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Thesis Overview 

Insomnia is a common disturbance of sleep which can be treated effectively with cognitive 

behavioural therapy; a multicomponent ‘package’ of cognitive and behavioural strategies. Sleep 

restriction therapy is thought to be one of the most potent behavioural components of cognitive 

behavioural therapy. Subjective measures of sleep and daytime functioning improve not only with 

cognitive behavioural therapy, but also during and following sleep restriction therapy. However, it is 

unknown when these changes occur or if there are associated objective changes. This thesis 

addresses these issues, and presents: 1. a review of the literature of therapy and original research; 2. 

evaluates the nature and timing of changes in self-reported daytime functioning during therapy; 3. 

profiles potential objective changes (in measurements of sleep, plasma and salivary cortisol 

concentrations & temperature); and 4. compares patients with different subtypes of insomnia and 

healthy good sleeping controls for possible differences within the brain that might serve as future 

targets for treatment. The final general discussion ties together the results of these data-based 

chapters. 

The following section aims to provide a brief summary of the overall thesis. This Ph.D. was 

undertaken as Cotutelle Agreement between the Universities of Glasgow, United Kingdom and 

Sydney, Australia. Specific chapters relate to the data collection performed at these two sites. 

Consequently this thesis has been split into specific chapters from where the data were obtained. 

Chapters four and five consist of data acquired from Glasgow, United Kingdom whilst in chapters six 

and seven the data were acquired in Sydney, Australia. 
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Chapter 1: Introduction 

The first chapter sets the scene and introduces insomnia disorder, the prevalence, costs, 

aetiology and theories (3-P model & hyperarousal specifically). Treatment is then introduced and the 

chapter ends with an introduction to sleep restriction therapy. 

Chapter 2: The evidence base of sleep restriction therapy for treating insomnia disorder 

The second chapter consists of a review of the literature concerning sleep restriction therapy 

for insomnia. This review looks to discover the contribution of standalone sleep restriction therapy 

for the treatment of insomnia. It appears from the literature review and meta-analysis that 

improvements can be found in self-report sleep diary and questionnaire data due to therapy 

compared to control conditions. A summary of the research highlights that it is unknown when these 

subjective measures change, if there are any side effects, and what may change objectively due to 

therapy. Chapter two has been accepted for publication in Sleep Medicine Reviews and is referred to 

as Miller et al. (2014). 

Chapter 3: Methodology for the assessment of sleep  

The third chapter is different from the other chapters as it is a methods chapter which 

provides a short overview of sleep, circadian regulation and the two-process model of sleep. It then 

explores measures of sleep (polysomnography & actigraphy), cortisol and cerebral metabolism. The 

chapter ends with an overview of sleep restriction therapy for insomnia, the recruitment procedures 

and statistical analyses used in the data chapters. Chapter three has been accepted for publication 

as a book chapter but has been modified to reflect the methods used specifically in this thesis. 
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Chapter 4: An ecological momentary assessment of sleep restriction therapy for insomnia 

Chapter four is the first treatment study at Glasgow and attempts to build on the findings of 

the review by looking to profile the timing of improvements due to sleep restriction therapy. Mood 

and daytime functioning are examined as part of an ecological momentary assessment during 

therapy for insomnia. The study highlights initial impairments and subsequent improvements due to 

therapy. Results also suggest alterations in the sleep experience (especially around pre-sleep and on 

awakening for measures of sleepiness and alertness). Chapter four has been published in the Journal 

of Sleep Research and is referred to as Miller, Kyle, Marshall, and Espie (2013). 

Chapter 5: An assessment of salivary cortisol in response to sleep restriction therapy for insomnia 

Chapter five is the second sleep restriction treatment study and by building on Chapter four 

considers changes in objective salivary cortisol levels throughout therapy. Salivary cortisol was used 

as a non-invasive, inexpensive method at Glasgow to repeatedly sample cortisol before and through 

three weeks of therapy in the home environment at specified time points. Changes to cortisol levels 

due to therapy (especially around the pre-sleep and awakening periods) may offer insights into 

objective alterations due to therapy. 

Chapter 6: Sleep restriction therapy for insomnia disorder: An exploratory assessment of sleep and 

physiological markers of arousal in response to treatment 

Chapter six is the final treatment study and takes place in Sydney with access to night time 

blood sampling equipment for plasma cortisol. The study builds on the results of the two previous 

studies by looking to objectively define changes due to sleep restriction therapy in insomnia through 

a specific in-lab test of sleep, plasma cortisol and core body temperature measures after six weeks of 

therapy. This is used to elucidate the potential mechanisms of action of sleep restriction therapy. 
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Chapter 7: Magnetic resonance spectroscopy of cerebral metabolism in insomnia 

Chapter seven is a final case control study that takes advantage of the facilities at Sydney to 

look for differences between those with psychophysiological insomnia and healthy good sleeping 

controls for brain metabolism. The chapter aims to explore further potential differences in brain 

neurochemistry (magnetic resonance spectroscopy) and consider implications for insomnia 

management. 

Chapter 8: Summary 

Chapter eight is an overall summary and finishes the thesis with a general discussion tying 

the results of the studies together and suggesting reasons for the findings of the studies. This 

chapter also summarises the strengths, weaknesses and recommendations of the thesis. 
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Chapter 1: Introduction 

 

Sleeping is no mean art:  for its sake one must stay awake all day.  ~ Friedrich Nietzsche 
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1.1 Insomnia disorder 

Insomnia disorder (ID) is one of the most common health complaints with a serious 

socioeconomic burden to the world (Morin, Belanger, et al., 2009; Sivertsen, Lallukka, & Salo, 2011). 

It is also the most common sleep disorder with a prevalence of around 10% in the general 

population (Daley, Morin, LeBlanc, Gregoire, & Savard, 2009). Fifty percent of the population will 

experience symptoms of insomnia during their life and insomnia has risen over the last ten years 

(Pallesen, Sivertsen, Nordhus, & Bjorvatn, 2014). ID is also a complex, paradoxical and 

heterogeneous disorder that is difficult to define (Spielman & Glovinsky, 1991). The following 

sections will explore the specific diagnostic classifications of insomnia. 

The two main classification systems have defined ID as both a disorder in its own right and a 

symptom of other conditions (see Table 1 & Table 2): the American Psychiatric Association’s (APA) 

Diagnostic and Statistical Manual of Mental Disorders (DSM: APA (2000)) and the American Academy 

of Sleep Medicine’s (AASM) International Classification of Sleep Disorders (ICSD-2, 2005). For 

research, specific criteria have also been developed to aid the categorisation of groups of patients 

with insomnia for specific research settings (Research Diagnostic Criteria: RDC; Edinger et al. (2004), 

see Table 3 & Table 4). Depending on the classification system employed, ID is generally difficulty 

with initiating sleep, maintaining sleep, early morning awakenings, or a combination of these 

complaints where individuals report significant daytime impairment and in the absence of any 

physical, mental, or substance-related cause. Co-morbid insomnia generally involves a physical, 

mental or substance-related complaint. Adding to the complexity of insomnia, symptoms can also 

change over the progression of the condition. Insomnia can exist as chronic condition or an acute 

experience - with time differentiating between transient or acute insomnia (1 month) and chronic 

insomnia (≥ than 3 months). The insomnia complaint may also be assigned to one of four specific 

subtypes: 1. sleep-onset insomnia (≥ than 30 minutes): where patients display increased time to 

initiate sleep; 2. maintenance insomnia: where the patient is unable to maintain sleep throughout 

the night and is forced to attempt to re-initiate the sleep process (≥ than 30 minutes). This can take 

23 
 



 

the form of repeated unsuccessful attempts to fall back to sleep during the night; 3. early morning 

insomnia: patients may complain of disruption to sleep by waking earlier than desired and being 

unable to return to sleep; 4. mixed insomnia: the patient may suffer from a combination of any of 

the previously mentioned complaints. 

Until recently, the DSM-IV-TR (2000) distinguished between primary and secondary insomnia. 

Primary insomnia was defined as a complaint of initiating and/or maintaining sleep, early morning 

awakenings, and interrupted or non-restorative sleep. These symptoms were also accompanied by a 

significant impairment to daytime functioning, again with no identifiable cause beyond sleep 

disturbance (DSM-IV-TR, 2000). Due to this, the 4th edition of the DSM was criticised for not 

reflecting the complexity and heterogeneity of insomnia (Riemann, Baglioni, Feige, & Spiegelhalder, 

2014). In response, the 5th edition of the DSM (APA, 2013) now attempts to simplify the diagnosis of 

insomnia by introducing a new overarching diagnosis of ID to include symptoms of primary and co-

morbid insomnia. Thus, the DSM-V no longer refers to ‘primary’ and ‘secondary’ insomnia 

classification which was eliminated from the previous DSM-IV-TR (2000). This recognises the coding 

of insomnia where diagnostic criteria are met and treats insomnia as a disorder in its own right (APA, 

2013; Espie, Kyle, Hames, Cyhlarova, & Benzeval, 2012). This change is useful when we consider 

conditions like depression whereby, chronic untreated insomnia is a risk factor in a bi-directional 

relationship between insomnia and depression (Baglioni et al., 2011; Sivertsen et al., 2012). One 

further change to the classification within DSM-V relates to the daytime component of insomnia. 

This has become more specific compared to the previous general statement of the DSM-IV of 

requiring a ‘significant distress or impairment in social, occupational, or other important areas of 

functioning’ (APA, 1994; pp. 557). The DSM-V now requires a more specific daytime sequel involving 

one of the following complaints including: fatigue, daytime sleepiness, cognitive impairment, mood 

disturbance, impaired work function, or impaired interpersonal functioning (APA, 2013). This is in 

line with recent research findings that suggest chronic ID is a 24-hour disorder impacting on daytime 

functioning (Espie, Kyle, Hames, et al., 2012). 
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 DSM-V: Insomnia Disorder                                                                                           
(Verbatim from APA, 2013) 

ICSD-2: General Insomnia Disorder                                                                               
(Verbatim from ICSD-2, 2005) 

A. A predominant complaint of dissatisfaction with 
sleep quantity or quality, associated with one (or 
more) of the following symptoms: 1. Difficulty 
initiating sleep. 2. Difficulty maintaining sleep, 
characterised by frequent awakenings or problems 
returning to sleep after awakenings. 3. Early-
morning awakening with inability to return to 
sleep. 

A. A complaint of difficulty initiating sleep, difficulty 
maintaining sleep, or waking up too early, or sleep 
that is chronically nonrestorative or poor in quality. 

B. The sleep disturbance causes clinically significant 
distress or impairment in social, occupational, 
educational, academic, behavioral, or other 
important areas of functioning. 

B. The above sleep difficulty occurs despite 
adequate opportunity and circumstances for sleep.  

C. The sleep difficulty occurs at least 3 nights per 
week. 

C. At least one of the following forms of daytime 
impairment related to the night time sleep 
difficulty is reported by the patient:   
 
1. Fatigue or malaise                                                                                                          
2. Attention, concentration or memory impairment                                                                                                                                  
3. Social or vocational dysfunction or poor school 
performance                                                                                                                               
4. Mood disturbance or irritability                                                                                                 
5. Daytime sleepiness                                                                                                          
6. Motivation, energy, or initiative reduction                                                          
7. Proneness for errors or accidents at work or while 
driving                                                                                                                         
8. Tension, headaches or gastrointestinal symptoms 
in response to sleep loss                                                                                                                                                          
9. Concerns or worries about sleep 

D. The sleep difficulty is present for at least 3 
months. 

E. The sleep difficulty occurs despite adequate 
opportunity for sleep. 

F. The insomnia is not better explained by and does 
not occur exclusively during the course of another 
sleep-wake disorder (e.g. narcolepsy, a breathing-
related sleep disorder, a circadian rhythm sleep-
wake disorder, a parasomnia). 

G. The insomnia is not attributable to the 
physiological effects of a substance (e.g. a drug of 
abuse, a medication). 

H. Coexisting mental disorders and medical 
conditions do not adequately explain the 
predominant complaint of insomnia. 

Table 1 The DSM-V and ICSD-2 classification systems 
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The move towards an overall ID is reflected in the categorisation of insomnia in the ICSD-2 

(2005) and also in the RDC for insomnia (Edinger et al., 2004). The overall umbrella term of ID now 

spreads across three classification systems as a disorder in its own right and is therefore a more 

helpful description for both medical clinicians and researchers in relation to treatment interventions. 

However the varying insomnia subtypes across systems still require acknowledgement. The ICSD-2 

(2005) offers both a comprehensive (see Table 1) and more specific criteria through detailed sub-

categories of ID (see Table 2). Nine areas of dysfunction are described and the impairment must 

occur despite adequate sleep opportunity (see Table 1). When compared to the DSM-IV-TR (2000), 

this approach is useful as it does not exclude those with comorbid medical or psychiatric disorders 

compared with the previous distinction between primary/secondary insomnia (Schutte-Rodin, Broch, 

Buysse, Dorsey, & Sateia, 2008). This approach is also applied as part of RDC criteria (Edinger et al., 

2004) and reflects the utility of the ICSD-2 approach to insomnia and specific sub-categories (see 

Table 3). For example, the ICSD-2 goes into greater detail specifically differentiating insomnia 

subtypes into those with difficulties such as paradoxical insomnia, idiopathic insomnia and classic 

psychophysiological insomnia or ‘learned insomnia’ (a chronic complaint of insufficient amount of 

sleep or not feeling rested after the habitual sleep episode) (see Table 2). 
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ICSD-2 Sleep Disorder: Insomnia Categories                                                                                                          
(Verbatim from ICSD-2, 2005) 

1. Adjustable (Acute) Insomnia 
2. Behavioural Insomnia of Childhood 
3. Psychophysiological Insomnia 
4. Paradoxical Insomnia 
5. Idiopathic Insomnia 
6. Inadequate Sleep Hygiene 
7. Insomnia Due to Mental Disorder 
8. Insomnia Due to Medical Condition 
9. Insomnia Due to Drug or Substance 
10. Insomnia Not Due to Drug or Substance or Known 
11. Physiological Condition, Unspecified 
12. Physiological (Organic) Insomnia, Unspecified 

Table 2 The International Classification of Sleep Disorders, 2nd edition (ICSD-2, 2005) specific sub 
categories for Insomnia Disorder. 

Recently, a third edition of the ICSD has been released and is more consistent with the DSM-

V approach. This edition helps to collapse the diagnosis of overall insomnia into one specific disorder. 

Further refinements to the ICSD criteria also include the removal of certain phenotypes of insomnia 

to focus on psychophysiological insomnia, paradoxical insomnia, idiopathic insomnia and inadequate 

sleep hygiene insomnia (ICSD-3, 2014)   . This thesis used RDC to include participants with insomnia. 

Any comparisons made now will need to take this into account (see Table 3 & Table 4). 
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In using RDC classification criteria it is possible to obtain a reliable definition of insomnia and 

possible phenotypes within both clinical and research settings (Edinger et al., 2004). RDC criteria 

were developed in an attempt to bridge the previous DSM and ICSD nosologies and provide a 

common framework for defining insomnia for research settings. A work group was formed by the 

AASM leading to the development of standardised RDC for insomnia (see Table 3) and relevant 

subtypes (see Table 4). This criterion helps to standardise and improve the reliability of diagnosing 

insomnia for the selection of study participants (Edinger et al., 2004). 

Research Diagnostic Criteria for Insomnia Disorder                                                                                  
(Verbatim from Edinger et al., 2004) 

A. The individual reports one or more of the following   
sleep related complaints: 

  
  

1. Difficulty initiating sleep, 
  

  
2. Difficulty maintaining sleep, 

  
  

3. Waking up too early, or 
  

  
4. Sleep that is chronically nonrestorative or poor in 
quality. 
B. The above sleep difficulty occurs despite adequate   
opportunity and circumstances for sleep. 

  C. At least one of the following forms of daytime 
impairment related to the night time sleep difficulty is 
reported by the individual: 
1. Fatigue/malaise;   
2. Attention, concentration, or memory 
impairment; 

   
  

3. Social/vocational dysfunction or poor school 
performance; 

   
  

4. Mood disturbance/irritability;   
5. Daytime sleepiness; 
6. Motivation/energy/initiative reduction; 

  
  

7. Proneness for errors/accidents at work or 
while driving; 

   
  

8. Tension headaches, and/or GI symptoms in 
response to sleep loss; and 

 
  

9. Concerns or worries about sleep. 

Table 3 Research diagnostic criteria for Insomnia Disorder. 
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Research Diagnostic Criteria for Psychophysiological Insomnia                                                                                                                             
(Verbatim from Edinger et al., 2004) 

A. The individual meets the criteria for insomnia disorder. 
B. The insomnia noted in A. has been present for at least one month 
C. The patient has evidence of conditioned sleep difficulty 
and/or heightened arousal in bed as  
indicated by one or more of the following: 

 1. Excessive focus on and heightened anxiety about sleep. 
2. An inability to fall asleep in bed at the desired bedtime 
or during planned naps but relative ease falling asleep 

 during other relatively monotonous activities (e.g. 
 watching TV, reading, etc.) when not intending to sleep. 
 3. Being able to sleep better away from home than at 
 home. 

     4. Mental arousal in bed characterized either by intrusive 
thoughts or a perceived inability to volitionally 

 cease sleep-preventing mental activity. 
  5. Heightened somatic tension in bed reflected by a perceived 

inability to relax the body sufficiently to allow 
 the onset of sleep. 

    D. One of the following two conditions applies:   
1. There is no current or past mental disorder. 

 2. There is a current or past mental disorder, but the temporal 
course of the insomnia shows some independence 

 from the temporal course of the mental disorder. 
 E. One of the following two conditions applies:   

1. There is no current or past sleep-disruptive medical 
 condition. 

     2. There is a current or past sleep-disruptive medical condition, 
but the temporal course of the insomnia shows 

 some independence from the temporal course of the medical 
condition. 

     F. The insomnia cannot be attributed solely to another primary 
sleep disorder (e.g. sleep apnea, narcolepsy, or parasomnia) 
or to an unusual sleep/wake schedule or circadian rhythm 
disorder. 

     G. The insomnia cannot be attributed to a pattern of substance 
abuse or to use or withdrawal of psychoactive medications. 

 
Table 4 Diagnostic criteria for psychophysiological insomnia. 
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Factors responsible for psychophysiological insomnia are: 1. a sleep-related hyperarousal 

response and 2. the presence of learned associations that are not compatible with sleep and 

maintained by perpetuating factors (behaviour, mood, thoughts & beliefs: see Figure 1). In 

comparison to other subtypes of insomnia, Psychophysiological insomnia is acquired and normally 

sleep disruption can be traced to an identifiable event (e.g. stress, divorce, grief) or precipitating 

factor. This is not explained by another sleep disorder or illness. In Idiopathic insomnia, no specific 

trigger can be identified and Idiopathic insomnia starts off at a lower level and only becomes a 

chronic condition when not addressed. Paradoxical insomnia is a specific sub type that is 

characterised by a noticeable mismatch between subjective and objective estimates of sleep 

duration. This subtype requires objective evidence about sleep duration in relation to subjective 

estimations for classification (e.g. differences between actigraphy and estimations of sleep time 

from sleep diaries over a number of nights). It is unknown if this finding may or may not be a unique 

insomnia sub type characteristic (Manber & Ong, 2010). Other categories of insomnia relate the 

condition to problems with sleep hygiene (poor sleep practices) including: an irregular sleep 

schedule, frequent daytime napping, engaging in activities at bedtime that are wake promoting 

(work) or consuming alcohol, nicotine or caffeine in amounts that are likely to disrupt sleep. Other 

subtypes relate the condition of insomnia to co-morbid sleep disorders or medical or psychiatric 

illnesses that prevent sleep (e.g. pain) (see Table 2 for an overview) (AASM, 2005). 
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1.2 Prevalence 

Estimates of insomnia suggest that approximately one-third of adults report insomnia 

symptoms making insomnia the most prevalent sleep disorder (APA, 2013). Around 10-15% of the 

individuals will report daytime impairments due to poor sleep and will complain of insomnia in 

primary healthcare settings (APA, 2013; Ohayon & Hong, 2002). Approximately, 30% of Australians 

will be affected by insomnia symptoms, with 10% developing chronic insomnia (Bartlett, Marshall, 

Williams, & Grunstein, 2008). Similarly in the United Kingdom, the prevalence of insomnia has been 

found to be 37% of the general population with over two thirds of sufferers also reporting symptoms 

after one year (Morphy, Dunn, Lewis, Boardman, & Croft, 2007). For DSM-V criteria one recent large-

scale cross-sectional study suggested a prevalence rate of 7.1% in the total population of Norway 

(8.6% in women, 5.5% in men) (Uhlig, Sand, Ødegård, & Hagen, 2014). Prevalence varies widely 

depending upon criteria employed and whether it is considered a symptom of another disorder or 

an independent disorder. Frequently, insomnia is documented as a comorbid condition linked to 

another medical or psychiatric condition. For example, around half of individuals presenting with 

insomnia symptoms will also present with another psychiatric disorder (APA, 2013). Insomnia is also 

more prevalent in females than males with a ratio of about 1.44:1 and in those with lower social 

economic status (Pallesen et al., 2014). However, further epidemiological research is now required in 

order to elucidate the prevalence and varying nature of insomnia through longitudinal population-

based cohort studies. This will enable researchers to understand if insomnia can be prevented and 

associated morbidity reduced (Morin & Jarrin, 2013). 
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1.3 Costs 

The overall cost to society of insomnia is significant (Leger & Bayon, 2010). One study 

estimated the direct treatment costs of insomnia in 1995, totalled at $1.97 billion (Walsh & 

Engelhardt, 1999) in the United States. Another study has suggested direct costs are approximately 

$1,143 greater for patients with insomnia (Ozminkowski, Wang, & Walsh, 2007). In 2010, national 

annual costs for insomnia in the USA have been placed within the range of $92 to $107 billion (USD) 

(Rosekind & Gregory, 2010). In Canada, untreated insomnia is estimated to cost $5,000 (CAN) per 

case (Daley, Morin, LeBlanc, Gregoire, & Savard, 2009). Overall in the United States, health care 

services totalled $11.96 billion making the total direct cost estimate for insomnia to be 

approximately $13.9 billion (Walsh & Engelhardt, 1999).  Cost estimates are difficult to assess due to 

lack of data from different countries and the difficulty of applying findings from the limited number 

of studies to the rest of the world. 

Other overall costs which are difficult to quantify include: work, health, quality of life, road 

traffic accidents, and absenteeism. In addition, untreated insomnia is also a risk factor for the 

development of physical problems (Vgontzas, Fernandez-Mendoza, Liao, & Bixler, 2013) and has 

mental health implications in a bi-directional relationship with depression (Baglioni et al., 2011; 

Sivertsen et al., 2012). Considered together, all these factors accentuate the complexity of 

estimating the total cost of insomnia. Nevertheless, the overall cost to society appears significantly 

high. 
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1.4 Pathophysiology of insomnia 

The pathophysiology of insomnia is best demonstrated through a diathesis stress model 

commonly referred to as the ‘3P-model of insomnia’. This model aims to provide a framework for 

the development and maintenance of chronic insomnia through time (Buysse, Germain, Hall, Monk, 

& Nofzinger, 2011; Spielman & Glovinsky, 1991). Spielman and Glovinsky (1991) proposed the 3P-

model which describes predisposing (behaviour & genetic predisposition); precipitating (significant & 

often traumatic life events that may act as a trigger for insomnia); and perpetuating (behaviour, 

mood, thoughts & beliefs) factors that may contribute to both the development and maintenance of 

insomnia across time. Spielman and Glovinsky (1991) suggest certain individuals may be more 

vulnerable to the development of insomnia, depending upon predisposing factors like a heritable 

susceptibility to stress. Prior to the onset of insomnia, sleep is not stressful but resilient and plastic 

to mild sleep disturbance. However, precipitating events can increase the likelihood of the 

development of insomnia in certain vulnerable or ‘at-risk’ individuals and families. This may set off a 

period of poor sleep or acute short-term (1-month) insomnia. Subsequently, insomnia can be 

maintained with perpetuating factors. These include, maladaptive behaviours (spending too much 

time in bed in an attempt to obtain sleep) and thoughts, attributions or beliefs about sleep 

(obtaining at least 8 hours of sleep or next day performance will suffer for example). Also, over the 

course of chronic insomnia patients may become further sensitised to sources of sleep disruption 

(e.g. noise, light or temperature).  

Wake-promoting processes may also become conditioned at sleep initiation, preventing 

sleep onset, developing into psychophysiological insomnia (ICSD-2, 2005)  . Attentional biases 

towards bedroom and sleep related stimuli have been described and are thought to provoke this 

conditioned response (Espie, Broomfield, MacMahon, Macphee, & Taylor, 2006). Figure 1 highlights 

the natural history of insomnia from conception (premorbid), development (acute/short-term) and 

maintenance (chronic) from the 3P-model. Anxiety towards sleep may then form with patients 

33 
 



 

attempting to ‘catch’ enough sleep. If such anxiety develops, it may then also accompany increases 

to time in bed in an effort to control and obtain sleep (Spielman, Chien-Ming, & Glovinsky, 2010).  

The 3P-model is a useful conceptual framework for describing the development of insomnia. 

One limitation of this model is the underlying premise that the risk of insomnia is a stable trait across 

time but fails to adequately take into account within-subject variability. It is also highly likely the risk 

of insomnia development is a spectrum with some individuals at increased risk whilst others have a 

reduced risk which varies throughout the life cycle. This risk of insomnia development is not 

explained adequately by the current 3P-model, which also fails to take account of circadian and 

homeostatic factors (Perlis, Shaw, Cano, & Espie, 2011). 

 

 

Figure 1 The natural history of insomnia. Displays the influence of the 3P’s with predisposing 
(blue), precipitating (green) & perpetuating (yellow) factors in the development and maintenance 
of insomnia. Adapted from Spielman and Glovinsky (1991). 
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1.5 Models & theories of insomnia 

In addition to the 3P-model temporal development of insomnia (Spielman & Glovinsky, 

1991), a number of models and theories of insomnia have been described to explain aspects in the 

development and maintenance of chronic insomnia. A number of the most prominent and current 

theories will now be discussed. 

 
1.5.1 Stimulus control 

In the development of insomnia conditioned cues normally associated with sleep (e.g. bed, 

bedroom, bedtime, increasing darkness etc.) become paired with wake activities or those that are 

not normally involved in sleep. Coping behaviours are often initiated in an attempt ‘to control sleep’ 

where the individual starts with spending more time in bed in order to catch-up on sleep. This 

strategy is generally counter-productive resulting in more time awake, often engaging in alerting 

activities and sleeping less. Stimulus control initially formulated by Bootzin (1973) describes how  

wake-promoting activities can be paired with the sleep environment which reinforces the insomnia 

symptoms. Stimulus control therapy (SCT) seeks to decondition the individual to the wakefulness of 

the environment (leaving the bed) and the wake promoting activities (television, radio, computers 

etc.) by removing these from the bedroom. SCT is one of the most widely used behavioural 

treatments for insomnia yet, it does not explain those who have an increased risk of developing 

and/or maintaining insomnia. This theory also does not take account of biological processes 

including the circadian rhythm or homeostatic sleep pressure. Interestingly however, it is these same 

factors which are positively manipulated through treatment with SCT (Perlis et al., 2011). 

1.5.2 Cognitive & neurocognitive models 

Cognitive models of insomnia posit that insomnia is maintained by dysfunctional cognitive 

processes including excessive worry, anxiety and catastrophising which negatively impact on sleep. 

Harvey (2002), suggests attention needs to be placed on daytime factors in insomnia which equally 

disrupt night time sleep, in line with anxiety literature. Both cognitive and neurocognitive models of 
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insomnia build on the initial behavioural perspective and recognise that insomnia is precipitated by 

stressful life events (Perlis, Giles, Mendelson, Bootzin, & Wyatt, 1997). Neurocognitive models argue 

that increased cortical arousal (measured through cerebral electroencephalographic: EEG rhythms) 

cause increased sensory/information processing and disrupt sleep initiation and maintenance (Perlis 

et al., 1997). This increased sensory/information processing appears to contribute to an attenuated 

mesograde amnesia of sleep in insomnia (Perlis et al., 1997; Perlis, Smith, Orff, Andrews, & Giles, 

2001). Unlike other models, the main strength of the neurocognitive model is that it accepts for a 

developmental approach to cognitive arousal, leading to sleep inhibition. Increased arousal does not 

need to directly inhibit sleep, but only needs to reach an individual critical level to become wake 

promoting; in terms of neurocognitive processing.  Once conditioned arousal has set in, it potentially 

perpetuates long term insomnia. However, this model neither specifically acknowledges the 

homeostatic drive for sleep nor the role of self-perpetuating insomnia from an initial conditioned 

response which are both key components in the onset of insomnia (Perlis et al., 2011). 

1.5.3 Psychobiological-inhibition model & attention–intention–effort pathway 

Espie (2002) critically reviewed models of insomnia suggesting a psychobiological-inhibition 

model where the individual begins in a normal state with regards to sleep but it is their 

premorbid/predisposing state that contributes to the development of psychophysiological insomnia 

(Espie et al., 2006). In a subsequent theoretical review, Espie extends this initial work by considering 

a model of an attention–intention–effort pathway in the development and maintenance of 

psychophysiologic insomnia (Espie et al., 2006). In this model, relatively normal and automatic 

processes (de-arousal and sleep engagement) are disturbed in insomnia which causes an increased 

focus on sleep preventing the automaticity of sleep. This focused attention or ‘sleep effort 

syndrome‘ (Espie, 2007) is maintained overtime and potentially becomes chronic resulting in 

maladaptive sleep attention, and an inability to inhibit wakefulness. The individual then embarks on 

a fruitless attempt to re-establish control on sleep which further contributes to the chronicity of 

insomnia. Such cognitive effort is measureable in attentional biases concerning bedroom and sleep 
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related stimuli. These biases in attention appear to set-off arousal activation when sleep is 

attempted and may be a target for treatment and act as a marker of treatment response (Woods, 

Scheepers, Ross, Espie, & Biello, 2013). Other factors of this paradigm include: dysfunctional beliefs 

about sleep and increased worry and rumination on the negative consequences of sleep loss 

characterised by a racing mind and intruding thoughts during the night (Espie et al., 2006). This 

attentional bias model is supported by a range of psychiatric disorders including disorders of anxiety 

(Dalgleish & Watts, 1990). Measures of attentional bias can also be used to objectively quantify 

cognitive processes used by individuals with insomnia which does not rely solely on self-report. An 

animal model of insomnia (described next) suggests a similar neurobiological mechanism where 

there is also a failure to inhibit wakefulness. However, this research remains to be replicated across 

differing subtypes of insomnia with objective  measures  of attention (Perlis et al., 2011). 

1.5.4 An animal model of induced insomnia: 

Sleep deprivation studies of animals have produced little insight into the function of the 

sleep-wake system in insomnia due to methodological problems of having to apply a continuous 

stressor to deprive the animal of sleep (Richardson, 2007). Often the stressor used is physical in 

nature, which interferes with the results of the experiment. However Cano, Mochizuki, and Saper 

(2008) describe a stress-induced model of insomnia in rats. A ‘dirty cage exchange’ procedure was 

used which takes advantage of psychological stressors. An animal is placed in another animal’s cage 

and by being exposed to another animal’s territory (droppings, food remnants and odour) becomes 

hypervigilant (safety concerns) resulting in acute difficulties in initiating and maintaining sleep (Cano 

et al., 2008). Sleep architecture was found to change and closely resemble the sleep characteristics 

that occur with human insomnia. 

Initially, the cage-exchange ‘stressor’ induces a fight-or-flight response which is a 

component of the hypothalamic-pituitary-adrenal axis (HPA-axis) and autonomic nervous system 

activation (Cano et al., 2008; Perlis et al., 2011). After some time, homeostatic and circadian 
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pressure builds within the animal forcing sleep. The resulting sleep is of poor quality, is less than that 

of controls, hard to maintain, has decreased amounts of non-rapid eye movement (NREM) sleep, 

and is subjectively fragmented (Cano et al., 2008). Humans report similar sleep patterns when 

experiencing transient insomnia that is commonly induced by anxiety and stress (Bonnet & Webb, 

1976; Cano et al., 2008). Brain circuitry was also examined by Fos expression which is a marker for 

neuronal activation. Increased activation was observed in the cerebral cortex, limbic system, the 

locus coeruleus and tuberomamillary nucleus and the autonomic system (Cano et al., 2008). 

Interestingly, simultaneous activation was uncovered in the ventrolateral preoptic area and the 

median preoptic nucleus. This co-activation is different from that observed during either normal 

sleep or wake and was associated with high frequency EEG activity (Cano et al., 2008; Perlis et al., 

2011). Activation was also found to be modified with brain lesions or pharmacological interventions. 

The work by Cano et al. (2008), is a possible useful model of sleep disruption but future research is 

needed to further explore how this can be utilised in relation to the pathophysiology and treatment 

of insomnia in humans. 

1.5.5 Psychobiological approaches to insomnia 

Three main biological factors involved in the sleep-wake process are thought to underlie the 

occurrence and causation of chronic insomnia: hyperarousal, circadian dysrhythmia, and 

homeostatic dysregulation (Pigeon & Perlis, 2006). Homeostatic dysregulation has been postulated 

as a possible factor which underlies insomnia (Pigeon & Perlis, 2006). There is some evidence to 

support this perspective including the premise that slow wave sleep (SWS) may be deficient in 

insomnia compared to good sleeping controls (Baglioni et al., 2014). Suggesting, a reduction of EEG 

defined SWS due to an under primed sleep homeostat. However, this may also be due to irregular 

timing of sleep and a reduction in sleep pressure associated with increased time spent in bed 

attempting sleep and stress (Edinger & Means, 2005). 
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The hyperarousal concept suggests that those who focus their cognitive attention on their 

insomnia may develop conditioned arousal that inhibits sleep. This hypothesis posits that 

maladaptive behavioural and neurobiological processes lead to a state of conditioned autonomic 

arousal through learned associations (Bonnet & Arand, 1996; Hauri, 1983; Kales, Caldwell, Soldatos, 

Bixler, & Kales, 1983; Mendelson, James, Garnett, Sack, & Rosenthal, 1986; Merica, Blois, & Gaillard, 

1998; Perlis et al., 1997; Riemann et al., 2010). These physiological phenomena expressed by 

autonomic activation are what appear to define ‘psychophysiological insomnia’ (Riemann et al., 

2010). A number of physiological markers have been profiled between healthy good sleepers and 

those with insomnia including; cardiac, hormone (elevated cortisol levels), body temperature, 

metabolic measures and spectral EEG measures (Bonnet & Arand, 2010; Riemann et al., 2010; Roth, 

Roehrs, & Pies, 2007). Hyperarousal can generally be assumed to increase over the full 24 hour 

period in those with insomnia compared to controls. However, there may be more vulnerable times 

when these differences are more pronounced with hypersecretion of hormones including cortisol, 

before sleep and during the early night  in insomnia (Vgontzas et al., 2001). 

However, one of the biggest challenges for the hyperarousal hypothesis is specifying when 

the onset of hyperarousal takes place in the development of insomnia. Hyperarousal may exist prior 

to the development of insomnia, or it may develop as a result of a precipitating or perpetuating 

factors – in line with the pathophysiology of insomnia described through the 3P-model. 

Speculatively, this pre-disposition to insomnia may take the form of the heritable serotonin short 

allele (5-HTTLPR) and requires a stressful environmental interaction (provided by a physical or 

psychological stressor) in order to create an epigenetic effect (Harvey, Gehrman, & Espie, 2014; 

Palagini, Biber, & Riemann, 2014). This initial vulnerability may produce acute sleep disruption that is 

maintained long-term through cognitive and inhibitory factors (see Figure 2). This overall interaction 

potentially may cause hyperarousal and insomnia at any point in time: either prior to, or as a result 

of the stressor, during the acute period or even after a number of months. Chronic changes to the 

sleep-wake and brain systems may adapt to such stress resulting in insomnia even after the initial 
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stressor has remitted (Meerlo, Sgoifo, & Suchecki, 2008). Well-designed long-term follow-up studies 

are needed to investigate when and what changes actually take place as insomnia develops. Only 

recently, have studies attempted to define changes in the development of acute to chronic 

insomnia. For example, Ellis, Perlis, Bastien, Gardani, and Espie (2014) recently attempted to 

evaluate this transition and found that differences in sleep architecture including slow wave sleep 

(SWS) and rapid eye movement (REM) sleep latency at baseline was able to differentiate between 

those who remitted and those who went on to develop chronic insomnia. Those who did not remit 

were found to be more depressed and this was thought to perhaps precede the development of 

depression (Ellis et al., 2014). A second important question is to explore the impact of successful 

insomnia treatments like cognitive behavioural therapy for insomnia (CBT-I) or pharmacotherapy 

and evaluate whether effective therapy specifically alters physiological hyperarousal. 

Circadian dysrhythmia has also been suggested as a factor in the development and 

maintenance of chronic insomnia (Pigeon & Perlis, 2006). It is likely the combination of irregular 

sleep-wake schedules and increased time in bed (both behaviours used to achieve more sleep) 

disrupt the circadian rhythm. Spending excessive amounts of time in bed is the predominant 

perpetuating factor that prevents the individual from re-establishing normal sleep (Buysse, Germain, 

Moul, et al., 2011; Spielman et al., 2010; Spielman, Saskin, & Thorpy, 1987). Consistent rising times 

and amount of time spent in bed are predictive of better treatment outcomes (Riedel & Lichstein, 

2001). Stability to the circadian cycle for both sleep and wakefulness is important to initiate and 

maintain successful sleep (Riedel & Lichstein, 2001). Further during constant 24-hour routine 

conditions in individuals with insomnia, increased performance difficulties were found on objective 

measures of vigilance and working memory and increased fatigue, sleepiness and mood disturbance 

were also reported in individuals with insomnia compared to healthy controls (Varkevisser & Kerkhof, 

2005). Differing circadian periods have also been profiled in specific subtypes of insomnia. For those 

with early morning awakenings, core body temperature (a reliable marker of the human endogenous 
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circadian period) is advanced (Lack & Wright, 1993). A phase delay in core body temperature has 

also been profiled in those with sleep initiation insomnia (Pigeon & Perlis, 2006). 

Linking these three main biological processes together (sleep homeostasis, the circadian 

period and hyperarousal) creates a picture of the potential disruptions to the sleep-wake system 

that may all or in part contribute to the development of insomnia (Roth, 2007a). Figure 2 can be 

used to highlight and explore the potential interactions between the circadian and homeostatic 

processes with the previously mentioned cognitive and behavioural factors that may all interact to 

produce insomnia. 

 

 

Figure 2 Interacting model of insomnia Highlights the potential interaction of sleep-disruptive pre-
bed habits with biological sleep-wake processes (circadian and homeostatic) contributing to 
insomnia symptoms. Taken from Edinger and Means (2005). 
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1.5.6 Hyperarousal as a conditioned stress response in insomnia  

Corticotropin-releasing hormone (CRH) is a peptide hormone and neurotramsmitter 

involved in the human stress response. CRH is produced within the hypothalamus and is carried to 

the pituitary gland (as part of the HPA-axis), stimulating adrenocorticotropic hormone (ACTH) 

(Lehnert, Schulz, & Dieterich, 1998). In turn, ACTH stimulates the synthesis of cortisol through the 

adrenal gland which causes stress related metabolic effects on the body (Hiller-Sturmhofel & Bartke, 

1998). Cortisol is believed to possess anti-inflammatory properties by feeding back (at times) and 

inhibiting further ACTH and CRH secretion by acting on the hypothalamus and pituitary gland (see 

Figure 3) (Hueston & Deak, 2014). Richardson and Roth (2001) proposed a theory whereby increased 

activation of CRH appears to be involved in insomnia as higher levels of CRH may contribute to 

overall hyperarousal in insomnia with CRH thought to be involved in the regulation of spontaneous 

waking during sleep (Chang & Opp, 2001). Previous research reported a reduction in 

hypercortisolemia and HPA-axis activation with treatment in those with depression (Richardson & 

Roth, 2001; Roth, 2007b). Unfortunately this model has received little attention in the insomnia 

literature, regarding treatment of the HPA-axis and hypercortisolemia with either antiglucocorticoid 

agents or behaviour treatments for insomnia (Roth, 2007c). 

Recently, increased measures of CRH and cortisol concentrations have been found in 

insomnia compared to healthy controls in one study that measured this in the morning (Xia, Chen, Li, 

Jiang, & Shen, 2013). The authors suggest that increased levels of CRH may indicate an objective 

blood test for insomnia although further measurement of CRH at different time points is required 

(Xia et al., 2013). In addition it is also unknown if CRH levels respond to treatment in insomnia (Roth 

et al., 2007). Of considerable interest is the abnormal CRH regulation which has been identified in 

the pathogenesis of depression (Liu et al., 2004; Roth, 2001). CRH regulation may also share a 

common pathophysiology with insomnia due the common overlap with depression and insomnia 

(Baglioni et al., 2011). Indeed, markers of HPA-axis hyperactivity like plasma cortisol concentrations 

have been known to normalise after successful therapy for depression (Arborelius, Owens, Plotsky, 
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& Nemeroff, 1999; Nemeroff, Bissette, Akil, & Fink, 1991). CRH and cortisol may be highly linked as 

they share a common pathway through the HPA-axis. Further research is required to substantiate if 

markers of HPA-activation and overall hyperarousal such as cortisol concentrations can be reduced 

through treatment for insomnia. Treatment for insomnia will be explored in the next section. 

 

Figure 3 Regulation of the hypothalamic-pituitary-adrenal axis (HPA). ACTH: adrenocorticotropic 
hormone; CRH: corticotropin-releasing hormone; (+) stimulates; (-) inhibits. Taken from Hiller-
Sturmhofel and Bartke (1998).  

43 
 



 

1.6 Treatment for insomnia disorder 

There are a range of approaches available to treat insomnia. Most of the evidence-based 

treatment and management for insomnia can be distilled into two mainstay modalities: 1. 

pharmacotherapy or 2. CBT-I (Krystal, 2007). Newer ‘third-wave’ treatment approaches including 

Mindfulness and Acceptance-commitment therapy also appear to have benefits (Ong, Ulmer, & 

Manber, 2012) and can be combined with CBT-I.  Prior to seeking treatment directly from a health 

care professional (many with insomnia do not seek treatment), individuals often report attempting 

alcohol, ‘over the counter’ (e.g. antihistamines) medications, or herbal/dietary interventions to 

alleviate symptoms (Morin, Bootzin, et al., 2006). In primary care settings, insomnia is predominately 

treated with prescription medications (e.g. benzodiazepines) despite a lack of evidence for long term 

effectiveness (more than 4 weeks) (Riemann & Perlis, 2009). Although in the short-term (first 4 

weeks) pharmacotherapy is as clinically effective as CBT-I (Smith, Perlis, Park, et al., 2002). The main 

non-pharmacological treatment for insomnia is CBT-I, which is an evidence based intervention, 

usually delivered by a psychologist individually, in small groups, or through automated web-based 

programs (Espie, Hames, & McKinstry, 2013). 

1.6.1 Cognitive behavioural therapy for insomnia 

Cognitive behavioural therapy for insomnia (CBT-I) is a multi-component approach that 

seeks to manage insomnia by targeting maladaptive thoughts, behaviours and beliefs about sleep 

(Edinger & Means, 2005) (see Figure 2). CBT-I is a multiple component approach which aims to 

normalise sleep wake behaviour and when standardised appears to be efficacious for 70% of 

insomnia sufferers (Morin, Bootzin, et al., 2006). It has proven effectiveness in clinical trials over the 

last three decades (Espie, Kyle, Williams, et al., 2012; Morin & Benca, 2012; Morin et al., 1999; Morin, 

Vallieres, et al., 2009) and has lasting treatment effects over pharmacotherapy (Riemann & Perlis, 

2009; Smith, Perlis, Park, et al., 2002). Therefore, CBT-I is considered the first line treatment for 

insomnia by the AASM (Morin, Bootzin, et al., 2006), the National Institutes of Health ("National 

Institutes of Health State-of-the-Science Conference Statement on manifestations and management 
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of chronic insomnia in adults," 2005) and by the British Association of Psychopharmacology (Wilson 

et al., 2010). The overall approach consists of five main treatment modalities including: cognitive 

therapy, relaxation therapies, SCT, sleep restriction therapy (SRT), and sleep hygiene education 

(Morin, Bootzin, et al., 2006; Morin et al., 1999). The following list is a description of the five main 

components that commonly combine to form overall CBT-I (adapted from Morin, Bootzin, et al. 

(2006)): 

1. Cognitive therapy: A psychotherapeutic approach that looks to modify and dysfunctional 

thoughts, beliefs, attributions, expectations and cognitions regarding sleep and resulting 

daytime functioning. This also normally includes altering excessive worry and self-monitoring 

to improve cognition regarding the sleep-wake process. 

2. Relaxation therapies: use of imagery rehearsal therapy and progressive muscle relaxation 

techniques in order to reduce the awareness of unwanted thoughts or worries when 

attempting to initiate sleep. 

3. Stimulus control therapy: a set of behavioural instructions aimed at associating the bedroom 

environment cues with sleep and facilitating faster sleep onset. 

4. Sleep restriction therapy: a curtailment of time in bed in order to match the total sleep need 

of individuals. Mild sleep deprivation may reduce in bed wakefulness by facilitating efficient 

sleep. 

5. Sleep hygiene education: a set of information regarding lifestyle habits (alcohol, diet, 

exercise, caffeine, tobacco, drug use) and environmental factors (light, temperature, noise) 

that may be altered to improve sleep. 
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1.6.2 Sleep restriction therapy for insomnia 

SRT is a primary component within CBT-I and uses mild sleep deprivation and correct sleep 

timing opportunities to address the excessive time spent in bed, along with worry and anxiety about 

‘getting to sleep’ which is common in insomnia individuals (Spielman et al., 2010). Spielman et al. 

(1987) first utilised SRT in a sample of 35 patients with chronic insomnia to help reduce excessive 

time spent in bed. At the end of the eight week intervention compared to baseline, there was a 

significant improvement on the following self-report sleep diary variables including: total sleep time 

(TST), sleep onset latency (SOL), wake-time after sleep onset (WASO), and sleep efficiency (SE). 

Subjective perception of their insomnia disorder had also changed (measured by improvements in 

the Insomnia symptom questionnaire) and these improvements in sleep remained constant at nine 

months for the 23 subjects in the follow up assessment. SRT requires an in-depth examination as it 

may be one of the most potent components of CBT-I however studies into the mechanisms of action 

for SRT are limited (Miller et al., 2014). It should be noted that SRT is different compared to 

experimental sleep loss where participants are exposed to sleep deprivation conditions. Sleep loss 

experiments ask participants to reduce time in bed (TIB) along with parameters of specific studies 

(e.g. 4 hours in bed to assess neurocognitive performance). In sleep restriction therapy, TIB is 

restricted in order to match self-reported (perceived) sleep duration and this aims to improve the 

overall quality of their sleep.  

SRT is normally implemented by prescribing a maximum amount of time allowed in bed 

initially by matching this to the participants self-reported average TST (from a one or two week sleep 

diary). If a participant reports sleeping for five hours on average (most report low amounts of TST 

prior to therapy of about 5-6 hours), then the maximum TIB would equal this for one week until 

subsequent titration with a therapist. Patients are not prescribed a TIB (sleep window) of less than 

five hours due to the negative consequences that can be associated with extreme sleepiness. 

However, the minimum TIB can vary and there is currently no open consensus yet. More vulnerable 

patients with co-morbid medical or psychiatric disorders are recommended not to have a sleep 
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window less than six hours (Spielman et al., 2010). After the total amount of ‘allowed’ TIB has been 

arranged, a standard rising time is then set in the morning for the individual for each day of the 

week (including weekends). The rising time is settled on and assigned in concordance with the daily 

obligations of the individual along with their circadian preference for rising early or later in the 

morning. The therapist will then work backwards around the clock to prescribe the new threshold 

bedtime. Individuals are told that they may only go to bed after the threshold time has been 

reached and when they are sleepy. If a patient reports a baseline average TST of five hours then a 

06:00 rising time would result in a bedtime of 01:00. Naps or lying down are generally not permitted 

until the opportunity to sleep (except where mentioned in modified SRT). This new sleep-wake 

schedule must be maintained and adhered to everyday of the week until the next weekly meeting 

with the therapist where TIB is re-examined. 

A sleep diary is kept throughout the intervention period and is used to examine changes in 

the sleep-wake pattern. Subjective self-report diary data is used to calculate the previous week’s 

average SE. This is calculated during each week of treatment by using aspects of the sleep diary (TST 

/ TIB multiplied by 100). Generally, the sleep window is modified in 15 minute increments over the 

weeks of the therapy with improved and consolidated sleep (higher SE) (Spielman et al., 2010). 

Changes in the sleep-wake schedule within SRT works on the following criteria: (a) when the 

mean %SE is more than or equal to 90%, then the time in bed can be increased by fifteen minutes; 

by either setting the retiring time earlier or rising time slightly later; (b) Time in bed is decreased 

when the mean SE is less than 85%; (c) If the mean SE is less than 90% and more than or equal to 85, 

then the time in bed is not altered (Spielman et al., 2010). 

SRT produces improvements in both sleep and daytime functioning in those with insomnia 

(Kyle, Morgan, Spiegelhalder, & Espie, 2011). However, in 2006 the AASM did not find sufficient 

evidence to categorise SRT as a standard treatment intervention (Morin, Bootzin, et al., 2006). This is 

thought to be due to a neglect of examining SRT and is perhaps explained by researchers and 
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clinicians, willing to see an improvement insomnia symptoms by employing all components of CBT-I. 

Further, only a small number of studies have evaluated single component SRT without any further 

CBT-I components. The efficacy and evidence for SRT is explored in a systematic review and 

subsequent meta-analysis in Chapter 3 (Miller et al., 2014). Miller et al. (2014) suggest that therapy 

was effective for self-report sleep diary outcomes including: SOL, WASO, overall ratings of sleep 

quality and also TST. However, the true clinical effectiveness of SRT is yet to be examined thoroughly 

in adequate clinical-controlled trials and further research is required to ascertain the mechanisms of 

action. 

SRT is thought to work by aligning circadian drives for sleep and wakefulness and by utilising 

mild sleep deprivation to help facilitate sleep but may be associated with difficulties with adherence 

(Miller et al., 2014). However, SRT does have a number of benefits: Firstly, it has a strong 

behavioural focus and can avoid some of the perceived stigma associated with other cognitive 

psychological interventions (Buysse, Germain, Moul, et al., 2011; Troxel, Germain, & Buysse, 2012) 

perhaps regarding the effectiveness of so-called ‘talking therapies’. Further, the theory behind SRT is 

strongly linked to the two-process physiological model of sleep regulation by taking account of both 

circadian and homeostatic factors of sleep (Borbély & Achermann, 1999) and can be used as a means 

of prescribing/describing the intervention to a patient. It is also simple and easy to follow once 

prescribed. As a result, SRT can easily be prescribed in a stepped care approach to psychological 

services or in primary care settings (Espie, 2009). However, distinct problems exist with this 

treatment option: 1. there is a lack of robust evidence regarding the effectiveness/efficacy of this 

intervention on objective markers of sleep and insomnia severity; 2. side effects, adherence and 

compliance with this intervention have never been thoroughly examined and investigated as part of 

treatment response; 3. this procedure is believed to have a lasting impact on improvement of sleep 

variables yet the mechanisms of action are not fully understood; 4. issues regarding the titration and 

delivery of the therapy remain as most studies using SRT do not use standardised procedures as set 

out initially (Spielman et al., 1987); 5. with regards to impact of the intervention, it is unknown 
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whether or not certain types of insomnia disorders and/or individuals fair better or worse during 

therapy. Therefore, the main aim of this thesis is to begin to unravel these pivotal questions 

regarding SRT for treatment of insomnia by evaluating therapeutic changes due to SRT.   
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Chapter 2: The evidence base of sleep restriction therapy for treating insomnia 

disorder 

 

The contents of this chapter have been accepted for publication as follows: 

 

‘The evidence base of sleep restriction therapy for treating insomnia disorder’, Christopher B. Miller, 

Colin A. Espie, Danna R. Epstein, Leah Friedman, Charles M. Morin, Wilfred R. Pigeon, Arthur J. 

Spielman & Simon D. Kyle, Sleep Med Rev, accepted 03/02/2014. 

  

50 
 



 

2.1 Abstract 

Sleep restriction therapy is routinely used within cognitive behavioural therapy to treat 

chronic insomnia. However, the efficacy for sleep restriction therapy as a standalone intervention 

has yet to be comprehensively reviewed. This review evaluates the evidence for the use of sleep 

restriction therapy in the treatment of chronic insomnia. The literature was searched using web-

based databases, finding 1,344 studies. Twenty-one were accessed in full (1,323 were deemed 

irrelevant to this review). Nine were considered relevant and evaluated in relation to study design 

using a standardised study checklist and levels of evidence. Four trials met adequate methodological 

strength to examine the efficacy of therapy for chronic insomnia. Weighted effect sizes for self-

reported sleep diary measures of sleep onset latency, wake time after sleep onset, and sleep 

efficiency were moderate-to-large after therapy. Total sleep time indicated a small improvement. 

Standalone sleep restriction therapy is efficacious for the treatment of chronic insomnia for sleep 

diary continuity variables. Studies are insufficient to evaluate the full impact on objective sleep 

variables. Measures of daytime functioning in response to therapy are lacking. Variability in the 

sleep restriction therapy implementation methods precludes any strong conclusions regarding the 

true impact of therapy. A future research agenda is outlined. 
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2.2 Introduction 

 Sleep restriction therapy (SRT) is a behavioural intervention that is used to treat chronic 

insomnia (Morin, Bootzin, et al., 2006; Spielman et al., 1987), either as single component therapy, or 

as part of cognitive behavioural therapy for insomnia (CBT-I) (Buysse, Germain, Moul, et al., 2011; 

Edinger, Wohlgemuth, Krystal, & Rice, 2005). Anecdotally, SRT is believed to be one of the most 

active elements of CBT-I. Indeed, Spielman et al. (2010) emphasise the importance of SRT in an 

overview of 12 CBT-I trials, where all trials incorporated SRT procedures. However, the first 

American Academy of Sleep Medicine (AASM) practice parameters for the nonpharmacologic 

treatment of chronic insomnia considered SRT to be an optional patient-care strategy whereby, 

“patient improvement was unclear due to combination therapy” (pp. 1,131) (Chesson Jr et al., 1999). 

The most recent update of the AASM practice parameters suggest that SRT should be considered a 

“guideline” intervention due to the addition of two randomised controlled trials (Morgenthaler et 

al., 2006). This is one step below that of a “standard” intervention such as stimulus control therapy 

(SCT), (Morgenthaler et al., 2006; Morin, Bootzin, et al., 2006) as assessed through study design 

levels of evidence adapted from Sackett criteria (Sackett, 1989). Nevertheless, the review group and 

the AASM committee did conclude that “sleep restriction is effective and a recommended therapy in 

the treatment of chronic insomnia” (pp. 1,417) (Morgenthaler et al., 2006). 

Since the publication of the guidelines in 2006, behavioural interventions have shown 

further promise in controlled studies (Buysse, Germain, Moul, et al., 2011; Harris, Lack, Kemp, 

Wright, & Bootzin, 2012). Recently, and salient to this review, Epstein, Sidani, Bootzin, and Belyea 

(2012) conducted a dismantling study to compare multi component therapy (consisting of SRT and 

SCT with no structured cognitive therapy component), SRT, and SCT, to a waitlist control group. This 

study found SRT to be as effective as SCT and multi component therapy; suggesting SRT is a powerful 

standalone intervention. Earlier work also demonstrated that patient adherence to, and preference 

for SRT is more strongly associated with treatment outcome than other CBT-I components (Harvey, 

Inglis, & Espie, 2002; Vincent & Lionberg, 2001). As a field, Behavioural Sleep Medicine has 
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encouraged broad dissemination of brief behavioural therapies (Morin & Benca, 2012; Neylan, 2011; 

Troxel et al., 2012), potentially as a “low-intensity” intervention within affordable stepped-care 

health-frameworks (Espie, 2009; Espie et al., 2013; Espie, Kyle, Williams, et al., 2012; Vitiello, 

McCurry, & Rybarczyk, 2013). 

The aim of this review is to evaluate the evidence for the use of SRT in the treatment of 

chronic insomnia. It should be noted that we are referring in this review only to the therapeutic use 

of sleep restriction. We acknowledge that the term “sleep restriction” is more widely used in sleep 

science; usually in studies where healthy participants are experimentally exposed to a predefined 

(restricted) period of time in bed, to investigate the effects of sleep loss upon cognitive and 

physiological functioning (Dinges et al., 1997; Van Dongen, Maislin, Mullington, & Dinges, 2003). 

Although not the focus of this review, closer reference to this experimental approach may be useful 

to aid understanding of both the acute effects and the therapeutic use of SRT for people with 

insomnia. Specifically, therapeutic SRT involves implementing a new prescribed sleep window 

(amount of total time allowed in bed) that initially matches the average total sleep time (from a one 

or two week sleep diary). Normally, for safety reasons, a minimum time in bed of no less than 4-5 

hours is used to protect against excessive daytime sleepiness. The sleep window is then titrated on a 

weekly basis through the use of average sleep efficiency scores from a weekly sleep dairy (see Table 

5 for an example of the treatment guidelines) (Spielman et al., 2010). This is opposite to sleep 

compression therapy which uses a progressive and systematic reduction of time in bed to closely 

match sleep time/sleep need.  
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Our aim was to evaluate the evidence for the use of SRT in the treatment of insomnia. To 

achieve this aim, a systematic review of the literature was implemented. Suitable studies were then 

evaluated against a standardised quality assessment criteria (Kmet, Lee, & S., 2004) and levels of 

evidence as per Sackett criteria (Sackett, 1989). Only studies that utilised SRT as a standalone 

intervention strategy for chronic insomnia, in accordance with SRT clinical guidelines (Schutte-Rodin 

et al., 2008) were included. Based on the evidence from the review, we conclude with a section 

regarding future directions to advance our understanding of SRT. 
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2.3 Methods 

Criteria for inclusion of research articles 

This review aimed to include studies that were similar to the treatment delivery approach 

first described by Spielman et al. (1987). This involves using the average total sleep time (from a one 

or two week sleep diary) to implement a new prescribed sleep window with the patient. More 

recently, a minimum time in bed of no less than 4-5 hours is used to protect against excessive 

daytime sleepiness (Edinger & Means, 2005; Edinger, Wohlgemuth, Radtke, Marsh, & Quillian, 2001; 

Spielman et al., 2010). The sleep window is then titrated on a weekly basis through the use of 

average sleep efficiency scores from a weekly sleep dairy (see Table 5). 

Sleep efficiency scores (SE) 

SE < 85% SE  ≥ 85% or < 90% SE ≥ 90% 

Decrease TIB by 15 

minutes 
No Change 

Increase TIB by 15 

minutes 

Table 5 Titration guidelines for sleep restriction therapy. Displays the recommended titration 
guidelines for sleep restriction therapy from Spielman et al. (1987). SE: sleep efficiency = (average 
total sleep time ÷ average time in bed from sleep diary) x 100; TIB: time in bed. 
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Online databases WEB OF KNOWLEDGE, PubMed, and SCOPUS were searched from 1986, 

one year before the publication of the SRT guidelines by Spielman et al. (1987), until the end of 

October 2012. The search was re-run in August 2013 to take account of subsequent studies available 

online. The review used a subject and text word strategy with “insomnia” and “sleep restriction” or 

“sleep compression” (which is a systematic reduction of time spent in bed to closely match total 

sleep time/sleep need) as the primary search terms. Sleep compression therapy was included so that 

we would not miss any potentially relevant studies that may have applied a form of SRT. If the titles 

were appropriate and included any of the following terms: “insomnia”, “behaviour/behavior”, 

“treatment” the online article was accessed and the abstract reviewed. Only full text articles were 

included and any published conference abstracts were omitted. If the abstracts were deemed 

suitable (for example, described a standalone intervention involving the curtailment of time in bed 

for the treatment of chronic insomnia), a full copy of the article was acquired and assessed for 

inclusion in this review (see Figure 4). Studies were then considered for inclusion if they: (a) 

implemented a standalone form of sleep restriction therapy; (b) examined response to sleep-wake 

outcome variables in a systematic manner (including uncontrolled clinical trials and case studies); (c) 

included adult populations (≥18 years old); (d) were published in the English language. Reviews, 

duplicates and studies that implemented sleep compression therapy or SRT as a treatment package 

(CBT-I), were excluded (see Figure 4). The reference sections of all retrieved articles were also 

searched to further identify suitable studies for inclusion. 
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Figure 4 Flowchart 
showing the process 
of selecting studies 
included in the 
review 

 

   

 

Identification of potentially 
relevant studies (title and 
abstract) by searching electronic 
databases.                                            
n  =  1,344 

  

 

 

 
 

  

 

 

 

Exclusion of irrelevant 
citations n  =  1,323 

    

 

Retrieval of article in full for 
potentially relevant studies.                                          
n  =  21     

  
    

 

 

Exclusion of irrelevant 
citations that did not study 
insomnia and/or used 
interventions other than 
sleep restriction therapy 

 n  =  12 

    

 

Studies included in the review.                                                                 
n  =  9 
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Standardised quality assessment criteria (Kmet et al., 2004) (see Table 6) were applied to 

provide structure to the review process. The quality of a study is defined in terms of the extent that 

design, conduct, and analyses minimised errors and biases for both randomised controlled trials 

(RCT) and controlled trials. This yields a global score for each study, and so enabling comparisons to 

be made across trials. Thus, the overall quality score enables a consistent assessment of evidence 

and quality of available medical research studies (Kmet et al., 2004). This approach normally involves 

appraisal of 14 items (study; objective, design, method, subjects, intervention, blinding investigator 

and subject, outcome, sample size, analytic methods, variance, confounds, description and 

conclusion), on a three-point rating scale (yes = 2, partially = 1, and no = 0). However, one item 

(relating to blinding of the investigators to treatment) was removed as this was not applicable to the 

present review (see Table 6). The items are consistent with the recommendations from the Centre 

for Reviews and Dissemination for systematic reviews (Akers, Aguiar-Ibáñez, Baba-Akbari Sari, 

Beynon, & Booth, 2009) and in line with the previous study assessment approach by the AASM 

(Morin, Bootzin, et al., 2006). Item scores are summed and a percentage is given to each study (see 

Table 7). For each study, we report this overall score to gauge study quality (Kmet et al., 2004), the 

study design and evidence level (using the Sackett system (Sackett, 1989) as per the previous AASM 

practice parameters) (Chesson Jr et al., 1999; Morgenthaler et al., 2006; Morin, Bootzin, et al., 2006; 

Morin et al., 1999). The Sackett system (Sackett, 1989) grades evidence levels through the following 

criteria: randomised well designed trials with low alpha and beta error (grade I), randomised trials 

with high alpha and beta error (grade II), non-randomised concurrently controlled studies (grade III), 

non-randomised historically controlled studies (grade IV), case series (grade V). Single case studies 

were not assigned any evidence level. Only studies that met grade III evidence or above were 

examined further for SRT outcome data. This is considered the minimum level of evidence for the 

AASM to recommend psychological treatments for insomnia as either a “standard” or “guideline 

patient care option”. (Chesson Jr et al., 1999; Eddy, 1992; Morgenthaler et al., 2006). 
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Question Criteria 
Yes 

(2) 

Partial 

(1) 

No 

(0) 
N/A 

1 Question / objective sufficiently described?     

2 Study design evident and appropriate?     

3 Method of subject/comparison group selection or source of 

information/input variables described and appropriate? 
    

4 Subject (and comparison group, if applicable) characteristics sufficiently 

described? 
    

5  If interventional and random allocation was possible, was it described?     

6 If interventional and blinding of investigators was possible, was it reported?     

7 If interventional and blinding of subjects was possible, was it reported?     

8 Outcome and (if applicable) exposure measure(s) well defined and robust to 

measurement / misclassification bias? means of assessment reported? 
    

9 Sample size appropriate?     

10 Analytic methods described/justified and appropriate?     

11 Some estimate of variance is reported for the main results?     

12 Controlled for confounding?     

13 Results reported in sufficient detail?     

14 Conclusions supported by the results?     

Table 6 Checklist for assessing the quality of quantitative studies from (Kmet et al., 2004). Question number 6 was 
omitted from this review process as it was considered not applicable to this review process
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 The primary outcome data are based on sleep diary continuity variables: sleep onset latency 

(SOL), wake-time after sleep onset (WASO), sleep efficiency (SE:  total sleep time ÷ time in bed × 

100). Secondary variables reported include: total sleep time (TST), number of awakenings (NOAW), 

total time in bed (TIB), and subjective ratings of sleep quality (SQ) (see Table 8). This approach has 

been used previously to provide a common mode of assessment for different insomnia interventions 

(Riemann & Perlis, 2009). The primary outcome variables of the surviving studies were then analysed 

through the use of effect size (ES) scores. Effect size uses standard deviation units to provide a 

measure of change; these are defined as small (0.2), medium (0.5) and large (>0.8) (Cohen, 1988). 

The overall weighted effect size was calculated by the formula (∑[di*N]/ ∑ [N]), where di is the effect 

size of the individual study (Smith, Perlis, Park, et al., 2002). The effect sizes were weighted to 

account for individual sample sizes. This methodology has been used to evaluate response to 

insomnia treatments (Riemann & Perlis, 2009; Smith, Perlis, Park, et al., 2002). 
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Table 7 Description of studies included in the review of sleep restriction therapy for insomnia . Displays an overview of each study included in the review process. CS: 
case study; ESS: Epworth sleepiness scale; GSES: Glasgow sleep effort scale; HW: hypnotic withdrawal; ISI: insomnia severity index; ISQ: insomnia symptom 
questionnaire; MSLT: multiple sleep latency test; NOAW: number of awakenings; non-randomised control trial; NRST: nap modification sleep restriction therapy; PSG: 
polysomnography; PSQI: Pittsburgh sleep quality index; PVT: psychomotor vigilance task; RCT: randomised control trial; RT: relaxation therapy; SE: sleep efficency; SHE: 
sleep hygiene education; SOL: sleep onset latency; SSS: Stanford sleepiness scale; SQ: sleep quality; SRT: sleep restriction therapy; TST: total sleep time; UCT: 
uncontrolled trial; WASO: wake time after sleep onset. * Only the sleep restriction therapy group was included in the meta analysis section of this review for this study. 

Author(s) (year) 

Design and 

level of 

evidence 

Treatment type Enrolled participants Sleep outcome(s) Summary of findings at post-treatment 
Summary of findings at 

follow-up 

Assessment 

quality score (%) 

Bliwise, 

Friedman, 

Nekich, and 

Yesavage (1995) 

USA 

NRCT; III SRT vs. relaxation therapy 

32 elderly adults 

(mean age =  68.7) 

with primary insomnia 

Sleep diary data 
SOL ↓ for SRT & RT (p < .01). No significant ∆ in 

TST. 

3mths: SOL maintained and 

TST ↑ (p < .001). 

19 out of 26 

(73.1%) 

Epstein et al. 

(2012) USA 
RCT; I 

SRT vs. SCT  vs. multi-

component behavioral 

intervention vs. wait-list 

control 

179 older adults (mean 

age = 68.9) with 

primary insomnia 

Sleep diary data, actigraphy 

and the ISI. 

Sleep diary compared to waitlist controls: SOL↓, 

WASO↓, TST↑, SE ↑, SQ↑ (all p < .01). 

Actigraphy: TST no ∆, SOL ↓, WASO ↓, SE ↑ (all p 

<.01). ISI ↓ (p < .05). 

All gains maintained at 

3mths and 12mths. 

23 out of 26 

(88.5%) 

Fernando III, 

Arroll, and 

Falloon (2013) NZ 

RCT; II 
SRT vs. sleep hygiene 

instructions 

45 adults (median  age 

=  58)  with primary 

insomnia 

Telephone response 

regarding sleep quality. 

The SRT group benefitted significantly better than 

the SHE group for sleep quality (p <0.05). 
N/A 

23 out of 26 

(88.5%) 

Friedman et al. 

(2000) USA* 
RCT; II 

SRT & sleep hygiene 

instructions vs. NSRT & 

sleep hygiene instructions 

vs. sleep hygiene 

instructions 

39 older adults (mean 

age =  64.2) with 

primary insomnia 

Telephone sleep diary data, 

PSG and MSLT (sub-sample 

n = 19 at baseline, 

treatment end, and 3 

month follow-up), 

actigraphy and the SSS. 

Sleep diary: SE ↑ (p < .05). Actigraph: TST ↓ (p < 

.05). PSG and MSLT: means and standard deviations 

only reported due to small sample size. 

3mths: sleep diary: SE 

maintained. No ∆ in 

actigraphy. SSS for SRT & 

SHE ↓ (p < .05). 

22 out of 26 

(84.6%) 
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Kyle et al. (2011) 

UK 
UCT; V SRT only 

18 adults (mean age = 

42) with primary 

insomnia 

Sleep diary data, 

Qualitative voice 

recordings, ISI, PSQI, GSES 

SOL ↓, WASO ↓, SE↑, SQ↑, (all p < .01). No ∆ in 

TST. ISI ↓, PSQI ↓, GSES ↓, (all p < .001). 

3mths:  All gains maintained 

and TST ↓ (p < .01). 

16 out of 26 

(61.5%) 

Kyle et al. (2014) 

UK 
UCT; V SRT only 

16 adults (mean age =  

47.1) with primary 

insomnia 

Sleep diary data, PSG, ISI, 

ESS, GSES, PVT 

Sleep diary: SOL ↓, WASO ↓, SE↑ (all p < .05). No 

∆ in TST.  PSG: TST ↓ (p < .001). ISI ↓ (p < .001). No 

∆ in ESS. PVT: attentional lapses ↑, reaction times 

↑ (both p < .05). 

3mths: sleep diary: All gains 

maintained and TST ↑ (p < 

.05). 

19 out of 26 

(73.1%) 

Morin, Kowatch, 

and Oshanick 

(1990) USA 

CS SRT only 

1 female (49 year-old)  

with comorbid 

insomnia 

Sleep diary data and hourly 

hospital staff reports 
27 days: TST ↑. 16 weeks: TST ↑. 

8 out of 26 

(30.8%) 

Spielman et al. 

(1987) USA 
UCT; V SRT only 

49 adults (mean age =  

46)  with chronic 

insomnia 

Sleep diary data, PSG 

(screening only in a sub-

sample of 31), 13 ISQ 

Sleep diary: TIB ↓, SOL ↓, WASO ↓, TST ↑, SE ↑ 

(all p < .05), ISQ ↓. 

9mths: Improvements 

maintained (n= 23, no ISQ 

follow-up). 

16 out of 26 

(61.5%) 

 Taylor, Schmidt-

Nowara, Jessop, 

and Ahearn 

(2010) USA 

RCT; II 

SRT & hypnotic 

withdrawal vs. Sleep 

hygiene instructions 

46 adults (mean age =  

53.7)  with chronic 

insomnia 

Sleep diary data & reported 

use of hypnotics. 

SRT + HW compared to SHE: SOL ↓ (p < .05), WASO 

↓ (p = .052), SE ↑ (p < .05), No difference in TST. 

Hypnotic use ↓ (p < .001) compared to SHE: SOL ↓ 

(p < .05), WASO ↓ (p = .05), SE ↑ (p < .05), No 

difference in TST. Hypnotic use ↓ (p < .001) 

compared to SHE. 

6mths (for SRT + HW only): 

All gains maintained and TST 

↑ (p < .001).  All gains at 

6mths maintained at 

12mths. 

22 out of 26 

(84.6%) 
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2.4 Results 

2.4.1 Description of studies included in the review 

 The initial and updated electronic database search yielded 1,344 (WEB OF KNOWLEDGE = 

664, PubMed = 445, SCOPUS = 235) potentially relevant studies combined; after reading titles and 

then abstracts of these studies, 21 were deemed adequate and a full version of the article was 

acquired. From these 21 studies, nine fulfilled the inclusion criteria (see Figure 4). Twelve studies 

were excluded for the following reasons: two did not study insomnia, (Hoch et al., 2001; Reynolds & 

Banks, 2010); four used sleep compression therapy, (Hoelscher & Edinger, 1988; Lichstein, 1988; 

Riedel & Lichstein, 2001; Riedel, Lichstein, & Dwyer, 1995); two used multi component therapy 

(Vincent, Lewycky, & Finnegan, 2008; Vincent & Lionberg, 2001); one implemented a form of sleep 

compression therapy (Riedel & Lichstein, 2001); and finally, three studies were preliminary reports 

of subsequently reported data and were not included in this review (Brooks, Friedman, Bliwise, & 

Yesavage, 1993; Friedman, Bliwise, Yesavage, & Salom, 1991; Miller et al., 2013). The following sub-

sections report an overall audit of these initial studies (see Table 7). 
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2.4.2 Design / Randomisation / Controls  

Of the nine studies found in the literature search, four implemented randomised controlled 

trials, (Epstein et al., 2012; Fernando III et al., 2013; Friedman et al., 2000; Taylor et al., 2010), one 

was a non-randomised controlled trial (NRCT) (Bliwise et al., 1995), three were uncontrolled clinical 

trials (UCT) (Kyle et al., 2014; Kyle et al., 2011; Spielman et al., 1987) and one was a case study 

(Morin et al., 1990). Out of the four RCT’s, all used well-defined randomisation procedures (Epstein 

et al., 2012; Fernando III et al., 2013; Friedman et al., 2000; Taylor et al., 2010). Adequate control 

groups (waitlist controls, matched for therapist time and/or a comparison to another CBT-I 

intervention) were used in the majority of both the randomised and controlled trials (see Table 7). 

2.4.3 Participants / Power / Sample 

Of the nine included studies, seven treated participants with primary insomnia (Bliwise et al., 

1995; Epstein et al., 2012; Fernando III et al., 2013; Friedman et al., 2000; Kyle et al., 2014; Kyle et 

al., 2011; Taylor et al., 2010) (this was either specified by research diagnostic criteria (Edinger et al., 

2004) or was ascertained from the methods sections of the studies), and two treated those with co-

morbid insomnia (Morin et al., 1990; Spielman et al., 1987). Three studies employed lab-based 

polysomnography (PSG) to exclude occult sleep disorders prior to testing (Friedman et al., 2000; Kyle 

et al., 2014; Spielman et al., 1987). The average participant age (and standard deviation) across the 

nine studies was found to be 55.3 years (10.2) (Table 7). Three studies sampled older adults only (60 

years+) (Bliwise et al., 1995; Epstein et al., 2012; Friedman et al., 2000). One study had sufficient 

power (≥ 30 participants in each arm) to detect a medium-to-large treatment effect, as per previous 

power calculations (Epstein et al., 2012). The remaining nine studies may have high false-positive 

and/or high false-negative errors due to low statistical power. 
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2.4.4 Post treatment assessments 

Post-treatment assessments were carried out at three (Bliwise et al., 1995; Epstein et al., 

2012; Friedman et al., 2000; Kyle et al., 2014; Kyle et al., 2011), four (Morin et al., 1990), six (Taylor 

et al., 2010) and nine months post treatment (Spielman et al., 1987). Two studies also re-assessed 

gains at 12 months post-treatment (Epstein et al., 2012; Taylor et al., 2010). 

Next, for comparison an evaluation criterion (see Table 6) was applied to all of the nine 

studies. Overall study quality scores varied considerably (mean: 18.7; range: 8 to 23, out of 26; see 

Table 7). All studies were assessed independently by two reviewers (CBM & another post-graduate 

level researcher). Inter-rater reliability was found to be fair (Cohen’s kappa = 0.22). Discrepancies in 

assessment were discussed and re-assessed by each reviewer resulting in greater reliability (Cohen’s 

kappa = 0.60) (Landis & Koch, 1977). Studies with grade III evidence and above (as per Sackett 

criteria) (Sackett, 1989) were deemed to be adequate to examine the impact of therapy.  Out of the 

nine studies, four met this criterion (average age = 63.9 years, standard deviation = 7.1) (Bliwise et 

al., 1995; Epstein et al., 2012; Friedman et al., 2000; Taylor et al., 2010). The following results 

examine the efficacy of these studies. Primarily, studies were deficient for sample size, 

randomisation and for sufficient placebo controls. One RCT was not included as it did not report any 

primary sleep diary measures pre-to-post therapy (Fernando III et al., 2013). 

2.4.5 Post treatment sleep diary outcome measures 

Of the four studies with the minimum level of evidence (grade III and above), weighted ES 

scores were calculated to take account of individual sample sizes for sleep diary outcome variables 

(SOL, WASO, SE, TST, NOAW, TIB, & SQ). These were calculated between post-treatment and 

baseline for the active SRT arm and the control condition. For the SRT arm, it was found that SOL 

decreased in all studies (Bliwise et al., 1995; Epstein et al., 2012; Friedman et al., 2000; Taylor et al., 

2010), the weighted ES for SOL was medium (0.64). Reductions for WASO were found in three of the 

four studies (Epstein et al., 2012; Friedman et al., 2000; Taylor et al., 2010) as one did not report this 
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(Bliwise et al., 1995); the weighted ES was large (1.36). Sleep efficiency increased in three studies 

(Epstein et al., 2012; Friedman et al., 2000; Taylor et al., 2010) one study failed to report this (Bliwise 

et al., 1995); the mean weighted ES for SE was also large (1.5). Secondary pre-to-post measures of 

sleep diary variables (TST, NOAW, TIB, and SQ) were also compared at post-treatment to baseline 

levels. This revealed a small increase in TST (ES = 0.3), NOAW was not reported in any of the four 

studies, whereas a large reduction in TIB was reported in two studies (weighted ES = 1.26), and 

finally SQ ratings were only reported in one study and were found to increase (ES = 0.3) (see Table 8) 

(Epstein et al., 2012). The control condition did not reveal significant improvements across the 

studies. Although SOL, WASO and TIB all decreased (ES = 0.06, 0.01 and 0.3 respectively) and SE, TST 

and SQ all increased (ES = 0.04, 0.01 and 0.03 respectively). 
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Subjective sleep outcome measure (sleep 

diary) 

Pre-treatment value Post treatment value 
Pre-to-post 

treatment change 
Number of 

studies 

Number of 

participants 

Weighted effect size* 

Mean SD Mean SD Value % Mean SD 

Sleep latency (minutes) 
         

  

Sleep restriction therapy 42.15 37.50 22.81 19.65 -19.34 46 4 98 0.64 0.37 

Control 41.32 29.43 37.68 24.14 -3.64 9 
 

94 0.06 0.36 

Wake time after sleep onset (minutes) 
         

  

Sleep restriction therapy 72.98 39.04 30.81 23.78 -42.17 58 3 82 1.36 0.42 

Control 66.62 38.31 55.32 30.28 -11.30 17 
 

78 0.01 0.55 

Sleep efficiency (%) 
         

  

Sleep restriction therapy 66.60 13.02 82.88 8.78 16.28 24 3 82 1.50 0.35 

Control 67.00 11.88 71.59 8.92 4.59 7 
 

78 0.04 0.23 

Total sleep time (minutes) 
         

  

Sleep restriction therapy 334.08 69.00 351.14 49.58 17.06 5 4 98 0.30 0.31 

Control 335.80 68.60 341.93 55.56 6.13 2 
 

94 0.01 0.40 

Number of awakenings 
         

  

Sleep restriction therapy . . . . . . 0 . . . 

Control . . . . . . 
 

. . . 

Total time in bed (minutes) 
         

  

Sleep restriction therapy 500.60 55.30 439.19 40.12 -61.41 12 2 60 1.26 0.40 

Control 509.60 51.40 489.98 45.32 -19.62 4 
 

61 0.38 0.01 

Sleep quality ratings  
          

Sleep restriction therapy 2.77 0.50 2.90 0.38 -2.39 86 1 44 0.30 . 

Control 2.57 0.42 2.58 0.37 0.01 0   50 0.03 . 

Table 8 Effect size scores for the four studies with sufficient methodological strength at post-treatment compared to baseline. Control groups either consisted of 
wait-list controls, or were compared to another cognitive behavioural therapy intervention.*Overall weighted effect size scores were calculated by the formula 
(∑[di*N]/ ∑ [N]), where di is the effect size of the individual study. 
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2.4.6 Post treatment objective sleep measures 

For objective outcome measures, statistical differences in objectively-defined sleep variables 

were not tested in the one study that employed PSG pre-to-post SRT. This was due to the small 

number of participants who underwent PSG testing (n=6) (Friedman et al., 2000). The same study 

also used the multiple sleep latency test (MSLT) but again only in the same sub-group of participants 

(Friedman et al., 2000). Two studies evaluated actigraphy data as an outcome measure; one found a 

decrease in SOL, WASO, and an increase in SE compared to a waitlist control (Epstein et al., 2012), 

with no further changes at the three month and one year follow-ups. TST did not change (Epstein et 

al., 2012). The other study revealed a decrease in TST at post-treatment but was underpowered, 

based on a previous power calculation (Epstein et al., 2012) to test any interaction effects (Friedman 

et al., 2000). 

2.4.7 Sleep related questionnaire outcome measures 

Overall, from the nine studies profiled in this review, pre-to-post decreases on subjective 

questionnaire measures were observed (e.g. insomnia severity index (ISI)) (Epstein et al., 2012; Kyle 

et al., 2014; Kyle et al., 2011), insomnia symptom questionnaire (ISQ) (Spielman et al., 1987), 

Pittsburgh sleep quality index (PSQI) (Kyle et al., 2011), and the Glasgow sleep effort scale (GSES) 

(Kyle et al., 2011). Only one study with adequate methodological strength employed one of these 

instruments; a significant difference (p<.01) between the SRT and waitlist control condition was 

found with the ISI at post treatment (ES = 1.18) for the SRT group (Epstein et al., 2012). This study 

also quantified a treatment response rate using the ISI, whereby a response was defined as a change 

of six points from baseline to post-treatment and remission was considered if the post-treatment ISI 

score was <8 (no clinical insomnia) (Epstein et al., 2012; Morin, 1993). It was found that 50% of the 

SRT group (n=44) responded to treatment and the remission rate was 22.7% (Epstein et al., 2012). 
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2.4.8 Adverse effects of treatment and daytime functioning measures 

Adverse effects were profiled in two studies out of nine included in this review. One used a 

mixed methods approach (involving post-treatment semi-structured interviews, qualitative audio-

diaries) (Kyle et al., 2011). Daytime functioning and health related quality of life outcomes were also 

included in this study and involved the daytime functioning and sleep attribution scale, the Glasgow 

sleep impact scale, the occupational impact of sleep questionnaire and the short-form health-survey 

36. All measures were found to improve significantly at both four weeks and three months post 

treatment compared to baseline scores (Kyle et al., 2011). Another study used PSG, the psychomotor 

vigilance task (PVT) and subjective markers of sleepiness pre, during and post SRT. SRT was initially 

found to be associated with substantially reduced objective TST, vigilance impairment on the PVT 

and increased daytime sleepiness through the Epworth sleepiness scale (ESS). Both the PVT and ESS 

were found to normalise at three months post treatment (Kyle et al., 2014). One further study also 

used the Stanford sleepiness scale (SSS) but this was underpowered to test for differences (Friedman 

et al., 2000). No other daytime functioning measures were reported in any of the trials. 

2.4.9 Sleep restriction therapy instructions 

As a result of the literature search, it is important to also highlight that all of the nine 

assessed studies used a range of therapeutic guidelines for the implementation of SRT in comparison 

to the initial SRT procedures (Spielman et al., 1987) (see Table 9) for an overview. 
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Spielman et al. 
(1987) 

From a 2-week sleep diary, a sleep wake schedule was prescribed. The average subjective TST was used to calculate the initial 
TIB. The time for rising was established first and then the time for retiring at night was set to equal the new prescribed TIB 
(none were prescribed < 4.5 hours). Changes to TIB were made to the sleep window through therapy via the following criteria 
over the previous 5 days: (a) when the mean SE is ≥ 90%, then the TIB was increased by fifteen minutes - by setting the retiring 
time earlier. (b) When the mean SE is < 85% TIB is decreased to the mean sleep time of the previous 5 days. (c) If the mean SE is 
< 90% and ≥ 85%, then the time in bed is not altered. 

Morin et al. 
(1990) 

Spielman et al. (1987) + 4 hours minimum time in bed. Achievement of high SE increased TIB. 

Bliwise et al. 
(1995) 

Spielman et al. (1987) + flexibility to TIB. 

Friedman et al. 
(2000) 

Group 1: Spielman et al. (1987) + TIB at the start of treatment and was not set strictly at the mean TST from baseline and was 
not reduced for failure to reach criterion and sleep hygiene. Group 2: same as group 1 plus participants were encouraged to 
take a 30-minute daily afternoon nap between 13:00 and 15:00. Both groups were given weekly increments of TIB according to 
an algorithm (based on baseline diary data of TST and TIB) and also of subjective reported sleepiness. All subjects started with 
at least 5 hours TIB but by the end of the fourth week TIB was increased to 7 hours. Time in bed was only increased by going to 
bed earlier. 

Taylor et al. 
(2010) 

Spielman et al. (1987) + TIB = 10% above the average estimated TST reported for the previous week but no less than 5 hours. 
Once SE = 90%, hypnotics were withdrawn (50% of dose for per week). 

Kyle et al. (2011) Spielman et al. (1987) + 5 hours minimum TIB; if SE <85% then sleep window decreased by 15 minutes. 

Epstein et al. 
(2012) 

Spielman et al. (1987) + 5 hours minimum TIB. 

Fernando III et al. 
(2013) 

No specific details given apart from participants received personalised instructions on bedtime and wake time routines. 

Kyle et al. (2014) Spielman et al. (1987) + 5 hours minimum TIB; if SE <85% then sleep window decreased by 15 minutes. 

Table 9 Description of sleep restriction therapy intervention types. Displays an overview of the sleep restriction therapy implementation methods for 
each study included in the review process. TIB: time in bed; TST: total sleep time; SE: sleep efficency.

70 
 



 

2.5 Discussion 

The primary objective of this review was to rigorously examine the evidence base for the use 

of single component sleep restriction therapy (SRT) in the treatment of insomnia.  Nine studies met 

the initial inclusion criteria and were then assessed using standardised study assessment criteria 

(Kmet et al., 2004). Of these, four studies (three randomised controlled trials and one controlled 

trial) were considered eligible to evaluate the efficacy of SRT. The weighted effect size (ES) scores for 

sleep diary parameters (sleep latency; SOL, wake after sleep onset; WASO, and sleep efficiency; SE) 

were calculated. The majority of ES scores for sleep diary parameters were greater than 0.6, 

indicating medium-to-large treatment effects (Cohen, 1988). For total sleep time (TST), a small 

improvement was found by the end of treatment (weighted ES = 0.3), consistent with previous CBT-I 

studies (Irwin, Cole, & Nicassio, 2006; Montgomery & Dennis, 2003; Morin, Culbert, & Schwartz, 

1994; Murtagh & Greenwood, 1995; Okajima, Komada, & Inoue, 2011). Ratings of sleep quality were 

found to improve in the only study that reported these (ES = 0.3) (Epstein et al., 2012). For 

comparison, the weighted ES for the control condition did not reveal significant improvements 

across studies. For example, the weighted ES was extremely small for the following variables: SOL = 

0.06, WASO = 0.01, SE = 0.04, TST = 0.01 and SQ = 0.03 (see Table 8). 

From the four studies with adequate methodological strength, the results suggest that single 

component SRT is an efficacious insomnia treatment with moderate-to-large effects on sleep diary 

variables at post-treatment. There are several caveats and limitations with respect to these findings. 

First, the current review found only nine studies evaluating SRT for insomnia disorder and 

just four that met our inclusion criteria, limiting the strength of the overall findings. Nonetheless, it is 

also important to consider the most recent American Academy of Sleep Medicine (AASM) practice 

parameters in 2006 that considered SRT as a “guideline” intervention, one step below that of 

stimulus control therapy (SCT) which is a “standard” intervention (Morgenthaler et al., 2006). Since 

that time, five additional SRT studies have been published and included in this review (Epstein et al., 
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2012; Fernando III et al., 2013; Kyle et al., 2014; Kyle et al., 2011; Taylor et al., 2010), including one 

with level I evidence (Epstein et al., 2012) and one with level II evidence (Taylor et al., 2010) (as per 

Sackett criteria and the AASM classification of evidence) (Chesson Jr et al., 1999; Morgenthaler et al., 

2006; Sackett, 1989). Overall, with four RCT’s and one NRCT, SRT now has sufficient evidence to be 

classified as an established “standard” treatment intervention as per the American Psychological 

Association Task Force Report and Recommendations: Criteria for Empirically validated treatments 

(Association, 1995). The American Psychological Association criteria have been used previously by 

the AASM to quantify the evidence for psychological treatments for insomnia (Chesson Jr et al., 

1999; Morgenthaler et al., 2006; Morin, Bootzin, et al., 2006; Morin et al., 1999). The AASM may 

wish to re-consider the evidence base for SRT, in light of this systematic review, and determine 

whether an upgrade in line with other CBT-I components, such as SCT and relaxation training is 

deserved. It is important to note that SCT obtained its “standard” status through five RCT’s with level 

II evidence (Chesson Jr et al., 1999; Morin et al., 1999). In the 2006 update, one further RCT (with 

level II evidence) was added to this (Morgenthaler et al., 2006; Morin, Bootzin, et al., 2006). When 

compared to SCT, SRT may not have been used as frequently as a standalone intervention, either 

because researchers and clinicians utilise multicomponent cognitive behavioural therapy (by way of 

both brief and full versions) (Buysse, Germain, Moul, et al., 2011; Edinger et al., 2001; Germain et al., 

2006; Harvey & Tang, 2003; Troxel et al., 2012) or use SRT in combination with CBT-I or brief 

behaviour therapy. Until recently, the insomnia field has generally failed to dismantle individual 

components of CBT-I through RCT methodology (Epstein et al., 2012). 

The results of this review are comparable to previously published meta-analytic data for 

CBT-I sleep diary treatment outcome variables (Irwin et al., 2006; Montgomery & Dennis, 2003; C. 

M. Morin et al., 1994; Murtagh & Greenwood, 1995; Okajima et al., 2011). In particular, the 

weighted ES of the sleep variables (SOL, WASO, SE, and TST) resemble or are greater than those of 

CBT-I at post-treatment compared to baseline (Irwin et al., 2006; Okajima et al., 2011; Smith et al., 

2002). For example, Irwin et al. (2006) and Okajima et al. (2011) both found a medium mean ES 
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reduction for SOL, a medium-to-large mean ES reduction for WASO and large mean ES increase for 

SE. This is in line with findings from the present review (weighted ES; SOL = medium reduction, 

WASO = large reduction, SE = large increase, only one study reported SQ ratings and found a 

medium ES improvement). Total sleep time was also found to improve at post-treatment, although 

the weighted effect size was in the small range (ES = 0.3). It may be that studies are unable to detect 

large changes in TST, longer follow-up times are required to examine robust changes in TST, or that 

different implementation methods of SRT affect treatment outcome. However, the ES for TST was 

also comparable to previous CBT-I meta-analytic data whereby Irwin et al. (2006) discovered a 0.17 

weighted ES increase for TST, Okajima et al. (2011) found a mean ES increase of 0.32, and also Smith, 

Perlis, Park, et al. (2002) found a mean ES increase of 0.46 at post-treatment compared to baseline. 

Objective measures of sleep-wake parameters are lacking in trials of SRT. Only one of the  

four studies with sufficient methodological strength attempted to measure in-lab objective sleep 

variables but this was underpowered to test for differences (in both PSG and MSLT variables) 

(Friedman et al., 2000). Actigraphy has been used marginally more, in two of the four studies with 

sufficient methodological strength (Epstein et al., 2012; Friedman et al., 2000). One found a 

decrease in SOL, WASO, and an increase in SE compared to a waitlist control at post treatment only 

(Epstein et al., 2012). The other study found a decrease in TST at post treatment but was also 

underpowered to test for between group effects (Friedman et al., 2000). Actigraphy may be valuable 

in providing an objective marker of changes in sleep due to SRT and as a marker of adherence and 

implementation of therapy. Further objective (PVT) and subjective markers of sleepiness pre, during 

and post SRT were profiled in one uncontrolled study (Kyle et al., 2014) Participants also slept for 

three nights in the lab with PSG to profile sleep during therapy implementation (on days one, eight 

and 22). Sleep restriction therapy was initially found to be associated with substantially reduced 

objective TST, vigilance impairment (PVT) and increased daytime sleepiness (ESS). Both the PVT and 

ESS were found to normalise at three months post treatment. Healthy controls were employed to 

examine differences in vigilance performance data only. No baseline differences were found, 
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suggesting the impact of SRT was contributing to the vigilance performance deficits (Kyle et al., 

2014). 

For subjective questionnaire measures, studies found pre-to-post decreases in the ISI 

(Epstein et al., 2012; Kyle et al., 2014; Kyle et al., 2011), ISQ (Spielman et al., 1987), PSQI (Kyle et al., 

2011) and GSES (Kyle et al., 2011). However, no average ES data were examined for these outcomes 

as three studies with sufficient methodological strength (Bliwise et al., 1995; Friedman et al., 2000; 

Taylor et al., 2010) collected data prior to the development and validation of the ISI (Bastien, 

Vallières, & Morin, 2001), GSES (Broomfield & Espie, 2005) and ISQ (Okun et al., 2009). One study 

out of this four used the ISI pre-to-post treatment. Interestingly, the post treatment ES difference 

between the SRT group and the waitlist control group for the ISI was 1.18, similar to the SCT group 

(ES = 1.22) and the multicomponent therapy group (ES = 1.24) (Epstein et al., 2012). No studies with 

sufficient methodological strength used the PSQI as an outcome measure, perhaps as this is not 

specifically designed to evaluate insomnia (Buysse, Ancoli-Israel, Edinger, Lichstein, & Morin, 2006). 

Global measures of sleep symptomology (ISI & PSQI) are recommended measures and likely to 

change due to a treatment response from SRT (Buysse et al., 2006). In particular, the ISI may be the 

most useful for standardising response and remission outcomes due to treatment (Epstein et al., 

2012). One study removed from the review process as it was a preliminary report of a subsample of 

participants from Kyle et al. (2014), measured subjective changes in mood and daytime functioning 

before and throughout SRT in nine patients with psychophysiological insomnia (Miller et al., 2013). 

Changes in mood and cognition were profiled pre and during the first three weeks of SRT 

implementation using ecological momentary assessment, where the daytime insomnia symptom 

scale was completed at four defined points through the day (Buysse et al., 2007; Levitt et al., 2004). 

Interestingly, measures of sleepiness/fatigue increased overall at week one of SRT but, by week four, 

decreased below baseline levels. Alert cognition, displayed a significant week by time-point 

interaction, whereby a reduction in alertness at bedtime was observed at week three, while morning 
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rise-time alertness was improved. This data indicates that SRT moderates alertness and sleepiness in 

therapeutic ways (Miller et al., 2013). 

With regards to study quality and methodological strength, it was found that only one of the 

nine studies (Epstein et al., 2012) had sufficient power (≥ 30 participants in each arm) to be classed 

as grade I evidence (Sackett, 1989). This suggests that most studies included in this review may 

suffer from statistical error (Type I and/or Type II). Therefore, the approach by Epstein et al. (2012) is 

an important contribution to the literature. Specifically, the authors were able to differentiate ES 

scores of SRT compared to multi-component therapy (consisting of SRT and SCT only), SCT and to a 

waitlist control. Importantly, the authors found no differences between single and multi-component 

therapy for sleep outcome measures (sleep diary and actigraphy). For example, medium-to-large ES 

improvements were found for SRT, SCT and multi-component therapy on sleep diary data (SOL, 

WASO, SE, TST and SQ). Therefore, this study suggests that SRT, SCT and multi-component therapy 

are comparable for efficacy on sleep diary and actigraphy outcomes. For participant screening, only 

three trials included overnight PSG screening in most subjects prior to enrollment to assess for other 

potential occult sleep disorders prior to therapy implementation (Friedman et al., 2000; Kyle et al., 

2014; Spielman et al., 1987). Likewise for study follow-up times, only two studies re-examined 

outcomes after six months of SRT. These studies did find that initial gains in sleep diary variables 

(SOL, WASO, and TST) were maintained (Epstein et al., 2012; Taylor et al., 2010). The lack of long 

term follow-up data across all of the studies makes it difficult to evaluate long term outcomes of SRT 

and further trials are required with sufficient follow-up times. Large samples of participants are also 

required to achieve grade I evidence. Such adequately powered studies will help to avoid any type I 

or II statistical errors and will provide definitive evidence for SRT. 

With respect to participant demographics, the mean participant age for the nine studies was 

found to be 55.3 years (Table 7), although three studies specifically sampled participants aged 60 

years and above. However, from the four studies with adequate methodological strength the mean 
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age was found to be 63.9 years. This may be considered a limitation to the generalisability of the 

findings of this review and further SRT studies need to be conducted across different age groups in 

order to determine whether SRT may be more or less beneficial depending on patient age. It must 

be noted, however, that multicomponent CBT-I studies have not found age to be a predictor of 

treatment response (Morin, Bootzin, et al., 2006; Morin et al., 1999). 

The delivery of SRT can also vary between studies making it difficult to compare SRT 

interventions directly. For example, one common variant of the SRT approach is the minimum time 

in bed which has changed as the literature has progressed (see Table 9). It is common to spend no 

less than five hours (six hours in vulnerable patients) time in bed as part of CBT-I procedures 

(Edinger & Means, 2005). This guideline has developed to guard against negative consequences 

associated with extreme sleepiness with a reduction of time in bed (Dinges et al., 1997). For 

example, in the initial SRT study, 14 out of the 49 enrolled participants dropped out after a mean 

period of 19 days (Spielman et al., 1987). Adherence to SRT guidelines is known to be extremely 

difficult and has previously been examined (Riedel & Lichstein, 2001). Naps or lying down are 

generally not permitted until prescribed bed-time has been reached (except where explicitly 

integrated into a modified SRT). Studies have so far looked to vary the SRT procedures to include 

naps in order to aid adherence to therapy but have so far failed to rigorously test naps as 

countermeasures. One study attempted to evaluate adherence by encouraging older adults to nap in 

one of the two SRT treatment arms (Friedman et al., 2000). However differences were not observed 

between the two conditions, perhaps limited by the small sample size in each group (SRT n=16, Nap 

SRT n=12) (Friedman et al., 2000). In addition, the newly prescribed sleep-wake schedule must be 

maintained and adhered to everyday of the week until the next weekly meeting with the therapist 

where it is then re-examined. This is often a form of negotiation with the participant but has 

received little attention in the literature. The reduction of time in bed has also been suggested in the 

literature Spielman et al. (2010) but this remains to be formally evaluated. Future comparative 

studies of treatment procedures are required to test the effectiveness of the guidelines set out by 
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Spielman et al. (2010) for optimal treatment delivery. Once this has been achieved then 

standardisation of therapy guidelines may take place. 

Based on the results of our review we suggest the following research directions to advance clinical 

understanding of SRT 

1) Study design and measures of sleep: future well-controlled studies are required with 

grade I evidence, like that of the recent Epstein et al. (2012) trial. Studies should also look to include 

objective assessments of sleep (actigraphy and PSG) in an effort to understand treatment effects 

further. This would enable the evaluation of acute and chronic changes in objective sleep 

parameters. For example, one recent meta-analysis of PSG-defined sleep parameters found evidence 

of objective sleep continuity disruption and reduced time spent in rapid eye movement (REM) and 

slow wave sleep (SWS), relative to controls (Baglioni et al., 2014). The extent to which these 

parameters normalise through SRT is worthy of future research attention. Changes in sleep 

electroencephalography (EEG) power densities remain relatively untested. Previously, one CBT-I 

treatment study found a more rapid decline of EEG delta power in insomnia participants after 

therapy compared to placebo controls (Krystal & Edinger, 2010). Sleep architecture has also been 

shown to change due to non-pharmacologic treatment of insomnia. For example, increased stage 

two, REM and SWS durations have been reported after effective CBT-I (Cervena et al., 2004). Future 

studies should test for specific SRT-related changes in the continuity and proportion of objectively 

defined sleep, as well as changes in the micro structure of sleep.  

With respect to insomnia assessment, studies now need to adequately screen and measure 

insomnia before, during and at follow-up, in line with standard research guidelines for insomnia 

(Buysse et al., 2006; Edinger et al., 2004). It is also currently unknown if SRT is efficacious for co-

morbid insomnia as this remains to be formally evaluated. For example, moderate-to-large 

treatment gains as a result of SRT in those with insomnia with medical and psychiatric comorbidities 

would be in line with previous CBT-I outcomes (Smith, Huang, & Manber, 2005). 
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2) Measures of daytime functioning: Examination of daytime functioning in SRT studies is 

severely lacking. Daytime impairment is an important aspect to consider given that the diagnosis of 

insomnia is dependent upon this complaint (Harvey & Tang, 2003; Kyle, Espie, & Morgan, 2010). 

Further, it is this impairment that drives help-seeking behaviour and makes insomnia a 24 hour (Kyle 

et al., 2010). An improvement in this area would be expected as part of any treatment response. 

Future studies should specifically test for improvements in measures of daytime functioning, using 

appropriate (Kyle et al., 2013) and recommended measures (Buysse et al., 2006; Kyle et al., 2010). 

3) Adverse effects and contraindications of therapy: adverse effects were profiled in two 

studies that were assessed as part of this review process (Kyle et al., 2014; Kyle et al., 2011). One 

used a mixed methods approach involving: post-treatment semi-structured interviews, qualitative 

audio-diaries, and questionnaire assessments (Kyle et al., 2011). The other used objective (PVT) and 

subjective (ESS) measures of daytime sleepiness throughout therapy (Kyle et al., 2014). However, 

the majority of previous studies have thus far failed to adequately measure and profile any potential 

side effects or daytime impairment of SRT or CBT-I for that matter (Kyle et al., 2013). Further studies 

specifically testing initial daytime impairments and adverse effects of SRT are required, particularly 

during the acute period of therapy, where the effects of sleep restriction are likely to be most 

pronounced (Kyle et al., 2014; Miller et al., 2013). Such detailed profiling may help shed light on the 

relationship between adverse effects, treatment response and patient attrition. It is also important 

to consider that SRT may be contraindicated in specific sub-samples of patients, where restricted 

sleep opportunity may stimulate negative outcomes. For example, SRT may trigger mania in bipolar 

disorder, lower the seizure threshold in those with seizure disorders such as epilepsy or exacerbate 

patients with excessive daytime sleepiness (Smith, Perlis, Park, et al., 2002). SRT-“light” or fixed bed 

and rise times may be effective alternatives to SRT in these patients (Kaplan & Harvey, 2013). 
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Limitations of this review 

A number of limitations of the review process should be highlighted. First, there are 

deviations from Cochrane and PRISMA guidelines with regards to the conduct and reporting of this 

review.  For example, publication bias and the heterogeneity across studies were both not assessed. 

Second, the comparisons in the meta-analytic section of the review only evaluated studies before 

and after therapy and were therefore uncontrolled. The comparisons also did not involve any follow-

up assessments and included subjective measures only. Third, there was poor reliability in the initial 

literature search and study evaluation between the scorers (Cohen’s kappa of 0.22). Fourth, the 

literature search found and included low grade research evidence (below Grade III). Lastly, studies 

included participants with both co-morbid insomnia and psychophysiological insomnia subtypes. 

Despite these limitations it is worth to note that this was a clinical review based predominately on 

the AASM guidelines in order to evaluate the state of the literature for the use of standalone SRT for 

insomnia. Future reviews into SRT for insomnia should now implement standardised criteria to 

examine the clinical effectiveness of therapy. 

2.6 Conclusions  

The primary objective of this review was to evaluate the evidence for the use of single 

component SRT in the treatment of chronic insomnia. Out of the nine studies included in this review, 

four were deemed adequate to fully evaluate the impact of SRT. It can be concluded that SRT is an 

effective single behavioural intervention for the treatment of insomnia for sleep diary variables. 

Thus, in light of this review, the AASM may wish to re-consider the status of SRT, to determine 

whether a clinical guideline upgrade is required. Results may be limited due to studies using slightly 

different SRT implementation strategies. Further research is required to systematically examine the 

clinical effectiveness of SRT through well designed large scale randomised controlled trials. Attention 

should be placed on further measures of subjective daytime functioning and of objective sleep 

changes. 
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2.7 Practice points 

1. Single component SRT for insomnia is efficacious for the treatment of insomnia for primary sleep 

diary measures (SOL, WASO, SE and TST). The AASM may wish to re-evaluate the status of SRT. 

2. A number of studies utilised various and different methods in the delivery and titration of SRT. 

As a result, studies should look to test the SRT guideline recommendations by Spielman et al., 

(2010) for effectiveness. Standardisation of the SRT guidelines may then take place.   

3. There is currently little evidence to suggest that single component SRT improves daytime 

functioning and quality of life in insomnia. Further data is required to evaluate if daytime 

functioning improves as a result of SRT.  

 

2.8 Research agenda 

1. To implement randomised controlled trials to establish the clinical effectiveness of the SRT 

guidelines by Spielman et al. (2010) in line with previous insomnia research recommendations.   

2. To evaluate the initial minimum amount of time in bed required for a treatment response.  

3. To further examine potential daytime consequences (impairments and/or improvements) of 

treatment through questionnaire measures in controlled experimental studies. 

4. To profile changes in the proportions of PSG-defined sleep staging and the power spectral 

analysis of sleep in response to SRT. 
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2.9 Moving forward 

The review highlights the effectiveness of SRT for primary sleep diary measures in insomnia 

but questions remain regarding the use and the impact of SRT on sleep and daytime functioning 

outcomes. Further testing is required to elucidate the effectiveness of this therapy in relation to 

subjective daytime and, objective measures of sleep as well as physiological functioning. The next 

chapter will describe the methodology for the assessment of sleep and set the scene for the 

subsequent experimental chapters. 

In chapter four an ecological momentary assessment is used to evaluate subjective point-in-

time alterations to daytime cognition in those with insomnia through SRT. This new approach 

hypothesises that daytime levels of cognition and mood will initially deteriorate (acute restriction of 

sleep) but will then improve beyond baseline levels through SRT. In chapter five, salivary cortisol 

concentrations are assessed throughout therapy to inform potential changes to hypothalamic-

pituitary-adrenal-axis functioning with SRT. A further hypothesis relates to a reduction in salivary 

cortisol concentrations compared to baseline levels after effective SRT.  

The results of these initial studies were used to substantiate the overall assessment of the 

data in chapter six. Chapter six evaluates the role of objective sleep, temperature and night time 

plasma cortisol concentrations in response to effective SRT. It was hypothesised that objectively 

defined sleep would improve, and measures of physiological arousal would reduce (cortisol & core 

body temperature). Chapter seven is a case control study which evaluates the differences in cerebral 

metabolism between those with insomnia and healthy good sleeping controls. This was undertaken 

to: 1. assess whether brain metabolites in individuals with insomnia are different from good sleeping 

controls and 2. to provide further objective potential markers of insomnia. It was hypothesised that 

concentrations of brain metabolites would display increased arousal across the brain in line with the 

hyperarousal theory of insomnia. 
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Chapter 3: Methodology for the assessment of sleep 

 

The contents of this chapter have been accepted for publication as follows: 

 

‘Methodology for the assessment of sleep’, Christopher B. Miller, Simon D. Kyle, Kerri L. Melehan & 

Delwyn J. Bartlett, (In Press). In K.A. Babson & M.T. Feldner (Eds.), Sleep and affect: Assessment, 

Theory, and Clinical Implications. San Diego: Elsevier Academic Press Inc, accepted 23/04/2014. 
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3.1 Abstract 

This chapter provides an overview of the assessments and methodology applied in this 

thesis. The chapter initially focuses on the tools and techniques that are commonly used to diagnose 

insomnia and other sleep disorders. A number of methods will be covered in this chapter including: 

polysomnography, actigraphy, cortisol assessment, magnetic resonance spectroscopy, and 

subjective measures including self-report questionnaires and sleep diaries. The chapter ends with an 

overview of the procedures of sleep restriction therapy, participant recruitment and the statistical 

analysis employed in this thesis. 
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3.2 Introduction 

As this chapter has been accepted for publication as an overview of the assessments used in 

sleep research, the format of this chapter is different to the rest of the thesis. Compared to the 

accepted version, the chapter has also been modified to provide a specific overview of the 

assessments and methods employed directly in this thesis. The chapter begins with an overview of 

sleep and the measurement of sleep (including polysomnography, actigraphy, clinical interviews & 

sleep diaries) and then moves on to address subjective assessments of sleepiness and insomnia. The 

chapter then covers objective measures of cortisol and cerebral metabolism and ends with an 

overview of sleep restriction therapy for insomnia, the recruitment procedures and statistical 

analyses used in the data chapters. 

Sleep is a complex behaviour that has been described as: “a reversible state of perceptual 

disengagement and unresponsiveness from the environment” (Carskadon and Dement (2011), p. 

16). In addition to perceptual disengagement, normal sleep also consists of closed eyes, postural 

recumbency, and relative stillness (Carskadon & Dement, 2011; Hirshkowitz, 2004). Although the 

primary function for sleep is currently unknown many theories exist. Sleep is thought to be 

necessary for repair of bodily ‘wear and tear’, memory encoding, and learning processes (Colrain, 

2011). However, measuring sleep is difficult. The aim and focus of this chapter is to provide an 

overview of the measures and techniques used in this thesis (see Table 10 for an overview). 

Two main processes interact to regulate sleep and wakefulness. The first is the homeostatic 

drive for sleep, which is commonly referred to as sleep propensity or ‘sleep need/debt’ (Borbély, 

1982). Sleep homeostasis is dependent upon the amount of time spent awake and can be quantified 

physiologically by the main objective measure of sleep, electroencephalography (EEG) (Achermann, 

Dijk, Brunner, & Borbely, 1993). Cognitive performance and specifically alertness is known to be 

sensitive to accumulating sleep pressure during the day (Van Dongen & Dinges, 2005). Homeostatic 

sleep pressure can only be reset through sleep. Secondly, sleep is also governed by the circadian 
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rhythm. Internal biological rhythms have evolved to revolve around the Earth’s solar period of 

roughly 24 hours (Hirshkowitz, 2004). Such rhythms are endogenously produced and therefore can 

operate without external time cues (Czeisler et al., 1999). Photic and non-photic cues are used by 

the body to synchronise the internal clock to the light-dark environment (Czeisler et al., 1999). 

Internal circadian timing is known to be controlled by the suprachiasmatic nucleus (SCN). The SCN is 

the master clock and is located in the hypothalamus, directly above the optic chiasm (Dibner, 

Schibler, & Albrecht, 2010). Exposure to light synchronises the SCN with the external light dark cycle 

and serves as the primary circadian time giver for mammals (Czeisler et al., 1999; Stephan & Nunez, 

1977). 

3.3 Electroencephalography & Polysomnography  

Sleep and wake states are measured by EEG whereby electrical brain activity is recorded 

through electrodes placed on the scalp (Rechtschaffen & Kales, 1968). Electrical brain activity is the 

gold standard objective measurement of sleep (Kushida et al., 2005) and electrodes are placed 

according to standardised international criteria called the 10-20 placement system (Jasper, 1958) 

which aims to ensure reproducibility of EEG studies. In the 10-20 system, each electrode site is 

mapped with letters and numbers. The letters F, T, C, P and O refer to scalp location and stand for 

frontal, temporal, central, parietal and occipital areas. Even numbers denote the right hemisphere 

and odd numbers denote the left. “Z” means zero and stands for the midline of the head 

(Oostenveld & Praamstra, 2001). 

A diagnostic sleep study is used to diagnose sleep disorders including: sleep related 

breathing disorders, parasomnias, sleep related seizure disorders and periodic limb movement 

disorders (Kushida et al., 2005). The diagnostic sleep study is extensive and provides a significant 

amount of useful information but is expensive, difficult to obtain access to, and often uncomfortable 

for the patient (Ancoli-Israel et al., 2003). The recording of brain activity by EEG is only one aspect of 

the overall diagnostic sleep study. Other information about the body during sleep can also be 
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gathered from overall polysomnography (PSG), which simply means ‘many sleep recordings’. In 

addition to EEG, the following measures also determine sleep including: eye movements through the 

electrooculogram (EOG) and muscle tone through the electromyogram (EMG) on the chin. Any sleep 

disturbance due to sleep disorders like obstructive sleep apnea (OSA), periodic limb movement 

disorder or parasomnias can be detected as part of the overall PSG assessment. Such disorders can 

be distinguished from a number of measures including: respiratory effort and airflow, snoring, body 

position, heart rate, oxygen saturation levels, and limb and jaw movements over the course of the 

night. 

 The behaviour of sleep can be scored according to standardised PSG criteria (Iber, 2007), 

which involves an evaluation of electrical wave forms produced by the brain, eye movements, and 

muscle activity. Primarily, a Sleep Scientist will evaluate brain electrical wave form patterns for 

amplitude and frequency, as well as bursts of brain activity. Including K-complexes (a single large 

amplitude wave-form < 2Hz in frequency with a brief positive electrical peak followed by a slower 

negative component; Loomis, Harvey, and Hobart (1938)) and sleep spindles (a short burst of 

oscillatory electrical activity of sigma frequency waves at 12–16 Hz that may follow from a K-

complex (Loomis et al., 1938)); to categorise sleep stages (see Figure 5). Sleep is normally scored by 

a trained and certified sleep polysomnograpic technician into distinct sleep stages which are 

summarised and reported on by a specialised Sleep Physician. A hypnogram is used to give an 

overview of the staging of sleep for the entire night (see Figure 6 for an example). In adults, sleep 

consists of two main phases: 1. Non-rapid eye movement (NREM) sleep and 2. Rapid eye movement 

(REM) sleep. In healthy sleepers, the brain transitions through these stages of sleep in approximately 

90 minute cycles. On average, an individual will experience 4-5 sleep cycles across the night. NREM 

sleep is comprised of three distinct sleep stages. At sleep onset, an initial short period (5-10 minutes) 

of stage 1 sleep (N1) occurs, characterised by theta (4-7Hz) waves and an absence of alpha waves (8-

12 Hz) on the EEG recording, followed by a longer (approximately 20 minute) period of stage 2 sleep 

(N2) characterised by a mixed frequency background featuring sleep spindles and K-complexes. 
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Stage 3 sleep (N3), otherwise known as slow wave sleep (SWS) is characterised by delta frequency 

(0.5-4.5 Hz) wave formations of at least 75µV amplitude, which lasts for approximately 30-40 

minutes (Iber, 2007). 

 

Figure 5 Stages of sleep and scoring information. Figure displays examples of objectively defined 
wake and sleep through electroencephalography (EEG) from one healthy 22 year-old male as part 
of an overnight sleep study. Each example presents 30 seconds of data from the following 7 
electrodes (top to bottom): left eye, right eye (EOG: electrooculogram); C3-A2, C4-A1, O2-A1, O1-
A1; and a single channel of chin EMG (electromyogram). The top left hand image displays wake, 
the second (middle) top image displays Stage 1 sleep (N1) and the top right hand side image 
displays Stage 2 sleep (N2). The bottom left hand image displays Stage 3 (N3 or SWS). Rapid Eye 
Movement (REM) sleep is displayed in the bottom right hand image. 1. Denotes a K-complex and 
2. Denotes a sleep spindle. 
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Figure 6 Hypnogram of scored human sleep staging. Figure displays an example of a normal 
hypnogram used to provide an overview of the progression of sleep stages during the night for an 
individual’s sleep. The hypnogram is a continuous recording of EEG (electroencephalogram), EOG 
(electrooculogram), and EMG (electromyogram) measures to score sleep. The y-axis represents 
sleep stages (evaluated in 30-second epochs) including: REM (Rapid Eye Movement); Stage 1 (N1); 
Stage 2 (N2); Stage 3 (N3 or SWS). The x-axis represents time during the night in hours. 

REM sleep is distinct and contains mixed frequency theta and beta EEG activity, with 

characteristic sawtooth shaped waves, rapid eye movements and muscle atonia. REM sleep usually 

occurs for the first time at the end of each sleep cycle and the first period is generally short, lasting 

5-10 minutes or less. REM sleep episodes become increasingly longer throughout the sleep period 

(Aserinsky & Kleitman, 1953; Dement & Kleitman, 1957). The sleep cycles tend to alter their 

alignment as the sleep period progresses with SWS dominant in the first third of the night and REM 

sleep more dominant towards the end of the sleep period (Carskadon & Dement, 2011). The 

proportion relative to total sleep time (TST) is as follows for the following sleep stages: N1 

approximately 2-5%, N2 is 45-55%, N3 (SWS) is 20%, and REM sleep 20-25% of TST (Williams, Agnew 

Jr, & Webb, 1964). 
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Overall, SWS is associated with homeostatic sleep pressure or the ‘amount of time spent 

awake’ and can be quantified physiologically through EEG derived slow-wave activity (SWA; spectral 

power in the 0.75-4.5 Hz bandwidth) (Achermann et al., 1993). It is important to note that not only is 

the majority of SWS obtained during the first third of the night but SWS is normally preserved by the 

brain under sleep restricted schedules (Spiegel, Leproult, & Van Cauter, 1999). In addition, there is 

also a fast onset of ‘deep’ SWS sleep (normally after about 20 minutes of lighter stages N1 and N2 

sleep) in healthy individuals indicating the importance of this stage of sleep. Studies disrupting SWS 

have shown impairment in next day performance and endocrine secretion in healthy individuals 

(Spiegel et al., 1999). One of the primary functions of SWS may be to restore and repair both the 

brain and the body. On the other hand, REM sleep is more adaptable around SWS sleep needs. REM 

sleep (named after the discovery of rapid eye movements during this sleep phase; (Aserinsky & 

Kleitman, 1953) appears important for the consolidation of memory traces through increases in 

synaptic plasticity in the cortex of the brain (Diekelmann & Born, 2010). REM sleep is related to 

dream content with people who awake during REM more likely to report being in a dream relative to 

other stages of sleep (Foulkes, 1962). Crucially, muscle paralysis or atonia takes place during REM 

sleep and prevents dream enactment. REM behaviour disorder on the other hand is characterised by 

a lack of muscle atonia and leads to patients acting out their dreams (Schenck, Hurwitz, & 

Mahowald, 1993). REM behaviour disorder may also be a marker for the subsequent development 

of a neurodegenerative disorder such as Parkinson’s disease (Schenck, Bundlie, & Mahowald, 1996). 
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2.3.5 Actigraphy.  

Sleep can also be profiled through the use of actigraphy which allows patterns of light, sleep, 

and wake behaviour to be assessed over days or weeks. Actigraphy is cost effective, more 

convenient than a full PSG (Ancoli-Israel et al., 2003) and can be used repeatedly across many nights 

to build an ecologically valid assessment of sleep without a first night effect of PSG (Ancoli-Israel et 

al., 2003). A first night effect is common with a PSG evaluation and is known to impair sleep in 

healthy good sleepers (Agnew, Webb, & Williams, 1966). Wrist monitors are typically watch-like 

devices worn on the non-dominant hand and use an accelerometer to record movement over a 

given threshold (see Figure 7). An event marker can also be used by the wearer to denote time in 

bed and awakenings during the night. Collected data is downloaded to a computer to observe rest 

and activity patterns across both night and day. Through analysis software, validated algorithms are 

used for movement thresholds (Ancoli-Israel et al., 2003). These data can be used to estimate wake 

and sleep parameters (see Figure 8). 

 

Figure 7 Picture of an actigraph worn on the wrist of the non-dominant hand.1. Denotes the event 
marker button. 2. Denotes the light sensor. 
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Figure 8 Actogram of human rest-wake activity from an individual figure displays an example of a 
scored actogram of human rest-wake activity and light levels from a 42 year-old female patient 
with insomnia undergoing bed restriction therapy. The x-axis represents time across the 24-hour 
period (12:00pm until 12:00pm). The y-axis represents the day of the week (Friday until Thursday). 
Black lines represent activity levels. Red lines underneath indicate wakefulness. Lighter yellow 
lines above the black activity levels represent light levels. Light blue in the middle indicates a rest 
period. The dark blue triangles represent event markers for time in bed by the patient. 
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The very first analogue wrist monitors were developed and used in the 1970’s for an 

overview see Sadeh and Acebo (2002). They initially underwent reliability testing for the assessment 

of sleep by Kripke, Mullaney, Messin, and Wyborney (1978). Digital wrist monitors are now used 

today and have sufficient memory storage for long term use. The sampling rate (epoch) is normally 

standardised to once every minute although this can be changed by the user through computer 

software (Sadeh & Acebo, 2002). A longer sampling rate can increase the battery length although 

this not generally used for research purposes as may compromise data validity if greater than one 

minute. Previously, actigraphy has been found to have high agreement rates with PSG data for TST 

and sleep efficiency (SE) variables in healthy subjects (Kushida et al., 2001). However, these variables 

have been found to have lower agreement rates in patients with OSA and insomnia. Therefore, 

practice guidelines for the use of actigraphy suggest it should be used in combination with a sleep 

diary (Ancoli-Israel et al., 2003).  

Actigraphy can be used as an inexpensive way to follow-up with patients with varying sleep 

disorders. It is very useful for patients with insomnia symptomology and treatment (see Figure 8) 

and also in the diagnosis of circadian rhythm disorders where there is a discrepancy between the 

patient’s internal circadian timing and the external environment (Morgenthaler et al., 2007). In 

advanced or delayed sleep phase disorder the internal circadian clock of the patient may be ticking 

either too fast (advanced) or too slow (delayed). The strength of actigraphy is that it provides a non-

invasive and long-term measure of activity and sleep. However, unlike PSG, actigraphy does not 

provide an assessment of sleep architecture and cannot provide a specific diagnosis of a sleep 

disorder (like OSA). 
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3.4 Subjective measures of sleep 

3.4.1 Clinical interview 

An overview of the sleep of a patient can be acquired initially through a common 

unstructured clinical interview (Buysse et al., 2006). Such clinical interviews are extremely useful for 

providing a baseline screening assessment and patient history prior to the start of treatment or 

research study. In terms of taking a patient’s history, a clinician would normally ask questions to 

probe the following areas including: family history, physical health history, previous medication and 

alcohol use, history of mental illness as well as specific questions regarding the timing and onset of 

sleep (Schramm et al., 1993). Observations of sleep-wake behaviour during the night from the 

partner of the patient, family, caregivers or travelling companions can also add useful information to 

clinical history. For example, reports of parasomnias including acting out of dreams and nightmares 

can be described by the patient or others and documented in sleep logs/diaries (Blagrove, Farmer, & 

Williams, 2004). 

However, a lack of common standardisation reduces the reliability of these clinical 

assessments (Buysse et al., 2006). As a result, specifically designed structured interviews for sleep 

disorders have been used to probe symptoms of insomnia, idiopathic hypersomnia, sleep-wake 

schedule disorders, sleep-induced respiratory impairment, narcolepsy, restless legs syndrome and 

periodic movement disorders for example (Ohayon, Guilleminault, Zulley, Palombini, & Raab, 1999; 

Schramm et al., 1993). One structured interview was initially developed and tested for reliability and 

validity according to DSM-III-R and DSM-IV criteria (Schramm et al., 1993). The interview can be used 

to evaluate sleep-wake disorders. The average time for administration is approximately 20-30 

minutes. The interview consists of the following: 1. A brief semi-structured overview of physical and 

mental health and questions regarding OSA and narcolepsy; 2. A specific and structured inquiry of 

sleep disorder symptoms; and 3. A summary score sheet is filled in at the end of the interview. The 

interviewer may omit irrelevant sections depending on the response of the patient (Schramm et al., 

1993). The interview can be given by physicians or health care professionals with no prior knowledge 
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of sleep disorders. In this thesis, all participants with insomnia underwent at least a 30-minute semi-

structured interview prior to study enrollment. 

3.4.2 Sleep diary measures 

Sleep can be profiled through daily self-report measures of sleep. Sleep diaries are widely 

used in sleep science and fundamental to understanding the subjective complaint of patients. Self-

monitoring of sleep through a sleep diary enables nightly perceived metrics to be identified and 

normally includes the following estimated measures: sleep onset latency (SOL), wake-time after 

initial sleep onset (WASO), TST, total time spent in bed (TIB), SE (percentage of time spent asleep 

relative to the amount of time spent in bed) and a numerical estimation of overall sleep quality. 

Normally, patients are asked to complete the diary before they commence their day and refer back 

to the previous night’s sleep with ‘approximations’ to the nearest five minutes. Some patients may 

complete this daily in the morning or at both the morning and evening time points. The morning 

assessment time point is both sufficient and preferred (Carney et al., 2012). Patients (especially 

those with insomnia) are advised to avoid filling in the sleep diary during the night time, as this may 

further disrupt their sleep. Likewise, the use of a clock during the night to quantify periods of 

wakefulness should also be avoided. Estimations of time are therefore necessarily generalised to the 

nearest five minutes. When compared to gold standard PSG and actigraphy, healthy participants 

tend to overestimate their TST whereas patients with insomnia underestimate their sleep time 

(Lichstein et al., 2006; Maes et al., 2014). 

Nevertheless, the sleep diary is the gold standard subjective assessment of sleep and an 

extremely important assessment of insomnia (Carney et al., 2012). The subjective complaint is 

considered primary and treatment through cognitive behavioural therapy for insomnia (CBT-I) is 

typically quantified through change and potentially, improvement in primary sleep diary outcomes 

metrics (SOL, TST, WASO and SE). However, a lack of sleep diary standardisation has hampered 

research methodologies in measuring sleep, resulting in inconsistent results between studies and a 
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difficulty in translating in lab findings into clinical practice. To address this, the American Academy of 

Sleep Medicine set-up an expert consensus of sleep medicine experts in order to standardise a self-

report sleep diary. The proposed consensus sleep diary is currently a live document that can be 

used; however it requires validation, testing, and refinement (Carney et al., 2012). In this thesis, 

daily measures of sleep diaries (similar to Morin & Espie, 2003) were implemented for two weeks 

before and for the initial 4-5 weeks of therapy as a primary outcome variable to map response to 

sleep restriction therapy (SRT) for insomnia. Sleep diaries were also implemented in chapter seven 

to profile differences between those with insomnia and healthy controls. 

3.4.3 Questionnaire assessments of sleep and insomnia 

Sleep can be profiled subjectively through self-report questionnaire measures. There are 

many questionnaires available for patients to report on sleep, quality of life, affect, health related 

quality of life and also daytime functioning (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989). This 

section will focus on measures of sleepiness, insomnia symptomology and daytime cognition in 

those with insomnia. 

The Epworth sleepiness scale (ESS) is used to profile subjective estimations of excessive 

daytime sleepiness (Johns, 1992). The overall total score (out of 24) comprises a single factor, the 

propensity to fall asleep over the previous two weeks. The scale asks people to rate how likely they 

would be able to doze or fall asleep in eight different settings (sitting and reading for example). 

Patients are asked to rate on a 0-3 scale (0 = “would never doze”, 3 = “high chance”) their chance of 

dozing within those situations. Scores above 16 are regarded as evidence of extreme sleepiness, 

indicated in patients with idiopathic hypersomnolence or narcolepsy (Johns, 1992). In patients with 

moderate-to-severe OSA the ESS is sensitive to change with continuous positive airway pressure 

(CPAP) treatment (Antic et al., 2011); can be used to profile individuals with restricted sleep 

opportunities or who undertake shift work (Garbarino et al., 2002; Van Dongen, Baynard, Maislin, & 
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Dinges, 2004). Generally, patients with insomnia will score low but anecdotally if a score >8 is 

identified it is useful to look for another sleep disorder or depression. 

The Insomnia severity index (ISI; Morin (1993)) is a short seven item questionnaire that 

attempts to define the severity of both the night time and daytime impact of insomnia over the past 

two weeks (Morin, 1993). It has previously been validated as a clinically useful diagnostic tool and as 

a treatment outcome (Bastien et al., 2001). The items of the questionnaire evaluate the following: 

duration of sleep onset, sleep maintenance, early morning awakening, sleep dissatisfaction, daytime 

functioning, noticeability of sleep problems by others, and the distress caused by the sleep problem. 

Each item uses a 5-point Likert scale to capture a rating (0 = “no problem”; 4 = “very severe 

problem”). Each item score is summed and yields a total score from 0 (no insomnia) to 28 (severe 

clinical insomnia). The total score is interpreted as follows:  no insomnia (0-7); subthreshold 

insomnia (8-14); moderate clinical insomnia (15-21); and severe clinical insomnia (22-28). The 

questionnaire has also been used in population based studies to quantify and evaluate insomnia 

symptomology in community samples. High internal consistency has been found for both clinical and 

community based samples (Cronbach α ≥ 0.90). 

The daytime Insomnia symptom scale (DISS; Levitt et al. (2004)) has been used previously to 

probe differences in sleep, rhythms and affect in groups of patients with insomnia compared to 

healthy good sleeping controls (Buysse et al., 2007; Levitt et al., 2004). The DISS will be used in the 

next chapter to map changes during the acute phase (first 3 weeks) of a successful behavioural 

intervention for insomnia (Miller et al., 2013). Specifically, the DISS uses 20 visual analogue scales 

(ranging from 0 to 10 on a 10cm line) and asks the participant to mark where they believe to agree 

or disagree with each of the statements at the specified moment in time. For example, question one 

asks; “How alert do you feel” with “Very little” at the extreme left of the 10cm line and “Very much” 

at the far right. These items form four factors (alert cognition, sleepiness/fatigue, and positive and 

negative mood).  
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Previously, participants have been asked to complete the DISS at four assessment time 

points per day as part of an ecological momentary assessment (EMA: at awakening, noon, early 

evening and bedtime) for at least one week (Buysse et al., 2007; Levitt et al., 2004). We used EMA in 

contrast to the more sophisticated sampling technique of event sampling monitoring which to our 

knowledge has not been used in sleep research. EMA is a component of event sampling monitoring 

where a stimulus is randomly given to a participant during the day and they are asked about an 

aspect of behaviour or mood (Shiffman, Stone, & Hufford, 2008). 

EMA is advantageous as it allows the reporting of ecologically valid symptoms within the 

context of the individuals own environment and has been validated in insomnia research (Buysse et 

al., 2007). EMA can profile the daytime impact, potential mechanisms of action, and adverse effects 

during treatment of insomnia on a day-by-day basis and through the course of treatment. Insomnia 

is a highly variable condition that can alter in severity across time and EMA is well suited for 

characterising these changes in symptomology. EMA can detect specific micro point-in-time 

alterations in mood and cognition during the day compared to more global retrospective 

assessments of insomnia (e.g. ISI).  
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3.5 Cortisol 

Hormones are used by the endocrine system to signal changes related to sleep-wake timing 

and sleep stages. Many hormones can be measured as part of sleep research and this section will 

specifically highlight cortisol as a measure of increased arousal in those with insomnia (Bonnet & 

Arand, 2010). The following section focuses on cortisol as a primary outcome measure in this thesis. 

The alerting/stress hormone cortisol is known to be affected by sleep and has a strong 

circadian rhythm. Cortisol is the output from the hypothalamic-pituitary-adrenal axis, which is an 

endocrine system malleable to both bodily and external influence (Elder, Wetherell, Barclay, & Ellis, 

2014). Cortisol secretion can be measured in saliva, blood, urine or hair. Specifically, it has a 24 hour 

circadian rhythm with secretion increasing after awakening and peaking in the first 30 minutes of 

wakefulness. Cortisol then gradually declines over the course of the day and reaches its lowest point 

at around midnight. Levels remain low and begin to rise again in time for awakening (Follenius, 

Brandenberger, Bandesapt, Libert, & Ehrhart, 1992). Therefore cortisol must be analysed for 

expected circadian rhythmicity when measuring as an outcome. During sleep, diminished cortisol 

secretion has been found to be associated with SWS, suggesting cortisol may be involved in 

regulating sleep (Follenius et al., 1992). The first sample on awakening and the resulting morning 

peak in cortisol (referred to as the cortisol awakening response) have both been studied extensively 

in sleep research (Elder et al., 2014). Plasma and urinary cortisol concentrations are increased in 

patients with insomnia compared to healthy good sleeping controls (Rodenbeck, Huether, Ruther, & 

Hajak, 2002; Vgontzas et al., 2001; Vgontzas et al., 1998). Chapters five and six evaluate change in 

salivary and plasma cortisol concentrations during and after SRT for insomnia. Although more 

stressful to the participant and more difficult to obtain, plasma cortisol is considered a more robust 

measure of cortisol compared to salivary cortisol due to variability that can occur in sampling with 

saliva. For example, brushing teeth, cigarette smoking or drinking orange juice may cause erroneous 

results in saliva collection (Clow, Thorn, Evans, & Hucklebridge, 2004). 
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3.6 Neuroimaging & magnetic resonance spectroscopy 

Neuroimaging can be used to investigate changes and differences in the brain in those with 

sleep disorders. Specifically, magnetic resonance spectroscopy (MRS) can evaluate in vivo brain 

metabolism. Within insomnia, MRS has been used to document differences in brain metabolism 

compared to healthy good sleeping controls (Spiegelhalder, Regen, Baglioni, Riemann, & Winkelman, 

2013). However, the use of MRS in insomnia sleep research and sleep pathology is still in its infancy 

and one of the aims of this thesis is to provide novel data on potential differences between those 

with insomnia and healthy controls. The following section provides a brief overview of MRS and the 

metabolites that can be measured with this technique. 

3.6.1 Magnetic resonance spectroscopy 

Brain metabolism can be measured through in vivo proton MRS which is useful for 

understanding subtle changes due to disease and/or response to treatment. A number of 

metabolites are examined through this technique including: N-acetylaspartate (2.05 relative units 

parts per million: ppm); creatine (3.02ppm), choline (3.22 ppm), glutamate (2.35 ppm), glucose (3.43 

ppm), myo-inositol (3.56 ppm) and lactate (1.33 ppm) among other measures (Rae, 2014). The 

sleeping brain and the consequences of sleep disorders have also been studied using MRS. Moderate 

oxygen desaturation can affect brain bioenergetic status during sleep (Rae et al., 2009). Brain 

neurochemistry is known to be altered in those with OSA compared to healthy individuals (Bartlett 

et al., 2004; Kamba et al., 2001) with reduced creatine levels in the left hippocampal area correlating 

with increased OSA severity and deteriorating cognitive performance. The following section provides 

an overview of the metabolites that can be obtained from MRS. 
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3.6.2 Metabolites from magnetic resonance spectroscopy 

Gamma-Aminobutyric acid (GABA) is found at 3.0ppm and is the primary inhibitory 

neurotransmitter in the central nervous system (Gottesmann, 2002). GABA is closely linked to and 

metabolised from glutamate (GLU) (Stagg et al., 2011). GABA is also linked to brain function (Puts & 

Edden, 2012) and higher GABA levels have been associated with increased concentration and 

decision making speed (Sumner, Edden, Bompas, Evans, & Singh, 2010). Lower levels of GABA are 

thought to contribute to symptoms of depression, anxiety (Kalueff & Nutt, 2007) and also insomnia 

(Winkelman et al., 2008). Also, GABAergic interneuron inhibition is thought to impact a number of 

processes concerning the regulation of sleep, anxiety, motor control and pain (Möhler, 2006). In 

psychiatric disorders like schizophrenia, deficits in GABAergic inhibition may have implications for 

symptomology (Lewis, Hashimoto, & Volk, 2005). Thus agents are used that increase GABAergic 

activation (Kalueff & Nutt, 2007). 

Creatine (CRE) protons resonate at 3.02ppm and this peak is made from protons consisting 

of free CRE and phosphocreatine which are in almost equilibrium exchange (Chen, Zhu, Adriany, & 

Uǧurbil, 1997). Creatine is the central energy marker of both neurons and astrocytes and plays an 

important role in maintaining energy homeostasis within the brain (Lin, Ross, Harris, & Wong, 2005). 

Higher levels may provide protection from hypoxia with a supplement potentially reducing 

neurological and atherosclerotic disease risk (Wyss & Schulze, 2002) and improved cognitive 

performance (Rae, Digney, McEwan, & Bates, 2003). CRE should not be assumed to be stable in the 

brain, but studies do use metabolite ratios with CRE as the denominator and has questionable 

significance (Rae, 2014). This practice is potentially misleading with increased variability found with 

this method when compared to reporting individual metabolite components (Li, Wang, & Gonen, 

2003). 

GLU and Glutamine (GLN) are a mixture of closely related amino acids, amines and 

derivatives involved in neurotransmission (excitatory and inhibitory) and lie between 2.05 and 
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2.5ppm. At times, GLU and GLN can be collectively referred to as GLX due to overlapping spectral 

resonances at 1.5 Tesla (T). At 3T this is also the case and a GLU resonance may contain GABA and 

GLN. Although an asymmetric point-resolved surface coil spectroscopy (PRESS) sequence can be 

used to further uncover GLU (Snyder & Wilman, 2010). However, by increasing the power of the 

magnet to approximately 7T it is possible to decisively separate out these resonances. It is not 

currently clear if higher field strengths have adverse effects but 7T has been found to be tolerated by 

humans (Theysohn et al., 2008). 

GLU is found at 2.35ppm and is the highest concentrated amino acid and major excitatory 

neurotransmitter in the brain (Bennett & Balcar, 1999; Fonnum, 1984). GLU has the potential to be 

neurotoxic but protective mechanisms are able to inhibit those excitatory and neurotoxic effects 

(Choi, 1988). GLU levels have been shown to be linked to increased metabolic activation (Sibson et 

al., 1998). In alcoholics, increased levels of GLU have been found and may be due to a combination 

of increased metabolic activation and poor excretion/removal processes from the brain (Kalivas, 

2009; Koga et al., 2011). 

GLN is found at 2.45ppm in high concentrations across the brain and is synthesised from 

GLU. GLN is an astrocyte marker, aids synthesis of GABA, is a by-product of GLU neurotransmission 

(Rae, 2014), is increased during hypoxic-ischemic events (Mountford, Stanwell, Lin, Ramadan, & 

Ross, 2010) and is decreased in Alzheimer’s disease and in those with major depressive disorder 

(Walter et al., 2009). Currently little data are available on the role of GLN and brain function. 

Glutathione (GSH) is found at 2.95ppm and is a major antioxidant and tripeptide found in 

high concentrations across the brain but difficult to detect due to overlap with other resonances 

(Rae, 2014). GSH is pivotal to life and plays important roles in protein synthesis and degradation as 

well as forming precursors to deoxyribonucleic acid (Rae, 2014). Increased GSH levels may be a 

marker for drug resistance as GSH is associated with removal of electrophilic compounds from cells 

(Leslie, Deeley, & Cole, 2001). Reductions in GSH levels indicate degeneration of neurons in specific 
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areas of the brain (e.g. Parkinson’s disease) (Han, Cheng, Yang, & Dryhurst, 1999). Increased GSH 

levels appear protective against toxic oxidative stress in the central nervous system (Dringen, 

Gutterer, & Hirrlinger, 2000; Satoh & Yoshioka, 2006). GSH levels are also known to decline with age 

(Rae, 2014). 

Myo-inositol (MINO) is a sugar found at 3.56ppm and is considered a glial marker (Castillo, 

Kwock, Scatliff, & Mukherji, 1998). Increases in MINO denote change in glial size and proliferation 

associated with inflammation and the breakdown of myelin (Rosen & Lenkinski, 2007). MINO has 

been reported to be increased after stroke, head injury, Alzheimer’s disease, gliosis and astrocytosis 

(Rae, 2014; Soares & Law, 2009). 

N-acetylaspartate (NAA) is found at 2.02ppm (Soares & Law, 2009) and displays one of the 

largest resonance peaks. It is also one of the most highly concentrated free amino acids in the brain 

(Rae, 2014). NAA is synthesized from acetyl coenzyme-A and aspartate (ASP) and contains 

components from N-acetyl methyl groups. Breakdown of N-acetyl-aspartylglutamate releases both 

NAA and GLU. NAA is increased only in Canavan disease and reduced NAA can be a marker of insult 

to the brain (Castillo et al., 1998). NAA is thought to be a marker of neuronal viability, functioning 

and density although the exact role for NAA is unknown (Castillo, Kwock, & Mukherji, 1996). NAA 

may be reduced in those with OSA (Kamba et al., 2001). However, the brain may be able to 

compensate in alternate ways if NAA is reduced (Rae, 2014). 

3.6.3 Voxels of interest 

For the measurement of brain metabolism voxels of interest must be located be chosen a-

priori to the beginning of a MRS study. Voxels refer to the volume of the area of the brain (volume of 

interest: VOI) that is to be sampled. Generally in MRS, the volume is between 2 and 8cm3 (Castillo et 

al., 1996). Larger voxels have larger volumes of tissue and therefore have a decreased signal-to-noise 

ratio which will consist of more background noise and artifacts making interpretation of the spectra 

difficult (Mountford et al., 2010). 

102 
 



 

3.7 Sleep restriction therapy 

For the treatment intervention in chapters four, five and six a standardised SRT intervention 

was developed as part of this thesis and used across both sites at Glasgow and Sydney. Therapy 

comprised one, 40 minute face-to-face session, using previous instructions (Spielman et al., 2010). In 

line with previous SRT impairment findings, a minimum time in bed (sleep window) was set to no 

less than five hours (Kyle et al., 2014) see Appendix A: Sleep restriction therapy method for an 

example. The sleep window was firstly anchored with a morning wake-up time that considered the 

participants normal daytime commitments. From this, the therapist (CBM) worked back around the 

clock to establish the initial go to bed ‘threshold time’. Participants were instructed not to go to bed 

until after the threshold time and to only go to bed if they felt ‘sleepy tired’. The intervention was 

standardised and supported by a brief set of digital slides (eight in total see Appendix B: Sleep 

restriction therapy presentation slides) and an information manual (11 pages, in plain English: see 

Appendix C: Sleep restriction therapy information manual). For chapters four and five, two further 

in-person sessions and two telephone calls (each 5-10 minutes) were provided to review SE and 

titrate the sleep window each week, therapy ceased after 4 weeks. For chapter six only, up to five 

weekly telephone calls only (each 5-10 minutes) were provided to review SE and titrate the sleep 

window. For titration, TIB was modified on a weekly basis. Changes were made to TIB incrementally, 

depending upon the achievement of "good sleep efficiency"; 85-89% no change, ≥ 90% increase by 

15 minutes, less than 85% decrease by 15 minutes (Spielman et al., 2010). Time out of bed was 

rarely changed. In nearly all cases time to bed was modified in line with previous instructions by 

Spielman et al. (2010) (see Table 5). No other CBT-I components were addressed. 
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Home adherence to SRT was monitored through subjective sleep diary (throughout therapy), 

and also through a specific sleep restriction adherence scale (SRAS; Kyle & Crawford, unpublished), 

completed on a week-by-week basis. The SRAS is loosely based on the Medical Outcomes Study 

general adherence scale (MOS-A; Kravitz et al. (1993)), but is modified to probe adherence to 

different aspects of SRT, through five specific questions (e.g. Item 4: “I got up at my calculated ‘rising 

time’ on weekdays...” / response selection: 1= ‘ None of the time’; 2= ‘A little of the time’; 3= ‘Some 

of the time’; 4= ‘A good bit of the time’; 5= ‘Most of the time’; 6= ‘All of the time’). Possible total 

SRAS scores range from 5-30, with higher scores being indicative of greater levels of adherence. 

Preliminary (unpublished) psychometric evaluation of the SRAS, with 42 insomnia patients 

undergoing SRT, reveals high levels of internal consistency (Cronbach’s α = .92; range of item-

deletion α  = .89-.93, mean α = .91). 
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3.8 Recruitment & participants 

All participants with insomnia recruited in this thesis went through a similar recruitment 

process at both Glasgow and Sydney. Patients were recruited through responses to advertisements 

in clinic, online and in the local community. Potential participants were initially interviewed by 

telephone through the use of a screening assessment based on Morin and Espie (2003) and asked to 

refer into a sleep clinic by their general practitioner. All participants were seen by a Sleep Physician 

for an initial 30 minute sleep and medical evaluation to determine insomnia disorder and evaluate 

subtype through research diagnostic criteria (RDC) for insomnia (Edinger et al., 2004). Only those 

with psychophysiological insomnia (PI) were included. PI was determined from the following 

inclusion/exclusion criteria: the primary complaint of insomnia, a subjective sleep disturbance of 

three nights per week for at least three months of SOL and/or WASO >30 minutes and a specific 

daytime impairment attributed to disturbed sleep (Edinger et al., 2004). Current or unstable medical, 

co-morbid sleep or psychiatric conditions were exclusionary. If suitable, all participants were asked 

to initially complete sleep diaries and wear actigaphs for at least one week to provide a baseline 

assessment of sleep and screen for circadian rhythm disturbances. Participants were then screened 

for evidence of sleep disorders through a full PSG sleep assessment prior to enrolment. Mean apnea 

hypopnea index (AHI) scores of >10, periodic limb movements of sleep (PLMS) arousal index scores 

of <10 or minimum oxygen saturations of <90% during the night were all deemed exclusionary. 

Participants were also excluded if they reported chronic hypnotic use (>3 times per week). Those 

with occasional hypnotic use (1-3 times per week) were included in this thesis but were asked to 

refrain from any hypnotic medication for two weeks prior to the initial screening overnight PSG 

assessment and then refrain from any further use of hypnotics during the entire course of study. ISI 

(Morin, 1993) scores were used to define insomnia severity. 
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3.9 Statistical analysis 

For within subjects repeated measures data, all outcome variables were evaluated with 

boxplots and histograms to check data for normality and outliers. Paired samples t-tests were 

employed to profile the effect of therapy and effect size scores were calculated as previously 

described (Cohen, 1988): Cohen's d = M1 - M2 / SD pooled, where SD pooled =√[(SD1
2+ SD2

2) / 2] (Dunlap, 

Cortina, Vaslow, & Burke, 1996). Due to potential problems with the small sample size and potential 

lack of statistical power data were also graphed and visually examined to evaluate individual 

changes due to therapy. 

For primary dependent repeated measures outcome variables in chapters four, five and six a 

linear mixed model analysis using Statistical Package for the Social Sciences (SPSS) software (IBM v 

19.0.0; IBM, Amonk, NY, USA) was implemented for each outcome variable. Fixed effects included: 

time (before, during or after) of the intervention, and for time of day or night. Random effects were 

run to account for between-subject variation. Only random effects were included for the intercepts. 

Uncorrected Pairwise comparisons based on estimated marginal means were implemented to 

investigate the primary outcomes. In chapter seven, boxplots and histograms were checked for 

outliers and independent samples t-tests were implemented to profile differences between those 

with insomnia and healthy good sleeping controls. 
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Methods used for the assessment of sleep 

Method Description Pros Cons 

Polysomnography 
(PSG) 

Objective measure of  sleep 
and disorders of sleep 

1.Gold standard measure of 
sleep and the disorders of 
sleep 

1. Expensive  
2. Difficult to access  
3. Discomfort 
4. First night effect 
5. Requires analysis & 
interpretation 

Actigraphy 
Objective measure of 

movement used to infer 
sleep-wake behavior 

1. Correlates with PSG 
2. Can be used long-term 
3. Ecologically valid 
4. Target for treatment 

1. Limited by battery length 
2. Requires analysis & 
interpretation 

Clinical interview 
Objective measure of 

movement used to infer 
sleep-wake behavior 

1. Accessible 
2. Clinically valid 
3. Useful prior to treatment 
or research 

1. Lack of standardization 
2. Limited without further 
measures of sleep 

Sleep diary Subjective measure of 
sleep-wake behaviour 

1. Accessible 
2. Target for treatment 
3. Easy to use & 
inexpensive 

1. Poor correlation with 
PSG 
2. Must remember to fill in 
3. Subjective measure of 
sleep 
4. Requires analysis & 
interpretation 

Questionnaires 
Subjective measures of 
sleep, wake, health & 

cognition 

1. Accessible 
2. Target for treatment 
3. Easy to use & 
inexpensive 

1. Open to bias 
2. Requires analysis & 
interpretation 

Magnetic Resonance 
Spectroscopy (MRS) 

Objective measure of  
metabolites of the brain  

1. Non-invasive method to 
investigate brain 
metabolism 
2. Can be used during sleep 
 

1. Expensive 
2. Difficult to access  
4. Lack of validity 
5. Requires analysis & 
interpretation 

Cortisol assessment 
Hormone used to infer 

stress & increased arousal 
in insomnia 

1. Objective measure 
2. Closely linked to the 
sleep cycle 

1. Requires analysis 
2. Difficult to access  
3. Test requires further 
validation 

Table 10 Overview of the methods used for the assessment of sleep. Displays the pros and cons of 
a range of the most commonly used measures to research and diagnose sleep and its disorders.  
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Chapter 4: An ecological momentary assessment of sleep restriction therapy 

for insomnia 

 

The contents of this chapter have been published as follows: 

 

‘Ecological momentary assessment of daytime symptoms during Sleep Restriction Therapy for 

Insomnia’ Miller, C.B., Kyle, S.D., Marshall, N.S., & Espie C.A. (2013). Journal  of Sleep Research, 22, 

266-72. 

 

  

108 
 



 

4.1 Abstract 

This study profiles changes in self-reported daytime functioning during sleep restriction 

therapy (SRT) for insomnia. Ecological momentary assessment captured point-in-time 

symptomatology to map the time course of symptoms. We hypothesised a deterioration (week 1) 

followed by improvements at week three of therapy relative to baseline. Nine patients with 

psychophysiological insomnia completed the daytime insomnia symptom scale (DISS) at risetime, 

12:00hr, 18:00hr, and bedtime, for one week before and three weeks during SRT. Four validated 

factors from the DISS were analysed (alert cognition, positive mood, negative mood, and sleepiness 

/fatigue) across 28 days yielding 17,170 data points. Factors evaluated week (baseline v. weeks 1 and 

3) and time of day symptomatology. Insomnia severity index scores decreased significantly pre-to-

post treatment (mean = 18 v. 7). Reflecting acute effects of SRT, significant differences were found 

for all factors, except negative mood, between baseline and week one of SRT, suggesting adverse 

effects. By week three, sleepiness/fatigue and negative mood decreased significantly compared to 

baseline, and positive mood showed a trend towards improvement (p=.06). Sleepiness/fatigue 

displayed a significant week x time of day interaction, explained by a reduction in sleepiness/fatigue 

at every daytime assessment point (except bedtime, which remained high). A significant interaction 

for alert cognition was associated with reduction in alertness at bedtime by week three, and an 

increase in alertness at risetime; suggesting, SRT not only improves sleep, but moderates alertness 

and sleepiness in therapeutic ways. Initial SRT is associated with an increase in sleepiness/fatigue 

and a decrease in alert cognition. 
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4.2 Introduction 

Insomnia is a highly prevalent and costly disorder (Daley, Morin, LeBlanc, Gregoire, & 

Savard, 2009). It is associated with workplace deficits, increased health risks and health care 

utilisation (Siebern & Manber, 2010). Further, health-related quality of life has been found to be 

impaired and it is thought that this drives treatment seeking behaviour (Kyle et al., 2010). 

One of the main effective treatments for insomnia is cognitive behavioural therapy (CBT-I) 

(Morin, Bootzin, et al., 2006; Smith, Perlis, Park, et al., 2002). Sleep restriction therapy (SRT) has 

been widely utilised within CBT-I Indeed, it is nearly always included in single or brief interventions 

to treat insomnia (Buysse, Germain, Moul, et al., 2011; Edinger & Means, 2005). Anecdotally, it is 

believed to be one of the most active components within CBT-I. Despite this, our current 

understanding of how and why this potent and difficult behavioural intervention may work is poorly 

understood (Morgenthaler et al., 2006). Further, adherence and the perceived benefits of this 

therapy have previously been linked to a positive treatment response (Harvey et al., 2002). Yet, it 

may also cause some adverse effects (Kyle et al., 2014; Kyle et al., 2011). In order to further 

understand the daytime impact, mechanisms, and adverse effects of this brief behavioural therapy, 

novel measurement approaches must be implemented. Ecological momentary assessment (EMA) 

was used to profile the daytime impact, potential mechanisms of action, and adverse effects of 

standalone SRT on a day-by-day basis through the course of treatment (see section 3.4 Subjective 

measures of sleep for an overview). 

The aim of this study was to profile self-report daytime functioning over the course of three 

weeks of SRT for insomnia. We hypothesised that daytime levels of alert cognition, 

sleepiness/fatigue, positive and negative mood, from the daytime insomnia symptom scale (DISS; 

Buysse et al. (2007) would initially deteriorate in line with an acute restriction of sleep opportunity, 

but then improve beyond baseline levels through SRT in line with a treatment response. 
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4.3 Methods 

Nine participants who responded to advertisements were recruited from the general 

population and were screened for psychophysiological insomnia (Edinger et al., 2004) see chapter 

3.8 Recruitment & participants. Participants slept for two nights in the University of Glasgow Sleep 

Centre, Scotland, prior to study enrolment as part of a concurrent insomnia trial (grant # 

R01MH077901).  

Two nights of polysomnography (PSG) were used to exclude sleep-related co-morbidities 

and to acquire a baseline assessment of sleep. A standard PSG montage was used, involving 

Electroencephalographic (EEG: Fp1 (neutral), C3, P3 (reference), O1, Fpz, Fz, Cz, Pz, Oz, F4, C4), 

electrooculographic (EOG: horizontal and vertical) and electromyographic (EMG) submental 

recordings. On night one, all participants were screened for sleep-disordered breathing and periodic 

limb movements through monitoring of abdominal and thoracic effort, nasal airflow, oximetry, and 

bilateral tibialis anterior EMG. Sleep was recorded on a lifelines trackit ambulatory recorder and 

scored visually by two experienced scorers (>90% inter-scorer reliability) according to criteria by 

Rechtschaffen and Kales (1968). For study inclusion, patients were required to have an apnea 

hypopnoea index (AHI) and periodic limb movements of sleep (PLMS) index < 10. This study was 

reviewed and approved by the West of Scotland NHS research ethics committee (protocol 

#10/SO701/85: see Appendix D: Ethical approval for Chapters 4 & 5). 

Therapy was delivered and adherence was measured as described previously in chapter 3.7 

Sleep restriction therapy. The insomnia severity index (ISI) (Morin, 1993) was completed before and 

after therapy to monitor more global effects of treatment. Pairwise comparisons were used to 

evaluate differences. 
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Participants completed paper-based versions of the DISS at four assessment points per day 

(risetime, 12:00hr, 18:00hr, and bedtime) for  one week before the SRT intervention (baseline) and 

for three weeks during the intervention (weeks: 1, 2, and 3), representing the acute treatment phase 

(See Figure 9). The DISS consists of 20 visual analogue scales (ranging from 0 to 10 on a 10 cm line). 

The participant is asked to mark along the line where they believe to agree or disagree with each of 

the twenty statements at the specified moment in time. For example, question one asks; “How alert 

do you feel” with “Very little” at the extreme left of the 10 cm line and “Very much” at the right.  

Eighteen of the 20 items were utilised, forming four previously validated factors; 

sleepiness/fatigue (containing adjectives; sleepy, fatigued, and exhausted), negative mood (anxious, 

stressed, tense, sad, & irritable), positive mood (relaxed, energetic, calm, happy, & efficient), and 

alert cognition (forgetful, clear-headed, concentrate, effort, & alert) (Buysse et al., 2007). In order to 

improve adherence to this procedure, participants were offered short messaging service text 

reminders to their mobile phone. Two participants opted to receive these at the 12:00hr and 

18:00hr time points only. 
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Figure 9 Ecological momentary assessment data collection through brief SRT for insomnia: 
Participants were sampled from a concurrent insomnia study and underwent two nights of 
polysomnography (PSG 1 & 2), prior to study enrolment. This was followed by a 4 week ecological 
momentary assessment (EMA) first through an initial baseline data collection week and then with 
3 weeks of sleep restriction therapy (SRT). SRT post treatment outcome measures were assessed 
at week 4. 

A linear mixed model was implemented for each factor (see chapter 3.9 Statistical analysis). 

Fixed effects included: week (B, 1, 2, 3) of the intervention, and for time of day of DISS completion 

(risetime, 12:00hr, 18:00hr, and bedtime). Random effects were run to account for between-subject 

variation. Only random effects were included for the intercepts. Uncorrected Pairwise comparisons 

based on estimated marginal means were implemented to investigate the primary outcomes. 

  

 Pre-Study Period Post Treatment

PSG 1 PSG 2
Baseline 

Week
Week 1 

SRT
Week 2 

SRT
Week 3 

SRT 
Week 4 

EMA Collection Period
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4.4 Results 

In total, 9 patients (6 females; mean age = 46.4yr, range = 34-58) thoroughly screened for 

psychophysiological insomnia (Edinger et al., 2004) completed this study. No participants were 

taking prescribed sleep promoting hypnotics during the course of this study. 

Confirming the expected therapeutic benefits of SRT, sleep diary data reveals significant and 

robust improvements, baseline to week four, in both sleep efficiency (73% v. 93%; p<.01) and sleep 

quality ratings (1.8 v. 2.3; p<.01). Significant pre-to-post reductions (p<.001) were found for; sleep 

onset latency (33.7 v. 10.7 minutes), time awake after sleep onset (58.7 v. 15), number of 

awakenings during the night (2.5 v. 1.6), and total time spent in bed (489 v. 367). Total sleep time 

marginally reduced (357 v. 340); this was not significant (p>.05). A significant reduction was found 

for both total sleep time (357 v. 284; p <.001) and time in bed (489 v. 355; p<.001) between baseline 

and week 1 of SRT (see Table 11). ISI scores decreased significantly at post treatment (M=18 (5) v. 7 

(5), p<.05). The SRT self-report adherence mean scores remained high across the weeks of therapy 

(week; 1 = 26.1 (3.5), 2 = 24.0 (3.8), 3 = 25.1 (1.3), 4 = 23.1 (6.1); with a range of 10-30. 

Turning to the primary purpose of the study, the completion rate for the DISS questionnaire 

throughout the four weeks of data collection was highly satisfactory at 94.6% (ranging from 76% to 

100%), yielding 19,075 data points out of a possible 20,160. Each participant was asked to complete 

the 20 item DISS at four times per day every day for 4 weeks (B, 1, 2, 3). For the primary analysis 18 

questions evaluated four dimensions of interest; sleepiness/fatigue, alert cognition, positive and 

negative mood. This resulted in 17,170 data points (out of a possible 18,144). The following sections 

report findings. 

In order to firstly evaluate differences for time of questionnaire completion, we looked to 

evaluate potential daytime patterns to each of the four factors by analysing the main effect of time 

of day. Significant differences were found across the four daytime assessment points for three 

factors; sleepiness/fatigue, alert cognition, positive mood [F (3, 930), sleepiness/fatigue = 63.97, 
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alert cognition = 82.93, positive mood = 42.28]; (all p<.001). Negative mood displayed no diurnal 

change [F (3, 930) = 0.48]; (p=.699). 

To test the initial hypothesis for a deterioration in symptoms at week one of SRT, main 

effects were analysed for week, yielding significant results for all four factors [F (3, 930), 

sleepiness/fatigue = 14.30, alert cognition = 6.54, negative mood = 7.75, positive mood = 6.81]; (all 

p<.001). We then compared baseline to week one of SRT for all factors. Pairwise comparisons 

revealed a significant increase for sleepiness/fatigue (p<.01), a significant decrease for alert 

cognition (p<.001), and positive mood (p <.05), and no change for negative mood. This deterioration 

in symptoms at week one was in line with our initial hypothesis regarding early adverse effects due 

to acute sleep restriction as part of therapy. To test the second part of our hypothesis (that daytime 

insomnia symptoms would reduce through SRT) we evaluated differences between baseline and 

week three. Consistent with expectation, a significant decrease (p≤.001) was found for 

sleepiness/fatigue and negative mood, with a trend for improvement in positive mood (p=.06). Alert 

cognition, however, was not significantly different (see Table 11). 
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Mean and Standard Deviations Mean and 95% Confidence Intervals 

 

Prescribed 
Time in bed 
(apart from 

baseline)  

Total Sleep Time SRAS Alert Cognition Sleepiness / 
Fatigue Negative Mood Positive Mood 

Baseline 
Week 489 (49.4) 357 (35.8)   53.0 [45.3, 60.8] 54.5 [44.8, 64.2] 26.1 [15.8, 36.4] 55.0 [48.0, 61.9] 

Week 1 355 (24.5) 285 (33.1) 26.1 
(3.5) 47.7 [39.9, 55.6] 59.2 [49.5, 68.9] 27.4 [17.1, 37.7] 52.0 [45.1, 58.9] 

Week 2 350 (21.2) 311 (27.3) 24.0 
(3.8) 51.8 [42.2, 61.7] 52.0 [42.2, 61.7] 25.9 [15.6, 36.2] 54.5 [47.6, 61.4] 

Week 3 362 (20.5) 323 (27.4) 25.1 
(1.3) 53.0 [45.2, 60.8] 48.4 [38.7, 58.1] 22.5 [12.2, 32.8] 57.1 [50.2, 64.1] 

Week 4 367 (21.3) 340 (24.8) 23.1 
(6.1)         

Paired Differences Testing 

 Mean and Standard Errors Mean Difference and 95% Confidence Intervals 
Baseline v. 

Week 1 
489 (16.5) v. 
355 (8.7)***  

357 (11.9) v. 285 
(11.0)***   5.2 [2.5, 8.0]*** 4.7 [-8.1, -1.4] ** 1.3 [-3.4, 0.8] 3.0 [0.7, 5.2] * 

Baseline 
(Week 1 for 

SRAS) v. 
Week 3 

(Week 4 for 
TIB, TST & 

SRAS) 

489 (16.5) v. 
367 (7.5)*** 

357 (11.9) v. 340 
(9.4) 

26.1 
(1.2) v. 

23.1 
(2.2) 

0.0 [-2.8, 2.7] 6.2 [2.8, 9.6] * 3.6 [1.5, 5.7] ** 2.2 [-4.5, 0.94]  

Table 11 Sleep restriction therapy for insomnia (SRT): mean sleep diary data, sleep restriction adherence scale (SRAS), and daytime insomnia symptom 
scale factor scores. The top half of the table describes the mean sleep diary data with range and standard deviations (minutes) for total sleep time (TST) 
and prescribed time in bed (TIB) for weeks 1-4 of SRT, the mean, range and standard deviations of SRAS scores (for weeks 1-4 of SRT), and the mean 
(with 95% CI) for the 4 daytime symptoms variables over the 4 weeks of observation. The bottom half of the table tests for differences in TST, TIB and 
SRAS results. This also tests our specific hypotheses about a transient worsening of mood in response to SRT at week 1 followed by an overall 
improvement over the course of treatment by week 3 (*p<.05, **p<.01, ***p≤.001). 

116 
 



 

Next, a time of day x week interaction was used to examine potential diurnal changes in the 

daytime assessment of symptoms through SRT between baseline and week three. Sleepiness/fatigue 

[F (9, 930) = 2.54]; (p<.01), and alert cognition [F (9, 930) = 2.42]; (p<.05), displayed significant 

interactions. This was non-significant for positive [F (9, 930) = 1.24]; (p=.27) and negative mood [F (9, 

930) = 0.36]; (p=.96). Specifically, pairwise comparisons revealed a decrease at week three 

compared to baseline for sleepiness/fatigue at the risetime (61.9, 95% CI [51.6, 72.2] v. 52.2, 95% CI 

[42.0, 62.5]; p<.01), 12:00hr (47.9, 95% CI [37.6, 58.2] v. 37. 0, 95% CI [26.7, 47.3]; p<.01), and 

18:00hr (48.3, CI [38.1, 58.6]  v. 39.6, CI [29.3, 49.9]; p<.05), time points. The bedtime time point 

increased but not significantly (p=.17). For alert cognition, comparisons revealed a significant 

increase for risetime (42.2, CI [33.8, 50.5] v. 48.5, CI [40.2, 56.7]; p<.05) and a significant decrease at 

the bedtime assessment point (49.4, CI [41.1, 57.712] v. 40.3, CI [32.0, 48.6]; p<.01) at week three of 

SRT. With no significant differences for the 12:00hr and 18:00hr time points (see Figure 10). 
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Figure 10 Time course of daytime symptoms through baseline and 3 weeks of sleep restriction 
therapy. Graphs of each of the 4 factors of the daytime insomnia symptom scale (DISS); 
Sleepiness/fatigue, alert cognition, negative mood, and positive mood for all (n=9) participants 
through the 4 weeks of ecological momentary assessment. Mean visual analogue scores (0-
100mm) are represented on the y-axis. Week of data collection (baseline - week 3) is represented 
along the x-axis. Each line represents a daytime assessment time point; Risetime (blue), noon 
(green), 18:00 (black), and bedtime (red), for the specific factor through baseline and weeks 1-3 of 
therapy. Error bars represent one standard error of the mean. 
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4.5 Discussion 

As a prelude to discussing the impact of SRT on daytime variables, it is important to first 

note the following about this exploratory treatment study; participants adhered to the SRT 

instructions (as evaluated by the SRT adherence scale), SRT was effective in improving sleep through 

a reduction in insomnia severity, and the completion rate for the DISS questionnaire was high.  

Our primary aim was to examine self-report daytime functioning during the acute course of 

SRT and to evaluate any initial impairment compared to baseline. Initial implementation of SRT led 

to significant elevations in sleepiness/fatigue and significant reductions in alert cognition and 

positive mood (week 1 compared to baseline), suggesting a general deterioration in symptoms in 

line with previously found adverse effect data (Kyle et al., 2011). Negative mood remained 

unchanged. Our data suggest a reduction of symptoms by week three of SRT compared to baseline, 

with sleepiness/fatigue and Negative mood both reducing significantly. Specifically, 

sleepiness/fatigue reduced at risetime, 12:00hr, and 18:00hr, but the bedtime assessment increased 

(but not significantly). Alert cognition did not change overall but instead evidenced changes at 

specific time-points; increasing at risetime and decreasing at bedtime (both significantly), suggesting 

improvements due to SRT (see Figure 10). 

Modification in daytime ‘alert cognition’ may suggest a potential mechanism by which SRT 

exerts its therapeutic effect. That is, SRT may help re-structure cognitive arousal, inhibiting it at 

sleep-onset (to permit sleep) and restoring it at risetime (to permit optimum daytime functioning). 

This is perhaps an important finding as cognitive arousal is a hallmark of psychophysiological 

insomnia prior to sleep. Patients who implement SRT should spend less time in bed awake, have a 

higher sleep drive and be less likely to have a ‘racing mind’ due to increased sleepiness and less time 

to think in bed prior to sleep onset. Re-structuring may therefore allow a normalisation of cognitive 

arousal which reflects a treatment response. Interestingly, baseline alert cognition scores resemble 

those previously found in insomnia, by week three of treatment, however, these scores resemble 
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that of the good sleeping controls (Buysse et al., 2007). Specific testing of this normalisation of alert 

cognition at risetime and bedtime may help uncover the role of cognitive arousal in insomnia in 

response to effective behavioural treatment. Further trials are required with untreated waitlist 

controls in order to fully understand if these changes are related to SRT. 

 Further, the increase in the factor sleepiness/fatigue at bedtime at week three of SRT is 

indicative of heightened sleep pressure at bedtime (reflected, also, in reduced sleep latencies). This 

may help to overcome cognitive arousal (as previously described in the reduction in alert cognition), 

suggesting a validation of alterations to the sleep experience and cognitive arousal facilitating the 

initiation of sleep. This has previously been postulated as a mechanism of action within SRT (Pigeon 

& Perlis, 2006; Spielman et al., 1987). Future studies, with larger samples and in the context of a 

more controlled design, should assess whether changes in sleepiness/fatigue relate to changes in 

cognitive arousal. As for the two affect factors; positive mood increased overall through SRT (but not 

significantly), with a slight trend for higher scores at risetime. Negative mood displayed no daytime 

differences (unlike the other 3 factors). This may be attributable to these factors all assessing the 

same fundamental construct, a lack of power to test this hypothesis, or no dysphoric symptoms 

within the subject group. Although negative mood did reduce significantly at week three compared 

to baseline (the mean difference was only 3.6; see Figure 10). It should be noted that results now 

need to be replicated in larger scale studies not only to validate findings but to provide context and 

the meaningfulness of the changes in daytime cognition. Overall, sleepiness/fatigue decreased by 

approximately 6 points, negative mood by 3 and positive mood by only 2 (alert cognition did not 

change). It remains to be seen if these relatively small changes in scores reflect improvements that 

are meaningful and detectable to patients as they improve with therapy. 

This is the first study to map changes in daytime functioning, using an EMA micro approach 

as opposed to a macro between subjects approach through brief SRT for psychophysiological 

insomnia. Previously, researchers have focused on differences between groups of insomniacs and 
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good sleepers in order to profile differences in daytime functioning (Buysse et al., 2007; Levitt et al., 

2004). Two studies have validated the use of the DISS through EMA methods in insomnia and 

healthy good sleepers, but not through treatment. It is, however, difficult to compare the present 

study findings with that of previous studies as these initially used a non-validated version of the DISS 

(Levitt et al., 2004) and also solely reported factor scores for the groups of insomniacs and good 

sleeping controls (Buysse et al., 2007). One other previous study has attempted to compare the 

differences between good sleeping control participants and insomniacs through ambulatory 

assessment (Varkevisser, Van Dongen, Van Amsterdam, & Kerkhof, 2007). In this study, the authors 

attempted to probe differences in performance and well-being (concentration, fatigue, mood, and 

sleepiness). No differences were found on the performance measures but they did discover that 

subjective wellbeing was compromised in insomniacs compared to controls. Further trials using EMA 

methods are now required to evaluate the role of daytime symptoms in response to other single 

components of CBT for insomnia. 

Further, it is also important to note that although the term ‘sleep restriction’ (SR) is more 

widely used in sleep science, this is usually in studies where healthy participants are systematically 

denied a predefined period of sleep to investigate the effects of sleep loss upon cognitive and 

physiological functioning (Dinges et al., 1997; Van Dongen et al., 2003). However, the context 

between those studies and ours where SRT is used therapeutically do differ greatly. Nevertheless, 

some of the effects of SR in these carefully conducted laboratory studies are what have prompted 

our taking a careful look at the potential adverse effects of SRT insomnia patients. Results suggest 

that TST reduced significantly between baseline and week one, but not between baseline and week 

four of SRT. Therefore the changes that we see at week one in the three factors (alert cognition, 

sleepiness/fatigue & positive mood) may be attributable to changes in perceived sleep time. It is 

possible that participants adapted over time to the initial effects of this type of sleep restriction by 

week three (Belenky et al., 2003). Yet, this does not fully explain the significant reduction in 

sleepiness/fatigue and negative mood at week three compared to baseline levels. Further controlled 
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studies are required to evaluate acute sleep restriction in patients with insomnia compared to 

healthy good-sleeping controls. 

A number of limitations regarding this study must be addressed. A regression to the mean 

may explain the reduction in daytime impairments in alert cognition and sleepiness/fatigue. 

However, an initial decrease in alert cognition and an elevation in sleepiness/fatigue at week one 

and the subsequent reversal of this at week three suggests a contrary conclusion. The experimenter 

(CBM) also acted as therapist in this study. Therefore, it is difficult to rule out experimenter, 

performance, and demand effects. It could be argued that a lack of participants in this study 

represents low statistical power and increases the probability of obtaining a Type-II statistical error.  

Also, the precision of estimating unknown parameters may be compromised by the lack of statistical 

power. Participants were asked to repeatedly respond to items on a visual analogue scale, a fine-

grained continuous outcome measure with increased statistical power compared to more standard 

ordinal measures. Further, we were not able to determine objective adherence to EMA 

questionnaire completion previously, hand-held computers with time-stamped recordings have 

been used to determine exactly when a participant completes a questionnaire (Buysse et al., 2007). 

Use of such devices may be more reliable but they do also bring about difficulties such as battery life 

and learning how to use them. 

In summary, results demonstrate that the DISS, completed through EMA, can profile 

changes in self-report daytime functioning through SRT for psychophysiological insomnia. Changes at 

risetime and bedtime for alert cognition and sleepiness/fatigue seem like candidates for further 

study as mechanisms of action in treatment response; potentially reflecting changes to the input and 

output of the sleep homeostat and cognitive arousal. Further objective assessments of insomnia 

treatment through repeated-measures are required in order to elucidate the role of sleep and 

arousal in response to SRT for insomnia. Results may help uncover mechanisms of action within 

single components of CBT-I. Those delivering SRT as part of CBT-I should be mindful of an initial 
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deterioration in symptoms at week one (Kyle et al., 2011). It may be necessary to tailor SRT to suit 

the needs of the patient in order to reassure and overcome the initial symptoms of therapy. Such 

understanding may help to safely disseminate this treatment option. 
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Chapter 5: An assessment of salivary cortisol in response to sleep restriction 

therapy for insomnia 
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5.1 Abstract 

Physiological hyperarousal has been proposed to be expressed by increased secretion of 

cortisol concentrations in patients with insomnia compared to healthy sleeping controls. This study 

aims to profile salivary cortisol concentrations during sleep restriction therapy (SRT) for the 

treatment of insomnia. A reduction in salivary cortisol concentrations compared to baseline levels 

after effective SRT for insomnia was hypothesised. In particular, pre-sleep levels were postulated to 

be lower whilst morning awakening levels remained unchanged. Eight participants with 

psychophysiological insomnia self-collected salivary cortisol samples at two hours before bedtime, 

bedtime, and on awakening for 12 stipulated nights during SRT for the following four phases of 

treatment: baseline (days 1 & 2 of sample collection); early (days 3, 4, & 8); late (days 9, 10 & 11); 

and follow-up (days 22-25). Insomnia severity index scores decreased significantly pre-to-post 

therapy (mean (SD) 17.8 (2.7) vs. 8.0 (3.2). No significant differences were found pre-to-post therapy 

for salivary cortisol concentrations. The lack of a significant difference may be due to the 

underpowered nature of the study. However, an exploratory analysis revealed a significant 

difference in the timing of cortisol prior to sleep after therapy. This study may therefore be 

considered a preliminary range finding investigation in order to determine future protocol for 

further research into the effects of SRT and salivary cortisol concentrations. Effective SRT for 

insomnia may reduce cortisol concentrations over a longer timeframe (6 weeks +). Further studies 

are required to evaluate cortisol in response to treatment for insomnia. 
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5.2 Introduction 

The hyperarousal theory of insomnia suggests an elevated state of activity/reactivity of the 

central nervous system through cognitive, emotional, or physiological systems may both cause and 

maintain insomnia (Bonnet & Arand, 1997, 2010). Hyperarousal may cause the hypothalamic-

pituitary-adrenal axis (HPA axis) to be elevated in insomnia, increasing the secretion of the stress 

hormone cortisol when compared to healthy good sleeping controls (Bonnet & Arand, 2010; 

Riemann et al., 2010). 

Previously, higher urinary and plasma cortisol concentrations have been found in insomnia 

patients compared to controls (Backhaus, Junghanns, & Hohagen, 2004; Rodenbeck et al., 2002; 

Shaver, Johnston, Lentz, & Landis, 2002; Vgontzas et al., 2001; Vgontzas et al., 1998). For salivary 

cortisol (SC) concentrations, three studies have profiled differences between insomnia patients and 

controls. One found significantly lower SC concentrations on awakening compared to controls, which 

was found to correlate with higher numbers of nightly awakenings and poor subjective sleep quality. 

The authors speculated that low morning SC concentrations may be due to increased levels of SC 

during the night and suggested support for the hyperarousal theory of insomnia (Backhaus et al., 

2004). Testing of night time measures of SC would have aided the interpretation of this finding. A 

second study looked at evening cortisol measures prior to sleep compared to controls (Varkevisser 

et al., 2007), although no between group differences were found. This may have been due to a lack 

of sensitivity in the assessment of SC concentrations and the timing of sample collection (8pm, 1.5 

hours before bed and 15 minutes before bed). Recently, Seelig et al. (2013) found significantly higher 

SC concentrations during the night in females with primary insomnia (n=13) compared to healthy 

good sleeping control females matched for age (n=12), suggesting that night time levels of SC 

concentrations are increased in those with insomnia compared to controls. 

With treatment for insomnia, plasma cortisol concentrations appear to be alterable. 

Rodenbeck et al. (2003) found a significant reduction in night time plasma cortisol secretion after 
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three weeks of Doxepin compared to placebo in a crossover study with 10 insomnia patients. One 

recent study described reduced salivary cortisol levels during sleep restriction therapy (SRT) for 

insomnia. Although, this study lacked any formal statistical testing of cortisol due to a low number of 

participants (n=5) (Vallieres, Ceklic, Bastien, & Espie, 2013). Overall, there are few studies evaluating 

change in cortisol concentrations through effective treatment for insomnia. This may have occurred 

due to limited resources. Case control studies are easier to implement, with fewer salivary samples 

required. Studies have so far failed to adequately evaluate within-subject changes through repeated 

sampling of SC concentrations over the course of the night and throughout treatment for insomnia. 

Other measures like heart rate may also have been used to evaluate arousal but again it is difficult to 

monitor this remotely at multiple time points throughout treatment and in the home environment. 

Therefore, SC concentrations appear a useful measure as they are less invasive to measure 

repeatedly, display a distinct circadian period like plasma cortisol concentrations (Elder et al., 2014) 

and react to stressors that correlate with serum and plasma cortisol concentrations (Kirschbaum & 

Hellhammer, 1994). 

The aim of this study was to profile changes in SC concentrations before, during and after 

effective single component SRT for chronic psychophysiological insomnia (PI). It was hypothesised 

that SC concentrations would significantly reduce overall by the end of the acute treatment phase 

(week 4) of effective SRT compared to baseline levels and that there would be distinct alterations in 

the individual sampling time points through treatment. Specifically, cortisol would reduce at 

sampling prior to sleep and increase on awakening in the morning, in line with previous findings 

(Backhaus et al., 2004; Rodenbeck et al., 2003; Seelig et al., 2013; Vallieres et al., 2013).  
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5.3 Methods 

5.3.1 Participants, therapy & adherence 

Due to cost restrictions, 8 out of the 9 participants were invited to complete the following 

study and were recruited as described previously in chapter 3.7 Sleep restriction therapy. Similar to 

the previous chapter, participants slept for two nights in the University of Glasgow Sleep Centre, 

Scotland, prior to study enrolment as part of a concurrent insomnia trial (grant # R01MH077901). 

The end point for sleep restriction therapy was at the end of 4 weeks of treatment.  

Polysomnography (PSG) was used to exclude occult sleep-related co-morbidities and to acquire a 

baseline assessment of sleep (Kyle et al., 2014). The study was reviewed and approved by the West 

of Scotland NHS research ethics committee (protocol #10/SO701/85) see Appendix D: Ethical 

approval for Chapters 4 & 5. 

5.3.2 Salivary cortisol 

Standard procedures for sampling SC concentrations were implemented in this study (Eller, 

Netterstrom, & Hansen, 2006; Lowson, Middleton, Arber, & Skene, 2013; Schulz, Kirschbaum, 

Prussner, & Hellhammer, 1998). Participants sampled their own saliva through a collection kit with 

salivettes (supplied by Salimetrics Europe Ltd, Suffolk, UK). Salivettes are cotton dental rolls and 

participants were instructed to place these in the back of the mouth for two-three minutes (or until 

saturation) at three time points per day; two hours before bed, bedtime, and on awakening, for two 

days before the SRT intervention (baseline: days 1-2 of SC sample collection), for three specified 

days during the early (first week) and late phases (second week) of SRT, and for four days at 

treatment end (week four) of SRT totaling to 36 samples for each participant (see Figure 11). 

Salivettes were stored in two tightly capped sterile plastic tubes. All samples were on weekdays only. 

(See Appendix E: Participant sampling instructions for salivary cortisol concentrations). 
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PSG 1 PSG 2 

Saliva Collection Period 

Baseline Phase 
(Days 1 & 2) 

Early Phase  
(Days 3, 4 & 8) 

Late Phase 
 (Days 9, 10 & 11) 

Follow-up 
(Days 22-25) 

Pre-Study Period Sleep Restriction Therapy 

Figure 11 Mean salivary cortisol concentrations through sleep restriction therapy (SRT) for 
insomnia: Participants (n=8) were sampled from a concurrent insomnia study and underwent 2 
nights of polysomnography (PSG 1 & 2), prior to study enrolment. This was followed by a saliva 
collection period, first through an initial baseline collection consisting of 2 days and then followed 
by 3 further phases during SRT (Early: days 3, 4, & 8; Late: days 9, 10 & 11; Follow-up: days 22-25). 
Post treatment outcome measures were assessed after 4 weeks. 
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Participants were instructed to: sample at their specified times according to an 

individualised timetable (in line with their prescribed sleep schedule), to mark on this timetable the 

time of the sample collection, to rinse their mouth with water five minutes before sample collection 

(Clow et al., 2004) to be in the bedroom and in bed for the bedtime sample, before they brushed 

their teeth as teeth brushing may contaminate the sample with blood (Kivlighan et al., 2004). 

Participants were also instructed to implement the awakening sample as soon as possible in the 

morning (the sample kit was instructed to be stored beside the participant’s bed prior to sleep) and 

prior to anything else (no longer than 15 minutes). Participants were asked to then store the 

samples immediately after collection at -20oC (in their home freezer see Appendix E: Participant 

sampling instructions for salivary cortisol concentrations). 

Samples were collected from participants at treatment end and were transported to the 

laboratory by the participant. Samples were then stored in the laboratory at -20oC until all were 

ready for batch analysis by Salimetrics, UK. Tubes were thawed and then centrifuged for 15 minutes 

at 3000 RPM (1500 x g) at room temperature for separation of supernatant. All samples were 

assayed for mean SC concentrations (nmol/L). The analysis of SC was performed in duplicate using a 

commercially available high sensitivity SC enzyme immunoassay (Salimetrics, UK). The assay uses 25 

microliters of saliva per determination, has a lower limit of detection of 0.003 nmo/L, standard curve 

range from 0.012 to 3.0 µg/dL, and average intra- and inter-assay coefficients of variation of 3.5 and 

5.1 %, respectively. This approach has been used previously (Eller et al., 2006; Lowson et al., 2013; 

Schulz et al., 1998). 
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5.3.3 Data analysis 

A linear mixed model analysis was implemented as described previously (see chapter 3.9 

Statistical analysis). Fixed effects included phase of SC collection (baseline, early, late, & follow-up), 

and for time of sample collection (two hours before bed, bedtime, and on awakening). Random 

effects were run to account for between-subject variation. Only random effects were included for 

the intercepts. Uncorrected Pairwise comparisons based on estimated marginal means were 

implemented to investigate primary outcomes. 
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5.4 Results 

Eight participants (5 females; mean age = 46.4yr, range = 34-58) thoroughly screened for PI 

(Edinger et al., 2004) completed this study. No participants were taking prescribed sleep promoting 

hypnotics. Participants adhered to therapy as the SRT self-report adherence mean scores remained 

high (> 20) across the weeks of SRT (week; 1 =26.0 (3.7), 2 = 25 (2.5), 3 = 25.4 (1.1), 4 = 22.9 (6.5); 

ranging from 10-30. Statistical analysis for treatment data were implemented as described 

previously in 3.9 Statistical analysis. Confirming the expected therapeutic benefits of SRT mean 

insomnia severity index (ISI) and sleep diary outcome scores including: wake-time after sleep onset 

(WASO), number of awakenings (NOAW) and ratings of sleep quality (SQ) improved significantly pre-

to-post treatment (baseline to week 4: see Table 12). 
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5.4.1 Subjective measures of sleep 

Outcome 
measure 

Time point (Mean and SD) Paired differences testing 

Baseline Week 4 
Baseline versus week 4 

(Mean and SE) 
p-value Effect size (d) 

ISI 18 (2.7) 8.0 (3.2) 10 (1.8) <.01* 3.3 

SE (%) 72.1 (6.7) 91.5 (3.7) 19.4 (3.6) <.01* 1.7 

SQ 1.6 (0.6) 2.2 (0.4) 0.6 (0.2) .06 1.2 

SOL 33.7 (28.3) 10.2 (6.0) 23.5 (11.3) .92 1.2 

WASO 53.9 (33.1) 16.3 (11.6) 37.6 (10.6) .02* 1.5 

NOAW 2.9 (1.4) 1.7 (1.3) 1.3 (0.9)* .02* 0.9 

TIB 486.0 (54.1) 378.5 (20.8) 107.5 (19.3) <.01* 2.6 

TST 350.8 (43.6) 345.5 (33.1) 5.3 (15.8) .75 0.1 

Table 12 Baseline to week four difference testing for mean Insomnia Severity Index and Sleep 
Diary outcome scores at baseline and at week 4 of therapy: The left hand side of the table 
describes the mean and standard deviation (SD) Insomnia Severity Index (ISI); Sleep Diary: Sleep 
Efficiency (SE), Sleep Quality (SQ), Sleep Onset Latency (SOL), Wake-Time After Sleep Onset 
(WASO), Number of Awakenings (NOAW), Time In Bed (TIB), and Total Sleep Time (TST) scores at 
Baseline and Week 4 of Sleep Restriction Therapy (n=8). The right hand side of the table tests for 
differences between Baseline (week 1 for the SRAS) and Week 4 for all of the scores and displays 
the mean difference and standard error (SE), p-value, and effect size. (*) = p<.05. 
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5.4.2 Salivary cortisol 

The average time for sample donation was profiled as an indicator to compliance with 

sampling procedures (see Table 13). Linear mixed effects models revealed no significant differences 

between baseline and any of the 3 treatment phases for any of the specific daytime collection time 

points. 

Time-point Time of Day Average time of sample 
donation (SD) 

Baseline 
2 Hours Before Bed 10:56 PM (4:19) 

Bedtime 12:18 AM (3:11) 
Awakening 07:11 AM (0:51) 

Early phase 
2 Hours Before Bed 10:44 PM (4:47) 

Bedtime 12:43 AM (0:48) 
Awakening 06:48 AM (0:33) 

Late phase 
2 Hours Before Bed 12:21 AM (5:45) 

Bedtime 12:44 AM (0:45) 
Awakening 06:44 AM (0:35) 

Follow-up 
2 Hours Before Bed 10:30 PM (0:49) 

Bedtime 11:44 PM (2:59) 
Awakening 06:32 AM (0:41) 

Table 13 Mean (SD) times for saliva sample donation before and during Sleep Restriction Therapy 
(n=8) for Baseline (Days 1 & 2), the early phase (Days 3, 4 & 8), the late phase (Days 9, 10 & 11) 
and Follow-up (Days 22-25). Each collection day consisted of 3 saliva samples (2 hours before bed, 
bedtime & awakening). 

Turning to the primary analysis of cortisol for this study regarding a reduction in SC cortisol 

levels between baseline and follow-up (4 weeks of therapy), the adherence rate for the sampling 

procedure was high at 98.96% (285 samples collected out of a possible 288). From this, 12 samples 

were unable to be analysed (9 samples had insufficient saliva and 3 were contaminated with blood). 

Therefore, 273 samples were assayed for cortisol out of a possible 288 (94.8%). Only biologically 

relevant samples (<60 nmol/L) were included in the analysis (Lowson et al., 2013). This resulted in 

the removal of seven samples. Thus, 266 (92.4%) samples formed the following analysis (see Table 

14).  
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Participant Time of sample 
Treatment Phase 

Baseline Early Phase Late Phase Follow-up 

1 

2 hours before bed 1.0 (0.3) 1.2 (0.5) 0.9 (0.3) 1.5 (0.7) 

Bed time 1.1 (0.5) 3.1 (1.8) 2.0 (0.1) 2.6 (1.7) 

Awakening 5.4 (0.5) 12.3 (3.2) 9.9 (4.9) 13.2(6.2) 

2 

2 hours before bed 0.8 (0.1)  1.1 (0.1) 3.5 (3.4) 1.9 (1.5) 

Bed time 1.2 (0.5) 2.0 (0.5) 10.4 (7.3) 3.2 (1.8) 

Awakening 15.2 (.) 12.2 (3.8) 10.6 (0.8) 10.8 (2.5) 

3 

2 hours before bed 2.9 (1.6) 1.4 (0.4) 1.4 (0.3) 1.1 (0.1) 

Bed time 2.8 (0.8) 1.4 (0.1) 2.3 (1.1) 1.8 (0.4) 

Awakening . 9.5 (2.1) 9.5 (0.3) 7.8 (1.9) 

4 

2 hours before bed 6.9 (6.0) 2.3 (1.7) 1.1 (0.1) 1.0 (0.4) 

Bed time 2.1 (0.4) 5.5 (4.7) 1.6 (0.7) 1.4 (0.8) 

Awakening 12.6 (0.3) 13.5 (7.2) 11.1 (2.8) 8.7 (3.4) 

5 

2 hours before bed 0.8 (0.2) 1.1 (<.1) 1.0 (0.5) 1.0 (0.2) 

Bed time 0.9 (<.1) 1.1 (0.3) 1.1 (0.5) 3.5 (4.7) 

Awakening 6.5 (1.0) 4.4 (0.7) 4.4 (0.5) 4.7 (2.4) 

6 

2 hours before bed 1.0 (0.2) 4.3 (6.6) 0.8 (0.5) 0.7 (0.3) 

Bed time 1.1 (<.1) 4.8 (7.4) 0.6 (0.4) 6.2 (6.4) 

Awakening 11.4 (3.3) 6.8 (5.3) 9.6 (0.7) 9.4 (2.4) 

7 

2 hours before bed 1.1 (<.1) 1.3 (0.7) 1.2 (0.7) 0.8 (0.3) 

Bed time 0.8 (0.7) 1.4 (0.2) 1.7 (0.7) 1.0 (0.3) 

Awakening 4.3 (1.0) 4.4 (0.9) 4.4(1.0) 3.5 (1.7) 

8 

2 hours before bed 34.1 (0.4) 5.2 (4.9) 20.9 (11.6) 0.8 (0.3) 

Bed time 21.1 (.) 9.9 (12.0) 32.8 (0.6) 1.2 (14.4) 

Awakening 25.2 (.) 23.2 (17.0) 20.0 (14.0) 7.7 (2.1) 

Table 14 Mean (SD) cortisol concentrations (nmol/L) for each participant before and during Sleep 
Restriction Therapy for insomnia for each participant (n=8) and the following saliva collection time 
points: Baseline (Days 1 & 2), the early phase (Days 3, 4 & 8), the late phase (Days 9, 10 & 11) and 
Follow-up (Days 22-25). Each collection day consisted of 3 saliva samples (2 hours before bed, 
bedtime & awakening). 
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Boxplots and scatter graphs were checked for outliers and one participant was found to 

display extreme values. This participant demonstrated a large treatment response that was not in 

line with the rest of the sample and may not have been biologically possible. As a result, this 

participant (number 8) was therefore removed completely from the analysis (see Table 14, Figure 12 

& Figure 13). This may have been caused by the ecological nature of the sampling. For example, such 

high values may be due to teeth brushing, cigarettes, alcohol or orange juice near the sample 

collection time-point (Clow et al., 2004). 

 

Figure 12 Mean salivary cortisol concentrations (nmol/L) pre-to-post SRT with all 8 participants . 
Mean cortisol concentrations pre-to-post SRT for insomnia for each participant (n=8) and the 
collection days for Baseline (Days 1 & 2) and Follow-up (Days 22-25). Each collection day consisted 
of 3 saliva samples (2 hours before bed, bedtime & awakening). Error bars represent one standard 
error of the mean. 
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Figure 13 Mean salivary cortisol concentrations (nmol/L) pre-to-post SRT for insomnia for each 
participant (n=7) and the collection days for Baseline (Days 1 & 2) and Follow-up (Days 22-25). 
Each collection day consisted of 3 saliva samples (2 hours before bed, bedtime & awakening). 
Participant 8 was removed. Error bars represent one standard error of the mean. 
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Prior to the exploration of the primary hypothesis, samples were checked for circadian 

rhythmicity and expected diurnal pattern to SC concentrations (see chapter 3.9 Statistical analysis 

for an overview). A circadian period was evident in line with the circadian rhythm for SC 

concentrations (see Table 15). Results suggest that the samples were a valid measure of SC 

concentrations prior to and after sleep (see Figure 14).  

Time of Day Mean & 95% CI's 

2 hours before bed 1.63 [0.91, 2.35] 

Bedtime 2.46 [1.75, 3.18] 

Awakening 8.64 [7.87, 9.41] 

Table 15 Displays mean (95% CI’s) salivary cortisol concentrations over the course of the three 
time-points for saliva collection before and after sleep for participants with insomnia (n=7). 

 

 

Figure 14 Time-course of salivary cortisol concentrations through the 3 collection time-points 
before and after sleep for participants with insomnia (n=7). Mean salivary cortisol concentrations 
(nmol/L) are represented on the y-axis. The x-axis indicates the sample collection time over the 
course of the evening (two hours before bed and bedtime) and the subsequent awakening 
measure in the morning after sleep. Error bars represent one standard error of the mean. 
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In order to test the hypothesis that SC concentrations would decrease through SRT, main 

effects were analyzed for collection phase between baseline and the early, late and follow-up 

phases. Results revealed no significant effect for phase of treatment [F (3, 218.2) = 0.25]; (p =.87). 

Simple main effects revealed no significant difference between the baseline and follow-up phases; 

(Mean & 95% CI’s: 4.07, CI [3.06, 5.01] vs. 4.10, CI [3.40, 4.81]); (p=.96) (see Figure 15 & Table 16). 

 

 

Figure 15 Time-course of salivary cortisol concentrations through the 4 phases of collection for 
participants with insomnia (n=7).  Mean salivary cortisol concentrations (nmol/L) are represented 
on the y-axis. Phase of cortisol collection is represented along the x-axis (Baseline: days 1-2; Early: 
days 3, 4, & 8; Late: days 9, 10 & 11; Follow-up: days 22-25). Error bars represent one standard 
error of the mean. 
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Mean & 95% CI Paired differences testing 

Baseline 4.07 [3.06, 5.01] Mean Difference  & 95% CI P-value 

Early Phase 4.50 [3.65, 5.30] Baseline vs. Early Phase 0.40 [-1.71,  0.90] .54 

Late Phase 4.33 [3.50, 5.16] Baseline vs. Late Phase 0.26 [-1.57, 1.05] .70 

Follow-up 4.10 [3.40, 4.81] Baseline vs. Follow-up 0.03 [-1.31, 1.21] .96 

Table 16 Mean salivary cortisol concentrations during Sleep Restriction Therapy for insomnia from 
linear mixed model analysis output. The left hand side of the table describes the mean (95% CI’s) 
for the 4 assessment for cortisol (nmol/L) collection (Baseline: days 1-2; Early: days 3, 4, & 8; Late: 
days 9, 10 & 11; Follow-up: days 22-25) for participants (n=7) with insomnia. The right hand side of 
the table tests the specific hypothesis regarding changes in SC concentrations in response to SRT. 
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Next and to examine the second aspect of our hypothesis, a time of day x phase of 

treatment interaction was used to examine potential diurnal changes in the assessment of SC 

concentrations throughout sleep restriction therapy compared to baseline (see Figure 16 & Table 

17). This was found to be non-significant [F (6, 224.0) = 0.48]; (p=.82); suggesting no differences pre-

to-post SRT for any of the three specific assessment time-points (see Figure 16 & Table 17).  

 

Figure 16 Mean salivary cortisol concentrations through sleep restriction therapy. Through the 4 
phases of collection for participants (n=7) with insomnia. Mean salivary cortisol concentrations 
(nmol/L) are represented on the y-axis. Phase of cortisol collection is represented along the x-axis 
(baseline: days 1-2; early: days 3, 4, & 8; late: days 9, 10 & 11; follow-up: days 22-25). Each line 
represents an assessment time-point: two hours before bed (blue), bedtime (green) and 
awakening (red). Error bars represent one standard error of the mean. 
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Time of 
Sample Time Point Mean & 95% CI Paired Differences Testing 

2 hours before 
bed 

Baseline 2.09 [0.41, 3.78] Mean Difference & 95% CI for 2 hours before bed P-value 

Early Phase 1.84 [0.43, 3.25] Baseline vs. Early Phase 0.26 [-1.94, 2.50] .82 

Late Phase 1.46 [0.05, 2.86] Baseline vs. Late Phase 0.64 [-1.56, 2.83] .57 

Follow-up 1.13 [0.10,2.37] Baseline vs. Follow-up 1.0 [-1.13, 3.05] .37 

Bedtime 

Baseline 1.42 [0.26, 4.11] Mean Difference & 95% CI for Bedtime P-value 

Early Phase 2.74 [1.36, 4.11] Baseline vs. Early Phase 1.31 [-3.50, 0.86]  .23 

Late Phase 2.88 [1.43, 4.32] Baseline vs. Late Phase 1.5 [-3.45, 0.67] .20 

Follow-up 2.81 [1.62, 4.00] Baseline vs. Follow-up 1.39 [-3.45, 0.70] .19 

Awakening 

Baseline 8.7 [6.80, 3.78] Mean Difference & 95% CI for Awakening P-value 

Early Phase 8.85 [7.37, 10.33] Baseline vs. Early Phase 0.15 [-2.56, 2.26] .90 

Late Phase 8.65 [7.21, 10.10] Baseline vs. Late Phase 0.05 [-2.34, 2.43] .97 

Follow-up 8.36 [7.12, 9.59] Baseline vs. Follow-up 0.34 [-1.92, 2.61] .77 

Table 17 Mean salivary cortisol concentrations during Sleep Restriction Therapy for insomnia from the linear mixed model analysis output. The left hand 
side of the table describes the mean (and 95% CI) for the 3 sampling times for salivary cortisol collection (nmol/L) prior to sleep and in the morning (2 
hours before bed, bedtime, and awakening) before and during sleep restriction therapy (Baseline: days 1-2; Early: days 3, 4, & 8; Late: days 9, 10 & 11; 
Follow-up: days 22-25) for participants (n=7) with insomnia. The right hand side of the table tests our specific hypothesis regarding changes in SC 
concentrations in response to SRT.
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After reviewing Figure 16 and due to the exploratory nature of this study, it was thought 

that the saliva samples may be altering over the course of the day pre-to-post therapy, especially for 

the two hours before bed and the bedtime samples at baseline compared to the follow-up time 

point. Therefore, the mixed model analysis was updated to also compare for differences in the time 

of sampling (2 hours before bed vs. bedtime) at each of the four assessment phase time points. At 

baseline, no differences were found between the two evening samples (mean difference & 95% CI’s: 

0.67 [-1.53, 2.87], (p=.55). At follow-up however, a significant difference was found between the two 

evening assessment points (mean difference & 95% CI’s: 1.63 [-3.21, -0.04], (p=.04) (see Figure 17). 
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Figure 17 Mean salivary cortisol concentrations through sleep restriction therapy. Time-course of 
salivary cortisol concentrations through the 4 phases of collection for participants (n=7) with 
insomnia. Mean salivary cortisol concentrations (nmol/L) are represented on the y-axis. Phase of 
cortisol collection is represented along the x-axis (Baseline: days 1-2; Early: days 3, 4, & 8; Late: 
days 9, 10 & 11; Follow-up: days 22-25). Each colour represents an assessment time-point: two 
hours before bed (blue), bedtime (green) and awakening (purple). Differences are displayed 
between the evening assessment time points only *= p<.05. Error bars represent one standard 
error of the mean. 
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5.5 Discussion 

The aim of this exploratory treatment study was to examine if salivary cortisol (SC) 

concentrations decrease during effective sleep restriction therapy (SRT) for psychophysiological 

insomnia. Overall, results suggest that SC concentrations do not change during the initial stages of 

therapy (first 4 weeks: see Figure 15). Further, there were no significant diurnal changes in the time 

of sample collection (see Table 16) or differences in the time for sample donation (see Table 13) 

through SRT. However and as expected, a distinct diurnal pattern in SC concentrations was found for 

the pre-sleep and awakening samples, aligned with the circadian rhythm for cortisol secretion, 

similar to normal healthy participants with increased SC concentrations in the early morning 06:00 

am (Elder et al., 2014) (see Figure 14). The following sections discuss these results. 

Previously, only two treatment studies have attempted to profile differences in cortisol 

concentrations as a result of treatment for insomnia. Vallieres et al. (2013) looked to measure SC 

concentrations daily (before bed and on awakening) prior to, during and after SRT in five 

participants. However, due to low numbers of participants this study lacked formal statistical testing 

of SC. The study therefore merely described a general reduction in SC concentrations for those who 

responded to SRT. Rodenbeck et al. (2003) report a significant reduction in night time plasma 

cortisol secretion after three weeks compared to placebo in a crossover study with 10 insomnia 

patients. Suggesting, plasma cortisol concentrations may be reduced with Doxepin for insomnia, in 

line with the hyperarousal theory of insomnia. This decline in cortisol secretion was attributed by the 

authors as a reduction in hypothalamic-pituitary-adrenal axis activiation (Rodenbeck et al., 2003). 

Although, SC concentrations were not found to change overall during the initial stages of 

therapy, the intervention was found to be effective as improvements were found for self-report 

measures including the insomnia severity index (ISI) and sleep efficiency from sleep diary data (see 

Table 12). Participants subjectively reported adherence to the intervention as evaluated through the 

high scores on the SRAS (>20). Scores however generally reduced throughout the weeks of therapy 
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(see Table 11 ), indicating a reduction in adherence as the weeks of therapy progressed. This trend 

of a reduction in adherence towards the end of the sampling period may have impacted the results 

and prevented any significant changes to SC concentrations. However, a significant reduction in the 

amount of time spent in bed from the sleep diary data between baseline and week four of therapy 

was found (see Table 12) and this suggests adherence to therapy. Differences in the assessment of 

adherence may be to blame for these inconsistencies. Further, difficulties with adhering to the saliva 

sampling procedures may have also affected the results of this study, particularly between the early 

and the follow-up phases of treatment as the mean bedtime assessment time is earlier (see Table 

13). 

The lack of a significant finding was perhaps due to a low number of participants (n=8 

overall; n=7 for the primary cortisol analysis). This was due to limited resources. A post hoc power 

calculation revealed that the study was indeed underpowered in order to detect any statistically 

significant effect in SC concentrations through therapy (d=0.03, α=0.05, and n=7). The low statistical 

power (0.03) increased the likelihood of a Type II statistical error. No corrections for multiple 

comparisons were employed and therefore findings should be considered exploratory. This study 

may be considered a preliminary range finding assessment to determine future protocol and 

participant numbers, in order for future studies to detect an effect in SC concentrations in response 

to treatment for insomnia. For example, a longer sampling time-frame (after >4 weeks into therapy) 

and a larger number of participants (>10) would have improved the design of the study. It is 

however reassuring that SRT did not increase SC concentrations significantly during treatment (see 

Figure 15). This may have been possible due to the introduction of sleep loss as a result of therapy 

with restricted time in bed (Dinges et al., 1997; Kyle et al., 2014). Indeed, time in bed reduced 

significantly (p<.01) from a baseline average of 486.0 minutes to 378.5 minutes during week four 

(see Table 12) although the lack of an effect may again be due to low statistical power. 
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Further and in line with the preliminary nature of this study, an exploratory analysis 

suggested pre-sleep SC concentrations at two hours before bed and at bedtime were found to 

significantly differ only at the follow-up assessment time point but not at baseline (see Figure 16). 

Perhaps suggesting, a modification in the timing of SC secretion prior to sleep at follow-up compared 

to pre-therapy levels. SRT is thought to work by utilising mild sleep deprivation to help facilitate 

sleep and by aligning circadian drives with the correct time for sleep and wakefulness (Spielman et 

al., 2010). A modification to the circadian timing of sleep and wake may be reflected by these pre-

sleep changes to SC concentrations. At follow-up (week 3), SC concentrations were found to be 

significantly higher at bedtime compared to two hours before bedtime, no difference was found 

between these samples at baseline. For the two hours before bed assessment, a reduction in SC 

concentrations may reflect reduced stress and worry for the ensuing sleep period. For the bedtime 

assessment, the increase in SC concentrations may reflect modification to the circadian period of SC 

secretion during therapy and reflect later bedtimes as a result of the implementation of SRT. This 

has previously been found in healthy volunteers exposed to circadian misalignment (Gonnissen et 

al., 2012; Scheer, Hilton, Mantzoros, & Shea, 2009). 

Varkevisser et al. (2007) found no group differences between those with insomnia and 

healthy controls for SC prior to sleep or in the evening (8pm, 1.5 hours before bedtime or 15 

minutes before bedtime). This lack of a difference was thought to be due to a lack of sensitivity in 

the assessment of SC concentrations to detect the influence of hyperarousal (Varkevisser et al., 

2007). However, the timing of the sample collection may have been responsible for a lack of a 

difference. Seelig et al. (2013) found increased levels of SC concentrations during the night time in 

females with insomnia compared to controls (11:30pm; mean (SD): 1.5 (1.4) vs. 0.7 (0.4), (p=.02)), 

but not no difference for the morning sample (06:00am; 10.3 (6.3) vs. 7.3 (3.5), (p= .18). As a 

comparison, the mean baseline bedtime sample from the present study compared with the 11:30pm 

sample from the Seelig et al. (2013) study was found to be elevated when compared to the control 

participants (1.42 (2.6) vs. 0.7 (0.4)) and also similar to the participants with insomnia (1.42 (2.6) vs. 
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1.4 (1.4). Comparing the bedtime sample at follow-up to the participants with insomnia, a clear 

difference can be seen between the means (2.81 (1.6) vs. 1.4 (1.4). This is also much larger than 

controls (2.81 (1.6) vs. 0.7 (0.4)). This elevation may due to the mismatch in the timing of the 

samples as it is very difficult to compare across studies. For the awakening samples from the present 

study, the baseline SC concentrations were found to be greater than the 6am control participants in 

the Seelig et al. (2013) study (8.7 (2.0) vs. 7.3 (3.5)). However for the participants with insomnia, the 

mean SC concentrations from the Seelig et al. (2013) study were larger than the present study (8.7 

(2.0) vs. 10.3 (6.3)). This may be due to the standardisation of the sampling procedure to 6am 

compared to the present study (where participants were instructed to capture the sample on 

awakening). Sampling SC around a specific time does not take into consideration individual 

differences due to the circadian rhythm of SC secretion and may produce large variability. This is 

because the amount of time since wake by 6am will be different between participants and across 

days of the week. The cortisol awakening response changes quickly from awakening onwards (Elder 

et al., 2014) and will alter the SC sample. Therefore, it is best to standardise morning SC samples 

from awakening onwards.  

Further, case-control studies have found mixed results between patients with insomnia and 

healthy good sleeping controls. For example, SC concentrations on awakening were significantly 

decreased and correlated negatively to waking times during the night (r= -0.50). Patients with 

insomnia were also found to display decreased morning SC concentrations compared to controls 

(Backhaus et al., 2004). The authors suggested that low morning SC concentrations may be due to 

increased activation of SC during the night, supporting the hyperarousal theory of insomnia (Bonnet 

& Arand, 2010; Riemann et al., 2010), reflecting a nocturnal increase in hypothalamic-pituitary-

adrenal-axis (HPA-axis) activity in response to insomnia. Further evidence for this was found from 

the previously mentioned Seelig et al. (2013) study, and also in serum cortisol concentrations during 

the latter half of the night which were elevated in a group of 16 patients with insomnia compared to 

13 healthy controls (Backhaus et al., 2006). 
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Salivary cortisol concentrations are thought to serve as a reliable marker of HPA-axis activity 

(Kunz-Ebrecht, Kirschbaum, Marmot, & Steptoe, 2004; Tsigos & Chrousos, 2002) and a marker for 

change in response to stress through this system (Tsigos & Chrousos, 2002). Awakening SC 

concentrations that form the morning awakening response have been linked to change in response 

to the sleep-wake flip-flop switch (Clow et al., 2004). It is believed that hyperarousal (an elevated 

state of activity/reactivity of the central nervous system through cognitive, emotional, or 

physiological systems) may be a potential pathophysiologic mechanism for elevated cortisol in 

insomnia (Riemann et al., 2010). Cortisol and other neuroendocrine variables are also important in 

healthy human sleep (Buckley & Schatzberg, 2005). For example, morning measures of plasma and 

SC concentrations have been found to correlate with night time arousals during sleep (Ekstedt, 

Akerstedt, & Soderstrom, 2004). Sleep restriction (4 hrs time in bed: TIB for 6 nights) is known to 

elevate evening cortisol concentrations in healthy males (Spiegel et al., 1999). In sleep restricted (3 

hrs TIB) healthy females, morning SC concentrations decreased and evening concentrations 

increased compared to a 10 hour sleep opportunity (Omisade, Buxton, & Rusak, 2010). Further, a 

two-hour nap after a night of sleep loss was able to reduce plasma cortisol concentrations (Vgontzas 

et al., 2007). Therefore suggesting that the implementation of the SRT schedule and resulting sleep 

loss may have masked any initial (first 4 weeks) improvement (decrease) in SC concentrations. 

However, only severe sleep restriction or sleep deprivation paradigms appear to increase cortisol 

secretion in healthy individuals, suggesting that cortisol is sensitive to stress and not sleep loss 

(Pejovic et al., 2013). Therefore sleep restriction may not be able to modify changes in SC 

concentrations. Perhaps then to observe a reduction in SC concentrations repeated measures of SC 

with longer follow-up times are required once hyperarousal has abated in insomnia. For example, it 

may be possible to see effects due to treatment after six weeks (when subjective sleep may 

improve). Follow-up times should also be included at three, six and 12 months once the sleep-wake 

schedule has stabilised after the acute implementation of SRT. 
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Overall, differences between studies may be due to the time of sample collection and type 

of cortisol collected (saliva vs. plasma; although SC concentrations have also known to correlate with 

levels found in plasma (Hellhammer, Wust, & Kudielka, 2009)). SC concentrations may also be 

variable over time and researchers should now look to standardise sampling techniques in order to 

reduce inconsistencies between studies (Elder et al., 2014). Therefore, the evidence concerning the 

role of SC concentrations in insomnia is mixed. With regards to limitations a number of factors 

should be considered. First, the number of participants was not large enough to measure an effect 

of treatment. Second, adherence and compliance to SRT and SC sampling procedures are difficult to 

initiate and confirm. Participants were asked to supply 36 samples of SC over the whole course of 

this study. Participants may have failed to comply with the sampling instructions at the correct time-

point and other factors such as brushing teeth, cigarette smoking or drinking orange juice may cause 

erroneous results (Clow et al., 2004). Third, the study implemented a within-subjects repeated 

measures design. No control group was used in this study, it is therefore unknown if patients would 

have improved their sleep through a placebo or non-specific response. Fourth, the experimenter 

acted as a therapist in this study and it is difficult to rule out experimenter, performance, and 

demand effects. More rigorous studies are now required to evaluate the role of cortisol in insomnia 

and its response to treatment and may help to uncover the potential mechanisms of action for the 

successful treatment of insomnia. Future studies could measure other markers of sleep (e.g. 

actigraphy) and arousal (e.g. heart rate) with testing occurring over a longer time frame (after 6 

weeks of therapy) using plasma cortisol concentrations. In-lab experimental testing with plasma 

cortisol may be less variable and will be evaluated in the subsequent chapter. 
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5.6 Conclusion 

The primary aim of this study was to examine SC concentrations during the acute phase of 

SRT for chronic psychophysiological insomnia. Therapy improved insomnia symptomology and self-

reported sleep but SC concentrations did not change during the acute phase (first 4 weeks). An 

exploratory analysis suggested changes to SC concentrations prior to bed at follow-up (week 3) with 

SC concentrations significantly higher at bedtime compared to two hours before bedtime, no 

difference was found between these samples at baseline. Further research is warranted regarding 

profiling the response of plasma cortisol concentrations after effective treatment for insomnia (6 

weeks). 

  

151 
 



 

Chapter 6:  Sleep restriction therapy for insomnia disorder: An exploratory 

assessment of sleep and physiological markers of arousal in response to 

treatment. 
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6.1 Abstract 

Higher arousal levels have been found in those with insomnia compared to controls. This 

study aimed to profile objective changes in sleep and physiological arousal pre-to-post effective 

sleep restriction therapy (SRT) for insomnia. Eleven participants were sampled as part of this 

repeated measures treatment study. Objectively-defined sleep, plasma cortisol concentrations and 

core body temperature were assessed before and after 6-weeks of SRT. It was hypothesised that 

sleep would improve, and measures of physiological arousal would reduce (cortisol & core body 

temperature). Confirming the benefits of therapy, insomnia severity index scores decreased 

significantly (mean (SD) 18.2 (2.8) vs. 8.4 (4.8)). Improvements were found for sleep diary measures 

and objectively defined total sleep time (TST: 313.7 (54.2) vs. 353.6 (40.9)). Plasma cortisol 

concentrations (µg/dL) did not reduce pre-to-post therapy but displayed higher levels in the morning 

at post-treatment compared to baseline (mean (95% CI): 7.0 (5.9, 8.2) vs. 9.7 (8.5, 10.9). Core body 

temperature levels (°C) were found to reduce significantly (36.54 (36.3, 36.8) vs. 36.45 (36.2, 36.7)). 

SRT appears to increase objectively defined TST, early morning cortisol concentrations and decrease 

core body temperature. This study suggests that SRT may improve sleep and physiological 

functioning through modifications in arousal. Further studies are required to evaluate potential 

changes in a larger number of participants over the course of 24 hours under constant routine 

conditions. 
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6.2 Introduction 

Insomnia may be characterised through a number of physiological factors including: 

circadian dysrhythmia, homeostatic dysregulation and hyperarousal (Pigeon and Perlis (2006); see 

Chapter 1: Introduction for an overview). Hyperarousal is the most prominent theory of insomnia 

and postulates that neurobiologic and maladaptive behavioural processes lead to a state of 

conditioned autonomic arousal that inhibits sleep (Bonnet & Arand, 1997, 2010; Riemann et al., 

2010). A number of assessment markers have been found to be higher in those with insomnia 

compared to healthy good sleeping controls including: temperature, hormones, cardiac, metabolic, 

and electroencephalographic (EEG) spectral measures (Bonnet & Arand, 2010; Riemann et al., 2010). 

In addition to the effects of sleep loss, insomnia and hyperarousal can be viewed in a causal 

inference from a psychobiological perspective (Riemann et al., 2010; Spiegelhalder & Riemann, 

2013). Arousal appears to contribute to the long term medical co-morbidities with additional health 

risks and health care utilisation (Daley, Morin, LeBlanc, Gregoire, & Savard, 2009; Daley, Morin, 

LeBlanc, Gregoire, Savard, et al., 2009; Taylor et al., 2007; Vgontzas et al., 2013). 

A number of physiological arousal markers have been found to be higher in those with 

insomnia compared to controls including core body temperature, cortisol secretion, skin resistance, 

power in EEG fast frequencies, metabolic rate and heart rate (Bonnet & Arand, 2010; Riemann et al., 

2010). These markers are linked to the self-reported description of a racing mind during sleep 

initiation which is one of the hallmarks of insomnia symptomology (Harvey, 2001). Bedtime alertness 

is reduced with sleep restriction therapy (SRT) in insomnia (Miller et al., 2013). However, it is unclear 

if SRT or overall cognitive behavioural therapy for insomnia (CBT-I) reduces physiological markers of 

arousal. Reductions in overnight cortisol concentrations have been found with Doxepin, possibly due 

to a reduction in arousal through reduced activation of the hypothalamic–pituitary–adrenal axis 

(HPA-axis) (Rodenbeck et al., 2003). Measuring objective changes in insomnia is important as there is 

currently a lack of robust measures of sleep and arousal pre-to-post treatment for insomnia. Indeed, 
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insomnia research is currently hampered by a lack of an objective diagnostic test for insomnia 

severity (Buysse et al., 2006; Zee et al., 2014). 

Measures of increased arousal may be malleable with successful CBT-I. Irwin et al. (in press) 

report a decrease in C-reactive protein levels, a marker of physiological arousal, after CBT-I and 

treatment remission. A reduction in inflammatory markers may reduce the likelihood of the 

development of further co-morbid medical disorders associated with chronic insomnia. Other CBT-I 

studies have only focused on cerebral EEG based measures of cognitive arousal after CBT-I (Bonnet 

& Arand, 2010). Previously, decreases in high EEG frequencies after successful CBT-I have been 

found, suggesting preliminary evidence for a reduction in central nervous system arousal with CBT-I 

(Cervena et al., 2004). Studies are now required to evaluate change in arousal pre-to-post CBT-I by 

not only measuring objective sleep EEG, but by also considering changes in physiological measures 

of arousal which potentially normalise with successful treatment. 

SRT is routinely used to treat chronic insomnia either as single component therapy, or as 

part of CBT-I. Anecdotally, SRT is believed to be one of the most active elements of CBT-I (Spielman 

et al., 2010). Indeed, a review of the literature (Miller et al., 2014) suggests that SRT is effective for 

self-report sleep diary variables (see Chapter 2: The evidence base of sleep restriction therapy for 

treating insomnia disorder). However, little is known regarding the physiological mechanisms of 

action of SRT for insomnia (Morgenthaler et al., 2006) and whether SRT is effective at improving 

objective measures of sleep and arousal. Previous studies have measured change in mood, daytime 

functioning (Kyle et al., 2011; Miller et al., 2013) and objective side effects of sleep loss due to SRT 

(Kyle et al., 2014). It now seems timely to evaluate the physiological process(es) by which SRT may 

yield beneficial effects in addition to self-reported sleep. 
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There are a number of theories regarding the mechanisms of action for SRT. First, SRT may 

work by aligning circadian drives to promote the correct timing for sleep and wakefulness (Spielman 

et al., 2010). Second, sleep homeostasis may be disrupted in primary insomnia (Pigeon & Perlis, 

2006), SRT may prime sleep homeostasis to reduce sleep onset latency (SOL) and wake-time after 

sleep onset (WASO). This may explain the medium-to-large effect sizes found previously for these 

variables (Miller et al., 2014). Third, SRT may reduce the worry and anxiety of “getting to sleep” 

which is common in insomnia symptomology (Harvey, 2001; Kyle et al., 2011). Such worry is typically 

expressed in attempting to control sleep by spending excessive amounts of time in bed (TIB) to 

ensure some sleep opportunity (Spielman et al., 2010). SRT may address this excessive time spent in 

bed by acting as a behavioral counter-measure leading to worry and anxiety about sleep (Spielman 

et al., 2010) which is deemed a counterproductive safety behaviour (Harvey, 2002) and can cause 

circadian misalignment to the sleep period (Lack & Wright, 2007). Fourth, physiological HPA-axis 

over-activation may result in increased conditioned arousal that perturbs sleep initiation and 

maintenance. SRT may help to reduce overall arousal by promoting an efficient and consolidated 

sleep period. 

In the preceding chapter, response to measures of salivary cortisol concentrations before 

and during the acute phase of therapy for insomnia was examined. This current chapter aims to 

evaluate plasma cortisol concentrations after six weeks of therapy to provide a less variable and 

more robust in-lab measure of cortisol during the night. Cortisol levels are reported to be higher in 

those with insomnia compared to healthy good sleeping controls. Four studies found elevations in 

plasma and urinary cortisol compared to controls (Rodenbeck & Hajak, 2001; Rodenbeck et al., 2002; 

Vgontzas et al., 2001; Vgontzas et al., 1998). Vgontzas et al. (2001) measured plasma cortisol 

concentrations over a 24-hour period with half hourly sampling in 11 patients with insomnia. 

Significant increased cortisol concentrations were identified in the evening and the first half of the 

night in those with insomnia (see Figure 18). This outcome was found in an otherwise normal 
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circadian pattern and was attributed to arousal in the central nervous system and not attributed to 

sleep loss (Vgontzas et al., 2001). 

 

Figure 18 Plasma cortisol secretion in participants with insomnia compared to healthy volunteers. 
Displays serial 24-h cortisol values those with insomnia ( ) and controls ( ). Thick white, black 
lines on the abscissa indicate the night time sleep recording period (taken from Vgontzas et al. 
(2001), P. 3790). Error bars represent one standard error of the mean. 

In healthy volunteers Pejovic et al. (2013) examined the influence of one week of mild sleep 

restriction on plasma cortisol concentrations throughout a 24 hour period in 30 healthy young males 

and females. In the sleep laboratory participants were studied over 13 nights with four baseline 

nights (TIB = 8 hours per night), six sleep restriction nights (TIB = 6 hours) and three recovery nights 

(TIB = 10 hours per night). Blood was sampled for cortisol concentrations during the last 24 hours of 

each phase of the experiment. During sleep restriction, cortisol concentrations did not change 

compared to baseline but values were significantly lower during the recovery sleep (Pejovic et al., 
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2013). Findings suggest that cortisol concentrations may modify with changes to TIB in normal 

healthy volunteers (see Figure 19). 

 

Figure 19 Plasma Cortisol secretion in healthy volunteers. Displays serial 24-h cortisol values in 

healthy volunteers at baseline ( ), restriction (■), and recovery (▲) Thick white, gray, and black 
lines on the abscissa indicate the night time sleep recording period at baseline, restriction, and 
recovery, respectively. Taken from Pejovic et al. (2013), P. E893. 

Studies have also found higher core body temperature levels in insomnia, suggesting a 

marker of increased arousal compared to healthy good sleeping controls (Bonnet & Arand, 2010). 

Gradisar, Lack, Wright, Harris, and Brooks (2006) found significantly higher core body temperature 

levels in those with insomnia by approximately 0.2°C compared to controls (see Figure 20). 

Lushington, Dawson, and Lack (2000) also found increased core body temperature levels by 

approximatley 0.3°C compared to controls (see Figure 21). 
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Figure 20 Twenty-four hour rectal temperature in insomnia compared to controls. Displays serial 
24-h rectal temperature for those with insomnia n=11 ( ) and controls ( ) n=8 with fitted 
temperature curves. Error bars represent one standard error of the mean. Taken from Gradisar et 
al. (2006), P. R1118. 

 

 

Figure 21 Twenty-four hour temperature in insomnia compared to controls. Displays serial 24-h 
rectal temperature for those with insomnia ( ) and controls ( ). Temperature curves are aligned 
to the period for sleep onset plus six and a half hours under ad lib sleep conditions. Error bars 
represent one standard error of the mean. Taken from Lushington et al. (2000), P.4. 
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A review of the literature by Lack, Gradisar, Van Someren, Wright, and Lushington (2008) of 

studies conducted under constant routine conditions concluded that core body temperature is 

increased in insomnia patients compared to controls, during the subjective night only. In induced 

stress studies an increase in core body temperature levels was found in normal healthy participants 

(Vinkers et al., 2008). Given the role of stress and arousal in insomnia, it is feasible that SRT may 

reduce both core body temperature and resulting physiological arousal. 

Therefore, this study evaluated the role of potential changes in objectively defined sleep and 

physiological arousal through plasma cortisol concentrations and core body temperature pre-to-post 

SRT for insomnia. We hypothesised the following: 1. Effective SRT will improve the efficiency, 

duration and consolidation of both subjective and objective sleep parameters; and 2. SRT will reduce 

overall physiological arousal from measures of plasma cortisol concentrations and core body 

temperature. 
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6.3 Methods 

6.3.1 Participants, therapy & adherence 

Eleven participants were recruited through responses to advertisements in clinic, online and 

in the local community see Chapter 3.8 Recruitment & participants. Potential participants were 

recruited as previously described in Chapter 3: Methodology for the assessment of sleep. Insomnia 

severity index (ISI; Morin, 1993) scores were used to define insomnia severity. Only those with an ISI 

score ≥ 15 (the cut off for clinical insomnia; (Morin, 1993)) and a predominant complaint of initiating 

and/or maintaining sleep were included in the study (see Figure 22 for an overview of the study 

procedures). 

Screening  
(Day 0)  
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(Day 14) 

 

 
 

Sleep Restriction 
Therapy (Day 15) 

 

  

Post-
treatment 
(Day 57)  
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Questionnaires    Questionnaires 

Questionnaires 

      
Figure 22 Displays the time course of the study. Prior to study enrolment, participants were 
examined for sleep disorders through 1 night of polysomnography (PSG) evaluation, sleep diary 
and actigraphic data. Prior to therapy, a baseline assessment of sleep with half hourly blood and 
minutely core body temperature measures was implemented. Sleep Restriction Therapy was 
initiated over the course of 6 weeks with daily sleep diaries, actigraphic recordings and weekly 
questionnaire assessments including: the insomnia severity index: ISI; the Epworth sleepiness 
scale: ESS; Flinders fatigue scale: FFS; sleep restriction adherence scale: SRAS. After 6 weeks, 
participants returned for a post-treatment overnight study again with overnight measures of 
blood & temperature. 
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SRT was implemented as described previously in Chapter 3.7 Sleep restriction therapy. 

Home adherence to SRT was monitored with self-report sleep diaries, actigraphy and the sleep 

restriction adherence scale (SRAS; Kyle & Crawford, unpublished) throughout therapy. The SRAS was 

completed on a week-by-week basis and asks participants to rate on a 1-6 scale (with 1 = none of the 

time and 6 = all of the time) their adherence to SRT through five specific questions. Higher scores are 

indicative of greater adherence as described previously (see Chapter 3.7 Sleep restriction therapy). 

Home adherence to the sleep schedule was also monitored through secondary measures 

including a daily subjective sleep diary and objective actigraphy (throughout therapy continuously 

for 6 weeks). The sampling time on the actigraph was set at two minutes (normally this is every 

minute). As actigraphy was used as an objective measure of adherence of therapy, the battery life of 

the watch was extended to six weeks to limit the number of patient visits and capture TIB to confirm 

the sleep window. The limited number of wrist monitors also made it difficult to guarantee the 

availability of another watch every two weeks with a minutely sampling rate. Actigraphy (Philips 

Respironics, Bend, Oregon, USA) was visually inspected for TIB and missing data (sustained period 

with a lack of activity) concurrently by two experienced scorers in line with previous practice 

parameters (Morgenthaler et al., 2007). Outcome variables were processed and scored by an 

automated computer program (Actiware V6.0, Philips Respironics Bend, Oregon, USA). The ISI 

(Morin, 1993) was completed before and after therapy to monitor global effects of treatment. This 

study was reviewed and approved by the Royal Prince Alfred Hospital Ethics Review Committee, 

Sydney, Australia (see Appendix F: Ethical approval for Chapter 6). All participants gave written 

consent to take part in the study. 
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6.3.4 Polysomnography 

Polysomnography (PSG) was used to uncover any potential occult sleep disorders at 

screening prior to the start of the study. PSG was also used at baseline and after six weeks of SRT to 

define objective sleep architecture and continuity variables before and after SRT. For all three PSG 

assessments, a research montage was used involving electroencephalographic [EEG: Fpz (neutral), 

F3, Fz, F4, C3, Cz, C4, Cz-Pz (Reference), Pz, O1, Oz, O2], electrooculographic (EOG: horizontal and 

vertical), electrocardiographic (ECG) and electromyographic (EMG: submental) recordings. Data 

were recorded on an Embla Titanium ambulatory recorder (Mortara, Milwaukee, USA) and scored 

visually by two experienced sleep scorers concurrently according to AASM criteria (Iber, 2007). 

6.3.5 Overnight cortisol and core body temperature data collection 

Overnight blood and core body temperature collection was performed before and after 

therapy as part of a normal overnight PSG sleep assessment. To standardise blood and temperature 

data collection, all participants were set-up and in bed from 9pm on both nights of data collection. 

Participants remained awake in bed until they felt sleepy tired and ready to initiate sleep. Therefore, 

participants were allowed to decide on when to turn off the lights to initiate sleep. This was done 

primarily to enable and standardise the first blood sample of cortisol at 10pm. Cortisol is a primary 

outcome measure and difficulties with catheter insertion are common which potentially would 

disrupt the timing of sample collection. Therefore participants were set-up with PSG prior to the 

insertion of the catheter at 9pm. 

Blood collection was achieved half-hourly from 10pm until the last sample at 6am (17 

samples in total). Samples were collected by a qualified nurse in another room from the bedroom 

with the ‘hole in the wall technique’. An intravenous catheter was inserted within the cubital fossa 

vein for all sampling (Vgontzas et al., 2001). If not already awake (6 were asleep at baseline, 2 were 

asleep at post treatment) participants were awoken after the final 6am sample. Samples were 

placed on ice for five minutes and then centrifuged at 5,000 RPM for 10 minutes at 3°C. Samples 

163 
 



 

were stored at -80°C until analysis by enzyme immunoassay (Cayman Chemical Company, Ann Arbor, 

Michigan; limit of detection: 80% B/B0: 35 pg/ml, Sensitivity: 50% B/B0: 180 pg/ml). Cortisol was 

analysed on site at the Woolcock Institute of Medical Research (Sydney, Australia) as described 

previously (Vgontzas et al., 2001; Yanovski, Cutler, Chrousos, & Nieman, 1993). Core body 

temperature was collected minutely from 10pm onwards until 6am the next morning. Core body 

temperature was measured through the use of a previously validated (O'Brien, Hoyt, Buller, 

Castellani, & Young, 1998) ingestible core body temperature pill (Phillips Respironics, Bend, Oregon, 

USA). 

6.3.6 Sleep diary and questionnaire data 

Participants were asked to complete daily measures of sleep through sleep diaries for at 

least one week prior to therapy and six weeks during treatment. The daytime insomnia symptom 

scale (DISS: Levitt et al. (2004)) was completed in bed prior to sleep initiation and in the morning 

after each overnight sleep study pre-to-post therapy only. The DISS was implemented to profile 

point-in-time changes in four factors (including: alert cognition; negative mood; positive mood and 

sleepiness/fatigue) after six weeks of therapy at the bedtime and awakening sampling time points as 

part of the overnight sleep study. Similar to previous studies, four factors were evaluated for 

potential evening and morning changes due to SRT (Buysse et al., 2007; Miller et al., 2013). Along 

with the ISI, sleep diary data were used as the primary outcome measures to define a response to 

treatment. 
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6.3.7 Statistical analysis 

For outcome variables (including: sleep architecture and continuity, sleep diary and 

questionnaire data), boxplots and histograms were used to check data for normality and outliers in 

line with the approach described in Chapter 3.9 Statistical analysis. For cortisol and core body 

temperature, linear mixed model analysis was implemented to take account of fixed effects 

including time (pre-to-post therapy) and sample collection over the course of the night (22:00-

06:00). Random effects were included to account for between-subject variation. Only random 

effects were included for the intercepts. Uncorrected pairwise comparisons based on estimated 

marginal means were implemented to investigate primary outcomes. The DISS was also analysed 

with linear mixed model analysis as described previously in Chapter 4: An ecological momentary 

assessment of sleep restriction therapy for insomnia (Miller et al., 2013). 
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6.4 Results 

In total, 11 participants were initially enrolled into the study. However, three with baseline 

data collected left the study prior to completion. Reasons for drop out included: side effects of 

therapy during week two (stress of initial sleep loss), another due to the diagnosis of an unrelated 

medical condition, and one due to a motor vehicle accident (deemed unrelated to treatment since 

attributed to a drunk driver hitting the participants car). Eight participants (2 male: mean age 46.4 

years, range 28-61) completed the study and data are reported. Full pre-to-post blood and core body 

temperature data are reported for six out of the eight participants. Baseline blood (due to problems 

inserting the intravenous catheter) and temperature collection (due to battery malfunction) failed in 

another subject. At post-treatment, there was a similar problem with catheter insertion. One 

participant was unable to ingest the core body temperature pill due to previous abdominal surgery.  
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6.4.1 Adherence 

The mean SRAS scores supported adherence to therapy over the first five weeks remained 

above 20 for the eight participants (see Figure 23). 

 

Figure 23 Mean sleep restriction adherence scales scores (SRAS) during five weeks of therapy 
(n=8). Error bars indicate one standard error of the mean. 

Sleep diary and actigraphic data were analysed to evaluate adherence to therapy through 

TIB and total sleep time (TST). Figure 24 displays mean self-reports of TIB and TST before (2 weeks) 

and during SRT (weeks 1-6). Figure 25 profiles actigraphic data of TIB and TST before (2 weeks) and 

during SRT (weeks 1-6). Mean assigned TIB is included in both figures to provide a comparison to 

actual TIB and TST. 
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Figure 24 Mean sleep diary results prior to and during therapy. Displays values in minutes for  total 
sleep time (TST) in blue, time in bed (TIB) in red and assigned time in bed (Asign. TIB) in green, 
prior to (baseline: 2 weeks) and during sleep restriction therapy for insomnia (weeks 1-6) (n=8). 
Error bars indicate one standard error of the mean. 

 

 

Figure 25 Mean actigraphy results prior to and during therapy. Displays values in minutes for  total 
sleep time (TST) in blue, time in bed (TIB) in red and assigned time in bed (Asign. TIB) in green, 
prior to (baseline: 2 weeks) and during sleep restriction therapy for insomnia (weeks 1-6) (n=7). 
Error bars indicate one standard error of the mean. 
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6.4.2 Sleep 

Pairwise comparisons and effect size scores (d) evaluated change in questionnaires after six 

weeks of SRT compared to baseline. Mean ISI scores decreased significantly pre-to-post therapy with 

a large effect size (mean (SD) 18.2 (2.8) vs. 8.4 (4.8), p<.01, d=2.5). For the first hypothesis, that SRT 

improves the efficiency, duration and consolidation of sleep, primary sleep diary variables were 

analysed (see Table 18 & Appendix G: Individual data for Chapter 6). SOL displayed a trend, 

suggesting a reduction (the effect size was medium: d=0.6). Both WASO and the number of 

awakenings (NOAW) decreased significantly with a large effect. Sleep efficiency (SE) and ratings of 

sleep quality (SQ) both increased significantly with a large effect and TST did not significantly 

increase (mean (SD): 335.9 (53.2) vs. 353.4 (72.8), p=.27, d=0.3). 

Sleep Diary 
Variables 
(minutes) 

Time point (Mean and SD) Paired differences testing 

Baseline Week 6 Baseline versus week 6 
(Mean and SE) p-value Effect size (d) 

SOL 51.6 (58.9) 23.0 (22.0) -28.7 (14.7) .10 0.6 
WASO 73.9 (54.7) 11.2 (9.8) -62.7 (59.1)* <.05 1.6 
NOAW 2.1 (1.4) 1.0 (0.9) -1.1 (0.28)* <.05 0.9 

TST 335.9 (53.2) 353.4 (72.8) 17.5 (38.1) .27 0.3 
TIB 526.0 (36.1) 427.5 (57.2) -98.6 (66.5)* <.05 2.1 

SE (%) 64.7 (12.3) 82.7 (12.5) 10.6 (4.0)* <.01 1.5 
SQ 0.6 (0.3) 1.24 (0.4) 0.66 (0.1)* <.01 1.8 

Table 18 Self Report sleep diary variables pre-to-post sleep restriction therapy for insomnia. The 
left hand side of the table displays mean self-report sleep diary data at baseline and after 6 weeks 
of Sleep Restriction Therapy (n=8). The right hand side of the table examines within subject 
differences between baseline and week 6. SOL: Sleep Onset Latency; WASO: Wake-time After 
Sleep Onset; NOAW: Number of Awakenings; TST: Total Sleep Time; TIB: Time in Bed; SE: Sleep 
Efficiency; SQ: Sleep Quality. (*) = p<.05. 
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Next, and to further evaluate the first hypothesis, the following objectively defined sleep 

parameters were examined: SOL; TST; WASO; SE; REM latency; NREM (mins); REM (mins); Stage 1 

(mins); Stage 2 (mins) and SWS (mins). Sleep parameters did not change pre-to-post therapy (see 

Table 19). Upon inspection of boxplots, time spent in SWS was found to have an outlier at baseline. 

With the removal of this participant, SWS increased pre-to-post therapy (63.6 (13.6) vs. 78.5 (25.2), 

p=.05, d=0.7). 

PSG Defined 
Variables 
(minutes) 

Time point (Mean and SD)                     Paired differences testing 

Screening Baseline Week 6 
Baseline versus 

week 6 (Mean and 
SE) 

p-value Effect size 
(d) 

SOL 29.2 (13.4) 29.2 (24.7) 18.9 (32.7) -10.3 (11.2) .39 0.4 
WASO 94.5 (37.6) 102.7 (52.5) 86.6 (42.5) -16.1 (16.3) .36 0.3 

TST 333.2 (61.4) 313.7 (54.2) 353.6 (40.9) 39.9 (20.7) .10 0.8 
SE (%) 72.3 (10.4) 70.5 (11.8) 77.3 (10.7) 6.88 (4.6) .18 0.6 
REM 65.7 (29.1) 56.7 (30.4) 67.8 (25.8) 11.1 (9.0) .82 0.4 

REM Latency 168.1 (71.0) 156.2 (51.0) 152.9 (64.5) 3.29 (29.0) .91 0.1 
N1 9.5 (5.3) 23.2 (8.4) 20.1 (7.0) -3.13 (2.9) .32 0.4 
N2 183.3 (22.0) 160.7 (38.7) 183.1 (31.3) 22.38 (16.7) .22 0.6 

SWS 74.6 (32.7) 73.1 (29.8) 82.7 (26.1) 9.5 (7.1) .23 0.3 
SWSⱡ - 63.6 (13.6) 78.5 (25.2) 15.0 (5.7)* .04 0.7 

NREM 267.4 (36.9) 257.0 (44.0) 285.8 (22.4) 28.78 (15.6) .11 0.8 

Table 19 Objectively defined sleep variables pre-to-post sleep restriction therapy for insomnia. 
The left hand side of the table displays mean objectively defined sleep staging data at screening, 
baseline and after 6 weeks of Sleep Restriction Therapy (n=8). The right hand side of the table 
examines within subject differences between baseline and week 6. PSG: polysomnography; SOL: 
Sleep Onset Latency; WASO: Wake-time After Sleep Onset; TST: Total Sleep Time; SE: Sleep 
Efficiency; REM: Rapid Eye Movement sleep; N1: Stage 1 of sleep; N2: Stage 2 of sleep; SWS: Slow 
Wave Sleep; NREM: Non-Rapid Eye Movement sleep. ⱡSWS: Slow Wave Sleep with 1 patient 
removed who displayed very high amount of baseline SWS. (*) = p<.05. 
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To further test the initial hypothesis to evaluate the efficiency, duration and consolidation of 

sleep pre-to-post therapy, Figure 26 is used to display a graphical representation of the temporal 

pattern of individual objectively defined sleep (black) and wake (white) during the overnight sleep 

assessment (21:30-06:00) at baseline (A) and after 6 weeks of SRT (B). Grey shading on the left hand 

side denotes time in bed prior to lights out. Each line represents one individual. Visually, from the 

figure, it seems that sleep is more consolidated, faster to initiate and with participants more likely to 

be awake at the 06:00 time at post treatment (6/8 participants awake) compared to baseline (2/8 

participants). 

 

Figure 26 Temporal pattern of objectively defined sleep before and after therapy. Displays a 
graphical representation of estimated objectively defined sleep for each participant (n=8) before 
(A) and after (B) 6 weeks of sleep restriction therapy. Each individual row represents one 
participant during the course of a sleep study (21:30-06:00). Sleep is represented in black, time in 
bed prior to lights out is in grey and wakefulness (during lights out) is in white. Blood sampling 
occurred every half hour from 22:00 until 06:00. Lights on occurred after the last blood sample was 
obtained at 06:00.  
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6.4.3 Cortisol 

In the second part of the hypothesis, SRT was expected to decrease overall arousal, mean 

plasma cortisol concentrations (for each half hour sample during the night: 22:00-06:00), were firstly 

examined for nocturnal secretion (µg/dL) by analysing for the main effect of time of sample 

collection for the 17 samples (see chapter 3.9 Statistical analysis). A significant effect for time of 

sample was found (F (16, 163.061) = 14.86; p<.001) indicating nocturnal variation, in line with the 

circadian rhythmicity of cortisol secretion (see Figure 27). Next, samples were evaluated for overall 

pre-to-post differences in cortisol concentrations for all participants with sufficient blood data (n=6). 

No overall differences were found pre-to-post therapy (mean and 95% confidence intervals: 3.58 

[2.6, 4.5] vs. 3.89 [2.9, 4.9], (F (1, 163.028) = .570; p=.45). 

 

Figure 27 Mean nocturnal plasma cortisol concentrations across the night. Displays mean 
nocturnal cortisol secretion (n=6) for both sample collection time points (pre and post therapy) 
over the course the night (22:00-06:00). Error bars indicate one standard error of the mean. 
Cortisol (µg/dL). 
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Next, a sample (for each half hour sample during the night: 22:00-06:00) x time (pre-to-post) 

phase interaction was used to examine potential nocturnal differences after SRT [F (16, 163.064) = 

1.68; p=.06]. Simple main effects were analysed and revealed a significant increase at the following 

sample time-points pre-to-post therapy: 05:00 (mean and 95% confidence intervals: 9.1 [6.6, 11.5], 

vs. 12.6 [10.2, 15.1], (F (1, 163.028) = 4.305; p=.04); 05:30 (5.5 [3.0, 8.0], vs. 11.3 [8.8, 13.7], (F (1, 

163.028) = 11.34; p=.001); 06:00 (5.3 [2.8, 7.7], vs. 10.1 [7.6, 12.6], (F (1, 163.028) = 7.9; p=.01) (see 

Figure 28 & Table 20). 

 

Figure 28 Mean nocturnal plasma cortisol concentrations pre-to-post sleep restriction therapy. 
Displays mean nocturnal cortisol secretion (n=6) for each sample collection time point at baseline 
(blue) and post treatment (green) over the course the night (22:00-06:00). Error bars indicate one 
standard error of the mean. Cortisol (µg/dL).(*) p<.05. 
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Baseline Post-treatment Difference Testing and 95% CI’s 

Time of 

sample 
Mean 

(µg/dL)  
95% CI Mean 

(µg/dL) 
95% CI Mean 

Difference 
p-value Lower 

Bound 
Upper 
Bound 

22:00 3.1 0.7, 5.6 1.0 2.0, 3.5 2.1 .22 -1.28 5.51 

22:30 2.1 0.4, 4.6 1.4 1.1, 3.8 0.7 .67 -2.66 4.12 

23:00 1.7 0.8, 4.2 1.3 1.1, 3.8 0.3 .84 -3.05 3.74 

23:30 1.4 1.1, 3.9 1.1 1.4, 3.5 0.4 .83 -3.03 3.76 

00:00 1.2 1.3, 3.6 0.9 1.6, 3.4 0.3 .88 -3.13 3.65 

00:30 1.2 1.2, 3.8 0.9 1.6, 3.4 0.4 .83 -3.02 3.76 

01:00 1.7 0.7, 4.2 2.4 0.7, 4.9 -0.7 .69 -4.09 2.70 

01:30 2.8 0.3, 5.3 1.9 0.6, 4.4 0.9 .59 -2.47 4.31 

02:00 2.2 0.3, 4.6 1.6 0.9, 4.1 0.6 .74 -2.83 3.96 

02:30 1.9 0.6, 4.4 1.5 1.0, 4.0 0.4 .81 -2.98 3.80 

03:00 3.3 0.6, 6.0 1.3 1.1, 3.8 1.9 .29 -1.64 5.48 

03:30 3.0 0.5, 5.5 2.4 0.1, 4.9 0.6 .73 -2.79 4.00 

04:00 5.0 2.6, 7.5 4.2 1.7, 6.6 0.9 .61 -2.51 4.27 

04:30 10.4 7.9, 12.8 10.4 7.7, 13.1 0.0 .99 -3.55 3.58 

05:00* 9.1 6.6, 11.5 12.6 10.2, 15.1 -3.565* .04 -6.96 -0.17 

05:30* 5.5 3.0, 8.0 11.3 8.8, 13.7 -5.784* <.01 -9.18 -2.39 

06:00* 5.3 2.8, 7.7 10.1 7.6, 12.6 -4.832* <.01 -8.22 -1.44 

Table 20 Plasma cortisol concentrations pre-to-post sleep restriction therapy. The left hand side of 
the table displays mean plasma cortisol concentrations at baseline and after 6 weeks of sleep 
restriction therapy (n=6). The right hand side of the table examines within subject differences 
between baseline and week 6. Cortisol (µg/dL); (*) p<.05. 
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Due to the variability of samples and low numbers of participants, plasma cortisol 

concentration values were collapsed across the night into the following three groups; early: 22:00-

00:30; middle: 00:31-03:30; and late: 03:31-06:00. Linear mixed models were implemented 

(intercept F (1, 196) = 309.5; p<.001). A nocturnal secretion pattern was found for cortisol (µg/dL) 

after analysing for the main effect of time of sample collection for each sampling period (early: 

22:00-00:30, middle: 00:31-03:30, late: 03:31-06:00) (F (2, 196) = 88.2; p<.001). Overall, cortisol 

concentrations (µg/dL) did not change pre-to-post therapy (n=6: means and 95% CI’s = 3.8 [3.1, 4.4] 

vs. 4.2 [3.6, 4.9]; F (1, 196) = 309.5; p=.33). However, a second time of sample x treatment phase 

interaction was used and was significant (F (2, 196) = 5.515; p=.005). Simple main effects revealed a 

significant difference for the late (03:01-06:00) sampling period only pre-to-post SRT (means and 

95% confidence intervals: 7.0 [5.9, 8.2] vs. 9.7 [8.5, 10.9] (see Figure 29). Suggesting, plasma cortisol 

concentrations increase towards the end of the sleep period after SRT for insomnia (see Table 21). 
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Figure 29 Collapsed mean nocturnal plasma cortisol concentrations across the night pre-to-post 
sleep restriction therapy (n=6). Displays mean nocturnal cortisol for time of night (early: 22:00-
00:30; middle: 00:31-03:30; and late: 03:01-06:00) baseline (blue) & post treatment (green). Error 
bars indicate one standard error of the mean. Cortisol (ug/mL); *p< .05. 

 

 
Baseline Post-treatment Difference Testing and 95% CI’s 

Time of 
sample Mean 95% CI Mean 95% CI Mean 

Difference p-value Lower 
Bound 

Upper 
Bound 

22:00-00:30 1.8 0.7, 2.8 1.1 0.0, 2.2 0.7 .35 -0.761 2.155 

00:31-03:30 2.5 1.4, 3.5 1.9 0.8, 2.9 0.6 .42 -0.87 2.067 

03:31-06:00* 7 5.9, 8.2 9.7 8.5, 10.9 -2.6* <.01 -4.246 -1.023 

Table 21 Collapsed plasma cortisol concentrations pre-to-post sleep restriction therapy. The left 
hand side of the table displays mean plasma cortisol concentrations at baseline and after 6 weeks 
of sleep restriction therapy (n=6). The right hand side of the table examines within subject 
differences between baseline and week 6. Cortisol (ug/mL); (*) p<.05. 
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6.4.4 Core body temperature 

Next, core body temperature was evaluated to further test the second part of the 

hypothesis. Initially, nocturnal variation to core body temperature was analysed (n=6) for the main 

effect of time of sample collection (every 30 minutes from 22:00-06:00). Differences were found 

across the night in line with the circadian period of core body temperature F (15, 145.017) = 1.938; 

p=.024) (see Figure 30). 

 

Figure 30 Mean core body temperature across the night. Displays mean core body temperature in 
degrees Celsius (°C) (n=6) across both sample collection time points (pre and post therapy) over 
the course the night (22:00-06:00). Error bars indicate one standard error of the mean.  

Next, pre-to-post changes in core body temperature were evaluated and displayed a 

significant decrease after therapy (mean and 95% confidence intervals: 36.54 [36.3, 36.8] vs. 36.45 

[36.2, 36.7], (F (1, 145.071) = 9.69; p=.002). Lastly, to examine specific differences in core body 

temperature across the night pre-to-post SRT a time of sample x treatment phase interaction was 

employed. Although this was not significant (F (15, 145.017) = 1.063; p=.396) (see Figure 31). 
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Figure 31 Mean core body temperature across the night pre-to-post sleep restriction therapy. 
Displays mean core body temperature degrees Celsius (°C) (n=6) for baseline (red) and post 
treatment (black) over the course the night (22:00-06:00). Error bars indicate one standard error of 
the mean; * p<.05. 

In light of this, the rate of change of core body temperature over the first two hours of sleep 

initiation was profiled. Successful sleep initiation is most likely to occur during core body 

temperature decline at the start of the sleep period (Campbell & Broughton, 1994). Each minutely 

temperature sample was analysed with the following formula: (Tc final - Tc start) ÷ t (hour) = x°C × 

hour-1, where Tc = core body temperature. Visually, the rate of change for core body temperature 

was greater in the post treatment condition although this was not significantly different (mean and 

95% confidence intervals: before = -0.005 (0.103), after -0.155 (0.214), p=.25, d=0.8, see Figure 32). 
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Figure 32 Rate of change for core body temperature. Displays the rate of change (x°C × hour-1) 
across the first two hours of recording before and after Sleep Restriction Therapy for insomnia 
(n=6). Error bars indicate one standard error of the mean. 

To determine if a difference in circadian timing was responsible for the improvement in 

insomnia symptomology, best fitting sinusoidal curves were fitted to temperature data to judge 

whether there was evidence of a phase delay or phase advance pre-to-post therapy. Curves were fit 

(see Figure 33) according to the following formula: a+b*sin(c*x+d), where a is the offset, b is the 

amplitude, c is close to pi/12 to achieve ca. 24hr periodicity and d is the phase (Conroy, Spielman, & 

Scott, 2005). All parameters are chosen to achieve the best fit (R-squared). From this, visual 

inspection of the core body temperature nadir was achieved before and after therapy to suggest 

either a phase delay or a phase advance. 
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Figure 33 Displays core body temperature across the night before (blue) and after (red) 6 weeks of sleep restriction therapy for insomnia in degrees 
Celsius (°C) for each participant (n=6: A-F). Curves were fit according to the following formula: a+b*sin(c*x+d), where a is the offset, b is the amplitude, c 
is close to pi/12 to achieve ca. 24hr periodicity and d is the phase. All parameters are chosen to achieve the best fit (R-squared). The phase advance and 
delays were determined visually by identifying differences in the nadir. 
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6.4.5 Daytime insomnia symptom scale 

The DISS was analysed for main effects for time (pre-to-post) yielding significant 

improvements for morning measures of alert cognition (F (1, 21) = 3.745; M = 45.0 [36.2, 53.7] vs. 

55.5 [46.7, 64.3], p<.05) (see Figure 34). Negative mood displayed a trend towards improvement (F 

(1, 21) = 5.7, M = 36.3 [21.4, 51.1] vs. 28.0 [13.2, 42.9], p=.07. Positive mood and sleepiness/fatigue 

did not change. 

 

Figure 34 Alert cognition from the daytime insomnia symptom scale pre-to-post sleep restriction 
therapy at bedtime (blue) and on awakening (red) before and after sleep restriction therapy for 
insomnia. Error bars are of one standard error of the mean. (*) = p<.05 
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6.5 Discussion 

The primary aim of this study was to investigate changes in objectively defined sleep and 

measures of physiological arousal (plasma cortisol concentrations & core body temperature) pre-to-

post sleep restriction therapy (SRT) for insomnia. We hypothesised that: 1. Effective SRT improves 

the efficiency, duration and consolidation of both subjective and objective sleep parameters; and 2. 

SRT reduces overall increased arousal in measures of plasma cortisol concentrations and core body 

temperature. 

As a prelude to this discussion, it is important to note that adherence to therapy was 

measured through weekly reports of questionnaires, daily sleep diary and actigraphic data. 

Participants adhered to the instructions of therapy as average sleep restriction adherence scale 

(SRAS) scores were found to be high over the course of the first five weeks of therapy (>20: see 

Figure 23). Further, sleep diary measures of time in bed (TIB) and prescribed TIB as used previously 

(Kyle et al., 2014), were suggestive of adhering to therapy. Objectively measured adherence through 

actigraphy closely matched the assigned amount of TIB (see Figure 24). Overall, suggesting therapy 

was adhered to. 

  

182 
 



 

6.5.1 Sleep restriction therapy 

With regards to the first hypothesis, effective SRT improves sleep parameters, this study 

found significant pre-to-post improvements in primary sleep diary measures of wake-time after 

sleep onset (WASO), number of awakenings (NOAW), sleep efficiency (SE), and ratings of sleep 

quality (SQ). All were found to improve with a large effect (d ≥ 0.8). Although non-significant, sleep 

onset latency (SOL) and total sleep time (TST) suggested a trend for improvement with a large 

(d=0.6) and small (d=0.3) effect size respectively (see Table 18 & Appendix G: Individual data for 

Chapter 6). These findings are in line with previous data regarding the efficacy of therapy on self-

report diary measures (Miller et al., 2014). 

In addition to these improvements, questionnaire measures of global insomnia severity 

(insomnia severity index: ISI) and fatigue (Flinders fatigue scale: FFS) reduced significantly pre-to-

post therapy. Daytime functioning (daytime insomnia symptom scale: DISS) measured at bedtime 

and in the morning of both overnight assessments pre-to-post treatment, was found to significantly 

improve at the morning assessment time point for alert cognition only (see Figure 34). The increase 

in alertness in the morning after therapy provides further evidence for positive alterations to the 

sleep-wake experience (Miller et al., 2013). A reduction in alert cognition prior to sleep was not 

documented. This may have been due to a lack of data or the nature of the overnight test including 

the thought and stress of blood sampling and lack of ecological validity. Overall, self-report 

improvements are in line with previous research findings of measures of sleep and daytime 

functioning after effective SRT (Kyle et al., 2014; Kyle et al., 2011; Miller et al., 2013). 
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6.5.2 Sleep 

Objectively defined TST improved (but not significantly, perhaps due to low statistical 

power) by a mean of 39.9 minutes (d=0.8) after six weeks of therapy compared to baseline and by 

20.4 minutes compared to screening (see Table 19 & Appendix G: Individual data for Chapter 6). In a 

recent uncontrolled study, polysomnography (PSG) was used to profile sleep during therapy 

implementation (on days 1, 8 and 22) (Kyle et al., 2014). A significant decrease in TST was found 

(reducing by a mean of 75 minutes between baseline and day 22 of therapy). From these results, it 

would seem that improvements in TST may not be evident until well after 22 days of therapy. 

There were no other significant improvements in objective sleep parameters (see Table 19). 

On inspection of boxplots, an outlier was found at baseline for slow wave sleep (SWS: 140 minutes). 

Once this participant was removed, SWS improved significantly pre-to-post SRT (see Table 19). In a 

meta-analysis (Baglioni et al., 2014) SWS was reduced and may be a future target for treatment 

response in insomnia research. In comparison to other previous studies of SRT, Kyle et al. (2014) did 

not report any objective sleep variables apart from TST. Only one other study by Friedman et al. 

(2000) attempted to measure objective improvements in therapy with PSG. This study and previous 

research was underpowered to test for between group differences (Friedman et al., 2000; Miller et 

al., 2014). 

6.5.3 Effects on physiological measures of arousal 

Arousal is thought to be both a precipitant and perpetuating factor in the development and 

maintenance of chronic insomnia (Spielman & Glovinsky, 1991). The hyperarousal hypothesis posits 

increased cortical and physiological arousal in those with insomnia compared to healthy good 

sleeping controls (Bonnet & Arand, 2010; Riemann et al., 2010). Markers of arousal may reduce with 

effective therapy for insomnia (Bonnet & Arand, 2010; Espie, 2002; Roth, 2007c). Following cognitive 

behavioural therapy for insomnia (CBT-I), a more rapid decline of EEG delta power (a marker of 

cognitive hyperarousal) was identified in insomnia participants compared to placebo controls 
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(Krystal & Edinger, 2010). Unfortunately changes in other physiological markers of arousal in CBT-I 

remain untested (Bonnet & Arand, 2010; Roth, 2007c). In this study, two markers of physiological 

arousal were profiled after effective therapy, plasma cortisol concentrations and core body 

temperature, the following sections discuss findings. 

6.5.4 Cortisol concentrations 

The results from the present study suggest that SRT increases morning levels of plasma 

cortisol concentrations after six weeks of therapy compared to baseline (see Figure 28 & Figure 29). 

This was mirrored by an increase in subjective morning levels of alertness after therapy that was first 

profiled previously in chapter four (Miller et al., 2013 ). From Figure 26, it appears that six out of the 

eight subjects were awake in the morning prior to the 6am sample at post treatment. At pre-

treatment six out of the eight subjects were asleep (apart from one participant who was awake from 

around 04:00am at post treatment and on inspection this was due to problems re-siting a faulty 

cannula for blood collection). This is perhaps unexpected as the hypothesis assumed cortisol 

concentrations would decline. But this may be a plausible outcome after effective treatment for 

insomnia and suggests SRT increases subjective morning alertness and plasma cortisol 

concentrations. 

Increased morning cortisol concentrations after therapy may in part be due to a 

normalisation of the circadian sleep-wake cycle. Previously in healthy males, sleep restriction (4hrs 

TIB for 2 nights) and resulting sleep loss was found to dampen the amplitude of the circadian rhythm 

of plasma cortisol concentrations (Guyon et al., in press). An increase in morning cortisol secretion 

after therapy may indicate a restoration to the circadian rhythm which may protect against adverse 

health effects where a dampening or misalignment of the circadian period occurs (e.g. increased risk 

of type 2 diabetes) (Guyon et al., in press). In one previous study individuals with insomnia showed 

significantly decreased salivary cortisol concentrations on awakening compared to healthy good 

sleeping controls (Backhaus et al., 2004). The authors postulated these findings supported the 
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hyperarousal theory of insomnia (as cortisol concentrations may have been higher during the course 

of the night in the insomnia participants prior to wake). However, this was not directly measured as 

part of their study (Backhaus et al., 2004). SRT appears to modify wake concentrations of cortisol by 

restoring a natural circadian amplitude reflected in improvements in sleep and daytime functioning 

measures. 

Increases in objective TST and SWS may also be responsible for changes in cortisol 

concentrations. In normal healthy participants, temporal associations are found between SWS and 

cortisol with lower cortisol concentrations during SWS (Balbo, Leproult, & Van Cauter, 2010; 

Follenius et al., 1992) and higher cortisol levels appear to inhibit SWS (Krieger & Glick, 1974; Weibel, 

Follenius, Spiegel, Ehrhart, & Brandenberger, 1995). Significant positive correlations between 

increased cortisol activation and disturbed sleep have been identified (Backhaus et al., 2004; 

Rodenbeck et al., 2002; Vgontzas et al., 2001), an overall increase in TST after therapy of 

approximately 40 minutes appeared to contribute to increased morning cortisol concentrations. It is 

likely increased time spent in N2 (22.4 minutes) or REM (11.1 minutes) sleep contributed to this 

morning increase. Alternatively, an increase in cortisol may be due to the end of the sleep period 

and the beginning of the cortisol awakening response and possibly reflects an increase in circadian 

amplitude and not a phase advance (see Figure 33). 

In healthy volunteers, Vgontzas et al. (2004) found a lower peak in cortisol secretion after 

sleep restriction (6 hours for 6 nights) compared to baseline. Comparing the graphs between studies, 

it appears that the post therapy condition in the current study resembles the healthy sleeping 

participants in the baseline condition of the previous study (Vgontzas et al., 2004). Pejovic et al. 

(2013) implemented mild sleep restriction on healthy volunteers (6 hours for 6 nights) and found no 

change in overall cortisol levels during sleep restriction but a slightly earlier and dampened cortisol 

awakening response. This is in contrast to the current study where the amplitude of cortisol was 

found to be significantly increased in the early morning at post treatment, suggesting that sleep 
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restriction may not be responsible for the changes to cortisol concentrations found in this study. This 

is a consistent finding across the literature in healthy volunteers where mild sleep restriction does 

not change or even reduces cortisol concentrations (Omisade et al., 2010; Pejovic et al., 2013; 

Schmid et al., 2011; Vgontzas et al., 2007; Vgontzas et al., 2004; Wu et al., 2008). Only severe sleep 

deprivation paradigms appear to increase cortisol secretion in healthy individuals (Pejovic et al., 

2013). Mild sleep restriction may therefore not account for the findings of the current study and 

perhaps changes in the both the timing and amplitude of HPA-axis functioning are responsible for 

the observed changes in cortisol concentrations. These results suggest that sleep restriction may not 

increase morning levels of cortisol concentrations. Alternatively, our results may be a product of an 

as yet untested long term (6 weeks) outcome of SRT for insomnia. 

Vgontzas et al. (2001) reported higher cortisol concentrations at the beginning the night in 

those with insomnia compared to controls whereas in the current findings there was no significant 

decrease in cortisol secretion pre-to-post therapy. Visually, cortisol concentrations appear to be 

lower for the first two thirds of the night (22:00-00:30 & 00:31-03:30) at post-treatment compared 

to baseline levels (see Figure 18). One concern is that significant reductions in cortisol values may 

have been missed as they occurred prior to the beginning of the blood sampling routine (before 

22:00: see Figure 18). An optimal protocol is half hourly measures of plasma cortisol concentrations 

under constant routine conditions over the 24 hour period before and after therapy. 

The only other study (n=10) examining the role of cortisol concentrations before and after 

treatment was one primarily using Doxepin over a three week period and found reduced plasma 

cortisol concentrations (Rodenbeck et al., 2003). Vallieres et al., (2013) investigated five participants 

with insomnia through an SRT protocol and evaluated the role of salivary cortisol concentrations. 

Unfortunately this study was inadequately powered to test for statistical differences and no other 

study has attempted to profile changes. There is also a need to acknowledge the effect of the HPA-

axis (antiglucocorticoid agents) when implementing treatment for insomnia in line with the 
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hyperarousal theory of insomnia, but there have been no pre-to-post treatment studies (Roth, 

2007c). Future studies should now look to profile potential changes to not only plasma cortisol but 

also adrenocorticotropic and corticotropin-releasing hormone concentrations before and after 

treatment for insomnia. 

  Following SRT treatment the cortisol profile mirrored the controls in the Vgontzas et al. 

(2001) study (see Figure 27 & Figure 28) with reduced cortisol at the start of the night which is an 

encouraging trend given the short intervention span. Vgontzas et al. (2001) did not find any between 

group differences in the morning cortisol concentrations whereas morning cortisol was increased 

after therapy. It could be argued that this outcome resulted from the use of a 24 hour routine 

condition and a sleep period. The present study reports sleep period data only making comparisons 

between the two studies difficult. Individuals with insomnia tend to report extreme difficulties with 

morning energy or not feeling refreshed. A rise in morning cortisol following treatment may be a 

positive outcome such as significant elevations found in the last three time points indicate 

improvements in alertness which was substantiated by subjective questionnaire data (see Figure 34). 

Rodenbeck et al. (2002) found a delay in plasma cortisol concentrations in insomnia patients 

compared to healthy controls which was similar to the current results at post treatment where the 

onset of objective sleep advanced and participants were awake earlier in the morning (see Figure 

26). A phase advance in cortisol secretion and cortisol awakening response would explain the 

increase in morning cortisol concentrations after therapy. Yet, it is still unclear whether a phase 

advance in circadian timing is reflected in the cortisol (Figure 28) and temperature data (Figure 31). 

Evaluation of changes in the circadian period after successful therapy for insomnia seems a 

necessary assessment. 

  

188 
 



 

6.5.5 Core body temperature 

The significant mean decrease in core body temperature found after therapy in this study 

suggests a reduction in physiological arousal with SRT for insomnia. Previous research found similar 

outcomes in comparison with controls (Bonnet & Arand, 1997, 2010), ranging from 0.2°C (Gradisar 

et al. (2006): see Figure 20), to 0.29°C in sleep laboratory conditions (Lushington et al. (2000) (see 

Figure 21). A review by Lack et al. (2008) concluded core body temperature is increased under 24 

constant routine conditions. 

No previous studies have evaluated core body temperature after treatment for insomnia 

under the umbrella of CBT-I. Benzodiazepines alone appear to decrease oral temperature in healthy 

participants (Longbottom & Pleuvry, 1984) assuming a decrease in the sleep or arousal systems 

(Bonnet & Arand, 2010). Core body temperature levels in healthy individuals undergoing one night 

of sleep deprivation did not change (Romeijn et al., 2012) and was stable over five 24-hour constant 

routine schedules in healthy controls (Van Dongen, Kerkhof, & Souverijn, 1998). It is therefore likely 

that the reduction in core body temperature results from physiological arousal decreases and not 

from sleep restriction. 

A bi-directional relationship exists between insomnia and depression (Baglioni et al., 2011; 

Sivertsen et al., 2012) and treatment interventions may modify circadian timing of temperature in 

both groups. In depression research, an increase in circadian amplitude and a decrease in core body 

temperature was found after effective electroconvulsive therapy and was interpreted as a 

restoration to a disrupted circadian system (Szuba, Guze, & Baxter Jr, 1997). However, insomnia 

symptoms were not measured. In seasonal affective disorder, the amplitude of core body 

temperature rhythm increases with phototherapy (Rosenthal et al., 1990). An increase in circadian 

amplitude at post treatment (see Figure 31 & Figure 33) compared to baseline may be due to 

entrainment of the master circadian pacemaker (Kräuchi, 2007) through increased activity, light 

exposure in the morning and reduced TIB with SRT. Mild sleep deprivation (5.7hrs for 1 week) in 
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healthy participants reduces the amplitude of circadian rhythm gene expression (Möller-Levet et al., 

2013). In the current study, only a change in circadian amplitude was found and not a phase shift in 

the internal circadian rhythm, in line with Rosenthal et al. (1990) as no obvious and consistent phase 

alterations where found across patients from the temperature data pre-to-post therapy (see Figure 

33). 

The nadir of core body temperature from the current study was difficult to identify because 

of a lack of circadian amplitude at baseline (see Figure 33) but was more easily defined after therapy. 

Effective treatment for insomnia may moderate an initial arousal imbalance by consolidating sleep 

through an increase in circadian amplitude (see Figure 32 & Figure 33). A faster decline in core body 

temperature was visually apparent during the first two hours of sleep initiation at post treatment 

compared to baseline. This faster non-significant decline in temperature appears suggestive of 

change in circadian amplitude after therapy promoting sleep by providing a more relaxed state prior 

to sleep initiation (Kräuchi, 2007). Without 24-hour data under constant routine conditions, 

conclusions are speculative.  
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6.6 Limitations 

A major limitation is the lack of a control group and patients may have improved through a 

placebo or non-specific response as the experimenter also acted as the therapist. Demand 

characteristics of the study and the researcher may result in improvements to subjective variables. 

Habituation to the overnight testing procedures may also have influenced objective sleep variables 

including blood sampling across the night.  

The sample size was small and conclusions require caution due to the lack of statistical 

power and increased risk of a Type-II statistical error. No corrections for multiple comparisons were 

employed and therefore findings should be considered exploratory in nature and require further 

validation. Future studies with larger numbers will enable a clearer understanding of the effects of 

SRT on objectively PSG-defined sleep and physiological variables before and after therapy. 24-hour 

constant routine conditions would allow a further and more robust examination of both cortisol and 

temperature. Although adherence to sleep restriction therapy was difficult to gauge during the six 

weeks of therapy, participants were evaluated on self-report (sleep diary & SRAS) and objective 

(actigraphic) measures of adherence. A six month follow-up assessment would determine whether 

treatment is maintained over time. 
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6.7 Conclusion 

This is the first study to specially profile physiological parameters relating to arousal after a 

behavioural intervention for the treatment of insomnia. Effective SRT reduced core body 

temperature and increased morning alertness and plasma cortisol concentrations in the later third 

of the night. Changes in increased circadian amplitude characterised by a faster rate of decline of 

temperature during sleep initiation is supportive. This SRT protocol enabled positive changes in 

arousal, however this can only be substantiated using larger numbers of participants under 24 hour 

constant routine conditions. 
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Chapter 7: Magnetic resonance spectroscopy of cerebral metabolism in 

insomnia 
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7.1 Abstract 

Brain metabolism has been found to be altered in patients with insomnia compared to 

healthy good sleeping controls across the occipital and anterior cingulate cortices. So far studies 

have only looked at a limited number of metabolites and have failed to adequately quantify 

metabolites across the brain including the prefrontal cortex. A between-subjects study was used to 

evaluate differences in individual brain metabolites in vivo in patients with insomnia (n=15) 

compared to healthy good sleeping controls (n=14). Magnetic resonance spectroscopy (MRS) was 

used to quantify a range of metabolites including: aspartate (ASP); creatine (CRE); glutamate (GLU); 

glutamine (GLN); glutathione (GSH); glycerylphosphorylcholine (GPC); myo-inositol (MINO); and N-

acetylaspartate (NAA) across the left occipital (LOCC), anterior cingulate (ACC) and left prefrontal 

cortices (LPFC) referenced to water. Findings suggest no differences in brain metabolites detectable 

at 3Tesla in those with insomnia across the three volumes of interest profiled in this study. In those 

with insomnia, objectively defined total sleep time correlated significantly with CRE levels in the 

LPFC (R2=.48), suggesting possible links between objective sleep and brain metabolism in insomnia. 

Insomnia duration was found to significantly correlate with levels of GLU in LPFC (R2=.42). No 

significant correlations were found for insomnia severity scores. 
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7.2 Introduction 

A number of different brain imaging techniques have been used in insomnia and sleep 

research. With single-photon emission computed tomography, hypoperfusion has been identified 

across the frontal medial, occipital, parietal cortices and in the basal ganglia (Smith, Perlis, Chengazi, 

et al., 2002) in those with insomnia. Hypoactivation of the medial inferior prefrontal cortices was 

also found in insomnia compared to controls using functional magnetic resonance imaging (fMRI) 

(Altena et al., 2008), whilst smaller grey matter volumes correlated negatively with insomnia severity 

(Altena, Vrenken, Van Der Werf, van den Heuvel, & Van Someren, 2010) and micro structural 

changes in the orbitofrontal cortex have been found (Joo et al., 2013). The medial frontal areas are 

involved in the regulation of sleep (Koenigs, Holliday, Solomon, & Grafman, 2010), where increased 

insomnia symptoms were prevalent with left dorsomedial frontal damage in individuals with focal 

brain lesions (Koenigs et al., 2010). Using magnetoencephalography (MEG) increases in cerebral 

activity were identified during slow wave (SWS) and rapid eye movement (REM) sleep in the left 

dorsomedial prefrontal cortex (Ioannides, Kostopoulos, Liu, & Fenwick, 2009). As slow waves 

predominantly originate from the left frontoinsular area and cingulate gyrus during sleep (Murphy et 

al., 2009), the left medial prefrontal cortex appears critical for sleep initiation/maintenance requiring 

investigation in insomnia research. 

Positron emission tomography (PET) has been used to document increased glucose 

metabolism in insomnia across the anterior cingulate cortex (ACC), prefrontal cortex, hypothalamus, 

amygdala and hippocampus (Nofzinger et al., 2004). Glucose metabolism also positively correlated 

with wake-time after sleep onset (WASO) during non-rapid eye movement (NREM) sleep (Nofzinger 

et al., 2006). Insomnia research also suggests that the ACC is chronically overactive (Winkelman et 

al., 2013), and is supported by the finding of a 21% reduction in gamma-Aminobutyric acid 

(GABA)/creatine(CRE) ratio in the ACC (Plante, Jensen, Schoerning, & Winkelman, 2012). Reductions 

in ACC volumes have also been observed in major depressive disorder (MDD) (Bora, Fornito, 

Pantelis, & Yücel, 2012; Koolschijn et al., 2009), along with reduced concentrations of glutamate 
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(GLU) and GABA (Auer et al., 2000; Bhagwagar et al., 2008; Hasler et al., 2007; Price et al., 2009). 

These findings appear to reinforce the bi-directional relationship between insomnia and depression 

(Baglioni et al., 2011; Sivertsen et al., 2012). 

7.2.1 Magnetic resonance spectroscopy 

Magnetic resonance spectroscopy (MRS) is used to measure chemical metabolite 

concentrations across selected regions of interest within the living brain (Govindaraju, Young, & 

Maudsley, 2000). MRS is different from conventional brain imaging as it consists of graphs producing 

information regarding the molecular structure of tissue within the brain giving a ‘virtual biopsy’ 

(Mountford et al., 2010). Approximately 35 metabolites can be measured with MRS in the human 

brain either in vitro or in vivo (Govindaraju et al., 2000; Mountford et al., 2010). The following 

metabolites can be detected using MRS: aspartate (ASP), CRE, GLU, glutamine (GLN), GABA, 

glutathione (GSH), glycerylphosphorylcholine (GPC) myo-inositol (MINO), N-acetylaspartate (NAA) 

(Rae et al., 2014: see Figure 35 and chapter 3.6.1 Magnetic resonance spectroscopy for an 

overview). 

 

Figure 35 Representation of a typical spectrum of a healthy human brain in vivo from magnetic 
resonance spectroscopy. The peaks are labelled with the molecule and structure. Lactate and lipid 
concentrations are not observed in the healthy brain and therefore their absorptions are not 
visible. Taken from Mountford et al. (2010), P.3063. 
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7.2.2 Insomnia & brain metabolism 

MRS has been used in a small number of insomnia studies that have mainly profiled 

differences in GABA/CRE concentrations. Winkelman et al. (2008) found evidence of a global 

reduction in GABA (by almost 30%) in 16 patients with insomnia compared to 16 healthy good 

sleeping controls. Lower GABA suggests an imbalance of the central nervous system in line with the 

hyperarousal theory of insomnia (Plante, Jensen, & Winkelman, 2012; Spiegelhalder, Regen, 

Baglioni, Riemann, et al., 2013; Winkelman et al., 2008). No other significant alterations were found 

between groups for levels of ASP, choline/phosphocholine (PC), GLU/GLN, glycine, MINO, NAA, and 

taurine (Winkelman et al., 2008). However, metabolites were averaged globally across the basal 

ganglia, thalamus, temporal, parietal, and occipital white-matter and cortices and were normalised 

to CRE, not water (a standard reference), making it unclear whether alterations in GABA or CRE 

levels were responsible for insomnia (Winkelman et al., 2008). 

In a subsequent small study from the same group, Plante, Jensen, Schoerning, et al. (2012) 

found specific decreases in the GABA/CRE ratio in insomnia patients compared to healthy controls. 

The most significant differences were found in the middle occipital cortex (OCC) (33% reduction), 

and middle ACC (21% reduction) but not in the thalamus (Plante, Jensen, Schoerning, et al., 2012). 

No other differences in metabolite ratios were found (NAA/CRE, CHO/CRE, & GLU/CRE). Conversely 

in another study, the GABA/CRE ratio was increased by 12% in the middle of the OCC with no 

significant differences found for any other metabolites measured (Morgan et al., 2012). An 

explanation for these inconsistent results cited differences in methodologies (2 nights of ambulatory 

polysomnography: PSG vs. actigraphy) and sampling of participants (Plante, Jensen, & Winkelman, 

2012). As insomnia is a heterogeneous disorder that is difficult to quantify, lack of PSG evaluation 

reinforces methodological differences in diagnoses. In the study by Plante, Jensen, Schoerning, et al. 

(2012), actigraphy was undertaken but this does not exclude other sleep disorders and does not 

quantify sleep staging. 
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A range of metabolites have been studied in those with insomnia compared to controls 

including: ASP, CHO, CRE, GLU, GLN, Glycine, NAA, MINO, scylloinositol and taurine (Morgan et al., 

2012; Winkelman et al., 2008). However, no differences were found across the brain specifically in 

the OCC (Morgan et al., 2012) and also in the basal ganglia, thalamus, and smaller parts of the 

temporal, parietal, and occipital lobes (Winkelman et al., 2008). The frontal areas of the brain 

remain to be explored for any measure of brain metabolism in insomnia. 

To indirectly evaluate GABAergic and glutamatergic activation in insomnia, Salas et al. (2013) 

used transcranial magnetic stimulation to profile intracortical motor excitability. Insomnia patients 

had alterations in glutamatergic mechanisms and not GABAergic neurotransmission dysregulation 

compared with controls. The authors urged for a more direct evaluation of glutamatergic activation 

in insomnia (Salas et al., 2013). Increases in GLU/GLN (referred to as GLX due to overlapping spectral 

resonances) has also been identified in patients with restless legs syndrome (Allen, Barker, Horská, & 

Earley, 2013) and positively correlated with WASO and total sleep time (TST). It appears the 

increased GLX/CRE levels are due to either sleep loss or both conditions share a generic sleep 

disorder nosology (Allen et al., 2013). 

In post-traumatic stress disorder (PTSD) GABA and NAA levels were reduced in those 

compared to trauma exposed controls (Meyerhoff, Mon, Metzler, & Neylan, 2014). GABA 

concentrations correlated negatively with insomnia severity index scores (ISI) whilst GLU 

concentrations were increased in PTSD in the medial frontal cortex. Hyperarousal may be a factor in 

this altered brain metabolism in those with PTSD possibly linking to other stress related disorders 

such as insomnia. Profiling measures of brain metabolism the frontal regions of the brain in insomnia 

seems the next logical step. 

To measure GABA and in order to provide a suitable signal-to-noise ratio to confidently 

detect GABA at 3Tesla (T), a specific MEshcher–GArwood Point RESolved Spectroscopy (MEGA-

PRESS) programme patch is required along with an asymmetric point resolved spectroscopy patch 
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(Mescher, Merkle, Kirsch, Garwood, & Gruetter, 1998; Rae, 2014). In the current study and due to 

the scanning time restrictions to load a MEGA-PRESS patch to obtain GABA and other metabolites, a 

novel approach was undertaken in insomnia research as it was decided to not obtain GABA from the 

spectra. The following brain metabolites were selected to further evaluate brain metabolism in 

insomnia including: ASP, CRE, GLN, GLU, GSH, GPC, MINO, & NAA (for an overview please refer to 

chapter 3.6.2 Metabolites from magnetic resonance spectroscopy) across a number of areas across 

the brain including: the frontal, anterior cingulate and also occipital cortices. Therefore, it was 

hypothesised that these concentrations of brain metabolites would display increased arousal across 

the brain in those with insomnia compared to healthy good sleeping controls, in line with the 

hyperarousal theory of insomnia (Riemann et al., 2010; Spiegelhalder & Riemann, 2013). Secondly, it 

was also hypothesised that objective TST, subjective insomnia severity and insomnia duration (years) 

were associated with brain metabolism in those with insomnia, in line with previous research 

findings. 
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7.3 Methods 

7.3.1 Participant sample 

In the present study, 16 patients with chronic insomnia disorder and 14 healthy good 

sleeping controls (GS) took part. Participant’s (<55 years of age) responded to local and online 

advertisements. Both groups were interviewed by telephone through the use of a screening 

assessment (Morin & Espie, 2003). Participants with insomnia were enrolled into the study if they 

met the inclusion/exclusion criteria as described previously in 3.8 Recruitment & participants. 

Control participants were matched to the insomnia patients by gender, age (within 3 years) and also 

for body mass index. Matched controls were defined through the same telephone interview to 

examine inclusion/exclusion criteria including the absence of a sleep complaint, psychiatric or 

medical disorder (unstable). Controls endorsed good sleep quality that was restorative and stable 

across the night (22:00-08:00) and reported a normal sleep onset latency (SOL: <15 minutes), wake-

time after sleep onset (<15 minutes) with a total sleep time of >six hours, a high sleep efficiency 

(>85%) and low amount of night time awakenings (≤2). Any medication known to impact sleep was 

completely exclusionary for control participants. This study was approved by the Royal Prince Alfred 

Hospital Ethics Review Committee, Sydney, Australia (see Appendix H: Ethical approval for Chapter 

7). All participants gave written consent to take part. 
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7.3.2 Assessment of sleep, mood and daytime functioning 

All participants kept a two week sleep diary (similar to Morin & Espie, 2003) to examine 

sleep quantity and quality. Participants wore wrist monitors during this period to exclude circadian 

rhythm disturbance. Actigraphy (Philips Respironics, Bend, Oregon, USA) was visually inspected for 

time in bed and missing data (sustained period with a lack of activity) concurrently by two 

experienced scorers in line with previous practice parameters (Chesson Jr et al., 1999). Outcome 

variables were processed and scored by an automated computer program (Actiware V6.0, Philips 

Respironics Bend, Oregon, USA). All participants also completed the following questionnaires to 

examine sleep and mood including: the ISI (Morin, 1993), the Epworth sleepiness scale (ESS) (Johns, 

1992), and the 21-item version of the depression anxiety and stress scale (DASS) (Henry & Crawford, 

2005). The DASS was used to quantify potential differences between those with insomnia and 

controls for measures of depression, anxiety and stress. One insomnia participant was excluded 

from the analysis as their scan was used to test the scan protocol. The final sample consisted of 15 

patients with PI and 14 GS. 
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7.3.3 Magnetic resonance spectroscopy assessment 

Proton 1H-MRS was used as an in vivo measure of intracerebral concentrations of 

metabolites. To measure metabolites, an asymmetric point resolved spectroscopy sequence (PRESS) 

was implemented with two echo times (TE: TE1 = 25ms, TE2 = 85ms) and a repetition time of 

2,000ms. All spectra were acquired at 3T (Achieva TX, Philips, Best, The Netherlands) using a 32 

channel head coil. In line with previous findings discussed in the introduction, three volumes of 

interest (VOI) were selected a-priori to the start of the study. Each measured (2x2x2cm) and was 

fitted to the following brain areas including: the left prefrontal cortex (LPFC), middle ACC and left 

occipital cortex (LOCC) (see Figure 36). The same axial slice was used for voxel placement. jMRUI (v4, 

build 162) was used to quantify metabolites in the time domain by fitting damped sinusoids to the 

fine reduction decay (equivalent to Lorentzian line shapes in the frequency domain). A QUEST 

algorithm was used and relied on a basis-set, generated using NMRSCOPE with published chemical 

shift and coupling constant information (Govindaraju et al., 2000). The following metabolites were 

obtained from each of these VOI’s: ASP, CRE, GLU, GLN, GSH, GPC, MINO and NAA, see chapter 3.6.2 

Metabolites from magnetic resonance spectroscopy for an overview. The area under the damped 

sinusoid gave a relative measure of the concentration of protons at each VOI. All signals were 

referenced to water. Total imaging time was ≈50 minutes for each subject. All scans were 

standardised to the afternoon-early evening only (12 noon to 7pm). 
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Figure 36 Highlights the 3 volumes of interest (VOI) across each of the 3-dimensions in space (x, y, 
& z) at the following locations within the brain: 1. Left occipital cortex; 2. Left medial prefrontal 
cortex and 3. Middle anterior cingulate cortex. 

 

  

3. Middle anterior cingulate cortex 

2. Left medial prefrontal cortex 

1. Left occipital cortex 
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7.3.5 Analysis 

Between group differences in demographic study characteristics were examined through 

independent t-tests (gender distributions were examined with Fisher's exact test) and 

nonparametric equivalents as described previously in chapter 3.9 Statistical analysis. All comparisons 

were two-sided, with p<.05 indicating statistical significance. Boxplots and histograms were used to 

check data for outliers. Outliers may have been due to movement during the scan and were 

conservatively labelled “outside” and removed from the analysis if they displayed values below Q1 – 

k (Q3 – Q1) or above Q3 + k (Q3 – Q1) where k = 2.2, Q1 = 25th and Q3 = 75th percentiles of the 

interquartile range of the data (Hoaglin & Iglewicz, 1987). This resulted in the removal of < 1.5% of 

the data (15 data points). Dependent variables were then examined for normality with kolmogorov-

smirnov tests. All were found to be normally distributed. Independent t-tests examined differences 

between groups across the three VOI’s (LPFC, ACC & LOCC) for the eight metabolites of interest 

including: ASP, CRE, GLU, GLN, GSH, GPC, MINO and NAA. Pearson’s correlations were also run for 

potential associations between brain metabolites and objectively defined TST, subjective insomnia 

severity (ISI) and duration of insomnia symptoms (years) in patients with insomnia only. Correlations 

with p≤.01 were considered robust and presented visually as graphs. 
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7.4 Results 

7.4.1 Sample characteristics 

 Mean demographic participant study characteristics are displayed in Table 22. Groups were 

not different for age (PI: Mean = 38.33, 24-51 yrs; GS: M = 36.71, 24-53 yrs), gender, sex, body mass 

index (PI: M = 26.13, 16-39; GS: M = 22.5, 19-27), or for Epworth sleepiness levels. As expected, 

patients with insomnia had significantly higher ISI and DASS depression, anxiety and stress scale 

scores than GS. Although significantly increased in those with insomnia, the DASS depression and 

anxiety scores were still in the normal-to-mild range. The average duration of insomnia was 11.9 

(range 1-20) years. PSG screening data are presented in Table 23 for the insomnia patients only. 

Actigraphic and sleep diary between group differences are presented in Table 24. For actigraphy, 

groups only differed significantly for the number of awakenings (increased in insomnia). TST, WASO 

and SOL were not significantly different between groups. However, data are only reported from 11 

PI’s and 11 GS due to corrupted data attributed to a fault with the actigraph computer program. 

 

 
Table 22 Mean (SD) demographic information for patients with insomnia (n=15) and healthy good 
sleeping controls (n=14). ISI: insomnia severity index; ESS: Epworth sleepiness scale; DASS: 
depression (D), anxiety (A), and stress (S) scale. *p<.05. Note: median scores (interquartile range) 
are presented for DASS depression & anxiety scale scores. 

  

Between groups demographic information 
  PI (n=15) GS (n=14) P-value 
Sex% (F:M) 60/40 64.3/35.7 1.00  
Age (SD) 38.3 (9.6) 36.7 (8.9) 0.64 
BMI (kg/m2) 26.1 (5.2) 22.5 (2.0) 0.23 
Insm duration 11.9 (11.8) yrs -   
ISI 19 (4.3) 1.9 (1.6) <.01* 
ESS 4.5 (2.6) 4.2 (2.6) 0.80  
DASS - D 4.0 (13) 2.0 (4)  <.01* 
DASS - A 5.0 (6) 0.0 (2)   <.01*  
DASS - S 16.6 (8.5) 4.9 (1.1)  <.01* 
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Polysomnography Screening (PI only: n=15) 
SOL (min) 32.4 (21.5) 
WASO (min) 77.8 (54.3) 
TST (min) 324.82 (48.0) 
SE (%) 81.0 (12.5) 
NREM sleep (min) 261.2 (35.0) 
REM sleep (min) 57.4 (21.6) 
REM latency (min)  171.5 (63.8) 
N1 (min)  11.0 (6.4) 
N2 (min)  186.3 (37.5) 
SWS (min) 69.6 (22.5) 
AHI (/hr)  2.6 (1.7) 
PLMS (/hr) 0.03 (0.1) 

Table 23 Mean (SD) overnight polysomnograpic sleep study information for patients with 
insomnia (n=15) SOL: sleep onset latency; WASO: wake-time after sleep onset; TST: total sleep 
time; SE: sleep efficiency; NREM: non-rapid eye movement; REM: rapid eye movement; N1: stage 
1 of sleep; N2: stage 2 of sleep; SWS: slow wave sleep; AHI: Apnea Hypopnea Index; PLMS: 
periodic limb movements. 

Between groups sleep diary information 
  PI (n=15) GS (n=14) P-value 

SOL (min) 43.0 (31.4) 11.0 (5.3) <.01** 
WASO (min) 54.4 (53.2) 5.7 (7.7) <.01** 
NOAW 1.7 (1.5) 0.6 (0.6) <.01** 
TST (min) 320.5 (85.9) 446.7 (30.2) <.01** 
SE (%) 63.0 (14.7) 89.0 (5.1) <.01** 
SQ (0-2) 0.9 (0.5) 1.5 (0.4) <.01** 

Between groups actigraphy information^ 
SOL (min) 13.1 (6.6) 8.2 (8.2) 0.14 
WASO (min) 47.4 (15.8) 40.3 (10.4) 0.23 
NOA 1.5 (0.6) 1.0 (0.3) <.05* 
TST (min) 443.5 (38.3) 434.7 (39.4) 0.30 
SE (%) 86.1 (3.8) 88.7 (3.8) 1.10 

Table 24 Mean (SD) demographic information for patients with insomnia (n=15) and healthy good 
sleeping controls (n=14). SOL: sleep onset latency; WASO: wake-time after sleep onset; NOAW: 
Number of awakenings; TST: total sleep time; SE: sleep efficiency; SQ sleep quality. ^Due to 
corrupted data comparison included 11 patients with insomnia vs. 11 controls.*p<.05 ** p<.01 
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7.4.2 Magnetic resonance spectroscopy 

No statistically significant differences were found for any of the metabolites profiled using 

independent t-tests including: ASP; CRE; GLU; GLN; GSH; GPC; MINO; NAA; between patients with 

insomnia and good sleeping controls for the three VOI’s: LPFC [F (1, 26-27) = 0.07-2.16, p=.15-.79]; 

LOCC [F (1, 25-27) = 0.00-1.16, p=.31-.94; ACC [F (1, 22-27) = 0.01-0.83, p=.37-.94]. See Figure 37, 

Figure 38, Figure 39, Table 25, Table 26 & Table 27. 
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Figure 37 Left prefrontal cortex concentrations between patients with insomnia (n=15) and healthy good sleeping 
controls (n=14) for metabolites including: aspartate (ASP); creatine (CRE); glutamate (GLU); glutamine (GLN); 
glutathione (GSH); glycerylphosphorylcholine (GPC); myo-inositol (MINO); & N-acetylaspartate (NAA). Error bars 
indicate 95% confidence intervals. 

Left prefrontal cortex 

Metabolite Group N Mean SD 
Difference testing and 95% CI 

p-
value ES Mean 

Diff. Lower Upper 

ASP Insomnia 15 7.68 3.24 .15 0.55 2.14 -0.85 5.13 Control 14 5.54 4.54 

CRE Insomnia 15 13.32 2.16 .28 0.42 0.78 -0.67 2.23 Control 14 12.54 1.58 

GLU Insomnia 15 15.72 2.69 .45 0.29 0.81 -1.34 3.00 
Control 14 14.91 2.97 

GLN Insomnia 15 7.12 3.63 .79 -0.01 -0.34 -2.93 2.25 Control 14 7.46 3.12 

GSH Insomnia 12 6.40 0.69 .34 -0.40 -0.39 -1.24 0.44 Control 13 6.78 1.21 

GPC Insomnia 15 8.06 1.44 .22 0.47 0.70 -0.44 1.84 Control 14 7.36 1.56 

MINO Insomnia 15 11.93 2.67 .18 0.51 1.27 -0.63 3.17 Control 14 10.66 2.28 

NAA Insomnia 15 15.77 2.26 .22 0.47 1.12 -0.69 2.93 Control 14 14.65 2.49 

Table 25 Metabolites in the left prefrontal cortex for mean, SD, p-value and effect size (ES: d) between insomnia 
and controls including: aspartate (ASP); creatine (CRE); glutamate (GLU); glutamine (GLN); glutathione (GSH); 
glycerylphosphorylcholine (GPC); myo-inositol (MINO); & N-acetylaspartate (NAA). 

  

208 
 



 

 

Figure 38 Left occipital cortex concentrations between patients with insomnia (n=15) and healthy good sleeping 
controls (n=14) for metabolites including: aspartate (ASP); creatine (CRE); glutamate (GLU); glutamine (GLN); 
glutathione (GSH); glycerylphosphorylcholine (GPC); myo-inositol (MINO); & N-acetylaspartate (NAA). Error bars 
indicate 95% confidence intervals. 

Left occipital cortex 

Metabolite Group N Mean SD 
Difference testing and 95% CI 

p-
value ES Mean 

Diff. Lower Upper 

ASP 
Insomnia 15 6.02 2.86 

.31 0.39 1.00 -0.95 2.93 Control 14 5.03 2.15 

CRE Insomnia 15 12.80 2.31 .29 -0.48 -0.69 -2.00 0.62 Control 14 13.48 0.55 

GLU Insomnia 15 15.49 2.60 .57 -0.22 -0.53 -2.42 1.36 Control 14 16.02 2.33 

GLN Insomnia 14 4.41 1.70 .99 0.01 0.01 -1.43 1.46 Control 14 4.40 2.01 

GSH Insomnia 15 4.65 1.16 .69 -0.15 -0.17 -1.07 0.72 Control 14 4.82 1.19 

GPC Insomnia 15 6.26 1.13 .66 0.17 0.15 -0.56 0.86 Control 14 6.11 0.65 

MINO Insomnia 13 10.97 1.21 .56 0.23 0.26 -0.65 1.17 Control 14 10.71 1.08 

NAA Insomnia 14 17.53 1.79 .50 -0.27 -0.37 -1.50 0.75 Control 14 17.91 0.99 

Table 26 Metabolites in the left occipital cortex for mean, SD, p-value and effect size (ES: d) between insomnia  
and controls including: aspartate (ASP); creatine (CRE); glutamate (GLU); glutamine (GLN); glutathione (GSH); 
glycerylphosphorylcholine (GPC); myo-inositol (MINO); & N-acetylaspartate (NAA). 
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Figure 39 Middle anterior cingulate cortex concentrations between patients with insomnia (n=15) and healthy 
good sleeping controls (n=14) for metabolites including: aspartate (ASP); creatine (CRE); glutamate (GLU); 
glutamine (GLN); Glutathione (GSH); glycerylphosphorylcholine (GPC); myo-inositol (MINO); & N-acetylaspartate 
(NAA). Error bars indicate 95% confidence intervals. 

Anterior cingulate cortex 

Metabolite Group N Mean SD 
Difference testing and 95% CI 

p-
value ES Mean 

Diff. Lower Upper 

ASP Insomnia 12 3.11 1.90 .28 -0.14 -0.30 -2.23 1.63 Control 10 3.42 2.61 

CRE Insomnia 15 12.07 2.67 .44 0.30 0.67 -1.07 2.40 Control 14 11.40 1.75 

GLU Insomnia 15 14.35 3.65 .73 0.13 1.33 -2.27 3.19 Control 14 13.89 3.49 

GLN Insomnia 15 7.79 4.21 .73 -0.13 -0.52 -3.60 2.56 Control 14 8.31 3.85 

GSH Insomnia 15 6.72 1.27 .43 -0.30 -0.42 -1.51 0.67 Control 14 7.14 1.58 

GPC Insomnia 15 6.73 1.65 .37 0.34 0.53 -0.66 1.72 Control 14 6.20 1.46 

MINO Insomnia 14 9.62 1.81 .36 0.36 0.07 -1.77 1.91 Control 14 8.97 1.84 

NAA Insomnia 15 13.11 2.61 .85 0.07 0.17 -1.67 2.02 Control 14 12.94 2.20 

Table 27 Metabolites in the middle anterior cingulate cortex for mean, SD, p-value and effect size (ES: d) between 
insomnia and controls including: aspartate (ASP); creatine (CRE); glutamate (GLU); glutamine (GLN); glutathione 
(GSH); glycerylphosphorylcholine (GPC); myo-inositol (MINO); & N-acetylaspartate (NAA). 
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7.4.3 Correlations with objective sleep time, insomnia severity and duration 

In line with previous research findings, Pearson correlations were run between objective TST 

and measures of brain metabolism in patients with insomnia (n=15) at each VOI. For the LPFC: 

significant correlations were found for TST (with CRE, GPC & MINO). Only CRE levels were found to 

be significantly correlated at the p≤.01 level (R2(13)= .48, p=.01:see Figure 40). Correlations were 

also run for subjective insomnia severity (ISI) and insomnia duration (years). No significant 

correlations were found for insomnia severity scores. Insomnia duration was found to be negatively 

correlated with LPFC levels of GLU (R2(13)= -.30, p=.03) only on inspection of scatter graphs one 

participant was found to be an outlier with 49 years of insomnia symptomology. With this 

participant removed LPFC levels of GLU correlated positively with years of insomnia symptoms 

(R2(13)= .42, p=.01: see Figure 41). 
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Figure 40 Scatterplot of relationship between left prefrontal cortex (LPFC) values of creatine (CRE) 
and objective total sleep time (minutes) from polysomnography (R2= .48). 

 

 
Figure 41 Scatterplot of relationship between left prefrontal cortex (LPFC) values of glutamate 
(GLU) and duration of insomnia (years) (R2= .42). 
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7.5 Discussion 

In this study no differences in brain metabolites were detected in those with insomnia and 

healthy controls including: aspartate (ASP), creatine (CRE), glutamate (GLU), glutamine (GLN), 

glutathione (GSH), glycerylphosphorylcholine (GPC) myo-inositol (MINO) and N-acetylaspartate 

(NAA) across the three volumes-of-interest (VOI) that were identified a-priori. The areas assessed 

were the left prefrontal cortex (LPFC), the anterior cingulate cortex (ACC) and the left occipital 

cortex (LOCC). Insomnia may not affect the acquired brain metabolites in the regions of the brain 

sampled in this research study. The following sections discuss implications. 

Other metabolites have been explored in insomnia compared to controls including: ASP, 

CHO, CRE, GLU, GLN, gamma-Aminobutyric acid (GABA) Glycine, NAA, MINO, scylloinositol and 

taurine (Morgan et al., 2012; Winkelman et al., 2008). Again, no differences were found across the 

brain specifically in the occipital cortex (Morgan et al., 2012) and also in the basal ganglia, thalamus, 

and smaller parts of the temporal, parietal, and occipital lobes (Winkelman et al., 2008). The current 

study profiled a larger number of metabolites and is the only study in insomnia referenced to water 

(a standard reference) and not CRE, across more areas of the brain including the frontal, anterior 

cingulate and also occipital cortices of the brain. Specifically, Insomnia was not found to affect CRE 

levels in the brain suggesting, as in previous studies, that only GABA may be altered due to insomnia. 

In the largest brain imaging study in insomnia, no differences were found in cerebral white 

matter volumes across the brain between those with insomnia (n=28) and controls (n=38) 

(Spiegelhalder, Regen, Baglioni, Klöppel, et al., 2013). From this research, the authors stated that 

insomnia appears unlikely to be responsible for major alterations in the structure of the brain; 

however subtle differences may exist at smaller morphometric levels. Previous positron emission 
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tomography (PET) studies have found increased glucose metabolism in the hypothalamus suggesting 

an increased arousal response in patients with insomnia compared to controls (Nofzinger et al., 

2004; Nofzinger et al., 2006). It is unclear whether this increased arousal is a development from 

insomnia symptomology or is a stable trait predisposing an individual to insomnia. In the current 

study, differences may be present in other regions that are deeper within the brain such as the 

hypothalamus. 

The most significant differences in brain metabolites have been in ratios of GABA/CRE in 

insomnia. GABA is the primary inhibitory neurotransmitter in the central nervous system 

(Gottesmann, 2002) and is closely linked to brain function (Puts & Edden, 2012); with higher GABA 

levels associated with increased concentration and speed of decision making (Sumner et al., 2010); 

lower GABA was associated with symptoms of depression, anxiety (Kalueff & Nutt, 2007) and 

insomnia (Winkelman et al., 2008). Agents that increase GABAergic activation, of which GABA is a 

primary component, are used in pharmacotherapy for insomnia (Kalueff & Nutt, 2007). 

Benzodiazepine receptor agonists (BZRAs) act on GABA receptor uptake (Gottesmann, 2002). The 

vast majority of GABA is metabolised from GLU and it is hard to separate GLU and GLN as they both 

contain similar amino acids, amines and derivatives involved in neurotransmission (excitatory and 

inhibitory) (Stagg et al., 2011). No differences were found for either GLU or GLN in this study, 

specifically suggesting that only GABA may be altered in those with insomnia. 

When GABA was profiled previously, studies have found mixed results in those with 

insomnia compared to controls. A global reduction in the GABA/CRE ratio in 16 patients with 

insomnia has been discovered (Winkelman et al., 2008). However there was limited anatomical 

specificity as GABA/CRE levels were averaged ‘globally’ across the basal ganglia, thalamus, temporal, 

214 
 
 
 

 

 



 

parietal, and occipital white-matter and cortex. Metabolites were normalised to CRE not water 

suggesting either GABA or CRE may be responsible for this finding. Plante, Jensen, Schoerning, et al. 

(2012) found decreases in GABA/CRE ratio in insomnia in the occipital (33% reduction), and anterior 

cingulate cortices (21% reduction) but no differences were found in the thalamus (Plante, Jensen, 

Schoerning, et al., 2012). It is important to be cognisant in using ratios as it is difficult to assay the 

direct contribution of each metabolite. Increased GABA levels do not necessarily mean that there is 

increased inhibition but merely increased GABAergic activation and vice versa (Rae, 2014). For 

example, in the previous insomnia studies, it is impossible to specify the direct contributions of 

metabolites in the GABA/CRE ratio as GABA or CRE may be responsible for the differences in 

insomnia compared to controls found previously. This study measured CRE and found no differences 

were found, therefore suggesting that only GABA may be different with insomnia. 

Phosphorus magnetic resonance spectroscopy (31P MRS) has also been used to explore and 

understand the energetic components of the brain in insomnia. Lower phosphocreatine in cerebral 

grey matter and a reduction in phosphocholine (PC) in white matter has been found in those with 

insomnia compared to healthy controls (Harper et al., 2013). A negative trend was found between 

polysomnograpic (PSG) defined wake-time after sleep onset (WASO) and grey matter beta-

nucleoside triphosphate and white matter PC in those with primary insomnia (Harper et al., 2013). 

Winkelman et al. (2008) profiled a significant negative correlation with GABA levels and WASO in 

those with insomnia. An interpretation of this could link to cognitive hyperarousal commonly 

reported in those with insomnia (Harvey, 2001). With this information, correlations were run 

between TST, insomnia duration and subjective insomnia severity scores with brain metabolites. TST 

positively correlated with LPFC levels of ASP, CRE, and GPC, suggesting increased brain metabolism 

may relate to greater amounts of objectively defined TST. At the ≤.01 level, CRE correlated with TST 
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perhaps due to the important role CRE plays in maintaining brain energy homeostasis (Lin et al., 

2005). However, correlations are difficult to interpret as the controls in the current study did not 

undergo PSG evaluation and it remains to be seen if this is specific to insomnia. 

No significant correlations were found for subjective insomnia severity (ISI) in patients with 

insomnia. No other previous studies have found a significant positive correlation between brain 

metabolism and subjective insomnia severity. However, in post-traumatic stress disorder (PTSD), 

lower hippocampal volumes were found to be mediated by insomnia severity (as measured through 

the ISI). Higher ISI scores were associated with reduced levels of hippocampal CA3/Dentate Gyrus 

volumes (Neylan et al., 2010). Also in patients with PTSD, Meyerhoff et al. (2014) found metabolite 

concentrations in the parieto-occipital cortex to mediate ISI scores (higher ISI scores correlated with 

lower GABA and higher GLU levels) and suggested that this was in line with hyperarousal found in 

insomnia. The lack of an association between insomnia severity in this and previous studies suggest 

differences in brain metabolism in those with insomnia and those with PTSD. 

In the current study however, a significant and strong positive correlation was found for 

insomnia duration (years) and LPFC GLU levels (R2=.42), possibly suggesting a relationship between 

the duration of insomnia symptoms and LPFC GLU levels. This is the first time that insomnia duration 

has been found to be associated with brain metabolism and is in line with previous findings that 

used transcranial magnetic stimulation to detect increased glutamatergic activation in those with 

insomnia compared to controls (Salas et al., 2013). This finding is interesting as GLU is the major 

excitatory neurotransmitter in the brain (Bennett & Balcar, 1999; Fonnum, 1984) and has the 

potential to be neurotoxic (Choi, 1988). Although no significant differences were seen between 

insomnia patients and controls in the LPFC for GLU in this study. Further studies with larger numbers 
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of participants should now look to profile GLU across the frontal regions of the brain to elucidate the 

role of GLU in insomnia. 

A number of limitations require consideration. Insomnia is a highly heterogeneous disorder 

and quantifying differences with a single measure of MRS may not be possible in this group. The 

largest effect size was 0.51, with a probability level of .05 and a sample size of 29, the observed 

power (2-tail) was 0.25. It is arguable that small sample size is responsible for non-significant 

findings. However, the heterogeneous nature of insomnia and methodological issues in previous 

research in this area cannot be discounted. A number of statistical tests were deployed without 

correction therefore significant results should be interrupted with caution and deemed exploratory. 

Although no differences were found in a number of metabolites across the brain, measuring GABA 

referenced to water in larger studies with a higher magnetic resonance would strengthen future 

research in insomnia. GABA was not measured as part of this study due to the time required for data 

collection. In a novel approach to insomnia research, it was decided to quantify other metabolites 

across the brain including the pre-frontal regions. Time of testing may have affected the results of 

the protocol but this study was standardised to the afternoon-early evening (12:00pm-19:00pm) and 

previously brain metabolism has been found to be stable across the day (Evans, McGonigle, & 

Edden, 2010). Individual chronotype was not measured as part of this study and this may have 

influenced the results of the study. Lastly, as control participants did not undergo an overnight sleep 

assessment other sleep disorders cannot be discounted. 
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7.6 Conclusion 

This study investigated the role of brain in vivo cerebral metabolism in those with insomnia 

compared to healthy good sleeping controls. Objective TST correlated significantly with levels of CRE 

in the LPFC of the brain, suggesting a link between brain metabolism and sleep in insomnia. 

Insomnia duration was also significantly correlated with levels of GLU in the LPFC. Subjective 

insomnia severity scores did not correlate with brain metabolism. No significant differences were 

found across the following regions of the brain: LOCC, ACC and LPFC for any of the metabolites of 

interest: ASP, CRE, GLU, GLN, GSH, GPC, MINO and NAA. As this was the first study to profile a 

number of metabolites and reference them to water, the next logical step would be to explore GABA 

in the frontal regions to gain further understanding of what happens to brain metabolism in 

insomnia. 
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Chapter 8: Summary 
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8.1 Overall findings 

 This thesis brought together a number of novel methodologies to examine treatment 

response to sleep restriction therapy (SRT) and to address the current poor measurement of 

subjective and objective markers of insomnia. Previously the focus was predominately on subjective 

sleep report measures pre-to-post therapy, which in terms of physiological assessment resulted in a 

number of unanswered questions regarding treatment. A further aim of this thesis was to profile 

potential markers of insomnia within the brain which in the future could be matched to subjective 

reports. Key findings are listed below (see Table 28). 

Chapter Key findings 

2 

Review of sleep restriction therapy for the treatment of insomnia disorder. Discovered 
subjective improvements in sleep diary outcome variables. Further objective and 
subjective measures are required in well-designed controlled trials to evaluate the true 
impact of therapy. 

4 

First use of an ecological momentary assessment technique to profile changes in 
cognition throughout sleep restriction therapy for insomnia. Modifications to alertness 
and sleepiness/fatigue were found to increase at week 1 but reduce below baseline 
levels at week 3 suggesting these may be targets for therapy in insomnia. 

5 

Assessment of salivary cortisol concentrations throughout sleep restriction therapy. 
This study probed potential differences in cortisol through the first 3 weeks of therapy. 
No significant change was found suggesting no alteration to salivary cortisol 
concentrations or hypothalamic–pituitary–adrenal axis activity during the first 3 weeks 
of therapy. 

6 

First use of physiological markers (including overnight plasma cortisol concentrations & 
core body temperature) of hypothalamic–pituitary–adrenal axis activity measured pre-
to-post sleep restriction therapy for insomnia. Therapy may increase early morning 
levels of cortisol concentrations and decrease overall core body temperature.  

7 

Evaluation of brain metabolism in insomnia compared to controls using magnetic 
resonance spectroscopy. Results suggest no significant differences in brain 
neurochemistry between those groups. Objective total sleep is positively associated to 
creatine levels and insomnia duration is positively associated with glutamate in those 
with insomnia. 

Table 28 An overview of key the findings from the thesis. 
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From the systematic review and meta-analysis in chapter three, SRT improves sleep diary 

continuity variables. Weighted effect sizes for sleep diary measures of sleep onset latency (SOL), 

wake time after sleep onset (WASO), and sleep efficiency (SE) were moderate-to-large after therapy, 

and total sleep time (TST) indicated a small improvement. Previous treatment studies in SRT for 

insomnia failed to evaluate the full impact on objective sleep variables and measures of daytime 

functioning, limiting finite conclusions. Future studies should now examine objective measures 

(actigraphy & polysomnography: PSG) and subjective measures (sleep diary) before and after 

therapy. 

 In chapter four, the use of ecological momentary assessment to probe specific temporal 

alterations in subjective measures of mood, alertness and sleepiness/fatigue is novel. At week one 

SRT did not impact negative mood statements but did reduce positive mood statements, along with 

increasing sleepiness/fatigue and reducing alert cognition. This reflects previous treatment data 

(Kyle et al., 2014; Kyle et al., 2011). At week two, scores returned to baseline levels and by week 

three significant improvements were found for sleepiness/fatigue and negative mood but pre-sleep 

levels of sleepiness/fatigue remained high. Bedtime levels of alert cognition reduced significantly 

and morning levels increased; suggesting an alteration to the sleep-wake experience. Overall, SRT 

moderated sleep through reducing alertness and increasing sleepiness, particularly prior to sleep 

onset. 

The use of ecological momentary assessment through SRT for insomnia was expanded in 

chapter five to probe potential alterations in measures of salivary cortisol before and throughout 

treatment. This study systematically evaluated the role of salivary cortisol during SRT and proved 

that the protocol was possible, adhered to, and the results reflected normal circadian variation to 
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salivary cortisol secretion. Larger clinical trials may now look to implement similar protocol but with 

a longer sampling timeframe (over 6-12 months after treatment) as no significant differences were 

found pre-to-post therapy. This was thought to be due to the underpowered nature of the study. 

There was however, an increase in bedtime cortisol concentrations at three weeks after therapy and 

a decrease in evening cortisol, suggesting a longer assessment period (3-6 weeks) is required to fully 

understand changes in cortisol due to SRT for insomnia. 

Chapter six builds on the results of both chapters four and five by looking to evaluate in-lab 

measures of objective sleep and arousal before and after SRT for insomnia. Plasma cortisol 

concentrations increased at post treatment in the early morning compared with baseline. This 

difference compared with salivary cortisol discussed in chapter five is somewhat unexpected. It 

would appear that plasma cortisol is more robust than home based assessments of salivary cortisol 

which are less likely to be contaminated (teeth brushing, cigarette smoking, or drinking orange juice) 

or were not taken at the right time. Bedtime plasma cortisol remained the same but the increase in 

morning cortisol suggests SRT improves physiological functioning (cortisol & temperature) by 

modifying the arousal response and may increase objective TST. There was no evidence of a 

significant phase shift in the circadian rhythm after SRT but the amplitude of the circadian rhythm 

appeared to increase. Studies evaluating changes over the course of 24 hours under constant 

routine conditions would further add to the body of knowledge. 

 Chapter seven examines brain metabolism in insomnia compared to healthy good sleeping 

controls. Magnetic resonance spectroscopy (MRS) was used to quantify a range of metabolites 

including: aspartate (ASP), creatine (CRE), glutamate (GLU), glutamine (GLN), glutathione (GSH), 

glycerylphosphorylcholine (GPC), myo-inositol (MINO), and N-acetylaspartate (NAA) across the left 

222 
 
 
 

 

 



 

occipital, anterior cingulate and left prefrontal cortices referenced to water. No significant 

differences were found between those with insomnia and controls, however exploratory 

correlations elucidated possible links between objective TST and brain metabolism. Insomnia 

duration (yrs) was positively correlated with increased levels of GLU, which is supportive of the 

hyperarousal theory of insomnia. This suggests that chronic sleep loss may lead to increased levels 

of brain metabolism with increases in glutamine (but not significantly different from controls) there 

is an expectation that gamma-Aminobutyric acid (GABA) would be reduced. Potentially, SRT in larger 

studies could reverse these levels of brain metabolites. 

Overall, it is appropriate to integrate the findings of the thesis to existing theoretical 

frameworks of insomnia. In experimental studies, the most relevant theoretical perspective is the 

hyperarousal hypothesis (Bonnet & Arand, 2010) and the 3P temporal model for insomnia. The 3P 

provides a framework for both the development and maintenance of chronic insomnia disorder 

(Spielman & Glovinsky, 1991). The model suggests that individuals may harbour predisposing 

(behaviour & genetic predisposition); precipitating (significant & often traumatic life events that may 

act as a trigger for insomnia); and perpetuating (behaviour, mood, thoughts & beliefs) factors that 

contribute to insomnia disorder through time. Chronic insomnia disorder is maintained through 

perpetuating factors including maladaptive, thoughts, behaviours, attributions or beliefs about 

sleep. The individual becomes sensitised to sources of sleep disruption (e.g. noise, light or 

temperature, body awareness). These wake-promoting processes then become conditioned at sleep 

initiation, preventing sleep onset and lead to the development of psychophysiological insomnia and 

hyperarousal (AASM, 2005). Individuals report increased cognitive hyperarousal or an-inability to 

switch off a ‘racing mind’ for successful sleep initiation (Harvey, 2001). Results from chapter 4, 

suggest that SRT may normalise pre-bed time cognitive arousal in those with insomnia after three 
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weeks of therapy and suggest a potential mechanism for the therapeutic effect of SRT. This is 

paralleled with predictions from the 3P model where cognitive arousal is normalised (a perpetuating 

factor) (Bonnet & Arand, 2010; Spielman & Glovinsky, 1991). 

In chapter 5 salivary cortisol (SC) was examined during sleep restriction therapy (SRT) for 

psychophysiological insomnia. A reduction in SC concentrations is suggestive of reduced stress for 

the ensuing sleep period, in line with reduced physiological hyperarousal (Bonnet & Arand, 1997, 

2010). Salivary cortisol concentrations did not change overall during the initial stages of therapy and 

more importantly, did not increase. It is therefore reassuring that SRT did not increase biological 

markers of stress. An increase in cortisol may have occurred as SRT is a mild stressor as time in bed 

was restricted. Recent studies found that salivary cortisol was a marker of stress but not sleep loss 

and suggested that only stressful sleep loss paradigms would increase cortisol concentrations 

(Pejovic et al., 2013). 

A considerable challenge for the hyperarousal hypothesis is to determine when the onset of 

an hyperarousal response takes place in the development of insomnia. The 3P-model may help 

explain the activation of this stress response (e.g. a genetic predisposition to stress that is activated 

by the environment and then maintained through behaviour or faulty cognitions). At present, we do 

not have this data. Current results suggest that more than 3 weeks is necessary for these changes to 

become apparent. 

Night time plasma cortisol concentrations were measured in chapter 6 after at least 6 weeks 

of treatment. A significant rise in early morning cortisol concentrations was found suggesting a 

normalisation to the circadian rhythm. Backhaus et al. (2004) also found a dampened cortisol 

awakening response in insomnia compared to healthy controls which is not dissimilar to these 
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findings. This increased circadian amplitude was reflected in core body temperature data providing 

further evidence of circadian changes. Overall core body temperature was reduced pre-to-post 

therapy providing further evidence of a reduction in physiological hyperarousal after effective 

treatment (Bonnet & Arand, 1997, 2010). 

Finally in chapter seven, it was hypothesised that concentrations of brain metabolites would 

display increased arousal across the brain in those with insomnia, in support of the hyperarousal 

hypothesis (Riemann et al., 2010; Spiegelhalder & Riemann, 2013). No differences were found 

between the groups. Differences may be present in other regions that are deeper within the brain 

(e.g. the hypothalamus). It remains unclear at this point whether this technique can identify the 

severity of insomnia symptomology given the heterogeneity of this disorder and variability found 

amongst individual sufferers as specified in the 3P model. 
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8.2 Limitations 

This thesis predominantly used repeated measures and would have been strengthened with 

placebo controls or control groups/wait-list, which was not feasible given current resources. There 

are some limitations regarding statistical testing which include multiple comparisons not corrected 

for. This method may have identified statistically significant effects (Type I error) and caution is 

appropriate in relation to these results. Power estimates were also not calculated prior to the 

beginning of these studies due not only to the experimental nature of the thesis but also the current 

lack of previous treatment data. This thesis is the first to successfully use ecological momentary 

assessment during behavioural treatment for insomnia and found significant effects. Further studies 

are needed to repeat this experimental method and validate these findings. 

In chapter 5, no changes in salivary cortisol concentrations were found during the first 3 

weeks of therapy. This study was underpowered due to time and financial constructs and is 

therefore vulnerable to a Type II statistical error. Subsequent studies may be able to detect changes 

in cortisol concentrations over a longer timeframe. In chapter 6, multiple comparisons were also not 

corrected for and it is quite evident that this is an exploratory pilot study that does require further 

validation.  In chapter 7, statistical tests were run between those with insomnia and healthy controls 

without correction for multiple comparisons. No statistically significant differences were found at 

the .05 level suggesting no brain metabolic differences in insomnia. Even if differences were found 

multiple comparisons would still be limited by the small sample size but conservatively the p-values 

would need to be reduced to at least the .01 level. 
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The principal function of these studies was to test and profile the use of repeated 

measurements of cognition and cortisol throughout behavioural treatment for insomnia. Linear 

mixed-effects models were used instead of repeated-measures analysis of variance. The strength of 

mixed-effects models is they can be used even when data is unbalanced/missing, as well as taking 

into account systematic inter-individual differences which is unique (Van Dongen, Olofsen, Dinges, & 

Maislin, 2004). Previous studies have excluded participants without full data and in chapters four, 

five, and six there were small samples sizes. Therefore, it was paramount that any analysis 

acknowledged missing data (Olsen, Stechuchak, Edinger, Ulmer, & Woolson, 2012). Small participant 

numbers may have increased the probability of a Type-1 or Type-2 statistical error. In order to 

address this, individual participant effects were graphed pre-to-post therapy allowing for easier 

assessment of possible patient clinical effects. However, the small sizes do restrict generalisation of 

findings at this point. 

In the delivery of SRT, the researcher (CBM) acted as both therapist and researcher which 

may have impacted on subjective outcomes. The delivery of the SRT was standardised across the 

thesis and was supported by a brief set of digital slides (8 in total: see Appendix B: Sleep restriction 

therapy presentation slides). An information manual was also used to help standardise delivery see 

Appendix C: Sleep restriction therapy information manual. Some caution may be needed in the 

interpretation of the results and a six month follow-up would have enhanced the findings of this 

study as only pre-to-post therapy differences were evaluated. The primary goal was to focus on the 

acute effects of therapy and to continue with the same protocol at the University of Sydney that had 

been initiated at the University of Glasgow. 
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In chapter eight, GABA was not examined due to the time required to detect it in the scan 

protocol and consequently cannot be excluded. After considerable discussion, the following 

metabolites were quantified: ASP, CRE, GLN, GLU, GSH, GPC, MINO, & NAA.  No differences were 

found between those with insomnia and controls in the prefrontal, anterior cingulate and occipital 

cortices perhaps due to reduced statistical power. Recruitment was difficult due to financial 

resources. It would be very useful in future studies to evaluate differences in subtypes of insomnia 

(Psychophysiological / Paradoxical / Idiopathic) to fully quantify the potential impact of insomnia in a 

much larger sample. 

Participants were sampled from the general population through tertiary sleep clinics. 

Participants who agreed to take part in research agree to a lengthy screening process and these 

individuals may not be reflective of the vast majority of those with insomnia. Only individuals with 

psychophysiological insomnia were recruited whereas in the general population insomnia is often 

comorbid with a range of other psychiatric and medical conditions. The exclusion of chronic hypnotic 

use may also not be generalisable to the insomnia population who continue to use hypnotics 

without benefit (Riemann & Perlis, 2009; Smith, Perlis, Park, et al., 2002). 
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8.3 Implications of research and future directions 

 A number of key themes have emerged from this research in relation to SRT. SRT is a 

clinically useful therapy (Miller et al., 2014). The American Academy of Sleep Medicine may wish to 

re-consider SRT as a standalone therapy given the current evidence which has not been updated 

since 2006 (Morin, Bootzin, et al., 2006). It is timely to evaluate objective effects of SRT which has 

only recently been undertaken by exploring objective impairments in sleep and vigilance (Kyle et al., 

2014). Follow-up assessments with objective outcomes using PSG, actigraphy or plasma cortisol are 

required at 6-18 months. The delivery and titration of SRT varied between previous studies therefore 

evaluating different SRT delivery methods is timely. Differing methodologies for SRT inhibits the 

standardisation of procedures across studies which is problematic for the literature as SRT is 

delivered widely as part of cognitive behavioural therapy for insomnia (CBT-I). Research addressing 

these varying techniques of SRT will elucidate the most effective delivery for specific subtypes of 

insomnia allowing for better standardisation of overall CBT-I. Measuring changes in daytime 

cognition and quality of life throughout treatment for insomnia will allow the identification of 

associated impairments during the acute phase of treatment. Long term follow-up would target 

which aspects of cognition change and remain stable with effective SRT for insomnia.  

Further targets of insomnia symptoms may only be revealed with repeated ecological valid 

measures of insomnia symptomology. With technology, ecological momentary assessment (EMA) 

can be used to map daily responses to treatment with real-time feedback to the patient. Challenging 

negative thoughts with this information may enhance treatment gains. With regards to measuring 

arousal, further studies are now required to combine point-in-time EMA techniques with longer-

term follow-up times. Assessments of measures like heart rate, salivary or blood cortisol 

concentrations, or other measures of physiological arousal and inflammation (e.g. C-reactive 
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protein) in insomnia over time would be useful to capture the varying nature of this condition. This 

will provide ecologically valid profiles of insomnia symptoms when they do occur in the home 

environment which can then be targeted with treatment and evaluated for change with SRT and 

overall CBT-I.  

Wearable devices can be repeatedly used in the home environment to track insomnia 

symptoms across the day and night to profile long term outcomes (Irwin et al., in press). Markers of 

arousal are likely to be biomarkers of insomnia but are confounded by no reliable psychiatric 

biomarkers and the costs of testing and development (Lakhan, Vieira, & Hamlat, 2010; Singh & Rose, 

2009). The most suited marker might be one of sleep loss, reduced sleep quality or daytime 

performance impairments. Recent research highlighted significant daytime impairments where 

insomnia is described as a true 24-hour disorder (Kyle et al., 2010; Morin, LeBlanc, Daley, Gregoire, 

& Merette, 2006). Perhaps only an ecologically valid approach to detecting the timing of symptoms 

will increase the likelihood of successful measurement of sleep loss related biomarkers in insomnia. 

The identification of point-in-time markers would also be extremely beneficial to sleep medicine in 

clinical and occupational health and safety settings where detection of sleep loss and sleepiness is 

vital. Implementing EMA in other sleep disorders such as obstructive sleep apnea could profile the 

effect of treatment on important daytime outcomes including subjective sleepiness. With 

technology, EMA could be used to provide a robust and ecologically valid clinical outcome or serve 

as a marker for ineffective treatment and guide an alternate approach.   

Physiological measures of arousal were evaluated before and after SRT for insomnia. Salivary 

cortisol was not increased during the initial acute phase of therapy. This is a positive outcome and 

reassuring, as patients who undergo sleep loss with SRT do not have increased cortisol levels during 
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the acute phase of treatment (first 3 weeks). Other mild sleep restriction therapies where patients 

are limited to six hours’ time in bed did not acutely increase cortisol levels (Pejovic et al., 2013). 

Objective sleep, core body temperature and plasma cortisol concentrations were collected before 

and after therapy (6 weeks). TST improved with therapy whilst core body temperature was lowered 

along with increased cortisol concentrations and subjective morning alertness. These outcomes 

suggest a restoration in the amplitude of the circadian rhythm. Modifications to physiological 

functioning in conjunction with improvements in sleep, daytime functioning and a lessening of 

insomnia severity may lead researchers to uncover objective markers of insomnia severity and/or 

sleep loss. The use of electroencephalography before and after therapy for insomnia under constant 

24-hour conditions along with plasma cortisol concentrations and core body temperature would 

provide a more robust evaluation of insomnia treatment and potentially limit masking effects. This 

would enable researchers to detangle the processes involved in treatment with CBT-I. Research 

should now look to identify if changes in circadian phase or reductions in physiological/cognitive 

arousal take place and evaluate treatment response with regards to insomnia sub-types. 

Adherence is a problematic issue in SRT and evaluation of this in larger clinical effectiveness 

trials of SRT and CBT-I is necessary. From chapter four, the first week of therapy is very difficult with 

impairments in alertness being most prominent. Measuring adherence (objective & subjective) 

through wearable technology will feed information such as time spent in bed back to the clinician to 

inform of any problems with therapy. If this information were available it would enable clinicians to 

follow-up with the patient earlier when encouragement or changes to the schedule are required 

most, potentially increasing adherence and limiting dropout rates.  
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Insomnia is heterogeneous and although no statistical significant differences in brain 

metabolites were identified between insomnia and controls with MRS, this outcome is probably not 

unexpected in such a small study. Defining subtypes of insomnia may well enhance homogeneity in 

conjunction with evaluating and measuring specific regions in the prefrontal cortex. If differences do 

exist between insomnia subtypes and controls, MRS could be used as a marker of insomnia subtype 

in an ideal clinical setting. The role of GABA is important as most hypnotics act on GABA receptor 

sites and may identify a pathway for the development of insomnia or changes that occur as a result 

of insomnia. 
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8.4 Concluding remarks 

Through experimental studies, the work presented in this thesis provides an overview and 

novel assessment of the effects of both SRT and brain metabolism in insomnia. SRT was an effective 

intervention and along with ecological momentary assessment enables a better understanding of 

the acute effects of therapy implementation. Objective measures including cortisol and temperature 

assessment probe the physiological impact of this therapy. Exploration of the cognitive and 

physiological changes in those who respond to SRT would further enhance our understanding of 

those who will respond first to behavioural or cognitive treatments. Ecological momentary 

assessment may be applied more widely along with overnight PSG, actigraphy, sleep diary measures, 

questionnaires, assessment of cortisol in saliva and blood, core body temperature, and MRS, all of 

which were undertaken in this study. 
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Appendix A: Sleep restriction therapy method  

An example of therapy based on Spielman et al’s., (1987) instructions: 

Bed Restriction Therapy Method 

We are going to talk a little bit about this new treatment – I want to try and explain a bit about what 

the treatment is about, how it would work, how you would try it out tonight, and then a little bit 

about how it would work when you go home as well. So we want to try and help you become a good 

sleeper.  

Good sleepers go to bed, fall asleep, sleep pretty much through the night, then waken up.  They are 

good sleepers, and that is not what is happening for you at the moment. Now good sleepers sleep 

because they are sleepy – they go to bed and they immediately fall asleep or quickly fall asleep, and 

they have got a certain pressure to sleep, a need to sleep, they have been awake all day, same as 

you have.  So we want to try and find out what your sleep pressure is like at the moment, because 

you are not sleeping as much as a good sleeper. How much do you think you are sleeping at the 

moment?  Just off the top of your head, think over the last week or so, on average a ballpark figure, 

how much sleep do you think you are getting? 

Interaction 

OK, so that’s your estimate, and you probably think that is not nearly enough. I wonder whether that 

is filling your night. You are going to tell me it is not because you are in bed for much longer than 

that, so that is not enough to fill your night. How long is your night at the moment, how long are you 

in your bed? Roughly, a ballpark figure again over the past week? 

Interaction  Slide one and Slide two 

So, you are telling me that you are getting 5 hours, or thereabouts, and you are in bed for 7.5 hours, 

so that is a lot of wakefulness during the night, and your sleep is kind of broken up. 

I have got a little graph here to show you, and we can look up your number of hours of sleep here, 

and we can look across at the number of hours you are spending in bed, and if we draw a line across 

these two, it takes us to here, bang in the middle of the red zone. That tells me that your sleep is not 
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efficient; you have got a low sleep efficiency.  It looks as if it is about 65%, certainly not 100%. Good 

sleepers are 90%-100% usually, up in this green zone up here.  So that shows me you do have a 

problem with your sleep. The question is how do we get from 65 to 90+?  How do we get to a 

position where you are like a good sleeper, you go to bed, you fall asleep, you sleep through, and 

you get up?  There is a way to do that – it is to increase your sleep efficiency. 

Slide three 

Let’s go back to your two figures. You have got 5, then you have got 7.5. We can either increase the 

5 up to 7.5, or we can reduce what we call your “sleep window”, the time you spend in bed, down to 

be the same as the amount of sleep you are getting at the moment, so that that amount would then 

fill your whole night. It would be a short night, but it would fill the whole night, that would take your 

sleep efficiency up.  This is called “Bed Restriction”. It is a difficult treatment, but it is very effective.  

Now we can actually look at what your sleep is at the moment like for the past week. 

Slide four 

Spend a bit of time with the individual with their calculator, working out their actual figures, and 

then return to the chart. 

OK, so we want to get your sleep efficiency from 65% to 90%, and that means that we have to 

reduce your sleep window down to the amount of sleep you are getting at the moment. This is a 

difficult thing to do. Sometimes in order to reshape or rebuild people’s sleep patterns, we have to 

take a very direct approach. You have got such a severe problem that you need this special 

treatment called Bed Restriction. It is a difficult thing to do. The advantage is that you are here 

tonight in the lab, and we can help you to do it. 
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So you can see now if we look at this second table that if we take your 5 hours of sleep, if you are 

going to have that amount of sleep each night and to sleep right through, then you could either start 

at this time here, and finish here, or a little bit later going to bed and getting up a little bit later, or 

you can go to bed earlier but it would mean you would get up very early in the morning. You can pick 

where that window should fall, but it will mean probably staying up later and getting up early.  It is a 

difficult thing to do. What do you think?  Which would suit you best? Just tell me your thoughts as 

you are thinking it through. 

(Slide five & six) 

Discussion 

So that then would be your sleep window for night, and what we would be helping you to do is to fit 

into that window.  There will be people around to help you to stay up, you are going to feel sleepy, 

sleepier than usual, and this is going to help you to sleep. If you waken during the night, it will 

probably be easier to fall back asleep again because you have only got a shorter window, and we will 

make sure you get up at that time in the morning.   

One other thing to say about bedtime is that it is not just a case of going to bed exactly then, you 

want to make sure you are really sleepy, so we call this not your bedtime but your “threshold time”.  

That is the time after which you can cross the threshold into your bedroom.  As soon as it gets to 

that time (say 1.30am), any time after 1.30am you can go to bed.  That is your threshold time.  But 

you must get up at your rising time, which as we can see here according to this would be 6.30am.  

We will make sure you get up then.  So that is your schedule for tonight.  Any questions on that, any 

thoughts about it?  
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Discussion (Slide seven) 

Now I have given you a lot of information here, some of it is quite challenging, and you may have 

questions about it.  I have got a little booklet here that tells you more about it, explains more about 

how sleep pressure works, about how sleep timing works. We call this sleep pressure “the 

homeostatic drive for sleep”, that is the technical term. We call the timing part your “circadian 

rhythm”. You have maybe heard of that.  You can ask me some questions about that, but read the 

booklet first and it will maybe explain a little bit more.  Also in the booklet it tells you a little bit 

about other people’s experiences with Sleep Restriction, and reading that may help you to 

understand how it works for them, and help you to understand that it isn’t easy, but it is worth 

sticking at.  So, any other questions? 
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Appendix B: Sleep restriction therapy presentation slides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sleep is regulated by two processes that work in 
harmony together:

1.Sleep Homeostasis (Sleep Pressure)

2.Circadian Rhythm (Body Clock)

We would like to ‘jump-start’ these two processes in order to 
reset your sleep into a strong and predictable pattern. 
Like a good sleeper.

Bed Restriction Therapy

239 
 
 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

240 
 
 
 

 

 



 

 

 

 

 

241 
 
 
 

 

 



 

 

 

 

 

242 
 
 
 

 

 



 

 

  

243 
 
 
 

 

 



 

Appendix C: Sleep restriction therapy information manual 

 

 

 

 

 

 

 

Bed Restriction Therapy 

 

Information Manual 
 

 

Mr Christopher Miller 

Dr Simon Kyle 
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Introduction 

This information manual aims to help describe, in detail, bed restriction therapy, particularly the theory behind 
how it works, how to implement it practically, and any frequently asked questions you may have surrounding its 
use. If, after reading this information, you would still like to know more about Bed Restriction Therapy for 
insomnia please ask one of the researchers at the University of Glasgow Sleep Centre.  

Regulation of sleep 

Sleep is an automatic process and therefore out of our own direct, voluntary control.  

Whether awake or asleep we are at the mercy of two biological processes:  

(1) Sleep Homeostasis, commonly known as ‘Sleep Pressure’ 

(2) The Circadian Rhythm, otherwise known as the ‘Body Clock’ 

These two processes work in harmony to promote good consolidated sleep at night, and it is the goal of Bed 
Restriction Therapy to help restore the functioning of these two processes to enable undisturbed, good quality 
sleep to occur.  

Below we describe how sleep pressure and our body clock work across a normal 24-hour day. By understanding 
how these processes we are able to find out what alterations may occur in insomnia, and crucially how these can 
be restored and improved with bed restriction therapy.  

Sleep Pressure 

Sleep pressure can be thought of as the brains pressure and need for sleep, which becomes greater with the 
increasing amount of time that we are awake. In this way, the pressure to sleep is directly related to the amount 
of time that we have been awake. For example, when we wake-up in the morning after a good night’s sleep, we 
will have a very low sleep pressure or ‘need to sleep’. As we continue throughout the day, sleep pressure will 
begin to accumulate (a bit like an hourglass egg-timer). Look at the diagram below which illustrates this increasing 
sleep pressure over the waking day. At the end of a full day, at bedtime, we will have a great amount of pressure 
to sleep. By going to bed and having another good night’s sleep, then sleep pressure will be reset for the start of 
the next day.   

Diagram of Sleep Homeostasis (Sleep Pressure) 
 

The diagram below shows sleep pressure over the course of a day. The dashed line (---) shows that by staying 
awake later than your normal bedtime, you will continue to accumulate sleep pressure. 
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Circadian Rhythm (Body Clock) 

The Circadian Rhythm (Body clock) is an internally generated biological rhythm that allows a number of processes 
to rise and fall over the twenty four hour period. Commonly, its effects are mostly realised with jet lag when one 
travels through many different time zones rapidly. This is when the circadian rhythm is out of synchrony with the 
new environment and can take a number of days to go back to normal.  

In a good sleeper, who is in-synch with the environment, the circadian rhythm will naturally rise in the early 
morning, promoting wakefulness and alertness - this is sometimes known as the alerting force. As the day 
continues, the circadian rhythm will promote wakefulness until it reaches a peak at about midday (see the 
diagram below showing this rise and fall in alertness). After this time, the circadian rhythm will start to dip. This 
initial fall is known as the ‘post lunch dip’ (you may be familiar with greater feelings of sleepiness after lunch) and 
as a time for a siesta in other cultures. As we continue through the day, the circadian rhythm continues to fall and 
does not promote as much arousal as before. With the onset of bedtime and sleep, the circadian rhythm drops to 
the lowest level and helps to maintain sleep. In this way, sleep pressure is very high, while the alerting effect of 
our body clock is low, creating the optimal opportunity to sleep.  

After this low point, the circadian rhythm will then rise again in anticipation for the next day. The body clock is 
difficult to manipulate and may be disrupted in a number of poor sleep conditions.  

Diagram of Circadian Rhythm (Body Clock) 

The diagram below shows how our body clock controls our alertness over the course of the day.  

 

How will this information help me sleep? 

It is possible that in individuals with insomnia both sleep pressure and the body clock are not functioning 
optimally, and bed restriction aims to ‘jump-start’ these two processes to help promote consolidated and good 
quality sleep. Bed restriction involves: 
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(1). Reducing the amount of time that you spend in bed. This will lead to a build-up of sleep pressure to encourage 
falling asleep straight away and prevent middle-of-the-night awakenings, and improve sleep efficiency. 

(2). Standardising the time you go to bed at and get up at each day. This will help create a strong circadian rhythm, 
with natural peaks and troughs of alertness similar to a good sleeper.   

Implementing Bed Restriction Therapy 

Bed Restriction Therapy begins with a one week sleep diary. This will give us an indication of the amount of time 
you spent awake in bed, and how much sleep you actually obtain on an average night – this is often hard to know 
because your sleep can vary from night-to-night. Understanding how much time you spend in bed and how much 
time you spend asleep will help form the foundations of Bed Restriction Therapy.  

Working out your average sleep time 

The first step in Bed Restriction Therapy is to work out your average sleep time from the sleep diary. This is found 
in question 9 of your sleep diary. By using your sleep diary record from the past seven nights it will be possible to 
calculate your average sleep time for those nights.  

An example might be: 

    Day     Amount Slept          (Minutes)    
  Monday   6 hours 30 min            (390) 
  Tuesday   3 hours 30 min   (210)  
  Wednesday   5 hours 15 min    (315) 
  Thursday   6 hours 15 min    (375) 
  Friday    4 hours           (240) 
  Saturday   6 hours                        (360) 
  Sunday   5 hours 30 min          (330) 

   
Therefore, by adding up the total amount of time slept on each night, and by dividing that by the number of nights 
(in this case seven), we are able to calculate your average sleep time. By doing the following:   

Total amount slept  = 37 hours          or             (2220 minutes) 
                       ÷                                              ÷ 
      Number of days (7)        Number of days (7) 
Average Sleep Time  = 5 hours 17 minutes or (317 minutes)  
                              = 5 hours 15 minutes, to the nearest 15 minutes 

This example suggests that this person has slept approximately on average five hours and 15 minutes per night. It 
is often the case that poor sleepers spend much longer in bed compared with the actual amount of time they 
spend sleeping. Bed Restriction Therapy aims to improve the efficiency of sleep by restricting the amount of time 
that you spend awake in bed. 

247 
 
 
 

 

 



 

Getting your sleep into a regular pattern 
The first modification to your sleep within Bed Restriction Therapy is to set a morning rising time, a time to get out 
of bed. It is best to calculate a time to rise from bed in the morning as this is something that we can control. In the 
example patient above, it was decided that due to work reasons the set morning rising time would be at 6 am. We 
call this the Set Rising Time or Anchor Time as this should be the time that you rise from bed everyday of the week 
(even weekends!).   

With this new set Rising Time, we then work backwards around the clock with the amount of time that you, on 
average, slept for the preceding week (in the patient above it was previously worked out to be five hours and 15 
minutes from the sleep diary). This enables us to decide on a ‘Threshold Time’. 

The Threshold time is the time after which you can now retire to your bedroom and to bed. In this example, with a 
Set rising time of 6am and an average sleep time of 5 hours and 15 minutes, the Threshold Time is set at 00:45am; 
on or after this time you can go to bed. 

You can adjust your preferred threshold and rising times e.g. if this patient decide to set his/her rising time at 7am, 
then the threshold time would be 1:45am. This period between going to bed and rising from bed is called the 
‘sleep window’.  

However, it is vitally important to keep a minimum of Five hours of time spent in bed.  

For example, if your average total sleep time is equal to 4 hours and 30 minutes then the minimum of five hours of 
time spent in bed must be applied. An example might be setting a rising time of 7:00 am, and so a threshold time 
would then be worked out to be 7:00am – five hours = 2:00am. 

Sleep Efficiency 

One of the main goals of bed restriction therapy is to make your sleep more efficient. What we mean by 
this is that, when you go to bed, you fall asleep quickly and have very little wake time during the night. 
Sleep efficiency therefore refers to the amount of time that you spend asleep as a percentage of the time 
that you spend in bed. The example below shows how this can be calculated. 

Go to bed:         10:30pm 
Get to sleep:     12:30am 
Wake up:            6:30am 
Time asleep:  6 hours (or 360 minutes) 
Time in bed:  8 hours (or 480 minutes) 

Sleep efficiency = time asleep ÷ time in bed (x 100)  

                        = 6 ÷ 8 x 100 = 75%                             

We will use the Sleep Efficiency ratio to help study weekly changes in your sleep pattern, over the course 
of Bed Restriction Therapy. A ‘good sleep efficiency’ is around 90%, however this can be variable even in a 
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good sleeper. Sleep efficiency scores less than this suggest a poor sleep. If your sleep efficiency improves 
to equal to or greater than 90% we will extend your sleep window by 15 minutes. If your sleep efficiency 
works out to be lower than 85% on average, over seven days, we will decrease your sleep window by 15 
minutes. This will help ensure that you are having more efficient sleep, eliminating wakefulness during the 
night and helping you have a consolidated block of sleep.  

Recap of your new Bed Restriction Routine. 

* Stay up and out of bed until your threshold time 

 

* Go to bed at or after your set threshold time 

 

* Get up in the morning at your rising time 

 

* Follow this programme every night, even at weekends. 

 

Making these changes 

These changes to your sleep wake schedule can be very difficult to make and to adhere to. However, 
Old habits do die hard and the initial two weeks of this therapy can be especially difficult.  

But if you can adhere to the intervention we are sure that you will see improvements in your sleep 
efficiency.  

In addition, weekends can be difficult especially when you have more hours of wakefulness in the 
morning. However, you should do your best to try to stick with the programme and stay motivated 
about changing your sleep.  

You may find that the mornings will provide you with new opportunities to do exercise or catch up 
with things that you have long put off. It is also beneficial to get as much light as possible in the 
morning to help synchronise your internal Circadian rhythm to the morning rising time.  

Bed Restriction Therapy also stops negative associations about the bedroom environment - as it 
strengthens the idea that the bedroom should only be used for sleeping or intimacy. With this 
therapy you should (hopefully!) no longer worry about trying to get to sleep in the bedroom. Instead 
you will relish going to bed and it will now become a place for you to finally fall asleep. 
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Questions and Answers 

When will I start to get more sleep? 

• Once you are sleeping 90% (sleep efficiency) of your time in bed. After this we will be able to 
Increase your time in bed by 15 minutes. 

• You will then be asked to stay with this new pattern for at least another week. 
• We will review your progress and make changes each week for the next 4 weeks. 

What do I do with this extra evening time? 

• Continue with normal daily tasks, whatever you want to do. 
• But do not fall asleep before ‘threshold time’ 
• Safety: do not take risks. 

Can I nap during the day? 

• Napping may reduce the effectiveness of bed restriction therapy. 
• Only take a short nap (15-20 minutes) if you are struggling to stay awake during the day. 
 

Is Bed Restriction Therapy Safe? 
 

• Yes! However, you may feel sleepier and more fatigued in the early days and weeks of 
treatment. It is important that, if you feel very sleepy, you avoid driving or operating heavy 
machinery.  

 
Can I really make the change? 

• Bed Restriction Therapy is tough, but can be incredibly effective at improving sleep pattern 
and quality.  

• Think of it as a surgical treatment for your sleep pattern, which will help you rediscover how 
to sleep in a consolidated undisturbed block. 

• Remember to work hard at it and stay positive. 
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Previous Patient Quotes 

Below we have provided some quotes from real patients that have taken part in Bed Restriction 
Therapy. These are to give you a flavour of what it is like to implement the prescribed sleep window, 
as well as any difficulties that patients have encountered when adhering to the programme, and 
finally what impact it can have on sleep and daytime functioning. If you have any questions about 
these quotes please ask Dr Simon Kyle. 

 

 “..the sort of limited amount of sleep that you were giving us in the first night sounded 
pretty horrific, and it was, the first week was really tough, eh, but I think I could see the sense then, 
but I didn’t see it immediately you know, it didn’t hit me immediately that it was going to work, that 
sort of came in the second week’ [David, 16-19] 

 

 “driving was a nightmare, and I’ve never ever had an issue with driving before” [Bill, 84] 

 

“I suppose rationally and logically, it did seem a good idea, but then I think the first week of actually 
doing it, I felt worse, and so you kinda, there’s a temptation there to think ‘och this is not working’, 
like ‘give up now’” [Lisa, 17-19] 

 

“my husband was determined I was sticking at it, you know, cos he, when I was sitting at night time, 
and I was like almost falling asleep…he kept shouting at me ‘get up’, ‘wake up, don’t go to sleep’, 
you know it was kinda like that, but I felt it very difficult to get up and do anything, I was actually too 
tired to” [Gillian, 135-138] 

 

“…there’s been a few mornings where you’re em, oh you’re thinking, especially like Saturday and 
Sunday, ‘there’s just no way I want to get out of my bed’, but em, then you think ‘well no’, especially 
at the weekend cos then if I lie long this morning then I don’t get to sleep tonight, it’s just going to 
start the whole thing again, that’s, I suppose, the motivation, the fact that you think ‘well if this 
makes you sleep five hours through the night, then just get up’” [Lisa, 273-278]   

 

“I’m sleeping longer, and going into a deeper sleep, I think, when I wake during the night it’s 
only…it’s less frequent, and it’s easier to get back over again…previously if I woke up during the night 
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I’d be worried about trying to get back over again, and I’d be thinking about it, but because you’re so 
tired by this sort of programme then you actually get back over much quicker and it seems to work” 
[David, 62-66]  

 

“you’re so knocked that you don’t have the anxiety to be anxious at that time of night, really, I’m so 
looking forward to going to my bed, when I get to whichever hour my times up, I say ‘Yes, times up, 
going to bed’ [laughs] so that’s probably the highlight of the day” [Bill, 167-170] 

 

“I think I’ve altered my, I just seem to have gone onto a different plain when it comes to my attitude 
to sleep, em, another thing though I’ve realised is that em it’s possibly true that I just don’t need 8 
hours of sleep, or even seven and a half hours sleep, or even seven, possibly I only need about six 
and a half hours sleep.” [Louise, 78-81]  

 

“I’m not concerned, I’m not worried about not sleeping, because I know that when I go to bed I will 
sleep” [Sarah, 188-189] 

 

“I do feel like a normal sleeper, which is bizarre and great, this has been huge for...like driving, I feel 
like I’m calmer you know I don’t get road rage, I don’t…I’m not as bad as what I was, I’m taking less 
risks in the car, I’m not in a rush, because I’m not as anxious, I’m not on edge, I’m just a bit more 
chilled I think, and I think the sleep helps to centre yourself…”  [Hannah, 353-357] 

 

“much more sort of…quite motivated for work and stuff, eh, it definitely has had a very positive 
effect on my sort of daily life” [David, 87-88] 

 

“ I think now I’m more likely if I’ve planned something for after work, to do it, em, I’m meant to, I’ve 
paid for most of this year west Dunbartonshire council money for a gym membership, that I [‘ve] 
never been in, em, so I’m now back three times a week!” [Lisa, 185-187] 
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Appendix D: Ethical approval for Chapters 4 & 5 

 WoSRES 
West of Scotland Research Ethics Service   
 
 West of Scotland REC 3 

Ground  Floor – The Tennent Institute 
Western Infirmary 
38 Church Street 
Glasgow G11  6NT 
www.nhsggc.org.uk 
 

Professor Colin Espie 
Director, University of Glasgow Sleep Research 
Laboratory 
Southern General Hospital 
Neurosurgery Building 2nd floor 
1345 Govan Road 
Glasgow G51 4TF  

Date 10th December 2010   
Your Ref  
Our Ref  
Direct line 0141 211 2123 
Fax 0141 211 1847 
E-mail Liz.Jamieson@ggc.scot.nhs.uk 

  
 

 Dear Professor Espie 

 

Study Title: Objective impact on sleep and daytime functioning of sleep 
restriction therapy: a brief behavioural intervention for 
persistent insomnia. 

REC reference number: 10/S0701/85 

 

The Research Ethics Committee reviewed the above application at the meeting held on 02 December 
2010. Thank you for attending to discuss the study. 

 

Ethical opinion 

 

The members of the Committee present gave a favourable ethical opinion of the above research on 
the basis described in the application form, protocol and supporting documentation, subject to the 
conditions specified below. 
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Ethical review of research sites 

 

The favourable opinion applies to all NHS sites taking part in the study, subject to management 
permission being obtained from the NHS/HSC R&D office prior to the start of the study (see 
“Conditions of the favourable opinion” below). 

 

Conditions of the favourable opinion 

 

The favourable opinion is subject to the following conditions being met prior to the start of the 
study. 

 

 

Management permission or approval must be obtained from each host organisation prior to the 
start of the study at the site concerned. 

 

For NHS research sites only, management permission for research (“R&D approval”) should be 
obtained from the relevant care organisation(s) in accordance with NHS research governance 
arrangements.  Guidance on applying for NHS permission for research is available in the Integrated 
Research Application System or at http://www.rdforum.nhs.uk.  
 

 

Sponsors are not required to notify the Committee of approvals from host organisations. 

 

Other Conditions 

 

Participant Information Sheet to be amended as follows: 

 

• In the introduction it should be made clear to participants that this study is on the back of 
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another study so that they know what they are signing up for.  
• The timings stated for completing the questionnaires are not accurate and should be amended 

to give a true reflection of what is involved.  
• The use of the acti-watch should be mentioned.  
• There is no mention of swabs being taken.  
• If the interviews are being taped then this must be stated.  
• The name of the Committee is wrong. This should be 'West of Scotland Research Ethics 

Committee 3'.  
 

Consent Form to be amended as follows: 

 

• The Consent Form is not in the standard format and should have Initial boxes and not 'Yes/No' 
boxes.  

• Consent to take swabs must be obtained.  
• If the interviews are being taped then consent must be obtained.  
 

General 

 

In discussion with the Researcher, the Committee noted agreed that whilst there were no material 
ethical issues there should be a mechanism in place to ensure that participants held on the database 
are not being 'over-researched'. Apart from the inconvenience to participants this could bias the 
results from a statistical point of view. The researcher agreed to review how participants are 
selected and develop a monitoring mechanism.  The Committee was concerned that this might be a 
general problem with Sleep Centre research due to the fact that participants are given the 
opportunity to opt-in to further research when consent is taken for a study. 

 

It is responsibility of the sponsor to ensure that all the conditions are complied with before the 
start of the study or its initiation at a particular site (as applicable). 

 

You should notify the REC in writing once all conditions have been met (except for site approvals 
from host organisations) and provide copies of any revised documentation with updated version 
numbers.  
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Approved documents 

 

The documents reviewed and approved at the meeting were: 

  

Document    Version    Date      

Participant Information Sheet: Poor Sleeper  1.1  05 November 2010    

REC application    16 November 2010    

Participant Consent Form: Additional Study for Poor Sleepers  1.1  05 November 2010    

Questionnaire: Validated - Alcohol Use Disorders Identification Test         

Questionnaire: Validated - FIRST         

Questionnaire: Validated - Sleep Diary         

Questionnaire: Validated - Life         

Questionnaire: Validated - Dysfunctional Beliefs and Attitudes about  
Sleep  

       

Questionnaire: Validated - Karolinska Sleepiness Scale         

Questionnaire: Validated - Sleep Restriction Therapy         

Questionnaire: Validated - Mood20         

Letter from Funder    22 July 2010    

Validated Questionnaire - SF36         

Validated Questionnaire - Fatigue Scale         

Participant Information Sheet: Good Sleeper  1.1  05 November 2010    

Advertisement         

CV Student - Christopher Miller         

CV Co-Investigator - Christine Salveta         

258 
 
 
 

 

 



 

Investigator CV         

Participant Information Sheet: Additional Study for Poor Sleeper  1.1  05 November 2010    

Participant Consent Form: Good Sleeper  1.1  05 November 2010    

Participant Consent Form: Poor Sleeper  1.1  05 November 2010    

Protocol  1.1  05 November 2010    

Validated Questionnaire - PHQ    14 November 2005    

Validated Questionnaire - SAS         

Covering Letter    16 November 2010    

Questionnaire: Validated - Epworth Sleepiness Scale         

Questionnaire: Validated - Glasgow Sleep Effort Scale         

Questionnaire: Validated - Symptom Checklist         

Participant Enquiry and Preliminary Screening Form    13 February 2010    

Validated Questionnaire - ISI         

Validated Questionnaire - CFQ         

Validated Questionnaire - HADS         

Acti-watch Instructions         

CV - Co-Investigator Dr Simon Kyle         

Validated Questionnaire - PSQI         

Validated Questionnaire - Glasgow Content of Thoughts Inventory         

Instructions taking Cortisol Saliva Sample         

Sleep Restriction Protocol - Training for GPs         

 

Membership of the Committee 
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The members of the Ethics Committee who were present at the meeting are listed on the attached 
sheet. 

 

Statement of compliance  

 

The Committee is constituted in accordance with the Governance Arrangements for Research Ethics 
Committees (July 2001) and complies fully with the Standard Operating Procedures for Research 
Ethics Committees in the UK. 

 

After ethical review 

 

Now that you have completed the application process please visit the National Research Ethics 
Service website > After Review 

You are invited to give your view of the service that you have received from the National Research 
Ethics Service and the application procedure. If you wish to make your views known please use the 
feedback form available on the website. 

The attached document “After ethical review – guidance for researchers” gives detailed guidance on 
reporting requirements for studies with a favourable opinion, including: 

• Notifying substantial amendments 

• Adding new sites and investigators 

• Progress and safety reports 

• Notifying the end of the study 

 

The NRES website also provides guidance on these topics, which is updated in the light of changes in 
reporting requirements or procedures. 

We would also like to inform you that we consult regularly with stakeholders to improve our service. 
If you would like to join our Reference Group please email referencegroup@nres.npsa.nhs.uk. 
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10/S0701/85 Please quote this number on all correspondence 

 

With the Committee’s best wishes for the success of this project 

Yours sincerely 

Liz Jamieson 

Committee Co-ordinator 

On behalf of Dr Paul Fleming, Chair 

Enclosures: List of names and professions of members who were present at the meeting 
and those who submitted written comments 

“After ethical review – guidance for researchers”   

Copy to: Dr Simon Kyle, University of Glasgow 

Dr Steven Burke, R&D 
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West of Scotland REC 3 

Attendance at Committee meeting on 02 December 2010 

 

 Committee Members:  

 

Name   Profession   Present    Notes      

Dr Jim Brooks  Lay Member  No      

Dr Adam Burnel  Consultant Psychiatrist  No      

Mrs Bernadette Campbell  Primary Care Support 
Nurse  

Yes      

Ms Lorna Cuthbertson  Senior Clinical Pharmacist  Yes      

Dr Paul Fleming  Consultant Clinical 
Psychologist  

Yes      

Ms Susan Fleming  Public Health Researcher  Yes      

Ms Catriona  Kent  Nurse Consultant  No      

Mr Eoin MacGillivray  Lay Member  Yes      

Dr Paul Mattison  Consultant Physician in 
Rehabilitation Medicine  

Yes      

Dr  Angus  McFadyen  Reader in Health Statistics  Yes      

Canon Matt McManus  Lay Member  Yes      

Dr  Stephen Noble  Consultant Anaesthetist  Yes      

Mrs Gillian Notman  Joint Occupational Therapy 
Lead Advisor  

Yes      

Mrs Helen Ross  Lay Member  Yes      

Mrs Rosie Rutherford  Lay Member  Yes      
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Appendix E: Participant sampling instructions for salivary cortisol concentrations 

 

 

 

 

Dear  

 

Additional Study Component 

 

I have supplied a timetable and a description of the procedures for the Additional Study Component. 
It is hoped by taking part in this Additional Study Component that you may find out more about your 
own sleep pattern changes over the treatment intervention period. You will also be helping to 
inform the science about sleep research further. I hope you will be able to carry this out. 

 

Also, if you have any questions regarding any of the procedures or wish to visit the Sleep Centre to 
learn and find out more about the Additional Study Component process please do not hesitate to get 
in touch with myself.   

 

Best regards, 

 

Mr Christopher Miller 

PhD Research Student 

University of Glasgow Sleep Centre  

Sackler Institute of Psychobiological Research/Institute of Neuroscience and Psychology 

Southern General Hospital, Glasgow G51 4TF, Scotland, UK 

Tel: +44(0)141 232 7699/7700  Fax: +44(0)141 232 7697 

Email:  c.miller.2@research.gla.ac.uk www.glasgowsleepcentre.co.uk 

The University of Glasgow, charity number SC004401 
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CSO Additional Study Component Study: Cortisol Timeline 
Please fill in box with the time on completion 

 
Sample One:    Monday the   at two hours before bedtime.  

Label code: Green 

 

Sample Two: Monday the   at bedtime (within the bedroom store in 
freezer then brush teeth). 

Label code: Red  

 

Sample Three:  Tuesday the    in the morning immediately upon  

awakening (Within first 15 minutes of awakening). 

Label code: Blue 

 

Sample Four:   Tuesday the   at two hours before bedtime. 

Label code: Green 

 

Sample Five:  Tuesday the    at bedtime. 

Label code: Red 

 

Sample Six:  Wednesday the   in the morning immediately upon  

Awakening (Within first 15 minutes of awakening). 

Label code: Blue 

*The next samples will be collected at the Sleep Centre.  

**Another three samples will be completed at home after your stay. 

***This procedure will be repeated for each overnight stay. 
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CSO Additional Study Component Study: Cortisol Timeline Part II 

 
Please fill in the time in the box 

 
Sample Seven:    Wednesday   (in Sleep Centre) two hours before  
    bedtime.  

Label code: Green 

 

Sample Eight: Wednesday   (in Sleep Centre) at bedtime  

Label code: Red  

 

Sample Nine:  Thursday   in the morning immediately upon  
Awakening (in Sleep Centre). 
Label code: Blue 

 

Sample Ten:   Thursday   at two hours before bedtime. 

Label code: Green 
 

Sample Eleven:  Thursday    at bedtime. 

Label code: Red 
 

Sample Twelve:  Friday     in the morning immediately upon  

Awakening (Within first 15 minutes of awakening). 
Label code: Blue 

 

END of Week One 
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Week Two 

 

Sample One:  Monday    at two hours before bedtime.  

Label code: Green 
 

Sample Two: Monday    at bedtime (within the bedroom store in 
freezer then brush teeth). 

Label code: Red  

 

Sample Three:  Tuesday    in the morning immediately upon  

awakening (Within first 15 minutes of awakening). 

Label code: Blue 

 

Sample Four:   Tuesday    at two hours before bedtime. 

Label code: Green 
 

Sample Five:  Tuesday    at bedtime. 

Label code: Red 
 

Sample Six:  Wednesday    in the morning immediately upon  

Awakening (Within first 15 minutes of awakening). 
Label code: Blue 
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CSO Additional Study Component Study: Cortisol Timeline Part III 

 
Please fill in the time in the box 

 
Sample Seven:    Wednesday   (in Sleep Centre) two hours before  
    bedtime.  

Label code: Green 

 

Sample Eight: Wednesday   (in Sleep Centre) at bedtime  

Label code: Red  

 

Sample Nine:  Thursday   in the morning immediately upon  
Awakening (in Sleep Centre). 
Label code: Blue 

 

Sample Ten:   Thursday    at two hours before bedtime. 

Label code: Green 
 

Sample Eleven:  Thursday    at bedtime. 

Label code: Red 
 

Sample Twelve:  Friday     in the morning immediately upon  

Awakening (Within first 15 minutes of awakening). 
Label code: Blue 
 

END of Week Two 
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Week Three 

 

Sample One:  Monday    at two hours before bedtime.  

Label code: Green 
 

Sample Two: Monday    at bedtime (within the bedroom store in 
freezer then brush teeth). 

Label code: Red  

 

Sample Three:  Tuesday    in the morning immediately upon  
awakening (Within first 15 minutes of awakening). 
Label code: Blue 

 

Sample Four:   Tuesday    at two hours before bedtime. 

Label code: Green 
 

Sample Five:  Tuesday    at bedtime. 

Label code: Red 
 

Sample Six:  Wednesday    in the morning immediately upon  

Awakening (Within first 15 minutes of awakening). 
Label code: Blue 
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CSO Additional Study Component Study: Cortisol Timeline Part IV 

 
Please fill in the time in the box 

 
Sample Seven:   Wednesday    (in Sleep Centre) two hours before 

bedtime.  

Label code: Green 

 

Sample Eight: Wednesday    (in Sleep Centre) at bedtime  

Label code: Red  

 

Sample Nine:  Thursday    in the morning immediately upon  
Awakening (in Sleep Centre). 
Label code: Blue 

 

Sample Ten:   Thursday    at two hours before bedtime. 

Label code: Green 
 

Sample Eleven:  Thursday    at bedtime. 

Label code: Red 
 

Sample Twelve:  Friday    in the morning immediately upon  

Awakening (Within first 15 minutes of awakening). 
Label code: Blue 
 
END of Cortisol testing 
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Instructions for taking the Cortisol saliva sample cotton swab: 

Saliva Cortisol must be sampled at specific time points throughout this study. If you are not sure 
about any aspect of this procedure please call/ask the researcher Christopher Miller on 
07950737669 (out of office hours) / 0141 232 7699 (office hours) 

To take a Cortisol sample:  

The cotton bud (found inside the sample container under the purple cap) must be placed in the right 
hand side of the mouth for a period of two-three minutes or until completely saturated.  

Once this time is up you must put the sample into the specified sampling tube. 

This is done by: 

1.  Removing the purple cap (whilst the smaller tube is still in place inside the larger tube). 
2. Place the swab into the top compartment. 
3. Seal the top of the tube with the purple cap. 

  

 

Then the tube must be stored in the storage bag inside your freezer as soon as possible. 

For the three different time points: 

1. In the morning you must on wake up (when you are sure that you have finally woken and are 
about to begin your day) take the first cotton swab as indicated on the sample tube. It would 
be best to have this tube beside your bed as this must be completed immediately on wake-
up. 

2. The second sample is due to be taken two hours before your scheduled time for bed. Again, 
you will repeat the saliva collection with the cotton swab and store the sample in the 
provided tube for this time. Please store the sample in the provided fridge. 

3. Finally, the last sample should be collected once you are in bed, placed in the correct tube 
and stored in the fridge.  
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Appendix F: Ethical approval for Chapter 6 
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Appendix G: Individual data for Chapter 6 

Figure 1: Sleep onset latency

 

Figure 1: Displays the average sleep onset latency (minutes) from the sleep diary for each 
participant (Pt 1-8) throughout the weeks of the study (baseline to week 6). 

 

Figure 2: Wake-time after sleep onset  

 

Figure 2: Displays the average wake-time after sleep onset (minutes) from the sleep diary for each 
participant (Pt 1-8) throughout the weeks of the study (baseline to week 6). Error bars display one 
standard error of the mean.  
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Figure 3: Total sleep time 

 

Figure 3: Displays the average total sleep time (minutes) from the sleep diary for each participant 
(Pt 1-8) throughout the weeks of the study (baseline to week 6). Error bars display one standard 
error of the mean. 

 

Figure 4: Sleep efficiency 

 

Figure 4: Displays the average sleep efficiency (minutes) from the sleep diary for each participant 
(Pt 1-8) throughout the weeks of the study (baseline to week 6). Error bars display one standard 
error of the mean. 
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Figure 5: Sleep onset latency 

 

Figure 5: Displays sleep onset latency (minutes) from polysomnography for each participant 
(Participant 1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 6: Total sleep time 

 

Figure 6: Displays total sleep time (minutes) from polysomnography for each participant 
(Participant 1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 7: Wake-time after sleep onset 

 

Figure 7: Displays the wake-time after sleep onset (minutes) from polysomnography for each 
participant (Participant 1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 8: Sleep efficiency 

 

Figure 8: Displays % sleep efficiency (SE) from polysomnography for each participant (Participant 
1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 9: Rapid eye movement sleep 

 

Figure 9: Displays rapid eye movement sleep (REM) in minutes from polysomnography for each 
participant (Participant 1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 10: Stage 1 sleep 

 

Figure 10: Displays Stage 1 sleep (N1) in minutes from polysomnography for each participant 
(Participant 1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 11: Stage 2 sleep 

 

Figure 11: Displays Stage 2 sleep (N2) in minutes from polysomnography for each participant 
(Participant 1-8) throughout the weeks of the study (baseline to week 6). 
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Figure 12: Slow wave sleep 

 

Figure 12: Displays slow wave sleep (SWS) in minutes from polysomnography for each participant 
(Participant 1-8) throughout the weeks of the study (baseline to week 6). 

  

283 
 
 
 

 

 



 

Figure 13: Cortisol concentrations before therapy 

 

 
 

Figure 13: Displays nocturnal cortisol secretion (n=6) for each sample collection time point at 
baseline over the course the night (22:00-06:00). Cortisol (µg/dL). 

Figure 14: Cortisol concentrations after therapy 

 

Figure 14: Displays nocturnal cortisol secretion (n=6) for each sample collection time point at post 
treatment over the course the night (22:00-06:00). Cortisol (µg/dL).  
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Figure 15: Baseline core body temperature data 

 

Figure 15: Displays nocturnal core body temperature data (n=6) for each sample collection time 
point at baseline over the course the night (22:00-06:00). Temperature (°C). 

 

Figure 16: Post treatment core body temperature data 

 

Figure 16: Displays nocturnal core body temperature data (n=6) for each sample collection time 
point at baseline over the course the night (22:00-06:00). Temperature (°C). 
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Appendix H: Ethical approval for Chapter 7 
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