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Abstract 

With the use of a one-pot process, a diastereoselective synthesis of bicyclononanes and 

decanes has been developed. Initial treatment of an allylic alcohol with 

trichloroacetonitrile, in the presence of DBU, afforded the corresponding allylic 

trichloroacetimidate. The trichloroacetimidate was then subjected to a one-pot process 

involving a thermal Overman rearrangement, ring-closing-enyne-metathesis and a 

hydrogen-bond directed Diels-Alder reaction to form polycyclic products in good isolated 

yields and as single diastereomers.  

 

Research was then carried out on how this process could be extended. Through the use of 

Grubbs second generation catalyst, the process was extended to include a cross-metathesis 

reaction forming highly functionalised 1,3-dienes. These 1,3-dienes were then used in the 

hydrogen bond directing Diels-Alder reaction to generate highly functionalised polycycles, 

again as single diastereomers. This process was then employed towards the first total 

synthesis of the natural product, netamine A. 
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Further studies showed that carbo- and heterocyclic 1,3-dienes could be used in a one-pot 

Diels-Alder reaction and aromatisation step for the rapid preparation of partially saturated 

indane and tetralin motifs, which are present in biologically active molecules. 
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1.0 Introduction 

1.1.1 Enyne bond rearrangements 

Enynes are synthetically useful intermediates that can undergo bond reorganisation 

reactions with a variety of metal catalysts to form a range of cyclic compounds (Scheme 

1).
1-5

 These cyclic compounds have been utilised in many syntheses to isolate biologically 

active molecules.
6,7

 

O

n
n n

n n  

Scheme 1- Possible cyclic products formed from enyne bond reorganisation 

This introduction will review how enynes have been reacted with transition metal catalysts 

such as Pd, Pt, Rh, Au, Co, Mo, and Ru catalysts, to bring about bond reorganisation 

reactions. Special attention will be made on the use of Pd and Ru catalysts to bring about 

cycloisomerisation and Ring Closing Enyne Metathesis (RCEYM) reactions to synthesise 

1,3-diene structures, which can be used in the Diels-Alder reaction to form polycyclic 

products. 

1.1.2 Pd(II)-catalysed cycloisomerisation 

A cycloisomerisation reaction takes place between an enyne in the presence of a metal 

catalyst which causes the bonds to reorganise to form a cyclic structure (Scheme 2). This 

reorganisation of bonds can take place with a variety of metal catalysts such as Pd(OAc)2.
1
 

Depending on the catalyst and the substitution pattern on the enyne either cyclic 1,3- or 

1,4-diene structures can be formed. 

 

Scheme 2- Possible cycloisomerisation reactions 
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Pioneering work on this area was carried out by Trost and co-workers in 1985. They 

initially investigated a tandem Pd(0)-catalysed alkylation-Alder-ene cyclisation (Scheme 

3).
8
 However, it was found that a Tsuji-Trost alkylation of alkene 1 using a Pd(0)-catalyst 

only generated 1,6-enyne 3. With the addition of a Pd(II)-catalyst, a cyclisation took place 

forming 1,4-diene 4 in good yield. 

 

Scheme 3- Pd(II)-catalysed cycloisomerisation via Tsuji-Trost alkylation 

By utilising this methodology, Trost and co-workers reported the formation of 1,3-dienes 

(Scheme 4). With the use of a Tsuji-Trost alkylation reaction to generate 1,6-enyne 6, a 

Pd(II)-catalyst was added to the reaction mixture forming 1,3-diene 7 in good yield. It was 

believed that the substitution pattern of enyne 6 was responsible for the change of 

regiochemistry, with 1,3-diene 7 forming selectively.  

 

Scheme 4- Formation of 1,3-diene 7 via Pd(II)-catalysed cycloisomerisation 
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The formation of the 1,3- and 1,4-diene systems via a cycloisomerisation reaction is also 

observed with the use of Pd(0)-catalysts. The Trost group postulated two mechanisms for 

the cycloisomerisation reaction.
1,8,9

 The first mechanism involves a Pd(IV)-complex and 

the second comprises of a Pd(II)-species. The Pd(II)-catalyst first coordinates to the alkene 

and alkyne parts of the enyne and then undergoes an oxidative cyclisation forming 

palladacyclopentene 10 (Scheme 5). The formation of 1,4-diene 13 and 1,3-diene 14 is 

highly dependent on the substitution pattern of palladacyclopentene 10. For Pd(IV)-species 

11 to form, Ha would need to be more acidic than Hb thus allowing β-hydride elimination 

to occur exocyclic to the ring. Pd(IV)-species 11 can then undergo reductive elimination 

forming 1,4-diene 13. The alternative elimination pathway occurs if the allylic ring 

hydrogen Hb is more acidic compared to Ha forming Pd(IV)-species 12. This can then 

undertake a reductive elimination reaction to form 1,3-diene 14. 

Pd(II)L2

R

R

Pd(II)L2

Pd(IV)L2

Hb
R'

Pd(IV)L2

H
or

Pd(IV)L2

H

or
R'

R'
R

R'R

R'
R

R'R

R

R'

8

9

10

11 12

13 14

Ha

 

Scheme 5- Proposed Pd(II)-Pd(IV)-catalytic cycle 

The second postulated mechanism proceeds with the hydridopalladium(II) acetate binding 

to both alkene and alkyne parts of the enyne (Scheme 6). The Pd(II)-species then inserts 

into the alkyne moiety and undergoes β-migratory insertion across the alkene forming 

intermediate 16. Complex 16 can then undergo β-hydride elimination to form 1,4-diene 13 

or 1,3-diene 14 depending on the substitution of R and R’ groups.  
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Scheme 6- Proposed Pd(II)-catalytic cycle  

Trost and co-workers reasoned that both pathways were possible. The Pd(II)-Pd(IV) 

catalytic cycle, shown in Scheme 5, derives from similar mechanisms involving 

metallocyclopentenes as observed with cobalt, zirconium and titanium based catalysts.
10-13

 

This pathway is favoured when using Pd(II)-precatalyst, such as Pd(OAc)2, in the absence 

of a reducing agent.
14,15

 The alternative Pd(0)-Pd(II)-catalytic cycle is observed when using 

Pd(0)-precatalysts, such as [Pd2(dba)3.CHCl3] with acetic acid. It is believed that this 

combination generates hydridopalladium acetate in situ which promotes the 

cycloisomerisation reactions.
16

 The choice of catalyst is also important as certain enyne 

substrates prefer to react with Pd(II)-catalysts over Pd(0)-catalysts.
9
 

This methodology offers access to both 1,4- and 1,3-diene systems. Even though 1,4-

dienes have a wide range of applications as intermediates for the synthesis of natural 

products and their metabolites, 1,3-dienes have got further applications as they can be used 

in Diels-Alder reactions.
17

 

By utilising this methodology to form 1,3-dienes, Trost and co-workers generated a range 

of polycycles, which were used to form vitamin D metabolites.
17

 They also reported that 

1,6-enyne 17 can undergo a cycloisomerisation reaction forming 1,3-diene 18 (Scheme 7). 

This 1,3-diene then underwent a Diels-Alder reaction forming polycycle 19 in a good yield 

in a one-pot process.
1
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Scheme 7- One-pot process for the formation of polycycle 19 

This combination of cycloisomerisation and Diels-Alder reaction is not limited to 

intramolecular Diels-Alder reactions. Trost was able to show that 1,3-diene 21, formed 

from the cycloisomerisation reaction, can undergo a Diels-Alder reaction with maleic 

anhydride 22 forming polycycle 23 in a 55% yield (Scheme 8).
8
 

 

Scheme 8- Synthesis of polycycle 23 via cycloisomerisation and Diels-Alder reaction 

The scope of the cycloisomerisation reaction has been increased with the use of 1,7-

enynes, which have been used to form 6-membered ring systems.
17

 However, for the 

reaction to proceed well, geminal substituents are needed to cause a Thorpe-Ingold effect. 

With the aim to synthesise metabolites of vitamin D, Trost and co-workers reported that 6-
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membered 1,3-diene 25 could be isolated via a cycloisomerisation reaction using 1,7-enyne 

24 (Scheme 9).  

 

Scheme 9- Cycloisomerisation of 1,7-enyne 24 

This type of cycloisomerisation is not limited to the use of palladium catalysts. Trost and 

co-workers described the use of a polymer bound nickel-chromium catalyst system to 

facilitate the isomerisation reaction.
18

 Initial studies in this area used Ni(II)-salts to carry 

out the reaction, however this did not catalyse the cycloisomerisation. With the use of 

chromous chloride, which acts as a one-electron reducing agent, this transformation 

showed promising results with 1,3-diene 27 forming in a moderate yield through a 

proposed Ni(I)-Ni(III)-catalytic cycle. To improve the reaction and develop a more general 

set of conditions, investigations were carried out to further optimise the catalyst. These 

issues were resolved with the use of polymer-bound Ni-Cr catalyst, where the polymer acts 

as a coordination site for the unstable nickel species. This led to the formation of 1,3-diene 

27 in excellent yield from 1,6-enyne 26 (Scheme 10). This cycloisomerisation was not 

exclusive to 1,6-enynes, with 1,7-enynes 28 and 30 forming the corresponding 1,3-dienes 

29 and 31 in moderate to good yields. 

 

Scheme 10- Cycloisomerisation reaction using a polymer-bound Ni-Cr catalyst 

 



16 
 

1.1.3 Other metal-catalysed enyne bond reorganisation reactions 

Enyne bond rearrangements are not limited to palladium catalysts. Cycloisomerisation 

reactions can take place with the use of platinum(II)-catalysts leading to the formation of a 

diverse set of polycycles. Fürstner and co-workers observed that tosylamide- and ether-

linked 1,6-enynes underwent a novel rearrangement to form cyclopropane ring systems 

33–36 in excellent yield (Scheme 11).
19

   

 

Scheme 11- Pt(II)-catalysed cycloisomerisation 

This investigation led Fürstner and co-workers to consider that platinum salts function as a 

Lewis acid.
3,20

 They proposed that the reaction went through nonclassical carbocation 38 

as represented by the canonical resonance structures 39–41 (Scheme 12). To form the 

cyclopropane ring systems, resonance structure 40 undergoes a 1,2-hydride shift and 

eliminative demetalation to afford polycycle 42. It was also proposed that elimination of 

the metal from cyclobutyl cation 41 would provide cyclobutane intermediate 43 which 

could undergo electrocyclic ring opening to afford 1,3-diene 44. 
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Scheme 12- Proposed mechanism for Pt(II)-catalysed cycloisomerisation 

The formation of 1,3-dienes using Pt(II)-catalysts has led to reports of its use as an 

alternative way of performing a RCEYM reaction. In 2010, Helmchen and co-workers 

reported that reacting PtCl2 with a variety of 1,6-enynes formed 1,3-dienes such as 46, 

which were not accessable using other metathesis catalysts (Scheme 13).
21

 1,3-Diene 46 

was then reacted with a range of dienophiles in a one-pot tandem process to form the 

corresponding Diels-Alder adducts 47–50 in good yields as single diastereomers. The 

Diels-Alder reaction proceeded via an endo transition state with the dienophile attacking 

from the least hindered face of the diene moiety. 

Ph

Dienophile (2 eq.),
PtCl2 (5 mol%),

Toluene,
111 °C
62%

Ph H
NPh

O

O

MeO2C

MeO2C

45

Ph H

MeO2C

MeO2C

NC CN
CN

CN

Ph H

MeO2C

MeO2C

O

O

Ph H

MeO2C

MeO2C

CO2Et

CO2Et

47

48
44%

49
49%

50
70%

MeO2C

MeO2C

Ph

46

MeO2C

MeO2C

 

Scheme 13- One-pot tandem Pt(II)-catalysed cycloisomerisation/Diels-Alder reaction 
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Rhodium catalysts have also been found to be effective catalysts for enyne bond 

rearrangement. Zhang and co-workers reported that 1,6-enynes can be converted to the 

corresponding 1,4-diene systems in good yields (Scheme 14).
22

 This type of reaction has 

previously been described by Trost and co-workers with the use of Pd(II)-catalysts. The 

Zhang group described the use of a cationic Rh complex, which was made in situ, to 

perform the cycloisomerisation reaction forming 1,4-diene systems 52–56 selectively. The 

formation of 1,4-dienes can also be conducted with the use of platinum catalysts, however 

silyl leaving groups are required for the reaction to proceed.
23

 

 

Scheme 14- Rh-catalysed cycloisomerisation 

In 2004, Echavarren and co-workers demonstrated the use of Au-based catalysts as an 

effective way of conducting a series of 1,6-enyne cycloisomerisations for the formation of 

1,3-dienes (Scheme 15).
24

 One of the reaction pathways reported by the authors was 

similar to that observed for Pt-based catalysts. The catalyst was generated by treatment of 

Au(PPh3)Cl with AgSbF6, which resulted in precipitation of AgCl and formation of highly 

reactive cationic Au(PPh3)
+
. In the presence of 2 mol% of this complex, enyne 57 was 

converted to 1,3-diene 58 in 91% yield. Notably, the reaction proceeded at room 

temperature, indicating that the Au-based catalyst was significantly more reactive than its 

Pt counterpart. This process was successfully employed for conversion of a range of 1,6-

enynes to generate the corresponding 1,3-dienes 59–63 in good yields. 
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Scheme 15- Au-catalysed cycloisomerisation of 1,6-enynes 

Gold catalysts can also undergo other reactions similar to that observed with platinum 

complexes such as cyclopropanations and alkoxycarbocyclisation. Echavarren and co-

workers described the use of cationic Au complexes to promote an alkoxycarbocyclisation 

reaction. Utilising the alkoxycarbocyclisation reaction, the cyclic products 65–68 were 

generated in excellent yields from the corresponding 1,6-enynes (Scheme 16).
24,25

 It was 

proposed that the alkoxycarbocyclisation proceeded in a highly concerted manner 

involving simultaneous attack of the activated alkyne by the alkene and addition of the 

alcohol nucleophile followed by protodemetalation.
26

   

[Au(PPh3)Me] (3 mol%)
HBF4 (6 mol%),

MeOH
r.t.

97%
Me

PhO2S

PhO2S

PhO2S

PhO2S
Me

PhO2S

PhO2S
TsN

MeO2C

MeO2C

64 65

66
96%

67
85%

68
95%

Me

Me
OMe

Ph

Me

Me

OMe
CO2Me

OMe

Me

Me

OMe

 

Scheme 16- Au-catalyzed alkoxycarbocyclizations of 1,6-enynes 
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1.2.1 Pauson-Khand reaction 

The Pauson-Khand reaction is a useful transformation that is routinely considered when 

planning the synthesis of polycyclic molecules. First described in 1971 by Pauson and 

Khand, the reaction relies on an alkyne and alkene coordinating to an octacarbonyldicobalt 

complex to form a cyclopentenone ring system (Scheme 17).
27,28

 The reaction can either be 

achieved intermolecularly or intramolecularly. If an intramolecular Pauson-Khand reaction 

is attempted, functional groups such as geminal dimethyl groups are required to facilitate a 

Thorpe-Ingold effect and encourage cyclisation. 

 

Scheme 17- Pauson-Khand reaction 

The Pauson-Khand reaction is formally a [2+2+1] cycloaddition in which a triple bond, a 

double bond and carbon monoxide form a cyclopentenone. The mechanism of the reaction 

was reported by Magnus et al. who proposed that the reaction proceeds with alkyne 69 

first, forming hexacarbonyldicobalt alkyne complex 72 (Scheme 18).
29,30

 Alkene 70 then 

inserts into the Co-C bond bringing about the formation of cobaltacycle 74. Carbon 

monoxide then inserts into the Co-C bond constructing intermediate 75 which can then 

undergo two reductive elimination reactions generating cyclopentenone 71. 
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Scheme 18- Proposed mechanism for Pauson-Khand reaction 

Initially, the reaction suffered from a limited scope and poor conversions, however over 

the past few decades the reaction has been further developed to improve the conversion of 

the reaction and an increase in scope.
30

 In most Pauson-Khand reactions, the alkyne 

hexacarbonyldicobalt complex is first synthesised using mild conditions. An example of 

this approach was reported by Billington and co-workers to form substituted 3-

oxabicyclo[3.3.0]oct-6-en-7-ones. By using an atmosphere of carbon monoxide, the 

desired 3-oxabicyclo[3.3.0]oct-6-en-7-one 78 was isolated in a 29% yield (Scheme 19).
31

 

This reaction was further optimised in 1986 by Smit et al., who carried out the same 

reaction using silica gel.
32

 Cobalt complex 77 was absorbed onto silica gel and the reaction 

was heated under an oxygen atmosphere forming oxabicyclo[3.3.0]octenone 78 in an 

improved yield of 75%. It was proposed that the donor sites on the solid surface enhanced 

the decarbonylative exchange and the adsorption onto the silica also restricts 

conformational movement promoting cyclisation. 
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MeMe Co2(CO)6
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Me Me

iso-octane
CO, 60 °C,

29%

or
SiO2, O2, 45 °C,

75%77 78
 

Scheme 19- Oxabicyclo[3.3.0]octenone formation using normal and dry-state conditions 

To further improve the reaction, Crowe and co-workers described the use of 

trimethylamine N-oxide as a useful additive to the reaction mixture (Scheme 20).
33

 The N-

oxide promotes the removal of carbon monoxide from the metal complex by oxidation to 

carbon dioxide, thus forming a vacant site in the cobalt cluster. This gave improved yields 

compared to the analogous dry state conditions. 

 

Scheme 20- Pauson-Khand reaction using dry-state and N-oxide promoted conditions 

In a drive to further enhance the Pauson-Khand reaction, research has been carried out to 

perform the reaction catalytically. Using similar 1,6-enynes, Livinghouse and co-workers 

have shown that under a carbon monoxide atmosphere the reaction can be performed with 

catalytic quantities of Co2(CO)8 under thermal or photochemical conditions.
34,35

 

Asymmetric Pauson-Khand reactions have also been reported using Rhodium catalysts. 

With the use of chiral ligands, the reaction is accomplished under a carbon monoxide 

atmosphere forming the resulting products in good yields, however, best results were 

observed with disubstituted alkyne substrates.
36,37

 

Since its discovery, the Pauson-Khand reaction has been utilised in the synthesis of a wide 

range of natural products.
38-40

 The cyclopentene rings formed in the reaction are common 

motifs in nature and are easily functionalised. Helmchem and co-workers reported the use 

of the Pauson-Khand reaction as the key step in the synthesis of the nonproteogenic amino 

acid (−)-α-kainic acid (Scheme 21).
41

 By utilising 1,6-enyne 81, which was synthesised 

using an Ir-catalysed allylic amination, the hexacarbonyldicobalt alkyne complex was first 

synthesised. This was reacted with trimethylamine N-oxide to bring about a highly 

diastereoselective Pauson-Khand reaction with the desired polycycle 82 being obtained in 
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a 57% yield. Bicyclic compound 82 was then further functionalised to form (−)-α-kainic 

acid. 

 

Scheme 21- N-Oxide promoted Pauson-Khand reaction used for the synthesis of (−)-α-

kainic acid 

1.3.1 Metathesis 

Enyne metathesis is a type of olefin metathesis which can be described as the redistribution 

of covalent bonds in one or more molecules. It is one of three categories that include diene 

and diyne metathesis which are catalysed by metal carbene complexes. The first uses of 

metal carbene catalysts were in the formation of polymers.
42

 The early catalysts displayed 

limited scope for the formation of complex molecules and were limited to unfunctionalised 

substrates. 

In the early 1990’s, Schrock and Grubbs developed stable metal carbenes catalysts which 

can be used on compounds which are highly functionalised, receiving the Noble prize for 

this work.
43

 Scheme 22 shows the fundamental metathesis reactions which can be carried 

out using metal carbene catalysts, such as, Grubbs catalyst and Schrock carbene catalysts.
5
 

In diene and cross diene metathesis, ethylene is a by-product of the reaction, whereas in 

enyne metathesis the reaction is atom efficient. Each of the products generated from these 

metathesis reactions are versatile intermediates, which can be used for further 

manipulation.  

 

Scheme 22- Fundemental metathesis reactions 
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Since the discovery of metal carbene catalysts, there has been rapid development in this 

area. Initially, Grubbs and Schrock synthesised a molybdenum carbene catalyst A which 

was found to be effective for olefin metathesis (Figure 1).
44,45

 While working in this area, 

Grubbs reported that catalyst B was stable and easy to handle.
46

 This catalyst then became 

commercially available and is now known as Grubbs first generation catalyst. Grubbs first 

generation catalyst is a versatile catalyst and is widely used, especially for ring closing 

metathesis (RCM) reactions, however it is a poor catalyst for cross metathesis and for 

molecules with many heteroatoms present. The reactivity of this catalyst was further 

improved by replacing one of the tricyclohexylphosphine ligands with an N-heterocyclic 

carbene ligand leading to the development of Grubbs second generation catalyst C and 

Hoveyda-Grubbs second generation catalyst D.
47,48

 These catalysts are more robust and are 

more reactive allowing cross metathesis reactions to take place. 

 

Figure 1- Structures of Schrock I catalyst (A), Grubbs first generation catalyst (B), Grubbs 

second generation catalyst (C) and Hoveyda-Grubbs second generation catalyst (D)  

These catalysts are precatalysts and must be activated before the desired reaction occurs. 

This occurs in situ, by the catalyst first losing one of the phosphine ligands and then 

undergoing a [2+2] cycloaddition with an olefin present in the reaction mixture to form 

cycloruthenabutane intermediate 84 (Scheme 23). Ring opening of this intermediate then 

yields the active catalyst 85 which can then go on to be used in the main metathesis 

reaction. 
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Scheme 23- Reaction pathway for the formation of active catalyst 
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These catalysts have been used in a wide range of metathesis reactions to form 

synthetically useful compounds for use in polymer chemistry and for the synthesis of 

natural products.
6,7

 From this point on, the introduction will focus on how enyne 

metathesis has been used in the formation of 1,3-dienes and how these intermediates have 

been used in a variety of applications. 

1.3.2 Ring closing enyne metathesis 

The first RCEYM reaction was reported in 1985 by Katz et al., who reported the use of 

Fischer tungsten-carbene complex 88 (Scheme 24).
49

 In the reaction, 1,7-enyne 87 was 

reacted with a catalytic amount of tungsten carbene 88 forming 1,3-diene 89 in 31% yield. 

The reaction was not limited to mono-substituted alkenes as di- and tri-substituted alkenes 

could also be used to form the corresponding 1,3-dienes in moderate yields. 

 

Scheme 24- RCEYM using a tungsten carbene 

With the rapid development of metal carbene catalysts, the RCEYM reaction has been 

extensively probed with the Mori group reporting that the reaction can take place with 

either chromium or ruthenium based carbene catalysts.
50,51

 The Mori group reported the 

use of the ruthenium catalyst 91, which is similar in reactivity to Grubbs first generation 

catalyst (Scheme 25).
51

 This generated a range of carbo- and heterocyclic 1,3-dienes in 

moderate yields.  

 

Scheme 25- RCEYM of 1,6-enyne 90 
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Since the discovery of metathesis reactions, their mechanisms have been extensively 

studied, however the mechanism for the RCEYM reaction is still not well defined.
6,52-54

 

For the reaction to proceed, the activated ruthenium carbene 85 can complex to two 

binding sites leading to two potential mechanisms to form 1,3-diene 97 (exo-product). The 

catalyst can either react first with the alkyne part of the molecule leading to the “yne –then-

ene” pathway (Scheme 26, top) or react with the alkene functional group in the “ene-then-

yne” pathway (bottom). If the reaction first takes place at the alkyne moiety, the reaction 

would proceed via a [2+2] cycloaddition to produce ruthenacyclobutene 94 with the 

ruthenium attached to the internal carbon. Ring-opening of this affords ruthenium carbene 

complex 95, which reacts with the alkene moiety to form ruthenacyclobutane 96. Ring-

opening of intermediate 96 affords exo-product 97 and the active ruthenium catalyst 85. If 

the reaction were to proceed via the alkene moiety, the ruthenium carbene 98 would be 

generated which can undergo a [2+2] cycloaddition to produce ruthenacyclobutene 99. 

Intermediate 99 would subsequently undergo ring opening, giving ruthenium carbene 100 

and through an intermolecular metathesis reaction, cyclic product 97 is formed and 

regenerates the active catalyst 85.  
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Scheme 26- Proposed “yne-then-ene” pathway and “ene-then-yne” of exo pathway 

It has also been found that the RCEYM reaction can take place leading to the formation of 

the 1,3-diene in the sigma-trans geometry. This has been observed with the use of 

molybdenium based Schrock catalysts and second generation Grubbs catalysts.
55

 Mori and 
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co-workers first reported that reacting Grubbs second generation catalyst with 1,6-enyne 

101 led to the formation of sigma-cis 1,3-diene 102 with sigma-trans 1,3-diene (endo-

product) 103 also forming in a 1:1 ratio (Scheme 27).
56

 When this reaction was carried out 

using Schrock I catalyst, Schrock and co-workers observed sigma-trans 1,3-diene 103 

formed predominantly in good yield with sigma-cis 1,3-diene 102 also being formed.  
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Scheme 27- RCEYM using Grubbs second generation and Schrock I catalysts 

The formation of endo-1,3-diene 103 leads the possibility of another two pathways 

(Scheme 28).
6,57

 If the ruthenium catalyst reacts via the yne-then-ene pathway, the 

ruthenium can react at the external alkyne carbon leading to the formation of 

ruthenacyclobutene 105 which can ring-open to form ruthenium carbene 106. Intermediate 

106 can then undergo a RCM reaction to form endo-1,3-diene 108. Alternatively, the 

reaction can go via the “ene-then-yne” pathway affording intermediate 98. This can then 

undergo a [2+2] cycloaddition with the ruthenium reacting at the internal carbon forming 

the highly strained ruthenacyclobutene 109 leading to the formation of 1,3-diene 108. 
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Scheme 28- Proposed endo-pathways for RCEYM reaction 
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The reason why second generation ruthenium catalysts may form the endo-product is still 

not clear. The reaction is also highly substrate dependent with small- to medium-sized 

rings forming preferentially the exo-product and large ring sizes forming the endo-

product.
54

 One explanation is that Grubbs second generation catalyst is a more active 

catalyst than Grubbs first generation catalyst leading to the endo-product being formed 

first. Also by using highly substituted alkenes, as shown in Scheme 27, leads to the 

formation of the endo-product due to the alkene being sterically encumbered. This leads to 

the metal catalyst attacking the alkyne, potentially leading to the formation of two 

products.
56

 Molybdenum catalysts form the endo-product predominantly. It is proposed 

that this is due to the more reactive molybdenum catalysts preferring to proceed through 

the higher energy metallacyclobutene intermediates instead of metallacyclobutane 

intermediates. With ruthenium based catalysts, the rate of metallacyclobutane formation is 

critical over metal carbene binding.
55,58

 

While investigating the effect of ethylene gas on the RCEYM reaction, Mori and co-

workers also reported that reaction rates, conversions and yields were significantly 

increased when the reaction was carried out using an ethylene atmosphere (Scheme 29).
52

 

However, when the reaction was carried out with non-terminal alkynes no increase in 

reaction rate or yield was observed. 

 

Scheme 29- RCEYM reactions using either an argon or ethylene atmosphere 

The increase in reactivity is explained by the constant reactivation of the ruthenium 

catalyst. Mori reasoned that under standard conditions, the ruthenium carbene can further 

react with the vinyl group of the 1,3-diene, thus leading to the formation of less active 

species 100 and 113 (Scheme 30).
52

 Under ethylene conditions, the equilibrium is shifted 

to the formation of the active species 114 which can readily react with further starting 

material. It is also proposed that if the reaction proceeded via an “ene-then-yne” pathway, 

then ruthenium species 100 would be an intermediate. Intermediate 100 could then react 

with ethylene, which would lead to the formation of cyclised product 93 and active catalyst 

85. 
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Scheme 30- Proposed intermediate trapping during RCEYM using Mori conditions 

Through the use of isotopic labelling studies, Lloyd-Jones and co-workers deduced that the 

RCEYM reaction proceeded through an “ene-then-yne” pathway with the involvement of a 

secondary catalytic cycle similar to that shown in Scheme 30.
59

 They also reported that 

with the use of allyl bromide 115 conversions of >98% were observed whereas a 

conversion of 42% was achieved without any additive. This provided an alternative for the 

highly flammable gas ethylene (Scheme 31).
60 

 

Scheme 31- RCEYM using allyl bromide as a co-catalyst  

Overall the mechanism for the RCEYM is still open to debate with the reaction being 

highly substrate and catalyst dependent.  

1.3.3 Uses for the RCEYM reaction 

Since its discovery, the RCEYM reaction has been utilised for a wide range of 

applications.
7,57

 One of the first examples of the RCEYM reaction in the total synthesis of 

a natural product is the synthesis of (−)-stemoamide.
61

 1,8-Enyne 118, which was 

synthesised from (−)-pyroglutamic acid 117, was subjected to the RCEYM reaction 

affording bicyclic compound 119 in 87% yield (Scheme 32). This was then converted to 

(−)-stemoamide in five further steps. 
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Scheme 32- RCEYM reaction used in the total synthesis of (−)-stemoamide 

Mori and co-workers reported that the cyclic 1,3-dienes which are generated from the 

RCEYM reaction are useful substrates for subsequent reactions.
52

 They showed the 1,3-

diene 112, formed in the RCEYM reaction, can easily undergo a Diels-Alder reaction with 

alkene and alkyne dienophiles forming polycyclic products 121 and 123 in excellent yields 

(Scheme 33). 

 

Scheme 33- Diels-Alder reaction using 1,3-dienes formed from the RCEYM reaction 

In the drive to make organic chemistry more efficient and generate less waste, there have 

been a number of reports on how the RCEYM reaction and Diels-Alder reaction can be 

combined in a one-pot/tandem process.
7
 Perez-Castells and co-workers demonstrated this 

by developing a one-pot RCEYM/Diels-Alder reaction to construct frameworks for natural 

products (Scheme 34).
62

 By subjecting 1,7-enyne 124 to a RCEYM reaction, the 1,3-diene 

product was generated and then reacted with maleic anhydride 22 in a one-pot process 
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achieving a yield of 68% of endo-Diels-Alder product 125. It was noted by Perez-Castells 

group that if the reactions were attempted individually a poorer overall yield was achieved. 

 

Scheme 34- One-pot RCEYM/Diels-Alder reaction 

The products generated from RCEYM reactions have also been utilised in one-pot 

methodology involving the Diels-Alder reaction followed by an aromatisation reaction. 

This protocol leads to the formation of a range of natural products and biologically active 

compounds, containing both sp
2
 and sp

3
 carbons.

63-66
 Kotho and co-workers reported the 

combination of these reactions in the formation of amino acid derivatives of indanyl 

glycine which is an analogue of phenylalanine (Scheme 35).
67,68

 To achieve the formation 

of the indanyl glycine derivatives, Kotha and co-workers formed 1,6-enyne 126 via a 

double alkylation, hydrolysis and acetylation procedure. Enyne 126 was then reacted with 

Grubbs first generation catalyst to form 1,3-diene 127 in a 75% yield. Diene 127 was then 

reacted with a variety of dienophiles and the resulting 1,4-diene products were aromatised 

using DDQ forming polycyclic products 129–133 in good to excellent yield. 

Scheme 35- Synthesis of amino acid derivatives via RCEYM and one-pot Diels-

Alder/aromatisation reactions 
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1.3.4 Tandem catalytic processes RCEYM/cross metathesis reactions 

A tandem process involves two or more reactions that take place with the use of one set of 

conditions without the addition of further additives of catalyst after the reaction has been 

initiated.
69

 A tandem catalytic process is when one catalyst has been used to bring about 

two or more mechanistically distinct processes. These differ from one-pot processes where 

additional reagents are added once the reaction has commenced. Due to the RCEYM 

reaction generating a 1,3-diene system, it is well suited to further metathesis reactions, 

such as cross metathesis. Honda and co-workers were able to perform a tandem 

RCEYM/intramolecular cross metathesis reaction of compound 134, with the use of a 

more reactive derivative of Hoveyda-Grubbs second generation catalyst, for the synthesis 

of (−)-securine.
70

 The initial RCEYM reaction takes place between the least hindered 

alkene and the alkyne forming ruthenium carbene 136 which can then undergo a RCM 

reaction to yield polycycle 137 in a 74% yield. 

 

Scheme 36- One-pot tandem catalytic process used towards the synthesis of (−)-securine 

The use of tandem catalytic RCEYM/intermolecular cross-metathesis is common in the 

literature. There are however, only a few examples which have then been combined with a 

Diels-Alder reaction to form polycyclic scaffolds.
71

 One such process was reported by Lee 

et al. where enyne 138 was subjected to the RCEYM and cross metathesis reactions using 
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Grubbs second generation catalyst (Scheme 37).
72

 Once the tandem catalytic process was 

complete, N-phenyl maleimide 139 was added to generate a variety of polycycles 140 in 

good yields over three steps.  
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Scheme 37- One-pot tandem catalytic process/Diels-Alder reaction 

This type of one-pot process has successfully been used by Reddy and co-workers in the 

total synthesis of isofregenedadiol.
73

 By utilising 1,7-enyne 141, which was formed from 

(−)-pantolactone, a one-pot multi-reaction process forming 1,3-diene 143 via a 

RCEYM/cross metathesis reaction using olefin 142 as the cross metathesis partner was 

performed (Scheme 38). Once the tandem catalytic process was complete, the alkyne 

dienophile 122 was added to promote a Diels-Alder reaction and the resulting product was 

aromatised using DDQ to form polycycle 144 in a 42% yield over four steps. Reddy and 

co-workers also report that the one-pot process was more efficient that carrying out each 

step individually. Once polycycle 144 was generated, the synthesis of the natural product 

isofregenedadiol was completed in four further steps. 
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Scheme 38- One-pot process used for the synthesis of isofregenedadiol 

1.3.5 Intermolecular Enyne metathesis 

Enyne metathesis is not limited to intramolecular reactions, as intermolecular reactions can 

also occur. In 1997, Mori and co-workers reported that a range of alkynes could be 

converted to synthetically useful 1,3-dienes with the use of ethylene gas and Grubbs first 

generation catalyst (Scheme 39).
74

 It was envisaged that the alkyne 69 would react with 

activated ruthenium catalyst 85 via a [2+2] cycloaddition to form ruthenacyclobutene 145, 

which converts into the vinylmethylidene ruthenium complex 146. It was then proposed 

that intermediate 146 can undergo [2+2] cycloaddition with ethylene forming the 

ruthenacyclobutane 147, which can then convert to the desired 1,3-diene 148 and 

regenerate the active catalyst.  

 

Scheme 39- Proposed mechanism for intermolecular enyne metathesis 
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It was shown that this procedure could be applied to a range of examples. Impressively 

both internal and terminal alkynes formed the respective 1,3-dienes 150–155 in good 

yields with low catalyst loading (Scheme 40).   

 

Scheme 40- Application of intermolecular enyne metathesis  

One of the problems with Mori conditions is that highly flammable ethylene gas has to be 

used for the reaction to proceed. In 2012, Fustero and co-workers reported the use of 1,7-

octadiene 156 in the cross-enyne-metathesis reaction.
75

 They proposed that the 1,7-

octadiene 156 would undergo a RCM reaction with the ruthenium catalyst forming 

cyclohexene 157 and activated ruthenium carbene 85, thus forming ethylene in situ 

(Scheme 41). They employed this procedure using phenylactylene 158 generating 1,3-

diene 159 in excellent yield using Hoveyda-Grubbs second generation catalyst.   

 

Scheme 41- Enyne metathesis generating ethylene in situ 
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Fustero and co-workers expanded the scope to include a Diels-Alder reaction (Scheme 42). 

With the addition of a dienophile at the beginning of the reaction, they were able to 

generate a range of carbocycles 160–164 in a one-pot tandem multicomponent reaction. 

The reaction was not limited to simple alkynes with the scope of the process being 

extended to include difluoropropargyl amides forming the corresponding carbocycles 163 

and 164 in good yields. These can be used as fluorinated building blocks.
76 

 

 

Scheme 42- Application of the in situ generation of ethylene for enyne metathesis 

Cross enyne metathesis is not limited to the use of ethylene gas to promote the reaction as 

unsymmetrical alkenes can be used. However, the reaction can lead to mixtures of regio- 

and stereoisomers. In 2003, Lee and co-workers reported the use of a range of terminal 

alkenes and alkynes with ethylene to promote a stereoselective enyne cross metathesis 

reaction (Scheme 43).
77

 Using this procedure, 1,3-dienes 167–170 were formed and in 

most cases forming predominantly the thermodynamically more stable E-alkene. They also 

proposed that through the use of ethylene, the unsubstituted 1,3-diene was formed first 

which then underwent cross metathesis to form the desired product. Also treatment of a 

mixture of the E/Z isomers led to the formation of the E-isomer exclusively.  
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Scheme 43- Stereoselective cross metathesis reaction 

1.3.6 Other uses of the 1,3-dienes generated from enyne metathesis 

The products generated from the enyne metathesis are not limited to the Diels-Alder 

reaction for their use in one-pot processes. In 2005, Snapper and co-workers utilised the 

RCEYM reaction to form a range of cyclic 1,3-dienes which were then reacted with 

diazoesters (Scheme 44).
78

 The ruthenium catalyst present from the RCEYM reaction 

enabled the catalysis of the cyclopropanation reaction, to form a range of 

vinylcyclopropanes in good yields with the cis/trans ratio in most cases greater than 2:1. 
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Scheme 44- One-pot RCEYM/cyclopropanation 

Due to the ease of the formation of the 1,3-diene system using the RCEYM reaction, Diver 

and co-workers reported a [3+3] sigmatropic rearrangement to forming 1,3-diene systems 

inaccessible by direct intermolecular enyne metathesis (Scheme 45).
79

 Once the 1,3-diene 

systems were generated, the Diver group utilised an Ireland-Claisen ester enolate 
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rearrangement to provide access to a variety of conjugated diene substitution patterns in 

excellent yields. 
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Scheme 45- Synthesis of substituted dienes via enyne metathesis and Ireland-Claisen 

rearrangement 

1.3.7 Conclusions 

Enynes are synthetically useful intermediates which can be used to synthesise highly 

functionalised compounds. With the use of Pd, Pt and Au catalysts, bond reorganisation 

reactions can be carried out to form cyclic products, which can be utilised in further 

reactions. This area of organic chemistry was mainly investigated in the early 1990’s with 

only a few examples of these bond rearrangements reported recently. With the drive to 

make organic reactions more efficient and to generate less waste, these reactions could be 

further investigated by combining them with other reactions to create a diverse set of 

polycyclic structures through a one-pot process. In recent years, RCEYM has led to an 

efficient way of generating 1,3-diene systems. Even though this reaction has been 

extensively developed, the usage of this reaction as part of a one-pot/tandem process is still 

being investigated to form highly functionalised polycyclic products from simple starting 

materials. 
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2.0 Results and discussion 

2.1 Development of the one-pot multi-reaction process  

2.1.1 Proposed project aims 

This chapter describes research for the development of a one-pot multi-reaction process 

involving the Overman rearrangement, ring-closing-enyne-metathesis (RCEYM) and the 

Diels-Alder reaction (Scheme 46). Firstly, the development of the Overman rearrangement 

will be discussed where the reaction was carried out using both metal catalysed and 

thermal conditions. Following that, the RCEYM was examined with the use of Grubbs 

catalysts. The resulting 1,3-dienes were then employed in a Diels-Alder reaction using a 

range of dienophiles to form amino-substituted polycyclic compounds. Each reaction was 

then combined to form the one-pot process that allowed for the synthesis of a small library 

of bicyclo[4.3.0]nonanes and bicyclo[4.4.0]decanes. 
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Scheme 46- Proposed one-pot process  

The bicyclic nonanes and decanes generated from the one-pot process have a high level of 

saturation within them. In recent years there has been a significant shift in the 

pharmaceutical industry to form more sp
3
-rich compounds for screening purposes rather 

than sp
2
-rich aromatic compounds.

80
 It has been found that compounds with a large 

number of sp
3
 centres have improved solubility and allow more complexity in the molecule 

increasing the amount of chemical space.
81-83

 These nonane and decane scaffolds are 

present in a variety of natural products such as (+)-ptilocaulin which is an antitumour 

antibiotic and morphine which is a potent analgesic (Figure 2).
84,85

 Nitrogen substituted 
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bicyclo[4.4.0]decanes have applications in medicinal chemistry as potent antiproliferative 

agents.
86

  

 

Figure 2- Structures of (+)-ptilocaulin and (−)-morphine 

2.1.2 Overman rearrangement 

The first key step in the one-pot process is the Overman rearrangement. This 

rearrangement, which was first reported by Overman in 1974, is a useful tool in organic 

synthesis as synthetically useful amines can be formed from simple allylic alcohols.
87,88

 

Primary, secondary or tertiary allylic alcohols are first treated with trichloroacetonitrile in 

the presence of a base to form an allylic trichloroacetimidate 171 which can then undergo a 

[3,3]-sigmatropic rearrangement to form an allylic trichloroacetamide 172 (Scheme 47). To 

perform the reaction, thermal conditions or metal catalysts such as palladium(II) or 

mercury(II) salts can be used. The Overman rearrangement is not limited to the use of 

trichloroacetonitrile to form the imidate. Trifluoroacetonitrile can also be used to form the 

imidate which can then undergo rearrangement, however trifluoroacetonitrile is a highly 

toxic gas so is not often used.
89

 The amine can then be deprotected by using acid or base 

hydrolysis.
 

 
 

Scheme 47- Overman rearrangement 

 

2.1.3 Thermal Overman rearrangement 

 

The thermal Overman rearrangement occurs at elevated temperatures; typically at 140 °C 

except in the case of tertiary imidates where a lower temperature of 80 °C is sufficient.
88

 

The imidate 173 reacts via an ordered chair-like transition state 174 to form amide 175 
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(Scheme 48). Transition state 174 obeys the Woodward Hoffmann rules for thermal 

pericyclic rearrangements where the total number of (4q+2)s and (4r)q components must be 

odd.
90

 The thermal rearrangement is a six electron rearrangement with the bonds forming 

and breaking suprafacially, thus there is one (4q+2)s component and no (4r)a component. 

This means that the reaction is thermally allowed in accordance with the Woodward 

Hoffman rules. This chair-like transition state 174 is favourable as the bulky 

trichloromethyl substituent is in a pseudo-equatorial position and the hydrogen atoms are 

in the axial position thus minimising 1,3-diaxial strain.  

 

Scheme 48- Overman rearrangement via an ordered chair-like transition state 

Due to the concerted nature of the reaction, it was shown by Shimoda and co-workers in 

1976, that the reaction proceeds with the chirality intact.
91

 Evidence of this was found by 

measuring the optical rotation of alcohol 176 and trichloroacetamide 177. It was found that 

the enantiomeric excess was not reduced, thus proving that the chirality was retained 

(Scheme 49).  

 

Scheme 49- Retention of stereochemistry during thermal Overman rearrangement 

A disadvantage of performing the Overman rearrangement at high temperatures is that the 

amide product and imidate starting material can both degrade causing low yields and 

unreproducible results. Isobe and co-workers demonstrated that the cause of the 

degradation was the formation of acids, which can cause decomposition of the imidate.
92

 

To resolve this, Isobe and co-workers added a small quantity of potassium carbonate (2 

mg/mL) to the reaction mixture to trap any acids generated at high temperatures. This 

modification had a beneficial effect on the reaction as upon heating of imidate 178 to 140 

°C in the absence of potassium carbonate, the acetamide 179 was formed in a 74% yield 
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(Scheme 50). With the addition of potassium carbonate the reaction proceeded in a 90% 

yield and was scalable to 10 g without a reduction in yield. 

 

Scheme 50- Overman rearrangement with and without potassium carbonate 

2.1.4 Metal catalysed Overman rearrangement 

The alternative and most widely used way of preventing decomposition of the imidate is to 

perform the reaction at a lower temperature. This can typically be achieved by using 

metal(II) salts. Overman first reported the use of mercury(II) salts to facilitate the Overman 

rearrangement in 1974.
87,88

 By starting with allylic alcohol 180, an Overman 

rearrangement could be facilitated by using thermal conditions to form amide 181 in a 77% 

yield whereas with the use of mercury trifluoroacetate, a 45% yield was achieved (Scheme 

51). Although the yield of the metal catalysed reaction is lower, the reaction took 

significantly less time to reach completion and was carried out at a lower temperature. 

 

Scheme 51- Overman rearrangement using thermal and mercury(II) catalysed conditions 

Palladium(II)-complexes have also been known to catalyse the Overman rearrangement. 

By using catalysts such as PdCl2(MeCN)2 and PdCl2(PhCN)2, Metz and co-workers found 

that these could enable the Overman rearrangement (Scheme 52).
93

 By using a Pd(II)-

catalyst at a 5 mol% loading, Metz and co-workers attained trichloroacetamide 183 in good 

yield. 
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Scheme 52- Pd(II)-catalysed Overman rearrangement 

Bosnich and co-workers proposed that the Pd(II)-catalysed Overman rearrangement went 

through a pathway similar to other metal catalysed rearrangements (Scheme 53).
94

 The 

mechanism proceeds with the Pd(II)-catalyst coordinating to the alkene moiety of the 

acetimidate 185. This activates the alkene towards nucleophilic attack from the imidate 

nitrogen forming the cyclic transition state 186. Transition state 186 can then collapse, 

which is driven by the formation of a more stable carbonyl bond, to form the acetamide 

product 187 and regenerate the active catalyst. 

 

Scheme 53- Mechanism for the Pd(II)-catalysed Overman rearrangement 

Bosnich and co-workers also suggested that the cyclic transition state 186 forms a similar 

chair-like conformation to transition state 174 found in the thermal rearrangement, with the 

sterically demanding metal and trichloromethyl group being in the equatorial position 

(Scheme 54).
94
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Scheme 54- Cyclic transition state for Pd(II)-catalysed Overman rearrangement 

Within the Sutherland group, the Overman rearrangement has successfully been employed 

in a range of processes to access structurally diverse molecules.
95-97

 One example of this 

was the development of a one-pot tandem process for the formation of bicyclic γ-lactams 

(Scheme 55).
98

 The bicyclic γ-lactams were generated by first treating allylic alcohol 188 

with trichloroacetonitrile then using a Pd(II)-catalysed Overman rearrangement to furnish 

diene 189. Diene 189 was the subjected to a ring-closing-metathesis (RCM) reaction 

forming carbocycle 190. The reaction mixture was then heated to bring about a Kharasch 

cyclisation to form bicyclic γ-lactams 191 in excellent yields as single diastereomers. With 

the use of chiral catalysts these bicyclic γ-lactams 191 could also be generated in high 

yields and high enantiomeric excess (89–94% ee). 

 

Scheme 55- One-pot process for the synthesis of bicyclic-γ-lactams 

For the purpose of the PhD research described in this thesis, it was proposed that the 

Overman rearrangement would be the first key reaction to be developed as it gives access 

to the enyne moiety which can then undergo further reactions. Initially, the Overman 

rearrangement will be developed using palladium catalysts with the view to use the 
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asymmetric Pd(II)-catalysts to form optically active polycycles which will be discussed 

later. It was proposed to also investigate a thermally mediated Overman rearrangement as 

part of this process. 

2.1.5 Development of the one-pot multi-step process for the synthesis of amino-

substituted bicyclo[4.4.0]decanes 

Firstly, the development of a one-pot multi-step process to form bicyclo[4.4.0]decanes will 

be discussed. In order to perform these reactions, the allylic alcohol precursor was first 

synthesised. This was achieved by subjecting 5-hexyn-1-ol 192 to a one-pot Swern Horner-

Wadsworth-Emmons reaction using mild Masamune-Roush conditions which have been 

used previously within the Sutherland group on alkene derived alcohols (Scheme 56).
99,100

 

Using these conditions, the α,β-unsaturated ester 193 was formed in a 99% yield as the E-

isomer. The formation of the E-isomer was confirmed by 
1
H NMR spectroscopy which 

showed a coupling constant of 15.6 Hz for the alkene hydrogen atoms. α,β-Unsaturated 

ester 193 was then reduced using DIBAL-H. Care was taken in using DIBAL-H as at 

elevated temperatures alkynes can also be reduced.
101,102

 By using low temperatures, allylic 

alcohol 194 was formed in an excellent yield. 

 
 

Scheme 56- Synthesis of allylic alcohol 194  

In addition to the high yield, the formation of allylic alcohol 194 was also scalable up to 5 

g. The first step of the one-pot multi-step process involving Overman rearrangement-

RCEYM-Diels-Alder reaction was next investigated (Table 1). Firstly, allylic alcohol 194 

was reacted with trichloroacetonitrile in the presence of DBU to form imidate 195 using 

previously developed conditions from the Sutherland group.
95

 Imidate 195 was passed 

through a silica plug to remove excess DBU and trichloroactonitrile but no further 

purification was required as the reaction proceeded cleanly. The imidate 195 was first 

reacted with 10 mol% of the Pd(II)-catalyst using conditions described by McGonagle et 

al., for similar trichloroacetimidates.
98

 Using 10 mol% PdCl2(MeCN)2,  it was found the 

reaction yielded only 10% of amide product 196 after 18 h (Table 1, entry 1). This was a 

disappointing first attempt as the imidate 195 is similar to other imidates used within the 
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Sutherland group. Further optimisation of the palladium(II)-catalysed Overman 

rearrangement was then carried out by adding several portions of the palladium(II)-catalyst 

and then heating the reaction which improved the yield (entries 2 and 3). At short reaction 

times (< 48 h) only imidate 195 and 1,7-enyne 196 were present in the reaction mixture. 

When longer reaction times were employed, the formation of many side products were 

observed, such as the product from the 1,3-rearrangement, which forms through an 

ionisation pathway occurring when Pd(0) is present in the reaction mixture.
94,103

 The poor 

yields can be attributed to the palladium coordinating to the alkyne moiety of the molecule 

thus hindering the reaction. With the yield of the palladium(II)-catalysed rearrangement 

being unacceptable for the one-pot process, the thermal Overman rearrangement was then 

carried out (entry 4). By reacting the imidate at 140 °C, 1,7-enyne 196 was formed in an 

excellent yield. 

 

Entry Conditions Yield (%) 

1 PdCl2(MeCN)2 (10 mol%), r.t., 18 h 10 

2 PdCl2(MeCN)2 (10 mol%), r.t., 18 h then 

PdCl2(MeCN)2 (5 mol%), r.t., 24 h 

35 

3 PdCl2(MeCN)2 (10 mol%), r.t., 48 h then 

PdCl2(MeCN)2 (10 mol%), 40 °C, 24 h 

52 

4 140 °C, K2CO3, 48 h 98 

 

Table 1- Optimisation of Overman rearrangement 

Since the thermal Overman rearrangement proceeded in an excellent yield and was 

scalable up to 2 g, the palladium(II)-catalysed method was not pursued further. The second 

step of the one-pot process, the RCEYM, was then developed. To carry out the metathesis 

reaction, Grubbs first generation catalyst was chosen as it is a commonly used catalyst in 

such reactions.
52,62,104

 Initially, the reaction was performed in DCM, forming desired 1,3-

diene 197 in 68% yield (Table 2, entry 1). Due to the Overman rearrangement being 
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carried out in toluene the reaction was repeated using this solvent achieving a yield of 60% 

(entry 2). However, it was found that 1,3-diene 197 could be isolated in an improved yield 

of 63% yield by adding the Grubbs catalyst in two portions (entry 3). The use of Grubbs 

second generation catalyst was also attempted for this transformation, however this gave 

1,3-diene 197 in modest yield (entry 4). 

 

Entry Conditions Yield (%) 

1
a,b

 Grubbs I (10 mol%), 18 h 68 

2 Grubbs I (10 mol%), 18 h 60 

3 Grubbs I (7.5 mol%), 18 h then Grubbs I (2.5 mol%), 18 h 63 

4 Grubbs II (7.5 mol%), 18 h then Grubbs II (2.5 mol%), 18 h 46 

 

Table 2- Optimisation of RCEYM reaction. 
a 

Using DCM as a solvent. 
b
 Reaction carried 

out at 40 °C 

After successful optimisation of the Overman rearrangement and the RCEYM, both steps 

were then incorporated into a one-pot multi-reaction process. To achieve this, allylic 

alcohol 194 was first treated with trichloroacetonitrile to form the imidate which was then 

reacted via a thermal Overman rearrangement forming 1,7-enyne 196 (Scheme 57). Once 

the Overman rearrangement was complete, as confirmed by 
1
H NMR spectroscopy, 

Grubbs first generation catalyst was added in two batches over a period of 36 h to attain 

1,3-diene 197 in excellent yield over three steps. 

 

Scheme 57- One-pot synthesis of 1,3-diene 197 
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With the optimisation of 1,3-diene 197 complete, the Diels-Alder reaction was then 

investigated. N-Phenyl maleimide 139 was chosen as the first dienophile to be investigated 

due to it being highly electron deficient and thus reactive towards electron-rich diene 197. 

The reaction was carried out in the presence of hydroquinone to prevent polymerisation 

reactions which could take place at high temperature (Scheme 58).
105,106

  The Diels-Alder 

reaction took 18 h to reach completion at 111 °C forming polycycle 198 in a 58% yield. 

The yield of the reaction was slightly lower than expected but the fact that the product was 

isolated as a single diastereomer was of great importance. 

 

Scheme 58- Diels-Alder reaction for the synthesis of polycycle 198 

Investigation of the stereochemical outcome of this reaction was probed by NOE 

difference experiments (Figure 3 and Appendix 1). The hydrogen atom on the C-9 position 

was irradiated showing a positive NOE for the hydrogen atom on the C-9a position 

meaning they are close in space to one another and thus syn to each other. Irradiation of the 

C-9b hydrogen atom also showed a positive NOE to the hydrogens on the C-3a and C-9a 

positions. Even though the NOE between the C-3a and 9b hydrogens was small they had to 

be syn to each other due to the cis-geometry of the dienophile. Finally, irradiation of the 

hydrogen at the C-9a position showed a positive NOE to the hydrogens on the C-9 and C-

9b positions. This experiment confirms that the hydrogen atoms on the C-3a, C-9, C-9a 

and C-9b have a syn-relationship with respect to each other. 

 



49 
 

1.52.02.53.03.54.04.55.05.56.06.5 ppm

7

8 9

6

9a

NHO

CCl3

9b

3a

4

5

H

1
NPh
2

3

O

O

9-H 9b-H

3a-H

9a-H

 

Figure 3- Comparison of NOE spectra of bicyclo[4.4.0]decane 198 

Diels-Alder product 198 is formed from the dienophile reacting on the same face as the 

trichloroacetamide group going through an endo transition state. It was suspected that the 

reason for the dienophile reacting from the same side as the trichloroacetamide group was 

due to a hydrogen bond directing effect between the trichloroacetamide hydrogen atom and 

the oxygen atom on the dienophile. A similar hydrogen bonding directing effect has been 

reported by Franck and co-workers.
107

 Franck and co-workers showed that the alcohol 

group in 1,3-diene 199 caused facial selectivity in the Diels-Alder reaction forming syn 

diastereomer 200 in 1.7:1 ratio with anti diastereomer 201 in non-polar solvents (Scheme 

59). Both these products arise from the Diels-Alder reaction going through an endo 

transition state with the dienophile attacking from opposite faces. When the reaction was 

carried out in the polar protic solvent methanol the predominant product was the anti 

diastereomer 201. This change in diastereoselectivity is due to the methanol perturbing the 

hydrogen bonding effect of the hydrogen on the alcohol thus causing steric repulsion of the 

alcohol group and dienophile in the transition state. 
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Scheme 59- Diels-Alder reaction showing facial selectivity using polar and non-polar 

solvents 

To provide further evidence of this effect with diene 197, the Diels-Alder reaction was 

repeated using methanol as a solvent (Scheme 60). This resulted in the formation of two 

diastereomers in a 1:1 ratio. 

 

Scheme 60- Diels-Alder reaction carried out in methanol 

Figure 4 shows the 
1
H NMR spectrum of the crude Diels-Alder reaction mixtures which 

were conducted in toluene (top) and methanol (bottom) are shown. When the reaction was 

carried out in toluene it can clearly be observed from the 
1
H NMR spectrum (top) that 

compound 198 is the predominant diastereomer and analysis of this mixture showed that 

the syn:anti ratio was 20:1. It is also clear from the bottom spectrum that when the reaction 

was carried out in methanol, the reaction forms the two diastereomers in a ratio of 1:1. 
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Figure 4- Comparison of 
1
H NMR spectra of Diels-Alder products from toluene (top) and 

methanol (bottom) 

To confirm the relative stereochemistry of bicyclo[4.4.0]decane 202, NOE studies were 

carried out showing that the hydrogen atoms at the C-3a, C-9a and C-9b positions have a 

syn-relationship with one another (Figure 5). A NOE was not observed between the 

hydrogen atoms on the C-9 and C-9a positions meaning they are not close in space, and 

thus have an anti-relationship with each other. 

 

Figure 5- NOE enhancement studies for polycycle 202 

To further explore the cause of the formation of the single diastereomer, a computational 

study of both endo transition states between 1,3-diene 197 and N-phenyl maleimide 139 

were carried out by Dr Hans Senn in the School of Chemistry (Figure 6). By employing 

density-functional theory at the M06-2X/def2-TZVP level, using a solvent model of 
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toluene at 111 °C, the endo transition states from the attack of the N-phenyl maleimide 139 

from the same side as the trichloroacetamide group (syn attack, Figure 6, left) and the 

opposite side as the trichloroacetamide group (anti attack, right) were investigated. It can 

be seen from the model that the syn-transition state (left) is stabilised by a hydrogen bond 

of 2.10 Å in length between the amide NH of 1,3-diene 197 and the imide oxygen of 

dienophile 139. The model of the anti-transition state (right) does not possess this 

hydrogen bond so this attack will be less favourable. Syn-product 198 is favoured on 

kinetic grounds as the calculated Gibbs free energy of activation is 115 kJ mol
−1

 for the 

syn-attack whereas, the anti-attack has a calculated activation energy of 125 kJ mol
−1

. This 

stabilising effect is also reflected in the Gibbs free energies of the reaction as the product 

from the syn attack has a Gibbs free energy of −93 kJ mol
−1

 whereas the anti-attack 

product has a Gibbs free energy of −85 kJ mol
−1 

meaning syn-product 198 is more 

thermodynamically stable. By using the calculated Gibbs free energies of the activation 

and assuming the reaction is both irreversible and under kinetic control, the ratio of 

syn:anti product translates to a syn selectivity of 23:1 at 111 °C. This correlates well with 

the observed result of a syn:anti ratio of 20:1.  

                  

Figure 6- Modelling studies of hydrogen-bond directing transition state (left) and non-

hydrogen-bond directing transition state (right) 

Having optimised each step of the one-pot process, the full one-pot process was attempted 

(Scheme 61). By starting with allylic alcohol 194, Overman rearrangement was employed 

to form 1,7-enyne 196. Once the Overman rearrangement was complete, Grubbs first 

generation catalyst was added forming 1,3-diene 197. Finally, N-phenyl maleimide was 

added generating bicyclo[4.4.0]decane 198 in a 72% yield as a single diastereomer.  
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Scheme 61- One-pot process for the synthesis of bicyclo[4.4.0]decane 198 

To further improve the one-pot process, N-phenyl maleimide 139 was added at the same 

time as the Grubbs catalyst, making these steps a true tandem process. However, this 

reaction failed, forming only small amounts of desired product. 

Overall a one-pot multi-reaction process has been developed forming a 

bicyclo[4.4.0]decane in four steps from a simple allylic alcohol with four contiguous 

stereogenic centres being created. 

2.1.6 Exploring the scope of the one-pot process 

With the conditions optimised for the synthesis of 1,3-diene 197, attention was turned to 

the addition of other dienophiles to the one-pot process in order to access other substituted 

bicyclo[4.4.0]decanes. 

To be certain the one-pot process was compatible with other dienophiles, a short study of 

the Diels-Alder reaction with the dienophiles, methyl acrylate 203 and 1,4-naphthoquione 

205 was conducted. Methyl acrylate was first attempted forming amino-substituted 

bicyclo[4.4.0]decane 204 in 26% yield as a single diastereomer (Scheme 62). The relative 

stereochemistry of bicyclo[4.4.0]decane 204 was confirmed by NOE studies (Appendix 1). 

The low yield of this reaction could be explained by the volatility of methyl acrylate. 

However, the use of a sealed tube during the one-pot process overcame this issue (see 

later). It was important to note that the product was formed as a single diastereomer and as 
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a single regioisomer with three contiguous stereogenic centres. The formation of a single 

regioisomer is also a consequence of the Diels-Alder reaction progressing through a 

hydrogen bond directed endo transition state. 

 

Scheme 62- Diels-Alder reaction using methyl acrylate 203 

Attention then turned to dienophile 1,4-naphthoquinone 205. Upon reaction of 1,3-diene 

197 with 1,4-naphthoquinone 205, the desired product was not formed, however tetracyclic 

product 206 was generated in a 63% yield as a single diastereomer (Scheme 63). NOE 

studies showed that the hydrogen atoms at the C-1 and C-12b positions exhibited a syn-

relationship thus showing that the hydrogen bond directing effect was still observed 

(Appendix 1). 
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Scheme 63- Diels-Alder reaction between 1,3-diene 197 and 1,4-naphthoquinone 205 

To confirm the structure of polycycle 206 an X-ray crystal structure was obtained (Figure 7 

and Apendix 2). It can be seen that the cyclohexane ring adopts a chair conformation with 

the trichloroacetamide group in an axial position. The X-ray structure also clearly shows 

the sp
2
 nature of the C-6a and C-12a positions further confirming the 1,4-diene structure. 

This 1,4-diene moiety can be generated via aerial oxidation which has previously been 

reported by Rovek and co-workers who bubbled oxygen through their reaction mixture of 

naphthoquinone derivatives causing partial oxidation.
66

 The reaction was repeated in an 

oxygen free atmosphere, however 1,4-diene 206 remained. This may be due to the excess 
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of 1,4-naphthoquinone 205 in the reaction mixture causing the oxidation which has been 

reported by Su and co-workers.
108

 This oxidation will be discussed further in Chapter 2.5. 

 

Figure 7- Ortep diagram of tetracycle 206 

The Diels-Alder reaction was then carried out on other dienophiles forming adducts 207–

211 in good to moderate yields as single diastereomers, as confirmed by NOE studies 

(Scheme 64 and Appendix 1). Bicyclo[4.4.0]decane 209 is noteworthy as the Diels-Alder 

reaction generates a product with two new quaternary centres. Polycycle 210 is also an 

example of a hetero Diels-Alder reaction forming the heteroatom containing product in 

good yield as a single diastereomer. The aromatic compound 211 was formed in a low 

yield. The resulting aromatisation is due to the excess 1,4-benzoquinone and the presence 

of oxygen during the work up process leading to the oxidation reaction. This yield could be 

further optimised by the use of stronger oxidising agents such as DDQ. This approach will 

be discussed in greater detail in Chapter 2.5. 
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Scheme 64- Scope of Diels-Alder reaction 

The dienophiles, methyl methacrylate 212 and methyl 3-methylbut-2-enoate 213, were 

found to not react in the Diels-Alder reaction due to their poor electronics and being 

sterically encumbered (Figure 8). Furthermore, imine 214 showed no reaction with 1,3-

diene 197. Each of these examples were also attempted using more forcing conditions, 

such as at higher temperature and the use of a Lewis acid, however these attempts did not 

prove successful.     

 

Figure 8- Unreactive dienophiles 

The dienophiles discussed above were then incorporated into the one-pot multi-step 

process. The one-pot process was rigorously monitored by 
1
H NMR spectroscopy to ensure 

each step of the process reached completion. By starting with allylic alcohol 194, a small 

library of bicyclo[4.4.0]decanes were formed in good to moderate yields over four steps 

(Scheme 65). In the case of the bicyclo[4.4.0]decanes 204 and 210, the yield of the one-pot 
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process was better than the individual Diels-Alder step. Analysis of the crude 
1
H NMR 

data showed that the Diels-Alder reaction formed predominantly the syn-diastereomer in 

ratios greater than 15:1. 
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Scheme 65- Library of amino-substituted bicyclo[4.4.0]decanes 

The major advantage of performing such one-pot processes is that only one purification 

step was needed thus substantially reducing the amount of time, handling the intermediates 

and reducing the amount of waste generated.     

However, one disadvantage of this one-pot process was that certain steps in the process 

required extended reaction times resulting in the overall time taken to generate the desired 

product was over 5 days. To overcome this microwave reactor technology was used, which 

allows the reaction mixture to heat up rapidly in a uniform manner.
109

 Following the 

formation of the imidate, the Overman rearrangement was carried out in the microwave at 

180 °C resulting in the formation of enyne 196 in 1 h compared to 48 h under conventional 
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heating methods (Scheme 66). Using conditions as described before for the ring-closing-

enyne-metathesis and Diels-Alder reactions, these two steps took one hour each to go to 

completion forming 198 in a 60% yield as a single diastereomer. Overall, this allowed the 

preparation of polycycle 198 in 6 h compared to 120 h using conventional heating. 
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Scheme 66- One-pot process carried out using microwave heating  

2.1.7 Formation of amino-substituted bicyclo[4.3.0]nonanes 

Following the successful optimisation of the one-pot process for the formation of a small 

library of bicyclo[4.4.0]decanes, attention was turned to the formation of a library of 

bicyclo[4.3.0]nonanes 216. The aim was to use similar conditions to those described 

previously to generate a small library of bicyclo[4.3.0]nonanes 216 such as those shown in 

Scheme 67. 

OH

i) Cl3CCN, DBU
ii) 140 °C 

iii) Grubbs I
(10 mol%)

iv) Dienophile

NH

Cl3C

O R2

R1

NH NPh

O

OCl3C

O H NH

Cl3C

O H

O

O

H

217 218 219

N
N

NH NPh

O

OCl3C

O H

215 216

 

Scheme 67- Proposed one-pot process for the synthesis of bicyclo[4.3.0]nonanes 216 



59 
 

In order to form the bicyclo[4.3.0]nonanes, the corresponding allylic alcohol precursor was 

prepared. To achieve this, allylic alcohol 215 was generated again using the one-pot Swern 

Horner-Wadsworth-Emmons reaction followed by a DIBAL-H reduction as described 

before, producing allylic alcohol 215 in excellent yield from commercially available 4-

pentyn-1-ol 220 (Scheme 68). 

 

Scheme 68- Synthesis of allylic alcohol 215 

To form 5-membered cyclic 1,3-diene 223, allylic alcohol 215 was subjected to the multi-

reaction process previously developed for the synthesis of 6-membered cyclic 1,3-diene 

197. These conditions proved successful in generating 5-membered cyclic 1,3-diene 223 in 

good yield (Scheme 69). 

NHO

CCl3

i) Cl3CCN,
DBU, DCM

ii) K2CO3,
Toluene,
140 °C

OH

215 223

NHO

CCl3

iii) Grubbs I
(10 mol%),

75 °C

71%

222  

Scheme 69- One-pot synthesis of 1,3-diene 223 

With the successful formation of 1,3-diene 223, the Diels-Alder reaction was then 

investigated to see if the hydrogen bonding effect was observed with the smaller ring size. 

Overman and co-workers had observed the same hydrogen bonding effect on alcohol 

functionalised cyclic 1,3-diene 224 that Franck et al. had observed with 6-membered 

analogues (Scheme 70).
107,110

 When a non-polar solvent such as toluene is used, the 

hydrogen bonding takes effect forming predominantly syn-product 225. In the polar protic 

solvent methanol, the hydrogen bonding is perturbed thus, the reaction predominantly 

forms anti-product 226.  
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Scheme 70- Facial selectivity of the Diels-Alder reaction of 1,3-diene 224 and N-phenyl 

maleimide 139 

It was gratifying to find that when the amino-substituted 1,3-diene 223 was reacted with N-

phenyl maleimide 139, compound 217 was isolated as a single diastereomer in excellent 

yield (Scheme 71). 

 

Scheme 71- Diels-Alder reaction for the synthesis of polycycle 217 

Upon analysis of the 
1
H NMR spectrum of the crude mixture it can clearly be seen that the 

syn-product 217 forms predominantly (18:1) when the reaction was carried out in the non-

polar solvent toluene (Figure 9). 
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Figure 9- 
1
H NMR of the crude reaction mixture of the Diels-Alder reaction between 1,3-

diene 223 and N-phenyl maleimide 139  

The analogous reaction between N-phenyl maleimide 139 and 1,3-diene 223 was carried 

out using methanol as the solvent (Scheme 72). It was found that once again methanol 

perturbed the hydrogen bonding directing effect forming both diastereomers in a 1:1 ratio 

with a combined yield of 79%. The relative stereochemistry of anti-product 227 was again 

confirmed by NOE studies showing no NOE between the hydrogen atoms on the C-8 and 

C-8a positions (Appendix 1). 

 

Scheme 72- Diels-Alder reaction between 1,3-diene 223 and N-phenyl maleimide 139 

The Diels-Alder reaction was then incorporated into the one-pot process to attempt the 

synthesis of polycycle 217 from allylic alcohol 215 (Scheme 73). The one-pot process was 

carried out as previously described with rigorous monitoring to ensure each reaction went 
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to completion. Using these conditions, the amino-substituted bicyclo[4.3.0]nonane 217 was 

isolated in a 62% yield as a single diastereomer. 

 

Scheme 73- One-pot process for the synthesis of polycycle 217 

A range of dienophiles were also incorporated into the one-pot process (Scheme 74). It was 

gratifying to find that the bicyclo[4.3.0]nonane 228 was formed not only as a single 

diastereomer but also as a single regioisomer in a modest yield. Where quinones were used 

as dienophiles, it was found that the resulting adducts 218 and 230 did not undergo 

oxidation as observed with the 6,6-bicyclic analogues. However, tricycle 230 was formed 

in a low yield which is attributed to the oxidation of this compound upon work-up. The 

Diels-Alder products formed from the reaction of 5-membered dienes and 1,4-

naphthoquinone 205 have been found to be more stable than their 6-membered 

counterparts as reported in the literature.
7,108,111

 All polycycles isolated from the one-pot 

process formed predominantly as the syn-diastereomer in greater than 16:1 based on the 
1
H 

NMR spectra of the crude reaction mixtures. For compound 229, it was found that the anti-

diastereomer was also formed in significant quantities. This may be due to the Diels-Alder 

reaction requiring a slightly higher temperature than the other dienophiles as the reaction 

had to be heated to 111 °C. Heterocycle 219 was also formed in a modest yield using this 

one-pot process as a single diastereomer. NOE studies were again carried out on all 

products to confirm their relative stereochemistry (Appendix 1). 



63 
 

N
N

NH
NPh

O

OCl3C

O H

NH

Cl3C

O H

O

O

NH

Cl3C

O H

O

O

NH

Cl3C

O H
CO2Me NH

Cl3C

O H
CO2Me

CO2Me

OH

i) Cl3CCN, DBU, DCM
ii) 140 °C, K2CO3,

Toluene

iii) Grubbs I
(10 mol%), 75 °C

iv) Dienophile,
Hydroquinone,

75 °C

NH

Cl3C

O R2

R1

H

228
45%

218
47%

229

39%

3:1 syn:antia

219
46%

230
22%

215 216

 

Scheme 74- Library of bicyclo[4.3.0]nonane generated form allylic alcohol 215. 
a
 Reaction 

carried out at 111 °C 

2.1.8 Attempted formation of the 7-membered cyclic 1,3-diene 

Another aim of this project was the application of the one-pot process for the synthesis of 

bicyclo[5.4.0]undecanes. To achieve this, corresponding allylic alcohol 234 was first 

synthesised. Commercially available 6-heptyn-1-oic acid 231 was reduced using lithium 

aluminium hydride, forming alcohol 232 in a 96% yield, with no reduction of the alkyne 

being observed (Scheme 75).
112

 Allylic alcohol 234 was synthesised using the previously 

developed reaction sequence in good yield. 
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Scheme 75- Synthesis of allylic alcohol 234 

The thermal Overman rearrangement was then applied to allylic alcohol 234 forming the 

corresponding enyne 235 in good yield (Scheme 76). A RCEYM reaction was then 

attempted using 1,8-enyne 235. A range of conditions were tested, including various 

catalysts (GI, GII and HGII), but unfortunately no metathesis product was observed. To try 

and promote the metathesis reaction, the reaction was attempted at both higher and lower 

concentrations but to no effect.   

i) Cl3CCN, DBU,
DCM

ii) 140 °C, K2CO3,
Toluene

87%
OH

NHO

CCl3
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X
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CCl3
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Scheme 76- Attempted synthesis of 1,3-diene 236 

Within the literature, there have been reports of performing RCEYM on 1,8-enyne 

systems.
113-116

 However, all of these examples contained heteroatoms or geminal dimethyl 

groups which, due to a Thorpe-Ingold effect, promote the ring closing metathesis reaction.  
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2.2 Formation of C-5 substituted polycyclic compounds via a 

palladium(II)-catalysed Overman rearrangement 

A novel one-pot multi-reaction process has been developed which comprises of an 

Overman rearrangement, a RCEYM reaction and a Diels-Alder reaction. This one-pot 

process has been used to generate a library of bicyclo[4.4.0]decanes and [4.3.0]nonanes. 

The products from the Diels-Alder reaction were isolated as single diastereomers due to a 

hydrogen bond directing effect, which in some cases led to the formation of products with 

up to four new contiguous stereogenic centres. 

The one-pot process raised three issues. 

1) The Overman rearrangement did not proceed as expected when Pd(II)-catalysts 

were used, thus work on an asymmetric Overman rearrangement would not be 

recommended. The sluggish reactivity was attributed to the Pd(II)-catalyst binding 

to the alkyne. To hinder the binding, the alkyne could be disubstituted to facilitate a 

more efficient Pd(II)-catalysed Overman rearrangement with the potential for the 

use of asymmetric catalysts (Scheme 77). Care would have to be taken as the 

disubstituted alkyne may then be unreactive toward RCEYM. 

 

Scheme 77- Proposed palladium(II)-catalysed one-pot process 

2) The dienes formed during the RCEYM reaction could be further functionalised. As 

shown in Scheme 78, this could be achieved by adding an alkene with the Grubbs 

catalyst to initiate a cross-metathesis reaction after the RCEYM reaction, to form 

substituted 1,3-diene 240, which could the undergo a Diels-Alder reaction. By 

adding different cross-metathesis partners the scope of the one-pot process could be 

expanded forming more structurally divergent multicycles which could be used as 

scaffolds for natural product synthesis. 
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Scheme 78- Proposed one-pot process involving tandem catalysis  

3) It was found that Diels-Alder products of quinone dienophiles would undergo an 

oxidation reaction forming 1,4-dienes 242, or in the presence of excess quinone 

starting material, fully aromatised products. To further optimise the yields, a 

stronger oxidising agent such as DDQ could be added to the reaction mixture to 

further promote the aromatisation process (Scheme 79). In addition, 1,4-dienes 242 

could be formed by reacting 1,3-diene 197 with alkyne dienophiles. These Diels-

Alder products could be aromatised to form other aromatic analogues. This will be 

elaborated upon in Chapter 2.5.   
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Scheme 79- Proposed one-pot process for the synthesis of aromatic scaffolds 

As highlighted previously, the Overman rearrangement did not proceed as expected when 

Pd(II)-catalysts were used. This slow reactivity was attributed to the Pd(II)-catalyst binding 

to the alkyne as reported in the literature.
1,117

 The use of a palladium catalysed Overman 

rearrangement is important, as once developed chiral palladium catalysts could be applied 

to the one-pot process to form polycycles as single enantiomers. 

2.2.1 Development of Pd(II)-catalysed Overman Rearrangement 

It was thought that using a disubstituted alkyne would hinder the binding of the palladium 

to the alkyne, thus allowing for a more efficient Pd(II)-catalysed Overman rearrangement. 

This could be achieved by attaching a phenyl group at one end of the alkyne which would 

hinder the catalyst access but still allow the RCEYM reaction to proceed (Scheme 80). 
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Scheme 80- Proposed synthesis of 1,3-diene 239 utilising a Pd(II)-catalysed Overman 

rearrangement  

To install the phenyl group, a Sonogashira reaction could be employed to couple the 

alkyne to the phenyl group.
118,119

 This coupling reaction could be performed either before 

the formation of the allylic alcohols, or at the allylic alcohol stage of the route. It was 

decided that the Sonogashira reaction would be carried out on commercially available 

alkyne derived alcohols, 4-pentyn-1-ol 220 and 5-hexyn-1-ol 192.
120

 Palladium(0) is 

required for the Sonogashira reaction to proceed and this was generated in situ by reacting 

a Pd(II)-complex with triethylamine. Using iodobenzene as the coupling partner and 

copper iodide as a co-catalyst, disubstituted alkynes 244 and 245 were generated in 

excellent yields from the commercially available starting material and could be prepared 

on a multigram scale (Scheme 81). 

 

Scheme 81- Sonogashira reaction 

The disubstituted alkynes were then subjected to the one-pot Swern oxidation and Horner-

Wadsworth-Emmons reaction developed previously, giving the (E)-α,β-unsaturated esters 

in excellent yields (Scheme 82). Subsequent DIBAL-H reduction, using standard 

conditions, gave allylic alcohols 248 and 249 in high yields.  
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Scheme 82- Synthesis of allylic alcohols 248 and 249 

Before attempting the one-pot multi-reaction process, key steps were first optimised 

starting with the Overman rearrangement. Following the formation of allylic 

trichloroacetimidates 237 and 250, it was found that the Overman rearrangement 

proceeded extremely well using 10 mol% bis(acetonitrile)palladium(II) chloride taking 

only 18 hours to go to completion (Scheme 83). The reaction produced allylic acetamides 

238 and 251 in excellent yields over the two steps. Yields of the analogous Pd(II)-

catalysed reactions with the unsubstituted alkyne were 34% and 52% for the formation of 

1,6-enyne 222 and 1,7-enyne 196 respectively with the reaction taking up to 48 h to go to 

completion. These results strongly suggest that the coordination of the Pd(II)-catalyst to 

the alkyne was hindering the previous Pd(II)-catalysed Overman rearrangements.  

 

Scheme 83- Pd(II)-catalysed Overman rearrangement 

Attention then focussed on the RCEYM reaction of 1,6-enyne 238. As expected, using 

Grubbs first generation catalyst for this reaction at 75 °C proceeded with a low conversion. 

This was also observed with Grubbs second generation catalyst. To accelerate this 

transformation, the reaction was repeated using 1,7-octadiene 156 and at a higher 

temperature (90 °C) in the presence of Grubbs second generation catalyst (Scheme 84). 

1,7-Octadiene 156 undergoes a RCM reaction with the catalyst forming cyclohexene and 

ethylene in situ, which accelerates the reaction.
75

 This methodology is safer than 

employing the conventional Mori conditions where ethylene gas, which is highly 
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flammable, is bubbled through the reaction mixture.
52

 With the addition of 1,7-octadiene 

156, the RCEYM reaction proceeded well, forming 1,3-diene 239 in a 74% yield. 

 

Scheme 84- RCEYM reaction using 1,7-octadiene for the formation of 1,3-diene 239 

The analogous RCEYM reaction with 1,7-enyne 251 was also attempted. However, only 

minimal conversion to 1,3-diene 252 was observed (Scheme 85). A range of conditions 

were carried out to further optimise the reaction. This involved using Hoveyda-Grubbs 

second generation catalyst and heating the reaction to higher temperatures. The best results 

were achieved when the reaction was heated to 125 °C, using Grubbs second generation 

catalyst in the presence of 1,7-octadiene 156. Unfortunately, this only resulted in a 50% 

conversion and 1,3-diene 252 could not be separated from 1,7-enyne 251. Due to the poor 

conversion this part of the project was not continued. 

 

Scheme 85- Attempted RCEYM reaction using 1,7-octadiene 156 for the formation of 1,3-

diene 252 

Using the optimised conditions for the formation of 1,3-diene 239, a one-pot process was 

attempted, which included the Diels-Alder reaction. The one-pot process proceeded well 

using the dienophiles, N-phenyl maleimide 139 and N-phenyl-1,2,3-triazoline-3,5-dione 

254, generating amino-substituted bicyclo[4.3.0]nonanes 253 and 254 as single 

diastereomers in modest yields from allylic alcohol 248 (Scheme 86). The relative 

stereochemistry was confirmed by NOE studies showing the hydrogen bond directing 

effect of the Diels-Alder reaction (Appendix 1). 
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Scheme 86- One-pot process for the synthesis of bicyclo[4.3.0]nonanes 253 and 255 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

2.3 One-pot process tandem catalytic process for the synthesis of highly 

substituted polycycles 

Having developed two one-pot multi-reaction processes, one comprising of a thermal 

Overman rearrangement and the other a palladium(II)-catalysed Overman rearrangement, 

attention focused on the application of these processes to form biologically active 

compounds. Within the literature two natural products both of which had biologically 

activity were of interest. These related natural products were netamine A and (+)-

ptilocaulin which both contain an amino-substituted bicyclo[4.3.0]nonane core that could 

potentially be formed using the one-pot processes developed (Figure 10).
84,121

  

 

Figure 10- Structures of netamine A and (+)-ptilocaulin 

Examining the structure of netamine A, the generation of the stereogenic centres could be 

controlled by the use of a Diels-Alder reaction and a hydrogenation reaction (Scheme 87). 

The synthesis of polycycles 256 and 257 will be further discussed in Chapter 2.4. The 

substituent in the C-7 position would then need to be part of the initial 1,3-diene 258. To 

synthesise diene 258, a cross metathesis reaction could be achieved using 1,3-diene 223 

and an alkyl substituted alkene. Using the Grubbs selectivity model for cross metathesis, 

1,3-diene 223 would be classed as a type II olefin and an alkyl substituted alkene would be 

a type I olefin, thus leading to a selective cross metathesis reaction forming the (E)-diene 

258.
122

 Since metathesis catalyst would be present in the reaction mixture from the 

previous RCEYM reaction with 1,6-enyne 222, there would be the possibility of carrying 

out both reactions consecutively and with the same catalyst.     
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Scheme 87- Retrosynthesis of netamine A 

Combining the RCEYM and cross metathesis reactions would be an example of a tandem 

catalytic process. Within the literature there have been many reports of this tandem 

catalytic process taking place to form 1,3-dienes as discussed earlier (Chapter 1.3.4).
71-73, 

123-125
 By utilising a tandem catalytic process, it was proposed that the one-pot process 

developed previously could be further extended to include the cross metathesis step 

(Scheme 88). Initially the RCEYM/cross metathesis steps were investigated by using 

Grubbs second generation catalyst to facilitate both the RCEYM step and cross metathesis 

reaction forming substituted cyclic 1,3-dienes similar in structure to 1,3-diene 258. A range 

of olefins and dienophiles would then be used to form a small library of highly substituted 

bicyclo[4.3.0]nonanes 259 and [4.4.0]decanes 260. Following development of the one-pot 

process, the methodology will be applied to the synthesis of netamine A.  
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Scheme 88- Proposed one-pot tandem catalytic process 

2.3.1 Synthesis of highly functionalised amino-substituted bicyclo[4.3.0]nonanes 

Before proceeding with the development of the tandem catalytic process, 1,6-enyne 222 

was first synthesised. This was easily achieved using the previously developed thermal 

Overman rearrangement conditions, obtaining 1,6-enyne 222 in excellent yield from allylic 

alcohol 215 (Table 3). The first tandem catalytic process that was developed was for the 

synthesis of 1,3-diene 258 from 1,6-enyne 222. This was chosen due to the fact 1,3-diene 

258 could be used for the synthesis of the natural product netamine A. 

Initially, the previous conditions for the RCEYM were carried out using Grubbs first 

generation catalyst (7.5 and then 2.5 mol%) with 1-pentene 261 (5 eq. and then 2.5 eq.) 

added. As expected only 1,3-diene 223 was formed (Table 3, entry 1). The catalyst was 

then replaced with Grubbs second generation catalyst (5 and then 2.5 mol%) which 

promoted both the RCEYM and cross metathesis forming RCEYM/CM product 258 in a 

41% yield with 16% of intermediate 1,3-diene 223 also being isolated (entry 2). It was 

thought that the volatility of the cross metathesis partner, 1-pentene 261, was hindering the 

cross metathesis reaction at elevated temperatures, therefore the reaction was repeated at 

room temperature which resulted in an improved yield of 74% of 1,3-diene 258 with only a 

small amount of intermediate 1,3-diene 223 being isolated (entry 3). Changing the 

concentration of the reaction and increasing the catalyst loading was also investigated 

which led to no further improvement of the yield of RCEYM/CM product 258 (entries 4, 5 
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and 6). Due to Grubbs second generation catalyst being used for the cross metathesis 

reaction the reaction proceeded with complete selectivity for the E-alkene product. This 

was confirmed by 
1
H NMR experiments where the alkene protons exhibited a coupling 

constant of 15.7 Hz. 

 

Entry Reaction 

Concentation 

(M) 

Catalyst 

Loading 

(mol%)
a
 

Temperature 

(°C) 

Yield (%) 

of 223 

Yield (%) 

of 258 

1
b
 0.05 10 75 57 0 

2 0.05 7.5 75 16 41 

3 0.05 7.5 r.t. 9 74 

4 0.025 7.5 r.t. 22 65 

5 0.1 7.5 r.t. 30 53 

6 0.05 10 r.t. 14 65 

 

Table 3- Optimisation of the one-pot RCEYM/CM process. 
a
 Grubbs second generation 

catalyst added in two batches (5 and 2.5 mol% for entries 2–5 and 7.5 and 2.5 mol% for 

entries 1 and 6). 
b
 Grubbs first generation catalyst was used.   

Having optimised the tandem catalytic process to form the 1,3-diene 258, attention was 

then drawn to the addition of the Diels-Alder reaction to the one-pot process. N-Phenyl 

maleimide 139 was again chosen as the dienophile and the reaction was carried out at 75 

°C forming polycycle 262 in a modest yield from enyne 222 (Scheme 89). As expected, the 

Diels-Alder reaction went through a hydrogen bond directed endo transition state, with 

bicyclo[4.3.0]nonanes 262 being isolated as a single diastereomer with the relative 

stereochemistry confirmed by NOE studies (Appendix 1).  
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Scheme 89- One-pot three-step process for the synthesis of bicyclo[4.3.0]nonanes 262 

The development of the one-pot multi-reaction tandem catalytic process was then 

completed with the inclusion of the Overman rearrangement generating 

aminobicyclo[4.3.0]nonane 262 in a 47% yield from allylic alcohol 215 as a single 

diastereomer (Scheme 90). 
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Scheme 90- One-pot process for the formation of polycycle 262 from allylic alcohol 215 

With the one-pot process optimised, the scope of this methodology was explored. To 

achieve this, the one-pot process was repeated using 1-octene 166, styrene and 4-

fluorostyrene as cross metathesis partners (Scheme 91). These olefins are less volatile than 

1-pentene 261, which allowed the RCEYM/CM reaction to be carried out at slightly higher 

temperatures to further promote the reaction. This resulted in the formation of 

bicyclo[4.3.0]nonanes 263–265 in good yields over five steps. The scope of the Diels-

Alder reaction was also investigated, using dienophiles 1,4-naphthoquinone 205, 4-phenyl-

1,2,4-triazole-3,5-dione 254 and tetracyanoethylene. Using these dienophiles and 1-octene 

166 as the cross metathesis partner gave amino-substituted bicyclo[4.3.0]nonanes 266–268 

in modest yields isolated as single diastereomers.  
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Scheme 91- One-pot synthesis of bicyclo[4.3.0]nonanes 263–268. 
a 

Diels-Alder reaction 

was performed at 50 °C 

The relative stereochemistry of bicyclo[4.3.0]nonanes 263–265 and 267–268 were 

confirmed by NOE studies, however the stereochemistry of polycycle 266 could not be 

confirmed as a NOE was not observed between the hydrogen atoms on the C-5 and C-11b 

positions. However, it can be assumed that based on the outcome of the other reactions that 

the hydrogen atoms in the C-5 and C-11b positions are syn to one another. An X-ray 

structure of bicyclo[4.3.0]nonane 264 was found to be crystallise in the monoclinic group 

P21/n and as shown in Figure 11, the hydrogen atoms of the five stereogenic centres can 

clearly be seen to have a syn-relationship to one another (Appendix 2). 
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Figure 11- Ortep diagram of bicyclo[4.3.0]nonane 264 

2.3.2 Development of the one-pot process for the formation of C-6 substituted 

bicyclo[4.4.0]decanes 

With the formation of a small library of C-5 substituted bicyclo[4.3.0]nonanes complete, 

the focus was then turned to the preparation of a library of C-6 substituted 

bicyclo[4.4.0]decane systems. Initial development of the one-pot process to form these 

systems was carried out by an undergraduate MSci student Stuart Johnson, who found that 

when performing the RCEYM/CM reaction at 40 °C, conversions of less than 30% were 

observed, with a range of alkene cross metathesis partners. This was resolved by increasing 

the reaction temperature and catalyst loading to 10 mol%. Consequently, conversions of 

greater than 80% were achieved.
126

 

By using these optimised conditions, a small library was then generated. Firstly, the overall 

process was carried out using N-phenyl maleimide 139 as the dienophile and various 

olefinic cross metathesis partners were tested (Scheme 92). Alkyl substituted alkenes were 

first tested forming amino-substututed bicyclo[4.4.0]decanes 269–271 in modest yields as 

single diastereomers. With the more reactive cross metathesis partners, styrene and 4-

fluorostyrene improved yields were observed with the corresponding compounds 272 and 

273 being isolated in 54% and 50% yields respectively. Other dienophiles were then 

employed to further expand the scope of the multi-reaction process generating 

bicyclo[4.4.0]decanes 274–276 in good yields over five steps. All products from the one-

pot process were isolated as single diastereomers with the ratio of syn:anti products in the 

crude reaction mixture being greater than 16:1 in favour of the syn product. Again NOE 

studies were carried out confirming the relative stereochemistry of each product (Appendix 

1). 
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Scheme 92- One-pot synthesis of bicyclo[4.4.0]decanes 269–276. 
a 

Diels-Alder reaction 

carried out at 50 °C 

With the successful formation of a library of highly substituted bicyclo[4.3.0]nonanes and 

[4.4.0]decanes complete, attention was then drawn to the application of this process to 

form a biologically active molecule. 
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2.4 Total synthesis of netamine A 

Netamines are a family of tricyclic compounds isolated by Kashman and co-workers from 

the Poeciloscleridae marine sponge Biemna lboutei.
121

 These natural products have proven 

to be cytotoxic and are thought to have similar biological activities to other tricyclic 

guanidine alkaloids, such as the mirabilin and ptilocaulin families of natural products 

which are cytotoxic against L1210 leukemia cells and antifungal.
127,128

  

The initial isolation of the netamine natural products produced seven tricyclic guanidine 

alkaloids of similar structure netamine A-G (Figure 12). The all carbon bicyclic core of 

netamine A-D has a saturated cis-fused ring system with six stereogenic centres. Netamine 

E-G are partially unsaturated at the N-heterocycle, and contain two alkyl chains cis to each 

other.  

 

Figure 12- Structures of guanidine alkaloids netamine A-G 

When working on the synthesis of the mirabilin and ptilocaulin families of natural 

products, Snider and co-workers found that 7-epineoptilocaulin and mirabilin B were of 

similar structure to netamine E and G.
129

 Using similar methodology to that employed in 

the synthesis of mirabilin B, Snider and co-workers were able to prepare netamine E from 

cyclohexenone 277 in six steps through a 1,2-addition, oxidation, Birch reduction, 
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ozonolysis, aldol reaction and finally addition of guanidine (Scheme 93). Netamine E 

could then be oxidised with MnO2 to form netamine G in a 24% yield from 281. It was 

found that the synthesised netamine G matched the published spectra for the naturally 

occurring netamine G, in which the alkyl substituents were assigned as being cis in relation 

to one another. The optical rotations of the synthesised and naturally occurring compounds 

were also identical. Therefore, the structures of netamine E and G were revised to have a 

trans relationship between the alkyl groups. 

Scheme 93- Synthesis of netamine G 

With the stereochemistry of netamine E and G defined, Snider and co-workers revised the 

structures of netamine A and C using samples obtained from Kashman and co-

workers.
121,129

 Snider and co-workers used NOE studies to confirm the two alkyl chains 

were trans to each other and the hydrogen atoms on the C-3a, C-5a, C-7, C-8a and C-8b 

positions have a syn relationship (Figure 13). 
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Figure 13- Revised structures of netamine A and netamine C  

Using the previously developed methodology (Chapter 2.3), a synthetic route for the first 

racemic synthesis of netamine A was proposed. It was planned to use a one-pot process to 

form substituted diene 258, followed by a hydrogen bond-directed Diels-Alder reaction 

involving nitroalkene 282 to generate compound 257, incorporating five of the six 

stereogenic centres of the natural product netamine A (Scheme 94). 

 

Scheme 94- Proposed Diels-Alder reaction 

It was then proposed that hydrogenation of polycycle 257, would form compound 283. The 

hydrogenation should proceed on the least substituted and convex face of the molecule and 

at the same time reducing the nitro group (Scheme 95). Deprotection would follow, and 

finally addition of cyanogen bromide would complete the first racemic synthesis of 

netamine A.
130-133
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Scheme 95- Proposed synthesis of netamine A 

2.4.1 Towards the total synthesis of netamine A 

From previous work, the substituted 1,3-diene 258 was generated from allylic alcohol 215 

using a one-pot multi-step process involving the tandem catalysed RCEYM/CM process 

(Scheme 96). 

 

Scheme 96- Formation of 1,3-diene 258 

Having formed 1,3-diene 258, it was proposed that by utilising a Diels-Alder reaction with 

a nitroalkene, bicyclo[4.3.0]nonane 257 could be generated. With the use of the 

nitroalkene, (E)-1-nitrooct-1-ene 282, an attempt at the synthesis of netamine A could be 

performed. The nitroalkene synthesis was initially attempted using a procedure by Ballini 

and co-workers where heptaldehyde 284, was treated with nitromethane and alumina to 

promote the Henry reaction and subsequent dehydration.
134

 This method was unsuccessful 

in producing any product. Using conditions by Zhang, heptaldehyde 284 and nitromethane 

were stirred in the presence of sodium hydroxide, and the desired nitroalkene was formed 

in a good yield (Scheme 97).
135
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Scheme 97- Synthesis of (E)-1-nitrooct-1-ene 282 

The Diels-Alder reaction was then optimised using conditions as shown in Table 4. The 

initial attempt was carried out using conditions developed previously for simpler alkenes, 

and these did not yield any product (Table 4, entry 1). However, when the Lewis acid 

ZnCl2 was added and higher temperatures were used, polycycles 285 and 286 were 

generated (entries 2, 3, 4, 6 and 7). Both polycyclic products 285 and 286 showed that the 

double bond has migrated from its initial position in the product 257. This migration was 

possibly instigated by the use of the Lewis acid and the higher temperatures. In the case of 

compound 286, formation of the more stable tetrasubstituted alkene is likely the driving 

force. Both polycycles 285 and 286 could be used in the formation of netamine A as 

subsequent hydrogenation would still occur on the least hindered face. When the reaction 

was carried out with the nitroalkene 282 as the solvent, desired product 257 was formed in 

a 34% yield (entry 5). To further optimise this reaction, it was proposed that using ZnCl2 

would accelerate the Diels-Alder reaction and allow a lowering of the temperature which 

would slow the migration of the alkene. By lowering the temperature to 50 °C, an 

improved yield of 46% of 257 was observed, with a 28% yield of bicyclononane 285 (entry 

6). Finally, lowering the temperature to 40 °C and monitoring the reaction until all starting 

material was consumed meant a shorter reaction time could be used, forming compound 

257 in a 70% yield with only a small amount of 285 being generated (entry 7). 
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Entry Conditions Yield (%) 

1
a
 nitroalkene (2 eq.), 111 °C, 48 h No reaction 

2 nitroalkene (3 eq.), 140 °C, 72h 285 (17) + 286 (9) 

3 nitroalkene (5 eq.), 160 °C, 72 h 286 (20) 

4 nitroalkene (20 eq.), 111 °C, 120 h 285 (18) 

5
a,b

 nitroalkene (20 eq.), 80 °C, 48 h 257 (34) 

6
b
 nitroalkene (20 eq.), 50 °C, 48 h 257 (46) + 285 (28) 

7
b
 nitroalkene (20 eq.), 40 °C, 20 h 257 (70) + 285 (17) 

 

Table 4- Optimisation of Diels-Alder reaction. 
a
 ZnCl2 was not added. 

b
 Reactions were 

performed neat. 

The stereochemistry of polycycle 257 was confirmed by difference NOE experiments. 

Positive NOEs were observed showing 1-H, 7-H and 7a-H have a syn relationship with 

each other (Figure 14). This product arises from the Diels-Alder reaction being hydrogen 

bond directed, and progressing via an endo transition state as observed with previous 

Diels-Alder reactions of allylic trichloroacetamides.  

 

Figure 14- NOE studies of polycycle 257 
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Having synthesised polycycle 257, the hydrogenation of this compound was then 

investigated. By using standard hydrogenation conditions expected product 283 was not 

isolated (Scheme 98). However, it was observed that the starting material was being 

consumed, as the olefinic hydrogen on the 
1
H NMR spectrum disappeared but the CHNO2 

signal remained. More forcing conditions were then carried out by using an in situ source 

of hydrogen gas, which would allow the reaction to be heated, but this proved 

unsuccessful.
136

 Finally, Raney-Nickel™, which is often used to reduce nitro groups, was 

added to facilitate the hydrogenation and proved successful, providing amine 287 in a 34% 

yield. By using Raney-Nickel™ not only were the nitro group and alkene reduced, but the 

trichloroacetamide was dechlorinated to form an acetyl group. 
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Scheme 98- Hydrogenation of polycycle 257 

The stereochemistry of amine 287 was confirmed, as positive NOEs were observed for 1-H 

and 7-H. However, due to their chemical shift overlapping, an NOE could not be used to 

elucidate the stereochemistry of 3a-H (Figure 15). The synthesis of netamine A was 

continued at this stage as it was proposed that when the natural product was isolated, by 

comparing the 
1
H NMR spectrum of the synthesised sample and the literature 

1
H NMR 

spectra would confirm the stereochemistry of the C-3a position.  
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Figure 15- NOE studies of amine 287 

With the use of conditions similar to those used previously within the Sutherland research 

group, the removal of the acetyl group was attempted to form diaminobicyclononane 256 

(Scheme 99).
137

 However, with the use of elevated temperatures only starting material was 

recovered. 

 

Scheme 99- Attempted deprotection of amine 287 

Due to the stability of the N-acetyl group, an alternative route was proposed where the N-

trichloroacetyl group was deprotected first, then the hydrogenation could be applied to 

form bicyclo[4.3.0]nonane 256. Initially, acidic and basic conditions were used to promote 

the deprotection, however this did not yield any product (Table 5, entries 1 and 2). By 

using a reducing agent, it was proposed that the trichloroacetyl group would be reduced to 

a hemiaminal, which would then be cleaved upon work-up. Initial attempts using NaBH4 

and DIBAL-H failed (entries 3 and 4), however when the number of equivalents of 

DIBAL-H used was increased, a yield of 58% was achieved of amine 288. 
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Entry Conditions Yield 

1 2 M LiOH, MeOH, 35 °C, 72 h No product isolated 

2 6 M HCl, 60 °C, 48 h No product isolated 

3 NaBH4 (2 eq.), MeOH, r.t., 18 h No reaction 

4 DIBAL-H (2.2 eq.), Et2O, −78 °C→r.t., 3 h  No reaction 

5 DIBAL-H (6 eq.), Et2O, −78 °C→r.t., 3 h 58% 

 

Table 5- Conditions for deprotection 

The next stage was for amine 288 to undergo the hydrogenation reaction. Using Raney-

Nickel™ conditions employed previously proved unsuccessful in forming the diamino 

nonane 256 (Scheme 100). It was clear from the 
1
H NMR spectrum of the crude reaction 

mixture that the reduction of the nitro group was complete, however, peaks were observed 

in the olefinic region of the spectrum indicating that the alkene was not reduced. This was 

surprising, as previously the Raney-Nickel™ was able to reduce the nitro group and the 

alkene. Another attempt was made by using more equivalents of Raney-Nickel™ and a 

longer reaction time, but this also proved unsuccessful. Due to time constraints no further 

reactions were performed on this project.   
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Scheme 100- Attempted hydrogenation using Raney-Nickel™ 
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2.5 Formation of partially saturated tetralins and indanes 

During the initial development of the one-pot process involving Overman rearrangement, 

RCEYM and Diels-Alder reaction, certain examples displayed unexpected reactivity. This 

reactivity was observed when the 1,3-dienes were reacted with quinones in the Diels-Alder 

reaction. When 1,4-naphthoquinone 205 was used, the partially aromatised 1,4-diene 206 

was formed in good yield from allylic alcohol 194 (Scheme 101). A more oxidised product 

was observed with 1,4-benzoquinone, with tricyclic tetralin 211 being isolated in a modest 

yield. This partial and complete aromatisation was attributed to the presence of excess 

quinone and air in the reaction mixture.
66,108

 Interestingly, the corresponding indane 

systems did not display the same reactivity, with aromatisation only being observed after 

extended reaction times. 

 

Scheme 101- One-pot process using quinone dienophiles 

To further improve the yields of this one-pot process, the focus of our interest was on 

refining the aromatisation step by using a stronger oxidant to allow a more general 

procedure which would allow access to other aromatic motifs. By using a Diels-Alder 

reaction followed by aromatisation as described previously, it was envisaged that C-1 

amino-substituted indane and tetralin scaffolds could be generated with ease from the 

corresponding 1,3-dienes.
67,68

 C-1 Amino-substituted indane and tetralins are of interest as 

they display a wide range of pharmacological activity. (+)-Sertraline (Zoloft™) is used as 

an antidepressant, rasagiline (Azilect™) is used for the treatment of Parkinson’s disease 

and indinavir (Crixivan™) is being used in the therapy of HIV and AIDS (Figure 16).
138-140
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Figure 16- Structures of (+)-sertraline, rasagiline and indinavir 

Current approaches towards these compounds involve a stepwise construction of the 

carbocyclic ring systems via Friedel-Crafts alkylation/acylation followed by reductive 

amination to introduce the amino moiety.
141,142

 Other methods also focus on the formation 

of the partially saturated ring system, which include a CAN-mediated Ritter-type 

cyclodimerisation and an aryne Diels-Alder reaction with acyclic dienes.
143,144

 These 

approaches, although elegant, are generally limited to a particular bicyclic ring system and 

are restricted in scope by the starting material.  

To further expand on previous methodologies, it was envisaged that by using 1,3-dienes, 

generated from a one-pot process, a flexible approach for the generation to these bicyclic 

motifs could allow late stage introduction of various aryl ring substitutions. This approach 

would use two consecutive one-pot multi-bond forming processes. The first process will 

form 1,3-dienes 289 from simple allylic alcohols. It was envisaged that the 1,3-dienes 289 

generated, would contain a heteroatom further expanding the scope. As shown in Scheme 

102, a Diels-Alder reaction with commercially available quinones and alkynes could be 

used to prepare a variety of carbocyclic aromatic scaffolds 290 and 291, respectively. It 

was also envisaged that by using nitriles, the resulting products could be aromatised to 

form heteroaromatic scaffold 292 to further diversify the set of compounds generated using 

this methodology. Once the methodology was developed an attempt would be made in 

achieving a one-pot five step process.   
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Scheme 102- Proposed one-pot process to form various amino-substituted aromatic motifs 

2.5.1 Synthesis of heterocyclic 1,3-dienes 

Before focusing on the formation of the aromatic motifs, attention was concentrated on a 

concise method for generating 1,3-dienes. As discussed in Chapter 2.1, 5- and 6-membered 

cyclic 1,3-dienes 223 and 197 were isolated in good yields over a three step process from 

the corresponding allylic alcohol (Scheme 103). 

 

Scheme 103- Three step one-pot synthesis of carbocyclic 1,3-dienes 

Focus then moved to the incorporation of a heteroatom into the ring of the 1,3-diene. It was 

envisaged that both nitrogen and oxygen 1,3-diene analogues, such as 293 and 294 (Figure 

17) could be easily generated using a similar approach as described above. 



91 
 

 

Figure 17- Proposed heterocyclic containing 1,3-dienes 

The first part of the formation of these 1,3-dienes was the synthesis of the allylic alcohol 

precursors. The nitrogen containing allylic alcohol 300 was synthesised by first treating 

tosylated ethyl glycine 295 with propargyl bromide 296 to form the propargylated product 

297 in good yield (Scheme 104). DIBAL-H reduction of ethyl ester afforded alcohol 298 

which was then subjected to a one-pot Swern Horner-Wadsworth-Emmons reaction to 

generate the α,β-unsaturated ester 299 in excellent yield as the E-isomer. Finally, a 

DIBAL-H reduction was used to form allylic alcohol 300 also in excellent yield.   

 

Scheme 104- Synthesis of allylic alcohol 300 

The corresponding oxygen containing allylic alcohol 304 was generated using a similar 

approach. Firstly, reacting ethylene glycol 301 with propargyl bromide 296 afforded the 

mono-propargylated alcohol in a 24% yield (Scheme 105). This low yield is attributed to 

the formation of the di-propargylated product, however, this result was consistent with the 

yield given in the literature for this reaction.
145

 Alcohol 302 was then subjected to the one-

pot Swern Horner-Wadsworth-Emmons reaction followed by DIBAL-H reduction to form 

the oxygen containing allylic alcohol 304 in good overall yield for these steps.   
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Scheme 105- Synthesis of allylic alcohol 304 

With the heteroatom containing allylic alcohol precursors synthesised, the one-pot process 

to form the 1,3-dienes was investigated. Using the previously optimised conditions for the 

synthesis of 197 and 223, 1,3-dienes 293 and 294 were isolated in poor yields over the 

three steps. To achieve even modest yields, longer reaction times and higher catalyst 

loading were required for the RCEYM step (Scheme 106). These poor results were 

attributed to the Grubbs first generation catalyst not being robust enough to undergo a 

RCEYM reaction, with coordination to the additional heteroatom being a possible issue.  

 

Scheme 106- Initial one-pot process for the synthesis of 1,3-dienes 293 and 294 

To resolve the issues of long reaction times and the high catalyst loading, the reaction was 

repeated using other Grubbs catalysts. Firstly, 1,7-enyne 305 was generated using 

previously optimised thermal Overman rearrangement conditions to furnish the desired 

product in excellent yield from allylic alcohol 300. By using Grubbs and Hoveyda-Grubbs 

second generation catalysts, the problem with the catalyst loading was solved as only 10 

mol% of catalyst was required for the reaction to go to completion, however poor isolated 
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yields of 1,3-diene 293 were still obtained (Table 6, entry 1 and 2). At this point in the 

project a paper in the literature, which reported the in situ generation of ethylene using 1,7-

octadiene 156 and a metathesis catalyst, was published. It was reported by Fustero and co-

workers that by adding 1,7-octadiene 156 to a reaction mixture of Hoveyda-Grubbs second 

generation catalyst would generate ethylene in situ and the resulting methane-activated 

catalyst intermediate allowing an accelerated RCEYM reaction.
75

 By using this method of 

generating ethylene in situ, enyne 305 was subjected to these RCEYM reaction conditions 

with the addition of 1,7-octadiene 156 affording desired 1,3-diene 293 in a 37% yield, with 

a lower catalyst loading being achieved as compared to Scheme 106 (entry 3). Changing 

the catalyst to Grubbs second generation catalyst improved the yield slightly, lowered the 

catalyst loading and reaction time, however, 1,3-diene 306a was also formed (entry 4). 1,3-

Diene 306a is the endo-product from the RCEYM reaction which occurs when the 

ruthenium attaches to the external carbon of the alkyne that then ring closes to form the 

seven membered ring as discussed in Chapter 1.3.2.
55

 This product was deduced as it had 

two singlet peaks in the olefinic region of the 
1
H NMR spectrum characteristic of geminal 

methylene hydrogen atoms. Finally, Hoveyda-Grubbs second generation catalyst was 

tested and using this catalyst, desired 1,3-diene 293 was isolated in good yield with a 

quantity of the endo-diene 306a also being formed (entry 5). 
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Entry Conditions Yield (%) of 293 Yield (%) of 306a 

1
a
 Grubbs II (10 mol%), 75 °C, 72 h 39 0 

2
a
 H-G II (10 mol%), 75 °C, 96 h 25 0 

3 Grubbs I (10 mol%), 75 °C, 72 h 37 0 

4 Grubbs II (5 mol%), 90 °C, 24 h 45 15 

5 H-G II (5 mol%), 90 °C, 24 h 67 23 

 

Table 6- Optimisation of RCEYM reaction. 
a
 1,7-Octadiene 156 was not added. 
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Using these optimised RCEYM conditions, the one-pot process was repeated with 1,3-

diene 293 being isolated in a 40% yield from allylic alcohol 300 (Scheme 107). This 

optimised method has many advantages over the previous one-pot process (Scheme 106). 

With the use of 1,7-octadiene 156, the catalyst loading was lowered from 20 mol% of 

Grubbs first generation to 5 mol% of Hoveyda-Grubbs second generation catalyst and the 

time for the RCEYM reaction was shortened from 72 h to 24 h. 

 

Scheme 107- One-pot process for the synthesis of 1,3-diene 293 

With the formation of aza-1,3-diene 293 complete, attention was then drawn to using these 

conditions and applying them to the oxygen containing 1,3-diene 294. Initially the 

optimised conditions, where Hoveyda-Grubbs second generation catalyst and 1,7-octadiene 

156 were used, worked well to form desired 1,3-diene 294. However, endo-1,3-diene 306b 

was also formed in a 1:1 ratio and could not be removed by column chromatography. The 

formation of the endo-1,3-diene 306b is not surprising and has been reported before when 

Grubbs second generation catalyst is used with ethylene gas.
55,146

 This reactivity is not 

observed with Grubbs first generation catalyst which is less reactive so forms only the exo-

diene product 294. The one-pot process was then repeated using Grubbs first generation 

catalyst generating desired 1,3-diene 294 in an isolated yield of 46% from the allylic 

alcohol 304 (Scheme 108). 
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Scheme 108- One-pot process for the synthesis of 1,3-diene 294 
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2.5.2 One-pot synthesis of quinone derivatives 

With the development of an efficient one-pot procedure to form carbocyclic and 

heterocyclic containing 1,3-dienes complete, attention was turned to using these 1,3-diene 

in a Diels-Alder reaction with quinones. As previously shown in Chapter 2.1.6, a one-pot 

multi-reaction process was attempt using 1,4-benzoquinone 307. Surprisingly, the desired 

product 308 from this reaction was not isolated, however the aromatised product 211 was 

isolated in a modest yield. The formation of this product was attributed to 1,4-

benzoquinone 307 acting as an oxidant, causing aromatisation to take place. To improve 

the yield of this process, it was proposed that by adding a stronger oxidant such as DDQ, 

after the Diels-Alder reaction with 1,4-benzoquinone 307 was complete, would lead to a 

more efficient synthesis of polycycle 211. Thus by adding DDQ after the Diels-Alder 

reaction was complete, the overall yield of the reaction was improved to 58% of the 

aromatised product 211 over five steps from allylic alcohol 194 (Scheme 109). 

 

Scheme 109- Synthesis of tricyclic tetralin 211 

While this one-pot procedure worked well, forming tricyclic tetralin 211 in a good yield 

over five steps, it was not applicable to other examples. As such attention focused on 

developing an efficient process to form these products. It was decided that the best course 

of action was to first carry out the one-pot process to generate the 1,3-dienes, then in a 

separate one-pot process, use the Diels-Alder reaction followed by aromatisation to form 

the aromatic scaffolds.  
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Separating the one-pot process allowed further optimisation of the Diels-Alder reaction 

and aromatisation steps. With each of the steps being heated, it was proposed that the 

entire process could be performed using microwave reactor technology which may allow 

faster access to these compounds. 

Over the past 15 years, microwave technology has become popular within chemistry due to 

increased reaction rates compared with conventional heat sources. Within academia, 

microwave reactor technologies have been applied to a wide range of applications.
147,148

 

This increase in reaction rate is due to the reaction mixture being heated in a rapid uniform 

manner whereas, in conventional heating, the walls of the flask are heated quicker than the 

centre of the flask.
149-151

 Also, due to the reaction vessel being held under pressure, the 

reaction mixture can be heated above the solvent boiling point, further accelerating the 

reaction.
152,153

 

One problem of using microwave reactors is that solvents with a small dielectric constant, 

such as toluene, are unable to absorb the microwave irradiation as well as solvents with 

large dielectric constants such as acetonitrile. This means that the reaction mixture is 

unable to heat to the required temperature. To overcome this, a passive heating element 

(silicon carbide bar) is added to the reaction mixture.
154

 The silicon carbide bar absorbs the 

microwave radiation and transfers it to the solvent molecules allowing it to heat to the 

required temperature. 

Initial optimisation under non-microwave conditions was accomplished by reacting 1,3-

diene 197 with 1,4-benzoquinone 307 to promote the thermal Diels-Alder reaction and 

then when complete as judged by 
1
H NMR spectroscopy, DDQ was added and heated 

thermally forming quinone derivative 211 in a good yield over the two steps (Table 7, 

entry 1). Repeating the process using microwave technology did enhance the rate of the 

reaction with the product formed in 5 h, however a lower yield was obtained (entry 2). Due 

to the lower yield, the oxidant manganese dioxide was used to perform the aromatisation 

and when both steps were performed using conventional heating a 44% yield was obtained 

(entry 3). This yield was improved by first carrying out the Diels-Alder reaction using 

conventional heating then repeating the aromatisation reaction in the microwave which 

formed polycycle 211 in a 66% yield over two steps with the aromatisation stage only 

taking 2 h to go to completion (entry 4).  
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Entry Diels-Alder reaction 

conditions 

Aromatisation reaction 

conditions 

Yield 

(%) 

1 Δ, 72 h Δ, DDQ, 24 h 49 

2 μW, 4 h μW, DDQ, 1 h 40 

3 Δ, 72 h Δ, MnO2 (10 eq.), 24 h 44 

4 Δ, 72 h μW, MnO2 (10 eq.), 2 h 66 

 

Table 7- Optimisation of one-pot process using 1,4-benzoquinone 307 

Using the optimised conditions, a small library of quinone derivatives were synthesised in 

good to modest yields over two steps (Scheme 110). The scope of the reaction was 

expanded to include 2-tert-butyl-1,4-benzoquinone and 1,4-naphthoquinone 205 forming 

the corresponding tri- and tetracyclic indanes and tetralins 312–316 in good overall yield. 

When the one-pot process was applied to the nitrogen and oxygen containing 1,3-diene, 

trace amounts of the lactam and lactone products formed from benzylic oxidation at the C-

1 position were also isolated. In these cases, DDQ provided the aromatic products in higher 

yields with the use of microwave heating. 
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Scheme 110- Library of quinone derivatives. 
a
 Oxidation performed using DDQ 

It should be noted that products isolated from the one-pot process with 2-tert-butyl-1,4-

benzoquinone were isolated as single regioisomers. The regiochemical outcome of this 

reaction was determined by X-ray analysis of polycycle 312 (Figure 18 and Appendix 2). 

The structure shows the tert-butyl group in the C-8 position. This suggests that the Diels-

Alder reaction was sterically controlled. 

 

Figure 18- Ortep diagram of polycycle 312 
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2.5.3 Diels-Alder reaction with alkynes 

With the synthesis of the quinone derivatives complete, attention was then focused on the 

formation of other indane and tetralin systems. As shown earlier, Kotha and co-workers 

were able to form indanes ring systems, by reacting 1,3-diene with alkyne dienophiles, 

such as dimethyl acetylenedicarboxylate 122 (Chapter 1.3.3, Scheme 35).
67,68

  

It was envisaged that 1,3-diene 197 could participate in a Diels-Alder reaction forming 1,4-

diene 318. 1,4-Diene 318 would then be aromatised using DDQ to form the tetralin 319. 

Initial results showed that 1,3-diene 197 did not react with diethyl acetylenedicarboxylate 

317 even when elevated temperatures were used (Table 8, entry 1). With the addition of 

hydroquinone, which perturbs polymerisation reactions occurring at high temperatures, 

more promising results were observed with tetralin 319 being isolated in a modest yields 

after DDQ was added to 1,4-diene 318 (entry 2 and 3).
106

 Due to the poor reactivity of 1,3-

diene 197 it was decided that a Lewis acid would be added to the reaction mixture to lower 

the energy of the LUMO of the dienophile and thus catalyse the reaction. With the addition 

of zinc chloride, to act as the Lewis acid, the Diels-Alder reaction proceeded at a slightly 

lower temperature (120 °C instead of 140 °C) and took 72 h to go to completion. With the 

addition of DDQ, tetralin 319 was formed in a good yield over the two steps (entry 4). One 

disappointing aspect of this process was the fact that the Diels-Alder reaction took 72 h to 

go to completion and a further 24 h was needed for the aromatisation reaction. To resolve 

this, the reaction was repeated in a microwave reactor at 140 °C with the Diels-Alder 

reaction taking 3 h to go to completion. Microwave heating was also employed in the 

aromatisation reaction taking only 2 h to go to completion. With the use of these 

conditions, tetralin 319 was synthesised in 58% yield with the overall process taking only 5 

h to go to completion (entry 5). 
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Entry Conditions for Diels-Alder reaction Yield (%) 

1
a
 317 (3 eq.), 120 h 0 

2 317 (1.5 eq.), 120 h 34 

3 317 (3 eq.), 120 h 39 

4
b
 317 (3 eq.), ZnCl2 (1 eq.), 72 h 50 

5
c
 317 (3 eq.), ZnCl2 (1 eq.), 3 h 58 

 

Table 8- Optimisation of Diels-Alder reaction towards the formation of tetralin 319. 
a
 

Hydroquinone was not added. 
b
 Reaction carried out at 120 °C. 

c
 Diels-Alder and 

aromatisation reaction carried out in microwave reactor (300 W). 

With the two step process optimised, it was proposed that this Diels-Alder/aromatisation 

reaction could be combined with the three step process used to synthesise 1,3-diene 197 to 

form a five-step process (Scheme 111). Due to the small scale required for microwave 

reactions, it was deemed more practical to carry out the multi-step process using 

conventional heating, with tetralin 319 being isolated in a low yield of 33% over five steps. 

The low yield was attributed to there being too many reagents in the reaction mixture, thus 

having a detrimental effect on the Diels-Alder reaction, which had to be carried out at 140 

°C.  
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Scheme 111- One-pot process for synthesis of tetralin 319 

Due to the poor yield achieved for this five step process, it was decided that the best course 

of action was again to split the process into two one-pot processes and carry out the Diels-

Alder reaction followed by aromatisation as a separate process. The scope of the one-pot 

Diels-Alder reaction aromatisation was then investigated (Scheme 112). Using diethyl 

acetylenedicarboxylate 317, indanes and tetralins 319–322 were isolated in good yields 

over two steps using microwave heating. Both microwave and conventional heating 

methods were attempted in the formation of indane 323 and tetralin 324. Using standard 

thermal conditions, indane 323 and tetralin 324 were isolated in 52% and 66% yields 

respectively compared to yields of 30% and 54% recorded when microwave conditions 

were used. It was also found that indane and tetralin 323 and 324 were isolated as single 

regioisomers through a highly regioselective Diels-Alder reaction with the use of methyl 

propiolate. This provides further evidence for the hydrogen bond directing effect as 

observed with previous Diels-Alder reactions. 
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Scheme 112- One-pot synthesis of indanes and tetralins. 
a 

Reaction performed under 

standard thermal conditions. 

The scope of the Diels-Alder reaction was further explored with the use of other alkyne 

dienophiles. The alkynes, ethyl 3-phenylpropiolate 325 and methyl non-2-ynoate 326 

which both contain an electron withdrawing group, were applied to the Diels-Alder 

reaction using the previously optimised conditions, however no reaction was observed 

(Figure 19). Elevated temperatures and higher equivalents were also attempted with no 

success.     

 

Figure 19- Unreactive alkyne dienophiles 

2.5.4 Formation of heteroaromatic compounds 

Having investigated the Diels-Alder reaction using quinone and alkyne dienophiles, 

attention was turned to applying the 1,3-dienes to a hetero Diels-Alder reaction to further 

expand the scope by forming pyridine and pyridazine derivatives (Scheme 113). Amino-

substituted heteroatom containing polycyclic scaffolds are common in the literature and 

have medicinal applications.
155-158
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Scheme 113- Proposed heteroaromatic compounds 

To achieve the synthesis of pyridine derivatives it was decided that electron-deficient 

nitriles would be required for a normal electron demand Diels-Alder reaction to occur. The 

hetero Diels-Alder reaction of this type is not uncommon, however most reactions require 

forcing conditions.
159-162

 Schlosser and co-workers reported the preparation of pyridine 

derivatives using trichloroacetonitrile as the dienophile and an electron-rich diene 327 

(Scheme 114).
163

 It was found that when the Diels-Alder reaction took place, the 

trimethylsilyloxy group would spontaneously eliminate to rapidly form the pyridine 

product 328. 

 

Scheme 114- Hetero Diels-Alder reaction of a nitrile to form pyridine by elimination of 

leaving group 

This method of using an elimination reaction to form the pyridine products have been used 

in many examples.
161,162,164

 Another method of using a hetero Diels-Alder reaction which 

would lead to the formation of substituted pyridines is by carrying out a nickel catalysed 

dehydrogenative [4+2] cycloaddition.
165

  

Initial work on this area was carried out by an undergraduate MSci student Craig 

Donoghue. It was found that, by using similar 1,3-dienes and toluenesulfonyl cyanide as 

the dienophile, the resulting 1,4-dihydropyridine from the Diels-Alder reaction would 

undergo spontaneous aromatisation at temperatures of 160 °C forming a pyridine product 

in modest yield.
166

 

By utilising these conditions, 1,3-diene 197 was reacted with trichloroacetonitrile and 

using the elevated temperature of 160 °C, pyridine 330 was isolated in good yield as a 

single regioisomer (Scheme 115). 
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Scheme 115- Diels-Alder reaction using trichloroacetonitrile 

The structure of pyridine 330 was elucidated by using NMR spectroscopy. Firstly, the 
1
H 

NMR spectrum showed an extra CH signal at 6.67 ppm which was a singlet and combining 

that information with the CH signal at 71.2 ppm in the 
13

C NMR spectra indicated the 

presence of the CHCl2 group. The CHCl2 signal also allowed NOE studies of pyridine 330. 

This showed a NOE between the hydrogen on the CHCl2 group and the hydrogen on the C-

3 position confirming the regiochemistry of the product (Figure 20). The product is also 

formed as a single regioisomer.  

 

Figure 20- NOE studies of pyridine 330 

A possible mechanism for the formation of this product would be that the Lewis acid can 

coordinate to a chlorine atom on the 1,4-diene 329 (Scheme 116). This can lead to an 

elimination reaction to occur forming partially aromatised product 331. Intermediate 331 

can then aromatise via a 1,3-hydride shift forming the CHCl2 group and the pyridine ring. 
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Scheme 116- Proposed mechanism for pyridine formation 

This methodology was extended with the use of other electron-deficient nitriles such as, p-

toluenesulfonyl cyanide and ethyl cyanoformate forming the corresponding pyridines 332 

and 333 in good yield as single regioisomers (Scheme 117). The process was then applied 

to the 5-membered cyclic 1,3-diene 223 with pyridines 334 and 335 being isolated in 

modest yields again as single regioisomers. 
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Scheme 117- Preparation of pyridine derivatives. 
a
 Reaction was performed at 125 °C 
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With the formation of pyridines complete, this approach was then utilised for the formation 

of pyridazine derivatives. Pyridazines derivatives display a wide range of biological 

activities such as 11β-HSD1 inhibitors for treating type II diabetes and are known to be 

effective antitumor agents.
167,168

 Pyridazines can also be used as key intermediates in total 

synthesis as they can be used in a [4+2]cycloaddition with alkynes, which can then 

aromatise with the loss of nitrogen gas.
169

  

To form pyridazine structures through a Diels-Alder reaction is uncommon in the 

literature. Martin and co-workers showed that by reacting the 1,3-diene 336 with di-tert-

butyl azodicarboxylate 337, cycloadduct 338 was formed as a mixture of diastereomers 

(Scheme 118).
170

 Upon treatment of cycloadduct 338 with bromine, it was proposed that 

this led to a tandem sequence of bromination, N-Boc deprotection followed by 

aromatisation to provide desired pyridazine 339 in good yield over the two steps. 

 

Scheme 118- Pyridazine formation via a Diels-Alder reaction followed by a tandem 

bromination, deprotection, aromatisation sequence 

The 1,3-dienes 223 and 197 were reacted with di-tert-butyl azodicarboxylate 337, which 

afforded the cycloadducts 340 and 342 as a mixture of diastereomers (Scheme 119). 

Bromine was then added to the reaction mixture resulting in the formation of pyridazines 

341 and 343 in good yields over the two steps. 
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Scheme 119- Synthesis of pyridazines 341 and 343 

Two one-pot processes have been developed, the first generating novel C-1 amino-

substituted indane and tetralin scaffolds and the second the formation of C-1 amino-

substuted heteroaromatic structures. These processes are currently being investigated to 

generate a variety of medicinally important compounds. 
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3.0 Conclusions and future work 

During the course of this research project, a novel one-pot multi-reaction process has been 

developed which comprises of an Overman rearrangement, a RCEYM reaction and a 

Diels-Alder reaction (Scheme 120). The product was isolated as a single diastereomer due 

to a hydrogen bond directed Diels-Alder reaction, which led to the formation of product 

198 in 72% yield from allylic alcohol 194. The structure of polycycle 198 was elucidated 

using NOE studies with the Diels-Alder reaction creating four contiguous stereogenic 

centres due to the hydrogen bond directing effect. 

 

Scheme 120- One-pot process for the synthesis of polycycle 198 

The scope of this process was expanded by changing the dienophile. Diels-Alder products 

such as 206 and 209 were again isolated again as a single diastereomers in good yield 

(Figure 21). An X-ray crystal structure of product 206 proved the relative stereochemistry 

of the C-1 and C-12b hydrogen atoms. The one-pot process was then further expanded 

using allylic alcohol 215 to generate amino-substituted bicyclo[4.3.0]nonanes. Using 

hetero-Diels-Alder and Diels-Alder reactions generated polycycles 219 and 228 in 

moderate to good yields and as single diastereomers. Bicyclo[4.3.0]nonane 228 was also 

isolated as a single regioisomer giving further evidence of the hydrogen bond directing 

effect observed in the Diels-Alder reaction. 
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Figure 21- Structures of isolated bicyclo[4.4.0]decanes 206 and 209 and [4.3.0]nonanes 

219 and 228 

In an attempt to carry out the one-pot process asymmetrically, work was then carried out to 

instigate a Pd(II)-catalysed Overman rearrangement. Through the use of a phenyl 

substituted alkyne, a Pd(II)-catalysed Overman rearrangement was achieved forming 1,6- 

and 1,7-enynes in excellent yields. Overall, a one-pot multi-reaction process was 

developed to form 5-aryl aminobicyclo[4.3.0]nonane 253 in a 49% yield and isolated as a 

single diastereomer (Scheme 121). Work is currently underway to examine the scope of 

disubstituted alkyne derived allylic alcohols and the use of chiral Pd(II)-catalysts in these 

one-pot multi-reaction processes for the asymmetric synthesis of medicinally important 

compounds and natural products. 

Scheme 121- One-pot process involving a Pd(II)-catalysed Overman rearrangement 

Alternatively, the substituent on the alkyne could be changed to a labile protecting group 

that could be cleaved after the rearrangement. For example, a silyl protecting group could 

easily be cleaved after the Overman rearrangement forming enyne 222 which can then 

participate in the developed one-pot procedure (Scheme 122). 
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Scheme 122- Proposed one-pot process using silyl protected alkynes  

The next stage of the research programme was to apply the developed one-pot process for 

the first total synthesis of the natural product netamine A, which has an amino-substituted 

bicyclo[4.3.0]nonane core. Unlike the previously synthesised compounds from this work, 

netamine A has further functionality in the C-7 position. It was proposed that this 

functionality could be introduced by utilising a tandem catalytic process involving 

RCEYM/cross metathesis. A one-pot multi-step process was then developed and by using 

a variety of cross metathesis partners and dienophiles, highly functionalised amino-

substituted bicyclo[4.3.0]nonanes and [4.4.0]decanes were synthesised in good yields as 

single diastereomers (Scheme 123). 
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Scheme 123- One-pot multi-reaction process involving a tandem catalytic process  

Significant progress has been made towards the total synthesis of netamine A. By 

exploiting a tandem catalytic process and a hydrogen bond directed Diels-Alder reaction, 

the bicyclo[4.3.0]nonane 257 was successfully formed with the desired relative 

stereochemistry for the synthesis of netamine A (Scheme 124). The deprotection of 

polycycle 257 generated bicyclo[4.3.0]nonane 288, however a subsequent hydrogenation 

reaction was only able to reduce the nitro group, not the olefin. It is proposed that future 

work will be to complete the synthesis of netamine A by repeating the hydrogenation step 

using a combination of both Raney-Ni™ and Pd/C catalysts. Once diamine 256 has been 

generated, cyanogen bromide would then be added to the reaction mixture to complete the 

first total synthesis of netamine A.
130-133
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Scheme 124- Attempted route towards the synthesis of netamine A 

Further work on this project could be done to exploit the usefulness of the cross metathesis 

and the Diels-Alder step to produce netamine B. This would involve changing the alkyl 

chain length on the cross coupling partner and employing a different dienophile in the 

Diels-Alder reaction. To form netamine B, 1-butene, which is a highly flammable gas, 

would be required to perform the ring-closing-enyne-metathesis cross metathesis reaction. 

By using the homodimerisation product of 1-butene, as used by Grubbs and co-workers as 

an alternative way of performing cross metathesis, the olefin 3-hexene 344 could be used 

as an alternative to form substituted 1,3-diene 345 (Scheme 125).
122

 Using nitroalkene 346, 

a Diels-Alder reaction could be used to form polycycle 347 which would then be 

transformed to netamine B. A total synthesis of this compound would allow the elucidation 

of its structure. 
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Scheme 125- Proposed synthesis of netamine B 

Finally, a novel approach for the synthesis of a diverse library of compounds containing 

partially saturated amino-substituted indanes and tetralins was developed (Scheme 126). 

These privileged structures are found within a range of pharmaceutically important agents. 

Utilising both carbo- and heterocyclic 1,3-dienes in a Diels-Alder reaction with quinone 

and alkyne dienophiles, resulted in the formation of 1,4-diene products. These 1,4-dienes 

were then aromatised using DDQ or manganese dioxide resulting in the formation of 

aromatic products such as 309, 312, 321 and 323 in a one-pot process. All aromatic 

products were generated in moderate to good yields with the products from the reaction 

with 2-tert-butyl-1,4-benzoquinone and methyl propiolate being isolated as single 

regioisomers. Tricycle 312 formed as a single regioisomer due to a sterically controlled 

Diels-Alder reaction with the tert-butyl group being in the C-8 position which was 

confirmed by X-ray crystallography. In the case of methyl propiolate, the Diels-Alder 

reaction was highly regioselective due to a hydrogen bond directing effect, yielding 

compound 323 as a single regioisomer.  
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Scheme 126- One-pot process for the synthesis of partially saturated indenes and tetralins 

This one-pot process involving a Diels-Alder reaction followed by aromatisation was 

extended for the synthesis of pyridine and pyridazine ring systems (Scheme 127). Reacting 

the cyclic-1,3-dienes with nitrile dienophiles at temperatures of 160 °C, facilitated the 

Diels-Alder reaction and at the same time aromatising the resulting 1,4-dihydropyridines. 

The pyridazine scaffold 343 was also formed in good yields. Compound 343 was produced 

via a Diels-Alder reaction followed by treatment of the resulting Diels-Alder adduct with 

bromine. This led to a tandem sequence of bromination, N-Boc deprotection followed by 

aromatisation.  

 

Scheme 127- One-pot process for the synthesis of pyridine and pyridazine scaffolds 

A range of drug-like derivatives could be prepared by employing the developed one-pot 

process. One example would be to synthesise derivatives of rasagiline (Scheme 128). This 

could be achieved by deprotecting indene 335 and the resulting product 348 could then be 
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treated with propargyl bromide and methylsulfonic acid to form the rasagiline derivative 

349. 

 

Scheme 128- Proposed synthesis of rasagiline derivatives 
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4.0 Experimental 

General Experimental 

All reagents and starting materials were obtained from commercial sources and used as 

received. All dry solvents were purified using a PureSolv 500 MD solvent purification 

system. All reactions were performed under an atmosphere of argon unless otherwise 

mentioned. Flash column chromatography was carried out using Fisher matrix silica 60. 

Macherey-Nagel aluminium-backed plates pre-coated with silica gel 60 (UV254) were used 

for thin layer chromatography and were visualised by staining with KMnO4. 
1
H NMR and 

13
C NMR spectra were recorded on a Bruker DPX 400 spectrometer with chemical shift 

values in ppm relative to TMS (δH 0.00 and δC 0.0) or residual chloroform (δH 7.26 and δC 

77.2) as standard. Proton and carbon assignments are based on two-dimensional COSY and 

DEPT experiments, respectively. Mass spectra were obtained using a JEOL JMS-700 

spectrometer for EI and CI or Bruker Microtof-q for ESI. Infrared spectra were obtained 

neat using a Shimadzu IRPrestige-21 spectrometer. Melting points were determined on a 

Reichert platform melting point apparatus. Microwave reactions were conducted using a 

CEM Discover
TM

 Synthesis Unit (CEM Corp., Matthews, NC) and performed in glass 

vessels (capacity 10 mL) sealed with a septum. 

Experimental Procedures and Spectroscopic Data for All Compounds 

Ethyl (2E)-oct-2-en-7-ynoate (193).
171

 

 

Dimethyl sulfoxide (5.42 mL, 76.5 mmol) was added to a stirred solution of oxalyl 

chloride (29.5 mL , 42.8 mmol) in dichloromethane (150 mL) at −78 °C. The mixture was 

stirred for 0.3 h before 5-hexyn-1-ol (192) (3.00 g, 30.6 mmol) in dichloromethane (25 

mL) was slowly added. The mixture was stirred for a further 0.3 h before triethylamine 

(21.3 mL, 153 mmol) was added. This reaction mixture was stirred for 0.5 h at −78 °C and 

then allowed to warm to room temperature and stirred for a further 2 h. A solution of 

lithium chloride (2.34 g, 55.1 mmol), triethyl phosphonoacetate (10.9 mL, 55.1 mmol) and 

1,8-diazabicyclo[5.4.0]undec-7-ene (8.22 mL, 55.1 mmol) in acetonitrile (150 mL) was 

then prepared and stirred for 1.0 h. The Swern solution was concentrated in vacuo, then the 

Horner-Wadsworth-Emmons solution was added and the reaction mixture was stirred at 
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room temperature overnight. The reaction was quenched with a saturated solution of 

ammonium chloride (50 mL) and concentrated to give an orange residue, which was then 

extracted with diethyl ether (4 × 75 mL). The organic layers were combined, dried 

(MgSO4) and concentrated to give an orange oil. Flash column chromatography using 

silica (diethyl ether/petroleum ether, 1:9) gave ethyl (2E)-oct-2-en-7-ynoate (193) (4.99 g, 

99%) as a yellow oil. Spectroscopic data was consistent with the literature.
171 

Rf (50% 

diethyl ether/petroleum ether) 0.74; νmax/cm
−1 

(neat) 3295 (C≡C−H), 2940 (CH), 1713 

(CO), 1651 (C=C), 1265, 1188, 1150, 1042, 979, 756, 633; δH (400 MHz, CDCl3) 1.29 

(3H, t, J 7.1 Hz, OCH2CH3), 1.70 (2H, quin, J 6.9 Hz, 5-H2), 1.98 (1H, s, 8-H), 2.23 (2H, t, 

J 6.9 Hz, 6-H2), 2.33 (2H, q, J 6.9 Hz, 4-H2), 4.18 (2H, q, J 7.1 Hz, OCH2CH3), 5.86 (1H, 

d, J 15.6 Hz, 2-H), 6.94 (1H, dt, J 15.6, 6.9 Hz, 3-H); δC (101 MHz, CDCl3) 14.3 (CH3), 

17.9 (CH2), 26.7 (CH2), 30.9 (CH2), 60.2 (CH2), 69.0 (CH), 83.5 (C), 122.1 (CH), 147.8 

(CH), 166.6 (C); m/z (CI) 167 (MH
+
, 100%), 139 (42), 113 (10), 97 (12), 81 (25), 71 (30). 

(2E)-Oct-2-en-7-yn-1-ol (194).
172 

 

Ethyl (2E)-oct-2-en-7-ynoate (193) (4.10 g, 24.7 mmol) was dissolved in diethyl ether (50 

mL) and cooled to −78 °C. DIBAL-H (1 M in hexane) (54.3 mL, 54.3 mmol) was added 

dropwise and the reaction mixture was stirred at −78 °C for 3 h, before warming to room 

temperature overnight. The solution was cooled to 0 °C and quenched by the addition of a 

saturated solution of ammonium chloride (10 mL) and warmed to room temperature with 

vigorous stirring over 1 h, producing a white precipitate. The precipitate was filtered 

through a pad of Celite® and washed with diethyl ether (3 × 50 mL). The filtrate was then 

dried (MgSO4) and concentrated in vacuo. Flash column chromatography using silica 

(diethyl ether/petroleum ether, 1:1) gave (2E)-oct-2-en-7-yn-1-ol (194) (2.95 g, 97% yield) 

as a yellow oil. Spectroscopic data was consistent with the literature.
172

 Rf (50% petroleum 

ether/diethyl ether) 0.29; νmax/cm
−1

 (neat) 3361 (OH), 3302 (C≡C−H), 2932 (CH), 1674 

(C=C), 1435, 1219, 1088, 972; δH (400 MHz, CDCl3) 1.29 (1H, br s, OH), 1.63 (2H, quin, 

J 6.9 Hz, 5-H2), 1.96 (1H, t, J 2.6 Hz, 8-H), 2.15–2.25 (4H, m, 4-H2 and 6-H2), 4.09–4.15 

(2H, m, 1-H2), 5.63–5.74 (2H, m, 2-H and 3-H); δC (101 MHz, CDCl3) 17.8 (CH2), 27.8 

(CH2), 31.1 (CH2), 63.7 (CH2), 68.5 (CH), 84.2 (C), 129.9 (CH), 131.9 (CH); m/z (CI) 125 

(MH
+
, 20%), 107 (95), 97 (40), 81 (80), 71 (100). 
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3-(2’,2’,2’-Trichloromethylcarbonylamino)oct-1-en-7-yne (196). 

 

Method A- (2E)-Octa-2-en-7-yn-1-ol (194) (0.50 g, 4.03 mmol) was dissolved in 

dichloromethane (20 mL) and cooled to 0 °C. To the solution was added 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.12 mL, 0.81 mmol) and trichloroacetonitrile (0.61 mL, 

6.05 mmol). The reaction mixture was allowed to warm to room temperature before 

stirring for 3 h. The reaction mixture was filtered through a short pad of silica gel and the 

filtrate concentrated in vacuo to give the allylic trichloroacetimidate, which was used 

without further purification. The allylic trichloroacetimidate was dissolved in toluene (40 

mL) under an argon atmosphere. Bis(acetonitrile)palladium chloride (0.10 g, 0.40 mmol) 

was then added to the solution and the reaction mixture was stirred at room temperature for 

48 h. To the reaction mixture, an additional portion of bis(acetonitrile)palladium chloride  

(0.10 g, 0.40 mmol) was added and the reaction mixture was stirred at 40 °C for 24 h. The 

reaction mixture was cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 10:1) gave 3-(2’,2’,2’-

trichloromethylcarbonylamino)oct-1-en-7-yne (196) (0.57 g, 52%) as a colourless oil. Rf 

(50% diethyl  ether/petroleum ether) 0.61; νmax/cm
−1 

(neat) 3425 (NH), 3309 (C≡C-H), 

2947 (CH), 2114 (C≡C), 1697 (CO), 1512, 1242, 817; δH (400 MHz, CDCl3) 1.62 (2H, 

quin., J 6.8 Hz, 5-H2), 1.76–1.81 (2H, m, 4-H2), 1.99 (1H, t, J 2.6 Hz, 8-H), 2.25 (2H, td, J 

6.8, 2.6 Hz, 6-H2), 4.45 (1H, quin., J 6.2 Hz, 3-H), 5.23 (1H, d, J 10.4 Hz, 1-HH), 5.28 

(1H, d, J 17.7 Hz, 1-HH), 5.82 (1H, ddd, J 17.7, 10.4, 6.2 Hz, 2-H), 6.48 (1H, br s, NH); δC 

(101 MHz, CDCl3) 18.2 (CH2), 24.5 (CH2), 33.3 (CH2), 53.2 (CH), 69.5 (CH), 83.6 (C), 

92.8 (C), 116.5 (CH2), 136.3 (CH), 161.3 (C); m/z (CI) 268.0067 (MH
+
. C10H13

35
Cl3NO 

requires 268.0063), 234 (30%), 198.3 (100), 162 (15), 121 (68), 105 (30). 

Method B- (2E)-Octa-2-en-7-yn-1-ol (194) (0.42 g, 3.40 mmol) was dissolved in 

dichloromethane (20 mL) and cooled to 0 °C. To the solution was added 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.095 mL, 0.68 mmol) and trichloroacetonitrile (0.51 mL, 

5.09 mmol). The reaction mixture was allowed to warm to room temperature before 

stirring for 3 h. The reaction mixture was filtered through a short pad of silica gel and the 

filtrate concentrated in vacuo to give the allylic trichloroacetimidate, which was used 
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without further purification. The allylic trichloroacetimidate was dissolved in toluene (10 

mL) and transferred to a Schlenk tube containing potassium carbonate (0.050 g) and 

purged with Ar and sealed. The reaction mixture was then heated to 140 °C and stirred for 

48 h, before cooling to room temperature and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 10:1) gave 3-(2’,2’,2’-

trichloromethylcarbonylamino)oct-1-en-7-yne (196) (0.890 g, 98%) as a colourless oil. 

Spectroscopic data as described above. 

5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197). 

 

Method A- 3-(2’,2’,2’-Trichloromethylcarbonylamino)-oct-1-en-7-yne (196) (0.20 g, 0.75 

mmol) was dissolved in dichloromethane (20 mL) and Grubbs first generation catalyst 

(0.062 g, 0.075 mmol) was then added. The reaction mixture stirred at 40 °C for 24 h. The 

reaction mixture was then cooled and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether 7:1) gave 5-ethyl-1’’-ene-1-

(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.14 g, 68%) as a white 

solid. Rf (50% diethyl ether/petroleum ether) 0.86; Mp 77–79 °C; νmax /cm
−1

 (neat) 3258 

(NH), 2942 (CH), 1703, 1684 (CO), 1535, 1310, 1273, 1248, 1157, 1073, 993, 907, 824; 

δH (400 MHz, CDCl3) 1.57–1.68 (1H, m, 2-HH), 1.70–1.83 (2H, m, 3-H2), 1.96–2.07 (1H, 

m, 2-HH), 2.16–2.26 (2H, m, 4-H2), 4.53–4.63 (1H, m, 1-H), 5.10 (1H, d, J 10.6 Hz, 2’’-

HH), 5.26 (1H, d, J 17.7 Hz, 2’’-HH), 5.65 (1H, br s, 6-H), 6.36 (1H, dd, J 17.7, 10.6 Hz, 

1’’-H), 6.60 (1H, br s, NH); δC (126 MHz, CDCl3) 19.4 (CH2), 23.5 (CH2), 28.7 (CH2), 

47.7 (CH), 92.7 (C), 113.7 (CH2), 126.4 (CH), 138.6 (CH), 140.5 (C), 161.1 (C); m/z (CI) 

268.0059 (MH
+
. C10H13

35
Cl3NO requires 268.0063), 234 (38%), 200 (9), 164 (3), 107 

(100), 87 (22), 69 (33). 

Method B- (2E)-Oct-2-en-7-yn-1-ol (194) (0.050 g, 0.40 mmol) was dissolved in 

dichloromethane (15 mL) and cooled to 0 °C. To the solution, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.011 mL, 0.080 mmol) and trichloroacetonitrile (0.060 

mL, 0.61 mmol) was added. The reaction mixture was allowed to warm to room 

temperature before stirring for 3 h. The reaction mixture was filtered through a short pad of 
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silica gel and the filtrate concentrated in vacuo to give the allylic trichloroacetimidate, 

which was used without further purification. The allylic trichloroacetimidate was dissolved 

in toluene (10 mL) and transferred to a Schlenk tube containing potassium carbonate 

(0.050 g) and purged with Ar and sealed. The reaction mixture was then heated to 140 °C 

and stirred for 24 h. Grubbs first generation catalyst (0.024 g, 0.030 mmol) was added and 

the reaction mixture was heated for 18 h at 75 °C. A further portion of Grubbs first 

generation catalyst (0.010 g, 0.010 mmol) was added and the reaction mixture was stirred 

at 75 °C for 4 h. The reaction mixture was then cooled to rt and the solvent was 

evaporated. Flash column chromatography using silica (petroleum ether/diethyl ether 7:1) 

gave 5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) 

(0.092 g, 86%) as a white solid. Spectroscopic data as described above. 

(3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-Octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198). 

 

Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.10 g, 0.37 mmol) was dissolved in toluene (10 mL) and N-phenyl maleimide (139) 

(0.096 g, 0.56 mmol) was added with hydroquinone (0.012 g, 0.11 mmol). The flask was 

stirred at 111 °C for 18 h. The solution was then cooled to room temperature and the 

solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether 2:3) gave (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-

9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) 

(0.095 g, 58%) as a white solid. Rf (70% diethyl ether/petroleum ether) 0.33; Mp 152–154 

°C; νmax/cm
−1

 (neat) 3567 (NH), 3056 (ArH), 2944 (CH), 1712 (CO), 1501, 1385, 1265, 

1188; δH (500 MHz, CDCl3) 1.57–1.62 (1H, m, 7-HH), 1.68–1.73 (1H, m, 7-HH), 1.86 

(2H, q, J 7.6 Hz, 8-H2), 2.24–2.47 (3H, m, 6-H2 and 4-HH), 2.75 (1H, dt, J 16.5, 4.4 Hz, 4-

HH), 3.08 (1H, t, J 7.6 Hz, 9a-H), 3.29 (1H, ddd, J 9.4, 8.1, 4.4 Hz, 3a-H), 3.47 (1H, dd, J 

9.4, 7.6 Hz, 9b-H), 4.72 (1H, dq, J 9.3, 7.6 Hz, 9-H), 5.84–5.89 (1H, m, 5-H), 7.20–7.24 

(2H, m, 2 × ArH), 7.40 (1H, t, J 7.5 Hz, ArH), 7.46 (2H, t, J 7.5 Hz, 2 × ArH), 7.63 (1H, d, 

J 9.3 Hz, NH); δC (126 MHz, CDCl3) 22.7 (CH2), 23.4 (CH2), 29.5 (CH2), 32.4 (CH2), 38.1 
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(CH), 38.9 (CH), 40.3 (CH), 48.8 (CH), 91.8 (C), 121.1 (CH), 126.4 (2 × CH), 128.8 (CH), 

129.2 (2 × CH), 131.5 (C), 138.1 (C), 161.1 (C), 178.1 (C), 178.3 (C); m/z (EI) 440.0450 

(M
+
. C20H19

35
Cl3N2O3 requires 440.0461), 403 (5%), 323 (5), 279 (100), 241 (10), 132 

(65), 91 (32), 77 (11). 

Method B- (2E)-Oct-2-en-7-yn-1-ol (194) (0.050 g, 0.40 mmol) was dissolved in 

dichloromethane (15 mL) and cooled to 0 °C. To the solution, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.011 mL, 0.08 mmol) and trichloroacetonitrile (0.060 

mL, 0.60 mmol) was added. The reaction mixture was allowed to warm to room 

temperature before stirring for 3 h. The reaction mixture was filtered through a short pad of 

silica gel and the filtrate concentrated in vacuo to give the allylic trichloroacetimidate, 

which was used without further purification. The allylic trichloroacetimidate was dissolved 

in toluene (10 mL) and transferred to a Schlenk tube containing potassium carbonate 

(0.050 g) and purged with Ar and sealed. The reaction mixture was then heated to 140 °C 

and stirred for 24 h. Grubbs first generation catalyst (0.025 g, 0.030 mmol) was added and 

the reaction mixture was heated for 18 h at 75 °C. A further portion of Grubbs first 

generation catalyst (0.0082 g, 0.010 mmol) was added and the reaction mixture was stirred 

at 75 °C for 4 h. N-Phenyl maleimide (139) (0.10 g, 0.60 mmol) was added with 

hydroquinone (0.013 g, 0.12 mmol). The reaction mixture was stirred for 48 h at 111 °C. 

Flash column chromatography using silica (petroleum ether/diethyl ether, 2:3) gave 

(3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (0.13 g, 72%) as 

a white solid. Spectroscopic data as described above  

Method C- (2E)-Oct-2-en-7-yn-1-ol (194) (0.025 g, 0.20 mmol) was dissolved in 

dichloromethane (10 mL) and cooled to 0 °C. To the solution, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.0056 mL, 0.04 mmol) and trichloroacetonitrile (0.030 

mL, 0.30 mmol) was added. The reaction mixture was allowed to warm to room 

temperature before stirring for 3 h. The reaction mixture was filtered through a short pad of 

silica gel and the filtrate concentrated in vacuo to give the allylic trichloroacetimidate, 

which was used without further purification. The allylic trichloroacetimidate was dissolved 

in toluene (5 mL) and transferred to a microwave vial containing potassium carbonate 

(0.025 g) and purged with Ar and sealed. The reaction mixture was then heated in a 

microwave reactor to 180 °C and stirred for 1 h (300W). Grubbs first generation catalyst 

(0.017 g, 0.020 mmol) was added and the reaction mixture was stirred in a microwave 

reactor for 1 h at 75 °C. N-Phenyl maleimide (139) (0.052 g, 0.30 mmol) was added and 
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the mixture was stirred a 111 °C in a microwave reactor for 1 h. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 2:3) gave 

(3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (0.053 g, 60%) 

as a white solid. Spectroscopic data as described above. 

(3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-Octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) and 

(3aR*,9R*,9aR*,9bS*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (202). 
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5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.083 g, 

0.31 mmol) was dissolved in methanol (5 mL) and N-phenyl maleimide (139) (0.078 g, 

0.46 mmol) was added with hydroquinone (0.005 g, 0.05 mmol). The flask was stirred at 

75 °C for 18 h. The solution was then cooled to room temperature and solvent evaporated. 

Flash column chromatography using silica (petroleum ether/diethyl ether, 2:3) gave the 

product as a 1:1 mixture of two diastereomers. Elution with 2:3 diethyl ether/petroleum 

ether gave (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (0.060 g, 44%) 

as a white solid. Spectoscopic data as described above. Elution with 1:1 diethyl 

ether/petroleum ether gave (3aR*,9R*,9aR*,9bS*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-

9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (202) 

(0.059 g, 43%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.28; Mp 156–158 

°C; νmax/cm
−1

 (neat) 3402 (NH), 3043 (ArH), 2925 (CH), 1711 (CO), 1502, 1385, 1305, 

1248, 927; δH (500 MHz, CDCl3) 1.58–1.79 (1H, m, 7-H2), 2.03–2.11 (2H, m, 6-HH and 8-

HH), 2.16–2.24 (1H, m, 4-HH), 2.26–2.38 (2H, m, 4-HH and 6-HH), 2.65 (1H, d, J 16.1 

Hz, 9a-H), 2.96 (1H, t, J 8.8 Hz, 8-HH), 3.26 (1H, td, J 8.5, 3.5 Hz, 3a-H), 3.45 (1H, dd, J 

8.5, 6.6 Hz, 9b-H), 4.43–4.51 (1H, m, 9-H), 5.64–5.69 (1H, m, 5-H), 7.14 (1H, d, J 7.0 Hz, 

NH), 7.18–7.22 (2H, m, 2 × ArH), 7.36–7.41 (1H, m, ArH), 7.46 (2H, t, J 7.7 Hz, 2 × 

ArH); δC (126 MHz, CDCl3) 21.3 (CH2), 24.8 (CH2), 28.0 (CH2), 29.7 (CH2), 39.3 (CH), 
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39.8 (CH), 41.1 (CH), 51.1 (CH), 93.0 (C), 119.8 (CH), 126.4 (2 × CH), 128.7 (CH), 129.1 

(2 × CH), 131.7 (C), 139.2 (C), 161.7 (C), 177.3 (C), 178.5 (C); m/z (ESI) 463.0352 

(MNa
+
. C20H19

35
Cl3N2O3 requires 463.0353). 

Methyl (1R*,8S*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-8-carboxylate (204). 
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Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.12 g, 0.45 mmol) was dissolved in toluene (10 mL) and methyl acrylate (203) 

(0.048 mL, 0.54 mmol) was added with hydroquinone (0.012 g, 0.11 mmol). The reaction 

was stirred at 111 °C for 72 h. The solution was then cooled to room temperature and the 

solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 5:2) gave methyl (1R*,8S*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-

(2’,2’,2’-trichloromethylcarbonylamino)naphthalene-8-carboxylate (204) (0.042 g, 26%) 

as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.39; νmax/cm
−1

 (neat) 3416 

(NH), 2938 (CH), 1713 (CO), 1501, 1435, 1265, 1152, 1020, 952, 816; δH (500 MHz, 

CDCl3) 1.35 (1H, qt, J 13.3, 4.4 Hz, 3-HH), 1.59 (1H, tdd, J 13.3, 4.4, 3.0 Hz, 2-HH), 

1.65–1.72 (1H, m, 3-HH), 1.74–1.88 (3H, m, 2-HH and 7-H2), 1.93–2.04 (2H, m, 4-HH 

and 6-HH), 2.05–2.13 (1H, m, 6-HH), 2.24 (1H, ddt, J 13.3, 4.4, 2.2 Hz, 4-HH), 2.63–2.67 

(1H, m, 8a-H), 2.72 (1H, ddd, J 12.8, 7.1, 4.4 Hz, 8-H), 3.66 (3H, s, OCH3), 4.11 (1H, dq, 

J 9.2, 3.0 Hz, 1-H), 5.69–5.72 (1H, m, 5-H), 6.76 (1H, br d, J 9.2 Hz, NH); δC (126 MHz, 

CDCl3) 20.7 (CH2), 22.9 (CH2), 23.5 (CH2), 31.5 (CH2), 35.5 (CH2), 40.9 (CH), 42.8 (CH), 

50.2 (CH), 52.1 (CH3), 93.0 (C), 123.8 (CH), 134.4 (C), 160.1 (C), 173.7 (C); m/z (CI) 

354.0431 (MH
+
. C14H19

35
Cl3NO3 requires 354.0431), 320 (60%), 291 (20), 257 (15), 193 

(15), 107 (23), 69 (53). 

Method B- Methyl (1R*,8S*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-8-carboxylate (204) was synthesised as 

described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B) 

using (2E)-oct-2-en-7-yn-1-ol (194) (0.050 g, 0.40 mmol). The reaction mixture was 
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stirred with Grubbs first generation catalyst (0.033 g, 0.040 mmol) for 48 h at 75 °C before 

methyl acrylate (203) (0.22 mL, 2.41 mmol) was added. The reaction mixture was stirred 

for 6 days at 111 °C. Flash column chromatography using silica (petroleum ether/diethyl 

ether, 5:2) gave methyl (1R*,8S*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-8-carboxylate (204) (0.068 g, 48%) as a 

colourless oil. Spectroscopic data as described above. 

(1R*,12bR*)-1,2,3,4,6,12b-Hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]anthracene-7,12-dione (206). 

 

Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.16 g, 0.60 mmol) was dissolved in toluene (10 mL) and 1,4-naphthoquinone (205) 

(0.14 g, 0.90 mmol) was added with hydroquinone (0.012 g, 0.11 mmol). The reaction 

mixture was stirred at 115 °C for 24 h. The solution was then cooled to room temperature 

and the solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 7:3) gave (1R*,12bR*)-1,2,3,4,6,12b-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]anthracene-7,12-dione (206) (0.16 g, 63%) as a 

yellow solid. Rf (50% diethyl ether/petroleum ether) 0.51; Mp 176–178 °C; νmax/cm
–1

 

(neat) 3418, 3333 (NH), 3073 (ArH), 2935 (CH), 1705 (CO), 1661 (CO), 1591, 1506, 

1330, 1293, 821; δH (500 MHz, CDCl3) 1.43 (1H, qt, J 13.6, 3.6 Hz, 3-HH), 1.84–1.94 

(2H, m, 2-HH and 3-HH), 1.99 (1H, qt, J 13.6, 3.6 Hz, 2-HH), 2.12 (1H, m, 4-HH), 2.34–

2.40 (1H, m, 4-HH), 3.15 (1H, dddd, J 24.9, 6.4, 2.6, 1.9 Hz, 6-HH), 3.24 (1H, dddd, J 

24.9, 6.4, 3.6, 2.6 Hz, 6-HH), 3.78 (1H, td, J 6.4, 3.6 Hz, 12b-H), 4.62 (1H, dq, J 9.3, 3.6 

Hz, 1-H), 5.78–5.82 (1H, m, 5-H), 6.83 (1H, br d, J 9.3 Hz, NH), 7.62 (1H, td, J 7.4, 1.3 

Hz, ArH), 7.66 (1H, td, J 7.4, 1.3 Hz, ArH), 7.96 (1H, dd, J 7.4, 1.3 Hz, ArH), 8.07 (1H, 

dd, J 7.4, 1.3 Hz, ArH); δC (126 MHz, CDCl3) 23.6 (CH2), 25.3 (CH2), 30.3 (CH2), 34.7 

(CH2), 41.5 (CH), 51.1 (CH), 92.6 (C), 118.5 (CH), 126.1 (CH), 126.7 (CH), 131.7 (C), 

132.2 (C), 133.5 (CH and C), 133.9 (CH), 140.4 (C), 142.7 (C), 161.4 (C), 183.7 (C), 

184.3 (C); m/z (Cl) 426.0245 (MH
+
. C20H17

35
Cl2

37
ClNO3 requires 426.0247), 390 (85%), 

356 (30), 279 (35), 261 (30), 162 (10), 130 (7), 85 (33), 69 (48).  
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Method B- (1R*,12bR*)-1,2,3,4,6,12b-Hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]anthracene-7,12-dione (206) was synthesised as 

described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B) 

using (2E)-oct-2-en-7-yn-1-ol (194) (0.060 g, 0.48 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.040 g, 0.048 mmol) for 48 h at 75 °C, 

before 1,4-naphthoquinone (205) (0.15 g, 0.10 mmol) was added. The reaction mixture 

was stirred for 48 h at 111 °C. Flash column chromatography using silica (petroleum 

ether/diethyl ether 7:3) gave (1R*,12bR*)-1,2,3,4,6,12b-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]anthracene-7,12-dione (206) (0.12 g, 61%) as a 

yellow solid. Spectroscopic data as described above. 

Dimethyl (1R*,7S*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (207). 

 

Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.10 g, 0.37 mmol) and hydroquinone (0.012 g, 0.11 mmol) was dissolved in 

toluene (10 mL) and transferred to a Schlenk tube. Dimethyl maleate (0.14 mL, 1.11 

mmol) was then added. The tube was purged with Ar and sealed. The sealed tube was 

stirred at 120 °C for 6 days. The solution was then cooled to room temperature and the 

solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 11:9) gave dimethyl (1R*,7S*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-

(2’,2’,2’-trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (207) (0.063 g, 

41%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.37; νmax/cm
−1

 (neat) 

3395 (NH), 2951 (CH), 2939 (CH), 1730 (CO), 1710 (CO), 1502, 1436, 1201, 1173, 1162, 

819, 734; δH (500 MHz, CDCl3) 1.46–1.57 (2H, m, 2-HH and 3-HH), 1.60–1.67 (1H, m, 3-

HH), 2.05–2.17 (2H, m, 2-HH and 4-HH), 2.33–2.42 (2H, m, 4-HH and 6-HH), 2.65 (1H, 

dt, J 11.3, 4.6 Hz, 7-H), 2.85–2.95 (2H, m, 6-HH and 8a-H), 3.43 (1H, dd, J 8.6, 4.6 Hz, 8-

H), 3.64 (3H, s, OCH3), 3.68 (3H, s, OCH3), 4.41–4.47 (1H, m, 1-H), 5.80–5.85 (1H, m, 5-

H), 6.88 (1H, d, J 7.5 Hz, NH); δC (126 MHz, CDCl3) 20.3 (CH2), 23.9 (CH2), 29.5 (CH2), 

33.5 (CH2), 41.3 (CH), 41.6 (CH), 41.8 (CH), 50.1 (CH), 52.0 (CH3), 52.1 (CH3), 92.5 (C), 
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124.2 (CH), 132.8 (C), 160.7 (C), 173.3 (C), 173.5 (C); m/z (CI) 412.0475 (MH
+
. 

C16H21
35

Cl3NO5 requires 412.0485), 378 (100%), 344 (40), 310 (10), 235 (55), 193 (10), 

113 (12), 69 (42). 

Method B- Dimethyl (1R*,7S*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (207) was synthesised as 

described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B), 

using (2E)-oct-2-en-7-yn-1-ol (194) (0.050 g, 0.40 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.033 g, 0.040 mmol) for 48 h at 75 °C before 

dimethyl maleate (0.15 mL, 1.20 mmol) was added. The reaction mixture was stirred for 

120 h at 111 °C. Flash column chromatography using silica (petroleum ether/diethyl ether, 

1:1) gave dimethyl (1R*,7S*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (207) (0.065 g, 39%) as a 

colourless oil. Spectroscopic data as described above. 

Dimethyl (1R*,7R*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (208). 

 

Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.11 g, 0.41 mmol) and hydroquinone (0.012 g, 0.11 mmol) was dissolved in 

toluene (10 mL) and transferred to a Schlenk tube. Dimethyl fumarate (0.088 g, 0.61 

mmol) was then added. The tube was purged with Ar and sealed. The sealed tube was 

stirred at 111 °C for 48 h. The solution was then cooled to room temperature and the 

solvent was then evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 1:1) gave dimethyl (1R*,7R*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-

(2’,2’,2’-trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (208) (0.075 g, 

45%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.41; νmax/cm
−1

 (neat) 

3347 (NH), 2951 (CH), 1715 (CO), 1505, 1437, 1173, 910; δH (500 MHz, CDCl3) 1.36–

1.47 (1H, m, 3-HH), 1.66–1.74 (1H, m, 3-HH), 1.77–1.85 (1H, m, 2-HH), 1.88–1.94 (1H, 

m, 2-HH), 2.02–2.15 (1H, m, 4-HH), 2.30–2.39 (1H, m, 4-HH), 2.47 (1H, ddd, J 16.9, 6.3, 

5.7 Hz, 6-HH), 2.74–2.87 (2H, m, 7-H and 8a-H), 3.06 (1H, ddd, J 12.7, 11.2, 5.7 Hz, 8-
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H), 3.14 (1H, dd, J 12.7, 7.1 Hz, 6-HH), 3.67 (3H, s, OCH3), 3.71 (3H, s, OCH3), 4.10 (1H, 

dq, J 9.4, 3.1 Hz, 1-H), 5.72–5.79 (1H, m, 5-H), 6.67 (1H, d, J 9.4 Hz, NH); δC (126 MHz, 

CDCl3) 22.8 (CH2), 27.6 (CH2), 35.0 (CH2), 37.6 (CH2), 41.2 (CH), 41.6 (CH), 44.4 (CH), 

50.2 (CH), 52.1 (CH3), 52.3 (CH3), 92.8 (C), 121.5 (CH), 134.7 (C), 160.1 (C), 172.2 (C), 

172.4 (C); m/z (CI) 412.0469 (MH
+
. C16H21

35
Cl3NO5 requires 412.0485), 378 (75%), 344 

(100), 310 (30), 235 (23), 193 (18), 113 (32). 

Method B- Dimethyl (1R*,7R*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (208) was synthesised as 

described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B), 

using (2E)-oct-2-en-7-yn-1-ol (194) (0.060 g, 0.48 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.040 g, 0.048 mmol) for 48 h at 75 °C, 

before dimethyl fumarate (0.11 g, 0.73 mmol) was added. The reaction mixture was stirred 

for 120 h at 111 °C. Flash column chromatography using silica (petroleum ether/diethyl 

ether, 1:1) gave dimethyl (1R*,7R*,8R*,8aS*)-1,2,3,4,6,7,8,8a-octahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalenene-7,8-dicarboxylate (208) (0.061 g, 31%) as a 

colourless oil. Spectroscopic data as described above. 

(1R*,8aR*)-1,2,3,4,6,7,8,8a-Octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (209). 

 

Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.10 g, 0.37 mmol) was dissolved in toluene (8 mL) in a Schlenk tube, and 

hydroquinone (0.012 g, 0.11 mmol) and tetracyanoethylene (0.28 g, 2.22 mmol) were 

added. The reaction mixture was stirred at 75 °C for 44 h. The reaction mixture was 

concentrated in vacuo. Flash column chromatography using silica (petroleum ether/ethyl 

acetate 3:1) gave (1R*,8aR*)-1,2,3,4,6,7,8,8a-octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (209) (0.097 g, 66%) as an orange oil. Rf (50% 

ethyl acetate/petroleum ether) 0.56; νmax/cm
–1

 (neat) 3313 (NH), 2945 (CH), 2359 (CN), 

2342 (CN), 1699 (CO), 1514, 1275, 910, 733; δH (500 MHz, CDCl3) 1.53 (1H, qt, J 12.7, 
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3.9 Hz, 3-HH), 1.82 (1H, qd, J 12.7, 3.9 Hz, 2-HH), 1.92‒1.99 (1H, m, 3-HH), 2.13–2.25 

(2H, m, 2-HH and 4-HH), 2.49–2.56 (1H, m, 4-HH), 3.06 (1H, ddt, J 18.1, 6.2, 2.1 Hz, 6-

HH), 3.15 (1-H, ddd, J 18.1, 5.3, 2.1 Hz, 6-HH), 3.37 (1H, dd, J 11.5, 1.3 Hz, 8a-H), 4.11–

4.20 (1H, m, 1-H), 5.70–5.74 (1H, m, 5-H), 7.11 (1H, d, J 9.6 Hz, NH); δC (126 MHz, 

CDCl3) 23.4 (CH2), 31.4 (CH2), 32.3 (CH2), 34.1 (CH2), 39.7 (C), 42.6 (C), 47.1 (CH), 

54.4 (CH), 91.9 (C), 108.5 (C), 110.3 (C), 110.9 (C), 112.1 (C), 115.8 (CH), 135.0 (C), 

161.9 (C); m/z (CI) 396.0197 (MH
+
. C16H13

35
Cl3N5O requires 396.0186), 362 (100%), 328 

(20), 292 (25), 264 (30), 237 (25), 183 (42), 167 (50), 147 (25), 107 (65), 69 (74). 

Method B- (1R*,8aR*)-1,2,3,4,6,7,8,8a-Octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (209) was synthesised as described for 

(3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B) 

using (2E)-oct-2-en-7-yn-1-ol (194) (0.060 g, 0.48 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.040 g, 0.048 mmol) for 48 h at 75 °C before 

tetracyanoethylene (0.37 g, 2.88 mmol) was added. The reaction mixture was stirred for 24 

h at 111 °C. Flash column chromatography using silica (petroleum ether/ethyl acetate, 3:1) 

gave (1R*,8aR*)-1,2,3,4,6,7,8,8a-octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (209) (0.13 g, 66%) as an orange oil. 

Spectroscopic data as described above.  

(10R*,10aS*)-5,7,8,9,10,10a-Hexahydro-2-phenyl-10-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-1,3(2H)-dione 

(210). 

 

Method A- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.10 g, 0.37 mmol) was dissolved in toluene (10 mL) and 4-phenyl-1,2,4-triazole-

3,5-dione (254) (0.10 g, 0.56 mmol) was added with hydroquinone (0.012 g, 0.11 mmol). 

The reaction mixture was stirred at 111 °C for 18 h. The solution was then cooled to room 

temperature and the solvent was evaporated. Flash column chromatography using silica 
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(petroleum ether/ethyl acetate, 1:3) gave (10R*,10aS*)-5,7,8,9,10,10a-hexahydro-2-

phenyl-10-(2’,2’,2’-trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-

1,3(2H)-dione (210) (0.079 g, 48%) as a brown oil. Rf (75% ethyl acetate/petroleum ether) 

0.46; νmax /cm−1
 (neat) 3418 (NH), 3055 (ArH), 2940 (CH), 2361, 1775, 1705 (CO), 1505, 

1420, 819, 733; δH (500 MHz, CDCl3) 1.45–1.55 (1H, m, 8-HH), 1.89–1.99 (2H, m, 9-HH 

and 8-HH), 2.04–2.11 (1H, m, 9-HH), 2.22–2.31 (1H, m, 7-HH), 2.59 (1H, dtd, J 13.5, 4.2, 

2.1 Hz, 7-HH), 3.96 (1H, ddd, J 16.3, 5.6, 2.7 Hz, 5-HH), 4.30 (1H, dd, J 16.3, 4.9 Hz, 5-

HH), 4.59–4.63 (1H, m, 10a-H), 5.04 (1H, dq, J 8.5, 3.3 Hz, 10-H), 5.93–5.97 (1H, m, 6-

H), 6.85 (1H, d, J 8.5 Hz, NH), 7.36–7.41 (1H, m, ArH), 7.45–7.53 (4H, m, 4 × ArH); δC 

(126 MHz, CDCl3) 22.4 (CH2), 28.7 (CH2), 33.8 (CH2), 43.0 (CH2), 49.4 (CH), 56.3 (CH), 

92.7 (C), 116.6 (CH), 126.2 (CH), 128.4 (2 × CH), 129.2 (2 × CH), 131.0 (C), 132.0 (C), 

150.8 (C), 152.5 (C), 161.3 (C); m/z (EI) 442.0358 (M
+
. C18H17

35
Cl3N4O3 requires 

442.0366), 408 (10%), 325 (5), 281 (100), 253 (10), 162 (5), 119 (20), 91 (20). 

Method B- (10R*,10aS*)-5,7,8,9,10,10a-Hexahydro-2-phenyl-10-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-1,3(2H)-dione (210) 

was synthesised as described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-

phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione 

(198) (Method B) using (2E)-oct-2-en-7-yn-1-ol (194) (0.050 g, 0.40 mmol). The reaction 

mixture was stirred with Grubbs first generation catalyst (0.033 g, 0.040 mmol) for 48 h at 

75 °C before 4-phenyl-1,2,4-triazole-3,5-dione (254) (0.11 g, 0.60 mmol) was added. The 

reaction mixture was stirred for 24 h at 111 °C. Flash column chromatography using silica 

(petroleum ether/ethyl acetate, 1:3) gave (10R*,10aS*)-5,7,8,9,10,10a-hexahydro-2-

phenyl-10-(2’,2’,2’-trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-

1,3(2H)-dione (210) (0.13 g, 75%) as a brown oil. Spectroscopic data as described above. 

Ethyl (2E)-hept-2-en-6-ynoate (221).
173

 

 

Dimethyl sulfoxide (3.60 mL, 50.8 mmol) was added to a stirred solution of oxalyl 

chloride (2.49 mL, 28.4 mmol) in dichloromethane (100 mL) at −78 °C. The mixture was 

stirred for 0.3 h before 4-pentyn-1-ol (220) (1.70 g, 20.3 mmol) in dichloromethane (25 

mL) was slowly added. The mixture was stirred for a further 0.3 h before triethylamine 

(14.1 mL, 102 mmol) was added. This reaction mixture was stirred for 0.5 h at −78 °C and 
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then allowed to warm to room temperature and stirred for a further 3 h. A solution of 

lithium chloride (1.55 g, 36.5 mmol), triethyl phosphonoacetate (7.24 mL, 36.5 mmol) and 

1,8-diazabicyclo[5.4.0]undec-7-ene (5.14 mL, 36.5 mmol) in acetonitrile (70 mL) was then 

prepared and stirred for 1.0 h. The Swern solution was concentrated in vacuo, then the 

Horner-Wadsworth-Emmons solution was added and the reaction mixture was stirred at 

room temperature overnight. The reaction was quenched with a saturated solution of 

ammonium chloride (50 mL) and concentrated to give an orange residue, which was then 

extracted with diethyl ether (4 × 75 mL). The organic layers were combined, dried 

(MgSO4) and concentrated to give an orange oil. Flash column chromatography using 

silica (diethyl ether/petroleum ether, 1:9) gave ethyl (2E)-hept-2-en-6-ynoate (221) (2.93 g, 

95%) as a yellow oil. Spectroscopic data consistent with literature.
173

 Rf (25% diethyl 

ether/petroleum ether) 0.63; νmax/cm
−1

 (neat) 3302 (C≡C−H), 2984 (CH), 1715 (CO), 1657 

(C=C), 1445, 1368, 1267, 1155, 1038, 756; δH (400 MHz, CDCl3) 1.30 (3H, t, J 7.1 Hz, 

OCH2CH3), 2.01 (1H, t, J 2.5 Hz, 7-H), 2.34–2.39 (2H, m, 5-H2), 2.41–2.48 (2H, m, 4-H2), 

4.20 (2H, q, J 7.1 Hz, OCH2CH3), 5.90 (1H, dt, J 15.7, 1.5 Hz, 2-H), 6.97 (1H, dt, J 15.7, 

6.7 Hz, 3-H); δC (126 MHz, CDCl3) 14.3 (CH3), 17.4 (CH2), 31.0 (CH2), 60.3 (CH2), 69.4 

(CH), 82.7 (C), 122.6 (CH), 146.3 (CH), 166.4 (C); m/z (CI) 153 (MH
+
, 100%), 139 (5), 

113 (10), 97 (5), 81 (15), 69 (15). 

(2E)-Hept-2-en-6-yn-1-ol (215).
174

 

 

Ethyl (2E)-hept-2-en-6-ynoate (221) (1.50 g, 9.87 mmol) was dissolved in diethyl ether (50 

mL) and cooled to −78 °C. DIBAL-H (1 M in hexane) (21.7 mL, 21.7 mmol) was added 

dropwise and the reaction mixture was stirred at −78 °C for 3 h, before warming to room 

temperature overnight. The solution was cooled to 0 °C and quenched by the addition of a 

saturated solution of ammonium chloride (10 mL) and warmed to room temperature with 

vigorous stirring over 1 h, producing a white precipitate. The precipitate was filtered 

through a pad of Celite® and washed with diethyl ether (3 × 50 mL). The filtrate was then 

dried (MgSO4) and concentrated in vacuo. Flash column chromatography using silica 

(diethyl ether/petroleum ether, 1:1) gave (2E)-hept-2-en-6-yn-1-ol (215) (1.01 g, 93%) as a 

yellow oil. Spectroscopic data consistent with literature.
174 

Rf (50% diethyl ether/petroleum 

ether) 0.33; νmax /cm
−1 

(neat) 3360 (OH), 3295 (C≡C−H), 2915 (CH), 1670 (C=C), 1433, 
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1084, 997, 968; δH (500 MHz, CDCl3) 1.42 (1H, br s, OH), 1.99 (1H, t, J 2.5 Hz, 7-H), 

2.28–2.33 (4H, m, 4-H2 and 5-H2), 4.14 (2H, d, J 4.0 Hz, 1-H2), 5.70–5.81 (2H, m, 2-H and 

3-H); δC (126 MHz, CDCl3) 18.5 (CH2), 31.1 (CH2), 63.5 (CH2), 68.8 (CH), 83.7 (C), 

130.5 (CH), 130.6 (CH); m/z (CI) 111 (MH
+
, 3%), 107 (15), 93 (100), 81 (10), 69 (10). 

4-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223). 

 

(2E)-Hept-2-en-6-yn-1-ol (215) (0.40 g, 3.64 mmol) was dissolved in dichloromethane (30 

mL) and cooled to 0 °C. To the solution, 1,8-diazabicyclo[5.4.0]undec-7-ene (0.10 mL, 

0.728 mmol) and trichloroacetonitrile (0.55 mL, 5.45 mmol) was added. The reaction 

mixture was allowed to warm to room temperature before stirring for 3 h. The reaction 

mixture was filtered through a short pad of silica gel and the filtrate concentrated in vacuo 

to give the allylic trichloroacetimidate, which was used without further purification. The 

allylic trichloroacetimidate was dissolved in toluene (10 mL) containing potassium 

carbonate (0.05 g) and purged with argon. The reaction mixture was then heated to 140 °C 

in a sealed tube for 24 h. The reaction mixture was then cooled to room temperature and 

toluene (68 mL) was added to achieve a concentration of 0.048 M of starting material. 

Grubbs first generation catalyst (0.225 g, 0.273 mmol) was added and the reaction mixture 

was heated for 18 h at 75 °C. A further portion of Grubbs first generation catalyst (0.070 g, 

0.085 mmol) was added and the reaction mixture was stirred at 75 °C for 24 h. The 

reaction mixture was then cooled to room temperature and the solvent was evaporated. 

Flash column chromatography using silica (petroleum ether/diethyl ether 7:1) gave 4-ethyl-

1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.66 g, 71%) as 

a yellow oil. Rf (50% diethyl ether/petroleum ether) 0.81; νmax/cm
−1

 (neat) 3320 (NH), 

2930 (CH), 2855 (CH), 1690 (CO), 1508, 1236, 1065, 908, 818; δH (500 MHz, CDCl3) 

1.66‒1.74 (1H, m, 2-HH), 2.35‒2.52 (2H, m, 2-HH and 3-HH), 2.54‒2.62 (1H, m, 3-HH), 

4.92‒4.99 (1H, m, 1-H), 5.18 (1H, d, J 10.5 Hz, 2’’-HH), 5.19 (1H, d, J 17.6 Hz, 2’’-HH), 

5.61 (1H, d, J 1.7 Hz, 5-H), 6.51 (1H, dd, J 17.6, 10.5 Hz, 1’’-H), 6.54 (1H, br s, NH); δC 

(126 MHz, CDCl3) 28.4 (CH2), 30.0 (CH2), 56.8 (CH), 91.7 (C), 116.6 (CH2), 126.7 (CH), 
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131.4 (CH), 146.3 (C), 160.1 (C); m/z (CI) 253.9906 (MH
+
. C9H11

35
Cl3NO requires 

253.9906), 220 (58%), 184 (17), 132 (5), 85 (23), 69 (37). 

(3aS*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-Hexahydro-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (217). 

 

Method A- 4-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene 

(223) (0.064 g, 0.25 mmol) was dissolved in toluene (10 mL) and N-phenyl maleimide 

(139) (0.064 g, 0.37 mmol) was added with hydroquinone (0.012 g, 0.11 mmol). The flask 

was stirred at 75 °C for 24 h. The solution was then cooled to room temperature and the 

solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 3:7) gave (3aS*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-8-

(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (217) 

(0.086 g, 80%) as a white solid. Rf (70% diethyl ether/petroleum ether) 0.44; Mp 174–176 

°C; νmax/cm
−1

 (neat) 3304 (NH), 2955 (CH), 2924 (CH), 1695 (CO), 1516, 1388, 1288, 

1202, 1182, 822, 750; δH (500 MHz, CDCl3) 1.81 (1H, qd, J 12.5, 7.6 Hz, 7-HH), 2.10–

2.18 (1H, m, 7-HH), 2.19–2.38 (2H, m, 6-HH and 4-HH), 2.47 (1H, dd, J 16.2, 7.6 Hz, 6-

HH), 2.85 (1H, ddd, J 15.1, 7.2, 1.1 Hz, 4-HH), 2.89–2.96 (1H, m, 8a-H), 3.33 (1H, ddd, J 

8.7, 7.2, 1.1 Hz, 3a-H), 3.43 (1H, dd, J 8.7, 6.4 Hz, 8b-H), 4.80–4.91 (1H, m, 8-H), 5.75–

5.81 (1H, m, 5-H), 7.15–7.20 (2H, m, 2 × ArH), 7.39–7.51 (3H, m, 3 × ArH), 8.95 (1H, d, 

J 9.2 Hz, NH); δC (126 MHz, CDCl3) 26.1 (CH2), 28.6 (CH2), 31.7 (CH2), 39.4 (CH), 41.2 

(CH), 41.5 (CH), 52.9 (CH), 92.9 (C), 117.1 (CH), 126.5 (2 × CH), 129.2 (CH), 129.3 (2 × 

CH), 131.5 (C), 145.8 (C), 162.3 (C), 178.6 (C), 179.7 (C); m/z (CI) 427.0373 (MH
+
. 

C19H18
35

Cl3N2O3 requires 427.0383), 393 (65%), 359 (100), 325 (65), 311 (20), 266 (25), 

174 (25), 113 (25), 71 (73). 

Method B- (3aS*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-Hexahydro-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (217) was 

synthesised as described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-

9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) 

(Method B) using (2E)-hept-2-en-6-yn-1-ol (215) (0.050 g, 0.48 mmol). The reaction 
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mixture was stirred with Grubbs first generation catalyst (0.040 g, 0.048 mmol) for 48 h at 

75 °C before N-phenyl maleimide (139) (0.13 g, 0.73 mmol) was added. The reaction 

mixture was stirred for 72 h at 75 °C. Flash column chromatography using silica 

(petroleum ether/diethyl ether, 3:7) gave (3aS*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-

2-phenyl-8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-

dione (217) (0.13 g, 62%) as white solid. Spectroscopic data as described above. 

(3aS*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-Hexahydro-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (217) and 

(3aR*,8R*,8aR*,8bS*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (227). 

 

4-Ethyl-1’’-ene1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.075 g, 

0.30 mmol) was dissolved in methanol (10 mL) and N-phenyl maleimide (139) (0.076 g, 

0.44 mmol) was added with hydroquinone (0.012 g, 0.11 mmol). The flask was stirred at 

75 °C for 24 h. The solution was then cooled to room temperature and the solvent was 

evaporated. Flash column chromatography on silica (petroleum ether/diethyl ether, 2:3) 

gave the product as a 1:1 mixture of two diastereomers (0.10 g, 79%). Elution with 3:7 

diethyl ether/petroleum ether gave (3aS*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-

phenyl-8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-

dione (217) (0.049 g, 39%) as a white solid. Spectroscopic data as described above. Elution 

with 6:4 diethyl ether/petroleum ether) gave (3aR*,8R*,8aR*,8bS*)-4,6,7,8,8a,8b-

hexahydro-2-phenyl-8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-

1,3(2H,3aH)-dione (227) (0.050 g, 40%) as a white solid. Rf (50% diethyl ether/petroleum 

ether) 0.17; Mp 161–163 °C; νmax /cm
−1

 (neat) 3331 (NH), 2951 (CH), 2908 (CH), 1777 

(CO), 1652 (CO), 1527, 1498, 1180, 1150; δH (500 MHz, CDCl3) 1.81–1.89 (1H, m, 7-

HH), 2.05–2.21 (2H, m, 7-HH and 4-HH), 2.27‒2.48 (2H, m, 6-H2),  2.61 (1H, m, 8a-H), 

2.77 (1H, ddd, J 15.5, 7.2, 1.3 Hz, 4-HH), 3.25 (1H, td, J 8.9, 1.3 Hz, 3a-H), 3.64 (1H, dd, 

J 8.9, 7.2 Hz, 8b-H), 4.88–4.95 (1H, m, 8-H), 5.65‒5.72 (1H, m, 5-H), 6.74 (1H, d, J 5.1 

Hz, NH), 7.10–7.15 (1H, m, 2 × ArH), 7.28‒7.33 (1H, m, ArH), 7.35–7.41 (2H, m, 2 × 



134 
 

ArH); δC (126 MHz, CDCl3) 25.5 (CH2), 29.0 (CH2), 31.4 (CH2), 40.3 (CH), 41.5 (CH), 

45.9 (CH), 54.7 (CH), 92.6 (C), 117.3 (CH), 126.4 (CH), 128.7 (2 × CH), 129.1 (2 × CH), 

131.8 (C), 144.4 (C), 162.0 (C), 177.2 (C), 178.8 (C); m/z (CI) 427.0379 (MH
+
. 

C19H18
35

Cl3N2O3 requires 427.0383), 393 (55%), 359 (100), 325 (62), 311 (15), 266 (30), 

174 (24), 113 (21). 

Methyl (1R*,7S*,7aS*)-2,3,5,6,7,7a-Hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-7-carboxylate (228). 

 

Methyl (1R*,7S*,7aS*)-2,3,5,6,7,7a-Hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-7-carboxylate (228) was synthesised as described 

for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B) 

using (2E)-hept-2-en-6-yn-1-ol (215) (0.050 g, 0.48 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.041 g, 0.050 mmol) for 48 h at 75 °C, 

before methyl acrylate (203) (0.13 mL, 1.44 mmol) was added. The reaction mixture was 

stirred for 13 days at 111 °C. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 20:7) gave methyl (1R*,7S*,7aS*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-7-carboxylate (228) (0.074 g, 45%) as a colourless 

oil. Rf (50% petroleum ether/ diethyl ether) 0.66; νmax/cm
−1

 (neat) 3410 (NH), 2953 (CH), 

1709 (CO), 1508, 1198, 1171, 818, 735; δH (500 MHz, CDCl3) 1.69–1.83 (2H, m, 2-HH 

and 3-HH), 1.95–2.11 (4H, m, 2-HH, 5-HH and 6-H2), 2.15–2.25 (1H, m, 3-HH), 2.32 (1H, 

dd, J 15.2, 6.3 Hz, 5-HH), 2.79–2.89 (2H, m, 7-H and 7a-H), 3.60 (1H, s, OCH3), 4.51 

(1H, dq, J 8.7, 7.2 Hz, 1-H), 5.45 (1H, br s, 4-H), 7.51 (1H, d, J 7.2 Hz, NH); δC (126 

MHz, CDCl3) 22.6 (CH2), 26.0 (CH2), 30.2 (CH2), 31.7 (CH2), 39.3 (CH), 42.5 (CH), 52.0 

(CH), 53.3 (CH3), 92.9 (C), 117.7 (CH), 140.1 (C), 161.7 (C), 175.7 (C); m/z (CI) 

342.0247 (MH⁺. C13H17
35

Cl2
37

ClNO3 requires 342.0246), 324 (60%), 306 (29), 257 (8), 

230 (11), 195 (49), 179 (28), 157 (50), 141 (16), 73 (24). 
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(1R*,5aS*,11aR*,11bS*)-1,2,3,5,11a,11b-Hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]anthracene-6,11(5aH)-dione (218). 

 

(1R*,5aS*,11aR*,11bS*)-1,2,3,5,11a,11b-Hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]anthracene-6,11(5aH)-dione (218) was 

synthesised as described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-

9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) 

(Method B) using (2E)-hept-2-en-6-yn-1-ol (215) (0.055 g, 0.50 mmol). The reaction 

mixture was stirred with Grubbs first generation catalyst (0.041 g, 0.050 mmol) for 48 h at 

75 °C, before 1,4-naphthoquinone (205) (0.12 g, 0.75 mmol) was added. The reaction 

mixture was stirred for 24 h at 75 °C. Flash column chromatography using silica 

(petroleum ether/ diethyl ether, 1:1) gave (1R*,5aS*,11aR*,11bS*)-1,2,3,5,11a,11b-

hexahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[a]anthracene-6,11(5aH)-

dione (218) (0.097 g, 47%) as white solid. Rf (50% diethyl ether/petroleum ether) 0.40; Mp 

153–155 °C; νmax /cm
−1

 (neat) 3364 (NH), 2940 (CH), 2847 (CH), 2338, 1682 (CO), 1589, 

1512, 1281, 1247, 810, 741; δH (500 MHz, CDCl3) 1.95–2.15 (2H, m, 2-HH and 5-HH), 

2.15–2.30 (2H, m, 2-HH and 3-HH), 2.35–2.48 (2H, m, 3-HH and 5-HH), 2.91–2.97 (1H, 

m, 11b-H), 3.33 (1H, ddd, J 11.3, 7.2, 4.4 Hz, 5a-H), 3.51 (1H, t, J 4.4 Hz, 11a-H), 4.65 

(1H, m, 1-H), 5.31–5.36 (1H, m, 4-H), 7.44 (1H, d, J 8.8 Hz, NH), 7.60–7.72 (2H, m, 2 × 

ArH), 7.84 (1H, dd, J 7.3, 1.6 Hz, ArH), 7.99 (1H, dd, J 7.3, 1.6 Hz, ArH); δC (126 MHz, 

CDCl3) 26.9 (CH2), 31.4 (CH2), 32.0 (CH2), 41.5 (CH), 48.6 (CH), 49.5 (CH), 52.9 (CH), 

93.0 (C), 114.2 (CH), 126.4 (CH) 127.4 (CH), 132.6 (C), 134.6 (CH), 134.8 (CH), 135.0 

(C), 141.7 (C), 161.8 (C), 198.2 (C), 199.9 (C); m/z (EI) 413.0159 (M
+
. 

C19H16
35

Cl2
37

ClNO3 requires 413.0169), 376 (5%), 324 (5) 294 (5), 250 (100), 232 (40), 

205 (25), 165 (18), 117 (70), 91 (32), 77 (22).  
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Dimethyl (1R*,6S*,7R*,7aS*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-6,7-dicarboxylate (229) and dimethyl 

(1R*,6R*,7S*,7aR*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-6,7-dicarboxylate (350). 

 

Dimethyl (1R*,6S*,7R*,7aS*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-6,7-dicarboxylate (229) and dimethyl 

(1R*,6R*,7S*,7aR*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-6,7-dicarboxylate (350) were synthesised as 

described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B) 

using (2E)-hept-2-en-6-yn-1-ol (215) (0.050 g, 0.48 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.040 g, 0.048 mmol) for 48 h at 75 °C before 

dimethyl maleate (0.18 mL, 1.44 mmol) was added. The reaction mixture was stirred for 

24 h at 120 °C. Flash column chromatography using silica afforded the product as a 3:1 

mixture of two diastereomers as colourless oils. Elution with 11:9 petroleum ether/diethyl 

ether gave dimethyl (1R*,6S*,7R*,7aS*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-6,7-dicarboxylate (229) (0.065 g, 34%) as the major 

diastereomer as a colourless oil. Rf (50% petroleum ether/diethyl ether) 0.51; νmax/cm
−1

 

2955 (CH), 1709 (CO), 1508 (C=C), 1435, 1204, 1026; δH (400 MHz, CDCl3) 1.61–1.73 

(1H, m, 2-HH), 1.95–2.05 (1H, m, 2-HH), 2.13–2.25 (1H, m, 3-HH), 2.27–2.46 (3H, m, 3-

HH and 5-H2), 2.80 (1H, ddd, J 10.3, 7.1, 3.4 Hz, 6-H), 2.90–2.99 (1H, m, 7a-H), 3.37 

(1H, dd, J 4.6, 3.4 Hz, 7-H), 3.57 (3H, s, OCH3), 3.65 (3H, s, OCH3), 4.58 (1H, dq, J 9.7, 

6.6 Hz, 1-H), 5.47 (1H, s, 4-H), 7.85 (1H, br s, NH); δc (126 MHz, CDCl3) 25.3 (CH2), 

30.2 (CH2), 32.0 (CH2), 41.7 (CH), 42.6 (CH), 43.7 (CH), 52.1 (CH3), 52.3 (CH3), 53.1 

(CH), 92.8 (C), 117.2 (CH), 139.9 (C), 161.9 (C), 173.3 (C), 173.7 (C); m/z (ESI) 420.0137 

(MNa
+
. C15H18

35
Cl3NNaO5 requires 420.0143). Further elution with 9:11 petroleum 

ether/diethyl ether gave dimethyl (1R*,6R*,7S*,7aR*)-2,3,5,6,7,7a-hexahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-6,7-dicarboxylate (350) (0.022 g, 11%) as the minor 

diastereomer as a colourless oil. Rf (50% petroleum ether/diethyl ether) 0.45; νmax/cm
−1

 

(neat) 2961 (CH), 1713 (CO), 1513, 1440, 1223, 1029; δH (500 MHz, CDCl3) 1.65–1.73 
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(1H, m, 2-HH), 1.99–2.09 (1H, m, 2-HH), 2.25–2.34 (4H, m, 3-H2 and 5-H2), 2.75–2.82 

(1H, m, 7a-H), 2.90 (1H, q, J 7.1 Hz, 6-H), 3.30 (1H, t, J 7.1 Hz, 7-H), 3.64 (3H, s, OCH3), 

3.66 (3H, s, OCH3), 4.47–4.55 (1H, m, 1-H), 5.58 (1H, s, 4-H), 7.02 (1H, d, J 9.0 Hz, NH); 

δc (126 MHz, CDCl3) 25.8 (CH2), 28.4 (CH2), 31.3 (CH2), 40.5 (CH), 40.6 (CH), 41.6 

(CH), 52.1 (CH3), 52.3 (CH3), 53.1 (CH), 92.8 (C), 117.7 (CH), 139.6 (C), 161.2 (C), 

173.6 (C), 174.4 (C); m/z (ESI) 420.0135 (MNa
+
. C15H18

35
Cl3NNaO5 requires 420.0143). 

(9R*,9aS*)-2-Phenyl-7,8,9,9a-tetrahydro-9-(2’,2’,2’-trichloromethylcarbonylamino)-

1H,5H-cyclopent[c][2,4,10]-triazolo[1,2-a]pyridazine-1,3(2H)-dione (219). 

 

(9R*,9aS*)-2-Phenyl-7,8,9,9a-tetrahydro-9-(2’,2’,2’-trichloromethylcarbonylamino)-

1H,5H-cyclopent[c][2,4,10]-triazolo[1,2-a]pyridazine-1,3(2H)-dione (219) was 

synthesised as described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-

9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) 

(Method B) using (2E)-hept-2-en-6-yn-1-ol (215) (0.054 g, 0.48 mmol). The reaction 

mixture was stirred with Grubbs first generation catalyst (0.040 g, 0.048 mmol) for 48 h at 

75 °C, before 4-phenyl-1,2,4-triazole-3,5-dione (254) (0.13 g, 0.73 mmol) was added. The 

reaction mixture was stirred for 24 h at 75 °C. Flash column chromatography using silica 

(dichloromethane/methanol, 19:1) gave (9R*,9aS*)-2-phenyl-7,8,9,9a-tetrahydro-9-

(2’,2’,2’-trichloromethylcarbonylamino)-1H,5H-cyclopent[c][2,4,10]-triazolo[1,2-

a]pyridazine-1,3(2H)-dione (219) (0.095 g, 46%) as a white solid. Rf (10% 

methanol/dichloromethane) 0.58; Mp 55–57 °C; νmax/cm
−1

 (neat) 3396 (NH), 3057 (ArH), 

2359, 2342, 1773 (CO), 1699 (CO), 1516, 1503, 1419, 1265, 1140, 820, 731; δH (500 

MHz, CDCl3) 2.13–2.22 (1H, m, 8-HH), 2.31 (1H, dt, J 15.0, 5.6 Hz, 8-HH), 2.53–2.61 

(2H, m, 7-H2), 4.11 (1H, dquin., J 16.4, 2.8 Hz, 5-HH), 4.32–4.41 (2H, m, 5-HH and 9a-

H), 4.89 (1H, q, J 5.6 Hz, 9-H), 5.93–5.98 (1H, m, 6-H), 6.75 (1H, d, J 5.6 Hz, NH), 7.38–

7.53 (5H, m, 5 × ArH); δC (126 MHz, CDCl3) 24.9 (CH2), 27.8 (CH2), 42.5 (CH2), 53.3 

(CH), 59.9 (CH), 92.6 (C), 115.6 (CH), 125.4 (2 × CH), 128.4 (CH), 129.2 (2 × CH), 130.9 

(C), 137.0 (C), 151.5 (C), 153.2 (C), 161.4 (C); m/z (EI) 428.0208 (M
+
. C17H15

35
Cl3N4O3 
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requires 428.0210), 393 (5%), 343 (10), 311 (20), 267 (100), 241 (5), 192 (8), 148 (23), 

119 (83), 91 (70), 66 (29). 

(1R*,5aS*,9aR*,9bS*)-1,2,3,5,5a,9a,9b-Heptahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]naphthalene-6,9-dione (230). 

 

(1R*,5aS*,9aR*,9bS*)-1,2,3,5,5a,9a,9b-Heptahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]naphthalene-6,9-dione (230) was synthesised 

as described for (3aS*,9R*,9aS*,9bR*)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (198) (Method B) 

using (2E)-hept-2-en-6-yn-1-ol (215) (0.055 g, 0.50 mmol). The reaction mixture was 

stirred with Grubbs first generation catalyst (0.041 g, 0.050mmol) for 48 h at 75 °C, before 

p-benzoquinone (0.16 g, 1.50 mmol) was added. The reaction mixture was stirred for 24 h 

at 75 °C. Flash column chromatography using silica (petroleum ether/diethyl ether, 1:1) 

gave (1R*,5aS*,9aR*,9bS*)-1,2,3,5,5a,9a,9b-heptahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]naphthalene-6,9-dione (230) (0.040 g, 22%) as 

yellow oil. Rf (50% diethyl ether/petroleum ether) 0.43; νmax/cm
−1

 (neat) 3346 (NH), 2953 

(CH), 2927 (CH), 1699 (CO), 1662 (CO), 1509, 1298, 1074; δH (500 MHz, CDCl3) 2.02–

2.33 (4H, m, 2-H2 and 3-H2), 2.40–2.51 (2H, m, 5-H2), 2.88–2.94 (1H, m, 9b-H), 3.21–

3.27 (1H, m, 5a-H), 3.41 (1H, t, J 4.6 Hz, 9a-H), 4.62–4.72 (1H, m, 1-H), 5.39–5.43 (1H, 

m, 4-H), 6.61 (2H, s, 7-H and 8-H), 7.34 (1H, d, J 9.2 Hz, NH); δC (126 MHz, CDCl3) 26.8 

(CH2), 29.7 (CH2), 31.7 (CH2), 41.1 (CH), 48.5 (CH), 48.8 (CH), 52.9 (CH), 92.3 (C), 

114.3 (CH), 138.3 (CH), 139.9 (CH), 141.7 (C), 161.9 (C), 200.4 (C), 201.2 (C); m/z (CI) 

364.0089 (MH
+
. C15H15

35
Cl2

37
ClNO3 requires 364.0090), 328 (8%), 243 (12), 217 (40), 

187 (60), 113 (20), 73 (100).  

 

 

 

 

 

 



139 
 

6-Heptyn-1-ol (232).
112 

 

Lithium aluminium hydride (0.90 g, 23.8 mmol) was dissolved in diethyl ether (100 mL) 

and cooled to 0 °C. A solution of 6-heptyn-1-oic acid (231) (1.50 g, 11.9 mmol) in diethyl 

ether was then added slowly. The reaction mixture was then warmed to room temperature 

and stirred for 1 h. The reaction was then quenched with 1 M hydrochloric acid (40 mL) 

and the mixture was stirred for 0.5 h. The product was extracted using diethyl ether (4 × 50 

mL), the organic layers were combined, dried (MgSO4), filtered and concentrated to give a 

colourless oil. Flash column chromatography using silica (petroleum ether/diethyl ether, 

1:1) gave 6-heptyn-1-ol (232) (1.28 g, 96%) as a colourless oil. Spectroscopic data 

consistent with literature.
112

 Rf (50% diethyl ether/petroleum ether) 0.28; δH (500 MHz, 

CDCl3) 1.25 (1H, s, OH), 1.38‒1.57 (6H, m, 2-H2, 3-H2 and 4-H2), 1.88 (1H, t, J 2.7 Hz, 7-

H), 2.14 (2H, td, J 6.9, 2.7 Hz, 5-H2), 3.59 (2H, t, J 6.5 Hz, 1-H2); δC (126 MHz, CDCl3) 

18.4 (CH2), 24.9 (CH2), 28.2 (CH2), 32.2 (CH2), 62.8 (CH2), 68.3 (CH), 84.4 (C); m/z (CI) 

113 (MH
+
, 85%), 95 (52), 73 (100), 69 (35).  

Ethyl (2E)-non-2-en-8-ynoate (233).
 

 

Ethyl (2E)-non-2-en-8-ynoate (233) was synthesised as described for the synthesis of ethyl 

(2E)-hept-2-en-6-ynoate (221) using 6-heptyn-1-ol (232) (0.30 g, 2.70 mmol). Flash 

column chromatography using silica (petroleum ether/diethyl ether, 9:1) gave ethyl (2E)-

non-2-en-8-ynoate (233) (0.35 g, 73%) as a colourless oil. Rf (50% diethyl ether/petroleum 

ether) 0.69; νmax/cm
−1 

(neat) 3300, 2940 (CH), 1715 (CO), 1653 (C=C), 1368, 1182, 1145, 

1041; δH (500 MHz, CDCl3) 1.29 (3H, t, J 7.1 Hz, OCH2CH3), 1.52‒1.64 (4H, m, 5-H2 and 

6-H2), 1.95 (1H, t, J 2.7 Hz, 9-H), 2.18‒2.27 (4H, m, 4-H2 and 7-H2), 4.19 (2H, q, J 7.1 

Hz, OCH2CH3), 5.85 (1H, dt, J 15.6, 1.6 Hz, 2-H), 6.96 (1H, dt, J 15.6, 7.1 Hz, 3-H); δC 

(126 MHz, CDCl3) 14.3 (CH3), 18.2 (CH2), 27.0 (CH2), 27.8 (CH2), 31.6 (CH2), 60.2 
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(CH2), 68.5 (CH), 84.0 (C), 121.7 (CH), 148.6 (CH), 166.6 (C); m/z (CI) 181.1232 (MH
+
. 

C11H17O2 requires 181.1229), 171 (5%), 113 (15), 81 (27), 69 (45). 

(2E)-Non-2-en-8-yn-1-ol (234).
175 

 

(2E)-Non-2-en-8-yn-1-ol (234) was synthesised as described for the synthesis of (2E)-hept-

2-en-6-yn-1-ol (215) using ethyl (2E)-nona-2-en-8-ynoate (233) (0.35 g, 1.94 mmol). Flash 

column chromatography using silica (petroleum ether/diethyl ether, 9:11) gave (2E)-nona-

2-en-8-yn-1-ol (234) (0.26 g, 99%) as a yellow oil. Spectroscopic data consistent with 

literature.
175

 Rf (50% petroleum ether/diethyl ether) 0.33; νmax/cm
−1

 (neat) 3296 (OH), 2934 

(CH), 1670 (C=C), 1460, 1088; δH (500 MHz, CDCl3) 1.14–1.19 (1H, m, OH), 1.40‒1.52 

(4H, m, 5-H2 and 6-H2), 1.88 (1H, t, J 2.7 Hz, 9-H), 2.01 (2H, q, J 6.2 Hz, 4-H2), 2.13 (2H, 

td, J 6.8, 2.7 Hz, 7-H2), 4.03 (2H, dd, J 5.6, 4.9 Hz, 1-H2), 5.55‒5.65 (2H, m, 2-H and 3-

H); δC (126 MHz, CDCl3) 18.3 (CH2), 27.9 (CH2), 28.1 (CH2), 31.6 (CH2), 63.8 (CH2), 

68.3 (CH), 84.4 (C), 129.3 (CH), 133.8 (CH); m/z (CI) 139.1122 (MH
+
. C9H15O requires 

139.1123), 121 (100%), 107 (10), 93 (45), 79 (40). 

3-(2’,2’,2’-Trichloromethylcarbonylamino)non-1-en-8-yne (235). 

 

(2E)-Non-2-en-8-yn-1-ol (234) (0.15 g, 1.11 mmol) was dissolved in dichloromethane (20 

mL) and cooled to 0 °C. To the solution was added 1,8-diazabicyclo[5.4.0]undec-7-ene 

(0.041 mL, 0.29 mmol) and trichloroacetonitrile (0.168 mL, 1.67 mmol). The reaction 

mixture was allowed to warm to room temperature before stirring for 3 h. The reaction 

mixture was filtered through a short pad of silica gel and the filtrate concentrated in vacuo 

to give the allylic trichloroacetimidate, which was used without further purification. The 

allylic trichloroacetimidate was dissolved in toluene (10 mL) and transferred to a Schlenk 

tube containing potassium carbonate (0.050 g) and purged with Ar and sealed. The reaction 
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mixture was then heated to 140 °C and stirred for 48 h, before cooling to room 

temperature. The solvent was then evaporated. Flash column chromatography on silica 

(petroleum ether/diethyl ether, 3:2) gave 3-(2’,2’,2’-trichloromethylcarbonylamino)non-1-

en-8-yne (235) (0.27 g, 87%) as a yellow oil. Rf (50% diethyl ether/petroleum ether) 0.60; 

νmax/cm
−1 

(neat) 3310 (NH), 2940 (CH), 1697 (CO), 1512, 1435, 1242, 817; δH (500 MHz, 

CDCl3) 1.37‒1.68 (6H, m, 4-H2, 5-H2 and 6-H2), 1.88 (1H, t, J 2.7 Hz, 9-H), 2.15 (2H, td, J 

6.8, 2.7 Hz, 7-H2), 4.37 (1H, quin, J 5.7 Hz, 3-H), 5.15 (1H, d, J 10.5 Hz, 1-HH), 5.19 (1H, 

d, J 17.2 Hz, 1-HH), 5.74 (1H, ddd, J 17.2, 10.5, 5.7 Hz, 2-H), 6.48 (1H, s, NH); δC (126 

MHz, CDCl3) 18.2 (CH2), 24.5 (CH2), 27.9 (CH2), 33.9 (CH2), 53.4 (CH), 68.7 (CH), 83.9 

(C), 92.8 (C), 116.3 (CH2), 136.5 (CH), 161.2 (C); m/z (CI) 284.0196 (MH
+
. 

C11H15
35

Cl2
37

ClNO requires 284.0191), 248 (18%), 212 (60), 146 (20), 113 (28), 73 (100). 

5-Phenylpent-4-yn-1-ol (244).
176

 

 

Bis(triphenylphosphine)palladium(II) dichloride (0.022 g, 0.031 mmol) and copper iodide 

(0.012 g, 0.062 mmol) were dissolved in triethylamine (43 mL) and iodobenzene (0.42 mL, 

3.75 mmol) was added and stirred at room temperature for 0.1 h. 4-Pentyn-1-ol (220) (0.26 

g, 3.12 mmol) was added and the reaction mixture was stirred at room temperature for 48 

h. The reaction mixture was concentrated in vacuo and flash column chromatography using 

silica (petroleum ether/ethyl acetate, 3:1) gave 5-phenylpent-4-yn-1-ol (244) (0.49 g, 98%) 

as a colourless oil. The spectroscopic data was consistent with the literature.
176

 Rf (50% 

petroleum ether/ethyl acetate) 0.43; νmax/cm
−1

 (neat) 3380 (OH), 2950 (CH), 1700, 1490, 

1442, 1217, 1031, 752; δH (500 MHz, CDCl3) 1.63 (1H, s, OH), 1.85 (2H, quin., J 6.5 Hz, 

2-H2), 2.53 (2H, t, J 6.5 Hz, 3-H2), 3.81 (2H, t, J 6.5 Hz, 1-H2), 7.24–7.29 (3H, m, 3 × 

ArH), 7.36–7.40 (2H, m, 2 × ArH); δC (126 MHz, CDCl3) 16.0 (CH2), 31.4 (CH2), 61.8 

(CH2), 81.2 (C), 89.3 (C), 123.7 (C), 127.7 (CH), 128.2 (2 × CH), 131.6 (2 × CH); m/z (EI) 

160 (M
+
. 39%), 141 (100), 128 (38), 115 (71), 104 (32), 85 (35). 
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6-Phenylhex-5-yn-1-ol (245).
120

 

 

Bis(triphenylphosphine)palladium(II) dichloride (0.110 g, 0.156 mmol) and copper iodide 

(0.060 g, 0.312 mmol) were dissolved in triethylamine (160 mL) and iodobenzene (2.10 

mL, 18.8 mmol) was added and stirred at room temperature for 0.1 h. 5-Hexyn-1-ol (192) 

(1.50 g, 15.6 mmol) was added and the reaction mixture was stirred at room temperature 

for 48 h. The reaction mixture was concentrated in vacuo and flash column 

chromatography using silica (petroleum ether/ethyl acetate, 2:1) gave 6-phenylhex-5-yn-1-

ol (245) (2.69 g, 100%) as a colourless oil. The spectroscopic data was consistent with the 

literature.
120

 Rf (50% petroleum ether/diethyl ether) νmax/cm
−1

 (neat) 3360 (OH), 2938 

(CH), 1597 (C=C), 1489, 1441, 1063, 754, 691; δH (400 MHz, CDCl3) 1.43 (1H, s, OH), 

1.69–1.84 (4H, m, 2-H2 and 3-H2), 2.49 (2H, t, J 6.7 Hz, 4-H2), 3.71–3.79 (2H, m, 1-H2), 

7.28–7.34 (3H, m, 3 × ArH), 7.40–7.46 (2H, m, 2 × ArH); δC (101 MHz, CDCl3) 19.2 

(CH2), 25.0 (CH2), 31.9 (CH2), 62.5 (CH2), 81.0 (C), 89.9 (C), 123.9 (C), 127.6 (CH), 

128.2 (2 × CH), 131.6 (2 × CH); m/z (CI) 174 (M
+
. 32%), 145 (15), 130 (64), 115 (100), 

102 (15), 91 (22), 73 (18). 

Ethyl (2E)-7-phenylhept-2-en-6-ynoate (246).
177

 

 

Ethyl (2E)-7-phenylhept-2-en-6-ynoate (246) was synthesised as described for ethyl (2E)-

hept-2-en-6-ynoate (221) using 5-phenylpent-4-yn-1-ol (244) (1.62 g, 10.1 mmol). Flash 

column chromatography using silica (diethyl ether/petroleum ether, 1:6) gave ethyl (2E)-7-

phenylhept-2-en-6-ynoate (246) (1.97 g, 86%) as a yellow oil. The spectroscopic data was 

consistent with the literature.
177

 Rf (50% petroleum ether/diethyl ether) 0.66; νmax/cm
−1

 

(neat) 2982 (CH), 1717 (CO), 1655 (C=C), 1491, 1443, 1368, 1315, 1153; δH (500 MHz, 

CDCl3) 1.30 (1H, t, J 7.1 Hz, OCH2CH3), 2.48–2.55 (4H, m, 4-H2 and 5-H2), 4.20 (2H, q, J 
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7.1 Hz, OCH2CH3), 5.93 (1H, dt, J 15.7, 1.5 Hz, 2-H), 7.04 (1H, dt, J 15.7, 6.6 Hz, 3-H), 

7.26–7.31 (3H, m, 3 × ArH), 7.36–7.41 (2H, m, 2 × ArH); δC (126 MHz, CDCl3) 14.3 

(CH3), 18.4 (CH2), 31.4 (CH2), 60.3 (CH2), 81.6 (C), 88.3 (C), 122.5 (CH), 123.6 (C), 

127.8 (CH), 128.2 (2 × CH), 131.6 (2 × CH), 146.7 (CH), 166.5 (C); m/z (ESI) 251.1040 

(MNa
+
. C15H16NaO2 requires 251.1043). 

Ethyl (2E)-8-phenyloct-2-en-7-ynoate (247). 

 

Ethyl (2E)-8-phenyloct-2-en-7-ynoate (247) was synthesised as described for ethyl (2E)-

hept-2-en-6-ynoate (221) using 6-phenylhex-5-yn-1-ol (245) (1.73 g, 10.1 mmol). Flash 

column chromatography using silica (diethyl ether/petroleum ether, 3:17) gave ethyl (2E)-

8-phenyloct-2-en-7-ynoate (247) (2.06 g, 85%) as a yellow oil. Rf (50% petroleum 

ether/diethyl ether) 0.68; νmax/cm
−1

 (neat) 2938 (CH), 2360, 1717 (CO), 1654 (C=C), 1490, 

1369, 1267, 1151; δH (500 MHz, CDCl3) 1.29 (1H, t, J 7.2 Hz, OCH2CH3), 1.77 (2H, 

quin., J 7.0 Hz, 5-H2), 2.36–2.42 (2H, m, 4-H2), 2.45 (2H, t, J 7.0 Hz, 6-H2), 4.19 (2H, q, J 

7.2 Hz, OCH2CH3), 5.88 (1H, dt, J 15.7, 1.6 Hz, 2-H), 6.99 (1H, dt, J 15.7, 7.0 Hz, 3-H), 

7.26–7.31 (3H, m, 3 × ArH), 7.37–7.41 (2H, m, 2 × ArH); δC (126 MHz, CDCl3) 14.3 

(CH3), 18.9 (CH2), 27.0 (CH2), 31.2 (CH2), 60.2 (CH2), 81.4 (C), 89.1 (C), 122.1 (CH), 

123.8 (C), 127.7 (CH), 128.2 (2 × CH), 131.6 (2 × CH), 148.1 (CH), 166.6 (C); m/z (CI) 

243.1387 (MH
+
. C16H19O2 requires 243.1385), 215 (5%), 197 (8), 169 (12), 123 (10). 
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(2E)-7-Phenylhept-2-en-6-yn-1-ol (248). 

 

(2E)-7-Phenylhept-2-en-6-yn-1-ol (248) was synthesised as described for (2E)-hept-2-en-

6-yn-1-ol (215) using ethyl (2E)-7-phenylhept-2-en-6-ynoate (246) (1.97 g, 8.64 mmol). 

Purification by flash column chromatography (ethyl acetate/petroleum ether, 7:13) gave 

(2E)-7-phenylhept-2-en-6-yn-1-ol (248) (1.30 g, 81%) as a colourless oil. Rf (50% 

petroleum ether/diethyl ether) 0.43; νmax/cm
−1

 (neat) 3329 (OH), 2918 (CH), 2324, 2110, 

1597 (C=C), 1489, 1441, 1084, 966; δH (500 MHz, CDCl3) 1.36 (1H, br s, OH), 2.36 (2H, 

dt, J 7.2, 6.8 Hz, 4-H2), 2.50 (2H, t, J 6.8 Hz, 5-H2), 4.13 (2H, t, J 4.5 Hz, 1-H2), 5.72–5.85 

(2H, m, 2-H and 3-H), 7.25–7.31 (3H, m, 3 × ArH), 7.36–7.42 (2H, m, 2 × ArH); δC (126 

MHz, CDCl3) 19.5 (CH2), 31.5 (CH2), 63.6 (CH2), 81.2 (C), 89.4 (C), 123.8 (C), 127.6 

(CH), 128.2 (2 × CH), 130.4 (CH), 131.0 (CH), 131.6 (2 × CH); m/z (CI) 169.1018 

(MH
+
−H2O. C13H13 requires 169.1017), 143 (14%), 123 (46), 105 (17), 91 (6). 

(2E)-8-Phenyloct-2-en-7-yn-1-ol (249). 

 

(2E)-8-Phenyloct-2-en-7-yn-1-ol (249) was synthesised as described for (2E)-hept-2-en-6-

yn-1-ol (215) using ethyl (2E)-8-phenyloct-2-en-7-ynoate (247) (1.52 g, 6.26 mmol). Flash 

column chromatography using silica (ethyl acetate/petroleum ether, 3:7) gave (2E)-8-

phenyloct-2-en-7-yn-1-ol (249) (0.97 g, 77%) as a colourless oil. Rf (50% petroleum 

ether/ethyl acetate) 0.62; νmax/cm
−1

 (neat) 3428 (OH), 2937 (CH), 2361, 1717, 1691, 1490, 

1442, 1270, 1216, 972; δH (500 MHz, CDCl3) 1.30 (1H, br s, OH), 1.70 (2H, quin., J 7.2 

Hz, 5-H2), 2.20–2.26 (2H, m, 4-H2), 2.42 (2H, t, J 7.2 Hz, 6-H2), 4.11 (2H, br s, 1-H2), 

5.70–5.74 (2H, m, 2-H and 3-H), 7.26–7.31 (3H, m, 3 × ArH), 7.37–7.41 (2H, m, 2 × 

ArH); δC (126 MHz, CDCl3) 18.8 (CH2), 28.1 (CH2), 31.3 (CH2), 63.7 (CH2), 81.0 (C), 
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89.8 (C), 123.9 (C), 127.6 (CH), 128.2 (2 × CH), 129.9 (CH), 131.5 (CH), 132.1 (2 × CH); 

m/z (CI) 183.1171 (MH
+
−H2O. C14H16 requires 183.1174), 173 (11%), 123 (33), 105 (10). 

7-Phenyl-3-(2’,2’,2’-trichloromethylcarbonylamino)hept-1-en-6-yne (238). 

 

(2E)-7-Phenylhept-2-en-6-yn-1-ol (248) (0.081 g, 0.44 mmol) was dissolved in 

dichloromethane (10 mL) and cooled to 0 °C. To the solution 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.012 mL, 0.088 mmol) and trichloroacetonitrile (0.066 

mL, 0.66 mmol) was added. The reaction mixture was allowed to warm to room 

temperature and stirred for 3 h. The reaction mixture was filtered through a short pad of 

silica gel with diethyl ether (300 mL) and the filtrate concentrated in vacuo to give the 

allylic trichloroacetimidate, which was used without further purification. The allylic 

trichloroacetimidate was dissolved in toluene (10 mL) and bis(acetonitrile)palladium 

chloride (0.012 g, 0.044 mmol) was then added and the reaction mixture was stirred at 

room temperature for 18 h. The reaction mixture was then cooled to room temperature and 

the solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 1:1) gave 7-phenyl-3-(2’,2’,2’-trichloromethylcarbonylamino)hept-1-

en-6-yne (238) (0.118 g, 81%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 

0.86; νmax/cm
−1

 (neat) 3304 (NH), 3055 (CH), 2362, 1714 (CO), 1511, 1265, 1175; δH (400 

MHz, CDCl3) 1.90–2.09 (2H, m, 4-H2), 2.50–2.59 (2H, m, 5-H2), 4.60–4.69 (1H, m, 3-H), 

5.27 (1H, d, J 10.4 Hz, 1-HH), 5.32 (1H, d, J 17.2 Hz, 1-HH), 5.85 (1H, ddd, J 17.2, 10.4, 

5.6 Hz, 2-H), 6.98 (1H, d, J 7.4 Hz, NH), 7.26–7.31 (3H, m, 3 × ArH), 7.37–7.43 (2H, m, 2 

× ArH); δC (101 MHz, CDCl3) 15.9 (CH2), 32.8 (CH2), 53.2 (CH), 82.0 (C), 88.4 (C), 92.7 

(C), 116.9 (CH2), 123.4 (C), 128.0 (CH), 128.3 (2 × CH), 131.7 (2 × CH), 135.6 (CH), 

161.4 (C); m/z (ESI) 352.0019 (MNa
+
. C15H14

35
Cl3NNaO requires 352.0033). 
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8-Phenyl-3-(2’,2’,2’-trichloromethylcarbonylamino)oct-1-en-7-yne (251). 

 

(2E)-8-Phenyloct-2-en-7-yn-1-ol (249) (0.105 g, 0.53 mmol) was dissolved in 

dichloromethane (10 mL) and cooled to 0 °C. To the solution 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.015 mL, 0.11 mmol) and trichloroacetonitrile (0.079 

mL, 0.79 mmol) was added. The reaction mixture was allowed to warm to room 

temperature and stirred for 3 h. The reaction mixture was filtered through a short pad of 

silica gel with diethyl ether (300 mL) and the filtrate concentrated in vacuo to give the 

allylic trichloroacetimidate, which was used without further purification. The allylic 

trichloroacetimidate was dissolved in toluene (10 mL) and bis(acetonitrile)palladium 

chloride (0.014 g, 0.053 mmol) was then added and the reaction mixture was stirred at 

room temperature for 18 h. The reaction mixture was then cooled to room temperature and 

the solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 1:1) gave 8-phenyl-3-(2’,2’,2’-trichloromethylcarbonylamino)oct-1-en-

7-yne (251) (0.148 g, 82%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.95; 

νmax/cm
−1

 (neat) 3325 (NH), 2932 (CH), 2361, 1691 (CO), 1512, 1491, 1441, 1238, 1071; 

δH (500 MHz, CDCl3) 1.65–1.83 (3H, m, 4-HH and 5-H2), 1.85–1.94 (H, m, 4-HH), 2.48 

(2H, t, J 6.8 Hz, 6-H2), 4.45–4.53 (1H, m, 3-H), 5.23 (1H, d, J 10.5 Hz, 1-HH), 5.28 (1H, 

d, J 17.2 Hz, 1-HH), 5.83 (1H, ddd, J 17.2, 10.5, 5.7 Hz, 2-H), 6.55 (1H, d, J 7.6 Hz, NH), 

7.26–7.31 (3H, m, 3 × ArH), 7.36–7.42 (2H, m, 2 × ArH); δC (126 MHz, CDCl3) 19.1 

(CH2), 24.8 (CH2), 33.6 (CH2), 53.0 (CH), 81.4 (C), 89.1 (C), 92.8 (C), 116.5 (CH2), 123.7 

(C), 127.7 (CH), 128.3 (2 × CH), 131.6 (2 × CH), 136.4 (CH), 161.3 (C); m/z (ESI) 

366.0179 (MNa
+
. C16H16

35
Cl3NNaO requires 366.0190). 
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4-(1’’-Phenylethyl-1’’-ene)-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene 

(239). 

 

7-Phenyl-3-(2’,2’,2’-trichloromethylcarbonylamino)hept-1-en-6-yne (238) (0.050 g, 0.15 

mmol) was dissolved in toluene (3 mL) and Grubbs second generation catalyst (0.009 g, 

0.011 mmol) with 1,7-octadiene (156) (0.095 mL, 0.60 mmol) was then added. The 

reaction mixture was stirred at 90 °C for 18 h. The reaction mixture was then cooled and 

the solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether 17:3) gave 4-(1’’-phenylethyl-1’’-ene)-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent-4-ene (239) (0.037 g, 74%) as a colourless oil. Rf 

(50% diethyl ether/petroleum ether) 0.78; νmax/cm
−1

 (neat) 3291 (NH), 2945 (CH), 1686 

(CO), 1520, 1242, 1175, 1069, 895; δH (500 MHz, CDCl3) 1.78–1.88 (1H, m, 2-HH), 2.57–

2.67 (2H, m, 2-HH and 3-HH), 2.77–2.86 (1H, m, 3-HH), 5.02–5.09 (1H, m, 1-H), 5.26 

(1H, s, 2’’-HH), 5.34 (1H, s, 2’’-HH), 5.54 (1H, br s, 5-H), 6.61 (1H, d, J 6.0 Hz, NH), 

7.27–7.38 (5H, m, 5 × ArH); δC (126 MHz, CDCl3) 31.4 (CH2), 31.6 (CH2), 58.2 (CH), 

92.6 (C), 117.0 (CH2), 127.6 (CH), 128.1 (CH), 128.2 (2 × CH), 128.4 (2 × CH), 141.0 

(C), 145.5 (C), 147.9 (C), 161.1 (C); m/z (ESI) 352.0020 (MNa
+
. C15H14

35
Cl3NNaO 

requires 352.0033). 
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(3aS*,8R*,8aS*,8bR*)-2,5-Diphenyl-4,6,7,8,8a,8b-hexahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (253). 

 

(2E)-7-Phenylhept-2-en-6-yn-1-ol (248) (0.075 g, 0.40 mmol) was dissolved in 

dichloromethane (10 mL) and cooled to 0 °C. To the solution, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.011 mL, 0.080 mmol) and trichloroacetonitrile (0.062 

mL, 0.60 mmol) was added. The reaction mixture was allowed to warm to room 

temperature and stirred for 3 h. The reaction mixture was filtered through a short pad of 

silica gel with diethyl ether (300 mL) and the filtrate concentrated in vacuo to give the 

allylic trichloroacetimidate, which was used without further purification. The allylic 

trichloroacetimidate was dissolved in toluene (10 mL) and bis(acetonitrile)palladium 

chloride (0.011 g, 0.040 mmol) was then added and the reaction mixture was stirred at 

room temperature for 18 h. Grubbs second generation catalyst (0.024 g, 0.028 mmol) was 

added with 1,7-octadiene (156) (0.24 mL, 1.60 mmol) and the reaction mixture was stirred 

for 18 h at 90 °C. N-Phenyl maleimide (139) (0.104 g, 0.60 mmol) was added with 

hydroquinone (0.005 g, 0.005 mmol). The reaction mixture was stirred for 18 h at 75 °C. 

The reaction mixture was then cooled to room temperature and the solvent was evaporated. 

Flash column chromatography using silica (petroleum ether/ethyl acetate, 1:1) gave 

(3aS*,8R*,8aS*,8bR*)-2,5-diphenyl-4,6,7,8,8a,8b-hexahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (253) (0.099 g, 

49%) as a yellow solid. Rf (50% petroleum ether/ethyl acetate) 0.76; Mp 151–153 °C; 

νmax/cm
−1

 (neat) 3358 (NH), 2936 (CH), 1695 (CO), 1517, 1498, 1387, 1154, 822; δH (400 

MHz, CDCl3) 1.75 (1H, dq, J 12.3, 10.2 Hz, 7-HH), 2.10–2.20 (1H, m, 7-HH), 2.53–2.66 

(3H, m, 4-HH and 6-H2), 3.12 (1H, dd, J 9.1, 5.8 Hz, 8a-H), 3.30 (1H, dd, J 15.2, 1.4 Hz, 

4-HH), 3.46–3.56 (2H, m, 3a-H and 8b-H), 4.88–5.01 (1H, m, 8-H), 7.06–7.10 (2H, m, 2 × 

ArH), 7.23–7.47 (8H, m, 8 × ArH), 8.96 (1H, d, J 9.6 Hz, NH); δC (126 MHz, CDCl3) 28.4 

(CH2), 29.9 (CH2), 31.6 (CH2), 40.3 (CH), 41.7 (CH), 43.7 (CH), 52.8 (CH), 92.9 (C), 

126.5 (2 × CH), 127.2 (CH), 127.5 (2 × CH), 128.5 (2 × CH), 129.2 (CH), 129.4 (2 × CH), 

130.3 (C), 131.4 (C), 139.0 (C), 139.6 (C), 162.3 (C), 178.5 (C), 179.7 (C); m/z (ESI) 
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525.0497 (MNa
+
. C25H21

35
Cl3N2NaO3 requires 525.0510), 481 (18%), 454 (7), 413 (7), 345 

(24), 323 (21), 297 (9), 236 (11), 218 (7), 196 (6). 

(9R*,9aS*)-2,6-Diphenyl-7,8,9,9a-tetrahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H,5H-cyclopent[c][2,4,10]triazolo[1,2-a]pyridazine-

1,3(2H)-dione (255). 

 

(2E)-7-Phenylhept-2-en-6-yn-1-ol (248) (0.087 g, 0.47 mmol) was dissolved in 

dichloromethane (15 mL) and cooled to 0 °C. To the solution, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.013 mL, 0.080 mmol) and trichloroacetonitrile (0.071 

mL, 0.71 mmol) was added. The reaction mixture was allowed to warm to room 

temperature and stirred for 3 h. The reaction mixture was filtered through a short pad of 

silica gel with diethyl ether (300 mL) and the filtrate concentrated in vacuo to give the 

allylic trichloroacetimidate, which was used without further purification. The allylic 

trichloroacetimidate was dissolved in toluene (10 mL) and bis(acetonitrile)palladium 

chloride (0.012 g, 0.047 mmol) was then added and the reaction mixture was stirred at 

room temperature for 18 h. Grubbs second generation catalyst (0.029 g, 0.047 mmol) was 

added with 1,7-octadiene (156) (0.28 mL, 1.88 mmol) and the reaction mixture was stirred 

for 18 h at 90 °C. 4-Phenyl-1,2,4-triazole-3,5-dione (254) (0.099 g, 0.56 mmol) was added 

with hydroquinone (0.005 g, 0.005 mmol). The reaction mixture was stirred for 24 h at 75 

°C. The reaction mixture was then cooled to room temperature and the solvent was 

evaporated. Flash column chromatography using silica (dichloromethane/methanol, 99:1) 

gave (9R*,9aS*)-2,6-diphenyl-7,8,9,9a-tetrahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H,5H-cyclopent[c][2,4,10]triazolo[1,2-a]pyridazine-

1,3(2H)-dione (255) (0.083 g, 35%) as a colourless oil. Rf (10% 

methanol/dichloromethane) 0.86; νmax/cm
−1

 (neat) 3402 (NH), 2939 (CH), 1701 (CO), 

1512, 1486, 1387, 1246, 1152, 928; δH (400 MHz, CDCl3) 2.07–2.23 (2H, m, 8-H2), 2.37–

2.48 (1H, m, 7-HH), 2.52–2.64 (1H, m, 7-HH), 4.33 (1H, ddd, J 16.6, 5.3, 2.3 Hz, 5-HH), 

4.46 (1H, ddd, J 16.6, 5.3, 2.9 Hz, 5-HH), 4.48–4.53 (1H, m, 9a-H), 4.82–4.88 (1H, m, 9-
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H), 6.66 (1H, d, J 6.0 Hz, NH), 7.28–7.33 (2H, m, 2 × ArH), 7.36–7.56 (8H, m, 8 × ArH); 

δC (101 MHz, CDCl3) 24.4 (CH2), 27.8 (CH2), 45.7 (CH2), 52.5 (CH), 59.9 (CH), 92.7 (C), 

125.5 (2 × CH), 127.6 (2 × CH), 128.4 (CH), 128.7 (CH), 128.8 (C), 128.9 (2 × CH), 129.2 

(2 × CH), 131.0 (C), 132.4 (C), 136.3 (C), 151.7 (C), 152.7 (C), 161.3 (C); m/z (ESI) 

527.0409 (MNa
+
. C23H19

35
Cl3N4NaO3 requires 527.0415). 

3-(2’,2’,2’-Trichloromethylcarbonylamino)hept-1-en-6-yne (222). 

 

Method A- (2E)-Hept-2-en-6-yn-1-ol (215) (0.388 g, 3.53 mmol) was dissolved in 

dichloromethane (25 mL) and cooled to 0 °C. To the solution 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.099 mL, 0.706 mmol) and trichloroacetonitrile (0.530 

mL, 5.29 mmol) was added. The reaction mixture was allowed to warm to room 

temperature and stirred for 3 h. The reaction mixture was filtered through a short pad of 

silica gel and the filtrate concentrated in vacuo to give the allylic trichloroacetimidate, 

which was used without further purification. The allylic trichloroacetimidate was dissolved 

in toluene (10 mL) and transferred to a Schlenk tube containing potassium carbonate 

(0.050 g) and purged with Ar and sealed. The reaction mixture was then warmed to 140 °C 

and stirred for 36 h. The reaction mixture was then cooled to room temperature and the 

solvent was evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 10:1) gave 3-(2’,2’,2’-trichloromethylcarbonylamino)hept-1-en-6-yne 

(222) (0.866 g, 96%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.95; Mp 35–

37 °C; νmax/cm
−1

 (neat) 3304 (NH), 3055 (CH), 2361, 1713 (CO), 1510, 1265, 822, 733; δH 

(500 MHz, CDCl3) 1.84–2.00 (2H, m, 4-H2), 2.05 (1H, t, J 2.7 Hz, 7-H), 2.26–2.39 (2H, m, 

5-H2), 4.56–4.63 (1H, m, 3-H), 5.27 (1H, d, J 10.5 Hz, 1-HH), 5.30 (1H, d, J 17.2 Hz, 1-

HH), 5.82 (1H, ddd, J 17.2, 10.5, 5.6 Hz, 2-H), 6.93 (1H, br s, NH); δC (126 MHz, CDCl3) 

14.8 (CH2), 32.5 (CH2), 53.0 (CH), 69.9 (CH), 83.1 (C), 92.7 (C), 116.9 (CH2), 135.4 

(CH), 161.3 (C); m/z (CI) 253.9901 (MH
+
. C9H11

35
Cl3NO requires 253.9906), 220 (55%), 

186 (42), 184 (37), 132 (12), 89 (100), 69 (27). 

Method B- (2E)-Hept-2-en-6-yn-1-ol (215) (0.11 g, 1.00 mmol) was dissolved in 

dichloromethane (20 mL) and cooled to 0 °C. To the solution was added 1,8-
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diazabicyclo[5.4.0]undec-7-ene (0.028 mL, 0.20 mmol) and trichloroacetonitrile (0.15 mL, 

1.50 mmol). The reaction mixture was allowed to warm to room temperature before 

stirring for 3 h. The reaction mixture was filtered through a short pad of silica gel and the 

filtrate concentrated in vacuo to give the allylic trichloroacetimidate, which was used 

without further purification. The allylic trichloroacetimidate was dissolved in toluene (21 

mL) under an argon atmosphere. Bis(acetonitrile)palladium chloride (0.026 g, 0.10 mmol) 

was then added to the solution and the reaction mixture was stirred at room temperature for 

18 h. To the reaction mixture an additional portion of bis(acetonitrile)palladium chloride  

(0.026 g, 0.1 mmol) was added and the reaction was stirred at room temperature for 24 h 

and solvent evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether 10:1) gave 3-(2’,2’,2’-trichloromethylcarbonylamino)hept-1-en-6-yne 

(222) (0.086 g, 34%) as a white solid. Spectroscopic data as described above. 

4-(n-Pent-1’’-ene)-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (258). 

 

Method A- 3-(2’,2’,2’-Trichloromethylcarbonylamino)hept-1-en-6-yne (222) (0.11 g, 0.42 

mmol) was dissolved in toluene (8 mL) and Grubbs second generation catalyst (0.016 g, 

0.019 mmol) with 1-pentene (261) (0.204 mL, 1.87 mmol) was then added. The reaction 

mixture was stirred at room temperature for 18 h. Further addition of Grubbs second 

generation catalyst (0.008 g, 0.010 mmol) with 1-pentene (261) (0.11 mL, 1.01 mmol) was 

then added and the reaction mixture stirred at room temperature for 22 h. The reaction 

mixture was then cooled and the solvent was evaporated. Flash column chromatography 

using silica (petroleum ether/diethyl ether 9:1) gave 4-(n-pent-1’’-ene)-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent-4-ene (258) (0.091 g, 74%) as a white solid. Rf 

(50% diethyl ether/petroleum ether) 0.82; Mp 56–58 °C; νmax/cm
−1

 (neat) 3285 (NH), 2957 

(CH), 2930, 1701, 1686 (CO), 1524, 1258, 1067, 964; δH (500 MHz, CDCl3) 0.92 (3H, t, J 

7.4 Hz, 5’’-H3), 1.44 (2H, sextet, J 7.4 Hz, 4’’-H2), 1.75 (1H, ddt, J 13.0, 8.5, 4.1 Hz, 2-

HH), 2.11 (2H, q, J 7.4 Hz, 3’’-H2), 2.40–2.55 (2H, m, 2-HH and 3-HH), 2.58–2.67 (1H, 

m, 3-HH), 4.96–5.03 (1H, m, 1-H), 5.53 (1H, br s, 5-H), 5.75 (1H, dt, J 15.7, 7.4 Hz, 2’’-
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H), 6.27 (2H, d, J 15.7 Hz, 1’’-H2), 7.63 (1H, d, J 9.3 Hz, NH); δC (126 MHz, CDCl3) 13.7 

(CH3), 22.4 (CH2), 30.0 (CH2), 31.1 (CH2), 34.9 (CH2), 57.8 (CH), 92.8 (C), 124.8 (CH), 

125.9 (CH), 135.3 (CH), 147.3 (C), 161.1 (C); m/z (ESI) 318.0182 (MNa
+
. 

C12H16
35

Cl3NNaO requires 318.0190), 296 (10%), 236 (24), 184 (16), 135 (21). 

Method B- (2E)-Hept-2-en-6-yn-1-ol (215) (0.060 g, 0.55 mmol) was dissolved in 

dichloromethane (10 mL) and cooled to 0 °C. To the solution 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.015 mL, 0.11 mmol) and trichloroacetonitrile (0.082 

mL, 0.82 mmol) was added. The reaction mixture was allowed to warm to room 

temperature before stirring for 3 h. The reaction mixture was filtered through a short pad of 

silica gel and the filtrate concentrated in vacuo to give the allylic trichloroacetimidate, 

which was used without further purification. The allylic trichloroacetimidate was dissolved 

in toluene (11 mL) and transferred to a Schlenk tube containing potassium carbonate 

(0.055 g), purged with Ar and sealed. The reaction mixture was then heated to 140 °C and 

stirred for 36 h. Grubbs second generation catalyst (0.023 g, 0.027 mmol) was added with 

1-pentene (261)  (0.30 mL, 2.75 mmol) and the reaction mixture was stirred for 24 h at 

room temperature. A further portion of Grubbs second generation catalyst (0.014 g, 0.016 

mmol) and 1-pentene (261) (0.30 mL, 2.75 mmol) was added and the reaction mixture was 

stirred at room temperature for 18 h. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 9:1) gave 4-(n-pent-1’’-ene)-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent-4-ene (258) (0.098 g, 60%) as a white solid. 

Spectroscopic data as described above. 

(3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-Hexahydro-2-phenyl-4-n-propyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (262). 

 

(2E)-Hept-2-en-6-yn-1-ol (215) (0.027 g, 0.24 mmol) was dissolved in dichloromethane 

(10 mL) and cooled to 0 °C. To the solution 1,8-diazabicyclo[5.4.0]undec-7-ene (0.007 

mL, 0.048 mmol) and trichloroacetonitrile (0.036 mL, 0.36 mmol) was added. The reaction 

mixture was allowed to warm to room temperature before stirring for 3 h. The reaction 
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mixture was filtered through a short pad of silica gel and the filtrate concentrated in vacuo 

to give the allylic trichloroacetimidate, which was used without further purification. The 

allylic trichloroacetimidate was dissolved in toluene (5 mL) and transferred to a Schlenk 

tube containing potassium carbonate (0.025 g, 0.18 mmol), purged with Ar and sealed. The 

reaction mixture was then heated to 140 °C and stirred for 36 h. Grubbs second generation 

catalyst (0.012 g, 0.014 mmol) was added with 1-pentene (261)  (0.13 mL, 1.21 mmol) and 

the reaction mixture was stirred for 24 h at room temperature. A further portion of Grubbs 

second generation catalyst (0.005 g, 0.006 mmol) and 1-pentene (261) (0.067 mL, 0.61 

mmol) was added and the reaction mixture was stirred at room temperature for 18 h. N-

Phenyl maleimide (139) (0.063 g, 0.36 mmol) was added with hydroquinone (0.005 g, 

0.005 mmol). The reaction mixture was stirred for 24 h at 75 °C. The reaction mixture was 

then cooled to room temperature and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 4:1) gave 

(3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-4-n-propyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (262) (0.054 g, 

47%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.59; Mp 145–147 °C; 

νmax/cm
−1

 (neat) 3304 (NH), 2957 (CH), 1695 (CO), 1516, 1499, 1389, 1182; δH (500 

MHz, CDCl3) 0.91 (3H, t, J 7.3 Hz, 3’’-H3), 1.37–1.50 (2H, m, 2’’-H2), 1.61–1.71 (1H, m, 

1’’-HH), 1.74–1.91 (2H, m, 1’’-HH and 7-HH), 2.08 (1H, dt, J 12.4, 7.2 Hz, 7-HH), 2.23–

2.33 (2H, m, 4-H and 6-HH), 2.39 (1H, dd, J 15.4, 8.1 Hz, 6-HH), 2.83–2.90 (1H, m, 8a-

H), 3.20 (1H, dd, J 8.4, 6.9 Hz, 3a-H), 3.35 (1H, dd, J 8.4, 6.5 Hz, 8b-H), 4.75–4.85 (1H, 

m, 8-H), 5.52 (1H, br s, 5-H), 7.05–7.10 (2H, m, 2 × ArH), 7.30–7.35 (1H, m, ArH), 7.36–

7.42 (2H, m, 2 × ArH), 8.90 (1H, d, J 9.7 Hz, NH); δC (126 MHz, CDCl3) 14.1 (CH3), 21.4 

(CH2), 28.2 (CH2) 31.7 (CH2), 33.2 (CH2), 38.3 (CH), 42.1 (CH), 42.2 (CH), 42.8 (CH), 

52.9 (CH), 92.9 (C), 123.1 (CH), 126.5 (2 × CH), 129.0 (CH), 129.3 (2 × CH), 131.5 (C), 

145.1 (C), 162.3 (C), 175.7 (C), 179.3 (C); m/z (ESI) 491.0649 (MNa
+
. 

C22H23
35

Cl3N2NaO3 requires 491.0666), 413 (6%), 301 (4), 236 (11), 228 (100). 
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(3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-Hexahydro-4-n-hexyl-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (263). 

 

(3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-Hexahydro-4-n-hexyl-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (263) was 

synthesised as described for (3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-

4-n-propyl-8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-

dione (262) using (2E)-hept-2-en-6-yn-1-ol (215) (0.027 g, 0.24 mmol). The reaction 

mixture was stirred with Grubbs second generation catalyst (0.015 g, 0.018 mmol) and 1-

octene (166) (0.28 mL, 1.82 mmol) for 48 h at 40 °C before N-phenyl maleimide (139) 

(0.063 g, 0.36 mmol) was added. The reaction mixture was stirred for 24 h at 75 °C. The 

reaction mixture was then cooled to room temperature and the solvent was evaporated. 

Flash column chromatography using silica (petroleum ether/diethyl ether, 5:1) gave 

(3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-4-n-hexyl-2-phenyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (263) (0.076 g, 

62%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.62; Mp 145–147 °C; 

νmax/cm
−1

 (neat) 3310 (NH), 2928 (CH), 1697 (CO), 1516, 1499, 1389, 1186; δH (500 

MHz, CDCl3) 0.86–0.92 (3H, m, 6’’-H3), 1.25–1.53 (8H, m, 2’’-H2, 3’’-H2, 4’’-H2 and 5’’-

H2), 1.73 (1H, dtd, J 14.1, 9.4, 5.4 Hz, 1’’-HH), 1.86 (1H, qd, J 12.3, 7.8 Hz, 7-HH), 1.99–

2.01 (1H, m, 1’’-HH), 2.14 (1H, dt, J 12.3, 7.2 Hz, 7-HH), 2.25–2.39 (2H, m, 4-H and 6-

HH), 2.46 (1H, dd, J 16.0, 7.8 Hz, 6-HH), 2.90–2.96 (1H, m, 8a-H), 3.27 (1H, dd, J 8.4, 

6.9 Hz, 3a-H), 3.41 (1H, dd, J 8.4, 6.5 Hz, 8b-H), 4.81–4.92 (1H, m, 8-H), 5.57–5.61 (1H, 

m, 5-H), 7.13–7.17 (2H, m, 2 × ArH), 7.37–7.42 (1H, m, ArH), 7.43–7.48 (2H, m, 2 × 

ArH), 8.98 (1H, d, J 9.7 Hz, NH); δC (126 MHz, CDCl3) 14.1 (CH3), 22.7 (CH2), 28.2 

(CH2), 28.3 (CH2), 29.3 (CH2), 31.0 (CH2), 31.7 (CH2), 31.8 (CH2), 38.6 (CH), 42.1 (CH), 

42.2 (CH), 42.8 (CH), 52.9 (CH), 92.2 (C), 123.1 (CH), 126.6 (2 × CH), 129.0 (CH), 129.3 

(2 × CH), 131.5 (C), 145.0 (C), 162.2 (C), 175.7 (C), 179.4 (C); m/z (ESI) 533.1120 

(MNa
+
. C25H29

35
Cl3N2NaO3 requires 533.1136), 413 (4%), 301 (15), 236 (28), 228 (22), 

218 (6), 141 (3). 
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(3aS*,4S*,8R*,8aS*,8bR*)-2,4-Diphenyl-4,6,7,8,8a,8b-hexahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (264). 

 

(3aS*,4S*,8R*,8aS*,8bR*)-2,4-Diphenyl-4,6,7,8,8a,8b-hexahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (264) was 

synthesised as described for (3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-

4-n-propyl-8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-

dione (262) using (2E)-hept-2-en-6-yn-1-ol (215) (0.027 g, 0.24 mmol). The reaction 

mixture was stirred with Grubbs second generation catalyst (0.015 g, 0.018 mmol) and 

styrene (0.21 mL, 1.82 mmol) for 48 h at 40 °C before N-phenyl maleimide (139) (0.063 g, 

0.36 mmol) was added. The reaction mixture was stirred for 48 h at 75 °C. The reaction 

mixture was then cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 1:1) gave 

(3aS*,4S*,8R*,8aS*,8bR*)-2,4-diphenyl-4,6,7,8,8a,8b-hexahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (264) (0.063 g, 

52%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.32; Mp 154–156 °C; 

νmax/cm
−1

 (neat) 3318 (NH), 2940 (CH), 1697 (CO), 1512, 1501, 1383, 1196, 1177, 822; δH 

(500 MHz, CDCl3) 1.99 (1H, qd, J 12.4, 7.9 Hz, 7-HH), 2.23 (1H, dq, J 12.4, 7.3 Hz, 7-

HH), 2.38–2.49 (1H, m, 6-HH), 2.60 (1H, dd, J 16.5, 7.9 Hz, 6-HH), 3.08–3.16 (1H, m, 8a-

H), 3.49–3.55 (1H, m, 3a-H and 8b-H), 3.75 (1H, br s, 4-H), 4.90–5.01 (1H, m, 8-H), 6.13–

6.17 (1H, m, 5-H), 7.13 (2H, t, J 7.6 Hz, 2 × ArH), 7.25–7.32 (3H, m, 3 × ArH), 7.35–7.40 

(3H, m, 3 × ArH), 7.41–7.46 (2H, m, 2 × ArH), 8.91 (1H, d, J 9.6 Hz, NH); δC (126 MHz, 

CDCl3) 28.8 (CH2), 31.8 (CH2), 41.9 (CH), 42.1 (CH), 43.5 (CH), 46.1 (CH), 52.9 (CH), 

92.9 (C), 120.3 (CH), 126.3 (2 × CH), 127.3 (CH), 128.4 (2 × CH), 128.7 (2 × CH), 128.9 

(CH), 129.2 (2 × CH), 131.4 (C), 138.7 (C), 146.5 (C), 162.3 (C), 174.3 (C), 178.7 (C); m/z 

(ESI) 501.0533 ([M−H]
−
. C25H20

35
Cl3N2O3 requires 501.0545), 383 (100%), 312 (15), 212 

(22). 
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(3aS*,4S*,8R*,8aS*,8bR*)-4-(4-Fluorophenyl)-4,6,7,8,8a,8b-hexahydro-2-phenyl-8-

(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione 

(265). 

 

(3aS*,4S*,8R*,8aS*,8bR*)-4-(4-Fluorophenyl)-4,6,7,8,8a,8b-hexahydro-2-phenyl-8-

(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (265) 

was synthesised as described for (3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-

phenyl-4-n-propyl-8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-

1,3(2H,3aH)-dione (262) using (2E)-hept-2-en-6-yn-1-ol 215 (0.027 g, 0.24 mmol). The 

reaction mixture was stirred with Grubbs second generation catalyst (0.015 g, 0.018 mmol) 

and 4-fluorostyrene (0.22 mL, 1.82 mmol) for 48 h at 40 °C before N-phenyl maleimide 

(139) (0.063 g, 0.36 mmol) was added. The reaction mixture was stirred for 24 h at 75 °C. 

The reaction mixture was then cooled to room temperature and the solvent was evaporated. 

Flash column chromatography using silica (petroleum ether/diethyl ether, 1:1) gave 

(3aS*,4S*,8R*,8aS*,8bR*)-4-(4-fluorophenyl)-4,6,7,8,8a,8b-hexahydro-2-phenyl-8-

(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (265) 

(0.070 g, 56%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.24; Mp 146–148 

°C; νmax/cm
−1

 (neat) 3307 (NH), 2925 (CH), 1696 (CO), 1510, 1388, 1214, 1200, 1158, 

822; δH (500 MHz, CDCl3) 2.00 (1H, qd, J 12.3, 7.9 Hz, 7-HH), 2.26 (1H, dq, J 12.3, 7.4 

Hz, 7-HH), 2.39–2.52 (1H, m, 6-HH), 2.62 (1H, dd, J 16.4, 7.9 Hz, 6-HH), 3.09–3.16 (1H, 

m, 8a-H), 3.47 (1H, dd, J 15.5, 8.3 Hz, 3a-H), 3.54 (1H, dd, J 8.3, 6.0 Hz, 8b-H), 3.71–

3.79 (1H, m, 4-H), 4.91–5.04 (1H, m, 8-H), 6.08–6.12 (1H, m, 5-H), 7.06–7.10 (2H, m, 2 × 

ArH), 7.13–7.16 (2H, m, 2 × ArH), 7.22–7.27 (2H, m, 2 × ArH), 7.38–7.43 (1H, m, ArH), 

7.44–7.50 (2H, m, 2 × ArH), 8.92 (1H, d, J 9.6 Hz, NH); δC (126 MHz, CDCl3) 28.7 

(CH2), 31.7 (CH2), 41.8 (CH), 42.2 (CH), 42.8 (CH), 46.0 (CH), 52.8 (CH), 92.8 (C), 

115.3 (d, JC-C-F 21.6 Hz, 2 × CH), 120.2 (CH), 126.3 (2 × CH), 129.0 (CH), 129.3 (2 × 

CH), 130.2 (d, JC-C-C-F 8.0 Hz, 2 × CH), 131.3 (C), 134.5 (C), 146.8 (C), 162.0 (d, JC-F 

245.9 Hz, C), 162.3 (C), 174.4 (C), 178.6 (C); m/z (ESI) 543.0410 (MNa
+
. 

C25H20
35

Cl3FN2NaO3 requires 543.0416), 449 (6%), 413 (7), 352 (4), 227 (6), 159 (4). 
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(1R*,5S*,11bR*)-5-n-Hexyl-1,2,3,5,11b-pentahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]anthracene-6,11-dione (266). 

 

(1R*,5S*,11bR*)-5-n-Hexyl-1,2,3,5,11b-pentahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]anthracene-6,11-dione (266) was synthesised 

as described for (3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-4-n-propyl-

8-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (262) 

using (2E)-hept-2-en-6-yn-1-ol (215) (0.027 g, 0.24 mmol). The reaction mixture was 

stirred with Grubbs second generation catalyst (0.015 g, 0.018 mmol) and 1-octene (166) 

(0.28 mL, 1.82 mmol) for 48 h at 40 °C before 1,4-naphthoquinone (205) (0.057 g, 0.36 

mmol) was added. The reaction mixture was stirred for 48 h at 111 °C. The reaction 

mixture was then cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 4:1) gave 

(1R*,5S*,11bR*)-5-n-hexyl-1,2,3,5,11b-pentahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[a]anthracene-6,11-dione (266) (0.048 g, 40%) as 

a yellow oil. Rf (50% diethyl ether/petroleum ether) 0.54; νmax/cm
−1

 (neat) 3335 (NH), 

2928 (CH), 1709 (CO), 1667 (CO), 1593 (C=C), 1510, 1346, 1281, 1267, 820; δH (500 

MHz, CDCl3) 0.87 (3H, t, J 6.5 Hz, 6’’-H3), 1.29–1.48 (8H, m, 2’’-H2, 3’’-H2, 4’’-H2 and 

5’’-H2), 1.55–1.66 (1H, m, 1’’-HH), 1.78–1.88 (2H, m, 1’’-HH and 2-HH), 2.35–2.52 (3H, 

m, 2-HH and 3-H2), 3.62–3.70 (2H, m, 5-H and 11b-H), 5.07–5.13 (1H, m, 1-H), 5.76 (1H, 

br s, 4-H), 6.35 (1H, d, J 8.4 Hz, NH), 7.68–7.73 (2H, m, 2 × ArH), 8.01–8.11 (2H, m, 2 × 

ArH); δC (126 MHz, CDCl3) 14.1 (CH3), 22.7 (CH2), 26.6 (CH2), 26.8 (CH2), 29.3 (CH2), 

30.2 (CH2), 31.6 (CH2), 36.6 (CH), 36.9 (CH2), 43.8 (CH), 53.8 (CH), 92.6 (C), 122.2 

(CH), 126.3 (CH), 126.4 (CH), 131.8 (C), 132.4 (C), 133.6 (CH), 133.7 (CH), 136.2 (C), 

140.0 (C), 148.9 (C), 160.9 (C), 184.0 (C), 184.4 (C); m/z (ESI) 520.0788 (MNa
+
. 

C25H26
35

Cl
37

Cl2NNaO3 requires 520.0811). 
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(5S*,9R*,9aS*)-5-n-Hexyl-7,8,9,9a-tetrahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H,5H-cyclopent[c][2,4,10]triazolo[1,2-a]pyridazine-

1,3(2H)-dione (267). 

 

(5S*,9R*,9aS*)-5-n-Hexyl-2-phenyl-7,8,9,9a-tetrahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H,5H-cyclopent[c][2,4,10]triazolo[1,2-a]pyridazine-

1,3(2H)-dione (267) was synthesised as described for (3aS*,4S*,8R*,8aS*,8bR*)-

4,6,7,8,8a,8b-hexahydro-2-phenyl-4-n-propyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (262) using (2E)-

hept-2-en-6-yn-1-ol (215) (0.027 g, 0.24 mmol). The reaction mixture was stirred with 

Grubbs second generation catalyst (0.015 g, 0.018 mmol) and 1-octene (166) (0.28 mL, 

1.82 mmol) for 48 h at 40 °C before N-phenyl-1,2,4-triazoline-3,5-dione (254) (0.063 g, 

0.36 mmol) was added. The reaction mixture was stirred for 18 h at 75 °C. The reaction 

mixture was then cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/ethyl acetate, 7:3) gave 

(5S*,9R*,9aS*)-5-n-hexyl-2-phenyl-7,8,9,9a-tetrahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H,5H-cyclopent[c][2,4,10]triazolo[1,2-a]pyridazine-

1,3(2H)-dione (267) (0.066 g, 54%) as a brown oil. Rf (50% diethyl ether/petroleum ether) 

0.33; νmax/cm
−1

 (neat) 3412 (NH), 2928 (CH), 1775 (CO), 1711 (CO), 1503, 1416, 1265, 

1140, 820; δH (400 MHz, CDCl3) 0.88 (3H, t, J 6.9 Hz, 6’’-H3), 1.19–1.47 (8H, m, 2’’-H2, 

3’’-H2 , 4’’-H2 and 5’’-H2), 1.73–1.94 (2H, m, 1’’-H2), 2.07–2.20 (1H, m, 8-HH), 2.34–2.43 

(1H, m, 8-HH), 2.52–2.62 (2H, m, 7-H2), 4.23–4.29 (1H, m, 9a-H), 4.62–4.68 (1H, m, 5-

H), 4.87 (1H, br q, J 5.4 Hz, 9-H), 5.88–5.94 (1H, m, 6-H), 6.80 (1H, d, J 5.4 Hz, NH), 

7.35–7.41 (1H, m, ArH), 7.45–7.50 (2H, m, 2 × ArH), 7.51–7.56 (2H, m, 2 × ArH); δC 

(126 MHz, CDCl3) 14.0 (CH3), 22.6 (CH2), 24.9 (CH2), 24.9 (CH2), 27.7 (CH2), 29.1 

(CH2), 31.5 (CH2), 33.2 (CH2), 52.6 (CH), 53.9 (CH), 60.7 (CH), 92.7 (C), 120.4 (CH), 

125.2 (2 × CH), 128.2 (CH), 129.2 (2 × CH), 131.0 (C), 136.5 (C), 150.0 (C), 154.6 (C), 

161.3 (C); m/z (ESI) 535.1023 (MNa
+
. C23H27

35
Cl3N4NaO3 requires 535.1041). 
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(1R*,5S*,7aR*)-2,3,5,6,7,7a-Hexahydro-5-n-hexyl-6,6,7,7-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (268). 

 

(1R*,5S*,7aR*)-2,3,5,6,7,7a-Hexahydro-5-n-hexyl-6,6,7,7-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (268) was synthesised as described for 

(3aS*,4S*,8R*,8aS*,8bR*)-4,6,7,8,8a,8b-hexahydro-2-phenyl-4-n-propyl-8-(2’,2’,2’-

trichloromethylcarbonylamino)cyclopent[e]isoindole-1,3(2H,3aH)-dione (262) using (2E)-

hept-2-en-6-yn-1-ol (215) (0.027 g, 0.24 mmol). The reaction mixture was stirred with 

Grubbs second generation catalyst (0.015 g, 0.018 mmol) and 1-octene (166) (0.28 mL, 

1.82 mmol) for 48 h at 40 °C before tetracyanoethylene (0.046 g, 0.36 mmol) was added. 

The reaction mixture was stirred for 18 h at 50 °C. The reaction mixture was then cooled to 

room temperature and the solvent was evaporated. Flash column chromatography using 

silica (petroleum ether/ethyl acetate, 4:1) gave (1R*,5S*,7aR*)-2,3,5,6,7,7a-hexahydro-5-

n-hexyl-6,6,7,7-tetracyano-1-(2’,2’,2’-trichloromethylcarbonylamino)indene (268) (0.057 

g, 50%) as a white solid. Rf (50% ethyl acetate/petroleum ether) 0.80; Mp 163–165 °C; 

νmax/cm
−1

 (neat) 3316 (NH), 2930 (CH), 1688 (CO), 1530, 1458, 1265, 841, 822; δH (500 

MHz, CDCl3) 0.90 (3H, t, J 8.7 Hz, 6’’-H3), 1.25–1.49 (7H, m, 2’’-HH, 3’’-H2, 4’’-H2 and 

5’’-H2), 1.53–1.65 (1H, m, 2’’-HH), 1.86–2.03 (2H, m, 1’’-HH and 2-HH), 2.05–2.16 (1H, 

m, 1’’-HH), 2.39–2.49 (1H, m, 2-HH), 2.51–2.64 (1H, m, 3-HH), 2.69–2.80 (1H, m, 3-

HH), 2.97–3.06 (1H, m, 5-H), 3.29–3.37 (1H, m, 7a-H), 4.41–4.52 (1H, m, 1-H), 5.84–

5.89 (1H, m, 4-H), 6.91 (1H, d, J 10.2 Hz, NH); δC (126 MHz, CDCl3) 14.0 (CH3), 22.5 

(CH2), 27.0 (CH2), 27.9 (CH2), 28.7 (CH2), 28.8 (CH2), 31.5 (CH2), 32.8 (CH2), 39.3 (C), 

43.3 (CH), 44.5 (C), 49.0 (CH), 55.2 (CH), 91.8 (C), 109.1 (C), 110.1 (C), 110.9 (C), 111.6 

(C), 119.8 (CH), 134.6 (C), 162.3 (C); m/z (ESI) 464.0806 ([M−H]
−
. C21H21

35
Cl3N5O 

requires 464.0817), 400 (2%), 346 (10), 303 (22), 276 (8), 265 (4), 249 (4). 
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(3aS*,4S*,9R*,9aS*,9bR*)-4-n-Hexyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-

(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (269). 

 

(2E)-Oct-2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol) was dissolved in dichloromethane (10 

mL) and cooled to 0 °C. To the solution 1,8-diazabicyclo[5.4.0]undec-7-ene (0.007 mL, 

0.048 mmol) and trichloroacetonitrile (0.036 mL, 0.36 mmol) was added. The reaction 

mixture was allowed to warm to room temperature before stirring for 3 h. The reaction 

mixture was filtered through a short pad of silica gel and the filtrate concentrated in vacuo 

to give the allylic trichloroacetimidate, which was used without further purification. The 

allylic trichloroacetimidate was dissolved in toluene (5 mL) and transferred to a Schlenk 

tube containing potassium carbonate (0.025 g, 0.18 mmol), purged with Ar and sealed. The 

reaction mixture was then heated to 140 °C and stirred for 36 h. Grubbs second generation 

catalyst (0.010 g, 0.012 mmol) was added with 1-octene (166) (0.19 mL, 1.21 mmol) and 

the reaction mixture was stirred for 24 h at 70 °C. A further portion of Grubbs second 

generation catalyst (0.005 g, 0.006 mmol) and 1-octene (166) (0.096 mL, 0.61 mmol) was 

added and the reaction mixture was stirred at 70 °C for 18 h. A further portion of Grubbs 

second generation catalyst (0.005 g, 0.006 mmol) and 1-octene (166) (0.096 mL, 0.61 

mmol) was added and the reaction mixture was stirred at 70 °C for 18 h.  N-Phenyl 

maleimide (139) (0.063 g, 0.36 mmol) was added with hydroquinone (0.005 g, 0.005 

mmol). The reaction mixture was stirred for 24 h at 100 °C. The reaction mixture was then 

cooled to room temperature and the solvent was evaporated. Flash column chromatography 

using silica (petroleum ether/diethyl ether, 3:1) gave (3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-

3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-

benz[e]isoindole-1,3(2H)-dione (269) (0.048 g, 38%) as a colourless oil. Rf (50% diethyl 

ether/petroleum ether) 0.63; νmax/cm
−1

 (neat) 3327 (NH), 2927 (CH), 2856 (CH), 1700 

(CO), 1512, 1500, 1387, 1191, 845; δH (400 MHz, CDCl3) 0.89 (3H, t, J 6.8 Hz, 6’’-H3), 

1.25–1.50 (8H, m, 2’’-H2, 3’’-H2, 4’’-H2 and 5’’-H2), 1.52–1.63 (1H, m, 7-HH), 1.64–1.78 

(2H, m, 1’’-HH and 7-HH), 1.81–2.00 (3H, m, 1’’-HH and 8-H2), 2.08–2.20 (1H, m, 6-

HH), 2.25–2.36 (1H, m, 4-H), 2.46–2.56 (1H, m, 6-HH), 3.06 (1H, t, J 8.5 Hz, 9a-H), 3.27 

(1H, dd, J 8.5, 6.0 Hz, 3a-H), 3.46 (1H, dd, J 8.5, 6.0 Hz, 9b-H), 4.58–4.69 (1H, m, 9-H), 
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5.61–5.66 (1H, m, 5-H), 7.13–7.19 (2H, m, 2 × ArH), 7.37–7.43 (1H, m, ArH), 7.44–7.51 

(2H, m, 2 × ArH), 8.40 (1H, d, J 9.4 Hz, NH); δC (126 MHz, CDCl3) 13.1 (CH3), 20.9 

(CH2), 21.6 (CH2), 27.2 (CH2), 28.0 (CH2), 28.2 (CH2), 28.7 (CH2), 29.8 (CH2), 30.8 

(CH2), 36.1 (CH), 36.7 (CH), 41.1 (CH), 43.4 (CH), 47.3 (CH), 91.9 (C), 125.4 (2 × CH), 

127.4 (CH), 127.9 (CH), 128.2 (2 × CH), 130.5 (C), 136.9 (C), 160.7 (C), 175.3 (C), 178.2 

(C); m/z (ESI) 523.1319 ([M−H]
−
. C26H30

35
Cl3N2O3 requires 523.1327). 

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-Butyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-

(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (270). 

 

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-Butyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (270) was synthesised 

as described for (3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-octahydro-2-

phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione 

(269) using (2E)-oct-2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The reaction mixture was 

stirred with Grubbs second generation catalyst (0.020 g, 0.024 mmol) and 1-hexene (0.30 

mL, 2.41 mmol) for 72 h at 70 °C before N-phenyl maleimide (139) (0.063 g, 0.36 mmol) 

was added. The reaction mixture was stirred for 24 h at 100 °C. The reaction mixture was 

then cooled to room temperature and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 3:1) gave 

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-butyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (270) (0.045 g, 37%) 

as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.59; νmax/cm
−1

 (neat) 3328 

(NH), 2929 (CH), 1698 (CO), 1499, 1387, 1191, 820; δH (500 MHz, CDCl3) 0.93 (3H, t, J 

7.1 Hz, 4’’-H3), 1.33–1.49 (4H, m, 2’’-H2 and 3’’-H2), 1.51–1.62 (1H, m, 7-HH), 1.65–

1.77 (2H, m, 1’’-HH and 7-HH), 1.82–2.01 (3H, m, 1’’-HH and 8-H2), 2.09–2.19 (1H, m, 

6-HH), 2.26–2.35 (1H, m, 4-H), 2.48–2.54 (1H, m, 6-HH), 3.06 (1H, t, J 8.5 Hz, 9a-H), 

3.27 (1H, dd, J 8.5, 6.0 Hz, 3a-H), 3.45 (1H, dd, J 8.5, 6.0 Hz, 9b-H), 4.58–4.69 (1H, m, 9-

H), 5.61–5.66 (1H, m, 5-H), 7.13–7.18 (2H, m, 2 × ArH), 7.37–7.42 (1H, m, ArH), 7.43–

7.49 (2H, m, 2 × ArH), 8.39 (1H, d, J 9.4 Hz, NH); δC (126 MHz, CDCl3) 14.1 (CH3), 21.9 

(CH2), 22.6 (CH2), 29.0 (CH2), 29.7 (CH2), 30.5 (CH2), 30.6 (CH2), 37.1 (CH), 37.8 (CH), 
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42.1 (CH), 44.4 (CH), 48.3 (CH), 92.9 (C), 126.4 (2 × CH), 128.4 (CH), 128.9 (CH), 129.3 

(2 × CH), 131.5 (C), 138.0 (C), 161.7 (C), 176.3 (C), 179.2 (C); m/z (CI) 497.1167 (MH
+
. 

C24H28
35

Cl3N2O3 requires 497.1166), 463 (100%), 429 (41), 379 (32), 335 (39), 174 (38), 

122 (12), 69 (40).  

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-Decyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-

(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (271). 

 

(3aS*,4S*,9R*,9aS*,9bR*)-4-Decyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (271) was synthesised 

as described for (3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-octahydro-2-

phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione 

(269) using (2E)-oct-2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The reaction mixture was 

stirred with Grubbs second generation catalyst (0.020 g, 0.024 mmol) and 1-dodecene 

(0.54 mL, 2.41 mmol) for 72 h at 70 °C before N-phenyl maleimide (139) (0.063 g, 0.36 

mmol) was added. The reaction mixture was stirred for 24 h at 100 °C. The reaction 

mixture was then cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 3:1) gave 

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-decyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (271) (0.051 g, 36%) 

as a white solid. Rf (50% diethyl ether/petroleum ether) 0.68; Mp 152–154 °C; νmax/cm
−1

 

(neat) 3327 (NH), 2924 (CH), 2853 (CH), 1700 (CO), 1500, 1386, 1192; δH (500 MHz, 

CDCl3) 0.88 (3H, t, J 7.0 Hz, 10’’-H3), 1.25–1.50 (14H, m, 2’’-H2, 3’’-H2, 4’’-H2, 5’’-H2, 

6’’-H2, 7’’-H2 and 8’’-H2, 9’’-H2), 1.52–1.62 (1H, m, 7-HH), 1.65–1.76 (2H, m, 1’’-HH 

and 7-HH), 1.81–1.99 (3H, m, 1’’-HH and 8-H2), 2.09–2.19 (1H, m, 6-HH), 2.25–2.35 

(1H, m, 4-H), 2.47–2.55 (1H, m, 6-HH), 3.06 (1H, t, J 8.5 Hz, 9a-H), 3.27 (1H, dd, J 8.5, 

5.7 Hz, 3a-H), 3.45 (1H, dd, J 8.5, 6.5 Hz, 9b-H), 4.58–4.68 (1H, m, 9-H), 5.61–5.65 (1H, 

m, 5-H), 7.13–7.18 (2H, m, 2 × ArH), 7.37–7.49 (3H, m, 3 × ArH), 8.39 (1H, d, J 9.4 Hz, 

NH); δC (126 MHz, CDCl3) 14.1 (CH3), 21.9 (CH2), 22.7 (CH2), 28.3 (CH2), 29.0 (CH2), 

29.3 (CH2), 29.6 (CH2), 29.6 (CH2), 29.6 (CH2), 29.6 (CH2), 29.7 (CH2), 30.9 (CH2), 31.9 

(CH2), 37.1 (CH), 37.8 (CH), 42.1 (CH), 44.4 (CH), 48.3 (CH), 92.9 (C), 126.4 (2 × CH), 
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128.4 (CH), 128.9 (CH), 129.3 (2 × CH), 131.6 (C), 138.0 (C), 161.7 (C), 176.3 (C), 179.2 

(C); m/z (ESI) 603.1889 (MNa
+
. C30H39

35
Cl3N2NaO3 requires 603.1918). 

(3aS*,4S*,9R*,9aS*,9bR*)-2,4-Diphenyl-3a,4,6,7,8,9,9a,9b-octahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (272). 

 

(3aS*,4S*,9R*,9aS*,9bR*)-2,4-Diphenyl-3a,4,6,7,8,9,9a,9b-octahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (272) was synthesised 

as described for (3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-octahydro-2-

phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione 

(269) using (2E)-oct-2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The reaction mixture was 

stirred with Grubbs second generation catalyst (0.020 g, 0.024 mmol) and styrene (0.27 

mL, 2.41 mmol) for 72 h at 70 °C before N-phenyl maleimide (139) (0.063 g, 0.36 mmol) 

was added. The reaction mixture was stirred for 24 h at 100 °C. The reaction mixture was 

then cooled to room temperature and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 13:7) gave 

(3aS*,4S*,9R*,9aS*,9bR*)-2,4-diphenyl-3a,4,6,7,8,9,9a,9b-octahydro-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (272) (0.067 g, 54%) 

as a white solid. Rf (50% diethyl ether/petroleum ether) 0.47; Mp 153–155 °C; νmax/cm
−1

 

(neat) 3336 (NH), 2937 (CH), 1698 (CO), 1511, 1499, 1386, 1192, 819; δH (500 MHz, 

CDCl3) 1.61–1.86 (3H, m, 7-H2 and 8-HH), 2.01 (1H, dq, J 12.5, 5.6 Hz, 8-HH), 2.23–2.34 

(1H, m, 6-HH), 2.58–2.66 (1H, m, 6-HH), 3.21–3.28 (1H, m, 9a-H), 3.53–3.60 (2H, m, 3a-

H and 9b-H), 3.70 (1H, br s, 4-H), 4.66–4.76 (1H, m, 9-H), 6.23–6.28 (1H, m, 5-H), 7.11–

7.16 (2H, m, 2 × ArH), 7.26–7.46 (8H, m, 8 × ArH), 8.43 (1H, d, J 9.4 Hz, NH); δC (126 

MHz, CDCl3) 21.7 (CH2), 28.7 (CH2), 29.9 (CH2), 38.2 (CH), 41.8 (CH), 41.9 (CH), 47.3 

(CH), 48.2 (CH), 92.9 (C), 125.2 (CH), 126.3 (2 × CH), 127.2 (CH), 128.3 (2 × CH), 128.8 

(2 × CH), 128.9 (CH), 129.2 (2 × CH), 131.4 (C), 138.6 (C), 139.1 (C), 161.9 (C), 175.1 

(C), 178.6 (C); m/z (ESI) 539.0652 (MNa
+
. C26H23

35
Cl3N2NaO3 requires 539.0666), 413 

(10%), 383 (8), 301 (6), 236 (3). 
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(3aS*,4S*,9R*,9aS*,9bR*)-4-(4-Fluorophenyl)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-

9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (273). 

 

(3aS*,4S*,9R*,9aS*,9bR*)-4-(4-Fluorophenyl)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-

(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (273) was 

synthesised as described for (3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-

octahydro-2-phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-

1,3(2H)-dione (269) using (2E)-oct-2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The 

reaction mixture was stirred with Grubbs second generation catalyst (0.020 g, 0.024 mmol) 

and 4-fluorostyrene (0.29 mL, 2.41 mmol) for 72 h at 70 °C before N-phenyl maleimide 

(139) (0.063 g, 0.36 mmol) was added. The reaction mixture was stirred for 48 h at 100 °C. 

The reaction mixture was then cooled to room temperature and the solvent was evaporated. 

Flash column chromatography using silica (petroleum ether/diethyl ether, 5:2) gave 

(3aS*,4S*,9R*,9aS*,9bR*)-4-(4-fluorophenyl)-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-

(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (273) (0.065 

g, 50%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.35; Mp 144–146 °C; 

νmax/cm
−1

 (neat) 3324 (NH),  2927 (CH), 1699 (CO), 1510, 1386, 1264, 1188, 820; δH (500 

MHz, CDCl3) 1.61–1.86 (3H, m, 7-H2 and 8-HH), 2.02 (1H, dq, J 11.8, 5.4 Hz, 8-HH), 

2.22–2.33 (1H, m, 6-HH), 2.58–2.66 (1H, m, 6-HH), 3.24 (1H, t, J 6.8 Hz, 9a-H), 3.51 

(1H, dd, J 8.5, 5.7 Hz, 3a-H), 3.57 (1H, dd, J 8.5, 6.8 Hz, 9b-H), 3.68 (1H, br s, 4-H), 

4.65–4.76 (1H, m, 9-H), 6.15–6.21 (1H, m, 5-H), 7.02–7.08 (2H, m, 2 × ArH), 7.11–7.15 

(2H, m, 2 × ArH), 7.29–7.47 (5H, m, 5 × ArH), 8.41 (1H, d, J 9.7 Hz, NH); δC (126 MHz, 

CDCl3) 21.7 (CH2), 28.7 (CH2), 29.8 (CH2), 38.2 (CH), 41.2 (CH), 41.8 (CH), 47.3 (CH), 

48.2 (CH), 92.9 (C), 115.2 (d, JC-C-F 21.4 Hz, 2 × CH), 125.1 (CH), 126.3 (2 × CH), 129.0 

(CH), 129.3 (2 × CH), 130.3 (d, JC-C-C-F 8.0 Hz, 2 × CH), 131.3 (C), 134.3 (C), 139.4 (C), 

161.9 (C), 162.0 (d, JC-F 245.9 Hz, C), 175.1 (C), 178.5 (C); m/z (ESI) 557.0586 (MNa
+
. 

C26H22
35

Cl3FN2NaO3 requires 557.0572), 413 (23%), 345 (8), 242 (34), 142 (3). 
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(1R*,6R*,8aR*)-1,2,3,4,6,7,8,8a-Octahydro-6-phenyl-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (274). 

 

(1R*,6R*,8aR*)-1,2,3,4,6,7,8,8a-Octahydro-6-phenyl-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (274) was synthesised as described for 

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (269) using (2E)-oct-

2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The reaction mixture was stirred with Grubbs 

second generation catalyst (0.020 g, 0.024 mmol) and styrene (0.27 mL, 2.41 mmol) for 72 

h at 70 °C before tetracyanoethylene (0.046 g, 0.36 mmol) was added. The reaction 

mixture was stirred for 24 h at 50 °C. The reaction mixture was then cooled to room 

temperature and the solvent was evaporated. Flash column chromatography using silica 

(petroleum ether/ethyl acetate, 7:3) gave (1R*,6R*,8aR*)-1,2,3,4,6,7,8,8a-octahydro-6-

phenyl-7,7,8,8-tetracyano-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene (274) 

(0.050 g, 44%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.68; νmax/cm
−1

 

(neat) 3332 (NH), 2946 (CH), 2254 (CN), 1696 (CO), 1513, 1455, 1275, 1082, 820; δH 

(500 MHz, CDCl3) 1.57–1.70 (1H, m, 3-HH), 1.95–2.10 (2H, m, 2-HH and 3-HH), 2.21–

2.35 (2H, m, 2-HH and 4-HH), 2.63 (1H, br d, J 13.2 Hz, 4-HH), 3.68 (1H, d, J 11.3 Hz, 

8a-H), 4.21–4.31 (1H, m, 1-H), 4.32–4.37 (1H, m, 6-H), 5.85–5.90 (1H, m, 5-H), 7.10–

7.18 (1H, m, NH), 7.44–7.49 (5H, m, 5 × ArH); δC (126 MHz, CDCl3) 24.2 (CH2), 32.1 

(CH2), 35.2 (CH2), 40.3 (C), 44.3 (C), 46.2 (CH), 46.4 (CH), 54.6 (CH), 92.0 (C), 108.9 

(C), 110.2 (C), 111.5 (C), 112.4 (C), 119.8 (CH), 129.0 (2 × CH), 130.5 (CH), 130.7 (2 × 

CH), 131.3 (C), 136.1 (C), 161.9 (C); m/z (ESI) 470.0332 ([M−H]
−
. C22H15

35
Cl3N5O 

requires 470.0348), 352 (21%), 309 (20), 282 (15), 257 (8), 212 (4). 

 

 

 



166 
 

(1R*,6S*,8aR*)-6-n-Hexyl-1,2,3,4,6,7,8,8a-octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (275). 

 

(1R*,6S*,8aR*)-6-n-Hexyl-1,2,3,4,6,7,8,8a-octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene (275) was synthesised as described for 

(3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-octahydro-2-phenyl-9-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-benz[e]isoindole-1,3(2H)-dione (269) using (2E)-oct-

2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The reaction mixture was stirred with Grubbs 

second generation catalyst (0.020 g, 0.024 mmol) and 1-octene (166) (0.38 mL, 2.41 

mmol) for 72 h at 70 °C before tetracyanoethylene (0.046 g, 0.36 mmol) was added. The 

reaction mixture was stirred for 18 h at 50 °C. The reaction mixture was then cooled to 

room temperature and the solvent was evaporated. Flash column chromatography using 

silica (petroleum ether/ethyl acetate, 5:1) gave (1R*,6S*,8aR*)-6-n-hexyl-1,2,3,4,6,7,8,8a-

octahydro-7,7,8,8-tetracyano-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene (275) 

(0.052 g, 45%) as a colourless oil. Rf (25% ethyl acetate/petroleum ether) 0.50; νmax/cm
−1

 

(neat) 3332 (NH), 2929 (CH), 1690 (CO), 1512, 1457, 1277, 1215, 823; δH (500 MHz, 

CDCl3) 0.91 (3H, t, J 7.0 Hz, 6’’-H3), 1.27–1.66 (9H, m, 2’’-H2, 3-HH, 3’’-H2, 4’’-H2 and 

5’’-H2), 1.83–1.99 (3H, m, 2-HH, 3-HH and 1’’-HH), 2.04–2.27 (3H, m, 2-HH, 4-HH and 

1’’-HH), 2.45–2.54 (1H, m, 4-HH), 2.91–2.99 (1H, m, 6-H), 3.42 (1H, d, J 11.4 Hz, 8a-H), 

4.09–4.19 (1H, m, 1-H), 5.82–5.86 (1H, m, 5-H), 6.98 (1H, d, J 9.1 Hz, NH); δC (126 

MHz, CDCl3) 14.0 (CH3), 22.5 (CH2), 23.6 (CH2), 27.8 (CH2), 28.8 (CH2), 31.5 (CH2), 

32.2 (CH2), 32.2 (CH2), 34.7 (CH2), 40.1 (C), 42.0 (CH), 44.2 (C), 46.6 (CH), 54.5 (CH), 

91.9 (C), 109.6 (C), 110.3 (C), 111.5 (C), 112.5 (C), 120.8 (CH), 132.8 (C), 161.8 (C); m/z 

(ESI) 502.0928 (MNa
+
. C22H24

35
Cl3N5NaO requires 502.0939), 413 (7%), 345 (48), 336 

(37), 323 (8), 236 (6). 
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(5S*,10R*,10aS*)-5-n-Decyl-5,7,8,9,10,10a-hexahydro-2-phenyl-10-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-1,3(2H)-dione 

(276). 

 

(5S*,10R*,10aS*)-5-n-Decyl-5,7,8,9,10,10a-hexahydro-2-phenyl-10-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-1,3(2H)-dione (276) 

was synthesised as described for (3aS*,4S*,9R*,9aS*,9bR*)-4-n-hexyl-3a,4,6,7,8,9,9a,9b-

octahydro-2-phenyl-9-(2’,2’,2’-trichloromethylcarbonylamino)-1H-benz[e]isoindole-

1,3(2H)-dione (269) using (2E)-oct-2-en-7-yn-1-ol (194) (0.030 g, 0.24 mmol). The 

reaction mixture was stirred with Grubbs second generation catalyst (0.020 g, 0.024 mmol) 

and 1-dodecene (0.54 mL, 2.41 mmol) for 72 h at 75 °C before N-phenyl-1,2,4-triazoline-

3,5-dione (254) (0.063 g, 0.36 mmol) was added. The reaction mixture was stirred for 24 h 

at 100 °C. The reaction mixture was then cooled to room temperature and the solvent was 

evaporated. Flash column chromatography using silica (petroleum ether/ethyl acetate, 7:3) 

gave (5S*,10R*,10aS*)-5-n-decyl-5,7,8,9,10,10a-hexahydro-2-phenyl-10-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-[2,4,11]-triazolo[1,2-a]cinnoline-1,3(2H)-dione (276) 

(0.055 g, 39%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.49; νmax/cm
−1

 

(neat) 3415 (NH), 2923 (CH), 1709 (CO), 1503, 1416, 1141, 818; δH (500 MHz, CDCl3) 

0.88 (3H, t, J 7.0 Hz, 10’’-H3), 1.15–1.59 (17H, m, 8-HH, 2’’-H2, 3’’-H2, 4’’-H2, 5’’-H2, 

6’’-H2, 7’’-H2, 8’’-H2 and 9’’-H2), 1.77–1.91 (3H, m, 8-HH, 9-HH and 1’’-HH), 2.14–2.28 

(3H, m, 7-HH, 9-HH and 1’’-HH), 2.49–2.57 (1H, m, 7-HH), 4.31–4.38 (1H, m, 5-H), 4.49 

(1H, br s, 10a-H), 5.11–5.18 (1H, m, 10-H), 5.88–5.93 (1H, m, 6-H), 6.79 (1H, d, J 8.1 Hz, 

NH), 7.33–7.39 (1H, m, ArH), 7.44–7.53 (4H, m, 4 × ArH); δC (126 MHz, CDCl3) 14.1 

(CH3), 21.6 (CH2), 22.7 (CH2), 25.2 (CH2), 28.0 (CH2), 29.3 (CH2), 29.5 (CH2), 29.5 

(CH2), 29.6 (CH2), 29.6 (CH2), 31.9 (CH2), 33.2 (CH2), 33.5 (CH2), 50.0 (CH), 54.4 (CH), 

57.5 (CH), 92.8 (C), 122.7 (CH), 125.8 (2 × CH), 128.2 (CH), 128.3 (C), 129.1 (2 × CH), 

131.1 (C), 151.6 (C), 151.9 (C), 161.2 (C); m/z (ESI) 605.1796 (MNa
+
. 

C28H37
35

Cl3N4NaO3 requires 605.1823), 413 (9%), 301 (4), 236 (5). 
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 (E)-1-Nitrooct-1-ene (282).
134

 

 

Heptaldehyde (284) (10.0 mL, 71.5 mmol) was dissolved in methanol (100 mL) and 

nitromethane (3.87 mL, 71.5 mmol) was added. The solution was cooled to 0 °C and a 

solution of 12.5 M sodium hydroxide (7.2 mL) was then added dropwise. Further methanol 

(50 mL) was added and the reaction mixture was stirred at room temperature for 18 h. 

Water (30 mL) was added and the clear yellow solution was poured into 5 M hydrochloric 

acid (40 mL) and stirred for 0.2 h. The resulting mixture was extracted with 

dichloromethane (3 × 100 mL). The combined organic layers were dried (MgSO4) and the 

solvent removed under reduced pressure. Flash column chromatography using silica 

(petroleum ether/diethyl ether 10:1) gave (E)-1-nitrooct-1-ene (282) (8.28 g, 74%) as a 

yellow oil. Spectroscopic data was consistent with literature.
134

 Rf (50% diethyl 

ether/petroleum ether) 0.86; νmax/cm
−1

 (neat) 2930 (CH), 2861, 1649, 1524, 1466, 1350, 

959; δH (500 MHz, CDCl3) 0.90 (1H, t, J 6.9 Hz, 8-H3), 1.26–1.39 (6H, m, 5-H2, 6-H2 and 

7-H2), 1.51 (2H, quin., J 7.4 Hz, 4-H2), 2.27 (2H, qd, J 7.4, 1.5 Hz, 3-H2), 6.98 (1H, dt, J 

13.4, 1.5 Hz, 1-H), 7.28 (1H, dt, J 13.4, 7.4 Hz, 2-H); δC (126 MHz, CDCl3) 14.0 (CH3), 

22.5 (CH2), 27.7 (CH2), 28.5 (CH2), 28.8 (CH2), 31.4 (CH2), 139.6 (CH), 142.8 (CH); m/z 

(CI) 158 (MH
+
, 72%), 142 (43), 113 (40), 85 (100), 69 (92). 

 (1R*,5S*,6R*,7S*,7aS*)-2,4,5,6,7,7a-Hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-

(2’,2’,2’-trichloromethylcarbonylamino)indene (285). 

 

4-(n-Pent-1’’-ene)-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (258) (0.051 

g, 0.17 mmol) was dissolved in (E)-1-nitrooct-1-ene (282) (0.54 g , 3.44 mmol) with 

anhydrous zinc chloride (0.047 g, 0.34 mmol) and hydroquinone (0.002 g, 0.002 mmol). 

The reaction mixture was stirred at 111 °C for 120 h. The solution was then cooled to room 

temperature. Flash column chromatography using silica (petroleum ether/diethyl ether, 1:1) 

gave (1R*,5S*,6R*,7S*,7aS*)-2,4,5,6,7,7a-hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-
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(2’,2’,2’-trichloromethylcarbonylamino)indene (285) (0.014 g, 18%) as a yellow oil. Rf 

(50% diethyl ether/petroleum ether) 0.40; νmax/cm
−1

 (neat) 3341 (NH), 2928 (CH), 1697 

(CO), 1518, 1464, 1264, 820; δH (500 MHz, CDCl3) 0.88 (3H, t, J 6.9 Hz, 3’’-H3), 0.91 

(3H, t, J 6.9 Hz, 6’’’-H3), 1.20‒1.54 (15H, m, 5-H, 1’’-H2, 2’’-H2, 1’’’-H2, 2’’’-H2, 3’’’-

H2, 4’’’-H2 and 5’’’-H2), 1.90–2.03 (1H, m, 6-H), 2.13‒2.22 (1H, m, 4-HH), 2.27 (1H, dd, 

J 16.4, 6.1 Hz, 2-HH), 2.52‒2.62 (2H, m, 4-HH and 7a-H), 2.87 (1H, dd, J 16.4, 8.3 Hz, 2-

HH), 4.36 (1H, dq, J 7.5, 6.1 Hz, 1-H), 4.69 (1H, dd, J 8.0, 6.1 Hz, 7-H), 5.52 (1H, s, 3-H), 

6.72 (1H, d, J 7.5 Hz, NH); δC (126 MHz, CDCl3) 14.0 (CH3), 14.1 (CH3), 20.3 (CH2), 

22.6 (CH2), 25.9 (CH2), 29.5 (CH2), 31.6 (CH2), 32.3 (CH2), 33.5 (CH2), 37.3 (CH2), 38.7 

(CH2), 38.8 (CH), 41.1 (CH), 42.5 (CH), 51.1 (CH), 90.8 (CH), 92.5 (C), 120.1 (CH), 

141.5 (C), 161.5 (C); m/z (ESI) 475.1278 (MNa
+
. C20H31

35
Cl3N2NaO3 requires 475.1292). 

(1R*,5S*,6R*,7S*)-2,3,4,5,6,7-Hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (286). 

 

4-(n-Pent-1’’-ene)-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (258) (0.073 

g, 0.25 mmol) was dissolved in p-xylene (4 mL). (E)-1-Nitrooct-1-ene (282) (0.19 g, 1.23 

mmol), anhydrous zinc chloride (0.033 g, 0.25 mmol) and hydroquinone (0.003 g, 0.003 

mmol) were added. The reaction mixture was stirred at 160 °C for 76 h. The solution was 

then cooled to room temperature and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 5:3) gave (1R*,5S*,6R*,7S*)-

2,3,4,5,6,7-hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (286) (0.023 g, 20%) as a yellow oil. Rf (50% 

diethyl ether/petroleum ether) 0.43; νmax/cm
−1

 (neat) 2927 (CH), 1708 (CO), 1546, 1507, 

1466, 1263, 1086, 1012; δH (500 MHz, CDCl3) 0.89 (3H, t, J 6.9 Hz, 3’’-H3), 0.93 (3H, J 

6.9 Hz, 6’’’-H3), 1.20‒1.48 (14H, m, 1’’-H2, 2’’-H2, 1’’’-H2, 2’’’-H2, 3’’’-H2, 4’’’-H2 and 

5’’’-H2), 1.92‒2.30 (5H, m, 2-HH, 3-HH, 4-H2 and 5-H), 2.63 (1H, br s, 6-H), 2.80 (1H, 

dd, J 16.3, 7.5 Hz, 2-HH), 2.92‒3.00 (1H, m, 3-HH), 4.51‒4.58 (1H, m, 1-H), 4.67‒4.70 

(1H, m, 7-H), 6.85 (1H, d, J 7.5 Hz, NH); δC (126 MHz, CDCl3) 13.0 (CH3), 13.0 (CH3), 

21.6 (CH2), 26.2 (CH2), 27.3 (CH2), 28.2 (CH2), 28.7 (CH2), 30.6 (CH2), 31.3 (CH2), 32.6 

(CH2), 33.2 (CH), 39.1 (CH), 40.4 (CH2), 41.6 (CH2), 49.6 (CH), 87.0 (CH), 91.6 (C), 
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131.0 (C), 131.5 (C), 160.5 (C); m/z (ESI) 475.1270 (MNa
+
. C20H31

35
Cl3N2NaO3 requires 

475.1292). 

(1R*,5R*,6R*,7S*,7aS*)-2,3,5,6,7,7a-Hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-

(2’,2’,2’-trichloromethylcarbonylamino)indene (257) and (1R*,5S*,6R*,7S*,7aS*)-

2,4,5,6,7,7a-hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (285). 

 

4-(n-Pent-1’’-ene)-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (258) (0.140 

g, 0.48 mmol) was dissolved in (E)-1-nitrooct-1-ene (282) (1.50 g , 9.58 mmol) with 

anhydrous zinc chloride (0.065 g, 0.48 mmol) and hydroquinone (0.005 g, 0.005 mmol). 

The reaction mixture was stirred at 40 °C for 24 h. The solution was then cooled to room 

temperature. Flash column chromatography using silica (petroleum ether/diethyl ether, 1:1) 

gave (1R*,5R*,6R*,7S*,7aS*)-2,3,5,6,7,7a-hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-

(2’,2’,2’-trichloromethylcarbonylamino)indene (257) (0.150 g, 70%) as a white solid. Rf 

(25% diethyl ether/petroleum ether) 0.45; Mp 138–140 °C; νmax/cm
−1

 (neat) 3287 (NH), 

2957 (CH), 1681 (CO), 1537, 1466, 1375, 1284, 1230, 1080; δH (500 MHz, CDCl3) 0.86 

(3H, J 6.8 Hz, 6’’’-H3) 0.92 (3H, J 6.8 Hz, 3’’-H3), 1.19‒1.40 (10H, m, 2’’-H2, 2’’’-H2, 

3’’’-H2, 4’’’-H2 and 5’’’-H2), 1.42‒1.52 (2H, m, 1’’-HH and 1’’’-HH), 1.57‒1.72 (3H, m, 

2-HH, 1’’-HH and 1’’’-HH), 2.14‒2.21 (1H, m, 2-HH), 2.22‒2.32 (2H, m, 3-HH and 7a-

H), 2.35‒2.43 (1H, m, 5-H), 2.45‒2.56 (2H, m, 3-HH and 6-H), 4.12 (1H, quin., J 8.5 Hz, 

1-H), 4.70 (1H, dd, J 7.2, 5.3 Hz, 7-H), 5.44 (1H, s, 4-H), 6.68 (1H, d, J 8.5 Hz, NH); δC 

(126 MHz, CDCl3) 14.0 (CH3), 14.0 (CH3), 20.3 (CH2), 22.6 (CH2), 25.6 (CH2), 27.8 

(CH2), 29.6 (CH2), 31.2 (CH2), 31.5 (CH2), 31.7  (CH2), 33.5 (CH2), 38.2 (CH), 39.5 (CH), 

48.4 (CH), 57.7 (CH), 89.8 (CH), 92.7 (C), 119.9 (CH), 141.4 (C), 161.2 (C); m/z (ESI) 

475.1281 (MNa
+
. C20H31

35
Cl3N2NaO3 requires 475.1292). Further elution with (petroleum 

ether/diethyl ether, 1:1) gave (1R*,5S*,6R*,7S*,7aS*)-2,4,5,6,7,7a-hexahydro-6-n-hexyl-7-

nitro-5-n-propyl-1-(2’,2’,2’-trichloromethylcarbonylamino)indene (285) (0.037 g, 17%) as 

a yellow oil. Spectroscopic data as described previously 
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(1R*,3aR*,5S*,6R*,7S*,7aR*)-1-(N-Acetylamino)-7-amino-2,3,3a,4,5,6,7,7a-

octahydro-6-n-hexyl-5-n-propylindene (287). 

 

(1R*,5R*,6R*,7S*,7aS*)-2,3,5,6,7,7a-Hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (257) (0.103 g, 0.227 mmol)  was dissolved in 

tetrahydrofuran (10 mL) which was then added to a slurry of activated Raney™-Nickel 

(1.00 g). The reaction mixture was stirred under a hydrogen atmosphere at room 

temperature for 24 h. A further portion of Raney-Nickel™ was added (1.00 g) and the 

reaction mixture was stirred under a hydrogen atmosphere at room temperature for 24 h. 

The precipitate was filtered through a pad of Celite® and washed with ethyl acetate (3 × 

100 mL). The filtrate was then dried (MgSO4) and concentrated in vacuo. Flash column 

chromatography using silica (methanol/dichloromethane, 1:9) gave 

(1R*,3aR*,5S*,6R*,7S*,7aR*)-1-(N-acetylamino)-7-amino-2,3,3a,4,5,6,7,7a-octahydro-6-

n-hexyl-5-n-propylindene (287) (0.025 g, 34%) as a colourless oil. Rf (10% methanol/ 

dichloromethane) 0.15; νmax/cm
−1

 (neat) 3680 (NH), 3394 (NH), 2926 (CH), 1701 (CO), 

1538, 1452, 1364, 1055, 1023; δH (500 MHz, CD3OD) 0.93 (3H, t, J 7.5 Hz, 6’’’-H3), 1.00 

(3H, t, J 7.5 Hz, 3’’-H3), 1.21‒1.62 (19H, m, 2-H2, 3-HH, 4-H2, 1’’-H2, 1’’’-H2, 2’’-H2, 

2’’’-H2, 3’’’-H2, 4’’’-H2 and 5’’’-H2), 1.69‒1.72 (1H, m, 3a-H), 1.73‒1.80 (1H, m, 7a-H), 

1.92 (3H, s, COCH3), 1.96‒2.03 (1H, m, 5-H), 2.05‒2.22 (1H, m, 3-HH and 6-H), 3.22 

(1H, dd, J 11.3, 4.7 Hz, 7-H), 4.11 (1H, dt, J 10.0, 5.3 Hz, 1-H); δC (126 MHz, CD3OD) 

14.5 (CH3), 14.5 (CH3), 21.4 (CH2), 23.0 (CH3), 24.0 (CH2), 24.6 (CH2), 28.3 (CH2), 28.5 

(CH2), 30.0 (CH2), 31.4 (CH2), 32.5 (CH2), 33.4 (2 × CH2), 38.7 (CH), 39.6 (CH), 41.5 

(CH), 52.9 (CH), 53.8 (CH), 56.8 (CH), 171.8 (C); m/z (CI) 323.3063 (MH
+
. C20H39N2O 

requires 323.3062), 297 (9%), 257 (8), 97 (25), 69 (100). 

 

 

 

 



172 
 

(1R*,5R*,6R*,7S*,7aS*)-1-Amino-2,3,5,6,7,7a-hexahydro-6-n-hexyl-7-nitro-5-n-

propylindene (288). 

7a
7

6
5

43

2
1

H2N NO2

1'

1''

288

2'

2''

3'

3''

4''

5''
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H

 

(1R*,5R*,6R*,7S*,7aS*)-2,3,5,6,7,7a-Hexahydro-6-n-hexyl-7-nitro-5-n-propyl-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene (257) (0.075 g, 0.17 mmol) was dissolved in 

tetrahydrofuran (16 mL) and cooled to −78 °C. DIBAL-H (1 M in hexane) (0.87 mL, 0.87 

mmol) was added dropwise and the reaction mixture was stirred at −78 °C for 3 h, before 

warming to room temperature overnight. The solution was cooled to 0 °C and quenched by 

the addition of a saturated solution of Rochelles salt (10 mL) and warmed to room 

temperature with vigorous stirring for 1 h. The solution was diluted with ethyl acetate (50 

mL) and water (10 mL) and the product extracted with ethyl acetate (3 × 50 mL). The 

combined organic layers were washed with brine, dried (MgSO4) and concentrated in 

vacuo. Flash column chromatography (methanol/dichloromethane, 1:25) gave 

(1R*,5R*,6R*,7S*,7aS*)-1-amino-2,3,5,6,7,7a-hexahydro-6-n-hexyl-7-nitro-5-n-

propylindene (288)  (0.029 g, 58%) as a colourless oil. Rf (10% 

methanol/dichloromethane) 0.15; νmax/cm
−1

 (neat) 3680 (NH), 2924 (CH), 1545, 1464, 

1375, 1054, 1033; δH (500 MHz, CDCl3) 0.88 (3H, t, J 7.0 Hz, 6’’-H3), 0.91 (3H, t, J 7.0 

Hz, 3’-H3), 1.19‒1.38 (10H, m, 2’-H2, 2’’-H2, 3’’-H2, 4’’-H2 and 5’’-H2), 1.40‒1.60 (4H, 

m, 1’-HH, 1’’-H2 and 2-HH), 1.63‒1.71 (1H, m, 1’-HH), 1.77‒1.84 (1H, m, 7a-H), 

1.97‒2.05 (1H, m, 2-HH), 2.09‒2.16 (1H, m, 6-H), 2.21‒2.30 (1H, m, 3-HH), 2.38‒2.47 

(1H, m, 3-HH), 2.47‒2.54 (1H, m, 5-H), 3.08 (1H, dt, J 8.3, 7.1 Hz, 1-H), 4.69 (1H, dd, J 

7.2, 5.4 Hz, 7-H), 5.32 (1H, br s, 4-H); δC (126 MHz, CDCl3) 14.0 (CH3), 14.1 (CH3), 20.3 

(CH2), 22.6 (CH2), 25.8 (CH2), 27.8 (CH2), 29.6 (CH2), 31.7 (CH2), 32.2 (CH2), 33.7 

(CH2), 34.8 (CH2), 38.1 (CH), 39.9 (CH), 51.8 (CH), 58.8 (CH), 90.5 (CH), 118.2 (CH), 

144.2 (C); m/z (ESI) 309.2524 (MH
+
. C18H33N2O2 requires 309.2537). 
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Ethyl 2-(N-p-toluenesulfonyl-2’-propynlamino)ethanoate (297).
178

 

 

To a solution of ethyl 2-N-(p-toluenesulfonyl)aminoethanoate (295) (1.00 g, 3.89 mmol) in 

dichloromethane (40 mL) was added potassium carbonate (2.60 g, 19.4 mmol) and 3-

bromoprop-1-yne (296) (0.43 mL, 3.89 mmol) and the reaction mixture stirred at room 

temperature for 72 h. The reaction mixture was diluted with water (60 mL) and the 

dichloromethane was removed in vacuo. The product was extracted with diethyl ether (3 × 

100 mL) and the combined organic layers were washed with brine (30 mL), dried (MgSO4) 

and concentrated in vacuo. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 1:1) gave ethyl 2-(N-p-toluenesulfonyl-2’-propynlamino)ethanoate 

(297) (0.88 g, 76%) as a white solid. Spectroscopic data was consistent with the 

literature.
178

 Rf (50% diethyl ether/petroleum ether) 0.36; Mp 44–46 °C; νmax/cm
−1 

(neat) 

3266 (NH), 2982 (CH), 2122 (C≡C), 1749 (CO), 1343, 1329, 1308, 1267, 1200, 1157, 

1090, 1015, 945; δH (500 MHz, CDCl3) 1.22 (3H, t, J 7.1 Hz, OCH2CH3), 2.16 (1H, t, J 2.5 

Hz, 3’-H), 2.41 (3H, s, CH3), 4.09 (2H, s, 2-H2), 4.14 (2H, q, J 7.1 Hz, OCH2CH3), 4.25 

(2H, d, J 2.5 Hz, 1’-H2), 7.29 (2H, d, J 8.4 Hz, 2 × ArH), 7.72 (2H, d, J 8.4 Hz, 2 × ArH); 

δC (126 MHz, CDCl3) 14.0 (CH3), 21.5 (CH3), 37.5 (CH2), 47.0 (CH2), 61.4 (CH2), 74.3 

(CH), 76.6 (C), 127.6 (2 × CH), 129.6 (2 × CH), 136.4 (C), 143.8 (C), 168.4 (C); m/z (CI) 

296.0958 (MH
+
. C14H18NO4S requires 296.0957), 270 (3%), 262 (3), 222 (22), 155 (9), 140 

(25), 91 (2). 

2-(N-p-toluenesulfonyl-2’-propynlamino)ethan-1-ol (298).
179

 

 

Ethyl 2-(N-p-toluenesulfonyl-2’-propynlamino)ethanoate (297) (1.42 g, 4.81 mmol) was 

dissolved in diethyl ether (200 mL) and cooled to −78 °C. DIBAL-H (1 M in hexane) (10.6 

mL, 10.6 mmol) was added dropwise and the reaction mixture was stirred at −78 °C for 3 

h, before warming to room temperature overnight. The solution was cooled to 0 °C and 

quenched by the addition of a saturated aqueous solution of Rochelle’s salt (20 mL) and 
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warmed to room temperature with vigorous stirring over 1 h. The aqueous layer was 

extracted with diethyl ether (3 × 100 mL), dried (MgSO4) and concentrated in vacuo. Flash 

column chromatography using silica (petroleum ether/ethyl acetate, 1:1) gave 2-(N-p-

toluenesulfonyl-2’-propynlamino)ethan-1-ol (298) (1.22 g, 99%) as a white solid. 

Spectroscopic data was consistent with literature.
179

 Rf (50% ethyl acetate/petroleum ether) 

0.24; Mp 66–68 °C; νmax/cm
−1 

(neat) 3512 (OH), 3258 (C≡C−H), 2953 (CH), 2116, 1732, 

1597 (C=C), 1444, 1402, 1341, 1310, 1161, 1072, 1005; δH (500 MHz, CDCl3) 2.08–2.12 

(2H, m, OH and 3’-H), 2.43 (3H, s, CH3), 3.36 (2H, t, J 5.2 Hz, 2-H2), 3.81 (2H, q, J 5.2 

Hz, 1-H2), 4.21 (2H, d, J 2.5 Hz, 1’-H2), 7.31 (2H, d, J 8.0 Hz, 2 × ArH), 7.31 (2H, dd, J 

8.3 Hz, 2 × ArH); δC (126 MHz, CDCl3) 21.6 (CH3), 37.9 (CH2), 49.0 (CH2), 60.6 (CH2), 

74.0 (CH), 76.9 (C), 127.8 (2 × ArH), 129.6 (2 × ArH), 135.5 (C), 143.9 (C); m/z (CI) 

254.0847 (MH
+
. C12H16NO3S requires 254.0851), 197 (5%), 186 (10), 157 (15), 141 (8), 

100 (15), 73 (26). 

Ethyl (2E)-4-(N-p-toluenesulfonyl-2’-propynlamino)but-2-enoate (299). 

 

Ethyl (2E)-4-(N-p-toluenesulfonyl-2’-propynlamino)but-2-enoate (299) was synthesised as 

described for ethyl (2E)-hept-2-en-6-ynoate (221) using 2-(N-p-toluenesulfonyl-2’-

propynlamino)ethan-1-ol (298) (1.24 g, 4.90 mmol). Flash column chromatography using 

silica (diethyl ether/petroleum ether, 11:9) gave ethyl (2E)-4-(N-p-toluenesulfonyl-2’-

propynlamino)but-2-enoate (299) (1.31 g, 83%) as a yellow solid. Rf (50% diethyl 

ether/petroleum ether) 0.30; Mp 69–71 °C; νmax/cm
−1

 (neat) 3273 (C≡C−H), 2982 (CH), 

1717 (CO), 1661 (C=C), 1348, 1275, 1157, 1094; δH (500 MHz, CDCl3) 1.28 (3H, t, J 7.2 

Hz, OCH2CH3), 2.08 (1H, t, J 2.5 Hz, 3’-H), 2.42 (3H, s, CH3), 3.98 (2H, dd, J 6.0, 1.6 Hz, 

4-H2), 4.09 (2H, d, J 2.5 Hz, 1’-H2), 4.19 (2H, q, J 7.2 Hz, OCH2CH3), 6.01 (1H, dt, J 

15.7, 1.6 Hz, 2-H), 6.78 (1H, dt, J 15.7, 6.0 Hz, 3-H), 7.30 (1H, d, J 8.3 Hz, 2 × ArH), 7.72 

(1H, d, J 8.3 Hz, 2 × ArH); δC (126 MHz, CDCl3) 14.1 (CH3), 21.4 (CH3), 36.7 (CH2), 47.1 

(CH2), 60.5 (CH2), 74.2 (CH), 76.3 (C), 124.7 (CH), 127.7 (2 × CH), 129.6 (2 × CH), 

136.0 (C), 141.1 (CH), 143.8 (C), 165.4 (C); m/z (EI) 321.1031 (M
+
. C16H19NO4S requires 

321.1035), 276 (40%), 248 (16), 166 (100), 155 (50), 120 (35), 91 (50), 65 (10). 
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(2E)-4-(N-p-Toluenesulfonyl-2’-propynlamino)but-2-en-1-ol (300). 

 

(2E)-4-(N-p-Toluenesulfonyl-2’-propynlamino)but-2-en-1-ol (300) was synthesised as 

described for (2E)-hept-2-en-6-yn-1-ol (215) using ethyl (2E)-4-(N-p-toluenesulfonyl-2’-

propynlaminobut-2-enoate (299) (0.241 g, 0.75 mmol). Flash column chromatography 

using silica (ethyl acetate/petroleum ether, 11:9) gave (2E)-4-(N-p-toluenesulfonyl-2’-

propynlamino)but-2-en-1-ol (300) (0.21 g, 99%) as a colourless oil. Rf (50% ethyl 

acetate/petroleum ether) 0.33; νmax/cm
−1 

(neat) 3538 (OH), 3273 (C≡C−H), 2922 (CH), 

2864 (CH), 1597 (C=C), 1447, 1344, 1327, 1155, 1090, 893, 735; δH (500 MHz, CDCl3) 

1.44 (1H, br s, OH), 2.03 (1H, t, J 2.5 Hz, 3’-H), 2.42 (3H, s, CH3), 3.84 (4H, dd, J 6.5, 1.2 

Hz, 4-H2), 4.09 (2H, d, J 2.5 Hz, 1’-H2), 4.11–4.15 (2H, br m, 1-H2), 5.64 (1H, dtt, J 15.5, 

6.5, 1.6 Hz, 3-H), 5.88 (2H, dtt, J 15.5, 4.0, 1.2 Hz, 2-H), 7.29 (2H, d, J 8.2 Hz, 2 × ArH), 

7.73 (2H, d, J 8.2 Hz, 2 × ArH); δC (126 MHz, CDCl3) 21.5 (CH3), 36.0 (CH2), 48.0 (CH2), 

62.7 (CH2), 73.7 (CH), 125.0 (CH), 127.8 (2 × CH), 129.5 (2 × CH), 134.7 (CH), 136.4 

(C), 143.6 (C); m/z (CI) 280.1012 (MH
+
. C14H18NO3S requires 280.1007), 263 (100%), 210 

(6), 157 (2), 113 (4), 85 (5), 69 (6).  

2-(2’-Propynloxy)ethan-1-ol (302).
145 

 

To a solution of ethylene glycol (301) (2.42 mL, 44.9 mmol) and potassium hydroxide 

(0.75 g, 13.4 mmol) in dimethyl sulfoxide (10 mL) and water (10 mL) at 0 °C was added a 

solution of 3-bromoprop-1-yne (296) (1.25 mL, 11.2 mmol) in dimethyl sulfoxide (5 mL). 

The reaction mixture was stirred at 0 °C for 1 h followed by stirring at room temperature 

for 72 h. The solution was diluted with diethyl ether (100 mL) and water (50 mL) and, the 

product was extracted with chloroform (3 × 100 mL). The combined organic layers were 

washed with brine (25 mL), dried (MgSO4) and concentrated in vacuo. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 1:4) gave 2-(2’-

propynloxy)ethan-1-ol (302) (0.264 g, 24%) as a colourless oil. Spectroscopic data was 

consistent with the literature.
145

 Rf (50% petroleum ether/diethyl ether) 0.17; νmax/cm
−1
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(neat) 3399 (OH), 3293 (C≡C−H), 2933 (CH), 2868, 1460, 1443, 1354, 1277, 1221, 1107, 

1067, 1028, 920, 889; δH (500 MHz, CDCl3) 1.89 (1H, t, J 5.6 Hz, OH), 2.43 (1H, t, J 2.4 

Hz, 3’-H), 3.64–3.67 (2H, m, 2-H2), 2.74–2.79 (2H, m, 1-H2), 4.20 (2H, d, J 2.4 Hz, 1’-

H2); δC (126 MHz, CDCl3) 58.5 (CH2), 61.8 (CH2), 71.3 (CH2), 74.6 (CH), 79.6 (C); m/z 

(CI) 101 (MH
+
, 100%), 83 (4), 79 (2), 69 (1). 

Ethyl (2E)-4-(2’-propynloxy)but-2-enoate (303).
180 

 

Ethyl (2E)-4-(2’-propynloxy)but-2-enoate (303) was synthesised as described for ethyl 

(2E)-hept-2-en-6-ynoate (221) using 2-(2’-propynloxy)ethan-1-ol (302) (1.20 g, 12.0 

mmol). Flash column chromatography using silica (diethyl ether/petroleum ether, 1:3) gave 

ethyl (2E)-4-(2’-propynloxy)but-2-enoate (303) (1.50 g, 75%) as a yellow oil. 

Spectroscopic data was consistent with the literature.
180

 Rf (25% diethyl ether/petroleum 

ether) 0.61; νmax/cm
−1

 (neat) 3291 (C≡C−H), 2982 (CH), 1715 (CO), 1663 (C=C), 1368, 

1304, 1265, 1177, 1119, 1036, 966; δH (500 MHz, CDCl3) 1.28 (3H, t, J 7.1 Hz, 

OCH2CH3), 2.44 (1H, t, J 2.4 Hz, 3’-H), 4.17‒4.24 (6H, m, 1’-H2, 4-H2 and OCH2CH3), 

6.08 (1H, dt, J 15.8, 2.0 Hz, 2-H), 6.93 (1H, dt, J 15.8, 4.6 Hz, 3-H); δC (126 MHz, CDCl3) 

14.3 (CH3), 58.1 (CH2), 60.5 (CH2), 68.3 (CH2), 75.0 (CH), 79.3 (C), 122.3 (CH), 143.3 

(CH), 166.2 (C); m/z (CI) 169 (MH
+
, 19%), 155 (5), 145 (87), 131 (7), 127 (7), 113 (6). 

(2E)-4-(2’-Propynloxy)but-2-en-1-ol (304). 

 

(2E)-4-(2’-Propynloxy)but-2-en-1-ol (304) was synthesised as described for (2E)-hept-2-

en-6-yn-1-ol (215) using ethyl (2E)-4-(2’-propynloxy)but-2-enoate (303) (1.46 g, 8.70 

mmol). Flash column chromatography using silica (ethyl acetate/petroleum ether, 1:1) gave 

(2E)-4-(2’-propynloxy)but-2-en-1-ol (304) (0.91 g, 83%) as a colourless oil. Rf (50% ethyl 

acetate/petroleum ether) 0.36; νmax/cm
−1 

(neat) 3385 (OH), 3289 (C≡C−H), 2920 (CH), 

2855, 1356, 1090, 999, 970; δH (500 MHz, CDCl3) 1.58 (1H, br s, OH), 1.99 (1H, t, J 2.4 

Hz, 3’-H), 4.08 (2H, dd, J 5.8, 1.1 Hz, 4-H2), 4.13‒4.18 (4H, m, 1-H2 and 1’-H2), 5.80 (1H, 

dtt, J 15.6, 5.8, 1.4 Hz, 3-H), 5.93 (1H, dtt, J 15.6, 5.3, 1.1 Hz, 2-H); δC (126 MHz, CDCl3) 
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57.4 (CH2), 63.0 (CH2), 69.7 (CH2), 74.5 (CH), 79.8 (C), 127.1 (CH), 133.2 (CH); m/z (CI) 

127.0762 (MH
+
. C7H11O2 requires 127.0759), 109 (56%), 71 (100). 

4-(N-p-Toluenesulfonyl-2’’-propynlamino)-3-(2’,2’,2’-

trichloromethylcarbonylamino)but-1-ene (305). 

 

(2E)-4-(N-p-Toluenesulfonyl-2’’-propynlamino)but-2-en-1-ol (300) (0.40 g, 1.43 mmol) 

was dissolved in dichloromethane (30 mL) and cooled to 0 °C. To the solution was added 

1,8-diazabicyclo[5.4.0]undec-7-ene (0.043 mL, 0.29 mmol) and trichloroacetonitrile (0.22 

mL, 2.15 mmol). The reaction mixture was allowed to warm to room temperature before 

stirring for 3 h. The reaction mixture was filtered through a short pad of silica gel and the 

filtrate was concentrated in vacuo to give the allylic trichloroacetimidate, which was used 

without further purification. The allylic trichloroacetimidate was dissolved in toluene (10 

mL) and transferred to a Schlenk tube containing potassium carbonate (0.050 g)  and 

purged with Ar and sealed. The reaction mixture was then heated to 140 °C and stirred for 

48 h, before cooling to room temperature and the solvent was evaporated. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 13:7) gave 4-(N-p-

toluenesulfonyl-2’-propynlamino)-3-(2’,2’,2’-trichloromethylcarbonylamino)but-1-ene 

(305) (0.54 g, 89%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.32; 

νmax/cm
−1 

(neat) 3309 (C≡C–H), 2976 (CH), 1707 (CO), 1598, 1518, 1445, 1348, 1331, 

1157; δH (500 MHz, CDCl3) 2.12 (1H, t, J 2.5 Hz, 3’’-H), 2.42 (3H, s, CH3), 3.34 (1H, dd, 

J 14.5, 4.3 Hz, 4-HH), 3.50 (1H, dd, J 14.5, 9.4 Hz, 4-HH), 4.12 (1H, dd, J 18.6, 2.5 Hz, 

1’’-H), 4.25 (1H, dd, J 18.6, 2.5 Hz, 1’’-HH), 4.58–4.67 (1H, m, 3-H), 5.30 (1H, d, J 10.6 

Hz, 1-HH), 5.38 (1H, d, J 17.2 Hz, 1-HH), 5.80 (1H, ddd, J 17.2, 10.6, 5.7 Hz, 2-H), 7.30 

(1H, d, J 8.0 Hz, 2 × ArH),  7.53 (1H, d, J 6.0 Hz, NH), 7.72 (2H, d, J 8.0 Hz, 2 × ArH); δC 

(126 MHz, CDCl3) 21.7 (CH3), 37.8 (CH2), 49.0 (CH2), 51.8 (CH), 74.9 (CH), 76.2 (C), 

92.5 (C), 118.5 (CH2), 127.7 (2 × CH), 129.9 (2 × CH), 133.2 (CH), 135.4 (C), 144.4 (C), 

162.3 (C); m/z (CI) 423.0108 (MH
+
. C16H18

35
Cl3N2O3S requires 423.0104), 389 (40%), 

351 (8), 279 (28), 233 (44), 157 (100), 141 (27). 
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5-Ethyl-1’’-ene-1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) and 6-methylidene-2,3,6,7-tetrahydro-

1-p-toluenesulphonyl-3-(2’,2’,2’-trichloromethylcarbonylamino)-1H-azepine (306a). 

3

NHO

CCl3

306a

4

56

7

TsN1

2

1''

3

NHO

CCl3

4

5
6

TsN1

2

1''

2''

293  

Method A- 4-(N-p-Toluenesulfonyl-2’-propynlamino)-3-(2’,2’,2’-

trichloromethylcarbonylamino)but-1-ene (305) (0.043 g, 0.10 mmol) was dissolved in 

toluene (2 mL) and Hoveyda-Grubbs second generation catalyst (0.003 g, 0.005 mmol) and 

1,7-octadiene (156) (0.061 mL, 0.40 mmol) were added. The reaction mixture stirred at 75 

°C for 24 h. The reaction mixture was then cooled and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether 1:1) gave 5-ethyl-1’’-

ene-1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) (0.029 g, 67%) as a colourless oil. Rf (50% 

diethyl ether/petroleum ether) 0.55; vmax/cm
−1

 (neat) 3335 (NH), 2922 (CH), 1705 (CO), 

1597 (C=C), 1499, 1454, 1346, 1240, 1161, 1090, 1022, 991, 815; δH (500 MHz, CDCl3) 

2.45 (1H, s, CH3), 2.82 (1H, dd, J 12.4, 3.4 Hz, 2-HH), 3.33 (1H, d, J 15.9 Hz, 6-HH), 3.72 

(1H, br d, J 12.4 Hz, 2-HH), 4.27 (1H, d, J 15.9 Hz, 6-HH), 4.57‒4.64 (1H, m, 3-H), 5.20 

(1H, d, J 11.1 Hz, 2’’-HH), 5.25 (1H, d, J 17.8 Hz, 2’’-HH), 5.82 (1H, br d, J 5.7 Hz, 4-H), 

6.30 (1H, dd, J 17.8, 11.1 Hz, 1’’-H), 7.00 (1H, br d, J 8.2 Hz, NH), 7.37 (2H, d, J 8.2 Hz, 

2 × ArH), 7.72 (2H, d, J 8.2 Hz, 2 × ArH); δC (126 MHz, CDCl3) 21.6 (CH3), 44.3 (CH2), 

45.6 (CH), 47.8 (CH2), 92.2 (C), 115.3 (CH2), 123.1 (CH), 127.7 (2 × CH), 130.0 (2 × 

CH), 132.9 (C), 135.1 (CH), 137.1 (C), 144.3 (C), 161.5 (C); m/z (ESI) 444.9905 (MNa
+
. 

C16H17
35

Cl3N2NaO3S requires 444.9918). Further elution (petroleum ether/diethyl ether 

2:3) gave 6-methylidene-2,3,6,7-tetrahydro-1-p-toluenesulphonyl-3-(2’,2’,2’-

trichloromethylcarbonylamino)-1H-azepine (306a) (0.010 g, 23%) as a colourless oil. Rf 

(50% diethyl ether/petroleum ether) 0.43; vmax/cm
−1

 (neat) 3340 (NH), 2928 (CH), 1706 

(CO), 1599 (C=C), 1501, 1454, 1346, 1232, 1161, 1092, 1023; δH (500 MHz, CDCl3) 2.45 

(1H, s, CH3), 3.22 (1H, dd, J 14.8, 3.2 Hz, 2-HH), 3.65 (1H, d, J 15.2 Hz, 7-HH), 3.83 (1H, 

br d, J 14.8 Hz, 2-HH), 4.54 (1H, d, J 15.2 Hz, 7-HH), 4.64‒4.70 (1H, m, 3-H), 5.16 (1H, 

s, 1’’-HH), 5.22 (1H, s, 1’’-HH), 5.64 (1H, dd, J 12.3, 5.3 Hz, 4-H), 6.24 (1H, d, J 12.3 Hz, 

5-H), 7.34 (2H, d, J 8.2 Hz, 2 × ArH), 7.66 (1H, d, J 7.3 Hz, NH), 7.71 (2H, d, J 8.2 Hz, 2 
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× ArH); δC (126 MHz, CDCl3) 21.6 (CH3), 51.7 (CH), 51.9 (CH2), 55.8 (CH2), 92.3 (C), 

120.1 (CH2), 125.8 (CH), 127.2 (2 × CH), 130.0 (2 × CH), 132.0 (CH), 135.2 (C), 141.2 

(C), 144.1 (C), 161.6 (C); m/z (ESI) 444.9907 (MNa
+
. C16H17

35
Cl3N2NaO3S requires 

444.9918). 

Method B- 5-Ethyl-1’’-ene-1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) was synthesised as described for 5-ethyl-1’’-

ene-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (Method B) using (2E)-

4-(N-p-toluenesulfonyl-2’-propynlamino)but-2-en-1-ol (300) (0.074 g, 0.26 mmol). The 

allylic trichloroacetimidate was dissolved in toluene (6 mL) containing potassium 

carbonate (0.030 g) and purged with Ar. The reaction mixture was then heated to 140 °C 

and stirred for 5 days. The reaction mixture was stirred with Hoveyda-Grubbs second 

generation catalyst (0.011 g, 0.013 mmol) and 1,7-octadiene (156) (0.15 mL, 1.0 mmol) at 

90 °C for 24 h. Flash  column chromatography using silica (petroleum ether/diethyl ether, 

1:1) gave 5-ethyl-1’’-ene-1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) (0.044 g, 40%) as a colourless oil. 

Spectroscopic data as described above. 

1,4-Dihydro-5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)-1H-pyran 

(294). 

 

1,4-Dihydro-5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)-1H-pyran (294) 

was synthesised as described for 5-ethyl-1’’-ene-(2’,2’,2’-

trichloromethylcarbonylamino)cyclohex-5-ene (197) (Method B) using (2E)-4-(2’-

propynloxy)but-2-en-1-ol (304) (0.079 g, 0.62 mmol). The allylic trichloroacetimidate was 

dissolved in toluene (15 mL) containing potassium carbonate (0.075 g) and purged with 

argon. The reaction mixture was then heated to 140 °C in a sealed tube for 5 days. The 

reaction mixture was then stirred with Grubbs first generation catalyst (0.025 g, 0.030 

mmol) and 1,7-octadiene (156) (0.37 mL, 2.49 mmol) at 90 °C for 18 h. A further portion 

of Grubbs first generation catalyst (0.025 g, 0.030 mmol) and 1,7-octadiene (156) (0.37 

mL, 2.49 mmol) was added and the reaction mixture was stirred at 90 °C for 24 h. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 4:1) gave 1,4-dihydro-
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5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)-1H-pyran (294) (0.077 g, 46%) 

as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.43; νmax/cm
−1 

(neat) 3318 

(NH), 2942 (CH), 2857 (CH), 1697 (CO), 1499, 1454, 1236, 1117, 1071, 1028, 1011, 988, 

910, 860, 758; δH (500 MHz, CDCl3) 3.76 (1H, dd, J 11.9, 3.1 Hz, 2-HH), 3.92 (1H, d, J 

11.9 Hz, 2-HH), 4.25 (1H, d, J 15.9 Hz, 4-HH), 4.42‒4.49 (2H, m, 1-H and 4-HH), 5.15 

(1H, d, J 17.9 Hz, 2’’-HH), 5.16 (1H, d, J 11.1 Hz, 2’’-HH), 5.86 (1H, d, J 5.1 Hz, 6-H), 

6.28 (1H, dd, J 17.9, 11.1 Hz, 1’’-H), 6.94 (1H, br d, J 5.6 Hz, NH); δC (126 MHz, CDCl3) 

45.4 (CH), 65.2 (CH2), 68.4 (CH2), 92.5 (C), 114.6 (CH2), 122.0 (CH), 134.7 (CH), 139.6 

(C), 161.4 (C); m/z (CI) 269.9855 (MH
+
. C9H11

35
Cl3NO2 requires 269.9855), 236 (29%), 

200 (11), 146 (24), 113 (15), 73 (100). 

1,2,3,4-Tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]naphthalene-

7,10-dione (211). 

 

Method A- (2E)-Octa-2-en-7-yn-1-ol (194) (0.060 g, 0.48 mmol) was dissolved in 

dichloromethane (20 mL) and cooled to 0 °C. To the solution, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.014 mL, 0.096 mmol) and trichloroacetonitrile (0.072 

mL, 0.073 mmol) was added. The reaction mixture was allowed to warm to room 

temperature before stirring for 3 h. The reaction mixture was filtered through a short pad of 

silica gel and the filtrate concentrated in vacuo to give the allylic trichloroacetimidate, 

which was used without further purification. The allylic trichloroacetimidate was dissolved 

in toluene (10 mL) and transferred to a Schlenk tube containing potassium carbonate (0.05 

g) and purged with Ar and sealed. The reaction mixture was then warmed to 140 °C and 

stirred for 24 h. Grubbs first generation catalyst (0.029 g, 0.035 mmol) was added and the 

reaction mixture was heated for 18 h at 75 °C. A further portion of Grubbs first generation 

catalyst (0.013 g, 0.016 mmol) was added with 1,4-benzoquinone (307) (0.16 g, 1.40 

mmol) and hydroquinone (0.014 g, 0.13 mmol) and the reaction mixture was stirred at 111 

°C for 18 h. The reaction mixture was then cooled to room temperature and DDQ (0.22 g, 

0.96 mmol) was added and the reaction mixture was heated to 111 °C for 18 h. The 

solution was then cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/ethyl acetate, 7:3) gave 1,2,3,4-
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tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) 

(0.103 g, 58%) as a yellow solid. Rf (50% diethyl ether/petroleum ether) 0.30; Mp 

165‒167 °C; νmax/cm
−1

 (neat) 3345 (NH), 2947 (CH), 1709 (CO), 1663 (CO), 1586, 1512, 

1304, 1096, 822; δH (400 MHz, CDCl3) 1.80‒1.97 (3H, m, 2-HH and 3-H2), 2.33‒2.47 

(1H, m, 2-HH), 2.89‒3.00 (1H, m, 4-HH), 3.04‒3.14 (1H, m, 4-HH), 5.90‒5.96 (1H, m, 1-

H), 6.76 (1H, br d, J 6.4 Hz, NH), 6.88 (1H, d, J 10.2 Hz, ArH), 6.92 (1H, d, J 10.2 Hz, 

ArH), 7.57 (1H, d, J 8.1 Hz, ArH), 8.09 (1H, d, J 8.1 Hz, ArH); δC (126 MHz, CDCl3) 17.8 

(CH2), 27.9 (CH2), 30.7 (CH2), 47.1 (CH), 92.9 (C), 126.9 (CH), 129.6 (C), 132.5 (C), 

135.2 (C), 135.3 (CH), 136.4 (CH), 140.5 (CH), 146.3 (C), 160.5 (C), 184.8 (C), 186.4 (C); 

m/z (CI) 371.9960 (MH
+
. C16H13

35
Cl3NO3 requires 371.9961), 338 (30%), 304 (10), 268 

(15), 243 (84), 229 (100), 213 (60), 162 (75), 128 (40). 

Method B- 5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.090 g, 0.34 mmol) was dissolved in toluene  (10 mL) and 1,4-benzoquinone (307) 

(0.040 g, 0.37 mmol) was added. The reaction mixture was stirred at 115 °C for 72 h. The 

solution was then cooled to room temperature and manganese oxide (0.296 g, 3.40 mmol) 

was added with a silicon carbide bar. The mixture was stirred at 115 °C in a microwave 

reactor for 2 h. The solution was then cooled to room temperature and the solvent 

evaporated under vacuum. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 5:4) gave 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (0.084 g, 66%) as a 

yellow solid. Spectroscopic data as described above. 

1-(2’,2’,2’-Trichloromethylcarbonylamino)-1,2,3-trihydro-cyclopent[a]naphthalene-

6,9-dione (309). 

 

1-(2’,2’,2’-Trichloromethylcarbonylamino)-1,2,3-trihydro-cyclopent[a]naphthalene-6,9-

dione (309) was synthesised as described for 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (Method B) using 4-

ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.071 g, 

0.28 mmol). Flash column chromatography using silica (petroleum ether/diethyl ether, 1:1) 
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gave 1-(2’,2’,2’-trichloromethylcarbonylamino)-1,2,3-trihydrocyclopent[a]naphthalene-

6,9-dione (309) (0.076 g, 75%) as a yellow solid. Rf (50% diethyl ether/petroleum ether) 

0.35; Mp 153‒155 °C; νmax /cm
−1

 (neat) 3350 (NH), 2926 (CH), 1688 (CO), 1663 (CO), 

1510, 1298, 1078, 820; δH (500 MHz, CDCl3) 2.48‒2.61 (2H, m, 2-H2), 3.03 (1H, ddd, J 

17.4, 8.7, 2.8 Hz, 3-HH), 3.52 (1H, dt, J 17.4, 8.7 Hz, 3-HH), 5.62 (1H, ddd, J 8.7, 6.4, 2.8 

Hz, 1-H), 6.90 (1H, d, J 10.3 Hz, ArH), 6.96 (1H, d, J 10.3 Hz, ArH), 7.47 (1H, br d, J 6.4 

Hz, NH), 7.67 (1H, d, J 7.9 Hz, ArH), 8.11 (1H, d, J 7.9 Hz, ArH); δC (126 MHz, CDCl3) 

30.5 (CH2), 31.5 (CH2), 57.2 (CH), 92.9 (C), 127.9 (C), 128.3 (CH), 130.3 (CH), 131.9 

(C), 138.3 (CH), 138.8 (CH), 140.7 (C), 154.2 (C), 161.0 (C), 184.4 (C), 186.2 (C); m/z 

(ESI) 381.9578 (MNa
+
. C15H10

35
Cl2

37
ClNNaO3 requires 381.9589). 

1,2,3,4-Tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)benzo[f]isoquinoline-5,8-dione (310). 

 

1,2,3,4-Tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)benzo[f]isoquinoline-5,8-dione (310) was synthesised as 

described for 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (Method B)  using 5-

ethyl-1’’-ene-1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) (0.075 g, 0.18 mmol). The reaction mixture 

was stirred at 115 °C for 72 h. The solution was then cooled to room temperature and DDQ 

(0.088 g, 0.39 mmol) and a silicon carbide bar were added. The mixture was stirred at 115 

°C in a microwave reactor for 2 h. Flash column chromatography using silica (petroleum 

ether/ethyl acetate, 3:1) gave 1,2,3,4-tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)benzo[f]isoquinoline-5,8-dione (310) (0.045 g, 48%) as a 

brown solid. Rf (50% ethyl acetate/petroleum ether) 0.51; Mp 192‒194 °C; νmax/cm
−1

 

(neat) 3329 (NH), 2924 (CH), 1707 (CO), 1663 (CO), 1593 (C=C), 1508, 1303, 1165, 

1096, 1071, 961, 816; δH (500 MHz, CDCl3) 2.44 (3H, s, CH3), 2.77 (1H, dd, J 12.6, 2.8 

Hz, 3-HH), 3.94 (1H, d, J 16.1 Hz, 1-HH), 4.12 (1H, ddd, J 12.6, 2.8, 1.7 Hz, 3-HH), 4.85 

(1H, d, J 16.1 Hz, 1-HH), 6.07 (1H, dt, J 7.6, 2.8 Hz, 4-H), 6.91−6.97 (3H, m, NH, 6-H 
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and 7-H), 7.38 (2H, d, J 8.2 Hz, 2 × ArH), 7.55 (1H, d, J 8.2 Hz, ArH), 7.75 (2H, d, J 8.2 

Hz, 2 × ArH), 8.18 (1H, d, J 8.2 Hz, ArH); δC (126 MHz, CDCl3) 21.6 (CH3), 46.5 (CH), 

48.2 (CH2), 48.4 (CH2), 92.3 (C), 127.7 (CH), 127.9 (2 × CH), 129.6 (C), 130.1 (2 × CH), 

132.4 (CH), 133.1 (C), 136.7 (2 × CH), 140.3 (2 × CH), 140.5 (C), 144.5 (C), 161.1 (C), 

185.6 (2 × C); m/z (ESI) 548.9813 (MNa
+
. C22H17

35
Cl3N2NaO5S requires 548.9816). 

1,3-Dihydro-4-(2’,2’,2’-trichloromethylcarbonylamino)-4H-benzo[f]isochromene-5,8-

dione (311). 

 

1,3-Dihydro-4-(2’,2’,2’-trichloromethylcarbonylamino)-4H-benzo[f]isochromene-5,8-

dione (311) was synthesised as described for 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (Method B)  using 

1,4-dihydro-5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)-1H-pyran (294) 

(0.071 g, 0.26 mmol). The reaction mixture was stirred at 115 °C for 72 h. The solution 

was then cooled to room temperature and DDQ (0.13 g, 0.58 mmol) and a silicon carbide 

bar was added. The mixture was stirred at 115 °C in a microwave reactor for 2 h. Flash 

column chromatography using silica (petroleum ether/ethyl acetate, 3:2) gave 1,3-dihydro-

4-(2’,2’,2’-trichloromethylcarbonylamino)-4H-benzo[f]isochromene-5,8-dione (311) 

(0.038, 39%) as a yellow solid. Rf (50% ethyl acetate/petroleum ether) 0.42; Mp 176‒178 

°C; νmax/cm
−1

 (neat) 3337 (NH), 2926 (CH), 1705 (CO), 1661 (CO), 1589 (C=C), 1508, 

1302, 1233, 1088, 1069, 818; δH (500 MHz, CDCl3) 3.75 (1H, dd, J 12.2, 2.6 Hz, 3-HH), 

4.27 (1H, dd, J 12.2, 1.7 Hz, 3-HH), 4.78 (1H, d, J 16.2 Hz, 1-HH), 4.93 (1H, d, J 16.2 Hz, 

1-HH), 5.74 (1H, br d, J 6.4 Hz, 4-H), 6.79 (1H, d, J 6.4 Hz, NH), 6.84 (1H, d, J 10.3 Hz, 

ArH), 6.86 (1H, d, J 10.3 Hz, ArH), 7.39 (1H, d, J 8.1 Hz, ArH), 8.09 (1H, d, J 8.1 Hz, 

ArH); δC (126 MHz, CDCl3) 45.8 (CH), 68.4 (CH2), 68.9 (CH2), 92.5 (C), 127.5 (CH), 

129.4 (C), 130.4 (CH), 131.5 (C), 132.8 (C), 136.8 (CH), 140.2 (CH), 143.0 (C), 161.0 (C), 

184.5 (C), 185.7 (C); m/z (ESI) 395.9561 (MNa
+
. C15H10

35
Cl3NNaO4 requires 395.9568). 
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8-tert-Butyl-1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (312). 

 

8-tert-Butyl-1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (312) was synthesised as 

described for 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (Method B) using 5-

ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.10 g, 0.37 

mmol) and 2-tert-butyl-1,4-benzoquinone (0.073 g, 0.47 mmol). Flash column 

chromatography using silica (petroleum ether/diethyl ether, 7:3) gave 8-tert-butyl-1,2,3,4-

tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (312) 

(0.092 g, 58%) as a yellow solid. Rf (50% diethyl ether/petroleum ether) 0.61; Mp 128‒130 

°C; vmax/cm
−1

 (neat) 3225 (NH), 2957 (CH), 1705 (CO), 1661 (CO), 1607, 1541, 1341, 

1252, 1121, 1078, 816; δH (500 MHz, CDCl3) 1.34 (9H, s, 3 × CH3), 1.75‒1.92 (3H, m, 2-

HH and 3-H2), 2.37‒2.46 (2H, m, 2-HH), 2.85‒2.95 (1H, m, 4-HH), 3.04 (1H, dt, J 17.7, 

4.7 Hz, 4-HH), 5.85‒5.90 (1H, m, 1-H), 6.73 (1H, s, 9-H), 6.75 (1H, d, J 5.9 Hz, NH), 7.50 

(1H, d, J 8.1 Hz, ArH), 8.07 (1H, d, J 8.1 Hz, ArH); δC (126 MHz, CDCl3) 17.9 (CH2), 

27.8 (CH2), 29.1 (3 × CH3), 30.5 (CH2), 35.2 (C), 47.3 (CH), 93.1 (C), 127.3 (CH), 129.4 

(C), 134.3 (C), 134.4 (C), 134.9 (CH), 135.5 (CH), 145.4 (C), 156.3 (C), 160.4 (C), 184.7 

(C), 187.1 (C); m/z (CI) 428.0584 (MH
+
. C20H21

35
Cl3NO3 requires 428.0587), 408 (6%), 

370 (29), 285 (100), 162 (58), 128 (48), 71 (31). 

 

 

 

 

 



185 
 

7-tert-Butyl-1-(2’,2’,2’-trichloromethylcarbonylamino)-1,2,3-

trihydrocyclopent[a]naphthalene-6,9-dione (313). 

 

7-tert-Butyl-1-(2’,2’,2’-trichloromethylcarbonylamino)-1,2,3-

trihydrocyclopent[a]naphthalene-6,9-dione (313) was synthesised as described for 1,2,3,4-

tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) 

(Method B) using 4-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-

ene (223) (0.071 g, 0.28 mmol) and 2-tert-butyl-1,4-benzoquinone (0.054 g, 0.33 mmol). 

Flash column chromatography using silica (petroleum ether/diethyl ether, 7:3) gave 7-tert-

butyl-1-(2’,2’,2’-trichloromethylcarbonylamino)-1,2,3-trihydrocyclopent[a]naphthalene-

6,9-dione (313) (0.079 g, 68%) as a yellow solid. Rf (50% diethyl ether/petroleum ether) 

0.53; Mp 198‒200 °C; vmax/cm
−1

 (neat) 3325 (NH), 2954 (CH), 1680 (CO), 1661 (CO), 

1597 (C=C), 1504, 1290, 1250, 1068, 910, 816; δH (500 MHz, CDCl3) 1.36 (9H, s, 3 × 

CH3), 2.48‒2.57 (2H, m, 2-H2), 3.00 (1H, ddd, J 17.1, 7.8, 3.7 Hz, 3-HH), 3.49 (1H, dt, J 

17.1, 8.8 Hz, 3-HH), 5.54‒5.61 (1H, m, 1-H), 6.77 (1H, s, 8-H), 7.50 (1H, d, J 5.5 Hz, 

NH), 7.63 (1H, d, J 7.9 Hz, ArH), 8.11 (1H, d, J 7.9 Hz, ArH); δC (126 MHz, CDCl3) 29.4 

(3 × CH3), 30.4 (CH2), 31.4 (CH2), 35.7 (C), 57.1 (CH), 92.9 (C), 127.5 (C), 128.8 (CH), 

130.1 (CH), 133.5 (C), 134.1 (CH), 139.8 (C), 153.4 (C), 158.1 (C), 161.0 (C), 184.4 (C), 

187.0 (C); m/z (EI) 413.0354 (M
+
. C19H18

35
Cl3NO3 requires 413.0352), 378 (57%), 268 

(30), 252 (100), 237 (41), 185 (23), 165 (22), 143 (13), 115 (22), 84 (79), 49 (76). 

7-tert-Butyl-1,3-dihydro-4-(2’,2’,2’-trichloromethylcarbonylamino)-4H-

benzo[f]isochromene-5,8-dione (314). 

 

7-tert-Butyl-1,3-dihydro-4-(2’,2’,2’-trichloromethylcarbonylamino)-4H-

benzo[f]isochromene-5,8-dione (314) was synthesised as described for 1,2,3,4-tetrahydro-
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1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (Method 

B) using 1,4-dihydro-5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)-1H-pyran 

(294) (0.070 g, 0.26 mmol) and 2-tert-butyl-1,4-benzoquinone (0.051 g, 0.31 mmol). The 

solution was then cooled to room temperature and DDQ (0.129 g, 0.57 mmol) and a silicon 

carbide bar were added. The mixture was stirred at 115 °C in a microwave reactor for 2 h. 

Flash column chromatography using silica (petroleum ether/diethyl ether, 11:9) gave 7-

tert-butyl-1,3-dihydro-4-(2’,2’,2’-trichloromethylcarbonylamino)-4H-

benzo[f]isochromene-5,8-dione (314) (0.064 g, 57%) as a yellow solid. Rf (50% diethyl 

ether/petroleum ether) 0.24; Mp 192‒194 °C; vmax/cm
−1

 (neat) 3379 (NH), 2969 (CH), 

1708 (CO), 1661 (CO), 1592 (C=C), 1513, 1274, 1250, 1091, 908, 819; δH (500 MHz, 

CDCl3) 1.34 (9H, s, 3 × CH3), 3.79 (1H, dd, J 12.3, 2.3 Hz, 3-HH), 4.34 (1H, dd, J 12.3, 

1.2 Hz, 3-HH), 4.85 (1H, d, J 16.2 Hz, 1-HH), 5.00 (1H, d, J 16.2 Hz, 1-HH), 5.78 (1H, br 

d, J 7.4 Hz, 4-H), 6.77 (1H, s, 6-H), 6.90 (1H, d, J 7.4 Hz, NH), 7.44 (1H, d, J 8.1 Hz, 

ArH), 8.17 (1H, d, J 8.1 Hz, ArH); δC (126 MHz, CDCl3) 29.2 (3 × CH3), 35.4 (C), 45.9 

(CH), 68.3 (CH2), 68.9 (CH2), 92.6 (C), 127.9 (CH), 129.1 (C), 130.0 (CH), 130.6 (C), 

134.5 (C), 135.4 (CH), 142.1 (C), 156.6 (C), 161.0 (C), 184.3 (C), 186.4 (C); m/z (CI) 

430.0370 (MH
+
. C19H19

35
Cl3NO4 requires 430.0380), 396 (21%), 287 (20), 245 (37), 207 

(32), 162 (95), 128 (62), 85 (65), 73 (100). 

7-tert-Butyl-1,2,3,4-tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)benzo[f]isoquinoline-5,8-dione (315). 

 

7-tert-Butyl-1,2,3,4-tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)benzo[f]isoquinoline-5,8-dione (315) was synthesised as 

described for 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) (Method B) using 5-

ethyl-1’’-ene-1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) (0.091 g, 0.21 mmol) and 2-tert-butyl-1,4-

benzoquinone (0.083 g, 0.51 mmol). The solution was then cooled to room temperature 

and DDQ (0.252 g, 1.11 mmol) and a silicon carbide bar were added. The mixture was 
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stirred at 115 °C in a microwave reactor for 3 h. Flash column chromatography using silica 

(petroleum ether/ethyl acetate, 3:1) gave 7-tert-butyl-1,2,3,4-tetrahydro-2-(p-

toluenesulfonyl)-4-(2’,2’,2’-trichloromethylcarbonylamino)benzo[f]isoquinoline-5,8-dione 

(315) (0.056 g, 44%) as a yellow solid. Rf (50% ethyl acetate/petroleum ether) 0.53; Mp 

187‒189 °C; vmax/cm
−1

 (neat) 3335 (NH), 2959 (CH), 1717 (CO), 1655 (CO), 1522, 1454, 

1339, 1254, 1161, 964, 818; δH (500 MHz, CDCl3) 1.33 (9H, s, 3 × CH3), 2.44 (3H, s, 

CH3), 2.75 (1H, dd, J 12.6, 2.8 Hz, 3-HH), 3.92 (1H, d, J 16.0 Hz, 1-HH), 4.12 (1H, ddd, J 

12.6, 2.8, 1.7 Hz, 3-HH), 4.83 (1H, d, J 16.0 Hz, 1-HH), 6.04 (1H, dt, J 7.4, 2.8 Hz, 4-H), 

6.76 (1H, s, 6-H), 6.92 (1H, d, J 7.4 Hz, NH), 7.37 (2H, d, J 8.4 Hz, 2 × ArH), 7.50 (1H, d, 

J 8.2 Hz, ArH), 7.75 (2H, d, J 8.4 Hz, 2 × ArH), 8.16 (1H, d, J 8.2 Hz, ArH); δC (126 

MHz, CDCl3) 21.6 (CH3), 29.2 (3 × CH3), 35.4 (C), 46.5 (CH), 48.2 (CH2), 48.3 (CH2), 

92.4 (C), 127.9 (2 × CH), 128.1 (CH), 129.2 (C), 130.1 (2 × CH), 130.9 (C), 132.0 (CH), 

132.5 (C), 134.8 (C), 135.5 (CH), 139.6 (C), 144.5 (C), 156.6 (C), 161.1 (C), 184.1 (C), 

186.3 (C); m/z (ESI) 607.0414 (MNa
+
. C26H25

35
Cl2

37
ClN2NaO5S requires 607.0412). 

1,2,3,4-Tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]anthracene-

7,12-dione (316). 

 

1,2,3,4-Tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]anthracene-7,12-

dione (316) was synthesised as described for 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)benz[a]naphthalene-7,10-dione (211) using 5-ethyl-1’’-ene-

1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.036 g, 0.14 mmol) and 

1,4-naphthoquinone (205) (0.042 g, 0.20 mmol). The reaction mixture was then cooled to 

room temperature and DDQ (0.13 g, 0.60 mmol) and a silicon carbide bar were added. The 

mixture was stirred at 115 °C in a microwave reactor for 4 h. Flash column 

chromatography using silica (petroleum ether/diethyl ether, 13:7) gave 1,2,3,4-tetrahydro-

1-(2’,2’,2’-trichloromethylcarbonylamino)benz[a]anthracene-7,12-dione (316) (0.034 g, 

54%) as a colourless solid. Rf (50% diethyl ether/petroleum ether) 0.48; Mp 180‒182 °C; 

νmax/cm
−1

 (neat) 3335 (NH), 2922 (CH), 2361, 1701 (CO), 1668 (CO), 1589, 1501, 1327, 

1290, 818; δH (400 MHz, CDCl3) 1.86‒1.97 (3H, m, 2-HH and 3-H2), 2.37‒2.47 (1H, m, 
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2-HH), 2.91‒3.03 (1H, m, 4-HH), 3.05‒3.17 (1H, m, 4-HH), 5.96‒6.00 (1H, m, 1-H), 6.79 

(1H, br d, J 6.3 Hz, NH), 7.59 (1H, d, J 8.2 Hz, ArH), 7.73‒7.79 (2H, m, 9-H and 10-H), 

8.20‒8.27 (2H, m, 8-H and 11-H), 8.32 (1H, d, J 8.2 Hz, ArH); δC (126 MHz, CDCl3) 17.8 

(CH2), 28.1 (CH2), 30.9 (CH2), 47.6 (CH), 93.0 (C), 126.5 (CH), 127.6 (CH), 127.7 (CH), 

131.6 (C), 132.2 (C), 133.7 (CH), 134.2 (C), 134.4 (CH), 134.9 (C), 135.5 (CH), 135.8 (C), 

146.5 (C), 160.6 (C), 183.1 (C), 184.6 (C); m/z (ESI) 443.9919 (MNa
+
. C20H14

35
Cl3NNaO3 

requires 443.9931). 

Diethyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene-7,8-

dicarboxylate (319). 

 

5-Ethyl-1’’-ene-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.10 g, 

0.37 mmol) was dissolved in toluene (5 mL) and transferred to a microwave vial 

containing anhydrous zinc chloride (0.045 g, 0.33 mmol) and hydroquinone (0.012 g, 

0.010 mmol). Diethyl acetylenedicarboxylate (317) (0.17 mL, 1.11 mmol) was added with 

a silicon carbide bar and the tube was purged with argon and sealed. The reaction mixture 

was stirred at 140 °C in a microwave reactor for 3 h. The solution was then cooled to room 

temperature and DDQ (0.18 g, 0.81 mmol) was added. The tube was sealed and stirred at 

115 °C in a microwave reactor for 2 h. The solution was then cooled to room temperature 

and the solvent was then evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 11:9) gave diethyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-7,8-dicarboxylate (319) (0.095 g, 58%) as a 

yellow solid. Rf (50% diethyl ether/petroleum ether) 0.49; Mp 134‒136 °C; νmax/cm
−1

 

(neat) 3318 (NH), 2940 (CH), 1690 (CO), 1597 (C=C), 1520, 1366, 1258, 1134, 1011, 

826; δH (500 MHz, CDCl3) 1.36 (3H, t, J 7.2 Hz, OCH2CH3), 1.38 (3H, t, J 7.2 Hz, 

OCH2CH3), 1.71‒1.97 (3H, m, 2-HH and 3-H2), 2.23‒2.30 (1H, m, 2-HH), 2.84 (1H, ddd, 

J 17.7, 11.5, 6.2 Hz, 4-HH), 2.94‒3.03 (1H, m, 4-HH), 4.29‒4.48 (4H, m, 2 × OCH2CH3), 

5.30 (1H, dt, J 7.1, 3.5 Hz, 1-H), 6.74 (1H, d, J 7.1 Hz, NH), 7.28 (1H, d, J 8.1 Hz, ArH), 

7.90 (1H, d, J 8.1 Hz, ArH); δC (126 MHz, CDCl3) 13.9 (CH3), 14.2 (CH3), 17.3 (CH2), 

27.8 (CH2), 29.6 (CH2), 46.4 (CH), 61.6 (CH2), 62.4 (CH2), 92.5 (C), 127.0 (C), 129.8 

(CH), 130.7 (CH), 130.9 (C), 137.3 (C), 143.4 (C), 160.3 (C), 165.4 (C), 168.2 (C); m/z 



189 
 

(CI) 438.0456 (MH
+
. C18H21

35
Cl2

37
ClNO5 requires 438.0459), 390 (100%), 371 (77), 356 

(70), 275 (25), 271 (18), 231 (11), 153 (10), 69 (70). 

Diethyl 2,3-dihydro-1-(2’,2’,2’-trichloromethylcarbonylamino)indene-6,7-

dicarboxylate (320). 

 

Diethyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene-7,8-

dicarboxylate (320) was synthesised as described for diethyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-7,8-dicarboxylate (319) using 4-ethyl-1’’-ene-

1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.084 g, 0.33 mmol). 

Flash column chromatography using silica (petroleum ether/diethyl ether, 1:1) gave diethyl 

2,3-dihydro-1-(2’,2’,2’-trichloromethylcarbonylamino)indene-6,7-dicarboxylate (320) 

(0.099 g, 71%) as a yellow solid. Rf (50% diethyl ether/petroleum ether) 0.32; Mp 108‒110 

°C; νmax/cm
−1

 (neat) 3337 (NH), 2983 (CH), 2361, 1714 (CO), 1507, 1368, 1282, 1021; δH 

(500 MHz, CDCl3) 1.37 (6H, t, J 7.2 Hz, 2 × OCH2CH3), 2.17 (1H, dtd, J 13.4, 8.9, 4.7 Hz, 

2-HH), 2.62‒2.72 (1H, m, 2-HH), 2.99 (1H, ddd, J 17.0, 8.9, 5.0 Hz, 3-HH), 3.13‒3.22 

(1H, m, 3-HH), 4.32‒4.45 (4H, m, 2 × OCH2CH3), 5.52 (1H, td, J 7.1, 4.7 Hz, 1-H), 6.98 

(1H, br d, J 7.1 Hz, NH), 7.42 (1H, d, J 7.9 Hz, ArH), 7.94 (1H, d, J 7.9 Hz, ArH); δC (126 

MHz, CDCl3) 13.9 (CH3), 14.1 (CH3), 30.5 (CH2), 32.7 (CH2), 56.0 (CH), 61.6 (CH2), 62.2 

(CH2), 92.4 (C), 126.2 (CH), 128.2 (C), 131.0 (CH), 132.5 (C), 138.4 (C), 149.9 (C), 161.2 

(C), 165.7 (C), 167.7 (C); m/z (CI) 424.0300 (MH
+
. C17H19

35
Cl2

37
ClNO5 requires 

424.0302), 376 (100%), 342 (6), 261 (18), 214 (6), 187 (5). 
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Diethyl 1,2,3,4-tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)isoquinoline-5,6-dicarboxylate (321). 

 

Diethyl 1,2,3,4-tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-

trichloromethylcarbonylamino)isoquinoline-5,6-dicarboxylate (321) was synthesised as 

described for diethyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-7,8-dicarboxylate (319) using 5-ethyl-1''-ene-

1,2,3,6-tetrahydro-1-(p-toluenesulfonyl)-3-(2’,2’,2’-

trichloromethylcarbonylamino)pyridine (293) (0.090 g, 0.21 mmol). Flash column 

chromatography using silica (petroleum ether/diethyl ether, 3:7) gave diethyl 1,2,3,4-

tetrahydro-2-(p-toluenesulfonyl)-4-(2’,2’,2’-trichloromethylcarbonylamino)isoquinoline-

5,6-dicarboxylate (321) (0.060 g, 48%) as a red solid. Rf (100% diethyl ether) 0.67; Mp 

172‒174 °C; νmax/cm
−1

 (neat) 3323 (NH), 2988 (CH), 1716 (CO), 1507, 1267, 1164, 1018, 

753; δH (500 MHz, CDCl3) 1.35 (3H, t, J 7.2 Hz, OCH2CH3), 1.36 (3H, t, J 7.2 Hz, 

OCH2CH3), 2.44 (3H, m, CH3), 2.70 (1H, dd, J 12.6, 2.4 Hz, 3-HH), 3.77 (1H, d, J 15.8 

Hz, 1-HH), 4.10 (1H, br d, J 12.6 Hz, 3-HH), 4.27‒4.48 (4H, m, 2 × OCH2CH3), 4.85 (1H, 

d, J 15.8 Hz, 1-HH), 5.43 (1H, br d, J 8.5 Hz, 4-H), 7.06 (1H, d, J 8.5 Hz, NH), 7.26 (1H, 

d, J 8.0 Hz, ArH), 7.35 (2H, d, J 8.2 Hz, 2 × ArH), 7.73 (2H, d, J 8.2 Hz, 2 × ArH), 7.97 

(1H, d, J 8.0 Hz, ArH); δC (126 MHz, CDCl3) 13.9 (CH3), 14.1 (CH3), 21.6 (CH3), 45.6 

(CH), 47.9 (CH2), 48.6 (CH2), 61.9 (CH2), 62.7 (CH2), 92.0 (C), 127.7 (CH), 127.9 (2 × 

CH), 128.3 (C), 128.6 (C), 130.1 (2 × CH), 130.4 (CH), 132.3 (C), 137.2 (C), 137.7 (C), 

144.6 (C), 161.0 (2 × C), 167.2 (C); m/z (ESI) 589.0371 ([M‒H]
−
. C24H24

35
Cl3N2O7S 

requires 589.0375). 
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Diethyl 4-(2’,2’,2’-trichloromethylcarbonylamino)isochroman-5,6-dicarboxylate 

(322). 

 

Diethyl 4-(2’,2’,2’-trichloromethylcarbonylamino)isochroman-5,6-dicarboxylate (322) was 

synthesised as described for diethyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)naphthalene-7,8-dicarboxylate (319) using 1,4-dihydro-5-

ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)-1H-pyran (294) (0.082 g, 0.30 

mmol). Flash column chromatography using silica (petroleum ether/ethyl acetate, 7:3) gave 

diethyl 4-(2’,2’,2’-trichloromethylcarbonylamino)isochroman-5,6-dicarboxylate (322) 

(0.056 g, 42%) as a brown solid. Rf (50% ethyl acetate/ petroleum ether) 0.63; Mp 

141‒143 °C; νmax/cm
−1

 (neat) 3322 (NH), 2978 (CH), 1724 (CO), 1695 (CO), 1598 (C=C), 

1522, 1369, 1287, 1260, 1150, 1093, 822; δH (500 MHz, CDCl3) 1.36 (3H, t, J 7.4 Hz, 

OCH2CH3), 1.38 (3H, t, J 7.4 Hz, OCH2CH3), 3.82 (1H, dd, J 12.2, 2.2 Hz, 3-HH), 4.24 

(1H, br d, J 12.2 Hz, 3-HH), 4.30‒4.40 (3H, m, OCH2CH3 and OCHHCH3), 4.42‒4.51 

(1H, m, OCHHCH3), 4.78 (1H, d, J 16.1 Hz, 1-HH), 4.95 (1H, d, J 16.1 Hz, 1-HH), 5.22 

(1H, br d, J 7.8 Hz, 4-H), 7.06 (1H, br d, J 7.8 Hz, NH), 7.21 (1H, d, J 8.2 Hz, ArH), 7.98 

(1H, d, J 8.2 Hz, ArH); δC (126 MHz, CDCl3) 13.9 (CH3), 14.2 (CH3), 44.8 (CH), 61.8 

(CH2), 62.6 (CH2), 67.9 (CH2), 69.2 (CH2), 92.2 (C), 125.7 (CH), 128.0 (C), 128.3 (C), 

130.3 (CH), 137.1 (C), 140.2 (C), 160.8 (C), 165.4 (C), 167.4 (C); m/z (CI) 438.0275 

(MH
+
. C17H19

35
Cl3NO6 requires 438.0278), 404 (70%), 398 (62), 370 (27), 251 (17), 113 

(22), 73 (76). 
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Methyl 2,3-dihydro-1-(2’,2’,2’-trichloromethylcarbonylamino)indene-7-carboxylate 

(323). 

 

4-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.11 g, 

0.43 mmol) was dissolved in toluene (6 mL) and transferred to a Schlenk tube containing 

anhydrous zinc chloride (0.059 g, 0.43 mmol) and hydroquinone (0.014 g, 0.13 mmol). 

Methyl propiolate (0.12 mL, 1.29 mmol) was added and the tube was purged with argon. 

The reaction mixture was stirred at 140 °C for 9 days. The solution was then cooled to 

room temperature and DDQ (0.21 g, 0.95 mmol) was added. The tube was resealed under 

argon and stirred at 115 °C for 24 h. The solution was cooled to room temperature and the 

solvent was then evaporated. Flash column chromatography using silica (petroleum 

ether/diethyl ether, 12:9) gave methyl 2,3-dihydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-7-carboxylate (323) (0.075 g, 52%) as a red solid. Rf 

(50% diethyl ether/petroleum ether) 0.57; Mp 108‒110 °C νmax/cm
−1

 (neat) 3279 (NH), 

2949 (CH), 1711 (CO), 1689 (CO), 1533, 1432, 1290, 1136, 818; δH (500 MHz, CDCl3) 

2.23 (1H, ddt, J 14.0, 8.6, 2.4 Hz, 2-HH), 2.43 (1H, dq, J 14.0, 8.6 Hz, 2-HH), 2.90 (1H, 

ddd, J 16.4, 8.6, 2.4 Hz, 3-HH), 3.19 (1H, dt, J 16.4, 8.6 Hz, 3-HH), 3.82 (3H, s, OCH3), 

5.68 (1H, td, J 8.6, 2.4 Hz, 1-H), 6.90 (1H, br d, J 5.1 Hz, NH), 7.34 (1H, t, J 7.6 Hz, 5-H), 

7.44 (1H, d, J 7.6 Hz, ArH), 7.86 (1H, d, J 7.6 Hz, ArH); δC (126 MHz, CDCl3) 30.7 

(CH2), 31.7 (CH2), 52.5 (CH), 57.4 (CH3), 92.9 (C), 127.4 (C), 129.3 (CH), 129.5 (CH), 

129.6 (CH), 141.4 (C), 146.7 (C), 160.9 (C), 166.7 (C); m/z (CI) 335.9952 (MH
+
. 

C13H13
35

Cl3NO3 requires 335.9961), 302 (16%), 257 (12), 175 (100), 137 (54), 121 (38), 

81 (6). 
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Methyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene-8-

carboxylate (324). 

 

Methyl 1,2,3,4-tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene-8-

carboxylate (324) was synthesised as described for methyl 2,3-dihydro-1-(2’,2’,2’-

trichloromethylcarbonylamino)indene-7-carboxylate (323) using 5-ethyl-1’’-ene-1-

(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.10 g, 0.37 mmol). Flash 

column chromatography using silica (petroleum ether/diethyl ether, 7:3) gave methyl 

1,2,3,4-tetrahydro-1-(2’,2’,2’-trichloromethylcarbonylamino)naphthalene-8-carboxylate 

(324) (0.085 g, 66%) as a white solid. Rf (50% diethyl ether/petroleum ether) 0.56; Mp 

133‒135 °C νmax/cm
−1

 (neat) 3324 (NH), 2933 (CH), 1726 (CO), 1695 (CO), 1517, 1431, 

1285, 1262, 1137, 754; δH (500 MHz, CDCl3) 1.72‒1.82 (1H, m, 2-HH), 1.85‒1.98 (2H, 

m, 2-HH and 3-HH), 2.15‒2.22 (1H, m, 3-HH), 2.84 (1H, ddd, J 17.1, 10.7, 5.8 Hz, 4-

HH), 2.94 (1H, dt, J 17.1, 4.6 Hz, 4-HH), 3.87 (3H, s, OCH3), 5.77 (1H, dt, J 6.3, 4.3 Hz, 

1-H), 6.68 (1H, d, J 6.3 Hz, NH), 7.30‒7.34 (2H, m, 5-H and 6-H), 7.86 (1H, dd, J 6.0, 3.1 

Hz, 7-H); δC (126 MHz, CDCl3) 18.1 (CH2), 28.5 (CH2), 29.9 (CH2), 46.9 (CH3), 52.6 

(CH), 92.8 (C), 128.0 (CH), 129.2 (CH), 131.8 (C), 133.4 (CH), 133.7 (C), 139.2 (C), 

160.4 (C), 168.1 (C); m/z (ESI) 371.9925 (MNa
+
. C14H14

35
Cl3NNaO3 requires 371.9931). 

2-Dichloromethyl-5,6,7,8-tetrahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)quinoline (330). 

 

5-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.035 g, 

0.13 mmol) was dissolved in p-xylene (4 mL) and transferred to a microwave vial 

containing anhydrous zinc chloride (0.018 g, 0.13 mmol) and hydroquinone (0.001 g, 

0.013 mmol). Trichloroacetonitrile (0.078 g, 0.78 mmol) was added and the tube was 
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purged with argon and sealed. The reaction mixture was stirred at 160 °C for 48 h. The 

solution was then cooled to room temperature and the solvent was evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 2:1) gave 2-

dichloromethyl-5,6,7,8-tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)quinoline 

(330) (0.043 g, 67%) as a colourless oil. Rf (50% diethyl ether/petroleum ether) 0.49; 

νmax/cm
−1

 (neat) 3343 (NH), 2930 (CH), 2361, 1705 (CO), 1503, 1462, 1408, 1256, 1215, 

1088, 926, 818; δH (500 MHz, CDCl3) 1.62‒1.72 (1H, m, 7-HH), 1.87‒2.08 (2H, m, 6-H2), 

2.75‒2.83 (1H, m, 7-HH), 2.84‒2.95 (2H, m, 5-H2), 4.81 (1H, dt, J 10.5, 5.3 Hz, 8-H), 

6.67 (1H, s, CHCl2), 7.60 (1H, d, J 8.1 Hz, 4-H), 7.65 (1H, d, J 8.1 Hz, 3-H), 8.01 (1H, br 

s, NH); δC (126 MHz, CDCl3) 19.9 (CH2), 27.7 (CH2), 27.9 (CH2), 52.6 (CH), 71.2 (CH), 

92.9 (C), 120.2 (CH), 134.1 (C), 139.0 (CH), 153.0 (C), 155.1 (C), 162.1 (C); m/z (ESI) 

396.9191 (MNa
+
. C12H11

35
Cl5N2NaO requires 396.9206). 

5,6,7,8-Tetrahydro-2-(p-toluenesulfonyl)-8-(2’,2’,2’-trichloromethylcarbonylamino)-

quinoline (332). 

 

5,6,7,8-Tetrahydro-2-(p-toluenesulfonyl)-8-(2’,2’,2’-

trichloromethylcarbonylamino)quinoline (332) was synthesised as described for 2-

dichloromethyl-5,6,7,8-tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)quinolone 

(330) using 5-ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-5-ene 

(197) (0.035 g, 0.13 mmol) and p-toluenesulfonyl cyanide (0.035 g, 0.20 mmol). Flash 

column chromatography using silica (petroleum ether/ethyl acetate, 11:9) gave 5,6,7,8-

tetrahydro-2-(p-toluenesulfonyl)-8-(2’,2’,2’-trichloromethylcarbonylamino)quinoline (332) 

(0.030 g, 54%) as a white solid. Rf (50% ethyl acetate/petroleum ether) 0.44; Mp 85‒87 

°C; νmax/cm
−1

 (neat) 3335 (NH), 2926 (CH), 1705 (CO), 1510, 1316, 1155, 1078, 814; δH 

(500 MHz, CDCl3) 1.59 (1H, qd, J 11.5, 4.2 Hz, 7-HH), 1.97−2.05 (2H, m, 5-HH and 6-

HH), 2.42 (3H, s, CH3), 2.75 (1H, dq, J 11.5, 4.8 Hz, 7-HH), 2.85−2.97 (2H, m, 5-HH and 

6-HH), 4.76 (1H, dt, J 11.5, 4.8 Hz, 8-H), 7.31 (2H, d, J 8.2 Hz, 2 × ArH), 7.69 (1H, d, J 

8.0 Hz, ArH), 7.76 (1H, br d, J 3.8 Hz, NH), 7.91 (2H, d, J 8.2 Hz, 2 × ArH), 8.09 (1H, d, 

J 8.0 Hz, ArH); δC (126 MHz, CDCl3) 19.8 (CH2), 21.7 (CH3), 27.7 (CH2), 27.9 (CH2), 
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52.7 (CH), 92.6 (C), 120.8 (CH), 129.1 (2 × CH), 129.9 (2 × CH), 135.5 (C), 137.2 (C), 

139.0 (CH), 145.0 (C), 155.4 (C), 156.2 (C), 161.9 (C); m/z (ESI) 447.0093 (MH
+
. 

C18H18
35

Cl3N2O3S requires 447.0098). 

Ethyl 5,6,7,8-tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)quinoline-2-

carboxylate (333). 

N
1

2

3

45

6

7 8

NHO

CCl3

CO2Et

333
 

Ethyl 5,6,7,8-tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)quinoline-2-carboxylate 

(333) was synthesised as described for 2-dichloromethyl-5,6,7,8-tetrahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)quinoline (330) using 5-ethyl-1’’-ene-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.056 g, 0.21 mmol) and ethyl 

cyanoformate (0.12 mL, 1.25 mmol). Flash column chromatography using silica 

(petroleum ether/diethyl ether, 1:1) gave ethyl 5,6,7,8-tetrahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)quinoline-2-carboxylate (333) (0.030 g, 40%) as a 

colourless oil. Rf (50% diethyl ether/petroleum ether) 0.23; νmax/cm
−1

 (neat) 3345 (NH), 

2926 (CH), 2361, 1707 (CO), 1506, 1314, 1258, 1086, 1024, 820; δH (400 MHz, CDCl3) 

1.40 (1H, t, J 7.1 Hz, OCH2CH3), 1.62 (1H, dtd, J 12.7, 11.3, 4.7 Hz, 7-HH), 1.93‒2.09 

(2H, m, 6-H2), 2.85‒3.02 (3H, m, 5-H2 and 7-HH), 4.37 (1H, dq, J 10.8, 7.1 Hz, 

OCHHCH3), 4.45 (1H, dq, J 10.8, 7.1 Hz, OCHHCH3), 4.79 (1H, dt, J 10.9, 4.7 Hz, 8-H), 

7.62 (1H, d, J 7.9 Hz, ArH), 8.01 (1H, d, J 7.9 Hz, ArH), 8.48 (1H, br s, NH); δC (101 

MHz, CDCl3) 14.3 (CH3), 19.8 (CH2), 27.6 (CH2), 27.8 (CH2), 53.0 (CH), 61.7 (CH2), 92.9 

(C), 124.2 (CH), 136.8 (C), 138.1 (CH), 145.3 (C), 154.1 (C), 162.1 (C), 164.9 (C); m/z 

(ESI) 387.0036 (MNa
+
. C14H15

35
Cl3N2NaO3 requires 387.0040). 
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2-Dichloromethyl-6,7-dihydro-7-(2’,2’,2’-trichloromethylcarbonylamino)-5H-

cyclopenta[b]pyridine (334). 

 

2-Dichloromethyl-6,7-dihydro-7-(2’,2’,2’-trichloromethylcarbonylamino)-5H-

cyclopenta[b]pyridine (334) was synthesised as described for 2-dichloromethyl-5,6,7,8-

tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)quinoline (330) using 4-ethyl-1’’-

ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.024 g, 0.094 

mmol) and trichloroacetonitrile (0.11 mL, 1.13 mmol). The reaction mixture was stirred at 

125 °C for 24 h. Flash column chromatography using silica (petroleum ether/diethyl ether, 

7:3) gave 2-dichloromethyl-6,7-dihydro-7-(2’,2’,2’-trichloromethylcarbonylamino)-5H-

cyclopenta[b]pyridine (334) (0.013 g, 34%) as a colourless oil. Rf (50% diethyl 

ether/petroleum ether) 0.38; νmax/cm
−1

 (neat) 3401 (NH), 2936 (CH), 1703 (CO), 1505, 

1464, 1249, 1212, 1088; δH (500 MHz, CDCl3) 1.95‒2.05 (1H, m, 6-HH), 2.94‒3.10 (3H, 

m, 5-H2 and 6-HH), 5.14‒5.22 (1H, m, 7-H), 6.74 (1H, s, CHCl2), 7.37 (1H, br s, NH), 

7.71 (1H, d, J 8.2 Hz, 4-H), 7.74 (1H, d, J 8.2 Hz, 3-H); δC (126 MHz, CDCl3) 27.9 (CH2), 

32.5 (CH2), 56.5 (CH), 71.3 (CH), 91.4 (C), 121.0 (CH), 134.6 (CH), 138.1 (C), 157.4 (C), 

160.0 (C), 162.2 (C); m/z (ESI) 382.9046 (MNa
+
. C11H9

35
Cl5N2NaO requires 382.9050). 

6,7-Dihydro-2-(p-toluenesulfonyl)-7-(2’,2’,2’-Trichloromethylcarbonylamino)-5H-

cyclopenta[b]pyridine (335). 

 

6,7-Dihydro-2-(p-toluenesulfonyl)-7-(2’,2’,2’-trichloromethylcarbonylamino)-5H-

cyclopenta[b]pyridine (335) was synthesised as described for 2-dichloromethyl-5,6,7,8-

tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)quinoline (330) using 4-ethyl-1’’-

ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.024 g, 0.094 

mmol) and p-toluenesulfonyl cyanide (0.026 g, 0.14 mmol). The reaction mixture was 
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stirred at 125 °C for 24 h. Flash column chromatography using silica (petroleum 

ether/ethyl acetate, 1:1) gave 6,7-dihydro-2-(p-toluenesulfonyl)-7-(2’,2’,2’-

trichloromethylcarbonylamino)-5H-cyclopenta[b]pyridine (335) (0.024 g, 58%) as a green 

solid. Rf (50% diethyl ether/petroleum ether) 0.45; Mp 124‒126 °C; νmax/cm
−1

 (neat) 3335 

(NH), 2926 (CH), 1699 (CO), 1518, 1420, 1302, 1144, 1076, 816; δH (500 MHz, CDCl3) 

1.91‒2.05 (1H, m, 6-HH), 2.41 (3H, s, CH3), 2.91‒3.10 (3H, m, 5-H2 and 6-HH), 

5.10‒5.18 (1H, m, 7-H), 7.19 (1H, br d, J 4.6 Hz, NH), 7.30 (2H, d, J 8.2 Hz, 2 × ArH), 

7.84 (1H, d, J 8.1 Hz, ArH), 7.93 (2H, d, J 8.2 Hz, 2 × ArH), 8.09 (1H, d, J 8.1 Hz, ArH); 

δC (101 MHz, CDCl3) 21.7 (CH3), 28.0 (CH2), 32.4 (CH2), 56.2 (CH), 92.3 (C), 121.4 

(CH), 129.2 (2 × CH), 129.7 (2 × CH), 134.5 (CH), 135.6 (C), 141.0 (C), 145.0 (C), 158.1 

(C), 162.0 (C), 162.6 (C); m/z (ESI) 454.9747 (MNa
+
. C17H15

35
Cl3N2NaO3S requires 

454.9761). 

6,7-Dihydro-7-(2’,2’,2’-trichloromethylcarbonylamino)-5H-cyclopenta[c]pyridazine 

(341). 

 

4-Ethyl-1’’-ene-1-(2’,2’,2’-trichloromethylcarbonylamino)cyclopent-4-ene (223) (0.13 g, 

0.41 mmol) was dissolved in toluene (10 mL) and di-tert-butyl azodicarboxylate (337) 

(0.15 g, 0.63 mmol) was added. The reaction mixture was stirred at 115 °C for 18 h. The 

solution was then cooled to room temperature and the solvent was then evaporated. Flash 

column chromatography using silica (petroleum ether/diethyl ether, 3:2) gave a colourless 

oil. The oil was dissolved in degassed chloroform (12 mL) and cooled to 0 °C. Bromine 

(0.10 mL, 2.03) was then added dropwise. The ice bath was then removed and the mixture 

was stirred for 3 h as the reaction was allowed to warm to room temperature. The reaction 

mixture was quenched with a 10% aqueous solution of sodium sulfite (15 mL), stirred for 

0.5 h, then basified with a saturated solution of sodium hydrogencarbonate (30 mL). The 

aqueous layer was then extracted with chloroform (4 × 75 mL). The organic layers were 

combined, dried (MgSO4) and concentrated to give a yellow oil. Purification by flash 

column chromatography (dichloromethane/methanol, 25:1) gave 6,7-dihydro-7-(2’,2’,2’-

trichloromethylcarbonylamino)-5H-cyclopenta[c]pyridazine (341) (0.072 g, 51%) as a 

brown oil. vmax/cm
−1

 (neat) 3327 (NH), 2955 (CH), 1695 (CO), 1518, 1393 1263, 820; δH 
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(400 MHz, CDCl3) 1.91‒2.05 (1H, m, 6-HH), 2.87‒3.12 (3H, m, 5-H2 and 6-HH), 5.32 

(1H, td, J 8.5, 5.2 Hz, 7-H), 7.36 (1H, d, J 5.1 Hz, 4-H), 7.74 (1H, br s, NH), 8.97 (1H, d, J 

5.1 Hz, 3-H); δC (101 MHz, CDCl3) 28.2 (CH2), 31.8 (CH2), 56.0 (CH), 92.1 (C), 123.3 

(CH), 142.0 (C), 150.6 (CH), 162.4 (C), 164.3 (C); m/z (ESI) 301.9631 (MNa
+
. 

C9H8
35

Cl3N3NaO requires 301.9625). 

5,6,7,8-Tetrahydro-8-(2’,2’,2’-trichloromethylcarbonylamino)cinnoline (343). 

 

5,6,7,8-Tetrahydro-8-(2',2',2'-trichloromethylcarbonylamino)cinnoline (343) was 

synthesised as decribed for 6,7-dihydro-7-(2’,2’,2’-trichloromethylcarbonylamino)-5H-

cyclopenta[c]pyridazine (341) using 5-ethyl-1’’-ene-1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclohex-5-ene (197) (0.11 g, 0.41 mmol) and di-tert-butyl 

azodicarboxylate (337) (0.12 g, 0.51 mmol). Flash column chromatography using silica 

(dichloromethane/methanol, 25:1) gave 5,6,7,8-tetrahydro-8-(2’,2’,2’-

trichloromethylcarbonylamino)cinnoline (343) (0.079 g, 66%) as a colourless oil. vmax 

/cm
−1

 (neat) 3339 (NH), 2947 (CH), 2361, 1697 (CO), 1508, 1377, 1265, 1090, 818, 731; 

δH (500 MHz, CDCl3) 1.67‒1.76 (1H, m, 7-HH), 1.93‒2.08 (2H, m, 6-H2), 2.81‒2.97 (3H, 

m, 5-H2 and 7-HH), 5.01 (1H, dt, J 10.3, 5.0 Hz, 8-H), 7.27 (1H, d, J 5.1 Hz, 4-H), 8.29 

(1H, br s, NH), 9.04 (1H, d, J 5.1 Hz, 3-H); δC (126 MHz, CDCl3) 19.2 (CH2), 27.1 (CH2), 

27.6 (CH2), 51.8 (CH), 92.5 (C), 126.6 (CH), 137.9 (C), 150.6 (CH), 157.8 (C), 162.3 (C); 

m/z (ESI) 315.9776 (MNa
+
. C10H10

35
Cl3N3NaO requires 315.9782). 
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NOE data 
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7.0 Appendix 2 

X-ray data 

Crystal data and structure refinement for 206 

 

Identification code       206 

Empirical formula      C20H16Cl3NO3 

Formula weight      424.69 

Temperature      373(2) K  

Wavelength       0.71073 Å  

Crystal system      Triclinic  

Space group       P-1  

Unit cell dimensions   a = 9.2312(3) Å  α= 74.0757 (16) °.  

b = 9.9744(4) Å  β= 79.2214 (18) °.  

c = 10.6797(4) Å  γ = 74.1904 (19) °.  

Volume       903.113 Å
3
  

Z        2 

Density (calculated)     1.562 Mg/m
3
  

Absorption coefficient     0.53 mm
−1 

 

F(000)        436 
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Theta range for data collection    2 to 29.83 °.  

Index ranges     −12<=h<=12, −13<=k<=13, −14<=l<=15  

Reflections collected      5178 

Independent reflections     4349 [R(int) = 0.0614]  

Completeness to theta = 29.83°   99.9%  

Refinement method Full-matrix least-squares on F
2
 1.048 

Data / restraints / parameters     5178 / 0 / 260  

Goodness-of-fit on F2     1.048  

Final R indices [I>2sigma(I)]    R1 = 0.0517, wR2 = 0.122  

R indices (all data)      R1 = 0.0419, wR2 = 0.1171 

Absolute structure parameter     1.075 

Largest diff. peak and hole     0.087 and −0.278 e.Å
−3

 

Atomic coordinates (x 10
4
) and equivalent isotropic displacement parameters (Å

2
x 

10
3
) for 206. U(eq) is defined as one third of the trace of the orthogonalized U

ij
 tensor 

X          Y      Z   U (eq) 

Cl1          6210(5)  −974(4) 8835(4)  24(1) 

Cl2          3073(5)  −1077(4) 9037(4)  25(1) 

Cl3          5297(5)  −2063(4) 6960(4)  24(1) 

O9         2061(14)  4244(13) 4430(12)  22(1) 

O14        −1640(17)  1526(19) 8049(16)  39(1) 

O15          3583(14)  891(13) 6084(12)  22(1) 

N1          4518(16)  1821(15) 7401(15)  19(1) 

H1N   4960  1620   8114   55 

C1          4106(18)  3321(17) 6652(17)  19(1) 
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H1   4278  3342  5695   30 

C2           5127(2)  4164(18) 6923(19)  24(1) 

H2A   6201  3688  6708   29 

H2B   4933  5141  6343   31 

C3           4866(2)  4279(19) 8349(2)  27(1) 

H3A   5492  4894  8456   36 

H3B   5189  3314  8925   34 

C4           3177(2)  4919(19) 8768(2)  28(1) 

H4A   3015  4846  9725   43 

H4B   2908  5947  8317   41 

C4A           2165(2)  4145(18) 8436(18)  22(1) 

C5           1171(2)  3530(2) 9321(18)  25(1) 

H5   1082  3616  10198   29 

C6             184(2)  2711(2) 9029(19)  27(1) 

H6A   -886  3114  9337   42 

H6B   461  1700  9524   32 

C7            318(18)  2752(18) 7591(17)  21(1) 

C8           1311(18)  3374(17) 6686(16)  18(1) 

C8A          2416(18)  4055(16) 7019(16)  18(1) 

H8A   2244  5063  6476   29 

C9          1324(17)  3494(17) 5256(16)  18(1) 

C9A            368(18)  2726(17) 4861(17)  20(1) 

C10              470(2)  2686(19) 3548(19)  24(1) 

H10   1166  3130  2905   51 
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C11             −447(2)  1998(2) 3187(2)  28(1) 

H11   −364  1955  2298   50 

C12            −1493(2) 1367(2) 4120(2)  29(1) 

H12            −2130  910  3864   40 

C13            −1600(2) 1409(2) 5427(2)  26(1) 

H13   −2313  981  6063   47 

C13A            −661(18) 2079(18) 5807(18)  21(1) 

C14           −738(19)  2080(2) 7211(19)  24(1) 

C15           4232(17)  751(16) 7019(16)  18(1) 

C16           4707(18)  −777(17) 7919(16)  18(1) 

Bond Lengths (Å) for 206 

Cl1-C16  1.782(2)  Cl2-C16  1.780(2) 

Cl3-C16  1.767(2)  O9-C9   1.221(2) 

O14-C14  1.226(2)  O15-C15  1.215(2) 

N1-H1N  0.880(2)  N1-C1   1.474(2) 

N1-C15  1.344(3)  C1-H1   1.000(2)  

C1-C2   1.532(3)  C1-C8A  1.559(2)  

C2-H2A  0.990(2)  C2-H2B  0.990(2)  

C2-C3   1.528(3)  C3-H3A  0.990(2)  

C3-H3B  0.990(2)  C3-C4   1.547(2)  

C4-H4A  0.990(2)  C4-H4B  0.990(2)  

C4-C4A  1.504(3)  C4A-C5  1.332(2)  

C4A-C8A  1.512(3)  C5-H5   0.950(2)  

C5-C6   1.499(3)  C6-H6A  0.990(2)  
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C6-H6B  0.990(2)  C6-C7   1.507(3)  

C7-C8   1.346(2)  C7-C14  1.487(3)  

C8-C8A  1.508(3)  C8-C9   1.497(2)  

C8A-H8A  1.000(1)  C9-C9A  1.492(3)  

C9A-C10  1.399(3)  C9A-C13A  1.399(2)  

C10-H10  0.950(2)  C10-C11  1.386(3)  

C11-H11  0.950(2)  C11-C12  1.396(3)  

C12-H12  0.950(2)  C12-C13  1.392(3)  

C13-H13  0.951(2)  C13-C13A  1.400(3)  

C13A-C14  1.488(3)  C15-C16  1.558(2)  

Bond angle (°) for 206 

H1N-N1-C1  119.3(2)  H1N-N1-C15  119.3(2) 

C1-N1-C15  121.4(1)  N1-C1-H1  108.8(1) 

N1-C1-C2  109.1(1)  N1-C1-C8A  112.2(1) 

H1-C1-C2  108.8(2)  H1-C1-C8A  108.8(1) 

C2-C1-C8A  109.0(1)  C1-C2-H2A  109.1(2) 

C1-C2-H2B  109.1(2)  C1-C2-C3  112.6(2) 

H2A-C2-H2B  107.8(2)  H2A-C2-C3  109.1(2) 

H2B-C2-C3  109.1(2)  C2-C3-H3A  109.4(2) 

C2-C3-H3B  109.4(2)  C2-C3-C4  111.2(2) 

H3A-C3-H3B  108.0(2)  H3A-C3-C4  109.4(2) 

H3B-C3-C4  109.4(2)  C3-C4-H4A  109.4(2) 

C3-C4-H4B  109.4(2)  C3-C4-C4A  111.1(2) 

H4A-C4-H4B  108.0(2)  H4A-C4-C4A  109.4(2) 
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H4B-C4-C4A  109.4(2)  C4-C4A-C5  123.3(2) 

C4-C4A-C8A  114.5(2)  C5-C4A-C8A  122.2(2) 

C4A-C5-H5  117.7(2)  C4A-C5-C6  124.5(2) 

H5-C5-C6  117.8(2)  C5-C6-H6A  108.9(2) 

C5-C6-H6B  108.9(2)  C5-C6-C7  113.3(2) 

H6A-C6-H6B  107.7(2)  H6A-C6-C7  108.9(2) 

H6B-C6-C7  109.0(2)  C6-C7-C8  122.6(2) 

C6-C7-C14  116.3(2)  C8-C7-C14  121.1(2) 

C7-C8-C8A  123.3(2)  C7-C8-C9  121.0(2) 

C8A-C8-C9  115.7(1)  C1-C8A-C4A  109.6(1) 

C1-C8A-C8  113.2(1)  C1-C8A-H8A  106.7(1) 

C4A-C8A-C8  113.5(1) 

Anisotropic displacement parameters (Å
2
x 10

3
) for 206. The anisotropic displacement 

factor exponent takes the form: −2π
2
[ h2a*

2
U

11
 + ... + 2 h k a* b* U

12
] 

 U
11 

 U
22 

 U
33 

 U
23 

 U
13 

 U
12

 

Cl1 24  21  28  −57  −9  −2 

Cl2 23  22  25  −3  3  −8 

Cl3 28  17  27  −10  −3  −2 

O9 23  20  23  −3  −2  −7 

O14 33  56  36  −11  10  −24 

O15 26  19  22  −5  −6  −4 

N1 20  14  24  −4  −5  −4 

C1 18  14  24  −3  −3  −5 

C2 25  17  33  −2  −9  −8 
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C3 31  19  36  −4  −15  −7 

C4 37  21  30  −11  −12  −2 

C4A 25  20  23  −8  −7  0 

C5 28  27  22  −8  −4  −1 

C6 26  31  22  −7  4  −6 

C7 17  20  23  −6  0  −2 

C8 18  15  21  −5  −2  −3 

C8A 19  14  22  −5  −4  −3 

C9 16  16  22  −5  −3  −1 

C9A 16  17  27  −7  −4  −1 

C10 23  21  28  −7  −6  −2 

C11 28  26  33  −12  −11  0 

C12 24  22  46  −13  −14  −1 

C13 17  24  41  −9  −4  −5 

C13A 15  19  29  −7  −1  −3 

C14 19  25  29  −7  2  −6 

C15 15  15  21  −4  1  −3 

C16 19  17  20  −5  −2  −5 
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Crystal data and structure refinement for 264 

  

Identification code     264 

Empirical formula      C25H21Cl3N2O3 

Formula weight      503.79  

Temperature      373(2) K  

Wavelength       0.71073 Å  

Crystal system      Monoclinic  

Space group       P21/n  

Unit cell dimensions   a = 10.4334(2) Å  α= 90 °.  

b = 10.8557(2) Å  β= 101.184(1) °.  

c = 20.1616(4) Å  γ = 90 °.  

Volume       2240.17(7) Å
3
  

Z        4  

Density (calculated)     1.494 Mg/m
3
  

Absorption coefficient     0.441 mm
−1

  

F(000)        1040 

Theta range for data collection    3.15 to 34.95 °.  

Index ranges     −16<=h<=16, −17<=k<=17, −32<=l<=32  
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Reflections collected      9822 

Independent reflections     8522 [R(int) = 0.0332]  

Completeness to theta = 34.95 °   99.9%  

Refinement method Full-matrix least-squares on F
2
 0.977 

Data / restraints / parameters     8522 / 1 / 273  

Goodness-of-fit on F2     0.977  

Final R indices [I>2sigma(I)]    R1 = 0.0332, wR2 = 0.0951  

R indices (all data)      R1 = 0.0332, wR2 = 0.0950 

Absolute structure parameter     1.029(33)  

Largest diff. peak and hole     0.64 and −0.46 e.Å
−3

 

 

Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters (Å

2
x 

10
3
) for 264. U(eq) is defined as one third of the trace of the orthogonalized U

ij
 tensor 

      X        Y      Z  U(eq.) 

Cl1  6764(3)  7692(3)  66(2)  34(1) 

Cl2  5556(2)  6025(2)  874(2)  24(1)  

Cl3  7580(2)  7684(2)  1517(2) 23(1)  

O1  6324(6)  2674(6)  9856(4) 23(1)  

O2  8102(6)  −155(6)  2578(3) 19(1)  

O3  9296(4)  6258(6)  821(5)  34(1)  

N1  6951(6)  1124(6)  1760(3) 15(1)  

N2  7846(7)  4659(7)  640(4)  18(1)  

C1  7146(8)  2206(7)  1423(4) 16(1)  

C2  8058(7)  760(7)   2231(4) 14(1)  
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C3  9139(7)  1691(7)  2219(4) 14(1)  

H3  9383   2067   2667  22(1) 

C4  8510(7)  2689(7)  1706(4) 14(1) 

H4  8435   3457   1951  23(1) 

C5  9351(7)  2930(7)  1165(4) 15(1)  

H5  10184   3286   1392  21(1) 

C6  9637(8)  1711(7)  862(4)  16(1)  

C7  10106(8)  790(7)   1280(4) 17(1)  

H7  10256   10   1120  24(1) 

C8  10380(7)  10840(7)  2026(4) 15(1)  

H8  10105   1729   2089  18(1) 

C9  9254(9)  1746(8)  101(4)  20(1) 

H9A  8832   985   −73  24(1)  

H9B  10011   1881   −103  33(1)  

C10  8298(9)  2839(8)  −40(4)  21(1) 

H10A  8317   3209   −475  31(1) 

H10B  7412   2581   −29  19(1)  

C11  8808(8)  3742(7)  539(4)  17(1) 

H11  9549   4184   419  15(1) 

C12  8168(9)  5843(8)  730(5)  23(1)  

C13  7041(9)  6750(8)  797(4)  19(1) 

C111  10941(8)  47(8)   2499(4) 17(1) 

C112  11656(9)  345(9)   3140(4) 22(1) 

H112  11774   1167   3266  29(1) 
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C113  12192(10)  −569(11)  3593(5) 27(1) 

H113  12647   −356   4022  38(1) 

C114  12046(10)  −1810(10)  3404(5) 27(1) 

H114  12407   −2425   703  35(1) 

C115  11357(9)  −2112(9)  2765(6) 25(1) 

H115  11269   −2934   2635  28(1) 

C116  10795(8)  −1193(8)  2317(5) 21(1) 

H116  10320   −1409   1894  30(1) 

C121  5751(7)  449(7)   1643(4) 15(1)  

C122  5190(7)  111(7)   2187(4) 16(1)  

H122  5582   334   2624  26(1)  

C123  4030(8)  −567(8)  2071(4) 17(1) 

H123  3652   −803   2433  24(1) 

C124  3441(8)  −890(8)  1416(5) 20(1)  

H124  2671   −1344   1339  28(1) 

C125  4004(9)  −532(9)  874(5)  23(1) 

H125  3602   −739   435  35(1)  

C126  5167(8)  133(8)   985(4)  20(1) 

H126  5548   364   624  27(1) 

H2  7090(15)  4419(15)  677(7)  27(1)  

O.3  9130(2)  6278(8)  590(2)  50(1)  

Bond length (Å) for 264 

Cl1-C13  1.7704(9)  Cl2-C13  1.771(1) 

Cl3-C13  1.7717(9)  O1-C1   1.215(1) 
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O2-C2   1.211(1)  O3-C12  1.240(5) 

N1-C1   1.392(1)  N1-C2   1.4018(9) 

N1-C121  1.430(1)  N2-C11  1.456(1) 

N2-C12  1.332(1)  N2-H2   0.85(2) 

C1-C4   1.520(1)  C2-C3   1.518(1) 

C3-H3   0.9793(8)  C3-C4   1.553(1) 

C3-C8   1.568(1)  C4-H4   0.9792(8) 

C4-C5   1.551(1)  C5-H5   0.9797(7) 

C5-C6   1.511(1)  C5-C11  1.553(1) 

C6-C7   1.338(1)  C6-C9   1.510(1) 

C7-H7   0.9302(8)  C7-C8   1.510(1) 

C8-H8   0.9800(7)  C8-C111  1.517(1)  

C9-H9A  0.9693(9)  C9-H9B  0.970(1)  

C9-C10  1.540(1)  C10-H10A  0.9691(8)  

C10-H10B  0.9704(9)  C10-C11  1.537(1) 

C11-H11  0.9794(9)  C12-C13  1.559(1)  

C111-C112  1.400(1)  C111-C116  1.396(1)  

C112-H112  0.930(1)  C112-C113  1.390(1)  

C113-H113  0.931(1)  C113-C114  1.400(2) 

C114-H114  0.930(1)  C114-C115  1.387(1) 

C115-H115  0.929(1)  C115-C116  1.397(1) 

C116-H116  0.9292(9)  C121-C122  1.389(1)  

C121-C126  1.390(1)  C122-H122  0.9292(7)  

C122-C123  1.396(1)  C123-H123  0.9309(9) 
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C123-C124  1.389(1)  C124-H124  0.9298(8) 

C124-C125  1.392(1)  C125-H125  0.9304(9) 

C125-C126  1.392(1)  C126-H126  0.9293(9) 

Bond Angle (°) for 264 

C1-N1-C2  112.9(6)  C1-N1-C121  123.9(6) 

C2-N1-C121  123.2(6)  C11-N2-C12  121.1(8) 

C11-N2-H2  119.0(1)  C12-N2-H2  120.0(1) 

O1-C1-N1  123.9(8)  O1-C1-C4  127.3(7) 

N1-C1-C4  108.8(6)  O2-C2-N1  123.8(7) 

O2-C2-C3  127.6(7)  N1-C2-C3  108.6(6) 

C2-C3-H3  108.9(7)  C2-C3-C4  104.8(6) 

C2-C3-C8  112.1(6)  H3-C3-C4  108.9(7) 

H3-C3-C8  108.9(7)  C4-C3-C8  113.1(6) 

C1-C4-C3  104.7(6)  C1-C4-H4  108.9(7) 

C1-C4-C5  114.2(6)  C3-C4-H4  108.9(7) 

C3-C4-C5  111.3(6)  H4-C4-C5  108.8(7) 

C4-C5-H5  108.0(7)  C4-C5-C6  108.6(6) 

C4-C5-C11  120.0(6)  H5-C5-C6  107.9(7) 

H5-C5-C11  107.9(7)  C6-C5-C11  103.8(6) 

C5-C6-C7  118.5(7)  C5-C6-C9  110.7(7) 

C7-C6-C9  130.7(8)  C6-C7-H7  121.8(8) 

C6-C7-C8  116.4(7)  H7-C7-C8  121.8(8) 

C3-C8-C7  109.2(6)  C3-C8-H8  105.7(7) 

C3-C8-C111  113.2(6)  C7-C8-H8  105.8(7) 
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C7-C8-C111  116.4(7)  H8-C8-C111  105.7(7) 

C6-C9-H9A  111.0(8)  C6-C9-H9B  111.0(8) 

C6-C9-C10  103.9(7)  H9A-C9-H9B  109.0(8) 

H9A-C9-C10  111.0(8)  H9B-C9-C10  111.0(8) 

C9-C10-H10A  111.1(8)  C9-C10-H10B  111.1(8) 

C9-C10-C11  103.6(7)  H10A-C10-H10B 109.0(8) 

H10A-C10-C11 111.0(8)  H10B-C10-C11 111.0(8) 

N2-C11-C5  115.3(7)  N2-C11-C10  113.3(7) 

N2-C11-H11  107.3(7)  C5-C11-C10  105.8(6) 

C5-C11-H11  107.3(7)  C10-C11-H11  107.4(7) 

O3-C12-N2  125.3(3)  O3-C12-C13  117.9(3) 

N2-C12-C13  116.5(8)  Cl1-C13-Cl2  109.0(5) 

Cl1-C13-Cl3  109.0(5)  Cl1-C13-C12  107.3(6) 

Cl2-C13-Cl3  109.1(5)  Cl2-C13-C12  114.5(6) 

Cl3-C13-C12  107.9(6)  C8C111-C112  118.7(7) 

C8-C111-C116 122.8(7)  C112-C111-C116 118.5(8) 

C111-C112-H112 119.5(9)  C111-C112-C113 121.1(9) 

H112-C112-C113 119.4(9)  C112-C113-H113 120.1(1) 

C112-C113-C114 119.9(1)  H113-C113-C114 120.1(1) 

C113-C114-H114 120.4(1)  C113-C114-C115 119.4(1) 

H114-C114-C115 120.3(1)  C114-C115-H115 119.7(1) 

C114-C115-C116 120.6(9)  H115-C115-C116 119.8(1) 

C111-C116-C115 120.5(8)  C111-C116-H116 119.7(9) 

C115-C116-H116 119.7(9)  N1-C121-C122 119.6(7) 
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N1-C121-C126 119.5(7)  C122-C121-C126 120.9(7) 

C121-C122-H122 120.3(8)  C121-C122-C123 119.4(7) 

H122-C122-C123 120.3(8)  C122-C123-H123 119.9(8) 

C122-C123-C124 120.1(8)  H123-C123-C124 120.0(8) 

C123-C124-H124 120.1(9)  C123-C124-C125 120.0(8) 

H124-C124-C125 120.0(9)  C124-C125-H125 119.9(9) 

C124-C125-C126 120.4(9)  H125-C125-C126 119.8(9) 

C121-C126-C125 119.3(8)  C121-C126-H126 120.4(8) 

C125-C126-H126 120.4(9) 

Anisotropic displacement parameters (Å
2
x 10

3
) for 264. 

  U
11

  U
22

  U
33

  U
23

  U
13

  U
12

 

Cl1 54  29  20  7  11  11 

Cl2 17  26  30  −5  5  0 

Cl3 26  22  22  −1  5  -5 

O1 15  20  30  8  −1  −2 

O2 17  19  21  5  4  0 

O3 20  20  65  −7  13  −5 

N1 12  14  17  1  3  −2 

N2 16  14  23  1  5  0 

C1 13  14  20  0  4  −1 

C2 13  15  15  −1  4  0 

C3 13  14  15  −1  3  −1 

C4 13  13  17  −1  3  −1 

C5 14  13  17  −1  4  −1 
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C6 16  16  17  −2  4  1 

C7 17  16  18  −1  5  2 

C8 13  15  17  1  4  1 

C9 24  19  16  −2  4  3 

C10 24  19  18  −1  1  3 

C11 17  14  18  1  4  1 

C12 23  14  35  2  12  1 

C13 22  16  21  2  7  2 

C111 14  17  20  3  5  2 

C112 22  24  19  1  4  7 

C113 28  35  18  5  6  12 

C114 26  30  28  13  12  10 

C115 21  18  38  8  11  1 

C116 16  17  29  3  5  −1 

C121 12  14  18  0  4  −1 

C122 14  16  17  1  4  1 

C123 15  18  20  3  6  −1 

C124 16  21  23  1  4  −5 

C125 21  28  19  −2  3  −10 

C126 19  23  18  −2  5  −7 

O3A 38  15  109  5  46  0 
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Crystal data and structure refinement for 312 

 

Identification code       312 

Empirical formula      C20H20Cl3NO3 

Formula weight      428.72  

Temperature      373(2) K  

Wavelength       0.71073 Å  

Crystal system      Triclinic  

Space group       P-1  

Unit cell dimensions   a = 9.5784(4) Å  α= 73.870 (2) °.  

b = 12.4773(5) Å  β= 78.263(2) °.  

c = 17.9818(8) Å  γ = 77.712(2) °.  

Volume       1993.18(15) Å
3
  

Z        4  

Density (calculated)     1.429 Mg/m
3 

 

Absorption coefficient     0.48 mm
−1

  

F(000)        88 

Theta range for data collection    1.193 to 29.998 °.  

Index ranges     −13<=h<=13, −17<=k<=17, −25<=l<=25  
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Reflections collected      11347 

Independent reflections     10988 [R(int) = 0.066]  

Completeness to theta = 29.95°   99.8%  

Refinement method Full-matrix least-squares on F
2
 0.991 

Data / restraints / parameters     11347 / 0 / 539  

Goodness-of-fit on F2     1.033  

Final R indices [I>2sigma(I)]    R1 = 0.0697, wR2 = 0.1541  

R indices (all data)      R1 = 0.0544, wR2 = 0.146 

Absolute structure parameter     1.033  

Largest diff. peak and hole     1.35 and -0.632 e.Å
−3

 

Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters (Å

2
x 

10
3
) for 312. U(eq) is defined as one third of the trace of the orthogonalized U

ij
 tensor 

        X      Y        Z   Ueq. 

Cl10   847(6)  6965(6)  3493(3)  35(1) 

Cl11   −262(6) 8088(5)  2057(3)  36(1) 

Cl12   −535(6) 5736(5)  2777(3)  37(1) 

O10   2195(19) 3998(13)  1789(9)  33(1) 

O11   490(15) 3204(12)  −555(8)  26(1) 

O12   3142(16) 6019(15)  2452(9)  34(1) 

N114   2043(17) 6423(14)  1379(9)  21(1) 

H114   1240(3) 6590(2)  1213(14)  23(1) 

C100   3346(2) 5937(17)  906(11)  21(1) 

H100   3820  5230   1245   24(1) 

C101   4415(2) 6777(19)  608(13)  27(1) 
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H10A   4546  7058   1049   32(1) 

H10B   5366  6386   401   40(1) 

C102   3875(2) 7771(19)  −32(14)  30(1) 

H10C   4549  8324   −192   31(1) 

H10D   2914  8154   169   39(1) 

C103   3764(2) 7356(18)  −737(13)  29(1) 

H10E   3232  7978   −1103   42(1) 

H10F   4750  7159   −1016   41(1) 

C104   3006(2) 6333(16)  −519(11)  23(1) 

C105   2474(2) 6075(18)  −1108(11)  25(1) 

H105   2552  6564   −1619   32(1) 

C106   1838(2) 5126(17)  −962(11)  23(1) 

H106   1459  4977   −1365   35(1) 

C107   1758(19) 4388(16)  −216(11)  19(1) 

C108   1216(2) 3308(16)  −97(11)  20(1) 

C109   1641(2) 2351(16)  575(11)  21(1) 

C110   2044(2) 2628(17)  1163(11)  23(1) 

H110   2284  2035   1603   28(1) 

C111   2139(2) 3799(16)  1169(11)  21(1) 

C112   2244(19) 4645(16)  392(10)  19(1) 

C113   2856(19) 5627(16)  249(11)  20(1) 

C115   2080(2) 6362(17)  2130(11)  23(1) 

C116   594(2)  6766(18)  2601(11)  23(1) 

C117   1568(2) 1143(17)  573(12)  24(1) 
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C118   2369(3) 907(19)  −217(13)  31(1) 

H11A   1898  1431   −645   46(1) 

H11B   2341  127   −219   33(1) 

H11C   3377  1012   −288   35(1) 

C119   −29(2)  989(2)   701(15)  34(1) 

H11D   −527  1166   1196   41(1) 

H11E   −73  204   720   40(1) 

H11F   −501  1498   268   39(1) 

C120   2302(3) 286(18)  1231(14)  31(1) 

H12A   3308  391   1171   48(1) 

H12B   2280  −483   1203   32(1) 

H12C   1787  403   1739   30(1) 

Bond-length (Å) for 312  

Cl10-C116  1.760(2)  Cl11-C116  1.789(2) 

Cl12-C116  1.774(2)  O10-C111  1.221(3) 

O11-C108  1.228(3)  O12-C115  1.212(3) 

N114-H114  0.85(3)   N114-C100  1.477(2) 

N114-C115  1.338(3)  C100-H100  1.000(2) 

C100-C101  1.535(3)  C100-C113  1.524(3) 

C101-H10A  0.990(3)  C101-H10B  0.990(2) 

C101-C102  1.519(3)  C102-H10C  0.990(2) 

C102-H10D  0.990(2)  C102-C103  1.527(4) 

C103-H10E  0.990(2)  C103-H10F  0.990(2) 

C103-C104  1.520(3)  C104-C105  1.402(3) 
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C104-C113  1.414(2)  C105-H105  0.950(2) 

C105-C106  1.382(3)  C106-H106  0.950(2) 

C106-C107  1.397(2)  C107-C108  1.492(3) 

C107-C112  1.408(3)  C108-C109  1.498(2) 

C109-C110  1.345(3)  C109-C117  1.525(3) 

C110-H110  0.951(2)  C110-C111  1.486(3) 

C111-C112  1.499(2)  C112-C113  1.408(3) 

C115-C116  1.562(2)  C117-C118  1.545(3) 

C117-C119  1.545(3)  C117-C120  1.534(3) 

C118-H11A  0.980(2)  C118-H11B  0.980(3) 

C118-H11C  0.980(3)  C119-H11D  0.980(3) 

C119-H11E  0.980(3)  C119-H11F  0.980(2) 

C120-H12A  0.980(3)  C120-H12B  0.979(2) 

C120-H12C  0.979(2)  

Bond angle (°) for 312 

H114-N114-C100 120(2)  H114-N114-C115  120(2) 

C100-N114-C115 119.0(2) N114-C100-H100  108.6(2) 

N114-C100-C101 109.9(2) N114-C100-C113  107.7(2) 

H100-C100-C101 108.7(2) H100-C100-C113  108.6(2) 

C101-C100-C113 113.3(2) C100-C101-H10A  109.5(2) 

C100-C101-H10B 109.4(2) C100-C101-C102  111.1(2) 

H10A-C101-H10B 108.0(2) H10A-C101-C102  109.4(2) 

H10B-C101-C102 109.4(2) C101-C102-H10C  109.7(2) 

C101-C102-H10D 109.7(2) C101-C102-C103  109.8(2) 
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H10C-C102-H10D 108.2(2) H10C-C102-C103  109.7(2) 

H10D-C102-C103 109.6(2) C102-C103-H10E  108.9(2) 

C102-C103-H10F 108.9(2) C102-C103-C104  113.4(2) 

H10E-C103-H10F 107.7(2) H10E-C103-C104  108.9(2) 

H10F-C103-C104 108.9(2) C103-C104-C105  118.2(2) 

C103-C104-C113 122.2(2) C105-C104-C113  119.5(2) 

C104-C105-H105 119.2(2) C104-C105-C106  121.5(2) 

H105-C105-C106 119.3(2) C105-C106-H106  120.3(2) 

C105-C106-C107 119.4(2) H106-C106-C107  120.3(2) 

C106-C107-C108 118.4(2) C106-C107-C112  120.2(2) 

C108-C107-C112 121.4(2) O11-C108-C107  120.5(2) 

O11-C108-C109 121.8(2) C107-C108-C109  117.7(2) 

C108-C109-C110 116.6(2) C108-C109-C117  119.7(2) 

C110-C109-C117 123.7(2) C109-C110-H110  117.8(2) 

C109-C110-C111 124.4(2) H110-C110-C111  117.8(2) 

O10-C111-C110 118.9(2) O10-C111-C112  124.4(2) 

C110-C111-C112 116.6(2) C107-C112-C111  116.6(2) 

C107-C112-C113 120.3(2) C111-C112-C113  123.0(2) 

C100-C113-C104 120.1(2) C100-C113-C112  121.0(2) 

C104-C113-C112 118.9(2) O12-C115-N114  125.4(2) 

O12-C115-C116 120.0(2) N114-C115-C116  114.6(2) 

Cl10-C116-Cl11 107.8(1) Cl10-C116-Cl12  110.4(1) 

Cl10-C116-C115 110.2(1) Cl11-C116-Cl12  109.2(1) 

Cl11-C116-C115 110.4(1) Cl12-C116-C115  108.9(1) 



233 
 
C109-C117-C118 109.0(2) C109-C117-C119  109.6(2) 

C109-C117-C120 111.0(2) C118-C117-C119  110.7(2) 

C118-C117-C120 108.1(2) C119-C117-C120  108.4(2) 

C117-C118-H11A 109.5(2) C117-C118-H11B  109.5(2) 

C117-C118-H11C 109.5(2) H11A-C118-H11B  109.4(2) 

H11A-C118-H11C 109.5(2) H11B-C118-H11C  109.4(2) 

C117-C119-H11D 109.5(2) C117-C119-H11E  109.5(2) 

C117-C119-H11F 109.5(2) H11D-C119-H11E  109.4(2) 

H11D-C119-H11F 109.5(2) H11E-C119-H11F  109.5(2) 

C117-C120-H12A 109.5(2) C117-C120-H12B  109.5(2) 

C117-C120-H12C 109.4(2) H12A-C120-H12B  109.5(2) 

H12A-C120-H12C 109.5(2) H12B-C120-H12C  109.5(2) 

Anisotropic displacement parameters (Å
2
x 10

3
) for 312. 

 U
11

  U
22

  U
33

  U
23

  U
13

  U
12

 

Cl10 32  59  22  −17  −2  −18 

Cl11 31  40  30  −9  −1  6 

Cl12 31  49  39  −18  6  −24 

O10 48  32  23  −7  −10  −8 

O11 25  28  27  −7  −11  −4 

O12 23  54  28  −10  −11  −5 

N114 15  28  21  −10  −5  −1 

C100 16  26  24  −9  −5  0 

C101 17  34  34  −14  −2  −5 

C102 23  29  39  −12  0  −8 
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C103 26  28  30  −4  −1  −8 

C104 21  22  23  −5  −1  −3 

C105 28  28  18  −4  −2  −4 

C106 24  25  19  −6  −6  −1 

C107 16  22  19  −5  −3  −1 

C108 17  23  21  −7  −4  −1 

C109 18  23  22  −5  −5  −3 

C110 23  24  21  −4  −6  −3 

C111 20  23  21  −4  −5  −2 

C112 16  22  18  −5  −3  0 

C113 16  22  20  −7  −3  0 

C115 21  28  21  −6  −4  −8 

C116 21  33  18  −7  −2  −10 

C117 24  23  27  −5  −9  −3 

C118 35  27  33  −11  −10  0 

C119 30  31  42  −3  −12  −12 

C120 38  23  34  −1  −15  −4 

 

 


