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Abstract

The idea is now well established that light possesses angular momentum and that this comes in

two distinct forms, namely spin and orbital angular momentum which are associated with circular

polarisation and helical phase fronts respectively. In this thesis, we explain that this is, in fact, a mere

glimpse of a much larger picture: light possesses an infinite number of distinct angular momenta,

the conservation of which in the strict absence of charge reflects the myriad rotational symmetries

then inherent to Maxwell’s equations. We recognise, moreover, that many of these angular momenta

can be identified explicitly in light-matter interactions, which leads us in particular to identify new

possibilites for the use of light to probe and manipulate chiral molecules.
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Summary

The original research described in this thesis spans a collection of topics in the theory of electrody-

namics, each of which touches upon the angular momentum of light. Our interest lies primarily in the

classical domain, although on occasion we delve into the quantum and semiclassical domains. The

structure and content of the thesis may be summarised as follows.

In §1, we review certain well established results in the theory of electrodynamics. These have been

chosen so as to make the thesis essentially self contained and should therefore be sufficient to un-

derstand the discussions that follow in §2-§5.

In §2, we make some rather formal observations about the theory of electrodynamics that under-

pin much of what follows in §3-§5. We begin by considering Maxwell’s equations as written in the

strict absence of charge and recall that these place the electric field E and the magnetic flux density

B on equal footing, which permits the introduction, in addition to the familiar ‘first potential’ A⊥, of

a ‘second potential’ C⊥. This leads us to observe in turn that the equations exhibit a remarkable

self-similarity as one considers various integrals (such as A⊥ and C⊥) of E and B, as well as var-

ious derivatives of E and B. Finally, we allow for the presence of electric charge and generalise

some of our observations. In particular, we introduce and examine a seemingly reasonable general

definition of C⊥; a non-trivial problem, owing to the breakdown of electric-magnetic discrimination

that accompanies the charge.

In §3, we turn our attention to the angular momentum of light and its fundamental description in

the theory of electrodynamics. Again, we begin by considering light that is propagating freely in

the strict absence of charge. The fact is well established that such light possesses rotation angular

momentum

J =

∫ ∫
∞

∫
r× (E×B) d3r

and boost angular momentum

K =

∫ ∫
∞

∫ [
tE×B− 1

2
r (E ·E + B ·B)

]
d3r

and that the conservation of the rotation angular momentum J is associated with circular rotations in

space whereas the conservation of the boost angular momentum K is associated with boosts, which

can be regarded as hyperbolic rotations in spacetime. It is known, moreover, that the rotation angular

momentum J can itself be separated into independently conserved parts S and L that resemble

what we might expect of spin and orbital angular momentum1. It has been shown, however, that the

operators Ŝ and L̂ representing the spin S and orbital angular momentum L do not obey the usual

angular momentum commutation relations, which has cast doubt upon their physical signifiance, al-

though each is, nevertheless, associated with a rotational symmetry.

1An analogous separation for the boost angular momentum K yields a vanishing boost spin candidate and a non-
vanishing boost orbital angular momentum candidate which thus comprises the totality of the boost angular momentum.
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This controversial result, taken together with a simple idea familiar from particle physics, leads us

to discover that light in fact possesses an infinite number of distinct angular momenta, which we

recognise as being such because they have the dimensions of an angular momentum and are con-

served. Spin and orbital angular momentum are but two of these. We attempt to elucidate the

physical significance of the angular momenta and their conservation, as well as the similarities, rela-

tionships and distinctions between them, through various analogies and explicit examples. Moreover,

we disambiguate the angular momenta from related but distinct properties of light such as the zilch

Zαβ , the conservation of which we interpret as being a reflection of the self-similarity that we un-

earthed in §2. Finally, we allow for the presence of charge and generalise some of our observations,

finding in particular that the definition of C⊥ in the presence of charge that we proposed in §2 is

indeed a reasonable one.

In §4, we introduce a variational description of freely propagating light that places E and B on equal

footing, much in the spirit of §2. We use this description, together with Noether’s theorem, to study

symmetries and the conservation laws with which they are associated. This yields, in particular, a

more fundamental perspective on the angular momenta discovered in §3: the conservation of the

angular momenta, which are infinite in number, reflects the existence of an infinite number of ways in

which it is possible to rotate freely propagating light. Additional heirarchies of symmetries and asso-

ciated conservation laws, amongst them the conservation of Zαβ , are also identified and attributed

again to the self-similarity that we unearthed in §2.

In §5, we identify applications centred upon some of the angular momenta discovered in §3. Specif-

ically, we observe that many optical activity phenomena: light-matter interactions in which left-

and right-handed circular polarisations are distinguished, can be related explicitly to helicity, spin,

etc. This is unsurprising, perhaps, given that these angular momenta differ in value for left- and

right-handed circularly polarised light. We employ this new insight in the consideration of a well-

established manifestation of optical activity (optical rotation), a dormant manifestation of optical ac-

tivity (differential scattering) and a new manifestation of optical activity (discriminatory optical force

for chiral molecules). The latter two may be developed into powerful new techniques for the probing

and manipulation of chiral molecules.

We conclude in §6 by outlining possibilities for future research into chirality and optical activity which

follow on from the research presented in §5.
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Chapter 1

Supporting Theory

1.1 Introduction

Electrodynamics; a word coined by Ampère [1], is concerned with (electrically)1 charged matter,

the electromagnetic field and their mutual interaction. It is understood, at present, that the elec-

tromagnetic interaction is responsible for all phenomena not attributable instead to the gravitational

interaction, the strong interaction or the weak interaction2 [8]; from the structure and properties of

molecules and atoms which comprise the material world around us to the light radiated by the stars

in the night sky [2, 3, 9–14].

The original research described in this thesis spans a collection of topics in the theory of electro-

dynamics, each of which touches upon the angular momentum of light. We begin in the present

chapter by summarising the well established results that support the discussions in §2-§5.

Throughout, we imagine ourselves to be in an inertial frame of reference with time t and a right-

handed Cartesian coordinate system: x, y and z, unless otherwise stated. Complex quantities are

indicated as such using a tilde, with complex conjugation indicated using an asterisk. Quantum oper-

ators are indicated as such using a circumflex, with Hermitian conjugation indicated using a dagger.

Unit vectors are indicated as such using a double circumflex. In the present chapter, as well as §2-§4,

we adopt a modified version of the international system of units in which the electric constant ε0, the

magnetic constant µ0 and hence the speed of light in vacuum c = 1/
√
ε0µ0 are equal to unity. In

§1.4 and §5, we revert, however, to the international system of units as it is usually recognised.

1.2 Classical electrodynamics

In §2-§5, we work within the classical domain, unless otherwise stated. In the present section,

we therefore summarise some well established results from the theory of classical electrodynamics

[2, 3, 9–11, 14].

1Magnetically charged matter is occasionally considered in theory [2–7], although, at the time of writing, it has not
been observed in experiment.

2The electromagnetic and weak interactions themselves comprise a unified electroweak interaction [8]. In this thesis,
we neglect the influence of the weak interaction.
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1.2.1 The microscopic equations

Consider N point particles of charge qn, mass3 mn and position rn = rn (t) (n = 1, . . . , N ) which

give rise to a microscopic charge density ρ = ρ (r, t) and a microscopic current density J = J (r, t)

as

ρ =
N∑
n=1

qnδ
3 (r− rn) , (1.1)

J =
N∑
n=1

qnṙnδ
3 (r− rn) , (1.2)

with r = xˆ̂x + y ˆ̂y + zˆ̂z the position vector with ˆ̂x, ˆ̂y and ˆ̂z unit vectors in the +x, +y and +z

directions, δ3 (r) a three-dimensional Dirac delta function and an overdot, notation due to Newton

[15], indicating a derivative with respect to time t. The trajectory of the nth particle is governed by

the Newton-Einstein-Lorentz equation [16, 17]:

d
dt

 mnṙn√
1− |ṙn|2

 = qn [E (rn, t) + ṙn ×B (rn, t)] , (1.3)

whilst the microscopic electric field E = E (r, t) and the microscopic magnetic flux density B =

B (r, t) are governed by Maxwell’s equations [17, 18]:

∇ ·E = ρ, (1.4)

∇ ·B = 0, (1.5)

∇×E = −Ḃ, (1.6)

∇×B = J + Ė, (1.7)

with ∇ the gradient operator with respect to r. (1.4) is Gauss’s law, (1.5) is the analogue of Gauss’s

law for magnetism, (1.6) is the Faraday-Lenz law and (1.7) is Ampère’s law as corrected by Maxwell

[18], all in differential form, of course [2, 3, 9–11].

These equations (1.1)-(1.7) constitute an essentially complete statement of the theory of classical

electrodynamics. Solving them requires finding the rn, E and B.

1.2.2 Scalar and magnetic vector potentials

Gauss’s law for magnetism (1.5) and the Faraday-Lenz law (1.6) do not depend explicitly upon the

particles and may be viewed, therefore, as geometrical identities obeyed by E and B. They can be

solved by taking

E = −∇Φ− Ȧ, (1.8)

B = ∇×A, (1.9)

3More precisely, mn is the bare rest mass of the nth particle [11].
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for any scalar potential4 Φ = Φ (r, t) and magnetic vector potential A = A (r, t). To be consistent

with the Newton-Einstein-Lorentz equation (1.3), Gauss’s law (1.4) and the Ampère-Mawell law (1.7),

we then require that

d
dt

 mnṙn√
1− |ṙn|2

 = qn

{
−∇Φ (rn, t)− Ȧ (rn, t) + ṙn × [∇×A (rn, t)]

}
, (1.10)

−∇2Φ−∇ · Ȧ = ρ, (1.11)

−∇2A + ∇ (∇ ·A) = J−∇Φ̇− Ä, (1.12)

with∇2 = ∇ ·∇ the Laplacian operator with respect to r. In moving our focus from the six quantities

that are the components of E and B to the four quantities that are Φ and the components of A, we

must pay the price of going from three equations (1.3) that are zeroth order in temporal and spatial

derivatives and eight equations (1.4)-(1.7) that are first order, to three equations (1.10) that are in-

stead first order and four equations (1.11)-(1.12) that are instead second order.

Φ and A are not uniquely defined in that E and B are unchanged by the transformation [19]

Φ → Φ + χ̇

A → A−∇χ, (1.13)

for any time-odd Lorentz scalar field χ = χ (r, t); a so-called gauge function [2, 3, 9–11]. This

freedom permits us to ‘choose a gauge’, by imposing a condition upon ∇ ·A. The Coulomb gauge5:

∇ ·A = 0, (1.14)

and a Lorenz gauge6 [20]:

∇ ·A + Φ̇ = 0, (1.15)

are but two examples of gauge choices.

1.2.3 Special relativity

In the theory of special relativity [2, 3, 10, 16, 21], the time t = x0 and spatial coordinates x = x1,

y = x2 and z = x3 with which we have chosen to describe events are recognised as being the

components of the position four vector xα = (t, r). Raised indices taken from the start of the Greek

alphabet (α, β, . . . ), including α here, are referred to as being contravariant and can take on the

values 0, corresponding to time, and 1, 2 and 3, corresponding to space. Letters taken from the start

of the Roman alphabet (a, b, . . . ), when employed as contravariant indices, may assume the values

1, 2 and 3 corresponding to space only.

4From here onwards, it is to be understood where relevant that quantities are ‘microscopic’, unless otherwise stated.
5The Coulomb gauge condition can be seen in Maxwell’s original work [18].
6There are, in fact, many Lorenz gauges, for a so-called restricted gauge transformation, with∇2χ− χ̈ = 0, maintains

the equality seen in (1.15) [2].
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The principle of special relativity, due to Einstein [16], tells us in particular that the laws of physics,

whilst holding in the xα coordinate system, should also hold in all other coordinate systems xα
′

=

(t′, r′) related to xα as

xα
′

= Λα
′
α x

α, (1.16)

with the array of constants Λα
′
α describing (proper) rotations and / or boosts and where we have

introduced the summation convention, also due to Einstein [22]: here and in what follows, it is to be

understood that a double appearance of an index implies summation over its allowed values. For xα
′

rotated relative to xα about the +z axis through an angle θ in the usual sense, given by the right-hand

rule;

Λα
′
α =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 , (1.17)

whereas for a boost in standard configuration of xα
′

relative to xα in the +z direction with speed v

and associated rapidity φ = arctan v;

Λα
′
α =


coshφ − sinhφ 0 0

− sinhφ coshφ 0 0

0 0 1 0

0 0 0 1

 , (1.18)

to give but two explicit examples [2, 3, 10, 14, 21]. Reciprocally,

xα = Λαα′xα
′

(1.19)

with the array Λαα′ being the inverse of Λα
′
α , of course. More generally, an object with components

described by r (r = 0, 1, . . . ) raised indices, the values Xα′β′...ω′
of which in xα

′
are related to those

Xαβ...ω in xα as

Xα′β′...ω′
= Λα

′
α Λβ

′

β . . .Λ
ω′
ω X

αβ...ω, (1.20)

is said to be a contravariant tensor of rank r.

The partial derivatives ∂t = ∂0, ∂x = ∂1, ∂y = ∂2 and ∂z = ∂3 are recognised as being the compo-

nents of the partial derivative four vector ∂α = (∂t,∇). Lowered indices taken from the start of the

Greek alphabet, including α here, are referred to as being covariant and, like contravariant indices,

can also take on the values 0, corresponding to time, and 1, 2 and 3, corresponding to space. Let-

ters taken from the start of the Roman alphabet, when employed as covariant indices, may assume

the values 1, 2 and 3 corresponding to space only. The components ∂α′ = (∂t′ ,∇′) of the partial

derivative four vector in xα
′

= (t′, r′) are related to those ∂α in xα as

∂α′ = Λαα′∂α. (1.21)
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More generally, an object with components described by r (r = 0, 1, . . . ) lowered indices, the values

Xα′β′...ω′ of which in xα
′

are related to those Xαβ...ω in xα as

Xα′β′...ω′ = Λαα′Λ
β
β′ . . .Λ

ω
ω′Xαβ...ω, (1.22)

is said to be a covariant tensor of rank r.

We now introduce the Minkowski metric tensor ηαβ = ηαβ = diag (1,−1,−1,−1) which plays a

dual role in that it defines the spacetime interval dτ between events at xα and xα + dxα as

dτ2 = ηαβdxαdxβ (1.23)

and can be used to interconvert contravariant and covariant indices as

ηαβX
β = Xα, (1.24)

Xα = ηαβXβ, (1.25)

for example [2, 21]. Thus, we can have so-called mixed tensors, which possess both contravariant

and covariant indices, an example of which is the Kronecker delta tensor δαβ = diag (1, 1, 1, 1). Fi-

nally, let us introduce the Levi-Civita pseudotensor7 εαβγδ, defined as ε0123 = 1 whilst alternating in

sign under exchange of any two of these indices and having the remainder of its components vanish

[2, 10, 21].

The significance of this formalism lies in the fact that an equation that holds in xα and is express-

ible in terms of tensors and pseudotensors manifestly holds with the same form in xα
′

[21]. This is

true in particular of the results presented in §1.2.1 and §1.2.2. To demonstrate this, let us introduce

the position four vector xαn = (t, rn) of the nth particle, the linear-momentum moment four vector

pαn = mn (1, ṙn) /
√

1− |ṙn|2 of the nth particle, the current four vector Jα = (ρ,J) and a magnetic

potential four vector Aα = (Φ,A). The electromagnetic field tensor Fαβ and the dual electromag-

netic field pseudotensor Gαβ are defined in turn as

Fαβ = ∂αAβ − ∂βAα, (1.26)

Gαβ = εαβγδFγδ/2. (1.27)

In matrix form

Fαβ =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx
Ez −By Bx 0

 (1.28)

7As we have restricted our attention here to the proper (and homogeneous) transformations (1.20) and (1.22), the
distinction between tensors and pseudotensors is of no consequence. The distinction is important, however, if we allow for
improper transformations, specifically with inversions of spatial coordinates [2, 10].
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and

Gαβ =


0 −Bx −By −Bz
Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0

 . (1.29)

We have then that

dpαn/dτn = qnF
βα (xn) dxnβ/dτn, (1.30)

∂βF
αβ = −Jα, (1.31)

∂βG
αβ = 0, (1.32)

with dτn =
√

1− |ṙn|2dt a proper time interval for the nth particle. For α = 0, (1.30) describes

the rate of change of energy of the nth particle and for α = 1, 2 and 3 yields the x, y and z com-

ponents of the Newon-Einstein-Lorentz force law (1.3). For α = 0, (1.31) is Gauss’s law (1.4) and

for α = 1, 2 and 3 yields the x, y and z components of the Ampère-Maxwell law (1.7). For α = 0,

(1.32) is Gauss’s law for magnetism (1.5) and for α = 1, 2, 3 yields the x, y, z components of the

Faraday-Lenz law (1.6). Thus, the classical theory of electrodynamics manifestly respects the princi-

ple of special relativity, as claimed [2, 3, 10, 14, 21].

On occasion, we will find it useful to consider xα together with coordinate systems xα
′

related to

xα as above but with boosts excluded. Quantities that transform analogously to r in this restricted

three-dimensional sense are referred to as being rotational tensors and rotational pseudotenors [2].

Vectors and pseudovectors are thus rotational tensors and rotational pseudotensors of rank one.

We label the components of rotational tensors and pseudotensors using indices taken from the start

of the Roman alphabet in parenthesis. These may assume the values 1, 2 and 3 corresponding to

space only and we make no dinstinction between raised and lowered forms, taking

A1 = −A1 = A(1) = A(1) = Ax, (1.33)

AaAa = −A(a)A(a) = −A(a)A(a) = −A(a)A(a) = −A2
x −A2

y −A2
z, (1.34)

for example. Of particular use to us is the Kronecker delta rotational tensor δ(ab) = diag (1, 1, 1) and

the Levi-Civita rotational pseudotensor ε(abc), defined as ε(123) = 1 whilst alternating in sign under

exchange of any two of these indices and having the remainder of its components vanish.

1.2.4 Conservation laws

It is required by Gauss’s law (1.4) and the Ampère-Maxwell law (1.7) and indeed follows from the

definitions seen in (1.1) and (1.2) that

ρ̇+ ∇ · J = 0. (1.35)
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The significance of (1.35) may be seen by integrating both sides over a finite volume V with bounding

surface S and making use of Gauss’s integral theorem [3], thus obtaining

d
dt

∫ ∫
V

∫
ρ d3r = −

∫
S

∫
J · d2r, (1.36)

which tells us that changes in t of the charge
∫ ∫ ∫

V ρ d3r contained in V are compensated for by

an equal and opposite flux
∫ ∫

S J · d2r of charge through S. Hence, (1.35) is said to be a continuity

equation for charge and its integral solution (1.36) is said to be a local conservation law for charge.

If V now extends over all space, (1.36) becomes

d
dt

∫ ∫
∞

∫
ρ d3r =

dQ
dt

= 0, (1.37)

with Q =
∑N

n=1 qn the total charge of the particles. This (1.37) is said to be a global conservation

law for charge.

Such mathematical arguments are independent of the physical nature of charge and it is clear, there-

fore, that any equation of the form seen in (1.35) embodies the local and hence global conservation

of a quantity. It will be noticed that (1.35) is ∂αJα = 0. We should be clear, however, that the principle

of special relativity does not require a continuity equation to be expressible in terms of tensors and /

or pseudotensors, in general.

1.2.5 Solenoidal and irrotational pieces, reciprocal space and the normal variables

The observation is attributed to Helmholtz [23] that a vector field or pseudovector field V = V (r, t)

can be separated into a solenoidal piece V⊥ and an irrotational piece V‖ as

V = V⊥ + V‖, (1.38)

with ∇ ·V⊥ = 0 and ∇×V‖ = 0, by definition [2, 3, 11, 12]. The significance of such separations

is clearer, perhaps, in reciprocal rather than ordinary space. To illustrate this, let us introduce in a

general manner the spatial Fourier transform Ỹ = Ỹ (k, t) of a real field Y = Y (r, t) in ordinary

space as [11]

Ỹ =

∫ ∫
∞

∫
1

2
√

2π3
Y exp (−ik · r) d3r, (1.39)

with k a wavevector. It is then found that the spatial Fourier transforms Ṽ⊥ and Ṽ‖ of V⊥ and

V‖ satisfy k · Ṽ⊥ = 0 and k × Ṽ‖ = 0 and are thus everywhere perpendicular and parallel to k

in reciprocal space. For this reason, Ṽ⊥ and Ṽ‖ are sometimes referred to as the transverse and

7



Figure 1.1: The spatial Fourier transform Ṽ (k, t) of a vector or pseudovector field V (r, t) can be separated
into a transverse piece Ṽ⊥ (k, t) and a longitudinal piece Ṽ‖ (k, t), which are everywhere perpendicular and
parallel to k in reciprocal space, as depicted here. We have taken Ṽ (k, t) to be real for the sake of illustration.

longitudinal pieces of the spatial Fourier transform Ṽ of V [11, 12]: see figure 1.1. Thus,

Ṽ ⊥(a) =
ˆ̂
k(a)

ˆ̂
k(b)Ṽ(b), (1.40)

Ṽ
‖
(a) =

[
δ(ab) −

ˆ̂
k(a)

ˆ̂
k(b)

]
Ṽ(b), (1.41)

from which it follows that

V ⊥(a) =

∫ ∫
∞

∫
δ⊥(ab)

(
r− r′

)
V(b)

(
r′
)

d3r′, (1.42)

V
‖
(a) =

∫ ∫
∞

∫
δ
‖
(ab)

(
r− r′

)
V(b)

(
r′
)

d3r′, (1.43)

with δ⊥(ab) (r) the so-called transverse delta function and δ‖(ab) (r) the so-called longitudinal delta func-

tion, given by [11, 12]

δ⊥(ab) (r) =
2

3
δ(ab)δ

3 (r)− 1

4π|r|3
[
δ(ab) − ˆ̂r(a) ˆ̂r(b)

]
, (1.44)

δ
‖
(ab) (r) =

1

3
δ(ab)δ

3 (r) +
1

4π|r|3
[
δ(ab) − ˆ̂r(a) ˆ̂r(b)

]
. (1.45)

Such separations are not obviously expressible using the language of tensors and pseudotensors in-

herent to the theory of special relativity and there exists no simple relationship between V⊥ and V‖

and their counterparts in another coordinate system xα
′
, in general [11]. They nevertheless appear

naturally in many contexts and yield important insights. Amongst these lies the fact that a gauge

transformation (1.13) changes Φ and the irrotational piece A‖ of A whilst leaving the solenoidal

piece A⊥ of A unchanged. Thus, it is Φ and A‖ in particular that suffer the gauge freedom of the

electromagnetic field whereas A⊥ is, in fact, uniquely defined [11].

Of particular interest to us are the normal variables α̃ = α̃ (k, t) in reciprocal space which are

8



transverse (k · α̃ = 0) and governed by the equations8

˙̃α+ i|k|α̃ =
i√
2|k|

J̃⊥. (1.46)

The α̃ evolve independently of each other in t when the spatial Fourier transform J̃⊥ of the solenoidal

piece J⊥ of J vanishes (J̃⊥ = 0). Their introduction can be traced back at least as far as the work of

Darwin [24]. The solenoidal piece E⊥ of E, B and A⊥ are determined by the α̃ as [11]

E⊥ =

∫ ∫
∞

∫
i
4

√
|k|
π3

[α̃ exp (ik · r)− α̃∗ exp (−ik · r)] d3k, (1.47)

B =

∫ ∫
∞

∫
i

4
√
π3|k|

k× [α̃ exp (ik · r)− α̃∗ exp (−ik · r)] d3k, (1.48)

A⊥ =

∫ ∫
∞

∫
1

4
√
π3|k|

[α̃ exp (ik · r) + α̃∗ exp (−ik · r)] d3k. (1.49)

In contrast, the irrotational piece E‖ of E is determined by the rn as [11]

E‖ =

∫ ∫
∞

∫
ρ (r′, t) (r− r′)

4π|r− r′|3
d3r′

=
N∑
n=1

qn (r− rn)

4π|r− rn|3
, (1.50)

this being the non-retarded9 Coulomb field of the particles. Thus, the dynamical degrees of freedom

of the electromagnetic field are embodied by the α̃ and are exhibited by E⊥ and B, which we refer to

collectively as the radiation field [11–13]. Of course, (1.46) must be solved simultaneously with the

Newton-Einstein-Lorentz equation (1.3), in general. Knowledge of the α̃ together with the rn then

constitutes an essentially complete description of the system, one with minimal redundancy [11].

1.2.6 Partitioning ρ and J and the transition to the macroscopic domain

It is often convenient to partition ρ and J into pieces of distinct character. For a single molecule or

atom, with some of the N particles being electrons whilst the remainder are nuclei, we take [11, 12]

ρ = ρf −∇ ·P, (1.51)

J = Jf + Ṗ + ∇×M + JR, (1.52)

8The α̃ here are larger than those defined in the book by Cohen-Tannoudji, Dupont-Roc and Grynberg [11], for
example, by a factor of

√
h̄, with h̄ the reduced Planck constant.

9Like E‖, E⊥ also exhibits non-retarded behaviour such that E itself is retarded [11].
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for

ρf = Qδ3 (r−R) , (1.53)

P =
N∑
n=1

qn (rn −R)

∫ 1

0
δ3 [r−R− u (r− rn)] du, (1.54)

Jf = Q Ṙ δ3 (r−R) , (1.55)

M =
N∑
n=1

qn (rn −R)× (ṙn − Ṙ)

∫ 1

0
u δ3 [r−R− u (r− rn)] du, (1.56)

JR = ∇× (P× Ṙ), (1.57)

with R = R (t) the position of a point in the vicinity of the particles that may coincide with the position

of their centre of energy but need not neccesarily. The free charge density ρf describes a single point

charge Q located at R. The components P(a) of the polarisation P can be expanded as [11, 12]

P(a) =

∞∑
i=1

(−1)i+1 d
(i)
(aa2...ai)

∂a2 . . . ∂aiδ
3 (r−R) , (1.58)

with the components d(i)(a1a2...ai)
= d

(i)
(a1a2...ai)

(t) of the ith (i = 1, 2 . . . ) electric multipole moment of

the molecule or atom’s charge distribution10 defined here by us as being

d
(i)
(a1a2...ai)

=
N∑
n=1

qn
i!

(rn −R)(a1) (rn −R)(a2) . . . (rn −R)(ai) . (1.59)

The free current density Jf describes a single point charge Q located at R moving with velocity Ṙ.

The magnetisation M can be expanded as [11, 12]

M(a) =
∞∑
i=1

(−1)i+1m
′(i)
(aa2...ai)

∂a2 . . . ∂aiδ
3 (r−R) , (1.60)

with the components m′(i)(a1a2...ai)
= m

′(i)
(a1a2...ai)

(t) of the ith (i = 1, 2 . . . ) magnetic multipole moment

of the molecule or atom’s current distribution defined here by us as being

m
′(i)
(a1a2...ai)

=

N∑
n=1

qni

(i+ 1)!

[
(rn −R)× (ṙn − Ṙ)

]
(a1)

(rn −R)(a2) . . . (rn −R)(ai) . (1.61)

The Röntgen current density JR describes a relativistic effect: should the molecule or atom possess

a non-vanishing P and be translating with non-vanishing velocity Ṙ, it will possess an apparent mag-

netisation of P×Ṙ [12]. ρf and Jf happen to vanish (ρf = 0, Jf = 0) of course, owing to the electric

neutrality (Q = 0) of the molecule or atom. They would be non-vanishing, however, for an ion [2, 3].

Introducing the electric displacement field D = D (r, t) and the magnetic field H = H (r, t) through

10Formally, Q is the zeroth electric multipole moment of the molecule or atom’s charge distribution [25].
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the constitutive relations [2, 3]

D = E + P, (1.62)

B = H + M′, (1.63)

with M′ = M + P× Ṙ an effective magnetisation, we can rewrite Maxwell’s equations (1.4)-(1.7) as

∇ ·D = ρf , (1.64)

∇ ·B = 0, (1.65)

∇×E = −Ḃ, (1.66)

∇×H = Jf + Ḋ. (1.67)

These ideas may be extended readily to account for multiple molecules or atoms, in particular to

describe a material medium. Contributions made to ρ and J by particles not bound to a specific

molecule or atom, such as the conduction electrons in a metal, are then incorporated additionally in

ρf and Jf . By performing an appropriate spatial averaging procedure on (1.64)-(1.67), the familiar

macroscopic Maxwell equations which govern the propagation of light through the medium may then

be recovered [2, 3].

1.2.7 Solutions

Solving equations (1.1)-(1.7) in a fully consistant manner for the rn, E and B turns out to be an

intractable problem, in general. Exact solutions can be obtained, however, under certain restricted

circumstances.

In the strict absence of charge, Maxwell’s equations (1.4)-(1.7) reduce to

∇ ·E = 0, (1.68)

∇ ·B = 0, (1.69)

∇×E = −Ḃ, (1.70)

∇×B = Ė, (1.71)

which govern light that is propagating freely. The simplest solution to Maxwell’s equations as written

in the strict absence of charge (1.68)-(1.71) is, perhaps, a single plane wave, for which [2, 3, 25]

E = <
{

Ẽ0 exp [i (k · r− ωt)]
}
, (1.72)

B = <
{

ˆ̂
k× Ẽ0 exp [i (k · r− ωt)]

}
, (1.73)

with < a function that yields the real part of its argument, Ẽ0 a complex vector satisfying k · Ẽ0 = 0

and which dictates the amplitude and polarisation of the wave, k the wavevector of the wave and

ω = |k| the angular frequency of the wave. For concreteness, let us consider propagation in the +z

direction so that Ẽ0 = Ẽ0x
ˆ̂x + Ẽ0y

ˆ̂y and k = |k|ˆ̂z. Taking Ẽ0x = E0 and Ẽ0y = 0 with E0 > 0,
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for example, then gives a wave of amplitude E0 that is linearly polarised parallel to the x axis. For

Ẽ0x = E0 and Ẽ0y = ±iE0 with E0 > 0 we have instead a circularly polarised wave of amplitude

E0, where the upper and lower signs refer to left- and right-handed circular polarisations in the optics

convention [2], which we adopt. A quantity of particular use for us is the polarisation parameter

σ = iˆ̂k · (Ẽ0 × Ẽ∗0)/Ẽ0 · Ẽ∗0 (1.74)

of the wave, which is σ = 0 for linear polarisation and σ = ±1 for left- and right-handed circular

polarisations. We can construct other types of freely propagating light by superposing plane waves,

in any manner we like. If we restrict our attention to superpositions that only involve plane waves of

angular frequency ω, we then have in general that

E = <
[
Ẽ exp (−iωt)

]
, (1.75)

B = <
[
B̃ exp (−iωt)

]
, (1.76)

with the complex quantities Ẽ = Ẽ (r) and B̃ = B̃ (r) satisfying

∇ · Ẽ = 0, (1.77)

∇ · B̃ = 0, (1.78)

∇× Ẽ = iωB̃, (1.79)

∇× B̃ = −iωẼ. (1.80)

An interesting example of such freely propagating monochromatic light is a so-called Bessel beam,

which is most conveniently described in terms of scalar Φ and magnetic A potentials in the Lorenz

gauge (1.15) as

Φ = <
[
Φ̃ exp (−iωt)

]
, (1.81)

A = <
[
Ã exp (−iωt)

]
, (1.82)

with the complex quantities Φ̃ = Φ̃ (r) and Ã = Ã (r) given, for propagation in the +z direction, by

Φ̃ = ∇ · Ã/iω, (1.83)

Ã = Ã0J` (κs) exp (i`φ) exp (ikzz) , (1.84)

in cylindrical coordinates s, φ and z, with Ã0 a complex vector satisfying ˆ̂z·Ã0 = 0 and which dictates

the amplitude and polarisation of the wave, J` (κs) is a Bessel function of order ` ∈ {0,±1, . . . } and

ω =
√
κ2 + k2z [26]. For ` 6= 0, this light has a line of perfect darkness at z = 0: a vortex, about which

the phase fronts of the light twist helically with winding number `. When considering monochromatic

light, it is appropriate in some practical calculations to average quantities in t over a single period

2π/ω of oscillation. We denote such cycle-averaging with an overbar.

Another tractable problem of interest to us occurs when particles are present, but their motion is
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fixed so that ρ and J are known a priori. Maxwell’s equations (1.11) and (1.12) can then be solved

rather elegantly again by adopting the Lorenz gauge (1.15), wherein [2, 3, 20]

Φ =

∫ ∫
∞

∫
ρ (r′, t− |r− r′|)

4π|r− r′|
d3r′, (1.85)

A =

∫ ∫
∞

∫
J (r′, t− |r− r′|)

4π|r− r′|
d3r′, (1.86)

which are manifestly retarded. Thus,

E = −∇
∫ ∫
∞

∫
ρ (r′, t− |r− r′|)

4π|r− r′|
d3r′ − ∂

∂t

∫ ∫
∞

∫
J (r′, t− |r− r′|)

4π|r− r′|
d3r′, (1.87)

B = ∇×
∫ ∫
∞

∫
J (r′, t− |r− r′|)

4π|r− r′|
d3r′, (1.88)

in any gauge.

1.3 Quantum electrodynamics

In §2, §3 and §5, we delve occasionally into the quantum domain. In the present section, we there-

fore outline some pertinent results from the theory of quantum electrodynamics [11–13].

We treat the particles non relativistically11 and suppose that they reside together with the electro-

magnetic field in a cubic quantisation cavity of length L and hence, volume V = L3. Imposing

periodic boundary conditions upon this cavity, we identify wavevectors k given by

k = 2π(nx ˆ̂x + ny ˆ̂y + nz ˆ̂z)/L, (1.89)

with nx, ny, nz ∈ {0,±1, . . . }. When appropriate, we then take the limit L→∞ of an infinitely large

cubic quantisation cavity, in which ∑
k

→
∫ ∫
∞

∫
V

8π3
d3k. (1.90)

We utilise the minimal coupling formalism in the Coulomb gauge and employ the Schrödinger pic-

ture of time dependence, unless otherwise stated. The Coulomb gauge is a natural choice for the

low-energy description of molecules and atoms. In it, the scalar potential Φ is associated with the

longitudinal piece E‖ of the electric field E. Φ thus embodies the non-retarded Coulomb interactions

between the particles and can be eliminated from explicit consideration in favour of the particle trajec-

tories rn [11]. In addition, the magnetic vector potential A is equal to its solenoidal, gauge-invariant

piece A⊥ and is associated with the transverse piece E⊥ of E as well as with the magnetic flux

density B. A thus embodies the radiation field, which in turn contains the entirety of the dynamical

11A relativistic quantum-mechanical treatment of the particles would require us to delve into the realms of quantum field
theory, introducing the Dirac field for electrons etc [11]. The non-relativistic treatment that we employ instead is sufficient,
however, for the low energy description of molecules and atoms with which we content ourselves [11, 12].
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freedom of the electromagnetic field, as described in §1.2.5.

1.3.1 Operators, state spaces and states

Regarding the particles, we introduce the operators r̂n = rn and p̂n = −ih̄∇ representing the posi-

tion rn and canonical linear momentum pn = mnṙn + qnA (rn, t) of the nth particle12.

Regarding the light, we introduce the components âk(a) and â†k(a) of the transverse (k · âk = 0)

operators âk and their Hermitian conjugates â†k through the commutation relations [11, 12][
âk(a), âk′(b)

]
= 0, (1.91)[

âk(a), â
†
k′(b)

]
= δkk′

[
δ(ab) −

ˆ̂
k(a)

ˆ̂
k(b)

]
, (1.92)[

â†k(a), â
†
k′(b)

]
= 0, (1.93)

with δkk′ a Kronecker delta function. In the limit L → ∞ of an infinitely large cubic quantisation

cavity, the operators
√
h̄V/2π3âk/2 and

√
h̄V/2π3â†k/2 represent the normal variables α̃ and their

complex conjugates α̃∗ [11].

The operators ρ̂ = ρ̂ (r) and Ĵ = Ĵ (r) representing the charge density ρ and the current density J

are

ρ̂ =
N∑
n=1

qnδ
3 (r− r̂n) , (1.94)

Ĵ =
N∑
n=1

qn
1

2

[
ˆ̇rnδ

3 (r− r̂n) + δ3 (r− r̂n) ˆ̇rn

]
, (1.95)

with ˆ̇rn the operator representing the velocity ṙn of the nth particle. Note the symmetrisation of Ĵ,

which ensures that Ĵ is Hermitian (Ĵ = Ĵ†). The operators Ê⊥ = Ê⊥ (r), B̂ = B̂ (r) and Â = Â (r)

representing the solenoidal piece E⊥ of the electric field E, the magnetic flux density B and A are

Ê⊥ =
∑
k

i

√
h̄|k|
2V

[
âk exp (ik · r)− â†k exp (−ik · r)

]
, (1.96)

B̂ =
∑
k

i

√
h̄

2|k|V
k×

[
âk exp (ik · r)− â†k exp (−ik · r)

]
, (1.97)

Â =
∑
k

√
h̄

2|k|V

[
âk exp (ik · r) + â†k exp (−ik · r)

]
, (1.98)

12These forms are correct in the position representation [11, 14, 27].

14



whilst the operator Ê‖ = Ê‖ (r) representing the irrotational piece E‖ of E is

Ê‖ =

∫ ∫
V

∫
ρ̂ (r′) (r− r′)

4π|r− r′|3
d3r′

=
N∑
n=1

qn (r− r̂n)

4π|r− r̂n|3
. (1.99)

Of particular importance, as it governs time evolution, is the operator Ĥ representing the Hamiltonian,

which is [11, 12]

Ĥ =
N∑
n=1

[
p̂n − qnÂ (r̂n)

]2
2mn

+

N∑
n=1

N∑
n′=1

qnqn′

8π|r̂n − r̂n′ |

+

∫ ∫
V

∫
1

2

(
Π̂2 +

∣∣∣∇× Â
∣∣∣2 ) d3r, (1.100)

with Π̂ = −Ê⊥ the operator representing the momentum density conjugate to A. The first term seen

on the right-hand side of (1.100) describes the kinetic energies of the particles, the second term

describes the electrostatic Coulomb self energies of the particles (which are diverging constants) as

well as the electrostatic Coulomb energies shared between the particles and the third term describes

the energy of the radiation field.

For our purposes, it suffices to consider an expansion of the radiation field in terms of circularly

polarised plane-wave ‘modes’. Thus, we associate with each wavevector k, left- and right-handed

circular polarisations, labeled with a polarisation parameter σ = ±1 and defined by complex polar-

isation vectors ẽkσ which are transverse (k · ẽkσ= 0) and orthonormal (ẽkσ · ẽ∗kσ′ = δσσ′) [11, 12].

Taking

âk =
∑
σ

ẽkσâkσ, (1.101)

the Bosonic commutation relations [
âkσ, âk′σ′

]
= 0, (1.102)[

âkσ, â
†
k′σ′

]
= δkk′δσσ′ , (1.103)[

â†kσ, â
†
k′σ′

]
= 0, (1.104)

then follow from the commutation relations (1.91)-(1.93) and we identify âkσ and â†kσ as annihilation

and creation operators for a circularly polarised plane-wave-mode photon of wavevector k and po-

larisation parameter σ [11–13]. Other mode expansions with their associated photons may also be

considered a priori or obtained from the above via appropriate unitary transformations [11, 28].
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The state space Ξ of the system is the product of the state spaces Ξn in which the r̂n and p̂n

act and the state spaces Ξkσ in which the âkσ and â†kσ act. Of particular use to us are the photon

number states |nkσ〉 (nkσ = 0, 1, . . . ) which we take to satisfy

âkσ|nkσ〉 =
√
nkσ|nkσ − 1〉, (1.105)

â†kσ|nkσ〉 =
√
nkσ + 1|nkσ + 1〉, (1.106)

and which constitute a complete (
∑∞

nkσ=0 |nkσ〉〈nkσ| = 1) and orthonormal (〈nkσ|n′kσ〉 = δnkσn
′
kσ

)

basis for Ξkσ [11–13].

1.3.2 The classical limit

The correspondance between the quantum and classical theories of electrodynamics is perhaps

clearer in the Heisenberg picture of time dependence rather than the Schrödinger picture of time

dependence, in which it is found that [11, 13]

mn
ˆ̈rn = qn

{
Ê (r̂n) +

1

2

[
ˆ̇rn × B̂ (r̂n)− B̂ (r̂n)× ˆ̇rn

]}
(1.107)

with ˆ̈rn the operator representing the acceleration r̈n of the nth particle and

∇ · Ê = ρ̂, (1.108)

∇ · B̂ = 0, (1.109)

∇× Ê = − ˆ̇B, (1.110)

∇× B̂ = Ĵ + ˆ̇E, (1.111)

with ˆ̇B and ˆ̇E the operators representing the time derivatives Ḃ and Ė of B and E. Clearly, (1.107)

resembles the Newton-Einstein-Lorentz equation (1.3) and (1.108)-(1.111) resemble Maxwell’s equa-

tions (1.4)-(1.7).

In accord with the correspondance principle, there exist limits in which the theory of quantum elec-

trodynamics reduces, in essence, to the theory of classical electrodynamics, as we now ellucidate.

Our goal here is to construct a state |Ψ (0)〉 of the system at time t = 0 say, such that the expec-

tation values of appropriate quantum mechanical operators closely resemble the classical quantities

presented in §1.2. To this end, let us first consider a single mode of the radiation field, of wavevector

k and polarisation parameter σ. The coherent state

|α̃kσ〉 = exp
(
−|α̃kσ|2/2

) ∞∑
nkσ=0

α̃nkσ
kσ√
nkσ!
|nkσ〉, (1.112)

due to Schrödinger [11, 12, 29], is an eigenstate of the annihilation operator âkσ with eigenvalue α̃kσ:

âkσ|α̃kσ〉 = α̃kσ|α̃kσ〉. (1.113)
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Supposing that all modes of the radiation field occupy coherent states, we have in effect that

âkσ → α̃kσ

â†kσ → α̃∗kσ. (1.114)

In the limit L→∞ of an infinitely large cubic quantisation volume, we can then identify the quantities√
h̄V/2π3

∑
σ ẽkσα̃kσ/2 and

√
h̄V/2π3

∑
σ ẽ∗kσα̃

∗
kσ/2 with the classical normal variables α̃ (k, 0)

and their complex conjugates α̃∗ (k, 0) at t = 0. If, in addition, the particles occupy localised wave

packet states, the motions of which resemble classical trajectories13 [30], a picture resembling that

presented in §1.2 is recovered, as desired.

1.3.3 Solutions

The evolution of the state |Ψ〉 = |Ψ (t)〉 of the system is governed by Schrödinger’s equation [11–

13, 30]:

ih̄ ˙|Ψ〉 = Ĥ|Ψ〉. (1.115)

In principle, this may be solved by identifying the eigenstates |s〉 and associated eigenvalues h̄ωs of

Ĥ , which satisfy

Ĥ|s〉 = h̄ωs|s〉 (1.116)

and are taken by us to be complete (
∑

s |s〉〈s| = 1) and orthonormal (〈s|s′〉 = δss′). We then have

that

|Ψ〉 =
∑
s

ãs exp (−iωst) |s〉 (1.117)

which is normalised (〈Ψ|Ψ〉 = 1) provided the probability amplitudes ãs satisfy
∑

s |ãs|2 = 1.

In practice, this approach is intractable in general and we must resort instead to approximate meth-

ods of solution which we now outline whilst considering a single molecule or atom. We begin by

partitioning Ĥ as [11, 12]

Ĥ = Ĥ0 + V̂ (1.118)

with the operator Ĥ0 describing the molecule or atom and the radiation field decoupled from each

other, as

Ĥ0 = Ĥmol + Ĥrad (1.119)

13More formally, the r̂n may be replaced with their expectation values 〈r̂n〉 provided variances and analogous quan-
tities are sufficiently small such that 〈f(r̂n)〉 = 〈f(〈r̂n〉) + (r̂n − 〈r̂n〉)(a)∂f(〈r̂n〉)/∂〈r̂n〉(a) + 1

2
(r̂n − 〈r̂n〉)(a)(r̂n −

〈r̂n〉)(b)∂2f(〈r̂n〉)/∂〈r̂n〉(a)∂〈r̂n〉(b) + . . . 〉 = f(〈r̂n〉) + 1
2
〈(r̂n − 〈r̂n〉)(a)(r̂n − 〈r̂n〉)(b)〉∂2f(〈r̂n〉)/∂〈r̂n〉(a)∂〈r̂n〉(b) +

〈. . . 〉 ≈ f(〈r̂n〉) for the functions f of interest.
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with

Ĥmol =

N∑
n=1

p̂2
n

2mn
+

N∑
n=1

N∑
n′=1

qnqn′

8π|r̂n − r̂n′ |
, (1.120)

Ĥrad =

∫ ∫
V

∫
1

2

(
Π̂2 +

∣∣∣∇× Â
∣∣∣2) d3r, (1.121)

whilst the operator V̂ describes the interaction between the molecule or atom and the radiation field,

as

V̂ = −
N∑
n=1

qn
mn

p̂n · Â (r̂n) +
N∑
n=1

q2n
2mn

∣∣∣Â (r̂n)
∣∣∣2 . (1.122)

The problem posed by Ĥ0 alone may be solved as follows. Let us assume that the eigentates |k〉
and associated eigenvalues h̄ωk (k = 0, 1, . . . ) of Ĥmol are known:

Ĥmol|k〉 = h̄ωk|k〉, (1.123)

and that they are complete (
∑∞

k=0 |k〉〈k| = 1) and orthonormal (〈k|k′〉 = δkk′). We let k = 0 in

particular denote the molecular or atomic ground state. The eigenspectrum of Ĥrad is comprised of

photon number states |{nkσ}〉 as

Ĥrad|{nkσ}〉 =

[∑
k

∑
σ

h̄|k|nkσ + Z(0)

]
|{nkσ}〉, (1.124)

with Z(0) =
∑

k h̄c|k| the electromagnetic energy of the vacuum, which is a diverging constant. The

eigenstates |s(0)〉 and associated eigenvalues h̄ω(0)
s of Ĥ0 follow simply as

Ĥ0|s(0)〉 = h̄ω(0)
s |s(0)〉, (1.125)

with {
|s(0)〉

}
=

{
|k〉|{nkσ}〉

}
, (1.126){

h̄ω(0)
s

}
=

{
h̄ωk +

∑
k

∑
σ

h̄c|k|nkσ + Z(0)

}
. (1.127)

We can now employ the |s(0)〉 and h̄ω(0)
s as a basis in which to tackle the full problem posed by Ĥ .

In doing so, use can be made under many circumstances of two approximations.

The first approximation follows from the assumption that the photon numbers nkσ under consid-

eration are such that the strength of the radiation field can be regarded as being less than that of

the Coulomb field binding the molecule or atom together [11, 12]: this justifies seeking solutions in

powers of V̂ or perhaps instead in powers of the charge e of a proton, say. Time-independent per-

turbation theory may be employed to calculate energy shifts and other such ‘static’ quantities and
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reveals for example that [27, 30]

|s〉 = |s(0)〉+
∑
s′ 6=s

〈s′(0)|V̂ |s(0)〉
h̄ω

(0)
ss′

|s′(0)〉, (1.128)

h̄ωs = h̄ω(0)
s + 〈s(0)|V̂ |s(0)〉+

∑
s′ 6=s

〈s(0)|V̂ |s′(0)〉〈s′(0)|V̂ |s(0)〉
h̄ω

(0)
ss′

, (1.129)

to first order in V̂ for |s〉 and second order in V̂ for h̄ωs. Here we have introduced the notation

ω
(0)
ss′ = ω

(0)
s − ω

(0)
s′ . Dirac’s method of the variation of constants may be employed to calculate

transition rates and other such ‘dynamic’ quantities and reveals for example that [13, 27, 31]

|Ψ〉 =
∑
s

b̃s exp
[
−iω(0)

s t
]
|s(0)〉, (1.130)

with the probability amplitudes b̃s = b̃s (t) given in terms of their values at t = 0 as

b̃s (t) = b̃s (0)−
∑
s′ 6=s

b̃s′ (0)

h̄ω
(0)
ss′

{
exp

[
iω(0)
ss′ t
]
− 1
}
〈s(0)|V̂ |s′(0)〉 (1.131)

to first order in V̂ .

The second approximation follows from the assumption that the molecule or atom is smaller than

the length scales 2π/|k| associated with relevant modes of the radiation field: this justifies an expan-

sion of the ‘p · A’ contributions to V̂ in terms of the multipole moments of the charge and current

distributions of the molecule or atom as14 [12, 13, 25]

V̂ =
∞∑
i=1

i
h̄

[
d̂
(i)
(a1a2...ai)

, Ĥmol

]
∂a2 . . . ∂aiÂ(a1)(R)

−
∞∑
i=1

m̂
(i)
(a1a2...ai)

∂a2 . . . ∂aiB̂(a1)(R)

+

N∑
n=1

q2n
2mn

∣∣∣Â (r̂n)
∣∣∣2 , (1.132)

with the operators d̂(i)(a1a2...ai)
representing the components d(i)(a1a2...ai)

of the ith electric multipole

moment of the molecule or atom’s charge distribution and the operators m̂(i)
(a1a2...ai)

representing

the components of the ith canonical magnetic multipole moment of the molecule or atom’s current

14Although they do not make natural appearances in the non-relativistic regime, the spins of the electrons and also the
nuclei can be accounted for in a heuristic manner by adding appropriate contributions to the operators m̂(1)

(a) representing
the components of the canonical magnetic dipole moment of the molecule or atom.
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distribution given by

d̂
(i)
(a1a2...ai)

=

N∑
n=1

qn
i!

(r̂n −R)(a1) (r̂n −R)(a2) . . . (r̂n −R)(ai) , (1.133)

m̂
(i)
(a1a2...ai)

=

N∑
n=1

qni

mn (i+ 1)!
[(r̂n −R)× p̂n](a1) (r̂n −R)(a2) . . . (r̂n −R)(ai) , (1.134)

where we have taken the centre of mass of the molecule or atom and the origin R of our multipole

expansion to be fixed and have supposed that the latter coincides with the position of the former

or resides somewhere near it. Retention of the contribution made to V̂ by d̂(1)(a) only constitutes the

electric dipole approximation, due to Silberstein [32]. It will be noticed that we have refrained from

expanding the ‘|A|2’ or diamagnetic contribution to V̂ .

1.4 The semiclassical approximation and induced multipole moments

The semiclassical approximation, in which the inner workings of molecule(s) and / or atom(s) are

treated quantum mechanically as in §1.3 whilst the electromagnetic field is otherwise treated classi-

cally as in §1.2 and is regarded as being an externally imposed influence acting upon the molecule(s)

and / or atom(s) [12], makes tractable a scenario that will be of particular interest to us in §5.

Specifically, let us consider a single molecule or atom, treated non-relativistically, the centre of mass

of which we take to be fixed at or near some position R in the presence of weak, monochromatic, off-

resonance light of angular frequency ω = c|k| that is (otherwise) freely propagating and the length

scale 2π/|k| associated with which is larger than the molecule or atom. Thus, the electric field E and

magnetic flux density B comprising the light are described by (1.75)-(1.80). We suppose that the

molecule or atom occupies its ground state |0〉 at time t = −∞ and that it is subsequently introduced

to the light in an adiabatic manner. Under these circumstances, the light simply induces oscillations

in the charge and current distributions of the molecule or atom [25, 33]. The semiclassical approxi-

mation enables us to obtain explicit expressions that describe these oscillations within the classical

domain but which nevertheless reflect the quantum mechanical structure of the molecule or atom:

we work to order e2 and identify the components d(i)(a1a2...ai)
of the ith electric multipole moment of the

molecule or atom’s charge distribution and the components m′(i)(a1a2...ai)
of the ith magnetic multipole

moment of the molecule or atoms’s current distribution, taken about R, with quantum mechanical

expectation values as

d
(i)
(a1a2...ai)

= 〈Ψ| d̂(i)(a1a2...ai)
|Ψ〉 , (1.135)

m
′(i)
(a1a2...ai)

= 〈Ψ| m̂(i)
(a1a2...ai)

|Ψ〉 (1.136)

−〈0|
N∑
n=1

q2ni

mn (i+ 1)!
[(r̂n −R)×A (r̂n, t)]a1 (r̂n −R)a2 . . . (r̂n −R)ai |0〉,

with the state |Ψ〉 of the molecule or atom obtained to the required level of approximation using

Dirac’s method of the variation of constants [13, 27, 31], say.
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For ω in the visible or near infrared and a small molecule such as hexahelicene15 [25, 34, 35] or

an atom, the leading order contributions to the calculations with which we will concern ourselves

in §5 are obtained by truncating the components P(a) and M(a) of the multipole expansions of the

polarisation P and magnetisation M attributable to the molecule or atom as [11, 12, 25]

P(a) ≈ µ(a)δ
3 (r−R)− 1

3
Θ(ab)∂bδ

3 (r−R)

+

N∑
n=1

qn
2
δ(ab) |rn −R|2 ∂bδ3 (r−R) , (1.137)

M(a) ≈ m′(a)δ
3 (r−R) , (1.138)

where, in a standard notation [25, 33], the components µ(a) = d
(1)
(a) of the electric-dipole moment of

the molecule or atom’s charge distribution, the components Θ(ab) = 3d
(2)
(ab)+

∑N
n=1 δ(ab)qn |rn −R|2 /2

of the symmetric and traceless electric quadrupole moment of the molecule or atom’s charge distri-

bution and the components m′(a) = m
′(1)
(a) of the magnetic dipole moment of the molecule or atom’s

current distribution are given by

µ(a) ≈ 〈0|µ̂(a)|0〉+ <
[
µ̃(a) exp (−iωt)

]
, (1.139)

Θ(ab) ≈ 〈0|Θ̂(ab)|0〉+ <
[
Θ̃(ab) exp (−iωt)

]
, (1.140)

m′(a) ≈ 〈0|m̂(a)|0〉+ <
[
m̃′(a) exp (−iωt)

]
, (1.141)

with the complex quantities µ̃(a), Θ̃(ab) and m̃′(a) related to the light in turn as

µ̃(a) = α̃(ab)Ẽ(b) (R) +
1

3
Ã(abc)∂bẼ(c) (R) + G̃(ab)B̃(b) (R) , (1.142)

Θ̃(ab) = Ã(cab)Ẽ(c) (R) , (1.143)

m̃′(a) = G̃(ba)Ẽ(b) (R) . (1.144)

The complex polarisabilities α̃(ab) = α̃(ab) (ω), Ã(abc) = Ã(abc) (ω), Ã(abc) = Ã(abc) (ω), G̃(ab) =

G̃(ab) (ω) and G̃(ab) = G̃(ab) (ω) are

α̃(ab) = α(ab) − iα′(ab), (1.145)

Ã(abc) = A(abc) − iA′(abc), (1.146)

Ã(abc) = A(abc) + iA′(abc), (1.147)

G̃(ab) = G(ab) − iG′(ab), (1.148)

G̃(ab) = G(ab) + iG′(ab), (1.149)

with the real polarisabilities α(ab) = α(ab) (ω), α′(ab) = α′(ab) (ω), A(abc) = A(abc) (ω), A′(abc) =

A′(abc) (ω), G(ab) = G(ab) (ω) and G̃(ab) = G̃(ab) (ω) related to the quantum-mechanical inner workings

15We consider hexahelicene in particular in §5.
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of the molecule or atom as [25, 33]

α(ab) =
∞∑
k 6=0

2

h̄
ωk0fk0<

[
〈0|µ̂(a)|k〉〈k|µ̂(b)|0〉

]
, (1.150)

α′(ab) = −
∞∑
k 6=0

2

h̄
ωfk0=

[
〈0|µ̂(a)|k〉〈k|µ̂(b)|0〉

]
, (1.151)

A(abc) =
∞∑
k 6=0

2

h̄
ωk0fk0<

[
〈0|µ̂(a)|k〉〈k|Θ̂(bc)|0〉

]
, (1.152)

A′(abc) = −
∞∑
k 6=0

2

h̄
ωfk0=

[
〈0|µ̂(a)|k〉〈k|Θ̂(bc)|0〉

]
, (1.153)

G(ab) =

∞∑
k 6=0

2

h̄
ωk0fk0<

[
〈0|µ̂(a)|k〉〈k|m̂(b)|0〉

]
, (1.154)

G′(ab) = −
∞∑
k 6=0

2

h̄
ωfk0=

[
〈0|µ̂(a)|k〉〈k|m̂(b)|0〉

]
, (1.155)

with = a function that yields the imaginary part of its argument and the so-called dispersion lineshape

fk0 = fk0 (ω) associated with the k ← 0 molecular or atomic transition given here by

fk0 =
1

ω2
k0 − ω2

. (1.156)

It is also convenient for us to introduce a complex quantity ζ̃abc = ζ̃abc (ω), as [25]

ζ̃(abc) =
1

c

(
ω

3

{
A′(abc) +A′(bac) + i

[
A(abc) −A(bac)

]}
+ε(dca)

[
G(bd) + iG′(bd)

]
+ ε(dcb)

[
G(ad) − iG′(ad)

])
. (1.157)

The effects of externally imposed perturbations, such as a static electric field, as well as internal per-

turbations, such as spin-orbit coupling, can be incorporated into the present formalism in the manner

exemplified in Barron’s book [25], for example. Provided they are non-degenerate, as we have as-

sumed them to be, the unperturbed wavefunctions of the molecule or atom can be taken to be real

[25, 27] and the simplification α′(ab) = A(abc) = G(ab) = 0 then results. We will make tacit use of

this. It is appropriate in some practical calculations to average molecular properties over all possible

molecular orientations. We denote such isotropic averaging using angular brackets. Pertinent results

in this regard can be found in Barron’s book [25], as well as the book by Craig and Thirunamachan-

dran [12], for example.

The semiclassical approximation suffers from certain deficiencies. In particular, the phenomenon

of spontaneous emission is absent [12] and the expressions presented above lose validity and ul-

timately fail as ω approaches molecular or atomic transition angular frequencies ωkk′ . Radiative
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damping can be incorporated to some extent by taking

fk0 → fk0 + igk0 (1.158)

with fk0 and the so-called absorption lineshape gk0 = gk0 (ω) associated with the k ← 0 molecular

or atomic transition now given by

fk0 =
ω2
k0 − ω2(

ω2
k0 − ω2

)2
+ ω2Γ2

k0

, (1.159)

gk0 =
ωΓk0(

ω2
k0 − ω2

)2
+ ω2Γ2

k0

, (1.160)

with Γk0 an associated decay rate [25]. These forms (1.159) and (1.160) for fk0 and gk0 lead to

the satisfaction of crossing relations etc as is demonstrated in Barron’s book [25]. A more accurate

description of damping processes is offered, however, by a master equation approach, wherein the

molecule or atom is described by a density matrix and the effects of relaxation processes not readily

incorporable in a Hamiltonian description, including spontaneous emission, may be accounted for

with rigour [31].

1.5 Angular momentum: some terminology

In the currently established literature, an angular momentum is sometimes defined as being any

time-odd pseudovector j, the operators ĵ(a) representing the components j(a) of which satisfy the

commutation relations [27] [
ĵ(a), ĵ(b)

]
= ih̄ε(abc)ĵ(c). (1.161)

The familiar quantum-mechanical and hence classical description of angular momentum follows from

these (1.161), including the identification of states |j,mj〉 satisfying

(ĵ2x + ĵ2y + ĵ2z )|j,mj〉 = h̄2j (j + 1) |j,mj〉, (1.162)

ĵz|j,mj〉 = h̄mj |j,mj〉, (1.163)

for example, with j ∈ {0, 1/2, 1, . . . } and mj ∈ {−j,−j+1, . . . , j−1, j} quantum numbers [27, 30].

Whilst this description certainly fits many angular momenta, I ask the reader to regard it with some

apathy, for we will be led by the observations regarding light in §3 and §4 to suggest that the definition

of an angular momentum seen in (1.161) is, in fact, overly restrictive. Rather, let us regard as being

an angular momentum, any property of a system that is conserved by virtue of a rotational symmetry

inherent in the equations of motion governing the system and thus possesses the dimensions of an

angular momentum.

I use the terms rotation angular momentum and boost angular momentum to distinguish between
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whether the rotation is of a circular nature (in space) or a hyperbolic16 nature (in spacetime). An

angular momentum that is not dependent upon the location of the origin xα = 0 in spacetime is said

to be intrinsic whereas an angular momentum that is dependent upon the location of xα = 0 is said

instead to be extrinsic. The spin (rotation angular momentum) of a particle is thus intrinsic whereas

the orbital (rotation) angular momentum of a particle is instead extrinsic. It should be noted, however,

that ‘spin’ and ‘intrinsic’ are not synonymous in general, nor are ‘orbital’ and ‘extrinsic’. For exam-

ple; the orbital angular momentum of a collection of more than one particle can be separated into a

contribution attributable to the motion of the centre of energy, which is extrinsic, and a contribution

relative to the centre of energy, which is intrinsic [14, 36].

16A boost can be regarded as a hyperbolic rotation in spacetime [10, 14], as is apparent in (1.18).
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Chapter 2

Electric-Magnetic Democracy, the

‘Second Potential’ and the Structure of

Maxwell’s Equations

2.1 Introduction

In the present chapter, we make some rather formal observations which underpin much of what

follows in §3-§5. The text is based primarily upon my research papers [37] and [38].

2.2 In the strict absence of charge

Maxwell’s equations as written in the strict absence of charge:

∇ ·E = 0,

∇ ·B = 0,

∇×E = −Ḃ,

∇×B = Ė,

seen also in (1.68)-(1.71), favour neither the electric character nor the magnetic character of the freely

propagating light that they describe. In particular, they retain their form under the transformation

E → E cos θ + B sin θ

B → B cos θ −E sin θ, (2.1)

for any time-odd Lorentz pseudoscalar angle θ, an observation due to Heaviside [39] and Larmor [40].

We refer to (2.1) accordingly as a Heaviside-Larmor rotation. One apparent reflection of this electric-

magnetic democracy, a phrase coined by Berry [41], is the possibility of introducing, in addition to a

scalar potential Φ and a magnetic vector potential A, a pseudoscalar potential Θ = Θ (r, t) and an
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electric pseudovector potential C = C (r, t) defined such that

E = −∇Φ− Ȧ

= −∇×C, (2.2)

B = ∇×A

= −∇Θ− Ċ, (2.3)

an observation due in essence to Bateman [42]. As far as the theory of special relativity is con-

cerned, Θ and C comprise an electric potential four-pseudovector Cα = (Θ,C), in terms of which

the electromagnetic field tensor Fαβ and the dual electromagnetic field pseudotensor Gαβ are

Fαβ = ∂αAβ − ∂βAα

= −εαβγδ (∂γCδ − ∂δCγ) /2, (2.4)

Gαβ = εαβγδ (∂γAδ − ∂δAγ) /2

= ∂αCβ − ∂βCα. (2.5)

See also the book by Stratton [9] as well as the work of Anco and The [43] and the work of Barnett

[44, 45]. Intriguingly, the complete set of Maxwell’s equations as written in the strict absence of

charge (1.68)-(1.71) follow from the definitions seen in (2.2) and (2.3) as well as in (2.4) and (2.5).

Moreover, the electric field E and the magnetic flux density B are unchanged by the transformations

Φ → Φ + χ̇

A → A−∇χ, (2.6)

Θ → Θ + ξ̇

C → C−∇ξ, (2.7)

as was observed also by Anco and The [43]. It seems that there need not exist any particular

relationship between the gauge function χ and the arbitrary time-even pseudoscalar field ξ = ξ (r, t).

Taking

Φ → Φ cos θ + Θ sin θ

Θ → Θ cos θ − Φ sin θ

A → A cos θ + C sin θ

C → C cos θ −A sin θ, (2.8)

invokes a Heaviside-Larmor rotation (2.1).

As was highlighted in §1.2.5, a gauge transformation (1.13) (seen also in (2.6)) changes Φ and

the irrotational piece A‖ of A whilst leaving the solenoidal piece A⊥ of A unchanged. Thus, Φ and

A‖ are not uniquely defined and it is these quantities in particular that suffer the gauge freedom of

the electromagnetic field. Analogously, the transformation seen in (2.7) changes Θ and the irrota-
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tional piece C‖ of C whilst leaving the solenoidal piece C⊥ of C unchanged. Thus, Θ and C‖ are

also not uniquely defined. This too may be appreciated in terms of gauge freedom by acknowledging

electric-magnetic democracy: considering θ = π in (2.8), we argue that some other party could re-

gard Φ′ = Θ as their scalar potential and A‖
′

= C‖ as the irrotational piece of their magnetic vector

potential A′ = C. The performance of a gauge transformation by this other party, which changes

Φ′ and A‖
′

in general, then coincides with a transformation of Θ and C‖ of the form seen in (2.7),

seemingly necessitating the existence of this freedom. Although they are not directly observable, A⊥

and C⊥ are uniquely defined and we can, therefore, ascribe a certain physical significance to them;

one that is lacked by Φ, A‖, Θ and C‖1. Given their privileged status, we refer to A⊥ and C⊥ simply

as the ‘first potential’ and the ‘second potential’. In terms of A⊥ and C⊥, the definitions seen in (2.2)

and (2.3) are

E = −Ȧ⊥

= −∇×C⊥, (2.9)

B = ∇×A⊥

= −Ċ⊥, (2.10)

whilst

0 = −∇Φ− Ȧ‖, (2.11)

0 = −∇Θ− Ċ‖. (2.12)

Looking at (2.9) and (2.10), we recognise that

∇ ·A⊥ = 0, (2.13)

∇ ·C⊥ = 0, (2.14)

∇×A⊥ = −Ċ⊥, (2.15)

∇×C⊥ = Ȧ⊥. (2.16)

These equations (2.13)-(2.16) are identical in form to Maxwell’s equations as written in the strict

absence of charge (1.68)-(1.71) and also retain this form under a Heaviside-Larmor rotation (2.1). In

terms of A⊥ and C⊥ in particular, this is invoked by taking

A⊥ → A⊥ cos θ + C⊥ sin θ

C⊥ → C⊥ cos θ −A⊥ sin θ, (2.17)

as was pointed out by Barnett [44, 45]. This self-similarity reccurs indefinitely, in fact, as we delve

further into the realms of various integrals of E and B and also, as we ascend into the realms

of various derivatives of E and B. To illustrate the latter, let us define a pseudovector field G =

1Indeed, it is permissible to set Φ, A‖, Θ and C‖ equal to zero if desired, corresponding, in essence, to the choice of
the Coulomb gauge (1.14) for A = A⊥ and the analogous condition ∇ ·C = 0 for C = C⊥.
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∇×E = −Ḃ and a vector field M = ∇×B = Ė. We then find that

∇ ·G = 0, (2.18)

∇ ·M = 0, (2.19)

∇×G = −Ṁ, (2.20)

∇×M = Ġ. (2.21)

These equations (2.18)-(2.21) are again identical in form to Maxwell’s equations as written in the

strict absence of charge (1.68)-(1.71), as claimed.

2.3 In the presence of charge

We now demonstrate how the results introduced in §2.2 can be generalised to account for the pres-

ence of charge.

Electric-magnetic democracy is not exhibited by the full set of Maxwell’s equations (1.4)-(1.7): it

is broken by the presence of charge. It remains possible, of course, to define a scalar potential Φ

and a magnetic vector potential A in the manner indicated in (1.8) and (1.9) as well as by the first

equality signs in (2.2) and (2.3) and the first equality signs in (2.4) and (2.5). In contrast, however, the

definition of a pseudoscalar potential Θ and an electric pseudovector potential C in the manner indi-

cated by the second equality signs in (2.2) and (2.3) as well as by the second equality signs in (2.4)

and (2.5) is no longer appropriate. In particular, we cannot simply define the second potential C⊥ in

terms of the electric field E as E = −∇×C⊥, as this would contradict Gauss’s law2 (1.4). Thus, we

seek more subtle definitions of Θ and C here; ones that should then reduce, in the strict absence of

charge, to those introduced in §2.2. Immediately, however, we recognise several possible definitions

of C⊥ that reduce, in the strict absence of charge, to that introduced in §2.2: are we to define C⊥

in terms of the solenoidal piece E⊥ of E as E⊥ = −∇ ×C⊥, for example, or is a (non-equivalent)

definition in terms of the magnetic flux density B such as B = −Ċ⊥ say, more natural?

In order to proceed concretely, we turn to the normal variables α̃. In the strict absence of charge,

C⊥ depends upon the α̃ as

C⊥ =

∫ ∫
∞

∫
1

4
√
π3|k|3

k× [α̃ exp (ik · r) + α̃∗ exp (−ik · r)] d3k. (2.22)

It seems natural, perhaps, to adopt this as our definition of C⊥ in general. Doing so, we find that

E⊥ = −∇×C⊥. (2.23)

2The presence of even one point charge somewhere in the universe formally prevents us from regarding E as being
solenoidal [11], thus necessitating the careful treatment given in the present section.
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Thus, C⊥ is to E⊥ what the solenoidal piece A⊥ of A is to B. Furthermore, we find that

B =

∫ ∫
∞

∫
J (r′, t)× (r− r′)

4π|r− r′|3
d3r′ − Ċ⊥

=
N∑
n=1

ṙn ×
qn (r− rn)

4π|r− rn|3
− Ċ⊥. (2.24)

The first term seen on the right-hand side of (2.24) is the non-retarded Biot-Savart law familiar,

perhaps, from magnetostatics [2, 3, 9]. Evidently then, the negative of the partial derivative of C⊥

with respect to time t accounts for deviations in B from the non-retarded Biot-Savart law. In fact, C⊥

obeys (
∇2 − ∂2

∂t2

)
C⊥ = − ∂

∂t

∫ ∫
∞

∫
J (r′, t)× (r− r′)

4π|r− r′|3
d3r′

= − ∂

∂t

N∑
n=1

ṙn ×
qn (r− rn)

4π|r− rn|3
. (2.25)

In this wave equation (2.25), the partial derivative with respect to t of the non-retarded Biot-Savart

law appears as a source. This seems reasonable in as much as a temporal deviation in the motion

of charge away from motion of a magnetostatic character will, in general, give rise to a propagating

electromagnetic disturbance with which C⊥, being a quantity of particular relevance to the radiation

field, is associated. Of course, the definitions seen in (2.23) and (2.24) reduce, in the strict absence

of charge, to those seen on the second lines of (2.9) and (2.10) as well as on the second lines of

(2.4) and (2.5), as desired.

We ‘complete’ our picture now in a simple manner by defining Θ and the irrotational piece C‖ of

C just as we would in the strict absence of charge. That is, as seen in (2.12) so that Θ and C‖ are

to the (vanishing) irrotational piece B‖ of B what Φ and the irrotational piece A‖ of A are to the

irrotational piece E‖ of E. In the presence of charge, the fact remains that Θ and C‖ are not uniquely

defined and both can even be set equal to zero, if desired. In any case, we now have

E⊥ = −∇×C, (2.26)

B =

∫ ∫
∞

∫
J (r′, t)× (r− r′)

4π|r− r′|3
d3r′ −∇Θ− Ċ

=
N∑
n=1

ṙn ×
qn (r− rn)

4π|r− rn|3
−∇Θ− Ċ, (2.27)

in general3. Of course, the definitions seen in (2.26) and (2.27) reduce, in the strict absence of

charge, to those seen on the second lines of (2.2) and (2.3), as desired.

Let us now briefly explore the quantum domain in the presence of charge, wherein the operator

3It seems that we cannot construct a four-pseudovector from Θ and C, in contrast to the situation in the strict absence
of charge.
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Ĉ⊥ = Ĉ⊥ (r) representing C⊥ is

Ĉ⊥ =
∑
k

√
h̄

2|k|3V
k×

[
âk exp (ik · r) + â†k exp (−ik · r)

]
. (2.28)

It is interesting, perhaps, to probe the inherently quantum-mechanical characteristics of C⊥ by eval-

uating various equal-time commutation relations for its components Ĉ⊥(a). We find, for example, that

these commute with each other and with the components Ê⊥(a) of the operator Ê⊥ representing E⊥:

[
Ĉ⊥(a) (r) , Ĉ⊥(b)

(
r′
)]

= 0
(
cf
[
Â⊥(a) (r) , Â⊥(b)

(
r′
)]

= 0
)
, (2.29)[

Ĉ⊥(a) (r) , Ê⊥(b)
(
r′
)]

= 0
(
cf
[
Â⊥(a) (r) , B̂(b)

(
r′
)]

= 0
)
. (2.30)

These commutation relations (2.29) and (2.30) mirror the well-established analogous equal-time

commutation relations for the components Â⊥(a) of the operator Â⊥ representing the first potential

A⊥, as indicated [11, 12]. A given component of Ĉ⊥ commutes with the same component of Â⊥

but not with the two orthogonal components of Â⊥ or with the components B̂(a) of the operator B̂

representing B, as

[
Ĉ⊥(a) (r) , Â⊥(b)

(
r′
)]

= −
∫ ∫
∞

∫
h̄ε(abc)

ˆ̂
k(c)

8π3|k|
exp

[
ik ·

(
r− r′

)]
d3k (2.31)

= −
ih̄ε(abc) (r− r′)(c)

4π|r− r′|3
,[

Ĉ⊥(a) (r) , B̂(b)

(
r′
)]

= −
∫ ∫
∞

∫
ih̄

8π3

[
δ(ab) −

ˆ̂
k(a)

ˆ̂
k(b)

]
exp

[
ik ·

(
r− r′

)]
d3k (2.32)

= −ih̄δ⊥(ab)
(
r− r′

) (
cf
[
Â⊥(a) (r) , Ê⊥(b)

(
r′
)]

= −ih̄δ⊥(ab)
(
r− r′

))
.

The first commmutation relation (2.31) above may be thought of as underlying the well established

[11–13] equal-time commutation relation between the Ê⊥(a) and the B̂(a). The second commutation

relation (2.32) above mirrors the well-established [11–13] analogous equal-time commutation relation

for the Â⊥(a), as indicated.

2.4 Discussion

We have reviewed and examined the introduction of a pseudoscalar potential Θ and an electric pseu-

dovector potential C in the strict absence of charge which led us in particular to identify a remarkable

self-similarity then inherent to Maxwell’s equations (1.68)-(1.71). In addition, we have suggested

meaningful definitions of Θ and C in the presence of charge. The focus of our attention has been the

second potential C⊥, for this quantity makes explicit and seemingly natural appearances in the fun-

damental description of the angular momentum of light, as we will see in §3. It might be instructive,

however, to investigate Θ and the irrotational piece C‖ of C in more detail. This is a task for future

research.
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Chapter 3

The Angular Momentum of Light

3.1 Introduction

Light possesses mechanical properties, some of which are familiar, perhaps, from our everday ex-

periences: the energy radiated by a light bulb can be employed to drive the solar cell of a pocket

calculator whilst that transported by a laser beam enables the cutting of metal or the obliteration of

cancer cells; the linear momentum carried by sunlight is partly responsible for a comet’s tail1 and

prevents the sun itself from collapsing under it’s own weight [36]. Less familiar from our everyday

experiences, however, is the fact that light possesses angular momentum.

The study of the angular momentum of light began, it seems, with the work of Poynting [47], who in-

ferred by analogy with a revolving cylindrical shaft that a beam of circularly polarised light posessess

an intrinsic rotation angular momentum in the direction of propagation equivalent to ±h̄ per photon,

the plus and minus signs corresponding to left- and right-handed circular polarisation. The existence

of this so-called spin was confirmed in experiment by Beth [48], who measured the torque experi-

enced by a half wave plate as the plate changed the spin of light passing through it. The rotation

angular momentum of light that is not spin is referred to instead as orbital angular momentum and

might be thought to be rather trivial and purely extrinsic. Pursuing an analogy between paraxial op-

tics and the quantum harmonic oscillator, Allen, Beijersbergen, Spreeuw and Woerdman made the

discovery, however, that a Laguerre-Gaussian beam of light possesses a well defined orbital angular

momentum equivalent to h̄` per photon in the direction of propagation by virtue of possessing helical

phase fronts of winding number ` ∈ {0,±1, . . . } [49]. This orbital angular momentum is, in fact,

intrinsic, as was pointed out by Berry [50]. The use of the spin and / or orbital angular momentum

of light to rotate material bodies about their centres and / or about a beam axis has been amply

demonstrated and a wealth of additional applications for the angular momentum of light have been

recognised and pursued besides [26, 46, 51].

Surprisingly, perhaps, the fundamental description of the angular momentum of light in the theory

of electrodynamics brings with it many subtleties and has been the source of much controversy. It is

with this subject that the present chapter is concerned. We explain in particular that light possesses

1This was suggested by Keppler [46].
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an infinite number of distinct angular momenta, in addition to spin and orbital angular momentum.

The text is based primarily upon my research papers [37], [52] and [53]. Initially, we consider light

that is propagating freely in the strict absence of charge. Maxwell’s equations (1.4)-(1.7) then reduce

to

∇ ·E = 0,

∇ ·B = 0,

∇×E = −Ḃ,

∇×B = Ė,

as seen also in (1.68)-(1.71). We will subsequently generalise our findings, in §3.7, to account for

the presence of charge.

3.2 Review of previously established results

As a precursor to the original research described in §3.3-§3.8, let us begin by reviewing some perti-

nent results that were already established at the time of starting my doctoral research.

A fair starting point, perhaps, for an investigation into the angular momentum of light is Poynting’s

vector [54]

g = E×B (3.1)

which can be regarded as a linear momentum density as it yields the linear momentum [2, 8, 11]

G =

∫ ∫
∞

∫
E×B d3r (3.2)

when integrated over all space; the operator Ĝ representing G being the generator in turn of transla-

tions in space. We might then construct a density j of rotation angular momentum about the origin

r = 0 by taking the cross product of position r with g as

j = r× (E×B) , (3.3)

if only by analogy with mechanics. This identification is indeed justified as j yields the rotation angular

momentum [2, 8, 11]

J =

∫ ∫
∞

∫
r× (E×B) d3r (3.4)

when integrated over all space; the operator Ĵ representing J being the generator in turn of circular

rotations in space. Making use of an integration by parts, J can be separated into two distinct pieces

as

J =

∫ ∫
∞

∫
E×A⊥ d3r +

∫ ∫
∞

∫
E(a) (r×∇)A⊥(a) d3r, (3.5)
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an observation due to Darwin [24, 55] and Humblet [56, 57]. This separation is gauge invariant. The

first piece

S =

∫ ∫
∞

∫
E×A⊥d3r

=

∫ ∫
∞

∫
iα̃× α̃∗d3k (3.6)

is intrinsic and may be identified, therefore, as the spin S, as is indicated. Indeed, a close analogy

can be drawn between the form seen on the second line of (3.6) and that expected of a spin-one

particle (the photon) of vector wavefunction α̃ in reciprocal space, as is ellucidated in the book by

Cohen-Tannoudji, Dupont-Roc and Grynberg [11], for example. The operator

Ŝ =

∫ ∫
V

∫
Ê× Â⊥d3r

=
∑
k

∑
σ

σh̄
ˆ̂
kn̂kσ (3.7)

representing S describes a spin of±h̄ˆ̂
k per circularly polarised plane-wave-mode photon of wavevec-

tor k and polarisation parameter σ = ±1, as was observed by Lenstra and Mandel [58]. This is in

line, of course, with Poynting’s inference [47] and the observations of Beth [48]. Ŝ is the generator

of the closest approximation to a rotation of the orientations of the electric field vectors and magnetic

flux density pseudovectors that is consistent with the requirement that they retain their solenoidal

character, an observation due to van Enk and Nienhuis [59, 60] and Barnett [44]. The second piece

L =

∫ ∫
∞

∫
E(a) (r×∇)A⊥(a) d3r

=

∫ ∫
∞

∫
iα̃(a) (k×∇k) α̃∗(a) d3k, (3.8)

with ∇k the gradient operator with respect to k, is explicitly dependent upon r and may be identified

as the orbital angular momentum L, as is indicated. The two components of L that are orthogonal

to G are extrinsic whilst that parallel to G can be non-vanishing and is intrinsic, as was pointed out by

Berry [50]. The operator L̂ representing L is the generator of the closest approximation to a rotation

of the spatial distribution of the light that is consistent with the requirement that the light retains its

solenoidal character, an observation due to Barnett [44]. For additional perspectives on the separa-

tion of J into S and L, see [55, 61], for example.

It was pointed out by van Enk and Nienhus [59, 60] that the components of Ŝ commute with each

other. Thus, unlike Ĵ , neither Ŝ nor L̂ separately obey the usual angular momentum commutation

relations (1.161). For this reason, it is often said that S and L are not ‘true’ angular momenta.

A further advancement in the study of S and L was made recently by Barnett [44], who observed that
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the integrands E×A⊥ and E(a) (r×∇)A⊥(a) of S and L seen on the first lines of (3.6) and (3.8) do

not obviously retain their form under a Heaviside-Larmor rotation (2.1) and thus, do not obviously re-

flect the electric-magnetic symmetry inherent to Maxwell’s equations as written in the strict absence

of charge (1.68)-(1.71). He explained, however, that S and L may be expressed equivalently as

S =

∫ ∫
∞

∫
E×A⊥ d3r

=

∫ ∫
∞

∫
1

2

(
E×A⊥ + B×C⊥

)
d3r, (3.9)

L =

∫ ∫
∞

∫
E(a) (r×∇)A⊥(a) d3r

=

∫ ∫
∞

∫
1

2

[
E(a) (r×∇)A⊥(a) +B(a) (r×∇)C⊥(a)

]
d3r. (3.10)

The forms seen on the second lines of (3.9) and (3.10), in particular the integrands, are manifestly

invariant under a Heaviside-Larmor rotation (2.1), which led Barnett to propose

s =
1

2

(
E×A⊥ + B×C⊥

)
, (3.11)

l =
1

2

[
E(a) (r×∇)A⊥(a) +B(a) (r×∇)C⊥(a)

]
, (3.12)

as spin and orbital angular momentum densities.

Let us introduce here the angular momentum tensor [2]

Mαβγ =
1

2

[
xα
(
F βδF

δγ +GβδG
δγ
)
− xβ

(
FαδF

δγ +GαδG
δγ
)]

(3.13)

which, owing to the antisymmetry Mαβγ = −Mβαγ , has twenty-four distinct components. The x, y

and z components jx, jy and jz of j appear as the αβγ = 230, 310 and 120 components of Mαβγ

and the continuity equation

∂γM
αβγ = 0 (3.14)

thus expresses the local conservation of the x, y and z components of rotation angular momentum

for αβ = 23, 31 and 12. It follows, of course, that rotation angular momentum is globally conserved:

J̇ = 0. (3.15)

That S and L, which comprise J = S + L, are indeed of distinct character is manifest in the fact

that spin and orbital angular momentum are separately globally conserved:

Ṡ = 0, (3.16)

L̇ = 0, (3.17)
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as was observed by van Enk and Nienhuis [59, 60].

Evidently, rotation angular momentum constitutes but one half of the angular momentum story, at

least as far as the theory of special relativity is concerned: the αβ = 01, 02 and 03 components

of (3.14) express the local conservation of the x, y and z components of boost angular momentum

‘about’ time t = 0 and r = 0. The boost angular momentum

K =

∫ ∫
∞

∫ [
tE×B− 1

2
r (E ·E + B ·B)

]
d3r

=

∫ ∫
∞

∫
tk α̃ · α̃∗ d3k +

∫ ∫
∞

∫
i|k|
2

[
α̃(a)∇kα̃

∗
(a) − α̃

∗
(a)∇kα̃(a)

]
d3k (3.18)

is obtained by integrating the boost angular momentum density components M010, M020 and M030

over all space; the operator K̂ representing K being the generator of boosts. The physical signifi-

cance of boost angular momentum is best illustrated, perhaps, by considering its global conservation:

K̇ = 0, (3.19)

which implies that

d
dt

∫∫
∞

∫
r1
2 (E ·E + B ·B) d3r

W
=

G
W

= constant, (3.20)

where we have divided (3.19) through by the energy

W =

∫ ∫
∞

∫
1

2
(E ·E + B ·B) d3r (3.21)

and made use of the global conservation of energy and the global conservation of linear momentum:

Ẇ = 0, (3.22)

Ġ = 0. (3.23)

This (3.20) may be regarded as a statement of the uniform motion of the postion∫∫
∞

∫
r1
2 (E ·E + B ·B) d3r

W
(3.24)

of the centre of energy [10]. The question was posed recently by Barnett [45]: is it possible to

separate K into ‘spin’ and ‘orbital’ contributions, in analogy with the separation of J into S and

L. To this end, he observed that K can be recast using integration by parts, in a gauge-invariant

manner, as

K = V + Y (3.25)
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with

V =

∫ ∫
∞

∫
1

2

(
−E×C⊥ + B×A⊥

)
d3r, (3.26)

which does not make explicit reference to t or r, and

Y =

∫ ∫
∞

∫
1

2

[
−A⊥(a)

(
t∇ + r

∂

∂t

)
E(a) − C⊥(a)

(
t∇ + r

∂

∂t

)
B(a)

]
d3r, (3.27)

which does make explicit reference to t and r. It is natural, perhaps, to identify V as boost spin and

Y as boost orbital angular momentum. This separation fails, however, in that V vanishes (V = 0)

and so K = Y [45].

3.3 Intrinsic rotation angular momenta

The starting point for our investigation into the angular momentum of light is the observation due to

van Enk and Nienhuis [59, 60] and discussed in §3.2 that the operator Ŝ representing the spin S
does not obey the usual angular momentum commutation relations (1.161). Although this may be

surprising at first glance and is sometimes reported as being paradoxical, it may be understood or at

least appreciated by recalling a concept familiar from particle physics: the photon is massless and

relativity suggests, therefore, that the photon only possesses one well defined component of spin;

the component in the direction of propagation [59, 60, 62]. This is apparent, in fact, on the second

line of (3.7). The value taken by this component of spin relative to the direction of propagation is

referred to as the photon’s helicity [8, 59, 60, 62, 63].

3.3.1 Helicity

We begin now with a search for the explicit form taken by the helicityH. We are guided by our obser-

vation thatH must be an intrinsic time-even conserved Lorentz pseudoscalar with the dimensions of

a rotation angular momentum.

In particle physics, the single-particle helicity is the expectation value of the helicity operator

Σ̂ · p̂

|p̂|
, (3.28)

which is the scalar product of the spin operator Σ̂ with the normalised linear momentum operator

p̂/|p̂|. It seems natural, perhaps, to try and determine H using this definition, but we then run into

difficulties with the form of the photon wavefunction [11]. We can certainly attempt to use the electric

field E and the magnetic flux density B as the basis of a photon wavefunction via the Riemann-

Silberstein field F̃ = (E + iB) /
√

2, but the resulting quantity does not possess the dimensions of a

rotation angular momentum [63]. A time-even pseudoscalar with the dimensions of a rotation angular

momentum has, however, already been recognised in plasma physics for some time: the magnetic
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helicity2

HM =

∫ ∫ ∫
A ·B d3r (3.29)

was introduced by Wotjier to understand relaxation processes in plasmas [65] and is often employed

to quantify the twist of magnetic fiux density lines [66, 67]. HM is gauge invariant provided the

boundary of the region of integration is chosen appropriately, despite the explicit appearance of a

magnetic vector potential A3. It formally resembles the ‘vortex helicity’ or ‘fluid helicity’

V =

∫ ∫ ∫
u · (∇× u) d3r (3.30)

introduced by Moreau [68], with u = u (r, t) the fluid velocity field. Unfortunately, our search is not

yet over: HM is not the quantity we seek. It particular,HM is neither conserved nor Lorentz invariant.

To proceed, we follow the approach taken by Barnett [44, 45] and observe that HM does not re-

tain its form under a Heaviside-Larmor rotation (2.1). If, however, we add half of HM to half of an

analogous electric helicity, we obtain

H =

∫ ∫
∞

∫
1

2

(
A⊥ ·B−C⊥ ·E

)
d3r

=

∫ ∫
∞

∫
iα̃× α̃∗ · ˆ̂k d3k, (3.31)

which does retain its form under a Heaviside-Larmor rotation (2.1) and is, in fact, the quantity that we

seek, as is indicated. The operator

Ĥ =

∫ ∫
V

∫
1

2

(
Â⊥ · B̂− Ĉ⊥ · Ê

)
d3r

=
∑
k

∑
σ

σh̄n̂kσ (3.32)

representingH describes a helicity of±h̄ per circularly polarised plane-wave-mode photon of wavevec-

tor k and polarisation parameter σ = ±1. This is in line, of course, with the concept of helicity familiar

from particle physics [8, 59, 60, 62, 63]. The global conservation of helicity

Ḣ = 0 (3.33)

may be readily confirmed. Looking at the integrand of H seen on the first line of (3.31), we identify

h =
1

2

(
A⊥ ·B−C⊥ ·E

)
, (3.34)

as a helicity density.

2The use of the word ‘helicity’ in this context is due to Moffatt [64] who proposed it by analogy with the concept of
helicity familiar to him from particle physics.

3Indeed, one can in such cases replace A with A⊥ as A‖ makes no contribution to HM .
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To the best of our knowledge, H was first recognised by Candlin [69], who referred to it as the

‘screw action’. It has since been rediscovered and investigated in a variety of contexts outwith the

angular momentum of light [6, 43, 70–77].

By virtue of the equalities linking the first and second lines of (3.9) and of (3.10), it might be argued

that the explicit acknowledgement of the second potential C⊥ in addition to the first potential A⊥ in

the spin S and orbital angular momentum L is not necessary but rather, is something of a matter of

taste. It should be noted, however, that the appearance of C⊥ inH is seemingly inescapable: there is

no equality relating the magnetic and electric pieces of H in general and both must be present, thus

bolstering Barnett’s suggestion that C⊥ is just as important as A⊥ in the fundamental description of

the angular momentum of light [44, 45].

3.3.2 Spin

Although they are closely related, helicity and spin are ultimately distinct and should not be confused.

Whilst both are intrinsic, conserved and possess the dimensions of a rotation angular momentum,H
is a time-even Lorentz pseudoscalar whereas S is a time-odd pseudovector. For ease of comparison,

we summarise here those results presented in §3.2 for spin that are analogous to those presented in

§3.3.1 for helicity.

The spin is

S =

∫ ∫
∞

∫
1

2

(
E×A⊥ + B×C⊥

)
d3r

=

∫ ∫
∞

∫
iα̃× α̃∗ d3k

and is represented by the operator

Ŝ =

∫ ∫
V

∫
1

2

(
Ê× Â⊥ + B̂× Ĉ⊥

)
d3r

=
∑
k

∑
σ

σh̄
ˆ̂
kn̂kσ

which describes a spin of±h̄ˆ̂
k per circularly polarised plane-wave-mode photon of wavevector k and

polarisation parameter σ = ±1: if you like, helicity ±h̄ with a sense of the direction ˆ̂
k. Spin is globally

conserved:

Ṡ = 0,

and we can identify

s =
1

2

(
E×A⊥ + B×C⊥

)
as a spin density.
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3.3.3 The ab infra zilches

Helicity and the components of spin are not the only intrinsic rotation angular momenta. We recog-

nise here a further six intrinsic rotation angular momenta which we refer to as the ab infra zilches in

homage to the ab zilches, due to Lipkin [78] and discussed in §3.4, which are similar in form.

The ab infra zilches N(ab) comprise a time-even rotational pseudotensor of rank two, being

N(ab) =

∫ ∫
∞

∫
1

2

[
δ(ab)

(
A⊥ ·B−C⊥ ·E

)
−A⊥(a)B(b) −A⊥(b)B(a) + C⊥(a)E(b) + C⊥(b)E(a)

]
d3r

=

∫ ∫
∞

∫
iα̃× α̃∗ · ˆ̂kˆ̂

k(a)
ˆ̂
k(b) d3k. (3.35)

The operator

N̂(ab) =

∫ ∫
V

∫
1

2

[
δ(ab)

(
Â⊥ · B̂− Ĉ⊥ · Ê

)
− Â⊥(a)B̂(b) − Â⊥(b)B̂(a) + Ĉ⊥(a)Ê(b) + Ĉ⊥(b)Ê(a)

]
d3r

=
∑
k

∑
σ

σh̄
ˆ̂
k(a)

ˆ̂
k(b)n̂kσ (3.36)

representingN(ab) describes an ab infra zilch of ±h̄ˆ̂
k(a)

ˆ̂
k(b) per circularly polarised plane-wave-mode

photon of wavevector k and polarisation parameter σ = ±1: if you like, helicity ±h̄ with a simulta-

neous sense of the directions ˆ̂
k(a) and ˆ̂

k(b). Only five of the N(ab) are actually ‘new’ quantities, as

N(ab) = N(ba) andN(aa) = H. The latter may be regarded as a reflection of the fact that ˆ̂
k(a)

ˆ̂
k(a) = 1.

The ab infra zilches are globally conserved:

Ṅ(ab) = 0. (3.37)

It follows by virtue of the principle axis theorem that we can always orient our coordinate system such

that the xy, xz and yz infra zilches vanish. Looking at the integrand of theN(ab) seen on the first line

of (3.35), we identify

n(ab) =
1

2

[
δ(ab)

(
A⊥ ·B−C⊥ ·E

)
−A⊥(a)B(b) −A⊥(b)B(a) + C⊥(a)E(b) + C⊥(b)E(a)

]
, (3.38)

as an ab infra zilch density.

3.3.4 Ad infinitum

In §3.3.1-§3.3.3, we identified the helicity H (±h̄ per circularly polarised plane-wave-mode photon

of wavevector k and polarisation parameter σ = ±1), the components S(a) of spin S (±h̄ˆ̂
k(a) per

photon) and the ab infra zilches N(ab) (±h̄ˆ̂
k(a)

ˆ̂
k(b) per photon) as being intrinsic rotation angular

momenta. We recognise here that these are but the first three members of an infinite collection of

intrinsic rotation angular momenta. Although the forms taken by these in ordinary space becomes
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increasingly obscure, the forms taken in reciprocal space remain relatively simple, being

∫ ∫
∞

∫
iα̃× α̃∗ · ˆ̂k

r components of ˆ̂
k︷ ︸︸ ︷

ˆ̂
k(a)

ˆ̂
k(b)

ˆ̂
k(c) . . . d3k (3.39)

with associated operators

∑
k

∑
σ

σh̄

r components of ˆ̂
k︷ ︸︸ ︷

ˆ̂
k(a)

ˆ̂
k(b)

ˆ̂
k(c) . . . n̂kσ (3.40)

which describe intrinsic rotation angular momenta of±h̄ˆ̂
k(a)

ˆ̂
k(b)

ˆ̂
k(c) . . . per circularly polarised plane-

wave-mode photon of wavevector k and polarisation parameter σ = ±1, where r ∈ {0, 1, . . . }: if

you like, helicity ±h̄ with a simultaneous sense of the directions ˆ̂
k(a),

ˆ̂
k(b),

ˆ̂
k(c), . . . . For r = 0 we

have H, for r = 1 we have the components S(a) of S, for r = 2 we have the N(ab) and so on, ad

infinitum. This suggests in particular that spin is perhaps most meaningfully thought of as one piece

of a larger description of helicity. The forms seen in (3.39) and (3.40) are independent of t. For the

remainder of this thesis, we will restrict our attention to helicity, spin and the ab infra zilches with the

understanding, of course, that some of the ideas presented can be extended indefinitely.

H has simple Lorentz transformation properties whereas S, the N(ab) etc do not. Thus, S, the

N(ab) etc may be identified in any frame of reference but are not related simply between different

frames of reference, in general. This does not negate their physical significance, however. To give

a familiar example; the position (3.24) of the centre of energy can be identified in any frame of ref-

erence but is not related simply between different frames of reference, in general. Nevertheless, we

recognise it as being a physically significant quantity.

3.3.5 The helicity array

Helicity, spin and the ab infra zilches, whilst being ultimately distinct, are intimately associated. We

now demonstrate this through the introduction of the helicity array Nαβγ : a rank-three object4 with

components

N000 = h,

N0a0 = s(a),

Nab0 = n(ab) (3.41)

4A helicity array of arbitrarily high rank can be constructed which incorporates as many of the infinite collection of
intrinsic rotation angular momenta discussed in §3.3.4 as desired.
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and

N00a = N0a0,

N0ab = Nab0,

Nabc = δ(ab)N
00c +

1

2

[
−A⊥(a)∂cC

⊥
(b) −A

⊥
(b)∂cC

⊥
(a) + C⊥(a)∂cA

⊥
(b) + C⊥(b)∂cA

⊥
(a)

]
, (3.42)

with the symmetry Nαβγ = Nβαγ to be understood in our definitions. Despite its suggestive struc-

ture, Nαβγ is not a tensor or pseudotensor and no significance is to be placed upon the fact that its

indices are seemingly contravariant.

The significance of Nαβγ lies in the fact that it satisfies the continuity equation

∂γN
αβγ = 0 (3.43)

which embodies nine distinct conservation laws.

(i) For αβ = 00, (3.43) is

ḣ+ ∇ · s = 0, (3.44)

which embodies the conservation of helicity. Evidently, s plays a dual role in that it is simultaneously

a spin density and a helicity flux density (N0a0 = N00a).

(ii) For αβ = 0a, (3.43) is

ṡ(a) + ∂bn(ab) = 0, (3.45)

which embodies the conservation of spin. Here we see that the n(ab) play dual roles in that they are

simultaneously ab infra zilch densities and the components of a spin flux density (Nab0 = N0ab).

(iii) Finally, for αβ = ab, (3.43) is

ṅ(ab) + ∂cN
abc = 0, (3.46)

which embodies the conservation of the ab infra zilches.

We emphasise that helicity, spin and the ab infra zilches are distinct. Their associated densities;

h, s and n(ab), however, are related by a hierarchy of continuity equations. Loosely speaking, helicity

is conserved and is transported by spin, which is itself conserved and is transported by the ab infra

zilches, which are themselves conserved and are transported by the Nabc. This hierarchy is remi-

niscent of that found in the description of energy and linear momentum, where it is well known [2, 3]

that energy is conserved and is transported by linear momentum (Poynting’s theorem [54]), which is

itself conserved and is transported by Maxwell’s stresses [2]. We pursue this analogy in §3.3.7.
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The cycle-averaged helicity array Nαβγ normalised by the energy density

w =
1

2
(E ·E + B ·B) (3.47)

is
Nαβγ

w
= ± h̄

h̄ω
ˆ̂
kα

ˆ̂
kβ

ˆ̂
kγ (3.48)

for a single circularly polarised plane wave of wave four vector kα = (ω,k) and polarisation parameter

σ = ±1. The classical result seen in (3.48) reflects the quantum-mechanical results seen in (3.32),

(3.7) and (3.36), as we might expect.

3.3.6 On the conservation of helicity, spin and the ab infra zilches

The conservation of helicity, the conservation of spin and the conservation of the ab infra zilches are

seen to constrain the evolution of light in subtly different ways.

To illustrate this, let us consider first a single circularly polarised plane wave of wavevector k and

polarisation parameter σ = ±1, as depicted in figure 3.1(a). Trivially, σ must remain constant in t

so as to respect helicity conservation. Suppose, however, that we were to ‘close our eyes’ at t = t1

and open them later, at t = t2, to find that the sign of the wavevector of the wave had changed, as

depicted in figure 3.1(b). This hypothetical evolution is clearly unnatural and yet is not forbidden by

helicity conservation, as

H (t2) = H (t1) . (3.49)

It is forbidden, however, by spin conservation, because

S (t2) = −S (t1) (3.50)

which violates the global conservation law seen in (3.16) as S(t1) is nonzero.

Consider now the situation depicted in figure 3.2(a). Here we have two circularly polarised plane

waves 1 and 2 with equal amplitudes and equal frequencies, propagating in perpendicular direc-

tions with wavevectors k1 and k2 and possessing opposite polarisation parameters σ1 = ±1 and

σ2 = −σ1. Suppose we were to ‘close our eyes’ at t = t1 and open them later, at t = t2, to find

that both waves had changed the signs of their wavevectors and the signs of their polarisation pa-

rameters, as depicted in figure 3.2(b). This hypothetical evolution is clearly unnatural and yet is not

forbidden by either helicity or spin conservation, as

H (t2) = H (t1) = 0 and S (t2) = S (t1) . (3.51)

It is forbidden, however, by the conservation of the ab infra zilches, because

N(ab)(t2) = −N(ab)(t1), (3.52)
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Figure 3.1: (a) A single circularly polarised plane wave of wavevector k and polarisation parameter σ. (b) The
configuration obtained by reversing the sign of the wavevector of the wave.

Figure 3.2: (a) A configuration of two circularly polarised plane waves 1 and 2 of equal amplitudes and
equal frequencies but with perpendicular wavevectors k1 and k2 and opposite polarisation parameters σ1
and σ2 = −σ1. (b) The configuration obtained by changing the signs of the wavevectors and polarisation
parameters of both waves.

which violates the global conservation law seen in (3.37) as some or all of theN(ab)(t1) are non-zero,

depending on the coordinate system used. Evidently, helicity conservation, spin conservation and

ab infra zilch conservation are seen to constrain the evolution of light in subtly different ways, as

claimed5.

3.3.7 An interesting analogy

The Nαβ0 components of Nαβγ are remarkably similar in form to the contravariant components Tαβ

of the energy-momentum tensor6, given by [2, 14]

Tαβ =
1

2

(
FαγF

γβ +GαγG
γβ
)
. (3.53)

5It is interesting to note, as was pointed out to me by Dr Sonja Franke-Arnold during my viva examination, that the
hypothetical transformations depicted in figures 3.1 and 3.2 can be invoked through the use of appropriately orientated
plane mirrors during the period in which we have our ‘eyes closed’, although this requires the introduction of charge, of
course, in which case helicity, spin, the ab infra zilches etc are no longer conserved in general.

6It would be fairer, perhaps, to compare Nαβ0 with the contravariant components of the canonical energy-momentum
tensor: see the discussions in §4.
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Explicitly;

T 00 = w,

T 0a = g(a),

T ab =
1

2
δ(ab) (E ·E + B ·B)− E(a)E(b) −B(a)B(b). (3.54)

The continuity equation

∂βT
αβ = 0 (3.55)

embodies the conservation of energy for α = 0 and the conservation of the x, y and z components

of linear momentum for α = 1, 2 and 3 [2, 14].

We observe that the density components of our helicity array are mapped onto the components

of the energy-momentum tensor (Nαβ0 → Tαβ) when we make the superficial transformation

A⊥ → B

C⊥ → −E

E → E

B → B. (3.56)

An explanation of this follows from the fact that

A⊥ = ± h̄

h̄ω
B, (3.57)

C⊥ = ∓ h̄

h̄ω
E (3.58)

for a single circularly polarised plane wave of angular frequency ω and polarisation parameter σ =

±1. Any freely propagating light can be regarded as a superposition of circularly polarised plane

waves. From (3.58) we have then that the transformation seen in (3.56) is equivalent to letting

±h̄ → h̄ω for each of these waves, which is simply a mapping of photon helicity to photon energy.

Thus, Nαβ0 → Tαβ .

Evidently, helicity is much to spin what energy is to linear momentum7.

3.3.8 Some explicit calculations

It is difficult, perhaps, to fully appreciate the characteristics of, and indeed the distinctions between,

helictiy, spin and the ab infra zilches when considering light that is comprised of a single plane wave.

These become more apparent, however, when considering light that is comprised of two or more

7Such analogies can be extended to the infinite collection of intrinsic rotation angular momenta discussed in §3.3.4:
we observe the existence of an infinite collection of conservered properties of light that depend upon photon energy, the

rth r ∈ {0, 1, . . . } member of which takes on a value of h̄ωˆ̂
k(a)

ˆ̂
k(b)

ˆ̂
k(c) . . . per plane-wave-mode photon of wavevector k,

with r components of ˆ̂
k present here. These quantities are manifestly independent of t. For r = 0, we have W and for

r = 1 we have the components G(a) of linear momentum G.
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plane waves, as we now demonstrate in three examples.

Example one: interference and quasi-interference

First, we explore further the analogy between energy and helicity which we introduced in §3.3.5 and

§3.3.7.

In general, the energy density w is positive, although it can vanish at certain points in space at

certain times. In contrast, the helicity density h can be positive, vanishing or negative. w is sensitive

to the phenomenon of interference, as manifest in the presence of the dot products E ·E and B ·B:

interference is maximised when parallel electric fields and / or parallel magnetic flux densities are

superposed but is absent in the orthogonal case. In contrast, h is not inherently sensitive to interfer-

ence but rather, we suggest by analogy, to a kind of ‘interference’ between the electric field E and

magnetic fiux density B and the associated second C⊥ and first A⊥ potentials, as manifest in the

presence of the dot products−C⊥·E and A⊥·B. We refer to this phenomenon as quasi-interference.

Let us illustrate these ideas by considering light comprised of a superposition of two linearly po-

larised plane waves 1 and 2 of equal angular frequency ω. Initially, we suppose that the wavevectors

of the waves are equal. Now, let the polarisations of the waves be parallel. The electric fields and the

magnetic flux densities of the waves are also parallel and the waves therefore interfere. The electric

field and magnetic flux density of each wave are orthogonal, however, to the associated potentials of

the other wave and the waves therefore do not exhibit quasi-interference. The nature of the interfer-

ence (constructive or destructive) is dictated by the relative phase of the waves which influences the

amplitude of the (linearly polarised) light. w can be greater than, equal to or less than the sum of the

energy densities attributable to the waves individually whereas h vanishes. If we suppose instead

that the polarisations of the waves are orthogonal, the electric fields and the magnetic flux densities

of the waves are also orthogonal and the waves therefore do not interfere. The electric field and

magnetic flux density of each wave are parallel, however, to the associated potentials of the other

wave and the waves therefore exhibit quasi-interference. The nature of the quasi-interference is also

dictated by the relative phase of the waves which now influences the polarisation of the (elliptically

polarised in general) light. w is simply the sum of the energy densities attributable to the waves indi-

vidually whereas h assumes a value equivalent to σh̄ ‘per photon’. If the light is of left-handed circular

polarisation (σ = +1), A⊥ and C⊥ are in phase with, and are parallel and anti-parallel respectively

to, B and E respectively, giving rise to a positive h. Opposing relative orientations are found if the

light is of right-handed circular polarisation (σ = −1), giving rise to a negative h. If the light is linearly

polarised (σ = 0), however, A⊥ and C⊥ are a quarter cycle out of phase with, and are orthogonal to,

B and E respectively, giving rise to a vanishing h. These facts are depicted in figure 3.3. Zambrini

and Barnett have made observations that are closely related to those made here [79].

Let us now consider what happens when the wavevectors k1 and k2 of the waves lie within the

x-z plane but make angles of ±θ (θ > 0) with the +z axis, thus being separated by an angle of

2θ. We take the amplitudes E0 of the waves to be equal and suppose that the polarisation of wave
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Figure 3.3: Three plane waves of wavevector k, angular frequency ω = |k| and differing polarisations.
For each wave, the value taken by the helicity density h, which is sensitive to quasi-interference, should be
compared with the relative orientations and phases of A⊥ and B as well as C⊥ and E.

1 is confined to the x-z plane whilst the polarisation of wave 2 makes an angle ϑ with this plane.

Explicitly, we describe the light as seen in (1.75)-(1.80) with the complex quantites Ẽ and B̃ given

here by

Ẽ = E0(ˆ̂x cos θ − ˆ̂z sin θ) exp [i|k| (z cos θ + x sin θ)]

+E0[(ˆ̂x cos θ + ˆ̂z sin θ) cosϑ+ ˆ̂y sinϑ] exp [i|k| (z cos θ − x sin θ)] , (3.59)

B̃ = E0
ˆ̂y exp [i|k| (z cos θ + x sin θ)]

+E0[(−ˆ̂x cos θ − ˆ̂z sin θ) sinϑ+ ˆ̂y cosϑ] exp [i|k| (z cos θ − x sin θ)] . (3.60)
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We find that

w = E2
0 [1 + cosϑ cos (κx)] , (3.61)

h = −E2
0 sinϑ sin (κx) /ω, (3.62)

to first order in θ, with κ = 2θω a wavenumber. Notice that h is independent of t, as is the case

for all strictly monochromatic light that is freely propagating. Due to the small angular separation 2θ

of the waves, their relative phase undulates as a function of x, with wavelength 2π/κ = π/θω. For

ϑ = 0, the polarisations of the waves are (essentially, as θ is small) parallel and the light is linearly

polarised. The waves interfere and w undulates between 2E0 and 0, reflecting the undulation of the

relative phase of the waves. Thus, we have ‘bright’ and ‘dark’ fringes: a redistribution of energy within

the light, attributable to constructive interference and destructive interference. In contrast, no quasi-

interference occurs and h vanishes. Light possessing such characteristics can be found, for example,

in the far-field of a Young’s double slit diffraction pattern using linearly polarised light [36]. If, instead,

ϑ = π/2, the polarisations of the waves are orthogonal and the polarisation parameter σ of the light

undulates between σ = 1 and σ = −1, again reflecting the undulation of the relative phase of the

waves. The waves do not interfere and w assumes a value of E2
0 . The waves do, however, exhibit

quasi-interference and h undulates between E2
0/ω and −E2

0/ω. Thus, we have ‘helicity fringes’: a

redistribution of helicity about h = 0 within the light, attributable to quasi-interference. Such light

has been utilised recently in optical trapping experiments [80, 81] and has been referred to as a

polarisation grating. See also [82].

Example two: helicity is analogous to charge

Although we are considering light that is propagating freely in the strict absence of charge, we can

draw an analogy between the helicity continuity equation (3.44) and the charge continuity equation

(1.35). In doing so, we ellucidate the distinction between helicity and spin.

Charge, and indeed the charge density ρ can be positive or negative and a flow of positive charge

in a given direction can yield the same current density J as a suitable flow of negative charge in

the opposite direction [36]. Similarly, helicity, and indeed the helicity density h can be positive or

negative and a flow of positive helicity in a given direction can yield the same helicity flux density s

as a suitable flow of negative helicity in the opposite direction. The analogy stops there, however, as

there is no obvious physical significance to the volume integral of J whereas s is also a spin density,

the volume integral of which over all space yields the spin S, of course.

To illustrate these ideas, let us consider light comprised of two circularly polarised plane waves 1

and 2 of equal amplitude E0/
√

2, and equal angular frequency ω propagating in the +z and −z
directions and possessing polarisation parameters σ1, σ2 ∈ {−1, 1}. Explicitly, we describe the light

as seen in (1.75)-(1.80) with the complex quantites Ẽ and B̃ given here by

Ẽ = E0(ˆ̂x + iσ1 ˆ̂y) exp (i|k|z) /
√

2 + E0(−ˆ̂x + iσ2 ˆ̂y) exp (−i|k|z) /
√

2, (3.63)

B̃ = E0(−iσ1 ˆ̂x + ˆ̂y) exp (i|k|z) /
√

2 + E0(iσ2 ˆ̂x + ˆ̂y) exp (−i|k|z) /
√

2. (3.64)
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We find that

h = E2
0 (σ1 + σ2) /2ω, (3.65)

s = E2
0 (σ1 − σ2) ˆ̂z/2ω. (3.66)

Notice that s, like h, is independent of t, as is the case for all strictly monochromatic light that is freely

propagating.

If both waves possess the same sense of circular polarisation (σ1 = σ2 = ±1), there is a non-

vanishing helicity density h = ±E2
0/ω but a vanishing helicity flux density or spin density s = 0. In

contrast, if the waves possess opposite circular polarisations (σ1 = −σ2 = ±1), there is a vanishing

helicity density h = 0 but a non-vanishing helicity flux density or spin density s = ±E0
ˆ̂z/ω. Returning

to the analogy made above between helicity and charge, we can liken the first case (σ1 = σ2 = ±1) to

a combination of two counterpropagating flows of charge of the same sign, giving rise to a net charge

(cf h 6= 0) but no net current (cf s = 0). In contrast, we can liken the second case (σ1 = −σ2 = ±1)

to a combination of two counterpropagating flows of charge of opposite sign, yielding overall neu-

trality (cf h = 0) whilst giving rise to a net current (cf s 6= 0). See figure 3.4. Counterpropagating

circularly polarised beams of light possessing opposite handedness (but slightly different amplitudes)

have been utilised recently in a luminescence-detected circular dichroism experiment [83–85], which

yielded an enhancement of a certain measure of dissymmetry over that which can be observed util-

ising a single traveling beam of circularly polarised light. Counterpropagating circularly polarised

beams of light possessing the same handedness comprise so-called σ − σ light which is utilised in

the laser cooling of atoms [86–90].

Evidently, it is possible to produce light that possesses a non-vanishing helicity but a vanishing

helicity flux and, in particular, a vanishing spin (and vice-versa). This is, we suggest, a clear demon-

stration that helicity and spin are indeed distinct, in spite of the intimate relationship between them

which is embodied in the helicity continuity equation (3.44).

Figure 3.4: A close analogy can be drawn between helicity and charge owing primarily to the fact that both
are signed quantities.
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Example three: helicity and polarisation are not synonymous

Let us now highlight the distinction between helicity and polarisation. Helicity is an intrinsic rota-

tion angular momentum and may be thought of as flowing continuously within an optical field, in

accordance with the helicity continuity equation (3.44). In contrast, polarisation is a concept which is

invoked to describe the manner in which the electric field vectors, in particular, evolve. For a single

circularly polarised plane wave, the helicity is certainly seen to depend upon the polarisation and, for

this reason, the words ‘helicity’ and ‘polarisation’ are often used interchangeably. It should be clear,

however, that they are not synoymous in general. To illustrate this, we need only note that horizontal

and linear polarisations are distinct from each other and yet both give rise to the same (vanishing)

helicity. To quote Darwin: “the polarisation of ... light is incompletely described by ... angular mo-

mentum” [24].

We can demonstrate that the direct identification of helicity with rotating electric field vectors (cir-

cular polarisation) is not appropriate in general through an examination of light comprised of two

plane waves 1 and 2 of equal amplitude E0 and equal angular frequency ω that are linearly polarised

parallel to the y and x axes and propagate in the +z and −z directions. Explicitly, we describe the

light as seen in (1.75)-(1.80) with the complex quantites Ẽ and B̃ given here by

Ẽ = E0
ˆ̂y exp (i|k|z)− E0

ˆ̂x exp (−i|k|z) , (3.67)

B̃ = −E0
ˆ̂x exp (i|k|z)− E0

ˆ̂y exp (−i|k|z) . (3.68)

This is so-called lin ⊥ lin light which is utilised, for example, in the laser cooling of atoms, due to

its inherent ‘polarisation gradients’ [86–90]: at z = zN = Nπ/2ω and z = zM = (2M + 1)π/4ω

with N,M ∈ {0,±1, . . . }, the electric field vectors oscillate within the x-y plane in linear and circular

manners, respectively. The magnetic flux density pseudovectors also oscillate within the x-y plane

in linear and circular manners at z = zN and z = zM , respectively. However, the sense of rotational

motion that they exhibit is opposite to that exhibited by the electric field vectors. We find that

h = 0, (3.69)

s = 0, (3.70)

which is unsurprising, perhaps, given these opposing rotational motions: h and s favour neither the

electric nor magnetic properties of light. Evidently, the mere existence of rotating electric field vectors

(circular polarisation) does not in itself imply the existence of a non-vanishing h and / or s, in general8.

8Although E and B are treated in an equal manner by Maxwell’s equations as written in the strict absence of charge
(1.68)-(1.71), they are, of course, distinct entities. In spite of the opposing senses of rotational motion exhibited by their
vectors and pseudovectors, it would certainly not be fair to say that the light under examination possesses no rotational
motion whatsoever. E and B do not ‘cancel each other out’. Indeed, further investigation reveals the presence of non-
vanishing spin flux density components or ab infra zilches densities n(ab).
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3.4 The zilch

In 1964, Lipkin [78] introduced a rank-three pseudotensor Zαβγ with contravariant components ex-

pressible as

Z000 =
1

2
[E · (∇×E) + B · (∇×B)] , (3.71)

Z0a0 =
1

2

(
E× Ė + B× Ḃ

)
(a)
,

Zab0 =
1

2

{
δ(ab) [E · (∇×E) + B · (∇×B)]

−E(a) (∇×E)(b) − E(b) (∇×E)(a) −B(a) (∇×B)(b) −B(b) (∇×B)(a)

}
and

Z00a = Z0a0, (3.72)

Z0ab = Zab0,

Zabc = δ(ab)Z
00c +

1

2

[
−E(a)∂cB(b) − E(b)∂cB(a) +B(a)∂cE(b) +B(b)∂cE(a)

]
,

where we have introduced a factor of 1/2 and omitted solenoidal contributions to the Zαβa. The

significance of Zαβγ lies in the fact that it obeys the continuity equation

∂γZ
αβγ = 0 (3.73)

which embodies the conservation of the quantities

Zαβ =

∫ ∫ ∫
Zαβ0 d3r. (3.74)

Lipkin referred to these collectively as the zilch, with Zαβ in particular the αβ zilch. By virtue of the

symmetry Zαβ = Zβα and the fact that Zαα = 0, nine of the Zαβ are distinct.

Following Lipkin, we find that
Zαβγ

w
= ± h̄ω

2

h̄ω
ˆ̂
kα

ˆ̂
kβ

ˆ̂
kγ (3.75)

for a circularly polarised plane wave of wave four vector kα = (ω,k) and polarisation parameter

σ = ±1, which suggests an αβ zilch of ±h̄ω2ˆ̂
kα

ˆ̂
kβ per photon as is indeed the case. Evidently then,

the cycle-averaged components Zαβγ of Zαβγare, for this wave, proportional to the cycle-averaged

components Nαβγ of Nαβγ , as may be seen by comparing (3.75) with (3.48). It can be shown, in

fact, that

Zαβγ = ω2Nαβγ (3.76)

for any monochromatic light of angular frequency ω. This suggests, perhaps, that the zilch might pro-

vide a description of the intrinsic rotation angular momentum of light that is similar to that presented

in §3.3 whilst avoiding the explicit appearance of non-local functions of the electric field E and the

magnetic flux density B, such as the first potential A⊥ and the second potential C⊥. Indeed, Lipkin
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himself noted that the zilch might be related to the ‘intrinsic spin’ of light, although he acknowledged

the unusual frequency dependence exhibited by the zilch and observed that the dimensions of the

zilch cannot readily be brought into coincidence with those of an angular momentum. Shortly after

the appearance of Lipkin’s paper, it was conjectured by Candlin [69] that the zilch is but one member

of an infinite hierarchy of conserved properties of light related to but distinct from helicity and that

they possess no obvious physical significance. Generalisations of Lipkin’s discovery were also made

by Morgan [91], O’Connell and Tompkins [92] and Kibble [93]. Nevertheless, the zilch was recently

reintroduced into the literature by Tang, Cohen and Yang [83, 94] who referred to Z000 in particular as

the ‘optical chirality’, advocating it as a measure of the chirality of light. This interpretation has been

utilised to predict and describe the results of luminescence-detected circular dichroism experiments

[83–85, 94–96]. Restricting their attention to monochromatic light, of angular frequency ω, Bliokh and

Nori [97] recognised, much in the spirit of Lipkin’s original observations, that Z00 and the Z0a are,

in a given frame of reference, proportional to, but not equal to, the helicity H and the components

S(a) of the spin S, the proportionality factor being ω2. Such proportionalities were also observed by

Andrews and Coles [98–100].

To be clear, it is the helicity, spin, ab infra zilches etc that possess the dimensions of a rotation

angular momentum and describe the angular momentum of light. The zilch, in contrast, lacks the di-

mensions that are required in this context and does not describe the angular momentum of light. We

explain the significance of the zilch, in particular the apparent similarity of the 00 zilch to helicity, the

0a zilches to the components of spin and the ab zilches to the ab infra zilches, by recalling from §2.2

that the time derivatives or curls G and M of E and B also satisfy a set of Maxwell-like equations

(2.18)-(2.21). It follows that the superficial transformation

A⊥ → Ȧ⊥ = ∇×C⊥

C⊥ → Ċ⊥ = −∇×A⊥

E → Ė = ∇×B

B → Ḃ = −∇×E (3.77)

applied to Nαβγ yields another set of conserved quantities which describe the ‘angular momentum’

of the time derivative or curl (G and M) of the electromagnetic field, rather than the electromag-

netic field (E and B) itself. These quantities are, in fact, the zilch: the transformation seen in (3.77)

takes Nαβγ → Zαβγ . Thus, the 00 zilch is the ‘helicity’ of the time derivative or curl of the electro-

magnetic field, the 0a zilches are the components of the ‘spin’ of the time derivative or curl of the

electromagnetic field and the ab zilches are the ‘ab infra zilches’ of the time derivative or curl of the

electromagnetic field, hence our choice of name for the latter. Indeed, we recognise now that

Z00 =

∫ ∫ ∫
1

2

(
Ȧ⊥ · Ḃ− Ċ⊥ · Ė

)
d3r, (3.78)

for example, which should be compared with the form for H seen on the first line of (3.31). The

appearance of two time derivatives in (3.78) and analogously for the other Zαβ gives rise in turn to

the proportionality seen in (3.76). That the Lorentz transformation properties of Z00 differ from those
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ofH is seemingly a reflection of the fact that the Lorentz transformation properties of G and M differ

from those of E and B. Indeed, the Maxwell-like equations (2.18)-(2.21) are

∂β∂0F
αβ = 0,

∂β∂0G
αβ = 0, (3.79)

and may be seen to follow from the general observation that all contractions of the tensor ∂α∂β . . . ∂ωFµν

and the pseudotensor ∂α∂β . . . ∂ωGµν vanish.

3.5 Extrinsic and quasi-extrinsic rotation angular momenta

In §3.3, we considered intrinsic rotation angular momenta. That is, helicity, spin, the ab infra zilches

etc. In the present section, we turn our attention to extrinsic and quasi-intrinsic rotation angular

momenta. That is, orbital angular momentum and possible extensions thereof.

3.5.1 Orbital angular momentum

Here, we introduce a local description of orbital angular momentum. Adopting the orbital angular

momentum density l seen in (3.12) and identifying the components

o(ab) =
1

2

{
ε(acd)ε(bef)

[
E(e)r(c)∂dC

⊥
(f) −B(e)r(c)∂dA

⊥
(f)

]
+A⊥(a)B(b) − C⊥(a)E(b)

}
(3.80)

of an associated orbital angular momentum flux density, we obtain the continuity equation

l̇(a) + ∂bo(ab) = 0 (3.81)

which embodies the conservation of orbital angular momentum. Whilst writing this thesis, the orbital

angular momentum continuity equation (3.81) was also identified, independently, by Bliokh, Dressel

and Nori [101].

For the Bessel beam described by (1.81)-(1.84),

lz
w

=
h̄`

h̄ω
. (3.82)

This classical result (3.82) suggests a z component of orbital angular momentum equal to h̄` per

photon, as we might expect.

3.5.2 Orbital helicity?

In light of our observation in §3.3 that spin is but one member of an infinite collection of intrinsic

rotation angular momenta (helicity, spin, the ab infra zilches etc) it is natural, perhaps, to ask whether

orbital angular momentum is also but one member of an analogous collection. It appears that this

is not the case, however. In particular, we are unable to identify a non-vanishing orbital analogue of

helicity.
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In particle physics, the fact is well established that the orbital angular momentum of a particle makes

no contribution to the particle’s helicity, as

(r̂× p̂) · p̂

|p̂|
= 0. (3.83)

This relationship has been emphasised in the context of light by Fernandez-Corbaton, Zambrana-

Puyalto and Molina-Terizza [102]. Looking at the second line of (3.8), we see indeed that the orbital

angular momentum density in reciprocal space is everywhere orthogonal to the wavevector k and so

the component of this density along k vanishes. Another indication follows from the observation that

the trace of the components of the spin flux density n(ab) yields the helicity density h (n(aa) = h):

pursuing an analogous approach for orbital angular momentum, we find that∫ ∫
∞

∫
o(aa) d3r = 0, (3.84)

again suggesting the absence of a non-trivial orbital analogue of helicity.

It may be surprising that the intrinsic rotation angular momentum content of light is so rich, being

comprised of helicity, spin, the ab infra zilches etc, whilst the extrinsic and quasi-extrinsic rotation

angular momentum content of light is relatively barron, being comprised solely of orbital angular mo-

mentum. Here, it is instructive, perhaps, to note that these have rather different ‘origins’: the former

(helicity, spin, the ab infra zilches etc) as conserved quantities are specific to light, owing their exis-

tence in particular to the spin-one and massless nature of the photon. In contrast, the latter (orbital

angular momentum) is not specific to light, being a rather general property of waves: electron de

Broglie waves [103] and sound waves [51] are but two examples in which orbital angular momentum

can manifest owing to the presence of helical phase fronts.

3.6 Boost angular momenta

In §3.3-§3.5 we considered rotation angular momenta. We now turn our attention towards the other

side of the story; boost angular momenta.

3.6.1 Intrinsic boost angular momenta

Following Barnett’s proposed separation of the boost angular momentum K into boost spin V and

boost orbital Y pieces [45], discussed in §3.1, we observe here the existence of an infinite collection

of boost analogues of the intrinsic rotation angular momenta (helicity, spin, the ab infra zilches etc)

introduced in §3.3.

We identify

d = −1

2

(
A⊥ ·E + C⊥ ·B

)
(3.85)

53



as a boost helicity density: together with a boost helicity flux density

v =
1

2

(
−E×C⊥ + B×A⊥

)
, (3.86)

it satisfies the continuity equation

ḋ+ ∇ · v = 0, (3.87)

which embodies the conservation of boost helicity and is seemingly analogous to the helicity conti-

nuity equation (3.44). We also recognise v as being the integrand of V seen in (3.26) and therefore

identify it as a boost spin density: together with the components

q(ab) =
1

2

[
δ(ab)

(
−A⊥ ·E + C⊥ ·B

)
+A⊥(a)E(b) +A⊥(b)E(a) + C⊥(a)B(b) + C⊥(b)B(a)

]
(3.88)

of a boost spin flux density, it satisfies the continuity equation

v̇(a) + ∂bq(ab) = 0, (3.89)

which embodies the conservation of boost spin and is seemingly analogous to the spin continuity

equation (3.45). We can proceed in this vein indefinitely and thus identify an infinite collection of

intrinsic boost angular momenta, as claimed.

The boost helicity density d and the boost helicity flux density or boost spin density v can certainly

be non-vanishing at a given position r and time t. Their cycle-averaged values d and v vanish for all

monochromatic light, however, and the boost helicity D itself vanishes:

D =

∫ ∫
∞

∫
d d3r

= 0 (3.90)

in general, just as V does (V = 0). The remaining members of the infinite collection of intrinsic boost

angular momenta are, it seems, similarly fickle. We offer an explanation for this in §4.4.5.

3.6.2 Extrinsic boost angular momenta

Much as we can identify a continuity equation (3.89) for boost spin, we can identify an explicit conti-

nuity equation for boost orbital angular momentum. Taking the integrand

y =
1

2

[
−A⊥(a)

(
t∇ + r

∂

∂t

)
E(a) − C⊥(a)

(
t∇ + r

∂

∂t

)
B(a)

]
(3.91)
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of Barnett’s candidate Y for the boost orbital angular momentum [45], seen in (3.27), to be a boost

orbital angular momentum density and introducing the components

f(ab) =
1

2

(
t

{
δ(ab)

1

2

[
∂cC

⊥
(d)∂dC

⊥
(c) + ∂cA

⊥
(d)∂dA

⊥
(c)

]
−A⊥(c)∂a∂bA

⊥
(c) − C

⊥
(c)∂a∂bC

⊥
(c)

}
(3.92)

+r(a)

[
A⊥(c)∂bE(c) + C⊥(c)∂bB(c) − ∂cC⊥(b)B(c) − ∂cA⊥(b)E(c)

]
+A⊥(a)E(b) + C⊥(a)B(b)

)

of an associated boost orbital angular momentum flux density, we identify the continuity equation

ẏ(a) + ∂bf(ab) = 0, (3.93)

which embodies the conservation of boost orbital angular momentum and is seemingly analogous

the orbital angular momentum continuity equation (3.81). Owing to the trivial nature of boost spin, the

continuity equation (3.93) does not obviously contain any physical information not already present,

however, in the continuity equation

∂αM
0aα = 0, (3.94)

from (3.14), which embodies the conservation of the complete (spin + orbital) boost angular momen-

tum.

As was observed in §3.5.2, a trace over the spin flux density components n(ab) yields the helicity

density h (n(aa) = h) whilst a trace over the orbital angular momentum flux density components

o(ab) yields a candidate orbital helicity density, the integral over all space of which vanishes, as seen

in (3.84). When looking at boost angular momentum rather than rotation angular momentum, the

situation is somewhat reversed: a trace over the boost spin flux density components q(ab) yields the

boost helicity density d (q(aa) = d), the integral over all space of which vanishes, as seen in (3.90).

A trace over the boost orbital angular momentum flux density components f(ab), however, yields

the density of a non-trivial conserved quantity that we might refer to as boost orbital helicity. For

simplicity, we illustrate this for the complete (spin+orbital) form

Mαβ
β = xβT

βα

= Dα (3.95)

which satisfies the continuity equation

∂αD
α = 0 (3.96)

embodying the conservation of boost orbital helicity.

We may elucidate the physical significance of boost orbital helicity and its conservation by consider-

ing a single linearly polarised plane wave, of angular frequency ω and wavevector k. Let us identify

some point X on the wave that resides at position r1 at time t1. The boost orbital helicity contained
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in an infinitesimal volume element centred upon r1 at t1 is proportional to

D0 (r1, t1) = t1w (r1, t1)− r1 · g (r1, t1) . (3.97)

At a time t2 > t1, the wave has propagated such that the point of interest X resides at a new position

r2. The boost orbital helicity contained in an infinitesimal volume element centred upon r2 at t2 is

proportional to

D0 (r2, t2) = t2w (r2, t2)− r2 · g (r2, t2) . (3.98)

Now, the conservation of energy and linear momentum tells us that

w (r2, t2) = w (r1, t1) , (3.99)

g (r2, t2) = g (r1, t1) . (3.100)

Moreover, Poynting’s vector g coincides with the direction of propagation of the wave and so

r2 = r1 + (t2 − t1) ˆ̂g (r1, t1) . (3.101)

Thus

D0 (r2, t2)−D0 (r1, t1) = (t2 − t1) [w (r1, t1)− |g (r1, t1) |] . (3.102)

The conservation of boost orbital helicity tells us finally that D0 (r2, t2)−D0 (r1, t1) = 0. As t2 6= t1

and the argument is valid for all r1 and t1, it follows then from (3.102) that the energy density w and

the magnitude of g are related as

w = |g|. (3.103)

Thus, the conservation of boost orbital helicity can be regarded, for a single plane wave at least, as

a statement of the dispersion relation ω = |k|. See figure 3.5.

3.7 In the presence of charge

We now illustrate briefly how the results introduced in the present chapter can be generalised to ac-

count for the presence of charge.

We find, for example, that the spin S = S (t) and orbital angular momentum L = L (t) of the
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Figure 3.5: The continuity equation ∂αDα = 0 for boost orbital helicity can be understood or at least appreci-
ated by examining a point X on a single linearly polarised plane wave of angular frequency ω and wavevector
k (for the sake of clarity, a portion of the wave surrounding X is highlighted here in red). Like the energy
w(r1, t1)d3r and the linear momentum g(r1, t1)d3r, the boost orbital helicity D0(r1, t1)d3r contained in the
vicinity of X is conserved and is therefore carried along by the wave without changing value as the wave prop-
agates (and X moves). An interpretation of ∂αDα = 0 as a statement of the wave’s dispersion relation ω = |k|
follows simply from this picture, as detailed in the text.

radiation field [11] can be expressed in manifestly electric-magnetic symmetric forms in general as

S =

∫ ∫
∞

∫
iα̃× α̃∗ d3k

=

∫ ∫
∞

∫
E⊥ ×A⊥ d3r

=

∫ ∫
∞

∫
1

2

(
E⊥ ×A⊥ + B×C⊥

)
d3r, (3.104)

L =

∫ ∫
∞

∫
iα̃(a) (k×∇k) α̃∗(a) d3k

=

∫ ∫
∞

∫
E⊥(a) (r×∇)A⊥(a) d3r

=

∫ ∫
∞

∫
1

2

[
E⊥(a) (r×∇)A⊥(a) +B⊥(a) (r×∇)C⊥(a)

]
d3r, (3.105)

which strengthens our resolve that we did indeed identify a meaningful definition of C⊥ in particular

in the presence of charge in §2.3: the equalities relating the second and third lines of (3.104) and of
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(3.105) would not have held had we defined C⊥ in another manner such as B = −Ċ⊥, for exam-

ple. Moreover, if these equalities did not exist, we would have been forced to conclude, somewhat

unsatisfactorily, that the familiar ‘E,A’ forms of S and L were more fundamental than the manifestly

electric-magnetic symmetric ‘E,B,A,C’ forms, as the latter would have only been appropriate in

the strict absence of charge by virtue of the equalities linking the first and second lines of (3.9) and

of (3.10) within that domain. As the E,A forms and the E,B,A,C forms of S and L are, in fact,

equivalent, their properties, couplings to charge etc [11, 24, 59, 60] are identical. We meet with sim-

ilarly pleasing results elsewhere in the fundamental description of the angular momentum of light. In

particular, we find that the helicity H = H (t) of the radiation field9 takes the form

H =

∫ ∫
∞

∫
iα̃× α̃∗ · ˆ̂k d3k

=

∫ ∫
∞

∫
1

2

(
A⊥ ·B−C⊥ ·E⊥

)
d3r, (3.106)

where the first line seen in (3.106) should be compared with the first line seen in (3.104). Interestingly,

the coupling of H to charge:

Ḣ =

∫ ∫
∞

∫
J ·C⊥ d3r

=
N∑
n=1

qnṙn ·C⊥ (rn, t) , (3.107)

is centred upon C⊥.

Pleasingly, the analogy drawn in §3.3.7 between helicity, spin etc and energy, linear momentum

etc holds even in the presence of charge: the former properties of the radiation field, as well as their

couplings to charge, are transformed into the latter and their couplings to charge under the superficial

mapping

A⊥ → B

C⊥ → −E⊥

E⊥ → E⊥

B → B, (3.108)

9H is a mere rotational pseudoscalar as opposed to a Lorentz pseudoscalar: it only attains a Lorentz-invariant status
in the strict absence of charge. Superficially, at least, this can be related to the apparent impossibility of constructing a
four-pseudovector from Θ and C.
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which, for example, transforms the equation (3.107) expressing the coupling of H to charge into

d
dt

∫ ∫
∞

∫
1

2

(
E⊥ ·E⊥ + B ·B

)
d3r = −

∫ ∫
∞

∫
J ·E⊥ d3r

= −
N∑
n=1

qnṙn ·E⊥ (rn, t) , (3.109)

expressing the coupling of the energy of the radiation field to charge.

Naturally, the operator Ĉ⊥ representing C⊥ also plays the expected role in the fundamental de-

scription of the angular momentum of light. We find, for example, that the operator Ĥ representing

H takes the form

Ĥ =
∑
k

∑
σ

σh̄n̂kσ

=

∫ ∫
V

∫
1

2

(
Â⊥ · B̂− Ĉ⊥ · Ê⊥

)
d3r, (3.110)

describing a helicity of ±h̄ per circularly polarised plane-wave-mode photon of wavevector k and

polarisation parameter σ = ±1. Multiple formulations of quantum electrodynamics exist that are

equivalent in their physical predictions and considerable care must be taken, of course, in extending

to them such results. To illustrate this, suppose now that we work not in the minimal coupling for-

malism but rather in the multipolar formalism [11, 12]. If we insist on identifying a helicity of ±h̄ per

circularly polarised plane-wave-mode photon of wavevector k and polarisation parameter σ = ±1,

the operator Ĥ′ 6= Ĥ representing the helicity H′ 6= H then assumes the form

Ĥ′ =
∑
k

∑
σ

σh̄n̂′kσ

=

∫ ∫
V

∫
1

2

(
Â⊥ · B̂− Ĉ′⊥ · D̂⊥

)
d3r, (3.111)

with n̂′kσ the number operator for a circularly polarised plane-wave-mode photon of wavevector k and

polarisation parameter σ, D̂⊥ = D̂⊥ (r) the operator representing the solenoidal piece D⊥ of the

electric displacement field D and the operator Ĉ′⊥ = Ĉ′⊥ (r) defined such that D̂⊥ = −∇ × Ĉ′⊥.

Although the first line seen in (3.111) is identical in form to that seen in (3.110), the second line differs

from that seen in (3.110) because the notion of a photon in the multipolar formalism differs from that

in the minimal coupling formalism [11, 12].

3.8 Discussion

We have explored the fundamental description in the theory of electrodynamics of the angular mo-

mentum of light. We have recognised in particular that light possesses an infinite collection of intrinsic

rotation angular momenta in addition to spin, the members of which are sensitive to photon helicity,

with helicity itself lying at very heart of the collection. In addition, we have pursued analogous ideas
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for the extrinsic and quasi-extrinsic rotation angular momentum of light, as well as the boost angular

momentum of light. Some of the relations between the angular momenta that we have met are de-

picted in figure 3.6.

Figure 3.6: An attempt to categorise the various angular momenta possessed by light, as well as indicate
some of the relationships between them. By ‘trivial’, we mean here that the total angular momentum vanishes
(although the associated density and flux density are non-vanishing in general).

There remains much to be explored, of course. I would like to study the local description of orbital

angular momentum in more detail, with a focus upon the subtle interplay between its extrinsic and

quasi-intrinsic components. Moreover, I would like to better understand the boost angular momentum

of light which remains rather neglected, it seems, relative to the rotation angular momentum of light.

These are tasks for future research.
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Chapter 4

Noether’s Theorem and

Electric-Magnetic Democracy

4.1 Introduction

Ultimately, quantities such as energy, linear momentum and angular momentum are important be-

cause they are conserved. Conservation laws are important in turn because they apparently con-

strain the evolution of a system and aid in calculations: Newton’s laws of motion, for example, can

be regarded as statements of linear momentum conservation. The idea of a conservation law can be

traced back at least as far as Descartes, who suggested (incorrectly) that the product of ‘size’ and

speed is conserved in collisions between material bodies [36].

In her well known (first) theorem, Noether established that continuous symmetries inherent in the

equations of motion governing a system are associated with conservation laws which the system

respects [104, 105]. In electrodynamics, Noether’s theorem was first applied by Bessel-Hagen [106]

and much has been written in this context since. There remains a great deal that is not understood,

however, and, in the present chapter, we approach this subject from the perspective of electric-

magnetic democracy. In particular, this lends us a deeper understanding of the angular momenta

that we identifed heuristically in §3: the conservation of these in the strict absence of charge reflect

the myriad ways in which it is possible to rotate light that is freely propagating. The text is based

primarily upon my research paper [107].

4.2 Formalism

4.2.1 Noether’s theorem: qualitative description

The quantitative formulation of Noether’s theorem requires some rather complicated mathematics,

which tends to obscure the relatively simple ideas involved. Let us begin, therefore, with a qualitative

description of Noether’s theorem in the context of electrodynamics.

Suppose initially that the trajectories rn of the particles as well as the electric field E and the mag-
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netic flux density B evolve in accord with the Newton-Einstein-Lorentz equation (1.3) and Maxwell’s

equations (1.4)-(1.7). Now imagine actively performing the infinitesimal transformation

rn → r′n = rn + δrn

E → E′ = E + δE

B → B′ = B + δB. (4.1)

If we choose the infinitesimal changes δrn, δE and δB such that the transformed trajectories r′n

of the particles, the transformed electric field E′ and the transformed magnetic flux density B′ also

satisfy (1.3)-(1.7), we say that (4.1) is an infinitesimal symmetry transformation. Noether’s theorem

associates conservation laws with the existence of these symmetry transformations [104, 105].

There exist ten continuous symmetry transformations in electrodynamics, namely translations in

time, translations in space, circular rotations in space and boosts, the latter being hyperbolic ro-

tations in spacetime, of course. The conservation laws traditionally associated with these through

Noether’s theorem pertain to energy, linear momentum, rotation angular momentum and boost an-

gular momentum, as was first demonstrated (for light that is freely propagating) by Bessel-Hagen

[106]. In addition, the gauge invariance of E and B is usually associated with the conservation of

charge [8, 108]. There exist other symmetries in electrodynamics, of course, such as the invariance

of (1.3)-(1.7) under time reversal and parity reversal [2, 25]. Being discrete rather than continuous,

such symmetry transformations cannot obviously be brought into an infinitesimal form so as to be

investigated using Noether’s theorem, however [104, 105].

Let us now focus our attention upon light that is propagating freely in the strict absence of charge. As

we will demonstrate in what follows, Maxwell’s equations (1.68)-(1.71) then exhibit an infinite number

of continuous symmetries and associated conservation laws of distinct character.

4.2.2 The standard Lagrangian density

In modern terms, Fermat’s principle states that the path taken by a ray of light in geometrical optics is

such that the time that elapses is ‘stationary’ with respect to variations in this path [27, 105]. Hamilton

expressed this using the language of variational calculus [109] and subsequently expanded his work

to the study of the dynamics of systems of particles [110, 111], thus ellucidating the principle that

now bears his name [112]. As a precursor to our quantitative formulation of Noether’s theorem, let us

begin now by reviewing Hamilton’s principle, as it is usually applied to light that is propagating freely

in the strict absence of charge.

Suppose that the form of the light is known at times t = t1 and t = t2 for all positions r and as

|r| → ∞ for t1 ≤ t ≤ t2. An action S of the light is then defined as

S =

∫ t2

t1

L dt (4.2)
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with L a Lagrangian of the light, related in turn to a Lagrangian density L as

L =

∫ ∫
∞

∫
L d3r. (4.3)

Hamilton’s principle states that the true dynamical path followed by the light for t1 ≤ t ≤ t2 is

such that S is stationary with respect to neighbouring paths [110–112]. This allows us to derive the

equations of motion governing the light, provided L is itself chosen suitably. The most commonly

employed choice is, perhaps [2, 10, 14, 113],

L0 = −1

4
(∂αAβ − ∂βAα) (∂αAβ − ∂βAα), (4.4)

with the components of Aα taken to be the generalised coordinates of the light, their first derivatives

constituting generalised velocities1 so that L0 = L0 (Aα, ∂βAγ). We refer to L0 as the standard

Lagrangian density [11]. It is due to Schwarzschild [11, 114]. Hamilton’s principle is applied by

supposing that Aα follows the true dynamical path and considering a small deviation2

Aα → A′α = Aα + δAα, (4.5)

with the infinitesimal four vector δAα satisfying δAα (r, t1) = δAα (r, t2) = 0 for all r and δAα (r, t)→
0 as |r| → ∞ for t1 ≤ t ≤ t2. The corresponding deviation δL0 = L′0 − L0 in L0 is

δL0 =
∂L0
∂Aα

δAα +
∂L0

∂ (∂βAα)
δ (∂βAα)

=

{
∂L0
∂Aα

+ ∂β

[
∂L0

∂ (∂βAα)

]}
δAα − ∂β

[
∂L0

∂ (∂βAα)
δAα

]
(4.6)

and the corresponding deviation δS0 = S′0 − S0 in S0 follows as

δS0 =

∫ t2

t1

∫ ∫
∞

∫ {
∂L0
∂Aα

+ ∂β

[
∂L0

∂ (∂βAα)

]}
δAα d3r dt, (4.7)

which must vanish for all suitable δAα, by assumption. Thus, we arrive at the Euler-Lagrange equa-

tions:

∂β

[
∂L0

∂ (∂βAα)

]
=
∂L0
∂Aα

, (4.8)

which govern the light for t1 ≤ t ≤ t2. Explicit calculation reveals that these (4.8) are

∂βF
αβ = 0, (4.9)

which is (1.31) with Jα = 0. Thus, L0 has, through application of Hamilton’s principle, provided us ex-

plicitly with four of the eight Maxwell equations as written in the strict absence of charge. The remain-

ing four (1.32) are satisfied automatically, of course, by virtue of the definition Fαβ = ∂αAβ − ∂βAα,

1Strictly speaking, the first time derivatives Ȧα of Aα are the generalised velocities whilst the appearance of the first
spatial derivatives ∂aAα of Aα in L0 reflects the continuous nature of light. Interestingly, Ȧ0 does not actually appear [11].
Note that r is not subjected to variation but rather is regarded as a continuous label [11].

2Our independent variation of the Aα precludes the imposition of a gauge [11, 14].
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as described in §1.2.2.

In general, it is the equations of motion governing a system that are directly verified in experiment,

not an action, Lagrangian or indeed Lagrangian density. Although the latter are sometimes regarded

as being more fundamental, the fact should be borne in mind that they are postulated to yield the

equations of motion and, as such, are not unique.

4.2.3 The electric-magnetic Lagrangian density

The research described in the present chapter was motivated by a desire to understand the impli-

cations of electric-magnetic democracy in the context of Noether’s theorem. Surprisingly, however,

we find that the standard Lagrangian density L0 does not retain its form under a Heaviside-Larmor

rotation (2.1). This is, perhaps, a reflection of the fact that L0 is defined solely in terms of a magnetic

potential Aα. Whilst this peculiar characteristic does not give rise to any fundamental difficulties, it

encourages us nevertheless to add half of L0 to half of the analogous electric form, obtaining

L = −1

8
(∂αAβ − ∂βAα) (∂αAβ − ∂βAα)

−1

8
(∂αCβ − ∂βCα) (∂αCβ − ∂βCα). (4.10)

Naïvely, we might now consider the eight components of Aα and Cα to be the generalised coordi-

nates of the light, their first derivatives constituting generalised velocities. There is, however, a subtle

but important point that must be appreciated here, one that stems from the problem of overdetermi-

nation. If we identify Aα and Cα as potentials a priori, we find that L vanishes, by virtue of the fact

that Gαβ = εαβγδFγδ/2.

To proceed, suppose initially that we attach no physical interpretation to the four vector Aα or the

four pseudovector Cα except that their dimensions are such that L in turn has the dimensions of

an energy per unit volume. Considering Aα and Cα to be independent of each other and applying

Hamilton’s principle, we then obtain eight Euler-Lagrange equations:

∂β

(
∂αAβ − ∂βAα

)
= 0, (4.11)

∂β

(
∂αCβ − ∂βCα

)
= 0. (4.12)

Restricting our attention now to the solutions of (4.11) and (4.12) for which

∂αCβ − ∂βCα =
1

2
εαβγδ (∂γAδ − ∂δAγ) , (4.13)

we can identify Aα and Cα as potentials and thus make contact with electrodynamics as Fαβ =

∂αAβ − ∂βAα = −εαβγδ (∂γCδ − ∂δCγ) /2 and Gαβ = εαβγδ(∂γAδ − ∂δAγ)/2 = ∂αCβ − ∂βCα,

in which case (4.11) and (4.12) are the complete set of Maxwell equations as written in the strict

absence of charge and (4.13) is Gαβ = εαβγδFγδ/2. This should be contrasted with the fact that

L0 only provides us with four of the eight Maxwell equations explicitly, the remaining four holding
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implicitly.

We refer to L as the electric-magnetic Lagrangian density. Like L0, L is a Lorentz scalar field with

the dimensions of an energy per unit volume and possesses a form that is insensitive to the gauge

of Aα and analogously for Cα. The forms of the Lagrangian L and action S associated with L differ

from those considered by Zwanziger [6, 7], Schwinger [5] and Drummond [71, 72]. Moreover, our

treatment of the eight components of Aα and Cα as the generalised coordinates of the light differs

from the approaches taken by Schwinger [5] and Drummond [71, 72], who treat various components

of the potentials and the field itself as quantities to be subjected to independent variations. The form

exhibited by L has, however, been considered briefly by Rañada [115]. At the time of publishing

the research described in the present chapter [107], the form of L was also recognised by Bliokh,

Bekshaev and Nori [116].

4.2.4 Noether’s theorem: quantitative derivation

We now derive a form of Noether’s theorem based upon L. Suppose that Aα and Cα satisfy

Maxwell’s equations as written in the strict absence of charge (4.11) and (4.12) and imagine ac-

tively performing the infinitesimal transformation

Aα → A′α = Aα + δAα

Cα → C ′α = Cα + δCα (4.14)

where, at present, we make no assumptions about the four vector δAα or the four pseudovector δCα

except that they are infinitesimal. Standard calculus, together with Maxwell’s equations as written in

the strict absence of charge (4.11) and (4.12), gives us an expression for the corresponding change

δL = L′ − L in L:

δL =
∂L

∂ (∂βAα)
δ (∂βAα) +

∂L
∂ (∂βCα)

δ (∂βCα)

=
∂L

∂ (∂βAα)
∂βδAα +

∂L
∂ (∂βCα)

∂βδCα

= ∂β

[
∂L

∂ (∂βAα)
δAα+

∂L
∂ (∂βCα)

δCα

]
− ∂β

[
∂L

∂ (∂βAα)

]
δAα−∂β

[
∂L

∂ (∂βCα)

]
δCα

= ∂β

[
1

2

(
FαβδAα +GαβδCα

)]
− 1

2
∂βF

αβδAα−
1

2
∂βG

αβδCα

= ∂β

[
1

2

(
FαβδAα +GαβδCα

)]
. (4.15)

If the transformation seen in (4.14) leaves L invariant (δL = 0), we say that (4.14) is an infinitesimal

symmetry transformation. Its associated local conservation law then follows from (4.15) as

∂β

[
1

2

(
FαβδAα +GαβδCα

)]
= 0. (4.16)
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This is the form of Noether’s theorem that we adopt in the present chapter. Note that (4.16) holds

regardless of any gauge imposed upon Aα or analogously for Cα; a reflection in turn of the fact that

L possesses a form that is insensitive to the imposition of a gauge upon Aα or analogously for Cα.

At the time of publishing the research described in the present chapter [107], Bliokh, Bekshaev

and Nori [116] also published a Noether investigation on the basis of L. Acknowledgement of both

magnetic and electric potentials has also led Drummond [71, 72] and Anco and The [43] to undertake

related investigations.

4.2.5 Some important subtleties

For arbitrary choices of δAα and δCα, the transformation seen in (4.14) is meaningless, in general.

We demand, in fact, that δAα and δCα be related such that the transformed quantities A′α and C ′α

satisfy

∂αC ′β − ∂βC ′α =
1

2
εαβγδ

(
∂γA

′
δ − ∂δA′γ

)
, (4.17)

thus staying faithful to electrodynamics. It will be noticed that all such transformations constitute

symmetries of Maxwell’s equations as written in the strict absence of charge (4.11) and (4.12), which

are satisfied automatically when the field is defined consistantly in terms of two potentials, as dis-

cussed in §2.2. In addition, L = L′ = δL = 0 for all such transformations. Thus, all symmetries

of Maxwell’s equations as written in the strict absence of charge (4.11) and (4.12) are also strict

(δL = 0) symmetries of L and vice-versa, a most pleasing correspondence that does not exist be-

tween symmetries of the former and strict (δL0 = 0) symmetries of L0. Thus, our employment of L
rather than L0 enables us to carry out a Noetherian investigation with unprecedented simplicity. We

emphasise nevertheless that the same results can be deduced using L0, albeit at the expense of

considerable effort in some cases. We suggest that L be viewed as an alternative to L0, rather than

a replacement; they lead to the same dynamics and hence the same conservation laws.

Here, let us highlight a subtle point of general interest. Although the same mathematical manipu-

lations are employed in deriving Euler-Lagrange equations and in deriving Noether’s theorem, the

motivations for employing them differ: in the first context, coordinate changes (in the present case

δAα and δCα) are chosen specifically so as to violate the Euler-Lagrange equations whereas in the

second context, coordinate changes (δAα and δCα) are chosen specifically so as to respect the

Euler-Lagrange equations.

4.2.6 Uniqueness and the canonical form

We now have all the tools at our disposal to begin our Noetherian investigation. Before doing so,

allow us however to briefly consider questions of uniqueness and thus introduce the canonical form.
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A given infinitesimal symmetry transformation

E → Ẽ = E + δE

B → B̃ = B + δB (4.18)

of the field can be invoked at the level of the potentials in multiple ways. Looking at one of these

Φ → Φ̃ = Φ + δΦ

Θ → Θ̃ = Θ + δΘ

A‖ → Ã‖ = A‖ + δA‖

A⊥ → Ã⊥ = A⊥ + δA⊥

C‖ → C̃‖ = C‖ + δC‖

C⊥ → C̃⊥ = C⊥ + δC⊥, (4.19)

we observe, however, that

δE = −δȦ⊥ = −∇× δC⊥,

δB = = ∇× δA⊥ = −δĊ⊥. (4.20)

Evidently δΦ, δΘ, δA‖ and δC‖ make vanishing contributions to δE and δB and the latter are,

therefore, determined entirely by δA⊥ and δC⊥. Conversely, δA⊥ and δC⊥ are uniquely defined

for a given δE and δB but δΦ, δΘ, δA‖ and δC‖ are not and can take any form corresponding to

an infinitesimal gauge transformation. Consequently, many local conservation laws (from Noether’s

theorem (4.16));

∂

∂t

[
1

2
(−E · δA−B · δC)

]
+ ∇ ·

[
1

2
(−EδΦ−BδΘ + B× δA−E× δC)

]
= 0, (4.21)

of different appearance exist for a given δE and δB. We suggest, however, that the local conservation

law
∂

∂t

[
1

2

(
−E · δA⊥ −B · δC⊥

)]
+ ∇ ·

[
1

2

(
B× δA⊥ −E× δC⊥

)]
= 0 (4.22)

obtained for δΦ = δΘ = δA‖ = δC‖ = 0 embodies the very core of the infinitesimal symmetry

transformation (4.18) and we refer to it as the canonical form. It is pleasing, perhaps, to note that

both (4.21) and (4.22) yield the same global conservation law∫ ∫
∞

∫
1

2

(
−E · δA⊥ −B · δC⊥

)
d3r = constant. (4.23)

Looking at (4.22) and indeed (4.23), it may be tempting to identify ‘unique’ densities and flux densities

directly from
1

2

(
−E · δA⊥ −B · δC⊥

)
and

1

2

(
B× δA⊥ −E× δC⊥

)
. (4.24)
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Nevertheless, we must emphasise that Noether’s theorem (4.16) does not yield densities or flux

densities explicitly and that the identification of such quantities is, it seems, not unique, even given

the canonical form. Indeed, we may have identified a canonical form of different appearance had we

chosen to work with a different but equally valid Lagrangian density, for example L0.

4.3 Local symmetry transformations and their associated conserva-

tion laws

In the present section, we consider local symmetry transformations, in which the changes δE and

δB in the electric field E and the magnetic flux density B depend exclusively upon the latter and

perhaps their derivatives at the same time t and position r. These symmetry transformations can be

expressed simply using the language of tensor and pseudotensor calculus. We exploit the freedom

described in §4.2.6 to obtain associated continuity equations that are themselves manifestly covariant

and depend only upon the electromagnetic field tensor Fαβ , the dual electromagnetic field tensor

Gαβ and their various partial derivatives, with but two exceptions in which a magnetic potential four

vectorAα and an electric potential four pseudovector Cα appear explicity. Such forms are sometimes

referred to as being mechanical.

4.3.1 Heaviside-Larmor rotations and the conservation of helicity

The invariance in form of Maxwell’s equations as written in the strict absence of charge (4.11) and

(4.12) under a Heaviside-Larmor rotation (2.1) was, perhaps, the first3 symmetry identified in the

theory of electrodynamics and it seems natural, therefore, to begin our investigation here.

We invoke an infinitesimal Heaviside-Larmor rotation

Fαβ → F ′αβ = Fαβ + θGαβ

Gαβ → G′αβ = Gαβ − θFαβ (4.25)

as

Aα → A′α = Aα + θCα

Cα → C ′α = Cα − θAα, (4.26)

with the angle θ infinitesimal. It then follows immediately from Noether’s theorem (4.16) that

∂αh
α = 0 with hα =

1

2

(
AβG

αβ − CβFαβ
)
, (4.27)

where we have made use of the fact that θ 6= 0. This continuity equation (4.27) embodies the

conservation of helicity: its associated canonical form coincides with the helicity continuity equation

(3.44) which we originally identified heuristically. For a single plane wave, a Heaviside-Larmor rota-

3If we exclude gauge freedom, which was recognised by Maxwell himself [19].
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tion (2.1) literally rotates the electric field vectors and magnetic flux density pseudovectors about the

direction of propagation through θ [37, 52]: see figure 4.1. It seems natural, perhaps, that such a

Figure 4.1: The effect of an infinitesimal Heaviside-Larmor rotation (4.25) on a single plane wave of wavevec-
tor k.

symmetry transformation should be associated with the conservation of helicity. The association of

Heaviside-Larmor rotations with the conservation of helicity was recognised first by Calkin [70] (see

also [6, 43, 71–73, 75–77]).

This is not yet the end of our story. Consider now the infinitesimal symmetry transformation

Fαβ → F ′αβ = Fαβ + φFαβ

Gαβ → G′αβ = Gαβ + φGαβ (4.28)

with the angle φ infinitesimal. Just as (4.25) is, for a single plane wave, an infinitesimal rotation of

the electric field vectors and magnetic flux density pseudovectors about the direction of propaga-

tion through θ, (4.28) is an infinitesimal boost of the electric field vectors and magnetic flux density

pseudovectors in the direction of propagation with rapidity φ, leaving the spacetime distribution of the

wave unchanged: see figure 4.2. This interpretation also holds for the finite form of (4.28). Thus,

Figure 4.2: The effect of an infinitesimal boost helicity symmetry transformation (4.28) on a single plane wave
of amplitude E0 and wavevector k.
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(4.25) and (4.28) are ‘partners’. We invoke (4.28) as

Aα → A′α = Aα + φAα

Cα → C ′α = Cα + φCα (4.29)

and are led immediately by Noether’s theorem (4.16) to the continuity equation

∂αd
α = 0 with dα =

1

2

(
AβF

βα + CβG
βα
)
, (4.30)

which embodies the conservation of boost helicity: its canonical form coincides with the boost helicity

continuity equation (3.87) which we originally identified heuristically. As we observed in §3.6.1, boost

helicity is a trivial quantity in that the boost helicityD itself vanishes. Related observations have been

made by Fushchich and Nikitin [117, 118], Drummond [71, 72] and Anco and The [43]. The idea

that symmetries exist in pairs, only one member of which is associated with a non-trivial conserved

quantity, appears to hold with generality, as we will see in what follows.

4.3.2 Conformal symmetry transformations and Bessel-Hagen’s conservation laws

In the context of electrodynamics, Bessel-Hagen was the first to apply Noether’s theorem [106]. He

considered the fifteen parameter group of conformal symmetry transformations and, equipped with

the standard Lagrangian density L0, obtained their associated conservation laws. We now consider

these symmetry transformations and, as a check on our present approach, confirm that L leads us

to the same conservation laws obtained by Bessel-Hagen.

An infinitesimal conformal symmetry transformation takes the form [119, 120]

Fαβ → F ′αβ = Fαβ − ∂αXγF β
γ − ∂βXγFαγ −Xγ∂γF

αβ

Gαβ → G′αβ = Gαβ − ∂αXγG β
γ − ∂βXγGαγ −Xγ∂γG

αβ (4.31)

with

Xα = tα + wαβx
β + ϑxα +

(
2xαxβ − xγxγηαβ

)
aβ. (4.32)

The components of the infinitesimal four vector tα and tensor wαβ = −wβα define infinitesimal trans-

lations and rotations in spacetime which constitute the Poincaré group [14, 108]. The infinitesimal

Lorentz scalar ϑ and the components of the infinitesimal four vector aα define infinitesimal scale and

special conformal transformations, due to Bateman [42, 121] and Cunningham [122]. The physical

significance of such transformations is, it seems, not entirely understood: see the work of Rohrlich

[108, 123–125], for example. Their independence from the transformations of the Poincaré group

has been questioned by Fushchich and Nikitin [117]. Plybon has claimed that the fifteen distinct

conformal symmetry transformations are the only ones that assume the form seen in (4.31), referred
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to by him as being ‘geometric’ [126]. Invoking (4.31) as

Aα → A′α = Aα −Aβ∂αXβ −Xβ∂βA
α + ∂α

(
XβAβ

)
Cα → C ′α = Cα − Cβ∂αXβ −Xβ∂βC

α + ∂α
(
XβCβ

)
, (4.33)

we obtain, from Noether’s theorem (4.16), the continuity equations

∂βT
αβ = 0 with Tαβ =

1

2

(
FαγF

γβ +GαγG
γβ
)
, (4.34)

∂γM
αβγ = 0 with Mαβγ = xαT βγ − xβTαγ , (4.35)

∂αD
α = 0 with Dα = xβT

βα, (4.36)

∂βI
αβ = 0 with Iαβ = 2xαxγT βγ − xγxγTαβ, (4.37)

corresponding to translations, rotations and boosts, scale transformations and special conformal

transformations [127]. These results (4.34)-(4.37) are essentially the ones advocated by Bessel-

Hagen [106], as desired. As is well known, the continuity equation seen in (4.34) embodies the

conservation of energy and linear momentum and the continuity equation seen in (4.35) embodies

the conservation of rotation angular momentum and boost angular momentum. Of the remaining

continuity equations, seen in (4.36) and (4.37), Bessel-Hagen commented that “the future will show

if they have any physical significance” [106, 128].

We already identified the continuity equation (4.36) heuristically in §3.6.2 (see (3.96)) and recog-

nised there that it embodies the conservation of boost orbital helicity, which, for a single plane wave

at least, can be regarded as a statement of the dispersion relation ω = |k|. This relation connects

a time interval (the period of the wave) with a space interval (the wavelength of the wave). This

is somewhat appropriate given that the invariance of Maxwell’s equations as written in the strict ab-

sence of charge (4.11) and (4.12) under a scale transformation (which, importantly, invokes a dilation

or contraction of temporal and spatial properties of the light in equal measure) is itself a reflection

of the fact that all periods and wavelengths of light are equally welcome, provided, of course, that

they are related such that ω = |k|. As was noted by Fulton, Rohrlich and Witten [108, 123], by Ply-

bon [120] and, more recently, by Ibragimov [128], the physical significance of the continuity equation

(4.37) is, it seems, still not understood. The independence of the continuity equation (4.37) from the

others (4.34)-(4.36) has been questioned by Plybon [120].

The infinitesimal conformal symmetry transformation (4.31) possesses a (non-geometric) partner:

Fαβ → F ′αβ = Fαβ − ∂αY γG β
γ − ∂βY γGαγ − Y γ∂γG

αβ

Gαβ → G′αβ = Gαβ + ∂αY γF β
γ + ∂βY γFαγ + Y γ∂γF

αβ (4.38)

for

Y α = gα + qαβx
β + ψxα +

(
2xαxβ − xγxγηαβ

)
bβ, (4.39)
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with the components of the pseudotensors gα, qαβ = −qβα, ψ and bα infinitesimal. This (4.38)

has also been recognised by Krivskii and Simulik [129, 130] as well as Anco and The [43]. From

Noether’s theorem (4.16), we find that (4.38) is associated with the conservation of trivial quantities,

as noted by Anco and The [43].

4.3.3 The symmetry transformation associated with the conservation of the zilch

Consider now the infinitesimal symmetry transformation

Fαβ → F ′αβ = Fαβ + ζγδ∂γ∂δG
αβ

Gαβ → G′αβ = Gαβ − ζγδ∂γ∂δFαβ (4.40)

with the components of the pseudotensor ζαβ = ζβα infinitesimal. This (4.40) resembles an in-

finitesimal Heaviside-Larmor rotation (4.25), but differs crucially through the appearance of second

derivatives and is not obviously a rotation itself. Invoking (4.40) as

Aα → A′α = Aα + ζβγ∂β∂γC
α − ζβγ∂α∂βCγ

Cα → C ′α = Cα − ζβγ∂β∂γAα + ζβγ∂α∂βAγ , (4.41)

we obtain, from Noether’s theorem (4.16), the continuity equation

∂γZ
αβγ = 0 with Zαβγ =

1

2

(
Gγδ∂αF β

δ − F γδ∂αG β
δ

)
, (4.42)

which emodies the conservation of the zilch, Zαβγ here being the form of Lipkin’s zilch pseudotensor

recognised by Morgan [91] and Kibble [93]. The symmetry transformations associated with the indi-

vidual zilches have been identified variously by Calkin [70] and Przanowski, Rajca and Tosiek [77].

Frequent incorrect identifications of the symmetry transformation associated with the conservation of

the zilch [128–131] can be traced to the use of ‘Lagrangians’ that do not have the dimensions of an

energy. Subsequent to publishing the research described in the present chapter [107], the symmetry

transformation associated with the conservation of the zilch was also identified and examined by

Philbin [132], as well as Lashkari-Ghouchani and Alizadeh [133].

The infinitesimal symmetry transformation (4.40) with which the conservation of zilch is associated

possesses a partner:

Fαβ → F ′αβ = Fαβ + ξγδ∂γ∂δF
αβ

Gαβ → G′αβ = Gαβ + ξγδ∂γ∂δG
αβ, (4.43)

with the components of the tensor ζαβ = ζβα infinitesimal. From Noether’s theorem (4.16), we find

that (4.43) is associated with the conservation of a trivial quantity that has also emerged in the work

of Fradkin [134].
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4.3.4 Some simple generalisations

We now demonstrate that there exists an infinite number of local symmetry transformations and as-

sociated conservation laws.

In §4.3.1-§4.3.3, we saw that the infinitesimal symmetry transformations

δFαβ = θGαβ δGαβ = −θFαβ, (4.44)

δFαβ = gγ∂γG
αβ δGαβ = −gγ∂γFαβ, (4.45)

δFαβ = ζγδ∂γ∂δG
αβ δGαβ = −ζγδ∂γ∂δFαβ (4.46)

are associated with continuity equations centred upon a helicity four pseudovector hα (of rank one;

see (4.27)), a trivial pseudotensor (of rank two) and a zilch pseudotensor Zαβγ (of rank three; see

(4.42)). In addition, we observed a complimentary structure in that the infinitesimal symmetry trans-

formations

δFαβ = φFαβ δGαβ = φGαβ, (4.47)

δFαβ = tγ∂γF
αβ δGαβ = tγ∂γG

αβ, (4.48)

δFαβ = ξγδ∂γ∂δF
αβ δGαβ = ξγδ∂γ∂δG

αβ (4.49)

are associated with continuity equations centred upon a boost helicity four vector dα (of rank-one;

see (4.30)) which is trivial, an energy-momentum tensor Tαβ (of rank-two; see (4.34)) and a trivial

tensor (of rank-three).

These observations are readily generalised:

δFαβ = θγδ...ω∂γ∂δ . . . ∂ωG
αβ δGαβ = −θγδ...ω∂γ∂δ . . . ∂ωFαβ, (4.50)

with the components of the pseudotensor θαβ...χ infinitesimal, is an infinitesimal symmetry transfor-

mation for any number of derivatives. It (4.50) is the generalisation of the infinitesimal symmetry

transformations seen in (4.44)-(4.46). For one or more derivatives, we find, from Noether’s theorem

(4.16), that we can associate (4.50) with the continuity equation

∂ψH
αβ...χψ = 0 with Hαβ...χψ =

1

2

(
Gψω∂β . . . ∂χF α

ω − Fψω∂β . . . ∂χG α
ω

)
. (4.51)

The existence of this infinite hierarchy of continuity equations centred upon pseudotensors of ever-

increasing rank was observed by Morgan [91] (although the helicity continuity equation (4.27) centred

upon hα, which lies ‘lowest’ amongst these, escaped Morgan’s attention). We have now tied them to

their associated infinitesimal symmetry transformations (4.50).

In a similar vein,

δFαβ = τγδ...ω∂γ∂δ . . . ∂ωF
αβ δGαβ = τγδ...ω∂γ∂δ . . . ∂ωG

αβ, (4.52)
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with the components of the tensor ταβ...χ infinitesimal, is an infinitesimal symmetry transformation for

any number of derivatives. It (4.52) is the generalisation of the infinitesimal symmetry transformations

seen in (4.47)-(4.49). For one or more derivatives, we find, from Noether’s theorem (4.16), that we

can associate (4.52) with the continuity equation

∂ψW
αβ...χψ = 0, with Wαβ...χψ =

1

2

(
Fψω∂β . . . ∂χF α

ω +Gψω∂β . . . ∂χG α
ω

)
. (4.53)

The existence of this infinite hierarchy of continuity equations centred upon tensors of ever-increasing

rank was also observed by Morgan [91] (although the existence of the boost helicity continuity equa-

tion (4.30) centred upon dα, which lies ‘lowest’ amongst these tensors, also escaped Morgan’s at-

tention). We have now tied them to their associated infinitesimal symmetry transformations (4.52).

The pseudotensorsHαβ...χψ of even rank and tensorsWαβ...χψ of odd rank describe trivial quantities.

The pseudotensors Hαβ...χψ of odd rank and the tensors Wαβ...χψ of even rank describe non-trivial

quantities, the former being dependent upon the difference of photon numbers of opposite circular

polarisation whereas the latter are dependent upon the sum. Thus, we identify a kind of ‘alternation’

as we ascend rank. This pattern, the first three ‘layers’ of which we recognise as being the helicity

H, the energy-momentum four-vector T α and the zilch Zαβ ;

H =

∫ ∫
∞

∫
h0 d3r =

∫ ∫
∞

∫
h̄ [n+(k)− n−(k)] d3k, (4.54)

T α =

∫ ∫
∞

∫
Tα0 d3r =

∫ ∫
∞

∫
h̄kα [n+(k) + n−(k)] d3k, (4.55)

Zαβ =

∫ ∫
∞

∫
Zαβ0 d3r =

∫ ∫
∞

∫
h̄kαkβ [n+(k)− n−(k)] d3k, (4.56)

appears to extend indefinitely and is, in fact, the pattern the existence of which was conjectured by

Candlin [69]. Here, n+(k) = |ẽk+ · α̃ (k, t) |2/h̄ and n−(k) = |ẽk− · α̃ (k, t) |2/h̄ are the classical

limits of the photon numbers of the left- and right-handed circular polarisations associated with the

wavevector k [11]. The pieces of this pattern that are dependent upon the difference in photon num-

bers of opposite circular polarisation in particular have been examined in the quantum domain by

Coles and Andrews [135].

The simple picture that we have just painted is enlivened by the existence of an infinite number of

continuity equations centred upon tensors and pseudotensors that depend explicitly upon time t and

position r. Consider, for example, those seen in (4.35)-(4.37) which involve the energy-momentum

tensor Tαβ and the position four vector xα. Conserved pseudotensors can also be constructed from

the zilch tensor Zαβγ and xα, a fact that has been observed by Krivskii and Simulik [129]. In general,

such quantities are obscure and we will not consider them further here.
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4.3.5 A comment on interpretation

Amongst the continuity equations identified in §4.3.1-§4.3.4, which are infinite in number, there are

but a small handful, of low rank, that embody the conservation of quantities with familiar dimensions.

In particular, we can readily appreciate the physical significance of helicity, energy, linear momentum,

rotation angular momentum and boost angular momentum. We should also comment, however,

on those higher-order continuity equations, including most of those seen in (4.51) and (4.53), that

embody the conservation of quantities with unfamiliar dimensions. It seems that the existence of

these reflects the self similarity inherent in Maxwell’s equations as written in the strict absence of

charge (4.11) and (4.12) which was discussed in §2.2. Specifically, we suggest that these higher-

order conserved quantities describe properties of various derivatives of E and B, in the manner that

we ellucidated in §3.4 for the zilch in particular.

4.4 Non-local symmetry transformations and their associated conser-

vation laws

We turn our attention now to non-local symmetry transformations, in which the changes δE and δB

in the electric field E and the magnetic flux density B do not depend exclusively upon the latter

and perhaps their various derivatives at the same time t and position r. In considering these sym-

metry transformations, the language of tensor and pseudotensor calculus fails us and we therefore

revert directly to the canonical forms of their associated local continuity equations, which are to be

understood in what follows.

4.4.1 van Enk-Nienhuis-Barnett rotations and the conservation of spin, Barnett ro-

tations and the conservation of orbital angular momentum

An infinitesimal rotation of the light about the origin r = 0 takes the form

E → E′ = E + θ ×E− θ · (r×∇) E

B → B′ = B + θ ×B− θ · (r×∇) B, (4.57)

with θ an infintesimal time-even pseudovector, the magnitude and orientation of which define the

angle and sense of the rotation. The first contribution seen in (4.57) rotates the orientations of

the electric field vectors and magnetic flux density pseudovectors whilst the second contribution

rotates the spatial distribution of the light. This is a local infinitesimal symmetry transformation and

constitutes part of the infinitesimal conformal symmetry transformation seen in (4.31), with w23 =

−w32 = θx, w31 = −w13 = θy and w12 = −w21 = θz. The x, y and z components of the associated

global conservation law

J =

∫ ∫
∞

∫
r× (E×B) d3r = constant

for the rotation angular momentum J , seen also in (3.15), follow from the continuity equation seen

in (4.35) for αβ = 23, 31 and 12, say. As was discussed in §3.2, J is itself the sum of separately
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conserved spin S and orbital L pieces. It should be possible, therefore, to separate (4.57) into pieces

separately associated with the conservation of spin and with the conservation of orbital angular

momentum. At first glance, it is natural, perhaps, to suggest that

E → E′ = E + (θ ×E)

B → B′ = B + (θ ×B) (4.58)

is associated with the conservation of spin and

E → E′ = E− θ · (r×∇) E

B → B′ = B− θ · (r×∇) B (4.59)

is associated with the conservation of orbital angular momentum. Neither (4.58) nor (4.59) is by

itself an acceptable transformation, however. In particular, neither respect the solenoidal character

of E and B (∇ · E′ 6= 0, ∇ · B′ 6= 0) and thus are not symmetry transformations, an observation

made explicitly by Barnett [44]. Such incorrect associations have led some to claim, erroneously, that

the spin and orbital angular momentum of light are not separately meaningful [11]. The situation was

clarified by the work of van Enk and Nienhuis [59, 60] and Barnett [44], however, who established that

the operators Ŝ and L̂ representing S and L do generate symmetry transformations which differ,

of course, from the assumed forms seen in (4.58) and (4.59). Following their work, we observe that

(4.57) can be expressed equivalently4 as

E → E′ = E + (θ ×E)⊥ − [θ · (r×∇) E]⊥

B → B′ = B + (θ ×B)⊥ − [θ · (r×∇) B]⊥ . (4.60)

The first contribution

E → E′ = E + (θ ×E)⊥

B → B′ = B + (θ ×B)⊥ (4.61)

seen in (4.60) is the closest approximation to an infinitesimal rotation of the orientations of the electric

field vectors and magnetic flux density pseudovectors, in the sense defined by θ, that is consistent

with the requirement that the transformed electric field E′ and the transformed magnetic flux density

B′ be solenoidal. This (4.61) is a non-local infinitesimal symmetry transformation which sees the

electric field vectors and magnetic flux density pseudovectors of each plane wave comprising the

light rotated about its wavevector k through an angle θ(a)
ˆ̂
k(a). We refer to (4.61) as an infinitesimal

van Enk-Nienhuis-Barnett rotation. Employing Noether’s theorem (4.16) we find, following some

manipulations, that

ṡ(a) + ∂bn(ab) = 0,

4Note that (θ ×E)‖ − [θ · (r×∇)E]‖ = (θ ×B)‖ − [θ · (r×∇)B]‖ = 0.
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which embodies the conservation of spin, being the spin continuity equation (3.45) which we originally

identified heuristically. The second contribution

E → E′ = E− [θ · (r×∇) E]⊥

B → B′ = B− [θ · (r×∇) B]⊥ , (4.62)

seen in (4.60) is the closest approximation to an infinitesimal rotation of the spatial distribution of the

light, in the sense defined by θ, that is consistent with the requirement that E′ and B′ be solenoidal.

This is also a non-local infinitesimal symmetry transformation. We refer to (4.62) as an infinitesimal

Barnett rotation. Employing Noether’s theorem (4.16) we find, following some manipulations, that

(4.62) is associated with the continuity equation

l̇(a) + ∂bo(ab) = 0,

which embodies the conservation of orbital angular momentum, being the orbital angular momentum

continuity equation (3.81) which we originally identified heuristically and which has been reported

recently elsewhere by Bliokh, Dressel and Nori [101].

4.4.2 Generalised Heaviside-Larmor rotations and the conservation of the ab infra

zilches

In §4.3.1, we demonstated that Heaviside-Larmor rotations are associated with the conservation of

helicity (±h̄ per circularly polarised plane-wave-mode photon of wavevector k and polarisation pa-

rameter σ = ±1). In §4.4.1, we demonstrated that van Enk-Nienhuis-Barnett rotations are associated

with the conservation of spin (components ±h̄ˆ̂
k(a) per photon). As was discussed in §3.3, helicity

and spin are, however, but the first two members of an infinite collection of intrinsic rotation angular

momenta. We now turn our attention explicitly to the next member after spin, namely the ab infra

zilches (±h̄ˆ̂
k(a)

ˆ̂
k(b) per photon).

We observe here that

E(a) → E′(a) = E(a) + θ(bb)B(a) −
[
θ(ab)B(b)

]⊥ − ε(abc)∂b [θ(cd)A⊥(d)]⊥
B(a) → B′(a) = B(a) − θ(bb)E(a) +

[
θ(ab)E(b)

]⊥ − ε(abc)∂b [θ(cd)C⊥(d)]⊥ , (4.63)

with θ(ab) = θ(ba) a rotational pseudotensor of infinitesimal angles, is a non-local infinitesimal sym-

metry transformation which sees the electric field vectors and magnetic flux density pseudovectors

of each plane wave comprising the light rotated about its wavevector k through an angle θ(ab)
ˆ̂
k(a)

ˆ̂
k(b).

We refer to (4.63) as an infinitesimal generalised Heaviside-Larmor rotation. Employing Noether’s

theorem (4.16) we find, following some manipulations, that (4.63) is associated with the continuity

equation

ṅ(ab) + ∂cN
abc = 0
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which embodies the local and hence global conservation of the ab infra zilches, being the ab infra

zilch continuity equation (3.46) which we originally identified heuristically.

In light of the results presented in §4.3.1, §4.4.1 and above, we now infer the non-local infinitesi-

mal symmetry transformations underlying the conservation of the remaining members of the infinite

collection of intrinsic rotation angular momenta discussed in §3.3: the conservation of the three-

component quantity (±h̄ˆ̂
k(a)

ˆ̂
k(b)

ˆ̂
k(c) per photon) for example, is associated with a rotation of each

plane wave comprising the light about its wavevector k through an infinitesimal angle θ(abc)
ˆ̂
k(a)

ˆ̂
k(b)

ˆ̂
k(c),

and so on, ad infinitum.

4.4.3 The symmetry transformations associated with the conservation of boost spin

and the conservation of boost orbital angular momentum

An infinitesimal boost of the light ‘about’ time t = 0 and r = 0 takes the form

E→ E′ = E− φ×B− φ ·
(
t∇ + r

∂

∂t

)
E

B→ B′ = B + φ×E− φ ·
(
t∇ + r

∂

∂t

)
B, (4.64)

with φ an infinitesimal time-odd vector, the magnitude and orientation of which define the rapidity

and direction of the boost. The first contribution seen in (4.64) mixes the electric field vectors and

magnetic flux density pseudovectors whilst the second contribution rotates the spacetime distribution

of the light in a hyperbolic manner. This is a local symmetry transformation and constitutes part

of the infinitesimal conformal symmetry transformation seen in (4.31), with w10 = −w01 = φx,

w20 = −w02 = φy and w20 = −w02 = φz. The x, y and z components of the associated global

conservation law

K =

∫ ∫
∞

∫ [
tE×B− 1

2
r (E ·E + B ·B)

]
d3r = constant

for the boost angular momentum K, seen also in (3.19), follow from the continuity equation seen in

(4.35), with αβ = 01, 02 and 03, say. As was described in §3.2, an attempt was made recently by

Barnett to separate K into boost spin V and boost orbital Y parts [45]. We now pursue this idea in

the context of Noether’s theorem.

Working by analogy with the approach taken in §4.4.1 for spin and orbital angular momentum, we

observe here that (4.64) can be expressed equivalently as

E→ E′ = E− (φ×B)⊥ −
[
φ ·
(
t∇ + r

∂

∂t

)
E

]⊥
B→ B′ = B + (φ×E)⊥ −

[
φ ·
(
t∇ + r

∂

∂t

)
B

]⊥
. (4.65)
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The first contribution

E→ E′ = E− (φ×B)⊥

B→ B′ = B + (φ×E)⊥ (4.66)

seen in (4.65) is the closest approximation to an infinitesimal mixing of the electric field vectors

and magnetic flux density pseudovectors, in the sense defined by φ, that is consistent with the

requirement that E′ and B′ be solenoidal. This is a non-local infinitesimal symmetry transformation

which sees the electric field vectors and magnetic flux density pseudovectors of each plane wave

comprising the light boosted in the direction of its wavevector k through a rapidity φ(a)
ˆ̂
k(a). Employing

Noether’s theorem (4.16) we find, following some manipulations, that (4.66) is associated with the

continuity equation

v̇(a) + ∂bq(ab) = 0

which embodies the conservation of boost spin, being the boost spin continuity equation (3.89) which

we originally identified heuristically. The second contribution

E→ E′ = E−
[
φ ·
(
t∇ + r

∂

∂t

)
E

]⊥
B→ B′ = B−

[
φ ·
(
t∇ + r

∂

∂t

)
B

]⊥
, (4.67)

seen in (4.60) is the closest approximation to an infinitesimal hyperbolic rotation of the spacetime

distribution of the light, in the sense defined by φ, that is consistent with the requirement that E′ and

B′ be solenoidal. Employing Noether’s theorem (4.16) we find, following some manipulations, that

(4.67) is associated with the continuity equation

ẏ(a) + ∂bf(ab) = 0,

which embodies the conservation of boost orbital angular momentum, being the boost orbital angular

momentum continuity equation (3.93) which we originally identified heuristically. The effects of (4.66)

and (4.67) on a single linearly polarised plane wave are depicted in figures 4.3 and 4.4.

It will be noticed that the infinitesimal boost spin symmetry transformation (4.66) is the partner of

the infinitesimal spin symmetry transformation (4.61). The vanishing of V thus falls in line with our

general observations regarding such symmetry pairs. Following the results presented in §4.3.1 and

above, the symmetry transformations underlying the conservation of the remaining members of the

infinite collection of intrinsic boost angular momenta introduced in §3.6.1 may also be readily in-

ferred, being the partners of those underlying the conservation of the infinite collection of intrinsic

rotation angular momenta introduced in §3.3: boosting the electric field vectors and magnetic flux

density pseudovectors of each plane wave comprising the light in the direction of its wavevector k

through an infinitesimal rapidity φ(ab)
ˆ̂
k(a)

ˆ̂
k(b) for example, is also an infintesimal symmetry transfor-

mation and is the partner of that underlying the conservation of the ab infra zilches; a pattern that

can extends indefinitely. We also note here for completeness that the partners of the infinitesimal
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orbital angular momentum symmetry transformation (4.62) and the infinitesimal boost orbital angu-

lar momentum symmetry transformation (4.67) are seemingly obscure and are associated, through

Noether’s theorem (4.16), with the conservation of trivial quantities.

Figure 4.3: The effect of an infinitesimal boost spin symmetry transformation (4.66) on a single linearly
polarised plane wave, with the rapidity vector φ parallel to the wavector k of the wave. The amplitude E0 of
the wave is increased to (1 + |φ|)E0, leaving the spacetime distribution of the wave unchanged. Electric field
vectors are depicted by black arrows. Magnetic flux density pseudovectors are omitted, for the sake of clarity.

Figure 4.4: The effect of an infinitesimal boost orbital symmetry transformation (4.67) on a single linearly
polarised plane wave, with the rapidity vector φ parallel to the wavector k of the wave. The spacetime distri-
bution of the wave is modified such that the wavelength λ of the wave is blue shifted to (1 − |φ|)λ, leaving
the amplitude E0 of the wave unchanged. Electric field vectors are depicted by black arrows. Magnetic flux
density pseudovectors are omitted, for the sake of clarity.

4.4.4 More non-local symmetry transformations and their associated conservation

laws

Owing, it seems, to the self similarity inherent in Maxwell’s equations as written in the strict absence

of charge (4.11) and (4.12) which was discussed in §2.2, there exists an infinite number of non-local

symmetry transformations and associated conservation laws. Unlike those considered in §4.4.1-

§4.4.3, the majority of these conserved quantities are rather obscure however, possessing unfamiliar

dimensions. We suggest that they describe properties of various integrals of E and B. To illustrate
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this, let us consider the infinitesimal symmetry transformation

E → E′ = E + αA⊥

B → B′ = B + αC⊥, (4.68)

with the rotational scalar α infinitesimal. Through Noether’s theorem (4.16), we find, following some

manipulations, that (4.68) is associated with the continuity equation

∂

∂t

1

2

(
A⊥ ·A⊥ + C⊥ ·C⊥

)
+ ∇ ·

(
A⊥ ×C⊥

)
= 0, (4.69)

which embodies the conservation of the ‘energy’ of the first and second potentials A⊥ and C⊥.

Such observations may be readily extended. This particular continuity equation (4.69) has also

been recognised by Drummond [71, 72]. Naturally, we find that the partner symmetry of (4.68) is

associated with the conservation of a trivial quantity. The existence of various non-local symmetry

transformations has also been recognised by Fushchich and Nikitin [117, 118].

4.4.5 On the trivial nature of boost helicity, boost spin etc

In order to ellucidate the trivial nature of boost helicity, boost spin etc, let us highlight here, in a general

manner, that there is a distinction between the existence of a symmetry transformation and its asso-

ciated conservation law, and the actual dynamics exhibited by a system and the value consequently

taken by the conserved quantity. Moreover, the dynamics that a system must exhibit to possess a

non-vanishing value of a conserved quantity usually reflect the associated symmetry transformation,

whilst the sign of this value depends upon whether the motion goes with or against the grain of the

symmetry transformation.

To give a tangeable example: consider a point particle in the absence of other influences. The

symmetry transformation that is a translation of the particle in the +x direction, say, is associated, of

course, with the conservation of the x component of the particle’s linear momentum. If the particle

then happens to move in the same sense as this symmetry transformation (that is, in the +x direc-

tion), the x component of the particle’s linear momentum is positive whereas if the particle moves in

the sense opposite to this symmetry transformation (that is, in the −x direction), the x component of

the particle’s linear momentum is negative.

We can perhaps understand the trivial nature of boost helicity, boost spin etc in these terms. We

focus upon boost helicity. The infinitesimal boost helicity symmetry transformation (4.28) mutliplies

the amplitude of each (linearly polarised, for the sake of this argument) plane wave comprising the

light by a factor of 1 +φ, which is emphatically an increase in amplitude, for φ > 0 of course. Light is

oscillatory, however, and as t passes at any given r, each wave goes with the grain of the infinitesimal

boost helicity symmetry transformation (4.66) as often as against it. Associated with these respective

motions are positive and negative contributions to the boost helicity D and the latter thus vanishes,

being an integral over all r that is independent of t. Such arguments also apply, of course, to boost

spin etc.
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Whilst publishing the research described in the present chapter [107], an anonymous referee pointed

out that it is also possible to interpret the vanishing of D as a statement of the global conservation of

the ‘energy’ of A⊥ and C⊥, as

d
dt

∫ ∫
∞

∫
1

2

(
A⊥ ·A⊥ + C⊥ ·C⊥

)
d3r = 2D

= 0. (4.70)

Similarly, the vanishing of the boost spin V is a statement of the global conservation of the ‘linear

momentum’ of A⊥ and C⊥, as

d
dt

∫ ∫
∞

∫
A⊥ ×C⊥ d3r = 2V

= 0 (4.71)

and so on, ad infinitum.

Arguments of this nature can also be applied more generally, perhaps, to appreciate why only one

member of any symmetry transformation pair is associated with the conservation of a non-trivial

quantity.

4.5 Discussion

We have introduced a variational description of freely propagating light that is based upon the demo-

cratic acknowledgement of both electric and magnetic potentials. We have used this description

together with Noether’s theorem to investigate symmetries and their associated conservation laws.

Analogous approaches can be pursued in other branches of physics, as was recently demonstrated

for weak gravitational waves propagating freely in a flat spacetime background by Barnett [136].

There remains much to be explored, even with regards to the symmetries and their associated con-

servation laws that we have already considered: what is the physical significance of special conformal

transformations and their associated conservation law, for example? I would also like to understand

in full our general observation that symmetries exist in pairs, only one member of which is associ-

ated with the conservation of a non-trivial quantity. It is possible to utilise the formalism of general

relativity and examine our results in other coordinate systems, wherein they appear to offer different

information: the azimuthal component in cylindrical coordinates of the canonical continuity equation

for linear momentum is a continuity equation for the z component of orbital angular momentum [137],

for example.

It is clear in addition that there exist many more symmetries and associated conservation laws than

those that we have considered in the present chapter: consider, for example, the conservation of
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photon number and the classical limit thereof5, which does not appear anywhere in the hierarchies

that we have identified. An important question pertains to the independence of symmetries and their

associated conservation laws. A group theoretical analysis may be illuminating in this regard. In

general, I am interested in the possibility (or lack thereof) of applying Noether’s theorem, in some

form, to study discrete rather than continuous symmetry transformations6: as we have demonstrated

in §4.4, the non-locality of a symmetry transformation does not by itself preclude the application of

Noether’s theorem.

The inclusion of charge constitutes a subtle problem that I wish to investigate, in particular because

it may afford a route by which to explore further my belief that electric-magnetic democracy is inti-

mately associated with the quantisation of charge [4–7]. Moreover, the extension of our formalism

to the quantum domain and in particular the usual canonical quantisation procedure brings its own

challenges, owing, it seems, to the problem of overdetermination.

The above are tasks for future research.

5The associated infinitesimal symmetry transformation can be invoked, in fact, at the level of the normal variables α̃
as α̃→ α̃′ = α̃− iϑα̃, which is an infinitesimal phase shift of the light through ϑ.

6An obvious approach is to modify a discrete symmetry transformation by multiplying the associated changes δE and
δB in the electric field E and the magnetic flux density B by an infinitesimal dimensionless quantity. Through Noether’s
theorem (4.16) we find for example that time and / or parity inversions, when treated in this manner, lead to conservation
laws for trivial quantities, however.
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Chapter 5

Chirality and Optical Activity

5.1 Introduction

The word ‘chiral’ was introduced by Kelvin to refer to any geometrical figure or group of points that

cannot be brought into coincidence with its mirror image, thus possessing a sense of handedness

[138, 139]. It derives, in fact, from the Greek word for hand; χεὶρα [140]. In the language of point

group theory, a chiral entity is said to be devoid of improper rotational symmetry elements and must,

therefore, belong to one of the point groupsCn,Dn,O, T or I, in the Schoenflies notation [12, 25, 27].

Kelvin’s definition of chirality was recently extended by Barron to include time, leading him to distin-

guish between ‘true’ and ‘false’ chirality, the former being exhibited by systems that exist in two

distinct enantiomeric states interconvertable, up to circular rotations, by parity inversion but not by

time reversal [141, 142]. Chirality pervades the natural world [143]; from the enigmatic preferences

of the electroweak interaction [144, 145] to the arms of individual spiral and elliptical galaxies [146]:

see figure 5.1.

Figure 5.1: Chirality is ubiquitous. Indeed, all entities that are not achiral are chiral.

Many molecules are chiral owing to the nature and arrangement in space of their constituent atoms

[143]. The mirror-image forms, or ‘enantiomers’, of a chiral molecule often enjoy separate and seem-

ingly1 stable existences (see figure 5.2) and are observed to behave identically in many circum-

stances but differently in others [25, 143]. The fact is well established in particular that molecular

1The very existence of chiral molecules appears at first glance to be at odds with fundamental ideas from quantum
mechanics. This, Hund’s paradox [25], is still the subject of occasional debate.
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chirality is crucial to biological function [143, 147], as is reflected strikingly by the existence of chiral

molecules the enantiomers of which interact differently with living things: one enantiomer of carvone

is found in spearmint leaves whereas the opposite enantiomer is found in caraway seeds, thus being

associated with different aromas; one enantiomer of methamphetamine is recognised as being a

harmful narcotic whereas the opposite enantiomer is employed as a decongestant; one enantiomer

of mecoprop functions as a herbicide whereas the opposite enantiomer is ineffective in this context.

The ability to characterise, discriminate between and resolve the enantiomers of a chiral molecule is

desirable in both academic and industrial contexts and yet, remains elusive in many cases. Thus,

the development of means by which to probe and utilise molecular chirality constitutes a vibrant field

of modern research [148, 149].

Figure 5.2: The left- (a) and right-handed (b) enantiomers of hexahelicene, a chiral molecule with a shape
resembling that of a finite cylindrical helix the synthesis of which was first reported by Newman, Lutz and
Lednicer [25, 34, 35]. The normalised pitch γ of hexahelicene is a rotational pseudoscalar, assuming opposite
signs for the molecule’s opposite enantiomers [25].

Many types of light are chiral. Principal amongst these is perhaps circularly polarised light, in which

the electric field vectors and magnetic flux density pseudovectors trace out either left- or right-handed

cylindrical helices in space, these being prototypical chiral figures, of course. Naturally, a given chiral

molecule interacts differently with left- and right-handed circularly polarised light [25, 143], much as a

given human hand interacts differently with left- and right-handed gloves. The study and utilisation of

these differences is one of the principal means by which we probe and manipulate chiral molecules.

We follow Barron and use the phrase ‘optical activity’ in a general manner to refer to light-matter

interactions with characteristics attributable to a discrimination, on some level, between left- and

right-handed circular polarisations [25]. Chiral molecules are then said to exhibit natural optical ac-

tivity. The subject that is optical activity and its applications extends somewhat beyond the domain of

molecular chirality, however, as optical activity is also exhibited naturally by certain orientated achiral

molecules and can be induced, moreover, in all atoms and molecules by static magnetic fields and,

in some circumstances, by static electric fields [25].

In the present chapter, we observe that many optical activity phenomena can be related explicitly

to helicity, spin, the ab infra zilches etc. This is unsurprising, perhaps, given that these angular mo-

menta differ in value for left- and right-handed circularly polarised light. We employ this new insight

in the consideration of a well-established manifestation of optical activity (optical rotation; §5.2), a

dormant manifestation of optical activity (differential scattering; §5.3) and a new manifestation of op-

tical activity (discriminatory optical force for chiral molecules; §5.4). The text is based primarily upon

my research papers [150], [151] and [152].
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5.2 Optical rotation

The study of optical activity began, it seems, with the discovery by Arago of a spectrum of colours

whilst viewing sunlight that had passed along the optic axis of a quartz crystal placed between

polarisers [25, 153]. It was established in subsequent experiments by Biot that these colours are

attributable to two distinct effects which we now refer to in general as optical rotation: the rotation

of the plane of polarisation of linearly polarised light upon traversing a rotatory medium, and optical

rotatory dispersion: the frequency dependence of this rotation [25]. Optical rotation has since been

identified in an abundance of contexts and is employed today in a wealth of different applications,

from the determination of sugar concentrations to the operation of liquid crystal displays.

Following his discovery of circularly polarised light, Fresnel attributed optical rotation to circular

birefringence: a difference in the speeds of propagation supported by a rotatory medium for the

left- and right-handed circularly polarised components of linearly polarised light [25]. If n+ (c|k0|)
and n− (c|k0|) are the phase refractive indices supported at angular frequency c|k0| by a rotatory

medium for left- and right-handed circular polarisations, the angle θ (c|k0|) of optical rotation suffered

by linearly polarised light of angular frequency c|k0| upon traversing a geometrical path length l is

θ (c|k0|) =
1

2
[n+ (c|k0|)− n− (c|k0|)] |k0|l. (5.1)

Microscopic theories of optical rotation based upon light scattering can be found in books by Barron

[25] and Craig and Thirunamachandran [12].

It is natural, perhaps, to ask if optical rotation can be related to the angular momentum of light.

In the present section, we explore this possibility through the introduction of a novel quantum me-

chanical theory in which optical refraction is attributed to an interaction energy shared between light

and a medium through which the light propagates. In certain rotatory media, this interaction energy

is seen to depend upon the helicity and / or spin of the light which differ in value, of course, for left-

and right-handed circular polarisations. These differences give rise in turn to circular birefringence

and hence, optical rotation. Our theory is complementary to those discussed above and leads us

moreover to identify and explore an entirely new manifestation of optical activity in §5.4.

5.2.1 The model medium

Working in the quantum domain, let us consider a model medium comprised of Nmol molecules (or

atoms), each of which is itself comprised identically of Ne electrons and Nn nuclei. Following the

results presented in §1.3.1, we separate the operator Ĥ representing the Hamiltonian of the system

‘light + medium’ as

Ĥ = Ĥ0 + V̂, (5.2)

where the first operator Ĥ0 describes the light and the individual molecules decoupled whilst the

second operator V̂ describes the interaction between the light and the molecules as well as the

Coulomb interactions between the molecules. Under the governance of Ĥ0 alone, the light and the
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individual molecules would thus evolve independently of one another and it is V̂ , therefore, that must

give rise to optical refraction and optical rotation. Explicitly we take

Ĥ0 = Ĥrad +

Nmol∑
ξ=1

Ĥmolξ, (5.3)

V̂ =

Nmol∑
ξ=1

Ĥint +

Nmol−1∑
ξ=1

Nmol∑
ξ′=1

ĤCoulξξ′ , (5.4)

with

Ĥrad =

∫ ∫
V

∫
1

2

(
Π̂2 +

∣∣∣∇× Â
∣∣∣2 ) d3r, (5.5)

Ĥmolξ =

Ne∑
i=1

p̂2
iξ

2me
+

Nn∑
j=1

P̂2
jξ

2Mj

+

Ne−1∑
i=1

Ne∑
i′=1

e2

4πε0|r̂iξ − r̂i′ξ|
−

Ne∑
i=1

Nn∑
j=1

Zje
2

4πε0|r̂iξ − R̂jξ|

+

Nn−1∑
j=1

Nn∑
j′=1

ZjZj′e
2

4πε0|R̂jξ − R̂j′ξ|
, (5.6)

Ĥintξ =

Ne∑
i=1

e

me
p̂iξ · Â (r̂iξ) +

Ne∑
i=1

e2

2me

∣∣∣Â (r̂iξ)
∣∣∣2

−
Nn∑
j=1

Zje

Mj
P̂jξ · Â(R̂jξ) +

Nn∑
j=1

Z2
j e

2

2Mj

∣∣∣Â(R̂jξ)
∣∣∣2 , (5.7)

ĤCoulξξ′ =

Ne∑
i=1

Ne∑
i′=1

e2

4πε0|r̂iξ − r̂i′ξ′ |
−

Ne∑
i=1

Nn∑
j=1

Zje
2

4πε0|r̂iξ − R̂jξ′ |
−

Ne∑
i=1

Nn∑
j=1

Zje
2

4πε0|r̂iξ′ − R̂jξ|

+

Nn∑
j=1

Nn∑
j′=1

ZjZj′e
2

4πε0|R̂jξ − R̂j′ξ′ |
, (5.8)

with me, −e, r̂iξ and p̂iξ the observable rest mass, the charge and the operators representing the

position riξ and canonical linear momentum piξ of the ith electron in the ξth molecule; Mj , Zje,

R̂jξ and P̂jξ the observable rest mass, the charge and the operators representing the position Rjξ

and canonical linear momentum Pjξ of the jth nucleus in the ξth molecule. We have refrained from

including in Ĥ terms representing the Coulomb self energies of the electrons and nuclei which are

diverging constants, as well as mass-renormalisation counter terms that arise from our use of the

observable rather than bare masses of the electrons and nuclei.

We now invoke the clamped nucleus approximation, wherein the nuclei are held fixed by taking

Mj →∞ and setting R̂jξ → Rjξ with the latter treated classically and considered to be independent

of time t. We orient the nuclear skeletons of the molecules identically.
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5.2.2 In the absence of V̂ : free propagation

It is instructive, albeit artificial, to temporarily neglect the interaction between the light and the

molecules as well as the Coulomb interactions between the molecules. Within the present sub-

section, let us thus set V̂ = 0 so that Ĥ = Ĥ0 and the light and the individual molecules evolve

independently of one another.

Assuming that the eigenspectrum of the operator Ĥmolξ representing the Hamiltonian of the ξth

molecule is known:

Ĥmolξ|kξ〉 = h̄ωkξ |kξ〉, (5.9)

with the eigenstates |kξ〉 being complete (
∑∞

kξ=0 |kξ〉〈kξ| = 1 ) and orthonormal (〈kξ|kξ′〉 = δξξ′)

and where k = 0 in particular denotes the molecular ground state, we have that the eigenspectrum

of Ĥ0 is

Ĥ0|s(0)〉 = h̄ω(0)
s |s(0)〉, (5.10)

with {
|s(0)〉

}
=

{
|{nkσ}〉

Nmol∏
ξ=1

|kξ〉
}
, (5.11)

{
h̄ω(0)

s

}
=

{∑
k

∑
σ

h̄c|k|nkσ +

Nmol∑
ξ=1

h̄ωkξ + Z(0)

}
. (5.12)

Of particular interest to us at present is the eigenstate | (nkσ, 0)(0)〉 of Ĥ0 in which a single circularly

polarised plane-wave mode, of wavevector k and polarisation parameter σ, possesses nkσ photons

whilst every other mode is devoid of excitation and each of the molecules occupies its ground state:

| (nkσ, 0)(0)〉 = |nkσ〉
Nmol∏
ξ=1

|0ξ〉, (5.13)

as follows from (5.11). The associated eigenvalue h̄ω(0)
(nkσ ,0)

is comprised of the energies h̄c|k| of the

photons, the ground state energies h̄ω0ξ of the molecules and the electromagnetic vacuum energy

Z(0):

h̄ω
(0)
(nkσ ,0)

= h̄c|k|nkσ +

Nmol∑
ξ=1

h̄ω0ξ + Z(0), (5.14)

as follows from (5.12). Let us now superpose such eigenstates to form a state |Ψ〉 in which the circu-

larly polarised plane-wave mode of wavevector k and polarisation parameter σ occupies a coherent

state of parameter α̃kσ whilst each of the molecules occupies its ground state:

|Ψ〉 = exp
(
−|α̃kσ|2/2

) ∞∑
nkσ=0

α̃nkσ
kσ√
nkσ!

exp
[
−iω(0)

(nkσ ,0)
t
]
| (nkσ, 0)(0)〉. (5.15)
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We take α̃kσ to be such that the light is suitably ‘weaker’ than the Coulomb fields that bind the

molecules together. The significance of |Ψ〉 is manifest in the expectation value

〈Ψ|Â|Ψ〉 = <
{

Ã0 exp [i (k · r− c|k|t)]
}
, (5.16)

where Ã0 = ẽkσα̃kσ

√
2h̄/ε0c|k|V . The form seen in (5.16) resembles that of a classical plane wave

propagating freely in the strict absence of charge. This is entirely natural, of course: as V̂ = 0, the

light does not ‘see’ the medium.

5.2.3 In the presence of V̂ : refraction

Let us now incorporate the interaction between the light and the molecules as well as the Coulomb

interactions between the molecules. Thus, we take Ĥ = Ĥ0 + V̂ and examine how optical refraction

enters into the results presented in §5.2.2 through our inclusion of V̂ , the influence of which we treat

in a perturbative manner, working to order e2.

Taking each molecule to be smaller than the free-space wavelength 2π/|k| associated with the cir-

cularly polarised plane-wave mode of wavevector k and polarisation parameter σ and the molecular

number density Nmol/V to be small, we find that the perturbed eigenvalue h̄ω(nkσ ,0) is

h̄ω(nkσ ,0) =
h̄c|k|nkσ
np (c|k|)

+

Nmol∑
ξ=1

h̄ω0ξ + Y + Z, (5.17)

where we have identified the reciprocal 1/np (c|k|) of the phase refractive index np (c|k|) supported

by the medium at angular frequency c|k|:

1

np (c|k|)
≈ 1−

ẽ∗kσ(a)ẽkσ(b)Nmol

2ε0V

[
α̃(ab) (c|k|) + ζ̃(abc) (c|k|) ˆ̂

k(c)

]
, (5.18)

Y is due to the Coulomb energies between the molecules:

Y = 〈(nkσ, 0)(0) |
Nmol−1∑
ξ=1

Nmol∑
ξ′=1

ĤCoulξξ′ | (nkσ, 0)(0)〉 (5.19)

and Z is comprised of diverging terms, including Z(0), that are independent of the state of the light

and do not affect our present discussions: Z − Z(0) is attributable to the radiative self-interactions

of the electrons. To obtain these results, we have considered electric dipole, electric quadrupole

and magnetic dipole contributions to the multpolar expansion of the ‘p ·A’ terms in V̂ and have re-

tained only the electric-dipole / electric-dipole, electric-dipole / electric quadrupole and electric-dipole

/ magnetic-dipole contributions to h̄ω(nkσ ,0) that result. We found it possible and neccesary, however,

to calculate the contributions made to h̄ω(nkσ ,0) by the ‘|A|2’ terms in V̂ in an exact manner.

Comparing h̄ω(nkσ ,0) and h̄ω
(0)
(nkσ ,0)

, we see that inclusion of V̂ has rescaled the energies h̄c|k|
of the photons by a factor of 1/np (c|k|) and shifted the energy of the system ‘light+medium’ by
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Y + Z − Z(0). Thus, we identify an interaction energy Σ shared between the light and the medium

as

Σ =
h̄c|k|nkσ
np (c|k|)

− h̄c|k|nkσ

≈ −
h̄c|k|nkσ ẽ∗kσ(a)ẽkσ(b)Nmol

2ε0V

[
α̃(ab) (c|k|) + ζ̃(abc) (c|k|) ˆ̂

k(c)

]
. (5.20)

In a classical picture, we might associate Σ with the oscillations induced in the charge and current

distributions of the molecules by the light as the light propagates through the medium. We attribute

optical refraction to Σ in that

np (c|k|) ≈ 1− Σ

W

≈ 1 +
ẽ∗kσ(a)ẽkσ(b)Nmol

2ε0V

[
α̃(ab) (c|k|) + ζ̃(abc) (c|k|) ˆ̂

k(c)

]
(5.21)

withW = 〈nkσ|Ĥrad|nkσ〉 − Z(0) = h̄c|k|nkσ here the unperturbed energy of the photons. That is,

the deviation in phase speed of the light away from c is dictated by the ratio of Σ toW .

Our identification of np (c|k|) may be justified through consideration of the perturbed state

|Ψ〉 = exp
(
−|α̃kσ|2/2

) ∞∑
nkσ=0

α̃nkσ
kσ√
nkσ!

exp
[
−iω(nkσ ,0)t

]
| (nkσ, 0)〉, (5.22)

in which

〈Ψ|Â|Ψ〉 ≈ <
(
Ã0 exp {i [np (c|k0|) k0 · r− c|k0|t]}

)
(5.23)

where k0 = k/np (c|k|). The form seen in (5.23) once more resembles that of a classical plane

wave, but propagating now with a phase speed c/np (c|k0|), as desired.

5.2.4 Natural optical rotations and helicity

Here, we consider the natural optical rotation exhibited by a transparent fluid of chiral molecules, a

phenomenon first observed in liquid turpentine, by Biot [25]. At any given t, the electric field vectors

and magnetic flux density pseudovectors of the light are seen to twist about the direction of propa-

gation. Hence, the sense of rotation relative to space is itself reversed upon reversal of the direction

of propagation, as is depicted in figure 5.3. This is reminiscent of a Heaviside-Larmor rotation (2.1)

and, indeed, we find that such natural optical rotations can be attributed explicitly to the helicity of the

light, as follows.

We model the medium by taking isotropic averages of the results presented in §5.2.3 and obtain

Σ ≈ Nmol

3ε0V

[
−1

2
α(aa) (c|k|)W +

1

c
G′(aa) (c|k|) |k|H

]
, (5.24)

np (c|k0|) ≈ 1 +
Nmol

3ε0V

[
1

2
α(aa) (c|k0|)−

1

c
G′(aa) (c|k0|) |k0|

H
W

]
, (5.25)
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where H = 〈nkσ|Ĥ|nkσ〉 is the unperturbed helicity of the photons. It is the sensitivty to H exhibited

by Σ and np (c|k0|) that gives rise to circular birefrignence and hence, the natural optical rotation:

as H differs for left- and right-handed circular polarisations, so too do Σ and np (c|k0|) and it follows

that

θ (c|k0|) ≈ −
NmolG

′
(aa) (c|k0|) |k0|l
3ε0cV

, (5.26)

which is the well-known result due to Rosenfeld and Condon [12, 25]. Like H, from which it de-

rives, θ (c|k0|) is independent of the direction of propagation, as it should be. The sign of the trace

G′(aa) (c|k0|) is dictated by the chirality of the molecules, which in turn dictates the sign of θ (c|k0|).

That Σ should depend upon the chiralities of the photons and the molecules, as embodied by H
and G′(aa), seems natural, perhaps, when we recall the classical picture suggested earlier wherein

Σ is associated with the oscillations induced in the charge and current distributions of molecules by

the light as the light propagates through the medium. In general, the twisting electric field vectors

and magnetic flux density pseudovectors associated with one handedness of circular polarisation

will be better suited to induce these oscillations in a given chiral molecule than those associated with

the opposite handedness of circular polarisation. To give an analogy: the energies required to ‘fit’

opposite gloves onto a given human hand will, of course, differ!

Figure 5.3: The natural optical rotations exhibited by a transparent fluid of chiral molecules tend to cancel
upon reversal of the direction of propagation.

5.2.5 Faraday optical rotations and spin

In his quest to demonstrate a connection between electromagnetism and light, Faraday discovered

the effect that now bears his name [25]: a Faraday optical rotation is exhibited by any transparent

medium in the presence of a static magnetic field. Here, we consider the Faraday optical rotation

exhibited by a transparent fluid of achiral molecules or atoms in the presence of a weak, uniform,

static magnetic flux density B0 which defines a unique direction, thus rendering the fluid a uniaxial

medium. At any given t, the electric field vectors and magnetic flux density pseudovectors of the light

are seen to twist about B0, in a manner that respects their solenoidal character. Hence, the sense

of rotation relative to space is unchanged upon reversal of the direction of propagation as depicted in

figure 5.4. This is reminiscent of a van Enk-Nienhuis-Barnett rotation (the infinitesimal form of which

is seen in (4.61)) and indeed, we find that such Faraday optical rotations can be attributed explicitly

to the spin of the light, as follows.
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The effect of B0 is to perturb the polarisabilities of the molecules or atoms such that

α(ab) → α(ab) + α
(m)
(abc)B0(c)

α′(ab) → α′(ab) + α
′(m)
(abc)B0(c), (5.27)

for example, to first order in B0. Explicit expressions of relevance here can be found in Barron’s book

[25]. Neglecting the permanent magnetic multipole moments of the molecules or atoms, we model

the medum by taking isotropic averages of the results presented in §5.2.3, thus obtaining

Σ ≈ Nmol

3ε0V

[
−1

2
α(aa) (c|k|)W − 1

4
ε(abc)α

′(m)
(abc) (c|k|) c|k|B0 · S

]
, (5.28)

np (c|k0|) ≈ 1 +
Nmol

3ε0V

[
1

2
α(aa) (c|k0|) +

1

4
ε(abc)α

′(m)
(abc) (c|k0|) c|k0|B0 ·

S
W

]
, (5.29)

to leading order, where S = 〈nkσ|Ŝ|nkσ〉 is the unperturbed spin of the photons. It is the sensitivity to

S exhibited by Σ and np (c|k0|) that gives rise to circular birefringence and hence, the Faraday optical

rotation: as S differs for left- and right-handed circular polarisations, so too do Σ and np (c|k0|) and

it follows that

θ (c|k0|) ≈
Nmolε(abc)α

′(m)
(abc) (c|k0|) l

12ε0V
B0 · k0, (5.30)

which is the accepted result due to Serber, Buckingham and Stephens [25]. Like S, from which it de-

rives, θ (c|k0|) is dependent upon the direction of propagation, with the angular dependence familiar

from Verdet’s empirical law [25] emerging here through the dot product B0 · k0.

Thus concludes our present consideration of optical refraction and optical rotation. It remains to

calculate the perturbed eigenstates |(nkσ, 0)〉 and, moreover, to understand how absorption fits into

our picture. Of course, one can also imagine modifying and / or extending our calculations to de-

scribe other media, for example semiconductors, metals, plasmas etc. These are tasks for future

research.

Figure 5.4: The Faraday optical rotations exhibited by a transparent fluid of achiral molecules or atoms tend
to add upon reversal of the direction of propagation. This behaviour, which derives from the properties of spin,
should be contrasted with the behaviour depicted in figure 5.3, which derives from the properties of helicity.
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5.3 Differential scattering

It is now well established in theory that optical activity in the scattering of light is exhibited naturally by

chiral molecules [12, 25, 154–156] and can be induced additionally in all molecules and atoms by an

applied static magnetic [25, 157] or electric [25, 158] field. The phenomenon permits the extraction

of information about molecules and atoms that is not readily obtainable through optical rotation or

its absorptive counterpart: circular dichroism, owing to the subtly different physical mechanism and

greater geometrical freedom involved [12, 25].

Many manifestations of optical activity in light scattering have now been observed in experiment

[25, 159–163]. Natural Raman optical activity in particular has been developed into an incisive spec-

troscopic tool which has been employed to study large biological molecules and even intact viruses

[25, 159, 162, 163]. Owing primarily to the smallness of the effects involved, there remains much to

be pursued, however. Natural Rayleigh optical activity for example has thus far resisted attempts to

observe it in experiment [25, 164], in spite of potential applications such as the robust assignment of

the absolute configurations of small chiral molecules [165].

The theoretical and experimental approaches undertaken to date towards the phenomenon have

been concerned with the illumination of molecules or atoms by single plane (or quasi plane) waves2

[12, 25, 154–163, 165]. I observe, however, that optical activity in light scattering can also be probed,

in general, using other types of illuminating light and that this introduces new possibilities for the study

of molecules and atoms. In the present section, we demonstrate this explicitly for natural Rayleigh

optical activity which could be exploited as a new form of spectroscopy for chiral molecules through

the use of illuminating light comprised of two plane waves that are counter propagating.

5.3.1 Natural Rayleigh optical activity

Consider Nmol � 1 chiral molecules located at fixed positions Rξ (ξ = 1, . . . , Nmol). Neglecting

interactions between them and assuming an absence of applied static electric and magnetic fields,

we take the molecules to be randomly orientated but otherwise identical. We suppose, however,

that they are illuminated by weak, monochromatic, off-resonance light of angular frequency ω = c|k|
(in the visible or near infrared say) that is otherwise freely propagating and the length scale 2π/|k|
associated with which is larger than each molecule. The electric field E and magnetic flux density

B comprising the illuminating light are described by (1.75)-(1.80): we regard the illuminating light as

being an externally imposed influence acting upon the molecules to which they are introduced in an

adiabatic manner.

The oscillations induced by the illuminating light in the charge and current distributions of the molecules

generate Rayleigh scattered light in turn [12, 25], the electric field Escatt and magnetic flux density

Bscatt of which may be calculated using the the solutions seen in (1.87) and (1.88) together with the

results presented in §1.4. At a position r = R of fixed magnitude |R| � |Rξ|, 2π/|k|, we find then

2In experiment, single beams of light that resemble plane waves.
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that

Escatt ≈ <
[
Ẽscatt exp (−iωt)

]
, (5.31)

Bscatt ≈ <
[
B̃scatt exp (−iωt)

]
, (5.32)

with the components Ẽscatt(a) and B̃scatt(a) of the complex quantities Ẽscatt and B̃scatt related to the

oscillations in the charge and current distributions of the molecules as

Ẽscatt(a) =
ω2µ0
4π|R|

Nmol∑
ξ=1

exp (i|k||R−Rξ|)
{
µ̃ξ(a) −

ˆ̂
R(a)

ˆ̂
R(b)µ̃ξ(b)

− ˆ̂
R(b)

1

c
ε(abc)m̃

′
ξ(c) −

i|k|
3

ˆ̂
R(b)

[
Θ̃ξ(ab) −

ˆ̂
R(a)

ˆ̂
R(c)Θ̃ξ(bc)

]}
, (5.33)

B̃scatt(a) =
1

c
ε(abc)

ˆ̂
R(b)Ẽscatt(c). (5.34)

The intensity I = I(
ˆ̂
R) of the scattered light seen at R is

I =

〈∣∣∣∣ 1

µ0
Escatt ×Bscatt

∣∣∣∣〉, (5.35)

with the indicated isotropic rotational average [12, 25] included to account for the random orientations

of the molecules. Making no assumptions beyond those described above whilst rejecting ‘A2’, ‘AG′’

and ‘G′2’ contributions, which are anticipated to be some three orders of magnitude smaller than the

smallest contributions thus retained [25], we obtain

I ≈
Nmol∑
ξ=1

K

|R|2

{
2AwE (Rξ) + 2B ˆ̂

R(a)
ˆ̂
R(b)T

ab
E (Rξ) (5.36)

+ω
[
Ch (Rξ) + 2D ˆ̂

R · sE (Rξ) + E ˆ̂
R(a)

ˆ̂
R(b)n(ab) (Rξ) + F ˆ̂

R(a)
ˆ̂
R(b)x(ab) (Rξ)

]}
,

where K = µ20cω
4/2880π2. Both A and B (explicit expressions given below) are equal for opposite

molecular enantiomers and are thus insensitive to the chirality of the molecules, whilst wE = wE (r)

and T
ab
E = T

ab
E (r) can be identified as being the cycle-averaged values taken by the electric pieces

of the energy density w and the linear momentum flux density components T ab of the illuminating

light as

wE = ε0E ·E/2, (5.37)

T
ab
E = ε0

[
δ(ab)E ·E− 2E(a)E(b)

]
/2. (5.38)

In contrast C, D, E and F (explicit expressions given below) each assume equal magnitudes but op-

posite signs for opposite molecular enantiomers and so are sensitive to the chirality of the molecules,

whilst h, sE and n(ab) can be identified as being the cycle-averaged values taken by the helicity den-

sity h, the electric piece of the spin density s and the ab infra zilch density n(ab) of the illuminating
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light as

h = ε0c (A⊥ ·B−C⊥ ·E) /2, (5.39)

sE = ε0E×A⊥/2, (5.40)

n(ab) = ε0c
[
δ(ab) (A⊥ ·B−C⊥ ·E)

−A⊥(a)B(b) −A⊥(b)B(a) + C⊥(a)E(b) + C⊥(b)E(a)

]
/2. (5.41)

The quantity xab = xab (r) is unfamiliar to us, being

x(ab) = ε0c
{
∂d

[
ε(acd)A

⊥
(b)A

⊥
(c) + ε(bcd)A

⊥
(a)A

⊥
(c)

]}
/2, (5.42)

which vanishes, in fact, for illuminating light comprised of a single plane wave, although it is non van-

ishing in general. We could have incorporated xab into part of n(ab) whilst retained the interpretation

of the latter as being the cycle-averaged value taken by an ab infra zilch density, as x(ab) is a total

divergence which vanishes when integrated over all r.

Our calculation differs from those that have been performed previously [12, 25, 154–156] in that

the illuminating light here need not be comprised of a single plane wave of angular frequency ω but

rather can be constructed from any superposition of such waves. Moreover, the molecules need not

be distributed homogeneously and could instead be confined within a plane, for example. It should

be noted, however, that (5.36) is not appropriate when the direction R̂ of observation coincides with

the direction of propagation of a plane-wave component of the illuminating light, which will then inter-

fere with the scattered light as Rayleigh scattering is a coherent process [12, 25]. Moreover, having

been derived specifically for illuminating light that is (otherwise) freely propagating in accord with

the charge-free Maxwell equations, (5.36) is not appropriate for illuminating light the electric field of

which possesses a non-vanishing irrotational component, such as may be found in the near field of

a radiating structure, for example. We have refrained from exhibiting a generalised structure factor

(inter-molecule cross terms [12]) in (5.36) as it makes no contribution in the examples that follow and

in other geometries besides.

Our general result (5.36) reveals in particular that natural Rayleigh optical activity, as manifest in

I, can be utilised to extract information about the chirality of the molecules using essentially any type

of illuminating light possessing non-vanishing helicity, spin and / or ab infra zilches. A single circu-

larly polarised plane wave is, perhaps, the most obvious example of such light and is examined in

§5.3.2. It is not the only one, however: as we will demonstrate in §5.3.3-§5.3.5, types of illuminating

light comprised of two plane waves that are counter propagating can carry these angular momenta

in novel ways and thus enable new possibilities. In identifying these, we were guided by symmetry

considerations. In particular, it is necessary for E and B together with ˆ̂
R to be of chiral character in

order that I itself be capable of distinguishing between opposite molecular enantiomers, as is inher-

ent, of course, in (5.36).
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Explicitly;

A = 2
(
45a2 + 13β2

)
, (5.43)

B = 2
(
45a2 + β2

)
, (5.44)

C = 4
(
−45aG′ − 13β2G + β2A

)
/c, (5.45)

D = 8
(
−45aG′ + 5β2G + 3β2A

)
/c, (5.46)

E = 4
(
−45aG′ − β2G − 3β2A

)
/c, (5.47)

F = 16β2A/c, (5.48)

with

a2 = α(aa)(ω)α(bb)(ω)/9, (5.49)

β2 =
[
3α(ab)(ω)α(ab)(ω)− α(aa)(ω)α(bb)(ω)

]
/2, (5.50)

aG′ = α(aa)(ω)G′(bb)(ω)/9, (5.51)

β2G =
[
3α(ab)(ω)G′(ab)(ω)− α(aa)(ω)G′(bb)(ω)

]
/2, (5.52)

β2A = ωε(abc)α(ad)(ω)A(bcd)(ω)/2. (5.53)

a2 and β2 do not distinguish between opposite molecular enantiomers and are strictly positive. They

can also be measured through a combination of optical refraction and depolarised Rayleigh scattering

experiments [12, 25, 156]. β2 is typically an order of magnitude smaller than a2 [165] and vanishes

entirely for an isotropic molecule [12, 25]. aG′, β2G and β2A do distinguish between opposite molecular

enantiomers however, by taking on equal magnitudes but opposite signs3. aG′ can also be measured

through a combination of optical refraction and optical rotation experiments [12, 25, 156]. In contrast,

β2G and β2A cannot be readily measured by other means. They are, therefore, quantities of particular

interest [25, 165]. aG′/c, β2G/c and β2A/c are typically three to five orders of magnitude smaller than

a2 [12, 25].

5.3.2 Example zero: circularly polarised illuminating light

As a check on the validity of (5.36) and for comparison in what follows, let us begin now by follow-

ing previous approaches [12, 25, 154–156] and considering illuminating light comprised of a single

circularly polarised plane wave of amplitude E0 propagating in the +z direction as

Ẽ
(0)
± = E0(ˆ̂x± iˆ̂y) exp (i|k|z) , (5.54)

B̃
(0)
± = E0(∓iˆ̂x + ˆ̂y) exp (i|k|z) /c, (5.55)

where the upper and lower signs yield left- and right-handed circular polarisations. This is both the

prototypical type of light possessing non-vanishing helicity, spin and ab infra zilches [37, 52] and the

prototypical type of chiral light [25]: as time passes, E and B rotate with a phase that varies in z such

that they trace out cylindrical helices, the chiralities of which differ for the upper and lower signs seen

3β2
G and β2

A can be positive or negative, in spite of the misleading but standard notation [165].
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Figure 5.5: Illuminating light comprised of a single circularly polarised plane wave is scattered differently by
the molecules depending upon whether it is left- or right-handed.

in (5.54) and (5.55). Accordingly

2w
(0)
E± = ε0E

2
0 , (5.56)

2
ˆ̂
R(a)

ˆ̂
R(b)T

ab(0)
E± =

ˆ̂
R2
zε0E

2
0 , (5.57)

h
(0)
± = ±ε0E2

0/ω, (5.58)

2
ˆ̂
R · s(0)E± = ± ˆ̂

Rzε0E
2
0/ω, (5.59)

ˆ̂
R(a)

ˆ̂
R(b)n

(0)
(ab)± = ± ˆ̂

R2
zε0E

2
0/ω, (5.60)

ˆ̂
R(a)

ˆ̂
R(b)x

(0)
(ab)± = 0, (5.61)

where the upper and lower signs correspond to those seen in (5.54) and (5.55). Taking the molecules

to be homogeneously distributed around the origin r = 0, we find then that

I
(0)
± ≈

ε0KNE
2
0

|R|2
[
A+ B ˆ̂

R2
z ±

(
C +D ˆ̂

Rz + E ˆ̂
R2
z

)]
, (5.62)
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where the upper and lower signs again correspond to those seen in (5.54) and (5.55). Natural

Rayleigh optical activity, as manifest in I
(0)
± , is thus attributable to the non-vanishing helicity, spin

and ab infra zilches possessed by the illuminating light: I(0)± differs for left- and right-handed circular

polarisations because h
(0)
± , s

(0)
E± and n(0)(ab)± do. For right-angled observation in particular, with ˆ̂

R = ˆ̂x

say;

I
(0)
± (ˆ̂x) ≈ ε0KNE

2
0

|R|2
(A± C) . (5.63)

This situation is depicted in figure 5.5.

This phenomenon is neatly quantified by the circular intensity difference ∆(0) = ∆(0)(
ˆ̂
R) defined

as4 [155]

∆(0)(
ˆ̂
R) =

I
(0)
+ (

ˆ̂
R)− I(0)− (

ˆ̂
R)

I
(0)
+ (

ˆ̂
R) + I

(0)
− (

ˆ̂
R)

, (5.64)

which has equal magnitudes but opposite signs for opposite molecular enantiomers. Without loss of

generality, we take ˆ̂
R = sinφˆ̂x + cosφˆ̂z and find that

∆(0)(sinφˆ̂x + cosφˆ̂z) ≈ C +D cosφ+ E cos2 φ

A+ B cos2 φ
, (5.65)

which is the anticipated result [156]. For right-angled observation in particular [12, 25, 155], with
ˆ̂
R = ˆ̂x;

∆(0)(ˆ̂x) ≈ C
A

=
2
(
−45aG′ − 13β2G + β2A

)
c (45a2 + 13β2)

. (5.66)

Owing primarily to the contribution made in the denominator by a2, ∆(0) is rather small and, to the

best of our knowledge, has not yet been observed in experiment for chiral molecules [25, 164]:

calculated magnitudes of ∆(0) typically lie between 10−6 and 10−4 [165]. We note, however, that

experimental results have been reported for large biological structures [166].

5.3.3 Example one: superchiral illuminating light

Following a procedure recently suggested [83] and demonstrated [84] for luminescence-detected

circular dichroism, we observe here the possibility of using so-called superchiral illuminating light,

rather than illuminating light comprised of a single circularly polarised plane wave, to ensure that a

larger fraction of I is sensitive to the chirality of the molecules, albeit at the expense of an overall

reduction in I. We associate with this illuminating light, a quantity analogous to ∆(0)(ˆ̂x) that can be

made larger in magnitude and may, therefore, be more amenable to observation in experiment.

Consider then a superposition of two circularly polarised plane waves of opposite handedness, the

4∆(0) differs in sign from the circular intensity difference introduced by Barron and Buckingham in [155].
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Figure 5.6: Superchiral illuminating light can be employed to ensure that a larger fraction of the intensity of
the scattered light is sensitive to the chirality of the molecules, as compared to illuminating light comprised of
a single circularly polarised plane wave.

first of which has amplitude E1/
√

2 and propagates in the +z direction whilst the second has ampli-

tude E2/
√

2 6= E1/
√

2 and propagates in the −z direction as

Ẽ
(1)
± = E1(ˆ̂x± iˆ̂y) exp (i|k|z) /

√
2− E2 (x̂± iŷ) exp (−i|k|z) /

√
2, (5.67)

B̃
(1)
± = E1(∓iˆ̂x + ˆ̂y) exp (i|k|z) /

√
2c− E2 (±ix̂− ŷ) exp (−i|k|z) /

√
2c, (5.68)

where the upper and lower signs distinguish the cases in which the first wave is left- or right-handed.

This illuminating light is of course closely related to the light examined in §3.3.8. It is manifestly

chiral as, at any given t, E and B twist helically in z, the sense of twist depending on sgn (E1 − E2)

whilst differing for the upper and lower signs seen in (5.67) and (5.68). As time passes, these helical

patterns themselves rotate rigidly about the z axis, with the sense of rotation differing for the upper

and lower signs in seen in (5.67) and (5.68). In the vicinity of the z = 0 plane, E twists unusually fast

in z, doing so at the cost of a reduced magnitude: a superoscillatory phenomenon [167]. In contrast,

B twists rather slowly in the vicinity of z = 0, but is of relatively large magnitude. The effect becomes

more pronounced as |E1 − E2| → 0.
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Let us suppose then that the molecules are distributed homogeneously in the z = 0 plane about

r = 0. Adopting a right-angled observation geometry with R̂ = x̂, we find that

I
(1)
± (ˆ̂x) ≈ ε0KN (E1 − E2)

2|R|2
[A (E1 − E2)± C (E1 + E2)] , (5.69)

where the upper and lower signs correspond to those seen in (5.67) and (5.68). Comparing (5.69)

with (5.63), we see that the chirally insensitive A contribution to I
(1)
± (ˆ̂x) is reduced relative to the

chirally sensitive C contribution, albeit at the expense of an overall reduction in I(1)± (ˆ̂x). This occurs

because the chirally insensitive A contribution to I
(1)
± (ˆ̂x) is driven by E alone through wE whilst

the chirally sensitive C contribution is driven instead by both E and B through h: in the latter case,

the unusually high degree of twisting exhibited by E in the vicinity of the z = 0 plane, where the

molecules reside, together with the relatively large magnitude of B compensates somewhat for the

small magnitude of E there. The situation is depicted in figure 5.6.

We quantify this phenomenon through a generalised intensity difference χ(1) defined as

χ(1) =
I
(1)
+ (ˆ̂x)− I(1)− (ˆ̂x)

I
(1)
+ (ˆ̂x) + I

(1)
− (ˆ̂x)

≈ E1 + E2

E1 − E2

C
A

=
E1 + E2

E1 − E2
∆(0)(ˆ̂x), (5.70)

which has equal magnitudes but opposite signs for opposite molecular enantiomers. This χ(1) should

be equal to or greater in magnitude than ∆(0)(ˆ̂x) and diverges, in fact, as |E1 − E2| → 0 (and

I
(1)
± (ˆ̂x) → 0). In reality, such enhancements of χ(1) relative to ∆(0) are limited by contributons to

the components m′ξ(a) of the magnetic dipole moments of the molecules induced by B, which we

have omitted explicitly from our analysis. Nevertheless, gains up to three orders of magnitude may

be possible [12, 25, 83, 84].

5.3.4 Example two: σ-σ illuminating light

We observe now the possibility of using so-called σ-σ illuminating light, rather than illuminating light

comprised of a single circularly polarised plane wave, to remove isotropic contributions to I whilst

retaining both chirally insensitive and chirally sensitive anisotropic contributions. We associate with

this illuminating light, a quantity analogous to ∆(0)(ˆ̂x) that is significantly larger in magnitude whilst

offering different and perhaps more desirable information about the chirality of the molecules. This

quantity may, therefore, be more suitable for observation in experiment.

Consider then a superposition of two circularly polarised plane waves of the same handedness and

equal amplitude E0/
√

2, the first of which propagates in the +z direction whilst the second propa-
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Figure 5.7: σ-σ illuminating light can be employed to ensure that the intensity of the scattered light contains
no isotropic contributions whilst still being sensitive to the chirality of the molecules.

gates in the −z direction as

Ẽ
(2)
± = E0(ˆ̂x± iˆ̂y) exp (i|k|z) /

√
2 + E0(ˆ̂x∓ iˆ̂y) exp (−i|k|z) /

√
2, (5.71)

B̃
(2)
± = E0(∓iˆ̂x + ˆ̂y) exp (i|k|z) /

√
2c+ E0(∓iˆ̂x− ˆ̂y) exp (−i|k|z) /

√
2c,

where the upper and lower signs distinguish the cases in which the waves are left- or right-handed.

This illuminating light is of course closely related to the light examined in §3.3.8. It is manifestly

chiral, as E and B oscillate linearly and parallel to each other at each z whilst the plane in which

they oscillate twists helically in z, the sense of twist differing for the upper and lower signs seen in

equation (5.67) whilst E lags or leads B by a quarter cycle. In the z = 0 plane, E and B lie parallel

to the x axis.

Let us suppose then that the molecules are distributed homogeneously in the z = 0 plane about

r = 0. Adopting a right-angled observation geometry with ˆ̂
R = ˆ̂x, we find that

I
(2)
± (ˆ̂x) ≈ ε0KNE

2
0

|R|2
[(A− B)± (C − E)] , (5.72)

where the upper and lower signs correspond to those seen in (5.71). Evidently, I(2)± (ˆ̂x) contains

no isotropic contributions, either chirally insensitve: a2, or chirally sensitive: aG′. It does, however,
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possess non-vanishing anisotropic contributions, both chirally insensitive: β2, and chirally sensitive:

β2G and β2A. This may be understood simply by recalling that an oscillating electric dipole moment

radiates no energy on axis and so an isotropically polarisable molecular species would, to the order

of present interest, exhibit no scattering in the direction ˆ̂
R = ˆ̂x of observation as the latter lies parallel

to the (electric-dipole-inducing) E vectors in the z = 0 plane where the molecules reside.

We quantify this phenomenon through a generalised intensity difference Λ(2) defined as

Λ(2) =
I
(2)
+ (ˆ̂x)− I(2)− (ˆ̂x)

I
(2)
+ (ˆ̂x) + I

(2)
− (ˆ̂x)

≈ C − E
A− B

=
2
(
β2A − 3β2G

)
3cβ2

, (5.73)

which has equal magnitudes but opposite signs for opposite molecular enantiomers. This Λ(2) should

be larger than ∆(0)(ˆ̂x) by around two orders of magnitude [165] owing to the absence of a contri-

bution from a2 in the denominator. Moreover, Λ(2)(ˆ̂x) offers different and perhaps more desirable

information about the chirality of the molecules than ∆(0)(ˆ̂x) as its numerator is comprised solely of

the quantities β2G and β2A of particular interest. We note that Λ(2) is −1 times the familiar depolarised

right-angled circular intensity difference [12, 25]. The latter, however, requires analysed measure-

ments of the intensities of scattered light polarised perpendicular to the scattering plane and is prone

to spurious effects [25], owing to the relatively large intensities of scattered light polarised parallel to

the scattering plane. In contrast, Λ(2) requires measurement only of unanalysed scattered intensities

and should, therefore, be robust in this regard. Theoretical predictions of the variation of the famil-

iar depolarised right-angled circular intensity difference (and hence, Λ(2)) with frequency for various

molecules can be seen in the work of Züber, Wipf and Beratan [165].

5.3.5 Example three: lin ⊥ lin illuminating light

We observe finally the novel possibility of using so-called lin ⊥ lin illuminating light which is essen-

tially achiral, rather than illuminating light comprised of a single circularly polarised plane wave, to

extract information about the chirality of the molecules through I. We associate with this illuminating

light a quantity analogous to ∆(0)(ˆ̂x) that is impervious to spurious contributions attributable to cir-

cular dichroism whilst being of a different form.

Consider then a superposition of two linearly polarised plane waves of equal amplitude E0, the

first of which is polarised along the x axis and propagates in the +z direction whilst the second is

polarised along the y axis and propagates in the −z direction as

Ẽ(3) = E0iˆ̂x exp (i|k|z)− E0
ˆ̂y exp (−i|k|z) ,

B̃(3) = E0iˆ̂y exp (i|k|z) /c− E0
ˆ̂x exp (−i|k|z) /c. (5.74)
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Figure 5.8: A parity inversion of the lin ⊥ lin illuminating light and the direction of observation ˆ̂
R = ˆ̂y through

the origin r = 0 can be mimicked in the z = 0 plane by leaving the light unaltered and changing the direction

of observation from ˆ̂
R = ˆ̂y to ˆ̂

R = ˆ̂x.

It should be noted that we only have one form of illuminating light here, in contrast to examples zero,

one and two where there were two forms of illuminating light which we distinguished using plus and

minus signs. It is essentially the same as the light examined in §3.3.8. In the z = 0 plane, E and B

rotate in opposite directions which is, by itself, an essentially achiral configuration. The combination

of E, B and ˆ̂
R, however, is chiral in general. In particular, a parity inversion of the illuminating light

and the direction of observation ˆ̂
R = ˆ̂y through r = 0 yields a new configuration not superposable

upon the old. An essentially equivalent transformation is invoked, however, by leaving the illuminating

light unaltered and changing the direction of observation from ˆ̂
R = ˆ̂y to ˆ̂

R = ˆ̂x. This is depicted in

figure 5.8.

Let us suppose then that the molecules are distributed homogeneously in the z = 0 plane about
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Figure 5.9: Lin ⊥ lin illuminating light, which is by itself essentially achiral, can be employed to probe the
chirality of the molecules by making explicit use of the degree of freedom that is the direction in which the
intensity of scattered light is observed.

r = 0. We find that

I(3)(ˆ̂x) ≈ ε0NKE
2
0

|R|2
[A+ (E + F)] ,

I(3)(ˆ̂y) ≈ ε0NKE
2
0

|R|2
[A− (E + F)] . (5.75)

Evidently, information about the chirality of the molecules can be extracted simply by contrasting

I(3)(ˆ̂x) and I(3)(ˆ̂y). This is of course possible owing to the equivalence described above.
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We quantify this phenomenon through a generalised intensity difference Υ(3) defined as

Υ(3) =
I(3)(ˆ̂y)− I(3)(ˆ̂x)

I(3)(ˆ̂y) + I(3)(ˆ̂x)

≈ −E + F
A

=
2
(
45aG′ + β2G − β2A

)
c (45a2 + 13β2)

, (5.76)

which has equal magnitudes but opposite signs for opposite molecular enantiomers. This Υ(3) is of

a different character, of course, to ∆(0), χ(1) and Λ(2) as it is dependent upon scattered intensities

associated with one form of illuminating light rather than two. It offers somewhat different information

about the chirality of the molecules than ∆(0)(ˆ̂x): the contributions made by β2G and β2A to Υ(3) are

of opposite sign to those in ∆(0)(ˆ̂x) and the former is 13 times smaller. Although we have assumed

the illuminating light to be off resonance, there will always exist in reality some absorption of the

illuminating light by the molecules. Owing to circular dichroism, ∆(0)(ˆ̂x), χ(1) and Λ(2) will therefore

suffer from spurious contributions attributable not to light scattering but rather, to luminescence. By

its very nature, Υ(3), however, is impervious to such contributions. Indeed, lin ⊥ lin illuminating light

will be absorbed at the same rate by opposite molecular enantiomers, as it is essentially achiral.

Thus concludes our present consideration of optical activity in the scattering of light. Our proposed

techniques require that the scattering molecules be confined to a plane, in which case their num-

ber and hence, the scattered intensity, is necessarily reduced relative to that attainable in a fully

homogeneous sample. It is unclear at present whether this limitation can be overcome simply. In

experiment, such confinement might be realised simply by depositing the molecules onto a surface

[168]. Of course, additional effects associated with the surface, such as reflection and refraction of

the illuminating light and molecular orientation [169], would then have to be considered with care.

For our two-plane-wave examples, we restricted our attention to right-angled observation which is

particularly well suited to experiment as it ‘avoids’ the illuminating light as much as possible. Nev-

ertheless, more information about the chirality of the molecules may be extracted by exploring other

scattering geometries, as has been suggested for illuminating light comprised of single circularly po-

larised plane waves [156]. Our approach has been centred upon the unanalysed scattered intensity

as this is, perhaps, the most readily measurable property of the scattered light. The polarisation

properties of the scattered light remain to be explored, however, and may yield additional possibil-

ities. Finally, we highlight the fact that analogous approaches to those undertaken in the present

section can be pursued for other manifestations of optical activity in light scattering. These are tasks

for future research.

5.4 Discriminatory optical force for chiral molecules

It is well established that chiral molecules can exert discriminatory forces upon each other [12, 170,

171]. In recent years, interest has been expressed regarding the possibility of using light, such as

that produced by a laser, to exert a force of discriminatory character upon a single chiral molecule
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[172–176]. The present section is concerned with this possibility. We observe that the centre-of-

mass motion of a chiral molecule is, under appropriate circumstances, sensitive to gradients in the

helicity of an optical field and that the force associated with these gradients points in opposite direc-

tions for the opposite enantiomers of the molecule. We present a simple optical field for which this

phenomenon is isolated and propose applications. Our approach differs, it seems, from others that

have been presented in the literature [172–176] in that we make no critical assumptions regarding

the energy-level structure of the molecule but rather, rely upon the sign of a certain molecular polar-

isability. Our work is, therefore, relevant for many types of molecule and our proposed applications

may be realisable using currently existing technology.

5.4.1 Force exerted by light upon a chiral molecule

Consider a chiral molecule located at position R = X ˆ̂x + Y ˆ̂y + Z ˆ̂z. We assume an absence of

applied static electric and magnetic fields but suppose, however, that the molecule is illuminated by

weak, monochromatic, far off-resonance light of angular frequency ω = c|k|, the length scale 2π/|k|
associated with which is larger than the molecule. The electric field E and magnetic flux density

B comprising the light are described by (1.75)-(1.80): we regard the light as being an externally

imposed influence acting upon the molecule to which it is introduced in an adiabatic manner. We

imagine the molecule to be rotating and perhaps vibrating somewhat such that we can ignore molec-

ular alignment: we imagine the molecule to be ‘tumbling’ freely in the optical field. In reality, the

molecule might be a constituent of a hot effusive molecular beam and the light might originate from

a near-infrared laser.

During the course of their interactions the light and the molecule will, in general, exchange linear

momentum, giving rise to an optical force which governs the centre-of-mass motion of the molecule

[28, 177]. Well-established optical activity phenomena [12, 25, 27, 143] suggest to us the possibility

that the opposite enantiomers of the molecule will, in general, exchange linear momentum with light

of chiral character at different rates, thus experiencing different optical forces. We now demonstrate

this to be the case.

We neglect the forces experienced by the particles comprising the molecule due to their own elec-

tromagnetic fields, which give rise, in particular, to radiation reaction effects [2, 3, 11]. Moreover, we

approximate the true electromagnetic interactions between the particles by non-retarded Coulomb

interactions [11], the forces associated with which cancel for any given pair of particles. Thus, the

net electromagnetic force F = F (t) experienced by the molecule derives solely from the Lorentz
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forces exerted upon the individual particles by the optical field as

F =

N∑
n=1

qn [E (rn, t) + ṙn ×B (rn, t)]

=

∫ ∫
∞

∫
(ρE + J×B) d3r

=

∫ ∫
∞

∫ [
(−∇ ·P) E +

(
Ṗ + ∇×M

)
×B

]
d3r

=

∫ ∫
∞

∫ [
P(a)∇E(a) +M(a)∇B(a)

]
d3r +

d
dt

∫ ∫
∞

∫
P×B d3r. (5.77)

Making use now of the results presented in §1.4, we find that the cycle-averaged, rotationally-

averaged form
〈
F
〉

of F is conservative, being comprised of two distinct pieces as

〈
F
〉

= −∇Uw (R)−∇Uh (R) , (5.78)

with the potential energies Uw = Uw (r) and Uh = Uh (r) as defined below. Note that in obtaining the

result seen in (5.78), we supposed R to be fixed. In what follows, however, we employ this result to

describe scenarios in which R may be changing with t. In doing so, we neglect certain phenomena

attributable directly to the centre-of-mass motion of the molecule (Röntgen current, Doppler shifts etc

[12, 177]), the effects of which will be small for realistic molecular speeds.

Uw is the familiar ‘dipole’ potential energy [177, 178]:

Uw = −αwE/ε0, (5.79)

with 3α = α(aa) (ω). Except for a factor of twice the speed of light c, wE is often referred to loosely

as the ‘intensity’ of an optical field, although this nomenclature is not appropriate in general. It seems

natural that the trace 3α should appear in connection with the electric energy density wE . The former

is a time-even rotational scalar associated with the interference of electric-dipole transition moments

within a molecule [25] whilst the latter is a time-even rotational scalar field that is also of apparent

electric character [2]. For ω far off-resonance, 3α may be well-approximated by its static value,

which is usually positive [25, 179]. In general, wE is also positive although it may, of course, vanish

at certain points in space at certain times. Uw thus attracts the molecule towards those regions in

the optical field where the cycle-averaged electric energy density wE is maximum. The employment

of the dipole potential energy to manipulate molecules has been pursued in a wealth of theoretical

[179–195] and experimental [196–213] contexts.

Uh is

Uh = ωG′ h/ε0c, (5.80)

with 3G′ = G′(aa) (ω). It seems natural that the trace 3G′ should appear in connection with the helicity

density h. The former is a time-even rotational pseudoscalar associated with the mutual interference
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of electric-dipole and magnetic-dipole transition moments within a molecule [25] whilst the latter is

a time-even rotational pseudoscalar field that embodies the electric-magnetic symmetry inherent to

freely-propagating light. Moreover, such transformation properties are the hallmarks of true chirality

[25, 141, 142, 214] and indeed, 3G′ possesses equal magnitudes but opposite signs for the opposite

enantiomers of a chiral molecule [12, 27, 171] whilst the helicityH itself possesses equal magnitudes

but opposite signs for the enantiomorphs of an optical field. Thus, the force −∇Uh(R) associated

with Uh is entirely discriminatory, pointing in opposite directions for the opposite enantiomers of the

molecule: Uh attracts the enantiomer for which 3G′ > 0 towards those regions in the optical field

where the cycle-averaged value helicity density h is minimum whilst the opposite enantiomer, with

3G′ < 0, is instead attracted to those regions in the optical field where h is maximum. This is, in

essence, our main result.

At the time of publishing the original research described in the present section [150, 151], ex-

pressions for the optical force experienced by a small isotropic chiral dipole of unspecified consti-

tution, as induced by monochromatic light, had been reported independently elsewhere [215–217].

In these expressions, a contribution can be identified that coincides with the discriminatory optical

force−∇Uh(R). This is natural, of course, as we have treated the molecule much like such a dipole.

Applications for the discriminatory optical force additional to those proposed below have since been

proposed elsewhere [218].

Although the derivation given in the present section and indeed, the concept of a force, is classical

in nature, the forms of Uw and Uh can also be justified by an appropriate calculation in the quantum

domain. Indeed, it will be noticed that they coincide with the energy shifts discussd in §5.2.4. Thus,

our discriminatory optical force and optical rotation are, in fact, different manifestations of the same

interaction!

5.4.2 Isolating the discriminatory optical force

Figure 5.10: Light possessing helicity fringes can give rise to a cycle averaged, rotationally averaged optical
force

〈
F
〉

that is, in general, non-vanishing and is purely discriminatory; pointing in opposite directions for the
opposite enantiomers of a chiral molecule, as illustrated for the enantiomers of hexahelicene.

A simple estimate reveals that the ratio |cα/G′| is typically of the order of 103-105 [12, 25, 170] and

so it may appear that −∇Uw (R) overwhelms −∇Uh (R). This need not be the case, however:
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we can, in fact, eliminate the former so that
〈
F
〉

is entirely discriminatory in turn, by constructing

the optical field such that wE is homogeneous (and, therefore, ∇wE (R) = 0) whilst h is not (and

∇h (R) 6= 0).

To demonstrate this, let us consider the optical field constructed by superposing two linearly po-

larised plane waves of equal amplitude E0 and angular frequency ω, propagating such that their

wavevectors lie in the x-z plane making angles of ±θ (θ > 0) with the +z axis. We take the polarisa-

tions of the ±θ waves to lie in the x-z plane and parallel to the y axis respectively. Explicitly

Ẽ = E0(ˆ̂x cos θ − ˆ̂z sin θ) exp [i|k| (z cos θ + x sin θ)]

+E0
ˆ̂y exp [i|k| (z cos θ − x sin θ)] , (5.81)

B̃ = E0
ˆ̂y exp [i|k| (z cos θ + x sin θ)] /c

+E0(−ˆ̂x cos θ − ˆ̂z sin θ) exp [i|k| (z cos θ − x sin θ)] /c. (5.82)

This optical field is identical to that examined in §3.3.8, but with the angle ϑ = π/2 here. As will be

recalled, it sports helicity fringes attributable to quasi-interference. We find that

Uw = −αE2
0/2, (5.83)

Uh = −G′E2
0 cos2 θ sin (κx) /c, (5.84)

with κ = 2ω sin θ/c a wavenumber. Thus,

〈
F
〉

= κG′E2
0 cos2 θ cos (κX) ˆ̂x/c, (5.85)

which is non vanishing, in general, and points in opposite directions for the opposite enantiomers of

the molecule, by virtue of the opposite signs of 3G′, as claimed. This is depicted in figure 5.10.

It is possible, of course, to conceive of many other optical fields for which wE is homogeneous

whilst h is not. We emphasise that
〈
F
〉

is entirely discriminatory in all such cases. The simple ex-

amples of which we are aware are obtained, as above, from various superpositions of waves that

possess linear and orthogonal polarisations [53, 79].

5.4.3 Newtonian molecular optics

The field of Newtonian molecular optics is concerned with the manipulation of the centre-of-mass

motion of a molecule in a regime where the motion can be viewed classically [177], as we have pre-

sumed to be the case so far. The dipole optical force has been utilised successfully in this regime in

a multitude of experiments [196, 197, 199, 201, 202, 204–207, 211–213]. It seems natural, therefore,

to investigate the novel possibilities offered for our molecule in the regime of Newtonian molecular

optics by the discriminatory optical force.
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Chiral Stern-Gerlach deflector

The use of an optical field akin to the one presented in §5.4.2 to deflect the centre-of-mass trajectory

of the molecule in a discriminatory manner with a single helicity fringe, say, presents itself as one

possibility: see figure 5.11. In homage to a traditional Stern-Gerlach deflector [219], we refer to this

device as a ‘chiral Stern-Gerlach deflector’.

Figure 5.11: The principle of operation of the chiral Stern-Gerlach deflector, depicted here for the opposite
enantiomers of hexahelicene. (a) A single helicity fringe deflects the left-handed enantiomer to the left. (b)
The same fringe deflects the right-handed enantiomer to the right.

Let us now perform a simple estimate to gauge the feasibility of the chiral Stern-Gerlach deflector. We

suppose that the molecule, of observable rest mass M , resides, at t = 0, at the origin r = 0 of the

optical field presented in §5.4.2, moving in the +z direction with speed Vz. We suppose, moreover,

that its subsequent centre-of-mass motion is governed by Newton’s second law and
〈
F
〉

as seen in

(5.85). Considering an interaction time 0 < t �
√
Mc/κ2|G′|E2

0 such that the molecule does not

reach its nearest helicity trough or peak and |X (t) | � π/2κ, we deduce that its angular deflection

φ = φ (t), as measured with respect to the +z axis, is

φ ≈ −tκG′E2
0/MVzc, (5.86)

to first order in φ, as we presume that φ � 1. We consider ω = 2 × 1015 s−1 which corresponds

to a free-space wavelength of 2πc/ω = 1 × 10−6 m. This lies in the near infrared to which many

molecules are indeed essentially transparent [196, 197, 199, 201, 202, 204–207, 211, 213]. We

choose θ = 5 × 10−2 which yields helicity fringes of wavelength 2π/κ = πc/ω sin θ = 1 × 10−5 m,

which is also in line with experimental demonstrations [80, 81]. For the sake of concreteness, we

consider hexahelicene, a chiral molecule with M = 5 × 10−25 kg [25, 34, 35]. Using an empirical

result obtained from a measurement of specific rotation [25, 34, 35], together with an appropriate

theoretical angular frequency scaling [25, 220], we estimate that 3G′ = ±1 × 10−34 m kg−1 s3 A2,

where the plus and minus signs refer to the left- and right-handed enantiomers of the molecule.
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We consider E0 = 6 × 108 m kg s−3 A−1 which corresponds to a notional intensity of ε0cE2
0 =

1 × 1015 kg s−3. The latter is approximately one order of magnitude smaller than that typically

employed [196, 197, 199, 202, 204–207, 211, 213] which may help to reduce the possible effects of

polarisation dependent alignment [211, 212] that threaten to complicate our picture and also allows

us, we assume, to consider t = 1 × 10−6 s which is approximately two orders of magnitude larger

than the usual interaction time [196, 197, 199, 201, 202, 204–207, 211, 213]: the probabilities of

certain processes such as multi-photon ionisation that promise to damage the molecule, thus limiting

the maximum interaction time, scale in a highly non-linear fashion with intensity [196, 197]. We take

Vz = 1 × 102 m s−1, as may be obtained with a velocity selector5 [221], and identify a notional

longitudinal width D = Vzt = 1 × 10−4 m of the optical field. Using these values in (5.86), we find

that

φ = ±5× 10−4. (5.87)

Even for our optimistic estimate, φ is rather ‘small’. We believe nevertheless that such deflections

are detectable, perhaps using the methods that have already been employed in analogous experi-

ments centred upon the dipole optical force, namely the ionisation of deflected molecules using an

intense laser beam and their subsequent detection using a microchannel plate detector in a suit-

able geometry [196, 197, 199, 201, 202, 204, 211]. The utilisation of these methods in particular

to map modifications of molecular trajectories attributable to the dipole optical force has been well-

demonstrated [199, 202].

A chiral Stern-Gerlach deflector could be employed as a robust means of spatially separating the

enantiomers of a chiral molecule for further applications. It is possible that this might find practical

use in pharmaceutical research, for example, where efficient methods of chiral resolution may not

be known for a newly-synthesised chiral molecule [143] and yet, it is of vital importance to work with

samples of a known enantiomeric purity a priori, as is exemplified by methamphetamine and other

drugs besides. In addition, a chiral Stern-Gerlach deflector might be utilised to measure the mag-

nitude and sign of 3G′ supported by a molecule, by examining the magnitude and direction of the

associated deflection. It could even be used as a means of determining the enantiomeric purity of a

sample of chiral molecules by passing some of them through the device and comparing the numbers

deflected to the left and to the right. Closely related devices have been proposed theoretically else-

where [172, 174–176], albeit making use of seemingly different mechanisms.

It is possible, of course, to conceive of other novel possibilities offered for chiral molecules in the

regime of Newtonian molecular optics by the dipole optical force. At present, however, we turn our

attention to a more delicate but sensitive regime, namely that of de Broglie molecular optics.

5.4.4 de Broglie molecular optics

Ultimately, the centre-of-mass motion of a molecule is governed by the laws of quantum mechanics

and should most accurately be viewed in terms of de Broglie waves [28, 177]. The manipulation

5It is important that the internal temperature of the molecule be sufficiently high so as to justify our use of rotational
averaging: an effusive source of temperature T = 1× 103 K, say, may suffice.
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of these waves comprises the field of de Broglie molecular optics, in which there exist possibili-

ties including the performance of remarkably high precision measurements [28, 177] that cannot be

understood in terms of Newtonian trajectories [28, 177]. Indeed, the picture presented in Newto-

nian molecular optics is but an approximation to the more fundamental one presented in de Broglie

molecular optics, much as the picture presented in geometrical optics is but an approximation to

the more fundamental one presented in the wave theory of light [27]. The dipole potential energy

has been utilised successfully in the regime of de Broglie molecular optics in various experiments

[203, 208–210, 222] and it seems natural, therefore, to enquire as to the novel possibilities offered

for our molecule by the discriminatory potential energy. Thus, let us now assume coherent quantum-

mechanical evolution of the centre-of-mass motion of the molecule.

Chiral diffraction grating

We recognise, for example, the possibility of using an optical field akin to the one presented in §5.4.2

to diffract the de Broglie waves associated with the centre-of-mass motion of the molecule, by passing

them through a thin sheet of helicity fringes as illustrated in figure 5.12(a). The sensitivity of the de

Broglie waves to the helicity fringes and thus, the diffraction, is attributable to the molecule being

chiral (3G′ 6= 0): the de Broglie waves associated with the centre-of-mass motion of a similar achiral

molecule are instead insensitive to the helicity fringes (as 3G′ = 0 [12, 27, 171]) and, therefore,

no diffraction results, as illustrated in figure 5.12(b). We refer to this device accordingly as a ‘chiral

diffraction grating’.

Figure 5.12: The principle of operation of the chiral diffraction grating. (a) A chiral molecule such as hexa-
helicene is diffracted by a collection of helicity fringes. (b) An achiral molecule such as buckminsterfullerene
(C60) does not ‘sense’ these fringes and hence, is not diffracted.

Let us now consider the results of some simple calculations pertaining to the chiral diffraction grating.

We suppose that the molecule resides in the optical field presented in section 5.4.2 and describe it as

a point particle behaving in accord with the Schrödinger equation under the influence of Uw and Uh
as seen in (5.83) and (5.84). We suppose, moreover, that the molecule occupies, at t = 0, a linear

momentum eigenstate with eigenvalue MVz ˆ̂z. Considering an interaction time 0 < t � 2Mc2/h̄ω2
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significantly shorter than the inverse of the single-photon recoil angular frequency, say, we employ

the Raman-Nath approximation and find, following a slight variant of a standard calculation [223],

that the molecule evolves into a superposition of linear momentum eigenstates with eigenvalues

nh̄κˆ̂x +MVz ˆ̂z, where n ∈ {0,±1, . . . } and the probabilities associated with these eigenvalues are

Pn = J2
n

(
tG′E2

0 cos2 θ/h̄c
)
. (5.88)

In reality, we may associate t with a notional longitudinal widthD of the optical field as t = D/Vz. The

Raman-Nath approximation then corresponds to a ‘thin’ [177, 223] chiral diffraction grating and the

relative intensities of the diffraction orders (n = 0,±1,±2, . . . ) observable in the far field [203, 222]

are governed by the probabilities Pn. This conclusion can also be reached, of course, by calculating

a Fraunhoffer diffraction integral [224]. It will be noticed that the Pn depend upon the magnitude

of 3G′ but not the sign. They are, therefore, equal for the opposite enantiomers of the molecule.

Consider now, as in §5.4.3, ω = 2 × 1015 s−1 and hexahelicene, for which M = 5 × 10−25 kg and

we estimate 3G′ = ±1 × 10−34 m kg−1 s3 A2, as will be recalled. We choose θ = 5 × 10−1 here

which yields helicity fringes of wavelength 2π/κ = πc/ω sin θ = 1 × 10−6 m. In line with an analo-

gous experiment in which the diffraction of fullerenes due to their interaction with a traditional optical

standing wave was observed, we take Vz = 1 × 102 m s−1 and D = 5 × 10−5 m [203, 222], corre-

sponding to t = D/Vz = 5 × 10−7 s. With 3G′, θ and t fixed, the Pn are found to depend upon E0

and hence, ε0cE2
0 in a highly sensitive manner, as seen in figure 5.13. In choosing these values, we

have also accounted for effects not included explicitly in our analysis so as to ensure the possibility

of an experimental demonstration: the helicity fringes are unlikely to be resolved via quasi-blackbody

radiation by a velocity-selected effusive molecular source of temperature T = 1× 103 K, say, whilst

this temperature ensures the validity of our use of rotational averaging [225, 226]; the diffraction

orders should be separated by 1× 10−5 m when observed 1 m away from the chiral diffraction grat-

ing and could be recorded, therefore, using the same methods that have already been employed in

molecular diffraction experiments centred upon the dipole potential energy, namely the ionisation of

diffracted molecules using an intense laser beam, translated across the diffraction pattern, and their

subsequent detection using an electron multiplier [203]; the highest notional intensity considered of

ε0cE
2
0 = 3 × 1013 kg s−3 represents an upper limit beyond which the probability of the molecule

absorbing at least one photon from the optical grating approches unity, as extrapolated from hexahe-

licene’s measured visible absorption spectrum [226–228].

The chiral diffraction grating and its associated diffraction patterns are also remarkably sensitive

to the chiral geometry of the molecule. To illustrate this, we now employ an analytical expression for

hexahelicene’s trace 3G′, obtained elsewhere using a dynamic coupling model [25, 229, 230], and

fix E0 = 1 × 108 m kg s−3 A−1 so that ε0cE2
0 = 3 × 1013 kg s−3. We vary the normalised pitch

−1 ≤ γ ≤ 1 of the molecule in a hypothetical manner, however, and examine the corresponding

changes in the Pn. As the Pn are identical for the opposite enantiomers of the molecule, we need

only consider the magnitude of γ. The limiting values |γ| = 1 and |γ| = 0 correspond to the usual

helical shape adopted by hexahelicene and to a ‘flattened’ version of the molecule which is achiral.

Thus, for |γ| = 1 our chiral diffraction grating gives rise to the diffraction pattern expected of hexahe-
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Figure 5.13: Plots of the diffraction probabilities Pn, depicting their variation with the notional intensity ε0cE2
0

for hexahelicene.

licene in reality6 whereas for |γ| = 0, no diffraction pattern is found. Between these limiting cases,

the Pn vary drastically in responses to ‘small’ changes in |γ| as seen in figure 5.14.

Figure 5.14: Plots of the diffraction probabilities Pn, depicting their (hypothetical) variation with the magnitude
of the normalised pitch γ of hexahelicene.

We highlight here once more that the Pn are equal for the opposite enantiomers of the molecule.

Consequently, the diffraction patterns produced by a chiral diffraction grating in practice would be

insensitive to the enantiomeric purity of the source from which the molecules derive and a racemic

mixture in particular, which does not exhibit any traditional manifestations of optical activity (optical

rotation, circular dichroism, differential scattering), would give rise to the same non-trivial diffraction

patterns as it would if it were enantiopure! The chiral diffraction grating should be viewed, there-

fore, as something of a chirality detector, rather than a chirality discriminator : the very existence of

diffraction indicates that |3G′| 6= 0 and hence that a molecule is chiral. By examining the diffraction

patterns it produces, a chiral diffraction grating could be employed to measure, to high precision, the

value of |3G′| supported by a molecule. Its insensitivity to the sign of 3G′ lends the chiral diffraction

grating to more exotic applications besides, for example the detection of, and measurement of the

concentration of, racemic distributions of chiral impurities in otherwise achiral samples.

6The difference in appearance of the last panel of figure 5.13 and the first panel of figure 5.14 is due to the fact that
they were derived from empirical and theoretical values of 3G′ that themselves differ slightly.
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Discriminatory chiral diffraction grating

We can incorporate the discriminatory character of the chiral Stern-Gerlach deflector into the chiral

diffraction grating, whilst retaining the sensitivity of the latter, by placing a thin mechanical transmis-

sion grating in front of the helicity fringes such that those regions for which (∇H)x > 0 are obscured,

as illustrated in figure 5.15. We determine the modified diffraction probabilities P ′n by calculating a

Fraunhoffer diffracton integral [231] whilst neglecting van der Waals forces associated with the me-

chanical grating. The P ′n now discriminate between the enantiomers of the molecule, being sensitive

to both the magnitude and sign of 3G′, as seen in figure 5.16. We refer to our new device accordingly

as a ‘discriminatory chiral diffraction grating’.

Figure 5.15: The discriminatory chiral diffraction grating: a composite of a thin mechanical transmission
grating and a thin sheet of helicity fringes, gives rise to diffraction patterns that discriminate between the
enantiomers a chiral molecule as illustrated for the left- (a) and right-handed (b) enantiomers of hexahelicene.

A discriminatory chiral diffraction grating could be employed as a means of spatially separating the

enantiomers of a chiral molecule for further applications. In this context we might regard it as a chiral

beam splitter for de Broglie waves. In addition, it might be utilised to measure, to high precision,

the magnitude and sign of 3G′ supported by a molecule by examining the form of the associated

diffraction pattern. If |3G′| in particular is already known for a type of chiral molecule, our discrimi-

natory chiral diffraction grating could be employed instead to measure, simply and to high precision,

the enantiomeric excess ee = (nL − nR)/(nL + nR) of a sample, where nL + nR = n � 1 is the

total number of molecules in the sample, nL of which are left-handed (3G′ > 0) and nR of which are

right-handed (3G′ < 0): passing N = NL +NR < n molecules from this sample through a discrimi-

natory chiral diffraction grating and counting the numbers NL and NR that appear to the left and right

of the line of zero angular deflection in the resulting diffraction pattern would allow ee to be inferred

from the fractional difference ∆ = (NL −NR)/(NL +NR), the variation of which with ee and E2
0 for

hexahelicene is seen in figure 5.17. A particularly appealing feature of ∆ is that it can in principle be

determined using detectors of low spatial resolution, as NL and NR are the only quantities that need

to be measured. This is in line with recent molecular diffraction experiments centred upon the dipole

potential energy, where simple measurements of total molecule flux, with no spatial resolution, have

found favour [208–210, 222].
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Figure 5.16: Plots of the modified diffraction probabilities P ′
n, depicting their variation with the notional inten-

sity ε0cE2
0 for hexahelicene.

It is possible, of course, to conceive of other novel possibilities offered for chiral molecules in the

regime of de Broglie molecular optics by the discriminatory potential energy. We will return to these

ideas elsewhere.

Figure 5.17: The enantiomeric excess ee of a sample of chiral molecules could be measured, simply and
to high precision, by passing some of these molecules through a discriminatory chiral diffraction grating and
measuring the fractional difference ∆ exhibited by the resulting diffraction pattern.

Thus concludes our present discussion of the discriminatory optical force. It should be noted that

molecular polarisabilities, upon which our approach is based, are state dependent [25]. This may

give rise to interesting subtleties and additional possibilites for manipulation. We have imagined the

molecule to be tumbling freely in the optical field, thus neglecting the possibility of alignment effects

and treating the molecule, heuristically, in an isotropic manner. In reality, the molecule might initially

occupy a suitable thermal mixed state of ‘high’ temperature that spans many rotational levels, for

example. At ‘low’ temperatures and / or ‘high’ optical intensities, however, polarisation-dependent

alignment effects in certain optical fields may be important [211, 212], giving rise to further sub-

tleties and possibilities for manipulation. It remains to further ascertain the feasibility of our proposed

devices for realistic beams of light rather than plane waves. These are tasks for future research.
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5.5 Discussion

We have examined a well established manifestation of optical activity (optical rotation §5.2), a dor-

mant manifestation of optical activity (differential scattering; §5.3) and a new manifestation of optical

activity (discriminatory optical force for chiral molecules; §5.4). Unperinning our investigations was

our observation that these phenomena can be related explicitly to helicity, spin, the ab infra zilches

etc. We should note, however, that such relations do not appear to be of fundamental significance.

As we have worked exclusively with monochromatic light we could have instead identified the zilch

or any other of the lower- and higher-order extensions of helicity, spin, the ab infra zilches etc, follow-

ing our observations in §3.4. Moreover, had we extended our calculations beyond the e2 regime, we

would have met, ultimately, with non-linear terms which cannot obviously be related to any conserved

properties of freely propagating light, as the latter are bilinear. Nevertheless, the identification of op-

tical activity phenomena with the angular momentum of light where possible is certainly interesting

and indeed, has led us to new insights, if only in a pragmatic sense. There remains much to be

explored, of course: possible avenues for future research are highlighted in §6.
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Chapter 6

Future Research

I have recognised an abundance of new possibilities pertaining to chirality and optical activity follow-

ing on from the research presented in §5. For example

• The effects of the discriminatory optical force can be amplified, it seems, using certain types

of polychromatic light. This would serve to greatly extend the domain of applicability of my

proposed devices.

• The discriminatory optical force can form the basis of molecular and atomic interferometers with

which to probe the fascinating left-right asymmetry inherent to the (electro)weak interaction

itself, which manifests itself subtly in molecules and atoms. Information obtainable through

molecular and atomic parity violation experiments can complement that afforded by large-scale

particle accelerators and advance our understanding of fundamental physics [28].

• New devices based upon the discriminatory optical force might enable molecular lithography

and deposition at the nanoscale with a chiral twist, allowing in turn for the fabrication of chiral

metamaterials that exhibit negative refraction for visible light: chiral molecules are, of course,

the smallest possible chiral building blocks. Such materials afford remarkable possibilities, for

example the ability to image objects smaller than is permitted by conventional optics and the

construction of invisibility cloaks [232].

• The translational cooling of molecules is still in its infancy [233], however the discriminatory

optical force could one day form the basis of structured light in which to distil and investigate

enigmatic new states of matter comprised of chiral molecules, analogous to the current use of

the dipole optical force to distil and investigate various arrangements of atoms in optical lattices

[177]. This would allow for incisive studies of the role played by chirality in molecular collisions

and chemical reactions.

• Manifestations of optical activity associated purely with rotational dynamics afford the pos-

sibility of gaining new information about the overall structures of molecules. Although they

have been considered in a small body of theoretical work concerned with the extension of

well-established optical activity methods into the microwave domain [234], no experimental

observations have been reported to date [25]. The obstacle is the unfavourable scaling of con-

ventional optical activity phenomena with frequency. In spite of the fact that it is not obviously a
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manifestation of optical activity, the recently demonstrated use of pure rotational transitions to

probe the chirality of molecules through nonlinear interactions with microwaves [148, 149] has

revealed to me a concrete means by which to proceed.

• Entirely new information about the structures of molecules and atoms is afforded by optical

activity induced in Raman scattering by a static electric field. Indeed, manifestations of electric

optical activity are rare: electric analogues of magnetic optical rotation and magnetic circular

dichroism, for example, do not exist. In spite of its allure, electric Raman optical activity has not

been observed in experiment or studied quantitatively in theory [163] and I hope to rectify this.

• Optical activity in the emission of light yields information about the excited states of molecules

and atoms rather than their ground states as in circular dichroism [25, 143]. I am interested

in the as yet unexplored possibility of enhancing the phenomenon by engineering the environ-

ments in which the molecules and atoms reside so as to see it better utilised.

• An enantiomeric molecular switch is a molecule that can be interconverted between left- and

right-handed forms by circularly polarised light [235]. Such switches have been employed as

dopants in (otherwise achiral) nematic liquid crystals, where they are found to induce a strongly

chiral nematic phase which can then be controlled optically [236]. Molecular switches could

also be used one day in computers as minute memory elements. I have observed in a prelimi-

nary study that enantiomeric molecular switches can be sensitive to the angular momentum of

light. Thus, they might form the basis of novel optical angular momentum sensors, either by

themselves or as dopants in liquid crystals. Conversely, the angular momentum of light might

be used to selectively address chiral molecular switches or to manipulate the chirality of liquid

crystals, for example.

The Engineering and Physical Sciences Research Council have awarded me a Postdoctoral Fellow-

ship to pursue these ideas further. Wish me luck!

THE END
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