blood and CSF of MS patients 

compared to control patients (Sun et al., 1991).  However, another study found 

that PLP antibody reactivity was only present in a very small percentage of MS 

patients (1%) (Warren and Catz, 1994). Implantation of O10 hybridoma cells, which 

secrete an antibody recognising a surface exposed PLP epitope, into the CNS of 

adult and juvenile rats demonstrated that anti-PLP antibodies can mediate 

demyelination (Rosenbluth and Schiff, 2009). In addition, in juvenile rats this was 

associated with a widening of the intraperiod dense lines which was attributed to 

incorporation of IgM between PLP-containing surfaces of the myelin sheath.  

MAG is a minor protein of the myelin sheath, which makes up less than 1% of the 

CNS myelin composition. It is a type I trans-membrane glycoprotein located in the 

periaxonal myelin sheath. Therefore, in healthy myelin it is sequestered making it 
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an unlikely target for primary demyelination (Quarles, 2007). However, preliminary 

immunocytochemistry studies of MS lesions indicated a selective loss of MAG at 

the edges of developing plaques (Itoyama et al., 1980, Johnson et al., 1986). This 

was also observed in subsequent immunohistochemistry studies by Lucchinetti et 

al. (2000), which showed that a subset of MS patients had preferential loss of MAG 

around the edge of lesions (pattern III, (Table 1.2)). Despite this, only a few, early 

studies of small cohorts have been able to detect a MAG-specific antibody 

response in patients. One CSF study showed MAG-specific antibody binding was 

significantly higher in MS patients than in control patients (Wajgt and Gorny, 

1983). Another group analysed the specificity of antibodies secreted by B cells 

isolated from the CSF of 25 patients with MS (Baig et al., 1991). This study revealed 

approximately half of the MS cohort contained B cells secreting IgG antibodies 

recognising MAG. However, in both studies some anti-MAG reactivity was also 

observed in control patients, suggesting this was not a disease specific response. 

Autoantibodies present in MS patients are not just reactive against myelin, there 

are also axon-specific antibody targets (Derfuss et al., 2010). Neurofascin is a cell 

adhesion molecule and exists in two isoforms, neurofascin-155 (Nfasc-155) and 

neurofascin-186 (Nfasc-186). Nfasc-155 is produced by oligodendrocytes and is 

sequestered at the paranodal axo-glial junction and is required for correct 

organisation of the paranodal junction (Vyshkina and Kalman, 2008). On the other 

hand, Nfasc-186 is a neuronal product and is located at the node of Ranvier where 

it is exposed to the extracellular milieu (Sherman et al., 2005). Studies in MS 

lesions revealed changes in the expression and distribution of Nfasc-155 

suggesting it might be an autoantibody target during disease pathogenesis (Howell 

et al., 2006, Maier et al., 2007). Investigations in MS patients using ELISA detected 

Nfasc-155 and Nfasc-186 autoantibodies in around a third of the serum samples 

(Mathey et al., 2007). Subsequent observations of these Nfasc-specific antibodies 

in vitro and in vivo revealed that Nfasc-186-specific antibodies led to inhibition of 

axonal conduction, axonal injury and exacerbation of EAE (Mathey et al., 2007). 

Another group showed that the adoptive transfer of serum from hNfasc-186 
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primed rats exacerbated EAE compared to serum from hNfasc-155 and complete 

Freund’s adjuvant (CFA) controls and that this increase in disease was associated 

with axonal injury (Lindner et al., 2013). These data collectively indicate that Nfasc-

186-specfic antibodies could induce antibody-mediated damage in MS. 

 

1.6 MYELIN OLIGODENDROCYTE GLYCOPROTEIN AS AN 
IMMUNE TARGET IN PAEDIATRIC MULTIPLE SCLEROSIS 

1.6.1 MOG: A historic perspective 

MOG is a type I membrane protein which is expressed exclusively in CNS myelin. 

Its structure consists of an extracellular IgV-like domain, a transmembrane domain 

and a short cytoplasmic tail (Figure 1.3). MOG was first identified as a minor CNS 

glycoprotein in 1984 (Linnington et al., 1984), and over the past 30 years the role 

of MOG in MS has been researched extensively. This interest is based on animal 

experiments where it was initially highlighted as an immuno-dominant target for 

demyelinating antibodies in EAE (Linnington et al., 1984). This reflects its exposure 

on the outer most surface of the myelin/oligodendrocyte continuum, where it is 

available to bind MOG-specific antibodies present in the extracellular milieu 

(Linington et al., 1989). This feature sets it apart from the other CNS antigen, which 

are sequestered within the myelin sheath and normally inaccessible to antibodies. 

Further studies showed that MOG not only provides a target for demyelinating 

autoantibodies, but also contains T cell epitopes capable of triggering 

encephalitogenic CD4+ and CD8+ T cell responses (Mony et al., 2014). This ability of 

MOG to induce demyelinating autoantibody and encephalitogenic T cell responses 

in experimental animals make it a unique component of the CNS myelin, and 

account for its ability to recapitulate the MS-like disease induced by immunisation 

with whole myelin or spinal cord homogenates in rats and marmosets (Genain et 

al., 1995). MOG-induced variants of EAE in the mouse are now the most commonly  
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Figure 1.3. Myelin oligodendrocyte glycoprotein structure. 
Ribbon diagram of overall myelin oligodendrocyte (MOG) structure taken from Breithaupt et al. 
(2003). This figure demonstrates MOGs extracellular IgV-like structure comprising of two anti-
parallel β–sheets (blue and green), and its short cytoplasmic tail. 
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used animal model for MS, but it should be noted that not all animal 

strains/models are associated with a demyelinating MOG-specific autoantibody 

response, including MOG35-55-induced EAE in C57BL/6 mice (Bourquin et al., 2003).  

It is also currently unknown why this anti-MOG response develops. One attractive 

hypothesis is through molecular mimicry with dietary or microbe components, e.g. 

butyrophilin1a1 (BTN1a1) and Epstein-Barr virus (EBV), respectively. BTNa1 is 

mammalian milk protein, which expresses a high level of homology with the 

extracellular domain of MOG. Studies have proven molecular mimicry exists 

between MOG and BTNa1 and MS patients have BTN-specific antibody responses, 

suggesting BTN1a1 dietary exposure could modulate future immune responses to 

MOG (Stefferl et al., 2000, Guggenmos et al., 2004). 

Demyelinating MOG-specific antibodies appear to bind to conformational-

dependent, exposed epitopes of the protein (Brehm et al., 1999). This was formally 

demonstrated following elucidation of the crystal structure complex formed when 

the Fab region of the demyelinating MOG-specific mouse mAb 8-18C5 bound to 

MOG (Breithaupt et al., 2003). This experiment showed MOGs dominant binding 

epitope involved amino acid residues 101-108, which account for 65% of the total 

contact area. The introduction of single point mutations in this region reduced 

cognate recognition of MOG by polyclonal MOG-specific sera by >90% and 

completely inhibited its recognition by 9 out of 10 monoclonal antibodies, showing 

its importance. 

1.6.1.1 The MOG-specific T cell response identified in MS 

Later investigations have researched the encephalitogenic MOG-specific T cell 

repertoire and subsequently mapped the T cell epitopes for a variety of rat and 

mouse strains. Predominantly MHC class II restricted epitopes have been 

identified; MOG35-55 in C57BL/6J mice (Mendel et al., 1995), MOG8-21 and 35-55 in 

Biozzi ABH mice (Amor et al., 1994), and MOG79-96 in DBA/1 mice (Abdul-Majid et 

al., 2000). In addition to this a MOG epitope, MOG35-55, has also been identified 
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which is recognised by MHC class I restricted CD8+ T cells in C57BL/6J mice (Sun et 

al., 2001). 

In MOG-induced models of EAE the MHC class II T cell restricted response is crucial 

as this is required to initiate an inflammatory response in the CNS and disrupt the 

BBB function; the latter being a pre-requisite if MOG-specific autoantibodies are to 

gain access into the CNS and induce demyelination. In addition they are also 

essential for the initial activation of B cells that ultimately results in the secretion 

of high affinity anti-MOG IgG antibodies. 

1.6.2 MOG-specific antibodies are present paediatric MS patients 

Originally, studies investigating the MOG response in human disease led to 

conflicting results due to the use of different methodologies (Table 1.3). Early 

studies attempting to detect MOG-specific autoantibodies in patients used solid-

phase immunoassays, such as enzyme-linked immunosorbent assay (ELISA) and 

western blotting and used antigen derived from a variety of sources including  

MOG isolated from human white matter (Xiao et al., 1991), human MOG 

expressed in E.Coli (Reindl et al., 1999) and recombinant mouse MOG expressed in 

transfected mammalian cells (Gaertner et al., 2004). These assays lacked the 

specificity required to differentiate between pathogenic and non-pathogenic 

MOG-specific autoantibodies and resulted in confusion as to the clinical 

significance of this MOG-specific autoantibody responses in MS (Kuhle et al., 

2007).  

This problem was resolved by the introduction of cell based assays that used live 

MOG transfected cell lines as a target to identify autoantibodies that bound MOG 

in its native conformation at the cell surface (Haase et al., 2001). This methodology 

revealed that previous reports of MOG reactivity as detected by ELISA or western 

blotting in patients and controls were mostly irrelevant with respect to 

demyelination, as it was unable to bind to the native protein.  Indeed it is now 

recognised that potentially pathogenic MOG-specific autoantibodies are only  
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Table 1.4. Different methodologies used to detect anti-MOG antibodies in MS and other CNS 
disorders. 
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detected in a small number (4 to 5%) of cases of adult onset MS, although the 

frequency is much higher in paediatric MS and ADEM patients, around 20%  and 

40%, respectively (McLaughlin et al., 2009, Brilot et al., 2009).  

The clinical significance of this MOG-specific autoantibody response in paediatric 

inflammatory demyelinating diseases remains unproven, but MOG-specific 

antibodies with similar properties mediate demyelination and exacerbate disease 

severity in animal models of MS (Linington et al., 1988).  Early studies 

demonstrated MOG-specific antibodies are not only associated with myelin 

damage in marmosets with EAE, but also in some cases of MS providing 

circumstantial evidence that the MOG-specific antibody response is involved in 

lesion formation (Raine et al., 1999, Genain et al., 1999). Moreover, McLaughlin et 

al. (2009) reported IgG1 as the predominant isotype of the MOG-specific 

antibodies detected in patients with MS, thus providing evidence that they are in 

theory capable of mediating complement-dependent demyelination.  

Taken together these observations identify MOG as a potential  candidate for the 

development of antigen-specific therapies that might prove beneficial in paediatric 

MS and ADEM,  an approach that may circumvent the many adverse effects 

associated with current treatments that rely on far broader immunosuppression.   

 

1.7 THE USE MOG-SPECIFIC THERAPIES IN THE TREATMENT 
OF MULTIPLE SCLEROSIS 

Current immunotherapies are based on broad suppression of the immune system 

but an alternative approach is to develop autoantigen-specific therapies, which 

requires the identification of appropriate antigen candidates. Recent studies on 

paediatric MS patients have revealed a high incidence of MOG-specific 

autoantibody responses (McLaughlin et al., 2009, Brilot et al., 2011), identifying 

this myelin antigen as a prime target for the development of an autoantigen-
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specific therapy. The preliminary analysis of two such MOG-specific therapeutic 

approaches are discussed in detail in this thesis; (i) treatment with a MOG-specific 

B cell immunotoxin and (ii) induction of antigen-specific tolerance using low doses 

of soluble MOG. These chapters demonstrate that MOG-specific immunotherapies 

could be efficacious for the future treatment of patients with MS.  

 

1.8 THESIS AIMS 

In response to the large body of evidence supporting the presence of myelin-

specific autoantibodies, particularly targeted to MOG, in MS disease pathogenesis, 

a primary goal of this thesis was to elucidate the function of these antibodies using 

an established in vitro bioassay (Elliott et al., 2012). 

In parallel to this, two therapeutic approaches were investigated in vivo in animal 

models, which targeted the anti-MOG response;  

(i) MOG-specific B cell immunotoxin 

(ii) Low doses of soluble MOG 

These aims were addressed individually in the hope of furthering our knowledge 

on autoantibody function in MS and in antigen-specific therapies with the 

aspiration of elucidating a novel treatment for people with MS.



 
 

 

CHAPTER TWO 
 

MATERIALS AND METHODS 



 
 

2 MATERIALS AND METHODS 

2.1 ANIMAL EXPERIMENTS 

2.1.1 Animals 

2.1.1.1 Mice 

Throughout this study female DBA/1j mice were used, which were between 7-8 

weeks old. The mice were maintained at the University of Glasgow Central 

Research Facility. 

All mice were purchased from Harlan Laboratories (Blackthorn, UK). All animal care 

and procedures were in accordance with the Animals Scientific Procedures Act, 

1986, under a project license (No. 60/4314) and personal license (No. 60/12872), 

issued by the UK Home Office and with approval from the University  of Glasgow 

Ethical Review Process Applications Panel. 

2.1.1.2 Rats 

Sprague Dawley (SD) rats were used in this study. They were maintained at the 

University of Glasgow Central Research Facility. 

The rats were purchased from Harlan Laboratories, UK. All animal care and 

procedures were the same as section 2.1.1.1. 

2.1.2 Induction of experimental acute encephalomyelitis (EAE) in 
DBA/1j mice 

2.1.2.1 MOG1-125 induced EAE 

Recombinant MOG 1-125 (rMOG) (purified as per section 2.7.1) was diluted with 

phosphate buffered saline (PBS), and then mixed to make an emulsion with an 

equal quantity of incomplete Freund’s adjuvant (IFA) (Sigma Aldrich, Dorset, UK), 

which was supplemented with 3 mg/mL of heat-inactivated Mycobacterium 
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tuberculosis H37RA (Difco Laboratories, Detroit, MI) by forcing the two solutions 

through a 24G connector bridging two syringes. Mice were injected 

subcutaneously (s.c.) at base of tail with 50 µg/100 µL.  

2.1.2.2 MOG79-96 induced EAE 

The MOG encephalogenic peptide, MOG79-96 (Cambridge Research Biochemicals, 

Billingham, UK), was prepared and injected as in section 2.1.2.1. Mice were given 

an additional intraperitoneal (i.p.) injection of 200 µg Pertussis Toxin (PTx) (List 

Biological Laboratories, Surrey, UK) on day of immunisation and 2 days post 

immunisation (d.p.i.). 

2.1.3 Treatment of DBA/1j mice with EAE 

2.1.3.1 MOG-ETA’ treatment 

Mice were immunised with rMOG as per section 2.1.2.1. Mice were then treated 

with i.p. injections at 48 hour intervals from 2 d.p.i. onwards with either 25 µg of 

an active or control immunotoxin, MOG-ETA’ or Bo9-ETA’, respectively. These 

immunotoxins were developed by Professor Stefan Barth’s group in Aachen, 

Germany (Barth et al., 2000, Nachreiner et al., 2008). 

2.1.3.2 Soluble MOG treatment 

Mice were immunised with rMOG as per section 2.1.2.1. Mice were then treated 

i.p. with 25 µg rMOG, 25 µg MOG79-96 or PBS at 48 hour intervals from 2 d.p.i. 

onwards.  

2.1.4 Clinical assessment of EAE 

EAE was scored personally on a daily basis by the following scale: 0, no disease; 

0.5, partial paralysis of tail without ataxia and/or pilo-erection; 1.0, flaccid 

paralysis of tail or ataxia and/or significant weight loss (≥1g); 2.0, impaired righting 

reflex or flaccid tail and ataxia; 3.0, partial hind limb paralysis; 3.5, same as above 
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but with full paralysis of one leg; 4.0, full hind limb paralysis; 5.0, full hind limb 

paralysis with forelimb involvement or moribund; 6.0, dead. A score of 5.0 was a 

humane endpoint for euthanasia. Other disease measurements have been used to 

assess EAE. These include the following; the incidence of EAE, cumulative and 

mean maximal scores, number of days with severe EAE, deaths as a result of 

severe EAE, and clinical scores and weights for each day. Cumulative scores were 

calculated by summing daily scores for each mouse. Mean maximal scores used 

the most severe EAE score from each mouse, including mice that did not get EAE 

which had a score of 0. For mean number of days with severe EAE, the threshold 

for severe EAE was a clinical score ≥2. Mice were scored by the same person 

throughout the experiments to minimise variation.  

2.1.5 Isolation of blood, spinal cord, spleen and lymph nodes 

Mice were culled by asphyxiation using CO2. Blood was taken by cardiac puncture 

of the left ventricle. Mice were perfused with ice cold PBS and spinal cords flushed 

out by hydrostatic pressure using an 18G needle and Roswell Park Memorial 

Institute-1640 media (RPMI) (Sigma Aldrich). Sub-inguinal and para-aortic lymph 

nodes (LN) and spleens were taken and transferred into RPMI.  

2.1.5.1 Preparation of spinal cord for FACS analysis 

Spinal cords were triturated then enzymatically broken down using Collagenase D 

(Roche, Burgess Hill, UK) and DNAse (Sigma Aldrich) (both at 1 mg/mL) for 30 

minutes at room temperature (RT) to make a single cell suspension. Cells were 

washed with RPMI then filtered through 70 µm cell strainers (BD Biosciences, 

Franklin Lakes, NJ, USA). Leukocytes were then isolated using a density gradient 

centrifugation by resuspending cells in 30% Percoll® (Sigma Aldrich), 70% RPMI and 

layering this over 70% Percoll®, 30% PBS and centrifuging for 20 minutes at 2000g.  

The interface was then washed and resuspended in FACS buffer (1% foetal calf 

serum (FCS) (Sigma Aldrich), 0.02% Sodium azide (NaH3), 5 mM 

Ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich) in PBS). 
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2.1.5.2 Preparation of spleen and lymph nodes for FACS 

Tissues were mechanically disrupted using 1 mL syringe plungers and 40 µm cell 

strainers (BD Biosciences). Sub-inguinal and para-aortic LNs from each mouse were 

pooled together for this step. Spleens were then resuspended in 1 mL Ack Lysis 

Buffer (Gibco Life Sciences, Paisley, UK) and incubated on ice for 1 minute. The 

resulting single-cell suspension was then washed and resuspended in FACS buffer 

at a density of 2 x106/mL. 

2.2 EX VIVO ANALYSIS OF EAE 

2.2.1 Flow cytometry for tissues  

Cells were prepared as in section 2.1.5. All cells were then incubated for 20 

minutes on ice with Mouse Fc Block™ (BD Biosciences) at a dilution of 1/100. To 

identify different immune cell populations cells were incubated on ice for 20 

minutes in the dark with fluorescent-labeled antibodies to Ly6G, CD1d, CD8, 

CD11b, CD25, B220, CD5 and CD4 (eBioscience, Hatfield, UK); CD45, CD3 or Ly6C 

(BD Biosciences). These markers were chosen to detect T cells, B cells, monocytes 

and neutrophils. FoxP3expression, to identify regulatory T cells, was assessed using 

a FoxP3 stain kit (#77-5775-40, eBioscience) as described by the manufacturer. 

Cells were then washed and resuspended in 200 µL FACS buffer. Full samples were 

acquired and recorded on the MACSQuant (Miltenyi Biotech, Bergisch Gladbach, 

Germany) and data analysed using FlowJo software (Tree Star Inc., Ashland, OR, 

USA) and GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA).  

2.2.2 Restimulation of spleen and LN cells 

2.2.2.1 Proliferation assay 

Antigen-specific proliferation was determined using single cell suspensions from 

LNs prepared in section 2.1.5.2. Cells were cultured in triplicate in complete 

Dulbecco’s Modified Eagle’s Medium (cDMEM (10% FBS, 1% Penicillin and 
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Streptomycin, 1% L-Glutamate, 1% Sodium Pyruvate, 1% non-essential amino 

acids, 50nM β-Mercaptoethanol (1000x) in DMEM media); Sigma Aldrich) at a 

concentration of 2 x106 cells/mL in 96-well plates (Corning Life Sciences, 

Amsterdam, The Netherlands). They were then restimulated with either rMOG (6, 

20 and 60 µg/mL) or ionomycin (350 ng/mL) (Invitrogen, Paisley, UK) and phorbol 

12-myristate 13-acetate (5 ng/mL) (PMA; Invitrogen) to provide a positive control. 

Controls cultures were pulsed at 24 hours and MOG1-125 stimulated cells at 48 

hours with 0.4 µCi per well of [3H] thymidine (GE Healthcare, Buckinghamshire, 

UK). Cells were harvested 24 hours later on to Printed Filter A mats (Perkin Elmer, 

Waltham, MA, USA), scintillation fluid (Perkin Elmer) added and incorporation of 

[3H] thymidine determined using a MicroBeta TriLux (PerkinElmer). 

2.2.2.2 Cytokine assay 

LN cells were harvested as per section 2.1.5.2. Cells were resuspended in cDMEM 

at a density of 2 x106/mL. Cells were then cultured in 6-well plates (Corning Life 

Sciences) with or without 20 µg/mL rMOG for 72 hours. Supernatants were 

harvested and centrifuged at 300g for 5 minutes then aliquoted and stored at -

20°C. Thawed supernatant cytokine secretion was measured using a Proteome 

Profiler Mouse Cytokine Array (#ARY006, R&D Systems, Abingdon, UK) according 

to manufacturer’s guidelines. Results were quantified using ImageQuant Total Lab 

software (Amersham Bioscience, Freiburg, Germany). 

2.3 CELL CULTURE 

2.3.1 O4, O10 and Z2 hybridomas 

Hybridomas were cultured in CELLine® cell culture flasks (BD Biosciences). Media 

compartment contained RPMI supplemented with 10% foetal bovine serum (FBS), 

1% Pen/Strep, 1% L-Glutamate, 1% sodium pyruvate, 1% non-essential amino acids 

(NEAA), 0.1% β-mercaptoethanol. Cell compartment was inoculated with 2 x106 

cells/mL. Cells were split twice a week and supernatant removed, and replaced 
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with fresh media. Supernatants were centrifuged at 800g for 5 minutes and stored 

at -20°C until antibody purification, described in section 2.7.2. Hybridomas were 

maintained at 37°C/5% CO2. 

2.3.2 Transfectant cell lines 

2.3.2.1 Culture of MOG transfected cells 

Antibody binding to the native extracellular domain of MOG was detected by flow 

cytometry using mouse MOG transfected LTK cells as described previously (Brehm 

et al., 1999). Full length human MOG transfected TE 671 cells and mock-

transfected controls were kindly donated by Professor Edgar Meinl (Ludwig-

Maximilian’s University, Institute of Clinical Neuroimmunology). Cells were grown 

as adherent monolayers in vented 75 cm2 culture flasks (Corning Life Sciences) in 

DMEM selection media supplemented with 10% FBS and 2 mg/mL G418 (Promega, 

CA, USA). When cells were approaching confluence they were detached from 

flasks using a cell scraper (Greiner Bio-One Ltd, Gloucestershire, UK) and 

transferred to a 50 mL falcon tube. They were then centrifuged at 400g for 5 

minutes, resuspended in fresh media and seeded into new culture flasks which 

were maintained at 37°C/5% CO2. Negative TE 671 cells were cultured the same, 

but in absence of G418. Full length mouse MOG transfected LTK cells and negative 

LTK cells were cultured as per TE 671 cells. 

2.3.2.2 Enrichment of MOG positive transfected cells  

MOG TE and MOG LTK cells were detached from flask using a cell scraper and 

centrifuged at 400g for 5 minutes. Cells were resuspended in 100 µL MACS buffer 

(PBS, 0.5% bovine serum albumin (BSA), 2 mM EDTA) with 1 µL Z2 (2 mg/mL) and 

incubated on ice for 20 minutes. Cells were washed twice by adding 2 mL MACS 

buffer then centrifuging at 400g for 5 minutes. Cells were then resuspended in 180 

µL MACS buffer and 20 µL anti-mouse IgG MicroBeads (Miltenyi Biotec) and 

incubated at 4°C for 20 minutes. Cells were washed as above once. Finally, cells 

were resuspended in a total of 1 mL MACS buffer and applied to the LS column 
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(Miltenyi Biotec) in magnetic field through a 40 µm cell strainer. LS column was 

then washed three times with 3 mL MACS buffer. Column was then removed from 

magnetic field and 5 mL of MACS buffer added to elute MOG positive cells with 

plunger. Cells were centrifuged at 400g for 5 minutes and resuspended in G418+ 

cDMEM selection media and seeded into vented 75 cm2 culture flasks.  

2.3.3 Generation of myelinating cultures 

This sophisticated culture system was first described by Sorensen et al. (2008). Put 

simplistically, the ‘myelinating cultures’ (termed as such throughout this thesis) 

involve a monolayer of astrocytes, to which dissociated embryonic spinal cord cells 

are seeded, containing oligodendrocyte progenitor cells (OPCs), microglial cells and 

spinal astrocytes. Therefore, the myelinating cultures incorporate all the cells 

found in the CNS, meaning this compact system can be used to mimic an intact 

CNS with which one can explore the interactions of these endogenous cells with 

exogenous factors. 

2.3.3.1 Culturing of neurospheres derived from the corpus striatum 

Neurospheres were harvested from the corpus striatum of 1 day old (P1) SD rat 

brains. Postnatal pups were euthanised by i.p. injection of euthathal in accordance 

to UK Home Office regulations (project license no. 60/4314, personal license no. 

60/12872). First, the cerebellum was removed then the brain was cut mid-sagitally 

along the corpus callosum into two cerebral hemispheres with a scalpel. The 

corpus striatum was then carefully dissected out from each hemisphere and placed 

in Leibovitz L-15 Media (Invitogen). Approximately 3 brains were used per flask. 

Tissue was broken up by gentle trituration using a glass Pasteur pipette then 

centrifuged at 140g for 5 minutes. Pellet was resuspended in 2 mL DMEM/F12 

(1:1) (Gibco Life Sciences), supplemented with hormone mix, 30% glucose (Sigma 

Aldrich), 7.5% NaHCO3, 1 M HEPES (Sigma Aldrich), 1% L-Glutamine, 1% pen/strep; 

collectively termed neurosphere media (NSM), and seeded into a 75 cm2 non-

coated flask (Corning Life Sciences) in a total volume of 20 mL NSM. Flasks were 
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subsequently supplemented with 20 ng/mL of epidermal growth factor (EGF) 

(Peprotech, UK). Neurospheres were incubated at 37°C/7% CO2. Growth took 

approximately 7 days before neurospheres were ready to generate astrocytes. 

2.3.3.2 Preparation of astrocytes from neurospheres 

Glass coverslips (13mm) (VWR International, Leicestershire, UK) first had to be 

coated in 13.3 µg/mL poly-l-lysine (Sigma Aldrich) by incubating them for 1 hour at 

37°C, then washed extensively with sterile water. One coverslip per well were 

plated out into a 24-well plate (Corning Life Sciences) and left to dry O/N. 

Neurospheres were transferred into 50 mL falcon tubes and centrifuged at 140g 

for 5 minutes. Resulting pellet was resuspended in 12 mL DMEM + 10% FBS per 24-

well plate (typically five or six 24-well plates were made from 1 flask depending on 

cell density). Then 500 µL added to each well and volume made up to 1 mL with 

additional media. Astrocytes were incubated at 37°C/7% CO2 for approximately a 

week until the astrocytes were confluent. 

2.3.3.3 Isolation of embryonic spinal cord 

SD female rats were euthanised on embryonic day E15.5 (day of plugging denoted 

as E0.5) by overdose of CO2 in accordance to UK Home Office regulations.  The 

abdominal skin and fur was sterilised with 70% ethanol then a V-shaped cut was 

made through the abdominal wall and the gravid uterus was removed. It was 

placed in a petri dish containing ice cold Hank’s balanced salt solution (HBSS) 

without Ca+ and Mg+ (Gibco Life Sciences) where each embryo was removed from 

the amniotic sac. Using microscopy the embryos were decapitated whilst taking 

care not to remove the cervical flexure. Next, the spinal cord was exposed by 

carefully removing the top layer of skin then gently removed from the embryo. 

Any attached meninges and dorsal root ganglia were detached to avoid 

contamination of peripheral nerve cells.  
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Spinal cord tissue was then partly dissociated by trituration with a glass Pasteur 

pipette then enzymatically digested with 2.5% trypsin (Sigma Aldrich) and 1% 

collagenase I (Invitrogen) in HBSS, 4-5 spinal cords per 1 mL HBSS. Cells were 

incubated for 15 minutes at 37°C and reaction stopped by addition of 2 mL SD 

solution per 1 mL HBSS (soybean trypsin inhibitor with DNAse I; Sigma Aldrich). 

After further trituration to form a single cell solution the cells were centrifuged at 

200g for 5 minutes and resuspended in plating media (PM) containing 50% low 

glucose DMEM (Gibco Life Sciences), 25% horse serum (Sigma Aldrich), 25% HBSS 

and 2 mM L-Glutamine to a concentration of 3 x106 cells/mL. 

Coverslips with the neurosphere derived astrocyte monolayer, section 2.3.3.2, 

were removed from their 24-well plates and put into 35 mm petri dishes, 3 

coverslips per dish. Then 50 µL of the dissociated spinal cord solution (total of 150, 

000 cells) was pipetted onto each coverslip. Cells were left to attach for 2 hours at 

37°C, after which 450 µL PM and 600 µL high glucose DMEM (Gibco Life Sciences) 

supplemented with 0.5 mg/mL insulin (Sigma Aldrich), 10 ng/mL biotin (Sigma 

Aldrich), 0.5X N1 supplement (Sigma Aldrich), 50 nM hydrocortisone (Sigma 

Aldrich); collectively termed differentiation media plus insulin (DM+) was added to 

each petri dish. Cultures were maintained at 37°C/7% CO2 for 28-30 days. They 

were fed three times a week by removing 500 µL and adding 600 µL fresh DM+. 

From day 12 in vitro (DIV) and onwards cultures were fed differentiation media 

without insulin, DM-, to promote myelination.  

2.4 MYELINATING CULTURE ASSAYS 

2.4.1 Complement-dependant demyelination assay 

24-28 DIV myelinating cultures were incubated for 16 hours at 37°C with mouse or 

patient sera, using 2% rat serum as exogenous source of complement. 10 µg/mL 

Z2, rat serum alone and DM- media alone were used as controls. Mouse and 

patient sera were heat-inactivated for 10 minutes at 56-59°C before use. 
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2.4.1.1 Human patient serum samples used in complement-dependent 

demyelination assays 

Two cohorts of patient sera samples were kindly donated to allow the study 

complement dependent demyelination in the myelinating cultures.  

The larger cohort of 17 patient samples was kindly donated from Markus Reindl, 

Innsbruck Medical University, Austria. The study was approved by the ethical 

committee of Innsbruck Medical University (study numbers AM3041A and 

AM4059). All patients and controls gave written informed consent to the study 

protocol. Samples were blinded by Markus Reindl and after analysis demographic 

data (age, sex), clinical diagnosis and anti-MOG antibody status were provided. The 

demographic and clinical diagnosis of these patients is described in Table 2.1.  

The smaller cohort of 5 paediatric patient samples was kindly donated from Amit 

Bar-Or from the Montreal Neurological Institute, Canada. All samples were 

collected following the appropriate and informed assent, in accordance with the 

Canadian Pediatric Demyelinating disease protocol. Both protocol and the assent 

documents were approved by the Hospital for Sick Kids research ethics board. 

Demographic and clinical diagnosis for the 5 patients is given below (Table 2.2). 

Samples were also blinded by Amit Bar-Or and patient details supplied after 

analysis. Samples from all cohorts were stored -80°C. 
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Table 2.1. Patient details of samples from Innsbruck Medical University used in 
complement-dependent demyelination study.  
This table provides details of the age, sex and clinical diagnosis of the patient serum samples 
kindly donated by Markus Reindl from Innsbruck Medical University. Abbreviations:MS: multiple 
sclerosis, ADEM: acute demyelinating encephalomyelitis, OND: other neurological disease, ON: 
optical neuritis,  HC: healthy control. 

 

 

Table 2.2. Patient data of sera samples provided by Montreal Neurological Institute for 
complement-mediated demyelination study. 
This table displays the demographic and clinical data of the patient sera samples kindly donated by 
Amit Bar-Or from Montreal Neurological Institute. Abbreviations: Mono ADS: one acquired 
demyelinating event, ADEM: acute demyelinating encephalomyelitis. 
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2.4.2 Complement-independent treatment of myelinating cultures  

The effects of treating 18 DIV myelinating cultures with antibody minus 

complement were explored in a variety of ways. They were all incubated at 37°C: 

• Investigating concentration effects using a range of antibody 

concentrations, incubated for 24 hours. 

• Time course experiments using 20 µg/mL of antibody and incubating for 24 

hours, 48 hours and 10 days. 

• Examining long-term treatments using a ten day model treating from 18 

DIV to 24 DIV. 

Antibodies specific for myelin proteins and other cell surface markers were 

explored along with their isotype controls (details supplied in Table 2.3). Antibody 

purification was performed as described in section 2.7.2. All antibodies and 

ovalbumin (OVA) were buffer exchanged with Amicon Ultra-0.5 mL, 50kDa, 

centrifugal units (Millipore) to remove any low molecular weight contaminants. 

They were then diluted in sterile PBS (Sigma Aldrich). 

Table 2.3. List of reagents used to treat the myelinating cultures in this study. 

 

Antibodies Host Company Isotype Antibody Target
Z2 Mouse Linington Laboatory IgG2a MOG
O4 Mouse Linington Laboatory IgM Sulphatide
AA3 Rat Linington Laboatory IgG PLP
O10 Mouse Linington Laboatory IgM PLP
O4 Mouse R&D Systems IgM Sulphatide
Ovalbumin Rabbit Acris Antibodies IgG Ovalbumin

Isotype Control Antibodies Host Company
IgG2a Mouse Sigma Aldrich
IgG1 Mouse Sigma Aldrich
IgM Mouse Sigma Aldrich
IgG Rat Abcam

Proteins Host Company
Lipopolysaccharide Mouse Sigma Aldrich
Ovalbumin Chicken Stratech Scientific Limited
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2.4.2.1 Treatment of myelinating cultures with OVA immune complexes in the 

absence of complent 

OVA protein and OVA antibody used at 10 µg/mL and 100 µg/mL (product details 

in Table 2.3), respectively, were incubated together for 30 minutes at RT to make 

the OVA complexes. Then a titration of volumes were added to the cultures, which 

already contained 1 mL of normal feeding media; 6.25 µL, 12.5 µL, 25 µL, 50 µL.  

2.4.2.2 Treatment of myelinating cultures with patient sera in the absence of 
complement 

The effects of antibodies minus complement was also investigated using patient 

derived IgG. A cohort of 20 patients was collected from patients at the Southern 

General Hospital (Glasgow, UK), University of Heidleberg (Germany) and the 

University Clinic Grosshardern (Munich, Germany). Collection from each site was 

carried out using a protocol approved by their Institutional Review Board. All 

patients gave written informed consent to the study protocol. Demographic 

information and clinical diagnosis is detailed in Table 2.4. Samples were stored -

80°C. 
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Table 2.4. Clinical data of patient cohort selected for complement-independent study. 
This table provides the clinical and demographic details of the patient IgG samples used in the 
complement-independent study. Abbreviations: SPMS: Secondary progressive MS, RRMS: 
relapsing-remitting MS, GBS: Guillain Barre Syndrome, CIDP: chronic inflammatory demyelinating 
disorder, NMO: neuromyelitis optica, CIS: clinically isolated syndrome, MG: Myasthenia Gravis. 
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2.4.3 Immunofluorescent staining of myelinating cultures 

2.4.3.1 Staining to visualise myelin  

Cultures were fixed with 4% PFA for 20 minutes, washed in PBS, then 

permeabilised with 0.5% Triton X-100/PBS (Sigma Aldrich) for 10 minutes, and 

washed again. After cultures were blocked with blocking buffer (1% BSA, 10% 

horse serum, in PBS) for 30 minutes at RT, cultures were incubated for 45 minutes 

with either anti-MBP or anti-PLP in addition to anti-SMI31 to visualise the myelin 

and neurites/axons, respectively (Table 2.5). After extensive washing, cover slips 

were stained with fluorochrome-conjugated anti-mouse IgG2a AlexaFluor 488 or 

anti-rat IgG AlexaFluor 488, depending on primary antibody, and anti-mouse IgG1 

AlexaFluor 568 (Table 2.5). Cultures were incubated for 15 minutes at RT in the 

dark. Unbound secondary was removed by washing with PBS followed by distilled 

H2O then mounted in Mowiol® 4-88 plus DAPI (Sigma Aldrich). 

2.4.3.2 Staining to visualise microglial cells 

Cultures were fixed, permeabilised and blocked as in section 2.4.3.1. Afterwards 

microglial cells were visualised with anti-IBA1 antibodies and activation status was 

detected with anti-ED1 antibodies (Table 2.5). Cultures were washed and labelled 

with secondary antibodies anti-rabbit IgG AlexaFluor 568 and anti-mouse IgG1 IgG 

AlexaFluor 488 for Iba1 and ED1, respectively (Table 2.5). Cultures were washed 

and mounted in Mowiol® 4-88 plus DAPI as in section 2.4.3.1. 

2.4.3.3 Immunochemistry using cell surface markers 

Myelinating cultures were stained with AA3 or O10 antibodies to visualise PLP 

positive mature oligodendrocytes and myelin sheaths. Primary antibodies were 

diluted in DMEM media and incubated with the myelinating cultures at 4°C for 30 

minutes. The cultures were then fixed and blocked as in section 2.4.3.1. After 

washing, cultures were then stained with secondary antibodies anti-rat IgG 

AlexaFluor 488 or anti-mouse IgM AlexaFluor 488 (Table 2.5).Unbound secondary 
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antibody was removed by washing with PBS followed by distilled H2O then 

mounted in Mowiol® 4-88 plus DAPI. 

 

Table 2.5. List of primary and secondary antibodies used for immunochemistry in this 
study. 

 

 

2.4.4 Quantification of myelinating cultures fluorescent images 

2.4.4.1 Quantification of myelinated axons 

To measure remaining myelin, quantification was performed using 10 randomly 

acquired images from each of the three coverslip, resulting in 30 images per 

treatment (10X magnification; Olympus BX51 fluorescent microscope). Axonal 

density and myelination were determined using a pipeline (written by Steve 

Mücklisch, https://github.com/muecs/cp) in CellProfiler (Anne E. Carpenter and 

Thouis (Ray) Jones, Broad Institute Imaging Platform, MIT, USA). The pipeline 
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processes each image by extracting the green and red channels. The green channel 

is corrected for background illumination, and filters out any cell bodies and 

artifacts by their shape. A binary threshold was then applied to both red and green 

channels to get total number of pixels per field (Figure 2.1). Values calculated by 

pipeline were then exported into Excel where values were expressed in one of two 

ways;  

% myelinated axons = Total axon density / Total myelin density 

% myelin loss = % myelinated axons of treatment    X 100                                          
% myelinated axons of control 

 

This calculation was done for the 10 images per coverslip then a mean value for all 

three coverslips per treatment was generated from that.  
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Figure 2.1. Quantification of myelinated axons using CellProfiler. 
This figure illustrates the process adopted by CellProfiler to quantify myelinated axons in images. 
This representative image shows myelin stained with anti-MBP (green) and axons with anti-SMI31 
(red) (i). Image is first split into its different colour channels green (ii) and red (iii). The threshold is 
applied to both images (iv), (v), which gives the total number of myelin and axon pixels per field.  
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2.4.4.2 Microglial cell quantification 

To assess microglial cells, 10 randomly acquired images were taken from each of 

the three coverslips, resulting in 30 images per treatment (20X magnification; 

Olympus BX51 fluorescent microscope). Microglial cells were counted using ImageJ 

cell counter function (Version 1.41o, National Institute of Health, USA). Cells 

positive for IBA1 with a DAPI+ nucleus at the same plane of focus were counted to 

measure total number of microglial cells. Cells which were IBA1+, DAPI+ and ED1+ 

were counted as activated microglial cells. 

% ED1+ Cells = ED1+ / IBA1+DAPI+   X 100 

 

2.4.5 Analysis of supernatant from myelinating cultures 

2.4.5.1 Detection of cytokines from myelinating culture supernatants 

Supernatants were harvested at end point of experiment and centrifuged at 300g 

for 5 minutes, then aliquoted and stored a -20°C. Thawed supernatant cytokine 

levels were measured using a Proteome Profiler Rat Cytokine Array (#ARY008, R&D 

systems) according to manufacturer’s guidelines and quantified using ImageQuant 

Total Lab software. 

2.4.5.2 Cell migration assay 

Supernatants from myelinating cultures were harvested and centrifuged at 300g 

for 5 minutes, then aliquoted and stored a -20°C. Transwell® plate (Corning Life 

Sciences) were first incubated for 10 minutes at 37°C with chemotaxis buffer 

(DMEM, 0.5% BSA). This was then replaced with 600 µL of thawed supernatants. 

3.0 µM membrane insert were then lowered into the well and incubated for a 

further 10 minutes at 37°C to allow chemokine binding to filter. 100 µL of MOG-

specific T cells, which had been thawed and incubated O/N at 37°C in DMEM, were 

added into the upper well. The plate was incubated for 4 hours at 37°C, after 
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which media from the lower well was transferred into a FACS tube. Full sample 

was acquired and migrated cells recorded on a MACSQuant and data analysed 

using FlowJo software. 

2.5 ANTIBODY ASSAYS 

2.5.1 Flow cytometry of transfectant cell lines 

2.5.1.1 Mouse serum MOG reactivity 

Detached cells were resuspended in FACS buffer at a density of 2 x106/mL, 

confirmed by counting viable cells with trypan blue staining on a microscope slide 

with a 0.0025mm2 graticule. A total of 100,000 cells were incubated with thawed 

serum at a 1/30 dilution for 30 minutes at 4°C. Cells were washed twice with 300 

µL FACS buffer and stained with FITC-labelled anti-mouse IgG (Southern Biotech, 

Birmingham, AL, USA) antibody at a 1/200 dilution for 30 minutes at 4°C. Cells 

were washed twice, and stained with Viaprobe (BD Biosciences). A total of 25,000 

events per sample were recorded on the FACS Calibur (BD Biosciences) and data 

were analysed using FlowJo software and GraphPad Prism.  

2.5.1.2 Patient serum MOG reactivity 

Experiment was performed as described in section 2.5.1.1 with only difference 

being use of FITC-labelled anti-human IgG (Southern Biotech) to detect anti-MOG 

binding.  

2.5.2 Enzyme Linked Immunosorbent Assay (ELISA) 

2.5.2.1 MOG protein reactivity 

Anti-MOG antibody titres were determined by ELISA. Round bottomed 96-well 

plates (Corning Life Sciences) were coated with 10 µg/mL rMOG O/N at 4°C. Plates 

were washed three times with 0.05% Tween PBS (PBST) in between each step. 

Wells were blocked with 1% BSA and incubated at 37°C for 1 hour. Mouse sera 
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was used at 1/1000, 1/3000 and 1/9000 and incubated for 1 hour at 37°C. 

Horseradish peroxidase (HRP)-labelled IgG and IgM secondary antibodies 

(Southern Biotech) were used at 1/25000 and incubated for 1 hour at 37°C. 

Antibody binding was detected using developing solution and incubated in the 

dark. Reaction was stopped with 4 M sulphuric acid (H2SO4). Optical density (O.D.) 

was measured at 492 nm at the end point of reaction using a plate reader 

(Magellan Tecan, Männedorf, Switzerland). Each sample was analysed in 

quadruplicate. 

2.6 MOLECULAR BIOLOGY 

2.6.1 RNA extraction 

2.6.1.1 RNA extraction from myelinating cultures using silica-gel membrane 
technology 

Cells were first lysed using lysis buffer provided by supplier and then homogenised 

using QIAshedders (Qiagen, UK). RNA was extracted using the RNeasy Plus Micro 

Kit (#74034, Qiagen) as per manufacturer’s standard protocol. RNA was stored at -

80°C or used immediately. 

2.6.1.2 RNA extraction from whole brains using Trizol 

Whole brain samples from C57BL/6 mice were provided by Trevor Owens from 

University of Southern Denmark, Odense. Each brain was lysed by vortexing with 

two 5mm TissueLyser metal beads (Qiagen) in 1 mL Trizol (Ambion, UK) for 10 

minutes at 50 oscillations; this vortex stage was repeated. Then 250 µL brain 

homogenate was mixed with 750 µL Trizol and incubated for 5 minutes at RT. To 

this, 200 µL chloroform was added and shaken vigorously, by hand, for 15 seconds 

and incubated at RT for a further 3 minutes. Mixture was then centrifuged for 15 

minutes at 12, 000g at 4°C. 700 µL of the interface was removed and added to 700 

µL 70% EtOH and mixed by pipetting. RNA was then extracted using PureLink® RNA 
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Mini Kit (Ambion) as per manufacturer’s standard protocol. RNA was stored at -

80°C. 

2.6.2 cDNA synthesis 

RNA was first quantified using a Nanodrop (Thermo Fisher Scientific, 

Northumberland, UK) and diluted to a concentration of 500 ng/mL using RNase-

free water. RNA was then converted into cDNA in PCR thermo tubes using 

QuantiTect Reverse Transcription Kit (#205311, Qiagen) as per manufacturer’s 

standard protocol. cDNA was used immediately or stored at -20°C. 

2.6.3 qRT-PCR 

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using 

7500 Fast Real-Time PCR System (Applied Biosystems) in accordance with 

manufacturer’s guidelines. qRT-PCR amplifications were performed in triplicate set 

up in MicroAmp® Fast Optical 96-well Reaction Plates (Applied Biosystems). Each 

reaction contained the following reagents in a 15 µL volume: 

SYBR®  Green master mix   7.5 µL 
Forward and reverse primer mix  100 pmol/µL 
cDNA      500 ng/mL 
RNase-free water    X µL 
 

Primers (Sigma Aldrich) were designed using primer3 software. Sequences were 

found at National Centre for Biotechnology Information (NCBI) (National Institute 

for Health, USA) and primers were confirmed using BLAST (National Institute for 

Health, USA). Upon arrival they were resuspended in RNase-free water and stored 

in a 1:1 mix of forward and reverse primers. Sequences are detailed in Table 2.6. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal 

control gene for all experiments. 
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Table 2.6. Primer sequences used in qRT-PCR studies 

 

2.6.3.1 Cycling conditions 

An initial denaturation of 95°C for 10 minutes, (95°C for 15 seconds, then a 

combined annealing and extension step at 65°C for 1 minute) x 40 cycles, and a 

final extension of 72°C for 5 minutes. 

2.6.3.2 Quantification 

The gene of interest (GOI) expression was quantified by the cycle threshold value 

(CT value), which is the number of cycles required for the fluorescence to cross the 

threshold level. Samples of interest can then be compared to controls using the 

comparative CT method (Livak and Schmittgen, 2001). The median of the triplicate 

wells for each sample was taken and any wells with values of 35 CT or above were 

considered to have little or no mRNA expression. CT values were first normalised to 

the housekeeping gene, GAPDH, using the equation shown; 

Δ CT = CT of GOI - CT of internal control (GAPDH) 

From this the fold change expression of the GOI could be calculated by comparing 

the sample of interest to the control or baseline sample; 

Δ Δ CT = Δ CT of sample of interest - Δ CT of control sample 

Fold change = 2(- Δ Δ CT) 
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2.6.4 qRT-PCR array 

RNA was extracted from cultures as in section 2.6.1.1. cDNA was synthesised using 

RT2 First Strand Kit (Qiagen) and analysed using cytokine and chemokine PCR 

arrays (#PARN-150Z, Qiagen), both performed as per manufacturer’s guidelines. 

cDNA was used at 1 µg/mL consistently. qRT-PCR was run using 7500 Fast Real-

Time PCR System in accordance with the manufacturer’s guidelines. Quantification 

of results was performed as described in 2.6.3.2. 

2.7 BIOCHEMICAL METHODS 

2.7.1 Purification of recombinant MOG protein from bacteria 

2.7.1.1 Expression of recombinant MOG in bacteria 

Rat recombinant MOG protein (rMOG) was expressed in Escherichia coli - strain 

DH5α Fiq, which had been previously transformed with pQE12 (Qiagen) containing 

cDNA coding for rat MOG1-125, the extracellular domain of MOG. Gene expression 

was under the regulation of the Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

inducible lac promoter. The plasmid contained codes for six C-terminal histidine 

residues to allow purification under denaturing conditions by nickel-chelate 

chromatography (Amor et al., 1994). Successfully transformed bacteria were 

selected using ampicillin. 

Bacteria were grown in seven starter cultures where 15 mL of L. Broth medium 

(LB) (10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast in dH2O) was inoculated with 15 µL 

transformed E. coli glycerol stocks, kanamycin and ampicillin and incubated for 5 

hours at 37°C on a shaker. This was then transferred into 1 L of LB supplemented 

with more kanamycin and ampicillin, and grown O/N in same conditions. The 1 L 

was then divided into four 2 L volumes of LB. When bacterial growth was in 

exponential phase, identified by measuring O.D. at 600 nm, 20 mL of 0.1 M IPTG 

(BioTech Trade) was added to each flask to induce expression of rMOG. These 

flasks were incubated for a further 5 hours, and the bacteria harvested at 4500 g 
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(F10BCI, Beckman Coulter) for 15 minutes. This step was repeated until all the 

bacterial culture was pelleted. Next, the pellet was stored at -20°C O/N. 

2.7.1.2 Lysis of bacteria 

The bacterial pellet was resuspended in 5 mL/g PBS and homogenised on ice. To 

lyse cells DNase (5 µg/mL) (Sigma Aldrich) and lysozyme (1mg/mL) (Sigma Aldrich) 

were added and shaken on ice for 30 minutes. Then 0.5% lauryldimethylamine-

oxide (LDAO) (Fluka Biochemika) was added and the mixture sonicated on ice 

(Soniprep 150, MSE) for 10 minutes with the amplitude set at 10-15. To retrieve 

rMOG from inclusion bodies, the mixture was centrifuged at 27,000 g (JA25.50, 

Beckman Coulter) for 20 minutes, supernatant discarded and pellet resuspended in 

10 mL PBS, then homogenised on ice and resuspended in 20 mL PBS. This process 

was repeated three times. After final centrifugation the pellet was resuspended in 

10 mL 8 M Urea buffer containing 4 mM β-mercaptoethanol and shaken for 30 

minutes at RT. Solution was centrifuged at 27,000 g for 20 minutes and 

supernatant collected and filtered (0.45 µm, Nalgene). 

2.7.1.3 Nickel-chelate affinity chromatography using AKTAprime 

His-tagged rMOG was purified from supernatant using an AKTAprime (GE 

Healthcare) chromatography system where supernatant was loaded on to a 

HisTrap column (GE Healthcare) and eluted using an increasing gradient of 

imidazole. Eluted fractions were analysed using sodium dodecylsulfate 

polyacrylamide gel electrophoresis (15% SDS-PAGE) stained with Coomassie blue. 

2.7.1.4 Dialysis 

Protein containing fractions were pooled and then dialysed against 4 L 20 mM 

acetate buffer (pH 3.5) in dialysis tubing (12-14 kDA, Spectra/ Por Biotech). Protein 

dialysed for 48 hours at 4°C. Protein was then concentrated up using Centricon 

Plus 70 centrifugal filter units (Millipore) as per manufacturer’s instructions. 
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2.7.1.5 BCA protein determination to measure concentration of MOG 

Protein concentration was determined using Pierce BCA protein assay kit (Thermo 

Fisher Scientific), according to the manufacturer’s guidelines. Round bottomed 96-

well plate (Corning Life Sciences) were used and measured with an ELISA plate 

reader (Magellan Tecan) with light absorbance set at 562 nm. Protein 

concentration was determined using a standard curve of light absorption against 

protein concentration using known BSA concentration standards and blank 

references. Final rMOG preparations were stored at -20°C at 2 mg/mL 

concentration. 

2.7.2 Purification of hybridoma derived antibodies 

2.7.2.1 Purification of IgG Antibodies 

Z2 was purified from supernatants, section 2.3.1, using Hi-Trap Protein G HP (#17-

0404-01, Amersham Biosciences) columns in accordance with the manufacturer’s 

protocol. Supernatants were first filtered (0.45 µm, Minisart, Sigma Aldrich) to 

remove any particles. Eluted fractions were checked on Nanodrop, and antibody 

containing fractions pooled and dialysed in dialysis tubing (12-14 kDa) against PBS 

for 48 hours at 4°C. Final antibody concentration was determined by Nanodrop. 

2.7.2.2 Purification of IgM Antibodies 

O4 and O10 was purified from supernatants, section 2.3.1, using Hi-Trap IgM 

purification HP (#71-5004-37, GE Healthcare) columns as per manufacturer’s 

instructions. Next, supernatants were filtered (0.45 µm) and eluted fractions were 

checked and dialysed as above, 2.7.2.1. 
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2.8 STATISTICAL ANALYSIS 

GraphPad Prism was used for all statistical analyses: t-tests, one and two-way 

ANOVA with repeated measures were used as appropriate. Data are expressed as 

the mean ± SEM or mean ± SD. P values ˂ 0.05 were considered significant, and all 

tests were 2-sided. 
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3 MOG-SPECIFIC AUTOANTIBODIES IN MS AND 
ADEM PATIENTS 

3.1 INTRODUCTION 

The concept that MS is a purely T cell mediated disease developed from studies 

demonstrating the adoptive transfer of myelin-specific CD4+ T cells was sufficient 

to induce EAE in syngeneic recipients (Ben-Nun et al., 1981). This is now seen to 

have been an oversimplification as EAE can also be induced by autoreactive CD8+ T 

cells (Sun et al., 2001). In addition from the outset it was recognised these T cell 

mediated disease models fail to induce extensive primary demyelination, the 

pathological hallmark of the human disease. Subsequent studies revealed the 

development of a demyelinating “MS-like” pathology in these animal models was 

dependent on the availability of autoantibodies targeting the surface of the myelin 

sheath and/or oligodendrocytes (Linington et al., 1988, Svensson et al., 2002).  

The recent discovery that B cell depletion suppresses the development of new 

inflammatory foci and reduces relapse frequency in patients with early RRMS 

(Hauser et al., 2008, Hawker et al., 2009, Naismith et al., 2010, Bar-Or et al., 2010) 

reignited interest in the potential role of autoantibody dependent mechanisms in 

the pathogenesis of MS, in particular in paediatric inflammatory demyelinating 

diseases that are often associated with an autoantibody response directed against 

the extracellular domain of MOG (reviewed in Reindl et al., 2013a).  

This response is seen in around 20% of paediatric MS and ADEM cases, but rarely 

in adult onset MS (McLaughlin et al., 2009, Brilot et al., 2009, Probstel et al., 2011). 

These autoantibodies recognising surface exposed epitopes of MOG are 

predominantly of the IgG1 subclass indicating they have the potential to mediate 

complement-dependent demyelination in these young patients, but as yet no 

correlations have been identified between the presence or absence of these 

antibodies and disease severity  (Kuhle et al., 2007). A longitudinal study of 77 anti-
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MOG seropositive  patients  revealed this response was transient in ADEM but 

persisted, albeit at reduced titres, in the majority of patients who subsequently 

developed clinically definite MS (Probstel et al., 2011). These observations suggest 

the pathological significance of MOG-specific autoantibody responses in paediatric 

MS may be more subtle than in animal models, in which high doses of MOG-

specific antibodies are used to induce an acute exacerbation of disease activity 

associated with widespread antibody-mediated demyelination (Linington et al., 

1988). 

To address this question the ability of anti-MOG seropositive sera to mediate 

demyelination in vitro using myelinated cultures derived from embryonic spinal 

cord was investigated. This strategy was previously successfully used to identify 

demyelinating, and more rarely axopathic, autoantibodies in a small subset of 

adult patients with severe, steroid resistant exacerbations (Elliott et al., 2012). 
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3.2 RESULTS 

3.2.1 Z2 treatment induces myelin loss in myelinated cultures in a 
dose dependent manner 

To investigate the bioassays sensitivity for a dose response experiment was 

performed using a complement fixing mouse monoclonal anti-MOG antibody Z2 

(Brehm et al., 1999, Piddlesden et al., 1993). Myelinating cultures (24 DIV) were 

incubated with a range of different concentrations of Z2 in the presence of 2% 

fresh rat serum as an exogenous source of complement and demyelination was 

assessed 16 hours later by immunofluorescence microscopy. The remaining myelin 

was detected using a monoclonal antibody against myelin basic protein (MBP) and 

axons were stained using an antibody against phosphorylated neurofilament 

(SMI31). This revealed significant demyelination was mediated by antibody 

concentrations as low as 50 ng/mL (p < 0.05, 1way ANOVA) (Figure 3.1). This 

concentration (approximately 0.3 nM) is lower than the range reported for AChR-

specific autoantibodies in myasthenia gravis (0.5 nM to 8 nM; (Leite et al., 2008)).  

However, the myelin analysis programme continues to detect some residual 

myelin even in those cultures treated with high concentrations of Z2 (5 µg/mL; 

Figure 3.1). This could be due to the program being unable to differentiate 

between intact myelin sheaths and residual debris, some of which remains 

associated with SMI31+ neuritis which can be observed by eye (Figure 3.2). This can 

also be corrected for by manual analysis (Nash et al., 2011). Nonetheless, in 

agreement with previous studies this experiment indicates these myelinated 

cultures can be used to detect demyelinating autoantibodies at concentrations of ˃ 

0.3 nM. 
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Figure 3.1 Z2 plus complement mediates demyelination in a dose dependent manner.  
Myelinating cultures (24 DIV) were incubated with a range of concentrations of Z2 in the presence 
of 2% rat serum as a source of complement at 37°C for 16 hours. Controls included 2% normal rat 
serum alone (used as control in graph) and media alone, neither of which caused significant 
demyelination. Cultures were stained with anti-MBP and anti-SMI31 to detect the myelin and 
axons, respectively. These were then identified using secondary fluorescent-labelled antibodies. 
Myelin loss was quantified using CellProfiler. Full methodology is described in materials and 
methods (Section 2.4.2 and 2.4.3). Data presented as percent remaining myelin (± SEM) relative to 
untreated control cultures from two independent experiments each of which was performed in 
triplicate. *, p < 0.05, ***. P < 0.001 (1way ANOVA).  
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Figure 3.2. Representative images of Z2 demyelination. 
Myelinated cultures (24 DIV) were incubated with a range of concentrations of Z2 in the presence 
of 2% rat serum as a source of complement at 37°C for 16 hours. Representative images compare 
myelination of controls, including 2% normal rat serum alone (i), and normal feeding media alone 
(ii), neither of which caused significant demyelination. Representative image showing myelin loss of 
myelinating culture incubated with 5 µg Z2 (iii), and image after being processed by CellProfiler (iv). 
Programme occasionally recognises myelin debris as myelinated axons. Inserts in (iii) and (iv) 
show area highlighted by arrows magnified. They identify an example where the programme has 
falsely calculated debris as myelin sheath (SMI31: red, MBP: green, 10X magnification). Scale bar 
representative of 100µm. 
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3.2.2 Demyelinating activity associated with MOG seropositive sera 

For this experiment a cohort of patient sera was kindly donated by Prof. Reindl 

Markus from Innsbruck Medical University, Austria (demographic and clinical 

diagnosis of patient along with ethical approval is provided in section 2.4.1.1). 

These samples had previously been identified as being MOG-seropositive or 

seronegative (Figure 3.3). In addition to this they provided a small number, MOG-

seronegative, healthy control donor serum. These samples were all screened for 

demyelinating activity using myelinated cultures.   

With the exception of one case, ADEM4, none of the samples induced significant 

demyelination, irrespective of their anti-MOG antibody status (Figure 3.3). Notably 

ADEM3, which had higher titres of anti-MOG antibodies, had no detectable effect 

on demyelination. Z2 was used as a positive control, which showed robust 

demyelination indicating that there was no problem with the model. There was 

variation in myelin loss with most of the patient serum samples. Comparing the 

healthy control serum samples, taking all five together, there was a mean % myelin 

loss of 10.34 ± 2.82%. This suggests that when using this model to screen patient 

serum samples 10-13% myelin loss should be regarded with caution.  

Analysis of the effects of ADEM4 on myelination confirmed this serum contained 

antibodies capable of mediating complement-dependent demyelination in vitro (p 

< 0.05; Figure 3.4), but the magnitude of this effect was small (control; 11.49 ± 

1.01, ADEM4; 8.61 ± 0.68). Also it was not significant at the 95% level when 

compared to healthy control sera (p > 0.05; range 5.82 to 12.92 % myelin loss) 

(Figure 3.3).  

Several different reasons may explain why this small study failed to identify an 

obvious correlation between serum in vitro demyelinating activity and the 

presence of MOG-specific autoantibodies:  

(1) The concentration of MOG-specific antibodies is below the detection 

threshold of the assay 
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(2) The disease associated antibody response to human MOG does not 

cross-react with its rat homologue 

(3) The response is simply not pathogenic 

 

 

 
Figure 3.3. Myelin loss is induced by incubation with patient serum samples in vitro. 
Figure shows results for 6 MS, 4 ADEM and 2 other neurological disorder (OND) patients and 5 
healthy controls. Patient sera were previously tested for antibody titre, presence of MOG IgG and 
reactivity to murine MOG. Sera were then tested on myelinated cultures (24 DIV) for demyelinating 
activity. They were incubated at 37°C for 16 hours with heat inactivated patient serum at a 1/30 
dilution with or without 2% rat sera. Cultures treated with patient sera alone were used as controls. 
Z2 was used as a positive control. Data was from three independent experiments performed in 
triplicate, except MS5, 6 and ADEM 4 due to sample size constraints, (mean % myelin loss ± SD). 
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Figure 3.4. ADEM4 patient serum induces demyelination in vitro. 
Myelinated cultures (24 DIV) were incubated at 37°C for 16 hours with heat inactivated patient 
serum at a 1/30 dilution with or without 2% rat serum as an exogenous complement source. 
Cultures were also treated with rat serum alone as a control. Bar graph shows representative 
results from two independent experiments performed in triplicate, mean (± SD). Significance 
determined by a t-test, *, p < 0.05. Rat serum alone and ADEM4 serum alone had the same % 
myelinated axons, p = 0.846.  
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In an attempt to resolve these points another cohort of patient sera was attained. 

These were kindly provided by Prof. Amit Bar-Or from the Montreal Neurological 

Institute (ethical approval and patient data is provided in section 2.4.1.1). These 

samples had been previously analysed by flow cytometry to determine: (1) the 

anti-human MOG antibody titre; (2) its cross-reactivity with murine MOG; and (3) 

its MOG-reactive IgG subclass profile. The experiment was blinded as to sample 

identity, but the collaborators ensured the sample cohort included at least one 

sample with a very high titre of cross reacting IgG1 MOG-reactive antibodies 

(samples 4 and 5) predicted to mediate complement-dependent demyelination 

(Mayer et al., 2013) (Figure 3.5). In both this experiment and the previous one 

serum was used instead of purifying the IgG, as although this would have been a 

preferable methodology there was a very limited volume of sera. Nonetheless 

screening these samples failed to identify any patients that mediated a significant 

level of complement-dependent demyelination when assayed at a dilution of 1 in 

30, which was the highest concentration possible with the serum volume available 

(Figure 3.5).  

 

 

 
Figure 3.5. Paediatric MS and ADEM sera do not cause demyelination in vitro. 
Shown are the % myelin loss results from 5 paediatric patients. Patient sera from patients with 
mono ADS (one acquired demyelinating event) and ADEM were previously tested for antibody 
binding to murine and human MOG. Myelinated cultures (24 DIV) were incubated at 37°C for 16 
hours with heat inactivated patient serum at a 1/30 dilution with or without 2% rat sera. Cultures 
treated with patient sera alone were used as controls. Z2 was used as a positive control. Data was 
from two independent experiments performed in triplicate, (mean % myelin loss ± SD). 
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3.3 DISCUSSION 

The adoptive transfer of antibodies recognising the native extracellular domain of 

MOG will induce a severe exacerbation of clinical disease in animals with EAE 

associated with extensive complement-dependent demyelination (Linington et al., 

1988, Svensson et al., 2002). The identification of MOG-specific autoantibodies 

with a similar specificity profile in paediatric cases of MS and ADEM prompted 

speculation these would also act to induce demyelination and exacerbate disease 

severity (Reindl et al., 2013b). This hypothesis was tested in the current study by 

investigating whether we could identify the expected correlation between the 

presence of this MOG-specific autoantibody response in patient sera and its ability 

to mediate demyelination in vitro.  

The use of myelinated cultures to detect demyelinating autoantibodies ex vivo was 

described first in a series of studies  carried out in the 1960’s that reported some, 

but not all sera from MS patients demyelinated rodent cerebella explant cultures 

(Bornstein, 1963, Bornstein and Appel, 1965). The inability of other groups to 

reproduce these findings however led to this experimental approach being 

neglected for over 30 years until it was resurrected following advances in 

myelinating culture techniques, immunofluorescence microscopy, data acquisition 

and analysis. These technical advances led to the development of a bioassay in 

which myelinated cultures were derived from embryonic rat spinal cord (Sorensen 

et al., 2008). They have been used to identify demyelinating, and more rarely 

axopathic autoantibodies in a subset of patients with severe steroid resistant 

relapses (Elliott et al., 2012).  

The high degree of sequence homology between human and murine MOG 

together with the cross-species reactivity of murine MOG-specific monoclonal 

antibodies led us to anticipate the response in patients would also cross-react with 

rat MOG in the bioassay; a pre-requisite if we were to use it to explore its ability to 

mediate demyelination in vitro. Unfortunately during the course of this study it 
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became apparent that although the extracellular domains of human and rat MOG 

exhibit a sequence identity of >90 % this does not necessarily support a cross-

reactive response (Mayer et al., 2013).  

A recently published study of the epitope specificity of MOG-specific 

autoantibodies in 111 seropositive patients reported a large proportion of the 

MOG-reactive repertoire does not recognise murine MOG (Mayer et al., 2013) 

indicating rodent derived myelinated cultures are not an appropriate tool to 

screen for demyelinating autoantibodies in clinical samples. In rodents >80% of the 

MOG-specific response recognises a single motif exposed at the tip of the FG loop 

of MOG (Breithaupt et al., 2008), but in man epitope recognition is far more 

heterogeneous and involves at least 7 different patterns (Mayer et al., 2013). 

These all involve residues exposed on loops connecting the β strands of the 

extracellular IgV-like domain of MOG, including in a minority of cases the FG’ loop 

motif recognised by many demyelinating MOG-specific murine mAbs (Breithaupt 

et al., 2008). Crucially only 19 of the 111 samples analysed exhibited comparable 

binding to human and murine MOG expressed at the surface of transfected cell 

lines. In the remaining cases recognition of mouse MOG was either absent or 

significantly lower than for the autologous human antigen. This observation 

stresses the importance of developing human culture systems to screen for 

pathogenic autoantibodies in MS and other neurological diseases. This is not 

possible at present due to a variety of technical and ethical issues, but will 

hopefully be resolved in the foreseeable future following developments in the use 

of stem cell based techniques to generate complex organotypic cultures.   

Lack of cross-species reactivity provides a simple explanation as to why sera shown 

to contain MOG-specific autoantibodies were unable to mediate demyelination in 

vitro. However, this does not explain why sera 4 and 5 in the second small cohort 

failed to demyelinate the cultures, as this was selected on the basis of their high 

titre of cross-reactive IgG1 autoantibodies as determined by flow cytometry of 

transfected cell lines.  The inability of these sera to mediate demyelination may be 
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attributed to two potential causes: (1) the titre of potentially pathogenic MOG-

specific autoantibodies is below the detection threshold of the assay. (2) The assay 

itself detects responses that are not able to mediate demyelination in vitro. 

The first is considered most likely as the bioassay will detect complement-

dependent demyelination mediated by mAb Z2 down to concentrations <300 pM 

(Elliott et al, 2012; Figure 3.1), which is within the concentration range reported 

for autoantibody responses associated with other human autoimmune diseases 

e.g. in MG (Leite et al., 2008). Sensitivity could be increased by assaying sera at 

concentrations higher than the 1/30 dilution used in this study, but this could not 

be investigated due to the limited availability of sera from these anti-MOG 

seropositive donors.  

Another possible reason why these antibodies appear to play a minor role may be 

due to the antibody target. MOG is a structural protein of the myelin sheath but its 

function remains unknown (Chekhonin et al., 2003). Studies using MOG-deficient 

mice failed to identify a phenotype associated with this knock-out (Delarasse et al., 

2003). Therefore antibody-mediated damage relies solely on complement or ADCC 

targeting. In contrast the majority of antibodies in MG target and eliminate AChR 

receptors, an important, functional receptor (Cavalcante et al., 2012). Therefore it 

is possible that a higher titre of anti-MOG antibody than anti-AChR antibody is 

required to see a clinical effect. 

Possibly more worrying are concerns around the suitability of using transfected 

cell lines as a strategy to identify potentially pathogenic autoantibody responses to 

membrane bound antigens in clinical samples. This is now viewed as the gold 

standard approach to identify MOG-specific autoantibodies, although a number of 

other techniques are available to explore this response in childhood cases of 

inflammatory demyelinating disease (reviewed in Mayer and Meinl, 2012). It is 

reasoned that the conformation of MOG as it is displayed at the surface of 

transfected target cells is identical to that in vivo in which MOG is exposed at the 
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surface of the myelin sheath/oligodendrocyte continuum. However, there may be 

flaws in this argument as the molecular environment in which MOG is expressed is 

very different in these two situations. In particular, interactions with other 

molecules in the plane of the membrane may result in changes in epitope 

accessibility, or even the conformation of the extracellular domain of MOG itself; a 

problem recently highlighted during a detailed analysis of the axopathic 

autoantibody response induced by different isoforms of neurofascin (Lindner et al., 

2013). To elucidate the pathological relevance of these FACS detected antibodies 

adoptive transfer experiments using EAE models would need to be performed. This 

is not possible due to the volume of serum that would be required to get sufficient 

immune-purified anti-MOG antibodies and of the low occurrence of donors with 

high, cross reactive antibody titres. 

The identification of low levels of demyelinating autoantibodies is supportive of 

the growing consensus that antibody dependent mechanisms, irrespective of their 

specificity, play some role in the pathogenesis of MS (Wilson, 2012). In the case of 

MOG-specific autoantibodies in paediatric MS and ADEM patients, the tacit 

assumption was that this autoantibody response will induce extensive myelin loss, 

and exacerbate clinical disease. This study does not support that assumption. 

Further, in most seropositive patients the antibody titre is never particularly high 

and declines over time (Probstel et al., 2011). Moreover, no correlation exists 

between disease severity and the presence or absence of a MOG-specific antibody 

response in either MS or ADEM (Di Pauli et al., 2011).  

These observations lead us to ask two simple questions: 

1) How much antibody is required to induce significant exacerbation of disease 

severity in EAE? 

2) How does antibody concentration relate to the levels of demyelinating 

activity identified in patients? 
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Published EAE studies show that large doses of intravenously injected Z2 are 

required to induce a severe but survivable exacerbation of EAE in T cell mediated 

models of EAE in the rat (Piddlesden et al., 1993, Lindner et al., 2013). Assuming a 

plasma volume of 4 mL/100 g and a body weight of 200 g this equates to an IgG 

plasma concentration of 82.5 µg/mL (IgG plasma concentration being 

approximately 0.5 nM) (Fowler et al., 1986). This is approximately four orders of 

magnitude higher than that required to induce complete demyelination using 

monoclonal anti-MOG antibodies in the bioassay, as shown in Figure 3.1. This 

observation suggests that higher concentrations of demyelinating autoantibodies 

are required to cause clinically significant deficits than what is required to elicit 

effects in the in vitro assay; although the situation in patients is complicated by 

factors such as lesion load, whether the lesions involve clinically eloquent tracts 

and blood brain barrier leakiness.  

This hypothesis can be tested by calculating the concentration of mAb Z2 required 

to mediate a similar level of demyelination in vitro since a previous published 

study acquired IgG preparations from patients with severe steroid non-responsive 

relapses, which benefited clinically from plasma exchange (Elliott et al., 2012). 

Assuming a serum IgG concentration of 12 mg/mL and taking values from Elliott et 

al. (2012), this value for the concentration of “mAb Z2 equivalents” is 

approximately 75 nM. In contrast, applying the same calculation to ADEM4’s 

serum (Figure 3.4), the only sample that consistently mediated a low level of 

complement-dependent demyelination in the current study gave a value of < 1 

nM.  

Taken together these observations suggest that in functional terms the 

concentration of MOG-specific autoantibodies detected in childhood cases of MS 

and ADEM is at least three orders of magnitude lower than that required to induce 

a clinically significant response in EAE (Lindner et al., 2013), and at least two orders 

of magnitude lower than the demyelinating IgG response associated with acute 

clinical relapses in some adult patients with MS (Elliott et al., 2012). Admittedly 
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these calculations are not exact but nonetheless they suggest that low 

concentrations of MOG-specific autoantibodies present in cases of paediatric MS 

and ADEM may not have a major impact on disease severity. This interpretation is 

supported by the lack of any correlation in these patients between disease severity 

and the presence or absence of a MOG-specific antibody response. Therefore the 

question remains, what is the functional relevance of these low titres of MOG-

specific antibodies in MS and ADEM?  
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4 CHARACTERISATION OF MYELIN-SPECIFIC 
ANTIBODY FUNCTION 

4.1 INTRODUCTION 

As stated in the previous chapter there is an increasing body of evidence 

identifying anti-MOG autoantibodies in patients with demyelinating disorders, 

particularly in patients with paediatric MS (Reindl et al., 2013b, Mayer and Meinl, 

2012). The primary pathogenic role of these MOG-specific antibodies is thought to 

be through complement or cell-mediated pathways, which is a well-established 

mechanism for demyelination and axonal damage and has been identified in many 

neurological disorders (Gasque et al., 2000).  This mechanism has also been 

studied in multiple EAE models (Terenyi et al., 2006).  In a study by Linington and 

colleagues it was demonstrated that depletion of serum complement markedly 

decreased clinical symptoms of EAE (Linington et al., 1989).   In addition 

complement-dependant demyelination can be seen in post mortem lesions of MS 

patients (Lucchinetti et al., 2000). However, the previous chapter illustrated the 

fact that the presence of MOG autoantibodies do not always correlate with 

antibody-mediated demyelination and to date no one has identified a functional 

role for MOG-specific antibodies.  

The lack of evidence supporting MOG-specific autoantibody mediated 

complement-dependent demyelination, possibly due to low antibody titres, raises 

the possibility that these antibodies may be playing a sub-lytic role in disease 

pathogenesis. Less is known about how these antibodies might contribute to 

disease in the absence of complement but there are several established 

complement-independent effector pathways: - 

1. Antibody-dependent cell-mediated cytotoxicity (ADCC) 

This process results in the lysis of a targeted cell, which has been labelled 

with an antibody. Effector immune cells, mainly natural killer (NK) cells, bind 
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to the Fc region of the antibody via their Fc receptors, which triggers the 

release of perforin and granzyme  granules, resulting in targeted cell death 

(Shi and Van Kaer, 2006). Studies have shown EAE is ameliorated in FcRγ-

deficient mice due to inhibition of ADCC (Abdul-Majid et al., 2002). Perforin+ 

NK cell numbers were shown to be increased in PPMS and SPMS patients 

compared to healthy controls suggesting a role in MS (Plantone et al., 

2013). Human microglia cells have also been shown to lyse opsonised 

antigen via their Fc receptor in vitro (Ulvestad et al., 1994). However, it is 

unknown what titre of antibodies is required for this mechanism to occur. 

2. Opsonisation for phagocytosis 

In this pathway antibodies attach to their antigens and act as a binding 

enhancer to immune cells expressing Fc receptors (Ravetch and Bolland, 

2001). This interaction leads to phagocytosis of the flagged cell (Underhill 

and Goodridge, 2012). It has been previously shown that autoantibody 

binding is responsible for destruction of the myelin sheath (Genain et al., 

1999). This publication demonstrated that Ig and myelin debris could be 

found in phagocytes in patient MS lesions. 

3. Direct effects of antibody binding 

Studies have shown that anti-MOG antibodies can have a direct effect on 

the myelin sheath upon binding. The investigation reported a novel 

pathogenic antibody mechanism by which crosslinking of MOG on the 

surface of oligodendrocytes led to repartitioning of MOG into insoluble 

microdomains (Marta et al., 2003). Furthermore, they showed MOG 

crosslinking mediated a physiological change in oligodendrocytes; an 

increase in calcium influx and activation of MAPK and Akt, and 

morphological changes; e.g. cell process retraction (Marta et al., 2005b, 

Marta et al., 2005a). They also presented microglial cells as the likely 

endogenous cells mediating this cross-linking (Marta et al., 2008). 
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Collectively, Marta’s published data demonstrate a novel demyelinating 

pathway induced by anti-MOG autoantibodies, which could be disease 

relevant. 

As a result of the previous patient cohort results in chapter 3, this chapter 

explored a new role for these autoantibodies; could prolonged exposure to 

antibody in the absence of exogenous complement have another sub-lytic effect in 

disease? This would be relevant in many autoimmune diseases where there are 

low titres of autoantibodies. Previously a similar approach was carried out in vivo 

by implanting an O10 hybridoma into rat spinal cords, which resulted in focal 

demyelination, remyelination and disruption of newly forming myelin (Rosenbluth 

and Schiff, 2009). Rosenbluth et al’ have also explored the effects of implanting 

different hybridoma cells secreting IgM antibodies specific to other CNS antigens; 

O1 and O4, which bind to GalC and sulphatide, respectively (Rosenbluth et al., 

1999, Rosenbluth et al., 2003). These studies showed similar myelin disruption. 

However, this model is problematical for investigating complement independent 

effects due to the complex relationship between the systemic immune system and 

CNS, and because of the local synthesis of complement (Veerhuis et al., 2011, 

Morgan and Gasque, 1996). Therefore myelinating cultures were used for these 

studies as they could be considered an “immunologically sterile” culture system 

with no systemic immune response, even though there are microglial cells present 

in the cultures.  

The aim of this chapter was to investigate the role of autoantibodies in the 

absence of complement. Using the myelinating cultures this study found that 

autoantibodies contributed to myelin damage and inflammation in three main 

ways (discussed fully in this chapter):- 

- Disruption and inhibition of myelin formation 

- Activation of microglial cells 
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- Production of pro-inflammatory chemokines 

Therefore, this chapter presents a novel pathway in which anti-myelin 

autoantibodies may potentiate CNS inflammation during MS, independent of 

complement. 

4.2 RESULTS 

4.2.1 Z2 and the O4 antibody inhibit myelination in a complement-
independent manner 

To test the effects of antibodies on CNS myelination in the absence of the 

peripheral immune system, myelinating cultures were treated for 10 days with 20 

µg/mL of Z2, the O4 antibody or their respective isotype control in the absence of 

an exogenous source of complement (antibody details in Table 2.3). Cultures were 

assessed 10 days later by immunofluorescence microscopy to quantify 

myelination. Myelination was significantly inhibited when the anti-

myelin/oligodendrocyte antibodies were present compared to their isotype 

controls (Figure 4.1). The O4 antibody is an IgM antibody which binds to several 

antigens including sulphatides and sulphated glycosphingolipids. These are found 

on pre-oligodendrocytes, mature oligodendrocytes and a constituent of myelin 

sheath (Sommer and Schachner, 1981). The O4 antibody treatment abolished the 

myelination that should have occurred between day 18 and 28, as there was no 

significant difference between % myelinated axons in the non-treated cultures on 

18 DIV and the O4 antibody treated cultures at 28 DIV. Myelination increased by 

7.4% in the untreated control between 18 DIV and 28 DIV, which was significantly 

reduced with the O4 antibody treatment to 2.2%, which was approximately a third 

of the control level.  

Z2 also inhibited myelination but it was not as marked as the O4 antibody, with 

myelination levels being approximately half the control (Figure 4.1). Z2 is a 

monoclonal IgG2a antibody, which binds to the extracellular domain of MOG. 
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Results with Z2 were more varied than with the O4 antibody, most likely due to 

the changeable amounts of MOG available in the cultures, as maturation of 

oligodendrocytes and myelination in the cultures will differ between preparations. 

The O4 antibody had a more pronounced effect on myelination compared to Z2, 

possibly because there was more antigen availability on the cells in the cultures. 

This observation showed that the O4 antibody and Z2 in the absence of any 

peripheral immune system could affect the levels of myelination.  

 

Figure 4.1. Antibody treatment in the absence of complement inhibits myelination. 
To investigate the effects of treating the myelinating cultures with antibodies in the absence of 
complement, myelinating cultures (18 DIV) were treated every 48 hours for 10 days with 20 µg/mL 
Z2, the O4 antibody or their respective isotype control. These were supplemented into the normal 
feeding media. The control cultures were incubated with normal feeding media alone. Myelination 
was quantified at 18 DIV and 28 DIV using immunocytochemistry as described in materials and 
methods (Section 2.4.2 and 2.4.3). Cultures were stained with anti-SMI31 and AA3 to detect axons 
and myelin, respectively. Experiment was performed in triplicate from three independent 
experiments. Data points represent mean (± SD). Significance was determined by student t-test. *, 
p < 0.05. 
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4.2.2 Antibody treatment without complement leads to microglial 

activation 

The previous graph showed that treatment of cultures with antibodies for 10 days 

led to significant inhibition of myelination. Next to be established was what 

mechanisms were involved in this effect. Microglial cells were investigated as they 

are important immune cells of the CNS and have Fc receptors that could be 

interacting with the antibodies O4 and Z2 (Giunti et al., 2013). Activated microglial 

cells were identified using IBA1 as a microglial cell marker and ED1 as an indication 

of cellular activation. ED1 antibody binds to a cytoplasmic antigen found in 

lysosomal membranes, which increases with phagocytic activity, a property seen in 

activated microglial cells (Bauer et al., 1994, Damoiseaux et al., 1994, Dijkstra et 

al., 1985). This revealed that the number of IBA1+ cells were approximately two-

fold more after cultures were treated for 10 days with the antibodies compared to 

the isotype controls (Z2 and the O4 antibody , p < 0.01) (Figure 4.2A). As this 

experiment was performed in a closed in vitro bioassay it indicated that the 

microglial cells were proliferating in response to the antibody treatment. Staining 

for activated IBA1+ cells using ED1 showed a significant increase in the number of 

activated microglial cells (Z2, p < 0.05; O4, p < 0.001) (Figure 4.2B). Z2 treatment 

led to a 2-fold increase in microglial activation and the O4 antibody treatment led 

to a 3-fold increase. In both cases the O4 antibody had a greater effect on the 

microglial cells compared to Z2 treatment, mirroring their effect on myelination.  

There were also morphological changes in the microglia after treatment with Z2 

and the O4 antibody (Figure 4.3). Most pronounced effects were observed the O4 

antibody treatment, where cells exhibited a more rounded and ‘amoeboid’ shape, 

which is traditionally associated with cellular activation. This was in comparison to 

the ramified appearing microglial cells in the isotype control treated cultures. 

Consequently, these results suggest that the effect on myelination levels seen in 

Figure 4.1 was associated with the activation of microglial cells, with the O4 

antibody being more potent than Z2. 
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Figure 4.2. Antibody treatment increased the number of microglia and microglial activation. 
Myelinating cultures (18 DIV) were treated every 48 hours for a 10 day period with 20 µg/mL Z2, 
the O4 antibody or their respective isotype control. This was to observe the effects these antibodies 
had on microglial in the absence of complement. The antibodies were supplemented into the 
normal feeding media. The control cultures were incubated with normal feeding media alone.  After 
10 days of antibody treatment the cultures were fixed and stained to identify the microglia using 
IBA1 and ED1 for microglial cells and cellular activation, respectively. Cell numbers were counted 
using ImageJ. (A) Values shown are total IBA1+DAP1+ cells for total microglial cells counted in 30 
fields. (B) % ED1+ cells was the number of IBA1+DAPI+ cells that co-localised with ED1 in 30 fields. 
Experiment was carried out in triplicate from three independent experiments (n=3). Bar graph 
represents mean (± SD). Significance was determined by student t-test. *, p < 0.05, **, p < 0.01, 
***, p < 0.001.  
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Figure 4.3. Representative images of microglial cells after antibody treatment. 
Myelinating cultures were treated as in Figure 4.2, and the microglial cells analysed at 28 DIV. 
Representative images of  staining with IgG2a (i) Z2 (ii), IgM (iii) and the O4 antibody (iv); showing 
the striking heterogeneity of morphology between the antibody treatment and their isotype controls 
(IBA1: red, ED1: green, DAP1: blue, 20X magnification). Scale bar representative of 50µm. 
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4.2.3 Antibody treatment induces a chemokine signature 

4.2.3.1 Z2 and O4 treatment induces a chemokine and cytokine protein response 

As changes indicative of microglial activation were observed in response to 

antibody treatment, chemokine and cytokine production, another hallmark of 

microglial activation was next investigated (Lehnardt, 2010, Kim and de Vellis, 

2005). Using a proteome array, supernatants from myelinating cultures treated 

with Z2 and the O4 antibody for 10 days were assayed (Figure 4.4A and B). The 

data showed that there was a clear difference in cytokine and chemokine 

production between the antibody treated cultures and the isotype controls. Z2 

treatment led to mostly chemokines and some cytokines being produced (Figure 

4.5A). Notably CCL5, CCL20, CXCL1, CXCL5 and CXCL10, all of which are key pro-

inflammatory chemokines associated with innate and adaptive immune cell 

migration (Szczucinski and Losy, 2007). The O4 antibody treatment showed a 

similar chemokine gene expression pattern to Z2 (Figure 4.5B). O4 antibody 

produced a larger response as most values were increased approximately two fold 

or more than that seen for Z2 treatment; for example CCL5: Z2, 22,989 ± 812; O4, 

41,966 ± 1415. The highly produced chemokines were the same with both 

antibody treatments, except CXCL9 which was only produced in response to the 

O4 antibody treatment. Z2 also induced secretion of some other chemokines and 

cytokines which were visible by eye on the proteome arrays but were produced at 

low levels (<800) when compared to the others (Figure 4.4B). It is hard to 

determine whether they would have any biological effect at such low 

concentrations. TIMP-1 and VEGF were very pronounced on the array in both the 

isotype treated controls and antibody treated cultures, so they appear to be 

constitutively expressed by the myelinating cultures (Figure 4.4). From these data 

it can be deduced that the antibody treatment was eliciting a strong chemokine 

response. Which cells are producing these chemokines was not investigated in this 

study but it is probably the microglial cells, although, emerging evidence has 

shown that astrocytes can also produce some of these chemokines and cytokines 

(Miljkovic et al., 2011). 
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Figure 4.4. Representative rat cytokine array after incubation with supernatants from 
myelinating cultures were treated with Z2 and O4. 
Myelinating cultures (18 DIV) were treated every 48 hours for 10 days with 20 µg/mL Z2, the O4 
antibody or their respective isotype control. The antibodies were supplemented into the normal 
feeding media. After 10 days the supernatants were harvested to analyse the chemokines and 
cytokines produced. Protein levels were measured using Rat Cytokine Arrays as per 
manufacturer’s instructions. (A) Rat cytokine array coordinates. Corresponding cytokines and 
chemokines, which are printed in duplicate, are colour coded below. Black circles represent 
positive controls and clear circle represents the negative control. Not to scale. (B) Representative 
scans of proteome array.  
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Figure 4.5. Chemokine and cytokine signatures identified with rat cytokine assay in 
response to antibody treatment of myelinating cultures. 
Myelinating cultures were treated as in Figure 4.4 then supernatants were harvested at 28 DIV to 
detect chemokines and cytokines using Rat Cytokine Arrays as per manufacture instruction 
(representative proteome scan in Figure 4.4). (A) Chemokine and cytokine production from Z2 
treated supernatants. (B) Chemokine production from the O4 antibody treated supernatants. 
Results were from one experiment performed in duplicate. Bar graph represents data normalised to 
isotype control, mean (± SEM).  
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4.2.3.2 Antibody treatment of myelinating cultures induces a functional 

chemotactic signal 

The next step was to investigate if these secreted chemokines were functionally 

active. This was assessed using a migration assay in which supernatant was taken 

from the cultures after 10 days treatment and incubated with T cells. T cells were 

chosen as a target as the chemokines elevated in response to the antibody 

treatment have been shown to function as effector T cell chemoattractants. 

Notably CCL20 has been shown to play a role in recruiting TH17 cells via their CCR6 

receptor into the CNS during MS (Sallusto et al., 2012, Reboldi et al., 2009). In 

addition to this, T cells found in the MS lesion express CXCR3, which binds to 

CXCL9 and CXCL10 (Simpson et al., 2000). Also a high proportion of the T cells in 

the CSF of MS patients were found to express CCR5, which binds to CCL5 (Sorensen 

et al., 1999).  

The results showed that there was a clear increase in cell migration with the 

addition of supernatants from the treated cultures as opposed to the isotype 

control treated cultures (Figure 4.6A and B). The experiment was not performed in 

triplicate so no statistical tests were performed. No conclusions could be drawn as 

to which chemokines were actively inducing cell migration as specific chemokines 

were not assessed in this experiment. This data offers evidence that the 

chemokines detected in these supernatants are functionally active and capable of 

attracting T cells. This would be interesting in vivo where these chemokines could 

attract peripheral circulating immune cells into the CNS, where they would 

possibly contribute to disease. 
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Figure 4.6. Antibody treatment induces chemotactic signal which induces T cell migration. 
To test whether chemokines detected in the supernatants after 10 days treatment with Z2 and the 
O4 antibody were functional, supernatants were incubated with unstimulated T cells in a 
Transwell® plate and migrated cells recorded by FACS. (A) Bar graph indicates mean values (± 
SD) of Viaprobe- cells from one experiment performed in dublicate. (B) Representative FACS plots 
show absolute numbers of Viaprobe- cells within total single cells.  
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4.2.3.3 Chemokine and cytokine response also observed at mRNA level after 

antibody treatment 

To investigate if the protein array results were mirrored at a transcriptional level, 

mRNA was extracted from the cultures treated for 10 days with 20 µg/mL of Z2, 

the O4 antibody or their respective isotype control and analysed using a qPCR 

array. Fold change results showed a similar pattern to what was observed with the 

protein array as there was a comparable increase in chemokine and cytokine 

mRNA upregulation in response to the antibody treatment compared to the 

isotype controls. After Z2 treatment CCL5, CXCL3, IL-1α and IL-4 were detected at 

protein and mRNA levels (Figure 4.7A). O4 antibody treatment only induced an 

increase in CCL5 and CXCL9 protein and transcriptional levels (Figure 4.7B). The O4 

antibody upregulated the gene expression of other chemokines which were not on 

the proteome array, e.g. CXCL13 and CCL22.  Again, the O4 antibody treatment 

had a much more pronounced response than that detected by the Z2 treatment. 

For example, Z2 induced a 5.17 fold change in CCL5 mRNA expression, whereas the 

O4 antibody treatment produced a 17.1 fold change, which is over a three-fold 

increase compared to the Z2. The differences between protein and mRNA 

expression of certain chemokines and cytokines may be due to differential 

expression at this time point. For instance in the case of CCL20 protein, which was 

detected at high levels in Z2 and the O4 antibody  treated supernatants at day 10 

may be down regulated at the transcriptional level at this time point. Also the PCR 

array covered more candidates than the protein array, e.g.  IL-22, IL-24, CCL12 and 

CXCL13. Therefore, this outcome supports previous results, again suggesting that 

pro-inflammatory chemokines and cytokines are induced after 10 days treatment 

with the O4 and Z2 antibodies. 

 



Chapter 4 – Characterisation of myelin-specific antibody function 105 
 

 

Figure 4.7. Chemokine and cytokine signature is also expressed at mRNA level after ten 
days of antibody treatment. 
Myelinating cultures (18 DIV) were treated every 48 hours for 10 days with 20 µg/mL Z2, the O4 
antibody or their respective isotype control. The antibodies were supplemented into the normal 
feeding media. mRNA was extracted from cultures at 28 DIV. cDNA was synthesised and analysed 
using RT2 Profiler PCR Arrays as per manufacturers instruction. Bar graphs illustrate fold changes 
from upregulated genes highlighted in Figure 4.6. Bar graphs show genes that were upregulated by 
Z2 treatment (A), and the O4 antibody treatment (B). Data normalised by housekeeping genes and 
relative to isotype control. Bar graphs are representative of one experiment. 
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4.2.4 Characterising the chemokine response using CCL5 production  

Temporal dynamics and the dosage required to elicit this chemokine response 

were subsequently investigated. CCL5 was selected as a target gene to analyse 

chemokine upregulation because it was increased at the protein and mRNA level 

with both antibody treatments relative to isotype controls, therefore making it the 

ideal candidate (Figure 4.8).  

 

Figure 4.8. CCL5 is expressed at protein and mRNA level with both Z2 and the O4 antibody 
treatments.  
This figure illustrates that CCL5 is upregulated at the transcriptional level in response to both 
antibody treatments. CCL5 data collated from the previous proteome and PCR array experiment, 
Figure 4.5 and Figure 4.7, respectively. This comparative data showed CCL5 is upregulated at 
protein and mRNA level after 10 days of treatment, highlighting CCL5 as a candidate marker to 
explore the dynamics of the chemokine response.  
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4.2.4.1 Dynamics of CCL5 gene expression after treatment with anti-myelin 

antibodies 

Firstly a time course experiment was performed to investigate how long it took for 

CCL5 to be observed at a transcriptional level. mRNA was extracted at day 1, 2 and 

10 from cultures treated with Z2 and O4.  The data showed that the CCL5 response 

occurred very quickly, before 24 hours, and then decreased with time (Figure 4.9). 

As seen previously CCL5 fold change was greater with the O4 antibody treatment, 

even at early time points, but did not reach significance (fold change at 24 hours; 

Z2, 820.54 ± 494.75; O4, 1452.32 ± 497.47).  

Next the concentration of antibody required to induce CCL5 gene expression was 

investigated to examine if low concentrations of antibody were enough to elicit a 

chemokine response from the cultures. Both antibodies were used at 2 ng, 200 ng 

and 20 µg and mRNA extracted after 24 hours, as this was when CCL5 mRNA 

expression was at its greatest. Z2 induced a slight upregulation of gene expression 

(fold change = 1.63) at 200 ng of antibody but had no effect at 2 ng (Figure 4.10A). 

The O4 antibody treatment resulted in a robust dose dependent response, where 

there was still a 2-fold upregulation of CCL5 at a concentration of 2 ng (2.4 ± 0.57), 

showing that very low doses of the O4 antibody were sufficient (Figure 4.10B). 
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Figure 4.9. CCL5 gene expression decreases over time after antibody treatment. 
This figure illustrates the temporal dynamics of the CCL5 response in reaction to antibody 
treatment. Cultures were treated for 10 days as per Figure 4.1. To investigate when CCL5 was 
upregulated after Z2 and the O4 antibody treatment, mRNA was extracted at day 1, 2 and 10 and 
CCL5 levels were assessed using qRT-PCR (detailed in materials and methods Section 2.6). Bar 
graph shows fold changes from three independent experiments, mean (± SEM). CCL5 expression 
was normalised to GAPDH and relative to isotype control. 
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Figure 4.10. CCL5 mRNA is upregulated in a dose dependent manner with Z2 and the O4 
antibody treatment. 
To investigate what concentrations of antibody could induce CCL5 mRNA upregulation, cultures 
(18 DIV) were incubated with 2, 200 ng/mL and 20 µg/mL Z2, the O4 antibody or their isotype 
control for 24 hours prior to mRNA extraction. CCL5 gene expression was then assessed using 
qRT-PCR. (A) Bar graph shows fold change in CCL5 mRNA levels from one independent 
experiment. (B) Bar graph shows fold change in CCL5 mRNA levels from two independent 
experiments, mean (± SEM). CCL5 expression was normalised to GAPDH and relative to isotype 
control. 
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4.2.4.2 CCL5 mRNA response independent of source of antibody 

To investigate if the chemokine response was an artefact from the antibody 

purification methodology, myelinating cultures were treated with 20 µg/mL 

purified O4 antibody, commercially brought O4 antibody and IgM for 24 hours and 

the mRNA extracted. When comparing CCL5 mRNA upregulation the results 

showed that there was no difference between the two O4 antibody treatments. 

This indicated that CCL5 induction was irrelevant of the source of antibody and 

importantly, that the purification method wasn’t introducing any contaminating 

elements (Figure 4.11). 

 

Figure 4.11. CCL5 gene expression is independent of source of antibody. 
Myelinating cultures (18 DIV) were incubated with 20 µg/mL O4 antibody (Linington laboratory), O4 
(R&D systems) or their isotype control IgM for 24 hours then mRNA was extracted. CCL5 gene 
upregulation was assessed by qRT-PCR. Expression of CCL5 was normalised to GAPDH and 
expressed relative to isotype control. Bar graph is representative of two independent experiments.  
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4.2.5 Investigating mechanisms behind CCL5 upregulation 

4.2.5.1 CCL5 gene expression requires antigen recognition of target antigen 

The O4 antibody and Z2 both recognise exposed antigens on the myelin sheath 

and oligodendrocyte cell bodies therefore it was proposed that the CCL5 

upregulation may be associated with recognition of cell surface membrane 

epitopes by the antibody. To decipher this, a panel of antibodies against PLP were 

used including; the O10 antibody which binds to the exposed, extracellular portion 

of PLP (Jung et al., 1996), and AA3 which binds to the sequestered, cytoplasmic C-

terminus of PLP (Kramer-Albers et al., 2006). Therefore, by comparing the CCL5 

gene transcription results from both antibodies it could be possible to decipher the 

importance of antigen recognition. The results from incubating the myelination 

cultures (24 DIV) 24 hours with these antibodies showed that the O10 antibody 

upregulated CCL5 gene expression, whereas AA3 did not (Figure 4.12A). This 

suggested that antigen recognition by the antibody was required for gene 

expression of CCL5. To illustrate that AA3’s binding target is normally sequestered 

the cultures were live stained with AA3 and the results revealed very little positive 

staining (Figure 4.12B). Fixed staining revealed that AA3 could bind after the 

cultures had been permeabilised confirming that its binding epitope is hidden.  

CCL5 transcription levels with the O10 antibody treatment were almost equal to 

that seen with the O4 antibody treatment, where both induce approximately a 

thousand fold increase in CCL5 gene expression. They may both elicit such a strong 

CCL5 response due to their IgM isotype, where its pentamic structure and high 

avidity could play a role, or because they both bind to the same target cells despite 

having different antigens. Overall, this data suggests that CCL5 induction is a 

downstream effect that may be dependent on antibody recognition and binding to 

exposed antigen.  
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Figure 4.12. CCL5 mRNA upregulation requires antibody recognition and binding to target 
antigen. 
To explore if antibody binding was required for this chemokine response we used the O10 antibody 
and AA3 which bind to the extracellular and intracellular portions of PLP, respectively. (A) 
Myelinating cultures (24 DIV) were incubated with the O10 antibody and AA3 at 20 µg/mL for 24 
hours then mRNA was extracted and qRT-PCR performed. Expression of CCL5 was normalised to 
GAPDH and expressed relative to control. Bar graph represents two independent experiments, 
mean (± SD). (B) To visualise antibody binding myelinating cultures (24 DIV) were stained live or 
fixed with the O10 antibody and AA3, and visualised with fluorescent-conjugate secondary 
antibodies (staining protocols detailed in section 2.4.2). Representative images of myelin cultures 
stained with AA3 live (i) and AA3 fixed (ii) (20X magnification). Scale bar representative of 100µm. 
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4.2.5.2 CCL5 mRNA is not upregulated in the presence of exogenous complement  

To investigate what would happen to the chemokine expression in the presence of 

an exogenous source of complement, cultures were incubated for 24 hours with 

20 µg/mL Z2 or the O4 antibody in the presence or absence of 2% rat sera. It was 

anticipated that there would be a similar or even larger elevation in CCL5 gene 

expression due to the complement-mediated damage leading to increased pro-

inflammatory chemokine signalling. Intriguingly the opposite was seen, in this 

experiment the CCL5 transcriptional levels were substantially decreased, 

irrespective of antibody specificity in the presence of exogenous complement 

(Figure 4.13A). Z2 treatment led to 33 times greater CCL5 mRNA induction when 

rat serum was absent compared to when it was present. A similar pattern was 

observed with the O4 antibody treatment where there was 25 times more CCL5 

gene activation in the absence of rat serum, compared to when it was added. .  

To investigate if this inhibition of chemokine response was only seen with CCL5 or 

if it was a more general effect a quantitative PCR array was performed. The 

myelinating cultures were treated with 20 µg/mL Z2 in the absence or presence of 

2% rat sera for 24 hours, followed by mRNA extraction. These results mirrored the 

same pattern as seen for CCL5 in the RT-PCR experiments, as the presence of an 

exogenous source of complement globally down regulated chemokine expression 

(Figure 4.13B). These results were surprising and particularly interesting as it 

suggested that the mechanisms leading to chemokine induction when 

complement is present differs to when complement is absent. 
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Figure 4.13. Antibody treatment together with complement greatly reduces CCL5 
upregulation. 
CCL5 upregulation was investigated in the presence of complement. (A) Myelinating cultures (18 
DIV) were incubated with 20 µg/mL Z2, O4 or their isotype controls, in the absence or presence of 
2% rat sera for 24 hours, prior to mRNA extraction. qRT-PCR was used to analyse upregulation of 
CCL5 gene. Bar graph demonstrated CCL5 mRNA fold change, normalised to GAPDH and relative 
to isotype control. Data obtained from one experiement, which was performed in triplicate. (B) 
Cultures (18 DIV) were treated with 20 µg/mL Z2 in the absence or presence of 2% rat serum for 
24 hours prior to  mRNA  extraction. RT2 Profiler PCR Array was used as per manufactures 
instructions to analyse overall chemokine response. Values shown are fold change normalised by 
housekeeping genes and relative to untreated control. Bar graph shows genes that were highly 
upregulated by Z2 treatment in the absence of an exogenous source of complement. 
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4.2.5.3 Oligodendrocytes do not upregulate CCL5 mRNA when incubated with 

the O4 antibody 

The previous experiment showed that the presence of complement substantially 

reduced CCL5 induction by Z2 and the O4 antibody, suggesting that CCL5 

upregulation may have been lost due to antibody-mediated lysis of the target cell, 

i.e. oligodendrocytes. Therefore, to test this theory oligodendrocyte only cultures 

(which were isolated from astrocyte monolayers and donated by my colleague Dr. 

Debbie Allan) were incubated with the O4 antibody and the isotype control for 24 

hours prior to mRNA extraction. The O4 antibody was chosen as it induced the 

most pronounced CCL5 mRNA upregulation in previous experiments and because 

the O4 antigen is expressed on OPCs and mature oligodendrocytes. The data 

showed that there was no significant difference between the O4 antibody and IgM 

on CCL5 mRNA expression (Figure 4.14), suggesting oligodendrocytes were not 

producing CCL5 in response to antibody binding.  

 

Figure 4.14. The O4 antibody treatment does not induce CCL5 mRNA upregulation in 
oligodendrocyte cultures. 
Oligodendrocyte cultures were incubated with the O4 antibody or IgM at 20 µg/mL for 24 hours and 
then mRNA was extracted for analysis using qRT-PCR. Data normalised to GAPDH and relative to 
untreated control. Values shown are from one experiment. 
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4.2.5.4 OVA immune complexes induce expression of CCL5 mRNA in the 

myelinating cultures 

If the antibodies weren’t acting directly upon oligodendrocytes to induce CCL5 

gene expression, then it is possible that antibody binding to the cell surface must 

prompt a response in another cell type. It is feasible that the immune complexes 

shed from the cell surface could be responsible for the effects observed. Immune 

complexes have previously been shown to exist in the CSF and serum of MS 

patients (Jans et al., 1984). They can cause damage and inflammation through 

complement and macrophage/microglial activation. To test this hypothesis a new 

model was developed using preformed ovalbumin (OVA) immune complexes (OIC) 

where OVA antibody and OVA antigen were incubated together for 30 minutes at 

room temperature. They were then used in a serial dilution to treat the 

myelinating cultures for 24 hour incubation prior to mRNA extraction. CCL5 gene 

expression increased in a dose-dependent manner (Figure 4.15). This data 

indicates that immune complexes could also induce a similar complement-

independent response as seen with the monoclonal antibody treatment.  
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Figure 4.15. OVA immune complex can induce CCL5 mRNA upregulation. 
Myelinating cultures (18 DIV) were incubated with a series dilution of OVA immune complexes or 
equivalent volumes of anti-OVA or OVA for 24 hours prior to mRNA extraction Expression of CCL5 
mRNA was normalised to GAPDH and expressed relative to untreated controls. Bar graph 
representative of two independent experiments, performed in triplicate.  
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4.2.6 Z2 and the O4 antibody induction of responses are not due to a 

general inflammatory signal  

4.2.6.1 LPS treatment induces global upregulation of chemokines and cytokines 

Overall, the above studies indicated an association between the antibody 

treatment and inhibition of myelination, along with microglial activation and 

chemokine production. To investigate if the induction of chemokines observed was 

a general response occurring due to a pro-inflammatory signal, the cultures were 

incubated with a strong pro-inflammatory inducer, LPS, with the expectation of 

similar, if not more pronounced results. To compare differences in chemokine and 

cytokine upregulation between Z2 antibody and LPS treatment, mRNA was 

extracted from myelinating cultures after 24 hours incubation. The resulting plots 

showed huge upregulation of chemokines, as well as some cytokines, in response 

to LPS treatment, all of which were approximately an order of magnitude higher 

than seen with Z2 treatment (Figure 4.16).  

 

Figure 4.16. LPS treatment induces a strong mRNA upregulation of chemokines and 
cytokines. 
Myelinating cultures (18 DIV) were incubated for 24 hours with 100 ng/mL LPS or 20 Z2 µg/mL 
then mRNA extracted. cDNA was synthesised and analysed using RT2 Profiler PCR Array as per 
manufactures instruction to analyse overall chemokine response. Values shown are fold change 
normalised by housekeeping genes and relative to untreated control from one experiment. Bar 
graph compares gene expression of LPS and Z2 treated cultures. 
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4.2.6.2 LPS treatment does not inhibit myelination 

To elucidate if the induction of chemokines was responsible for the effects on 

myelination observed with the 10 day antibody treatments the cultures were 

treated with 100 ng/mL LPS, 20 µg/mL the O4 antibody and IgM and myelination 

was analysed after 10 days. It was expected that LPS treatment would have a 

similar or greater effect on myelination. In contrast to this hypothesis, the data 

clearly showed that myelination was unaffected by LPS, as the % of myelinated 

axons were equal to that seen in the untreated control and IgM isotype control 

(LPS; 8.33 ± 0.91, control; 8.95 ± 1.43, IgM; 8.42 ± 0.21), whereas O4 still 

significantly inhibited myelination compared to its isotype control, p < 0.05 (Figure 

4.17). This was of great interest as it revealed that the chemokine production itself 

was not directly responsible for the inhibition of myelination. This was apparent as 

LPS treatment led to a massive upregulation in chemokine mRNA expression after 

only 24 hours, yet had no observable effect on myelination when the cultures 

were treated for 10 days. This highlighted that the chemokine response was most 

likely the by-product of an initial mechanism that affects myelination.  
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Figure 4.17. LPS has no significant effect on myelination. 
Myelinating cultures (18 DIV) were treated every-other-day for 10 days with 20 µg/mL O4 and IgM 
and 100 ng/mL LPS, which was supplemented into the normal feeding media. Immunochemistry 
was used to quantify demyelination. Data from one experiment performed in triplicate. Bar graph 
represents mean (± SD). Significance was determined by student t-test. *, p < 0.05. 
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4.2.7 Patient derived IgG induces CCL5 upregulation in myelinating 

cultures 

Next it was established whether patient derived IgG would elicit the same CCL5 

response in the cultures. To address this question, a small cohort of patient IgG 

preparations was collated from 11 MS and 9 OND patients (ethical approval, 

patient consent and details can be found in section 2.4.2.2 and Table 2.4).  

Myelinating cultures (24 DIV) were incubated for 24 hours with 500 µg/mL patient 

derived IgG then mRNA extracted. The results were interesting as they showed 

that all patient IgG samples elicited a CCL5 response but to varying degrees (Figure 

4.18). The highest fold changes seen were 2157.23, 1587.66 and 2027.62, which 

were all from RRMS patients, MS2, MS5 and MS6 respectively. The MS cohort had 

a wider range of data points and their mean CCL5 fold change in mRNA was slightly 

higher than the OND group (MS, 1052.92 ± 646.99; OND, 725.67 ± 378.82). This 

patient cohort had previously been analysed for demyelinating activity (Elliott et 

al., 2012). Patients that showed demyelinating activity in the Elliott et al., study did 

not correlate with higher fold changes of CCL5 mRNA in this study. This outcome 

implies that patient derived IgG could also induce the same effects on myelination 

and microglia observed with the Z2 and O4 antibodies, but long term incubations 

with the patient IgG to investigate this were not performed due to patient sample 

availability and time constraints. 



Chapter 4 – Characterisation of myelin-specific antibody function 122 
 

 

Figure 4.18. Patient derived IgG induces CCL5 mRNA upregulation. 
Myelinating cultures (24 DIV) were incubated with patient derived IgG at 500 µg/mL for 24 hours 
prior to mRNA extraction. (A) Expression of CCL5 gene was normalised to GAPDH and relative to 
human IgG treated control. (B) Summary of patient’s diagnosis and CCL5 fold change induced by 
IgG purified from patient. All patient IgG samples induced CCL5 mRNA upregulation. Further 
patient demographic details are in Table 2.4. 
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4.2.8 Z2 treatment induces CCL5 gene expression in vivo 

It was further investigated if CCL5 gene expression could be observed with 

antibody treatment in vivo. This experiment was performed in collaboration with 

Trevor Owens at the University of Southern Denmark, Odense. Trevor Owens 

laboratory intrathecally injected 5 C57BL/6 mice with either 4.5 mg/mL Z2 or IgG2a 

or 100 ng/mL LPS as a positive control. After 24 hours the whole brain was 

harvested and snap-frozen for shipment. These tissue samples were then 

processed as described in section 2.6.1.2. After mRNA extraction the CCL5 signal 

was measured using qRT-PCR. The results showed that CCL5 was upregulated in all 

the Z2 treated mice (fold change > 2) but didn’t reach significance compared to 

control, p = 0.066, t-test (Figure 4.19). This was because of the variance in CCL5 

induction across the Z2 treated mice, mean = 8.39 ± 7.64.  However this produced 

an interesting observation because it reveals that CCL5 mRNA expression induction 

could be measured from a whole brain sample and verifies that this chemokine 

induction can be translated from the in vitro model to an in vivo model. 
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Figure 4.19. CCL5 mRNA level is upregulated in whole mice brains after intrathecal injection 
of Z2. 
C57BL/6 mice were intrathecally injected with 4.5 mg/mL IgG2a (control), Z2 or 100 ng/mL LPS 
(n=5). After 24 hours mice were perfused, their brains snap frozen, followed by mRNA extraction 
for CCL5 gene expression quantification by qRT-PCR. Data was normalised to GAPDH and 
expressed relative to isotype control. Values shown are mean (± SEM). Results did not reach 
significance; student t-test, control vs. LPS, p=0.069, control vs. Z2, p=0.066. 
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4.3 DISCUSSION 

This chapter established a novel pathway by which autoantibodies in the absence 

of exogenous effector mechanisms might contribute to MS pathogenesis. Z2 and 

O4 treatment of myelinating cultures without any exogenous source of 

complement or peripheral immune cells led to three distinct effects:- 

1. Inhibition of myelination 

2. Activation of microglial cells 

3. Rapid induction of chemokine production 

Firstly, the data presented in this chapter showed that cultures treated with anti-

myelin antibodies Z2 and O4 alone led to inhibition of myelination (Figure 4.1). 

Blocking of further myelination was seen irrespective of the antibody target on the 

myelin sheath. As not all myelin was lost it was hypothesised that further 

myelination of the cultures is inhibited as opposed to destruction of myelin already 

present. These results are the first description of antibody independent effects on 

myelination in vitro in this myelinating culture system but its mechanism of action 

is as yet unknown. 

It is likely this effect was due to antibody recognition of their surface antigens. 

Previous published data revealed that there are a number of ways in which these 

antibodies could have led to disruption of myelin ensheathment after antibody 

binding. A relevant study in which a group implanted the O10 hybridoma into the 

spinal cord of rats, led to production of an IgM antibody against PLP (Rosenbluth 

and Schiff, 2009). This led to focal demyelination and remyelination when 

implanted into adult spinal cords while in contrast, when transplanted into juvenile 

rats led to dysmyelination, and IgM was seen to be incorporated into newly 

forming myelin. This appeared only to arise when the adjacent processes were 

both of oligodendrocyte origin, therefore suggesting IgM binding to PLP on both 
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sides was necessary for the formation of expanded myelin.  In addition, this effect 

was not seen with control hybridomas which lacked specificity to exposed myelin 

epitopes, indicating antigen recognition was required.  In both scenarios these 

effects were not associated with axon degeneration, which was also observed in 

antibody treatment of the myelinating cultures (data not shown). This suggests 

that antibody-mediated inhibition of myelination presented in this chapter could 

be a result of antibody incorporation into forming myelin sheaths. This process 

would be disease relevant as it could play a role in inhibiting attempts at 

remyelination that occurs during MS.  

As discussed in the introduction, anti-MOG antibodies have also been shown to 

lead to repartitioning of the myelin sheath and physiological changes of 

oligodendrocytes (Marta et al., 2003, Marta et al., 2005b). These studies showed 

crosslinking of antibodies bound to MOG led to the formation of insoluble rafts on 

the surface of oligodendrocytes, which subsequently triggered a cascade of cellular 

events including withdrawal of oligodendrocyte processes. This phenomenon does 

not appear to be specific to MOG as studies using antibodies against MAG on 

oligodendrocytes also results in repartitioning of MAG into insoluble complexes 

(Marta et al., 2004). Therefore, this process could be proposed as a possible initial 

event of myelin/oligodendrocyte-specific antibody mediated demyelination in the 

absence of complement.  

Blocking of myelination could also be due to steric hindrance, where antibody 

binding leads to loss of function. The O4 antibody binds to sulfatides which are 

thought to play a major role in function and stability of the myelin sheath. This is 

evident in mice deficient of the enzyme required for sulfatide synthesis during 

myelin formation, which display severe tremoring and ataxia, thought to be a 

result of the development of thinner myelin sheaths (Coetzee et al., 1996). 

Therefore, binding of the O4 antibody in the myelinating cultures could be having a 

direct effect on sulfatide function, which could in turn be responsible for the 

inhibition of further myelination. Moreover, the binding of the O4 antibody to the 
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sulfatide on the surface of oligodendrocytes could be inhibiting their function, or 

cell development into mature, myelinating oligodendrocytes, as it has been shown 

that direct binding of antibody to this cell can trigger cellular changes (Marta et al., 

2005a). An interesting point here is that the function of MOG is still to be 

uncovered so direct effects on MOGs function due to antibody binding should not 

be discounted. 

The second distinct effect observed in association with the inhibition of 

myelination, was activation of microglial cells. Microglia are resident CNS 

macrophages and activation of these cells are a hallmark of MS pathology 

(Goldmann and Prinz, 2013). Microglial cells, along with macrophages from the 

blood, are quickly recruited to active MS lesions where they interact with T cells 

(Jack et al., 2005). The results presented here clearly show that the microglia cells 

were significantly activated in response to the antibody treatment (Figure 4.2). 

There were also significantly higher numbers of IBA1+ cells in the treated cultures. 

Microglia cells are derived from mesodermal progenitors, distinct from monocytes, 

and migrate to the CNS during embryonic and foetal development (Chan et al., 

2007, Schulz et al., 2012, Gomez Perdiguero et al., 2013). It is also evident that 

these CNS resident cells after injury/disease can renew their population 

intrinsically (Lassmann and Hickey, 1993). With this in mind, and as the in vitro 

model is a closed system, it is most likely the IBA1+ cells were self-dividing. Future 

experiments would use BrdU staining to confirm this hypothesis.  

Microglial cells were most likely being activated via their Fc receptors, but whether 

this effect was via a Fc mediated effector pathway is yet to be determined. Future 

experiment could be carried out by treating the myelinating cultures with Fab and 

F(ab)2’ regions and effects on microglia assessed. Microglial cells express Fcγ 

receptors I, II and III (Ulvestad et al., 1994). Antibody-mediated activation of 

microglial cells via their Fc receptors leads to chemokine secretion and 

phagocytosis (Song et al., 2004). The study did not investigate if the microglial cells 

were phagocytosing the myelin; although it is unlikely to be the main effector 
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function occurring, as complete myelin loss did not occur even after 10 days of 

treatment, when residual myelin could be observed. However, the microglial cells 

did show a significant increase in ED1+ staining and ED1 is a marker of phagocytic 

activity, indicating that antibody treatment is increasing this cell function (Bauer et 

al., 1994). To explore this, future experiments would be to stain the microglia for 

myelin debris to determine if phagocytosis is occurring. It has also been shown 

that incubation of microglial cells with antibody coated antigen led to ADCC and 

oxidative bursts (Ulvestad et al., 1994).  Oxygen radicals have been shown to cause 

oligodendrocyte cell death in vitro, suggesting Fc mediated ADCC and oxidative 

bursts could be killing oligodendrocytes, inhibiting further myelination (Kim and 

Kim, 1991). Therefore microglial activation in response to the O4 and Z2 treatment 

could have affected myelination through the mechanisms discussed above.  

Microglial cells could have also been activated by immune complexes through their 

Fc receptors, as the data also showed changes in CCL5 gene expression when the 

myelinating cultures were incubated with OVA immune complexes (Figure 4.15). 

This would correspond to a recent study which showed that immune complexes in 

the brain parenchyma led to persistent local inflammation and microglial 

recruitment and activation (Teeling et al., 2012). Interestingly, this inflammation 

was blocked in Fcγ-deficient mice but not in C1q-deficient mice, showing that it 

was Fcγ receptor dependent but not complement dependent, which is relevant to 

the novel mechanism discussed here.  

This study went on to investigate expression of markers of microglial activation 

which led to the final phenomenon which was observed in association with the 

antibody treatment; secretion of chemokines. The results showed that pro-

inflammatory chemokines were upregulated at the transcriptional level after only 

24 hours and that after 10 days treatment they could be identified in the 

supernatant using a proteome array (Figure 4.5 and Figure 4.7).  There was some 

production of cytokine but it was predominantly a chemokine response. In 

addition to this, these chemokines appeared to be biologically active as they could 
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induce T cell migration (Figure 4.6). The cell responsible for chemokine production 

was not elucidated in this study, however reports in the literature suggest it is 

likely to be microglial cells as they produce many cytokines and chemokines in 

response to pro-inflammatory stimuli (Aravalli et al., 2005, Cheeran et al., 2001, 

Cheeran et al., 2003), and after activation Fc mediated signalling.  It has been 

known for many years that microglia play a crucial role as an immune cell in the 

CNS and produce many soluble immune factors (Gehrmann et al., 1995). 

Astrocytes also have an emerging role as secretors of chemokines and cytokines, 

so they could also be contributing to the production of chemokines (Dong and 

Benveniste, 2001). Astrocytes also express an Fc receptor, FcγRI, but it has not 

been linked with any pro-inflammatory downstream signalling (Okun et al., 2010), 

making them less likely to be binding the antibodies directly but could be 

interacting with the microglia cells. The results showed that the oligodendrocyte 

cultures did not upregulate any CCL5 mRNA in response to O4 treatment, 

therefore suggesting they are not responsible (Figure 4.14). However a recent 

review discussed oligodendrocytes role in inflammation as it has been shown that 

these cells can also secrete chemokines in response to pro-inflammatory stimuli 

(Peferoen et al., 2013).  

As chemokine production occurred in association with inhibition of myelination, it 

was important to determine whether these chemokines were responsible for this 

effect using treatment with LPS a known chemokine stimulator. The results from 

treating the cultures with LPS revealed a large upregulation in chemokine 

transcription levels, yet it did not have any effect on myelination, indicating that 

the chemokines secreted were not responsible for the blocking of myelination 

(Figure 4.16 and Figure 4.17). However, in an in vivo setting the release of these 

chemokines would play an important function in potentiating disease by attracting 

peripheral immune cells into the CNS. Chemokines are known to play an important 

role in MS, as they are essential in recruiting peripheral immune cells across the 

blood brain barrier into the CNS (Szczucinski and Losy, 2007). Many of the 

chemokines highlighted in these results have previously been identified in the 
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literature as playing possible roles in MS pathogenesis. CCL5 and CXCL10 

production were both found in the myelinating cultures and these chemokines 

were also detected in increased levels in the CSF of MS patients (Szczucinski and 

Losy, 2011). In addition to this, it has previously been shown in this myelinating 

culture system that CXCL10 could inhibit myelination (Nash et al., 2011). CCL5 is a 

potent inflammatory chemokine involved in the recruitment of lymphocytes and 

leukocytes due to its promiscuous binding to CCR1, 3 and 5, which are found on 

many immune cells (Mueller and Strange, 2004, Trebst et al., 2001). Another 

chemokine of interest was CCL20, which O4 and Z2 both induced. CCL20 binds 

constitutively to CCR6 and this interaction has been shown necessary to attract 

TH17 cells into the CNS during EAE (Reboldi et al., 2009). This is of interest as TH17 

cells are known to play a role in MS (Romme Christensen et al., 2013). These 

observations taken together suggest that low titres of antibodies could potentiate 

MS by triggering the release of chemoattractants, drawing effector T cells and 

other immune cells across the blood brain barrier. 

The patient data alludes to chemokine induction, so therefore possibly inhibition 

of myelination if these autoantibodies act in the same way as the anti-myelin 

antibodies Z2 and O4 have. A larger MS patient cohort with healthy controls would 

be required to verify this however (Figure 4.18). Unpublished data Dr. Christina 

Elliott in the Linington laboratory showed that when myelinating cultures were 

incubated with IgG derived from MS patient sera at a concentration of 50 μg/mL 

for 12 days it resulted in inhibition of myelination in 1 out of the 7 patients tested. 

This was a similar response to what is presented in this chapter using anti-myelin 

monoclonal antibodies. Furthermore, CCL5 induction was seen in whole mouse 

brain samples in vivo after only 24 hours (Figure 4.19) thereby reinforcing that 

long-term exposure to antigen-specific antibodies could be a disease relevant 

mechanism. 

Future investigations will address the mechanisms involved in this novel finding, 

and ask whether it is a cell-cell interaction responsible for the inhibition of 
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myelination or if it is a secreted soluble factor. Future experiments to resolve this 

will use supernatant transfer from treated myelinating cultures to un-treated 

cultures to explore if that is enough to inhibit myelination. Moreover, depletion of 

specific cell populations before antibody treatment could elucidate the cell 

responsible for the effects on myelination. Another aspect of this response to be 

further studied is which cell is producing the chemokine signature? To dissect this 

out single-cell cultures of astrocytes or microglial cells will be set up and 

conditioned medium collected to test in myelinating cultures. In addition in-situ 

hybridisation experiments of mixed cultures could be carried out for chemokine 

mRNA expression which would be the most effective way to detect the cell 

responsible and allow for cross talk between cells. The technical issue with this is 

finding the appropriate rat antibodies. Figure 4.12 suggests that for this response 

to occur the antibody must have a target that is accessible, as the data shows CCL5 

is only induced when the antibody can bind to PLP. This experiment needs to be 

repeated with the 10 day treatment to see if this is also true for inhibition of 

myelination. Therefore antigen recognition is required but experiments using Fab 

fragments need to be done to assess whether the Fc region is also required.  

Most importantly these data collectively present a novel pathway in which these 

autoantibodies could contribute to disease. There is data highlighting many 

antigenic targets for autoantibodies in MS (Somers et al., 2009), but there is still no 

identified role for them. This chapter presents a new hypothesis where sub-lytic 

levels of myelin-specific antibodies could inhibit remyelination and potentiate 

disease by microglia activation and inducing chemokine production leading to 

immune cell recruitment.  



 
 

 

CHAPTER FIVE 
 

SELECTIVE DEPLETION OF AUTOANTIGEN-SPECIFIC B 
CELLS: A STRATEGY TO TREAT MULTIPLE SCLEROSIS 



 
 

5 SELECTIVE DEPLETION OF AUTOANTIGEN-SPECIFIC 
B CELLS: A STRATEGY TO TREAT MULTIPLE 
SCLEROSIS  

5.1 INTRODUCTION 

Early studies demonstrated that autoantibody responses to surface exposed MOG 

epitopes could induce primary demyelination and exacerbate disease severity in 

EAE (Linnington et al., 1984, Lebar et al., 1986, Linington et al., 1988). The 

pathology of autoantibody-mediated demyelination in EAE reproduces many 

immunopathological features associated with demyelination in MS lesions (Genain 

et al., 1995, Genain et al., 1999). In particular, replicating the lesion subtype 

pattern II, co-deposition of immunoglobulins and complement activation proteins, 

found in active lesions of MS patient brains (Merkler et al., 2006, Lucchinetti et al., 

2000).  

These observations from EAE studies stimulated interest in the role of B cell-

dependent pathogenic mechanisms in MS that resulted in the first clinical trial 

exploring the effects of B cell depletion in patients with MS. However, research 

into the presence of B cells in MS dates back several decades to preliminary 

studies performed by Kabat et al., 1942, in which antibodies were first discovered 

in patient CSF. Further studies went on to identify OCBs as a pathological hallmark 

of MS as they can be found in around 90% of MS patients (Ebers and Paty, 1980). 

Since then it has been identified that there is intrathecal synthesis of antibodies 

and clonal expansion of B cell populations within the CNS (Obermeier et al., 2008). 

Patient studies have revealed beneficial clinical effects for some patient’s treated 

with therapeutic plasma exchange, particularly in patients with pattern II lesions 

(Keegan et al., 2005, Linker and Gold, 2008). More recent studies showed 

functional evidence of MS patient-derived antibodies demyelinating and axopathic 

capabilities in vitro (Elliott et al., 2012).  In conclusion, there is now a substantial 
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body of evidence supporting a role for B cells and autoantibodies in MS, as 

discussed fully in the general introduction (Section 1.4.2). 

Compelling evidence of B cell involvement in MS comes from current B cell 

therapies which are based on systemic depletion of the whole B cell repertoire 

using anti-CD20+ antibodies (Deiss et al., 2013). Rituximab is a monoclonal anti-

CD20 chimeric antibody that selectively targets and depletes CD20+ B cells. First 

phase II clinical trials in RRMS patients were successful in rapidly reducing 

inflammation in the CNS (Hauser et al., 2008). Patients showed substantial 

reductions in total numbers of lesions and in the number of newly occurring 

gadolinium-enhancing lesions, and the treatment was also associated with a 

decrease in the relapse rate (Hauser et al., 2008). Treatment was in conjunction 

with almost complete depletion of peripheral B cells after 2 weeks. This was 

mirrored in the CSF where the B cell population was markedly decreased after 24 

weeks and in addition CSF T cells were also found to be reduced by up to 55% in 

this time frame (Cross et al., 2006, Piccio et al., 2010). These results suggest that B 

cells are required to maintain inflammation in the CNS but the clinical role of 

autoantibodies is doubtful, since the therapeutic benefits of rituximab occurred 

before significant decreases in serum immunoglobulin levels and also antibody-

producing plasma cells are CD20 negative. This treatment has also been trialled in 

PPMS patients, which resulted in a reduced volume of T2 lesions, although time 

until confirmed disease progression was not significant between groups (Hawker 

et al., 2009). Rituximab has also been efficacious in treatment of NMO, a 

demyelinating disorder of the CNS with a B cell involvement (Cree et al., 2005, Kim 

et al., 2013a). The second generation of anti-CD20 therapeutics are currently in 

development using humanised monoclonal antibodies (ocrelizumab) or fully 

human monoclonal antibodies (ofatumumab), both of which have successfully 

reduced disease activity in clinical trials (Kappos et al., 2011, Sorensen et al., 2014). 
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B cells contribute to MS inflammation through a variety of mechanisms, which are 

discussed in the general introduction, but the definitive mode of action by which B 

cell depletion is beneficial in inflammatory demyelinating diseases is still poorly 

understood. Experimental studies suggest B cell-mediated presentation of antigen 

to encephalitogenic T cells plays a key role in potentiating disease (Weber et al., 

2010). B cells have been highlighted as being extremely effective at presenting 

antigen to their cognate T cells, as their B cell receptors are much more efficient at 

antigen recognition and better at antigen uptake, processing and presentation 

than other antigen presenting cells (Lanzavecchia, 1985, Yan et al., 2006). Another 

possibility is the depletion of inflammatory cytokine-producing B cells (Barr et al., 

2012). This study showed that B cells from EAE and MS patients produce more IL-6 

and that ablation of B cells in their EAE model ameliorated disease as a result of 

decreased IL-6 secretion. B cells have also been shown to produce other pro-

inflammatory cytokines and cytokines involved in lymphoneogenesis (Duddy et al., 

2004, Duddy et al., 2007). 

Although B cell depletion is an effective therapy, this approach is limited by a 

range of adverse side effects such as hypogammaglobulinemia (Gottenberg et al., 

2010) and neutropenia (Tesfa et al., 2011), which are associated with long-term 

complications such as opportunistic infections, including the life-threatening viral 

infection progressive multifocal leukoencephalopathy (PML) (Carson et al., 2009). 

Early EAE studies in mice which were genetically B cell deficient had a higher 

disease burden, suggesting that B cells can also have a regulatory role (Wolf et al., 

1996). These studies and others brought about the emergence of a new  B cell 

subset, regulatory B cells, which are yet to be fully characterised (Gray and Gray, 

2010). Their main suppressive function is thought to be via the secretion of anti-

inflammatory cytokine IL-10, and more recently identified IL-35 (Shen et al., 2014). 

Further EAE experiments have shown that depletion of this regulatory B cell 

phenotype using anti-CD20 therapies increased disease severity (Ray et al., 2011).  

Contrary to this, a recent study by Shen et al. (2014), showed that 
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immunosuppressing cytokines IL-10 and IL-35 were being secreted from plasma 

cells, which are CD20-. 

Taken together, this evidence raises the question; could selective depletion of 

autoantigen-specific components of the B cell repertoire have a similar level of 

clinical effectiveness as global elimination of B cells but without loss of 

immunoregulation? Immunotoxins are an effective way to target and eliminate an 

antigen-specific population and this therapeutic approach has been studied in 

depth (Shapira and Benhar, 2010, Madhumathi and Verma, 2012), particularly in 

the treatment of cancer (Kreitman, 2006, Pastan et al., 2007). They have also been 

shown to be a  promising therapeutic approach in the context of other 

autoimmune diseases like rheumatoid arthritis, where in vitro and in vivo studies 

led to effective depletion of targeted cells (van Roon et al., 2003, Nagai et al., 

2006). Previous immunotoxin studies in EAE observed a delayed onset of disease 

and reduced disease activity by eliminating activated T cells (Jia et al., 2006, Chen 

et al., 2007). This antigen-specific approach requires the identification of 

appropriate antigen candidates. Recent studies in paediatric MS patients have 

revealed significant evidence of increased B cell reactivity to MOG in a subgroup of 

around 20% (Brilot et al., 2009, McLaughlin et al., 2009, Probstel et al., 2011). This 

highlighted MOG as a candidate target for the development of an antigen-specific 

therapy. 

This study investigated the efficacy of a recombinant immunotoxin (MOG-ETA’), 

which was developed by Professor Stefan Barth’s group in Aachen, Germany (Barth 

et al., 2000, Nachreiner et al., 2008). Pseudomanas aeruginosa exotoxin A (ETA) is 

a potent toxin commonly used in immunotoxins (Bruell et al., 2003, Stocker et al., 

2005). Once internalised the catalytic domain of the toxin is processed and 

transported to the cytosol where the toxin causes cell apoptosis by ADP-

ribosylation of elongation factor 2 (EF-2), an essential factor for protein synthesis 

(Weldon and Pastan, 2011). The original binding domain of the toxin was replaced 
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with the extracellular domain of MOG (amino residues 1-125) to specifically target 

and eliminate MOG-specific B cells in a receptor-mediated fashion (Figure 5.1).  

MOG-ETA’s specificity and selective cytotoxicity was demonstrated using 8-18C5 

(anti-MOG mouse monoclonal antibody) hybridoma cells in vitro and B cells from 

transgenic IgHMOG mice ex vivo (Nachreiner et al., 2008). The results showed dose-

dependent depletion of MOG-specific B cells. Previous attempts at depleting MOG-

specific B cells used a recombinant fusion protein, composed of the extracellular 

domain of MOG and the Fc domain of human IgG1 (Zocher et al., 2003). Despite 

the fusion protein being capable of depleting MOG-specific B cells it required much 

higher concentrations to achieve any significant results, so was less efficient than 

the immunotoxin adopted in this study.  

 

Figure 5.1. Diagram of the MOG-ETA’ construct used in these MOG-ETA’ studies. 
The immunotoxin has a pelB-leader sequence at the N-terminus, which is followed by a 10x 
polyhistidine tag (10xHis-Tag) for protein purification by affinity chromatography. The extracellular 
domain of MOG is connected to the translocation domain (Transl.), which is next to the catalytic 
domain (ETA’) of Pseudomonas Exotoxin A. Figure adapted from Nachreiner et al., 2008. 
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To assess MOG-ETA’s efficacy in reducing disease, MOG-induced EAE in DBA/1j 

mice was adopted; a well-established mouse model which replicates many of the 

major immunological features associated with paediatric MS (Abdul-Majid et al., 

2000). MOG is unique as it is the only protein which can induce both a T and B cell 

response in contrast to other myelin and non-myelin CNS antigens, which can only 

stimulate a T cell response (Iglesias et al., 2001). DBA/1j mice are highly 

susceptible to MOG-induced EAE and were chosen for this study as it was 

discovered that H2-b mice, such as C57BL/6, are unable to develop a 

demyelinating autoantibody response to MOG (Abdul-Majid et al., 2000, Bourquin 

et al., 2003), which is essential for this study as  it is important for lesion 

formation, a pathological hallmark of MS (Genain et al., 1999).  

Therefore DBA/1j mice were used as MOG-immunisation of this species induced an 

encephalitogenic T cell response as well as developed an autoantibody response 

directed against conformation-dependent determinants of the extracellular 

domain of MOG (Abdul-Majid et al., 2002, Svensson et al., 2002, Abdul-Majid et 

al., 2003).  This two-hit model ensures disruption of the BBB due to the presence 

of anti-MOG encephalitogenic T cell response, which then allows pathogenic MOG-

specific antibodies to enter the CNS. Studies have previously shown that without a 

compromised BBB, circulating antibodies cannot access the CNS to cause damage 

(Litzenburger et al., 1998, Bourquin et al., 2000). In summary, the aim of this 

chapter was to analyse MOG-ETA’s therapeutic efficacy in MOG-induced EAE with 

the goal of effectively suppressing disease using this novel antigen-specific 

approach. 
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5.2 RESULTS 

5.2.1 MOG-ETA’ treatment ameliorates disease activity in MOG-
induced EAE 

5.2.1.1 Establishing MOG-induced EAE model in DBA/1j mice 

The immunotoxins efficacy was tested using MOG-induced EAE in DBA/1j mice. As 

discussed in this chapters introduction, the model was chosen as previous studies 

revealed it incorporated both T and B cell dependent mechanisms, therefore 

recapitulating key immunological features of paediatric MS (Abdul-Majid et al., 

2002, Abdul-Majid et al., 2003). Analysing all the MOG-induced EAE experiments 

together (mice, n=25) DBA/1j mice were highly susceptible to MOG-induced EAE, 

which was characterised by high lethality, with approximately only 20% surviving 

longer than 16 days post immunisation (Figure 5.2). Figure 5.3 shows again that 

this protocol leads to a severe disease phenotype, which in this experiment led to 

it being terminated 13 d.p.i. due to the animals being too sick. It also illustrates 

that increased weight loss is associated with an increase in clinical disease severity 

and appears to precede the onset of EAE symptoms. 

For the planned MOG-ETA’ investigations it was essential that the mice mounted 

an autoantibody response mimicking that observed in approximately one fifth of 

paediatric MS patients (McLaughlin et al., 2009). This was investigated by 

incubating pooled mouse serum (26 d.p.i) with murine MOG-transfected cell lines, 

which express correctly folded murine MOG on their surface.  The results showed 

that the antibodies bound to MOG transfected cells in a dose dependent manner 

(Figure 5.4A).  Control mouse serum from naïve mice and mice immunised with 

CFA alone did not bind to the MOG transfected cells (Figure 5.4B). This confirmed 

that EAE development was associated with the production of anti-MOG antibodies 

that recognise the native, extracellular domain of MOG, similar to results from 

paediatric MS patients (McLaughlin et al., 2009, Di Pauli et al., 2011, Probstel et al., 

2011).  
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The antibodies were shown to be pathogenic when incubated with myelinating 

cultures (28 DIV). 26 d.p.i. pooled mice sera was incubated for 16 hours along with 

2% fresh rat serum as an exogenous source of complement. The results showed 

that mice sera dilutions between 1:50 and 1:500 induced demyelination occurring 

in the range of 71-96% (Figure 5.5). No myelin loss was seen with rat serum alone 

or with serum from mice immunised with CFA only compared to untreated 

myelinating cultures (data not shown). Therefore, verifying that the MOG-induced 

EAE mouse model incorporated a demyelinating autoantibody response. 

 

 

Figure 5.2. MOG1-125 induced EAE leads to a chronic disease phenotype. 
7-8 week old DBA/1j mice were immunised with 100 µl complete Freund’s adjuvant containing 50 
µg MOG1-125 and 150 µg heat killed M. Tuberculosis to establish EAE. The graph illustrates survival 
curve of animals over time, with each point representing the percentage of animals alive (n=25).  
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Figure 5.3. MOG1-125 induced EAE induces severe disease phenotype. 
7-8 week old DBA/1j mice were immunised with 100 µl complete Freund’s adjuvant containing 50 
µg MOG1-125 and 150 µg heat killed M. tuberculosis. Data shows that mice develop a severe 
disease between 9 and 13 d.p.i. which is associated with loss of weight. Data points represent 
mean (± SEM), n=5.  
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Figure 5.4. MOG1-125 induced EAE induces a conformation-dependent MOG-specific 
autoantibody response. 
(A) 7-8 week old DBA/1j mice were immunised with 100 µL complete Freund’s adjuvant (CFA) 
containing 50 µg MOG1-125 and 150 µg heat killed M. tuberculosis. MOG-specific antibodies were 
detected by incubating pooled mice sera (n=5, 26 d.p.i) with murine MOG-LTK transfected cells in 
a serial dilution. Z2 was used at a concentration of 10 µg/mL as a positive control. Antibody binding 
was detected using FITC-labelled anti-mouse IgG antibodies. Data points represent mean 
fluorescent intensity (MFI) (MOG+ LTK transfected cells MFI minus the control LTK cells MFI). 
Cells were pre-gated on live single cells. Data points from two biological repeats (mean ± SD). (B) 
MOG-LTK transfected cells were incubated with pooled serum (n=5) from naïve mice, mice 
immunised with 100 µL of 3 mg/mL CFA (26 d.p.i) and MOG1-125 immunised mice (as above). 
Pooled sera were used at a 1:50 dilution. Z2 was used at 10 µg/mL as a positive control. MOG-
specific antibody binding was detected as before. Cells were pre-gated on live single cells. FACS 
histogram is representative of two biological repeats.  
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Figure 5.5. MOG1-125 induced EAE induces a pathogenic MOG-specific antibody response. 
7-8 week old DBA/1j mice were immunised with 100 µL complete Freund’s adjuvant (CFA) 
containing 50 µg MOG1-125 and 150 µg heat killed M. tuberculosis. 26 d.p.i. sera were collected and 
pooled from 5 mice. Myelinating cultures (28 DIV) were incubated for 16 hours with pooled serially 
diluted serum. 2% rat serum was used as an exogenous source of complement. Z2 was used at a 
concentration of 10 µg/mL as a positive control. Untreated cultures were used as a negative 
control. Result from one biological repeat performed in triplicate (mean ± SD).   
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5.2.1.2 MOG-ETA’ treatment significantly reduced EAE severity 

Adopting the MOG-induced EAE mouse model discussed above (5.2.1.1), the 

efficacy of MOG-ETA’ to influence the development of EAE was assessed. Mice 

were treated from 2 d.p.i. and every 48 hours after with i.p. injections of 25 μg 

MOG-ETA’ or the control immunotoxin Bo9-ETA’, which had an irrelevant 

specificity to a pollen protein (Nachreiner et al., 2008). Treatment regime was 

selected to maximise probability of immunotoxin success. Injection schedule 

commenced 2 d.p.i. to deplete MOG-specific B cells as immune response occurs. 

Preliminary experiments indicated efficacy at 25 μg (data not shown).  The clinical 

data revealed that the treatment did not affect the time of EAE onset (MOG-ETA’, 

n = 30, 10.2 ± 0.6 d.p.i; Bo9-ETA’, n = 30, 9.8 ± 0.5 d.p.i; p ˃ 0.05), but MOG-ETA’ 

significantly suppressed accumulation of disability (Figure 5.6A). Figure 5.6B shows 

that there was a trending decrease in the mean cumulative disease score with 

MOG-ETA’ treatment but this did not reach significance. Unfortunately untreated 

MOG-induced EAE was not setup to run parallel to this experiment as a definitive 

negative control. Nevertheless, MOG-ETA’ treatment is still associated with a 

decrease in disease severity when compared to the clinical scores depicted in the 

MOG-induced EAE experiment in Figure 5.3. However, to definitely compare these 

MOG-ETA’, Bo9-ETA’ and no treatment would have to be run at the same time 

under the same conditions. Due to disease severity, experiments had to be 

terminated 11 d.p.i. to ensure that there was a large enough pool of animals for 

further ex vivo analysis.  Despite this, MOG-ETA’ had a clear effect on slowing 

disease progression in this severe model of EAE. 

 



Chapter 5 – Selective depletion of autoantigen-specific B cells:  145 
a strategy to treat multiple sclerosis   
 

 

Figure 5.6. MOG-ETA’ treatment modulates disease activity in EAE. 
7-8 week old DBA/1j mice were immunised with 100 µL complete Freund’s adjuvant (CFA) 
containing 50 µg MOG1-125 and 150 µg heat killed M. tuberculosis. Mice were then treated i.p. with 
25 μg MOG-ETA’ or Bo9-ETA’ on day two and every 48 hours after immunisation. (A) Clinical 
scores represent pooled mean ± SEM (n=30). Overall clinical data from three independent 
experiments showed significant reduction of EAE. Significance was determined by two-way 
repeated measures ANOVA with Bonferroni post-tests. *, p < 0.05, ***, p < 0.001. (B) Mean 
cumulative score was calculated by the addition of daily clinical scores of all mice. Bar graph 
represents mean ± SEM (n=30).  

 

 

 



Chapter 5 – Selective depletion of autoantigen-specific B cells:  146 
a strategy to treat multiple sclerosis   
 
5.2.1.3 MOG-ETA’ treatment reduces cellular infiltration into the spinal cord 

To investigate if this reduction in EAE severity was associated with a decrease in 

CNS disease activity, the spinal cord from mice were harvested at 11 d.p.i. to 

investigate the cellular composition. Cells were isolated, washed, and then 

detected with fluorescently-labeled antibodies to identify infiltrating subsets. This 

revealed a significant reduction in CD45+ leukocytes found in the spinal cord 

compared to the control Bo9-ETA’ treated mice, approximately a 2-fold decrease 

(Bo9-ETA’, 696,461 ± 184,933; MOG-ETA’, 390,529 ± 138,400, p < 0.05).  

Focusing on specific subsets, there was a significant decline in the CD11b+Ly6C+ 

monocyte population detected in the spinal cord; p < 0.01 (Figure 5.7A). This 

depletion was an important finding as macrophages are major effector cells in EAE 

(Huitinga et al., 1995). There were also reductions in CD3+CD4+ T cell, B220+ B cell 

and CD25+FoxP3+ TReg cell recruitment into the spinal cord (Figure 5.7B). This 

suggested that MOG-ETA’ was having a global effect on immune cell reduction, 

rather than a leukocyte subset-specific phenomenon. Using the same phenotypic 

markers the cellular composition of the peripheral LNs were also assessed but no 

differences in immune cell numbers were observed between the two treatment 

groups (data not shown), suggesting that this was a CNS specific effect. The B cells 

were additionally labelled with CD1d and CD5 to look for CD1dhighCD5+ regulatory B 

cells, a subset phenotype previously defined by Yanaba et al. (2008). There was no 

difference in this population between immunotoxin treatments (data not shown). 

Overall this data shows that MOG-ETA’ treatment reduced clinical disease severity 

and this was associated with a significant depletion of monocytes and decreased 

recruitment of lymphocytes into the CNS. 
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Figure 5.7. MOG-ETA’ treatment reduced immune cellular infiltration into spinal cord. 
Each single cell suspension was from 3 pooled spinal cords at termination of the experiment (11 
d.p.i.). Cells were pre-gated on live CD45+ single cells. (A) There was a significant reduction in 
infiltrating monocytes. Monocytes and neutrophils were stained with Ly6C and Ly6G respectively, 
which were pre-gated on CD11b+. Significance was determined by two-way repeated measures 
ANOVA with Bonferroni post-tests. **, p < 0.01. (B) There was an observable reduction in 
lymphocytes in the spinal cord.  CD4+ T cell populations were stained with CD4 and CD3, 
regulatory T cells stained with FoxP3 and CD25, which were pre-gated on CD4+ T cells, B cells 
stained with B220, which were pre-gated on CD5- cells. Bar graphs represent mean ± SEM (n=3) of 
absolute numbers of cells in the spinal cord, representative of two individual experiments.  
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5.2.2 MOG-ETA’ treatment is associated with a paradoxical MOG-

specific pro-inflammatory response in periphery 

5.2.2.1 MOG-ETA’ induces peripheral MOG-specific autoimmunity 

As MOG-ETA’ treatment was shown to reduce disease severity and decrease 

cellular infiltration into the spinal cord, it suggested that the treatment was acting 

to ablate the expansion of an encephalitogenic immune response in the periphery. 

To assess this, MOG-specific proliferation and cytokine secretion by cells isolated 

from the subinguinal LNs of immunised mice were analysed. Interestingly, this 

revealed a dichotomy between a reduction in disease activity in the CNS and an 

increased peripheral MOG-specific immune response in MOG-ETA’ treated mice. 

When LN cells isolated from the MOG-ETA’ mouse group were incubated with 

MOG1-125, they proliferated 3- to 4-fold times more than the Bo9-ETA’-treated 

controls, p < 0.05 (Figure 5.8). The supernatants from the cultured LN cells were 

subsequently screened using a semi-quantitative proteome array (Figure 5.9A). 

This revealed that the cells were secreting greater quantities of pro-inflammatory 

cytokines and chemokines, which could be observed by eye from the blots (Figure 

5.9B). The arrays were quantified using TotalLab to attain arbitrary values (Table 

5.1). The cytokine profile secreted by the MOG-ETA’-treated LN cells showed a 

selective increase in pro-inflammatory cytokines including IFNγ, TNFα and IL-17. 

The cytokine milieu appeared to be TH1/TH17 skewed with no evidence of a TH2 or 

TReg response, for example there was no IL-4 or IL-10 secretion, respectively. 
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Figure 5.8. MOG-specific proliferation was increased in lymph node cells from MOG-ETA’ 
treated mice. 
Draining lymph nodes were collected from mice 11 d.p.i. (n=4), and mechanically dissociated into a 
single cell suspension and the recall response analysed. The cells were stimulated ex vivo with or 
without antigen (MOG1-125).  Antigen-induced proliferation was measured, as determined by 
incorporation of tritirated thymidine ([H3]-TdR). Results are representative of 3 individual repeats. 
Data points represent mean (± SEM). Significance was determined by two-way repeated measures 
ANOVA with Bonferroni post-tests. *, p < 0.05. 
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Figure 5.9. Cytokine and chemokine production from cells isolated from lymph nodes of 
Bo9-ETA’ and MOG-ETA’ treated mice. 
Draining lymph nodes were collected and mechanically dissociated into a single cell suspension 
from mice 10 d.p.i. (n=4), and the recall response analysed. The cells were stimulated ex vivo with 
or without antigen (MOG1-125). Antigen-induced cytokine and chemokine production (i.e. MOG1-125 
minus medium alone) was measured from pooled supernatants of 4 mice and profile evaluated. 
Protein levels were measured using Mouse Cytokine Arrays as per manufacturer’s instructions. (A) 
Mouse cytokine array coordinates are displayed above with corresponding cytokines and 
chemokines colour coded below. Black circles represent positive controls and clear circles 
represent negative controls. Not to scale. (B) Representative scans of proteome array.  
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Table 5.1. Peripheral MOG-specific cytokine response skewed towards pro-inflammatory in 
MOG-ETA’ treated mice. 
Draining lymph nodes were collected and mechanically dissociated into a single cell suspension 
from mice 11 d.p.i. (n=4), and the recall response analysed. The cells were stimulated ex vivo with 
or without antigen (MOG1-125). Antigen-induced cytokine and chemokine production (i.e. MOG1-125 
minus medium alone) was measured from pooled supernatants of 4 mice and profile evaluated. 
Protein levels were measured using Mouse Cytokine Arrays as per manufacturer's instructions. 
Arrays were analysed and quantified using TotalLab. Results are mean values representative of 3 
biological repeats. 
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5.2.2.2 MOG-ETA’ treatment led to increased titres of demyelinating MOG-

specific antibodies 

Proliferation and cytokine data showed that MOG-ETA’ treated mice had an 

amplified anti-MOG cellular activity compared to the Bo9-ETA’ treated mice. The 

next question posed was to ask if there was also an enlarged anti-MOG antibody 

response in the serum. This was investigated by analysis of mouse sera obtained 

11 d.p.i. using an ELISA. The results revealed that MOG-ETA’ treatment induced a 

3-fold increase in the MOG-specific antibody titre (Figure 5.10A). It is now well 

recognised that anti-MOG reactivity determined by ELISA does not necessarily 

translate into evidence of a pathogenic antibody response. These antibodies could 

be binding to linear MOG peptides or epitopes that are usually not exposed in vivo. 

Therefore, next it was examined if there was also an increased anti-MOG response 

to correctly folded, native MOG in MOG-ETA’ treated mice using MOG1-125 

transfected LTK cells. These results showed that MOG reactivity still remained 

significantly higher in the MOG-ETA’ mouse group (Figure 5.10B). 

To determine if the MOG-ETA’ treatment was inducing a demyelinating 

autoantibody response, serum was assayed using myelinating cultures to see if the 

antibodies were capable of demyelination. The sera were harvested from MOG-

ETA’ and Bo9-ETA’ treated mice (11 d.p.i.) and incubated for 16 hours with 2% rat 

serum on 28 DIV myelinating cultures. There was significant myelin loss in the 

cultures incubated with sera from the MOG-ETA’ treatment group (1:100, Bo9-

ETA’: 36.3 ± 16.7%; MOG-ETA’: 75.3 ± 7.7%, p < 0.001) (Figure 5.11). There was no 

significant difference in myelination at the lower dilutions of sera, suggesting that 

the pathogenic antibodies exist at low titres, as a high concentration of sera was 

required to get an observable effect. Cultures were also treated with 2% rat serum 

alone as a control and results showed negligible differences in % myelin loss 

compared to untreated control (2% rat sera = 4.42% ± 7.42; untreated control = 

5.00% ± 8.67). Therefore, this indicates that the immunotoxin treatment triggers a 
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pathogenic autoantibody response in the periphery, which is paradoxical to the 

reduction of cellular infiltrate observed in the CNS and decreased EAE severity. 

 

Figure 5.10. Increase in serum MOG reactivity and demyelinating activity. 
Sera from mice 11 days post immunisation were analysed. (A) Serum levels of anti-MOG mouse 
IgG was measured by ELISA (n=8). Results representative of 3 individual experiments (mean ± 
SD). Significance was determined by two-way repeated measures ANOVA with Bonferroni post-
tests. *, p < 0.05, **, p < 0.01. (B) To investigate if these antibodies could bind to native MOG they 
were incubated with MOG transfected LTK cells. Serum samples were used at a 1:30 dilution 
(n=5). Antibody binding was detected using FITC-labelled anti-mouse IgG antibodies. FACS data 
represents the binding ratio (MOG-LTK transfected cells mean fluorescent intensity (MFI) divided 
by the control LTK cells MFI). Cells were pre-gated on live single cells. Bar graph represents mean 
± SD. Significance was determined by a two-tailed unpaired Students’ t test. *, p < 0.05. 
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Figure 5.11. Increased demyelinating activity in serum from MOG-ETA’ treated mice. 
Serum from mice 11 d.p.i. was analysed to investigate demyelinating activity. Myelinating cultures 
(28 DIV) were incubated for 16 hours with pooled mice sera (n=6) in a series dilution plus 2% rat 
sera. Untreated cultures were used as controls. Cultures were stained with anti-MBP and anti-
SMI31 to detect the myelin and axons, respectively. These were then identified using secondary 
fluorescently-labelled antibodies. Myelin loss was quantified using CellProfiler. Full methodology is 
described in Materials and Methods (Section 2.4.2 and 2.4.3). Experiment was performed in 
triplicate, results shown are from 2 biological repeats. Data points represent mean (± SD). 
Significance was determined by two-way repeated measures ANOVA with Bonferroni post-tests. 
***, p < 0.001. 
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5.3 DISCUSSION 

Antigen-specific immunotherapies are the Holy Grail for the treatment of MS. 

Currently MS treatments encompasses broad immunosuppression, using drugs like 

IFNβ, Mitoxantrone, Fingolimod and Natalizumab. Their efficacy is compromised 

by an increased risk in opportunistic infections, like JC virus which causes PML 

(Bloomgren et al., 2012), treatment-related fatalities (Lindsey et al., 2012, Pelletier 

and Hafler, 2012), and other adverse effects. Global B cell depletion is an emerging 

therapeutic approach with great potential for people with MS. The first B cell-

depleting drug was anti-CD20 (Rituximab), which was initially licensed to treat 

lymphoma and rheumatoid arthritis, but was later discovered to reduce disease 

activity in the CNS of patients with RRMS (Cross et al., 2006, Hauser et al., 2008). 

The next generation of humanised anti-CD20 treatments are currently in 

development and have been effective at slowing disease progression and 

suppressing CNS inflammation in recent clinical trials with RRMS patients (Kappos 

et al., 2011, Sorensen et al., 2014). Unfortunately, these therapies were also 

limited by an increased risk of PML due to JC virus infection (Carson et al., 2009), 

and other adverse effects associated with continual depletion of the B cell 

repertoire. However, the clinical successes of these drugs have reignited research 

into the B cells role in MS and B cell targeted treatments. 

Apart from B cells role in autoantibody production, they can also potentiate 

disease via cytokine secretion and are highly efficient at antigen presentation to 

cognate T cells (Antel and Bar-Or, 2006), as discussed in the general introduction 

(Section 1.4.2). This information taken together led to the proposal that selective 

depletion of autoantigen-specific B cells could provide a novel strategy in which 

the successes seen with global B cell depletion could be recapitulated but without 

the elimination of other important components of the B cell repertoire; namely 

recently identified immunoregulatory protective B cell populations (Matsushita et 

al., 2008, Matsushita et al., 2010, Mauri and Bosma, 2012, Shen et al., 2014). This 
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study utilised the recent advancements in recombinant immunotoxin technologies 

and knowledge to investigate the efficacy of an antigen-specific therapy in EAE.  

The autoantigen-specific immunotoxin MOG-ETA’ was previously shown to 

effectively target and deplete MOG-specific B cells in vitro and also eliminate 

splenic cells from IgHMOG transgenic mice ex vivo (Nachreiner et al., 2008). In this 

proof of principle study presented in this thesis it was shown that MOG-ETA’ 

treatment significantly reduced clinical severity in a chronic animal model of MS 

despite the complex effector mechanisms involved. The experiment was 

terminated at day 11 due to the severity of the model. If there were no time 

constraints and more MOG-ETA’ available this experiment would have been 

repeated in a less severe mouse model, which would have allowed a longer 

disease course and the possibility of therapeutic experiments. 

The clinical effect was associated with reduced inflammation in the spinal cord, 

which was evident by a decrease in the global cellular infiltration into the CNS. 

Most pronounced was the significant reduction in recruitment of monocytes. 

Decrease of these peripheral monocyte/macrophage populations may be partly 

responsible for the disease suppression as macrophages constitute a large 

proportion of the immune cells found in active lesions (Lucchinetti et al., 2000).  In 

addition to this, the depletion of macrophages in EAE has been shown to decrease 

disease severity (Huitinga et al., 1995, Bauer et al., 1995). Treatment-associated 

decrease in effector cell recruitment to the CNS could be a result of reduced 

antigen-specific B cell-T cell interactions due to MOG reactive B cell depletion. B 

cells are highly efficient antigen presenting cells for their cognate antigen (van der 

Veen et al., 1992). Studies in B cell deficient mice have shown that T cell priming 

and expansion was dependent on B cell antigen presentation and as a result T cell 

responses were greatly decreased (Rivera et al., 2001). This T cell activation could 

act to establish a positive feedback loop, where products secreted by the T cells 

then increase the B cells ability to process and present antigen (Harp et al., 2008, 
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Lund, 2008). Therefore, MOG-ETA’ could be diminishing MOG reactive T cell 

activation and expansion via cognate B cell depletion. The decrease in effector T 

cells could also be responsible for the decline in monocyte numbers as activated T 

cells secrete IFNγ and TNFα which are required for macrophage activation and 

their subsequent production of pro-inflammatory cytokines (Nacy and Meltzer, 

1991, Cantor and Haskins, 2006). 

MOG-ETA’ induced depletion of B cells was predicted to mediate numerous effects 

that could have contributed to the disease suppression observed. As well as the 

direct elimination of pathogenic B cells it was hypothesised that this would induce 

effects on the T cell repertoire that would skew the MOG-specific response from 

an encephalitogenic “pro-inflammatory” TH1/TH17 response to a regulatory 

phenotype, including the expansion of the regulatory FoxP3+ T cell population 

(Weber et al., 2010, Hamel et al., 2011). Paradoxically, although MOG-ETA’ 

significantly reduced disease severity there was no evidence of a potentially 

compensatory expansion of the regulatory T cell repertoire. Furthermore the ex 

vivo experiments using cells isolated from the peripheral lymph nodes showed an 

increase in MOG-specific proliferation. Analysing the supernatants from these 

experiments showed that the production of cytokines and chemokines were 

indicative of a TH1/TH17 response, including IFNγ, TNFα and IL-17.  

In association with the increase in MOG-specific cellular activity there was also a 

significant increase in MOG-specific autoantibodies found in the blood. Not only 

was there a greater anti-MOG titre it was also discovered there was a higher 

frequency of demyelinating autoantibodies present in the MOG-ETA’ treated mice. 

It was not enumerated whether it was the MOG-specific antibodies responsible for 

the demyelination but future experiments would first remove the anti-MOG 

antibodies before treating the cultures to elucidate this. These results clearly 

demonstrated that the MOG-ETA’ was not eliminating all MOG-specific B cells, 

suggesting the treatment regime used in this study was not sufficient. In addition 
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the increased MOG-specific antibodies could be binding to the immunotoxin and 

preventing it from binding and killing target B cells. However, it was previously 

shown that the immunotoxins effects were not compromised by circulating anti-

MOG immunoglobulin in an experiment where MOG-specific B cells were still 

eliminated, even when the cells were incubated with MOG-ETA’ plus MOG-specific 

antibodies (Nachreiner et al., 2008). Another reason could be, because plasma B 

cells no longer present immunoglobulin on their cell surface they would be unlikely 

to uptake the immunotoxin. This is a similar problem to that faced by Rituximab as 

long-lived plasma cells, which are CD20-, remain after treatment (Warde, 2010, 

Bluml et al., 2013, Pieper et al., 2013).  

What is still unclear is that since MOG-ETA’ treatment induces a MOG-specific 

TH1/TH17 response in peripheral immune organs and an increased anti-MOG titre 

with demyelinating activity, then why does this not induce more severe EAE than 

Bo9-ETA’? It is possible that the decrease of immune cellular infiltration into the 

CNS could mean that there has been little inflammation or disruption of the BBB, 

therefore even though there is a higher titre of MOG-specific antibodies, they do 

not access the CNS to potentiate disease. In addition to this it is known that even 

in disease only a small percentage of antibodies pass into the CNS, therefore 

calling into question the usefulness of blood borne antibodies as disease markers 

and indicating that future experiments should investigate anti-MOG antibody 

levels in the CNS. 

As disease reduction cannot be entirely due to B cell depletion, another 

explanation could be the introduction of excessive soluble MOG antigen, as a 

result of the degradation of MOG-ETA’, which may be inducing tolerance. 

Excessive, inappropriate antigen-specific stimulation of MOG-reactive T cells could 

induce T cell anergy or activation-induced cell death (AICD) (Critchfield et al., 1994, 

Racke et al., 1996). This would reduce circulating numbers of effector cells, 

thereby decreasing inflammation in the CNS and limiting access of autoantibodies. 
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Soluble peptide and protein-induced tolerance as a prospective treatment of MS is 

already an active area of research with many successful EAE studies and patient 

clinical trials (Lutterotti et al., 2008). 

MOG-ETA’ treatment obviously had a protective effect but its efficacy needs to be 

improved. Rapid clearance of the immunotoxin could be limiting its ability in vivo 

due to a small active time frame or quick degradation of the immunotoxin as ETA-

based immunotoxins typically have a 0.5-3 hour half-life. Future experiments 

would assess using higher doses and shorter time intervals to counteract MOG-

ETA’s short half-life, as more regular treatments may increase its efficacy. 

However, this would need to be balanced with increased risks of non-specific 

toxicities like hepatotoxicity and vascular leak syndrome (VLS) and the 

development of neutralising antibodies (Choudhary et al., 2011). Unfortunately, 

regardless of altering the MOG-ETA’ treatment regime, more antigen would still be 

being introduced into the system.  

There have been previous studies of immunotoxins in MBP-induced EAE in 

C57BL/6 mice. This group administered immunotoxin using cationic liposome-

embedded encoded plasmids, therefore leading to in vivo expression. Both studies 

targeted and eliminated activated T cells through their chemokine receptors CCR5 

and CXCR3 using diphtheria toxin conjugated to CCL5 or IP-10, respectively (Jia et 

al., 2006, Chen et al., 2007). These immunotoxins both delayed onset of disease 

and reduced EAE burden. They further showed a decrease in CD3+ T cells 

infiltrating into the CNS, which are similar to results observed with MOG-ETA’ 

treatment. In contrast, their immunotoxin also reduced peripheral inflammation as 

IFNγ serum levels were decreased but interestingly also appeared to stimulate a 

more protective TH2 response indicated by increased levels of IL-4. These studies 

suggest that a future consideration would be to use a MOG79-96-ETA immunotoxin 

(the encephalitogenic T cell epitope for DBA/1j mice), since perhaps targeting 

MOG reactive T cells would provide increased disease suppression without the 
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adverse peripheral anti-MOG response. In addition to this, implicating their 

method of immunotoxin delivery may also offer better disease protection as this 

strategy showed immunotoxin still present up to 72 hours after administration. 

Therefore, there would be more MOG-ETA’ available and less i.p. injections 

necessary, which are very stressful for the mice; this would also be an advantage 

when treating MS patients. Other groups have had success suppressing EAE with 

MBP fused to GM-CSF, therefore targeting and presenting MBP in a tolerogenic 

manner to antigen-presenting cells (APCs) (Abbott et al., 2011, Blanchfield and 

Mannie, 2010). Therefore, considering effective targeting of the MOG-ETA’ would 

be worthwhile as the immunotoxin has a short half-life so little time to encounter 

and deplete target cells. 

In summary this novel MOG-specific therapeutic strategy warrants further 

research as data shows clinical benefits of the treatment, although these are 

compromised by some drawbacks. However, this antigen-specific approach is the 

future of autoimmune treatments as broad immune suppression is not sustainable 

for long term use in many patients. The challenge now, in complex heterogeneous 

diseases like MS, will be finding the right antigens to target. 
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6 SOLUBLE MOG1-125 ANTIGEN-SPECIFIC THERAPY: 
A STRATEGY TO TREAT MULTIPLE SCLEROSIS 

6.1 INTRODUCTION 

The current therapeutic approaches in MS are based on broad 

immunosuppression, which can be effective but have the disadvantage of adverse 

effects. The previous chapter presented new findings using MOG-ETA’ as an 

antigen-specific immunotherapy. The treatment reduced disease burden but was 

associated with a paradoxical increase in MOG-specific autoreactivity. In addition it 

was clear that immunotoxin mediated B cell depletion could not fully account for 

the disease suppression as there was evidence of increased anti-MOG 

autoantibody titres. This chapter investigated whether the MOG component of the 

MOG-ETA’ treatment would be sufficient alone to reduce EAE severity via antigen-

specific tolerising mechanisms, without incurring other adverse peripheral MOG 

reactivity.  

The use of antigen-specific tolerance-based therapies have been shown to 

suppress disease activity in multiple disease models, including non-obese diabetic 

(NOD) mice, collagen-induced arthritis (CIA) and EAE (Miller et al., 2007). In EAE a 

range of different antigen-specific strategies have been shown to inhibit or 

suppress the development of EAE: - 

i. Soluble studies. The first pioneering studies were performed by Levine et al. 

(1968). EAE was prevented by the i.v. infusion of MBP when given either 

before or just after the transfer of MBP-specific T cells. More recent studies 

have also confirmed EAE suppression after i.v. administration of MBP 

(Ishigami et al., 1998, Odoardi et al., 2007). Soluble peptide treatment has 

also been investigated. These studies revealed EAE progression could be 

prevented when an i.p. injection of immunodominant MBP peptides was 

given 10 days after EAE induction (Gaur et al., 1992). As there is no 
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dominant antigen in MS and antibody specificity is heterogeneous a 

research group designed a “multipleantigen/multiepitope” protein 

containing MBP, PLP and MOG for treatment of EAE (Zhong et al., 2002). 

This successfully suppressed PLP-induced EAE but also complex EAE induced 

by T cells reactive against MBP, PLP and MOG. In more recent studies using 

a similar multiple-epitope method, it was shown to induce effective, long 

lasting immune suppression through tolerogenic mechanisms including 

FoxP3+CTLA4+ TReg cells and immune deviation from TH1/TH17 to a TH2 cell 

response, evident by secretion of IL-4 and IL-10 (Kaushansky et al., 2011). 

ii. Oral studies. Oral administration of MBP in EAE studies using Lewis rats 

showed that the treatment could inhibit or stop the development of EAE 

and suppress in vitro lymphocyte proliferation (Bitar and Whitacre, 1988). 

Subsequent studies investigating the immunosuppression mechanisms 

showed evidence of clonal anergy having an importance in oral tolerance 

(Jewell et al., 1998, Whitacre et al., 1991). 

iii. DNA-vaccination. Tolerance-based antigen-specific therapies have also used 

naked DNA as a method of local gene delivery.  A study injecting DNA 

encoding PLP139-151 into SJL/J mice suppressed EAE and reduced PLP139-151-

specific proliferation and cytokine secretion, most likely due to T cell anergy 

(Ruiz et al., 1999). Further attempts have investigated co-vaccination of 

PLP139-151 DNA in conjunction with IL-4 DNA which suppressed disease by 

inducing a TH2 response (Garren et al., 2001).  

iv. Antigen coupled to APCs. Other attempts at an antigen specific therapy 

coupled MBP with monocyte rich peripheral blood myeloid cells using a 

chemical fixative, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDCI), 

which when incubated with T cells specifically tolerised TH1 cells inducing 

anergy and apoptosis but did not have this effect on TH2 cells (Vandenbark 

et al., 2000).  
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The mechanisms involved in disease suppression due to antigen-specific therapies 

have been studied in depth but are still not clearly defined. Critchfield et al. (1994) 

were the first to discover that high doses of protein antigen drove antigen-specific 

T cells into activation-induced cell death (AICD). They showed autoreactive T cell 

depletion by soluble protein in vitro and in vivo. AICD was shown to be due to IL-2-

induced cell cycling in parallel with T cell receptor restimulation with high doses of 

antigen. Another study using a similar approach determined that AICD of 

autoreactive T cells was in the target organ, i.e. the CNS specifically, and did not 

occur in the peripheral organs (Ishigami et al., 1998). MBP treatment increased the 

number of Fas+ and FasL+ apoptotic T cells in the CNS, suggesting apoptosis is Fas-

mediated.  

Subsequent investigations into the mechanisms behind soluble protein-induced 

disease suppression used live-video and two-photon in situ imaging in Lewis rats 

which were intravenously (i.v.) injected with MBP (Odoardi et al., 2007). Using 

TMBP-GFP cells they showed that the response to MBP treatment occurred incredibly 

quickly. Within 10 minutes there was deceleration in T cell migration, which then 

formed clusters around splenic APCs. This response was dependent on antigen 

recognition as the behavioural changes could be blocked with anti-MHC class II 

molecules and needed the relevant antigen. It was also not just specific to MBP as 

the same results were seen with MOG- and OVA-specific GFP-tagged T cells. This 

data showed that soluble protein treatment could inhibit the re-circulation of 

antigen-specific T cells and induce AICD.  

Investigations into the cytokine response after soluble protein treatment have 

been contradictory. An earlier study elucidated that there was an increase in gene 

expression of pro-inflammatory cytokines IFNγ and TNFα and inducible nitric oxide 

synthase (iNOS) one hour after treatment (Weishaupt et al., 2000), although there 

were no changes detected in IL-10 levels. In contrast, a recent study showed the 

opposite, with immune suppression being associated with an increase in TH2 
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cytokines IL-4 and IL-10 and an enlarged FoxP3+CTLA4+ TReg population (Kaushansky 

et al., 2011). Taking this data together, it appears that immune suppression is 

mediated through rapid changes in T cell behaviour, T cell AICD and immune 

deviation to a regulatory response.  

These antigen specific therapies have been tested in patients with MS but with less 

success than in EAE. Early attempts at using whole soluble human MBP as an 

immunotherapy in MS patient trials had opposing results. On one hand a study 

with 64 patients in a double-blind trial treated candidates with 5 mg protein once a 

week for 30 months generating positive results; where some patients had a feeling 

of well-being and others better bladder control or decreased fatigue (Campbell et 

al., 1973). On the-other-hand a very similar study failed to observe any clinical 

effects of soluble MBP treatment (Gonsette et al., 1977).   

Later clinical studies were carried out in which patients were treated i.v. with 

500mg of synthetic MBP peptide, equivalent to amino residues 82-98, which is the 

immunodominant binding epitopes for B and T cells in patients with the HLA 

haplotype DR2 (Warren et al., 2006). This was trialled in a 2-year double-blind 

placebo-controlled study in 32 patients with PPMS, which included a 5-year follow-

up treatment period. This treatment significantly reduced disease progression in 

patients with HLA haplotypes DR2 and/or DR4 and also decreased CSF anti-MBP 

autoantibodies independent of their HLA-DR haplotype.  

DNA vaccinations have also been tested in MS patient studies. This randomised, 

double-blind, placebo-controlled trial with a plasmid encoding full length human 

MBP was the first DNA vaccine used to treat MS in humans (Bar-Or et al., 2007). 

The treatment was successfully tolerated with no adverse effects in the patients. 

Results showed that lesion activity was reduced, although this was not significant. 

In addition analysis of the blood and CSF showed a reduction in MBP-specific 

immune responses. Most recent clinical trials induced immune tolerance using MS 

patients’ blood cells coupled with seven myelin peptides derived from MOG, MBP 
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and PLP (Lutterotti et al., 2013). This was a small phase I trial with only 9 patients 

to establish feasibility and safety. The treatment was well tolerated and patients 

on the higher dose of treatment showed a reduction in antigen-specific T cell 

responses, establishing this as a potential future therapeutic.   

Another recent clinical trial had success also using a mixture of 1 mg MOG35-55, 

MBP85-99 and PLP139-151. However, this treatment was administered transdermally 

via a skin patch (Walczak et al., 2013). The outcome of this small trial of 16 treated 

patients and 10 placebos showed that treatment ameliorated MS. This was 

concluded from a 66.5% reduction in gadolinium-enhanced lesions and a 

significantly lower annual relapse rate. This treatment was tolerated well, 

therefore presenting a new antigen-targeted, non-invasive therapy. 

There are drawbacks with the antigen-specific approach, primarily in identifying 

the immunodominant antigen targeted in MS autoimmune pathogenesis. Some 

clinical studies have been problematic due to toxicity. A phase II clinical trial tested 

an MBP altered peptide ligand (APL), CGP77116, which was administered s.c. 

(Bielekova et al., 2000). Of the 24 patients enrolled only one completed the study 

due to a range of reasons, namely, exacerbations of MS and allergic shock 

responses. Hypersensivity reactions were also seen in a similar phase II trial 

(Kappos et al., 2000). Another difficulty, evident from EAE studies, is epitope 

spreading that occurs with T and B cells (Vanderlugt and Miller, 2002, Robinson et 

al., 2003). However, research taken together present antigen-specific therapies as 

an effective mode of immune suppression in EAE models and having a range of 

success in treating patients thus far, with increasing efficacy as technology and 

knowledge have advanced.   

Previous soluble protein therapeutic studies have focused on the T cell arm of the 

immune response. However, MOG is a special case as it stimulates a pathogenic 

autoreactive T cell and autoantibody response. In the previous chapter MOG-ETA’ 

was able to reduce disease severity. A question raised was whether this reduction 
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in disease was in fact due to induction of MOG-specific tolerance instead of 

depletion of cells via the immunotoxin moiety. Thus, the aim of this chapter was to 

investigate the effects of low doses of soluble MOG protein alone using the same 

protocol used in the MOG-ETA’ studies. This was in the expectation of reducing 

disease by inducing MOG-specific tolerance response.   
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6.2 RESULTS 

6.2.1 Low dose soluble MOG1-125 treatment significantly reduced 
disease severity in MOG-induced EAE 

To investigate the hypothesis that soluble MOG treatment can induce similar 

clinical results as with MOG-ETA’ treatment, the same EAE model was adopted as 

used in Chapter 5; where mice were immunised with 100 µL complete Freund’s 

adjuvant containing 50 µg/mL MOG1-125 and 150 µg heat killed M. tuberculosis. The 

mice were then treated 2 d.p.i. and every 48 hours after with 25 µg MOG1-125 i.p. or 

PBS as a control. Again, due to the severity of this MOG-induced EAE model the 

experiment was terminated at 10 days post immunisation to ensure a large 

enough group of mice for analysis at the end of the experiment. Despite this the 

MOG1-125 treatment significantly decreased the mean clinical score on day 9 and 10 

(Figure 6.1A). Soluble MOG1-125 treatment also significantly reduced the mean 

cumulative disease score, and the total cumulative score was approximately 

halved (PBS = 48 ± 1.65; MOG1-125 = 27 ± 0.75) (Figure 6.1B). Therefore, indicating 

treatment with soluble MOG clearly reduced disease severity despite these mice 

having a severe model of EAE, which incorporates both the T and B cell arms of the 

immune system. MOG-ETA’ also decreased disease severity illustrating the fact 

that both treatments had a similar effect, although soluble MOG was slightly more 

effective than MOG-ETA’ as significant suppression was seen from 9 d.p.i. whereas 

in experiments using MOG-ETA’ the effects was seen from 10 d.p.i. 
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Figure 6.1. Soluble MOG1-125 treatment decreases EAE disease activity 
EAE was induced in 7-8 week old DBA/1j mice by s.c. immunisation with 100 µL complete Freund’s 
adjuvant containing 50 µg MOG1-125 and 150 µg heat killed M. tuberculosis. Mice were treated i.p. 
with 25 μg MOG1-125 or PBS on day two and every 48 hours after. (A) Clinical data shows reduction 
of EAE severity with MOG1-125 treatment. Data points represent mean clinical scores ± SEM (n=12). 
Data is representative of three individual repeats. Significance was determined by two-way 
repeated measures ANOVA with Bonferroni post-tests. ***, p < 0.001. (B) Mean cumulative score 
was calculated from the addition of daily clinical scores of all mice (n=12). Bar graph represents 
mean cumulative score from three biological repeats. Significance was determined by a two-tailed 
students t test. **, p < 0.01.  
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6.2.2 Treatment reduced immune cellular composition in the CNS 

To elucidate the immune mechanisms that might be contributing to disease 

suppression the cellular infiltrate present in the spinal cord was analysed. Flow 

cytometry was used to investigate if this was affected by the immune suppression 

presented in Figure 6.1. Results showed that treatment was associated with a 

global reduction of inflammatory cells in the spinal cord. Specifically, CD4+ T cells, B 

cells, and FoxP3+ T regulatory cells were all significantly reduced (Figure 6.2A). In 

addition to lymphocytes, innate immune cells monocyte/macrophages were also 

significantly reduced (Figure 6.2B). Neutrophils were decreased but this did not 

reach significance. These data suggest that treatment with soluble MOG1-125 is 

associated with an overall decrease in cellular infiltrate into the CNS, suggesting 

that the treatment is somehow dampening the immune response, potentially via 

tolerogenic mechanisms. Again, MOG-ETA’ treatment had similar effects on 

immune cell recruitment but it was not as pronounced as results observed with 

soluble MOG treatment. 
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Figure 6.2. Spinal cord immune cell infiltration is decreased in MOG1-125 treated mice. 
Spinal cord single cell suspensions were pooled from 4 mice 10 days after MOG1-125 immunisation. 
Cell suspensions were pre-gated on live, CD45+, single cells. (A) Results show a significant 
decrease in the number of cells to have infiltrated into the spinal cord after MOG1-125 treatment. 
Flow cytometry was used to identify and analyse CD4+ T cell populations, which were stained with 
CD4 and CD3; regulatory T cells were stained with FoxP3 and CD25, which were pre-gated on 
CD4+ T cells; B cells were stained with B220, which were pre-gated on CD5- cells. Bar graph 
indicates mean (±SD) % of averaged PBS control (n=9). (B) Spinal cord was also stained with 
CD45, CD11b, Ly6C and Ly6G to gate on Ly6C+ monocytes and Ly6G+ neutrophils. Bar graph 
indicates mean (±SEM) % of averaged PBS control (n=9). Both graphs show results from three 
biological repeats performed in triplicate. Significance was determined by two-way repeated 
measures ANOVA with Bonferroni post-tests. **, p < 0.01, ***, p < 0.001.  
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6.2.3 Soluble MOG treatment associated with an increase in 

CD1dhighCD5+ regulatory B cells 

Despite this overall reduction of immune cells in the CNS an enrichment of 

CD1dhighCD5+ cells was detected, which are markers for B regulatory cells (Figure 

6.3) (Yanaba et al., 2008). To definitively confirm these cells as B regulatory cells 

future experiments would need to show that they were able to produce IL-10 

(Bouaziz et al., 2008). The frequency of these CD1dhighCD5+ B cells was also 

investigated in the peripheral draining lymph nodes and spleen. This showed that 

this population was specifically enlarged in the spinal cord and not in the 

periphery, suggesting there was selective enrichment in the CNS (Figure 6.4). Since 

the global B cell population was depleted, this regulatory population represented 

approximately 10% of the remaining B cells. This indicated that MOG1-125 treatment 

may be inducing an enlargement of this regulatory B cell population, which may 

play a role in the suppression of EAE through the secretion of IL-10 (Yanaba et al., 

2009). Effects on this regulatory population were not observed with MOG-ETA’ 

treatment, so it appears to be specific to the soluble MOG infusion. 
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Figure 6.3. Soluble MOG1-125 treatment increases the frequency of CD1dhighCD5+ B Cells. 
Spinal cord single cell suspensions were pooled from 4 mice 10 days after MOG1-125 immunisation. 
Cell suspensions were pre-gated on live CD45+ singlets. Cells were stained CD1d, CD5, and B220 
expression. (A) Scatter plot indicates mean (±SD) % of averaged PBS control of CD1dhighCD5+ B 
cells (n=6). Results of two biological repeats performed in triplicate. (B) FACS plots show 
representative result of total numbers of CD1dhighCD5+ regulatory B cells, highlighted within the 
indicated gates, which were pre-gated on B220+ B cells.  
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Figure 6.4. Regulatory CD1dhighCD5+ B Cells are selectively enriched in the spinal cord. 
Experiment was performed as described in Figure 6.3. LN single cell suspensions were pooled 
from 4 LNs per mouse. Cell suspensions were pre-gated on live CD45+ single cells. Cells were 
stained CD1d, CD5, and B220. Results show that the frequency of regulatory B cells was 
significantly increased with MOG1-125 treatment but only in the spinal cord. Bar graph shows 
frequency of CD1dhighCD5+ cells within the B220+ B cell population. Values representative of two 
biological repeats, plotted as mean ± SD (n=3). 
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6.2.4 MOG1-125 treatment associated with a reduced MOG-specific 

cytokine response 

To assess if the immune suppression was associated with a tolerised peripheral 

immune anti-MOG response, the MOG-specific chemokine and cytokine response 

was analysed using cells isolated from the subinguinal and para-aortic LNs. The 

supernatants from this recall experiment were evaluated using a semi-quantitative 

mouse proteome array, which could rapidly detect 40 different cytokines and 

chemokines, detailed in Figure 6.5A. Observing the blots by eye showed that there 

were more cytokines and chemokines being secreted from cells isolated from the 

PBS treated mice after re-stimulation with MOG1-125 (Figure 6.5B). The values 

calculated from the proteome arrays using TotalLab reflected the initial 

observations made by eye (Table 6.1). There was an increase in proinflammatory 

chemokines and cytokines being produced by the re-stimulated cells from the PBS 

treated mice, including CXCL9, CXCL10 and IL-17, IFNγ, TNFα. These are indicative 

of a TH1/TH17 immune response.  

A small number of products in the supernatant were increased in the MOG1-125 

treated group after MOG-specific stimulation; IL-1ra, CCL5 and CXCL13. IL-1ra was 

approximately doubled in the MOG1-125 treated mice (PBS = 15,946.66; MOG1-125 = 

30,542.96). IL-1ra is a natural antagonist to the pro-inflammatory cytokines IL-1α 

and β, therefore complementing the rest of the cytokine array data. CCL5 and 

CXCL13 function as a promiscuous pro-inflammatory chemokine and for B cell 

recruitment to follicles, respectively. Despite these two pro-inflammatory 

chemokines the predominant MOG-specific response from the soluble MOG 

treated mouse group was anti-inflammatory/suppressed.  

Taken together, these results suggest that treatment with soluble MOG1-125 

tolerises the peripheral immune cells against MOG. Unfortunately there was no 

proliferation data available for the soluble MOG treatment due to technical issues. 

Overall, this peripheral cellular response correlates with the literature published 
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on soluble protein treatment. This result opposes the data retrieved from the 

MOG-ETA’ experiments, which induced an increased MOG-reactive cellular 

response. This dichotomy suggests that there are different mechanisms 

responsible for the suppression of EAE with these separate treatments. 
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Figure 6.5. Cytokine and chemokine production from cells isolated from lymph nodes of 
PBS and MOG1-125 treated mice. 
Draining lymph nodes were harvested and made into a single cell suspension 10 days after MOG1-

125 immunisation and the recall response analysed. The LN cells pooled from each mouse were 
stimulated ex vivo with or without antigen (MOG1-125) (n=4). Antigen-induced cytokine and 
chemokine production (i.e. MOG1-125 minus medium alone) was measured from pooled 
supernatants of 4 mice from each treatment group and profile evaluated. Protein levels were 
measured using Mouse Cytokine Arrays as per manufacture instruction. (A) Mouse cytokine array 
coordinates are displayed above with corresponding cytokines and chemokines colour coded 
below. Black circles represent positive controls and clear circle represents the negative control. Not 
to scale. (B) Representative scans of proteome array.  
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Table 6.1. MOG1-125 treatment reduces the MOG-specific cytokine and chemokine response 
in cell extracted from the lymph nodes. 
Supernatants were acquired and cytokine and chemokine levels measured as explained in Figure 
6.5. Protein levels were measured using Mouse Cytokine Arrays as per manufacture instruction 
and results quantified using TotalLab. Ag-induced cytokine and chemokine production values (i.e. 
MOG1-125 minus medium alone) were expressed as mean values representative of 2 biological 
repeats. 
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6.2.5 MOG1-125 treatment led to an increased MOG-specific pathogenic 

antibody response 

The MOG1-125 treatment appeared to be reducing EAE severity by reducing 

infiltration of immune cells into the CNS and decreasing anti-MOG cellular activity 

in the periphery. The next question was to observe if the treatment affected the 

MOG-specific antibody response. The results showed that disease reduction was 

accompanied by a significant increase in anti-MOG antibody serum titres, which 

was detected in mice sera harvested 10 days post immunisation by ELISA (Figure 

6.6). Unfortunately MOG-specific binding to native protein expressed on 

transfected LTK cells was not tested due to technical difficulties. 

To clarify if these antibodies were pathogenic their functional role was 

investigated using the in vitro myelinating culture system described in previous 

chapters. Mice sera were harvested from mice 10 d.p.i. and incubated with the 

myelinating cultures (28 DIV) in a series dilution for 16 hours with 2% rat serum as 

a source of exogenous complement. Sera from the soluble MOG1-125 treated mice 

induced greater myelin loss compared to the PBS treated control mice group. This 

difference was significant at the lower dilutions of 1/100 and 1/500 (1/100, p < 

0.001; 1/500, p < 0.05). These results revealed that despite soluble MOG 

treatment significantly reducing clinical disease and suppressing the antigen-

specific response in peripheral immune cells, there was an increase in MOG-

specific antibody titres and pathogenic autoantibodies found in the blood.  
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Figure 6.6. Anti-MOG reactivity was increased in serum after MOG1-125 treatment. 
Sera from mice 10 days post immunisation were analysed (n=12). Serum levels of anti-MOG 
mouse IgG was measured by ELISA. Results are from 2 individual repeats with each mouse tested 
in triplicate. Data points represent mean (± SEM). Significance was determined by two-way 
repeated measures ANOVA with Bonferroni post-tests. ***, p < 0.001.  
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Figure 6.7. MOG1-125 treatment led to increased serum demyelinating activity. 
Sera from mice 10 days post immunisation were analysed. Myelinating cultures (28 DIV) were 
incubated for 16 hours with pooled mice sera (n=6) from the PBS and MOG treated groups. Sera 
were used in a series dilution plus 2% rat serum. Experiment was done in triplicate, results 
representative of 2 biological repeats. Data points represent mean (± SD). Significance was 
determined by a student’s two-tailed t test. *, p < 0.05, ***, p < 0.001.  
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6.3 DISCUSSION 

Antigen-specific therapy is an important area of research in MS, as there are many 

adverse effects associated with long-term immune suppression, including currently 

unknown risks for young children treated with these DMTs. A promising 

therapeutic approach is the application of soluble antigen, which induces a 

tolergenic response. Early studies had limited effects in patients despite promising 

EAE studies (Campbell et al., 1973, Gonsette et al., 1977), but there has been great 

advances in knowledge and technology available and current studies using multi-

epitopes-coupled to patients’ red blood cells are now showing promising results in 

early MS patient clinical trials (Lutterotti et al., 2013).   

In this study the effects of low doses of soluble MOG1-125 treatment in MOG-

induced EAE in DBA1/j mice was investigated. The results showed MOG was able 

to significantly suppress pathology in this complex, severe EAE murine model. 

Disease reduction was associated with decreased immune cell populations located 

in the spinal cord after 10 days, which was associated with global reduction in 

antigen-specific responses in the periphery. However, despite this there was an 

increased titre of MOG-specific antibodies, which when tested on the myelinating 

cultures were pathogenic.  

The majority of previous animal studies have treated EAE with MBP or PLP, 

predominantly using peptides and not the whole protein. Whole MOG protein has 

not been investigated in DBA/1j mice before but MOG peptide has previously been 

tested to investigate if it had any suppressive effects on EAE. It has been shown 

that disease can be reduced when MOG41-60 peptide is injected i.v. into MOG-

induced EAE in (PL/J X SJL)F1 mice (Leadbetter et al., 1998). Significant disease 

suppression using the same murine model was also observed with intravenous 

injections of another MOG peptide, MOG91-110 (Devaux et al., 1997). In this study 

treatment was stopped at day 15 but the therapeutic effect continued for 25 days, 

at which point the experiment was terminated, suggesting that the treatment 
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offered prolonged disease suppression. Both these MOG peptide studies were 

targeting T cells, as MS was perceived as predominantly a T cell mediated disease 

with little consideration of the B cells role in pathogenesis. The EAE study 

presented in this thesis was novel, as we treated DBA/1j mice with the whole 

extracellular domain of MOG. This EAE model was chosen as it incorporates both 

arms of the adaptive immune response unlike other models commonly used 

(Abdul-Majid et al., 2000, Svensson et al., 2002, Abdul-Majid et al., 2003). The use 

of whole MOG was with the intention of targeting B and T cells, although the 

purified MOG was unfolded so is therefore likely to have a greater effect of T cells. 

Our clinical data (Figure 6.1) showed significant reduction of mean cumulative 

score and mean clinical scores from day 9 between the MOG1-125 and PBS treated 

mice.  This suggests that the soluble MOG effect could be responsible for the 

disease suppression recorded with MOG-ETA’ treatment. Although preliminary 

data in which mice were treated with 8.3 μg MOG (the exact amount of MOG1-125 

contained in the MOG-ETA immunotoxin), it did not have any effects on disease 

(data not shown). To test if MOG alone was more effective than MOG-ETA’ at 

suppressing disease a control experiment could be to synthesise a MOG-ETA’ 

construct with a mutated, non-functional ETA’ domain. This current study did not 

investigate the therapeutic effects of soluble MOG protein treatment as the 

disease severity was too great in the control group to extend the time course but 

this will be addressed in the future using a less severe animal model. This would 

have been interesting as another group, investigating the lasting therapeutic 

effects of MOG treatment in marmosets, showed that disease was actually 

exacerbated after treatment was ceased (Genain et al., 1996).  

Our results investigating cellular composition of immune cells in the spinal cord 

demonstrated that there was a significant reduction in T cells, B cells and FoxP3+ 

regulatory T cells compared to the PBS treated controls. Depletion of effector T cell 

data is in keeping with current literature on soluble protein treatment in vitro and 



Chapter 6 – Soluble MOG1-125 antigen-specific therapy:  184 
a strategy to treat multiple sclerosis                                          
 
in vivo as it has been shown that soluble MBP treatment leads to apoptosis of 

autoreactive T cells (Critchfield et al., 1994, Ishigami et al., 1998). Another 

explanation that could explain the reduction of T cells detected in the spinal cord 

after MOG1-125 treatment was elucidated using live-video and two-photon in situ 

studies (Odoardi et al., 2007). This experiment showed rapid effects on T cell 

motility in response to soluble MBP treatment and that these cells were being 

sequestered in the spleen. Therefore presenting a range of mechanisms that could 

be involved in the decrease in the CNS of T cells. Interestingly, there was no 

expansion of FoxP3+ regulatory T cells associated with disease reduction as these 

cells were found in reduced numbers in the active treatment mouse group, 

suggesting EAE amelioration was not due to regulatory T cell immune modulation. 

In addition to the lymphocytes, innate immune cells monocytes and neutrophils 

were also decreased in MOG1-125 treated mice. Monocyte/macrophages are found 

in great numbers in active MS lesions (Lucchinetti et al., 2000), and when depleted 

in EAE the mice have reduced disease severity (Huitinga et al., 1990, Huitinga et 

al., 1995), suggesting they have a major role in EAE. 

This thesis study showed that one cell group was found to be selectively enriched 

in the treated group, namely CD1dhighCD5+
 “B regulatory cells”, which indicated 

they may have played a role in reducing the disease burden. This enhancement 

specifically occurred in the spinal cord, therefore selective to where disease 

pathogenesis was occurring. Although B cell depleting drugs like Rituximab have 

been effective in treating autoimmune diseases like RA and MS (Caporali et al., 

2009, Hauser et al., 2008), there is evidence to suggest that B cell populations can 

also have a regulatory phenotype. In mice genetically deficient in B cells it was 

shown that EAE disease severity was greater, suggesting a role in immune 

modulation (Wolf et al., 1996). It was observed in another study that anti-CD20 B 

cell depletion before induction of EAE actually increased disease severity 

(Matsushita et al., 2008). Taken together these studies and others have brought 
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about great interest and stimulated research into describing the “regulatory B 

cell”.  

Trying to fully characterise these cells is an on-going challenge and is still under 

debate (Gray and Gray, 2010). One important feature is that they suppress the 

immune response by producing IL-10, an anti-inflammatory cytokine that has a key 

role in EAE suppression (Ray et al., 2011). IL-10-/- mice have a higher susceptibility 

to EAE (Bettelli et al., 1998), whereas mice that over express it are resistant to 

disease (Cua et al., 1999). It will be possible to confirm if these cells are regulatory 

B cells by investigating their production of IL-10, since this is a feature that defines 

the cell type. This enlarged cell population in our experiments could be partly 

responsible for the EAE suppression observed as studies have shown that 

increased disease burden from B cell depletion was due to the reduced number of 

CD1dhighCD5+ cells, and adoptively transferring these regulatory cells before 

disease induction normalised EAE (Matsushita et al., 2008). They also showed that 

these cells only appeared to have a suppressive effect at the beginning of the 

disease. As this study only analysed cellular infiltration at one time point (day 10) it 

would be interesting to investigate if they were still enriched in the CNS at later 

time points. A recent publication identified the importance of IL-35 secreting B 

cells in the suppression of the immune response, as well as IL-10 (Shen et al., 

2014). In addition, they showed that plasma cells were the predominant B cell 

subset secreting these regulatory cytokines.  

To investigate the peripheral immune response to MOG, after soluble antigen 

treatment, peripheral immune cells were re-stimulated with MOG1-125. This 

showed that cells from the MOG1-125 treated mouse group secreted reduced 

amounts of pro-inflammatory cytokines and chemokines, therefore suggesting 

these cells may be tolerised against MOG. Results presented in this thesis showed 

that one of the cytokines found in larger quantities in PBS treated mice included IL-

17, which has been identified in having a pro-inflammatory role in many 
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autoimmune diseases (Hu et al., 2011), including MS (Lock et al., 2002, Tzartos et 

al., 2008). Other hallmark TH1 cytokines IFNγ and TNFα were also found increased 

in this group. Interestingly, IL-1ra was increased in MOG1-125 treated mice after 

antigen-specific stimulation. IL-1ra is a naturally occurring IL-1α and β antagonist; 

therefore, the increase in IL-1ra secretion may have played a role suppressing 

these pro-inflammatory cytokines. Animal studies showed treatment with 

recombinant IL-1ra lead to a milder EAE in DA rats (Badovinac et al., 1998). Also IL-

1ra levels rose in response to IFNβ treatment in vitro, suggesting it could have a 

function in the disease suppression seen with this MS treatment (Sciacca et al., 

2000, Nicoletti et al., 1996). In addition, treatment of RA patients with 

recombinant human IL-1ra moderately reduced disease burden (Furst, 2004).  

This was different to the results seen with MOG-ETA’, where treatment was 

associated with an increase in MOG-specific cellular activity, suggesting that 

immunosuppressive mechanisms may be different between the two antigen-

specific therapies (Table 6.2). Table 6.2 highlights that the soluble MOG1-125 

treatment was associated with a decrease in the release of pro-inflammatory 

cytokines after MOG stimulation (highlighted in orange), with the exception of IL-

1ra, whereas MOG-ETA’ was mostly associated with an increase (highlighted in 

green). Future experiments would investigate antigen-induced proliferation as 

these results would help elucidate soluble MOG’s mode of EAE reduction. Taken 

together these data suggest this antigen-specific therapy was modulating 

peripheral immune cells by shifting them from a TH1 response to a more regulatory 

phenotype. This suppression of MOG-reactivity could be an important mechanism 

in the disease suppression observed with this treatment.  
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Table 6.2. Differences in chemokine and cytokine secretion from lymph node cells after 
MOG1-125 stimulation from the different animal treatment groups. 
This table shows the different patterns of chemokine and cytokine secretion from the lymph nodes 
after stimulation with MOG1-125 (protocol described in Figure 6.5). Orange boxes represent a 
decrease in secretion of protein between control and active treatment and green boxes represent 
an increase. In both experiments protein levels were measured using Mouse Cytokine Arrays as 
per manufacture instruction and results quantified using TotalLab. Table demonstrates mean 
values of ag-induced cytokine and chemokine production (i.e. MOG1-125 minus medium alone). 
Soluble MOG treatment values are representative of two individual experiments and MOG-ETA’ 
treatment values from three. 

 

 

This treatment, like MOG-ETA’, was associated with an increased anti-MOG. ELISA 

data showed a significantly greater anti-MOG response in the MOG1-125 treated 

mouse group. These antibodies were shown to have pathogenic properties in an in 

vitro bioassay. Whole protein was used in this study in the hope of suppressing 

MOG-reactive B cells, but the antibody titre results clearly show that this has not 

been effective. One possibility to explain these results is that the protein used was 
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unfolded, and in this from would not have affected B cells specific for epitopes that 

require the correct protein folding. Previous studies in EAE have shown that 

conformational epitopes are a major target for pathogenic MOG-specific 

antibodies (Breithaupt et al., 2008). What is interesting is that despite this increase 

in demyelinating antibodies; the soluble protein treated group still had a less 

severe clinical disease. This could be because there was less inflammation 

occurring in the CNS, so the BBB was not comprised, therefore the pathogenic 

antibodies could not enter. This increase in autoantibody titres has been observed 

by another group investigating MOG-specific immune tolerance in MOG-induced 

EAE in marmosets (Genain et al., 1996). In this study treatment was associated 

with EAE suppression, T cell suppression and immune deviation from a TH1 to TH2 

cytokine response. However, in parallel with this there was also an increase in 

MOG-specific antibodies, which once treatment ended, induced a lethal 

demyelinating disorder. This disease exacerbation could also occur in this study 

but due to time constraints the disease course was not observed post treatment. 

Future experiments would cease MOG1-125 treatment and then observe animals to 

examine if these increased antibody titres would lead to a severe demyelinating 

disorder.  

When comparing the two antigen-specific therapies, results showed that both 

significantly ameliorated disease and were associated with a reduction in immune 

cellular infiltration into the CNS. The mechanisms involved in disease suppression 

were not elucidated in this study but appear to be different as although the global 

reduction in CNS immune cells were superficially similar it was likely that different 

mechanisms were occurring.  This was evident as soluble MOG treatment was 

coupled with an increase in CD1dhighCD5+ regulatory B cells. In addition to this 

there was a dichotomy in the MOG-induced cytokine response between the two 

treatments. However, the major drawback of both these MOG-specific therapies is 

the induction of increased titres of potentially pathogenic autoantibodies.  
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To circumvent this issue of enlarged anti-MOG titres a treatment strategy targeting 

and eliminating T cell mediated inflammation could be more effective, for example 

infusing the mice with soluble peptides. The hypothesis being that treatment with 

peptide would tolerise the T cells without stimulating a problematic anti-MOG 

response. Paradoxically preliminary data assessing the effects of low dose soluble 

MOG peptide, MOG79-96, using the exact same methodology significantly increased 

the severity of disease (see appendix). This is in contrast to other published studies 

using MOG peptides, which have been shown to suppress EAE (Yuan et al., 2014, 

Devaux et al., 1997, Leadbetter et al., 1998).  In these studies different amino acid 

motifs were used and in different murine models, which may explain the 

contrasting results. Future experiments would also assess the treatment regime 

and dosage. Studies in rats using i.p. administration of 50 μg and 100 μg MBP 

showed that disease suppression was dose dependant, where increasing doses of 

MBP had an increasing effect on immunosuppression (Ishigami et al., 1998), 

suggesting better immunosuppression might be observed with higher 

concentrations.  

Overall, this result provides further support for the use of antigen-specific 

therapies in MS. There is still a great need for more specific therapeutic 

approaches to be researched as although current treatments involving broad 

immunosuppression have increased life expectancies in patients with MS and 

reduced patient mortality they are associated with many other adverse effects; 

The full extent of which has not yet been assessed in paediatric patients, now the 

most common form of neurological disorder in children. Therefore antigen-specific 

treatment approaches could effectively modulate pathogenic immune responses 

meanwhile sparing other important immune functions.
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7 GENERAL DISCUSSION 

The possibility antibodies play a role in the pathogenesis of MS was first discussed 

over seventy years ago, but there is still no consensus as to their specificity, mode 

of action or even their clinical significance. Nonetheless, the identification of MOG-

specific autoantibodies in children with MS or ADEM led to immediate speculation 

they would cause more severe disease (McLaughlin et al., 2009, Brilot et al., 2009). 

This hypothesis was based on experimental studies demonstrating MOG-specific 

autoantibodies mediate widespread demyelination and exacerbate disease 

severity in animal models of MS (Linington et al., 1988). However,  recent studies 

indicate no correlation exists between disease severity and the presence of 

absence of MOG-specific autoantibodies in children with MS or ADEM (Mayer et 

al., 2013). Moreover experiments discussed in this thesis, Chapter 3, were unable 

to demonstrate the presence of demyelinating antibodies in sera from anti-MOG 

seropositive patients. This was attributed to the  antibody-titre being simply too 

low to induce complement-mediated demyelination in vitro, and by extrapolation 

probably unable to contribute significantly to the mechanisms involved in causing 

clinical deficits in patients. However, this is not to say this MOG-specific response 

plays no role in disease pathogenesis.  

MOG-specific antibodies recognise MOG exposed at the membrane surface and 

their dominant isotype is IgG1, characteristics predicted to cause some degree of 

myelin/oligodendrocyte damage even if this does not lead to demyelination per se. 

Moreover this MOG-specific antibody response persists, albeit at low levels, in 

children with MS, but is lost rapidly in cases of ADEM (Mayer et al., 2013). These 

observations suggested the clinical significance of low titres of MOG-specific 

autoantibodies might be to maintain a chronic inflammatory response in the CNS, 

a function that might not necessarily be dependent on their ability to mediate 

complement-mediated demyelination.  
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Experiments performed in the course of this thesis indicate that this may well be 

the case, as they suggest formation of antibody/antigen complexes within the CNS 

may induce a pro-inflammatory chemokine response. Importantly, this response is 

not restricted to antibodies recognising antigens exposed at the myelin surface, 

but might be triggered by any antigen/antibody complex generated in the CNS 

compartment. This concept is based on the demonstration that pre-formed 

OVA/OVA-specific antibody complexes, as well as antibodies recognising accessible 

epitopes of sulphatide, PLP or MOG all induced expression of CCL5 in myelinating 

cultures.   

If confirmed this observation has important implications with respect to our 

understanding of how a chronic inflammatory environment is maintained in the 

CNS of patients with MS. One of the classical features of MS is its association with 

an intrathecal antibody response maintained by clonally expanded B cells 

sequestered in the CNS, which result in OCBs of immunoglobulins seen when 

patient CSF samples are analysed by IEF. The specificity profile of this intrathecal 

antibody response is complex, and as yet no dominant single reactivity has been 

discovered that is disease specific. In contrast, it appears the response is 

heterogeneous with individual patients harbouring a variety of different 

specificities in the CNS. These may include antibodies specific for: myelin-

associated lipids (Villar et al., 2005, Podbielska and Hogan, 2009), in particular 

sulphatides (Ilyas et al., 2003, Kanter et al., 2006, Brennan et al., 2011, Haghighi et 

al., 2013), combinations of myelin proteins, neuronal antigens and cytoskeletal 

components  (Lambracht-Washington et al., 2007, Quintana et al., 2012), viruses 

(Owens et al., 2011), and many more.  

This range of specificities together with the presence of soluble and membrane 

bound antigens in CSF suggest there is a high probability that antibody/antigen 

complexes can be generated that may trigger a chemokine response similar to that 

observed in vitro. This provides a mechanism that might explain reports showing 

that the presence of OCBs or high levels of intrathecal Ig synthesis correlate with 
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more rapid disease progression and higher MS conversion rates (Stendahl-Brodin 

and Link, 1983, Sastre-Garriga et al., 2003, Bourre et al., 2012, Ferraro et al., 2013). 

In principal such “triggering” complexes would not require antibody-recognition of 

cell surface exposed epitopes, as antigen enters the CSF as a consequence of tissue 

damage e.g. myelin-derived vesicular debris (Scolding et al., 1989), axonal proteins 

(Burman et al., 2014). However, autoantigens are also found in the CSF of healthy 

individuals in the form of exosomes and other vesicular material (Street et al., 

2012, Chiasserini et al., 2014). This raises the intriguing possibility that 

myelin/oligodendrocyte-derived exosomes may not only provide a source of 

antigen required to maintain an intrathecal sulphatide-specific B cell response in 

MS (Kramer-Albers et al., 2007), but if in complex with antibody may trigger a pro-

inflammatory chemokine response predicted to recruit effector cells into the CNS. 

At present there is no formal evidence to support this might occur in MS, but the 

circumstantial evidence is strong. Not only do many patients exhibit a strong 

intrathecal response to myelin-derived lipids (Kanter et al., 2006, Brennan et al., 

2011), but these can form antigen/antibody complexes in vivo (Kasai et al., 1986).  

Future studies must address this issue, as this mechanism could play a pivotal role 

in maintaining a low grade chronic inflammatory response in the parenchyma  of 

patients with progressive forms of MS who do not benefit from currently available 

disease modifying treatments such as the β-interferon’s, Tysalbri or Gilenya. The 

obvious starting point is to determine whether or not patient CSF contains 

antibody and/or antigen/antibody complexes that trigger a similar pattern of 

chemokine expression in myelinating cultures. The experiments described in this 

thesis took CCL5 as an exemplar, but as already apparent from Proteome and qPCR 

assays several other chemokines are up regulated along with CCL5 (Figures 4.5 and 

4.7, respectively). This raises the possibility non-biased micro array analysis of 

antibody treated cultures might identify a fingerprint of transcriptional changes 

defining the presence of functionally relevant antibody/antigen complexes in 

clinical samples. Such experiments should however be performed together with 
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studies designed to decipher which cells and molecular pathways are responsible 

for this response in vitro.  The obvious cellular targets are microglia and astrocytes 

as both can be induced to express a range of chemokines, and logically one may 

speculate the effect is Fc mediated. However, we observe a similar response to 

myelin-specific IgG and IgM antibodies and although several studies are available 

discussing the cellular expression of Fcɣ receptors on astrocytes and microglia, 

little is known about the Fcμ receptors and their cellular expression in the CNS. 

It should also be appreciated that this may provide a more general mechanism 

that might promote disease activity in other neurological diseases, as suggested by 

studies indicating autoantibodies from patients with NMO and neuropsychiatric 

lupus can induce chemokine expression in astrocytes (Howe et al., 2014), and 

microglia (Santer et al., 2009), respectively.  

If proved correct the hypothesis outlined above will have major implications with 

respect to the development of antigen-specific therapies for MS. This was the 

other major theme addressed in this thesis, which was based on the assumption 

antigen-specific deletion of B cells would inhibit disease activity in EAE without 

disrupting the entire B cell repertoire. Although preliminary clinical data suggests 

this approach may be effective there was a significant complication in that the 

introduction of additional autoantigen stimulated an increased pathogenic MOG-

specific antibody response. This is a significant drawback as these antibodies 

would exacerbate disease activity if they gain access to the CNS, a problem 

encountered in another study in which soluble MOG was used to “tolerised” the 

MOG specific repertoire in a primate model of MS (Genain et al., 1996).  

However although this approach might eventually be effective in models of MS 

driven by an autoimmune response to a single antigen, it is unlikely this will be 

useful in patients with MS. The major issue being it appears increasingly likely MS 

is a poly-specific disease in which multiple specificities contribute to disease 

pathogenesis. These may not only differ between patients but increase in 
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complexity during the course of disease due to “epitope spreading”. Therefore, 

“antigen-specific” therapies may be much more effective if designed to target a 

combination of disease relevant antigens.  This approach is already being 

investigated using combinations of CNS antigens and a variety of different delivery 

strategies, including multi-epitope targeted therapy (Kaushansky et al., 2011), and 

transdermal application of myelin peptides (Walczak et al., 2013). These studies 

also demonstrate the importance of developing better immune monitoring assays 

to detect and follow treatment responses as the disease develops (Lutterotti and 

Martin, 2014). Despite the lack of success in elucidating disease-specific antigens it 

is still imperative to continue to define pathogenic components of the disease 

associated autoantibody repertoire, as demonstrated by the recent, exciting 

identification of KIR1.4 as a novel and apparently common target for pathogenic 

autoantibodies in MS (Kraus et al., 2014).  

The past decades saw real progress in characterising and understanding the 

pathogenesis of MS which resulted in the introduction of effective treatments for 

MS. Reliable historical data is difficult to extract from the literature but it is clear 

that the life expectancy of MS patients has been increasing. Nowadays, studies 

have shown that people with MS die 5-10 years earlier than that of the general 

population (Runia et al., 2012), which is a vast improvement and this gap appears 

to be decreasing (Webpage 1). Nonetheless we still have no cure for MS and are 

unable to halt accumulation of disability in patients with progressive forms of the 

disease; with approximately 100 people being diagnosed with MS every week the 

need for better therapeutics has never been more pertinent (Webpage 2). 

Aggressive targeting of B cell dependent disease mechanisms in combination with 

modern stem cell treatments (Connick et al., 2012), to replenish or repair the B cell 

compartment may provide a new generation of even more successful therapies.  
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8 APPENDICES 

8.1 LOW DOSE SOLUBLE MOG79-96 TREATMENT 
SIGNIFICANTLY INCREASED DISEASE SEVERITY IN MOG-
INDUCED EAE 

To circumvent the issue of the enlarged anti-MOG titres which developed with 

soluble MOG1-125 treatment the mice were instead injected with low doses of 

soluble MOG79-96. The same course of treatment was carried out as before with 

induction of MOG-induced EAE then 25 μg i.p. injections on day two post 

immunisation and every 48 hours after. The hypothesis being that treatment with 

peptide would tolerise the T cells, therefore leaving the B cells with no stimulation, 

so no induction of antibody production. In contrast peptide treatment significantly 

enhanced EAE severity in comparison to PBS treatment (Figure 8.1). This was also 

significant in comparison to MOG1-125 treatment, which was also run in parallel 

(data not shown). Due to time constraints further analysis was not performed at 

termination of experiment to examine the cellular infiltration and antibody 

production but this will be addressed in the future. 
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Figure 8.1. MOG79-96 treatment increased EAE severity. 
7-8 weeks old DBA/1j mice were immunised with 100 µl complete Freund’s adjuvant containing 50 
µg MOG1-125 and 150 µg heat killed M. Tuberculosis to establish EAE s.c. at the base of the tail. 
Mice were treated i.p. with 25 μg MOG79-96 or PBS on day two and every 48 hours after. Clinical 
data, with each point representing the pooled mean scores ± SEM (n=12). It showed significant 
increase of EAE severity with MOG79-96 treatment. Data points from one biological repeats. 
Significance was determined by two-way repeated measures ANOVA with Bonferroni post-tests. 
***, p < 0.001. 
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