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Abstract 

A major action of the hormone insulin is to increase glucose uptake into muscle 

and adipose tissues. This occurs through the insulin-regulated translocation of 

the glucose transporter GLUT4 from intracellular deposits to the cell surface. 

The dysregulation of this process is a major facet of insulin-resistance and Type-

2 diabetes.  

In the absence of insulin, GLUT4 is sequestered intracellularly in two interlinked 

pools. These pools are the endosomal recycling compartment and a specialised 

insulin-sensitive compartment. GLUT4 vesicles within the specialised insulin-

sensitive compartment are termed GSVs. GSVs provide a readily available store 

of GLUT4 that can be rapidly mobilised to the cell surface in response to insulin 

stimulation. GLUT4 within the cell is continually recycled through multiple 

compartments, including the endosomal recycling compartment and GSVs. 

Perturbation of flux through any of these compartments disrupts GLUT4 traffic 

and thus disrupts the insulin-response. Consequently, understanding these 

trafficking steps is an important research goal. 

The formation of GSVs and their insulin-stimulated translocation to, and fusion 

with, the plasma membrane are examples of regulated and specific membrane 

trafficking events. As such these events require SNARE proteins. This study has 

examined the functions of each of the members of the post-Golgi vSNAREs that 

make up the VAMP subfamily in the trafficking of GLUT4 into the insulin-

sensitive compartment, as well as examining the contribution each of these 

vSNAREs plays in the SNARE complex involved in the insulin-stimulated 

translocation of GLUT4 to the cell surface.  

GLUT4 traffics through the endosomal system and the trans Golgi network (TGN) 

en route into GSVs in a process known to involve the t-SNARE syntaxin 16. In 

order to dissect the roles VAMP proteins play in the intracellular recycling and 

trafficking of GLUT4, the interactions of VAMP proteins with syntaxin 16 and its 

regulatory Sec-1/Munc-18 protein, mVps45 have been examined. Further, the 

effects of depletion of these VAMPs in GLUT4 distribution has been examined in 

HeLa cells expressing HA-GLUT4-GFP as a surrogate for adipose and muscle 

tissue. 
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The fusion of GLUT4-containing vesicles with the cell surface in response to 

insulin stimulation is a key component of the insulin-response. Although there is 

consensus that tSNAREs involved in this process are syntaxin 4 and SNAP23, there 

is discord in the literature regarding the role each vSNARE plays in this fusion 

event. Many studies support a role for VAMP2, however recently it has been 

suggested that VAMPs 3 and 8 may also be involved. The roles of these VAMPs, as 

well as the other post-Golgi vSNAREs expressed in adipocytes, in the fusion of 

GLUT4-containing vesicles with the cell surface have been examined. This has 

been achieved through the characterisation of the expression level, subcellular 

distribution of the VAMPs and determination of associations that take place 

between each VAMP protein and the tSNARE complex made up of syntaxin 4 and 

SNAP23.  

The results from these experiments show that despite all VAMPs being capable of 

forming SDS-resistant SNARE complexes with either syntaxin 4 and SNAP23 or 

syntaxin 16 and SNAP23, in the cellular environment only VAMP2 interacts with 

syntaxin 4 and only VAMP4 interacts with syntaxin 16. This, alongside the finding 

that each VAMP protein is expressed at varying levels and localises with different 

pools of GLUT4, suggests that VAMP2, not VAMPs 3 or 8, is the major vSNARE 

involved in the trafficking of GLUT4 to the cell surface.  

The finding that VAMP4 is the only VAMP that interacts with syntaxin 16, 

alongside the results of VAMP depletion in HeLa cells expressing HA-GLUT4-GFP, 

support the hypothesis that VAMP4 is involved in sorting GLUT4 out of the 

endosomal pool and into GSVs.  
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Glucose is a fundamental cellular energy source. In healthy humans blood 

glucose levels are normally maintained between 4 and 7mM. The maintenance of 

blood glucose within this narrow range is achieved though the action of two 

counteracting hormones: insulin and glucagon (Figure 1-1).  

Both insulin and glucagon are released from the islets of Langerhans in the 

pancreas; insulin is released from beta cells in response to an elevation in blood 

glucose levels and glucagon from the alpha cells in response to a fall in blood 

glucose levels. Glucagon primarily acts on the liver to increase hepatic glucose 

output by increasing gluconeogenesis and glucose release. On the other hand, 

insulin acts on the liver, skeletal muscle, and adipose tissue to increase glucose 

uptake and glucose storage. Glucose is stored as glycogen in the liver and 

skeletal muscle or as triglycerides in adipose tissue. Skeletal muscle is 

responsible for the majority of the glucose clearance (~90%) (Kraegen et al. 

1985). The increase in glucose clearance in response to insulin occurs through an 

increase in the number of facilitative glucose transporters (GLUT4) at the cell 

surface of peripheral insulin-sensitive tissues. This occurs through the 

translocation of GLUT4 from intracellular deposits to the cell surface. Although 

adipose only accounts for a small portion of insulin-stimulated glucose uptake, 

its importance in the maintainance of whole body insulin-sensitivity is not to be 

underestimated. Adipose tissue senses the energy status of the body and 

responds by secreting hormones that regulate the metabolism of other tissues. 

Furthermore, resistance of adipose tissue to insulin affects whole body glucose 

homeostasis to a degree higher than that of its individual contribution to glucose 

uptake (Abel et al. 2001; Leto & Saltiel 2012). Mice with adipose specific GLUT4 

knock out show both hepatic and skeletal muscle insulin resistance despite 

having normal GLUT4 expression levels in these tissues (Abel et al. 2001). 

Therefore, despite adipose tissue only accounting for <10% of insulin-stimulated 

glucose uptake (Kraegen et al. 1985), GLUT4 translocation within and glucose 

uptake into adipose tissue is of high importance.  
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Figure 1-1: Regulation of blood glucose levels by the action of insulin and glucagon. 
Fluctuations in blood glucose levels are detected by the pancreas. A fall in blood glucose levels 
leads to the release of glucagon. Glucagon acts on the liver to increase glycogen breakdown and 
glucose release. This results in a rise in blood glucose levels. Elevations in blood glucose levels 
lead to the release of insulin. Insulin acts on the liver to increase glycogen synthesis, and acts on 
peripheral insulin-sensitive tissues to increase glucose uptake. This results in an increase in 
glucose clearance out of the blood stream which lowers blood glucose levels.  

 

Insulin is released from the islets of Langerhans in response to a rise in blood 

glucose levels. It travels in the blood to peripheral insulin-sensitive tissues 

where it initiates several signalling cascades that regulate a range of processes 

from glucose and lipid homeostasis to cell growth and protein synthesis. There 

are two main signalling pathways that induce the translocation of GLUT4 from 

intracellular deposits to the cell surface and thereby increase glucose uptake. 

These are the phosphoinositide 3-kinase (PI3K) pathway and the adaptor protein 

with pleckstrin homology and Src homoglogy domains (APS) pathway (Leto & 

Saltiel 2012; Figure 1-2). For GLUT4 to be successfully inserted into the plasma 

membrane in response to insulin-stimulation it must be mobilised from 

intracellular deposits and targeted to the correct domains of the plasma 

membrane. Activation of the PI3K and APS pathways affect both the 

translocation and tethering of GLUT4 vesicles to the plasma membrane. Both 

pathways are initiated following insulin binding to its receptor in the plasma 

membrane. This leads to insulin receptor autophosphorylation, which in turn 

leads to recruitment and phosphorylation of IRS (insulin receptor substrate) and 

APS to the insulin receptor.  At this point the two pathways diverge. IRS acts as a 

docking site for PI3K, and the interaction between IRS and PI3K activates PI3K. 

PI3K converts phosphatidylinositol-4,5-bisphosphate (PIP2) to 
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phosphatidylinositol-3,4,5-triphosphate (PIP3) at the plasma membrane. PIP3 in 

turn acts as docking site for both phosphoinositide-dependent kinase 1 (PDK) and 

Akt. Once they are docked with PIP3, PDK 1 phosphorylates and activates Akt. 

Akt connects insulin signalling with downstream insulin-stimulated processes. 

With regard to GLUT4 translocation to the plasma membrane Akt has two major 

targets; AS160 and RalA. AS160 contains a GTPase Activating Protein (GAP) 

domain, which means that it promotes GTP hydrolysis, preventing GTP loading 

and activation of its GTPase effectors. In terms of stimulating GLUT4 

mobilisation to the cell surface, the main AS160 effector in adipocytes appears 

to be Rab10 (Sano et al. 2007; Chen et al. 2012; Chen & Lippincott-Schwartz 

2013). Akt phosphorylates and inactivates AS160; when active AS160 prevents 

the translocation of GLUT4 to the plasma membrane. Once AS160 is inactivated 

GLUT4 can be mobilised to the cell surface (Karylowski et al. 2004; Sano et al. 

2007). Akt also mediates the activity of the GTPase RalA. This occurs through 

the recently characterised Ral GAP complex (RGC) (Chen & Saltiel 2011). Once 

GTP loaded, Ral1A interacts with the Myo1c motor to mediate the translocation 

of GLUT4 vesicles and also with the exocyst complex to mediate tethering (Chen 

et al. 2007).  

The APS pathway has been less intensely studied, and is therefore not as well 

characterised as the PI3K pathway. Despite this, it is known that APS recruits c-

CBL to the plasma membrane via c-CBL associated protein (CAP). c-CBL in turn 

interacts with CRK, this leads to the recruitment of C3G to the plasma 

membrane. C3G is a Guanine Nucleotide Exchange Factor (GEF). GEFs promote 

the exchange of GDP for GTP on GTPases and thus activate the GTPase. The 

effector for C3G is TC10. C3G converts TC10 from a GDP to a GTP bound state. 

TC10 in turn interacts with the exocyst mediating vesicle tethering, and also 

binds to CIP4 (Cdc42-interacting protein 4) which in turn may regulate the 

translocation of GLUT4 vesicles (Leto & Saltiel 2012).  



Chapter 1   21 
 

 

Figure 1-2: Insulin signalling stimulates the translocation and tethering of GLUT4 containing 
vesicles with the plasma membrane.  
Insulin initiates two signalling cascades. The APS signalling cascade is initiated upon recruitment 
to the insulin receptor. APS recruits CAP-cCBL to the plasma membrane, which in turn recruits the 
adapter protein CRK and its associated protein C3G, C3G activates TC10 by stimulating GTP 
loading. TC10 interacts with the exocyst and CIP4 to induce GLUT4 containing vesicle 
translocation and tethering. The PI3K signalling cascade is initiated when IRS-1 is recruited to the 
insulin receptor and phosphorylated. Phosphorylated IRS-1 recruits PI3K which converts PIP2 to 
PIP3. PIP3 interacts with PDK and Akt. PDK phosphorylates Akt. Akt interacts with AS160 to 
induce GLTU4 vesicle translocation and with RGC which induces translocation and vesicle 
tethering. 

1.1 Type 2 diabetes mellitus  

In healthy individuals the counteracting actions of the hormones insulin and 

glucagon maintain blood glucose levels within a tight range. The process by 

which insulin regulates blood glucose levels can become dysregulated resulting 

in hyperglycaemia and eventually leading to diabetes mellitus. Broadly speaking 

diabetes can be divided in to two conditions; Type 1 (insulin-dependent) and 

Type 2 (non-insulin-dependent). Type 2 diabetes is by far the more common, 

with more than 90% of patients having this form (WHO estimate). In Type 1 

diabetes the pancreatic beta cells do not produce insulin, and this condition can 

be largely treated by the administration of insulin. Type 2 diabetes is a more 

complex condition and many factors can contribute to its onset and progression 

(Johnson & Olefsky 2013). A key facet of type 2 diabetes is resistance of 

peripheral tissues (skeletal muscle and adipose tissue) to the action of insulin. 
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This insulin-resistance means that the glucose transporter GLUT4 is not 

mobilised from intracellular deposits to the cell surface in response to insulin. 

This in turn prevents insulin-induced glucose clearance and leads to 

hyperglycaemia. For insulin to mobilise GLUT4 from intracellular deposits a 

number of key criteria must be met, one of which is the sorting of GLUT4 into an 

insulin-sensitive GLUT4 storage site. This storage site is made up of GLUT4 

storage vesicles (GSVs), see below.  

Although there seems to be a reduction in the expression of GLUT4 in adipose 

tissue in insulin-resistant obese patients (Garvey et al. 1988), this cannot solely 

account for the impaired insulin-stimulated translocation of GLUT4. There also 

seem to be defects in intracellular trafficking of GLUT4. Compared to healthy 

patients, patients with insulin resistance show reduced GLUT4 mobilisation from 

intracellular deposits to the plasma membrane in response to insulin (Garvey et 

al. 1988). They also display abnormal trafficking of IRAP, a component of insulin-

sensitive GLUT4 containing vesicles in adipose tissue (Maianu et al. 2001). As 

previously mentioned, adipose-specific impairments in insulin-stimulated glucose 

uptake have implications for whole body glucose uptake (Abel et al. 2001). 

Therefore understanding the mechanisms underlying the trafficking of GLUT4 

into insulin sensitive vesicles in adipose tissue is of vital importance in order to 

increase our understanding of the molecular defect(s) which underlie diabetes 

mellitus.  

1.2 GLUT4  

GLUT4 is one of 14 hexose transporters expressed in humans and is part of the 

Major-Facilitator Superfamily of transporter proteins. It is an integral membrane 

protein with 12 transmembrane domains. Each member of the GLUT family has a 

distinct affinity for its hexose substrate and shows differential tissue and cellular 

distribution patterns which relates to its function in the maintenance of hexose 

homeostasis. For example, GLUT2 seems to have a role in glucose sensing and is 

expressed in the intestine, liver, pancreas, kidney and brain. On the other hand 

GLUT5 is primarily a fructose transporter and is expressed in the intestine and 

kidney.  GLUT4 is the only member of the GLUT family that is regulated by 

insulin. It is a glucose transporter and is expressed solely in insulin sensitive 

tissues; adipose tissue, skeletal and cardiac muscle. Its presence at the cell 
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surface is altered by the level of insulin in the blood (Pessin & Bell 1992; Huang 

& Czech 2007; Mueckler 1994). When blood insulin levels are high, it is found at 

the cell surface where it transports glucose into the cell via facilitated diffusion. 

Conversely under basal (no insulin) conditions, GLUT4 is effectively sequestered 

away from the plasma membrane within intracellular deposits. It is present at 

the trans Golgi network and in cytoplasmic vesicular structures (Slot et al. 

1991).   

1.2.1 Intracellular pools of GLUT4  

GLUT4 is present within vesicular structures localised at the trans Golgi network 

and throughout the cytoplasm, notably at the cell periphery (Slot et al. 1991). 

These vesicular structures do not represent a homogenous pool of GLUT4, but 

GLUT4 in two major pools: the endosomal recycling compartment (ERC) and 

insulin-sensitive GLUT4 storage vesicles (GSVs). These compartments are distinct 

from one another. This is evident from studies that have abolished the entire 

endosomal pool (and thus removed most of the cellular transferrin receptor 

(TfR)), but found that between 40% and 60% of GLUT4 remains (Livingstone et al. 

1996; Martin et al. 1996). The two intracellular pools of GLUT4 can be separated 

from each other based on density. The less dense pool is the ERC and contains 

markers of endosomes such as the TfR. The second, denser pool comprises of 

small vesicles 50 - 70 nm in size, which do not contain markers of the endosomal 

recycling systems and are selectively mobilised to the cell surface by insulin. 

These are termed GLUT4 storage vesicles (GSVs) as they represent a store of 

GLUT4 that can be mobilised rapidly in response to insulin stimulation 

(Hashiramoto & James 2000; Martin et al. 2000).  

As well as being found in vesicles throughout the cytosol, GLUT4 is also found in 

the perinuclear region. Here GLUT4 colocalises with sub-domains of the TGN 

that are enriched in syntaxin 6 and 16 but not TGN38 (Shewan et al. 2003). The 

GLUT4 within this perinuclear compartment does not translocate to the cell 

surface in response to insulin (Fujita et al. 2010). This pool of GLUT4 therefore 

likely represents a GLUT4 trafficking and sorting site, where GLUT4 is passed 

from the ERC and packaged up into insulin sensitive GSVs.  
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Examining the cycling of GLUT4 between these intracellular compartments is 

challenging as the compartments are morphologically similar and GLUT4 cycles 

between each of them. However, one method to distinguish between them is 

based on their biochemical composition.  GLUT4 containing vesicles within the 

ERC contain TfR and cellugyrin. On the other hand GSVs do not contain 

significant amounts of TfR and are devoid of cellugyrin but contain IRAP, which 

traffics in an identical manner to GLUT4 (Kupriyanova & Kandror 2000; 

Kupriyanova et al. 2002). The difference in localisation of TfR has been used to 

dissect the trafficking itinerary of GLUT4. 

1.2.2 GLUT4 trafficking  

As mentioned, GLUT4 is present in a number of intracellular compartments 

including the endosomal system and in specialised insulin-sensitive GSVs. 

Although these pools are distinct from one another, they are inter-linked. GLUT4 

pools do not exist in isolation, and GLUT4 is engaged in continual cycling 

between these intracellular compartments and the plasma membrane.  

From the plasma membrane GLUT4 is internalised via both clathrin and 

cholesterol dependent endocytosis to the endosomal recycling compartment 

(Ros-Baro et al. 2001; Shigematsu et al. 2003; Blot & McGraw 2006; Leto & 

Saltiel 2012), where it colocalises with TfR. GLUT4 recycles from the ERC into 

GSVs, via recycling endosomal compartments and the TGN (Slot et al. 1991; 

Guilherme et al. 2004; Zeigerer et al. 2002).  

To establish if the ERC and the GSV pools of GLUT4 are linked Zeigerer et al. 

(2002) determined the amount of GLUT4 in each pool when traffic through the 

endosomal system was blocked. They measured the amount of GLUT4 in each 

pool using the endosomal ablation technique as developed previously 

(Livingstone et al. 1996; Martin et al. 1996). In this techniques the amount of 

GLUT4 in the ERC is determined by measuring GLUT4 loss when cells were 

incubated with HRP-Tf/DAB. To measure the amount of GLUT4 in ERC and GSVs 

Zeigerer et al. (2002) used the same technique but delivered HRP to both the 

ERC and GSVs by expressing a chimeric protein containing TfR and the 

cytoplasmic domain of IRAP. Under these conditions the amount of GLUT4 in 

GSVs is equal to the amount abolished using IRAP-TfR chimera minus the amount 
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abolished using TfR. In line with previous studies, around half the GLUT4 was 

found to be localised in the ERC and half in GSVs (Livingstone et al. 1996; Martin 

et al. 1996; Zeigerer et al. 2002). When the same experiments were performed 

alongside perturbation of endosomal trafficking, most of the GLUT4 was 

removed when either the wild type TfR or the chimeric IRAP-TfR protein was 

used. This suggests that when endosomal trafficking is prevented, GLUT4 is 

inaccessible to the TfR negative, IRAP positive, GSV compartment and remains in 

the TfR positive ERC. Therefore, GSVs must be formed, at least in part, from the 

endosomal (ERC) pool of GLUT4.  

While it is clear that the ERC and GSV pools are linked, GSVs can also be formed 

directly from newly synthesised GLUT4 (Watson et al. 2004). Watson et al. 

(2004) examined the trafficking of newly synthesised GLUT4. They transfected 

3T3 L1 adipocytes with cDNA encoding a version of GLUT4 tagged in the first 

extracellular loop with HA, and at the C terminus with EGFP (Watson et al. 

2004). Although it took between 9 and 12 hours for newly synthesised HA-GLUT4-

EGFP to become insulin sensitive (a proxy for trafficking into GSVs), GSVs 

formation was unaffected by preventing endocytosis. Moreover HA-GLUT4-GFP 

did not traffic to the plasma membrane before being incorporated into GSVs 

(Watson et al. 2004).  

These studies provided evidence that although newly synthesised GLUT4 can 

enter GSVs directly, recycling GLUT4 traffics through the ERC en-route to GSVs. 

GLUT4 also traffics through the Golgi apparatus. This is clear from morphological 

studies that have localised GLUT4 to subdomains of the Golgi apparatus (Slot et 

al. 1991; Shewan et al. 2003). The importance of the Golgi is highlighted by the 

finding that the disruption of trafficking of GLUT4 through the Golgi prevents the 

formation of GSVs (Williams et al. 2006). Many proteins localised within the 

Golgi stack have been identified as being required for the formation of GSVs. 

This includes the TGN proteins syntaxin 6 and 16 as well golgin 160, a protein 

localised to the Golgi cisternae. Depletion of these proteins inhibits the 

formation of insulin-sensitive GLUT4 compartments (Perera et al. 2003; Proctor 

et al. 2006; Williams et al. 2006).  

The data discussed in sections 1.2.1 and 1.2.2 has led to the generation of a 

generally accepted model of GLUT4 cycling, which is depicted in Figure 1.2. In 
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this model GLUT4 is internalised from the cell surface into the endosomal 

recycling compartment.  

Passage of GLUT4 out of the early endosome into the recycling endosome 

segregates GLUT4 away from the rapidly recycling loop that acts between the 

early endosome and the plasma membrane. Around half of the GLUT4 stays in 

the ERC and the remaining GLUT4 is shuttled, via the trans Golgi network, into 

specialised insulin-sensitive GSVs. GSVs are only recruited to the plasma 

membrane following insulin-stimulation. The segregation of GLUT4 into GSVs not 

only effectively sequesters GLUT4 away from the cell surface under basal 

conditions, but it also provides a rapidly available pool of GLUT4 that is 

mobilised upon insulin stimulation. The mechanism governing the retention of 

GSVs under basal conditions has been a hotly debated topic and is discussed in 

detail in section 1.2.6. However, on balance the available data suggests that in 

the absence of insulin GLUT4 cycles slowly back into the ERC, where it 

undergoes another round of cycling.  

 

Figure 1-3: GLUT4 continuously cycles through two inter-linked pools.  
GLUT4 is internalised from the plasma membrane to early endosomes (a) and is passed onto 
recycling endosomes (b). From the recycling endosomes it is either trafficked back to the plasma 
membrane. This cycle forms the endosomal recycling compartment (ERC). Alternatively, GLUT4 is 
passed to the TGN (d) where it is sorted into GSVs (e). GSVs provide a readily available store of 
GLUT4 that is recruited to the plasma membrane in the presence of insulin (f). In the absence of 
insulin, GLUT4 cycles back into the ERC (g) and re-enters the cycle. Newly synthesised GLUT4 
can directly enter GSVs (h).  
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1.2.3 Targeting motifs within GLUT4  

The formation of GSVs requires GLUT4 to be targeted to the correct intracellular 

compartments and away from the endosomal recycling system. The intracellular 

targeting of GLUT4 is dependent on motifs within the GLUT4 molecule.  As 

discussed, GLUT4 traffics through a number of compartments en route to GSVs 

(Figure 1-3). Each trafficking step is dependent on different motifs on GLUT4. 

Four key motifs have been identified so far, three of these are present on the C 

terminal end, and one in the N terminal end.   

Substitution of the final 30 amino acids of either GLUT1 or TfR with those of 

GLUT4 is sufficient to increase their retention to levels similar to that of GLUT4. 

This phenotype is abolished if the double leucine motif at position 489/490 is 

mutated. (Corvera et al. 1994; Verhey & Birnbaum 1994; Blot & McGraw 2006; 

Blot & McGraw 2008). Therefore the LL motif is important for GLUT4 trafficking. 

Mutation of the LL motif does not affect the internalisation of GLUT4 but does 

slow the return of GLUT4 retention to basal levels following insulin removal (Blot 

& McGraw 2006). This suggests one of two scenarios. The first is that the double 

leucine motif is not involved in endocytosis per se but in the intracellular 

trafficking of GLUT4. The second is that endocytosis under basal conditions and 

following insulin withdrawal is through different routes, and that the route 

following insulin withdrawal is dependent on the LL motif but the basal route is 

not. GLUT4 is internalised by both cholesterol dependent and independent 

mechanisms. Under basal conditions the majority of internalisation is through 

cholesterol dependent mechanisms. Insulin-stimulation inhibits the cholesterol 

dependent mechanism. Following insulin removal GLUT4 internalisation is 

cholesterol dependent, and requires the LL motif as well as a motif in the N 

termini (FQQI – discussed below) (Blot & McGraw 2006). Mutation of the LL motif 

increases the size of the pool of rapidly recycling GLUT4, suggesting GLUT4 is 

not effectively sequestered into GSVs. These findings are consistent with the LL 

motif acting in the trafficking of GLUT4 from the ERC into GSVs. In line with this, 

it has been suggested that the LL motif acts to modulate the trafficking of 

GLUT4 from the early to the recycling endosome (Blot & McGraw 2008; Figure 1-

4).   
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There are other motifs down-stream of the LL motif that are also important for 

GLUT4 trafficking. This includes motifs within the T498ELEYLGP505  domain that 

makes up the final 12 amino acids of GLUT4 (Shewan et al. 2000). Mutations 

within this domain lead to the localisation of GLUT4 in the ERC (Shewan et al. 

2000). This implies that motifs within the TELEYLGP domain are required for the 

effective passage of GLUT4 out of the ERC and into GSVs. In line with this it has 

subsequently been shown that the mutation of E499 and E501to alanine reduces 

the amount of GLUT4 in GSV compartments. A reduction in the amount of GLUT4 

in GSVs could either be through a reduction in the formation of GSVs or through 

increased recycling of GLUT4 out of GSVs. In order to differentiate between 

these two possibilities, the effect of the EE mutations was compared to that of 

knock down of AS160. AS160 acts to retain GLUT4 within GSVs and the EE 

mutations were not additive to AS160 depletion. This suggests that the E499 E501 

domain and AS160 act at the same step in the cycling of GLUT4, and thus E499 

E501 likely functions in the retention of GSVs (Blot & McGraw 2008). Another 

motif within the C terminal region of GLUT4 has been identified as affecting GSV 

formation.  The mutation of L500, L503, P505 to alanine causes GLUT4 to be 

segregated away from GSVs into a compartment free of endogenous GLUT4 that 

possibly represents a pre-lysosomal compartment (Song et al. 2008). This 

suggests that these residues act to stabilise GLUT4 and prevent its degradation.  

The N terminus also appears to be important for the trafficking of GLUT4 into 

GSVs. Chimeric proteins expressing the first 8 amino acids of GLUT4 are targeted 

to perinuclear compartments and localise with endogenous GLUT4 (Piper et al. 

1993). Within these 8 amino acids, the fifth phenylalanine (F5) seems 

particularly important. Mutations of F5 have different effects depending on the 

amino acid that F5 is substituted with. Mutation of F5 to serine prevents entry of 

GLUT4 into the perinuclear compartment and forces GLUT4 into the degradative 

pathway (Palacios et al. 2001). This suggests F5 is important in the formation of 

GSVs. Therefore, the mutation of F5 might be expected to decrease the 

sequestration of GLUT4 under basal conditions. In line with this prediction, the 

mutation of F5 to alanine decreases GLUT4 sequestration, and increases GLUT4 in 

the ERC (Blot & McGraw 2006; Blot & McGraw 2008). However, contrary to this 

prediction, the mutation of F5 to tyrosine increases retention (Blot & McGraw 

2008). 
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Decreases in sequestration could be through the decreased synthesis of GSVs or 

the increased recycling of GLUT4 out of GSVs. Increases in retention could be 

through the increased synthesis of GSVs or the trapping of GLUT4 somewhere in 

its cycle from ERC to GSVs. The increased retention seen with the F5 to tyrosine 

mutation was not due to increased GSV formation as although it increased the 

amount of GLUT4 in the GSV fraction, as measured by the endosomal ablation 

technique, the insulin stimulated translocation of GLUT4 was blunted. This 

suggests that GLUT4 is not truly in GSVs. Therefore it is likely the increased 

sequestration was due to trapping GLUT4 in the GSV donor compartment. In this 

way GLUT4 is sequestered away from the ERC compartment but does not reach a 

compartment that is sensitive to insulin. The decreased retention seen with the 

F5 to alanine mutation was additive to the effects of depletion of AS160, 

suggesting that the decreased retention was due to decreased synthesis of GSVs. 

Together these data suggest that the FQQI motif is important for the targeting of 

GLUT4 into the GSV donor compartment and trafficking through this 

compartment. Mutations of F5 either prevent GLUT4 entering the donor 

compartment and thus decrease retention, or prevent GLUT4 from exiting the 

compartment and thus increase retention (Blot & McGraw 2008).  
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Figure 1-4: Targeting motifs in GLUT4 trafficking.  
Motifs of GLUT4 that have been implicated in its intracellular trafficking (A) and the trafficking steps 
they are proposed to act in (B). The LL motif at the c terminus seems to be involved in the 
trafficking of GLUT4 out of the rapidly recycling endosomal pool, the N terminal FQQI motif in the 
trafficking of GLUT4 through the GSV donor compartment, and the TELE motif in the retention of 
GSVs. 

1.2.4 Formation of GSVs 

Proteomic analysis of insulin-sensitive GLUT4 membranes has identified many 

proteins that localize with GLUT4 (Larance et al. 2005; Jedrychowski et al. 

2010). Those that translocate with GLUT4 to the plasma membrane in response 

to insulin are deemed to be present on GSVs and thus are likely to be important 

in either the formation of GSVs or the insulin response. There are many different 

groups of proteins that have been identified on GSVs. This includes secretory 

proteins, adaptor and coat proteins, membrane trafficking proteins and cargo 

proteins. The GSV cargo proteins that have received particular attention and are 

deemed to be of high importance in the formation of GSVs are GLUT4, IRAP, 

sortilin and LRP-1. Each of these cargo proteins plays different but essential 

roles. GLUT4 is the key component of GSVs, providing the glucose transport 

machinery and allowing the GSV to fulfil its ultimate role in glucose transport. 

Sortilin is involved in the formation of GSVs, whereas IRAP and LRP-1 are 

involved in the insulin-simulated translocation of GSVs (see citations below).  
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The driving force in GSV formation seems not to be GLUT4, but sortilin. Sortilin 

is both necessary and sufficient for the formation of GSVs. Sortilin expression 

increases in line with the acquisition of insulin-responsiveness and the 

generation of the GSV pool of GLUT4 during adipocyte differentiation 

(Hatakeyama & Kanzaki 2011). In pre-adipocytes ectopically expressing GLUT4, 

the GLUT4 is rapidly degraded. However, the expression of sortilin alongside 

GLUT4 stabilizes GLUT4 and allows it to be trafficked into GSVs and gain insulin 

responsiveness (Shi & Kandror 2005; Hatakeyama & Kanzaki 2011). GLUT4 and 

sortilin interact at the GSV donor compartment. Sortilin is targeted to the GSV 

donor compartment through its luminal domain. Accordingly the luminal domain 

is required for the formation of GSVs. In the absence of GLUT4, GSV like 

compartments can be formed in pre-adipocytes through the exogenous 

expression of sortilin alone. These compartments are morphologically GSVs. 

However, they lack GLUT4 and IRAP. This shows that GLUT4 is not required for 

GSV formation. However, despite IRAP being endogenously expressed in pre-

adipocytes to a similar level as adipocytes, the GSV compartments do not 

contain IRAP. IRAP is only incorporated into GSVs when GLUT4 and sortilin is 

expressed (Shi et al. 2008). Therefore sortilin is required for GLUT4 entry into 

GSVs, and GLUT4 is required for IRAP entry into GSVs. Sortilin can interact with 

GLUT4 through the Vps10p domain of sortilin and the first extracellular loop of 

GLUT4 (Shi et al. 2008). GLUT4 in turn interacts with IRAP (Shi et al. 2008). The 

finding that interactions between sortilin and GLUT4, and GLUT4 and IRAP are 

required for GSV formation has led to the proposal of the self-assembly 

hypothesis (Shi et al. 2008). The self-assembly hypothesis proposes that GLUT4, 

IRAP and sortilin are targeted to the same membranes of the perinuclear 

compartment, they interact with one another and enter GSVs together. The 

entry of this cargo protein complex into GSVs is facilitated by interactions 

between sortilin and a group of adaptor proteins, termed GGAs (Nielsen et al. 

2001; Li & Kandror 2005; Shi & Kandror 2005; Shi et al. 2008).   

A recent study identified LRP-1 as another key component of GSVs. The 

importance of LRP-1 in GSV formation and/or stability is evident from studies 

depleting adipocytes of LRP-1. This leads to a reduction in the levels of GLUT4, 

IRAP and sortilin and concomitantly reduces insulin-stimulated glucose uptake 

(Jedrychowski et al. 2010). LRP-1 interacts with GLUT4, IRAP and sortilin, 
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although how LRP-1 fits into the ‘self-assembly’ hypothesis is not yet clear as 

the mode of the interactions between LRP-1 and the other GSV cargo are as yet 

unknown.  

As mentioned, the packaging of the assembled GSV cargo complex into GSVs 

requires adaptor proteins. One family of adaptor proteins that are required for 

this process are Golgi-localised, γ-ear-containing, Arf-binding protein adaptors 

(GGAs). GGAs are required for the entry of both newly synthesised and recycling 

GLUT4 into GSVs (Watson et al. 2004; Li & Kandror 2005). GGAs are adaptor 

proteins that recruit clathrin to the TGN (Puertollano et al. 2001). Expression of 

dominant negative versions of GGAs that can bind their substrate, but not the 

clathrin coat, in 3T3 L1 adipocytes results in the trapping of GLUT4 in GSV donor 

membranes (Li & Kandror 2005). GLUT4 does not directly interact with GGAs. 

Initially the primary mode of interaction between GGAs and GSVs was proposed 

to be through sortilin. However, more recently it has been noted that although 

GGAs contain an ubiquitin binding domain and GLUT4 is ubiquitinated. The 

ubiquitination of GLUT4 is required for entry into GSVs (Lamb et al. 2010). This 

therefore may be another way by which GLUT4 can interact with GGAs.  

At present it seems that the role of GGAs is to recruit clathrin to the site of GSV 

formation. However, GGAs may not be the only proteins to do this. GLUT4 

interacts with the GTPase activating protein ACAP1, which in turn interacts with 

clathrin (Leto & Saltiel 2012). Depletion of either ACAP1 or clathrin heavy chain 

does not affect the targeting of GLUT4 to the perinuclear GSV donor 

compartment, but does reduce insulin-stimulated GLUT4 translocation, which is 

suggestive of a reduction in the formation of GSVs (J. Li et al. 2007). 

From the data described above the following model of GSV formation can be 

proposed. GSV cargo proteins are individually targeted to the trans Golgi 

network, where they interact with one another through their luminal domains. 

GGAs interact with the GSV cargo through sortilin and also possibly through 

ubiquitinated GLUT4. Clathrin is recruited by GGAs and potentially GLUT4 (via 

ACAP-1) and facilitates vesicle budding. The newly formed vesicles bud off and 

form a population of small GLUT4 storage vesicles (GSVs), this process is 

represented in Figure 1-5.  
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Figure 1-5: GSV formation. 
A: the components of GSVs are targeted to the trans Golgi Network where they interact with one 
another via their luminal domains, GLUT4 is ubiquitinated, GGA proteins interact with the cargo 
protein complex via sortilin and possibly also through the ubiquitin bound to GLUT4. B: GGA 
recruits clathrin. C: clathrin continues to bind the membrane until the membrane buds off, leaving 
GGAs on the membrane (D). Since GSVs are not clathrin coated, the vesicles must be uncoated, 
leaving a newly formed GSV. This GSV then enters the recycling pathway described in Figure 1-3. 
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1.2.5 Insulin sensitivity of GSVs 

For these newly formed GSVs to be functional they must be sensitive to insulin, 

however it is unclear what gives GSVs their characteristic insulin responsiveness. 

It does not seem to be GLUT4, as IRAP translocation following insulin stimulation 

was unaffected by GLUT4 depletion (Yeh et al. 1995). In contrast, the ability of 

GSVs to respond to insulin appears to be endowed by the presence of IRAP 

and/or LRP-1. IRAP and LRP-1 are major components of GSVs, however they 

appear to be dispensable for the formation of GSVs. They may however, be 

required for giving GSVs their characteristic insulin-responsiveness. Depletion of 

IRAP has no effect on the basal distribution of GLUT4 but renders GSVs 

insensitive to insulin-stimulation (Yeh et al. 1995). LRP-1 interacts with the Akt 

effector AS160 (Jedrychowski et al. 2010). AS160 is found on GSVs and when 

phosphorylated it stimulates the mobilisation of GSVs to the cell surface (section 

1; Figure 1-2), meaning LRP-1 may provide a site of interaction between the 

insulin-signaling pathway and GSVs.  

1.2.6 Retention of GSVs 

As described in Section 1.2.1 it is well established that GLUT4 is found within 

two intracellular pools; the ERC and GSVs, and that in the absence of insulin 

GSVs are sequestered away from the cell surface. Early research examining 

GLUT4 recycling using membrane impenetrable photolabelling agents to label 

endogenous GLUT4, and then following the molecule’s internalisation, showed 

that GLUT4 constitutively recycles to and from the plasma membrane under 

basal conditions (Yang & Holman 1993). Despite this trafficking itinerary, the 

majority of GLUT4 is retained within intracellular deposits. This raises the 

question of how GLUT4 is retained and at the same time cycles to and from the 

plasma membrane. This phenomenon can be explained by there being an 

intracellular pool of GLUT4 that is not mobilised to the cell surface under basal 

conditions. However, the mechanism of this sequestration is debated. One 

school of thought suggests that GSVs are retained at an intracellular storage site 

and in the absence of insulin they do not see the cell surface. This is referred to 

as the “static retention” model. The alternative proposal states that GLUT4 

continually cycles to the cell surface under basal and insulin stimulated 

conditions and that insulin increases the rate of recycling of GLUT4 – the so-
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called “dynamic retention” model. The two retention models dictate different 

and testable hypothesis regarding GLUT4 appearance and traffic through the 

plasma membrane. The static model dictates that only the ERC pool of GLUT4 

will traffic through the plasma membrane under basal conditions, whereas the 

dynamic model dictates that the entre GLUT4 pool will encounter the plasma 

membrane under both basal and insulin stimulated conditions. The basis for the 

static retention model came from Govers et al. (2004) demonstrating that only a 

small proportion of the total cellular GLUT4 trafficked to the cell surface under 

basal conditions. Support for the static retention model comes from the 

identification of a putative intracellular anchoring protein, TUG, and the study 

of single molecule velocities under basal and insulin stimulated conditions 

(Bogan et al. 2003; Govers et al. 2004). Furthermore, in insulin-sensitive GSV 

containing adipocytes, but not in fibroblasts, GLUT4 displays a remarkably static 

behaviour (Fujita et al. 2010; Hatakeyama & Kanzaki 2011); Fujita et al. (2010) 

found that in adipocytes, there were three classes of GLUT4 molecules. GLUT4 is 

either moving rapidly, slowly or is completely static. Insulin reduces the 

proportion of GLUT4 in the static pool from 60% to 20%.  

At the core of the static retention system is the tethering protein TUG (Tether, 

containing a UBX domain, for GLUT4). TUG binds GLUT4 in basal but not insulin 

stimulated cells (Bogan et al. 2003). TUG depletion or overexpression of a 

dominant negative version of TUG decreases the retention of GLUT4 under basal 

conditions and abolishes the insulin-stimulated increase in GLTU4 translocation 

(Bogan et al. 2003; Yu et al. 2007). It has recently been shown that TUG 

depletion redistributes GLUT4 and VAMP2, but not TfR, to the plasma 

membrane, and that mobilisation that results from TUG depletion is of small 

GLUT4 containing vesicles that are the same size as GSVs. This suggests that TUG 

acts specifically on GSVs not endosomes (Xu et al. 2011). These findings strongly 

suggest a role for TUG in the recycling and retention of GLUT4.  

Despite these findings that support the static retention model there are a 

number of lines of evidence that contradict this model. First of all, bearing in 

mind that GSVs are formed from GLUT4 within the ERC, and there is always 

some ‘flux’ of GLUT4 through this pool, if GLUT4 were retained in a static 

manner the ERC pool would eventually become depleted of GLUT4. This is not 

the case, ergo GLUT4 must recycle out of GSVs back into the ERC in the absence 
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of insulin. There is evidence supporting this dynamic model of GLUT4 retention 

where the entire pool of GLUT4 traffics through the cell surface (and thus 

through the ERC) under basal conditions. This trafficking is slow as it takes up to 

600 minutes for the entire pool of GLUT4 to traffic through the cell surface 

(Martin et al. 2006). This finding that the recycling is slow allows the findings of 

the studies supporting the static retention model to be examined more closely. 

Grovers et al. (2004) found that only a small portion of the total pool of GLUT4 

trafficked to the cell surface, however in this study trafficking was only 

examined for 180 minutes. Furthermore in aforementioned studies that have 

examined the kinetic properties of GLUT4, velocities were only measured for 10 

seconds, meaning very slowly moving GLUT4 may have been observed as static 

(Fujita et al. 2010).  

Taking these observations into consideration allows the proposal of a model of 

GLUT4 trafficking that encompasses both the dynamic and static properties of 

GLUT4 that have been observed. This model is displayed in Figure 1-3. In this 

model GSVs are formed from the TGN. Once formed they may be retained in a 

static manner for a period of time possibly through interactions with the 

intracellular anchor TUG, before in the absence of insulin, slowly recycling back 

into the ERC. In the presence of insulin GSVs are rapidly mobilised to the cell 

surface, from the cell surface. Once the insulin-stimulus is removed, GLUT4 is 

internalised and enters the cycling pathway again (Figure 1-3).  

At this point it is prudent to note that the debate regarding the retention 

mechanism of GLUT4 (“static” or “dynamic”) is largely irrelevant in a 

physiological setting. Under physiological conditions there will always be some 

level of insulin stimulation, thus GLUT4 will be continually recycling.  

1.2.7 Insulin response of GLUT4 

The primary effect of insulin in adipose tissue is to increase the rate of glucose 

uptake. This occurs through a dose dependent increase in the amount of GLUT4 

at the cell surface. This arises through a large increase in GLUT4 exocytosis and 

a slight reduction in endocytosis (Zeigerer et al. 2004). Following insulin 

stimulation there is a rapid increase in GLUT4 at the cell surface within ~5 

minutes, followed by a slower prolonged increase which reaches maximum at 
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between 15 and 20 minutes (Coster et al. 2004). Ablation of the endosomal 

system reduces but does not prevent the translocation of GLUT4 to the cell 

surface in response to insulin. Since there is still a robust insulin response, the 

endosomal pool is not required for GLUT4 to translocate to the plasma 

membrane.  Therefore, GSVs must be able directly fuse with the plasma 

membrane without first trafficking into the endosomal system (Livingstone et al. 

1996; Millar et al. 2000). However, other data demonstrates that although the 

endosomal pool is not required for insulin-stimulated GLUT4 translocation, it 

does play a role in the insulin response. Insulin-stimulation results in the 

exocytosis of GSVs and increases the recycling of GLUT4 through the endosomal 

compartment (Ramm et al. 2000).The increase in the recycling of the endosomal 

compartment is much smaller (2-fold) (Tanner & Lienhard 1987) compared to the 

mobilisation of the specialised GSV compartment (10-fold). 

Not only do the two pools of GLUT4 contribute to the overall insulin response to 

differing degrees, the temporal pattern of their contribution differs throughout 

the insulin response. Recent studies using TIRF microscopy, alongside pH-

sensitive probes that fluoresce as vesicles fuse with the plasma membrane, have 

shown that the initial increase in GLUT4 in the cell surface is from GSVs. 

However, GLUT4 that is delivered at later stages of the insulin response is not 

from GSVs, but from the ERC. While the insulin-stimulus is present, GSVs are not 

regenerated. Once the GSV pool is depleted GLUT4 is trafficked to the cell 

surface in larger vesicles, which likely originate in the ERC (Stenkula et al. 2010; 

Xu et al. 2011). Xu et al. (2011) identified that the initial increase in cell surface 

GLUT4 comes from the fusion of small GLUT4 vesicles (average of 56nm) which 

probably represent pre-formed GSVs. However, GLUT4 inserted into the plasma 

membrane at later time points (>15 minutes) comes from larger carriers of 

GLUT4 (~150nm) (Xu et al. 2011). In support of this hypothesis utilizing similar 

techniques Stenkula et al. (2010) found that the fusion of IRAP (a marker of 

GLUT4 in GSVs rather than GLUT4 in the ERC) containing vesicles with the 

plasma membrane increased to its peak at between 3 and 4 minutes then 

decayed to a level slightly elevated above basal during the remainder of the 

insulin-stimulation (Stenkula et al. 2010). Therefore, insulin stimulation results 

in the rapid exocytosis of GSVs and a longer term increase in the exocytosis of 

GLUT4 vesicles in the ERC.   
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As well as mobilizing GLUT4 from intracellular deposits to the cell surface, 

insulin acts at other steps of the GLUT4 trafficking cycle. These include altering 

the rate of docking and fusion of GLUT4 containing vesicles, and stimulating the 

dispersal of GLUT4 in the plasma membrane. 

Single molecule tracking studies have shown that insulin increases the time 

GLUT4 remains in the region surrounding the cell surface, the frequency and 

tightness of docking, the frequency of fusion events and the speed of fusion pore 

opening (Lizunov et al. 2005; Bai et al. 2007; Fujita et al. 2010; Xu et al. 2011). 

These all act to increase the probability and rate of GLUT4 entry into the plasma 

membrane. Another effect of insulin that has only recently been discovered is 

that it also stimulates the dispersal of GLUT4 within the cell surface. This 

reduces the amount of GLUT4 that is found in clusters, and may function to 

reduce the probability of GLUT4 endocytosis (Stenkula et al. 2010; Lizunov et al. 

2013). Finally, there is also evidence that insulin-stimulation increases the 

activity of GLUT4 inserted in the plasma membrane (Funaki et al. 2006). The 

effects of insulin-stimulation work in collaboration to increase glucose uptake 

into insulin-sensitive tissues and reduce blood glucose levels. 

The key processes that govern the insulin-induced increase in glucose uptake, 

including the recycling of GLUT4, the formation of insulin-sensitive GSVs, and 

insulin-stimulated increases in GLUT4 in the plasma membrane are all examples 

of targeted membrane trafficking. All membrane trafficking events require 

SNARE proteins. In the following sections research dissecting the involvement of 

SNAREs in the trafficking of GLUT4 is examined.  

1.3 SNAREs and SM Proteins  

1.3.1 SNARE proteins 

Membrane trafficking requires vesicles from a donor compartment to bud, be 

targeted, dock and fuse with the correct target membrane. The fusion of 

membranes is catalysed by the action of SNARE proteins (soluble N-

ethylmaleimide-sensitive fusion protein attachment receptors).  
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1.3.1.1 Discovery of SNARE proteins 

The identification of the machinery required for membrane fusion in mammalian 

cells began with the discovery that membrane fusion, blocked by incubation of 

membranes with N-ethylmadleimide (NEM) could be recovered by addition of a 

‘NEM sensitive factor’ (NSF) which was present in extracts of brain cytosol. This 

factor was later identified and purified (Block et al. 1988). This in turn led to 

the discovery of soluble NSF attachment proteins (SNAPs), which were also 

purified (Clary et al. 1990). Using purified SNAP and myc tagged NSF, proteins 

able to bind to and form complexes with NSF/SNAP were isolated from crude 

bovine brain membrane extracts. Remarkably, the amino acid sequences of 

these proteins were found to match those of proteins involved in synaptic vesicle 

fusion.  These were SNAP25 (synaptosome-associated protein of 25kDa), syntaxin 

1 and VAMP/synaptobrevin and were termed soluble NSF attachment receptors 

(SNAREs) (Söllner, Bennett, et al. 1993). SNARE proteins have been shown to 

provide the minimal machinery for membrane fusion (Weber et al. 1998; Hu et 

al. 2003). Since the discovery of the first SNARE proteins many more isoforms of 

SNAP, syntaxin and VAMP/synaptobrevin have been identified. The human 

genome codes 35 SNARE proteins (Bock et al. 2001). This includes seven isoforms 

of the VAMP family, VAMP1 and 2 (also termed synaptobrevin 1 and 2), VAMP3 

(cellubrevin), VAMP4, VAMP5 (myobrevin), VAMP7 (Tetanus insensitive (TI)-

VAMP) and VAMP8 (endobrevin). Each VAMP shows differences in tissue 

distribution as well as the fusion events they are involved in.  

1.3.1.2 SNARE protein structure 

SNARE proteins reside on opposing membranes. They catalyze fusion by forming 

a tight SNARE complex which brings the two membranes into close proximity, 

overcoming the repulsive forces pushing them apart.  Central to SNARE protein 

function is the conserved SNARE domain, a 60 - 70 amino acid sequence made up 

of heptad repeats. In isolated SNARE proteins the SNARE domain is rather 

unstructured.  However, when a SNARE domain comes into contact with other 

SNARE domains they form a highly stable, tight alpha-helical coiled-coil bundle, 

termed the SNARE complex. In this complex, side chains of the individual amino 

acids making up the SNARE domains interact and these interactions form 'layers'. 

Each layer is hydrophobic, except the central ‘0’ layer which is made up of three 
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glutamine residues and one arginine residue (Hong 2005; Jahn & Scheller 2006; 

Figure 1-5).  

 

Figure 1-6 SNARE complex structure.  
A: The crystal structure of an assembled SNARE complex made up of the SNARE domains of 
syntaxin 1a (red), SNAP25 (green) and VAMP (blue). B Skeleton diagram showing interactions 
between the side-chains of each of the SNARE complexes, central '0' layer is represented in 
orange, others in black. Adapted from Sutton et al. (1998). 

SNARE proteins can be characterised according to their central '0' layer amino 

acid (by composition) or by the membrane they localize to (localisation). Initial 

characterisation was based on localisation; those that were present on target 

membranes were termed target or tSNAREs and those present on vesicle 

membranes were termed vesicle or vSNAREs. Although characterisation based on 

localisation is straightforward, it can be misleading. An example of this is when 

fusion occurs between membranes that are not easily classifiable into vesicle 

and target membranes, such as in the fusion of endosomes. Therefore SNARE 

proteins have also been classified based on their structure. If the central ‘0’ 

amino acid is glutamine they are termed Q-SNAREs, and if it is arginine they are 

termed R-SNAREs (Fasshauer et al. 1999). The Q-SNAREs can be further divided 

up into Qa, Qb and Qc SNAREs. The division of Q SNAREs into these categories is 

based on the similarities each SNARE has with members of the neuronal SNARE 

complex. In this complex, syntaxin 1 is the Qa and the two SNARE motifs of 

SNAP25 provide the Qb and c SNARE domains. The alignment of amino acid 

sequences of other SNAREs with the sequences of syntaxin 1, the two SNARE 
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domains of SNAP23 or the R-SNARE in this complex, VAMP, has allowed all 

SNAREs to be classified as either Qa Qb Qc or R (Bock et al. 2001). For SNARE 

complexes to be functional in mediating membrane fusion, the SNARE complex 

must contain one of each of these classes of SNARE protein (Qa,b,c and R). 

While the SNARE domain is highly conserved, many SNARE proteins contain 

variable domains at their N termini (Figure 1-6 A). These N terminal extensions 

range in structure and function. Members of the syntaxin family contain a Habc 

domain prior to the SNARE domain. The Habc domain can fold back on itself and 

interact intramolecularly with the SNARE domain forcing the syntaxin into a 

closed conformation (Fernandez et al. 1998; Misura et al. 2000; Furgason et al. 

2009; Figure 1-5 B). In this conformation, a cleft formed between the Hc and b 

domains interacts with the first 15 amino acids of the SNARE domain (Figure 1-5 

B; Misura et al. 2000). As well as the Habc domain, some syntaxins also contain a 

short N-terminal regulatory domain that can facilitate binding with SNARE 

regulating proteins, such as Sec-1/Munc 18 (SM) proteins (Section 1.5). Some R 

SNAREs also have N terminal extensions and the function of this domain varies 

between each protein. The N terminal domain of VAMP4 contains a trans Golgi 

network targeting motif (Zeng et al. 2003). Similar to the Habc domain of 

syntaxins, the N terminal login domain of VAMP7 interacts with the SNARE 

domain and this has been identified to be inhibitory to its association with 

SNAP25 (Martinez-Arca et al. 2000; Schäfer et al. 2012). SNARE proteins are 

typically anchored to the membrane through their transmembrane domain. 

However, SNARE proteins of the SNAP family are notable exceptions. These Qbc 

SNAREs are anchored to the membrane through palmitoylation (Vogel & Roche 

1999; Hong & Lev 2014; Figure 1-6). The structures of SNARE proteins that have 

been implicated in the trafficking of GLUT4 are represented in Figure 1-6.  
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Figure 1-7: Structure of SNAREs discussed in this thesis.  
All SNARE proteins contain a conserved SNARE domain, many SNARE proteins also contain 
transmembrane domains and N terminal extension domains (A). The syntaxins contain a Habc 
domain, and VAMP7 contains a login domain. These domains can fold back and interact with the 
SNARE domain, giving the SNARE protein a closed conformation (B). As well as the Habc domain 
syntaxin 6 contains a N terminal domain that interacts with its SM protein. VAMP 4 contains an N 
terminal domain that is important for its TGN localisation. With the exception of the SNAP family, 
most SNARE proteins are anchored in membranes by their transmembrane (TM) domain. B 
Syntaxin in its open and closed conformation. When in the closed conformation, a cleft between the 
Ha and Hb domains interacts with the SNARE domain, the top right shows a side view of the 
syntaxin in its closed conformation, and the bottom right shows the syntaxin in a closed 
conformation from above.  

1.3.1.3 SNARE Complex formation  

A stable SNARE complex is formed when four SNARE domains come together. For 

the complex to be functional in membrane fusion the complex must contain 

three Q-SNAREs (Qab and c) and one R-SNARE. SNARE complexes that bridge the 

gap between two membranes are termed trans SNARE complexes. SNARE 

complexes found on the same membrane are termed cis SNARE complexes. The 

formation of trans SNARE complexes is sufficient to drive membrane fusion in 

vitro. Therefore SNARE complexes are deemed to be the minimal machinery to 

drive fusion (Weber et al. 1998).  

SNARE complex formation begins at the N terminal end. The side chains of each 

amino acid interact, and these interactions proceed in a step wise fashion to the 

C terminal membrane anchored region. This ‘zippering’ action pulls the two 

membranes into close proximity overcoming the repulsive forces that act 
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between the membranes. More recently it has been shown that SNARE complex 

assembly occurs in two discrete stages. First the N terminal portion zippers, 

then once this has been achieved, the remaining regions of the SNARE domain 

form a complex. The second stage of SNARE complex formation has been shown 

to produce enough energy to fuse liposomes in vitro (Li et al. 2014). There is 

also evidence that the domain between the SNARE and transmembrane domain, 

termed the juxta-membrane domain, assists in membrane fusion. The juxta-

membrane domains of VAMP and syntaxin contain many basic residues, and these 

are attracted to the negative charges of the phospholipids that make up the 

membrane. Once the SNARE domains have zippered, the basic residues of these 

domains interact with the negatively charged membranes. This may provide 

extra force to overcome the barrier to fusion (Williams et al. 2009).   

1.3.1.4 Specificity of Fusion  

The original SNARE hypothesis stated that SNARE proteins provide both the 

driving force and the specificity for fusion events (Söllner, Whiteheart, et al. 

1993; Rothman 1994). It dictated that each tSNARE has a cognate vSNARE 

partner and that SNARE complexes only form between cognate SNARE partners. 

However, this view is now somewhat outdated, as it has become apparent that 

SNARE proteins are unlikely to dictate fusion specificity alone. One problem with 

the idea that SNARE proteins provide specificity for fusion is that they are often 

present on multiple membranes, including membranes they are not involved in 

the fusion of. This situation arises because, following a fusion event, SNARE 

proteins must be recycled back to their donor compartment, and is particularly 

apparent in the endosomal system. Endosomes have been shown to contain 

SNAREs that participate in both early and late endosomal fusion events and 

exocytotic fusion events (Brandhorst et al. 2006). Another problem is that many 

SNARE proteins are involved in more than one fusion event. Furthermore, some 

fusion events can occur with multiple vSNAREs, but the same tSNARE (Polgár et 

al. 2002). In line with such problems, SNARE complex formation has been shown 

to be promiscuous in vitro. Providing there is a member of each SNARE subfamily 

present, many combinations of purified SNAREs can form highly stable SDS 

resistant complexes (Fasshauer et al. 1999; Yang et al. 1999; Scales et al. 2000). 

Although these complexes form promiscuously, the formation of fusogenic SNARE 

complexes, and SNARE complexes formed in vivo, seem to be more specific 
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(Fasshauer et al. 1999; Scales et al. 2000).  Therefore although SNARE proteins 

may provide some level of specificity, other factors must be involved in the 

targeting and specificity of fusion events.  

The ability of SNAREs to act in fusion events can be measured in the cellular 

environment by observing the inhibiting effect different soluble SNAREs have on 

fusion events. Using this method the specificity of SNARE complexes involved in 

the fusion of neuroendocrine carrying vesicles with the cell surface and 

endosomal fusion has been assessed in PC12 cells. Under these conditions (in 

vivo), SNARE protein interactions appear specific. While there is some degree of 

cross talk between syntaxins 1 and 4 and VAMPs 2 and 4, but not other 

syntaxins/VAMPs, in exocytotic fusion events, the inhibition of fusion of 

endosomes is highly specific to the cognate SNAREs (Fasshauer et al. 1999; 

Scales et al. 2000). 

The data discussed above highlights that SNARE proteins alone cannot drive the 

specificity of membrane fusion. Consequently roles for tethering factors and 

SNARE binding proteins have been proposed.  

1.4 Tethers  

SNARE complexes can clearly mediate fusion events. However, as discussed in 

section 1.3.1.4, SNAREs may not be sufficient to determine the specificity of 

fusion events. Furthermore, SNARE complexes only begin to form when 

membranes are between 4nm and 8nm apart (F. Li et al. 2007). Therefore there 

needs to be a mechanism by which membranes can be targeted to the correct 

site, and membranes can be brought into close enough proximity so that SNARE 

complexes can form. Both these mechanisms can be achieved by the action of 

tethers.  

Tethers can be divided in to two sub classes; long coiled-coil complexes or large 

multi-subunit tethering complexes (MTCs). Long coiled-coil tethers can interact 

with membranes that are over 200nm apart, whereas MTCs act over much 

shorter distances (~30nm) (Hong & Lev 2014). Of the numerous mammalian 

tethers only a few have been implicated in GLUT4 trafficking. There is direct 

evidence for the involvement of the exocyst and more indirect evidence for the 
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conserved oligomeric Golgi complex. The exocyst has been implicated in the 

tethering of GLUT4 containing vesicles with the plasma membrane (Ewart et al. 

2005; Inoue et al. 2003). The overexpression of a mutant subdomain of the 

exocyst complex prevents insulin-stimulated increases in glucose uptake and 

insertion of GLUT4 into the plasma membrane, but does not prevent the 

movement of GLUT4 from the interior of the cell to the cell periphery (Inoue et 

al. 2003). There is also indirect evidence that the conserved oligomeric Golgi 

complex (COG) may be involved in the intracellular trafficking of GLUT4. The 

COG complex assists in the assembly of the SNARE complex made up of syntaxin 

6 and 16 (Laufman et al. 2011) which has in turn been implicated in the cycling 

of GLUT4 into insulin-sensitive vesicles (Perera et al. 2003; Shewan et al. 2003; 

Proctor et al. 2006). Therefore the COG complex may also be involved in the 

trafficking of GLUT4.  

1.5 SM Proteins 

Proteins of the Sec-1/Munc-18 family (SM) proteins are essential components of 

the fusion machinery. Alongside tethers they may act to provide specificity to 

membrane fusion. SM proteins have been shown to be both positive and negative 

regulators of fusion (Toonen & Verhage 2003).  

SM proteins bind to their cognate syntaxins through three binding modes. The 

first, mode 1 binding, is inhibitory to SNARE complex formation. In this binding 

mode the syntaxin is held in a closed conformation with the Habc domain 

binding the SNARE motif. The second, mode 2, is the most conserved mode of 

binding. In this mode the extreme N terminus of the syntaxin binds a 

hydrophobic pocket of the SM protein. The final mode of binding is between an 

assembled SNARE complex and the SM protein (Toonen & Verhage 2003; Carr & 

Rizo 2010;Figure 1-7). Two SM proteins have been implicated in the trafficking of 

insulin-sensitive GLUT4, Munc18c and mVps45. These act in GLUT4 vesicle fusion 

with the plasma membrane and formation of GSVs respectively (see citations 

below).  

 



Chapter 1   46 
 

 

Figure 1-8: Different binding modes of SM proteins interacting with syntaxins.  
The SM protein interacts with the syntaxin in a closed conformation, side view (A), top view (B). 
The SM protein interacts with the N terminal domain of the syntaxin (C). The SM protein interacts 
with an assembled SNARE complex; this can occur with SNARE complexes either in cis or trans 
configuration (D).  

1.5.1 Munc18c   

Munc18c is required for insulin-stimulated GLUT4 translocation to the PM and 

glucose uptake (Thurmond et al. 2000). It can bind its cognate syntaxin, syntaxin 

4, via the N terminal domain of syntaxin 4 and the hydrophobic pocket of 

Munc18c (Latham et al. 2006) or through binding of the syntaxin in a closed 

conformation (Brandie et al. 2008). Munc18c can also bind syntaxin 4 through 

the final binding mode, mode 3, with the SNARE complex 

syntaxin4/SNAP23/VAMP2 (Latham et al. 2006). 

Munc18c has been found to be both facilitative and inhibitory to SNARE complex 

formation (Latham et al. 2006; Brandie et al. 2008). Therefore Munc18c could 

provide a mechanism by which insulin can regulate SNARE complex formation.  In 

this model, Munc18c is inhibitory to fusion when it binds the closed form of 

syntaxin (mode 1), and facilitative when it binds the N-terminal region (mode 2). 

One model proposes that insulin stimulates Munc18c phosphorylation, preventing 

its mode 1 binding to syntaxin 4 (Aran et al. 2011; Jewell et al. 2011). This 

allows the syntaxin to switch from the closed to the open conformation allowing 

SNARE complexes to form. 
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1.5.2 mVps45  

Vps45 has been extensively studied in yeast, where it is required for the delivery 

of proteins to the pre-vacuolar compartment (Cowles et al. 1994; Bryant et al. 

1998). Mammalian Vps45 (mVps45) binds to the trans Golgi network tSNAREs, 

syntaxin 6 and 16 (Bock et al. 1997; Tellam et al. 1997; Dulubova et al. 2002) 

and is essential for the correct targeting of GLUT4 to the insulin sensitive pool 

(Roccisana et al. 2013).  

mVps45 can interact with syntaxin 16 via the N terminal domain (Dulubova et al. 

2002), and through an N terminal independent mechanism, although this mode 

of binding is lower affinity (Burkhardt et al. 2008). The binding of Vps45p to the 

N terminal region of Tlg2 (yeast syntaxin 16) is required for Tlg2 to bind its 

cognate SNAREs (Bryant & James 2001). These data suggest that Vps45p, like 

Munc18c, may be able to regulate SNARE complex formation. Further to 

potential roles in the regulation of SNARE complex formation, Vps45 also acts as 

a chaperone for its cognate syntaxin. Studies in both yeast and mammalian cells 

have shown that depletion of Vps45 leads to a reduction in the levels of 

Tlg2p/syntaxin 16 (Bryant & James 2001; Roccisana et al. 2013). 

1.6 SNAREs in GLUT4 trafficking  

GLUT4 is engaged in continual trafficking between multiple membrane 

compartments. Each trafficking step requires SNARE proteins. In terms of insulin-

stimulated GLUT4 translocation, research has focused on two key stages: the 

fusion of insulin-sensitive GLUT4 storage vesicles (GSVs) with the plasma 

membrane, and the sorting of GLUT4 into GSVs.  Much research has focused on 

uncovering the roles of SNAREs in these trafficking steps.  

1.6.1 SNAREs in GSV fusion with plasma membrane   

The tSNAREs required for the fusion of GLUT4 containing vesicles with the 

plasma membrane have been identified as syntaxin 4 and SNAP23. The 

introduction of antibodies against SNAP23 or the microinjections of the 

cytoplasmic domain of syntaxin 4 reduces insulin-stimulated GLUT4 translocation 

(Cheatham et al. 1996; Rea et al. 1998; Foster et al. 1999). Similarly, knock 

down of syntaxin 4 or SNAP23 in 3T3 L1 adipocytes impairs both the docking and 
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subsequent fusion of GLUT4 containing vesicles with the plasma membrane in 

response to insulin (Kawaguchi et al. 2010). 

It is well established that SNAP23 and syntaxin 4 are involved in the fusion of 

GSVs with the plasma membrane in response to insulin. However, it is less clear 

which vSNAREs are involved in this process. VAMP2 has been shown to interact 

with the syntaxin4/SNAP23 tSNARE complex (Rea et al. 1998), and in the 

presence of SNAP23 with syntaxin 4 (Cheatham et al. 1996; Kawanishi et al. 

2000).  The interactions seen between VAMP2 and syntaxin4/SNAP23 point to 

VAMP2 being the vSNARE involved in GLUT4 vesicle fusion with the plasma 

membrane in response to insulin. In line with this, the disruption of VAMP2, 

through the injection of VAMP2 peptides (Martin et al. 1998) or the cytoplasmic 

domain of VAMP2 (Millar et al. 1999), or through RNAi interference (Williams & 

Pessin 2008; Kawaguchi et al. 2010), reduces insulin-stimulated GLUT4 

translocation in 3T3 L1 adipocytes. Such studies support a role for VAMP2 in 

insulin-stimulated GLUT4 translocation.  

However, as well as containing VAMP2, GLUT4 membranes contain VAMP3 and 

VAMP8 (Volchuk et al. 1995; Larance et al. 2005; Zhao et al. 2009), both of 

which may also be involved in GSV fusion with the plasma membrane. In keeping 

with this, Olson et al. (1997) found that the cytoplasmic domains of either 

VAMP2 or 3 were capable of inhibiting GSV fusion with the plasma membrane 

(Olson et al. 1997). Further, one study showed that toxin-specific cleavage of 

VAMP2 and 3 does not impair insulin stimulated GLUT4 translocation, suggesting 

that another VAMP may be involved in the insulin response (Hajduch et al. 1997). 

Others dispute this finding (Randhawa et al. 2000). 

Recently, VAMP8 has been shown to be able to compensate for the loss of VAMP2 

and 3 in the fusion of GLUT4 containing vesicles with the plasma membrane 

(Zhao et al. 2009). Zhao et al. (2009) used a combination of knock out mice 

models alongside Tetanus-toxin cleavage of VAMP2 and 3 to study the 

translocation of GLUT4 in response to insulin. They studied GLUT4 translocation 

and glucose uptake in adipose cells derived from mouse embryonic fibroblasts 

(MEFs), taken from a VAMP2 knockout mouse. In these adipose cells insulin-

stimulated glucose uptake or GLUT4 vesicle fusion with the plasma membrane 

was unchanged compared to adipocytes derived from MEFs from wild type 
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animals. Taking this a step further they found that the cleavage of both VAMP2 

and 3 with Tetanus toxin was also without effect. Basal and insulin-stimulated 

GLUT4 translocation was only impaired when VAMP2, 3 and 8 were absent. In 

these experiments the reintroduction of either VAMP2, 3 or 8 was sufficient to 

recover insulin-stimulated GLUT4 translocation. This study highlights that there 

may be mechanisms of redundancy between SNARE proteins (Zhao et al. 2009). 

However, neither the origin of the GLUT4 fusing with the plasma membrane nor 

the mechanism of redundancy between the vSNAREs was assessed. The GLUT4 

could have originated from different pools under each condition, and either 

trafficked through the same pathway using the same tSNARE complex, or 

through different pathways.  

1.6.2 SNAREs in sorting  

As mentioned in section 1.2.2 GSVs can be formed from recycling or newly 

synthesised GLUT4, with both pathways converging at the trans Golgi network 

(TGN). GLUT4 has been shown to traffic through a domain of the TGN that is 

enriched in two TGN tSNAREs, syntaxin 6 and 16 (Shewan et al. 2003). A tSNARE 

complex made up of syntaxin 6/16 and Vti1a has been implicated in the 

formation of insulin sensitive GLUT4 compartments. The formation of GSVs 

effectively sequesters GLUT4 away from the cell surface under basal conditions. 

Therefore, preventing the formation of GSVs increases the pool of recycling 

GLUT4 under non-insulin stimulated conditions. In accordance with this model, 

syntaxin 6 and 16 are required for the reversal of glucose uptake upon insulin 

removal (Perera et al. 2003; Proctor et al. 2006). Similarly, the sorting of GLUT4 

into GSVs is perturbed when the action of syntaxin 6 is inhibited by the injection 

of dominant-negative interfering fragments of this protein (Perera et al. 2003), 

or the disruption of Vti1a (Bose et al. 2005).  

Precisely where in the trafficking cycle of GLUT4 the tSNAREs syntaxin 6 and 16 

act is unclear. However, they are present in sub-domains of the TGN and on 

GSVs and they translocate to the plasma membrane along-side GLUT4 in 

response to insulin (Perera et al. 2003; Shewan et al. 2003; Proctor et al. 2006). 

Therefore it seems likely they are involved in the later stages of GSV formation, 

the trafficking of GLUT4 through the TGN to the insulin sensitive compartment 

(Figure 1-3 step d/e).  
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The vSNARE VAMP4 is a binding partner of the tSNARE complex made up of 

syntaxin 6 and 16. Therefore, it has been proposed to play a role in the recycling 

of GLUT4. Williams and Pessin (2008) used RNAi to selectively remove each of 

the VAMP isoforms in 3T3 L1 adipocytes expressing a myc-GLUT4-GFP transporter 

to examine GLUT4 translocation. They found that VAMP2 knock down impaired 

the insulin-stimulated translocation of myc-GLUT4-GFP, in line with its proposed 

involvement in the fusion of GSVs with the plasma membrane (section 1.6.1). 

Surprisingly they found that basal trafficking of myc-GLUT4-GFP to the plasma 

membrane was unaffected by depletion of any of the VAMPs. However, when 

VAMP4 was depleted prior to myc-GLUT4-GFP expression, there was an increase 

in the basal level of myc-GLUT4 in the plasma membrane, suggesting reduced 

formation of GSVs. This highlights a role for VAMP4 in the entry of newly 

synthesised, but not recycling, GLUT4 into GSVs. Williams and Pessin (2008) also 

asserted that since insulin-stimulated GLUT4 trafficking was only attenuated 

with VAMP2 depletion, VAMP2 may be involved in the formation of GSVs. 

The research described in sections 1.6.1 and 1.6.2 illustrate that although roles 

for VAMP2, 3, 4 and 8 are likely, there is still a great deal of uncertainty in the 

vSNAREs involved in the intracellular trafficking of GLUT4 under both basal and 

insulin-stimulated conditions. This study aims to dissect the roles of each of the 

vSNAREs in the intracellular trafficking of GLUT4.  

1.7 SNAREs in diabetes  

As mentioned in section 1.2, insulin resistance and Type 2 diabetes are growing 

problems that face the developed and developing world. One major 

characteristic of these conditions is an inability of insulin to mobilise GLUT4 

from intracellular deposits to the cell surface (Garvey et al. 1988). This may 

reflect defective GLUT4 sorting into GSVs (Maier & Gould 2000) or defective 

translocation to the plasma membrane. Both of these trafficking events involve 

SNARE proteins. As such the status of some of the SNARE proteins that have been 

implicated in GLUT4 trafficking has been assessed in insulin resistant tissues 

and/or models of insulin resistance.  

When insulin resistance is induced in rats by hyperinsulinemia, there was an 

increase in the protein levels of VAMPs 2 and 3 and syntaxin 4 in adipose tissue. 



Chapter 1   51 
 

This increase was reversed by treatment with the anti-diabetic drug 

rosiglitazone (Maier et al. 2000). Likewise, in mice with insulin resistance 

induced by a high fat diet or through overexpression of lipoprotein lipase, 

elevated adipocyte Munc18c protein levels were observed (Schlaepfer et al. 

2003). Similarly, in skeletal muscle from human insulin-resistant subjects, the 

levels of SNAP23 are increased (Boström et al. 2010). However, no causality 

between these events has been established. The upregulation of these SNAREs 

and related proteins may be a compensatory mechanism, or may lead to and/or 

contribute to the development of insulin resistance.   

There is more direct evidence implicating changes in SNARE protein levels in 

insulin resistance from studies using cell lines. It is well established that 

treatment of 3T3 L1 adipocytes with fatty acids increases lipid droplet size and 

induces insulin resistance. An increase in lipid droplet size occurs through lipid 

droplet fusion; a process that involves SNAP23, syntaxin 5 and VAMP4. 

Concurrent to this increase in lipid droplet fusion, there is a ‘high-jacking’ of 

SNAP23 away from the plasma membrane to the site of lipid droplet fusion. In 

this study, microinjection with SNAP23 restored insulin-sensitivity (Boström et 

al. 2007). This is consistent with the notion that this specific SNARE protein is 

crucial for the development of insulin sensitivity/resistance. A state of elevated 

fatty acid availability and lipid droplet fusion is similar to that seen in obesity. 

Thus, it is tempting to speculate that this ‘high-jacking’ hypothesis could occur 

in obesity and contribute to insulin resistance. Although this phenomenon has 

not been studied in human tissues, it highlights the importance of understanding 

the membrane trafficking events that underpin the insulin response in both 

health and disease states, and suggests that defects in the SNARE machinery 

should be considered as potential defects in Type 2 diabetes. 
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1.8 Aims of this study 

The main aims of this study are to further dissect the roles of the post-Golgi 

vSNAREs expressed in 3T3 L1 adipocytes (VAMP2, 3, 4, 5, 7 and 8) in the 

intracellular trafficking of the insulin regulated glucose transporter GLUT4.  

1.8.1 Aims of Chapter 3 

The trafficking of GLUT4 from intracellular deposits to the cell surface in 

response to insulin-stimulation is dependent on the tSNARE complex made up of 

syntaxin 4 and SNAP23. Although the vSNARE VAMP2 has been implicated in this 

SNARE complex, recent data has suggested roles for other VAMPs. Therefore, 

Chapter 3 aims to systematically examine the interactions between VAMPs and 

the tSNARE syntaxin 4.  

1.8.2 Aims of Chapter 4 

There are discrepancies in the literature regarding compensation and plasticity 

between VAMP isoforms in GLUT4 trafficking. In order to shed light on the 

mechanisms of plasticity it is necessary to determine the absolute levels of each 

VAMP protein in 3T3 L1 adipocytes, and to examine their subcellular distribution 

in relation to insulin-sensitive GLUT4. Chapter 4 aims to compare the protein 

levels of each VAMP in 3T3 L1 fibroblasts and adipocytes, and to determine the 

absolute level of each VAMP in 3T3 L1 adipocytes. Furthermore, the subcellular 

distribution and localisation of each VAMP with insulin-sensitive GLUT4 is 

examined. 

1.8.3 Aims of Chapter 5 

The tSNARE syntaxin 16 and the SM protein mVps45 have both been implicated in 

the trafficking of GLUT4 from the ERC into GSVs. However, it is unclear which 

vSNARE acts in this trafficking pathway. Therefore, in Chapter 5 the interactions 

of each VAMP protein with syntaxin 16 and mVps45 is examined.  
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1.8.4 Aims of Chapter 6 

Previous research has highlighted potential roles for both VAMP2 and 4 in the 

formation of GSVs, and of VAMP8 in the endocytosis of GLUT4. The overall aim of 

Chapter 6 is to deplete cells of these VAMP proteins and examine the global 

distribution of GLUT4. To meet this aim the chapter is split into two sections, 

the first section aims to replicate the previous data regarding the roles of 

VAMP2, 4 and 8 in a different cell type, using a different GLUT4 construct (HeLa 

cells expressing HA-GLUT4-GFP). The second section aims to develop an 

inducible vector system that will allow the depletion of proteins in mammalian 

cells to be controlled. 

 



 
 

Chapter 2  - Materials and Methods 
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2.1 Materials  

2.1.1 General reagents and enzymes  

BD Biosciences, Oxford UK  
Syringes  
24 Gauge needles 
26 ⅝ Gauge needles 
 
BioRad Labatories Ltd, Hemel Hemstead, Hampshire, UK  
Precision Plus Protein™ All Blue Standards (#161-0373)  
 
Clontech, France  
TakaRa rapid Ligation kit 
 
Fisher Scientific UK Ltd., Loughborough, Leicestershire, UK 
2-[4-(2-hydroxyethyl)-1-piperazine] ethanesuphonic acid (HEPES) 
Ethanol 
3mm filter paper   
Glycine 
L-Glucose 
ImmunoMount  
Pierce™ Micro BCA™ Protein Assay Kit 
Tris(hydroxymethyl)aminoethane Base (Tris Base) 
 
Formedium Ltd., Hunstanton, Norfolk, UK 
Amino acid drop-out media –URA 
Bacterial agar 
Peptone 
Tryptone 
Yeast extract powder 
Yeast nitrogen base without amino acids 
 
GE Healthcare BioSciences Ltd, Chalfont, Buckinghamshire, UK 
Dharmafect-4 transfection reagent  
Glutathione-S-Sepharose 4B 
IgG Sepharose 6 Fast Flow 
ON-TARGETplus SMARTpool siRNA  
Protein A Sepharose Fast-Flow  
 
Melford Laboratories Ltd., Chelsworth, Ipswich, UK 
Dithiothreitol (DTT) 
Isopropyl-β-D-thiogalactopyranoside (IPTG) 

 
New England Bioscience (UK) Ltd., Hitchin, Hertfordshire, UK 
All endonucleases used in this study  
1 kb DNA ladder 
100 bp DNA ladder 
6x DNA loading buffer 
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Life Technologies, Paisley, UK  
Dulbecco’s Modified Eagle Medium (DMEM),  
Foetal Bovine Serum (FBS)  
Gateway® LR Clonase® II enzyme mix  
Lipofectamine® 2000 transfection reagent 
Newborn Calf Serum (NCS)  
One Shot Chemically Competent BL21 (DE3) E. coli 
One Shot Chemically Competent TOP10 E. coli 
One Shot® ccdB Survival™ 2 T1R Chemically Competent Cells  
One Shot® Stbl3™ Chemically Competent E. coli  
Opti-MEM® 
Penicillin-Streptomycin (10,000 U/mL) 
Subcloning Efficiency™ DH5α™ Competent Cells 
smartPOOL siRNA  
SYBR ® Safe DNA Gel Stain 
Trypsin-EDTA (0.05%), phenol red  
   
Pall Life Sciences, Portsmouth, UK  
Nitrocellulose transfer membrane, 0.2 μM pore size 

Promega, Southampton, UK 
Wizard® Plus SV Minipreps DNA Purification System 
 
Qiagen Ltd., Crawley, West Sussex, UK 
QIAfilter™ Plasmid Maxi Kit 
QIAquick Gel Extraction Kit 
 
Roche Diagnostic Ltd., Burgess Hill, UK 
Agarose MP 
Complete™ Protease Inhibitor Cocktail Tablets 
Complete™ EDTA-free Protease Inhibitor Cocktail Tablets 

 
Severn Biotech Ltd., Kidderminster, Worcestershire, UK 
30 % Acrylamide [Acrylamide: Bis-acrylamide ratio 37.5:1] 
 
Sigma-Aldrich Ltd., Gillingham, Dorset, UK 
Ammouinum acetate  
Ammonium persulphate (APS) 
Ampicillin 
β-mercaptoethanol 
Bovine serum albumin (BSA) 
Brilliant Blue-R 
Bromophenol blue 
Dimethyl suphoxide (DMSO) 
Dexamethasone  
Ethylenediaminetetracetic acid (EDTA) 
Gelatin from cold water fish skin 
Goat serum  
L-Glutathione reduced 
Glycerol 
G418 disulfate salt 
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3-isobutylmethylxanthine (IBMX)  
Isopropanol 
Kanamycin 
Methanol 
N,N,N’,N’-Tetramethylethylenediamine (TEMED) 
Paraformaldehyde  
Ponceau S 
Porcine insulin 
Potassium hydroxide (KOH) 
Reduced glutathione 
Sodium fluoride (NaF)  
Sodium hydrogen carbonate (NaHCO3)  
Sodium dihydrogen phosphate (NaH2PO4)  
Sodium orthovanadate (Na4VO3)  
Sodium dodecyl sulphate (SDS) 
Thrombin (Bovine) 
Triton-X100 
Troglitazone 
Tween -20  
 
Spectrum Europe BV., Breda, The Netherlands 
Float-a-lyzer, 5 ml 5 kDa MWCO 
Float-a-lyzer, 5 ml 20 kDa MWCO 
 
VWR International Ltd., Lutterworth, Leicestershire, UK 
Glacial Acetic Acid 
Glass cover slips (3mm diameter) 
Disodium hydrogen orthophosphate (Na2HPO4) 
Potassium Acetate 
Potassium Chloride (KCl) 
Potassium dihydrogen orthophosphate (KH2PO4) 
Sodium Chloride (NaCl) 
Sodium Hydroxide (NaOH) 
 
 

2.1.2 Solutions  

2x Laemmli Sample Buffer 
(LSB) 

100mM Tris, HCl pH 6.8, 4% (w/v) SDS, 20% (v/v) 
glycerol, 0.2% (w/v) bromophenol blue, 10% 
(v/v) β-mercaptoethanol 

2YT 1.6% (w/v) tryptone, 1.0% (w/v) yeast extract, 
0.5% (w/v) NaCl (20% Agar) 

Coomassie 0.05% (w/v) Coomassie brilliant blue R-250 , 50% 
(v/v)methanol, 10% (v/v) acetic acid 

Coomassie Destain 15% (v/v) methanol, 15% (v/v) acetic acid 
 

ECL solution 1 100mM Tris-HCl, pH 8.5, 2.25mM luminol in 2% 
(v/v) DMSO, 0.4 mM ρ-coumaric acid in 1% (v/v) 
DMSO 
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ECL solution 2 100mM Tris-HCl, pH 8.5, 0.018% (v/v) H2O2 

HEPES/EDTA/Sucrose (HES) 
buffer 

250 mM Sucrose, 20 mM HEPES pH 7.4, 1 mM 
EDTA 

immunoprecipitation (IP) 
buffer 

50 mM HEPES pH 7.5, 5 mM EDTA, 10 mM sodium 
pyrophosphate, 10 mM NaF, 150 mM NaCl, 2 mM 
β-Glycerophosphate, 1 mM DTT 
 

PBS 140mM NaCl 3mM KCl, 1.5mM KH2HPO4, 8mM 
Na2HPO4 

PBST 140mM NaCl 3mM KCl, 1.5mM KH2HPO4, 8mM 
Na2HPO4, 0.1% (v/v) Tween-20 

Ponceau S 0.2% (w/v) Ponceau S, 1% (v/v) acetic acid 
 

RIPA Buffer 50mM Tris, HCl pH8, 150mM NaCl, 2mM MgCl2, 
1% Triton, 0.5% sodium deoxycholate (w/v), 0.1% 
(w/v) SDS, 1mM DTT, 50 units/ml Benzonase 

SDS-PAGE running buffer 25mM Tris, 190mM glycine, 0.1% (w/v) SDS 
 

SDS-PAGE transfer buffer 25 mM Tris-HCl, 192 mM glycine, 20% (v/v) 
methanol 

SDS-PAGE transfer buffer 
(alcohol free) 

12.5mM Tris HCl pH 7.4, 200mM glycine 

SDS-PAGE transfer buffer 
(semi-dry)  

50 mM Tris base, 40 mM glycine, 0.1% (w/v) SDS, 
10% (v/v) methanol 

selective defined (SD) medium 0.67% (w/v) yeast nitrogen base without amino 
acids, 2% (w/v) glucose 

SOC 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 
2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 
mM glucose 

TAE buffer 40mM Tris, 1mM EDTA 
 

TBST 20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.1% (v/v) 
Tween-20 

TE buffer 1 M Tris pH 8.0, 100 mM EDTA 
 

TST 50mM Tris Hcl pH7.6, 150mM NaCl, 0.05% (v/v) 
Tween-20 

Yeast lysate binding buffer 40mM HEPES pH7.4 KOH, 150mM KCl, 1mM DTT, 
1 mM EDTA 0.5% Triton X 100 
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2.1.3 Plasmids 

Table 2-1: Plasmids used in this study. 

Plasmid  Description  Source  Reference 

pGEX-GST  E.coli expression plasmid 
encoding GST   

Dr. Richard 
Scheller 

(Stanford, CA). 

(Brandie et 
al. 2008) 

pGEX-GST-
VAMP1 

E.coli expression plasmid 
encoding GST tagged truncated 

VAMP1 residues 1-97 

Dr. Richard 
Scheller 

(Stanford, CA). 

(Martin et 
al. 1998) 

pGEX-GST-
VAMP2 

E.coli expression plasmid 
encoding GST tagged truncated 

VAMP2, residues 1-94 

Dr. Richard 
Scheller 

(Stanford, CA). 

 

pGEX-GST-
VAMP3 

E.coli expression plasmid 
encoding GST tagged truncated 

of VAMP3 residues 1-81 

Dr. Richard 
Scheller 

(Stanford, CA). 

(Martin et 
al. 1998) 

pGEX-GST-
VAMP4 

E.coli expression plasmid 
encoding GST tagged truncated 
human VAMP4 pGEX resudues 

1-119.  

Dr. Andrew 
Peden 

(University of 
Sheffield)  

(Brandie et 
al. 2008) 

pGEX-GST-
VAMP5 

E.coli expression plasmid 
encoding GST tagged truncated 
mouse VAMP5, residues 2-69. 

Dr. Andrew 
Peden 

(University of 
Sheffield) 

 

pGEX-GST-
VAMP7 

E.coli expression plasmid 
encoding GST tagged truncated 

rat VAMP7, residues 2-188 

Dr. Andrew 
Peden 

(University of 
Sheffield) 

(Newell-
Litwa et al. 

2009)  

pGEX-GST-
VAMP8 

E.coli expression plasmid 
encoding GST tagged truncated 

human VAMP8, residues 1-75  
 

Dr. Andrew 
Peden 

(University of 
Sheffield) 

(Brandie et 
al. 2008) 

pALA001 (Sx16-
PrA) 

E.coli expression plasmid 
encoding C-terminally PrA-

tagged Syntaxin 16A, residues 
1-269 

Alicja 
Drozdowska 

 

(Struthers 
et al. 2009) 

pCOG022 E. coli expression vector 
encoding two IgG-binding 
domains of S. aureus PrA 

 (Carpp et 
al. 2006) 

 

2.1.4 Yeast Strains  

Table 2-2: Yeast strains used in this study  

Yeast Strains Genotype  

 
9DαΔ45 (LCY008) 

MATα, ura3-52 leu2-3 112 his4-
519, ade6, gal2, pep4-3, 

vps45Δ::Kanr 

 
 

(Piper et al. 1994; 
Roccisana 2010) 
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2.1.5 Bacterial Strains  

Table 2-3: Bacterial strains used in this study 

Strain  Genotype Source  

BL-21 (DE3)  Fˉomp T hsdSB(rBˉmB ˉ) gal 
dcm (DE3)  

Invitrogen, Life 
Technologies 

DH5 alpha  F- Φ80lacZΔM15 Δ(lacZYA-
argF)U169 recA1 endA1 hsdR17(r

k
-, mk

+) phoA supE44 thi-
1gyrA96 relA1 λ- 

Invitrogen, Life 
Technologies  

Top 10  F-mcrA _(mrr-hsdRMS-mcrBC) 
φ80lacZ_M15 _lacX74  

nupG recA1 araD139 _(ara-
leu)7697 galE15 galK16  

rpsL(StrR) endA1 λ  

Invitrogen, Life 
Technologies 

ccdB Survival™ 
2T1R   

 

F-mcrA Δ(mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 

ΔlacX74 recA1 araΔ139 Δ(ara-
leu)7697galU galK rpsL 

(StrR) endA1 nupG fhuA::IS2 

Invitrogen, Life 
Technologies 

Stbl3 F-mcrB mrrhsdS20(rB
-, mB

-

) recA13 supE44 ara-
14 galK2 lacY1 proA2 rpsL20(StrR

) xyl-5 λ-leumtl-1 

Invitrogen, Life 
Technologies 

 

2.1.6 Mammalian Cell Lines 

Table 2-4: Mammalian cell lines used in this study  

Cell Line  Source  

3T3 L1  American Tissue Culture Collection (ATCC) 
HeLa  American Tissue Culture Collection (ATCC) 
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2.1.7 Antibodies  

Table 2-5: Antibodies used in this study 

Antigen   Working dilution Description  Supplier  

GLUT4 IB: 1:1000; 1% milk 
PBST 

rabbit polyclonal, affinity 
purifired antibody against 

C terminal 14 amino 
acids of GLUT4  

Synaptic 
Systems (235 

003) 

Synaptobrevin 
1 (VAMP1)  

IB: 1:10 000; 1% 
milk PBST 

rabbit polyclonal, 
antiserum 

Synaptic 
Systems (104 

002) 

Synaptobrevin 
2 (VAMP2) 

IB: 1:250/4μl/ml; 
1% milk PBST 

rabbit polyclonal, 
antiserum 

Synaptic 
Systems (104 

202) 

cellubrevin 
(VAMP3)  

IB: 1:1000/1μl/ml; 
1% milk PBST 

rabbit polyclonal affinity 
purified 

Synaptic 
Systems (104 

103) 

VAMP4 IB: 
1:8000/0.125μl/ml; 

1% milk PBST 

rabbit polyclonal, 
antiserum 

Synaptic 
Systems (136 

002) 

myobrevin 
(VAMP5) 

IB: 1:1000/1μl/ml; 
1% milk PBST 

rabbit polyclonal affinity 
purifired 

Synaptic 
Systems (176 

003) 

VAMP7 IB: 
1:5000/0.2μl/ml; 

1% milk PBST 

rabbit polyclonal affinity 
purifired 

Synaptic 
Systems (232 

003) 

endobrevin 
(VAMP8)  

IB: 
1:5000/0.2μl/ml; 

1% milk PBST 

rabbit polyclonal 
antiserum 

Synaptic 
Systems (104 

302) 

GAPDH  IB:  
1:80,000 

mouse monoclonal, 
(clone 6C5) against 

GAPDH, affinity 
purified  

Ambion (AM4 300) 

IRAP IB: 1:1000/1μl/ml; 
1% milk TBST 

mouse polyclonal, 
affinity purified 

Cell Signalling 
(3808) 
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IRAP  IB: 1:1000/1μl/ml; 

1% milk PBST 
rabbit polyclonal, 

antiserum  
Kind gift from 

Prof. Paul F Pilch 
(Boston 

University)   

Syntaxin 4 IB: 1:2500; 1% milk 
PBST 

rabbit polyclonal, 
antiserum raised 

against the cystolic 
domain of rat syntaxin 

4.  

Synaptic Systems 
(110 042) 

Syntaxin 16 IB: 1:1000; 1% milk 
PBST  

rabbit polyclonal, 
antiserum  

Synaptic Systems 
(110 162) 

Human 
transferin 
receptor 

IB: 1:1000/1μl/ml; 
1%milk in PBST  

mouse monoclonal, 
affinity purified 

Life Technologies 
(13-6800) 

HA 11 IF: 1:500/2μl/ml in 
PBS/Glycine/BSA 
IB: 1:100 1% milk   

mouse monoclonal 
(clone 16B12), affinity 

purified   

Covance Research 
Products (MMS 

101P)  

Calnexin  IB: 1:2000/0.5/ml; 
1%milk in PBST 

rabbit polyclonal, 
antiserum 

Sigma (C4731) 

VPS45 IB: 1:1000/1μl/ml; 
1%milk in PBST 

 

rabbit polyclonal, 
antiserum  

Synaptic Systems 
(137 002)  

 

Donkey anti 
rabbit  HRP 

linked 

1:3000, 1% milk 
PBST 

HRP conjugated 
secondary antibodies 

against rabbit IgG 
from donkey 

GE Healthcare 
(RPN1004)  

Sheep anti 
mouse HRP 

linked 

1:2000, 1% milk 
PBST 

HRP conjugated 
secondary antibodies 

against mouse IgG 
from sheep 

GE Healthcare 
(NA931) 

Donkey anti 
rabbit 800 

1:10 000 in LI-COR 
blocking buffer 1:1 

PBST 

 infrared dye-labeled 
secondary antibodies 

against rabbit IgG 
from donkey  

LICOR Biosciences 
(926-32213)   

Donkey anti 
mouse 680 

1:10 000 in LI-COR 
blocking buffer 1:1 

PBST 

infrared dye-labeled 
secondary antibodies 

against mouse IgG 
from donkey 

LICOR Biosciences 
(26-68072) 

 

Goat anti 
mouse 

AlexaFluor 
647 

IF: 1:200  AlexaFluor 647 
conjugated anti 

mouse IgG from goat  

Life Technologies 
(A-11001) 
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2.2 Molecular Biology Methods 

2.2.1 Plasmid DNA purification  

Cultures were inoculated from single colonies and grown overnight with shaking 

in 10 ml 2YT (1.6% (w/v) tryptone, 1.0% (w/v) yeast extract, 0.5% (w/v) NaCl) 

containing appropriate antibiotic (usually 100μg/ml ampicillin or 50μg/ml G418). 

Plasmid DNA was isolated using the Promega Wizard® Plus SV Mini Prep system 

according to the manufacturer’s instructions. Plasmid DNA was digested with 

restriction endonucleases where required and analysed using agarose gel 

electrophoresis.  

2.2.2 Agarose gel electrophoresis  

Agarose gels were made up of between 1% and 1.5% agarose (w/v) in TAE buffer 

(40mM Tris, 1mM EDTA) stained with 0.5μg/ml ethidium bromide. Gels were run 

in TAE buffer at a constant voltage of 70V. Samples were mixed with New 

England BioLabs 6x DNA loading buffer. 10μl of each sample was run alongside 

5μl of New England BioLabs Quick-Load 1Kb DNA Ladder. DNA fragments were 

extracted from agarose gels using the QIAquick gel extraction kit (Qiagen) 

according to the manufacturer’s instructions. 

2.2.3 Digestion using restriction endonucleases 

DNA was incubated with the appropriate restriction endonucleases according to 

manufacturers’ recommendations for between 1 and 4 hours in a final volume of 

20µl – 30µl. 1 unit of enzyme was used per µg of DNA, and unless otherwise 

stated 1µg DNA was digested. When plasmids required digesting at two sites two 

restriction enzymes were used. Under these conditions the buffer used was 

compatible with least stable restriction enzyme.  

2.2.4 Transformation of plasmid into bacterial cells 

Commercially available competent bacterial cells were thawed on ice. Once 

thawed, 50µl of competent bacterial cells was added to 2µl of mini-prep DNA 

and incubated on ice for 1 hour. Cells were heat shocked for 45 seconds at 42oC. 
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300µl SOC media was added and cells were incubated for 1 hour at 37oC. 100µl 

of this culture was then plated onto pre-warmed 2YT bacto-agar plates 

containing the appropriate antibiotic and incubated for 16 hours at 37oC. 

2.3 Protein Methods 

2.3.1 Purification of recombinant fusion proteins from E.coli  

Fusion proteins were expressed in E. coli BL-21 (DE-3) cells. 10 ml of 2YT 

containing the appropriate antibiotic (100μg/ml ampicillin or 50 μg/ml G418) 

was inoculated using a single colony of the appropriate transformant and 

incubated at 37°C for 16 hours with shaking (230 rpm).The 10ml culture was 

used to inoculate a 1L culture which was grown until OD600 =0.6. Protein 

expression was induced with 0.5mM IPTG for 16 hours at 22°C with shaking. Cells 

were harvested by centrifugation and resuspended in 200mls PBS containing 

protease inhibitors (1 tablet EDTA-Free Protease Cocktail Inhibitor/50 ml volume 

of PBS: 140 mM NaCl, 3 mM KCl, 1.5 mM KH2PO4, 8 mM Na2HPO4). 

Homogenisation was achieved by passing the suspension through a Microfluidizer 

M-110P cell disrupter set to 20,000 psi and treating cells with lysozyme (1 

mg/ml) on ice for 30 minutes. A cleared lysate was produced by centrifugation 

at 22,500 x g at 4oC for 30 minutes.  

2.3.2 GST tagged proteins 

For purification of GST tagged proteins, the cleared lysate was incubated with 

glutathione-Sepharose beads (GE Healthcare Bio-Sciences Ltd) with rotation at 

4oC overnight (approximately 1ml glutathione-Sepharose bead slurry (50% (v/v) 

bead bed volume) was used per 1L original culture). Prior to use, glutathione-

Sepharose beads were equilibrated by 6 washes with PBS. Immobilised proteins 

and beads were washed three times with ice cold PBS to remove non-specifically 

bound proteins. Samples of the unbound material and washes were collected and 

analysed by SDS-PAGE. Bound protein was then eluted with 1mM reduced 

glutathione solution in 50mM Tris base, pH8. Beads were incubated with elution 

buffer for 30 min and eluted protein was collected. This process was repeated 3 

times, a sample of each elute was collected and analysed by SDS-PAGE. Elutes 

were then pooled and dialysed overnight in Float-a-Lyzer columns with 20kDa 

pores against 4L PBS.  
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2.3.3 Protein A tagged proteins  

For purification of Protein A tagged proteins, the cleared lysate was incubated 

with IgG Sepharose™ 6 Fast Flow (GE Healthcare Bio-Sciences Ltd) with rotation 

at 4oC overnight (approximately 1ml IgG bead slurry (50% (v/v) bead bed volume) 

per 1L original culture). Prior to use IgG beads were equilibrated by 4 washes 

with TST (50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.05% (v/v) Tween-20), 

followed by 4 washes alternating between TST and 0.5M acetic acid pH.5. 

Immboilised proteins and beads were washed 5 times with TST and once with 

5mM ammonium acetate pH5. Protein was then eluted using 0.5 M acetic acid, 

pH 3.4. This process was repeated 3 times, a sample of each elute was collected 

and analysed by SDS-PAGE. Elutes were then pooled and protein was then 

dialysed overnight in Float-a-Lyzer columns with 5kDa pores against 4L of PBS.  

2.3.4 SDS-Polyacrylamide gel electrophoresis  

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) was used to resolve proteins. 

A 30% (w/v) acrylamide/bisacrylamide mix was used to make stacking and 

resolving gels. The stacking gel was made up of 5% acrylamide, 0.37M Tris HCl 

pH 6.8, 0.1% (w/v) SDS. The resolving gel was made up of between 7.5% and 15% 

acrylamide and 0.37M Tris HCl pH 8.8, 0.1% (w/v) SDS both stacking and 

resolving gels were was polymerised with 8mM ammonium persulfate (APS) and 

200nM tetramethylenediamine (TEMED). The gels were cast using BioRad mini-

Protean III apparatus. Samples were thawed on ice and combined with 2 x 

Laemmli sample buffer (LSB; 100mM Tris, HCl pH 6.8, 4% (w/v) SDS, 20% (v/v) 

glycerol, 0.2% (w/v) bromophenol blue, 10% (v/v) β-mercaptoethanol),  then 

heated at 95°C for 5 minutes, or 65°C for 10 minutes when using samples to blot 

for GLUT4. Samples were then cooled, subject to brief centrifugation to pellet 

condensation and loaded into gel wells. Samples were run alongside BioRad 

Precision Plus Protein Standards All Blue Markers. Gels were run in SDS-PAGE 

running buffer (25mM Tris, 190mM glycine, 0.1% (w/v) SDS) at 70V through both 

the stacking and resolving gels. 

2.3.5 Coomassie staining  

Proteins separated by SDS PAGE were visualised through Coomassie staining. 

Resolved gels were stained with Coomassie Brilliant Blue R-250 (0.25% (w/v), 45 
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% (v/v) methanol, 10% acetic acid (v/v)) for 1 hour and de-stained in Coomassie 

destain (15% methanol, 15% acetic acid) solution overnight, or until fully de-

stained.  

2.3.6 Immunoblotting  

For antibody staining, proteins were transferred to nitrocellulose membrane 

(BioTrace™, pore size 0.2µm). Protein samples were resolved by SDS-PAGE as 

described above. For semi-dry transfers, gels, membranes and filter papers were 

soaked in semi-dry transfer buffer (50 mM Tris base, 40 mM glycine, 0.1% (w/v) 

SDS, 10% (v/v) methanol).  The membrane and gel were sandwiched between 6 

sheets of 3mm filter paper on BioRad Trans-Blot® SD semi-dry electrophoretic 

transfer cell and air bubbles were gently removed. Transfer was completed by 

applying a constant current of 180mA for between 40 and 80 minutes depending 

on the number, thickness and percentage of gels being transferred.  

For wet transfers the membrane gel and filter papers were soaked in SDS-PAGE 

transfer buffer (25 mM Tris-HCl, 192 mM glycine, 20% (v/v) methanol). 

Membrane and gel were sandwiched between 6 sheets of filter paper and 2 

transfer sponges, soaked in transfer buffer then housed in BioRad mini Protean 

III trans-blot system transfer cassettes. The cassette was immersed in transfer 

buffer and transfer was achieved by applying a constant current of 200mA for 2 

hours.  

Wet transfer in alcohol free transfer buffer was performed as described above 

using an alcohol free transfer buffer (12.5mM Tris HCl pH 7.4, 200mM glycine). 

Following transfer, nitrocellulose membranes were stained with Ponceau S 

solution (0.1% (w/v) Ponceau S, 5% (v/v) acetic acid) to assess transfer 

efficiency. Membranes were blocked for 45 minutes in either 1%  or 5% (w/v) 

milk made up in either PBST (85 mM NaCl, 1.7 mM KCl , 5 mM Na2HPO4, 0.9 mM 

KH2PO4, 0.1% (v/v) Tween-20) or TBST (20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 

0.1% (v/v) Tween-20) depending on the antibody (see Table 2-5). Primary 

antibodies were diluted to desired concentrations in 1% or 5% milk PBST/TBST as 

required (see Table 2-5) and applied to membranes for 16 hours at 4°C with 

rotation. Membranes were then washed three times for 10 minutes in either 
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PBST or TBST. The secondary antibody was applied for one hour at room 

temperature with rotation. Membranes were washed a further three times, 

twice in PBST/TBST and once in PBS/TBS and blots were visualised using 

enhanced chemiluminescence (ECL) or infra-red imaging (LICOR). For ECL, the 

secondary antibodies were horseradish peroxidase (HRP) linked, (GE Healthcare 

Bio-Sciences Ltd) and for infrared imaging secondary antibodies were labelled 

with infrared dye (LI-COR Biosciences Ltd). To minimise bleaching of the image 

signal when using the LICOR system secondary antibodies and subsequent wash 

steps were all completed under dark conditions. 

For ECL detection, ECL was applied to the membranes for 10 seconds, the excess 

removed, and membranes were exposed to X-ray film in a light proof cassette, 

and developed in a Kodak x-omat 2000. For infrared imaging membranes were 

imaged using the Odyssey Infrared Imaging System (LI-COR Biosciences).  

2.3.7 Estimation of protein concentrations 

2.3.7.1 Tagged proteins 

Purified protein samples were thawed on ice. Once thawed samples were diluted 

in dH2O as necessary to bring them to a concentration between 0.1– 2mg/ml. 

Samples were  then diluted 1:2 in 2 x Laemmli Sample Buffer (LSB) and run on 

15% SDS-PAGE gels alongside BSA standards (0.1 µg, 0.2 µg, 0.4 µg, 1µg, 2µg). 

Gels were stained with Coomassie for 1 hour and destain (15% (v/v) methanol, 

15% (v/v) acetic acid) was applied for 16 hours with agitation at room 

temperature. Protein concentrations were estimated with the aid of 

densitometry using Image J software.  

2.3.7.2  Micro BCA  

Total protein content of 3T3 membrane fractions and lysates was determined in 

a 96 well plate using Pierce Micro BCA solutions. Increasing concentrations of 

BSA (0 to 12µg) were added into the first two rows of a 96 well plate and 1µl of 

sample was added into the remaining wells, dH2O was added to all rows to 

adjust the volume to 100µl. Finally 100µl microBCA solution was added (50% 

(v/v) of Solution A (Proprietary alkaline tartrate-carbonate solution), 48% (v/v) 

of Solution B (Proprietary bicinchonic acid solution) and 2% (v/v) of Solution C 
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(Proprietary copper sulphate solution)) to each well.  Samples were incubated at 

37°C for 30 minutes and absorbance at 570nm was measured using Flmorostar 

Optima plate reader (BMG LabTech, Aylesbury, UK). 

2.3.7.3 GST and Protein A pull-down assays with yeast lysate 

400ml cultures of yeast lacking endogenous Vps45p, but expressing mVps45 were 

grown to OD600 = 0.6. Cells were harvested by centrifugation and washed in 

1/50th the volume of binding buffer (40mM HEPES pH7.4 KOH, 150mM KCl, 1mM 

DTT, 1 mM EDTA 0.5% Triton X 100). Cells were then resuspended in 1/100th their 

original volume of binding buffer. Cells were homogenised by vortexing with 

glass beads (Sigma, 425-600µ). Cells were vortexed for 30 seconds and rested on 

ice for 60 seconds, this was repeated 4 times. A sample of lysate was retained 

for analysis. 5µg recombinant protein was immobilised to 20µl of appropriate 

beads (50% bead slurry in PBS). Prior to this beads were equilibrated as 

described in Sections 2.3.1-2.3.3. Recombinant protein was immobilised to 

beads for 2 hours at room temperature, unbound protein was removed, and 

beads were washed three times in PBS. 200µl yeast lysate was added and the 

solution was made up to 1ml with binding buffer. The lysate was incubated with 

the immobilised protein for 16 hours at 4oC with rotation. Unbound proteins 

were washed from the beads by four washes with PBS (for glutathione Sepharose 

beads) or TST (for IgG Sepharose 6 Fast Flow beads) and bound protein was 

eluted with 2xLSB. Samples were subjected to SDS-PAGE and immunoblot 

analysis. 

2.3.7.4 GST pull-down assays with recombinant protein 

0.1µg - 0.5µg recombinant GST-VAMP protein or GST alone was immobilised to 

20µl equilibrated glutathione-Sepharose beads (50% bead slurry) in a total 

volume of 100µl for 2 hours at 4oC. Beads were washed 3 times in PBS to remove 

any unbound protein. A sample of GST-VAMPs bound to beads was retained for 

analysis. Bound proteins were then incubated with a 10 fold excess of 

recombinant, thrombin cleaved syntaxin 16 or syntaxin 4 in binding buffer. 

Binding buffer was made up of PBS, 5mM β-mercaptoethanol, and supplemented 

with 100µg/ml BSA. GST-VAMPs and syntaxin were incubated for 0, 10, 30, 60, 

120 minutes or overnight in a total volume of 100µl, at 4oC. Following incubation 
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unbound protein was retained and bound protein washed 3 times. A variety of 

washing steps were employed to abolish non-specific binding, these included PBS 

alone, PBST, PBS supplemented with 100µg/ml BSA, PBS + 5% gelatin, and PBS + 

5% glycerol.  Bound proteins were eluted by addition of 20 µl 2xLSB. Samples 

were subjected to SDS-PAGE and immunoblotting for protein detection. 

2.3.7.5 SNARE complex assembly assay (CAA) 

Equimolar (approximately 4µM) amounts of GST tagged VAMP protein (or GST 

alone), His tagged SNAP23 and thrombin cleaved syntaxin 4 or 16 were combined 

in a volume of 500µl PBS supplemented with 100µg/ml BSA and incubated for 2 

hours at 4oC with rotation. Reactions were stopped by the addition of the 

appropriate volume of 5xLSB and immediately heated to 95oC for 5 minutes. For 

measurement of SNARE complex assembly at 0 minutes the tSNARE complex was 

combined with the appropriate volume of 5xLSB and heated to 95ºC prior to the 

addition of the vSNARE, the entire mixture was then heated to 95ºC for 5 

minutes.  Samples were subjected to SDS-PAGE and immunoblot analysis on the 

same day as the experiment.  

2.4 Cell Culture Methods 

2.4.1 Yeast cell culture  

Yeast were grown in selective defined (SD) medium (0.67% (w/v) yeast nitrogen 

base without amino acids, 2% (w/v) glucose) supplemented with the appropriate 

amino acids (Sherman 1991). 

2.4.2 Mammalian cell culture  

2.4.2.1 Growth of 3T3 L1 adipocytes  

3T3 L1 murine adipocytes were purchased from ATCC (USA), cells expressing HA-

GLUT4-GFP were previously made within the lab. Cells were cultured in DMEM 

(Dulbecco’s Modified Eagle’s Medium), 10% (v/v) Newborn Calf Serum (NCS), 1% 

(v/v) Penicillin (10,000 U)/Streptomycin (10,000 U) (P/S). Cells were incubated 

at 37°C in a humid atmosphere of 10% CO2.  Media was changed every other day 

until cells were ready for splitting or differentiation. 
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2.4.2.2 Passage of 3T3 L1 adipocytes 

Cells were split at 70% Confluence, and were not used past passage 12. Media 

was aspirated and cells washed in 5ml pre-warmed, sterile PBS, 5ml 0.05% 

trypsin (Invitrogen) was added. Cells were incubated at 37°C for 5 minutes or 

until the cells had detached from the bottom of the flask. The desired volume of 

growth medium was added and the cell suspension was mixed. 10ml of the cell 

suspension was added to each 10cm plate, 15ml to each 75cm2 flask, 1ml to 

each well of a 12 well plate, 500 µl to each well of a 24 well plate. Media was 

changed every other day until differentiation was initiated.  

For seeding onto glass coverslips, coverslips were sterilised by dipping 3 times in 

ethanol, placed onto the side of a well and left to air dry in a cell culture hood 

for 1 hour, then exposed to UV light for 2 hours. Before seeding cells onto 

coverslips, the coverslips were washed twice in growth media to remove any 

residual ethanol. Between 0.5ml and 2ml of cell suspension was added to each 

well. Cells were cultured as described.  

2.4.2.3 Differentiation of 3T3 L1 adipocytes 

Differentiation was initiated 2 days post confluence, differentiation media was 

made up of DMEM supplemented with 10% (v/v) FCS (Fetal Calf Serum),1% (v/v) 

Penicillin/Streptomycin (P/S), 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 1 μM 

insulin, 0.25 μM dexamethasone, and 1nM troglitazone. 3 days after 

differentiation media was changed for DMEM supplemented with 10% (v/v) FCS, 

1% (v/v) P/S, 1 µg/ml insulin and 1nM troglitazone which was left on cells for a 

further 3 days. On day 6 post differentiation media was replaced with DMEM 

supplemented with 10% (v/v) FCS, 1% (v/v) P/S, this process was repeated every 

other day until day 8-12 post differentiation.  

2.4.2.4 Freezing of 3T3 L1 adipocytes  

Cells were frozen down at 70% confluence in freeze down media (Foetal Calf 

Serum US supplemented with 10% (v/v) DMSO) and stored in liquid nitrogen until 

use.  Cells were trypsinised as for passaging, 12ml growth media was added and 

cells were pelleted by centrifugation at 500 x g for 5 minutes. The resulting 

pellet was re-suspended in freeze down media (1ml per flask).  Cells were 
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transferred to 1.8ml cyro-vials on ice, and stored in Nalgene “Mr Frosty” 

containing isopropanol for 16 hours at -80oC. They were then transferred to 

liquid nitrogen for long term storage.  

2.4.2.5 Resurrection of cells  

Cells were removed from liquid nitrogen and thawed in a water bath at 37oC. 

Cells were added to 15ml pre-warmed growth media in a 75cm2 flask, 24 hours 

later growth media was replaced to remove DMSO. 

2.4.2.6 Growth of HeLa cells  

Human cervical carcinoma HeLa cells were purchased from ATCC (USA), HeLa 

cells expressing HA-GLUT4-GFP have been previously generated within the lab.  

Cells were cultured in DMEM (Dulbecco’s Modified Eagle’s Medium), 10% (v/v) 

Foetal Calf Serum (FCS), 1% Glutamine (v/v) 1% (v/v) Penicillin (10,000 

U)/Streptomycin (10,000 U) (P/S). Cells we incubated at 37°C in a humid 

atmosphere of 5% CO2.  Media was changed every other day until cells were 

ready for splitting or use.  

2.4.2.7 Passage of HeLa cells  

Cells were split when at 70% Confluence. Media was aspirated and cells washed 

in 5ml pre-warmed, sterile PBS, then 5ml 0.05% (w/v) trypsin (Invitrogen) was 

added. Cells were incubated at 37°C for 5 minutes or until the cells had 

detached from the bottom of the flask. The desired volume of growth medium 

was added and the cell suspension was mixed. 10ml of the cell suspension was 

added to each 10cm plate, 15ml to each 75cm2 flask, 2ml to each well of a 6 

well plate, 1ml to each well of a 12 well plate, 500 µl to each well of a 24 well 

plate.  Media was changed every other day until cells were ready for use. HeLa 

cells were passaged onto glass coverslips as described for 3T3 L1 adipocytes as 

described in section 2.4.2.1.  

2.4.2.8 Transfection of HeLa cells with plasmid DNA 

HeLa cells were cultured on glass coverslips as described (section 2.4.2.2). Cells 

were transfected with plasmid DNA using Lipofectamine™ 2000 according to 

manufacturer's instructions. Briefly, for one well of a 24 well plate, 0.8µg DNA 
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was combined with 50µl of Opti-MEM® reduced serum medium. 2 µl 

LipofectamineTM 2000 was diluted in 50µl Opti-MEM® and mixed. These solutions 

were incubated separately for 5 minutes at room temperature. The diluted DNA 

and Lipofectamine™ 2000 were then combined and incubated for 20 minutes at 

room temperature. The desired volume of antibiotic free HeLa growth media 

was added to give the desired concentration of DNA (0. 8µg per well) and 125µl 

was added to each well of a 24 well plate. Cells were processed 24-72 hours 

later.  

2.5 Production of HeLa cell lysates  

HeLa cells were washed 3 times in ice cold PBS and scraped in 100µl RIPA buffer 

(50mM Tris, HCl pH8, 150mM NaCl, 2mM MgCl2, 1% Triton, 0.5% sodium 

deoxycholate (w/v), 0.1% (w/v) SDS, 1mM DTT, 50 units/ml Benzonase) 

containing EDTA free protease inhibitor cocktail (Roche). Samples were 

homogenised by passage through a 26 ⅝ gauge needle 10 times. Samples were 

rested on ice for 20 minutes and then this process was repeated. Homogenates 

were centrifuged at 12470 x g for 20 minutes at 4ᴼC to pellet any insoluble 

material. Lysates were stored at -20ᴼC until use. 

2.6 Protein depletion in cell culture  

2.6.1 siRNA treatment of HeLa cells  

HeLa cells expressing HA-GLUT4-GFP have been previously made in the lab using 

a HA-GLUT4-GFP construct provided by Cynthia Mastick (University of Nevada). 

Cells were grown in 6 well plates with two wells containing 13mm sterile glass 

coverslips as described above. HeLa cells were transfected with SMARTpool 

siRNA against VAMP2, 3, or 8 (GE Healthcare Ltd) at 70% confluence. All 

treatments were carried out under conditions to minimize potential contact with 

nucleases and in a fume hood. siRNA was diluted to 200nM with Opti-MEM® in a 

volume of 100µl, 2µl DharmaFECT 4 was diluted in 100µl Opti-MEM® and left to 

equilibrate at room temperature for 5 minutes. The two diluted mixtures were 

then combined and incubated for 20 minutes at room temperature to allow the 

formation of siRNA-transfection reagent complexes.  The solution was made up 

to the desired volume in antibiotic free HeLa growth media and 0.5ml was added 
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to each well of a 6 well plate. 48 hours later 0.5ml fresh HeLa growth media was 

added to the cells. Cells were used 68 hours post transfection with siRNA.  

2.6.2 Generation of inducible shRNA vector for use in 3T3 L1 
adipocytes  

2.6.2.1 shRNA Production 

shRNA hairpins were designed using RNAi Codex (http://cancan.cshl.edu/cgi-

bin/Codex/Codex.cgi), the first 18 nucleotides were deleted from the 5’ end 

and the first 16 nucleotides were deleted from the 3’end of the 22mer. The 

sequence AGCG was added to the 5’ end of the sense strand and ACGG was 

added to the 5’ end of the antisense strand. Oligonucleotides were purchased 

from Sigma-Aldrich. Oligonucleotides were diluted to 50µM in TE buffer (1 M Tris 

pH 8.0, 100 mM EDTA) and stored at -20oC until use. To anneal oligonucleotides, 

10µl of the sense and antisense strands were mixed with 0.2µl 5M NaCl in 

thinwall PCR tubes. The mixture was heated to 95oC for 5 minutes, transferred 

to a water bath at 70oC for 10 minutes, the water bath was turned off and 

oligonucleotides were left to anneal in the water bath overnight.   

2.6.2.2 Shuttling oligonucleotides into pEN vector  

The pEN_TmiRc2 and pEN_TGmiRc2 vectors were provided by Dr Robert Semple 

(University of Cambridge). The pEN vector was digested with BfUA1 (New 

England Biolabs) to remove the toxic ccdB gene. The linearised pEN vector was 

gel purified using the QIAquick gel extraction kit (Qiagen) according to the 

manufacturer’s instructions. Ligation of the annealed oligonucleotides with the 

pEN vector was completed using TakaRa rapid Ligation kit. The resulting pEN 

vector was transformed into commercially available DH5alpha / HB101 cells (Life 

Technologies). Diagnostic digests of the resultant colonies with BsRG1 (New 

England Biolabs) were carried out to ensure the shRNA oligonucleotide had been 

inserted into the pEN vector.  

2.6.2.3 Shuttling pEN vector into pSLIK Vector 

The pEN vectors were shuttled into pSLIK-Neo destination vectors using Gateway 

Clonase II (Life Technologies) according to manufacturer's instructions, 100ng of 

pEN was combined with 150ng of pSLIK destination vector in a volume of 8µl, 2µl 

http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi
http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi


Chapter 2   74 
 

clonase was added and reaction was incubated at 25ºC for 1 hour. 2µg of 

proteinase K was added and mixture was incubated at 37ºC for 10 minutes. 2µl 

of the mixture was used to transform Sltb3™ cells. 

2.7 Subcellular Fractionation Methods  

2.7.1 Preparation of total membrane fractions 

Adipocytes were used between 8 and 12 days post differentiation, growth media 

was aspirated off and cells were washed three times in 5mls ice cold 

HEPES/EDTA/Sucrose (HES) Buffer (250 mM Sucrose, 20 mM HEPES pH 7.4, 1 mM 

EDTA, supplemented with EDTA-Free Protease Cocktail Inhibitor tablets, 1 tablet 

per 50ml HES). Cells were then scraped in ice-cold HES and homogenised by 

passing through a 24 gauge needle 10 times and subsequently twice through a 26 

⅝ gauge needle. Homogenates were stored at -20ºC until use.  

Homogenates were centrifuged at 500 x g for 10 minutes at 4°C to pellet nuclei 

and insoluble material. Supernatants were transferred into fresh TLA110 

ultracentrifuge tubes (Beckman Coulter) and centrifuged at 95, 000 x g for 1 

hour to pellet all membranes. The pellet, which is the membrane fraction, was 

resuspended in 100 µl HES buffer per 10cm plate (approximately 106 cells). 

Samples were stored at -20oC until use. Protein content of membrane fractions 

was determined by micro BCA as described in section 2.3.7.2.  

2.7.2 Preparation of subcellular fractions  

Subcellular fractions of 3T3 L1 adipocytes were obtained as described (Piper et 

al. 1991). 3T3 L1 adipocytes were used between day 8 and 10 post 

differentiation. Twelve 10cm plates were used for each subcellular 

fractionation, cells were serum starved for 2 hours and half the plates were 

treated with 1μM insulin for the last 30 minutes. Cells were washed, scraped and 

homogenised as described in section 2.7.1. Homogenates were centrifuged at 

10,000 x g for 20 minutes at 4oC to pellet the nuclei, mitochondria and the 

plasma membrane (PM).  The pellet was resuspended in 1ml HES buffer, layered 

on to a high sucrose HES cushion (1.12M sucrose in HES buffer) and centrifuged 

at 41,000 x g in swing out rota (TLS55, Beckman Coulter) for 60 minutes at 4oC. 

The layer containing the plasma membrane fraction was collected, resuspended 
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in 5ml HES and centrifuged at 140,000 x g in for 60 minutes to pellet the PM 

fraction which was resuspended in 150μl of 1 x LSB. The supernatant from the 

original spin was centrifuged at 12,500 x g for 20 minutes at 4oC to pellet the 

high density membrane fraction (HDM), which was resuspended in 150μl of 1 x 

LSB. The supernatant of the 12,500 x g spin was centrifuged at 140,000 x g for 60 

minutes to pellet the light density membrane fraction (LDM), which was 

resuspended in 150μl 1 x LSB. The soluble protein was recovered from the 

supernatant by TCA precipitation and was resuspended in 150μl 1 x LSB. 

Fractions were stored at – 20oC until use.  A schematic representation of the 

subcellular fractionation procedure is displayed in Figure 2-1.  

2.7.3 Preparation of iodixanol gradients  

In order to further separate out the LDM fraction Iodixanol gradient experiments 

were carried out (Hashiramoto & James 2000; Perera et al. 2003). LDM fractions 

were produced as described in section 2.7.2, diluted in HES buffer, mixed with 

60% (v/v) Iodixanol to a final concentration of 14% (v/v) and heat-sealed into 

Beckmann Quick Seal polyallomer tubes. Tubes were inverted three times to 

mix, and secured into a pre-chilled Beckmann TLN 100 Rotor and centrifuged at 

295,000 x g for 1 hr at 4°C. Fractions were collected by first piercing the top 

then piercing the bottom of the tubes to dislodge the air lock in the sealed 

tubes. 300μl fractions were dripped out of the bottom of the tubes, collected 

and mixed with 4 x LSB. Samples were analysed by immunoblotting.  
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Figure 2-1: Flow chart displaying the subcellular fractionation procedure of 3T3 L1 
adipocytes.  
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2.8 Immunoprecipitation from 3T3 L1 adipocytes  

3T3 L1 adipocytes were grown and differentiated as described, they were used 

between day 8 and 12 post differentiation. On day of use cells were serum 

starved for 2 hours, and treated with 1mM NEM or 1mM NEM + 1µM insulin for the 

last 30 minutes. Cells were washed 3 times in ice cold PBS and scraped in 

immunoprecipitation (IP) buffer (50 mM HEPES pH 7.5, 5 mM EDTA, 10 mM 

sodium pyrophosphate, 10 mM NaF, 150 mM NaCl, 2 mM β-Glycerophosphate, 1 

mM DTT and EDTA-protease inhibitor cocktail tablet) supplemented with 1% 

(v/v) Triton X-100. Lysates were homogenised by passage through a 26 ⅝ gauge 

needle 12 times and then incubated on ice for 30 minutes.  

Homogenates were centrifuged at 12,470 x g for 20 min at 4°C to pellet 

insoluble material; supernatants were decanted into fresh tubes and used for 

immunoprecipitation. Lysates were pre cleared by incubation with 40µl protein A 

beads (50% slurry) for 1 hour at 4ºC. Protein A beads were equilibrated by 4 

washes with IP buffer prior to use.  

1.5mg of lysate was combined with 5µl (approximately 50µg) antibody (syntaxin 

16 antibody, syntaxin 4 antibody or random rabbit IgG) in a volume of 500µl for 2 

hours on ice. Samples were briefly vortexed every 30 minutes to ensure the 

antibody and lysates were adequately mixed. 20 μl of Protein A beads (50% 

slurry) were then added to the lysate and antibody and incubated for 2 hours at 

4°C. Samples were then centrifuged at 12,470 x g for 1 minute at 4°C, the 

supernatant (unbound material) were transferred to fresh tubes and retained for 

analysis. The pellet washed 3 times in 1ml IP buffer supplemented with 1% (v/v) 

Triton X-100, then once in IP buffer containing 0.1% (v/v) Triton. The final pellet 

was resuspended in 20µl 2XLSB, boiled at 95°C for 5 min and then stored at -

20°C. Samples were subjected to SDS-PAGE and immunoblotting for protein 

detection. 

2.9 Indirect immunofluoresence  

3T3 L1 adipocytes or HeLa cells were seeded onto sterilised 13mm glass 

coverslips in 24-well plates as described. 3T3 L1 Cells were used between day 8 
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and 12 post differentiation, HeLa cells were used once confluent. Cells were 

washed in DMEM and serum starved for 2 hours before being treated with or 

without 1μM insulin for 20 minutes. Cells were washed 3 times in 1ml ice cold 

PBS and fixed in 200μl 3% (w/v) paraformaldahyde (PFA) for 20 minutes. Cells 

were washed three times in PBS supplemented with 20mM glycine to quench the 

PFA and blocked for 20minutes in PBS supplemented with glycine, 1mg/ml BSA 

and 5% (v/v) goat serum (Sigma) (PBS/glycine/BSA + goat serum). Primary 

antibody was then applied for 45 minutes, antibodies were diluted to the 

appropriate concentrations in PBS/glycine/BSA (Table 2-5). Cells were washed 

four times in PBS/glycine/BSA and Alexa-Fluor conjugated secondary antibody 

was applied for 30 minutes. Cells were washed a further four times with the 

final wash in PBS. For nuclear staining the third wash contained DAPI stain (4',6-

diamidino-2-phenylindole, v/v 1:10 000). Coverslips were mounted onto glass 

slides face down using ImmunoMount and left overnight in the dark to dry. 

Coverslips were imaged using the 63 x oil-immersion objective lens fitted to a 

Zeiss LSM Pascal Exciter confocal microscope, images were captured and 

processed using Zeiss LSM software



 
 

 

Chapter 3  - Interactions between the tSNARE 
complex syntaxin 4/SNAP23 and VAMP 
proteins. 
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3.1 Introduction 

3.1.1 SNARE complex involvement in GLUT4 fusion with the 
plasma membrane  

The insertion of GLUT4 into the plasma membrane requires vesicles carrying 

GLUT4 to fuse with the plasma membrane. This is an example of a membrane 

fusion event and as such is reliant on SNARE complexes. The tSNAREs required 

for this process have been identified as syntaxin 4 and SNAP23. It has been 

shown that prevening syntaxin 4 or SNAP23 function or depleting syntaxin 4 or 

SNAP23 inhibits insulin-stimulated GLUT4 insertion to the plasma membrane 

(Olson et al. 1997; Rea et al. 1998; Foster et al. 1999; Kawaguchi et al. 2010).  

However, the vSNARE requirements for GLUT4 vesicle fusion with the plasma 

membrane are less clear. Many studies have identified VAMP2 as playing an 

important role in the fusion of insulin-sensitive GSVs with the plasma membrane. 

This research has primarily utilised loss of function models. VAMP2 function has 

been impaired through the introduction of toxins to cleave VAMPs 2 and 3, 

competitive inhibition (injection of VAMP2 peptides and cytoplasmic domain of 

VAMP2) or through RNAi interference (Cheatham et al. 1996; Martin et al. 1998; 

Williams & Pessin 2008; Kawaguchi et al. 2010). All of these studies support a 

role for VAMP2 in insulin-stimulated GLUT4 translocation.  However, some 

studies have noted that removal of VAMP2 and 3 does not completely inhibit the 

fusion of GLUT4 containing vesicles with the plasma membrane (Hajduch et al. 

1997; Zhao et al. 2009). Hajduch et al. (1997) found that cleavage of VAMPs 2 

and 3 with Tetanus neurotoxin (TeNT) did not impair insulin-stimulated glucose 

uptake or mobilisation of GLUT4 from intracellular deposits to the plasma 

membrane (Hajduch et al. 1997). Zhao et al. (2009) found that insulin-

stimulated GLUT4 translocation and glucose uptake were only impaired when 

VAMPs 2, 3 and 8 were simultaneously depleted. In this study glucose uptake was 

not impaired in adipocytes derived from embryonic fibroblasts from VAMP2 

knockout mice, or in 3T3 L1 adipocytes treated with TeNT, which cleaves both 

VAMP2 and VAMP3. GLUT4 translocation was only impaired when TeNT treatment 

was applied to adipocytes lacking VAMP8. These data suggest that there is some 

degree of plasticity or redundancy in the vSNARE requirements for GSV fusion 

with the plasma membrane. Discrepancy in these results could be due to a 
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number of factors. This includes incomplete and differing effects of siRNA, and 

the length of time cells were treated with TeNT. Variations in methodology and 

treatment, as well as differences in the cell type studied may lead to 

differences in the conclusions drawn on compensatory mechanisms and 

pathways.   

Other factors, as well as insulin, stimulate the translocation of GLUT4 to the cell 

surface. Two of these stimuli are osmotic shock and GTPγS (Chen et al. 1997; 

Millar et al. 1999; Williams & Pessin 2008). While these stimuli result in insulin 

like recruitment of GLUT4 to the plasma membrane, they seem to recruit GLUT4 

from a different pool (or different pools) than insulin. GLUT4 translocation in 

response to both osmotic shock and GTPγS is independent of VAMP2. GLUT4 

translocation in response to osmotic shock is dependent on VAMP7 and 

translocation in response to GTPγS is dependent on VAMP3 (Millar et al. 1999; 

Williams & Pessin 2008). Both VAMP3 and VAMP7 have been implicated in the 

recycling of cargo through the endosomal system (Galli et al. 1994; Galli et al. 

1998). In order to examine the role of the endosomal system in GLUT4 

translocation in response to different stimuli Millar et al. (1999) abolished the 

endosomal pool by incubating cells with HRP conjugated transferrin. They then 

ablated any pools that contained HRP by treating cells with diaminobenzidine 

(DAB) and hydrogen peroxide. They found that ablation of the endosomal system 

inhibited insulin-stimulated GLUT4 translocation by 30%. In contrast, endosomal 

ablation reduced GTPγS-stimulated GLUT4 translocation by 80% (Millar et al. 

1999). The contribution the endosomal pool plays to osmotic shock induced 

GLUT4 translocation has not been directly tested. However, osmotic shock 

induced translocation of GLUT4 is depend on VAMP7, an endosomal vSNARE (Galli 

et al. 1998; Williams & Pessin 2008). Thus, GTPγS and osmotic shock seem to 

simulate GLUT4 translocation from the endosomal pool of GLUT4 not from the 

insulin-sensitive pool.  

However, although the recruitment of GLUT4 in response to osmotic shock, 

GTPγS and insulin require different vSNAREs, they may all use the same tSNARE. 

It has been demonstrated that both insulin-stimulated and osmotic shock 

stimulated insertion of GLUT4 into the plasma membrane is inhibited by the 

expression of the cytoplasmic portion of syntaxin 4 (Chen et al. 1997).  
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This research reveals that there are a number of pools from which GLUT4 can be 

mobilised to the plasma membrane in response to different stimuli. This 

highlights a possible mechanism behind the plasticity between VAMP2, 3 and 8 in 

GLUT4 insertion into the plasma membrane. It could be that VAMP2, 3 and 8 are 

present on different pools of GLUT4 and that the degree of mobilisation from 

each pool is altered by depletion of certain VAMP isoforms. Alternatively, these 

vSNAREs could all be present on insulin-sensitive GLUT4, and in the absence of 

certain VAMPs others compensate in fusion activity. The localisation of each 

VAMP with insulin-sensitive GLUT4 is examined in Chapter 4. However, 

irrespective of whether VAMP 2, 3 and 8 are present on different pools of GLUT4 

or the same pool of GLUT4, for them to act in the fusion of GLUT4 containing 

vesicles with the plasma membrane they must be able to form fusiogenic SNARE 

complexes with tSNAREs. The three vSNAREs may act in the fusion of GLUT4 

containing vesicles with the plasma membrane through the same pathway, with 

the tSNARE SNAP23/syntaxin 4. Alternatively, each VAMP could traffic GLUT4 to 

the plasma membrane though interactions with different tSNARE complexes. If 

VAMP2, 3 and 8 traffic GLUT4 to the plasma membrane through the same 

pathway, then they should all form complexes with syntaxin 4 and SNAP23.  

3.1.2 Interactions between syntaxin 4/SNAP23 and VAMPs 

Syntaxin 4 has been shown to interact with VAMP2 in vivo (Cheatham et al. 1996; 

Kawanishi et al. 2000). However, this interaction only occurs in the presence of 

SNAP23 (Kawanishi et al. 2000). Kawanishi et al. (2000) studied protein-protein 

interactions by co-immunoprecipitation following expression of recombinant 

syntaxin 4, myc-VAMP2 and HA-SNAP23. Interactions between syntaxin 4 and 

VAMP2 were only seen in the presence of HA-SNAP23. Conversely, in vitro 

experiments show that recombinant VAMP2 can directly interact with 

recombinant syntaxin 4 but not recombinant SNAP23 (Kioumourtzoglou et al. 

2014). This suggests that in vivo, there is inhibition of binary interactions 

between syntaxin 4 and VAMP2. It also highlights the importance of studying 

interactions between proteins both in vitro and in vivo. Interactions between 

VAMP proteins and the tSNAREs syntaxin 4 or SNAP23 have not been 

systematically examined either in vivo or in vitro. However, since the existence 

of any SNARE protein interactions is governed by the specificity of SNARE 

complex formation, research examining SNARE complex specificity can provide 
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insights into possible v and tSNARE interactions. Specificity in SNARE complex 

formation is discussed below.  

The human genome codes for more than 35 different SNARE proteins. These are 

present in different cellular compartments and participate in different 

membrane fusion events. For cells to function, the integrity of membrane 

trafficking events must be maintained. Therefore SNARE protein interactions 

must be specific. The original SNARE hypothesis proposed that SNARE proteins 

provided both the energy and the specificity for membrane fusion (McNew et al. 

2000). Apposing this theory is the finding that SNARE complexes formed with 

purified SNARE proteins in vitro are promiscuous and rather non-specific 

(Fasshauer et al. 1999; Yang et al. 1999; Scales et al. 2000). SDS resistant SNARE 

complexes can form between the tSNARE complex made up of syntaxin 1/SNAP25 

and VAMPs 2, 4, 7 or 8. They can also form between tSNARE complexes made up 

of either syntaxin 2, 3 or 4, and SNAP25 and the vSNARE VAMP2 (Fasshauer et al. 

1999; Scales et al. 2000). 

Despite the promiscuity of SNARE complex formation in vitro, Scales et al. 

(2000) found that SNARE proteins participate selectively in fusion events in vivo. 

They demonstrated that the cytoplasmic domains of syntaxin 4 and 1, and VAMPs 

2 and 4, but not those of other SNAREs, inhibited the fusion of norepinephrine-

containing vesicles with the plasma membrane in PC12 cells. This inhibition was 

greater for the cognate SNAREs (syntaxin 1 and VAMP2) than for the non-cognate 

SNAREs (syntaxin 4 and VAMP4) (Scales et al. 2000). Similarly, Brandhorst et al. 

(2006) examined the effect of soluble SNAREs on homotypic endosome fusion. 

They found that only early endosomal SNAREs, not the neuronal or late 

endosomal SNAREs inhibited fusion. This is despite both sets of SNARE proteins 

being present on early endosomes (Brandhorst et al. 2006). However, in the 

same study, in a cell free system with proteoliposomes reconstituted with 

recombinant SNARE proteins there was much more promiscuity in fusion. 

Liposomes containing early endosomal SNAREs fused with those containing 

VAMP2, 4 or 8 (Brandhorst et al. 2006).   Furthermore, fusion of liposomes 

containing early endosomal SNARES and VAMP4 could be inhibited by the 

addition of soluble portions of either VAMP2, 4 or 8.  Finally Hu et al. (2007) 

showed that cells containing VAMP3 on the external face of the plasma 

membrane, could fuse with cells containing tSNARE complexes made up of 
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syntaxin 1/SNAP25, syntaxin 1/SNAP23 or syntaxin 4/SNAP25, but not with cells 

containing syntaxin 4/SNAP23 on the outside of the plasma membrane (Hu et al. 

2007).  

These studies demonstrate that SNARE complex formation is promiscuous in 

vitro. Yet, the formation of SNARE complexes that function in membrane fusion 

events is more specific. This highlights the necessity of examining SNARE 

complex formation both in vitro and in vivo. This research also makes it evident 

that multiple pairing combinations between v and tSNAREs are not only possible, 

but these SNARE complex may be fusiogenic, and therefore able to mediate 

fusion events.  

The promiscuity of SNARE complex formation is of importance in light of the 

research discussed in section 3.1.1 regarding plasticity between multiple VAMP 

isoforms in GLUT4 translocation. It has been demonstrated that VAMPs 2, 3 and 8 

can function in the fusion of GLUT4 containing vesicles with the plasma 

membrane (Zhao et al. 2009). It is unclear whether these VAMPs utilize the same 

or different tSNARE complexes to fuse GLUT4 containing vesicles with the 

plasma membrane. The tSNARE complex that is responsible for the fusion of 

insulin-sensitive GLUT4 with the plasma membrane is made up of syntaxin 4 and 

SNAP23 (Foster et al. 1999; Chamberlain & Gould 2002; Kawaguchi et al. 2010). 

Which vSNAREs can  form complexes with this tSNARE both in vitro and in vivo 

has not been systematically examined and uncovering this information is an 

important step in understanding the mechanims by which VAMPs 2, 3 and 8 can 

compensate for one another in mediating membrane fusion events.  

3.2 Aims of Chapter  

This chapter aims to systematically examine the interactions that can and do 

occur between the tSNARE complex involved in the fusion of insulin sensitive 

GLUT4 vesicles with the plasma membrane and the VAMP proteins expressed in 

adipocytes. Here, interactions that can occur between each of the VAMP 

proteins and the tSNARE complex syntaxin 4/SNAP23 have been systematically 

examined in vitro through the formation of SDS-resistant SNARE complexes. 

Interactions that do occur and in vivo have been examined by co-

immunoprecipitation experiments.  
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3.3 Results  

3.3.1 Purification of recombinantly expressed tagged proteins  

N terminally GST tagged VAMP proteins and C terminally protein A tagged 

syntaxin 4 were purified and tags were cleaved as described (sections 2.3.2 and 

2.3.3). Purified recombinant protein was subjected to SDS-PAGE to confirm that 

the protein had been correctly synthesised and to determine concentration of 

the purified protein stocks (Figure 3-1, Figure 3-2). Figure 3-1 shows many of the 

purified VAMPs exhibited multiple bands; if these were found to be 

immunoreactive they were included in the concentration analysis (section 

2.3.7). Figure 3-2 shows the purification and thrombin cleavage of syntaxin 4. 

Purified C terminally His tagged SNAP23 was provided by Dr. D.Kioumourtzoglou.   
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Figure 3-1: Purification of VAMP proteins.  
GST tagged VAMPs were expressed in BL21 DE3 cells and purified as described (section 2.3.1 – 
2.3.3). 10 µl samples of each purified VAMP were analysed alongside known amounts of BSA on 
SDS-PAGE and stained with Coomassie Brilliant Blue. Shown are data from a typical experiment.  
molecular weights in kDa are shown.  

 

 

Figure 3-2: Purification and thrombin cleavage of protein A tagged syntaxin 4. 
Protein A tagged syntaxin 4 was expressed in BL21 DE3 cells and the protein was purified as 
described (section 2.3.1 – 2.3.3). The protein A tag was thrombin cleaved as described (section 
2.3.3). Shown is a representative experiment. Protein A tagged syntaxin 4 bound to IgG beads 
(Pre), thrombin cleaved syntaxin 4 (diluted 1:2 and 1:20) and any protein that remained bound to 
IgG beads post thrombin cleavage (Post) was analysed by SDS-PAGE and stained with 
Coomassie Brilliant Blue alongside known amounts of BSA. Shown are data from a typical 
experiment, molecular marker sizes are shown in kDa. Cleaved syntaxin 4 is ~30kDa, protein A 
tagged syntaxin 4 is ~40kDa. 

 



Chapter 3   87 
 

3.3.2 SNARE Complex Assembly Assay (CAA) 

Previous research has demonstrated that purified SNARE proteins can form 

stable SDS-resistant complexes alone in vitro (Fasshauer et al. 1999; Scales et al. 

2000). Providing that a Qa,b,c and R SNARE are present, a stable SDS resistant 

SNARE complex can be formed without the addition of any external factors; this 

is the SNARE complex assembly assay. The SNARE complex assembly assay allows 

the requirements for each of the individual SNARE proteins in the formation of 

SNARE complexes to be examined. GST-VAMP proteins were incubated with His-

SNAP23 and thrombin cleaved syntaxin 4 for two hours. The presence of a SNARE 

complex was determined through SDS-PAGE and immunoblotting. Figure 3-3 

demonstrates that each of the VAMP proteins, but not GST, were capable of 

forming SDS-resistant SNARE complexes with syntaxin 4 and SNAP23. This 

complex is seen between 100kDa and 150kDa, and again at >250kDa, and 

contains syntaxin 4 (Figure 3-3B), SNAP23 (Figure 3-3C) and the indicated VAMP 

protein (Figure 3-3D). It is likely that the larger complex is a dimer of the 

smaller complex as both the smaller and larger complexes contain syntaxin 4, 

and SNAP23.  Although the presence of the relevant VAMP in this larger complex 

is not detectable by immunoblotting (Figure 3-3C) its presence can be inferred 

by the molecular weight differences in the complexes. As previously 

demonstrated the formation of these complexes was not possible when any one 

of the SNARE domains (Qa, Qbc or R SNARE) were omitted from the assay (data 

not shown; Antonin et al. 2000).  

The results presented in Figure 3-3 provide clear evidence that each of the VAMP 

proteins is capable of forming complexes with the tSNARE made up of syntaxin 4 

and SNAP23. However, it provides no information on whether these complexes 

exist in the cell and therefore whether they are functional. To determine this, 

the co-immunoprecipitation of VAMP isoforms with syntaxin 4 was examined.  
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Figure 3-3 Redundancy in the vSNARE requirements for SNARE complex assembly with the 
tSNARE syntaxin4-SNAP23.   
Equimolar (approximately 4µM) amounts of His-SNAP23, syntaxin 4, and GST tagged VAMP (or 
GST alone) were combined. For time point 0 5xLSB  was immediately added to the mixture and 
heated to 95ºC. For time point 2 hours the mixture was incubated for 2 hours at 4ºC with rotation 
before 5xLSB was added and the samples were heated to 95ºC. Samples were subjected to SDS-
PAGE followed by staining with Coomassie Brilliant Blue (A) and immunoblotting with anti-SNAP23 
(B), anti-syntaxin 4 (C) and the appropriate vSNARE antibodies (D). Shown are data from a typical 
experiment repeated 3 times, molecular marker sizes are shown in kDa. Molecular weights of 
single recombinant proteins: His-SNAP23 ~ 25kDa, syntaxin 4 ~32kDa, GST ~ 25 kDa GST-
VAMP2 ~32kDa, GST-VAMP3 ~30kDa, VAMP4 runs as multiple bands between 25 and 37kDa, 
GST-VAMP5 runs as multiple bands between 25 and 30kDa, GST-VAMP7 ~ 45 kDa, GST-VAMP8 
~32 kDa. The SNARE complex runs > 110 kDa (*). 



 
 

3.3.3 Interactions between syntaxin 4 and VAMP proteins in 3T3 
L1 adipocytes  

In order to determine if the VAMP proteins are present in complexes with 

syntaxin 4 the cellular environment immunoprecipitation and co-

immunoprecipitation experiments were performed as described (section 2.8). As 

shown in Figure 3-4 the syntaxin 4 antibody but not the random rabbit IgG 

antiserum successfully immunoprecipitated syntaxin 4 from both basal and 

insulin–stimulated 3T3 L1 adipocyte lysates. As expected SNAP23 co-

immunoprecipitates with syntaxin 4, and there is no observable increase in this 

interaction in lysates from insulin-stimulated cells compared to basal lysates. No 

interactions between syntaxin 4 and VAMPs 3, 4, 7 or 8 were detectable under 

basal or insulin-stimulated conditions. The syntaxin 4 antibody did not appear to 

co-immunoprecipitate VAMP2 from basal lysates. However co-

immunoprecipitation was observed following insulin-stimulation (Figure 3-4). 

There was also substantial co-immunoprecipitation of VAMP5 with the anti-

syntaxin 4 antibody from both basal and insulin-stimulated lysates (Figure 3-4). 

These data indicate that in vivo, syntaxin 4 interacts with both SNAP23 and 

VAMP5 and that following insulin-stimulation, syntaxin 4 also interacts with 

VAMP2. No interactions between syntaxin 4 and the other VAMPs were observed 

under either basal or insulin-stimulated conditions.  
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Figure 3-4: Immunoprecipitation of syntaxin 4 and co-immunoprecipitation of VAMP 
proteins in 3T3 L1 adipocytes.  
Syntaxin 4 was immunoprecipitated from serum starved 3T3 L1 adipocytes treated with (insulin) or 
without (basal) 1µM insulin for 20 minutes as described (section 2.8). Proteins were 
immunoprecipitated from 1.5mg 3T3 L1 lysate (lysate) with 5µl anti-syntaxin 4 (Sx4) or random 
rabbit IgG (IgG).  Immunoprecipitated proteins and associated material was isolated by 
centrifugation and unbound material retained (U), bound material (B) was washed and eluted in 
2xLSB. Samples were subjected to SDS-PAGE and immunoblotting with anti-syntaxin 4 and anti-
VAMP antibodies. Samples from basal and insulin-stimulated cells were subjected to 
immunoblotting on the same membrane and the irrelevant lanes excised, the original image is 
shown in the appendix (Appendix; Figure 8-1). Shown are data from a typical experiment.  
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3.4 Discussion  

The results described in sections 3.3.1 – 3.3.3 demonstrate that in vitro all the 

VAMP proteins are capable of interacting with the tSNARE complex made up of 

syntaxin 4 and SNAP23. However in vivo only VAMP2 and 5 are found to interact 

with syntaxin 4. These novel findings shed light on the mechanisms of plasticity 

that have been observed between VAMPs 2, 3 and 8 in insulin-stimulated GLUT4 

translocation to the plasma membrane (Zhao et al. 2009). 

3.4.1 Methodological considerations  

These studies have examined interactions between VAMP proteins and the 

syntaxin 4/SNAP23 tSNARE complex in two ways. Firstly, through the SNARE 

complex assembly assay and secondly, through co-immunoprecipitation of these 

proteins with syntaxin 4. Both methods, although providing valuable information 

regarding protein-protein interactions, have their limitations. The SNARE 

complex assembly assay allows the formation of SNARE complexes to be studied 

in the most minimalistic way. Thus, it allows the requirement for each SNARE in 

the overall complex to be examined. However, this method does not allow the 

stoichiometry of the complexes formed to be examined. For example, although 

each complex clearly contains at least one of each of the SNARE proteins (Figure 

3-3), it may contain more than one of some proteins; the complex may be made 

up of, for example, one VAMP, one SNAP23 and three syntaxins, or three VAMPs, 

two SNAP23s and one syntaxin.  Furthermore, the SNARE complex assembly assay 

provides no measure of the ability of the formed SNARE complexes to act in 

membrane fusion. At the other end of the spectrum the co-immunoprecipitation 

of syntaxin 4 binding partners allows measurement of the interactions that take 

place in the cellular environment. However, it is entirely possible that 

interactions that are not detectable in the cellular environment are able to 

participate in membrane fusion. This is caveat is important in the context of 

examining plasticity when certain SNARE proteins are depleted or disrupted. 

Moreover, in co-immunoprecipitation experiments cells are lysed prior to 

detection of interactions, therefore the possibility that changes in interactions 

occur post-cell lysis cannot be excluded. Further, this technique relies on 

antibody detection of co-immunoprecipitated material. This means that 
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interactions might be missed and also means that no quantitative data obtained. 

Finally, interactions observed could be pairwise between the two proteins, or 

could require other proteins as well for example VAMP5 could interact with 

syntaxin 4, or be present in a complex with syntaxin 4 and SNAP23.   

3.4.2 Discussion of findings  

This is the first study to systematically examine the binding between the SNAREs 

syntaxin 4, SNAP23 and VAMP proteins in vitro, and to survey the interactions 

between the VAMP proteins and syntaxin 4 in vivo. The main findings are that all 

the VAMPs expressed in 3T3 L1 adipocytes are capable of forming SDS-resistant 

SNARE complexes with the tSNARE complex syntaxin 4/SNAP23 in vitro (Figure 3-

3).  However, this does not appear to translate to interactions with syntaxin 4 in 

the cellular environment, as only VAMPs 2 and 5 interact with syntaxin 4 in vivo 

(Figure 3-4). 

In agreement with the SNARE complex assembly findings, previous studies 

investigating the specificity in SNARE complex formation found high levels of 

binding promiscuity between recombinant SNARE proteins (Fasshauer et al. 1999; 

Scales et al. 2000). Yang et al. (1999) examined the interactions between three 

different tSNARE complexes and the VAMP proteins VAMP2, 4, 7 and 8. The 

tSNARE complexes examined in this study were syntaxin 1/SNAP25, syntaxin 

4/SNAP23 and syntaxin 13/SNAP29. They found that all 4 VAMP isoforms could 

form SDS-resistant SNARE complexes with syntaxin1/SNAP25 and syntaxin 

13/SNAP29. However, only VAMP4 and 8 formed SDS resistant complexes with 

syntaxin 4/SNAP23. Conversely, Fassauer et al. (1999) found that the tSNARE 

complex SNAP25/syntaxin 4 could form SDS-resistant complexes with VAMP2 but 

not VAMP8.  Here, it has been shown that all 6 VAMP isoforms can form SDS 

resistant SNARE complexes with syntaxin 4/SNAP23 (Figure 3-3). This adds to the 

existing literature regarding the promiscuity of SNARE complex formation. All 

the available data regarding the formation of SDS resistant SNARE complexes 

with different tSNAREs and VAMP protein is compiled in Table 3-1. Importantly, 

only a single set of experimental conditions have been examined here. Each 

VAMP may form complexes with the tSNARE at different rates, and there may be 

different affinities between the tSNARE complex and each VAMP. This may 
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provide a level of specificity or preference in interactions between t and 

vSNAREs. Further work will need to be carried out to explore this. 

Table 3-1: SNARE proteins that can form SDS-resistant SNARE complexes in vitro.  

 

vSNARE  tSNARE  Reference  

VAMP2  Syntaxin 1/SNAP25 
Syntaxin 13/SNAP29  
Syntaxin 4/SNAP23 

Yang et al. (1999) 
Fassauer et al. (1999); 
Figure 3-3 

VAMP3 Syntaxin 4/SNAP23 Figure 3-3 

VAMP4 Syntaxin 1/SNAP25 
Syntaxin 13/SNAP29 
Syntaxin 4/SNAP23 

Yang et al. (1999); 
Figure 3-3 

VAMP5 Syntaxin 4/SNAP23 Figure 3-3 

VAMP7  Syntaxin 1/SNAP25 
Syntaxin 13/SNAP29  
Syntaxin 4/SNAP23 

Yang et al. (1999) 
 
Figure 3-3 

VAMP8  Syntaxin 1/SNAP25 
Syntaxin 13/SNAP29 
Syntaxin 4/SNAP23 

Yang et al. (1999); 
Figure 3-3 

 

The research described above and in Table 3-1 demonstrates that there is a 

large degree of promiscuity in the formation of SNARE complexes in vitro. 

However, although the in vitro SNARE complex assembly assay constitutes the 

minimal machinery for SNARE complex formation and gives information on the 

ability of v and tSNAREs to interact, it only measures complex formation and 

gives no information on the functional relevance of these complexes. SNARE 

complexes formed using this method (Fasshauer et al. 1999; Yang et al. 1999; 

Scales et al. 2000;Figure 3-3,) may not function in membrane fusion events. 

Therefore it is important to establish the interactions that take place in the 

cellular environment.  

Many lines of evidence support the notion that although SNARE complex 

formation is promiscuous in vitro, not all SNARE complexes that are formed are 

functional. Brandhorst et al. (2006) found that whilst endosomes contain 

multiple sets of SNAREs, including the early and late endosomal SNAREs and 

exocytotic SNAREs, only soluble early endosomal SNAREs inhibit endosome fusion 

(Brandhorst et al. 2006). Similarly, Scales et al. (2000) examined SNARE complex 

specificity in vivo by examining the inhibition of fusion of noradrenaline 

containing vesicles with the plasma membrane of PC12 cells using soluble SNARE 

proteins. This fusion event requires the tSNARE syntaxin 1/SNAP25. They found 
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that even though VAMPs 2, 4, 7 and 8 form SDS-resistant SNARE complexes with 

syntaxin 1/SNAP25 (Yang et al. 1999), only VAMP2, and to a lesser extent VAMP4, 

inhibited the exocytosis of  noradrenaline from PC12 cells (Scales et al. 2000). 

This is suggestive of some cross talk between VAMP2 and 4 with but not the 

other VAMPs.  

Studies using yeast SNAREs reconstituted into liposomes have further 

demonstrated that although SNAREs may be able to form multiple complexes, 

that these may not all be fusiogenic. When pairs of yeast SNAREs are co-

expressed in bacterial cells they form complexes promiscuously (Tsui & Banfield 

2000). However, fusion of liposomes containing different combinations of many 

of the same tSNAREs and vSNAREs is much more specific (Parlati et al. 2002; 

Paumet et al. 2004).  

In summary, although a high level of promiscuity between SNARE partners is 

seen in vitro, much more specificity is seen the cellular environment. This study 

has demonstrated that this situation is evident for SNARE complexes containing 

syntaxin 4.  The findings of co-immunoprecipitation experiments conducted here 

illustrate that although interactions between the VAMP proteins and syntaxin 

4/SNAP23 in vitro are promiscuous, interactions between syntaxin 4 and VAMP 

proteins in the cellular environment are highly selective. In vivo, the only 

detectable interactions between syntaxin 4 and VAMP proteins were with VAMP2 

and VAMP5. The interaction between syntaxin 4 and VAMP2 has been observed 

previously (Cheatham et al. 1996). However, unlike Cheatham et al. (1996), here 

this interaction was not detectable in basal lysates; it only became apparent in 

insulin-stimulated lysates (Figure 3-4). This discrepancy is likely to be a function 

of the anti-VAMP2 antibody used in this study. A limitation with using co-

immunoprecipitation to characterise interactions is that it is entirely reliant on 

antibodies to detect the co-immunoprecipitated proteins. The anti-VAMP2 

antibody used here, although specific for VAMP2, produces a weak signal, 

therefore interactions in basal lysates may have been present but not 

detectable.  

Quite recently Zhao et al. (2009) found that VAMPs 2, 3 and 8, but not VAMPs 4, 

5 or 7, can act in the fusion of insulin-sensitive GLUT4 containing vesicles with 

the plasma membrane. The possible mechanisms underlying this plasticity are 
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discussed in more detail in Chapter 4. However, Figure 3-4 shows that in vivo 

VAMPs 3 and 8 do not interact with syntaxin 4, but VAMP2 does. It is possible 

that the lack of observable interactions between VAMP3 and syntaxin 4, is due to 

an inability of the antibodies used to detect the interaction as apposed to the 

interaction not being present. However, when the co-immunoprecipitation data 

is viewed in the context of previous research that has shown that membranes 

containing VAMP3 are not capable of fusing with those containing the tSNARE 

sytanxin4/SNAP23 in vitro. It seems that, in fact VAMP3 does not interact with 

syntaxin 4. The ability of VAMP8 to form fusiogenic SNARE complexes with 

syntaxin 4/SNAP23 has not yet been addressed. However, the VAMP8 antibody 

used in this study produces a strong signal and at the concentration used detects 

very low quantities of recombinant VAMP8 (0.1ng; data not shown).  Therefore it 

seems that the lack of observable interaction between VAMP8 and syntaxin 4 is 

due to there not being an interaction, not due to detection issues. In summary, 

the co-immunoprecipitation data provided here, alongside previous findings, 

demonstrate that under conditions where VAMP2 is present, VAMPs 3 and 8 do 

not interact with syntaxin 4. These VAMP isoforms therefore either do not play a 

role in the fusion of insulin-sensitive GLUT4 vesicles with the plasma membrane, 

or if they do play a role, they do so with a tSNARE complex that does not contain 

syntaxin 4. On balance, the former situation seems more likely as, to date, there 

is no evidence that any tSNAREs other than syntaxin 4 and SNAP23 are involved 

in the fusion of GLUT4 vesicles with the plasma membrane in response to insulin 

(Foster et al. 1999; Kawaguchi et al. 2010).  

Interestingly VAMP5, as well as VAMP2, was found to co-immunoprecipitate with 

syntaxin 4. Little is known regarding the role of VAMP5 in adipose cells. In 

muscle cells it is found predominantly in the sarcolemma (Zeng et al. 1998) and 

in cardiomyocytes it is required for the trafficking of insulin sensitive-GLUT4 to 

the plasma membrane in response to insulin (Schwenk et al. 2010). It is 

noteworthy that although VAMP5 interacts with syntaxin 4 in adipocytes (Figure 

3-4), it cannot compensate for the loss of VAMP2 (Zhao et al. 2009) in the same 

cell type. Potential reasons for this are discussed in Chapter 4. 

As anticipated syntaxin 4 interacts with SNAP23 in lysates from both basal and 

insulin-stimulated cells (Figure 3-4). Insulin-stimulation has no discernible effect 

on this interaction. This is in agreement with previous data collected using a 



Chapter 3   96 
 

different approach. Using an assay that measures the proximity of proteins in 

situ (Proximity Ligation Assay; PLA) it has been shown that insulin increases 

associations between SNAP23 and VAMP2, but not SNAP23 and syntaxin 4, or 

VAMP2 and syntaxin 4 (Kioumourtzoglou et al. 2014). These findings led to the 

proposal of a model whereby under basal conditions there are two pools of 

syntaxin 4. One of these pools of syntaxin 4 associates with SNAP23 and the 

other associates with VAMP2. Insulin-stimulation is proposed to induce a switch 

in these associations so that a SNARE complex is formed between syntaxin 

4/SNAP23 and VAMP2. It is important to note however that the PLA assay 

measures proximity not interaction. Figure 3-4 shows that under insulin-

stimulated but not basal conditions VAMP2 co-immunoprecipitates, and 

therefore interacts, with syntaxin 4. This suggests that either interactions 

between VAMP2 and syntaxin 4 increases upon insulin-stimulation, or that the 

strength of this interaction increases with insulin-stimulation, so that the 

interaction is not disrupted during cell lysis. Taking this data alongside the PLA 

data allows the generation of a model by which, under basal conditions, syntaxin 

4 and VAMP2 are either in close proximity but not in complex with one another, 

or in a weak complex that is disrupted by the cell lysis procedures. Insulin-

stimulation then either stimulates VAMP2 and syntaxin 4 to form a complex or 

results in an increase the strength of the interaction between these proteins so 

that it is now not disrupted by cell lysis and becomes detectable by co-

immunoprecipitation. 

The data presented here and by others provides clear evidence of promiscuity in 

SNARE complex formation in vitro (Figure 3-3; Fasshauer et al. 1999; Yang et al. 

1999; Scales et al. 2000). Yet, interactions seen in the cellular environment are 

much more tightly regulated (Figure 3-4). The assembly of non-fusogenic SNARE 

complexes in vivo must be avoided as these will result in dead-end fusion 

reactions. Since the specificity of SNARE complex formation is not encoded in 

the SNARE proteins themselves some extra layer of specificity must exist in vivo. 

This may be achieved by the spatial segregation of cognate and non-cognate 

SNARE proteins or through the actions of tethers.  

The spatial segregation of SNARE proteins to separate membrane compartments 

is discussed in Chapter 4.  SNARE proteins may also be segregated from one 

another on membranes; on isolated plasma membrane lawns tSNAREs are found 
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in discrete clusters, which provide platforms for membrane fusion events (Lang 

et al. 2001; Predescu et al. 2005). This clustering is cholesterol and SNARE motif 

dependent (Chamberlain & Gould 2002; Low et al. 2006; Sieber et al. 2006). 

Segregation is not only evident on the plasma membrane, it is also evident on 

vesicle membranes. In artificially enlarged fusing endosomes, which contain both 

VAMP2 (non-cognate) and VAMP4 (cognate), VAMP2 (the non-cognate SNARE) is 

excluded from the contact site (Bethani et al. 2007) . This spatial segregation 

might contribute to the specificity of membrane fusion alongside the action of 

tethers. 

3.5 Conclusion  

In summary the data presented here builds on previous research and 

demonstrates that in vitro SNARE complex assembly is promiscuous. However 

this promiscuity is not maintained in the cellular environment. The finding that 

in vivo neither VAMP3 nor 8 interact with one of the tSNAREs required for the 

fusion of GLUT4 containing vesicles with the plasma membrane in response to 

insulin suggests that the plasticity seen between VAMP2, 3 and 8 in insulin-

stimulated GLUT4  containing vesicle fusion with the plasma membrane (Zhao et 

al. 2009) is not evident when VAMP2 is present. This data does not address the 

mechanisms by which VAMPs 3 and 8 can act in GSV fusion with the plasma 

membrane when VAMP2 is depleted; this is examined in Chapter 4. 
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Chapter 4  - Endogenous Levels and Subcellular 
Distribution of VAMPs and in 3T3 L1 
Adipocytes. 
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4.1 Introduction  

As described in Chapter 3, there has been considerable debate as to what 

provides the specificity of SNARE complex formation and membrane fusion. 

There is a large body of evidence suggesting that SNARE complex formation in 

vivo is highly selective. However, it has recently become evident that there is 

some level of cross talk and plasticity in SNARE complex formation and the 

membrane fusion events different SNARE proteins function in.  With regard to 

insulin-stimulated GLUT4 translocation Zhao et al. (2009) recently found that 

VAMPs 2, 3 and 8 could act in the insulin-stimulated fusion of GLUT4 vesicles 

with the plasma membrane (Zhao et al. 2009). In Chapter 3 it was demonstrated 

that in vitro the interactions between VAMPs and the tSNAREs syntaxin 4 and 

SNAP23 are not selective. However, in vivo only VAMPs 2 and 5 interact with 

syntaxin 4 (Chaper 3, section 3.3.3). This indicates that under physiological 

conditions VAMP2 is the predominant VAMP involved in the fusion of GSVs with 

the plasma membrane. It also raises the question as to why no plasticity is seen 

between VAMP2 and VAMP5, since VAMP5 can clearly interact with syntaxin 4, 

and therefore should be able to function in the fusion events invovling this 

tSNARE. This chapter aims to gain further insight into the function of and 

plasticity between VAMPs in 3T3 L1 adipocytes by quantifying their levels, 

examining their changes in expression upon differentiation from fibroblasts to 

adipocytes, and determining their subcellular localisation under basal and 

insulin-stimulated conditions.  

4.1.1 Current Understanding of Roles and Localisation of VAMPs 

Different sets of SNARE proteins function in different membrane fusion events 

and therefore show different tissue distribution patterns. VAMPs 3, 4, 7 and 8 

are all broadly expressed. VAMP5 is preferentially expressed in skeletal and 

cardiac muscle. VAMP2 is expressed at highest levels in tissues which display 

high levels of secretory activity such as neurones and neuroendocrine cells 

(McMahon et al. 1993; Rossetto et al. 1996; Advani et al. 1998; Zeng et al. 

1998).  

As well as showing different tissue distributions, SNARE proteins also show 

different subcellular distributions depending on the membrane trafficking events 

they are involved in. VAMP2 is found on vesicles that are mobilised in response 
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to external stimuli; it is found on insulin responsive GLUT4 containing vesicles in 

muscle and adipose tissues and on synaptic vesicles in neuronal tissues. In line 

with this distribution pattern VAMP2 is involved in the regulated exocytosis of 

both GSVs and synaptic vesicles (Verderio et al. 1999; Williams & Pessin 2008). 

VAMP3 is ubiquitously expressed and has been identified on GLUT4 containing 

vesicles within the endosomal recycling pathway (McMahon et al. 1993; Volchuk 

et al. 1995; Martin et al. 1996; Randhawa et al. 2000). VAMP4 is localised to 

both the trans-Golgi network and endosomes (Steegmaier et al. 1999; Mallard et 

al. 2002) and has been found to participate in retrograde but not antigrade 

trafficking (Shitara et al. 2013). VAMP5 is predominantly expressed in skeletal 

and cardiac muscle where it associates with the sarcolemma and vesicles in 

perinuclear compartments (Zeng et al. 1998; Takahashi et al. 2013), including 

GLUT4 containing vesicles (Larance et al. 2005; Rose et al. 2009). VAMP7 is 

primarily localised within the lysosomal pathway. In adipose and muscle tissues 

it is also found on GLUT4 containing vesicles, where it facilitates their fusion 

with the plasma membrane in response to osmotic shock (Randhawa et al. 2004; 

Williams & Pessin 2008). VAMP8 is localised within the endosomal pathway and 

found at the plasma membrane and TGN (Advani et al. 1998; Wong et al. 1998). 

In line with this distribution pattern it has been implicated in the fusion of early 

and late endosomes and in the endocytosis of GLUT4 (Antonin et al. 2000; 

Williams & Pessin 2008). 

4.1.2 Identification of VAMPs on GLUT4 containing vesicles  

Although each VAMP protein shows a distinct subcellular distribution pattern and 

is primary localisation is to membrane compartments in which it acts in the 

fusion of, many membranes contain multiple VAMPs. These VAMPs could be 

involved in membrane fusion events or they could be present in a passenger 

capacity. Indeed, although in insulin-sensitive tissues VAMP2 predominantly 

localised to insulin-sensitive GLUT4 membranes, it is not the only VAMP protein 

to have been identified here. Many studies have observed that GLUT4 containing 

vesicles contain VAMPs 3, 5, 7 and 8 on as well as VAMP2. These observations 

have been made primarily through the immunoprecipitation of GLUT4 containing 

membranes from L6 muscle cells and adipose cells with anti-GLUT4 antibodies 

and assessing the presence of VAMP proteins with antibodies or through mass 

spectrometry (Volchuk et al. 1994; Martin et al. 1996; Ross et al. 1996; Larance 
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et al. 2005). This method of isolation does not differentiate the species of the 

GLUT4 membranes. The GLUT4 membranes isolate could be from the endosomal 

recycling pool, from the insulin-sensitive pool or from vesicles transporting 

GLUT4 to one of these compartments or the lysosome. Further, this methodology 

does not give any information on the amount of each VAMP on these GLUT4 

containing vesicles; there could be one or one hundred molecules of the 

identified VAMP on the GLUT4 containing membrane. These issues mean that 

currently there is confusion as to which VAMP isoforms are where, and with 

which pool of GLUT4. One method to separate the GLUT4 vesicles in the 

endosomal pool from those in the insulin sensitive pool is to isolate the 

intracellular pools of GLUT4 and then separate these out using iodixanol 

gradients (Hashiramoto & James 2000; Perera et al. 2003). In this method the 

iodixanol is combined with the sample that is to be separated, the mixture is 

centrifuged, and the iodixanol forms a gradient through which organelles are 

separated out based on density. Using this method syntaxins 16 and 6 and VAMPs 

2 and 3 have been identified to localise with GSVs (Hashiramoto & James 2000; 

Perera et al. 2003). Here, the localisation of all the VAMP proteins has been 

addressed using this method.  

4.1.3 Levels of VAMPs in 3T3 L1 adipocytes  

As discussed in section 4.1.1, the tissue distribution of SNARE proteins can give 

some indication as to their functions. Consequently, any VAMP proteins 

expressed at high levels in insulin-sensitive tissues, compared to insulin-

insensitive tissues may be important in the acquisition and/or maintenance of 

insulin sensitivity and play a role in GLUT4 trafficking.  For this reason many 

groups have studied the change in expression of proteins in response to 

differentiation of 3T3 L1 fibroblasts to adipocytes. This differentiation process 

leads to the acquisition of insulin-sensitivity (Ross et al. 1996; El-Jack et al. 

1999; Roccisana et al. 2013). Therefore it is necessary to examine the 

differences in the levels of each of the VAMP proteins in adipocytes as well as 

their expression levels in fibroblasts compared to adipocytes.  

Although to date there has been no systematic analysis of the expression level of 

all of the post-Golgi vSNAREs in adipocytes, the levels of the some of the t and 

vSNAREs implicated in the insulin-stimulated trafficking of GLUT4 to the plasma 
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membrane have been studied. Hickson and colleagues (2000) examined the 

levels of the vSNAREs VAMP2 and 3 and the tSNAREs syntaxin 4 and SNAP23 as 

well as the SM protein Munc18c in 3T3 L1 adipocytes. It was found that each cell 

contained 374,000 copies of syntaxin 4, 452,000 copies of Munc18c, 1,150,000 

copies of SNAP23, 495,000 copies of VAMP2 and 4,300,000 copies of VAMP3 

(Hickson et al. 2000). Here, for the first time in any cell type, the expression 

levels of all 6 members of the VAMP subfamily expressed in adipose tissue, and 

their response to adipocyte differentiation has been examined.  

4.1.4 Mobilisation of VAMPs in response to insulin 

It is well documented that insulin mobilises GLUT4 from intracellular deposits to 

the cell surface. Concurrent with this mobilisation there is also a translocation 

of proteins that localise with insulin-sensitive GLUT4 containing vesicles such as 

IRAP, syntaxin 6 and syntaxin 16 (Ross et al. 1996; Perera et al. 2003; Shewan et 

al. 2003).In adipose tissue VAMPs 2, 3, 7 and 8 are found on GLUT4 containing 

vesicles and in muscle cells VAMP5 also localises to GLUT4 containing vesicles 

(Larance et al. 2005; Rose et al. 2009). In adipose cells both VAMP2 and VAMP3 

translocate to the plasma membrane in response to insulin (Volchuk et al. 1995; 

Martin et al. 1996; Xu et al. 2011). In muscle cells GLUT4, VAMP5 and VAMP7 

translocate to the cell surface in response to contraction and in both muscle and 

adipose tissue, VAMP7 translocates along with GLUT4 to the cell surface in 

response to osmotic shock (Williams & Pessin 2008; Rose et al. 2009). However, 

despite these VAMPs being present on GLUT4 containing vesicles the 

translocation of VAMP5, 7 or 8 to the cell surface in response to insulin in 

adipose cells has not been examined. Translocation of proteins to the plasma 

membrane alongside insulin-sensitive GLUT4 suggests that they are present on 

insulin-sensitive GLUT4 containing vesicles (GSVs). However, it should be noted 

that their presence on GSVs does not necessarily translate to functionality in in 

terms of involvement in the insulin response.  

4.1.5 Roles of VAMPs in insulin response 

Many studies have identified that VAMP2 is required for GSV fusion with the 

plasma membrane, this has been achieved by  removing VAMP2 from cells and 

examining their response to insulin-stimulation (Cheatham et al. 1996; Martin et 
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al. 1998; Williams & Pessin 2008; Kawaguchi et al. 2010). A variety of methods 

have been employed to deplete cells of VAMP2 or impair VAMP2 action. This 

includes using cells derived from knockout mice, treating cells with RNAi or 

tetanus neurotoxins (TeNT), or by the injection of peptides to block the action 

of endogenous VAMPs. These studies have provided valuable insight into the role 

of VAMPs in GLUT4 trafficking, however they have their limitations. The first and 

largest is that measurements are taken in an artificial system; removal or 

inhibition of proteins may stimulate others to compensate, particularly when the 

protein of interest is chronically removed (as seen in knock out models). RNAi 

may also result in off target or non-specific effects, and may not result in full 

removal of the protein. Similar problems arise with the use of TeNT, as this 

removes both VAMP2 and VAMP3 thus preventing these proteins from being 

distinguished. Putting these issues aside, there are also issues with the methods 

used to measure the insulin response. The insulin response is measured by the 

appearance of GLUT4 at the plasma membrane. However, as discussed in section 

1.2.1 GLUT4 is found within multiple intracellular pools. None of the studies 

mentioned above have differentiated between GLUT4 in the endosomal recycling 

system and that in the specialised insulin-sensitive store. Here, in an attempt to 

circumvent these issues, the subcellular distribution of VAMP proteins and their 

localisation with GSVs in 3T3 L1 adipocytes has been determined.   

4.2 Aims 

This chapter has three main aims. Firstly, to determine whether the levels of the 

VAMP proteins change upon differentiation of 3T3 L1 fibroblasts into adipocytes. 

Secondly, to determine the absolute levels of the VAMP proteins expressed in 

3T3 L1 adipocytes. Finally, to determine the subcellular distribution of each of 

the VAMP isoforms both in the absence and presence of insulin, and to 

determine the extent to which each VAMP protein localises with insulin-sensitive 

GLUT4, as defined using iodixanol gradient separation of this compartment.  

4.3 Results   

4.3.1 Testing of VAMP antibodies 

Before any work using commercially purchased VAMP antibodies could be carried 

out it was necessary to characterise each antibody.  Commercially available 
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antibodies against VAMPs 1, 2, 3, 4, 5, 7 and 8 were purchased from synaptic 

systems (Table 2-5). Antibody specificity was tested with GST tagged 

recombinant VAMP proteins and antibodies were optimised for use in 3T3 L1 

adipocytes using membrane fractions from this cell type. 

Figure 4-1 shows that each of the VAMP antibodies was specific for the named 

VAMP. Slight cross reactivity of the anti-VAMP3 antibody was seen with 

recombinant VAMP4. However, this cross reactivity was seen with a large amount 

(10ng) of recombinant protein which is unlikely to be come across in the cellular 

environment. Furthermore, the two proteins can be differentiated from one 

another by their differing molecular weights (approximately 11kDa for VAMP3 

and 16kDa for VAMP4). At higher amounts of recombinant purified VAMP protein 

than those used in Figure 4-1 not all antibodies were entirely selective. 

However, this was only found using large (>10ng) amount of recombinant 

protein; this level of protein is not likely to be found in samples from 3T3 L1 

adipocytes.  

To determine the optimum antibody concentration for detecting endogenous 

VAMP proteins in 3T3 L1 adipocytes 20µg of membrane fraction was subjected to 

immunoblotting with VAMP antibodies at different concentrations. An example 

of the steps taken to optimise antibody use is displayed in Figure 4-2. Initial 

experiments were carried out using a standard alcohol rich transfer buffer (20% 

(v/v) methanol). Under these conditions detection of endogenous protein was 

only possible at high concentrations of antibody, and in some cases was not 

possible at all. Since SNARE proteins are hydrophobic it was theorised that they 

might be attracted to, and become trapped in the alcohol in the transfer buffer 

and therefore not transfer to the nitrocellulose membrane. So, in an attempt to 

improve the transfer efficiency, an alcohol free transfer buffer was used 

(12.5mM Tris HCl pH 7.4, 200mM glycine). This allowed much better detection of 

endogenous VAMP proteins (Figure 4-2 A vs. B). Following optimisation of the 

transfer efficiency, the blocking solution and antibody dilutions were also 

optimised. Membranes were blocked, and antibodies made up, in 1% or 5% milk 

(Figure 4-2 C vs.D). It was clear that detection was best when transfer was 

completed in alcohol-free transfer buffer and blocking was in 1% milk. The 

dilutions of the antibodies used are described in (Table 2-5), and these 

conditions gave consistent results and were used throughout this thesis.    
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Figure 4-1: VAMP antibodies are specific.  
10 ng (or 1ng for testing of anti-VAMP8) GST and recombinant VAMPs were subjected to SDS-
PAGE followed by immunoblotting with anti-VAMP antibodies. Anti-VAMP1, anti-VAMP4, anti-
VAMP5 and anti-VAMP7 were used at 1:1000, anti-VAMP2 and anti-VAMP3 at 1:10 000 and anti-
VAMP8 was used at 1:50 000. Shown are data from a typical experiment, molecular marker sizes 
are shown in kDa. 
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Figure 4-2: Example of the steps taken to optimise antibodies for use in 3T3 L1 adipocytes. 
20µg of 3T3 L1 adipocyte membrane fraction was subjected to SDS-PAGE followed by 
immunoblotting, membranes were sliced and probed with the indicated concentration of anti-
VAMP4 antibody in either 5% (A, B, D) or 1% milk (C), transfer was conducted in either alcohol rich 
transfer buffer (A) or alcohol free transfer buffer (B, C, D). Predicted molecular weight of VAMP4 is 
16kDa. Shown are data from a typical experiment, molecular marker sizes are shown in kDa. 

4.3.2 Determination of changes in expression levels upon 

adipocyte differentiation. 

The 3T3 L1 cell line is a preadipocyte cell line derived from mouse embryos. 3T3 

L1 cells can be propagated in culture and upon the addition of media containing 

3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, troglitazone and 

foetal bovine serum they begin to accumulate triglycerides and turn into 

adipocytes. 

Differentiation of 3T3 L1 fibroblasts into adipocytes is associated with an 

increase in GLUT4 protein content, which is concurrent with the acquisition of 

insulin-sensitivity. This coincides with the formation of the specialised insulin-
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sensitive pool of GLUT4 vesicles (GSVs) (El-Jack et al. 1999). Differentiation is 

also associated with increases in the levels of the proteins required to synthesise 

GSVs and recycle GLUT4. This includes sortillin, IRAP and the tSNARE syntaxin 16 

(Shi & Kandror 2005; Ross et al. 1996; Roccisana et al. 2013). To determine the 

effect of differentiation on the levels of VAMP proteins, equal numbers of 

fibroblast and adipocyte cells were subjected to immunoblotting with VAMP 

antibodies. To ensure that equal numbers of fibroblast and adipocyte cells were 

examined, fibroblasts were seeded onto coverslips and either fixed on day 0 or 

differentiated into adipocytes and fixed on day 8. Cell nuclei were stained with 

DAPI and the number of cells within a field of view was counted (data not 

shown). This demonstrated that the number of fibroblasts and adipocytes in a 

field of view (and 10cm dish) are equal, and therefore membrane fractions of 

fibroblasts and adipocytes from the same number of 10cm plates, produced in 

the same manner, could be directly compared.  

Figures 4-3 A and B show equal volumes of 3T3 L1 membrane fractions from the 

same number of fibroblast and adipocyte cells (1/10th of a 10cm p late, 1x106 

cells). It is evident from Figure 4-3 A that differentiation results in a large 

increase in the total cellular protein content. There are increases in the levels of 

GLUT4, VAMP 2, 3 and 4, but the levels of VAMP 5, 7 and 8 remain unchanged 

(Figure 4-3). 
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Figure 4-3: Changes in VAMP protein levels upon adipocyte differentiation. 
Equal numbers of fibroblast and adipocyte cells were homogenised and subjected to centrifugation 
at 95 000 x g for 1 hour to pellet to the total membranes as described (section 2.7.1). Samples 
were then subjected to SDS-PAGE followed by staining with Coomassie Brilliant Blue to assess 
total protein content (A) or immunoblotting with anti-GLUT4 and anti-VAMP antibodies to determine 
change in protein content of specific proteins (B). 3 experiments are displayed on each gel (A, B 
and C), d0 = fibroblasts, d8 = fully differentiated adipocytes.  Compared to an equal number of 
fibroblast cells the levels of VAMP 2 3 and 4 are elevated in fully differentiated adipocytes (C). 
Values represent the means of 3 separate experiments, values were compared with a Student's t-
test, * = p < 0.05 (C).  
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4.3.3 Determination of expression levels in 3T3 L1 adipocytes  

As well as examining the changes in VAMP protein levels upon adipocyte 

differentiation, the expression levels of each of the VAMP isoforms in 3T3 L1 

adipocytes has also been determined for the first time. In these experiments, 

increasing amounts of recombinant purified VAMP protein was subjected to 

immunoblotting alongside samples of 3T3 L1 adipocyte membrane fractions. 

Figure 4-4 shows analysis of 1µg of each recombinant VAMP protein. These stocks 

were further diluted and used to determine the amount of VAMP protein in 3T3 

L1 membrane fractions. This demonstrates that the amount of recombinant 

protein used to quantify the absolute levels of each VAMP in adipocytes were 

equal, and therefore that the values produced from the quantification are 

accurate and comparable to one another. A representative immunoblot of the 

quantification process is shown in Figure 4-5. The intensity values obtained for 

the VAMP content in 3T3 L1 membrane fractions were compared to the intensity 

values obtained for the increasing amounts of recombinant protein. This was 

used to determine the amount of VAMP in the membrane fractions, which was 

then converted to copy number per 10cm dish (1x107 cells; (Biber & Lienhard 

1986)), and then to copy number per cell (Table 4-1, Figure 4-6). 

The levels of each of the VAMP isoforms differed greatly. VAMP 8 was the most 

abundant VAMP isoform with 3.5 x106 copies per cell, this was followed by 

VAMP3 with 4.8x106 copies per cell. VAMP2 and 4 were expressed at moderate 

levels with 8.6x105 and 4.8x105 copies per cell respectively and VAMP5 and 7 

were expressed at similar, very low levels, with 5.8 and 5.3x104 copies per cell 

(Table 4-1, Figure 4-6, p<0.05).  
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Figure 4-4: SDS-PAGE analysis of recombinant proteins. 
1µg of purified recombinant protein was subjected to SDS-PAGE and stained with Coomassie 
Brilliant Blue. The top bands for VAMP2, 3 and 7 were found to be immunoreactive so were used in 
analysis, whereas all bands present for VAMP4 and 5 were immunoreactive and used in analysis. 
Shown are data from a typical experiment, molecular marker sizes are shown in kDa. 

 

Figure 4-5: Representitive immunoblot showing the method used to quantify the levels of 
VAMP protein in 3T3 L1 adipocytes. 
Fully differentiated 3T3 L1 adipocytes were homogenised and centrifuged at 95 000 xg for 1 hour 
to pellet the total membrane fraction as described (section 2.7.1). This was subjected to SDS-
PAGE and immunoblotting with anti-VAMP proteins alongside increasing amounts of bacterially 
expressed recombinant VAMP protein. Each immunoblot contains membrane fractions from three 
separate batches of cells (A, B and C). Data shown are from a typical experiment determining the 
levels of VAMP8 as an example. 
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Figure 4-6: Copy number of each VAMP protein in 3T3 L1 adipocytes. 
Copy number of each of the VAMP proteins was determined from values obtained for ng VAMP per 
µg membrane fraction (Figure 4-5). Values are the means ± SD of 3 separate experiments and 
were compared using a one way ANOVA * = p < 0.05. 

 

Table 4-1: Copies of each VAMP protein in 3T3 L1 adipocytes,  
Copy number of each of the VAMP protein from was determined from immunoblot experiments 
seen above (Figure 5-4). One 10cm dish contains 1x10

7
 cells, made up of 2.5mg membrane 

protein (Biber & Lienhard 1986; Hickson et al. 2000). Values obtained for g VAMP/1x10
7
 cells was 

divided by the molecular weight of the protein to give moles/1x10
7
 cells. The mole value was 

multiplied by Avagadro's number to determine copy number per 1x10
7
 cells, and thus the copy 

number per cell.  

Protein Copies per µg Membrane  Copies per Cell  

VAMP2 3.5 x 109 8.6 x105 

VAMP3 6.1 x 109 1.5 x 106 

VAMP4 1.9 x 109 4.8 x 105
 

VAMP5 2.3 x 108 5.8 x 104 

VAMP7 2.1 x 108 5.3 x 104 

VAMP8 1.4 x 1010 3.5 x 106 
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4.3.4 Subcellular distribution of VAMP proteins in 3T3 L1 

adipocytes  

Having identified which VAMPs are up-regulated upon adipocyte differentiation 

and determined the abundance of each VAMP protein, the next step was to 

examine whether any of the VAMPs co-localised with insulin-sensitive GLUT4 in 

3T3 L1 adipocytes. Under non-insulin-stimulated conditions the majority of the 

insulin-sensitive GLUT4 is found within intracellular organelles (Slot et al. 1991). 

These intracellular organelles can be separated by subcellular fractionation. In 

this process 3T3 L1 adipocytes were either left untreated or subjected to insulin-

stimulation for 20 minutes; they were then subjected to a well-established 

subcellular fractionation protocol (Simpson et al. 1983; Piper et al. 1991; section 

2.7.2). The subcellular localisation of each VAMP isoform was determined 

through immunoblotting, and representative blots of these experiments are 

shown in Figure 4-7. 

As anticipated, under basal conditions GLUT4 was sequestered away from the 

plasma membrane (PM) fraction in the low density membrane fraction (LDM; 

Figure 4-7, Figure 4-8 A). Insulin-stimulation redistributed GLUT4 out of the LDM 

and led to a 1.7-fold increase in the amount of GLUT4 within the PM (p<0.01, 

Figure 4-9), resulting in the majority of the cellular GLUT4 being found within 

the PM fraction in insulin-stimulated cells (p<0.05, Figure 4-8 B).  

Before examining the subcellular distribution of VAMPs, it was necessary to 

determine the purity of each of the fractions. To this end each fraction was 

subjected to immunoblotting with antibodies against proteins expected to be 

within each fraction. For the plasma membrane (PM) fraction the tSNARE protein 

syntaxin 4 (Sx4) was used, for the low density membrane fraction  (LDM) fraction 

the cation-dependent mannose-6-phosphate receptor (CDMPR), for the high 

density membrane fraction (HDM) the endoplasmic reticulum (ER) resident 

protein calnexin was used, and for the soluble fraction glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was used. The transferrin receptor (TfR) was 

used as a marker of GLUT4 vesicles within the constitutive recycling system and 

IRAP was used as a marker for GSVs. Figure 4-10 shows the distribution of these 

proteins under basal and insulin stimulated conditions. Most of the marker 

proteins were found in their expected locations. However, there was 
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contamination of the LDM with the soluble fraction (GAPDH was found in the 

LDM). Calnexin, which was used as a marker for the HDM, was found across all 

fractions, suggesting that there was contamination of all fractions with the ER.  

Under basal conditions VAMP2 and 3 were found to be predominantly localised 

with insulin-sensitive GLUT4 in the LDM fraction (62% and 61% p<0.05, Figure 

4-8A). Similar to GLUT4, insulin led to a significant 2.2-fold increase in VAMP2 in 

the PM fraction and a concurrent reduction in the LDM fraction (P<0.01, Figure 

4-9). Insulin stimulation also redistributed VAMP3 out of the LDM (40% reduction 

p<0.05, Figure 4-9) and increased the level seen in the PM fraction, although this 

increase was not significant (p=0.13). The mobilisation of VAMPs 2 and 3 in 

response to insulin led to both VAMPs 2 and 3 being predominantly localised in 

the PM fraction in insulin-stimulated cells (54% and 46% respectively, p<0.05, 

Figure 4-8 B).   

In contrast to VAMPs 2 and 3, VAMP4 was similarly distributed across all 3 

fractions and there was no significant redistribution of VAMP4 in response to 

insulin (Figure 4-8). VAMP5 was found to be evenly split between the PM and 

LDM fractions under basal conditions (Figure 4-8 A). Insulin-stimulation led to a 

significant 0.7-fold reduction in the level of VAMP5 in the LDM (p<0.01, Figure 

4-9). This resulted in 56% of VAMP5 being within the PM fraction following 

insulin-stimulation, significantly more than in any other fraction (p<0.05, Figure 

4-8 B). 

In basal adipocytes VAMP7 was found predominantly within the LDM (43%, 

p<0.05, Figure 4-8 A). Insulin did not result in any significant mobilisation of 

VAMP7 (Figure 4-9). VAMP8 was split evenly between the membrane fractions 

under both basal and insulin-stimulated conditions, and although insulin-

stimulation mobilised VAMP8 out of the LDM, this had no significant impact on its 

subcellular distribution pattern (Figure 4-8, Figure 4-9). 
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Figure 4-7: Representative immunoblots showing the subcellular distribution of each VAMP 
protein in 3T3 L1 adipocytes. 
Fully differentiated 3T3 L1 adipocytes were serum-starved and then treated with (+) or without (-) 
1µM insulin for 20 minutes. Subcellular fractionation was performed as described in Materials and 
Methods (section 2.7.2). The resultant fractions were the plasma membrane (PM), low density 
membranes (LDM), high density membranes (HDM) and soluble fraction (Sol). Fractions were 
resuspended in equal volumes of 1xLSB and subjected to SDS-PAGE and immunoblotting with the 
indicated antibodies. Shown are representative immunoblots of more than 3 separate experiments. 
IRAP=insulin responsive aminopeptidase, TfR = transferrin receptor, Sx4 = syntaxin 4, CDMPR = 
cation-dependent mannose 6-phosphate receptor, GAPDH = glyceraldehyde 3-phosphate 
dehydrogenase. 
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Figure 4-8: Localisation of marker proteins in basal (A) and insulin-stimulated 3T3 L1 
adipocytes (B). 
Percentage of the indicated protein in the PM, LDM, HDM and soluble fractions in basal (A) and 
insulin-stimulated (1µM insulin for 20 minutes) 3T3 L1 adipocytes (B) was determined. Values are 
the means ± SD of 3 separate experiments, fractions were compared using a one way ANOVA, * = 
p <0.05, ** = p<0.01. IRAP=insulin responsive aminopeptidase, TfR = transferrin receptor, Sx4 = 
syntaxin 4, CDMPR = cation-dependent mannose 6-phosphate receptor, GAPDH = glyceraldehyde 
3-phosphate dehydrogenase. 
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Figure 4-9: localisation of the vSNAREs and GLUT4 in basal (A) and insulin-stimulated (B) 
3T3 L1 adipocytes. 
Percentage of the indicated protein in the PM, LDM, HDM and soluble fractions in basal (A) and 
insulin-stimulated (1µM insulin for 20 minutes) 3T3 L1 adipocytes (B) was determined. Values are 
the means ± SD of 3 separate experiments, fractions were compared using a one way ANOVA, * = 
p <0.05, ** = p<0.01. 
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Figure 4-10: Effect of insulin stimulation on the distribution of GLUT4 and VAMP proteins in 
3T3 L1 adipocytes. 
Percentage protein in each fraction under insulin-stimulated (1µM insulin for 20 minutes) conditions 
was compared to the percentage in each fraction under basal conditions to give the fold change in 
protein content of each fraction in response to insulin-stimulation. Values represent means ± SD of 
3 separate experiments, fold change compared to basal values were compared using the Students 
t-test, * = p <0.05, ** = p<0.01. 

4.3.5 Iodixanol gradient analysis of LDM fractions.  

The subcellular distribution data (section 3.3.5) highlights that each VAMP 

protein is present in the fraction that contains insulin-sensitive GLUT4 (the 

LDM). However, the LDM contains GLUT4 in both the endosomal recycling pool 

(the ERC) and in the insulin sensitive pool (GSVs). These two pools can be 

separated out using iodixanol gradient centrifugation. This process has been 

described by Hashiramoto and James (2000). Briefly, the LDM fraction is isolated 

and resuspended in HES buffer, mixed with iodixanol, and subjected to 

centrifugation. Iodixanol acts as a self-forming gradient, separating out 

organelles based on density. Here, twelve 300µl fractions were collected from 

the bottom of the tube and subjected to immunoblotting with GLUT4 (Figure 

4-11) and VAMP proteins (Figure 4-13). In order to confirm that the first denser 

peak (fractions 1 – 5) corresponds to GSVs and the second lighter peak (fractions 

9 – 12) corresponds to the endosomal pool the distribution of GLUT4, the 
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transferrin receptor and IRAP was examined in fractions produced from basal 

and insulin-stimulated 3T3 L1 adipocytes. As anticipated, IRAP was 

predominantly localised to the first peak and the transferrin receptor in the 

second peak (Figure 4-12). GLUT4 was found within both the GSV and ERC peaks 

with more localised within the GSV peak (50% vs. 40%, p<0.01) and insulin-

stimulation led to a selective reduction in GLUT4 content in this peak (Figure 

4-11, p<0.01). 

 

The distribution of the VAMP proteins was determined in the same manner as 

GLUT4, IRAP and the transferrin receptor. Representative immunoblots are 

shown in Figure 4-13.  All proteins were localised within both the GSV and ERC 

pools, however their pattern of distribution between the two pools differed. 

VAMPs 2, 5 and 8 were evenly distributed between the GSV and ERC pools. 

VAMPs 3, 4 and 7 were found predominantly with the endosomal pool of GLUT4 

(Figure 4-13 p<0.05). This was most striking for VAMP3, which showed more than 

75% was localised to the endosomal pool.  
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Figure 4-11: Localisation of GLUT4 in GSVs and the endosomal recycling compartment 
(ERC) fractions of 3T3 L1 adipocytes.  
Low density membrane fractions (LDM) from serum-starved (basal) or insulin-stimulated (1µM 
insulin for 20 minutes) 3T3-L1 adipocytes were resuspended in HES buffer and centrifuged at 295 
000 xg for 1 hour on a self-forming iodixanol gradient as described (section 2.7.3). Twelve equal 
volume fractions were collected and subjected to SDS-PAGE followed by immunoblotting with anti-
GLUT4. Fractions were loaded in order of decreasing density, fractions 1 - 5 represent GSVs and 9 
- 12 endosomal recycling compartment (ERC). Shown are immunoblots from a typical experiment 
(A). the mean values ± SD for percentage of  GLUT4 found in the GSV and ERC pools from 5 
separate experiments were calculated by comparing the intensity signal in this fraction (1-5 or 9-12) 
to the intensity signal across all fractions (B) values were compared using the Student's t-test  ** = 
p<0.01 vs ERC, # = p< 0.01 vs basal. 
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Figure 4-12: Localisation of IRAP and TfR in GSVs and ERC fractions of 3T3 L1 adipocytes.  
Iodixanol gradients prepared as in Figure 4-11 and used to determine the distribution of IRAP and 
TfR. Fractions were loaded in order of decreasing density, fractions 1 - 5 represent GSVs and 9 - 
12 ERC. Shown are immunoblots from a typical experiment (A: IRAP, B:TfR) and the mean values 
± SD for percentage of total protein across all fractions found in the GSV and ERC pools from 3 
separate experiments (C) values were compared using the Student's t-test *= p<0.05 ERC.  
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Figure 4-13: Localisation of VAMP proteins in GSVs and ERC fractions of 3T3 L1 adipocytes.  
Iodixanol gradients prepared as in Figure 4-11 and used to determine the distribution of VAMP 
proteins. Fractions were loaded in order of decreasing density, fractions 1 - 5 represent GSVs and 
9 - 12 ERC. Shown are immunoblots from a typical experiment (A) and the mean values ± SD for 
percentage of total protein across all fractions found in the GSV and ERC pools from 3 separate 
experiments (B) values were compared using the student's t test *= p<0.05, ** = p<0.01. 
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4.4 Discussion  
The data presented here shows that the expression level of VAMPs 2, 3 and 4 is 

increased in response to differentiation. It has been demonstrated that, in 3T3 

L1 adipocytes, VAMP8 is the most abundant isoform, followed by VAMPs 3, 2, and 

4. In contrast, VAMPs 5 and 7 are expressed at very low levels in this cell type. 

Through the subcellular fractionation of 3T3 L1 adipocytes, it has been shown 

that although all VAMPs expressed in adipocytes localise with insulin-sensitive 

GLUT4, they do so to varying degrees, and each of VAMP shows different 

translocation responses to insulin-stimulation.  

4.4.1 Methodological Considerations  

It is important to note a few caveats with the methodology used to produce this 

data. The estimation of copy number of each of the VAMP proteins is reliant on a 

number of assumptions. First, that the VAMP antibodies are specific to the 

named VAMP. This was tested by assessing the binding of each antibody to 

recombinant VAMP proteins (Figure 4-1). Each VAMP antibody was found to 

selectively react with the named VAMP. Second, it assumes that the VAMP 

antibodies bind the GST-tagged VAMPs to the same degree as to endogenous 

VAMP. This is likely to be the case as the only differences between the 

recombinant VAMPs and endogenous VAMP were that the recombinant VAMPs 

lack their transmembrane domains and are tagged at their N terminus with GST. 

It is also important to note that the quantification analysis only took into 

account signals from antibodies reacting with proteins found at the predicted 

molecular weight for each VAMP. Therefore, it is possible that some VAMP was 

present in an SDS resistant SNARE complex and thus excluded from analysis.  

There are also some caveats with the subcellular fractionation protocol. The 

first being the cross contamination of fractions, particularly the contamination 

of fractions with components of the ER (Figure 4-8; Simpson et al 1983). Simpson 

et al. (1983) used a similar subcellular fractionation protocol in rat adipocytes 

and examined the activity of organelle-specific enzymes to determine their 

localisation within each fraction. Based on the relative densities of the PM, 

Golgi, endoplasmic reticulum (ER) and mitochondria these should have been 

localised to the PM, LDM, HDM and mitochondrial fraction respectively. 

However, Simpson et al. (1983) found there was significant cross contamination 
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of these organelles within each fraction (Simpson et al. 1983). Here, calnexin, 

an ER resident enzyme, was distributed across the PM, LDM and HDM, and 

GAPDH, a soluble enzyme, was found in both the soluble fraction and the LDM 

(Figure 4-10). This means the determination of GLUT4 in the HDM and soluble 

fraction may be an underestimate. However, it may explain the high levels of 

GLUT4 seen in the PM under basal conditions here (Figure 4-7; Figure 4-8).  

Although under basal conditions GLUT4 was predominantly localised to the LDM 

fraction, it was also present in the HDM and the PM, which is in contrast to 

previous studies that have used similar protocols (Simpson et al. 1983; Piper et 

al. 1991), and those examining GLUT4 distribution using microscopy (Slot et al. 

1991). Localisation to within the PM fraction does not mean that the GLUT4 is 

inserted into the plasma membrance and the high localisation of GLUT4 within 

the PM could be due to vesicles docked on material that is pelleted alongside the 

PM. Some of the material recovered in the PM fractions is likely to be from the 

ER as there was significant contamination of this fraction with calnexin (Figure 

4-8). The amount of non-PM material isolated with the PM fraction will be 

dependent on the homogenisation method used. Here, homogenisation was 

achieved by passing cell lysates through a 24 gauge needle 10 times, then a 26 

gauge needle twice, which may not have been sufficient to detach all material 

surrounding the plasma membrane from the PM.  Despite the high level of GLUT4 

in the PM under basal conditions, there was a robust insulin-stimulated 

mobilisation out of the LDM and into the PM (Figure 4-10)Figure 4-10. 

4.4.2 VAMPs involved in fusion of GLUT4 containing vesicles with 
the PM.  

There has been much debate as to the vSNARE requirements for fusion of GLUT4 

containing vesicles with the plasma membrane in response to insulin in adipose 

tissue. Most data supports the role of VAMP2, however some suggest roles for 

VAMP3 and 8 as well. This comes from the identification of VAMPs 2, 3 and 8 on 

GLUT4 containing membranes (Martin et al. 1996; Larance et al. 2005; Zhao et 

al. 2009) and from studies that have found insulin-stimulated GLUT4 

translocation is not impaired following VAMP protein removal (Hajduch et al. 

1997; Zhao et al. 2009). However, immunoisolation of GLUT4 membranes does 

not separate the source of GLUT4 membrane, and the use of toxins and knock 
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out mice models to deplete cells of VAMPs disrupts the natural physiological 

environment, meaning there may be compensation by other VAMPs or 

upregulation of other GLUT4 trafficking pathways. The data presented in this 

chapter on the absolute levels of each of the VAMP proteins, their response to 

adipocyte differentiation and their subcellular distribution and localisation 

alongside insulin-sensitive GLUT4 under physiological conditions, supports the 

view that the fusion of GSVs with the plasma membrane predominantly involves 

VAMP2.  

VAMPs 2 and 3 but not VAMP8 are upregulated upon adipocyte differentiation 

(Figure 4-3). It is well documented that key regulators of the insulin-response in 

adipocytes such as GLUT4, IRAP, sortilin and syntaxin 16 are upregulated with 

adipocyte differentiation (El-Jack et al. 1999; Ross et al. 1996; Shi & Kandror 

2005; Roccisana et al. 2013). That VAMP8 levels remain unchanged upon 

differentiation, despite large increases in cellular total protein content, suggests 

that the requirement for VAMP8 is not upregulated in adipocytes compared to 

fibroblasts. Therefore VAMP8 is unlikely to be involved in the fusion of GLUT4 

containing vesicles with the plasma membrane.  

Here, large increases in the levels of VAMPs 2, 3 and 4 were seen following 

differentiation. In contrast to this Williams and Pessin (2008) found only small 

changes in the levels of VAMP protein with adipocyte differentiation. This 

difference could be due to the methodology used. Although Williams and Pessin 

(2008) did not state if equal numbers of cells or equal total protein levels were 

compared,  if the levels of VAMP protein are compared per mg of protein 

changes may be missed due to the large increase in total protein content in 

adipocytes compared to fibroblasts.  

VAMP2, 3 and 8 are all found on GLUT4 containing membranes (Martin et al. 

1996; Larance et al. 2005; Zhao et al. 2009). By separating out GLUT4 containing 

compartments it can be seen that VAMP2 localises to the same compartment as 

insulin-sensitive GLUT4 (the LDM; Figure 4-7 Figure 4-9A), translocates to the PM 

alongside GLUT4 in response to insulin (Figure 4-10) and when the pools of 

GLUT4 within the LDM are separated VAMP2 localises to the insulin-sensitive pool 

(Figure 4-13). VAMP3 also localises to the LDM and translocates to the PM with 

insulin (Figure 4-9A, Figure 4-10) However, unlike VAMP2, the VAMP 3 in the LDM 
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is predominantly (>75%) localised with GLUT4 in the endosomal system (Figure 4-

13).  

The finding that VAMP2 and 3 are present with separate pools of GLUT4 is in 

agreement with ablation and immunoelectron studies (Martin et al. 1996). These 

studies have shown that VAMP2 and 3 are on different populations of GLUT4 

containing vesicles, and that VAMP3 but not VAMP2 is localised with the 

transferrin receptor. The data presented here supports a role for VAMP2 in the 

fusion of GLUT4 containing vesicles with the plasma membrane from the insulin-

sensitive store (GSVs) and VAMP3 in the fusion of GLUT4 containing vesicles from 

the endosomal recycling pool (ERC).  

4.4.3 Plasticity in vSNARE requirements for GLUT4 fusion with 
the plasma membrane – Possible Mechanisms  

Although VAMP2 seems to be the vSNARE involved in the fusion of GSVs with the 

plasma membrane in response to insulin-stimulation, there is clear evidence of 

plasticity between VAMP2, 3 and 8 but not 4, 5 or 7 in the fusion of GLUT4 

containing vesicles with the plasma membrane (Zhao et al. 2009). The results 

presented here help to uncover the possible mechanisms of this plasticity.  

It is important to note that the studies by Zhao et al. (2009) were conducted in 

an artificial environment, as VAMP proteins were removed either by using mouse 

embryonic fibroblasts from knock out animals (VAMP2 or 8 knockout) or by 

treatment with TeNT to cleave VAMP2 and 3 for 2 days. These conditions may 

allow compensatory mechanisms to be upregulated. Furthermore, VAMP2 

knockout has been proposed to prevent the entry of GLUT4 into GSVs and VAMP8 

has been identified as being involved in GLUT4 endocytosis (Williams & Pessin 

2008; see Chapter 6). Therefore under the conditions employed by Zhao et al. 

(2009) to examine plasticity, GLUT4 may not have been correctly sorted and the 

results obtained may not be representative of the processes that occur in vivo. 

Putting these considerations to one side, the quantification and subcellular 

fractionation data presented here can help to dissect why some VAMP isoforms 

but not others are able to compensate in GLUT4 trafficking to the PM in response 

to insulin.  
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As described, VAMP2 is present on GSVs, whereas VAMP3 is present on GLUT4 

containing vesicles within the endosomal recycling system (Martin et al. 1996; 

Figure 4-13). Therefore in the absence of VAMP2, the GLUT4 translocation seen 

by Zhao et al. (2009) may have been from the endosomal recycling 

compartment. Figure 4-6 shows VAMPs 2, 3 and 8 are expressed at the highest 

levels in 3T3 L1 adipocytes (with 8.6x105, 1.5x106 and 3.5x2106 copies per cell 

respectively; Figure 4-3), and the values reported for VAMP2 and 3 are in 

agreement with those previously reported using a similar approach (Hickson et 

al. 2000). The finding that the VAMPs expressed at the highest levels in 3T3 L1 

adipocytes are those that show plasticity (VAMPs 2, 3 and 8,) is intriguing as it 

highlights the possibility that the reason that VAMPs 3 and 8, but not any other 

VAMPs can compensate for the loss of VAMP2 is due to their high levels of 

expression (Zhao et al 2009).  

Both VAMP5 and 7 have been identified on immunoprecipitated GLUT4 vesicles in 

muscle (Rose et al. 2009). In cardiomyocytes VAMP5 has been shown to have a 

role in the trafficking of GLUT4 to the plasma membrane in response to insulin 

(Schwenk et al. 2010). The subcellular fractionation data presented here 

suggests that VAMP5 is also present on GSVs in adipose cells. VAMP5 is localised 

with insulin-sensitive GLUT4 and it translocates out of this compartment in 

response to insulin (Figure 4-8, Figure 4-9, Figure 4-13). VAMP5 also interacts 

with the tSNARE involved in insulin-stimulated GLUT4 translocation, syntaxin 4, 

in vivo (Chapter 3; Figure 3-4). Taken together these observetions make it 

tempting to speculate that VAMP5 is involved in the fusion of GSVs with the 

plasma membrane in both muscle and adipose cells, but that in 3T3 L1 

adipocytes, the contribution it plays is small due to its low expression lelvel. In 

contrast to this, VAMP7 did not mobilise in response to insulin so is unlikely to be 

present on insulin-sensitive GLUT4 vesicles in any significant amount, although it 

is involved in the fusion of GLUT4 containing vesicles with the PM in response to 

osmotic shock (Randhawa et al. 2004; Williams & Pessin 2008), and therefore 

must be present on some population of GLUT4 containing vesicles. These 

observations predict that both VAMP5 and 7 should be able to compensate in the 

fusion of GLUT4 containing vesicles with the plasma membrane when VAMP2, is 

removed. However, neither VAMPs 4, 5 nor 7 can (Zhao et al. 2009). 
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This may be a function of these proteins’expression levels and subcellular 

distributions. The levels of VAMP5 and 7 are very low compared to levels of the 

other VAMP proteins (Figure 4-6). The subcellular fractionation data indicates 

that although VAMPs 4 and 7 are found within the same compartments as insulin-

sensitive GLUT4, they arenot be present on insulin-sensitive GLUT4 containing 

vesicles. The subcellular fractionation protocol does not selectively isolate 

GLUT4 containing vesicles. However the presence of proteins on insulin-sensitive 

GLUT4 vesicles can be inferred by their translocation, alongside GLUT4, in 

response to insulin. Neither VAMP4 nor VAMP 7 translocated with GLUT4 to the 

plasma membrane in response to insulin-stimulation. They are therefore 

probably not present on insulin-sensitive GLUT4 containing vesicles.  

Zhao et al. (2009) found that VAMP8 was able to compensate for the loss of 

VAMP2 and 3. Yet, VAMP8 did not translocate to the plasma membrane in 

response to insulin (Figure 4-10), and the levels of VAMP8 did not increase with 

differentiation (Figure 4-3)). These data suggest that, similar to VAMPs 4 and 7, 

VAMP8 is not present on insulin-sensitive GLUT4 containing vesicles and is not 

normally involved in the fusion of GLUT4 vesicles with the plasma membrane. 

However, VAMP8 is expressed at very high levels (Figure 4-6), so although it is 

not selectively sorted onto GLUT4 containing vesicles, some VAMP8 may be mis-

sorted onto GLUT4 vesicles. This value is probably low in terms of percentage of 

the total VAMP8 within adipose cells, but may be a sufficient amount to act in 

the fusion of GLUT4 vesicles with the plasma membrane.  

4.4.4 How many VAMPs per insulin sensitive GLUT4 vesicle?  

The information presented here regarding the copy number and subcellular 

distribution of each of the VAMP proteins and GLUT4 allows the number of each 

of the VAMP proteins found with a single insulin sensitive GLUT4 molecule to be 

estimated.  

There are 2.8 x105 copies of GLUT4 in a 3T3 L1 adipocyte cell (Calderhead et al. 

1990). 40% of the total GLUT4 is in the LDM (Figure 4-9A), this corresponds to 

112,000 copies of GLUT4 in the LDM,  50% of the GLUT4 within the LDM is in 

GSVs. Assuming all GLUT4 present in the GSV fraction is actually on GSVs, this 

gives 56,000 GLUT4 molecules on GSVs. Using the same calculations (8.5 x105 
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copies VAMP2, 60% in the LDM, 46% in GSVs) there are 241,453 copies of VAMP2 

on insulin-sensitive GLUT4 vesicles, this is four per GLUT4, using the same 

calculations there are two  VAMP3 molecules per GLUT4 (1.5x106 copies VAMP3, 

60% in the LDM, 14.4% on GSVs).   

There are 3.5x106 copies of VAMP8, of which 40% are in in the LDM and 38% of 

VAMP8 in the LDM colocalises with insulin-sensitive GSVs. Insulin-stimulation had 

no effect on the distribution of VAMP8, so it is likely VAMP8 is not selectively 

sorted onto GSVs, its presence alongside insulin-sensitive GLUT4 is likely due to 

its localisation with other organelles of similar densities. However, the sorting of 

SNARE proteins on to the correct membranes is unlikely to be completely 

accurate meaning some mis-sorting of proteins is inevitable.  If 20% of the total 

VAMP8 within the compartments containing insulin-sensitive GLUT4 is mis-sorted 

and localised to GSVs, this corresponds to 108,646 copies of VAMP8, which is 

roughly 2 per GLUT4.  

Estimates of the number of SNARE proteins required for membrane fusion vary 

from between 1 and 15 complexes. These estimations come from studies that 

have examined in vitro fusion of liposomes with varying numbers of SNARE 

proteins. Van den Bogaart et al. (2010) found that liposomes containing a single 

SNARE are capable of fusion, and isolated synaptic vesicles require only one 

tSNARE for fusion (van den Bogaart et al. 2010). Shi et al. (2013) found that 

nanodiscs were capable of fusing with only one SNARE complex being present 

(Shi et al. 2013). However they found that for the fusion pore to be open for 

long enough for content mixing, 3 SNARE complexes were required. Conversely, 

Karatekin et al. (2010) found that between 5 and 10 SNARE complexes are 

required for fusion (Karatekin et al. 2010).  

The major difference in these studies can be explained by the protein density of 

the liposome membranes. Karatekin et al. (2000) used polyethylene glycol (PEG) 

to increase the protein density of the liposome. At high protein densities lateral 

diffusion of the SNAREs is limited, whereas at lower densities there is free 

lateral diffusion (van den Bogaart et al. 2010). Free lateral diffusion of the 

SNARE means that the VAMP can engage with the tSNARE more readily, as the 

VAMP can diffuse through the membrane to the site of the tSNAREs, therefore 

fusion is independent of the orientation of the vesicle. However, when lateral 
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diffusion is limited, the probability of the VAMP engaging with the tSNARE is 

reduced and thus the estimation of the number of VAMPs being required for 

fusion may be higher. The protein composition of GSV is largely unknown, and 

the requirement for lateral diffusion of vSNAREs is also unknown. Although this 

has not been examined, it is possible that one role of docking factors might be 

to help to orientate the GSV so the vSNARE is in the correct position to form 

complexes with tSNAREs, thus allowing fusion to occur with lower vSNARE 

densities.  

Other studies examining the number of SNARE complexes required for membrane 

fusion have done so in vivo by blocking SNARE complex formation. These studies 

have used titration assays to block fusion with mutant SNAP25 (Mohrmann et al. 

2010), selective proteolysis of SNAP25 (Keller et al. 2004; Montecucco et al. 

2005) and VAMP2 peptides (Hua & Scheller 2001), and found between 1 and 15 

SNARE complexes are required for fusion.  

It has also been noted that the vesicle size and membrane curvature may be 

important when determining the number of SNARE proteins required to facilitate 

membrane fusion events. The critical vSNARE density below which liposome 

fusion cannot occur is 1.5 to 3 times larger for large (80nm diameter) liposomes 

than small liposomes (25nm diameter) (Hernandez et al. 2014). The total 

number of vSNARE proteins required on a small liposome for fusion to occur was 

approximately three. In contrast, between 23 to 30 vSNAREs were required to 

fuse large liposomes. It must be noted that this is the total number of vSNAREs 

on the entire liposome not the local concentration of vSNAREs at the contact 

site. Nevertheless, GSVs are small (~50nm in diameter), this is somewhere 

between the two sizes of vesicle assessed by Hernandez et al. (2014) so this 

would correspond to somewhere around a total of 15 vSNAREs spread around the 

surface area of the vesicle. A vesicle of 50nm diameter has a surface area of 

7.8µm2. Assuming an equal distribution of vSNAREs throughout the vesicle, 15 

vSNAREs in a vesicle of 50nm in diameter would give approximately one vSNARE 

every 500nm2 on the surface of the vesicle. 

Although the studies discussed above have been informative, they have all 

provided estimates on SNARE requirements for fusion based on indirect 

measurements or measurements in vitro. A more direct measure has been 
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provided by Sinha et al. (2011), pHluorin tagged VAMP2 was used to 

quantitatively examine the number of VAMP proteins required for synaptic 

vesicle fusion when wild type VAMP2 was removed and replaced by pHluorin 

VAMP2. The results of these studies suggested that two VAMP2 molecules were 

sufficient for membrane fusion to occur (Sinha et al. 2011).  

On balance there seems to be a general consensus in the literature that around 3 

SNARE complexes are sufficient for fusion. These estimations are not dissimilar 

to the estimations of the numbers of VAMP2 found per GLUT4 molecule made 

above. Calculations based on the copy number and distribution of VAMP2 give 

values of four VAMP2 molecules per GLUT4. If there were one GLUT4 per GSV, 

this would give four VAMP2 molecules per GSV, which may be sufficient to 

facilitate membrane fusion. However, there is some evidence that GSVs contain 

more than one molecule of GLUT4 (Kupriyanova et al. 2002). If this were the 

case then the number of VAMP proteins on a GSV would increase accordingly, 

two molecules of GLUT4 would give 8 of VAMP2 and so on. This brings the 

predicted number of VAMP2 molecules per GSV well into the range of 

estimations of SNARE complex requirements for fusion.  

However these estimations of both SNARE complex requirements for fusion and 

VAMP per GSV, are vastly different to the number of VAMP2 found on synaptic 

vesicles (Takamori et al. 2006). Takamori et al. (2006) found that synaptic 

vesicles contain, on average, 70 copies of VAMP2. This difference may reflect 

differences in the time scale required for these two fusion events. Synaptic 

vesicles must fuse within milliseconds. A high density of VAMP2 may assist in this 

rapid fusion by ensuring that whatever orientation the vesicle is in when it docks 

with the synaptic membrane, there is always a vSNARE available to engage with 

the tSNARE so fusion can occur rapidly. Conversely, compared to synaptic vesicle 

fusion, in GSV fusion with the plasma membrane occurs on within a relatively 

slow time scale. This means there is more time available for either the VAMP to 

diffuse to the docking site and the site of the tSNAREs, or for the vesicle to re-

orientate so the VAMP can engage with the tSNARE complex.  

It must be noted that the calculations of the number of VAMPs per GLUT4 

molecule are based on a few large assumptions. Firstly the calculations assume 

that all the GLUT4, VAMP2 and VAMP3 (and 20% of the VAMP8) present in the 
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GSV peak is actually on GSVs and not on other compartments of similar density 

(for example, other vesicles within the LDM such as trafficking vesicles). 

Secondly, that the VAMPs found in the GSV peak distribute among GLUT4 

containing vesicles evenly.  

4.5 Conclusions  

In summary the data presented in this chapter supports previous suggestions that 

VAMP2 is the predominant VAMP on GSVs. The data also indicates that under 

conditions of VAMP2 loss, compensation seen by VAMP3 may be due to 

translocation from the ERC pool of GLUT4. It has also been demonstarated that 

athough VAMP8 is not selectively sorted onto GLUT4 containing membranes it 

may be present on GSVs in sufficient numbers to allow for the translocation of 

GLUT4 to the plasma membrane. Thus data presented here explains possible 

mechanisms for plasticity amongst the vSNAREs VAMP2, 3 and 8 in GLUT4 

translocation to the plasma membrane.  



   
 

Chapter 5  - Interactions between VAMPs and 
syntaxin 16 and mVps45. 
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5.1 Introduction  

5.1.1 tSNAREs involved in recycling of GLUT4 

As described, GLUT4 traffics from the plasma membrane to early endosomes. 

From here approximately half of the total cellular GLUT4 is then trafficked into 

specialised insulin sensitive GSVs (Livingstone, James, Rice, Hanpeter, & Gould, 

1996; Martin et al., 1996; Figure 4-11). GLUT4 traffics into GSVs via a subdomain 

of the TGN that is enriched in both syntaxin 6 and 16, but lacks TGN38 (Martin et 

al. 1994; Shewan et al. 2003). Syntaxin 6 and 16 are both present on isolated 

GLUT4 containing membranes and translocate to the plasma membrane in 

response to insulin (Perera et al. 2003; Shewan et al. 2003). This suggests that 

both syntaxin 6 and 16 are components of GSVs. Indeed, iodixanol gradient 

analysis separating out the specialised insulin-sensitive GSV pool from GLUT4 

containing membranes in the endosomal recycling pool, has shown that syntaxin 

6 and 16 both co-sediment with GSVs (Perera et al. 2003). The localisation of 

these tSNAREs with GSVs indicates that syntaxin 6 and 16 may be essential 

components of the GLUT4 recycling machinery involved in the formation of 

GSVs.  

Roles for syntaxin 6 and 16 in the recycling of GLUT4 have been uncovered 

through experiments that have expressed the cytosolic portions of these proteins 

and examined GLUT4 trafficking. Cytoplasmic portions of SNARE proteins act as 

competitive inhibitors of their endogenous counterparts by forming dead-end 

complexes with their SNARE partners. Expression of the cytosolic domain of 

syntaxin 6 increases basal glucose uptake (Perera et al. 2003). Similarly, 

expression of the syntaxin 16 cytosolic domain reduces insulin simulated glucose 

transport (Proctor et al. 2006). Furthermore, expression of the cytosolic domains 

of either syntaxin 6 or 16 significantly reduces the internalisation of GLUT4 

following insulin withdrawal (Perera et al. 2003; Proctor et al. 2006). Taken 

together these data suggest that a SNARE complex that includes both syntaxin 6 

and 16 may function in the formation of insulin sensitive GSVs.  

However, as yet the vSNARE involved in this SNARE complex has remained 

undefined. Syntaxin 6 has been shown to have multiple SNARE partners. It has 

been implicated in multiple SNARE complexes and membrane trafficking events, 
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ranging from secretory granule maturation to exocytosis (Wendler & Tooze 

2001).This raises the possibility that the effects of disruption of syntaxin 6 

activity on GLUT4 trafficking may not be via its involvement with syntaxin 16, 

but through involvement with other SNARE complexes. With this in mind, 

although there is no direct evidence that syntaxin 6 acts with syntaxin 16 to 

mediate the trafficking of GLUT4 into GSVs, the available data suggests that this 

is likely. It has been shown in HeLa cells that a tSNARE complex made up of 

syntaxin 6/16 and Vti1a is required for the retrograde trafficking of the Shiga 

toxin from the early/recycling endosome to the TGN (Mallard et al. 2002). This 

trafficking pathway is the proposed route that GLUT4 takes en route to GSVs 

(Chapter 1, Figure 1-3). Mallard et al. (2002) found that inhibition of the activity 

of syntaxin 6, 16 or Vti1a prevented the passage of the Shiga toxin from the 

early/recycling endosome to the TGN. To determine if syntaxin 6 and 16 were 

acting in the same step as part of a complex, they determined whether the 

effects of the syntaxin 6 and 16 inhibition were additive and whether syntaxin 6 

and 16 co-immunoprecipitated with one another. Through these methods, they 

determined that syntaxin 6 and 16, and Vti1a, act as a tSNARE complex to traffic 

the Shiga toxin from the early/recycling endosome to the TGN. It seems likely 

this tSNARE complex also acts in retrograde GLUT4 trafficking in 3T3 L1 

adipocytes. The phenotypes seen with depletion or inhibition of either syntaxin 6 

or 16 on GLUT4 localisation in this cell type are consistent with impaired 

retrograde trafficking of GLUT4 from the endosomal pool into GSVs (Perera et al. 

2003; Proctor et al. 2006). Therefore, although it is possible that syntaxin 6 is 

involved in the trafficking of GLUT4 in a manner independent of syntaxin 16, the 

available data suggests that syntaxin 6 and 16 act together to form a tSNARE 

complex that is required for the trafficking of GLUT4 from the endosomal 

compartment into GSVs.    

Although, as discussed in Chapter 3, SNARE protein binding seems to be highly 

promiscuous in vitro, in vivo measurements of SNARE protein binding partners 

provides a valuable starting point in determining the SNARE proteins involved in 

fusion events. Syntaxin 6 and 16 have been identified as important in the 

trafficking of GLUT4 into GSVs (Perera et al. 2003; Shewan et al. 2003; Proctor 

et al. 2006), and it is likely they do so by acting in the same complex. The 

vSNARE involved in this membrane fusion event has not yet been defined. 
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Syntaxin 6 has multiple vSNARE partners including VAMPs 2, 3, 4, 7 and 8 

(Wendler & Tooze 2001). Furthermore, the tSNARE complex made up of syntaxin 

6 and 16 interacts with both VAMPs 3 and 4 in HeLa cells (Mallard et al. 2002). As 

well as performing co-immunoprecipitation experiments to determine the 

tSNARE complex involved in retrograde trafficking, Mallard et al. (2002) 

preformed co-immunoprecipitation experiments to determine the vSNARE 

involved in this pathway. They found that syntaxins 6 and 16, as well as Vti1a 

could co-immunoprecipitate VAMP3 and VAMP4, however VAMP4 did not co-

immunoprecipitate VAMP3. This suggests that both VAMP3 and 4 independently 

form complexes with the tSNARE made up of syntaxin 6/16/Vti1a (Mallard et al. 

2002). Therefore, either VAMP3 or VAMP4 could be the vSNARE with the tSNARE 

required for the trafficking of GLUT4 from endosomes to the TGN and into GSVs. 

As yet there is no evidence implicating VAMP3 in the formation of GSVs. 

However, it is involved in endosomal recycling. VAMP3 is found on GLUT4 

vesicles within the endosomal recycling system (Martin et al. 1996), and the 

transferrin receptor localises to VAMP3 positive endosomal vesicles (Daro et al. 

1996). Since GLUT4 traffics through the endosomal pool en route to GSVs, it is 

plausible that VAMP3 is involved in the membrane fusion event that facilitates 

this transport step. Furthermore, in HeLa cells VAMP3 acts with syntaxin 6 to 

traffic internalised membrane receptors from the endosomal pool to the TGN 

(Riggs et al. 2012).  

In contrast to this, there is evidence that VAMP4 plays a role in GSV formation 

(Williams & Pessin 2008). Similar to the effect of inhibition of endogenous 

syntaxin 6, VAMP4 depletion leads to increased basal recycling of GLUT4, which 

is suggestive of impaired trafficking of GLUT4 into GSVs. However, VAMP4 

depletion does not impair the insulin-stimulated translocation of GLUT4 to the 

plasma membrane (Williams & Pessin 2008). This GLUT4 translocation in 

response to insulin could be due to increased recycling of the enlarged 

endosomal compartment. An alternative explanation is that under conditions of 

VAMP4 depletion, some GLUT4 may still be accessible to GSVs. This research 

highlights that the vSNARE involved in the formation of GSVs, alongside the 

tSNAREs syntaxin 6 and 16, remains unclear. Likely candidates include VAMPs 3 

and 4 as these have been identified to form complexes with syntaxins 6 and 16, 
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and have been implicated in trafficking from the endosomal system to the TGN 

(Mallard et al. 2002; Riggs et al. 2012). 

5.1.2 SM proteins in intracellular sorting of GLUT4 

Although SNARE proteins are the minimal membrane fusion machinery, there are 

many regulatory proteins that also act in the fusion process. One class of such 

proteins is the Sec-1/Munc-18 like (SM) protein family (see section 1-5). SM 

proteins regulate membrane fusion events through interactions with their 

cognate SNARE proteins. The cognate SM protein of syntaxin 16 is mVps45. The 

importance of the SNARE complex made up of syntaxin 16 and the SM protein 

mVps45 in the recycling of GLUT4 is highlighted by the finding that depleting 3T3 

L1 adipocytes of mVps45 impairs the sorting of GLUT4 into GSVs (Roccisana et al. 

2013).  

Vps45 regulates the levels of its cognate SNARE partners in mammals and in 

yeast. In yeast lacking Vps45p, there is a reduction in the levels of the yeast 

syntaxin (Tlg2) and the yeast vSNARE (Snc2) (Shanks et al. 2012). In 3T3 L1 

adipocytes, mVps45 depletion reduces levels of syntaxin 16 (Roccisana et al. 

2013). However, the effect of mVps45 depletion on the levels of vSNAREs in 3T3 

L1 adipocytes is unknown.  

5.2 Aims 

Both the tSNARE syntaxin 16 and its regulatory SM protein mVps45 have been 

implicated in the intracellular sorting of GLUT4 into GSVs. To uncover the 

vSNAREs involved in this process, firstly, the effect of mVps45 depletion on VAMP 

protein levels will be determined, and secondly, the interactions between both 

mVps45 and syntaxin 16 with VAMP proteins will be characterised. Interactions 

will be characterised through in vitro pull down experiments and co-

immunoprecipitation experiments. 
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5.3 Results  

5.3.1 Effect of mVps45 depletion on VAMP protein levels 

Whole cell lysates from 3T3 L1 adipocytes treated with scrambled shRNA, or 

shRNA targeted against mVps45 were provided by Dr. Roccisana (Roccisana et al. 

2013). These were subjected to immunoblotting with antibodies against VAMP 

proteins (Figure 5-1 A). Values obtained for the intensity of each band were 

adjusted for protein loading by comparison with GAPDH, and normalised against 

values obtained from cells treated with scrambled shRNA (Figure 5-1 B). As 

previously reported mVps45 knock down significantly reduced the levels of 

GLUT4 (Roccisana et al. 2013). mVps45 knock down also significantly reduced 

the levels of both VAMP2 and 4, but had no specific effect on any of the other 

VAMPs (Figure 5-1).  

Reducing the cellular content of Vps45 either in mammalian or yeast cells results 

in reductions in the levels of its cognate syntaxin, syntaxin 16/Tlg2 (Bryant & 

James 2001; Roccisana et al. 2013). In yeast, a reduction in Vps45p leads to 

increased proteosomal degradation of Tlg2 (Bryant & James 2001). In yeast, 

Vps45p depletion also reduces the level of Snc2, the cognate vSNARE of the 

syntaxin Tlg2 (Shanks et al. 2012). Therefore, it is possible that, like in yeast, 

the reductions in VAMP2 and 4 could occur as a consequence of reduced mVps45 

levels. However, VAMP2 is also found on GSVs, and mVps45 knock down reduces 

the sorting of GLUT4 into GSVs (Roccisana et al. 2013). Therefore, the reduction 

in VAMP2 could also be indirect, through a reduction in the number of GSVs. To 

examine the mechanisms behind the reductions in VAMP proteins seen with 

mVps45 depletion, the ability of mVps45 to bind directly to VAMP proteins has 

been assessed (Figure 5-2). It was hypothesised that, if the reduction in the 

vSNARE protein levels was due to destabilisation of the SNARE complex or 

mVps45 depletion per se, the vSNARE would interact with mVps45. Conversely, if 

the reduction were indirect, due to a reduction in the number of GSVs, then the 

vSNARE would not interact with mVps45.  
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Figure 5-1: mVps45 Knock-down reduces the levels of VAMPs 2 and 4 in 3T3 L1 adipocytes. 
Knock-down of mVps45 was achieved through infection with lentivirus containing shRNA 
constructs against mVps45 or scrambled control sequence. mVps45, GLUT4 and VAMP protein 
levels were determined by SDS-PAGE followed by immunoblotting with the indicated antibody. 
Shown are immunoblots from a typical experiment following treatment with control shRNA (SCR) or 
shRNA targeting mVps45 (mVps45) (A). Immunoblot signals were normalised to GAPDH signals 
obtained from the same gel, and values from mVps45 treated 3T3 L1 adipocytes were compared to 
SCR (B). Values are mean ± SD of three separate experiments. Values were compared using a 
Students t-test * = p<0.05, ** = p<0.01 vs scrambled control.  
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5.3.2 Interactions between mVps45 and VAMP proteins  

Since mVps45 knock down reduces the cellular levels of VAMPs 2 and 4 (Figure 5-

1), the hypothesis that mVps45 interacts directly with VAMPs 2 and/or 4 was 

tested. This was achieved by performing pull down experiments with GST-VAMPs 

bound to a solid phase incubated with yeast lysates lacking Vps45p, but 

expressing epitope tagged mVps45. Despite the mVps45 being functional and 

able to bind syntaxin 16 (Roccisana 2010 p132; Figure 5-2), no detectable 

interaction between mVps45 and any of the VAMP proteins was observed (Figure 

5-2).  

 
 

 

Figure 5-2: mVps45 does not directly interact with any of the VAMP proteins but does 
interact with syntaxin 16. 
5µg recombinant tagged protein was bound to the appropriate beads (Glutathione-Sepharose or 
IgG beads). Beads and associated proteins were incubated with equal volumes of yeast lysate 
expressing HA-tagged mVps45 over-night as described (section 2.3.7.3). Beads and associated 
material were recovered by centrifugation, washed in yeast cell lysis buffer and bound protein was 
eluted in 2xLSB. 75% of the elute was subjected to SDS-PAGE and stained with Coomassie 
Brilliant Blue to examine the amounts of each protein bound to beads, arrow identifies syntaxin 16 
(A). 25% of the elute was subjected to SDS-PAGE followed by immunoblotting with anti-HA tag to 
determine the presence of mVps45 (B), due to the high levels of interaction seen between mVps45 
and syntaxin 16, 5% of this elute was examined. Shown are data from a typical experiment that 
was repeated 3 times using 3 separate batches of yeast lysate. Molecular marker sizes are shown 
in kDa. 
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The finding that none of the VAMPs directly interact with mVps45 does not rule 

out the possibility that the reduction in levels of VAMPs 2 or 4 is due to a 

destabilisation of a SNARE complex formed with syntaxin 16. These VAMPs may 

directly interact with syntaxin 16. In this situation, VAMP2 or 4 protein levels 

would be reduced when mVps45 levels are depleted as a consequence of 

increased syntaxin 16 degradation. Therefore, interactions between VAMP 

proteins and syntaxin 16 were examined.  

5.3.3 Interactions between syntaxin 16 and VAMP proteins  

Initially, interactions between syntaxin 16 and VAMP proteins were examined in 

vitro. Experiments to pull out GST tagged VAMP proteins from bacterial lysates 

using recombinantly expressed syntaxin 16 immobilised to a solid phase 

identified the ability of syntaxin 16 to interact with VAMPs 1, 2, 4, 7 and 8, but 

not VAMPs 3 or 5 (Figure 5-3; Data produced by Minttu Virolainen under my 

supervision).   

This approach has a number of limitations. The expression levels of the VAMP 

proteins in the bacterial lysates differed, and there was no antibody available 

that could clearly detect the GST tag in the lysates (or the material bound to 

syntaxin 16). This meant that it was not possible to quantify the levels of 

interaction between syntaxin 16 and these VAMP proteins.  

Therefore, the reciprocal approach was used. GST-VAMPs were immobilised to a 

solid phase and incubated with purified recombinantly expressed syntaxin 16. 

The results of a representative experiment are shown in Figure 5-4. 

Unfortunately, using this approach it was not possible to abolish non-specific 

binding between syntaxin 16 and GST, despite trying multiple adaptations of the 

protocol.  

Initial experiments were carried out using syntaxin 16 tagged with protein A at 

its C terminus. Under these conditions the protein A tag interacted strongly with 

GST. Therefore, in subsequent experiments, the protein A tag was removed by 

thrombin cleavage (Figure 5-5). However, this did not reduce the binding of 

syntaxin 16 to GST. To address this, a number of different wash buffers and 

binding conditions were used. These included varying the incubation time, 
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varying the molar ratios of the binding partners, varying the salt and detergent 

concentrations, and including various blocking reagents in the binding and wash 

buffers. None of these alterations to the protocol had any significant impact on 

the interactions observed between GST and syntaxin 16. Therefore, this method 

of determining interactions could not be used.  

Figure 5-3: Protein A tagged syntaxin 16 can pull GST-VAMPs out of bacterial lysate 
Syntaxin-16 was  bound to IgG beads and incubated with 1ml of bacterial lysate expressing the 
indicated GST tagged VAMP protein for 2 hours at 4ºC with rotation. Beads and associated 
material were recovered by centrifugation, washed in PBS and eluted in 2xLSB. The elute was 
subjected to SDS-PAGE and stained with Coomassie Brilliant Blue, and both heavy and light 
chains are marked. This data was produced by Minttu Virolainen whilst completing a placement 
project under my supervision.  
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Figure 5-4: Interactions between GST-VAMPs and cleaved syntaxin 16 
0.15µM GST alone or GST-VAMP proteins were immobilised on Glutathione-Sepharose beads. 
Beads and associated proteins were incubated with 10x molar excess of recombinant, thrombin 
cleaved, syntaxin 16 for the indicated time points (0, 10, 30 minutes). Beads and associated 
material were recovered by centrifugation, washed in PBST and bound protein was eluted in 
2xLSB as described (section 2.3.7.4). Samples were subjected to SDS-PAGE followed by staining 
with Coomassie Brilliant Blue (A) or immunoblotting with anti-syntaxin16 (B). Shown are data from 
a typical experiment. Experiments were repeated using a variety of wash buffer and incubation 
times in attempts to remove the non-specific interactions seen between GST and syntaxin 16 (lane 
2), without success. 
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Figure 5-5: Purification and thrombin cleavage of protein A tagged syntaxin 16. 
Protein A-tagged syntaxin 16 was expressed in BL21 DE3 cells, purified and the protein A tag 
thrombin cleaved as described (section 2.3.3). Shown is a representative experiment of analysis of 
purified, thrombin cleaved syntaxin 16. Protein A tagged syntaxin 4 bound to IgG beads (Pre), 
thrombin cleaved syntaxin 16 (diluted 1:2 and 1:20) and any protein that remained bound to IgG 
beads post thrombin cleavage (Post) was analysed by SDS-PAGE and stained with Coomassie 
Brilliant Blue alongside known amounts of BSA. Shown are data from a typical experiment, 
molecular marker sizes are shown in kDa. 

 

As discussed in section 1.3.1, SNARE complexes are made up of four SNARE 

domains. A SNARE complex contains a Qa, Qb, Qc, and an R SNARE. It was 

therefore hypothesised that the binding between the tSNARE syntaxin 16 and the 

GST-VAMPs may be more specific when a SNARE domain of each type was 

incubated. Therefore, syntaxin 16 was combined with, SNAP23 and GST-VAMP, or 

GST alone. In this situation syntaxin 16 is the Qa SNARE, the VAMP is the R SNARE 

and SNAP23 provides the Qb and Qc SNARE domains. Under these conditions, 

selective SDS-resistant complex formation was seen. SDS-resistant SNARE 

complexes formed with all the VAMPs, but not GST (Figure 5-6). This provides 

further evidence of the promiscuity of SNARE interactions in vitro (Figure 5-6;3-

3; discussed in more detail in Chapter 3, section 3.6.2) but does not give any 

indication as to the origin of the reduction in VAMP2 and 4 levels in cells 

depleted of mVps45. Therefore, the interactions between syntaxin 16 and VAMP 

proteins in the cellular environment were analysed through co-

immunoprecipitation experiments. Representative immunoblots of syntaxin 16 

co-immunoprecipitation experiments are displayed in Figure 5-7. These 

experiments show VAMP4, but not any of the other VAMPs, co-

immunoprecipitate with syntaxin 16.  
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Figure 5-6: VAMP proteins form SDS-resistant SNARE complexes with the syntaxin 16 and 
SNAP23 
Equimolar (approximately 4µM) amounts of syntaxin 16, His-SNAP23, and GST tagged VAMP (or 
GST alone) were combined, immediately mixed with 5xLSB and heated to 95ºC, or incubated for 2 
hours at 4ºC with rotation before being mixed with 5xLSB and heated to 95ºC. Samples were 
subjected to SDS-PAGE, followed by staining with Coomassie Brilliant Blue (A) and 
immunoblotting with anti-SNAP23 (B), anti-syntaxin 16 (C), and the appropriate VAMP antibodies 
(D). Shown are data from a typical experiment. Molecular marker sizes are shown in kDa. 
Molecular weights of single recombinant proteins: His-SNAP23 ~ 25kDa, syntaxin 16 ~35kDa, GST 
~ 25 kDa GST-VAMP2 ~32kDa, GST-VAMP3 ~30kDa. VAMP4 runs as multiple bands between 25 
and 37kDa, GST-VAMP5 runs as multiple bands between 25 and 30kDa, GST-VAMP7 ~ 45 kDa, 
GST-VAMP8 ~32 kDa. The SNARE complex runs > 110 kDa (*). 
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Figure 5-7: Immunoprecipitation of syntaxin 16 and co-immunoprecipitation of VAMP 
proteins from basal and insulin-stimulated 3T3 L1 adipocytes. 
Syntaxin 16 was immunoprecipitated from serum starved 3T3 L1 adipocytes treated with 1mM 
NEM and with (insulin) or without (basal) 1µM insulin, as described (section 2.8). Proteins were 
immunoprecipitated from 1.5mg 3T3 L1 lysate (lysate) with 5µl anti syntaxin 16 (Sx16) or random 
rabbit IgG (IgG). Immunoprecipitated proteins and associated material was isolated by 
centrifugation and unbound material retained (U). Bound material (B) was washed and eluted in 
2xLSB. Samples were subjected to SDS-PAGE and immunoblotting with anti-syntaxin 16 and anti-
VAMP antibodies. Each immunoblot shown is the output from the IP of 1.5mg 3T3 L1 lysate. 
Samples from basal and insulin-stimulated cells were subjected to immunoblotting on the same 
membrane and the irrelevant lanes excised. The original image is shown in the appendix 
(Appendix; Figure 8-1). Shown are data from a typical experiment, repeated >3 times. 
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5.4 Discussion  

The tSNARE syntaxin 16 is involved in the sorting of GLUT4 into GSVs, and is 

regulated by the SM protein mVps45. Depletion of mVps45 levels in 3T3 L1 

adipocytes also depletes syntaxin 16 and perturbs the entry of GLUT4 into GSVs 

(Roccisana et al. 2013). Here it has been demonstrated that mVps45 knock down 

selectively depletes cells of VAMPs 2 and 4, but not of the other VAMPs.  

Both VAMP3 and 4 are known to interact with syntaxin 16 (Mallard et al. 2002) 

and thus could be involved, with syntaxin 16, in the recycling of GLUT4. 

However, no role for VAMP3 has yet been proposed in this process and VAMP3 

levels are unaffected by mVps45 knockdown (Figure 5-1). Together, these 

findings imply that VAMP3 is not involved in the recycling of GLUT4 through the 

TGN and into GSVs. This idea is strengthened by the findings of co-

immunoprecipitation experiments showing that, unlike in HeLa cells, in 3T3 L1 

adipocytes VAMP3 does not interact with syntaxin 16. In contrast to VAMP3, roles 

for both VAMP2 and 4 in the formation of GSVs have been proposed (Williams & 

Pessin 2008).  

Williams and Pessin (2008) used RNA interference technologies to deplete 

adipocytes of VAMPs 2 or 4, and proposed that VAMP4 is required for the entry of 

newly synthesised GLUT4 into GSVs. They examined the requirements for VAMP4 

in the formation of insulin-sensitive GLUT4 vesicles from newly synthesised 

GLUT4 by exposing cells to VAMP4 siRNA prior to the expression of myc-GLUT4-

GFP. Under these conditions, but not when myc-GLUT4-GFP was expressed prior 

to VAMP4 depletion, there was significantly more GLUT4 present in the plasma 

membrane of basal cells. This is suggestive of a situation where GLUT4 cannot 

enter GSVs and is therefore trafficked back into the ERC. However, under these 

conditions, although there was a reduction in the fold increase in GLUT4 in the 

plasma membrane with insulin-stimulation, the absolute level of GLUT4 

translocation was unchanged compared to control cells. This led Williams and 

Pessin (2008) to propose that under conditions of VAMP4 depletion, some GLUT4 

is still able to gain access to the GSV compartment. Williams and Pessin (2008) 

also observed that insulin stimulated GLUT4 translocation was only impaired 

when VAMP2 was depleted. These data were interpreted to mean that both 

VAMP2 and 4 are required for sorting of GLUT4 into GSVs, but they act on 
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different sources of GLUT4. They proposed that VAMP2 is required for the 

cycling of GLUT4 into GSVs, and that VAMP4 is required for the entry of newly 

synthesised GLUT4 into GSVs (Williams & Pessin 2008). However, this explanation 

does not take into account a number of factors. Firstly, the well documented 

role that VAMP2 plays in the fusion of GSVs with the plasma membrane in 

response to insulin (Cheatham et al. 1996; Martin et al. 1998; Kawaguchi et al. 

2010). Since VAMP2 is involved in the fusion of GLUT4 with the plasma 

membrane, VAMP2 depletion would be expected to impair the insulin response 

even if GSVs were fully formed. Secondly, if VAMP2 were required for GSV 

formation, depletion of this isoform would be expected to have some effect on 

the basal distribution of GLUT4. However, this was not observed. Finally, it is 

entirely feasible the insulin-response seen following VAMP4 depletion may have 

been a result of insulin-stimulation of the enlarged endosomal pool of GLUT4, 

and not due to GSVs still being formed following VAMP4 depletion. Therefore, to 

examine the role VAMP2 and 4 play in the formation of GSVs, their interactions 

with the tSNARE syntaxin 16 and its SM protein mVps45 were examined. These 

proteins have been implicated in the trafficking of GLUT4 from the endosomal 

system into GSVs (Perera et al. 2003; Shewan et al. 2003; Roccisana et al. 2013).  

The reduction in both VAMP2 and 4 levels with mVps45 depletion (Figure 5-1) 

supports a role for these proteins in the formation of GSVs. However, the 

reductions in VAMP2 and 4 could either be direct or indirect. Direct effects 

would occur through the destabilisation of the syntaxin 16 containing SNARE 

complex, and indirect effects through a reduction in the number of GSVs. 

Therefore, the interactions between VAMP proteins and both syntaxin 16 and 

mVps45 were examined. 

Pull down experiments showed that none of the VAMP proteins directly interact 

with mVps45 in yeast lysates. This is despite mVps45 being fully functional and 

able to bind syntaxin 16 (Roccisana 2010 p132; Figure 5-2). This is in discord with 

findings in yeast, where Vps45p directly binds to the vSNARE Snc2 (Carpp et al. 

2006) and findings with another SM protein, Munc18c, which directly binds 

VAMP2 in vitro (Brandie et al. 2008). It is of course possible, that there were 

interactions between mVps45 and VAMP proteins that were not detectable. 

However, this is unlikely as the interaction observed with syntaxin 16 and 

mVps45 was substantial. In Figure 5-2, four times more VAMP bound material 
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was examined than syntaxin 16 bound material. Despite this, no interaction was 

detected between mVps45 and the VAMPs. There is also the possibility that the 

recombinantly expressed VAMP proteins were not-functional. Again this is 

unlikely as they were capable of forming SDS resistant complexes with both 

syntaxin 4 and 16 (Figure 5-6; Figure 3-3).  

In bacterial lysates, syntaxin 16 interacts with VAMPs 1, 2, 4, 7 and 8 (Figure 5-

3). Stable SDS resistant SNARE complexes form between all VAMP proteins and 

syntaxin 16 when all four classes of SNARE protein are present (Qa, Qb, Qc and R 

SNAREs) (Figure 5-6). This observation is not surprising, as it has been well 

established that SNARE complex formation is highly promiscuous (discussed in 

more detail in Chapter 3, section 3.6.2). However, in the cellular environment 

syntaxin 16 only interacts with VAMP4. There is no detectable interaction 

between syntaxin 16 and VAMP2. It cannot be ruled out that interactions 

between VAMP2 and syntaxin 16 are present, but not detectable. This seems 

unlikely as in the same experiments interactions between VAMP2 and syntaxin 4 

were detectable (Appendix, Figure 8-1). For a discussion of the limitations of the 

co-immunoprecipitation approach see Chapter 3, section 3.6.1. 

Therefore, this research demonstrates for the first time, that in vivo, VAMP4 but 

not VAMP2 interacts with syntaxin 16. This data, alongside previous reports 

highlighting that VAMP2, but not VAMP4 is present on GSVs (Larance et al. 2005) 

suggests that the reduction in VAMP2 seen with mVps45 depletion is an indirect 

result, and due to a reduction in the number of GSVs. Furthermore, the finding 

that VAMP2 cannot be found to interact with syntaxin 16 implies either it is not 

involved in the formation of GSVs, or that if it is involved this is via a tSNARE 

complex that does not contain syntaxin 16.  

5.5 Conclusion  

Syntaxin 6, 16 and mVps45 are all involved in the formation of GSVs (Perera et 

al. 2003; Shewan et al. 2003; Proctor et al. 2006; Roccisana et al. 2013). The 

experiments in this Chapter aimed to dissect the vSNARE requirements for 

GLUT4 sorting into GSVs by examining interactions between VAMP proteins, 

mVps45 and syntaxin 16. Previous research has suggested roles for VAMPs 2, 3 

and 4 in this trafficking step. mVps45 depletion reduces both VAMP2 and VAMP4 
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levels, however VAMP4 but not VAMPs 2 or 3 interact with syntaxin 16. This 

supports previous findings that have implicated VAMP4 in the intracellular 

trafficking of GLUT4 from endosomes to the TGN and in the formation of GSVs 

(Mallard et al. 2002; Williams & Pessin 2008).  

 

 



   
 

Chapter 6  - Knock down of VAMP proteins in 
mammalian cells.  
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6.1 Introduction  

Although many studies have identified VAMP2 as being required for the delivery 

of GLUT4 to the cell surface in response to insulin, the role of each VAMP 

protein in the intracellular trafficking of GLUT4 is less clear. To date, only one 

study has systematically examined the role of each VAMP protein in GLUT4 

sorting in adipocytes (Williams & Pessin 2008). This study depleted 3T3 L1 

adipocytes of each VAMP isoform using siRNA and examined GLUT4 trafficking by 

following the translocation of the GLUT4 reporter protein, myc-GLUT4-GFP. 

Their findings suggested a role for VAMP4 in the trafficking of newly synthesised 

GLUT4 into the insulin sensitive pool. Depletion of VAMP4 in cells already 

expressing myc-GLUT4-GFP had no significant effect on GLUT4 trafficking. 

However, depletion of VAMP4 prior to the expression of myc-GLUT4-GFP 

significantly increased the presence of GLUT4 in the plasma membrane of 

untreated cells. This is indicative of a situation where GLUT4 cannot be sorted 

into the insulin-sensitive compartment (GSVs) and is trafficked into the 

endosomal recycling pool. Despite the decreased sorting of GLUT4 in GSVs, 

insulin still increased GLUT4 at the cell surface. Although the absolute value of 

GLUT4 at the cell surface was similar to control cells, the fold-change in cell 

surface GLUT4 was reduced. Williams and Pessin (2008) interpreted this to mean 

that in the absence of VAMP4, a proportion of GLUT4 is still sorted into GSVs. 

There is however another explanation. This is that VAMP4 knockdown prevents 

entry of GLUT4 into GSVs, and the increase in GLUT4 at the cell surface seen 

with insulin-stimulation is due to increased traffic through the endosomal pool. 

In line with the role of VAMP2 in insulin-stimulated GLUT4 translocation (see 

Chapter 3; Chapter 4), Williams and Pessin (2008) found that insulin-stimulated 

increases in myc-GLUT4-GFP appearance in the plasma membrane was only 

impaired when VAMP2 was depleted. They suggested that the attenuated insulin 

response may be because VAMP2 is required for the recycling of GLUT4 into 

GSVs. However, this was not directly tested.  

Williams and Pessin (2008) also examined the role each VAMP plays in GLUT4 

endocytosis. To do this, VAMP proteins were selectively depleted and the 

internalisation of myc-GLUT4-GFP following insulin removal was measured. Myc-

GLUT4-GFP internalisation was measured through the internalisation of anti-myc 
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antibodies. VAMP8 depletion reduced the internalisation of myc-GLUT4-GFP 

following insulin-stimulation. Therefore, VAMP8 was suggested to be involved in 

the endocytosis of GLUT4 from the plasma membrane. That the effect of VAMP8 

knock down was not apparent prior to insulin stimulation is possibly because 

under basal conditions, there is low traffic through the system. Since this VAMP 

isoform is expressed at high levels (Chapter 4, Figure 4-6), the depletion of 

VAMP8 was unlikely to be complete. So when traffic through the system is low, 

the remaining VAMP8 may be able to fulfil the requirements for endocytosis. It is 

only when endocytosis rates are elevated and there is pressure on the system its 

role becomes apparent. 

In summary, data collected using RNAi in 3T3 L1 adipocytes reveals that VAMP4 

and VAMP2 may be involved in the trafficking of GLUT4 into GSVs. However, 

there are a few questions that remain to be answered and this data must be 

independently replicated. Therefore, a similar approach to explore the roles of 

these VAMP proteins further has been taken here. Although the approach is 

broadly similar, alterations have been made. The first is in the GLUT4 

transporter used and the second in the cell type studied.  

The study discussed above utilised a myc-GLUT4-GFP reporter, here a HA-GLUT4-

GFP construct has been used. This HA-GLUT4-GFP construct contains a HA tag in 

the first exofacial loop and a GFP tag at the C terminus. This allows the 

trafficking of GLUT4 to the cell surface to be examined in a quantitative 

manner. The HA-GLUT4-GFP reporter has been thoroughly characterised and 

shown to traffic in an identical manner to endogenous GLUT4 (Lampson et al. 

2000; Martin et al. 2006). Although it is likely that the myc-GLUT4-GFP 

transporter used in previous studies also traffics in a similar manner as 

endogenous GLUT4, this has not been extensively examined. The other 

alteration here is in the cell type used, as previous studies have used 3T3 L1 

adipocytes. 3T3 L1 adipocytes are insulin-sensitive and express endogenous 

GLUT4. This makes them a good model to study insulin-responsiveness. However, 

it may also cause problems, particularly when GLUT4 reporter proteins (such as 

HA-GLUT4-GFP) are introduced on top of endogenous GLUT4, as this may lead to 

over-expression artefacts and subsequent perturbation in trafficking pathways. 

This overexpression may cause the system to over-load and force the cell to 

employ 'extra' pathways to sort GLUT4. Therefore, HeLa cells have been used 
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here. The benefits and caveats of using these are discussed in detail in section 

6.1.3. Briefly, HeLa cells have been shown to be insulin-sensitive and seem to 

contain the machinery required to form GSVs.  

6.1.1 Use of RNAi 

Previous studies have utilised RNA interference to deplete cells of proteins and 

examine GLUT4 trafficking (Williams & Pessin 2008). RNA interference (RNAi) is a 

widely used method to silence gene expression. Short interfering RNA (siRNA) 

sequences can be transfected into cells, where they result in specific protein 

knock down (Elbashir et al. 2001). siRNAs are between 21 and 23 nucleotides 

long, double stranded RNA duplexes. siRNAs are transfected into cells either 

chemically or through electroporation. Once in the cytoplasm they are 

incorporated into the RNA inducing silencing complex (RISC) where they unwind. 

The antisense strand then guides the RISC complex to the target mRNA which is 

cleaved. In mammalian cells, siRNAs are not replicated meaning their 

functionality is limited by their transient nature. For more prolonged RNAi, DNA-

vector mediated RNAi systems can be used. In these systems, DNA is transcribed 

into siRNA by RNA polymerase III. The siRNA double strand is usually expressed as 

a sense and antisense strand from two promoters. These strands come together 

to form a siRNA molecule. Alternatively, a single promoter can be used to 

express a single stranded RNA that folds into a hairpin structure (shRNA). shRNA 

molecules are then processed by members of the Dicer family of RNase III 

enzymes to produce miRNAs (microRNAs). These short RNA sequences bind to 

complementary sites on mRNA, repressing mRNA translation and protein 

synthesis (Dykxhoorn & Lieberman 2005).  

6.1.2 Studying GLUT4 trafficking using RNAi 

Traditionally, studies examining the role of proteins in GLUT4 trafficking and 

insulin-stimulation have done so in adipose and muscle cell lines. These cell lines 

are advantageous because they express GLUT4 and are insulin-sensitive. 

However, there are some limitations with these cell lines, particularly when 

studying the effect of depletion of proteins through RNAi interference. When 

studying any biological pathway through RNAi interference, it is important that 

the transfection of cells is both consistent across the population and 
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reproducible. This is often a problem when using 3T3 L1 adipocytes as they are 

typically difficult to transfect. Indeed, initial studies in this cell line using 

previously published siRNA sequences (Williams & Pessin 2008) produced 

inconsistent knockdown (data not shown). Therefore, the use of other cell lines 

had to be considered. 

6.1.3 HeLa cells 

Any cell lines used in this study needed to be readily transfectable and 

responsive to insulin. A number of cell lines have been used to study insulin 

mediated GLUT4 trafficking, including CHO cells (Wei et al. 1998) and HeLa cells 

(Hernandez et al. 2001). Here, HeLa cells were used. One consideration when 

using HeLa cells to study the trafficking of GLUT4 is that these cells do not 

express GLUT4. This provides a benefit in that there will be no competition for 

trafficking machinery, however, it also presents the possibility that they are not 

insulin-sensitive or that they do not traffic GLUT4 in the same manner as 

adipocytes. However, when GLUT4 is ectopically expressed in cell lines that do 

not express GLUT4, it is present in endosomal vesicles and a subpopulation of 

small vesicles, similar to those seen in adipocytes (Herman et al. 1994). 

Furthermore, HeLa cells respond to insulin (Figure 6-1; Haga et al. 2011). This 

suggests that HeLa cells contain the basic machinery to form insulin sensitive 

GLUT4 compartments and respond to insulin, and are therefore a suitable cell 

line in which to study the trafficking of GLUT4.  

6.1.4 Inducible vector system  

HeLa cells were chosen to study intracellular trafficking and sorting of GLUT4 to 

circumvent some of the issues that occur when studying this process in 

adipocytes or muscle cells. A particular problem with using 3T3 L1 adipocytes is 

inconsistent transfection and RNAi uptake, and thus inconsistent protein knock 

down. One method to overcome this is to transfect cells with RNAi as fibroblasts 

(Roccisana et al. 2013). In this process shRNA constructs are designed and 

packaged into viral particles, which are then used to infect fibroblast cells. This 

results in a population of fibroblast cells that are depleted of the protein of 

interest. The fibroblasts are then differentiated into adipocytes, and can be 

assayed. While this does circumvent some of the problems that commonly occur 
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when trying to transfect differentiated adipocytes, it has a number of 

limitations. One limitation is that since knockdown occurs prior to 

differentiation, there is the possibility that the knock down of proteins may 

impair or alter the differentiation of cells into adipocytes. A system that allows 

the regulated expression of shRNA constructs has been designed. This should 

overcome any problems associated with protein depletion prior to 

differentiation. In this system, a microRNA fragment is placed downstream of a 

tetracycline promoter within a lentiviral vector platform. This platform, termed 

pSLIK (single lentivector for inducible knockdown), has been described 

previously (Shin et al. 2006). Here, the first steps have been taken to develop 

the pSLIK platform to express shRNA constructs targeting VAMP2 and 4 in 3T3 L1 

adipocytes.  

6.2 Aims  

The overall aim of this final chapter was to further examine the roles of VAMP2, 

4 and 8 in the trafficking of GLUT4, by studying the effects of the knock down of 

these proteins on GLUT4 distribution under basal and insulin-stimulated 

conditions in HeLa cells. A second aim was to develop the pSLIK inducible vector 

system for use in 3T3 L1 adipocytes.  
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6.3 Results  

6.3.1 VAMP protein knock down in HeLa cells  

Previous studies have implicated VAMP2, 4 and 8 in the trafficking of GLUT4 in 

3T3 L1 adipocytes (Williams & Pessin 2008). In order to further define the roles 

of these VAMP isoforms in GLUT4 trafficking, HeLa cells expressing GLUT4 tagged 

in the first extracellular loop with HA, and at the C terminus with GFP (HA-

GLUT4-GFP), have been selectively depleted of VAMP proteins. Following protein 

depletion, the distribution of GLUT4 was examined by indirect 

immunofluorescence and confocal microscopy.  

Prior to examining the effects of VAMP protein depletion in HA-GLUT4-GFP 

expressing HeLa cells, it was necessary to check that these cells did respond to 

insulin. HeLa cells expressing HA-GLUT4-GFP were grown on glass coverslips and 

subjected to indirect immunofluorescence staining as described (section 2.9). 

The HA tag of this construct is positioned on the first extracellular loop of 

GLUT4. This means that when it is inserted into the plasma membrane, the HA 

tag is outside the cell. Following serum starvation, cells were either left 

untreated (basal) or treated with 1µM insulin for 20 minutes (insulin).  Antibody 

staining with antibodies against the HA tag was carried out without prior 

permeabilisation. Under these conditions, only HA outside the cell is accessible 

to the antibody. Therefore, the HA antibody signal represents HA-GLUT4-GFP 

inserted into the plasma membrane, and the GFP fluorescence represents total 

GLUT4. Figure 6-1 shows that HeLa cells expressing HA-GLUT4-GFP were 

responsive to insulin-stimulation. 

Having established that HeLa cells are insulin-responsive, the next step was to 

determine the effect of depletion of VAMP 2, 4 or 8 on global GLUT4 distribution 

under basal and insulin-stimulated conditions. HA-GLUT4-GFP expressing HeLa 

cells were transfected with 200nM siRNA as described (section 2.6.1). Figure 6.2 

shows that the siRNA duplexes resulted in depletion of the relevant VAMP. Due 

to the low level of material obtained in knockdown experiments, 

immunoblotting with the full set of VAMP proteins for each experiment was not 

always possible. Therefore, statistical analysis of the knock down cannot be 
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carried out. However, the phenotype seen in Figure 6.2 was consistently 

observed. 

 

Figure 6-1: Insulin-stimulation causes HA-GLUT4-GFP translocation in HeLa cells.  
HeLa cells expressing HA-GLUT4-GFP were grown as described (2.4.2). Cells were serum-starved 
(basal) before being treated with or without 1µM insulin (insulin) for 20 minutes. Cells were fixed 
and surface HA was stained as described (2.9). Immunofluorescence images were taken using the 
63x oil immersion lens and are representative of a typical field of view. 6 images from 2 coverslips 
were taken for each experiment. 
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Figure 6-2: Knockdown of, VAMP2, VAMP4 and VAMP8 in HeLa cells  
HeLa cells expressing HA-GLUT4-GFP were grown and transfected with 200nM SMARTpool 
siRNA as described (section 2.6.1). Cells were scraped and homogenised in 100µl RIPA buffer, left 
in ice for 30 minutes and mixed with 6xLSB. Samples were subjected to SDS-PAGE and 
immunoblotting with indicated antibodies. Images shown are from typical experiments.  
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Figure 6-3: Effect of VAMP2, 4 or 8 knockdown on GLUT4 distribution under basal and 
insulin-stimulated conditions. 
HeLa cells expressing HA-GLUT4-GFP were grown and transfected with 200nM scrambled control 
sequence (SCR) VAMP2, 4 or 8 SMARTpool siRNA as described (section 2.6.1). Cells were 
serum-starved (basal) before being treated with or without 1µM insulin (insulin) for 20 minutes. 
Cells were fixed and surface HA was stained as described (section 2.9). A - Immunofluorescence 
images were taken using the 63x oil immersion lens and are representative of a typical field of 
view. 6 images from 2 coverslips were taken for each experiment, this was repeated 4 times. B - 
basal HA:GFP ratio compared to SCR, values represent the means ± SD of 18 fields of view, taken 
from 4 independent experiments. Values were compared using the Student's t-test, *=p<0.05, 
**=p<0.01. C - Fold-change in the HA/GFP ratio with insulin-stimulation, values were compared 
using the Student's t-test *=p<0.05, **=p<0.01. 
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To assess the trafficking of HA-GLUT4-GFP in HeLa cells depleted of VAMP2, 4 or 

8, cells were subjected to indirect immunofluorescence staining with antibodies 

against the HA tag (as detailed above). As discussed in section 1.2.1 and shown 

in Figure 6-7 A, GLUT4 is found in two inter-linked cycles. One cycle acts 

between the plasma membrane and the endosomal recycling compartment 

(ERC). The other acts between the ERC and insulin-sensitive GLUT4 storage 

vesicles (GSVs).  The cycle that acts between the ERC and GSVs effectively 

sequesters GLUT4 away from the plasma membrane under basal conditions, 

whereas the endosomal recycling pool recycles GLUT4 to and from the plasma 

membrane. Therefore, in the absence of insulin, GLUT4 is only accessible to the 

plasma membrane when it is in the ERC. Insulin-stimulation results in the 

mobilisation of GLUT4 from GSVs to the cell surface and to a lesser degree, 

increases the recycling of GLUT4 out of the ERC. Therefore, the distribution of 

GLUT4 under basal and insulin-stimulated conditions can be used to dissect the 

cycling of GLUT4 and the formation of the GSV pool of GLUT4. In the presence of 

GSVs, under basal conditions, there will be little GLUT4 in the plasma 

membrane. Insulin-stimulation will increase the presence of GLUT4 in the 

plasma membrane. In the absence of GSVs, GLUT4 will be directed into the ERC 

and therefore the basal distribution of GLUT4 in the plasma membrane will be 

increased and the insulin induced increase in GLUT4 in the plasma membrane 

will be attenuated.  

In line with this, in HeLa cells treated with scrambled control siRNA, under basal 

conditions, there is little GLUT4 in the plasma membrane. In these cells insulin-

stimulation results in a robust increase in surface staining of HA-GLUT4-GFP. 

This increase was quantified by comparing the HA (surface GLUT4) signal to the 

GFP (total GLUT4) signal. For scrambled control cells insulin led to a 3-fold 

increase in GLUT4 in the plasma membrane (Figure 6-3 A Basal vs Insulin; Figure 

6-3 C).   

Knock down of either VAMP2 or VAMP4 increased the appearance of GLUT4 in the 

plasma membrane of basal cells by 2.7-fold (p<0.01), and 1.8-fold (p<0.05) 

respectively. The increases seen with either VAMP2 or 4 knock down were not 

dissimilar to those seen in control cells treated with insulin. Knock down also 

abolished any insulin-stimulated increase in GLUT4 in the plasma membrane in 
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these cells (Figure 6-3). In contrast, VAMP8 depletion had no effect on either the 

basal appearance of GLUT4 in the plasma membrane, or on the insulin-response.  

 

6.3.2 Generation of inducible vector system to knock down VAMP 
proteins in 3T3 L1 adipocytes 

Studying the effect of VAMP knock down in HeLa cells gives a good indication of 

the roles these proteins play in GLUT4 trafficking. However, HeLa cells, although 

clearly insulin sensitive do not endogenously express GLUT4. Therefore, it is also 

important to study the trafficking of the insulin sensitive glucose transporter in 

3T3 L1 adipocytes, which express GLUT4 and are insulin-sensitive.  

Initial experiments using siRNA in this cell line showed that 3T3 L1 adipocytes 

are not readily transfectable (data not shown). Therefore, one of the focuses of 

this project has been to generate a tetracycline (TET) inducible shRNA 

containing vector system for use in mammalian cells (Shin et al. 2006). This 

construct can be transfected into 3T3 L1 cells prior to differentiation, when 

transfection is much more efficient. Following differentiation, the expression of 

the shRNA can be induced by the stimulation of the TET promoter with 

doxycycline. All plasmids used to generate this system were kind gifts from Dr 

Rob Semple (University of Cambridge) and cloning steps were completed with 

the guidance of Dr. Nuno Rocha (University of Cambridge).  

The method for designing the shRNA oligonucleotides is illustrated in Figure 6-4. 

shRNA constructs were inserted into two different entry plasmids, pEN_TmiRc2 

and pEN_TGmiRc2 (Table 6-1, Figure 6-5 A and B). The second of these contains 

the GFP gene between the TET promoter and the shRNA fragment. Therefore, 

expression of the shRNA is linked to GFP expression, and the level of GFP 

expression is proportional to the shRNA expression. To determine whether the 

shRNA oligonucleotide had been inserted into the pEN plasmid, plasmid DNA was 

subjected to digestion with restriction endonucleases. This resulted in changes 

in the size of the digested fragments (Figure 6-5 A and B). The expected changes 

in fragment sizes when the empty pEN_TmiRc3 and pEN_TGmiRc3 plasmids or 

those containing the VAMP2 or 4 oligonucleotides are digested with BsRG1 are 

shown in Table 6-1. pEN_TmiRc3 and pEN_TGmiRc3 plasmid DNA that was 

identified as containing the relevant VAMP oligonucleotide was shuttled into the 
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mammalian expression plasmid pSLIK_Neo. Successful recombination into the 

pSLIK plasmid was confirmed by a reduction in the size of the largest fragment 

produced when plasmids were digested with the endonuclease Kpn1 (Figure 6-5 

C).  

To ensure that activation of the TET promoter would result in gene expression, 

pSLIK_TG plasmids containing the VAMP2 and 4 oligonucleotides were 

transfected into HeLa cells. Once transfected, cells were either left 

unstimulated or stimulated with 1µg/ml doxycycline. HeLa cells were chosen for 

these experiments because of their high transfection efficiency. In the absence 

of doxycycline stimulation, GFP expression in cells transfected with either 

pSLIK_TG_VAMP2 or 4 is similar to that of cells transfected with no DNA (Figure 

6-6 C and D vs A). With doxycycline stimulation GFP expression is elevated. The 

GFP transfection rate of cells that contain the pSLIK_TG plasmids is similar to 

that of those transfected with GFP-cellugyrin DNA in which GFP is constitutively 

expressed (Figure 6-6 C and D vs B).  



 

 

 

Figure 6-4: Design of shRNA constructs 
shRNA constructs were designed as described (section 2.6.2) and (Shin et al. 2006) A - Schematic of the pEN_TmiRc3 and B - pEN_TGmiRc3 plasmids C - Digestion 
of the plasmid with BfuA1 (BfuA1 recognition site surrounded by red box) removes the toxic ccdB gene and allows for entry of the shRNA construct downstream of the 
TRE promoter. D - Design of the shRNA sequence, sequence was designed using RNAi Codex (http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi). The first 18 
nucleotides were deleted from the 5’ end and the first 16 nucleotides were deleted from the 3’ end (marked with strikethrough). AGCG was added to the 5’ end of the 
sense strand and ACGG to the antisense strand, this creates overhangs that are complementary to those created by digestion of the pEN plasmids with BfuA1 (C). 

http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi
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Table 6-1: Expected fragment size for each pEN plasmid following digestion with 
endonucleases.  

Plasmid 
Fragments produced following digestion with 

BsRG1 endonuclease 

pEN_TmiRc3 1889, 1478, 773, 447 

pEN_TmiRc3 + VAMP2 1740, 1478, 730, 215, 149 

pEN_TmiRc3 + VAMP4 1740, 1478, 945, 149 

pEN_TGmiRc3 1889, 1478,1219, 447, 270 

pEN_TGmiRc3+ VAMP2 1889, 1478,1219,227,215 

pEN_TGmiRc3+ VAMP4 1889, 1478,1219,442 
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Figure 6-5: Generation of pEN and pSLIK vectors 
Purified plasmid DNA samples were separated by electrophoresis in 1.5% agarose gels. Where 

indicated samples were subjected to restriction digestion with the indicated enzyme at 37C for 1 
hour. A and B - shRNA constructs against VAMP2 and VAMP4 were ligated into pEN_TmiRc3 or 
pEN_TGmiRc3, digested with BsRG1 to determine the presence of the shRNA (A and B are the 
same gel, A is a shorter exposure than B), key fragments are marked with * on B. C -  
pEN_TmiRc3 or pEN_TGmiRc3 containing shRNA constructs were shuttled into pSLIK_Neo, 
resultant constructs were digested with Kpn1 to determine the presence of the pEN cassette, 
insertion of the pEN cassette led to a drop in the size of the 10,173 bp band, indicated by arrow 
(C). 
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Figure 6-6: Testing of pSLIK_TG_VAMP2 and pSLIK_TG_VAMP4 constructs in HeLa cells.  
HeLa cells expressing mCherry tubulin (red) were grown on glass coverslips in 12 well plates as 
described (section 2.4.2) and transfected with 1.25µg DNA per well using Lipofectamine™ 2000. 
Cells were transfected with A - No DNA, B - GFP-cellugyrin, C -  pSLIK_TG_VAMP2 or D -  
pSLIK_TG_VAMP4. 24 hours later DNA expression of pSLIK_TG_VAMP2 and 4 was induced by 
the addition of 1µg/ml DOX (+ DOX) or left unstimulated (-DOX) for a further 24 hours. GFP- 
cellugyrin is not under the control of the DOX inducible TET promoter so the GFP is constitutively 
expressed; both pSLIK_TG_VAMP2 and 4 are under the control of the TET promoter so GFP is 
only expressed following DOX stimulation. Images were taken using the 63x oil immersion lens and 
are representative of a typical field of cells n=6. 
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6.4 Discussion  

The first striking finding here was that in HeLa cells expressing HA-GLUT4-GFP 

both VAMP 2 and 4 knock down increased the basal appearance of GLUT4 in the 

plasma membrane, and prevented any significant increases in GLUT4 insertion 

into the plasma membrane following insulin stimulation (Figure 6-3 A, C). This 

suggests that trafficking steps involving VAMP2 and 4 are required to sequester 

GLUT4 into the insulin sensitive compartment. Closer examination of the data 

however allows differences between the effects of VAMP2 and VAMP4 knock 

down to be seen.  

The increase in GLUT4 in the plasma membrane under basal conditions was 

nearly a third larger following VAMP2 depletion than VAMP4 (Figure 6-3B, 2.7-

fold vs 1.8-fold). VAMP2 knock down completely abolished any increase in GLUT4 

in the plasma membrane following insulin stimulation. Conversely, following 

VAMP4 depletion, insulin was still able to increase GLUT4 in the plasma 

membrane, although the increase was not significant (1-7-fold, compared to 3-

fold in control cells, Figure 6-3 C p=0.18). 

The different phenotypes seen with depletion of VAMP2 vs. depletion of VAMP4 

can be explained in two ways. The first is that all GLUT4 passes through a 

VAMP2-dependent trafficking step, whereas not all GLUT4 passes through a 

VAMP4-dependent trafficking step. This explanation is in line with the data of 

Williams and Pessin (2008), who found that VAMP4 was required for the sorting 

of newly synthesised GLUT4 into GSVs.  

The other explanation is that VAMP2 and 4 act at different trafficking steps, and 

thus depletion of each protein affects GLUT4 localisation in different ways. As 

shown in Figure 6-7 A, GLUT4 cycles between different compartments en route 

to GSVs. Following internalisation from the plasma membrane, GLUT4 traffics 

through early endosomes and into recycling endosomes. From here, it either 

slowly recycles back to the plasma membrane, or is segregated into GSVs via the 

trans Golgi network. In the presence of insulin, GSVs are rapidly recruited to the 

plasma membrane. In the absence of insulin, GSVs cycle back into the endosomal 

system and continue through the recycling pathway.    
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VAMP2 has been implicated in the SNARE complex that is required for trafficking 

of cargo from early endosomes into recycling endosomes (Prekeris et al. 1998; 

Aikawa et al. 2006). Although this has not been directly tested, if VAMP2 were 

required for GLUT4 trafficking from early endosomes to recycling endosomes, 

VAMP2 depletion would prevent GLUT4 entering the recycling endosomes. Under 

these conditions GLUT4 would remain in the early endosomes. The consequences 

of this would be two fold. Firstly, it would prevent GLUT4 being sorted into 

GSVs. Secondly, it would increase GLUT4 levels in the plasma membrane to near 

maximal values. This is because cargo from the early endosomes cycles rapidly 

back to the plasma membrane, whereas cargo that traffics back to the plasma 

membrane via the recycling endosomes traffics much more slowly. In this model, 

under conditions of VAMP2 depletion, the formation of GSVs from newly 

synthesised GLUT4 is not prevented. However, as insulin is not present in HeLa 

growth media, GLUT4 cycles out of GSVs and back into the endosomal system 

(Figure 6-7 B), where it becomes trapped in the early endosomes. This model 

dictates that due to its role in the trafficking of cargo from early to recycling 

endosomes, VAMP2 depletion increases the presence of GLUT4 in the plasma 

membrane to near maximal values under basal conditions.  Furthermore, since 

GLUT4 is not sorted into GSVs, insulin does not increase the presence of GLUT4 

in the plasma membrane. The predictions of this model are consistent with the 

data shown in Figure 6-3. Figure 6-3 shows that VAMP2 depletion increases basal 

GLUT4 appearance at the plasma membrane to levels similar to those seen in 

control cells following insulin-stimulation, and abolishes any increase in response 

to insulin.  

On the other hand, VAMP4 has been shown to interact with the tSNARE complex 

syntaxin 16/6/Vti1a in HeLa cells (Mallard et al. 2002) and interacts with 

syntaxin 16 in 3T3 L1 adipocytes (Chapter 5, Figure 5-7). This tSNARE complex is 

found within the trans Golgi network and is required for the retrograde 

trafficking of the Shiga toxin (Mallard et al. 2002). tSNARE complexes containing 

syntaxin 6 and 16 are also required for the trafficking of GLUT4 into GSVs 

(Perera et al. 2003; Shewan et al. 2003; Proctor et al. 2006). Since VAMP4 

interacts with syntaxin 16, it seems likely that VAMP4 is also involved in this 

trafficking step.  In this model, VAMP4 depletion results in disruption of the 

SNARE complex that is required for trafficking cargo through the TGN (Figure 6-7 
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C). This in turn prevents GLUT4 entering GSVs. Under these conditions, GLUT4 is 

shuttled into the endosomal recycling system where it is engaged in a cycle that 

acts between the plasma membrane, early endosomes and the recycling 

endosomes. This model predicts that, as seen with VAMP2 depletion, VAMP4 

depletion results in all GLUT4 cycling between the endosomal system and the 

plasma membrane. However, because GLUT4 cycles between three 

compartments, the rate of cycling is much slower than if it were only cycling 

between the early endosomes and the plasma membrane. The net result of this 

would be that the levels of GLUT4 at the plasma membrane under basal 

conditions increase, but not to the same extent as seen with VAMP2 depletion. 

Insulin-stimulation would increase the rate of flux through the endosomal 

compartments and therefore increase GLUT4 in the plasma membrane, but 

because GLUT4 is not sorted into GSVs the increase would be smaller than that 

which is seen in control cells. The predictions of this model are entirely 

consistent with the phenotype that is seen with VAMP4 depletion (Figure 6-3). 

Figure 6-3 shows that VAMP4 depletion increases the basal appearance of GLUT4 

in the plasma membrane, but to a lesser degree than seen with VAMP2 

depletion. Insulin-stimulation of HeLa cells expressing GLUT4 but depleted of 

VAMP4 increased GLUT4 appearance at the plasma membrane by 1-7 fold, 

although this was not statistically significant (p=0.18). The proposed models to 

explain the roles of VAMP2 and 4 in GLUT4 trafficking and the effects of VAMP2 

and 4 depletion compared to control cells are explained in Figure 6-7.  
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Figure 6-7: GLUT4 recycling. 
A: GLUT4 continuously cycles through two inter-linked pools: GLUT4 is internalised from the 
plasma membrane to early endosomes (a) and is passed onto recycling endosomes (b). From 
recycling endosomes it is either trafficked back to the plasma membrane. This cycle forms the 
endosomal recycling compartment (ERC). Alternatively, GLUT4 is passed to the TGN (d) where it 
is sorted into GSVs (e). GSVs provide a readily available store of GLUT4 that is recruited to the 
plasma membrane in the presence of insulin (f). In the absence of insulin, GLUT4 cycles back into 
the ERC (g) and re-enters the cycle. Newly synthesised GLUT4 can directly enter GSVs (h). B: 
When VAMP2 is depleted GLUT4 cannot enter the recycling endosome: GLUT4 is internalised 
from the plasma membrane to early endosomes (a) however it cannot enter the recycling 
endosome. It is therefore not trafficked to the TGN or into GSVs. Newly synthesised GLUT4 enters 
GSVs, but as insulin is absent it cycles back into the endosomal system. Re-entry into GSVs is 
blocked at the recycling endosome, so GSVs are not formed and there is no insulin response or 
sequestering of GLUT4 away from the plasma membrane under basal conditions. C: When 
VAMP4 is depleted GLUT4 cannot enter GSVs: GLUT4 is internalised from the plasma 
membrane, passed to the early endosome and the recycling endosome. However entry into GSVs 
is blocked. Newly synthesised GLUT4 is also not able to enter GSVs and is targeted to the ERC. 
GLUT4 remains in the ERC, which increases the basal appearance of GLUT4 at the plasma 
membrane. Insulin increases the rate of flux through the ERC, and thus can increase GLUT4 
appearance at the plasma membrane.  

Figure 6-3 displays that irrespective of the model by which this occurs, both 

VAMP2 and 4 are required for the effective trafficking of GLUT4 into GSVs. The 

finding that VAMP4 is required for the sorting of GLUT4 into GSVs is in line with 

data implicating VAMP4 in the sorting of newly synthesised GLUT4 into GSVs 

(Williams & Pessin 2008). However, in this study Williams and Pessin (2008) only 

observed an effect of VAMP4 depletion when this was done prior to GLUT4 

expression, suggesting that VAMP4 is required for sorting of biosynthetic but not 

recycling GLUT4 into GSVs. In contrast, the data displayed in Figure 6-3 are from 

experiments where HA-GLUT-GFP was expressed prior to VAMP2 or 4 depletion. 

These data demonstrate that VAMP2 and 4 are required for recycling of GLUT4 

into GSVs. This difference may be due to differences in cell types studied (3T3 

L1 adipocytes vs. HeLa cells).  

However, this may also be due to differences in data presentation. Looking 

closely at the data of Williams and Pessin (2008), under conditions of VAMP2 or 4 

depletion there is a non- significant increase in basal GLUT4 at the plasma 

membrane. This is seen when the absolute values of plasma membrane to total 

GLUT4 are compared. The representation of data in this manner may be slightly 

misleading, since what is of interest is how depletion of the protein (VAMP2 or 4) 

affects the distribution of GLUT4 compared to untreated control cells. The fold-

change in GLUT4 presence at the plasma membrane compared to control cells 

would provide more information, and was therefore used here. Figure 6-3 clearly 

shows that depletion of VAMP2 or 4 alters the intracellular trafficking of HA-
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GLUT4-GFP, this is reflected in a significant difference in the cell surface GLUT4 

when normalised to control levels (fold change p<0.05). However, if the data is 

not normalised to values obtained for control cells then the magnitude of the 

difference is reduced in statistical terms. Therefore, the differences in the 

effect of VAMP2 or 4 depletion seen by Williams and Pessin (2008) compared to 

those seen here may be a function of the method used to display and normalise 

the data. 

Another possible explanation for the differences could be the number of cells 

included in the analysis. Here, a minimum of 96 cells were used per condition, 

compared to 45 in studies by Williams and Pessin (2008). However, it seems 

unlikely that this could account for the differences.  Even significant effects 

were observed in the data here, when a similar number of cells were analysed as 

those compared by Williams and Pessin (2008). 

Although HeLa cells provide a good model for studying GLUT4 trafficking, they 

do not express GLUT4. This raises the possibility that when GLUT4 is ectopically 

expressed in these cells, it is trafficked in a different manner than in insulin-

sensitive cells. Therefore it is important that these findings are replicated in an 

insulin-sensitive cell line, such as 3T3 L1 adipocytes. In this regard, a secondary 

aim of this chapter was to generate a system where shRNA constructs can be 

transfected into fibroblasts, the cells then differentiated into adipocytes and 

once cells are differentiated, the shRNA can be expressed.  

Using the pSLIK platform (Shin et al. 2006), inducible vectors containing shRNA 

constructs that target VAMP2 and 4 have been successfully designed, made and 

tested in HeLa cells (Figure 6-4, Figure 6-6). The next steps in these experiments 

are to produce viral particles containing these vectors and use these to infect 

3T3 L1 fibroblasts. This will allow the ability of the shRNA construct to deplete 

cells of VAMP2 and 4 to be tested.   
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6.5 Conclusion  

In summary this chapter has highlighted that VAMP2 and 4 play roles in the 

intracellular trafficking of GLUT4 into GSVs. The first steps have been taken to 

develop an inducible viral vector system to deplete these proteins in 3T3 L1 

adipocytes following differentiation.  



   
 

Chapter 7  - Discussion  
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7.1 Summary of findings  

The aims of this thesis were to dissect the roles of the post-Golgi vSNAREs of the 

VAMP subfamily in the intracellular trafficking and sorting of GLUT4. In meeting 

this aim a number of novel findings have been made.  

Firstly, the absolute expression level of each of the VAMP isoforms has been 

systematically quantified. This represents the first analysis of this kind in any 

cell type. Strikingly, the levels of each VAMP isoform differed significantly. 

VAMP8 was expressed at the highest level, followed by VAMP3, VAMP2 and then 

VAMP4. VAMPs 5 and 7 were expressed at very low levels. This differential 

expression of each VAMP is likely to be a reflection of the specialisation of 

adipocytes, which are known to be active in secreting adipocytokines and other 

polypeptides, and thus may be considered specialised secretory cells. How these 

VAMP level differences compare across other neuroendocrine or secretory cells 

will be an interesting subject for future research. 

The studies outlined above determined differences in VAMP expression levels on 

a per cell basis. Further analysis also revealed that these VAMPs showed 

differences in subcellular distribution and localisation with insulin-sensitive 

GLUT4 vesicles (GSVs). This generates highly significant variations in ‘local’ 

concentrations of VAMPs. Taken together, the localisation and expression level 

data supports a scenario where VAMP2 is the predominant vSNARE involved in 

the fusion of GSVs with the cell surface in response to insulin. This is further 

supported by the finding that, although all VAMPs are able to form stable SDS 

resistant SNARE complexes with both syntaxin 4/SNAP23 and syntaxin 

16/SNAP23, only VAMP2 could be seen to interact with syntaxin 4 in 3T3 L1 

adipocytes. 

This study also provides evidence suggesting that VAMP4 is involved in the 

formation of GSVs. It was found that VAMP4, but not any other VAMPs, interact 

with syntaxin 16 in 3T3 L1 adipocytes. In line with this and the requirement for 

syntaxin 16 in the formation of GSVs (Proctor et al. 2006), the depletion of 

VAMP4 seemed to prevent the effective sorting of GLUT4 from the endosomal 

recycling pool into GSVs.  
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7.2 Findings in the context of existing literature  

An important aspect of this study was to examine the expression levels of each 

of the VAMP proteins in adipocytes. This, alongside the determination of the 

subcellular distribution of each VAMP isoform with insulin-sensitive GLUT4, 

allowed rough calculations of the number of VAMPs localised with each insulin-

sensitive GLUT4 molecule to be estimated, at least on a per cell basis assuming 

equal distribution of the protein(s) in question. It was estimated that for each 

GLUT4 there were four VAMP2 molecules (section 4.4.4). GSVs have been 

estimated to contain five molecules of GLUT4 (Kupriyanova et al. 2002), which 

would give 20 molecules of VAMP2 per GSV, well within the range of estimates of 

the number of SNARE proteins required for membrane fusion (see section 4-4-4). 

However, this is around 4 times fewer than the number of VAMP molecules found 

on synaptic vesicles (Takamori et al. 2006). Takamori et al., (2006) isolated 

synaptic vesicles through cell fractionation procedures. Similar to here, the 

number of VAMP molecules per synaptic vesicle was determined using 

quantitative immunoblotting. They estimated that each synaptic vesicle contains 

70 molecules of VAMP2. The difference in SNARE density between synaptic 

vesicles and GSVs is probably not a function of the methodology used as similar 

methodology (subcellular fractionation followed by quantitative immunoblotting) 

was used in both studies. Here, GSVs were not isolated prior to the 

determination of VAMP concentration, which may account for the 4-fold 

difference between GSVs and synaptic vesicles. Alternatively, the difference 

may reflect cell-type differences as synaptic vesicles are involved in 

neurotransmission and need to fuse with the pre-synaptic membrane within a 

fraction of a second. Compared to this, the insulin-stimulated fusion of GSVs 

with the plasma membrane is much slower with a time scale of seconds to 

minutes. The higher density of SNAREs on synaptic vesicles may help to increase 

the rate of fusion by increasing the chances of SNARE complex formation or the 

rate of complex formation.  

This study has provided data to support a scenario whereby VAMP2 is the 

predominant vSNARE involved in GSV fusion with the plasma membrane. Early 

research examining the vSNARE requirements for insulin-stimulated GLUT4 

translocation to the plasma membrane highlighted VAMP2 as being the 
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predominant vSNARE involved in this process (Cheatham et al. 1996; Martin et 

al. 1998; Williams & Pessin 2008; Kawaguchi et al. 2010). More recently one key 

study has found that VAMP3 and 8 may also be able to act in this process (Zhao 

et al 2009). Therefore this study set out to examine the mechanism behind this 

‘plasticity’. In particular the ability of VAMP proteins to interact with syntaxin 4 

in vitro and in vivo was examined, and their localisation with insulin-sensitive 

GLUT4 was determined.  

The results presented in Chapter 3 suggest that under physiological conditions, 

when all VAMPs are present, only VAMP2 interacts with the tSNARE involved in 

insulin-stimulated GLUT4 insertion into the plasma membrane (syntaxin 4). 

Furthermore, Chapter 4 highlights that VAMP2 is found to localise with insulin-

sensitive GLUT4, and translocates with GLUT4 to the plasma membrane upon 

insulin-stimulation. Conversely, VAMP3 is found predominantly with GLUT4 in the 

endosomal recycling compartment (ERC) and VAMP8 does not seem to be 

selectively localised with insulin-sensitive GLUT4 and does not exhibit insulin-

stimulated movement to the plasma membrane. These findings support the 

original hypothesis that VAMP2 is the vSNARE involved in the insulin-stimulated 

insertion of GLUT4 into the cell surface. However, it is important to note that 

these results do not dispute the findings of Zhao and colleagues that show that 

in the absence of VAMP2, 3 or 8 any of these VAMPs can compensate. Rather, the 

results presented in Chapter 4 help to clarify the manner in which VAMPs 2, 3 

and 8 can act in the fusion of GLUT4 vesicles with the plasma membrane, and 

shed some light as to why VAMPs 4, 5 and 7 cannot. As discussed, VAMP2 is 

localised to GSVs. In contrast, although VAMP3 translocates with GLUT4 to the 

cell surface in response to insulin, it localises with GLUT4 in the ERC. Insulin is 

known to increase the traffic of endosomal proteins to the cell surface, and the 

rate of recycling through the ERC (Tanner & Lienhard 1987).Therefore in the 

absence of VAMP2, VAMP3 may compensate in the fusion of GLUT4 vesicles with 

the plasma membrane through the mobilisation of GLUT4 from the ERC. VAMP8 

has been shown to be expressed at high levels and therefore, although not 

selectively sorted alongside insulin-sensitive GLUT4, it may be present on GLUT4 

containing vesicles, both within the ERC and GSVs. In contrast, VAMP5 and 7 

were both expressed at very low levels and although VAMP4 was expressed at 

levels similar to VAMP2, it did not translocate to the cell surface in response to 
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insulin, suggesting that it is not present on GSVs. The expression level and 

subcellular distribution data suggest that VAMP4, 5 and 7 are not found in 

significant amounts on GSVs. This is supported by data produced by Zhao et al. 

(2009) who identified VAMP2, 3 and 8 on docking GSVs, and found these VAMPs 

co-localised with GLUT4 in the low density membrane fraction of adipocytes (the 

fraction that contains insulin-sensitive GLUT4) (Zhao et al. 2009).   

As part of Chapter 4 the protein expression level of each of the VAMPs was 

examined pre and post differentiation of 3T3 L1 cells into adipocytes. The 

differentiation of adipocytes leads to an increase in the level of GLUT4, the 

acquisition of insulin-responsiveness, and the generation of insulin-sensitive GSVs 

(El-Jack et al. 1999). Differentiation is also associated with an increase in the 

protein content of a number of proteins implicated in the sorting of GLUT4 into 

GSVs, such as IRAP and syntaxin 16 (Ross et al. 1996; Roccisana et al. 2013). In 

line with roles in the trafficking of GLUT4 from the ERC and GSVs to the plasma 

membrane, the levels of VAMP2 and 3 increase with differentiation. The levels 

of VAMP8 remain unchanged, further supporting the notion that this protein’s 

involvement in GLUT4 trafficking is more incidental than selective. Similarly, the 

levels of VAMPs 5 and 7 remain unchanged. Interestingly, the levels of VAMP4 do 

increase. This is despite VAMP4 not being found on GSVs or being involved in the 

translocation of GSVs to the cell surface. That the levels of VAMP4 increase with 

differentiation suggest this protein is important in some aspect of adipocyte-

specific function. Indeed VAMP4 has been implicated in GLUT4 trafficking and 

the formation of insulin sensitive GSVs (Williams & Pessin 2008, Chapter 5 and 

6).  

Previous research has provided evidence that VAMP4 is required for the entry of 

newly synthesised, but not recycled, GLUT4 into GSVs (Williams & Pessin 2008). 

This research also suggested that VAMP2 may also be involved in the formation 

of GSVs (Williams & Pessin 2008). These conclusions were drawn on the basis of 

data produced by examining the trafficking of the GLUT4 reporter myc-GLUT4-

GFP in 3T3 L1 adipocytes depleted of VAMPs. The conclusion that recycled 

GLUT4 did not require VAMP4 to enter GSVs was reached based on the finding 

that when myc-GLUT4-GFP was expressed in the absence of VAMP4, although 

there was evidence of an enlargement in the ERC compartment, and thus a 
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reduction in the GSV compartment, there was still a robust insulin-stimulated 

increase in GLUT4 translocation. Therefore it was postulated that some GLUT4 

must still be entering GSVs. However, the insulin-stimulated increase in GLUT4-

translocation seen under conditions of VAMP4 depletion may have been a result 

of insulin increasing the exocytosis of GLUT4 from the ERC compartment. The 

conclusion that VAMP2 is required for the formation of GSVs came from the 

finding that insulin-stimulated GLUT4 translocation is only completely inhibited 

by VAMP2 depletion (Williams & Pessin 2008). However, this could be a result of 

the well-documented requirement for VAMP2 in the fusion of GSVs with the 

plasma membrane (Cheatham et al. 1996; Martin et al. 1998; Williams & Pessin 

2008; Kawaguchi et al. 2010).  

The results of Chapter 5 and 6 support a role for VAMP4 in the formation of 

GSVs, and suggest that, at least in HeLa cells, VAMP2 may also be involved. The 

formation of GSVs requires the tSNARE syntaxin 16 (Perera et al. 2003; Proctor 

et al. 2006). In HeLa cells syntaxin16 interacts with both VAMP3 and VAMP4 

(Mallard et al. 2002). Although there is no evidence VAMP3 is involved in the 

trafficking of GLUT4, it is implicated in trafficking through the ERC (Daro et al. 

1996; Martin et al. 1996; Riggs et al. 2012). This raises the possibility that VAMP3 

interacts with syntaxin 16 in adipocytes, and may be involved in the trafficking 

of GLUT4. Chapter 5 shows that, in contrast to in HeLa cells, VAMP4, but not 

VAMP3 or any other VAMPs, interacts with syntaxin 16 in 3T3 L1 adipocytes. This, 

alongside previous research showing VAMP3 depletion has no effect on GLUT4 

trafficking (Williams & Pessin 2008), seems to rule out VAMP3 in the recycling of 

GLUT4 into GSVs.  

Experiments examining the trafficking of HA-GLUT4-GFP in HeLa cells reveal a 

requirement for VAMP4 in the trafficking of GLUT4 into GSVs. The phenotype of 

HA-GLUT4-GFP localisation following VAMP4 depletion, alongside the finding that 

VAMP4 interacts with the TGN tSNARE syntaxin 16, implies that VAMP4 is 

required for the passage of GLUT4 through the TGN. These experiments also 

reveal that VAMP2 is required for the trafficking of GLUT4 from the ERC to GSVs, 

at least in HeLa cells. In HeLa cells, VAMP2 depletion increases the basal GLUT4 

in the plasma membrane to similar levels to insulin-stimulation. In contrast, 

VAMP4 depletion increases basal GLUT4 in the plasma membrane, but does not 
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abolish the increase in GLUT4 at the plasma membrane in response to insulin. 

The different phenotypes seen for GLUT4 distribution between VAMP2 and 4 

depletion in HA-GLUT4-GFP expressing HeLa cells can be explained by two 

different theories.  These are described in detail in the discussion section of 

Chapter 6 (section 6.4). Briefly, the first theory is that all GLUT4 passes through 

a VAMP2 requiring step, but not all GLUT4 passes through a VAMP4 requiring 

step. The alternative theory is that the step involving VAMP2 precedes the step 

involving VAMP4. In this model, VAMP4 acts at the TGN alongside syntaxin 16, 

whereas VAMP2 acts at the step of sorting GLUT4 out of early endosomes into 

recycling endosomes. Therefore, in the absence of VAMP2, GLUT4 is trapped in a 

rapid cycle between the early endosome and the plasma membrane. On the 

other hand, in the absence of VAMP4, GLUT4 traffics between the plasma 

membrane, early, and recycling endosomes. Although these theories have not 

been directly tested here, a number of lines of evidence support the second 

scenario.  

VAMP2 has been implicated in a SNARE complex made up of SNAP25 and syntaxin 

13 (Prekeris et al. 1998; Aikawa et al. 2006). In turn, this SNARE complex has 

been implicated in the trafficking of cargo from the early endosome to the 

recycling endosome, at least in PC12 cells (Prekeris et al. 1998; Aikawa et al. 

2006). Conversely, VAMP4 is localised to the TGN where it interacts with the 

tSNAREs syntaxin 16 and 6 (Steegmaier et al. 1999; Mallard et al. 2002).  

Syntaxin 6, 16 and VAMP4 are required for retrograde trafficking of the Shiga 

toxin and both syntaxin 6 and 16 have been implicated in the trafficking of 

GLUT4 through the TGN into GSVs (Mallard et al. 2002; Perera et al. 2003; 

Proctor et al. 2006; Foley & Klip 2014). 

These observations, as well as the effects of depletion of VAMPs 2 and 4 in HeLa 

cells expressing HA-GLUT4-GFP (Chapter 6; Figure 6-3), support a scenario 

whereby VAMP2 is required for GLUT4 to traffic from the early endosome to the 

recycling endosome, and VAMP4 is required for GLUT4 to traffic from the 

recycling endosome to GSVs.  

The phenotype seen here with VAMP4 depletion in HeLa cells expressing HA-

GLUT4-GFP is largely similar to that seen in previous studies by Williams and 
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Pessin (2008) using a different cell type and GLUT4 reporter. Williams and Pessin 

(2008) studied VAMP requirements in 3T3 L1 adipocytes using a myc-GLUT4-GFP 

reporter for GLUT4 localisation. Although it is likely that the myc-GLUT4-GFP 

reporter traffics in a similar manner to endogenous GLUT4, this reporter has not 

been as well characterised as the HA-GLUT4-GFP transporter. Therefore, despite 

the phenotypes being similar in these studies, it is important that the findings 

are replicated and further characterised in 3T3 L1 adipocytes using the better 

characterised HA-GLUT4-GFP reporter. In contrast to the phenotype seen with 

VAMP4 depletion, the phenotype seen with VAMP2 depletion in HeLa cells is 

drastically different to that seen in 3T3 L1 adipocytes (Williams & Pessin 2008; 

Figure 6-3). This may be a reflection of differences in the cell type examined. 

Therefore future studies will need to examine the effect of VAMP2 depletion on 

HA-GLUT4-GFP trafficking in 3T3 L1 adipocytes. Experiments will also need to be 

carried out to determine the role of VAMP3 in the trafficking of GLUT4 in HeLa 

cells. In HeLa cells, unlike in 3T3 L1 adipocytes where only VAMP4 interacts with 

syntaxin 16, VAMP3 interacts with syntaxin 16 and is involved in retrograde 

trafficking in this cell type (Mallard et al. 2002). It is therefore plausible that in 

HeLa cells VAMP3 plays a role in the retrograde trafficking of GLUT4.  

Studies examining the roles of these VAMPs, in both 3T3 L1 adipocytes and HeLa 

cells using the same well characterised HA-GLUT4-GFP transporter, will not only 

provide valuable information regarding the trafficking of GLUT4 into GSVs, but 

will also give insights into any membrane trafficking differences that exist 

between HeLa cells and 3T3 L1 adipocytes. It is important to characterise GLUT4 

trafficking in both these cell lines. An increasing body of work has recently 

begun to highlight species-specific differences in GLUT4 trafficking and sorting. 

For example, in humans a specialised Clathrin Heavy Chain, CHC22, is required 

for normal trafficking of GLUT4. This isoform is notably absent in mice 

(Vassilopoulos et al. 2009; Esk et al. 2010). Similarly, the SNARE Syntaxin 10 is 

involved in GLUT4 trafficking in humans, but again is absent from mice (Ganley 

et al. 2008; Esk et al. 2010). These findings highlight an alternative explanation 

as to why VAMP2 knockdown provides distinctly different results in HeLa cells 

and 3T3 L1 adipocytes (Figure 6-3; Williams & Pessin 2008). The differences in 

results may not be a function of differences in the cell type per se but due to 
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species differences. This demonstrates an important need in the field for 

standardised human adipocyte cell lines to be used for such mechanistic studies. 

7.3 Wider implications 

The finding that VAMP4 is implicated in the sorting of GLUT4 into GSVs is 

particularly interesting with regard to obesity and Type 2 diabetes. Type 2 

diabetes is associated with increased adiposity, and increased triglyceride 

storage. Triglycerides are stored in lipid droplets. Lipid droplets increase in size 

through fusion with other smaller lipid droplets. Lipid droplet fusion has been 

shown to require the SNARE proteins SNAP23, syntaxin 5 and VAMP4 (Boström et 

al. 2007). Increasing the rate of lipid droplet fusion leads to competition for the 

limited pool of SNAP23. This leads to a ‘high-jacking’ of SNAP23 away from the 

plasma membrane to the lipid droplet, where it acts in lipid droplet fusion 

events, increasing the lipid droplet size (Boström et al. 2007). A similar 

mechanism may take place for VAMP4. When lipid availability is elevated, as is 

the case in obesity, VAMP4 may be high-jacked away from the TGN to lipid 

droplets. Although this has not been examined, the high-jacking of VAMP4 away 

from the TGN may prevent GLUT4 being recycled into GSVs and therefore may 

lead to a reduction in insulin-stimulated GLUT4 translocation. This is a possible 

mechanism by which a high fat diet could contribute to a reduction in insulin-

stimulated GLUT4 translocation.  

7.4 Conclusions and future directions 

Uncovering the mechanisms governing the trafficking of GLUT4 into the insulin-

sensitive GSV compartment is a vital part of understanding insulin-stimulated 

increases in glucose uptake. Here, evidence has been provided supporting the 

role of VAMP2 in the fusion of GSVs with the plasma membrane in response to 

insulin. Evidence has also been provided supporting a role for VAMP4 in the 

trafficking of GLUT4 into the insulin-sensitive compartment.  

It has previously been demonstrated that when VAMP2 is absent, VAMP3 and 8 

can act in the fusion of GLUT4 with the plasma membrane (Zhao et al. 2009). 

Here it has been shown that in the presence of VAMP2, these VAMPs do not 

interact with the tSNARE involved in this process, syntaxin 4. It has also been 
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demonstrated that these VAMPs are not selectively sorted onto GSVs. Therefore 

the mechanism by which these VAMPs compensate for VAMP2 loss needs further 

clarification.  

This thesis has also provided data to suggest that, at least in HeLa cells, VAMP2 

is involved in the recycling of GLUT4 into GSVs. This may be at the stage of the 

trafficking of cargo from the early to the recycling endosome. Further 

clarification regarding the role VAMP2 plays in this trafficking step in 3T3 L1 

adipocytes is required.  

The role of VAMP4 in the formation of GSVs also requires more investigation. 

Results presented here suggest that VAMP4 is required for the formation of GSVs. 

However, it has been proposed that VAMP4 is only required for the entry of 

newly synthesised GLUT4 into GSVs in 3T3 L1 adipocytes (Williams & Pessin 

2008). Whether any GSVs are formed in the absence of VAMP4, or whether the 

observed insulin response in this study, and in previous studies, is from the 

enlarged ERC compartment was not directly tested here and requires further 

clarification.  

VAMP4 is involved in both GSV formation and lipid droplet fusion. Both of these 

cellular processes seem to be dysregulated in obesity-related insulin resistance. 

Therefore the relationship between these two events should be examined.  

Finally, it now seems clear that SNAREs alone do not provide the specificity for 

fusion (Chapter 3, 5; Fasshauer et al. 1999; Yang et al. 1999; Scales et al. 2000). 

Identifying the component(s) that provides this specificity will be a key step in 

understanding the regulation of membrane fusion events. 
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Chapter 8  - Appendicies 

8.1 Immunoprecipitation of syntaxin 4 and syntaxin 16  

 

 

Figure 8-1: Co-Immunoprecipitation of VAMP proteins with syntaxin 4 and syntaxin 16 in 
3T3 L1 adipocytes.  
Random rabbit IgG, syntaxin 4, and syntaxin 16 were immunoprecipitated from serum starved 3T3 
L1 adipocytes treated with (insulin) or without (basal) 1µM insulin for 20 minutes as described 
(section 2.8). Proteins were immunoprecipitated from 1.5mg 3T3 L1 lysate (lysate) with 5µl anti-
syntaxin 4 (Sx4), syntaxin 16 (Sx16) or random rabbit IgG (IgG).  Immunoprecipitated proteins and 
associated material was isolated by centrifugation and unbound material retained (U).  Bound 
material (B) was washed and eluted in 2xLSB. Samples were subjected to SDS-PAGE and 
immunoblotting with anti-syntaxin 4, anti-syntaxin 16 and anti-VAMP antibodies (B). Samples from 
basal and insulin-stimulated cells were subjected to immunoblotting on the same membrane data 
shown are from a typical experiment, experiments were repeated a minium of 3 times. 
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