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Abstract 

 

It has been proposed that polyphenol-rich foods have a role in disease prevention and are 

associated with health benefits due to their antioxidant, anti-inflammatory, prebiotic, and 

antibacterial properties. However, associated health benefits depend on their intake, 

metabolism, and bioavailability. The metabolism and the bioavailability of polyphenols 

have been studied in young adults and show substantial variability. As the majority of 

polyphenols are metabolised in the colon, this may result in different bioactive microbial 

metabolites in the large intestine where they may have an impact on the risk of colorectal 

cancer (CRC). This variability could be due to: 1) dietary habits including intake 

polyphenol-rich foods; 2) ethnic-specific colonic microbiota; and 3) ageing and its effect 

on colonic physiology.  

Little is known about the impact of ethnicity, ageing, and the risk of CRC on polyphenol 

metabolism. Therefore, this thesis aimed to investigate the effect of the factors that could 

have an impact on the colonic metabolism of dietary polyphenols in a human feeding study 

measuring the biomarkers of polyphenol metabolism, colonic fermentation, and gut health; 

and an in-vitro faecal fermentation study measuring the colonic metabolites of quercetin-3-

O-rutinoside (rutin). 

The first aim of this thesis (Chapter 3) was to examine the effect of ethnicity (Europeans 

versus Indians) on polyphenol metabolism. The findings of this study suggest that ethnicity 

could have a role on the colonic metabolism of polyphenols which could be due to the 

differences in disease incidence between countries such as the lowest risk of CRC in India 

among the world. The Indian group excreted less urinary phenolic acid after the high-

polyphenol diet compared to the Europeans; however, Indians were more capable and 

faster in metabolizing rutin in the in-vitro model. This could be due to the differences in:  

1. Genetics and its effect on gastrointestinal tract absorption.  

2. Gut microbiota, as Indians have a significantly higher level of 

Bifidobacterium.  

3. Gut environment, in particular the colonic pH and SCFA could have an 

influence as the colonic pH was lower in the Indian group.  
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4. Cultural daily diet between groups, as Indians significantly consumed a high 

amount of onions, tomatoes, chillies, spices, curry-based products, and 

yoghurt. These food types are high in polyphenols, fibre, and probiotics. 

The second study of this thesis aimed to investigate the effect of ageing on polyphenol 

metabolism. The results suggest another factor, ageing, which could influence the colonic 

metabolism of polyphenols. The older group excreted less urinary phenolic acid and some 

of the acid was not detected in certain of the participants’ urine compared to the younger 

group. However, the sum of the phenolic acid that formed after the faecal fermentation of 

rutin was not significantly different between the groups. This could suggest different 

reasons behind these variations. First, the lack of absorption of some phenolic acids by the 

older group as ageing was shown to decrease the colonic absorption. Secondly, the effect 

of ageing on gut microbiota composition and function. Thirdly, changes in dietary habits 

and physical activity may be influenced by ageing. Thus, this may suggest that older 

people can have fewer benefits of polyphenol metabolites which could be associated with 

an increase in risk for age-related diseases including CRC. 

As the risk of CRC is different between countries and increases with age, the supportive 

findings of the first and second study suggest that ethnicity and ageing could have a role on 

the metabolism of polyphenols so this raises the questions whether a low intake of 

polyphenols can be one of the factors that may lead to CRC, or whether polyphenols can 

reduce the risk of CRC due to their colonic health benefits.  Therefore, the last study 

examined the metabolism of polyphenols on patients who are at risk of CRC (history of 

polyps). No significant differences were observed between the healthy control and 

polypectomy groups in terms of the sum urinary phenolic acid excretion and phenolic acid 

formation in the faecal fluids. However, some phenolic acids were not detected in all of the 

urine samples of the polypectomy group as well as one acid in the faecal fermentation 

fluids, while some of the acids were not detected in few participants in the healthy group. 

No hard conclusion can be made from this study due to the small sample size. However, 

this study gives us an idea that there could be differences if a larger sample size were used. 

Therefore, more studies are needed to determine the effect of CRC risk as being one of the 

factors that can influence the metabolism of polyphenols.   

 



 

 

v 

 

In conclusion, the work of this thesis showed that ethnicity, ageing, and gut health are 

likely some of the key factors that could contribute to the variations in polyphenol 

metabolism which were observed previously by many in-vivo and in-vitro studies. These 

variations could result in bioavailability variation and consequential differences in the 

biological activity of polyphenol metabolites leading to differences in health and optimal 

health among individuals. 
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General Introduction
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1.1 Introduction 

Epidemiological and meta-analysis studies have shown that long term consumption of diets 

rich in plant foods, such as fruit, vegetables, and derived beverages protect against several 

chronic diseases including cardiovascular disease, cancer, diabetes, and neurodegenerative 

disease (Arts and Hollman, 2005, Graf et al., 2005, Aune et al., 2011). The potential 

protective action of these foods is due not only to amino acids, polyunsaturated fatty acids, 

vitamins, minerals, and dietary fibre, but also to a diversity of plant secondary metabolites, 

especially phenolic compounds and flavonoids (Crozier et al., 2010).  

Many studies have reported that higher intake of polyphenols may reduce the incidence of 

several chronic diseases such as: 1) cardiovascular diseases through polyphenols acting as 

an antioxidant, anti-inflammatory, and anti-platelet along with the polyphenols’ ability to 

increase the level of high density lipoprotein and reduce the low density lipoprotein in 

plasma (Aviram et al., 2000, Vita, 2005, Nardini et al., 2007, Khan et al., 2012);  2) cancer 

including stomach, colon, liver, lung, and skin cancer through the anti-estrogenic, anti-

proliferation, anti-inflammatory and antioxidant properties of polyphenols, as well as their 

regulation of the immune system (Yang et al., 2001a, Kamaraj et al., 2007, Khan and 

Mukhtar, 2008, Pandey and Rizvi, 2009, Angst et al., 2013); 3) diabetes type I and II 

through controlling the blood sugar by reducing and inhibiting the absorption of glucose in 

the gut or its uptake by peripheral tissues (Matsui et al., 2002, Rizvi et al., 2005, Zunino et 

al., 2007, Dembinska-Kiec et al., 2008, Jacques et al., 2013); 4) neurodegenerative disease 

and the adverse effects of ageing through the effect of polyphenols and their antioxidant 

and anti-inflammatory properties (Joseph et al., 2005, Shukitt-Hale et al., 2008, Singh et 

al., 2008). 

In recent years, the research interest has migrated from purely examining the dietary intake 

of phenolic compounds to a deeper exploration their bioavailability (Crozier et al., 2010). 

This is due to: 1) differences in polyphenol metabolism among the large variety of 

phenolic compounds and their classes; 2) the beneficial effect of these compounds being 

dependant on their bioavailability in the human body; 3) substantial variations between 

individuals in terms of phenolic compound metabolism.  
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1.2 Dietary polyphenols   

Dietary polyphenols are secondary plant metabolites, classified on the basis of the number 

of phenol rings they contain and the structural elements that bind the rings to each other 

(Crozier et al., 2006). There are more than 8,000 polyphenolic compounds which have 

been identified in different plants (Crozier et al., 2006, Pandey and Rizvi, 2009). They are 

found in conjugated forms with one or more types of sugar (polysaccharide or 

monosaccharide) attached to the hydroxyl groups, though linkages between the sugar and 

an aromatic carbon also exist. A linkage with other compounds such as carboxylic and 

organic acids, amines, lipids, and phenol is also common (Kondratyuk and Pezzuto, 2004). 

They are classified as flavonoids and non-flavonoids (Del Rio et al., 2013).    

1.2.1 Flavonoids 

Flavonoids are the most abundant phenolics in the plant kingdom with more than 4,000 

phenolic compounds (Iwashina, 2000). They are responsible for the attractive colours of 

fruit and leaves (de Groot and Rauen, 1998, Hollman and Katan, 1999). They comprise 15 

carbons with two aromatic rings connected by a three-carbon bridge and are based on the 

variation of the heterocycle type (Figure 1-1) (Vermerris and Nicholson, 2006). The 

majority of flavonoids naturally occur as glycosides rather than aglycones. The differences 

within the group arise from variation in the hydroxyl group number and arrangement and 

their extent of alkylation and/or glycosylation. The water solubility of flavonoids increases 

with the presence of sugar and hydroxyl groups, while the methyl group provides lipophilic 

properties (Harborne and Harborne, 1998). They are divided into flavonols, flavones, 

isoflavones, flavanones, anthocyanidins, and flavan-3-ols (Del Rio et al., 2013).  

 

Figure 1-1: Structures of flavonoids (Del Rio et al. 2012). 
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1.2.1.1 Flavonols 

Flavonols are the most abundant of the flavonoids in the plant kingdom with the exception 

of fungi and algae (Del Rio et al., 2013). They are commonly found as O-glycosides such 

as kaempferol, rutin, quercetin, isorhamnetin, and myricetin (Figure 1-2). The conjugation 

position mostly occurs at position 3 of the C ring but 5, 7, 4′, 3′ and 5′ substitutions also 

occur (Herrmann, 1976). Kaempferol is found in many fruits and vegetables; rutin and 

quercetin are found in onions, tomatoes, apples, and tea; isorhamnetin can be found in 

onions and pears, and myricetin in berries, maize and tea (Hertog et al., 1992).  

 

 

 
 

Figure 1-2: Common flavonoids structure (Del Rio et al. 2012) 
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1.2.1.2 Other Flavonoids 

Other flavonoids can exist in different forms:  

1. Flavones have the same structure as flavonols but no oxygenation at 

position C3. A range of substitutions is possible with flavones, including 

hydroxylation, methylation, O and C-glycosylation, and alkylation 

(Jaganath et al., 2008). They have been found in celery, sweet red pepper, 

parsley and other herbs (Hertog et al., 1992). 

2. Flavanones are mainly represented as naringenin and hesperetin, which are 

characterized by the absence of double bond C2-C3 and the presence of a 

chiral centre at C-2. Flavanones occur as hydroxyl, glycosylated, and O-

methylated derivatives (Del Rio et al., 2013). The most common flavanone 

glycoside is hesperetin-7-O-rutinoside (hesperidin). They are present in 

high amounts in citrus fruits such as oranges in heperetin-7-rutinoside 

(hesperidin) and naringenin-7-rutinoside (narirutin) forms (Peterson et al., 

2006).  

3. Anthocyanidin conjugates with sugars and organic acids to generate a 

multitude of anthocyanins of differing colours, ranging from orange and red 

to blue and purple according to the pH (Ozeki et al., 2011). They can be 

found in red, blue or violet colour edible fruits including grapes, plums and 

berries (Peterson et al., 2006).  

4. Flavan-3-ols are naturally not conjugated to sugars. They range from the 

simple monomers (+)-catechin and its isomer (-)-epicatechin, to the 

oligomeric and polymeric procyanidins. They are typically present in 

various fruits and vegetables such as apples, pears, grapes and peaches as 

well as black tea, green tea, and red wine (Arts et al., 2000, Del Rio et al., 

2013). 

5. Isoflavones have the B ring linked at the C3 rather than C2 position (Del 

Rio et al., 2013). Isoflavones are mostly represented by daidzein and 

genistein. The main dietary source is soybeans and soy products (Liggins et 

al., 2000). 
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1.2.2 Non-flavonoid phenolics 

1. Hydroxybenzoic acid content is generally very low with the exception of 

certain red fruits, black radish, and onions. Tea is also an essential source 

of gallic acid (Manach et al., 2004).  

2. Hydroxycinnamic acid is more common than hydroxybenzoic acid and 

consists mainly of p-coumaric, caffeic, ferulic and sinapic acids (Pandey 

and Rizvi, 2009). They are rarely found in free form except in processed 

food.  

3. Stilbenes have a C6–C2–C6 structure (Langcake and Pryce, 1977). They 

exist in very low quantities in the human diet. The main stilbene is 3, 5, 4′-

trihdroxystilbene (resveratrol). Red wines contain a range of stilbene 

derivatives but in very low concentrations compared to other (poly) 

phenolic components (Crozier et al., 2010). 

4. Lignans are formed by two phenylpropane units and are one of the main 

classes of phytoestrogens (Manach et al., 2004). Linseed is the main source 

of lignans, which contains secoisolariciresinol and low quantities of 

matairesinol (Adlercreutz and Mazur, 1997). Traces of lignans are 

commonly found in cereal, grains, fruit and certain vegetables (Milder et 

al., 2005).  
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1.3 Dietary polyphenol sources  

The ubiquitous nature of polyphenols in particular flavonoids in plants ensures that they 

are found in large quantities in the human diet. Some polyphenols, such as quercetin, occur 

in all plants such as fruit, vegetables, cereal, tea, and wine, while others are found in 

specific foods such as flavanones in citrus fruit and isoflavones in soya (Table 1-1) 

(Manach et al., 2004, D'Archivio et al., 2007). 

Table 1-1: Flavonoid dietary selected sources. 

Phenolic compounds 

 

Typical sources  

 

 

 

Flavonols 
Rutin 

Quercetin 

Muricetin 

 

Yellow onion  

Cherry tomato  

Apple  

Tomato  

Black tea 

Green tea  

 

 

Flavones  

Apigenin 

Luteolin 

 

 

Parsley  

Celery  

 

Flavanones 

Hesperetin 

Naringenin 

 

 

Orange juice  

Grapefruit juice  

 

Anthocyanins 

Cyanidin 

Pelargonidin 

 

 

 

Cherries  

Strawberries  

Plums  

Grapes  

Blackberries  

Black currants  

Red wine  

 

 

Flavan-3-ols  

Catechin 

epicatechin 

 

 

Chocolate  

Green tea  

Black tea  

Red wine 

 

 

Isoflavones 

Daidzein 

Genistein 

 

Soy beans  

Tofu  

Soy milk  
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1.4 Assessment of dietary polyphenol intake 

It is important to have accurate quantitative information about polyphenol intake to 

establish the evidence associating the intake of dietary polyphenols with proposed health 

benefits. The most commonly used dietary assessment methods are diet histories, food 

frequency questionnaires (FFQ), and diet diaries, especially in epidemiological studies 

(Kristal et al., 2005, Chan et al., 2008, Zamora-Ros et al., 2012). 

Dietary assessment methods depend on using food composition databases.  Previously, 

there was little accurate data on polyphenol content of foods but these databases have 

improved over the past few years. These developments include the European Food 

Information Resource Network (EuroFIR), internet-deployed database (EuroFIR BASIS) 

which combines data on food composition and biological effects for plant-based bioactive 

compounds and Phenol-Explorer which is an online comprehensive database of polyphenol 

contents in food (Costa et al., 2010, Neveu et al., 2010). Despite these advances, it is still 

challenging to measure the dietary intake of polyphenols accurately for several reasons:  

1. The currently available databases have restricted information on the 

concentration and diversity of polyphenols in plants. For example: a) the 

polyphenol profiles of all varieties of apples are identical but the concentration 

may range from 0.1 to 5 g total polyphenols/kg fresh weight and as high as 10 

g/kg in certain varieties of cider apples (Sanoner et al., 1999); b) the ripeness of 

the plant, the time of harvest, UV exposure, condition of storage, and 

processing are also important factors that can affect the concentration of 

polyphenols (Burda et al., 1990, Spanos et al., 1990, Spanos and Wrolstad, 

1992, Miller et al., 1995, van der Sluis et al., 2001); c) the distribution of 

polyphenols is uneven in plant tissue, with more located in the outer layers and 

peel (Burda et al., 1990); d) cooking can also affect the content of polyphenols. 

For example, onions and tomatoes lose between 75 to 80% of the quercetin 

after boiling and 30% after micro-waving (Crozier et al., 1997). 

2. There is limited data on non-extractable polyphenols (NEP) in foods. 

Conventional extraction and detection procedures do not account for NEP. As a 

result, the contribution of NEP to the overall polyphenol content of foods is still 

underrepresented in dietary intake data and bioavailability studies (Arranz et 

al., 2010, Perez-Jimenez et al., 2013).  
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3. The dietary assessment methods may be affected by recall error and difficulties 

in estimated portion size (Rimm et al., 1992, Young and Nestle, 1995, 

Hernandez et al., 2006). 

4. Relying on self-reporting of dietary habits can be affected by under-reporting of 

unhealthy foods such as high sugar and fat intake and over-reporting of fruit 

and vegetables. These methods are limited and fail to measure total intake 

accurately (Spencer et al., 2008). 

1.5 Dietary polyphenol intake  

Two thirds of consumed polyphenols are flavonoids (Scalbert and Williamson, 2000). 

However, there is no reference for dietary intake of polyphenols. This is because 

polyphenols, unlike vitamins and minerals, are not essential components in the diet. 

However, given the potential role of flavonoids in disease prevention, it is necessary to 

understand the differences in flavonoids consumption patterns in relation to disease 

incidence. To date, there are a number of descriptive studies that have estimated the flavonoid 

intake in different countries (Table 1-2). 

These studies have demonstrated large variations in flavonoid intake between countries, 

which could be due to two main reasons. The first reason is methodological, as there were 

differences in the analytical methods and flavonoid database used to analyse the flavonoid 

intake. For example, the Folin-Ciocalteu method, which was used by Kuhnau (1976), 

provided the highest amount of flavonoid intake because vitamin C which is present in 

fruit and vegetables in large quantities also reduces the Folin reagent. However, high 

performance liquid chromatography provided the lowest estimate of intake in Denmark, 

the Netherlands, and two other studies from Finland.  This could be an actual 

underestimation because some polyphenols in the food samples may escape detection by 

the chromatography and be considered as unknown compounds (Santos-Buelga and 

Scalbert, 2000). Moreover, the differences in the presence or absence of particular 

polyphenol data in the flavonoid database could introduce a bias when comparing 

flavonoid intake between countries. For example, the oxidation products of catechins, 

thearubigins, are not included in the Phenol-Explorer database, while thearubigins are 

included in the USDA database which could explain the high amount of flavonoids in the 

Australian study (454 mg/day). 
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Secondly, there may be differences in eating habits and culture, which could affect the 

intake of flavonoids. For instance, Mediterranean countries are recognized for their higher 

consumption of fruit, vegetables, legumes, nuts, and olive oil than non-Mediterranean 

countries (Zamora-Ros et al., 2013a).  

On the other hand, the use of a single dietary recall is less likely to reflect an individual’s 

accurate daily consumption than repeated dietary recall. Moreover, the flavonoid intake 

could be higher in all studies than when considering the intake of flavonoids from other 

sources such as spices and herbs. Lastly, data from the USDA Flavonoid & Phenol-

Explorer databases are still lacking in seasonal variations between food as well as the 

processed and cooked foods data, which could overestimate flavonoid intake.  

Many important factors should be considered when estimating the intake of flavonoids. 

According to Chun et al. (2007) the intake of flavonoids can be affected by differences 

between individuals in terms of their gender, age, ethnicity, health, and income level. The 

intake of fruit and vegetables was low in the lower socioeconomic group, which means 

there was a lower amount of essential nutrients, vitamins, minerals, and flavonoids, and in 

turn could be a variation in disease prevalence. Moreover, flavonoid intake tended to be 

lower in the oldest group between 65 to 74 years old (Zamora-Ros et al., 2013a). In 

addition, the US study found that the intake of phenolic acid was lower in black men than 

in white men (130.6 mg/day versus 216.8 mg/day, respectively) due to differences in tea 

intake (Chun et al., 2007). Understanding the effect of these factors could help categorise 

individuals depending on their flavonoid intake in relation to disease incidence and the 

optimum health benefit.  

To date, there are some studies that have looked at the association between the intake of 

flavonoids and disease risk such as cardiovascular disease (McCullough et al., 2012), type 

2 diabetes (Knekt et al., 2002, Wedick et al., 2012), Parkinson’s disease (Gao et al., 2012),  

and colorectal cancer (CRC) (Zamora-Ros et al., 2013b). Therefore, further studies should 

consider the best available dietary and analytical methods for flavonoid intake estimation 

while considering all previous studies’ limitations.  
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Table 1-2: Flavonoid intake (mg/day) reported in various countries. 

 

Country/ 

References 

 

 

Source of data/Subjects (n)  

 

Dietary methods 

 

Analytical methods 

 

Flavonoid intake 
(mg/day) 

 

United States 
Kuhnau (1976)  

 

 

Not available  

 

 Not available 

 

FolinCiocalteau method 

 

               ~1000 

 

Denmark  

Justesen et al. (1997) 

 

 

Danish Household Consumption survey, 

1987. (n= not available) 

 

 Dietary history 

 

High performance liquid chromatography  

 

      26 

 

Netherlands 

Hertog et al. (1993) 

 

Danish Household Consumption survey, 

1987-1988. (n=4112) 

 

 

48-h dietary recall 

 

High performance liquid chromatography 

 

       23 

 

Finland 

Ovaskainen et al. (2008)  

 

 

National dietary surveys in Finland, 2003–

2005. (n=2007) 

 

48-h dietary recall 

 

High performance liquid chromatography  

 

                  33 

 

Finland  

Knekt et al. (2002) 

 

 

The Finnish Mobile Clinic Health 

Examination Survey. 1966–1972. 

(n=10054) 

 

FFQ 

 

High performance liquid chromatography  

  

                  24.2 

 

Australia 
Johannot et al. (2006) 

 

National Nutrition Survey, 1995. 

(n=17326) 

 

 

 

24-h dietary recall 

 

USDA Flavonoid Database  

 

          454 

 

 

 
 

 

 

*Continued overleaf  
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Country/ 

References 

 

 

Source of data/ Subjects (n) 

 

Dietary methods 

 

Analytical methods 

 

Flavonoids intake 

          (mg/day) 

 

United States 
Chun et al. (2007) 

 

National Health and Nutrition 

Examination Survey, 1999-2002. 

(n=8809) 

 

 

 24-h dietary recall 

 

USDA Flavonoid Database 

 

         189.7 

 

Greece  
Dilis and Trichopoulou 

(2010)  

 

European Prospective Investigation into 

Cancer and Nutrition (EPIC) study, 1994-

1999. (n=28575) 

 

 FFQ 

 

USDA Flavonoid Database 

           

         92 

 

Spain  

Zamora-Ros et al. (2010) 

 

European Prospective Investigation into 

Cancer and Nutrition (EPIC) study, 1992-

1996. (n=40683) 

 

 

Diet history questionnaire 

 

USDA Flavonoid Database 

 

         313.3 

 

Mediterranean /non-

Mediterranean countries 

Zamora-Ros et al. (2013a) 

 

 

European Prospective Investigation into 

Cancer and Nutrition (EPIC) study, 1992-

2000  

(n=35628) 

 

 

 24-h dietary recall  

software (EPIC-Soft) 

 

USDA Flavonoid & Phenol-Explorer 

databases 

 Mediterranean     

 Countries =  370.2 

  Non-Mediterranean     

 country= 373.7 
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1.6 Biomarkers of dietary polyphenol intake 

A nutrition biomarker can be defined as a recent or long term indicator of nutritional status, 

dietary intake, or an index of nutrient metabolism (Potischman and Freudenheim, 2003). 

Biological biomarkers such as measurements in blood and urine are essential for estimating 

an accurate intake of dietary polyphenols (Spencer et al., 2008). There are several 

techniques to measure polyphenol metabolites in biological samples varying from the 

simple photometric to the advanced chromatography techniques which have been used as a 

biomarker measurement to quantify the intake of polyphenols (Robbins, 2003, van Dorsten 

et al., 2010, Combet et al., 2011, Stalmach et al., 2011). 

1.6.1 Simple colorimetric-based methods 

The most common colorimetric method used to measure the total amount of phenolic 

compounds is the Folin–Ciocalteu assay, which has been used for many years to quantify 

phenolic compounds in plant and biological samples (Roura et al., 2006, Cicco et al., 

2009). Medina-Remón et al. (2009) reported that the Folin–Ciocalteu assay is fast, 

environmentally friendly, and cheaper and simpler than other methods allowing 

measurement of a large number of samples. This assay has been validated in different 

study types such as prospective, randomized, crossover trials, clinical trials, and cross-

sectional studies. In these studies, the total phenols in urine were correlated with the intake 

of polyphenols; however, this assay is not specific to phenolic compounds and other 

substances such as aromatic amines, sulphur dioxide, ascorbic acid, organic acids, Fe (II), 

and non-phenolic substances can interfere with the reading (Roura et al., 2006, Medina-

Remon et al., 2009). The Folin-Ciocalteu method will also detect urinary (momo)-phenols 

(phenol, cresol, anisole) which are not all derived from polyphenols, being fermentation 

products of aromatic acids. Medina-Remón et al. (2009) showed that solid phase extraction 

(SPE), as a cleaning-up procedure, can improve the assay by increasing the recovery of 

larger numbers of polyphenols from the samples; however, using SPE does not make the 

Folin-Ciocalteu assay more specific for urinary phenols.   

Besides quantifying phenolic compounds, some studies also measure the antioxidant power 

of the polyphenolic compounds in plant and biological samples using different types of 

assay. The ferric reducing ability of plasma (FRAP) assay is the most common because it 

is inexpensive, simple, and highly reproducible and offers an antioxidant index of 

biological fluids using technological devices that can be used in every laboratory (Benzie 
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and Strain, 1996, Pulido et al., 2000). However, the FRAP assay was developed based on 

the theory that the redox reactions proceed quickly and are completed within four to six 

minutes. In the case of phenolic compounds, this could be a limitation as the absorbance of 

certain polyphenols such as caffeic acid, tannic acid, ferulic acid, and quercetin, gradually 

increase over several hours (Pulido et al., 2000). Moreover, this assay is not specific to 

phenolic compounds as it can measure other antioxidant compounds such as vitamin C, 

vitamin E, uric acid, bilirubin, and α-tocopherol (Benzie and Strain, 1996). 

1.6.2 Advanced chromatography-based methods 

The simple quantitative colorimetric method is challenging due to 1) the influence of the 

non-phenolic components in biological or food extracts which can behave as reducing 

agents, and 2) the need to identify individual phenolic compounds which is not possible 

using the colorimetric method. In the last twenty years, chromatography techniques such as 

HPLC, liquid chromatography–mass spectrometry (LC-MS), and gas chromatography 

mass spectrometry (GC-MS) have been used to measure phenolic compounds and their 

metabolites in plant and animal samples (Robbins, 2003, Miniati, 2007). GC-MS has 

become the best identification tool to overcome the low volatility of these compounds 

especially phenolic acids using derivatization techniques (Robbins, 2003).  

In this thesis, both simple and advanced techniques were used to measure phenolic 

compounds. Moreover, urine samples were used to measure the metabolites of polyphenols 

due to several reasons: 1) the short half-life of polyphenol metabolites in plasma, 2) lack of 

interferer molecules such as protein which is present in plasma, 3) the ability to detect very 

low quantities, and 4) greater availability to measure the outcome of diet over a longer time 

period (Miniati, 2007, Spencer et al., 2008).  

 

1.7 Dietary polyphenol metabolism and absorption 

A high intake of flavonols has been associated with a wide range of health benefits, in 

particular, the possibility of reducing the risk of CRC (Jin et al., 2012a, Woo and Kim, 

2013b). However, large inter-individual variation in polyphenol metabolism and 

bioavailability in terms of flavonoid metabolites, phenolic acids, detected in plasma, urine, 

and faecal fluids have been reported previously (Manach et al., 1998, Graefe and Veit, 

1999, Moon et al., 2000, Graefe et al., 2001, Rechner et al., 2002a, Olthof et al., 2003, 

Jaganath et al., 2006, Jaganath et al., 2009, Roowi et al., 2010). None of these studies 
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investigated the reasons behind these variations. However, these variations could be due to 

different factors such as differences in gut microbiota, dietary habits, and/or food matrix 

interactions (Manach et al., 2005, Kemperman et al., 2010, Bolca et al., 2013) which are 

further dependent on ethnicity, age and colonic health.  Because these factors could be the 

reasons behind the variations in polyphenol metabolism, bioavailability, and biological 

properties, and because the incidence of chronic disease, in particular CRC, is different 

between countries and increases with age, this raises the importance of studying the factors 

that can affect the metabolism of polyphenols. 

Figure 1-3 show the fate of dietary polyphenolic compounds after oral consumption 

(Scalbert and Williamson, 2000). Most flavonoids found in food are not in free form. They 

are in the form of glycosides, esters, or polymers which cannot be absorbed directly 

(Manach et al., 2004). When flavonoid compounds are consumed they are released from 

the matrix after mastication and interaction with saliva, which contains α-amylase for 

starch digestion in the mouth. Some of the flavonoids become deglycosylated in the mouth 

by oral epithelial cells or the microbiota (Walle et al., 2005). Dietary polyphenols then 

pass to the stomach where the process of reducing the size of the food increases the release 

of the phenolic compounds from the matrix (Scalbert and Williamson, 2000, Manach et al., 

2005, Thilakarathna and Rupasinghe, 2013).  
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Figure 1-3: Proposed routes of polyphenols in humans (Adapted from Scalbert and Williamson 2000). 

 

 

Polyphenols that reach the small intestine have two possible pathways of metabolism 

(Figure 1-4): First, polyphenols may form aglycones after being hydrolyzed by endogenous 

luminal lactase phlorizin hydrolase (LPH) before being absorbed by the intestinal mucosal 

brush border membrane (Hollman et al., 1997, Day et al., 2000). Aglycones can then enter 

the intestinal epithelial cell passively where they could be conjugated or cross the intestinal 

membrane to the portal circulation and then to the liver (Day et al., 2000, Scalbert and 

Williamson, 2000). The second pathway of absorption may occur when the polyphenols 

are absorbed directly by the sodium-glucose-co-transporter (SGLT). Then, in the intestinal 

epithelial cell, the intact glucoside could cross the membrane directly into the portal 

circulation or be hydrolysed by cytosolic β-glucosidase (CBG) to form the aglycone. These 

two hydrolyses pathways of glucoside conjugates are recognized as “LPH/diffusion” and 

“transport /CBG”. The released aglycones will undergo sulfation, glucuronidation and/or 

methylation by sulfotransferases (SULT), uridine-5'-diphospho-

glucuronosyltransferase (UGT) and catechol-O-methyltransferases (COMT). The 

metabolites of these two pathways are absorbed into the portal vein of the blood stream 
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and then rapidly reach the liver for phase II metabolism. The enterohepatic recirculation 

may be excreted into the bile back to the small intestine (Scalbert and Williamson, 2000). 

Figure 1-4: Proposed mechanisms of dietary polyphenol metabolism in the lumen and enterocytes of 

the digestive tract (Adapted from  Nemeth  et al. (2003)). 

 

Abbreviations: SGLT, sodium-glucose-co-transporter; LPH, lactate phlorizin hydrolase; CBG, cytosolic β-

glucosidase; UDP-GT, uridine-5´-diphosphate glucuronosyltransferase; COMT, catechol-O-

methyltransferase; SULT, sulfotransferase 

 

Most of the glycoside phenolic compounds that are resistant to acid hydrolysis in the 

stomach, and not absorbed in the small intestine or are still bound to the food matrix pass 

to the colon (Manach et al., 2004). In the colon, phenolic compounds will be exposed to 

the large diverse anaerobic microbial population. These compounds are deconjugated by 

the colonic microbial enzymes (α-rhamnosidase, β-glucosidase, and β-glucuronidase) 

resulting in aglycone and phenolic acid formation (Bokkenheuser et al., 1987, Aura, 2008). 

For example, rutin is not absorbed in the upper intestinal tract (Bokkenheuser et al., 1987). 

The gut absorption of rhamnosides requires deglycosylation by colonic microbiota as 

suggested by their delayed absorption compared with glycosides.  

Once the absorbed metabolites from the stomach, small intestine, and colon enter the 

circulatory system, they are transported to the liver via the portal vein. In the liver, 

phenolics can be conjugated (hepatic metabolites) to form methylated, sulphated and 

glucuronide metabolites during phase II metabolism (Scalbert and Williamson, 2000, 

Rechner et al., 2001, Rechner et al., 2002b, Zhao et al., 2004). Circulating phenolics and 

Intestinal 

lumen

Polyphenols

(glycosides)

Colon 

(microbial metabolism)

Polyphenols

(glycosides)

LPH

Aglycon + sugar

SGLT-1

Intestinal 

epithelial cell

Portal circulation 

Liver

Systemic circulation

CGB Aglycone

Conjugates 
Metabolising enzymes 

COMT-SULT

UDP-GTG



 

 

17 
 

conjugated derivatives are extensively bound to albumin (Dangles et al., 2001, Khan et al., 

2011). In the end, phenolic metabolites can be transported and distributed around the body 

tissues or excreted via urine as hepatic sulphate and glucuronide conjugates (Manach et al., 

2004, Crozier et al., 2010) 

1.7.1 Factors affecting polyphenol metabolism and absorption 

The absorption and metabolism of polyphenols is influenced by several factors: 1) the 

structure of polyphenols such as molecular weight, glycosylation, and esterification 

(Hollman et al., 1999, Olthof et al., 2001, Shoji et al., 2006); 2) the food matrix (Mullen et 

al., 2008, Roowi et al., 2009, Egert et al., 2012); 3) changes in gut microbiota as a result of 

dietary habits, ageing, stress, or diseases (Gavini et al., 2001, Baker et al., 2009, Tiihonen 

et al., 2010, Chen et al., 2012, Flint, 2012).  

1.7.1.1 Polyphenol structure 

A high molecular weight (MW) can greatly affect the metabolism of polyphenols. For 

example, the larger molecular weight of the polymeric proanthocyanidins (MW< 578) 

makes it impossible to be absorbed in the small intestine. In the colon, the 

proanthocyanidins are catabolised by the gut microbiota and result in smaller molecules 

that can be absorbed in the circulation system (Donovan et al., 2002). Shoji et al. (2006) 

reported that the colonic microbial metabolites of apple proanthocyanidins took one hour 

longer to peak in the plasma than the small molecular weight of flavan-3-ols. In addition 

the high molecular weight of tea theaflavins (MW568) may explain their low recovery in 

urine (Donovan et al., 2002). 

Glycosylation of most polyphenols in plants influences their absorption and thus their 

biological properties. In the case of flavonols, the associated sugar has an influence on the 

absorption. For example, quercetin glucosides from onions are absorbed five times more 

than quercetin-3-rutinoside (Hollman et al., 1999). This is due to the enzymes in the small 

intestine, LPH and/or CβG, not being able to hydrolyse the rutinoside sugar. For that, 

rhamnoside is required which is provided later by the gut microbiota. In ileostomized 

volunteers, half of the quercetin glucosides in onions were absorbed in the small intestine, 

while the absorption of a rhamnoglucoside of quercetin was one half to one third that of 

quercetin glucoside (Hollman et al., 1995). The maximum concentration of quercetin-3-

rutinoside in the plasma was reached after nine hours of ingestion (Hollman et al., 1997) 

suggesting colonic absorption. 
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Esterification can also influence intestinal absorption. For instance, in human urine the 

recovery of galloylated catechins after consumption of black tea was approximately 10-

fold lower than the non-galloylated catechins (Warden et al., 2001). Moreover, caffeic acid 

(95%) is better absorbed in the small intestine than its ester with quinic acid, and 

chlorogenic acid (33%) (Olthof et al., 2001). 

1.7.1.2 Food matrix 

There are only a few studies on the influence of the food matrix, such as in dairy products 

and carbohydrates, on the absorption and excretion of polyphenols. Mullen et al. (2008) 

tested the effect of double cream on the bioavailability of pelargonidin-3-O-glucoside from 

strawberries in humans. Pelargonidin-O-glucuronide appeared rapidly in the blood and 

reached a maximum concentration of 274± 24 nmol/L after 1.1± 0.4 hours; however, when 

the strawberries were consumed with 100 ml of double cream the concentration was 

delayed by more than one hour. This could be due to the fat content in the cream (48%), 

which stimulated duodenal and ileal fat receptors and inhibited gastric emptying and 

slowed mouth to cecum transit time (Mullen et al., 2008). The same group investigated the 

effect of yoghurt on urinary phenolic acid excretion derived from the colonic metabolism 

of flavanones after ingestion of orange juice. Yoghurt had an effect on the metabolism of 

orange juice. The excretion of phenolic acid in urine decreased after the consumption of 

the orange juice with yogurt from 62± 18 µmol to 9.3± 4.4 µmol. This might be due to 

bulk slowing of the meal to the colon (Roowi et al., 2009). Moreover, Rodriguez-Mateose 

et al.(2012) reported that the intake of cocoa flavanols containing maltitol rather than 

sucrose significantly lowered total flavonol absorption and lowered peak metabolite 

concentration in the plasma. The study suggested that carbohydrates of the food matrix are 

important in determining the absorption of flavonol in the small intestine. Another study by 

Egert et al. (2012) examined the absorption of 130 mg of quercetin either from quercetin 

enriched cereal bars or quercetin capsules. The data showed that isorhamnetin (3'-O-

methyl quercetin) and tamarixetin (4'-O-methyl quercetin) from the enriched cereal bars 

were five times higher in the plasma compared to the capsules after ingestion. 

1.7.1.3 The role of colonic microbiota and its modulation by dietary habits, ethnicity 

and ageing 

The human gut microbiota is a diverse and complex community and plays a fundamental 

role in human health in general and in colonic health. The gut microbiota of healthy people 

is thought to confer a number of health benefits such as pathogen protection, nutrition, 
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metabolism and immunity (Guinane and Cotter, 2013). Recently, it has been estimated that 

there are between 500-1000 different microbial species in the gastrointestinal tract with up 

to 10
12

 cells per gram in the colon (Qin et al., 2010, Huttenhower et al., 2012). The most 

common bacteria in the colon are Bacteroides, Clostridium, fusobacterium, Eubacterium, 

Ruminococcus, Peptococcus, Peptostreptococcus, and Bifidobacterium (Manson et al., 

2008). 

Interaction between gut microbiota and dietary polyphenols was reported to affect the 

metabolism of dietary polyphenols, in particular flavonoids which are known to reach the 

colon (Winter et al., 1989, Winter et al., 1991, Manach et al., 2004). So far, only a few 

species of gut microbiota responsible for metabolism of polyphenols have been identified. 

For example, Butyrivibrio spp. was reported to be able to cleave the C ring of rutin and 

quercitrin but not the C ring quercetin (Krishnam et al., 1970, Krishnam.Hg et al., 1970). 

However, quercetin is cleaved by Eubacterium oxidoreducens (Krumholz and Bryant, 

1986). Flavonifracror plautii was reported to convert quercetin and taxifolin to 3,4-

dihydroxyphenylacetic acid; luteolin and eriodictyol to 3-(3,4-dihydroxyphenyl) propionic 

acid; and apigenin, naringenin, and phloretin to 3-(4-hydroxyphenyl) propionic acid 

(Schneider et al., 1999, Schneider and Blaut, 2000, Schoefer et al., 2003). Eubacterium 

ramulus was reported to convert quercetin to 3,4-dihydroxyphenylacetic acid and luteolin 

to 3-(3,4-dihydroxyphenyl) propionic acid (Braune et al., 2001); and  Naringenin to 3-(4-

hydroxyphenyl) propionic acid (Herles et al., 2004). 

Microbial metabolism of polyphenols plays an important role in health (anti-oxidant, anti-

inflammatory, anti-microbial, anti-cancer) as the majority of polyphenols undergo 

microbial enzymes in the colon (Selma et al., 2009). However, gut microbiota could be 

influenced by different factors such as dietary habits, ethnicity, ageing, as well as colonic 

diseases.  

1.7.1.3.1 Dietary habits  

Dietary habits, including the change in the amount and balance of the three main dietary 

macronutrients (carbohydrates, proteins and fats), are known to alter gut microbiota 

composition and the microbial enzymatic activities, which could impact the host's 

metabolic phenotype (Scott et al., 2013). For example, the faecal microbiota of European 

adults is more similar to adults living in the USA than to adults from South America or 

Malawi. This may be because Europeans and Americans are high consumers of a protein-
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rich diet, while people from South America and Malawi are high consumers of plant 

derived polysaccharides (Yatsunenko et al., 2012). 

The impact of diet on gut microbiota composition could be for several reasons: first, the 

metabolism of carbohydrates produces short-chain fatty acids (SCFA) (acetate, propionate 

and butyrate). These acids tend to decrease the colonic pH, which has a selective effect in 

the growth of bacteria species (Duncan et al., 2009). Low colonic pH inhibits the 

Bacteroids spp. and increases the butyrate-producing Gram-positive bacteria (Duncan et 

al., 2009, Etxeberria et al., 2013).  

Second, the change in gut microbiota depends on the source of carbohydrates in the diet. 

Different bacterial species have different abilities to utilise different substrates. When 

resistant starch, bran, and mucin were fermented, Bifidobacterium adolescentis was the 

strain that could only be recovered on starch, Bifidobacterium bifidumonly on mucin, 

while Bifidobacterium breve was recovered on both starch and mucin. Eubacterum 

rectale and Bifidobacterium longum were the only bacteria found on all three substrates. 

This study provides a good picture of particular roles that specific gut bacteria occupy 

(Leitch et al., 2007). 

Third, consuming a diet low in dietary fibre; for example adults in the UK are routinely not 

meeting the recommendation of 18 g of fibre per day, with men consuming an average of 

15.2 g of fibre per day and women 12.6 g per day, which may increase the overall transit 

time. This increase in transit time may, in turn, change the gut microbiota (Buttriss and 

Stokes, 2008). 

Fourth, high fat intake could cause changes in intestinal microbiota diversity and 

composition. Daniel et al. (2014) reported changes in gut microbiota composition in mice 

after a high fat intake for 12 weeks. Ruminococcaceae was decreased, which could be due 

to low plant polysaccharides intake; however, Rikenellaceae which has been recently 

linked with type-2 diabetes in humans (Qin et al., 2012). 

Lastly, high protein/low fibre intake could cause a decrease in the production of SCFA in 

particular butyrate and an increase in the concentration of the branched fatty acids, 

ammonia, and phenols. This will change the colonic bacterial activity from the 

saccharolytic to putrefactive metabolism and in turn affect the gut microbiota 

(Woodmansey, 2007).  
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Understanding how dietary habits affect gut microbiota should be highlighted as it can 

result in variations in microbial metabolites and in turn differences in the incidence of 

diseases associated with an imbalance in the normal gut microbiota.  

1.7.1.3.2 Ethnicity  

“Ethnicity refers to the social group that a person belongs to, and either identified with or 

is identified by others, as a result of a mix of cultural and other factors including language, 

diet, religion, ancestry and physical features traditionally associated with race” (Bhopal, 

2004). The influence of ethnicity, from the perspective of genetics, environment and the 

relationship between culture and diet, could have an effect on gut microbiota and in turn on 

polyphenol colonic metabolism and optimum health.  

Several ethnic and geographic-based studies have previously compared gut microbiota 

between rural African and European children (De Filippo et al., 2010, Yatsunenko et al., 

2012); among four countries: France, Germany, Italy, and Sweden (Mueller et al., 2006); 

among Americans, Malawians, and Amerindians (Yatsunenko et al., 2012); and between 

Belgian and Japanese adults (Ishikawa et al., 2013). These studies suggested that host 

ethnic origins (genetic), cultural traditions, lifestyle, and disease prevalence could 

contribute to the differences in gut microbiota between different ethnic groups.   

The gut microbiota is more similar between twins and mother-daughter pairs compared to 

unrelated individuals (Dicksved et al., 2008). However, considering the information of the 

previous section about how diet can alert the gut microbiota, it is likely that genetics has 

little effect on the composition of gut microbiota. The best way to distinguish between the 

effect of ethnicity and dietary habits on gut microbiota is to conduct observational studies 

of immigrants (e.g. Asian nationals living in the US or Europe). This type of study will 

provide a good understanding of whether effect of ethnicity on the colonic metabolism 

could be modulated through changing the dietary habits.  

1.7.1.3.3 Ageing  

Gavini et al. (2001) reported a decline in some of the ‘beneficial’ bacteria, such as 

Bifidobacterium, and an increase in the ‘harmful’ bacteria, such as Enterobacteriaceae and 

Clostridium perfringens in ageing volunteers (69-89 years old). This change could be due 

to different reasons: 1) a reduction in gut motility associated with ageing, leading to longer 

transit times (Madsen and Graff, 2004);  2) ageing-associated disease such as irritable 

bowel syndrome, diverticulosis, and colon cancers which are linked with changing in gut 
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microbiota (MADSEN, 1992, Madsen, 1992, Camilleri et al., 2000, Firth and Prather, 

2002); 3) reduced chewing strength, leading to different food choice and lower fibre intake 

(Brodeur et al., 1993);  4) reduced physical activity, known to affect frequency of bowel 

movements (Wijhuizen et al., 2007), which in turn may affect the composition / diversity 

of the microbiota. All of these changes can affect the dietary intake and alter nutrients 

metabolism, leading to an altered range of food consumed, which in turn can affect the 

growth and composition of gut microbiota (O'Toole and Claesson, 2010). 

As the majority of polyphenols are metabolised by bacteria enzymes in the colon, this 

suggests the influence of ageing on the colonic metabolism of dietary polyphenols. No 

study has looked at the effect of ageing on the bacterial metabolism of polyphenols which 

raises the need to carry out such a study. 

1.7.1.3.4 Summary  

Not all dietary polyphenols are absorbed in the upper gastrointestinal tract; about 90-95% 

of them are not absorbed in the small intestine (Clifford, 2004). Dietary polyphenols in the 

form of esters, glycosides, or polymers reach the colon and are metabolised by colonic 

microflora (Aura, 2008). However, as noted above, there are several factors that could 

influence gut microbiota composition, which could explain the variability between 

individuals in bioavailability and colonic metabolism in polyphenol studies (Graefe and 

Veit, 1999, Rechner et al., 2002a, Olthof et al., 2003, Jaganath et al., 2006, Gardana et al., 

2009, Jaganath et al., 2009, Roowi et al., 2010).  

These factors are likely to be key contributors to the inter-individual variation seen in 

polyphenol metabolism. These variations are important to consider as they could impact on 

the implication of polyphenol intervention. However, due to the inaccessibility of the 

proximal colon where most of the polyphenols are fermented, it is not possible to study the 

colonic metabolism of polyphenols in a human feeding study without the use of complex 

and expensive labeling techniques. Therefore, it is necessary to carry out in-vitro faecal 

fermentations to test the effect of these factors on the colonic metabolism of dietary 

polyphenols.  

1.7.2 In-vitro models to study the colonic catabolism of polyphenols 

There are several in-vitro strategies that have been used to study the colonic metabolism of 

several phenolic compounds. The current available in-vitro models vary from the basic 
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faecal incubation, continuous culture system, and computerised controlled system to the 

multi-chamber system (Etxeberria et al., 2013).  The source of bacteria in these models is 

usually a pure bacteria strain, ileostomy fluid, or freshly voided human or animal faeces 

cultured in a suitable medium with substrate (Williamson and Clifford, 2010). The 

monitored parameters are different according to the aim of each in-vitro research. These 

parameters include examining the substrate disappearance, catabolite formation, or 

alteration in the flora in batch (static) system (Edwards et al., 1996, Gonthier et al., 2006) 

or semi-continuous and continuous system (dynamic) (Minekus et al., 1999, Gao et al., 

2006, Gonthier et al., 2006). None of these models reflect the natural condition in the 

human colon for several reasons:  

1- Alteration of faecal microbiota during the sample collection process and hence may 

not reflect the actual gut microbiota. 

2- The build-up of the degradation products (inhibitors) in the incubation vessel are 

not necessarily representative of the conditions that occur in the colon. These 

inhibitors are normally reduced by colonic absorption. 

3- The concentration of any metabolite is dependent on the catabolism and absorption 

rate which is not the case in the in-vitro incubation.  

4- The effect of the stationary and death phase over a short period of 24 – 48 h in 

batch culture system due to the depletion of nutrients, low pH, and/or the formation 

of an inhibitory product such as an organic acid (Jaganath et al., 2009, Williamson 

and Clifford, 2010, Etxeberria et al., 2013). 

Nonetheless, the use of in-vitro models can provide useful information on the types of 

metabolite products, pathways, and the factors that could influence flavonoid degradation 

such as food matrix, gut microbiota, or molecular structure. Several studies have 

investigated the in-vitro metabolism of flavonoids using human faecal samples. For 

example, Jaganath et al. (2009) investigated the microbial metabolism of rutin using in-

vitro faecal fermentation in the presence and absence of glucose in three subjects. The 

degradation of rutin and the release of quercetin were faster in the presence of glucose in 

the cultures and slower in the absence of glucose in all three donors. This suggests that 

fermentable fibre could speed up the colonic metabolism of polyphenols and in turn 

quicken the appearance of microbial metabolites. Moreover, the ability of the faecal 
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sample from one subject to deglycoside rutin in the absence of glucose was low compared 

to the other two subjects and led to 48% of rutin remaining in the fermentation vessel after 

48 hours of fermentation. This suggests that a difference in gut microbiota could affect the 

polyphenol metabolism resulting in variations between individuals, as well as the 

establishing the importance of adding a source of glucose to the in-vitro fermentation in 

mimicking the in vivo condition. 

Additionally, Nordlund et al. (2012) suggest that the food matrix could greatly influence 

the colonic fermentation of polyphenols. The study compares rye bran and aleurone, wheat 

bran and aleurone, and oat bran and oat cell wall concentrate in their in vitro faecal 

fermentation and the production of phenolic acids and SCFA, preceded by in vitro 

enzymatic digestion. The digested rye, wheat, and oat bran fermented more easily than the 

bran because of their higher water-extractable dietary fibre content and smaller particle 

sizes. However, wheat bran was the slowest to ferment among grains due to the high 

proportion of water-unextractable dietary fibre and led to the lowest SCFA production.   

The effect of the molecular structure of polyphenols on their colonic metabolism was 

investigated by Bazzocco et al. (2008). Their study showed that Marie Menard apples and 

cider proanthocyanidins, with an average polymerization of 8.2 and 2.2 respectively, 

degraded faster and yielded more metabolites compared to Averolles apples with an 

average polymerization of 71.2. Moreover, Justesen et al. (2000) reported on the influence 

of flavonoid structure on the degradation of glycosides polyphenols (rutin, naringin, and 

hesperidin). The major disappearance of rutin was between 8 and 24 h with no 

accumulated quercetin after the fermentation, while naringin, and hesperidin were nearly 

degraded after 24 h of the fermentation with the appearance of naringenin and hesperetin. 

These findings suggest that glycosides polyphenols are not likely to have the same 

degradation rate or the same end microbial metabolite products in the colon, which may 

exhibit different biological activity and different potential health effects on the gut. 

1.8 Dietary polyphenols and gut health 

The absorption of polyphenolic compounds is very low in the stomach and small intestine, 

and the majority of these compounds pass intact to the colon where they are metabolised 

by the gut microflora, resulting in smaller microbial metabolites and phenolic acid 

(Clifford, 2004, Manach et al., 2004). The majority of in-vitro, animal, and human studies 

have reported the prebiotics effect of the microbial metabolites of polyphenols (Sembries 
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et al., 2003, Sembries et al., 2006, Tzounis et al., 2008, Molan et al., 2009, Tzounis et al., 

2011, Jose Pozuelo et al., 2012), while other studies reported the antimicrobial properties 

of polyphenol metabolites (Ahn et al., 1990, Ishihara et al., 2001, Massot-Cladera et al., 

2012, Kemperman et al., 2013). However, the variation in daily polyphenols consumption 

between individuals and the variation in gut microbiota could lead to differences in the 

biological activities of polyphenols metabolites among individuals and differences in the 

ultimate health benefits. 

There are a limited number of human feeding studies (Table 1-3) investigating the effect of 

polyphenols on the gut microbiota. For example, a study of the intake of a high-cocoa 

flavonol drink (494 mg) for four weeks significantly increased the Lactobacillus spp. and 

Bifidobacterium while decreasing the Clostridium histolyticum group (a group that 

includes pathogen Clostridium perfringens) in health subjects when compared to the low-

cocoa flavonol drink (Tzounis et al., 2011).  

Moreover, the intake of tea (0.4g/volunteer) three times a day for four weeks increased 

Bifidobacterium spp. by 16%, whereas there was a significant decrease in Clostridium 

perfringens by 26% and in Clostridium spp by 13% (Okubo et al., 1992). Likewise, the 

intake of one litre of green tea per day showed a significant increase in Bifidobacterium 

spp. in healthy subject after 10 days of the intake (Jin et al., 2012b). 

The intake of proanthocyanidin-rich extracts from grape seeds (0.19 g/day) for two weeks 

significantly increased Bifidobacterium (Yamakoshi et al., 2001). Furthermore, a wild 

blueberry-based drink significantly increased Bifidobacterium spp. and 

Lactobacillus acidophilus after six weeks of intake (Vendrame et al., 2011). Another 

human feeding study reported that the intake of rutin or quercetin (pure or from 

buckwheat) for seven days increased the growth of Eubacterium ramulus from 0.2% to 

6.9% of the total flora (Simmering et al., 2002). 
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Some of the studies in Table 1-3 followed a crossover study design, which reduces the 

variation between individuals; however, the carryover treatment effect could influence the 

results. Because of this, the inclusion of a washout period between treatments is very 

important. Overall, these results provided promising evidence that the intake of 

polyphenols can have an effect on modulating the gut microbiota by improving the growth 

of beneficial bacteria such as Lactobacillus spp. and Bifidobacterium and inhibiting the 

growth of pathogenic bacteria such as Clostridium histolyticum and Clostridium 

perfringens.  

The high amounts of flavonoids and their microbial metabolites in the colon may have a 

direct influence on the gut mucosa and protect against carcinogenic activity by inhibiting 

cell growth, proliferation, angiogenesis, and/or metastasis; as well as anti-inflammatory 

and/or antioxidant effects (Parkar et al., 2008, Araujo et al., 2011, Cardona et al., 2013, 

Parkar et al., 2013). More studies are needed using the most available accurate methods for 

gut microbiota analysis to investigate: 1) the effect of each phenolic compound on different 

gut microbiota growth; and 2) the effect of gut microbiota diversity and the two-way 

phenolic-microbiota interaction on colonic disease. 

Studies on the relationship between microbial metabolism of dietary polyphenols and 

modulation of the gut microbiota have used different methods to identify and quantify 

bacteria extracted from faeces and in-vitro fermentation. These techniques vary from basic 

cultures and enumeration to microbiome shotgun sequencing (each of these methods has 

some advantages and disadvantages; Table 1-4). About 60 - 80 % of the bacteria are 

reported to be uncultureable using the culture method; therefore, the use of the modern 

methods such as qPCR and microbiome shotgun sequencing will give a better view of the 

representative bacteria in the gut (Selma et al., 2009, Etxeberria et al., 2013).  However, 

the recent molecular methods are expensive and thus investigators should carefully 

consider the most appropriate method that will help to achieve the study’s aim.   
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Table 1-3: Human intervention studies on the effect of polyphenols on the composition of gut microbiota. 

Reference Food/polyphenol 

extracts 

Dose Subjects Duration Methods Anti-microbial effect Prebiotic effect Comment 

 

Tzounis et 

al. (2011)   

 

Cocoa flavanols 

(crossover) 

 

 

High-cocoa flavanol 

group 

 (494 mg cocoa 

flavanols/d)  

 

 

12 men  

10  women 

 

4 weeks 

 

FISH 

 
Clostridia histolyticum 

 
Bifidobacterial 

Lactobacilli 

 

↓ plasma 

triacylglycerol 

(p<0.05) 

↓C-reactive 

protein 

concentrations 

(p<0.05) 

 

 

Okubo et al. 
(1992) 

 

 

Tea polyphenols 

 

0.4g/3 times daily 

 

 

 

4 men 

4 women 

 

4 weeks 

 

Bacterial 

cell count 

 

Clostridium perfringens 
Clostridium spp. 

 

Bifidobacterium 
spp. 

 

↓ faecal pH 

from 6.2 to 5.8  

No effect on 

faecal enzyme 

activities or 

ammonia. 

 

Jin et al. 

(2012)    

 

Green tea 

 

1000 ml/day 

 

4 men 

6 women 

 

10 days 

 

qPCR 

  

Bifidobacterium 

spp. 

 

 

*Continued overleaf  
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Reference Food/polyphenol 

extracts 

Dose Subjects Duration Methods Anti-microbial effect Prebiotic effect Comment 

 

Yamakoshi 

et al. (2001)   

 

Proanthocyanidin-

rich extracts from 

grape seeds  

 

0.5 g/day of 

38.5% proanthocy

anidin-rich extract 

(0.19 g/day) 

 

 

5 men 

19 women 

 

2 weeks 

 

Bacterial cell 

count 

 

Enterobacteriaceae 

 

Bifidobacterium  

 

↓ faecal 

ammonia 

(25.6%) ,  

↓ faecal pH (6.6 

to 6.4) 

 

Vendrame et 

al. (2011) 

 

 

Wild blueberries 

(crossover) 

 

25g/day 

 

20 men 

 

6 weeks 

 

RT-PCR 

  
Total eubacteria 

Bifidobacterium 

spp. 

 

No differences in 

Bacteroides spp., 

Prevotella spp., 

Enterococcus 

spp., and 

Clostridium 

coccoides 

 

Simmering 

et al. (2002)   

 

Flavonoids 

(crossover) 

 

Quercetin (14 

mg/kg body mass) 

Rutin (28 mg/kg 

body mass pure or 

buckwheat leaves) 

 

9 men 

19 women 

 

7 days 

 

FISH 

  

Eubacterium 

ramulus 

 

↑ 0.2% (on day 

1) to 6.9% of the 

total flora on day 

8 
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Table 1-4: Methods used to characterize the gut microbiota (Fraher et al., 2012). 

Method Description Advantages Disadvantages 

 

 

Bacterial Culture 

and enumeration 

 

Bacteria grown on selective 

mediums 

 

Inexpensive 

Widely available 

Easy to use 

 

Slow 

Time consuming  

labour intensive 

Not all bacteria are 

culturable 

 

 

DGGE/TGGE 

 

Gel separation of DNA 

strands using denaturant/ 

Temperature 

 

 

Difference in 

bacterial populations 

can be detected.  

Bands can be 

excised for 

additional analysis. 

 

 

No identification. 

Bands need to be cut 

and sequenced. 

Semi-quantitative  

 

FISH 

 

Fluorescently labelled 

oligonucleotide probes 

designed to hybridize  

with specific species 

 

Bacterial 

identification  

 

 

Detection dependent on 

probe sequences and 

not able to identify 

unknown species 

Semi-quantitative 

 

 

qPCR 

 

Detection of individual 

species or genus using 

specific primers 

 

Fast identification 

and quantitative  

 

Can detect small 

number of bacteria 

 

 

Unable to identify 

unknown  species 

 

 

Microbiome 

shotgun  

sequencing 

 

Enormous comparable 

sequencing of the whole 

genome  

 

 

Identification 

Quantitative 

 

 Expensive 

 Labour intensive 

 

 

Abbreviations: DGGE, denaturing gradient gel electrophoresis; TGGE, temperature gradient gel electrophoresis; 

FISH, fluorescence in situ hybridization; qPCR, quantitative PCR. 
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1.9 Dietary polyphenols and colorectal cancer 

CRC is a major cause of morbidity and mortality worldwide (WHO, 2002). It is the third most 

common cancer throughout the world, and the fourth most common cause of death 

(WCRF/AICR, 2007). The aetiology of CRC is still unclear although genetic and 

environmental factors are associated with an increased risk of disease. The primary risk factor 

for CRC is age. The majority of people who are diagnosed with CRC are older than 50 years 

(Haggar and Boushey, 2009, Parkin et al., 2009).  Moreover, people who had a polypectomy 

to remove colon polyps (adenomas, serrated polyps, or hyperplasic polyps) are also at high 

risk of recurrence (Hoensch et al., 2008). Environmental factors such as diet, obesity, alcohol 

consumption, smoking, and low physical activity levels strongly contribute to an increased 

risk of CRC (Haggar and Boushey, 2009). Non-dietary factors such as a sedentary occupation 

and an urban lifestyle also increase the risk of CRC (Benito et al., 1993).  It has been shown 

that a diet rich in dietary polyphenols can reduce the risk of chronic disease including CRC 

(Bobe et al., 2008, MacDonald and Wagner, 2012). For these reasons, the interest in dietary 

polyphenols has increased among consumers, researchers and food manufacturers during the 

past decade.   

The biological effects of polyphenols may contribute to their role in the inhibition of 

carcinogenesis including anti-oxidant, anti-inflammatory and phytoestrogenic properties and 

an ability to inhibit cellular proliferation, invasion, angiogenesis and metastasis and promote 

apoptosis (Danbara et al., 2005, Qu et al., 2005). 

The bioactivities of polyphenols can be related to the arachidonic acid-dependent pathway 

(Cyclo-oxygenase, lipo-oxygenase and phospholipase A2 inhibition) or arachidonic 

independent pathways involving nitrous oxide synthase (NOS), NF-κB and NAG (Biesalski, 

2007).  Despite this, the evidence for polyphenols as anti-inflammatory agents remains limited 

and most studies have been performed in vitro and have concentrated on single specific 

polyphenolic compound. Many dietary polyphenols have demonstrated the ability to inhibit 

COX-2 in vitro including green tea extract enriched with catechin and epigallocatechin gallate 

(EGCG) which inhibited COX-2 expression in mouse skin (Kundu et al., 2003)  and genistein, 

quercetin, kaempferol and resveratrol, found to down-regulate COX-2 promoter activity in 

human colon cancer cells (Mutoh et al., 2000). Moreover, resveratrol (Manna et al., 2000), 
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green tea catechins (Yang et al., 2001b) and curcumin (Singh and Aggarwal, 1995) are potent 

inhibitors of the NF-κB signalling pathway in human and animal cell lines in vitro and the 

mechanisms by which they exert this effect are becoming better understood.  These substances 

may intervene at any step in the NF-κB signalling pathway, for example, inhibition of the 

translocation of NF-κB to the nucleus or inhibition of any of the initial stimulatory signal 

transduction pathways or transcription factors (Shishodia et al., 2005). 

1.9.1 Epidemiological Studies 

Several epidemiological studies have looked at the association between diets rich in 

polyphenols and the risk of CRC (Table 1-5). Some of these studies have looked at the 

association with total flavonoid intake, others with certain phenolics, and some have not found 

any association.  

An Italian multi-centre hospital-based case control study by Rossi et al. (2006) found a 

reduction in the CRC risk by 36% with an increased intake of isoflavones, anthocyanidins, 

flavones, and flavonols. No association was found for flavan-3-ols, flavanones, or total 

flavonoids. Recently, a Spanish hospital-based case control study by Zamora et al. (2013b) 

reported a reduction in the CRC risk by 41% with the intake of total flavonoids, flavones, 

flavanols, procyanidins, and lignans but not anthocyanidines,  flavanones, flavonols, flavan-

3ols, or isoflavones. The Spanish study included phenolic acid in the total flavonoids which 

could be the reason for the significant association between total flavonoids and CRC in the 

Spanish study but not the Italian study. Both Italian and Spanish hospital-based case control 

studies used new and large flavonoid databases (USDA Flavonoid Database); however, the 

FFQ in both studies was not validated to estimate the flavonoid intake, which could have an 

effect on the studies’ results. Moreover, using US flavonoid food composition is not 

necessarily adaptable to the Italian diet. 

In addition, a Scottish case control study reported a reduction in the CRC risk by 27% with the 

intake of flavonols, quercetin, catechin, epicatechin, procyanidins, but not flavones, 

flavanones, or phytoestrogens (Theodoratou et al., 2007a). On the other hand, another Scottish 

case control study by Kyle et al. (2010) did not find any association between the risk of CRC 

and flavonol, procyanidin, flavon-3-ol, or flavanone intakes; however, quercetin from non-tea 
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components may be connected with lowering the risk of developing colon cancer but not CRC 

(p<0.01). The differences between the two Scottish studies could be due to the smaller size of 

Kyle’s study or differences in age between the subjects of the two studies. The average age for 

participants in Kyle’s study is six years older than for Theodoratou’s study. 

In agreement with Kyle et al. (2010), recently a US study found an association between 

flavonols, specifically quercetin found in non-tea components, and the risk of colon cancer. 

The result showed a protective effect of quercetin on proximal colon cancer risk but not distal 

colon cancer (Djuric et al., 2012). This could be due to the local bioactivities effect of the 

microbial metabolites of quercetin in the colon as the majority of quercetin is metabolised in 

the proximal colon. However, the results of this study are limited because the FFQ did not 

cover the onion intake, which is one of the highest sources of quercetin. 

A Japanese case control study by Wang et al. (2013a) also suggests a decrease in CRC risk 

with the consumption of coffee but not with tea polyphenols. However, the subjects’ number 

was lower in the control group (60%) compared to the case group (80%) which could have an 

effect on the study’s result. Moreover, the study just analysed tea polyphenols, coffee 

polyphenols, and polyphenols other than coffee but did not consider green tea polyphenols, 

which could be associated with CRC risk. 

Lastly, two cohort studies did not support the intake of flavonoids and the risk of CRC. The 

first study by Lin et al. (2006) showed no association between the intakes of total flavonoids, 

flavonols, including quercetin, myricetin, and kaempferol and the risk of CRC. However, the 

FFQ did not include all types of foods. Moreover, data from flavan-3-ols was not considered. 

The intake of apples and tea were high in this cohort, and they are the major sources of flavan-

3-ols. 

The second cohort study conducted by Simons et al. (2009) used a case control approach. The 

cohort showed no association between total flavonols, flavones, and total catachin and the risk 

of CRC after 13.3 years. However, in overweight men there was a significant inverse 

association of intake of catechin and rectal cancer. Contrary to men, a significant inverse 

association between the intake of catechin and women with a body mass index (BMI) less than 

25kg/m
2
 was found. According to the study, BMI may have an effect on the association 
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between the flavonol intake and colorectal cancer due to the effect of insulin like growth 

factor 1 (IGF-1) and estrogens inhibiting apoptosis and promoting cell cycle progression with 

EGCG lowering IGF-1 levels.  For that, it might be that flavonoids only significantly reduced 

risk when IGF-1 levels are fairly high, in which adipose tissue secretes IGF-1, might be the 

reason for the association between the flavonol intake with women and overweight men but 

not in normal weight men. Despite the large sample size and long follow-up of this cohort, the 

single measurement of dietary intake at the baseline may not be reflecting the intake for the 

13.3 years.  

The varied outcomes of these nine studies might be due to various reasons:  

1- Variations in study design and data analysis, which include differences in FFQ, food 

composition table, and flavonoid databases used.  

2- Inconsistency in inclusion of cofounders such as levels of activity, smoking habits, and 

alcohol intake.  

3- A small number of subjects, with fewer cases to compare to the controls (Kyle et al., 

2010, Rossi et al., 2010) 

4- The effect of seasons as the intake of fruit and vegetables is usually higher in summer 

compared to winter. 

5- An insufficient intake of food rich in polyphenols. Slattery et al. (2004) reported that a 

minimum of five servings of vegetables per day must be consumed in order to reduce 

the risk of rectal cancer.  

It is still not feasible to conclude an inverse association between the intake of flavonoids and 

the risk of CRC as it is difficult to distinguish between the effect of fruit and vegetables versus 

total flavonoid intake on the reduction of the CRC. The reduction of the CRC could be due to 

other nutrients in the fruit and vegetables such as fibre, vitamins, and/or salicylates. Moreover, 

dietary habits could also be affected by a recent cancer diagnosis. 
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Table 1-5: Epidemiological studies on the dietary polyphenols and the risk of CRC. 

 

*Continued overleaf 

 

References  

 

 

Countries 

 

 

Study type 

/duration 

 

Aims  

 

Subjects  

 

Dietary assessment 

and analysis 

 

Conclusions  

 

Rossi et al. 
(2006) 

 

Italy 

 

 

Case-control 

1992-1996 

 

Investigated the association between 

total flavonoids without phenolic 

acid and individual flavonoid 

subgroups (anthocyanidines, 

flavones, flavonols, flavan-3-ols, 

flavanones, and isoflavones) and 

CRC. 

 

Cases= 1953 

Control= 4154 

 

 

FFQ/ USDA 

Flavonoid Database   

 

An association was found between 

isoflavones (ptrend=0.001), 

anthocyanidines(ptrend<0.001), flavones 

(ptrend=0.004) and flavonols (ptrend<0.001) but 

not flavan-3ols, flavanones, or total 

flavonoids. 

 

Zamora-Ros 

et al. (2013) 

 

Spain 

 

 

Case-control 

1996-1998 

 

Assessed the association between 

total flavonoids with phenolic acid 

and individual flavonoid subgroups 

(anthocyanidines, flavones, 

flavonols, flavan-3-ols, flavanones, 

proanthocyanidins, isoflavones, and 

lignans) and CRC. 

 

Cases=424 

Control=401 

 

FFQ/ USDA 

Flavonoid Database   

An association were found between total 

flavonoids (ptrend=0.04), flavones 

(ptrend=0.04), flavanols (ptrend=0.04), 

procyanidins (ptrend=0.02), and lignans 

(ptrend=0.03) but not anthocyanidines, 

flavanones, flavonols, flavan-3ols, 

andisoflavones. 

 

Theodoratou 

et al. (2007)  

 

 

Scotland 

 

 

Case-control 

1999- 2003 

 

Examined the association between 6 

main classes of flavonoids 

(Flavones, flavonols, flavan-3-ols, 

catechins, procyanidins, flavanones, 

and isoflavones) and the risk of 

CRC.  

 

Cases= 1456  

Control= 1456  

 

 

Scottish collaborative 

groups FFQ /database 

for flavonoids from 

Kyle and Duthie(Kyle 

and Duthie, 2006) 

 

An association was found between flavonols 

(ptrend=0.01),quercetin (ptrend=0.001), catechin 

(ptrend=0.0005), epicatechin(ptrend<0.01), 

and procyanidins(ptrend=0.03) but not 

flavones, flavanones, or phytoestrogens. 
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References  

 

 

Countries 

 

 

Study type 

/duration 

 

Aims  

 

Subjects  

 

Dietary assessment 

and analysis 

 

Conclusions  

 

Kyle et al. 

(2010) 

 

 

 

Scotland 

 

 

Case-control 

1998 - 2000 

 

 

Examined the association of total 

dietary and non-tea consumption of 

four flavonoid subclasses and the 

incidence of developing CRC in 

people with a high intake of tea and 

its relationship to the high 

occurrence of CRC.  

 

Cases= 264 

Control= 408  

 

Scottish collaborative 

groups FFQ /database 

for flavonoids from 

Kyle and Duthie 

(2006)(Kyle and 

Duthie, 2006)  

 

No association between the risk of CRC and 

flavonol, procyanidin, flavon-3-ol, or 

flavanone intakes, however, quercetin from 

non-tea components may be connected with 

lowering the risk of developing colon cancer 

but not CRC (p<0.01). 

 

Djuric et al. 

(2012) 

 

United states 

 

 

Case-control 

2002-2005 

 

Evaluated dietary quercetin intake  

and risk of CRC 

 

Cases= 1163 

Control= 1501 

 

FFQ (Block Dietary 

Data Systems, 

Berkeley, CA 

(Bowman et al., 1998). 

 

Quercetin had protective effects only on 

proximal, not distal colon (p=0.003) 

 

Wang et al. 

(2013) 

 

 

Japan 

 

 

Case-control 

2000-2003 

 

Investigated the associations 

between polyphenols intake and 

CRC. 

 

Cases=816 

Control=815 

 

FFQ/Phenolic-

Explorer database & 

USDA Flavonoid 

Database   

 

Decreased risk of CRC associated with 

coffee consumption (ptrend=0.01) 

 

Lin et al. 

(2006) 

 

 

United states 

 

 

Cohort 

1990-2000 

 

Looked at the association between 

intakes of flavonoids and flavonoid 

subgroups and risk of CRC in men 

and women from two prospective 

cohort studies, the Nurses' Health 

Study (NHS) and the Health 

Professionals Follow-up Study 

(HPFS). 

 

498 women 

380 men 

 

FFQ/ USDA 

Flavonoid Database   

 

Unable to validate inverse associations 

between flavonoid intake and risk of CRC. 



 

 

36 

 

 

 

References  

 

 

Countries 

 

 

Study type 

/duration 

 

Aims  

 

Subjects  

 

Dietary assessment 

and analysis 

 

Conclusions  

 

Simons et al. 

(2009) 

 

Netherlands 

 

 

Cohort 

13.3  years 

 

Investigated the association between 

the intake of dietary flavonol, 

flavone and catechin and CRC 

endpoints within the Netherlands 

Cohort Study on diet and cancer 

(NLCS). 

 

Case=  

1,444 male 

1,041 female  

 

Control= 

2,191 male 

2,247 female 

 

FFQ/ flavonol and 

flavones were gathered 

from the Netherlands 

Hertog et al. (1997) 

 

Did not support an association between 

dietary flavonol, flavone and catechin intake 

and the CRC. 

 

The intake of dietary catechin may be 

associated with reducing the rectal cancer 

risk in overweight men(ptrend=0.04) 

 

The intake of dietary flavonol and catechin 

may be associated with reducing colon  risk 

in normal weight women(ptrend=0.04) 
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1.9.2 Clinical trials and colorectal cancer 

Human intervention trials with polyphenol rich supplements are limited (Table 1-6). Only 

three trials used polyphenols such as anthocyanin, apigenin, epigallocatechin gallate, and 

mirtocyan as a treatment to prevent or reduce the risk of recurrence (LS et al., 2007a, Hoensch 

et al., 2008, Thomasset et al., 2009); though, one trial used dietary advice of increasing the 

fruit and vegetables as an approach to increase the polyphenol intake (Bobe et al., 2008).  

Considering the results together, no hard conclusions can be made:  

First, only three studies have been carried out, testing the hypothesis that polyphenol-based 

interventions may impact on CRC recurrence. These studies had small sample sizes, between 

51 and 87 subjects. No sample size calculation was supplied. 

Second, the trial duration varies from seven days to four years, using different interventions 

and analytical methods. The trial by Bobe et al. (2008) used the US Department of Agriculture 

flavonoid database to examine the association between the flavonoids intake from the fruit and 

vegetables and the polyp recurrence, while other studies measured the effect of polyphenols on 

health markers in blood, colonic tissue, or cancer recurrence (LS et al., 2007b, Hoensch et al., 

2008, Thomasset et al., 2009).  

Third, different types of polyphenols were used as interventions with different doses varying 

from 0.5 to 60 g/day. This is challenging to speculate whether the association between the 

prevention and the reduction in the CRC recurrence is due to the effect of one phenolic or a 

combination of phenolics or even the effective dose to reduce the risk of CRC.  

In general, the most appropriate approach for the clinical trial was to measure the effect of 

dietary intervention on health biomarkers in blood, urine, or tissue which allowed measuring 

the effect of polyphenols directly on health biomarkers. However, using the US flavonoid 

database to analyse, and the FFQ is not accurate as it could be affected by under/or over-

reporting and memory. Moreover, Bobe et al. (2008) asserted that flavonoid is associated with 

low risk of CRC; however, this association may be cofounded by other bioactivities in fruit 

and vegetables (fibre, vitamins, salicylates) which were not taken into consideration in their 
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analysis. More clinical trials (phase I) are needed to test the effective dose of the polyphenols 

and how much can be given safely to reduce the risk of CRC, especially for phenolic 

compounds that are known to reach the colon. 

It is very difficult to ascribe health benefits to a particular polyphenol as there could be 

interactions between polyphenols and selected food components, such as proteins, 

carbohydrates, fiber, and fat. In well-controlled clinical trials, the use of purified polyphenols 

(powder or extract) could help to understand the effect of a particular polyphenol on the gut 

microbiota or colonic health; however, the translation of this type of study to the everyday life 

is limited as food intake could result in a different outcome due to the effect of other food 

components. From a nutritionist’s point of view, a recommendation of a diet that is high in 

fruit and vegetables will provide a high amount of polyphenols, helping to maintain a healthy 

colon and reducing the risk of CRC. However, when looking at polpyhenols from a 

pharmacologic point of view as a pure compound to treat or to reduce the recurrence of CRC, 

more factors need to be investigated. There is a need to test the effects of a food matrix and if 

polyphenols need to be taken before, after, or with the meal, dosing, and duration. For 

example, there is a recommendation to avoid tea, coffee, and eggs 2 hours before and after 

taking iron supplementation. The same concept could be applied to polyphenols if they are 

proven to prevent and reduce the risk of CRC to decrease the components that are found in the 

meal which could affect polyphenols. 
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Table 1-6: Clinical trial studies on the dietary polyphenols and the risk of CRC 

 

Reference 

 

Patients    

 

Aims  

 

Intervention  

 

Duration  

 

    Conclusions  

 

Bobe et al. 
(2008)  

 

Cases= 958 

Control= 947  

 

 

Examined the association between 

flavonoids with the risk of any or advanced 

adenoma recurrence in the Poly Prevention.   

 

Dietary advice to 

increase the fruit and 

vegetables and 

reduce fat intake. 

 

4-years 

 

High intake of flavonols was associated 

with decreased risk of adenoma 

recurrence (p=0.0006). 

 

Hoensch et al. 
(2008)  

 

36 patients with 

resected colon 

cancer and 51 after 

polypectomy were 

divided into two 

groups (treated and 

untreated). 

 

Examined the biological prevention of 

flavonoids on the recurrence of neoplasia in 

resected colon cancer and polypectomy 

patients. 

 

20 mg/day of 

apigenin& 

20mg/day 

epigallocathecin-

gallat.  

 

3-4 years 

 

Among resected colon cancer treated 

patients, 14 had no cancer recurrence 

but one developed adenoma, however, 

cancer recurrence rate of the 15 

matched untreated controls was (3 of 

15) and adenomas (4 of 15) 

 

Thomasset et 
al. (2009)   

 

25 CRC patients 

scheduled resection 

of primary tumour 

or liver metastases 

 

Pre-surgical model to evaluate the effect of 

the oral administration of mirtocyan on the 

proliferation of colorectal tissue and the 

circulating levels of IGF-I and IGFBP-3 

 

Mirtocyan 1.4, 2.8, 

or 5.6 grams 

(containing 0.5-2.0 

grams anthocyanins) 

daily. 

 

7 days   

Before 

 surgery 

 

 Proliferation was reduced by 7% 

 Not significant reduction in 

circulating of( IGF-I and IGFBP-3) 

 <0.5 gram bilberry anthocyanins 

are required to find whether they 

may be suitable for CRC 

chemopreventive agents. 

 

Wang et al. 

(2007)    

 

25 colon cancer 

patients  

 

Pre-surgical model looked at the effect of 

anthocyanin rich black raspberry as 

antiangiogenic in patients diagnosed with 
colon cancer. 

 

60 g/day of 

anthocyanin rich 

black raspberry 
power  

 

2-4 weeks 

 

↓ Proliferation and ↑ apoptosis in the 

colon tumour but not in normal crypts. 
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The studies in this chapter speculate that the colonic metabolism of dietary polyphenols 

could be affected by several factors such as dietary habits, gut microbiota, and/or food 

matrix interactions and their further dependency on ethnicity, age and colonic health. 

These factors could be the reasons behind the large inter-individual variations in 

polyphenol metabolism that have been reported previously by several in-vitro and in-vivo 

studies. Inter-individual variations in polyphenol metabolism could lead to differences in 

polyphenol bioavailability and bioactivities between individuals and in turn contribute to 

differences in disease incidence. Therefore, it is important to investigate the possible 

factors that could cause the variations in polyphenol metabolism to be able to manage their 

influence especially polyphenols that are known to be metabolised by gut microbiota. This 

is justified by the promising data linking the polyphenol microbial metabolites with colonic 

health benefits such as inhibiting cell growth, proliferation, angiogenesis, and/or 

metastasis; besides the anti-inflammatory and/or antioxidant properties.  
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1.10  Hypothesis to be tested in this thesis 

In order to clarify the health benefits associated with dietary polyphenols intake, we must 

study the factors affecting their colonic metabolism. In this thesis, the effect of ethnicity, 

ageing, and the risk of CRC (polypectomy patient), as factors that could influence the 

metabolism of dietary polyphenols, were examined. As the majority of polyphenols are 

metabolised in the colon, the interplay between dietary habits, ethnic food, genetics, 

ageing, gut health and gut microbiota could have a major influence on colonic polyphenol 

metabolism and the (derived) bioactivities.  

The following hypotheses are to be tested:  

1.  Colonic metabolism of polyphenols differs between Europeans and Indians 

(Study1). 

2. Colonic metabolism of polyphenols differs between younger and older adults 

(Study 2). 

3. Colonic metabolism of polyphenols differs between polypectomy patients (at 

increased risk of CRC) and healthy older adults (Study 3). 

 

To test these hypotheses, two study designs will be used for each study: 

1. A human intervention (in-vivo), to study the colonic metabolism of dietary 

polyphenols after low-high polyphenol diets between two groups 

(Europeans versus Indians; younger versus older adults; and polypectomy 

patients versus healthy older adults). Outcome measures include 

biomarkers of polyphenol metabolism (urinary phenolic acid, urinary total 

phenols, and urinary antioxidant power), colonic fermentation (faecal 

SCFA, faecal pH, faecal ammonia), and gut health (faecal calprotectin). 

2. In-vitro fermentations, using faecal samples collected during the dietary 

intervention, to study the metabolic capacity of the samples to ferment the 

polyphenol rutin. Outcome measures include formation of phenolic acids, 

production of SCFA, changes in fermented faecal fluid, and gas production. 
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2.1 Introduction  

This chapter describes the general materials and methods used throughout this thesis. All 

analyses presented in this thesis were performed either at the Human Nutrition or the 

Biochemistry and Molecular Biology laboratories at the University of Glasgow, UK. 

Figure 2-1 shows the three studies which were carried out during this PhD and their 

relevant analyses. 

Figure 2-1: Types of studies and relevant analyses. Analyses applied to only one study are indicated by 

the relevant letters a, b or c. 

         

1. Ethnicity  study a

2. Ageing study b

3. CRC study c

Data collection

•Demographics

•Anthropometry 

•FFQ

•Dietary records

Urine samples Faecal  samples

•Phenolic acid

•Total phenols

•FRAP

•pH

•SCFA

•Ammonia a

•DNA extraction 

and RT-PCR

•Calprotectin c

Fermentation fluid

•pH

•Gas production

•SCFA production

•Phenolic acid   

formation

In-vivo In-vitro
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2.2 Collection of data and samples 

2.2.1 Demographics and anthropometry 

Demographics information such as name, date of birth, gender, and ethnicity were 

collected. The anthropometric measurements (height, weight, waist circumference, and 

body mass index) and blood pressure were also collected at the baseline. Anthropometric 

measurements were conducted according to standard procedures. Weight was measured in 

kilograms using a calibrated digital scale (Seca, UK) and subjects were weighed in light 

clothing, without shoes. Height was measured using a wall-mounted Stadio meter (Seca, 

UK) according to the Frankfurt plane position. BMI was computed as the fraction of 

weight to the squared height. The waist circumference was taken at the level of the 

narrowest point between the lowest costal border and the iliac crest.  

2.2.2 Collection of faecal samples  

Participants were asked to pass an entire bowel movement using the kit provided (plastic 

bag inside a pot, using the support of a paper bedpan on the toilet seat). The pot was sealed 

in a bag with an anaerobic gas kit (Anaerocult® A Merck KGaA 62471 Darmstadt, 

Germany), to induce anaerobic conditions. An indicator strip (Anaerotest® A Merck 

KGaA 1151120001 Darmstadt, Germany) was included to ensure anaerobic conditions 

(Appendix 1). The stool sample was kept at 0
o
C (in an insulated bag with frozen ice 

blocks) to slow ongoing bacterial metabolism, and was transferred to the laboratory within 

two hours of passage. Fresh faecal samples were used for faecal fermentation as well as the 

measurements of colonic fermentation and inflammatory biomarkers (Figure 2-2).  

Figure 2-2: Faecal sample processing chart. 

 

Faecal samples

Faecal pH: (1 g of 

faecal sample + 3 

ml of H2O), after 

low and high-

polyphenol diets.

Faecal SCFA: (1 

g of faecal sample 

+ 1 ml of 1M 

NaOH), vortex and 

store at -20 oC

(after low and 

high-polyphenol

diets).

 

Faecal DNA: (~ 

200 mg of faecal

sample), store at -

80oC (only after 

low polyphenol

diet).

Faecal

calprotectin: (~ 0.5 

mg of faecal

sample), store at -

20 oC (only after 

low polyphenol

diet).

Faecal  

fermentation

(only after low-

polyphenol diet).
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2.2.3 Collection of urine samples: 

Urine samples were collected in an opaque container (to prevent UV degradation of 

phenolic compounds), stored in an insulated bag with frozen ice blocks after each diet 

(Appendix 1). The urine volume was recorded and urine aliquoted (2 ml) and immediately 

stored at – 80
o
C. 

2.3 In vitro fermentation (faecal incubation) 

2.3.1 Preparation of fermentation medium  

All chemicals and reagents used in the fermentation preparation including medium, 

buffers, macromineral, micromineral, and reducing solutions were supplied by Fisher 

Scientific (Leicestershire, UK), Sigma-Aldrich Company Ltd. (Dorset, UK), and BDH 

AnalaR Laboratory (Dorset, UK). Rutin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6methyloxan-

2-yl]oxymethyl]oxan-2-yl]oxychrome) was purchased from Sigma-Aldrich Company Ltd. 

(Dorset, UK) and phenolic acids from Fisher Scientific (Leicestershire, UK), Sigma-

Aldrich Company Ltd. (Dorset, UK), and AASC Ltd (Southampton, UK). The chemicals 

for the SCFAs extraction (orthophosphoric acid, sodium hydroxide, diethyl ether, and 

external & internal standards) were obtained from Fisher Scientific (Leicestershire, UK), 

Sigma-Aldrich Company Ltd (Dorset, UK).  

The basal medium was prepared according to Jaganath et al. (2009) by mixing 2.25g of 

tryptone in 450ml of distilled water with 112.5µl micromineral solution (13.2g 

CaCl2.2H2O, 10g MnCl2.4H2O, 1g CoCl2.6H2O, 8g FeCl3.6H2O, and distilled water to 

100ml).  After vortexing, 225ml buffer solution (2g NH4HCO3, 17.5g NaHCO3 in 500 ml 

distilled water), 225 ml macromineral solution (2.85g Na2HPO4.H2O, 3.1gKH2PO4.H2O, 

0.3g MgSO4.7H2O in 500 ml distilled water) and1.125 ml of 0.1% resazurin solution as a 

redox indicator were added. The medium was boiled for five minutes to remove oxygen 

and to sterilize it. The pH of the medium was adjusted to 7.0 using a hand-held pH meter 

(Hanna pH20instruments, USA) using HCl. The medium was then purged with oxygen-

free nitrogen (OFN) to create an anaerobic condition, indicated by a colour change from 

indigo to colourless. The reducing solution (312.5mg of cysteine hydrochloride, 2 ml of 

1M NaOH, 312.5 mg Na2S, and 50 ml of distilled water) was added at 2ml per 50ml of the 

medium before adding the faecal slurry. The substrates used were as follows a) control (no 

substrate), b) 28 µM rutin, c) 28 µM rutin with 1 g raftiline, and d) 1 g raftiline. The 
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concentration of rutin used in the faecal fermentation was based on the rutin levels 

collected in ileal fluid 0-24 h after the ingestion of tomato juice supplemented with rutin in 

the human feeding study (Jaganath et al., 2006). The amount of fibre was used according 

to Parker et al. (2013) as 1 g of fibre (20 mg/ml of medium) which is approximately equal 

to 8g/day of resistant starch intake (Cummings and Macfarlane, 1991). 

2.3.2 Preparation of fermentation (faecal incubation) 

Faecal samples were collected from study participants of all groups, and brought to the 

laboratory. The entire procedure is summarised in Figure 2-3. Freshly voided human faecal 

samples were homogenised with a sodium phosphate buffer (0.1 M, pH 7.0) in a blender 

(Braun™) to make a 32% faecal slurry (16g faecal sample with 50ml sodium phosphate 

buffer). Five millilitres of the faecal slurry was added to 44 ml of the fermentation medium 

(42 ml of pre-reduced basal media and 2 ml of reducing solution) in 100 ml fermentation 

glass sterilised bottles. The substrate (1 ml of rutin) was added to the faecal slurry in the 

presence and absence of 1 g of a highly fermentable fibre (raftiline) as a source of glucose 

to mimic the in-vivo environment. Faecal fluids containing no substrate were incubated at 

the same time as controls.  Fermentation bottles were sealed and purged with OFN. Bottles 

were kept upright in a shaking water bath and incubated at 37
o
C, 60 stokes/min for 24 hr to 

simulate the colonic lumen conditions. Two samples (3ml) of fermented fluids were 

collected after 0,2,4,6 and 24 hr. One sample for each time point was immediately stored at 

-80
o
C for phenolic acid analysis. The other was mixed with 1M NaOH (1 ml) for 

stabilization and to prevent oxidation and stored at -20
o
C for SCFAs production 

measurements.  
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Figure 2-3: Feacal fermentation flow chart. 

Prepare fermentation medium and sodium phosphate buffer (SPB) 

 

Boil fermentation medium and SPB for 10 min 

 

Cool fermentation medium and SPB with OFN for 30 min until it reaches 37°C 

 

Homogenize 32 g of fecal sample with 100 mL SPB, strained through a nylon mesh to get 

32% fecal slurry. 

 
 

Transfer 42 mL of fermentation medium into McCartney bottle 

and 2 ml of reducing solution / bottle 

 

Add 5 mL of fecal slurry into each bottle 

 

 

And add specific substances as designed: 

 

 

 

 

 

Seal all bottles with crimp top self-sealing rubber caps 

and purge with OFN for 2 min 

 

Incubate 24 h in 37°C water bath, 60 spm  

 

Take sample at 0,2,4,6, and 24 h time points 

 

 
3 mL: 

 1 mL (2 tubes) put in eppendorf tube for 

phenolic acid measurement, store immediately 

in -80°C 

 2 mL + 1 mL NaOH, put in bijoux tube & store 

in -20°C for SCFA measurement. 

  

 

1. Blank slurry 

2. 28 μmol of Rutin 

3. 1 g of raftiline + 28 μmol of 

Rutin 

4. 1 g of raftiline 
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2.4 Measurements of colonic fermentation markers  

2.4.1 Determination of pH 

The pH was measured directly in fresh and fermentation fluid. The fresh faecal slurry was 

prepared by a suspension ~1 g of homogenized faecal sample with three-fold volume of 

distilled water. The slurry was vortexed at full power until completely mixed. An auto 

calibrated portable digital pH meter model (Hanna pH20instruments, USA) was used. The 

fermented faecal of the fermented medium was determined at different time points (0, 2, 4, 

6, and 24 hr) using universal pH indicator paper from 1 to 14 (Fisher Brand, UK). The pH 

meter was not used for this measurement as the volume at each time point was too small 

(1ml). According to Mansourian (2014), there was no major difference in the measurement 

when pH paper was used instead of a pH meter. 

2.4.2 Determination of faecal ammonia 

An automated photometric ammonia analyser (high range; Hanna 93828, USA) was used 

to measure faecal ammonia by taking an aliquot (100µl) of the diluted samples (used to 

measure faecal pH) and diluting it to a final volume of 40 ml with distilled water in a 

conical polypropylene centrifuge tube. The slurry was mixed and filtered using 0.22 µm 

Millipore filters before measuring the ammonia. The measurement process is carried out in 

two phases: first the meter is zeroed and then the actual measurement is performed.  

2.4.3 Determination of water content 

Water content (%) was measured in all faecal samples to standardize dry material weight 

and avoid confounding by faecal water levels. One gram of faecal sample was transferred 

into a 5 ml bijou tube with an equal volume of 1M NaOH for stabilization. The pre-

weighted NaOH-stabilized faecal samples were freeze-dried in an Edwards apparatus 

(Freezer Dryer Micro Modulyo) for 24 hr. The water content was calculated using the 

following equation: 

                              (Weight of tube with wet sample- weight of tube with dry sample) 

Water content (%) =                                                                                                                X 100 

                                                                   Weight of sample 
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2.4.4 Determination of short chain fatty acids 

The residual short chain fatty acids after absorption were measured in dry faecal samples 

according to Laurentin & Edwards (2004) as a proxy for SCFA production and in 

fermented faecal fluid samples as a marker for fermentation. The internal standard solution 

(86.1 mM 2-ethylbutyric acid, 100µl) was added to 800µl (50 mg of pre-stabilized dry 

faecal sample with 1M NaOH and 800 µl distilled water) or 800µl fermented faecal slurry 

previously stabilized with 1 ml of 1M NaOH (1:3), along with orthophosphoric acid 

(100µl). The mixture was mixed for 15 sec and was extracted three times with 3ml of 

diethyl ether (mixing 1 min each time). The upper phase was pooled and combined in 15 

ml tubes.  

2.4.4.1 Analysis of SCFA by GC-FID 

The short chain fatty acids were measured by GC-FID using a TRACE™ 2000 gas 

chromatograph (Thermo Quest Ltd, Manchester, UK) equipped with a flame ionisation 

detector (250°C) and a Zebron ZB-Wax capillary column (15 m x 0.53 mm id x 1 μm film 

thickness)(catalogue No.7EK-G007 22, Phenomenex, Cheshire, UK). The carrier gas was 

nitrogen (30 ml/min). Samples (1 ul) were automatically injected (230°C, splitless) onto 

the column. The column temperature was held at 80°C for 1 min, increased at 15°C/min 

until 210°C and held for 1min. Analyses of GC-FID data were performed on Chrom-Card 

32-bit software version 1.07β5 (2000) Thermo Quest (Milan, Italy). Identification of 

SCFAs was achieved by comparison with retention times of authentic standards. 

Quantification was based on the averaged area ratio of each external standard (166.5mM 

acetic, 135.0mM propionic, 113.5mM isobutyric, 113.5 mM n-butyric, 97.9mM isovaleric, 

97.9mM n-valeric, 86.1mM n-hexanoic, 76.8mM heptanoic and 69.3mM n-octanoic acid 

solution (concentrations based on expected values in normal/healthy faecal samples)) 

batch-wise, with grouped analysis of samples from the same individuals to reduce inter-

assay error. A set of five calibrated standards was extracted and analysed before and after 

the samples. A signal standard as a quality control calibrated was run every 16 samples. 

Samples were extracted in duplicate and their results were averaged. Standards were 

extracted once and injected twice. Table 2-1 shows the SCFA measured in the dry faecal 

and fermented faecal fluids samples in all studies. The typical GC-FID trace is illustrated 

in Figure 2-4. 
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Table 2-1: Retention times present in chromatograms spectra in standard solution and faecal samples. 

 

No. 

 

 

SCFAs 

 

tR  

(min) 

1 Acetic acid (C2) 2.6 

2 Propionic acid (C3) 3.2 

3 Isobutyrate acid (IC4) 3.4 

4 Butyric acid (C4) 3.9 

5 Isovalerate acid (IC5) 4.2 

6 Valeric acid (C5)  4.7 

7 Isocaproic acids (IC6) 5.1 

8 Caproic acid (C6) 5.4 

9 Enanthic acid (C7) 6.1 

10 Caprylic acid  (C8) 7.8 

11 2-ethylbutyric acid (IS)  4.8 

Figure 2-4: Chromatogram of a standard sample containing SCFA. 

 

2.4.5 Production of gas 

A 50 ml disposable syringe and a three way tap were used to measure the gas production in 

each fermentation bottle at different time points (0, 2, 4, 6, 24 hr).  

C3
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2.5 Determination of faecal bacterial diversity and composition 

Eubacterium ramulus and Flavonifractor plautii were selected to be quantified in faecal 

samples because they contribute to the colonic metabolism of flavonoids. Also, 

Bifidobacterium, Bacteroides, and total bacteria were measured since they are abundant in 

the human colon. Real-time PCR with species-specific probes was used to provide a 

sensitive and accurate method to quantify individual species, bacterial populations, and 

total bacteria. Real-time PCR is more reliable than other methods such as single-strand 

conformation polymorphism analysis, temperature gradient gel electrophoresis, and 

fluorescence in situ hybridization (Corless et al., 2000, Guiver et al., 2000). 

2.5.1 Extraction of DNA 

Total bacterial DNA was extracted from human faecal samples using the chaotropic 

method, modified by Godon et al. (1997). Extractions were carried out over a period of 

two days. During the first day of extraction, approximately 200 mg of homogenized faecal 

material were transferred to a 2 ml Eppendorf screw cap tube using sterile wooden sticks 

and stored at -80°C. Samples were thawed at room temperature before use.  

Guanidine thiocyanate (250 μl, 4 M/Tris-Cl 0.1 M, pH 7.5) and 10%N-lauroylsarcosine 

(40 μl) were added to each sample and vortexed briefly. Samples were centrifuged for 3 

sec at 15000g and incubated at room temperate for 10 min. N-lauroylsarcosine (5%, 500 

μl) in phosphate buffer 0.1 M (pH 8.0) was added followed by vortexing and centrifuging 

for 3 sec. The tubes were then incubated for 60 min at 70°C in a Dri-Block® heater 

(Techne, UK) with vortexing every 20 min. After this, approximately 750 mg of sterile 0.1 

mm zirconia glass beads (Biospec Products, USA) were added and the tube was vortexed 

for 30 sec and vigorously agitated in a FastPrep®-24 bead beater (MP Biomedicals, USA) 

three times for 60 sec at 4.5 m/s followed by a 5min rest on ice. The bead beating process 

was repeated once more with 5 min of rest on ice. The tubes were centrifuged for 3 sec, 15 

mg of polyvinylpyrrolidone (PVPP) powder added and the tube homogenised by vortexing 

upside down to dissolve the pellet followed by shaking for 5 min and centrifugation (3 

min, 15000g, 4°C). The supernatant was then transferred to a sterile 2 ml safe-lock tube.  

The remaining pellet was washed twice with 500 μltris-EDTA-sodium chloride buffer 

(TENP), vortexed, shaken for 3 min and centrifuged again (3 min, 15000 g, 4°C). 

Supernatants were recovered after centrifugation and added to the 2 ml safe-lock tube. The 
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pooled supernatant (approx. 2 ml) was centrifuged for 10 min at 20000 g and 4°C and was 

split into three safe-lock tubes. Supernatant (750 μl) was pipetted into two 2 ml tubes and 

the rest (~ 500 μl) transferred to a 1.5 ml tube. An equal volume of isopropanol was added 

to each volume of supernatant. Samples were mixed by inverting and then incubated for 10 

min at room temperature. Samples were centrifuged for 5 min at 15000 g and 4°C and the 

supernatant was discarded. Two hundred and twenty-five microlitres of phosphate buffer 

0.1 M (pH 8) and 25μl 5M of potassium acetate were added to each tube followed by 

vortexing, shaking for 5 min, and then they were stored at -4°C overnight.  

The next day, the tubes were shaken for 10 min and centrifuged for 30 min at 15000 g and 

4°C. The supernatants were combined into a new 2 ml eppendorf tube, and 5μl RNAse (10 

mg/ml) was added, vortexed, centrifuged for 3 sec, and incubated for 45 min at 37°C, with 

a vortex step after every 15 min. Samples were then centrifuged for 3 sec and 50 μl3 M 

sodium acetate and 1 ml ice-cold absolute ethanol was added. Tubes were inverted and 

stored at -20°C for 1 hr.  

After that, samples were shaken for 10 min and centrifuged for 10 min at 15000 g and 4°C. 

The supernatant was discarded and 800 μl ice-cold ethanol (70%) was added to the pellet. 

The sample was then shaken at a medium speed for 5 min and the pellet was dissolved by 

pipetting up and down, followed by repeated shaking and centrifugation (10 min, 15000 g, 

4°C). The supernatant was discarded and the washing was repeated two more times. 

Finally the pellet was dried under a laminar-flow hood for 45 min and re-suspended in 300 

μlRNase-free water. Five aliquots of 60 μl were prepared and stored at -20°C for further 

use (Godon et al., 1997). 

2.5.2 DNA concentration and purity assessment 

Total DNA concentration and purity were determined by measuring 1.5 μlof undiluted 

DNA extract with a NanoDrop ND-1000 (software version 3.7.4; Fisher Scientific, UK). 

A260/A280 ratio was measured to assess the purity of the DNA. An absorbance ratio of 

greater than 1.8 is considered to be of high purity and anything lower than that indicates 

the presence of contaminants such as protein. Also, the absorbance ratio at 230/260nm was 

checked to assess the guanidium salt carried over from extraction which should be greater 

than 1.5 (a good level of purity). Furthermore, 2μl of the DNA template was added to 3μl 

of loading buffer (Bromophenol x6; B0126, Sigma) and 2μl of distilled water and 

separated by gel electrophoresis on a 1.5 % (w/v) agarose gel containing 0.01% ethidium 
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bromide. Electrophoresis was performed in 1x TBE (Tris Borate EDTA) for 30 min at 

100V alongside a 100bp DNA ladder (G210A, 100 bp DNA Ladder, Promega). Genomic 

DNA should appear as a compact, high-molecular-weight band with no low-molecular-

weight smears.   

2.5.3 Reverse transcription polymerase chain reaction (RT-PCR) 

2.5.3.1 Preparation of bacterial standards and standard curve 

DNA standards for Eubacterium ramulus and Flavonifractor plautii were obtained from 

the German Collection of Microorganisms and Cell Cultures (DSMZ).  Standard DNA for 

Bifidobacterium (Bifidobacterium longum) Bacteroides (Bacteroides vulgatus), and total 

bacteria (Bacteroides vulgatus) were available in-house (Gerasimidis, 2009). A set of 

seven bacterial standard references was made for each target. The serial dilution to 

measure the Eubacterium ramulus and Flavonifractor plautii was 1:5, and 1:10 to measure 

Bifidobacterium, Bacteroides, and total bacteria. A new standard curve was run on each 

plate and the dilutions of the standard curve were prepared freshly each time. Table 2-2 

shows the stock concentration of each standard. 

Table 2-2: Bacterial groups and corresponding standards used for quantitative analysis using qPCR. 

 
Target Group 

 
Standard species used 

 
Stock concentration 

Eubacterium ramulus Eubacterium ramulus 
DSM 15684 

3.15 ng/μl 

Flavonifractor plautii Flavonifractor plautii 
DSM 4000 

6.3 ng/μl 

Bifidobacterium spp. Bifidobacterium longum subsp. 

longum 

DSM 20219T 

9.8ng/μl 

Bacteroides Bacteroide svulgatus 

DSM 1447T 

27.2 ng/μl 

Total bacteria Bacteroidesvulgatus 

DSM 1447T 

27.2 ng/μl 
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2.5.3.2 Design of the oligonucleotide (probes and primers) sequences 

Fluorescently labeled probes and primers were designed to detect Eubacterium ramulus 

and Flavonifractor plautii using the PrimerQuest tool (Integrated DNA Technology, 

http://www.idtdna.com/Primerquest/Home/Index, accessed as of February, 2013). The 

parameters of the tool were customized to fall within the guidelines for designing probes 

and primers for RT-qPCR assay: the temperature of a hydrolysis probe was customized to 

be 5–10°C higher than that of the primers; the length was selected to be less than 30 

nucleotides with no G at its 5' end (because this could quench the fluorescence signal even 

after hydrolysis), and with a GC content of 30–80%.  

The parameters for primers were set as follows: the amplicon size was set between 50-150 

bp, the primers to probe distance were adjusted not to exceed 100 bp, the GC content was 

kept between 30-80%, and the primers’ temperatures were designed to be close to 60°C. In 

addition, we considered the region of validated probe to design the Eubacterium ramulus 

probe (Simmering et al., 1999) and a validated PCR probe region to design the 

Flavonifractor plautii probe (Schoefer et al., 2003). 

We chose the set of primers and probes for Eubacterium ramulus that met all the required 

parameters and covered the same validated FISH probe by Simmering et al. as detailed in 

Figure 2-5. The same parameters were applied to Flavonifractor plautii and also covered 

the validated PCR probe by Schoefer et al (2003) (Figure 2-6).

http://www.idtdna.com/Primerquest/Home/Index
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Figure 2-5: Design of qPCR assay for Eubacterium ramulus at a specific location with PrimerQuest. 
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Figure 2-6: Design of qPCR assay for Flavonifractor plautii at a specific location with PrimerQuest. 
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The probes were checked for specificity using the SILVA Probe Match and Evaluation 

Tool (TestProbe 3.0), http://www.arb-silva.de/search/testprobe/, which is a comprehensive 

on-line resource for quality check and aligned ribosomal RNA sequence data and can 

detect and display all occurrences of a given probe or primer sequence in the SILVA 

datasets. The designed probe for Eubacterium ramulus matched 28 uncultured bacteria 

(AF371611, AM693454, AY992786, AY992790, AY992794, AY993033, DQ796036, 

DQ796331, DQ799885, DQ801873, DQ801919, DQ802672, DQ806278, DQ806278, 

DQ809017, DQ809219, DQ809811, EF402928, EU462315, EU462328, EU530190, 

EU765639, EU765653, EU778157, FJ368719, FJ507401; Figure 2-7).  

Figure 2-7: Chart for the matched and mismatch sequences within the selected taxonomic group. 

 

 

The probe was aligned with 34 selected 16S sequences of closely related DNA sequences 

to ensure specificity. We used the Multiple Sequence Alignment (Clustal omega) online 

tool, http://www.ebi.ac.uk/Tools/msa/clustalo/, which can align three or more biological 

sequences of similar length and BoxShade for shading multiple aligned sequence files. 

Figure 2-8 shows the alignment of Eubacterium ramulus probe with 34 related organisms. 

  

http://www.arb-silva.de/search/testprobe/
http://www.ebi.ac.uk/Tools/msa/clustalo/
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Probe                    84 TTGACATCCCGGTGACAGAACATGTAAT---GTGTTTTCCCTTCGGGNCACCGGNGACAG 

1| Eubacteriumramulus   984 TTGACATCCCGGTGACAGAACATGTAAT---GTGTTTTCCCTTCGGGNCACCGGNGACAG 

2|F.plautii,ATCC        951 TTGACATCCCACTAACGAGGCAGAGATGCGTTAGGTGCCCTTCGGGGAAAGTGGAGACAG 

3|E.acidaminophilum     960 TTGACATCCCT-TTGACCGCTTCGTAACGGAAGCTTTCTCTTCGGAGACAAAGGTGACAG 

4|E.aggregans           961 TTGACATCCTC-TGACAATCCTAGAGATAGGACGT--TTCCTTCGGGAACAGAGAGACAG 

5|E.albensis             13 CTGACATCCCTCCTGAAAGGCCGGGTAATGCTGGTCCTCTCTTCGGAGCAGGAGTGACAG 

6|E.angustum            975 TTGACATCCCT-CTGACCGCACTAGAGATAGTGCCTTCTCTTCGG-AGCAGAGGTGACAG 

7|E.barkeri             974 TTGACATCCTC-TGACCATCCTAGAGATAGGAGAT--TTCCTTCGGGAACAGAGAGACAG 

8|E.brachy              187 TTAATATTCGTTTCCAAATGC----------TATCCCTTTGTATGGGGCAGGTTGCCTAC 

9|E.budayi              954 TTGACATCCTC-TGCATTACCCTTAATCGGGGA--AGTTCCTTCGGGAACAGAGTGACAG 

10|E.callanderi         945 TTGACATCCTC-TGACGAGCCTAGAGATAGGAAGT--TTCCTTCGGGAACAGAGAGACAG 

11|E.cellulosolvens     964 TTGACATCCCTCTGACAGATCCTTAATC---GGATCCTTCCTTCGGGACAGAGGAGACAG 

12|E.combesii           980 TTGACATGGATTGGTAACGGTCAGAGAT---GGCCNNCCCCCTTGTGGGCCGGTTCACAG 

13|E.contortum          984 TTGACATCCCCCTGACCGGCGTGTAATG---GTGCCNTTCCTTCGGGACAGGGGNGACAG 

14|E.coprostanoligenes  941 TTGACATCCAACTAACGAAATAGAGATATATTAGGTGCCCCTCGGGGAAAGTTGAGACAG 

15|E.desmolans          982 TTGACATCCCGGTGACCGTCCTAGAGAT---AGGACTTNCCTTCGGGNCAACGGTGACAG 

16|E.eligens            976 TTGACATCCTCTTGACCGGTCAGTAATG---TGGCCTTTCCTTCGGGACAAGAGAGACAG 

17|E.fissicatena        976 TTGACATCCCACTGACCGGCGTGTAATG---GCGCCTTCCCTTCGGGGCAGTGGAGACAG 

18|E.limosum            946 TTGACATCCTC-TGACGAGCCTAGAGATAGGAAGT--TTCCTTCGGGAACAGAGAGACAG 

19|E.moniliforme        966 TTGACATCTTC-TGCATTACCCTTAYC-GGGNA--AGTTCCTTCGGGAACAGAATGACAG 

20|E.multiforme         952 TTGACATCTTC-TGCATTACCCTTAATCGGGGA--AGTT-CTTCGGGAACAGAATGACAG 

21|E.nitritogenes       954 TTGACATCCTC-TGCATTACCCTTAATCGGGGA--AGTT-CTTCGGGAACAGAGTGACAG 

22|E.oxidoreducens      971 TTGACATCCCGATGACCAACTATGTAAT---GTAGTCTCTCTTCGGAGCATCGGTGACAG 

23|E.pectinii           930 TTGACATCCTTCTGACGGATCCGTAATG---GGATCTTTCCTACGGGACAGAAGTGACAG 

24|E.pyruvativorans     873 TTGACATCCTC-CTGAAAGGCCGGGTAATGCCGGTCCTCTCTTCGGAGCAGGAGTGACAG 

25|E.rangiferina        957 TTGACATCCCAATGACAAACTATGTAAT---GTAGTCTCTCTTCGGAGCATTGGTGACAG 

26|E.rectale            975 TTGACATCCTTCTGACCGGTACTTAACC---GTACCTTCTCTTCGGAGCAGGAGTGACAG 

27|E.rectale            975 TTGACATCCTTCTGACCGGTACTTAACC---GTACCTTCTCTTCGGAGCAGGAGTGACAG 

28|E.ruminantium        988 TTGACATACCGATGACGTCTCCGTAATG---GGAGAGTTCCTTCGGGACATCGGATACAG 

29|E.saphenum           948 TTGACATCCCT-CTGACGTACCCTTAATCGGGTA----TTTCTTCGGACAGAGGAGACAG 

30|E.siraeum            964 TTGACATCGAGTGACCGCCTAAGAGATT---AGGCTTTCCCTTCGGGGACACAAAGACAG 

31|E.tarantellae        949 TTGACATCTCC-TGAATTACTCTTAATCGAGGA--AGTCCCTTCGGGGACAGGAAGACAG 

32|E.uniforme           981 TTGACATCCCGATGCAAGACTTTGTAAT---GAAGTCCC-TCTTCGGACATCGGTGACAG 

33|E.ventriosum         985 TTGACATCCCACTGACAGGTCAGTAATG---TGACCCTTTCTTCGGAACAGTGGAGACAG 

34|E.xylanophilum       997 TTGACATCCTGCTGACCGTTCCTTAGTC---GGAACTTCTCTTCGGAGCAGCAGAGACAG 

  

Figure 2-8: Alignment of Eubacterium ramulus probe with 34 related organisms using Clustal omega 

online tool. 
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The designed probe for Flavonifractor plautii matched eight sequences. One of them was 

AY724678 (Flavonifractor plautii) and the rest were uncultured bacteria (DQ803890, 

DQ904982, EF434371, EF644509, EU777135, GU303208, HM008848; Figure 2-9). 

 

Figure 2-9: Chart for the matched and mismatch sequences within the selected taxonomic group. 

 

 

The Flavonifractor plautii probe was aligned with seven other related organisms as shown 

in Figure 2-10. 

 

 

gi|probe                 64AGTGCTAATACCGCATGAAGCAGTTGGGTCGCATGGCTCTGACTG---CCAAAGA-TTTA 

gi|E.Plautii           144 AGTGCTAATACCGCATGAAGCAGTTGGGTCGCATGGCTCTGACTG---CCAAAGA-TTTA 

gi|C.orbiscindens,DSM  157 AGTGCTAATACCGCATGATGCAGTTGGGTCGCATGGCTCTGACTG---CCAAAGA-TTTA 

gi|C.viride            150 TGTGCTAATACCGCATGATGCAACGGGATCGCATGGTTCTG-TTG---CCAAAGA-TTTA 

gi|S.anginosus,ATCC    137 ATAGCTAATACCGCATAAGAACATTTACTGCATGGTAGATGTTTAAAAGGTGCAAAAGCA 

gi|E.ramulus           181 RCTGCTAATACCGCATAAGCGCACAGCACCGCATGGTGCAGTGTG---AAAA--ACTCCG 

gi|P.cinnaminovorans   152 GTCGTTAATACCGCATAACGTATATGGACGACATCGTCCGTATAC---CAAAGGAGCAAT 

gi|Ruminococcus        156 ACTGATAATACCGCATAATATAGTAGGATCGCATGGTTCAACTAT---CAAA--GATTTA 

gi|Subdoligranulum     157 ACTGCTAATACCGCATAAGCCCACGGCCCGGCATCGGGCTGCGGG---AAAAGGATTTAT 

 

  

  

Figure 2-10: Alignment of Flavonifractor plautii probe with 34 related organisms using Clustal omega 

online tool. 
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2.5.3.3 Preparation of the qPCR assay and running conditions 

The qPCR assays were prepared under sterile conditions in a SterilGARD® safety cabinet 

(Class II Type A/B3, The Baker Company, USA) in triplicate using a 7500 Real-Time 

PCR System (Applied Biosystems, UK). A 25 μl reaction was prepared in MicroAmp™ 

optical 96-well reaction plates which were sealed with MicroAmp® 96-& 384-well optical 

adhesive film (both Applied Biosystem, UK). The TaqMan® assay reaction mixes were 

made up as in Table 2-3. 

Table 2-3: qPCR reagents used for TaqMan assay. 

TaqMan® Single species 
(Eubacterium ramulus & 

Flavonifractor plautii) 

Group species 
(Bifidobacterium, Bacteroides, & 

total bacteria) 

TaqMan® gene expression master mix 12.5μl 12.5μl 

2.5 uMTaqMan probe  2.5μl   2.5μl 

10 uM Forward primer           2.25μl 2.25μl 

10 uM Reverse primer           2.25μl 2.25μl 

Dilution DNA sample                2μl (50 ng/ul)                         1.5μl (5 ng/ul) 

Nuclease free water             3.5μl     4μl 

Total              25μl                    25μl 

 

Template free controls containing 1.5μl of water in place of the sample were run on each 

plate as a negative control. All oligonucleotides were manufactured by Applied Biosystems 

(UK), and sequences, concentrations as well as cycling conditions are listed in Table 2-4. 
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Table 2-4: Bacterial Species/Groups showing TaqMan probes, primers, and cycling conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target 

organism 
Probes and primers 

concentrations 
Sequence 5' – 3' Cycling conditions Sources of 

reference 

 

Eubacterium 

ramulus   

TaqMan probe: 250 nM TGACATCCCGGTGACAGAACATGT  

95°C for 10 min; 45 cycles of 95°C for 30 

sec and 60 °C for 1 min 

 

this PhD (2014)  Forward primer: 900 nM GGTGGAGCATGTGGTTTAATTC 

Reverse primer: 900 nM GACACGAGCTGACGACAA 

 

Flavonifractor 

plautii 

TaqMan probe: 250 nM CATGCGACCCAACTGCTTCATGC  

95°C for 10 min; 45 cycles of 95°C for 30 

sec and 60°C for 1 min 

 

this PhD (2014) Forward primer: 900 nM GGGAATAACACTCCGAAAGGA 

Reverse primer: 900 nM CATCTCAGAGCGATAAATCTTTGG 

 

Bifidobacterium 

TaqMan probe: 250 nM CTCCTG GAAACGGGTG  

95°C for 10 min; 45 cycles of 95°C for 30 

sec and 60 °C for 1 min 

 

Furetet al. 

(2009)   

Forward primer: 900 nM CGGGTGAGTAATGCGTGA CC 

Reverse primer: 900 nM TGATAGGAGCGACCCCA 

 

Bacteroides 

TaqMan probe: 250 nM AAGGTCCCCCACATT G  

95°C for 10 min; 45 cycles of 95°C for 30 

sec and 60 °C for 1 min 

 

Furetet al. 

(2009) 

Forward primer: 900 nM CCTWCGATGGATAGGGGT T 

Reverse primer: 900 nM CACGCTACTTGGCTGGTTCAG 

 

Total bacteria 

TaqMan probe: 250 nM CTTGTACACACC GCCCGT C  

95°C for 10 min; 45 cycles of 95°C for 30 

sec and 60°C for 1 min 

 

Furetet al. 

(2009) 

Forward primer: 900 nM CGGTGAATACGTTCCCGG 

Reverse primer: 900 nM TACGGCTACCTTGTTACGACTT 
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2.5.3.4 Analysis of qPCR data: 

All qPCR experiments were analysed using the Applied Biosystem 7500 RT-PCR system 

software (version 2.0.5). After each run, the amplification efficiency, slope, and coefficient 

of determination (R
2
) were calculated by the software and Microsoft Excel using the 

serially diluted DNA curve (Figure 2-11). A slope of -3.32 cycles (=3.32 cycles) between 

each serial 1:5 or 1:10 means that the assay was well-optimized, and it was mathematically 

3.32 which gives a reaction efficiency of 100%. Generally, an amplification efficiency 

between 90% and 105% is acceptable. The following formula was used to calculate the 

efficiency:  

Amplification efficiency (%) = (10 
(-1/slope)

-1) X 100 

The automatic baseline and threshold feature of the SDS software (Auto Ct) were adjusted 

manually and the same value was used for all runs of one species/group bacteria to make 

sure that the conditions of the analyses were identical for all runs. 

Figure 2-11: Example of amplification plot for the qPCR and the standard curve for total bacteria. 

 
 

To quantify the absolute bacterial DNA in all unknown samples in the qPCR reaction, we 

used a known concentration of an external standard and followed the equation below:   

 

                                                     Average DNA concentration (ng/ul)      DNA volume used in qPCR reaction 

DNA (ng)perqPCR reaction=                                                                X  

                                                          Dilution after DNA extraction                       qPCR reaction volume 

 



 

 

63 

 

 

A further calculation was used to determine the total gene copy numbers using the 

following equation:  

                                                                Amount of DNA detected (ng) x sample dilution factor in qPCR 

Gene copy number                                                          x resuspension volume after DNA extraction   

per wet faeces =                                                                                 

                                                                       Weight of faecal sample (g) x mean genome weight (ng)                                                                                                            

 

To calculate the average genome weight, we averaged the sizes of all fully sequenced 

genomes of species that are known to be detected by the same respective primer and probe.  

The genome size was obtained from The National Centre for Biotechnology Information 

(NCBI) (http:www.ncbi.nlm.nih.gov/genome). The molecular weight of one genome was 

calculated by assuming that 1 ug of 1000 bp DNA was equal to 9.1x10
11

molecules (New 

England BioLabs, Nucleic Acid Data), which was calculated using the following equation: 

 

 

1)                 = 9.1 x 1011 genomes           :                           = 1 genome 

 

 

2)                                   = 1 genome     :                           = 1 genome 

 

 

3)  

 

 

4) X (weight of 1 genome) =     

 

5) weight of 1 genome = 2.47 fg 

1μg 

1000 bp 

x 

2.25 x 10
6
 bp 

1μg 

1000 bp x (9.1 x 10
11

) 

1μg 

1000 bp x (9.1 x 10
11

) 

x 

2.25 x 10
6
 bp 

x 

2.25 x 10
6
 bp 

1000 bp x (9.1 x 10
11

) 

 

1μg x 2.25 x 10
6
 bp 
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The gene copy numbers in dry faecal samples material was calculated using the following 

formula:  

Gene copy numbers         bacterial gene copy numbers per g wet faeces 

                                   = 

    (g dry faeces)                                 1-(% of water content/100) 

 

 

2.6 Measurement of faecal calprotectin 

Calprotectin is a calcium and zinc binding protein found in the cytosol of human 

neutrophils and macrophages. It is released extracellularly from stressed or damaged cells 

and can be detected in faecal samples, and thus can be used as a sensitive marker for 

investigation and diagnosis in patients with lower gastrointestinal symptoms (Smith and 

Gaya, 2012). In this study faecal calprotectin was measured as a non-invasive marker of 

intestinal inflammation in healthy older people and patients at risk of CRC.  

A commercially analytically validated quantitative enzyme-linked immunoassay 

(CALPROLAB™ Calprotectin ELISA test, ALP, Germany) with ready-to-use reagents 

was used according to the manufacturer's instructions. The CALPROLAB™ Calprotectin 

ELISA (ALP) is based upon the preparation of an extract of faeces using the Faecal 

Extraction Buffer. The level of calprotectin was determined by testing the extract in an 

enzyme-linked immunoassay (ELISA) specific for calprotectin. In the ELISA, samples and 

standards were incubated in separate microtitre wells coated with monoclonal antibodies 

which bind the calprotectin.  After incubation and washing of the wells, bound calprotectin 

was allowed to react with enzyme-labelled, immunoaffinity-purified calprotectin-specific 

antibodies. After this reaction, the amount of enzyme bound in the microtitre wells was 

proportional to the amount of calprotectin in the sample or standard, by incubation with a 

substrate for the enzyme giving a coloured product. The colour intensity is determined by 

absorbance using an ELISA plate reader.  

Briefly, approximately 100 mg of thawed faecal extract was suspended with the extraction 

buffer to a weight: volume ratio of 1:50 and mixed for 30 sec using a vortex mixer and for 

30 min on a shaker (IKA ® Vibrax VXR basic) at 1000 rpm then allowed to settle on the 

bench for 5 min. Five hundred microlitres of the homogenised extract was transferred to 

new Eppendorf tubes using a pipette. All tubes were stored in the freezer at -20°C to be 

analysed by ELISA. The faecal extract was diluted 1:100 and mixed by vortexing. One 
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hundred microlitres of each standard, control, and diluted sample was added in duplicate in 

the wells. The plate was covered with a sealing foil and incubated at room temperature for 

40 min on a horizontal plate shaker. At the end of the incubation time, the liquids were 

removed and washed by adding 300 µl of washing solution to each well three times. One 

hundred microlitres of the enzyme was conjugated to each well using a multichannel 

pipette. The plate was covered again and incubated for another 40 min and the same 

washing step was applied three times. One hundred microlitres of enzyme substrate 

solution was added to each well. The plate was incubated in the dark at room temperature 

for 25 min. In the last step, 100 µl of 1M NaOH was added to stop the reaction. The optical 

density values were measured at 405 nm using Thermo Fisher, Multiskan Spectrum 

Spectrophotometer (1MSPT013, Finland). The concentration of faecal calprotectin in the 

samples was calculated using the standard curve as a reference and values were expressed 

as mg/kg of wet material. According to the manufacturer’s protocol, values above 50mg/kg 

were considered as a positive calprotectin.  

2.7 Polyphenol intake and antioxidant activity  

2.7.1 Determination of phenolic acid:  

Phenolic acid extraction and derivatisation was carried out as described by Combet et al. 

(2011). Thirty microlitres (1mg/ml) of internal standard (2, 4, 5-trimethoxycinnamic acid) 

was added to samples containing either 500 μl of faecal slurry, urine, or standards in dH2O 

prior to vortexing. Samples were acidified to precipitate the phenolic acids by adding 60μl 

of 1M HCl, prior to mixing for 30 sec and stored at 4°C for 10 min.  Anhydrous ethyl 

acetate (1.5 ml) was added to the samples, which were mixed for 30 sec and centrifuged at 

4000g for 10 min. The upper organic layers were transferred to amber glass vials, which 

were placed in an aluminium block held at 37
o
C. Samples were dried under a gentle flow 

of nitrogen. The extraction was repeated once more and the upper organic layers were 

pooled for each sample. Two hundred microlitres of dichloromethane was added to rinse 

the walls of the vials and dried under nitrogen at 37°C. N, O-Bis 

(trimethylsilyl)trifluoroacetamide (BSTFA) + 10%trimethylchlorosilane (TMCS,) was 

added to the vials (50 μl), and the headspace was flushed with nitrogen prior to sealing. 

Samples were derivatized at 80
o
C for 4 hr with mixing every 30 min. Anhydrous hexane 

(99%, 350 μl) was added to each sample, prior to analysis by gas chromatography-mass 

spectrometry (GC-MS). A set of standard calibration solutions, containing phenolic acids 

ranging from 1.5- 15μg/ml, was extracted and analysed before and after the samples.   

http://www.sciencedirect.com/science/article/pii/S0009898110006248#bb0090
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2.7.1.1 Phenolic acid analysis by GC-MS: 

Derivatized phenolic acids were analysed on a Trace GC interfaced to a DSQ mass 

spectrometer equipped with a split/splitless injector and an AI3000 autosampler (Thermo 

Fisher, Hemel Hempstead, UK). Each sample was injected in split mode, with a 1:25 split 

ratio. The inlet temperature was maintained at 220°C. The oven was programmed from 

40°C (held for 0.1 min) to 160°C at 20°C/min, to 200°C at 1.5°C/min, to 250°C at 

10 °C/min to a final temperature of 300°C at 40°C/min, held for 5 min. The transfer line 

was maintained at 310°C. The carrier gas flow (helium) was constant at 1.2 ml/min on a 

fused silica capillary column (30 m × 0.25 mm i.d.) coated with cross-linked 5% 

phenylmethylsiloxane (film thickness 0.25 μm) (Phenomenex, Macclesfield, Cheshire, 

UK). Acquisition was performed in positive EI (electron ionization) mode in full scan 

(m/z 50–550) with an ionization energy of 70 eV, from 6 to 35 min. Acquisition and 

analysis of GC-MS data were performed on Xcalibur version 2. Identification of phenolic 

acids was achieved by comparison with retention times and mass spectra of authentic 

standards. Quantification was based on 2.5 to 15 µg calibration curves of derivatized and 

analysed phenolic acid standards and the area ratio of each standard was averaged and the 

coefficient of variance calculated (R
2
>0.98). All samples were analysed batch-wise, with 

grouped analysis of samples from the same individuals to reduce inter-assay error. Samples 

and standards were extracted in duplicate and their results were averaged.  

2.7.2 Determination of urinary total phenol using FolinCiocalteu 

The Folin–Ciocalteu assay which also called the Gallic Acid Equivalence method (GAE) 

has been used for many years to measure the total phenolics in natural products; 

nonetheless, this assay is affected by a number of interfering substances, for instance 

sugars, aromatic amines, sulphur dioxide, ascorbic acid, organic acids, Fe (II), and non 

phenolic substances that react with the Folin reagent (Roura et al., 2006). The urinary total 

phenol Folin-Ciocalteu assay method by Singleton and Rossi (1965) was modified to the 

96-well plate. Briefly 20ul of urine samples or standards (triplicate) were added to the 96-

well plate followed by (1:10,100ul) Folin reagent (Sigma-Aldrich, UK) and dH2O (70 ul). 

The reaction was incubated for 5 min prior to the addition of sodium carbonate (1:10, 70 

ul). The reaction was incubated for two hours at room temperature. The absorbance was 

read on a Thermo Fisher, Multiskan Spectrum Spectrophotometer (1MSPT013, Finland) at 

765 nm wavelength.  

http://en.wikipedia.org/wiki/Gallic_acid
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2.7.3 Determination of antioxidant activity  

Total antioxidant activity was measured by ferric reducing antioxidant power (FRAP) 

assay. The method was modified from Benzie and Strain (1996) for a 96-well plate. The 

antioxidant power was measured in the 24hr urine samples after low and high polyphenol 

diets. FRAP regent was prepared by mixing 8.33% 10 mM TPTZ, 8.33% 20 mM Fe
+
2 

solution, 20 mM Ferric Chloride (FeCl3.6H2O) and 83.3% Acetate Buffer. The standard 

Fe
+
2 (1mM ferrous sulphate) was used for the calibration curve from 0.1 to 1 mM. 

Twenty-five microlitres of each standard and sample was added to the well. Two hundred 

and twenty five microlitres of FRAP reagent was added to each well in less than 30 sec and 

the plates were incubated for 4 min at room temperature. The absorbance was measured 

using a Thermo Fisher Multiskan Spectrum Spectrophotometer (1MSPT013, Finland) at 

593 nm wavelength. 

2.8 Dietary assessment methods  

2.8.1 Dietary records 

Dietary records were used during the study after low and high diet-polyphenol diets were 

completed (three days each) to estimate the dietary intake of each participant and to 

measure the participants’ compliance (Appendix 2). Participants were asked to record their 

entire dietary intake, including food types, portion sizes, and cooking methods for each day 

(breakfast, lunch, dinner, and three snacks between meals). They were also asked to 

include the names of commercially prepared foods consumed to allow more accurate 

nutritional assessments. Participants were provided with an electronic scale to measure the 

portion sizes.   

2.8.1.1 Estimation of macro and micronutrients intake  

These dietary records were analysed using WinDiets Nutritional Analysis Software 

(Commercialisation, Research, and European Development Office, The Robert Gordon 

University, Aberdeen, UK) (Wise, 2008) which is based on McCance & Widdowson’s The 

Composition of Foods (Food Standards Agency, 2002) to calculate the amount of macro 

and micronutrients. The WinDiets software allows analysis of up to seven days’ food 

intake including breakfast, morning snack, lunch, afternoon snack, evening meal and 

evening snack, which is sufficient for the purposes of this study. Moreover, WinDiets 

enables analyses of the recipes by entering individual ingredients to create a recipe that can 
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then be used in the same way as other foods in the database. This procedure was used for 

cooked dishes and a wide variety of sandwiches, wraps and filled rolls. 

2.8.1.2 Estimation of flavonoid intake 

An advanced search was carried out using an online comprehensive database on 

polyphenol content in foods, the Phenol-Explorer database (www.phenol-

explorer.eu/contents, Neveu et al., 2010) to retrieve mean content values of flavonoids 

contained in the dietary records food.  Flavonoid content in foods that are low in 

polyphenols such as pasta, bread, biscuits, cakes and pastry were estimated from their 

wheat-flour content using the data from Chlopicka et al. (2012).  

2.8.2 Food frequency questionnaires 

A modified food frequency questionnaire based on the European Prospective Investigation 

into Cancer and Nutrition study (EPIC) questionnaire was used. A total of 112 food items 

and food groups with an addition of a spices intake section were added to EPIC FFQ. The 

questionnaire took approximately 15 min to complete (Appendix 3). For each food item or 

food group, subjects were asked how frequently (never or almost never, 1–3 times per 

month, once per week, 2–4 times per week, 5–6 times per week, once per day, 2–3 times 

per day, 4–6 times per day, and more than six times per day) they consumed the food or 

food groups. Food intake was grouped into food groups (beverages, fruits and vegetables, 

prepared meals, eggs, fish and meats, potatoes, pasta, rice, breads, sweets and treats, dairy 

and fats, and seasonings and sauces). The analysis was performed using Microsoft Office 

Excel to calculate the servings of each item per week.  After that, food items within the 

same group were combined. For example, green tea, black tea, coffee, hot chocolate and 

herbal infusions were all combined under the hot beverages section. Likewise, marrow, 

sweet pepper, sweetcorn, avocado, apple, pear, orange, grapefruit, banana, grapes, melon, 

apricot, and berries were combined under the fresh fruit intake. Vegetable, cereal, meat, 

milk, and sweets were calculated the same way.  

  

http://www.phenol-explorer.eu/contents
http://www.phenol-explorer.eu/contents
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&cad=rja&uact=8&ved=0CFYQFjAI&url=http%3A%2F%2Fwww.gastro.net.au%2Fdiets%2Fglutenfree%2Fbread-biscuits-cakes-and-pastry.html&ei=rUxeU-GkBcnbPbPpgGA&usg=AFQjCNFjYm_ktftqEhtfjm4hjP3XyJKssQ&sig2=rB7VUaOuDK6BwvSlY2cF0Q&bvm=bv.65397613,d.ZWU
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2.9 Statistical analysis 

The statistical analysis for all data was carried out using Minitab 16. Normality test was 

run for all data using the Anderson-Darling test to determine if a data set is well-modelled 

by a normal distribution and to compute how likely it is for a random variable underlying 

the data set to be normally distributed. Descriptive statistics are presented as mean and 

standard deviation, or medians and inter quartile range (IQR). The ranges were also used 

for continuous data. Comparisons between groups were done using Mann-Whitney test for 

non-normally distributed data and paired test and 2 sample t-tests for the normally 

distributed data. The correlation coefficients were calculated for the excretion of the 

urinary phenolic acid with total phenol and FRAP. Moreover, the general linear model 

(GLM) with Bonferroni post-hoc test was used to analyse the in-vitro data to understand 

the effect of the 1) ethnicity, 2) time, 3) and compounds on the metabolism of rutin. Lastly, 

a post-hoc test was used using the G-power software to obtain the sample size and effect 

size to determine what the power was in the study. 
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 Chapter Three 

The Effect of Ethnicity on the Colonic Metabolism of 

Dietary Polyphenols 

 

 

 

  

 



 

 

71 

 

 

3.1 Introduction 

The ubiquitous nature of dietary polyphenols, in particular the flavonoids, ensures that they 

are found in large quantities in the human diet (Manach et al., 2005, Jaganath et al., 2006). 

Dietary polyphenols are mostly found in fruits, vegetables, chocolate, and beverages, such 

as tea, coffee, or wine (Scalbert and Williamson, 2000, Manach et al., 2005). The total 

daily intake of dietary polyphenols is estimated to be between 150 and 1000 mg (Scalbert 

and Williamson, 2000).  

These compounds have been associated with a large number of biological activities which 

include anticarcinogenic (Pereira et al., 1996, Coates et al., 2007, Kamaraj et al., 2007, 

Khan and Mukhtar, 2008) and antioxidant properties (Jacob et al., 2008, Giftson et al., 

2010). A high level of polyphenol metabolites in plasma has been associated with a lower 

risk of colorectal adenomas (Kuijsten et al., 2006). Furthermore, epidemiological evidence 

links diets rich in polyphenols with a decreased risk of developing gastrointestinal 

diseases, including CRC (Theodoratou et al., 2007b, Jedrychowski et al., 2009, Kyle et al., 

2010).  

The aetiology of CRC indicates the role of a strong environmental component connected to 

dietary habits (Cappellani et al., 2013). Likewise, the World Cancer Research Fund 

emphasized the role of nutrition and physical activity in CRC incidence; with a high 

calorie intake, reduced fruit and vegetable intake, increased fat consumption, excess body 

weight, and reduced physical activity all considered major risk factors for disease (Stewart 

and Kleihues, 2003). 

The incidence of CRC varies from country to country, with at least a 25-fold difference in 

incidence worldwide (Wild et al., 2006). The highest incident rates are found in North 

America, Australia/New Zealand, Western and Eastern Europe (Wild et al., 2006). In 

contrast, the reported CRC incidence in India during the past three decades has remained 

consistently low (4.3 per 100,000 for males, 3.4 per 100,000 for females) compared to the 

United Kingdom (36.2 per 100,000 for males, 23.5 per 100,000 for females) (Mohandas, 

2011). This is thought to be related to a number of environmental and lifestyle factors, 

including: a lower intake of sugars, calories, meat, and fat-rich food; a higher consumption 

of vegetables, fruits, grains, and spices, which are rich in polyphenolic compounds; and 

adequate rates of physical activity and a low rate of overweight and obesity compared to 
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other countries. Yet India has an increasing problem with obesity-related type II diabetes 

(Tanaka et al., 2008, Pathy et al., 2012).  

Flavonoids in practical flavonols such as rutin have shown significant activity in reducing 

azoxymethanol-induced hyperproliferation of colonic epithelial cells, as well as focal areas 

of dysplasia incidence in female mice (Deschner et al., 1991). This suggested the ability of 

rutin to suppress tumour development. However, the beneficial systemic health effects of 

polyphenols are dependent on their capacity to be metabolised and absorbed by the human 

body  and locally via the exposure of the gastrointestinal tract to their metabolites (Del Rio 

et al., 2013).  

Rutin is usually found in vegetables, particularly tomatoes and onions, in a glycosylated 

form (Mullen et al., 2006, Crozier et al., 2010). The daily intakes of rutin and its aglycone 

and quercetin are estimated to be between 50 and 500 mg/day (Lipkin et al., 1999). The 

glycosylation of rutin with rhamnose-glucose disaccharide influences its absorption (Aura 

et al., 2002, Jaganath et al., 2006). The glycosides resist the acid hydrolysis in the stomach 

and thus pass intact to the large intestine  (Gee et al., 1998). The gut absorption of 

rhamnosides requires deglycosylation by colonic microbial enzymes (α- rhamnosidase, β- 

glucosidase, and β-glucuronidase). Rutin is not deglycosylated within the endogenous 

human small intestine by LPH and/or the CBG enzymes. The deglycosylation by human 

enzymes is for the flavonols that are attached to glucose, arabinose, or xylose (Jaganath et 

al., 2006). Thus, rutin is hydrolyzed and degraded in the colon by the microbiota to low 

molecular weight, phenolic acids (Figure 3-1); (Erlund et al., 2000, Manach et al., 2005, 

Jaganath et al., 2006, Jaganath et al., 2009). The phenolic microbial metabolites are then 

subjected to the phase II liver metabolism, resulting in their sulphated and glucuronidated 

derivatives. In the end, phenolic metabolites are excreted via urine as hepatic sulphate and 

glucuronide conjugates (Manach et al., 2004, Crozier et al., 2010). 
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Figure 3-1: Proposed pathways for the human colonic degradation of rutin (Jaganath et al., 2009). 

  

Using urinary phenolic acids as biomarkers of polyphenol-rich food intake has some 

advantages over the plasma concentration, largely because it provides a better index of 

intake of the small and large intestinal metabolites. Moreover, it allows for total 

polyphenol absorption to be more accurately measured (Mennen et al., 2006, Spencer et 

al., 2008). The urinary excretion of polyphenol metabolites varies, depending on the 

polyphenol, and ranges from 0.3% to 43% (Manach et al., 2005). According to Sawai et 

al.(1987), the total phenolic metabolites excreted in the urine accounted for 50% of the 

ingested dose of 75 mg rutin among volunteers. However, studies focusing on the 

bioavailability and the colonic metabolism of polyphenols have found a large inter-

individual variability between participants (Gardana et al., 2009, Jaganath et al., 2009, Gill 

et al., 2010, Gross et al., 2010).  

A study by Gill et al. (2010) noted a large inter-individual variation in the phenolic acid 

profiles of the faecal water of 10 participants after the intake of raspberry puree (200g/day) 

for four days. A number of the phenolic acids were significantly increased across the group 

of participants, including phenylacetic acid, 3,4-dihydroxyphenylacetic acid, and 3-

hydroxyphenylacetic acid; however, it was noted that 4-hydroxyphenylacetic acid was only 

increased in a single subject. Furthermore, the concentration of 3-hydroxyphenylacetic acid 

and 4-hydroxybenzoic acid in faecal water samples varied two to three folds between 

subjects. Moreover, Gross et al. (2010) studied in-vitro colonic metabolism fermentation of 
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black tea and red wine/grape juice using faecal samples collected from ten participants and 

reported varying metabolite pathways among participants.  

No clear mechanism has yet been established to account for this inter-individual 

variability; however, some of the observed variability is suggested to be a consequence of 

genetics, dietary habits and gut microbiota diversity (Scalbert and Williamson, 2000).  

Studies have reported that genetics could influence the gut microbiota. A study by 

Yatsunenko et al. (2012) reported that both children and adults from the United States have 

a different gut microbiota from people in Malawi and the Amazonas state in Venezuela. 

Moreover, Turnbaugh et al. (2009) suggested more similarities in the gut microbiota 

structure between identical twins than adult dizygotic twins. Observable patterns in the 

composition of individuals’ gut microbiota may also be detectable at a population level. 

For example, a study by Mueller et al. (2006) suggested an influence of geography in the 

differences in gut microbiota composition. 

Cultural factors, particularly diet, have been shown to be essential in determining gut 

microbiota. Differences in dietary habits could have an influence on the colonic 

fermentation and production of short-chain fatty acids which may lead to changes in the 

colonic pH, which has a selective effect on the growth of bacteria species (Walker et al., 

2011, Claesson et al., 2012). Hayashi et al. (2002) also illustrated differences in gut 

microbiota between vegetarians and individuals who follow a Western diet (which may be 

linked to fibre intake, level of fat consumption, lifestyle etc.). Moreover, the effect of the 

food matrix on the colonic metabolism of polyphenols has been reported previously by 

Manach et al. (2004). Direct interactions between polyphenols and other components in 

foods such as polysaccharides, proteins, or dietary fibre (Manach et al., 2004), milk 

(Serafini et al., 2009) or yogurt (Mullen et al., 2008, Roowi et al., 2009) have been shown 

to influence the colonic metabolism of dietary polyphenols.  

There are a number of human faecal bacteria species that have been identified to degrade 

the C-ring system of flavonoids, such as, Clostridium scindens, Flavonifractor plautii, 

Eubacterium desmolans, and Eubacterium ramulus (Schneider et al., 1999, Simmering et 

al., 1999, Braune et al., 2001, Schoefer et al., 2003). Yet, there remains a lack of 

information on the type and occurrence of the flavonoid-degrading bacteria in the human 

intestinal tract, the effect of ethnicity and dietary habits on the quantity of these bacteria in 
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the human gut, and the variability of phenolic microbial metabolite excretion in relation to 

health and disease.  

Therefore, the ethnic origin of subjects, which may impact on dietary habits, gut function 

and gut microbiota colonisation, should be considered when evaluating the bioavailability, 

metabolism, and possible health effects of dietary polyphenols. These factors might 

influence the metabolism of dietary polyphenols (to phenolic acids), which have been 

proposed to be more bioactive in the colon than their parent compounds (Olthof et al., 

2003, Parkar et al., 2013).  

This chapter consequently focuses on the impact of ethnicity on the colonic metabolism of 

dietary polyphenols, particularly flavonols, known to accumulate in the colon. Two ethnic 

groups were studied: adults from European countries, and adults from India (having 

resided less than 5 years in the UK, while maintaining the dietary habits of their home 

country). We know that CRC prevalence is lowest in India, and that diet is an important 

predictor of CRC risk. Since flavonol intake is different between the two ethnic groups, we 

hypothesized that the colonic metabolism of polyphenols would differ between Europeans 

and Indians, a possible reason behind the differences in CRC risk between the two groups. 

To test this hypothesis, two study designs were used. 

1. A human cross-over dietary intervention (in-vivo) to study the colonic 

metabolism of dietary polyphenols (after low and high polyphenol diets) 

between the two groups, focusing on urinary phenolic acid excretion in 

the light of gut bacterial diversity (especially polyphenol-degrading 

bacteria). 

2. In-vitro fermentations, using faecal samples collected during the dietary 

intervention, to study the metabolic capacity of the samples when 

specific flavonols were fermented. 

 

3.2 Subjects and study design 

3.2.1 Subjects and recruitment 

Participants were recruited using local advertisements, printed poster displays, and online 

social networking sites. Exclusion criteria included alcohol consumption (>4 units/day), 

obesity (BMI>30kg/m
2
), taking dietary supplements, pregnancy or at risk of pregnancy, 
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smoking, taking any medication, having any conditions known to affect bowel function, or 

Indians who had been in the UK more than 5 years and did not follow their native diet 

There was no consideration whether the individual followed a vegetarian diet. A full 

ethical application was prepared for this study and submitted to the University of Glasgow, 

College of Medical; Veterinary & Life Sciences (approval in Appendix 6). All participants 

gave informed written consent. 

3.2.2 Sample size and power calculation 

The required sample size was estimated based on a previous study (Combet et al., 2011), 

using the excretion of the sum of phenolic acids relevant to flavonoid metabolism, as a 

primary outcome. The difference in urinary phenolic acid excretion after low-high diet was 

60.45± 36.03µmol/day in the European groups and 1.91± 10.18 µmol/day in the Indian 

group. Based on this, it was calculated that a total sample size of n=16, allowing for the 

recruitment of n=8 participants of European background and n=8 participants of Asian 

Indian background, would detect a difference of one standard deviation between the two 

populations at a power of 90% p<0.05, allowing for a 20% drop-out rate.  

3.2.3 Study design and sample collection  

A crossover design with randomised allocation was carried out. Participants picked the diet 

allocation in sealed envelopes from a bag. Each low and high-polyphenol diet lasted three 

days, with a washout period of 15 days in-between. Three days for each diet was enough 

for polyphenol rich foods to be supplied to the colons and fermented over the course of 

several meals. Moreover, a 15 day washout period was used to separate the effects of each 

diet and to give the participant a break to resume normal eating patterns and prepare for the 

second part of the diet. During the low-polyphenol diet, participants were asked to avoid 

all fruits, vegetables, onions, coffee, tea, chocolate, vanilla and similar flavourings, whole 

meal products, alcohol, spices, and all dietary supplements (vitamins, minerals, and herbal 

products). During the high-polyphenol diet, participants were asked to follow a specific 

diet including polyphenol-rich foods, which were provided along with cooking guidance 

and recipe sheets. Examples of foods to be included during the low polyphenol diet, and a 

detailed menu of the high-polyphenol diet are given in Appendix 4 and 5. Urine and faecal 

samples were collected after the low-polyphenol diet (day 4) and high-polyphenol diet (day 

4) for the human feeding study measurements (Figure 3-2). Stool samples collected after 

the low-polyphenol diet (day 4) were used in in-vitro faecal fermentations. 
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Sociodemographic and anthropometric measurements (height, weight, BMI, and waist 

circumference), and blood pressure for each participant were also collected (details 

described in Chapter 2, page 44). 

Figure 3-2: Overall study design and samples collection. 

 

 

3.3 Dietary assessment 

A food frequency questionnaire was used to assess the participants’ habitual diet over the 

past year, as described in Chapter 2, page 68). 

3.4 Dietary records 

Participants kept a 3-day weighed dietary record for the duration of the low and high-

polyphenol diets. Diaries were used to estimate the intake of macronutrients, 

micronutrients, and flavonoids of each participant during the study and to measure the 

participants’ compliance by reviewing the food types and portion size according to the 

provided instruction (details described in Chapter 2, page 67). 
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3.5 Outcome measures for the human feeding and in-vitro 

faecal fermentation studies 

Phenolic acid (GC-MS), total phenols (Folin–Ciocalteu), and ferric reducing antioxidant 

power (FRAP) were measured in urine samples. The pH, short chain fatty acids (GC-FID), 

ammonia, and bacterial composition (Taqman real-time quantitative PCR) were measured 

in the faecal samples.  

Phenolic acid, pH, short chain fatty acids, and gas production were measured in the 

fermentation supernatants (details described in Chapter 2). 
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3.6 Results 

3.6.1 Subjects characteristics 

Sixteen participants were recruited aged between 18 – 43 years old, with 8 Europeans and 

8 Asian Indians (who had lived in the UK for less than 5 years; two of whom were 

vegetarians). The baseline data for both groups (Europeans and Indians) are presented in 

Table 3-1. There were no significant differences between groups in terms of their age or 

anthropometric characteristics. The male to female ratio was different between groups, 

with 2 males and 6 females in the European group and 7 males and 1 female in the Indian 

group.  

Table 3-1: Baseline data in Europeans (n=8) and Indians (n=8) participants. 

  
All   

  
European (n=8)   

  
Indian (n=8)   

  

p value  

 Median IQR Median IQR Median IQR 
Age (years)   24.0   5.8 

 
 23.0  6.5 

 
25.0 4.3 

 
0.4 

Height (cm) 174.0 15.5 
 

  163.0   19.0 
 

 175.5 8.5 
 

0.1 
Weight (kg)   70.2 20.6 

 
 63.0 13.3 

 
74.8   10.8 

 
0.2 

BMI (kg/m
2
)

a   22.7   4.3 
 

 22.0   5.8 
 

23.0  3.7 
 

0.7 
W.C (cm)

b   82.5 14.3 
 

 80.0   3.0 
 

92.0 11.4 
 

0.1 
Systolic BP 113.5 15.0 

 
  122.0 19.0 

 
1 13.0   4.0 

 
0.7 

Diastolic BP   71.5 10.3 
 

 69.0 13.8 
 

   73.0   5.5 
 

0.3 
  

   

n % 

 

n % 

  Normal weight 
   

5 62.5 
 

5 62.5 
  Overweight 

   
3 37.5 

 
2 25 

  Obese  
   

0 0 
 

1 12.5 
  

 

a
BMI cut-off points (European=25, Indian = 23; Snehalatha et al., 2003)   

b
WC cut-off points (European women=80 cm, man=94; Indian women=80, man=90; Misra et al., 2006)   

 

Bowel movements (self-reported on the questionnaire as twice daily or more, daily, every 

2-3 days or less than twice a week) were significantly different between Europeans and 

Indians using chi-square test (p=0.02; Table 3-2). The Indian group reported daily bowel 

movements, while the European varied from twice daily to every two to three days.  

Table 3-2: Bowel movement in Europeans (n=8) and Indians (n=8) participants. 

 

Twice daily or more Daily Every 2-3 days Less than twice a week 

Europeans (n=8)   37.5% 37.5%  25% 0% 

Indians (n=8)              0% 100%           0% 0% 

*Data presented as percentage of frequency  
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3.6.2 Dietary assessment 

3.6.2.1 Estimation of habitual dietary habits  

The Indian group consumed more servings of onion, tomato, chilli, or curry- based 

products, yoghurt, and spices & chilli than the European group (p=0.008, 0.04, 0.0009; 

respectively). The European group consumed more seafood (p=0.01) and cheese (p=0.002) 

than the Indian group. In terms of meat intake, two male vegetarians were in the Indian 

group; however, there was no significant difference in median meat intake between the two 

groups (Table 3-3). 

Table 3-3: Estimation of dietary habits (serving/week) using the FFQ European (n=8) and Indian (n=8) 

participants. 

 
Food item 

 

European Indian  
  p value  

 Median IQR Median IQR 
Hot Beverages (Green tea, black tea, coffee, hot 

chocolate, herbal infusion)    15.4 24.4 8.8 7.9       0.2 
Milk drinks    3.0 15.2 2.0 6.5       0.6 
Milk substitutes(soya, rice, and oat milk)   0.5   0.0 3.8 9.5       0.5 
Fruit juices   1.5   6.5 2.5 5.9       0.6 
Soft drink   0.4   0.4 6.3 9.1       0.1 
Alcohol    1.6   0.7 3.6 4.6       0.8 
Wholemeal products (pasta, rice, and brown 

rice)  7.6   7.3 1.3 0.7       0.2 
Refined products (pasta, rice, and crisps and 

crackers)  4.9   4.2   13.1 10.3       0.1 
Breakfast cereals   3.8   5.1     0.9 2.1       0.09 
Fresh fruit    16.0 11.2  7.5 13.0 0.1 
Dried fruits       0.5   0.8  0.3 0.3 0.1 
Vegetables    10.1   9.1   19.4 13.2 0.2 
Potatoes  1.8   2.0 2.8   4.3 1.0 
Legumes   2.0   0.6 5.0   8.4 0.9 
Onion, tomato, chili, or curry- based products 
(inc. fresh tomatoes, ketchup, and soup)    11.9  7.9   29.1 18.6     0.008 
Meat (beef, chicken, lamb, pork, bacon, and 

sausages)      2.0  4.3 3.0   1.6 0.7 
Sea food (White fish, oil-rich fish, and shellfish)      2.9  1.6 0.6 1.4   0.01 
Biscuits, cakes, and sweet    11.0  12.9   17.4 10.3 0.4 
Yoghurt       1.8  2.5  5.9 3.6   0.04 
Dairy dessert       0.4  0.3  0.3   0.5 0.3 
Cheeses      2.4  3.4  0.0 0.6     0.002 
Eggs      2.0  3.0  3.0 3.0 0.5 
Ice cream       0.5  0.8  0.0 0.3 0.3 
Fats & oils      6.1  9.6  3.4 6.6 0.1 
Seasonings       6.8  19.6  8.8 1.9 0.9 
Herbs      6.0  5.9  5.0 7.1 0.4 
Spices & Chili      2.5  3.3   14.0    0.0      0.0009 
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3.6.2.2 Macronutrients intake during low and high polyphenol diets  

There was no significant difference between the two groups in terms of energy, fat, 

protein, carbohydrate, total sugars, starch, alcohol, or dietary fibre consumption during the 

low-polyphenol diet. However, Europeans consumed significantly more total sugar 

(p=0.01) during the high-polyphenol diet than during the low-polyphenol diet (Table 3-4). 

When considering the difference in macronutrient intake (Δ low-high diet), there was no 

significant difference between the groups. 

 

3.6.2.3 Micronutrient intake during low and high polyphenol diets 

There was no significant difference between groups for the vitamin or dietary mineral 

intake, with the exception of vitamin B12 intake during the low-polyphenol diet (p=0.03), 

which had a notably higher intake in the European group (Table 3-5). 
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Table 3-4: Energy intake and macronutrients from the dietary records after low and high-polyphenol diets in European (n=8) and Indian (n=8) participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
               * Non-starch polysaccharide 

 

 

  

Group 

 

Low-polyphenol diet 

 

 
High-polyphenol diet 

 

 
Diet 

 

European  

 

Indian  

 

 
p value 

 

European  

 

Indian  

 

 
p value 

Nutrient Median IQR Median   IQR Median   IQR Median IQR 
Energy (KJ)     8016            2466 9663 7430 0.6  8227 2442 7549      1033     0.7 
kcal (Kc)     1910    585 2292 1775 0.6 1949   586 1782 257     0.7 
Fat (g)      95.8  27.8  78.1 45.3 0.4  74.3  25.8  68.2  8.0     0.4 
Protein (g)      80.4    7.2  85.8 33.5 0.7  54.9  15.6  58.3 21.4     0.6 
Carbohydrate (g)    195.0  83.3   301.9 326.7 0.4    247.1 109.5    244.4       78.7     0.9 
Total sugars (g)      36.1  26.4     31.7     28.5       0.4    115.9   50.0      90.4       40.5     0.01 
Starch (g)    140.5  62.8   237.0 308.3 0.4  70.6   44.2    115.2       86.4     0.4 
Alcohol (g)        0.0    0.0    0.0 0.0 -    0.0     0.0    0.0   0.0 - 
Dietary fibre*(g)        9.1    2.0    9.0 11.2 0.8  27.5     3.2  30.5   8.7     0.4 
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Table 3-5: Estimated micronutrients intake from the dietary records after low and high-polyphenol diets in European (n=8) and Indian (n=8) participants. 

 
Diet Low-polyphenol diet 

p value 

 

High-polyphenol diet 
  p value 

 
Group        European          Indian       European           Indian 
Nutrient Median IQR Median   IQR Median IQR Median     IQR 
Vitamin A (µg) 632.0 201.6 530.5   485.3 0.3   362.2   98.1    284.0    169.1 0.7 
Thiamine (mg) 1.2 0.3 0.9 0.8 0.2       0.6     0.3        0.7        0.4 0.2 
Riboflavin (mg) 1.7 0.5 1.5 1.6 0.9       0.6     0.4        0.5        0.2 0.5 
Niacin (mg) 28.6 4.9 29.4 22.9 0.9     19.5   14.7      13.5        9.1 0.6 
Vitamin B6 (mg) 1.5 0.2 1.5 1.2 0.9       0.7     0.5        0.8        0.5 0.8 
Vitamin B12 ( µg) 5.2 1.3 2.7 2.2   0.03       1.6     2.1        0.6        1.6 0.6 
Folic acid (µg) 155.2 70.5 170.7 150.2 0.7     95.5   33.3    108.8      49.7 0.3 
Pantothenic acid (mg) 4.6 1.4 3.8 2.0 0.5       2.2     0.5        1.9        0.9 0.7 
Biotin (µg) 26.0 5.9 23.2 11.9 0.5     18.5     6.4      15.7        4.4 0.4 
Vitamin C (mg) 17.2 8.3 16.2 16.7 0.6     62.4   11.0      49.1      38.4 0.3 
Vitamin D (µg) 2.0 1.3 1.4 1.3 0.2       1.2     1.1        0.4        0.7 0.2 
Vitamin E (mg) 5.8 3.8 6.9 2.1 0.7     11.7     5.0        8.9        1.6 0.3 
Calcium (mg) 1302.3 539.5 955.3 1033.4 0.6   358.8   69.7    346.0    101.8 0.7 
Magnesium (mg) 

182.7 65.8 142.3 118.3 0.7   146.5   55.1    168.3      78.4 0.9 
Sodium (mg) 

3009.5 1340.0 3324.0 1971.8 0.5 2698.5 713.2  2320.7    971.0 0.9 
Potassium (mg) 

1934.2 686.1 1725.0 1441.3 1.0 1987.7 680.3  1931.5    915.1 1.0 
Chlorine (mg) 4394.5 1702.3 5101.8 2889.2 0.6 2612.2 721.5  2563.3  1338.8 0.8 
Phosphorus (mg) 1486.7 227.8 1354.7 816.8 0.6   568.2 329.1    686.0    257.2 0.4 
Iron (mg) 8.6 2.5 10.2 9.3 0.6       6.2     2.4        6.9        4.2 0.3 
Zinc (mg) 8.5 1.6 6.5 3.3 0.2       4.1     1.5        5.2        3.2 0.1 
Copper (mg) 0.7 0.3 0.6 0.3 0.6       1.1     0.2        1.1        0.4 0.5 
Manganese (mg) 

1.3 1.0 1.2 0.8 0.8       2.5     0.5        2.7        1.0 0.7 
Selenium (µg) 

41.0 9.8 36.5 15.1 0.2     22.5   15.8      16.5      16.5 0.4 
Iodine (µg) 

198.7 127.9 175.8 152.0 0.6     58.7   57.0      63.3      34.7 0.5 

http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Manganese
http://en.wikipedia.org/wiki/Selenium
http://en.wikipedia.org/wiki/Iodine
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3.6.2.4 Flavonoid intake during low and high polyphenol diets  

Dietary assessment of average flavonoid intake estimated that Europeans consumed 

significantly more (p=0.03) flavonoids over the 3 days high-polyphenol diet (510.4 mg/day, 

IQR 40.1) than Indians (420.8 mg/day, IQR 222.5; Figure 3-3).  

Figure 3-3: Median flavonoid intake per day over 3 days after low and high-polyphenol diets in European 

(n=8) and Indian (n=8) participants.  

 

Each circle indicates the estimated average daily flavonoid intake for each participant after low and high-

polyphenol diets. Median flavonoid intake for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

§  symbol indicates differences between groups (high vs. high). 

 

As the urinary phenolic acid excretion has been shown to be markedly increased between 8 to 

24 h following ingestion (Roowi et al., 2010), urinary phenolic acid excretion was corrected 

for flavonoid intake on day 3 of the diet, given that the 24 h urine collection was carried out 

from the second urine of day 3, and including the first urine of day 4. A similar result was 

obtained when the flavonoid intake of day 3 only was considered, with significantly higher 

levels (p=0.02) in the European group (553.1 mg, IQR 76.0) compared to the Indian group 

(420.9 mg, IQR 158.7). 
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3.6.3 Measurements performed on urine samples 

3.6.3.1 Urinary total phenols using Folin-Ciocalteu assay 

Urinary total phenols were significantly higher after the high-polyphenol diet in both 

European (p=0.02) and Indian (p=0.03) participants. The urinary total phenol increased from 

245.9 µg GAE/24h (IQR 91.9) to 385.4 µg GAE/24h (IQR 229.7) in the European group and 

from 304.7 µg GAE/24h (IQR 112.9) to 359.9 µg GAE/24h (IQR 77.1) in the Indian group. 

However, there was no significant difference in urinary total phenols excretion (Δ low-high 

diet) between groups (Figure 3-4).  

Figure 3-4: 24-hour urinary total phenols (µg GAE/24h) after low and high-polyphenol diets in European 

(n=8) and Indian (n=8) participants.  

 

Each circle indicates the measurement of urinary total phenols for each participant after low and high-polyphenol 

diets. Median urinary total phenols for each group are indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 
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3.6.3.2 Total antioxidant activity (FRAP) of urine samples after low and high 

polyphenol diets 

The urinary FRAP value was increased significantly in European participants after the high-

polyphenol diet compared to the low-polyphenol diet, from 0.6 mM Fe+2/day (IQR 0.4) to 2.8 

mM Fe+2/day (IQR 0.9; p=0.0009), indicating a rise in total antioxidant activity in this group. 

However, urinary FRAP did not change in Indian participants, with similar values recorded 

after both low (0.8 mM Fe+2/day, IQR 0.8) and high polyphenol diets (0.7 mM Fe+2/day, 

IQR 1.7). The difference (Δ low-high diet) in FRAP value was higher in the European group 

(p=0.003; Figure 3-5). 

Figure 3-5: 24-hour urinary antioxidant activity (mM F
+2

/day) after low and high-polyphenol diets in 

European (n=8) and Indian (n=8) participants.  

 

Each circle indicates the measurement of urinary FRAP for each participant after low and high-polyphenol diets. 

Median urinary FRAP for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

*symbols indicate differences in changes (∆) between groups. 
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3.6.3.2.1 Correlation between urinary total phenols (measured with Folin-Ciocalteu) and 

urinary FRAP 

The relationship between urinary total phenols (measured with Folin-Ciocalteu) and urinary 

FRAP was analysed by linear regression (Spearman rank correlation). There was a very good 

relationship (Rs
2
=0.8; p<0.001) between FRAP and total phenols in the European group and a 

moderate relationship between the variables (Rs
2
=0.6; p=0.02) in the Indian group (Figure 

3-6).  

Figure 3-6: Correlation between urinary FRAP and the urinary total phenols (Folin-Ciocalteu) in 

European (n=8) and Indian (n=8) participants. 

 

Dotted line indicates Europeans; solid line indicates Indians. 
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3.6.3.3 GC-MS measurement of urinary phenolic acid excretion after low and high-

polyphenol diets  

Eighteen phenolic acids were identified and quantified in the 24 hr urine of participants using 

GC-MS (A typical GC-MS trace of standards and sample are   illustrated in Figure 3-7 and for 

sample in Figure 3-8, respectively. 

Table 3-6). The identification of phenolic acids was based on retention time (tR) and target 

ions (Stalmach et al., 2013). A typical GC-MS trace of standards and sample are   illustrated in 

Figure 3-7 and for sample in Figure 3-8, respectively. 

Table 3-6: Retention times and target ions present identified in chromatograms mass spectra of standard 

solution and urine samples. 

 
No. 

 

 
Phenolic acids  

 

tR 
(min) 

Target 

ion 

(m/z) 

1 Benzoic acid (BA) 6.95 105 

2 Phenylacetic acid (PAA) 7.49 164 

3 Mandelic acid (MA) 10.06 179 

4 3-Hydroxybenzoic acid (3-OHBA) 12.19 267 

5 3-Hydroxyphenylacetic acid (3-OHPAA) 13.35 164 

6 4-Hydroxybenzoic acid (4-OHBA) 13.95 267 

7 4-Hydroxyphenylacetic acid (4-OHPAA) 14.3 179 

8 4-Hydroxyphenylpropionic acid  (4-OHPPA) 18.62 179 

9 Vanillic acid (VA) 18.72 297 

10 Homovanillic acid (HVA) 18.97 209 

11 4-Hydroxymandelic acid (4-OHMA) 19.28 267 

12 3,4-Dihydroxybenzoic acid (3,4diOHBA) 20.99 193 

13  3,4-Dihydroxyphenylacetic acid (3,4diOHPAA) 21.33 179 

14 Hippuric acid (HA) 22.06 206 

15 3-(3,4-Dihydroxyphenyl) propionic acid (Dihydrocaffeic acid) 24.39 340 

16 4-Hydroxy-3-methoxy-phenylpropionic acid (3,4diOHPPA) 26.76 179 

17 Gallic acid (GA) 27.46 281 

18 3-Hydroxyhippuric acid (3-OHhippA) 37.09 294 
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Figure 3-7: GC-MS total ion chromatogram profile of phenolic acids in the standards. 

 

Figure 3-8: Profiling of phenolic acids in urine samples after the high-polyphenol diet. 
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All urinary phenolic acid concentrations increased in both groups after the high-polyphenol 

diet intake with the exception of 4-OHPAA. Therefore, 4-OHPAA was excluded from the sum 

of urinary phenolic acid excreted for between-group comparisons.   

As expected, the sum of urinary phenolic acids increased after the high-polyphenol diet, with 

an increase from 268.2 µmol/day (IQR 89.3) to 1220.4 µmol/day (IQR 649.5) in the European 

group (p<0.001) and from 183.4 µmol/day (IQR 97.3) to 372.9 µmol/day (IQR 320.2) in the 

Indian group (p=0.04). The difference in urinary excretion (Δ low-high diet) was significantly 

higher (p=0.001) in the European group (∆953.5 µmol/day, IQR 593.9) compared to the 

Indian group (∆274.7 µmol/day, IQR 307.5; Figure 3-9).  

After correcting for flavonoid intake, the Indian group still excreted significantly (p<0.001) 

less phenolic acid (633.3 µmol/mg of flavonoids, IQR 860) than the European group (1629.4 

µmol/mg of flavonoids, IQR 1185.3). As the differences between groups before and after the 

correction were the same, the actual (non-corrected) values for urinary phenolic acid were 

used.  

Figure 3-9: 24-hour urinary phenolic acids profile excretion (µmol/day) after low and high-polyphenol 

diets in European (n=8) and Indian (n=8) participants.  

 

Each circle indicates the measurement of urinary phenolic acids profile for each participant after low and high-

polyphenol diets. Median urinary phenolic acids profile for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

*symbol indicates differences in changes (∆) between groups. 
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There were several differences in the excretion of the individual phenolic acids (∆ low-high 

diet). The increase in benzoic acid (p=0.04), 3-hydroxybenzoic acid (p=0.02), 3, 4-

dihydroxyphenylacetic acid (p=0.05), and hippuric acid (p=0.001) urinary excretion was 

significantly higher in Europeans than Indians. In addition, the concentration of urinary3-

OHPAA was higher in Europeans after both the low-polyphenol diet (p<0.001) and high-

polyphenol diet (p=0.04) when compared to the Indian participants. Likewise, the 

homovanillic acid concentration was higher in the urine of Europeans after low-polyphenol 

diet (p=0.05) and high-polyphenol diet (p=0.05) compared to Indian participants (Table 3-7).  
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Table 3-7: Amount of phenolic acid in 24 h urine (µmol/day) after low and high-polyphenol diets in European (n=8) and Indian (n=8) participants. 

Group Europeans 

∆ 

 

Indians 

   ∆ 

 

 

 
p value 

 

Diet low-polyphenol diet High- polyphenol diet  low-polyphenol diet       High- polyphenol diet  

Acid   Median       IQR 
            

Median IQR   Median IQR Median IQR 
BA     16.6   14.3     31.1 32.9 14.5     15.1 22.6       11.4 17.6 -3.7   0.04 
PAA        3.2§ 2.2       3.2  4.8  0.0       0.5§  1.6         1.7   2.1 1.1   0.9 
MA        0.7§ 0.5       1.1  1.2  0.4      0.2**§  0.0         0.4**  0.2 0.2   0.3 
3-OHBA          0.6*§ 0.5     0.9*†  1.2  0.3   < 0.1§ 0.1         0.1†  0.1 0.0   0.02 
3-OHPAA          2.3*§ 1.3    19.2*† 23.3 16.9      0.9§ 0.5   2.4† 10.3 1.5   0.08 
4-OHBA        2.1§ 1.0  3.8  1.9  1.7      1.1§ 0.4         1.6  0.7 0.5   0.3 
4-OHPAA        38.0 21.4  42.9†      15.0  4.9    17.5    32.3       17.7†  9.1 0.2   0.4 
4-OHPPA       0.4§ 0.4       0.5        0.9  0.2   < 0.1§ 0.0         0.1  0.1 0.0   0.2 
VA       0.7* 0.4    2.8*   2.7  2.1      0.3** 0.2     1.8**  1.2 1.5   0.6 
HVA         0.8*§ 4.4     19.8*†      12.7  9.0      4.4§ 5.7   8.9†  5.6 4.5   0.2 
4-OHMA     4.9 1.5       3.9  1.6 -1.0      2.8 1.9         3.1  0.8 0.3   0.2 
3,4diOHBA         1.0*§ 0.2      2.1*†  1.1  1.1     0.3**§ 0.2       0.8**†  0.3 0.5   0.05 
3,4diOHPAA         1.5*§ 0.4     2.9*†       5.3  1.5      0.6§ 0.3         1.3**†         2.4 0.6   0.3 
HA     155.7*§ 95.7 969.8*†   540.2   814.1   68.7**§   55.9     257.5**†    372.3 188.8   0.001 
Dihydrocaffeic acid       1.3* 0.9   2.3* 2.2  0.9      0.6 0.8         1.1 0.8 0.4   0.3 
3,4diOHPPA        0.5*§ 0.4   1.6* 1.2  1.1    0.1**§ 0.2         0.6** 0.4 0.5   0.08 
GA      0.6§ 0.7   0.8† 1.4 0.2  < 0.1§ 0.1    0.2†§ 0.4 0.2   0.05 
3-OHhippA      21.0*§ 10.2    68.6*     41.4     47.6  13.3**§ 9.2      33.9**      25.2 20.6   0.2 

 

∆ Difference in urinary excretion (high diet minus low diet). 

p value is the difference in urinary phenolic acid excretion (∆ low-high diet) between groups. 

* Significant increase in Europeans after the high-polyphenol diet p≤0.01  

**Significant increase in Indians after the high-polyphenol diet p≤0.01  

§Significant difference between groups after the low-polyphenol diet p≤0.05 

†Significant difference between groups after the high-polyphenol diet p≤0.05 
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Hippuric acid (HA) was the most abundant acid in urine samples after the high-polyphenol 

diet in both groups (89.2 and 83.3% of the total of all phenolic acids for Europeans and 

Indians, respectively). The sum of the phenolic acids minus hippuric acid was considered as it 

is most likely to be formed in the liver by conjugation of benzoic acid and glycine. Dietary 

sources of benzoic acid and precursors (quinic acid, aromatic amino acid tryptophan, tyrosine, 

and phenylalanine) should be considered (Self et al., 1960, Grumer, 1961). Other sources of 

benzoic acid are benzoates (E numbers 210-219) which are commonly used in food, 

medications, and mouthwashes.  

The sum of phenolic acids minus hippuric acid was significantly increased in the European 

group after following the high-polyphenol diet, from 103.6 µmol/day (IQR 34.9) to 211.2 

µmol/day(IQR 79.6; p<0.01). The sum of phenolic acids minus hippuric acid changed from 

63.9 µmol/day (IQR 72.9) to 92.8 µmol/day (IQR 30.9) in the Indian group. The difference in 

urinary excretion (Δ low-high diet) was significantly higher (p=0.03) in the European group (∆ 

71.2 µmol/day, IQR 67.6) compared to the Indian group (∆ 29.0 µmol/day, IQR 45.4; Figure 

3-10). 

Figure 3-10: 24-hour urinary phenolic acids profile excretion without hippuric acid (µmol/day) after low 

and high-polyphenol diets in European (n=8) and Indian (n=8) participants.  

 

Each circle indicates the measurement of urinary phenolic acids profile without hippuric acid for each participant 

after low and high-polyphenol diets. Median urinary phenolic acids profile without hippuric acid for each group 

is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

*symbol indicates differences in changes (∆) between groups. 
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3.6.3.3.1 Correlation between urinary phenolic acid (measured with GC-MS) and urinary 

FRAP 

The relationship between urinary phenolic acid (measured with GC-MS) and urinary FRAP 

was analysed by linear regression (Spearman rank correlation). There was a strong correlation 

between FRAP and the sum of the phenolic acids in the European group (Rs
2
=0.9; p=0.001); 

however, there was no correlation between FRAP and total phenolic acids in the Indian group 

(Figure 3-11). The data without the hippuric acid showed no difference in the direction of the 

association (Figure 3-12). 

Figure 3-11: Correlation between urinary FRAP and the phenolic acid (GC-MS) in European (n=8) and 

Indian (n=8) participants. 

 

 
Dotted line indicates Europeans; solid line indicates Indians. 
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Figure 3-12: Correlation between urinary FRAP and the phenolic acid without hippuric acid (GC-MS) in 

European (n=8) and Indian (n=8) participants. 

 
 
Dotted line indicates Europeans; solid line indicates Indians. 
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3.6.4 Measurements performed in faecal samples 

3.6.4.1 Faecal pH after low and high-polyphenol diets 

The faecal pH did not change in either group from low to high-polyphenol diet (Europeans 

from 7.2, IQR 0.6 to 6.7, IQR 0.8; Indians from 6.5, IQR 0.5 to 6.1, IQR 0.5). The faecal pH 

was lower in the Indian group after the low-polyphenol diet than the European group 

(p=0.003; Figure 3-13).  

Figure 3-13: Change in faecal pH after low and high-polyphenol diets in European (n=8) and Indian (n=8) 

participants.  

 
Each circle indicates the measurement of faecal pH for each participant after low and high-polyphenol diets. 

Median faecal pH for each group is indicated by a red horizontal line.  

† symbol indicates differences between groups (low vs. low). 
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3.6.4.2 Faecal ammonia after low and high-polyphenol diets 

The change in faecal ammonia was not significant in either group from low to high-

polyphenol diet (in Europeans, from 910.5 mg/g wet weight, IQR 863.2, to 662.8 mg/g wet 

weight, IQR 356.9; in Indians, from 1124.3 mg/g wet weight, IQR 856.3 to 1048.9 mg/g wet 

weight, IQR 910.5; Figure 3-14). 

Figure 3-14: Change in faecal ammonia after low and high-polyphenol diets in European (n=8) and Indian 

(n=8) participants.  

 

Data presented as mg/g of wet weight. Each circle indicates the measurement of faecal ammonia for each 

participant after low and high-polyphenol diets. Median faecal ammonia for each group is indicated by a red 

horizontal line. 
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3.6.4.3 Faecal SCFA after low and high-polyphenol diets 

Total faecal SCFA concentration (sum of all SCFA) did not significantly increase from a low 

to high-polyphenol diet in either group. Values of 164.3 µmoles/g dwt (IQR 94.5) to 192.4 

µmoles/g dwt (IQR 52.8) were recorded in the European group, and from 288.7 µmoles/g dwt 

(IQR 75.0) to 287.4 µmoles/g dwt (IQR 73.8) in the Indian group. There were no significant 

differences (Δ low-high diet) in either group; however, the SCFA concentration was higher for 

the Indian group after both low (p=0.02) and high-polyphenol (p=0.002) diets, compared to 

the European group (Figure 3-15). 

Figure 3-15: Faecal SCFA after low and high-polyphenol diets in in European (n=8) and Indian (n=8) 

participants.  

 

Each circle indicates the measurement of faecal SCFA for each participant after low and high-polyphenol diets. 

Median faecal SCFA for each group is indicated by a red horizontal line.  

† symbol indicates differences between groups (low vs. low). 

§ symbol indicates differences between groups (high vs. high). 
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Table 3-8: Faecal concentration of SCFA (µmol/g dwt) in European (n=8) and Indian (n=8) participants after low and high-polyphenol diets. 

Group Europeans Indians 

 Diet Low-polyphenol diet  High-polyphenol diet  ∆ 

 

Low-polyphenol diet  High-polyphenol diet  ∆ 

 

p value 

 

Median IQR Median IQR Median IQR Median IQR 
 

Acetic acid    97.8§ 35.8   130.2† 25.4      32.4  168.3§ 30.4   168.6† 16.8 0.3 0.95 
Propionic acid  25.6 25.7    25.9† 11.4  0.3  75.4 46.4     53.5† 25.4 -21.9 0.23 
Isobutyric acid    3.2  2.9    2.5 0.6 -0.7    3.9   3.2     2.7 2.4 -1.3 1.00 
Butyric acid   19.4      23.0  17.5 8.5 -1.9 38.4 25.4   32.7 28.2 -5.8 0.96 
Isovaleric acid    5.7 4.6   3.6 2.2 -2.1   6.7   5.0    4.1 3.8 -2.6 0.94 
Valeric acid      4.9§ 3.7   3.3 1.5 -1.6   8.9§ 10.1    6.6 6.8 -2.2 0.45 
Isocaproic acid    0.0 0.5   0.0 0.0 0.0   0.0  0.0    0.1 1.0   0.1 0.13 
Caproic acid    1.7 2.4  1.1 4.0 -0.6   1.0  1.6    2.7 3.4   1.7 0.19 
Enanthic acid    1.2 2.3  1.8 4.2 0.6   0.0  0.0   0.7 2.1   0.7 0.56 
Caprylic acid     1.7 1.6  2.3 3.7 0.6   0.0  1.4  1.6 1.9   1.6 0.67 

Total SCFA 

 
161.2 

 

102.4 

 

188.3 

 

61.5 

 

27.1 

 

302.7 

 

123.4 

 

273.3 

 

91.7 

 

 
-29.4 

 

0.96 

 

 

           

Proportional ratio 59.4      16.2 66.2 8.0  6.8 54.5 9.3 60.8 2.9  6.3  
%Acetic acid  15.6 8.1 13.0 3.5 -2.6 23.1 9.1 17.8 8.5 -5.2  
%Propionic acid    2.0 0.7 1.3 0.7 -0.7   1.6 0.9 0.9 0.8 -0.7  
% Isobutyric acid 10.7 6.0 9.7 2.3 -1.0 13.3 4.5       11.6 9.5 -1.7  
%Butyric acid   3.9 1.4 2.2 0.7 -1.7 2.8 1.6 1.4 1.1 -1.4  
% Isovaleric acid   2.5 1.6 1.9 1.0 -0.6 3.0 2.7 2.7 1.8 -0.4  
%Valeric acid   0.0 0.3 0.0 0.0  0.0 0.0 0.0 0.0 0.3  0.0  
%Isocaproic acids  1.2 1.5 0.5 1.9 -0.7 0.3 0.4 0.9 1.1  0.6  
%Caproic acid  0.9 1.0 1.0 2.2  0.0 0.0 0.0 0.2 0.8  0.2  
%Enanthic acid  0.9 0.7 1.2 0.4  0.3 0.0 0.4 0.6 0.8  0.6  

∆ difference in faecal concentration of SCFA (high diet minus low diet). 

p values are the difference in urinary excretion (∆ low-high diet) of each acid between groups. 

§Significant difference between groups after the low-polyphenol diet p≤0.05 

†Significant difference between groups after the high-polyphenol diet p≤0.05
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3.6.4.4 Concentration of bacterial DNA isolated from faecal samples after low-

polyphenol diet 

High quality and high yield DNA was obtained from all samples. The purity and yield of the 

extracted DNA as measured by Nano-Drop was very high and similar between groups (Table 

3-9). 

Table 3-9: The DNA concentration and purity measured using Nano-Drop in European (n=8) and Indian 

(n=8) participants. 

Group 
 

European 
 

Indian 

Measurements Median  IQR 
 

Range 

 

Median IQR 
 

Range 

 

 
DNA concentration (ng/µl) 

 

519.5 98.6 
 

298.0-570.5 520.1 296.3 
 

421.6 - 1031.4 

 
DNA purity 280/260 nm 

 

1.81 0.06 
 

1.7 - 1.9 1.84 0.10 
 

1.7- 2.0 

 
DNA purity 260/230 nm  

 

1.40 0.41 
 

1.1 - 1.8 1.46 0.36 1.0-1.8 

 

The faecal DNAs were intact and appear compact as a high-molecular-weight band in 1.5% 

agarose gel (Figure 3-16). 

Figure 3-16: Agarose gel showing the purity of DNA extracted for bacterial qPCR analysis in European (1-

8) and Indian (9-16) participants. 

 
 

 

100

300

1100
900

700

500

100 bp

DNA ladder

1 2 3 4 5 6 7 8 109 11 12 13 14 15 16



 

 

101 

 

3.6.4.5 Validation of the assay for the qPCR run:  

Probes and primers for Eubacterium ramulus and Flavonifractor plautii were validated using 

pure DNA for each of them. Eubacterium ramulus (DSM 15684) was used to validate the 

Eubacterium ramulus (Figure 3-17) and Flavonifractor plautii (DSM 4000) was used to 

validate Flavonifractor plautii (Figure 3-18). 

Figure 3-17: TaqManqPCR amplification plot showing the serial dilution of standard curve used to 

validate Eubacterium ramulus. 

 

Figure 3-18: TaqManqPCR amplification plot showing the serial dilution of standard curve used to 

validate Flavonifractor plautii. 

 

 

The cross-specificity was also checked for each target by running the designed qPCR set 

(probe & primers) with the known positive DNA and nine other different DNAs 
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(Akkermansia, Bacteroides vulgatus, Blautiacoccoides, Bifidobacterium longum subsp., 

Desulfovibrio piger, Enterococcus faecalis, Escherichia coli, Faecalibacterium prausnitzii, 

and Lactobacillus plantarum subsp.). Both Figure 3-19 and Figure 3-20 show that the 

designed probes and primers were successfully specific for each target. 

Figure 3-19: Eubacterium ramulus cross-specificity test using the qPCR. 

 
 

Figure 3-20: Flavonifractor plautii cross-specificity test using the qPCR. 

 
Lastly, to define the right concentration of the faecal DNA template for the qPCR reaction, 

diluted faecal DNA of five different concentrations (200, 100, 50, 10, and 5 ng/μl per reaction) 
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were run. The 50 ng/μl concentration shows the best dynamic plateau to measure 

Flavonifractor plautii (Figure 3-21). 

Figure 3-21: Run of five different concentrations of Flavonifractor plautii faecal DNA template in the 

qPCR. 

 
However, the qPCR amplification curve for the five concentrations for the Eubacterium 

ramulus did not reach a plateau (Figure 3-22). 

Figure 3-22: Run of five different concentrations of Eubacterium ramulus faecal DNA template in the 

qPCR. 
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In order to solve this problem, some exploratory analyses were performed. Two issues were 

thought to be behind this low amplification. The first could be due to inhibitors in the faecal 

samples inhibiting the qPCR reaction. For that, pure standard of Eubacterium ramulus DNA 

was run alongside four random faecal DNA samples spiked with the pure Eubacterium 

ramulus DNA (standard DNA) to see if the faecal DNA would inhibit the amplification 

reaction of the pure DNA.  

The result (Figure 3-23) suggested that the low curve was due to the inhibitor products in the 

faecal DNA. Therefore, the faecal DNA sample was further purified to remove the inhibitor. 

First, the Qiagen kit was used; however, this treatment was not successful. Next, bovine serum 

albumin (BSA) was used to inactivate the inhibitors in the qPCR mixture (Garland et al., 

2010). Again, adding BSA did not improve the reaction (Figure 3-24).  

Figure 3-23: Inhibition experiment to test the DNA faecal sample for measuring Eubacterium ramulus 

using the qPCR. 
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Figure 3-24: Effect of BSA additions on DNA faecal sample inhibitors for measuring Eubacterium ramulus 

using the qPCR. 

 
 

In summary, these experiments for the DNA faecal samples show that the low values were due 

to some inhibitor in the faecal DNA not because of the low target concentration in the faecal 

samples. In the present study the Eubacterium ramulus was not able to be measured due to the 

low amplification.  
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3.6.4.6 Characteristics of the qPCR run condition  

The characteristics of the qPCR runs of each bacterial group and species including the slope, 

amplification efficiency, and the coefficient of determination (R
2
) for both groups are 

described in Table 3-10. The amplification efficiency of Bacteroides – Prevotella, 

Bifidbacterium, and Eubacterium ramulus were just below the ideal range (90% - 105%); 

however, as efficiency was similar and both groups were run together on the same plate to 

minimise confounding variables, it was considered acceptable for this experiment.  

Table 3-10: Characteristics of qPCR runs for each bacteria species/groups in European (n=8) and Indian 

(n=8) participants. 

 

Bacteria species/groups 

 

Slope 

 

Amplification efficiency (%) 

 

 

R
2
 

 

Total Bacteria 

 

 

-3.444 

 

95.1 

 

0.995 

Bacteroides – Prevotella 

 

-3.629 89.1 0.997 

Bifidobacteria -3.72 86.6 0.999 

Flavonifractor plautii 

 

-3.581 90.2 0.998 
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3.6.4.7 Absolute concentration of bacterial species and groups using qPCR 

Absolute levels of total bacteria, Bacteroides, and Flavonifractor plautii did not differ 

between European and Indian groups; however, the absolute level of Bifidobacteria was 

significantly higher (p≤0.05) in Indians (Table 3-11). 

Table 3-11: Absolute (log
10

/g) faecal concentrations and relative abundance of bacterial groups/species in 

European (n=8) and Indian (n = 8) participants. 

Target 
Wet weight sample Dry weight sample* 

European (n=8) Indian  (n=8) European  (n=8) Indian  (n=8) 

Log
10 Median IQR Median IQR Median IQR Median IQR 

Total bacteria 11.5 0.2 11.4 0.3 11.9 0.3 11.9 0.5 

Bifidobacterium spp.   9.7
a 0.5  10.1

b 0.5  10.1
† 0.8  10.6

§ 0.3 

Bacteroides+Prevotella     10.5 0.8   10.1 0.6 11.0 1.0 10.6 0.5 

Flavonifractor plautii 8.4 0.7     8.7 0.6 8.9 0.8  9.2 0.4 

                (%)                 

Bifidobacterium spp.       1.6    5.0     1.6 5.0 

Bacteroides+Prevotella      10.0    5.0    12.6 5.0 

Flavonifractor plautii       0.08      0.20     0.10   0.20 
 

a, b Difference between ethnic groups p value 0.04 
 †

, 
§
Difference between ethnic groups p value 0.05 

* Calculated using the weight (g) and the moisture percentage (%) of the wet faecal samples. 
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3.6.5 In-vitro fermentation of rutin 

Fourteen sets of fermentations were performed using the stool samples of 6 Europeans (1 male 

and 5 females) and 8 Indians (7 males and 1 female), collected after the low-polyphenol diet. 

The data of two Europeans were excluded as the initial pH of the fermentation was very high 

at nine due to an experimental error adjusting the pH of the medium. The flavonols rutin was 

fermented for 24 h with and without raftiline to test the metabolic capacity of the gut faecal 

contents, including the microbiota, in the context of ethnicity.   

3.6.5.1 Rutin fermentation and pH of faecal fluids 

There was no change in the pH of the fermented faecal fluids containing rutin alone, over 

time, in either group (Figure 3-25). However, the combination of rutin with raftiline 

significantly (p<0.01) reduced the pH level at the end of the fermentation in both groups. In 

addition, the pH values of the fermented faecal fluids of raftiline and the combination of rutin 

with raftiline were significantly lower in the Indian samples than in the European samples 

after 24 h of fermentation (p<0.01).  

3.6.5.2 Rutin fermentation and gas production 

In both European and Indian groups, the combination of rutin with raftiline increased the gas 

production more than rutin alone (p<0.05). Moreover, the gas production was higher in the 

Indian fermented faecal fluids at 2 h of fermentation (p<0.05) than European. Indians 

fermented faecal fluids of rutin or combination of rutin with raftiline produced more gas after 

2 h of fermentation; however, the gas production was higher in the European faecal fluids at 

4h of fermentation. There was no difference in total gas production between groups after 24 

hours of fermentation (Figure 3-26). However, there was a higher variability in gas production 

within the Indians fermented faecal fluids of rutin (SD 11.9 versus 5.5) or combination of rutin 

with raftiline (SD 30.3 versus 10.6) compared to the European group. 
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Figure 3-25: Change in pH of fermented faecal fluids over 24 h in A) European (n=6) and B) Indian (n=8) 

participants. Data presented as median and IQR.   
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Figure 3-26: Cumulated gas production from fermented faecal fluids over 24 h of incubation in A) 

European (n=6) and B) Indian (n=8) participants. Data presented as median and IQR. 
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3.6.5.3 Metabolism of rutin in faecal fluids and phenolic acids formation 

Only seven metabolites were found and identified using GC-MS after the fermentation of rutin 

with or without raftiline in the fermented faecal fluids of European and Indian groups at 0, 6, 

and 24 hr (Table 3-12). PAA, 3-OHPAA, 4-OHBA, 3-OHPPA, 4-OHPPA, and 3,4diOHPPA 

were detected in both faeces only fluids and fermented faecal fluids of rutin with or without 

raftiline. 3,4diOHPAA was only detected in the fermented faecal fluids of rutin with or 

without raftiline.  

Table 3-12: Phenolic acids detected by GC-MS following the in vitro fermentation of rutin ± raftiline for 24 

h. 

No. Phenolic acids tR (min) Target 

ion (m/z) 
1 Phenylacetic acid (PAA) 7.46 164 
2 3-Hydroxyphenylacetic acid (3-OHPAA) 13.26 164 
3 4-Hydroxybenzoic acid (4-OHBA) 13.87 267 
4 3-hydroxyphenylpropionic acid (3-OHPPA) 17.24 205 
5 4-Hydroxyphenylpropionic acid  (4-OHPPA) 18.48 179 
6 3,4-Dihydroxyphenylacetic acid (3,4diOHPAA) 21.18 179 
7 3,4-Dihydroxyphenylpropionic acid (3,4diOHPPA) 26.58 179 

 

 

3.6.5.3.1 The sum of seven phenolic acid metabolites formed during fermentation of rutin 

The sum of the seven metabolites significantly increased over time in the fermented faecal 

fluids of rutin in both the European (p<0.01) and Indian (p<0.001) groups. The addition of 

raftiline significantly reduced the formation of phenolic acids in Europeans (p=0.02) and 

Indians (p<0.001), with no significant differences between groups. Fermentation of rutin alone 

led to higher concentration of phenolic acids in the Indian group (p=0.001) compared to the 

European group (Figure 3-27). 
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Figure 3-27: The sum of seven phenolic acids (µmol/L) in A) Europeans (n=6) and B) Indians (n=8) 

fermented faecal fluids over 24 h of fermentation. Data presented as median and IQR. 

 

0

50

100

150

200

250

300

0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h

Blank Rutin Rutin & Raftiline Raftiline

T
o
ta

l 
 m

e
ta

b
o
li

te
s
 

(µ
m

o
l/

L
)

 

 

 

0

50

100

150

200

250

300

0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h

Blank Rutin Rutin & Raftiline Raftiline

T
o
ta

l 
 m

e
ta

b
o
li

te
s
 

(µ
m

o
l/

L
)

 

  

(A) 

(B) 



 

 

113 

 

3.6.5.3.2 Individual phenolic acid formed after the fermentation of rutin 

PAA increased significantly over time in the fermented faecal fluids of rutin and the 

combination of rutin with raftiline in Europeans (p<0.001; p=0.03) and Indians (p<0.001; 

p<0.001), respectively. 3-OHPPA significantly increased just in the fermented faecal fluids of 

rutin in the Europeans (p=0.02) and Indians (p=0.009). 3-OHPAA was only increased in the 

fermented faecal fluids of rutin in the Indian group (p=0.007; Table 3-13).  

3.6.5.3.3 The impact of raftiline on the fermentation of rutin 

The addition of raftiline reduced the level of PAA by 89.1% in the Europeans (p=0.005) and 

by 85.4 % in the Indians (p<0.001) when compared to fermented faecal fluids of rutin alone. 

Moreover, the level of 3-OHPAA was significantly reduced in the Indian group (p=0.004).  

3.6.5.3.4 The impact of ethnicity on the fermentation of rutin 

The Indian group produced significantly more PAA (p=0.002), 3-OHPAA (p=0.001), and 4-

OHBA (p=0.003) compared to Europeans in the fermented faecal fluids of rutin. The highest 

amounts of 3-OHPPA, 4-OHPPA, and 3,4diOHPAA were detected at 6 hr in the Indian group 

and 24 hr in the European group.  
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Table 3-13: Accumulation of seven phenolic acids (µmol/L) produced after 0, 6, and 24 h of fermentation in faecal fluids from European (n=6) and Indian (n=8) 

participants. Data presented as median and IQR. 

Metabolite Group Substrates 
0h 6h 24h 

Median IQR Median IQR Median IQR 

PAA 

Europeans 

Blank 3.7 1.0 15.2 22.1 66.1 25.3 

Raftiline 2.7 0.8 8.6 4.5  6.6  6.2 

Rutin 3.3 1.6 6.0 7.8        81.9 51.1 

Rutin+raftiline 4.3 2.3 8.3 1.5 8.9 3.6 

Indians  

Blank 4.8 2.0 28.9 30.6 116.8 70.6 

Raftiline 3.9 3.4 15.7 11.9 25.6 19.0 

Rutin 3.8 1.0 29.1 56.0 127.4 39.2 

Rutin+raftiline 4.7 2.4 11.8 7.9 18.5 16.8 

3-OHPAA 

Europeans 

Blank 0.2 <0.01 0.2 <0.01 0.5 0.2 

Raftiline 0.3 <0.01 0.2 <0.01 0.1 <0.01 

Rutin 0.2 <0.01 1.5 0.9 4.4 23.3 

Rutin+raftiline 0.1 <0.01 1.3 <0.01 1.3 0.8 

Indians  

Blank nd nd 0.1 0.1 0.3 <0.01 

Raftiline 0.1 <0.01 0.1 <0.01 0.1 <0.01 

Rutin 0.3 <0.01 1.0 0.4 30.6 7.6 

Rutin+raftiline 0.1 <0.01 0.3 0.1 0.2 0.1 

4-OHBA 

Europeans 

Blank nd nd nd nd nd nd 

Raftiline nd nd 0.1 <0.01 0.1 <0.01 

Rutin 0.1 <0.01 0.1 <0.01 0.1 <0.01 

Rutin+raftiline nd nd 0.1 <0.01 0.1 <0.01 

Indians  

Blank 0.4 0.2 0.4 0.2 0.4 0.2 

Raftiline 0.5 0.1 0.4 0.4 0.4 0.4 

Rutin 0.5 0.3 0.4 0.1 0.3 0.1 

Rutin+raftiline 0.3 <0.01 0.4 0.3 0.4 0.1 

*Continued overleaf 
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Not detected (nd)

Metabolite Group Substrates 
0h 6h 24h 

Median IQR Median IQR Median IQR 

3-OHPPA 

Europeans Blank 1.6 0.8 2.8 1.3 2.9 1.6 

 Raftiline 0.5 1.3 0.9 0.5 1.3 1.4 

 Rutin 0.4 0.8 1.8 0.8 4.8 8.0 

 Rutin+raftiline 0.4 0.9 1.6 4.5 1.2 2.6 

Indians  Blank 0.7 1.2 2.1 1.2 2.5 1.3 

 Raftiline 0.9 2.9 1.1 1.7 1.0 1.1 

 Rutin 0.6 1.1 4.1 6.9 1.8 4.4 

 Rutin+raftiline 0.6 1.0 1.6 1.5 1.6 1.5 

4-OHPPA 

Europeans 

Blank 0.4 0.3 6.5 6.7 1.2 2.6 

Raftiline 0.6 0.4 3.8 1.2 3.9 1.0 

Rutin 0.5 0.3 1.1 0.8          4.9 6.1 

Rutin+raftiline 0.5 <0.01 1.0 1.3 1.2 1.0 

Indians  

Blank 0.9 1.1 2.7 7.8 0.6 0.9 

Raftiline 0.6 1.2 2.4 4.6 2.1 3.0 

Rutin 0.6 1.2 3.7 4.8 0.6 1.2 

Rutin+raftiline 0.7 1.2 2.1 1.5 2.1 1.4 

3,4diOHPAA 

Europeans 

Blank nd nd nd nd nd nd 

Raftiline nd nd nd nd nd nd 

Rutin nd nd 16.1 27.2 32.9 56.8 

Rutin+raftiline 0.2 <0.01 5.0 30.4 7.1 30.0 

Indians  

Blank nd nd nd nd nd nd 

Raftiline nd nd nd nd nd nd 

Rutin nd nd 39.2 32.8 15.1 60.0 

Rutin+raftiline <0.01 <0.01 3.0 22.2 3.2 19.6 

3,4diOHPPA 

Europeans 

Blank nd nd nd nd nd nd 

Raftiline nd nd nd nd nd nd 

Rutin nd nd 0.2 <0.01 0.4 0.1 

Rutin+raftiline nd nd nd nd nd nd 

Indians  

Blank 2.5 1.8 1.2 0.4 0.7 0.6 

Raftiline 0.7 <0.01 0.7 <0.01 0.8 <0.01 

Rutin 0.7 1.8 2.8 15.7 5.1 23.6 

Rutin+raftiline 0.7 <0.01 7.5 6.1 8.3 6.5 
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3.6.5.4 Metabolism of rutin in faecal fluids and SCFA production 

Ten SCFA were identified and quantified in the fermented faecal fluids after the fermentation 

of rutin in the presence or absence of raftiline in younger and older groups at 0, 2, 4, 6 and 24 

h (details of the method described in Chapter 2, page 49). Isocaproic, caproic, enanthic, and 

caprylic acid were either detected in limited amounts or not detected at all. 

The SCFA concentration significantly increased over time in the fermented faecal fluids of 

rutin with or without raftiline in both Europeans and Indians (p<0.05). With raftiline, 

significantly higher levels of SCFA were detected in the fluids compared to rutin alone 

(p=0.03 for the European group; p=0.02 for the Indian group). The SCFA concentration in the 

fermented faecal fluids of rutin was not different between groups; however, the addition of 

raftiline significantly increased the SCFA concentration in Indians compared to Europeans 

(p<0.01; Figure 3-28). 

Acetic, propionic, and butyric acid significantly increased over time in the fermented faecal 

fluids of rutin and the combination of rutin with raftiline in Europeans and Indians (p<0.05); 

however, Indians produced more acetic (p=0.008), propionic (p=0.03), and butyric acid 

(p=0.002) compared to Europeans (Table 3-14). 
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Figure 3-28: SCFA production (µmol/ml) in A) Europeans (n=6) and B) Indians (n=8) fermented faecal 

fluids over 24 h of fermentation. Data presented as median and IQR. 
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Table 3-14: SCFA concentration (µmole/ml) after 0,2,4,6 and 24 h. of fermentation from European (n=6) and Indian (n=8) participants. Data presented as median 

and IQR. 

SCFA Group Substrates 

 

0h 2h 4h 6h 24h 

Median IQR Median IQR Median IQR Median IQR Median IQR 

C2  

Europeans 

Blank 1.2 0.4 2.2 0.7 4.1 0.7 6.0 1.3 7.8 2.4 

Raftiline 1.5 0.4 8.4 2.6 18.1 5.0 23.1 4.1 30.7 7.2 

Rutin 1.0 0.4 2.3 0.6 3.7 0.5 5.2 0.8 9.3 2.0 

Rutin+Raftiline 1.2 0.9 6.8 5.0 14.4 5.6 17.5 8.1 32.1 14.4 

Indians  

Blank 1.3 0.5 3.1 0.7 5.1 0.5 5.9 0.5 7.5 1.5 

Raftiline 2.0 1.0 12.6 2.8 20.2 7.9 26.7 11.5 37.4 14.0 

Rutin 1.3 0.3 3.0 0.7 5.0 0.9 6.3 0.6 7.8 1.1 

Rutin+Raftiline 1.7 0.4 11.3 4.2 18.5 8.9 24.9 11.9 33.5 20.2 

C3 

Europeans 

Blank 0.4 0.1 1.1 0.4 1.7 0.7 2.2 0.7 1.8 0.6 

Raftiline 0.4 0.2 2.4 1.6 4.2 0.9 5.3 2.1 5.7 4.8 

Rutin 0.3 0.2 1.2 0.8 1.7 1.0 2.0 1.0 2.4 1.0 

Rutin+Raftiline 0.4 0.3 2.5 2.1 4.0 3.0 5.3 2.3 6.8 3.5 

Indians  

Blank 0.5 0.2 1.2 0.3 1.9 0.5 2.2 0.4 2.6 0.8 

Raftiline 0.6 0.2 3.9 2.9 6.0 7.0 9.7 10.4 11.4 12.5 

Rutin 0.5 0.1 1.2 0.4 1.9 0.3 2.3 0.3 2.9 0.5 

Rutin+Raftiline 0.5 0.2 3.7 2.8 5.8 6.1 9.3 10.1 12.1 12.2 

iC4 

Europeans 

Blank 0.1 <0.01 0.1 <0.01 0.1 <0.01 0.1 0.1 0.3 0.5 

Raftiline nd nd nd nd nd nd nd nd nd nd 

Rutin 0.1 <0.01 0.2 <0.01 0.1 <0.01 0.1 <0.01 0.6 0.3 

Rutin+Raftiline nd nd 0.2 <0.01 <0.01 <0.01 0.1 <0.01 0.1 <0.01 

Indians  

Blank nd nd 0.1 <0.01 0.2 <0.01 0.3 0.3 0.7 0.1 

Raftiline nd nd 0.1 <0.01 0.1 0.1 0.2 0.1 0.2 0.2 

Rutin nd nd 0.1 <0.01 0.2 0.1 0.3 0.3 0.7 0.1 

Rutin+Raftiline nd nd 0.1 <0.01 0.1 0.1 0.1 0.1 0.1 0.2 

 

*Continued overleaf 
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SCFA Group 
Substrates 

 

0h 2h 4h 6h 24h 

Median IQR Median IQR Median IQR Median IQR Median IQR 

C4  

Europeans 

Blank 0.3 0.1 0.5 0.3 0.9 0.5 1.3 0.9 1.2 0.7 

Raftiline 0.2 0.1 1.0 0.4 1.8 1.6 2.5 1.4 6.8 5.3 

Rutin 0.2 0.2 0.5 0.2 0.8 0.3 1.0 0.2 1.5 0.5 

Rutin+Raftiline 0.2 0.1 0.8 0.7 1.0 1.7 1.6 1.6 3.9 3.3 

Indians  

Blank 0.2 0.2 0.6 0.2 1.1 0.5 1.6 0.4 2.1 0.7 

Raftiline 0.3 0.1 1.3 1.6 2.0 4.3 2.4 6.3 7.8 19.0 

Rutin 0.2 0.1 0.6 0.2 1.1 0.4 1.8 0.5 2.3 0.5 

Rutin+Raftiline 0.3 0.1 1.2 1.4 1.8 4.4 2.5 5.9 7.8 19.8 

iC5 

Europeans 

Blank 0.1 0.4 0.1 0.1 0.2 0.1 0.2 0.2 0.8 0.6 

Raftiline 0.4 5.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 <0.01 

Rutin 0.5 0.4 0.1 <0.01 0.2 0.1 0.2 0.1 1.3 0.4 

Rutin+Raftiline 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.4 0.1 <0.01 

Indians  

Blank 0.1 0.1 0.2 0.2 0.5 0.6 0.9 0.8 1.4 0.2 

Raftiline 0.1 <0.01 0.1 <0.01 0.2 0.1 0.2 <0.01 0.4 0.4 

Rutin 0.1 <0.01 0.2 0.1 0.4 0.5 0.8 0.8 1.4 0.1 

Rutin+Raftiline 0.1 <0.01 0.1 <0.01 0.2 0.1 0.2 <0.01 0.4 0.3 

C5  

Europeans 

Blank 0.1 0.1 0.1 0.1 0.2 0.1 0.4 0.3 0.5 0.4 

Raftiline <0.01 <0.01 0.1 <0.01 0.2 0.1 0.2 0.1 0.2 0.3 

Rutin 0.1 <0.01 0.1 0.1 0.1 <0.01 0.2 0.1 0.9 0.3 

Rutin+Raftiline <0.01 <0.01 0.1 0.1 0.1 <0.01 0.1 0.1 0.1 0.1 

Indians  

Blank 0.1 <0.01 0.3 0.1 0.4 0.2 0.7 0.4 1.1 0.5 

Raftiline 0.1 <0.01 0.3 0.2 0.6 0.3 0.6 0.5 2.8 4.8 

Rutin 0.1 <0.01 0.2 0.1 0.4 0.2 0.7 0.4 1.0 0.7 

Rutin+Raftiline 0.1 <0.01 0.3 0.2 0.5 0.3 0.5 0.7 2.6 6.7 
 

Not detected (nd), acetic acid (C2), propionic acid (C3), isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), valeric acid (C5). 
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3.7 Discussion 

This study was carried out to test the hypothesis that ethnicity may affect the colonic 

metabolism of dietary polyphenols. To our knowledge, this is the first dietary semi-

controlled study investigating the colonic metabolism of dietary polyphenols in different 

ethnic groups using human feeding and in-vitro faecal fermentation designs. 

The present study demonstrated a clear difference between ethnic groups in terms of the 

urinary excretion of phenolic acid after a low-high polyphenol diet as well as the phenolic 

acid formation after the fermentation of rutin with faecal slurry. Possible proposed 

mechanisms for this variation include different colonic microbiota which might be affected 

by ethnic genetics and dietary habits.  

The low level of urinary phenolic acid excreted by Indians could not be due to their lack of 

compliance with the high-polyphenol diet, as the corrected urinary phenolic acid for 

flavonoid intake indicated that Indians still excreted significantly less phenolic acid than 

the Europeans. There is no clear indication as to why Indians excreted less phenolic acid 

than Europeans. However, a number of possible mechanisms can be hypothesised based on 

the evidence presented here and previously published related studies: 

 First, it could be connected to genetics and its impact on gut microbiota composition. 

Yatsunenko et al. (2012) reported both children and adults from the United States have a 

different gut microbiota from people in Malawi and the Amazonas state in Venezuela.  

Second, it may be related to the ability or/and the composition of colonic microbiota on the 

metabolism of polyphenols, which could affect the urinary excretion of phenolic acid. The 

faecal in-vitro fermentation of rutin showed that Indians formed significantly more 

phenolic acids, in particular PAA and 3-OHPAA. These have been reported previously as 

metabolites of rutin, formed in the colon (Olthof et al., 2003). This suggested that Indians 

may have a greater capacity to metabolise rutin than Europeans.  

Third, it could be due to differences in intestinal environment. Indians could have higher 

small intestinal absorption and tissue uptake compared to Europeans due to the variation in 

β-glucosidase activity that is involved in the absorption and metabolism of dietary 

polyphenols. Previous studies have showed considerable variation in β-glucosidase 

activity, suggesting the presence of diverse CBG populations with diffrent genetic 
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identities (Cheetham et al., 1978, Nemeth et al., 2003). For example, Namath et al. (2003) 

reported about 35-fold variation in β-glucosidase activity measured from samples 

of human cells from 10 healthy individuals. Moreover, the deficiency of LPH (known 

genetic polymorphisms) which  causes lactose intolerance demonstrated the link between 

ethnicity and intestinal enzymes activity  as it is a common disorder apart from Northern 

European adults (Wang et al., 1995).  

Fourth, it could be due to their cultural daily diet and its impact on gut microbiota. The 

significant high level of Bifidobacterium in Indians may be a result of their intake of 

yoghurt (3-fold), onion, tomato, chilli, and curry- based products (1.5-fold) , and spices 

(5.5-fold) than in Europeans. These food types are high in prebiotics (polyphenols and 

fibre) and probiotics (yogurt). A study by Parkar et al. (2013) investigated the 

biotransformation of four polyphenols; rutin, quercetin, chlorogenic acid, and caffeic acid, 

using an in-vitro culture model of human gut microbiota. Their data indicated that the 

biotransformation of these four polyphenols increased the growth of Bifidobacterium in 

culture, while the intact plant polyphenols had no effect on gut microbiota. The study 

concluded that the habitual intake of a high polyphenol diet which is associated with a 

higher amount of phenolic acid in the colon may result in promoting optimum gut health 

(Parkar et al., 2013).  

Another possibility is that colonic phenolic acids are metabolized to support the growth of 

the gut microbiota or/and are absorbed by body tissues resulting in a low amount excreted 

by Indians. This was supported by the faecal fermentation of rutin and raftiline. The 

reduction of the phenolic acid with the addition of raftiline to the faecal fluids could be 

from the effect of fiber increasing the bacterial growth and in turn their need to use the 

phenolic compounds as a source of carbon (Jaganath et al., 2009).  

Finally, the frequent daily bowel movements in the Indian group compared to the European 

group may be accountable for lower urinary phenolic acid excretion in Indians. As the 

majority of flavonoids are metabolised in the colon, the influence of the transit time on the 

colonic pH and SCFA driven changes in the microbiota may impact on polpyhenol 

metabolism (ElOufir et al., 1996). Since the study groups are not matched in gender, 

whether gender has an impact on the transit time or not is still controversial. There are 

some studies that have suggested a longer transit time in women compared to men  (Degen 

and Phillips, 1996, Sadik et al., 2003), whereas other studies have reported no significant 

differences between men and women  (Hinds et al., 1989, Soffer et al., 2000).  Moreover, 
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the link between gender and dietary habits might have an effect on the colonic metabolism 

of polyphenols as men tend to consume more meat, while women tend to consume a larger 

proportion of vegetables, fruit, fish and dairy products  (Jensen and Holm, 1999). 

However, despite these facts, a study by Cerda  et al. (2005) indicated that the variability 

in the metabolism of ellagitannins was not related to gender as the amount of ellagitannins 

consumed from different foods (strawberries (250 g), red raspberries (225 g), walnuts (35 

g), and oak-aged red wine (300 mL)) was not proportionally related to the amount of 

urinary metabolites excreted. The differences in the metabolites were more dependent on 

the type of food consumed. The lowest excretion was observed in the red wine group, 

while the highest excretion was observed in the volunteers who consumed walnuts. This 

could suggest the role of a food matrix and gut microbiota on categorising individuals to 

“high and low metabolite excreters.” 

 In addition, the high production of SCFA, especially acetic and propionic acid in Indians 

may be related to the increase in growth of Bifidobacterium. Bifidobacteria may use 

phenolic acids as a source of energy (Jaganath et al., 2009), which would reduce the pool 

of phenolic acids available for excretion in Indians (Parkar et al., 2013). For example, 

Parkar et al. (2013) reported an increase in SCFA especially propionate accompanied by 

the increase of Bifidobacterium at 48 h of rutin fermentation. Moreover, as rutin 

glycosylated with rhamnose-glucose disaccharide, the glycosyl group could add to the 

SCFA. Rhamnose is particularly propiogenic as it is metabolised to propionic acid via the 

propane-diol pathway. This also could indicate the higher ability of Indians to metabolise 

polyphenols compared to Europeans. 

Despite the differences between groups, the urinary phenolic acids increased after the high-

polyphenol diet in both groups. The same result has been previously reported by Rechner 

et al. (2002); Jaganath et al. (2006); Roowi et al., (2010); Olthof et al. (2003); and Graefe 

et al. (1999). Most of the bioavailability studies reported inter-individual variations 

between subjects but none of them reported ethnic differences in their group or studied the 

effect of ethnicity on the metabolism of polyphenols (Graefe and Veit, 1999, Rechner et 

al., 2002a, Olthof et al., 2003, Jaganath et al., 2006, Roowi et al., 2010). 

Gardana et al. (2009) investigated the intestinal microbial transformation of daidzein to 

equol using anaerobic batch cultures and found that the transformation was subject to a 

wide inter-individual variability which might be due to dietary habits. They found that the 

equol-producer group consumed less fibre, vegetables and cereals and more lipids from 
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animals. Furthermore, Gross et al. (2010) studied the effect of the inter-individual variation 

of gut microbials on the metabolism of black tea and wine/grape juice from ten healthy 

volunteers using in-vitro faecal batch cultures. The study reported that each subject showed 

a specific metabolite profile differing in composition, time and level of metabolites. Fuhr 

and Kummert (1995) also reported that between 5-57% of naringin consumed with 

grapefruit juice was detected in urine in different individuals .  

In this study, hippuric acid was a major metabolite in the urine of both groups. Hippuric 

acid can derive from a diet that is rich in polyphenols such as tea, coffee, wine and grape 

juice extracts, and green tea (Clifford et al., 2000, Rechner et al., 2002a, Olthof et al., 

2003, Roowi et al., 2010, van Dorsten et al., 2010). It can however also derive from amino 

acids such as aromatic amino acid tryptophan, tyrosine, and phenylalanine (Self et al., 

1960, Grumer, 1961, Bridges et al., 1970). Therefore, in the present study the urinary 

phenolic acid analyses were performed with and without the hippuric acid to eliminate the 

effect of this acid on the outcome measure. In both results, the sum of the urinary phenolic 

acids with or without hippuric acid showed that Europeans still significantly excreted more 

phenolic acid in urine than Indians. In addition, 4-OHPAA was not considered in the sum 

of all phenolic acids, because it did not increase after the high-polyphenol diet in all 

participants. It is produced by unrelated routes of the colonic degradation of polyphenols 

(Roowi et al., 2010).  

The inter-individual variation in phenolic acid excretion after the high polyphenol diet was 

approximately 2.5-fold in the European group, compared to approximately 6-fold in the 

Indian group. This could be linked to variability in dietary intake and gut microbiota (two 

participants in the Indian group were vegetarians, and had the lowest extraction of urinary 

phenolic acid compared to other participants in the same group). 

To support the urinary phenolic acid result, an in-vitro fermentation of rutin was used to 

understand the effect of ethnicity on colonic metabolism. The ability of the Indian faecal 

fluids to metabolize rutin was faster at 6 h compared to Europeans. This could be due to 

their gut microbiota. In the human colon, the occurrence of bacterial enzymes (β-

glucosidases, β-glucuronidases, and α-rhamnosidase) enables the hydrolysis of rutin to 

release the quercetin aglycone (Aura et al., 2002). Insufficient or lower levels of bacterial 

enzyme in the colon could be one of the reasons why Europeans formed less phenolic acid 

than Indians during the faecal fermentation of rutin. Four acids were detected in fermented 

faecal fluids of rutin in the present study (3,4diOHPAA, 3-OHPAA, 4-OHBA, and 
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3,4diOHPPA), which were also detected before by Jaganath et al. (2009) after the in-vitro 

fermentation of rutin; however, the 3,4diOHBA they reported was not detected in the 

present study (Jaganath et al., 2009).  

Consistent with the urinary phenolic acid (GC-MS), the urinary total phenols measured by 

Folin-Ciocalteu assay increased in both groups after the high polyphenol diet. However, 

the difference between the groups was not consistent with the urinary phenolic acid. This 

could be related to other interfering substances for the Folin-Ciocalteu assay in the urine 

such as aromatic amines, sulphur dioxide, ascorbic acid, organic acids, Fe (II), and non-

phenolic substances (Roura et al., 2006). 

The urinary antioxidant activity can be affected by the profile of phenolic compounds 

excreted in the urine. The FRAP values increased significantly after the high-polyphenol 

diet in the European participants but not in the Indian participants. This is due to lower 

phenolic acid in the Indians’ urine samples. According to Olthof et al. (2003), phenolic 

acid metabolites have much lower antioxidant activity than their parent compounds. The 

breakdown of polyphenols into smaller molecules in the colon and liver lower their 

antioxidant activity; therefore, the conjugated step with glucuronic acid, sulfates, or 

glycine lowers the antioxidant activity (RiceEvans et al., 1996). 

In agreement with the faecal pH and SCFA, Indians had lower fermented faecal slurry pH 

and produced more SCFA compared to Europeans. Further work is required to determine 

the mechanism underlying this difference but it may be due to their ability to ferment 

nutrients more effectively than Europeans, possibly related to the composition of gut 

microbiota or the effect of dietary fibre. The fermentation of polyphenols alone had no 

effect on the faecal slurry pH or on the gas production in comparison to the faecal 

fermentation with raftiline, suggesting an important role for dietary fibre in this activity. A 

study by Pereira and Gibson (2002) showed that inulin increased gas production because of 

the simple sugar in the inulin compound which makes it highly fermentable and more 

available for the bacteria. The faster production of gas in the Indian group at 2 hours may 

be due to their gut microbiota composition activity and ability to ferment fibre. 

Unfortunately, the faecal bacteria enzymes were not measured in this study; and thus 

further research would be advantageous to determine if this provides an explanation for the 

faster fermentation in Indians. 



 

 

125 

 

Faecal ammonia is suggested to have an adverse effect on the health of the colon. Previous 

studies have reported that it may promote tumorigenesis by stimulation of cell proliferation 

in the colon and also has a toxic effect that can damage the colonic epithelium and increase 

the risk of CRC (Birkett et al., 1996). Since the reported rate of CRC is low in Indians, the 

measurement of faecal ammonia was performed in both groups. The study was unable to 

detect differences between the groups because it did not have the required statistical power. 

Moreover, the high polyphenol diet had no effect on the faecal ammonia and this could be 

due to the short term study of the intervention. A study by Shinohara et al. (2010) showed 

that a decrease in faecal ammonia was detectable after an intake of only two apples for 14 

days.  

This study was designed as a human cross-over dietary intervention (in-vivo) to study the 

colonic metabolism of dietary polyphenols (after low and high polyphenol diets) between 

the two groups, focusing on urinary phenolic acid excretion in the light of gut bacterial 

diversity. The choice of this study design over other possible approaches has a number of 

inherent strengths and weaknesses. The strengths were perceived to be: 1) using the 

crossover design has the advantage of reducing the cofounding variable because each 

crossover subject served as his or her own control; 2) the study’s dietary intervention was 

well controlled, and the same high polyphenol foods were provided to all participants to 

reduce the variation in food brand and quantity and 3) the faecal fermentation of in-vitro 

rutin provided an assessment of the fermentation ability of each group.   

On the other hand, there were some limitations which included the following: 1) the 

phenolic acid was not measured in faecal samples which could have provided useful 

information if phenolic compounds did not metabolise in the colon or had been used by the 

gut bacteria and absorbed in their body; 2) the study did not measure the colonic bacteria 

enzyme activity such as β- glucosidases, β- glucuronidases, and α-rhamnosidas in the 

fermented faecal samples. The measurement of these enzymes could have given a better 

understanding regarding the differences between groups in terms of the formation of 

phenolic acid; 3) the study was not designed to test the effect of dietary habit, colonic pH, 

colonic SCFA, and colonic.  

In conclusion, the data of this study showed clear differences between groups in terms of 

the colonic biomarkers of dietary polyphenols and fiber fermentation (pH, SCFA, and 

phenolic acid). The lower excretion of urinary phenolic acid and higher phenolic acid 

formation during the fermentation of rutin in the Indian group suggested that Indians have 
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the ability to absorb and ferment the polyphenols much faster than the Europeans. Another 

possibility could be due to the effect of fiber on the bacterial growth and their need to use 

the phenolic as a source of carbon. The high intake of fibre has a direct effect by providing 

selective substrates for some bacteria and indirectly by reducing the colonic pH which in 

turn can alter the growth and the composition of gut microbiota. The differences between 

groups could be due to a variation in colonic microbiota which might be affected by ethnic 

genetics, environmental reasons including dietary habits or a combination. However, this 

study did not aim to dissect the effect of these factors on the metabolism of dietary 

polyphenols. Further studies are needed to distinguish and evaluate the effect of these 

factors.  

The low incidence of CRC in Indians could be a result of the high intake of fruit and 

vegetables which are known for their high amount of polyphenols and fibre. A diet that is 

high in fruit and vegetables has the ability to acidify the colon which can protect against 

colon cancer, while the alkaline faecal pH can induce the carcinogens in the colon and 

increase the risk of CRC (Mitani et al., 1999).  
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 Chapter Four 

Ageing and the Colonic Metabolism of Dietary 

Polyphenols 
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4.1 Introduction 

The British population is increasingly ageing, with over one third of the UK population 

expected to be over 65 by 2050 (Cracknell, 2010). The increase in life span has a direct 

effect on the incidence of age-related disease, including CRC (Biagi et al., 2010), which 

can put a tremendous strain on the National Health Service (NHS) (Cracknell, 2010).  

Aging is known to affect bowel function (Russell, 1992), which may be related to one or a 

combination of the following factors: 1) reduced gut motility, leading to longer transit time 

and chronic constipation (Madsen, 1992, Firth and Prather, 2002, Madsen and Graff, 

2004);  2) reduced chewing strength, resulting in food choices that tend to be lower in fibre 

(Brodeur et al., 1993); 3) reduced water consumption (Kenney and Chiu, 2001); 4) reduced 

physical activity (Wijhuizen et al., 2007). All of these factors can affect dietary intake and 

alter nutrient metabolism, leading to an inadequate range of food consumption which can 

slow down the transit time and affect the growth and composition of gut microbiota 

(O'Toole and Claesson, 2010). 

It has been reported that the composition of gut microbiota may be altered in the elderly, 

with some of the beneficial bacteria, such as Bifidbacterium, declining, and potentially 

harmful bacteria, such as Enterobacteriaceae and Clostridium perfringens, increasing 

(Gavini et al., 2001). The changes in the colonic microbiota and its products (such as 

SCFA, in particular butyrate which has shown an antiproliferative effect on colon cancer 

and provides energy for colonic epithelial cells) could directly affect the regulation of the 

gene expression for the cellular growth and proliferation by hyperacetylation cells 

(Rowland, 2009, Donohoe et al., 2011, Tremaroli and Bäckhed, 2012). Importantly, there 

is a link between the age-related change in the gut microbiota, colonic inflammation and 

the risk of CRC (Garagnani et al., 2013).  

Plant foods contain a range of bioactive molecules, including polyphenolics, which may 

have antioxidant, anti-carcinogenic, anti-inflammatory, and antimicrobial properties that 

could impact on ageing and the risk of chronic diseases such as CRC (Linseisen and 

Rohrmann, 2008, MacDonald and Wagner, 2012).  As discussed in earlier chapters, the 

colonic bacteria are involved in the metabolism of the majority of these molecules.  

However, research into the bioavailability and metabolism of a large number of 

polyphenols, including flavonoids, and in particular rutin, have so far been limited to 

young adults (Rechner et al., 2002a, Olthof et al., 2003, Jaganath et al., 2006, Mullen et 
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al., 2006). As a result, very little is currently known about the impact of ageing on the 

metabolic fate of polyphenolics in the gastrointestinal tract and human tissues.  

This colonic metabolism of these compounds results in a range of metabolites, including 

phenolic acids, which can have a beneficial effect on the gastrointestinal tract (Erlund et 

al., 2000, Manach et al., 2005, Jaganath et al., 2006). Polyphenols found in fruit and 

vegetables may have protective effects in the gastrointestinal tract by: 1) inhibiting the 

growth of pathogenic species (e.g. Clostridium spp, Staphylococcus aureus, and 

Bacteroides spp. (Bialonska et al., 2009); 2) suppressing the adhesion of gut pathogens to 

human gut cells (Nohynek et al., 2006); 3) enhancing natural killer cell activity and 

cytokine secretion (Bub et al., 2003), leading to reduced intestinal inflammation. All of 

these may reduce colonic inflammation and the risk of CRC.  

Therefore, the changes in gut microbiota composition associated with ageing are likely to 

be accompanied by changes in microbial activities, including enzymatic activities 

(Tiihonen et al., 2010). This may have an impact on the colonic metabolism of 

polyphenols. It is, therefore, important to understand the effect of ageing on the colonic 

metabolism of dietary polyphenols before examining their role in disease prevention.  

In Chapter three, the metabolism of polyphenols in healthy adults, after a low or high-

polyphenolic diet, was examined. We saw an effect of ethnicity on the metabolism of 

dietary polyphenols. This present study aimed to test whether age (≥ 50 years) affects the 

colonic metabolism of dietary polyphenols, especially flavonols, known to reach the colon, 

taking into consideration changes in gut microbiota. Since CRC prevalence increases with 

age; and flavonol intake and their colonic bioactive metabolic fraction, phenolic acids, are 

inversely associated with CRC risk (Wild et al., 2006, Simons et al., 2009), we 

hypothesized that the colonic metabolism of polyphenols would differ between younger 

and older adults. To test this hypothesis, two age groups were studied, and two study 

designs were used. 

1. A human dietary intervention (in-vivo), to study the colonic metabolism of 

dietary polyphenols (after low and high polyphenol diets) between healthy 

younger adults and a group over 50 years of age, focusing on urinary 

phenolic acid excretion and gut bacterial diversity (especially polyphenol-

degrading bacteria). 
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2. In-vitro fermentations, using faecal samples collected during the dietary 

intervention, to study the metabolic capacity of the samples when specific 

flavonols were fermented. 

4.2 Subjects and study design 

4.2.1 Subjects and recruitment 

Older adults (≥ 50 years) were recruited using local advertisements, printed poster display, 

and online social networking sites. The younger group (20-42 years) was recruited as part 

of the ethnicity study (European group; Chapter 3). Exclusion criteria included consuming 

alcohol (>4 units/day), obesity (BMI>30kg/m
2
), taking dietary supplements, pregnancy or 

at risk of pregnancy, smoking, taking any medication, or having any conditions known to 

affect bowel function. A full ethical application was prepared for this study and submitted 

to the University of Glasgow, College of Medical; Veterinary & Life Sciences (approval in 

Appendix 7). All participants gave informed written consent. 

4.2.2 Sample size and power calculation 

The primary aim of this study was to characterise the difference in colonic metabolism of 

dietary polyphenols in healthy older adults (≥ 50 years) compared with previous results 

generated from healthy younger adults (Chapter 3). Urinary phenolic acid excretion in the 

younger group following a low polyphenol diet was 275.4 ± 110.6 umol/day, versus 

1127.8 ± 373.3 umol/day following a high polyphenol diet. The mean difference was 852.4 

mg/day with a standard deviation of 337.2. Based on this, a sample size of n= 13 

participants will be sufficient to detect (or not) the difference of one standard deviation in 

urinary phenolic acid excretion between the younger and older adult groups at a power of 

80%, p<0.05, allowing for a 20% drop-out rate. 

4.2.3 Study design and sample collection  

All participants were asked to follow a low-polyphenol and a high-polyphenol diet, each 

lasting three days. Three days for each diet was enough for polyphenol rich foods to be 

supplied to the colons and fermented over the course of several meals. During the low-

polyphenol diet (diet A), participants were asked to avoid all fruits, vegetables, onions, 

coffee, tea, chocolate, vanilla and similar flavourings, whole meal products, alcohol, 

spices, and all dietary supplements (vitamins, minerals, and herbal products). During the 
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high-polyphenol diet (diet B), participants were asked to follow a specific diet including 

polyphenol-rich foods, which were provided along with cooking guidance and recipe 

sheets. Examples of foods to be included during the low polyphenol diet, and a detailed 

menu of the high-polyphenol diet are given in Appendix 4 and 5. Urine and faecal samples 

were collected after the low-polyphenol diet (day 4) and high-polyphenol diet (day 4) for 

the human feeding study measurements (Figure 4-1). Stool samples collected after the low-

polyphenol diet (day 4) were used in in-vitro faecal fermentations. Sociodemographic and 

anthropometric measurements (height, weight, BMI, and waist circumference), and blood 

pressure were collected (details described in Chapter 2, page 44). 

Figure 4-1: Overall study design and samples collection. 

 
 

4.3 Dietary assessment 

A food frequency questionnaire (FFQ) was used to assess the participants’ habitual diet 

over the past year, as described in Chapter 2, page 68). 

4.4 Dietary records 

Participants kept a 3-day weighed dietary record for the duration of the low and high-

polyphenol diets. Diaries were used to estimate the intake of macronutrients, 

micronutrients, and flavonoids of each participant during the study and to measure the 

participants’ compliance by reviewing the food types and portion size according to the 

provided instruction (details described in Chapter 2, page 67). 
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4.5 Outcome measures for the human feeding and in-vitro 

faecal fermentation studies 

Phenolic acids (GC-MS), total phenols (Folin–Ciocalteau), and ferric reducing antioxidant 

power (FRAP) were measured in urine samples. The pH, short chain fatty acids (GC-FID), 

and bacterial composition (Taqman real-time quantitative PCR) were measured in the 

faecal samples.  

Phenolic acids, pH, short chain fatty acids, and gas production were measured in the 

fermentation supernatants (details in Chapter 2). 
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4.6 Results 

4.6.1 Subjects characteristics 

Thirteen older adults were recruited, aged between 51-76 years old, to follow a 3-day low 

and 3-day high-polyphenol diets. They were compared to eight younger adults aged 

between 23-43 recruited as part of the ethnicity study (European group; Chapter 3). The 

baseline data for the younger and older groups are presented in Table 4-1. There were no 

significant differences in anthropometric characteristics between the two groups. The BMI 

and WC were within the normal cut-off range for younger and older healthy adults. The 

male to female ratio was similar between groups, with 2 males and 6 females in the 

younger group and 3 males and 10 females in the older adult group. 

Table 4-1: Baseline data in younger (n=8) and older (n=13) participants. 

 

Younger group (n=8) Older group (n=13) p value  

 Median IQR Median IQR 

Age (years)  23.0   6.5    61.0       10.0       0.0002 

Height (cm)   163.0       19.0  161.0         0.1 0.3 

Weight (kg)  63.0 13.3 63.0       16.3 0.4 

BMI (kg/m
2
)

a  22.0  5.8  25.1         4.6   0.06 

W.C (cm)
b  80.0  3.0 85.0       19.0 0.1 

Systolic BP   122.0 19.0   120.0       20.0 0.2 

Diastolic BP  69.0 13.8     86.0       14.0     0.005 

 n % n %  

Normal weight 5 62.5 10 77  

Overweight 3 37.5 3 23  

Obese  0 0 0 0  
 

a
BMI cut-off points (adult=25, older adult (55-65 years old) = 28); (Heim et al., 2010, Heim et al., 2011). 

b
WC cut-off points (adult women=80 cm, man=94; older women=99, man=106); (Heim et al., 2010, Heim et 

al., 2011). 

 
Bowel movements (self-reported on the questionnaire as twice daily or more, daily, every 

2-3 days or less than twice a week) were not significantly different between younger and 

older groups (Table 4-2). 

Table 4-2: Bowel movement in younger (n=8) and older (n=13) participants. 

 

Twice daily or more Daily Every 2-3 days Less than twice a week 

Younger group  37.5% 37.5% 25% 0% 
Older group  25.0% 50% 25% 0% 

*Data presented as percentage of frequency  
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4.6.2 Dietary assessment 

4.6.2.1 Estimation of habitual dietary habits  

No differences were found between the two groups in terms of their dietary habits, with the 

exception of potato intake (p=0.01), where a higher consumption was noted in the older 

group (Table 4-3).  

Table 4-3: Estimation of dietary habits (serving/week) using the FFQ in younger (n=8) and older 

(n=13) participants. 

Food item  

 

 

Younger group 

 

Older group 

 
 

p value 

  Median      IQR  Median     IQR 
Hot Beverages (green tea, black tea, coffee, hot 

chocolate, and herbal infusion) 15.4 24.4 36.0 24.8 0.6 
Milk drinks  3.0 15.2 7.0 4.0 0.9 
Milk substitutes (soya, rice, and oat milk) 0.5 0.0 0.5 0.3 0.4 
Fruit juices 1.5 6.5 7.5 11.0 0.4 
Soft drink 0.4 0.4 0.5 0.3 1.0 
Alcoholic  1.9 0.7 1.5 3.3 0.9 
Wholemeal products (pasta, rice, and brown 

rice) 7.6 7.3 8.0 16.2 0.4 
Refined products (pasta, rice, and crisps and 

crackers) 4.9 4.2 6.5 4.9 0.4 
Breakfast cereals  3.8 5.1 6.8 4.8 0.1 
Fresh fruit 16.0 11.2 23.5 12.7 0.1 
Dried fruits  0.5 0.8 3.0 3.9 0.2 
Vegetables 10.1 9.1 10.8 11.6 0.6 
Potatoes 1.8 2.0 4.0 2.1   0.01 
Legumes  2.0 0.6 2.5 7.6 0.2 
Onion, tomato, chili, or curry-based 

products (inc. fresh tomatoes, ketchup, and 

soup) 11.9 7.9 9.8 8.5 0.6 
Meat (beef, chicken, lamb, pork, bacon, and 

sausages) 2.00 4.25 7.5 3.7 0.4 
Seafood (White fish, oil-rich fish, and shellfish) 2.88 1.63 3.5 2.5 0.9 
Biscuits, cakes, and sweets 11.0 12.9 20.0 15.0 0.1 
Yoghurt  1.8 2.5 6.0 6.8 0.7 
Dairy dessert  0.4 0.3 0.5 2.8 0.8 
Cheese 2.4 3.4 6.0 2.8 0.4 
Eggs 2.0 3.0 1.0 2.5 0.2 
Ice cream  0.5 0.8 0.5 0.8 0.9 
Fats & oils 6.1 9.6 14.8 20.5 0.4 
Seasonings  6.8 19.6 4.0 3.0 0.3 
Herbs 6.0 5.9 4.0 12.5 1.0 
Spices & Chili 2.5 3.3 1.0 5.3 0.3 
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4.6.2.2 Macronutrient intake during low and high polyphenol diets  

There was no significant difference between the groups in terms of energy, fat, protein, 

carbohydrate, total sugars, starch, alcohol, or dietary fibre after the low and high-

polyphenol diet (Table 4-4). When considering the difference in macronutrient intake (Δ 

low-high diet), there was no significant difference between the groups. 

4.6.2.3 Micronutrient intake during low and high polyphenol diets 

There was no significant difference between groups for the intake of vitamins or dietary 

minerals except for thiamine and copper intake during the high-polyphenol diet, with 

thiamine (p=0.05) higher in the younger group, and copper (p=0.01) higher in the older 

group (Table 4-5). 
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Table 4-4: Energy and macronutrient intake from the dietary records after low and high-polyphenol diets in younger (n=8) and older (n=13) participants. 

 

Diet Low-polyphenol diet High-polyphenol diet 

Group Younger Older  

 

 
p value 

Younger Older  

 

 
p value Nutrient Median IQR Median IQR Median    IQR Median   IQR 

Energy (KJ) 8016 2466 7768 3277 0.6 8227 2442 7531 2474 0.5 

kcal (Kc) 1910 585 1874  785 0.6 1949    586 1794    617 0.5 

Fat (g) 95.8 27.8 82.1 56.0 0.9 74.3 25.8 63.8 31.7 0.5 

protein (g) 80.4  7.2 94.3 37.7 0.7 54.9 15.6 47.1 22.3 0.7 

Carbohydrate (g)     195.0 83.3   195.4 73.0 0.4   247.1  109.5   217.5 78.6 0.4 

Total sugars (g)       36.1 26.4 34.3 42.1 0.6   115.9 50.0 92.9 42.1 0.2 

Starch (g)     140.5 62.8   149.5 43.9 0.9     70.6 44.2 60.0 35.7 0.9 

Alcohol (g)  0.0  0.0  0.0  0.0 0.9  0.0   0.0   0.0  0.5 0.5 

Dietary fibre* (g)  9.1  2.0     11.8  8.0 0.3 27.5   3.2 26.5  9.9 0.7 

                           
                          * Non-starch polysaccharide
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Table 4-5: Estimated micronutrient intake from the dietary records after low and high-polyphenol diets in younger (n=8) and older (n=13) participants. 

Diet Low-polyphenol diet 

p value 

 

High-polyphenol diet 

p value 

 

Group Younger Older Younger Older 

Nutrient Median       IQR Median     IQR Median      IQR Median     IQR 

Vitamin A (µg)       632  201.6 574.0 396.0 0.8 362.2 98.1 383.3 380.3 0.4 

Thiamine (mg) 1.2 0.3 1.1 0.5 0.6 0.6 0.3 0.8 0.4 0.05 
Riboflavin (mg) 1.7 0.5 1.2 0.9 0.4 0.6 0.4 0.9 0.3 0.2 

Niacin (mg) 28.6 4.9 35.9 15.6 0.2 19.5 14.7 16.2 9.5 0.6 

Vitamin B6 (mg) 1.5 0.2 1.4 0.9 0.6 0.7 0.5 0.9 0.8 0.5 

Vitamin B12 (µg) 5.2 1.3 3.7 9.7 0.9 1.6 2.1 2.0 2.4 0.6 

Folic acid (µg) 155.2 70.5 137.0 42.0 0.4 95.5 33.3 125.7 32.3 0.2 

Pantothenic acid (mg) 4.6 1.4 5.5 3.9 0.3 2.2 0.5 3.2 1.6 0.2 

Biotin (µg) 26.0 5.9 30.9 20.0 1.0 18.5 6.4 22.8 7.1 0.3 

Vitamin C (mg) 17.2 8.3 22.0 35.4 0.5 62.4 11.0 75.6 105.0 0.6 

Vitamin D (µg) 2.0 1.3 3.4 5.4 0.3 1.2 1.1 0.8 1.0 0.3 

Vitamin E (mg) 5.8 3.8 5.4 6.0 0.6 11.7 5.0 7.8 4.0 0.1 

Calcium (mg) 1302.3 539.5 909.7 551.7 0.5 358.8 69.7 517.0 223.6 0.08 

Magnesium (mg) 182.7 65.8 172.3 132.3 0.9 146.5 55.1 158.3 82.7 0.7 

Sodium (mg) 3009.5 1340.0 2831.3 1983.0 0.5 2698.5 713.2 2343.3 323.3 0.3 

Potassium (mg) 1934.2 686.1 1887.0 1665.3 0.7 1987.7 680.3 2183.0 990.3 0.7 

Chlorine (mg) 4394.5 1702.3 4640.3 3249.3 0.5 2612.2 721.5 2540.7 804.4 0.5 

Phosphorus (mg) 1486.7 227.8 1237.0 603.3 0.7 568.2 329.1 681.7 286.3 0.3 

Iron (mg) 8.6 2.5 8.3 2.9 0.7 6.2 2.4 7.3 2.3 0.2 

Zinc (mg) 8.5 1.6 7.7 3.3 0.5 4.1 1.5 4.1 2.7 0.4 

Copper (mg) 0.7 0.3 0.7 0.2 0.7 1.1 0.2 0.8 0.4 0.01 

Manganese (mg) 1.3 1.0 1.8 0.8 0.3 2.5 0.5 2.8 1.5 0.8 

Selenium (µg) 41.0 9.8 58.0 53.7 0.5 22.5 15.8 16.3 12.0 0.2 

Iodine (µg) 198.7 127.9 126.3 166.0 0.8 58.7 57.0 71.0 46.0 0.5 
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4.6.2.4 Flavonoid intake during low and high polyphenol diets 

There was no difference in flavonoid intake between the two age groups over either the 3 

days of low or high-polyphenol diet (Figure 4-2). Flavonoid intake during the 3 days low 

polyphenol diet was 6.0 mg/day (IQR 5.4) in the younger group and 6.3 mg/day (IQR 8.4) 

in the older group. Flavonoid intake was 510.4 mg/day (IQR 40.1) in the younger group 

and 489.7 mg/day (IQR 123.1) in the older group after the 3 days of high-polyphenol diet.  

Figure 4-2: Median flavonoid intake per day over 3 days low and-high polyphenol diets in younger 

(n=8) and older (n=13) participants. 

 
Each circle indicates the estimated average daily flavonoid intake for each participant after low and high-

polyphenol diets. Median flavonoid intake for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

 

 

When considering flavonoid intake on day 3 only (since urine samples were collected from 

the second urine of day 3, including the first urine of day 4), there was no difference 

between groups during the low-polyphenol diet (5.0 mg (IQR 4.5) versus 8.9 mg (IQR 3.6) 

for younger and older groups, respectively) or the high-polyphenol diet (553.1 mg (IQR 

76.0) versus 496.8 mg (IQR 102.2) for younger and older groups, respectively). 
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4.6.3 Measurements performed on urine samples 

4.6.3.1 Urinary total phenols using Folin-Ciocalteu assay 

After the low-polyphenol diet, total urinary phenols was higher in the older group than the 

younger group (p<0.001; Figure 4-3). Total urinary phenols did not increase in the older 

group after the high polyphenol diet, from 426.5 µg GAE/24h (IQR 85.2) to 422.8 µg 

GAE/24h (IQR 128.2), while they did in the younger group, from 245.9 µg GAE/24h (IQR 

91.9) to 385.4 µg GAE/24h (IQR 229.7; p=0.02). When considering the difference in 

urinary total phenols excretion (Δ low-high diet), it was significantly higher in the younger 

group (169.3 µg GAE/24h (IQR 227.8) versus -33.4µg GAE/24h (IQR 203.2), p=0.02).  

Figure 4-3: 24-hour urinary total phenols (µg GAE/24h) after low and high-polyphenol diets in 

younger (n=8) and older (n=13) participants.  

 

Each circle indicates the measurement of urinary total phenols for each participant after low and high-

polyphenol diets. Median urinary total phenols for each group are indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

*symbol  indicates differences in changes (∆) between groups. 
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4.6.3.2 Total antioxidant activity (FRAP) of urine samples after low and high 

polyphenol diets 

The urinary FRAP value increased after the high-polyphenol diet in both groups, from 0.6 

mM Fe
+2

/day (IQR 0.4) to 2.8 mM Fe
+2

/day (IQR 0.9; p=0.0009) in the younger group and 

from 1.9 mMFe
+2

/day (IQR 0.1) to 3.1 mMFe
+2

/day (IQR 2.0; p=0.005) in the older group 

(Figure 4-4). The difference (Δ low-high diet) in FRAP value was significantly higher 

(p=0.01) in the younger group (2.07 mM Fe
+2

/day, IQR 1.24 versus 0.61 mM Fe
+2

/day, 

IQR 0.98).  

Figure 4-4: 24-hour urinary antioxidant activity (mM Fe
+2

/day) after low and high-polyphenol diets in 

younger (n=8) and older (n=13) participants. 

 

 
Each circle indicates the measurement of urinary FRAP for each participant after low and high-polyphenol 

diets. Median urinary FRAP for each group is indicated by a black horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

*symbol indicates differences in changes (∆) between groups. 
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4.6.3.2.1 Correlation between urinary total phenols (measured with Folin-Ciocalteu) 

and urinary FRAP 

The relationship between urinary total phenols (measured with Folin-Ciocalteu) and 

urinary FRAP was analysed by linear regression (Spearman rank correlation).While the 

correlation between urinary FRAP and total phenols was good (Rs
2
=0.8; p<0.001) in the 

younger group, it was weak (Rs
2
=0.3; p=0.06) in the older group (Figure 4-5). 

Figure 4-5: Correlation between urinary FRAP and the urinary total phenols (Folin-Ciocalteu) in 

younger (n=8) and older (n=13) participants. 

 
 

Dotted line indicates younger group; solid line indicates older group. 

 

 

4.6.3.3 GC-MS measurement of urinary phenolic acid excretion after low and high-

polyphenol diets  

The sum of the seventeen urinary phenolic acids excreted, significantly increased in the 

younger group (p<0.001) from 268.2 µmol/day (IQR 89.3) after the low-polyphenol diet to 

1220.4 µmol/day (IQR 649.5)  after the high-polyphenol diet, and from 349.3 µmol/day 

(IQR 286.7) to 1789.0 µmol/day (IQR 1788.0) respectively in the older group (p<0.001). 

The change in urinary excretion (Δ low-high diet) was not different between groups. 

However, urinary phenolic acid concentration was higher after the high-polyphenol diet in 

the older group (p=0.04;Figure 4-6). 
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After correcting for flavonoid intake, the urinary phenolic acid concentration was still 

higher (p=0.05) in the older group after the high-polyphenol diet compared to the younger 

group (2860.3 µmol/mg of flavonoid (IQR 2779.6) versus 1629.4 µmol/mg of flavonoid 

(IQR 1185.3).  

Figure 4-6: 24-hour urinary phenolic acid profile excretion (µmol/day) after low and high-polyphenol 

diets in younger (n=8) and older (n=13) participants.  

 

Each circle indicates the measurement of the urinary phenolic acids profile for each participant after low and 

high-polyphenol diets. Median urinary phenolic acids for each group are indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

§ symbol indicates differences between groups (high vs. high). 

 

 

 

There were differences between groups for the excretion of individual phenolic acids (∆ 

low-high diet).The older group excreted less benzoic acid (p=0.04) and vanillic acid 

(p=0.05) than the younger group (Table 4-6). 
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Table 4-6: Amount of phenolic acid in 24 h urine (µmol/day) after low and high-polyphenol diet in younger (n=8) and older (n=13) participants. 

Group 

 

Younger 

∆ 

 

 

Older 

∆ 

 

p value 

 

Diet     Low-polyphenol diet High- polyphenol diet     Low-polyphenol diet     High- polyphenol diet  

Acid N     Median IQR N Median IQR N Median IQR N Median IQR 

BA 8/8 16.6† 14.3 8/8 31.1§ 32.9 14.5 13/13 1.1† 1.5 13/13 1.8§ 4.3     0.8 0.04 
PAA 8/8 3.2† 2.2 8/8 3.2 4.8  0.0 7/13 0.9† 0.4 6/13 1.1 0.7   0.2 0.80 
MA 8/8 0.7 0.5 8/8 1.1 1.2 0.4 13/13 0.3 0.5 13/13 0.5 0.5    0.2 0.14 
3-OHBA 8/8   0.6* 0.5 8/8   0.9* 1.2 0.3 8/13 0.4 1.2 9/13 1.2 1.2    0.8 0.27 
3-OHPAA 8/8   2.3* 1.3 8/8  19.2* 23.3    16.9 13/13     2.3** 1.4 13/13    30.2** 39.1    27.8 0.40 
4-OHBA 8/8 2.1 1.0 8/8 3.8 1.9 1.7 12/13 2.2 2.1 12/13 2.9 2.1    0.7 0.17 
4-OHPAA 8/8 38.0 21.4 8/8       42.9 15.0 4.9 13/13   21.2 20.7 13/13 19.6 14.4     -1.6 0.94 
4-OHPPA 8/8 0.4 0.4 8/8 0.5 0.9 0.2 8/13 0.2 0.6 8/13 0.3 0.5    0.1 0.08 
VA 8/8   0.7* 0.4 8/8  2.8* 2.7 2.1 9/13 0.9 1.1 12/13 1.4 1.2     0.5 0.05 
HVA 8/8   10.8* 4.4 8/8 19.8* 12.7      9.0 13/13     7.6** 1.8 4/13   12.4** 5.6     4.9 0.71 
4-OHMA 8/8 4.9 1.5 8/8 3.9 1.6 -1.0 13/13     3.7** 0.9 13/13     2.6** 1.0    -1.1 0.84 
3,4diOHBA 8/8   1.0* 0.2 8/8  2.1* 1.1 1.1 4/13 0.9 0.4 4/13 1.2 0.3     0.3 0.20 
3,4diOHPAA 8/8   1.5* 0.4 8/8 2.9* 5.3 1.5 13/13    1.2** 0.3 13/13     3.2** 3.8      2.0 0.91 
HA 8/8     155.7* 95.7 8/8    969.8*§ 540.2  814.1 13/13 301.5** 277.6 13/13 1734.5**§ 1704.5 1433.0 0.06 
Dihydrocaffeic acid  8/8 1.3* 0.9 8/8 2.3* 2.2 0.9 6/13 1.3 0.4 9/13 1.5 1.1      0.2 0.54 
3,4diOHPPA 8/8 0.5* 0.4 8/8 1.6* 1.2 1.1 8/13     0.3** 0.6 9/13     0.8** 0.4      0.5 0.07 
GA 8/8 0.6 0.7 8/8        0.8 1.4 0.2 4/13 0.8 0.4 5/13 0.7 0.5      0.0 0.25 

3-OHhippA 8/8 21.0* 10.2 8/8      68.6* 41.4    47.6 13/13    15.1** 10.9 13/13    28.4** 20.0     13.3 0.76 
 

N number of participants. 

∆ Difference in urinary excretion (high diet minus low diet). 

P value is the difference in urinary phenolic acid excretion (∆ low-high diet) between groups. 

* Significant increase in younger group after the high-polyphenol diet p≤0.01  

**Significant increase in older group after the high-polyphenol diet p≤0.01  

§Significant difference between groups after the low-polyphenol diet p≤0.05 

†Significant difference between groups after the high-polyphenol diet p≤0.05
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Hippuric acid (HA) was always the most abundant acid in urine samples in both groups 

(89.2 and 97.9% of the total of all phenolic acids for younger and older, respectively), and 

was higher in the older group after the high-polyphenol diet compared to low diet 

(p=0.02). However, the change in excretion, Δ low-high diet, was not different between 

groups. 

The sum of the phenolic acids minus hippuric acid was considered as it is most likely to be 

formed in the liver by conjugation of benzoic acid and glycine. Dietary sources of benzoic 

acid and precursors (quinic acid, aromatic amino acid tryptophan, tyrosine, and 

phenylalanine) should be considered (Self et al., 1960, Grumer, 1961). Other sources of 

benzoic acid are benzoates (E numbers 210-219) which are commonly used in food, 

medications, and mouthwashes.  An increase was detected after the high-polyphenol diet in 

both groups; from 103.6 µmol/day (IQR 34.9) to 211.2 µmol/day (IQR 79.6) in the 

younger group (p=0.003) and from 55.5µmol/day (IQR 29.3) to 100.4 µmol/day (IQR 

48.5) in the older group (p=0.007). The difference in urinary excretion (Δ low-high diet) 

was not different between groups. However, urinary phenolic acid concentration was 

higher after the low-polyphenol diet (p=0.03) and high-polyphenol diet in the younger 

group (p=0.02; Figure 4-7).  

Figure 4-7: 24-hour urinary phenolic acid profile excretion without hippuric acid (µmol/day) after low 

and high-polyphenol diets in younger (n=8) and older (n=13) participants.  

 

Each circle indicates the measurement of the urinary phenolic acids profile without hippuric acid for each 

participant after low and high-polyphenol diets.  Median urinary phenolic acids profile without hippuric acid 

for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

† symbol indicates differences between groups (low vs. low). 

§ symbol indicates differences between groups ( high vs. high). 
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4.6.3.3.1 Correlation between urinary phenolic acid (measured with GC-MS) and 

urinary FRAP 

The relationship between urinary phenolic acid (measured with GC-MS) and urinary 

FRAP was analysed by linear regression (Spearman rank correlation).There was a strong 

correlation between urinary FRAP and the sum of urinary phenolic acids in the younger 

group (Rs
2
=0.9, p=0.001). However, the association between FRAP and total phenolic 

acids was very weak in the older group (Rs
2
=0.3, p=0.07; Figure 4-8). The correlation 

without hippuric acid showed gave much stronger association (Figure 4-9). 

Figure 4-8: Correlation between urinary FRAP and the phenolic acid (GC-MS) in younger (n=8) and 

older (n=13) participants. 

 
 

 

Dotted line indicates younger group; solid line indicates older group. 

 

Figure 4-9: Correlation between urinary FRAP and phenolic acid without hippuric acid (GC-MS) in 

younger (n=8) and older (n=13) participants. 

 
 

Dotted line indicates younger group; solid line indicates older group. 
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4.6.4 Measurements performed on faecal samples 

4.6.4.1 Faecal pH after low and high-polyphenol diets 

The faecal pH decreased significantly in the older group from 7.7 (IQR 0.6) to 6.9 (IQR 

0.6; p<0.01). However, this was not the case for the younger group (7.2, IQR 0.6 to 6.7, 

IQR 0.8). Looking at pH change with diet (Δ low-high diet for pH) there was no significant 

differences between the groups (Figure 4-10). 

Figure 4-10: Change in faecal pH after low and high-polyphenol diets in the younger (n=8) and older 

(n=10) participants. 

 
Each circle indicates the measurement of faecal pH for each participant after low and high-polyphenol diets. 

Median faecal pH for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 
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4.6.4.2 Faecal SCFA after the low and high-polyphenol diets 

Total faecal SCFA concentration (sum of all SCFA) did not increase significantly from 

low to high-polyphenol diet in either group. Total SCFA changed from 164.3 µmoles/g 

dwt (IQR 94.5) to 192.4 µmoles/g dwt (IQR 52.8) respectively in the younger group, and 

from 258.4 µmoles/g dwt (IQR 112.3) to 264.5 µmoles/g dwt (IQR 92.7) in the older 

group. Although there were no significant differences (Δ low-high diet) in either group, the 

SCFA concentration was significantly higher for the older group than the younger group 

after the high-polyphenol diet (p=0.01; Figure 4-11).  

Figure 4-11: Faecal SCFA (µmoles/g dwt) after low and high-polyphenol diets in younger (n=8) and 

older (n=11) participants. 

 
Each circle indicates the measurement of faecal SCFA for each participant after low and high-polyphenol 

diets. Median faecal SCFA for each group is indicated by a red horizontal line.  

§ symbol indicates differences between groups (high vs. high). 

 

 

There were no differences in the change (Δ low-high diet) in each specific acid between 

groups. However, the absolute levels of acetic acid were higher after both the low (p=0.01) 

and high-polyphenol diets (p=0.02) in the older group, relative to the younger group. 

Absolute level of enanthic acid was higher after the high-polyphenol diet in the younger 

group (p=0.03; Table 4-7). 
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Table 4-7: Faecal concentration of SCFA (µmol/g dwt) in younger(n=8) and older (n=11) participants after low and high-polyphenol diets. 

Group Younger  Older  
p value 

 
Diet Low polyphenol diet  High polyphenol diet  

∆ 
Low polyphenol diet  High polyphenol diet  

∆ Acid    Median IQR Median IQR Median  IQR Median IQR 
Acetic acid       97.8§    35.8   130.2† 25.4   32.4 146.7§  41.9     185.0† 82.6 38.3 0.1 
Propionic acid    25.6    25.7  25.9 11.4   0.3  34.5  25.2    28.4 10.0 -6.2 0.9 
Isobutyric acid      3.2      2.9    2.5  0.6 -0.7    6.0    3.0            3.2   1.9 -2.8 0.8 
Butyric acid    19.4    23.0  17.5  8.5 -1.9  28.2   29.7    38.4 21.1 10.2 0.3 
Isovaleric acid      5.7      4.6    3.6  2.2 -2.1    9.3     3.8      5.3   2.2 -3.9 1 
Valeric acid      4.9      3.7    3.3  1.5 -1.6    5.0     3.4     3.8   1.3 -1.2 0.5 
Isocaproic acid      0.0      0.5    0.0  0.0   0.0    0.0     0.0     0.0   0.0   0.0 0.8 
Caproic acid      1.7         2.4    1.1  4.0  -0.6    1.1     1.4     2.0   2.6   0.9 0.5 
Enanthic acid      1.2      2.3    1.8†  4.2   0.6    0.0     0.0     0.0†   0.0   0.0 0.8 
Caprylic acid       1.7     1.6    2.3  3.7   0.6     1.1     1.3     1.0   1.3  -0.1 0.4 
Total SCFA 161.2 102.4 188.3 61.5 27.1 258.4 112.3 264.5 92.7   6.1 0.9 

 Median    IQR Median IQR ∆ Median   IQR Median   IQR ∆  

Proportional ratio 59.4    16.2  66.2 8.0  6.8  62.8   12.1  70.0   5.2  7.2  
%Acetic acid  15.6     8.1  13.0 3.5 -2.6  12.5     3.9  10.6   3.4 -1.9  
%Propionic acid    2.0     0.7   1.3 0.7 -0.7    2.2    0.7    1.1   1.3 -1.1  
% Isobutyric acid 10.7     6.0   9.7 2.3 -1.0         10.9    6.6  12.9   5.3      2  
%Butyric acid   3.9     1.4   2.2 0.7 -1.7    3.7    1.2   1.9   2.0 -1.8  
% Isovaleric acid   2.5     1.6   1.9 1.0 -0.6   2.4    0.9   1.5   0.5  -0.9  
%Valeric acid   0.0      0.3   0.0 0.0  0.0   0.0    0.0   0.0   0.0 0  
%Isocaproic acids   1.2     1.5   0.5 1.9 -0.7   0.5    0.8   1.1   1.1    0.6  
%Caproic acid   0.9     1.0   1.0 2.2  0.0   0.0    0.0   0.0   0.0    0.0  
%Enanthic acid   0.9     0.7   1.2 0.4  0.3   0.5    0.5   0.3   0.5   -0.2  

∆difference in faecal concentration of SCFA (high diet minus low diet). 

p values are the difference in urinary excretion (∆ low-high diet) of each acid between groups. 

§Significant difference between groups after the low-polyphenol diet p≤0.05 

†Significant difference between groups after the high-polyphenol diet p≤0.05
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4.6.4.3 Concentration of bacterial DNA isolated from faecal samples after low-

polyphenol diet 

High quality and high yield DNA was obtained from all faecal samples. The purity and yield 

of the extracted DNA was very high and similar between groups (Table 4-8).  

Table 4-8: The DNA concentration and purity measured using Nano-Drop in the younger (n=8) and older 

(n=12) participants. 

Group 
 

Younger 
 

Older 

Measurements Median  IQR 
 

Range 

 

Median IQR 
 

Range 

 

 
DNA concentration (ng/µl) 

 

519.5 98.6 
 

298.0-

570.5 
463.0 201.4 

 
421.6 - 1031.4 

 
DNA purity 280/260 nm 

 

1.81 0.06 
 

1.7 - 1.9 1.8 0.09 
 

1.7- 2.0 

 
DNA purity 260/230 nm  

 

1.40 0.41 
 

1.1 - 1.8 1.3 0.2 1.0-1.8 

 
 

The faecal DNAs appear intact and compact as a high-molecular-weight band when 

electrophoresed through a 1.5% agarose gel (Figure 4-12).  

Figure 4-12:Agarose gel showing the purity of DNA extracted for bacterial qPCR analysis in A) younger 

(n=8) and B) older (n=12) participants. 
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4.6.4.4 Characteristics of the qPCR run condition  

The characteristics of the qPCR runs of each bacterial group and species including the slope, 

amplification efficiency, and the coefficient of determination (R
2
) for both groups are 

described in Table 4-9. The amplification efficiency was within the normal range (90% - 

105%) for the total bacteria, Bacteroides – Prevotella, and Flavonifractor plautii in both 

groups; however, efficiency for Bifidobacterium spp. was just below the normal range in both 

groups. 

Table 4-9: Characteristics of qPCR runs for each bacteria species/groups in both younger (n=8) and older 

(n=12) participants. 

 
Bacteria species/groups 

 
Slope 

Amplification 

efficiency (%) 
 

R
2 

 Younger          
   group 

Older  
 group 

Younger 

group 
   Older    
   group 

Younger    
   group 

 Older   
 group 

 
Total Bacteria 

 

 
-3.444 

 
-3.371 

 
95.1 

 
97.9 

 
0.995 

 
0.994 

 
Bacteroides – Prevotella 

 

 
-3.629 

 
-3.507 

 
89.1 

 
92.8 

 
0.997 

 
0.998 

 
Bifidobacterium spp. 

 

 
-3.72 

 
-3.68 

 
86.6 

 
86.9 

 
0.999 

 
0.994 

 
Flavonifractor plautii 

 

 
-3.581 

 
-3.621 

 
90.2 

 
89.7 

 
0.998 

 
0.999 
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4.6.4.5 Absolute concentration of bacterial species and groups using qPCR 

Absolute levels of Bifidbacterium, Bacteroides, and Flavonifractor plautii did not differ 

between younger and older groups (Table 4-10).  

Table 4-10: Absolute (log
10

/g) faecal concentrations and relative abundance of bacterial groups/species in 

younger (n=8) and older (n=12) participants. 

Target 
Wet weight sample Dry weight sample* 

 Younger (n=8)  Older  (n=12)  Younger (n=8)  Older  (n=12) 

Log
10 

/g Median IQR Median IQR Median IQR Median IQR 

Total bacteria 11.5 0.2 11.4 0.5 11.9 0.3 11.8 0.5 

Bifidobacterium spp. 9.7 0.5 9.5 0.9 10.1 0.8 10.1 1.1 

Bacteroides+Prevotella 10.5 0.8 10.2 0.6 11.0 1.0 10.7 0.4 

Flavonifractor plautii 8.4 0.7 7.7 1.0 8.9 0.8 8.2 1.1 

%                 

Bifidobacterium spp.     1.6    1.3       1.6     2.0 

Bacteroides+Prevotella     10.0    6.3     12.6     7.9 

Flavonifractor plautii      0.1    0.0       0.1     0.0 

 
* Calculated using the weight (g) and the moisture percentage (%) of the wet faecal samples. 
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4.6.5 In-vitro fermentation of rutin 

Ten fermentations were carried out using the stool samples of 6 younger (1 male and 5 

females) and 4 older subjects (1 male and 3 females), collected after the low-polyphenol diet. 

The rutin was fermented for 24 h with or without fibre (raftiline) to test the metabolic capacity 

of the gut faecal contents, including the microbiota, in relation to ageing. 

4.6.5.1 Rutin fermentation and pH of faecal fluids 

There was no change in the pH of the fermented faecal fluids containing rutin alone, over 

time, in either group (Figure 4-13). However, the combination of rutin with raftiline 

significantly (p<0.05) reduced the pH level at the end of the fermentation in both groups. The 

reduction was not different between groups. 

Figure 4-13: Change in pH of fermented faecal fluids over 24 h in A) younger (n=6) and older (n=4) 

participants. Data presented as median and IQR. 
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4.6.5.2 Rutin fermentation and gas production 

Gas production was higher in older than younger fermented faecal fluids at 2h of rutin 

fermentation (p<0.05), although there was no difference in total gas production between 

groups after 24 h of fermentation. In both younger and older groups, the combination of rutin 

with raftiline increased the gas production more than the rutin alone (p<0.05). Moreover, the 

older group produced more gas over the total duration of the fermentation than the younger 

group when rutin and raftiline together were fermented (p=0.03; Figure 4-14). 

  

Figure 4-14: Cumulated gas production from fermented faecal fluids over 24 h of incubation in A) younger 

(n=6) and older (n=4) participants. Data presented as median and IQR.   
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4.6.5.3 Metabolism of rutin in faecal fluids and phenolic acids formation 

Only seven metabolites were found and identified using GC-MS after the fermentation of rutin 

with or without raftiline in the fermented faecal fluids of younger and older groups at 0, 6, and 

24 hr (as presented previously in Table 3-12, Chapter 3). These seven phenolic acid 

metabolites were: PAA, 3-OHPAA, 4-OHBA, 3-OHPPA, 4-OHPPA, 3,4diOHPPA, and 

3,4diOHPAA. 

PAA, 3-OHPPA, and 4-OHPPA were detected in both faeces only fluids and fermented faecal 

fluids of rutin with or without raftiline. 3,4diOHPAA was detected only in the fermented 

faecal fluids of rutin with or without raftiline.  

4.6.5.3.1 The sum of seven phenolic acid metabolites formed during fermentation of rutin 

The sum of the seven phenolic acid metabolites (PAA, 3-OHPAA, 4-OHBA, 3-OHPPA, 4-

OHPPA, 3,4diOHPPA, and 3,4diOHPAA) significantly increased over time in the fermented 

faecal fluids of rutin, and rutin with raftiline, in both groups (rutin: younger (p<0.01) and older 

(p=0.002) groups, rutin with raftiline: younger (p=0.02) and older (p=0.03) groups). The 

addition of raftiline to the fermentation significantly inhibited the formation of phenolic acids 

in the younger group only, decreasing it by 7-fold (p=0.02; Figure 4-15). 

4.6.5.3.2 Individual phenolic acid formed after the fermentation of rutin 

PAA was higher in the fermented faecal fluid (“blank” without rutin) in the older group at all 

time points 0, 6, and 24 h (p≤0.05). PAA increased significantly over time in the fermented 

faecal fluids with rutin (p<0.001) and with the combination of rutin with raftiline (p≤0.01) in 

both younger and older groups. 3-OHPPA was only significantly increased in the fermented 

faecal fluids containing rutin in the younger (p=0.02) and older (p=0.01) groups. In terms of 

the differences between the groups, the older group formed significantly more PAA in the 

fermented faecal fluids of rutin (p=0.008), and rutin with raftiline (p=0.003) compared with 

the younger group. Also, the formation of 3-OHPPA and 4-OHPPA was higher in the 

fermented faecal fluids of rutin in the older group (p<0.05). There was no difference between 

groups in the formation of 3-OHPAA and 3,4diHPAA. Lower levels of 4-OHBA and 

3,4diOHPPA were detected in both groups (Figure 4-11). 
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Figure 4-15: The sum of seven phenolic acids (µmol/L) in A) younger (n=6) and B) older (n=4) fermented 

faecal fluids over 24 h of fermentation. Data presented as median and IQR. 

 

 

 

 
 

0

50

100

150

200

250

300

350

400

0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h

Blank Rutin Rutin & Raftiline Raftiline

T
o

ta
l 

 m
et

a
b

o
li

te
s 

(µ
m

o
l/

L
)

0

50

100

150

200

250

300

350

400

0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h 0 h 6 h 24 h

Blank Rutin Rutin & Raftiline Raftiline

T
o

ta
l 

 m
et

a
b

o
li

te
s 

(µ
m

o
l/

L
)

(A) 

(B) 



 

 

156 

 

Table 4-11: Accumulation of seven phenolic acids (µmol/L) produced after 0, 6, and 24 h of fermentation in faecal fluids from younger (n=6) and older (n=4) groups. 

Metabolite Group Substrates 
                            0h             6h 24h 

Median IQR Median IQR Median IQR 

PAA 

Younger 

Blank 3.7 1.0 15.2 22.1 66.1 25.3 
Raftiline 2.7 0.8 8.6 4.5 6.6 6.2 
Rutin 3.3 1.6 6.0 7.8 81.9 51.1 
Rutin+raftiline 4.3 2.3 8.3 1.5 8.9 3.6 

Older 

Blank 6.9 1.5 92.8 99.5 88.8 19.9 
Raftiline 7.0 5.1 22.2 26.3 26.6 26.2 
Rutin 6.7 4.6 58.7 98.2 128.3 53.9 
Rutin+raftiline 6.4 4.8 17.5 32.8 25.3 21.9 

3-OHPAA 

Younger 

Blank 0.2 <0.01 0.2 <0.01 0.5 0.2 
Raftiline 0.3 <0.01 0.2 <0.01 0.1 <0.01 
Rutin 0.2 <0.01 1.5 0.9 4.4 23.3 
Rutin+raftiline 0.1 <0.01 1.3 <0.01 1.3 0.8 

Older 

Blank nd nd 0.1 <0.01 0.1 <0.01 
Raftiline nd nd nd nd nd nd 
Rutin 0.1 <0.01 0.8 0.6 4.2 26.6 
Rutin+raftiline nd nd 0.3 0.9 0.6 0.5 

4-OHBA 

Younger 

Blank nd nd nd nd nd nd 
Raftiline nd nd 0.1 <0.01 0.1 <0.01 
Rutin 0.1 <0.01 0.1 <0.01 0.1 <0.01 
Rutin+raftiline nd nd 0.1 <0.01 0.1 <0.01 

Older 

Blank 0.2 <0.01 0.4 11.9 0.3 13.6 
Raftiline 0.2 <0.01 0.2 <0.01 0.1 <0.01 
Rutin 0.3 0.2 0.2 <0.01 0.2 <0.01 
Rutin+raftiline 0.2 <0.01 0.3 <0.01 0.4 0.2 

 

*Continued overleaf 
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Metabolite Group Substrates 
                            0h             6h 24h 

Median IQR Median IQR Median IQR 

3-OHPPA 

Younger 

Blank 1.6 0.8 2.8 1.3 2.9 1.6 
Raftiline 0.5 1.3 0.9 0.5 1.3 1.4 
Rutin 0.4 0.8 1.8 0.8 4.8 8.0 
Rutin+raftiline 0.4 0.9 1.6 4.5 1.2 2.6 

Older 

Blank 0.9 1.1 4.2 7.6 3.4 2.7 
Raftiline 1.0 2.3 2.8 4.0 3.4 1.4 
Rutin 0.5 0.8 7.7 23.5 13.4 8.4 
Rutin+raftiline 1.3 1.8 9.5 20.8 9.4 15.8 

4-OHPPA 

Younger 

Blank 0.4 0.3 6.5 6.7 1.2 2.6 
Raftiline 0.6 0.4 3.8 1.2 3.9 1.0 
Rutin 0.5 0.3 1.1 0.8 4.9 6.1 
Rutin+raftiline 0.5 <0.01 1.0 1.3 1.2 1.0 

Older 

Blank 0.4 0.6 3.4 12.9 21.6 27.2 
Raftiline 0.3 0.7 1.4 0.6 2.0 0.8 
Rutin 0.8 1.0 1.6 0.8 6.9 9.2 
Rutin+raftiline 0.3 0.7 0.4 0.3 1.9 3.2 

3,4diOHPAA 

Younger 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin nd nd 16.1 27.2 32.9 56.8 
Rutin+raftiline 0.2 <0.01 5.0 30.4 7.1 30.0 

Older 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd 3.2 <0.01 
Rutin 0.3 <0.01 63.0 34.3 65.8 43.7 
Rutin+raftiline 0.5 <0.01 48.3 23.9 52.0 25.9 

 

*Continued overleaf 
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Metabolite Group Substrates 
                            0h             6h 24h 

Median IQR Median IQR Median IQR 

3,4diOHPPA 

Younger 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin nd nd 0.2 <0.01 0.4 0.1 
Rutin+raftiline nd nd nd nd nd nd 

Older 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin 0.2 <0.01 1.1 1.0 0.5 <0.01 
Rutin+raftiline nd nd nd nd 0.6 <0.01 

 

Not detected (nd)  
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4.6.5.4 Metabolism of rutin in faecal fluids and SCFA production 

Ten SCFA were identified and quantified in the fermented faecal fluids after the fermentation 

of rutin, in the presence or absence of raftiline, in younger and older groups at 0, 2, 4, 6 and 24 

hr. They are the same as those measured directly in the faecal samples, (details of the method 

described in Chapter 2, page 49). Isocaproic, caproic, enanthic, and caprylic acid were either 

detected in limited amounts or not detected at all. 

SCFA concentration increased significantly over time in the fermented faecal fluids of rutin 

with or without raftiline in the younger and older groups (p<0.05). The total SCFA level was 

not different between groups (Figure 4-16). In the presence of raftiline, significantly higher 

levels of SCFA were detected in the fluids compared to rutin alone (p=0.03 for the younger 

group; p<0.05 for the older group).   

Acetic, propionic, and butyric acid significantly increased over time in the fermented faecal 

fluids of rutin and the combination of rutin with raftiline in both groups (p<0.05; Table 4-12). 

There was no difference in the levels of specific SCFA between groups. 
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Figure 4-16: SCFA production (µmoles /L) in A) younger (n=6) and B) older (n=4) fermented faecal fluids 

over 24 h of fermentation. Data presented as median and IQR.    
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Table 4-12: SCFA concentration (µmole/ml) after 0,2,4,6 and 24 h. of fermentation from younger (n=6) and older (n=4) participants. 

SCFA Group Substrates 
0h 2h 4h 6h 24h 

Median IQR Median IQR Median IQR Median IQR Median IQR 

C2  

Younger 

Blank 1.2 0.4 2.2 0.7 4.1 0.7 6.0 1.3 7.8 2.4 

Raftiline 1.5 0.4 8.4 2.6 18.1 5.0 23.1 4.1 30.7 7.2 

Rutin 1.0 0.4 2.3 0.6 3.7 0.5 5.2 0.8 9.3 2.0 

Rutin+raftiline 1.2 0.9 6.8 5.0 14.4 5.6 17.5 8.1 32.1 14.4 

Older  

Blank 1.2 0.4 2.8 1.6 4.9 1.3 5.8 0.7 7.8 0.3 

Raftiline 1.3 1.3 5.6 5.8 17.7 5.6 28.1 2.4 35.8 11.6 

Rutin 1.3 0.7 2.9 1.2 5.3 1.7 6.9 0.9 8.3 1.9 

Rutin+raftiline 1.4 1.0 6.3 7.7 14.5 11.3 24.4 6.1 39.2 14.6 

C3 

Younger 

Blank 0.4 0.1 1.1 0.4 1.7 0.7 2.2 0.7 1.8 0.6 

Raftiline 0.4 0.2 2.4 1.6 4.2 0.9 5.3 2.1 5.7 4.8 

Rutin 0.3 0.2 1.2 0.8 1.7 1.0 2.0 1.0 2.4 1.0 

Rutin+raftiline 0.4 0.3 2.5 2.1 4.0 3.0 5.3 2.3 6.8 3.5 

Older  

Blank 0.3 0.1 0.6 0.3 1.1 0.1 1.6 0.2 2.2 0.7 

Raftiline 0.2 0.2 0.6 0.8 1.5 1.2 3.1 1.2 5.2 1.9 

Rutin 0.2 0.1 0.5 0.3 1.1 0.2 1.5 0.1 2.4 0.8 

Rutin+raftiline 0.3 0.1 0.6 0.9 1.5 0.8 2.8 1.0 5.6 3.5 

 
 

 

 

           iC4 

Younger 

Blank 0.1 <0.01 0.1 <0.01 0.1 <0.01 0.1 0.1 0.3 0.5 

Raftiline nd nd nd nd nd nd nd nd nd nd 

Rutin 0.1 <0.01 0.2 <0.01 0.1 <0.01 0.1 <0.01 0.6 0.3 

Rutin+raftiline nd nd 0.2 <0.01 <0.01 <0.01 0.1 <0.01 0.1 <0.01 

Older  

Blank nd nd 0.1 <0.01 0.1 <0.01 0.2 0.1 0.7 0.2 

Raftiline <0.01 <0.01 0.1 <0.01 0.1 <0.01 0.1 <0.01 0.1 <0.01 

Rutin nd nd 0.1 <0.01 0.1 <0.01 0.2 <0.01 0.5 0.2 

Rutin+raftiline nd nd 0.1 <0.01 0.1 <0.01 0.1 <0.01 0.1 <0.01 

*Continued overleaf 
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SCFA Group Substrates 
0h 2h 4h 6h 24h 

Median IQR Median IQR Median IQR Median IQR Median IQR 

C4 

Younger 

Blank 0.3 0.1 0.5 0.3 0.9 0.5 1.3 0.9 1.2 0.7 

Raftiline 0.2 0.1 1.0 0.4 1.8 1.6 2.5 1.4 6.8 5.3 

Rutin 0.2 0.2 0.5 0.2 0.8 0.3 1.0 0.2 1.5 0.5 

Rutin+raftiline 0.2 0.1 0.8 0.7 1.0 1.7 1.6 1.6 3.9 3.3 

Older  

Blank 0.2 0.2 0.8 0.3 1.4 0.4 1.5 0.5 2.2 0.4 

Raftiline 0.4 0.2 1.1 1.9 3.1 3.0 4.9 3.9 5.6 6.9 

Rutin 0.2 0.2 0.8 0.3 1.3 0.4 1.7 0.5 2.4 0.4 

Rutin+raftiline 0.4 0.1 1.6 1.8 4.8 2.6 7.8 4.2 7.7 6.6 

iC5 

Younger 

Blank 0.1 0.4 0.1 0.1 0.2 0.1 0.2 0.2 0.8 0.6 

Raftiline 0.4 5.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 <0.01 

Rutin 0.5 0.4 0.1 <0.01 0.2 0.1 0.2 0.1 1.3 0.4 

Rutin+raftiline 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.4 0.1 <0.01 

Older  

Blank 0.1 <0.01 0.2 <0.01 0.3 0.1 0.4 0.1 1.2 0.4 

Raftiline 0.1 <0.01 0.1 <0.01 0.2 0.1 0.2 0.2 0.2 1.3 

Rutin 0.1 <0.01 0.1 <0.01 0.2 0.1 0.4 0.2 1.0 0.4 

Rutin+raftiline 0.1 <0.01 0.1 <0.01 0.2 <0.01 0.2 0.1 0.2 0.7 

C5  

Younger 

Blank 0.1 0.1 0.1 0.1 0.2 0.1 0.4 0.3 0.5 0.4 

Raftiline <0.01 <0.01 0.1 <0.01 0.2 0.1 0.2 0.1 0.2 0.3 

Rutin 0.1 <0.01 0.1 0.1 0.1 <0.01 0.2 0.1 0.9 0.3 

Rutin+raftiline <0.01 <0.01 0.1 0.1 0.1 <0.01 0.1 0.1 0.1 0.1 

Older  

Blank nd nd 0.3 <0.01 0.8 0.1 0.5 0.8 1.1 0.1 

Raftiline <0.01 <0.01 0.3 0.1 0.5 0.2 0.6 0.2 0.6 0.2 

Rutin nd nd 0.2 <0.01 0.7 <0.01 0.9 0.4 1.0 0.1 

Rutin+raftiline 0.1 <0.01 0.3 <0.01 0.5 0.1 0.6 0.3 0.6 0.3 

 
Not detected (nd), acetic acid (C2), propionic acid (C3), isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), valeric acid (C5).
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4.7 Discussion 

This study was carried out to test the hypothesis that age influences the metabolism of 

dietary polyphenols, which may be relevant for gut health and the development of chronic 

diseases. To our knowledge, this is the first dietary semi-controlled study investigating the 

colonic metabolism of dietary polyphenols in different age groups using human feeding 

and in-vitro faecal fermentation designs. 

The present study showed a difference between younger and older groups in terms of: 

1. Urinary excretion of phenolic acid after a low-high polyphenol diet. 

2. Phenolic acid formation after the fermentation of rutin with the faecal 

slurry.  

There are potential mechanisms behind the absence of some of the phenolic acids in the 

urine of some of the participants as well as the low phenolic acid excretion in the urine of 

the older group.  

The first mechanism could involve a decrease in colonic absorption. With ageing, colonic 

absorption is reduced, the mucosal surface area is diminished, and the activities of 

intestinal brush border enzymes (e.g., lactase, maltase, and sucrase-isomaltase) are 

decreased (Montgomery et al., 1978, Holt et al., 1989). In the in-vitro faecal fermentation 

of rutin, a high PAA amount was detected in the faecal only fermented fluid (control) at 0h 

in the older group. This could suggest that PPA was not absorbed and was eliminated in 

the faecal sample. Moreover, higher formation of phenolic acid, in particular PAA, 3-

OHPPA, and 4-OHPPA accompanied by higher gas production were observed in the older 

group. This suggests two possibilities: first, the ability of faecal materials from older 

participants to metabolise rutin and the low urinary phenolic acid excretion is due to the 

lack of absorption of the phenolic compounds in the colon. Second, high phenolic acid 

elimination in faecal samples of the older group could contribute to the higher detection of 

phenolic acid in the fermented faecal fluid. This also could indicate a lack of absorption by 

the older group.  
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Secondly, the effect of ageing on the gut microbiota composition and associated microbial 

and enzymatic activities may be at play. In the human colon, the occurrence of bacterial 

enzymes (β-glucosidases, β-glucuronidases, and α-rhamnosidase) enables the hydrolysis of 

rutin to release the quercetin aglycone (Aura et al., 2002). Insufficient or lower levels of 

bacterial enzymes in the colon could be one of the reasons for the absence and low urinary 

phenolic acid in the older group. Although these bacterial enzymes were not being 

measured directly in this present study, there were no differences between groups in the 

quantity of Bifidbacterium, Bacteroides, or Flavonifractor plautii bacteria. However, as 

they were the only strains measured in the faecal samples, they may not be representative 

of all polyphenol metabolism bacteria found in the colon such as Enterococcus 

casseliflavus (Schneider et al., 1999, Schneider and Blaut, 2000) Butyrivibrio spp 

(Krishnam.Hg et al., 1970), and Bacteroides distasonis (Bokkenheuser et al., 1987). 

The differences in colonic fermentation between groups could also affect the colonic 

metabolism of dietary polyphenols and lead to differences in urinary phenolic acid 

excretion. Woodmansey et al. (2007) reported that a high faecal pH in the elderly (due to a 

low fibre intake) may lead to a reduction in SCFA production. In the present study, the 

faecal pH was close to 8 in the older group after the low-polyphenol diet and above 7 after 

the high-polyphenol diet; also, the SCFA was higher in the older group after the high-

polyphenol diet. pH both above 7.0 could be due to other compounds in the colon known 

to increase faecal pH such as ammonia (alkaline).Woodmansey et al. (2004) found that 

faecal ammonia was significantly (P<0.05) higher in older individuals compared to 

younger. Higher faecal ammonia could in turn be due to the reduction in fibre intake and 

increase in proteolytic bacterial species, such as fusobacteria, propionibacteria, and 

clostridia, which is associated with ageing. Fusobacteria bacteria ferment amino acids, 

resulting in the production of ammonia and indoles. 

Moreover, a higher intake of potato fibre in the older group might be linked to the high 

production of the SCFA. This finding is supported by Cuervo et al. (2013) who looked at 

the association between the regular intake of potatoes (cellulose, hemicellulose, and pectin) 

and the production of the SCFA using GC-FID. The study linked regular intake of potatoes 

with a high concentration of SCFA in elderly people (Cuervo et al., 2013).  

On the other hand, older people excreted a higher amount of hippuric acid in their urine, 

which has not been previously reported. The high amount of hippuric acid could be a result 
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of polyphenol-rich food consumption as well as of the metabolism of quinic acid, aromatic 

amino acid tryptophan, tyrosine, and phenylalanine (Self et al., 1960, Grumer, 1961). 

Moreover, urinary hippuric acid has been shown to correlate with hypertension (Holmes, 

2008). In the present study, the older group’s blood pressure was collectively higher than 

the younger group. There was a very high intra-group variability within the older group for 

the sum of the phenolic acid including the hippuric acid (30-fold change between low and 

high excreters); however, the variability reduced to 3-fold when hippuric acid was not 

included in the calculation. Given that the diet was controlled this suggests that the high 

excretion of hippuric acid could come from a source other than polyphenol rich food 

metabolism, such as amino acids. In addition, the range of ages in the older group (between 

51 and 76 years old) could be contributing to the high intra-group variability. More studies 

are needed to investigate if the hippuric acid should be excluded when looking at the 

colonic metabolism of polyphenols in older people. In contrast, the variability increased in 

the younger group from 2.5-fold to 6.5-fold when hippuric acid was not included in the 

calculation. 

In accordance with the urinary phenolic acid measured by GC-MS, the urinary total 

phenols measured with the Folin-Ciocalteau assay and urinary antioxidant activity 

measured by FRAP were different between groups. Surprisingly, the older group had a 

higher total phenol level following the low-polyphenol diet. This could be related to other 

interfering substances in the urine such as aromatic amines, sulphur dioxide, ascorbic acid, 

organic acids, Fe (II), and non-phenolic substances (Roura et al., 2006). In addition, the 

low urinary antioxidant activity (Δ low-high diet) in the older group could be due to the 

low amount and diversity of urinary phenolic acid. This is in agreement with Olthof et al. 

(2003) who stated that a higher amount of hippuric acid in urine has no effect on the 

urinary antioxidant activity (FRAP), due to the lack of hydroxyl moiety on the hippuric 

molecule.  

The strengths of this study included the following 1) the study’s dietary intervention was 

well regulated, and all participants received the same high polyphenol foods so that any 

variation in food brand and quantity could be kept to a minimum, and 2) the faecal 

fermentation of in-vitro rutin provided an assessment of the fermentation ability of each 

group.  On the other hand this study has some limitations including 1) the phenolic acid 

was not measured in faecal samples; otherwise, it could have provided useful information 

regarding the absorption and accumulation of the phenolic compounds in the colon, and 2) 
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few bacteria were measured in faecal samples; however, looking at other gut bacteria that 

could contribute to the colonic metabolism of dietary polyphenols is important such as, 

Clostridium scindens, Eubacterium desmolans, Eubacterium ramulus (Schneider et al., 

1999, Simmering et al., 1999, Braune et al., 2001, Schoefer et al., 2003), Butyrivibrio sp 

(Krishnam.Hg et al., 1970), and Bacteroides distasonis (Bokkenheuser et al., 1987).  

In conclusion, the observed differences between groups in terms of urinary and faecal 

measurements could be due to the effect of ageing on colonic function and gut microbiota 

composition. Further research is needed to focus on the effect of ageing on the colonic 

absorption of the phenolic acid and SCFA as well as the effect of gut physiology 

parameters on the fermentation and colonic metabolism of dietary polyphenols. This is 

very important to decipher as it may provide some indication on how to enhance the 

colonic metabolism and absorption of phenolic compounds to gain maximum benefit from 

them. In the future such knowledge could improve gut health and reduce the risk of 

diseases associated with ageing such as CRC. 
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 Chapter Five 

Colonic Metabolism of Dietary Polyphenols in the 

Context of Colorectal Cancer Risk 
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5.1 Introduction 

Colorectal cancer (CRC) is one of the primary causes of cancer-related mortality and 

morbidity all over the world (Kamangar et al., 2006). Furthermore, it is the third most 

common cancer in men after lung and prostate cancer and after lung and breast cancer in 

women (Ferlay et al., 2012). In Scotland, the incidence rate of CRC is higher compared to 

England (49.7 per 100,000 versus 44.1 per 100,000, respectively) (CRUK, 2010). The 

aetiology of CRC is still unclear; however, age is a primary risk factor (CRUK, 2010). The 

majority (73%) of people diagnosed with CRC are over 65 years old (CRUK, 2010). In 

addition, a family history of CRC and environmental factors such as diet, obesity, alcohol 

consumption, smoking, and low physical activity levels accompanied with abdominal 

fatness are strong contributors to an increased risk of CRC (Wiseman, 2008, Center et al., 

2009). 

In screening for colorectal cancer, there is evidence that using the faecal occult blood test 

(FOBT) increases the diagnosis of the number of early stage cancers, which therefore 

reduces cancer mortality (Hardcastle et al., 1996, Kronborg et al., 2004). The early 

screening process may reduce the incidence of bowel cancer by removing the cancer 

precursors and dysplastic polyps (Mandel et al., 2001). In response to this evidence, the 

Scottish Bowel Screening Programme was introduced in 2007 for men and women aged 

between 50 to 74 years old (ISD, 2013). Any individuals with a positive FOBT result are 

referred to the local hospital for assessment for a colonoscopy (ISD, 2013).  

Poullis et al. (2004) looked at the associations between the environmental factors that are 

linked to the risk of CRC such as age, fibre intake, obesity, and physical activity, with the 

level of calprotectin, a gastrointestinal marker for inflammation, in middle-aged (50-70 

years old) CRC patients. There was a strong positive association between faecal 

calprotectin and increasing age, obesity, low physical activity, and an inverse relationship 

between faecal calprotectin and vegetable and fibre consumption. Bowel inflammation is a 

risk factor for a number of gastrointestinal diseases and other malignancies (Poullis et al., 

2004). 

Nutrition contributes to more than one third of cancer deaths, with dietary factors 

responsible for 70% to 90% of all CRC cases (Ahmed, 2004, Araujo et al., 2011).  A diet 

that is high in processed, heavily browned red meat, or red meat cooked using high 
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temperature methods may be associated with an increased risk of CRC (Wang et al., 2012): 

1) directly via the carcinogenic compounds (heterocyclic amines, polycyclic aromatic 

hydrocarbons, and N-nitroso compounds) that form during the cooking or processing 

methods; or 2) indirectly since a diet high in meat and fat may be poor in other dietary 

components such as fibre and polyphenols from fruit and vegetables (Pericleous et al., 

2013).  

There is some evidence from the epidemiological (Bobe et al., 2008, Hoensch et al., 2008, 

Djuric et al., 2012, Johnson et al., 2013, Wang et al., 2013b, Woo and Kim, 2013b), 

animal (Lodovici et al., 2000, Xiao et al., 2008, Rodriguez-Ramiro et al., 2013), and cell 

culture (Kim et al., 2005, Park et al., 2005, Ibanez et al., 2012, Valdes et al., 2013) studies 

that dietary polyphenols, in particular flavonoids, may have a role in protecting against 

colorectal malignancy. The role of the polyphenols in modulating the risk of CRC is not 

clear. However, according to the literature it could be due to a number of properties: 1) 

antioxidant (Kohno et al., 2002, Alia et al., 2006); 2) anti-apoptotic (Reuter et al., 2008), 

3) anti-aging (de la Lastra and Villegas, 2005), 4) anti-carcinogenic (Narisawa and 

Fukaura, 1993, Coates et al., 2007), 5) anti-inflammatory (August et al., 1999, Adams et 

al., 2006) and 6) anti-cell proliferation (Nomoto et al., 2004, Yi et al., 2005).  

The gut microbiota may also play a critical role in maintaining a healthy bowel and 

lowering the risk of CRC, by metabolizing dietary components such as carbohydrate and 

dietary polyphenols. In turn, these dietary components can influence gut microbiota 

activity and composition (Henning et al., 2013). Studies have shown differences in the gut 

microbiota of patients with or without CRC, but with no clear explanation of how these 

changes can affect the process of cancer (Moore and Moore, 1995, Wu et al., 2013, Tahara 

et al., 2014).  

The faecal microbiota of different populations (polyp patients, Japanese-Hawaiians, North 

American Caucasians, rural native Japanese, and rural native Africans) were compared 

using the culture method technique. The total amount of Bacteroides species, and 

surprisingly Bifidobacterium species, were associated with an increased risk of colon 

cancer in polyp patients and Japanese-Hawaiians, while Lactobacillus species and 

Eubacterium aerofaciens showed the closest association with low colon cancer risk in rural 

native Japanese and rural native Africans (Moore and Moore, 1995). There is limited 

knowledge about the role of these bacteria in the colonic metabolism of polyphenols. 
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However, studies have reported that polyphenols can act as prebiotic and anti-microbial 

components and have a direct effect on the balance of the major groups of gut microbiota 

contributing to colonic health such as Bifidobacterium spp., Bacteroidetes, and Firmicutes. 

The colonic fermentation of polyphenols stimulated proliferation of bifidobacteria and 

decreased the Firmicute to Bacteroidetes ratio (Lee et al., 2006, Parkar et al., 2008, 

Tzounis et al., 2008, Parkar et al., 2013). Therefore, the risk of CRC which may impact on 

gut function and gut microbiota colonisation, should be considered as it might influence 

the colonic metabolism of non-digestible carbohydrate and non-nutritive compounds such 

as polyphenols.  

Despite all available evidence that links the dietary polyphenols with anti-carcinogenic 

activity, our understanding of this complex relationship remains incomplete. A number of 

studies have yet to be performed: 

1. Examining dietary polyphenol metabolism in patients diagnosed with 

colorectal adenoma or carcinoma. Most previous studies have employed in-

vitro models with purified components from plants, using concentrations 

often beyond physiological load. 

2. Looking at the bioavailability of polyphenols in patients who were 

diagnosed with colorectal adenoma or carcinoma. 

3. Considering the differences in gut microbiota between healthy individuals 

and those who are at risk of CRC.   

In Chapter Four, the metabolism of polyphenols in healthy older adults after a low or a 

high-polyphenolic diet was examined. We saw differences between younger and older 

groups in the metabolism of dietary polyphenols. This next study aims to test whether 

patients aged 50 -75 years old who have had histological colorectal adenomas (at risk of 

CRC) removed, have different colonic metabolism of dietary polyphenols, especially 

flavonols known to reach the colon, compared with those healthy adults aged ≥ 50 years 

from the previous study (Chapter 4). Since the gut microbiota composition is shown to 

change with a developing risk of CRC (Moore and Moore, 1995), we hypothesized that the 

colonic metabolism of polyphenols would differ between polypectomy patients and healthy 

older adults.  
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To test this hypothesis, two older age groups were studied, and two study designs were 

used:  

1. A human feeding study (in-vivo) to test the hypothesis that people who are 

at risk of CRC (over 50 years old and have a history of adenomas removed) 

will be less able to metabolise dietary polyphenols than healthy older adults, 

due to changes in colonic microbiota composition. 

2. In-vitro fermentations, using faecal samples collected during the dietary 

intervention, to study the metabolic capacity of the samples when specific 

flavonols are provided. 
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5.2 Subjects and study design 

5.2.1 Subjects and recruitment 

Potential participants were recruited from the Scottish Bowel Screening Programme at the 

endoscopy clinics at three sites (Glasgow Royal Infirmary, Stobhill Hospital, and 

Gartnavel General Hospital), prior to colonoscopy. Initial consent was taken for contact to 

be established within four weeks after the colonoscopy, when the study protocol and 

consent forms were presented. They were compared to healthy control adults aged between 

51-76 years old recruited as part of the ageing study (older group; Chapter 4). Exclusion 

criteria included: consuming alcohol (>4 units/day), obesity (BMI>30kg/m
2
), taking 

supplements, smoking, taking any medication, or having any conditions known to affect 

bowel function, other than related to the present colonoscopy. Patients who had one or 

more histologically-confirmed colorectal adenomas (CRA) removed through polypectomy 

and had no other types of polyps (hyperplasic polyps, FAP, and HNPCC) were recruited. A 

full ethical application was prepared for this study and submitted to the University of 

Glasgow, College of Medical, Veterinary & Life Sciences, and the West of Scotland 

Research Ethics Committee and the NHS GG&C Research and Development department 

(approval in Appendix 8). 

5.2.2 Sample size and power calculation 

The primary aim of this pilot study was to characterise the difference in the colonic 

metabolism of dietary polyphenols in people with colorectal adenomas compared to our 

previous results in healthy older adults aged over 50 (Chapter 4). Urinary phenolic acid 

excretion of ten acids (significantly increased after a high-polyphenol diet) in healthy older 

adults (aged over 50 years) following a low polyphenol diet was significantly lower (64.7 

± 0.9 µmole/day) than those following a high polyphenol diet (100.3 ± 32.3 µmole/day). 

The mean difference was 35.6 µmole/day with the standard deviation of the differences 

SD= 35.7. Based on these results it was calculated that a sample size of 13 participants for 

each group will be sufficient to detect (or not) a difference of 1.3 standard deviation in 

urinary phenolic acid excretion between the CRC groups and the healthy older group at a 

power of 80%, p<0.05, allowing for a 20% drop-out rate. 
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5.2.3 Study design and sample collection 

All participants were asked to follow a low-polyphenol and a high-polyphenol diet, each 

lasting three days. Three days for each diet was enough for polyphenol rich foods to be 

supplied to the colons and fermented over the course of several meals. During the low-

polyphenol diet (diet A), participants were asked to avoid all fruit, vegetables, onions, 

coffee, tea, chocolate, vanilla and similar flavourings, whole meal products, alcohol, 

spices, and all dietary supplements (vitamins, minerals, and herbal products). During the 

high-polyphenol diet (diet B), participants were asked to follow a specific diet including 

polyphenol-rich foods, which were provided along with cooking guidance and recipe 

sheets. Examples of foods to be included during the low polyphenol diet, and a detailed 

menu of the high-polyphenol diet are given in Appendix 4 and 5. Urine and faecal samples 

were collected after the low-polyphenol diet (day 4) and high-polyphenol diet (day 4) for 

the human feeding study measurements (Figure 5-1). Stool samples collected after the low-

polyphenol diet (day 4) were used in in-vitro faecal fermentations. Sociodemographic and 

anthropometric measurements (height, weight, BMI, and waist circumference), and blood 

pressure were collected (details described in Chapter 2, page 44). 

Figure 5-1: Overall study design and samples collection. 
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5.3 Dietary assessment 

A food frequency questionnaire was used to assess the participants’ habitual diet over the 

past year, as described in Chapter 2, page 68. 

5.4 Dietary records 

Participants kept a 3-day weighed dietary record for the duration of the low and high-

polyphenol diets. Diaries were used to estimate the intake of macronutrients, 

micronutrients, and flavonoids of each participant during the study and to measure the 

participants’ compliance by reviewing the food types and portion size according to the 

provided instruction (details in Chapter 2, page 67). 

5.5 Outcome measures for the human feeding and in-vitro 

faecal fermentation studies 

Phenolic acids (GC-MS), total phenols (Folin–Ciocalteu), and ferric reducing antioxidant 

power (FRAP) were measured in urine samples. The pH, short chain fatty acids (GC-FID), 

and bacterial composition (Taman real-time quantitative PCR), and calprotectin (ELISA) 

were measured in the faecal samples.  

Phenolic acids, pH, short chain fatty acids, and gas production were measured in the 

fermentation supernatants (details in Chapter 2). 

5.6 Results 

5.6.1 Subjects characteristics 

Sixteen polypectomy patients were recruited (51- 75 years old), however, only half of 

these completed the study. Thirteen healthy control participants aged between 51-76 years 

old were recruited as part of the ageing study (Chapter 4). Both groups followed 3-day low 

then 3-day high-polyphenol diets. The baseline data for both groups are presented in Table 

5-1. There were no differences between groups for anthropometric measurements, with the 

exception of waist circumference which was higher in the polypectomy group (p=0.01). 

The group average body mass index and waist circumference were within the normal 

range. The male to female ratio was similar between groups, with two males and six 
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females in the polypectomy group and three males and ten females in the healthy older 

adults. 

Table 5-1: Baseline data in healthy control (n=13) and polypectomy (n=8) participants. 

 

Healthy control group 

(n=13) 
Polypectomy group 

(n=8) p value 

 Median IRQ Median IRQ 

Age (years) 61.0 10.0 57.5 4.5 0.6 

Height (cm) 161.0 0.1 177.5 26.3 0.1 

Weight (kg) 63.0 16.3 80.9 19.9 0.1 

BMI (kg/m
2
)

a 25.1 4.6 27.2 4.4 0.5 

W.C (cm)
b 85.0 19.0 100.5 6.0 0.01 

Systolic BP 120.0 20.0 126.0 5.5 0.9 

Diastolic BP 86.0 14.0 81.0 7.3 0.6 

 
n % n % 

 Normal 

weight 10 77 5 62.5 
 Overweight 3 23 3 37.5 
 Obese  0 0 0 0 
 

 

aBMI cut-off points (55-65 years old= 28;Heim et al., 2011). 

b WC cut-off points (older women=99, older man=106; Heim et al., 2011). 

 

 

Bowel movements (self-reported on the questionnaire as twice daily or more, daily, every 

2-3 days or less than twice a week) were not significantly different between healthy control 

and polypectomy groups (Table 5-2). 

Table 5-2: Bowel movement in healthy control (n=13) and polypectomy (n=8) participants. 

Group Twice daily or more Daily Every 2-3 days Less than twice a week 

Healthy control  25.0% 50% 25% 0% 

Polypectomy  37.5 62.5 0% 0% 
 

*Data presented as percentage of frequency  
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5.6.2 Dietary assessment 

5.6.2.1 Estimation of habitual dietary habits 

The healthy control group consumed significantly more fruit juices (p=0.02), breakfast 

cereal (p=0.01), and biscuits, cakes, and sweets (p=0.03) than the polypectomy group 

(Table 5-3). 

Table 5-3: Estimation of dietary habits (serving/week) using the FFQ in healthy control (n=13) and 

polypectomy (n=8) participants. 

Food item 

 

Healthy control 
group 

Polypectomy 

group 
 
p value  

 

 Median  IQR Median  IQR 
Hot beverages (green tea, black tea, coffee, hot 

chocolate, and herbal infusion) 
  36.0   24.8     22.1  19.8 0.5 

Milk drinks  7.0 4.0 5.0 8.8 0.8 
Milk substitutes (soya, rice, and oat milk) 0.5 0.3 0.5 0.0 0.2 
Fruit juices 7.5   11.0 1.3 0.8  0.02 
Soft drink 0.5 0.3 3.0 5.6 0.2 
Alcohol  1.3 3.0 3.8 4.7 0.6 
Wholemeal products (pasta, rice, and brown 

rice) 8.0   16.2 3.5 5.8 1.3 
Refined products (pasta, rice, and crisps and 

crackers) 6.5 4.9     12.3  13.8 0.2 
Breakfast cereals  6.8 4.8 2.5 3.8  0.01 
Fresh fruit   23.5   12.7     24.1 8.8 0.8 
Dried fruits  3.0 3.9 0.3 0.9 0.2 
Vegetables   10.8   11.6     13.9 7.8 0.7 
Potatoes 4.0 2.1 3.4 0.9 0.4 
Legumes  2.5 7.6 1.8 1.0 0.1 
Onion, tomato, chili, or curry-based 

products (inc. fresh tomatoes, ketchup, and 

soup) 
9.8 8.5     12.6 8.4 0.3 

Meat (beef, chicken, lamb, pork, bacon, and 

sausages) 
7.5 3.7 8.6 3.0 0.3 

Seafood (white fish, oil-rich fish, and shellfish) 3.5 2.5 2.4 1.8 0.9 
Biscuits, cakes, and sweets    20.0   15.0 8.5 8.6 0.03 
Yoghurt  6.0 6.8 4.9 5.1 0.8 
Dairy dessert  0.5 2.8 0.3 0.1 0.2 
Cheese 6.0 2.8 3.3 0.5 0.2 
Eggs 1.0 2.5 3.0 2.8 0.2 
Ice cream  0.5 0.8 0.4 2.8 1.0 
Fats & oils   14.8   20.5 6.5  12.0 0.3 
Seasonings  4.0 3.0 4.5 0.9 0.5 
Herbs 4.0   12.5 1.6 2.3 0.1 
Spices &Chili 1.0 5.3 1.8 2.9 0.7 
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5.6.2.2 Macronutrients intake during low and high polyphenol diets  

There were no significant differences between groups in terms of energy, fat, protein, 

carbohydrate, total sugars, starch, alcohol, and dietary fibre consumption after the low and 

high-polyphenol diets (Table 5-4). When considering the difference in macronutrient 

intake (Δ low-high diet), it was not significantly different between the groups. 

5.6.2.3 Micronutrient intake during low and high polyphenol diets 

There was no significant difference between groups for the intake of vitamins or dietary 

minerals (Table 5-5) with the exception of calcium and iodine intakes during the high-

polyphenol diet, with calcium (p=0.02) and iodine (p=0.001) higher in the healthy control 

group.
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Table 5-4: Energy intake and macronutrients from the dietary records after low and high-polyphenol diets in healthy control (n=13) and polypectomy (n=8) participants. 

 

Group Low-polyphenol diet     High-polyphenol diet 

 

Healthy control 

group 
Polypectomy 

group 
 

p value 

Healthy control 

group 
Polypectomy 

group 
 

p value 
Nutrient Median IQR Median IQR Median IQR Median IQR 
Energy (KJ) 7768 3277 6996 2360 0.6 7531 2474  6461 1840 0.5 
kcal (Kc) 1874  785 1905   623 0.6 1794   617 1527   422 0.5 
Fat (g)  82.1 56.0  77.8  13.9 0.9  63.8  31.7  55.0  27.6 0.5 
Protein (g)  94.3 37.7 90.1  30.8 0.7  47.1  22.3  52.1  26.2 0.7 
Carbohydrate (g)     195.4 73.0     185.1  99.8 0.4   217.5  78.6   209.3  65.2 0.4 
Total sugars (g)       34.3 42.1  41.0  28.2 0.6  92.9  42.1  84.9  35.1 0.2 
Starch (g)     149.5 43.9     108.4  20.8 0.9  60.0 35.7  74.1  31.5 0.9 
Alcohol (g)   0.0   0.0   0.0    0.0 0.9    0.0   0.5    0.0    0.0 0.5 
Dietary fibre*(g) 11.8   8.0         8.9    3.2 0.3  26.5  9.9  25.9    6.7 0.7 

             

                  * Non-starch polysaccharide 
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Table 5-5: Micronutrients intake from the dietary records after low and high-polyphenol diets in healthy control (n=13) and polypectomy (n=8) participants. 

Diet Low-polyphenol diet 

p value 

High-polyphenol diet 

p value 

Group Healthy control Polypectomy Healthy control Polypectomy 

Nutrient 
          

Median        IQR 
                       

Median      IQR        Median           IQR 
           

Median 
       

IQR 

Vitamin A (µg) 574.0 396.0 460.7 208.1 0.2 383.3 380.3 256.3     219.7     0.2 
Thiamine (mg)     1.1 0.5 1.2 0.5 1.0 0.8 0.4 0.5     0.3     0.3 
Riboflavin (mg)     1.2 0.9 1.7 0.9 0.6 0.9 0.3 0.5     0.5     0.1 
Niacin (mg)   35.9 15.6 34.5 13.8 0.5 16.2 9.5 18.4  12.7     0.8 
Vitamin B6 (mg)    1.4 0.9 1.9 0.6 0.3 0.9 0.8 0.7    0.2     0.2 
Vitamin B12 (µg)    3.7 9.7 7.9 6.5 0.3 2.0 2.4 0.2    1.8     0.08 
Folic acid (µg)   137.0 42.0 163.0 84.9 0.3 125.7 32.3 99.5  42.9     0.2 
Pantothenic acid (mg)   5.5 3.9 5.2 2.8 1.0 3.2 1.6 1.9    1.1     0.4 
Biotin (µg) 30.9 20.0 24.4 10.9 0.7 22.8 7.1 14.1   11.9     0.3 
Vitamin C (mg) 22.0 35.4 25.0 19.3 0.4 75.6 105.0 56.2   14.1     0.3 
Vitamin D (µg)  3.4 5.4 2.9 3.4 1.0 0.8 1.0 0.1     0.5     0.1 
Vitamin E (mg)  5.4 6.0 3.5 0.8 0.4 7.8 4.0 7.1     2.9     0.3 
Calcium (mg)  909.7 551.7 1176.8 559.7 0.9 517.0 223.6 243.0 238.8     0.02 
Magnesium (mg) 

 172.3 132.3 168.5 64.6 0.4 158.3 82.7 143.0   75.6     0.3 
Sodium (mg) 

2831.3 1983.0 2877.3 523.3 0.7 2343.3 323.3 2207.7   1321.3     0.9 
Potassium (mg) 

1887.0 1665.3 2160.0 918.0 0.4 2183.0 990.3 1544.3 937.7     0.3 
Chlorine (mg) 4640.3 3249.3 3908.8 1375.6 0.6 2540.7 804.4 2087.0   1830.8     0.9 
Phosphorus (mg) 1237.0 603.3 1328.0 423.1 0.9 681.7 286.3 466.7      408.8     0.2 
Iron (mg) 8.3 2.9 7.5 3.1 0.2 7.3 2.3 4.8          2.7     0.08 
Zinc (mg) 7.7 3.3 8.4 3.3 0.8 4.1 2.7 3.2          3.0     0.4 
Copper (mg) 0.7 0.2 0.7 0.2 0.4 0.8 0.4 0.9      0.2     0.2 
Manganese (mg) 

1.8 0.8 1.2 0.4   0.06 2.8 1.5 2.8      1.2     0.8 
Selenium (µg) 

58.0 53.7 51.7 31.2 1.0 16.3 12.0 18.8     7.3     0.5 
Iodine (µg) 

126.3 166.0 24.4 10.9     0.002 71.0 46.0 14.1    11.9     0.001 

http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Manganese
http://en.wikipedia.org/wiki/Selenium
http://en.wikipedia.org/wiki/Iodine
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5.6.2.4 Flavonoid intake during low and high polyphenol diets  

There was no significant difference in flavonoid intake between groups over either the three 

days of low or high-polyphenol diets (Figure 5-2).  The flavonoid intake during the 3 days 

long low polyphenol diet was 6.3 mg/day (IQR 8.3) in the healthy control group and 6.8 

mg/day (IQR 10.7) in the polypectomy group. The flavonoid intake was 489.7 mg/day (IQR 

123.1) in the healthy control group and 465.0 mg/day (IQR 166.2) in the polypectomy group 

after the 3-day high-polyphenol diet. When considering flavonoid intake on day 3 only (since 

urine samples were collected from the second urine of day 3, and  including the first urine of 

day 4), there was no difference between groups during the low-polyphenol diet (9.0 mg (IQR 

3.6) versus 4.8 mg (IQR 8.7) for healthy control and polypectomy groups, respectively) or the 

high-polyphenol diet (496.8 mg (IQR 102.2) versus 475.4 mg (IQR 130.5) for healthy control 

and polypectomy groups, respectively).  

Figure 5-2: Median flavonoid intake per day over 3 days after low and-high polyphenol diets in healthy 

control (n=13) and polypectomy (n=8) participants.  

Each circle indicates the estimated average daily flavonoid intake for each participant after low and high-

polyphenol diets. Median flavonoid intake for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 
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5.6.3 Measurements performed on urine samples 

5.6.3.1 Urinary total phenols using Folin-Ciocalteu assay 

Urinary total phenols did not increase in either group after the high polyphenol diet, going 

from 426.5 µg GAE/24h (IQR 85.2) to 422.8 µg GAE/day 24h (IQR 128.1) in the healthy 

control group and from 384.8 µg GAE/day24h (IQR 229.7) to 266.9 µg GAE/day 24h (IQR 

103.6) in the polypectomy group (Figure 5-3). The difference in urinary total phenols 

excretion (Δ low-high diet) was not different between groups. However, urinary total phenols 

were higher in the healthy group urine than the polypectomy group after the high polyphenol 

diet (p<0.001).  

Figure 5-3: 24-hour urinary total phenols (µg GAE/24h) after low and high-polyphenol diets in the healthy 

control (n=13) and polypectomy (n=8) participants.  

 

Each circle indicates the measurement of urinary total phenols of each participant after low and high-polyphenol 

diets. Median urinary total phenols for each group is indicated by a red horizontal line.  

§ symbol indicates differences between groups (high vs. high). 
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5.6.3.2 Total antioxidant activity (FRAP) of urine samples after low and high 

polyphenol diets 

The urinary FRAP value increased following the high-polyphenol diet, from 1.9 mMFe
+2

/day 

(IQR 0.1) to 3.1 mMFe
+2

/day (IQR 2.0; p=0.005) in the healthy control group, but not in the 

polypectomy group (Figure 5-4). The difference (Δ low-high diet) in FRAP value was higher 

(p=0.02) in the healthy control group (0.7 mMFe
+2

/day; IQR 0.7) than the polypectomy group 

(0.2 mMFe
+2

/day; IQR 0.7). 

Figure 5-4: 24-hour urinary antioxidant activity (mM Fe
+2

/day) after low and high-polyphenol diets in the 

healthy (n=13) and CRC (n=8) participants. 

 

 

Each circle indicates the measurement of urinary FRAP for each participant. Median urinary FRAP for each 

group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 

§ symbol indicates differences between groups (high vs. high). 

*symbol  indicates differences in changes (∆) between groups. 
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5.6.3.2.1 Correlation between urinary total phenols (measured with Folin-Ciocalteu) and 

urinary FRAP 

The relationship between urinary total phenols (measured with Folin-Ciocalteu) and urinary 

FRAP was analysed by linear regression (Spearman rank correlation). FRAP and total phenols 

were not significantly correlated in the healthy group (Rs
2
=0.4; p=0.06) or polypectomy group 

(Rs
2
= 0.3; p=0.2) (Figure 5-5). 

Figure 5-5: Correlation between urinary FRAP and the urinary total phenols (Folin-Ciocalteu) in healthy 

(n=13) and polypectomy (n=8) participants. 

Rs
2 = 0.324

p=0.22

Rs² = 0.372

p=0.06

0

1

2

3

4

5

6

0 200 400 600 800

F
R

A
P

 i
n

 m
M

 e
q

Total phenols (µg/day)

Polypectomy - FRAP(mM F+2/day) 

Healthy control- FRAP(mM F+2/day) 

 
Dotted line indicates polypectomy; solid line indicates healthy control. 

  



 

 

  184 

 

5.6.3.3 GC-MS measurement of phenolic acid excretion after low and high-polyphenol 

diets  

The sum of the seventeen urinary phenolic acids significantly increased after the high-

polyphenol diet from 349.3 µmole/day (IQR 286.7) to 1789.0µmole/day (IQR 1788.8) in the 

healthy control group (p=0.0002) and from 1454.4µmole/day (IQR 1373.1) to 

3966.5µmole/day (IQR 4342.3) in the polypectomy group (p=0.04). The difference in 

excretion (Δ low-high diet) was not different between groups (Figure 5-6).  

Figure 5-6: 24-hour urinary phenolic acids profile excretion (µmole /day) after low and high-polyphenol 

diets in healthy control (n=13) and polypectomy (n=8) participants.  

 
Each circle indicates the measurement of urinary phenolic acids profile for each participant after low and high-

polyphenol diets. Median urinary phenolic acids profile for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 
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Table 5-6: Amount of phenolic acid in 24 h urine (µmole/day) after low and high-polyphenol diets in healthy control (n=13) and polypectomy (n=8) participants. 

Group Healthy control 
∆ 

 

Polypectomy 
∆ 

 
P 

value 

Diet Low-polyphenol diet High- polyphenol diet  Low-polyphenol diet High- polyphenol diet  

Acid N Median IQR N Median IQR N Median IQR N Median IQR 
BA 13/13 1.1 1.5 13/13 1.8 4.3 0.8 5/8 1.8 3.9 5/8 1.6 5.0 -0.2 0.8 

PAA 7/13 0.9 0.4 6/13 1.1 0.7 0.2 0/8 nd nd 0/8 nd nd nd - 
MA 13/13 0.3 0.5 13/13 0.5 0.5 0.2 8/8 0.7 0.4 8/8 1.5 1.8 0.4 0.1 
3-OHBA 8/13 0.4 1.2 9/13 1.2 1.2 0.8 2/8 0.6 0.4 3/8 0.2 0.2 -0.3 0.2 
3-OHPAA 13/13   2.3* 1.4 13/13 30.2* 39.1 27.8 8/8 5.0 6.1 8/8 20.3 126.2 15.2 0.9 
4-OHBA 12/13 2.2 2.1 12/13 2.9 2.1 0.7 8/8 3.0 2.2 8/8 2.5 5.1 -0.5 0.8 
4-OHPAA 13/13 21.2§ 20.7 13/13 19.6† 14.4 -1.6 8/8 59.9§ 53.6 8/8 75.2† 179.6 15.3 0.1 
4-OHPPA 8/13 0.2 0.6 8/13 0.3 0.5 0.1 3/8 0.2 0.1 3/8 0.2 0.5 0.0 0.2 
VA 9/13  0.9 1.1 12/13 1.4 1.2 0.5 2/8 0.5 0.0 5/8 1.1 1.2 0.6 0.7 
HVA 13/13   7.6* 1.8 4/13 12.4* 5.6 4.9 6/8 8.8 16.8 8/8 12.8 8.3 4.0 0.3 
4-OHMA 13/13   3.7* 0.9 13/13 2.6* 1.0 -1.1 8/8 4.5 5.8 8/8 5.9 5.4 1.5 0.3 

3,4diOHBA 4/13 0.9 0.4 4/13 1.2 0.3 0.3 0/8 nd nd 0/8 nd nd nd - 
3,4diOHPAA 13/13   1.2* 0.3 13/13 3.2* 3.8 2.0 7/8 1.6 1.2 8/8 2.9 9.5 1.2 0.6 
HA 13/13 301.5*§ 277.6 13/13 1734.5* 1704.5 1433.0 8/8 1348.7**§ 1234.2 8/8 3581.4** 4206.7 2232.6 0.8 

Dihydrocaffeic acid  6/13  1.3 0.4 9/13 1.5 1.1 0.2 1/8 2.4 0.0 3/8 5.5 3.4 3.1 - 

3,4diOHPPA 8/13    0.3* 0.6 9/13 0.8* 0.4 0.5 8/8 nd nd 8/8 2.7 0.8 nd - 

GA 4/13 0.8 0.4 5/13 0.7 0.5 0.0 0/8 nd nd 0/8 nd nd nd - 
3-OHhippA 13/13 15.1* 10.9 13/13 28.4* 20.0 13.3 4/8 33.7 34.5 4/8 44.9 22.7 11.2 0.3 
 

N number of participants (present/total). 

∆ Difference in urinary excretion (high diet minus low diet). 

P value is the difference in urinary phenolic acid excretion (∆ low-high diet) between groups. 

* Significant increase in healthy control group after the high-polyphenol diet p≤0.01  

** Significant increase in polypectomy group after the high-polyphenol diet p≤0.01  

§ Significant difference between groups after the low-polyphenol diet p≤0.05 

† Significant difference between groups after the high-polyphenol diet p≤0.05 

Nd not detected
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Hippuric acid (HA) was always the most abundant acid in urine samples in both groups 

(97.9% and 97.3% of the total of all phenolic acids for healthy control and polypectomy 

groups, respectively). 

The sum of the phenolic acids minus hippuric acid was considered as it is most likely to be 

formed in the liver by conjugation of benzoic acid and glycine. Dietary sources of benzoic 

acid and precursors (quinic acid, aromatic amino acid tryptophan, tyrosine, and phenylalanine) 

should be considred (Self et al., 1960, Grumer, 1961). An increase was seen after the high-

polyphenol diet only in the healthy control group, from 55.5 µmol/day (IQR 29.3) to 100.4 

µmol/day (IQR 48.5; p=0.007). However, no significant increase was found in the 

polypectomy group when hippuric acid was not considered (from 96.9µmol/day; IQR 67.4to 

163.5 µmol/day; IQR 240.0). The difference in urinary excretion (Δ low-high diet) was not 

different between groups (Figure 5-7). 

Figure 5-7: 24-hour urinary phenolic acids profile excretion without hippuric acid (µmole/day) after low 

and high-polyphenol diets in healthy (n=13) and polypectomy (n=8) participants. 

 
 

Each circle indicates the measurement of urinary phenolic acids profile without hippuric acid for each participant 

after low and high-polyphenol diets. Median urinary phenolic acids profile without hippuric acid for each group 

is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 
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5.6.3.3.1 Correlation between urinary phenolic acid (measured with GC-MS) and urinary 

FRAP 

The relationship between urinary phenolic acid (measured with GC-MS) and urinary FRAP 

was analysed by linear regression (Spearman rank correlation). FRAP and the sum of all 

urinary phenolic acid (including hippuric acid) were not significantly correlated in the healthy 

group (Rs
2
=0.4; p=0.07) and moderately correlated in the polypectomy group (Rs

2
= 0.5; 

p=0.05) (Figure 5-8). The correlation without hippuric acid gave a much stronger association 

between FRAP and the sum of phenolic acids (Figure 5-9). 

Figure 5-8: Correlation between urinary FRAP and the phenolic acid (GC-MS) in healthy control(n=13) 

and polypectomy (n=8) participants. 
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Figure 5-9: Correlation between urinary FRAP and the phenolic acid without hippuric acid (GC-MS) in 

healthy control (n=13) and polypectomy (n=8) participants. 
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5.6.4 Measurements performed in faecal samples 

5.6.4.1 Faecal pH after low and high-polyphenol diets 

The faecal pH decreased in both groups after the high-polyphenol diet (Figure 5-10), from 7.7 

(IQR 0.6) to 6.9 (IQR 0.6) in the healthy control group (p=0.006) and from 7.5 (IQR 0.4) to 

7.1 (IQR 0.5) in the polypectomy group (p=0.01).The difference in faecal pH change (Δ low-

high diet) was not different between groups.  

Figure 5-10: Change in faecal pH after low and high-polyphenol diets in the healthy (n=10) and 

polypectomy (n=8) participants.  

 

 

Each circle indicates the measurement of faecal pH for each participant after low and high-polyphenol diets. 

Median faecal pH for each group is indicated by a red horizontal line.  

a,b symbols indicate differences within group (low to high-polyphenol diet). 
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5.6.4.2 Faecal SCFA after low and high-polyphenol diets 

Faecal SCFA concentration did not significantly increase from low to high-polyphenol diet in 

either group, going from 258.4 µmoles/g dwt (IQR 112.3) to 264.5 µmoles/g dwt (IQR 92.7) 

in the healthy control group, and from 226.0 µmoles/g dwt (IQR 202.7) to 245.1 µmoles/g dwt 

(IQR 41.1) in the polypectomy group. There were no significant differences (Δ low-high diet) 

in either group (Figure 5-11). 

 

Figure 5-11: Faecal SCFA after low and high-polyphenol diets in the healthy control (n=11) and 

polypectomy (n=8) participants. 

 
Each circle indicates the measurement of faecal SCFA for each participant after low and high-polyphenol diets. 

Median faecal SCFA for each group is indicated by a red horizontal line.  

 

There were no differences in the change (Δ low-high diet) for each specific acid between 

groups (Table 5-7). 
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Table 5-7: Faecal concentration of SCFA (µmol/g dwt) in the healthy control (n=11) and polypectomy (n=8) groups after low and high-polyphenol diets. 

Group Healthy   Polypectomy 

p value 

 
Diet 

Low polyphenol 

diet  
High polyphenol 

diet  ∆ 
Low polyphenol 

diet  
High polyphenol 

diet  ∆ 

Acid Median IQR Median IQR   Median IQR Median IQR   

Acetic acid  146.7 41.9 185.0 82.6 38.3 138.5 150.5 187.8 19.0 49.3 0.5 
Propionic acid  34.5 25.2 28.4 10.0 -6.2 33.4 21.4 28.4 2.2 -5.0 1.0 
Isobutyric acid  6.0 3.0 3.2 1.9 -2.8 5.4 3.6 3.4 1.7 -2.0 0.6 
Butyric acid  28.2 29.7 38.4 21.1 10.2 37.0 33.2 24.6 23.9 -12.4 0.4 
Isovaleric acid  9.3 3.8 5.3 2.2 -3.9 7.9 5.3 4.5 3.3 -3.5 0.9 
Valeric acid  5.0 3.4 3.8 1.3 -1.2 5.8 4.8 3.7 2.8 -2.1 1.0 
Isocaproic acid  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 
Caproic acid  1.1 1.4 2.0 2.6 0.9 0.0 0.8 0.0 2.7 0.0 0.8 
Enanthic acid  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 
Caprylic acid   1.1 1.3 1.0 1.3 -0.1 0.3 0.5 0.1 0.7 -0.2 0.2 
Total SCFA   258.4 112.3    264.5 92.7 6.1    226.0 202.7     245.1 41.1 19.1 0.8 

            Proportional ratio Median IQR Median IQR ∆ Median IQR Median IQR ∆ 

 %Acetic acid  62.8 12.1 70.0 5.2 7.2 59.9 14.2 72.6 10.5 12.7 
 %Propionic acid  12.5 3.9 10.6 3.4 -1.9 14.8 3.9 11.4 1.2 -3.4 
 % Isobutyric acid 2.2 0.7 1.1 1.3 -1.1 2.4 1.3 1.3 0.6 -1.2 
 %Butyric acid  10.9 6.6 12.9 5.3 2.0 12.8 9.2 10.2 7.4 -2.7 
 % Isovaleric acid  3.7 1.2 1.9 2.0 -1.9 3.4 1.6 1.8 1.3 -1.7 
 %Valeric acid  2.4 0.9 1.5 0.5 -0.9 2.3 1.4 1.5 0.4 -0.8 
 %Isocaproic acids  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 %Caproic acid  0.5 0.8 1.1 1.1 0.6 0.0 0.4 0.0 1.1 0.0 
 %Enanthic acid  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 %Caprylic acid   0.5 0.5 0.3 0.5 -0.2 0.1 0.2 0.0 0.2 0.0   
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5.6.4.3 Faecal calprotectin concentration after low-polyphenol diet 

There was no difference in faecal calprotectin levels between the healthy control and the 

polypectomy groups. All polypectomy patients were within the positive or active 

symptomatic inflammatory bowel disease range (90.9 – 1118.3 mg/kg wet faeces) except 

for one patient (29.4 mg/kg wet faeces weight), who was within the normal range. In the 

healthy control group, the calprotectin concentrations were within the normal range (5-50 

mg/kg) in 4 participants, within the positive range (> 50 mg/kg) in 7 participants, and 

within the active symptomatic inflammatory bowel disease range (200 – 40,000 mg) in one 

participant (Table 5-8). 

Table 5-8: Faecal calprotectin concentrations (mg/kg) in healthy control (n=12) and polypectomy (n=8) 

groups after low-polyphenol diet. 

         Group Median              IQR Range (mg/kg) 

Healthy control  52.9             42.2 26.5-445.9 

    Polypectomy 

 

111.5 
 

          115.3 
 

29.4-1118.3 
 

 

The relationship between the sum of urinary phenolic acid (measured with GC-MS) and 

faecal calprotectin was analysed by linear regression (Spearman rank correlation). There 

was no correlation between faecal calprotectin and the sum of all urinary phenolic acid 

with or without hippuric acid (Rs
2
=0.1, p=0.7 and Rs

2
=0.4, p=0.5; respectively).  
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5.6.4.4 Concentration of bacterial DNA isolated from faecal samples after low-

polyphenol diet 

High quality and high yield DNA was obtained from all faecal samples, with a similar 

concentration and purity of the extracted DNA in both groups (Table 5-9).  

Table 5-9: The DNA concentration and purity in the healthy control  (n=12) and polypectomy (n=8) 

groups. 

Group 

 

 
Healthy control 

 

Polypectomy 

 

 
Measurements  

 

Median 

 

IQR 

 

Range 

 

Median 

 

IQR 

 

Range  

 

 
DNA concentration ng/µl 

 

 

463 
 

 

201.4 
 

 

 
421.6-

1031.4 
 

429.7 
 

 

99.7 
 

 

271.6-

480.7 
 

 
DNA purity 280/260 nm 

 

1.8 
 

0.09 
 

1.7-2.0 
 

1.7 
 

0.1 
 

1.7-1.8 
 

 
DNA purity 260/230 nm 

 

1.3 
 

0.2 
 

1.0-1.8 
 

1.3 
 

0.2 
 

1.0-1.5 
 

 

The faecal DNAs were intact and appear as a high-molecular-weight band in 1.5% agarose 

gel (Figure 5-12). 

 

Figure 5-12: Agarose gel showing the purity of DNA extracted for bacterial qPCR analysis in A) 

healthy control (n=12) and B) polypectomy (n=8) groups.  
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5.6.4.5 Characteristics of the qPCR run condition  

The characteristics of the qPCR runs of each bacterial group and species including the 

slope, amplification efficiency, and the coefficient of determination (R
2
) for both groups 

are described in Table 5-10. The amplification efficiency was within the normal range 

(90% - 105%) for the total bacteria, Bacteroides – Prevotella and Flavonifractor plautii in 

both groups; however, the efficiency for Bifidobacterium spp. was just below the normal 

range in both groups. 

Table 5-10: Characteristics of qPCR runs for each bacteria species/groups in healthy control (n=12) 

and polypectomy (n=8) groups. 

 
Bacteria species/groups 

 

 
Slope 

 
Amplification efficiency (%) 

 
R

2 

Total Bacteria -3.371 97.9 0.994 

Bacteroides – Prevotella -3.507 92.8 0.998 

Bifidobacterium spp. -3.68 86.9 0.994 

Flavonifractor plautii -3.621 89.7 0.999 

 

 

5.6.4.6 Absolute concentration of bacterial species and groups using qPCR 

Absolute levels of total bacteria, Bacteroides, Bifidbacterium, and Flavonifractor plautii 

did not differ between healthy control and polypectomy groups (Table 5-11).
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Table 5-11: Absolute log10faecal concentrations and relative abundance of bacterial groups/species in healthy control (n=12) and polypectomy (n=8) participants. 

Target 
Wet weight sample Dry weight sample*  

Healthy control (n=12) Polypectomy (n=8) Healthy control  (n=12) Polypectomy (n=8) 

Log10 /g  Median IQR Median IQR Median IQR Median IQR 

Total bacteria 11.4 0.5 10.9 0.3 11.8 0.5 11.4 0.3 

Bifidobacterium spp. 9.5 0.9 9.1 0.4 10.1 1.1 9.6 0.3 

Bacteroides +  Prevotella 10.2 0.6 9.7 0.7 10.7 0.4 10.1 0.7 

Flavonifractor plautii 7.7 1.0 7.9 0.9 8.2 1.1 8.4 0.9 

% 
        

Bifidobacterium spp. 1.26 1.58 2.00 1.58 

Bacteroides + Prevotella 6.31 6.31 7.94 5.01 

Flavonifractor plautii 0.02 0.10 0.03 0.10 

 

* Calculated using the weight (g) and the moisture percentage (%) of the wet faecal samples. 
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5.6.5 In-vitro fermentation of rutin 

Nine sets of fermentation were carried out using the stool samples of four healthy adults 

(one male and three female) and five patients who underwent polypectomy (one female 

and four males), collected after the low-polyphenol diet. The flavonol rutin was fermented 

for 24 h with or without fibre (raftiline) to test the metabolic capacity of the gut faecal 

contents, in the context of gut health and the risk of developing CRC.  

5.6.5.1 Rutin fermentation and pH of faecal fluids 

There was no change in the pH of the fermented faecal fluids containing rutin alone, over 

time, in either group. However, the combination of rutin with raftiline significantly 

(p<0.01) reduced the pH at the end of the fermentation in both groups. While the overall 

reduction was not different between groups, the reduction in pH started after two hours of 

fermentation in the polypectomy group and after the zero hour time point in the healthy 

group (Figure 5-13). 

Figure 5-13: Change in pH of fermented faecal fluids over 24 h in A) healthy control (n=4) and B) 

polypectomy (n=5) participants. Data presented as median and IQR.  
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5.6.5.2 Rutin fermentation and gas production 

In both healthy control and polypectomy groups, the combination of rutin with raftiline 

increased gas production more than the rutin alone (p<0.05). The accumulation of gas over 

the 24h fermentation period was not different between groups (Figure 5-14).The addition 

of rutin to raftiline did not significantly decrease the gas production in either group.  

Figure 5-14: Cumulated gas production from fermented faecal fluids over 24 h of incubation in A) 

healthy control (n=4) and polypectomy (n=5) groups. Data presented as median and IQR.     
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5.6.5.3 Metabolism of rutin in faecal fluids and phenolic acids formation 

Only seven metabolites were found and identified using GC-MS after the fermentation of 

rutin with or without raftiline in the fermented faecal fluids of healthy control and 

polypectomy groups at 0, 6, and 24 h (as presented previously in Table 3-12, Chapter 3). 

PAA, 3-OHPAA, 3-OHPPA, 4-OHPPA, and 3,4diOHPPA were detected in both faecal 

only fluids and fermented faecal fluids of rutin with or without raftiline. 3,4diOHPAA was 

detected only in the fermented faecal fluids of rutin with or without raftiline. 4-OHBA was 

not detected in the fluids from the polypectomy group at all (Table 5-12). 

5.6.5.3.1 Total phenolic acid metabolites formed after the fermentation of rutin 

The sum of the seven metabolites significantly increased over time in the fermented faecal 

fluids of rutin in the healthy control (p=0.002) and polypectomy (p=0.02) groups (Figure 

5-15). There were no significant differences between groups.  

Figure 5-15: Total phenolic acids (µmol/L) in A) healthy group (n=4) and B) polypectomy (n=5) 

fermented faecal fluids over 24 h of fermentation. Data presented as median and IQR. 
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5.6.5.3.2 Individual phenolic acid formed after the fermentation of rutin 

PAA increased significantly over time in the fermented faecal fluids of rutin in the healthy 

control (p=0.01) and polypectomy (p=0.01) groups. 3-OHPPA and 4-OHPAA significantly 

increased only in the fermented faecal fluids of rutin in the healthy control group (p=0.01; 

p=0.04, respectively; Table 5-12). No differences were found between groups in terms of 

the formation of the individual acids. 
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Table 5-12: Accumulation of seven phenolic acids (µmol/L) produced after 0, 6, and 24 h of fermentation in faecal fluids from healthy (n=4) and polypectomy (n=5) groups. 

Metabolite Group Substrates 
0h 6h 24h 

Median IQR Median IQR Median IQR 

PAA 

Healthy control 

Blank 6.9 1.5 92.8 99.5 88.8 19.9 
Raftiline 7.0 5.1 22.2 26.3 26.6 26.2 
Rutin 6.7 4.6 58.7 98.2 128.3 53.9 

Rutin+raftiline 6.4 4.8 17.5 32.8 25.3 21.9 

Polypectomy 

Blank 9.5 4.1 32.8 60.8 69.7 145.2 

Raftiline 6.2 6.7 11.5 8.0 17.9 9.7 

Rutin 6.3 1.8 34.2 56.5 113.8 143.1 

Rutin+raftiline 7.3 4.4 12.8 18.5 18.5 30.7 

3-OHPAA 

Healthy control 

Blank nd nd 0.1 <0.01 0.1 <0.01 
Raftiline nd nd nd nd nd nd 
Rutin 0.1 <0.01 0.8 0.6 4.2 26.6 
Rutin+raftiline nd nd 0.3 0.9 0.6 0.5 

Polypectomy 

Blank nd nd nd nd 7.5 <0.01 
Raftiline nd nd nd nd nd nd 
Rutin nd nd 1.6 <0.01 3.0 4.2 
Rutin+raftiline nd nd 0.3 0.2 0.5 0.4 

4-OHBA 

Healthy control 

Blank 0.2 <0.01 0.4 11.9 0.3 13.6 
Raftiline 0.2 <0.01 0.2 <0.01 0.1 <0.01 
Rutin 0.3 0.2 0.2 <0.01 0.2 <0.01 
Rutin+raftiline 0.2 <0.01 0.3 <0.01 0.4 0.2 

Polypectomy 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin nd nd nd nd nd nd 
Rutin+raftiline nd nd nd nd nd nd 

 

*Continued overleaf 
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Metabolite Group Substrates 
0h 6h 24h 

Median IQR Median IQR Median IQR 

 

          *Continued overleaf 
 

 

 

 

3-OHPPA 

Healthy control 

Blank 0.9 1.1 4.2 7.6 3.4 2.7 
Raftiline 1.0 2.3 2.8 4.0 3.4 1.4 
Rutin 0.5 0.8 7.7 23.5 13.4 8.4 
Rutin+raftiline 1.3 1.8 9.5 20.8 9.4 15.8 

Polypectomy 

Blank 0.3 2.2 1.1 1.4 1.7 1.5 
Raftiline 1.2 1.2 1.2 0.8 1.3 1.6 
Rutin 1.6 1.5 4.2 7.8 4.1 9.3 
Rutin+raftiline 0.2 1.5 1.6 3.9 1.7 6.0 

4-OHPPA 

Healthy control 

Blank 0.4 0.6 3.4 12.9 21.6 27.2 
Raftiline 0.3 0.7 1.4 0.6 2.0 0.8 
Rutin 0.8 1.0 1.6 0.8 6.9 9.2 
Rutin+raftiline 0.3 0.7 0.4 0.3 1.9 3.2 

Polypectomy 

Blank 0.1 0.5 1.3 19.8 13.5 29.0 
Raftiline 0.7 <0.01 1.2 1.5 1.0 1.8 
Rutin 0.4 0.4 5.8 10.5 4.8 14.2 
Rutin+raftiline 0.7 <0.01 1.1 1.7 0.4 0.6 

3,4diOHPAA 

Healthy control 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd 3.2 <0.01 
Rutin 0.3 <0.01 63.0 34.3 65.8 43.7 
Rutin+raftiline 0.5 <0.01 48.3 23.9 52.0 25.9 

Polypectomy 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin 0.2 <0.01 74.0 0.6 27.7 18.5 
Rutin+raftiline 0.3 <0.01 42.9 40.0 51.6 30.2 
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3,4diOHPPA 

Healthy control 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin 0.2 <0.01 1.1 1.0 0.5 <0.01 
Rutin+raftiline nd nd nd nd 0.6 <0.01 

Polypectomy 

Blank nd nd nd nd nd nd 
Raftiline nd nd nd nd nd nd 
Rutin nd nd 1.3 <0.01 nd nd 
Rutin+raftiline nd nd 0.1 <0.01 nd nd 

 

Not detected (nd) 

Metabolite Group Substrates 
0h 6h 24h 

Median IQR Median IQR Median IQR 
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5.6.5.4 Metabolism of rutin in faecal fluids and SCFA production 

Ten SCFA were identified and quantified in the fermented faecal fluids after the 

fermentation of rutin in the presence or absence of raftiline in healthy control and 

polypectomy groups at 0, 2, 4, 6 and 24 h .They are the same as those measured directly in 

the faecal samples (Table 2-1; Chapter 2). Isocaproic, caproic, enanthic, and caprylicacid 

were either detected in limited amounts or not detected at all. 

The total SCFA concentration significantly increased over time in the fermented faecal 

fluids of rutin with or without raftiline in healthy control and polypectomy groups 

(p<0.05). With raftiline, significantly higher levels of SCFA were detected in the fluids 

compared to rutin alone (p<0.05) for the healthy control group; p=0.002 for the 

polypectomy group). Total SCFA levels were not different between groups (Figure 5-16).  

Figure 5-16: SCFA production (µmol/ml) in A) healthy control (n=4) and B) polypectomy (n=5) groups 

fermented faecal fluids over 24 h of fermentation. Data presented as median and IQR. 

 

0

20

40

60

80

0h 2h 4h 6h 24h 0h 2h 4h 6h 24h 0h 2h 4h 6h 24h 0h 2h 4h 6h 24h

Blank Raftiline Rutin Rutin+Raftiline

µ
m

o
le

s
/m

l

 

 

0

20

40

60

80

0h 2h 4h 6h 24h 0h 2h 4h 6h 24h 0h 2h 4h 6h 24h 0h 2h 4h 6h 24h

Blank Raftiline Rutin Rutin+Raftiline

µ
m

o
le

s
/m

l

 

 

  

(A) 

(B) 



 

 

  204 

 

Acetic, propionic, and butyric acid significantly increased over time in the fermented faecal 

fluids of rutin and the combination of rutin with raftiline in both groups (p<0.05; Table 

5-13). There was no difference in the levels of specific SCFA between groups. 
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Table 5-13: SCFA concentration (µmole/ml) after 0,2,4,6 and 24 h. of fermentation from healthy control (n=4) and polypectomy (n=5) participants. 

SCFA Group 

Substrates 

0h 2h 4h 6h 24h 
    Median IQR Median IQR Median IQR Median IQR Median IQR 

C2 

Healthy 

control 

Blank 1.2 0.4 2.8 1.6   4.9  1.3  5.8 0.7   7.8   0.3 
Raftiline 1.3 1.3 5.6 5.8 17.7  5.6 28.1 2.4 35.8 11.6 
Rutin 1.3 0.7 2.9 1.2   5.3  1.7  6.9 0.9   8.3   1.9 
Rutin+raftiline 1.4 1.0 6.3 7.7 14.5 11.3 24.4 6.1 39.2 14.6 

Polypectomy 

Blank 1.0 0.2 2.8 1.4  4.6  2.4  5.9 0.7  7.6   1.5 
Raftiline 1.0 0.3     11.4 3.3    18.6   7.2    24.8 8.1 28.0 14.4 
Rutin 1.1 0.3 2.9 0.6 4.5   0.6  6.4 0.7  7.6   0.7 
Rutin+raftiline 1.3 0.4     10.5 4.0    18.5 10.5 21.3 10.0 33.9 11.2 

C3 

Healthy 

control 

Blank 0.3 0.1 0.6 0.3 1.1  0.1 1.6 0.2 2.2 0.7 
Raftiline 0.2 0.2 0.6 0.8 1.5  1.2 3.1 1.2 5.2 1.9 
Rutin 0.2 0.1 0.5 0.3 1.1  0.2 1.5 0.1 2.4 0.8 
Rutin+raftiline 0.3 0.1 0.6 0.9 1.5  0.8 2.8 1.0 5.6 3.5 

Polypectomy 

Blank 0.1 0.1 0.5 0.8 1.5  0.7 1.8 0.8 2.2 1.3 
Raftiline 0.4 0.1 1.9 0.7 4.4  1.1 4.7 1.4 5.1 2.1 
Rutin 0.4 <0.01 0.7 0.4 1.3  0.5 1.7 0.7 2.0 1.4 
Rutin+raftiline 0.4 0.1 2.6 1.8 4.0  0.9 4.4 0.4 6.3 1.0 

iC4 

Healthy 

control 

Blank nd nd 0.1 <0.01 0.1 <0.01 0.2 0.1 0.7 0.2 
Raftiline <0.01 <0.01 0.1 <0.01 0.1 <0.01 0.1 <0.01 0.1 <0.01 
Rutin nd nd 0.1 <0.01 0.1 <0.01 0.2 <0.01 0.5 0.2 
Rutin+raftiline nd nd 0.1 <0.01 0.1 <0.01 0.1 <0.01 0.1 <0.01 

Polypectomy 

Blank nd nd nd nd 0.2 <0.01 0.1 0.1 0.7 0.1 
Raftiline nd nd nd nd nd nd nd nd <0.01 <0.01 
Rutin nd nd nd nd 0.1 <0.01 0.1 0.1 0.6 0.2 
Rutin+raftiline nd nd nd nd <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

             

            *Continued overleaf 
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SCFA Group 

Substrates 

0h 2h 4h 6h 24h 

    Median IQR Median IQR Median IQR Median IQR Median IQR 

C4 

Healthy 

control 

Blank 0.2 0.2 0.8 0.3 1.4 0.4 1.5 0.5 2.2 0.4 
Raftiline 0.4 0.2 1.1 1.9 3.1 3.0 4.9 3.9 5.6 6.9 
Rutin 0.2 0.2 0.8 0.3 1.3 0.4 1.7 0.5 2.4 0.4 
Rutin+raftiline 0.4 0.1 1.6 1.8 4.8 2.6 7.8 4.2 7.7 6.6 

Polypectomy 

Blank 0.2 <0.01 0.4 0.3 0.9 0.2 1.0 0.6 1.6 0.4 
Raftiline 0.2 <0.01 1.3 0.5      3.5 2.2 3.3 1.9 12.4 9.0 
Rutin 0.1 0.1 0.4 0.2 0.8 0.2 1.1 0.3 1.9 0.4 
Rutin+raftiline 0.2 0.1 1.0 1.0      2.6 2.2 4.5 1.3 15.0 7.5 

iC5 

Healthy 

control 

Blank 0.1 <0.01 0.2 <0.01 0.3 0.1 0.4 0.1 1.2 0.4 
Raftiline 0.1 <0.01 0.1 <0.01 0.2 0.1 0.2 0.2 0.2 1.3 
Rutin 0.1 <0.01 0.1 <0.01 0.2 0.1 0.4 0.2 1.0 0.4 
Rutin+raftiline 0.1 <0.01 0.1 <0.01 0.2  <0.01 0.2 0.1 0.2 0.7 

Polypectomy 

Blank nd nd 0.1 0.1 0.2 0.0 0.4 0.2 1.3 0.5 
Raftiline nd nd 0.1 <0.01 0.2 0.0 0.1 0.0 0.1 0.0 
Rutin nd nd 0.1 <0.01 0.1 0.1 0.2 0.2 1.2 0.2 
Rutin+raftiline nd nd <0.01 <0.01 0.0 0.1 0.1 0.0 0.0 0.1 

C5 

Healthy 

control 

Blank nd nd 0.3 <0.01 0.8 0.1 0.5 0.8 1.1 0.1 
Raftiline <0.01 <0.01 0.3 0.1 0.5 0.2 0.6 0.2 0.6 0.2 
Rutin nd nd 0.2 <0.01 0.7 <0.01 0.9 0.4 1.0 0.1 
Rutin+raftiline 0.1 <0.01 0.3 <0.01 0.5 0.1 0.6 0.3 0.6 0.3 

Polypectomy 

Blank nd nd 0.1 <0.01 0.4 0.2 0.7 0.3 0.9 0.0 
Raftiline nd nd 0.2 0.1 0.2 0.1 0.2 0.1 0.2   0.1 
Rutin nd nd 0.1 <0.01 0.2 0.2 0.5 0.3 0.9 0.1 
Rutin+raftiline nd nd 0.2 <0.01      0.2 0.1 0.2 0.1 0.2 0.1 

 

             Not detected (nd), acetic acid (C2), propionic acid (C3), isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), valeric acid (C5).
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5.7 Discussion 

This current study was carried out to test the hypothesis that older people who are at risk of 

CRC (colorectal adenomas removed) are less able to metabolise dietary polyphenols than 

healthy adults due to changes in their gut function and colonic microbiota composition. To 

our knowledge, this is the first semi-controlled dietary study investigating the colonic 

metabolism of dietary polyphenols in polypectomy patients using human feeding and in-

vitro faecal fermentation designs. 

In the present study, there were no significant differences detected between the healthy 

control and polypectomy groups in terms of 1) sum urinary phenolic acid excretion, and 2) 

sum phenolic acid formation in the faecal fluids. However, three phenolic acids were 

absent in the urine of the polypectomy group, while some phenolic acids were not detected 

in certain participants in the older group. This finding could be limited to the small size of 

the polypectomy group. A post-hoc calculation of the sum urinary phenolic acid using G-

power software showed that the urinary phenolic acid data of the present study achieved a 

power of 50%. To achieve a power of 80%, six more participants in the healthy control 

group and eleven more patients in the polypectomy group would be required to detect any 

differences. The recruitment for this study started on the 1
st
 of August 2012 until March 

2013; however, due to 50% of the recruited participants dropping out and the PhD 

timeline, we included this data as preliminary information.  

There is no clear explanation regarding the absence of the PAA, 3,4diOHBA, and GA in 

the urine samples of all polypectomy patients and 3-OHBA in the fermented faecal fluids. 

Several proposed metabolic pathways of rutin and tea in humans and in-vitro and faecal 

fermentation showed a production of these acids (Olthof et al., 2003, Jaganath et al., 2009, 

Serra et al., 2012). The absence of these acids could be a result of changes in gut 

microbiota composition, function, or/and gut physiology associated with the development 

of colorectal adenoma/cancer. A study by Moore and Moore (1995) showed that patients 

with polyps have different gut microbiota composition compared with healthy individuals.  

The change in gut microbiota is linked to the derived microbial and enzymatic activities. In 

the human colon, the occurrence of bacterial enzymes (β-glucosidases, β-glucuronidases, 

and α-rhamnosidase) enables the hydrolysis of rutin to release the quercetin aglycone 

(Aura et al., 2002). Insufficient or lower levels of bacterial enzyme in the colon could be 

one of the reasons for the absence and low urinary phenolic acid in the polypectomy group. 
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This may have consequences on the colonic health as a high local concentration of gut 

microbial metabolites such as, phenolic acids, accumulating in the colon could have 

positive biological activities (Dorsten et al., 2012).  

In this present study there were no differences between groups in the quantity of the 

bacteria known to modulate by phenolic compounds such as Bifidbacterium and 

Bacteroides, or Flavonifractor plautii (a known flavonoid degrader). However, these were 

the only strains measured in the faecal samples, and they may not be representative of all 

polyphenol metabolism bacteria that are found in the colon. There are a number of human 

faecal bacteria species that have been identified to degrade the C-ring system of 

flavonoids, such as, Clostridium scindens, Eubacterium desmolans, Eubacterium ramulus 

(Schneider et al., 1999, Simmering et al., 1999, Braune et al., 2001, Schoefer et al., 2003), 

Butyrivibrio sp (Krishnam.Hg et al., 1970), and Bacteroides distasonis (Bokkenheuser et 

al., 1987). Yet, there remains a lack of information on the type and occurrence of the 

flavonoid-degrading bacteria in the human intestinal tract in relation to health and disease. 

Moreover, the levels of bacterial enzyme and activity were not measured in this study 

which limits our knowledge of understanding the difference in the microbial profile of 

polyphenols between the healthy control and polypectomy groups. 

The current study observed a very large inter-individual variation in urinary phenolic acids 

within the healthy control group (30-fold) compared with the polypectomy patients (9-

fold). However, the variation reduced to 3-fold within the healthy control group and 

increased to 10-fold within the polypectomy group once hippuric acid had been removed 

from the calculation. Urinary hippuric acid is the glycine hepatic conjugate of benzoic acid 

(Phipps et al., 1998). It was the main acid contributing ~ 97% of phenolic acid excretion in 

the healthy control and polyectomy groups. Hippuric acid is most likely to be formed in the 

liver by conjugation of benzoic acid and glycine. Dietary sources of benzoic acid and 

precursors (quinic acid, aromatic amino acid tryptophan, tyrosine, and phenylalanine) 

should be considered (Self et al., 1960, Grumer, 1961). Other sources of benzoic acid are 

benzoates (E numbers 210-219) which are commonly used in food, medications, and 

mouthwashes. 

In the present study, the hippuric acid was higher in the polypectomy group after the low-

polyphenol diet and tended to be higher after the high-polyphenol diet in the polypectomy 

group compared to the healthy group (1734.5, IQR 1704.5 vs 3581.4, IQR 4206.7). The 

high levels of hippuric acid could be due to several reasons: 1) altered gut microbiota. 
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Williams et al. (2010) reported an association between altered gut microbiota and the 

urinary excretion of hippuric acid in Crohn's disease; 2) the high amount of Clostridia spp. 

in the polypectomy group. Li et al. (2008) found a positive association 

between Clostridia spp. and the level of hippuric acid; 3) the high amount of hippuric acid 

could be a result of amino acid metabolism such as that of aromatic amino acids 

tryptophan, tyrosine, and phenylalanine (Self et al., 1960, Grumer, 1961). The high level of 

hippuric acid could be considered an objective marker of fruit and vegetable intake; 

however, the non-dietary factors that increase hippuric acid should be taken into 

consideration.  

The higher amount of hippuric acid in the urine of the polypectomy group had no effect on 

the urinary antioxidant activity (FRAP). According to Olthof et al. (2003) dietary phenols 

are strong antioxidants in vitro but not in vivo because they are metabolized extensively. 

He found that the urinary hippuric acid which is the most important metabolite of 

chlorogenic acid and tea phenols has no antioxidant activity using FRAP assay, because it 

has no hydroxyl group. There is no clear evidence why the urinary FRAP did not increase 

after the high-polyphenol diet in the polypectomy group. However, it could be due to the 

absence of some phenolic acids in the urine of the polypectomy group, possibly associated 

with the changes in gut microbiota composition or/and function and gut physiology. 

 

In contrast to the sum of urinary phenolic acid, the urinary total phenols measured with the 

Folin-Ciocalteu assay did not increase after the high-polyphenol diet in the healthy control 

and polypectomy groups. This may be attributed to lack of hydroxyl moiety on some of the 

phenolic acid such as hippuric molecule or/and differences in the urinary phenolic acid 

reactivity to the Folin reagent. A recent cohort study evaluated the association between 

total urinary polyphenols using Folin-Ciocalteu assay and all-cause mortality during a 12-

year period among 807 men and women living in Italy. This study suggested that older 

people with low total urinary phenol concentration are at high risk of overall mortality. The 

excretion of total urinary phenols tended to be higher among survivors than those who died 

within the 12 year study period (Zamora-Ros et al., 2013c). 

In view of the biomarkers of colonic fermentation (SCFA) in the human feeding and 

fermentation models of the present study, it is suggested that polypectomy patients have 

similar fermentation ability to their healthy counterparts. This is in agreement with Clausen 

et al. (1991) who found that the faecal concentrations of total SCFA and the concentrations 
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and ratios of the individual SCFA using the gas-liquid chromatography did not differ 

between 16 healthy controls, 17 patients with colonic adenomas, and 17 patients with 

colonic cancer. On the other hand, Monleon et al. (2009) reported that the metabolic 

profile of faecal water using the nuclear magnetic resonance spectroscopy of colorectal 

cancer patients is low in SCFA concentration, particularly acetate and butyrate, which has 

been associated with the risk of CRC. The inconsistency between these results could be 

due to differences in the sample size employed as well as the technique used to measure 

the SCFA. In our study, the polypectomy group habitually consumed less breakfast cereal 

than the healthy group. However, there was no difference between the two groups for pH 

and SCFA in faecal samples (direct measurements) or fermented faecal fluids. 

The reduction in faecal pH in both groups after the high polyphenol diet may be due to the 

effect of the dietary fibre in the high-polyphenol diet more than the effect of polyphenols 

which had been reported before by Btavo et al. (1994) and Nordlund et al. (2012). In the 

in-vitro fermentation model of this study, the pH of fermented faecal fluids decreased only 

when raftiline had been added to the rutin. The reduction in pH during the fermentation is a 

result of the production of SCFA when raftiline was fermented. The fermentation of 

flavonols alone did not influence the pH of the faecal fluids.  

No study has yet examined whether colonic inflammation has a direct effect on the 

metabolism of dietary polyphenols. In the present study, a calprotectin assay was used to 

detect differences between the groups in terms of their colonic inflammation. However, 

most participants in the polypectomy group were within the active systemic range.  A 

study by Shitrit et al. (2007) showed that calprotectin levels were significantly higher in 

patients with abnormal colonic histology compared to patients with normal colonoscopy. 

This result suggested the use of faecal calprotectin as a predictive marker for colonic 

polyps and colonic cancer not only for Crohns disease but also for IBD. With no 

correlation between urinary phenolic acids and faecal calprotectin levels, as well as no 

significant differences between groups, it is hard to make any conclusion about the 

possible link between inflammation of the colon and the colonic metabolism of dietary 

polyphenols. 

Polyphenols have been shown to reduce colonic inflammation and modulate the signalling 

pathways in the intestinal cells by interfering with inflammatory mediator production and 

the signalling pathways of NF-kB (Ahmad et al., 2000) and MAPK (Balasubramanian et 

al., 2002). In the present study, one of the patients in the polypectomy group had a very 



   

 

  211 

 

low calprotecin level even when compared to the healthy group. According to the initial 

visit and the FFQ of the patient, it was found that he consumed six cups of green tea every 

day. However, all of his urinary and faecal measurements were within the range of the rest 

of his group. 

To our knowledge this is the first human feeding and in-vitro faecal fermentation study 

which investigates the colonic metabolism of dietary polyphenols in patients who were 

recruited from the Scottish Bowel Screening Programme. The current study provides 

preliminary data to establish a longer term study on the effect of a high-polyphenol diet on 

the inflammatory and immunity colonic biomarkers. This study does, however, have some 

limitations: 1) due to a high drop-out rate the final sample size was small and thus is of low 

statistical power; and 2) the study groups were not matched for gender, meaning that the 

results could be affected by different colonic transit times. However, the bowel movements 

data of this study showed no significant differences between the groups. Moreover, this is 

unlikely to be a major factor in this study looking at participants over 50 years of age, as 

these differences were not observed to occur between men and post-menopausal women 

(Madsen, 1992). 

In conclusion, no significant differences were detected between the healthy control and 

polypectomy groups in terms of the sum urinary phenolic acid excretion and phenolic acids 

formation in the faecal fluids. However, three phenolic acids (PAA, 3,4diOHBA, and GA) 

were not detected in the urine of the polypectomy group as well as one acid (3-OHBA) in 

the faecal fermentation fluids, while some of the acids were not detected in some 

participants in the healthy control group. Moreover, no significant differences were 

observed between the groups in terms of the markers of colonic fermentation and 

inflammation. This could be due to the small sample size; the result of this study, 

especially the urinary phenolic acid, is considered as preliminary data that will help to plan 

subsequent studies in the future. In addition, the result of this study is for patients with 

colorectal polyps; however, the colonic metabolism of polyphenols in CRC patients may 

be different. Long term studies lasting at least eight weeks using a large number of 

polypectomy patients are needed to understand the colonic metabolism dietary polyphenol 

in patients who are at risk of CRC. These types of studies can help to understand the local 

and systemic biological activities of polyphenols to be able to generate optimal dietary 

recommendations for prevention and treatment. 
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General discussion 
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6.1 Introduction 

The last decade has witnessed a significant increase in dietary polyphenol research for the 

prevention of diseases, such as cancer and cardiovascular disease, owing to their well-

known anti-oxidant and anti-inflammatory activities (Kim et al., 2013, Macready et al., 

2014). However, most of the evidence has been derived primarily from epidemiological 

studies (Cassidy, 2010, Rossi et al., 2010). 

Experimental studies have predominantly examined dietary polyphenols using either: 1) in-

vitro or animal studies, investigating specific phenolic degradation pathways or testing 

higher concentrations of polyphenols than those usually found in the diet (Gonthier et al., 

2006, Gardana et al., 2009, Jaganath et al., 2009, Gross et al., 2010, Ostertag et al., 2011, 

Pae et al., 2012); or 2) in-vivo studies involving healthy volunteers to evaluate the 

bioavailability of polyphenols or their effects on the markers of oxidative stress, 

inflammation and immunity (O'Byrne et al., 2002, Cerda et al., 2005, Karlsen et al., 2007, 

Chun et al., 2008, Stalmach et al., 2011, Henning et al., 2013). However, the majority of 

in-vitro and polyphenol bioavailability studies have reported large inter-individual 

variations among participants in terms of polyphenol metabolites (phenolic acids) (Cerda 

et al., 2005, Gardana et al., 2009, Jaganath et al., 2009, Gill et al., 2010, Gross et al., 

2010). To the best of our knowledge, none of these studies investigated the reasons behind 

these variations. The inter-individual variation of polyphenol metabolism can result in 

bioavailability variation and, in turn, differences in the biological activity of polyphenol 

metabolites among individuals and the subsequent health benefits (Jaganath et al., 2009). 

The problem is further complicated by the scarcity of information regarding variations in 

dietary polyphenol metabolism and bioavailability. Not only does this complicate the 

understanding of the relationship between polyphenol metabolism variations and disease 

incidence, but also it makes it difficult to determine optimal polyphenol intake 

requirements for disease prevention and health promotion, especially in older populations 

and those at higher risk of chronic disease. Consequently, it is challenging to establish a 

dietary guideline for polyphenols. As a result, it is crucial to evaluate the factors that could 

contribute to the variations in polyphenol metabolism and influence their absorption and 

bioavailability.  

As highlighted in the previous chapters of this thesis, some of the proposed factors 

contributing to the variations in polyphenol metabolism include dietary habits, gut 
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microbiota, and/or food matrix interactions which are further dependent on ethnicity, age 

and colonic health. Therefore, the work in this thesis has focused on the inter-individual 

variation in relation to ethnicity, ageing, and colonic health status (colorectal cancer risk 

patients) using in-vivo and in-vitro faecal fermentation designs. Patients who are at risk of 

CRC were selected because the majority of polyphenols are metabolised in the colon by 

bacterial enzymes, and several cell culture studies have linked the microbial metabolites of 

polyphenols with CRC prevention (Kim et al., 2005, Araujo et al., 2011, MacDonald and 

Wagner, 2012).  

6.2 Summary of findings  

The work of this thesis showed variations in terms of the phenolic acids profile in the urine 

and fermented faecal fluid samples among the study groups as listed below:  

1. The result of the first study (Chapter 3) showed that faecal material from 

Indians was more capable and faster at metabolizing rutin in the in-vitro 

model than that from Europeans, despite a lower excretion of urinary 

phenolic acid after a high-polyphenols diet. 

2. The second study (Chapter 4) shows that the older group excreted less 

urinary phenolic acid (lower amount and lower diversity / fewer acids) 

compared to the younger group. The sum of the phenolic acid formed after 

faecal fermentation of rutin was however not significantly different between 

groups.  

3. No significant differences were detected between the healthy control and 

polypectomy groups for the sum urinary phenolic acid excretion or phenolic 

acids formation in the faecal fluids (Chapter 5). This is potentially due to 

the small size of the polypectomy group in the last study. However, three 

phenolic acids (PAA, 3,4diOHBA, and GA) were not detected in the urine 

of the polypectomy group as well as one acid (3-OHBA) in the faecal 

fermentation fluids.  
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6.3 Possible causes of variation in polyphenol metabolism 

The variation between and within groups in urinary phenolic acid excretion and phenolic 

acids formation in the faecal fluids could be due to several factors such as: 1) the influence 

of dietary habit, ethnic food, and ageing on gut microbiota composition and function (Wu 

et al., 2011); and 2) differences in gut health and its effect on gut physiology, such as 

fermentation, absorption, and transit time, as these have been shown to be affected by 

ageing and gastro-intestinal disease (Chapter 4 and 5). These factors could result in 

bioavailability variation and sequential differences in the biological activity of polyphenol 

metabolites causing differences in optimal health among individuals (Figure 6-1). 

Figure 6-1: An overview of the factors that contribute to the inter-individual variation of dietary 

polyphenol metabolism and their effect on polyphenol bioavailability and biological activities and in 

turn on chronic disease incidence and health benefit. 
 

 

In the first study (Chapter 3) the low urinary excretion by Indians with higher and faster 

formation of phenolic acids in the fermented faecal fluids suggests some possible 

mechanisms. First, it could be linked to genetics and its impact on gut microbiota 

composition and diversity. Second, differences in dietary habits and its impact on gut 
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microbiota and colonic function. The FFQ showed that Indians significantly consumed 

more yogurt, onion, tomato, chilli, and curry- based products, and spices than Europeans. 

Regular intake of yogurt, onion, tomato, and spices could be one of the reasons behind the 

low faecal pH and higher quantity of Bifidobacterium in Indians due to their prebiotic and 

probiotic effects of these dietary components. 

Fermented dairy products (such as yogurt), act as probiotic in the human colon as they 

naturally contain a number of the beneficial bacteria species that are present in the colon 

such as Lactobacilli and Bifidobacteria, which are believed to improve intestinal health 

through the prevention and treatment of diarrhoea, inflammatory bowel disease, and 

irritable bowel syndrome (Pashapour and Iou, 2006, Shadnoush et al., 2013). Palaria et 

al.(2012) found that the intake of prepared yogurt with Streptococcus thermophilus, 

Lactobacillus bulgaricus, and Bifidobacterium animalis significantly increase the total 

faecal bifidobacterial numbers (P<0.001) after a feeding period of three weeks.  

In addition, a diet that is high in onion, tomatoes, and spices will be rich in polyphenols 

that could act as prebiotic. This has been supported by several studies including the recent 

study by Parkar et al. (2013) which reported that pure polyphenols such as rutin and 

quercetin as well as individual phenolic acid such as 3OHPAA, 3OHPPA, and 4OHPPA 

significantly increased the proliferation of Bifidobacterium longum in an in-vitro 

fermentation model. Thus, the low urinary excretion of phenolic acid by Indians could be 

due to the prebiotic and probiotic effects of their diet, which lead to high amounts of 

bifidobacteria. This could have an impact on the colonic metabolism of dietary 

polyphenols, either by using them as a source of carbon for their growth or by improving 

their metabolism leading to faster absorption and tissue uptake by Indians. 

As Bifidobacterium adolescentis has been shown to inhibit the proliferation of colon 

cancer cell lines and harmful bacterial enzyme activity(Kim et al., 2008);  and as the low 

colonic pH was linked to low CRC (Walker et al., 1992, Kim et al., 2008), therefore the 

low risk of CRC in Indians could be due to the contribution of these factors. 

Third, the influence of the food matrix may have affected the outcome of the study 

(Chapter 1) as the dietary intervention was semi-controlled, and participants could add 

their own food to the diet. However, at this stage of understanding it is not possible to link 

the intake of macronutrients with the urinary excretion of phenolic acid. On the other hand, 

http://www.medicinenet.com/script/main/art.asp?articlekey=41908
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CEgQFjAD&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2570311%2F&ei=yhyDU8y4KIquPI-AgYgM&usg=AFQjCNGLGsS1lLEeChr1SVF8SwVj2c-pJQ&sig2=spdZd0MDeDJkZdw6l-P9bw&bvm=bv.67720277,d.ZWU
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dietary fibre could have an effect on the urinary excretion of the phenolic acid; though, 

dietary records showed no differences between groups in terms of fibre intake.  

In the second study (Chapter 4) the low urinary phenolic acid excretion in the older group 

had a different story to the low phenolic acid excretion in the Indian group. This is because 

all urinary phenolic acids were detected in Indians but in much lower amounts than the 

Europeans, which suggested either faster absorption or the acids were used as a source of 

carbon for the colonic microbiota growth. However, according to the results in Chapter 4 

the absence of some of the urinary phenolic acid in the older group suggested a lack of 

absorption of some phenolic acids.  

There is a need to validate if the low phenolic acid excretion in older people is due to the 

lack of absorption, in a large well-designed study. Ageing has been shown to decrease the 

colonic absorption, diminish the mucosal surface area, and decrease the activities of 

intestinal brush border enzymes (Montgomery et al., 1978, Holt et al., 1989). Therefore, if 

the low phenolic acid excretion is due to the lack of absorption, this could contribute to the 

risk of chronic diseases including CRC. This is because CRC risk has been reported to 

increase with ageing with a possible risk reduction following a diet rich in polyphenols 

(Bobe et al., 2008, Araujo et al., 2011, Cappellani et al., 2013). In this study the faecal 

phenolic acids were not measured; otherwise, it could have provided the information of 

whether the phenolic acid was quickly absorbed or accumulated in the colon and 

eliminated. However, the control fermented faecal fluids were used for this purpose. 

Looking from another angle, could the accumulation of phenolics in the colon increase the 

interaction between phenolics and colonic cells, resulting in colonic health improvement? 

No conclusive answer can be made at this stage as data is still lacking as to whether the 

accumulation of phenolic acid over time could have an effect on bioactivity. More studies 

are needed in this area to clarify the association between the length of interaction between 

phenolic and colonic cells.   

Moreover, the effect of ageing on gut microbiota and physiological colonic functions 

(Biagi et al., 2010) could play an important role in the differences in the colonic 

metabolism of dietary polyphenols between older and younger groups. However, of the 

few strains measured (Bifidbacterium, Bacteroides, and Flavonifractor plautii) no 

differences were seen between the groups. However, other colonic microbiotas, which 

were not measured, could be involved in the colonic metabolism polyphenols. These 
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bacteria could include Enterococcus casseliflavus, Eubacterium ramulus (Schneider et al., 

1999, Schneider and Blaut, 2000) Butyrivibrio sp (Krishnam.Hg et al., 1970), and 

Bacteroides distasonis (Bokkenheuser et al., 1987). 

As the results of the first study and other studies suggested that the intake of yogurt can 

improve gut health, including increasing the Bifidbacterium, this could have important 

implications for those persons wanting to improve their colonic metabolism of 

polyphenols. However, further studies are advised to confirm and additionally quantify the 

suggested improvement of yogurt on the colonic metabolism of polyphenols.  

In the last study (Chapter 5), due to the small sample size, there is no clear explanation 

behind the absence of PAA, 3,4diOHBA, and GA in the urine of the polypectomy group. 

Moreover, the secondary measurement in urine samples (total phenols and FRAP) and in 

faecal samples (pH, SCFA, calprotectin, absolute concentration of total of signal bacteria) 

did not provide any further insight regarding this result.  

However, as the provided diet was high in flavonoids that reach the colon, any alteration in 

the colonic microbiota could have an effect on the urinary excretion of the phenolic acid in 

the polypectomy group. Many studies reported changes in gut microbiota in patients with 

colorectal adenoma and CRC. For example, Chan et al. (2013) reported differences in the 

faecal microbiota between colorectal adenoma patients and healthy controls. Clostridium, 

Roseburia, and Eubacterium spp. were significantly lower, while Enterococcus 

and Streptococcus spp. were more prevalent in colorectal adenoma patients. Still there 

remains limited information regarding the contribution of these bacteria to the metabolism 

of polyphenols.  

It is important to study the colonic metabolism, absorption, and bioavailability of 

polyphenols in patients who are at risk of CRC for several reasons. Firstly, there is 

increasing evidence that gut microbiota plays a role in the pathogenesis of the development 

from colorectal adenoma to CRC. Secondly, the risk could be reduced by increasing the 

intake of dietary polyphenols due to their biological activities involving antioxidant, anti-

carcinogenic, anti-inflammatory, and antimicrobial properties (Araujo et al., 2011). Millen 

et al. (2007) found a modest association between a diet high in fruit and deep-yellow 

vegetables, dark-green vegetables, onions, and garlic and reducing the risk of colorectal 

adenoma and cancer. These types of food are high in polyphenols, which have 

accumulating evidence showing their protective biological activities.  
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At this stage, it is still too early to speculate that the changes in gut morphology and 

physiology with colorectal adenoma could have an effect on the colonic metabolism of 

polyphenols. However, according to Scanlan et al. (2008) any changes in gut microbiota 

diversity, composition, or function could affect the regular physiological processes of 

colonic epithelium with potential impact on microbiota metabolic end-products and 

subsequently potential risk for disease development. Therefore, there is a need for further 

studies to understand the effect of gut morphology and physiology changes in the colonic 

metabolism of dietary polyphenols.  

In the three studies undertaken here, the measurements of polyphenol metabolites in 

plasma could help in understanding the variation in the polyphenol metabolites absorption 

rate in each group; however, this would require a bioavailability study alongside the human 

feeding and in-vitro studies. The result of this thesis should be utilized to understand the 

differences in bioavailability between groups. 

6.4 Reflections on methodology 

The in-vitro faecal fermentation experiments provided interesting data regarding the inter-

individual variation of each study’s groups in terms of their ability to ferment rutin, known 

to reach the colon. The setup of the in-vitro faecal fermentation, which used the 

physiological concentration (28 μmol), measured the ileal fluid 0–24 h after the intake of 

tomato juice supplemented with rutin by healthy volunteers (Jaganath et al., 2006). 

Moreover, the measurement of the phenolic acid formation (GC-MS) was the best option 

to detect the differences between and within the groups.  

Apart from the data that the in-vitro faecal fermentation experiments provided, they also 

supported the human feeding studies of this thesis by identifying the type of phenolic acid 

that formed in the colon. The identification of the main colonic metabolites of rutin 

metabolism need to be further investigated in terms of their colonic bioactivity in 

maintaining gut health involving modulating the gut microbiota and reducing colonic 

disease, including CRC.  

A limitation of in-vitro faecal fermentation is that the build-up of inhibitors (degradation 

products) which are not representative of the colonic environment, can occur, as normally 

these inhibitors are reduced by colonic absorption. Raftiline (fibre) was thus added to the 
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fermentation medium to help mimic in-vivo conditions. Overall, the in-vitro faecal 

fermentation model provided information with a quick, reliable, and affordable approach.  

Due to the time limitations of the PhD, the measurement of the bacterial enzymes activity 

or the composition of the bacteria in the in-vitro fermented faecal fluids was not 

performed. This type of measurement could have provided more information about the 

differences between groups in terms of their gut microbiota activity and ability to 

metabolise rutin. However, this could be a future project for a graduate student to test the 

differences between groups in terms of their bacterial enzyme activities. 

The human feeding studies conducted in this thesis using the high-polyphenol diet 

successfully detected the difference between the groups in terms of the polyphenol intake 

biomarkers (urinary phenolic acid). The use of a high-polyphenol diet for three days gives 

a closer picture of a natural diet than using a high amount of one food item rich in 

polyphenols or polyphenol supplementation. As the short term period of the human feeding 

studies showed differences between groups, a long term study (> 8 weeks) could provide 

more information about the effect of the high-polyphenol intake on: 1) the pattern of the 

inter-individual variations; 2) the gut microbiota composition and activities; 3) effective 

duration of polyphenol intervention that could modulate the balance of the gut microbiota; 

and 4) the markers of the oxidative stress, inflammation and immunity. 

The measurement of colonic fermentation biomarkers such as the faecal pH, faecal SCFA, 

and faecal bacterial compositions (qPCR) provide supportive evidence that the colonic 

conditions could have a role in the colonic metabolism of dietary polyphenols. Therefore, 

these measurements should be considered in all studies looking at the effect of polyphenols 

that usually metabolise in the colon. 

The use of the Phenolic Explorer database to estimate flavonoid intake was, in our opinion, 

the best option for this thesis (Neveu et al., 2010). This database has recent data on the 

influences of food processing on polyphenol contents. It also has more than 100 foods, 

including 161 polyphenols or groups of polyphenols before and after processing, which 

makes it the best tool to use for the human feeding study. However, the use of WinDiet 

software was more problematic. As with most dietary analysis software there was a need to 

enter the ingredients of recipes and different types of branded food from their manufacturer 

websites. This could have generated some errors.  
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Besides the human feeding studies and the faecal fermentation in-vitro experiments in this 

thesis, colonic biopsies could greatly contribute to our understanding about the differences 

between groups in terms of morphological differences and their effect on the absorption of 

the polyphenol metabolites. However, this will be challenging due to the ethical approval 

and the willingness of the participants. 

6.5 Strengths 

The human feeding studies provided much information regarding the influences of 

ethnicity, ageing, and the risk of CRC on the colonic metabolism of polyphenol biomarkers 

including the urinary phenolic acid (GC-MS) and urinary total phenols (Folin–

Ciocalteau).The in-vitro faecal fermentation model afforded supportive information that 

rutin was metabolised by the colonic microbiota and it also identified the type of phenolic 

acids formed in the colon. Moreover, the effects of fibre (food matrix) and pH on the 

phenolic acids formation have been observed. In addition to this, the dietary habits of the 

participants using the FFQ, and colonic fermentation biomarkers such as the faecal pH, 

faecal SCFA, and faecal bacterial compositions (qPCR) were useful tools contributing to 

the understanding of variation in the phenolic acid urinary excretion and formation in the 

fermented faecal fluids. 

6.6 Limitations 

There were some limitations and challenges in conducting the human feeding studies, 

which involved recruitment, sample size, and measurements. The recruitment for the 

ethnicity study took longer than expected as it was difficult to find Indian people who have 

been in Glasgow for less than five years and were able to keep a record of their dietary 

habits. Indian men were more willing to participate in the study than women, which may 

be due to cultural barriers. Moreover, the recruitment of older healthy people took longer 

than expected as it was hard to find people who liked and were willing to follow a high-

polyphenol diet. Many potential participants refused to participate in the study because of 

the high intake of fruit and vegetables especially tomatoes. In addition, the recruitment of 

the polypectomy patients from the endoscopy clinics was most challenging. These patients 

were usually stressed about their diagnosis, and as a consequence recruitment had to be 

expanded to include another two sites to find the requisite number of participants.  In 

general, for all studies, the two main reasons for refusing to participate in the study were 



   

 

  222 

 

having to collect entire bowel movements and having to follow the low-polyphenol diet for 

three days. 

The sample size for all studies was powered to detect the differences between the groups in 

terms of the urinary phenolic acids and did not take into account the secondary 

measurements such as faecal pH, faecal SCFA, faecal ammonia, faecal bacterial 

compositions, and faecal calprotectin. The results of the three studies are considered as 

preliminary data, which may contribute to possible future research in bioavailability of 

polyphenols and health. Moreover, the studies limited the colonic metabolism biomarkers 

to the urinary phenolic acid while the measurement of the phenolic acid in the urine and 

faecal samples could have enhanced the overall results knowledge. 

6.7 Implications for disease prevention and clinical practice 

Despite the results of the studies pointed out in Chapter One, it is still too early to advise 

on dietary polyphenol intake as a strategy for CRC prevention. This is because of: 1) large 

inter-individual variation in polyphenol metabolism with no information regarding the 

relationship between these variations and the CRC risk; 2) limited evidence from the 

clinical trial studies on the intake of polyphenols and the risk of CRC (see Chapter 1); 3) 

No studies having looked at the bioavailability of polyphenols in individuals at risk or with 

CRC; and 4) the suggested evidence from the epidemiological studies that a high intake of 

fruit and vegetables could reduce the risk of CRC due to polyphenols, vitamins, and 

 salicylate  content (Cho et al., 2004, Gorham et al., 2007, Wood et al., 2011, Jin et al., 

2012a, Woo and Kim, 2013a) 

India has the lowest CRC incidence in the world. This could be attributed to their 

consumption of  food rich in polyphenols such as tomatoes, onions, garlic, and spices 

(curry, cumin, turmeric, etc.) (Wood et al., 2011). However, it needs to be further assessed 

through well designed clinical and epidemiological studies whether this decreased risk is 

associated with specific polyphenols, a combination of polyphenols or other factors such as 

salicylate which is high in fruit and vegetables. Epidemiologic evidence reported that 

regular and long-term use of salicylate  significantly reduces the risk of CRC via its 

analgesic and anti-inflammatory properties (Tougeron et al., 2014). Looking from another 

dimension, would the sources of salicylate matter? A study by Blacklock et al. (2001) 

reported that there are higher serum concentrations of salicylic acid in vegetarians than in 

non‐vegetarians, and there was overlapping in the serum concentrations between 
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vegetarians and those taking aspirin (75 mg daily). On this basis, the chemo-preventive 

action of aspirin or dietary salicylates can have the same effect; however, the natural 

salicylates contribute to the other known benefits of a healthy diet. 

Unlike the Indian diet, the Scottish population has a low fruit and vegetable consumption 

as well as low salicylate intake. The inadequate intake of fruit and vegetables as a rich 

source of fibre and polyphenols could be one of the reasons for the high CRC incidence in 

Scotland (Wood et al., 2011).  

Currently, due to the limited research on the intake of polyphenols and CRC, education of 

patients by healthcare professionals as to the benefits of following a healthy, balanced diet 

high in fruit and vegetables is an important strategy in the reduction of the risk of CRC and 

chronic disease. On the other hand, there is a need for a clinical trial to examine all 

nutrients that could reduce the risk of CRC including dietary polyphenols as well as their 

metabolism, absorption, and bioavailability both in healthy people and in patients who are 

at risk of or have CRC. This will help identify the potential compounds that could help 

reduce and prevent the recurrence of CRC and possibly other chronic diseases. 

6.8 Implications for nutrition research and food industry 

The data in Chapter 3 suggested that Indians could be more capable of metabolising 

polyphenols compared to Europeans. However, there is no available information regarding 

the type or amount of polyphenols that are usually consumed by the Indian population. 

Subsequently, further research is needed to estimate the daily intake of polyphenols in 

Indians to be able to compare the Indian intake with other European countries. This type of 

study will not only provide information to possibly incorporate polyphenols as part of 

pharmaceutical and nutraceutical agents but also to meet optimum polyphenol daily 

requirements.  

The work of Chapter 4 showed ageing should be taken into consideration in all nutritional 

studies as a factor that could influence polyphenol bioavailability and potential therapeutic 

or disease-preventing effects. Moreover, the establishment of the dietary guideline for the 

dietary polyphenols should take into account the age range, as older people might need 

higher polyphenol intake compared to younger adults, especially those who are at risk of 

disease. Even though there is no conclusive data showing the need for older people to 

increase their polyphenol intake, it would be advisable for the food industry to modify and 
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develop their product by adding and increasing the amount of fruit and vegetables as a 

strategy to increase health benefits due to their high content of fibre, polyphenols and 

vitamins.   

Nowadays, there are only a few products in the UK that claim high polyphenol content in 

their labels such as: 1) POM wonderful pomegranate juice which states that it contains 

polyphenol antioxidants which help protect the body against free radicals that can cause 

damage to people’s bodies over time; 2) Welch’s 100% purple grape juice which has been 

officially recognised by the HEART UK- Cholesterol charity for promoting heart health 

due to its contents of nutrients including polyphenols; 3) NESCAFÉ Green Blend coffee 

which claims that high polyphenol levels have health supporting effects to protect the body 

against everyday cell damage; 4) CocoaVia  cocoa extract supplement which mentions that 

it delivers the highest concentration of flavonols per serving in a dietary supplement and is 

scientifically proven to help support healthy circulation, important for cardiovascular and 

heart health, cognitive health, skin health, blood flow, and exercise performance.  

However, the question is do we need more polyphenolic products in the market? To 

answer this question, more clinical trial studies on the effect of polyphenol compounds on 

improving one’s health are essential to confirm this need.   

6.9 Implications for public health 

This thesis further indicates a large variation in the colonic metabolism of polyphenols 

between individuals, as reported in previous studies. With no available dietary guideline 

for dietary polyphenol intake, the target intake of polyphenols needs to be based on the 

amount of the polyphenols achievable through the 5-A-Day fruit and vegetable programme 

(similar to the Eat Well programme supported by the Food Standards Agency in the UK) 

(Williamson and Holst, 2008). The USDA database estimated that 5-A-Day would lead to 

over 500 mg of polyphenols per day based on the intake of five selected key fruits and 

vegetables: oranges, red onions, blueberries, strawberries, and apples (Williamson and 

Holst, 2008). However, certain fruit and vegetables, especially those low in polyphenols 

such as banana, cucumber, zucchini, or sweet peppers, may provide less than 500 mg of 

polyphenols per day. 

It could be helpful to increase individual polyphenol intake by promoting these 

programmes to the public, in particular the dark colour fruit and vegetables as tools for 
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healthier lives. However, the health benefits of five portions a day could vary between 

individuals due to: 1) different selection of the fruit and vegetables among individuals 

which will provide different types and amounts of polyphenols; 2) different ability of 

metabolising the bioactive compounds in the fruit and vegetables. Fruit and vegetable 

public health programs to increase polyphenol intake are not necessarily effective for low 

income people, as most of the high polyphenol fruit is expensive such as blueberries, 

strawberries, red grapes and pomegranates. Other cheap sources of polyphenols that 

showed a beneficial health effect such as cocoa, green tea, black tea, and coffee could be 

considered.  

6.10   Future research 

Based on the results of this thesis, the following further research is needed:  

6.10.1   Short term studies:  

1. To conduct a dietary intervention to evaluate different types of dietary polyphenols 

in terms of their potential treatment to reduce the risk of CRC by measuring 

colonic inflammatory and immunity markers.  

2. To identify the bacteria involved in the colonic metabolism of polyphenols. 

3. To set up a database for microbial metabolites of polyphenols according to their 

potential action in the colon.  

6.10.2   Long term studies: 

1. To launch a longitudinal study taking into account all possible factors that may 

have an effect on the colonic metabolism of dietary polyphenols such as ethnicity, 

ageing, colonic health, obesity, or/ and smoking, to be able to draw an association 

between the intake of dietary polyphenols, health, and chronic diseases including 

CRC.  

2. To establish more clinical trials on the effect of dietary polyphenols known to 

metabolise in the colon for the prevention of CRC recurrence.  
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6.11   Conclusion 

The data of this thesis demonstrated that ethnicity, ageing, and colonic health could be 

contributing to the large variation between individuals in the metabolism of dietary 

polyphenols which has been previously reported by in-vivo and in-vitro studies. There is a 

need to understand if there is a relationship between the inter-individual variation of 

polyphenol metabolism and the incidence of chronic disease including CRC among 

individuals. This is because the biological activities of dietary polyphenols are depending 

on their metabolism, absorption, and bioavailability. Without knowing if there is a link 

between the inter-individual variation of polyphenol metabolism and the risk of chronic 

disease including CRC, it will not be feasible to relate the inter-individual variations in 

polyphenol metabolism to differences in disease incidence. 
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Appendices 

Appendix 1: Collecting 24-hour urine samples - instructions 
 

1. Please collect and keep all urines passed in the container provided as following:  

      - from the second urine on the first day of collection 

      - to the first urine passed in the morning of the following day 

This will be repeated twice during the first part of the study (after each diet), and three 

times during the second part of the study (beginning, middle and end of the dietary 

intervention) 

2. Please keep the container in the cool-pack with the ice blocks provided throughout the 

duration of collection. 

3. Collect  all urine each time you urinate  

4. Please write down any “mistakes” that may have occurred (such as accidentally 

throwing out urine) in the error form.  

5. Bring all bottles to the Department of Human Nutrition at Yorkhill hospital. If you are 

not able to come, please contact us to arrange a time for collection.  

 

 

Collecting stool samples - instructions 
 

Please collect your stool sample in the special pot provided  

This will be repeated twice during the first part of the study (after each diet), and three 

times during the second part of the study (beginning, middle and end of the dietary 

intervention) on the morning following 24-hour urine collection. 

1. Place the plastic bag inside the pot and then put the pot on the top of the cardboard 

support (frame).  

2. Place the cardboard frame on the top of the toilet seat place the pot inside the frame 

3. Make sure to expel excess air from the plastic bag before closing it. 

4. Fold the plastic bag over the sample, still inside the pot  

5. Remove the special “Anaerocult” paper sachet from the foil pouch and then place it in 

the pot, on top of the plastic bag 

6. Close the pot and place it in the cool bag with ice blocks.  

7. Bring the sample to the Department of Human Nutrition at Yorkhill hospital. If you are 

not able to come, please contact us as soon as possible. 
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Appendix 2: Dietary record instruction 

 In the first dietary intervention, please keep the food diary record with you for the 3 

days of each study period. 

  Please write down ALL food or beverage that you have consumed. Include all 

meals, snacks, treats between meals such as a piece of candy, and beverages.  

 Don’t depend on your memory! Record everything you eat as you go through the 

day.  

 Be specific. Make sure you write down the extras, for instance sauce on your 

spaghetti, cheese in your sandwich or vegetables, butter, and salad dressings.  

 Weigh your foods. Measure them using the food scales provided. If it is not 

convenient, use the portion guide overleaf.  

 List all ingredients in mixed dishes, like salad or soup, and try to write down all of 

the ingredients and estimated amounts.  

 In column 1,  write in detail about each food item such as:  

o Food brand or type  

o Fresh, dried, canned, frozen, or salted, etc.  

o Write the method of cooking (fried, baked, boiled, etc.) 

 In column 2, please write the portion size weight of your foods. 

 In column 3, please record the time of each meal and snack.  

4.  

5. In the second dietary intervention, please record your dietary intake for 3 periods 

(beginning, middle, and end of the study), each period last 3 days. The diet that you will 

follow over the first three days will need to be repeated during the following two diet-

recording periods to limit variability. Make sure that you consume food that you are used 

to, to enable easy replication. 

  



 

 

  286 

 

 

 

 

 

 Dietary record form 
    

 Participant study number:   

 Diet / Part:   

 Date:   

    

 Food / drink Portion size / volume / weight Time 

Breakfast       

Snack       

Lunch       

Snack       

Dinner       

Snack       
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Appendix 3: Food frequency questionnaire 

To be filled by researcher: 

Date:  

 

Researcher: 

Participant Number:   
 

To be filled by participant: 
 

 

Gender:  Male       Female 

Date of Birth:  ____/____/___ 

Home Postcode: ____________ 

 

 

 

Are you vegetarian:   Yes   No  

Are you vegan:   Yes   No  

Ethnicity:                                White European 

                                                 Mixed 

                                                 Asian or Asian British 

                                                 Black or Black British 

                                                 Other Ethnic Groups, please specify: 

_________________ 

 

2. Do you move your bowels? 

Twice daily or more Daily Every 2-3 days Less than twice a week 

    

 

 

 

3. How often do you drink these beverages? Tick only one column per row. 

 

 Per day (times)  Per week  Per month 

 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Green tea            

Black tea            

Coffee            

Hot chocolate, cocoa            

Herbal infusions            

Other hot drink (maté tea)            

Milk drinks (including milk in 

breakfast cereals) 

           

Soya milk            

Rice or Oat milk            

Cola and fizzy drinks            

Cordial and flavoured waters            

Orange juice            
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Fruit smoothies            

Other fruit juices            

Red wine            

White wine            

Beers            

Liquors            

Energy drinks            

 
 Per day (times)  Per week  Per month 

FRUITS &VEGETABLES 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Tomatoes            

Onions            

Carrots            

Broccolli            

Brussel sprouts, cabbage, kale            

Peas, mangetout            

Green beans, runner beans            

Marrow, courgette            

Spinash            

Cauliflower            

Parsnip, turnips, sweede            

Leeks            

Mushrooms            

Sweet peppers            

Bean sprouts            

Sweetcorn            

Avocado            

Lentils and dried beans             

Soya, tofu            

Apples            

Pear            

Oranges, satsumas, mandarins            

Grapefruit            

Banana            

Grapes (handful)            

¼ Melon            

Apricot, peaches            

Berries (strawberries, 

raspberries, blackberries) 

           

Other fresh fruits            

Dried fruits (e.g. raisins, 

apricots, dates) 

           

 

 

 

 

 

 Per day (times)  Per week  Per month 

PREPARED MEALS 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 
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(homemade or bought) than 

once 

Onion or tomato-based dishes 

(pizza, pasta bakes, lasagne, 

moussaka…) 

           

Onion or tomato-based curries            

Chili con carne            

Tomato or onion soup            

Other soup            

Soya and bean-burgers            

 
 Per day (times)  Per week  Per month 

EGGS, FISH & MEATS 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Eggs (boiled, fried, or 

omelette) 

           

White fish, non-fried            

White fish, fried (fish & chips, 

fish fingers) 

           

Oil-rich fish (canned and fresh, 

eg tuna, salmon) 

           

Shellfish (eg. crab, mussel, 

oysters) 

           

Beef            

Chicken            

Pork and pork products (e.g. 

bacon, sausages) 

           

Lamb            

 
 Per day (times)  Per week  Per month 

POTATOES, PASTA, RICE, 

BREADS 

6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Wholemeal pasta            

White pasta            

Brown rice            

White rice            

Fried potatoes            

Boiled potatoes            

Muesli            

Porridge            

Other breakfast cereal            

Crisps and crackers            

Wholewheat / brown bread            

White bread            

 

 

 

 

 Per day (times)  Per week  Per month 
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SWEETS & TREATS 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Almonds and other nuts            

Peanut butter, tahini            

Chocolate spread (e.g. nutella)            

Chocolate (sweets)            

Jam, marmelade            

Plain biscuits, cakes            

Chocolate or fruit-based 

biscuits, cakes 

           

Other sweets            

 

 Per day (times)  Per week  Per month 

DAIRY & FATS 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Full fat / greek yoghurt            

Low fat yoghurts            

Live yoghurts (e.g. Activia, 

Actimel) 

           

Dairy dessert            

Hard cheese            

Soft cheese, fromage frais            

Ice cream            

Butter (1 teaspoon)            

Lard (1 teaspoon)            

Margarine (1 teaspoon)            

Cream (single or double)            

 

 Per day (times)  Per week  Per month 

SEASONINGS & SAUCES 6+ 4-5 2-3 once  5-6 2-4 once  1-3 Less 

than 

once 

Pepper (black, white)            

Pesto            

Tomato ketchup            

Garlic            

Tomato sauce            

Fresh herbs (mint, parsley, 

thyme, basil, coriander) 

           

Dried herbs            

Mustard, horseradish            

Vinegar            

Olive oil            

Olives            

Capers            

Spices (turmeric, cumin seeds, 

fennel seeds, etc…) 

           

Chili powder or fresh chilli            

Pickles, chtuney            
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Marmite, Bovril            

Ginger            

 

 

 

 

4 In summary: 

(a)  how many times do you eat fruit and vegetables (not including potatoes) 

   

       per day  OR     per week  OR        per month 

 

(b)  how many times do you drink fruit juices? 

 

       per day  OR     per week  OR        per month 

 

(b)  how many times do you drink tea or coffee? 

 

       per day  OR     per week  OR        per month 

 

 

(b)  how many times do you eat spicy food? 

 

       per day  OR     per week  OR        per month 

 

 

 

 

 

Thank you for filling this questionnaire. 
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Appendix 4: Low polyphenol diet  

 

Meals 
Examples of food items 

 

Breakfast 

 

Cheese 

Sausage, Bacon 

Fish 

Toast, bread, Croissant (NO chocolate), Scones 

Waffles, pancakes with butter and sugar (NO jam) 

Butter 

Milk 

Biscuits (NOT wholemeal) 

Rice based cereals (NOT Coco pops) 

  

 

 Lunch & Dinner 

All meats, fish, eggs, 

cheese and spreads. 

White rice 

Pasta 

Noodles 

Potatoes without skin 

 

 

 

Tuna, chicken and egg sandwiches (mayonnaise ok) 

Burger and chips (NO ketchup, relish, gherkins) 

Sausage rolls 

White pasta and cheese / cream  

Chicken / sausages and mashed potatoes (NO gravy) 

Omelette (with cheese, ham) 

Potatoes without skin 

Meats (NO ketchup, brown sauce) 

Cheese and cream cheese (NO garlic or onion-based cheeses) 

Fish and chips with salt and vinegar (NO ketchup) 

Sardines on white toast (no tomato sauce)  

Chicken fried rice with eggs and oyster sauce (NO soya  

Products or vegetables) 

Roast Chicken/ prawns with white rice 

Chicken nuggets and chips 

Roast Beef Sandwich with crisps 

Salmon with white rice 

Steak and mashed potatoes 

 

  

Snacks 

 

 

 

      Biscuits (NOT wholemeal, chocolate, or fruit contains) 

Shortbreads 

Custard rice puddings 

Crisps (ready salted), Salted rice crackers 

Plain Frozen Yoghurt 

Cheese and crackers 

Plain donut without chocolate or fruit fillings 

Rice cakes 

 

Drinks 

 

 Water, Milk, and Irn-bru 
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Appendix 5: High polpyhenol diet 

  

Day 1 

 

Day 2 

 

Day 3 

 

Breakfast 1 plum 

1 glass of purple grape 

juice 

1 cup of black tea 

 

1 plum 

1 glass of purple grape 

juice 

1 cup of black tea 

1 plum 

1 glass of purple grape 

juice 

1 cup of black tea 

Snack One line of dark 

chocolate (85%) 

1 cup of black tea 

One line of dark 

chocolate (85%) 

1 cup of black tea 

One line of dark 

chocolate (85%) 

1 cup of black tea 

 

Lunch 

 

5 Cherry tomatoes 

1 can of tomato soup  

1 plum 

 

5 Cherry tomatoes 

1 can of tomato soup  

1 plum 

 

9 Cherry tomato 

1 can of fresh onion 

soup 

1 plum 

Snack 1 cup of black tea 

One line of dark 

chocolate (85%) 

1 cup of black tea 

One line of dark 

chocolate (85%) 

 

1 cup of black tea 

One line of dark 

chocolate (85%) 

Dinner 20 g Sun dried tomatoes 

(~5) 

5 black olives 

Pasta and tomato sauce  

(see recipe) 

1/3 punnet of raspberry 

Glass of Purple grape 

juice 

 

20 g Sun dried tomatoes 

(~5) 

5 black olives 

Chicken Balti ready 

meal 

1/3 punnet of raspberry 

Glass of purple grape 

juice  

20 g Sun dried tomatoes 

(~5) 

5 black olives 

Rice & tomato sauce 

1/3 punnet of raspberry 

Glass of purple grapes 

juice 

Snack Cup of black tea 

One line of dark 

chocolate (85%) 

Cup of black tea 

One line of dark 

chocolate (85%) 

Cup of black tea 

One line of dark 

chocolate (85%) 
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Dear Dr Combet 

Medical Faculty Ethics Committee 

Project Title:  Colonic metabolism of dietary polyphenols: A 'pilot' study to 
understand inter-individual variations in the colonic metabolism of 
dietary polyphenols. 

Project No.:  FM04509 
 

The Faculty Ethics Committee has reviewed your application and has agreed that there is 

no objection on ethical grounds to the proposed study now that the requested revisions 

have been incorporated.  They are happy therefore to approve the project, subject to the 

following conditions:  

 

 The research should be carried out only on the sites, and/or with the groups defined in 
the application. 

 Any proposed changes in the protocol should be submitted for reassessment, except 
when it is necessary to change the protocol to eliminate hazard to the subjects or 
where the change involves only the administrative aspects of the project.  The Ethics 
Committee should be informed of any such changes. 

 If the study does not start within three years of the date of this letter, the project should 
be resubmitted. 

 You should submit a short end of study report to the Ethics Committee within 3 months 
of completion. 

 
 
Yours sincerely 

Dr Una MacLeod 
Faculty Ethics Officer 

 

 

Appendix 6: Ethical application for chapter three (Ethnicity study) 

 

 

Dr Emilie Combet 
Section of Human Nutrition, Above A&E 
Yorkhill Hospital 
Dalnair Street 
Glasgow 
G3 8SJ 

 

 Dr U MacLeod  

 Clinical Senior Lecturer  

 General Practice & Primary Care, Division of Community  
Based Sciences, University of Glasgow, 1 Horselethill Road, 
Glasgow, G12 9LX  

Tel: 0141 330 8328   
E-mail: u.macleod@clinmed.gla.ac.uk  

mailto:u.macleod@clinmed.gla.ac.uk
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Dear Miss Alkhaldy 

Medical Faculty Ethics Committee 

Project Title:  Colonic Metabolism of Polyphenol Components in Older Adults. 

Project No.:  FM03110 
 

The Faculty Ethics Committee has reviewed your application and has agreed that there is 

no objection on ethical grounds to the proposed study now that the requested revisions 

have been incorporated.  They are happy therefore to approve the project, subject to the 

following conditions: 

 

 The research should be carried out only on the sites, and/or with the groups defined in 
the application. 

 Any proposed changes in the protocol should be submitted for reassessment, except 
when it is necessary to change the protocol to eliminate hazard to the subjects or 
where the change involves only the administrative aspects of the project.  The Ethics 
Committee should be informed of any such changes. 

 If the study does not start within three years of the date of this letter, the project should 
be resubmitted. 

 You should submit a short end of study report to the Ethics Committee within 3 months 
of completion. 

 
 
Yours sincerely 
 
 

Dr David Shaw  
Faculty Ethics Officer  

 

 
Miss Areej Alkhaldy 
Section of Human Nutrition, Above A&E 
Yorkhill Hospital 
Dalnair Street 
Glasgow, G3 8SJ 

 

 Dr D Shaw   

 Lecturer in Ethics & Ethics Officer  

 School of Medicine, University of Glasgow, 378 Sauchiehall 
Street, Glasgow, G2 3JZ   

Tel:  0141 211 9755   
E-mail: david.shaw@glasgow.ac.uk  

  

Appendix 7: Ethical application for chapter four (Ageing study) 

 

mailto:david.shaw@glasgow.ac.uk
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Appendix 8: Ethical application for chapter five (CRC study) 
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