
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Napier, Gary (2014) A Bayesian hierarchical model of compositional 
data with zeros: classification and evidence evaluation of forensic 
glass. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/5793/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5793/


A Bayesian hierarchical model of compositional data

with zeros: classification and evidence evaluation of

forensic glass

Gary Napier

A Dissertation Submitted to the

University of Glasgow

for the degree of

Doctor of Philosophy

School of Mathematics & Statistics

November 2014

c©Gary Napier, November 2014



Abstract

A Bayesian hierarchical model is proposed for modelling compositional data

containing large concentrations of zeros. Two data transformations were used

and compared: the commonly used additive log-ratio (alr) transformation for

compositional data, and the square root of the compositional ratios. For this

data the square root transformation was found to stabilise variability in the

data better. The square root transformation also had no issues dealing with

the large concentrations of zeros. To deal with the zeros, two different ap-

proaches have been implemented: the data augmentation approach and the

composite model approach. The data augmentation approach treats any zero

values as rounded zeros, i.e. traces of components below limits of detection,

and updates those zero values with non-zero values. This is better than the

simple approach of adding constant values to zeros as it reduces any arti-

ficial correlation produced by updating the zeros as part of the modelling

procedure. However, due to the small detection limit it does not necessar-

ily alleviate the problems of having a point mass very close to zero. The

composite model approach treats any zero components as being absent from

a composition. This is done by splitting the data into subsets according to

the presence or absence of certain components to produce different data con-
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figurations that are then modelled separately. The models are applied to a

database consisting of the elemental configurations of forensic glass fragments

with many levels of variability and of various use types. The main purposes

of the model are (i) to derive expressions for the posterior predictive probabil-

ities of newly observed glass fragments to infer their use type (classification)

and (ii) to compute the evidential value of glass fragments under two com-

plementary propositions about their source (forensic evidence evaluation).

Simulation studies using cross-validation are carried out to assess both model

approaches, with both performing well at classifying glass fragments of use

types bulb, headlamp and container, but less well so when classifying car and

building windows. The composite model approach marginally outperforms

the data augmentation approach at the classification task; both approaches

have the edge over support vector machines (SVM). Both model approaches

also perform well when evaluating the evidential value of glass fragments,

with false negative and false positive error rates below 5%. The results from

glass classification and evidence evaluation are an improvement over exist-

ing methods. Assessment of the models as part of the evidence evaluation

simulation study also leads to a restriction being placed upon the reported

strength of the value of this type of evidence. To prevent strong support in

favour of the wrong proposition it is recommended that this glass evidence

should provide, at most, moderately strong support in favour of a proposi-

tion. The classification and evidence evaluation procedures are implemented

into an online web application, which outputs the corresponding results for

a given set of elemental composition measurements. The web application

contributes a quick and easy-to-use tool for forensic scientists that deal with

this type of forensic evidence in real-life casework.
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Chapter 1

Introduction

Forensic science is the application of existing sciences to help determine the

outcome of an investigation based on the evidence collected. The objective

of the forensic scientist, or expert witness, is to quantify the strength of the

accumulated evidence found at a crime scene or accident. Most often the

evidence gathered in such cases is recovered in the form of traces and is

therefore referred to as trace evidence. All trace evidence collected by the

forensic expert is brought to a forensic laboratory where various measure-

ments are recorded for analysis. Common forms of trace evidence found at

crime scenes are body fluids and glass fragments. The class of trace evidence

that is of most interest is known as transfer evidence.

Transfer evidence is evidence that has been transferred to or from a crime

scene. This can include blood from an assault victim and glass fragments

collected from an individual’s clothing, hair or shoes. There are two types of

transfer evidence to be considered: that of unknown (questioned) origin and

1



CHAPTER 1. INTRODUCTION 2

of known origin. For example, glass fragments obtained from a suspect are

considered to be of unknown origin as the source of the fragments is question-

able; they are referred to as the recovered sample. Fragments found at the

scene of a crime would usually be of known origin as they are collected from

an on-scene broken source; they are referred to as the control sample (Aitken

and Taroni, 2004). However, control and recovered samples of transfer evi-

dence are not always associated with crime scenes and suspects, respectively.

For example, a footprint found at a crime scene would be a recovered sample

and not a control sample as the footwear that made the print is unknown,

and therefore the footprint is of unknown (questioned) origin. The control

sample in this case would come from the footwear of a suspect as it would

then be of known origin.

A measure of the evidential value or strength of transfer evidence can be com-

puted relevant to two complementary propositions: the prosecution propo-

sition and the defence proposition. Three levels of propositions comprise a

hierarchy of propositions (Aitken and Taroni, 2004). These are the source

level, activity level and crime level propositions. Source level propositions

involve the analysis of control and recovered samples. Here the prosecution

proposition would be that the control and recovered samples come from the

same source, while the defence proposition would be that the control and

recovered samples come from different sources. Activity level propositions

include some form of action. For example, the prosecution proposition could

be that the suspect assaulted the victim, while the defence proposition would

be that the suspect did not assault the victim. Crime level propositions in-

volve non-scientific information of interest to the jury, which can include such
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information as the validity or reliability of eyewitness reports. This thesis

will focus on source level propositions involving glass fragments. Chapter

10 of Aitken and Taroni (2004) details how the evidence under evaluation is

computed under these two complementary propostions, with their terminol-

ogy adopted in this thesis. Let E denote the evidence, Hp and Hd denote

the prosecution and defence propositions, and I be additional background

information connected to the case under investigation. The value V of the

evidence forms the likelihood ratio or Bayes factor in favour of the prosecu-

tion proposition Hp, given the evidence E:

V =
Pr(E|Hp, I)

Pr(E|Hd, I)
. (1.1)

The value V in (1.1) can be derived from Bayes’ Theorem which is used to

convert prior beliefs about a proposition, say Hp, to posterior beliefs after

observing some evidence E:

Pr(Hp|E, I) =
Pr(E|Hp, I)× Pr(Hp|I)

Pr(E|I) , (1.2)

where Pr(Hp|E, I) is the posterior probability of Hp given the evidence E,

and Pr(Hp|I) is the prior probability of Hp before observing E. The value of

the evidence V in (1.1) then arises by taking the ratio of (1.2) for Hp against

Hd to acquire the posterior odds:

Pr(Hp|E, I)
Pr(Hd|E, I)︸ ︷︷ ︸
Posterior odds

=
Pr(E|Hp, I)

Pr(E|Hd, I)︸ ︷︷ ︸
Likelihood ratio
(Bayes factor)

× Pr(Hp|I)
Pr(Hd|I)︸ ︷︷ ︸
Prior odds

= V × Pr(Hp|I)
Pr(Hd|I)︸ ︷︷ ︸
Prior odds

.

(1.3)

Prior to receiving E the odds in favour of Hp are given by the prior odds, or

ratio of initial beliefs between Hp and Hd. Formula (1.3) converts these prior
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beliefs in favour of the prosecution proposition, Hp, into posterior beliefs

in favour of Hp, relative to the defence proposition, Hd, by multiplying the

prior odds by V . Hence, a value of V > 1 provides support for Hp, whereas

V < 1 provides support for Hd. The way in which V is computed allows for

the evidence to be considered under two complementary propositions, i.e. Hp

andHd are mutually exclusive and exhaustive propositions, while allowing for

other possible factors to be considered during the evaluation of the evidence.

The expert witness receives less information about a case than the judge and

jury, with their sole purpose to quantify the strength of the evidence, and

so should not be concerned with trying to determine the prior odds (Lucy,

2005). For more information on the evaluation of evidence see Aitken and

Taroni (2004).

The type of forensic evidence that will be analysed within this thesis is on

fragments of glass from an experimental database by the Institute of Foren-

sic Research, Krakow, which will be referred to as the glass database for the

remainder of the thesis. Glass fragments are a common source of trace evi-

dence in forensic investigations, with the strength of the evidence evaluated

under two complementary propositions as described earlier. Here the pros-

ecution proposition would be that the control and recovered samples come

from the same glass object, whereas the defence proposition would be that

they originated from different glass objects. The main question of interest is

then: do the fragments obtained from the suspect come from the glass object

found at the crime scene?

As glass fragments collected from a suspect are of unknown origin it would

be useful to infer their use type. For example, if a person is involved in an
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incident such as a car crash or assault where fragments of glass are recov-

ered, being able to determine the use type of those fragments could aid a

police investigation. Most glass fragments collected for analysis by forensic

experts are too small for their use type to be determined by physical prop-

erties such as their thickness or colour (Zadora, 2009), so physico-chemical

measurements, such as the refractive index or elemental composition, are

acquired.

Lindley (1977) proposed an approach for continuous measurements in the

form of refractive indices from glass fragments. Here focus is on the el-

emental composition of glass. The elemental compositions consist of the

percentage weights associated with each of the main chemical elements com-

prising a glass fragment. As is common with compositional data, many of

the recorded weight percentages are zero, indicating those elements’ absence

from a fragments composition. Standard statistical procedures developed

for analysing compositional data require careful consideration of any zeros

present within a composition. The most common approaches to analysing

compositional data include transformations involving logarithmic terms, such

as the additive log-ratio (alr) and centred log-ratio (clr) transformations of

Aitchison (1986), and the more recently introduced isometric log-ratio (ilr)

transformation of Egozcue et al. (2003). This means that any zeros present

within a composition require special treatment before such transformations

can be computed.

This thesis considers two different approaches to handling the compositional

zeros. The first method is the most common approach to dealing with zeros

as it treats them as rounded zeros. Rounded zeros indicate that an element



CHAPTER 1. INTRODUCTION 6

is present within a fragment but that traces of that element are below the

detection limit of the measuring equipment. This method essentially updates

any zeros with non-zero values that are below limits of detection. The second

method treats the zeros as essential zeros, indicating the absolute absence of

that element from a fragment’s composition (Mart́ın-Fernández et al., 2003).

This method is similar to that of Stewart and Field (2011) in that the glass

data is partitioned depending on whether elements are present or absent from

each glass composition. This can lead to a reduction in the dimension of the

data, and to the modelling of subcompositions.

The methods of dealing with zeros mentioned above will be incorporated into

a Bayesian hierarchical model. The model takes into consideration the glass

use type and the hierarchical structure of the glass data by including three

levels of variability. The model is then used to classify glass items into one

of five use type categories and for computing the evidential value of glass

fragments relating to two competing propositions.

1.1 Overview of thesis

Chapter 2 provides a review of current methods used in the analysis of com-

positional data, as well as a detailed description and exploratory analysis of

the glass database. Chapter 3 details the Bayesian hierarchical model and

the Markov Chain Monte Carlo (MCMC) implementation, and also describes

the two different approaches taken to handling the many compositional zeros

present in the glass database. Chapter 3 also presents the posterior draws

obtained from the hierarchical model as well as model diagnostics. The clas-
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sification procedure and results of classifying all glass items in the database

are detailed in Chapter 4, while the evaluation of glass fragments as evidence

is described, including the results, in Chapter 5. Chapter 6 describes a web

application of the classification and evidence evaluation approaches along

with instructions on how to load the data into the application. Discussion

and conclusions are contained in Chapter 7.



Chapter 2

Compositional data

As already mentioned in the introduction, the glass database contains mea-

surements on percentage weights and so is compositional in nature. This

chapter will begin with an overview of statistical methods for compositional

data and the techniques used to analyse it before going on to later detail the

glass database itself.

Compositional data commonly occurs in scientific disciplines such as chem-

istry, geology, economics, and many others. Compositional data are vectors

comprised of non-negative parts of some whole. The sample space or simplex

as defined by Aitchison (1986) is

SD−1 =

{
w = (w1, . . . , wD) : wd ≥ 0;

D∑

d=1

wd = c

}
, (2.1)

where c is the constant sum constraint and value of the full composition, i.e.

c = 1, 100, . . . for proportions, percentages etc. The simplex has the vector

operations of perturbation and power transformation which are analagous to

8
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translation and scalar multiplication in RD.

The perturbation operation can be used to record changes in a composition.

If x is a D-part composition consisting of decaying components and u is

a D-part vector containing the decay rates of x, then the newly perturbed

composition y can be written as

y = x⊕ u = C(x1u1, . . . , xDuD). (2.2)

The closure operator C used in (2.2) is defined as

C(x) =
c∑D

d=1 xd

x, (2.3)

and is used to convert raw composition measurements into proportions, per-

centages etc. depending on the choice of c. The vector u containing any

change or perturbation in a composition can be found from the inverse op-

eration:

u = y ª x = C(y1/x1, . . . , yD/xD), (2.4)

with u = 1D the neutral element corresponding to no change from x to y.

The perturbation operation allows for compositional measurements collected

from a source, that may be represented in different units, to produce the

same qualitative results under statistical analyses if there exists a perturbing

vector u that allows for easy transformations between units. The power

transformation can also be used to rescale a composition given some constant

a:

y = a⊗ x = C(xa
1, . . . , x

a
D), a > 0. (2.5)
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An analogue to the Euclidean distance in the simplex, known as Aitchison

distance (Aitchison, 1986), is defined by

da(x,y) =

[
1

D

∑
i<j

(
ln
xi

xj

− ln
yi

yj

)2
]1/2

=

[
D∑

i=1

(
ln

xi

g(x)
− ln

yi

g(y)

)2
]1/2

,

(2.6)

where g(x) = (x1 · · · xD)1/D is the geometric mean of x. The Aitchison dis-

tance satisfies the property of subcompositional dominance (Aitchison, 1992).

Subcompositional dominance is the property whereby the distance between

two full compositions x and y is at least as large as the distance between

any two subcompositions x∗ and y∗, i.e. da(x,y) ≥ da(x
∗,y∗). There are two

principles of compositional data to consider before carrying out any analysis.

These are scale invariance and subcompositional coherence (Aitchison and

Egozcue, 2005).

Compositional vectors w1 and w2 are considered compositionally equivalent

if C(w1) = C(w2), which implies the existance of a proportionality constant,

λ, such that w1 = λ ·w2. A function f is said to be scale invariant if

f(w1) = f(λ ·w1). (2.7)

Since scale invariance is satisfied by taking the ratio of D − 1 components

to the Dth component of a composition, and as compositions carry relative

information, compositional data are most often expressed in terms of ratios

of the component parts. A function is also said to be permutation invariant

if it is unaffected by changes to the ordering of the component parts.

For any subset S of the indices (1, . . . , D) of a D-part composition such that

wS = s is a subcomposition of w, the ratio of any two components in s
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should be equal to the corresponding ratio in the full composition w:

si

sj

=
wi

wj

∀ (i, j ∈ S). (2.8)

This is referred to as subcompositional coherence, and along with scale in-

variance, is the reason why analyses of compositional data regularly involve

the use of component ratios. The use of ratios also removes the constant

sum constraint of the simplex allowing for the use of standard multivariate

techniques, and for the dimension of the data to be reduced by one. Typi-

cally data transformations are then applied to the ratios to improve variance

stability and normality.

2.1 Transformations

2.1.1 Additive log-ratio

The most common transformation applied to compositional data was intro-

duced by Aitchison (1982) and involves taking the logarithm of D − 1 com-

ponents to the remaining one. This is referred to as the additive log-ratio

(alr) transformation:

alr(w) =

(
ln

(
w1

wD

)
, . . . , ln

(
wD−1

wD

))
. (2.9)

The alr transformation removes the sum constraint allowing for the appli-

cation of standard multivariate techniques, such as assuming the data to be

multivariate normally distributed, where the variance-covariance matrix, Σ,
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would be of dimension (D − 1)× (D − 1) and given as

Σ =

[
cov

{
ln

(
wi

wD

)
, ln

(
wj

wD

)}
: i, j = 1, . . . , D − 1

]
. (2.10)

The alr transformation satisfies the principles of compositional data described

earlier, but it is not without its issues. One potential issue is that it does

not treat the parts of w symmetrically with wD taking on the role of the

common divisor in the log-ratios. Also, despite the invariant property, the

choice of the common divisor wD in the ratio still has an important role

to play in terms of the goodness of fit to normality of the log-transformed

data (Rayens and Srinivasan, 1991a). The component chosen as the divisor

needs to be greater than zero within a composition in order to avoid further

complications involving compositional zeros.

Baxter et al. (2005) point out that performing a principal component analysis

(PCA) on the standardised ratios recovers the structure of the data much

better than using the alr transformed data. This is due to component parts

with very low absolute values and high variability strongly influencing the

structure of the log-transformed data; see also Wang et al. (2008). The alr

transformation also requires that all component parts be strictly positive,

but zero measurements occur frequently in compositional data, leading to

the development of strategies to deal with the presence of such values. These

strategies are detailed in Section 2.2.

2.1.2 Centred log-ratio

Another transformation proposed by Aitchison (1986) that satisfies the prin-

ciples of compositional data is the centred log-ratio (clr) transformation. The
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clr transformation is the logarithm of the ratio of all D-parts to their geo-

metric mean:

clr(w) =

(
ln

(
w1

g(w)

)
, . . . , ln

(
wD

g(w)

))
, (2.11)

where g(w) is the geometric mean. Unlike the alr, the clr treats compositions

symmetrically by not having a component singled out as the common divisor.

For the clr, the D×D variance-covariance matrix, Γ, of a D-part composition

w is given as

Γ =

[
cov

{
ln

(
wi

g(w)

)
, ln

(
wj

g(w)

)}
: i, j = 1, . . . , D

]
. (2.12)

An advantage the clr has over the alr is being able to visualise all D-parts of a

composition when performing an exploratory analysis of the data (Campbell

et al., 2009). However, as (2.12) is singular, it is simpler to revert back to the

alr transformation when using standard methods requiring the inverse of the

variance-covariance matrix, similarly to how Campbell et al. (2009) analysed

data on New Zealand nephrite.

2.1.3 Isometric log-ratio

Egozcue et al. (2003) introduced the isometric log-ratio (ilr) transformation

for compositional data which allows for angles and distances in the simplex to

be associated with angles and distances in real space. The ilr transformation

is given as ilr(w) = x = (x1, . . . , xD−1) ∈ RD−1 where

xi =
1√

i(i+ 1)
ln

(∏i
j=1wj

(wi+1)i

)
. (2.13)

The relationships between the ilr and the alr and clr transformations are

described in detail in Egozcue et al. (2003).



CHAPTER 2. COMPOSITIONAL DATA 14

Other logarithmic transformations that have been applied to compositional

data include the complementary log-log transformation (Neocleous et al.,

2011) and the multiplicative log-ratio (mlr) transformation (Stewart and

Field, 2011). However, as previously stated, in order to compute logarithmic

transformations all component parts must be strictly positive. This has led

to the proposal of non-logarithmic transformations for compositional data.

2.1.4 Box-Cox family

Rayens and Srinivasan (1991a) propose using the family of transformations

considered by Box and Cox (1964) to improve the fit to normality of com-

positional data. Rayens and Srinivasan believe that the ratio transformation

alone alleviates most of the issues concerning the statistical analysis of com-

positional data, with the additional logarithmic transformation used mainly

to improve normality. As the log transformation is part of the Box-Cox fam-

ily of transformations, a better fit to normality, and thus a better use of

normal based multivariate techniques, should be achievable by considering

the whole family of transformations.

Let x be the ratios of D−1 components to the remaining one. The Box-Cox

transformation is then applied to each component of x as follows

yi =





x
λi
i −1

λi
, if λi 6= 0,

ln(xi), if λi = 0,

(2.14)

where λ = (λ1, . . . , λD−1) are the power parameters of the transformation.

Rayens and Srinivasan (1991a) recognise the potential issue pertaining to
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subcompositional analysis with the use of non-logarithmic transformations.

However, they believe this concern can be resolved in practice if an ever

present component is commonly accepted by practitioners to be the common

divisor.

Application of the Box-Cox and alr transformations to real data in Rayens

and Srinivasan (1991a) show improvements in goodness of fit to normal-

ity in favour of the Box-Cox transformation. Rayens and Srinivasan ex-

tend their application of the Box-Cox transformation in parametric and non-

parametric approaches to modelling compositional data in Rayens and Srini-

vasan (1991b).

2.1.5 Hypersphere

Wang et al. (2007) and Neocleous et al. (2011) avoid the complication of zero

components by applying a hyperspherical transformation to compositional

data. First the square root is applied to all D-parts of a composition w:

sqrt(w) = (
√
w1, . . . ,

√
wD) , (2.15)

transforming it onto the surface of the (D−1)-dimensional hypersphere. The

Cartesian coordinates of (2.15) are then mapped to polar coordinates using

a recursive relationship. Scealy and Welsh (2011) used (2.15) to allow for

directional data distributions - such as the Kent distribution - to be used

when modelling compositional data; see also Scealy and Welsh (2014).

Regardless of which transformation is applied to compositional data, there

still lies the problem pertaining to zeros, especially in datasets where they
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are abundant. However, zeros are still notably more problematic for any of

the logarithmic transformations, with even a small number of zeros caus-

ing computational issues; they also have a stronger influence on the data

distribution, as will be demonstrated in Section 2.3.

2.2 Compositional zeros

Zero measurements occur frequently in compositional data causing problems

with the application of any of the logarithmic transformations mentioned in

Section 2.1. There are two types of compositional zeros: rounded zeros, in-

dicating the presence of a component but below some detection limit; and

essential zeros, denoting the absolute absence of a component from an ob-

servation (Mart́ın-Fernández et al., 2003). Different approaches have been

adopted for both types of zeros.

2.2.1 Rounded zeros

Non-zero traces of components that are below limits of detection for some

measuring equipment are reported as zero concentrations and referred to as

rounded zeros. The simplest strategy then is to replace rounded zeros by

some small constant equal to or below the detection limit (Neocleous et al.,

2011). To satisfy the constant sum constraint the non-zero components would

then have to be adjusted accordingly, which can be done using one of several

techniques.
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Simple replacement strategy

The easiest of such zero replacement techniques is known as the simple re-

placement strategy (Mart́ın-Fernández and Thió-Henestrosa, 2006). A D-

part composition w containing rounded zeros is replaced by an updated non-

zero composition u:

ud =





c
c+
P
{k:wk=0} δk

δd, if wd = 0,

c
c+
P
{k:wk=0} δk

wd, if wd > 0,

(2.16)

where c =
∑
wd is the constant sum constraint, and δ is a value below limits

of detection.

Additive replacement strategy

Aitchison (1986) proposed an additive replacement strategy where any D-

part composition w, containing Z zeros is replaced by an updated non-zero

composition u:

ud =





δ(Z+1)(D−Z)
D2 , if wd = 0,

wd − δ(Z+1)Z
D2 , if wd > 0,

(2.17)

where δ is a value smaller than the given threshold of the measuring equip-

ment. A problem with this strategy is that it fails to preserve the ratios

between components of the original composition w and the updated non-

zero composition u, leading to subcompositional incoherence. This led to

other replacement strategies being proposed with Fry et al. (2000) adopting

a modified version of the additive replacement strategy of Aitchison when
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dealing with share ratios in economic data, and to the introduction of the

multiplicative replacement strategy of Mart́ın-Fernández et al. (2000).

Multiplicative replacement strategy

The zero replacement technique of Mart́ın-Fernández et al. (2000) does not

rely on the number of components D, or the number of zeros Z, but only on

the given threshold value δ:

ud =





δd, if wd = 0,

wd − wd

c

∑
{d:wd=0} δd, if wd > 0,

(2.18)

where c =
∑
wd is the constant sum constraint. This proposed replacement

strategy preserves the ratios between the old observations w, and the newly

adjusted observations u. Sanford et al. (1993) suggest values equal to 0.55

times the threshold δ be used when imputing values below limits of detec-

tion. A comparison of the performance of the additive and multiplicative

replacement strategies can be found in Mart́ın-Fernández et al. (2003).

Although the multiplicative replacement strategy preserves ratios it can run

into problems with compositional datasets containing a large number of zeros

(more than 10% (Sanford et al., 1993)). The issue of artificial correlation

induced by the strategy for datasets containing a large proportion of zeros is

raised in Palarea-Albaladejo et al. (2007).

Palarea-Albaladejo et al. (2007) propose a parametric approach to replac-

ing components below the limits of detection in the presence of many zero

values. Palarea-Albaladejo et al. use a modified version of the EM algo-
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rithm that takes into account that rounded zeros are seen as missing values

(Mart́ın-Fernández and Thió-Henestrosa, 2006), however they are not consid-

ered missing at random (MAR), but below limits of detection, so are therefore

treated as not missing at random (NMAR). Their method also takes into ac-

count the covariance structure of the data ensuring imputed values for zeros

of the same component differ from one another, thus reducing the artificial

correlation induced by the multiplicative replacement strategy.

2.2.2 Essential zeros

Essential zeros are different to rounded zeros in that they are not zero due

to limits of detection, but considered to be actual zeros. Essential zeros

appear in compositions in disciplines such as economics. Most often zeros in

compositional data are treated as rounded zeros and so fewer advancements

have been made for zeros considered to be essential. Aitchison and Kay

(2003) believe that such zero problems may not exist once the precise aims of

a study of compositional data containing essential zeros have been obtained.

Zadora et al. (2010) modelled non-zero subcompositions using a two stage

model approach, with the presence of zeros treated using an independent bi-

nary model as suggested by Aitchison and Kay (2003). Bacon-Shone (2003)

explores the problem of essential zeros arising in household expenditure data,

i.e. households who spend money on alcohol versus those that do not. Bacon-

Shone suggests the use of multivariate logistic or probit models for modelling

the essential zero structure within the data. Butler and Glasbey (2008) and

Leininger et al. (2013) approached the issue of zeros by including a latent
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Gaussian random variable in their models, that has the effect of creating

a point mass at zero. Stewart and Field (2011) developed mixture models

for compositional data containing zeros when examining the diets of preda-

tors. Stewart and Field partitioned their data depending on whether different

species were present or absent from a predator’s diet, thus only modelling

the non-zero components. Stewart (2013) adapted the model using the zero-

inflated beta distribution, simplifying the previous approach by not having

to apply the multiplicative log-ratio transformation to the same data set.

Daunis-i-Estadella et al. (2008) introduce the idea of a different type of com-

positional zeros that occur in count data sets. Referring to them as count

zeros, Daunis-i-Estadella et al. propose the use of the multiplicative replace-

ment strategy in order to preserve ratios between prior and posterior counts

when the Dirichlet distribution is used as the conjugate prior of the multi-

nomial distribution within a Bayesian framework, thus allowing for the ap-

plication of the alr transformation. The glass database will now be detailed,

where its unique aspects are highlighted during an exploratory analysis that

is informative about the approaches used in its analysis.

2.3 Glass database

The glass database being analysed consists of measurements obtained from

an experimental setting, and was provided by Prof. G. Zadora of the Institute

of Forensic Research, Krakow. The database is comprised of four fragments -

each having three replicate measurements – from 320 glass items to give a to-

tal of 3840 measurements. The 320 glass items are split across five use types:
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26 bulbs, 94 car windows, 16 headlamps, 79 containers and 105 building win-

dows. The elemental content of each fragment was obtained from a scanning

electron microscope with an energy dispersive X-ray (SEM-EDX) spectrom-

eter. The fragments chosen for analysis were obtained from an experimental

setting by breaking a glass item of a specified use type into smaller fragments.

The fragments with the smoothest and flattest surfaces with linear dimen-

sion less than 0.5 mm were then selected for analysis (Zadora, 2009). The

measurements produced by SEM-EDX are on the percentage weights (wt%)

– to two decimal places – of the main elements comprising each fragment’s

composition. These main chemical elements are: oxygen (O), sodium (Na),

magnesium (Mg), aluminium (Al), silicon (Si), potassium (K), calcium (Ca)

and iron (Fe). Other methods of elemental analysis of glass fragments in-

clude non-destructive energy dispersive X-ray microflourescence (microXRF)

(Hicks et al., 2003) and laser ablation inductively coupled plasma mass spec-

trometry (LA-ICP-MS) (Trejos and Almirall, 2005).

The percentage weights of each fragment are compositional and therefore are

non-negative and sum to 100%. Let the number of elements in a fragment’s

composition be D. The percentage weights are then denoted by the D di-

mensional vector w = (w1, . . . , wD), with wd ≥ 0 and
∑D

d=1wd = 100. To

remove the sum constraint the elements can be transformed into a (D − 1)

dimensional vector of ratios by taking the ratio of (D − 1) elements to the

Dth element. The transformed vector is

w∗ =

(
w1

wD

, . . . ,
wD−1

wD

)
, (2.19)

where oxygen was chosen as the common divisor, wD, due to having the

highest weight percentage and being ever present in glass.
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A number of the percentage weights are zero with their prevalence differ-

ing across elements, as shown in Table 2.1. Figure 2.1, containing plots of

the item means for the ratios to oxygen, illustrates how a large number of

compositional zeros can influence the distribution of the data.

Table 2.1: Frequency of zero measurements by chemical element.

Element O Si Na Ca Al Mg K Fe

Frequency 0 0 0 108 205 265 1168 3036
Percentage 0.0 0.0 0.0 2.8 5.3 6.9 30.4 79.1

In order to improve variance stability and normality, a transformation was

then applied to the ratios in (2.19). In addition to the additive log-ratio

transformation, members from the family of transformations of Box and Cox

(1964) were examined, with improvements in variance stability and normal-

ity of the data obtained by applying the square root to (2.19). Figure 2.2

contrasts the alr and square root transformations, and shows that the square

root transformation improves variance stability in the data more so than the

alr transformation. This is due to the chemical elements with many zeros and

very low weight percentages having a much stronger influence over the log-

transformed ratios than those of the square root. Not only is the square root

transformation more effective at stabilising the variability in the data, it also

does not require any zeros be altered in order to be computed. Due to these

reasons the square root transformation has been chosen as the appropriate

transformation for the analysis of the glass database.
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Figure 2.1: Scatterplots of the ratios to oxygen for all item means from the
database. The different coloured points correspond to the five use
type categories: bulb, car window, headlamp, container and building
window.
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Figure 2.2: Plots of fragments’ standard deviations against corresponding
means, using the alr (left panel) and the square root (right panel)
transformations. For the alr, 0.005 was added to all compositional
zeros. Seven elemental pairs (mean, sd) are plotted for each frag-
ment, computed using the fragment’s three repeated measurements.
While the variability is roughly the same across the range of mean
levels for the square root transformed data, the range of sd’s changes
considerably across mean levels for the alr transformed data.

Despite the square root transformation improving normality and stabilising

the variability in the data, the presence of many zeros still has a bearing on

the distribution of the data. One way to reduce the influence of the zeros

is to partition the glass data depending on whether an element is present or

absent from a glass item’s composition. This reduces (2.19) from a (D − 1)

dimensional composition to a (D − Z − 1) dimensional subcomposition by

eliminating the Z zero elements.

Another benefit to examining whether elements are present or absent from
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an item’s composition is when it comes to determining that item’s use type.

For example, the database has no bulbs or headlamps containing iron, and so

if a composition containing iron is observed then it is unlikely that it is either

of these two use types. Three elements are always present in glass: oxygen,

silicon and sodium. The remaining five can be present or absent from the

composition of a glass item, which gives 25 = 32 possible configurations of

the elements according to their presence or absence. Ten of the possible 32

configurations were observed in the glass database, as shown in Table 2.2. As

can be seen from Table 2.2, most of the configurations account for very few of

the items in the database. The elements iron and potassium are accountable

for 87.9% of the zero measurements in the database, as seen in Table 2.1,

therefore most of the zeros present in the database can be removed by only

focusing on the presence or absence of these two elements. Therefore only

four configurations are later considered as shown in Table 2.3, where some

configurations from Table 2.2 are combined together.
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Table 2.2: Presence (1) and absence (0) of elements at item level by use type.

Element Glass type Total

Mg Al K Ca Fe bulb car window headlamp container building window

1 1 1 1 1 1 0 23 0 12 7 42

2 1 1 1 1 0 16 40 5 47 55 163

3 1 1 0 1 1 0 10 0 0 6 16

4 1 1 0 1 0 1 18 0 17 25 61

5 1 0 1 1 0 0 0 1 0 0 1

6 1 0 0 1 1 0 1 0 0 9 10

7 1 0 0 1 0 0 2 0 0 3 5

8 0 1 1 1 0 0 0 8 1 0 9

9 0 1 1 0 0 9 0 0 0 0 9

10 0 1 0 1 0 0 0 2 2 0 4

26 94 16 79 105 320

Table 2.3: Presence (Fe, K) and absence (Fe, K) at item level by use type.

Glass type Configuration m Total

1: Fe, K 2: Fe, K 3: Fe, K 4: Fe, K

bulb 0 25 0 1 26
car window 23 40 11 20 94
headlamp 0 14 0 2 16
container 12 48 0 19 79
building window 7 55 15 28 105

42 182 26 70 320

Just from observing an item’s composition it is obvious which elements are

present and which are absent: only eight of the 320 items have an element

where all 12 measurements are neither all positive nor zero, as shown in Ta-
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ble 2.4. Here an element is assumed to be present in an item’s composition

if at least one of its 12 measurements is positive. Of the eight items in Table

2.4 five of them contain measurements on iron or potassium that are neither

all positive nor zero. For those five items 28/120 of the total measurements

associated with the elements iron and potassium are zero. Under the as-

sumption that an element is present if at least one of its measurements is

positive this means that 28/4204 = 0.7% of zero measurements would ‘slip

by’ when observing the presence or absence of these two elements. Also,

across all eight of the items in Table 2.4 containing an element with its 12

measurements not all positive or all zero, these zeros account for only 0.9%

of zeros in the entire glass database, and so the assumption that an element

is present if at least one measurement is positive seems reasonable.

Table 2.4: Frequency of items containing chemical elements where all 12 mea-
surements are neither all positive nor zero.

Glass type Element Total
Mg Al K Ca Fe

car window 0 1 0 0 2 3
building window 1 1 3 0 0 5

Total 1 2 3 0 2 8

Taking into account the presence or absence of elements should improve

normality assumptions when it comes to modelling the data by decreasing

the influence of the zeros on the distribution of the data. This can be seen

by comparing Figure 2.3, containing plots of the means at item level for all

items in the database, with Figure 2.4, containing plots of the item means

for all items with configuration 2 from Table 2.3.
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The next chapter discusses a Bayesian hierarchical model for the glass data.

It also details the two different approaches taken to dealing with the many

compositional zeros. The first approach assumes all of the compositional ze-

ros are due to the concentrations of those elements being below the limits of

the detection equipment, and updates the zeros during the modelling proce-

dure with values below this detection limit. The second approach focuses on

using the four configurations mentioned above by separating the data into

four distinct subsets according to the presence or absence of the elements

iron and potassium. This gives four separate models for this approach that

are then brought together to form a single model.
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Figure 2.3: Scatterplots of the square root transformed ratios of all item means
from the database. The different coloured points correspond to the
five use type categories: bulb, car window, headlamp, container and
building window.
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for items with configuration 2 from Table 2.3. The different coloured
points correspond to the five use type categories: bulb, car window,
headlamp, container and building window.



Chapter 3

Models

The elemental content of glass fragments has been previously modelled by

Aitken and Lucy (2004) and Neocleous et al. (2011) from a frequentist per-

spective. The models proposed were random effects models incorporating

two levels of variation: between-item and within-item. The between-item

level variability is captured by a random effect associated with individual

glass items, and the within-item variability by a random effect associated

with individual fragments from the same glass item. Aitken and Lucy (2004)

performed their analysis on building windows using the logarithm of three

different ratios believed to be the most discriminatory for such data. Neo-

cleous et al. (2011) used log-ratios for the entire elemental composition of

glass, with oxygen chosen as the common divisor. Along with the log-ratio

transformation, Neocleous et al. (2011) also used a complementary log-log

transformation – logarithm of the negative log-ratio transformation – and a

spherical transformation mapping the elemental composition onto the unit

31
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hypersphere. In terms of results, there was no single transformation outper-

forming the others. For instance under the normal model used by Neocleous

et al. (2011), the spherical transformation yielded the lowest false positive

rate, while the log-ratio transformation yielded the lowest false negative rate.

Here a Bayesian approach is used to model the hierarchical structure of the

data using a mixed effects model. As the hierarchical structure of the data

contains an additional layer relating to the repeated measurements on each

fragment, an additional random effect is placed at this measurement error

level on top of the two levels of variability already mentioned. The model

is a mixed effects model and not a random effects model as it also includes

a fixed effect term for the overall mean for each glass type. For a detailed

introduction to mixed effects models see Pinheiro and Bates (2000). See also

Gelman et al. (2004) for details on hierarchical models in a Bayesian frame-

work. As was seen from the exploratory analysis in Chapter 2 the square

roots of the compositional ratios improved normality and stability in the

data variability more so than the log-ratios. Therefore the primary transfor-

mation used when analysing the glass database will be the square roots of

the compositional ratios, with oxygen chosen as the common divisor. Also,

unlike the log-ratio transformation, the square root transformation does not

require any zeros present in the data to be altered. Results from the model

using the log-ratio transformation will also be produced for comparison’s

sake, and to demonstrate why it does not perform as well as the square root

transformation.
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3.1 Bayesian hierarchical model

Denote the square root ratios for each glass measurement by ztijk, where

ztijk is the k-th replicate measurement from the j-th fragment of the i-th

glass item of use type t. The dimension p of ztijk at item level may differ

across the elemental configurations detailed in Section 2.3 when the approach

to modelling the presence or absence of the elements iron and potassium is

taken; see Section 3.2.3. It is then assumed that

ztijk = θt + bti + ctij + εtijk,

bti
iid∼ Np(0,Ω

−1
t ), ctij

iid∼ Np(0,Ψ
−1), εtijk

iid∼ Np(0,Λ
−1).

(3.1)

The fixed effect term for the mean of use type t is denoted by the parameter

θt; the item-level random effect by bti; the fragment within-item random

effect by ctij; and the error at measurement level by εtijk. Each of the random

effects are assumed to have multivariate normal distributions, with unknown

precision matrices Ωt, Ψ and Λ. The separate covariance matrices, Ω−1
t , were

introduced at item level for each use type after observing dissimilar levels of

random variability between items of differing use types, which will be seen

from the model results. The assumption of normality is questionable and may

not hold after looking at scatterplots of the data in Chapter 2, even when the

zero concentrations are removed. However, the validity of this assumption

did not have any substantial affect on the conclusions drawn from the models

used, as seen from the results of classification and evidence evaluation in

chapters 4 and 5. Misspecifying random effects distributions does not greatly

affect estimations of the random effects variances (McCulloch and Neuhaus,

2011). Shorthand notations for each of the parameters in the model are
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θ = {θt}T
t=1; b = {bti}It

i=1
T
t=1; c = {ctij}J

j=1
It
i=1

T
t=1 and Ω = {Ωt}T

t=1. Here

T = 5 denotes the number of use types in the database; It denotes the

number of glass items of each use type t (I1 = 26, I2 = 94, I3 = 16, I4 = 79,

I5 = 105); J = 4 denotes the total number of fragments associated with each

item; and K = 3 is the number of replicate measurements on each fragment.

For a glass item z of use type Tz = t with JK measurements, model (3.1)

implies - without conditioning on the random effects - that the distribution

of item z is

z|Tz = t, ξ ∼ NJKp(1JK ⊗ θt, Σt), (3.2)

where ξ = {θ,Ω,Ψ,Λ} collectively denotes the model parameters. When

modelling the presence and absence of iron and potassium the model param-

eters for the subset of items with configuration m in Table 2.3 will be denoted

by ξm. The covariance matrix Σt is given by

Σt = (1JK1′JK)⊗ Ω−1
t + [IJ ⊗ (1K1′K)] ⊗Ψ−1 + IJK ⊗ Λ−1, (3.3)

where 1d denotes a column vector of d 1’s, and Id is the d×d identity matrix.

The prior distributions placed on the fixed effects θt are also assumed inde-

pendent multivariate normals, but they are restricted to the positive orthant,

in order to ensure that the square root transformed means are non-negative:

θt
iid∼ Np(0,Φ

−1), θt > 0, t = 1, . . . , T. (3.4)

The covariance matrix, Φ−1, of the fixed effects is fixed and set equal to

s · Ip, where s is a relatively large constant. All subsequent results used

the value s = 1000. This gives a priori independent components of θt with

very large spread, so that the posterior modes of θt will be very close to the
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corresponding sample means. The precision matrices for the random effects

have conjugate Wishart hyperpriors placed on each of them:

Ωt ∼ Wp(d1t, At), Ψ ∼ Wp(d2, B), Λ ∼ Wp(d3, C), (3.5)

where d1t, d2 and d3 denote the degrees of freedom; and At, B and C are

precision matrices. The degrees of freedom of the Wishart distribution need

to be greater than the data dimension minus one, e.g. d2 > p−1, so noninfor-

mative prior values for the degrees of freedom are set equal to p; see DeGroot

(1970) for details on the Wishart distribution. The precision matrices At,

B and C are all set equal to (1/1000) · Ip so that, as mentioned for the θt’s

above, posterior inferences would be largely driven by the data.

3.1.1 Markov Chain Monte Carlo implementation

In Bayesian inference Markov Chain Monte Carlo (MCMC) methods are used

to simulate and draw samples from distributions of interest. Monte Carlo

methods are used to approximate integrals and closed-form expressions that

are otherwise extremely difficult or impossible to evaluate. This is done

by creating a Markov chain which, after reaching a state of equilibrium, is

effectively sampling from the desired target distribution. This is an iterative

algorithm procedure that after a period of time will have produced a chain

consisting of samples drawn from the target distribution.

The two most frequently used MCMC algorithms are the Gibbs sampler and

the Metropolis-Hastings algorithm. Depending on the model, only one of the

sampling techniques may be required, but it is also possible to have a hybrid
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sampling technique that uses both methods. As the core of the sampler used

here is Gibbs sampling, the Gibbs sampler will be described first, before then

going on to look at the Metropolis-Hastings algorithm and the corresponding

moves incorporated into the sampler.

Gibbs sampling

Since the full conditional distributions of the random effects {b, c} and the

parameters of ξ = {θ,Ω,Ψ,Λ} - minus θ with its applied restriction - are

known standard distributions, Gibbs sampling moves can be used to update

these parameters. Gibbs sampling moves work by generating values from the

full conditional distribution of a variable, i.e. the conditional distribution of

a variable given all other variables. For example, let the vector containing all

parameters of interest be ζ = (ζ1, . . . , ζn)′, then the Gibbs sampler operates

as follows:

1. First set initial values for the parameters ζ0 = (ζ0
1 , . . . , ζ

0
n)′

2. Iteratively generate values for ζ where the first iterate is generated as

follows:

ζ1
1 ∼ p(ζ1

1 | ζ0
2 , . . . , ζ

0
n)

ζ1
2 ∼ p(ζ1

2 | ζ1
1 , ζ

0
3 , . . . , ζ

0
n)

ζ1
3 ∼ p(ζ1

3 | ζ1
1 , ζ

1
2 , ζ

0
4 , . . . , ζ

0
n)

...

ζ1
n ∼ p(ζ1

n | ζ1
1 , . . . , ζ

1
n−1)
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3. Repeat step 2 for each iteration of the sampler.

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm

where each move is always accepted with probability one. For a detailed

explanation of the Gibbs sampler see Casella and George (1992). The full

conditional distributions of each of the parameters used in the Gibbs sampler

are given in Appendix B.1. A “burn-in” period can be implemented into

the sampler where the initial iterations that have not reached a state of

equilibrium are discarded, with only the draws made after this period used

in the analysis. Any autocorrelation in the draws from the sampler can also

be reduced by “thinning” the Markov chain: every m-th draw of the sampler

is stored and the rest discarded. Thinning can reduce autocorrelation, but

it can also lead to a loss in precision, with an increase in the variance for

thinned chains compared to unthinned chains (Link and Eaton, 2012).

In mixed effects models there may be strong correlations between the pa-

rameters, such as relationships between the fixed effects and the different

levels of random effects in the hierarchical model. There may also be strong

relationships between the random effects and their corresponding variances.

This can cause issues with poor mixing using Gibbs samplers, with differ-

ent MCMC strategies proposed to deal with such problems. Gelfand et al.

(1995) introduced hierarchical centering that can be used to reduce strong

correlation between parameters. Liu et al. (1998) proposed a parameter ex-

pansion technique which was adapted for the Gibbs sampler (Liu and Wu,

1999) and involves the inclusion of additional auxiliary parameters to reduce

the effects of correlation between parameters. An overview of each method

can be found in Browne (2004).
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Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is a generalisation of the

Metropolis algorithm of Metropolis et al. (1953) and allows draws to be made

from any probability distribution, given that the target distribution of inter-

est can be computed at a specific value. The Metropolis-Hastings algorithm

uses a proposal density to generate a candidate state for the Markov chain

to move to with some probability, else the chain remains at its current state.

Let ζ denote the current state, where p(ζ) denotes the target distribution

at ζ. Let q(ζ̃|ζ) denote the proposal distribution, which proposes moving to

the state ζ̃ when currently at state ζ; where q(ζ|ζ̃) denotes the move in the

opposite direction. The Metropolis-Hastings algorithm is given as follows:

1. Specify an initial state, ζ0, for the current state ζ.

2. For i = 1, . . . , n

(a) Sample a new candidate state ζ̃i from q(ζ̃i|ζi).

(b) ζ̃i is accepted with probability min(1, α) with

α =
p(ζ̃i) q(ζi|ζ̃i)
p(ζi) q(ζ̃i|ζi)

. (3.6)

Generate a random u ∼ Unif(0, 1), accepting ζ̃i if u < α, other-

wise remain at the current state ζi.

If the proposal density q(ζ̃|ζ) is symmetric then q(ζ̃|ζ) = q(ζ|ζ̃), thus reducing

the acceptance probability α to

α =
p(ζ̃)

p(ζ)
, (3.7)
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the ratio of target probability densities at the candidate state ζ̃ and the

current state ζ.

A symmetrical proposal often used generates candidate values by adding to

the current state a value drawn from a Unif(−δ, δ) distribution:

ζ̃ = ζ + v, where v ∼ Unif(−δ, δ). (3.8)

This is sometimes referred to as a random walk Metropolis-Hastings and is

symmetric due to q(ζ̃|ζ) = q(ζ|ζ̃) = 1/2δ. There are various other proposal

choices that can also be implemented. For a more detailed description of the

Metropolis-Hastings algorithm see Chib and Greenberg (1995). The proposed

model implements three separate Metropolis-Hastings moves detailed below.

Metropolis-Hastings move 1

The first Metropolis-Hastings move (M-H 1) is used to update the fixed mean

parameter θt. As the prior distribution on θt is restricted to the positive

orthant, it requires updating using a Metropolis-Hastings move in order to

prevent the acceptance of negative θt values. M-H 1 updates θt using a

proposal distribution equal to the full conditional distribution of θt minus

the positive orthant restriction. The candidate value θ̃t is therefore drawn

from a multivariate normal distribution:

θ̃t ∼ Np(φ̃t, Φ̃
−1
t ),
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with acceptance probability α given by

α = min

(
1,
p(ξ̃, b, c) q(θt|θ̃t)

p(ξ, b, c) q(θ̃t|θt)

)

= min

(
1,
p(θ̃t | · · · ) p(· · · ) q(θt|θ̃t)

p(θt | · · · ) p(· · · ) q(θ̃t|θt)

)

= min

(
1,
Np(θ̃t | φ̃t, Φ̃

−1
t ) I(θ̃t ∈ Rp

+)Np(θt | φ̃t, Φ̃
−1
t )

Np(θt | φ̃t, Φ̃
−1
t ) I(θt ∈ Rp

+)︸ ︷︷ ︸
=1

Np(θ̃t | φ̃t, Φ̃
−1
t )

)

= I(θ̃t ∈ Rp
+), (3.9)

where the joint posterior distribution, p(ξ, b, c), of the model is reduced to

the expressions only involving θt: the full conditional distribution p(θt | · · · ),
where “· · · ” denotes all other variables in the model. The full conditional

distributions of all the model variables are shown in Section B.1 of Appendix

B. The candidate value θ̃t is then accepted with probability 1 or 0 depending

on whether it lies in the positive orthant or not.

Metropolis-Hastings move 2

The second Metropolis-Hastings move (M-H 2) is also used to update θt, but

this time only for glass items of use type bulb, i.e. θ1. This additional move

is performed only on θ1 and not on glass items of the other four use types as

the MCMC samples for bulbs displayed noticeable positive autocorrelation.

This may be down to the fact that the percentage weights amongst bulbs are

more variable than the other use types, with two separate clusters of bulbs

observed; see Figure 2.3. M-H 2 is a random walk move that is performed
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on each element of θ1 separately:

θ̃1l = θ1l + v, where v ∼ Unif(−δ1l, δ1l), (3.10)

where the interval widths δ1l were determined from preliminary runs of the

model; see Section B.2 of Appendix B. The probability of accepting the

newly generated candidate is then

α = min

(
1,
p(ξ̃, b, c) q(θ1l|θ̃1l)

p(ξ, b, c) q(θ̃1l|θ1l)

)

= min

(
1,
p(θ̃1 | · · · ) p(· · · ) q(θ1l|θ̃1l)

p(θ1 | · · · ) p(· · · ) q(θ̃1l|θ1l)

)

= min

(
1,
p(θ̃1 | · · · )
p(θ1 | · · · )

)
, (3.11)

where q(θ1l|θ̃1l) = q(θ̃1l|θ1l) = 1/2δ1l. This is done for each element l =

1, . . . , p where the only difference between the densities p(θ̃1 | · · · ) and p(θ1 |
· · · ) in (3.11) is the candidate generated value of the l-th element of θ̃1.

Metropolis-Hastings move 3

The third Metropolis-Hastings move (M-H 3) is performed on both the fixed

effect θt and the item-level random effect bti simultaneously. Here the pro-

posed candidate state is chosen in a way that leaves the value of the likelihood

unchanged between the current and candidate states. Therefore, the candi-

date values generated for θt and bti are generated such that θt+bti = θ̃t+b̃ti.

The candidate for the fixed effect θt is generated as follows:

θ̃t = θt + v,

where v = (v1, . . . , vp)
′, with components vl ∼ Unif(−δtl, δtl) independently;

with the values δtl for the interval widths determined from a pilot run; see
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Section B.2 of Appendix B. In order for the likelihood to remain unchanged

and for θt + bti = θ̃t + b̃ti to hold, the candidate values of the item-level

random effects are then set equal to

b̃ti = bti − v, i = 1, . . . , It.

As the proposed candidate values do not change the value of the likelihood,

the ratio of the target densities in the acceptance probability reduces to the

ratio of prior densities for θt and bt evaluated at the candidate and current

states, along with two additional terms. The acceptance probability can then

be computed as follows, using the approach described in Section 2.2 of Green

(2003):

α = min

(
1,
p(ξ̃, b̃, c)

p(ξ̃, b̃, c)

f̃(ṽ)

f(v)

∣∣∣∣∣
∂(θ̃t, b̃t, ṽ)

∂(θt, bt,v)

∣∣∣∣∣

)

= min

(
1,
p(θ̃t) p(b̃t|Ωt)

p(θt) p(bt|Ωt)

f̃(ṽ)

f(v)

∣∣∣∣∣
∂(θ̃t, b̃t, ṽ)

∂(θt, bt,v)

∣∣∣∣∣

)
.

The density f(·) is uniform on a hyper-cube across the values of v, with

f̃(·) = f(·) such that ṽ = −v in the reverse move. The absolute value of the

determinant of the Jacobian matrix is

∣∣∣∣∣
∂(θ̃t, b̃t, ṽ)

∂(θt, bt,v)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ip 0p,pIt Ip

0pIt,p IpIt −1It
⊗ Ip

0p,p 0p,pIt −Ip

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1.

The acceptance probability for M-H 3 is then shown to only involve the prior

densities of θ̃t and b̃t at the candidate and current values:

α = min

(
1,
p(θ̃t) p(b̃t|Ωt)

p(θt) p(bt|Ωt)

)
. (3.12)
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The three Metropolis-Hastings moves detailed are integrated into the Gibbs

sampler that is used to update the parameters where their full conditional

distributions are known.

The above sampler describes how posterior draws are obtained for the pa-

rameters in model (3.1) but the issue of compositional zeros still needs to be

addressed. However, since the square root of the compositional ratios does

not need any of the zeros to be altered in order to be used, the results from

the MCMC with all compositional zero values unaltered will be displayed

first before introducing the two different approaches to modelling the zeros

using model (3.1).

3.1.2 Posterior samples from the Bayesian hierarchical

model

The posterior samples shown here were obtained from the Bayesian hierar-

chial model with all compositional zeros left unaltered using the MCMC pro-

cedure detailed in Section 3.1.1. To obtain the posterior draws, the MCMC

algorithm was coded in the statistical programming language R (R Develop-

ment Core Team, 2011). The time taken to obtain the simulated model re-

sults was approximately 12 hours. This included a burn-in period of 10, 000.

Thinning of the Markov chain was also used to aid convergence with ev-

ery 200th draw from the chain kept and the rest discarded. All subsequent

samples from the posterior consist of 1, 000 draws. The acceptance rate for

Metropolis-Hastings move M-H 1 in Section 3.1.1 is not explicitly stated due

to almost all new candidates being accepted due to the mean lying far enough
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away from the constraint, with the variance small enough to ensure the con-

straint is rarely broken. The acceptance rate for Metropolis-Hastings move

M-H 2 in Section 3.1.1 that is performed on θ1 only was 39%, and the accep-

tance rate for Metropolis-Hastings move M-H 3 in Section 3.1.1 which jointly

updates both θ and b was 37%. Time series plots of the draws obtained for

the sampled fixed effect θt are shown in Figure 3.1 and indicate good con-

vergence of θt for t = 2, 3, 4, 5 with the convergence for t = 1, i.e. bulbs, less

so. This is due to the bulb use type displaying more variability at item level

than the other four use types. This can be most easily seen in the second

column of plots (for the element sodium) of Figure 2.3 where there appear

to be two separate groupings of bulbs containing different levels of sodium.

This is the main reason why separate covariance matrices at item level, Ω−1
t ,

were incorporated into the model, to allow change across use types, which is

displayed in Table 3.2. Also seen from Figure 3.1 is the influence of the abun-

dant levels of zero concentrations of iron in bulbs and headlamps, i.e. θ1 and

θ3. Table 3.1 contains the effective sample sizes for θt and reflects the poorer

convergence for bulbs, with much smaller effective sample sizes obtained for

the elements which differ between the two separate groups seen in Figure

2.3. The effective sample sizes where obtained using the effectiveSize func-

tion from the coda package in R (R Development Core Team, 2011). Figure

3.2 displays scatterplots of the draws of θt and shows clear separation in the

means between the five different glass use types. The influence of the zeros

can be seen (first column of Figure 3.2) from the point mass close to zero for

the use types bulb and headlamp. Figure 3.2 also shows how the mean for

bulbs, θ1, appears stretched between the two separate clusters of bulbs seen

in Figure 2.3 which could be seen as a potential problem. However, with the
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introduction of the two approaches used to handle the zeros, the models do

not have any problems in correctly classifying or distinguishing glass items

of that use type from the others, as seen in Chapter 4.

Table 3.1: Effective sample size from the Bayesian hierarchical model with unal-
tered compositional zeros for the mean vector θt. For θt, t = 1, . . . , 5
correspond to use types: bulb, car window, headlamp, container and
building window.

Na Mg Al Si K Ca Fe

θ1 70.1 68.0 231.4 79.3 79.9 71.6 1134.0

θ2 1000.0 1000.0 1000.0 1000.0 732.4 1000.0 1000.0

θ3 353.7 616.4 500.93 732.7 189.1 539.8 855.4

θ4 780.5 1000.0 1454.4 1000.0 821.9 1000.0 991.3

θ5 1000.0 1000.0 791.4 894.9 802.4 871.6 775.4
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Figure 3.1: Trace plots of the mean θt from the Bayesian hierarchical model
with all compositional zeros unaltered. A burn-in period of 10, 000
was used, and thinning of the Markov chain with every 200th draw
stored.
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The standard deviations from the variance-covariance matrices corresponding

to each of the random effects are shown in Table 3.2. As mentioned earlier

the variability at item level was allowed to change by use type with the

introduction of different Ω−1
t for each use type. This was mainly due to

the increased variability seen between bulbs, i.e. t = 1, which is shown in

the first row of Table 3.2. Comparing the fragment level variability, Ψ−1,

with the variability at measurement level, Λ−1, little difference is observed

between them. The variability at fragment level is slightly greater than that

at measurement level, with the variability between items much greater than

that found within items, as would be expected.

Table 3.2: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 from the Bayesian hierarchical model with unaltered
compositional zeros. For Ω−1

t , t = 1, . . . , 5 correspond to use types:
bulb, car window, headlamp, container and building window.

Na Mg Al Si K Ca Fe

Ω−1
1 0.96 0.95 0.28 0.65 1.18 1.35 0.07

Ω−1
2 0.08 0.18 0.27 0.31 0.34 0.26 0.45

Ω−1
3 0.20 0.87 0.49 0.48 0.68 0.73 0.09

Ω−1
4 0.15 0.52 0.16 0.41 0.39 0.34 0.24

Ω−1
5 0.11 0.25 0.32 0.29 0.32 0.25 0.34

Ψ−1 0.06 0.04 0.08 0.30 0.08 0.24 0.03

Λ−1 0.04 0.04 0.04 0.15 0.05 0.12 0.03

The next section goes on to detail the two different approaches incorpo-

rated into the Bayesian hierarchical model to handle the compositional zeros

present in the glass database, as well as display the posterior samples ob-



CHAPTER 3. MODELS 49

tained from each approach.

3.2 Modelling compositional zeros

The compositional zeros present in the glass database can be considered as

either rounded zeros or essential zeros. As zeros in compositional data are

most often treated as rounded zeros, i.e. traces of a component below levels

of detection, the first approach to modelling the zeros detailed below treats

them as such. The second approach considers the zeros as being essential ze-

ros, i.e. as being truly absent from an item’s composition, and splits the data

up according to the presence or absence of the elements iron and potassium,

as described in Section 2.3.

3.2.1 Data augmentation approach

The easiest approach to handling zeros considered as rounded zeros is to add

a constant value which is below the limits of detection to all zero values (Neo-

cleous et al., 2011). However, as this introduces some artificial correlation

as noted by Palarea-Albaladejo et al. (2007), the approach taken here is to

augment all of the zero values during the MCMC procedure so that the same

value is not added to all the zeros. This is done by updating each of the

zeros using a univariate truncated normal distribution, where the mean and

variance of the distribution come from the current values of ξ, b and c gen-

erated from the MCMC. That is to say that for each iteration of the MCMC

sampler all zero values present in the glass database are updated with non-
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zero values below the limits of detection. From Bayesian hierarchical model

(3.1) it was assumed that

ztijk = θt + bti + ctij + εtijk,

bti
iid∼ Np(0,Ω

−1
t ), ctij

iid∼ Np(0,Ψ
−1), εtijk

iid∼ Np(0,Λ
−1).

With the subscripts t, i, j and k suppressed for ease of notation, let the

l-th element of z be denoted by zl. The square root ratio transformation

of zl =
√

wl

wD
, where the common divisor wD is the element oxygen. Then,

wl = 0 would suggest that the weight percentage for the l-th element is

below the detection limit of the measuring equipment. As SEM-EDX analysis

returns the weight percentages to two decimal places it will return zero values

for elements where the weight percentage is below 0.005, that is, when wl <

0.005. This implies that the non-zero values generated from the normal

distribution should be truncated over the range R =

(
0,

√
0.005
wD

)
. Then,

when wl = 0, the l-th element of zl is assumed to come from the univariate

normal distribution

zl ∼ N(µl,Λ
−1
l )I(zl ∈ R).

Conditioning on the remaining elements of z, denoted by z−l, with the sub-

script −l denoting all elements minus the l-th element, the univariate normal

distribution of the l-th element, given that it is a rounded zero is

zl | z−l ∼ N(µl + CT
l Λ−l(z−l − µ−l),Λ

−1
l − CT

l Λ−lCl)I(zl ∈ R), (3.13)

where µl = θl + bl + cl; Λ−1
l = Var(zl) and Cl = Cov(zl, z−l). This approach

treats each rounded zero zl as an additional parameter which is partially

observed given it is assumed below limits of detection, and samples from its
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full conditional distribution restricted to the set R. This allows for different

non-zero values to be generated for all zeros in the glass database, thus

reducing the artificial correlation induced by only adding the same constant

value to all zeros.

3.2.2 Posterior samples from data augmentation

The posterior samples shown here were obtained from the Bayesian hierar-

chical model using the data augmentation approach above and the MCMC

procedure detailed in Section 3.1.1 for the square root ratios. Due to aug-

menting the zeros present in the database at each iteration of the MCMC

sampler, the time taken to obtain the simulated model results was longer

than running the model without taking the presence of zeros into considera-

tion, and was approximately 20 hours. As with the earlier posterior samples

from the Bayesian hierarchical model with unaltered zeros, a burn-in period

of 10, 000 was used, and thinning of the Markov chain with every 200th draw

kept and the rest discarded. The acceptance rate for Metropolis-Hastings

move M-H 2 was 43%, and the acceptance rate for Metropolis-Hastings move

M-H 3 was 39%. Time series plots of the draws obtained for the sampled

fixed effect θt are shown in Figure 3.3 and appear to show improved conver-

gence, most so for bulbs (θ1), over the posterior samples obtained from the

Bayesian hierarchical model leaving the compositional zeros alone. This is

also reflected in the improved effective sample sizes for bulbs and headlamps

seen in Table 3.3. It is also seen in Figure 3.3 from the time series plots of

iron for bulbs (θ1) and headlamps (θ3) with the points no longer clustered

close to the zero boundary. This is also displayed in Figure 3.4 which shows
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scatterplots of the draws of θt from using data augmentation. From the first

column of plots in Figure 3.4 for iron the point mass is no longer clustered

close to zero for the use types bulb and headlamp.

Table 3.3: Effective sample size from using data augmentation for the square
root ratios for the mean vector θt. For θt, t = 1, . . . , 5 correspond
to use types: bulb, car window, headlamp, container and building
window.

Na Mg Al Si K Ca Fe

θ1 77.0 68.8 258.1 99.9 72.7 89.0 1000.0

θ2 1000.0 1000.0 1000.0 1000.0 859.2 1000.0 1000.0

θ3 722.56 886.9 723.7 735.3 300.2 564.6 1000.0

θ4 857.5 1000.0 905.8 1000.0 836.2 1000.0 906.5

θ5 1174.0 1000.0 836.1 1000.0 879.0 887.4 1000.0
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Figure 3.3: Trace plots of the mean θt using data augmentation for the square
root ratios. A burn-in period of 10, 000 was used, and thinning of
the Markov chain with every 200th draw stored.
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Table 3.4 displays the standard deviations from the variance-covariance ma-

trices corresponding to each of the random effects obtained from using data

augmentation. The standard deviations obtained are very similar, with some

slightly smaller, than those obtained from the Bayesian hierarchical model

with the compositional zeros left alone; see Table 3.2.

Table 3.4: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 from using data augmentation for the square root ratios.
For Ω−1

t , t = 1, . . . , 5 correspond to use types: bulb, car window,
headlamp, container and building window.

Na Mg Al Si K Ca Fe

Ω−1
1 0.95 0.92 0.28 0.64 1.17 1.32 0.07

Ω−1
2 0.08 0.18 0.27 0.31 0.32 0.26 0.43

Ω−1
3 0.20 0.85 0.47 0.48 0.67 0.74 0.09

Ω−1
4 0.15 0.51 0.16 0.41 0.37 0.34 0.22

Ω−1
5 0.11 0.25 0.31 0.29 0.29 0.25 0.32

Ψ−1 0.06 0.04 0.08 0.30 0.08 0.24 0.03

Λ−1 0.04 0.04 0.04 0.15 0.05 0.12 0.04

The next approach now treats zeros as being essential, meaning that an

element is absent from an item’s composition if it is zero. More specifically

it looks at whether the elements iron and potassium are present or absent

from an item’s composition.
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3.2.3 Composite model approach

This approach makes use of the splitting up of the data according to the pres-

ence or absence of the elements iron and potassium that was described as

part of the exploratory analysis of the data in Section 2.3. Based on the ex-

ploratory analysis in Section 2.3 this approach should satisfy the assumptions

of normality made by model (3.1) more so than the previous data augmenta-

tion approach. As the data augmentation approach of Section 3.2.1 updates

any zero values with non-zero values in the range R =

(
0,

√
0.005
wD

)
, it does

not necessarily solve the issue of having a large mass of zero values influenc-

ing the distribution of the data. This is due to the values being added to all

of the zero values still being extremely small, with the zero values not being

perturbed by much due to the detection limit restriction. In this alternative

approach the Bayesian hierarchical model (3.1) is specified separately for all

items of each of the four configurations Cz = m in Table 2.3, conditional on

their known use types Tz. This section demonstrates how these four separate

models relating to each of the four configurations can be collectively pulled

together to form a single model.

First denote the complete reference database as D = {zti, i = 1, . . . , It, t =

1, . . . , T}, where the number of items of each use type t, denoted by It are

under the control of the experimenter collecting the data. Then, if D rep-

resents the entire database, let Dm = {z ∈ D : Cz = m} be the subset of

D that contains all glass items with elemental configuration m. Therefore,

the distribution for a given glass item of z ∈ D is given by the hierarchical
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model (3.1) as

p(z|Tz = t, Cz = m, ξ) = p(z|Tz = t, Cz = m, ξm), (3.14)

where ξm denotes the collection of parameters associated with items with

elemental configuration m, and ξ = {ξm}M
m=1 is the collection of parameters

across all elemental configurations, i.e. over all M = 4 configurations. Hence,

if the item z has configuration Cz = m then the only parameters of interest

are those associated with the m-th configuration, i.e. ξm. To be more spe-

cific, the distribution in (3.14) is given by formulae (3.2) and (3.3), with ξ

replaced by ξm. The elemental configurations are treated as being indepen-

dent, but it may also be possible to link them in such a way that allows for

the different elemental configurations with some similarities between them to

borrow strength from one another. Future work involving an additional level

to the model hierarchy may be able to achieve this by including probabilistic

models for the configurations.

The probabilities associated with an item of use type t having the m-th

elemental configuration are then obtained. Let ϕt = (ϕt1, . . . , ϕtM) be an

unknown vector containing the configuration probabilities of an item z of

use type t. Then the probability, ϕtm, of the item z of use type t being of

elemental configuration m is given as

ϕtm = p(Cz = m|Tz = t, ϕ, ξ) = p(Cz = m|Tz = t, ϕt). (3.15)

The elemental configuration probabilities ϕ = {ϕt}T
t=1 are assumed to be a

priori independent of the model parameters ξ from hierarchical model (3.1),

with independent Dirichlet prior distributions:

ϕt|ξ ∼ Dir(αt1, . . . , αtM), t = 1, . . . , T, (3.16)
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where the α parameters are constants which indicate any prior knowledge

about the elemental configurations for each use type.

The distribution of a single glass item z ∈ D, given its use type Tz and the

parameters ξ and ϕ, is

p(z|Tz = t, ξ, ϕ) =
M∑

r=1

p(Cz = r|Tz = t, ξ, ϕ) p(z|Tz = t, Cz = r, ξ, ϕ)

=
M∑

r=1

p(Cz = r|Tz = t, ϕt) p(z|Tz = t, Cz = r, ξr) (3.17)

=
M∑

r=1

ϕtr p(z|Tz = t, Cz = r, ξr).

The distribution of the reference data D, given ξ and ϕ, and the use types

of all glass items, is

p(D|ξ, ϕ) =
T∏

t=1

It∏
i=1

{
M∑

r=1

ϕtr p(zti|Tzti
= t, Czti

= r, ξr)

}
. (3.18)

Since the observed data D is fixed the elemental configurations Czti
for all

items are known, which implies that the
∑

r in (3.18) contains only a term

corresponding to the observed configuration of each glass item zti. This is a

special case of a mixture model, but where upon inspection of the elemental

configuration of an item with transformed elemental composition z, the mix-

ture component to which z is associated with is immediately known. This

was also recognised by Stewart and Field (2011), see their formula (3.1). The

distribution of the reference database D in (3.18) can then be written as

p(D|ξ, ϕ) =
T∏

t=1

It∏
i=1

ϕtm p(zti|Tzti
= t, Czti

= m, ξm)

=

{
T∏

t=1

M∏
m=1

ϕNtm
tm

}
·
{

M∏
m=1

T∏
t=1

∏
i∈Etm

p(zti|Tzti
= t, Czti

= m, ξm)

}
,

(3.19)
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where Etm = {i : Tzti
= t, Czti

= m} is the collection of all items in D

which are of use type t that have elemental configuration m. The counts

from Table 2.3 that refer to the number of items in the database of use type

t and configuration m are then denoted by Ntm = #Etm.

As ξ and ϕ are assumed a priori independent, the above factorisation of

p(D|ξ, ϕ) in (3.19) also implies that ξ and ϕ are also a posteriori indepen-

dent. This leads to the configuration probabilities ϕt also having independent

Dirichlet posterior distributions:

ϕt|ξ,D ∼ Dir(αt1 +Nt1, . . . , αtM +NtM), t = 1, . . . , T. (3.20)

This is obtained by combining the first term on the right-hand side of (3.19)

with the prior distribution on the ϕt’s in (3.16).

Since ξ and ϕ are a posteriori independent a sample from their joint distri-

bution can be obtained from two independent steps: (i) samples of ϕ can

be obtained from the independent Dirichlet posterior distributions in (3.20)

and (ii) samples of the model parameters ξm, for each elemental configura-

tion m, can be obtained from the hierarchical model (3.1) using the MCMC

procedure detailed in Section 3.1.1.

The next section reports posterior draws from hierarchical model (3.1) for

all items with elemental configuration m = 2, i.e. iron absent and potassium

present, as that configuration has the most items associated with it in the

database, including items from each of the five use types. The posterior

draws obtained from items with elemental configurations m = 1, 3, 4 can be

found in Appendix C.
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3.2.4 Posterior samples for configuration m = 2 (Fe,

K)

The posterior samples shown are those from items with configuration m = 2

(Fe, K) from Table 2.3 for the square root ratios. A burn-in period of 10, 000

was used, and thinning of the Markov chain where every 200th draw from the

chain was kept and the rest discarded. As the posterior samples displayed

here where obtained from a subset of the glass database, i.e. all glass items

with iron absent and potassium present, they should not be directly compared

with the posterior samples shown in sections 3.1.2 and 3.2.2, which where

obtained using the entire database. However, due to the composite model

approach reducing the data dimension in some configurations and also not

having to update the compositional zeros with non-zero values below limits

of detection, less time is needed to obtain the results, with approximately 10

hours required across all four elemental configurations. Since each of the four

subsets of the data are independent, the posterior samples could be obtained

even quicker by running all four configurations in parallel, with the config-

uration associated with the most glass items, configuration m = 2, taking

approximately 6 hours. The acceptance rate for Metropolis-Hastings move

M-H 2 was 31%, and the acceptance rate for Metropolis-Hastings move M-H

3 was 54%. Time series plots of the posterior draws for the fixed effect θt

associated with the composite model for items with elemental configuration

m = 2 are shown in Figure 3.5. The time series plots indicate good conver-

gence for use types car window, headlamp, container and building window,

and for bulbs less so with the same reason mentioned above in Section 3.1.2

mostly accountable for this. Table 3.5 displays the effective sample sizes for
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configuration m = 2 and are, for the most part, greater than those obtained

from using data augmentation. Figure 3.6 shows scatterplots for the mean

θt and again shows clear separation between the use type categories. Also,

since all glass items with iron absent are not present in elemental configu-

ration m = 2 the point mass at zero seen in earlier plots is no longer an

issue.

Table 3.5: Effective sample size from the composite model for items with config-
uration m = 2 (Fe, K) for the square root ratios for the mean vector
θt. For θt, t = 1, . . . , 5 correspond to use types: bulb, car window,
headlamp, container and building window.

Na Mg Al Si K Ca

θ1 73.0 66.8 293.5 70.9 74.4 99.5

θ2 1000.0 1000.0 1057.9 1000.0 910.2 1000.0

θ3 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

θ4 1000.0 1000.0 1000.0 1000.0 1000.0 1173.74

θ5 1000.0 1146.5 1064.4 1000.0 1000.0 1000.0
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The standard deviations from the variance-covariance matrices correspond-

ing to each of the random effects for the composite model for items with

elemental configuration m = 2 are shown in Table 3.6. Comparing the frag-

ment level variability, Ψ−1, with the variability at measurement level, Λ−1,

little difference is observed between them. The variability at fragment level

is slightly greater than that at measurement level. The variability between

items is much greater than that found within items for the use types bulb and

headlamp, but less so for the other three use types. All of the results shown

here for the other three elemental configurations can be found in Appendix

C.

Table 3.6: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 obtained from the composite model for items with config-
uration m = 2 (Fe, K) for the square root ratios. For Ω−1

t , t = 1, . . . , 5
correspond to use types: bulb, car window, headlamp, container and
building window.

Na Mg Al Si K Ca

Ω−1
1 0.95 0.94 0.28 0.65 1.12 1.34

Ω−1
2 0.10 0.25 0.26 0.30 0.15 0.26

Ω−1
3 0.18 0.91 0.52 0.51 0.31 0.78

Ω−1
4 0.12 0.51 0.15 0.44 0.19 0.37

Ω−1
5 0.10 0.13 0.13 0.26 0.13 0.22

Ψ−1 0.07 0.05 0.09 0.30 0.11 0.25

Λ−1 0.04 0.03 0.04 0.15 0.06 0.11

The next section will look at posterior samples obtained using the log-ratios

instead of the square root of the compositional ratios, and will include some

necessary changes to how the Bayesian hierarchical model is implemented.
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3.3 Log-ratio transformation

A few changes have to be considered before applying the logarithm to the

compositional ratios. First, since it is not possible to obtain the logarithm of

zero, all compositional zeros present are replaced by constants that are below

the detection limits of the measuring equipment. Since SEM-EDX returns

the percentage weights of the elements rounded to two decimal places, any

traces of an element with a concentration below 0.005 will be returned as

zero. The easiest thing to do then is to add the constant 0.005 to all zero

values present in the glass database before applying the logarithm to the

ratios, where again oxygen is chosen to be the common divisor. Second,

since constants have been added to the zeros present, they are taken as

being rounded zeros and not essential zeros. This means that the constants

can be updated as part of the MCMC process using the data augmentation

approach, which should reduce any artificial correlation that may be induced

from adding the same constant to all zeros. It is also possible to use the

composite model approach but it would mean considering some zeros as being

essential and others as being rounded. For example, the four configurations

are due to observing the presence and absence of iron and potassium and so

they would be considered essential. However, in order to apply the logarithm

to the four separate subsets of the data obtained from the four configurations

any zeros present from any other elements would have to be replaced by

constants. This would mean they would be considered as rounded zeros, and

could either be replaced by constants or updated using data augmentation.

A combination of both of the compositional zero approaches can be done,

but from a philosophical point of view it may not make sense to treat the
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compositional zeros differently; however for the sake of comparison both the

composite model and data augmentation approaches will be used for the

log-ratios.

Here let ztijk denote the log-ratios, with the subscripts t, i, j and k denoting

the k-th measurement from the j-th fragment from the i-th item of use type

t. Each ztijk is then assumed, as in (3.1), to be

ztijk = θt + bti + ctij + εtijk,

bti
iid∼ Np(0,Ω

−1
t ), ctij

iid∼ Np(0,Ψ
−1), εtijk

iid∼ Np(0,Λ
−1).

(3.21)

The distribution of a glass item z is then given as in (3.2) and (3.3) with

prior distributions on the covariance matrices associated with the random

effects as in (3.5). However, for the square root transformed ratios the prior

placed on the fixed mean effect θt was a multivariate normal distribution

restricted to the positive orthant, as shown in (3.4). As the log-ratios are

negative this restriction on θt is removed with the prior on the fixed effects

θt now assumed to be independent multivariate normal distributions without

any restrictions:

θt
iid∼ Np(0,Φ

−1), t = 1, . . . , T. (3.22)

This means that Metropolis-Hastings move 1 (M-H 1) used for the square

root transformation, which was accepted with probability 1 or 0 depending

on whether the drawn candidate was in the positive orthant or not, is simply

replaced by a regular Gibbs sampling move, where draws of θt are made from

its full conditional distribution. The posterior draws shown in Section 3.3.1

for the log-ratios use Gibbs sampling and Metropolis-Hastings move 3 (M-H

3) detailed earlier, which was the joint move on both θt and bti. The only

change to this move for the log-ratios is in the δtl values used for the interval
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widths that govern the magnitude of the change from current to candidate

values, and were changed to reflect the influence of the logarithmic trans-

formation. Also, for the implementation of the data augmentation approach

to updating the compositional zeros, the only change is in the range R in

which the log-ratios are truncated over, with R =

(
− ∞, log 0.005

wD

)
. For

the composite model any compositional zeros for the chemical elements not

being observed as present or absent are assumed present with the constant

value of 0.005 added to all corresponding zeros.

3.3.1 Log-ratio data augmentation posterior samples

The posterior samples obtained for the log-ratios used the same burn-in pe-

riod of 10,000 draws, and also the same thinning with every 200th draw stored

as the previous posterior samples for the square root transformation. The

acceptance rate for Metropolis-Hastings move M-H 3 was 48%. Figure 3.7

displays the time series plots obtained from using the log-ratios, and clearly

shows poor convergence for some chemical elements across all use types. The

most obvious issues can be seen in the time series plots for iron across each

use type. This is due to, as was seen in Figure 2.2, the strong influence the

logarithmic transformation has over the large proportion of zeros present for

iron. Even when iron is present the influence of the logarithmic transforma-

tion remains strong, and is due to all concentrations of iron, when present,

being less than 1%. Very poor convergence can be seen for the elements

magnesium and calcium for bulbs (θ1). This is due to nine of the 26 bulbs

in the database containing no magnesium or calcium, and so the stronger in-

fluence of the logarithmic transformation over these small concentrations is
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reflected by the convergence issues. The same problem exists for magnesium

in headlamps (θ3) due to eight of the 16 headlamps containing no magne-

sium. The poor convergence issues for bulbs and headlamps, and for some

of the elements across all use types are reflected in the very small effective

sample sizes seen in Table 3.7. Figure 3.8 displays scatterplots of the draws

of θt obtained using the log-ratios, while Table 3.8 contains the standard

deviations obtained from the random effects covariance matrices.

Table 3.7: Effective sample size from the Bayesian hierarchical model using
data augmentation and log-ratios for the mean vector θt. For θt,
t = 1, . . . , 5 correspond to use types: bulb, car window, headlamp,
container and building window.

Na Mg Al Si K Ca Fe

θ1 23.8 4.1 36.5 20.2 65.0 2.6 2.7

θ2 1015.8 879.2 877.4 910.4 108.0 934.1 87.5

θ3 132.1 16.3 67.4 75.7 51.4 34.4 5.7

θ4 405.9 285.1 333.4 549.4 250.7 824.7 3.3

θ5 1037.8 1000.0 1047.0 1000.0 6.2 1000.0 23.2
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Table 3.8: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 from the Bayesian hierarchical model using data aug-
mentation and log-ratios. For Ω−1

t , t = 1, . . . , 5 correspond to use
types: bulb, car window, headlamp, container and building window.

Na Mg Al Si K Ca Fe

Ω−1
1 4.95 38.56 3.71 1.65 18.54 44.11 26.36

Ω−1
2 0.32 2.10 9.62 0.74 34.16 1.45 51.97

Ω−1
3 0.79 48.54 15.48 1.15 24.00 6.52 19.73

Ω−1
4 0.65 13.45 2.54 1.02 26.73 2.10 116.40

Ω−1
5 0.44 3.64 16.81 0.68 45.60 1.43 58.12

Ψ−1 0.31 0.46 1.26 0.74 2.20 1.40 1.48

Λ−1 0.19 1.18 1.31 0.37 2.06 0.68 3.08

The next section looks at the posterior samples obtained from the compos-

ite model using the log-ratio transformation for glass items with elemental

configuration m = 2.
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3.3.2 Log-ratio composite model posterior samples

The posterior samples shown here are for items with configuration m = 2

(Fe, K) using the log-ratio transformation. The results for the other three

configurations can be found in Appendix D. As with previous draws a burn-

in period of 10,000 was used, and thinning of the Markov chain where every

200th draw was stored and the rest discarded. The time taken to obtain the

draws across all four elemental configurations was approximately 10 hours.

The composite model approach used the same sampling scheme as that men-

tioned earlier for the log-ratio transformation. Figure 3.9 shows the time

series plots obtained for the fixed mean effect θt for all glass items with con-

figuration m = 2 when using the log-ratio transformation. Figure 3.9 clearly

displays issues with convergence for the use types bulb (θ1) and headlamp

(θ3). The posterior draws obtained for the other three configurations do not

suffer from convergence as poor as displayed in Figure 3.9, however they are

not without fault, as seen in Appendix D. The issues displayed in Figure

3.9 for bulbs and headlamps may well be down to configuration m = 2 con-

taining a mixture of both bulbs and headlamps that do and do not contain

concentrations of magnesium. This is seen from Table 2.2 containing the

original 10 configurations of items in the database. This may account for

the poor convergence associated with magnesium for these two use types,

with the spread of the distribution of magnesium when using the log-ratio

transformation making it difficult for the sampler to converge to a happy

medium for bulbs and headlamps with and without magnesium present. The

same issue is seen for calcium in bulbs with there being a split between bulbs

that do and do not contain calcium in configuration m = 2. These changes



CHAPTER 3. MODELS 73

in the levels of concentration of magnesium and calcium in bulbs may also

be the reason why the remaining elements also have convergence problems

but to a lesser extent. These convergence issues are not problematic for the

square root of the ratios as seen in Section 3.2.4 as the presence of zero or

small concentrations of elements such as magnesium and calcium has a much

greater influence on the distribution of the data for the log-ratios, as was

shown in Figure 2.2. This would mean that the spread or distribution of the

data for items of use types bulb and headlamp that do and do not contain

magnesium, for example, is much greater than that for the square root ratios.

Table 3.9 contains the effective sample sizes obtained from items with con-

figuration m = 2 using the log-ratio transformation. Figure 3.10 displays the

scatterplots corresponding to the posterior samples from Figure 3.9, while

Table 3.10 contains the standard deviations obtained from the random ef-

fects covariance matrices. It should be noted that implementing the data

augmentation approach to update the zero concentrations unaffected by the

configuration process does not help improve the issues with convergence.
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Table 3.9: Effective sample size from the composite model for items with con-
figuration m = 2 (Fe, K) using log-ratios for the mean vector θt. For
θt, t = 1, . . . , 5 correspond to use types: bulb, car window, headlamp,
container and building window.

Na Mg Al Si K Ca

θ1 17.8 5.0 50.4 7.2 33.9 5.2

θ2 799.5 347.6 500.9 651.3 1105.3 798.2

θ3 235.2 29.2 53.2 164.8 142.3 29.6

θ4 1000.0 716.2 869.3 845.2 838.1 800.9

θ5 1000.0 785.4 815.5 1000.0 844.3 1000.0

−
2.

1
−

1.
9

θ 1

−
1.

63
−

1.
61

θ 2

−
1.

70
−

1.
62

θ 3

−
1.

69
−

1.
66

θ 4
θ 5

Na

−
1.

66
−

1.
64

−
6.

5
−

5.
5

−
3.

20
−

3.
05

−
9

−
7

−
5

−
5.

0
−

4.
4

Mg

−
3.

16
−

3.
10

−
4.

1
−

3.
9

−
3.

7
−

5.
0

−
4.

7
−

5.
0

−
4.

0
−

3.
0

−
4.

25
−

4.
10

Al

−
5.

05
−

4.
90

−
4.

75

−
0.

56
−

0.
48

−
0.

38
−

0.
34

−
0.

30
−

0.
45

−
0.

30
−

0.
48

−
0.

40

Si

−
0.

43
−

0.
40

−
4.

0
−

3.
0

−
5.

6
−

5.
4

−
3.

7
−

3.
5

−
3.

3
−

5.
3

−
5.

0

K

−
6.

1
−

5.
8

−
6.

5
−

5.
5

−
4.

5
−

2.
16

−
2.

08
−

2.
6

−
2.

0
−

2.
20

−
2.

05

Ca

−
2.

22
−

2.
16

−
2.

10

Figure 3.9: Trace plots of the mean θt from the composite model using the
log-ratio transformation for configuration m = 2 (Fe, K). A burn-in
period of 10, 000 was used, and thinning of the Markov chain with
every 200th draw stored.



CHAPTER 3. MODELS 75

−
2.

1
−

1.
9

−
1.

7

N
a

−
9

−
7

−
5

−
3

M
g

−
5.

0
−

4.
0

−
3.

0

A
l

−
0.

5
−

0.
3

S
i

−6 −5 −4 −3 −2

−
6.

0
−

5.
0

−
4.

0
−

3.
0

Ca

K

−2.1 −1.9 −1.7

Na

−9 −7 −5 −3

Mg

−5.0 −4.0 −3.0

Al

−0.5 −0.4 −0.3 −0.2

Si

Figure 3.10: Scatterplots of draws from θt from the composite model using the
log-ratio transformation for items with configuration m = 2, i.e.
iron absent and potassium present. The different coloured points
correspond to the five use type categories: bulb, car window, head-
lamp, container and building window.



CHAPTER 3. MODELS 76

Table 3.10: Standard deviations (multiplied by 10) from covariance matrices
Ω−1

t , Ψ−1 and Λ−1 from the composite model using the log-ratio
transformation for configuration m = 2 (Fe, K). For Ω−1

t , t = 1, . . . , 5
correspond to use types: bulb, car window, headlamp, container and
building window.

Na Mg Al Si K Ca

Ω−1
1 4.96 29.53 3.75 1.68 14.09 32.99

Ω−1
2 0.31 3.09 4.73 0.64 3.67 1.22

Ω−1
3 0.68 29.64 15.46 1.22 2.45 7.03

Ω−1
4 0.48 11.02 2.18 1.11 4.46 2.38

Ω−1
5 0.36 1.07 3.07 0.56 5.38 1.05

Ψ−1 0.37 0.62 1.37 0.78 2.54 1.54

Λ−1 0.19 0.72 0.87 0.36 2.07 0.66

Various different Metropolis-Hastings moves not detailed in this thesis were

also implemented specifically for the log-ratio transformation in order to

see if the convergence problems could be alleviated, but little improvement

over the posterior draws shown was obtained. This issue, along with the

problem of having to manipulate any compositional zeros in order to apply

any logarithmic transformation, is why the square root of the compositional

zeros was chosen as the appropriate transformation for the glass database.

The next section will include model diagnostics in the form of checking for

convergence, and also include results obtained from simulated datasets using

the acquired posterior draws, for the square root ratio transformation.
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3.4 Model diagnostics

To formally check whether the MCMC samples have converged, the Gelman

and Rubin diagnostic R̂ (Gelman et al., 2004, Chapter 11, pages 296-297)

for monitoring MCMC convergence can be obtained. Using their notation,

R̂ is defined as

R̂ =

√
v̂ar+(ψ|y)

W
. (3.23)

The model parameter of interest, ψ, contains draws simulated from the model

for multiple chains with different initial starting values, i.e. ψij where i =

1, . . . , n is the number of simulated draws from the model, and j = 1, . . . , c

is the number of parallel chains used to test for convergence. From (3.23)

the marginal posterior variance, denoted by v̂ar+(ψ|y), can be estimated by

v̂ar+(ψ|y) =
n− 1

n
W +

1

n
B, (3.24)

where B denotes the between-chain variability, and W the within-chain vari-

ability, with both given as follows:

B =
n

c− 1

c∑
j=1

(ψ̄·j − ψ̄··)2, W =
1

c

c∑
j=1

s2
j , (3.25)

where ψ̄·j = 1
n

∑n
i=1 ψij, ψ̄·· = 1

c

∑c
j=1 ψ̄·j and s2

j = 1
n−1

∑n
i=1(ψij − ψ̄·j)2.

Formula (3.23) provides an estimate of the scale reduction in the distribution

of ψ for when the number of simulations n → ∞. A value of R̂ close to 1

suggests that the chains have converged to their target distributions, with

values below 1.1 considered acceptable. A value greater than 1.1 suggests

that the number of simulation draws n may need to be increased to reach

convergence, with perhaps a larger burn-in period also required.
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3.4.1 Results of model diagnostics

For both the data augmentation and composite model approaches, draws

were simulated from the Bayesian hierarchical model for c = 3 parallel chains,

with each chain beginning from different initial starting values for the model

parameters. The number of simulated draws for each was n = 1000 with

each chain having a burn-in period of 10, 000 and thinning where every 200th

draw was kept and the rest discarded. For both model approaches all R̂ values

obtained for each of the parameters were close to 1, with all of the values less

than 1.1, indicating convergence of the MCMC chains. To further inspect the

convergence of the models and the reliability of the posterior draws obtained,

data is simulated from the Bayesian hierarchical model using both the data

augmentation and composite model approaches.

3.4.2 Simulating data from the models

To simulate data from the Bayesian hierarchical model, posterior means of

each of the parameters were first computed from MCMC draws from the

model. Datasets were then generated from the model with the posterior

means from the parameters assumed to be the ‘true’ parameter values from

the model. Posterior samples are then obtained from the model using the

newly simulated datasets in order to check how well they can recover these

‘true’ parameter values.
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Simulated data using data augmentation

Twenty datasets were simulated, each containing the same total number of

glass items as the glass database. As the number of items of each use type

in the glass database do not reflect the prevalence of such use types in a

real world setting, the number of items of each use type in the simulated

datasets have been evenly distributed, with 64 glass items simulated for each

use type. The datasets were simulated from the Bayesian hierarchical model

using formulae (3.2) and (3.3), which were given as:

z|Tz = t, ξ ∼ NJKp(1JK ⊗ θt, Σt),

with Σt given by

Σt = (1JK1′JK)⊗ Ω−1
t + [IJ ⊗ (1K1′K)] ⊗Ψ−1 + IJK ⊗ Λ−1.

The known values of the parameters in ξ = {θ,Ω,Ψ,Λ} that were used to

simulate the datasets are from the posterior means of the draws obtained

from the Bayesian hierarchical model, with data augmentation, applied to

the real glass database. The simulated square root ratios z are then used to

obtain the simulated percentage weights of all of the glass items. Also, as

the data augmentation approach was used, there are no compositional zeros

found in any of the simulated datasets. The Bayesian hierarchical model was

then re-estimated on each of the 20 datasets to assess how well it recovers

the ‘true’ values used in the above formulae.

Figure 3.11 displays boxplots of the posterior mean draws of θt from the 20

simulated datasets. The red dots show the true values of θt used to simulate

the data, and for the most part these estimates have been recaptured well
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by the Bayesian hierarchical model. However, for the chemical element iron,

which was absent from 79% of the measurements in the glass database, the

model appears to overestimate the true value of θt used for that element, and

recovers a value that is approximately twice that used to obtain the simulated

datasets. A similar issue is seen for magnesium in headlamps, where again the

model has overestimated the true value. Ten of the 16 headlamps in the glass

database did not contain any magnesium. This may be due to there being less

information for these elements, particularly iron, leading to the overestimates

by the model. Figures 3.12-3.16 contain boxplots of the posterior mean

draws for the between-item random effect covariance matrices Ω−1
t , and as

with θt, recover the true values well for the elements with relatively high

concentrations that are common to each use type. Similarly, in Figure 3.17 for

the within-item covariance matrix Ψ−1, and Figure 3.18 for the measurement

error covariance matrix Λ−1, issues lie with underestimating the relationship

between iron and the other chemical elements.
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Figure 3.11: Boxplots containing the mean posterior draws of θt from 20 simu-
lated datasets from data augmentation for the square root ratios.
The red dots indicate the true values of θt used to simulate the
datasets.
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Figure 3.12: Boxplots containing the mean posterior draws of Ω−1
t for t = 1

(bulb) from 20 simulated datasets from data augmentation for the
square root ratios. The red dots indicate the true values of Ω−1

t

used to simulate the datasets.
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Figure 3.13: Boxplots containing the mean posterior draws of Ω−1
t for t = 2 (car

window) from 20 simulated datasets from data augmentation for
the square root ratios. The red dots indicate the true values of Ω−1

t

used to simulate the datasets.
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Figure 3.14: Boxplots containing the mean posterior draws of Ω−1
t for t = 3

(headlamp) from 20 simulated datasets from data augmentation
for the square root ratios. The red dots indicate the true values of
Ω−1

t used to simulate the datasets.
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Figure 3.15: Boxplots containing the mean posterior draws of Ω−1
t for t = 4

(container) from 20 simulated datasets from data augmentation for
the square root ratios. The red dots indicate the true values of Ω−1
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used to simulate the datasets.
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Figure 3.17: Boxplots containing the mean posterior draws of Ψ−1 from 20 sim-
ulated datasets from data augmentation for the square root ratios.
The red dots indicate the true values of Ψ−1 used to simulate the
datasets.
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Figure 3.18: Boxplots containing the mean posterior draws of Λ−1 from 20 sim-
ulated datasets from data augmentation for the square root ratios.
The red dots indicate the true values of Λ−1 used to simulate the
datasets.
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Simulated data using the composite model

Twenty datasets, each containing 64 items from each of the five use types,

for a total of 320 glass items per dataset, were simulated using the composite

model approach. As the composite model takes the elemental configuration

of a glass item into account, the configuration of each simulated glass item

has to be determined. Each glass item is assigned to one of the four elemental

configurations using a multinomial Mu(1, ϕt) distribution. The probabilities,

ϕt come from formula (3.20):

ϕt|ξ,D ∼ Dir(αt1 +Nt1, . . . , αtM +NtM), t = 1, . . . , T.

The ϕt’s are generated from a Dirchlet distribution with parameter values

αtm = 0.1, and the Ntm’s given by the number of items of use type t and

configuration m in the glass database, as shown in Table 2.3. Once the

configuration of a glass item has been allocated, it is simulated from the

Bayesian hierarchical model as follows:

z|Tz = t, ξm ∼ NJKp(1JK ⊗ θt, Σt),

with Σt given by

Σt = (1JK1′JK)⊗ Ω−1
t + [IJ ⊗ (1K1′K)] ⊗Ψ−1 + IJK ⊗ Λ−1.

Values for estimates of the parameters associated with the m-th configura-

tion, ξm = {θ,Ω,Ψ,Λ}, were obtained from the mean posterior draws from

the Bayesian hierarchical model using the composite model approach applied

to the glass database.

The results from simulating data shown here are those for glass items with

elemental configuration m = 2 (Fe, K). The results for glass items with ele-
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mental configurations m = 1, 3, 4 can be found in Appendix E. Figure 3.19

displays boxplots obtained from the posterior mean draws of θt from the 20

simulated datasets for glass items with elemental configuration m = 2. As

the composite model examines the presence and absence of the elements iron

and potassium the potential issue of overestimating iron that was seen for

the data augmentation approach is removed, with the model able to recover

the true values of θt used to simulate the datasets. However, the same issue

of overestimating magnesium for headlamps that was observed for data aug-

mentation still persists. This may be due to 10 headlamps in the database

not containing magnesium, while six do contain magnesium, while for all

simulated items magnesium is present, with only iron and potassium deemed

present or absent. The simulated results for the between-item random effect

covariance matrices for items with configuration m = 2 can be seen in figures

3.20-3.24. For the most part, the model is able to recover the true estimates

used for the Ωt’s, with a couple of exceptions. Due to nine out of the 26 bulbs

in the glass database not containing any magnesium, the covariances, as seen

in Figure 3.20, are underestimated, with one overestimated, by the model.

A similar problem is seen in Figure 3.22 for magnesium in headlamps. With

the odd exception, the true estimates used to obtain the simulated data have

been recovered at the within-item and measurement error levels, as shown

in Figures 3.25 and 3.26, for covariance matrices Ψ−1 and Λ−1, respectively.

The composite model appears to be able to recover the true estimates better

than the data augmentation approach, but a potential problem can arise de-

pending on whether the glass items are, or are not, simulated for a particular

configuration for specific use types. This is due to draws being made from

prior distributions if there is no data available for a use type or configuration.
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This can be seen in Appendix E.
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Figure 3.19: Boxplots containing the mean posterior draws of θt from 20 simu-
lated datasets for configuration m = 2 (Fe, K) for the square root
ratios. The red dots indicate the true values of θt used to simulate
the datasets.
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Figure 3.22: Boxplots containing the mean posterior draws of Ω−1
t for t = 3

(headlamp) from 20 simulated datasets for configuration m = 2
(Fe, K) for the square root ratios. The red dots indicate the true
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Figure 3.23: Boxplots containing the mean posterior draws of Ω−1
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(container) from 20 simulated datasets for configuration m = 2
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Figure 3.24: Boxplots containing the mean posterior draws of Ω−1
t for t = 5

(building window) from 20 simulated datasets for configuration m =
2 (Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure 3.25: Boxplots containing the mean posterior draws of Ψ−1 from 20 sim-
ulated datasets for configuration m = 2 (Fe, K) for the square root
ratios. The red dots indicate the true values of Ψ−1 used to simulate
the datasets.
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Figure 3.26: Boxplots containing the mean posterior draws of Λ−1 from 20 sim-
ulated datasets for configuration m = 2 (Fe, K) for the square root
ratios. The red dots indicate the true values of Λ−1 used to simulate
the datasets.

The next chapter will use the models and MCMC draws obtained from them

to classify glass items into different use type categories.



Chapter 4

Glass classification

This chapter will use hierarchical model (3.1) and the two methods of han-

dling zeros detailed in Chapter 3 to classify glass items into use type cate-

gories. Denote by y the transformed elemental composition of a newly ob-

served glass item, with its unknown use type denoted by Ty, it is of interest

to be able to correctly classify the new item to its use type. This can be done

using the posterior distribution, p(Ty|y, D), of the use type Ty of the newly

observed item y, given the reference database D and the newly obtained

measurements from y. Let the elemental configuration of y be Cy = m,

which is known if y is conditioned upon. Then, using Bayes Theorem,

p(Ty = t|y, D) = p(Ty = t|y, Cy = m,D)

=
p(Ty = t|Cy = m,D) p(y|Ty = t, Cy = m,D)∑T

s=1 p(Ty = s|Cy = m,D) p(y|Ty = s, Cy = m,D)

∝ p(Ty = t|Cy = m,D) p(y|Ty = t, Cy = m,D). (4.1)

99
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Next, expressions for the two terms on the right-hand side of (4.1) are derived.

Beginning with the first quantity and using again Bayes’ Theorem, one has

p(Ty = t|Cy = m,D) =
p(Ty = t|D) p(Cy = m|Ty = t,D)∑T

s=1 p(Ty = s|D) p(Cy = m|Ty = s,D)

∝ p(Ty = t|D) p(Cy = m|Ty = t,D). (4.2)

On its own, the reference database D is not informative about the use type

Ty of a newly observed glass item y, since the number of glass items of each

use type in the reference data do no reflect the prevalence of such use types as

forensic samples in a real world setting. Therefore, p(Ty = t|D) = p(Ty = t)

and (4.2) becomes

p(Ty = t|Cy = m,D) ∝ p(Ty = t) p(Cy = m|Ty = t,D). (4.3)

As mentioned above, the prior distribution p(Ty = t) associated with each use

type should be indicative of real life forensic samples, and so this information

should be reflected in the prior knowledge. If no prior information about the

prevalence of use types is known then the prior probabilities p(Ty = t) can

be set to be equal to one another, i.e. a discrete uniform distribution where

p(Ty = t) = 1/T, t = 1, . . . , T . The second term on the right-hand side of

(4.3) can be computed as follows:

p(Cy = m|Ty = t,D) =

∫
p(Cy = m|Ty = t, ϕt, D) p(ϕt|Ty = t,D) dϕt

=

∫
p(Cy = m|Ty = t, ϕt) p(ϕt|D) dϕt

=

∫
ϕtm p(ϕt|D) dϕt

= Eϕt|D[ϕtm]

=
αtm +Ntm∑M
r=1(αtr +Ntr)

, (4.4)
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where ϕtm = p(Cy = m|Ty = t, ϕt) as defined in (3.15), and by the posterior

Dirichlet distribution of ϕt in (3.20). Substituting (4.4) into (4.3) yields the

posterior distribution of the use type Ty conditional only on the reference

database D and the elemental configuration Cy, but without conditioning on

the actual new glass item with transformed elemental composition y:

p(Ty = t|Cy = m,D) ∝ p(Ty = t)
αtm +Ntm∑M
r=1(αtr +Ntr)

. (4.5)

The values obtained for (4.5) with p(Ty = t) = 1/T , αtm = 0.1 for all t and

m, and the Ntm’s given in Table 2.3, are given in Table 4.1. The relative

frequencies of use types in the reference data being unaccounted for in (4.5)

for reasons mentioned earlier is reflected in Table 4.1. For example, in Table

4.1 the probability of the use type headlamp given configuration 2 is 0.256,

but if the relative frequency of headlamps in the reference data was used

then this would be significantly reduced. Also, the choice of α in (4.5) does

not seem to matter much, with the classification results in Section 4.1.1 the

same for values of α between 0.1 and 0.5.

The second term in (4.1) is the posterior predictive distribution of the newly

observed item with transformed elemental composition y given its use type

and elemental configuration as well as the reference data, and is written as

p(y|Ty = t, Cy = m,D) =

=

∫
p(y|Ty = t, Cy = m, ξm, D) p(ξm|Ty = t, Cy = m,D) dξm

=

∫
p(y|Ty = t, Cy = m, ξm) p(ξm|Dm) dξm

= Eξm|Dm [p(y|Ty = t, Cy = m, ξm)], (4.6)

where Eξm|Dm denotes the expectation with respect to the posterior distribu-

tion of ξm. Hierarchical model (3.1) gives the density p(y|Ty = t, Cy = m, ξm)
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in (4.6) for elemental configuration m. That is, for a newly observed glass

item y of use type t and elemental configuration m consisting of J̃ fragments

each with K̃ repeated measurements, then the distribution of y|Ty = t, ξm is

as given by formulae (3.2) and (3.3), with J replaced by J̃ and K by K̃:

y|Ty = t, ξm ∼ NJ̃K̃p(1J̃K̃
⊗ θt,Σt), (4.7)

Σt = (1J̃K̃1′
J̃K̃

)⊗ Ω−1
t +

[
IJ̃ ⊗ (1K̃1′

K̃
)

]
⊗Ψ−1 + IJ̃K̃

⊗ Λ−1.

Plugging (4.5) and (4.6) into (4.1) gives the use type probability for a newly

observed glass item y:

p(Ty = t|y, D) ∝ p(Ty = t)
αtm +Ntm∑M
r=1(αtr +Ntr)

Eξm|Dm [p(y|Ty = t, Cy = m, ξm)].

(4.8)

The expectation term in (4.8) is estimated by taking the average of the

densities p(y|Ty = t, Cy = m, ξm) with the ξm’s given by the MCMC sample,

as detailed in Section 3.1.1.

Table 4.1: Use type probabilities p(Ty = t|Cy = m, D), with αtm = 0.1 for all t
and m and p(Ty = t) = 1/T .

Glass type Cy = m
1 2 3 4

bulb 0.008 0.283 0.014 0.047
car window 0.516 0.126 0.432 0.239
headlamp 0.013 0.256 0.022 0.144
container 0.321 0.180 0.005 0.270
building window 0.142 0.155 0.527 0.300

The use type probability of a newly observed item given in (4.8) is for when

the elemental configuration of an item is considered as in the composite model
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approach of Section 3.2.3. For the data augmentation approach of Section

3.2.1 the use type probability of a future item y is given as

p(Ty = t|y, D) ∝ p(Ty = t) p(y|Ty = t,D). (4.9)

The posterior predictive distribution p(y|Ty = t,D) conditional on only the

use type and reference data is

p(y|Ty = t,D) =

∫
p(y|Ty = t, ξ,D) p(ξ|Ty = t,D) dξ

=

∫
p(y|Ty = t, ξ) p(ξ|D) dξ

= Eξ|D[p(y|Ty = t, ξ)]. (4.10)

This leads to the use type probability of an item y under the data augmen-

tation approach being

p(Ty = t|y, D) ∝ p(Ty = t)Eξ|D[p(y|Ty = t, ξ)], (4.11)

where the distribution of y|Ty = t, ξ is as in (4.7) with ξ replacing ξm.

4.1 Classification simulation study

In order to assess how well the models perform at classifying glass items into

use type categories, a simulation study was carried out. Each glass item was

classified into one of five use type categories (bulb, car window, headlamp,

container or building window). The probabilities associated with classifying

a set of fragments from the same item were estimated using expression (4.8)

for the composite model approach, and estimated using (4.11) for the data

augmentation approach. Each glass item is classified as the use type with
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the highest probability. The classification results for each of the model ap-

proaches will also be compared with results obtained from one of the leading

classification methods - support vector machines (SVM) (Cortes and Vap-

nik, 1995). Using the svm function as part of the e1071 package in R (R

Development Core Team, 2011), two separate results from using SVM were

obtained: SVM.sub and SVM.full. SVM.sub splits the data into four differ-

ent subsets by observing the presence or absence of the elements iron and

potassium, as seen in Table 2.3, in the same way as the composite model

approach. All glass items within each subset are then classified before bring-

ing all items back together to obtain the overall classification results from

the database. SVM.full is more akin to the data augmentation approach in

that the elemental configurations were not taken into account, but instead

of updating any zero values present as is the case with data augmentation,

SVM.full uses the square root ratios with all zeros unchanged for each glass

item in the database. The results for the SVM approaches use the vector

means of each glass item, i.e. the mean across fragments and repeated mea-

surements. The tune.svm function was used to tune the hyperparameters,

with the polynomial kernel giving the best classification results for the two

SVM approaches.

Five-fold cross-validation is used as part of the simulation study, where the

reference data D was randomly split into five parts, each containing 64 glass

items. One of the five parts is then selected to be the test dataset consisting

of unobserved glass items y. The remaining four parts are then collated to

form the training dataset consisting of reference glass items z, from which

the model parameters are estimated. This process is repeated five times with
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each of the five parts of D being the test dataset in order to classify all 320

glass items in the reference data.

4.1.1 Classification results

Tables 4.2 and 4.3 report the results of classifying all 320 glass items in the

reference data into five use type categories for the composite model and data

augmentation approaches, respectively. The respective results for the SVM

approaches SVM.sub and SVM.full can be found in Tables 4.4 and 4.5. Of

the four approaches the composite model is able to correctly classify the most

glass items with a misclassification rate of 20.6%, with the data augmentation

approach having the second best outcome with a misclassification rate of

21.9%. SVM.sub and SVM.full report misclassification rates of 22.8% and

22.5%, respectively. The misclassification rates for the composite model and

data augmentation approaches reflect good performance in the classification

of bulbs, headlamps and containers, and poorer performance when classifying

car and building windows. In contrast, both SVM approaches seem to be

better at classifying building windows, but fall short for the other four use

types. For each approach, misclassification of a window type is most often

to the other window type. This is due to both types of windows having very

similar elemental compositions, thus making it very difficult to distinguish

between them based on their elemental composition alone. Zadora (2009)

reports improved classification rates for car and building windows when, in

addition to the elemental composition, the refractive index before and after

annealing is used.
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Table 4.2: Composite model: classification of each glass item into one of five use
type categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 25 0 1 0 1 27

car window 1 74 0 4 29 108

headlamp 0 1 15 1 1 18

container 0 2 0 72 6 80

building window 0 17 0 2 68 87

Total 26 94 16 79 105 320
(96.2%) (78.7%) (93.8%) (91.1%) (64.8%)

Table 4.3: Data augmentation: classification of each glass item into one of five
use type categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 26 0 1 1 0 28

car window 0 75 0 2 33 110

headlamp 0 1 13 2 1 17

container 0 1 1 71 6 79

building window 0 17 1 3 65 86

Total 26 94 16 79 105 320
(100.0%) (79.8%) (81.3%) (89.9%) (61.9%)
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Table 4.4: SVM.sub: classification of each glass item into one of five use type
categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 23 0 1 0 0 24

car window 0 69 1 7 26 103

headlamp 0 0 10 1 0 11

container 2 3 4 69 3 81

building window 1 22 0 2 76 101

Total 26 94 16 79 105 320
(88.5%) (73.4%) (62.5%) (87.3%) (72.4%)

Table 4.5: SVM.full: classification of each glass item into one of five use type
categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 23 0 1 0 1 25

car window 0 61 1 3 22 87

headlamp 2 0 12 0 0 14

container 1 2 1 71 1 76

building window 0 31 1 5 81 118

Total 26 94 16 79 105 320
(88.5%) (64.9%) (75.0%) (89.9%) (77.1%)
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Tables 4.6 and 4.7 display the expected number of items, according to the

predictive distributions (4.8) and (4.11), for the composite model and data

augmentation approaches. The expected counts were obtained by taking the

probability associated with each use type for each item and summing them

together for all items of that use type. For example, for two bulbs each

given 0.9 probability of being bulbs and 0.1 probability of being headlamps,

the expected counts obtained would then be 1.8 bulbs and 0.2 headlamps.

With the exception of bulbs, the expected number of glass items correctly

classified are all closer to the actual number of items of each use type in the

database for the composite model. This is due to only one of the bulbs in the

reference data having elemental configuration m = 4; see the second bulb in

Figure 4.1. The expected counts for both SVM approaches are much smaller,

indicating greater uncertainty in the classification of glass items using this

approach; see Tables 4.8 and 4.9.
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Table 4.6: Composite model: expected counts of each glass item into one of five
use type categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 24.39 0.02 1.24 0.40 0.53 26.58

car window 0.51 63.93 0.00 3.96 29.13 97.53

headlamp 0.62 1.01 14.39 1.29 1.06 18.37

container 0.47 4.07 0.37 69.80 6.07 80.78

building window 0.02 24.97 0.00 3.55 68.21 96.75

Total 26 94 16 79 105 320

Table 4.7: Data augmentation: expected counts of each glass item into one of
five use type categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 25.05 0.00 1.33 0.49 0.33 27.20

car window 0.00 63.21 0.13 3.26 40.07 106.67

headlamp 0.93 0.61 12.09 2.74 1.72 18.09

container 0.02 3.44 1.55 68.05 6.02 79.08

building window 0.00 26.74 0.89 4.46 56.86 88.95

Total 26 94 16 79 105 320
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Table 4.8: SVM.sub: expected counts of each glass item into one of five use type
categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 17.77 1.36 1.52 1.89 1.98 24.52

car window 1.68 42.04 1.81 16.90 35.55 97.98

headlamp 2.99 2.05 5.98 3.72 2.97 17.71

container 1.64 12.01 5.60 45.51 11.83 76.59

building window 1.92 36.54 1.09 10.98 52.67 103.20

Total 26 94 16 79 105 320

Table 4.9: SVM.full: expected counts of each glass item into one of five use type
categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 19.31 1.03 0.89 1.16 1.28 23.67

car window 1.26 40.66 2.75 13.38 37.08 95.13

headlamp 2.42 2.12 7.02 2.92 2.66 17.14

container 1.64 8.99 4.48 49.28 11.17 75.56

building window 1.38 41.20 0.86 12.26 52.80 108.50

Total 26 94 16 79 105 320
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Tables 4.10 and 4.11 display the expected probabilities for the composite

model and data augmentation approaches, respectively. The expected prob-

abilities were obtained by taking an average of the five probabilities associ-

ated with the five use types across all items of the same use type. They give

an indication of how likely a glass item of use type bulb, say, is on average

classified as a bulb. For example, for two bulbs, if one had probabilities 0.85

and 0.15 of being a bulb or headlamp, and the other had probabilities 0.90

and 0.10 for the same use types; the expected probabilities from those two

bulbs associated with use types bulb and headlamp would be 0.875 and 0.125,

respectively. Again, with the exception of bulbs, the composite model out-

performs the data augmentation approach, with both greatly outperforming

both SVM approaches; see Tables 4.12 and 4.13. Figures 4.1 and 4.2 display

the two largest probabilities associated with each individual glass item for

the composite model and data augmentation approaches, respectively. Both

approaches show good separation between the two largest probabilities for

glass items of use types bulb, headlamp and container, with more uncertainty

surrounding the classification of the two window types. The performance of

both approaches is generally similar, with the composite model slightly out-

performing the data augmentation approach; however, the biggest difference

between the two approaches can be seen from the uncertainty surround-

ing the classification of building windows, with better performance seen in

favour of the composite model. Figures 4.3 and 4.4 display the results for

the SVM approaches with both figures emphasising the much greater levels

of uncertainty associated with these approaches, especially when it comes to

classifying car and building windows.
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Table 4.10: Composite model: expected probability of each glass item into one of
five use type categories. The values in parentheses are the standard
deviations.

Classification
Glass type

bulb car window headlamp container building window Total

bulb
0.94 0.00 0.08 0.01 0.01 1.04

(0.21) (0.00) (0.25) (0.04) (0.05)

car window
0.02 0.68 0.00 0.05 0.28 1.03

(0.10) (0.29) (0.00) (0.19) (0.33)

headlamp
0.02 0.01 0.90 0.02 0.01 0.96

(0.09) (0.10) (0.26) (0.10) (0.08)

container
0.02 0.04 0.02 0.88 0.06 1.02

(0.09) (0.13) (0.09) (0.27) (0.18)

building window
0.00 0.27 0.00 0.04 0.65 0.96

(0.00) (0.27) (0.00) (0.15) (0.37)

Total 1.00 1.00 1.00 1.00 1.01 5.01

Table 4.11: Data augmentation: expected probability of each glass item into
one of five use type categories. The values in parentheses are the
standard deviations.

Classification
Glass type

bulb car window headlamp container building window Total

bulb
0.96 0.00 0.08 0.01 0.00 1.05

(0.09) (0.00) (0.23) (0.06) (0.02)

car window
0.00 0.67 0.01 0.04 0.38 1.10

(0.00) (0.26) (0.02) (0.13) (0.26)

headlamp
0.04 0.01 0.76 0.03 0.02 0.86

(0.09) (0.06) (0.33) (0.09) (0.10)

container
0.00 0.04 0.10 0.86 0.06 1.06

(0.00) (0.08) (0.19) (0.24) (0.16)

building window
0.00 0.28 0.06 0.06 0.54 0.94

(0.00) (0.23) (0.20) (0.13) (0.28)

Total 1.00 1.00 1.01 1.00 1.00 5.01
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Table 4.12: SVM.sub: expected probability of each glass item into one of five
use type categories. The values in parentheses are the standard
deviations.

Classification
Glass type

bulb car window headlamp container building window Total

bulb
0.68 0.01 0.10 0.02 0.02 0.83

(0.29) (0.01) (0.09) (0.02) (0.01)

car window
0.06 0.45 0.11 0.21 0.34 1.17

(0.09) (0.18) (0.14) (0.13) (0.17)

headlamp
0.11 0.02 0.37 0.05 0.03 0.58

(0.09) (0.02) (0.33) (0.04) (0.02)

container
0.06 0.13 0.35 0.58 0.11 1.23

(0.12) (0.12) (0.29) (0.21) (0.13)

building window
0.07 0.39 0.07 0.14 0.50 1.17

(0.13) (0.17) (0.09) (0.11) (0.17)

Total 0.98 1.00 1.00 1.00 1.00 4.98

Table 4.13: SVM.full: expected probability of each glass item into one of five
use type categories. The values in parentheses are the standard
deviations.

Classification
Glass type

bulb car window headlamp container building window Total

bulb
0.74 0.01 0.06 0.01 0.01 0.83

(0.27) (0.00) (0.09) (0.00) (0.02)

car window
0.05 0.43 0.17 0.17 0.35 1.17

(0.07) (0.14) (0.28) (0.11) (0.14)

headlamp
0.09 0.02 0.44 0.04 0.03 0.62

(0.12) (0.01) (0.36) (0.02) (0.01)

container
0.06 0.10 0.28 0.62 0.11 1.17

(0.10) (0.12) (0.26) (0.22) (0.08)

building window
0.05 0.44 0.05 0.16 0.50 1.20

(0.10) (0.13) (0.10) (0.16) (0.15)

Total 0.99 1.00 1.00 1.00 1.00 4.99
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Glass type
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Configuration

1 2 3 4

bu
lb

 
 P

os
te

rio
r 

pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ca
r 

w
in

do
w

 
 P

os
te

rio
r 

pr
ob

ab
ili

ty

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

he
ad

la
m

p 
 P

os
te

rio
r 

pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

co
nt

ai
ne

r 
 P

os
te

rio
r 

pr
ob

ab
ili

ty

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item

bu
ild

in
g 

w
in

do
w

 
 P

os
te

rio
r 

pr
ob

ab
ili

ty

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.1: Composite model: Posterior probabilities for the classification of each
glass item. The two largest posterior probabilities are displayed for
each item.
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Figure 4.2: Data augmentation: Posterior probabilities for the classification of
each glass item. The two largest posterior probabilities are displayed
for each item.
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Figure 4.3: SVM.sub: Posterior probabilities for the classification of each glass
item. The two largest posterior probabilities are displayed for each
item.
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Figure 4.4: SVM.full: Posterior probabilities for the classification of each glass
item. The two largest posterior probabilities are displayed for each
item.
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4.2 Classification performance measures

To measure the classification performance of the two different models and

SVM approaches, a number of performance measures can be calculated. Each

approach will be compared using four different performance measures. Three

of the measures are detailed in Agresti (1990), whose notation is adopted.

The classification measures τ and U in sections 4.2.1 and 4.2.2 are measures

of association and examine the proportional reduction in prediction error.

In this case both measures would be examining how much the predicted

use types deviate from the true use types. The classification measure κ in

Section 4.2.3 is a measure of the strength of agreement, e.g. between the

predicted and true use types. Both measures of association and the measure

of agreement are examined as it is possible to have strong association without

having strong agreement. The final classification measure in Section 4.2.4 is

the Brier score and is the only measure of the four to use the actual prediction

probabilities obtained from the classification procedure, and measures the

strength of those predictions. For a given contingency table, such as Table

4.2, let πij denote the probability that a newly observed glass item of true use

type j is classified as being of use type i; π+j =
∑

i πij and πi+ =
∑

j πij be

the marginal probabilities obtained from summing the probabilities across

the rows and columns, respectively. Then, the performance measures are

given as follows:
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4.2.1 Goodman and Kruskal’s tau

Goodman and Kruskal’s tau (Agresti, 1990, p. 24) is a measure of the reduc-

tion in the expected conditional variability in comparison to the marginal

variability. Goodman and Kruskal’s tau is

τ =

∑
i

∑
j π

2
ij/πi+ −

∑
j π

2
+j

1−∑
j π

2
+j

, (4.12)

and ranges between 0 and 1. A value of τ = 1 implies that the expected

conditional variation is equal to 0, which occurs when the first term in the

numerator of (4.12) is equal to 1; see (Agresti, 1990, p. 24) for details. This

happens when the joint distribution probabilities on the main diagonal of

the contingency table are equal to the corresponding marginal probabilities,

i.e. πii = πi+ = π+i for all i = j, thus indicating perfect classification per-

formance. A value of τ = 0 is equivalent to the rows and columns being

independent, indicating poor performance.

4.2.2 Theil’s U

Theil’s U (Agresti, 1990, p. 25) provides an alternative measure of variation

to that of Goodman and Kruskal’s tau and is given as

U = −
∑

i

∑
j πij log(πij/πi+π+j)∑

j π+j log π+j

,

where much like the values of τ , values of U close to 1 indicate good perfor-

mance, and values close to 0 indicate poor performance.
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4.2.3 Cohen’s kappa

Cohen’s kappa (Agresti, 1990, p. 366) is a measure of agreement that takes

into account any agreement that can occur by chance. Cohen’s kappa is given

as

κ =

∑
πii −

∑
πi+π+i

1−∑
πi+π+i

=
Πo − Πe

1− Πe

,

where Πo =
∑
πii is the probability of agreement and Πe =

∑
πi+π+i is the

probability of agreement by chance. A value of κ = 0 is equivalent to that

of agreement by chance, whereas perfect agreement would have a value of

κ = 1.

4.2.4 Brier score

The Brier score (Brier, 1950) is the average of the squared differences between

the probabilities associated with the classification of glass items into use types

and those glass items’ true use types, which are denoted by binary indicators.

For example, a glass item classified into two use types, t = 1, 2, with t = 1

the true use type, may have classification probabilities 0.75 and 0.25 for t = 1

and t = 2, respectively. The true use type would then be indicated by 1 for

t = 1 and 0 for t = 2; taking the squared differences would then result in

a Brier score for this glass item of 0.125. For multiple glass items the Brier

score is given by

BS =
1

I

I∑
i=1

T∑
t=1

(πti − oti)
2,

where I =
∑

t It is the total number of items being classified; πti is the

probability that the i-th item is of use type t; and oti indicates the actual
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use type of the i-th item, i.e. oti = 1 if item i is of use type t, and oti = 0 if

the i-th item is not of use type t. The Brier score ranges from 0 to 1 with

a value of BS = 0 indicating perfect predictions. An assessment of some

classification methods can be found in Hand (2012).

4.2.5 Classification performance results

Table 4.14 reports the results from the four performance measures, as well as

the misclassification rate of each approach. The composite model performs

best for each measure except for that of Theil’s U where the data augmen-

tation approach is slightly better. Table 4.14 also includes the classification

performance for the Bayesian hierarchical model without the implementa-

tion of data augmentation. This approach does not perform as well as the

composite model and data augmentation approaches, however it outperforms

SVM for each of the performance measures minus the misclassification rate

of SVM.full.

From the results of classification in Section 4.1.1 and classification perfor-

mance in Section 4.2.5 the composite model outperforms the data augmen-

tation approach, which in turn, outperforms both the SVM approaches. The

classification of glass items of use types bulb, headlamp and container dis-

played good performance, but due to having very similar elemental com-

positions, the classification of car and building windows resulted in poorer

performance. This leads to what appears to be a large misclassification rate

of approximately 20%. However, although the windows are tricky to cor-

rectly classify, the composite model appears to give classification results that
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are the best among all methods applied to this glass database.

Table 4.14: Classification performance measures for each classification approach.

Approach Classification performance
τ U κ BS % mis.

Composite model 0.560 0.591 0.721 0.319 20.6%
Data augmentation 0.551 0.608 0.706 0.330 21.9%
BHM without DA 0.538 0.588 0.693 0.338 22.8%

SVM.sub 0.515 0.534 0.688 0.447 22.8%
SVM.full 0.536 0.565 0.693 0.431 22.5%

The next chapter will use the hierarchical model to compute the evidential

value of glass fragments under two competing propositions about their source.



Chapter 5

Evidence evaluation

The hierarchical model given in Section 3.1 will now be used to obtain the

evidential value of glass fragments under two complementary propositions.

As a brief reminder from Chapter 1, the evidential value, V , of the evidence

E is defined as

V =
Pr(E|Hp, I)

Pr(E|Hd, I)
,

i.e. the value for Hp and against Hd, on evidence E, where I denotes addi-

tional background information related to the case in question.

In terms of glass fragments as forensic evidence, the evidence E is obtained

from two separate sources. Let x denote measurements obtained from a

sample of glass fragments that were collected from the crime scene. Here x

is referred to as the control sample or source evidence upon which similar

evidence obtained from a suspect is compared. Let y denote measurements

obtained from glass fragments obtained from a suspect. Here y is referred

to as the recovered sample or receptor object. As the source of the frag-

123
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ments obtained from a suspect is less clear, or uncertain, it is assumed that

all fragments obtained from a suspect’s person come from the same glass

item, which in some cases may not be true. Both sets of measurements on

fragments x and y are what forms the evidence E = (x,y) under inspection.

The prosecution proposition Hp would be that the fragments y obtained from

the suspect come from the same glass item as the control fragments x. The

defence proposition Hd would be that the fragments obtained from the sus-

pect originated from some source not found at the crime scene, i.e. y and x

are from two different glass items. The value V of the evidence can then be

written as

V =
p(x,y|Hp, I)

p(x,y|Hd, I)
. (5.1)

Typically (5.1) is often referred to as the likelihood ratio in forensics liter-

ature. Here, with a Bayesian approach being used to find V , the densities

in (5.1) are found by integrating out the model parameters to obtain the

marginal probabilities of the evidence x and y under both propositions, thus

strictly speaking, (5.1) is a Bayes factor. For details on Bayes factors see

Kass and Raftery (1995).

The value, V , of the evidence in (5.1) will now be derived with the elemental

configurations of x and y in mind. Upon inspection of both the fragments

of x and y, if their elemental configurations do not match, i.e. Cx 6= Cy, then

it is assumed that the fragments that form x and y come from two different

glass items. This would give a value of V = 0. It should be noted that,

although this assumption might appear restrictive, in practice it only affects

a small proportion of glass items in the database. From the database only two

of the 320 glass items have at least one fragment with a different elemental
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configuration than the others. From this point onwards the derivation of V

assumes that the elemental configurations of x and y are equal, i.e. Cx =

Cy = C = m. The use types of both sets of fragments also have to be

accounted for. Since the set of fragments x were collected from the crime

scene the source of their origin is known, therefore their use type Tx = t is

known. Under the prosecution proposition Hp the use types of both sets of

fragments are assumed equal, i.e. Ty = Tx = t. However, under Hd there

is uncertainty over the origin of the fragments y obtained from the suspect,

therefore their use type is also uncertain. Replacing the conditioning on I

in (5.1) with the known use type Tx of x, the known elemental configuration

C, and the reference data set D used to assess the evidence under the two

competing propositions, the value V of the evidence is

V =
p(x,y|Tx = t, C = m,D,Hp)

p(x,y|Tx = t, C = m,D,Hd)

=

∫
p(x,y|Tx = t, C = m, ξm, D,Hp) p(ξm|Tx = t, C = m,D,Hp) dξm∫
p(x,y|Tx = t, C = m, ξm, D,Hd) p(ξm|Tx = t, C = m,D,Hd) dξm

.

(5.2)

For the numerator in (5.2) the first term in the integrand can be written as

p(x,y|Tx = t, C = m, ξm, D,Hp) =
T∑

s=1

p(x,y|Tx = t, Ty = s, C = m, ξm, D,Hp)

· p(Ty = s|Tx = t, C = m, ξm, D,Hp)

= p(x,y|Tx = t, Ty = t, C = m, ξm, D)

= p(x,y|T(x,y) = t, C = m, ξm).

This is so as the prosecution proposition Hp implies that the use type of the

recovered fragments y is the same as that of the control fragments x, i.e.

Ty = Tx = t. The notation T(x,y) is used to denote that under Hp both sets
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of fragments are believed to be from the same glass item, and therefore to

the same use type. The numerator of (5.2) can then be written as

∫
p(x,y|T(x,y) = t, C = m, ξm) p(ξm|Dm) dξm =

Eξm|Dm

[
p(x,y|T(x,y) = t, C = m, ξm)

]
. (5.3)

Under Hd both sets of fragments x and y are believed to come from different

glass items and are therefore considered independent. The first term in the

integrand in the denominator of (5.2) can then be written as

p(x,y|Tx = t, C = m, ξm, D,Hd) =

p(x|Tx = t, C = m, ξm, D,Hd) p(y|Tx = t, C = m, ξm, D,Hd)

= p(x|Tx = t, C = m, ξm) p(y|C = m, ξm, D). (5.4)

Under Hd the use type Ty of the recovered fragments y is uncertain and so

the second term in (5.4) can be written as

p(y|C = m, ξm, D) =
T∑

s=1

p(y|Ty = s, C = m, ξm, D) p(Ty = s|C = m, ξm, D)

=
T∑

s=1

p(y|Ty = s, C = m, ξm) p(Ty = s|C = m,D),

where p(Ty = s|C = m,D) is given in (4.2). The denominator of (5.2) then

becomes

∫
p(x|Tx = t, C = m, ξm)

[
T∑

s=1

p(y|Ty = s, C = m, ξm) p(Ty = s|C = m,D)

]
p(ξm|Dm) dξm =

=
T∑

s=1

p(Ty = s|C = m,D)

Eξm|Dm [p(x|Tx = t, C = m, ξm) p(y|Ty = s, C = m, ξm)]. (5.5)
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Substituting (5.3) and (5.5) into (5.2) gives the value of the evidence V as

follows:

V =
Eξm|Dm

[
p(x,y|T(x,y) = t, C = m, ξm)

]
T∑

s=1

p(Ty = s|C = m,D)Eξm|Dm [p(x|Tx = t, C = m, ξm) p(y|Ty = s, C = m, ξm)]

,

(5.6)

where p(Ty = s|C = m,D) is given in (4.2). The density in the numer-

ator of (5.6) is a NJ̃K̃p(1J̃K̃
⊗ θt,Σt) distribution, where J̃ = J̃x + J̃y is

the total number of fragments obtained across both the recovered and con-

trol fragments, K̃ is the number of repeated measurements taken on each

fragment, and the covariance matrix Σt is given in (4.7). The densities

p(x|Tx = t, C = m, ξm) for x and p(y|Ty = s, C = m, ξm) for y in the

denominator are NJ̃xK̃p(1J̃xK̃
⊗ θt,Σtx) and NJ̃yK̃p(1J̃yK̃

⊗ θt,Σty) distribu-

tions, respectively, where Σtx and Σty are given by formula (4.7), with J̃

replaced by J̃x and J̃y.

If the elemental configuration of the glass fragments is not taken into consid-

eration, as is the case with the data augmentation approach, then the value

of the evidence V is given as

V =
Eξ|D

[
p(x,y|T(x,y) = t, ξ)

]
T∑

s=1

p(Ty = s)Eξ|D[p(x|Tx = t, ξ) p(y|Ty = s, ξ)]

. (5.7)

See Appendix F for details. The next section will now look at different

performance measures used to validate the evidential values V obtained with

this method.
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5.1 Evidence evaluation performance

measures

The ability to obtain an evidential value V from any type of forensic evidence

is not enough for a method to be incorporated into real-life casework. The

most important reason for this is due to the method producing values of V

in strong favour of the wrong proposition, which is referred to as strongly

misleading evidence (Royall, 2000). This can lead to the wrong decisions

being made in cases, with the worst outcome seeing an innocent person being

convicted of a crime they did not commit. In order to interpret the value

of V obtained and to ensure methods produce valid values that do not lead

to strongly misleading evidence, validation procedures are implemented that

analyse the values of V obtained from simulation studies where the ‘true’

outcomes are known.

5.1.1 Measuring performance

To measure the performance of a method, simulation studies can be un-

dertaken to determine whether the method produces values associated with

strongly misleading evidence. To do this, values of V are obtained from the

method using what is known as a validation database consisting of forensic

data that may be used as a source of evidence in real-life casework. Perfor-

mance can then be assessed in terms of the percentage of false positive (FP)

and false negative (FN) answers produced from the simulation study. A false

positive occurs when two pieces of evidence are from different sources, but
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if V > v for some critical value v, then they are evaluated as coming from

the same source. A false negative occurs when two pieces of evidence from

the same source are evaluated as originating from different sources, i.e. when

V ≤ v. Typically FP and FN errors are produced for a critical value of v = 1,

however the critical value v for whether a FP or FN answer is obtained may

be varied to compare and contrast error rates. To obtain these error rates,

each object in the validation database has a ground-truth label corresponding

to its origin. These labels allow for the error rates to be determined when ob-

jects are compared as part of simulation studies assessing the performance of

a method at computing the evidential value V . For example, if the evidence

for a particular case involved measurements from glass fragments, then the

method would have to have been validated using a validation database con-

sisting of glass fragments of the same type of measurements. In this case the

value of V would be obtained under two competing propositions: the pros-

ecution proposition Hp and the defence proposition Hd. The ground-truth

labels associated with fragments being compared would then indicate which

of the propositions is true, thus signalling whether the method has produced

an error resulting in misleading evidence.

The V values obtained from a simulation can then be examined to check the

percentage of errors produced and also to see whether the method produces

values of V associated with strongly misleading evidence. The easiest way to

look at the values of V associated with when the prosecution Hp is true and

for when Hd is true would be to display them using histograms. For example,

if the evidence under investigation is on glass fragments as mentioned above

then the prosecution proposition Hp being true would mean that the control
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and recovered fragments come from the same glass item, while Hd being true

would mean that they come from different items. Figure 5.1 shows the V

values produced from an artificial simulation study. The histogram labelled

Hp true displays the V values obtained for when Hp is true, thus producing

a FN error if log10(V ) ≤ log10(v); the histogram labelled Hd true shows the

V values obtained for when Hd is true, thus producing a FP error when

log10(V ) > log10(v). By changing the critical value v the percentage of FP

and FN errors will change, with increasing values of v resulting in less FP

errors but more FN errors, and vice versa for decreasing values of v. For

example, for a threshold of log10(v) = 0 the percentage of false positive and

false negative errors in Figure 5.1 are 11% and 9%, respectively. Any value

in Figure 5.1 that produces an error means that the method has produced

a value of V that has resulted in misleading evidence. Strongly misleading

evidence in favour of the wrong proposition is represented by large values

of the absolute value of log10(V ). However, when providing support for the

correct proposition these absolute values are expected to be large. The ideal

situation would result in Hp true values of V being as large as possible, and

Hd true values of V being as small as possible. What is referred to as the

discriminating power of a method can also be seen from the histograms,

with the ideal outcome of large V values for when Hp is true and small

values for when Hd is true resulting in there being little overlap between the

two histograms, thus indicating that the method is good at discriminating

between both propositions. Histograms like those in Figure 5.1 are a simple

way of visualising the performance of a method, however there are also better

ways of visually checking the discriminating power.
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Figure 5.1: Histograms of log10(V ) values for when Hp is true and for when Hd

is true. The dashed lines correspond to the value of log10(V ) for the
critical value v = 1.
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Discriminating power

The discriminating power is a measure of how well a method can differentiate

between the prosecution proposition Hp and the defence proposition Hd. The

discriminating power of a method is linked to the false positive and false

negative error rates the method produces for varying critical values v, with

v = 1 the most typical critical value used as it equates to the probabilities

of the evidence E under the two propositions being equal, i.e. Pr(E|Hp, I) =

Pr(E|Hd, I). The discriminating power of a given set of V values is defined,

see Zadora et al. (2014), by:

1. The discriminating power of two separate simulated sets of V values V1

and V2 is equal if for all critical values v in V1, there is a critical value

v′ in V2 such that the FP and FN error rates are equal; and vice versa

for all critical values in V2.

2. A set of V values V1 is said to have better discriminating power than

a different set V2 for a specific critical value v if for that critical value

in V1 there is a critical value v′ in V2 that produces higher FP and FN

error rates.

A better visual representation of the discriminating power of a method than

histograms is Tippett plots, which display on the x-axis the log10(V ) of all

of the V values obtained from a simulation against the proportion of cases

where the method produces misleading evidence for when Hp and Hd are

true, respectively. They show the percentage of FP and FN errors produced

for the default critical value of v = 1, i.e. log10(v) = 0. Figure 5.2 shows
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the Tippett plots produced from the same set of simulated V values as those

from the histograms in Figure 5.1.

The Tippett plots display two different curves: a curve for when Hp is true

and one for when Hd is true. The curves show the proportion of times

satisfying V > v plotted against log10(v) for when Hp and Hd are true,

respectively. Under Hd the required outcome is log10(V ) ≤ v, and so the

curve for when Hd is true shows the FP percentage error rate for a given

critical value v. For example, Figure 5.2 shows a FP error rate of 11% for

the critical value v = 1, i.e. log10(v) = 0. Under Hp the desired outcome is

log10(V ) > v, and so the FN error rate is obtained by subtracting from 100%

the proportion at log10(V ) > v given by the curve for when Hp is true. For

example, the FN error rate given in Figure 5.2 for the critical value v = 1 is

100%− 91% = 9%.

Misleading evidence can also be observed from Tippett plots. For when the

proposition Hp is true if the proportion of log10(V ) > 0 is smaller than 100%

then these values indicate misleading evidence, i.e. values of V which are in

favour of the wrong proposition, Hd, being true. Any log10(V ) values that are

much smaller than zero then indicate strongly misleading evidence in support

of the wrong proposition. When Hd is true the proportion of values greater

than zero indicate misleading evidence in favour of Hp, with values much

greater than zero providing strong support for the wrong proposition. The

discriminating power can also be observed from Tippett plots by looking at

how well the curves are vertically separated, with larger separation between

the curves illustrating greater discriminating power.
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Figure 5.2: Tippett plots for a simulated set of V values. The solid curve is for
when the proposition Hp is true, while the dashed curve is for when
Hd is true.

As the discriminating power of a method is strongly linked to the FP and

FN error rates an illustration of the discriminating power can be shown in a

detection error trade-off (DET) plot, like the one shown in Figure 5.3. The

DET curve is linked to the Tippett plots in such a way that it is essentially

a plot of all of the FP and FN error rates observed from Tippett plots for

varying critical values v. Figure 5.3 displays the DET curve from the same

set of simulated V values with a circle indicating the same FP and FN rates

previously mentioned, i.e. 11% and 9%, respectively. The closer the curve
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gets to the bottom left-hand corner of the plot the stronger the discriminating

power of the V values as this demonstrates small FP and FN error rates. A

measure that can be observed from the DET curve arises when both the FP

and FN error rates are equal. This gives what is known as the equal error

rate (EER) (Brümmer and du Preez, 2006) and occurs for a specific critical

value v, which may not be when v = 1.
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Figure 5.3: DET curve with a circle indicating the FP and FN rates for a critical
value of v = 1.

Although the discriminating power of a set of V values is helpful in deter-

mining whether a method is capable of differentiating between Hp and Hd,
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by itself it can also be misleading about the actual size of the V values. This

is shown in Figure 5.4 which displays Tippett plots and DET curves for two

separate sets of simulated V values. From the definition of discriminating

power and from the interpretation of both Tippett plots and DET curves

the second set of V values displayed in the bottom row of Figure 5.4 have

better discriminating power than the first set of values shown in the top

row of Figure 5.4. This is observed from the DET curve being closer to the

bottom left-hand corner of the plot, and also from the greater separation

between the curves displayed in the Tippett plots. However, if the actual V

values themselves are examined it can be seen from the Tippett plots that

the second set of V values does not provide as much support in favour of

the proposition Hp being true with a larger proportion of the V values in

support of the wrong proposition Hd, and hence the possibility of strongly

misleading evidence in support of Hd is much more likely to occur for this set

of V values. Therefore, in order for a method to be used in real-life casework

it is not enough to look at the discriminating power alone, but to look at it

in conjuction with other measures of accuracy.
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Figure 5.4: DET curves (left) and Tippett plots (right) displayed for two differ-
ent sets of simulated V values. In the Tippett plots the solid curves
are for when Hp is true, while the dashed curves are for when Hd is
true.
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Accuracy: discriminating power and calibration

To further inspect whether a method provides suitable V values that could

be used in real-life casework, the accuracy of those values needs to be exam-

ined. The accuracy of a set of V values is a combination of how good the

discriminating power of the V values is, along with how well calibrated they

are. Calibration is a measure of the reliability of a set of V values obtained

from a method. It relates the probability associated with an outcome with

how often such an outcome occurs. If a method associates P probability to

an outcome and that is equal to p, the proportion of times in which that

outcome occurs, then the method has good calibration. For a method to be

well calibrated the probabilities have to be between p + ε and p − ε, where

ε provides the error allowed for the method to be well calibrated. A well

calibrated set of V values could have either weak or strong discriminating

power. For example, if the probabilities P are not close to 0 or 1 then the

discriminating power will be weak, but if the probabilities are close to 0 or

1 then the discriminating power will be strong. For more details on the

calibration of V values see Ramos and Gonzalez-Rodriguez (2013).

To assess the accuracy of the probabilities P obtained from a method, strictly

proper scoring rules (SPSR) (Gneiting and Raftery, 2007) can be used, which

are functions of the probability assigned to an unknown outcome, as well as

the actual value of that outcome. For example, the logarithmic SPSR of an

event with two possible outcomes, such as propositions Hp and Hd, is defined

as

− log2(P ) if Hp is true;

− log2(1− P ) if Hd is true,
(5.8)
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where P is the probability associated with Hp being true. The SPSR assigns

penalties linked to how much weight is given to the probabilities P when Hp

is true. For example, if Hp was true and the weight of the probability P

assigned to it was small, then a high penalty would be assigned to P by the

SPSR, and conversely a low penalty would be assigned to a large value of P ,

which can be seen from Figure 5.5.
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Figure 5.5: Plot of SPSR (5.8) for when Hp is true (solid line) and for when Hd

is true (dashed line).

The SPSR in (5.8) is a measure of a single instance of Hp being true, but in

order to assess the overall performance of say, a simulated set of V values, an

overall average of all of the SPSR scores across the values of V would need
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to be obtained. This is given by

L = − 1

Np

∑
i:Hp is true

log2(Pi)− 1

Nd

∑
j:Hd is true

log2(1− Pj), (5.9)

where the number of times Hp is true is denoted by Np and the probabilities

by Pi; and Nd and Pj the corresponding number of times and probabilities

for when Hd is true. The overall SPSR score given by (5.9) can be interpreted

as a global measure of the accuracy of the method under examination. It is

similar to the Brier score (Brier, 1950) in that it is a measure of how much

the probabilities deviate from the result of the true outcome. For example,

if Hp is true it would have a ground-truth label indicating such, and if the

probability assigned to it was P = 1, then this would result in a perfect match

leading to no penalty. However, if Hp is true and the probability designated

to it was P = 0, this would result in the maximum penalty as the method

has assigned zero probability to an outcome which happened to occur.

Incorporating prior probabilities

The probabilities P used in obtaining SPSR scores are posterior probabilities

that have been assigned to different outcomes by a method or experimenter.

This means that in order to obtain the SPSR scores in a forensic setting

for a set of simulated V values, the prior probabilities for Hp and Hd need

to be taken into consideration. This is due to the prior probabilities being

incorporated into the posterior odds as follows:

Pr(Hp|E, I)
Pr(Hd|E, I) =

Pr(E|Hp, I)

Pr(E|Hd, I)
× Pr(Hp|I)

Pr(Hd|I)
= V × O(Hp|I), (5.10)
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where O(Hp|I) = Pr(Hp|I)

Pr(Hd|I)
is the prior odds in favour of the prosecution propo-

sition Hp. A measure of the accuracy is then obtained across different prior

odds values as the forensic examiner is only interested in acquiring the eviden-

tial value of the evidence V and has no input into the prior probabilities set

for Hp and Hd. However, for a method to be suitable for real-life casework its

accuracy is measured over a wide range of possible prior probabilities. This

is done using a measure known as empirical cross-entropy (ECE), which is

the same as the SPSR in (5.9), but with the prior probabilities incorporated

to obtain a weighted average. This is given, see Brümmer (2010), as

ECE =− Pr(Hp|I)
Np

∑
i:Hp is true

log2 Pr(Hp|Ei, I)

− Pr(Hd|I)
Nd

∑
j:Hd is true

log2 Pr(Hd|Ej, I), (5.11)

where Ei denotes the evidence used to obtain the Np simulated V values for

when Hp is true, and Ej the evidence used to obtain the Nd simulated V

values for when Hd is true. As a validation set contains the evidential values

V of the evidence, the ECE in (5.11) can be expressed in terms of V and the

prior odds O(Hp|I):

ECE =
Pr(Hp|I)

Np

∑
i:Hp is true

log2

(
1 +

1

Vi ×O(Hp|I)
)

+
Pr(Hd|I)

Nd

∑
j:Hd is true

log2(1 + Vj ×O(Hp|I)). (5.12)

Figure 5.6 displays an example of an ECE plot for a set of simulated V

values where the ECE is calculated across a wide range of prior odds values,

as seen on the x-axis. The solid curve displays the ECE from (5.12) and

illustrates the accuracy of a set of simulated V values. The dashed curve

represents perfect calibration of the validation set of V values, hence showing
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the curve for a set of optimised V values (Brümmer, 2010). The dotted curve

is referred to as the neutral reference and shows the performance that would

be obtained from a set of V values that are all equal to one. This is the

opposite of the calibrated curve in that it displays what would be considered

the poorest performance, thus the solid curve should be lower than it for all

prior odds values. The closer the solid and dashed curves are to one another

the better the calibration of the V values. The comparison package in R (R

Development Core Team, 2011) by David Lucy includes functions that can

produce ECE plots.
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Figure 5.6: ECE plot of a set of simulated V values. The solid curve represents
the accuracy; the dashed curve the calibrated accuracy; and the
dotted curve the neutral reference.
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5.2 Evidence evaluation simulation study

The performance of the hierarchical model using both the composite model

and data augmentation approaches in evaluating glass fragments as evidence

was assessed by performing a simulation study. As with glass classification,

five-fold cross-validation was used to obtain a simulated set of V values and to

estimate the percentage of false positive and false negative answers. The five

test sets used were randomly allocated 64 glass items each. The percentage

of false negative answers was obtained by randomly choosing two fragments

from each glass item to be the source evidence, x, which are then compared

with the remaining two fragments from the same glass item as the recovered

evidence, y. This gives 64 comparisons per test set for a total of Np =

320 same-source comparisons. The percentage of false positive answers was

obtained by taking all 12 measurements from each glass item in a test set to

be the source evidence, x, and all 12 measurements from another glass item

in the test set as the recovered evidence, y. This gives a total of
(
64
2

)
= 2016

item pairs per test set, thus giving a total of Nd = 5×(
64
2

)
= 10, 080 different-

source comparisons. As many more different-source comparisons were made,

the uncertainty surrounding the false negative rates is greater than that for

the false positive rates. The value of the evidence V is computed using

formulae (5.6) and (5.7) for the composite model and data augmentation

approaches, respectively.

Due to the way the data is separated into different subsets in the composite

model through identifying the presence/absence of the chemical elements iron

and potassium, two sets of fragments are assumed to have not originated
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from the same glass item if their elemental configurations do not match,

i.e. Cx 6= Cy, returning V = 0. However, setting V = 0 can be seen as

providing too much support in favour of the defence proposition Hd. It also

causes problems in computing the ECE, as seen from (5.12). In order to

restrict potentially overwhelming support in favour of one proposition over

the other, a threshold, vT, can be placed upon the values of V obtained from

the simulation study. The bound is given, see Royall (2000), by

Pr(V ≥ vT|Hd) ≤ 1

vT

. (5.13)

This bounds the probability of wrong support in favour of the prosecution

proposition Hp being true, when in fact the defence proposition Hd is true,

by the reciprocal of the threshold vT. Thresholds have been used to aid

the reporting of the evidential value V of evidence by using different scales.

The quantitative value of V was interpreted on a verbal scale introduced by

Evett et al. (2000) and is displayed in Table 5.1; see also Chapter 3, page

107 of Aitken and Lucy (2004). Table 5.2 shows the scale introduced by

the Swedish National Laboratory of Forensic Science (SKL) which assigns

positive or negative values to the value of V based upon the range of values

in which it lies; see Nordgaard et al. (2012) for details.

Table 5.1: Verbal interpretation of the value of the evidence V in support of Hp

against Hd (Evett et al., 2000).

1 < V ≤ 10 Limited evidence to support
10 < V ≤ 100 Moderate evidence to support
100 < V ≤ 1000 Moderately strong evidence to support
1000 < V ≤ 10000 Strong evidence to support
10000 < V Very strong evidence to support
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Table 5.2: The Swedish National Laboratory of Forensic Science (SKL) scale for
interpreting the evidential value V (Nordgaard et al., 2012).

+4: 106 ≤ V
+3: 6000 ≤ V < 106

+2: 100 ≤ V < 6000
+1: 6 ≤ V < 100

0: 1/6 < V < 6
-1: 1/100 < V ≤ 1/6
-2: 1/6000 < V ≤ 1/100
-3: 1/106 < V ≤ 1/6000
-4: V ≤ 1/106

5.2.1 Evidence evaluation simulation results

Histograms of the simulated sets of V values from the composite model and

data augmentation approaches can be seen in figures 5.7 and 5.8, respectively.

The false negative and false positive error rates from each are given in Table

5.3 for v = 1. These results are an improvement on previous publications

using a similar glass database; see Neocleous et al. (2011). Table 5.3 also in-

cludes the error rates obtained from the Bayesian hierarchical model without

data augmentation being implemented, with slightly higher false negative

and false positive rates being obtained.

The two types of errors obtained have different levels of seriousness associated

with them in terms of forensics. More emphasis is placed on reducing the

false positive error rate as it is believed to be worse to wrongly imprison an

innocent person than it is to let someone who is guilty go free. Therefore,

if two sets of fragments are incorrectly evaluated as having originated from

the same glass item, then this one piece of evidence may contribute to the



CHAPTER 5. EVIDENCE EVALUATION 146

Table 5.3: Percentage of false negative (FN) and false positive (FP) answers
produced from the simulation study for v = 1.

Approach
Error rate
FN FP

Composite model 4.4% 1.4%
Data augmentation 4.4% 1.5%
BHM without DA 5.0% 1.6%

conviction of a suspect who is innocent. By varying the critical value v

corresponding to the error rates, a different set of false negative and false

positive percentage error rates can be obtained, and are displayed in receiver

operating characteristic (ROC) curves in figures 5.9 and 5.10. In the ROC

curves the true positive (TP) rate (TP rate = 1−FN rate) is plotted against

the false positive rate for varying values of v. An ideal outcome produces an

area under the curve (AUC) value of 1, with the ROC curve very steep with

zero false positive rate and a true positive rate of 1. Here the AUC is 0.99

for both approaches with the curves very steep in the region of false positive

rates close to zero. To improve upon the false positive rates of 1.4% and 1.5%

obtained for a critical value of v = 1 would come at the cost of an increased

false negative rate, with false positive rates smaller than 1% resulting in

false negative rates of around 10%. An equal error rate (EER) of 2.8% was

obtained for the composite model for a critical value of v = 0.007, while

the same EER was found for a critical value of v = 0.001 for the Bayesian

hierarchical model using data augmentation. With importance placed on

reducing the amount of false positive errors produced, both model approaches

are able to maintain false positive rates smaller than 3% for critical values
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much smaller than 1.

By placing the threshold vT from (5.13) upon the reported V values we can

restrict potentially wrong support in favour of the wrong proposition. Figures

5.11 and 5.12 display Tippett plots, and figures 5.13 and 5.14 DET curves

for four different thresholds vT placed upon the simulated V values. These

thresholds had no affect on the FP and FN error rates obtained in Table

5.3, but from the Tippett plots it can be seen that lowering the threshold vT

reduces the amount of favour given to either proposition, and thus reduces

wrong support whenever misleading evidence is produced. From the Tippett

plots it appears that the V values associated with the data augmentation

approach have slightly greater discriminating power with larger values seen

in support of the prosecution proposition Hp, and similar values for when

Hd is true. However, as will be seen from the ECE plots in figures 5.15 and

5.16 they are not as well calibrated as the values obtained from the composite

model. From the DET curves, for a given FN error rate, the composite model

has lower FP error rate than the data augmentation approach for FP errors

between 0% and 2%, and also a lower FN error rate for FP errors greater

than 4%. Again, as was the case for the ROC curves in figures 5.9 and 5.10,

it can also be seen from the DET curves that reducing the FP error rate

through increasing the critical value v, comes at the cost of increasing the

FN error rate.
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Figure 5.7: Histograms of log10(V ) values for when Hp is true and for when
Hd is true obtained from the composite model. The dashed lines
correspond to the value of log10(V ) for the critical value v = 1.
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Figure 5.8: Histograms of log10(V ) values for when Hp is true and for when Hd is
true obtained from data augmentation. The dashed lines correspond
to the value of log10(V ) for the critical value v = 1.
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Figure 5.9: ROC curve for different values of v obtained from the composite
model.
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Figure 5.10: ROC curve for different values of v obtained from data augmenta-
tion.
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Figure 5.11: Tippett plots obtained from the simulation study with different
thresholds vT on V from the composite model. The solid curves
are for when Hp is true, while the dashed curves are for when Hd

is true.
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Figure 5.12: Tippett plots obtained from the simulation study with different
thresholds vT on V from data augmentation. The solid curves are
for when Hp is true, while the dashed curves are for when Hd is
true.
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Figure 5.13: DET curves from the simulation study with different thresholds vT

on V from the composite model. The circles indicate the FP and
FN rates for a critical value of v = 1.
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Figure 5.14: DET curves from the simulation study with different thresholds
vT on V from data augmentation. The circles indicate the FP and
FN rates for a critical value of v = 1.
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Figures 5.15 and 5.16 are ECE plots obtained from the simulated V values

from the composite model and data augmentation approaches, respectively,

for four different thresholds vT on V . The calibration of the values obtained

from each approach are very good for prior odds O(Hp|I) ≤ 1 but deteriorate

for increasing prior odds values in favour of the prosecution proposition Hp,

i.e. as O(Hp|I) tends towards 100 (log10O(Hp|I) = 2). The composite model

appears to have better calibrated values than those of the data augmenta-

tion approach with there being less separation between the solid and dashed

curves, especially for low prior odds values. The deterioration in the ECE is

improved by reducing the threshold vT placed upon the V values. However,

for large prior odds values in favour of Hp both models do not perform as

well as the neutral reference curve, with the composite model showing better

improvement than the data augmentation approach. This may lead to po-

tential reservations about the models, but for prior odds values not largely in

favour of the prosecution proposition Hp, it performs much better than the

neutral reference. Performance for large prior odds values is less question-

able for a threshold value of vT = 1000, thus this would be the recommended

threshold value for this type of evidence. A threshold value of vT = 1000

would correspond to this type of evidence giving, at most, moderately strong

evidence in support of Hp (see Table 5.1), while using larger thresholds may

potentially produce strong support in favour of the wrong proposition.

The next chapter will provide a walkthrough of an online application of the

model used to classify glass fragments and to obtain their evidential value.
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Figure 5.15: ECE plots of the simulation study with different thresholds vT on V
from the composite model. The solid curves represent the accuracy;
the dashed curves the calibrated accuracy; and the dotted curves
the neutral reference.
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Figure 5.16: ECE plots of the simulation study with different thresholds vT on V
from data augmentation. The solid curves represent the accuracy;
the dashed curves the calibrated accuracy; and the dotted curves
the neutral reference.



Chapter 6

Web application

This short chapter contains a description of an online application of the clas-

sification and evidence evaluation procedures of Chapters 4 and 5. The appli-

cation was created using the shiny package as part of the statistical program-

ming language R (R Development Core Team, 2011), containing in the back-

ground, the R code written to obtain the classification and evidence evalua-

tion results. The web application is accessible from the following web address:

http://gnapier.shinyapps.io/GlassClassificationAndEvaluation/.

To make use of the application a user only requires data on the elemental

composition of glass fragments, as described in Chapter 2, contained in a .txt

or .csv file. Each file containing the data should contain nine columns: the

first column indicates which fragment the measurements belong to, as well as

the number of replicate measurements associated with that fragment. The

remaining eight columns contain the measurements for the chemical elements

oxygen (O), sodium (Na), magnesium (Mg), aluminium (Al), silicon (Si),

156
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potassium (K), calcium (Ca) and iron (Fe). Table 6.1 gives an example .txt

or .csv file containing measurements from a glass item with two fragments,

with each fragment having two replicate measurements. The default web

application page also instructs the user on how to appropriately load the

data as seen in Figure 6.1. The web application can perform two separate

tasks given measurements on the elemental content of glass fragments: (i)

classify glass fragments by use type and (ii) compute the evidential value of

two sets of fragments. First the classification part of the application will be

detailed.

Table 6.1: Example of how a file containing data to be analysed should be loaded
into the application.

fragment O Na Mg Al Si K Ca Fe
1 46.5 11.2 2.2 1.7 32.3 2.5 3.3 0.3
1 46.7 11.2 2.1 1.5 32.7 2.4 3.2 0.2
2 46.6 11.3 2.4 1.4 32.5 2.3 3.1 0.4
2 46.8 11.1 2.3 1.3 32.8 2.2 3.3 0.2
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6.1 Classification

As the composite model outperformed the data augmentation approach in

the classification simulation study, as seen in Section 4.1.1 of Chapter 4,

the web application employs the composite model approach of Section 3.2.3

instead of the data augmentation approach. This means that the formula

used in order to compute the classification probabilities of the glass data

measurements, y, loaded into the application is formula (4.8) from Chapter

4 which was found to be

p(Ty = t|y, D) ∝ p(Ty = t)
αtm +Ntm∑M
r=1(αtr +Ntr)

Eξm|Dm [p(y|Ty = t, Cy = m, ξm)].

In order to compute the classification probabilities, the application already

uses the MCMC draws of ξm from the composite model approach that were

obtained from the reference database D, which means that the expectation

term in the formula above can be computed. The use type priors are assumed

uniform with p(Ty = t) = 1/T for all t, the α values are all equal to 0.1, with

values for the second expression on the right-hand side of the formula above

obtained from the reference database and were given in Table 4.1.

To perform the classification of glass fragments using the web application, the

user first has to select the classification task by clicking on the corresponding

tab (default). The application can only classify glass fragments into one of

the five use types contained in the reference database analysed in this the-

sis: bulb, car window, headlamp, container and building window. Figure

6.1 shows where the data file containing the glass fragments to be classified

should be uploaded into the application. Once a file has been uploaded into

the application it will take a few seconds to obtain the classification results.
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The classification results consist of the five posterior probabilities linking the

glass fragments with the five use type categories mentioned above, including

which use type the fragments have been classified as. The application clas-

sifies glass fragments to the use type with the largest posterior probability.

Figure 6.2 shows an example of the classification results output. The up-

loaded data file is also displayed alongside the classification results so that

the user can easily check it was uploaded correctly. It should be noted that if

a user wants to classify more than one set of fragments at a time, then they

will need to upload separate files containing the corresponding measurements.
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6.2 Evidence evaluation

As with the classification procedure, the evidence evaluation procedure of the

application uses the composite model approach to evaluating glass fragments

given in Chapter 5. That is to say that the evidence E = (x,y) is evaluated

under two competing propositions: the prosecution proposition Hp and the

defence proposition Hd. Here Hp would be that both sets of fragments x

and y come from the same item; and Hd would be that x and y come from

different items. The set of fragments x corresponds to the control fragments

obtained from a crime scene, with y the fragments obtained from a suspect.

The evidential value of E in (5.1) was then

V =
p(x,y|Hp, I)

p(x,y|Hd, I)
,

and upon evaluation using the composite model approach was shown to be

(5.6):

V =
Eξm|Dm

[
p(x,y|T(x,y) = t, C = m, ξm)

]
T∑

s=1

p(Ty = s|C = m,D)Eξm|Dm [p(x|Tx = t, C = m, ξm) p(y|Ty = s, C = m, ξm)]

.

As with classification, the necessary MCMC posterior draws of ξm are already

stored in the application. To obtain the evidential value of glass fragments,

the user must first select the evidence evaluation task by clicking on the

corresponding tab as shown in Figure 6.3. The application will then change

and display a brief description of the procedure and show where the two files

containing the control and recovered measurements should be uploaded. As

the control measurements, x, were obtained from the crime scene, their use

type is known and so the application provides a drop-down menu for the user
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to select the use type of the control measurements. Again, as with classifica-

tion there are five use types for the user to choose from as the reference data

used to obtain the posterior draws consisted of these five use types. There

is no option to select the use type of the recovered measurements as they

were obtained from the suspect and so there is uncertainty surrounding their

origin, which is why the denominator in the value of V above is a weighted

average across use types.

When the two files containing the measurements from the control and recov-

ered samples have been uploaded into the application, it will compute and

return the evidential value, V , of the evidence. It also returns the verbal

scale of Evett et al. (2000) that was shown in Table 5.1, and the scale used

by the Swedish National Laboratory of Forensic Science (SKL) (Nordgaard

et al., 2012) as reference points for the value obtained. The application will

also notify the user if the elemental configurations of the control and recov-

ered fragments do not match, thus under the assumption that the control

and recovered fragments are therefore from different glass items, will return

the evidential value V = 0, as shown in Figure 6.5.
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Chapter 7

Discussion and conclusions

Two different modelling approaches were presented in this thesis to deal

with a large point mass at zero for various components of the elemental

compositions of glass fragments. The main objectives were in classifying

newly observed glass fragments into use type categories, and to compute the

evidential value of glass fragments relating to two competing propositions

about their source.

The data analysed was obtained from SEM-EDX analysis (Zadora, 2009)

which returns the percentage weights (wt%) - to two decimal places - of the

eight main elements comprising the composition of a glass fragment. Due to

the compositional nature of the data, constraints on the data such as each

component being non-negative and the sum of all components summing to

100% needed to be taken into consideration, with Chapter 2 providing a

review of methods used to analyse such data. Typically logarithmic trans-

formations are used to handle the constraints on compositional data with
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the most commonly used transformation being that introduced by Aitchi-

son (1982); the additive log-ratio (alr). Other transformations applied to

compositional data include the centred log-ratio (clr) and multiplicative log-

ratio (mlr) (Aitchison, 1982); and more recently the isometric log-ratio (ilr)

has been adopted by researchers of compositional data. However, all of these

transformations mentioned involve logarithmic terms meaning that they can-

not be directly applied to compositional datasets containing zero components,

which are a frequent occurence in such data. In this thesis the square root

of the ratio of one component part to the remaining ones was applied to the

compositions of glass fragments and was found to improve variance stability

and normality in the data over the alr transformation, as seen in Section

2.3. Another important reason why square root transformed compositions

were used instead of a logarithmic transformation was due to the abundance

of compositional zeros found in the glass database. These compositional ze-

ros would have to be altered in some way in order to apply a logarithmic

transformation to them. Also, the presence of many compositional zeros,

alongside very small concentrations, can have a much greater influence on

the distribution of the data on a log scale. Regardless of which transforma-

tion is applied to the database, the presence of many zeros was still a major

factor to be taken into consideration when modelling the data.

Chapter 3 introduced the statistical models presented for modelling the glass

database containing a large concentration of zeros. Previous models applied

to similar datasets have been from a frequentist perspective and incorpo-

rated two levels of variation; see Aitken and Lucy (2004) and Neocleous

et al. (2011). In this thesis a Bayesian hierarchical model was introduced
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that takes into account three levels of variation: between-item, within-item

and measurement error. In addition to the extra level of variability, the

model also takes into account the use type of the glass items to aid in the

classification procedure. Two different ways of handling the compositional

zeros are then incorporated into the Bayesian hierarchical model. First, the

simplest way to handle compositional zeros would be to add a small con-

stant value to them treating them as rounded zeros, i.e. non-zero traces

below limits of detection. More sophisticated methods of replacing zeros

with non-zero values have been proposed as seen in Section 2.2. The first

approach implemented into the Bayesian hierarchical model treats the zeros

as such and is referred to in Section 3.2.1 as the data augmentation approach.

This approach essentially updates all of the compositional zeros in the glass

database with non-zero values that are below the limits of detection of the

measuring equipment. It does this as part of the MCMC sampler by using

the current estimates of the model parameters to update the zeros from a

truncated normal distribution. Updating the zeros with different non-zero

values reduces the artifical correlation that would otherwised be introduced;

see Palarea-Albaladejo et al. (2007). The results obtained when using data

augmentation in both the classification and evidence evaluation tasks are

also improved over leaving the compositional zeros unaltered; see tables 4.14

and 5.3. However, due to the detection limit of the measuring equipment

being very small (0.005) updating the zeros using data augmentation does

not necessarily alleviate the problems pertaining to a large point mass at

zero. This was shown in Section 3.3.1 when applying the alr transformation

to the glass database, with the zeros replaced by small concentrations still

having a strong influence on the distribution of the data. These problems
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can be alleviated by the second approach to modelling compositional zeros

and is referred to as the composite model approach.

The composite model - see Section 3.2.3 - treats the compositional zeros as

being essential zeros, i.e. concentrations considered truly zero. The com-

posite model procedure consists of (i) partitioning the glass database into

distinct subsets characterised by the same pattern of the presence or absence

of chemical elements in the composition of a glass item and (ii) fitting a

separate Bayesian hierarchical model to the square root transformed compo-

sitions corresponding to glass items comprising each of the distinct subsets of

the database. The glass database consisted of 10 distinct presence/absence

configurations as was shown in Table 2.2; however as very few glass items

were associated with some of the configurations the choice to only observe the

presence or absence of the chemical elements iron (Fe) and potassium (K) was

made. Table 2.3 provides the results of only observing the presence/absence

of these two elements with the original ten configurations being reduced to

four. The elements iron and potassium were chosen as they are responsible

for 87.9% of zeros in the glass database as shown in Table 2.1. Splitting the

database up into different presence/absence configurations helps to reduce

the influence the zeros have on the distribution of the data. Improvements

in both the classification and evidence evaluation tasks can also be found;

see tables 4.14 and 5.3. The composite model approach is not without its

faults however. The choice of only observing the presence/absence of two

chemical elements may be seen as being ad-hoc, but due to there being so

few items associated with some of the configurations a comprimise had to

made. Ideally, given enough data the composite model would use all possible
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elemental configurations, and in turn be more likely to produce even better

results. Also, since some of the configurations that were combined contain a

mixture of glass items of certain use types (bulbs and headlamps) where some

items do and others do not contain an element with the presence/absence

being unobserved, problems still persist when using the alr transformation as

seen in Section 3.3.2. The Bayesian hierarchical model also assumes normal-

ity, which although improved by modelling the presence/absence of elements,

may be questionable. Future work involving the use of mixture models would

perhaps improve upon the satisfactory results obtained by the Bayesian hi-

erarchical model.

The main uses of the Bayesian hierarchical model are to correctly classify

glass fragments into use type categories and to evaluate the strength of glass

fragments as evidence under two competing propositions. First, the compos-

ite model approach outperformed the data augmentation approach in classi-

fying glass items into use type categories (misclassification rates: 20.6% vs

21.9%). Both approaches to handling the zeros in the glass database out-

performed the Bayesian hierarchical model with the compositional zeros left

untouched (22.8% misclassification rate); and also outperformed the support

vector machines classification method; see Table 4.14. Classification results

for glass items of use types bulb, headlamp and container were very good,

with the relatively high overall misclassification rate due to difficulties in dis-

tinguishing between car and building windows. This is due to both window

types being manufactured in a similar manner and having very similar ele-

mental compositions. However, whenever a window is misclassified it is most

often misclassified as the other window type. Improvements in the classifi-
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cation rates of car and building windows can be obtained when, in addition

to using the elemental compositions, the refractive index before and after

annealing is also used (Zadora, 2009). Although a misclassification rate of

20.6% seems high, the composite model performs very well in the classifica-

tion task given the data available.

In the evidence evaulation task the composite model again outperformed the

data augmentation approach, which in turn was an improvement over the

Bayesian hierarchical model with no treatment given to the compositional

zeros (see Table 5.3). The false positive and false negative rates obtained

using cross-validation for the composite model were 1.4% and 4.4% respec-

tively, which are improvements over previous publications using similar glass

databases; see Neocleous et al. (2011). One possible point of concern when

using the composite model is in the assumption that if the elemental config-

uration of the control fragments obtained from the crime scene differs from

the elemental configuration of the fragments obtained from a suspect, then

both sets of fragments are assumed to have originated from different sources,

thus setting the value of the evidence V = 0. This assumption was made

to ensure that the dimensions of the densities in the numerator and denom-

inator of the Bayes factor used to compute V were the same. However, it

is possible for two sets of fragments from the same source to have differ-

ent elemental configurations, but for the glass database this was very rare.

Table 2.4 highlighted that only eight out of the 320 glass items have a chem-

ical element with its 12 measurements not all positive or all zero. Of those

eight glass items only two have different within-item configurations due to

an element being present in one fragment but absent from the other three
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fragments, which is less than 1% of all items in the glass database. When

performance was assessed as part of the evidence evaluation study in Section

5.2.1, a threshold value of vT = 1000 was found to be appropriate for this

type of evidence. This was found after calibration of the simulated V values,

with larger threshold values potentially producing support in favour of the

wrong proposition for large prior odds values in faovur of Hp (see Figure

5.15). This restricts the support for this type of evidence to being, at most,

moderately strong in favour of Hp against Hd (see Table 5.1). However, this

also helps to prevent potentially strong support being given in favour of the

wrong proposition.

The composite model described in this thesis and also the classification and

evidence evaluation procedures associated with it have been implemented into

an online web application. The web application can be found at the following

web address: http://gnapier.shinyapps.io/GlassClassificationAndEvaluation/.

The application is easily accessible and usable from any device with a web

browser with the user only needing data on the elemental compositions of

glass fragments contained in a .txt or .csv file. If a user wants to classify

glass fragments then the application will return the probabilities associated

with those fragments being one of five use types. The application can only

classify fragments into five different use type categories as the glass database

used to obtain the necessary results from the model consisted of these five

use types. Given two sets of measurements the application can also return

the evidential value of those fragments.

This thesis presented a comprehensive statistical modelling approach for ele-

mental composition data relating to glass fragments, with the purpose of clas-
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sifying glass fragments into use type categories, and evaluating its strength as

forensic evidence. For this type of glass measurements the models proposed

produced results which outperform existing methods in both the classifica-

tion and evidence evaluation tasks. Assessment of the performance in the

evidence evaluation task led to the recommendation to restrict the strength

of the evidence reported for this type of evidence. This should help reduce

potentially wrong support being provided to the wrong proposition. These

contributions are easily accessible from a web application. The web appli-

cation is quick and easy to use by forensic scientists who have to deal with

such data in real-life casework.



Appendix A

Elemental configuration

scatterplots

Figures A.1, A.2 and A.3 are scatterplots containing the item means for all

items in the reference database that have elemental configuration m = 1, 3, 4,

respectively.
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Figure A.1: Scatterplots of the square root transformed ratios of the item means
for items with configuration 1 from Table 2.3. The different coloured
points correspond to the use type categories: car window, container
and building window.
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Appendix B

MCMC

B.1 Full conditional distributions

All of the full conditional distributions of each of the unknown quantities in

the model are reported below. The use of “| · · · ” means “conditionally on all

the other variables”.

• θt | · · · ∼ Np(φ̃t, Φ̃
−1
t ), θt > 0,

where φ̃t = Φ̃−1
t

[
JKIt(z̄t··· − b̄t· − c̄t··)

]
, and Φ̃t = JKItΛ + Φ.

• bti | · · · ∼ Np(ω̃ti, Ω̃
−1
t ),

where ω̃ti = Ω̃−1
t

[
JKΛ(z̄ti·· − θt − c̄ti·)

]
, and Ω̃t = JKΛ + Ωt.

• ctij | · · · ∼ Np(ψ̃tij, Ψ̃
−1),

where ψ̃tij = Ψ̃−1
[
KΛ

(
z̄tij· − θt − bti

)]
, and Ψ̃ = KΛ + Ψ.
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• Ωt | · · · ∼ Wp(d̃1t, Ãt),

where d̃1t = d1t + It, and Ãt = At +
∑It

i=1 btib
′
ti.

• Ψ | · · · ∼ Wp(d̃2, B̃),

where d̃2 = d2 + J
∑T

t=1 It, and B̃ = B +
∑T

t=1

∑It

i=1

∑J
j=1 ctijc

′
tij.

• Λ | · · · ∼ Wp(d̃3, C̃),

where d̃3 = d3+JK
∑T

t=1 It, and C̃ = C+
∑T

t=1

∑It

i=1

∑J
j=1

∑K
k=1(ztijk−

(θt + bti + ctij))(ztijk − (θt + bti + ctij))
′.

B.2 M-H moves interval widths

The interval widths for Metropolis-Hastings moves M-H 2 and M-H 3 from

Section 3.1.1 are given in Table B.1 below.

Table B.1: The δtl’s used for the interval widths in Metropolis-Hastings moves
M-H 2 and M-H 3.

δtl l
t 1:Na 2: Mg 3:Al 4:Si 5:K 6:Ca 7:Fe

1:bulb 0.0100 0.0080 0.0030 0.0060 0.0100 0.0120 0.0020
2:car window 0.0016 0.0040 0.0060 0.0060 0.0030 0.0060 0.0060
3:headlamp 0.0060 0.0300 0.0160 0.0160 0.0100 0.0240 0.0100
4:container 0.0020 0.0080 0.0030 0.0080 0.0030 0.0060 0.0040
5:building window 0.0016 0.0020 0.0020 0.0050 0.0024 0.0060 0.0040



Appendix C

Posterior samples from the

composite model

The posterior samples shown here are for the square root transformed ratios.

They were obtained from the composite model for elemental configurations

m = 1, 3, 4, and as the posterior samples for configuration m = 2 (Fe, K)

shown in Section 3.2.4, where obtained from MCMC with a burn-in period of

10, 000, and thinning of the Markov chain where every 200th draw was stored

and the rest discarded.
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C.1 Posterior samples for elemental

configuration m = 1 (Fe, K)

The Metropolis-Hastings acceptance rate for configuration m = 1 (Fe, K) for

M-H 3 was 76%. M-H 2 is not performed for configuration m = 1 as there

are no bulbs, i.e. θ1, that have the elemental configuration m = 1. When

no data is associated with a use type for a given configuration draws are

made from the prior distribution of θt. This is why only the draws of θt

for t = 2, 4, 5 are displayed for configuration m = 1, with t = 1, 3 being use

types bulb and headlamp, with both having no items in the database with

this elemental configuration, as shown in Table 2.3. From Figure C.2 it is

clear to see why it is difficult to distinguish between the two window use types

with the cluster of draws for each heavily overlapping one another. Table C.1

contains the effective sample sizes for θt for items with configuration m = 1.

The values for the standard deviations for the variance-covariance matrices

shown in Table C.2 show increased values for some elements when compared

to those for items of elemental configuration m = 2 in Table 3.6, but this

is most likely due to there being fewer items associated with configuration

m = 1 for these use types, as seen in Table 2.3.
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Table C.1: Effective sample size from the composite model for items with config-
uration m = 1 (Fe, K) for the square root ratios for the mean vector
θt. For θt, t = 2, 4, 5 correspond to use types: car window, container
and building window.

Na Mg Al Si K Ca Fe

θ2 864.8 1000.0 857.6 1000.0 813.2 1000.0 1000.0

θ4 1000.0 1000.0 1000.0 1000.0 693.5 1000.0 797.3

θ5 507.0 110.6 105.8 812.2 120.0 146.7 1153.1
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Figure C.1: Trace plots of the mean θt for configuration m = 1 (Fe, K) for
the square root ratios. A burn-in period of 10, 000 was used, and
thinning of the Markov chain with every 200th draw stored.
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coloured points correspond to the use type categories: car window,
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Table C.2: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 for configuration m = 1 (Fe, K). For Ω−1
t , t = 2, 4, 5

correspond to use types: car window, container and building window.

Na Mg Al Si K Ca Fe

Ω−1
2 0.12 0.09 0.18 0.17 0.21 0.17 0.28

Ω−1
4 0.15 0.41 0.15 0.18 0.24 0.23 0.16

Ω−1
5 0.19 0.42 0.45 0.35 0.43 0.50 0.22

Ψ−1 0.05 0.05 0.05 0.31 0.07 0.24 0.08

Λ−1 0.05 0.06 0.04 0.16 0.05 0.14 0.08

C.2 Posterior samples for elemental

configuration m = 3 (Fe,K)

The Metropolis-Hastings acceptance rate for configuration m = 3 (Fe,K)

was 58% for M-H 3. Again, as with configuration m = 1 M-H 2 is not

performed due to there being no bulbs associated with this configuration.

The only two use types associated with configuration m = 3 are car window

and building window as seen from the time series plots for θ2 and θ5 in Figure

C.3. From Figure C.4 it is easier to see more of a separation between the

window use types for this configuration than for items of those use types with

configuration m = 1. Table C.3 contains the effective sample sizes for items

with configuration m = 3, while Table C.4 contains the standard deviations

from the variance-covariance matrices.
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Table C.3: Effective sample size from the composite model for items with config-
uration m = 3 (Fe, K) for the square root ratios for the mean vector
θt. For θt, t = 2, 5 correspond to use types: car window and building
window.

Na Mg Al Si Ca Fe

θ2 751.7 1003.5 844.2 875.9 769.6 1051.5

θ5 896.7 1026.6 249.8 535.8 759.2 737.2
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Figure C.3: Trace plots of the mean θt for configuration m = 3 (Fe,K) for
the square root ratios. A burn-in period of 10, 000 was used, and
thinning of the Markov chain with every 200th draw stored.
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Table C.4: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 for configuration m = 3 (Fe, K). For Ω−1
t , t = 2, 5

correspond to use types: car window and building window.

Na Mg Al Si Ca Fe

Ω−1
2 0.12 0.20 0.31 0.30 0.23 0.17

Ω−1
5 0.11 0.12 0.40 0.28 0.20 0.14

Ψ−1 0.06 0.05 0.05 0.32 0.24 0.09

Λ−1 0.06 0.04 0.04 0.16 0.11 0.07

C.3 Posterior samples for elemental

configuration m = 4 (Fe,K)

The Metropolis-Hastings acceptance rates from configuration m = 4 (Fe,K)

were 85% for M-H 2 and 95% for M-H 3. Due to a lack of data associated

with the use types bulb and headlamp for configuration m = 4, the draws

from the model in Figure C.5 for those use types do not appear to have

converged as well as the other use types. There is only one bulb and two

headlamps in the glass database that have elemental configuration m = 4 as

shown in Table 2.3. Also, from Figure C.5 the values drawn for Mg for the

headlamps, θ3, are all very close to zero. This is due to these two headlamps

associated with configuration m = 4 containing no Mg as shown in Figure

A.3 and also from Table 2.2 before the original ten elemental configurations

were reduced to four. Figure C.6 displays scatterplots of the draws of θt for

items with configuration m = 4. Table C.5 contains the effective sample sizes
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for items with configuration m = 4. The lack of data associated with the

use types bulb and headlamp also results in increased standard deviations

for those use types as shown in Table C.6.

Table C.5: Effective sample size from the composite model for items with config-
uration m = 4 (Fe, K) for the square root ratios for the mean vector
θt. For θt, t = 1, . . . , 5 correspond to use types: bulb, car window,
headlamp, container and building window.

Na Mg Al Si Ca

θ1 184.7 127.8 106.9 208.8 304.8

θ2 1000.0 1000.0 1000.0 1000.0 1000.0

θ3 246.2 743.2 768.3 601.8 653.9

θ4 1000.0 1000.0 914.3 856.4 717.8

θ5 842.0 452.0 709.9 843.3 673.0
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Figure C.5: Trace plots of the mean θt for configuration m = 4 (Fe,K) for
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Table C.6: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 for configuration m = 4 (Fe, K). For Ω−1
t , t = 1, . . . , 5

correspond to use types: bulb, car window, headlamp, container and
building window.

Na Mg Al Si Ca

Ω−1
1 1.34 1.28 1.23 1.49 1.30

Ω−1
2 0.10 0.13 0.33 0.42 0.33

Ω−1
3 0.42 0.44 0.46 0.48 0.65

Ω−1
4 0.18 0.61 0.17 0.39 0.29

Ω−1
5 0.14 0.40 0.31 0.27 0.28

Ψ−1 0.06 0.05 0.08 0.31 0.25

Λ−1 0.04 0.03 0.05 0.16 0.12



Appendix D

Posterior samples from the

composite model using

log-ratios

The posterior samples shown here were obtained from the composite model

for elemental configurations m = 1, 3, 4 using the log-ratio transformation,

and as the posterior samples for configuration m = 2 (Fe,K) shown in Section

3.3.2, where obtained from MCMC with a burn-in period of 10, 000, and

thinning of the Markov chain where every 200th draw was stored and the rest

discarded.

193
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D.1 Log-ratio posterior samples for

configuration m = 1 (Fe, K)

The time series plots for the log-ratio posterior draws of items with configu-

ration m = 1 (Fe, K) are displayed in Figure D.1. As mentioned in C.1 the

draws shown are only for the use types car window, container and building

window, i.e. θ2, θ4 and θ5, as there are no bulbs or headlamps associated

with this configuration. The time series plots, although not perfect, do not

show any of the convergence problems that were obvious for items of config-

uration m = 2. Figure D.2 displays scatterplots of the posterior draws, while

Table D.1 contains the effective sample sizes for θt for items with configura-

tion m = 1 using the log-ratio transformation. Table D.2 contains standard

deviations obtained from the random effects covariance matrices.

Table D.1: Effective sample size from the composite model for items with con-
figuration m = 1 (Fe, K) using log-ratios for the mean vector θt. For
θt, t = 2, 4, 5 correspond to use types: car window, container and
building window.

Na Mg Al Si K Ca Fe

θ2 670.9 673.5 298.7 1000.0 303.1 856.5 603.1

θ4 518.8 277.6 360.8 696.5 578.9 740.9 584.7

θ5 165.8 49.5 70.7 133.5 77.8 48.6 130.4
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Figure D.1: Trace plots of the mean θt from the composite model using the
log-ratio transformation for configuration m = 1 (Fe, K). A burn-in
period of 10, 000 was used, and thinning of the Markov chain with
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Table D.2: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 from the composite model using the log-ratio transfor-
mation for configuration m = 1 (Fe, K). For Ω−1

t , t = 2, 4, 5 corre-
spond to use types: car window, container and building window.

Na Mg Al Si K Ca Fe

Ω−1
2 0.44 0.54 3.31 0.34 5.49 0.70 9.73

Ω−1
4 0.51 7.86 1.53 0.35 5.67 1.10 4.70

Ω−1
5 0.55 5.04 8.56 0.77 8.87 3.00 2.25

Ψ−1 0.18 0.32 0.72 0.84 1.47 1.44 1.73

Λ−1 0.20 2.50 0.87 0.39 2.03 0.79 3.88

D.2 Log-ratio posterior samples for

configuration m = 3 (Fe,K)

The time series plots for the log-ratio posterior draws of items with configu-

ration m = 3 (Fe,K) are shown in Figure D.3. The results shown are those

for car windows (θ2) and building windows (θ5) as those are the only two

use types with items associated with elemental configuration m = 3. Simi-

larly to the posterior samples for configuration m = 1, those for m = 3 do

not contain the convergence problems seen for items of configuration m = 2.

There are possible issues with the element Al, and as with the problems for

configuration m = 2, in this instance this could be due to the mixture of car

and building windows in configuration m = 3 that do and do not contain

concentrations of Al. Figure D.4 shows the scatterplots from the posterior
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draws of Figure D.3, with the effective sample sizes found in Table D.3. The

standard deviations obtained from the random effects covariance matrices

are found in Table D.4.

Table D.3: Effective sample size from the composite model for items with con-
figuration m = 3 (Fe, K) using log-ratios for the mean vector θt.
For θt, t = 2, 5 correspond to use types: car window and building
window.

Na Mg Al Si Ca Fe

θ2 538.9 92.9 102.6 889.1 794.6 685.6

θ5 751.7 653.8 71.1 161.7 224.2 329.2
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Table D.4: Standard deviations (multiplied by 10) from covariance matrices Ω−1
t ,

Ψ−1 and Λ−1 from the composite model using the log-ratio transfor-
mation for configuration m = 3 (Fe, K). For Ω−1

t , t = 2, 5 correspond
to use types: car window and building window.

Na Mg Al Si Ca Fe

Ω−1
2 0.21 1.70 13.74 0.38 0.73 2.33

Ω−1
5 0.26 0.76 20.21 0.72 1.07 2.08

Ψ−1 0.21 0.29 0.54 0.90 1.54 1.94

Λ−1 0.24 0.31 1.84 0.37 0.57 1.53

D.3 Log-ratio posterior samples for

configuration m = 4 (Fe,K)

Figure D.5 displays the time series plots for the log-ratio posterior draws of

items with elemental configuration m = 4 (Fe,K). Figure D.5 has poste-

rior plots for all five use types with convergence for use types car window

(θ2), container (θ4) and building window (θ5) displaying no clear issues with

convergence, however there are potential problems for bulbs (θ1) and head-

lamps (θ3). This is due to there being only one bulb and two headlamps,

respectively, that have elemental configuration m = 4, with improvements

in convergence most likely obtained for an increased number of glass items

for each use type. Scatterplots of the posterior draws for glass items with

elemental configuration m = 4 are shown in Figure D.6, and the effective

samples sizes found in Table D.5. The standard deviations obtained from



APPENDIX D. LOG-RATIO COMPOSITE MODEL SAMPLES 201

the random effects covariance matrices found in Table D.6.

Table D.5: Effective sample size from the composite model for items with con-
figuration m = 4 (Fe, K) using log-ratios for the mean vector θt. For
θt, t = 1, . . . , 5 correspond to use types: bulb, car window, headlamp,
container and building window.

Na Mg Al Si Ca

θ1 101.8 303.6 357.4 110.3 235.4

θ2 1000.0 931.4 530.1 887.5 764.4

θ3 121.8 1386.0 357.0 67.5 100.5

θ4 840.4 844.7 825.8 1043.2 1000.0

θ5 909.2 594.8 1000.0 861.1 733.6
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Figure D.5: Trace plots of the mean θt from the composite model using the
log-ratio transformation for configuration m = 4 (Fe, K). A burn-in
period of 10, 000 was used, and thinning of the Markov chain with
every 200th draw stored.
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Table D.6: Standard deviations (multiplied by 10) from covariance matrices
Ω−1

t , Ψ−1 and Λ−1 from the composite model using the log-ratio
transformation for configuration m = 4 (Fe, K). For Ω−1

t , t = 1, . . . , 5
correspond to use types: bulb, car window, headlamp, container and
building window.

Na Mg Al Si Ca

Ω−1
1 3.66 2.92 4.24 2.11 2.46

Ω−1
2 0.27 0.99 13.93 0.95 1.85

Ω−1
3 0.67 0.66 1.02 1.09 1.96

Ω−1
4 0.72 18.29 2.87 0.83 1.29

Ω−1
5 0.55 6.41 13.72 0.58 1.44

Ψ−1 0.25 0.49 1.19 0.84 1.52

Λ−1 0.19 0.76 2.00 0.39 0.66
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Simulated data from the

composite model

The results from simulating datasets from the Bayesian hierarchical model

using the composite model approach for glass items with elemental configu-

rations m = 1, 3, 4 are given below. Some of the figures below will show the

odd extreme outlier and produce what looks like very wrong estimates. This

is due to the model making draws from the prior distributions whenever there

is no data associated with a glass use type, or an elemetal configuration. For

example, in Figure E.1, for the use type building window there is one extreme

outlier, which is due to draws being made from the prior distribution for one

of the twenty simulated datasets. This is due to one of the twenty datasets

for building windows having no building windows with elemental configu-

ration 1. The issue is not noticeable in Figure E.1 for the use types bulb

and headlamp due to all but one or two of the simulated datasets containing

204
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no bulbs or headlamps with elemental configuration 1, with the draws for

these use types being generated from the prior distributions. The number

of simulated datasets containing at least one glass item for each elemental

configuration across use types is shown in Table E.1.

Table E.1: Number (out of 20) of simulated datasets containing at least one item
of use type t with configuration m.

Glass type Configuration m

1: Fe, K 2: Fe, K 3: Fe, K 4: Fe, K

bulb 2 20 5 15
car window 20 20 20 20
headlamp 1 20 3 20
container 20 20 2 20
building window 19 20 20 20
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Simulated data from glass items with configuration m =

1 (Fe, K)
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Figure E.1: Boxplots containing the mean posterior draws of θt from 20 simu-
lated datasets for configuration m = 1 (Fe, K) for the square root
ratios. The red dots indicate the true values of θt used to simulate
the datasets.
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from 20 simulated datasets for configuration m = 1 (Fe, K) for the
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to simulate the datasets.
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Figure E.4: Boxplots containing the mean posterior draws of Ω−1
t for t = 3

(headlamp) from 20 simulated datasets for configuration m = 1 (Fe,
K) for the square root ratios. The red dots indicate the true values
of Ω−1

t used to simulate the datasets.
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Figure E.5: Boxplots containing the mean posterior draws of Ω−1
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(container) from 20 simulated datasets for configuration m = 1 (Fe,
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of Ω−1

t used to simulate the datasets.
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(building window) from 20 simulated datasets for configuration m =
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Figure E.7: Boxplots containing the mean posterior draws of Ψ−1 from 20 sim-
ulated datasets for configuration m = 1 (Fe, K) for the square root
ratios. The red dots indicate the true values of Ψ−1 used to simulate
the datasets.
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Figure E.8: Boxplots containing the mean posterior draws of Λ−1 from 20 sim-
ulated datasets for configuration m = 1 (Fe, K) for the square root
ratios. The red dots indicate the true values of Λ−1 used to simulate
the datasets.
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3 (Fe,K)
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Figure E.9: Boxplots containing the mean posterior draws of θt from 20 simu-
lated datasets for configuration m = 3 (Fe, K) for the square root
ratios. The red dots indicate the true values of θt used to simulate
the datasets.



APPENDIX E. SIMULATED DATA FROM THE COMPOSITE MODEL 215

−89

97

280

N
a

−40

110

260

M
g

−72

99

270

A
l

−4.6

9.1

23.0

S
i

−89

82

250

C
a

−56

77

210

F
e

Na Mg Al Si Ca Fe

Figure E.10: Boxplots containing the mean posterior draws of Ω−1
t for t = 1

(bulb) from 20 simulated datasets for configuration m = 3 (Fe, K)
for the square root ratios. The red dots indicate the true values of
Ω−1

t used to simulate the datasets.
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Figure E.11: Boxplots containing the mean posterior draws of Ω−1
t for t = 2

(car window) from 20 simulated datasets for configuration m = 3
(Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure E.12: Boxplots containing the mean posterior draws of Ω−1
t for t = 3

(headlamp) from 20 simulated datasets for configuration m = 3
(Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure E.13: Boxplots containing the mean posterior draws of Ω−1
t for t = 4

(container) from 20 simulated datasets for configuration m = 3
(Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure E.14: Boxplots containing the mean posterior draws of Ω−1
t for t = 5

(building window) from 20 simulated datasets for configuration
m = 3 (Fe, K) for the square root ratios. The red dots indicate
the true values of Ω−1

t used to simulate the datasets.
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Figure E.15: Boxplots containing the mean posterior draws of Ψ−1 from 20 sim-
ulated datasets for configuration m = 3 (Fe,K) for the square root
ratios. The red dots indicate the true values of Ψ−1 used to simu-
late the datasets.
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Figure E.16: Boxplots containing the mean posterior draws of Λ−1 from 20 sim-
ulated datasets for configuration m = 3 (Fe,K) for the square root
ratios. The red dots indicate the true values of Λ−1 used to simulate
the datasets.
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Figure E.17: Boxplots containing the mean posterior draws of θt from 20 simu-
lated datasets for configuration m = 4 (Fe,K) for the square root
ratios. The red dots indicate the true values of θt used to simulate
the datasets.
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Figure E.18: Boxplots containing the mean posterior draws of Ω−1
t for t = 1

(bulb) from 20 simulated datasets for configuration m = 4 (Fe, K)
for the square root ratios. The red dots indicate the true values of
Ω−1

t used to simulate the datasets.
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Figure E.19: Boxplots containing the mean posterior draws of Ω−1
t for t = 2

(car window) from 20 simulated datasets for configuration m = 4
(Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure E.20: Boxplots containing the mean posterior draws of Ω−1
t for t = 3

(headlamp) from 20 simulated datasets for configuration m = 4
(Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure E.21: Boxplots containing the mean posterior draws of Ω−1
t for t = 4

(container) from 20 simulated datasets for configuration m = 4
(Fe, K) for the square root ratios. The red dots indicate the true
values of Ω−1

t used to simulate the datasets.
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Figure E.22: Boxplots containing the mean posterior draws of Ω−1
t for t = 5

(building window) from 20 simulated datasets for configuration
m = 4 (Fe, K) for the square root ratios. The red dots indicate
the true values of Ω−1

t used to simulate the datasets.
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Figure E.23: Boxplots containing the mean posterior draws of Ψ−1 from 20 sim-
ulated datasets for configuration m = 4 (Fe,K) for the square root
ratios. The red dots indicate the true values of Ψ−1 used to simu-
late the datasets.
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Figure E.24: Boxplots containing the mean posterior draws of Λ−1 from 20 sim-
ulated datasets for configuration m = 4 (Fe,K) for the square root
ratios. The red dots indicate the true values of Λ−1 used to simulate
the datasets.



Appendix F

Computing the evidence V for

the data augmentation

approach

If the elemental configurations are not considered for the control fragments

x and the recovered fragments y then the value of the evidence V given in

(5.2) is written as

V =
p(x,y|Tx = t,D,Hp)

p(x,y|Tx = t,D,Hd)

=

∫
p(x,y|Tx = t, ξ,D,Hp) p(ξ|Tx = t,D,Hp) dξ∫
p(x,y|Tx = t, ξ,D,Hd) p(ξ|Tx = t,D,Hd) dξ

.

(F.1)
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The first term of the integrand in the numerator of (F.1) is then

p(x,y|Tx = t, ξ,D,Hp) =
T∑

s=1

p(x,y|Tx = t, Ty = s, ξ,D,Hp)

· p(Ty = s|Tx = t, ξ,D,Hp)

= p(x,y|Tx = t, Ty = t, ξ,D)

= p(x,y|T(x,y) = t, ξ),

which gives the numerator of (F.1) as

∫
p(x,y|T(x,y) = t, ξ) p(ξ|D) dξ = Eξ|D

[
p(x,y|T(x,y) = t, ξ)

]
. (F.2)

For the denominator x and y are assumed independent under Hd so that

p(x,y|Tx = t, ξ,D,Hd) = p(x|Tx = t, ξ,D,Hd) p(y|Tx = t, ξ,D,Hd)

= p(x|Tx = t, ξ) p(y|ξ). (F.3)

As the use type Ty of y is uncertain the second term on the right-hand side

of (F.3) can be written as

p(y|ξ) =
T∑

s=1

p(y|Ty = s, ξ) p(Ty = s|ξ)

=
T∑

s=1

p(y|Ty = s, ξ) p(Ty = s),

where p(Ty = s) reflects prior knowledge of the likely use types for forensic

samples. The denominator of (F.1) is then

∫
p(x|Tx = t, ξ)

[
T∑

s=1

p(y|Ty = s, ξ) p(Ty = s)

]
p(ξ|D) dξ

=
T∑

s=1

p(Ty = s)Eξ|D[p(x|Tx = t, ξ) p(y|Ty = s, ξ)]. (F.4)

Substituting (F.2) and (F.4) into (F.1) gives the value V of the evidence in

(5.7).
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