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Abstract
School of Mathematics and Statistics

Doctor of Philosophy

by Daniel Alberto Molinari

Spatiotemporal data have become very common, particularly through environmen-

tal settings where a spatial array of sampling sites generates data over time. This

thesis deals with a specific spatio-temporal setting of groundwater contamination

and aims to construct suitable statistical models. One of the motivating features

of the application is that the model has to be implemented in an unsupervised

manner and there is a high premium on the results being available very quickly,

with a response time of a few seconds only.

Many routes to spatiotemporal models are possible, but in order to achieve the

aims outlined above we have proposed a model based on P-splines. A Bayesian

approach to fitting is used to provide the stability required in an unsupervised

setting. The speed requirement makes computationally intensive methods such

as MCMC unsuitable for the determination of the optimal penalisation parameter

and so conjugate priors and highly efficient methods of linear algebra have been

brought to bear.

Use of the model identified a problematic issue due to the irregular spatio-temporal

design of some data sets, giving rise to cases of “ballooning”, where unexpectedly

high predictions, not supported by the observations, can appear. This matter

was also tackled within the Bayesian framework mentioned above. The proposed

procedures were assessed both by means of a simulation study and on real data.

Finally, as an extension of the proposed methodology, we address the issue of

non-detects, namely observations which are known only to lie below some limit of

detection. The task is accomplished using a Laplace-type approximation to the
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posterior distribution of the parameters and the suitability of this approximation

is analysed through examples.

The problems addressed in the thesis are motivated by the need to ensure environ-

mental quality in and around installations operated by the multinational company

Shell. The assistance of Shell in advising on the context of the issues, and in pro-

viding data sets for case studies, is much appreciated.
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Chapter 1

Introduction

Spatiotemporal data have become ubiquitous. In some settings this has been

driven by the development of affordable technology for data collection where spa-

tially located networks of sensors collect data over time. In environmental moni-

toring multiple sensors are routinely used to gather data over time, in air, water

or land settings. Brain imaging using EEG (electro-encephalography) or MEG

(magneto-encephalography) is another example where around 200 sensors each

record brain signals at very high time resolution, generating large volumes of

data. In many scientific contexts, measurements are increasingly made automati-

cally, leading to high resolution data with a strong degree of regularity, while on

other occasions visits to sites of interest by trained personnel may be required,

leading to sparser and more irregular data patterns.

Models for the analysis and interpretation of spatiotemporal data have developed

rapidly to match the demands of the data now available and the underlying ques-

tions. Sometimes prediction is the aim while on other occasions interest can be

directed at assessing the mean levels of the measurement and evidence for change

over time. Banerjee et al. (2004), Finkenstädt et al. (2007) and Cressie and Wikle

(2011) provide excellent entry points to the large literature on spatiotemporal

modelling, with the last book very helpfully giving coverage of modern hierarchi-

cal and dynamic methods in both breadth and depth. These models are usually

implemented in a Bayesian setting. In the wider literature, a unifying theme is

the expectation that the spatial and temporal patterns exhibited will not follow

simple parametric forms, so that models which can express flexible, but generally

1



Chapter 1. Introduction 2

smooth, shapes are required. One approach is to apply flexible forms of regression,

described for example by Wood (2006), in the spatiotemporal setting. Bowman

et al. (2009) take this approach to the modelling of sulphur dioxide over Europe

throughout the 1990’s. P-splines, described by Eilers and Marx (1996), and more

general regression splines, offer a very interesting approach through the use of

relatively low-dimensional sets of basis functions and Lee and Durbán (2011) ap-

ply this to the spatiotemporal modelling of ozone over Europe. The formulation

of P-splines offers an interpretation in terms of mixed effects and Ruppert et al.

(2003) showed the wide range of settings to which these models can be applied

when the random effect interpretation is appropriate. A fully Bayesian P-splines

model was introduced by Lang and Brezger (2004), with inference carried out

by MCMC. Fahrmeir et al. (2004) adopted a model of this type in the specific

setting of spatiotemporal data, with an empirical Bayes approach which returns

again to a mixed-model representation. Brezger and Lang (2006) provided a wider

range of models and efficient updating schemes while Brezger and Lang (2008) dis-

cussed simultaneous probability statements for Bayesian p-spline models, again in

the context of MCMC implemetation. More recently, Wood (2011) explored the

REML approach in detail and developed a fast implementation in a generalised

linear modelling framework.

The context of the application discussed in this work is the monitoring of con-

tamination in groundwater. It is clearly important to assess water quality and its

associated risks to human health and the wider environment, and in particular

to detect sudden increases in contaminant concentration due to possible releases.

The contaminants in the groundwater are measured using water samples collected

from wells and sent for subsequent lab analysis. The practicalities and cost of

this inevitably lead to irregularity in time and also in space, even when operating

within a fixed set of sampling locations determined by the well positions. The

data collection and assessment activity is generally undertaken by staff who have

science or engineering background, but may not have had advanced training in

statistical methods. However it is impractical that results should always be re-

ferred back to others for statistical analysis and so there is a practical need for

statistical tools that can be implemented easily and robustly as a routine part of

the work of those environmental professionals. The analysis therefore needs to

be fully automatic and to be fast to carry out in an unsupervised setting, but
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also to produce results which are reliable, informative, and aid robust project

decision-making.

The aim of the present research is to address these issues. In order to allow the

construction of flexible models over space and time, P-splines are used because of

their ability to provide compact representations and to express smoothness control

in simple forms, as described in chapter 2. A fully Bayesian spatiotemporal model

is introduced in chapter 3 using conjugate priors to avoid the need for MCMC im-

plementation. In particular, the issue of selecting the degree of smoothness in the

model is also addressed in order to produce a fully automatic procedure. A focus

will be on issues of “ballooning”, where predictions can be high in areas where

there is no data, and this is identified and addressed by appropriate choices of the

number of basis functions and the type of smoothness penalty used. The need

for speed is addressed through matrix decompositions which enable the parameter

which controls smoothness to be separated out from the computationally intensive

parts of the calculation.

In order to assess the practical effectiveness of the approach proposed, a simulation

study is performed in chapter 4. A comparison with other model selection criteria

shows that very good results can be achieved following our fully Bayesian model.

Chapter 5 discusses the same topics working on real cases provided by Shell. The

strategy proposed for dealing with the issue of ballooning is also shown to be

effective in the cases under analysis.

An extension of our Bayesian model is studied in Chapter 6 in order to deal with

non-detect data, i.e. data for which it is only known to be below a certain detection

limit. The basic idea consists of trying to approximate the posterior distribution

of the parameters by using a Laplace-type approximation approach.

An overall discussion of the present work, in which possible future developments

are suggested, is the matter of the last chapter 7.
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To finish, it should be stated that much of this research has led to a manuscript

(see Bowman et al., 2013) submitted for publication. In particular, the work

described in chapter 4 is based on data published in the aforementioned paper.



Chapter 2

Theoretical Framework

2.1 Non-parametric regression methods

Given a set of observations (xi, yi) =
(

(xi1, . . . , xim) , yi
)
i = 1, . . . , n, the

objective of regression methods is to model the response variable yi as a function

of the predictors xi, allowing point and interval predictions for future values of the

covariates x as well as for the unknown fixed parameters involved in the model.

In general these models have the form

yi = f(xi) + εi (2.1)

where f(xi) represents the deterministic relationship between predictors and re-

sponse. The uncertainty due to random variation is accounted for by εi with the

assumptions E(εi) = 0,V ar(εi) = σ2 and mutual independence.

Parametric approaches proceed by proposing a known form for the function f(x)

which traditionally is linear in the unknown parameters. In this case their esti-

mation is carried out using methods such as least squares. Likelihood inference

requires an additional assumption on the distribution of the random vector of er-

rors. Generally it is assumed that ε ∼ Nn(0, Σ) where Σ ∈ Rn×n is a positive

definite covariance matrix (typically Σ = σ2In).

5
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But if these fairly strong assumptions fail, predictions, estimations and their as-

sociated degrees of certainty can be unrealistic and misleading. A more general

approach relaxes the conditions on f(x) by simply requiring it to be a smooth

function. Typical smoothing regression techniques such as local linear regression

rely on the estimation of a non-parametric smooth density or kernel function.

We will describe briefly such technique and mention some drawbacks associated

with non-parametric smoothing. A short account on a commonly used model in

the spatio-temporal context called kriging will follow. Finally, we will address a

particular smoothing regression approach known as splines, on which most of the

present work relies on.

2.2 Kernel density estimation

Statistical inference aims at inferring something about the underlying process

which generated a given set of data x1, . . . , xn.

The traditional approach is to assume that these observations follow a known

parametric density, whose parameters need to be estimated on the basis of the

available data.

Non-parametric smoothing methods are a more general although generally less

powerful approach which simply impose a smooth pattern to the underlying den-

sity function. The starting point is to construct a suitable density function by

“smoothing out” the histogram built from the given data.

By considering the definition of a (continuous) probability density function for a

random variable X

ϕ(x) = lim
h→0

1

2h
P (x− h < X < x+ h)
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we can construct the approximate density function based on the observed data

x1, . . . , xn as

ϕ̂(x) =
1

n

n∑
i=1

1

h

I
{ |x−xi|

h
< 1
}

2
=

1

n

n∑
i=1

1

h
K
( |x− xi|

h

)
=

1

n

n∑
i=1

w(x− xi, h) (2.2)

The function K(x) is known as the kernel function. In this case, it corresponds to

K(x) = 1
2
I{|x| < 1} but as a generalization any (generally symmetric) probability

density function can be used. Table 2.1 lists some typical kernel functions.

Kernel function K(x)

Epanechnikov
3

4
√

5

(
1− x2

5

)
I{|x| <

√
5}

Biweight
15

16

(
1− x2

)2
I{|x| < 1}

Triweight
35

32

(
1− x2

)3
I{|x| < 1}

Triangular (1− |x|) I{|x| < 1}

Gaussian
1√
2π

exp

(
−x

2

2

)

Rectangular
1

2
I{|x| < 1}

Table 2.1: Some typical kernel functions

The graphical representation of ϕ̂(x) provides a more realistic idea of the distri-

bution of the data than that of an assumed parametric density. We can tell for
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instance whether it presents multimodality, skewness or heavy tails. This density

representation becomes more accurate as h decreases and n increases jointly.

Nevertheless, it should be noticed that the smoothness of ϕ̂(x) is determined by

the smoothing parameter h which reflects the unavoidable tradeoff between bias

and variance. A small value of h will yield an undersmoothed density function

with a low bias but high variance. Conversely, a large value of h will produce

an oversmoothed curve with low variance but large bias. In the first case, the

resulting density will be too “bumpy” whereas in the second it will be too smooth.

Whereas the the kernel function adopted does not have a great impact on the

efficiency, the choice of the optimal value of h is a matter of crucial interest and

it is tackled using elements of asymptotical theory (see e.g. Silverman, 1986, for

details).

Simonoff (1996) points out some weak points of kernel density estimation and

therefore source of potential problems when used in non-parametric smoothing.

Firstly, it is prone to boundary bias when the domain of the data is not unbounded.

This is typically the case when the data are non-negative. In this case the kernel

formulation may produce values biased downward near the origin.

Secondly, ordinary kernel estimation does not allow for different levels of smooth-

ing at different points of the domain, as the smoothing parameter h is unique.

Nevertheless, equation (2.2) can be generalised by allowing larger values of the

smoothing parameter for regions with a low density of points and smaller values

of h otherwise.

Finally, the bias of the kernel estimator often tends to flatten peaks and valleys

of the density.
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2.3 Local linear regression

The function w(x− xi, h) = 1
h
K
(
x−xi
h

)
is generally referred to as the weight func-

tion and is central in the context of flexible regression. The underlying idea is

that closer points should be more alike and hence ought to be given higher weights.

The idea is to fit locally a proposed function f(x).

Local linear regression proceeds by solving the least squares problem

min
α, β

n∑
i=1

{
yi − α− β(x− xi)

}2
w(x− xi, h)

and taking f̂(x) = α̂(x). The local linear approach can be easily extended to two

dimensions. Typically, this is the case when the response variable yi is defined

over geographical coordinates (x1i, x2i) i = 1, . . . , n. Here the weighted least

squares objective function to be fitted is

min
α, β, γ

n∑
i=1

{
yi − α− β(x1 − x1i)− γ(x2 − x2i)

}2
w(x1 − x1i, h1)w(x2 − x2i, h2)

and again α̂(x1, x2) is taken to be the value of the fitted surface at (x1, x2).

2.4 Kriging

Given n observations over space and time Y (si, tij) si ∈ R2, tij ∈ R i = 1, . . . , I,

j = 1, . . . , Ti with n =
∑I

i=1 Ti, the kriging method proposes the model
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Y (si, tij) = Z(si, tij) + ε(si, tij) with K = V ar(Y ) = ΣZ + σ2In

(2.3)

where ΣZ(s1, s2, t1, t2) = Cov (Z(s1, t1), Z(s2, t2)) corresponds to a (semi) pos-

itive definite spatio-temporal covariance matrix and ε represents the vector mea-

surement errors such that E(ε) = 0n and Cov(ε) = σ2In with Z and ε indepen-

dent.

Distances in space and distances in time should be treated differently in the spatio-

temporal covariance matrix ΣZ . Cressie and Wikle (2011) suggest examples of

possible structures for such matrices.

The objective is to predict η = Y (s0, t0) for a given spatio-temporal location

(s0, t0) ∈ R3. Simple kriging proceeds by assuming that

µ(s, t) = E (Z(s, t)) (2.4)

is known ∀ s, t. Let us call

k0 = Cov (Y , Y (s0, t0)) (2.5)

c0 = V ar (Y (s0, t0)) (2.6)

If Z(s, t) and ε(s, t) are assumed to be Gaussian processes then it holds that

(
Y

Y (s0, t0)

)
∼ Nn+1

((
µ

µ(s0, t0)

)
,

(
K k0

k′0 c0

))
(2.7)

where µ = E (Z + ε) = E (Y ) is the vector of known expectations of the observed

values. Under these premises
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Y (s0, t0)|Y ∼ N
(
µ(s0, t0) + k′0K

−1(y − µ), c0 − k′0K−1k0

)
(2.8)

A sensible choice for η̂(Y ), the estimator of η = Y (s0, t0), is the statistic min-

imising MSE(η̂) = E
(
(η̂ − η)2

)
. It can be shown (see e.g. Diggle and Ribeiro,

2007) that such estimator is η̂ = η̂(Y ) = E (η|Y ). Therefore, taking into account

(2.8)

η̂ = µ(s0, t0) + k′0K
−1(y − µ) (2.9)

and V ar (η̂) = c0 − k′0K−1k0 (2.10)

Ordinary kriging is a more general approach which assumes that µ(s, t) =

E (Z(s, t)) = µ is constant but unknown. Cressie and Wikle (2011) show that

the generalised-least squares estimator of µ is µ̂ =
1′K−1Y

1′K−11
where 1 ∈ Rn is a

vector of ones. In this case, η̂ is obtained by replacing µ(s, t) by its estimator µ̂

in (2.9)

η̂ = µ̂+ k′0K
−1(Y − µ̂1) (2.11)

We shall only mention that the predictor η̂ can be derived under even more general

conditions, assuming that µ is a linear combination of covariates. This approach

is known as universal kriging (see e.g. Cressie, 1993, for details).

A noticeable drawback of kriging is that the estimations require the inversion of

the n× n matrix K which may be very time consuming. If Ti = T ∀ i, a more

efficient computation results under the assumption of separability of space and

time when modelling K. If we consider that the covariance matrix can be written

as

K = K(s) ⊗K(t)
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where ⊗ indicates the Kronecker product, K(s) is an I × I covariance matrix of

purely spatial covariances andK(t) is a T×T covariance matrix of purely temporal

covariances then

K−1 =
(
K(s)

)−1

⊗
(
K(t)

)−1

then the computation of K−1 involves inverting matrices of dimension I × I and

T × T which are much smaller than IT × IT .

2.5 P-splines

2.5.1 Introduction

Splines come from the field of numerical analysis. They were initially used for

constructing smooth interpolating functions. Splines consist of piecewise polyno-

mials connected by points called knots. There are two different types of smoothing

techniques using splines (see e.g. Durbán, 2009)

• Regression splines: In these models it is necessary to select the number

and location of the knots in such a way that the smoothness of the fitted

function can be adjusted. Additionally, restrictions must be imposed leading

to a smooth connection between the adjacent polynomial pieces. The model

is then fitted using least squares.

• Smoothing splines: They arise as the solution to a non-parametric regres-

sion problem in which it is desired to find a function (with two continuous

derivatives) minimising the penalised sum of squares:

PSS =
n∑
i=1

(
yi − f (xi)

)2
+ λ

∫
x

(
f ′′ (x)

)2

dx

where the last term represents a penalisation on the second derivative of the

curve and λ is the smoothing parameter controlling the smoothness of such
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curve. If λ = 0 the smoothing spline reduces to an interpolation function

whereas, if λ → ∞, the second derivative is constrained to tend to zero,

yielding an estimator which approaches a linear fit.

It should be mentioned that according to the Representer Theorem, the solution

to a smoothing spline is a regression spline with knots at every observation (see

e.g. Hastie et al., 2009).

However, both techniques present some drawbacks. The smoothness of the fitted

function in the regression splines depends on the choice of the knots and involves

using somewhat awkward algorithms which are difficult to extend to the multidi-

mensional case. As for the smoothing splines, the issues are of a computational

nature, as they use as many knots as the number of observations.

Penalised splines or P-splines, introduced by Eilers and Marx (1992, 1996,

2010), are a trade-off between both techniques combining the best of these ap-

proaches. This approach to smoothing has become widely spread because of its

simple representation of the function of interest.

P-splines use fewer parameters than smoothing splines, but the choice of the knots

is not as significant as for regression splines. P-splines use a number of knots which

is far smaller than the dimensionality of the data and they are computationally

efficient in particular when the sample size is very large. In addition, the use of

the penalisation relaxes the importance of the choice and location of the knots.

Essentially, the methodology of P-splines is based on

(a) Adopting a convenient basis of functions for the regression,

(b) Modification of the likelihood function by introducing a penalisation based

on the differences of adjacent coefficients.
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2.5.2 The P-spline approach

For a given set of pairs (xi, yi) i = 1, . . . , n of response-covariates points, we can

describe their dependence by means of a model yi = f(xi)+εi where εi ∼ N (0, σ2)

and f(x) describes a non-parametric regression function whose shape is largely

unconstrained. It is important to underline that this approach should only be

used to fit data which do not present abrupt changes in the signal.

A convenient representation for the non-parametric smooth regression function

f(x) is a linear combination of a conveniently chosen set of basis functions bj(x)

as f(x) =
∑m

j=1 αjbj(x). By modifying the values of the coefficients αj a huge

range of smooth functions can be created.

In more detail, let us suppose we are given n points (xi, yi) and we consider the

regression model

Y = f(x) + ε = B(x)α + ε where ε ∼ Nn
(
0, σ2In

)
(2.12)

B = B(x) is a n×m matrix of the form

B =



b1(x1) · · · bj(x1) · · · bm(x1)

b1(x2) · · · bj(x2) · · · bm(x2)
... · · · ... · · · ...

b1(xi) · · · bj(xi) · · · bm(xi)
... · · · ... · · · ...

b1(xn) · · · bj(xn) · · · bm(xn)



where the bj(x) j = 1, . . . m represent the m functions making up the basis and

α is an m-dimensional vector of parameters to be estimated.

Although the functions bj(x) may be computed in several different ways, the typical

choice falls upon B-splines, as they are generally more stable than other bases

and they can be efficiently constructed from polynomial pieces.
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• A B-spline of order p consists of p+ 1 pieces of a polynomial of order p,

• These pieces are connected by p internal knots,

• The derivatives up to the order p− 1 are continuous on these knots,

• The B-spline is positive in the domain spanned by p+2 knots and 0 otherwise,

• Except on the extremes, it overlaps with 2p pieces of the polynomials on its

neighborhood and

• For each value of x, there are p+ 1 splines which are not null at x.

Usually B-splines of order p = 3 are considered. All these 3-order polynomials

have the same shape but they are horizontally shifted. This shifting depends on

the distance between knots. Figure 2.1 depicts this situation for a B-spline of

order 3. Each function in the basis is made up of 4 pieces of polynomials of order

3 connected by 3 internal knots. As mentioned, the choice and location of the

knots is not determined in advance as happens with smoothing splines. It suffices

to take a sensible large number (> 20, for instance) of equidistant knots.

2.5.3 Penalisation

If, for a given basis B, we use least squares to fit the model, the objective function

to be minimised is

S (α) = ‖y −Bα‖2 = (y −Bα)′ (y −Bα)

yielding α̂ = (B′B)
−1
B′y and hence the fitted curve f̂ (x) = Bα̂ will depend

on the basis size. Eilers and Marx (1996) proposed to use a dense set of basis

functions. The counterpart of this proposal is that in addition to the signal also

the noise tends to be fitted, yielding always a wigglier function as the number of

basis functions increases. The extreme situation corresponds to an equal number

of knots and points, in which case the fitting curve interpolates the data.
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Figure 2.1: B-spline basis of order 3

In order to avoid this circumstance O’Sullivan (1986) introduced a penalisation

on the second derivative of the curve, and hence the objective function to be

minimised turned out to be

S (α, λ) = ‖y −Bα‖2 + λ

∫
x

(
B′′(x)α

)2

dx

= (y −Bα)′ (y −Bα) + λ

∫
x

(
B′′(x)α

)2

dx

where λ is a non-negative parameter that penalises the overall smoothness of the

fitted function. Typically, a penalisation based on the second derivative is used

but any order of derivatives may be employed.
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Eilers and Marx (1996) advocate a penalisation based on the difference of order

d between the adjacent coefficients in the bases of the B-splines. This kind of

penalisation is more flexible as it is independent of the order of the polynomial

used to construct the B-spline and represents a good discrete approximation to

the integral of the square of the d-th derivative. Besides, it acts directly upon the

coefficients rather than on the curve itself.

This approximation is implemented by means of the (m−d)×m difference matrix

of order d, Dd. Using this approach, the objective function to be minimised is

S (α, λ) = ‖y −Bα‖2 + λ‖Ddα‖2

= (y −Bα)′ (y −Bα) + λα′D′dDdα (2.13)

producing α̂ =
(
B′B + λD′dDd

)−1
B′y . Usually d = 2 is used but other orders

may be employed depending on the variability of the curve and the amount of

noise in the data. For example, for a penalisation of order d = 2, it is

D2 =


1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·
0 0 1 −2 1 · · ·
...

...
...

...
...

. . .



and thus

α′D′2D2α = (α1 − 2α2 + α3)2 + . . .+ (αm−2 − 2αm−1 + αm)2 (2.14)

Figure 2.2 shows the effect of penalisation: to force the coefficients to yield a

smooth pattern. The fitting process of a function using B-splines is pictured with

and without penalisation, together with the functions making up the basis (the

columns of the B matrix). The left plot results from not penalising (λ = 0) the
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Figure 2.2: Curve based on 20 knots in the basis, without penalisation (left),
with penalisation (right)

term in the objective function that accounts for the smoothness; it can be noticed

that it yields a rather wiggly regression function. On the right plot instead, a

suitable choice for λ constrains the optimisation method to find values for the

coefficients α̂ which result in a smoother regression curve.

For a given value of λ, the fitted values are given by

ŷ = Bα̂ = B
(
B′B + λD′dDd

)−1
B′y = Hy (2.15)

Although the “hat matrix” H is not a projection matrix (it is symmetric, but not

idempotent) it plays a similar role as its counterpart in the linear model. Following

with this analogy the trace of the hat matrix

p = tr(H) (2.16)

is known as the degrees of freedom (df) or effective dimension (ED) of the model

and it can be thought of as the number of free parameters that are being estimated
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giving an idea of the complexity of that model. Because it provides a more intuitive

scale on which the smoothness can be expressed, the optimal regression function

is sometimes described in terms of the degrees of freedom rather than by means

of λ.

6 7 8 9 10 11
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0.
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0.
3

0.
4

 

 λ

degrees of freedom

Figure 2.3: Effective dimension vs. λ for one-dimensional simulation

It should be noted that there is a one-to-one decreasing relationship between the

degrees of freedom and the penalisation parameter, indicating that increasing the

complexity of the model lessens the need for smoothing. This is shown in Figure

2.3 which corresponds to the illustrative example presented later in section 3.7,

Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11.

When λ = 0, the expression for the estimator of the parameters α̂ boils down

to the classical solution in linear models theory with the degrees of freedom equal
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to the number of parameters m. As λ→∞, the fitted function tends to a linear

function and the degrees of freedom tend to 2.

The variance of the fitted values can be computed as

V ar(ŷ) = V ar(Hy) = H σ2InH
′ = H2σ2

By using σ̂2 = ‖y−ŷ‖2
n−tr(H)

as an estimator of σ2, an approximated 95% confidence in-

terval for the mean of each observation yi can be constructed as

ŷi ± 1.96
√

(H2)ii σ̂.

It is worth mentioning that the larger the value of the penalisation parameter, the

larger is the bias, which vanishes when λ = 0.

The generalisation to the three-dimensional case of the above approach for a spatio-

temporal model is carried out by considering now the pairs response-covariates as

(xi, yi) =
(
(xi1, xi2, ti), yi

)
i = 1, . . . , n. The regresion function is expressed

as f(x1, x2, t) =
∑

j

∑
k

∑
l αjklbj(x1)bk(x2)bl(t) using a basis set which is simply

the product of all triples of the marginal basis functions over x1, x2 and t. This

yields a design matrix B of dimension n × m3 and a difference matrix Dd of

dimension (m− d)3 ×m3.

In addition to Eilers and Marx (1996), details of these methods are also described

by Ruppert et al. (2003) and Wood (2006).

As an example, Figure 2.4 depicts part of the design matrix B corresponding to

a B-spline basis of order 3 for a bidimensional (spatial) case.

The P-splines approach is very flexible because of its low rank representation which

can encapsulate a flexible curve conveniently. Here, the matrices to be dealt with

are of dimension m×m where m represents the number of parameters to be used.

This number of parameters depends on the number of basis functions which can

be controlled dynamically.
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Figure 2.4: Bidimensional B-spline basis of order 3

In comparison with the kriging method described in section 2.4, P-splines do not

require a balanced spatio-temporal design for an efficient implementation, though

such design would further improve the computational efficiency of P-splines. It

should be mentioned nevertheless, that if a large number of basis functions is used,

there might not be a real benefit with the P-splines approach.

As we will see in section 5.1, the spatio-temporal model to be proposed needs to

run fast on large data sets. In order to meet this constraint we have chosen to use

P-splines for modeling the data.
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2.6 P-splines regarded as a Gaussian process

If we are mostly interested in prediction rather than in the estimation of the vector

of coefficients α, we can approach the P-splines model thinking of it as a Gaussian

process.

If we consider that σ2 is known, we can give a Bayesian interpretation to the

objective formula 2.13 to be optimised with respect to α under the P-splines

framework. Let us assume

α ∼ Nm (0, V ) (2.17)

Y |α ∼ Nn
(
α, σ2In

)
(2.18)

with V −1 = λ
σ2P assuming for notational simplicity that P has full rank. Hence

the posterior distribution of the parameters is

f (α|y) ∝ f (y|α) f (α) ∝ exp

{
−‖y −Bα‖

2

2σ2

}
exp

{
−λα

′Pα

2σ2

}
(2.19)

From 2.19 we obtain that the log-posterior distribution of the vector of parameters

α is

log f (α|y) = − 1

2σ2

{
‖y −Bα‖2 + λα′Pα

}
+ constant

which, up to a multiplicative constant, is the objective function 2.13 already men-

tioned. The marginal distribution of Y is the normalising constant for equation

(2.19) and is given by
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f (y) =

∫
f (y|α) f (α) dα

From the theory of normal distribution we know that this marginal distribution

has to be normal, too. Hence, to specify it completely, it suffices to compute its

expectation and its variance. It is

E(Y ) = Eα
(
EY |α(Y )

)
= Eα (Bα) = B Eα (α) = 0 (2.20)

V ar(Y ) = V arα
(
EY |α(Y )

)
+ Eα

(
V arY |α(Y )

)
=

= V arα (Bα) + Eα
(
σ2In

)
= B V arα(α)B′ + σ2In =

=
σ2

λ︸︷︷︸
τ2

BP−1B′︸ ︷︷ ︸
K

+σ2In =

= τ 2K + σ2In (2.21)

Thus

Y ∼ Nn
(
0, τ 2K + σ2In

)
with

Khk =
(
BP−1B′

)
hk

= b′hP
−1bk and

b′h = (b1(xh), . . . , bj(xh), . . . , bm(xh))

where bj(xh) represents the j-th basis function evaluated at the h-th vector of

covariates. Now, let us assume that we want to predict the outcome of Y0 for a

given new vector of covariates x0. From 2.7, we have that
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(
Y

Y0

)
∼ Nn+1

((
0

0

)
,

(
τ 2K + σ2In τ 2k0

τ 2k′0 τ 2c0 + σ2

))
with

(k0)h =
(
b′0P

−1B′
)
h

= b′0P
−1bh k0 ∈ Rn and

c0 = b′0P
−1b0

From 2.8, we obtain

Y0|Y ∼ N

(
k′0

(
K +

σ2

τ 2
In

)−1

y, τ 2

[
c0 − k′0

(
K +

σ2

τ 2
In

)−1

k0

]
+ σ2

)
(2.22)

The mean of the distribution in 2.22 is the point estimate of y0 and the variance

for a prediction interval for a new observation, is the same as the one in the

aforementioned distribution.

2.7 Overview on the choice of the penalisation

parameter

When trying to fit a smooth function to a given data set using the P-splines

approach, the choice of the smoothing parameter λ is a crucial matter as it will

determine the trade-off between smoothness and capturing the signal.

The smaller the value of λ, the less the overall curvature will be penalised; hence,

the fitted function will follow the data points more closely. This is known as

undersmoothing or overfitting. In this case the prediction error is underestimated

and the fitted function would be very different for a new set of data from the same

model.
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Conversely we speak of oversmoothing or underfitting when the overall curvature

is highly penalised. In this case most of the pattern due to the signal will be

disregarded, leading to a flatter fitting function. Oversmoothing produces biased

regression coefficients and inflation in the estimate of the variance.

2.7.1 Typical model selection criteria

The traditional approaches rely on finding the value of the penalisation parameter

that minimises some model selection criteria. These criteria generally are made

up of a trade-off between the complexity of the model and its goodness of fit. If we

denote by p the number of free parameters in the model (or degrees of freedom),

by n the number of observations, by σ̂2 = 1
n−p‖y − ŷ‖

2, by H the hat matrix

and by L the value of the likelihood function for the estimated model, the most

common selection criteria used are

• Akaike’s Information Criterion (AIC) (Akaike, 1973)

AIC = −2 log(L) + 2p = n log(σ̂2) + 2p

• Akaike’s Information Criterion (corrected) (AICc) (see Hurvich et al.,

1998)

AICc = log(σ̂2) + 1 +
2(p+ 1)

n− p− 2

• Bayesian Information Criterion (BIC) (see Schwarz, 1978)

BIC = −2 log(L) + p log(n) = n log(σ̂2) + p log(n)

• (Ordinary) Cross-Validation (CV) (see Wood, 2006)

CV =
1

n

∑
i

(
yi − ŷi
1−Hii

)2

• Generalised Cross-Validation (GCV) (see Wood, 2006)

GCV =
nσ̂2

n− p
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These definitions are up to an additive constant. In general, AIC tends to select

more complex models than BIC, i.e. it is prone to overfitting/undersmoothing

by favouring small values of the penalisation parameter λ. On the other side,

BIC imposes a stronger penalty on the number of parameters. This leads to the

choice of simpler models and hence BIC is prone to underfitting/oversmoothing

by preferring large values for λ.

AICc is an improved version of AIC which aims at correcting its tendency to

undersmooth.

The rationale behind CV is to leave out one data point at a time in the fitting

process and use the resulting “reduced” regression function to predict the value

of the omitted observation. The average of the square of the difference between

the predicted and actual value of each observation is used as a measure of the

goodness of fit for a particular model. Fortunately, as Wood (2006) shows, this

computationally inefficient method is equivalent to the formula given above.

However, even using the stated formula can be expensive if the model depends on

several smoothing parameters. This can be addressed by replacing the weights 1−
Hii by the mean weight tr(I−H)/n to obtain the GCV expression aforementioned.

Wood (2011) indicates that although asymptotically prediction error methods give

better prediction error performance than likelihood-based methods, the conver-

gence of smoothing parameters to their optimal values may be slow and hence

are prone to occasional severe undersmoothing by yielding small values for the

penalistation parameter λ.

Figure 2.5 shows a comparison among the different criteria for model selection.

A one-dimensional model is fitted using P-splines to data corresponding to the

concentration of a contaminant over time at a fixed location (see chapter 5 for

details). In this case, the degrees of freedom rather than the value of the penali-

sation parameter λ are used as a reference.

It can be noticed that the smaller the effective dimension, the narrower is the

resulting interval and the flatter the fitted curve. Whereas the first four cases
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seem to produce a fairly similar fitting, the cross-validation technique tends to

yield greater variability in the estimated curve.

2.7.2 Shortcomings

We have already mentioned that traditional model selection criteria are prone to

overfitting except for BIC which, on the contrary, tends to yield values for the

penalisation parameter which are larger than the optimal ones.

For model selection criteria prone to undersmoothing, there is another issue of

importance to be considered. It refers to extremely high unexpected predicted

values where there is no data supporting these outcomes. This undesired effect is

known as ballooning.

Figure 2.6 provides an example of this situation. It corresponds to a simulation

which will be described in detail in chapter 4. For the moment, we can say that

we know the true values of the measurements over a certain region at a given point

in time. The top-left plot of the figure depicts the actual situation.

After the addition of some noise, this surface can be estimated using AIC, AICc,

CV and GCV for model selection criteria. The high peaks in the predictions are

clearly inappropriate.

Because these predictions seem rather implausible, we must explore another method

for choosing the penalisation parameter in order to avoid ballooning. In the next

chapter, we are going to develop a method based on the Bayesian framework to

try to solve the problem.
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Figure 2.5: Model choice for one-dimensional P-spline fitting by minimising
different criteria
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(a) Simulated true concentrations
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Figure 2.6: Simulated true model (top left) and related predictions obtained
using different model selection criteria for choosing the smoothing parameter



Chapter 3

Efficient Bayesian determination

of the penalisation parameter

3.1 Introduction

In this chapter we will set out the Bayesian approach for selecting the smoothing

parameter. Let Mλ be the model for a particular value of the penalisation param-

eter λ. We are interested in computing fMλ|Y , the posterior distribution of the

model Mλ given the data Y = y.

In our initial set-up, we assume that the observation model is Y |α, σ2,

Mλ ∼ Nn (Bα, σ2In) and hence

fY |α,σ2,Mλ
=

1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Bα)′(y −Bα)

}
(3.1)

with y ∈ Rn,B ∈ Rn×m and α ∈ Rm.

As for the prior distribution of the parameters α, σ2|Mλ, a NIGm
(
µ, V (λ),

a, b
)

is adopted:

30
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fα,σ2|Mλ
=

ba

(2π)m/2 Γ (a) |V (λ)|1/2
[σ2]−(a+m/2+1)

× exp
{
− 1

2σ2

[
(α− µ)′V (λ)−1(α− µ) + 2b

]}
(3.2)

with µ ∈ Rm and the scalars a and b both in R>0. The hyperparameter V (λ) is a

symmetric positive definite matrix of dimension m×m and is of full rank (we will

relax this assumption in subsection 3.4). Finally, for the penalisation parameter

λ, an improper uniform prior fMλ
will be considered.

In section 3.3 we will establish that with the previous assumptions, fMλ|Y takes

the form

fMλ|Y ∝ Γ(a∗) |V ∗(λ)| 12
[b∗]a∗ |V (λ)| 12

fMλ

with

V ∗ = (B′B + V −1)−1

µ∗ = V ∗(B′y + V −1µ)

a∗ = a+
n

2

b∗ = b+
1

2

[
y′y + µ′V −1µ− (µ∗)′(V ∗)−1µ∗

]

Subsequently, in section 3.4, we will deal with the choice of sensible hyperparam-

eters for the prior distribution.

Appendix A contains a brief summary on concepts about (semi) positive definite

matrices which will be used throughout the rest of the chapter.
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3.2 Noninformative Priors

In the previous section, we have indicated that we will place a Normal-Inverse

Gamma prior distribution on the parameters α, σ2|Mλ. This choice is motivated

by a practical reason: the resulting posterior distribution fα,σ2|Y ,Mλ
can be ex-

pressed in a closed form also as a Normal-Inverse Gamma. Priors having the

property of leading to a posterior in the same family, are said to be “conjugate”

for the corresponding likelihood function.

The Bayesian models considered in scientific investigation generally assume that

the likelihood dominates over the prior. One reason for this is that these kind of

investigations are undertaken under the expectation of increasing the knowledge

by a substantial amount and this would not be the case if the prior were very

informative. Even if the scientist holds strong priors beliefs, using a “neutral”

prior would lead to a posterior distribution which represented what someone should

learn about the parameters if a priori the researcher knew very little about these

parameters.

But how could we be more formal about this idea of an uninformative prior i.e.

that we know very little a priori relative to what what the data has to tell us about

the parameters ? For the sake of simplicity, let us assume that we are interested

in a single parameter θ. If y represents the vector of observed values, we shall

say that the likelihood is data translated if it has the form

L (y|φ (θ)) = g
[
φ(θ)− h(y)

]
where φ(θ) is some one-to-one transformation of θ and h(y) is a function of the

data only. In such cases, the shape of the likelihood as a function of φ(θ) is

completely determined a priori except for its location which depends on the data

yet to be observed. In other words, we know very little a priori relative to what

the data is going to tell us and hence we are willing to accept one value of φ(θ)

as another. This state of indifference can be represented by an improper uni-

form prior distribution on φ, i.e. p(φ) ∝ c which we shall call noninformative or

uninformative for φ(θ) with respect to the data.
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Using the the theorem of change of variable, the noninformative prior for θ is

given by

p(θ) = p(φ)

∣∣∣∣dφdθ
∣∣∣∣ ∝ ∣∣∣∣dφdθ

∣∣∣∣ (3.3)

As an example, let us consider the Normal distribution. If Y ∼ N (θ, σ2) and

assuming σ2 known, it is

L(y|φ) ∝ exp

{
−(φ− φ̂)2

2σ2

}
(3.4)

with φ(θ) = θ and h(y) = φ̂ = ȳ. Figure 3.1 represents the likelihood function for

the Normal distribution (assuming σ2 known) as a function of φ(θ) for different

values of φ̂. The improper uniform prior on φ(θ) represents our state of indifference

about this parametrization of the likelihood function.

The corresponding log-likelihood function `(y|φ) = logL(y|φ) for the Normal

distribution has the form

`(y|φ) = constant− (φ− φ̂)2

2σ2
(3.5)

In order to find the parametrization φ(θ) in the general case leading to a data

translated likelihood function for which an improper uniform prior p(φ) can be

considered, we shall approximate `(y|φ) by its Taylor’s expansion up to the second

term around φ̂, the maximum-likelihood estimator of φ. It is

`(y|φ) = `(y|φ̂) +

[
∂`(y|φ)

∂φ

]
θ=φ̂

(φ− φ̂)− 1

2

[
−∂

2`(y|φ)

∂φ2

]
φ=φ̂

(φ− φ̂)2 (3.6)

Taking into account that ∂`(y|φ)
∂φ

vanishes at φ = φ̂ and comparing equations (3.5)

and (3.6), we notice that we can make `(y|φ) approximately data translated, by

managing to make
[
−∂2`(y|φ)

∂φ2

]
φ=φ̂

roughly constant. Actually, this expression is a

random variable, but due to the law of the large numbers,
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Figure 3.1: Likelihood for the Normal distribution as a function of θ for
different values of θ̂ (σ2 known). The dashed line represents the noninformative

prior

[
−∂

2`(y|φ)

∂φ2

]
φ=φ̂

= n
∂2

∂φ2

[
− 1

n

n∑
i=1

`(yi|φ)

]
φ=φ̂

≈ n
∂2

∂φ2
[−E (`(y|φ))]

= nE
(
− d2

dφ2
`(y|φ)

)
∝ E

(
− ∂2

∂θ2
`(y|φ)

)(
∂θ

∂φ

)2

(3.7)

Therefore in order to make `(y|φ) approximately data translated, we must take

∣∣∣∣dφdθ
∣∣∣∣ ∝ J (θ) =

[
E
(
− ∂2

∂θ2
`(y|φ)

)] 1
2

(3.8)
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Figure 3.2: Likelihood for the Normal distribution as a function of log(σ2)
for different values of σ̂2 (θ known). The dashed line represents the improper

uniform noninformative prior

J (θ) is known as Jeffreys’ prior and recalling equation (3.6) we see that an unin-

formative prior in the original parameter θ is given by

p(θ) ∝ J (θ) (3.9)

Additionally, from equation (3.8) we obtain that the parametrization φ(θ) that

yields `(y|φ) in the data translated form is

φ(θ) =

∫ θ

J (t) dt (3.10)

Let us compute Jeffreys’ prior p(S) for a Normal distributionN (µ, S), i.e. S = σ2,

assuming µ is known and the parametrization φ(σ2). It is
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Figure 3.3: Likelihood for the Normal distribution as a function of σ2 for
different values of σ̂2 (θ known). The dashed line represents the noninformative

prior

f(y|µ, S) ∝ 1

S
1
2

exp

{
−(y − µ)2

2S

}

`(y|µ, S) = − 1

2
log(S)− (y − µ)2

2
S−1

− ∂2`

∂S2
= − 1

2
S−2 + (y − µ)2S−3

E
(
− ∂

2`

∂S2

)
= − 1

2
S−2 + S−3E

[
(y − µ)2

]
= − 1

2
S−2 + S−3S ∝ S−2

J (σ2) = σ−2 (3.11)
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φ(σ2) =

∫ σ2

dt

t
= log(σ2) (3.12)

Figure 3.2 shows the likelihood in data translated form for different values of σ̂2

and Figure 3.3 represents the same likelihood functions in the original parameter

σ2. The corresponding noninformative priors are also included in these pictures.

The use of Jeffreys’ prior for scale parameters has received some criticism in the

literature (see e.g. Gelman, 2006; Gelman et al., 2013), with a (proper or improper)

uniform distribution on σ2 (rather than log(σ2)) often suggested as a better alter-

native, though this distribution is not uninformative in the sense of Jeffreys’ prior

discussed in this section (see e.g. Box and Tiao, 1992).

3.3 The derivation of the posterior density of the

penalisation parameter λ

Bayes’ Theorem tells us that fMλ|Y ∝ fY |Mλ
fMλ

, where fY |Mλ
corresponds to the

distribution of the data for the particular model indexed by λ and fMλ
reflects our

prior beliefs regarding the distribution of the penalisation parameter. Because we

have no reason to support any particular preference about λ, as mentioned earlier,

fMλ
will correspond to a vague improper uniform distribution.

We will obtain the density fY |Mλ
as a by-product in the computation of the joint

posterior density of the parameters α, σ2|Y ,Mλ. Combining the densities (3.1)

and (3.2) using Bayes’ Rule, yields

fα,σ2|Y ,Mλ
=

fα,σ2,Y ,Mλ

fY ,Mλ

=
fY |α,σ2,Mλ

fα,σ2|Mλ
fMλ

fY |Mλ
fMλ
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=
fY |α,σ2,Mλ

fα,σ2|Mλ

fY |Mλ

=
ba

(2π)
m+n

2 Γ(a) |V |1/2 fY |Mλ

Λ(α, σ2) (3.13)

where

Λ(α, σ2) = [σ2]−(a+m+n
2

+1) exp

{
− 1

2σ2
Σ(α)

}

Σ(α) = (y −Bα)′ (y −Bα) + (α− µ)′ V −1 (α− µ) + 2b

= y′y − y′Bα−α′B′y +α′B′Bα+α′V −1α−α′V −1µ

− µ′V −1α+ µ′V −1µ+ 2b

= α′(B′B + V −1)α− 2α′(B′y + V −1µ) + (2b+ y′y + µ′V −1µ)

(3.14)

The previous computation used the fact that y′Bα is a scalar and hence y′Bα =

(y′Bα)′ = α′B′y. The same argument applies toα′V −1µ and µ′V −1α, recalling

in addition that V is symmetric (and therefore V −1 is symmetric, too).

The expansion of the exponent in the kernel of a NIGm (µ∗, V ∗, a∗, b∗) distribu-

tion yields

(α−µ∗)′(V ∗)−1(α−µ∗)+2b∗ = α′(V ∗)−1α−2α′(V ∗)−1µ∗+(µ∗)′(V ∗)−1µ∗+2b∗

By comparing the left hand side of the above expression with the expansion of Σ(α)

in (3.14), it can be observed that fα,σ2|Y ,Mλ
takes on the form of a Normal-Inverse

Gamma distribution with parameters V ∗ and µ∗ given by
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V ∗ = (B′B + V −1)−1 µ∗ = V ∗(B′y + V −1µ)

Notice that V ∗ is also symmetric. The value of b∗ can be established using

(µ∗)′(V ∗)−1µ∗ + 2b∗ = 2b+ y′y + µ′V −1µ, which leads to

b∗ =
1

2

[
2b+ y′y + µ′V −1µ− (µ∗)′(V ∗)−1µ∗

]

=
1

2

[
2b+ y′y + µ′V −1µ− (y′B + µ′V −1)(V ∗)′(V ∗)−1V ∗(B′y + V −1µ)

]

=
1

2

[
2b+ y′y + µ′V −1µ− (y′B + µ′V −1)V ∗(B′y + V −1µ)

]

Finally, by setting

a∗ = a+
n

2

we have that

Λ(α, σ2) = [σ2]−(a+m+n
2

+1) exp

{
− 1

2σ2
Σ(α)

}

= [σ2]−(a∗+m
2

+1) exp

{
− 1

2σ2

[
(α− µ∗)′(V ∗)−1(α− µ∗) + 2b∗

]}

which represents the kernel of a Normal-Inverse Gamma distribution f ∗α, σ2|Y ,Mλ

with parameters µ∗, V ∗, a∗, b∗. Hence, it holds that

1 =

∫ ∫
f ∗α, σ2|Y ,Mλ

dα dσ2 =

∫ ∫
(b∗)a

∗

(2π)
m
2 |V ∗|m2 Γ(a∗)

Λ(α, σ2) dα dσ2

where
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Λ(α, σ2) =
(2π)

m
2 |V ∗| 12 Γ(a∗)

(b∗)a∗
f ∗α, σ2|Y ,Mλ

Substituting this into the expression for the posterior density fα, σ2|Y ,Mλ
in equa-

tion (3.13),

fα,σ2|Y ,Mλ
=

ba

(2π)
m+n

2 Γ(a) |V |1/2 fY |Mλ

Λ(α, σ2)

=
ba

(2π)
m+n

2 Γ(a) |V |1/2 fY |Mλ

(2π)
m
2 |V ∗| 12 Γ(a∗)

(b∗)a∗
f ∗α, σ2|Y ,Mλ

=
ba Γ(a∗) |V ∗| 12

(2π)
n
2 (b∗)a∗ Γ(a) |V | 12 fY |Mλ

f ∗α, σ2|Y ,Mλ

Because fα,σ2|Y ,Mλ
is also a density, it must hold that

∫ ∫
fα,σ2|Y ,Mλ

dαdσ2 = 1 =

∫ ∫
f ∗α,σ2|Y ,Mλ

dαdσ2

and consequently, it necessarily follows that

ba Γ(a∗) |V ∗| 12
(2π)

n
2 (b∗)a∗ Γ(a) |V | 12 fY |Mλ

= 1

yielding f ∗α,σ2|Y ,Mλ
= fα,σ2|Y ,Mλ

; hence α, σ2|Y ,Mλ ∝ NIGm (µ∗, V ∗, a∗, b∗)

with

V ∗ = (B′B + V −1)−1 (3.15)

µ∗ = V ∗(B′y + V −1µ) (3.16)
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a∗ = a+
n

2
(3.17)

b∗ =
1

2

[
2b+ y′y + µ′V −1µ− (y′B + µ′V −1)V ∗(B′y + V −1µ)

]
= b+

1

2

[
y′y + µ′V −1µ− (µ∗)′(V ∗)−1µ∗

]
(3.18)

In addition, it follows that

fY |Mλ
=

ba Γ(a∗) |V ∗| 12
(2π)

n
2 (b∗)a∗ Γ(a) |V | 12

Recalling that only the hyperparameter V of the prior distribution α, σ2|Mλ, is

a function of λ, we have that

fMλ|Y ∝ fY |Mλ
fMλ

∝
Γ(a∗)

∣∣∣V ∗(λ)
∣∣∣ 12[

b∗(λ)
]a∗ ∣∣∣V (λ)

∣∣∣ 12 fMλ

by dropping all the constants not depending either on λ or on the posterior pa-

rameters. In practice, for computation efficiency, we are going to use a discrete

version of fMλ|Y . Recalling that we have assumed that fMλ
has the form of an

improper uniform, we can write

fMλ|Y =
G(λ)

∣∣∣V (λ)
∣∣∣− 1

2

∑
λG(λ)

∣∣∣V (λ)
∣∣∣− 1

2

where G(λ) =
Γ(a∗)

∣∣∣V ∗(λ)
∣∣∣ 12[

b∗(λ)
]a∗ (3.19)
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3.4 On the choice of the hyperparameters and

its consequences

From the fact that the prior distribution for the parameters α, σ2|Mλ was chosen

to be NIGm
(
µ, V (λ), a, b

)
, it follows that α|σ2,Mλ ∼ Nm

(
µ, σ2V (λ)

)
and

σ2 ∼ IG(a, b) as the distribution of σ2 does not depend on λ.

As mentioned at the beginning of section 3.2, the Normal-Inverse Gamma distri-

bution is the conjugate of the multivariate Normal distribution and hence leads

to a posterior distribution on the parameters in closed form which is also Normal-

Inverse Gamma. We based the choice of the prior on these grounds. But we want

also to select the corresponding hyperparameters in such a way that it will not

dominate over the likelihood.

Recalling in addition that for the likelihood function it was assumed that Y |α, σ2,

Mλ ∼ Nn (Bα, σ2In), we have that for the joint distribution

fα,σ2|Y ,Mλ
= fY |α,σ2,Mλ

× fα|σ2,Mλ
× fσ2

=
1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Bα)′(y −Bα)

}

× 1

(2π)m/2
∣∣∣σ2V (λ)

∣∣∣1/2 exp

{
− 1

2

(
α− µ

)′[
σ2V (λ)

]−1(
α− µ

)}

× fσ2

∝ exp
(
− 1

2σ2

){
(y −Bα)′(y −Bα) + (α− µ)′V (λ)−1(α− µ)

}

× fσ2 (3.20)
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Figure 3.4: Inverse Gamma distribution for hyperparameters a = b = 0.001
and Jeffreys’ prior for σ2 corresponding to a Normal likelihood. Jeffreys’ prior
has been rescaled using the normalising constant of the Inverse Gamma distri-

bution

The Inverse Gamma distribution has the form

fσ2 ∝
[
σ2
]−(a+1)

exp

{
− b

σ2

}

Figure 3.4 shows that for very small values of the hyperparameters a and b, the

Inverse Gamma distribution approaches the uninformative Jeffreys’ prior for σ2 in

the case of the Normal likelihood, i.e. p(σ2) ∝ σ−2 (in the figure Jeffreys’ prior has

been rescaled using the normalising constant of the Inverse Gamma distribution,

namely ba

Γ(a)
). Based on this rationale, we shall choose the values a = b = 0.001

for these hyperparameters of the Inverse Gamma prior on σ2.

µ = 0 is a sensible choice for the mean of the coefficients to account for our lack of

preference on their sign. At this point, the expression between braces in equation
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(3.20) simplifies to (y −Bα)′(y −Bα) + α′V (λ)−1α. If we set set

V (λ)−1 = λD′D (3.21)

where D is the second order difference matrix

D =



1 −2 1 0 0 · · · 0 0 0

0 1 −2 1 0 · · · 0 0 0

0 0 1 −2 1 · · · 0 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1 −2 1



this expression corresponds precisely to the objective function 2.13 to be optimised

when the non-parametric technique of P-splines is used for regression.

Recalling equation (2.14), the effect of such a choice is that the sequence of coor-

dinates of the fitted parameter α̂ does not change abruptly, yielding therefore a

smooth regression function.

But unfortunately, it gives also rise to an issue of indetermination because D′D

is an m ×m semi-positive definite symmetric matrix of rank m − 2 and hence it

is not invertible. In order to by-pass this mishap we could consider instead

V (λ, τ)−1 = λD′D + τIm (3.22)

We will see that this matrix has full rank m. Consequently we can define fMλ|Y to

be the limit of the resulting expression when τ → 0, provided that a limit exists.

Recalling that we have set µ = 0 for the mean of the coefficients and equations

(3.15), (3.18) and (3.22), we can rewrite the expression of fMλ|Y (3.19) as

fMλ|Y = lim
τ→0

G(λ, τ)
∣∣∣V (λ, τ)

∣∣∣− 1
2

∑
λG(λ, τ)

∣∣∣V (λ, τ)
∣∣∣− 1

2

where G(λ, τ) =
Γ(a∗)

∣∣∣V ∗(λ, τ)
∣∣∣ 12[

b∗(λ, τ)
]a∗ and
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∣∣∣V ∗(λ, τ)
∣∣∣ 12 =

∣∣∣∣[B′B + V (λ, τ)−1
]−1
∣∣∣∣ 12 = |B′B + V (λ, τ)−1|−

1
2

= |B′B + λD′D + τIm|−
1
2

∣∣∣V (λ, τ)
∣∣∣− 1

2
=

∣∣∣V (λ, τ)−1
∣∣∣ 12 =

∣∣∣λD′D + τIm

∣∣∣ 12 (3.23)

b∗(λ, τ) = b+
1

2

[
y′y − y′BV ∗(λ, τ)B′y

]

= b+
1

2
y′
[
In −B(B′B + λD′D + τIm)−1B′

]
y

Notice that G(λ, τ) is continuous at τ = 0 and therefore limτ→0G(λ, τ) = G(λ, 0).

As mentioned earlier, D′D is an m×m semi-positive definite symmetric matrix

of rank m− 2. Hence there exists an orthogonal matrix Pm×m such that

P (D′D)P ′ = ∆ =



δ1 0 · · · 0 0 0

0 δ2 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · δm−2 0 0

0 0 · · · 0 0 0

0 0 · · · 0 0 0



where δ1, . . . , δm−2 are the positive eigenvalues of D′D. Thus
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∣∣∣V (λ, τ)
∣∣∣−1

=
∣∣∣V (λ, τ)−1

∣∣∣ =
∣∣∣λD′D + τIm

∣∣∣ = λm
∣∣∣D′D +

τ

λ
Im

∣∣∣
= λm

∣∣∣P ′∆P + τ
λ
Im

∣∣∣ = λm
∣∣∣P ′(∆ +

τ

λ
Im)P

∣∣∣
= λm

∣∣∣PP ′(∆ + τ
λ
Im)

∣∣∣ = λm
∣∣∣∆ + τ

λ
Im

∣∣∣
= λm−2 τ 2

m−2∏
i=1

(
δi +

τ

λ

)

Hence,
∣∣∣V (λ, τ)−1

∣∣∣ 6= 0 implying that V (λ, τ)−1 has full rank n when τ 6= 0. The

previous equation together with (3.23) yields

∣∣∣V (λ, τ)
∣∣∣− 1

2
= λ

m−2
2 τ

[m−2∏
i=1

(
δi +

τ

λ

)] 1
2

and consequently

fMλ|Y = lim
τ→0

G(λ, τ)
∣∣∣V (λ, τ)

∣∣∣− 1
2

∑
λG(λ, τ)

∣∣∣V (λ, τ)
∣∣∣− 1

2

= lim
τ→0

G(λ, τ)λ
m−2

2 τ
[∏m−2

i=1 (δi + τ
λ
)
] 1

2

∑
λ G(λ, τ)λ

m−2
2 τ

[∏m−2
i=1 (δi + τ

λ
)
] 1

2

=
G(λ, 0)λ

m−2
2

[∏n−2
i=1 δi

] 1
2

∑
λ G(λ, 0)λ

m−2
2

[∏m−2
i=1 δi

] 1
2

=
λ
m−2

2 G̃(λ)∑
λ λ

m−2
2 G̃(λ)

where
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G̃(λ) = G(λ, 0) =
Γ(a∗)

∣∣∣V ∗(λ, 0)
∣∣∣ 12[

b∗(λ, 0)
]a∗

=
Γ(a∗) |B′B + λD′D|− 1

2{
b+ 1

2
y′
[
In −B(B′B + λD′D)−1B′

]
y

}a∗ (3.24)

In general,

fMλ|Y ∝ λ
rank(D′D)

2 ×
Γ (a∗)

∣∣V ∗(λ)
∣∣ 12[

b∗(λ)
]a∗ (3.25)

It should be noticed that the choice of the number of basis functions is a crucial

issue in the spatio-temporal setting. This is due to the number of matrix opera-

tions that need to be carried out to compute the determinant and the inverse of

H = B′B+λD′D in equation (3.24). These tasks have to be performed for every

value of λ and therefore they may be very time consuming. Let us recall that the

inversion of an m×m matrix involves around m3 operations. In three dimensions,

it is m = p3 where p is roughly the one-dimensional number of basis functions.

Therefore the computation of H−1 involves around m3 = p9 operations for each

value of λ considered in the discrete approximation of the posterior distribution

of the model Mλ given that Y = y. We will address these issues in section 3.8.

3.5 P-splines and Linear Mixed Models

There is a very close connection between P-splines and Linear Mixed Models which

is worth mentioning. Let us recall that in the classical linear mixed models for-

mulation
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Y = Zβ + Uγ + ε with γ ∼ Nq
(
0, τ 2I

)
and ε ∼ Nn

(
0, σ2I

)
(3.26)

where Y ∈ Rn is the random vector of observations, Z ∈ Rn×p and U ∈ Rn×q

are design matrices, β ∈ Rp is the vector of fixed effects, γ ∈ Rq is the vector of

random effects, τ 2 corresponds to the random effects variance and σ2 represents

the error variance.

It can be shown (see e.g. Fahrmeir et al., 2013) that the estimation of the param-

eters of the model is performed by minimising the objective function

S
(
β,γ, τ 2, σ2

)
= (y −Zβ −Uγ)′ (y −Zβ −Uγ) +

σ2

τ 2
γ ′γ (3.27)

Generally the procedures for estimating these parameters rely on REML methods

to obtain unbiased estimators for σ2 and τ 2. Comparing equations (2.13) and

(3.27), we notice that we can take advantage of such procedures to estimate the

smoothing parameter λ. If we manage to rewrite the parameters defining the

P-splines model in such a way that

Zβ + Uγ = Bα (3.28)

α′D′Dα = γ ′γ (3.29)

then we obtain the estimate of the penalisation parameter as λ̂ =
σ̂2

τ̂ 2
. Let us

recall that B ∈ Rn×m, α ∈ Rm and D ∈ Rr×m. We start by proposing the

decomposition

α = Z̃β + Ũγ (3.30)
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with α ∈ Rm, Z̃ ∈ Rm×p and Ũ ∈ Rm×q. The decomposition (3.30) has to meet

the conditions

DZ̃ = 0r×p (3.31)

Ũ
′
D′DŨ = Iq (3.32)

Equation (3.31) imposes no penalisation on the vector of fixed effects β whereas

equation (3.32) says that the components of the vector of random effects γ are

independent and identically distributed. In addition, the matrix [Z̃, Ũ ] must

have full rank m to yield a one-to-one transformation.

The condition (3.29) is met as a consequence of the restrictions imposed by (3.31)

and (3.32) because

α′D′Dα =
(
Z̃β + Ũγ

)′
D′D

(
Z̃β + Ũγ

)
=

DZ̃︸︷︷︸
0r×p

β + DŨγ

′DZ̃︸︷︷︸
0r×p

β + DŨγ


= γ ′ Ũ

′
D′DŨ︸ ︷︷ ︸
Iq

γ

= γ ′γ

If we manage to construct the matrices Z̃ and Ũ satisfying (3.31) and (3.32) such

that rank
(

[Z̃, Ũ ]
)

= m, then the equivalence between the P-spline model (2.12)

and the linear mixed model (3.26) is stated because

Y = Bα+ ε

= B
(
Z̃β + Ũγ

)
+ ε

=
(
BZ̃

)
β +

(
BŨ

)
γ + ε

= Zβ + Uγ + ε
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Equation (3.31) suggests that the matrix Ẑ can be obtained by considering a basis

of the null space for the linear application f : Rm → Rr, f(z) = Dz which has

dimension d = m − r. It is easy to identify Ẑ if D is the difference matrix of

order d. In this case, the columns of Ẑ are

ẑj =
m∑
k=1

kj−1ek j = 1, . . . , d (3.33)

where the vectors ek, k = 1, . . . , m, correspond to the canonical basis of Rm.

The m × m matrix D′D is symmetric and semi-positive defined with rank r.

By virtue of the Theorem of Spectral Decomposition (appendix A, item 11) we

have that D′D = P∆P ′ with P ∈ Rm×m orthogonal and ∆ ∈ Rm×m diagonal

made up with the r non-null eigenvalues and the m− r null eigenvalues of D′D.

If we consider the matrix of orthogonal eigenvectors P+ ∈ Rm×r corresponding

to the non-null eigenvalues and the matrix ∆+ ∈ Rr×r constructed with these

eigenvalues, it also holds that D′D = P+∆+P
′
+. If we set Ũ = P+∆

− 1
2

+

Ũ
′
(D′D) Ũ =

(
∆
− 1

2
+ P ′+

) (
P+∆+P

′
+

) (
P+∆

− 1
2

+

)
= Ir

and hence the condition (3.32) is satisfied achieving therefore the desired decom-

position. Notice that as a corollary of the construction of Ũ we obtain that q = r.

3.6 Model Averaging

Under the Bayesian approach wλ = fMλ|Y represents the probability that the

optimal value of the penalisation parameter takes on the value of λ given that we

have observed the data Y and hence the obvious choice for λ is the one maximising

wλ. This value is known as the Maximum a Posteriori (MAP) estimator of λ.
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Strictly adhering to this approach we would need to proceed by model averaging.

If we denote by ŷλ the posterior expectation of a particular fitted value for a given

value of the penalisation parameter λ, the observations are estimated by means of

ỹ =
∑

λ wλ ŷλ. In practice, not all the values of λ with posterior positive density

are used in this averaging process. First, for computation efficiency, we select

a subset from the overall possible values and then we consider those such that

wλ ≥
1

K
max{wλ}. A typical value for K suggested in the literature is K = 20

(see Raftery et al., 1997). This reduced case is known as Occam’s model averaging.

Considering now that λ is a random variable, we have that for the variance of the

predictive posterior distribution using model averaging it is

V ar(ŷi) = Eλ
(
V ar(ŷi|λ)

)
+ V arλ

(
E(ŷi|λ)

)
=

∑
λ

wλV ar(ŷi|λ) +
∑
λ

wλ
(
(ŷλ,i)− ỹi

)2

where the first term represents the variance within groups or variance for a given

value of λ and the second term is the variance between groups or variance due to

different values of the penalisation parameter.

3.7 Ballooning

The issue of ballooning was outlined in subsection 2.7.2. An “intuitive” expla-

nation for these unexpected high predicted concentration values can be easily

visualised in the one-dimensional simulations shown in Figures 3.5, 3.6, 3.7, 3.8,

3.9 and 3.10. In this case we have a “gap” or “hole” in the data with a large gradi-

ent for the observations in the neighborhood. Traditional methods for the choice

of the penalisation parameter tend to produce high predictions in the “uncertain”

area.
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Figure 3.5: Predictions for one-dimensional simulation - Optimal MAP pe-
nalisation parameter determination with 95% confidence intervals
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Figure 3.6: Predictions for one-dimensional simulation - Optimal CV penali-
sation parameter determination with 95% confidence intervals
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Figure 3.7: Predictions for one-dimensional simulation - Optimal GCV penal-
isation parameter determination with 95% confidence intervals
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Figure 3.8: Predictions for one-dimensional simulation - Optimal BIC penal-
isation parameter determination with 95% confidence intervals
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Figure 3.9: Predictions for one-dimensional simulation - Optimal AIC penal-
isation parameter determination with 95% confidence intervals
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Figure 3.10: Predictions for one-dimensional simulation - Optimal AICC pe-
nalisation parameter determination with 95% confidence intervals

The MAP criterion yields a smoother fitting function. Figure 3.11 shows how in

this example, the MAP penalises overfit more severely while the other methods

are prone to severe undersmoothing.

Nevertheless, in some cases, even the MAP criterion fails to solve the problem of

ballooning. This is due to the fact that in such cases, the assumption of a smooth

change in the signal present in the data falls down.



Chapter 3. Efficient Bayesian determination of the penalisation parameter 58

0.
00

0
0.

00
4

0.
00

8

M
A

P

9
11

C
V

9
10

12

G
C

V

28
0

30
0

B
IC

26
0

28
0

30
0

A
IC

1e−05 1e−04 1e−03 1e−02 1e−01

5.
4

5.
6

5.
8

6.
0

A
IC

c

λ

Figure 3.11: Predictions for one-dimensional simulation - Optimal penalisa-
tion parameter determination by optimising different criteria (λ in log scale).

The vertical dashed lines indicate the optimal value of λ

To overcome this issue, we propose to modify the P-splines standard assumptions

by

1. Use penalty based on first rather than second order differences:

With the use of second order differences, the penalty shrinks towards low

curvature, slowly changing the gradient. By using first order differences, the
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penalty shrinks towards low gradient and allows for a more quickly changing

curvature.

2. Use quadratic rather than cubic P-splines: We impose fewer smooth-

ness constraints at the knots.
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Figure 3.12: Predictions for one-dimensional simulation - Optimal MAP pe-
nalisation parameter determination using relaxed assumptions with 95% confi-

dence intervals

3. Increase the number of basis functions: A low number of basis functions

is an unrealistic assumption as it does not allow to carry over the effect

of the penalisation. The two previous relaxing conditions have very little

effect in modeling the lack of smoothness if we use a very low number of

basis functions, as splines have a discontinuous higher order derivative at

the knots. As we have mentioned earlier, this is a critical issue from the

computational prospective and we will deal with it in the next subsection.

In the spatio-temporal examples that follow in the subsequent chapters, we
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will use 7 basis functions for easting and northing and 4 for time under the

standard assumptions whereas these figures will be 14, 8 and 5 in the relaxed

framework (see section 4.2).

Figure 3.12 shows the effect of relaxing the smoothness assumptions using the

same illustrative example presented previously in Figure 3.5. It takes less to

recover from the steep gradient in the data, because we favour flatter rather than

smoother fitting curves.

It is worth noticing that the number of basis functions, the type of basis functions

and especially the type of penalty used influences the way in which the gap of

missing data is filled. In the case of the standard assumptions, the penalty based

on second order differences yields lower bands which are higher than expected be-

cause recovering from a steep gradient is not immediate, as the penalty encourages

constant derivative. On the other hand, the relaxed assumptions encourage the

function itself to be constant so it can recover from a steep gradient more quickly.

There is very little overlap in the confidence bands in Figures 3.5 and 3.12, show-

ing that the choice of the penalty and the degree of the polynomials making up

the spline functions can lead to quite different results in the peaks.

In the next chapters, we will see practical applications of the MAP technique

using the standard and the relaxed assumptions.

3.8 Computational speed

We have seen that in order to evaluate fMλ|Y , according to equations (3.24) and

(3.25), we must compute the determinant and the inverse of the m × m matrix

B′B + λD′D for every value of the penalisation parameter λ considered, with

m = p3 where p stands roughly for the number of one-dimensional basis functions

being used.
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As mentioned at the end of section 3.4 these tasks are very time consuming, in

particular in our spatio-temporal setting. In this section we will explore an efficient

method to perform these computations.

In principle, the sparseness of B and D could have been exploited to achieve

efficiency in the use of memory (see Bowman et al., 2013, for details). But due

to the fact that memory is not an issue in our context, we have gone for an

implementation which does not use sparse matrix methods for B and D.

For every value of λ, the näıve approach needs O
(
m3
)

calculations. The method

set out below reduces this to a one-off computation of complexity O
(
m3
)

and a

computation of complexity O
(
m
)

for each value of λ.

This technique jointly diagonalises the matrices B′B and D′D (see Golub and

Van Loan, 1996) and is similar to the method first proposed by Eldén (1977) and

also used by Wood (2000).

If l different values of λ are to be compared the näıve approach is of complexity

O
(
l ×m3

)
. Our alternative approach is only of complexity O

(
m3 + l ×m

)
.

Without loss of generality we can consider that the symmetric matrix Ω0 ∈ Rm×m

defined by Ω0 = B′B + D′D will be always strictly positive definite. Hence

according to the Theorem of Spectral Decomposition (appendix A, item 11) it

holds that

Ω0 = B′B +D′D = P 0∆0P
′
0 (3.34)

with P 0 orthogonal and ∆0 diagonal and invertible. Hence the matrix ΩD ∈
Rm×m, ΩD =

(
DP 0∆

− 1
2

0

)′(
DP 0∆

− 1
2

0

)
is well defined. Besides, it is symmetric

and semi-positive definite (because rank(D) < m). Hence, again by virtue of the

Theorem of Spectral Decomposition, we have that
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ΩD =
(
DP 0∆

− 1
2

0

)′(
DP 0∆

− 1
2

0

)
= ∆

− 1
2

0 P ′0D
′DP 0∆

− 1
2

0 = PD∆DP
′
D (3.35)

with PD orthogonal and ∆D diagonal. Solving for D′D from equation (3.35)

D′D =
(
P 0∆

1
2
0PD︸ ︷︷ ︸

=U

)
∆D

(
P ′D∆

1
2
0P
′
0︸ ︷︷ ︸

=U ′

)
= U ∆DU

′ (3.36)

with U ∈ Rm×m clearly invertible. Hence, from equation (3.34) we have that

B′B +D′D = UU−1
[
P 0∆0P

′
0

] (
U ′
)−1

U ′

= U
[
P ′D∆

− 1
2

0 P ′0

] [
P 0∆0P

′
0

] [
P 0∆

− 1
2

0 PD

]
U ′

= UU ′ (3.37)

yielding

B′B = UU ′ −D′D = UU ′ −U∆DU
′ (3.38)

Therefore, from equations (3.36) and (3.38)

B′B + λD′D =
[
UU ′ −U∆DU

′
]

+ λU∆DU
′

= U
[
Im −∆D + λ∆D

]
U ′

= U
[
Im + (λ− 1)∆D︸ ︷︷ ︸

= ∆λ

]
U ′

= U ∆λU
′ (3.39)
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with ∆λ ∈ Rm×m diagonal. Finally equation (3.39) produces

∣∣∣B′B + λD′D
∣∣∣ =

∣∣∣U ∣∣∣ ∣∣∣∆λ

∣∣∣ ∣∣∣U ′∣∣∣
=

∣∣∣U ∣∣∣2 ∣∣∣∆λ

∣∣∣ (3.40)

and

(
B′B + λD′D

)−1

=
(
U ′
)−1

∆−1
λ U−1

=
(
U−1

)′
∆−1

λ U−1 (3.41)

Taking into account that for every orthogonal matrix P is |P |2 = 1 (see appendix

A, item 13),

|U |2 =
∣∣∣P 0∆

1
2
0PD

∣∣∣2
=

∣∣∣P 0

∣∣∣2 ∣∣∣∆ 1
2
0

∣∣∣2 ∣∣∣PD

∣∣∣2 =
∣∣∣∆0

∣∣∣ (3.42)

leading to

∣∣∣B′B + λD′D
∣∣∣ =

∣∣∣∆0

∣∣∣ ∣∣∣∆λ

∣∣∣ (3.43)

Besides, from equations (3.24) and (3.25) we have that

b(λ) = b+
1

2
y′
[
In −B

(
B′B + λD′D

)−1

B′
]
y
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= b+
1

2
y′y − 1

2
y′B

(
B′B + λD′D

)−1

B′y (3.44)

and hence recalling the definition of U from equations (3.36), and (3.41) it is

y′B
(
B′B + λD′D

)−1

B′y = y′B
(
U−1

)′
∆−1

λ U−1B′y

= y′B
(
P 0∆

− 1
2

0 PD

)
∆−1

λ

(
P ′D∆

− 1
2

0 P ′0

)
B′y

=
(
y′BP 0∆

− 1
2

0 PD︸ ︷︷ ︸
=w′

)
∆−1

λ

(
P ′D∆

− 1
2

0 P ′0B
′y︸ ︷︷ ︸

=w

)
= w′∆−1

λ w (3.45)

with w ∈ Rm. Combining equations (3.43), (3.45) and (3.43) with equations

(3.24) and (3.25) we finally obtain

fMλ|Y ∝ λ
rank(D′D)

2 ×

[
Γ
(
a∗
) ∣∣∣∆0

∣∣∣− 1
2

] ∣∣∣∆λ

∣∣∣− 1
2

{[
b+ 1

2
‖y‖2

]
− 1

2
w′∆−1

λ w

}a∗ (3.46)

Note that we do not need to compute α̂ which would be of complexity O
(
m2
)
, so

the overall complexity for each value of λ is only O
(
m
)
, which is very fast.

Equation (3.46) depends on λ only through the determinant and the inverse of

∆λ which is diagonal (recall equation (3.39)) and hence they are very fast to

compute. The expressions within square brackets as well as w do not depend on

λ and therefore they need to be evaluated only once.

As mentioned earlier, we choose the optimal value of the penalisation parameter by

picking-up the one maximising the posterior distribution fMλ|Y among a certain

number of plausible candidates.
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For the sake of a practical comparison of the execution times involved in the

computation of the optimal value of λ using the aforementioned discrete procedure,

we have considered the set-up described in more detail in section 5.2 based on

actual data provided by Shell.
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Figure 3.13: Comparison of the execution times of the posterior density for
different numbers of the penalisation parameter λ

This comparison of the execution times between the näıve computation with equa-

tion (3.25) and the more efficient method using equation (3.46), was carried out

under the framework of the relaxed assumptions.

Figure 3.13 pictures the total user time (in seconds) used to compute the posterior

distributions of λ for different numbers of the penalisation parameter. It can be

noticed that whereas this time increases very quickly with the number of values

considered for λ using the näıve approach, it is practically constant if the optimised

method is employed. Recall that as mentioned at the beginning of this section,

if l different values of λ are to be compared, the näıve approach is of complexity

O
(
l×m3

)
whereas the optimised approach is only of complexity O

(
m3 + l×m

)
.
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The almost constant figure corresponding to the second method, is due to the

one-off computation of the decompositions of Ω0 and ΩD (equations (3.34) and

(3.35)) and the evaluation of w as indicated in equation (3.45). Both complexities

increase linearly with l (m is fixed) but the slope under the näıve approach (m3)

is very high compared to the slope using the optimised method (m), in particular

if a fairly large number of basis functions is used.

Similarly Figure 3.14 shows the comparison in the total execution times involved

using both methods, considering a fixed number of candidates (30) for the penal-

isation parameter λ but different dimensions for the vector of parameters α̂. The

increasing number of parameters corresponds to a higher number of basis functions

on each of the spatio-temporal dimensions.

Now the complexity of both methods increases in a cubic fashion with m (l is

fixed); however, under the näıve approach the coefficient of the higher order term

in the expression of the complexity is l whereas in the optimised method such

coefficient is 1. This is the reason for the steep increase of the total execution

time using equation (3.25) to compute the posterior densities for all the values of

the penalisation parameter λ considered.

The values used to construct Figures 3.13 and 3.14 can be found in the appendix

B (Tables B.1 and B.2 respectively).

A comparison between execution times was performed using the function gam

of the R package mgcv (see Wood, 2006). For moderately sized problems the

approach proposed here is ten times faster. We expect this difference to be even

bigger for larger data sets.
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Figure 3.14: Comparison of the execution times of the posterior density for
30 values of the penalisation parameter λ for different dimensions of α̂

3.9 On the choice of a second smoothing param-

eter

Ideally, we should use two smoothing parameters: one for space and another one

for time. This could be done in a more flexible context such as Morrisey et al.

(2011) which resorts to posterior sampling using MCMC. However, given the time

constraints imposed in this work, such an approach is infeasible.

In principle, a second smoothing parameter can be added to the model but the

efficient linear algebra described in section 3.8 can be used to tune only one of such

smoothing parameters. We have informally tackled the trade-off of smoothness

between space and time by using a different number of basis functions. Because
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smoothness between space and time seems to be always on the same relative

scale, we can use information from past experience to guide the choice of the

corresponding ratio of the number of basis functions. Given the choice of the

number of basis functions, we expect the relative ratio of smoothing parameters

between space and time to be estimated close to 1.

We will set out below how a second smoothing parameter can be handled more

formally. Suppose that we want to minimise

(y −Bα)′(y −Bα) + λ1α
′D′1D1α+ λ2α

′D′2D2α, (3.47)

where first penalty, say, corresponds to smoothness in space and the second

penalty corresponds to smoothness in time. As explained above, the efficient

linear algebra cannot be applied directly to this problem. We will briefly describe

two methods that still harness the power of the efficient linear algebra, but require

one parameter to be tuned manually using a grid search.

One approach is incorporate one penalty into the data, i.e. consider augmented

data

ỹ =

[
y

0

]
B̃ =

[
B

√
λ1D1

]

We can then rewrite (3.47) as

(ỹ − B̃α)′(ỹ − B̃α) + λ2α
′D′2D2α,

In this formulation λ1 would need to be adjusted “manually” (e.g. using a grid

search), but given λ1, λ2 can be tuned efficiently.

Of course, one can also choose to incorporate D2, rather than D1, into the aug-

mented data, or even switch between the two as part of the tuning algorithm,

thus avoiding the need for grid search. Similar approaches have been taken in the

literature (see e.g. Zou and Hastie, 2005).
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Al alternative approach better suited to the smoothing nature of the problem and

used e.g. by R package mgcv, is to set κ = λ2/λ1 and rewrite (3.47) as

(y −Bα)′(y −Bα) + λ1α
′ (D′1D1 + κD′2D2)α.

The parameter κ would need to be adjusted manually, but, given κ, the parameter

λ1, which controls the overall smoothness, can be tuned using the efficient linear

algebra.



Chapter 4

Simulation Study

4.1 The proposed “true” model

The objective of this chapter is to carry out a simulation study to compare the

different methods of selecting the smoothing parameter in a systematic way. As

mentioned in chapter 1, we will use the data from Bowman et al. (2013).

The data were simulated from a highly idealised model for the spread of a solute

in water, based on the partial differential equation

∂y

∂t
= D ·

(
∂2y

∂x2
1

+
∂2y

∂x2
2

)
+ ψ1(x1, x2)

∂y

∂x1

+ ψ2(x1, x2)
∂y

∂x2

.

Here y denotes the concentration of the solute, x1 and x2 denote the spatial co-

ordinates and t ∈ [0, 1] denotes time. The first term describes the spread of the

solute in the groundwater by diffusion, with the constant D controlling how fast

the solute spreads. The two further advection terms describe how the solute is

affected by groundwater flow, whose direction and velocity is represented by the

functions ψ1 and ψ2. These functions were chosen to correspond to the observed

groundwater levels in the benzene example discussed in section 5.2.

70
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Figure 4.1(a) shows the assumed groundwater levels and flow which, in the simu-

lations, for simplicity, are considered to be constant over time.

The assumed initial spread of the solute is given in Figure 4.1(b). Figures 4.1(c),

4.1(d) and 4.2(a) show the spread at time t ∈ {0.25, 0.5, 0.7} (in years). The

“true” concentrations were obtained by interpolating the numerical solution to

the differential equation, computed over a N ×N ×N regular grid with N = 100.

Observed measurement data were generated by multiplicative Gaussian error terms

because the uncertainty in the measured concentrations can reasonably be ex-

pected to be proportional to the magnitude of the value (e.g. the uncertainty

around a measured value of 10µg/` would be expected to be very much less than

the uncertainty surrounding a measured value of 10000µg/`), with standard devi-

ation chosen to give a signal-to-noise ratio on the log-scale of 10 : 1. This reflects

the fact that measurements of the solutes are usually quite accurate. A very small

value of 0.05 was used for within-well correlation of the data, while the between-

well correlation was assumed to be 0. Before the data were analysed they were

transformed using the function log(y + 1). The additive term was introduced be-

cause the simulations can produce concentrations of exactly 0. All model fitting

and evaluation was performed on the transformed scale.

Three different designs were used. The first scenario uses exactly the same well

coordinates and sample dates as the benzene example discussed in section 5.2. It

consists of 1402 observations sampled at 29 well locations. The second scenario

uses a much larger number of 280 randomly placed wells which are sampled much

less frequently, resulting in the same number of observations. The second scenario

is a much better design from a statistical point of view but is, of course, much more

expensive, as establishing a new well is considerably most costly than collecting

a sample from an existing one. The third scenario uses the same wells as the

first scenario, but only has 100 observations in total, with each well sampled only

about four times on average.
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4.2 The fitted model

A P-spline model with relaxed assumptions was used (see section 3.7), i.e. a

P-spline model with second order basis functions, a first order penalty and 14

basis functions for easting, 8 for northing and 5 for time. The different number

of basis functions for space match the different extents of the monitored region in

easting and northing in the guiding example, while the reduced number of basis

functions for time was chosen to reflect the fact that concentrations vary more

quickly in space than in time. Addressing these issues through the basis functions

allows a single smoothing parameter to be used in the model in order to achieve

computational speed, making it much faster than mgcv as mentioned at the end

of section 3.8. Where little a priori information on solute behaviour is available,

a natural default would be to choose a common number of basis function in each

dimension. The overall number of basis functions is deliberately chosen to be

rather low to allow fast computations. Experimentation has shown these numbers

of basis functions to be effective from this perspective, in addition to preventing

ballooning or overfitting and producing good estimates of the underlying solute

patterns. Under the previously mentioned assumptions, the vector of parameters

Bhα has dimension 560 for the three scenarios.

MSE =
1

N3

N∑
i=1

N∑
j=1

N∑
k=1

[
f(x1i, x2j, tk)− f̂(x1i, x2j, tk)

]2

At each iteration, the optimal value of the smoothing parameter was chosen using

AICc, GCV, BIC (see subsection 2.7.1) and Bayesian MAP (see section 3.4) as

model selection criteria.

Also 10-fold cross-validation was used in the simulations and in chapter 5. Cross-

validation was performed in two different fashions: either by removing entire wells

(well-based cross-validation) or by removing single observations (observation-based

cross-validation) ignoring the well structure.

Table 4.2 shows the results obtained from 500 replications for all three scenarios.

From the table it is immediately clear that no one method outperforms all other

methods for all three scenarios.
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(a) Groundwater levels and flow used in the simu-
lation

(b) Initial condition of the concentrations at time
t = 0

0
2.

5
5

7.
5

10

(c) Simulated concentrations at time t = 0.25 (d) Simulated concentrations at time t = 0.5

1
10

00
1e

+
06

Figure 4.1: Flow model, initial concentrations and simulated concentrations
for t ∈ {0, 0.25, 0.5} used in the simulation study. The simulated concentrations

for t=0.7 are shown in Figure 4.2(a)

Out of the three scenarios presented, only scenario one is more prone to ballooning,

although the figures for GCV under scenario three provide strong suspicion of high

unexpected predictions, at least for some iterations. Back to scenario one, AICc

and GCV show poor performance. Figures 4.2 (b), (c) and (d) show the reason for

the poor performance of these and observation-based cross-validation, as all three

lead to severe ballooning. The Bayesian approaches (MAP, Model Averaging

and BIC) as well as well-based cross-validation, give much better performance as

suggested in Figures 4.2 (e), (f), (g) and (h) where no evidence of ballooning is

depicted. All the snapshots in Figure 4.2 are taken at time t=0.7 (in years). The

values of the penalisation parameter λ used to produce the plots in Figure 4.2 are

listed in Table 4.1.

Figure 4.3 (a) shows density strip plots of the distribution of the smoothing param-

eter λ for each method. This shows that the Bayesian approaches and well-based

cross-validation select values of the smoothing parameter λ which are large enough

to prevent ballooning. The problems with other methods are caused by values of

λ which are too low.

Though BIC performs very well if the focus in on preventing ballooning, it is

prone to underfitting. In the second scenario, which provides the “best” data for

estimating the concentrations, BIC performs significantly worse than the other
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(a) Simulated true concentrations

●

●

●● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●● ●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●● ●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

(b) aicc
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(d) Observation-based cross-validation
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(e) Bayesian maximum-a-posteriori estimate
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(f) Bayesian model averaging
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(h) Well-based cross-validation
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Figure 4.2: Simulated true model (top left) as well as predictions obtained
in one iteration of the simulation at time t=0.7 using the wells from scenario
1. Each panel corresponds to the use of a different criterion for selecting the

smoothing parameter

methods. As Figure 4.3 (b) shows, this is due to selecting a value for λ which is

too large.

In all three scenarios, the MAP and the fully Bayesian approach give good results,

being the best method in the second and the third scenarios.

Cross-validation is, by far, the most computationally demanding method and the

results depend on how it is carried out: Well-based cross-validation favours very

large values of the penalty parameter whereas observation-based cross-validation

tends to undersmooth by selecting very small values of λ. The reason for the
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difference is that, in this data set, ballooning occurs only in space and not in

time. There is a relatively small number of wells and these are sampled very

frequently in time. Omitting observations individually typically does not create

gaps in time which are large enough to allow ballooning at individual wells. Cross-

validation can therefore address ballooning only if a well is omitted entirely. The

difference between the two variants is much less pronounced in the second and

third scenario.

In order to consider the influence of the choice of the number of basis functions,

further simulations were carried out. These simulations were all based on the first

scenario which, as mentioned, seems to be more prone to ballooning and also

corresponds to the real design discussed in section 5.2 in the benzene example.

Tables 4.3, 4.4 4.5 and 4.6 present the mean squared errors and standard errors for

the different model selection criteria, based on 500 simulations using the relaxed

assumptions (second order basis functions and first order penalty) but varying the

number of basis functions (the corresponding values are mentioned in the caption

of each table).

As earlier, the different numbers of basis functions in northing and easting aim

to reflect the different extents of the monitored region whereas a smaller value is

chosen for time as concentrations vary more quickly in space than in time.

The number of basis functions were chosen in such a way that the dimension of

α̂ roughly doubled for each simulation. Table 4.4 reproduces again the figures

corresponding to the first scenario from Table 4.2.

If we consider the Bayesian approaches, we see that MAP and Model Averag-

ing benefit by increasing the number of parameters, whereas it seems to be no

noticeable improvement for BIC. The mean squared errors tend to stabilise by

increasing the number of basis functions, suggesting that at a certain point these

numbers do not yield further enhancement in the model.

Table 4.7 shows the the mean squared errors and standard errors for the different

model selection criteria, based on 500 simulations using the standard assumptions
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Criterion used to Penalisation
select smoothness parameter λ
aicc 8.521e-8
gcv 1.137e-6
Obs.-based cv 7.969e-3
Bayesian map 3.806e-3
bic 3.577e-1
Well-based cv 4.293e-1

Table 4.1: Values of the penalisation parameter λ used to produce the plots
in Figure 4.2

Criterion used to Scenario 1 Scenario 2 Scenario 3
select smoothness Mean (S.E.) Mean (S.E.) Mean (S.E.)
aicc 214.668 (44.519) 0.221 (0.001) 0.991 (0.006)
gcv 231.481 (26.727) 0.220 (0.002) 8.125 (6.805)
Obs.-based cv 10.829 (1.676) 0.222 (0.001) 1.111 (0.022)
Bayesian map 1.304 (0.028) 0.218 (0.001) 0.980 (0.006)
Bayesian model avg. 1.280 (0.027) 0.218 (0.001) 0.979 (0.006)
bic 0.854 (0.007) 0.317 (0.001) 1.105 (0.005)
Well-based cv 0.870 (0.007) 0.221 (0.001) 1.017 (0.007)

Table 4.2: Mean squared errors of the predictions averaged over the convex
hull of the data for the three well scenarios

(third order basis functions and second order penalty) but with the same number

of basis functions as in Table 4.4 (and Table 4.2). We notice that in this case

the ballooning produced using AICc and GCV is less pronounced than in the case

of relaxed assumptions, where the Bayesian criteria as well as well-based cross-

validation perform better. In other words, relaxing the assumptions improves the

methods that already work quite well, but it makes those criteria which are prone

to ballooning perform even worse.

We may conclude that the number of basis functions is, ideally, a technical rather

than a smoothing parameter that we try to set as low as possible due to computa-

tional effort. Ideally, setting the number of basis functions beyond this threshold

would not produce any further benefit.
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Figure 4.3: Density strip plots of the smoothing parameters chosen by the
different methods for both scenarios. The dashed red line indicates the median
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Criterion used to Scenario 1
select smoothness Mean (S.E.)
aicc 1.620e+10 (1.300e+10)
gcv 7.612e+16 (7.611e+16)
Obs.-based cv 74.348 (2.739)
Bayesian map 1.512 (0.009)
Bayesian model avg. 1.483 (0.009)
bic 0.836 (0.005)
Well-based cv 0.857 (0.006)

Table 4.3: Mean squared errors of the predictions averaged over the convex
hull of the data for Scenario 1 under relaxed assumptions. The number of basis
functions used are 10 for easting, 6 for northing and 3 for time. The dimension

of the vector α̂ is 270

Criterion used to Scenario 1
select smoothness Mean (S.E.)
aicc 214.668 (44.519)
gcv 231.481 (26.727)
Obs.-based cv 10.829 (1.676)
Bayesian map 1.304 (0.028)
Bayesian model avg. 1.280 (0.027)
bic 0.854 (0.007)
Well-based cv 0.870 (0.007)

Table 4.4: Mean squared errors of the predictions averaged over the convex
hull of the data for Scenario 1 under relaxed assumptions. The number of basis
functions used are 14 for easting, 8 for northing and 5 for time. The dimension

of the vector α̂ is 560
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Criterion used to Scenario 1
select smoothness Mean (S.E.)
aicc 2.825 (0.780)
gcv 4.100 (0.980)
Obs.-based cv 2.053 (0.452)
Bayesian map 0.876 (0.006)
Bayesian model avg. 0.874 (0.006)
bic 0.880 (0.003)
Well-based cv 0.886 (0.007)

Table 4.5: Mean squared errors of the predictions averaged over the convex
hull of the data for Scenario 1 under relaxed assumptions. The number of basis
functions used are 17 for easting, 10 for northing and 7 for time. The dimension

of the vector α̂ is 1120

Criterion used to Scenario 1
select smoothness Mean (S.E.)
aicc 0.881 (0.003)
gcv 0.901 (0.009)
Obs.-based cv 0.886 (0.004)
Bayesian map 0.879 (0.003)
Bayesian model avg. 0.879 (0.003)
bic 0.901 (0.002)
Well-based cv 0.899 (0.004)

Table 4.6: Mean squared errors of the predictions averaged over the convex
hull of the data for Scenario 1 under relaxed assumptions. The number of basis
functions used are 19 for easting, 12 for northing and 10 for time. The dimension

of the vector α̂ is 2280



Chapter 4. Simulation Study 80

Criterion used to Scenario 1
select smoothness Mean (S.E.)
aicc 28.499 (6.813)
gcv 37.444 (8.014)
Obs.-based cv 5.607 (0.885)
Bayesian map 1.577 (0.022)
Bayesian model avg. 1.552 (0.021)
bic 1.187 (0.012)
Well-based cv 1.100 (0.009)

Table 4.7: Mean squared errors of the predictions averaged over the convex
hull of the data for Scenario 1 under standard assumptions. The number of
basis functions used are 14 for easting, 8 for northing and 5 for time. The

dimension of the vector α̂ is 756



Chapter 5

Application to Shell data

5.1 Background

Oil companies are compelled by law to control the level of soil contamination pro-

duced by their industrial processes. Constituents of crude oil and refined petrol

such as benzene, toluene or ethylbenzene can have serious adverse health and

ecological effects if released into the environment. A leaking process of an un-

derground container taking place throughout a certain period of time may result

in the solute contaminating the groundwater below the storage tank system. Af-

ter such releases, networks of wells are set up to monitor possible groundwater

contamination.

Environmental monitoring data typically has both a spatial structure determined

by the location of the monitors, and a temporal one, determined by the frequency

with which observations are taken at these locations.

Shell accomplishes this control task by means of an interactive user-friendly graph-

ical software developed by its own staff. This software, called GWSDAT (Ground-

Water Spatio-Temporal Data Analysis Tool), is aimed at end-users who are not

statistically trained practitioners. Its main objective is to add value (cost savings

and reduction in environmental liabilities) through improved risk-based decision

81
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making and response. For example by early evaluation of increasing trends over

time and space, reduction in the number of sites in long-term monitoring or active

remediations through simple demonstrations of groundwater data and trends and

efficient evaluation and reporting via standardised plots and tables created at a

“mouse click”.

Essentially, GWSDAT provides a graphical representation regarding the evolution

of a particular spatio-temporal data set of observations. This software uses Mi-

crosoft Excel as the primary user interface and data entry platform whereas the

underlying statistical calculations and graphical output were developed using the

open source statistical program R and the package rpanel (see Bowman et al.,

2007) for plots.

The statistical issues were initially tackled by means of the Support Vector

Machines (SVM) approach, introduced by Vapnik and Chervonenkis in 1964.

SVM (see Schölkopf and Smola, 2002; Smola and Schölkopf, 2004) comprise a set

of algorithms whose main features are the usage of kernels, convex optimisation,

sparseness of the solution and the possibility of influencing such solution by means

of the so-called support vectors. This techniques were originally aimed at solving

classification problems; subsequently, these ideas were extended to the case of

smooth regression.

But the SVM approach does not allow to produce any confidence intervals. In

addition, SVMs are prone to the undesired effect of ballooning, in our experience

more so than spline-based models. Changing the kernel to a kernel less smooth

than the Gaussian kernel might make SVMs more resilient to ballooning.

Shell decided consequently to endow GWSDAT with more robust functionalities

by means of a model relying on strongly backed-up theoretical foundations, which

best describes the evolution of groundwater solutes in time and space in the context

of data collected by Shell and/or its affiliates. In addition, this model should meet

both the following conditions: be fast enough to run interactively (i.e. in a few

seconds) even with large data sets and yield a reliable level of uncertainty in the

computed predictions so as to include them in the graphical interface with the

end-user.
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Criterion used to Penalisation
select smoothness parameter λ
gcv 7.961e-8
aicc 1.034e-7
Obs.-based cv 1.670e-5
Bayesian map 1.220e-3
bic 7.394e-3
Well-based cv 2.630e-1

Table 5.1: Values of the penalisation parameter λ computed under standard
assumptions for the different criteria for selecting the smoothing parameter

5.2 Case Study

This case study corresponds to the same set-up described in the first scenario used

in chapter 4 but with actual data related to the solute benzene, a constituent of

crude oil and refined petrol, for which “the truth” is unknown. As described

in the aforementioned chapter, the design consists of 1402 observations out of

which 362 are below the detection threshold and hence they were replaced by one-

half the detection limit. These observations were sampled at 29 wells locations

between October 15th, 1987 and November 25th, 2009 with observations recorded

at irregular time intervals. The observed values correspond to the concentration

of the solute measured in µg/` (modelled on a log-scale).

We start by fitting the data using a P-spline model with the standard assumptions

and by replacing the non-detects by one-half the reported detection limit.

Table 5.1 reports the value of the penalisation parameter λ computed using the

different criteria for selecting the smoothing parameter. Figures 5.1, 5.2, 5.3, 5.4,

5.6 and 5.7 show the effect of the smoothing at the same point in time (t=16.44, in

years) for the criteria in this table. Figure 5.5 corresponds to the Bayesian model

averaging criterion. The triangles in the figures represent the wells in which non-

detects were recorded.

The entries in Table 5.1 are listed in increasing order of the penalisation parameter

λ. Similarly, the plots are presented in the same order.
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As expected from the results obtained in chapter 4 for the first scenario, the first

three model selection criteria (GCV, AICc and observation-based cross-validation)

tend to overfit the data producing the undesired effect of high unexpected predicted

values; BIC and well-based cross-validation avoid such effect by picking up large

values for the penalisation parameter λ.

For the Bayesian criteria (MAP and model averaging) we notice that they perform

much better than GCV, AICc and observation-based cross-validation although

they do worse than BIC and well-based cross-validation because ballooning cannot

be completely eliminated.

Under this context of standard assumptions, the optimal value for the penalisa-

tion parameter appears to be between those corresponding to the MAP and BIC

criteria. It should be noticed that the value of λ for the BIC criterion (7.394e-3) is

almost 6 times larger than the one corresponding to the MAP criterion (1.220e-3)

suggesting that ballooning is avoided at expense of oversmoothing.

The uneven design of this data set is responsible for these inappropiate high pre-

dicted values: we have equally spaced basis functions but not equally spaced data.

In addition, non-detects create artificial signals which are not properly dealt with.

We might have thought of a P-splines design with unequally spaced basis functions

giving more flexibility (i.e. a greater number of greater functions) where there is

more data. But such approach would have made very difficult to deal with the

penalty.

We have proposed to tackle the issue of ballooning by using the relaxed assump-

tions approach (see section 3.7). The next section covers more in detail the issue of

ballooning using other scenarios provided by Shell, and we revisit our case study

in section 5.4 under the framework of the relaxed assumptions.

Chapter 6 addresses the issue of non-detects and again we reconsider our case

study under the approach proposed in that chapter.
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Figure 5.1: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=7.961e-8 was computed using the gcv criterion
under the standard assumptions (triangles represent non-detects and circles

correspond to observed data)
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Figure 5.2: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=1.034e-7 was computed using the aicc criterion
under the standard assumptions (triangles represent non-detects and circles

correspond to observed data)
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Figure 5.3: Predictions obtained for the real case study at time t=16.44. The
penalisation parameter λ=1.670e-5 was computed using the observation-based
cv criterion under the standard assumptions (triangles represent non-detects

and circles correspond to observed data)
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Figure 5.4: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=1.220e-3 was computed using the Bayesian map
criterion under the standard assumptions (triangles represent non-detects and

circles correspond to observed data)
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Figure 5.5: Predictions obtained for the real case study at time t=16.44. It
corresponds to the Bayesian model averaging smoothing criterion under the
standard assumptions (triangles represent non-detects and circles correspond to

observed data)
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Figure 5.6: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=7.394e-3 was computed using the bic criterion
under the standard assumptions (triangles represent non-detects and circles

correspond to observed data)
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Figure 5.7: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=2.630e-1 was computed using the well-based cv
criterion under the standard assumptions (triangles represent non-detects and

circles correspond to observed data)

5.3 Ballooning

In section 3.7 we discussed the problem of ballooning and proposed a strategy

to tackle it. In this section we will try to find out where ballooning comes from

and present the results of the application of this strategy on some concrete spatio-

temporal data in connection with the contamination process described in the first

section of this chapter.

Only in this particular section, we will use two new different designs that we will

call Scenario A and Scenario B (which correspond to two different data sets), to

avoid any possible confusion with other scenarios mentioned in this thesis.

Scenario A has 26 wells and spans over time from July 18th, 1977 to October

6th, 2011 with observations recorded at irregular time intervals. As usual, the

observed values correspond to the concentration of the solute measured in µg/`

modelled on a log-scale.
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Two different contaminants will be considered under Scenario A: benzene (637

observations with 301 non-detects) and MTBE (637 observations with 163 non-

detects). The plots for this scenario correspond to time t=13.41 (in years).

Figure 5.8 (top) shows the result of the predictions of benzene under Scenario

A by selecting the optimal MAP value for the penalisation parameter under the

standard assumptions.

The mismatch between the values reported at the wells and the predictions is

evident. There are areas with not only extremely high unexpected values but also

with extremely low predicted concentrations. Although, due to the log-transform

used, the first case is the one with the worse practical implications, it is clear that

the standard MAP technique presents serious flaws for some particular data sets.

Figure 5.8 (bottom) depicts a noticeable improvement in the predictions by manu-

ally selecting a higher value of the penalisation parameter λ. The picture suggests

that although there might exist an optimal value for the penalisation parameter,

due to some reason, the MAP procedure fails to pick it up correctly.

A more detailed analysis in Figure 5.9 (top) shows a group of three wells which

consistently get “too low” concentrations in comparison with the values observed

in their neighborhood. Figure 5.9 (bottom) pictures the predicted values using

the MAP technique after having removed these three wells: the improvement in

the expected predictions seems to suggest that these unusual observations were at

the root of the problem of ballooning for this data set.

As mentioned at the beginning of subsection 2.5.2, standard P-splines models

assume that the underlying signal in the data changes very slowly. In this partic-

ular setting, this assumption implies that depending on the network design, wells

might be “trusted” to give a reliable indication of the gradient/curvature variation

in their vicinity. In other words, as we indicated in advance in section 3.7, the

root cause of ballooning stems in the mismatch between the smoothness in the

signal assumed by the P-splines model and the actual data.
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Figure 5.8: Benzene (Scenario A) - Standard Assumptions - λ selected auto-
matically (top) - λ tuned manually (bottom) - (top bar indicates time)
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Figure 5.9: Benzene (Scenario A) - Standard Assumptions - Wells with too low
concentrations (top) - λ tuned automatically after deleting the “problematic”

wells (bottom) - (top bar indicates time)
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As a first approach we might tackle the problem by trying to use a less complex

model, i.e. by decreasing the degrees of freedom given by the MAP technique.

But this action can cause the model to be too inflexible and to underestimate

peak concentrations. In addition, shifting the value of λ might require a very

informative prior, which would generalise poorly to other data sets.

Instead of dealing with the “symptoms” of the problem, we propose an interven-

tion at the underlying cause of ballooning by relaxing the smoothness assumptions

of the P-splines model. As described in section 3.7, in practice this means chang-

ing the “defaults settings” used under the standard model.

Figure 5.10 (top) shows the result of the MAP technique by relaxing only the

conditions on the order of the differences applied to the penalty and the order

of the polynomials making up the splines but with a low number of functions in

the basis. The same figure at the bottom pictures the predictions using cubic P-

splines and a quadratic penalty at the same degrees of freedom. It can be noticed

that relaxing the first two conditions has little effect in this case.

Figure 5.11 displays the same situation but using a larger number of basis func-

tions. A comparison between the pictures suggests a remarkable improvement if

the penalisation parameter is chosen with the MAP approach by jointly relaxing

the three conditions as proposed in section 3.7.

Two additional examples similar to Figure 5.11 are provided supporting the method-

ology proposed to tackle the issue of ballooning. Figure 5.12 shows the effect of

using the standard and relaxed assumptions in fitting the data corresponding to

a different contaminant (MTBE) under Scenario A.

Figure 5.13 displays the same comparison for benzene data under Scenario B. This

scenario is made up of 27 wells extending from May 25th, 1999 to February 15th,

2011 with observations recorded also at irregular time intervals. Only one solute

(benzene) is used in this scenario comprising 602 observations with 482 non-detects

and the snapshots taken at time t=5.74 (in years). As usual, the concentration

of the solute is measured in µg/` modelled on a log-scale.
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Figure 5.10: Benzene (Scenario A) - By relaxing assumptions 1) and 2) only
(top) - Standard assumptions using the same df (bottom) - (top bar indicates

time)



Chapter 5. Application to Shell data 94

óî óï ð ï

óî óï ð ï î í ì ë

ó
î

ó
ï

ð
ï

î

É»­¬ñÛ¿­¬

Ò
±®

¬¸
ñÍ

±«
¬¸

´ãðòððêçèêêèè ø¼ºãïïéòëè÷

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´
´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

ó
î

ð
ó

ï
ë

ó
ï

ð
ó

ë
ð

ë
ï

ð
ï

ë

§

óî óï ð ï

óî óï ð ï î í ì ë

ó
î

ó
ï

ð
ï

î

É»­¬ñÛ¿­¬

Ò
±

®¬
¸

ñÍ
±

«
¬¸

´ãðòððïëêçíìê ø¼ºãïïé÷

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´
´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´
´

´

´

´

´
´

´

´

´

´

´

´

´
´

´

ó
î

ð
ó

ï
ë

ó
ï

ð
ó

ë
ð

ë
ï

ð
ï

ë

§

Figure 5.11: Benzene (Scenario A) - Relaxed assumptions (top) - Standard
assumptions 1) and 2) only, using the same number of basis functions (bottom)

- (top bar indicates time)
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Figure 5.12: MTBE (Scenario A) - Standard assumptions (top) - Relaxed
assumptions (bottom) - (top bar indicates time)
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Figure 5.13: Benzene (Scenario B) - Standard assumptions (top) - Relaxed
assumptions (bottom) - (top bar indicates time)
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It is worth mentioning that another way of addressing the problem of ballooning

is by fitting a mixed model with a random effect for each well. But this approach

would not be feasible under the time constraints imposed as the performance would

have been much more slow. Additionally, a mixed model assumes that the random

effect is constant over time, which might not be true in this setting.

5.4 Case Study Revisited

In this section we reconsider our case study from section 5.2 under the framework

of relaxed assumptions for our P-spline model, but still replacing non-detects by

one-half the reported detection limit.

Table 5.2 reports the value of the penalisation parameter λ computed using the

different criteria for selecting the smoothing parameter. Figures 5.15, 5.14, 5.16,

5.17, 5.19 and 5.20 show the effect of the smoothing at the same point in time

(t=16.44, in years) for the criteria in the mentioned table. Figure 5.18 corresponds

to the Bayesian model averaging criterion.

As earlier, the entries in Table 5.2 are listed in increasing order of the penalisation

parameter λ, the plots are presented in the same order and the triangles in figures

represent the wells in which non-detects were recorded.

As expected, under this framework of relaxed assumptions, the Bayesian MAP

and Bayesian model averaging criteria for model selection, perform very well with-

out producing the effect of ballooning in the area where little data are present.

Notice also that the value of λ for the Bayesian MAP criterion (4.108e-3) is almost

2.5 times smaller than the one corresponding to the well-based cross-validation cri-

terion (9.812e-3). It should be also noticed the improvement for the AICc, GCV

and observation-based cross-validation under this framework, although they do

not manage to completely avoid the extremely high unexpected values.
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Criterion used to Penalisation
select smoothness parameter λ
gcv 3.473e-7
aicc 4.935e-7
Obs.-based cv 2.043e-5
Bayesian map 4.108e-3
Well-based cv 9.812e-3
bic 1.455e-2

Table 5.2: Values of the penalisation parameter λ computed under relaxed
assumptions for the different criteria for selecting the smoothing parameter
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Figure 5.14: Predictions obtained for the real case study at time t=16.44. The
penalisation parameter λ=3.473e-7 was computed using the gcv criterion under
the relaxed assumptions (triangles represent non-detects and circles correspond

to observed data)
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Figure 5.15: Predictions obtained for the real case study at time t=16.44. The
penalisation parameter λ=4.935e-7 was computed using the aicc criterion under
the relaxed assumptions (triangles represent non-detects and circles correspond

to observed data)
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Figure 5.16: Predictions obtained for the real case study at time t=16.44. The
penalisation parameter λ=2.043e-5 was computed using the observation-based
cv criterion under the relaxed assumptions (triangles represent non-detects and

circles correspond to observed data)
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Figure 5.17: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=4.108e-3 was computed using the Bayesian map
criterion under the relaxed assumptions (triangles represent non-detects and

circles correspond to observed data)
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Figure 5.18: Predictions obtained for the real case study at time t=16.44.
It corresponds to the Bayesian model averaging smoothing criterion under the
relaxed assumptions (triangles represent non-detects and circles correspond to

observed data)
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Figure 5.19: Predictions obtained for the real case study at time t=16.44.
The penalisation parameter λ=9.812e-3 was computed using the well-based cv
criterion under the relaxed assumptions (triangles represent non-detects and

circles correspond to observed data)



Chapter 5. Application to Shell data 101

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

0.
01

3
9

50
10

00
50

00

Figure 5.20: Predictions obtained for the real case study at time t=16.44. The
penalisation parameter λ=1.455e-2 was computed using the bic criterion under
the relaxed assumptions (triangles represent non-detects and circles correspond

to observed data)

5.5 Additional Example

A more extensive example of the use of these techniques is provided by retrospec-

tive analysis of a data set on a pollution event at a refinery site. MTBE (methyl

tertiary butyl ether) is a petrol additive designed to reduce engine knocking and

noxious emissions. MTBE is no longer in routine use at the site studied but was

present in the refinery at the time of the event. On entry to groundwater, MTBE

moves conservatively due to its high aqueous solubility and low retardation po-

tential. It degrades only slowly under anaerobic conditions. Figure 5.21 shows a

schematic plan of the site with colour-coded points to indicate the concentrations

of MTBE measured at the monitoring wells at a date near the time of the MTBE

release. Standard methods of analysis in this setting were to inspect individual

well measurements over time to identify trends. Geographical information sys-

tems were available and these were helpful for individual time snapshots but these

could not easily be adapted to show the evolving dynamics of the incident.

Figure 5.22 shows the estimated pollution surface using the Bayesian smoothing

model described in chapter 3, using 18 basis functions for easting, 22 basis func-

tions for northing, 14 basis functions for time and the map estimate of λ. The
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Figure 5.21: Plan of the refinery site and wells. The wells are colour-coded
according to observed concentrations of mtbe immediately after release.

shape and direction of the plume is clear and consistent with the south-east/north-

west gradient in groundwater flow. Despite the presence of protective pumping

wells at the north-west boundary of the refinery site, the threat of MTBE migrat-

ing across the site boundary and potentially reaching drinking water wells required

immediate action.
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(a) Predicted concentration surface for day 375
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(b) Predicted concentration surface for day 700

●

●

●●

●

●

● ●

●

●

●● ●●

●●

● ●

●

●

●

●

●●

●
●●

●

●●
●

●
●

●

●

●

● ●●

●

●

●●

●

● ●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●●

●
●

●●

●

●

●

●
●

●

●●
●

●●

● ●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●●

●

●

●
●●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

● ●

●

●
●

●
●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●● ●●

●●

● ●

●

●

●

●

●●

●
●●

●

●●
●

●
●

●

●

●

● ●●

●

●

●●

●

● ●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●●

●
●

●●

●

●

●

●
●

●

●●
●

●●

● ●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●●

●

●

●
●●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

● ●

●

●
●

●
●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

(c) Predicted concentration surface for day 900
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(d) Predicted concentration surface for day 1300

Figure 5.22: Predicted levels of mtbe concentration across space obtained
using the map estimate of the smoothing parameter for four time points. The

colour scale is the same as that used in Figure 5.21
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(a) Predicted concentration for well A
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(b) Predicted concentration for well B
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(c) Predicted concentration for well C
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(d) Predicted concentration for well D

Figure 5.23: Predicted levels of mtbe concentration over time obtained using
the map estimate of the smoothing parameter for four wells. The location of
the wells is shown in Figure 5.21. The vertical dotted lines correspond to the

time points used in Figure 5.22.

The panels of Figure 5.22 show estimates from the spatiotemporal MTBE distribu-

tion model at several further time points. The first corresponds to the upgrading

of a line of wells used to form a flow barrier in the middle of the site. The ef-

fectiveness of these wells was greatly improved and the resulting curtailment of

the plume to the north-west is apparent. Subsequently, the source of the MTBE

release was identified near the south-east corner of the site and the model clearly

tracks the dissipation and attenuation of MTBE and the end of the incident.
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Figure 5.23 pictures the predicted levels of MTBE concentration over time for four

wells located in the north-west area of the refinery.

5.6 Uncertainty Quantification

This section is devoted to the uncertainty quantification of the spatio-temporal

predictions discussed in Sections 5.2 and 5.4. The patterns to be described gen-

eralise to the remaining spatio-temporal examples in the present work.

Figures 5.24 and 5.26 picture the 95% lower and upper confidence bands under

standard and relaxed assumptions respectively, for the predictions described in

the aforementioned sections. The corresponding standard errors are pictured in

Figures 5.25 and 5.27 (the legends on the right correspond to the standard errors).

It can be noticed that the lower is the value of the penalisation parameter λ, the

larger are the standard errors. In other words, ballooning seems to affect massively

the standard deviation whereas no great differences occur for large values of λ.

Conversely, larger values of the penalisation parameter yield smaller values for the

variance and more biased predictions.

It is known that the eigenvector corresponding to the largest eigenvalue of the

variance-covariance matrix of the estimated coefficients, namely V ar (α̂), points

to the direction of maximal variance in the parameter space, whose value is given

by the eigenvalue itself.

Tables 5.3 and 5.4 reproduce Tables 5.1 and 5.2 with the addition of the largest

eigenvalue of the variance-covariance matrix of α̂ corresponding to the different

penalisation parameter criteria. It can be noticed that the larger the value of λ,

the smaller is the maximal variance.
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In our context, the confidence intervals and standard errors were computed us-

ing the corresponding posterior predictive distribution. For a given new ma-

trix of regressors B̃ ∈ Rr×m, the predicted outcomes would be described as

Ỹ |α, σ2, Mλ ∼ Nr
(
B̃α, σ2Im

)
. The posterior predictive distribution is given

by

fỸ |Y , λ =

∫
f(ỹ|α, σ2, λ) × f ∗(α, σ2|y, λ) dαdσ2

=

∫
Nr

(
B̃α, σ2Ir

)
× NIGm (µ∗, V ∗(λ), a∗, b∗) dαdσ2

= MVSθ,Σ, ν, τ(ỹ) (5.1)

where

θ = B̃µ∗ (5.2)

Σ = b∗

a∗

(
Ir + B̃V ∗B̃′

)
(5.3)

ν = 2a∗ (5.4)

τ = r (5.5)

and

MVSθ,Σ, ν, τ(ỹ) =
Γ
(
ν+τ

2

)
Γ
(
ν
2

)
π
τ
2 |νΣ|

1
2

[
1 +

(ỹ − θ)′Σ−1(ỹ − θ)

ν

]−ν+τ2
(5.6)

The density defined in (5.6) is known as multivariate-t (see e.g. Kotz and Nadara-

jah, 2004). Its hyperparameters defined in equations (5.2), (5.3), (5.4) and (5.5)

are functions of the hyperparameters of the Normal-Inverse Gamma posterior dis-

tribution of α, σ2|Y , Mλ defined in equations (3.15) through (3.18) and (3.21).
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Prediction intervals can be obtained from equation (5.6) by computing the corre-

sponding quantiles. The variance of the distribution in the same equation can be

used to estimate the posterior uncertainty.

The technique taken in this thesis considers the simpler case of equation (5.6) with

r = 1. In this situation we have

B̃ = b̃
′

and Σ =
b∗

a∗

(
1 + b̃

′
V ∗b̃

)
where V ∗ = (B′B + λD′D)

−1

The change of variables T = Σ−
1
2

(
Ỹ − b̃′µ∗

)
yields

∣∣∣dỸdT ∣∣∣ = Σ
1
2 and therefore

fT (t) = fỸ (ỹ)
∣∣∣dỸdT ∣∣∣ =

Γ(ν+1
2 )

Γ(ν2)
√
πν

[
1 + t2

ν

]−ν+1
2

∼ t2a∗ (5.7)

Thus a Bayes prediction interval of level α for Ỹ is given by

b̃
′
µ∗ ± t2a∗, 1−α2 Σ

1
2 = b̃

′
µ∗ ± t2a∗, 1−α2

√
b∗

a∗

(
1 + b̃

′
V ∗b̃

)
(5.8)

It is interesting to compare the Bayes prediction interval in (5.8) with the predic-

tion interval we would have obtained following the frequentist approach

b̃
′
µ̂MLE ± tn−tr(H), 1−α2

√
σ̂2
MLE

(
1 + b̃

′ ˆV ar(µ̂MLE)b̃
)

(5.9)
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where µ̂MLE = Qy

Q = (B′B + λD′D)
−1
B′

ˆV ar(µ̂MLE) = QQ′σ̂2
MLE

σ̂2
MLE =

y′(In−H)y
n−tr(H)

and H = BQ

Recalling equation (3.17), we have t2a∗, 1−α
2

= t2a+n, 1−α
2
. Given the large number

of observations we can replace the t-quantile in equation (5.8) by the corresponding

z-quantile z1−α
2
. The same remark applies to equation (5.9).

In alternative to (5.8), we could have used an empirical Bayesian approach to

construct a prediction interval for Ỹ , by setting σ̂2
MAP to the mode of the poste-

rior Inverse Gamma distribution, i.e. σ̂2
MAP = b∗

a∗+1 and τ̂ 2 =
σ̂2
MAP

λMAP
in equation

(2.22). Recall that a∗ and b∗ are defined in equations (3.17) and (3.18) respec-

tively.
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(b) GCV Upper 95% confidence limit
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(c) AICc Lower 95% confidence limit
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(g) Bayesian MAP Lower 95% confidence limit
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(k) Well-based CV Lower 95% confidence limit
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(l) Well-based CV Upper 95% confidence limit
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Figure 5.24: Lower and upper 95% confidence limits for the smoothing criteria
used in the case study in Section 5.2 under standard assumptions (triangles

represent non-detects and circles correspond to observed data)



Chapter 5. Application to Shell data 110

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

(a) GCV

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

(b) AICc
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(c) Obs.-based CV
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(d) Bayesian MAP
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Figure 5.25: Standard errors for the smoothing criteria used in the case study
in Section 5.2 under standard assumptions (triangles represent non-detects and

circles correspond to observed data)
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Figure 5.26: Lower and upper 95% confidence limits for the smoothing crite-
ria used in the case study in Section 5.4 under relaxed assumptions (triangles

represent non-detects and circles correspond to observed data)
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Figure 5.27: Standard errors for the smoothing criteria used in the case study
in Section 5.2 under relaxed assumptions (triangles represent non-detects and

circles correspond to observed data)
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Criterion used to Penalisation Maximum
select smoothness parameter λ eigenvalue
GCV 7.961e-8 46150237.00
AICc 1.034e-7 34579190.00
Obs.-based CV 1.670e-5 318924.80
Bayesian MAP 1.220e-3 6573.86
BIC 7.394e-3 2291.86
Well-based CV 2.360e-1 425.77

Table 5.3: Maximum eigenvalue for the variance-covariance matrix of α̂ for
the smoothing criteria under standard assumptions in Figure 5.24

Criterion used to Penalisation Maximum
select smoothness parameter λ eigenvalue
GCV 3.473e-7 515064.40
AICc 4.935e-7 318787.60
Obs.-based CV 2.043e-5 10167.25
Bayesian MAP 4.108e-3 112.34
Well-based CV 9.812e-3 43.28
BIC 1.455e-2 30.85

Table 5.4: Maximum eigenvalue for the variance-covariance matrix of α̂ for
the smoothing criteria under relaxed assumptions in Figure 5.26



Chapter 6

Approximate inference for

censored data

6.1 Background

In many environmental applications data are gathered by monitors which cannot

record measurements which are below (or above) a certain detection limit. For

observations outside the detection range it is only known that they are below a

lower detection limit or above an upper detection limit. A näıve approach, still

used by many practitioners, is to replace the non-detected observations (usually

referred to as non-detects) by some deterministic function of the detection limit.

In the case of the application presented in chapter 5 non-detects are censored ob-

servations corresponding to low recorded values of contaminants for which it is

only known that they lie under a certain threshold. In addition, this threshold is

not always the same: it depends on the laboratory which carried out the measure-

ment or may vary over time. Usual practice has been to replace non-detects by

one-half the detection limit. But this approach underestimates the uncertainty of

the estimated mean parameters and can introduce a substantial bias as suggested

in Figure 6.1.

114
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Helsel (2006) has concluded that this kind of approach produces an invasive pat-

tern, as the resulting estimates of correlation coefficients, regression parameters,

hypothesis tests and even simple means and standard deviations are inaccurate.

The corresponding values may differ substantially from the true values with the

deviation being unknown.

This chapter is devoted to proposing an efficient and fast method for incorporating

non-detects within the Bayesian framework used to predict the concentration of

contaminants over space and time, under the constraints of time and memory

described earlier in this work.
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Figure 6.1: Fitted functions using the true observed values and by replacing
non-detects by 1/2 the detection limit. The horizontal full red line indicates the
detection limit while the dashed red line corresponds to 1/2 the detection limit

More formal approaches to this problem include the EM algorithm or methods

derived from techniques used for time-to-event data.
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6.2 The EM-algorithm

Maximum-Likelihood (ML) estimation is a widely used technique for parameter

estimation, in particular within the frequentist framework. In its basic set-up, we

assume to be given a random sample coming from a known density Yi ∼ f(y|θ)

with θ ∈ Θ ⊂ Rm. Estimation proceeds by finding the value of θ that maximises

the joint-density function or likelihood function L(Y |θ) =
∏

f(yi|θ) for the given

random sample Y = (y1, . . . , yn) ∈ Rn which is assumed to be completely known.

If S = {Y |f(Y |θ) 6= 0}, the support set of the density function f(Y |θ), does

not depend on the parameter θ to be estimated and Θ is an open set in Rm, this

task is generally accomplished by finding the root of the log-likelihood function

`(Y |θ) = logL(Y |θ), i.e. the value of θ̂ such that ∂
∂ θ
`(Y |θ)

∣∣∣
θ=θ̂

= 0. Most

often, the root of the log-likelihood cannot be determined analytically and hence

iterative methods such as Newton-Raphson are employed to construct a sequence

of values converging to θ̂.

Under mild regularity conditions, it can be demonstrated that maximum-likelihood

estimates (MLE) have a certain number of appealing properties such as consis-

tency, 1 efficiency and asymptotic normal distribution 2 (see Cramér, 1946).

In our context, there are two challenges which need to be addressed: the first

one is that the likelihood does not lead to a closed form estimate of α̂, an is-

sue that can be overcome using the EM-algorithm; the second one is that the

likelihood contributions that stem from the non-censored observations are highly

non-quadratic, giving the likelihood a highly skewed shape leading to a very poor

asymptotic approximation by a quadratic function. In the extreme case of a set-

ting with only non-detects, the likelihood has no maximum inside the parameter

space and hence the standard asymptotic results do not hold.

1 Let Y = (Y1, . . . , Yn) be a random sample from a distribution f(Y |θ) with θ ∈ Θ with
Θ a convex open set in Rm. Suppose that ∂

∂ θ f(Y |θ) exists and that the support set S =
{Y |f(Y |θ) 6= 0} does not depend on θ ∀ θ ∈ Θ. If f(y|θ) is injective on θ and the equation
∂
∂ θ `(Y |θ)

∣∣∣
θ=θ̂

= 0 has only one solution θ̂, then limn→∞ θ̂ converges to θ almost surely.
2 Let Y = (Y1, . . . , Yn) be a random sample from a distribution f(y|θ) with θ ∈ Θ with

Θ a convex open set in Rm. Suppose that the support set S = {Y |f(Y |θ) 6= 0} does not
depend on θ ∀ θ ∈ Θ. Suppose that ∂

∂θ

∫∞
−∞ fθ (y|θ) dy =

∫∞
−∞

∂
∂θ fθ (y|θ) dy. Suppose that

∂2

∂θ ∂θ′

∫∞
−∞ fθ (y|θ) dy =

∫∞
−∞

∂2

∂θ ∂θ′ fθ (y|θ) dy. Suppose that J(θ) = −Eθ

[(
∂2

∂θ ∂θ′ `(Y |θ)
)]

exists and has rank m. Then if θ̂ is an ML consistent estimator for θ,
√
n
(
θ̂ − θ

)
→d

Nn
(
0, J(θ)−1

)
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Nevertheless, there are cases of incomplete-data structures in which the maximum-

likelihood strategy cannot be used in a straightforward manner because the vector

Y = (y1, . . . , yn) is not completely known and therefore the equation
∂
∂ θ
`(Y |θ)

∣∣∣
θ=θ̂

= 0 cannot be solved in closed form for θ̂ as a function of the

observations. Some examples correspond to grouped, censored or truncated data,

multivariate data with some missing observations and data from mixtures of dis-

tributions.

The Expectation-Maximization (EM) algorithm (see Dempster et al., 1977) is a

broadly applicable approach to extend the maximum-likelihood estimation tech-

nique to such cases. The underlying idea is to formulate an associated “augmented-

data” problem for which it is possible to work out the MLE either analytically or

computationally. In essence, it is an iterative algorithm consisting of two steps:

the E-step (Expectation) and the M-step (Maximisation) converging to a local

maximum under fairly general conditions.

Let us assume that Y = (Y u,Y c) where Y u = (yu1 , . . . , y
u
nu) ∈ Rnu is the vector

associated with the “observed data” and Y c = (Y c
1 , . . . , Y

c
nc) ∈ Rnc is the vector

of random variables for the “incomplete data”.

If we knew Y completely we could estimate θ̂ using the appropriate maximum-

likelihood technique.

Because we do not know Y c, we do not know either the vector of observations

Y = (Y u, Y c) completely. In order to overcome this problem, instead of the

log-likelihood function, we will consider its expectation

EY c {` (Y u, Y c|θ)} =

∫
log f (Y u, Y c|θ) fY c (Y c|Y u, θ) dY c (6.1)

and find θ̂ which maximises equation (6.1). But this equation gives rise to a new

issue, because without knowing θ we cannot compute the density fY c (Y c|Y u, θ).

We get round this problem by simply choosing and initial guess θold for the vector

of parameters and replacing the previous density by fY c (Y c|Y u, θold). Thus,

given this initial guess for θ, we then find θnew maximising
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Q (θ|θold) =

∫
log f (Y u, Y c|θnew) fY c (Y c|Y u, θold) dY

c (6.2)

The value of θ̂ found to maximise 6.2 can be used as a new guess and start again.

The full iterative EM-algorithm could be described as follows:

1. Choose an initial value for the vector of parameters θ = θold.

2. (E-step) Compute Q (θ|θold).

3. (M-step) Choose θnew to be the value of θ which maximises Q (θ|θold).

4. Replace θold by θnew in the E-step and repeat until convergence.

It can be proved that ` (Y |θnew) ≥ ` (Y |θold) with equality achieved at a maxi-

mum (although not necessarily a global maximum) of ` (Y |θ). If θ̂ corresponds

to the limiting value at convergence of the sequence of parameters θ constructed

with the algorithm described above, clearly the value to be imputed to the vector

of missing observations Y c is Ỹ
c

= Eθ=θ̂(Y
c).

Some of the advantages of the EM-algorithm are (see McLachlan and Krishnan,

2008):

• It is a numerically stable, with each iteration leading to a non-decreasing

sequence of the likelihood function.

• It is generally easy to implement.

• It can be used to impute estimated values to “incomplete data”.

whereas some of its disadvantages are:

• It may converge slowly.

• It does not provide a procedure to estimate the covariance matrix of the

parameters estimates. It is however possible to construct bounds of the

variance of the parameters. This can be obtained by computing the second
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derivative of the log-likelihood (see Husmeier, 2000) and exploiting the in-

formation inequality. This procedure only yields a lower bound rather than

an estimate of the variance and is for these reasons not shown in Figures

6.20 and 6.21.

• It does not guarantee convergence to a global maximum when there are

multiple maxima.

For the sake of comparison with the Laplace-type method to be proposed, we

will use the EM-algorithm in section 6.7 as an alternative to impute values to the

censored observations.

6.3 Other existing approaches

Helsel (2005), (see also Helsel, 2012) proposes applying methods used for time-to-

event data, based on standard procedures in medical and industrial studies, to

handle censored data in the environmental sciences.

Some of these techniques are based on ML estimation, which assumes that the

data follow a particular known distribution. The corresponding parameters are

fitted matching both the values for observed data and the proportion of those

that fall below a known detection limit, which efficiently captures the information

contained in non-detects.

Let us assume that Y ∼ f(y, θ) with F (y, θ) representing the corresponding cu-

mulative distribution function. In addition, let us consider that the vector of

available data is Y = (y1, . . . , ynu , ynu+1, . . . , ynu+nc) where the first nu figures

represent the observed or uncensored values and the last nc figures correspond to

the detection limits of the censored observations. The likelihood function corre-

sponds to the joint probability of the vector Y , which under the assumption of

independence, takes the form
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L(Y , θ) =
nu∏
i=1

f(yi, θ)
nu+nc∏
i=nu+1

F (yi, θ)

As mentioned in the previous section, point estimation of the vector of parameters

θ is carried out by finding the value θ̂ ∈ Θ which maximises L(Y , θ) using suitable

numerical methods to accomplish this task, if necessary.

In addition, the usual likelihood-ratio tests and Wald tests can be used to per-

form hypothesis testing on the parameters. Generally likelihood-ratio tests are

preferred to Wald tests which are much more conservative, though differences in

p-values are often small.

ML methods generally fail to work properly for data sets with fewer than 30− 50

detected values, where one or two outliers may mislead the estimation or there is

not enough evidence supporting the assumed probability distribution model.

In such cases nonparametric or “distribution-free” methods which do not assume

a shape of data or a specific distribution (and hence do not involve estimating

parameters), would be preferred. These methods use the relative position or

ranks of data and are specially useful for censored data because they efficiently

use the available information. The data’s percentiles are reflected in the ranks

attached to them. In the case of non-detects, because they are known to be lower

than the values above their reporting limit, they are assigned a lower rank.

Nonparametric methods are more powerful than their parametric counterparts

when dealing with skewed distributions and outliers; Helsel and Hirsch (2002)

have demonstrated their usefulness in the framework of environmental studies.

Most of these nonparametric methods use standard statistical software for “sur-

vival analysis” or “reliability analysis” that deal with right-censored data rather

than left-censored observations, which are typical in environmental data. Helsel

(2012) proposes a “flipping” transformation to adapt the use of these nonpara-

metric methods with environmental data.



Chapter 6. Approximate inference for censored data 121

6.4 Motivation

As mentioned earlier, the goal of this chapter is to investigate whether the infor-

mation regarding non-detects can be included in the model in an accurate fashion

using the Bayesian framework.

Our hope is that if we can be fully Bayesian on how to deal with non-detect data,

we can also extend the Bayesian approach for selecting the penalistation parameter

λ.

As we have seen in chapter 2, if we have no censored data at all, the Bayesian

approach leads to a closed Normal-Inverse Gamma posterior distribution of the

parameters. On the other extreme, if only censored data are available, the model

to be applied should be a Bayesian probit model (see Denison et al., 2002). A

drawback in this case, is that there is no closed form for the posterior and sampling

techniques such as MCMC are required for exact inference. But in addition, σ2 is

not identifiable in the Bayesian probit model.

We propose to approximate the posterior distribution of the parameters by means

of a Laplace-type approximation which essentially resembles a Normal-Inverse

Gamma density on the parameters. The likelihood function L(Y |α, σ2) will in-

clude now the factors corresponding to the censored data and as usual, the prior

on the parameters will be a proper Normal-Inverse Gamma.

6.5 The Model

We will consider a Bayesian linear model corresponding to a P-spline regression

case. Thus, for the likelihood, Y |α, σ2 ∼ Nn (Bα, σ2In) where the B matrix is

made up of a set of basis functions.
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We will assume a Normal-Inverse Gamma prior distribution for the parameters,

α, σ2|λ ∼ NIGm (µ,V (λ), a, b). As suggested earlier, we choose µ = 0 to ac-

knowledge our prior uncertainty about the sign of the regression coefficients; sim-

ilarly we set V = (λD′D)−1 (with λ standing for the penalisation parameter and

D for a conveniently chosen difference matrix) to mimic the smoothing term in

the objective function to be minimised in the P-spline context. Here, a and b are

the hyperparameters of the marginal Inverse Gamma distribution for σ2. These

hyperparameters are typically set to a very small value such as 0.001. As men-

tioned in section 3.4, the rationale behind this choice is that these values yield a

limiting approximation to the corresponding uninformative Jeffreys’ prior for σ2.

To complete the model we assume an improper uniform prior on λ.

Let us call yu ∈ Rnu the vector of uncensored or continuous observed values

and yc ∈ Rnc the one corresponding to non-detects or censored observations, i.e.

the observations which could not be directly observed. In agreement with our

initial set-up and by splitting B into two submatrices Bu and Bc, Y u|α, σ2 ∼
Nnu (Buα, σ2Inu) and Y c|α, σ2 ∼ Nnc (Bcα, σ2Inc) with Bu ∈ Rnu×m, Bc ∈
Rnc×m, n = nu + nc and α ∈ Rm. In addition, for the censored data, it is only

known that yci ≤ di, i = 1, 2, . . . , nc where di represents the i-th detection limit.

In econometrics, this model is known as Tobit regression model (see Johnston and

diNardo, 1997).

The likelihood takes the form

L(Y |α, σ2) ∝
nu∏
i=1

1

σ
ϕ
(yui −Bu ′

i α

σ

) nc∏
i=1

Φ
(di −Bc ′

i α

σ

)
=

[
σ−nu exp

{
− 1

2σ2
‖yu −Buα‖2

}] nc∏
i=1

Φ
(di −Bc ′

i α

σ

)
(6.3)

As mentioned in section 6.2, the classical frequentist approach to compute the

MLE for the parameters from 6.3, would not lead to a closed form solution due

to the censored observations. Additionally, in the presence of a large number of

censored observations, the shape of the log-likelihood tends to be highly skewed

and hence it cannot be well approximated by a quadratic function, a condition
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that needs to be met to obtain an asymptotic normal distribution. In the extreme

case in which almost all the observations are censored, the log-likelihood is so

far from quadratic that it can lead to misleading results. See Hauck and Donner

(1977) for a discussion of this phenomenon in the case of logistic regression, which

is closely linked to the case of censored observations. In the case in which all the

observations are censored, the log-likelihood is monotonic in some parameters,

leading to an estimate of ±∞ for these parameters.

The use of a (Gaussian) prior distribution on the parameters in our Bayesian

model, will partially overcome this issue by approximating the true posterior with

a quadratic form. This will ensure that the approximate posterior is not monotonic

in any of the parameters. However if the proportion of censored observations

is very large, the shape of this approximate posterior might still be far from

quadratic. The prior is

f(α, σ2, λ) ∝ (σ2)−(a+1+m
2

) exp

{
− 1

2σ2

[
(α− µ)′V (λ)−1(α− µ) + 2b

]}

= (σ2)−(a+1+m
2

) exp

{
− 1

2σ2

[
α′V (λ)−1α+ 2b

]}

Up to a normalising constant, the true posterior distribution of the parameters is

therefore given by

f ∗(α, σ2|Y , λ) ∝ L(Y |α, σ2)× f(α, σ2, λ) (6.4)

6.6 Approximation to the log-likelihood

Let us consider for the moment σ2 as a nuisance parameter; we will aim at re-

placing the posterior distribution (6.4) by its Laplace approximation. Let α̂ be

the point at which the posterior density attains its maximum. Because we are

only concerned about α̂, for the sake of notation, we will only consider f ∗ as a
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function of the coefficients of our regression model. By expanding the logarithm

of f ∗ around α̂ using Taylor’s series up to the second order term, we have that

`∗(α) = log f ∗(α) ≈ `∗(α̂) +
∂`∗(α)

∂α

∣∣∣
α=α̂

(α− α̂)

+
1

2
(α− α̂)′

∂2`∗(α)

∂α2

∣∣∣
α=α̂

(α− α̂)

= `∗(α̂)− 1

2
(α− α̂)′Q−1 (α− α̂)

with Q−1 = P = −∂
2`∗(α)

∂α2

∣∣∣
α=α̂

. Taking into consideration that the term of first

order vanishes at α = α̂, the Laplace approximation to the posterior is

f ∗(α) ≈ f ∗(α̂) exp
{
− 1

2
(α− α̂)′Q−1 (α− α̂)

}
where Q and P can be regarded as the covariance and the precision matrices

respectively.

The steps for the computation of α̂ and Q−1 can be described more easily by

initially considering separately the prior, the uncensored and the censored obser-

vations. We can write `∗ = `nu + `nc + `f where

`f = k − (a+ 1 +
m

2
) log(σ2) − 1

2σ2

[
α′V −1α+ 2b

]

`nu = k̃ − nu log(σ)− 1

2σ2
‖yu −Buα‖2

= k̃ − nu log(σ)− 1

2σ2

[
α′Bu ′Buα− 2α′Bu ′yu + yu

′
yu
]

and
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`nc =
nc∑
i=1

log Φ
( di −Bc ′

i α

σ︸ ︷︷ ︸
=ti

)
=

nc∑
i=1

log Φ(ti) (6.5)

Recalling that
∂

∂x
(u′x) =

∂

∂x
(x′u) = u′,

∂

∂x
(x′Ax) = x′(A+A′) and

∂2

∂x2
(x′Ax) =

A+ A′, we have

∂`f
∂α

=− 1

σ2
α′V −1

∂2`f
∂α2

=− 1

σ2
V −1

∂`nu
∂α

=
yu
′
Bu −α′Bu ′Bu

σ2

∂2`nu
∂α2

=− B
u ′Bu

σ2

and

∂`nc
∂αj

=
nc∑
i=1

(
−
Bc
ij

σ

)
ϕ

Φ

∣∣∣
t=ti

=− 1

σ

nc∑
i=1

ϕ

Φ

∣∣∣
t=ti
Bc
ij

∂2`nc
∂αj∂αk

=− 1

σ

nc∑
i=1

(
−B

c
ik

σ

)
ϕ′Φ− ϕ2

Φ2

∣∣∣
t=ti
Bc
ij =− 1

σ2

nc∑
i=1

Bc ′

ki

ϕ2 − ϕ′Φ
Φ2

∣∣∣
t=ti
Bc
ij

The last two relationships can be written in a more compact fashion as

∂`nc
∂α

= − 1

σ
vc
′
Bc with vci =

ϕ

Φ

∣∣∣
t=ti

(6.6)
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∂2`nc
∂α2

= − 1

σ2
Bc ′W cBc with W c

ij =
ϕ2 − ϕ′Φ

Φ2

∣∣∣
t=ti

δij (6.7)

where δij represents the usual Kronecker’s delta function. We can now derive

the full expressions of the first and second partial derivatives of the log-posterior,

yielding

(∂`∗
∂α

)′
=

(∂`nu
∂α

+
∂`nc
∂α

+
∂`f
∂α

)′

=

(
yu
′
Bu −α′Bu ′Bu − σvc ′Bc −α′V −1

σ2

)′

=
Bu ′yu −Bu ′Buα− σBc ′vc − V −1α

σ2

and

∂2`∗

∂α2
=

∂2`nu
∂α2

+
∂2`nc
∂α2

+
∂2`f
∂α2

= − B
u ′Bu +Bc ′W cBc + V −1

σ2
= −Q−1

The optimal value of the parameters α̂ maximising the likelihood L(α) is deter-

mined by solving the equation
∂`∗

∂α
= 0. In practice, this task is accomplished

numerically using the iterative Newton-Raphson algorithm

αk+1 = αk −

[(∂2`∗

∂α2

)−1(∂`∗
∂α

)′]
α=αk
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The iterative algorithm for computing α implies evaluating the inverse of the

m×m matrix
∂2`∗

∂α2
at each step. Taking into account that

∂2`∗

∂α2
∝ Bu ′Bu + V −1︸ ︷︷ ︸

A

+Bc ′W cBc︸ ︷︷ ︸
of rank nc

= A+Bc ′W cBc

efficiency can be achieved if nc << m using the Sherman-Morrison-Woodbury

formula (see e.g. Gentle, 2007), according to which

(∂2`∗

∂α2

)−1

=
(
A+Bc ′W cBc

)−1

= A−1 −A−1Bc ′
[
BcA−1Bc ′ + (W c)−1

]−1
BcA−1

In these terms, the computational complexity can be decreased as it would imply

only the evaluation of the inverses of the diagonal matrix W c and that of the

nc × nc matrix BcA−1Bc ′ + (W c)−1.

The quadratic approximation to the posterior distribution of the parameter α is

presented in the illustrative example in Figure 6.2.

As for the nuisance parameter S = σ2, if it is not known (as it is generally the

case), we can estimate it by applying again the Newton-Raphson algorithm until

convergence, at each iteration in the computation of α̂. By calling

G =
1

2

[
(α− µ)′V −1(α− µ) + 2b+ ‖yu −Buα‖2

]
H = −

(
a+ 1 +

m+ nu
2

)

and remembering that

ti =
di −Bc ′

i α

σ
= (di −Bc ′

i α)S−
1
2
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Figure 6.2: Illustrative example corresponding to the Laplace approximation
for the posterior distribution of α

we obtain

∂`∗

∂S
= H S−1 +GS−2 − 1

2
S−1

nc∑
i=1

ti
ϕ(ti)

Φ(ti)

∂2`∗

∂S2
= −H S−2 − 2GS−3 +

1

4
S−2

nc∑
i=1

ti
ϕ(ti)

Φ(ti)

(
3− t2i − ti

ϕ(ti)

Φ(ti)

)
(6.8)

yielding the recurrence formula
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σ2
h+1 = Sh+1 =

{
S −

(
∂2`∗

∂S2

)−1(
∂`∗

∂S

)}
α=αk+1, S=Sh

=


12G+ S

[
8H −

∑nc
i=1 ti

ϕ(ti)
Φ(ti)

(
5− t2i − ti

ϕ(ti)
Φ(ti)

)]
8G+ S

[
4H −

∑nc
i=1 ti

ϕ(ti)
Φ(ti)

(
3− t2i − ti

ϕ(ti)
Φ(ti)

)] S


α=αk+1, S=Sh

6.7 Interpretation in terms of the imputed val-

ues

Without loss of generality, we can think of theB matrix as having its rows ordered

in such a way that the first nu of them correspond to the actual observed values

while the last nc are those of the censored observations, i.e. B =

(
Bu

Bc

)
.

We can write

W =

(
Inu 0

0 W c

)
r =

(
yu −Buα

−σvc

)
(6.9)

With this notation

(∂`∗
∂α

)′
=
B′r − V −1α

σ2

∂2`∗

∂α2
=− B

′WB + V −1

σ2
= −Q−1 (6.10)
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and thus, the Newton-Raphson algorithm can be rewritten as

αk+1 = αk −

[(∂2`∗

∂α2

)−1(∂`∗
∂α

)′]
α=αk

= αk −

[(
− B

′WB + V −1

σ2

)−1(B′r − V −1α

σ2

)]
α=αk

= αk +
[
(B′WB + V −1)−1(B′r − V −1α)

]
α=αk

(6.11)

=

{
(B′WB + V −1)−1

[
(B′WB + V −1)α+B′r − V −1α

]}
α=αk

=
[
(B′WB + V −1)−1B′W (Bα+W−1r)

]
α=αk

Taking limits on both sides, the previous expression yields

α̂ = (B′WB + V −1)−1B′W (Bα̂+W−1r)

where α̂ = limk→∞αk. Therefore

Bα̂+W−1r =

(
yu

Bcα̂− σ(W c)−1vc

)
(6.12)

Thus, the iterative method can now be viewed as a weighted regression model

where the response is made up of the true observed responses and imputed values.

We can also demonstrate that these fake observations are always smaller than

the corresponding fitted values, i.e.
(
Bα̂ + W−1r

)
i
≤
(
Bα̂

)
i

or equivalently(
W−1r

)
i
≤ 0 for i = nu + 1, . . . , nu + nc.
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For the imputed values, it is W−1r = −σ(W c)−1vc; because by definition it is

vci ≥ 0, it suffices to show that W c
i ≥ 0.

Recalling the definition of W c
i and that

ϕ(x)′ = −xϕ(x) ∀x, (6.13)

our claim holds if 0 < ϕ(x)2 − ϕ(x)′Φ(x) = ϕ(x)
(
ϕ(x) + xΦ(x)

)
or simply if

ϕ(x) + xΦ(x) ≥ 0 ∀x.

Let us consider E(X|X ≤ x) =

∫ +∞

−∞
s fX|X≤x(s|x) ds. Then

FX|X≤x(s|x) = P (X ≤ s|X ≤ x)

= 1− P (X ≥ s|X ≤ x)

= 1− P (s ≤ X ≤ x)

P (X ≤ x)

= 1− FX(x)− FX(s)

FX(x)
I(−∞,x)(s)

yielding

fX|X≤x(s|x) =
fX(s)

FX(x)
I(−∞,x)(s)

and thus

E(X|X ≤ x) =

∫ +∞

−∞
s
fX(s)

FX(x)
I(−∞,x)(s) ds =

∫ x

−∞
s
fX(s)

FX(x)
ds
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≤
∫ x

−∞
x
fX(s)

FX(x)
ds = x

∫ +∞

−∞
fX|X≤x(s|x) ds

= x

In particular, for the Normal distribution, we have that

E(X|X ≤ x) =

∫ x

−∞
s
ϕ(s)

Φ(x)
ds =

1

Φ(x)

∫ x

−∞
−ϕ(s)′ ds

=
1

Φ(x)

∫ −∞
x

dϕ(s) = −ϕ(x)

Φ(x)

Putting all together, it is −ϕ(x)

Φ(x)
= E(X|X ≤ x) ≤ x leading to 0 ≤ ϕ(x)+xΦ(x).

The same result can be achieved by noticing that for the function H(x) = ϕ(x) +

xΦ(x) it is H ′(x) = Φ(x) > 0 ∀x recalling equation (6.13). Therefore H(x) is a

strictly increasing function.

Because E(X) exists, it holds that limx→−∞ xΦ(x) = 0 (see Rényi, 2007); thus

limx→−∞ H(x) = 0 and therefore 0 = limx→−∞ ϕ(x) + xΦ(x) < ϕ(x) + xΦ(x) ∀x
due to the monotonicity of H(x).

Figure 6.3 represents the weight function defined as w(t) =
ϕ(t)2 − ϕ(t)′Φ(t)

Φ(t)2
. At

convergence, these weights are computed at ti =
di −Bc ′

i α̂

σ
, i.e., as a function of

the distance between the detection limit and the fitted value corresponding to the

i-th censored value. Thus we notice that the longer the distance the smaller is the

weight given to the corresponding fake observation.

The ad-hoc example in Figure 6.4 shows a very good agreement between the

Laplace-type approximation and the fitted function that results from using all the

data. Instead, replacing non-detects by the detection-limit introduces a remark-

able bias. The red points correspond to the imputed values computed according
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Figure 6.3: Weight function for the imputed observations

to equation (6.12). The higher the weight assigned to these points, the darker

they are depicted. Appendix C provides the details of this example.

Alternatively, we can use the EM-algorithm to impute values for the non-detect

data. According to section 6.2, we need to compute E (Y |Y < d) under the as-

sumption that it is Y |µ, σ2 ∼ N (µ, σ2). We have that

FY |Y <d(y) = P (Y < y|Y < d)

= 1− P (Y ≥ y|Y < d)

= 1− P (y ≤ Y < d)

P (Y < d)
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Figure 6.4: Comparison between the Laplace-type approximation and the
standard approach. The red points correspond to the imputed values. The

higher the intensity, the higher the weight assigned to these points

If y > d, FY |Y <d(y) = 1 and therefore fY |Y <d(y) = d
dy
FY |Y <d(y) = 0. Otherwise

it holds that

FY |Y <d(y) = 1−
P (y−µ

σ
< Y−µ

σ
< d−µ

σ
)

P (Y−µ
σ

< d−µ
σ

)

= 1−
Φ(d−µ

σ
)− Φ(y−µ

σ
)

Φ(d−µ
σ

)

=
Φ(y−µ

σ
)

Φ(d−µ
σ

)
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Hence for y < d, fY |Y <d(y) = d
dy
FY |Y <d(y) = 1

σ

ϕ( y−µ
σ

)

Φ( d−µ
σ

)
. By denoting β = d−µ

σ
and

using the indicator function, the conditional density fY |Y <d(y) can be written in

a more compact form as

fY |Y <d(y) =
1

σ

ϕ(y−µ
σ

)

Φ(β)
I(y < d)

Now we can compute the conditional expectation E (Y |Y < d) as

E (Y |Y < d) =

∫ +∞

−∞
y fY |Y <d(y) dy

=

∫ +∞

−∞
y

1

σ

ϕ(y−µ
σ

)

Φ(β)
I(y < d) dy

=
1

σΦ(β)

∫ d

−∞
y ϕ(

y − µ
σ

) dy

With the change of variables y = σ t + µ we obtain dy = σ dt. Considering also

that for the normal density ϕ(t) it is dϕ(t) = −t ϕ(t) dt, we have that

E (Y |Y < d) =
1

σΦ(β)

∫ d

−∞
y ϕ(

y − µ
σ

) dy

=
1

Φ(β)

∫ β= d−µ
σ

−∞
(σ t+ µ)ϕ(t) dt

=
1

Φ(β)

[
σ

∫ β

−∞
t ϕ(t) dt+ µ

∫ β

−∞
ϕ(t) dt

]

=
1

Φ(β)

[
− σ

∫ β

−∞
dϕ(t) + µΦ(β)

]
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= − σ ϕ(β)

Φ(β)
+ µ

= µ− σ ϕ(β)

Φ(β)

Therefore, recalling equations (2.15) and (2.16), it is

ỹEMi =



yui i = 1, . . . , nu

yci = E(Y c
i |α, σ, yci < di) = Bc ′

i αold − σold
ϕ(βi)
Φ(βi)

with βi =
di −Bc ′

i αold
σold

i = 1, . . . , nc

where

Bαold = B (B′B + λD′D)
−1
B′ỹEMold = H ỹEMold and

σ2
old =

‖ỹEMold −Bαold‖2

n− tr(H)

yielding an expression similar to equation (6.12) with W c
EM = Inc . Thus, the

EM-algorithm gives the same weight to all the imputed values. As mentioned

earlier this method needs many more iterations than the proposed Laplace-type

approximation and constructing confidence bands is not straightforward.

6.8 Approximation to the posterior distribution

of σ2

When dealing only with fully observed data, without non-detects, an Inverse

Gamma distribution of parameters a∗ and b∗ is typically used to describe the
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distribution of σ2. We will try to estimate these parameters by approximating

the actual posterior distribution of α and σ2 with a Normal-Inverse Gamma.

By assuming that (α, σ2|Y ,Mλ) ≈ NIGm(µ∗, V ∗, a∗, b∗), we will obtain an

approximation for the parameters defining the posterior distribution on σ2 by

matching the first and second derivatives (with respect to σ2) between the actual

and postulated posterior on the full parameters. This approximation gives exact

results if only uncensored data are to be dealt with.

Let us recall that for the posterior NIG∗m density is

f ∗(α, σ2|Y ,Mλ) ∝ [σ2]−
2a∗+m+2

2 exp

{
− 1

2σ2

[
2b∗ + (α− µ∗)′(V ∗)−1(α− µ∗)

]}

and hence

`∗ = log f ∗(α, σ2|Y ,Mλ)

= k − 1

2
(2a∗ +m+ 2) log σ2 − 1

2σ2

[
2b∗ + (α− µ∗)′(V ∗)−1(α− µ∗)

]
= k − 1

2
(2a∗ +m+ 2) log S − 1

2
S−1

[
2b∗ + (α− µ∗)′(V ∗)−1(α− µ∗)

]

Because the maximum of the log-posterior is attained at α = α̂ and σ2 = Ŝ it

must hold that

0 =
∂`∗

∂α

∣∣∣∣∣
α=α̂, S=Ŝ

= − 1

2
Ŝ−1

[
2 (α̂− µ∗)′ (V ∗)−1

]
(6.14)

0 =
∂`∗

∂ S

∣∣∣∣∣
α=α̂, S=Ŝ

= − 1

2
(2a∗ +m+ 2)Ŝ−1

+
1

2
Ŝ−2

[
2b∗ + (α̂− µ∗)′(V ∗)−1(α̂− µ∗)

]
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yielding

µ∗ = α̂

2b∗

2a∗ +m+ 2
= Ŝ = σ̂2 (6.15)

Taking into account the relationship (6.15), for the second derivative with respect

to S,

∂2`∗

∂ S2

∣∣∣∣∣
α=α̂, S=Ŝ

=
1

2
(2a∗ +m+ 2)Ŝ−2 − 2b∗ Ŝ−3

=
(2a∗ +m+ 2)3

8(b∗)2
− (2a∗ +m+ 2)3

4(b∗)2

= − (2a∗ +m+ 2)3

8(b∗)2
(6.16)

By solving for a∗ and b∗ from the equations (6.15) and (6.16) we get

a∗ = −Ŝ2 ∂
2`∗

∂S2

∣∣∣∣∣
α=α̂, S=Ŝ

− m+ 2

2
(6.17)

b∗ = −Ŝ3 ∂
2`∗

∂S2

∣∣∣∣∣
α=α̂, S=Ŝ

(6.18)

where the value of
∂2`∗

∂S2

∣∣∣∣∣
α=α̂, S=Ŝ

should be approximated by evaluating equation

(6.8) at α = α̂ and S = Ŝ.
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Finally, from equation (6.14) we obtain
∂2`∗

∂α2
= −(V ∗)−1Ŝ−1. Matching this

equation with (6.10), it turns out that

V ∗ =
(
B′WB + V −1

)−1
(6.19)

Figure 6.5 is an illustrative example depicting the approximated posterior Inverse

Gamma distribution for σ2.

Chib (1992) proposed proper Laplace approximations including a Gaussian ap-

proximation to the posterior distribution of σ2. Note that, in contrast to the

approach set out in this chapter, this does not yield an exact answer even if there

are no censored observations.
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Figure 6.5: Illustrative example corresponding to the Laplace-type approxi-
mation for the posterior distribution of σ2
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6.9 Other possible approximations

If we denote by θ = (α, σ2) our full vector of parameters to be estimated, let

us recall that our objective is to approximate the posterior f ∗(θ|Y , λ) given by

equation (6.4), by another function q (θ|Y , λ) which is more tractable. The

Laplace-type quadratic approximation proposed is far from being optimal when

the number of non-detects increases. In this section we shall consider briefly two

other alternatives.

6.9.1 Variational Bayes approximation

One can show (see i.e. Bishop, 2006) that for any approximation q (θ|Y , λ) to the

log-marginal posterior f ∗ (Y , λ) it holds that

log f ∗ (Y , λ) = L(q) +KL(q‖f ∗) (6.20)

where L(q) =

∫
q (θ|Y , λ) log

f ∗ (Y , λ, θ)

q (θ|Y , λ)
dθ (6.21)

and KL(q‖f ∗) =

∫
q (θ|Y , λ) log

q (θ|Y , λ)

f ∗ (θ|Y , λ)
dθ (6.22)

The expression KL(q‖f ∗) is known as the Kullback-Leibler divergence and is al-

ways non-negative (see Bishop, 2006). Consequently it holds that log f ∗ (Y , λ) ≥
L(q) and the lower bound is attained when q (θ|Y , λ) = f ∗ (θ|Y , λ).

In our context of censored data, the variational strategy can closely follow the

approaches employed for probit regression and classification (see Girolami and

Rogers, 2006; Seeger, 2000).
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6.9.2 Expectation Propagation

This technique is also based on minimising the Kullback-Leibler divergence but in

the reverse form, leading to an approximation with rather different properties.

We assume that our true posterior can be written as

f ∗ (θ|Y , λ) =
1

K
f0(θ)

∏
fi (θ|Y , λ) (6.23)

where
∏

fi (θ|Y , λ) represents a factorisation of the likelihood function, f0(θ) is

the prior over the vector of parameters θ and K is the normalising constant. We

will look for an approximation to f ∗ (θ|Y , λ) of the form

q (θ|Y , λ) =
1

Z
f̃0 (θ)

∏
f̃i (θ|Y , λ) (6.24)

where each f̃i approximates the corresponding fi and Z is the normalising con-

stant. Ideally, we would aim at minimising KL (f ∗‖q) with respect to q (θ|Y , λ)

considering f ∗ (θ|Y , λ) fixed but this task would involve averaging over the true

distribution. Expectation propagation proceeds by minimising the divergences

between fi and f̃i. Each factor f̃i is constrained to come from an exponential

family and hence the whole approximation q (θ|Y , λ) will belong to this family

too. The idea of this method is to proceed iteratively to revise each factor f̃j in

turn, in the context of all the remaining factors.

If we call qnew the approximation to q (θ|Y , λ) at each new step, expectation

propagation seeks to minimise KL
(
fj
∏

i 6=j f̃i, q
new
)

. Bishop (2006) shows that

because q (θ|Y , λ) is assumed to belong to an exponential family, the minimisation

is achieved by matching the moments between qnew and fj
∏

i 6=j f̃i, provided that

this task is tractable. Thus we can make f̃j ∝ qnew∏
i6=j f̃i

. The iteration process

is repeated till convergence. The normalisation constant Z is finally chosen as
1∫ ∏
f̃i dθ

. Bishop (2006) provides the whole algorithm in detail.



Chapter 6. Approximate inference for censored data 142

Additionally to tractability in all the operations involved, another disadvantage

of expectation propagations is that there is no guarantee of convergence. Besides,

if the true distribution f ∗ (θ|Y , λ) were multimodal (which is not our case), min-

imising KL (f ∗‖q) might yield a poor approximation.

Given that the censored data component of our model is equivalent to probit

regression, one can use the same strategies for deriving expectation propagation

approximations as used for probit regression (see e.g. Rasmussen and Williams,

2006). It should be noticed that no approximations are needed for the non-

censored part of the data.

6.10 The choice of the penalisation parameter

Recalling equation (3.25), the posterior distribution of the penalisation parameter

is

fMλ|Y ∝ λ
rank(D′D)

2 ×
Γ (a∗)

∣∣V ∗∣∣ 12
(b∗)a

∗

Therefore, the idea is to identify the value of λ that maximises fMλ|Y using the

estimators of a∗, b∗ and V ∗ obtained in equations (6.17), (6.18) and (6.19) respec-

tively. It should be noticed that these estimators of the posterior parameters are

functions of λ and hence they have to be recomputed for every potential value of

the penalisation parameter to determine its optimal value.

6.11 Importance Sampling

One way to assess the goodness of our approximation and correct it, is by means

of the technique of importance sampling (see Gentle, 2002; Tanner, 1996).
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Figure 6.6: Optimal value of λ based on the approximated fMλ|Y

For the sake of notation, let us call η = (α, σ2). Up to a normalising constant K,

we can compute the true posterior distribution of η using equation (6.4). Let us

denote by f ∗(η|Y , λ) our NIG∗m (µ∗,V (λ)∗, a∗, b∗) Laplace-type approximation

to the true posterior distribution K f(η|Y , λ).

Because our approximation is fully known, we can draw a sample ηi from it

with i = 1, . . . , N . Using this sample, we can construct the sequence of weights

wi =
f(ηi|Y , λ)

f ∗(ηi|Y , λ)
. Assuming that the expectation of the random vector wη with

respect to K f(η|Y , λ) exists, it must be

lim
N→∞

1

N

∑
wiηi = E

[
w η|Y , λ

]
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=

∫
wη f ∗(η|Y , λ) dη

=
1

K

∫
K
f(η|Y , λ)

f ∗(η|Y , λ)
η f ∗(η|Y , λ) dη

=
1

K

∫
η Kf(η|Y , λ) dη

=
1

K
E(η|Y , λ) (6.25)

In particular, for η = (1, . . . , 1)′, equation (6.25) yields

lim
N→∞

w̄ = lim
N→∞

1

N

∑
wi =

1

K
(6.26)

From equations (6.25) and (6.26) we can obtain an approximation for the true

posterior expectation of the vector of parameters η

E(η|Y , λ) ≈
∑

w̃iηi = Ê(η|Y , λ) with w̃i =
wi
N w̄

(6.27)

Although Ê(η|Y , λ) is not an unbiased estimator of E(η|Y , λ), it can be proved

that under weak assumptions, limN→∞ Ê(η|Y , λ) = E(η|Y , λ) almost surely (see

Tanner, 1996).

The relationship (6.27) can be used to estimate any linear function of the param-

eters; in particular, the mean of the regression function for a given value of the

covariates.

The proposed Laplace-type approximation produces always symmetric confidence

intervals; hence, it works fairly well when the percentage of censored values is

small. Equation (6.27) can also be used to correct for this effect as it allows
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the computation of quantiles. Using Quasi-Monte Carlo strategies (see Lemieux,

2009), convergence can be achieved for importance sampling with a smaller num-

ber of points. In spite of this, the algorithm is not very efficient in practice as it

is also very time-consuming.

6.12 Illustrative Example

As an illustrative example, we have simulated N = 100 points from the linear

model

Y = −10 + 2X + ε with ε ∼ N (0, σ2 = 52) (6.28)

A simple linear model was fitted to the data, after censoring had been applied (a

two-parameters linear model was used to be able to illustrate the results). We have

plotted (on a log scale) the weights w̃i defined in equation (6.27) for the distribution

of the intercept vs. the slope using normal distance and the Mahalanobis distance.

In the first case the values were normalised and centered in the second.

Figure 6.7 corresponds to the case of fully uncensored observations. It can be no-

ticed, that except for error representation, the values of the weights are practically

1 everywhere.

The plots related to the case with a 30% of censored observations are displayed

in Figure 6.8. In this case we note that the weights vary between 0.6 ≈ e−0.5

and 1.5 ≈ e0.4. The differences occur in the tails of the distributions where

our proposed posterior approximation f ∗(η|Y , λ) differs from the true posterior

density f(η|Y , λ). However these differences do not seem to be remarkable.

Figure 6.9 pictures the more extreme case with a 50% of censored observations.

Here the weights range between 0.5 ≈ e−0.8 and 1.8 ≈ e0.6. Again, we see that

differences in weights occur in the tails although they are not really important.
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The corresponding values of the smoothing parameter are λ0 = 0.60, λ30 = 0.53

and λ50 = 0.84.
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Figure 6.7: Weights (in log scale) of normalised parameters using normal
distance (top) and Mahalanobis distance (bottom) - Without non-detects
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Figure 6.10: Comparison of the distribution of the penalisation parameter λ
evaluated using MCMC and the approximate fMλ|Y for different percentages of

non-detects: 0% (top left), 30% (top right) and 50% (bottom)

Figure 6.10 shows the distribution of the penalisation parameter λ evaluated using

MCMC and the approximate fMλ|Y (equation (3.25)) for different percentages of

contamination. It can be noticed that although the mode is the same in all cases,

the shape differs noticeably if high levels of non-detects are considered.
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Figure 6.11: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation without non-detects. The
penalisation parameter was computed using fMλ|Y and is the same in both cases

Figure 6.11 shows the distribution of the parameters of the model without non-

detects, computed using MCMC and the Laplace-type approximation. For both

methods, the value of the penalisation parameter is fixed and corresponds to the

optimal value according to fMλ|Y , which is exact in this case. As expected, both

methods yield the same distribution; but remarkably, this is even the case when

we have non-detects, as it can be noticed in Figures 6.12 and 6.13.
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Figure 6.12: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation for 30% of non-detects. The
penalisation parameter was computed using the approximate fMλ|Y and is the

same in both cases
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Figure 6.13: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation for 50% of non-detects. The
penalisation parameter was computed using the approximate fMλ|Y and is the

same in both cases
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Figure 6.14: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation without non-detects. The
penalisation parameter was computed using MCMC in the first case and the

approximate fMλ|Y in the second

Figures 6.14, 6.15 and 6.16 reproduce the same situation, except that the actual

posterior distribution of the penalisation parameter is considered for MCMC. We

notice that in this case, when there are censored data, the distribution of the

regression parameters is very skewed and very different from the Laplace-type

approximation. The reason for this is that the approximation of the posterior

distribution of the penalisation parameter λ is rather poor.
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Figure 6.15: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation for 30% of non-detects. The
penalisation parameter was computed using MCMC in the first case and the

approximate fMλ|Y in the second
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Figure 6.16: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation for 50% of non-detects. The
penalisation parameter was computed using MCMC in the first case and the

approximate fMλ|Y in the second
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Figure 6.17: Comparison of the distribution of the Intercept, Slope and σ2 us-
ing MCMC and the Laplace-type approximation with model averaging without

non-detects

In Figures 6.17, 6.18 and 6.19 we have used model averaging rather than the MAP

criterion to compute the approximate posterior distribution of the parameters for

the Laplace-type approximation. We can see that by this means, the effect of

skewness can be softened although not quite avoided.

As mentioned in section 3.6, not all the values of λ with posterior positive density

are used in the averaging process. For computation efficiency, we select a subset
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from the overall possible values and consider those such that wλ ≥ 1
K

max{wλ}.
We have set K = 20, a typical value suggested in the literature (see Raftery et al.,

1997).
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Figure 6.18: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation with model averaging for
30% of non-detects



Chapter 6. Approximate inference for censored data 159

−20 −10 0 10 20

0.
0

0.
1

0.
2

0.
3

 

Intercept

D
en

si
ty

MCMC
Laplace approximation

1.8 1.9 2.0 2.1 2.2

0
5

10
15

20

 

Slope

D
en

si
ty

MCMC
Laplace approximation

20 30 40 50 60 70 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

 

σ2

D
en

si
ty

MCMC
Laplace approximation

Figure 6.19: Comparison of the distribution of the Intercept, Slope and σ2

using MCMC and the Laplace-type approximation with model averaging for
50% of non-detects

We conclude that the Laplace-type approximation proposed gives very accurate

results, conditional on the smoothing parameter. Otherwise, the approximation

works fairly well only for a low proportion of non-detects.

But under uncertainty on the penalisation parameter and as the proportion of non-

detects increases, these posterior distributions become more skewed. Although

the Laplace-type approximation generally manages to identify the mode of the
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posterior distribution of the parameters, it fails to capture their shape properly.

This undesired effect can be lessened by not quite avoided by using Bayesian model

averaging rather than the Bayesian MAP approach for model selection.

6.13 Univariate example using Shell data

We will consider a time series of concentrations of a groundwater contaminant

recorded over 1379 days at a well at an industrial site. 75 observations have been

recorded, 49 (65%) of which are below the detection threshold. A B-spline basis

with 25 basis functions is used for the design matrix.

The data, together with the predicted mean function and 95% prediction intervals,

are shown in Figure 6.20 employing

• Laplace-type approximation with model averaging,

• Laplace-type approximation with MAP determination for the penalisation

parameter,

• EM algorithm,

• Replacement of the censored values with one-half the detection limit

In the last two cases, the estimate of the penalty parameter maximising the ap-

proximation to the corresponding posterior distribution of λ is used. The values

are λMAP = 8.21, λEM = 1.87 and λ1/2DL = 4.36.

For the sake of comparison, Figure 6.21 reproduces Figure 6.20 using the same

value of λ = λMAP = 8.21 in all cases. It can be noticed that whereas in the case

of replacing the censored values by one-half the detection limit there is no sensible

difference, in the EM case the fitted curve is smoother due to the higher order

magnitude in the penalisation parameter.
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Figure 6.20: Predicted mean function and 95% prediction intervals for the
contamination data obtained using the Laplace-type approximation with MAP
(top left) and model averaging (top right), by replacing non-detects by 1/2 the
detection-limit (bottom right) and predicted mean function using EM-algorithm

(bottom left)
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Figure 6.21: Predicted mean function and 95% prediction intervals for the
contamination data obtained using the Laplace-type approximation (top left),
by replacing non-detects by 1/2 the detection-limit (bottom right) and predicted
mean function using EM-algorithm (bottom left). In all cases, the penalisation

parameter λ corresponds to the MAP

Figure 6.22 shows the MCMC solution for the same fixed value of the penalisation

parameter computed for the Laplace-type approximation, i.e. λ = λMAP = 8.21

(see Figure 6.20, top-right). It can be seen that, except at the very end of the

series, the Laplace-type approximation is close to the fixed Bayesian solution.

Using half the detection limit underestimates the uncertainty and yields too narrow

prediction bands.
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Figure 6.22: Predicted mean function and 95% prediction intervals for the
contamination data obtained using MCMC with fixed value of λ

We see that the Laplace-type approximation yields symmetric (and hence unre-

alistic) confidence intervals. Furthermore, these intervals become very large on

the ending extreme because here is where most of the non-detects are typically

located.

An additional pitfall is that most of the uncertainty should be located on the upper

bound side. Besides, the use of a log scale on the observations yields extremely

high upper bounds in the natural scale making them implausible.
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6.14 Case Study Revisited

We analyse again our case study from section 5.2 by dealing with non-detects using

the Laplace-type approximation described in this chapter.

Figure 6.23 uses the standard assumptions whereas Figure 6.27 corresponds to

the relaxed ones. Figures 6.24, 6.25, 6.26 and 6.28, 6.29, 6.30 picture the 95%

lower and upper confidence intervals and standard errors for the predictions in

both cases. In practice, the estimation of the coefficients α̂ was carried out using

equation (6.11), which in turn implied the computation of vc (equation (6.6)) and

W c (equation (6.7)) required for evaluating r and W (recall equations (6.9)).

In the case of the standard assumptions, when the argument ti (equation (6.5))

approached −∞, the evaluation of vc and W c gave rise to indeterminate forms 0
0
,

even if the computations were carried out using logarithms. Finally, this problem

was overcome by repeated application of the rule of L’Hôpital when the argument

approached extremely negative values.

Another pitfall that arose several times in the case of the standard assumptions,

was that the inverse of P = B′WB + V −1 to be used in equation (6.11), could

not be evaluated straightforward because the matrix P was ill-conditioned. For-

tunately this issue could be also surmounted using a QR decomposition.

Using the relaxed assumptions, the algorithm converged for the optimal Bayesian

MAP value for the smoothing parameter (λ=3.792e-3) without any computational

issues.

The comparison of Figure 6.23 with Figure 6.27 reflects again that the undesired

effect of ballooning when the standard assumptions are used, can be overcome

with the use of relaxed ones. This is also confirmed by noticing that the eigen-

values yielding the maximal variance are 18294798.00 and 121.94 respectively. As

expected, in the case of relaxed assumptions the upper confidence bound is low

where non-detects are situated.
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In addition, if we compare Figures 5.17 and 6.27, we see that the latter tends

to predict lower levels of concentrations where observations with non-detects fall

outside the area dominated by observed high values (in all cases, non-detects are

represented by triangles). This is a sensible improvement due to our Laplace-

type approximation using the relaxed assumptions framework as they manage to

deal properly with observations for which it is only known to be below the value

depicted in the wells.
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Figure 6.23: Predictions obtained for the real case study at time t=16.44 using
the Laplace-type approximation under the standard assumptions. The penal-
isation parameter λ=9.123e-4 was computed using the Bayesian map criterion

(triangles represent non-detects and circles correspond to observed data)
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Figure 6.24: Lower 95% confidence limit for the predictions in Figure 6.23
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Figure 6.25: Upper 95% confidence limit for the predictions in Figure 6.23
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Figure 6.26: Standard errors for the predictions in Figure 6.23
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Figure 6.27: Predictions obtained for the real case study at time t=16.44 using
the Laplace-type approximation under the relaxed assumptions. The penalisa-
tion parameter λ=3.792e-3 was computed using the Bayesian map criterion

(triangles represent non-detects and circles correspond to observed data)
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Figure 6.28: Lower 95% confidence limit for the predictions in Figure 6.27
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Figure 6.29: Upper 95% confidence limit for the predictions in Figure 6.27
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Figure 6.30: Standard errors for the predictions in Figure 6.27



Chapter 7

Discussion

7.1 Discussion

This thesis has focussed on the modelling of spatiotemporal data under two major

conditions, namely that the model has to be fitted in an unsupervised setting and

that it has to be fitted very quickly. The first of these conditions requires strong

stability, in particular of the choice of penalty parameter which controls the degree

of smoothing applied to the data. The second condition requires careful attention

to the computational aspects of the model to avoid lengthy delay in the production

of the results.

A standard spatial approach, also available to some extent in the spatiotemporal

setting, would be to use kriging. However, this has significant disadvantages.

One is in the assumption of a particular structure of separability usually made on

the covariance matrix, while another is the requirement for the inversion of an

N×N matrix (where N denotes the number of observations in the data set). Due

to the fact that some of the actual data sets Shell has to deal with are very large,

a P-splines model addresses this problem by providing a ‘low rank’ solution where

the number of parameters in the model can be controlled. The tensor-product

basis matrices required for three-dimensional (space-time) covariates remain large

but lie within the scope of modern matrix inversion methods.
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The assessment of the model proposed, carried out in chapters 3, 4 and 5, shows

that the conditions of stability and speed have both been met successfully. In-

deed, Shell have now rolled out software which provide these methods for use by

consultants around the world, in evaluating sampled spatiotemporal groundwater

data.

There are several new directions which could be taken for further research. There

are clear potential advantages in allowing a more flexible model with at least two

smoothing parameters: one for space and another for time. This would allow

different degrees of smoothness for the evolution of pollution patterns over space

and time. This issue has been addressed in the thesis through adjustment of

the number of basis functions over space and time, but the availability of further

adjustment of the penalty parameters would be welcome. This could be achieved

through the use of computationally intensive methods such as MCMC but the

time involved in this approach makes it infeasible for the present context.

On the specific issue of ballooning, an interesting avenue to explore is the use of

random effects to describe the particular characteristics of the wells. The repeated

measurements over time at each well would allow a model of this type to be

considered and it may have the advantage of ameliorating the tendency for local

differences to generate unjustifiably high predictions in sparsely sampled regions.

In the non-detects issue, the Laplace-type approximation proposed gives very

accurate results, conditional on the smoothing parameter. The approximation

works well for a modest proportion of non-detects. However, under uncertainty

on the penalisation parameter, and as the proportion of non-detects increases,

these posterior distributions become more skewed. Although the Laplace-type

approximation is successful in identifying the mode of the posterior distribution

of the parameters, it fails to capture their shape properly. This undesirable effect

can be lessened, but not quite avoided, by using Bayesian model averaging rather

than the Bayesian MAP approach for model selection.

The underlying issue is that the Laplace-type approximation yields symmetric

confidence intervals while the actual distribution is asymmetric. Furthermore,

these intervals can become very large at the edges of the sample space, where
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most of the non-detects are typically located. Another issue is that principal

attention should be focussed on the upper (rather than lower) bound. The use of

a log scale on the observations yields extremely high upper bounds in the natural

scale making them implausible.

One approach to model fitting might be to use a generalised linear model, for

example with a gamma distribution for the response, although the iterative na-

ture of the fitting process will generally cause computational problems, in settings

where flexible modelling of the covariates is required. So these issues identify a

very interesting line of future research, namely to construct asymmetric confi-

dence intervals for a non-negative regression function in the presence of censored

observations.

In terms of the application context, Shell may be interested in extending these

models to measurements on multiple substances, to take advantage of the pooling

of information across related variables. For example, the recorded information on

a particular solute may help to predict the values of a different contaminant with

similar molecular weight for which there is not enough data available in the same

data set.

A final point of interest is the optimisation of the network design. This involves

detecting wells that might be removed from the network because they produce

information which is either redundant or of little value. The identification of

optimal locations for new wells is a further very interesting aspect of this issue.



Appendix A

Brief summary on (semi) positive

definite matrices

This appendix briefly recaps some definitions and results on (semi) positive def-

inite matrices which mimic the behaviour of non-negative real numbers (see e.g.

Sheldon, 1997; Meenakshi and Rajian, 1999)

Given matrices A andB ∈ Rm×m, and C ∈ Rm×n

1. A is said to be semi-positive definite if x′Ax ≥ 0 ∀x ∈ Rm, x 6= 0

2. A is said to be (strictly) positive definite if x′Ax > 0 ∀x ∈ Rm, x 6= 0

3. As a corollary of the previous definitions, if A and B are (semi) positive

definite so is A+B

4. Also, if A is positive definite and B is semi-positive definite then A+B is

positive definite

5. If A and B are symmetric and semi-positive definite then AB is semi-

positive definite if and only if AB is also symmetric

6. If rank(A) < m then A′A is semi-positive definite (and symmetric)

7. If rank(A) = m then A′A is positive definite (and symmetric)

8. If m < n then C ′C is semi-positive definite (and symmetric)
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9. If m = n then but rank(C) < m then C ′C is semi-positive definite (and

symmetric)

10. If m = rank(C) = n then C ′C is positive definite (and symmetric)

11. Theorem of Spectral Decomposition: If A is semi-positive definite then

there exists P ∈ Rm×m orthogonal (i.e. P ′P = Im or P−1 = P ′) such that

PAP ′ = ∆ = diag(δ1, . . . , δm) with δi ∈ R, δi ≥ 0 ∀i = 1, . . . , m. The

δi’s making up the diagonal of the matrix ∆ are called the eigenvalues of

the matrix A.

12. If A is positive definite, then the previous theorem holds with δi ∈ R, δi >
0 ∀i = 1, . . . , m

13. As a corollary of the definition of orthogonal matrices, we have that if P ∈
Rm×m is orthogonal then |P |2 = 1

14. If A is semi-positive definite then rank(A) equals the number of strictly

positive eigenvalues δi in the spectral decomposition



Appendix B

Execution times for the

computation of the optimal

penalisation parameter λ
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Number of candidates Näıve Efficient
for λ computation computation

1 19.25 28.96
2 23.79 28.97
3 28.19 29.01
4 32.84 29.05
5 37.38 29.06
6 42.00 29.05
7 46.37 29.08
8 51.16 29.11
9 55.30 29.16
10 59.98 29.14
11 64.41 29.21
12 68.93 29.21
13 73.64 29.25
14 78.18 29.22
15 82.76 29.28
16 87.53 29.31
17 91.50 29.33
18 96.16 29.31
19 100.95 29.39
20 105.52 29.39
21 109.98 29.44
22 114.42 29.41
23 118.93 29.47
24 123.36 29.51
25 128.56 29.54
26 132.67 29.53
27 137.18 29.61
28 141.29 29.53
29 145.75 29.66
30 150.40 29.64

Table B.1: Total execution times (in seconds) for computing the posterior
densities for different numbers of candidates for the penalisation parameter λ

(These data correspond to Figure 3.13)
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Dimension Näıve Efficient
of α̂ computation computation
216 12.77 0.92
343 26.22 2.31
512 47.31 5.80
729 83.79 13.79
1000 150.95 29.54
1331 267.83 61.52
1728 469.68 120.16

Table B.2: Total execution times (in seconds) for computing the posterior
densities of 30 values of λ, for different dimensions of α̂ (These data correspond

to Figure 3.14)



Appendix C

Model and data used in Figure

6.4

The model used in the example to compare the Laplace-type approximation with

the standard approach is Y = 0.2X + 0.1X2 + ε with ε ∼ N (0, σ2
0) where σ0 is

assumed to be known and equal to 2. The detection limit was set to 4 and the seed

used for random numbers generation was equal to 77. The estimated coefficients

are α̂ = (0.40, 0.24, 0.11).

The following table summarizes the results of the fitting process.
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Obs. x True Observed Fitted Imputed t Weight
Number y y y Values

1 -10 8.0 6.9007 8.6952 1.0000
2 -9 6.3 8.4821 6.9052 1.0000
3 -8 4.8 6.0796 5.3286 1.0000
4 -7 3.5 5.5852 3.9656 1.0000
5 -6 2.4 2.7394 2.8161 0.9204 0.5920 0.4885
6 -5 1.5 3.7756 1.8801 0.3717 1.0599 0.3526
7 -4 0.8 -1.1411 1.1577 -0.1092 1.4212 0.2487
8 -3 0.3 0.0363 0.6487 -0.4759 1.6756 0.1829
9 -2 0.0 0.2925 0.3533 -0.6984 1.8234 0.1490
10 -1 -0.1 2.7826 0.2714 -0.7613 1.8643 0.1403
11 0 0.0 -5.8828 0.4030 -0.6605 1.7985 0.1544
12 1 0.3 -0.1857 0.7481 -0.4025 1.6259 0.1950
13 2 0.8 0.5188 1.3068 -0.0060 1.3466 0.2695
14 3 1.5 1.4347 2.0789 0.4954 0.9605 0.3820
15 4 2.4 2.9596 3.0646 1.0517 0.4677 0.5225
16 5 3.5 4.6803 4.2638 1.0000
17 6 4.8 6.8486 5.6765 1.0000
18 7 6.3 10.5146 7.3028 1.0000
19 8 8.0 8.3093 9.1425 1.0000
20 9 9.9 11.7261 11.1958 1.0000
21 10 12.0 11.4916 13.4626 1.0000

Table C.1: Data corresponding to Figure 6.4
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