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Abstract 

In the past 15 years the field of cancer metabolism has burst providing vast 

quantities of information regarding the metabolic adaptations found in cancer 

cells and offering promising hints for the development of therapies that target 

metabolic features of cancer cells.  

By making use of the powerful combination of metabolomics and 13C-labelled 

metabolite tracing we have contributed to the field by identifying a 

mitochondrial enzymatic cascade crucial for oncogene-induced senescence (OIS), 

which is a tumour suppressive mechanism important in melanoma, linking in this 

way OIS to the regulation of metabolism. 

Furthermore, we have identified the dependency on glutamine metabolism as an 

important adaptation occurring concomitantly with the acquisition of resistance 

to vemurafenib (BRAF inhibitor) in melanoma, which opens the possibility to 

combine therapies targeting glutamine metabolism with BRAF inhibitors, in order 

to overcome or avoid the onset of resistance in melanoma.  

Using the same strategy we have discovered an important mechanism of inter-

regulation between glycolysis and amino acid metabolism, identifying the 

glucose-derived amino acid serine as an activator of the main isoform of 

pyruvate kinase present in cancer cells, PKM2. In addition, we provide new 

insights into the mechanism of allosteric regulation of this complex protein and a 

better understanding of the way it regulates central carbon metabolism.  

In summary, our results open new possibilities for the development of cancer 

therapies that manipulate metabolic adaptations found in cancer cells in order 

to kill them specifically or halt their growth. 
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1.1 Cancer Metabolism 

1.1.1 Oncogenes, Tumour Suppressors and Growth Factor 
Signalling in Cancer Metabolism 

Proto-oncogenes and tumour suppressor genes are main regulators of tissue 

homeostasis and coordinators of growth signals. Genetic alterations in those can 

result in constitutively active growth signalling that induces cells to proliferate 

uncontrollably. As a consequence of this unrestrained proliferation, tumour cells 

have a remarkably different metabolism to the tissues from which they 

originated(1). This metabolic reprogramming in cancer cells provides a 

continuous supply of building blocks and redox potential allowing them to 

survive and proliferate under strict selective pressure, considering that they 

require more nutrients and excrete more waste products than normal tissues. In 

order to divide, cells need to increase in size, and replicate their DNA, processes 

that require vast amounts of proteins, lipids and nucleotides as well as energy. 

Therefore, to support these anabolic processes, cells need to increase their 

uptake of carbon units with amino acids and glucose constituting their main 

sources(2). The molecular mechanisms underlying metabolic reprogramming in 

cancer are complex, encompassing alterations in multiple signalling pathways 

such as those involving hypoxia inducible factor 1α (HIF-1α), phosphoinositol 3-

kinase/protein kinase B (PI3K/AKT), mechanistic target of rapamycin  (mTOR), 

AMP-activated protein kinase (AMPK) and V-myc avian myelocytomatosis viral 

oncogene homolog (c-Myc)(3-7). Moreover, other oncogenes and tumour 

suppressors have been shown to directly control these pathways, and 

consequently, most tumour cells display altered glucose and glutamine 

metabolism compared to normal cells(8). 

1.1.2 The Warburg Effect and the Regulation of Glycolysis in 
Cancer 

Almost a century ago, Otto Warburg observed and characterised for the first 

time one of the most conspicuous features of cancer metabolism: that most 

cancers utilise high amounts of glucose and secrete it as lactate even in the 

presence of oxygen, which is referred to as aerobic glycolysis or “the Warburg 

effect”(9). Instead, normal cells metabolise glucose in the mitochondria via the 

tricarboxylic acid (TCA) cycle and only under low oxygen, glucose is converted 
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into lactate (anaerobic metabolism). This dramatic increase in glucose uptake by 

cancer cells is exploited clinically to visualize tumours by 2-(18F)-fluoro-2-deoxy-

D-glucose positron emission tomography (FDG-PET). 

Glucose enters the cell via one of the tissue specific glucose transporters, which 

are commonly up-regulated in tumours, GLUT1 is particularly important under 

hypoxia(10). Glucose metabolism begins by its phosphorylation by hexokinase 

(HK, Fig. 1:1) to glucose 6-phosphate (G6P). Hexokinase II (HK2), one of the 4 HK 

isozymes, is a target of many cancer related transcription factors, including 

HIF1α and c-Myc(11). The next step in glycolysis is the isomerisation of G6P to 

fructose 6-phosphate (F6P) by phosphoglucoisomerase (PGI, Fig. 1:1), which is 

found up-regulated under hypoxia and in a wide number of cancers (12). 

The next step in glycolysis is catalysed by phosphofructokinase 1 (PFK1), a major 

regulatory protein that is also a HIF1α and c-Myc target (Fig. 1:1). PFK1 is under 

complex control, it controls the diversion of glycolytic intermediated into 

pathways branching from glycolysis, like the pentose phosphate pathway (PPP), 

as well as regulating the rate of glycolysis according to the energy status of the 

cell. Interestingly, ATP is a potent PFK1 inhibitor. This so called Pasteur Effect is 

the most important mechanism by which oxidative phosphorylation (OXPHOS) 

suppresses glycolysis. A potent allosteric activator of PFK1 is fructose 2,6-

bisphosphate (F2,6BP) which is produced by the bi-functional enzyme, 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2, Fig. 1:1). PFKFB3 

is a form of PFKFB2 that favours the synthesis of F2,6BP increasing glycolytic 

flux. The increased level of PFKFB3 in tumours, mediated by HIF1α, has been 

suggested as a cause for aerobic glycolysis (13). Another isoform of PFKFB2, 

PFKFB4 has been found to be essential for prostate cancer growth, positioning it 

as an interesting alternative for therapeutic intervention(14). In addition, a p53 

target, TP53-induced glycolysis and apoptosis regulator (TIGAR) indirectly 

suppresses glycolysis (15). TIGAR shares similarities with the bisphosphatase2 

(BPase2) domain of PFKFB2 and it inhibits glycolysis, presumably through the 

decrease in F2,6BP levels. In this way, PFKFB2 and TIGAR regulate the branching 

of substrates into the oxidative arm of the PPP, promoting the synthesis of 

NADPH and ribose 5-phosphate (Fig. 1:1). The diversion of G6P into the PPP 

increases nucleotide biosynthesis and generates NADPH that it is utilized for the 
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reduction of oxidised glutathione and to support fatty acid biosynthesis 

contributing to tumour growth.  

Another glycolytic enzyme whose levels can be altered by p53 expression is 

phosphoglycerate mutase (PGAM, Fig. 1:1) which catalyses the conversion of 3-

phosphoglycerate to 2-phosphoglycerate. Cells with low levels of p53 or loss of 

function mutations have increased PGAM and therefore increased glycolysis (16). 
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Figure 1:1- Scheme of the central carbon metabolism  

Summary of the metabolic steps involved in glycolysis, the TCA cycle and pathways branching 

from them, including examples of their regulation by oncogenes and tumour suppressors. Acetyl-

CoA, Acetyl Coenzyme A; ACL, ATP citrate lyase; ACN, aconitase; ADP, adenosine diphosphate ; 

ALD, aldolase ; ALT, alanine aminotransferase; ATP, adenosine triphosphate; CS, citrate synthase; 

ENO, enolase; FA, fatty acids; FAD, flavin adenine dinucleotide; FASN, fatty acid synthase; 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GDH, glutamate dehydrogenase ; Glut, 

glucose transporter; GLS, glutaminase; HK, hexokinase; IDH, isocitrate dehydrogenase; LDH, 

lactate dehydrogenase; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine 

dinucleotide phosphate; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; 

PDP, pyruvate dehydrogenase phosphatase; PFK1, phosphofructokinase; PFKFB2, 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 2; PGK, phosphoglycerate kinase; PGI, 

phosphoglucose isomerase, PGAM, phosphoglycerate mutase; PK, pyruvate kinase; PPP, pentose 

phosphate pathway; TPI, triose phosphate isomerase.  
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Pyruvate, the final product of glycolysis, can follow several metabolic routes, 

the major two being its conversion to lactate or acetyl-CoA. The conversion of 

pyruvate to lactate is carried out by lactate dehydrogenase (LDH, Fig. 1:1). 

There are two isoforms of LDH (LDHA and LDHB). LDHA is commonly 

overexpressed in tumours since the recycling of cytosolic NAD+ via lactate 

production is vital for glycolysis. LDHA inhibition makes cells more oxidative and 

slows down proliferation, positioning LDHA as another putative metabolic target 

for cancer therapy (17). 

Pyruvate dehydrogenase (PDH) is the enzyme that catalyses the conversion of 

pyruvate to acetyl-CoA in the mitochondria, linking glycolysis to the TCA cycle 

and ATP production by OXPHOS (Fig. 1:2). PDH is part of a complex of enzymes 

known as the PDH complex (PDC) that regulates PDH activity. There are four 

isoforms of PDH kinases (PDKs) and two of PDH phosphatases (PDPs) that are 

associated with the PDC, regulating its phosphorylation and hence, dictating PDH 

activity. PDK1 is a direct target of HIF1, and therefore hypoxia and some 

oncogenes inhibit PDH activity and the entry of pyruvate into the mitochondria 

(18, 19). The phosphorylation of PDH by PDK reduces its activity, decreasing the 

entry of glucose derived pyruvate into the mitochondria and favouring its 

conversion to lactate, whereas the dephosphorylation of PDH by PDP actively 

catalyses the conversion of pyruvate into mitochondrial acetyl-CoA fuelling the 

TCA cycle (Fig. 1:2). PDK inhibition, hence PDH activation, constitutes a 

promising metabolic target for cancer therapy (20-22). 
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Figure 1:2- The regulation of PDH activity  

PDH activity, hence the metabolic fate of pyruvate is regulated by phosphorylation events. αKG, 

alpha-ketoglutarate; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PDP, 

pyruvate dehydrogenase phosphatase.  

 

1.1.2.1 An Example of Complex Regulation in Glycolysis: Pyruvate Kinase 
M2  

Adapted from Chaneton and Gottlieb, TiBS,2012. 

The final enzyme in glycolysis is pyruvate kinase (PK, Fig. 1:1) which catalyses 

the conversion of phosphoenolpyruvate (PEP) to pyruvate while generating ATP. 

This enzyme is under complex control, allowing the cell to sense and respond to 

the energetic and anabolic precursors’ levels.  

There are four isoforms of PK in mammals and their expression seems to adapt 

to the specific function and energetic requirements of the different tissues. 

Given its key role in regulating glycolysis, PK has been conserved throughout 

evolution. In fact, the four mammalian isoforms are very similar in sequence. 
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Two genes encode the four isoforms: the PKLR gene produces PKL in the liver 

and PKR in red blood cells via tissue specific promoters and the PKM gene 

produces two splice variants: M1, in skeletal muscle, heart and brain; and M2, 

characteristic of highly proliferating cells during embryonic development and in 

cancer(23). The M1 and M2 isoforms originate by alternative splicing of two 

mutually exclusive exons. The PKM gene consists of 12 exons and the two 

isoforms differ by the presence of exon 9 in M1 or exon 10 in M2. The alternative 

exons encode for a stretch of 56 amino acids from which 23 are different and 

they correspond to the regulatory region in the carboxyl-terminus of PKM2 that 

is partially responsible for its fine regulation(23-25). The alternative splicing of 

the PKM gene is controlled by the heterogeneous nuclear ribonucleoprotein 

(hnRNP) family members hnRNPA1, hnRNPA2, and polypyrimidine tract binding 

protein (PTB; also known as hnRNPI). In addition, c-Myc has been shown to 

transcriptionally up-regulate hnRNPI, A1 and A2 that bind repressively to the 

sequences flanking exon 9 consequently favouring PKM2 expression (26-28). 

During cancer progression PKM2 arrogates the control of glycolysis from the 

tissue specific isoform, providing a hint on the importance of this particular 

isoform in sustaining cell proliferation(29). Furthermore, the replacement of 

PKM2 by the constitutively active PKM1 slows tumour growth in a xenograft 

model of lung cancer (30). However, the initial idea that increased aerobic 

glycolysis in cancer cells is due to a switch in expression of the tissue specific 

isoform of PK to PKM2 is still under debate. Recently, a large scale study of 

several normal and tumour tissues, in which PKM1 and PKM2 were quantified 

using mass spectrometry, showed that in cancer cells there is a proportional 

increase in the amount of both isoforms.  PKM2 seems to be also predominant in 

normal adult tissues but the concomitant increase of both isoforms found in 

cancer accentuates the differences in expression between them (31). 

Apart from the differential tissue distribution, PK has multiple ways of regulating 

glycolysis according to tissue’s needs. Indeed, all the isoforms, except for PKM1, 

are allosterically regulated, alternating between a highly active tetramer and a 

less active dimer (32-34). The tetrameric form of PKM2 has a high affinity for 

PEP and favours pyruvate and lactate formation, with production of energy. On 

the other hand, the dimeric form has a low affinity for PEP and is less active at 

physiological PEP concentrations. When PKM2 is in its less active dimeric form, 
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all glycolytic intermediates preceding PK become more available as precursors 

for biosynthetic processes such as, amino acid, nucleic acid and phospholipid 

synthesis (Fig. 1:3). Therefore, the ratio between the tetrameric and the 

dimeric forms of PKM2 determines whether glucose is used for energy production 

or for the synthesis of cellular precursors (30, 35, 36). 

In the 1960s the glycolytic intermediate fructose 1,6-bisphosphate (FBP) was 

identified as a potent activator of PKM2(37). FBP reversibly binds to PKM2 and 

activates it by favouring the formation of an active tetrameric structure. The 

dimer to tetramer inter-conversion responds to changes in intracellular glucose 

concentration. Under physiological glucose concentration, the majority of PKM2 

exists in the tetrameric form and around 30% is dimeric. However, when the 

intracellular concentration of FBP drops, for example after blocking glucose 

uptake, PKM2 is found mainly in its dimeric state (38). In addition, the binding of 

tyrosine phosphorylated peptides to PKM2 results in the release of the allosteric 

activator FBP and the inhibition of PK activity (39). This inhibition is necessary to 

allow growth factor initiated signalling pathways to channel glycolytic 

intermediates into biosynthetic processes.  

Recently, other post-translational modifications have been found to reduce 

PKM2 activity, contributing to the idea that PKM2 can be found in an inactive 

form in proliferating cells. Low PK activity in yeasts increases respiration 

without increasing reactive oxygen species (ROS) levels and improving resistance 

to oxidants. This is due to the accumulation of PEP that inhibits triosephosphate 

isomerase (TPI), a glycolytic enzyme. Moreover, TPI inhibition reduces oxidative 

stress by increasing the PPP and preventing ROS accumulation (40). Similarly, 

increased ROS levels in cancer cells, as a result of growth factor signalling or 

mutations in tumour suppressor and oncogenic pathways, can inactivate PKM2 

through oxidation of Cysteine-358. This inactivation causes an accumulation of 

glycolytic intermediates and hence an increased diversion of carbons into the 

PPP, which produces NADPH contributing to ROS detoxification. This mechanism 

allows cancer cells to control ROS and survive under oxidative stress conditions 

(41). 

Acetylation seems to be an alternative post-translational modification that, like 

the previously described phosphorylation, reduces PKM2 activity, which leads to 
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increased glycolytic intermediates that are available for biosynthesis in response 

to nutrient availability. Nevertheless, these modifications are far from being 

specific for PKM2 since they are also common to a range of other metabolic 

enzymes (42). Increased glycolysis induces PKM2 acetylation at Lysine-305, this 

novel mechanism of PKM2 down-regulation when glucose is abundant, has two 

methods of action. On the one side it reduces PKM2 activity, decreasing PEP 

affinity while on the other side it favours subsequent PKM2 degradation through 

chaperone-dependent autophagy (43). Given the fact that this mechanism 

clearly contrasts the activation of PKM2 that takes place when glucose and 

therefore FBP are abundant, it would be interesting to understand how 

acetylation of Lysine-305 may affect FBP binding to PKM2. 

During the 1980’s in vitro measurements of PKM2 activity in the presence of 

several biologically relevant compounds identified several amino acids and fatty 

acids as modulators of PKM2 activity. In in vitro enzymatic assays, PKM2 seems 

to increase its activity in response to a number of molecules that contain a 

hydroxyl group (-OH), such as serine, phosphatidylserine but also methanol and 

ethanol. PKM2 activity is also inhibited by amino acids like alanine, 

phenylalanine and tryptophan (44-48). Additionally, PKM2 has been found to 

interact with several oncogenic proteins and apparently plays a role in the 

transformation process (49-52). Other signalling cascades that involve tyrosine 

kinase receptors are commonly amplified in cancer contributing to the 

regulation of the glycolytic phenotype. Direct PKM2 phosphorylation on tyrosine-

105 by FGFR1 prevents FBP binding inhibiting the formation of the fully active 

tetrameric form. This short-term mechanism of PKM2 inhibition is commonly 

described in different human cancer cell lines even though the proportion of the 

phosphorylated/ non-phosphorylated PKM2 is not completely clear(53). 

In the cytoplasm, PKM2 can be found as part of a complex with other glycolytic 

enzymes such as HK, GAPDH, enolase, PGAM and LDH. Only the tetrameric, but 

not the dimeric form of PKM2 is associated with this glycolytic complex and the 

dissociation of the tetramer into dimers disrupts the complex. While being part 

of the glycolytic complex, highly active PKM2 favours lactate production and 

blocks OXPHOS (54, 55). Dimeric PKM2 has been found in the nucleus where it 

regulates gene transcription by acting as protein kinase (56). Nuclear 

translocation of PKM2 is possible thanks to the presence of an inducible nuclear 
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localisation signal (NLS) in its C-domain, which, in contrast to the classical NLS, 

is not rich in arginine and lysine (57, 58). A putative translocation mechanism 

involves PKM2 interaction with the SUMO-E3-ligase PIAS3, which promotes PKM2 

sumoylation and its further nuclear translocation (59). In the nucleus PKM2 

interacts and activates transcription factors such as Oct-4 contributing to the 

maintenance of a pluripotent cell status by preventing differentiation (60). 

Other stimuli that result in nuclear translocation of the dimeric inactive PKM2 

are treatment with agents that generate ROS, like H2O2 and UV radiation. The 

nuclear functions of PKM2 seem to be as varied as its cytoplasmic ones and it has 

been found to interact with a number of proteins. Another nuclear function of 

PKM2 includes transactivation of β-catenin upon epidermal growth factor 

receptor (EGFR) activation (61). Moreover, hydroxylation on prolines-403 and -

408 of nuclear PKM2 by PHD3 stimulates its binding to HIF1α, promoting HIF-1 

transcriptional activity of genes encoding glucose transporters and glycolytic 

enzymes in cancer cells (62). Altogether, these findings certainly confirm that 

the single exon difference between PKM1 and PKM2 imparts the latter with 

important regulatory characteristics and functional distinctions.  
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Figure 1:3- The effect of PKM2 activity regulation on metabolism 

(a) When PKM2 is active, glycolytic rate is high and most of the pyruvate is rapidly converted to 

lactate while respiration is partially suppressed. (b) A reduction in PKM2 activity leads to a 

decrease in lactate production associated and the accumulation of upstream glycolytic 

intermediates with a consequent increase in the synthetic pathways branching from these 

metabolites. Lower PKM2 activity also increases respiration and with it, the risk of reactive oxygen 

species (ROS) production. However, high flux via the pentose phosphate pathway (PPP) provides 

anti-oxidants that counteract the mitochondria-generated ROS. 3PG, 3-phosphoglycerate; GA3P, 

glyceraldehyde 3-phosphate; G6P, glucose 6-phosphate; PEP, phosphoenolpyruvate. Taken from 

Chaneton and Gottlieb, TiBS, 2012. 
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1.1.3 Glutaminolysis 

The other major source of energy and carbons for cancer cells besides glucose is 

glutamine (63, 64). In addition, glutamine is also an important nitrogen source 

for cells. As a consequence of the high glucose and glutamine uptake, an 

associated increased secretion of their metabolic by-products such as lactate, 

alanine and ammonia is also observed in cancer cells.  

Glutamine enters the cell via transporters such as the Na+-dependent neutral 

amino acid transporter ASCT2. Once in the cell glutamine can be deaminated by 

one of the two glutaminases (GLS or GLS2) producing glutamate and ammonia. 

Glutamate can be secreted out of the cells or it can enter the TCA cycle through 

its conversion to α-ketoglutarate by glutamate dehydrogenase (GDH) or via 

numerous transamination reactions (Fig. 1:1). Once in the TCA cycle, α-

ketoglutarate is metabolised further to ultimately form oxaloacetate, an 

important anabolic precursor that will condense with acetyl-CoA to produce 

citrate. The hint that glutaminolysis is a possible target for cancer therapy came 

from the observation that GLS is overexpressed in a number of tumours, and its 

inhibition delays tumour growth(65-67). The use of GLS inhibitors such as 

compound 968 and Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 

(BPTES)  shows promising results in delaying tumour growth(68, 69). 

1.1.4 The Role of Metabolism in Tumour Initiation and 
Progression 

The link between metabolism and cancer was tremendously tightened when 

mutations and loss of function of TCA cycle enzymes were found to be the cause 

of some hereditary forms of cancer. Initially, mutations in the gene encoding for 

the subunit D of the succinate dehydrogenase complex (SDH) were found to be 

the underlining cause of the neuronal crest-derived cancer syndrome Hereditary 

Paraganglioma(70). Soon after this seminal discovery, fumarate hydratase (FH), 

the enzyme that catalyses the conversion of fumarate to malate, was found 

mutated in another hereditary disorder called hereditary leiomyomatosis and 

renal cell cancer (HLRCC)(71). SDH is formed by four subunits: A and B, C and D 

and is also complex II of the electron transport chain (ETC), where FADH2 is 
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generated by succinate oxidation and further oxidised along the ETC (Fig. 1:1). 

Mutations in FH, or SDHB, C or D are known causes of several familial and 

sporadic cancers(72). Mutations in these TCA cycle enzymes force cells to rely on 

a truncated TCA cycle that results in the stabilisation of HIFα subunits, even in 

the presence of oxygen, giving rise to a pseudo-hypoxic phenotype(73, 74). This 

phenotype is caused by the increase in succinate (SDH mutations) or fumarate 

(FH mutations) levels and the consequent inactivation of the oxygen sensing 

machinery mediated by prolyl hydroxylases (PHDs) (75-77). The fact that 

mutations in enzymes involved in key metabolic pathways led to tumour 

predisposition produced the smoking gun, which demonstrated that aberrant 

metabolism could actually be, in some cases, the cause of cancer. The notion 

that a cell can adapt to severe metabolic defects, such as the loss of SDH or FH, 

suggested that a significant metabolic rewiring should be an adaptive response in 

these cancer types. Furthermore, through a combination of metabolomics, 

biochemistry and systems biology, using the first cellular syngenic model of FH-

deficient epithelial kidney cells, our group predicted and validated the synthetic 

lethality between the loss of FH activity and the inhibition of the haem 

biosynthesis/degradation pathway. In FH-/- cells, heme oxigenase 1 (HMOX1) 

helps detoxifying the excess of fumarate via the excretion of bilirubin. The 

confirmation of this synthetically lethal relationship in a clinical setting may 

open up new therapies for the treatment of patients with HLRCC(78). In a similar 

line, fumarate has been shown to induce a protective antioxidant response 

mediated by Nrf2 in the heart upon an ischemia-reperfusion injury, contributing 

to the idea that fumarate works as a cytoprotective, which in the context of 

several mutations can contribute to tumour development(79). 

An integrated genomic analysis of human glioblastoma multiforme (GBM) found 

recurrent heterozygous mutations in the active site of isocitrate dehydrogenase 

1 (IDH1), in 12% of GBM patients(80). The same was true for acute myeloid 

leukemia (AML)(81). In addition, using a metabolomic approach, it was shown 

that mutant IDH not only has reduced capacity to convert isocitrate to α-

ketoglutarate but it also acquires a novel reductive activity utilising α-

ketoglutarate to produce 2 hydroxyglutarate (2HG)(82). Indeed, the non-invasive 

detection of 2HG by magnetic resonance has proved to be a valuable diagnostic 

tool and prognostic biomarker for GBM(83-85). Furthermore, this discovery 
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granted a novel role for 2HG in the tumorigenesis of GBM and it was dubbed as 

an “oncometabolite” somewhat similarly to fumarate and succinate. However, 

intense investigations demonstrated that, unlike fumarate and succinate, 2HG 

does not inhibit PHDs, on the contrary, it stimulates their activity and reduces 

HIF levels. Interestingly, 2HG appears to act as a potent modulator of the 

epigenetic status of the cell by affecting both DNA and histone methylation, 

suggesting that 2HG can directly impact cellular differentiation and hence 

increase susceptibility to cancer (86-88). Inhibition of mutant IDH has 

antineoplastic effects in glioma, apparently through a decrease in 2HG levels 

and the induction of differentiation (89). Specific chemical inhibitors against 

mutant IDH1 and IDH2 have been designed and are currently showing positive 

results in clinical trials (ClinicalTrials.gov NCT01703962 and NCT01915498). 

Serine is an important amino acid, not only for protein synthesis, but also for 

other amino acids, lipids, as well as nucleotide biosynthesis. The endogenous 

serine synthesis pathway, also called the ‘phosphorylated pathway’ is the main 

source of serine in several mammalian tissues like the brain, serving also as a 

source of glycine and one-carbon units for methylation (Fig. 1:4). The up-

regulation of this pathway has been associated with the ability of breast cancer 

cells to metastasise (90). Furthermore, a loss of function screen found that 

certain breast cancers have PHGDH amplification and rely on endogenous serine 

production to sustain proliferation(91). Interestingly, using metabolomics it was 

shown that melanoma and breast cancer cells with PHGDH amplification divert 

large amounts of glucose-derived carbons into serine and glycine biosynthesis 

(92). In addition to the endogenous serine synthesis pathway, serine metabolism 

also seems to be important for cancer cells, contributing to redox balance by 

glutathione production, protein and nucleotide biosynthesis as well as providing 

methylene groups for methylation.  Furthermore, p53 has been related to the 

ability of cells to survive to serine starvation (93, 94). 
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Figure 1:4- The phosphorylated pathway for serine synthesis  

Scheme of the serine synthesis pathway from glucose and the main biosynthetic pathways in which 

L-serine is involved. PHGDH, phosphoglycerate dehydrogenase; PSAT1, 3-phosphoserine α-

ketoglutarate aminotransferase; PSPH, 3-phosphoserine phosphatase; SHMT1, serine 

hydroxymethyl transferase 1; methylene-THF, methylene tetrahydrofolate. Dotted lines indicate 

multiple step reactions.  

 

mTOR is a key metabolic regulator that promotes protein synthesis and cell 

growth when energy and nutrients are in plenty.  Upon energy depletion, mTOR 

is inhibited by the activation of the LBK1/AMPK pathway (6, 95). mTOR forms 

two complexes: mTOR complex 1 (mTORC1, Fig. 1:5), controls protein synthesis 

and cell cycle progression. Rapamycin, a compound originally isolated from 

streptomyces hygroscopicus inhibits mTORC1 by binding to FKBP12 (FK506-

Binding Protein 12) resulting in the dissociation of Raptor from the mTORC1 

complex (96). In response to nutrients and growth signalling, mTORC1 activates 

S6K and inhibits 4EBP1, both regulators of mRNA translation (97). The second 

complex, mTORC2, interacts with AKT and is composed by mTOR, RICTOR and 

DEPTOR among other proteins. mTORC2 was initially thought to be insensitive to 
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rapamycin and it is involved in the regulation of cytoskeleton and metabolism 

(98). 

Upstream of mTORC1 is TSC1/2, an inhibitor of mTORC1 kinase activity that 

transduces growth factor signalling through AKT and ERK pathways, hypoxia 

through the HIF1 target REDD1 and energy status through AMPK(99, 100). Some 

amino acids and their transporters can also regulate mTOR activity (Fig. 

1:5)(101). In spite of the importance of glutamine as an energy source, leucine 

seems to be necessary and sufficient for mTORC1 activation (102). mTORC1 

activation by TSC1/2 loss is able to drive tumorigenesis, modulating apoptosis, 

cellular senescence, and response to treatment(103-105). AKT inhibits TSC1/2 

controlling mTOR activity and it has been shown that rapamycin treatment 

alleviates the cancer phenotype in some activated AKT tumours (106, 107). 

Furthermore, PTEN-deficient cancer cells have constitutively active AKT and 

mTORC1 associated with poor prognosis (108).  
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Figure 1:5- The mTOR signalling pathway 

Scheme showing how the mTOR machinery integrates growth signals and nutrient levels in order 

to regulate cell metabolism. 4EBP1, Eukaryotic translation initiation factor 4E-binding protein 1; 

AKT, protein kinase B; AMPK, AMP regulated kinase; ATP, adenosine triphosphate; ERK, 

extracellular-signal regulated kinase; FKBP12, FK506 binding protein 12; LKB1, liver kinase B1; 

mTOR, mechanistic target of rapamycin; mTORC1/2, mTOR complex 1 and 2 respectively; PI3K, 

Phosphatidylinositol 3-kinase; PKCα, protein kinase C alpha; PDK1, pyruvate dehydrogenase 

kinse 1; REDD1, DNA-damage-inducible transcript 4 protein; RTK, receptor tyrosine kinase; S6, 

ribosomal protein S6; S6K, S6 kinase; TSC1/2, tuberous sclerosis 1 and 2 respectively. 
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1.2 Therapeutic Strategies 

Studies of the unique metabolism of cancer started in the early 1920s when Otto 

Warburg proposed that tumours, unlike most normal cells, utilize glycolysis 

rather than OXPHOS for ATP production. The consequences of this metabolic 

adjustment are conspicuously high glucose uptake and lactate secretion(9). In all 

tissues glucose is first partly oxidised to pyruvate in the cytosol in an oxygen 

independent ATP-generating process. Although normal tissues like brain and 

heart also exhibit high rates of glucose metabolism, the main difference 

between normal tissue and cancer cells is that in normal cells, pyruvate is 

mainly oxidised in the mitochondria for energy production while in the latter it 

is reduced in the cytosol and secreted as lactate. These observations were 

debated for decades, after which, the methodological investigation of the 

molecular basis of aerobic glycolysis in cancer began, and with it, a new era of 

research on cancer metabolism.  

The vast majority of metabolic pathways in which cancer cells rely are also 

essential for the survival of normal cells and hence are not, in principle, suitable 

drug targets. However, the presence of a specific enzyme isoform or changes in 

the activity of a pathway may allow targeting them. Since the early 

development of chemotherapy in the 1950s until now, cancer therapy has largely 

focused on targeting the rapid proliferation of tumour cells. For instance, by 

using antimetabolites such as methotrexate, which interferes with the use of 

folic acid by cancer cells, blocking in this way DNA synthesis and halting cell 

proliferation. Nonetheless, this unspecific approach has a vast number of 

undesirable side effects(109). 

1.2.1 Targeting Glycolysis and the Pentose Phosphate Pathway 

Several genetic modifications occurring during tumorigenesis contribute to 

glucose addiction. For instance, mutations in the tumour suppressor gene Von-

Hippel-Lindau (VHL) make renal cell carcinomas (RCC) highly dependent on 

glycolysis. A high-throughput screen for compounds that synergise with VHL loss 

identified a candidate drug that directly inhibits GLUT1, selectively killing VHL 
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deficient cells in vitro, and retarded RCC growth in a murine model(110). 

Oncongenic BRAF and RAS have been associated with increased GLUT1 

expression in tumours and specific GLUT1 inhibitors underwent clinical trials 

(111-113). Hexokinase controls the first step in glycolysis, phosphorylating 

glucose to G6P and it is up-regulated by both HIF1α and c-Myc. On the one hand, 

several inhibitors of hexokinases such as lonidamine, 2-deoxyglucose and 3-

bromopyruvate started clinical trials but they have now been abandoned and 

there is still a need to determine if their effect on tumour growth is the result of 

their specific action on hexokinase(114-116). Glycolytic inhibitors, like 2-

deoxyglucose, do not show significant effect on tumour growth, but can re-

sensitise tumours to chemo- and radiotherapy apparently by reducing ATP levels 

in the tumours(117-119).  

The diversion of G6P from glycolysis into the PPP produces on the one hand, 

NADPH for lipid and nucleotide biosynthesis and ROS protection, and on the 

other hand, ribose 5-phosphate for nucleotide biosynthesis. At present, there 

are no specific inhibitors for this pathway undergoing clinical trials although its 

inhibition will likely mimic the effect of antimetabolites and, by decreasing 

NADPH levels, alter cellular redox balance and block lipid biosynthesis. In spite 

of this, pre-clinical data on glycolytic modulators show that they can act on the 

PPP pathway by reducing the amount of glucose derived carbons flowing into this 

pathway, such as PGAM1 inhibitors and PKM2 activators(16, 120). 

6-Phosphofructo-1-kinase (PFK1) catalyses the addition of a second phosphate 

group to F6P and it is a rate-limiting step in glycolysis, being very active in 

cancer cells. F2,6BP is a potent allosteric activator of PFK1 and it is the product 

of a family of bifunctional enzymes known as  PFKBPs. It has been shown that a 

small molecule inhibitor of PFKFB3 decreases F2,6BP levels reducing PFK1 

activity and glycolytic flux, with cytostatic effects(121).  

The final and most important enzyme from an energetic point of view in 

glycolysis is PK. For this reason, PK activity is strictly controlled, among other 

ways by isoform selection and by allosteric regulation. The glycolytic 

intermediate, F1,6BP, binds to and allosterically activates a specific isoform of 

PK highly expressed in proliferating cells, PKM2. This feed-forward mechanism 

links the two rate-limiting steps in glycolysis enabling co-ordinated glycolytic 



31 
 

 Barbara Julieta Chaneton, 2014 

flux in PKM2 expressing cells. Therefore, PKM2 constitutes an interesting target 

for cancer therapy and understanding its regulation in vivo is of paramount 

importance to design drugs that can modulate its activity in tumours.  

It has been shown in cancer cells that PKM2 binding to phospho-tyrosine residues 

in other proteins can interfere with the feed-forward effect of F1,6BP resulting 

in reduced PK activity (39). The multiple ways in which PKM2 is regulated gave 

rise to an increasing interest in modulating its activity. To that end, both PKM2 

inhibitors and activators have been designed in order to modulate PKM2 activity 

in cancer cells in an attempt to halt tumour growth (120, 122-124). 

Initially, an inhibitor to PK (TLN-232) was taken to phase II clinical trials but was 

then dropped. However, since it was noticed that cancer cells expressing the 

constitutively active isoform PKM1 have reduced tumour growth capacity in vivo 

compared to PKM2 expressing cells, an opposite therapeutic approach towards 

PKM2 has been adopted(30, 125). To this end, a number of PKM2 activators have 

been designed and characterised (120, 126-129). They increase the affinity for 

PEP as the natural activator FBP does without altering the Km for ADP. PKM2 

activation has emerged as an appealing therapeutic opportunity in an attempt to 

normalise cancer cell metabolism back to a normal cell status, and it has proved 

successful in combination with serine starvation halting cell proliferation (124). 

One of the causes of the limited effect that glycolytic inhibitors have shown in 

cancer treatment could be the strong increase in glutaminolysis displayed by 

some tumours, and therefore the ability of tumours with functional mitochondria 

to produce ATP by OXPHOS. Therefore, the use of anti-glycolysis treatment 

could lead to the depletion of muscle glutamine stores and loss of adipose and 

muscle tissue (cachexia) due to increased tumour demand (130). 

1.2.2 Targeting Pyruvate Metabolism  

Pyruvate is generated in the cytosol by oxidation of glucose during glycolysis, 

yielding two moles of pyruvate for every mole of glucose consumed. In most 

tissues pyruvate is converted to acetyl-CoA in the mitochondria by pyruvate 

dehydrogenase (PDH). A greater proportion of the pyruvate produced in tumour 

cells is redirected into lactate production, due to the increased activity of two 
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key enzymes: PDK, which phosphorylates and inhibits PDH activity, and LDHA, 

which converts cytosolic pyruvate to lactate (18, 19, 131)(18, 19, 130). The 

increase in lactate production and consequent decrease in pyruvate entering the 

TCA cycle has proved to be crucial for tumours, as LDHA or PDK inhibition reduce 

tumour growth in xenograft models(17, 132). In particular, the PDK inhibitor DCA 

showed anti-cancer effects in pre-clinical studies and it is already a prescription 

drug for the treatment of lactic acidosis, being well tolerated in patients with 

GBM(133). However, neither DCA nor other PDK inhibitors have been approved 

yet for cancer therapy and there are no effective therapies targeting LDHA.  

Lactate is secreted with protons (H+) out of the cells via the monocarboxylate 

transporter 4 (MCT4) preserving the intracellular pH at expense of creating an 

acidic tumour microenvironment. H+ are also exported using the Na+/H+ 

exchanger 1 (NHE1 or SLC9A1). Small molecule inhibitors targeting NHE1, such as 

cariporide are in clinical trials as cardioprotective agents but they are not being 

tested as anti-tumour agents in the clinic (134, 135). Cancer cells can take-up 

lactate from the tumour microenvironment using MCT1, converting it back to 

pyruvate for further oxidation and it has been shown that inhibition of MCT1 

results in reduced tumour growth in xenografts  and re-sensitisation to radiation 

(136).  Currently AZD3965, a chemical MCT1 inhibitor is being tested in patients 

with advanced solid tumours and lymphomas (ClinicalTrials.gov NCT01791595). 

Extracellular acidification has been shown to increase the motility of cells both 

in vitro and in vivo (137-139). Therefore, targeting tumour acidification has 

multiple benefits: it inhibits glycolytic energy production, decreases 

immunosuppression and also inhibits tumour cell invasion (140, 141). Indisulam is 

an inhibitor of the tumour-associated isoform of carbonic anhydrase (CA IX), 

currently in phase II clinical trials for the treatment of melanoma and breast 

cancer (142-145). 

1.2.3 Targeting Amino Acid Metabolism 

Tumours require high levels of exogenous essential and non-essential amino 

acids, in particular glutamine, which is the most concentrated amino acid in 

human plasma(146). Glutamine has multiple uses for cancer cells: besides 

protein synthesis, its amine group can be used to generate most of the non-
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essential amino acids by transamination, it can also replenish the TCA cycle and 

it is also important for nucleotide biosynthesis. Tumour cells use large amounts 

of glutamine, depleting it from the blood of cancer patients (147). 

Phenylacetate reduces bioavailability of glutamine, inhibiting cancer cells 

proliferation and promoting differentiation (148-150). However the removal of 

glutamine directly from the plasma may also increase the rate at which the body 

depletes its own muscle stores (cachexia).  

Glutaminolysis is the catabolic conversion of glutamine into glutamate by 

glutaminase (GLS or GLS2) which is up-regulated by c-Myc (151). Although a 

number of anti-glutaminolysis compounds have been developed, they were found 

to be toxic or raised an immune response(152). The recent renewed interest in 

the glutaminolytic pathway has led to the development of more specific GLS 

inhibitors like compound 968 and BPTES, to which glioma cells expressing mutant 

IDH1 seem to be particularly sensitive to(67, 153). In addition, GLS inhibition 

halters the growth of xenografts from c-Myc-expressing B cells (69). 

Although asparagine is not usually an essential amino acid in humans due to the 

presence of asparagine synthetase (ASSN), certain tumour types like leukaemia 

have little ASSN activity and require exogenous asparagine. This has led to the 

use of asparaginase, the enzyme that converts asparagine to aspartate and 

ammonia, for the treatment of childhood acute lymphoblastic leukemia 

(ALL)(154, 155). Likewise, while in normal tissue arginine is not an essential 

amino acid, some hepatocellular carcinoma (HCC), mesothelioma and 

melanomas do not express argininosuccinate synthetase (ASS), and therefore are 

auxotrophic for arginine and hence are sensitive to its depletion in plasma(156, 

157). Arginine deiminase has proved effective in the treatment of unresectable 

melanoma (ClinicalTrials.gov NCT00450372) and it’s currently being tested in 

several other tumour types. 

1.2.4 Targeting Fatty Acid Metabolism 

Endogenous fatty acids are synthesised from TCA cycle derived citrate and 

NADPH, which can be produced by the PPP and other enzymes. Once in the 

cytosol, citrate is broken down into acetyl-CoA and oxaloacetate by ATP citrate 

lyase (ACL). Fatty acid synthesis starts with acetyl-CoA carboxylase (ACC) 
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converting acetyl-CoA to malonyl-CoA, and this is followed by a series of steps in 

which malonyl-CoA is converted to palmitate by fatty acid synthase (FASN). Many 

tumours express high levels of FASN, including breast, colorectal and 

endometrial cancers (158-160). Orlistat, a FASN inhibitor used for the treatment 

of obesity, appears to kill tumour cells directly, as well as sensitises them to 

other therapies such as 5-Fluorouracil and trastuzumab (Herceptin)(161, 162).  

The inhibition of other enzymes involved in lipid metabolism, such as ATP citrate 

lyase (ACL), choline kinase, acetyl-coA carboxylase (ACC), monoglyceride lipase 

(MGLL) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) has proved 

effective as cancer treatment in preclinical settings and these enzymes are the 

focus of drug development, some of them like in the case of statins are currently 

undergoing clinical trials (ClinicalTrials.gov NCT01428869, NCT01992042)(163-

167).  

1.2.5 Targeting the Master Regulators of Tumour Metabolism 

A number of therapeutic strategies that target upstream regulators of metabolic 

pathways are being tested. Targeting HIF can prevent metabolic adaptation to 

hypoxia and the metabolic shift observed in pseudo-hypoxic tumours, but HIF1 

inhibitors like Acriflavine and PX-478 never reached the clinical stage or were 

discontinued for undisclosed reasons(168). The PI3K/AKT pathway is often 

activated and it is known to contribute to the cancer metabolism phenotype 

(169). AKT up-regulates glycolysis by accumulating glucose transporters in the 

plasma membrane and altering the expression or localisation of enzymes such as 

HK and PFK (170-173). Furthermore, the PI3K/AKT pathway also activates mTOR, 

contributing to cancer cells growth and PTEN loss-mediated PI3K/AKT activation 

cooperates with BRAFV600E in melanomagenesis (100, 174). PI3K inhibitors 

promote tumour regression by reversing some of the metabolic features of 

cancer, (169). However, inhibition of the PI3K/AKT pathway can also contribute 

to tumour regression in a non-metabolic fashion, as this pathway is pro-

tumorigenic promoting cell growth and proliferation (175). Despite these 

observations, clinical trials using rapamycin on PTEN-deficient tumours have not 

provided positive results, which may be due to the AKT inhibition by S6K (5). 

mTORC1 inhibition with rapamycin and therefore, loss of S6K activity would 
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cause AKT re-activation, which may account for poor results in clinical 

trials(176, 177). 

Another important regulator of mTOR is AMPK, which it activated under low 

energy conditions, leading to a metabolic adaptation characterised by increased 

catabolism and decreased anabolism, partially via the inhibition of mTOR(6). 

Oncogenic events such as BRAF over-activation inhibit the LBK1/AMPK pathway, 

maintaining high levels of mTOR activity and contributing to the development of 

melanoma(178, 179). The AMPK activator metformin, used for the treatment of 

type II diabetes, has shown to have prophylactic and therapeutic effects on 

cancer with particularly positive results in breast cancer (180-184). The anti-

cancer effect of metformin is independent of glycaemia and seems to be 

mediated by the inhibition of mitochondrial complex 1(185, 186). Metformin is 

currently in phase I and II clinical trials for cancer treatment (ClinicalTrials.gov 

NCT02109549). In light of this, it is clear that targeting these pathways may have 

important clinical benefits for cancer treatment. 

 

1.3 The Use of Metabolomics and 13C Tracers to Identify 
Metabolic Vulnerabilities in Cancer Cells 

Metabolomics is the discipline that aims to identify and characterize all known 

small molecule metabolites (less than 1 kDa) present in a system (e.g.: a cell or 

body fluids); currently allowing for the simultaneous measurement of hundreds 

of metabolites(187).  The use of metabolic profiling in cancer provides more 

accurate knowledge on the biological state of a tumour, i.e. progression, drug 

metabolism, etc., compared to the genomic approach.  

The initial metabolomics approaches were based on nuclear magnetic resonance 

(NMR) but they are now complemented with the use of mass spectrometry (MS), 

which provides higher sensitivity, better resolution, and a wider range of 

metabolites detection(188). MS is coupled to a separation method such as liquid 

or gas chromatography. Liquid chromatography (LC) is a very robust system that 

allows for the separation of a wide range of metabolites(189). The LC-MS 

platform offers the possibility to perform targeted analyses of metabolic 
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pathways by using 13C-labelled metabolites such as glucose and glutamine (190). 

This strategy allows for the calculation of intracellular metabolic fluxes and, by 

making use of partially labelled substrates, for the identification of alternative 

metabolic pathways(191). By applying these recent advances in the field of 

metabolomics in the context of cancer research we have been able to 

characterize the metabolism of a wide variety of tumours, identifying 

adaptations and vulnerabilities, opening in this way new possibilities for the 

development of more efficient cancer therapies.   

 

1.4 Aims  

The general aim of this work was to identify metabolic enzymes that are 

important for cancer metabolism and that could be exploited as possible 

therapeutic targets.  

Specific aims: 

1- Characterize metabolic changes associated with oncogene-induced 

senescence and understand how changes in metabolism can modulate 

senescence in order to inhibit tumour progression.  

2- Explore the role of PKM2 in cancer metabolism and identify new 

mechanisms of regulation. Understand how changes in PKM2 activity 

affect glycolysis and the pathways branching from it. 

3- Identify metabolic adaptations to currently available therapies in order to 

overcome resistance in melanoma.  
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Chapter 2 - Materials and Methods 
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2.1 Materials 

Materials and methods were taken from Chaneton et al, 2012. Nature.  

2.1.1 Reagents  

All reagents were purchased from Sigma-Aldrich unless specified below:  

Fisher Scientific: HPLC grade methanol, HPLC grade acetonitrile, NaCl, NaOH, 

Sodium dodecyl sulphate (SDS).  

Invitrogen: NuPAGE Novex 4-12% Bis-Tris Protein Gels, 1.0 mm, 10 well, NuPAGE 

MOPS SDS Running Buffer (20X), NuPAGE LDS sample buffer (4x), HEPES, L-

glutamine, DMEM, RPMI, ENZchek reverse transcriptase assay kit, DH5α 

competent cells, trypsin, ZOOM strips pH 3-10NL for IEF.  

Life technologies: Fast SYBR® Green Master Mix, SuperScript® VILO™ Master Mix, 

High-Capacity RNA-to-cDNA™ Kit 

Eppendorf: UVette  

Promega: Kinase-Glo® Luminescent Kinase Assay 

Qiagen: RNeasy Mini Kit, QIAEXII Gel Extraction Kit, QIAshredder, Ni-NTA 

Agarose beads 

Stratagene: QuikChange II site directed mutagenesis kit 

Seahorse Bioscience: Seahorse media, XF calibrant and XF24 plates 

Millipore: Nitrocellulose membrane 0.22 µm 

Cambridge Isotope laboratories: U13C glucose, U13C glutamine.   

GE Healthcare: Fetal bovine serum.  

Thermo Scientific: Bicinchoninic Acid Assay (BCA), BSA standard.  
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Merck: ZIC-pHILIC column (4.6 mm×150 mm, guard column 4.6 mm×10 mm) HPLC 

column 

Agilent Technologies: BioSec3 column (Agilent SEC-3,300A,7.8x300mm) 

Eppendorf single sealed cuvettes, UVette (Eppendorf UK Limited) 

2.1.2 Primers  

qPCR primers:  

β-actin-Forward Primer: 5’- TCCATCATGAAGTGTGACGT-3’; β-actin-Reverse 

Primer: 5’- TACTCCTGCTTGCTGATCCAC-3’; PKM1-Forward Primer: 5’-

GAGGCAGCCATGTTCCAC-3’; PKM1-Reverse Primer: 5’-

TGCCAGACTCCGTCAGAACT-3’; PKM2- Forward Primer: 5’-

CAGAGGCTGCCATCTACCAC-3’; PKM2- Reverse Primer: 5’-

CCAGACTTGGTGAGGACGAT-3’. PKL Forward Primer: 5’-

CTGGTGATTGTGGTGACAGG-3’ PKL Reverse Primer: 5’-

TGGGCTGGAGAACGTAGACT-3’ PKR Forward Primer: 5’-

CAATTTGGCATTGAAAGTGG-3’ PKR Reverse Primer: 5’- 

CCTGTCACCACAATCACCAG-3’  

Site directed mutagenesis primers (sequence of mutated bases shown in 

uppercases bold): H464A: 5’gctcgtcaggccGCcctgtaccgtggc3’, S437Y: 

5’accaagtctggcaggtAtgctcaccaggtgg3’. 

2.1.3 Antibodies 

PKM1 antibody was custom-made by PolyPeptide Laboratories (Strasburg, 

France) using the following peptide sequence: CLVRASSHSTDLMEAMAMGS. The 

PKM2 (cat #3198) and PKM1/2 (#3186) antibodies were purchased from Cell 

Signalling Technology (Danvers, MA, USA). The anti-actin antibody (mouse 

monoclonal AC-40) was purchased from Sigma (Gillingham, UK). The donkey-anti 

rabbit (926 32213) or donkey-anti mouse (926 32212) secondary antibodies were 

purchased from LI-COR Biosciences. 
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PGAM1 and its phosphorylated forms were detected by Western blot using goat 

anti-PGAM1 (Novus) 1:1000 and Donkey anti-Goat (LI-COR Biosciences) 1:1000 

antibodies. 

2.1.4 Vectors and plasmids   

shRNA (shCntrl) (sc-108080) or PKM1/2 shRNA (shPKM) (sc-62820) lentiviral 

particles were purchased from Santa Cruz Biotechnology, Santa Cruz, CA, USA. 

PKM1/2 shRNA (shPKMa) were bought from Openbiosystems (TRCN0000037610 

and TRCN0000037611). pLKO scramble shRNA (Openbiosystems) was used as a 

control (shCntrla). 

Lentiviral envelope and packaging helper plasmids: pLP/VSVG (lentiviral 

packaging plasmid for expression of the vesicular stomatitis virus G 

glycoprotein,Invitrogen) and psPAX-2 (2nd generation lentiviral packaging 

plasmid,Addgene). 

Bacterial expression plasmids pET28a_LIC_wtPKM2, pET28a_LIC_H646A_PKM2, 

pET28a_LIC_S437Y_PKM2 were derived from pET28a_LIC purchased from 

Structural Genomics Consortium, Toronto, CA.  

pMSCV-blast-BRAFV600E and pMSCV-blast were previously described (Kuilman et 

al., 2008). 

2.1.5 Cell lines 

HCT116, HT29, SW620, HEK293T, Tig3, A375 and Colo829 were purchased from 

ATCC  

2.1.6 Equipment   

7500 Fast Real-Time PCR System (Life Technologies Corporation Carlsbad, 

California) 

Odyssey CLx Infrared Imaging System (LI-COR Biosciences)  

XCell SureLock Mini-Cell Electrophoresis System and blot module (Invitrogen) 
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Seahorse flux analyser XF24 (Seahorse Bioscience) 

Agarose gel caster and tanks (Biorad) 

Exactive™ Plus Orbitrap Mass Spectrometer (Thermo Scientific) 

Veritas microplate luminometer (Turner Biosystems)  

MicroCal VP-ITC 

Hiload Superdex 16/60 S75 size exclusion chromatography 

CASY cell counter and analyser (Roche Applied Science)    

SpectraMax Plus 384 Absorbance Microplate Reader (Molecular Devices) 

Eppendorf Biophotometer (Eppendorf UK Limited) 

2.1.7 General buffers and solutions  

RIPA buffer: 50mM Tris-HCl, 150mM NaCl, 1% Triton x100, 1.0% NP-40, 0.1% SDS, 

pH 8.0, 1:100 protease inhibitors cocktail (Sigma, Gillingham, UK). 

Metabolomics extraction buffer: 50% HPLC grade methanol, 30% HPLC grade 

acetonitrile, 20% milliQ water.  

Phosphate buffered saline (PBS): 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 2mM 

KH2PO4, pH 7.4. 

1X Blotting buffer: 25mM Tris, 192mM glycine, 0,01%SDS, pH 8.3.    

LB-Broth: 10g/l tryptone, 5g/l yeast extract, 10g/l NaCl.  

LB agar plates: LB medium, 15 g/l bacto agar.  

Tris-acetate-EDTA 1X (TAE): 40mM Tris, 20mM acetic acid, 1mM EDTA, pH 8. 

PE: PBS, 0.01% EDTA. 
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Trypsin (1X): 10% 10X trypsin, 90% PE.  

PBST: PBS, 0.05% Tween-20.  

Blocking buffer for western blot: 5% Milk in PBST. 

Standard medium: high glucose DMEM, 10% FBS, 2mM L-glutamine. 

Protein SEC buffer: Tris-HCl 25mM, NaCl 150mM; pH 7.6 

 

2.2 Experimental procedures  

2.2.1 Mammalian cell culture related techniques  

2.2.1.1 Cell culture and storage  

HCT116 and HT29 colon cancer cells were cultured in high glucose DMEM 

supplemented with 10% FBS (heat inactivated at 56°C for 45 min prior to use) 

and 2mM L-glutamine at 37°C and 5% CO2. SW620 colon cancer cells were 

maintained in RPMI supplemented with 20% FBS and 2mM L-glutamine at 37°C 

and 5% CO2.  

The human diploid fibroblast (HDF) cell line Tig3 expressing the ecotropic 

receptor and hTERT was cultured in high glucose DMEM supplemented with 10% 

FBS and 2mM L-glutamine at 37°C and 5% CO2. Infections with K-RASG12V, 

BRAFV600E-encoding or control virus were performed as described in section 

2.2.1.2 for lentiviral infection, using Phoenix packaging cells instead of HEK293T 

for the generation of ecotropic retroviruses. After 5 days of selection, HDF were 

seeded for assays. 

A375 and Colo829 cells were purchased from the ATCC and maintained in RPMI 

both supplemented with 10% FBS, 1mM sodium pyruvate and 2mM L-glutamine. 

A375 and Colo829 cells were cultured in increasing concentrations of PLX4720 

(from 0.1-1µM) to generate resistant clones (A375/R and Colo829/R 
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respectively). Cells able to grow in the continued presence of 1µM of PLX4720 

emerged after ~2 months of culture. PLX4720 was synthesized in house. 

To split cells, media was removed and cells washed once with PBS (20ml per 

175cm2 flask), cells were dissociated with 1X trypsin (4ml per 175cm2 flask), the 

flask returned to 37°C until the cells have completely detached, trypsin was 

neutralized by adding 14ml of full culture media and the cells in suspension were 

then spun down for 5 min at 1000rpm, re suspended in culture media and re 

plated at the needed concentration. 

Frozen cell stocks were generated by re-suspending the pellets obtained after 

trypsinization in freezing media (90% FBS, 10% DMSO) to a concentration of 1x106 

cells/ml. They were further aliquoted into cryovials for storage, at -80°C at first 

and in liquid nitrogen for long-term storage. 

Lentiviral particles containing pLKO-shRNAs were produced in HEK293T cells by 

transfection using the CaPO4 protocol (see 2.2.1.2 section). Cells were cultured 

in DMEM supplemented with 10% FCS and 2mM glutamine and grown at 37°C at 

5% CO2.  

2.2.1.2 Generation of cell lines by shRNA lentiviral infection 

For stable PKM1/2 silencing, HCT116, SW620 and HT29 cells were infected with 

control shRNA (shCntrl) or PKM1/2 shRNA (shPKM) lentiviral particles according 

to the manufacturer’s instructions. Infected cells were selected using 6µg/ml 

puromycin and shPKM clones were analysed for PKM1 and PKM2 expression levels 

using Western blot analysis and qPCR. A different set of plasmids containing 

PKM1/2 shRNA (shPKMa) and pLKO scramble shRNA (shCntrla) was used to 

generate independent cell lines. HCT116 cells were infected with both pLKO-

shPKM1/2 or pLKO-shSCR and selected using 2µg/ml puromycin for 2 weeks and 

PKM1/2 silenced clones were analysed for PKM1 and PKM2 expression levels using 

Western blot analysis and qPCR. 

For lentiviral production, 2x106 HEK293T cells were seeded in 10cm plates and 

cultured overnight. The next day, cells were transfected using 10µg of DNA, 

7.5µg of psPAX-2 and 4µg pLP/VSVG. The combined DNA was prepared in 500µl 
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of 2X HBS, 60µl of 2M CaCl2 and water up to a volume of 1ml. The mix DNA/ 

CaPO4 was incubated for 30 min at 37°C and then added dropwise onto the 

HEK293T cells. Next day in the morning (no more than 18hr after transfection) 

media was replaced and left for 24hr for lentiviral production. At this point the 

target cells were plated and next day they were infected using the filtered 

supernatant (0. 45µm pore size) from HEK2937 containing the lentiviral 

particles. The infection was repeated after 24hr for a total time of 48hr.  Before 

using the cells for experiments they were screened for viral titer using the 

ENZchek reverse transcriptase assay according to manufacturer’s instructions 

(Invitrogen). 

2.2.1.3 Whole cell lysate protein preparation, SDS-PAGE and Western blot 

4x105 cells were plated in a 6 well plate and after 2 days they were washed with 

2ml of ice cold PBS prior lysis in 300µl of RIPA buffer (Section 2.1.7). Protein 

concentration was determined using the Bicinchoninic Acid Assay 

(Thermoscientific, Waltham, MA) using BSA as standard, according to 

manufacturer’s instructions. Absorbance at 562nm was determined using 

Molecular Devices SpectraMax Plus 384 Absorbance Microplate Reader and 

SoftmaxPro software. 

Equal amounts of protein were prepared in NuPAGE LDS sample buffer (4x) with 

5% β-mercaptoethanol, loaded into a NuPAGE Novex 4-12% Bis-Tris Protein Gel 

and electrophoretically separated at 200V for 45 min using 1X NuPAGE MOPS SDS 

Running Buffer (Invitrogen). After SDS–PAGE, proteins were transferred to a 

0.22µm nitrocellulose membrane (Millipore, Billerica, MA) in 1X blotting buffer 

(Section 2.1.7) using the XCell SureLock Mini-Cell Electrophoresis System and 

blot module (Invitrogen) for 1.5hr at 25V. The membrane was then blocked for 

an hour in blocking buffer (Section 2.1.7) and probed overnight with the specific 

primary antibody, at 1:1000 in 5% non-fat milk in PBST (Section 2.1.7). After 1hr 

incubation with the corresponding fluorescent secondary antibody (LI-COR 

Biosciences), the infrared scanning was performed using the LI-COR Odyssey 

scanner, Channel 800, Brightness: 50, Contrast: 50, Sensitivity: auto, resolution: 

169.492 micron, Pixel area: 0.02873, Intensity: 5 and acquired using Odyssey 

software version 3. Images were then exported as TIFF and cropped using Adobe 

Photoshop CS4. 
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2.2.1.4 Total mRNA isolation and qPCR 

mRNA extraction and qPCR analyses. 4x105 cells were plated in a 6 well plate 

and were lysed after 2 days in RLT buffer (Qiagen, West Sussex, UK). Lysates 

were passed through QiaShredder columns (Qiagen, West Sussex, UK) and mRNA 

was isolated using the RNAeasy kit (Qiagen, West Sussex, UK) following the 

manufacturer’s instructions. RNA was quantified and quality controlled using an 

Eppendorf Biophotometer and Eppendorf single sealed cuvettes, UVette 

(Eppendorf UK Limited, Endurance House, UK). For qPCR analyses 1 µg of mRNA 

was retro-transcribed into cDNA using High Capacity RNA-to-cDNA (AB, Life 

Technologies Corporation Carlsbad, California). In brief, 0.5 µM primers, 1X Fast 

SYBR Green Master mix (AB, Life Technologies Corporation Carlsbad, California) 

and 1 µL of a 1:10 dilution of cDNA in a final volume of 20 µL were used. Real-

time PCR was performed on the 7500 Fast Real-Time PCR System (Life 

Technologies Corporation Carlsbad, California) and expression levels of the 

indicated genes were calculated using the ΔΔCt method by the appropriate 

function of the software using actin as calibrant. The PCR program was: 20 

seconds at 95ºC followed by 40 cycles of 3 seconds at 95ºC and 30 seconds at 

60ºC. Finally the melting curve was performed, which was used to confirm the 

presence of single PCR products. 

2.2.1.5 Cell proliferation 

shPKM and control HCT116, HT29 or SW620 cells were seeded into a 24 well 

plate at a density of 1x104 cells/well in 500µl of full media or media without 

serine and glycine. Cells were counted in triplicates every 24hr for 5 days using a 

CASY cell counter and analyser (Roche Applied Science).  

2.2.2 Protein related techniques 

2.2.2.1 Recombinant protein production, isolation and characterization 

In order to produce PKM2 WT, H464A, and S437Y, N-terminal His-tagged fusion 

proteins (Section 2.1.4) were expressed in BL21(DE3) bacteria and then purified 

using Ni-NTA Agarose beads (Qiagen). Briefly, BL21(DE3) recombinant bacteria 

expressing the proteins of interest from previously generated glycerol stocks 

were inoculated in 5 ml of LB medium with kanamycin 50µg/ml and incubated 
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overnight at 225 rpm/37 °C. The following day, the culture was transferred to 1 

litre of LB medium and incubated for approximately 3hr or until ODλ600 reached 

0.8. Bacteria were induced to produce the recombinant proteins with IPTG (0.2 

M) and left overnight at 20 °C. The next day, cells were pelleted at 4,000 g for 

15 minutes (all centrifugation steps were performed at 4 °C) and re-suspended 

in buffer 1 (Tris-HCl 25 mM, NaCl 150 mM; pH 7.6) containing imidazole (20 mM), 

lisozyme (1mg/ml), and PMSF (1.5 mM). Imidazole prevents unspecific binding of 

His rich proteins to the Ni beads, lysozyme breaks down the cell wall, and PMSF 

(phenylmethylsulfonyl fluoride) is a protease inhibitor. Samples were snap-

frozen in liquid nitrogen and stored overnight at -80 °C. The next day, samples 

were thawed, PMSF added (1.5mM) and sonicated in ice for 1 minute in 8 

seconds pulse/pause cycles and pelleted at 15,000 g for 30 minutes. Ni beads (in 

50% EtOH) were equilibrated in 14 ml of buffer 1 with 20mM imidazole by 

centrifugation at 1,000 rpm for 5 minutes to remove EtOH and cell lysates were 

mixed with the beads and incubated on a shaker for 2 hours at 4 °C to allow 

binding of the His-tagged proteins to the Ni beads. After incubation, beads were 

spun down at 1,000 rpm for 5 minutes and washed three times in buffer 1 with 

20mM imidazole, and a fourth time in buffer 1 without imidazole containing 2mM 

CaCl2. Beads were re-suspended in 500 µl buffer with CaCl2 and 100 µl thrombin 

(0.72 µg/ml) and left rocking overnight at 4 °C to allow cleavage of the 

purification tag. Next day, beads were pelleted at 6,000 g for 1 minute and 

supernatant with cleaved protein was quantified using the Bradford protein 

assay with the following formula:  

Protein (mg/ml)=  (Absorbance (λ595))/(0.071 × volume (µl)) 

After protein purification, samples were separated on a NuPage 4-12% Bis-Tris 

gel and compared to commercially bought PKM1 (rabbit muscle, Sigma) to 

determine whether the purification process was successful and the presence of 

contaminants or degradation products present in the sample. 

2.2.2.2 In vitro pyruvate kinase activity  

PKM2 WT, H4646A and S437Y were expressed and purified as described in section 

2.2.2.1. Rabbit muscle PKM1 was obtained from Sigma; PKL/R was purchased 

from Abcam. Enzyme activity was measured in vitro with a coupled assay 
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quantifying the ATP generated by pyruvate kinase during the conversion of PEP 

to pyruvate using the luminescent Kinase-Glo Plus reagent (Promega). The 

reaction buffer was made of 50mM Tris pH 7.5, 100 mM KCl, 10mM MgCl2, 200µM 

PEP, 200µM ADP, 3% DMSO and either 10nM PKM2, 4nM PKM1, 10nM PKL/R, 10nM 

PKM2-H464A or 30nM PKM2-S437Y in the presence of increasing concentrations of 

FBP (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 50 µM) or serine (0.03, 0.1, 0.3, 1, 3, 10, 30, 

100 mM). Reactions (25 µL) were incubated for 20 minutes on a shaker at room 

temperature, before addition of 25 µL Kinase-Glo Plus reagent and incubation 

for another 10 minutes before measurement. Luminescent signal was quantified 

on a Veritas microplate luminometer (Turner Biosystems) using GLOMAX software 

(version 1.9.2) and normalized to control wells containing no enzyme. Activation 

curves were fitted to a four-parameter logistic equation and Km curves were 

fitted to a Michaelis-Menten equation using Prism 5 (GraphPad). 

                               PEP + ADP  PKM    pyruvate + ATP 

                    ATP + luciferin   Luciferase   AMP + oxyluciferin + light 

2.2.2.3 UV HPLC Size-exclusion chromatography   

A Dionex HPLC system was used for all chromatographic analyses, consisting of 

an automated sample injector, solvent pump, thermo controlled column 

chamber, and a UV detector. An Agilent Bio SEC-3 (300 Å) column was used. In 

addition, an ISCO Foxy Jr fraction collector was used to collect separated 

protein fractions. Dionex Chromeleon software (version 6.7) was used to control 

the instruments, acquire the data, visualize and quantify the peak areas. An 

isocratic HPLC method was employed with a mobile phase of Tris-based buffer 

(Tris-HCl 25 mM, NaCl 150 mM; pH 7.6). Purified protein (20 mg/ml) was 

injected at a volume of 5 µl with a pump flow of 500 µl/minute. The column 

temperature was held constant at 22 °C and ultraviolet signal was recorded at 

220 nm. Activators were added to the buffer at 500 µM, 1 mM, 5 mM, 50 mM 

(serine), and 250 µM (FBP). Separated protein fractions were collected every 15 

seconds from retention time 14:00 minutes to 18:00 minutes, corresponding to 

tetrameric and dimeric PKM2, resulting in 16 fractions.  
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The fractions were precipitated using trichloroacetic acid (TCA) solution 

(Sigma). Briefly, 40% TCA was added to the protein samples at a 1:1 volume 

ratio, incubated for 10 minutes at 4 °C, and spun down at 14,000 rpm for 10 

minutes. The pellet was washed with 10% TCA and a second time with water 

before being re-suspended and heated at 70 °C for 10 minutes in SDS loading 

buffer with 5% β-mercaptoethanol. Samples were separated on a 10% NuPAGE 

Bis-Tris gel, transferred to a PVDF membrane, and incubated overnight at 4 °C 

with primary rabbit PKM1/2 antibody at 1:2000 (# 3186, Cell Signalling). The 

next day, protein was incubated with a fluorescent secondary donkey anti-rabbit 

antibody (926 32213, LI-COR Biosciences) and visualized using a LI-COR Odyssey 

scanner. 

2.2.2.4 Isothermal titration calorimetry  

ITC experiments were performed on a MicroCal VP-ITC at 25°C in a buffer 

comprising 50mM Tris, 100mM KCl, 10mM MgCl2 and 1mM TCEP at pH 7.5. For 

titrations the L-serine concentration was 5mM in the injection syringe and the 

PKM2 concentration was 28µM in the sample cell. The protein concentration 

refers to the monomer. PKM2 was incubated for 30 minutes with an excess of 

FBP (200µM) prior to the L-serine titration performed in the presence of FBP. 

The Kd value for L-serine binding was significantly higher than the PKM2 

concentration used, making it difficult to accurately determine the 

stoichiometry value. Therefore, the stoichiometry parameter was fixed at 1 for 

the purpose of data analysis using the single-site binding model in Origin 7.0. 

This work was performed at Astex Pharmaceuticals.  

2.2.2.5 X-ray crystallography  

A publically available human PKM2 expression construct was obtained from the 

Structural Genomics Consortium (SGC). His6-hPKM2 was purified using NiNTA 

affinity capture and Hiload Superdex 16/600 S75 size exclusion chromatography.  

hPKM2 was crystallised using hanging drop vapour diffusion. Protein solution 10 

mg/ml, 25mM Tris/HCl pH 7.5, 100mM KCL, 5mM MgCl2, 10% (v/v) glycerol was 

mixed in a (1:1) ratio with reservoir solution containing 100mM KCl, 200mM 

ammonium tartrate, 24% (w/v) PEG3350. Crystals were soaked overnight in a 

solution containing 30mM L-Serine, cryoprotected and flash frozen in liquid N2. 
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X-ray diffraction data were collected from a single crystal at 100K at Beamline-

I03 at the Diamond Light Source.  Diffraction data were processed using XDS 

AutoPROC from Global Phasing and SCALA (CCP4). Molecular replacement was 

performed using model 3H6O (SGC) in CSEARCH and maximum likelihood 

refinement carried out using a mixture of automated and manual refinement 

protocols employing Refmac (CCP4) and AutoBuster from Global Phasing.  Ligand 

fitting was performed using Autosolve and manual rebuilding.  Simulated 

annealing was not employed.  The four PKM2 monomers comprising the tetramer 

in the asymmetric unit were refined as independent entities, but NCS restraints 

were imposed in AutoBuster using the ‘ncsauto’ command.  Refinement of the 

structure in the absence of NCS restraints gave (Rf=23.7, R=17.7) and with 

‘ncsauto’ gave (Rf=22.7, R=17.9), showing a small, but significant, reduction in 

Rf using ‘ncsauto’ restraints.   At the ‘effective resolution’ of 2.36Å there are 

~86000 unique reflections.  The refinement included ~16600 non-hydrogen 

atoms.  B-factors were refined isotropically giving a total of ~66500 parameters 

for all non-hydrogen atoms in the PKM2 tetramer.  The four serine molecules 

were refined as independent ligands. This work was performed at Astex 

Pharmaceuticals.  

2.2.2.6 PKM2 mutagenesis 

hPKM2 point mutant constructs were generated using a Stratagene QuikChange II 

site directed mutagenesis kit (#200524).  PCR protocols were as defined in the 

product manual.   The following forward DNA primers, and their reverse 

complemented primer counterparts, were used for the mutagenesis reactions 

(sequence of mutated bases shown in uppercase bold): H464A: 

5’gctcgtcaggccGCcctgtaccgtggc3’, S437Y: 5’accaagtctggcaggtAtgctcaccaggtgg3’. 

Primers were purchased from Sigma (UK).  The previously described SGC hPKM2 

construct was used as the DNA template within the PCR reactions.  The presence 

of the point mutations was confirmed by DNA sequencing of the DNA constructs 

(Beckman Coulter Genomics Inc., Takeley, UK) and in-house LC-MS of the 

purified recombinant proteins.  The mutant proteins were expressed and 

purified identically to the wild type protein. This work was performed at Astex 

Pharmaceuticals.  
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2.2.3 Metabolic measurements  

2.2.3.1 Metabolic fluxes and exchange rates  

Cells were incubated for 48h in full culture media and metabolite’s exchange 

rates were calculated by comparing the peak area for each metabolite in full 

culture media kept under the same conditions for 48h without cells and 

considering the average cell number during the culture time. Metabolites 

present in the culture media were extracted by adding 20µl of culture media 

into 980µl of ice cold extraction buffer, composed by a 50:30:20 ratio of 

methanol:acetonitrile:water (Section 2.1.7) centrifugation for 10min at 

16000rpm, 4°C and LC-MS analysis. 

2.2.3.2 Metabolites labelling with 13C6 glucose / 13C5 L-glutamine and 
extraction 

Cells were plated at a density of 4x105 onto 6 well plates and cultured in 

standard medium (Section 2.1.7) for 24 hours. The medium was then replaced by 

2ml of fresh medium containing 5mM unlabelled glucose and 3 hours later 5mM 

of 13C6 glucose (Cambridge Isotope Laboratories, Inc) was added; alternatively, 

medium was replaced by 2ml of standard medium containing 2mM 13C5 L-

glutamine instead of normal L-glutamine. Cells were incubated in one of the 

above media for the indicated time prior to extraction. For extraction, cells 

were washed twice in PBS and metabolites were extracted in ice-cold extraction 

buffer (Section 2.1.7), quickly scraped and incubated on a dry ice/methanol 

bath for 20min. The insoluble material was spun down in a cooled centrifuge at 

16000g for 15 minutes at 0°C and the supernatant collected for subsequent LC-

MS analysis. The volume of extraction solution was calculated according to the 

cell number and, extrapolated using a “counter dish” cultured under the same 

experimental conditions as the sample dishes. A volume of 1 ml of extraction 

solutions per 2x106 cells was used.  

2.2.3.3 LC-MS metabolomics and metabolites’ quantification 

Metabolites were separated by liquid chromatography (LC) using a Sequant ZIC-

pHILIC column (2.1mm x 150mm, 5um polymeric beads, guard column Sequant 

Zic-pHILIC guard peek 2.1mm x 20mm, Millipore) using formic acid, water, 

acetonitrile as components of the mobile phase. Detection of metabolites was 
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performed using mass spectrometry (MS) in a Thermo Scientific Exactive high-

resolution mass spectrometer with electrospray (ESI) ionization, examining 

metabolites in both positive and negative ion modes, over the mass range of 75-

1000 m/z. 

For intracellular and extracellular metabolite’s quantification, 1x106 cells were 

plated onto 6cm plates in triplicates and cultured in standard medium (Section 

2.1.7). Two additional plates were grown as counter plates. The medium was 

replaced after 24 hours by 10 ml of fresh standard medium, and cells were 

incubated for another 24 hours before extraction (Section 2.2.3.1). Standard 

compounds were weighed separately and dissolved together in water to make 

solution A (where each metabolite has a concentration between 1mM and 

10mM). 1ml of solution A was added to 49 ml of dilution solvent (50:50 

acetonitrile:water) to make stock solution B (where each metabolite had a 

concentration between 20µM and 200µM). For quantification, cells or media 

extracts (200µl) were mixed with 800µl of dilution solvent, containing 0, 4, 20, 

100, 300 or 500µl of stock solution B. Dilutions were analysed by LC-MS. The 

concentration of each metabolite in the extract was calculated according to a 

linear regression fit. All dilution series were performed in triplicates using 3 

biological replicates. 

2.2.3.4 Extracellular oxygen and H+ flux measurements  

For the measurement of oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR), 3x104 cells were plated onto XF24 plates (Seahorse 

Bioscience, North Billerica, MA) in 100µL of DMEM (10% FBS, 2mM Glutamine) and 

incubated at 37°C, 5% CO2 overnight. At the same time, the probes were 

equilibrated by adding 1ml of XF calibrant to each well of the cartridge plate of 

an XF24 Assay Kit (Seahorse Bioscience, North Billerica, MA) and the plate was 

then placed at 37°C in a CO2-free incubator overnight. The following day, the 

media on the plate containing cells was replaced with 675µL of unbuffered assay 

media (Seahorse Bioscience, North Billerica, MA) supplemented with 2mM L-

glutamine, 25mM glucose and 2% FBS (pH was adjusted to 7.4 using sodium 

hydroxide 0.5mM) and cells were then placed at 37°C in a CO2-free incubator for 

30 minutes. Basal OCR and ECAR were measured using the optical fluorescent 

oxygen/hydrogen sensor XF24 Seahorse plate reader. The mito stress kit was 
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used with the following concentrations: 1µM Oligomycin, 1µM CCCP and 1µM 

antimycin A. Each measurement cycle consisted of 3 minutes mixing, 3 minutes 

waiting and 4 minutes measuring. OCR and ECAR were normalised to cell 

number. To obtain the mitochondrial-dependent OCR, only antimycin A-sensitive 

respiration was used. Homogeneous plating and cell count were assessed by 

fixing the cells with 10% trichloroacetic acid for 1 hour at 4°C and then staining 

the fixed cells with 0.47% solution of Sulforhodamine B (SRB) (Sigma, Gillingham, 

UK)(192). 

2.2.3.5 ATP measurement  

To measure intracellular ATP levels, 6x105 cells were seeded on a 6 well plate 

the day before the experiment. Cells were then washed twice with PBS in order 

to remove dead cells, and then lysed using the ATP-release buffer (Sigma, 

Gillingham, UK). ATP was then measured using a luciferase-based assay 

according to the manufacturer’s instructions using the adenosine 5 ′ -

triphosphate (ATP) bioluminescent somatic cell assay kit FLASC (Sigma). Values 

were normalised to the total protein content of the cell lysate as measured by 

BCA assay (Thermoscientific, Waltham, MA) using BSA as standard. 

2.2.4 Statistical analysis and data processing 

For general statistical analyses, data were analysed and presented with 

Graphpad Prism 5.01 software (GraphPad Software Inc, CA, USA). The data 

(mean ± s.e.m.) are representative of 3-5 independent experiments, performed 

in technical triplicates if not differently indicated.  

The metabolomics data processing workflow started by first converting the 

vendor specific raw data files from the mass spectrometer into the mzXML open 

data format, using the msconvert utility from the ProteoWizard Library and 

Tools collection (http://proteowizard.sourceforge.net/). The set of all 

chromatographic peaks in each of the converted raw files were then extracted 

using the CentWave feature detection algorithm from XCMS. The resulting data 

were stored in the PeakML file format and the rest of the processing was 

handled by the scriptable mass spectrometry data processing tool mzmatch.R 

(http://mzmatch.sourceforge.net/). 
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The next step in the workflow involved aligning and combining the 

chromatographic features between biological replicates of a single sample. The 

PeakML files thus created were subjected to an additional filtering procedure to 

discard all peaks that were not reproducibly detected in all biological replicates 

involved. Chromatographic peaks of individual samples were then aligned 

together based on their retention time and m/z values, and combined into a 

single PeakML file. Peak sets that do not include peaks from every sample were 

filled in by extracting ion chromatograms within the retention time and mass 

window of the corresponding peak set directly from the raw data files. From 

these peak sets, only those that had more peaks than the number of replicates 

minus one were selected for further analysis. Putative identification of the peak 

sets were made by matching the detected masses to that of the compounds 

relevant to this study. Isotope peaks were extracted by identifying the peaks 

that fell in the retention time window of the identified unlabelled peak and 

correspond to the estimated mass window (2 ppm) of the isotope. All isotope 

identification and quantification of the ratios were performed by the 

PeakML.Isotope.TargettedIsotopes() function of the mzmatch.R library. Detailed 

documentation and tutorials for which are available at 

http://mzmatch.sourceforge.net/isotopes targetted.html. 
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Chapter 3 - Characterisation of Serine as a Natural 
Ligand and Allosteric Activator of Pyruvate Kinase 
M2 
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3.1 Introduction  

In recent years, pyruvate kinase (PK), the enzyme that catalyses the final and 

rate-limiting step of glycolysis by dephosphorylating phosphoenolpyruvate (PEP) 

to pyruvate, has emerged as a key regulator of the glycolytic phenotype found in 

cancer cells. Mammalian cells express four isoforms of PK in a tissue-dependent 

manner, which are encoded by two different genes: PKLR (producing PKL and 

PKR) and PKM (producing PKM1 and PKM2). All isoforms show tissue specificity, 

however, PKM2 is highly expressed in all tissues during embryogenesis as well as 

in rapidly proliferating cells (193). The expression of PKLR isoforms is regulated 

by tissue-specific transcription factors, while the expression of PKM isoforms is 

controlled by alternative splicing (23, 194). Interestingly, tumour cells 

predominantly express high levels of PKM2, which was thought to result in the 

glycolytic phenotype of cancer cells (30, 36, 195). 

Conformational differences between the PKM isoforms arise from the presence 

of exon 10 in PKM2, which allows it to alternate between a dimeric and a 

tetrameric form, unlike PKM1, which always forms an active tetramer(25). Of all 

PK isoforms, PKM1 has the highest affinity for its substrate PEP and therefore, is 

found in tissues that have to rapidly generate large quantities of energy (193). It 

is constitutively active and not subject to phosphorylation or allosteric 

regulation (25, 196, 197). In contrast, the different conformations of PKM2 show 

large functional differences. Kinetic studies showed that the affinity for PEP is 

much higher in the tetrameric form compared to the dimeric form, with a 

sufficiently high Km to render the dimeric form nearly inactive at physiological 

concentrations of PEP(198). As a consequence, when PKM2 exists predominantly 

as a dimer, the intermediates upstream of PEP accumulate and are available for 

biosynthetic processes in the expense of ATP. However, when PKM2 is 

predominantly tetrameric, the flux through glycolysis is dramatically increased, 

favouring the generation of ATP.  

The conformational switch of PKM2 from dimer to tetramer can be induced by 

the allosteric regulator fructose-1,6-bisphosphate (FBP), an upstream 

intermediate of the glycolytic pathway(38). The low activity of PKM2 in its 
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dimeric confirmation results in a build-up of upstream FBP levels, until a critical 

concentration is reached, after which FBP induces a conformational switch in 

PKM2 towards the highly active tetramer. As a consequence, glucose goes 

through the full glycolytic pathway and ATP is generated. Simultaneously, FBP is 

consumed and levels drop below this critical concentration, causing PKM2 to 

dissociate into the inactive dimer. This makes glycolytic intermediates available 

for biosynthetic processes instead of energy production. Via this feedback 

mechanism, PKM2 acts as a metabolic sensor as well as a key regulator of 

glucose-derived carbons towards either energy production or biosynthesis (199). 

 

3.2 Results 

3.2.1 Characterization of HCT116 cells upon PKM2 silencing  

PKM2 is a highly regulated allosteric enzyme that responds not only to its 

substrates, PEP and ADP, but also to other metabolites, with the glycolytic 

intermediate FBP being the strongest activator. Additionally, PKM2 activity is 

dependent on its oligomeric state and post-translational modifications such as 

phosphorylation and acetylation (38, 43, 53). Overall, PKM2 is considered a slow 

enzyme compared to the alternatively spliced and constitutively active variant 

PKM1 or the other two variants PKL/R. It has been proposed that the 

predominance of PKM2 in proliferating cells supports the build-up of glycolytic 

intermediates that can be diverted into other anabolic pathways (199). To test 

this hypothesis we used HCT116 cells (human colon carcinoma cell line) that 

express high levels of PKM2 (Fig. 3:1a). Pyruvate kinase activity was reduced in 

these cells via stable expression of short hairpin RNA against PKM1 and PKM2 

(shPKM1/2) (Fig. 3:1a and 3:1b). Despite a marked reduction in RNA and protein 

levels of PKM1/2 compared to cells expressing non-targeting shRNA (shCntrl), no 

compensatory transcriptional induction of the PKL/R isoforms was observed (Fig. 

3:1c). Importantly, the stable silencing of PKM1/2 did not alter the steady-state 

levels of ATP (Fig. 3:1d). Since PK catalyses an important ATP-producing step 

within glycolysis, one might predict an increase in oxidative phosphorylation in 

shPKM1/2 cells. Indeed, the oxygen consumption rate of these cells doubled 

(Fig. 3:1e) while lactate production and secretion decreased dramatically in 
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shPKM1/2 cells (Fig. 3:1b, 3:1f). All the above results are consistent with the 

lack of changes observed in the proliferation rate of these cells upon PKM 

inhibition (Fig. 3:1g). Overall, this demonstrates that despite the predominant 

expression of the slower enzyme PKM2, HCT116 cells still require a significant 

level of PK activity to undergo aerobic glycolysis and that they are able to adapt 

their metabolism according to changes in PK activity in order to continue 

proliferating.  
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Figure 3:1- Characterisation of PKM1/2-silenced HCT116 cells 

a, Protein levels of PKM1 and PKM2 in the indicated cell lines were detected by western blot. Actin 

was used as loading control. b, Quantified intracellular metabolite concentrations and the uptake or 

secretion of extracellular metabolites in control and shPKMb* HCT116 cells. For extracellular 

metabolites, the dashed line indicates the initial levels in the medium, while the graph represents 

the levels after 24 hours incubation. c, Representative traces of qPCR analysis of the indicated PK 

isoforms in control and PKM1/2-silenced cells. d, Intracellular ATP levels of the indicated cells 

normalised to protein concentration in the cell extracts. e-f, PKM1/2 silencing increased oxygen 

consumption rate (OCR) and decrease extracellular acidification rate (ECAR). g, Proliferation rate 
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of the indicated cell lines was measured by an Alamar Blue assay. All results are from 3 

independent cultures and are presented as mean ± s.e.m.  * = P< 0.05, ** = P<0.01, *** = P< 

0.001. 

*HCT116 cells stably expressed either non-targeting control shRNA (shCntrl) or shRNA targeting 

both PKM isoforms (shPKM). shPKMa and shPKMb refer to two independent HCT116-derived cell 

lines, in which the expression of both the PKM1 and PKM2 isoforms were simultaneously and 

stably silenced using discrete shRNA pools, containing non-equivalent shRNAs.  
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3.2.2 Low PK activity and serine deprivation alter 13C6-glucose 
metabolism 

To examine how changes in PK activity impact the metabolic fate of glucose in 

cancer cells, we incubated shCntrl and shPKM1/2 HCT116 cells in media 

containing labelled 13C6-glucose and extracted cells at different time points for 

metabolomic analysis by liquid chromatography-mass spectrometry (LC-MS). 

Several different glucose-derived metabolites were followed over time (Fig. 

3:2a). As observed with unlabelled steady-state metabolite levels, an obvious 

block in the flux between PEP and pyruvate is seen in shPKM1/2 cells, where PEP 

accumulated more rapidly and to a much higher level than in control cells (Fig. 

3:2a). In the cytosol, pyruvate can be further metabolised to lactate via lactate 

dehydrogenase (LDH) or to alanine via alanine transaminase (ALT). In both cases, 

3 glucose-derived carbons will be detected by LC-MS. In addition, pyruvate can 

translocate to the mitochondria where it is oxidized and decarboxylated to 

acetyl-CoA and enter the tricarboxylic acid (TCA) cycle to form citrate – 

contributing 2 carbon atoms from glucose. Interestingly, blocking PKM1/2 

activity shifted the flux of pyruvate from the cytosol (lactate and alanine) to the 

mitochondria (citrate) (Fig. 3:2a). These results are consistent with the observed 

increase in oxygen consumption of shPKM1/2 cells (Fig. 3:1e). Finally, an 

increase in metabolic flux into the serine and glycine biosynthetic pathway was 

also observed in cells with silenced PK activity (Fig. 3:2a). This is the first 

indication that lower PK activity can change the fate of glucose metabolism and 

support anabolic flux, providing an important link between two events that are 

observed in cancer. However, unlike most metabolites studied, the contribution 

of glucose-derived carbon to serine and glycine is low (Fig. 3:2b). This is likely 

due to the fact that the cells are grown in the presence of unlabelled serine and 

glycine (white bars). Indeed, when cells were incubated for 12 hours in the 

absence of extracellular serine and glycine, all intracellular serine and glycine 

were glucose-derived (Fig. 3:2b). Nevertheless, the steady-state level of these 

amino acids was not rescued to the levels observed in cells grown in the 

presence of serine and glycine (Fig. 3:2b), indicating that the rate of serine and 

glycine production from glucose is limiting and is equal to the rate of their use. 

Nevertheless, serine and glycine deprivation had a pronounced effect on glucose 

metabolism. In fact, an increase in PEP and a decrease in pyruvate suggest that 
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serine and glycine deprivation reduces PKM2 activity in these cells (Fig. 3:2b). 

PKM1/2 activity in cells (predominantly PKM2) may be best represented as the 

ratio between 3-carbon labelled pyruvate (product) to 3-carbon labelled PEP 

(substrate) 30 minutes after 13C6-glucose addition (Fig. 3:2c).  When cells were 

deprived of serine and glycine for 12 hours and shortly labelled with 13C-

glucose, a sharp decrease in the labelled pyruvate/PEP ratio was observed (Fig. 

3:2c). These results indicate that serine/glycine deprivation inhibits PKM2 

activity to divert more glucose for serine/glycine biosynthesis. In addition, like 

PKM1/2 silencing, serine deprivation also lowered lactate production in the 

cytosol and increased citrate production in the mitochondria Fig. 3:2a- 3:2b).  

Although serine hydroxymethyl transferase converts serine to glycine and vice 

versa, a short (30 minutes) incubation with either serine or glycine, after over-

night starvation from both amino acids, was sufficient to increase the 

intracellular levels of the added amino acid only, without affecting the other 

amino acid levels. Interestingly, when starved cells were incubated for 30 

minutes with serine together with 13C6-glucose, an increase in intracellular PK 

activity was measured as compared to starved cells. On the other hand, glycine 

alone could not stimulate intracellular PK activity (200). 
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Figure 3:2- Modulation of central carbon metabolism by PKM1/2-silencing and 

serine/glycine deprivation 

a, HCT116 shCntrl and shPKM cells were incubated with 13C6-glucose and the abundance of the 

main glucose-derived isotopomer of the indicated metabolites was analysed at the indicated time 

points. The cumulative intensities of each labelled metabolite analysed in each cell line are 

presented in blue (shCntrl) or red (shPKM). b, Parental HCT116 cells were incubated for 12 hours 

with 13C6-glucose in the presence (+SG) or absence (-SG) of serine and glycine. The abundance of 

the main glucose-derived isotopomer (black bars) and the unlabelled fraction (white bars) of the 

indicated metabolites were analysed. The white and black circles illustrate 12C- and 13C-labelling 

respectively. c, PK activity is represented as the ratio between glucose-derived (13C3-) pyruvate 

and PEP, 30 minutes after labelling with 13C6-glucose in the presence or absence of serine and 

glycine in the indicated cell lines. Results were normalised to shCntrl +SG. All results are from 3 

independent cultures and they are presented as mean ± s.e.m. * = P< 0.05, ** = P<0.01, *** = P< 

0.001. 3-PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PKM, pyruvate kinase; PDH, 

pyruvate dehydrogenase; LDH, lactate dehydrogenase; TCA, tricarboxylic acid.  
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3.2.3 Serine binds to, and activates, PKM2 

This work was performed at Astex Pharmaceuticals (Cambridge, UK). 

Upon observing that serine and glycine deprivation affects central carbon 

metabolism in a similar fashion as shPKM, we tested whether serine or glycine 

alone can modulate PKM2 activity in vitro. Serine was able to activate 

recombinant PKM2 with a half maximal effective dose (EC50) of ~1 mM (Fig. 

3:3a), which is within the physiologic range of intracellular serine concentrations 

in HCT116 cells (Fig. 3:1b). In addition, isothermal titration calorimetry was 

used to determine the dissociation constant (Kd) and stoichiometry of the 

serine-PKM2 interaction.  The Kd of serine was calculated to be ~0.2 mM (Fig. 

3:3b), with a (1:1) PKM2-monomer:serine ratio. These results not only 

demonstrate direct interactions between serine and PKM2, they also suggest that 

the concentration of serine required for such interactions is well within the 

physiological range of its intracellular levels. Furthermore, glycine could not 

directly activate PKM2 in vitro (Fig. 3:3a). Similar to FBP, serine lowered the Km 

of PKM2 for PEP (lowered the required concentration of this substrate) (Fig. 

3:3c).  Finally an X-ray crystallographic soaking experiment was used to obtain 

the structure of serine bound to human PKM2.   A single serine molecule binds 

into an amino acid binding-pocket in the middle domain of the PKM2 monomer, 

and serine binding is facilitated by a reorientation of the side chain of Arg106, 

which then co-ordinates the carboxylic acid group of the serine (Fig. 3:3d). The 

amino group of serine forms hydrogen bonds with the side chain of His464, the 

main chain carbonyl of Leu469 and a water molecule, which interacts with the 

main chain carbonyls of Tyr466 and His464. In addition, the side chain hydroxyl 

of the serine forms hydrogen bonds with the main chain carbonyl of Leu469 

along with a water molecule that interacts with the main chain carbonyls of 

Gly468 and Asn44(200). 
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Figure 3:3- Serine is an allosteric activator of PKM2 

a, In vitro activity of recombinant human PKM2 was analysed in the presence of increasing 

concentrations of FBP (�), serine (�) or glycine (▲).b, Serine binding to PKM2 wild-type or 

H464A mutant was measured by isothermal titration calorimetry. The Kd of serine for wild-type 

PKM2 was measured as 200 µM.  No serine binding to H464A PKM2 was detected. c, The initial 

PKM2 reaction (V0) was measured at different PEP concentrations in the presence of 50 µM FBP 

(�), 100 mM Serine (�) or vehicle (p). Km values for PEP were determined as 1.9 mM, 0.81 mM 

and 0.19 mM in the presence of vehicle, serine and FBP, respectively. For a and c, results are from 

3 independent experiments and are presented as mean ± s.e.m. FBP, fructose-1,6-bisphosphate. 

d, 2.3Ǻ 2Fo-Fc map (purple) contoured at 1σ for the final, refined, structure of L-ser (orange) 

bound to PKM2 (green). The side chain of His464, which was subsequently mutated to alanine, is 

shown in yellow. e, PKM2 activity was measured in vitro in the presence of 10 mM of each of the 

20 standard amino acids, 50 µM FBP or no compound (basal). The signal was normalised to 

controls containing no enzyme. Data are presented as the mean ± s.e.m. of quadruplicates. For a, 
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the signal was normalised to controls containing no enzyme. The basal activity of PKM2 in the 

presence of vehicle control is indicated by the dotted line. Data are presented as mean ± s.e.m. of 

duplicate determinations and are representative of three independent experiments.  
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3.2.4 PKM2 activation by serine is independent of FBP and does 
not require tetramerization 

We have shown that serine is able to bind and activate PKM2 via an amino acid-

binding pocket present in each PKM2 monomer and as such, it can regulate the 

usage of glucose carbons for either energy generation or biosynthesis. The 

molecular mechanism underlying allosteric regulation of PKM2 by serine is, 

however, poorly understood, especially concerning the ability of serine to induce 

a switch in the oligomerization state. While it is known that activation of PKM2 

by FBP is achieved by a conformational change from a dimer (inactive) to 

tetramer (active), serine binds to a completely different site of the protein and 

may not be able to influence PKM2 oligomerization in the same way as FBP. 

Therefore, we decided to study the biophysics of PKM2 activation by looking at 

the effect of serine on its oligomeric state by high-pressure liquid 

chromatography- size exclusion (HPLC-SEC). For this purpose, human 

recombinant PKM2 proteins were produced and purified. These include, WT 

PKM2, the H464A mutant that cannot bind serine and the S437Y mutant that 

cannot bind FBP. We also looked at the effect of these mutations on the 

enzymatic activity in the absence of activators and in response to increasing 

concentrations of serine or FBP. 

3.2.4.1 In vitro activity 

We investigated the in vitro activity of WT PKM2, H464A-PKM2, S437Y-PKM2 and 

PKM1 recombinant proteins in the presence of increasing concentrations of 

serine or FBP using a luminescent assay (Fig. 3:4a-d). In response to increasing 

concentrations of serine and FBP, WT PKM2 achieves an approximately 4-fold 

activation compared to baseline enzyme activity (Fig. 3:4a). H464A-PKM2 

achieves an approximately 7-fold activation compared to baseline in the 

presence of FBP, and approximately 3.5-fold activation in the presence of serine 

(Fig. 3:4b). S437Y-PKM2 enzyme is unresponsive to FBP, but achieves 

approximately 3.5-fold activation in the presence of serine (Fig. 3:4c). PKM1 

activity is not induced by either serine or FBP (Fig. 3:4d). 
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Figure 3:4- In vitro effects of serine and FBP on PKM2 activity 

a-d, In vitro activity of purified recombinant human wild type PKM2 (a), mutant H464A (b), S437Y 

(c) and constitutively active PKM1 (d) proteins in the presence of increasing concentrations of FBP 

(�), serine (�). The basal activity of PKM2 in the presence of vehicle control is indicated by the 

dotted line. Data are presented as mean ± s.e.m. of duplicate determinations and are 

representative of three independent experiments. 
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3.2.4.2 Conformational analysis by UV HPLC-SEC 

The conformational changes of WT PKM2 and mutant proteins in the presence of 

increasing concentrations of serine and FBP were investigated using HPLC-SEC 

(Fig. 3:5a-c). WT PKM2 is predominantly in a dimeric conformation when no 

activator is present but gradually changes conformation towards a tetramer in 

the presence of increasing concentrations of serine. At a concentration of 5 mM 

of serine, the enzyme is predominantly tetrameric. Similarly, when 250 µM FBP 

is added, the enzyme is entirely tetrameric (Fig. 3:5a). For the H464A mutant, 

the presence of increasing concentrations of serine had very little effect on the 

initial oligomeric distribution of the protein compared to WT PKM2. Initially the 

H464A mutant presents the same pattern in that at a concentration of 5 mM 

serine (roughly half of the protein is in a tetrameric conformation) and this does 

not change dramatically by the addition of 50 mM of serine, whereas full 

tetramerization is achieved by the addition of 250 µM FBP (Fig. 3:5b). For the 

S437Y mutant, no substantial changes in oligomerization state can be detected 

and the enzyme remains in its dimeric conformation regardless of the addition of 

increasing concentrations of serine or FBP (Fig. 3:5c). 
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Figure 3:5- Oligomeric state of PKM2 in the presence of serine or FBP 

a-c, Western blot against PKM2 showing the indicated UV HPLC-SEC fractions for PKM2 WT, 

H464A-PKM2 and S437Y-PKM2 in the absence and presence of increasing concentrations FBP 

and serine (from top to bottom). The dotted lines delimit the fractions corresponding to tetramer 

and dimer.  
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3.3 Conclusions 

We have identified the conditionally essential amino acid L-serine to be a 

natural ligand of human PKM2 through the presence of a serine-binding pocket in 

the enzyme. Our results provide new understanding of the relationship between 

glucose and amino acid metabolism in cancer cells. Serine biosynthesis is an 

essential anabolic pathway that supports growth and proliferation(201). 

However, it takes away glucose-derived carbons that are important for energy 

production. Therefore, a tight control of the metabolic bifurcations of glycolysis 

is needed. We have demonstrated for the first time that serine regulation on 

PKM2 activity provides an important gatekeeping function. When serine is 

abundant, PKM2 is fully active enabling the production of energy from glucose. 

However, when the steady-state levels of serine drop below a critical point, an 

immediate abruption of PKM2 activity occurs, enabling the shuttling of glucose-

derived carbons into serine biosynthesis, hence replacing the shortfall in serine 

supply. By regulating PKM2, serine controls the fate of pyruvate in cells, 

supporting aerobic glycolysis and lactate production, events that are required 

for cancer cell growth and survival. In addition, we have demonstrated that 

serine is able to fully activate PKM2 by inducing its tetramerisation in a dose 

dependent manner and independent of the presence of FBP. 
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Chapter 4 - Changes in Glucose Metabolism 
Related to Oncogene-Induced Senescence (OIS) 
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4.1 Introduction 

In recent years, a large body of compelling evidence has shown that oncogene 

induced- senescence (OIS) acts as a pathophysiologic mechanism suppressing 

cancer in model systems and humans. Indeed, senescence biomarkers have been 

reported for a plethora of precancerous lesions including pulmonary adenomas, 

prostate intraepithelial neoplasia, lymphomas and mammary tumours(202). In 

these settings, a mutation commonly sparks the activation of an oncogene or loss 

of a tumour suppressor, initiating a programme that contributes to the formation 

of a benign lesion. The senescent response manifests after an initial phase of 

cell proliferation, halting further expansion. Progression towards malignancy can 

occur only in the context of additional tumorigenic alterations. 

Several oncogenic and tumour suppressor pathways are linked to senescence, 

suggesting that it must, somehow, be mechanistically connected to metabolic 

dysregulation. Indeed, emerging evidence indicates that p53, which modulates 

glucose utilization and mitochondrial respiration via the transcriptional control 

of TIGAR and SCO2, contributes to certain types of OIS (15, 203). Despite the 

belief that senescent cells remain metabolically active, this matter has not been 

investigated in detail(204). Therefore, we decided to study the regulation of 

metabolism in OIS using metabolic flux profiling to screen, in an unbiased 

fashion, for metabolic changes accompanying OIS. Furthermore, on the basis of 

the profiles obtained, we studied the contribution of key metabolic enzymes to 

OIS.  
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4.2 Results 

4.2.1 BRAFV600E-induced senescence increases mitochondrial 
glucose metabolism   

We compared the energy metabolism of human diploid fibroblasts (HDF) 

undergoing OIS to cycling HDF by studying the metabolic fate of glucose, the 

primary energy source for cells (205, 206). To study this, we incubated cycling 

HDF cells and HDF cells overexpressing oncogenic BRAFV600E, which has been 

previously demonstrated to be a strong inducer of OIS(207), with medium 

containing fully labelled 13C6-glucose for several time points, after which, 

intracellular metabolites were extracted for metabolomic analysis by LC-MS.  

The isotopomeric profile showed that 13C6-glucose was quickly incorporated into 

glycolysis and the TCA cycle. Glycolytic intermediates were fully labelled with 

either three or six carbons, while the TCA cycle metabolites were mainly 

labelled with two carbons (derived from acetyl- CoA after the decarboxylation of 

pyruvate). Several glucose-derived metabolites were measured over time (Fig. 

4:1) and a sharp increase in the flux into the TCA cycle was detected in OIS cells 

when compared to cycling cells (Fig. 4:1). In OIS cells, glucose-derived carbons 

accumulated faster in TCA cycle intermediates (citrate, α-ketoglutarate and 

malate), and to a much higher extent than in cycling cells. The same was 

observed for glucose derived 2-carbon-labled glutamate, which results from the 

transamination of α-ketoglutarate (Fig. 4:1). The levels of labled glycolytic 

intermediates (G3P and PEP) did not vary between OIS and cycling cells, 

demonstrating that the flux through glycolysis towards pyruvate remained equal. 

In addition, as there is enhanced TCA flux in OIS cells, less glucose-derived 

pyruvate was available, resulting in a decrease in 3-carbon-labled alanine and 

lactate (Fig. 4:1). 

As the TCA cycle fuels the respiratory chain in the mitochondria, we next 

determined whether the enhanced flux through the TCA cycle in OIS correlates 

with an increase in respiration by measuring mitochondria-dependent OCR. 

Consistent with an increase in TCA flux, OIS cells displayed a significant increase 

in OCR (Fig. 4.2). We conclude from this metabolic profile that OIS is 

accompanied by an enhanced flux of glucose-derived carbon into the TCA cycle 

and increased respiration. 
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Figure 4:1- Glucose metabolism in BRAFV600E-induced senescence 

Glucose metabolism analysis in cycling HDF and BRAFV600E OIS cells upon incubation with 

uniformly labelled 13C6-glucose for the indicated time points (15 min to 24 hr). The results show the 

isotopomer distribution (U-12C, 13C1-6) for each individual metabolite. All data are represented as 

mean ± s.d. (n=3). G3P – glyceraldehyde 3-phosphate; aKG – α-ketoglutarate; TCA – tricarboxylic 

acid cycle.  
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4.2.2 Mass balance analysis 

Tomer Shlomi and Vitaly Selivanov performed the calculations and built the 

computational model.  

In order to understand the potential metabolic alterations taking place during 

OIS, we delineated a mass-balance model utilizing the measured exchange rates 

of glucose, lactate, glutamine and glutamate as well as that of pyruvate and 

alanine. Furthermore, the biosynthetic constraint of proliferating cells was 

translated to the required rate of production and utilization of amino acids, 

fatty acids and nucleotides. The doubling time of the cycling cells studied is 24 

hours and the measured protein concentration is 165 µg/106 cells. Based on 

these observations and assuming (for simplicity) there is equal distribution of 

amino acids in proteins and an average molecular weight of an amino acid of 146 

g/mol, we calculated that the required rate for protein synthesis of key amino 

acids, which are either absent in the medium or directly derived from reactions 

in the model (alanine, aspartate, asparagine, glutamine and glutamate) to be 

2.3 nmol/(106 cells x hour). Assuming that the dry mass of cells consists of 

approximately 60% proteins, 20% lipids and 15% nucleotides [See (1)] and the 

molecular weight of palmitate (as a readout for fatty acids) is 256 g/mol, the 

average molecular weight of nucleotides (monophosphate) is 340 g/mol, the 

rates of lipid (as palmitate equivalents) and nucleotide accumulation as biomass 

in proliferating cells were calculated to be 8.8 nmol/(106 cells x hour) and 5.0 

nmol/(106 cells x hour) respectively. Finally, OCR was measured and utilized in 

this model to account for the oxidation rate of NADH (2 mol NADH per mol O2) 

produced in all the studied reactions. These measured and estimated fluxes 

were fitted into a central carbon metabolism model (Fig. 4:2) and the best 

possible way to balance those metabolic rates in one consistent model was 

calculated. Due to the multiple ways to transfer electrons between 

mitochondrial and cytosolic NAD(P)H/FADH2, a single pool representing all of the 

latter metabolites was assumed. The production (reduction) rate of these 

reducing equivalents was fitted into all the known reactions in the model 

(glycolysis, pentose phosphate pathway, malic enzyme and the TCA cycle).  

Based on fitting all the above parameters, the mass balance analysis made 

several predictions:  
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(1) Glutamine utilization in cycling cells is sufficient to account for the required 

biosynthesis of pyrimidines and amino acids, which are either derived directly 

from glutamine (and glutamate) or from the TCA cycle (aspartate and 

asparagine). In contrast, OIS cells produce and secrete more glutamate from 

glucose (no net glutaminolysis) and therefore, require active pyruvate 

carboxylase to support anaplerosis. Indeed, when cells were incubated for 24 

hours in uniformly labelled 13C6-glucose, and heavy 13C-isotopes were traced in 

different metabolites, it was evident that more glutamate was derived from 

glucose in OIS cells as compared to cycling cells. Moreover, citrate was labelled 

with 3 and 5 13C carbons, indicating greater pyruvate carboxylase activity in OIS 

cells (Fig. 4:2).  

(2) The mass balance analysis calculated a large increase in the rate of pyruvate 

oxidation by PDH in the mitochondria during OIS (Fig. 4:2). Indeed, an increase 

in OCR during OIS was measured, yet this was insufficient to account for 

complete oxidation of the excess pyruvate in the mitochondria. Therefore, it 

was predicted that the citrate/malate shuttle would remove excess acetyl-CoA 

to the cytosol to be used for fatty acid biosynthesis (calculated in palmitate 

equivalents). Interestingly, the mass balance predicted that the rate of de novo 

palmitate synthesis in cycling cells is insufficient to support the level of lipid 

biosynthesis required to sustain the measured proliferation rate and hence 

cycling cells will require a net uptake of exogenous fatty acids. On the other 

hand, the higher rate of palmitate production in OIS would require fatty acid 

secretion. These predictions were experimentally confirmed by LC-MS analysis of 

extracellular palmitate, oleate and stearate (Fig. 4:2). 

To compute the difference in PDH flux between the OIS and cycling cells while 

accounting for experimental error in the measurement of metabolite uptake and 

secretion rates, we assumed a Gaussian noise model for each uptake and 

secretion measurement (considering the experimental mean and standard 

deviation in uptake and secretion flux measurements). The standard deviation 

and confidence interval of PDH flux were calculated based on a linear 

combination of normal distributions. The expected difference in PDH fluxes 

(presented as nmol/106 cells x hour) between OIS and cycling cells are: 

OIS: PDH = 307.570   std = 79.937 95%  CI = [176.085, 439.055] 
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Cycling: PDH = 63.050  std = 43.106 95%  CI = [-7.853, 133.953] 

PDH difference = 244.520  std = 90.819 95%  CI = [95.136, 393.904] 

Metabolic fluxes, which were not measured directly, were determined based on 

fitting the measured distribution of 13C-isotopomers of intracellular and secreted 

metabolites by the isotopomer dynamics method(208). This method is based on 

the simulation of isotopomer distribution dynamics and does not require 

reaching isotopic steady state. Application of this method was justified by the 

measured slow dynamics of metabolite labelling. The model consists of a system 

of ordinary differential equations describing the time course of concentrations of 

all the measured isotopomers. The algorithms for data fitting and determination 

of confidence intervals for metabolic fluxes are described in de Mas et al. (209).  

As the secreted lactate, pyruvate and alanine with respect to consumed glucose 

is less in OIS cells compared to cycling cells, the former convert much more 

pyruvate into acetyl-CoA via PDH, followed by citrate synthesis. This is clearly 

demonstrated by the fact that OIS cells have higher concentration of citrate, 

which is labelled faster than in cycling cells (Fig. 4:2). The intervals calculated 

for cycling and OIS cells are based on fitting the measured fluxes and 

distribution of isotopomers using χ2 (sum of normalized squared deviation 

between measured and computed data) criterion as described by de Mas et al., 

2011. Oxygen consumption is calculated as the combined metabolic rates of PDH 

+ (aKG → Mal) + (Cit → aKG)/2 + MDH/2. This calculation takes into account 

that conversion of 1 mol of glyceraldehyde-3-phosphate into acetyl-CoA results 

in the reduction of 2 mol of NAD+ into NADH (one by GAPDH in the cytosol and 

another by PDH); further conversion in combined reactions (aKG → Mal) result in 

1 mol NADH and 1 mol reduced FAD; the reactions (Cit → aKG) and MDH result in 

reduction of 1 mol NAD+ each. Oxidation of 2 mol NADH or FADH2 results in the 

reduction of one mol of oxygen. 
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Figure 4:2- Metabolic model for concerted activation of PDH necessary to drive OIS  

In response to an oncogenic trigger (BRAFV600E), primary cells up-regulate PDP2 and down-

regulate PDK1, causing the activation of PDH, the gatekeeper enzyme linking glycolysis and the 

TCA cycle. Its activation during OIS promotes the flux of glucose-derived pyruvate to the TCA 

cycle, increasing cellular respiration and representing an essential element of the OIS program. 

Enforced normalization of PDP2 or PDK1 expression levels abrogates OIS, reactivating cell 

proliferation.   
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4.2.3 Effect of K-RASG12V-induced senescence on glucose 
metabolism 

We then went on and performed the same metabolic analysis using 13C6-glucose 

in HDF overexpressing K-RASG12V and obtained comparable results to the ones 

observed in cells undergoing BRAFV600E-induced senescence. K-RASG12V-senescent 

cells have an increased rate of accumulation of glucose-derived carbons into TCA 

cycle metabolites compared to cycling cells (Fig. 4:3). However, this is less 

pronounced than in BRAFV600E-induced senescence. Therefore, this oxidative 

phenotype is not unique to BRAFV600E-induced senescence, but rather are 

characteristic of the senescent status.  
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Figure 4:3- Glucose metabolism in K-RASG12V-induced senescence 

Glucose metabolism analysis in cycling HDF and K-RASG12V OIS cells after 0, 15 and 180 minutes 

of labelling with 13C6-glucose. Results show the distribution of the different isotopomers (U-12C, 
13C1-6) of each metabolite presented over time. All data are represented as mean ± s.d. (n=3). G3P 

– glyceraldehyde 3-phosphate; aKG – α-ketoglutarate; TCA –tricarboxylic acid cycle.  
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4.2.4 Effect of cell cycle arrest on glucose metabolism 

To identify whether the changes in glucose metabolism upon OIS were due to a 

block in proliferation, characteristic of the senescent state, or part of a 

particular set of features that characterize the senescent phenotype, quiescent 

cells (obtained through contact inhibition of HDF and confirmed by BrdU 

incorporation) were also fed with 13C6-glucose. However, unlike senescent cells, 

quiescent cells accumulated 13C6-glucose-derived carbons faster into pyruvate 

and alanine as well as into TCA cycle intermediates like citrate and glutamate, 

compared to proliferating cells (Fig. 4:4). This labelling pattern indicates an 

overall increase in cell metabolism during quiescence, unlike the specific 

increase in glucose-driven TCA metabolism observed during senescence. In 

addition, a similar increase in metabolic activity in quiescent fibroblasts has also 

been previously described(210).  
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Figure 4:4- Glucose metabolism in quiescent cells  

Comparison of the glucose metabolism in quiescent and cycling HDF analysed after 0, 15 and 180 

minutes of labelling with 13C6-glucose. Results show the distribution of the different isotopomers (U-
12C, 13C1-6) of each metabolite presented over time. Data are represented as mean ± s.d. (n=3). 

G3P – glyceraldehyde 3-phosphate; aKG – α-ketoglutarate; TCA –tricarboxylic acid cycle.  
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4.3 Conclusions 

In recent years, the study of the deregulation of cellular metabolism during 

oncogenic transformation has received increasing interest. The development of 

sensitive analytic tools to monitor metabolism in living cells has allowed us to 

increase our understanding of metabolic regulation. However, despite the widely 

recognized importance of OIS as a tumour suppressive mechanism, little is 

known about the regulation and role of cellular metabolism in this context, in 

particular, how metabolic fluxes change when cells undergo OIS and whether 

they are functionally connected to the senescent programme.  

In order to solve this question, we performed an unbiased and comprehensive 

analysis of the metabolic fluxes in cells undergoing OIS. Our results revealed that 

a profound switch in metabolic fluxes accompany the establishment of OIS. In 

OIS, glucose, the primary energy source for these cells, was primarily oxidized in 

the TCA cycle following its conversion to pyruvate, which was associated with 

increased mitochondrial respiration. Furthermore, we identified PDH, the 

enzyme linking glycolysis and TCA cycle, as the central component of this 

switch. During OIS, PDH activation drives pyruvate into the TCA cycle for 

oxidation at the expense lactate and alanine production. Finally, we 

demonstrated that this process is not mere consequence of a block in 

proliferation, as quiescent cells do not have the same metabolic phenotype.   
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Chapter 5 - Resistance to BRAFV600E Inhibition 
Induces Glutamine Dependency in Melanoma Cell 
Lines 
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5.1 Introduction 

Melanoma is a heterogenetic disease with multiple subtypes driven by specific 

genetic alterations. About half of cutaneous melanomas possess the BRAFV600E 

mutation that results in the constitutive activation of the MAPK signalling 

pathway(211-213). The recently developed specific BRAFV600E inhibitors 

vemurafenib and dabrafenib improve the overall survival of patients harbouring 

mutant BRAF melanoma by 6-8 months(214, 215). Unfortunately, intrinsic, and 

secondary or acquired resistance limits the overall response rate as well as the 

therapeutic benefit of this personalised treatment(216-220). Although most of 

these studies have focused on cancer-specific alterations in kinases or 

transcription factors, it has recently emerged that metabolic rewiring can also 

contribute to such resistant phenotypes(221, 222). 

It has been described that melanoma cells display aerobic glycolysis and use 

glutamine for anaplerosis(223, 224). Recent studies have also identified the 

microphthalmia-associated transcription factor (MITF)/ peroxisome proliferator-

activated receptor gamma coactivator 1-α (PGC1α) axis to be responsible for the 

oxidative metabolism displayed by certain melanomas and that MAPK activity 

suppresses this oxidative phenotype(225, 226). Moreover, vemurafenib-resistant 

cell lines display increased mitochondrial respiration, which makes them more 

vulnerable to oxidative stress-induced cell death(227). Therefore, understanding 

the metabolic response and adaptative mechanisms in melanoma towards 

targeted therapies could assist in identifying key targets to use in combined 

therapeutic strategies in order to prevent the onset of resistance or how to 

overcome it. In this study, we examined the metabolic consequences upon 

BRAFV600E inhibition that result in (or support) the acquisition of resistance in 

melanoma cells. 
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5.2 Results 

This work was done in collaboration with Franziska Baenke at the Cancer 

Research UK Manchester Institute. 

5.2.1 BRAFV600E inhibition stimulates mitochondrial biogenesis 
and oxidative metabolism 

In order to study the metabolic changes that occur upon BRAFV600E inhibition, we 

utilised an analogue of vemurafenib, the BRAFV600E inhibitor commonly used for 

melanoma treatment, named PLX4720. We generated PLX4720 resistant cell 

lines (hereof PLX-resistant) from the well established BRAFV600E -expressing 

melanoma cell lines A375 and Colo829, by continuously culturing them in the 

presence of 1 µM PLX4720 and designated them as A375/R and Colo829/R 

respectively. It has been recently reported that BRAF inhibitors increase PGC1α 

expression in melanoma cell lines(225, 226). In line with these findings, we 

observed a significant increase in PGC1α mRNA levels in A375/R and Colo829/R 

cells (Fig. 5:1a). A375/R cells also have increased mitochondrial mass, as shown 

by the higher expression of the mitochondrial-encoded genes cytochrome B2 

(CYTB2), cytochrome c oxidase subunit 2 (COXII) and ATP synthase protein 8 

(ATP8) (Fig. 5:1b). Furthermore, in A375/R and Colo829/R cells, basal and 

maximal oxygen consumption rates (OCR) were significantly higher compared to 

parental cells with a consistent decrease in extracellular acidification rate 

(ECAR) (Fig. 5:1c).  
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Figure 5:1- BRAFV600E inhibition increases mitochondria and the oxidative phenotype in 

melanoma cell lines 

a, PGC1α mRNA expression levels in A375, A375/R, Colo829 and Colo829/R melanoma cell lines 

in the absence or presence of 1 µM PLX4720 for 24 hours. b, Comparison of mitochondrial 

encoded genes CYTB2, COXII and mtATP6-8, normalised to nuclear encoded genes in A375 ± 1 

µM PLX4720 and A375/R for 24 hours (mean ± SEM of n=3) (N=2) *p<0.05, **p<0.01 and 

***p<0.001. c, Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in A375, 

A375/R and Colo829 and Colo829/R cells in the absence or presence of 1 µM PLX4720 after 18 

hours using the Seahorse Analyser. OCR was measured under basal conditions, followed by 

injections of 1 µM oligomycin, 2 µM FCCP, 1 µM rotenone and 1 µM antimycin A. Raw values were 

normalised to protein content. Experiments were at least performed three times. A representative 

experiment is shown here. Error bars represent the SEM of n=5.  
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5.2.2 BRAFV600E inhibition reduces glycolytic flux 

Aerobic glycolysis is one of the most prominent features of cancer cells, which 

display dysregulated glucose metabolism and the associated increase in lactate 

secretion(9, 228). In order to explore the contribution of glucose to the 

oxidative phenotype of PLX-resistant cells, uniformly labelled 13C6-glucose was 

used to trace glucose-derived intracellular metabolites. No significant effects on 

glycolysis were observed in parental cells treated with PLX4720 for 24 hours, 

whereas PLX-resistant cells had significantly lower levels of intracellular glucose 

and lactate (Fig. 5:2a). Furthermore, by measuring extracellular exchange rates, 

we confirmed that glucose consumption, and pyruvate and lactate secretion 

were reduced in PLX-resistant cells compared to parental cells (Fig. 5:2b).  
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Figure 5:2- BRAFV600E inhibition results in decreased glycolytic flux 
a, A375 and A375/R cells were incubated in full RPMI media with 5mM 13C6-glucose for 3 hours 

and several intracellular glucose-derived metabolites were measured by LC-MS. The graphs show 

a representative experiment (mean ± SEM of n=6) (N=2). b, Extracellular exchange rates were 

determined for glucose, lactate and pyruvate (mean ± SEM of n=6) (N=3).  
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5.2.3 PLX4720-resistant cells display increased glutaminolysis 

The observation that PLX-resistant cells were less dependent on glucose, despite 

showing increased oxidative metabolism, suggested the use of an alternative 

carbon source. Glutamine is the most abundant amino acid in the blood and it 

has been shown to be an important carbon as well as nitrogen source for cancer 

cells(146, 229). In order to analyse the glutamine-derived carbon flux, cells were 

cultured with uniformly labelled 13C5-glutamine for 24hr and intracellular 

metabolites were extracted and analysed by LC-MS. Higher intracellular levels of 
13C5-glutamine and 13C5-glutamate were detected in PLX-resistant cells (Fig. 

5:3a). By measuring extracellular exchange rates for glutamine and glutamate, 

we also confirmed an increase in glutamine uptake in PLX-resistant cells as well 

as increased glutaminolytic activity as shown by increased glutamate secretion 

(Fig. 5:3b). Many oncogenic events are associated with an elevated expression of 

genes involved in glutaminolysis(229). By qPCR we confirmed that the mRNA 

levels of glutaminases (GLS and GLS2) and glutamic pyruvate transaminases (GPT 

and GPT2) were elevated in PLX-resistant cells (Fig. 5:3c). Together, these 

results demonstrate that glutamine is an important carbon source for PLX-

resistant cells.  
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Figure 5:3- PLX4720-resistance increases glutamine metabolism 

a, A375 and A375/R cells were incubated with 13C5-glutamine, and intracellular glutamine and 

glutamate levels were determined. The graphs show a representative experiment (mean ± SEM 

n=6) (N=2). b, Extracellular exchange rates for glutamine and glutamate were measured. Graphs 

show a representative experiment (mean ± SEM of n=6) (N=3). c, mRNA levels of various 

enzymes (GLS, GLS2, GPT and GPT2) involved in glutaminolysis were determined after 24 hours 

of PLX4720 treatment (mean ± SEM n=3) (N=3). *p<0.05, **p<0.01, ***p<0.001 and n.s. = not 

significant. 
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5.2.4 Inhibition of glutaminolysis sensitizes PLX4720-resistant 
cells to PLX4720 

Given the increased glutamine metabolism displayed by PLX-resistant cells, we 

decided to test their dependency on glutaminolysis for survival and proliferation 

by treatment with the glutaminase inhibitor BPTES. BPTES did not affect the 

OCR in parental cells, but was significantly reduced in A375/R and Colo829/R 

cells (Fig. 5:4a). Furthermore, ATP levels were only decreased following the 

inhibition of glutaminolysis in PLX-resistant cells (Fig. 5:4b), suggesting they are 

unable to adapt to the inhibition of glutaminolysis and undergo an energy crisis. 

Indeed, the viability of PLX-resistant cells was significantly affected by 

glutaminase inhibition (Fig. 5:4c). In addition, BPTES-induced inhibition of 

proliferation is partially rescued by dimethyl-α−ketoglutarate, a cell-permeable 

analogue of α−ketoglutarate that enters the TCA cycle downstream of 

glutaminase (Fig. 5:4c). Taken together, these findings confirm that PLX-

resistant cells rely on glutamine as a major carbon source for energy production 

and are unable to overcome the inhibition of glutaminolysis.  
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Figure 5:4- Inhibition of glutaminolysis hampers oxidative metabolism and cell viability of 

PLX4720-resistant cell lines 

a, Measurement of oxygen consumption rate (OCR) in A375, A375/R, Colo829 and Colo829/R 

cells in the absence or presence of 1 µM PLX4720 and/or 2 µM BPTES after 18 hours using the 

Seahorse Analyser. OCR was measured under basal conditions, followed by injections of 1 µM 

oligomycin, 2 µM FCCP, 1 µM rotenone and 1µM antimycin A. Raw values were normalised to 

protein content. b, ATP levels were determined for A375, A375/R, Colo829 and Colo829/R treated 

with PLX4720 and/or BPTES. Error bars represent SEM of n=3, N=2. *p<0.05 and **p<0.01. c, 

Indicated parental and PLX-resistant cells were seeded at a low density either alone, in the 

presence of BPTES, dimethyl-α-KG or a combination of both, and colony formation was analysed 

after 10 days using crystal violet.  
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5.3 Conclusions 

BRAF inhibition results in an extended overall disease-free survival in melanoma 

patients harbouring a BRAFV600E mutation. However, all patients eventually 

develop resistance to the drug and recurrence of the disease. It has previously 

been reported that a subset of BRAFV600E mutant melanomas display increased 

PGC1α expression (the master regulator of mitochondrial biogenesis and 

function) as well as high basal oxidative phosphorylation(226) and that acute 

treatment with the BRAF inhibitor PLX4720 induces PGC1α in melanoma cell 

lines(225). We have confirmed these observations and furthermore, established 

that PGC1α is greatly upregulated in PLX-resistant cells. In addition, this is 

associated with a rewiring of cellular metabolic pathways as demonstrated by a 

decrease in glucose consumption and lactate secretion in PLX-resistant cells. A 

compensatory increase in glutamine consumption is also observed, which allows 

for the sustained high rates of mitochondrial oxidative metabolism displayed by 

these cells. This metabolic reprogramming in PLX-resistant cells is further 

accompanied by an elevated expression of the mitochondrial genes CYTB2, 

COXII, and ATP8, and an increase in mitochondrial mass. These changes in 

mitochondrial biogenesis are accompanied by an increase in both oxidative 

phosphorylation and in the dependence on mitochondrial function for survival. 

However, this did not coincide with a rise in glucose consumption. On the 

contrary, PLX-resistant cells were more dependent on glutamine metabolism.  

By measuring metabolic exchange rates and metabolic fluxes we have shown 

that PLX-resistant cells display increased oxidative metabolism, which is fuelled 

by glutamine. Moreover, PLX-resistant cells are sensitised to PLX4720 by the 

inhibition of glutaminase. Our findings show that the switch from glucose to 

glutamine utilisation during the acquisition of resistance could provide a 

therapeutic strategy that combines inhibitors of mitochondrial respiration or 

glutamine metabolism with the use of vemurafenib for the treatment of 

BRAFV600E melanoma. 
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Chapter 6 - Discussion and Final Remarks 
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6.1 Discussion  

Nutrients can follow several pathways to ultimately produce energy as ATP or 

anabolic constituents for cell growth. In malignant cells, they are preferentially 

utilised to maintain uncontrolled cell growth. Several alterations within the 

complex metabolic network of mammalian cells seem to be associated with 

tumorigenesis, among them, the truncated oxidation of pyruvate and its 

diversion to lactate are well known paradigms of metabolic transformation. 

Indeed the enhanced glucose uptake imposed by this phenotype is common to 

the vast majority of tumours and has been successfully exploited for diagnostic 

by FDG-PET. On the contrary, the attempt to target therapeutically glucose 

metabolism has been limited, on the one hand, by the presence of multiple 

redundant alternative pathways, and on the other, by a narrow therapeutic 

window due to the overlap with normal physiological process. For this reason, 

few glycolytic inhibitors have reached clinical trials and none of them has been 

approved for clinical use(230). In recent years a better understanding of the 

genetic and molecular events that underlie this functional phenotype has been 

achieved. Several oncogenes and few tumour suppressor genes are known to 

regulate glucose uptake and glycolysis. Nonetheless, the demonstration that 

different types of cancer depend on glucose to different extent is of 

fundamental importance to design therapeutic agents targeting glycolysis (69, 

231). 

Together with glycolysis, the TCA cycle and OXPHOS control the cellular balance 

between energy production and anabolism. Tumours with impaired OXPHOS due 

to hypoxia, mitochondrial DNA mutation, or drugs, enhance glycolysis and rewire 

the TCA cycle to enable growth. This rationale supported the design of a small 

molecule targeting the energetic requirement of lung cancer cells with a non-

functional electron transport chain (232). 

While energetic and anabolic demands are important modulators of tumour 

metabolism, they cannot entirely explain the metabolic features displayed by 

many tumours. The microenvironment related to the tissue of origin, as well as 

stochastic genetic/epigenetic alterations, can qualitatively and quantitatively 
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affect the cellular metabolic network. Integrated signals deriving from 

intracellular and extracellular environments finely tune cancer cell metabolism. 

Few mutations that can directly affect metabolic enzymes are known, while it 

has been postulated that the dysregulation of cell energetics is one of the 

cancer hallmarks(233). This assumption implies that the metabolic switch that 

supports uncontrolled growth is often triggered by mutations in signalling 

pathways that reset the whole anabolic and energetic homeostasis. Therefore 

we focused our work in understanding how growth signalling pathways, such as 

the MAPK, regulate metabolism in order to support growth and proliferation and 

how this interaction can be exploited therapeutically. 

6.1.1 Identification of a new mechanism of allosteric regulation 
for PKM2 

In the past few years there has been a substantial increase in the understanding 

of the mechanism by which PKM2 modulates metabolic rearrangement during 

cancer progression. This involvement is thought to be multifaceted and to 

include contributions to anabolism and regulation of aerobic glycolysis. Counter-

intuitively, despite the glycolytic phenotype displayed by cancer cells, PKM2 is a 

rather slow enzyme compared to the PKM1 iso-enzyme. But in fact, its lower 

activity may contribute to cell growth and proliferation by favouring the 

accumulation of glycolytic intermediates that can be used for biosynthetic 

purposes. Our knowledge on PKM2 regulation has been significantly enriched by 

functional, structural and metabolomic studies. Nevertheless, there are still 

many open questions regarding the multiple roles that PKM2 may have in 

metabolic regulation and other, non-glycolytic functions of the enzyme. 

PKM2 activation by serine is especially interesting in the context of cancer, 

because cancer cells rely heavily on serine biosynthesis to proliferate and grow 

(90-92). In proliferating cells, serine is the source of one-carbon units for de 

novo synthesis of purines and pyrimidines, and additionally, it provides 

precursors for the synthesis of other amino acids, lipid messengers, and 

neuromodulators(201). This sparked interest in a possible link between glycolysis 

and serine biosynthesis mediated by PKM2 in cancer cells. Indeed, we have 

shown that cells with low PK activity have increased serine and glycine 

biosynthesis. When cells were deprived of these amino acids, PK activity was 
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decreased and a consequent increase in serine biosynthesis was observed. 

Simultaneously, cells displayed a pronounced switch from glycolytic to oxidative 

metabolism, suggesting that PK activity is reduced in the absence of serine and 

glycine to redirect glucose-derived carbon away from glycolytic ATP production 

and towards serine and glycine biosynthesis. Although serine and glycine can be 

interconverted, only serine was able to induce PK activity both in isolated 

proteins and cells. Similar to the mechanism of action of FBP, serine was able to 

increase the affinity of PKM2 for PEP. Importantly, this occurred at 

physiologically relevant concentrations of serine, indicating that serine and FBP 

can activate PKM2 to help cells adapt to changes in serine and glucose 

availability, respectively. The PKM1, PKL, and PKR isoforms did not display 

activation by serine, indicating this is a specific trait to rapidly proliferating 

cells that express PKM2 (200). Together, this demonstrates an exciting rheostat-

like function of PKM2 that enables cancer cells to partition glucose-derived 

carbon towards energy generation and serine biosynthesis depending on their 

needs, thereby sustaining optimal proliferation and growth.  

We have further confirmed the importance of histidine-464 in the amino acid 

binding pocket of PKM2 for serine binding by mutagenesis. The H464A mutation 

reduces the activation of PKM2 by serine while retaining its activation by FBP. 

However, the effect of H464A on serine induced PKM2 tetramerisation is not 

clear. Furthermore, a serine residue in position 437 of PKM2, which is in close 

proximity to the FBP binding region, seems to be essential for tetramerisation. In 

addition, serine was able to activate PKM2 even when tetramerisation is 

impaired by the S437Y mutation. These results improve our understanding on the 

molecular basis of PKM2 regulation and provide a different perspective from the 

current view in which PKM2 activation is mediated by its tetramerisation only. 

However, further crystallographic and structural modelling studies of mutants 

that cannot bind serine, like the H646A, need to be performed in order to fully 

understand the mechanism by which serine can activate PKM2 independently of 

its oligomeric state.  
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6.1.2 Therapeutic targeting of metabolic regulators to reactivate 
senescence  

PDH has been shown to be a central metabolic regulator in diabetes, heart 

disease and it has been recently suggested to contribute to cancer (20, 234-238). 

However, its regulation and function in the context of cellular senescence have 

not been recognised. Based on the analysis of the consumption and production of 

nutrients and metabolites, others previously reported that a decrease in glucose-

derived lactate parallels replicative senescence (239). Similarly, it has been 

shown that overexpression of some glycolytic enzymes can interfere with 

senescence(240). Using metabolic flux analysis we measured the fate of glucose-

derived metabolites into glycolysis and the TCA cycle, showing that the 

metabolic fate of pyruvate diverges in OIS and cycling cells: during OIS, pyruvate 

oxidation by the TCA cycle increased at the expense of lactate and alanine 

production. Interference with this shift from glycolysis to the TCA cycle, by PDP2 

depletion or restoration of PDK1 (both resulting in inhibition of PDH) prevents 

the onset of OIS (22).  

To date, a limited number biomarkers for detecting senescence are available, 

and even fewer that are causally involved in the process(241). PDK1 has been 

shown to be up-regulated in cancer and its high levels associate with poor 

prognosis for HNSCC patients (242). Our results unmask the three constituents of 

the mitochondrial PDK1-PDP2-PDH axis as a new series of potential senescence 

biomarkers, at least in the context of BRAFV600E-induced senescence.  

It has been previously shown that senescent cells display a robust inflammatory 

transcriptome signature (207, 243, 244). Interestingly, PDH regulation influenced 

the inflammatory transcriptome: inhibition of PDH activity resulted in a sharp 

decrease in the expression levels of interleukins 6 (IL6) and 8 (IL8) transcripts, 

two prominent biomarkers of OIS (22). Altogether, these findings demonstrate a 

close communication between metabolic regulation and the senescence-

associated secretory phenotype. Specifically, our findings suggest the existence 

of a complex auto-stimulatory feedback mechanism, in which cytokines, 

metabolic regulators and transcription factors operate to control OIS.  
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Our results on metabolic regulation in OIS not only provide a novel insight into 

the regulation of cellular senescence, but also explain former observations on 

the potentially therapeutic effect of PDK inhibition on tumorigenesis. Previous 

analysis of a cell culture model of stepwise malignant transformation showed 

that increasing tumorigenicity correlates with a shift from OXPHOS towards 

glycolysis (245). Since we showed that PDH activation in the context of an 

oncogenic signal (BRAFV600E) has the opposite effect, PDH regulation likely 

represents a barrier against tumorigenesis. Consistent with this idea is the 

finding that DCA, a PDK inhibitor, inhibits xenograft tumour growth (20). Similar 

decrease in invasiveness and tumour growth was observed upon PDK1 depletion 

(238). We showed that PDH reactivation by PDK1 depletion is sufficient to mount 

a senescence response in primary cells (22). This raises the possibility that PDH 

represents a pro-senescence therapeutic target. Over the past few years, the 

concept of pro-senescence therapy as a novel clinical approach to treat cancers 

has attracted increasing interest(246). In summary, our findings provide a 

rationale to further explore the feasibility of targeting key metabolic enzymes 

such as PDK1 for clinical intervention in cancer. 

6.1.3 Inhibition of glutamine metabolism as a therapeutic strategy 
in PLX-resistant melanoma 

Half of the patients affected by metastatic melanoma present a gain of function 

mutation in the BRAF gene; hence, BRAF inhibitors are highly effective in this 

pathology. However, an increased occurrence of squamous cell carcinomas and 

keratoacanthomas as a consequence of BRAF inhibitor treatment has been 

observed. This observation highlights a potential pitfall of targeting specific 

oncogenic addiction (alone) and can prospect the occurrence of a “synthetic 

tumorigenesis” as a response to a specific treatment. Therefore the need of 

finding therapeutic combinations that will target different pathways in the 

tumour in order to kill it faster and more efficiently.  

The switch from OXPHOS to aerobic glycolysis in cancer cells and the possible 

reasons behind this process are well described. However, cancer cell metabolism 

is far more complex than a change in glucose utilization and many other 

metabolic pathways are tightly interconnected to support growth and 

proliferation. Beyond glucose, other metabolites, from amino acids to fatty 
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acids, can be utilised for ATP generation and anabolic purposes(64). Indeed, in 

the last decade, substantial attention was paid to glutamine, the most abundant 

amino acid in human blood. The requirement of glutamine for the growth of 

cancer cells was clearly established more than 50 years ago(247). However, it is 

only thanks to recent technologies that its anabolic role is increasingly 

appreciated and it is now clear that glutamine, which is avidly consumed by 

cancer cells, is an important anaplerotic substrate used by mitochondria for 

bioenergetics and for macromolecular biosynthesis(130). In particular, it was 

demonstrated that glutamine has the flexibility to be converted both in a 

oxidative and reductive fashion in the TCA cycle, providing cells with important 

anabolic metabolites such as citrate for lipid biosynthesis, aspartate for 

nucleotides biosynthesis and NADH to feed OXPHOS when mitochondria are 

partially dysfunctional due to mutations or to low oxygen levels (78, 248). 

 

Melanoma cells can be highly glycolytic and have flexible metabolic pathways 

that allow them to adapt to stressful environments (223). Our work complements 

a recent report showing that BRAFV600E inhibition results in reduced glucose 

consumption and expression of glycolytic enzymes (249). Intriguingly, in that 

study it was reported that oncogenic NRAS (NRASQ61K) rendered A375 cells 

resistant to BRAF inhibitors and restored the expression of glycolytic enzymes, 

suggesting that ectopic expression of NRASQ61K restored metabolism to its 

original state. However, here we showed that melanoma cells, in which 

resistance was induced by continuous exposure to a BRAF inhibitor, switched 

from glucose to glutamine dependency. In addition, PLX-resistant cells were 

more sensitive to glutamine starvation and inhibition of glutaminolysis.  

A shift towards glutamine metabolism in resistant cells may allow cells to sustain 

proliferation as the influx of glucose-derived carbons into the TCA cycle is 

diminished (248, 250). Glutaminolysis can effectively sustain TCA cycle 

metabolite levels and provide nitrogen for nucleotide biosynthesis. This may 

convey particular advantage to PLX-resistant cells, as they require more carbon 

in the TCA cycle for oxidative metabolism and more carbon and nitrogen to 

sustain growth and proliferation. These findings are in agreement with recent 

studies that determined metabolic flexibility of cancer cells (78, 82). 
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Inhibition of glutaminolysis can suppress cell growth in some cancers such as, 

Burkitt lymphoma and other cancers driven by c-Myc (7, 69). We showed that 

PLX-resistant cells are also more sensitive to glutaminase inhibition, suggesting 

that glutaminase may be a therapeutic target in BRAF-inhibitor resistant 

melanoma cells. Notably, PGC1α was recently shown to be important for 

glutamine metabolism in ERBB2 positive breast cancer(251) and it was recently 

suggested that glutamine transporters might also be important therapeutic 

targets in melanoma again highlighting the therapeutic potential of addressing 

this metabolic pathway in this disease (252).  

We have shown that PLX-resistant cells are more dependent on mitochondrial 

function than their parental counterpart. Therefore, additional approaches 

including the use of mitochondrial inhibitors such as biguanides could be 

considered. Metformin has been reported to have antitumour activity in 

melanoma and many other cancers(253). Biguanides activate AMPK by inhibiting 

complex I of the mitochondrial electron transport chain. This is in line with 

reports that PLX-resistant melanoma cell lines are more sensitive to metformin 

and phenformin(254).  

Developing effective treatments to delay or overcome resistance in melanoma is 

a clinical and biological challenge due to the complexity of multiple resistance 

mechanisms that sustain MAPK/ERK signalling. Our work shows that melanoma 

cells surviving PLX4720 treatment switch from a glycolytic to an oxidative 

phenotype using glutamine as main carbon source. Thus, combining the use of 

BRAF inhibitors with inhibitors of glutaminolysis may be a useful strategy for the 

treatment of melanoma. 
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6.2 Final Remarks 

The range of metabolic adaptations found in cancer cells has been subject of 

intense research in the last decade becoming one of the hallmarks of 

cancer(233). Several factors have contributed to the tremendous progress of this 

field. The first was the inability of genomics and proteomics to fully describe the 

process of tumorigenesis. While sequencing entire cancer genomes has revealed 

areas of genetic susceptibility and discovered genes linked to tumour formation, 

these results have yielded moderate progress and additional work to determine 

the functional basis for the observed genetic associations is required(255). The 

second factor was the development of analytical techniques that allowed for the 

reliable identification and quantification of metabolites present in tumour cells 

as well as in their environment. Despite the fact that individual metabolites 

have been analysed for decades by nuclear magnetic resonance (NMR) and mass 

spectrometry (MS), it was the development of the high-throughput analyses, 

metabolomics, which made the study of the global metabolic profile of a cancer 

cell possible. In addition, thanks to the parallel progress in systems biology, 

metabolic fluxes in cancer cells can now be explored and the data from different 

“omics” approaches can be integrated to obtain a clearer picture of the 

metabolic transformation in cancer cells.  

Metabolomics is now playing a crucial role in dissecting the possible metabolic 

rearrangements operating in cancer cells. Indeed, since intra-tumour 

heterogeneity has been characterised by deep sequencing, a different metabolic 

behaviour among cancer cells belonging to the same tumour can be expected. In 

addition, most cancers are composed of multiple cells types, which engage in 

several homo- and heterotypic interactions. Therefore, the current and future 

challenge of the field of cancer metabolism is to dissect these complex 

metabolic changes and, at the same time, interpret them as result of global 

metabolic interactions between different cell types, tissues and organs so that 

we can more efficiently identify targets that are efficacious and specific for 

tumours with minimal toxicity for normal cells. 
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