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Abstract

The radiofrequency (rf) pulses used in NMR are subject to a number of imperfections, such as

those resulting from the inhomogeneity of the rf field or an offset of the transmitter frequency

from exact resonance. In spin-echo experiments, these imperfections yield spectra with reduced

signal intensity and distorted phase. Composite pulses, which have tailored bandwidth proper-

ties with respect to experimental frequency parameters such as the rf field strength or resonance

offset, offer a route to improving the amplitude of the spin-echo signal. However, the symmetry

of the pulse sequence must be carefully considered to prevent the introduction of phase errors

into the spin-echo signal.

Here, composite pulses will be studied as a means to improving one of the most common tech-

niques for 1H background suppression in MAS NMR, the ”Depth” sequence. Novel composite

180◦ pulses will be presented for this application and verified experimentally. The composite

pulse Depth experiment yields spectra with improved amplitude of the 1H signals of interest,

while successfully maintaining good suppression of background signals.

Novel families of dual-compensated 180◦ composite pulses for I = 1/2 will also be designed for

use in NMR spin-echo experiments. These pulses are capable of simultaneously compensating

for resonance offset and rf inhomogeneity problems. Crucially, unlike many composite pulses

that have been presented before, these new pulses have the correct symmetry properties to form

a spin echo without phase distortion.

Composite pulses have found wide usage in solution-state NMR, and although in principle

the same pulses can be applied in solid-state NMR experiments, complications can arise un-

der magic angle spinning (MAS). The effects of MAS on composite pulse performance will be

explored both through computer simulations and 31P experiments.

Finally, on a different theme, we will investigate spin-locking of half-integer quadrupolar nuclei

in solids. Spin-locking is an important feature of many NMR experiments, yet the complex

behaviour observed for quadrupolar nuclei is not fully understood. Using the theoretical model

introduced by Ashbrook and Wimperis, we will investigate the far off-resonance case of spin-

locking for I = 3/2 and I = 5/2 nuclei.
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Chapter 1

Introduction

1.1 A brief history of NMR

1.1.1 Beginnings

The evolution of quantum theory in the 1920s paved the way for the discovery of nu-

clear magnetic resonance (NMR) as the concept of spin was developed. Stern and Ger-

lach’s eminent experiment in 1922 [7] examined the behaviour of a beam of silver atoms

passing through a magnetic field: they observed a discrete number of deflected beams,

rather than a continuous range of deflection, confirming that the particles possessed

an intrinsic angular momentum of certain quantised values. In 1925, Uhlenbeck and

Goudsmit proposed the concept of an electron spinning around its own axis, with an-

gular momentum and a magnetic dipole moment resulting from the spinning electrical

charge [8]. Pauli had first suggested in 1924 that nuclei possess spin in his explana-

tion for the origin of hyperfine splittings in atomic optical spectra [9]. He went on to

formulate a theoretical framework of spin angular momentum in 1927.

The nuclear spin was first observed by Stern, Frisch and Estermann in 1933 [10, 11] after

they adapted their equipment to measure the magnetic moment of the proton in a beam

of hydrogen molecules, although their measurement had low accuracy.

Rabi’s theory of the magnetic resonance method was published in 1937 [12], explaining

that an atom will be reoriented by a gyrating magnetic field. The probability of this

reorientation is dependent on the frequency of the field’s rotation, and is largest when

1
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this frequency is equal to the Larmor frequency. By adding to Stern’s technique a loop

of wire to produce an oscillating radiofrequency (rf) field over the atomic beam, Rabi

and his group observed the flipping of spins as an absorption on their atomic-beam

detector when the field was tuned to the Larmor frequency. Rabi was awarded a Nobel

Prize in 1944 for his efforts.

Two groups independently demonstrated NMR in the bulk phase almost simultane-

ously in 1946 – Bloch, Hansen and Packard at Stanford University and Purcell, Torrey

and Pound at Harvard University. Bloch, who had gained experience in rf techniques

during his wartime research at Harvard’s Radar Research Laboratory, deduced that the

macroscopic nuclear magnetisation of a sample could be tipped away from its equilib-

rium position along the z axis by the resonant absorption of rf energy. A coil placed

along the x or y axis would then be able to detect the electrical signal generated by the

precession of the magnetisation about the magnetic field. In January 1946, the group

succeeded in detecting their first NMR signal from a sample of water.

Purcell, Torrey and Pound had meanwhile taken up the challenge of detecting the tran-

sition between nuclear magnetic energy levels as a side project while working at the

MIT Radiation Laboratory and writing up a series of books. After arranging to use a

large magnet at Harvard University for their experiments, the group observed their first

signal in a solid sample of paraffin wax. Purcell and Bloch shared the Nobel Prize in

1952.

1.1.2 Pulsed Fourier transform NMR

In the early days of NMR, continuous wave (CW) methods were used, varying either

the magnetic field strength of an electromagnet or the frequency of the rf radiation.

As the field is swept, absorption signals are observed one frequency at a time as the

resonance condition is met. The main disadvantage of CW NMR is that high-resolution

spectra can only be obtained with a slow scan, with the sweep rate restricted in order

to probe individual transitions.

Lowe and Norberg were the first to apply the Fourier transform (FT) to the NMR signal

following an rf pulse [13]. However, it was Ernst and Anderson who realised the full

potential the Fourier transform method could bring to NMR, and the technique gained
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popularity after their 1966 paper [14] was published. By simultaneously exciting nuclei

over a range of resonance frequencies, and using the Fourier transform to separate their

nuclear induction signals, pulsed FT NMR provided a route to obtain high-resolution

spectra without the time constraints inherent in CW NMR. In addition, this gave the

opportunity of acquiring multiple scans as well as opening up the possibility of per-

forming more complex NMR experiments. As described by Freeman [15], “We can lead

the spins through an intricate dance, carefully programmed in advance, to enhance,

simplify, correlate, decouple, edit or assign the NMR spectra.”

1.2 Nuclear magnetism

The nucleus of an atom possesses four fundamental properties: mass, electric charge,

magnetism and spin. Although the latter two properties do not affect the overall chem-

ical or physical properties of a substance, they are of vital importance to the technique

of NMR, providing an invaluable insight into the structure and dynamics of chemical

systems.

The magnitude of the spin angular momentum, I, associated with a nucleus is given by

| I |= h̄
√

I(I + 1) (1.1)

where the associated spin quantum number I may be zero, half-integer or integer. The

value of I for a particular isotope is dependent on its nuclear structure and can be ratio-

nalised using the nuclear shell model. Nuclei with non-zero spin can be studied with

NMR.

The spin angular momentum vector I is spatially quantised – the projection of I onto

the z axis of a three-dimensional coordinate system gives the z component of I,

Iz = mI h̄, (1.2)

where the azimuthal quantum number mI has 2I + 1 values in integral steps between
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ω0 
mI = + 1/2

mI = − 1/2

(a) I = 1/2

ω0 

ω0 
mI = + 1

mI = − 1

mI = 0

(b) I = 1

FIGURE 1.1: The Zeeman interaction lifts the degeneracy of the 2I + 1 states in the pres-
ence of a static magnetic field. Energy levels are separated by the Larmor frequency,
ω0.

−I and +I. In nuclei with non-zero spin, the nuclear magnetic dipole moment is pro-

portional to the spin angular momentum,

µ = γI (1.3)

where the gyromagnetic ratio γ is constant for a given nucleus. The magnitude of the

nuclear magnetic dipole moment is therefore

| µ |= γh̄
√

I(I + 1) (1.4)

and it is also spatially quantised so that

µz = γmI h̄ (1.5)

In the absence of a magnetic field, the 2I + 1 orientations of the spin I nucleus are

degenerate. However, when a magnetic field B0 is applied, which is defined as acting

along the z axis of the laboratory frame, the Zeeman interaction lifts the degeneracy, as

can be seen in Figure 1.1.

Each NMR-active isotope possesses a different Larmor frequency – this fundamen-

tal property allows us to distinguish between different isotopes, making NMR spec-

troscopy an important method for materials characterisation.

The Hamiltonian for an isolated spin in a static, uniform magnetic field is given by

Hz = −µzB0. (1.6)
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Combining Equations 1.5 and 1.6,

Hz = −γh̄IzB0. (1.7)

The eigenfunctions of Hz are the energies associated with these different states:

Ez = −γh̄mI B0. (1.8)

The transition energy between enery levels ∆mI = ±1 is

∆E = γh̄B0 (1.9)

or in frequency units,

ω0 = γB0 (1.10)

expressed in units of rad s−1. This is known as the Larmor frequency. The spin magneti-

sation may exist in two types of state depending on the value of ∆mI , which is known

as the coherence order and denoted by the symbol p. States with p = 0 are popula-

tions of energy levels, while coherent superpositions between the energy levels, termed

coherences, are characterised by p > 0. Depending on the number of energy levels

between which the state of coherence occurs, coherences are known as single-quantum

coherences (p = ±1), double-quantum coherences (p = ±2) and so on.

1.3 The vector model

According to Bloch, a macroscopic sample containing many identical, non-interacting

spins can be considered classically in terms of a bulk magnetisation vector in three-

dimensional space, providing a simple geometrical insight into the NMR experiment.

In an ensemble of spin I = 1/2 nuclei at thermal equilibrium in a magnetic field, there is

a population difference between the spin states according to the Boltzmann distribution:

Nupper/Nlower = exp(−∆E/kT) (1.11)
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FIGURE 1.2: The vector model. (a) Bulk magnetisation vector M0 aligned with B0 in
the rotating frame at thermal equilibrium. (b) A 90◦ pulse applied along the rotating
frame x axis has the effect of tilting the magnetisation vector until it lies along the −y
axis. (c) An off-resonance pulse causes rotation around the effective radiofrequency
field, Beff. (d) After the pulse is turned off, the magnetisation vector undergoes free
precession in the xy plane with angular frequency Ω = ω0 −ωrf.

This gives rise to a stationary net magnetisation which can be represented by a vector

M. This vector aligns with the magnetic field B0 along the z axis of the laboratory frame,

as can seen in Figure 1.2(a).

If a linearly oscillating radiofrequency pulse is applied with a frequency, ωrf, close to the

Larmor frequency, the pulse will interact with the nuclear spins in the sample, causing

the bulk magnetisation vector to reorientate. In order to simplify the understanding of

this interaction, the concept of a rotating reference frame is used. The radiofrequency

field B1 is applied so that the magnetic field 2B1 cos(ωrft) oscillates perpendicular to the

B0 field. This field can be decomposed into two circularly polarised counter-rotating

components:

B1(t) = 2B1 cos(ωrft)x

= B1{[cos(ωrft)x + sin(ωrft)y] + [cos(−ωrft)x + sin(−ωrft)y]}
(1.12)
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In the rotating frame, the x and y axes rotate at an angular frequency ωrf around the z

axis. In this frame, the component of the B1 field rotating at +ωrf appears as a static field

orthogonal to B0, while the component rotating at −ωrf does not significantly affect the

nuclear spins.

If the pulse is applied on-resonance (ω0 = ωrf) along the rotating frame x axis, it will

cause the bulk magnetisation vector M to precess in the rotating frame yz plane with

frequency ω1 = |γB1|, as is shown in Figure 1.2(b).

The flip angle or nutation angle is the angle through which B1 rotates the magnetisation

vector during time τrf , and is defined as

β = ω1τrf

= γB1τrf

(1.13)

The phase of the pulse, φ, describes the axis along which the pulse is applied in the

rotating frame. The notation βφ is therefore used to describe a pulse of flip angle β and

phase φ. Viewed from the origin along the rotation axis, positive rotations are clockwise

about a given axis. Thus a 90◦0◦ pulse will cause a magnetisation vector aligned with

the z axis to rotate until it lies along the −y axis.

This picture is modified when considering an off-resonance pulse where ω0 6= ωrf [16].

In the rotating frame, the apparent Larmor precession frequency is given by

Ω = ω0 −ωrf (1.14)

where Ω is known as the resonance offset frequency. The reduced field along the z axis

is given by

∆B = −Ω/γ (1.15)

The vectorial sum of the orthogonal fields ∆B and B1 is the net effective field, Beff, as

shown in Figure 1.2(c). It is about this axis that the magnetisation precesses during an

off-resonance pulse. The magnitude of this effective field is given by

Beff =
√
(∆B)2 + (B1)2 (1.16)
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while the tilt angle θ of the field with respect to the z axis is

θ = tan−1(B1/∆B) (1.17)

After a pulse, the magnetisation precesses with angular frequency Ω around the rotat-

ing frame z axis. This is illustrated in Figure 1.2(d).

This “free precession” is damped by two different relaxation processes which act to re-

turn the magnetisation vector to its initial thermal equilibrium state, that is, aligned

with B0 along the z axis. Spin-lattice relaxation, also known as longitudinal relaxation,

occurs with a time constant T1 and involves the return of the z component to its equi-

librium value. This requires spins to flip to attain the original Boltzmann population

difference. Spin-spin relaxation, or transverse relaxation, involves the decay of mag-

netisation in the xy plane to zero with time constant T2. This occurs by the randomisa-

tion of phases of individual spins.

1.4 Signal detection

By applying an rf pulse that is not exactly 180◦ (or an integer multiple of 180◦) to the

thermal equilibrium state, longitudinal magnetisation (p = 0) is converted to transverse

magnetisation (p = ±1). The resulting precession of bulk magnetisation about the

rotating frame z-axis induces an electromotive force in the receiver coil [17, 18] – this

current is the time-domain NMR signal, known as the free induction decay (FID). After

preamplification, this signal is “mixed down” with the carrier frequency to produce

a frequency which is the difference of the two. This allows the spectrometer to deal

with only a small range of frequencies, regardless of what nucleus is being observed.

This shifting of the frequencies is equivalent to viewing the detection in the rotating

frame, as described in Section 1.3. Further information on this procedure can be found

in References [19] and [20].

The bulk magnetisation evolves according to exp(iΩt), where Ω is the frequency of the

evolution in the rotating frame. The signal can be written,

s(t) = C exp(iΩt) = C cos(Ωt) + iC sin(Ωt) (1.18)
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t

FIGURE 1.3: The precession of the tip of the bulk magnetisation as it decays in time is
illustrated by the blue curve. The real and imaginary signal components measured by
quadrature detection are represented by the projections shown in red and green.

where C describes the overall amplitude of the coherence, which can be time-dependent

to take into account relaxation effects. Figure 1.3 illustrates the precession of the the tip

of the bulk magnetisation vector with time, with a decay of the form exp(−t/T2). In

order to distinguish +Ω from −Ω, i.e., to determine the sense of precession, both the

real and imaginary terms of Equation 1.18 must be measured. This is achieved using

quadrature detection: two phase-sensitive detectors are set 90◦ out of phase with each

other, and the two FIDs detected are treated as the real and imaginary components

of the complex time-domain signal, corresponding to the x- and y-components of the

transverse magnetisation in the rotating frame.

The real and imaginary components are sampled simultaneously at time intervals of

∆ seconds. According to the Nyquist theorem, the resulting spectrum will have a fre-

quency range in Hz of SW = 1/∆. All signals and noise that lie outwith the range

of −SW/2 and SW/2 will be “folded in” or “aliased”, hence will appear within this

frequency window. The bandwidth of detection is restricted using digital filtering to

prevent this [21].

1.5 Fourier transform NMR

A typical FID is a sum of many sinusoidal waves of different frequencies, phases and

amplitudes. Converting this complicated signal into the frequency-domain NMR spec-

trum greatly aids interpretation of the signals.
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Modifying Equation 1.18, the time-domain signal of a single frequency Ω is given by,

s(t) = C exp(iΩt) exp(−t/T2) exp(iφ). (1.19)

Here, C is an overall scaling factor of the coherence, exp(−t/T2) accounts for the relax-

ation and exp(iφ) is an arbitrary phase factor dependent on instrumental influences.

The Fourier transform takes the analytical form,

S(ω) =
∫ ∞

0
s(t) exp(−iωt)dt. (1.20)

Assuming T2 = ∞ and φ = 0 in Equation 1.19, the time-domain signal is converted

to a frequency-domain spectrum S(ω) that has an amplitude proportional to C when

ω = Ω and that is zero for all other frequencies. In practice, the FID decays to zero from

relaxation processes (T2 6= ∞) and the resulting complex spectrum comprises a real and

an imaginary component,

S(ω) = C[A(ω) + iD(ω)] (1.21)

where

A(ω) =
R

R2 + (ω−Ω)2 (1.22)

and

D(ω) =
−(ω−Ω)

R2 + (ω−Ω)2 (1.23)

represent absorptive and dispersive Lorentzian functions centred at frequency Ω. Here,

R = 1/T2 is the rate constant in Hz for transverse relaxation. These lineshapes are

illustrated in Figure 1.4.

The absorptive lineshape has a full-width at half-height equal to 2R = 2/T2 in rad s−1

and an intensity of 1/R. The dispersive lineshape has width at half-height of ∼ 7.5R

rad s−1 and a peak intensity of 1/2R. Owing to the more desirable characteristics of the

absorptive lineshape, usually only the real part of the spectrum is shown.
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FIGURE 1.4: The absorptive and dispersive Lorentzian lineshapes that comprise the
real and imaginary components of an NMR spectrum obtained by Fourier transforma-
tion of a complex time-domain signal recorded using quadrature detection.

1.6 Phase correction

1.6.1 Zeroth-order phase correction

The arbritary phase factor φ in Equation 1.19 arises as although the two orthogonal sig-

nals acquired by quadrature detection are labelled as the x- and y-components of the

magnetisation, there is no way of ensuring these correspond to the same axis system

used to define the phase of the rf pulses. As a result, mixing of the absorptive and

dispersive components of S(ω) occurs. There is a simple solution to this: multiplying

the spectrum by exp(iφcorr), where φcorr is a phase correction, will produce the desired

spectrum if we set φcorr = −φ. A single phase correction is applied to the whole spec-

trum – this is a zeroth-order correction. This process of phasing the spectrum is carried

out by manually altering φcorr until a satisfactory absorption lineshape is achieved.

1.6.2 First-order phase correction

Sometimes the zeroth-order phase correction does not bring all the lines in the spec-

trum into phase. In some cases, a first-order phase correction can be used to improve

the spectrum. In the case of a simple one-pulse experiment, a 90◦ pulse rotates the bulk

magnetisation vector to the −y axis when on-resonance, but an increasing amount of

x-magnetisation is created as the transmitter frequency is moved off-resonance. Phase

errors arising from the “dead time” – the unavoidable time delay between the rf pulse
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Preparation Evolution Mixing Detection

t1 t2

FIGURE 1.5: Schematic diagram showing the stages of a two-dimensional NMR exper-
iment.

and start of the aquisition of the FID – also contribute to this problem. Since this phase

error is approximately proportional to the offset, a frequency-dependent phase correc-

tion, φcorr = kΩ can compensate for this. The use of a small first-order correction can

be effective if spectral lines are sharp. However, baseline distortions can result from

applying a first-order correction to broad lines, and for more complicated experiments

there may not be a simple relationship between the phase of the peaks and their offset

frequencies [20, 22, 23].

1.7 Two-dimensional NMR

Two-dimensional NMR, where intensity is plotted as a function of two frequencies,

has opened up the field to a vast number of experiments since it was first proposed by

Jeener in 1971 and given a full theoretical treatment by Aue, Bartholdi and Ernst in 1976

[24].

A two-dimensional experiment comprises of four key stages: preparation, evolution,

mixing and detection, as illustrated in Figure 1.5. During the preparation period, equi-

librium magnetisation is converted into a particular coherence either by one simple

pulse or a more complicated series of pulses and delays. This coherence does not need

to be directly observable – multiple-quantum coherences can be created. Section 1.8 will

describe methods of coherence selection. Next, the spins are allowed to precess during
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the evolution period t1. The coherence is then transformed into observable p = −1

coherence during the mixing period, which is measured during the detection period,

t2. The experiment is then repeated, incrementing the duration of the t1 period. The

evolution of the magnetisation in t1 modulates either the amplitude or phase, or both,

of the signal in t2. After the two-dimensional dataset, s(t1, t2), has been double Fourier

transformed with respect to both time domains, a two-dimensional frequency spectrum

S results. A peak at (Ω1, Ω2) represents a coherence evolving at frequency Ω1 in the in-

direct dimension which was transformed into a p = −1 coherence with frequency Ω2.

1.8 Coherence selection

During an NMR experiment, rf pulses will convert equilibrium magnetisation (charac-

terised by a coherence order p = 0) into other coherence orders. In general, a 90◦ pulse

will create all possible coherence orders allowed within the spin system, while a 180◦

pulse inverts the sign of a coherence from p to−p. It is possible to select particular shifts

in coherence orders at pulses in an experiment, while other signals are cancelled. This

is achieved through the use of pulsed magnetic field gradients [25] or with a method

known as phase cycling [26].

The application of a pulsed field gradient creates an inhomogeneity in the main mag-

netic field, causing coherences to dephase. This dephasing can be reversed by applying

a second field gradient. By judicious choice of the duration, strength and position of the

two gradients within a pulse sequence, rephasing only occurs for desired coherences.

This method of coherence selection will not be considered further or used in this work

– for further information, the reader is directed to References [20] and [25].

Phase cycling involves varying the phases of the rf pulses and the receiver phase over

a number of transients, with undesired signals summing to zero on completion of the

whole cycle. The two rules of phase cycling allow the design of a sequence that will

achieve the required coherence pathway:

1. For selecting a coherence change of ∆p, the receiver phase φRx must be incre-

mented by −∆pφ where φ is the phase of the pulse. This matches the phase shift
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of the receiver with the phase shift of the coherence undergoing a change in co-

herence order of ∆p. Over the course of the phase cycle, undesired coherences

will experience different phase shifts and be eliminated.

2. A phase cycle with N steps of 360◦/N will select, along with the desired pathway,

coherences changes of ∆p± nN, where n is an integer.

These rules can be applied to each pulse in a sequence where a particular change in

coherence order is required, and the individual phase cycles can be nested together to

obtain an overall cycle for the whole pulse sequence.

A coherence transfer pathway diagram illustrates the desired coherence changes oc-

curing in an experiment, and will be encountered throughout this thesis (for example,

Figure 2.6). All pathways diagrams must start with the population state p = 0, because

the spin system at thermal equilibrium consists of longitudinal Iz magnetisation. At the

end of a pulse sequence, p = −1 coherence is detected.
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Theoretical Background

2.1 The density matrix

Quantum mechanical theory states that an individual spin can be expressed as a wave-

function ψ(t) which can be represented as a linear combination of the elements of an

orthonormal set of basis functions φi:

ψ(t) = ∑
i

ci(t)φi, (2.1)

where ci(t) are time-dependent coefficients. The total nuclear magnetisation in a macro-

scopic sample is the sum of contributions of each spin contained within it. However,

to calculate the state of a bulk sample by summing each individual contribution would

be impractical, considering the abundance of nuclear spins present. An alternative ap-

proach is to use density matrix (also known as density operator) theory.

The density operator, ρ(t), is defined as the outer product of the wavefunction and its

conjugate,

ρ(t) = |ψ(t)〉〈ψ(t)|, (2.2)

where the overbar denotes an average over the whole ensemble of spins. Its name stems

from the probability density concept in the Born interpretation of quantum mechanics.

If we consider a single spin I = 1/2 nucleus in a superposition of the α (mI = +1/2)

and β (mI = −1/2) eigenstates of the Zeeman Hamiltonian (i.e., in the Zeeman basis

15
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set), |ψ(t)〉 and 〈ψ(t)| are given by

|ψ(t)〉 = cα(t)|α〉+ cβ(t)|β〉 (2.3)

〈ψ(t)| = c∗α(t)〈α|+ c∗β(t)〈β| (2.4)

where c∗α(t) and c∗β(t) are the complex conjugates of the coefficients cα(t) and cβ(t).

The matrix form of an operator Q can be written using a set of basis functions such that

the element Qi,j in row i and column j is

Qi,j = 〈i|Q|j〉. (2.5)

The matrix elements of the density operator are therefore given by

ρi,j(t) = 〈φi|ρ(t)|φj〉

= c∗i (t)cj(t)
(2.6)

The density operator for the spin I = 1/2 case may therefore be represented in matrix

form as

ρ(t) =

〈α| ρ(t)|α〉 〈α| ρ(t)|β〉
〈β| ρ(t)|α〉 〈β| ρ(t)|β〉


=

cα(t)c∗α(t) cα(t)c∗β(t)

cβ(t)c∗α(t) cβ(t)c∗β(t)


=

ρ11 ρ12

ρ21 ρ22.


(2.7)

The major advantage of this approach is that the ensemble averaging is accounted for

within the density operator, and so the bulk magnetisation can be calculated directly

from it:

Mx =
1
2

γN(ρ2,1 + ρ1,2) (2.8)

My =
1
2

γiN(ρ2,1 − ρ1,2) (2.9)

Mz =
1
2

γN(ρ1,1 − ρ2,2). (2.10)
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The diagonal elements, ρi,i, of the density matrix relate to the probabilities of the spins

being found in the corresponding eigenstates, thus they correspond to the populations

of these states. The off-diagonal elements, ρi,j, correspond to coherent superpositions of

the eigenstates and are termed coherences.

2.1.1 The reduced density matrix

At equilibrium, the ensemble averages cα(t)c∗β(t) and cβ(t)c∗α(t) are equal to zero. This

fits with what we know from experiment – there is no net spin polarisation in the trans-

verse plane perpendicular to the magnetic field. We can thus write the equilibrium

density operator as,

ρeq =

nα/N 0

0 nβ/N

 (2.11)

where nα and nβ are the equilibrium populations and N is the total number of spins [20].

The equilibrium populations can be calculated using the Boltzmann distributions as

described in Equation 1.11, giving

nα =
1
2

N exp(−Eα/kT) (2.12)

nβ =
1
2

N exp(−Eβ/kT). (2.13)

Since the energies of a spin in either state interacting with the magnetic field are much

smaller than the thermal energy kT, the exponential terms can be approximated to

exp(x) = 1 + x using a power series expansion. We can then write,

nα =
1
2

N
(

1 +
γh̄B0

2kT

)
(2.14)

nβ =
1
2

N
(

1− γh̄B0

2kT

)
(2.15)

by substituting Eα and Eβ for ±γh̄mI B0 as defined in Equation 1.8.

It follows from this that the average population nav = 1
2 (nα + nβ) equals 1

2 N and the

population difference ∆n = nα− nβ is given by γh̄B0/2kT. Rewriting the populations of

the two states in terms of deviations from the average, we can then express the density
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matrix as

ρeq =
1
N

nav +
1
2 ∆n 0

0 nav − 1
2 ∆n.

 (2.16)

This can in turn be written in terms of the operators E and Iz:

ρeq =
nav

N

1 0

0 1

+
∆n
N

 1
2 0

0 − 1
2


=

nav

N
E +

∆n
N

Iz.

(2.17)

Since the matrix E does not correspond to any observable magnetisation, the first term

can be discarded, allowing us to write the reduced density matrix as

σ =
∆n
N

Iz. (2.18)

Finally, the constant ∆n
N , which defines the total size of the equilibrium magnetisation,

is dropped since we are only interested in how the signal evolves with time rather than

its absolute value. The reduced density matrix is then simply given by

σ = Iz. (2.19)

This provides the starting point for calculations involving density matrix theory. The

matrix representations of the spin angular momentum operators Ix, Iy and Iz are given

in Appendix A for spin I = 1/2, 3/2 and 5/2.

2.2 Time evolution of the density matrix

The time evolution of the density operator can be related to the Hamiltonian with the

Liouville-von Neumann equation:

d
dt

σ(t) = −i[H, σ(t)]

= −iHσ(t) + iσ(t)H.
(2.20)
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This may be solved for the density operator to give

σ(t) = U(t)σ(0)U−1(t) (2.21)

where the propagator, U(t), represents the Hamiltonian acting between t = 0 and t = t.

If the Hamiltonian is time-independent, the propagator is U = exp(−iHt) so that

σ(t) = exp(−iHt)σ(0) exp(+iHt). (2.22)

From Equation 2.22 it is apparent that if we know the inital density operator, σ(0), and

the interaction Hamiltonian, H, we can calculate the density operator at any point in

time, t.

More generally, the propagator is given for a time-dependent case by

U(t) = T̂ exp{−i
∫ t

0
H(t) dt}, (2.23)

where the Dyson time-ordering operator, T̂, ensures that the exponential function is cal-

culated correctly when the Hamiltonians at different times do not commute. Methods

of calculating the evolution of the density matrix with a time-dependent Hamiltonian

will be covered in Sections 4.2.1 and 5.2.

The value of an observable is obtained from the expectation value of the corresponding

operator, Q. This is found by taking the trace (the sum of the diagonal elements) of the

matrix product of the adjoint operator Q† with the density operator at time t,

〈ψ(t)|Q|ψ(t)〉 = Tr{σ(t)Q†} (2.24)

2.3 Product operator basis set

It is often more convenient to work with an alternative basis set rather than expressing

the density operator in the Zeeman Hamiltonian basis set. The product operator for-

malism offers a rigorous quantum mechanical insight into the outcome of an NMR ex-

periment, yet retains the intuitive nature of the vector model. Since it was described in
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a review by Sørensen et al. in 1983[27], it has proved popular in studies of spin I = 1/2

nuclei, particularly for its ability to describe weakly J-coupled spin systems.

2.3.1 Operators for a single spin

For an isolated spin I = 1/2 nucleus, the product operator basis set comprises of four

operators:

1
2 E Ix Iy Iz. (2.25)

The first of these is half the identity operator, while the latter three spin angular mo-

mentum operators correspond to the x-, y- and z-components of the magnetisation.

The density operator can be written as a sum of the contribution of each of these:

σ(t) = ax(t)Ix + ay(t)Iy + az(t)Iz (2.26)

To determine how the density operator evolves with time, we first consider the free

precession Hamiltonian,

Hfree = ΩIz (2.27)

and the Hamiltonians for a pulse about about the x- and y-axes:

Hx-pulse = ω1 Ix (2.28)

Hy-pulse = ω1 Iy. (2.29)

Taking the example of an x-pulse of duration tp, we can use the solution of the Liouville-

von Neumann equation to get

σ(tp) = exp(−iω1tp Ix)Iz exp(+iω1tp Ix)

= exp(−iβIx)Iz exp(+iβIx),
(2.30)

where the equilibrium density matrix is σ(0) = Iz and the flip angle is β = ω1tp. The

relation

exp(−iβIx)Iz exp(+iβIx) ≡ Iz cos β− Iy sin β (2.31)
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FIGURE 2.1: Diagrams illustrating the transformation of the product operators under
(a) an x pulse, (b) a y pulse and (c) free precession at a resonance offset Ω.

can then be used to solve the equation, giving

σ(tp) = Iz cos β− Iy sin β. (2.32)

This result is exactly analogous to what we would expect from the vector model – a

rotation of Iz by an angle β about the x-axis has taken place.

Summarising the effect of pulses of flip angle β on the three angular momentum oper-

ators, we have:

Ix
βx−→ Ix Ix

βy−→ Ix cos β− Iz sin β

Iy
βx−→ Iy cos β + Iz sin β Iy

βy−→ Iy

Iz
βx−→ Iz cos β− Iy sin β Iz

βy−→ Iz cos β + Ix sin β

while the effect of free precession for time t at a resonance offset Ω is given by

Ix
Ωt−→ Ix cos Ωt + Iy sin Ωt

Iy
Ωt−→ Iy cos Ωt− Ix sin Ωt

Iz
Ωt−→ Iz.

The sign conventions used in these rotations are clear in the diagrams in Figure 2.1

2.3.2 Product operators for two spins

For a system of two weakly J-coupled spin I = 1/2 nuclei labelled I and S the 16

operators of the basis set can be obtained by taking the products of the four operators
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of each spin, as shown in Table 2.1.

TABLE 2.1: Product operators for two spins I and S. The factor of two is a normalisa-
tion constant.

1
2 E Sx Sy Sz

2× 1
2 E 1

2 E Sx Sy Sz
2× Ix Ix 2IxSx 2IySy 2IxSz
2× Iy Iy 2IySx 2IySy 2IySz
2× Iz Iz 2IzSx 2IzSy 2IzSz

I and S can be the same or different nuclear species. The rules for calculating the evo-

lution of coupled spins can be found elsewhere [20, 27, 28].

2.4 Spherical tensor operator basis set

Although useful for describing experiments on spin I = 1/2 nuclei, the product oper-

ator basis set becomes inconvenient for representing higher coherence orders relevant

for quadrupolar nuclei. Instead, the tensor operator basis set proves useful in the case

of quadrupolar spin systems. This basis set will be employed in Chapter 6.

Müller et al. published the expansion of the density operator using irreducible spherical

tensor operators, Tl,p, in 1987 [29]:

σ(t) =
2l

∑
l=0

l

∑
p=−l

al,p(t)Tl,p. (2.33)

A nucleus with spin quantum number I has a basis set of (2I + 1)2 operators, Tl,p, where

l is the rank and p is the order. The rank, l, can take values 0, 1, 2 . . . 2I, whilst for a given

rank the order, p, ranges from −l to +l in integer steps of 1. The matrix representation

of each tensor operator has non-zero elements along a single diagonal. The order, p,

represents the coherence order, thus p = ∆mI . Tensor operators with p = 0 therefore

represent population states; p = ±1 represent single-quantum coherences, and so on.

The rank can be understood by relating them to the relative phases of the non-zero

components of the operator matrices. For a given coherence order, the lowest rank

describes operators with all components in-phase. Matrices of the next higher order
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FIGURE 2.2: Vector model diagrams of some p = −1 tensor operators [30].

have singly-antiphase components – that is, the first half of the components have one

sign, and the second half have the opposite sign. The components of the next higher

orders are doubly antiphase, then triply antiphase, and so on. The tensor operators of

rank p = −1 can be represented by vector model illustrations as shown in Figure 2.2.

As the density matrix is Hermitian,

σi,j(t) = σ∗j,i(t) (2.34)

if the tensor Tl,p is present with amplitude a, then the tensor Tl,−p is also present with

amplitude (−1)pa∗.

The matrix representations of the irreducible spherical tensor operators for spin I = 3/2

and I = 5/2 can be found in Appendix B.

2.5 Internal interactions

As described in Section 1.2, the Zeeman interaction is responsible for lifting the degen-

eracy of the energy levels of a nucleus. As well as this coupling of the spin angular

momentum to the external magnetic field, the spins within a sample sense subtly dif-

ferent local fields according to their specific chemical environments, i.e., depending on

their proximity to other electrons and nuclei. These internal interactions play a pivotal

role in determining the appearance of an NMR spectrum, providing a rich range of in-

formation that secures NMR’s role as an indispensable tool for analysis. The following

sections will introduce these interactions.
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2.5.1 Chemical shift interaction

The resonant frequency of a nucleus is dependent on its Larmor frequency, an intrin-

sic property for a particular isotope, and the strength of the external magnetic field it

is exposed to. The magnetic field B0 is also responsible for causing circulation of elec-

trons in their atomic or molecular orbitals. This motion produces an induced magnetic

field, Bin, which either opposes or augments the external field. The effective field at the

nucleus is then,

B = B0 − Bin = B0(1− σ), (2.35)

modifying the Larmor frequency defined in Equation 1.10 to,

ω = |γB0|(1− σ), (2.36)

where σ is the shielding. Although producing only a small change, a detectable shift in

the frequency of the peaks may be observed under high-resolution NMR.

As the shielding has the properties of a second-rank Cartesian tensor, it can be rep-

resented by a 3× 3 matrix. This is also true of the dipolar interaction (Section 2.5.2),

J-coupling (Section 2.5.3) and the quadrupolar interaction (Section 2.5.4). The defini-

tion of the tensor in a suitable frame of reference (the principal axis system, or PAS)

ensures that the matrix is diagonal and the tensor can then be defined by three princi-

pal values. For shielding, these quantities are defined as σPAS
XX , σPAS

YY and σPAS
ZZ and are

associated with the PAS X, Y and Z axes, respectively. The shielding tensor in its PAS

can be written in matrix form as,

σ =


σPAS

XX 0 0

0 σPAS
YY 0

0 0 σPAS
ZZ

 . (2.37)

These values may be used to define an isotropic component of the shielding tensor, σiso,

an anisotropy, ∆, and an asymmetry parameter, η:

σiso =
1
3
(σPAS

XX + σPAS
YY + σPAS

ZZ ) (2.38)

∆ = σPAS
ZZ − σiso (2.39)
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η =
σPAS

YY − σPAS
XX

∆
. (2.40)

NMR frequencies are not measured in absolute terms. Instead, they are expressed as

chemical shifts – a frequency difference with regard to a reference sample. In order to

have chemical shift values that are independent of the external magnetic field strength,

the value is also divided by the resonance frequency of the reference peak. Thus the

chemical shift, δiso is given by,

δiso =
ω0 −ωref

0

ωref
0

=
σref

iso − σiso

1− σref
iso

. (2.41)

In order to make the values more convenient, the ratio is multiplied by 106, and the

chemical shifts quoted in ‘parts per million’ (ppm).

The chemical shift can also be defined by three principal values in its PAS, allowing the

isotropic chemical shift, δiso, the chemical shift anisotropy, ∆CS , and the chemical shift

asymmetry, ηCS to be defined as:

δCS =
1
3
(δPAS

XX + δPAS
YY + δPAS

ZZ ) (2.42)

∆CS = δPAS
ZZ − δiso (2.43)

ηCS =
δPAS

YY − δPAS
XX

∆CS
. (2.44)

The observed chemical shift in an NMR spectrum, δ, is the sum of the isotropic and

anisotropic components:

δ = δiso +
1
2

∆CS(3 cos2 θ − 1 + ηCS sin2 θ cos 2φ) (2.45)

where θ and φ are the polar angles that define the orientation of the B0 field with respect

to the PAS of the chemical shielding tensor.

The rapid tumbling motion of molecules in solution state is responsible for averaging

out the anisotropic contribution to the chemical shift to zero. Therefore, only δiso deter-

mines the shift of the peaks in a solution-state spectrum.
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In solids, the anisotropic components of Equation 2.45 play a large part in determining

the characteristic width and shape of the spectrum. For a single crystal, only one fre-

quency arises from one particular orientation and a sharp line is seen in the spectrum

for each distinct spin. However, in the more common case of a powdered solid, all ori-

entations are simultaneously present, giving rise to a powder pattern comprising of a

sum of the contributions of each crystallite in the sample. The restricted motion within

the solid sample prevents the averaging achieved in solution state.

2.5.2 The dipolar interaction

Dipolar coupling is a through-space interaction that provides an important route to un-

derstanding correlations between spins. Each spin generates a magnetic field orientated

parallel to the nuclear spin vector. Two nuclei I and S that are located close to each other

will experience each other’s magnetic field. The effective magnetic field at one spin will

therefore depend on the orientation of both magnetic dipoles. The dipolar interaction

Hamiltonian is:

HD = ωPAS
D

(
I · S− 3(I · r)(S · r)

r2

)
(2.46)

where the strength of the interaction depends strongly on the distance between the

spins (r) as well as the gyromagnetic ratios according to the dipole-dipole coupling

constant, defined as

ωPAS
D =

−µ0γIγSh̄
4πr3 (2.47)

in units of radians per second.

In high magnetic fields, the secular approximation can be made and the orientation

dependence is given by

ωD = ωPAS
D

1
2
(3 cos2 θIS − 1) (2.48)

where θIS is the angle between the axis connecting the two spins and the applied mag-

netic field B0. Unlike the chemical shielding tensor, the dipolar coupling tensor is trace-

less and its isotropic value is therefore zero. It is always axially symmetric (η = 0). In

an isotropic solution, the orientations of the nuclear spins are rapidly exchanged by ro-

tational Brownian motion and the dipolar interaction is therefore averaged out during
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the timescale of an NMR experiment. However, it does contribute to relaxation pro-

cesses and is important in experiments involving the nuclear Overhauser effect (NOE)

[16, 31].

In a powdered solid, dipolar coupling is a significant broadening mechanism, leading

to a Pake doublet lineshape in a powder of isolated pairs of spin I = 1/2 nuclei [32].

In a sample with numerous dipolar-coupled spins, the NMR spectrum will be a broad

Gaussian lineshape [33].

2.5.3 J-coupling

J-coupling, also known as scalar coupling, is a through-bond interaction arising from

the interaction between electrons, which are spin I = 1/2 particles, with nuclear spins

[22, 34]. A bonding orbital containing two electrons will be spin paired according to the

Pauli principle (· ↑↓ ·). If we introduce a nuclear spin on one side, the overall energy

will be lower if the nuclear spin is polarised in the same direction as the electron close

to the nucleus (↑ ↑↓ ·) than if it is aligned antiparallel to it (↓ ↑↓ ·). If another nuclear

spin is then introduced, the energy is again minimised if it is aligned antiparallel to

the first nuclear spin (↑ ↑↓ ↓). This indirect interaction via the electrons perturbs the

nuclear spin Hamiltonian. J-coupling is strongest for directly-bonded nuclear spins, but

can also be detected over two or three bonds.

The Hamiltonian for J-coupling between spins I and S is given by

HJ = 2π I · JIS · S (2.49)

The second-rank tensor JIS describes the J-coupling and as the interaction is given with

units of Hz a factor of 2π appears in the equation above.

In an isotropic liquid, the second-rank tensor JIS is averaged out by the rapid tumbling

motion and the remaining isotropic component is given by the average of the diagonal

elements of the matrix,

JIS =
1
3
(JXX + JYY + JZZ). (2.50)
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Solution-state NMR spectra often contain complicated splitting patterns owing to this

J-coupling interaction, and these can be exploited for determining molecular structure

from a spectrum.

In solids, the J-coupling is usually much smaller than the other interactions, so resolved

J-coupled multiplets are an uncommon feature of spectra. The anisotropic component

of the J-coupling tensor is present in solids and anisotropic liquids, but its contribution

is usually small enough to be overlooked.

2.5.4 The quadrupolar interaction

Quadrupolar nuclei are those which have spin quantum number, I, greater than a half.

They possess an electric quadrupole moment, eQ, which arises from the non-spherical

distribution of charge in the nucleus. The charge distribution in the nucleus can be

described as a series of multipoles: the monopole, or point charge, is the zeroth-order

term; the electric-dipole is the first-order term (which is equal to zero for a nucleus,

as are all other odd-order electric terms); and the second-order term is the electric

quadrupole moment [35]. This is illustrated in Figure 2.3(a). Although there is lit-

tle experimental evidence of higher order terms owing to their much smaller effect in

perturbing electrostatic interactions, Abragam [36] wrote that “There is no reason, how-

ever, to doubt their existence.”

The quadrupolar interaction arises when the quadrupole moment couples to the elec-

tric field gradient (EFG) created by the surrounding electron density at the nucleus.

Figure 2.3(b) shows the quadrupole in two different orientations surrounded by point

charges. It is apparent that the electrostatic energy will vary according to orientation,

and the second orientation shown is more energetically favourable. In contrast, a spin

I = 1/2 nucleus only has a monopole component, thus would not have an orientation

dependence in the same field gradient.

The EFG can be represented by a diagonal tensor V corresponding to the principal axis

system. The tensor is traceless,

VXX + VYY + VZZ = 0 (2.51)
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(b) Orientation dependence of the nuclear quadrupole moment

FIGURE 2.3: (a) The charge distribution in a nucleus can be expanded as a series of mul-
tipoles where the zeroth-order term is the total charge, the dipolar term is zero and the
the quadrupolar term is only possessed by spins I > 1/2. (b) The quadrupolar inter-
action arises from the orientation-dependent coupling of the quadrupolar moment to
the electric field gradient. Here, the quadrupole moment surrounded by point charges
will be more energetically favourable in the second orientation shown.

and the three principal tensor elements are ordered

VXX ≥ VYY ≥ VZZ (2.52)

in a principal axis system (PAS) where V is diagonal. The EFG anisotropy can be char-

acterised by q and η, where q, the magnitude of the EFG is given by

q = VZZ/e (2.53)

where e is the electric charge, and the asymmetry parameter η is given by

η =
VXX −VYY

VZZ
(2.54)

and can take values between 0 and 1. The magnitude of the interaction between the

nuclear quadrupole moment and the principal field gradient VZZ is expressed as CQ,
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FIGURE 2.4: For spin I = 3/2 (a, c, e) and I = 5/2 (b, d, f): Perturbation of the Zeeman
energy levels by the first-order quadrupolar interaction (a and b); Simulations of the
resulting single crystal NMR spectra (c and d) and powder spectra (e and f) with η = 0.

the quadrupolar coupling constant:

CQ =
e2qQ

h
. (2.55)

The quadrupolar frequency in the PAS is often used instead of CQ, and is defined as

ωPAS
Q =

3πCQ

2I(2I − 1)
(2.56)
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in units of rad s−1.

Assuming axial symmetry (η = 0), the quadrupolar Hamiltonian is

Hquad =
ωPAS

Q

2
(3 cos2 θ − 1){I2

z −
1
3

I(I + 1)} (2.57)

where θ is the angle the Z axis of the principal axis system makes to the z axis of the

rotating or laboratory frame. The corresponding eigenvalues give the energy level split-

tings,

EQ = ωQ{m2
I −

1
3

I(I + 1)} (2.58)

where the quadrupolar splitting parameter ωQ is defined as

ωQ =
ωPAS

Q

2
(3 cos2 θ − 1) (2.59)

This perturbation of the Zeeman energy levels is illustrated in Figure 2.4(a) for I = 3/2

and Figure 2.4(b) for I = 5/2. The NMR spectrum of a single crystal for spin I = 3/2

therefore consists of three transitions with frequencies of ω0 + 2ωQ, ω0 and ω0 − 2ωQ

(Figure 2.4(c)) while the spectrum for spin I = 5/2 consists of five non-degenerate

transitions separated by 2ωQ (Figure 2.4(d)). In a powdered sample, all orientations

of V with respect to B0 are simultaneously present in different crystallites. According

to Equation 2.59, this will result in a range of values for ωQ. The overlap of different

transitions gives rise to a powder pattern, as shown in Figures 2.4(e) and 2.4(f). For half-

integer spins, the transition between energy levels mI = ±1/2 (known as the central

transition) is not affected by the quadrupolar interaction to first order. In contrast, the

other transitions (satellite transitions) are significantly broadened by the quadrupolar

interaction, to the extent that they can be difficult to observe.

2.6 Magic angle spinning

Magic angle spinning (MAS) is a widely used technique in solid-state NMR that helps

to remove the broadening interactions discussed in previous sections. By spinning the

sample rapidly at an angle of 54.74◦ with respect to the applied magnetic field, a con-

siderable improvement in resolution can be achieved [13, 37, 38]. If the spinning rate
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is fast compared to the size of the anisotropy, the broad static powder pattern can be

reduced to a single sharp line at the isotropic chemical shift. Slower spinning produces

a spectrum containing a set of spinning sidebands, which flank both sides of the centre-

band [19, 39].

Practically, MAS NMR experiments involve packing a powdered solid into a MAS rotor.

Rotors are available in different sizes, with smaller rotors allowing faster spinning but

larger rotors offering an increased sample volume and thus greater sensitivity. In this

thesis, rotors have been used with diameters of 4 mm (which allow spinning between

around 4 and 15 kHz) and 2.5 mm (around 20 to 35 kHz). As the cap of a rotor features

fins, it acts as a turbine to spin the whole rotor when jets of air are directed at it within

the probe.

We have seen that internal interactions are most conveniently described in their princi-

pal axis system (PAS). As the Zeeman interaction aligned parallel to B0 is the dominant

interaction, all internal interactions must be rotated to this frame of reference, known

as the laboratory frame. To simplify the description of a rotation, Hamiltonians are

expressed in spherical tensor form,

H =
2

∑
l=0

+l

∑
m=−l

(−1)m Al,mTl,−m (2.60)

where Tl,−m is an irreducible spherical tensor describing the spin component and Al,m

is a tensor which describes the spatial component of a certain interaction. The rank

of the tensor, l, takes values l = 0, 1, 2 while the order of the tensor can take values

m = −l,−l + 1, . . . , l − 1, l.

In order to give a description of MAS, we must transform the irreducible spherical ten-

sor A which describes the spatial part of the interaction from the principal axis system

(AP) to the laboratory frame (AL) via the intermediate rotor frame (AR). A rotation of

a spatial tensor can be described in terms of the Euler angles Ω = {α, β, γ}. We can

define a rotation operator R(α, β, γ) which is a product of three successive rotations:

R(α, β, γ) = RγRβRα = exp(−iγIz′′) exp(−iβIy′) exp(−iαIz) (2.61)

Each of these operations defines a new coordinate system for the next rotation. The

three rotations are:
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1. A rotation of angle α about the z-axis, giving coordinate axes x′, y′, z′

2. A rotation of angle β about the y′-axis, giving coordinate axes x′′, y′′, z′′

3. A rotation of angle γ about the z′′-axis, giving coordinate axes x′′′, y′′′, z′′′

Owing to the unitary properties of R, Equation 2.61 can be equivalently expressed with

the rotations taking place with respect to a single axis frame [19]:

R(α, β, γ) = exp(−iαIz) exp(−iβIy) exp(−iγIz). (2.62)

In order to describe MAS, we require a rotation from the PAS to the rotor frame, R(αPR,

βPR, γPR), followed by a rotation from the rotor frame to the lab frame, R(αRL, βRL, γRL).

Figure 2.5 illustrates these two successive transformations. βPR describes the angle be-

tween the z-axis of the interaction tensor principal axis system and the spinning axis,

while βRL describes the angle between the rotor axis and the static magnetic field, B0.

The value of αRL varies with the rotation of the rotor according to α = −ωRt, where

ωR is the spinning frequency. γRL is the phase of the rotor and can be arbritrarily set to

zero.

The operator R can be described by a Wigner D-matrix. A double-frame transformation

acting on a spherical tensor AP from the PAS to the rotor frame (PR) and then from the

rotor frame to the laboratory frame (RL) can be written

AL
l,n =

l

∑
m=−l

l

∑
m′=−l

Dl
m,n(αRL, βRL, γRL)Dl

m′,m(αPR, βPR, γPR)AP
l,m′ . (2.63)

The Wigner D-matrix elements can be reduced to exponentials that are dependent on α

and γ and a reduced Wigner d-matrix element that depends only on β:

Dl
m′,m(α, β, γ) = exp(−im′α) dl

m′m(β) exp(−im′γ) (2.64)

The reduced Wigner rotation matrix elements can be found tabulated elsewhere [40, 41].
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FIGURE 2.5: To understand the theory of MAS, we require a rotation from the PAS to
the rotor frame, described by the Euler angles ΩPR, followed by a rotation from the
rotor frame to the lab frame, described by the Euler angles ΩRL. The rotor is inclined
at βRL ≈ 54.74◦ relative to the laboratory frame and spun rapidly under magic angle
spinning. The angle αRL describes the time-dependent phase of the rotor.

The anisotropic components of an interaction are contained within the rank-2 (l = 2)

terms of a spherical tensor. For a second-rank tensor, the D-matrix elements trans-

formed from P to R to L are

D2
m′,n(ΩPL) =

2

∑
m=−2

D2
m,n(ΩRL)D2

m′,m(ΩPR) (2.65)

Focusing on the term D2
m,n(ΩRL) in Equation 2.65 which takes us from the rotor frame

to the lab frame, and remembering that γRL = 0 we can write using Equation 2.64:

D2
m,n(ΩPR) = exp(−imαRL) d2

m,n(βRL) exp(−inγRL)

= exp(−imαRL) d2
m,n(βRL)

(2.66)

If we average the time-dependent part of Equation 2.66 over one rotor period, tR =

2π/ωR, we find

1
tR

∫ 2π/ωR

0
exp(imωRt) dt =

 2π
ωRtR

= 1 if m = 0
cos(m2π)+i sin(m2π)−1

imωRtR
= 0 if m = ±1,±2, . . .

(2.67)

When m = 0, the time-dependent part equals 1 after a complete rotor period. When

m = ±1,±2, . . ., the time-dependent part equals zero. The five terms in Equation 2.65
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are thus reduced to one term:

D2
m′,n(ΩPL) = D2

0,n(ΩRL)D2
m′,0(ΩPR) (2.68)

which corresponds to AL
2n in Equation 2.63. Under the high-field secular approximation,

the only non-zero terms of the matrix are along its diagonal. Since we therefore only

need consider the AL
20 term, Equation 2.68 then becomes

D2
m′,0(ΩPL) = D2

0,0(ΩRL)D2
m′,0(ΩPR). (2.69)

The orientation dependence of the D2
0,0 term is the l = 2 Legendre polynomial, 1

2 (3 cos2 θ−

1). When the rotor is spun at the magic angle βRL = tan−1
√

2 ≈ 54.74◦, the term

D2
m′0(ΩPL) evaluates to zero. In this way, magic angle spinning is capable of averaging

a second-rank interaction to zero after one rotor period.

If data points are acquired at integer multiples of tR, a Fourier transform of the resulting

FID will reduce a powder pattern to a single line at the isotropic chemical shift. If the

data points are not acquired only at ntR and the spinning rate is not larger than the

anisotropic interaction, then the m = ±1 and m = ±2 terms in Equation 2.65 lead

to oscillatory evolution of the density matrix. This corresponds to the experimental

observation of rotary echoes in the FID spaced by tR s and spinning sidebands in a

MAS NMR spectrum separated by 1/tR = ωR/2π Hz.

2.7 The spin echo

An NMR signal will decay after an excitation pulse owing to inhomogeneous effects

that cause different spins in a sample to precess at different rates. In solution-state

NMR, this dephasing can result from the effect of an inhomogenous B0 field, where

different volumes of the sample will have different precession frequencies according to

the field they experience. This dephasing can be reversed by using a spin-echo pulse

sequence.

The spin echo can also remedy phase distortions seen in spectra with broad resonances

caused by anisotropic interactions in solid-state NMR. Transverse magnetisation will

evolve at different rates according to the orientation of different crystallites in a powder
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FIGURE 2.6: Pulse sequence and coherence transfer pathway diagram of a spin-echo
experiment.

sample. Large broadening interactions will be characterised by rapidly decaying FIDs,

but FIDs cannot be acquired immediately after a pulse, and a significant part can be

lost during the “dead time” between the pulse and acquisition. As a result, different

spins will acquire different phases by the time aquisition begins, leading to distorted

lineshapes in the frequency domain. In cases where the dead time is small and the sig-

nal decays slowly, a first-order phase correction (Section 1.6) can improve the spectrum.

However, this method is not suitable if the FID decays rapidly and the dead time is rel-

atively long. Instead, a spin echo can be used to refocus the dephasing magnetisation

such that all homogeneous components of the broad line will have the same phase. The

Hahn or Carr-Purcell echo, 90◦0◦ − τ − 180◦0◦ − τ, is used for lines broadened by chem-

ical shift anisotropy or heteronuclear dipolar coupling [42, 43], while the solid echo

sequence, 90◦0◦ − τ − 90◦90◦ − τ, is used for lines broadened by quadrupolar coupling

or homonuclear dipolar coupling [44, 45]. The latter sequence will not be considered

further here.

A spin-echo pulse sequence and coherence transfer pathway are shown in Figure 2.6.

A 90◦ pulse is used to excite single-quantum coherence. A 180◦ pulse is applied after

duration τ, using Exorcycle phase cycling to select the coherence order change ∆p = −2

(see Section 2.8). After a further period of free precession of duration τ a spin echo is

formed. In MAS experiments, the τ period is usually equal to an integer number of

rotor periods.

The mechanism of echo formation may be revealed by considering a vector model pic-

ture of the experiment. Figure 2.7 illustrates the paths followed by the tips of three

vectors shown in green, red and blue, each having a different precession frequency.
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FIGURE 2.7: “Grapefruit plot” showing the trajectories of magnetisation vectors dur-
ing the τ − 180◦ − τ part of a echo pulse sequence. Each vector starts at the −y axis
following the application of a 90◦ excitation pulse but these vectors fan out during the
first τ period according to their different precession frequencies (green – fast, red –
slower, blue – slowest). After a 180◦ and another free precession period for time τ, the
vectors are all refocused along the y axis.

Each of the vectors is initially aligned along the −y-axis following the application of a

90◦0◦ excitation pulse. During the free precession period, τ, the vectors begin to fan out

in the xy plane. A 180◦0◦ pulse then rotates each vector about the x-axis to its mirror

image position in the xy plane, thus moving the “fast” spins behind the “slow” spins.

After another period of free precession of equal length to the first, all vectors are aligned

together, or refocused, along the y-axis.

2.8 Exorcycle

Exorcycle is the name given to the phase cycle which selects the coherence pathway

shown in Figure 2.6 and was in fact the first published example of a phase cycle [26, 46].

It was developed by Bodenhausen et al. to remove artefacts they observed in two-

dimensional spin-echo spectra that they dubbed “ghosts” and “phantoms” [47, 48].

These effects arise as a consequence of imperfections in the radiofrequency pulses, such

as inhomogeneity of the B1 field and an offset of the transmitter from resonance. By

incrementing the phase of the refocusing pulse by 90◦ while the receiver phase is in-

cremented by 180◦ (see Table 2.2), Exorcycle retains signal that undergoes a change in

coherence order of ∆p = −2 during the 180◦ pulse and discards the component that

will not echo.
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TABLE 2.2: The Exorcycle phase cycle.

Pulse phase Receiver phase

0◦ 0◦

90◦ 180◦

180◦ 0◦

270◦ 180◦

Using the product operator formalism (as described in Section 2.3) we can examine

the effect of pulse errors and show that Exorcycle is able to correct the phase of the

magnetisation in some cases [3]. A magnetisation vector which acquires after time t a

phase φ = Ωt can be written Ix cos φ + Iy sin φ. To form a spin echo, the phase must be

reversed by applying a 180◦0◦ pulse:

Ix cos φ + Iy sin φ
180◦0◦−−−→ Ix cos φ− Iy sin φ. (2.70)

The phase of the magnetisation after the pulse is, as desired,

tan−1
(
− sin φ

cos φ

)
= tan−1(− tan φ) = −φ. (2.71)

A perfect spin echo will be formed after another period of free precession t.

2.8.1 Flip angle misset

Flip angle errors are a common pulse imperfection arising from the inhomogeneity of

the B1 field strength, which is an unavoidable consequence of the design of the rf coil.

The variation of the B1 field strength is responsible for a distribution of nutation fre-

quencies across the sample. This leads to a decrease in signal amplitude as the nominal

flip angle is not attained by all spins in the sample. Errors in the size of the flip an-

gle also arise from poor pulse calibration. If we consider a refocusing pulse that has a

general flip angle β,

Ix cos φ + Iy sin φ
β◦0◦−−→ Ix cos φ + Iy sin φ cos β + Iz sin φ sin β = A (2.72)
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then the phase of the magnetisation vector is

tan−1
(
− sin φ cos β

cos φ

)
= tan−1(− tan φ cos β) (2.73)

which is only equal to −φ if β = 180◦. The amplitude of the signal, given by

√
cos2 φ + sin2 φ cos2 β, (2.74)

depends both on the phase φ and flip angle β, and there may be considerable signal

cancellation in an inhomogeneous B1 field. In addition, the imperfect refocusing pulse

also creates unwanted Iz magnetisation.

Using Exorcycle phase cycling, step A is repeated with the phase of the refocusing pulse

advanced by 90◦ each time, giving:

Ix cos φ + Iy sin φ
β◦90◦−−→ Ix cos φ cos β− Iz cos φ sin β + Iy sin φ = B (2.75)

Ix cos φ + Iy sin φ
β◦180◦−−−→ Ix cos φ + Iy sin φ cos β− Iz sin φ sin β = C (2.76)

Ix cos φ + Iy sin φ
β◦270◦−−−→ Ix cos φ cos β + Iz cos φ sin β + Iy sin φ = D (2.77)

With each step the receiver step is incremented by 180◦, which is equivalent to adding

and subtracting the steps A – D alternately, giving

A− B + C− D = 2Ix cos φ(1− cos β)− 2Iy sin φ(1− cos β). (2.78)

The phase of the magnetisation once phase-cycled is therefore

tan−1
(
− sin φ(1− cos β)

cos φ(1− cos β)

)
= tan−1(− tan φ) = −φ (2.79)

and so a spin echo with perfect phase will be formed. The averaged amplitude of the

magnetisation vector is

(1− cos β)/2 (2.80)

and so no longer varies according to φ. The signal intensity does retain a dependence

on the flip angle β – this property is exploited in the “Depth” technique introduced in

Chapter 3.
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2.8.2 Off-resonance pulse errors

As described in Section 1.3, there are two effects of applying an rf pulse off-resonance:

the rotation axis is tilted towards the z-axis and the effective flip angle increases. We

can model the former problem by considering a 180◦0◦ pulse with a rotation axis tilted

up towards the z-axis by an angle ∆. The rotation about this tilted axis is equivalent to a

∆ rotation about the rotating-frame y-axis, followed by a 180◦ rotation about the x-axis

and finally a ∆ rotation about the rotating-frame −y-axis

Ix cos φ + Iy sin φ
∆ 90◦−−→

180◦0◦−−−→ ∆ 270◦−−−→ Ix cos φ cos 2∆ + Iz cos φ sin 2∆− Iy sin φ = E (2.81)

The phase of the magnetisation following this is

tan−1
(
− sin φ

cos φ cos 2∆

)
= tan−1

(
− tan φ

cos 2∆

)
(2.82)

which is only equal to −φ if ∆ = 0. A perfect spin echo will therefore not form if the

pulse is not on resonance. Again, the signal amplitude is dependent on both φ and β –

in this case it is given by √
cos2 φ cos2 2∆ + sin2 φ, (2.83)

Exorcycle can again be used to correct the phase problem. The remaining steps of the

phase cycle are:

Ix cos φ + Iy sin φ
∆ 180◦−−−→

180◦90◦−−−→ ∆ 0◦−−→ −Ix cos φ + Iy sin φ cos 2∆ + Iz sin φ sin 2∆ = F

(2.84)

Ix cos φ + Iy sin φ
∆ 270◦−−−→

180◦180◦−−−−→ ∆ 90◦−−→ Ix cos φ cos 2∆− Iz cos φ sin 2∆− Iy sin φ = G

(2.85)

Ix cos φ + Iy sin φ
∆ 0◦−−→

180◦270◦−−−−→ ∆ 180◦−−−→ −Ix cos φ + Iy sin φ cos 2∆− Iz sin φ sin 2∆ = H

(2.86)

Summing these according to the varying receiver phase, we have

E− F + G− H = 2Ix cos φ(1 + cos 2∆)− 2Iy sin φ(1 + cos 2∆) (2.87)
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and the phase of the magnetisation is

tan−1
(
− sin φ + cos 2∆)
cos φ + cos 2∆)

)
= tan−1(− tan φ) = −φ (2.88)

A perfect spin echo will be formed, but the signal amplitude is reduced to

(1 + cos 2∆)/2. (2.89)

2.8.3 Rotation axis errors in the xy-plane

Another possible source of imperfection of the refocusing pulse is when the rotation

axis of the pulse deviates from the correct position but remains in the xy-plane. This

does not occur with simple 180◦ refocusing pulses, but is relevant in experiments using

composite pulses, as we will see in Section 2.10. We can model the problem by consid-

ering a 180◦0◦ pulse with a rotation axis tilted by an angle of ∆′ towards the y-axis. This

is equivalent to a ∆′ rotation about the −z-axis, followed by a 180◦0◦ pulse and finally a

∆′ rotation about the z-axis. In this case, the four steps of Exorcycle yield:

Ix cos φ + Iy sin φ
∆′−z−−→

180◦0◦−−−→ ∆′z−→ Ix cos(φ− 2∆′)− Iy sin(φ− 2∆′) = I (2.90)

Ix cos φ + Iy sin φ
∆′−z−−→

180◦90◦−−−→ ∆′z−→ −Ix cos(φ− 2∆′) + Iy sin(φ− 2∆′) = J (2.91)

Ix cos φ + Iy sin φ
∆′−z−−→

180◦180◦−−−−→ ∆′z−→ Ix cos(φ− 2∆′)− Iy sin(φ− 2∆′) = K (2.92)

Ix cos φ + Iy sin φ
∆′−z−−→

180◦270◦−−−−→ ∆′z−→ −Ix cos(φ− 2∆′) + Iy sin(φ− 2∆′) = L (2.93)

The overall result of this experiment is,

I − J + K− L = 4Ix cos(φ− 2∆′)− 4Iy sin(φ− 2∆′) (2.94)

and the phase of the magnetisation is therefore

tan−1
(
− sin(φ− 2∆′)
cos(φ− 2∆′)

)
= −(φ− 2∆′) (2.95)

which is the same as the phase yielded by the experiment without any phase cycling.

It is clear that Exorcycle is unable to help in this case, and a perfect spin echo will not

form if the additional phase 2∆′ varies as a function of B1 field strength or the resonance

offset.
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FIGURE 2.8: Inversion profiles showing Iz magnetisation inverted as a function of nor-
malised B1 field strength for a simple 180◦ pulse (black), a narrowband composite
pulse (red), a passband composite pulse (purple) and a broadband composite pulse
(blue).

2.9 Composite pulses: an introduction

As seen in Section 2.8, selection of the echo coherence pathway using Exorcycle corrects

phase imperfections in the refocusing pulse but cannot compensate for loss of signal

amplitude arising from resonance offset or B1 inhomogeneity. One method that can

be used to help overcome this is the use of composite pulses. A composite pulse is a

contiguous sequence of rf pulses of varying flip angle and phase, which has the overall

effect of a simple rf pulse but possesses compensatory mechanisms to limit the delete-

rious effects of pulse imperfections.

Composite pulses have been adopted in a wide range of experiments in both solid- and

liquid-state NMR, compensating for the effects of B1 inhomogeneity and resonance off-

set. Figure 2.8 illustrates typical inversion profiles for composite pulses that are broad-

band, passband and narrowband [49] with respect to radiofrequency field strength

compared to a simple 180◦ inversion pulse (black solid line.) Narrowband sequences

(shown by the red dotted line) invert magnetisation over only a narrow range of field

strengths, and have found use in spatial localisation in imaging experiments. Pass-

band sequences (purple) show characteristics of both a narrowband and broadband se-

quence. These have been used to achieve enhanced suppression of background signal

when implemented in the Depth sequence in 1H NMR ([4], Chapter 3). Broadband com-

posite pulses have been employed to compensate for variations in field strength and

resonance offset, and much research has been carried out in devising such sequences

([3, 6], Chapter 4).
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FIGURE 2.9: “Grapefruit plots” showing the trajectories of magnetisation vectors
under a simple 180◦90◦ inversion pulse (a and c) and the LF composite pulse,
90◦90◦180◦0◦90◦90◦ (b and d). The rf error was B1/Bnom

1 = 1, 0.9, 0.8, 0.7, 0.6 in (a) and
(b). In (c) and (d), the normalised offsets are ∆B/B1 = 0, 0.1, 0.2, 0.3, 0.4. Simulated
with Spin Dynamica [2].

2.9.1 Levitt’s inversion pulse

The first composite pulse was devised by Levitt in 1978, who at the time was an un-

dergraduate in the Freeman laboratory at Oxford University [50, 51]. His broadband

inversion sequence, 90◦90◦180◦0◦90◦90◦ , was designed with the spin-echo phenomenon on

his mind [52]:

“It occurred to me that the vector picture used to explain the formation of

spin echoes could be tipped on its side to predict a refocusing effect for ra-

diofrequency inhomogeneity, while still generating a net 180-degree rotation

of the nuclear spins.”
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To help visualise the error compensation provided by the composite pulse, Figure 2.9

illustrates the trajectories of magnetisation vectors subjected to B1 inhomogeneity and

resonance offset effects under a simple 180◦ pulse and Levitt’s inversion pulse sequence

(henceforth referred to as “LF”). In Figure 2.9(a), the B1 field strength is reduced to 90%,

80%, 70% and 60% of its nominal value. The flip angle of the nominal 180◦ pulse short-

ens accordingly, and it is clear that the efficiency of the 180◦ pulse as an inversion pulse

is severely compromised in the presence of radiofrequency strength errors. The perfor-

mance of LF with regard to the same levels of B1 error is shown in Figure 2.9(b). During

the first 90◦90◦ element of the composite pulse, the vectors are rotated towards the x axis

but fall short of reaching it owing to their reduced nutation frequencies. A 180◦0◦ pulse

then causes nutation around the x axis, moving each vector approximately to its mirror

image location about the xy plane. The final element of the composite pulse, another

90◦90◦ pulse, rotates the vectors by the same angle as the first pulse, carrying them much

closer to the −z axis than a simple pulse is able to.

The LF pulse also compensates for errors arising from resonance offset. Figures 2.9(c)

and 2.9(d) show the effect of increasing the normalised offset, ∆B/B1. For a simple

pulse, the rotation takes place about a tilted field as described in Section 1.3, and the

inversion pulse leaves the vector further from the −z axis as the offset increases. With

the LF pulse, the first element carries the vectors close to the xy plane. The 180◦0◦ pulse

then rotates the vectors to a position with approximately reversed y and z coordinates.

The final 90◦90◦ pulse then brings the vectors almost into focus along the −z axis.

2.10 Use of composite pulses to form spin echoes

A myriad of composite pulses have been suggested since Levitt’s initial discovery [3, 49,

51, 53–67]. However, despite initial excitement for broadband composite pulses, it was

soon found that often the pulse sequences gave poor results for refocusing transverse

(xy) magnetisation in a spin-echo experiment, with phase distortions arising even with

the correct phase cycling [3, 68]. This problem occurs as the overall rotation axis of the

pulse varies with the field strength. It was shown in Section 2.8 that Exorcycle is unable

to correct phase distortions if they arise from a rotation of the overall pulse rotation axis

in the xy-plane.
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Following this finding, a number of composite pulses termed phase-distortionless or

constant-rotation sequences were introduced [49, 56, 58–62, 69]. In addition to main-

taining an overall flip angle over a broad range of rf field strengths or resonance offset,

these sequences have rotation axes that are nearly constant over a large range.

In this section, it is demonstrated that the symmetry of the composite pulse must be

considered if a perfect spin echo is to be formed. Many of the early broadband com-

posite pulses are unsuitable for use as a refocusing pulse in a spin-echo experiment,

including many of the so-called phase-distortionless variety. We can write a composite

pulse of N number of elements,

(β1)φ1 (β2)φ2 . . . (βN)φN (2.96)

We will examine the properties of two types of composite pulse:

1. Symmetric composite pulses, where the flip angles are β1 = βN , β2 = βN−1, etc.

and the phases are φ1 = φN , φ2 = φN−1, etc.

2. Antisymmetric composite pulses, where the flip angles are β1 = βN , β2 = βN−1,

etc. and the phases are φ1 = φ0 + φ1′ , φ2 = φ0 + φ2′ , . . . φN−1 = φ0 − φ2′ , φN =

φ0 − φ1′ , where the central pulse (if any) has the base phase φ0

and show that antisymmetric composite pulses should be used in spin-echo experi-

ments.

2.10.1 Symmetric composite pulses

We will prove that an on-resonance symmetric pulse has an overall rotation axis in the

xy-plane [60, 70]. The propagator U for a symmetric sequence of three off-resonance

rotations,

1. β about an axis with phase φ in xy-plane and tilted up towards the z-axis by ∆

2. β′ about an axis with phase φ′ in xy-plane and tilted up towards the z-axis by ∆

3. β about an axis with phase φ in xy-plane and tilted up towards the z-axis by ∆
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is given by

U = exp[−iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

× exp[−iβ′(Ix cos φ′ cos ∆ + Iy sin φ′ cos ∆ + Iz sin ∆)]

× exp[−iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

(2.97)

The inverse propagator is obtained by reversing the order and making all rotations

negative, giving

U−1 = exp[iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

× exp[iβ′(Ix cos φ′ cos ∆ + Iy sin φ′ cos ∆ + Iz sin ∆)]

× exp[iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

(2.98)

If the overall rotation axis of U lies in the xy-plane, then a 180◦ (or π) rotation of U−1

about z should give U:

exp(−iπ Iz) U−1 exp(iπ Iz) = exp[−iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆− Iz sin ∆)]

× exp[−iβ′(Ix cos φ′ cos ∆ + Iy sin φ′ cos ∆− Iz sin ∆)]

× exp[−iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆− Iz sin ∆)]

(2.99)

Equation 2.99 is only equal to U if ∆ = 0, that is, if the pulses are applied on-resonance.

There are no particular constraints on the rotation axis for an off-resonance symmetric

composite pulse. This result can be extended to symmetric pulses of any number of

elements, N.

2.10.2 Antisymmetric composite pulses

We will now prove that an antisymmetric composite pulse with a base phase φ = 0

has an overall rotation axis constrained to the xz-plane both on- and off-resonance. The

propagator U for an antisymmetric sequence of three off-resonance rotations,

1. β about an axis with phase φ in xy-plane and tilted up towards the z-axis by ∆

2. β′ about an axis with phase φ′ in xz-plane and tilted up from the x-axis towards

the z-axis by ∆
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3. β about an axis with phase −φ in xy-plane and tilted up towards the z-axis by ∆

is given by

U = exp[−iβ(Ix cos φ cos ∆− Iy sin φ cos ∆ + Iz sin ∆)]

× exp[−iβ′(Ix cos φ∆ + Iz sin ∆)]

× exp[−iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

(2.100)

The inverse propagator is

U−1 = exp[iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

× exp[iβ′(Ix cos φ∆ + Iz sin ∆)]

× exp[iβ(Ix cos φ cos ∆− Iy sin φ cos ∆ + Iz sin ∆)]

(2.101)

A 180◦ rotation of U−1 about y should give U if the rotation axes of U and U−1 lies in

the xz-plane:

exp(−iπ Iz) U−1 exp(iπ Iz) = exp[−iβ(Ix cos φ cos ∆− Iy sin φ cos ∆ + Iz sin ∆)]

× exp[−iβ′(Ix cos φ∆ + Iz sin ∆)]

× exp[−iβ(Ix cos φ cos ∆ + Iy sin φ cos ∆ + Iz sin ∆)]

(2.102)

Thus all antisymmetric composite pulses with a base phase φ0 = 0◦ have an overall ro-

tation axis that lies in the xz-plane for all resonance offsets. Since Exorcycle can correct

for problems with the spin-echo phase that arise from errors in the overall flip angle

or deviations of the rotation axis in the xz-plane, it is clear that an antisymmetric pulse

should be used to compensate for refocusing pulse imperfections in a spin-echo exper-

iment.

2.10.3 Analysis using quaternions

The overall rotation axes and flip angles of a composite pulse can be determined using

the quaternion formalism, outlined in Appendix C, as set out by Counsell et al. [70].

These have been plotted as a function of normalised B1 field strength, B1/Bnom
1 , and

normalised offset, ∆B/Bnom
1 , for a number of composite pulses shown in Table 2.3. The
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TABLE 2.3: Broadband composite pulses used in simulations in Figure 2.10 and 2.11

Pulse Sequence Type Reference

LF 90◦0◦ 180◦90◦ 90◦0◦ Sym [50, 51]
TS 180◦120◦ 180◦240◦ 180◦120◦ Sym [56, 71]
BB1 180◦104.5◦ 360◦313.4◦ 180◦104.5◦ 180◦0◦ Asym [49]
F1 180◦46.6◦ 180◦255.5◦ 180◦0◦ 180◦104.5◦

180◦313.4◦

Anti [62]

TPG 180◦256◦ 180◦52◦ 180◦0◦ 180◦128◦ 180◦0◦
180◦232◦ 180◦0◦ 180◦308◦ 180◦104◦

Anti [60]

OW 180◦53◦ 180◦30◦ 180◦304◦ 180◦142◦ 180◦255◦

180◦309◦ 180◦0◦ 180◦51◦ 180◦105◦ 180◦218◦

180◦56◦ 180◦330◦ 180◦307◦

Anti [3]

LT 90◦135◦ 270◦45◦ 90◦135◦ Sym [50, 51, 56]
W 90◦0◦ 270◦45◦ 360◦0◦ Asym [72]
SP 60◦180◦ 300◦0◦ 60◦180◦ Anti +

Sym
[69]

rotation axes are defined by φ, the angle of the axis measured in the xy plane away from

the x-axis, and θ, the angle of the rotation axis from the z-axis towards the x-axis. The

overall flip angle is given by β.

The results for two symmetric sequences which compensate for B1 inhomogeneity, LF

and TS, are plotted in Figure 2.10. Although achieving a flip angle of 180◦ over a greater

bandwidth than a simple pulse, both of these pulses show variation in φ in the presence

of a B1 error as the rotation axis rotates in the xy-plane. BB1, which is an asymmetric

phase-distortionless pulse, has proved popular owing to its greater bandwidth and sta-

ble rotation axis [63]. In these plots it is clear to see that the overall rotation axis remains

along the x-axis across its usable bandwidth. However, both φ and θ vary as the B1 er-

ror increases further. All of these composite pulses will reintroduce phase distortions

in a spin-echo experiment, as Exorcycle is unable to correct for problems arising from

variations in φ.

The antisymmetric sequences F1, TPG and OW, in contrast, only show variation in θ but

not φ as their overall rotation axes are confined to the xz-plane. These provide excellent

compensation for B1 inhomogeneity and can be used to successfully with Exorcycle

phase cycling in a spin-echo experiment.

The composite pulses W, LT and SP were designed to compensate for off-resonance

effects. Their overall flip angles and rotation axes as a function of ∆B/Bnom
1 can be
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FIGURE 2.10: Overall flip angle (β) and rotation axes plotted as a function of nor-
malised B1 field strength, B1/Bnom

1 . The rotation axes are defined by φ, the angle of the
axis measured in the xy plane away from the x-axis, and θ, the angle of the rotation
axis from the z-axis towards the x-axis. The pulse sequences can be found in Table 2.3.

found in Figure 2.11. LT can be described as a symmetric phase-distortionless pulse, as

its rotation axis remains along the rotating-frame x-axis across a certain bandwidth. W

is an asymmetric pulse, and although it has a favourable bandwidth evident in the plot

showing overall flip angle, β, the angle φ deviates from 0◦ as the offset changes. SP is a

symmetric as well as an antisymmetric sequence and shows the favourable property of

having its rotation axis confined to the xz-plane only.
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FIGURE 2.11: Overall flip angle (β) and rotation axes plotted as a function of nor-
malised offset, ∆B/Bnom

1 . The rotation axes are defined by φ, the angle of the axis
measured in the xy plane away from the x-axis, and θ, the angle of the rotation axis
from the z-axis towards the x-axis. The pulse sequences can be found in Table 2.3.

2.10.4 Multiple refocusing

It should be mentioned that it is possible to use an on-resonance symmetric broadband

composite 180◦ pulse to form a spin echo with perfect phase as long as one forms two

consecutive spin echoes with the same composite pulse. In this case, any error in the

spin-echo phase caused by the first composite pulse will be automatically corrected by

the second. Levitt and Freeman have discussed this in the context of a multiple-echo

train formed with the composite pulse LF, where there is correction of the magnetisation

phase on even-numbered echoes [73]. However, this self-correction breaks down off

resonance where the composite pulse is no longer a rotation in the xy plane.

Hwang and Shaka have shown that the second spin echo formed by any refocusing

element – symmetric, antisymmetric or asymmetric – has perfect phase as long as the

coherence pathway is selected independently for each of the two identical refocusing

elements. This result applies both on and off resonance. They have named this obser-

vation ”excitation sculpting” [74].
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However, neither of these important results is relevant in the present context; if one

wishes to correct for pulse imperfections in a simple spin-echo experiment then one

should not double the possible sources of imperfection by using two refocusing pulses.
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Background suppression in 1H MAS

NMR

3.1 Introduction

3.1.1 The 1H background problem and solutions

1H experiments have long been crucial in solution-state NMR owing to the high sen-

sitivity and high natural abundance of the nucleus, as well as its ubiquitous presence

in organic compounds. The importance of 1H NMR of solids has also grown as de-

velopments in methodology, spectrometer hardware and probe designs have enabled

the possibility of recording high-resolution spectra. Overcoming the strong homoge-

neous dipolar interactions in a proton-rich sample which lead to broad, featureless

spectra has been the main challenge of solid-state 1H NMR. Various approaches have

been used to achieve this – rapid MAS, effective decoupling techniques, sophisticated

two-dimensional experiments and isotopic dilution of samples with deuterium have all

proved useful strategies to enhancing resolution [75–81].

An additional common problem encountered in 1H MAS NMR spectra is the presence

of a significant broad “background” signal, which arises from protons located outside

the rotor. These background protons are found either as water on surfaces of the static

components of the probehead (i.e., on the stator block) or are protons present within

the materials used in the probehead construction (e.g., glues and capacitors). The signal

52
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FIGURE 3.1: 1H MAS NMR spectrum of deuterated oxalic acid dihydrate obtained
with a simple 90◦ excitation pulse (14,286 Hz MAS rate, 90◦ pulse duration of 2.1 μs.)

from these protons can overlap and obscure signals from the sample, and is particularly

problematic when studying samples with a low 1H concentration, such as nominally

perdeuterated biological or inorganic materials.

Figure 3.1 shows a typical example of such a spectrum blighted by a strong background

signal. The sample used was nominally perdeuterated oxalic acid dihydrate, which

gives rise two signals in the spectrum: carboxylic acid protons at 17 ppm and water

protons at 6 ppm. Spinning sidebands are observed, separated by the MAS frequency

of 14.3 kHz. The background protons give rise to a broad, unsightly hump of a signal,

highlighted in grey.

A number of methods exist for removing this background signal. An obvious method

involves recording two spectra – one of the sample, and a second of an empty probe-

head, and then mathematically subtracting the background spectrum. However, since

the presence of the sample alters the electronic properties of the resonance circuit, the

two spectra will need separate phasing and arbitrary scaling. As pointed out by Chen

et. al. [82], in many cases it is difficult to distinguish the background signal from broad

signals from the sample, and errors can be made in removing the desired signal as well

as the background. In addition, this method is time-consuming as two spectra with

roughly equal signal-to-noise ratios must be recorded instead of one.

Recently, several new methods have been suggested for background suppression. Chen
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and coworkers’ technique is based on the the fact that, being far from the coil, the ef-

fective flip angle for background protons is small and the excitation regime is approx-

imately linear [82]. They proposed acquiring two spectra with different pulse lengths

(e.g., 90◦ and 180◦) separated by the relaxation delay. The second spectrum will contain

only the background signal but with an intensity greater by a factor of two. Halving the

intensity of the second spectrum and subtracting it from the first yields a background-

free spectrum. Jaeger and Hemman [83] suggested an approach named Elimination

of Artefacts in NMR Spectroscopy (EASY), also based on the fact that the background

spins have a much smaller flip angle than the sample. Following a 90◦ pulse exciting

both the sample and background spins (first transient), a second 90◦ pulse is applied

immediately after the complete T2 decay of the FID (second transient). Provided that T1

is longer than T2, the second transient contains only the background signal, which can

be subtracted using phase cycling.

One of the most popular and well-known approaches for 1H background suppression

is the Depth pulse sequence. Originally developed for in vivo NMR spectroscopy us-

ing surface coils, the Depth sequence excites a spatially localised signal by exploiting

the variation in B1 field strength with distance of spins from the rf coil [84–86]. The

sequence was first applied to the problem of background suppression in 1H MAS NMR

by Cory and Ritchey, who used a 90◦ pulse followed by two 180◦ pulses phase cycled

according to the Exorcycle scheme [26, 46]. As described in Section 2.8.1, Exorcycle

suppresses signal associated with imperfect 180◦ pulses and the selected signal has a

strong dependence on the flip angle, β [87, 88]. For a pulse sequence with initial pulse

β followed by N refocusing pulses 2β, the overall dependence of the the signal on the

flip angle is given by

sin2N+1 β (3.1)

With Cory and Ritchey’s method, signal is only acquired with full intensity from spins

in the centre of the rf coil, where the the B1 field has its nominal value, while background

spins, which experience a very weak B1 field are not detected.

White and coworkers have proposed a background suppression method for MAS NMR

based on the same principle as Cory and Ritchey [89]. Instead of using Exorcycle to

achieve spatial localisation of the signal, they employed a narrowband composite 90◦
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nom = 1

B1 / B1
nom ≈ 0.5

FIGURE 3.2: The B1 field created by a solenoid drops to approximately half its nominal
value at each end of the coil. As a result, spins in the sample will experience a range of
radiofrequency field strengths depending on their position in the rotor.

pulse, 90◦0◦ 90◦90◦ 90◦180◦ 90◦270◦ , that had been used earlier to eliminate unwanted sig-

nals in solution-state NMR spectra [90]. Feng and Reimer suggested a modification

to Cory and Ritchey’s implentation of Depth, employing a long initial excitation pulse

instead of a 90◦ pulse. This results in dephasing of the background coherences and ex-

tends the applicability of the Depth sequence to situations where the difference in B1

field strength between the inside and outside of the coil is small.

3.1.2 Radiofrequency inhomogeneity effects on the Depth sequence

One drawback of the Cory-Ritchey Depth sequence is that, compared with a conven-

tional 90◦ aquisition, there is a significant decrease in the desired signal intensity of the

sample spins. This occurs as a result of the sequence being too spatially selective. If we

consider the B1 field generated along the axis of a solenoidal coil, we find that the B1

field drops to about half of its nominal value at each end of the coil [91, 92] as illustrated

in Figure 3.2. Since the rotor is longer than the coil, it is clear that there will be a range

of flip angles across the sample and signal will only be selected from the centre of the

rotor. If β = 90◦ in the centre of the sample, then at the end of the coil β = 45◦. From

Equation 3.1, sin5 β = 0.18 with β = 45◦, and so theoretically only 18% of the maxi-

mum possible amplitude of the magnetisation will be excited at the end of the coil in

the N = 2 Cory-Ritchey Depth sequence.

We have seen in Section 2.9 that composite pulses are able to compensate for the effects

of B1 inhomogeneity. In this Chapter we will explore the applicability of composite

pulses to the Depth sequence to improve the method for background suppression in 1H
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MAS NMR. Passband pulses seem to offer the most suitable B1 response for this partic-

ular problem. They are locally narrowband around B1 ≈ 0, thus will excite little signal

from the background, and locally broadband for B1 ≈ Bnom
1 , helping to excite spins

within the region of coil. With the features of a narrowband pulse, it is possible that

better suppression of the background signal could be achieved with a single composite

180◦ pulse compared with the simple N = 2 Depth sequence.

3.1.3 Refocusing pulse symmetry

In the Cory-Ritchey Depth pulse sequence, the refocusing pulses are simple 180◦ pulses.

The rotation axis of a 180◦0◦ pulse is along the x-axis when on resonance, while off reso-

nance the axis deviates from the x-axis yet remains in the xz plane. If the flip angle of the

refocusing pulse deviates from 180◦ or the rotation axis deviates away from the x-axis,

a phase error will be introduced into the spin-echo signal. As described in Section 2.8,

selection of the coherence transfer pathway with Exorcycle phase cycling cancels this

phase error and a spin-echo signal with perfect phase is obtained.

It is important that the phase of the NMR signal remains undistorted if an acceptable

spectrum is to be obtained. For this reason, it is vital to consider the symmetry of the

composite refocusing pulses to be used in the Depth sequence. In Section 2.10 it was

demonstrated that symmetric composite pulses have overall rotation axes that deviate

in the xy plane as a function of B1 and offset, while those of asymmetric composite

pulses are not constrained to lie in any particular plane of the rotating frame. A phase

error will be reintroduced in the spin-echo signal by such pulses, even if Exorcycle is im-

plemented. As we are aiming to achieve satisfactory background suppression using just

a single refocusing pulse, the multiple refocusing method described in Section 2.10.4 is

not an option for removing phase errors. An antisymmetric pulse must therefore be

used, as Exorcycle is able to remove phase errors arising from deviations of the overall

rotation axis in the xz-plane [3, 4].
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3.2 Passband composite pulses

3.2.1 Existing passband composite pulses

A number of passband 90◦ and 180◦ composite pulses have been published. Wimperis

designed several composite 90◦ pulses using average Hamiltonian theory [49, 93], in-

cluding the sequences

R1 = 360◦262.8◦ 360◦97.2◦ 90◦0◦ (3.2)

PB1(90◦) = 360◦93.6◦ 720◦266.4◦ 360◦93.6◦ 90◦0◦ (3.3)

These pulses have similar passband excitation profiles when used on an initial state of z

magnetisation. They differ when used on an initial state of transverse y magnetisation,

with the longer sequence PB1(90◦) providing better phase behaviour. Since we shall

be applying this sequence as an excitation pulse at the start of the Depth sequence, the

shorter sequence R1 will be used.

Passband composite 180◦ pulses have been designed by Cho et al. [94, 95], which we

designate with the names Cho-7 and Cho-9 according to the length of the sequences:

Cho-7 = 180◦285◦ 180◦195◦ 180◦45◦ 180◦90◦ 180◦45◦ 180◦195◦ 180◦285◦ (3.4)

Cho-9 = 180◦90◦ 180◦105◦ 180◦270◦ 180◦255◦ 180◦0◦ 180◦255◦ 180◦270◦ 180◦105◦ 180◦90◦ (3.5)

Wimperis has introduced several sequences [49, 93], including

T1 = 360◦255.5◦ 360◦104.5◦ 180◦0◦ (3.6)

PB1(180◦) = 360◦97.2◦ 720◦262.8◦ 360◦97.2◦ 180◦0◦ (3.7)

However, these passband 180◦ pulses are all either symmetric (Equations 3.4 and 3.5) or

asymmetric (Equations 3.6 and 3.7), making them unsuitable for refocusing transverse

magnetisation without producing a phase error. This motivated the search for passband

180◦ composite pulses with antisymmetric phases schemes.
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3.2.2 Novel passband composite pulses

Several methods have been used to derive novel passband refocusing pulses [4]. If

we take an asymmetric 90◦ composite pulse, and append to it a time-reversed version

of itself with phases that are mirrored about the x-axis, we obtain an antisymmetric

180◦ pulse. For example, if R1 (Equation 3.2) is time-reversed and mirrored, we get

90◦0◦ 360◦262.8◦ 360◦97.2◦ . Appending this altered sequence to R1 gives the new passband

180◦ pulse,

APB1 = 360◦262.8◦ 360◦97.2◦ 180◦0◦ 360◦262.8◦ 360◦97.2◦ (3.8)

Alternatively, we can derive an antisymmetric 180◦ composite pulse from a symmetric

180◦ sequence. Using Equation 6 from Reference [62],

φ′j = −(−1)jφj −
j−1

∑
k=1

(−1)k2φk (3.9)

we can convert the symmetric phase scheme of Cho-7 (Equation 3.4) into the antisym-

metric ”toggling frame” (see Section 4.2.1) phase scheme to give,

APB2 = 180◦105◦ 180◦195◦ 180◦45◦ 180◦0◦ 180◦315◦ 180◦165◦ 180◦255◦ (3.10)

Finally, noting that a sequence consisting of an odd number of 180◦ pulses with a cen-

tral pulse of 180◦0◦ will produce an overall 180◦0◦ composite pulse, we can conduct a

numerical search using a simple computer program to find a sequence of pulses that

most closely matches a target function which is passband with respect to the B1 field.

Source code in Fortran for the computer program used can be found in Appendix D.

The target function can be defined to search for pulses of different bandwidths, but

the closeness of the best match found can be limited by the number of pulses in the

sequence. Searching for a passband pulse with a broader bandwidth than the other se-

quences presented here, we found it necessary to have a composite pulse composed of

seven 180◦ elements. Using this approach, the following sequence was found

APB3 = 180◦192◦ 180◦315◦ 180◦241◦ 180◦0◦ 180◦119◦ 180◦45◦ 180◦168◦ (3.11)
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FIGURE 3.3: Simulated Iz → −Iz and Iy → −Iy inversion profiles for the APBn anti-
symmetric passband composite pulses as a function of the normalised B1 field strength,
B1/Bnom
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FIGURE 3.4: Simulations of the performance of the original Cory-Ritchie Depth se-
quence, comprising a 90◦ pulse followed by N 180◦ pulses, with each refocusing pulse
phase cycled independently according to the Exorcycle scheme. The desired in-phase
magnetization component 〈Iy〉 = Tr{σfinal Iy}/Tr{I2

y} is plotted as a function of the
normalised B1 field strength, B1/Bnom

1 (〈Ix〉 = 0 for all sequences). Each sequence
corresponds to a 4N-step phase cycle and thus at the nominal field strength the result
will be σfinal = 4N Iy; the results have been normalised to the N = 1 curve to enable
comparison of the bandwidth of each sequence.

Figure 3.3 shows the Iz → −Iz and Iy → −Iy inversion profiles for the three new APBn

antisymmetric passband composite 180◦ pulses as a function of norrmalised B1 field

strength. APB1 and APB2 have similar bandwidths, while APB3 has been designed to

be locally broadband over a wider range of B1 values than it is locally narrowband.
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3.3 Simulations of the Depth sequence

Figure 3.4 shows simulations of the original Cory-Ritchey Depth sequence, comprising

a 90◦ pulse followed by N 180◦ pulses. An initial state σinitial = Iz was used. The

phase of each refocusing pulse was incremented through the four steps of Exorcycle

and the resulting magnetisations summed appropriately over the 4N steps. The desired

in-phase magnetisation component is plotted as a function of the normalised B1 field

strength. Each sequence corresponds to a 4N-step phase cycle and thus at the nominal

field strength the result will be σfinal = 4N Iy; here, the results have been normalised to

the N = 1 result to enable comparison of the bandwidth of each sequence. It can be

seen that, with increasing N, the signal becomes more localised to a narrower range of

B1/Bnom
1 . In particular, although there is little signal excited (as desired) for B1/Bnom

1 <

0.25, the N = 2 sequence is poor at exciting magnetisation with high amplitude across

the range 0.5 ≤ B1/Bnom
1 ≤ 1.0, which corresponds to the range of B1 fields expected to

occur within the coil.

The effect of the symmetry of the refocusing pulse on the resultant phase of the mag-

netisation is shown in Figure 3.5. The performance of various passband composite 180◦

pulses has been simulated, with an initial state σinitial = −Iy (the magnetisation cre-

ated by a perfect 90◦0◦ pulse on an equilibrium state Iz) and incorporating the Exorcycle

phase cycle. The resulting in-phase magnetisation component 〈Iy〉 and the out-of-phase

component 〈Ix〉 are plotted as a function of normalised field strength B1/Bnom
1 .

Figure 3.5(a) shows the Iy and Ix magnetisation created by the symmetric passband se-

quences Cho-7 and Cho-9, as well as by the asymmetric sequences T1 and PB1(180◦).

The 〈Iy〉 profiles of the Cho-7, Cho-9 and T1 sequences are passband over a similar

range of B1/Bnom
1 . For each of these sequences, little Ix magnetisation is created close to

Bnom
1 , but as the field strength deviates from the nominal value, a significant Ix compo-

nent results. The passband composite pulse PB1(180◦) shows the best phase behaviour

of these sequences, though some out-of-phase magnetisation is still created at B1 field

strengths away from the nominal value. The Iy and Ix profiles of the antisymmetric

sequences APB1, APB2 and APB3 as well as for the Cory-Ritchey sequence with N = 1

are shown in Figure 3.5(b). It can be seen that even in the presence of B1 inhomogeneity,

these sequences do not create any unwanted out-of-phase Ix magnetisation. These an-

tisymmetric sequences therefore yield ideal phase behaviour and will be most suitable
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(b) N = 1 Depth sequence with antisymmetric composite pulses.

FIGURE 3.5: Simulations showing the effect of the symmetry of a refocusing pulse
on the spin-echo phase. The performance of various passband composite 180◦ pulses
as a function of normalised B1 field strength has been simulated, with an initial state
σinitial = −Iy and incorporating Exorcycle.

for background suppression experiments. From this point onwards, we will therefore

only consider the antisymmetric passband sequences APB1, APB2 and APB3.

Figure 3.6 shows simulations of the performance of these antisymmetric passband re-

focusing pulses in an N = 1 Depth pulse sequence in combination with a variety of ex-

citation pulses. An initial state σinitial = Iz was used and the Exorcycle phase cycle was

followed for the refocusing pulse. Both the 〈Iy〉 and 〈Ix〉 profiles are shown as a func-

tion of B1/Bnom
1 . Figure 3.6(a) shows simulations of the Depth sequence implemented

using a simple 90◦ excitation pulse followed by a single antisymmetric passband refo-

cusing pulse. The use of a simple 180◦ refocusing pulse (which is both symmetric and

antisymmetric) corresponds, of course, to the N = 1 Cory-Ritchey sequence. The simu-

lations in Figure 3.6(b) use the passband excitation pulse R1 (Equation 3.2) , while those
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in Figure 3.6(c) use the broadband excitation pulse BB1(90◦) of Reference [49],

BB1(90◦) = 180◦97.2◦ 360◦291.5◦ 180◦97.2◦ 90◦0◦ . (3.12)

The small out-of-phase 〈Ix〉 magnetization components that appear in Figures 3.6(b)

and 3.6(c) arise from the composite excitation pulse used but are of such low amplitude

that they are unlikely to cause a problem in experimental practice. It can be seen that

the use of antisymmetric passband refocusing pulses in the Depth pulse sequence yields

much better excitation of transverse magnetization across the range 0.5 ≤ B1/Bnom
1 ≤

1.0 than the N = 1 or N = 2 Cory-Ritchey sequence, while still suppressing excitation

for low B1 field strengths, B1/Bnom
1 ≤ 0.25. In terms of achieving uniform excitation

across the range 0.5 ≤ B1/Bnom
1 ≤ 1.0, it is worth noting that the use of broadband

excitation sequences, as in Figure 3.6(c) , is preferable to the use of passband excitation

sequences, as in Figure 3.6(b) .

If the use of a Depth pulse sequence with a single passband composite 180◦ pulse is to be

recommended in preference to the widely used N = 2 Cory-Ritchey sequence (with two

simple 180◦ pulses) then it is important to compare the quality of signal suppression at

low B1 field strengths that the methods achieve. Figure 3.7 shows the expectation value

of the Iy magnetisation resulting from various Depth sequences plotted on a logarithmic

scale for values of B1/Bnom
1 up to 0.5. An initial state σinitial = Iz and a simple 90◦

excitation pulse were used in the simulations. At low nominal field strengths, a single

composite APB1 pulse exceeds the degree of signal suppression achieved by the N = 2

Cory-Ritchey sequence by one or two orders of magnitude. A single APB2 composite

pulse results in a similar degree of suppression to the N = 2 Cory-Ritchey sequence,

while the APB3 is approximately two orders of magnitude less effective, although it still

achieves better suppression than the N = 1 Cory-Ritchey sequence.

Passband 180◦ pulses are known to be highly sensitive to the presence of a resonance

offset, Ω [49, 93, 95]. However, off-resonance effects are unlikely to be significant in 1H

MAS NMR as we can expect that the 1H nutation frequency will be large, maybe 100-

200 kHz, and the 1H spectral range fairly small, maybe 10-15 kHz at most (in diamag-

netic solids), even at the highest B0 field strengths. The off-resonance behaviour of the

new passband Depth sequences is investigated in Figure 3.8 where the 〈Ixy〉 = (〈Ix〉+

〈Iy〉)1/2 profiles have been simulated with offset parameters ∆B/Bnom
1 of −0.05, 0 and
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FIGURE 3.6: Simulations of the performance of the antisymmetric APBn passband re-
focusing pulses in a Depth pulse sequence when used in combination with different
types of excitation pulses: a simple 90◦ pulse, the passband pulse R1 (Equation 3.2)
and the broadband pulse BB1(90◦) (Equation 3.12) with an initial state σinitial = Iz and
incorporating Exorcycle.
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0 0.5 1 1.5 2

0

1

2

3

4

〈Ixy〉

B1/B1
nom B1/B1

nom

〈Ixy〉

+ 0.05
0
− 0.05

ΔB1/B1
nom

0 0.5 1 1.5 2

0

1

2

3

4

〈Ixy〉

0 0.5 1 1.5 2

0

1

2

3

4

APB1

APB2 APB3

FIGURE 3.8: The expectation value of the Ixy magnetisation in a Depth sequence as
a function of B1/Bnom

1 . The simulations have been carried out at resonance offsets
corresponding to offset parameters of ∆B/Bnom

1 of −0.05, 0 and +0.05, where ∆B =

−Ω/γ. An initial state σinitial = Iz and a simple 90◦ excitation pulse were used.

+0.05, where ∆B = −Ωγ. An initial state σinitial = Iz and a simple 90◦ excitation pulse

were used in the simulations. All three Depth sequences hold their passband character

well across this small range of offsets, with perhaps the sequence based on the compos-

ite pulse APB3 providing the best off-resonance performance.
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FIGURE 3.9: Molecular structures of the compounds used in the experimental parts
of this Chapter. Nominally perdeuterated forms of oxalic acid dihydrate and PMMA
were used to reduce the dipolar broadening seen in the spectra.

3.4 Experiments

Experiments were performed on either a Bruker Avance 400 MHz spectrometer equipped

with a widebore 9.4 T magnet and a 4-mm MAS probe or a Bruker Avance III 600

MHz spectrometer equipped with a widebore 14.1 T magnet and a 2.5-mm MAS probe.

Alanine, nominally perdeuterated poly(methyl methacrylate) (PMMA) and nominally

perdeuterated oxalic acid dihydrate were chosen for study; the low 1H concentrations in

the PMMA (1% relative abundance) and oxalic acid dihydrate (4% relative abundance)

result in a very noticeable background signal in their 1H MAS NMR spectra, arising

from protons present in the probe. Figure 3.9 shows the molecular structure of all the

compounds used in this Chapter. On the 4-mm probe at 400 MHz, the calibrated 90◦

pulse length for 1H was 2.1 μs, corresponding to a nutation frequency, ν1 = |γB1|/2π

of 120 kHz. On the 2.5-mm probe at 600 MHz, the calibrated 90◦ pulse duration was

found to be 1.65 μs, indicating a radiofrequency field strength of 150 kHz.

For the N = 2 Cory-Ritchey depth sequence, the 16-step phase cycle given in Refer-

ence [87] was used. In our other Depth sequences, based on a single spin echo, another

16-step phase cycle was used, comprising a 4-step Exorcycle nested with the 4-step CY-

CLOPS. This gives the 16-step phase cycle shown in Table 3.1.

Figure 3.10 shows 1H MAS NMR spectra of nominally perdeuterated oxalic acid dihy-

drate, recorded at a MAS rate of 14286 Hz. The water protons have a 6 ppm and the

carboxylic acid protons a 17 ppm chemical shift. The spectrum recorded with a simple

90◦ pulse (Figure 3.10(a)) shows a distinct broad signal at 25 ppm arising from ”back-

ground” protons in the probehead. Figure 3.10(b) shows the spectrum resulting from
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FIGURE 3.10: 1H (400 MHz) MAS NMR spectra of deuterated oxalic acid (14286 Hz
MAS rate, 90◦ pulse length of 2.1 μs, relaxation interval of 120 s, averaging of 16 tran-
sients).

the original Cory-Ritchey Depth sequence with two 180◦ refocusing pulses (N = 2).

Although the background signal has been removed effectively with this sequence and

the baseline improved (owing to the use of a spin echo), significant loss of signal from

the sample has also occurred. By implementing an N = 1 Cory-Ritchey Depth se-

quence (Figure 3.10(c)), a greater amount of signal from the sample can be retained.

Figure 3.10(d) shows the spectrum obtained using the Depth sequence with a single

passband composite refocusing pulse, APB3. In addition to the successful removal of

the background signal from the spectrum, it can be seen that greater signal is obtained

from the oxalic acid dihydrate when compared with Figure 3.10(c). Very similar re-

sults to those in Figure 3.10(d) were obtained with Depth sequences incorporating the
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TABLE 3.1: The 16-step phase cycling scheme (Exorcycle + CYCLOPS) used for se-
quences based on a single spin echo. The notation here lists the phases in units of 90◦

(as used by default by the NMR software) and so 0 = 0◦, 1 = 90◦, 2 = 180◦ and
3 = 270◦.

Excitation pulse Refocusing pulse Receiver phase

0 0 0 0 1 1 1 1 0 1 2 3 1 2 3 0 0 2 0 2 1 3 1 3
2 2 2 2 3 3 3 3 2 3 0 1 3 0 1 2 2 0 2 0 3 1 3 1

ppm !!""!#$"!#""!$"!$" !"" #$" #"" $" " %%&

(a) ∆B/Bnom
1 = 0
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(b) ∆B/Bnom
1 = +0.05
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(c) ∆B/Bnom
1 = −0.05

FIGURE 3.11: 1H (400 MHz) MAS NMR spectra of deuterated oxalic acid (14286 Hz
MAS rate, 90◦ pulse length of 2.1 μs, relaxation interval of 120 s, averaging of 16 tran-
sients). Spectra recorded with a Depth sequence of a simple 90◦ excitation pulse fol-
lowed by a passband refocusing pulse, APB1 with transmitter offsets of (a) 0 Hz, (b)
+6250 Hz and (c) −6250 Hz.

passband composite pulses APB1 and APB2.

The on- and off-resonance performances of the new passband composite pulse Depth

sequences are compared in Figure 3.11, where again 1H MAS NMR spectra of nominally

perdeuterated oxalic acid dihydrate, recorded at a MAS rate of 14286 Hz, are shown. A

Depth sequence with a single composite refocusing pulse, APB2, was used and yielded

an essentially identical result with the transmitter offset in the middle of the two 1H

centreband resonances (Figure 3.11(a)) and with the transmitter offset by either +6250

Hz Figure 3.11(b) or −6250 Hz (Figure 3.11). The transmitter offsets used here corre-

spond to the offset parameters ∆B/Bnom
1 = ±0.05 which were used in the simulations

in Figure 3.8, which are typical for 1H NMR. The similarity of the spectra shown here

demonstrates the robustness of the composite pulse performance under this range of

offsets.
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FIGURE 3.12: 1H (400 MHz) MAS NMR spectra of deuterated PMMA (14286 Hz MAS
rate, 90◦ pulse length of 2.1 μs, relaxation interval of 120 s, averaging of 16 transients).

Figure 3.12 shows 1H MAS NMR spectra of nominally perdeuterated PMMA, recorded

at a MAS rate of 10 kHz. At this B0 field strength and MAS frequency, only a single

unresolved 1H centreband resonance is observed, at a shift of 2.5 ppm, corresponding

to the CH2 and two different CH3 sites visible in Figure 3.9(b) [96, 97]. The spectrum

recorded with a simple 90◦ pulse (Figure 3.12(a)) shows a distinct broad signal at 25

ppm arising from ”background” protons in the probehead. The Depth sequence with a

simple 90◦ excitation pulse followed by the composite refocusing pulse APB1 was used

to record the spectrum shown in Figure 3.12(b), while in Figure 3.12(c) a slightly greater

signal was obtained using a sequence comprising the broadband composite 90◦ pulse

BB1(90◦) as an excitation sequence followed by APB1 as the refocusing sequence. Both

passband composite pulse Depth sequences can be seen to have successfully removed

the unwanted background signal.

As an example of 1H MAS at faster spinning rates, Figure 3.13 shows 1H MAS NMR

spectra of L-alanine, recorded at a MAS rate of 20 kHz. Figure 3.9(c) shows the molec-

ular structure of L-alanine. Three 1H resonances are resolved: the NH3 protons give

rise to the signal at 8.5 ppm, the CH proton is at 3.8 ppm and the CH3 protons appear

at 1.3 ppm [98–100]. The spectrum recorded with a simple 90◦ pulse (Figure 3.13(a))

has a poor baseline but shows no immediately apparent sign of any background sig-

nal owing to the much higher concentration of 1H spins in this sample. Figure 3.13(b)

shows the spectrum resulting from the original N = 2 Cory-Ritchey Depth sequence.

Although the baseline has been improved (owing to the spin echo), significant loss of

signal from the sample has also occurred. Figure 3.13(c) shows the spectrum obtained
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FIGURE 3.13: 1H (600 MHz) MAS NMR spectra of L-alanine (20 kHz MAS rate, 90◦

pulse length of 1.65 μs, relaxation interval of 3 s, averaging of 16 transients).

using the Depth sequence with a simple 90◦ excitation pulse and a single passband

composite refocusing pulse APB1. It can be seen that much greater signal is obtained

when compared with Figure 3.13(b).

3.5 Imaging of the B1 distribution and background signal in a

MAS probehead

To gain insight into the actual B1 distribution and origin of the background signal, a

two-dimensional correlation experiment employing inhomogeneous B0 and B1 fields

can be used [5]. The experiment allows the range of B1 fields across the sample to mea-

sured, as well as across the background spins, so that any overlap between the two

distributions can be judged. By using the room-temperature shim coils to generate a

linear z gradient in the B0 field, the experiment can be performed on any NMR spec-

trometer and MAS probehead. The method can also be combined with Depth pulse

techniques for background suppression, allowing their performance to be more rigor-

ously evaluated.

3.5.1 B0 and B1 correlation on a MAS probehead

The B1 distribution of an NMR probehead can be measured using a two-dimensional

nutation experiment performed on a spin I = 1/2 nucleus with a relatively narrow
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FIGURE 3.14: Pulse sequences and coherence transfer pathway diagrams employed
for imaging the B1 field distribution in a MAS NMR probe using inhomogeneous B0
and B1 fields. (a) Basic two-dimensional nutation experiment. (b) Nutation experiment
incorporating CoryRitchey Depth pulse sequence. (c) Nutation experiment incorporat-
ing passband Depth sequence utilising the antisymmetric composite 180 pulse APB1.
All experiments are performed in the presence of the B0 gradient along the z axis.

spectral range, such as 1H. The duration of a radiofrequency pulse is incremented, form-

ing the t1 period of a two-dimensional experiment yielding the pulse sequence shown

in Figure 3.14(a), and the resulting free induction decays subjected to a two-dimensional

Fourier transformation. The resulting two-dimensional spectrum has the conventional
1H spectrum in the F2 dimension and the distribution of ν1 = |γB1| /2π nutation fre-

quencies in the F1 dimension. In addition, a linear B0 gradient is applied along either

the +z or −z axis (i.e., parallel or antiparallel to B0 itself) during the nutation experi-

ment. The aim of this is to create a second dimension with spatial resolution so that the

distribution of the B1 field can be correlated with its spatial origin within the sample.

The room-temperature shim coils were used to generate the linear z gradient – with
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this approach, the experiment can be applied on any MAS probe and any NMR spec-

trometer. The shim coils generate only relatively weak magnetic field gradients, so the

z gradient is used because it will be stronger than the linear x or y shim gradients.

The low strength of the B0 gradient is a problem because solid-state 1H resonances are

generally very broad and the gradient must produce a significant further broadening

if acceptable spatial resolution is to be obtained. Our sample was chosen with this in

mind: adamantane (Figure 3.9(d)) is highly mobile and in the solid each molecule is able

to rotate rapidly within its lattice position, giving a relatively narrow 1H resonance. In

addition, further narrowing is achieved with MAS. The application of MAS in the pres-

ence of a B0 gradient has the effect that, for the sample and rotor, gradient components

orthogonal to the spinning axis will be averaged, leaving only the component along the

spinning axis. This effective B0 gradient will be parallel with the strongest component

of the B1 gradient (along the axis of the solenoidal radiofrequency coil), giving rise to the

situation described in Reference [101] and [102], where correlated B0 and B1 gradients

result in retention of high-resolution NMR spectra despite the spatial resolution. Note,

however, that this only applies to the spinning sample and not to the background spins,

which are static and so will yield a lineshape that is broadened in both dimensions by

the B0 and B1 gradients.

The B1 field will drop from ∼100 kHz in the centre of the radiofrequency coil to ∼0

kHz for the background spins. Thus, the B1 gradient will be very strong compared to

the B0 gradients that we can produce on the shim coils (< 1 kHz across the dimensions

of the MAS rotor). This means that, as in Reference [102], we can ignore the effect

of the B0 gradient during the pulse to a first approximation and hence during the t1

period. Therefore, we can interpret the two-dimensional spectrum as representing the

B1 gradient image in the F1 dimension correlated with the B0 gradient image in the F2

dimension.

This experiment can be used to make a critical assessment of the performance of simple

and composite Depth pulse methods for 1H background suppression in a MAS probe.

Appending two 180◦ pulses phase cycled according to Exorcycle scheme to the imaging

method described here yields the pulse sequence in Figure 3.14(b), which will be used

to examine the Depth sequence as implemented by Cory and Ritchey. Combining one of

our passband composite pulses for background suppression with the two-dimensional

method yields the pulse sequence in Figure 3.14(c).
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3.5.2 Experimental details

Experiments were performed on a Bruker Avance 400 MHz spectrometer equipped with

a widebore 9.4 T magnet and a 4-mm MAS probe. Adamantane was packed convention-

ally to fill a 4-mm zirconia MAS rotor (with Kel-F cap) completely. Figure 3.9(d) shows

the structure of adamantane, which possesses two inequivalent 1H sites. These are not

resolved here, and a single peak is seen at 1.8 ppm. The calibrated 90◦ pulse length for
1H was 1.95 μs, corresponding to an apparent nutation frequency, ν1 = |γB1|/2π, of 128

kHz. The MAS rate used was 10 kHz. The 1H MAS linewidth for adamantane in the

absence of a B0 gradient was 460 Hz. The B0 gradient was applied by increasing the lin-

ear z shim current up to its maximum permitted value in either the positive or negative

sense. This yielded a 1H MAS linewidth for adamantane of 2070 Hz. Two-dimensional

nutation spectra were recorded by incrementing the excitation pulse through 96 steps

of 2.0 μs, yielding an F1 spectral width (with a real Fourier transform with respect to

t1) running from 0 to 250 kHz. A four-step CYCLOPS phase cycling was used. When

Depth pulses were appended to the nutation sequence, a truncated 16-step phase cy-

cle was used for the original Cory-Ritchey sequence as described in Table 1 of Refer-

ence [87], while a 16-step Exorcycle + CYCLOPS phase cycle was used for the passband

sequences, as described in Table 3.1. The passband composite 180◦ pulse used in the

passband depth sequence was APB1 from Equation 3.8.

3.5.3 Results

The 1H MAS NMR spectrum of adamantane obtained in the absence of the B0 gradient

is shown in Figure 3.15(a). The spectrum appears to consist of a single resonance at 1.9

ppm, with a linewidth (full-width at half-height) of 460 Hz. The application of the B0

gradient broadens the line to 2070 Hz, as shown in Figure 3.15(b).

Two-dimensional 1H MAS nutation spectra of adamantane, recorded with the pulse

sequence shown in Figure 3.14(a), are shown in Figure 3.16. In the spectrum in Fig-

ure 3.16(a), recorded with the linear z shim current set to its maximum positive value,

it can be seen that the 1H nutation rate is ν1 ≈ 150 kHz in the centre of the sample

(corresponding to the centre of the radiofrequency coil). Since the B0 gradient spreads

the signal along the F2 dimension according to its spatial z coordinate, while the B1 field
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FIGURE 3.15: 1H (400 MHz) MAS NMR spectra of adamantane (10 kHz MAS rate,
90◦ pulse length of 1.95 μs, relaxation interval of 10 s, four-step CYCLOPS phase cycle
applied). The full linewidth at half-height in (a) is 460 Hz, while in (b) the application
of a B0 gradient broadens this to 2070 Hz.

of the coil decreases from the centre towards the two ends of the sample, an inverted

V-shaped lineshape results for the sample (see the expansion in Figure 3.16(b)). The sig-

nal from the very top and bottom of the rotor exhibits a nutation rate ν1 of around 10-30

kHz on either side of the maximum in the F2 dimension. Spinning sidebands from the

adamantane sample are also visible in Figure 3.16(a).

A spatially distinct background signal is also apparent in Figure 3.16(a), appearing as a

broad signal corresponding to a nutation rate ν1 in the range 10-30 kHz. Corresponding

to 1H nuclei in materials used in the probehead, the background spins will be mainly

located below the MAS rotor, perhaps being excited and detected by electronic com-

ponents further down in the probe body. These background spins experience a much

lower average B1 field than those within the rotor. With reversal of the direction of the

B0 gradient, the position of the background signal is moved from the high-frequency

side of the rotor in F2 (see Figure 3.16(a)) to the low-frequency side (Figure 3.16(c)).

From the sample dimensions and orientation, we can estimate that our B0 gradient

strength is 200 Hz mm−1 along the z-axis. The apparent shift of the background signal

maximum upon reversing the z gradient direction is 25 kHz (i.e., the background signal

maximum is shifted about 12.5 kHz by the gradient), consistent with the background

signal originating roughly 12.5 kHz/(200 Hz mm−1) = 62.5 mm below the centre of

the sample (which is not shifted by the B0 gradient). Although the precise value should

be viewed with caution (the B0 gradient will not be linear over all space), this would
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FIGURE 3.16: Two-dimensional 1H (400 MHz) nutation spectra of adamantane. Spec-
tra were recorded with the pulse sequence shown in Figure 3.14(a) by averaging 16
transients for each of the 96 t1 increments of 2 μs for the excitation pulse. In (a), the
linear z shim has been set to its maximum positive value, while in (b) an expansion of
the centreband adamantane signal is shown. In (c), the B0 gradient has been reversed
by adjusting the room-temperature z shim current to its maximum negative current.

appear to confirm that electronic components situated well below the coil, rotor and

stator assembly play a significant role in acquiring the background 1H signal, with the

signal itself perhaps originating from the polymers used in the construction of some of

these components, e.g., the capacitors.

The nutation spectrum shown in Figure 3.17(a) was acquired with the original Cory-

Ritchey Depth sequence for background suppression appended to the normal nuta-

tion pulse sequence, as shown in Figure 3.14(a). Comparing this spectrum with that

in Figure 3.16(a), the successful elimination of the background signal is evident. The

F1 projections of two-dimensional nutation experiments acquired without background
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suppression sequences (Figure 3.14(a)) and with the Cory-Ritchey (Figure 3.14(b)) and

passband Depth (Figure 3.14(c)) sequences appended are compared in Figure 3.17(b).

The projections show the signal amplitude as a function of the B1 field and can thus

be used to assess the effectiveness of the Depth sequences for removing background

signals. In addition to the adamantane signal with a maximum in its B1 distribution at

ν1 ≈ 150 kHz, the conventional nutation experiment shows a significant signal originat-

ing from the background with a broad range of low nutation frequencies in the range

10-30 kHz. Appending the Cory-Ritchey Depth sequence yields a projection that is free

of any background signal. However, a distinct drop in signal intensity is also evident

for the sample.

As described in Section 3.1.2, with the use of passband composite pulses in the Depth se-

quence we hoped to achieve effective suppression of the background signal using only

a single refocusing pulse. Using this approach, greater signal intensity can be obtained

from the sample owing to the compensation for the B1 inhomogeneity of the coil. The

simulations in Figure 3.7 have confirmed that implementing the Depth sequence using a

single passband composite pulse achieves a greater degree of suppression of the back-

ground than the original Cory-Ritchey Depth sequence with two simple 180◦ pulses.

Figure 3.17(b) also shows the F1 projection of the nutation experiment with passband

Depth appended using the sequence APB1. Compared with the original Cory-Ritchey

Depth sequence, more signal is excited across the B1 range experienced by the sample

within the coil, while successful removal of the background is still achieved.

One significant point to be noted from the spectra in Figures 3.16 and 3.17 is that the

B1 inhomogeneity seems to be very severe at the two ends of the sample, which lie

outside the radiofrequency coil, with ν1 dropping as low as 10 kHz in our results. Con-

sequently, the low nutation rates of the packed sample at each end of the rotor actually

overlap with the nutation rate range of the background signal. As a result, although the

passband composite pulse method improves the signal-to-noise ratio for the Depth se-

quence, it is clearly not possible to retain the full signal intensity from the sample if the

background is removed using any method that exploits the B1 distribution of signals.
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FIGURE 3.17: (a) Two-dimensional 1H (400 MHz) nutation spectrum of adamantane,
incorporating the Cory-Ritchey background suppression method. Spectrum recorded
with the pulse in Figure 3.14(b) by averaging 16 transients for each of 96 t1 increments
of 2 μs for the excitation pulse. (b) Comparison of the F1 projections of two-dimensional
nutation spectra with no Depth background suppression, with Cory-Ritchey back-
ground suppression, and with passband Depth suppression using the antisymmetric
composite 180◦ pulse APB1

3.6 Conclusions

The N = 2 Cory-Ritchey Depth sequence is a popular method employed in 1H MAS

NMR to suppress the broad background signal that arises from 1H nuclei located out-

side the MAS rotor. However, compared to a simple 90◦ excitation pulse, the signal

amplitude arising from the sample is greatly reduced. It seems that the majority of this

signal loss is due to the non-uniform excitation that this sequence provides as a function

of B1 across the range 0.5 ≤ B1/Bnom
1 ≤ 1.0, which corresponds to the range of B1 fields

expected to occur within the coil (see Figure 3.2). Three novel antisymmetric passband

refocusing pulses have been introduced – the inclusion of these in the Depth sequence

compensates for the B1 inhomogeneity experienced by the sample.

Another possible source of signal loss in some samples is significant transverse relax-

ation during the spin echo intervals within the Depth sequence. As expected, therefore,

the N = 1 Cory-Ritchie Depth sequence yields more signal than the N = 2 sequence

(compare Figures 3.10(b) and 3.10(c)), both because of the more uniform excitation in

the range of B1 fields generated within the coil (see Figure 3.4) and the shorter free-

precession intervals used. However, it must be noted that the degree of signal suppres-

sion predicted for the N = 1 Cory-Ritchey sequence for B1/Bnom
1 ≤ 0.25, corresponding

to spins outside the radiofrequency coil, is two or three orders of magnitude lower than

that predicted for the N = 2 sequence (see Figure 3.7).
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Use of an antisymmetric passband composite 180◦ pulse in a single spin-echo Depth

sequence yields greater signal than the N = 1 Cory-Ritchey sequence (compare Fig-

ures 3.10(c) and 3.10(d)) owing to the more uniform excitation across the range 0.5 ≤

B1/Bnom
1 ≤ 1.0, corresponding to the range of B1 fields expected to occur within the coil

(see Figure 3.6). However, if the passband refocusing pulse APB1 or APB2 is used then

the degree of signal suppression for B1/Bnom
1 ≤ 0.25 (i.e., the background suppression)

is predicted to be as good as or better than that achieved with the widely used N = 2

Cory-Ritchey sequence (see Figure 3.7). In experimental practice, little difference was

observed between the performances of the three APBn passband pulses, with all typi-

cally yielding about twice the signal-to-noise ratio of the N = 2 Cory-Ritchey sequence

(compare Figures 3.10(b) and 3.10(d) or Figures 3.13(b) and 3.13(c)).

The combination of a passband or broadband composite 90◦ pulse with a passband 180◦

is predicted to provide more uniform excitation near to Bnom
1 than use of a simple 90◦

pulse in such a combination (see Figure 3.6). In practice, we found that only broadband

composite 90◦ pulses yielded any further signal enhancement in 1H MAS (compare Fig-

ures 3.12(b) and 3.12(c)). The disappointing performance of passband 90◦ pulses when

combined with passband 180◦ pulses in this application is likely to be a consequence of

their overall excitation profile being rather narrow when compared with the range of

B1 field strengths expected inside the solenoidal radiofrequency coil. We would also ex-

press some caution about the use of broadband composite 90◦ pulses, such as BB1(90◦),

in this application as, although the degree of signal suppression for B1/Bnom
1 ≤ 0.25 is

predicted to be similar to that of the N = 2 Cory-Ritchey sequence for the combination

of BB1(90◦) and APB1, for the sequences APB2 and APB3 it is predicted to be signifi-

cantly worse. The results in Figure 3.8 demonstrate that the passband Depth sequences

proposed in this work are sufficiently robust with respect to resonance offset for gen-

eral use in 1H MAS NMR. This is a consequence of both the small 1H spectral range

(likely to be at most 10-15 kHz) and the high 1H nutation frequencies used in mod-

ern 1H MAS NMR (maybe 100-200 kHz). With other nuclides, resonance offset and, if

present, quadrupolar interactions are likely to be more of a problem, as a result of both

wider spectral ranges and lower nutation rates.

Two-dimensional nutation experiments were used to allow the spatial distribution of

the B1 field to be mapped. The principal origin of the background signal in the 4-mm

probe used in this Chapter was found to be located well below the coil, rotor and stator
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assembly. Appending the Depth sequence to the nutation experiment clearly demon-

strated the removal of the background signal, while the use of the passband Depth

sequence achieved greater signal excitation from within the sample (see Figure 3.17(b).

It was also found that the nutation rates of the sample at either end of the rotor over-

laps with the range of nutation rates of the background signal. As a consequence, it

can be realised that it is not possible to retain the full signal intensity from the sample if

the background is to be removed using any method that exploits the distribution of B1

strengths.



Chapter 4

Dual-compensated antisymmetric

composite refocusing pulses

4.1 Introduction

As described in Section 2.9, different composite pulses are used when different band-

width properties with respect to experimental frequency parameters are required. Two

of the most common pulse imperfections encountered in NMR are the spatial inhomo-

geneity of the radiofrequency field strength B1, which leads to a distribution of nutation

frequencies across the sample, and the finite magnitude of ω1 with respect to typical

resonance offsets in the spectrum. Much of the effort in composite pulse design has

therefore been in creating sequences which are broadband with respect to the nutation

frequency ω1 or the resonance offset Ω.

Broadband composite 180◦ pulses have always been of particular interest as both inver-

sion of longitudinal (z) magnetisation and refocusing of tranverse (xy) magnetisation

are very sensitive to the common pulse imperfections. However, the early enthusiasm

for such pulses was rather diminished when it was realized that they often do not show

an advantage over simple 180◦ pulses when used for refocusing of transverse magneti-

sation, as is required when forming a conventional (or Hahn) spin echo. Many com-

posite pulses, including Levitt’s popular 90◦90◦ 180◦0◦ 90◦90◦ , produce a spin-echo signal

with a phase that is sensitive to the value of ω1 and Ω, owing to the dependence of the

overall rotation axis on these parameters.

79



Chapter 4. Dual-compensated antisymmetric composite refocusing pulses 80

Phase distortionless or constant-rotation composite pulses have both overall flip an-

gles and rotation axes that are almost constant over a certain range of either ω1 or Ω.

However, the problem with such pulses is that their bandwidths are not nearly large

enough for the imperfections that are commonly encountered in practical NMR spec-

troscopy. It seems that there are no short phase-distortionless composite 180◦ pulses

that can compensate for a B1 field that drops to less than half its nominal value across

the volume of the sample, or for a resonance offset parameter, |Ω|/ωnom
1 = ∆B/Bnom

1 ,

of 1 or greater, yet both these situations occur frequently in experimental practice. In

addition, most composite 180◦ pulses designed to compensate for B1 inhomogeneity

have a poor performance with respect to resonance offset, often much worse than that

of a simple 180◦ pulse. As a result, there will always be either parts of the sample or

signals with offsets that are outside the usable bandwidths of even the best so-called

phase-distortionless composite pulses and an unwanted phase shift in the echo signal

will nonetheless result.

As explained in Section 2.10, the overall rotation axis of an antisymmetric composite

pulse lies in a fixed vertical plane of the rotating frame (the xz plane if the central pulse

has phase 0◦). Using Exorcycle phase cycling, the use of an antisymmetric refocusing

pulse will produce an echo signal with constant phase for all values of ω1 and Ω. As

with any other phase-distortionless composite pulse, the effective bandwidth of an anti-

symmetric broadband pulse may not be sufficient to cover the full range of the relevant

instrumental imperfection but, unlike a symmetric or asymmetric composite 180◦ pulse,

it will not introduce any phase distortion into the spin echo.

In this Chapter, novel antisymmetric broadband composite 180◦ pulses will be intro-

duced [6]. These pulses are designed to be dual compensated - that is, compensated si-

multaneously for both resonance offset and inhomogeneity of the radiofrequency field.

Only one dual-compensated composite pulse of this phase symmetry has been pre-

sented in the literature before, in an appendix to Reference [60] without any verifying

simulations or experiments. Interestingly, we will show here that this sequence belongs

to one of the two families of dual-compensated 180◦ pulses presented here. These new

dual-compensated pulses will be designed analytically, with the aid of a graphical inter-

pretation of average Hamiltonian theory, and experimentally verified. These composite

pulses can also be incorporated into two-dimensional experiments containing spin-echo
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elements, and we demonstrate their inclusion in 31P refocused-INADEQUATE experi-

ments.

4.2 Theory and composite pulse design

4.2.1 Average Hamiltonian theory

Section 2.2 gave the solution for the evolution of the density matrix acted on by a time-

independent Hamiltonian. The use of average Hamiltonian theory has been used ex-

tensively in NMR to evaluate cases where the Hamiltonian is time-dependent [103–

105], and has been described in several works in the context of composite pulse design

[6, 56, 59].

Written in the rotating frame of reference, the Hamiltonian during the radiofrequency

pulse, either simple or composite, can be considered as the sum of two parts, Hnom and

V:

H = Hnom + V (4.1)

Hnom = ωnom
1 (Ix cos φ(t) + Iy sin φ(t)) (4.2)

where Hnom describes the interaction of the ideal or nominal radiofrequency field with

a spin system with total angular momentum operator I. The radiofrequency field pro-

duces a nominal nutation frequency ωnom
1 and has phase φ(t). This phase is constant

during a single pulse and so piecewise-constant during a composite pulse; if the com-

posite pulse consists of N pulses then φ(t) has the value φn during the nth pulse.

The duration of the nth pulse is τn. The sequence is then completely specified by

the N phases φn and the N pulse durations τn, with the overall duration T equal to

T = τ1 + τ2 + . . . + τN .

The operator V describes the deviation of the actual pulse Hamiltonian H from the

nominal behaviour described by Hnom. Here, we are interested in two possible forms

of the perturbation V:

1. V arises from a deviation of the true nutation frequency ω1 from its nominal value

ωnom
1 , as caused for example by a spatial inhomogeneity of the radiofrequency
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field across the sample:

Vinh = (ω1 −ωnom
1 )(Ix cos φ(t) + Iy sin φ(t)) (4.3)

2. V arises from an offset Ω of the rotating frame frequency from exact resonance:

Voff = ΩIz (4.4)

The time evolution of the spin system during the pulse is described by the propagator

U(t) and is written

U(t) = T̂ exp{−i
∫ t

0
H(t′) dt′}, (4.5)

where T̂ is the Dyson time-ordering operator. U(t), like H(t), can be separated into two

parts describing ideal behaviour and a perturbation,

U(t) = Unom(t)UV(t) (4.6)

where

Unom(t) = T̂ exp{−i
∫ t

0
Hnom(t′) dt′} (4.7)

UV(t) = T̂ exp{−i
∫ t

0
Ṽ(t′) dt′} (4.8)

Ṽ(t) = Unom(t)−1VUnom(t) (4.9)

Ṽ(t) is the full Hamiltonian in the interaction representation or ”toggling frame” im-

posed by Hnom

The propagator Unom(t) describes the evolution of the spin system under the effect of

the nominal radiofrequency field alone. Using the fact that Hnom(t) is piecewise time-

independent, Equation 4.7 can be written:

Unom(t) = exp{−iωnom
1 Iφn(t− τn−1 − . . .− τ1)} . . .

× exp{−iωnom
1 Iφ2 τ2} exp{−iωnom

1 Iφ1 τ1}
(4.10)
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where

τ1 + . . . + τn−1 ≤ t ≤ τ1 + . . . + τn (4.11)

Iφn = Ix cos φn + Iy sin φn (4.12)

The propagator Unom(t) consists of a series of n − 1 fixed rotations with flip angles

ωnom
1 τ1, ωnom

1 τ2, etc. and phases in the xy plane of φ1, φ2, etc. and a final variable ro-

tation with phase φn. According to Equation 4.9, the order in which these rotations act

on V is antichronological.

If the propagator UV(T) in Equation 4.6 were approximately equal to the identity op-

erator, i.e. UV(T) ≈ 1, over a certain range of an experimental frequency parameter

such as ω1 or Ω, then the full propagator for the sequence U(T) would approximate to

the ideal propagator Unom(T) over that same range. In this case, providing the pulse

durations and phases had also been chosen such that

Unom(T)IzUnom(T)−1 = −Iz (4.13)

then we would have derived a broadband composite 180◦ pulse.

As described by Tycko and coworkers [56, 59], a good way to achieve UV(T) ≈ 1 over

a certain range of an experimental frequency parameter is to make a Magnus expansion

of it:

UV(T) = exp{−i(V(0)T + V(1)T + . . .)} (4.14)

V(0)T =
∫ T

0
dt Ṽ(t) (4.15)

V(1)T = − i
2

∫ T

0
dt1

∫ t1

0
dt2 [Ṽ(t1), Ṽ(t2)] (4.16)

The sequence is broadband to Nth order if V(n) = 0 for 0 ≤ n ≤ N. As N becomes

larger, the range over which UV(T) ≈ 1 also becomes larger, corresponding to an in-

creasing bandwidth. The zeroth-order average Hamiltonian V(0) and the first-order

Hamiltonian V(1) are the first two terms in a power series expansion of an exact aver-

age Hamiltonian. The terms Vinh(0) and Voff(0) are linear in ω1 − ωnom
1 and Ω, respec-

tively, while Vinh(1) and Voff(1) are quadratic, and so on. Thus, by choosing the pulse
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phases and durations in the composite sequence such that V(0)T = 0, while simulta-

neously satisfying Equation 4.13, we will have designed a composite 180◦ pulse that is

broadband to ”zeroth-order” in the relevant experimental frequency parameter, either

ω1−ωnom
1 or Ω. If greater bandwidth is desired then this can be achieved by designing

”first-order” broadband composite 180 pulses that satisfy V(0)T = V(1)T = 0.

4.2.2 Simple pulses

It is insightful to calculate the zeroth- and first-order Hamiltionian terms for simple

radiofrequency pulse of duration τ1 and phase φ1 for the two perturbations described

in Equations 4.3 and 4.4. For inhomogeneity of the rf field, we find:

Ṽinh = Vinh = (ω1 −ωnom
1 )Iφ1 (4.17)

Vinh(0)τ1 = (ω1 −ωnom
1 )τ1 Iφ1 (4.18)

Vinh(1)τ1 = 0 (4.19)

For resonance offset, we calculate,

Ṽoff(t) = exp{+iωnom
1 Iφ1 t}ΩIz exp{−iωnom

1 Iφ1 t}

= Ω(Iz cos ωnom
1 t + Iφ1+90◦ sin ωnom

1 t)
(4.20)

Voff(0)τ1 =
Ω

ωnom
1

(
Iz sin ωnom

1 τ1 + Iφ1+90◦(1− cos ωnom
1 τ1)

)
(4.21)

Voff(1)τ1 =
1
2

(
Ω

ωnom
1

)2

Iφ1(ω
nom
1 τ1 − sin ωnom

1 τ1) (4.22)

For the specific case of a simple 180◦ pulse (ωnom
1 τ1 = π), Equations 4.21 and 4.22

become

Voff(0)τ1 = 2
Ω

ωnom
1

Iφ1+90◦ (4.23)

Voff(1)τ1 =
π

2

(
Ω

ωnom
1

)2

Iφ1 (4.24)
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4.2.3 Composite 180◦ pulses

We will consider composite 180◦ pulses composed of an odd number N of simple nom-

inal 180◦ pulses:

180◦φ◦1 180◦φ◦2 . . . 180◦φ◦N (4.25)

By restricting the sequence to have this form, Equation 4.13 is satisfied for all possible

phases {φ1, φ2 . . . φN}, leaving us free to choose these solely on the basis that they satisfy

V(0)T = 0 or V(0)T = V(1)T = 0. The exclusive use of 180◦ pulses also makes finding

solutions for V(0)T = 0 or V(0)T = V(1)T = 0 particularly simple and intuitive using a

graphical interpretation, as we will see later.

For B1 inhomogeneity, we find

Vinh(0)T = (ω1 −ωnom
1 )τ

N

∑
j=1

Iφ′j
(4.26)

Vinh(1)T =
i(ω1 −ωnom

1 )2τ2

2

N−1

∑
j=1

N

∑
k=j+1

[Iφ′k
, Iφ′j

] (4.27)

where τ is the duration of a simple 180◦ pulse. Note the prime on the phases in Equa-

tions 4.26 and 4.27. This indicates that these are the pulse phases transformed by the

move to the interaction representation brought about by the fixed 180◦ rotations in

Unom(t). As described in Reference [62], these toggling frame phases are related to

the pulse phases by

φ′k = (−1)k+1φk +
k−1

∑
j=1

(−1)j+12φj (4.28)

For offset, we find

Voff(0)T = 2
Ω

ωnom
1

N

∑
j=1

Iφ′j+90◦+(j−1)180◦ (4.29)

Voff(1)τ1 =
π

2

(
Ω

ωnom
1

)2 N

∑
j=1

Iφ′j

− 2i

(
Ω

ωnom
1

)2 N−1

∑
j=1

N

∑
k=j+1

[Iφ′k+90◦+(k−1)180◦ , Iφ′j+90◦+(j−1)180◦ ]

(4.30)
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FIGURE 4.1: Graphical solution of the equations Vinh(0)T = 0 and Voff(0)T = 0
for the form of composite 180◦ pulse given in Equation 4.25. The contribution from
each pulse is a transverse xy angular momentum operator of fixed length in the tog-
gling frame relevant to B1 inhomogeneity (Equation 4.26) or resonance offset (Equa-
tion 4.29). (a) Toggling-frame solution for three 180◦ pulses (N = 3); this corre-
sponds to the symmetric composite pulse 180◦0◦ 180◦120◦ 180◦0◦ for B1 inhomogene-
ity or 180◦0◦ 180◦300◦ 180◦0◦ for resonance offset. (b) Time-symmetric toggling-frame
solution for five 180◦ pulses (N = 5); this corresponds to the antisymmetric com-
posite pulse 180◦46.6◦ 180◦255.5◦ 180◦0◦ 180◦104.5◦ 180◦313.4◦ for B1 inhomogeneity or
180◦46.6◦ 180◦75.5◦ 180◦0◦ 180◦284.5◦ 180◦313.4◦ for resonance offset. (c) Toggling-frame
solution for five 180◦ pulses (N = 5) that ensures that Vinh(0)T = 0 and Voff(0)T = 0
simultaneously by having both the odd- and even-numbered vectors sum to zero sep-
arately; as the phase φ can take any value, this corresponds to the family of dual-
compensated composite 180◦ pulses presented by Tycko and Pines, including the
asymmetric sequence 360◦0◦ 180◦120◦ 180◦60◦ 180◦120◦ .

The toggling-frame phases in Equations 4.29 and 4.30 are related to those in Equa-

tions 4.26 and 4.27 in a systematic fashion and we have emphasised this by writing

all of them in terms of the primed phases of Equation 4.28.

4.2.4 Graphical solutions for Vinh(0)T = 0 and Voff(0)T = 0

Inspection of Equation 4.26 reveals that it is simply a summation of transverse angular

momentum operators, which we can represent as vectors in an xy plane. Thus if we
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choose N = 3 and

φ′1 = 0◦

φ′2 = 240◦

φ′3 = 120◦

then the three vectors will sum to zero as shown in Figure 4.1(a) and we will have

Vinh(0)T = 0. These three toggling frame phases can be converted to actual pulse phases

using Equation 4.28 and we find that φ = 0◦, φ = 120◦ and φ = 0◦, yielding the well

known broadband (for B1 inhomogeneity) phase-distortionless composite 180◦ pulse

180◦0◦ 180◦120◦ 180◦0◦ .

This is a time-symmetric composite pulse (τ1 = τN , τ2 = τN−1, etc. and φ1 = φN , φ2 =

φN−1, etc.) yet its toggling frame phases are antisymmetric (φ′1 = φ′0 + φ′1′ , φ′2 = φ′0 +

φ′2′ . . . φ′N−1 = φ′0 − φ′2′ , φ′N = φ′0 − φ′1′). As explained earlier, we aim to derive novel

antisymmetric composite refocusing pulses so that spin echoes can be formed which are

free of phase distortion as long as the true echo pathway is selected. In order to obtain a

composite pulse with antisymmetric phases, the choice of toggling frame phases must

be symmetric.

If we choose N = 5, the five vectors will sum to zero if we select the time-symmetric

phases

φ′1 = φ′5 = cos−1(−0.25) ≈ 104.5◦

φ′2 = φ′4 = − cos−1(−0.25) ≈ 255.5◦

φ′3 = 0◦,

as shown in Figure 4.1(b). Converting these from the toggling frame to actual pulse

phases using Equation 4.28, and then subtracting a constant phase 57.9◦ to make the

central pulse φ3 = 0◦, we get:

φ1 = −φ5 = 46.6◦

φ2 = −φ4 = 255.5◦

φ3 = 0◦,
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or the composite pulse 180◦ pulse 180◦46.6◦ 180◦255.5◦ 180◦0◦ 180◦104.5◦ 180◦313.4◦ . This an-

tisymmetric pulse, named F1 in Reference [62], is broadband for B1 inhomogeneity.

Note that choosing the conjugate angle, cos−1(−0.25) = 255.5 is equivalent to using

the mirror-image of the vector sequence shown in Figure 4.1(b), and generates the time-

reversed sequence 180◦313.4◦ 180◦104.5◦ 180◦0◦ 180◦255.5◦ 180◦46.6◦ , which we do not consider

as a distinct sequence. The reversed sequence has the same performance with respect to

B1 inhomogeneity as its ”forward” counterpart, while its offset performance is reversed

with respect to the sign of the resonance offset.

Inspection of Equation 4.29 reveals that it too is simply a summation of transverse angu-

lar momentum operators. The only difference in this offset case is that the relationship

between the toggling frame phases and the pulse phases is different from the inhomo-

geneity case: for offset there is an additional +90◦ phase shift of the toggling frame

phases for the odd-numbered pulses and an additional −90◦ phase shift of the toggling

frame phases for the even-numbered pulses. Regardless of this, we can still choose N =

3 as before and with φ′1 + 90◦ = 0◦, φ′2 = 240◦ − 90◦, φ′3 + 90◦ = 120◦, the three vectors

will sum to zero as shown in Figure 4.1(a), therefore Voff(0)T = 0. Subtracting the addi-

tional phase shifts we find φ1 = 30◦, φ2 = 90◦, φ3 = 150◦ and then, using Equation 4.28

and after subtraction of a constant 30◦, the actual pulse phases are found to be φ1 =

0◦, φ2 = 300◦, φ3 = 0◦. This is the broadband (for resonance offset) phase-distortionless

composite 180◦ pulse 180◦0◦ 180◦300◦ 180◦0◦ (or equivalently 180◦0◦ 180◦60◦ 180◦0◦), which

is one of a general series of symmetric solutions for Voff(0)T = 0 given in Reference [59].

To derive a dual-compensated 180◦ pulse, we need to find a sequence that has Vinh(0)T =

0 and Voff(0)T = 0. As described by Tycko and coworkers using a theoretical framework

similar to average Hamiltonian theory [58, 60], this can be done by noting that for the

odd-numbered pulses the toggling frame phases for inhomogeneity and resonance off-

set differ only by a constant +90◦ and that for the even-number pulses the two toggling

frames differ only by a constant −90◦. Therefore, by ensuring that the angular momen-

tum vectors for the odd-numbered pulses and for the even-numbered pulses separately

sum to zero then a dual-compensated pulse should result. For example, with N = 5 and

φ′1 = 0◦, φ′2 = 240◦, φ′5 = 120◦, and φ′2 = φ and φ′4 = φ + 180◦ then both the odd- and

even-numbered vectors will sum to zero as shown in Figure 4.1(c) and we will have

Vinh(0)T = Voff(0)T = 0. As described by Tycko and coworkers, this generates an in-

finite family of composite 180◦ pulses as the phase φ is a free variable [58, 60]. These
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five toggling frame phases can be converted to actual pulse phases using Equation 4.28

and, after subtraction of 120◦, we find that φ1 = 0◦, φ2 = 120◦ − φ, φ3 = 120◦ − 2φ, φ4 =

300◦ − 3φ and φ5 = −4φ. With φ = 120◦ this gives the asymmetric dual-compensated

180◦ pulse 360◦0◦ 180◦240◦ 180◦300◦ 180◦240◦ (or equivalently 360◦0◦ 180◦120◦ 180◦60◦ 180◦120◦).

With φ = 90◦ it gives the symmetric composite pulse 180◦0◦ 180◦30◦ 180◦300◦ 180◦30◦ 180◦0◦

(or equivalently 180◦0◦ 180◦330◦ 180◦60◦ 180◦330◦ 180◦0◦).

To obtain an antisymmetric dual-compensated 180◦ pulse it is clear that we need to have

at least N = 9 so that the toggling-frame phases for both the odd- and even-numbered

pulses can be symmetric, as shown for N = 9 in Figure 4.2(a). Thus with the toggling-

frame phases φ′1 = φ′9 = 104.5◦, φ′3 = φ′7 = 255.5◦, φ′5 = 0◦, and φ′2 = φ′8 = φ, φ′4 =

φ′6 = φ + 180◦ we can derive an antisymmetric pulse with Vinh(0)T = 0 = Voff(0)T = 0.

Note that again there is a free phase variable φ, thereby generating an infinite family

of composite 180◦ pulses (which we will call ASBO-9; ASBO stands for AntiSymmetric,

for B1 and Offset). These nine toggling frame phases can be converted to actual pulse

phases using Equation 4.28 and, after subtraction of a constant phase to make the central

pulse φ5 = 0◦, we find that:

φ1 = −φ9 = 4φ + cos−1(−0.25) = 4φ + 104.5◦

φ2 = −φ8 = 3φ + 2 cos−1(−0.25) = 3φ + 209◦

φ3 = −φ7 = 2φ + cos−1(−0.25) = 2φ + 104.5◦

φ4 = −φ6 = φ + 180◦

φ5 = 0◦

(4.31)

More antisymmetric dual-compensated pulses will exist with N = 11, N = 13, etc.

Of these, however, only sequences with N = 11 can be derived in a closed form de-

pendent on a single free phase variable φ as with the N = 9 case. The N = 11 so-

lutions are shown in Figure 4.2(b), where the toggling-frame phases of the six odd-

numbered pulses follow a time-symmetric pathway consisting of two equilateral trian-

gles (to which we have added the free phase variable φ) and the toggling-frame phases

of the five even-numbered pulses follow the same symmetric pathway as was used in

Figure 4.1(b) and for the odd-numbered pulses in Figure 4.2(a). These toggling-frame

phases correspond to the antisymmetric dual-compensated family of composite 180◦
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FIGURE 4.2: Graphical solution of the equations Vinh(0)T = 0 and Voff(0)T = 0 for the
form of composite 180◦ pulse given in Equation 4.25. The contribution from each pulse
is a transverse xy angular momentum operator of fixed length in the toggling frame
relevant to B1 inhomogeneity (Equation 4.26) or resonance offset (Equation 4.29). (a)
Time-symmetric toggling-frame solution for nine 180◦ pulses (N = 9) that ensures that
Vinh(0)T = 0 and Voff(0)T = 0 simultaneously; as the phase φ can take any value,
this corresponds to the ASBO-9 family of antisymmetric dual-compensated composite
180◦ pulses generated by Equation 4.31. (b) Time-symmetric toggling-frame solution
for eleven 180◦ pulses (N = 11) that ensures that Vinh(0)T = 0 and Voff(0)T = 0 simul-
taneously; as the phase φ can take any value and the even-numbered vectors can follow
two inequivalent pathways, this corresponds to the ASBO-11 family of antisymmetric
dual-compensated composite 180◦ pulses generated by Equation 4.32. (c) Combined
odd and even pulse vectors showing an example of two inequivalent pathways given
by φ = 80◦ for the ASBO-11 family.
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pulses (which we will call ASBO-11):

φ1 = −φ11 = 120◦ − 5φ

φ2 = −φ10 = 240◦ − cos−1(−0.25)− 4φ

φ3 = −φ9 = 240◦ − 2 cos−1(−0.25)− 3φ

φ4 = −φ8 = 240◦ − cos−1(−0.25)− 2φ

φ5 = −φ7 = 120◦ − φ

φ6 = 0◦

(4.32)

In this case, the two conjugate angles, cos−1(−0.25) = 104.5◦ and cos−1(−0.25) =

255.5◦, produce distinct composite pulses, with different bandwidths with respect to

both B1 inhomogeneity and resonance offset. The two conjugate angles correspond to

the two mirror-image vector pathways for the even-numbered toggling-frame phases

shown in Figure 4.2(b). Combined with the odd-numbered pulse vector pathways,

these produce different solutions for all values of the relative phase φ. Figure 4.2(c)

shows an example of two such inequivalent pathways of combined odd and even tog-

gling frame vectors for an N = 11 sequence where φ = 80◦.

4.2.5 Higher-order terms

Derived in this way, the ASBO-9 and ASBO-11 dual-compensated pulse families satisfy

the zeroth-order terms, Vinh(0)T = Voff(0) = 0. Using Equations 4.27 and 4.30, the

first order average Hamiltonians can be evaluated. Since the toggling-frame phases are

symmetric, the following relation holds:

[Iφ′1
, Iφ′2

] = −[Iφ′N−1
, Iφ′N

] (4.33)

Taking into account the anticommutativity relation [A, B] = −[B, A], the summation

in Equation 4.27 evaluates to zero and therefore Vinh(1)T = 0. For Voff(1)T = 0, the

operator part of the first term on the right-hand side of Equation 4.30 is identical to that

in Equations 4.26, and will be equal to zero if Vinh(0)T = 0. Owing to the symmetry

of the toggling-frame phases, the second term also will equal zero. Thus, Vinh(1)T =

Voff(1)T = 0.
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However, when B1 inhomogeneity and resonance offset are present simultaneously

then there is a further first-order average Hamiltonian to consider. In this case, the

perturbation V in Equation 4.1 is given by:

Vinh+off = Vinh + Voff (4.34)

and we find to first-order,

Vinh+off(1)T = Vinh(1)T + Voff(1)T + Vinh,off(1)T (4.35)

where the inhomogeneity-offset cross term is:

Vinh,off(1)T = − i
2

∫ T

0
dt1

∫ t1

0
dt2

(
[Ṽinh(t1), Ṽoff(t2)] + [Ṽoff(t1), Ṽinh(t2)]

)
(4.36)

For the composite 180◦ pulse in Equation 4.25 we find

Vinh,off(1)T =−
2(ω1 −ωnom

1 )Ω
(ωnom

1 )2

(
N

∑
j=1

Iφ′j+90◦+(j−1)180◦

+
π

2
i

N−1

∑
j=1

N

∑
k=j+1

[Iφ′k
, Iφ′j+90◦+(j−1)180◦ ] + [Iφ′k+90◦+(k−1)180◦ , Iφ′j

]

) (4.37)

The first term in the large brackets on the right-hand side of this equation is identi-

cal to the operator term in Equation 4.29 and so will equal zero if Voff(0)T = 0. The

second term (the sum of the two commutators) will be zero for a symmetric sequence

of toggling-frame phases. Thus, on account of their symmetry properties, the ASBO-9

and ASBO-11 families of dual-compensated composite pulses are broadband up to first

order, Vinh(0)T = Voff(0)T = Vinh(1)T = Voff(1)T = Vinh,off(1)T = 0.

4.2.6 ASBO composite pulses

It is possible to choose pulses in the ASBO-9 family that have pulse phases φ1 = φ2

(ASBO-9(7A)), φ2 = φ3 (ASBO-9(7B)), φ3 = φ4 (ASBO-9(7C)) or φ4 = φ5 = φ6 (ASBO-

9(7D)). These ”7-pulse” solutions are listed in Table 4.1. Although the duration of these

sequences is, of course, still equal to 9 simple 180◦ pulses, it is possible that they could

be more robust in experimental practice owing to the reduced number of phase shifts

involved. Similarly, there are ”9-pulse” solutions for the ASBO-11 series of composite
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TABLE 4.1: Broadband composite pulses

Pulse Sequence φ ΞB1 ΞΩ
[cos−1(−0.25)]

ASBO-9(7A) 360◦162.4◦ 180◦313.4◦ 180◦284.5◦ 180◦0◦
180◦75.5◦ 180◦46.6◦ 360◦197.6◦

104.5◦ 0.178 0.428

ASBO-9(7B) 180◦46.6◦ 360◦255.5◦ 180◦75.5◦ 180◦0◦
180◦284.5◦ 360◦104.5◦ 180◦313.4◦

255.5◦ 0.325 0.324

ASBO-9(7C) 180◦46.6◦ 180◦75.5◦ 360◦255.5◦ 180◦0◦
360◦104.5◦ 180◦284.5◦ 180◦313.4◦

75.5◦ 0.325 0.332

ASBO-9(7D) 180◦104.5◦ 180◦29◦ 180◦104.5◦ 540◦0◦
180◦255.5◦ 180◦331◦ 180◦255.5◦

180◦ 0.150 0.308

ASBO-9(B1) 180◦268.5◦ 180◦62◦ 180◦6.5◦ 180◦131◦ 180◦0◦
180◦229◦ 180◦353.5◦ 180◦298◦ 180◦91.5◦

311◦ 0.485 0.228

ASBO-9(Ω) 180◦176.5◦ 180◦173◦ 180◦320.5◦ 180◦288◦ 180◦0◦
180◦72◦ 180◦39.5◦ 180◦187◦ 180◦183.5◦

108◦ 0.174 0.444

ASBO-11(B1) 180◦260◦ 180◦103.5◦ 180◦187◦ 180◦119.5◦ 188◦ 0.369 0.240
180◦292◦180◦0◦ 180◦68◦ 180◦240.5◦ 180◦173◦

180◦256.5◦ 180◦100◦

[104.5◦]

ASBO-11(Ω) 180◦220◦ 180◦287.5◦ 180◦235◦ 180◦31.5◦ 52◦ 0.178 0.540
180◦68◦180◦0◦ 180◦292◦ 180◦328.5◦ 180◦125◦

180◦72.5◦ 180◦140◦

[104.5◦]

Simple 180◦0◦ - 0.062 0.100
LF 90◦90◦ 180◦0◦ 90◦90◦ - 0.046 0.096
TP 360◦0◦ 180◦120◦ 180◦60◦ 180◦120◦ - 0.106 0.256
TPG 180◦256◦ 180◦52◦ 180◦0◦ 180◦128◦ 180◦0◦

180◦232◦ 180◦0◦ 180◦308◦ 180◦104◦

- 0.473 0.224

pulses but these would appear to be of lesser interest in view of the existence of the

ASBO-9 family.

From the ASBO-9 and ASBO-11 families, the composite pulse sequences which are of

most interest are those with the greatest bandwidths, either with respect to ω1 = |γB1|

or Ω. These were found by incrementing the free phase φ in steps of 1◦ from 0◦ to

360◦, allowing for both cos−1(−0.25) = 104.5◦ and cos−1(−0.25) = 255.5◦ for ASBO-11.

For each resulting composite pulse, the range of B1/Bnom
1 and Ω/ωnom

1 = |∆B/Bnom
1 |

values where the echo amplitude retains > 99.0% of its full amplitude was calculated.

For B1 inhomogeneity, this range can be expressed as the fraction, ΞB1 , of the range

of B1/Bnom
1 from 0 to 2 where the echo amplitude retains > 99.0% of its amplitude

at B1/Bnom
1 . Thus ΞB1 can take values from 0 (no broadband properties) up to 1 (a

hypothetical, perfect broadband pulse for B1 inhomogeneity). For resonance offset, the

performance of an antisymmetric pulse sequence is asymmetric with respect to Ω = 0
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(it is only symmetric for a symmetric sequence). Therefore, we calculate the range of

offset parameters Ω/ωnom
1 where the echo amplitude retains > 99.0% of its amplitude

at Ω = 0 for both positive and negative offsets and then assign to the offset figure of

merit, ΞΩ, the smaller of the two values. Thus ΞΩ can take values from 0 (no broadband

properties) up to ∞ (a hypothetical, perfect broadband pulse for resonance offset). A

value of ΞΩ of, for example, 0.402 means that the spin-echo amplitude has > 99.0%

of its full amplitude between Ω/ωnom
1 = 0.402 and +0.402 and that possibly, at one

extreme of this range, the composite pulse might have an even broader bandwidth.

Table 4.1 gives the optimum ASBO-9 and ASBO-11 pulses for B1 inhomogeneity (ASBO-

9(B1) and ASBO-11(B1)) and resonance offset (ASBO-9(Ω) and ASBO-11(Ω)) found by

this method, where their bandwidths are compared with the ”7-pulse” ASBO-9 se-

quences mentioned above. Appendix E contains grapefruit plots of magnetisation vec-

tors tracing out the path of each of these ASBO pulses as well as TPG. It is important

to stress that all members of the ASBO-9 and ASBO-11 families of composite pulse are

dual-compensated for B1 inhomogeneity and offset and our computer search is merely

for the purpose of identifying solutions with particular properties; indeed, the mini-

mum values of ΞB1 and ΞΩ found in these families ΞB1 = 0.142 and ΞΩ = 0.224 for

ASBO-9 and ΞB1 = 0.118 and ΞΩ = 0.184 for ASBO-11) are still greatly in excess of the

values for a simple 180◦ pulse.

For comparison, Table 4.1 also lists some composite pulses from the literature, along

with their ΞB1 and ΞΩ values, as well as a comparison with a simple 180◦ pulse. LF, the

original broadband composite 180◦ pulse proposed by Levitt and Freeman is not of the

phase-distortionless type and symmetric and so its ΞB1 and ΞΩ refocusing bandwidth

values are even lower than those of the simple 180◦ pulse. The sequence 360◦0◦ 180◦120◦

180◦60◦ 180◦120◦ (here designated TP), which has been discussed above in Section 4.2.4 [58,

60], was designed to be phase-distortionless and dual-compensated with respect to both

B1 inhomogeneity and offset Ω but its ΞB1 and ΞΩ values are significantly lower than,

e.g., the ASBO-9(Ω) pulse. Finally, the 9-pulse antisymmetric composite 180◦ pulse

180◦256◦ 180◦52◦ 180◦0◦ 180◦128◦ 180◦0◦ 180◦232◦ 180◦0◦ 180◦308◦ 180◦104◦ (designated TPG

here) was presented in Reference [60] without any verifying simulations or experiments

yet can be seen to be similar to the sequence ASBO-9(B1) and to yield similar ΞB1 and

ΞΩ values. It in fact corresponds to the ASBO-9 family described by Equations 4.31 with

φ ≈ 308◦. Composite pulses were derived in Reference [60] using ”fixed point theory”.
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FIGURE 4.3: Plots of Vinh(0)
narrowT = ω1τ ∑N

j=1 Iφj (here we set ω1τ = 1) for ASBO-9 and
ASBO-11 families of dual-compensated 180◦ pulses. Passband solutions exist where
Vinh(0)

narrowT = 0.

4.2.7 Passband solutions

As described in Chapter 2, passband composite 180◦ pulses have B1 inversion profiles

that are locally narrowband for B1 ≈ 0 and locally broadband for B1 ≈ Bnom
1 . It is worth

examining the dual-compensated ASBO families for composite broadband 180◦ pulses

simultaneously exhibit narrowband behaviour. A narrowband pulse has Hnom = 0 in

Equation 4.1 and so there is no transformation into the toggling frame. For B1 inho-

mogeneity, the zeroth-order average Hamiltonian in the narrowband region is simply

given by

Vinh(0)
narrowT = ω1τ

N

∑
j=1

Iφj (4.38)

where the phases {φj} are the actual pulse phases rather than the toggling frame phases

in Equation 4.26. As this is a real function for an antisymmetric sequence, Vinh(0)
narrowT

can be plotted as a function of φ in Equation 4.31 or 4.32 and the values of φ where

Vinh(0)
narrowT = 0, which will correspond to passband solutions, can be read off. Figure 4.3

shows plots of these functions for the ASBO-9 and two ASBO-11 families. For the

ASBO-9 family generated by Equation 4.31 there are six passband solutions between

φ = 0 and 360◦ and for the ASBO-11 family generated by Equation 4.32 there are six

solutions forcos−1(−0.25) = 104.5◦ and eight for cos−1(−0.25) = 255.5◦. The most

promising of these sequences in terms of broadband B1 performance (ASBO-9(PB1) and

ASBO-11(PB1)) and broadband offset performance (ASBO-9(PΩ) and ASBO-11(PΩ))

are given in Table 4.2.
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TABLE 4.2: Passband composite 180◦ pulses

Pulse Sequence φ ΞB1 ΞΩ
[cos−1(−0.25)]

ASBO-9(PB1) 180◦26.5◦ 180◦149◦ 180◦64.5◦ 180◦160◦ 180◦0◦
180◦220◦ 180◦295.5◦ 180◦211◦ 180◦333.5◦

340◦ 0.234 0.228

ASBO-9(PΩ) 180◦104.5◦ 180◦119◦ 180◦284.5◦ 180◦270◦ 180◦0◦
180◦90◦ 180◦75.5◦ 180◦241◦ 180◦255.5◦

108◦ 0.174 0.444

ASBO-11(PB1) 180◦165◦ 180◦27.5◦ 180◦130◦ 180◦81.5◦ 207◦ 0.253 0.236
180◦273◦180◦0◦ 180◦87◦ 180◦278.5◦ 180◦230◦

180◦332.5◦ 180◦195◦

[104.5◦]

ASBO-11(PΩ) 180◦190◦ 180◦263.5◦ 180◦217◦ 180◦19.5◦ 58◦ 0.190 0.508
180◦62◦180◦0◦ 180◦298◦ 180◦340.5◦ 180◦143◦

180◦96.5◦ 180◦170◦

[104.5◦]

Note that because of the antisymmetry of the pulse phases none of these sequences will

have Vinh(1)
narrowT = 0. They will have Voff(0)

narrowT = 0 but this is not a desirable feature;

ideally, one would wish for broadband behaviour with respect to offset for B1 ≈ 0 but

this is not possible.

4.3 Simulations

The performance of broadband composite 180◦ pulses in a spin-echo experiment was

simulated assuming an initial state σinitial = −Iy (the result of a perfect 90◦0◦ pulse on

an Iz state). The pure echo signal was selected by incrementing the overall phase of the

refocusing pulse through the four steps of the ”Exorcycle” phase cycle [26, 46] and sum-

ming the resulting magnetisations appropriately over the four steps such that the ideal

result should be σfinal = +Iy. We then plotted the desired in-phase magnetisation com-

ponent 〈Iy〉 = Tr{σfinal Iy}/Tr{Iy
2} and (where necessary) the unwanted out-of-phase

component 〈Ix〉 = Tr{σfinal Ix}/Tr{Ix
2} as a function of B1/Bnom

1 (to study performance

in the presence of B1 inhomogeneity) or ∆B/Bnom
1 (to study performance in the pres-

ence of a resonance offset), where ∆B = −Ω/γ is the residual static field in the rotating

frame, with the offset of the resonance from the transmitter frequency Ω and the gyro-

magnetic ratio γ.

The simulations shown in Figure 4.4 illustrate the effect of the symmetry of a composite

180◦ pulse on the phase of the refocused magnetisation as a function of normalised B1
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FIGURE 4.4: Simulations of the refocusing performance of broadband composite 180◦

pulses in a spin-echo experiment as a function of B1/Bnom
1 (to study performance in the

presence of B1 inhomogeneity). The simulations assume an initial state σinitial = −Iy
and a refocusing pulse that has been subjected to the four steps of the Exorcycle phase
cycle. (Top row) In-phase magnetisation component 〈Iy〉 and (b) the unwanted out-
of-phase component 〈Ix〉 produced by a simple 180◦0◦ pulse and the composite pulses
LF, TP and TPG (see Table 4.1). Only the simple refocusing pulse (which is technically
antisymmetric) and the antisymmetric TPG sequence yield a zero out-of-phase compo-
nent. (Bottom row) In-phase 〈Iy〉 and unwanted 〈Ix〉 spin-echo components produced
by three of the new antisymmetric ASBO sequences (see Table 4.1). All of these anti-
symmetric ASBO sequences yield a zero out-of-phase component.

field strength, B1/Bnom
1 . The 〈Iy〉 magnetisation produced by a simple 180◦ pulse, as

well as the broadband composite pulses LF, TP and TPG, has been simulated. When

used as a refocusing pulse, the response of LF to B1 inhomogeneity is in fact narrow-

band compared to the simple 180◦ pulse. TPG shows the most broadband response

of these composite pulses. The symmetric sequence LF and the asymmetric composite

pulse TP both give rise to an unwanted Ix magnetisation component in the presence

of a B1 inhomogeneity. Conversely, the simple 180◦ pulse and the antisymmetric TPG

pulse sequence do not yield any unwanted Ix magnetisation when the B1 field strength

deviates from the nominal value. As was stated in Chapter 2, antisymmetric refocusing

sequences are essential, as they will produce a spin echo with perfect phase.
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FIGURE 4.5: Simulations of the refocusing performance of broadband composite 180◦

pulses in a spin-echo experiment as a function of ∆B/Bnom
1 (to study performance in

the presence of resonance offset). The simulations assume an initial state σinitial = −Iy
and a refocusing pulse that has been subjected to the four steps of the Exorcycle phase
cycle. (Top row) In-phase magnetisation component 〈Iy〉 and (b) the unwanted out-
of-phase component 〈Ix〉 produced by a simple 180◦0◦ pulse and the composite pulses
LF, TP and TPG (see Table 4.1). Only the simple refocusing pulse (which is technically
antisymmetric) and the antisymmetric TPG sequence yield a zero out-of-phase compo-
nent. (Bottom row) In-phase 〈Iy〉 and unwanted 〈Ix〉 spin-echo components produced
by three of the new antisymmetric ASBO sequences (see Table 4.1). All of these anti-
symmetric ASBO sequences yield a zero out-of-phase component.

Three of our novel antisymmetric dual-compensated composite pulses have also been

simulated in Figure 4.4 as a function of B1/Bnom
1 : ASBO-9(7C), which shows the best

response to B1 inhomogeneity amongst the ”7-pulse” solutions to the ASBO-9 family;

ASBO-9( B1), which has the greatest B1 bandwidth of all our new composite pulses and

is slightly more broadband than the existing pulse sequence TPG; and ASBO-11(B1)

– this sequence has the best performance in the presence of B1 inhomogeneity in the

11-pulse set. Owing to the antisymmetric phase schemes of these pulse sequences, no

out-of-phase Ix magnetisation is produced by any of these composite pulses.

The performance of a simple 180◦ pulse and various composite refocusing pulses with
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FIGURE 4.6: Simulations of the in-phase 〈Iy〉 component yielded by various broad-
band composite 180◦pulses in a spin-echo experiment as a function of B1/Bnom

1 and
∆B/Bnom

1 . The results are presented as a two-dimensional contour plot, with contours
drawn at 99%, 95% and 50% of the maximum. The simulations assume an initial state
σinitial = −Iy and a refocusing pulse that has been subjected to the four steps of the Ex-
orcycle phase cycle. The LF and TP composite pulses are not antisymmetric and will
also yield an unwanted out-of-phase 〈Ix〉 component (not shown).
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FIGURE 4.7: Simulations of the refocusing performance of passband ASBO pulses in
a spin-echo experiment as a function of B1/Bnom

1 . The simulations assume an initial
state σinitial = −Iy and a refocusing pulse that has been subjected to the four steps of the
Exorcycle phase cycle. (a) In-phase magnetisation component 〈Iy〉 (the 〈Ix〉 component
is zero) produced by a simple 180◦0◦ pulse and the passband composite pulses listed in
Table 4.2). In (b), the performance of the passband sequence ASBO-11(PΩ) is simulated
on resonance and at resonance offset parameters of ∆B/Bnom

1 = +0.1 and ∆B/Bnom
1 =

−0.1.

respect to resonance offset is shown in Figure 4.5. As with the case of B1 inhomo-

geneity, only the antisymmetric sequences do not produce any Ix magnetisation off-

resonance. The composite pulses LF and TP will reintroduce phase distortions into the

spectrum as out-of-phase Ix magnetisation results when the transmitter is not on res-

onance. The offset performance of three of the new dual-compensated 180◦ pulses are

shown: ASBO-9(7A), the optimum ”7 pulse” solution of the ASBO-9 set for compen-

sating offset; ASBO-9(Ω), which performs very slightly better; and ASBO-11(Ω), which

has the greatest bandwidth for resonance offset. These pulse sequences are all more

broadband for offset than the dual-compensated pulses TP and TPG.

The dual-compensated nature of the ASBO composite pulses can be fully appreciated in

the contour plots shown in Figure 4.6. The spin-echo experiment was simulated using a

simple 180◦ pulse (Figure 4.6(a)) the composite refocusing pulses LF (Figure 4.6(b)), TP

(Figure 4.6(c)), ASBO-9(B1) (Figure 4.6(d)), ASBO-9(Ω) Figure 4.6(e)) and ASBO-11(Ω)

(Figure 4.6(f)), and the resulting 〈Iy〉 contours at 99%, 95% and 50% plotted as a function

of B1/Bnom
1 and ∆B/Bnom

1 . Note that the symmetric LF and asymmetric TP sequences

will also yield unwanted Ix magnetisation, which we do not show here.

In Figure 4.7(a) the refocusing performance of the passband composite 180 pulses ASBO-

9(PB1), ASBO-9(PΩ). ASBO-11(PB1) and ASBO-11(PΩ) is shown as a function of B1/Bnom
1 .

These sequences show broadband behaviour near the nominal field strength, but are lo-

cally narrowband at low B1/Bnom
1 values. As indicated in Table 4.2 ASBO-11(PΩ) has
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FIGURE 4.8: Crystal structure of BPO4. Phosphorus atoms are shown in black, boron
in blue and oxygen in red. The crystal structure was determined by Schulze [106].

the greatest value of ΞΩ of these sequences, indicating the best broadband offset per-

formance. However, as shown in Figure 4.7(b) where this pulse sequence has been

simulated with ∆B/Bnom
1 = ±0.1, it is not compensated for resonance offset in the nar-

rowband region (B1/Bnom
1 ∼ 0.1), as expected, despite being well compensated in the

broadband region (B1/Bnom
1 ∼ 1).

4.4 Experiments

4.4.1 31P solid-state NMR spin echoes

Experiments were performed on a Bruker Avance 400 NMR spectrometer equipped

with a widebore 9.4 T magnet. The 31P NMR spectrum of boron phosphate (BPO4),

which contains a single 31P site (as shown in the crystal structure in Figure 4.8) was

chosen as the subject of these experiments. This choice was made based on the current

setup in our laboratory; other nuclei in both the solid and solution state and different

probe designs are expected to yield equivalent results. The powdered solid sample was

packed in a 4-mm MAS rotor, although the experiments were conducted without MAS.
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The Larmor frequency was 162 MHz. The calibrated 90◦ pulse length for 31P was 2.23

μs, corresponding to a nutation rate, ν1 = |γB1|/2π of 112 kHz.

The pulse sequence used was a 90◦− τ− R− τ spin echo, where R is the simple or com-

posite refocusing pulse. The τ interval was equal to 40 μs and timed from the centre of

the 90◦ pulse to the centre of the R refocusing pulse and from the centre of the R pulse

to the start of data acquisition. In all experiments, the four-step Exorcycle phase cy-

cle was applied to the refocusing pulse R, and nested with four-step CYCLOPS, giving

the overall phase cycle described in Table 3.1. The spectra recorded using the compos-

ite pulse ASBO-9(B1) (solid line) are overlaid by the simple spin echo (dashed line) in

Figure 4.9.

Figure 4.9(a) shows on-resonance spectra recorded with calibrated pulse durations. The

spectrum recorded with a simple 180◦ pulse was phased and this same phase correction

was applied to other on-resonance experiments. The solenoidal radiofrequency coil

produces an inhomogeneous B1 field; the composite pulse ASBO-9(B1) compensates for

this imperfection and yields a spin-echo signal with a greater amplitude than the simple

180◦ pulse.

To investigate the pulse performance in the presence of a resonance offset, the 31P spin-

echo spectrum was obtained with a simple 180◦ refocusing pulse with the transmitter

offset by 22.4 kHz from the centre of the spectrum (corresponding to a normalised off-

set parameter ∆B/Bnom
1 = 0.2 in Figure 4.9(b). The spectrum was phased and the same

phase correction then applied to the other experiments performed with this offset. The

simple spin echo yields a similar spectrum to its on-resonance counterpart. While the

off-resonance composite pulse spectrum in Figure 4.9(b) shows a slight decrease in am-

plitude compared to the composite pulse spin echo in Figure 4.9(a), it still performs

slightly better than the simple pulse.

To exacerbate the effect of B1 inhomogeneity intentionally, the spin-echo experiments

were repeated with the constituent elements of the refocusing pulses misset to 60% of

their correctly calibrated durations (i.e., each 180◦ pulse element replaced with a 108◦

pulse). The results are shown in Figure 4.9(c). Here, the ASBO composite pulse echo

clearly outperforms the simple echo, yielding a signal amplitude 40% greater than the

simple echo.
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FIGURE 4.9: Static 31P (162 MHz) NMR spin-echo spectra of solid BPO4 (80 μs total
echo interval, 90◦ pulse duration of 2.23 μs, spin-lattice relaxation interval of 600 s,
four-step Exorcycle phase cycle applied to the refocusing pulse, 16 transients). Spectra
shown in a dashed line were recorded with a simple 180◦ refocusing pulse, while those
with a solid line used the dual-compensated pulse ASBO-9(B1). The spectra in (a) were
recorded on-resonance and with correctly calibrated pulse durations. In (b) and (d), the
spectra were recorded 22.4 kHz off-resonance. In (c) and (d) the refocusing pulses were
set to 60% of their correctly calibrated durations. The simple spin-echo spectra were
phased for each offset frequency and these same phase corrections were applied to the
composite pulse spectra.

In Figure 4.9(d), experiments were performed with an offset from resonance and with

the refocusing pulse flip angles misset. Again, the composite pulse spectrum yields

the greatest signal intensity. A small, unexpected phase error is apparent in the ASBO

spectrum here. Repeating the simple echo sequence in Figure 4.9(a) again, it was found

that the phase had changed during the timescale of the set of experiments which had

been run sequentially over a total time of almost 2 days (for BPO4 a 10 minutes interval

was used between each transient, giving an experiment time of 160 minutes for a 16-

scan spin-echo experiment). Rather than being a fault of the composite pulse sequence,

this error is attributed to the instability of the NMR instrument over a time period, with

unavoidable experimental effects arising for samples with long relaxation intervals.
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FIGURE 4.10: Pulse sequence and coherence transfer pathway diagram of the refo-
cused INADEQUATE experiment.

4.4.2 Refocused INADEQUATE

In solid-state NMR, experiments examining through-bond J-couplings present a chal-

lenge as most solid compounds with restricted molecular motion possess strong dipo-

lar couplings which obscure the much smaller J-couplings. However, the popular IN-

ADEQUATE experiment [107] from solution-state NMR has successfully been adapted

for magic angle spinning experiments [108–110], allowing the observation of J-coupled

sites in a two-dimensional experiment. The refocused INADEQUATE experiment [111]

features an extra spin echo to obtain in-phase lineshapes, making it more suitable for

experiments on solids where there is often insufficient resolution to observe the an-

tiphase multiplets created by the original INADEQUATE experiment [112]. The re-

focused INADEQUATE experiment has been widely employed to study a range of

materials [111, 113–117]. Fayon et al. have demonstrated the possibility of determin-

ing the P–O–P connectivities in inorganic pyrophosphate compounds such as Zn2P2O7

and TiP2O7 via 2J couplings [113, 118, 119]. Here, we will demonstrate that the ASBO

family of dual-compensated composite pulses can be incorporated into the refocused

INADEQUATE experiment to improve the signal amplitude. In this case the simple

refocusing pulse is prone to deleterious effects of B1 inhomogeneity and offset effects

in two spin echoes during the experiment, manifesting as a loss of sensitivity in the

two-dimensional spectrum.

Figure 4.10 shows the pulse sequence and coherence transfer pathway diagram for the
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FIGURE 4.11: Unit cell of TiP2O7. PO4 units are represented by grey tetrahedra while
the TiO8 units are represented by blue octahedra where each vertex corresponds to an
oxygen. The crystal structure was determined by Norberg et al. [120]

refocused INADEQUATE experiment. After an initial 90◦ excitation pulse, the 31P mag-

nitsation is subjected to a spin echo which generates antiphase coherences through evo-

lution under the J-coupling Hamiltonian. Theoretically, the best efficiency for gener-

ating this antiphase magnetisation is given by a spin-echo interval of τ = 1/(4JIS).

The τ interval must be equal to an integer number of rotor periods, τ = nτR, so that

the homonuclear dipolar couplings are removed by MAS. The antiphase coherences

are converted by a 90◦ pulse into double-quantum (DQ) coherences between J-coupled

nuclei, which evolves during the t1 period at a frequency which is the sum of the single-

quantum (SQ) frequencies of the two spins:

ωDQ = ω I
SQ + ωS

SQ (4.39)

Finally, these are converted back into antiphase coherences by a 90◦ pulse and trans-

formed into in-phase coherence by the second spin echo before detection in the t2 pe-

riod.

Experiments were carried out on titanium pyrophosphate (TiP2O7), which was kindly

provided by Dr. Gregory Tricot of Université de Lille Nord de France. The TiP2O7
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TABLE 4.3: Assignment of the 31P resonances for TiP2O7 [118, 120]

P site δiso/ppm

P1 −49.2
P2 −49.5
P3 −40.6
P4 −44.5
P5 −43.0
P6 −40.4
P7 −44.4
P8 −38.6
P9 −51.8
P10 −52.6
P11 −46.2

structure consists of corner-sharing distorted TiO8 octahedra and PO4 tetrahedra, giv-

ing rise to a structure with eleven crystallographically distinct phosphorus sites [120]

as shown in Figure 4.11. The sample (a white powder) was packed in a 4-mm ro-

tor and the calibrated 90◦ pulse length was 2.5 μs, corresponding to a nutation rate

ν1 = |γB1|/2π = 100 kHz. A presaturation pulse train was prefixed to the pulse se-

quence shown in Figure 4.10, allowing a shortened relaxation interval of 1 s to be em-

ployed (using the full T1 relaxation interval of approximately 3 minutes would render

the experiment too long to be practical in our circumstances). Spectra were recorded at

a MAS rate of ωr/2π = 12.5 kHz and with a rotor-synchronised spin-echo interval of

τ = 8 ms. Table 4.3 lists the eleven 31P resonances observed in the NMR spectrum of

TiP2O7 using the labeling of the phosphorus atom sites given by Norberg et al. [118? ].

Figure 4.12 shows the first row of the two-dimensional INADEQUATE experiments.

In Figure 4.12(a), a simple 180◦ pulse was used in both spin echoes, while in Fig-

ure 4.12(b) and Figure 4.12(c) each 180◦ pulse was replaced by a dual-compensated

refocusing pulse from the ASBO family, either ASBO-9(B1) or ASBO-9(7A). The differ-

ence in centreband signal intensity between the simple pulse INADEQUATE experi-

ment, ISP, and composite pulse echo experiments, ICP, were examined for each line in

the spectrum. These have been tabulated as a percentage change relative to the simple

echo, {(ICP − ISP)/ISP} ∗ 100 in Table 4.4. While the experiment using ASBO-9(B1) is

successful in increasing the signal amplitude of some of the peaks, P1, P2, P9 and P10

actually decrease in intensity. This is unexpected, and alludes to problems in using
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FIGURE 4.12: 31P (162 MHz) refocused INADEQUATE NMR spectra of solid TiP2O7
(8 ms total echo interval, 90◦ pulse duration of 2.5 μs, spin-lattice relaxation interval of
1 s with presaturation train, four-step Exorcycle phase cycle applied to the refocusing
pulse, 64 transients). The first row of the two-dimensional experiment is shown using
simple and composite refocusing pulses.

composite pulses in magic angle spinning experiments – this will be studied in detail in

Chapter 5. As seen in Figure 4.6, antisymmetric pulses have asymmetric profiles with

respect to the sign of the offset, which may explain why only the peaks with negative

offset decrease in intensity. The results for the experiment using ASBO-9(7A) are more

optimistic. Each peak shows an improvement in amplitude, with increases in intensity

of up to one third using the composite pulse.

A full two-dimensional experiment was carried out using ASBO-9(7A), which showed

the most promising results in Figure 4.12. The resulting spectrum is shown in Fig-

ure 4.13, along with F1 and F2 projections. Five pairs of double-quantum correlations are

visible across the diagonal, indicating through-bond P–O–P connectivities in five dis-

tinct P2O7 units: (P1–P2), (P3–P4), (P5–P6), (P7–P8) and (P9–P10). An additional peak is

seen on the diagonal at the single-quantum F2 frequency of −44.5 ppm. Reference [118]

addresses the origin of such anomalous diagonal peaks. The ASBO refocusing pulses

were designed to compensate simultaneously for B1 inhomogeneity and resonance off-

set effects to improve signal amplitude, and here we see they can be succesfully incor-

porated into two-dimensional experiments.

4.5 Conclusions

Novel antisymmetric broadband composite 180◦ pulses that are dual compensated, that

is, compensated simultaneously for both resonance offset and inhomogeneity of the

radiofrequency field, have been designed and evaluated. Using Exorcycle phase cycling

to select the pure spin-echo signal, these refocusing pulses will produce no phase error
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TABLE 4.4: Percentage change in signal intensity of each 31P resonance in the TiP2O7
composite pulse INADEQUATE spectra shown in Figure 4.12(b) and Figure 4.12(c)
compared to the simple INADEQUATE spectrum in Figure 4.12(a). P11is not listed as
its amplitude was not significantly above the noise level. P3 and P6 are listed under a
single entry as they were not individually resolved; this was also the case for P4 and
P7.

P site ASBO-9(B1)
% change

ASBO-9(7A)
% change

P1 −3 +13
P2 −10 +21
P3 & P6 +19 +33
P4 & P7 +21 +31
P5 +12 +27
P8 +11 +24
P9 −6 +21
P10 −6 +28
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FIGURE 4.13: 31P (162 MHz) two-dimensional refocused INADEQUATE NMR spec-
trum of solid TiP2O7 (8 ms total echo interval, 90◦ pulse duration of 2.5 μs, spin-lattice
relaxation interval of 1 s with presaturation train, four-step Exorcycle phase cycle ap-
plied to the refocusing pulse, 64 transients). The refocusing pulse used was the dual-
compensated pulse ASBO-9(7A).
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across their entire bandwidth owing to the properties of pulses with antisymmetric

phase schemes. This gives them advantage over phase-distortionless composite pulses

in the literature – as most of these are based on symmetric or asymmetric phase shift

schemes, they will introduce phase errors into spin-echo experiments.

The new antisymmetric composite pulses were designed using a graphical interpreta-

tion of average Hamiltonian theory, yielding an infinite family of 9-pulse refocusing se-

quences and an infinite family of 11-pulse sequences, all of which are dual-compensated

to zeroth- and first-order. For applications where resonance offsets are small (e.g., 1H

NMR), the composite pulse ASBO-9(B1) provides excellent compensation for B1 inho-

mogeneity as well as good compensation for resonance offset. In cases where resonance

offsets are larger (e.g., 13C, 19F, 31P, 29Si NMR), the composite pulses ASBO-9(7A), ASBO-

9(Ω) and ASBO-11(Ω) could all be considered.

As well as verifying our new composite pulses with computer simulations, a number

of 31P experiments have been carried out. It has been shown that ASBO-9(B1) out-

performs a simple 180◦ refocusing pulse in a static spin-echo experiment, yielding an

improvement in signal amplitude even in the presence of considerable pulse errors

with deliberately large errors in flip angle and offset investigated. As an example of a

two-dimensional application for these composite pulses, ASBO-9(7A) was included in

the two spin-echo elements of the refocused INADEQUATE experiment, successfully

showing the ability for compensation of B1 inhomogeneity and offset effects.



Chapter 5

The effects of MAS on composite

pulse performance

5.1 Introduction

A vast number of composite pulses have been designed for use in NMR experiments to

compensate for imperfections in radiofrequency pulses, alleviating the common prob-

lems of B1 inhomogeneity and resonance offset. In Chapter 2 we have shown that

phase-antisymmetric refocusing pulses are the correct type to use when forming a spin

echo [3], and in Chapter 4 introduced the new ASBO families of dual-compensated an-

tisymmetric refocusing pulses. Composite pulses have been used widely in solution

state NMR, and in principle the same pulse sequences can be employed in solid-state

NMR applications. However, in solid-state NMR, there is the added complication that

magic angle spinning introduces a time dependence to the internal interactions (chem-

ical shift anisotropy, dipolar interactions and quadrupolar couplings) governing the

offset of each crystallite over each rotor period. As a result, the resonance offset of each

crystallite varies during the application of the radiofrequency pulses in MAS NMR.

This may be overlooked if the pulse is of short duration and the change in offset is

small during the pulse. However, we find that when the total duration of a composite

pulse becomes comparable to the duration of the rotor period, the performance of the

composite pulse is liable to deteriorate. In this Chapter, we investigate the effects of

MAS on composite pulse performance in a spin echo. Computer simulations and 31P

110
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FIGURE 5.1: Simulation of a spin-echo sequence under MAS. The 90◦ pulse length
used in the simulation was 6 μs, corresponding to a B1 field strength of 41.67 kHz.
Other parameters used in the simulation were νPAS

∆CS = ωPAS
∆CS/2π = 10 kHz, νR = 10

kHz, β = 30◦, and φ = 0◦. The solid line simulation uses a time step which is too large
to give a good approximation for the multi-step analysis of the evolution of the density
matrix under MAS.

experiments will be carried out to investigate the ability of composite pulses to com-

pensate for B1 inhomogeneity and misset flip angles under MAS.

We note that Leppert et al. [121] introduced a number of composite 180◦ pulses de-

signed specifically for MAS applications, and demonstrated their use in the TOSS (total

suppression of spinning sidebands) experiment. However, the authors stated that their

pulses were not expected to deliver optimal performance experimentally owing to their

inability to compensate for non-ideal conditions such as B1 field inhomogeneity. Since

the application of these pulses is limited, we will not consider them further in this work.

5.2 Time dependence under MAS

As described in Section 2.5, resonances in solid-state NMR spectra are broadened by

anisotropic interactions, with the most significant contributions from chemical shift

anisotropy, dipolar couplings and for nuclei with spin I ≥ 1/2, quadrupolar interac-

tions. Most solid-state experiments are performed under MAS: by rapidly spinning

the sample at the magic angle, a dramatic improvement in resolution can be achieved
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(Section 2.6). In the simulations following, we will focus on a simple model system

– an isolated spin I = 1/2 nucleus possessing a chemical shift anisotropy parameter,

ωPAS
∆CS(t), with a time-dependence governed by MAS.

As detailed in Section 2.2, the Liouville-von Neumann equation can be solved to cal-

culate the time evolution of the density operator in cases where the Hamiltonian is

time-independent. This is not the case under MAS, and so an alternative method must

be used. Assuming that the time dependence of the Hamiltonian can be neglected on

small timescales, the total experiment time can be broken down into small divisions

and the evolution of the density matrix is calculated in successive time-independent

steps [16, 122]. During each of these steps, the total Hamiltonian is given by

H = HCSA (5.1)

during periods of free precession or

H = Hrf + HCSA (5.2)

when an rf pulse is applied. The pulse Hamiltonian is

Hrf = ω1 Ix (5.3)

(for a pulse with phase φ = 0◦) and the CSA Hamiltonian is given by

HCSA = ω∆CS(t)Iz (5.4)

where the time-dependent chemical shift anisotropy is given by:

ω∆CS(t) =
ωPAS

∆CS
2
{−
√

2 sin 2β cos(ωRt + ξ) + sin2 β cos 2(ωRt + ξ)} (5.5)

Here, β is the angle between the spinning axis and the CSA tensor in its PAS and ξ is

the initial phase about this axis. The magnitude of the CSA, ω∆CS(t), will thus oscillate

according to the rotor phase ωRt where ωR is the spinning rate and t is the time.

Figure 5.1 shows the evolution of x, y and z magnetisation as a single spin with initial

state−Iy (the result of a perfect 90◦ pulse on an inital state Iz) as it undergoes MAS dur-

ing the spin-echo sequence τ − 180◦0◦ − τ. The 90◦ pulse length used in the simulation
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FIGURE 5.2: Two methods of rotor synchronisation have been used in spin echo simu-
lations and experiments.

was 6 μs, corresponding to a B1 field strength of 41.7 kHz. The evolution of the density

matrix was calculated in incremental progressions of 0.1 μs for the simulation in dashed

lines, while a time increment of 2.0 μs was used for the solid line simulation. It can be

seen that in this case that the increment of 2.0 μs is too large to provide a good approxi-

mation for calculating the time-dependent behaviour of the system. In the simulations

throughout the rest of the chapter, each rotor period is divided into at least 1000 time

increments (thus giving a 1.0 μs increment for calculations employing a spinning rate

of νR = 1 kHz, a 0.1 μs increment for calculations employing a spinning rate of νR = 10

kHz, etc.)

5.3 Rotor synchronisation

Two different schemes of rotor synchronisation have been considered in the spin-echo

simulations and experiments. These are illustrated in Figure 5.2. The first method,

shown in Figure 5.2(a), is often used in MAS experiments: an integer number of rotor

periods forms the time interval between the centre of the excitation pulse and the centre

of the refocusing pulse. The echo should reach its maximum after a delay of the same
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length, again timed from the centre of refocusing pulse. This rotor synchronisation

scheme shall be referred to as the ”centred method.”

The second approach, which shall be termed the ”shifted method”, times an interval of

an integer number of rotor periods between the centre of the excitation pulse and the

start of the refocusing pulse. As shown in Figure 5.2(b), the signal is acquired an integer

number of rotor periods after the end of the refocusing pulse. This is a novel approach

to rotor synchronisation, and we will see that in some circumstances it offers significant

advantages over the centred method in spin-echo experiments.

5.4 Simulations

Figure 5.3 plots the evolution of the Iy magnetisation for a spin-echo pulse sequence

during MAS using either a simple 180◦ refocusing pulse or one of two dual-compensated

composite pulses from the ASBO-9 family. The simulation follows the magnetisation

over three rotor periods and includes powder averaging of orientations. The simula-

tions use an initial state σinitial of −Iy (the result of a perfect 90◦ pulse on an equilib-

rium state Iz). After a perfect spin echo, we would expect the magnetisation to be fully

aligned with the same intensity along the Iy axis. The MAS speed, νR, used in the sim-

ulations was equal to 10 kHz, giving a rotor period of 1/νR = 0.1 ms. The simulations

were carried out with three rf field strengths: ν1 = 250, 125 and 62.5 kHz. The corre-

sponding pulse lengths for a 180◦ pulse are 2, 4 and 8 μs, and for an ASBO-9 refocusing

pulse 18, 36 and 72 μs.

The left-hand column of results shows the spin-echo sequence with the centred rotor

synchronisation scheme. The refocusing pulse is timed such that the middle of the

pulse coincides with the start of the second rotor period. The dashed vertical line in-

dicates where the peak of the spin echo is expected to form at time τE. Using a simple

spin-echo sequence with a 180◦ refocusing pulse, the magnetisation is fully refocused

at 0.2 ms as expected for all rf strengths simulated here. However, in the simulations

employing ASBO composite pulses, a deterioration in signal intensity is apparent at the

echo time as the pulse lengthens. For the sequences using ASBO-9(B1) and ASBO-9(7A),

the magnetisation is refocused with almost full intensity at 0.2 ms with the strongest rf

field strength, but raising the total pulse length to 36 μs results in a significant drop in
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FIGURE 5.3: Simulation showing the refocusing of the Iy magnetisation for a powder
under MAS using simple and composite refocusing pulses. The left-hand column uses
centred rotor synchronisation, while the shifted method is employed in right-hand
column. The 180◦ pulse lengths used in the simulation were 2 μs, 4 μs and 8 μs, corre-
sponding to B1 field strengths of 250 kHz, 125 kHz and 62.5 kHz, respectively. Other
parameters used in the simulation were νPAS

∆CS = 10 kHz and νR = ωR/2π = 10 kHz
(thus one rotor period is equal to 0.1 ms). The dashed vertical lines indicate where echo
formation is expected.
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Iy intensity, and with a pulse length of 72 μs the echo signal at time τE diminishes to

almost zero.

The right-hand column of results in Figure 5.3 uses the shifted method of rotor syn-

chronisation. Here the refocusing pulse is started at 0.1 ms, after a full rotor period has

elapsed. The echo occurs at a time τE = τR + τP after the start of the pulse, where τR

is the length of a single rotor period and τP is the total length of the refocusing pulse.

Again, the dashed vertical lines indicate where the echo time occurs – as this varies

according to pulse duration, each plot shows one vertical line for each rf field strength

simulated and is coloured according to the key shown.

As before, the 180◦ pulse refocuses the −Iy magnetisation fully. With shifted rotor syn-

chronisation, the spin echo with ASBO-9(7A) perfectly refocuses the magnetisation for

the two highest rf field strengths, while only a small reduction is intensity is seen with

the longest pulse length simulated. Similar results are found for ASBO-9(B1), except

with a more noticeable decline in the the Iy intensity at the expected echo time with the

rf strength of 62.5 kHz. The shifted rotor synchronisation method is clearly advanta-

geous for forming spin echoes with long composite pulses, while for the simple spin

echo both the shifted and centred schemes yield perfect echoes.

Figure 5.4 plots the individual trajectories of the Iy magnetisation for a selection of

single-orientation nuclear spins during the application of the ASBO-9(B1) composite

pulse in the echo sequences described. The spinning rate is equal to 10 kHz, and the

total composite pulse length is 36 μs. In the case of centred rotor synchronisation, the

nuclear spins fan out during the first echo delay and there is little coherence between

the magnetisation pathways as the pulse is applied. In the powder simulations this

manifests as a decrease in the expected signal. Next, considering the shifted case, the

rotary echo formed at 0.1 ms brings the various orientations back into alignment before

the refocusing pulse is applied.

The plots in Figure 5.5 show how the Iy intensity formed at the expected echo time

varies as a function of MAS rate between 1 kHz and 15 kHz (experiments presented

later in this chapter will employ these MAS rates) using a number of composite pulses

that are listed in Table 5.1. The refocused intensity resulting from the simple spin-

echo experiment does not vary with spinning speed with either rotor synchronisation

method. The performances of the shorter pulses – LF, SP and TS – are not significantly
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FIGURE 5.4: Simulation showing the evolution of Iy magnetisation for a various crys-
tallite orientations under MAS using the composite refocusing pulse ASBO-9(B1), con-
trasting centred and shifted rotor synchronisation. The 180◦ pulse length used in the
simulation was 4 μs, corresponding to a field strength of ν1 = ω1/2π = 125 kHz and
a total duration of 36 μs for the composite pulse. Other parameters used in the simula-
tion were νPAS

∆CS = 10 kHz and νR = 10 kHz. Only the time range corresponding to the
application of the composite pulse has been plotted.

TABLE 5.1: Total pulse lengths in degrees and microseconds (for an rf field strength
ν1 = 125 kHz) for the refocusing pulses simulated in Figure 5.5.

Pulse Total length / ◦ Total length / μs

180◦0◦ 180 4
ASBO-9(B1) 1620 36
ASBO-9(7A) 1620 36
ASBO-11(Ω) 1980 44
OW 2340 52
LF 360 8
SP 420 9.33
TS 540 12
F1 900 20

affected by sample spinning. However, when using centred rotor synchronisation for

the longer composite pulses (the ASBO family and OW), degradation of the refocusing

performance is apparent as the MAS rate increases. The decline in Iy intensity with

increasing spinning speed is more rapid as the pulse length increases. In contrast, the

shifted rotor synchronisation yields consistent performance across this range of MAS

speeds for the ASBO pulses, and improved performance for OW and F1.
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FIGURE 5.5: Simulations showing the change in refocused Iy intensity as a function of
MAS rate, νR, for a powder using simple and composite refocusing pulses in a spin
echo experiment. The left-hand column uses centred rotor synchronisation, while the
shifted method is employed in right-hand column. The 180◦ pulse length used in the
simulation was 4 μs, corresponding to a B1 field strength of 125 kHz. Other parameters
used in the simulation were νPAS

∆CS = 10 kHz, and the simulation included Exorcycle
phase cycling.

5.4.1 Faster MAS

The simulations in Figure 5.6 show the performance of the composite pulse spin-echo

experiments up to a MAS rate of 70 kHz. Although we initially see a rapid decline in

the echo amplitude with centred rotor synchronisation for the longer composite pulses,

the Iy intensity then starts to recover as the spinning speed is raised. As νR approaches

2/τP, where τP is the total duration of the composite pulse, the echo amplitude reaches

a maximum. In this regime the two rotor synchronisation methods are equivalent.
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FIGURE 5.6: Simulations showing the change in refocused Iy intensity as a function of
MAS rate, νR, for a powder using simple and composite refocusing pulses in a spin-
echo experiment. The left-hand column uses centred rotor synchronisation, while the
shifted method is employed in right-hand column. The 90◦ pulse length used in the
simulation was 2 μs, corresponding to a B1 field strength of 125 kHz. Other parameters
used in the simulation were νPAS

∆CS = 10 kHz, and the simulation included Exorcycle
phase cycling.

5.4.2 B1 inhomogeneity

The solenoidal coil used in solid-state NMR produces an inhomogeneous rf field that

weakens at each end of the coil. Since the rotor containing the sample is longer than

the coil surrounding it, the sample experiences a B1 field which varies with position in

the rotor. In the two-dimensional contour plots in Figure 5.7 the ability of the composite

pulse to compensate for B1 inhomogeneity can be assessed with regard to the MAS rate.

The amount of in-phase Iy magnetisation present at echo time τE is shown on contour

labels as a percentage of the amount present at the start of the simulation. The MAS rate

varies between 1 and 15 kHz, while the normalised B1 field strength ranges from 1 to

0. The contour plot shows that a pulse has good compensation for B1 inhomogeneity if

the pink colour extends downwards, and good refocusing with higher spinning speeds

if the pink colour extends horizontally. We can thus see how the composite pulses
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FIGURE 5.7: Two-dimensional contour plots showing the percentage of Iy magnetisa-
tion that is refocused in a spin-echo experiment as a function of MAS rate, νR, and the
normalised B1 field strength, B1/Bnom

1 ) for a powder and employing Exorcycle phase
cycling. Other parameters used in the simulation were νPAS

∆CS = 10 kHz and a nomi-
nal B1 field strength of 125 kHz. In addition to a simple 180◦ pulse of duration 4 μs,
the composite pulses ASBO-9(B1), ASBO-11(Ω) and OW-13 are simulated – these have
overall pulse durations of 36, 44 and 52 μs, respectively.
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FIGURE 5.8: Simulations showing the change in refocused Iy intensity as a function
of MAS rate, νR, for a powder and employing Exorcycle phase cycling. In addition to
a simple 180◦, the composite pulses ASBO-9(B1) and ASBO-9(7A) are simulated. The
flip angle misset β/βnom is varied from 1.5 (pulse lengths increased by 50%) to 0.5
(halved pulse lengths). For clarity, the ASBO-9(7A) plot only shows simulations for
β/βnom varied from 1 (no error) to 0.5. Other parameters used in the simulation were
νPAS

∆CS = 10 kHz and a B1 field strength of 125 kHz. Centred rotor synchronisation was
used.

compensate well for B1 inhomogeneity at low spinning speeds in the case of centred

rotor synchronisation, and how this degrades with higher sample spinning rates to give

poorer performance than the simple spin echo. In contrast, the composite pulse echoes

with shifted rotor synchronisation are able to maintain better B1 compensation than the

simple echo, even as the MAS rate increases.
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5.4.3 Misset flip angles

Another error which can affect the outcome of a spin-echo experiment is the missetting

of the pulse durations, where poor calibration by the experimentalist means that pulses

that are longer or shorter than the correct length are applied. MAS spin echoes with

centred rotor synchronisation have been simulated taking the effect of incorrect pulse

lengths into account. Figure 5.8 shows for each of the pulse sequences how the Iy mag-

netisation formed at time τE varies in amplitude as the spinning rate is increased from

1 kHz to 15 kHz. The simulations were carried out with flip angle misset parameter

β/βnom varying from 1.5 (pulse durations incorrectly set to be 50% longer, i.e., a 180◦

pulse becomes 270◦) to 0.5 (halved pulse lengths, i.e., a 90◦ pulse is applied instead of a

180◦ pulse). The initial state was kept as −Iy and the calculations run with all elements

of the refocusing pulse shortened or lengthened according to the value of the misset

parameter.

The results for the simple spin echo are as expected: the Iy amplitude follows a sine

response, decreasing as the flip angle of the refocusing pulse is reduced from its nom-

inal length for a 180◦ rotation and leading to halved signal intensity with halved pulse

length. The extent of signal loss is identical whether the pulse is applied for a propor-

tionately longer or shorter time. This response is unaffected by the MAS rate.

Next, considering the response of the ASBO-9(B1) echo, we find that as the refocusing

pulse is incorrectly set to shorter durations, the Iy amplitude becomes less prone to

attenuation with increasing MAS speed. As demonstrated in the previous chapter, this

composite pulse is very tolerant of deviations of the flip angle from the nominal value.

Coupling this good compensatory ability with the reduction in overall pulse length

compared to τR leads to an improvement in the echo signal intensity. In contrast, when

the pulse is made longer (simulations in dashed lines), a marked decline in performance

with sample spinning is seen.

ASBO-9(7A), which was shown in Chapter 4 to have a narrower bandwidth than ASBO-

9(B1) for correcting deviations from the nominal flip angle, shows increasing refocused

Iy intensity across the MAS speeds simulated as the pulses are shortened to β/βnom =

0.8. With β/βnom = 0.6, the Iy intensity at νR = 14 kHz is lower than that created by a
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FIGURE 5.9: Evolution of Iy magnetisation with two composite refocusing pulses
ASBO-9(B1) at τR and 3τR, giving echo formation at 4τR. Simulation parameters were:
ν1 of 125 kHz or 62.5 kHz (total composite pulse length of 36 μs or 72 μs), νR of 10 kHz,
νPAS

∆CS of 1, 5 and 10 kHz.

simple spin echo under the same conditions, or by ASBO-9(7A) with correctly calibrated

pulses.
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5.4.4 Multiple refocusing

Levitt and Freeman discussed multiple refocusing in solution-state experiments, show-

ing that any error in spin-echo phase caused by a composite pulse can be cancelled out

by applying a second echo using the same pulse [73]. Olejniczak, Vega and Griffin anal-

ysed magic angle spinning by considering the paths taken by magnetisation vectors in

MAS experiments [123]. They stated that if a 180◦ pulse is applied at time 1/2τR af-

ter excitation, the amplitude of the echo expected at τR is greatly reduced owing to the

”scrambling” of the magnetisation vectors from different crystallite orientations which

prevents refocusing of the anisotropic shift by further sample rotation. However, this

effect can be reversed by applying a second 180◦ pulse at 3/2τR, resulting in the forma-

tion of a Hahn and a rotational echo at 2τR.

When applying long composite pulses with centred rotor synchronisation, the pulse

starts part of the way through a τR period, and a similar scrambling of vectors is seen.

We can apply a second echo in our experiments and investigate the perfomance of com-

posite pulse double spin-echo experiments under MAS. Figure 5.9 plots the Iy magneti-

sation through the double refocusing sequence with the pulses applied centred at times

τR and 3τR, forming an echo at 4τR. The ASBO-9(B1) double-pulse experiment refocuses

the Iy magnetisation with full intensity at 4τ = 0.4 ms with νPAS
∆CS = 1 kHz. However,

a slight reduction in echo intensity is apparent with νPAS
∆CS = 5 kHz and 10 kHz. With

a longer pulse length (72 μs at ν1 = 62.5 kHz), both ASBO-9(B1) (Figure 5.9(a)) and

ASBO-9(7A) (Figure 5.9(b)) show deteriorated performance with increasing CSA, with

a greater reduction in echo intensity seen in the ASBO-9(B1) double-pulse experiment.

However, the losses are not as significant as those observed in the equivalent simula-

tions with a single echo, indicating that some of the error has been reversed.

5.5 Experiments

Experiments were performed on a Bruker Avance 400 NMR spectrometer equipped

with a widebore 9.4 T magnet. The investigation of the effect of spinning rate on com-

posite pulse spin-echo performance was carried out on a sample of titanium pyrophos-

phate (TiP2O7), which was kindly provided by Dr. Gregory Tricot of Université Lille
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FIGURE 5.10: 31P (162 MHz) MAS NMR spectrum of TiP2O7 (90◦ pulse length was 2.5
μs, νR of 12.5 kHz, relaxation interval of 180 s, averaging of 16 transients). Spinning
sidebands in (a) are marked with asterisks (*), impurity peaks indicated by dashes (–).

de Nord de France. The TiP2O7 structure consists of corner-sharing distorted TiO8 oc-

tahedra and PO4 tetrahedra, giving rise to a structure with eleven crystallographically

distinct phosphorus sites [120]. The sample (a white powder) was packed in a 4-mm

rotor and the calibrated 90◦ pulse length was 2.5 μs, corresponding to a nutation rate

ν1 = |γB1|/2π = 100 kHz. The 31P nuclei have a CSA of around νPAS
∆CS = 10 kHz at

9.4 T [118].

Figure 5.10 shows the 31P MAS NMR spectrum of TiP2O7 obtained with a spinning

rate of 12.5 kHz. The spectrum consists of nine resolved peaks between −38 and −53

ppm. A complete assignment of the spectrum is given in reference [118]. The peaks

visible between −10 and −30 ppm are attributed to impurities in the sample. Spinning

sidebands are present 12.5 kHz on either side of the centrebands in Figure 5.10(a), and

an expansion of the centrebands can be seen in Figure 5.10(b).
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5.5.1 Phasing of Spinning Sidebands

Figure 5.11 shows spin-echo spectra of TiP2O7 obtained using the composite pulse

ASBO-9(B1) at spinning speeds of 4, 6 and 8 kHz. Figures 5.11(a), 5.11(c) and 5.11(e)

show spectra obtained with centred rotor synchronisation with increasing MAS rate.

In order to phase these spectra, the simple spin-echo was first recorded and phased

for each spinning speed. The same phase correction was then applied to the compos-

ite pulse spectra before altering the zeroth-order phase correction by a few degrees to

optimise the phasing. The outermost sidebands in the spectrum with a MAS rate of 6

kHz (Figure 5.11(c)) are inverted with respect to the centreband, while at 8 kHz (Fig-

ure 5.11(e)) all sidebands are inverted. Spectra were also recorded at higher spinning

speeds (10, 12 and 14 kHz) and these also showed inversion of all sidebands. It was not

possible to bring all the sidebands and the centreband into the correct phase simulta-

neously. This problem was only observed experimentally for composite pulse echoes.

However, simulations suggest that when the rf field strength is much lower and the

duration of a simple 180◦ pulse is very long, the same problem with phasing sidebands

can occur in a simple spin-echo experiment.

For the experiments with shifted rotor synchronisation (Figures 5.11(b), 5.11(d) and

5.11(f)) the spectra were phased individually. Unlike the spectra obtained with centred

rotor synchronisation, it was always possible to phase the spectra correctly.

5.5.2 Spin-echo spectral intensites

As well as producing a distinctive behaviour in the phase of spinning sidebands in

the composite pulse spin-echo experiments, it is interesting to examine the difference

in the amplitude of the centrebands and spinning sidebands between the two rotor

synchronisation methods. Comparing the spin-echo spectra obtained at spinning speed

of 4 kHz (Figure 5.11(a) and Figure 5.11(b)), the centrebands have greater intensity using

the centred method. While the shifted method has centrebands of lower intensity, the

spinning sidebands are greater, and overall the total integrated intensity of the two

spectra are similar.

The difference in centreband signal intensity between the simple pulse spin echo, ISP,

and composite pulse echo experiments, ICP, were examined at MAS rates of 4, 6, 8, 10, 12
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(b) νR = 4 kHz, shifted rotor synchronisation.
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(c) νR = 6 kHz, centred rotor synchronisation.
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(d) νR = 6 kHz, shifted rotor synchronisation.
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(e) νR = 8 kHz, centred rotor synchronisation.
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(f) νR = 8 kHz, shifted rotor synchronisation.

FIGURE 5.11: 31P (162 MHz) MAS NMR spin-echo spectra of TiP2O7 (90◦ pulse length
of 2.5 μs, relaxation interval of 180 s, averaging of 16 transients). The composite pulse
ASBO-9(B1) was used.
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and 14 kHz. These have been plotted as a percentage change relative to the simple echo,

{(ICP − ISP)/ISP} ∗ 100, at each spinning speed in Figure 5.12. Experiments employing

pulses from the ASBO family and OW were carried out using both centred and shifted

rotor synchronisation, while the shorter pulses LF, SP and TS were only studied with

centred rotor synchronisation as the simulations in Figure 5.5 suggested that both rotor

synchronisation methods would yield similar results in this range of MAS speeds. All

composite pulse spectra intensities were compared to a simple spin echo with centred

rotor synchronisation – again, because the simple echo experiment was not affected by

the choice of rotor synchronisation method.

When using the longer composite pulses, the greatest improvement in signal intensity

compared to the simple echo is observed with centred rotor synchronisation but only

at low spinning speeds. For example, ASBO-9(B1) gives a 44% increase at νR = 4 kHz,

yielding the best increase in signal amplitude for any of the composite pulses studied

here. However, as the spinning speed increases, the signal enhancement relative to the

simple echo diminishes. At νR = 12 kHz there is no advantage in using this composite

pulse, and at νR = 14 kHz the simple echo actually performs better than the composite

pulse. Considering the rate of deterioration of composite pulse performance, the rel-

ative amplitudes observed using the longer pulses ASBO-11(Ω) and OW fall off more

rapidly than the ASBO-9 pulses. The shorter pulses (LF, SP, TS and F1) do not show

much variation in performance with increasing spinning speed.

Using shifted rotor synchronisation, ASBO-9(B1) only gives a 12% increase at νR = 4

kHz. However, the magnitude of the signal enhancement does not vary considerably

with MAS rate. From νR = 10 kHz and upwards, the shifted rotor synchronisation

method performs better than the centred experiments for this pulse sequence. Similarly,

the performances of ASBO-9(7A), ASBO-11(Ω) and OW do not vary greatly with MAS

rate. These experimental observations reflect the simulations presented in Figure 5.5.

5.5.3 Misset flip angles

Figure 5.13 shows the 31P MAS NMR spin-echo spectra recorded at νR = 14 kHz with

a simple refocusing pulse as well as ASBO-9(B1) and ASBO-9(7A). Centred rotor syn-

chronisation was employed in all aquisitions. For each pulse sequence, the experiment

was performed with a calibrated duration of 2.5 μs for a 180◦ rotation (Figures 5.13(a),
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FIGURE 5.12: Plots showing the percentage change in centreband signal intensity of
the centreband in 31P spin-echo spectra using composite refocusing pulses compared
to a simple spin-echo spectrum. The sample used was TiP2O7. The left-hand column
uses centred rotor synchronisation, while the shifted method is employed in right-
hand column for a selection of longer composite pulses. The calibrated 90◦ pulse length
was 2.5 μs, corresponding to a B1 field strength of 100 kHz.

5.13(c) and 5.13(e)), and then repeated with the refocusing pulse durations deliberately

shortened to 60% of their calibrated values (Figures 5.13(b), 5.13(d) and 5.13(f)).

Considering the simple spin echo first, the spectrum recorded with a misset shows peak

amplitudes which are reduced by about 20% compared to the spectrum obtained with

a well-calibrated 180◦ pulse.

Curiously, the missetting of the flip angles results in higher peak amplitudes when

ASBO-9(B1) is used as the refocusing pulse (compare Figure 5.13(c) with Figure 5.13(d)).

Coupling the overall reduction in the composite pulse length with the ability of the

pulse to compensate for misset flip angles across a large bandwidth results in an im-

provement of the signal amplitude compared to the experiment carried out with well-

calibrated pulse durations. Conversely, with the same extent of error in the pulse length,

the ASBO-9(7A) spectrum suffers a loss in centreband intensity (compare Figure 5.13(e)
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(a) 180◦0◦ .
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(b) 180◦0◦ with misset.
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(c) ASBO-9(B1).
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(d) ASBO-9(B1) with misset.
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(e) ASBO-9(7A).
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(f) ASBO-9(7A) with misset.

FIGURE 5.13: 31P (162 MHz) MAS NMR spin-echo spectra of TiP2O7 (90◦ pulse length
of 2.5 μs, relaxation interval of 180 s, averaging of 16 transients, νR = 14 kHz). The
composite pulses ASBO-9(B1) and ASBO-9(7A) were used as well as a 180◦0◦ refocus-
ing pulse. In (b), (d) and (f) all elements of the refocusing pulses were misset to 60%
of their calibrated duration. Centred rotor synchronisation was used in all of these
experiments.
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FIGURE 5.14: Plots showing the percentage change in centreband signal intensity of
31P spin-echo spectra using composite refocusing pulses compared to a simple spin-
echo spectrum. The left-hand column uses centred rotor synchronisation, while the
shifted method is employed in right-hand column for a selection of longer composite
pulses. The calibrated 90◦ pulse length was 2.5 μs, corresponding to a B1 field strength
of 100 kHz. The duration of all elements of the refocusing pulses have been misset to
60% of their calibrated value.

with Figure 5.13(f)). Although dual-compensated with regard to both misset and off-

set, this composite pulse sequence has a lower tolerance to deviations in flip angle than

ASBO-9(B1). As the extreme error is not compensated, an improvement is not seen

despite the decreased pulse length.

Using the refocusing pulses listed in Table 5.1, spin-echo experiments were carried out

with the pulse lengths deliberately shortened to a misset of β/βnom = 0.6. The ex-

periments were performed at νR = 4, 6, 8, 10, 12 and 14 kHz and at each MAS speed

the centreband intensities of the composite pulse spectra were compared to a simple

echo spectrum. The percentage difference in amplitude for each has been plotted in

Figure 5.14. Contrasting these with the results in Figure 5.12, where the correct pulse

durations were used, we see a particular improvement in the performance of the longer

pulses of the ASBO family and OW. The rate of attenuation of the centreband signal



Chapter 5. The effects of MAS on composite pulse performance 132

νR / kHz

ASBO-9(7a)
ASBO-11(Ω)
OW

ASBO-9(B1) LF
SP
TS
F1

νR / kHz
4 6 8 10 12

-20

0

20

40

4 6 8 10 12

-20

0

20

40

{(I
C

P 
 -
 I S

P 
 ) 

/ I
SP

 } 
/ %

FIGURE 5.15: Plots showing the percentage change in centreband signal intensity of
31P double spin-echo spectra using composite refocusing pulses compared to a double
simple spin-echo spectrum. The calibrated 90◦ pulse length was 2.5 μs, corresponding
to a B1 field strength of 100 kHz. The relaxation interval was 180 s and 64 transients
were acquired for each experiment.

with spinning rate using the ASBO pulses with centred rotor synchronisation is notice-

ably reduced.

5.5.4 Double refocusing experiments

MAS double spin-echo experiments were carried out at νR = 4, 8 and 12 kHz. The

percentage signal enhancement of the composite pulse echoes compared to the the 180◦

refocusing experiments are shown in Figure 5.15. Compared to Figure 5.12, we see

much less variation in the performance of the composite pulses as a function of MAS

rate, indicating that the second echo reverses some of the deleterious effects seen.

5.6 Conclusions

In this Chapter, the effects of MAS on composite pulse performance have been explored,

revealing a complex dependence of the outcome of a composite pulse spin-echo se-

quence on the experimental parameters. Two methods of rotor synchronisation have
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been studied (Figure 5.2), with each yielding distinct spectra and different dependen-

cies on the spinning rate. It is clear that the delta pulse approximation is not always

valid and the simulations presented, for example in Figure 5.3, do not show the ro-

tations expected of a refocusing pulse. Broadband composite pulses ought to yield

improved spectra compared to simple pulses, but we have seen that this is not always

the case. Disappointing results have included problems of poor signal amplitude and

incorrect phases of spinning sidebands.

In the case of spin echoes with centred rotor synchronisation, the composite pulse be-

gins part way through a rotor period at a time when the magnetisation vectors have

fanned out and not been fully refocused by a rotational echo driven by MAS. As de-

scribed by Olejniczak et al. [123], the application of a refocusing pulse midway through

a rotor period scrambles the magnetisation vectors from different crystallite orienta-

tions, and further sample rotation will not refocus the anisotropic chemical shift. De-

structive interference between magnetisation of different crystallites thus yields a signal

of diminished amplitude at time τE. As a result of this scrambling phenomenon, cen-

tred spin-echo experiments are highly sensitive to the spinning rate, in particular when

the total length of the composite pulse necessitates that the rf pulse begins at a point

during the rotor period where the magnetisation has dephased significantly under ro-

tation. Thus, the experiment is highly dependent on the sample as well as the composite

pulse, as the extent of dephasing at a given MAS rate is governed by the magnitude of

the various anisotropic interactions present. With the refocusing ability of a composite

pulse compromised even without other pulse errors present, it is not surprising that the

compensation for B1 field strength errors suffers as shown in Figure 5.7.

It is interesting that the presence of a flip angle miscalibration has the potential to im-

prove the performance of a composite pulse spin echo experiment if the flip angles

are set lower than their nominal value. Figure 5.13 demonstrates that a decrease in

the overall pulse length can lead to spectra of greater signal amplitude. This effect is

crucially dependent on the size of the misset and the bandwidth the composite pulse

possesses to deal with variations in flip angle. Conversely, if the flip angles are miscal-

ibrated longer than their nominal value, further deterioration in their performance is

seen. This is clearly a problem, as one would apply a composite pulse in the hope of

relieving problems of misset flip angles, rather than worsening their effects.
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In general, we do not wish to replace a single echo with multiple echoes, as this restricts

the B1 bandwidth (as seen in the Depth implementation of spin echoes in Chapter 3).

In addition, more signal is lost by transverse relaxation during the spin echo intervals.

However, it is noted that, as pointed out by Levitt and Freeman [73] and Olejniczak et

al. [123], a second echo has the potential to correct phase problems generated by the

first. Figure 5.15 shows that the amplitude enhancement provided by the composite

pulse compared to the simple refocusing pulse shows less variation with MAS rate in

double echo experiments.

The shifted method of rotor synchronisation times the start of the refocusing pulse with

the completion of an integer number of rotor periods, and takes the length of the com-

posite pulse into account in predicting when the echo will reach its maximum. Al-

though the centred method seems to yield spectra with greater centreband intensity at

low spinning speeds, a crossover exist at a point depending on the overall pulse dura-

tion and the MAS rate. Beyond this, the shifted rotor synchronisation method yields

greater amplitudes as is seen in Figure 5.12. Furthermore, the shifted method generates

spectra with spinning sidebands with correct phase.

Although the shifted method seems to show some level of success in the single spin-

echo experiment, one would express caution in employing these pulse timings in other,

more complex experiments. For example, in the refocused INADEQUATE experiments

introduced in Chapter 4, the spin-echo intervals must be equal to an integer number of

rotor periods to remove the homonuclear dipolar couplings. Attempts to implement the

shifted rotor synchronisation scheme would introduce artefacts in the two-dimensional

spectrum.

In summary, we have seen that MAS introduces extra complexity to the outcome of a

composite pulse spin-echo experiment. Regardless of the choice of rotor synchronisa-

tion method, the overall amplitude of the signal depends not only on the bandwidth

of the pulse to compensate for experimental imperfections such as B1 strength errors

and resonance offset, but is also hinged on a complicated interplay of the magnitude of

the anisotropic interactions in the sample, the MAS rate and the total duration of the

composite pulse sequence. It is worth remembering that the problems we have seen

here will not necessarily impair all applications of composite pulses in MAS, and that
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compensating pulse sequences have been used with success in solid-state NMR exper-

iments, both in this thesis and elsewhere in the literature. However, it is clear that

unlike solution-state experiments, a degree of uncertainty exists in their performance

under MAS.



Chapter 6

Far off-resonance spin-locking of

half-integer quadrupolar nuclei

6.1 Introduction

Moving on from the topics covered in the previous Chapters, we will now examine a

completely different theme in solid-state NMR. NMR spin-locking involves the applica-

tion of a long radiofrequency pulse along the bulk magnetisation vector, with the effect

of locking the vector in place for up to several seconds. No further evolution takes

place under the influence of resonance offsets, J coupling or dipolar coupling while the

magnetisation is spin-locked, as the radiofrequency field strength (ω1 = |γB1|) is much

stronger than any of these interactions. This spin-locking is an essential part of many

experiments in NMR, most notably in the cross-polarisation (CP) experiment where the

spin-locking pulse is used to transfer polarisation from abundant spins to dilute nuclei

in the sample.

Although the simple vector model picture given above is valid for spin I = 1/2 nu-

clei, the spin-locking behaviour of quadrupolar nuclei in solids is more challenging to

understand. The quadrupolar splitting parameter, ωQ, may be much larger than the ra-

diofrequency field strength, resulting in rapid evolution of the magnetisation on a time

136
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scale of 1/ωQ before the system settles into a spin-locked state of single- and multiple-

quantum coherences as well as non-equilibrium population states. Experiments per-

formed under MAS will be more complex, with a time-dependent quadrupolar splitting

parameter and final spin-locked states which vary with rotor phase ωRt. [124–127]

Previously, a simple theoretical model was given by Ashbrook and Wimperis to de-

scribe the creation and evolution of coherences in a spin-locking experiment involv-

ing half-integer quadrupolar nuclei [128]. Subsequently, the effects of second-order

quadrupolar interactions and small resonance offsets were considered [129]. Here, a

study of the far off-resonance case will be presented. The magnetisation is left directed

along the z-axis of the rotating frame before the spin-locking pulse is applied. Since the

pulse is applied well away from the Larmor frequency, there is a significant z compo-

nent to the effective field Beff (see Figure 1.2(c)) [130].

The first sections of this Chapter will cover the theoretical model of spin-locking. Com-

puter simulations employing this model will then be presented, as well as exact den-

sity matrix calculations for spin I = 3/2 and I = 5/2. These simulations, together

with experimental NMR results, will give insight into the spin-locking phenomenon

for half-integer quadrupolar nuclei in the solid state.

6.2 Pulse sequences for spin-locking

Figure 6.1 shows the pulse sequences for the far off-resonance experiments described

in this Chapter. The magnetisation is left directed along the z-axis of the rotating frame

before the spin-locking pulse is applied. Unlike conventional on (or near) resonance

spin-locking, no initial pulse is required. Since the pulse is applied far off the Larmor

frequency, there is a significant z component to the effective field Beff. For observing

the spin-locking of the central transition, a single pulse of duration τ is used, as shown

in Figure 6.1(a). This pulse sequence is modified as shown in Figure 6.1(b) to allow

the observation of the multiple-quantum coherences. In this case the second pulse is

phase cycled [26] to convert the desired multiple-quantum coherence into the observ-

able single-quantum state.
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τ

(a)

φ’

φ
(b)

FIGURE 6.1: Spin-locking pulse sequences for observing (a) single-quantum coher-
ences and (b) triple-quantum coherences.

6.3 Theoretical model of spin-locking

As explained in Reference [128], the rotating-frame Hamiltonian during an off-resonance

spin-locking pulse is defined as

H = Hrf + Hquad + HΩ, (6.1)

where the radiofrequency pulse Hamiltonian (Hrf), the first-order quadrupolar Hamil-

tonian (Hquad) and the offset Hamiltonian (HΩ) are given by,

Hrf = ω1 Ix, (6.2)

Hquad =
ωPAS

Q

2
(3 cos2 θ − 1){I2

z −
1
3

I(I + 1)}, (6.3)

HΩ = ΩIz. (6.4)

When the spin-locking pulse is applied to the initial state σ(0), the system begins to

evolve under the influence of the Hamiltonian in Equation 6.1, with the time-dependence

given by the Liouville-von Neumann equation,

d
dt

σ(t) = −i[H, σ(t)]. (6.5)

Assuming that H is time-independent (and therefore ignoring any effects of MAS), the

solution is

σ(t) = exp{−iHt}σ(0) exp{+iHt} (6.6)
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as we described in Section 2.2. A unitary transformation V can be used to diagonalise

the Hamiltonian,

HD = VHV−1. (6.7)

Equation 6.6 can then be written as

σ(t) = V−1 exp{−iHDt}Vσ(0)V−1 exp{+iHDt}V (6.8)

or

σ′(t) = exp{−iHDt} σ′(0) exp{+iHDt} (6.9)

with

σ′(t) = Vσ(t)V−1. (6.10)

The initial density operator σ(0) is thus transformed by V into the eigenbasis of the

spin-locking Hamiltonian, i.e., the frame in which H is diagonal. The off-diagonal ele-

ments of σ′(0) evolve at rates determined by ω1 and ωQ and, when considered across

a powder sample where ωQ will vary according to crystallite orientation, they will de-

phase rapidly at the start of the spin-locking pulse. The diagonal elements, σ′D(0),

are the states which commute with the spin-locking Hamiltonian – these are the states

which will be spin-locked. In a static sample these states will remain unchanged for the

duration τ of the spin-locking pulse. In the eigenbasis of the spin-locking Hamiltonian

these are equivalent to population states. When viewed back in the normal rotating

frame using

σ(τ) = V−1σ′D(0)V (6.11)

the elements of the final density matrix correspond to a range of coherences and popu-

lation states.

6.3.1 Spin-locking under MAS

During MAS, the quadrupolar splitting parameter ωQ becomes time dependent:

ωQ(t) =
ωPAS

Q

2
{−
√

2 sin 2β cos(ωRt + ξ) + sin2 β cos 2(ωRt + ξ)} (6.12)
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where β is the angle between the quadrupolar PAS and the spinning axis and ξ is the

initial phase about this axis. The quadrupolar splitting changes sign either two or four

times per rotor period depending on β. A measure of whether this rotor-driven be-

haviour occurs adiabatically or suddenly in the weak field (ω1 � ωQ) limit is given by

the adiabaticity parameter introduced by Vega [125],

α =
ω2

1

2ωPAS
Q ωR

(6.13)

In the sudden limit (α � 1), the zero-crossing of ωQ(t) occurs rapidly, and the final

state σ(t) remains unchanged by MAS. In this case the spin-locking should be the same

as in a static sample. Conversely, in the adiabatic limit (α� 1) where the zero-crossing

occurs slowly, the spin-locked states are time dependent. This can be incorporated into

the model by using one unitary transformation, V(0), to produce the initial state in the

eigenbasis of the spin-locking Hamiltonian (Equation 6.14) but a different transforma-

tion, V(τ), to view the density matrix in the rotating frame after a spin-locking pulse of

duration τ,

σ(τ) = V−1(τ)σ′D(0)V(τ). (6.14)

Although the final state σ(τ) varies with rotor phase Φ = ωRt as a result of this time-

dependence, the spins remain locked at all times. The third case, when α ∼ 1, is called

the intermediate regime – here, a zero-crossing will partially convert population differ-

ences across spin-locking eigenstates into off-diagonal coherences and the spin-locked

magnetisation will decay on a timescale of ∼ ωR.

6.4 Spin-locking calculations

6.4.1 Spin-locking model

This simple model of spin-locking has been incorporated into Fortran programs which

can be found in Appendix D. The tensor operator T1,0, which is proportional to the ther-

mal equilibrium state Iz, forms the initial density matrix. The asymmetry parameter, η,

is assumed to equal zero so that Equation 2.59 can be used to calculate the quadrupolar

splitting parameter, ωQ. The spin-locking pulse Hamiltonian is calculated using Equa-

tion 6.1. The Hamiltonian is diagonalised using the unitary transformation V which is
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found numerically. By setting the off-diagonal elements to equal zero, only the spin-

locked, i.e., the diagonal elements of the density matrix are retained. The final density

matrix in the rotating frame is obtained using Equation 6.14. The final states are deter-

mined by calculating the expectation value of operator Q by taking the trace of the final

density matrix elements with the adjoint operator Q†,

〈Q〉 = Tr{σ(τ)Q†}, (6.15)

where Q is a spherical tensor operator, Tl,p.

6.4.2 Exact density matrix method

In order to illustrate that the results of the simple spin-locking model are valid, calcu-

lations have also been carried out using an exact density matrix approach similar to

that detailed in Section 5.2. The total experimental time is broken into small divisions

and the Hamiltonian is assumed to be time-independent during each small step, thus

allowing the time evolution of the density operator to be calculated using the solution

of the Liouville-von Neumann equation.

6.5 Simulations

6.5.1 Spin I = 3/2 in a static solid

Using the model of spin-locking described, the expectation values of the spin I = 3/2

spherical tensor operators created by the rapid dephasing of the initial state σ(0) = T1,0

were calculated as a function of radiofrequency field strength, ω1, and resonance offset,

Ω. Figure 6.2 shows the results as three-dimensional surface plots. The quadrupolar

splitting parameter ωPAS
Q was 200 kHz and a single orientation was chosen (β = 0◦,

hence ωQ = ωPAS
Q . Expectation values are presented for the central transition and for

simplicity only tensor operators with positive values of p are shown (although tensors

with negative p will also be present since the the density matrix is Hermitian).

First considering T1,0, the expectation value is at a maximum when ω1 = 0 Hz, i.e., there

is no evolution of the states when no pulse is applied. As ω1 increases, T1,0 decreases as
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the spin-locking pulse creates other coherences and population states. The extent of the

falloff with ω1 decreases as the resonance offset increases. At offsets equal to around 0,

ωPAS
Q and 2ωPAS

Q there are local dips in the T1,0 surface plot corresponding to the creation

of other states.

The central transition intensity is equal to zero when either ω1/2π = 0 (no pulse) or

Ω = 0 (the on-resonance pulse does not excite the equilibrium z-magnetisation). The

amount of CT spin-locked increases as both ω1 and Ω increase, with a dip in intensity

at Ω/2π = 200 kHz. The population states T2,0 and T3,0 are created with most effi-

ciency at low rf field strengths (near 0) with offsets equal to multiples of the quadrupo-

lar splitting: Ω/2π ≈ 0, 200 kHz for T2,0 and Ω/2π ≈ 0, 200, 400 kHz for T3,0. In

contrast, the single-quantum states T1,1, T2,1 and T3,1 are zero at these conditions of

Ω/2π ≈ 0, 200, 400 kHz and ω1/2π ≈ 0 kHz, instead forming between these offsets

and at higher rf fields. The amount of T1,1 increases as ω1 and Ω increase. T2,1 reaches

a maximum at Ω/2π = 85 kHz and ω1/2π = 205 kHz. T3,1 is most abundant at

Ω/2π = 320 kHz and ω1/2π = 100 kHz. Next considering the double-quantum coher-

ences T2,2 and T3,2, both peak at ω1/2π = 35 kHz, inverting in sign at Ω/2π = 200 kHz

to give most intensity just above and below this offset. Finally, looking at the triple-

quantum coherence T3,3, we see that it is created mostly at low offsets, with a maximum

at Ω/2π = 5 kHz and ω1/2π = 105 kHz.

The three-dimensional surface plots in Figure 6.3 show the equivalent results for a pow-

der sample. Here, the contribution of crystallites with differing values of ωQ according

to orientation gives rise to modified behaviour – in particular, interesting features in the

plots no longer arise only at offsets around ωPAS
Q and 2ωPAS

Q .

The T1,0 plot is similar to the one seen before – the magnitude decreases as ω1 increases,

with a more rapid falloff at lower offsets. A slight dip is seen at Ω/2π ≈ 120 kHz. T2,0

is created with most intensity at Ω/2π = 90 kHz and ω1/2π = 50 kHz, while T3,0 is

abundant at lower resonance offsets and rf strengths, with a maximum at Ω/2π = 5

kHz and ω1/2π = 10 kHz.

As before, T1,1 is zero when ω1 and Ω = 0, and as these are both increased, more T1,1 is

created. T2,1 is at a maximum when Ω/2π = 30 kHz and ω1/2π = 65 kHz. Both T2,1

and T3,1 feature dips at Ω/2π ≈ 100 kHz at weak rf field strengths.
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FIGURE 6.2: Three-dimensional surface plots of the spin I = 3/2 expectation values
of spherical tensor operators, Tl,p and the central transition (CT) created by rapid de-
phasing of initial state T1,0 under a spin-locking Hamiltonian, as a function of ω1 and
Ω. Results are plotted for a single orientation (θ = 0◦) with ωPAS

Q /2π = 200 kHz.



Chapter 6. Far off-resonance spin-locking of half-integer quadrupolar nuclei 144

The sign and magnitude of the T2,2 expectation value has a varied dependence on

the resonance offset and rf field strength, with a maximum at Ω/2π = 110 kHz and

ω1/2π = 47.5 kHz. Most T3,2 is created at Ω/2π = 40 kHz and ω1/2π = 97.5 kHz. As

seen in the single orientation plots, T3,3 is created mostly at low offsets, with a maximum

at Ω/2π = 5 kHz and ω1/2π = 65 kHz.

Figure 6.4 plots cross-sections of these expectation values as a function of ω1 with a

constant resonance offset of 100 kHz. Here it is clearer to see the relative contribution of

each spherical tensor operator to the overall spin-locked magnetisation. As the amount

of T1,0 decreases, T1,1 increases to a maximum around ω1/2π = 200 kHz before falling

off again. T2,0 and T3,0 also make a significant contribution, peaking at ω1/2π = 50 kHz

and 125 kHz respectively. T3,1, T3,2 and T3,2 all peak at low rf field strength (around 30

kHz) before passing through zero at 100 kHz and peaking again at higher ω1. T3,2 only

becomes significant at stronger rf field strengths, peaking at around ω1/2π = 200 kHz.

As a measure of the extent of the initial rapid dephasing, we can examine the change in

the norm of the density operator,

Tr{σ(τ)}2 = ∑
l

∑
p

Tr{σ(τ)Tl,−p}2 (6.16)

Under a unitary transformation, this quantity is conserved. However, as the initial

rapid dephasing represents a non-unitary transformation, we can gauge the efficiency

of the spin-locking from changes in the norm. Figure 6.5 plots the norm as a function

of rf field strength for a range of resonance offsets from 0 to 250 kHz. For all offsets, a

decrease in the magnitude of the norm is observed as the rf strength increases, reflecting

the decreasing efficiency of the spin-locking pulse. As the resonance offset increases, the

spin-locking efficiency at higher rf strength increases.

Spin-locking simulations for I = 5/2 in a static solid can be found in Appendix F.

6.5.2 Spin I = 3/2 under MAS

Sample rotation under MAS leads to more complex spin-locking behaviour as the sign

and magnitude of the quadrupolar splitting parameter change, with the outcome de-

pendent on whether the zero-crossing occurs adiabatically or suddenly. Figure 6.6
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FIGURE 6.3: Three-dimensional surface plots of the spin I = 3/2 expectation values
of spherical tensor operators, Tl,p and the central transition (CT) created by rapid de-
phasing of initial state T1,0 under a spin-locking Hamiltonian, as a function of ω1 and
Ω. Results are plotted for a powder sample with ωPAS

Q /2π = 200 kHz.
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FIGURE 6.4: Expectation values of I = 3/2 spherical tensor operators, Tl,p created by
rapid dephasing of initial state T1,0 under a spin-locking Hamiltonian, as a function
of ν1 = ω1/2π. Results are plotted for a powder with ωPAS

Q /2π = 200 kHz and
Ω/2π = 100 kHz.

shows the expectation values of the I = 3/2 spherical tensor operators formed by ini-

tial rapid dephasing as a function of time through one complete rotor period at reso-

nance offsets of Ω/2π = 50 kHz and 100 kHz. The spin-locking field strength used

in these simulations was ω1/2π = 75 kHz and the quadrupolar splitting given by

ωPAS
Q /2π = 200 kHz. A single crystallite orientation was chosen with β = 90◦ and an

initial phase angle of ξ = 180◦, giving a value of ωQ/2π = 100 kHz at the start of the

rotor period.
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FIGURE 6.5: The norm of the spin I = 3/2 density operator created by rapid dephasing
of initial state T1,0 under a spin-locking Hamiltonian, as a function of ν1 = ω1/2π. Re-
sults are plotted for a powder with ωPAS

Q /2π = 200 kHz and Ω/2π = 50, 100, 150, 200
and 250 kHz.

Looking first at Figure 6.6(a), T1,0 is most abundant at the start of the rotor period, along

with a significant amount of T2,1, T2,0 and T3,0. As the sample rotates, the amount of T1,0

decreases then rises again slightly forming a local maximum after a quarter turn of the

rotor. This is mirrored by the next quarter turn, returning T1,0 to its original amplitude.

The same cycle is observed for the second half of the rotor period. Similar behaviour is

seen for T2,0. The intensity of T1,1, T3,1 and T2,2 correspondingly rises as the population

states decline, giving maxima after a quarter turn and minima at a half turn. Both T3,2

and T3,3 cycle to a maximum after an eight of a turn before falling to a minimum after

another equal time period.

Next, considering the plots in Figure 6.6(b), we see that there is less modulation of

the spin-locked states compared to the lower offset. At the start of the rotor period,

the population states T1,0, T2,0 and T3,0 are present in greatest amplitude in order of

decreasing rank. The decrease of these leads to the rotor-driven interconversion with

the higher-order coherences, with T1,1, T2,1 and T2,2 being the most significant. A large

decline is observed in the amount of T3,1, T3,2 and T3,3 compared to the simulations for

Ω/2π = 50 kHz.

A density matrix calculation confirms the validity of the results found using the spin-

locking model. In Figure 6.7, the spin I = 3/2 expectation values for a powder have

been calculated for two rotor periods using (a) the spin-locking model and (b) an exact
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FIGURE 6.6: Expectation values under MAS of I = 3/2 spherical tensor operators, Tl,p,
created by rapid dephasing of initial state T1,0 under a spin-locking Hamiltonian, as a
function of ν1. Results are plotted for a single orientation (β = 90◦ and ξ = 180◦) with
ωPAS

Q /2π = 200 kHz.

density matrix approach. The oscillations seen before in Figure 6.6 are strongly depen-

dent on the crystallite orientation as defined in Equation 6.12, while here the summation

of the states over a range of β and ξ values are a more realistic representation of a typi-

cal experiment. After a period of initial rapid dephasing, the states settle into a periodic

interconversion of spin-locked states in Figure 6.7(b). The calculation using the sim-

ple model (Figure 6.7(a)) shows excellent agreement in predicting the evolution of the

spin-locked states.
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FIGURE 6.7: Evolution of expectation values of I = 3/2 spherical tensor operators, Tl,p,
under MAS. Results are plotted for a powder with ωPAS

Q /2π = 200 kHz, ω1/2π = 75
kHz and Ω/2π = 50 kHz. Results are shown for (a) the spin-locking model and (b) an
exact density matrix calculation. The MAS rate in (b) was νR = 10 kHz.

6.5.3 Spin I = 5/2 under MAS

A comparison of the results of the model with an exact density matrix calculation is pre-

sented in Figure 6.8. Here the evolution of the spin-locked states has been calculated for

the duration of two complete turns of the rotor. The same simulation parameters are

used as described for the corresponding spin I = 3/2 simulation (Figure 6.7), giving

an adiabaticity parameter of α = 1.4 for the density matrix calculation. For the popu-

lation states and single-quantum coherences, a good qualitative agreement can be seen

between the model and the exact density matrix simulations. However, for the higher

order coherences, the magnitude of the spin-locked states decays on the timescale of
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FIGURE 6.8: Evolution of expectation values of I = 5/2 spherical tensor operators, Tl,p,
under MAS. Results are plotted for a powder with ωPAS

Q /2π = 200 kHz, ω1/2π = 75
kHz and Ω/2π = 50 kHz. Results are shown for (a) the spin-locking model and (b) an
exact density matrix calculation. The MAS rate in (b) was νR = 10 kHz.

around 1/ωR in the density matrix simulations, such that there is little magnetisation

spin-locked in these states during the second rotor period. This is a consequence of

the adiabaticity parameter being close to 1 – in this intermediate regime, spin-locking
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is not efficient under MAS. Appendix F contains further simulations of spin-locking of

I = 5/2 nuclei under MAS.

6.6 Experiments

6.6.1 Experimental details

Experiments were carried out on a Bruker Avance 400 spectrometer equipped with a

widebore 9.4 T magnet operating at a Larmor frequency of ω0/2π = 105.8 kHz for 23Na

(I = 3/2) and ω0/2π = 104.3 kHz for 27Al (I = 5/2). As the size of the quadrupolar

interaction of a nucleus becomes comparable to the rf field strength, the pulse response

becomes non-sinusoidal, thus making calibration of the rf field difficult for many com-

pounds [131]. The rf field strength was determined by calibrating the 180◦ pulse length

on sodium chloride – owing to the octahedral coordination of chloride ions around the

sodium cation, the 23Na quadrupolar interaction is zero. 23Na NMR studies were car-

ried out using two compounds: sodium nitrite (NaNO2) and sodium nitrate (NaNO3),

while 27Al experiments were carried out on aluminum acetylacetonate (Al(acac)3). All

three compounds were obtained commercially as powdered solids and were packed in

4-mm rotors for both static and MAS experiments. In order to limit the effects of rf inho-

mogeneity on the experimental results, the samples were packed to a depth of around

1 cm only in the centre of the rotor (the remaining volume of the rotor was packed

with powdered boron phosphate as a spacer material). Each of the three compounds

possesses a single crystallographically-distinct cation site, with ωPAS
Q /2π = 84 kHz for

NaNO3 [132]; ωPAS
Q /2π = 275 kHz and η = 0.109 for NaNO2 [133]; and ωPAS

Q /2π = 225

kHz and η = 0.15 for Al(acac)3 [134].

6.6.2 Spin I = 3/2 in a static solid

Figure 6.9 shows the 23Na central-transition intensity of static sodium nitrate and sodium

nitrite as a function of increasing offset of the rf transmitter from the central transi-

tion frequency at three different spin-locking field strengths. The experiments were

recorded using the pulse sequence introduced in Figure 6.1(a), with a spin-locking

pulse length equal to 300 μs. A recycle interval of 10 s was employed in the NaNO3
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FIGURE 6.9: 23Na central-transition NMR signal intensity in (a) NaNO3 and (b) NaNO3
recorded using the pulse sequence in Figure 6.1(a) as a function of resonance offset.
The spin-locking pulse length was 300 µs in each case. Experimental points are shown
by squares joined by a dashed line, while the spin-locking intensities calculated using
the spin-locking model are shown by a solid line. The intensities of all experimental
points were multiplied by the same empirical constant to allow comparison with the
simulations.

experiments, while a shorter delay of 1 s was used in the NaNO2 experiments. The

experimentally-derived spin-locking intensities (datapoints shown by squares joined

by a dashed line) have been empirically scaled to allow a comparison with the simula-

tion results of the spin-locking model (shown by solid lines). The same scaling factor

was applied to all experimental data points shown in Figures 6.9 and 6.10.

In Figure 6.9(a), the spin-locked CT intensity of NaNO3 increases to a maximum at

Ω/2π = 50 kHz before falling off again with the rf field strength equal to ω1/2π = 20.8

kHz. With ω1/2π = 41.7 kHz, the CT intensity rises as the offset increases, dipping at

Ω/2π = 20 kHz before rising to a maximum at Ω/2π = 90 kHz. At the strongest

spin-locking field, the CT amplitude rises with increasing offset, dipping very slightly

at Ω/2π = 30 kHz and reaching a maximum at Ω/2π = 130 kHz, before falling off

gradually. As ω1 increases, the maximum amount of spin-locked CT obtained also in-

creases. The experimental results and the model show an excellent agreement at all

three rf strengths for NaNO3. While a simulation using density matrix theory would,

of course, reflect the experimental results, we see here that calculations employing the

simplified model of spin-locking are highly successful in predicting the experimental

outcome.

Figure 6.9(b) shows an increase in spin-locked CT magnetisation of NaNO2 up to Ω/2π=

50 kHz with ω1/2π = 20.8 kHz before falling off again with further increase in the res-

onance offset. At ω1/2π = 41.7 kHz, the amount of CT spin-locked builds up slowly
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FIGURE 6.10: 23Na triple quantum-filtered central-transition NMR signal intensity in
NaNO2 recorded using the pulse sequence in Figure 6.1(b) as a function of resonance
offset. The spin-locking pulse length was 300 μs in each case. Experimental points are
shown by squares joined by a dashed line, while the spin-locking intensities calculated
using the spin-locking model are shown by a solid line.

to a maximum around Ω/2π = 100 kHz, and remains fairly steady before decreas-

ing at offsets greater than 140 kHz. At the strongest rf field strength, the build up of

the spin-locked CT intensity as the offset increases is slower. A maximum is reached

at Ω/2π = 170 kHz. A near-perfect agreement between the experimental data and

model is seen with ω1/2π = 20.8 kHz, although a greater error is seen for the higher

rf strengths. It is possible that the relaxation interval was not sufficient, affecting the

intensities measured in the experimental results.

Figure 6.10 shows plots demonstrating the experimentally-obtained spin-locking in-

tensities for the triple-quantum filtered central transition intensity of sodium nitrite

as a function of resonance offset and compares them to the expectation value of the

triple-quantum coherence T3,3 calculated using the simple model of spin-locking. The

pulse sequence illustrated in Figure 6.1(b) was used with a spin-locking pulse dura-

tion of 300 μs. The length of the second pulse was optimised for the conversion of the

triple-quantum coherences back into observable single-quantum coherence (1.6 μs at

ω1/2π = 166.7 kHz).
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With the spin-locking field strength set to 83.3 kHz, the amount of triple-quantum co-

herence rises rapidly as the offset increases up to Ω/2π = 7 kHz. The intensity then

declines as the offset is raised further, with a very slight increase again at Ω/2π = 150

kHz. Halving the rf strength to 41.7 kHz, the maximum amount of triple-quantum

coherence is created at a lower offset of Ω/2π = 2 kHz. When the field strength is low-

ered further to 20.8 kHz, the occurrence of triple-quantum coherence is again shifted to

lower offset, with a maximum at Ω/2π = 1 kHz.

For the two strongest rf strengths, the calculations closely match the experimental re-

sults, although slightly underestimate the amount of spin-locked magnetisation present

at higher offset. The calculation carried out with ω1/2π = 20.8 kHz also significantly

underestimates the amount of spin-locked triple-quantum magnetisation created at low

offsets. However, the general trend is still reflected accurately. A change in the tuning

of the probe could be responsible for this result, as this would affect the scaling factor

between experiments.

6.6.3 Spin I = 5/2 in a static solid

The creation of various population states and coherences as predicted in the simulations

in Appendix F.1 has been observed in 27Al (I = 5/2) spin-locking experiments and is

demonstrated using coherence-counting experiments [128]. Two-dimensional spectra

were recorded using the pulse sequence shown in Figure 6.1(b) with the phase of the

spin-locking pulse incremented in place of any incremental time dimension. By vary-

ing the phase in 2n steps from 0◦ to 360◦, a maximum of n coherence orders may be

observed [135, 136]. Here, the phase was incremented in twelve steps of 30◦, thus six

coherence orders may be seen. As there is no t1 dimension, the steps from 0◦ to 360◦

are repeated (in this case 16 times) and a weighting function applied to build an inter-

ferogram before Fourier transformation of the data. Signals in the F1 projections from

the resulting spectrum then correspond to separate coherence orders, with the nth line

representing the nth coherence order. As well as being used previously to investigate

spin-locked magnetisation [128], this experiment has been used to investigate the build-

up of multiple-quantum coherences in multiple-spin correlation experiments [137] and

in spin-counting applications in studies of dipolar-coupled proton networks [138, 139].
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The spin-locking duration was 300 μs with ω1/2π = 83.3 kHz and the relaxation inter-

val was 10 s in all 27Al experiments performed. Whereas in Figure 6.10 the duration of

the second pulse was optimised for the conversion of triple-quantum coherences back

into observable 1Q coherence, the pulse here was chosen to be able to simultaneously

observe a variety of coherences.

Figure 6.11 shows the results of the spin-locking coherence-counting experiment per-

formed on Al(acac)3 at two resonance offsets, Ω/2π = 10 and 50 kHz. As expected

from the three-dimensional surface plots presented in Figure F.2, the p = 0 amplitude

increases as the offset is raised, mainly owing to the contribution of T1,0. Similarly, the

simulations showed a noticeable increase in T1,1 with greater offset, reflected experi-

mentally in the p = 1 amplitude. The p = 2 signal of the coherence-counting spectrum

also increases as the offset is increased to 50 kHz, while higher coherence orders either

decrease or remain at a similar intensity.

6.6.4 Spin I = 3/2 under MAS

23Na spin-locking experiments have been carried out under MAS on sodium nitrite,

confirming the complex rotor-driven dynamics predicted by theory. Figure 6.12 shows

experimental 23Na central-transition signal intensities as a function of the spin-locking

pulse length, where the maximum pulse length was equal to five full rotor periods (500

μs at a MAS rate of ωR/2π = 10 kHz). In Figure 6.12 the spin-locking field strength used

was 83.3 kHz, giving an adiabaticity parameter of α = 1.26. In this adiabatic regime, the

rotor-driven modulation is clear. As the rotor turns, the CT intensity increases, reaching

a maximum after a half turn. This is followed by a decrease during the second half of

the rotor period as the various crystallites experience zero-crossings. At the end of each

rotor period, the crystallites have experienced either two or four zero-crossings, and the

original signal intensity is re-established.

In Figure 6.12(b), the spin-locking field strength was reduced to 20.8 kHz, yielding α =

0.08. In these experiments, the modulation of the eigenstates falls under the sudden

regime and the effect of sample rotation on the spin-locked states is less pronounced.

Similar effects are seen in Figure 6.13, where the triple-quantum coherence is monitored

as a function of spin-locking duration under (a) the adiabatic regime and (b) the sudden
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FIGURE 6.11: 27Al NMR coherence-counting experiments, showing the amplitude of
different coherence orders present during the spin-locking of Al(acac)3 at resonance
offsets of (a) 10 kHz and (b) 50 kHz. Rows were extracted from the F1 dimension of
two-dimensional spectra recorded using the pulse sequence shown in Figure 6.1(b),
with a 30◦ increment in the phase of the spin-locking pulse. The strength of the spin-
locking field was 83.3 kHz.

limit. Under the adiabatic limit, a clear modulation of the magnetisation is observed,

with minima at integer rotor periods. This corresponds to the simulations where pop-

ulation states are most abundant at the start of each rotor period, and sample rotation

induces coherence-transfer to higher order states. When performed at a lower spin-

locking field strength, there is no clear modulation of the amplitude with rotation.

6.6.5 Spin I = 5/2 under MAS

The 27Al coherence-counting experiment has been used to examine the dependence

of the spin-locked states on sample rotation. Figure 6.14 shows the coherence orders

present at various points through a rotor period with the transmitter frequency offset

by 50 kHz from resonance. The spin-locking field strength was ω1/2π = 83.3 kHz and
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FIGURE 6.12: 23Na MAS NMR experiments, showing the signal intensity of the 1Q
central transition during the spin-locking of NaNO2 at a resonance offset of 50 kHz
with varying spin-locking durations. The MAS rate was ωR/2π = 10 kHz, giving
adiabaticity parameters of (a) α = 1.26 and (b) α = 0.08.

the the MAS rate was ωR/2π = 10 kHz, giving an adiabaticity parameter of α = 1.26. In

Figure 6.14(a), where the spin-locked states are observed after half a rotor period, mag-

netisation is present in most abundance with coherence orders p = 1, 0 and −1. Some

double- and triple-quantum coherences are also observed. As in the I = 3/2 case, rotor-

driven interconversion of states occurs and the spin-locked states vary throughout the

rotor period. In Figure 6.14(b), where τ = 0.8τR, the amount of p = 0 has declined

along with p = −2 and p = 3. In Figure 6.14(c), we see that further rotation of the sam-

ple has further decreased the amount of multiple-quantum coherences present in the

spin-locked magnetisation. This corresponds to the minima observed at integer rotor

periods in the calculated spin-locked states in Figure 6.8. Whereas in the static spin-

counting experiments the spin-locked states do not change during the pulse, here it is

shown that a time-dependent modulation of the spin-locked states under MAS exists.
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FIGURE 6.13: 23Na MAS NMR experiments, showing the signal intensity of the 3Q
central transition during the spin-locking of NaNO2 at a resonance offset of 50 kHz
with varying spin-locking durations. The MAS rate was ωR/2π = 10 kHz, giving
adiabaticity parameters of (a) α = 1.26 and (b) α = 0.08.

6.7 Conclusions

Using the model of quadrupolar spin-locking introduced by Ashbrook and Wimperis

[128] which predicts the spin-locked state after an initial period of rapid dephasing, we

have investigated the far off-resonance case of spin locking for spin I = 3/2 and I = 5/2

nuclei. Since the offset is large, there is a significant z-component to the effective field

Beff and so the magnetisation is left directed along the rotating-frame z-axis before the

pulse is applied.

Three-dimensional surface plots showing the creation of a range of different coherences

as a function of offset and spin-locking field strength have been presented. In the plots

for single-orientation nuclear spin, features occur in the plots an integer multiples of

ωPAS
Q (see Figure 6.2), while more complicated behaviour is observed in the powder

simulations (Figure 6.3).

Calculations using the simple model were found to be successful in predicting the re-

sults of single-quantum and triple-quantum experiments carried out on NaNO2 and
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FIGURE 6.14: 27Al MAS NMR coherence-counting experiments, showing the ampli-
tude of different coherence orders present during the spin-locking of Al(acac)3 at a res-
onance offset of 50 kHz with varying spin-locking durations, τ. The MAS rate was 10
kHz. Rows were extracted from the F1 dimension of two-dimensional spectra recorded
using the pulse sequence shown in Figure 6.1(b), with a 30◦ increment in the phase of
the spin-locking pulse. The strength of the spin-locking field was 83.3 kHz.

NaNO3 (Figures 6.9 and 6.10), while coherence-counting experiments on Al(acac)3 con-

firmed the creation of a variety of multiple quantum coherences which vary with offset

(Figure 6.11).

Under MAS, a time dependence is introduced to the quadrupolar splitting parameter,
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and the spin-locking behaviour under a weak field limit (ω1 � ωQ) falls into different

regimes according to the value of the adiabaticity parameter as defined by Vega [125].

In the adiabatic limit, the spin-locked states also acquire a time dependence. The rotor-

driven interconversion of eigenstates predicted by the model calculations are reflected

by the brute-force density matrix simulations in Figures 6.7 and 6.8, while Figure 6.14

shows an experimental demonstration of the variation of the spin-locked eigenstates of

Al(acac)3 under MAS conditions.

In the sudden limit, the spin-locked states under MAS are expected to be similar to those

found in static solids. This was found in Figures 6.12(b) and 6.13(b), where experiments

on NaNO2 show little variation in the spin-locked single- or triple-quantum central

transition amplitudes with MAS.
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Conclusions

This study has focused on two areas:

1. Composite pulse spin-echo methods for spin I = 1/2 nuclei. New pulse se-

quences have been presented which can be used in both solution- and solid-state

NMR

2. NMR spin-locking of half-integer quadrupolar nuclei in the solid state, in the case

where the transmitter frequency is far off-resonance

We will summarise our key findings for each of these topics in turn.

7.1 Spin I = 1/2 composite pulse spin echoes

The Hahn spin-echo sequence, 90◦0◦ − τ− 180◦0◦ − τ, is one of the most well-known ex-

periments in NMR and an integral feature of many other more complex experiments.

Many spectra suffer from the effects of pulse imperfections inherent in NMR experi-

ments, such as the inhomogeneity of the B1 field, which reduces the effective flip angle

of spins in the sample, or an offset of the transmitter from the resonance frequency. The

180◦ refocusing pulse in the spin-echo experiment is particularly sensitive to these er-

rors. The consequences of such errors include reduced signal and phase distortions in

the resulting spectra. With appropriate selection of the echo coherence pathway, phase

errors can be removed. However, as we have seen using a product operator analysis,

161
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a strong dependence of the signal amplitude on the flip angle and offset remains. It is

therefore tempting to replace the simple refocusing pulse in the spin-echo experiment

with a composite pulse to try to improve the signal amplitude. Importantly, the com-

posite pulse must have an antisymmetric phase scheme, otherwise phase errors will be

reintroduced into the signal despite the coherence selection with phase cycling (Exor-

cycle) or pulsed field gradients.

In Chapter 3 we investigated the use of composite pulses in the Depth method for 1H

background suppression in MAS NMR. The Depth method, consisting of a 90◦ pulse

followed by N 180◦ pulses, achieves suppression of the signal originating from back-

ground 1H spins by spatial localisation, and with the common implementation with two

refocusing pulses (N = 2), signal is only acquired from the centre of the rotor. How-

ever, owing to the inhomogeneity of the B1 field, signal from the ends of the rotor is

also eliminated. Using novel passband composite pulses in an N = 1 Depth sequence

to compensate for the B1 inhomogeneity in the region of the rf coil, we found it was

possible to excite more signal from within the rotor as well as achieving a degree of

suppression equal to or better than that achieved by the simple N = 2 Depth sequence.

With each of the APBn passband pulses in an N = 1 Depth experiment, we found a

signal-to-noise ratio was approximately doubled compared to the simple N = 2 Depth

sequence.

Using a two-dimensional nutation experiment, it was possible to gain further insight

into the origin of the background signal as well as allowing further analysis of the Depth

sequences. This experiment can be performed on any MAS probe. In the particular

probe used in our experiments, the background signal was found to originate approx-

imately 60 mm below the centre of the sample, which is well below the coil, rotor and

stator block. Another interesting finding of the nutation experiment was that the nu-

tation rate of the packed sample at each end of the rotor in fact overlapped with the

range of nutation rates of the background signal. Thus, although we observed an im-

provement in the signal amplitude from the sample using the APBn pulses in the Depth

sequence, it is evident that it is not possible to retain the full signal intensity from the

sample using any background suppression method which exploits the B1 distribution

of signals.
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Stimulated by our recognition of the importance of using antisymmetric refocusing se-

quences, novel families of broadband composite 180◦ pulses were introduced in Chap-

ter 4. All pulses in the ASBO families, consisting of either 9 or 11 consecutive 180◦ rota-

tions, are dual-compensated to simultaneously correct for both B1 inhomogeneity and

resonance offset. Unlike most existing dual-compensated composite pulses found in

the literature, the ASBO pulses are antisymmetic and thus well suited to forming spin

echoes without phase distortion. The pulses were designed using a graphical inter-

pretation of average Hamiltonian theory and experimentally verified using solid-state

static 31P spin-echoes and, under MAS, refocused INADEQUATE experiments. It is

expected that these pulses will also prove useful in solution-state NMR experiments.

In Chapter 5, we examined the effects of MAS on composite pulse performance. Sam-

ple rotation introduces a time dependence to the internal spin interactions such as the

chemical shift anisotropy, dipolar couplings and for spin I > 1/2, quadrupolar inter-

action. The resonance offset of each crystallite in a powder will therefore vary over

the course of a rotor period. We explored the problem with density matrix calculations

and 31P spin-echo experiments using two different schemes of rotor synchronisation

and found that as the total duration of a composite refocusing pulse becomes compa-

rable to the length of a rotor period, undesirable effects can result. With centred rotor

synchronisation, the ability of the composite pulse to form a spin echo of full intensity

deteriorated with increasing MAS speed, and unusual inversion of spinning sidebands

was observed experimentally. The ability of the composite pulses to compensate for B1

inhomogeneity and misset flip angles is also much more complicated than the simpler

behaviour in an analogous solution-state spin-echo experiment would be. Using shifted

rotor synchronisation, the outcome of the experiment showed less dependency on the

MAS rate, and no problems were encountered in the phasing of spinning sidebands.

It is clear that MAS introduces a complexity into the experiment, and it is difficult to

predict how successful a composite refocusing pulse will be under such conditions.

Whichever rotor synchronisation method is chosen, the outcome of the composite pulse

spin-echo experiment depends not only on the bandwidth of the pulse, but on the pulse

length, MAS rate and the magnitude of the anisotropic interactions present in the sam-

ple.
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7.2 Far off-resonance spin-locking of half-integer quadrupolar

nuclei

In NMR, spin-locking involves the application of a radiofrequency pulse with a long du-

ration along the bulk magnetisation vector. In spin I = 1/2, this has the effect of locking

the magnetisation vector in place for up to several seconds. The spin-locking pulse is a

vital component of many experiments in NMR, including the famous cross-polarisation

experiment. However, this vector model picture is not valid for quadrupolar nuclei,

where the magnitude of the quadrupolar interaction may be much greater than the ra-

diofrequency field strength. In order to help understand spin-locking of half-integer

quadrupolar nuclei, Ashbrook and Wimperis developed a simple theoretical model of

spin locking. After transforming the initial density operator into the eigenbasis of the

spin-locking Hamiltonian, only elements which commute with the spin-locking Hamil-

tonian will be spin-locked – in this frame, these correspond to population states. When

transformed back into the normal rotating frame, these elements correspond to popula-

tion states and coherences. This model has been used to investigate the far off-resonance

case of spin-locking, where the effective rf field has a significant z component and can

be used on the equilibrium state Iz.

Calculations incorporating the theoretical model predicted the creation of a range of dif-

ferent populations and coherences depending on the radiofrequency field strength and

resonance offset. These agreed well with single- and multiple-quantum 23Na (I = 3/2)

and 27Al (I = 5/2) spin-locking experiments carried out, both under static conditions

and showing the time-dependence of the spin-locked states under MAS. In addition,

a comparison with an exact density matrix calculation proved the robustness of the

simple model in predicting the off-resonance spin-locking behaviour of half-integer

quadrupolar nuclei.



Appendix A

Matrix representations of spin

angular momentum operators

A.1 I = 1/2

Ix =
1
2

(
0 1
1 0

)
Iy =

i
2

(
0 −1
1 0

)
Iz =

1
2

(
1 0
0 −1

)

A.2 I = 3/2

Ix =
1
2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

 Iy =
i
2


0 −

√
3 0 0√

3 0 −2 0
0 2 0 −

√
3

0 0
√

3 0



Iz =
1
2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3


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A.3 I = 5/2

Ix =
1
2



0
√

5 0 0 0 0
√

5 0
√

8 0 0 0

0
√

8 0 3 0 0

0 0 3 0
√

8 0

0 0 0
√

8 0
√

5

0 0 0 0
√

5 0



Iy =
i
2



0 −
√

5 0 0 0 0
√

5 0 −
√

8 0 0 0

0
√

8 0 −3 0 0

0 0 3 0 −
√

8 0

0 0 0
√

8 0 −
√

5

0 0 0 0
√

5 0



Iz =
1
2



5 0 0 0 0 0

0 3 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −3 0

0 0 0 0 0 −5


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Matrix representations of irreducible

spherical tensor operators

B.1 I = 3/2

l = 0 l = 1 l = 2 l = 3

p = +3


0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0


p = +2

1√
2


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 1√
2


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0



p = +1
1√
10


0 −

√
3 0 0

0 0 −2 0
0 0 0 −

√
3

0 0 0 0

 1√
2


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 1√
5


0 −1 0 0
0 0

√
3 0

0 0 0 −1
0 0 0 0



p = 0
1
2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 1√
20


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 1
2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 1√
20


1 0 0 0
0 −3 0 0
0 0 3 0
0 0 0 −1



p = −1
1√
10


0 0 0 0√
3 0 0 0

0 2 0 0
0 0

√
3 0

 1√
2


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 1√
5


0 0 0 0
1 0 0 0
0 −

√
3 0 0

0 0 1 0



p = −2
1√
2


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 1√
2


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0


p = −3


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


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B.2 I = 5/2

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

p = +5



0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



p = +4
1√
2



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


1√
2



0 0 0 0 1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



p = +3
−1√

18



0 0 0
√

5 0 0
0 0 0 0

√
8 0

0 0 0 0 0
√

5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


−1√

2



0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


−1
3



0 0 0
√

2 0 0
0 0 0 0 −

√
5 0

0 0 0 0 0
√

2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



p = +2
1√
28



0 0
√

5 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0

√
5

0 0 0 0 0 0
0 0 0 0 0 0


1√
12



0 0
√

5 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −

√
5

0 0 0 0 0 0
0 0 0 0 0 0


1√
28



0 0 3 0 0 0
0 0 0 −

√
5 0 0

0 0 0 0 −
√

5 0
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0


1√
12



0 0 1 0 0 0
0 0 0 −

√
5 0 0

0 0 0 0
√

5 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0



p = +1
−1√

35



0
√

5 0 0 0 0
0 0

√
8 0 0 0

0 0 0 3 0 0
0 0 0 0

√
8 0

0 0 0 0 0
√

5
0 0 0 0 0 0


−1√

14



0
√

5 0 0 0 0
0 0

√
2 0 0 0

0 0 0 0 0 0
0 0 0 0 −

√
2 0

0 0 0 0 0 −
√

5
0 0 0 0 0 0


−1√

30



0
√

10 0 0 0 0
0 0 −1 0 0 0
0 0 0 −

√
8 0 0

0 0 0 0 −1 0
0 0 0 0 0

√
10

0 0 0 0 0 0


−1√

14



0
√

2 0 0 0 0
0 0 −

√
5 0 0 0

0 0 0 0 0 0
0 0 0 0

√
5 0

0 0 0 0 0 −
√

2
0 0 0 0 0 0


−1√

42



0 1 0 0 0 0
0 0 −

√
10 0 0 0

0 0 0
√

20 0 0
0 0 0 0 −

√
10 0

0 0 0 0 0 1
0 0 0 0 0 0



p = 0
1√
6



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


1√
70



5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5


1√
84



5 0 0 0 0 0
0 −1 0 0 0 0
0 0 −4 0 0 0
0 0 0 −4 0 0
0 0 0 0 −1 0
0 0 0 0 0 5


1√
180



5 0 0 0 0 0
0 −7 0 0 0 0
0 0 −4 0 0 0
0 0 0 4 0 0
0 0 0 0 7 0
0 0 0 0 0 −5


1√
28



1 0 0 0 0 0
0 −3 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 −3 0
0 0 0 0 0 1


1√
252



1 0 0 0 0 0
0 −5 0 0 0 0
0 0 10 0 0 0
0 0 0 −10 0 0
0 0 0 0 5 0
0 0 0 0 0 −1



p = −1
1√
35



0 0 0 0 0 0√
5 0 0 0 0 0

0
√

8 0 0 0 0
0 0 3 0 0 0
0 0 0

√
8 0 0

0 0 0 0
√

5 0


1√
14



0 0 0 0 0 0√
5 0 0 0 0 0

0
√

2 0 0 0 0
0 0 0 0 0 0
0 0 0 −

√
2 0 0

0 0 0 0 −
√

5 0


1√
30



0 0 0 0 0 0√
10 0 0 0 0 0
0 −1 0 0 0 0
0 0 −

√
8 0 0 0

0 0 0 −1 0 0
0 0 0 0

√
10 0


1√
14



0 0 0 0 0 0√
2 0 0 0 0 0

0 −
√

5 0 0 0 0
0 0 0 0 0 0
0 0 0

√
5 0 0

0 0 0 0 −
√

2 0


1√
42



0 0 0 0 0 0
1 0 0 0 0 0
0 −

√
10 0 0 0 0

0 0
√

20 0 0 0
0 0 0 −

√
10 0 0

0 0 0 0 1 0



p = −2
1√
28



0 0 0 0 0 0
0 0 0 0 0 0√
5 0 0 0 0 0

0 3 0 0 0 0
0 0 3 0 0 0
0 0 0

√
5 0 0


1√
12



0 0 0 0 0 0
0 0 0 0 0 0√
5 0 0 0 0 0

0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −

√
5 0 0


1√
28



0 0 0 0 0 0
0 0 0 0 0 0
3 0 0 0 0 0
0 −

√
5 0 0 0 0

0 0 −
√

5 0 0 0
0 0 0 3 0 0


1√
12



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 −

√
5 0 0 0 0

0 0
√

5 0 0 0
0 0 0 −1 0 0



p = −3
1√
18



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0√
5 0 0 0 0 0

0
√

8 0 0 0 0
0 0

√
5 0 0 0


1√
2



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0


1
3



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0√
2 0 0 0 0 0

0 −
√

5 0 0 0 0
0 0

√
2 0 0 0



p = −4
1√
2



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0


1√
2



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 −1 0 0 0 0



p = −5



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0





Appendix C

Quaternions

C.1 Quaternions as a tool for analysing composite pulses

If the effects of relaxation and spin-spin interactions may be neglected over the course of

an rf pulse, the evolution of the spin density operator may be described as a pure rota-

tion in three-dimensional space. A composite pulse, which is a sequence of rf pulses of

varying flip and phase, may be analysed by determining its overall flip angle and rota-

tion axes. The mathematical solution to determining the overall rotation of a sequence

of rotations was first described by Hamilton in 1843 using the quaternion formalism

[140]. Blümich and Speiss were the first to apply the theory to composite pulses in

NMR [141], and soon after Counsell et al. introduced the following formalism which

avoids the use of matrix multiplication [70].

If a rotation about the axis n1 through an angle β1 is followed by a second rotation about

an axis n2 through an angle β2 , then the overall rotation axis is through an angle β12

about an axis n12 given by the equations

c12 = c1c2 − s1s2n1 · n2 (C.1)

s12n12 = s1c2n1 + c1s2n2 − s1s2n1 × n2 (C.2)
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where

ci = cos(βi/2) (C.3)

si = sin(βi/2) (C.4)

c12 = cos(β12/2) (C.5)

s12 = sin(β12/2) (C.6)

These equations may be extended to three or more non-commuting rotations.



Appendix D

Source code

Example Fortran program code for simulations presented in this thesis.

D.1 Composite pulse B1 bandwidths

PROGRAM COMPPLOT5c

C

C CALCULATES X, Y, Z, XY

MAGNETISATION CREATED BY COMPOSITE

C PULSE AS A FUNCTION OF B1/B1NOM

C WITH PHASECYCLE

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z

)

DOUBLE PRECISION Z(501 ,64),X

(501 ,64),Y(501 ,64)

DOUBLE PRECISION U(501 ,64),V

(501 ,64),W(501 ,64)

REAL *16 XAXIS (501),TEMPRY (501 ,64),

TEMPRX (501 ,64)

REAL *16 RX(501),RY (501),RZ(501) ,

RXY (501)

CHARACTER *12 TITLEX ,TITLEY ,TITLEZ ,

TITLEXY

PI=4.0* DATAN (1.0D0)

70 DO 50 I=1,501

RZ(I)=0.0

RX(I)=0.0

RY(I)=0.0

DO 50 J=1,64

Z(I,J)=0.0

X(I,J)=0.0

50 Y(I,J)=0.0

WRITE (* ,100)

100 FORMAT (1H ,’INIT. MAGN. IS Z(

ANSWER 0), X(1), Y(2) OR -Y(3)?’)

READ *,INIT

IF (INIT.EQ.0) THEN

DO 51 J=1,501

DO 51 K=1,64

51 Z(J,K)=1.0

ELSE IF (INIT.EQ.1) THEN

DO 52 J=1,501

DO 52 K=1,64

52 X(J,K)=1.0

ELSE IF (INIT.EQ.2) THEN

DO 53 J=1,501

DO 53 K=1,64

53 Y(J,K)=1.0

ELSE

DO 54 J=1,501

DO 54 K=1,64

54 Y(J,K)=-1.0

ENDIF

PRINT *,’NUMBER OF PULSES?’

READ *,N

PRINT *,’MAXIMUM NORMALISED FIELD

STRENGTH?’

READ *,STRENMAX

PRINT *,’STEPS IN PHASE CYCLE ’

READ *,IPCS

DO 20 I=1,N

WRITE (6,*) ’**** FLIP ANGLE FOR

PULSE ’,I,’ ****’

READ *,F

DO 10 K=1,IPCS

WRITE (6,*) ’RF PHASE FOR PULSE ’,I

,’AND STEP ’,K

READ *,P

D=(F*PI)/180.0

B=(P*PI)/180.0

G=0.002*D*STRENMAX

A=-G

DO 10 J=1,501

171
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A=A+G

CA=DCOS(A)

SA=DSIN(A)

CB=DCOS(B)

SB=DSIN(B)

S2B=DSIN (2.0*B)

SA2=DSIN (0.5*A)

U(J,K)=Z(J,K)*CA-X(J,K)*SA*SB+Y(J

,K)*SA*CB

V(J,K)=Z(J,K)*SA*SB+X(J,K)*(CA*SB

*SB+CB*CB)+Y(J,K)*SA2*SA2*S2B

W(J,K)=-Z(J,K)*SA*CB+X(J,K)*SA2*

SA2*S2B+Y(J,K)*(CA*CB*CB+SB*SB)

Z(J,K)=U(J,K)

X(J,K)=V(J,K)

Y(J,K)=W(J,K)

10 CONTINUE

20 CONTINUE

DO 66 K=1,IPCS

WRITE (6,*) ’RECEIVER PHASE FOR

STEP ’,K,’?’

READ *,RPD

RP=(RPD*PI)/180.0

DO 66 J=1,501

TEMPRX(J,K)=X(J,K)*DCOS(RP)+Y(J,K)

*DSIN(RP)

TEMPRY(J,K)=Y(J,K)*DCOS(RP)-X(J,K)

*DSIN(RP)

RZ(J)=RZ(J)+Z(J,K)

RX(J)=RX(J)+TEMPRX(J,K)

RY(J)=RY(J)+TEMPRY(J,K)

66 XAXIS(J)=0.004*(J-1)

DO 390 I=1,501

390 RXY(I)=SQRT((RX(I)**2.0) +(RY(I)

**2.0))

C

C OUTPUT RESULTS

C

TITLEX=’X’

OPEN(1,FILE=TITLEX ,STATUS=’

UNKNOWN ’)

DO 300 I=1,501

WRITE (1 ,635) XAXIS(I),RX(I)

300 CONTINUE

CLOSE (1)

TITLEY=’Y’

OPEN(2,FILE=TITLEY ,STATUS=’

UNKNOWN ’)

DO 301 I=1,501

WRITE (2 ,635) XAXIS(I),RY(I)

301 CONTINUE

CLOSE (2)

TITLEZ=’Z’

OPEN(3,FILE=TITLEZ ,STATUS=’

UNKNOWN ’)

DO 302 I=1,501

WRITE (3 ,635) XAXIS(I),RZ(I)

302 CONTINUE

CLOSE (3)

TITLEXY=’XY ’

OPEN(4,FILE=TITLEXY ,STATUS=’

UNKNOWN ’)

DO 303 I=1,501

WRITE (4 ,635) XAXIS(I),RXY(I)

303 CONTINUE

CLOSE (4)

635 FORMAT (F28.18,5X,F30 .20)

PRINT *,’NEW SEQUENCE (1), OR QUIT

(2)?’

READ *,NOPT

IF (NOPT.EQ.1) THEN

GOTO 70

ELSE

STOP

ENDIF

END
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D.2 Overall flip angles and rotation axes of composite pulses

PROGRAM QUATCOMPROFF1

C

C CALCULATES BETA (OVERALL ROTATION

ANGLE), PHI (PHASE) AND THETA

C (TILT FROM Z AXIS) OF A COMPOSITE

PULSE USING QUATERNIONS

C AS FUNCTION OF RESONANCE OFFSET (

ROFF PARAMETER = -1 -> 1)

C

IMPLICIT REAL*8 (A-H,O-Z)

C

C SET UP ARRAYS

C

REAL*8 A(25),B(25),S1N1 (3),S2N2 (3)

,CF(501) ,BETA (501)

REAL*8 ROFF (501) ,S1N1NEW (3),THETA

(501),FL(11)

REAL*8 PHII (11),PHI (501),SFNF

(501 ,3),X(50)

REAL*4 XRES (501) ,YRES (501)

CHARACTER *12 TITLEX ,TITLEY ,TITLEB ,

TITLEP ,TITLET

C

C INPUT VARIABLES

C

PI =3.1415926536

70 PRINT *,’NUMBER OF PULSES?’

READ *,NPULSE

DO 60 I=1,NPULSE

PRINT *,’FLIP ANGLE FOR PULSE ’,I

READ *,F

FL(I)=(F*PI)/180.0

PRINT *,’RF PHASE FOR PULSE ’,I

READ *,PHII(I)

PHII(I)=PHII(I)*PI /180.0

60 CONTINUE

C

C CALCULATE OVERALL FLIP ANGLE AND

ROTATION AXIS

C

DO 80 I=1,501

ROFF(I)= -1.0+0.004*(I-1)

THETAONE=ATAN(ROFF(I))

BETAONE =(FL(1)/COS(THETAONE))

COSONE=COS (0.5* BETAONE)

SINONE=SIN (0.5* BETAONE)

S1N1 (1)=SINONE*COS(THETAONE)*COS(

PHII (1))

S1N1 (2)=SINONE*COS(THETAONE)*SIN(

PHII (1))

S1N1 (3)=SINONE*SIN(THETAONE)

DO 90 J=2,NPULSE

THETATWO=ATAN(ROFF(I))

BETATWO =(FL(J)/COS(THETAONE))

COSTWO=COS (0.5* BETATWO)

SINTWO=SIN (0.5* BETATWO)

S2N2 (1)=SINTWO*COS(THETATWO)*COS(

PHII(J))

S2N2 (2)=SINTWO*COS(THETATWO)*SIN(

PHII(J))

S2N2 (3)=SINTWO*SIN(THETATWO)

COSNEW=COSONE*COSTWO -S1N1 (1)*S2N2

(1)-S1N1 (2)*S2N2 (2)

+ -S1N1 (3)*S2N2 (3)

S1N1NEW (1)=COSTWO*S1N1 (1)+COSONE*

S2N2 (1)

+ -S1N1 (2)*S2N2 (3)+S1N1 (3)

*S2N2 (2)

S1N1NEW (2)=COSTWO*S1N1 (2)+COSONE*

S2N2 (2)

+ +S1N1 (1)*S2N2 (3)-S1N1 (3)

*S2N2 (1)

S1N1NEW (3)=COSTWO*S1N1 (3)+COSONE*

S2N2 (3)

+ -S1N1 (1)*S2N2 (2)+S1N1 (2)

*S2N2 (1)

DO 100 K=1,3

100 S1N1(K)=S1N1NEW(K)

90 COSONE=COSNEW

DO 110 K=1,3

110 SFNF(I,K)=S1N1(K)

80 CF(I)=COSONE

C

C CONVERT TO NORMAL COORDINATES

C

DO 120 I=1,501

BETA(I)=2.0* ACOS(CF(I))

PHI(I)=ATAN(SFNF(I,2)/SFNF(I,1))

IF (SFNF(I,1).LT.0) PHI(I)=PHI(I)+

PI

RNORM=SQRT(SFNF(I,1) **2+ SFNF(I,2)

**2+ SFNF(I,3) **2)

120 THETA(I)=ACOS(SFNF(I,3)/RNORM)

C

C CALCULATE EXCITATION PROFILES

C

DO 130 I=1,501

SA=SIN(BETA(I))

CB=COS(PHI(I))

SB=SIN(PHI(I))

SC=SIN(THETA(I))

SA2=SIN (0.5* BETA(I))

S2C=SIN (2.0* THETA(I))

XRES(I)= SA*SB*SC+SA2*SA2*CB*S2C

130 YRES(I)=-SA*CB*SC+SA2*SA2*SB*S2C

DO 140 I=1,501

BETA(I)=BETA(I)*180.0/ PI

PHI(I)=PHI(I)*180.0/ PI

140 THETA(I)=THETA(I)*180.0/ PI

C

C OUTPUT RESULTS

C

TITLEX=’X’

OPEN(1,FILE=TITLEX ,STATUS=’

UNKNOWN ’)

DO 300 I=1,501

WRITE (1 ,635) ROFF(I),XRES(I)

300 CONTINUE

CLOSE (1)

TITLEY=’Y’

OPEN(2,FILE=TITLEY ,STATUS=’

UNKNOWN ’)

DO 301 I=1,501

WRITE (2 ,635) ROFF(I),YRES(I)

301 CONTINUE

CLOSE (2)

TITLEB=’BETA ’
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OPEN(3,FILE=TITLEB ,STATUS=’

UNKNOWN ’)

DO 302 I=1,501

WRITE (3 ,635) ROFF(I),BETA(I)

302 CONTINUE

CLOSE (3)

TITLEP=’PHI ’

OPEN(4,FILE=TITLEP ,STATUS=’

UNKNOWN ’)

DO 303 I=1,501

WRITE (4 ,635) ROFF(I),PHI(I)

303 CONTINUE

CLOSE (4)

TITLET=’THETA ’

OPEN(4,FILE=TITLET ,STATUS=’

UNKNOWN ’)

DO 304 I=1,501

WRITE (4 ,635) ROFF(I),THETA(I)

304 CONTINUE

CLOSE (4)

635 FORMAT (F10.6,5X,F10.6)

PRINT *,’NEW SEQUENCE (1), OR QUIT

(2)?’

READ *,NOPT

IF (NOPT.EQ.1) THEN

GOTO 70

ELSE

STOP

ENDIF

END
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D.3 Passband composite pulse design

C

C GRIDSEARCH2

C

C GRIDSEARCH ATTEMPTS TO MINIMISE

AN EQUATION BY A

C BRUTE -FORCE GRID SEARCH

C FOR ANTISYMMETRIC SEQUENCE OF

SEVEN 180 DEGREE

C PULSES TO FIND A PASSBAND

COMPOSITE PULSE

C

C INITIALIZE ARRAYS AND THE LIKE

C

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 Z(13),X(13),Y(13),U(13),V

(13),W(13)

REAL*8 P(9)

PI=4.0* DATAN (1.0D0)

C

C CALCULATION

C

RMIN =10000.0

DO 10 I=0,360,6

DO 10 J=0,360,6

DO 10 K=0,360,6

E=REAL(I)

F=REAL(J)

G=REAL(K)

P(1)=E*0.0174532925 D0

P(2)=F*0.0174532925 D0

P(3)=G*0.0174532925 D0

P(4) =0.0

P(5)=-P(3)

P(6)=-P(2)

P(7)=-P(1)

C

DO 50 II=1,13

Z(II)=1.0

X(II)=0.0

50 Y(II)=0.0

DO 20 II=1,7

G=0.1*PI

A=-G

DO 30 JJ=1,13

A=A+G

CA=DCOS(A)

SA=DSIN(A)

CB=DCOS(P(II))

SB=DSIN(P(II))

S2B=DSIN (2.0*P(II))

SA2=DSIN (0.5*A)

U(JJ)=Z(JJ)*CA-X(JJ)*SA*SB+Y(JJ)

*SA*CB

V(JJ)=Z(JJ)*SA*SB+X(JJ)*(CA*SB*

SB+CB*CB)+Y(JJ)*SA2*SA2*S2B

W(JJ)=-Z(JJ)*SA*CB+X(JJ)*SA2*SA2

*S2B+Y(JJ)*(CA*CB*CB+SB*SB)

Z(JJ)=U(JJ)

X(JJ)=V(JJ)

Y(JJ)=W(JJ)

30 CONTINUE

20 CONTINUE

C

C

CURRENT =(4.0-Z(1)-Z(2)-Z(3)-Z(4)

) -(-8.0-Z(6)-Z(7)-Z(8)-Z(9)

C -Z(10)-Z(11)-Z(12)-Z(13))

IF (CURRENT.LE.RMIN) THEN

RMIN=CURRENT

AA=P(1) /0.0174532925 D0

BB=P(2) /0.0174532925 D0

CC=P(3) /0.0174532925 D0

DD=P(4) /0.0174532925 D0

WRITE (6,*) RMIN

WRITE (6,*) AA

WRITE (6,*) BB

WRITE (6,*) CC

WRITE (6,*) DD

WRITE (6,*)

ELSE

GOTO 10

ENDIF

10 CONTINUE

STOP

END
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D.4 Spin I = 1/2 spin echo under MAS

C

C PROGRAM SPINV10

C

C CALCULATES Iy CREATED BY (INIT=-Iy

)-T-180-T AS A

C FUNCTION OF TIME THROUGH SEQUENCE

(2 ROTOR PERIODS)

C FOR A I = 1/2 SINGLE CRYSTALLITE

C

C INITIALIZE ARRAYS AND OTHER SUCH

THINGS

C

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 EIGVEC (2,2),RESULT (2001) ,

RES (2001) ,SPINRATE ,TIME (2001)

REAL*8 PULHAM (2,2),DELHAM (2,2),

RESULTX (2001) ,RESULTZ (2001)

COMPLEX *16 EXOPER (2,2),DENMAT (2,2)

,RMZ(2,2),RMX(2,2),RMY(2,2)

COMPLEX *16 WORKZERO (2,2),WORKONE

(2,2),WORKTWO (2,2),PROPAG (2,2)

REAL*8 DIAG (2,2),DIAGT (2,2),CSA

(2001)

COMPLEX *16 PHSHOP (2,2)

INTEGER NBETA ,NPHI ,NPOINTS ,IS ,

PSTART ,PEND ,RP

CHARACTER TITLEY ,TITLEX ,TITLEZ ,

TITLEC

PI=4.0* DATAN (1.0D0)

C

C ANGLES AND NUMBER OF TO POINTS TO

CALCULATE

C

PHI =0.0

PHI=PHI*PI /180.0

THETA =0.955316

C

C READ IN DATA

C

4 PRINT *,’90 DEGREE PULSE LENGTH IN

MICROSECONDS ’

READ *,PLENGTH

OMEGA =1570796.3267/ PLENGTH

WRITE (*,6) OMEGA /(6.28318531*1000)

6 FORMAT (1H ,’B1 FIELD STRENGTH (IN

KHZ) IS ’,F15.3)

PLENGTH=PLENGTH /1000000.0

PRINT *,’BETA?’

READ *,BETA

BETA=BETA *(2.0* PI /360.0)

PRINT *,’MAX. CSA IN KHZ ’

READ *,CSAMAX

CSAMAX =2.0*PI*CSAMAX *1000.0

PRINT *,’SPINNING SPEED IN KHZ ’

READ *,SPINRATE

SPINRATE=SPINRATE *1000.0

ROTINC =1.0/( SPINRATE *1000)

RP=NINT(PLENGTH/ROTINC)

PSTART =1001-RP

PEND =1000+ RP

WRITE (*,9) PLENGTH ,ROTINC

9 FORMAT(F15.8)

WRITE (*,8) RP ,PSTART ,PEND

8 FORMAT(I5)

SPINRATE=SPINRATE *2.0*PI

C

C PRE -CALCULATE OBSERVABLES

C

DO 540 J=1,2

DO 540 K=1,2

RMX(J,K)=CMPLX (0.0 ,0.0)

RMZ(J,K)=CMPLX (0.0 ,0.0)

540 RMY(J,K)=CMPLX (0.0 ,0.0)

RMX(1,2)=CMPLX (0.5 ,0.0)

RMX(2,1)=CMPLX (0.5 ,0.0)

RMY(1,2)=CMPLX (0.0 , -0.5)

RMY(2,1)=CMPLX (0.0 ,0.5)

RMZ(1,1)=CMPLX (0.5 ,0.0)

RMZ(2,2)=CMPLX ( -0.5 ,0.0)

C

C THE LOOP (PHI)

C

C DO 28 III=1,NPHI

C PHI=(III -1) *2.0*PI/NPHI

C

C CONSTRUCT EQUILIBRIUM DENSITY

MATRIX -Iy

C

DO 5 J=1,2

DO 5 K=1,2

5 DENMAT(J,K)=CMPLX (0.0 ,0.0)

DENMAT (1,2)=CMPLX (0.0 ,0.5)

DENMAT (2,1)=CMPLX (0.0 , -0.5)

C

C THE LOOP (ROTOR INCREMENTS)

C

DO 25 I=1 ,2001

TIME(I)=(I-1)*ROTINC

CSA(I)=CSAMAX *(0.5*(3.0*( COS(THETA

)**2.0) -1.0)

+ *(3.0*(

COS(BETA)**2.0) -1.0)

+ -1.5*SIN (2.0* THETA)*SIN (2.0*

BETA)

+ *COS(SPINRATE*

TIME(I)+PHI)

+ +1.5*( SIN(THETA)**2.0) *(SIN(

BETA)**2.0)

+ *COS (2.0*(

SPINRATE*TIME(I)+PHI)))

NOPT=2

IF (I.GE.PSTART) THEN

IF (I.LE.PEND) THEN

NOPT=1

ELSE

ENDIF

ELSE

ENDIF

C

IF (NOPT.EQ.1) THEN

C

C THE PULSE OPTION

C 180 PULSE

C

C ASSEMBLE THE PULSE HAMILTONIAN

C

PULHAM (1,1) =0.5* CSA(I)

PULHAM (1,2) =0.5* OMEGA

PULHAM (2,1) =0.5* OMEGA

PULHAM (2,2)=-0.5*CSA(I)
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C

C DIAGONALIZE THE PULSE HAMILTONIAN

C

ALPH =0.5* ATAN (2* PULHAM (1,2)/(

PULHAM (1,1)-PULHAM (2,2)))

DIAG (1,1)=DCOS(ALPH)

DIAG (1,2)=SIN(ALPH)

DIAG (2,1)=-DSIN(ALPH)

DIAG (2,2)=DCOS(ALPH)

DIAGT (1,1)=DCOS(ALPH)

DIAGT (1,2)=-DSIN(ALPH)

DIAGT (2,1)=DSIN(ALPH)

DIAGT (2,2)=DCOS(ALPH)

DO 400 J=1,2

DO 400 K=1,2

WORKONE(J,K)=DIAG(J,K)

400 WORKTWO(J,K)=PULHAM(J,K)

CALL MATMULT(WORKONE ,WORKTWO ,

WORKZERO)

DO 402 J=1,2

DO 402 K=1,2

402 PULHAM(J,K)=WORKZERO(J,K)

DO 401 J=1,2

DO 401 K=1,2

WORKONE(J,K)=DIAGT(J,K)

401 WORKTWO(J,K)=PULHAM(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 403 J=1,2

DO 403 K=1,2

403 PULHAM(J,K)=WORKZERO(J,K)

C CONSTRUCT THE PULSE PROPAGATOR

C

DO 55 J=1,2

DO 55 K=1,2

55 EXOPER(J,K)=CMPLX (0.0 ,0.0)

DO 70 J=1,2

EXOPER(J,J)=CMPLX (0.0D0,PULHAM(J,

J))

70 EXOPER(J,J)=EXP(-ROTINC*EXOPER(J,

J))

C

C CONSTRUCT PHASE SHIFT PROPAGATOR

C

PHASE =0.0

PHASE =0.0174532925* PHASE

DO 80 J=1,2

DO 80 K=1,2

80 PHSHOP(J,K)=CMPLX (0.0D0 ,0.0D0)

PHSHOP (1,1)=CMPLX (0.0D0 ,0.5* PHASE

)

PHSHOP (2,2)=CMPLX (0.0D0 ,-0.5*

PHASE)

PHSHOP (1,1)=EXP(-PHSHOP (1,1))

PHSHOP (2,2)=EXP(-PHSHOP (2,2))

C

C MULTIPLY MATRICES TOGETHER

C

DO 100 J=1,2

DO 100 K=1,2

WORKONE(J,K)=DIAG(J,K)

100 WORKTWO(J,K)=PHSHOP(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 110 J=1,2

DO 110 K=1,2

110 PROPAG(J,K)=WORKZERO(J,K)

DO 130 J=1,2

DO 130 K=1,2

WORKONE(J,K)=EXOPER(J,K)

130 WORKTWO(J,K)=PROPAG(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 140 J=1,2

DO 140 K=1,2

140 PROPAG(J,K)=WORKZERO(J,K)

DO 160 J=1,2

DO 160 K=1,2

WORKONE(K,J)=DIAG(J,K)

160 WORKTWO(J,K)=PROPAG(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 170 J=1,2

DO 170 K=1,2

170 PROPAG(J,K)=WORKZERO(J,K)

DO 190 J=1,2

DO 190 K=1,2

WORKONE(J,K)=CONJG(PHSHOP(J,K))

190 WORKTWO(J,K)=PROPAG(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 200 J=1,2

DO 200 K=1,2

200 PROPAG(J,K)=WORKZERO(J,K)

DO 220 J=1,2

DO 220 K=1,2

WORKONE(J,K)=DENMAT(J,K)

220 WORKTWO(J,K)=PROPAG(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 230 J=1,2

DO 230 K=1,2

230 WORKONE(K,J)=CONJG(WORKTWO(J,K))

CALL MATMULT(WORKZERO ,WORKONE ,

WORKTWO)

DO 240 J=1,2

DO 240 K=1,2

240 DENMAT(J,K)=WORKTWO(J,K)

C

C DELAY OPTION

C

ELSE IF (NOPT.EQ.2) THEN

DELHAM (1,1) =0.5* CSA(I)

DELHAM (1,2) =0.0

DELHAM (2,1) =0.0

DELHAM (2,2)=-0.5*CSA(I)

DO 420 J=1,2

DO 420 K=1,2

420 EXOPER(J,K)=CMPLX (0.0 ,0.0)

DO 430 J=1,2

EXOPER(J,J)=CMPLX (0.0, DELHAM(J,J)

)

430 EXOPER(J,J)=EXP(-ROTINC*EXOPER(J,

J))

DO 450 J=1,2

DO 450 K=1,2

WORKONE(J,K)=DENMAT(J,K)

450 WORKTWO(J,K)=EXOPER(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 460 J=1,2

DO 460 K=1,2

460 PROPAG(J,K)=WORKZERO(J,K)

DO 480 J=1,2

DO 480 K=1,2

WORKONE(J,K)=CONJG(EXOPER(J,K))

480 WORKTWO(J,K)=PROPAG(J,K)

CALL MATMULT(WORKTWO ,WORKONE ,

WORKZERO)

DO 490 J=1,2

DO 490 K=1,2

490 DENMAT(J,K)=WORKZERO(J,K)
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ENDIF

C

C TRACE CALCULATION

C

CALL MATMULT(RMY ,DENMAT ,WORKONE)

DO 626 J=1,2

626 RESULT(I)=RESULT(I)+WORKONE(J,J)

CALL MATMULT(RMX ,DENMAT ,WORKONE)

DO 627 J=1,2

627 RESULTX(I)=RESULTX(I)+WORKONE(J,J)

CALL MATMULT(RMZ ,DENMAT ,WORKONE)

DO 628 J=1,2

628 RESULTZ(I)=RESULTZ(I)+WORKONE(J,J)

25 CONTINUE

C

C OUTPUT RESULTS

C

DO 44 P=1 ,2001

TIME(P)=TIME(P)*1000

44 CONTINUE

TITLEY=’Y’

OPEN(1,FILE=TITLEY)

DO 630 I=1 ,2001

630 WRITE (1 ,635) TIME(I),RESULT(I)

CONTINUE

CLOSE (1)

TITLEX=’X’

OPEN(2,FILE=TITLEX)

DO 631 I=1 ,2001

631 WRITE (2 ,635) TIME(I),RESULTX(I)

CONTINUE

CLOSE (2)

TITLEZ=’Z’

OPEN(3,FILE=TITLEZ)

DO 632 I=1 ,2001

632 WRITE (3 ,635) TIME(I),RESULTZ(I)

CONTINUE

CLOSE (3)

TITLEC=’CSA ’

OPEN(4,FILE=TITLEC)

DO 633 I=1 ,2001

633 WRITE (4 ,635) TIME(I),CSA(I)

CONTINUE

CLOSE (4)

635 FORMAT(F30.10,5X,F30 .10)

STOP

END

C

C MATRIX MULTIPLICATION

C

SUBROUTINE MATMULT(A,B,C)

COMPLEX *16 A(2,2),B(2,2),C(2,2)

DO 10 I=1,2

DO 10 K=1,2

C(I,K)=CMPLX (0.0 ,0.0)

DO 10 J=1,2

10 C(I,K)=C(I,K)+A(I,J)*B(J,K)

RETURN

END

C
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D.5 Spin-locking model

PROGRAM VSPINLOCK6

C THIS PROGRAM CALCULATES THE

AMOUNT OF EACH TENSOR PRESENT AFTER

C THE SPINLOCKING OF A STATIC

SAMPLE FOR SPIN I=3/2 AS A FUNCTION

OF

C SPIN -LOCKING FIELD STRENGTH

C POWDER SAMPLE

C

C DECLARATION OF VARIABLES

REAL*8 RES10 (201) ,VALZ (201),

TRACE ,TV(4,4),V(4,4)

REAL*8 REST (201) ,WORKONE (4,4),

RES31 (201),TEN32 (4,4)

REAL*8 IDM(4,4),FDM(4,4),MDM

(4,4),WORKZERO (4,4)

REAL*8 RES20 (201) ,RES30 (201),

RES11 (201),RES21 (201)

REAL*8 RESCT (201) ,TEN30 (4,4),

TEN33 (4,4),TEN20 (4,4)

REAL*8 RES22 (201) ,RES32 (201),

RES33 (201),TEN10 (4,4)

REAL*8 TEN11 (4,4),TEN21 (4,4),

TEN31 (4,4),TEN22 (4,4)

REAL*8 TENCT (4,4),THETA ,

INTHETA , ROFFH ,ROFF ,QUADIR ,INOMEGA

REAL*8 PULHAM (4,4),EIGTEMP

(4,4),OMEGA ,QUAD ,QUADI ,PI ,THETAI

INTEGER I,J,INOP ,NZ,K,QD,NTHETA

CHARACTER *12 TITLE10 , TITLE20 ,

TITLE30 , TITLE11 , TITLE21 ,TITLE31

CHARACTER *12 TITLE22 , TITLE32 ,

TITLE33 , TITLECT , TITLET , TITLEVALZ

PI =3.1415926536

C

C INPUT DATA

C

PRINT*, ’RESONANCE OFFSET (HZ)?’

READ*,ROFFH

PRINT*, ’QUADRUPOLAR SPLITTING ,

VQPAS (HZ)?’

READ*,QUADI

DO 12 I=1,4

DO 12 J=1,4

12 IDM(I,J)=0.0

IDM(1,1) =3.0/ SQRT (20.0)

IDM(2,2) =1.0/ SQRT (20.0)

IDM(3,3)=-1.0/ SQRT (20.0)

IDM(4,4)=-3.0/ SQRT (20.0)

DO 13 I=1,4

DO 13 J=1,4

TEN10(I,J)=0.0

TEN20(I,J)=0.0

TEN30(I,J)=0.0

TEN11(I,J)=0.0

TEN21(I,J)=0.0

TEN31(I,J)=0.0

TEN22(I,J)=0.0

TEN32(I,J)=0.0

TEN33(I,J)=0.0

13 TENCT(I,J)=0.0

TEN10 (1,1)=3/ SQRT (20.0)

TEN10 (2,2)=1/ SQRT (20.0)

TEN10 (3,3)=-1/SQRT (20.0)

TEN10 (4,4)=-3/SQRT (20.0)

TEN20 (1,1) =0.5

TEN20 (2,2)=-0.5

TEN20 (3,3)=-0.5

TEN20 (4,4) =0.5

TEN30 (1,1)=1/ SQRT (20.0)

TEN30 (2,2)=-3/SQRT (20.0)

TEN30 (3,3)=3/ SQRT (20.0)

TEN30 (4,4)=-1/SQRT (20.0)

TEN11 (1,2)=-SQRT (0.3)

TEN11 (2,3)=-SQRT (0.4)

TEN11 (3,4)=-SQRT (0.3)

TEN21 (1,2)=-SQRT (0.5)

TEN21 (3,4)=SQRT (0.5)

TEN31 (1,2)=-SQRT (0.2)

TEN31 (2,3)=SQRT (0.6)

TEN31 (3,4)=-SQRT (0.2)

TEN22 (1,3)=SQRT (0.5)

TEN22 (2,4)=SQRT (0.5)

TEN32 (1,3)=SQRT (0.5)

TEN32 (2,4)=-SQRT (0.5)

TEN33 (1,4)=-1.0

TENCT (2,3) =1.0

C

C CALCULATION

C

OMEGA =0.0

ROFF=ROFFH *2.0*PI

INTHETA =2.0*PI /360.0

QUADIR=QUADI *2.0*PI

INOMEGA =5000*2.0* PI

DO 100 NZ=1,201

THETA =0.0

DO 200 NTHETA =0,180

QUAD=QUADIR *0.5*(3.0*( DCOS(

THETA)**2.0) -1.0)

PULHAM (1,1)=QUAD +1.5* ROFF

PULHAM (1,2) =0.8660254035*

OMEGA

PULHAM (1,3) =0.0

PULHAM (1,4) =0.0

PULHAM (2,1) =0.8660254035*

OMEGA

PULHAM (2,2)=-QUAD +0.5* ROFF

PULHAM (2,3)=OMEGA

PULHAM (2,4) =0.0

PULHAM (3,1) =0.0

PULHAM (3,2)=OMEGA

PULHAM (3,3)=-QUAD -0.5* ROFF

PULHAM (3,4) =0.8660254035*

OMEGA

PULHAM (4,1) =0.0

PULHAM (4,2) =0.0

PULHAM (4,3) =0.8660254035*

OMEGA

PULHAM (4,4)=QUAD -1.5* ROFF

C

C DIAGONALIZE THE PULSE HAMILTONIAN

C

CALL HDIAG(PULHAM ,EIGTEMP ,4)

CALL EIGSORT(PULHAM ,EIGTEMP ,4)

DO 99 J=1,4

DO 99 K=1,4

99 V(J,K)=EIGTEMP(K,J)

DO 11 I=1,4
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DO 11 J=1,4

11 TV(I,J)=V(J,I)

CALL MATMULT(V,IDM ,WORKZERO)

CALL MATMULT(WORKZERO ,TV ,MDM)

MDM(1,2) =0.0

MDM(1,3) =0.0

MDM(1,4) =0.0

MDM(2,1) =0.0

MDM(2,3) =0.0

MDM(2,4) =0.0

MDM(3,1) =0.0

MDM(3,2) =0.0

MDM(3,4) =0.0

MDM(4,1) =0.0

MDM(4,2) =0.0

MDM(4,3) =0.0

CALL MATMULT(TV ,MDM ,WORKONE)

CALL MATMULT(WORKONE ,V,FDM)

RES10TEMP=TRACE(FDM ,TEN10)

RES20TEMP=TRACE(FDM ,TEN20)

RES30TEMP=TRACE(FDM ,TEN30)

RES11TEMP=TRACE(FDM ,TEN11)

RES21TEMP=TRACE(FDM ,TEN21)

RES31TEMP=TRACE(FDM ,TEN31)

RES22TEMP=TRACE(FDM ,TEN22)

RES32TEMP=TRACE(FDM ,TEN32)

RES33TEMP=TRACE(FDM ,TEN33)

RESCTTEMP=TRACE(FDM ,TENCT)

RESTTEMP=RES10(NZ)**2.0+ RES20(NZ

)**2.0+ RES30(NZ)**2.0

+ +2.0*( RES11(NZ)**2.0) +2.0*( RES31

(NZ)**2.0) +2.0*( RES21(NZ)**2.0)

+ +2.0*( RES22(NZ)**2.0) +2.0*( RES32

(NZ)**2.0) +2.0*( RES33(NZ)**2.0)

RES10(NZ)=RES10(NZ)+( RES10TEMP*

SIN(THETA))

RES20(NZ)=RES20(NZ)+( RES20TEMP*

SIN(THETA))

RES30(NZ)=RES30(NZ)+( RES30TEMP*

SIN(THETA))

RES11(NZ)=RES11(NZ)+( RES11TEMP*

SIN(THETA))

RES21(NZ)=RES21(NZ)+( RES21TEMP*

SIN(THETA))

RES31(NZ)=RES31(NZ)+( RES31TEMP*

SIN(THETA))

RES22(NZ)=RES22(NZ)+( RES22TEMP*

SIN(THETA))

RES32(NZ)=RES32(NZ)+( RES32TEMP*

SIN(THETA))

RES33(NZ)=RES33(NZ)+( RES33TEMP*

SIN(THETA))

RESCT(NZ)=RESCT(NZ)+( RESCTTEMP*

SIN(THETA))

REST(NZ)=REST(NZ)+RESTTEMP

THETA=THETA+INTHETA

200 CONTINUE

VALZ(NZ)=OMEGA/QUADI

OMEGA=OMEGA+INOMEGA

100 CONTINUE

C

C WRITES RESULT TO A FILE

C

TITLEVALZ ="W P"

OPEN(37,FILE=TITLEVALZ ,STATUS=’

UNKNOWN ’)

DO 337 I=1,201

WRITE (37,*) VALZ(I)

337 CONTINUE

CLOSE (37)

TITLE10 ="T10 P"

OPEN(1,FILE=TITLE10 ,STATUS=’

UNKNOWN ’)

DO 300 I=1,201

WRITE (1 ,450) VALZ(I),RES10(I)

300 CONTINUE

CLOSE (1)

TITLE20 ="T20 P"

OPEN(2,FILE=TITLE20 ,STATUS=’

UNKNOWN ’)

DO 301 I=1,201

WRITE (2 ,450) VALZ(I), RES20(I

)

301 CONTINUE

CLOSE (2)

TITLE30 ="T30 P"

OPEN(3,FILE=TITLE30 ,STATUS=’

UNKNOWN ’)

DO 302 I=1,201

WRITE (3 ,450) VALZ(I), RES30(I

)

302 CONTINUE

CLOSE (3)

TITLE11 ="T11 P"

OPEN(4,FILE=TITLE11 ,STATUS=’

UNKNOWN ’)

DO 303 I=1,201

WRITE (4 ,450) VALZ(I), RES11(I

)

303 CONTINUE

CLOSE (4)

TITLE21 ="T21 P"

OPEN(9,FILE=TITLE21 ,STATUS=’

UNKNOWN ’)

DO 304 I=1,201

WRITE (9 ,450) VALZ(I), RES21(I

)

304 CONTINUE

CLOSE (9)

TITLE31 ="T31 P"

OPEN(10,FILE=TITLE31 ,STATUS=’

UNKNOWN ’)

DO 305 I=1,201

WRITE (10 ,450) VALZ(I), RES31(

I)

305 CONTINUE

CLOSE (10)

TITLE22 ="T22 P"

OPEN(11,FILE=TITLE22 ,STATUS=’

UNKNOWN ’)

DO 306 I=1,201

WRITE (11 ,450) VALZ(I),RES22(I

)

306 CONTINUE

CLOSE (11)

TITLE32 ="T32 P"

OPEN(12,FILE=TITLE32 ,STATUS=’

UNKNOWN ’)

DO 307 I=1,201

WRITE (12 ,450) VALZ(I),RES32(I

)

307 CONTINUE

CLOSE (12)

TITLE33 ="T33 P"

OPEN(13,FILE=TITLE33 ,STATUS=’

UNKNOWN ’)

DO 308 I=1,201

WRITE (13 ,450) VALZ(I),RES33(I

)

308 CONTINUE

CLOSE (13)

TITLECT ="CT P"
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OPEN(33,FILE=TITLECT ,STATUS=’

UNKNOWN ’)

DO 414 I=1,201

WRITE (33 ,450) VALZ(I),RESCT(I

)

414 CONTINUE

CLOSE (33)

TITLET ="T P"

OPEN(36,FILE=TITLET ,STATUS=’

UNKNOWN ’)

DO 417 I=1,201

WRITE (36 ,450) VALZ(I), REST(I

)

417 CONTINUE

CLOSE (36)

450 FORMAT (F30.18,5X,F30 .20)

END

*MATRIX MULTIPLICATION ROUTINE

SUBROUTINE MATMULT(A,B,C)

INTEGER I,J,K

REAL*8 A(4,4),B(4,4),C(4,4)

DO 10 I=1,4

DO 10 K=1,4

C(I,K)=0.0

DO 10 J=1,4

10 C(I,K)=C(I,K)+(A(I,J)*B(J,K))

RETURN

END

*TRACE ROUTINE

REAL*8 FUNCTION TRACE(A,B)

REAL*8 A(4,4),B(4,4)

INTEGER I,J

TRACE =0.0

DO 10 I=1,4

DO 10 J=1,4

10 TRACE=TRACE+(A(I,J)*B(J,I))

RETURN

END

C

C MATRIX DIAGONALIZATION

C

SUBROUTINE HDIAG(G,X,N)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 G(4,4),X(4,4),R(5),B(5),C

(5),CS(5),SN(5),P(5)

EQUIVALENCE (P,C)

DO 43 I=1,5

43 B(I)=0.0

DO 1 I=1,N

DO 1 J=1,N

1 X(I,J)=0.0

DO 2 I=1,N

2 X(I,I)=1.0

FNORM =0.0

BABSB =0.0

N1=N-2

DO 3 K=1,N1

R(K)=G(K,K)

SIGMA =0.0

K1=K+1

DO 4 I=K1 ,N

4 SIGMA=SIGMA+G(I,K)*G(I,K)

T=BABSB+ABS(R(K))

BABSB=SQRT(SIGMA)

TTA=T+BABSB

FNORM=DMAX1(FNORM ,TTA)

ALPHA=G(K+1,K)

IF (ALPHA) 5,6,6

5 BETA=BABSB

GOTO 7

6 BETA=-BABSB

7 B(K1)=BETA

IF (SIGMA) 8,3,8

8 GAMMA =1.0/( SIGMA -ALPHA*BETA)

G(K1,K)=ALPHA -BETA

DO 10 I=K1,N

T=0.0

DO 11 J=K1,I

11 T=T+G(I,J)*G(J,K)

IF (I-N) 12,10,10

12 I1=I+1

DO 13 J=I1,N

13 T=T+G(J,I)*G(J,K)

10 P(I)=GAMMA*T

T=0.0

DO 14 I=K1,N

14 T=T+G(I,K)*P(I)

T=0.5* GAMMA*T

DO 15 I=K1,N

15 P(I)=P(I)-T*G(I,K)

DO 16 I=K1,N

DO 16 J=K1,I

16 G(I,J)=G(I,J)-G(I,K)*P(J)-P(I)*G(J

,K)

DO 17 I=2,N

T=0.0

DO 18 J=K1,N

18 T=T+X(I,J)*G(J,K)

17 P(I)=GAMMA*T

DO 19 I=2,N

DO 19 J=K1,N

19 X(I,J)=X(I,J)-P(I)*G(J,K)

3 CONTINUE

R(N-1)=G(N-1,N-1)

R(N)=G(N,N)

B(N)=G(N,N-1)

T=ABS(B(N))

TTA=BABSB+ABS(R(N-1))+T

TTB=T+ABS(R(N))

FNORM=DMAX1(FNORM ,TTA ,TTB)

EPS=FNORM *1.0E-8

B(1) =0.0

AMU =0.0

M=N

20 IF (M) 21,21,22

21 RETURN

22 I=M-1

K=I

M1=I

IF (ABS(B(K+1))-EPS) 23,23,24

23 G(M,M)=R(M)

M=K

GOTO 20

24 IF (ABS(B(K))-EPS) 26,26,25

25 K=K-1

GOTO 24

26 B0=B(M1+1)

B0=B0*B0

R1=R(M1)-R(M)

R1=SQRT(R1*R1 +4.0*B0)

T=R(M1)*R(M)-B0

R0=R(M1)+R(M)

IF (R0) 28,27,27

27 AMDA =0.5*( R0+R1)
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GOTO 29

28 AMDA =0.5*(R0-R1)

29 T=T/AMDA

IF (ABS(T-AMU) -0.5*ABS(T))

30,31,31

30 AMDA=T

GOTO 34

31 IF (ABS(AMDA -AMU) -0.5*ABS(AMDA))

32,33,33

32 AMU=AMDA

GOTO 35

33 AMDA =0.0

34 AMU=T

35 R(K)=R(K)-AMDA

BETA=B(K+1)

DO 36 J=K,M1

R0=R(J)

R1=R(J+1)-AMDA

B0=B(J+1)

T=SQRT(R0*R0+BETA*BETA)

CASIN=R0/T

CS(J)=CASIN

SANE=BETA/T

SN(J)=SANE

R(J)=CASIN*R0+SANE*BETA

R(J+1)=-SANE*B0+CASIN*R1

B(J+1)=CASIN*B0+SANE*R1

BETA=B(J+2)

B(J+2)=CASIN*BETA

36 C(J+1)=SANE*BETA

B(K)=0.0

C(K)=0.0

DO 37 J=K,M1

SANE=SN(J)

CASIN=CS(J)

R0=R(J)

B0=B(J+1)

B(J)=B(J)*CASIN+C(J)*SANE

R(J)=R0*CASIN+B0*SANE+AMDA

B(J+1)=-R0*SANE+B0*CASIN

R(J+1)=R(J+1)*CASIN

DO 37 I=1,N

X0=X(I,J)

X1=X(I,J+1)

X(I,J)=X0*CASIN+X1*SANE

37 X(I,J+1)=-X0*SANE+X1*CASIN

R(M)=R(M)+AMDA

GOTO 20

END

*

SUBROUTINE EIGSORT(D,V,N)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 D(N,N),V(N,N)

DO 1 I=1,N-1

K=I

P=D(I,I)

DO 2 J=I+1,N

IF (D(J,J).GE.P) THEN

K=J

P=D(J,J)

ENDIF

2 CONTINUE

IF (K.NE.I) THEN

D(K,K)=D(I,I)

D(I,I)=P

DO 3 J=1,N

P=V(J,I)

V(J,I)=V(J,K)

3 V(J,K)=P

ENDIF

1 CONTINUE

RETURN

END
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ASBO composite pulse trajectories

Figure E.1 illustrates the simulated Iy− > −Iy inversion trajectories of magnetisation

vectors for the ASBO pulses given in Table 4.1 under ideal conditions (B1/Bnom
1 =

1, ∆B/Bnom
1 = 0).
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FIGURE E.1: “Grapefruit plots” showing the trajectories of magnetisation vectors un-
der the 9-pulse ASBO composite pulses given in Table 4.1. Simulated with Spin Dy-
namica [2] with B1/Bnom

1 = 1 and ∆B/Bnom
1 = 0 (continued on next page. . . )
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FIGURE E.1: (continued) “Grapefruit plots” showing the trajectories of magnetisation
vectors under the 11-pulse ASBO composite pulses given in Table 4.1 and TPG. Simu-
lated with Spin Dynamica [2] with B1/Bnom

1 = 1 and ∆B/Bnom
1 = 0.



Appendix F

Spin-locking simulations of I = 5/2

nuclei

F.1 Spin I = 5/2 in a static solid

The spin-locking model has also been used to examine the creation of coherences and

populations for spin I = 5/2. Figure F.1 shows the expectation values of the I = 5/2

spherical tensor operators as three-dimensional surface plots as a function of varying

ω1 and Ω for a single orientation nuclear spin (β = 0◦).

Considering the inital state T1,0 first, we find that the amount decreases as the field

strength of the spin-locking pulse increases. Again we see dips in the surface plot when

the resonance offset is equal to multiples of the quadrupolar splitting: at 0, 200, 400, 600

and 800 kHz furrows of decreasing depth are present, corresponding to the creation of

other states.

The population states T2,0, T3,0, T4,0 and T5,0 are created at these offsets, even at very low

ω1. In contrast, the single-quantum states are not formed under these conditions, only

occuring as the field strength is raised and with maxima in between these offsets. This

reflects the results seen for spin I = 3/2.

Next, considering the double-quantum coherences, we see interesting features in the

surface plots at around Ω/2π = 0, 200, 400 and 600 kHz. The plots for coherence orders
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FIGURE F.1: Three-dimensional surface plots of the spin I = 5/2 expectation values
of spherical tensor operators, Tl,p and the central transition (CT) created by rapid de-
phasing of initial state T1,0 under a spin-locking Hamiltonian, as a function of ω1 and
Ω. Results are plotted for a single orientation (θ = 0◦) with ωPAS

Q /2π = 200 kHz
(continued on next page. . . )
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FIGURE F.1: (continued) Three-dimensional surface plots of the spin I = 5/2 expecta-
tion values of spherical tensor operators, Tl,p and the central transition (CT) created by
rapid dephasing of initial state T1,0 under a spin-locking Hamiltonian, as a function of
ω1 and Ω. Results are plotted for a single orientation (θ = 0◦) with ωPAS

Q /2π = 200
kHz.

3 and 4 feature peaks around Ω/2π = 0, 200 and 400 kHz, while the T5,5 is mostly

present at lower offsets around Ω/2π = 0 and 200 kHz.

Again, we expect these trends to be different in the case of a powder sample. These

are explored in the three-dimensional surface plots in Figure F.2. T1,0 decreases as the
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FIGURE F.2: Three-dimensional surface plots of the spin I = 5/2 expectation values of
spherical tensor operators, Tl,p and the central transition (CT) created by rapid dephas-
ing of initial state T1,0 under a spin-locking Hamiltonian, as a function of ω1 and Ω.
Results are plotted for a powder with ωPAS

Q /2π = 200 kHz (continued on next page. . . )
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FIGURE F.2: (continued) Three-dimensional surface plots of the spin I = 5/2 expecta-
tion values of spherical tensor operators, Tl,p and the central transition (CT) created by
rapid dephasing of initial state T1,0 under a spin-locking Hamiltonian, as a function of
ω1 and Ω. Results are plotted for a powder with ωPAS

Q /2π = 200 kHz.

rf field strength is raised, and the falloff is more rapid at lower offsets. T2,0 shows three

ridges along Ω/2π = 100, 200 and 300 kHz, which peak around ω1/2π = 100 kHz. The

T3,0 plot is similar to the corresponding spin I = 3/2 plot, with most creation at low ω1

and Ω. T4,0 is produced when either ω1 or Ω are small, with a maximum at ω1/2π = 30
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kHz and Ω = 90 kHz. T5,0 is also mostly created at low ω1 and Ω.

Looking at the double-quantum coherences, T2,2 has ridges along Ω = 100 and 200

kHz, while T3,2 is present at mostly at offsets under 100 kHz. T3,3 has a maximum at

ω1/2π = 40 kHz and Ω = 5 kHz, and all the triple-quantum coherences feature a dip

in intensity at Ω = 100 and 200 kHz, as well as at 300 kHz for T4,3. The T4,4 surface

plot features ridges in between offsets of 0 and 100 kHz, 100 and 150 kHz and 150 and

300 kHz, while the T5,4 is mainly created between offsets of 0 and 100 kHz and 100 and

200 kHz. T5,5 is created mostly at low resonance offsets, with a maximum in the plot at

ω1/2π = 165 kHz and Ω = 5 kHz.

Figure F.3 shows the cross sections at Ω/2π = 100 kHz for these simulations. The

expectation value for T1,0 falls off as the rf strength is increased, as T2,0, T3,0, T1,1 form

in significant amounts. When ω1/2π is raised between 0 and 200 kHz, the multiple

quantum coherences T3,3,T5,3 and T5,4 peak, while at higher field strengths (around 300

kHz) T2,2 and T5,2 form.

The changes in the norm, presented in Figure F.4, reflect the results seen for spin I =

3/2: the magnitude decreases as the field strength increases, and as the resonance offset

is raised, the rate of the falloff decreases.

F.2 Spin I = 5/2 with MAS

The rotor-driven modulation of the eigenstates of the spin I = 5/2 nucleus under adi-

abatic conditions has also been studied. Figure F.5 presents the expectation values of

spherical tensor operators for a single crystallite formed by initial rapid dephasing. The

same simulation parameters have been employed as in Figure 6.6. Considering the

plots for Ω/2π = 50 kHz, T1,0 is most abundant at the start of the rotor period, along

with T3,0, T3,0 and T2,1. As the rotor turns, these states decrease as coherence transfer

takes place, leading to increased amounts of T2,0, T3,1 and T4,2 being created at 0.1 rotor

periods. Further rotor-driven modulation leads to T1,1, T5,1 and T2,2 being present in

more significant amounts after a quarter turn of the rotor is completed. The second half

of the rotor period repeats the same cycle of the spin-locked states.
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FIGURE F.3: Expectation values of I = 5/2 spherical tensor operators, Tl,p created by
rapid dephasing of initial state T1,0 under a spin-locking Hamiltonian, as a function of
ν1. Results are plotted for a powder with ωPAS

Q /2π = 200 kHz and Ω/2π = 100 kHz.



Appendix F. Spin-locking simulations of I = 5/2 nuclei 193

Tr
{σ

(τ
)2

}

0
50

100
150
200
250

Ω / (2π Hz)

ν1 / kHz
0 200 400 600 800 1000

0

200000

400000

600000

800000

FIGURE F.4: The norm of the spin I = 5/2 density operator created by rapid dephasing
of initial state T1,0 under a spin-locking Hamiltonian, as a function of ν1. Results are
plotted for a powder with ωPAS

Q /2π = 200 kHz and Ω/2π = 50, 100, 150, 200 and 250
kHz.

As in the spin I = 3/2 case, we observe a decrease in the extent of the eigenstate mod-

ulation when the offset is increased to 100 kHz in Figure F.5(b). At the start of the rotor

period, the population states are again most abundant in order of decreasing rank. The

decrease in the amplitude of the population states leads to the creation of single- and

multiple-quantum coherence states, with increasingly higher order coherences being

formed in lower amounts. After 0.2 rotor periods, T2,1, T2,2 and T3,2 are formed, along

with small amounts of T3,3 and T4,3. T1,1 and T3,1 are at a maximum at a quarter turn. All

states return to their original amplitude after a half turn is completed, and the second

half of the rotor period repeats the behaviour of the first half.
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Appendix G

List of chemicals used

The following chemicals have been used in the experimental parts of this work:

Substance Chemical formula Purity (%) Supplier

Adamantane C10H16 99 Sigma Aldrich

L-Alanine CH3CHCO2H 99 Sigma Aldrich

Aluminum acetylaceto-

nate

Al(acac)3 99 Sigma Aldrich

Boron phosphate BPO4 99.995 Sigma Aldrich

Oxalic acid dihydrate,

nominally perdeuter-

ated (96% 2H)

HO2CCO2H · 2H2O 98 Sigma Aldrich.

Deuterated by

Wimperis Group.

Poly(methyl methacry-

late) (PMMA), nom-

inally perdeuterated

(99% 2H)

(C5O2H8)n - Adrian Brunsdon,

Bruker

Sodium chloride NaCl 99.9 AnalaR

Titanium pyrophos-

phate

TiP2O7 95 Dr. Gregory Tricot of

Université Lille de

Nord de France
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high-resolution NMR spectra in matched B0 and B1 field gradients. Journal of

Magnetic Resonance, 156:146–151, 2002.

[102] S. Antonijevic and S. Wimperis. High-resolution NMR spectroscopy in inhomo-

geneous B0 and B1 fields by two-dimensional correlation. Chemical Physics Letters,

381:634–641, 2003.

[103] U. Haeberlen and J.S. Waugh. Coherent averaging effects in magnetic resonance.

Physical Review, 175:454–467, 1968.

[104] U. Haeberlen. High resolution NMR in solids. In Advances in Magnetic Resonance.

Academic Press, 1976.

[105] J.S. Waugh. Average Hamiltonian theory. In Encyclopedia of Magnetic Resonance,

pages 849–854. John Wiley and Sons, 2007.

[106] Gustav E.R. Schulze. Die Kristallstruktur von BPO4 und BAsO4. Naturwis-

senschaften, 21(30):562–562, 1933.

[107] A. Bax, R. Freeman, and S. P. Kempsell. Natural abundance 13C-13C coupling

observed via double-quantum coherence. Journal of the American Chemical Society,

102(14):4849–4851, 1980.



Bibliography 205

[108] T. A. Early, B. K. John, and L. F. Johnson. Observation of homonuclear double-

quantum correlations in plastic crystals using cross polarization and magic angle

spinning. Journal of Magnetic Resonance, 75(1):134 – 138, 1987.

[109] R. Benn, H. Grondey, C. Brevard, and A. Pagelot. The detection of connectivi-

ties of rare spin-1/2 nuclei in the solid state using natural abundance samples:
13C and 29Si INADEQUATE and COSY type experiments. Journal of the Chemical

Society, Chemical Communications, pages 102–103, 1988.

[110] C. A. Fyfe, Y. Feng, H. Gies, H. Grondey, and G. T. Kokotailo. Natural-abundance

two-dimensional solid-state 29Si NMR investigations of three-dimensional lat-

tice connectivities in zeolite structures. Journal of the American Chemical Society,

112(9):3264–3270, 1990.

[111] A. Lesage, M. Bardet, and L. Emsley. Through-bond carbon-carbon connec-

tivities in disordered solids by NMR. Journal of the American Chemical Society,

121(47):10987–10993, 1999.

[112] L. J. Mueller and J. J. Titman. Correlation spectroscopy for resonance assignments

in solid-state proteins using J-couplings. In Encyclopedia of Magnetic Resonance.

John Wiley and Sons, 2007.

[113] F. Fayon, I. J. King, R. K. Harris, R. K. B. Gover, J. S. O. Evans, and D. Massiot.

Characterization of the room-temperature structure of SnP2O7 by 31P through-

space and through-bond NMR correlation spectroscopy. Chemistry of Materials,

15(11):2234–2239, 2003.

[114] D. Sakellariou, S. P. Brown, A. Lesage, S. Hediger, M. Bardet, C. A. Meriles,

A. Pines, and L. Emsley. High-resolution NMR correlation spectra of disordered

solids. Journal of the American Chemical Society, 125(14):4376–4380, 2003.

[115] H. Kono, T. Erata, and M. Takai. Determination of the through-bond carboncar-

bon and carbonproton connectivities of the native celluloses in the solid state.

Macromolecules, 36(14):5131–5138, 2003.

[116] G. De Paëpe, N. Giraud, A. Lesage, P. Hodgkinson, A. Bckmann, and L. Ems-

ley. Transverse dephasing optimized solid-state NMR spectroscopy. Journal of the

American Chemical Society, 125(46):13938–13939, 2003.



Bibliography 206

[117] G. Grasso, T. M. de Swiet, and J. J. Titman. Electronic structure of the polymer

phase of CsC60: Refocused INADEQUATE experiments. The Journal of Physical

Chemistry B, 106(34):8676–8680, 2002.

[118] F. Fayon, D. Massiot, M. H. Levitt, J. J. Titman, D. H. Gregory, L. Duma, L. Em-

sley, and S. P. Brown. Through-space contributions to two-dimensional double-

quantum J correlation NMR spectra of magic angle spinning solids. The Journal of

Chemical Physics, 122:194313, 2005.

[119] F. Fayon, G. Le Saout, L. Emsley, and D. Massiot. Through-bond phosphorus-

phosphorus connectivities in crystalline and disordered phosphates by solid-state

NMR. Chemical Communications, 122:1702–1703, 2002.

[120] S.T. Norberg, G. Svensson, and J. Albertsson. A TiP2O7 superstructure. Acta

Crystallographica Section C Crystal Structure Communications, 57(4):225–227, 2001.

[121] J. Leppert, B. Heise, and R. Ramachandran. Magic angle spinning NMR spec-

troscopy with composite RF pulses. Journal of Magnetic Resonance, 139(2):382 –

388, 1999.

[122] M. Edén. Computer simulations in solid-state NMR. II. Implementations for static

and rotating samples. Concepts in Magnetic Resonance Part A, 18A(1):1–23, 2003.

[123] E. T. Olejniczak, S. Vega, and R. G. Griffin. Multiple pulse NMR in rotating solids.

The Journal of Chemical Physics, pages 4804–4817, 1984.

[124] G. Jeschke. Spin locking of I=3/2 nuclei in static and spinning samples: A de-

scription by abstract spins and Floquet formalism. The Journal of Chemical Physics,

108(3):907–917, 1998.

[125] A. J. Vega. MAS NMR spin locking of half-integer quadrupolar nuclei. The Journal

of Magnetic Resonance, 96:50–68, 1992.

[126] W. Sun, J. T. Stephen, L. D. Potter, and Y. Wu. Rotation-induced resonance and

second-order quadrupolar effects on spin locking of half-integer quadrupolar nu-

clei. Journal of Magnetic Resonance, 116:181–188, 1995.

[127] Y. Zhang, F. Deng, J. Qui, and C. Ye. Spin-locking mechanism of spin I = 3/2

quadrupolar nuclei undergo magic angle spinning. Solid State Nuclear Magnetic

Resonance, 15:209–216, 2000.



Bibliography 207

[128] S. Ashbrook and S. Wimperis. Spin-locking of half-integer quadrupolar nuclei in

nuclear magnetic resonance of solids: Creation and evolution of coherences. The

Journal of Chemical Physics, 120:2719–2731, 2004.

[129] S. Ashbrook and S. Wimperis. Spin-locking of half-integer quadrupolar nuclei in

nuclear magnetic resonance of solids: Second-order quadrupolar and resonance

offset effects. The Journal of Chemical Physics, 131:194509, 2009.

[130] S. Odedra. NMR spin-locking of half-integer quadrupolar nuclei: The far off-

resonance case. Honours thesis, University of Glasgow, 2010.

[131] T. L. Spencer, G. R. Goward, and A. D. Bain. Complete description of the interac-

tions of a quadrupolar nucleus with a radiofrequency field. Implications for data

fitting. Solid State Nuclear Magnetic Resonance, 53:20–26, 2013.

[132] A. P. M. Kentgens. A practical guide to solid-state NMR of half-integer quadrupo-

lar nuclei with some applications to disordered systems. Geoderma, 80:271–306,

1997.

[133] E. Kundla, A. Samoson, and E. Lippmaa. High-resolution NMR of quadrupolar

nuclei in rotating solids. Chemical Physics Letters, 83:229–232, 1981.

[134] P. J. Barrie. Distorted powder lineshapes in 27Al CP / MAS NMR spectroscopy of

solids. Chemical Physics Letters, 208:486–490, 1993.

[135] D. N. Shykind, J. Baum, S.-B. Liu, and A. Pines. Phase-incremented multiple-

quantum NMR experiments. Journal of Magnetic Resonance, 76:149–154, 1988.

[136] G. Jaccard, S. Wimperis, and G. Bodenhausen. Multiple-quantum NMR spec-

troscopy of S = 3/2 spins in isotropic phase: A new probe for multiexponential

relaxation. Journal of Chemical Physics, 85:6282–6293, 1986.

[137] A. Lupulescu, S. P. Brown, and H. W. Speiss. Rotor-encoded heteronuclear MQ

MAS NMR spectroscopy of half-integer quadrupolar and spin I = 1/2 nuclei.

Journal of Magnetic Resonance, 154:101–129, 2002.

[138] J. Baum, M. Munowitz, A. N. Garroway, and A. Pines. Multiple-quantum dynam-

ics in solid state NMR. Journal of Chemical Physics, 83:2015–2025, 1985.



Bibliography 208

[139] C. Hughes. Spin counting. Progress in Nuclear Magnetic Resonance Spectroscopy,

45:301–313, 2004.

[140] W. R. Hamilton. On a new species of imaginary quantities connected with a the-

ory of quaternions. Proceedings of the Royal Irish Academy, 2:424–434, 1844.
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