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Summary 

The ability of the immune system to discriminate between pathogenic and self or 

food antigens is essential not only for the generation of a productive immune response 

against invasive pathogens, but also for a state of antigen-specific tolerance to be 

elicited against harmless antigens. A breakdown in such tolerance can result in the 

development of a variety of autoimmune diseases including rheumatoid arthritis, Type 1 

diabetes, inflammatory bowel disease and coeliac disease. Despite a wealth of studies in 

this field, however, the mechanisms by which the immune system can distinguish 

harmless and pathogenic antigens remain to be fully elucidated. If these mechanisms 

were better understood, such information could be exploited to help develop better 

therapies for autoimmune diseases, improve the rate of successful transplantations and 

increase the efficacy of vaccines. 

The primary means of maintaining tolerance to self antigens is to prevent self-

reactive T cells from exiting the thymus following their development therein (central 

tolerance). However, some self-reactive T cells escape thymic deletion and as such, 

central tolerance is incomplete. Indeed, peripheral tolerance is required for an individual 

to elicit tolerance to all self-antigens, developmental antigens and some food and 

environmental antigens which are not present in early life. Peripheral tolerance is 

defined as a state of antigen-specific hyporesponsiveness, which is induced by exposure 

of T cells to antigen under sub-optimal activating conditions. For a T cell to become 

fully activated, and therefore productively primed, it must recognise its cognate antigen 

in the context of MHC and receive co-stimulation via the interaction of its CD28 

receptor with CD80/86 on an antigen-presenting cell (APC). Clonal anergy, one of the 

proposed mechanisms of peripheral tolerance, describes a state of long lasting 

unresponsiveness to antigen in the T cell. Such anergy is induced when the TcR is 

ligated in the absence of co-stimulation and can be evidenced, upon re-stimulation with 

antigen, by reduced IL-2 production, cell cycle progression and proliferation, relative to 

that observed in primed cells. 

It has been widely proposed that both qualitative and quantitative differences in 

T cell signalling may underlie the differential functional outcomes of priming and 

tolerance. However, the majority of these studies have relied upon biochemical 

assessment of signalling in T cell lines or clones, at the population level following 

polyclonal stimulation in vitro, and thus has led to the generation of conflicting data. 

Moreover, and most importantly, these data do not necessarily reflect the responses of 

individual antigen-specific T cells within their environmental niche within primary or 
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secondary lymphoid tissue. In addition, as such data represents the responses of all cell 

types in the sample population at any one time, they do not provide any information 

pertaining to the differential kinetics, amplitude or subcellular localisation of signals 

generated by functionally distinct subgroups within the population. 

A relatively new technology, laser scanning cytometry (LSC), offers an 

attractive means of investigating such responses, as it essentially marries the 

quantitative capabilities of flow cytometric analysis of cells in suspension with the 

ability to analyse spatially the fluorescence of large numbers of individual cells, either 

in suspension or in tissue in a slide-based format. Moreover, the adoptive transfer 

system, in which limited numbers of TcR transgenic (Tg) T cells are distributed evenly 

throughout the thymus-dependent area of the lymph node, provides an attractive means 

of studying antigen-specific responses occurring at near physiological frequencies in 

situ. Such antigen-specific T cells can be readily distinguished from endogenous T cells 

by LSC, following fluorescent staining of their TcR, as they are sparsely situated 

amongst the endogenous T cell population within the lymph node. Use of the adoptive 

transfer system, in combination with LSC analysis, has therefore enabled the 

development, in this thesis, of a quantitative imaging technology with which to study T 

cell signalling in individual antigen-specific T cells in vitro and in situ. 

In T cells, the maintenance phase of anergy has been reported to reflect defective 

activation of transcription factors, such as c-Jun/c-Fos, that are involved in formation of 

the AP-1 complex, which is required for inducing transcription of the IL-2 gene and 

optimal activation and effector function of T cells. In turn, this appears to be determined 

by the lack of recruitment of the ERK, JNK and p38 MAPK signalling cascades. The 

small GTPase, Rap1, has long been implicated in such desensitisation of ERK, and the 

consequent reduced IL-2 production, observed in tolerised T cells. However, as noted 

above, the majority of these findings were obtained from in vitro studies of T cell lines 

or clones and as such are not necessarily representative of physiological responses of 

primary antigen-specific T cells in situ. 

This study therefore describes, for the first time, an inverse relationship between 

ERK activation (pERK) and Rap1 expression in individual primary antigen-specific T 

cells during the maintenance phases of tolerance and priming, both in vitro and in vivo. 

Analysis at the single cell level further revealed that the proportion of antigen-

stimulated cells expressing pERK was lower in the anergic relative to primed groups in 

vitro and in vivo, and the few anergised T cells expressing pERK did so at a lower level 

than the primed cells in vitro. By contrast, Rap1 was found to be expressed in a greater 
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proportion of anergic antigen-specific T cells, and at considerably higher levels, 

compared with primed T cells following re-stimulation with antigen both in vitro and in 

vivo. An additional inverse relationship was observed between pERK and Rap1, 

concerning their subcellular localisation, with pERK appearing to co-localise with lipid 

raft structures in primed but not anergic cells and Rap1 appearing to be targeted to lipid 

rafts in anergic but not primed cells. These data suggests that Rap1 may be up-regulated 

and recruited to the immunological synapse upon re-stimulation with Ag in anergic T 

cells and that such Rap1 localisation and expression may contribute to the 

downregulation of ERK recruitment and activation in these cells. It is important to note 

that this inverse relationship between the accumulation of Rap1 and antagonism of ERK 

activation was only observed during the maintenance, and not induction, phases of both 

systemic and oral tolerance in vivo. 

Furthermore, assessment of the activation status of downstream cell cycle 

modulators in priming and tolerance, revealed that downregulation of ERK activation 

and upregulation of p27
kip1

 might not be sufficient for maintenance of the anergic state, 

as indicated by G1 arrest, and hence, one or more additional negative signals may be 

required. Indeed, this study suggests that perhaps such a negative signal could be 

provided by the downregulation of p-Rb and/or increased expression of inactive cyclin 

dependent kinases (CDKs). 

In summary, defective ERK signalling correlates with the up-regulation of Rap1 

expression in tolerised relative to primed antigen-specific CD4
+
 T cells during the 

maintenance phases of tolerance in vitro and in vivo. As this association occurs after the 

induction of both systemic and oral routes of tolerance, these data suggest that Rap1 

antagonism of pERK signalling may play an important and general role in the 

maintenance of antigen-specific CD4
+
 T cell tolerance. Moreover, as oral tolerance 

induction has been proposed as a potential therapy for autoimmune disorders and, oral 

administration of compounds offers a more attractive route for drug delivery in humans, 

these findings may have potential clinical applications. By advancing our knowledge of 

these key signals in regulating tolerance and priming at the single cell level in vitro and

in vivo, we will therefore increase our understanding of an important physiological 

process at the molecular level, ultimately leading to identification of potential targets for 

enhancing or inhibiting immunity and tolerance.
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Chapter 1 

General Introduction
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1. Introduction 

1.1 Overview of the immune system 

The immune system is a complex defence system in vertebrates which offers 

protection to the host from a variety of pathogenic microorganisms, including bacteria and 

viruses. The immune system comprises a multi-faceted array of cells and molecules capable 

of recognising (specifically and non-specifically), and eliminating an immense range of 

pathogens. There are two distinct, but intertwined, arms of the immune response, namely 

the innate and adaptive immune responses. Innate immunity is non-specific and represents 

the first line of defence against any invading pathogen. By contrast, adaptive immunity is 

specific and develops as the innate response occurs. Moreover, whilst the innate immune 

response does not differ upon repeated exposure to the same pathogen, adaptive immunity 

allows a memory response to develop so that subsequent encounters with the same antigen 

are treated with increased alacrity and efficacy by the host. 

1.1.1 Innate immunity 

Innate immunity comprises four types of defensive barriers: anatomical, 

physiological, endocytic/phagocytic and inflammatory. Anatomical defences include the 

skin, which acts as a physical barrier to pathogen entry and has an acidic pH (3-5), which 

diminishes growth of microorganisms on the body’s surface. Similar functions are fulfilled 

by the mucous membranes which line the conjunctivae and alimentary, respiratory and 

urogenital tracts. The majority of pathogens invade the body by penetrating the mucous 

membranes but there are a number of further obstacles to this incursion. For example, 

mucus, secreted by the epithelial cells which line the mucous membranes, ensnares foreign 

microorganisms and epithelial cells in the lower respiratory and gastrointestinal tracts 

possess hair-like projections, called cilia, which beat synchronously to propel the entrapped 

microorganisms out of these tracts. Also, non-pathogenic bacteria preferentially colonise 

the epithelial cells on mucosal surfaces and out-compete pathogenic microorganisms for 

nutrients and space.  

Physiological barriers include temperature, pH and chemical mediators. Thus, even 

normal body temperature or that associated with a fever is often sufficient to inhibit growth 

of some pathogens. Similarly, the stomach has an acidic pH that kills the majority of 

ingested microorganisms. Chemical mediators comprise a wide range of soluble proteins 
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including: (i) lysozyme, which can disrupt the integrity of the bacterial cell wall by 

cleaving the peptidoglycan layer; (ii) interferons, which are secreted by virally infected 

cells and are capable of protecting neighbouring cells from viral infection and (iii) 

complement, which contributes to clearance of pathogens by lysing their membranes or 

facilitating their phagocytosis. 

A variety of cell types can internalise and degrade extracellular macromolecules and 

whole organisms, by endocytosis and/or phagocytosis. Macromolecules can be endocytosed 

in one of two ways, namely pinocytosis whereby material is non-specifically internalised in 

relation to its extracellular concentration or receptor-mediated endocytosis, in which 

specific molecules are internalised after they have bound to their specific receptor on the 

cell surface. Both types of endocytosis result in the formation of endosomes which then 

fuse with lysosomes to form secondary lysosomes wherein the biological material is 

degraded by a variety of digestive enzymes and the products are secreted from the cell. 

Phagocytosis can be only carried out by specialised innate cell types, including neutrophils, 

monocytes and macrophages, collectively termed phagocytes. Phagocytosis enables the 

internalisation and degradation of much larger material e.g. microorganisms, in much the 

same way as endocytosis occurs. 

Inflammatory barriers arise when tissue damage and infection result in phagocytes 

and serum proteins, including acute phase proteins, leaking from the vasculature into the 

affected area. An increase in the concentration of acute phase proteins facilitates lysis or 

phagocytosis of the pathogen, both of which are mediated by complement. However, the 

innate immune response is dependent upon pathogens expressing common surface 

molecules that can be recognised by phagocytes and as such, many pathogens have evolved 

to avoid detection by the innate immune system. Adaptive immunity evolved in turn to 

equip the body with an enhanced detection system and a more comprehensive and specific 

range of defences.  

1.1.2 Adaptive Immunity 

In addition to its specificity and ability to elicit a memory response, the normal, 

functional adaptive immune response can also be hugely diverse. It can recognise a vast 

range of different antigens (Ag), as well as being able to distinguish self from non-self 

antigens thus, preventing autoimmune disorders from developing. There are two major cell 

types involved in the generation of adaptive immunity, namely lymphocytes and antigen-
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presenting cells (APC). Lymphocytes constitute 20-40 % of the white blood cell population 

and they continually circulate around the body via the vasculature and lymphoid system, 

and have the ability to migrate into lymphoid organs and tissues. B and T cells are the two 

major subtypes of lymphocytes. 

Upon ligation of the B cell antigen receptor (BcR) by its specific antigen, mature B 

cells proliferate and differentiate into populations of antibody-secreting plasma cells or 

memory B cells. Affinity maturation and isotype class switching occur in the germinal 

centres during this process. Antibodies (Abs) are immunoglobulin proteins which consist of 

re-arranged heavy (H) and light (L) chains which contain variable (V) regions that bind to 

specific antigens and facilitate their clearance by neutralisation, opsonisation or 

complement activation. As B cells constitutively express major histocompatibility complex 

(MHC) class II molecules and are efficient at acquiring cognate Ag, they can also act as 

APC for T cells. However, they are not the most efficient APC as they must be activated to 

induce expression of additional molecules such as the B7 molecules CD80, CD86 and 

CD40 that, via bidirectional signalling, promote T cell activation. 

Evidence for B cells having a regulatory function (Bregs) also exists. Such Bregs can 

hamper the development of and/or promote recovery from inflammation via the production 

of IL-10 and TGFβ-1, and contact-dependent or -independent (through secreted Abs) 

interactions with other immune cells (Figure 1.1). The phenotype of such IL-10-secreting B 

cells has been proposed as CD11b- CD5- IgD+ (1, 2) and moreover, the suppressive function 

of these cells has been attributed to a CD21
hi

 CD23
hi

 IgM
hi

 B cell subtype (3), previously 

known as transitional 2-marginal zone precursor (T2-MZP) B cells. B cells have been 

shown to produce the regulatory cytokine IL-10 under a variety of inflammatory conditions 

in vitro and in vivo. Such IL-10 can act to dampen the inflammatory response by regulating 

the TH1/TH2 balance and downregulating innate cell-mediated inflammatory responses (4-

7). IL-10 producing B cells were first described as being capable of modulating acute 

experimental autoimmune encephalomyelitis (EAE; (8)) and more recently, another subset 

of Bregs has been identified which can produce TGF-β1 (9-11) and may play a role in the 

induction of low dose oral tolerance (9, 10). 



5

1.1.2.1 T cells 

T cells are involved in a plethora of immunological activities and are essential to 

combat pathogens that evade detection by antibodies, and supply B cell help which 

subsequently leads to cognate Ab production. 

1.1.2.2 T cell activation 

A T cell requires two signals to become fully activated, with signal 1 being the 

recognition of peptide in the context of MHC and signal 2 being co-stimulation provided 

via the interaction of CD28 on the T cell with CD80/86 on the APC (Figure 1.2a). When a 

T cell receives both signal 1 and 2 it proliferates, differentiates and has effector function. In 

contrast, when a T cell receives only signal 1 i.e. lacks co-stimulation, it can undergo 

apoptosis or become anergic (Figure 1.2b). The induction of anergy is an active process and 

ligation of the TcR (signal 1) does result in activation (up-regulation of CD69 (12)) and 

proliferation of the T cell (13). The recent identification of novel co-stimulatory molecules 

has indicated that multiple signals may be required to elicit optimal co-stimulation of T 

cells (14). One such molecule is the inducible T cell co-stimulator (ICOS; also known as 

CD278 (15)). ICOS is another member of the CD28 family of co-stimulatory molecules 

which is not expressed on resting cells, but is induced on all activated T cells within 24-48 

h of T cell activation (16). When expressed, it can bind to its ligand, B7-related protein-1 

(B7RP-1), which is found on a number of cells including DC and B cells (15). ICOS is 

believed to be important in the co-stimulation of effector TH2 cell responses, as it induces 

expression of IL-4 and IL-10, but not IL-2 (17). However, ICOS:B7RP-1 interactions have 

also been shown to be important for the clonal expansion, and capacity to provide B cell 

help, of naive, TH1 and TH2 cells (18). 

1.1.2.3 T cell subtypes 

T cells can be split into two main types: CD8+ and CD4+ T cells. CD8+ T cells, 

known as cytotoxic T cells (TC), exhibit MHC class I restriction and upon recognising their 

specific antigen in association with MHC class I in the presence of appropriate cytokines 

(e.g. IL-2 secreted by CD4
+
 T cells), such TC proliferate and differentiate into effector cells 

known as cytotoxic T lymphocytes (CTL). CTL are responsible for eliminating tumour 

cells, grafted cells or virally infected cells from the body. CD4+ T cells are MHC class II 
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restricted and are known as T helper (TH) cells as they act to stimulate other cells of the 

immune system to participate in the immune response. 

1.1.2.4 CD4
+
 T cell differentiation 

CD4
+
 TH cells are activated upon recognition of their specific antigen complexed 

with MHC class II on an APC, in the presence of co-stimulation, and this activation causes 

the TH cell to proliferate, thus generating a clone of effector TH cells. Depending on the 

cytokine milieu in which an antigenic stimulus is received, either TH1 or TH2 effector cells 

are generated, each with different capabilities (Figure 1.3). TH1 cells are known to express 

the transcription factor T-bet (19) and can produce IL-2, IFNγ and TNF-α. IFNγ

upregulates IL-12 production by DC and macrophages and this IL-12, in turn, causes an 

increase in IFNγ production in TH cells and so promotes TH1 cell differentiation in a 

positive feedback loop. Moreover, IFNγ downregulates IL-4 production thus, further 

promoting a TH1 phenotype. For example, IFNγ can post-transcriptionally downregulate 

IL-4-induced IL-4 receptor (IL-4R) gene expression (20). TH1 cells contribute to the 

cellular (TH1) immune response by improving the killing efficacy of macrophages and also 

stimulating proliferation of CTL. For example, IFNγ, produced by TH1 cells, rapidly primes 

macrophages via the JAK1/2-STAT1 pathway (21). This pathway promotes intracellular 

killing of phagocytosed bacteria, rather than inducing the macrophage to process and 

present the antigen on its surface. TH1 cells do, however, promote the production of IgG2a 

antibodies (in the mouse). 

TH2 cells express the transcription factor GATA-3 (22) and can produce IL-4, IL-5, 

IL-6, IL-10 and IL-13 and skew adaptive immunity towards a humoral (TH2) immune 

response, by stimulating B cells to proliferate, isotype switch and secrete IgG1 antibodies 

(in the mouse). IL-4 stimulates TH cells to differentiate into TH2 cells and IL-10 inhibits IL-

2 and IFNγ production, as well as IL-12 production by DC and macrophages, thus directing 

a TH2 profile. 

Another lineage of effector CD4
+
 T cells, namely TH17 cells, has recently been 

described which is characterised by its expression of the orphan nuclear receptor RORγT 

(23), as well as its cytokine production profile IL-17 (also known as IL-17A), IL-17F and 

IL-6. Moreover, the pathways which lead to the differentiation of TH17 cells are distinct 

from those which promote development of TH1 or TH2 lineages (reviewed in (24, 25)). 
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However, T cell-produced TGF-β is required for the generation of both TH1 and TH17 

lineages (26). 

The existence of another subset of CD4+ T cells, CD4+ CD25+ Foxp3+ regulatory T 

cells (Treg) has been validated in recent years. Treg (previously known as suppressor T cells) 

have been shown to suppress pathological immune responses to self antigens in 

autoimmune disorders or foreign antigens in transplantation and graft versus host disease 

(27). A fuller description of the different Treg classes including details of their specificity, 

phenotype and mechanism of suppression, is provided in Section 1.2.2.3 and Table 1.1. 

Briefly, Treg exert their effects by downregulating the proliferation of other T cell 

populations both in vitro and in vivo. It is believed that, in addition to these naturally 

occurring Treg generated in the thymus, so called adaptive or induced Treg (Treg, also known 

as TH3 or Tr1 cells) exist in the periphery. These are Treg which develop during an immune 

response in vivo (28) where CD4+ CD25- TH cells have been shown to upregulate 

expression of Foxp3 and differentiate into Treg upon ligation of the T cell receptor (TcR) 

with low levels of antigen or antigen presented in an inappropriate cytokine environment 

(29). 

1.2 The need for tolerance 

The immune system in a normal healthy individual is capable of distinguishing self 

from non-self antigens. When a new antigen is encountered, it is this discriminatory 

capacity which allows the generation of a productive immune response against invasive 

pathogens or for a state of antigen-specific tolerance to be elicited. Such antigen-specific 

tolerance prevents harmful immune responses against self components (30) or non-

dangerous food or environmental antigens. A breakdown in tolerance within an individual 

can result in the development of a variety of autoimmune disorders. 

1.2.1 Central Tolerance 

The primary means of maintaining tolerance to self antigens is to prevent self-

reactive T cells from exiting the thymus following their development therein. Lymphoid 

progenitor cells are produced in the bone marrow or fetal liver before migrating to the 

thymus whereupon they start out as double negative (DN) thymocytes (31, 32), as they lack 

expression of CD4 and CD8. Subsequently, DN thymocytes which possess a functional 

TcR-β chain are selected to differentiate into double positive (DP) CD4+ CD8+ cells (33, 
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34). This process is termed β-selection. Such DP thymocytes then undergo positive and 

negative selection, processes which promote the differentiation of single positive (SP) 

CD4+ or CD8+ αβ-T cells, that are MHC-restricted and self-tolerant (35). 

When the TcR of a developing thymocyte is strongly ligated by peptide:MHC, 

expressed on an APC (stromal or bone marrow-derived cells) in the thymus, it is 

programmed to die by apoptosis. Such a response constitutes the foundation of negative 

selection (also termed clonal deletion) in which encounter of thymocytes with self Ag:self 

MHC complexes, at affinities or avidities that are high, in the thymus results in deletion of 

self-reactive, and therefore potentially harmful, immature T cells from the T cell repertoire. 

Although it is easy to envision T cells encountering ubiquitous antigens in the thymus it 

has, until recently, been difficult to reconcile how thymic T cells ‘see’ tissue-specific 

antigens (TSA) (36) such as pancreatic insulin, which would be unlikely to be expressed in 

the thymus. It is proposed that aberrant (also known as “promiscuous”) expression of 

peripheral Ag in the thymus enables thymic T cells to experience TSA (37, 38). Such 

thymic TSA expression is predominantly limited to medullary epithelial cells (mTECs) 

(36). The autoimmune regulator protein (AIRE) was first identified as the gene underlying 

autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED; also known 

as APS1) (39, 40). AIRE is highly expressed on human and mouse mTECs and is thought 

to play an important role in central tolerance as mice deficient in AIRE, or those lacking it 

specifically in the thymus, develop organ-specific autoimmune diseases presumably 

because they have not been rendered self-tolerant to such TSA (41). Other studies have 

demonstrated a role for AIRE in promoting self-Ag expression on mTECs and hence its 

relevance in negative selection in the thymus (42, 43). Indeed, mTECs which lack AIRE 

have been shown to also lack expression of a subset of TSA (37, 41). It is believed that 

thymic DC acquire TSA from the mTECs, process and cross present it to both CD4
+
 and 

CD8+ thymic T cells to ensure rigorous development of a self-tolerant repertoire of T cells 

(44, 45). However, some self-reactive T cells escape thymic deletion and as such central 

tolerance is incomplete. 

1.2.2 Peripheral Tolerance

Peripheral tolerance is therefore required to ensure that tolerance is elicited to all 

self-antigens, developmental antigens and some food and environmental antigens which are 
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not present in early life. Peripheral tolerance reflects a state of antigen-specific 

hyporesponsiveness induced by exposure of T cells to antigen under sub-optimal activating 

conditions (46). There a number of proposed mechanisms of peripheral tolerance: 

  

1.2.2.1 Ignorance of antigen

T cells can remain ignorant of their specific antigen if the antigen is not presented to 

the T cell. For example, antigens can be sequestered in immune-privileged sites such as the 

eye and so cannot be seen by circulating T cells (47).

  

1.2.2.2 Clonal anergy 

One of the potential mechanisms of peripheral tolerance is the unresponsiveness of 

T cells to secondary antigenic stimulation, as a result of induction of anergy. It is well 

established that ligation of the TcR, upon recognition of its specific peptide in the context 

of MHC, in the absence of co-stimulation induces long lasting unresponsiveness (anergy) in 

T cells (48, 49). Several methods have been used to induce such anergy in vitro (50-52), 

including exposure to immobilised anti-CD3 in the absence of co-stimulatory signals (51, 

53). Under such conditions, relative to priming conditions (TcR ligation + co-stimulation), 

re-stimulation with antigen leads to hugely downregulated IL-2 production and hence 

decreased proliferation of the T cells. This state of anergy can be reversed by the addition 

of exogenous IL-2 to the T cells (54). 

A role for anergy in oral tolerance (a form of peripheral tolerance which is fully 

described in Section 1.2.3), after feeding a high dose of antigen, has also been suggested. 

Ovalbumin (OVA)-specific T cells have been shown to be anergic following a single feed 

of 20 mg OVA (55). Similarly, other studies have demonstrated that feeding a high dose of 

myelin basic protein (MBP) induces downregulation of IL-2 and IFNγ production and 

proliferation in antigen-specific T cells in response to in vitro re-stimulation (56, 57). 

Anergy itself is an active process and during the induction of anergy, in vitro or 

after feeding in vivo, anergic T cells clonally expand and upregulate the activation marker 

CD69 (12, 58-60). However, during the maintenance phase of anergy, these T cells are 

unresponsive to re-stimulation with antigen in vitro (12, 60). As mentioned above, anergy 

may result from a lack of co-stimulation (CD28:CD80/86 interaction). Although resting DC 

and macrophages constitutively express low levels of CD86 (61-63), many studies have 

indicated that this default level of CD86 expression does not induce priming but rather 
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appears to be required for the induction of T cell tolerance and that CD80/86:CTLA-4 

(cytotoxic T lymphocyte-associated antigen-4; described fully in Section 1.2.2.4) 

interactions may be indeed necessary for maintaining T cell tolerance (64-68). 

Unfortunately, as yet, there is no known specific marker for anergic T cells and definition 

of this unknown phenotype remains the elusive holy grail in the field of anergy. 

1.2.2.3 Active suppression 

1.2.2.3.1 CD8
+
 “suppressor” T cells 

Another probable mechanism of peripheral tolerance is active suppression of the 

immune system. Early studies indicated the involvement of CD8
+
 “suppressor” T cells 

(CD8+ Treg) in active suppression and although the mechanisms by which those CD8+ T 

cells exerted such effects were not fully elucidated, a role for TGF-β production by CD8
+
 T 

cells was proposed (69, 70). Consistent with this, CD8
-/-

 mice have been shown to exhibit 

deficient local supression of IgA responses in the gut after feeding Ag, indicating that CD8+

Tregs may be important for the regulation of mucosal immune responses (71). However, 

systemic tolerance is unaffected in these mice, suggesting that CD8
+
 Tregs exert their 

regulatory effects locally. Moreover, other studies in knockout mice or using neutralising 

Ab, have proposed a role for CD4
+
, but not CD8

+
 T cells in the regulation of oral tolerance 

(72-74). 

1.2.2.3.2 CD4
+
 Tregs

Indeed, active suppression is believed to be exerted by the Treg population which 

acts to downregulate activation of CD4
+
 TH cells in response to antigenic stimulation (75). 

Several different subtypes including CD4+ CD25+ Foxp3+ T cells, TH3 and Tr1 cells, are 

thought to mediate suppression in a variety of ways (Table 1.1). It was first proposed that 

CD4
+
 T cells might regulate oral tolerance via differentiation towards a TH2 phenotype and 

such TH2 cells were shown to suppress TH1-dependent IL-2 and IFNγ production through 

secretion of IL-4 (76-79). However, studies in IL4
-/-

 mice demonstrated that both high and 

low doses of Ag were able to induce oral tolerance in these mice (80, 81), suggesting that a 

subset of Tregs other than TH2 cells may be involved in regulating oral tolerance. 
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Consistent with this proposal, another subset of CD4
+
 Tregs has been described, 

which produce varying amounts of the TH2 cytokines IL-4 and IL-10, but have been shown 

to be a population distinct from TH2 cells (76). Such cells were denoted TH3 cells (76) and 

Ag-specific CD4
+
 TH3 cells have been detected in the mesenteric lymph nodes (MLN) of 

DO11.10 Tg mice, after feeding multiple low doses of antigen (82, 83). In addition, it has 

been proposed that co-stimulation mediated by CD86, but not CD80, promotes the 

induction of a TH3 phenotype (66). 

CD4
+
 T regulatory 1 (Tr1) cells were first identified, following multiple 

stimulations of naive T cells with Ag, in the presence of high concentrations of IL-10 in 

vitro (84). Such Tr1 cells can suppress TH2 responses in an Ag-specific manner (84) and 

OVA-specific Tr1 cells have been shown to prevent inflammatory bowel disease (IBD) 

when they are adoptively transferred into recipient mice subsequently fed OVA (85). 

However, the role of Tr1 cells in oral tolerance has yet to be fully elucidated. 

As stated above (Section 1.1.2.4), CD4
+
 CD25

+
 Tregs appear to be generated in the 

thymus (86) and certain studies have indicated that CD4
+
 T cells bearing TcR with 

especially high affinity for self-Ag may be selected to become Tregs (87). CD25 is also 

upregulated on antigen-specific T cells in the periphery after feeding with tolerogenic doses 

of antigen (88, 89) and is thought to persist on a small subset of antigen-specific cells 

(CD4
+
 CD25

+
) which then have the capacity to suppress bystander populations of naïve T 

cells specific for an unrelated Ag (89, 90). Moreover, CD4
+
 CD25

+
 Tregs can suppress the 

cytokine production and proliferation of both CD4
+
 and CD8

+
 T cells in vitro (91, 92). 

A further subset of CD4+ Tregs has been identified according to their expression of 

CD45RB (93). For example, whilst transfer of CD4
+
 CD45RB

hi
 T cells into 

immunodeficient Scid or Rag
-/-

 mice causes severe colitis (94, 95), co-transfer of CD4
+

CD45RB
low

 T cells has been shown to inhibit this inflammation (93). This regulatory 

capacity of CD4
+
 CD45RB

low
 (now termed CD45RB

+
) T cells is thought to be mediated by 

TGF-β (96) and/or IL-10 (97). 

1.2.2.4 The role of inhibitory co-stimulatory molecules in tolerance 

As described earlier, productive co-stimulation can be provided by CD28 on the T 

cell interacting with CD80/86 on the APC. CD28 belongs to the CD28 family of co-

stimulators. CD28 family members exhibit high homology with one another and some 

members are known to exert inhibitory co-stimulatory effects (Figure 1.2) namely, CTLA-4 
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(also known as CD152) and programmed death-1 (PD-1; also known as CD279). CTLA-4, 

has high homology with CD28 and is expressed primarily by activated T cells. It can act as 

an additional receptor for CD80/86 and moreover, CTLA-4 binds to CD80/86 with more 

than 20-fold greater affinity than CD28 does. Ligation of CTLA-4 results in the inhibition 

of T cell activation and concomitant TcR signalling limits production of IL-2 and cell cycle 

progression (Figure 1.2c). This highlights the importance of CTLA-4 in limiting the 

proliferative response to T cells to their cognate antigen and hence, immune homeostasis. 

Indeed, deletion or blockage of CTLA-4 inhibits the induction of peripheral (67, 98) and 

oral (68, 88) tolerance, improves anti-tumour responses and aggravates autoimmune 

disorders (99, 100). Anti-CTLA-4 mAb treatment causes the promotion of cell cycle 

progression, expansion of antigen-specific T cells in the paracortex and follicle of draining 

lymph nodes and enhanced specific Ab production in the induction phase of oral tolerance 

(101). In addition, CTLA-4 mediated signalling also has an important regulatory role in T 

cell differentiation, as CTLA-4 blockade has been shown to promote differentiation of 

CD4
+
 T cells into IL-4 producing TH2 cells (102).  

PD-1 is another inhibitory receptor inducibly expressed on T cells, B cells and 

activated monocytes (98, 103, 104). PD-1 binds to its ligands, PD-L1 (B7-H1; CD273) and 

PD-L2 (B7-H2; CD274). PD-L1 is constitutively expressed on T cells, B cells, DC, 

macrophages, mesenchymal stem cells (105) and bone marrow-derived mast cells (106) 

whereas, PD-L2 is inducibly expressed on DC, macrophages and bone marrow-derived 

mast cells (106). Co-ligation of the TcR or BcR with PD-1 results in the transduction of an 

inhibitory signal (Figure 1.2d). No signal is transduced when PD-1 is cross-linked alone. 

PD-1 and its ligands are thought to have importance in both central and peripheral tolerance 

and the role of PD-1 in regulating T cell tolerance and autoimmunity was first suggested by 

the autoimmune phenotype of PD-1-deficient (Pdcd1
-/-

) mice (107, 108). Further evidence 

was provided more recently, by blockade of PD-1 and PD-L1, PD-L2 with antibodies, 

which demonstrated a critical role for PD-1, but not CTLA-4, in maintaining established 

peripheral CD4
+
 T cell tolerance (109). Thus, whilst PD-1:PD-L1 interactions are important 

for sustained, long term tolerance (109), in addition, PD-L2 has been shown to have a role 

in oral tolerance, as PD-L2-deficient mice fed ovalbumin fail to induce tolerance in their 

CD4
+
 or CD8

+
 T cells (110). 
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1.2.3 Oral tolerance 

Oral tolerance is the oldest and most established means of experimentally inducing 

peripheral tolerance. For example, it was first studied in 1911 by Wells and Osbourne who 

showed that systemic anaphylaxis in guinea pigs was prevented by prophylactic feeding of 

hen egg proteins (111). Oral tolerance models are attractive experimental systems as they 

have genuine physiological relevance, due to the fact that whilst a healthy individuals’ 

intestinal immune system retains a state of unresponsiveness to food antigens throughout 

their lifetime, breakdown in such tolerance results in the development of diseases such as 

coeliac disease, where CD4
+
 T cells respond to gliadin peptides in wheat and damage to the 

small intestine occurs (112), or Crohn’s disease, wherein the commensal gut flora is 

attacked and inflammatory bowel disease (IBD) results (113). 

Orally-administered antigen often stimulates a local IgA response but 

simultaneously induces tolerance of systemic humoral and cell-mediated immune responses 

(114-116). Oral tolerance is considered vital for maintaining the immunological integrity of 

the mucosa as it prevents inappropriate inflammatory responses. It must be noted that the 

ability of orally-administered antigen to induce tolerance is not absolute as co-

administration of adjuvants such as cholera toxin (CT) induces productive, systemic 

immune responses as evidenced by antibody production and T cell responses (117-120). 

Although a plethora of work has been done in this field, the mechanisms which control oral 

tolerance have still to be fully elucidated. 

1.2.3.1 Mucosal immunity 

 In order to investigate the mechanisms underlying oral tolerance it is essential to 

understand how the mucosal immune system recognises and responds to antigen. Studies 

have indicated that fed antigen stimulates T cells in the gut-associated lymphoid tissues 

(GALT) and that these activated T cells then circulate to the periphery (59, 121-123). The 

GALT is the name given to the lymphoid components associated with the gastrointestinal 

tract and contains all of the elements required to generate a productive mucosal immune 

response, including macrophages, DC, eosinophils, mast cells and lymphocytes. These 

cellular components are situated within either discrete organised or diffuse scattered 

lymphoid tissues. The Peyer’s patches (PP) and mesenteric lymph nodes (MLN) comprise 

the organised tissues and the lamina propria (LP) and intraepithelial lymphocytes are 

examples of the scattered tissues (Figure 1.4). 
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1.2.3.2 Sites at which orally-acquired antigen is presented in the gut 

There are several sites at which orally acquired antigen can be presented, namely 

the LP, PP and MLN. The induction of oral tolerance in mice lacking PP is normal (124, 

125) and so the PP is thought to be superfluous for this type of tolerance induction. 

However, MLN were required for tolerance induction in these mice (124, 125) and the 

importance of MLN for the induction of oral tolerance was further demonstrated in B cell- 

deficient µMT mice, which lack PP and M cells (specialised epithelial cells) (126), as these 

mice can be tolerised as efficiently as wild-type mice (127). The MLN are believed to be 

the site at which the mucosal and peripheral immune systems are interlinked, as they are the 

draining lymph nodes for the PP and LP. Indeed, APC loaded with orally acquired antigen 

continually migrate from the intestine to the MLN, where they may be important for 

tolerance induction (128, 129).

1.2.3.3 Antigen uptake and presentation in the gut 

Productive mucosal immune responses to orally acquired antigen are thought to be 

generated primarily in the PP. After ingestion, antigens or whole microorganisms are 

transported through M cells to immature DC in the sub-epithelial dome (SED) of the PP 

(130, 131). As these immature DC differentiate and express co-stimulatory molecules and 

antigen:MHC class II complexes, they migrate to the interfollicular regions (IFR). In the 

IFR, incoming mature DC present antigen to naïve CD4+ T cells (132) or are believed to be 

capable of transferring their bound Ag to resident DC by a process known as cross-

presentation (133-135). Such cross-presentation of Ag may perhaps provide a mechanism 

whereby Ag in the periphery can be presented in lymph nodes thus, inducing “cross-

priming” towards transplanted tissues or “cross-tolerance” towards self-tissues. It has been 

suggested that the promotion of cross-priming versus cross-tolerance may reflect the 

maturation status of the incoming DC, with very mature (e.g. CD86
hi

) DC inducing priming 

and immature DC inducing tolerance (133).  

1.2.3.4 APC-mediated presentation of Ag to T cells in tolerance 

Many different cell types have the ability to present antigen to T cells. Intra-

epithelial cells (IEC) express MHC class II and can present antigen to CD4
+
 T cells in vitro

(136-141) but, these cells lack co-stimulatory molecules (CD80/86) and so cannot 

productively prime T cells. As such, IEC could be important for the induction of tolerance 
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as they may be capable of presenting Ag to T cells in the absence of co-stimulation, a 

process known to induce a state of antigenic unresponsiveness in the T cell (48, 49). 

However, this is thought to be unlikely as the LP contains predominantly effector/memory 

T cells (142, 143), which are less susceptible to tolerance induction than naïve T cells 

(144). Similarly, some controversy surrounds a role for B cells as APC in the induction of 

tolerance. Whilst decreased tolerance induction was observed in µMT mice (which lack B 

cells) (9), many other studies have shown that B cells are not essential for oral tolerance. 

For example, depletion of B cells by treating mice from birth with anti-IgM antibodies does 

not alter the induction of tolerance of either TH1 or TH2 cells by feeding high or low doses 

of antigen (145, 146). 

DC are thought to be the major APC involved in presenting orally acquired antigen 

to T cells (147). In addition, DC expansion, induced by treatment with the cytokine fms-

like tyrosine kinase ligand (flt3L), contributes to both priming and tolerance in response to 

orally-administered Ag (148, 149). In these studies, tolerance arose when soluble Ag was 

fed alone (148) and priming was induced when Ag was administered together with an 

adjuvant, such as CT (149). PP DC are known to produce IL-10 and can direct naïve T cells 

towards a TH2 (150) or TH3 (151) profile, two cell types known to have roles in the 

regulation of tolerance (152). In addition, LP DC are also capable of acquiring and 

presenting antigen (153-156) and have been reported to directly acquire antigen from the 

gut lumen by opening tight junctions in the epithelial layer and projecting dendrites through 

which to sample gut bacteria (157). DC express both MHC class II and co-stimulatory 

molecules (CD80/86) on their surface and so can acquire antigen and productively prime 

CD4
+
 T cells. Immature DC acquire protein antigen via surface receptors e.g. Toll-like 

receptors (TLRs), internalise and degrade it, before presenting peptide components of the 

protein antigen bound to MHC class II on their surface and transporting the antigen to the 

draining lymph nodes where it can be presented to CD4
+
 T cells.  
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1.3 T cell signalling 

1.3.1 TcR-mediated signalling 

1.3.1.1 Signalling proximal to the TcR 

The signalling cascades initiated upon TcR ligation (Figure 1.5) govern all aspects 

of T cell fate and effector function. Within seconds of TcR ligation, p56Lck and p59Fyn Src 

family protein tyrosine kinases (PTK) are recruited to and phosphorylate immunoreceptor 

tyrosine-based activation motifs (ITAMs) in CD3 and TcRζ-chains (158, 159), thus 

enabling the recruitment of the Syk family PTK, ZAP-70, via binding of its SH2 domains 

to the phosphorylated ζ-chains (160). ZAP-70 can then be activated via phosphorylation by 

p56
Lck

/p59
Fyn

 and activated ZAP-70 fuels further signal transduction by recruiting and 

phosphorylating downstream adaptor molecules, namely SH2-domain-containing 

leukocyte-specific phosphoprotein of 76 kDa (SLP-76) and linker of activated T cells 

(LAT) and downstream kinases. Phosphorylated SLP-76 associates with the guanine 

nucleotide exchange factor (GEF), Vav, via its SH2 domain and also binds the Tec family 

PTK, IL-2 tyrosine kinase (Itk). 

1.3.1.2 Role of adaptor proteins in T cell signalling 

Adaptor proteins function to link antigen-receptor ligation to cellular signalling. 

One such adaptor protein is LAT and phosphorylated LAT binds phospholipase C-γ1 (PLC-

γ1), growth factor receptor-bound protein 2 (Grb2) and the Grb2 family member, GADS. 

Binding to PLC-γ1 and GADS is essential for T cell activation and differentiation (161). 

Grb2 forms a complex with Son of Sevenless (SOS) and this complex mediates Ras 

activation as SOS is a GEF capable of converting Ras-GDP (inactive form) to Ras-GTP 

(162). In addition, GADS functions as an adaptor which binds LAT and SLP-76 following 

TcR ligation (163). 

1.3.1.3 The PLC-γ1 pathway 

Activation of PLC-γγγγ1, mediated in part by LAT, results in phosphatidylinositol 4, 5-

biphosphate (PIP2) being cleaved to form inositol 1, 4, 5-triphosphate (IP3), which increases 

cytosolic-free calcium, and diacylglycerol (DAG), which supports protein kinase C (PKC) 
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activation by binding to the cysteine-rich region (C1) of PKC, thus causing a 

conformational change which reduces the autoinhibition of its kinase activity (164-166). 

Mobilisation of Ca
2+

 leads to activation of the calcium-dependent phosphatase, calcineurin, 

which then de-phosphorylates nuclear factor of activated T cells (NF-AT) on specific 

amino acid residues revealing its nuclear localisation sequence and thus NF-AT 

translocates into the nucleus, where it acts in combination with activator protein 1 (AP-1) to 

transcribe the IL-2 gene under conditions of priming (167). AP-1 itself is a complex of c-

Fos and c-Jun transcription factors. Activation of AP-1 alone is not sufficient for 

transcription of the IL-2 gene, as for this to occur, co-stimulation is required which initiates 

further signalling cascades necessary for IL-2 production (Figure 1.6). 

1.3.1.4 PKC-mediated signalling in T cells 

The PKC family of serine/threonine kinases act as DAG binding proteins in 

lymphocyte activation that can stimulate accumulation of GTP-bound (activated) Ras, 

independent of SOS (168). DAG can also bind the GEF Ras guanyl-releasing protein 1 

(RasGRP1) through its DAG-binding domain (169). RasGRP1 also contains Ca
2+

-binding 

EF hands, and following increases in the levels of intracellular Ca2+ and DAG, RasGRP1 is 

recruited to the Golgi membrane (169, 170) whereupon it converts Ras-GDP to the GTP-

bound form of Ras and consequently leads to activation of downstream mitogen-activated 

protein (MAP) kinases such as ERK (171, 172). 

1.3.1.5 MAPKinase pathways 

The MAPKinases are a family of serine threonine protein kinases which are 

activated by a variety of extracellular stimuli and are capable of mediating an array of 

cellular functions, ranging from activation and proliferation to growth arrest and cell death 

(173). There are three different types of MAPK: the classical extracellular signal-regulated 

kinases (ERKs), the p38 MAPK and the c-Jun N-terminal kinases (JNK), also known as 

stress activated protein kinases (SAPK) (174, 175). Activation of each group is determined 

by different upstream MAPK kinases (MEKs) and MAPK kinase kinases (MEKKs). 

MAPK are activated by dual phosphorylation on tyrosine and threonine residues, located in 

a T-X-Y motif (176), where X is different in each group of MAPK. MAPK activation 

results in phosphorylation and activation of distinct downstream transcription factors, 

depending on the group of MAPK activated. Thus, ERK activates Elk-1 and c-Myc (177, 
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178), p38 activates c-Fos (179) and ATF-2 (180), and JNK activates c-Jun and ATF-2 

(181). The phosphorylation and activation of these transcription factors allows the MAPK 

family to regulate gene expression and hence, cellular fate and effector function. 

In T cells, upon TcR ligation, the TcR is linked to the Ras-ERK MAPK pathway.

Ras is a membrane-bound guanine nucleotide binding protein that can be activated both at 

the plasma membrane (SOS-mediated; (182)) and at the Golgi membrane (RasGRP1-

mediated; (171, 183, 184)), prior to recruitment to the plasma membrane. Ras-GTP recruits 

the serine/threonine kinase Raf-1 to the plasma membrane, where Raf-1 is activated (185). 

The N-terminal domain of Raf-1 is known to inhibit its kinase activity and it is the 

interaction of this domain with Ras that relieves the autoinhibition (186). Activated Raf-1 

then phosphorylates and activates the MAPK/ERK kinase (MEK), which is unusual in that 

it has a dual ability to phosphorylate both threonine and tyrosine residues, required for  

activation of the MAPK ERK. There are many isoforms of ERK including the two major, 

well-characterised isoforms, ERK1 and ERK2, which differ from the other kinases such as 

Raf-1, in that they lack an autoinhibitory domain. Instead, as stated above, their activation 

is regulated by the dual phosphorylation of neighbouring threonine and tyrosine residues by 

MEK (187). Activated ERK homodimerises and is believed to translocate into the nucleus 

where it phosphorylates and activates a number of transcription factors including AP-1. 

ERK2 was first localised to the cytoplasm in resting cells but upon stimulation, ERK2 was 

also detected in the nucleus (188). Similar findings have also been reported for ERK1 (189-

191).

  

1.3.2 Co-stimulation-dependent signalling 

The signalling described thus far occurs as a result of TcR ligation. For induction of 

IL-2 and consequent productive priming of a T cell to occur, co-stimulation is required, as 

described earlier. Co-stimulation-dependent (CD28-mediated) proliferative signals, 

independent of ERK activation, are crucial for activation of the full range of transcription 

factors required for transcription of the IL-2 gene, and hence proliferation (Figure 1.6). 

These pro-proliferative signals include the Rho family GTPases, Rac and Cdc42 which 

activate p21-activated kinase (PAK), which in turn activates the dual specific kinase 

SAPK/ERK1 kinase (SEK1; also known as MKK4) (192). Next, the stress activated protein 

kinase (SAPK), c-Jun N-terminal kinase (JNK) is activated by phosphorylation of the 

tyrosine threonine motif residues by the dual specific SEK1 (193). Activated JNK then 
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phosphorylates c-Jun at serine 63/73, which contributes to the activation of AP-1 (194). It 

is also thought that PAK may activate other dual specific kinases such as MKK3/6 which, 

in turn, selectively phosphorylate p38 MAPK at both threonine and tyrosine residues. 

Phosphorylated p38 can activate a number of effector molecules including activating 

transcription factors (ATFs), a class of AP-1 dimers (172), by phosphorylation within the 

N-terminal domain e.g. at Thr69 and Thr71 for ATF-2 (180). Similar to ERK, p38 can also 

activate c-Fos via activation of ternary complex factors (TCF) within the serum response 

element (SRE) of c-Fos, which completes the activation of AP-1 (179). Both the ERK and 

p38 MAPK pathways are connected to the c-Fos promoter by members of the TCF family 

of E twenty-six (ETS)-domain proteins such as Elk-1 and SAP-1. The Elk-1 C-terminal 

domain has multiple S/T-P motifs (195) and can be phosphorylated by ERK (177, 178) and 

JNK in vitro and by MEKK in vivo (196). Both ERK and p38 MAPK pathways are 

required for optimal activation of Elk-1 and SAP-1a TCFs and hence, for transcription of c-

Fos itself (179). 

Phosphoinositide 3 kinase (PI3K) activation is required for optimal lymphocyte 

proliferation. Indeed, pharmacological inhibition of PI3K prevents IL-2 production in T 

cells which have been stimulated through the TcR and CD28 (197, 198). Upon engagement 

with their cognate ligands, CD28 and ICOS can both bind the p85 regulatory subunit of 

PI3K at their 
170

YXXM (199) and 
181

YMFM (200) signalling motifs, respectively. This can, 

in turn, recruit the catalytic p110 subunit of PI3K to the membrane, resulting in activation 

of PI3K. PI3K is then in the correct location to exert its enzymatic activity on its substrates 

thus, allowing production of PI3K products, namely 3-phosphoinositides. The major PI3K 

product is phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) and this molecule is 

heavily involved in the co-localisation of 3’-phosphoinositide-dependent protein kinase 

(PDK)-1 and its substrate Akt (also known as protein kinase B (PKB)) at the plasma 

membrane, by binding to them via their Pleckstrin Homology (PH) domains. 

Once situated correctly at the plasma membrane Akt is first phosphorylated by the 

mammalian target of rapamycin complex 2 (mTORC2) (201), which stimulates the 

subsequent phosphorylation of Akt by PDK-1, resulting in the activation of Akt. The 

membrane-targeting function of PI(3,4,5)P3 can be reversed by specific lipid phosphatases 

such as the inositol 3’-phosphatase, Phosphatase and Tensin homolog deleted on 

chromosome 10 (PTEN) and SH2 domain-containing inositol 5’-phosphatase (SHIP). Akt 

activation is observed in T cells upon TcR ligation and is augmented upon co-stimulation 
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(202, 203). Downstream effectors of Akt are thought to include NF-κB, as expression of 

active Akt in T cells correlates with upregulated NF-κB function (204, 205). In addition, it 

has been suggested that PI3K-mediated activation of Akt plays a role in the accumulation 

of NF-AT in the nucleus (202, 206). Moreover, Akt has been shown to provide a co-

stimulatory signal, which is indistinguishable from the co-stimulatory signal provided by 

CD28, for activation of the CD28 responsive element (CD28RE):AP-1 complex, known as 

RE/AP (205). RE/AP is one of the transcriptional elements of the IL-2 promoter and Akt is 

believed to synergise with PKC-θ in the induction of RE/AP (205). 

PKC-θ, the PKC isoform predominantly expressed in T cells, is also known to 

promote NF-κB activation induced upon TcR/CD28-mediated co-stimulation (207). 

Moreover, T cells from PKC-θ-deficient mice exhibit impaired Ca2+ mobilisation and NF-

AT activation, and hence decreased IL-2 production and proliferation (208). In addition, 

studies using T cells from PKC-θ-deficient mice have demonstrated a role for PKC-θ in the 

activation of NF-κB and AP-1 (209). 

The involvement of PI3K in Ca
2+

 mobilisation is unclear, but it is known that PI3K 

activity also results in the binding of its other major group of substrates, the Tec-family 

kinases, whose members include Itk and Tec. Itk and Tec bind to PI(3,4,5)P3 via interaction 

with their PH domains, and Itk is believed to contribute to TcR-dependent Ca2+ flux (210) 

as well as TcR-dependent actin polymerization (211, 212). 

In summary, whilst ligation of the TcR results in activation of NF-AT and NF-κB, 

as well as ERK-mediated activation of c-Jun and c-Fos, these signals are not sufficient for 

full transcription of the IL-2 gene. For such transcription to occur, co-stimulation-

dependent signals are required namely, further phosphorylation and activation of c-Jun and 

c-Fos by JNK and p38 MAPK respectively, as well as p38 MAPK-mediated activation of 

ATFs. Together, such signalling induces full transcription and hence, production, of IL-2 in 

T cells. 

1.3.3 Lipid rafts and their role in immune signalling 

In lymphocytes, as well as other cell types, many of the molecules involved in cell 

signalling (dually acylated src family tyrosine kinases, heterotrimeric G protein subunits, 

adaptor proteins, PIP2 and lipid kinases and phosphatases) are associated with detergent-

insoluble, sphingolipid- and cholesterol-rich domains in the cellular membrane, known as 



21

lipid rafts (also termed glycolipid-enriched microdomains (GEM) or detergent-insoluble 

glycolipid-rich domains (DIG)). Lipid rafts can be identified via staining with a fluorescent 

conjugate of cholera toxin subunit B (CTB) which binds to glycosphingolipid GM1-rich 

regions of the cell (213, 214). Lipid rafts are said to range in size from a few nanometers to 

macrodomains that are micrometers in diameter (215-218). Such lipid raft structures have 

been proposed to function as specialised signalling compartments in the cellular membrane 

(219), wherein molecules are phosphorylated and activated, and function to recruit and 

activate downstream signalling molecules. Indeed, lymphocyte ERK MAPK signalling is 

inhibited when Lck is prevented from translocating to lipid rafts by modification of its N-

terminal S-acylation (220) or when the structural integrity of the lipid rafts is impaired by 

the removal of cholesterol (221-223). In resting T cells, the TcR/CD3 complex is thought to 

reside outwith lipid rafts and only upon ligation of the TcR does the TcR/CD3 complex 

translocate into the lipid raft assemblies whereupon its ζ chains are phosphorylated by Lck 

(reviewed in (224)). As described earlier, a T cell requires both Ag in the context of MHC 

and co-stimulation, in order for it to become productively primed. Other studies have 

demonstrated that co-stimulation is also necessary for actin rearrangement and lipid raft 

clustering at the T cell:APC interface (225, 226). This has relevance for T cell anergy 

which arises in the absence of co-stimulation (227). These findings suggest that a certain 

threshold of lipid raft assembly is required in order to achieve productive activation of TcR-

mediated signalling cascades and priming of the T cell.     

1.3.4 The immunological synapse 

Specific molecules critical for T cell signalling are positioned at the point of contact 

between T cells and APC in a structured manner and this organised interface is known as 

the immunological synapse (228). It is believed that lipid raft macrodomains assemble to 

form the immunological synapse and a stable immunological synapse has been shown to be 

required for optimal activation and priming of T cells (Figure 1.7; (229)). The proteins and 

intracellular molecules present at the immunological synapse are organised into distinct 

spatial domains known as supramolecular activation clusters (SMACs), including the 

central SMAC (c-SMAC) and peripheral SMAC (p-SMAC) (Figure 1.7A; (228)). It must 

be noted that these structures are only observed in antigen-specific T cell:APC conjugates. 

The c-SMAC contains the TcR/CD3 complex and PKC-θ and hence, is thought to be the 
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site of TcR ligation. Within seconds of peptide-MHC engagement, the TcR initiates 

tyrosine phosphorylation signalling that triggers many complex signalling cascades. 

Minutes after T cell:APC conjugation, Lck and Fyn are also concentrated in the c-SMAC 

(230, 231) thus, it seems likely that signalling cascades are promoted in this domain. Initial 

T-cell:APC contact is accompanied by rapid re-organisation of the cytoskeleton and T-cell 

polarisation, possibly in response to chemokines (232). Subsequent signalling through 

heterotrimeric G proteins then triggers actin polymerisation and integrin activation. The p-

SMAC harbours the cytoskeletal protein talin and the integrin lymphocyte associated 

function antigen-1 (LFA-1) and so formation of the p-SMAC and LFA-1:ICAM-1 binding 

is thought to promote formation of membrane protrusions with TcR-enriched tips which are 

likely involved in the initial scanning of peptide-MHC complexes (Figure 1.7B. ii; 

reviewed in (233)). Upon re-stimulation with antigen, anergic T cells fail to translocate 

their CD3 into the c-SMAC and assembly of the immunological synapse in human anergic 

T cells is arrested at the stage of the immature synapse (234).  

Immunological synapse formation has predominantly been shown in vitro and there 

is considerable debate as to whether immunological synapses occur in vivo. However, some 

studies have indicated the existence of immunological synapses in vivo (235, 236) and 

recent two-photon intravital imaging has provided evidence that prolonged T cell:APC 

interactions are required for optimal activation and full effector function of T cells (236-

242). During the early response to antigen (induction phase) both tolerised and primed 

CD4
+
 T cells have contact with, and are reported to “arrest” on, DC near high endothelial 

venules (HEV) where they exhibit activation and proliferation (242). However, 15-20 h 

after the induction of tolerance or priming, primed CD8
+
 T cells have stable, prolonged 

contacts with DC whereas tolerised CD8
+
 T cells remain motile and have serial, brief 

encounters with multiple DC (238) although, it should be noted that these authors do not 

denote such T cell:DC contacts in vivo as immunological synapses. A recent report has 

suggested a new role for the immunological synapse in vivo in helping to coordinate 

asymmetric cell division (243), thus it may be important for the generation of effector and 

memory T cells from a single cell. 
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1.4 Cell cycle 

Cells can only divide and proliferate if they complete a full round of the cell cycle, 

the set sequence of events whereby a single cell duplicates its contents before dividing into 

two identical daughter cells. The mammalian cell cycle comprises four distinct phases 

(Figure 1.8). G1 is characterised by the cell undergoing induction of gene expression and 

protein synthesis, resulting in an increase in cell size and production of all the proteins 

required for DNA synthesis. This is the main phase of the cell cycle that is regulated 

primarily by extracellular signals as, after a cell exits G1 it is generally committed to 

completing the cell cycle assuming no catastrophic mutations are induced during DNA 

replication. DNA duplication occurs in S phase (synthesis) and after chromosome 

replication, a second growth period, G2, allows the cell to monitor DNA integrity and cell 

growth prior to M phase (mitosis) when the cell finally divides. The resulting daughter cells 

either immediately enter G1, potentially to go through the full cycle again or alternatively, 

enter the G0 phase (quiescence). 

1.4.1 Cell cycle regulators 

Cell cycle progression is mediated by a variety of signalling molecules which are 

crucial for optimal T cell activation and proliferation. Progression through the cell cycle is 

mainly driven by two regulatory components, cyclin dependent kinases (CDKs) and their 

cyclin partners, proteins whose levels oscillate with the cell cycle. At the G1 checkpoint 

cells have to decide whether or not to commit to DNA synthesis. Here, provided the cell 

has received an activatory signal, Ras-mediated ERK activation and subsequent AP-1 

transcription are induced, with the latter causing the upregulation of cyclin D, as c-Jun, an 

AP-1 constituent, activates the cyclin D1 promoter (244). 

Cyclin D can then bind to CDKs 4 or 6 and the resulting complexes promote G1/S 

transition by initiating the sequential phosphorylation of the retinoblastoma protein, pRb
105

. 

pRb is the protein product of the tumour suppressor protein Rb (also known as Rb-1), 

which was originally identified as the gene mutated in retinoblastoma, a malignant tumour 

of the retina (245, 246), and is found to be dysfunctional in a number of other cancers 

(247). Together with p107 and p130 (pRb-2), it comprises a family of Pocket proteins 

which have bipartite pocket structures necessary for association with E2F transcription 

factors, interaction with viral oncoproteins (248, 249) and other biological properties 

including melanocyte homeostasis and neoplasia (250). 
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Phosphorylation of pRb is effected by the cyclin E-CDK2 complex, thus releasing 

the braking effect of Rb on cell cycle progression (251). For example, hypophosphorylated 

Rb prohibits RNA polymerase III-mediated transcription by binding to the transcription 

factor III B and its upstream binding factor. RNA polymerase III is required for protein 

synthesis and cellular growth due to its involvement in the production of transfer RNA and 

the small ribosomal subunit (252-256). In addition, hypophosphorylated Rb also actively 

blocks cell cycling by sequestering the transcription factor, E2F, thus blocking expression 

of genes necessary for S-phase (257). Once hyperphosphorylated by the CDK:cyclin 

complexes, however, E2F is released and genes required for S phase transition, including 

DNA polymerase-α, thymidine synthetase, cyclin D3, cyclin E and cyclin A, are 

transcribed (Figure 1.9) (252-256).

Cdc2 (CDK1) and CDK2 are then activated and can both associate with cyclin A at 

the S phase of the cell cycle. Such cdc2/CDK2:cyclin A complexes also act to further 

phosphorylate and inactivate Rb (Figure 1.9; (258)). Moreover, CDK2 has been suggested 

to play a dominant role in phosphorylation of Rb as silencing or inhibition of Cdc2 

negatively regulates entry into S phase but only in the absence of CDK2 (259). 

Additionally, CDK2 and CDK4 have been shown to phosphorylate cytoplasmic 

Smad2 and Smad3 proteins (Mothers against decapentaplegic homology 2, 3 (260-262)), 

which exhibit an anti-proliferative function. As a result of TGF-β signaling, Smad2 and 

Smad3 proteins are phosphorylated at the carboxyl terminus by the TGF-β receptor and can 

form complexes with Smad4. These complexes then accumulate in the nucleus where they 

bind to the forkhead transcription factor, FAST-1, and subsequently regulate the 

transcription of target genes (260, 261, 263). TGF-β inhibits cell cycle progression at the 

G1 phase (264, 265) and is known to enhance T cell tolerance (266). A range of cell types 

from Smad3
-/-

 mice are impervious to the inhibitory effects of TGF-β, suggesting that 

Smad3 is a key mediator of the TGF-β growth inhibitory response (267-269). Tob, a 

protein belonging to another anti-proliferative gene family, is a negative regulator of 

activation which is expressed in anergic and quiescent T cells (270). Tob exerts its effects 

by associating with Smad2 and Smad4 and enhancing Smad:DNA binding in the nucleus. 

Tob-induced downregulation of IL-2 production is mediated by enhancement of Smad 

binding on the -105 negative regulatory unit of the IL-2 promoter and not by the inhibition 

of known IL-2 transcription factors such as NF-AT, AP-1 and NF-kB (270). 
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Progression through cell cycle can be arrested at the G1-S phase interface by a 

variety of extracellular signals resulting from stress upon, or damage to, the cell. TGF-β

and IFN-α are examples of extracellular signals which can act to suppress phosphorylation 

of Rb through the inhibition of CDKs and recruitment of CDK inhibitors (271) in addition 

to effects on Smads. Two separate families of CDK inhibitors act to regulate the function of 

the CDK:cyclin complexes, namely the INK4 (inhibitor of CDK4; p15, p16, p18 and p19) 

and WAF1 (p21, p27, p57) protein families which act to block CDK activity at numerous 

stages of the cell cycle (Figure 1.8B). p15 (272), p16
INK4A

 (273) and p27
kip1

 (274, 275) have 

all been shown to inhibit the CDK 4/6:cyclin D complex in vitro whereas, p19
ARF

 and 

p21
Waf1

 are believed to interact with the tumour suppressor gene p53, thus leading to cell 

cycle arrest (Figure 1.8B; (276, 277)). 

However, these proposals are controversial as some of the CDK inhibitors have 

been reported to play a role in the assembly of CDK:cyclin complexes and hence may 

actually be required for progression of cell cycle. Indeed, mouse embryo fibroblasts 

deficient in p21
Waf1

, p27
kip1

 or both exhibit impaired formation of CDK:cyclin D complexes 

(278). Also, whilst p27kip1 can prevent recombinant CDK:cyclin D complex formation in 

vitro, it has been shown to inhibit CDK:cyclin E complexes much more effectively (279). 

p27
kip1

 activity is regulated by its concentration, association with different cellular 

complexes and its phosphorylation status and subcellular localisation (271, 280-283). For 

example, p27
kip1

 expression is highest in quiescent cells and decreases upon progression 

through cell cycle (284) and consistent with this, a reduction in the level of p27kip1 is a 

common observation in many types of human cancer (285). p27
kip1

 exerts its inhibitory 

effects on CDK activity when it is localised in the nucleus (286, 287) and consistent with 

this, ERK activation has been associated with the nuclear export of p27
kip1

 (288). However, 

it is not clear as to how ERK accomplishes this as, ERK-mediated phosphorylation of 

p27kip1 at Ser10 and Thr187 (289) has been suggested not to be essential for directing the 

localisation of p27
kip1

 (288). Indeed, it is phosphorylation at Thr198 by p90 ribosomal 

protein S6 kinases (RSKs) in a Ras-Raf-MEK-ERK-dependent manner that results in 

cytoplasmic localization of p27
kip1

 (281). Once in the cytoplasm p27
kip1

 binds to the Skp1-

Cullin-F-box (SCF) ubiquitin ligase family member, SCF
Skp2

, a protein complex that targets 

p27kip1 for ubiquitination and degradation (290, 291). SCFSkp2 components include Skp2, an 

F-box (cyclin F homology) protein, and Cks1 which act in conjunction to recognize p27
kip1
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when it is phosphorylated at threonine 187 (290, 292). Hence, degradation of p27
kip1

 in this 

manner attenuates its inhibitory effects on CDK activity and cell cycle can proceed. 

p53 is a transcription factor with a molecular weight of 53-55,000 which is activated 

upon cellular stress, including DNA damage and aberrant proliferative signals, and 

contributes to cell cycle arrest and apoptosis. Activation of this tumour suppresser gene 

results in cell cycle arrest in the G1 and G2 phases to allow an opportunity for DNA repair 

to occur before replication or mitosis respectively. The final outcome of p53 activation 

appears to depend on the action of a variety of downstream effector genes transactivated by 

p53. Thus, p53-mediated G1-S phase arrest is believed to result from p53-induced 

upregulation of p21
WAF1

 (293) and downregulation of c-Myc (294) whereas the role of p53 

in G2-M arrest is more complex as here, it has multiple downstream targets which regulate 

either cell cycle (cdc2, cdc25c, cyclin B) or mitosis (e.g. topoisomerase II and MAP4) 

(reviewed in (295)). The protective role of p53 is highlighted by the fact that around 50% 

of all cancers possess an inactive form of p53, or have lost p53 all together.  

1.4.2 Mechanisms of cell death 

The growth and proliferation of cells is tightly regulated to prevent the production 

of excessive cell numbers by one of two known mechanisms of cell death; necrosis and 

apoptosis. Necrosis describes cellular death arising from chemical or physical injury and so 

is quite distinct from biologically activated apoptosis. During necrosis, chromatin 

condenses and organelles swell resulting in swelling of the cell until it bursts, releasing its 

intracellular contents which can trigger an inflammatory response. Necrotic tissue is taken 

up and degraded by phagocytic cells, and reflects the processes occurring during wound 

healing. By contrast, programmed cell death, or apoptosis, provides a mechanism for the 

disposal of “unwanted” cells in a coordinated manner and without the generation of 

inflammation. This mechanism also protects the organism by enabling the destruction of 

damaged or potentially harmful cells. Indeed, thymocytes which exhibit high affinity or 

avidity for self Ag, are removed from the T cell repertoire by apoptosis-mediated clonal 

deletion/negative selection in the thymus. The classical morphological features of apoptosis 

include the condensation of chromatin, protein and DNA fragmentation and the formation 

of apoptotic bodies. It is believed that the mitochondrion is the site at which apoptotic 

signalling pathways converge and eventually result in either caspase-dependent or –

independent apoptosis (296). Most of the observed changes associated with apoptosis (i.e. 
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DNA/protein cleavage, nuclear shrinking, loss of cell shape) are implemented by a set of 

cysteine proteases, caspases (297) and as such these alterations are termed as caspase-

dependent apoptosis. Caspases are mammalian homologues of the protein Ced-3, which 

was originally identified in Caenorhabditis elegans as being required for somatic cell death 

(298). Caspases are defined by the MEROPS database (a protease classification system) as 

cysteine nucleophiles with their catalytic residues in the order His, Cys that cleave proteins 

after aspartic acid residues. Caspases are localised in the cytosol in an inactive pro-caspase 

form and upon apoptotic stimuli, these pro-caspases are converted into active caspases. 

Caspases can be divided into two main groups: the initiator caspases (caspases 2, 8, 9 and 

10), which are processed first, and the effector caspases (caspases 3, 6 and 7), which can be 

activated by initiator caspases to drive the ordered disassembly of the apoptotic cell. 

There are two major pathways known to activate caspase-dependent apoptosis: the 

classical caspase pathway and the mitochondrial pathway. The classical caspase pathway, 

otherwise known as the extrinsic pathway, is initiated upon ligation of death receptors such 

as Fas/CD95 and tumour necrosis factor receptor (TNFR), which in turn recruit Fas 

associated protein with a death domain (FADD). FADD can convert pro-caspase 8 into 

caspase 8 (active form), which can then activate the effector caspase, caspase 3.  

In contrast, the mitochondrial, or intrinsic, pathway involves both the opening of the 

mitochondrial transition pore and thus loss of mitochondrial membrane potential (MMP). 

The B cell lymphoma-2 (Bcl-2) family proteins are also important regulators of 

mitochondrial-driven apoptosis in eukaryotic cells (299). Indeed, the release of caspase-

independent death factors such as apoptosis inducing factor (AIF) (300) and endonuclease 

G (301) is regulated by the Bcl-2 family. Interestingly, whilst two groups of Bcl-2 family 

members induce apoptosis, the third group promotes survival. Although members of each 

group contain Bcl-2 homology (BH) domains, it is the presence of different BH domains, 

designated BH1, BH2, BH3 and BH4, that characterizes the separate groups. Pro-survival 

members e.g. Bcl-2 and Bcl-xL contain all four BH domains (BH1-4) whilst pro-apoptotic 

members e.g. Bax and Bak contain BH1-3 domains or just the BH3 domain alone e.g. Bid, 

Bik and Puma (302). Upon receipt of apoptotic stimuli, pro-apoptotic family members can 

form heterodimers with anti-apoptotic family members. The BH1-3 domains of Bcl-2 

family members have been shown to form an elongated hydrophobic groove to which BH3 

domains of other Bcl-2 family proteins can bind (303). In this way, homo- or hetero-dimers 

can be formed and the combined structure of these dimers determines the fate of the cell. 
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The amphipathic α-helical BH3 domain in pro-apoptotic family members has been 

demonstrated to be indispensable for pro-apoptotic and heterodimerisation functions (304). 

Bcl-2 family members are regulated predominantly at the level of transcription and 

the balance of expression of pro-survival and pro-apoptotic Bcl-2 family proteins 

determines the fate of the cell (305). Post-translational modification can further regulate the 

dimerisation and hence effector function of Bcl-2 family members. Dimers of pro-apoptotic 

family proteins appear to induce apoptosis by perforating the outer mitochondrial 

membrane causing a decrease in MMP and release of cytochrome c which then binds to 

Apaf 1 and procaspase 9 forming the ‘apoptosome’. Reduction in cellular MMP has other 

significant effects. For example, adenosine tri-phosphate (ATP) can no longer be produced 

and so the major function of the mitochondria, as the energy-producing powerhouse of the 

cell, is defunct and the production of reactive oxygen species (ROS), which are toxic to the 

cell, is increased. 

The classical caspase and mitochondrial pathways are now believed to be two 

aspects of an all-encompassing apoptotic pathway rather than two distinct mechanisms of 

apoptosis (306-308). It is thought that once the mitochondrial transitional pore has opened, 

the cell has committed itself to die and that the default position, following commitment to 

cell death, is to die by necrosis unless this is prevented by the initiation of the caspase 

cascades (307) or other executioner protease systems involved in apoptosis, such as 

lysozomal aspartic acid and cysteine proteases e.g. cathepsins (309-311), the 

ubiquitin/proteosome pathway (312) or a specialized granzyme B pathway in TH cells 

(313). 

1.5 A review of T cell signalling in tolerance 

Productively primed T cells exhibit a characteristic pattern of signalling events in 

vitro which are necessary for transcription of the IL-2 gene and subsequent clonal 

expansion of T cells (Figures 1.3 and 1.4) (314, 315). By contrast, and as described earlier, 

anergic T cells exhibit a state of antigenic unresponsiveness which can be evidenced by 

downregulation of IL-2 production and hence decreased proliferation. However, the 

differential signalling underlying such reduced IL-2 production has yet to be fully 

elucidated. 

A number of signalling differences have been identified between T cells which have 

been anergised and primed in vitro. Anergy has been said to affect signalling events 
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proximal to ligation of the TcR complex and those that precede activation of PLC-γ1 in 

anti-CD3 Ab treated cells (316) and there is evidence to indicate that anergic T cells 

(induced via anti-CD3 Ab in vitro or superantigen (SAg) in vivo) can undergo only partial 

activation of the PLC-γ1 and ERK MAPK pathways, resulting in defective transcription 

factor complex formation and abrogation of IL-2–dependent clonal expansion (317, 318). 

Thus, it is perhaps likely that differential activation of one or all of the transcription factors 

required for transcription of the IL-2 gene contributes to a state of anergy in the cell.  

These rather global effects may therefore reflect defects in early tyrosine kinase-

dependent signalling and consistent with this, studies have shown decreased tyrosine 

phosphorylation of 39, 75 and 98 kDa proteins in an anergic T cell hybridoma compared 

with control cells (316). Moreover, other studies have similarly demonstrated reduced 

tyrosine phosphorylation of proteins of 38, 74 and 75 kDa in anergic TH1 clones (319) and 

SAg-treated, tolerised primary T cells from Vβ8.1 Tg mice (320). In addition, a decrease in 

the level of p56lck (Lck) and an increase in the level of p59fyn (Fyn) in anergic TH1 clones 

have been reported following anti-CD3 induced anergy in vitro (321-323). Furthermore, 

functional recovery from anergy has been shown to require restoration of Lck and Fyn 

expression to normal levels, indicating that reduced levels of such tyrosine kinases 

contribute to the maintenance of anergy (322). Indeed, the 70 kDa protein observed in anti-

CD3ζ precipitates has been shown to represent ZAP-70 (324) and whilst under conditions 

of anergy, ZAP-70 is still capable of being recruited to the TcR:CD3 complex, its level of 

tyrosine phosphorylation is significantly reduced compared to control cells (325). In 

addition, anergy induced by oral administration of OVA has been demonstrated to cause 

impaired phosphorylation of TcRζ, ZAP-70, LAT and PLC-γ1 upon re-stimulation of 

purified splenic CD4
+ 

T cells with OVA and APC in vitro (326). 

As described earlier, activation of LAT leads to the recruitment of Grb2, GADS, 

SLP-76 and PLC-γ1, and CD4+ T cells, anergised either in vitro or in vivo, exhibit reduced 

activation of such downstream effectors due to hypophosphorylation of LAT upon re-

stimulation with anti-CD3 and anti-CD28 Ab. Recruitment and localisation of LAT to the 

lipid raft-rich immunological synapse has also been shown to be defective in anergic T cells 

and such defects are believed to result from impaired palmitoylation of LAT (327). As the 

total protein levels of LAT were not different in anergic and control cells, it therefore 
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appears that anergy may be induced due to aberrant localisation of such key signalling 

molecules within the cell. 

PKC-θ is believed to be important in the prevention of anergy by acting as a 

positive regulator of NF-κB (328). Indeed, as mentioned earlier, T cells from PKC-θ-

deficient mice exhibit impaired Ca
2+

 mobilisation and NF-AT activation, and hence 

decreased IL-2 production and proliferation (208). An immediate downstream target of NF-

AT is the early growth response (EGR) family of transcription factors. Expression of EGR2 

and EGR3 is known to be upregulated in both in vitro and in vivo anergised T cells (329) 

and high levels of EGR2 have been shown to persist in anergic T cells for 2-5 days (330). 

EGR expression appears to be calcineurin- and PKC-dependent (329) and transduction of T 

cells with EGR2 or EGR3 reduces transcription of the IL-2 gene. In addition, expression of 

EGR2 and EGR3 also contributes to T cell anergy by upregulating expression of the E3 

ligase Cbl-b (329). Together, these data suggest a role for EGR proteins in the induction of 

anergy. 

There is increasing evidence that JNK MAPK-mediated induction of c-Fos and 

activation of AP-1 and NF-AT complexes may also be defective in in vitro and in vivo

anergised T cells (318, 331-333). For example, it is known that NF-AT (which binds a 

heterotrimeric NFATp, Fos and Jun protein complex) and AP-1 (which binds Fos and Jun 

heterodimers) associate to enhance transcription of the IL-2 gene (181, 334, 335). As it is 

well established that Ca
2+

-mediated translocation of NF-AT into the nucleus is unaffected 

in anergic T cells (336, 337), such data implies that the defect in AP-1 binding to NF-AT 

likely lies at the level of the AP-1 subunits. Indeed, Mondino et al demonstrated that the 

induction of c-Fos and JunB (constituents of AP-1) was severely impaired in anergic TH1 

cells whilst NF-AT activation was intact in these cells (336). The defect in induction of c-

Fos and c-Jun appears to be secondary to downregulation of ERK and JNK MAPK 

activation in such anergic T cells (333, 336). Consistent with this, Fields et al also reported 

that ERK1/2 MAPK activation was decreased in anergic T cells (338) and it has been 

shown that the reduced ERK MAPK activation and impaired IL-2-dependent proliferation 

observed in anergic T cells is due to downregulation of Ras activation (331, 338). 

As mentioned earlier, RasGRP1 promotes activation of Ras in a DAG-dependent 

manner and it has been hypothesised that defects in the RasGRP1-mediated activation of 

Ras may also be involved in T cell anergy as RasGRP1-deficient thymocytes exhibit 
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reduced Ras and ERK activation, and proliferation (339). Upon phosphorylation by 

diacylglycerol kinases (DGKs), DAG is converted to phosphatidic acid and consequently, 

DAG signalling is downregulated. Decreased DAG signalling has been observed in 

multiple models of T cell anergy and is believed to reduce the recruitment of RasGRP1, and 

hence reduce RasGRP1-mediated Ras activation (340, 341) (Figure 1.10). For example, 

DGKζ is thought to antagonise TcR-mediated signalling and DGKα is upregulated in 

anergic T cells (342-344), suggesting that DGKα may play a contributory role in the 

induction of anergy in T cells, following stimulation through the TcR. Supporting evidence 

for this hypothesis is provided by the fact that T cells from DGKα-deficient mice exhibit 

hyperactive DAG-dependent signalling and are resistant to anergy induction (340). 

Furthermore, forced expression of DGKζ has been demonstrated to selectively inhibit AP-1 

activation in T cells, without affecting Ca
2+

 mobilisation (344). 

The downregulation in Ras-mediated ERK activation observed in tolerised T cells is 

additionally thought to be regulated by the small GTPase Rap1 (also known as Kirsten-ras-

reverted 1 (Krev-1) and smg p21). Rap1 was first identified based on its homology with the 

Drosophila Ras-related gene (Dras3) (345) and independently from its capacity to 

stimulate a flat phenotype in v-Ki-Ras-transformed fibroblasts (346). Subsequent studies 

have suggested that Rap1 mediates its inhibitory effects on ERK activation by directly 

antagonising Ras-Raf-1 coupling (347), whilst it has been suggested that the inability of 

Rap1 to activate bound Raf-1 is because it is not localised in the plasma membrane (348, 

349). 

Accumulation of active Rap1 has indeed been reported to play a role in the 

maintenance of anergy in human T cell clones (50, 347), with anergic cells displaying 

reduced ERK activation and IL-2 production due to recruitment of a Fyn-Cbl-CrkL-C3G-

Rap1 signalling complex not found in their primed counterparts (50, 347) (Figure 1.11). 

Further studies have shown an inverse relationship between ERK and Rap1 activation in 

various T cell lines (350) and also that CD28 signalling abolished TcR-coupled Rap1 

activity (351-353). Although Rap1 has also been reported to stimulate ERK via activation 

of B-Raf, peripheral T cells do not generally express B-Raf. Interestingly, therefore, 

support for Rap-1 acting to antagonise ERK activation in anergic cells has been provided 

by a transgenic mouse model in which ectopic expression of B-Raf within T cells prevents 

repression of ERK activity and anergy (354). Moreover, mice which are deficient in a 
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negative regulator of Rap1, the GTPase-activating protein (Rap1GAP) SPA-1, show 

defective ERK activation and progressive unresponsiveness or anergy of T cells (355). 

However, other studies have implicated positive roles for Rap1 in T cell signalling via 

enhanced integrin activation and adhesion (356, 357). 

Although progress has therefore been made in identifying potential targets of 

differential signalling, the majority of work in this field has been carried out in vitro using 

T cell lines or clones, or primary T cells ex vivo. It is imperative that T cell signalling in 

anergy is examined in vivo as this data will better reflect the true molecular mechanisms 

occurring in anergic T cells in situ. Anergy had been induced in vivo using a variety of 

immunisation regimes including the administration of peptide (i.v.) or SAg (i.p.) (327, 358) 

and feeding whole protein (326), as well as exposing CD4
-
 CD8

-
 T cells, which express a 

TcR specific for 2C (the αβ Ag receptor from the cytotoxic T lymphocyte clone 2C (359)), 

to their specific Ag in H-2b 2C TcR Tg mice (360). Such in vivo induced anergy has been 

used to investigate T cell signalling (326, 327, 358, 360). However, as these studies used 

different methods for inducing tolerance than employed by in vitro studies, this may 

perhaps explain the apparently conflicting data generated from comparison of both types of 

experiments. Indeed, the various regimes may induce distinct “types” of “tolerance”. For 

example, the in vivo studies describe a model of ‘Ca
2+

-blocked anergy’ wherein there is a 

defect in Ca
2+

-mediated translocation of NF-AT into the nucleus, secondary to a 

downregulation of PLC-γ1 activation, whilst normal activation of ERK MAPK and SAPK 

is observed (360). Thus, Chiodetti et al suggest that the discrepancies observed in in vitro

and in vivo models of anergy (361) reflect that in vitro clonal anergy (commonly induced 

via treatment with anti-CD3) and in vivo adaptive tolerance (usually induced using Ag in 

protein or peptide form) are two distinct biochemical states. Both types of tolerance models 

result in reduced transcription of IL-2 and proliferation, but the defects in TcR-mediated 

signalling occur in different signalling cascades. Thus, in adaptive tolerance, T cells appear 

to exhibit impaired phosphorylation of ZAP-70, LAT and PLC-γ1 leading to decreased 

Ca
2+

 mobilisation whereas, clonal anergy appears to be predominantly mediated by defects 

in the Ras-ERK MAPK signalling cascade. In vivo tolerised T cells also display reduced 

ERK activation, but to a lesser extent than in vitro anergised T cells (361). With these 

discrepancies in mind, it would be beneficial to examine these signalling mechanisms in 
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vitro and in vivo using as similar a model of anergy as possible for both situations, in order 

to determine which, if any signalling processes play a general role in anergy. 

1.5.1 E3 ligases and their role in tolerance 

Three families of proteins with ubiquitin ligase activity have been identified 

namely, the HECT, RING and U-box proteins, and these are collectively termed E3 ligases. 

E3 ligases are thought to be involved in immune regulation by binding to proteins and thus 

targeting them for degradation in the proteosome (reviewed in (362)). Recent work has 

identified possible roles for E3 ubiquitin ligases as critical upstream factors in the effector 

phase of tolerance induction occurring in the absence of co-stimulation via CD28 (363-

367). Such a lack of CD28-mediated co-stimulation has been associated with a partial or 

unbalanced calcium-dependent signalling in T cells in which TcR-mediated Ca2+

mobilisation predominates (368). This partial signalling can lead to prolonged and 

unbalanced calcineurin-mediated activation of NF-AT and the induction of a set of “anergy 

genes” (368), which includes negative regulators of signalling such as phosphatases, 

proteases and transcriptional repressors (369). These same genes are also induced in vivo in 

T cells from orally tolerised mice (368). 

The resulting anergy, which can be demonstrated after re-stimulation with antigen, 

is known to be mediated by E3 ubiquitin ligases (e.g. Cbl, Itch, Grail). Such E3 ligases are 

induced during the induction phase of anergy (363, 364) and moreover, Cbl-deficient cells 

are resistant to induction of anergy (366). Cbl and Grail are ring finger E3s that direct E2s 

(ubiquitin-conjugating enzymes) to their substrate while Itch is a HECT-type E3 that 

accepts a ubiquitin molecule from an E2 and transfers it to substrate (363). Cbl-b is induced 

in the early phase (within minutes) of unresponsiveness and Grail and Itch relocate to the 

endosomes when anergic cells are re-stimulated with antigen (364, 365). Following 

calcium-mediated induction of these E3 ubiquitin ligases, there is reduced expression of the 

TcR signalling machinery including cell surface TcR, PLC-�1, PKC-� and RasGAP (370) 

which appears to be the result of mono-ubiquitination and targeting of these signalling 

elements for degradation by lysosomal proteases (364, 365). This downregulation of the 

TcR signalling machinery is also observed when TH1 cells are anergised with anti-CD3 

(363, 364). The precise mechanisms are unclear but the ubiquitin machinery promotes 

protein trafficking from the surface to the lysosomes via the endocytic pathway. Thus, Cbl 

may direct SMAC components to the endosomes where mono-ubiquitination by Itch/Grail 
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promotes lysosomal trafficking and degradation (363) preventing recycling of the signalling 

machinery to the immunological synapse for the sustained signalling that normally occurs 

when T cells are activated in the presence of co-stimulation (371-373). In addition, Cbl 

negatively regulates the WASP-Arp2/3 pathway that coordinates actin polymerisation and 

cytoskeleton remodelling at the immunological synapse. Consistent with this, Cbl-

deficiency results in spontaneous receptor clustering and autoimmunity (374) and can 

compensate for lack of CD28 co-stimulation (367, 375). This proposed E3-dependent 

mechanism of anergy is efficient in that it only need target localised receptor-activated 

signals rather than the total cellular complement of signalling molecules (364). 
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1.6 Aims 

Despite extensive study, the mechanisms by which the immune system can 

discriminate harmless and pathogenic antigens remain to be fully elucidated. The overall 

aim of this study was to identify the key signals regulating immunity and tolerance that 

might provide targets for pharmacological or immunotherapeutic intervention in 

inflammatory disease and vaccine development. It has been widely proposed that 

differential T cell signalling underlies the distinct functional outcomes of tolerance and 

priming but, the majority of these studies have relied upon biochemical assessment of 

signalling in T cell lines or clones at the population level, following polyclonal stimulation 

in vitro and this approach has yielded some conflicting data. Moreover, such data do not 

necessarily represent the responses of physiological frequencies of individual antigen-

specific T cells within their environmental niche in vivo. In addition, those data represent 

all cell types in heterogeneous populations and do not reveal anything about the kinetics, 

amplitude or subcellular localisation of signals in functionally distinct groups of cells. 

Therefore, the core aims of this project were to: 

1. Develop and validate suitable methods with which to assess the kinetics, 

amplitude and subcellular localisation of signals in individual cells. 

2. Develop in vitro and in vivo methods of assessing such signalling in 

primed and tolerised Ag-specific T cells. 

3. Investigate the proposed differential T cell signalling underlying 

tolerance and priming, using the above methods. 
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Figure 1.1 Regulatory properties of B cells in immunity. Bregs can regulate inflammation 

via a variety of mechanisms. Bregs produce IL-10 which can act to regulate the TH1/TH2 

balance (A.i) and downregulate inflammatory processes including IL-1 and TNF-α

production by macrophages (MØ; A.ii). Bregs also produce TGF-β1 which induces 

apoptosis of effector T cells (B). CD8
+
 and natural killer T cells (NKT) can be recruited by 

Bregs in a β2-microglobulin (β2m)-dependent manner (MHC class I (Qa-1) and CD1d) (C). 

Moreover, Bregs can downregulate CD4
+
 T cell activation directly or by functioning as 

secondary APC (D). In addition, Bregs produce Abs (E), namely IgG and IgA, which can 

suppress the activation of DC through FcγRIIB:ITIM interactions (E.i), neutralise 

dangerous soluble factors (E.ii) and induce FcAR expression (IgA-mediated) on a subset of 

NKT cells, which can then secrete Ig isotype/subclass regulatory molecules (E.iii). 

Furthermore, such Ab production can promote clearance of apoptotic bodies (E.iv). 
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Figure 1.2 Activatory and inhibitory regulation of T cell activation. A T cell requires at 

least two signals to become fully activated, with signal 1 being the recognition of antigen 

(Ag) in the context of MHC and signal 2 being co-stimulation provided via the interaction 

of CD28 on the T cell with CD80/86 on the APC (A). Such combined signalling results in 

proliferation, differentiation and effector function of the T cell (A). In contrast, when a T 

cell encounters antigen in the context of MHC in the absence of co-stimulation, it can 

undergo apoptosis or become anergic (B). By contrast, if ligation of the TcR is 

accompanied by co-ligation of an inhibitory receptor such as CTLA-4 (C) or PD-1 (D), this 

results in the inhibition of T cell activation and downregulated TcR signalling which 

reduces the production of IL-2 and cell cycle progression.
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Figure 1.3 CD4
+
 T cell differentiation. CD4

+
 TH cells are activated upon recognition of 

their specific antigen complexed with MHC class II on an APC in the presence of co-

stimulation and this activation causes the TH cell to proliferate, and generate a clone of 

effector TH cells. Either TH1 or TH2 effector cells are generated with each phenotype 

exhibiting different capabilities. TH1 cells are generated in the presence of IL-12 and TGF-

γ. Such TH1 cells are known to express T-bet and produce IL-2, IFNγ and TNF-α. IFNγ

upregulates IL-12 production by DC and macrophages and this IL-12, in turn, causes an 

increase in IFNγ production in TH cells and so promotes TH1 cell differentiation in a 

positive feedback loop. Moreover, IFNγ downregulates IL-4 production thus, promoting a 

TH1 phenotype. Whereas, TH2 cells, which are generated in the presence of IL-4, express 

GATA-3 and can produce IL-4, IL-5, IL-6, IL-10 and IL-13. Such TH2 cells can skew 

adaptive immunity towards a humoral (TH2) immune response. TH2 cells stimulate B cells 

to proliferate, isotype switch and secrete IgG1 antibodies. IL-4 stimulates TH cells to 

differentiate into TH2 cells and IL-10 inhibits IL-2 and IFNγ production, as well as IL-12 

production by DC and macrophages, thus directing a TH2 profile. In addition, TH17 cells, 

which are generated in the presence of TGF-β and IL-6, express RORγT and produce IL-

17. 
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Table 1.1 Characteristics of the different regulatory T cell classes. A description of the 

phenotype and specificity of naturally arising CD4+ CD25+ Tregs , Tr1 and TH3 cells is 

provided. Information regarding the site of induction, cytokines secreted and mechanism of 

suppression for each class of Treg is also given. 
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Figure 1.4 Structure of the gut associated lymphoid tissues (GALT). The small intestine 

is lined with protruding villi which contain a variety of immune cells and several organised 

areas of leukocytes, known as Peyer’s Patches (PP). The villus is enclosed by a single cell- 

thick layer of epithelial cells, which are generated in the crypt before migrating up through 

the villus and being shed from the apex of the villus. Intra-epithelial lymphocytes exist in 

this epithelial layer. T cells, B cells, DC and macrophages reside in the lamina propria (LP). 

Specialised epithelial cells, known as M cells, are responsible for the transportation of Ag 

across the epithelial layer. The PP are situated around such M cells. The sub-epithelial 

dome (SED), which contains DC and macrophages, and the thymus-dependent area (TDA), 

which contains T cells and B cell-rich follicles, are both positioned directly beneath M 

cells. The mesenteric lymph node (MLN) is the draining lymph node of the PP and LP, into 

which cells from those tissue traffic. This figure was adapted from (46) by kind permission. 
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Figure 1.5 TcR-mediated signalling. Schematic depiction of the T cell signalling cascades 

initiated upon ligation of the TcR. Ras-mediated signalling pathways are initiated which 

lead to the activation of ERK1/2 MAPK. In turn, ERK1/2 activates c-Jun and c-Fos 

(components of the AP-1 complex), which are required for transcription of the IL-2 gene. 

The classical PLC-γ1 pathway is also induced, which leads to the mobilisation of Ca2+ and 

translocation of NF-AT into the nucleus. In addition, RasGRP1 promotes the activation of 

Ras in a DAG-dependent manner and DAG itself mediates activation of PKC which is 

involved in activation of NF-κB. 
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Figure 1.6 Co-stimulation-dependent signalling in T cells. Schematic depiction of the 

additional signalling cascades induced when co-stimulation is provided. Rho-GTPase 

(Rac/Cdc42)-mediated signalling pathways are induced which lead to the activation of JNK 

and p38 MAPKs. Such MAPKs activate the remaining transcription factors (e.g. ATFs) 

required for transcription of the IL-2 gene and hence proliferation. PI3K is also activated, 

resulting mainly in the production of phosphatidylinositol (3,4,5)-triphosphate 

(PI(3,4,5)P3). PI(3,4,5)P3 plays a role in the co-localisation of PDK-1 and Akt at the plasma 

membrane. Such membrane targeting can be reversed by specific lipid phosphatases 

including PTEN and SHIP. Akt is phosphorylated first by mTORC and then by PDK-1 and 

is so activated. Activated Akt is believed to be involved in the activation of NF-κB and also 

associates with PKC-θ to induce RE/AP. Further mobilisation of Ca
2+

 is also thought to 

occur, in an Itk-mediated manner. 
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Figure 1.7 Formation of the immunological synapse. The proteins and intracellular 

molecules present at the immunological synapse are organised into distinct spatial domains 

including the central supramolecular activation cluster (cSMAC) and peripheral SMAC 

(pSMAC) (A). The cSMAC contains the TcR and PKC-θ and hence is thought to be the site 

of TcR ligation. The initial stage in formation of the immunological synapse occurs when 

expression of the TcR polarises towards site of potential APC contact (B. i). LFA-1 anchors 

the central region of the forming synapse providing support for cytoskeletal protrusions that 

force an outermost ring of T cell membrane into close proximity to the peptide-MHC 

complex. This enables the TcR to sample the peptide-MHC complex. Early signals from 

the TcR and CD4 stop migration of the T cell. Hence, the T cell is said to “arrest” on the 

APC. The next stage, the peptide-MHC transport process, requires about 5 min and is 

possibly mediated by actin-based transport mechanisms (B. ii). Finally, the clustered 

peptide-MHC complexes are fixed in place by an unknown mechanism (B. iii). Maturation 

of synapse is associated with sustained TcR signalling. 



44

Figure 1.8 The cell cycle. The cell cycle is composed of several stages (A). Resting cells 

(G0) enter the cell cycle at the G1 phase, where they commence growth. When cells have 

completed the G1 phase, they can undergo DNA synthesis (S phase (S)) before transiting 

into M phase (M), where they undergo mitosis. The cell cycle is carefully regulated at 

certain checkpoints which occur at the end of each growth phase (B). Progression through 

the cell cycle is regulated by cyclin-CDK complexes and other modulators such as p15, 

p16, p19, p21, p27 and p53. 
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Figure 1.9 Regulation of the cell cycle. Upon receiving an activatory signal, cells at G1

phase initiate the Ras-ERK MAPK signalling cascade. Phosphorylated ERK1/2 

subsequently phosphorylates the AP-1 components, c-Jun and c-Fos, thus activating the 

AP-1 complex. Such ERK-dependent AP-1 transcription contributes to the upregulation of 

cyclin D as c-Jun, an AP-1 constituent, activates the cyclin D1 promoter. CDK4, CDK6 

and D-type cyclins can then associate and act to phosphorylate Rb, first by cyclin D–

CDK4/6 then further by cyclin E-CDK2, thereby altering its conformation. Phosphorylated 

Rb (p-Rb) releases bound E2F family transcription factors which are then free to activate 

the genes required for entry into S phase (e.g. cyclin A and cyclin E) and hence 

proliferation. Cdc2 (CDK1) and CDK2 are then activated and can both associate with 

cyclin A at S phase where they also act to phosphorylate and inactivate Rb thus, further 

fuelling cell cycle progression. In addition, CDK2 and CDK4 can phosphorylate Smad2 

and Smad3 proteins which exhibit an anti-proliferative function.
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Figure 1.10 RasGRP1-mediated activation of Ras. Under conditions of T cell activation, 

RasGRP1 promotes the activation of Ras in a DAG-dependent manner (A). By contrast, 

when the TcR is ligated in the absence of co-stimulation, diacylglycerol kinases (DGKs) act 

to phosphorylate DAG (B). Phosphorylated DAG can then be converted to phosphatidic 

acid and subsequently, DAG signalling is downregulated. Decreased DAG signalling is 

believed to reduce the recruitment of RasGRP1, and hence reduce RasGRP1-mediated Ras 

activation. 
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Figure 1.11 T cell signalling in tolerance. In tolerised T cells, where the TcR has been 

ligated in the absence of co-stimulation, not only are the co-stimulatory signals absent, but 

additional inhibitory signalling pathways are initiated. For example, the small GTPase 

Rap1 competitively binds Raf and susbsequently, Raf is unable to bind and activate its 

effector, MEK1/2. Downstream effects of such Rap1 signalling include the downregulation 

of ERK activation and lack of AP-1 activation. Thus, production of IL-2 is also 

downregulated and the cell exerts a reduced ability to proliferate in response to challenge 

with antigen. Such anergy is likely due, in part, to the presence of a Fyn-Cbl-CrkL-C3G-

Rap1 complex not observed in primed T cells.  
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Chapter 2 

Materials and Methods
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2.1  Animals 

Female BALB/c (H-2d, IgMa) mice were purchased from Harlan Olac (Bicester, U. 

K.) and used from 6 to 8 weeks of age. DO11.10 TcR transgenic (Tg) mice on a BALB/c 

background were obtained originally from Dr. N. Lycke, University of Goteborg, Goteborg, 

Sweden. These Tg T cells recognise OVA323-339 in the context of I-Ad (376). hCAR∆cyt Tg 

mice, which express the human coxsackie/adenovirus receptor (hCAR) with a truncated 

cytoplasmic domain (hCAR∆cyt) on their thymocytes and T lymphocytes (377), were 

obtained originally from Dr. R James Matthews, University of Wales College of Medicine, 

Cardiff, U. K. hCAR∆cyt.DO11.10 mice were bred in house by crossing hCAR∆cyt with 

DO11.10 Tg mice. All animals were maintained under specified pathogen free conditions 

with unrestricted access to both standard rodent pellets and water at Biological Services’ 

Central or Veterinary Research Facilities at the University of Glasgow in accordance with 

Home Office regulations. Procedures were conducted under Project Licence 60/3046. 

2.2 Cell culture reagents and antibodies 

 All cell culture reagents used were of the highest grade available and were 

purchased from Gibco. All other reagents were obtained from Sigma-Aldrich unless 

otherwise indicated. The primary Abs used are detailed in Table 2.1. 

2.3  Tracking Ag-specific lymphocytes and assessing their function after induction 

of priming and tolerance in vivo

2.3.1  Preparation and purification of cell suspensions 

Peripheral lymph nodes (PLN; cervical, axillary, brachial, inguinal), mesenteric 

lymph nodes (MLN) and spleens were removed from DO11.10 TcR Tg, hCAR Tg or 

hCAR∆cyt.DO11.10 double Tg mice, pooled and forced through Nitex (Cadisch Precision 

Meshes, London, UK) to generate single cell suspensions. Alternatively, harvested tissues 

were fixed in 1% paraformaldehyde/PBS for 24 h then transferred into 30% sucrose/PBS 

for a further 48 h before being snap-frozen in liquid nitrogen in O.C.T.™ compound 

(Bayer, Newbury, Berkshire, England) and stored at -70oC. Subsequently, tissues were 

defrosted, removed from O.C.T.™ and forced through Nitex to generate single cell 

suspensions for analysis of intracellular signalling molecule expression by FACS (Section 
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2.3.6). CD4
+
 T cells were purified from freshly harvested tissue using T cell enrichment 

immunocolumns (Cellect�, VH Bio Ltd, Gateshead, UK) according to the manufacturer’s 

instructions. Briefly, single cell suspensions were layered over Lympholyte®-M media and 

centrifuged at 1000 g for 20 min at room temperature. The lymphocyte layer was then 

carefully removed from the interface, diluted to a final volume of 10 ml in PBS, centrifuged 

at 1000 g for 5 min and re-suspended in 2-3 ml PBS. Cell Reagent (1.5 ml; supplied with 

kit) was added and the total volume was made up to 5-6 ml with PBS before incubation for 

20 min at 4
0
C. PBS (4-5 ml) was then added and the cells were centrifuged at 1000 g for 5 

min and re-suspended in 1-1.5 ml PBS. Next, the solution was transferred to CD4 negative 

selection immunocolumns (supplied with kit) and PBS was added until 10 ml of eluate was 

collected. The eluate was centrifuged at 1000 g for 5 min and resuspended in an appropriate 

amount of buffer. The percentage of purified T cells was assessed by flow cytometry 

(Section 2.3.6 (378, 379)). Lymph node cells or enriched (75-85% CD4+ KJ1.26+ T cells) T 

cell suspensions were cultured in complete RPMI 1640 medium (RPMI 1640 medium 

supplemented with 10% foetal calf serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 

U/ml streptomycin and 0.05 mM β-mercaptoethanol; all obtained from Invitrogen). 

2.3.2  CFSE labelling of Tg lymphocytes 

Single cell suspensions were generated from PLN from DO11.10 mice as described 

in Section 2.3.1 before being washed twice in Hanks Balanced Salt Solution (HBSS; 

Sigma, Poole, UK) via centrifugation at 450 g for 5 min. Cells were re-suspended at 5 x 

10
7
/ml in RPMI 1640 medium and incubated with 5 µM 5-(and-6)-carboxyfluorescein 

diacetate, succinimidyl ester (5(6)-CFDA SE; CFSE; Invitrogen) for 10 min at 37
0
C. Next, 

cells were washed once in HBSS and once in complete RPMI 1640 medium before being 

re-suspended at 3 x 10
6
 CD4

+
 KJ1.26

+
 T cells per 200 µl complete RPMI 1640 medium for 

adoptive transfer as described in Section 2.3.3 (378, 379).

2.3.3  Adoptive transfer of antigen-specific T cells 

Single cell suspensions were generated from PLN, MLN and spleens from DO11.10 

mice as described in Section 2.3.1. These cells were washed in sterile RPMI 1640 medium 

(Gibco, Invitrogen, Paisley, UK) before being centrifuged at 450 g for 5 min and the 

supernatant discarded. The percentage of CD4
+
 KJ1.26

+
 DO11.10 T cells was calculated 
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using flow cytometry as described in section 2.3.6 and 3 x 10
6
 TcR Tg T cells in 200 µl 

sterile RPMI 1640 medium were injected intravenously (i.v.) into age-matched, female 

BALB/c recipients (378, 380).

2.3.4  Administration of antigen 

 Twenty four hours after adoptive transfer, recipient mice were injected with 

OVA323-339 (100 µg in 200 µl PBS i.v.) in the absence or presence of 1 µg LPS (Salmonella 

abortus), to induce systemic tolerance or priming respectively (161, 381-383). In addition, 

mice were fed 100 mg ovalbumin (OVA; Sigma) in the absence or presence of 20 µg 

cholera toxin (CT; Sigma), to induce oral tolerance or priming respectively (384).

Alternatively, recipient mice were injected with 100 µg OVA in 100 µl PBS/50% CFA 

(Sigma) s.c. in the back of the neck to induce priming (384). Controls received equivalent 

amounts of PBS via the same routes. To elicit a secondary response, mice were challenged 

with OVA323-339 (100 µg i.v.) alone or together with LPS (1 µg) in 200 µl PBS 7 or 10 days 

later.

2.3.5  Biotinylation of KJ1.26 Ab 

The clonotypic mAb, KJ1.26, detects the Tg α/β TcR expressed by DO11.10 mice 

(385) and was purified from the original hybridoma (386). The KJ1.26 mAb was 

biotinylated using NHS-Sulfo-Biotin reagents (Pierce (387)). Briefly, solutions containing 

1 mg/ml purified mAb were dialysed overnight against 50 mM Sodium Bicarbonate buffer 

(pH 8.5) at 4
0
C and 1 ml aliquots were then mixed with 75 ng Sulfo-NHS-Biotin for 30 min 

at room temperature. Free biotin was then removed by dialysing overnight with PBS/0.05% 

NaN3 at 40C. Solutions were dialysed using Slide-A-Lyzer® dialysis cassettes (Pierce) and 

biotinylated Ab was stored at 4
0
C until use.  

2.3.6  Flow cytometry 

Aliquots of cells (10
6
/ml) in 5 ml polystyrene tubes (Falcon, BD, UK) were washed 

with 200 µl cold FACS buffer (PBS, 2% FCS, 0.2% NaN3) at 450 g for 5 min at 4
0
C. Cells 

were re-suspended in 200 µl Fc receptor (FcR) blocking buffer (anti-CD16/32, clone 

2.4G2, hybridoma supernatant, 10% mouse serum, 0.1% sodium azide) containing the 

appropriate fluorochrome-conjugated, biotinylated or purified primary Abs for 20-30 min 
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in the dark at 4°C. Anti-CD16/32 binds to FcγRII/III and the immunoglobulin in mouse 

serum binds to FcγRI, and so the FcR blocking buffer blocks non-specific binding of Ab to 

such FcR-bearing cells. Details of the Ab clones, their specificities and isotype controls 

used are provided in Table 2.1 (378). Cells were then washed with 1 ml FACS buffer as 

before and, where appropriate, biotinylated or purified Abs were detected following 

incubation with fluorochrome-conjugated streptavidin (Vector Laboratories, Burlingame, 

CA) or with fluorochrome-conjugated rat anti-mouse IgG1 (BD PharMingen) respectively, 

for 20-30 min in the dark at 4°C. For detection of intracellular signalling molecules, cells 

were washed with 1 ml PBS before addition of 200 µl BD Cytofix/Cytoperm™ solution 

(BD PharMingen) for 20 min at 4
0
C and further washing with 500 µl BD Perm/Wash 

solution (BD PharMingen). Purified Abs were then detected following incubation with 

fluorochrome-conjugated anti-rabbit IgG1 (BD PharMingen) for 10 min in the dark at room 

temperature. Finally, cells were washed again in FACS buffer or BD Perm/Wash solution 

and re-suspended in 300 µl FACS flow for analysis using a FACScan and CellQuest 

software (BD PharMingen). Two or three-colour analysis was performed on 20,000 events 

as described in Figure 2.1. 

2.3.7 Measurement of antigen-specific proliferation ex vivo 

 PLN, MLN and spleens were harvested 10 days after primary exposure to antigen 

and single cell suspensions were prepared as described in section 2.3.1, before being 

cultured in vitro with or without the addition of OVA323-339 (1 µg/ml). Lymph node cells 

were cultured at a concentration of 4 x 105 cells per well (2 x 105 Tg T cells + 2 x 105 DC 

per well), in complete RPMI 1640 medium, in triplicate, for 72 h, in 96-well flat bottomed 

plates (Corning) at 37
0
C in a 5% CO2 incubator. DNA synthesis was assessed in all 

samples by addition of 1 µCi per well of [3H] thymidine (Western Infirmary, Glasgow). 

Cells were then harvested onto glass fibre filter mats (Wallac, Warrington, UK) using a 

Betaplate 96-well harvester (Amersham Pharmacia Biotech, Turku, Finland) after an 

additional 16 hours. [3H] thymidine incorporation was assessed using a 1205 Betaplate 

liquid scintillation counter (Amersham). 
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2.3.8  Ex vivo assessment of cytokine induction in vivo 

 Twelve days after primary immunisation, all groups were challenged by i.v. 

injection with 100 µg OVA323-339 in vivo for 5 h before PLN, MLN and spleens were 

harvested. Single cell suspensions were prepared and stained for CD4 and KJ1.26 

expression, as described in sections 2.3.1 and 2.3.6, before being fixed with 250 µl BD 

Cytofix/Cytoperm™ solution (Cytofix/Cytoperm™ kit; BD) per tube for 20 min at 40C. 

Samples were then washed and permeabilised with 500 µl BD Perm/Wash solution 

(supplied with kit) per tube via centrifugation for 5 min at 450 g. This step was repeated 

and samples were stained for intracellular IL-2 or IFNγ by incubation with phycoerythrin 

(PE)-conjugated anti-IL-2 or anti-IFNγ (both at 2 µg/ml) in the dark at room temperature 

for 30 min. Samples were washed as before, re-suspended in 250 µl FACS Flow per tube 

and the proportion of CD4+ KJ1.26+ T cells positive for IL-2 or IFNγ was determined by 

flow cytometry. PE-conjugated Rat IgG2b or Rat IgG1 served as isotype controls for IL-2 

and IFNγ respectively. 

2.3.9  Assessment of antigen-specific antibody responses 

  Peripheral blood was collected from the tail into heparinised capillary tubes 

(Hawksley & Sons Ltd., Lancing, Sussex, UK). The blood was then ejected into eppendorfs 

containing Serasieve (Lomb Scientific (Aust) Pty Ltd, Sydney, Australia) and left to clot at 

room temperature for a minimum of 2 h before serum was separated by micro-

centrifugation at 12,100 g for 5 min and stored at -20
0
C until analysis. All sera were tested 

for the levels of anti-OVA IgG1 and anti-OVA IgG2a Abs by ELISA. Samples were 

analysed in duplicate over a three-fold dilution range. Prior to analysis, Immulon-2 ELISA 

plates (Corning) were coated with OVA protein in PBS (20 µg/ml; 100 µl/well) overnight 

at 4
0
C. After washing with PBS/0.05% Tween-20 (Sigma), non-specific binding sites were 

blocked with PBS/10% FCS for 1 h at 370C. Plates were then washed three times and 

incubated with serum samples, serially diluted (starting at 1:4 dilution of neat sample) in 

100 µl PBS/0.2% FCS/0.05% Tween-20 per well, for 2 h at 37
0
C. After four washes, plates 

were incubated with 100 µl per well of peroxidase-conjugated anti-mouse IgG1 or 

peroxidase-conjugated anti-mouse IgG2a (both diluted 1:8000 in PBS/0.2% FCS/0.05% 

Tween®-20; Southern Biotechnology Associates Inc., Birmingham, AL) for 30 min at 

37
0
C. Lastly, the plates were washed six times before addition of 3, 3’, 5, 5’-
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tetramethylbenzidine peroxidase (TMB) substrate (100 µl/well; KPL, Insight 

Biotechnologies, Wembley, Middlesex, UK). Plates were read at 405 nm on a Dynatech 

MR5000 automatic plate reader with Revelation software (both Dynex Technologies, West 

Sussex, UK). 

2.4 Functional analysis of T cells following the induction of tolerance or priming in 

vitro. 

2.4.1  Generation, maturation and antigen-loading of dendritic cells 

Dendritic cells (DC) were derived from bone marrow as described previously (388). 

Briefly, femurs and tibiae were asceptically removed and the epiphyses of the bones were 

severed. The bone marrow was harvested by flushing RPMI 1640 medium through the 

bone using a syringe with a 23 g needle. Single cell suspensions were prepared and washed 

in RPMI 1640 medium. Cells were plated out at 2 x 10
5
/ml in DC medium (complete RPMI 

1640 medium supplemented with 10% sterile filtered supernatant from the X-63 fibroblast 

cell line (expressing the Granulocyte-Macrophage colony-stimulating factor (GM-CSF) 

gene; gift from Dr. J. Brewer, University of Glasgow, Glasgow, UK)) in 6-well tissue 

culture plates (Corning B.V., The Netherlands) and incubated for 9 days at 37
0
C. Cells 

were supplemented by addition of fresh DC medium (2.5 ml per well) at days 3 and 6 

before being “matured” at day 9 by culture with 1 µg/ml LPS (Salmonella abortus, Sigma) 

for 24 h. “Matured” DC were incubated with antigen (1 µg/ml OVA323-339; Genosys, 

Sigma) for 3-4 h at 37
0
C before unbound OVA323-339 was removed from the culture by 

washing with fresh medium at 300 g for 5 min prior to incubation with T cells.  

2.4.2  Induction of priming or anergy of T cells in vitro 

Six-well plates (Corning) were coated with anti-mouse CD3ε Ab (Clone 145-2C11; 

1 µg/well) in PBS (1 ml/well) and incubated for 16 h at 40C. Subsequently, lymph node 

cells or purified OVA-specific Tg T cells (1x10
6
/well) were cultured in complete RPMI 

1640 medium in anti-mouse CD3ε Ab-coated 6-well plates for 48 h in the presence or 

absence of 1 µg/ml anti-mouse CD28 Ab (Clone 37.51, BD Pharmingen, Oxford, UK) to 

induce priming or anergy respectively (389-391). After 48h, cells were washed twice with 
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RPMI 1640 medium, re-plated at a concentration of 1x10
6
 cells/ml/well and rested in 

complete RPMI 1640 medium for an additional 48 h. 

2.4.3  Culture of T cells with DC  

Following the induction of priming or anergy, primed, anergic and freshly isolated 

(“naïve”) Tg T cells were counted by flow cytometry and re-stimulated by culturing with 

LPS-matured DC which had been loaded with OVA323-339 (see section 2.4.1), at a ratio of 

1:1 (5 x 10
5
 Tg T cells + 5 x 10

5
 DC) in complete RPMI 1640 medium (2 ml/well) in 6-

well plates (Costar, Corning, NY). Alternatively, in some experiments cells, 10
5
 Tg T cells 

+ 10
5
 DC, were cultured in complete RPMI 1640 medium, in 4-well chamber slides 

(400µl/chamber; SLS, Nottingham, UK). T cells and DC were cultured together for 1, 20 or 

48 h at 37
0
C in a 5% CO2 incubator (Jencons, Leighton Buzzard, UK).

2.4.4  Assessment of antigen-specific proliferation

Naïve, anergic and primed T cells were cultured with DC ± OVA323-339, as described 

in section 2.4.3, at a concentration of 4 x 10
5
 cells per well (2 x 10

5
 Tg T cells + 2 x 10

5
 DC 

per well), in complete RPMI 1640 medium, in triplicate, for 24, 48 or 72 h, in 96-well flat 

bottomed plates at 37
0
C in 5% CO2. DNA synthesis was assessed in all samples by addition 

of 1 µCi per well of [
3
H] thymidine (Western Infirmary, Glasgow). Cells were then 

harvested onto glass fibre filter mats using a Betaplate 96-well harvester after an additional 

16 h. [3H] thymidine incorporation was assessed using a 1205 Betaplate liquid scintillation 

counter. Where indicated, 10 ng/ml rIL-2 (gift from Dr D. Xu, University of Glasgow, 

Glasgow, UK) was added at the beginning of the proliferation assay. 

2.4.5  Assessment of antigen-specific cytokine production in vitro 

To detect IL-2 and IFNγ in culture supernatants, Immulon-4 plates (Costar) were 

coated with rat anti-mouse IL-2 or IFNγ capture Abs (1 or 1.5 µg/ml, respectively; 50 

µl/well; BD Pharmingen) for 16 h at 40C before being blocked with 10% FCS in PBS for 1 

h at 37
0
C. Sample supernatants were added for 3 h at 37

0
C and following washing with 

0.05% Tween® 20 in PBS, were subsequently incubated with biotinylated rat anti-mouse 

IL-2 or IFNγ detection Abs (0.5 or 1 µg/ml, respectively; 50 µl/well; BD PharMingen) for 1 

h at 370C. Plates were then incubated with 50 µl extravidin peroxidase per well (diluted 
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1:1000 in PBS/0.2% FCS/0.05% Tween®-20; Sigma-Aldrich) for 1 h at 37
0
C before being 

treated with TMB Microwell Peroxidase Substrate. Recombinant murine IL-2 or IFNγ

preparations (BD Pharmingen) were used to produce standard curves from which cytokine 

levels in samples were calculated. 

2.4.6  Analysis of ERK1/2 expression and activation levels by Western Blotting 

 Primed, anergic or naïve T cells (10
6
) were harvested and lysed in lysis buffer (50 

mM Tris-HCl (pH 7.5) buffer containing 150 mM NaCl, 2% (v/v) Nonidet P40, 0.25% 

(w/v) sodium deoxycholate, 1 mM EDTA (pH 8.0), 1 mM PMSF, 10 mM Sodium 

orthovanadate, 10 µg/ml chymostatin,  10 µg/ml leupeptin, 10 µg/ml antipain, 10 µg/ml 

pepstatin A; all obtained from Sigma) for 20 min on ice. Cellular debris was removed by 

centrifugation at 11,000 g for 10 min at 4°C and the protein concentration of the soluble 

fraction was determined using the Micro BCA™ protein assay reagent kit (Pierce, 

Rockford, IL). Samples (75 µg) were mixed with an equal volume of 2 x SDS PAGE gel 

loading buffer (20% (v/v) Glycerol, 4% (w/v) SDS, 100 mM Tris-HCl pH 6.8, 2 µg/ml 

Bromophenol Blue, 5% (w/v) β- mercaptoethanol), boiled for 2 min and then separated by 

10% SDS-PAGE (Bio-Rad, Hercules, CA). Proteins were then transferred to nitrocellulose 

membranes (Amersham, Buckinghamshire, UK) and non-specific binding sites were 

blocked with TBS (2 M NaCl, 20 mM Tris-HCl, pH 7.5,0.1% Tween 20), containing 5% 

non-fat dry milk. Immunodetection was accomplished by incubating the membranes first 

with primary antibodies (diluted 1:1000 in TBS, 5% non-fat dry milk) which recognise 

total or active ERK1 and ERK2 (rabbit anti-p44/42 MAP kinase or rabbit anti-dually-

phosphorylated-p44/42 MAP kinase (anti-pERK) respectively; Cell Signalling Technology, 

New England Biolabs (NEB), Beverly, MA) and then with an anti-rabbit IgG HRP-

conjugated secondary antibody (1:2000, Cell Signalling Technology, NEB) diluted in TBS, 

5% non-fat dry milk and visualised using chemiluminescence (ECL, Amersham).  
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2.5  Detection of signalling in individual Ag-specific T cells in vitro and in situ

2.5.1 Detection of cell cycle progression and signalling molecules by intracellular 

staining of cells  

To study cell cycle progression and cellular localisation of different signalling 

molecules and lipid raft structures, cells were cytocentrifugated onto microscope slides at 

40 g for 4 min, using a Shandon Cytospin 3 centrifuge (Shandon Co., UK) or cultured in 

chamber slides (12, 392). Cells were then fixed in 4% formaldehyde in PBS for 15 min, 

washed in PBS and placed in 1% (w/v) blocking reagent (component D supplied with 

Alexa Fluor® 488 tyramide kit # T-20922; Molecular Probes, Eugene, OR) in PBS for 30 

min. All antibodies were diluted in 1% blocking reagent and washing steps were carried out 

three times in TNT buffer (0.15 M NaCl, 0.1 M Tris-HCl, pH 7.5, 0.05% Tween 20), unless 

otherwise stated.  

To identify OVA-specific Tg TcR T cells, cells were incubated with biotinylated 

anti-KJ1.26 Ab (6.4 µg/ml), for 30 min, washed and then incubated with streptavidin-HRP 

(diluted 1:100) for 30 min. After washing, the cells were treated with biotinylated-tyramide 

(diluted 1:50; TSA™ Biotin system (described in Figure 2.2A), Perkin Elmer Life 

Sciences, Boston, MA) for 10 min, washed and then incubated with Streptavidin-Alexa 

Fluor® 647 (2 µg/ml; all Alexa Fluor® dyes were purchased from Molecular Probes) for 

30 min. Excess HRP was quenched using 0.1% sodium azide, 3% hydrogen peroxide, in 

PBS, for 10 min and this quenching step was repeated three times. 

Cells were then permeabilised for 5 min in permeabilisation buffer (2% FCS, 2 mM 

EDTA pH 8.0, 0.1% saponin) and incubated for 15 min in 1% blocking reagent. To detect 

intracellular proteins, cells were incubated with antibodies against a range of signalling 

molecules (Table 2.1) diluted in 1% blocking reagent supplemented with 0.1% saponin for 

30 min. Cells were then washed and treated with anti-rabbit IgG HRP conjugate (diluted 

1:100; Cell Signalling Technology, NEB) before Alexa Fluor® 488 tyramide (diluted 

1:100; described in Figure 2.2B) was added for 10 min. Cholera Toxin subunit B-Alexa 

Fluor® 488 (0.5 µg/ml) was used to stain the glycosphingolipid GM1-containing lipid raft 

structures (213, 214) and the APO-BrdU™ TUNEL assay kit containing anti-BrdU™-

Alexa Fluor® 488 was used to label DNA strand breaks (393-395). Finally, cells were 

washed and mounted in Vectashield with DAPI (Vector Laboratories) and examined by 
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laser scanning cytometry (LSC; Figures 2.3 and 2.4). Biotinylated Mouse IgG2a (BD 

PharMingen) and Rabbit IgG (Sigma) served as isotype controls for biotinylated KJ1.26 

and all antibodies against signalling molecules, respectively.  

2.5.2  Preparation of tissue sections and immunofluorescence microscopy 

PLN, MLN and spleens were removed at different timepoints following primary or 

secondary exposure to antigen and placed into 1% paraformaldehyde/PBS for 24 h then 

transferred into 30% sucrose/PBS for a further 48 h before being snap-frozen in liquid 

nitrogen in O.C.T.™ Compound and stored at -70
o
C. Six micron sections were cut on a 

cryostat (ThermoShandon, Cheshire, UK) and stored at -20
o
C. Sections were stained as 

described previously (392). In brief, tissue sections were fixed in acetone (analytical 

reagent grade; CH3COCH3) for 10 min and stained for KJ1.26 expression as described 

earlier for intracellular staining (Section 2.5.1). Next, the sections were stained with a range 

of anti-signalling molecule Abs or isotype controls for 16 h at 37
0
C (Tables 2.1 and 2.2). 

Sections were then incubated with anti-rabbit IgG-HRP conjugate (diluted 1:100) mixed 

together with anti-CD45R/B220-FITC conjugate (2 µg/ml) for 30 min and then Pacific blue 

tyramide
TM

 (diluted 1:50; Kit # T-20940; Invitrogen; described in Figure 2.2B) was added 

for 10 min; both at room temperature. Finally, the sections were mounted in Vectashield 

(Vector Laboratories) and examined by laser scanning cytometry (LSC; Compucyte, 

Cambridge, MA; Figure 2.5). 

2.6 Laser scanning cytometry 

The fluorescence levels in individual cells were measured using a laser scanning 

cytometer (LSC; further explained in Chapter 3; Figures 2.3-2.5) with the spectra and 

laser/filter combinations shown in Table 2.2. Detector gain voltages (PMTs) were adjusted 

at the start of each batch of experiments to optimise fluorescence excitation (12, 392, 396, 

397) with the maximum value of 75 for number of saturated pixels. 

2.6.1 LSC data collection on individual cells 

Appropriate data collection protocol (.PRO) and display (.DPR) files were set up to 

detect blue, green and long red fluorescence as follows. In the Parameters sub-menu of the 

Instrument settings menu, the blue, green and long red sensor boxes were checked to ensure 

fluorescence detected by these sensors was included in the data file. LSC detects cells using 
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a series of contours (Figure 2.3A) and when chamber slides or cytocentrifugated cells 

(cytospins) are analysed, it is common to set the primary contour, called the threshold 

contour, on cell nuclei (12, 392) which are identified by staining with dyes that bind to 

DNA, such as DAPI (398). In the Computation sub-menu, the threshold contour was set on 

blue, as this is the colour of the DAPI stain. The minimum area was then set to 5µm2, 

enabling detection of DAPI stained nuclei that are sized 5µm
2 

and above. This is the 

optimal minimum area for the T lymphocytes described hereafter. Using the LSC scan data 

display, the integration contour was then situated 11 pixels (1 pixel = 0.5µm (x-axis) and 

0.5µm (y-axis) for 40x objective) outside the threshold contour, so as to define the outer 

edge of the cells already identified on the basis of their nuclear staining. The integration 

contour allowed calculation of the total fluorescence within each cell (fluorescence integral 

value) and this integration contour setting was optimal for collecting data on T 

lymphocytes. Peripheral contouring was enabled to define the peripheral area of the cell. 

Peripheral contours were set between the threshold contour (defined by the nucleus when 

contouring on DAPI) and the integration contour (defined by the edge of the cell; Fig. 

2.3.A) and so the fluorescence emitted peripheral to the nucleus could be measured. 

Finally, two background contours measure the background fluorescence outside the cells 

and this value is automatically subtracted from the measured fluorescence values (Figure 

2.4.A). 

Using the Scan Area option, an area of the slide to be scanned was highlighted, 

which corresponded to the location of the cells on the slide. Next the Photomultiplier tube 

(PMT)-Voltage, Offset, and Gain settings were set to 25%, 2048, and 255, respectively, for 

blue; to 35%, 2048, and 255, respectively for green; and to 28%, 2048, and 255, 

respectively for long red. The power of the Argon laser was set to 5 mW. These settings 

were optimal for analysis of these samples, but were checked on each occasion when 

different reagents and/or cell types were used. To do this, optimal settings are indicated by 

the presence of dark blue lines in the upper third of the PMT scale with very little (< 75 

pixels) or no saturation. If this was not the case, the PMTs were adjusted by increasing the 

PMTs to increase the signal, or by decreasing the PMTs to decrease saturation. Saturation 

occurs when the detector no longer responds to increased levels of signal. 

 Next, the threshold value was set to 3000 thus, ensuring all cells emitting blue 

fluorescence at a level �3000 fluorescence units were detected as events. This setting was 
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verified for each batch of staining and varied from 3000 to 5000 depending on the intensity 

of the nuclear staining. Setting the optimal threshold value for detection of cells is crucial 

so as to allow maximal cellular resolution and collection (Figure 2.3B and 2.4A). For 

example, if the threshold value is set too low then multiple cells may be detected as one cell 

(Figure 2.3B) and conversely, if a high threshold value is set, cells with low or medium 

intensity staining will not be detected at all (Figure 2.3B). Therefore, a compromise must 

be made when setting the threshold value so as to detect the maximum number of true 

single cells in a sample (Figure 2.4A). The area was then scanned and the data file saved. 

2.6.2. Identifying an Ag-specific T cell population by LSC 

To enable discrimination of the Ag-specific T cell population, cells were first 

detected via their nuclear staining as described above (Figure 2.4A), before Ag-specific T 

cells were identified via their Tg TcR (stained with the mAb KJ1.26 as described in section 

2.5.1). As the Tg TcR is expressed on the surface of the T cell, the data derived from the 

integration contour (integral value) was used to distinguish the Ag-specific T cell 

population (Figure 2.4B). In addition, the expression level of intracellular molecules in Ag-

specific T cells was quantitated by gating on the Tg TcR T cells (Figure 2.4B) and 

measuring the integral fluorescence value for the intracellular molecule in question (Figure 

2.4C). For analysis purposes the positive gate was positioned according to the fluorescence 

obtained using appropriate negative/isotype controls (Figure 2.4D, E). LSC data analysis 

was carried out using Wincyte version 3.6 (Compucyte).   

2.6.3. LSC data collection on antigen-specific Tg T cells in situ 

For analysis of antigen-specific T cells in tissue sections, the primary contouring 

parameter was set using the long red sensor which detects the Alexa Fluor® 647-stained Tg 

TcR on the cell surface (Figure 2.5A), thus identifying all the antigen-specific Tg T cells in 

the section (Figure 2.5C) and allowing measurement of any signal expressed by these T 

cells in situ (Figure 2.5D). An advantage of using the adoptive transfer system for this 

analysis is that it generates a relatively low, near physiological, frequency of Ag-specific 

Tg T cells. This approach overcomes the usual problem encountered with cells in tissue, 

where they can be so densely packed to prevent setting an accurate threshold based on a 

cell surface marker. The optimal settings for such sporadically distributed TcR Tg T cells 

are as follows: threshold value: 3500; minimum area: 5 µm
2
; power of Argon laser: 5mW; 
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PMT, offset, and gain settings: 22-32%, 2048, and 255, respectively, for blue; 30-40%, 

2048, and 255, for green; and 22-32%, 2048, and 255, for long red. PMT settings varied 

from day to day depending on the intensity of staining in different batches of tissue.

By contrast, in order to detect the densely packed B cell follicles, phantom contours 

are required (Figure 2.5). Phantom contours differ from the contours described thus far in 

that they comprise a lattice of contours (Figure 2.5B), which is placed over the tissue 

section, consequently generating fluorescence values which represent the tissue section as a 

whole, rather than individual cells (399, 400). When phantom contours are set to detect 

fluorescence emitted from the B cell stain, B220-FITC, this allows the identification of B 

cell rich areas (Figure 2.5E), not individual B cells, and permits the generation of tissue 

maps on which the x- and y-position of the B cell rich areas can be plotted (Figure 2.5F). 

Hence, the location of pERK- or Rap1-expressing antigen-specific Tg T cells could be 

assessed in relation to follicular or paracortical areas within the lymph node using tissue 

maps (Figure 2.5F). Phantom contours were generated as follows. On the Phantoms tab, 

phantom contouring was enabled, and the lattice pattern and allow overlap of events 

options were selected. The radius was set to 6 µm and the minimal distance between 

phantom centres to 20 µm as these were the optimal settings for analysis of lymphocytes in 

this manner. Fluorescence images were captured using a connected 3CCD colour vision 

camera (regulated by a Hamamatsu and Orbit controller) and the Openlab version 3.0.9 

digital imaging programme (Improvision, Warwick, UK). 

2.7 Transfection of Ag-specific T cell hybridoma cells and primary T cells 

2.7.1  Preparation of Luria-Bertani agar and broth 

Luria-Bertani (LB) agar was prepared by dissolving 5 g Tryptone, 2.5 g Yeast 

Extract (both Sigma) and 2.5 g NaCl in 400 ml dH20, and the pH adjusted to 7.5. LB Agar 

(7.5 g; Sigma) was added and the solution was made up to a total volume of 500 ml with 

dH20 before being autoclaved. The solution was then cooled to ~55
0
C on a stirrer before the 

appropriate antibiotic, 60 µg/ml kanamycin or 100 µg/ml ampicillin, was added. The 

solution was stirred for a further 20 sec before being poured into 9 cm Petri dishes 

(Corning) until plates were half full of LB Agar (~15 ml/plate), under sterile conditions. 

The plates were left to cool and set for 20 min before being stored at 4
0
C.  
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To prepare LB broth, 10g Tryptone, 5 g Yeast Extract and 5 g NaCl were dissolved 

in 2 L dH20 and the pH was adjusted to 7.5. The broth was autoclaved, cooled and 

supplemented with either 30 µg/ml kanamycin or 50 µg/ml ampicillin before being stored 

at 4
0
C.

2.7.2  Transformation of chemically competent cells

One Shot® TOP10 competent Escherichia Coli (E. Coli; Invitrogen) cells were 

transformed with pEGFP-N1 (kanamycin-resistant (kan
r
); Clontech Laboratories, Inc., Palo 

Alto, CA) or pcDNA3.1 (ampicillin-resistant (amp
r
); Invitrogen) plasmids as per the 

manufacturer’s instructions. Briefly, one 50 µl aliquot of One Shot® cells for each 

transformation was thawed, on ice, whilst the pEGFP-N1 and pcDNA3.1 plasmids were 

centrifuged at 12,100 g for 30 s before also being placed on ice. Next, 4 µl of pEGFP-N1 or 

pcDNA3.1 were pipetted directly into a vial of competent cells and the solution was mixed 

by gentle tapping. Subsequently, 0.5 M 2-mercaptoethanol was added to each vial and the 

vials were incubated on ice for 30 min. Following this incubation, the cells were heat-

shocked at 42
0
C for exactly 30 sec before being placed on ice. SOC medium (2 % tryptone, 

0.5 % yeast extract, 0.4 % glucose, 10 mM NaCl, 5 mM MgCl2, 5 mM MgSO4, 2.5 mM 

KCl; 250 µl), which had been pre-warmed to room temperature, was added to each vial and 

the vials were shaken at 3 g for exactly 60 min at 37
0
C in an Innova 4400 incubator shaker 

(New Brunswick Scientific (UK) Ltd., St. Albans, Herts, UK). Each transformation (50 µl)

was then spread on separate Luria broth agar plates which were inverted and incubated at 

37
0
C overnight.

   

2.7.3 Purification and determination of yield of plasmid DNA 

 pEGFP-N1 (Figure 2.6) and pcDNA3.1 (Figure 2.8) plasmids were purified using 

HiSpeed Plasmid Maxi Kits (Qiagen, Crawley, UK) as per the manufacturer’s instructions. 

In brief, single bacterial colonies were picked from freshly streaked plates of LB agar and 

used to inoculate a starter culture of 10 ml LB broth containing 30 µg/ml kanamycin or 50 

µg/ml ampicillin. The cultures were incubated at 37
0
C with vigorous shaking (5 g) for 6 h 

before being diluted 1:250 in LB broth containing kanamycin or ampicillin and cultured at 

37
0
C with vigorous shaking for 16 h. The bacterial cells were then harvested by 

centrifugation at 6000 g at 40C for 15 min and re-suspended in 10 ml buffer P1 (all buffers 
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and components supplied with kit). To lyse the cultures, 10 ml of buffer P2 was added and 

the cultures were mixed gently and incubated at 370C for 5 min. Next, 10 ml chilled P3 

buffer was added to the lysate, the cultures were mixed and poured immediately into the 

barrels of QIAfilter cartridges and incubated at room temperature for 30 min. The plungers 

were then inserted into the QIAfilter cartridges and the cultures were filtered into HiSpeed 

tips (previously equilibrated with 10 ml buffer QBT) and the HiSpeed tips were washed 

with 60 ml buffer QC before the relevant DNA was eluted with 15 ml buffer QF and 

collected in 50 ml tubes.  

DNA was then precipitated by addition of 10.5 ml isopropanol and incubation at 

room temperature for 5 min. This mixture was then filtered through a QIAprecipitator 

before the DNA was washed with 2 ml 70% ethanol. The membrane was then dried by 

forcing air through the QIAprecipitator and the DNA was eluted with 1 ml buffer TE and 

collected into a 1.5 ml tube. To ensure that the maximum amount of DNA was solubilised 

and recovered, the sample was eluted for a second time. DNA concentration was 

determined on a DU® 640 spectrophotometer (Beckman, Fullerton, CA, USA) and 

authentication of DNA fragments was assessed by quantitative analysis of agarose gels (1% 

(w/v) agarose in Tris-Acetate-EDTA (TAE) buffer with 667 ng/ml of the fluorescent DNA-

intercalating dye, ethidium bromide). For example, for agarose gel analysis by 

electrophoresis, a double digest was performed on the pEGFP-N1 plasmid to confirm its 

authenticity. Restriction enzymes excised DNA immediately before and after the start and 

end codons for the GFP fragment, respectively (Figure 2.6). TAE buffer was poured over 

the gel before samples of DNA mixed with loading dye were pipetted into the wells. 

Electrodes were connected so that the DNA migrated towards the anode and the gel was 

run at 90 V for 20 min. A 1Kb DNA ladder was also run to enable analysis of DNA 

fragment sizes when the gel was visualised under UV light. The size of the excised DNA 

correlated with the expected size of the GFP fragment at ~750 bp (Figure 2.7) thus, the 

authenticity of this plasmid was confirmed. 
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2.7.4  Maintenance of DO11.10 hybridoma cells in vitro 

The murine T cell hybridoma DO11.10, which recognises OVA323-339 in the context 

of I-A
d
 (from Underhill et al; (401)), was cultured in complete RPMI 1640 medium at 37

0
C 

in 5% CO2. Hybridoma cells were sub-passaged by diluting 1:10 in fresh complete RPMI 

1640 medium every 48 h to ensure that cells remained in exponential growth phase. 

2.7.5 Electroporation of plasmid DNA into the DO11.10 hybridoma or primary DO11.10 

TcR Tg T cells 

Briefly, 10 µg DNA was added to cuvettes and stored on ice for 10 min. Next, 1-1.5 

x 106 DO11.10 hybridoma cells or purified primed or anergic primary DO11.10 TcR Tg 

CD4
+
 T cells in 250 µl electroporation media (RPMI 1640 medium supplemented with 20% 

foetal calf serum) were added to each cuvette. The cuvettes were flicked gently and stored 

on ice for 10 min before being flicked again and the cells were then electroporated using a 

Bio-Rad Gene Pulser™ and Pulse Controller (Bio-Rad) set at 960 µF and 280 V. Following 

electroporation, cuvettes were flicked gently and stored on ice for 10 min before being 

seeded onto 6-well plates with complete RPMI 1640 medium. Twenty four h after 

electroporation, dead cells were either removed by density centrifugation using 

Lympholyte®-M (VH Bio Ltd, Tyne and Wear, UK) or stained with propidium iodide (PI) 

prior to assessment of GFP expression by Flow Cytometry. 

2.8 Establishment of an Ag-specific model in which to study effects of 

 adenovirally delivered genes on T cell responses 

2.8.1  Generation of hCAR∆cyt.DO11.10 mice and testing for hCAR and DO11.10 TcR Tg 

expression 

hCAR∆cyt Tg mice were crossed with DO11.10 mice at the Veterinary Research 

Facilities at the University of Glasgow in accordance with Home Office regulations and the 

first filial (F1) generations were screened for dual expression of hCAR and the Tg TcR by 

flow cytometry (402). Peripheral blood was withdrawn from F1 mice by superficial 

venepuncture and transferred to 5 ml polystyrene tubes (Falcon, BD). Following their 

transfer into tubes, cells were re-suspended in 100 µl FcR blocking buffer (anti-CD16/32, 

clone 4.G-2, hybridoma supernatant, 10 % mouse serum, 0.1 % sodium azide) containing 
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peridinin chlorophyll-α protein (PerCP)-conjugated anti-CD4 (0.8 µg/ml), biotinylated 

anti-KJ1.26 (6.4 µg/ml) and anti-CAR (4 µg/ml; clone RmcB; Upstate Biotechnologies, 

Dundee, UK) for 20 min in the dark at 4
0
C. Cells were washed by addition of 1 ml FACS 

buffer (PBS, 2% FCS, 0.2% NaN3) per tube before centrifugation at 450 g for 5 min. 

Biotinylated anti-KJ1.26 and purified anti-CAR were then detected by incubation with PE-

conjugated streptavidin or fluorescein isothiocyanate (FITC)-conjugated anti-mouse IgG1 

(both 5 µg/ml; both BD Pharmingen), respectively, for 10 min in the dark at 4
0
C. Cells 

were then washed as before prior to incubation with 1 ml BD FACS™ Lysing Solution 

(diluted 1:10 in dH20; BD Pharmingen) per tube for 10 min in the dark at room 

temperature. BD FACS™ Lysing Solution is used to lyse red blood cells following 

immunofluorescence staining of peripheral blood prior to flow cytometric analysis to 

ensure optimal detection of lymphocytes (403). PBS (1 ml) was added to each tube before 

washing at 300 g for 5 min. Cells were then re-suspended in 200 µl FACS flow and 

analysed with a FACScan and CellQuest software. PerCP-conjugated Rat IgG2a, 

biotinylated Mouse IgG2a and purified Mouse IgG1 (all BD) served as isotype controls for 

CD4-, KJ1.26- and CAR-specific antibodies, respectively. 

2.8.2 Adenoviruses 

The Ad5.UbP.GFP (404) and Ad5.CMV.GFP vectors both encode an enhanced 

GFP reporter gene under the control of either a human ubiquitin promoter (UbP) or CMV 

promoter, respectively. The Ad5.UbP.GFP was originally obtained from Dr. J. Gregori, 

University of Colorado Health Science Centre, Denver, CO, USA. The Ad5.CMV.GFP was 

a gift from Prof. A. Baker, Cardiovascular Research Centre, Glasgow, UK 

2.8.3 Generation of high-titer stocks of recombinant adenovirus 

 High-titer stocks of recombinant adenoviruses (rAd) were produced by large scale 

amplification of a plaque pure stock of adenovirus in a human embryonic kidney (HEK) 

293 cell line (gift from Prof. A. H. Baker, University of Glasgow, Glasgow, UK; (405, 

406)). Low passage HEK 293 cells were sub-cultured in complete minimal essential 

medium (MEM; 10% FCS, 2 mM L-Glutamine, 100 U/ml penicillin and 100 µg/ml 

streptomycin (all Gibco)), in 29 x 150 cm
2
 tissue culture flasks (Corning). Cells were 

allowed to reach 80-90% confluence before being infected with rAd (approximately 1 
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plaque forming unit (pfu) per cell). The medium was replaced every 3 days until the cells 

started to detach from the flask. Fresh medium (10 ml) was added to the flasks until this 

cytopathic effect was complete. Cells were harvested immediately and centrifuged at 250 g

for 10 min at room temperature before being re-suspended in 15 ml PBS. An equal volume 

of Arklone P (Trichlorotrifluoroethane; ICI Ltd., Cheshire, UK) was added and the tubes 

were inverted for 10 s then shaken gently for 5 s. This inversion and shaking was repeated 

and cells were then centrifuged at 750 g for 10 min at room temperature. The uppermost 

layer, containing the rAd, was removed to a fresh tube. PBS (10 ml) was added to the 

remaining solvent and the extraction step was repeated. Stocks of rAd were stored at -80
0
C 

until purification using CsCl density gradients. 

2.8.4 Purification of recombinant adenovirus on CsCl density gradients 

 Freeze-thawing and extraction by Arklone P is a crude method of adenovirus 

extraction and stocks can be contaminated with empty viral capsids and cellular proteins 

which may have cytotoxic effects in vitro and in vivo. rAd stocks however, can be purified 

and concentrated efficiently by simple centrifugation on CsCl density gradients. First, 2 ml 

of CsCl with a density of 1.45 was pipetted into Ultra-Clear centrifuge tubes (Beckman 

Coulter (UK) Ltd., Buckinghamshire, UK) before addition of a second layer of 3 ml CsCl 

with a density of 1.32. A third layer of 2 ml of 40% glycerol was carefully added before 

addition of the crude rAd supernatant. The tubes were then placed into a Sorvall® 

Discovery™ 90 rotor container, inserted into a rotor (RPS4OT-859) and centrifuged at 

25,000 rpm for 1.5 h at 40C. After centrifugation, a clear band of virus was visible which 

was situated at the interface of the 1.45 and 1.32 density bands. The virus-containing band 

was removed by piercing the tube immediately below the virus band with a 22 gauge 

needle and 1.5 ml syringe and drawn off in a minimal volume. The rAd preparation was 

then inserted into a Slide-A-Lyzer® dialysis cassette (MW cut off 10,000; Perbio Science 

UK Ltd., Northumberland, UK) and dialysed overnight against 2 L of 0.01 M Tris pH 

8/0.001 M EDTA. The dialysis solution was replaced with fresh 0.01 M Tris pH 8/0.001 M 

EDTA and supplemented with 10% glycerol then the rAd preparation was dialysed against 

this solution for 2 h. Stocks of rAd were aliquoted and stored at -80
0
C. 
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2.8.5 Titration of recombinant adenovirus by end-point dilution 

Following purification on CsCl gradients, rAd was titered by serial dilution on HEK 

293 cells. HEK 293 cells were seeded at 1 x 10
4
 cells per well into 96-well plates (8 rows of 

10; Corning) and incubated at 37
0
C in 5% CO2. After 24 h, when 50-60% confluence was 

achieved, serial dilutions (10
-2

-10
-11

) of CsCl-purified rAd were prepared and the medium 

in each well was replaced by 100 µl of appropriate adenoviral dilution or medium alone, as 

described in Figure 2.6. Following incubation at 37
0
C in 5% CO2 for 16-18 h, the medium 

in each well was replaced again with 200 µl fresh medium and the medium was then 

changed every 2 days for a total of 8 days. 

 After 8 days, the plates were examined under a microscope and the number of wells 

containing plaques, reflecting a cytopathic effect, were counted, and denoted as ‘positive’. 

A plaque appears when “grape-like” clusters of cells round up and detach from the cell 

monolayer (407). The row in which less than 50% of the wells were positive (example 

Figure 2.9; row E) and the row immediately above that row, in which more than 50% were 

positive (example Figure 2.9; row D), were used to calculate the titer of the adenovirus. The 

titer was calculated in pfu/ml using the following calculation (408). 

  

The proportionate distance =   % positive above 50% - 50                

    % positive above 50% - % positive below 50% 

and log ID50 (infectivity dose) =  

  lowest log dilution above 50% + (proportionate distance x -1) 

where ‘% positive below 50%’ is the percentage of plaque-containing wells in the row in 

which less than 50% of the wells were positive and  ‘% positive above 50%’ represents the 

percentage of plaque-containing wells in the row immediately above that row, in which 

greater than 50% of the wells were positive. 
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For example, if titration gives:-  @ 10
-4

 all wells positive [10/10] 

      @ 10-6 [10/10] 

      @ 10
-7

 [10/10] 

      @ 10
-8

 [9/10] 

     @ 10
-9

 [3/10] 

     @ 10
-10

 [0/10] 

     @ 10-11 [0/10] 

  

The proportionate distance =  90-50 = 0.67 

      90-30 

  

log ID50 = -8 + (0.67 x -1) = -8.67 

ID50 = 10
-8.67 

TCID50 (tissue culture infectivity dose 50) =   1 

       10-8.67

TCID50/100 µl = 10
8.67 

x dilution factor (=10) 

TCID50/ml = 109.67 � 4.67 x 109 TCID50/ml 

However, 1 TCID50 ~ 0.7 pfu 

Therefore, final titer = 3.3 x 10
9
 pfu/ml 

 The cells and medium from 3 wells at the highest dilution of Ad that had a visible 

cytopathic effect i.e. had visible plaques or EGFP expression if Ad was EGFP-containing, 

were harvested and stored at -80
0
C. Stocks could then be used to seed further adenovirus 

preparations. 

2.8.6 Adenoviral transduction of hCAR and hCAR�cyt.DO11.10 cells 

PLN and MLN were harvested from BALB/c, hCAR Tg or hCAR�cyt.DO11.10 

double Tg mice and single cell suspensions were generated as described in section 2.3.1. 

Live cells were counted by trypan blue exclusion and plated out at ~ 1 x 10
5
/well in 

DMEM/10 nM Hepes in 96-well plates. Cells were infected with Ad5.CMV.GFP at 
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multiplicities of infection (MOI) ranging from 0-1000 and then cultured for 1 or 3 h at 37
0
C 

in 5% CO2. The MOI is the ratio defined by the number of infectious virus particles 

deposited in a well divided by the number of target cells present in that well. The following 

calculation was used to determine the quantity of Ad to add to each well. 

MOI x number cells/well

Titre of Ad (pfu/ml) 

 For example:  1000 x (8 x 10
4
)        = 2.87 x 10

-3
 = 0.287 µl neat Ad/well 

      2.786 x 1010 

To wash excess virus out of the culture, samples were centrifuged at 450 g for 5 min 

and re-suspended in 100 µl sterile PBS per well, before being centrifuged again. Cells were 

then re-suspended in 200 µl sterile CRPMI/well, immediately transferred into fresh plates 

and incubated for a further 24 h before being harvested and stained for CD4 expression and 

viability with propidium iodide (PI). Stained cells were analysed by flow cytometry to 

assess the percentage of live CD4
+
 T cells that were successfully transduced with GFP 

(Figure 3.15). 

2.9 Statistical Analysis 

 Results are expressed as mean ± SD or mean + range. To test significance, 

Student’s unpaired t test was performed on normally distributed data with p values of 

*�0.05, **<0.01, ***<0.001 with p�0.05 being regarded as significant. 
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Figure 2.1 Analysis of antigen-specific CD4
+
 T cells from DO11.10 Tg mice by Flow 

Cytometry. First, lymphocytes were distinguished via their forward scatter (FSC; size) and 

side scatter (SSC; granularity) properties (A; R1). Unstained lymphocytes are shown in B. 

PE-conjugated anti-CD4 was used to identify CD4
+
 T cells (C) and biotinylated-KJ1.26 

plus SA-FITC were used to stain the Ag-specific T cell population (D). KJ1.26
+
 CD4

+
 T 

cells were discriminated by setting appropriate gates on isotype controls, mouse IgG2a (C) 

and rat IgG2a (D) for KJ1.26 and anti-CD4, respectively. Sample plots are shown where 

the populations of Tg CD4
+
 KJ1.26

+
 T cells from an unimmunised mouse (E) and a mouse 

primed with OVA323-339/LPS i.v. (F) were analysed. 
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Figure 2.2 Tyramide signal amplification. Tyramide signal amplification (TSA™) is an 

enzyme-based system for high density labelling of target proteins. Streptavidin-Horse 

radish peroxidase (HRP; A) or primary Ab-HRP (B) conjugates were used to detect the 

target protein. Next, biotin- (A) or fluorescent-labelled (B) tyramide (Tyr) was added and 

the HRP catalysed the deposition of multiple fluorescent or biotin labels in the immediate 

vicinity of the target protein. The biotin labels were subsequently detected by fluorescent-

labelled streptavidin (SA; A). Both methods of TSA result in enhanced detection of the 

protein of interest.  
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Figure 2.3 Detection of cells by Laser Scanning Cytometry (LSC). Cells are identified 

by LSC using a series of contours (A). The threshold contour is set on the nuclear stain. 

The integration contour is set an optimal number of pixels out from the threshold contour, a 

value which is based on the size of the cell, to allow definition of the edge of the cell (Pixel 

size is 0.5µm x 0.5µm). The inner peripheral contour is set one pixel out from the threshold 

contour and the outer peripheral contour is set one pixel in from the integration contour, 

allowing definition of the periphery of the cell. A cell is discriminated if it emits nuclear 

fluorescence above a threshold value set by the user (B). A high threshold detects mainly 

individual events, whilst an intermediate threshold may detect two or more cells as one 

event and a low threshold will detect multiple cells as one event. 
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Figure 2.4 Analysis of signalling in antigen specific CD4
+
 T cells by Laser Scanning 

Cytometry (LSC). The threshold contour (A; red contour) was used to detect all nucleated 

cells by their staining with DAPI (A; white arrows). Fluorescently-labelled KJ1.26 within 

the integration contour (A; green contour) was measured, thus allowing the antigen-specific 

(KJ1.26
+
) Tg T cells to be identified (B; green arrows), and the signalling, pERK or Rap1, 

in the antigen-specific T cell population was assessed using anti-pERK or anti-Rap1 Abs 

respectively (C; orange). Two background contours (A; blue contours) measured the 

background fluorescence outside the cells and this value was automatically subtracted from 

the measured fluorescence values. Positive staining for KJ1.26 and pERK or Rap1 was 

gated relative to isotype controls (D, E). 
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Figure 2.5 In situ analysis of signalling in antigen specific CD4
+
 T cells by Laser 

Scanning Cytometry (LSC). Tissue sections were stained for antigen-specific Tg T cells 

(KJ1.26; red), pERK or Rap1 (anti-pERK or anti-Rap1; blue) and B cells (B220; green) 

(A). LSC detected antigen-specific T cells using standard contours (yellow contours; A, C) 

and measured the levels of pERK or Rap1 inside these cells (D). B cell rich areas were 

identified using phantom contours (B, E) and tissue maps depicting the location of pERK- 

or Rap1-expressing antigen-specific Tg T cells within the lymph node with respect to B cell 

follicles and the paracortex (F). Mouse IgG2a, Rabbit IgG and Rat IgG2aκ isotype controls 

were used to set gates of positive staining for KJ1.26, pERK or Rap1 and B220, 

respectively. Numbers and statistics on these cells in both types of area within the lymph 

node can be quantified. 
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Figure 2.6 pEGFP-N1 plasmid map. pEGFP-N1 encodes a red-shifted mutant of wild-

type GFP and so offers more intense fluorescence and expression in mammalian cells 

compared to wild-type GFP. This plasmid also harbours a neomycin-resistance cassette 

(Neo
r
) which contains the SV40 early promoter, the neomycin/kanamycin resistance gene 

Tn5 and polyadenylation signals supplied by the Herpes simplex virus thymidine kinase 

(HSV-TK) gene. This cassette enables selection of stably transfected eukaryotic cells using 

the antibiotic G418. The presence of a pUC origin of replication in pEGFP-N1 allows 

propagation of this plasmid in E.coli and a bacterial promoter encoded upstream of the Neo
r

cassette elicits resistance to the antibiotic kanamycin when pEGFP-N1 is propagated in 

E.coli. Vector map is courtesy of Clontech.
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Figure 2.7 Assessment of pEGFP-N1 authenticity. The pEGFP-N1 plasmid underwent a 

double digest with restriction enzymes to assess its authenticity. The plasmid was cut once 

near the start of the GFP codon (661), with BamH1 and again, near end of GFP stop codon 

(1402), with Not1 for 1 h 20 min at 37
0
C before quantitative analysis (as described in 

Section 2.7.3) on an agarose gel (1% (w/v) agarose in TAE buffer with ethidium bromide). 

The excised DNA (GFP fragment) appeared as expected in alignment with the 750 bp 

marker on the 1 kb DNA ladder.
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Figure 2.8 pcDNA3.1 plasmid map. pcDNA3.1 was used as a non GFP-encoding control 

plasmid for transfections described in this chapter. This plasmid contains a human 

cytomegalovirus (CMV) promoter which permits high level expression of the gene of 

interest. It has multiple cloning sites in forward or reverse orientation. pcDNA3.1 also 

harbours a neomycin resistance (Neo
r
) gene which allows stable transfection of mammalian 

cells using the antibiotic G418. Expression of the Neo
r
 gene is controlled by the SV40 early 

promoter and the SV40 early polyadenylation signal. The presence of a pUC origin of 

replication allows replication and growth in E. Coli and the ampicillin resistance gene 

enables selection of the plasmid in E. Coli. Vector map is courtesy of Invitrogen.
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Figure 2.9 Identification of plaques in adenovirally infected cultures. Serial dilutions 

(10-2-10-11) of CsCl-purified Ad stock were prepared and added to HEK 293 cells, 

previously seeded into 96-well plates. After 8 days, the plates were examined under a 

microscope and the number of wells containing plaques was counted, and denoted as 

‘positive’ (wells containing X). The row in which less than 50% of the wells were positive 

(row E; dilution 10
-9

) and the row immediately above that row, in which more than 50% 

were positive (row D; dilution 10-8), were used to calculate the titer of the adenovirus. 
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Table 2.1 Antibodies used for flow or laser scanning cytometry. 
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Table 2.2 Fluorescence spectra and LSC laser/filter set-up information on labels used 

for laser scanning cytometry. 
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Chapter 3 

Development of technologies for examining T cell signalling in situ
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Introduction  

Current flow cytometric technology allows quantitative assessment of surface and 

intracellularly expressed molecules on isolated cells. However, the need to disrupt tissues 

prevents correlation of phenotypic expression with anatomical location. In contrast, 

immunohistochemistry in conjunction with conventional or confocal microscopy allows 

localisation of staining, but little in the way of quantitation. Laser Scanning Cytometry 

(LSC) allows a combination of both approaches, as it can apply quantitative flow 

cytometric laser technology to intact tissue. 

These studies aimed to establish this technology as an effective tool for examining 

immunological responses in situ and ultimately to quantify signalling molecule expression 

and activation within antigen-specific T cells following induction of T cell tolerance and 

priming in vivo. This is because although, there is considerable interest in examining the 

intracellular signalling events which may control immune responses (318, 336), current 

analysis relies on techniques such as Western Blotting which identify activated signalling 

elements in protein extracts (409). There are a number of limitations of these methods: for 

example, considerable numbers of T cells are required and the signalling molecules cannot 

be quantified in individual cells. Furthermore, as Western blotting often dictates use of 

heterogeneous samples of cells, any differences observed may not be representative of the 

particular cell type of interest. As a result, small changes that are confined to antigen-

specific cells in particular environmental niches, that may be of functional relevance, 

cannot be detected. By harnessing the sensitivity of flow cytometry, LSC not only allows 

the level of signalling molecules to be quantified, but can also be used to identify them in 

individual cells and in distinct tissue microenvironments (12). 

In addition, LSC can identify the subcellular localisation of signalling molecules 

more easily than traditional subcellular fractionation and Western blotting allows. Although 

some of these aspects have been studied previously using flow cytometry i.e. analysis of 

antigen–specific transgenic (Tg) T cells isolated from lymphoid tissues ex vivo (383, 410), 

this does not allow subcellular localisation of molecules or intact tissues and anatomical 

relationships to be examined. Here, the adoptive transfer of trackable T cell receptor (TcR) 

Tg T cells (378) and the development of methods which allow efficient collection of 

quantitative data on the kinetics, amplitude and location of signalling within antigen-

specific Tg T cells (12, 392), which can be related to the functional status of the cells, has 



83

allowed the application of LSC technology to the study of signalling events in antigen–

specific CD4+ T cells in situ (411). 

A common way to modulate gene expression in a cell is by transfecting the cells 

with wild type, dominant negative or constitutively active constructs of the gene of interest. 

Transfection is often effected by electroporation, where an electric charge is passed over 

the cells, porating the cell membrane thus allowing the plasmid construct to enter the cell 

where it travels to the nucleus and integrates into the cellular DNA. Unfortunately, this 

process routinely results in a high cell death rate. Primary quiescent cells are notoriously 

difficult to transfect and for a long time only cell lines were successfully transfected. The 

advent of the Amaxa Nucleofector™ technology has provided some advances, as this 

system offers a non-viral way to transfect primary cells as well as difficult-to-transfect cell 

lines. Moreover, the cells do not need to be proliferating to be transfected. However, this 

process of transfection activates the cells and so responses in naïve T cells can not be 

examined using this system. Also, when this project was being carried out, this technique 

had not been optimised for murine T cells thus it was not possible to take advantage of this 

technology at the time. 

 Viral transduction offers another method of gene delivery into primary cells. In 

particular, infection with retroviruses has been favoured as a means of gene delivery into 

lymphocytes (412-414) but this technique has a number of limitations. It requires cell cycle 

progression of the cellular host to allow viral genome integration (415), the integration site 

of viral genome is variable, it has limiting efficiency in that not all of the target population 

is transduced and detectable vector expression can be dramatically reduced over time (>1 

month after transfer) in vivo (416-418). Also, retroviruses have a small maximum insert 

size (7-7.5 kb max), thus limiting the size of exogenous genes that can be packaged. 

Adenoviruses have been shown to infect a wide range of cell types and offer a 

number of advantages over retroviruses in that they can infect both dividing and non-

dividing cells (419, 420), thus allowing naïve cell responses to be examined. The vectors 

have a larger maximum insert size (~30 kb) and high titer stocks are easily generated (421).

In addition, adenoviral transduction results in the entire cellular population being 

genetically modified. However, lymphocytes are not usually susceptible to adenoviral 

transduction due to inefficient binding to the cell surface and internalisation (422-424).

Very low expression levels of the adenoviral fiber protein receptor (425, 426) together with 

limiting levels of αv-containing integrins (425) on the T cell appear to be the reasons 
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underlying the inability of adenoviruses to enter T cells. The adenoviral fiber protein 

receptor, CAR (coxsackie and adenovirus receptor) has been cloned (427-429) and 

expression of CAR in numerous lymphocyte cell lines confers full susceptibility to 

adenovirus transduction (430). In addition, as this transduction does not require the 

cytoplasmic domain of CAR, which constitutes about one third of the protein size (431), 

spatial restrictions within hCAR-expressing lymphocytes are minimised (430). Recently, 

Hurez et al generated three new murine Tg lines in which thymocytes and lymphocytes 

express human CAR (hCAR) with a truncated cytoplasmic domain (hCAR∆cyt) under 

direction of a CD2 mini gene (402). They also generated a double Tg hCAR∆cyt.DO11.10 

line and demonstrated efficient gene transfer of resting and effector antigen-specific CD4
+

T cells without perturbing their development (402).

Given that all of the studies conducted during the course of this project utilised 

DO11.10 TcR Tg mice, with such a system in place, the mechanisms underlying the 

signalling differences in T cell tolerance and priming could be investigated. 

Aims 

• To establish and validate laser scanning cytometry (LSC) detection of cell surface 

markers and intracellular signalling molecules in individual cells. 

• To quantitate signalling in antigen-specific T cells in vitro and in situ by LSC. 

• To correlate signalling with functional parameters of T cells by LSC 

• To establish a suitable gene delivery system with which to dissect the mechanisms 

underlying the signalling differences observed in T cell tolerance and priming. 
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Results: Development of technologies for examining signalling in situ

3.1. Establishing LSC as a tool for analysing immune responses 

To establish if cell surface markers and intracellular molecules could be examined 

in antigen-specific T cells using LSC, the functional responses of such cells to different 

stimuli were examined. A state of anergy or priming was induced in naïve Ag-specific TcR 

Tg T cells as described in Section 2.4.2. Subsequently, naïve, anergic or primed Ag-specific 

TcR Tg T cells were stimulated with DC alone (DC) or DC loaded with OVA323-339 (DC + 

Ag) for 20 h before being harvested and analysed by flow cytometry, Western Blotting or 

LSC as described in Sections 2.3.6, 2.4.6 or 2.6 respectively, and Tables 2.1 and 2.2.

3.1.1. Validation of LSC analysis of functional status and signalling in vitro 

3.1.1.1. Identification of antigen-specific T cells by LSC 

Initially, it was investigated whether LSC was capable of efficiently distinguishing 

Ag-specific T cells from other cell types in a mixed population. Thus, naïve cells 

containing Ag-specific T cells were cultured with DC loaded with OVA323-339 for 20 h and 

then cytocentrifuged onto slides before being stained with DAPI, to detect all nucleated 

cells in the sample, and KJ1.26 (or its isotype control) to identify the TcR Tg T cells within 

the population. These cells were then analysed by LSC (Figure 2.4). All cells were detected 

via their nuclear staining (Figure 2.4A) and the Ag-specific T cells were readily identified 

by positive staining with anti-KJ1.26 Ab, which recognises their Tg TcR (Figure 2.4B), 

using a series of contours as described in Section 2.6. A suitable analysis gate to distinguish 

the Ag-specific T cells was set using isotype control data (Figure 2.4D). Such analysis 

indicates that LSC is indeed an efficient method with which to detect Ag-specific T cells 

within a mixed population of cells. 

3.1.1.2. Activation status of antigen-specific T cells by LSC 

  Next, it was investigated whether LSC could detect changes in immunologically 

relevant molecules, in T cells, with the same sensitivity and reproducibility as a standard 

flow cytometer. Thus, the expression of CD69, a glycoprotein upregulated and detectable 

on the surface of antigen-specific T cells within 1 hour of TcR ligation (432-434), and 
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which is still measurable 20 h after stimulation, was examined. To do this, naïve Ag-

specific T cells that had been stimulated with DC alone or DC loaded with OVA323-339 for 

20 h, were stained with CD4, KJ1.26 and CD69 Abs for analysis by flow cytometry or with 

DAPI and KJ1.26 and CD69 Abs for analysis by LSC. Conventional flow cytometry 

showed that CD69 expression was markedly increased, as expected, in CD4
+
 Ag-specific T 

cells stimulated with OVA323-339–loaded DC (76.4 % expressed CD69 compared to 4.8 % 

for T cells stimulated with DC alone; Fig. 3.1A, B, F). Similarly, an increase in the 

proportion of antigen-stimulated cells expressing CD69 (52 % compared with 15 % for un-

stimulated cells) was also observed when the samples were assessed by LSC (Fig. 3.1C-F). 

These data confirm that LSC is capable of detecting a similar trend in CD69 expression in 

these samples as that measured by flow cytometry.  

3.1.1.3. Analysis of cell cycle and apoptosis by LSC 

The up-regulation of CD69 expression observed in the CD4
+
 T cells, which had 

been stimulated with their specific Ag in the context of MHC II, indicated that these cells 

had been activated. Therefore, it was hypothesised that they would be progressing through 

cell cycle and hence the cell cycle status of these cells was analysed to test this hypothesis. 

LSC has previously been shown to be a useful tool for assessing the cell cycle status of 

cells (12, 435-437), as it has the ability to both determine the DNA content of cells using 

stoichiometric fluorescent DNA–specific dyes and measure the DNA concentration 

utilising the Max Pixel detection parameter. By contrast, flow cytometry is unable to 

measure DNA concentration in such a manner and so, for example, cells at G2 cannot be 

readily distinguished from those in mitosis, using this technology. In order to establish this 

type of LSC analysis for Ag-specific T cells, naïve T cells were treated with anti-CD3 + 

anti-CD28 Abs to induce priming and then re-stimulated with OVA323-339-loaded DC for 20 

h, as described in Section 2.4.3. The cells were then stained with DAPI to identify their 

nuclei and analysed by LSC (Figure 3.2). 

By plotting Max Pixel (value of most highly fluorescent pixel within the cell) versus 

Integral (sum of all fluorescence within the cell) values of DAPI staining, a plot can be 

generated depicting the different stages of cell cycle (Figures 3.2 and 3.3A). This is because 

an increase in DAPI Max Pixel reflects an increase in chromatin concentration within the 

cell, thus allowing mitotic cells (green gate), which contain more concentrated chromatin 

(438, 439), to be distinguished from those cells in S phase (blue gate). Similarly, an 
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increase in DAPI Integral reflects an increase in the total DNA content within the cell and 

so cells in G2/M (4n DNA) can be distinguished from those in G0/G1 (2n DNA; black gate). 

Newly formed daughter cells (ND; pink gate) have the same DNA content (Integral) as 

cells in G0/G1 but they still have more concentrated chromatin and so have a higher Max 

Pixel value. Apoptotic cells (red gate) bind less DAPI as they have fragmented DNA and 

contain apoptotic bodies, and as such can be readily distinguished from the cells in G0/G1. 

When cells are scanned by LSC the cytometer records the precise x- and y-position 

of every event detected thus allowing these cells/events to be re-located to at a later date for 

the purpose of viewing and image capture. The re-location feature of LSC allowed cells at 

different stages of cell cycle to be directly imaged (Figures 3.2 and 3.3A). This imaging 

confirmed that the cells in separate gates on the scattergram were morphologically 

consistent with the corresponding stage of cell cycle. Apoptotic cells did not look cellular 

and appeared as collections of small apoptotic bodies (Figure 3.3A) with less bright and 

disorganised DNA staining (Figure 3.2). Cells in G0/G1 were fairly small (Figure 3.2 and 

3.3A), consistent with them being in a resting state, whereas cells in S phase appeared to be 

almost double the size of the cells in G0/G1 (Figure 3.2 and 3.3A). This was not surprising 

due to cell growth and replication of DNA in preparation for mitosis. Indeed, mitotic cells 

were of a similar size to the cells in S phase but they were morphologically distinct in that 

the instigation of nuclear division was visually apparent (Figure 3.2). New daughter cells 

appeared as small cells with intense DAPI staining, reflecting the fact that their DNA was 

still temporarily condensed (Figure 3.2 and 3.3A). With this type of LSC analysis 

established, the cell cycle status of immunologically relevant samples could be assessed. 

T cells are known to progress through cell cycle and proliferate when they are 

stimulated with Ag in the presence of co-stimulation (440). In order to assess the cell cycle 

status of Ag-specific T cells in response to stimulation with Ag by LSC, naïve Tg TcR T 

cells were cultured with OVA323-339–loaded DC for 20 h before being stained with DAPI 

and anti-TcR Tg (KJ1.26) Ab, to distinguish the antigen-specific TcR Tg T cells. The 

percentage of antigen-specific T cells in each stage of cell cycle was then quantitated by 

LSC (Figure 3.3A, B). The highest proportion of TcR Tg T cells (52 %) were in G0/G1 but 

as expected, a large proportion (39 %) of the cells had progressed to S phase (Figure 3.3B). 

However, at this time following antigenic stimulation, there was little mitosis and few new 

daughter cells being produced, results consistent with previously published analysis by 

flow cytometry (441). 
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3.1.1.4. Further analysis of apoptosis by LSC 

In addition to their distinctive DNA staining profile, apoptotic cells can also be 

identified by labelling the sites at which DNA fragmentation occurs. Internucleosomal 

DNA cleavage (fragmentation) was first identified in glucocorticoid-treated rat thymocytes 

(442) and is now recognised as a marker for apoptosis. The fragments of DNA, each 180-

200 base pairs in length, have 3’-hydroxyl ends which can serve as starting points for 

terminal deoxynucleotidyl transferase (TdT), which adds deoxyribonucleotides. Addition of 

the deoxythymidine analogue, 5-bromo-2’-deoxyuridine 5’-triphosphate (BrdUTP) to the 

TdT reaction serves to label the break sites. Once incorporated into the DNA, BrdU can be 

detected by an Alexa Fluor® 488-labelled anti-BrdU Ab. This method of labelling DNA 

strand breaks is known as terminal deoxynucleotide transferase dUTP nick end labelling 

(TUNEL). TUNEL is a well established method of detecting apoptotic cells by LSC (393-

395) and this technique was therefore established in order to expand the range of LSC 

analyses of Ag-specific T cell responses. 

Thus, anergy or priming was induced in Ag-specific Tg TcR T cells by treatment 

with anti-CD3 ± anti-CD28, as described in section 2.4.2, and the anergic and primed T 

cells were re-stimulated with DC loaded with OVA323-339 for 1 h, prior to staining with 

DAPI, anti-KJ1.26 and TUNEL. Positive and negative control human lymphoma cell lines 

supplied with the TUNEL kit were also stained and all samples were analysed by LSC 

(Figure 3.4 and Table 3.1). As expected, the positive control cells had much greater 

TUNEL staining, indicating a higher level of apoptosis, compared to the negative control 

cells (Figure 3.4A, B and Table 3.1). More apoptosis, as indicated by an increased 

percentage of cells staining positive for TUNEL as well a higher level of TUNEL 

expression (MFI), was also observed in the anergic compared with primed Ag-specific T 

cells that had been re-stimulated with Ag (Figure 3.4C, D and Table 3.1). These results 

were anticipated, as anergic cells are known to exhibit increased apoptosis compared to 

primed cells upon re-stimulation with Ag (49). The presence of more apoptotic cells, as 

evidenced by the presence of green fluorescence, in the positive control sample and the 

anergic T cells was confirmed by re-locating to these cells using LSC and imaging them 

(Figure 3.4B, C). 
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3.1.1.5. Detection of signalling molecules in Ag-specific T cells by LSC 

 Having established LSC as an efficient technique for assessing the functional status 

of Ag-specific T cells, the ability of LSC to quantify intracellular signals, that would

usually be assessed by biochemical techniques, was next examined. The signalling 

molecule ERK MAPKinase was selected for study here as it is known to be important for 

many aspects of T cell biology including IL-2 production, cell cycle progression and 

proliferation (317, 443, 444). Moreover, its activation status is readily detected by specific 

Abs which recognise the dually phosphorylated form of ERK (pERK) and detection of 

ERK and pERK has been well established for Western Blotting and flow cytometry (445-

447). Analysis of signalling by Western Blotting was thus conducted to validate the type of 

data generated by LSC (Figure 3.5A). Naïve Ag-specific T cells were cultured with DC 

alone (-) or DC loaded with OVA323-339 (+) for 1, 3, 6 and 20 h before whole cell lysates 

were prepared for analysis of ERK activation by Western Blotting. At all timepoints 

examined, the level of ERK activation (pERK) was greater in the samples that had been 

stimulated with Ag compared to those cultured with DC alone (Figure 3.5A), this 

difference being most striking at 6 h. By contrast, the level of ERK activation decreased 

over time in the un-stimulated samples with pERK being barely detectable at 20 h. It must 

be noted that the ERK levels detected by Western Blotting are representative of ERK 

signalling in all of the cell types in the cultures and cannot be specifically attributed to the 

Ag-specific T cells. 

Cells harvested at 20 h were also stained with DAPI and KJ1.26- and pERK-

specific Abs, to measure the levels of activated ERK (pERK) in individual Ag-specific T 

cells by LSC (Figure 3.5B). Profiles of pERK signalling in Ag-specific T cells cultured 

with DC alone (DC) or DC loaded with OVA323-339 (DC + Ag) are shown in Figure 3.5B. 

Here, an increase in the level of pERK expression was also observed in the Ag-stimulated 

cells compared with the un-stimulated cells (Figure 3.5B). However, the variation in pERK 

expression observed was specifically representative of the levels of ERK activation in 

individual Ag-specific T cells. Nevertheless, when the level of ERK activation was 

quantitated by LSC, the proportion of Ag-specific T cells expressing pERK (C) as well as 

the level of pERK expression (MFI; D) was found to be markedly increased in the Ag-

stimulated population as a whole. 
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3.1.1.6. Detection of signalling in individual T cells throughout the cell cycle 

The ability of LSC to assess the cell cycle status of Ag-stimulated, Ag-specific T 

cells was evidenced in Section 3.1.1.4 and efficient detection of intracellular signalling in 

Ag-specific T cells by LSC was demonstrated in Section 3.1.1.5. Thus, it seemed pertinent 

to next develop analysis of signalling in individual Ag-specific T cells at different stages of 

cell cycle by LSC. As described in Section 1.1.2.2, a T cell must experience both peptide in 

the context of MHC and co-stimulation via CD28 for it to become fully activated and 

undergo proliferation. Moreover, co-stimulation is known to directly regulate T cell entry 

into cell cycle and progression through the G1 phase in an IL-2-independent manner by 

downregulating the CDK inhibitor, p27
kip1

, which results in the activation of CDKs (448). 

Further progression into S phase is regulated by both IL-2-dependent and –independent 

mechanisms (448-451), evidenced by the fact that even in the absence of IL-2, some cells 

manage to proceed into S phase (448). Active cdc2/CDK2 is required for progression 

through cell cycle beyond the G1 phase, as it is likely to be responsible for the 

hyperphosphorylation of Rb and hence, subsequent S phase entry (452, 453).

Thus, in order to correlate signal expression with functional outcome (i.e. cell cycle 

status), anergic and primed Ag-specific T cells were re-stimulated with DC loaded with 

OVA323-339 for 1 h before being stained with DAPI and KJ1.26- and p-cdc2/p-CDK2-

specific Abs for analysis of p-cdc2/p-CDK2 expression in TcR Tg T cells by LSC (Figure 

3.6). In this case, the relationship between p-cdc2/p-CDK2 and transit through S phase was 

examined. This type of analysis enables observation of the range of intensities of p-cdc2/p-

CDK2 expression in individual anergic and primed Ag-specific T cells at different stages of 

cell cycle (Figure 3.6A). LSC also allows quantitation of this data, thus, the percentage of 

Ag-specific T cells per stage of cell cycle expressing p-cdc2/p-CDK2 can be calculated 

(Figure 3.6B) and the level at which this signal is expressed in individual Ag-specific T 

cells in different cell cycle stages can be measured (Figure 3.6C). Expression of p-cdc2/p-

CDK2 (inactive cdc2/CDK2) was expected to be higher in the anergic compared to primed 

T cells, as active cdc2/CDK2 is required for progression through cell cycle beyond the G1

phase (258). Indeed, a greater proportion of the anergic compared to primed T cells in S 

phase were found to be expressing p-cdc2/p-CDK2 even at this early timepoint (36 % 

compared to 23 %; Figure 3.6B). However, rather surprisingly, the anergic T cells were 

found to be expressing it at a much lower level than the primed T cells in this phase of the 

cell cycle (Figure 3.6C). The low level of p-cdc2/p-CDK2 expression in those cells 
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suggests that they might progress through cell cycle thus, perhaps at this early timepoint 

such anergic cells had already passed the G1 restriction point at the time of challenge with 

Ag but would not be able to progress to S phase after they had transited through to G1

again. It should be noted that such cells are very low in number (Figure 3.6A). Thus, 

alternatively, those cells may be Ag-specific T cells in the anergic population which had 

themselves escaped anergy induction. As there is no definitive marker for anergy, it cannot 

be determined as to whether 100 % of the T cells in an anergic population have in fact been 

anergised. 

3.1.1.7. Subcellular localisation of pERK signals in primed Ag-specific TcR Tg T cells 

Another powerful feature of LSC technology is its capability to quantitate 

expression of intracellularly-expressed molceules in distinct subcellular locations. To 

enable this type of data acquisition, peripheral contours, in addition to the standard 

threshold and integration contours routinely used for LSC analysis, are required. The first 

peripheral contour was placed one pixel (one pixel = 0.5µm (x-axis) and 0.5µm (y-axis) for 

40x objective) out from the threshold contour and the second peripheral contour placed one 

pixel inside the integration contour thus delineating the peripheral area of the cell, external 

to the nucleus (Figure 3.7A. ii). Data collected from within these peripheral contours can 

then be expressed as the peripheral fluorescence integral on a histogram (Figure 3.7A. iii). 

The levels of non-peripheral pERK expression can also therefore be generated by 

subtracting the peripheral fluorescence values from the total fluorescence values (Table 

3.2). Such non-peripheral fluorescence values are not definitive, but can provide an 

indication of the level of signal expressed in areas distinct from the periphery of the cell, 

such as the nucleus.

To demonstrate this analysis, primed Ag-specific TcR Tg T cells were cultured with 

DC alone or DC loaded with OVA323-339 for 20 h before being stained with DAPI and 

KJ1.26- and pERK-specific Abs. Subsequently, total, peripheral and non-peripheral levels 

of pERK expression in these Ag-specific T cells were quantitated by LSC (Figure 3.7B. ii, 

iii, v & vi, & Table 3.2). The proportion of cells expressing pERK increased following re-

stimulation with Ag (Figure 3.7B. v cf. ii). Moreover, a greater proportion of these cells 

expressed pERK in their periphery upon re-stimulation with Ag (Figure 3.7B. vi). As 

shown in Table 3.2, pERK is detected in all parts of primed TcR Tg T cells which are 

cultured with DC alone and the levels of total, peripheral and non-peripheral pERK 
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expression were increased when these primed T cells were re-stimulated with OVA323-339-

loaded DC, indicating that T cells which receive a second signal though their TcR, via the 

MHC:peptide complex on the DC, express pERK at a higher level in all areas of the cell. 

Using the re-location feature of LSC, representative images of primed antigen-

specific T cells expressing pERK were captured (Figure 3.7C). Morphological examination 

showed a diffuse pattern of staining of the TcR and pERK all over the cells when they were 

cultured with DC alone (Figure 3.7C (DC)), whereas both molecules appear more punctate 

and accumulate in discrete locations near the cell surface in T cells that were re-stimulated 

with OVA323-339-loaded DC (Figure 3.7C (DC+Ag)). The intensity of pERK staining in the 

cells which were incubated with DC alone was much lower than that in T cells re-

stimulated with OVA323-339-loaded-DC and so the pERK image shown in Figure 3.7C (DC) 

was over-exposed to show the distribution of the signal more clearly. This ability of LSC to 

reveal differences in the subcellular localisation of signalling molecules adds to its portfolio 

as these differences cannot be inextricably linked to corresponding quantitative data by 

standard techniques such as confocal microscopy or subcellular fractionation.

3.1.1.8. Quantitation of focused intracellular pERK staining in anergic and primed Ag-

specific TcR Tg T cells 

 In addition to its ability to detect and measure the expression of immunological 

molecules in distinct subcellular locations, LSC has a probe spot counting feature, denoted 

Fluorescence in situ hybridisation (FISH) spot analysis in the LSC software package, which 

enables detection and measurement of fluorescent ‘spots’ (FISH spots) within the threshold 

contour boundary. Individual FISH spots are detected using secondary contours which are 

set, inside the threshold contour, to detect the fluorescent parameter of interest (Figure 3.8 

A & B). FISH is a cytogenetic technique first developed for the detection of nucleic acid 

targets in situ, in Drosophila melanogaster (454). The nucleic acid target is detected via 

hybridisation of a complementary sequence, fluorescent dye-labelled nucleic acid ‘probe’ 

to the sample. Upon completion of hybridisation, the hybridised fluorescent probe spots can 

be visualised under a fluorescence microscope (455, 456) and quantitated by LSC (457, 

458). Until now, the FISH spot analysis feature of LSC has primarily been used for 

chromosomal studies (459-461) with one group adapting this attribute for the phenotypic 

and functional analysis of individual clones from a human breast cancer cell line (462). 

These FISH spot analyses were designed to detect FISH spot fluorescence within the 
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nucleus hence, the nuclei were fluorescently stained in these studies and the threshold 

contour was set to detect the nuclear stain. By setting the threshold contour to detect the 

fluorescence emitted from a fluorescently-labelled cell surface marker (in this case, an Ag-

specific Tg TcR), it was possible to develop FISH spot analysis for topographic 

examination of signalling molecule expression within Ag-specific T cells (Figure 3.8). 

For example, anergic and primed Ag-specific TcR Tg T cells were cultured with 

DC alone or DC loaded with OVA323-339 for 1 h prior to being stained with KJ1.26- and 

pERK-specific Abs, as described in Section 2.5.1 for LSC FISH spot analysis, as follows. 

The threshold contour was set to detect Ag-specific (KJ1.26
+
) T cells via their 

fluorescently-labelled Tg TcR and secondary contours, demarcating FISH spots, were set to 

detect ‘spots’ of pERK fluorescence within the threshold contour boundary. The cells were 

then analysed by LSC and the number of pERK+ FISH spots per Ag-specific T cell, as well 

as the pERK FISH Integral (total fluorescence emitted by all FISH spots in one cell) was 

quantitated (Figure 3.8). Overall, a higher percentage of primed compared to anergic Ag-

specific T cells contained multiple pERK
+
 FISH spots per cell (Figure 3.8A, B & D). 

Moreover, the proportion of both anergic and primed T cells containing multiple pERK
+

FISH spots increased upon re-stimulation with Ag and this increase was greater in the 

primed compared to anergic T cell population. In addition, the primed T cells which had 

been re-stimulated with Ag, exhibited the highest pERK FISH Integral value compared to 

the other samples (Figure 3.8C), which was not surprising as these cells possessed the 

highest number of pERK
+
 FISH spots. 

3.1.2 Translation of LSC analysis to cells in tissue in situ 

Once LSC had been established as a suitable tool for analysing Ag-specific T cell 

responses in vitro it seemed pertinent to develop this technology to detect these parameters 

in a more physiological setting namely, in Ag-specific T cells in situ.  

3.1.2.1 Tracking antigen-specific T cells in situ 

In order to establish detection of Ag-specific T cells in situ, BALB/c recipients were 

immunised s.c. with OVA (100 µg) in 100 µl PBS/50% CFA 24 h after adoptive transfer of 

Ag-specific TcR Tg (KJ1.26
+
) T cells and inguinal lymph nodes were harvested and 

sectioned 3 days after immunisation. Sections were stained for expression of KJ1.26, in 

order to detect the Ag-specific T cell population, and analysed by LSC. Previously, analysis 
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of cells in tissue sections has been accomplished by contouring on nuclei, but this method 

of detecting cells in situ is not ideal as not all of the nucleated cells constituting a tissue 

section can be identified individually due to the mathematical restrictions placed on the 

setting of separate contours on closely situated individual cells. The adoptive transfer 

system, described in Section 2.3.3, overcomes these issues as it generates an even 

distribution of antigen-specific TcR Tg cells throughout the thymus-dependent area (TDA) 

of the lymph node, which can be readily distinguished from the endogenous T cells. The 

threshold contour was set to detect the fluorescence emitted from the KJ1.26-labelled T 

cells (Figure 2.5A) thus, the Ag-specific T cell population in situ was identified by LSC 

(Figure 2.5C) and the number of Ag-specific (KJ1.26
+
) T cells per section was quantitated 

by LSC (Figure 2.5C). Similar to analysis of Ag-specific T cells in vitro, isotype controls 

were used to set gates denoting KJ1.26+ staining in these tissue sections, thus enabling 

identification of the Ag-specific T cells. As these data show, LSC is indeed capable of 

detecting and quantitating the number of Ag-specific T cells in situ.  

3.1.2.2 Measuring cell division of antigen-specific Tg T cells by LSC 

Having demonstrated the ability of LSC to detect clonal expansion in LNs, the 

differences in numbers of cell divisions in vivo using 5-(and-6)-carboxyfluorescein 

diacetate, succinimidyl ester (5(6)-CFDA SE (CFSE) was determined within normal tissue 

architecture, in order to determine whether such clonal expansion was due to proliferation 

(463, 464). CFSE permeates cellular membranes and binds spontaneously and permanently 

to free amine groups of cellular proteins whereupon it segregates equally between daughter 

cells during mitosis. This results in the sequential halving of fluorescence intensity in 

progeny cells and so the number of cell divisions that a cell has undergone can be measured 

by flow cytometry (463-466). 

To do this, BALB/c recipients were immunised s.c. with OVA (100 µg) in 100 µl 

PBS/50% CFA 24 h after adoptive transfer of CFSE-labelled (labelling described in 

Section 2.3.2) antigen-specific Tg TcR (KJ1.26
+
) T cells and inguinal lymph nodes were 

harvested and sectioned on days 3 and 5 after immunisation. Sections were stained with 

anti-TcR Tg Ab (KJ1.26), as described in Section 2.5.2, to identify the antigen-specific T 

cells and CFSE expression levels in these cells were imaged (Figure 3.9A) and quantitated 

by LSC (Figure 3.9B, C). Imaging revealed varying levels of CFSE expression by antigen-

specific (KJ1.26
+
) T cells in immunised sections (Figure 3.9A). LSC analysis showed that 
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these cells had undergone much more cell division at day 5 (69 % had undergone 6 or 7 

divisions) than at day 3 (49 % had undergone 6 or 7 divisions; Fig. 3.9B, C and Table 3.4). 

To validate such LSC data, cell division, as indicated by differential CFSE expression, in 

these cells was also assessed on day 5 after immunisation, by flow cytometry. A similar 

profile of CFSE expression was observed using LSC and flow cytometry, with the majority 

of the cells having undergone 5 or more divisions in both cases (Figure 3.9C versus E). As 

expected, very little cell division was observed in the unimmunised sample (Figure 3.9D). 

These data demonstrate the validity and advantage of using LSC to examine cell division in 

this manner, as LSC is capable of detecting different levels of CFSE expression in antigen-

specific T cells in situ. 

   

3.1.2.3 Detection and quantitation of pERK-expressing Ag–specific Tg T cells situated in 

different anatomical locations by LSC 

Having established that LSC could detect Ag-specific T cells in situ and assess their 

cell division status therein, the intracellular signalling profile of these Ag-specific T cells in 

situ was examined. Thus, BALB/c recipients were immunised s.c. with OVA (100 µg) in 

100 µl PBS/50% CFA 24 h after adoptive transfer of antigen-specific Tg TcR (KJ1.26
+
) T 

cells (described in Section 2.3.3) and inguinal lymph nodes were harvested and sectioned 

on day 3 after immunisation. Sections were stained with KJ1.26 and anti-pERK Abs, as 

described in Section 2.5.2, for the identification of the antigen-specific T cells and 

measurement of pERK expression levels in these cells by LSC. Ag-specific T cells were 

identified as described in Sections 2.6.3 and 3.1.2.1 and the percentage of Ag-specific T 

cells expressing pERK (58 %) as well as the level of pERK expression (MFI; 253511) in 

these cells was quantitated by LSC (Figure 3.10Aiii.). To assess Ag-specific T cell 

signalling in distinct anatomical locations within the lymph node, the ‘tissue mapping’ 

facility of LSC was exploited. Thus, tissue sections from the experiment described above 

were stained with a B220-specific Ab, to detect B cells, in addition to the KJ1.26- and 

pERK-specific Abs. In order to identify the densely packed B cell follicles, phantom 

contours were applied as described in Section 2.6.3 and Figure 2.5. The ability of LSC to 

generate tissue maps (described in Figure 2.5) depicting the location of B cell follicles 

(Figure 3.10B) and thus highlighting the paracortical region, enabled the quantitation of 

antigen-specific T cells in different anatomical locations within the lymph node (Figure 
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3.10A. ii). Moreover, the number of antigen-specific Tg T cells expressing the intracellular 

signalling molecule pERK, in these different locations, was also assessed (Figure 3.10A. iv 

and B. iii). 

To quantitate these data, gates were placed onto follicular and paracortical regions 

of the tissue map (Figure 3.11A) and consequently statistics representative of these regions 

were calculated (Figure 3.11C). This analysis confirmed the visual microscopic assessment 

that a greater proportion of Ag-specific Tg T cells were present in the paracortical 

compared to follicular region of the lymph node (Figure 3.11C). Moreover, a higher 

percentage (93 % versus 7 %) of the Ag-specific Tg T cells expressing pERK were situated 

in the paracortical compared to follicular regions. However, when the level of pERK 

expression in Ag-specific T cells situated in the follicles and paracortex was measured, 

these T cells expressed a similar amount of pERK, irrespective of their location within the 

lymph node (Figure 3.11C). As mentioned previously, the re-location feature of LSC can be 

used for image capture of cells in regions of interest on a histogram or scatter plot. This 

facility is also available for tissue maps and a follicle of interest was imaged in this manner, 

to demonstrate this type of analysis (Figure 3.11B). 

3.2. Development of methods for genetically modulating signals implicated in driving 

tolerance and priming 

 The above mentioned techniques allow correlation of signalling with functional 

parameters. To demonstrate causal relationships, methods with which to causally dissect 

the mechanisms underlying the signalling differences observed in T cell tolerance and 

priming in situ, were required. Therefore, a number of genetic techniques were considered 

and both transfection (via electroporation) and transduction (adenoviral) of primary and 

hybridoma Ag-specific T cells were assessed.  

3.2.1. Transfection of DO11.10 hybridoma cells 

 Firstly, DO11.10 hybridoma cells were used in order to optimise transfection 

techniques before studies on primary DO11.10 T cells commenced. In order to establish 

whether DO11.10 hybridoma cells could be transfected successfully, such cells were 

electroporated with 10 or 20 µg of either pEGFP-N1 or pcDNA3.1 at 960 µF and 280 V 

and cultured for 24 h before being viewed using a fluorescence microscope. pEGFP-N1 

was used simply to express EGFP in these cells (i.e. as a transfection marker) and 
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pcDNA3.1 was used as a control vector (i.e. lacking EGFP). As predicted, transfection with 

the control plasmid, pcDNA3.1, resulted in no green fluorescence in the cells at either 

concentration (Figure 3.12A, C) whereas, GFP-expressing cells were visible in the 

populations transfected with the pEGFP-N1 plasmid (Figure 3.12B, D). Moreover, 

transfection with 20 µg DNA appeared to generate a higher proportion of GFP+ cells 

(Figure 3.12D). A range of electroporation conditions were then examined for the pEGFP-

N1 plasmid to determine the optimal transfection conditions for DO11.10 hybridoma cells 

(Figure 3.12E). It was clear that optimal transfection efficiency (28 %) was achieved for the 

pEGFP-N1 plasmid under electroporation conditions of 960 µF and 280 V. However, it 

would have been preferred if this transfection rate was higher. 

3.2.2. Attempted transfection of primary DO11.10 Tg T cells 

 Many mechanistic studies have generated information on the role of specific genes 

expressed in T cells. However, much of this work has involved the transfection of tumour 

cell lines or cell clones and as such may not be representative of the events which occur in 

primary T cells. For example, one report describes how the transcriptional processes that 

lead to production of IL-2 differ between Jurkat cells and primary human T cells (467). 

Some groups have successfully transfected primary T cells, but only after proliferative 

stimulation with IL-2 and PMA (468) or concanavalinA (ConA) (469) suggesting that 

naïve T cells cannot be transfected or analysed in this way. Nevertheless, other protocols, 

using sub-optimal concentrations of T cell stimuli, have been reported to be successful for 

transfecting primary naïve T cells without activating them, as indicated by IL-2 expression 

levels (467, 470). 

In order to develop a system that could be applied to naive cells which could then be 

transferred to an in vivo model, transfection of primary antigen-specific T cells from 

DO11.10 Tg mice using one of the latter protocols described by Chrivia et al (470) and 

optimised by Cron et al (471) was attempted. Briefly, single cell suspensions were 

generated from PLN and MLN harvested from DO11.10 Tg mice and the CD4
+
 T cells 

were purified. CD4
+
 T cells were then rested or stimulated with anti-CD3 in the absence or 

presence of anti-CD28, to induce anergy or priming respectively, for 48 h before addition 

of 10 µg/ml ConA and further incubation for 20 h. Cells were then centrifuged and re-

suspended in electroporation media prior to electroporation with pcDNA3.1 or pEGFP-N1. 
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Following electroporation, the cells were transferred to fresh media and rested for 2 h with 

periodic agitation before being stimulated with PMA and ionomycin for 7 h. After this 

time, the cells were viewed under a fluorescence microscope, at regular intervals, to check 

for green fluorescence which would indicate EGFP expression in the electroporated cells. 

Unfortunately, although this protocol was repeated numerous times with a number 

of modifications, transfection of primary T cells was unsuccessful, as evidenced by no 

green fluorescence in these cells following the transfection procedure hence, it was 

necessary to develop another method for the genetic modification of primary T cells. 

3.2.3. Establishment of hCAR Tg and hCAR∆cyt.DO11.10 double Tg murine lines 

Transduction offers a viral method of gene delivery into cells and adenovirus-

mediated transduction has been demonstrated in naïve and effector primary T cells from 

hCAR∆cyt mice whose thymocytes and lymphocytes express the human 

coxsackie/adenovirus receptor (hCAR) on their cell surface. In order to confirm that the 

hCAR Tg colony that was imported did in fact express hCAR on the surface of their T 

lymphocytes, a sample of their peripheral blood was taken, fluorescently stained for hCAR 

and CD4 expression and analysed by flow cytometry as described in Section 2.3.6. 

Lymphocytes were identified on the basis of their known size (forward scatter) and 

granularity (side scatter; Figure 3.13A) and this lymphocyte population (R1) was 

subsequently analysed for expression of both hCAR and CD4 (Figure 3.13B). It was found 

that all CD4+ lymphocytes also expressed hCAR indicating that these mice carry the Tg 

receptor, hCAR, on their CD4
+
 T cells. 

The hCAR∆cyt Tg mice were then crossed with DO11.10 Tg mice in order to 

generate an antigen-specific T cell system with which to study adenovirally delivered genes 

of interest. To confirm whether the offspring of such cross-breeding did indeed express 

both hCAR and DO11.10 Tg receptors on their T lymphocytes, peripheral blood was 

harvested from the first filial (F1) generations and fluorescently stained for expression of 

hCAR, CD4 and the DO11.10 Tg TcR (as detected by the monoclonal Ab KJ1.26) and 

analysed by flow cytometry (Figure 3.13C-E). Again, lymphocytes were identified 

according to their size and granularity (Figure 3.13C) and the co-expression of CD4 and 

KJ1.26 on the lymphocytes was assessed (Figure 3.13D). This CD4
+
 KJ1.26

+
 T cell 

population was subsequently examined for expression of hCAR and it was observed that 
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100% of CD4
+
 KJ1.26

+
 T cells in these hCAR∆cyt.DO11.10 Tg mice express hCAR 

(Figure 3.13E). 

3.2.4. Transduction of primary antigen-specific, hCAR bearing, Tg T cells 

With the murine hCAR∆cyt and hCAR∆cyt.DO11.10 Tg lines established, some 

preliminary transduction experiments were performed. PLN were harvested from hCAR Tg 

mice and single cell suspensions were prepared, as described in Section 2.3.1. hCAR PLN 

cells were then infected with adenovirus (Ad5.CMV.GFP) for 1 or 3 h at a variety of 

multiplicities of infection (MOI) before excess Ad was washed off and the cells were 

subsequently incubated for 24 h with media alone, anti-CD3 alone or anti-CD3 + anti-

CD28 to generate naïve, anergic or primed populations, respectively. The cells were then 

viewed under a fluorescence microscope to check for green fluorescence and hence GFP 

expression. Exemplar images of anergic and primed cells which had been successfully 

transfected with Ad.CMV.GFP at an MOI of 100 for 3 h are shown (Figure 3.14). 

All cells were subsequently stained for CD4 expression and with propidium iodide 

(PI) to assess viability prior to Flow Cytometric analysis (Figure 3.15). Again, lymphocytes 

were identified on the basis of their known size (forward scatter) and granularity (side 

scatter; Figure 3.15A) and this lymphocyte population (R1) was subsequently analysed for 

viable cells (PI negative; R2; Figure 3.15B). Although infection with the adenoviral vector 

caused some cell death, a considerable proportion of the lymphocytes remained viable. 

These live lymphocytes were then examined for expression of CD4 (Figure 3.15C) and the 

level of GFP expression in these CD4
+
 T cells was assessed (Figure 3.15D). Exemplar 

scattergrams are shown for uninfected (MOI: 0) and infected (MOI: 100) naïve, anergic and 

primed hCAR PLN cells. 

Analysis of the CD4
+
 population showed that whilst mock infection (MOI 0) 

resulted in no GFP-expressing CD4+ cells, infection under conditions of no stimulation 

(naïve), anergy or priming resulted in >80% of CD4
+
 T cells expressing GFP, with the 

brightest and highest proportion of GFP-expressing CD4
+
 cells observed under conditions 

of priming (91.12%). In order to optimise the transduction efficiency in this system, a range 

of MOI’s (0-1000) and two infection times (1 and 3 h), were assessed as described above 

(Figure 3.16). At both infection times the optimal MOI was found to be 100 and the 
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transduction efficiency at this MOI appeared slightly improved if the infection time was 3 h 

(Figure 3.16B). 

Collectively, these data show that it is possible to infect naïve and activated primary 

hCAR Tg T cells with adenoviral constructs and moreover, indicate that transduction of 

hCAR∆cyt.DO11.10 double Tg T cells with mutant signalling elements under conditions of 

tolerance and priming will likely be successful. 
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Discussion 

The signalling mechanisms underlying lymphocyte effector function have 

traditionally been examined using standard biochemical techniques such as Western 

Blotting, and whilst such analysis has generated a plethora of information for this field of 

immunology, there are several limitations to using this approach. Such analysis requires a 

considerable amount of sample and this has previously been achieved using immortalised 

cell lines/clones (88, 326, 472) or large populations of purified cells, subsequently exposed 

to polyclonal stimulation (473). However, due to the nature of these samples, the data 

acquired does not necessarily reflect the responses of physiological frequencies of 

individual antigen-specific cells within their environmental niche within primary or 

secondary lymphoid tissue. Moreover, such data represents the average response of all of 

the cells in the sample population at any one time and hence does not provide any 

information on the differential kinetics, amplitude or subcellular localisation of signals 

generated by functionally distinct subgroups within the population. 

Technologies for examining signalling in individual cells  

Flow cytometry enables rapid assessment of intracellular signalling in distinct 

cellular sub-populations and these signalling data can be related to the functional status of 

the cells, in terms of activation status (CD69 expression), proliferation (CFSE expression) 

and cytokine production. However, flow cytometry is incapable of elucidating the 

subcellular localisation of such signalling molecules and cannot assess the phenotypic or 

functional characteristics of any cell type in its natural tissue microenvironment. With the 

advent of LSC technology, investigation of such parameters is now possible. 

LSC essentially marries the quantitative capabilities of flow cytometric analysis of 

cells in suspension with the ability to analyse spatially the fluorescence of large numbers of 

individual cells, either in suspension or in tissue in a slide-based format. Although LSC and 

flow cytometry should be viewed and used as complementary quantitative technologies, 

LSC has the potential to provide a quantum leap in the analysis of immune function, due to 

the wide range of novel applications that it offers. Such applications include the detection 

and quantitation of immunological molecules in distinct subcellular locations. Indeed, LSC 

has been exploited here to analyse the proportion of Ag-specific T cells expressing the 

signalling molecule, pERK, and the levels of such ERK activation (pERK expression) in 

discrete subcellular locations such as the cell periphery, have been quantitated.
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LSC also offers advantages over other similar technologies such as confocal 

scanning laser microscopy (CSLM), which has also been used to analyse the subcellular 

localisation of pERK in cells and sections of mouse lung tissue (474). For example, 

although CSLM offers the possibility of quantitation of cells and molecules when linked to 

image analysis software, it has many drawbacks when compared to LSC. Thus, whilst 

CSLM provides detailed structural analysis, this is limited to a small number of cells due to 

optical characteristics that only allow analyses of fluorescence emitted in close proximity to 

the focal plane. By contrast, LSC utililises a collimated laser beam which permits 

quantitation of all fluorescence emitted from every cell in the slide-based sample. 

Additionally, data collection by CSLM or fluorescence image analysis (FIA) can be very 

slow due to the enormous image files stored, as standard, during data acquisition. 

Consequently, it can take many hours to obtain the information from one tissue section, 

which LSC could collect in approximately five minutes. Moreover, both technologies 

require large amounts of computer memory to store the data generated, as individual data 

files can reach >1 GB in size compared to ~1-2 MB for LSC. 

The relocation feature of LSC (475-477) which allows cells or a region of tissue of 

interest to be relocated to for further analysis, enables qualitative captured images to be 

indisputably linked to quantitative data. This attribute of LSC enables, for example, 

authentication of the scattergram analysis gates, used for the segregation of cells into 

different stages of cell cycle, by morphological assessment of cells collected in such gates. 

Detection and quantitation of signalling in situ by LSC

Previously, analysis of tissue sections by LSC has been achieved by contouring on 

nuclei, involving repeat scans of the same area of tissue at different threshold levels, 

followed by merging all single threshold level data files into one file (478). While this 

method allows acquisition of data from limited numbers of individual cells within a tissue 

section, there are a few disadvantages. It does not detect all the cells and there is no 

guarantee that cells will not be counted more than once. Application of the adoptive 

transfer of Ag-specific T cells bearing Tg TcR eliminates these problems, as the antigen-

specific TcR Tg cells are distributed sparsely throughout the thymus-dependent area (TDA) 

of the lymph node, and those cells can be distinguished readily from the endogenous T 

cells, using standard contours to detect staining of the Tg TcR. 
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In contrast, phantom contours were employed to locate the follicular regions of the 

lymph node as the individual B cells in the follicles were too densely packed together for 

discrimination by standard contours. Although the data collected using phantom contours 

were not directly representative of individual cells, they were representative of the whole 

section, in that the data were derived from cells expressing all levels of fluorescence. As 

such, the data derived from B cell-containing phantom contours was used to identify the B 

cell-rich follicular areas of the lymph node. Locating B cell follicles and Ag-specific Tg T 

cells in discrete compartments of the lymph node allows different aspects of Ag–specific T 

cell behaviour to be assessed directly and correlated with the anatomical localisation of the 

T cells. Such approaches could also be employed to assess the anatomical location of cells 

expressing particular cytokines, chemokines or costimulatory molecules involved in e.g. T 

– APC cell interactions (392, 479, 480). 

Standard contours have an advantage over phantom contours in that they can 

generate data that are directly representative of individual cells in tissue. They have been 

used previously at high threshold levels, contouring on the nucleus in tissue sections, in an 

attempt to discriminate individual cells (481). However, this method only collects data from 

the nuclear compartment of the cell and also may omit a substantial proportion of the cells 

in the tissue, as it detects only those cells with a very high nuclear staining signal. If a high 

threshold level like this had been used to detect the Ag-specific Tg T cells in our work, we 

would have been unable to quantify the total amount of pERK expressed on a per cell basis. 

Thus we have successfully established LSC as a method for detecting T cell surface 

markers and intracellular signalling molecules in vitro and in situ. The ability of LSC to 

link quantitative and qualitative data with anatomical localisation indicates its potential as a 

powerful tool for analysing immune responses at the cellular and molecular level in situ. 

Methods for genetically modifying target proteins and molecules 

The data described above enabled correlation of signalling with functional 

responses. Thus, in order to demonstrate causal relationships, methods with which to 

causally investigate the mechanisms underlying the signalling differences observed in 

tolerance and priming, were required. A variety of techniques are available with which to 

modulate gene expression within the cell. For instance knockout (KO) mice offer the 

chance to examine immune responses in the absence of specific genes. These mice have 

both alleles of the particular gene of interest replaced with an inactive allele and this is 
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usually achieved through homologous recombination. However, many KO mice are 

embryonic lethal and the lines are labour intensive to produce and maintain. In addition, 

removing one gene from the genetic repertoire may have unforseen effects on numerous 

pathways within the body and as such, indirect effects may influence or skew the results of 

studies on the pathway of interest. Reporter transgenic mice allow the expression of one 

gene to be tracked and studied through its fusion or bicistronic conjugation to a fluorescent 

marker e.g. green fluorescent protein (GFP) but again, these mice are labour intensive to 

produce and maintain. Another technology, utitlising small interfering RNAs (siRNAs), 

provides a more attractive alterative to using KO or reporter mice as it specifically knocks 

down the mRNA and subsequently the protein level of the targeted gene. This would have 

been a good technique to use for this project as it has now been shown to be successful for 

murine primary T cells (482) but, at the time the work described here was undertaken, there 

was limited evidence for its use in vivo. Also, the major drawback of this technology is the 

need to design, synthesise and test several siRNAs before an effective siRNA is identified.  

Transfection offers another method of genetic modulation and is often effected by 

electroporation, a process which in itself results in a high level of cell death in the 

transfected cell population. Mutant (e.g. dominant negative, constitutively active) signalling 

molecules can be introduced into cells in this manner. Initial studies transfecting DO11.10 

hybridoma cells were successful (28 % transfection rate) but unfortunately this technique 

was not transferable to primary T cells. Although Nucleofector™ technology is now 

available for murine T cells, the transfection efficiency is never greater than 50 %, viability 

after transfection is only up to 35 % and transfection still results in activation of the cells 

thus precluding analysis of naïve cell responses. Moreover, no publications have arisen 

using this technology for murine T cells at this time.  

 The generation of murine transgenic lines in which expression of the human 

coxsackie/adenovirus receptor with a truncated cytoplasmic domain is limited to T cells 

expressing a Tg TCR (hCAR�cyt.DO11.10) has enabled efficient gene transfer of resting 

(naïve) and effector antigen-specific CD4
+
 T cells without perturbing their development, 

migration, activation status or functional responses (402, 419). hCAR�cyt and 

hCAR�cyt.DO11.10 Tg murine lines have now been established in our facility and this 

study has demonstrated successful transduction of naïve, anergic and primed CD4
+
 and T 

cells from these mice with GFP containing adenoviral vectors. In addition, this data 

suggested that by varying the MOI of bicistronic-GFP vectors used, it will be possible to 
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analyse the effect of no, low and high expression of particular signalling elements within a 

single population of cells. Indeed, others have shown that an increase in MOI correlates 

with an increase in GFP expression in islet cells transduced with an adenoviral vector 

(483). 

 Whilst it must be noted that genetic modulation by adenoviral transduction is 

unlikely to be of use in a clinical setting, as there is likely to be pre-existing immunity to 

adenoviruses in the human population in the form of antibodies to adenoviruses from 

previous infection with the naturally occurring virus, hCAR�cyt.DO11.10 Tg mice most 

certainly provide excellent opportunities for research. In conclusion, transduction of 

hCAR�cyt.DO11.10 CD4
+
 T cells with appropriate adenoviral constructs and functional 

analyses of such transduced Ag-specific T cells by LSC, will aid in the dissection of the 

mechanisms underlying the differences in T cell signalling observed in tolerance compared 

to priming.
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Figure 3.1 Analysis of CD69 expression on antigen-specific T cells by flow cytometry 

and LSC. Naïve antigen-specific Tg TcR T cells were incubated with DC alone (DC; open 

bars) or DC loaded with OVA323-339 (DC + Ag; closed bars) for 20 h before being stained 

with CD4, KJ1.26 and CD69 Abs for analysis by flow cytometry (FC; A, B, F) or with 

DAPI and KJ1.26 and CD69 Abs for analysis by LSC (C-F). The level of CD69 expression 

in Ag-specific T cells was assessed by both techniques and these data were compared (F). 

Isotype controls for anti-CD69 were used to set gates denoting positive CD69 expression 

for FC (A, B; M2) and LSC (C).
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Figure 3.2 Analysis of cell cycle progression by LSC. To establish suitable gates for 

identifying each stage of cell cycle, primed cells (see Section 2.11) which had been 

incubated with LPS-matured, OVA323-339-loaded DC for 20 h cells were cytocentrifuged 

onto slides and their nuclei were stained with DAPI before the cell cycle status of 1000 

DAPI stained cells was assessed by LSC. A scattergram displaying Max Pixel (value of 

most highly fluorescent pixel within the cell) versus Integral (sum of all fluorescence 

within the cell) values of DAPI staining, on which the different stages of cell cycle can be 

defined, is shown. An increase in DAPI Max Pixel reflects an increase in chromatin 

concentration within the cell, thus allowing mitotic cells (green gate), which contain more 

condensed chromatin, to be distinguished from those cells in S phase (blue gate). Similarly, 

an increase in DAPI Integral reflects an increase in the total DNA content within the cell 

and so cells in G2/M (4n DNA) can be distinguished from those in G0/G1 (2n DNA; black 

gate). Newly formed daughter cells (ND; pink gate) have similar DNA content (Integral) as 

cells in G0/G1 but they still have more condensed chromatin and so have a higher Max Pixel 

value. Apoptotic cells (red gate) bind less DAPI as they have fragmented DNA and contain 

apoptotic bodies, and as such can be readily distinguished from the cells in G0/G1. 

Representative images of cells in each stage of the cell cycle were captured using the re-

location feature of LSC and are shown here. 
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Figure 3.3 Analysis of cell cycle progression of antigen-specific Tg T cells following 

stimulation with antigen pulsed APC by LSC. Naïve cells were stimulated with LPS-

matured, OVA323-339-loaded DC for 20 h and then cytocentrifuged onto slides before being 

stained with DAPI to identify the nucleus and KJ1.26 to discriminate the antigen-specific T 

cells. The cell cycle status of 500 antigen-specific T cells was assessed by LSC. The Max 

Pixel value (depicting chromatin condensation) was plotted along the x-axis and the 

Integral value (representing DNA content) along the y-axis of the scattergram (A). The 

percentages of antigen-specific TcR Tg (KJ1.26
+
) T cells within the different stages of the 

cell cycle (G0/G1: black gate, S phase: blue gate, new daughter cells (ND): pink gate) and 

those undergoing apoptosis (AP; red gate) were quantitated by LSC (B), and representative 

images of antigen-specific Tg TcR cells in G0/G1, S phase and ND of the cell cycle and 

those undergoing apoptosis are also shown (A). 
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Figure 3.4 TUNEL analysis by LSC. Negative (A) and positive (B) control cells, supplied 

with the TUNEL kit, were stained with DAPI and TUNEL-Alexa Fluor® 488. 

Alternatively, anergic (C) and primed (D) Ag-specific T cells were re-stimulated with 

OVA323-339–loaded DC for 1 h, before being cytocentrifuged onto slides and stained with 

DAPI, anti-KJ1.26 and TUNEL-Alexa Fluor® 488. All cells were analysed by LSC to 

assess the level of apoptosis, as indicated by TUNEL expression. The proportion of cells 

exhibiting TUNEL expression and the level of TUNEL expression was quantitated (E). 

TUNEL-expressing cells were discriminated by setting an appropriate gate on the negative 

control cells. Representative images of the cells in each sample, captured using the re-

location feature of LSC, are shown (A-D). 
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Figure 3.5 Analysis of ERK1/2 activation by Western Blotting and LSC. Naive 

populations were stimulated with LPS matured DC alone (-) or DC loaded with OVA323-339

(+) for 1, 3, 6 and 20 h. The activation levels of ERK1/2 (pERK1/2) and total ERK1/2 

levels in whole cell lysates of each population were measured at each timepoint using 

Western Blot analysis (A). Cells were also cytocentrifuged, 20 h after culture with DC 

alone (DC; B:purple line) or DC loaded with OVA323-339 (DC + Ag; B:red line), and stained 

with DAPI and KJ1.26 and pERK Abs as described in Section 2.4.1. Subsequently, the 

antigen-specific T cells were analysed for pERK expression by LSC, as described in section 

2.6.2 (B). The proportion of Ag-specific T cells expressing pERK (C) and the level of 

pERK expression in these cells (D) was quantitated. These data are representative of at 

least three independent experiments. 
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Figure 3.6 Assessment of Ag-specific T cell signalling throughout cell cycle. Anergic 

(open bars) and primed (closed bars) Ag-specific T cells were re-stimulated with LPS-

matured, OVA323-339–loaded DC for 1 h before being stained with DAPI and KJ1.26 and p-

cdc2/p-CDK2-specific Abs for analysis by LSC. The expression profile of p-cdc2/p-CDK2 

in 250 Ag-specific (KJ1.26
+
) T cells, at different stages of cell cycle, was assessed in both 

populations by LSC (A) and both the percentage of KJ1.26
+
 T cells per stage that were 

expressing p-cdc2/p-CDK2 (B), and the level at which p-cdc2/p-CDK2 was expressed in 

these cells (C) were quantitated by LSC.  
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Figure 3.7 Detection of pERK in antigen-specific Tg T cells by LSC. Primed Ag-

specific TcR Tg T cells were cultured with DC alone (DC) or DC loaded with OVA323-339 

(DC + Ag) for 20 h before being stained with DAPI and KJ1.26 and pERK Abs. An 

example three-colour image of an Ag-stimulated T cell is shown (A. i) with threshold (red), 

integration (green) and peripheral contours (yellow) applied (A. ii). The data collected from 

within the peripheral contours can be expressed as peripheral fluorescence integral (A. iii) 

and the total (B. ii. & v.) and peripheral (B. iii. & vi.) expression of pERK in the Ag-

specific T cells (B. i. & iv) were determined. Subcellular localisation of pERK in these cells 

was further assessed visually by image capture using the re-location feature of LSC. 

Representative images of Ag-specific Tg T cells, showing the nucleus (blue), KJ1.26
+
 Tg 

TcR (red) and pERK (green) together with a merged image are shown (C). The levels of 

total, peripheral and non-peripheral pERK expression (fluorescence) in each population 

were quantitated by LSC (D). 
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Figure 3.8 Quantitation of intracellular pools of signal by LSC (FISH). Anergic and 

primed Ag-specific TcR Tg T cells were cultured with DC alone (DC; open bars) or DC 

loaded with OVA323-339 (DC + Ag; closed bars) for 1 h prior to being stained with KJ1.26 

and anti-pERK Abs, as described in Section 2.5.1, for analysis by LSC. LSC FISH spot 

analysis was set up as follows. The threshold contour (A, B; red contour) was set to detect 

Ag-specific (KJ1.26
+
) T cells via their fluorescently-labelled Tg TcR and secondary 

contours (A, B; white), demarcating FISH spots, were set to detect ‘spots’ of pERK 

fluorescence within the threshold contour boundary. Integration (green) and background 

(blue) contours are also depicted. The cells were then analysed by LSC and the number of 

pERK
+
 FISH spots per Ag-specific T cell, as well as the pERK FISH Integral (C; total 

fluorescence emitted by all FISH spots in one cell) was quantitated (D). Exemplar 

histograms depicting the number of pERK+ FISH spots per cell for samples re-stimulated 

with Ag are shown (A, B). 
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Figure 3.9 Measuring cell division of Ag-specific Tg T cells following antigen 

stimulation in situ. BALB/c recipients were immunised s.c. with OVA (100 µg; A-C, E, F) 

in 100 µl PBS/50% CFA 24 h after adoptive transfer of CFSE-labelled Ag-specific Tg TcR 

(KJ1.26
+
) T cells and inguinal lymph nodes (PLN) were harvested and sectioned on days 3 

and 5 after immunisation. Sections were stained with anti-KJ1.26, as described in Section 

2.5.2, and exemplar colour images of a tissue section harvested at day 3 following 

immunisation, showing KJ1.26
+
 T cells (red) and CFSE-labelled cells (green) are shown 

(A). The CFSE expression levels in this Ag-specific T cell population were measured by 

LSC in order to assess the number of cell divisions they had undergone 3 (B, F) and 5 (C, 

F) days following immunisation. Alternatively, on day 5 after immunisation, inguinal 

lymph nodes were harvested from unimmunised (D) and immunised (E) mice and the 

CFSE expression in Ag-specific CD4
+
 T cells was assessed by flow cytometry. Control 

mice (unimmunised) were injected s.c. with 100 µl PBS.
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Figure 3.10 Detection of pERK expression by antigen-specific T cells in different 

anatomical areas of the lymph node in situ by LSC. BALB/c recipients were immunised 

s.c. with OVA (100 µg) in 100 µl PBS/50% CFA 24 h after adoptive transfer of antigen-

specific Tg TcR (KJ1.26
+
) T cells (described in Section 2.3.3) and inguinal lymph nodes 

were harvested and sectioned on day 3 after immunisation. Sections were stained with 

B220, KJ1.26 and pERK-specific Abs, as described in Section 2.5.2, for the identification 

of the B cell rich follicles, antigen-specific T cells and measurement of pERK expression 

levels in the antigen-specific T cells by LSC. Ag-specific T cells were identified (A. i) and 

the percentage of Ag-specific T cells expressing pERK (A. iii.; 58 %) as well as the level of 

pERK expression (A. iii.; MFI; 253511) in these cells was quantitated by LSC. Tissue maps 

showing the location of antigen-specific Tg T cells (A. ii) which express pERK (A. iv; B. 

iii) and B cell follicles (B) are also shown.  
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Figure 3.11 Quantitation of pERK expression by antigen-specific T cells in different 

anatomical areas of the lymph node by LSC. A tissue map depicting the location of 

pERK-expressing antigen-specific T cells in relation to B cell follicles was generated, as 

described in Figures 2.5 and 3.10. Gates were set upon follicular (-) and paracortical (-) 

regions (A) and the number of antigen-specific T cells and pERK-expressing antigen-

specific T cells as well as pERK MFI in pERK-expressing Ag-specific T cells, situated in 

each type of area was calculated (C). The re-location feature of LSC was used to capture an 

image of a follicle of interest (B; selected from the tissue map). 
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Figure 3.12 Optimisation of transfection conditions for DO11.10 hybridoma cells. 

DO11.10 hybridoma cells were electroporated with 10 (A, B) or 20 µg (C, D) of pcDNA3.1 

(control vector) or pEFGP-N1 at 960 µF and 280 V then cultured for 24 h before being 

viewed on a fluorescence microscope to check for presence of green fluorescence (GFP) in 

the cells. GFP
+
 cells were only observed in the populations transfected with the pEGFP-N1 

plasmid (B, D) and a higher transfection rate was achieved when the higher concentration 

of DNA was used (D). DO11.10 hybridoma cells were also electroporated with 10 (open 

bars) or 20 µg (closed bars) pEGFP-N1 under a range of electroporation conditions to 

determine optimal transfection efficency. Cells were rested in culture for 24 h before 

treatment with Lympholyte®-M to remove the dead cells. Viable cells were then assessed 

for GFP expression by Flow Cytometry (E). The optimal transfection efficiency was 

observed using 10 µg DNA and electroporation conditions of 960 µF and 280 V. 
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Figure 3.13 Generation of hCAR∆∆∆∆cyt.DO11.10 mice and testing for hCAR and 

DO11.10 TcR Tg expression. In order to visualise the human coxsackie/adenovirus 

receptor (hCAR) on founder line CD4+ T cells, lymph node cultures from hCAR∆cyt mice 

were stained with antibodies specific for CD4 (PE) and hCAR (FITC) and analysed by flow 

cytometry (A). Lymphocytes were identified on the basis of size and granularity (A; R1) 

and this population was subsequently analysed for co-expression of CD4 and hCAR (B). 

20,000 events in R1 were collected using a FACScan and analysed with CellQuest 

software. These data confirmed that the CD4
+
 T cells isolated from hCAR∆cyt mice did 

indeed express hCAR. hCAR∆cyt mice were then crossed with DO11.10 Tg mice and the 

first filial (F1) generations were screened for dual expression of hCAR and the Tg TcR by 

flow cytometry (C-E). Again, lymphocytes were identified on the basis of size and 

granularity (C; R1) and this population was subsequently analysed for co-expression of 

CD4 (PerCP) and KJ1.26 (PE; D). CD4
+
 KJ1.26

+
 T cells were then examined for 

expression of hCAR (FITC) and these data show that 100 % of CD4
+
 KJ1.26

+
 T cells also 

expressed hCAR indicating that the cross-breeding procedure was successful. 
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Figure 3.14 Transduction of anergic or primed hCAR∆∆∆∆cyt.DO11.10 lymph node cells 

with a GFP-expression vector. Lymph node cultures from hCAR∆cyt.DO11.10 mice were 

infected with Ad5.CMV.GFP, which encodes an enhanced GFP reporter gene under the 

control of a cytomegalovirus promoter (CMV), for 3 h at a MOI of 100. Following 

infection, anergy or priming was induced in the T lymphocytes, as described in Section 

2.4.2, and the cells were cultured for 24 h. Cells were subsequently viewed under a 

fluorescence microscope, to check for the presence of green fluorescence (GFP), and 

brightfield and fluorescence images were captured. In these images, GFP
+
 cells were 

clearly observed in a subpopulation of the lymph node culture, indicating that it is possible 

to generate anergic or primed primary hCAR
+ 

DO11.10 Tg T cells transduced with 

adenoviral constructs. 
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Figure 3.15 Analysis of transduction efficiency in hCAR Tg T cells. Lymph node 

cultures from hCAR∆cyt.DO11.10 mice were cultured alone or infected with 

Ad5.UbP.GFP, which encodes an enhanced GFP reporter gene under the control of a 

human ubiquitin promoter (UbP), for 3 h at a MOI of 100. Following infection, anergy or 

priming was induced in the T lymphocytes, as described in Section 2.4.2, and the cells were 

cultured for a further 24 h. Subsequently, cells were stained for viability (propidium iodide 

exclusion) and CD4 (PerCP) expression. Lymphocytes were identified on the basis of size 

and granularity (A) and this population (R1) was subsequently analysed for viability (B). 

The viable population (R2; PI negative) was then assessed for CD4 and GFP expression (C, 

D) and analysis of the CD4+ population showed that whilst mock infection (MOI 0) 

resulted in no GFP
+
 CD4

+
 cells, infection under conditions of no stimulation (naïve), 

anergy or priming resulted in >80 % of the CD4
+
 T cells expressing GFP with the brightest 

and highest % GFP+ CD4+ cells being found under conditions of priming. 
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Figure 3.16 Optimisation of infection conditions for efficient transduction of hCAR Tg 

T cells with a GFP-expression vector. Lymph node cultures from hCAR∆cyt.DO11.10 

mice were cultured alone (uninfected; MOI 0) or infected with Ad5.CMV.GFP, which 

encodes an enhanced GFP reporter gene under the control of a human ubiquitin promoter 

(UbP), for 1 (A) or 3 (B) h at a MOI of 1-1000. Following infection, anergy or priming was 

induced in the T lymphocytes, as described in Section 2.4.2, and the cells were cultured for 

a further 24 h. Subsequently, lymph node cultures containing naïve (hatched bars), anergic 

(open bars) or primed (closed bars) hCAR-expressing Tg T cells were stained for viability 

(propidium iodide (PI) exclusion) and CD4 (PerCP) expression prior to flow cytometric 

analysis. Viable CD4+ lymphocytes were identified as described in Figure 3.15 and the 

percentage of CD4
+
 T cells that expressed GFP was assessed. These data indicated that 

optimal transduction efficiency occurred at a MOI of 100 and infection time of 3 h.
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Chapter 4 

Analysing the role of ERK MAPK signalling and potential cell cycle 

modulators in priming and tolerance of antigen-specific T cells in vitro.
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Introduction 

Peripheral tolerance is a state of antigen-specific hyporesponsiveness induced by 

exposure of T cells to antigen under sub-optimal activating conditions (46). Once it is 

induced, it can suppress many aspects of the antigen-specific immune response to 

subsequent challenge, including lymphocyte proliferation and cytokine production in vitro 

and in vivo, delayed-type hypersensitivity and antibody production (114). However, the 

molecular mechanisms underlying this phenomenon remain unclear (342, 484). 

T lymphocyte activation requires at least two signals generated by the APC; the first 

of which is specific recognition of peptide-MHC by the T cell receptor (TcR; signal 1), and 

the second is co-stimulation provided by molecules such CD80/CD86 on the APC 

interacting with CD28 on the T cell (signal 2) (Figure 1.2 (485)). It is well established that 

TcR ligation in the absence of such co-stimulation induces long lasting unresponsiveness 

termed anergy of T cells in vitro (48, 49). Several methods have been used to induce this 

anergic state in vitro (50, 52, 486), including exposure to immobilised anti-CD3 in the 

absence of co-stimulatory signals (51, 487). Re-stimulation with antigen leads to a 

profound decrease in IL-2 production and hence reduction in proliferation, relative to that 

seen with cells primed with anti-CD3 + anti-CD28. Consistent with this, in T cells, the 

maintenance phase of anergy reflects defective activation of transcription factors, such as c-

Jun/c-Fos, that are involved in formation of the AP-1 complex which is required for 

inducing transcription of the IL-2 gene (318, 331, 333, 336-338, 488). In turn, this appears 

to be determined by the differential recruitment of the signalling cascades mediated by the 

extracellular signal-related kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 MAPKs 

(333, 336, 338). Indeed, JNK-mediated induction of c-Fos expression and activation of AP-

1 and NF-AT complexes are defective in T cells anergised in vitro and also tolerised in vivo

(318, 331-333). Moreover, the induction of JunB has also been shown to be severely 

impaired in anergic TH1 cells (336) and this defect was secondary to downregulation of 

ERK and JNK activation (333, 336). Consistent with this, Fields et al also reported that 

ERK1/2 activation was decreased in anergic T cells (338). 

When T cells receive both antigen and co-stimulatory signals, the resulting ERK, 

JNK and p38 MAPK activation leads to the up-regulation of positive regulators of the cell 

cycle, namely cyclins and cyclin dependent kinases (CDKs) (489). This, in conjunction 

with the downregulation of negative regulators of cell cycle, such as CDK inhibitors (e.g. 

p27
kip1

) and retinoblastoma protein (Rb), results in T cell proliferation (489, 490) (Figure 
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4.1). Activation of the Ras-Raf-MEK-ERK signalling pathway, as cells progress from G1 to 

S phase of the cell cycle, has been reported to play a role in the induction of cyclin D and 

subsequent phosphorylation and inactivation of Rb (Figure 4.1) (491-496). Different cell 

types expressing constitutively active mutants of Ras or Raf have been shown to exhibit 

increased cyclin D1 protein levels (497, 498). Concordant with these studies, Lavoie et al

demonstrated, in a fibroblast cell line, that dominant negative forms of MKK1 or ERK1/2 

strongly inhibit expression of a reporter gene driven by the human cyclin D1 promoter, as 

well as cyclin D1 protein levels (494). Moreover, another reporter gene study suggested 

that ERK-dependent AP-1-mediated transcription contributes to the upregulation of cyclin 

D as c-Jun, an AP-1 constituent, activates the cyclin D1 promoter (244). 

CDK4, CDK6 and D-type cyclins associate and act to phosphorylate Rb, first by 

cyclin D–CDK4/6 then further by cyclin E-CDK2, thereby altering its conformation (452, 

453). Phosphorylated Rb (p-Rb) releases bound E2F family transcription factors which are 

then free to activate the genes required for entry into S phase and hence proliferation. Rb 

regulates proliferation by controlling progression through the restriction point within the G1

phase of the cell cycle. Sustained, but not transient, ERK activation induces upregulation of 

pro-proliferative as well as downregulation of anti-proliferative signalling. Examples of 

such downregulated anti-proliferative molecules include JunD and Tob1. All members of 

the Jun family (JunD, c-Jun and JunB) are capable of forming heterodimers with Fos 

proteins (c-Fos, FosB, Fra-1 and Fra-2) (181) and the different permutations of such 

heterodimers are believed to affect AP-1 mediated cellular responses (499, 500). JunD is 

known to be a weaker activator of cyclin D expression than c-Jun hence, increasing the 

JunD:c-Jun ratio causes downregulation of cyclin D1 expression (499) and JunD-deficient 

immortalised 3T3 cells and Ras-transformed fibroblasts exhibit increased cyclin D1 

expression (500, 501). In addition, Tob1 negatively regulates cyclin D1 expression by 

recruiting histone deacetylase to the cyclin D1 promoter (502). 

Anergic cells are thought to arrest in the G1 phase and this arrest is associated with 

up-regulation of the negative regulator p27
kip1

 (326, 441, 503-505). Moreover, in anergic T 

cells p27
kip1

 associates with the c-Jun co-activator JAB1, resulting in its cytoplasmic 

translocation, disruption of c-Jun association with AP-1 sites and defective transactivation 

of AP-1 and IL-2 transcription (441). However, controversy surrounds the role for p27
kip1

in anergy as it has also been shown not to be required for induction of anergy in certain 

models using p27
kip1

-deficient T cells (506). In addition, other studies have demonstrated 
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that p27
kip1

-deficient and wild type T cells exhibit similar proliferative profiles (507-509). 

Moreover, p27kip1 has been shown to exert positive and negative regulatory effects on T cell 

proliferation during the induction and maintenance phases of anergy, respectively (510). 

For example, Rowell et al demonstrated that p27
kip1

 exerts different functions within a 2-

fold range of protein concentration (510), with low levels of p27
kip1

 promoting cell cycle 

progression in activated CD4
+
 T cells during the initial T cell proliferation associated with 

the induction phase of tolerance. Conversely, a higher concentration of p27kip1 limits 

proliferation, downregulates effector function and promotes anergy following the peak of 

the response, indicative of the maintence phase of tolerance. Overall, these data suggested 

that the net effect of p27
kip1

 on T cells is the negative regulation of their effector function. 

To date, studies investigating the activation state of the various MAPK and other 

signalling cascades in anergy have been limited to T cell clones in vitro, essentially because 

of the limitations imposed by the large number of cells required for conventional 

biochemical methodology (326). However, these studies may not be representative of 

primary T cells in their tissue microenvironment and signalling molecules cannot be 

quantified in individual cells using such methodologies. Indeed, the recent ability to track 

antigen-specific T cells (378, 380, 511) and signal transduction events in vivo have shown 

that conclusions drawn from in vitro studies may not reflect what occurs under 

physiological conditions (383). For example, data collected from a number of in vivo

studies suggests that in vitro-generated data, concerning some of the stress activated protein 

kinases, may not pertain to non-transformed T cells. For example, Sun et al demonstrated 

that T cells from PKC-θ-/-
 mice displayed normal induction of JNK expression, following 

treatment with anti-CD3 and anti-CD28 Abs (209). These data contradicted previous 

findings in Jurkat T cells, which demonstrated a regulatory role for PKC-θ in the activation 

of JNK (512, 513). Similarly, other work conducted in JNK1-, JNK2- or JNK1/2-deficient 

mice has shown that whilst JNK is necessary for T cell differentiation, it is not required for 

T cell activation or IL-2 production (514-516). However, in other studies, T cells from 

JNK2-deficient mice have been shown to exhibit reduced IL-2 production (517). 

Furthermore, p38 MAPK but not JNK, as reported for T cell clones (336, 518), appears to 

be involved in the integration of signals transduced by the TcR and CD28-mediated co-

stimulation, and which lead to the production of IL-2 in T cells (315). 
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Aims 

To address these issues, laser scanning cytometry was used to quantify signalling 

events in individual antigen-specific primary T cells that had been primed or tolerised in 

vitro. In particular, this approach was used to investigate whether the activation patterns 

and subcellular distribution of the key signals ERK, cdc2/CDK2, Rb and p27
kip1

 differ 

during the primary response and the maintenance phases of priming and tolerance 

following challenge of naïve, anergised and primed primary T cells with antigen loaded 

APC in vitro. Specifically, it was planned to:

• Assess ERK activation in individual primed and anergic Ag-specific T cells during 

the maintenance phases of tolerance and priming and compare these with primary 

responses. 

• Examine expression of different positive (p-Rb) and negative (p-cdc2/p-CDK2 and 

p27kip1) regulators of cell cycle in individual Ag-specific T cells under conditions of 

priming and anergy. 

• Study the subcellular localisation of ERK and those cell cycle regulators in primed 

and anergic Ag-specific T cells. 

• Investigate ERK activation and p-Rb, p-cdc2/p-CDK2 and p27
kip1

 signalling 

throughout the cell cycle in individual primed and anergic Ag-specific T cells 

following antigenic challenge. 



127

Results 

4.1 Induction of priming and anergy in Ag-specific primary T cells, in vitro

To characterise differential signalling events in priming and anergy of antigen-

specific T cells an in vitro system of Ag-specific priming and tolerance was developed. T 

cell priming or anergy was induced in primary OVA-specific TcR Tg (DO11.10) T cells by 

TcR engagement with or without appropriate co-stimulation as described previously (51, 

487). To do this, lymph node single cell suspensions, in which typically 35-40 % of the 

lymphocytes were CD4
+
 KJ1.26

+
 T cells, were cultured for 48 h with plate-bound anti-CD3 

with or without co-stimulation via anti-CD28. These cells were then washed, re-plated and 

rested for an additional 48 h in fresh medium, before being re-stimulated with LPS-matured 

DC which had been pulsed with or without OVA323-339 (Figure 4.2). 

 To confirm induction of priming or anergy, naïve, primed and anergic groups of T 

cells were assessed for their ability to up-regulate an activation marker (CD69) and produce 

IL-2, as well as their proliferative capacity in response to re-stimulation with antigen-

pulsed DC. T cells in the ‘anergic’ population showed a defect in IL-2 production upon re-

stimulation with antigen relative to those from the naïve and primed DO11.10 T cell 

populations, which generated comparable levels of IL-2 although, as expected, most IL-2 

was produced by the “primed” cells (Figure 4.3A). Once IL-2 is produced, it binds to its 

specific receptor complex (IL-2R) thus triggering T cell proliferation (reviewed in (519, 

520)). Consistent with the IL-2 data, although the naïve T cells proliferated well in response 

to challenge with OVA323-339-loaded DC, cells from the ‘primed’ population exhibited 

significantly higher levels of DNA synthesis. By contrast, cells from the ‘anergic’ 

population showed significantly reduced responses relative to either naïve or ‘primed’ cells 

(Figure 4.3B). 

This proliferative unresponsiveness can be overcome by supplementing Ag-

stimulated cultures with exogenous rIL-2, as this bypasses the need for co-stimulation (54, 

227, 521, 522). Here, the defective proliferation was found to be partly rescued by the 

addition of exogenous rIL-2, as it increased the proliferation of the anergic T cells (2074 

cpm) to levels equal to or greater than (16618 cpm) those reached by primed (15854 cpm) 

or naïve (5024 cpm) T cells stimulated with antigen in the absence of exogenous rIL-2 

(Figure 4.3B and C). By contrast, when the different T cell populations were cultured with 

rIL-2 alone, as widely reported previously (54, 523), significant proliferation was only 
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detected in the primed but not naive or anergic samples (Figure 4.3C). However, these 

defects in IL-2 production and proliferation were not due to the failure of the anergic T 

cells to recognise antigen after re-stimulation as they exhibited increased expression of the 

early activation marker CD69 to the same extent as primed T cells (Figure 4.3D). 

It was hypothesised that the lack of IL-2 production and proliferation in the anergic 

T cells could be due to cell death or G1 arrest, as antigen-specific unresponsivness at the 

level of individual T cells has previously been shown to involve either apoptotic cell death 

or cell cycle arrest at the G1-S phase transition  (503). To assess the relative roles of these 

mechanisms quantitatively, cell cycle progression in the different T cell populations was 

investigated using LSC (Section 3.1.1.3). Briefly, naïve, anergic and primed Ag-specific T 

cells were re-stimulated with DC loaded with OVA323-339 for 20 h, before being stained 

with DAPI and the KJ1.26 Ab to enable analysis of the DNA content in individual Ag-

specific T cells by LSC (Figure 4.4A). Cell cycle data showed that the primed T cell 

population, 20 h after challenge with antigen, displayed a greater percentage of mitotic and 

newly formed daughter cells compared with either naïve or tolerised T cells whereas, 

progression into S-phase within the anergic population was reduced compared to the naïve 

and primed groups (Fig 4.4B). In addition, a substantial proportion of anergic T cells were 

apoptotic, as shown by LSC (Fig 4.4B). Apoptotic cells were rare in the primed or naïve 

populations. Together, these findings indicate that the different primary culture regimes 

induced T cell priming or anergy in vitro and that “anergy” reflected the induction of both 

growth arrest and apoptosis. 

4.2 Detection of signalling in individual antigen-specific T cells 

Previous studies have identified uncoupling of the ERKMAPkinase pathway as a 

key mechanism underlying antigen-specific unresponsiveness in anergic T cells (331, 333, 

336-338, 488). However, most of these studies have been carried out using T cell clones 

and hence may not be representative of the situation in “normal” T cells. Therefore, the 

expression of pERK in individual anergic antigen-specific CD4
+
 T cells was assessed. 

To validate this approach, as outlined in Chapter 3, the profile of ERK activation in 

naïve, anergic and primed T cells following restimulation with antigen, was investigated 

firstly by classical analysis of the phosphorylation and hence activation status of ERK, in 

whole cell lysates from mixed cell populations by Western Blotting (Figure 4.5A), and, in 

parallel, in individual antigen-specific (KJ1.26
+
) CD4

+
 T cells in chamber slides using three 
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colour immunofluorescence and LSC (Figure 4.5B). Previous Western Blotting studies 

(Chapter 3) had for the first time, demonstrated elevated ERK activation for up to at least 

20 h in the naïve population after stimulation with Ag (Figure 3.5). Here, Western Blotting 

analysis showed high expression of activated pERK in response to challenge with antigen 

in naïve and to a lesser extent primed cells at 20 h. Consistent with their activation status 

moreover, primed cells also showed elevated basal levels of pERK. By contrast, cells in the 

anergic group displayed lower basal and antigen-stimulated levels of pERK, suggesting 

differential signalling upstream of ERK activation during both the induction and 

maintenance phases of anergy compared to priming. No substantial differences were 

observed in ERK protein levels amongst the groups. Although Western Blotting measures 

the average response of the mixed population and not simply the Ag-specific response, the 

data collected on ERK activation in the different functional groups, generated using 

Western Blotting and LSC, were broadly in agreement. However, only LSC analysis 

allowed dissection of the different profiles of pERK expression in individual Ag-specific T 

cells (Figure 4.5B). For example, the naïve T cell population appears to contain two sub-

populations; one expressing low levels of pERK and the other exhibiting almost double the 

intensity of pERK expression. Moreover, it can be seen that whilst naïve and primed groups 

displayed higher levels of pERK than cells in the anergic group, individual cells displayed 

varying levels of pERK expression, presumably reflecting their differential kinetics of 

response. 

In order to visualise these data, colour images of the different cell populations were 

captured using a fluorescence microscope. All nucleated cells, including lymph node cells 

and bone marrow-derived DC, were imaged initially (Figure 4.6A; blue) and then the Ag-

specific T cell population was identified (Figure 4.6B; red). The expression of activated 

ERK was also viewed (Figure 4.6C; green) and finally, these three separate images were 

merged (Figure 4.6D) allowing visual assessment of pERK expression in Ag-specific T 

cells. Such data showed that all of the primed Ag-specific T cells re-stimulated with 

antigen-loaded APC were expressing pERK (Figure 4.6D) whereas, the primed Ag-specific 

T cells exposed to APC alone exhibited little or no ERK activation (Figure 4.6E). In order 

to visualise sufficient numbers of anergic Ag-specific T cells, the anergic population was 

examined at a higher cellular concentration than the primed cells (Figure 4.6F vs. 6E). 

When anergic Ag-specific T cells were examined (Figure 4.6F), a much lower proportion 

of the Ag-specific T cells expressed pERK upon re-stimulation with antigen and those few 
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cells that did express pERK appeared to do so at a lower level (Figure 4.6F) than the 

primed cells (Figure 4.6D). These data were in agreement with the quantitative results 

described above.

4.3 Tolerised T cells display reduced activation of ERKMAPkinase relative to primed 

Ag-specific T cells 

It then seemed pertinent to quantify the apparent differences in ERK activation in 

individual T cells from the anergic and primed populations outlined above in Section 4.2. 

LSC software was used to assess pERK expression in the different Ag-specific T cell 

populations, 20 h after re-stimulation with antigen. The analysis demonstrated that similar 

levels of pERK were expressed in naïve and primed T cells challenged with antigen (Figure 

4.7A). However, further analysis revealed that not only was the overall level of pERK 

expression lower within the anergic T cell population (Fig 4.7A), but the proportion of 

antigen-stimulated cells expressing pERK in this group was lower than in all other groups 

(Fig 4.7B).

4.4 Intracellular localisation of pERK expression in primed and tolerised Ag-specific 

T cells 

The visualisation studies (Section 4.2) suggested that pERK might be expressed 

predominantly at the periphery of primed Ag-specific T cells which had been re-stimulated 

with antigen (Figure 4.6). Analysis of cell galleries confirmed this (Figure 4.8A) and in 

addition, indicated that it was distributed more diffusely throughout the cell in those anergic 

Ag-specific T cells which expressed low levels of pERK (Figure 4.8B). The images 

presented depicting pERK expression in the anergic cells were over-exposed in order that 

the cellular distribution of this low intensity pERK be visible. Subsequently, the ability of 

LSC to discriminate and quantify fluorescence changes occurring at distinct intracellular 

compartments in individual cells (Section 3.1.1.7), was exploited to assess the localisation 

of pERK within the different Ag-specific T cell populations. For example, when the total 

and peripheral levels of pERK expression in these cells were quantified using the gating 

and peripheral contouring facilities of LSC, primed Ag-specific T cells not only expressed a 

higher level of pERK than anergic Ag-specific T cells (1 h after challenge with antigen; 

Figure 4.8C), but also displayed a much greater accumulation of pERK at the periphery of 

the cells, than anergic T cells (Figure 4.8D). Moreover, when the individual images were 
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merged, pERK appeared to co-localise with the TcR in the primed T cells (Figure 4.8A). 

Such co-localisation was not observed to the same extent in the anergic T cells (Figure 

4.8B) thus, perhaps pERK and the TcR are localising to the immunological synapse for 

optimal activatory signalling and this may be defective in anergic T cells. 

4.5 Differential association of pERK expression with lipid rafts in anergic and primed 

Ag-specific T cells?

As peripheral expression of pERK was associated with priming, whilst a more 

diffuse pERK expression correlated with anergy (Figure 4.8), these results might suggest 

that pERK was somehow unable to traffic to the point of T cell:APC contact in anergic T 

cells or alternatively, was not generated there. The cytoskeleton can traffic lipid rafts to the 

immunological synapse and recruit signalling molecules to enhance either the positive or 

negative signals generated there (524, 525) and thus, the intracellular localisation of pERK 

in relation to lipid rafts was examined 20 h after the cells were re-stimulated with antigen. 

Consistent with the idea that peripheral pERK was associated with T cell activation, pERK 

co-localised with lipid raft staining in primed Ag-specific T cells but such co-localisation 

was not observed in anergic Ag-specific T cells (Figure 4.9) suggesting that lipid raft 

formation or the interaction and trafficking of pERK with these structures may be defective 

under conditions of anergy. 

4.6 ERK activation in relation to cell cycle progression of primed and tolerised Ag-

specific T cells 

Using the detection method described above it was also possible to examine 

whether differences in ERK signalling in anergic and primed T cells (441, 504, 526, 527) 

were associated with differential cell cycle progression, as has been suggested previously 

(526, 527). For example, Gauld et al demonstrated that a sustained cycling pattern of ERK 

activation correlated with cell cycle progression, cell growth and proliferation in WEHI-

231 B cells (527). Here, LSC was used to analyse pERK expression in the different Ag-

specific T cell populations in relation to their cell cycle status. When each stage of the cell 

cycle was linked to a histogram of pERK expression it was clear that the anergic Ag-

specific T cells expressed much lower levels of pERK compared to primed T cells in S and 

mitotic phases, whilst both anergic and primed T cells in G0/G1 expressed very little pERK 

at 20 h after challenge with Ag (Figure 4.10). This type of analysis also allowed correlation 
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of the range of intensities of pERK expression in individual T cells in the anergic and 

primed populations with their cell cycle status (Figure 4.11).

Thus, naïve, anergic and primed Ag-specific T cells expressing different levels of 

pERK (Figure 4.11A; region 1 = lowest and 8 = highest pERK expression level) were 

analysed to determine their cell cycle status (Figure 4.11B-E). This type of analysis appears 

to indicate that naïve T cells require only basal levels of pERK expression to transit out of 

G1 (Figure 4.11C), but require high levels of pERK expression to proceed through S phase 

and mitosis (Figure 4.11C). These trends reflect the primary response to Ag as this data was 

acquired 20 h after the cells had first encountered Ag. Overall, anergic T cells displayed 

lower levels of pERK expression than naive and primed cells and this was most apparent in 

the cells at G0/G1 phase, where hardly any pERK expression was observed (Figure 4.11D). 

This was perhaps not surprising as these cells are believed to arrest in G1 thus, these data 

may suggest that such cell cycle arrest is likely secondary to a lack of ERK activation in 

these cells preventing them from achieving a threshold level necessary for cell cycle 

progression. A different profile again was observed in the primed T cells which had been 

re-stimulated with Ag (Figure 4.11E). Although, similar to the primary response to Ag 

(Figure 4.11C), these primed cells exhibited highest levels of activated ERK throughout the 

S and mitotic phases of the cell cycle, primed cells also expressed high levels of pERK 

expression at the G0/G1 phase (Figure 4.11E). This may suggest that in the secondary 

response to Ag, high levels of pERK maintain rapid progression through the cell cycle, at 

all stages (Figure 4.11E). 

Next, all of the samples were further analysed to assess the proportion of Ag-

specific T cells in each stage of cell cycle that were expressing pERK, as well as the mean 

level of pERK expression in such Ag-specific T cells at different stages of cell cycle 

(Figure 4.12). Consistent with the above analysis (Figure 4.11), the primed T cells 

expressed much higher levels of pERK compared to the anergic T cells, during each stage 

of cell cycle (Figure 4.12B, D) and this was true even when cells in S phase and mitosis 

were examined. These data, taken together with the observation that a much higher 

proportion of primed compared to anergic Ag-specific T cells undergoing mitosis were 

expressing pERK 20 h after challenge with Ag (Figure 4.12C), suggested that high levels of 

pERK promote cell cycle progression. Consistent with this, quantitative analysis shows that 

at 1 h after challenge with Ag, the bulk of both anergic (48 %) and primed (40 %) cells 

expressing pERK were in the G0/G1 phase (Figure 4.12A) but the highest levels of pERK 
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expression correlated with proliferating cells. By 20 h, whilst most of the anergic cells 

including those expressing pERK, were still in G0/G1 (Figure 4.12C, E), the majority of 

primed T cells expressing pERK (71 %) had progressed through S phase and into mitosis 

(Figure 4.12C) with the vast majority expressing pERK and again the level of pERK 

expression was highest in S phase and mitosis (Figure 4.12D). 

4.7 Downregulation of p-Rb expression in tolerised T cells relative to primed T cells 

Analysis of pERK expression during cell cycle progression revealed that the G1

arrest observed in anergic T cells correlates with decreased ERK activation. Hence, ERK-

dependent regulators of cell cycle were next investigated to determine if they were also 

differentially expressed and activated in anergy. For example, ERK activation is known to 

ultimately contribute to the phosphorylation and inactivation of Rb (528, 529), allowing 

cell cycle progression through the restriction point within G1 (251, 452, 530). Therefore, as 

it was hypothesised that p-Rb expression would be down-regulated in anergic T cells, the 

levels of p-Rb (inactive Rb) in anergic and primed T cells were measured after re-

stimulation with antigen. Consistent with this hypothesis, whilst a similar percentage of 

cells in all groups expressed p-Rb, and at comparable levels 1 h after challenge (Figure 4.13 

A, B), by 20 h an increased proportion of the naive and primed groups were expressing p-

Rb (Figure 4.13A) and those groups were expressing p-Rb at much higher levels than 

observed in the anergised group (Figure 4.13B). 

4.8 Differential localisation of p-Rb expression in primed and tolerised T cells 

It has been reported that both hypophosphorylated (active; suppressor of cell cycle 

progression) and hyperphosphorylated (inactive) Rb are situated in the cell nucleus (531-

533) and that the hypophosphorylated form has a much higher avidity for the nuclear 

compartment (533). Thus, using an antibody which detects Rb when it has been 

hyperphosphorylated at serine 807/811, the subcellular localisation of p-Rb in anergic and 

primed T cells in response to challenge with antigen was analysed. Unexpectedly, p-Rb was 

found to be intensely localised to the periphery of anergic T cells but by contrast, exhibited 

diffuse, nucleus-associated staining in primed T cells. However, some bright staining at the 

periphery at 1 h after challenge and the rather punctate staining suggests that vesicular 

trafficking to or from the nucleus may be occurring (Figure 4.14A). This greater intensity 

of p-Rb expression at the periphery, outside of the nucleus of the anergic cells was 
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confirmed, quantitatively by LSC (Figure 4.14B) even when as Figure 4.13 shows, that, at 

this timepoint, both the anergic and primed cells exhibit similar levels of p-Rb (MFI). This 

suggests that the lack of p-Rb in the nucleus in anergic cells may contribute to the reduced 

cell cycle progression in this population. 

4.9 Assessment of p-Rb expression in relation to the cell cycle status of primed and 

tolerised Ag-specific T cells 

As p-Rb expression is widely considered to enable cell cycle progression through 

the restriction point within G1, it was hypothesised that p-Rb might be most highly 

expressed in primed T cells at the G0/G1 phase to enable release of E2F to induce genes 

required for entry into S phase. When the p-Rb expression profile was examined in anergic 

compared to primed T cells, there indeed appeared to be a greater number of primed 

compared to anergic T cells expressing higher levels of p-Rb (1 h after challenge with 

antigen) in G0/G1, when the p-Rb expression profile was assessed in terms of cell cycle 

(Figure 4.15). At first sight, these results appeared to support the hypothesis for highest 

expression of p-Rb at the G0/G1 phase. However, upon re-stimulation with Ag, the majority 

of both anergic and primed p-Rb-expressing T cells were in G0/G1 at 1 h (Figure 4.16A, B) 

but unexpectedly, by 20 h the vast majority (69%) of these primed T cells were found in 

mitosis (Figure 4.16B). Moreover, 100 % of the p-Rb-expressing anergic T cells also 

appeared to be mitotic at this timepoint (Figure 4.16A). Although, perhaps at first sight 

surprising, these later data are accordant with the literature which indicates that whilst 

hypophosphorylated Rb is the major form present at the G0/G1 phase (532, 534, 535), this 

s807/811 hyperphosphorylated form of Rb is predominantly associated with the S and 

G2/M phases (535, 536). However, the finding of a complete lack of p-Rb-expressing 

anergic T cells in G0/G1 is possibly more informative, as it suggests that, at this timepoint, 

p-Rb was indeed downregulated in the majority (52 %) of the anergic T cell population, 

which were in G0/G1 (Figure 4.12E). 

The above data is restricted to the primed and anergic p-Rb-expressing Ag-specific 

T cells therefore, the proportion of the Ag-specific T cell population that was expressing p-

Rb (Figure 4.17A, C), as well as the mean intensity of p-Rb expression in these cells in the 

different cell cycle stages (Figure 4.17B, D), were also analysed by LSC. Equivalent 

proportions of anergic compared with primed T cells per cell cycle stage were expressing p-

Rb at 1 h and surprisingly, a higher percentage of anergic compared to primed T cells in S 
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phase were expressing p-Rb. However, a striking difference between the two cell types was 

observed at 20 h after re-stimulation with Ag (Figure 4.17C). Here, the anergic T cells in 

G0/G1 and S phase (Figure 4.12E) expressed absolutely no detectable p-Rb (Figure 4.17C), 

indicating that by this phase of the response, p-Rb was indeed downregulated in anergic T 

cells. At the 1 h timepoint, the highest levels of p-Rb expression were observed in the cells 

which were in G0/G1 or S phase, but there was no difference in the levels of p-Rb 

expression between the groups (Figure 4.17B). Unexpectedly, both cell types expressed p-

Rb during mitosis (Figure 4.17A, C), with the anergic cells expressing a considerably lower 

level of p-Rb than the primed cells, at both timepoints (Figures 4.17B, D). These data were 

not generated from synchronised populations thus, perhaps such cells may be Ag-specific T 

cells in the anergic population which had themselves escaped anergy induction. As there is 

no definitive marker for anergy, it cannot be determined as to whether 100 % of the T cells 

in an anergic population have in fact been anergised. Alternatively, such cells could 

consitiute anergic cells that were on their way to G1 arrest. 

4.10 Examination of cdc2/CDK2 activity in primed and tolerised Ag-specific T cells 

Cdc2 and CDK2 are known to be required in the S phase of cell cycle for complex 

formation with cyclin A and subsequent phosphorylation and inactivation of Rb. Indeed, 

cdc2/CDK2 is likely to be responsible for the hyperphosphorylation of Rb at serine 807/811 

(537) that is maximally observed in primed mitotic cells at 20 h (Figure 4.17C). Using an 

antibody which detects the inactive, phosphorylated forms of cdc2 and CDK2 (pTyr
15

-

cdc2/p Tyr15-CDK2), it was possible to assess whether the activation of this molecule in 

anergic and primed T cells (after challenge with antigen) also correlated with their cell 

cycle status. For example, as levels of hyperphosphorylated Rb were reduced, levels of 

inactive p-cdc2/p-CDK2 were expected to be increased under conditions of anergy. 

However, when the different Ag-specific T cell populations were analysed by LSC, it was 

clear that similar proportions of unstimulated and Ag-stimulated, anergic and primed T 

cells expressed p-cdc2/p-CDK2 (Figure 4.18A) and that both primed and anergic groups 

express p-cdc2/p-CDK2 at similar levels (Figure 4.18B). By contrast, naïve T cells, upon 

encountering their specific Ag for the first time, downregulated expression of p-cdc2/p-

CDK2 over time, both in terms of percentage of cells expressing p-cdc2/p-CDK2 and also 

with respect to p-cdc2/p-CDK2 expression levels (Figure 4.18), presumably to allow 

subsequent clonal expansion of this population. These results suggest that deactivation of 
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cdc2/CDK2 is not responsible for the lack of hyperphosphorylation of Rb observed in 

anergic cells.  

4.11 Activity of cdc2/CDK2 throughout cell cycle 

Although there was no overall difference in the proportion of cells expressing p-

cdc2/p-CDK2 or indeed the levels expressed between primed and anergic cells, it was 

possible that there may be a difference in expression when cells at different stages of the 

cell cycle were examined. A cell requires active (de-phosphorylated) cdc2/CDK2 to 

proceed into mitosis and so it was hypothesised that there may be more inactive p-cdc2/p-

CDK2 in the anergic, compared to the primed cells in S phase. Thus, the expression profile 

of p-cdc2/p-CDK2 in primed and anergic cells at different stages of cell cycle was 

examined by LSC (Figure 4.19). The majority (44 % at 1 h, 42 % at 20 h) of primed cells 

that expressed p-cdc2/p-CDK2, after stimulation with Ag, were at the G0/G1 phase (Figure 

4.20B) and this perhaps reflected ongoing transit of the cells, exhibiting reduced p-cdc2/p-

CDK2 in mitosis, through a subsequent round of division. However, the highest proportion 

of p-cdc2/p-CDK2-expressing anergic T cells was observed in mitosis for both 

unstimulated and Ag-stimulated samples (Figure 4.20A) and it is possible that these cells 

may actually be arrested in G2 immediately prior to cytokinesis. 

The above data specifically examined the primed and anergic p-cdc2/p-CDK2-

expressing Ag-specific T cell populations thus, it also seemed pertinent to determine the 

proportion of Ag-specific T cells that were expressing p-cdc2/p-CDK2 at each stage of the 

cell cycle. When all of the Ag-specific T cells in the different populations were analysed, a 

slightly higher proportion of anergic compared to primed antigen-specific T cells in S phase 

were expressing p-cdc2/p-CDK2 at 1 h after re-stimulation with antigen (Figure 4.21A). At 

20 h after challenge with antigen, the proportion of anergic compared to primed mitotic T 

cells expressing p-cdc2/p-CDK2 had doubled (Figure 4.21C). Interestingly, an inverse 

pattern was observed in those cells in S phase at this timepoint (Figure 4.21C). There was 

no difference in the mean levels of p-cdc2/p-CDK2 expressed in the different populations 

(Figure 4.21B, D). In addition, as there was a much higher proportion of anergic (380 cells; 

52 %) compared to primed (128 cells; 35 %) T cells at the G0/G1 phase (Figure 4.12E), the 

data here indicates that perhaps, whilst similar percentages of anergic and primed T cells 

expressed p-cdc2/p-CDK2 (Figure 4.21A, C), a considerably larger number of anergic 

compared to primed T cells were expressing p-cdc2/p-CDK2 at this stage. These data only 
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provide snap-shots, at two timepoints, of the signalling involved during cell cycle. As 

progression through cell cycle is dynamic, further time-course experiments examining a 

large range of timepoints would be required to evolve a better understanding of the 

signalling involved therein. 

4.12 p27
kip1

 expression is upregulated in tolerised T cells relative to primed T cells 

As p27kip1 negatively regulates G1 – S phase transition by inhibiting CDK2 activity 

(538), this signal was also assessed, at the single cell level in the whole population of 

anergic or primed T cells after re-stimulation with antigen. Whilst the percentages of 

anergic and primed T cells expressing p27
kip1

 were similar, whether re-stimulated with 

antigen or not at 20 h after co-culture (Figure 4.22A), there was an increase in the level of 

p27kip1 expressed by the anergic T cells at this timepoint (Figure 4.22B). It should be noted 

here that only a low proportion of both cell types were expressing p27
kip1

 (Anergic ~9-10%; 

Primed ~11-13%). These data suggest that it is possible that level of p27
kip1

 expression, 

rather than the prevalence of its expression within a population, might play a role in the 

maintenance phase of T cell anergy. 

4.13 p27
kip1

 expression in tolerised T cells at different stages of cell cycle 

Although no difference in the percentage of cells expressing p27
kip1

 was detected 

between the primed and anergic populations, there was again the potential for masking the 

effects of anergy by assessing the total cell population. Hence, it was possible that 

differences in the proportion of cells expressing p27kip1 may be observed in the primed and 

anergic T cells that were at the G0/G1 phase. As p27
kip1

 is intrinsically linked to the negative 

regulation of cell cycle, it was important to examine this signal in anergic and primed T 

cells at different stages of cell cycle following challenge with antigen, as it had been 

expected that p27
kip1

 expression would be upregulated in anergic compared to primed T 

cells. However, when the expression profile of p27kip1 was examined in this way, at the 

single cell level, it was found to be similar for both anergic and primed Ag-specific T cells 

at 1 h after challenge (Figure 4.23). Moreover, when T cell-specific p27
kip1

 signalling was 

quantitated by LSC, there was no difference in the proportion of anergic compared to 

primed antigen-specific T cells per stage expressing p27
kip1

 at both timepoints (Figure 

4.24A, C). It was also noted that the percentage of cells expressing p27kip1 was reduced in 

both groups at 20 h after challenge (Figure 4.24C). In addition, LSC analysis determined 
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that p27
kip1

 was expressed at similar levels in anergic compared to primed T cells at both 

timepoints (Figure 4.24B, D) and interestingly, at 1h after challenge, the intensity of p27kip1

expression appeared to increase as cell cycle progressed, being highest during mitosis 

(Figure 4.24B). This latter observation was unexpected because, as p27
kip1

 is thought to 

negatively regulate G1-S phase transition, the opposite trend might have seemed more 

fitting.  

4.14 Subcellular localisation of p27
kip1

 under conditions of priming and tolerance 

It was a little surprising that there was no difference in the proportion of anergic 

compared to primed T cells expressing p27
kip1

. Hence, as p27
kip1 

is known to exert its 

inhibitory effects on CDKs when it is localised in the nucleus, its subcellular localisation in 

anergic and primed cells was assessed with the expectation that more anergic cells would 

exhibit higher levels of p27
kip1 

expression within their nuclei compared to primed cells. 

p27
kip1

 appeared to localise predominantly in the nucleus in both anergic and primed T cells 

at 1 h after challenge (Figure 4.25A). Surprisingly, 20 h after re-stimulation with antigen, 

p27
kip1

 redistributed somewhat to the periphery of both anergic and primed cells where, in 

fact, it appeared to co-localise with the polarised Tg TcR (Figure 4.25B). Upon visual 

examination this peripheral distribution of p27
kip1

 was more apparent in the anergic cells. 

Moreover, when the peripheral expression of p27
kip1

 was quantitated by LSC, it was found 

that the anergic T cells did indeed have higher expression of this molecule in their 

periphery (Figure 4.25C). In addition, when p27
kip1

 was examined in relation to lipid rafts, 

peripheral p27kip1 appeared to preferentially co-localise with the lipid rafts in both cell 

types, although this was even more apparent in the primed cells (Figure 4.26). 
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Discussion  

T cells that have been tolerised or primed display different functional responses as a 

result of the signalling events that occur during their initial and subsequent encounters with 

antigen. Indeed, it has been widely proposed that both qualitative and quantitative 

differences in T cell signalling may underlie the differential functional outcomes of 

immunological tolerance and priming (525, 539). Thus, upon secondary challenge with 

antigen in vitro, productively primed T cells show a characteristic pattern of signalling 

resulting in the transcription of the IL-2 gene and subsequent clonal expansion of these T 

cells. Such signalling includes activation of the Ras-Raf-MEK-ERK MAPK cascade which 

leads to the activation of the transcription factor complex AP-1. PLC-γ1-dependent NF-AT 

translocation and activation, and PKC-mediated activation of NF-κB are also induced. In 

addition, CD28-mediated signalling provides JNK/p38 MAPK-mediated activation of 

additional transcription factors required for transcription of the IL-2 gene. In contrast, 

anergised T cell lines/clones display defective proliferation and an inability to produce IL-2 

upon challenge (88, 472), which is associated with defective coupling of the TcR to early 

signalling events such as the activation of ZAP-70, ERK and JNK (525, 539). In addition, 

there may be upregulation of inhibitory factors such as the GTPase, Rap-1, which may act 

to disrupt the Ras-ERK MAPK pathway, and the cell cycle (cyclin-dependent kinase) 

inhibitor, p27
kip1

. Interestingly, upregulation of p27
kip1 

has been associated with both IL-2-

dependent and –independent forms of anergy (523). Nevertheless, in all cases, these 

mechanisms appear to lead to G1-S cell cycle arrest and increased apoptosis of anergised 

cells. However, much of this work to date has relied upon biochemical assessment of 

signalling in T cell lines or clones at the population level following polyclonal stimulation

in vitro and this has often yielded conflicting results. 

Here, for the first time, the signalling events underlying in vitro priming and 

tolerance of antigen-specific responses in individual primary T cells have been shown to 

demonstrate marked differences, in the kinetics, amplitude and localisation of the 

MAPkinase, ERK and a number of cell cycle regulators. Firstly, it was established that 

antigen-specific proliferation and IL-2 production is less in primary antigen-specific T cells 

that had been tolerised by pre-culture with anti-CD3 than that resulting from priming with 

anti-CD3 + antiCD28. In contrast, re-stimulated anergised T cells upregulated CD69 to the 

same extent as T cells that had been primed with anti-CD3 and anti-CD28. These results 



140

confirm previous reports (503) and show that the defects in proliferation and IL-2 

production were not the result of a failure of antigen recognition by anergised T cells. 

However, in contrast to some previous in vitro studies (503), the secondary response of 

such anergised T cells could be only partly restored by exogenous IL-2, recovering levels 

similar to those of primed cells responding to antigen alone. Nevertheless, similar findings 

have also been reported by others (523, 525, 539) and it seems that different forms of 

anergy may show differential sensitivity to IL-2-mediated reversal of tolerance. These 

include clonal anergy due to lack of CD28 co-stimulation, which has been proposed to be 

reversible by addition of exogenous IL-2, and anergy reflecting cell cycle arrest induced by 

CTLA-4 signalling and which is refractory to IL-2 (523). Moreover, there is also increasing 

evidence for induction of multiple forms of anergy (540) resulting from lack of CD28 co-

stimulation in which the progression to S-phase is mediated via both IL-2 dependent and 

independent pathways (448, 541).  

Here, using both conventional biochemical techniques and quantitative single cell 

analysis by laser scanning cytometry, it was shown that whilst ERK activation was elevated 

in all populations of T cells that were challenged with antigen, it was always lower in the 

anergic population. Analysis at the single cell level revealed that the proportion of antigen-

stimulated cells expressing pERK was also lower in the anergic relative to the primed 

groups and in addition, the few anergised T cells which expressed pERK did so a lower 

level than primed cells. These findings were consistent with the fact that primed, but not 

anergic, antigen-specific T cells progressed through the cell cycle and that such progression 

correlated with increasing levels of pERK. In contrast, anergic T cells displayed a greater 

propensity to apoptose upon challenge. Collectively these results suggested that sustained 

ERK activation above a certain threshold level may be required for proliferation as whilst 

the anergic T cells in G0/G1 displayed pERK, albeit at low levels, they were not progressing 

through cell cycle. It is therefore possible that quite a high threshold of pERK expression is 

required for progression through cell cycle indeed, primed T cells express almost double 

the level of pERK compared to the anergic cells at 20 h after challenge with antigen (Figure 

4.11D). 

Consistent with this proposal, sustained, but not transient, activation of ERK has 

been shown to increase cyclin D expression (37, 41, 42) and hence promote proliferation. 

Moreover, Harnett et al have shown that periodic cycling of ERK activation is associated 

with the progression of B lymphoma cells through all stages of the cell cycle and that 
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inhibition of this sustained, but cycling ERK activation resulted in apoptosis (527). 

Interestingly, however, previous studies have identified opposing roles for ERK 

MAPkinase in regulating cell cycle progression in T cells. For example, and consistent with 

the above mentioned previous studies, increased ERK activation has been shown to 

downregulate p27
kip1

 thus leading to upregulation of CDK activity followed by increased 

phosphorylation of Rb and subsequent S phase entry (504). By contrast, other studies using 

high dose anti-CD3 stimulation or a conditionally active Raf-1 mutant, showed that the 

resultant elevated ERK activation contributed to sustained p27
kip1

 expression and hence 

reduced CDK2:cyclin E activity and cell cycle progression (526). These contradictory 

findings may be reconciled, however, if basal levels of ERK activation are required for 

anergy to proceed, a proposal that is consistent with the current findings that show low 

levels of pERK in tolerised cells. For example, completely blocking the ERK pathway 

using inhibitors blocks proliferation but does not induce anergy (542) and PKC-dependent 

activation of ERK has been shown to contribute to inhibition of IL-2 signalling (543). 

Perhaps it is not surprising then, that the decreased ERK activation observed in anergic 

relative to primed T cells at 20 h after re-stimulation with antigen correlated with an 

increase in the level of p27kip1 expression in those anergic cells, although the percentage of 

anergic compared to primed cells expressing p27
kip1

 was not increased. Previous studies 

(473, 504, 544, 545) have indicated that ERK activation can be associated with the nuclear 

export of p27
kip1

 and hence linked to the downregulation of p27
kip1

 CDK inhibitory function 

(288). Whilst ERK can phosphorylate p27
kip1

 at Ser10 and Thr187 (289) the resulting 

alterations in conformation are not responsible for regulating localisation of p27kip1 (288).

Rather, it is phosphorylation at Thr198 by p90 ribosomal protein S6 kinases (RSKs), which 

are triggered in a Ras-Raf-MEK-dependent manner that results in cytoplasmic localisation 

of p27
kip1

 (281). These findings may therefore provide an explanation for the expression of 

p27
kip1

 by comparable levels of primed and anergic cells. 

Alternatively, whilst the anergic T cells exhibit reduced ERK activation compared 

to primed cells, they do however express low levels of pERK. Thus, perhaps 

downregulation of ERK activation and/or upregulation of p27
kip1

 are not sufficient for 

maintenance of the anergic state and hence, one or more additional negative signals are 

required. Such a negative signal could perhaps be provided by the downregulation of p-Rb 

and/or increased expression of inactive CDKs. Consistent with this, almost ten-fold fewer 

anergic (1.7 %) compared to primed (18.4 %) T cells were expressing p-Rb after re-
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stimulation with Ag at 20 h and the anergic cells that were expressing p-Rb were 

expressing it at more than five-fold lower levels than primed cells (Figure 4.13B). 

Moreover, p-Rb localised to the periphery of anergic T cells whilst it appeared more diffuse 

and even vesicular, throughout the primed cells. Although hyperphosphorylated Rb (p-Rb) 

is known to have a lower avidity for the nuclear compartment than hypophosphorylated Rb 

(Rb), it is still reported to be in the nucleus (531, 532, 546). Collectively, these findings 

suggest that it could be the apparent lack of p-Rb in the nucleus in anergic cells that may be 

responsible for its reduced efficacy and susbsequent loss of cell cycle progression in this 

population. 

Work conducted in CDK4
R/R 

fibroblasts, which exhibit increased levels of Rb with a 

substantial fraction of Rb in its hyperphosphorylated form localised to both the nucleus and 

cytoplasm, has revealed that cytoplasmic mislocalisation of p-Rb in these cells is regulated 

by enhanced Exportin1-mediated nuclear export (547). Nuclear export of p27
kip1

 is known 

to inhibit its negative regulatory function (548) and so Jiao et al hypothesised that nuclear 

export of p-Rb may downregulate its effector function. Indeed, they demonstrated that such 

translocation led to inactivation of p-Rb tumour suppressor function (547). Therefore, it 

may be possible that, under conditions of anergy, p-Rb rapidly (within 1 h of antigenic re-

stimulation) translocates out of the nucleus via association with the nuclear export receptor, 

Exportin1, thereby preventing further hyperphosphorylation at serine 780 (530), 795 (529) 

and 807/811 required for its positive regulatory role in cell cycle progression.

Quantitation by laser scanning cytometry showed that the majority of the pERK 

signal appeared to be localised at the periphery of re-stimulated primed T cells, possibly in 

association with the TcR. In contrast, pERK was distributed more diffusely throughout 

those anergised T cells that expressed lower levels of pERK. These results were somewhat 

surprising, as it had been hypothesised not only that re-stimulation of primed cells would 

induce pERK to translocate to the nucleus to activate the transcription factors (549) which 

are required for IL-2 induction but also that this process might be defective in anergic T 

cells. Rather, it appeared that after priming, pERK may associate with cytoskeletal- and/or 

membrane-associated scaffolds such as lipid rafts (as shown in Figure 4.26) containing the 

TcR and other components of the proximal signalling cascade. Thus, these structures, or the 

association of pERK with them, may be defective in anergised T cells (Figure 4.26). 

It is not clear how ERK signalling at the periphery of the cell contributes to the 

maintenance of T cell priming but there is increasing evidence that the cytoskeleton plays 
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important roles, not only in the organisation of the immunological synapse (550), but also 

in signal transduction (524) by its ability to recruit signalling elements to adaptor molecules 

in the synapse. Thus, actin scaffolds have also been postulated to promote TcR signalling 

by preventing degradation of signalling elements (525, 551) and by directing lipid raft 

trafficking to the synapse (525). Although the precise molecular details are not clear, the 

recent finding that ERKMAPkinase is an intermediate signal in the Vav/Rac2-mediated 

pathway (552) leading to nucleation of actin filaments and cytoskeleton remodelling at the 

immunological synapse (553) may therefore provide a molecular rationale for such TcR-

associated localisation of pERK in primed T cells. Indeed, disassembly of actin scaffolds is 

thought to possibly contribute to the downregulation of TcR signalling in anergy (553). 

Interestingly therefore, peripheral expression of p27
kip1

, which was perhaps rather 

surprisingly found to be higher in anergic compared to primed T cells, has been implicated 

as having a role in the rearrangement of the cytoskeleton by its ability to negatively 

regulate RhoA activity (554), which is involved in the regulation of the cytoskeletal 

remodelling that leads to cell adhesion and migration (555). For example, in human 

mesangial cells Akt/PKB-mediated phosphorylation of p27
kip1

 causes translocation of 

p27kip1 to the cytoplasm where it binds RhoA resulting in uncoupling RhoA from the Lim 

kinase/cofilin pathway and leading to actin disassembly by depolymerisation (556). Further 

support for multiple p27
kip1

 functions is apparent in a number of cancers where cytoplasmic 

p27
kip1

 is usually concurrent with nuclear expression of p27
kip1

 in tumour cells (557) and it 

has been suggested that such cells are able to regulate their cell cycle as well as having a 

decreased ability to migrate. Indeed, cytoplasmic expression of p27kip1 is associated with a 

good prognosis in some cancers (557). Whilst higher levels of peripheral p27
kip1

 were 

found in anergic compared to primed T cells, this peripheral expression predominantly co-

localised with lipid rafts in both cell types indicating that perhaps p27
kip1

 exerts its negative 

regulatory effects at this location, by preventing the cytoskeletal remodelling required for T 

cell activation. 

In summary, the maintenance phase of anergy relative to that of priming, reflects a 

combination of downregulated ERK activation and differentially regulated cell cycle 

modulators. These data suggest that both upregulation of p27
kip1

 and downregulation of 

nuclear p-Rb expression are necessary, together with reduced ERK MAPK signalling, for 

the anergic state to be maintained. Furthermore, it appears that modulation of the 
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subcellular localisation as well as the expression levels of such molecules is important for 

maintenance of the anergic phenotype. 
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Figure 4.1 ERK-dependent cell cycle regulation. Upon TcR ligation, in the presence of 

CD28-mediated co-stimulation, the Ras-ERK and p38/JNK MAPK signalling cascades are 

initiated and subsequently c-Fos and c-Jun are induced, and AP-1 is activated. Such ERK-

dependent AP-1 transcription contributes to the upregulation of cyclin D as c-Jun, an AP-1 

constituent, activates the cyclin D1 promoter. CDK4, CDK6 and D-type cyclins can then 

associate and act to phosphorylate Rb, first by cyclin D–cdk4/6 then further by cyclin E-

cdk2, thereby altering its conformation. Hyperphosphorylated Rb (p-Rb) releases bound 

E2F family transcription factors which are then free to activate the genes required for entry 

into S phase (e.g. cyclin A and cyclin E) and hence proliferation. Cdc2 (CDK1) and CDK2 

are then activated and can both associate with cyclin A at S phase where they also act to 

phosphorylate and inactivate Rb thus, further fuelling cell cycle progression. 
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Figure 4.2 Induction of priming and tolerance in Ag-specific TcR Tg T cells in vitro. 

Primary antigen-specific T cells were treated with immobilised anti-CD3 in the absence or 

presence of soluble anti-CD28 for 48 h, to induce anergy or priming, respectively. Excess 

Ab was then washed off and the cells were rested for a further 48 h. Naïve T cells were 

freshly isolated. Anergic, primed or naïve T cell populations were then cultured with either 

DC alone or OVA323-339-loaded DC for 1 or 20 h prior to fluorescence staining and analysis 

by LSC. 
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Figure 4.3 Validation of the induction of anergy and priming in Ag-specific TcR Tg T 

cells in vitro. The functionality of anergic, primed and naïve T cells was assessed at 

different timepoints after stimulation with DC alone (DC) or DC loaded with OVA323-339

(DC + Ag). Levels of IL-2 production (A) and proliferation (B, C), measured at 20 and 48 h 

respectively, were lower in anergic (open bars) compared with the primed (black bars) and 

naïve (hatched bars) T-cell populations, after re-stimulation with OVA323-339-loaded DC. 

Surface expression of the early T cell activation marker, CD69, was similar in both anergic 

and primed T cells re-stimulated with Ag (D). The results shown (A-C) are means +/- SD 

of triplicate cultures and are representative of five individual experiments (*p ≤ 0.05). 
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Figure 4.4 Analysis of cell cycle progression of Ag-specific T cells after re-stimulation 

with Ag-loaded APC by laser scanning cytometry. The cell cycle status of 1000 anergic 

(open bars), primed (closed bars) and naive (hatched bars) Ag-specific T-cells was analysed 

following staining with DAPI and the KJ1.26 Ab. The max-pixel value (depicting 

chromatin concentration/condensation) is plotted along the x-axis and the integral value 

(representing DNA content) along the y-axis (A). Apoptotic (AP) cells and cells at G0/G1, S 

phase, mitosis (M) as well as newly formed daughter cells (ND) were identified as 

described in Figure 3.2. The proportion of naive, anergic and primed Ag-specific T-cells at 

different stages of the cell cycle was determined by LSC (E). The results shown are 

representative of five individual experiments. 
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Figure 4.5 Detection of pERK by Western Blotting and LSC: a comparison. Activation

levels of ERK1/2 20 h after re-stimulation with LPS matured DC alone (-) or such DC 

pulsed with OVA323-339 (+) were measured using Western Blot analysis of pERK1/2 and 

total ERK1/2 levels in whole cell lysates of mixed cell populations (A). Cells were also 

cytocentrifuged 20 h after re-stimulation with OVA323-339 pulsed DC and analysed for 

pERK expression in antigen-specific T cells by LSC as described in Section 2.18 (B). The 

data are representative of at least three independent experiments. 



150

Figure 4.6 Visualisation of ERK activation using three colour immunofluorescence.

Cells were identified by nuclear staining with the DNA dye DAPI (A; Blue) and for the 

transgenic TcR by staining with the clonotypic antibody (KJ1-26) (B; Red).  The 

expression of activated ERK was then determined with an antibody specific for pERK (C; 

Green). Merging these images (D) allows assessment of pERK in antigen-specific T cells in 

the presence (D, F) or absence (E) of antigen. Primed (A-E) and anergised (F) T cells are 

represented. Fields of view were taken at x20 magnification, with the inset representing a 

single T cell-APC interaction (depicted by the square; x40 magnification). The anergic 

sample was examined at a higher cellular concentration in order to visualise sufficient 

representative numbers of Ag-specific T cells in this population. 
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Figure 4.7 Quantitation of antigen-specific ERK activation by laser scanning 

cytometry. Total cellular expression of pERK at 20 h after antigen re-stimulation of naïve, 

anergised and primed KJ1.26
+
 T cells is represented using the fluorescence integral value 

(MFI) (A). The proportion of antigen-specific KJ1.26
+
 T cells expressing pERK was also 

determined (B). The MFI results shown are the average of 250 KJ1.26
+
 transgenic T-cells 

(A). Similar results were obtained in four replicate experiments.  
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Figure 4.8 Intracellular localisation of pERK staining in Ag-specific T cells. KJ1.26
+ 

pERK+ T cells from primed and anergised populations were randomly relocated by the 

LSC. Three representative individual primed or anergised T cells (A, B) were identified by 

nuclear staining with the DNA dye DAPI (A, B; Blue). Cells positive for the Tg TcR were 

then identified by staining with the clonotypic antibody (KJ1.26) (A, B; Red).  The 

expression of activated ERK was then determined with an antibody specific for pERK (A, 

B; Green). Merging these images (A, B) allows assessment of the localisation of pERK in 

antigen-specific T cells in the presence of antigen. Turquoise represents a diffuse location 

of pERK (DAPI-Blue+ pERK-Green), whereas yellow depicts a more peripheral 

cytoplasmic expression (KJ1.26 -Red and pERK-Green) (C, D). Diffuse versus peripheral 

localisation of pERK quantitated by peripheral contouring with LSC (C). Total (C) and 

peripheral (D) pERK was quantified for 250 pERK+, anergic and primed Ag-specific T 

cells.  
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Figure 4.9 Subcellular localisation of pERK expression in relation to lipid rafts in Ag-

specific T cells. Anergic and primed antigen-specific T cells were re-stimulated with DC 

pulsed with OVA323-339 for 20 h. Antigen-specific Tg T cells were identified by the 

clonotypic Ab KJ1.26 (blue) whereas pERK expression was detected by the relevant 

specific Ab (red) and lipid raft structures were identified using a Cholera Toxin subunit B-

Alexa Fluor® 488 conjugate (green). KJ1.26
+
 pERK

+
 T cells from anergised and primed 

samples were randomly relocated by LSC and the localisation of pERK in relation to lipid 

rafts in KJ1.26
+
 T cells was observed. Representative individual anergised and primed cells 

were identified and imaged as described in Chapter 3. 
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Figure 4.10 Profile of pERK signalling in Ag-specific T cells undergoing different 

stages of cell cycle. Anergic and primed T cells were re-stimulated with LPS-matured, 

OVA323-339 pulsed DC for 20 h and the profile of ERK activation in Ag-specific T cells at 

different stages of cell cycle was assessed (1000 KJ1.26
+
 T cells, in both populations), 

following staining with DAPI and anti-KJ1.26 and anti-pERK Abs and analysis by LSC.
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Figure 4.11 Correlation of pERK intensity with cell cycle progression. Naïve, anergic 

and primed Ag-specific T cells were re-stimulated with DC loaded with OVA323-339 for 20 h 

before being stained with DAPI to identify all nucleated cells, KJ1.26 Ab to detect the Ag-

specific T cells (A. i) and pERK (A. ii). Each Ag-specific T cell population was analysed 

for its expression of pERK (A) and the cell cycle status of Ag-specific T cells expressing 

different intensities of pERK was assessed by LSC (B-E). Exemplar cell cycle plots are 

shown for naïve Ag-specific T cells expressing low (region 1), medium (region 3) and high 

(region 5) levels of pERK (B). The proportion of naïve (C), anergic (D) and primed (E) Ag-

specific T cells, expressing different intensities of pERK expression, undergoing apoptosis 

(black line) and in each stage of cell cycle (G0/G1: blue line; S: orange line; M: green line) 

was examined. 
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Figure 4.12 Examining the expression pattern of pERK during cell cycle progression 

of anergic and primed T cells. Anergic (open bars) and primed (closed bars) T cells were 

re-stimulated with LPS-matured, OVA323-339-loaded DC for 1 (A, B) or 20 (C, D) h and the 

cell cycle status of 500 pERK-expressing KJ1.26
+
 T cells, in both populations, was 

analysed following staining with DAPI and anti-KJ1.26 and anti-pERK Abs by LSC (A, 

C). The level (MFI) at which pERK was expressed in these cells during different stages of 

cell cycle was also examined by LSC (B, D) and an exemplar histogram depicting the cell 

cycle status of the Ag-specific (KJ1.26
+
) T cell population at 20 h is shown (E). Data are 

representative of four identical experiments. 
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Figure 4.13 Quantitation of antigen-specific p-Rb expression by laser scanning 

cytometry. The proportions of naïve, anergic and primed KJ1.26+ T cells expressing p-Rb, 

1 (open bars) and 20 (closed bars) h after re-stimulation with OVA323-339-loaded DC, were 

determined by LSC (A). The total cellular expression of p-Rb was also measured by LSC 

(B). Results shown are the average of 250 KJ1.26
+
 Tg T cells per group.
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Figure 4.14 Intracellular localisation of p-Rb expression in Ag-specific T cells. Anergic 

and primed antigen-specific T cells were re-stimulated with OVA323-339-loaded DC for 1 h 

and then stained with DAPI to identify the cells via their nucleus. Cells expressing the Tg 

TcR specific for OVA323-339 were detected using the clonotypic antibody KJ1.26 (A; Red). 

pRb expression in these cells was detected using an antibody specific for pRb (A; Green). 

KJ1.26
+ 

pRb
+
 T cells from primed and anergised populations were randomly relocated by 

LSC and representative images of each population were captured (A). In addition, the 

peripheral pRb expression was quantitated by LSC (B).  
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Figure 4.15 p-Rb expression profile in T cells at different stages of cell cycle. Anergic 

and primed T cells were re-stimulated with LPS-matured, OVA323-339 pulsed DC for 1 h and 

the expression profile of p-Rb in the different stages of cell cycle was assessed for 250 

KJ1.26
+
 T cells, in both populations, following staining with DAPI and anti-KJ1.26 and 

anti-p-Rb Abs by LSC. 
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Figure 4.16 Assessing the cell cycle status of p-Rb-expressing Ag-specific T cells. 

Anergic (A) and primed (B) T cells were cultured with DC alone for 1 h (hatched bars) or 

re-stimulated with DC loaded with OVA323-339 for 1 (open bars) or 20 h (closed bars) and 

the cell cycle status of 500 p-Rb-expressing KJ1.26
+
 T cells, in both populations, was 

analysed following staining with DAPI and anti-KJ1.26 and anti-p-Rb Abs by LSC. Thus, 

the cell cycle profile of the different unstimulated Ag-specific p-Rb-expressing T cell 

populations was compared to that of the Ag-stimulated cells over a period of time. 
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Figure 4.17 Proportion of Ag-specific T cells expressing p-Rb at each stage of cell 

cycle. Anergic (open bars) and primed (closed bars) T cells were re-stimulated with LPS-

matured, OVA323-339-loaded DC for 1 (A, B) or 20 (C, D) h and the cell cycle status of 500 

p-Rb-expressing KJ1.26
+
 T cells, in both populations, was analysed following staining with 

DAPI and anti-KJ1.26 and anti-p-Rb Abs by LSC (A, C) The level at which p-Rb was 

expressed in these cells during different stages of cell cycle was also examined by LSC (B, 

D). 



162

Figure 4.18 Quantitation of p-cdc2/p-CDK2 expression in Ag-specific T cells by laser 

scanning cytometry. Naïve, anergic and primed Ag-specific T cells were cultured with DC 

alone for 1 h (hatched bars) or re-stimulated with LPS-matured, OVA323-339-loaded DC for 

1 (open bars) or 20 h (closed bars). Following staining with DAPI and anti-KJ1.26 and anti-

p-cdc2/p-CDK2 Abs, the proportions of naïve, anergic and primed KJ1.26
+
 T cells 

expressing p-cdc2 (A) as well as the level of p-cdc2/p-CDK2 expression (MFI; B) was 

measured by LSC. Results shown are the average of 250 KJ1.26+ Tg T cells and are 

representative of four identical experiments. 
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Figure 4.19 Determining the expression profile of p-cdc2/p-CDK2 in Ag-specific T 

cells after challenge with antigen. Anergic and primed T cells were re-stimulated with 

LPS-matured, OVA323-339 pulsed DC for 20 h and the expression profile of p-cdc2/p-CDK2 

in the different stages of cell cycle was assessed for 250 KJ1.26
+
 T cells, in both 

populations, following staining with DAPI and anti-KJ1.26 and anti-p-cdc2/p-CDK2 Abs 

by LSC.
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Figure 4.20 Assessing the cell cycle status of the p-cdc2/p-CDK2-expressing Ag-

specific T cells. Anergic (A) and primed (B) T cells were cultured with DC alone for 1 h 

(hatched bars) or re-stimulated with DC loaded with OVA323-339 for 1 (open bars) or 20 h 

(closed bars) and the cell cycle status of 500 p-cdc2/p-CDK2-expressing KJ1.26
+
 T cells, in 

both populations, was analysed following staining with DAPI and anti-KJ1.26 and anti- p-

cdc2/p-CDK2 Abs by LSC. Thus, the cell cycle profile of the different unstimulated Ag-

specific p-cdc2/p-CDK2-expressing T cell populations was compared to that of the Ag-

stimulated cells over a period of time. 
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Figure 4.21 Proportion of Ag-specific T cells expressing p-cdc2/p-CDK2 at each stage 

of cell cycle. Anergic (open bars) and primed (closed bars) T cells were re-stimulated with 

LPS-matured, OVA323-339-loaded DC for 1 or 20 h and the cell cycle status of 500 p-cdc2-

expressing KJ1.26
+
 T cells, in both populations, was analysed following staining with 

DAPI and anti-KJ1.26 and anti- p-cdc2 Abs by LSC (A, B). The level at which p-cdc2 was 

expressed in these cells during different stages of cell cycle was also examined by LSC (C, 

D). Data are representative of four identical experiments.
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Figure 4.22 Quantitation of p27
kip1

 expression in Ag-specific T cells by laser scanning 

cytometry. The proportions of naïve, anergic and primed KJ1.26+ T cells expressing 

p27
kip1

, 20 h after re-stimulation with DC alone (open bars) or OVA323-339-loaded DC 

(closed bars), were determined by LSC (A). The fold increase in the level of p27
kip1

expression (MFI) in cells re-stimulated with OVA323-339-loaded DC compared with that in 

cells cultured with DC alone, was also measured by LSC (B). Results shown are the 

average of 250 KJ1.26+ Tg T cells. Similar results were obtained in three replicate 

experiments.
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Figure 4.23 Determining the cell cycle profile of p27
kip1

 in Ag-specific T cells. Anergic 

and primed T cells were re-stimulated with LPS-matured, OVA323-339 pulsed DC for 1 h and 

the expression profile of p27
kip1

 in the different stages of cell cycle was assessed for 250 

KJ1.26
+
 T cells, in both populations, following staining with DAPI and anti-KJ1.26 and 

anti-p27
kip1

 Abs by LSC.
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Figure 4.24 Proportion of Ag-specific T cells expressing p27
kip1

 at each stage of cell 

cycle. Anergic (open bars) and primed (closed bars) T cells were re-stimulated with LPS-

matured, OVA323-339-loaded DC for 1 or 20 h and the cell cycle status of 500 p27
kip1

-

expressing KJ1.26
+
 T cells, in both populations, was analysed following staining with 

DAPI and anti-KJ1.26 and anti- p27
kip1

 Abs by LSC (A, B). The level at which p27
kip1

 was 

expressed in these cells during different stages of cell cycle was also examined by LSC (C, 

D). Data are representative of three identical experiments. 
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Figure 4.25 Intracellular localisation of p27
kip1

 expression in Ag-specific T cells.

Anergic and primed antigen-specific T cells were re-stimulated with OVA323-339-loaded DC 

for 1 (A) and 20 (B) h before being stained with the clonotypic antibody KJ1.26 in order to 

identify them via their Tg TcR (Blue). p27
kip1

 expression in these cells was detected using 

an antibody specific for p27
kip1

 (Red). KJ1.26
+ 

p27
kip1+

 T cells from primed and anergised 

populations were randomly relocated by LSC and representative images of each population 

were captured (A, B). At the 20 h timepoint, the peripheral p27kip1 expression was 

quantitated by LSC (C).  
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Figure 4.26 Subcellular localisation of p27
kip1

 expression in relation to lipid rafts in 

Ag-specific T cells. Anergic and primed antigen-specific T cells were re-stimulated with 

DC pulsed with OVA323-339 for 20 h. Antigen-specific Tg T cells were identified by the 

clonotypic Ab KJ1.26 (blue) whereas p27
kip1

 expression was detected by the relevant 

specific Ab (red) and lipid raft structures were identified using a Cholera Toxin subunit B-

Alexa Fluor® 488 conjugate (green). Single-, 2- (red + green) and 3-colour merged images 

were generated. KJ1.26+ p27kip1+ T cells from anergised and primed samples were 

randomly relocated by LSC and the localisation of p27
kip1

 in relation to lipid rafts in KJ1-

26
+
 T cells was observed. Representative individual anergised and primed cells were 

identified and imaged as described in Chapter 3.



171

Chapter 5 

Analysis of the role of Rap1 signalling in tolerance and priming
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Introduction 

In the previous chapter, it was reported that the distinct functional outcomes of T 

cell priming and tolerance are associated with marked differences in the amplitude, kinetics 

and cellular localisation of activated, phosphorylated ERK (pp42ERK2/ pp44ERK1) 

signals with primed Ag-specific T cells showing enhanced activation of ERK relative to 

tolerised Ag-specific cells at the single cell level (12). Consistent with this, it has 

previously been shown that anergised T cells exhibit a failure to transcribe IL-2 which is 

secondary to a lack of ERK and AP-1 activation (441). These earlier studies suggested that 

such defective ERK activation is accompanied by accumulation of the GTPase, Rap1 (351, 

540, 558), and that such Rap1 accumulation can disrupt TcR coupling to ERK activation by 

sequestering Raf-1 and hence directly antagonising Ras-Raf-1-ERK signalling (347). 

Supporting this, accumulation of active Rap1 has been reported to play a role in the 

maintenance of anergy in human T cell clones (50, 347), with tolerant cells displaying 

reduced ERK activation due to recruitment of a Fyn-Cbl-CrkL-C3G-Rap1 signalling 

complex not found in their primed counterparts (347). Furthermore, an inverse relationship 

between ERK and Rap1 activation has been shown in various T cell lines (350) and also 

that CD28 signalling abolishes TcR-coupled Rap1 activity (351-353). 

However, controversy surrounds the role of Rap1, as it has also been reported to 

play positive regulatory roles in T cell activation (356, 559). For example, studies in mice 

transgenic for the constitutively active mutant of Rap1, Rap1V12, have suggested that Rap1 

may play a role in promoting priming of T cells (560). Moreover, other work has 

implicated a role for Rap1 in promoting T cell signalling via enhanced integrin activation 

and adhesion (356, 357). In addition, many of these events associated with Rap1 

accumulation and activation in anergised T cells appear to be downstream consequences of, 

as yet, poorly defined defects in events proximal to TcR signalling and have mainly been 

characterised using in vitro models that may not reflect the responses of primary Ag–

specific CD4+ T cells in vivo. As a result the role(s) of Rap1 in the primary molecular 

processes that distinguish tolerised and primed T cells in intact lymphoid tissues remain 

uncertain. 
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Aims 

In order to investigate the potential role of Rap1 in mediating the differences 

previously observed in ERK signalling under conditions of tolerance and priming (Chapter 

4) in a physiological setting, the expression and subcellular localisation of Rap1 in tolerised 

compared to primed Ag-specific T cells both in vitro and in vivo was investigated using 

laser scanning cytometry. Specifically, it was planned to: 

• Assess Rap1 expression in individual anergic and primed antigen-specific T cells 

during the induction and maintenance phases of tolerance and priming in vitro. 

• Examine the subcellular localisation of Rap1 in anergic and primed antigen-specific 

T cells. 

• Investigate Rap1 expression throughout the cell cycle in individual primed and 

anergic Ag-specific T cells following antigenic challenge. 

• Study ERK activation and Rap1 expression in individual tolerised and primed Ag-

specific T cells following challenge with Ag in vivo. 

• Examine ERK activation and Rap1 expression in individual Ag-specific T cells 

following induction of tolerance and priming in vivo. 

• Investigate the expression of Rap1 in in vivo tolerised and primed antigen-specific T 

cells situated in distinct areas of the lymph node.
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Results 

5.1 Rap1 expression is higher in tolerised than in primed Ag-specific CD4
+
 T cells in 

vitro

Priming or anergy was induced in primary Ag-specific TcR Tg T cells by activation 

of the TcR in the presence or absence of appropriate co-stimulation using plate-bound anti-

CD3 and soluble anti-CD28 as described previously (Section 4.1; (12, 51, 53)). These 

conditions induced functional priming or unresponsiveness by the criteria illustrated in 

Section 4.1 (12, 51, 487) and as evidenced here by the analysis of IL-2 production. Thus, 

upon re-stimulation with Ag, primed T cells produced significantly higher levels of IL-2 

than naïve cells whilst anergic T cells produced no IL-2 whatsoever (Figure 5.1A).  

To investigate the potential role(s) of Rap1 in the induction and effector phases of 

such tolerance induction in vitro, Rap1 expression in naïve, primed or anergic groups of T 

cells was examined by LSC (Figures 5.1B-D) 20 h after these T cells had been stimulated 

in the absence or presence of Ag. As expected and consistent with the IL-2 production data 

(Figure 5.1A), such LSC analysis confirmed that the in vitro priming and tolerance regimes 

produced a larger population of antigen-specific (KJ1.26+) T cells in the primed relative to 

the anergic groups (Figure 5.1B). When challenged with LPS-matured DC in the absence of 

Ag, a similar percentage of anergic and primed Tg T cells expressed Rap1 and this was 

higher than that observed for naïve cells cultured with DC alone (Figure 5.1B & C), 

suggesting it was unlikely that Rap1 played an essential role in the induction phase of 

anergy. Upon re-stimulation with Ag, however, there was a sharp decrease in the 

percentage of primed Ag-specific T cells expressing Rap1. Conversely, there was a 

substantial increase in the percentage of anergic Ag-specific T cells expressing Rap1 

(Figure 5.1B & C), suggesting that Rap1 expression may be associated with the 

maintenance phase of tolerance. Moreover, the finding that Rap1 expression is 

downregulated in naïve and primed T cells challenged with Ag in the presence of co-

stimulation (as provided by LPS-matured DC pulsed with Ag) is consistent with previous 

reports that CD28-signalling downregulates Rap1 (50, 351-353) and perhaps also suggests 

that Rap1 expression may play a role in preventing inappropriate activation of naive T 

cells. Quantitation of the Rap1 signal in Rap1
+
 Ag-specific T cells revealed that, when 

expressed, Rap1 was expressed at similar levels in all groups, regardless of whether they 

had been re-stimulated with Ag or not (Figures 5.1B & D). 
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5.2 Differential intracellular localisation of Rap1 expression in anergic and primed 

Ag-specific T cells 

As was shown previously (Section 4.2; (12)), primed T cells expressed higher levels 

of activated ERK (pERK) relative to anergic T cells after challenge with Ag and this pERK 

was localised primarily at the cell periphery. Conversely, the lower levels of pERK 

expressed by anergic T cells exhibited a more diffuse cellular distribution (Figure 5.2A). To 

investigate whether the lack of focused, peripheral pERK expression reflected membrane 

localisation of Rap1, sequestration of Raf-1 and hence disruption of recruitment and 

activation of ERK, the intracellular localisation of Rap1 was examined in anergic and 

primed Ag-specific T cells. Rap1 was indeed found to display an inverse pattern of cellular 

localisation to that of pERK, being concentrated at the periphery of anergic T cells, and 

showing a more diffuse, punctate, pattern of expression in primed T cells. Interestingly, 

although some foci of Rap1 staining could be seen at the periphery of primed cells, it 

appeared to be excluded from the vicinity of the TcR (Figure 5.2A). In accordance with 

such punctate Rap1 expression, there is evidence in the literature that Rap1 may localise to 

vesicular compartments in certain instances. For example, nerve growth factor-induced 

activation of Rap1 has been shown to occur in neuronal early endosomes (561) and 

exposure of FRTL-5 (rat thyroid cell line) to forskolin results in the recruitment of B-Raf to 

a vesicular compartment where it co-localises with Rap1 (562). In addition, tuberin-

associated microsomes in 293 T cells have been shown to be enriched with Rap1 (563). 

To quantify the subcellular localisation of Rap1 by LSC, peripheral contour analysis 

methods established previously (Section 4.4; (12, 392)), were utilised (Figure 5.2B, C). 

These confirmed that, in addition to a greater percentage of anergic relative to primed cells 

expressing Rap1 following challenge with Ag, a higher proportion of anergic T cells 

expressed Rap1 peripherally (Figure 5.2D). Moreover, although the integral levels of such 

peripheral Rap1 expression appeared similar in both groups of T cells following antigenic 

challenge (Figure 5.2E), this showed a more focused pattern of expression in anergic T 

cells, as indicated by increased intensity (max pixel) of signal (Figure 5.2F). This peripheral 

localisation of Rap1 in anergic cells is again inverse to that of pERK, which was found 

previously to be expressed at much lower levels in the periphery of anergic T cells 

compared with primed T cells (Figure 4.8; (12)).  
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5.3 Relationship of ERK and Rap1 localisation to lipid rafts in primed and anergic 

Ag-specific T cells.

As organised recruitment of the TcR and signalling molecules in lipid rafts to the 

immunological synapse is one of the principal features of T cell activation and this is 

reported to be defective in anergic cells (524, 539, 564, 565), the intracellular localisation 

of pERK and Rap1 in relation to lipid rafts was examined, 20 h after the cells were re-

stimulated with Ag. Consistent with the idea that peripheral pERK was associated with T 

cell activation, pERK co-localised with lipid raft staining in primed Ag-specific T cells 

(Figure 4.9 and 5.2G). Such co-localisation was not observed in anergic Ag-specific T 

cells, suggesting that lipid rafts, or the interaction of pERK with these structures, is 

defective under conditions of tolerance. Conversely, there was marked co-localisation of 

Rap1 with lipid rafts in anergic, but not primed, Ag-specific T cells following re-

stimulation with Ag (Figure 5.2G), perhaps suggesting that within lipid raft regions of the 

immunological synapse of anergic cells, Rap1 is activated to antagonise ERK recruitment 

and activation.  

5.4 Cell cycle progression of Rap1-expressing Ag-specific T cells 

In Chapter 4, cell cycle progression was investigated in naïve, primed and anergised 

T cell populations, following challenge with Ag, using LSC (566-568) and in addition, the 

activation status of ERK at each stage of the cell cycle was assessed at the single cell level 

(Section 4.6). As mentioned previously, Ag-specific unresponsiveness can result in cell 

cycle arrest at the transition from G1-S phase in individual T cells (444, 540) and consistent 

with this, these studies showed that primed T cells exhibited a higher percentage of mitotic 

and newly formed daughter cells compared to anergic T cells, whilst anergic T cells 

showed downregulated progression through S phase and higher levels of apoptosis 

compared to primed T cells (Figure 4.12, (12)). Associated with this, we found that the 

enhanced ERK activation, observed in primed relative to anergic cells correlated with 

increased ERK activation at all stages of cell cycle progression but not in cells arrested in 

G0/G1 or undergoing apoptosis. Hence, it was hypothesised that the highest percentage of 

Rap1 expressing anergic T cells might be observed in the G0/G1 phase. 

The cell cycle status of the anergic and primed Rap1-expressing Ag-specific 

(KJ1.26+ Rap1+) T cell populations was therefore assessed at 1 and 20 h after re-stimulation 

with LPS-matured DC pulsed, or not, with Ag. The 1 h timepoint was chosen to assess 
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early effects of Ag on cell cycle progression and the 20 h timepoint was selected mainly to 

examine S phase transition as effective stimulation has been shown to promote entry of 

naïve primary T cells into cell cycle within this time scale (441). After 1 h, the majority of 

both primed and anergic T cells expressing Rap1 were found to be in G0/G1 phase whether 

they have been re-stimulated with Ag (Figure 5.3C) or not (Figure 5.3A). No obvious 

differences were observed in the remaining cell cycle stages between the groups. By 20 h 

both primed and anergic Rap1 expressing T cells appear to be progressing through cell 

cycle regardless of re-stimulation status (Figure 5.3B, D), but these percentage data do not 

provide any information as to the relative rates of progression or numbers of cycles 

undergone by the individual groups. For further clarification, this data was then interpreted 

as the number of Rap1-expressing Ag-specific T cells expressed as the percentage of all of 

the Ag-specific T cells in each stage but again, this analysis did not highlight any clear 

differences between primed and tolerised cells or indeed, any correlation of Rap1 with 

arrest or cell cycle progression (data not shown). 

Similarly, the mean fluorescence intensity (MFI) of Rap1 expressed by Ag-specific 

T cells in different stages of cell cycle was next examined. At the 1 h timepoint Rap1 

appears to be expressed at similar levels in both anergic and primed T cells except during 

mitosis, when anergic T cells have been re-stimulated with Ag (Figure 5.4C). Here, the 

intensity of Rap1 expression is 2-fold greater than in T cells in any other stage of cell cycle. 

By 20 h, the anergic T cells which had progressed into mitosis were expressing a higher 

level of Rap1 compared to the primed T cells in this stage (Figure 5.4B, D). It should be 

noted that, at 20 h, Rap1 expression in primed cells was highest in those in G0/G1 (Figure 

5.4D) and, according to the previous figure (Figure 5.3D), such cells constituted a small 

proportion of the Ag-specific T cell population. Conversely, Rap1 expression was highest 

in mitotic anergic cells (Figure 5.4D) and such cells composed a high proportion of the Ag-

specific T cell population (Figure 5.3D). It is possible that such Rap1
hi

 anergic cells may be 

arrested at the G2/M phase and are therefore unable to further progress through cell cycle. 

Furthermore, the primed T cells which were in G0/G1 exhibited higher levels of Rap1 

expression than the anergic G0/G1 cells (Figure 5.4C, D). It may be that the high level of 

Rap1 expression observed in such primed T cells is preventing these cells from proceeding 

through another round of cell division. However, for this to be proven, later timepoints 

would need to be examined to assess whether this was the case. Indeed, these data only 

provide a snapshot, at two timepoints, of Rap1 signalling in relation to cell cycle status of T 
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cells. In order for this relationship to be fully investigated, extensive kinetic studies would 

be required in which regular, frequent timepoints from 0 to at least 48 h following co-

culture of T cells with APC, were assessed. Such analysis would be necessary to investigate 

the possible differential kinetics of the responses elicited by anergic versus primed T cells. 

For example, the rate of cell cycle progression may be different in these two cell types thus, 

kinetic studies should enable a more informed interpretation of the signalling profiles 

within these different cellular populations. 

5.5 Role for Rap1 in the maintenance of tolerance in vivo? 

To investigate whether similar inverse patterns of Rap1 and pERK accumulation are 

found during tolerance and priming in vivo, Rap1 expression was examined in Ag-specific 

CD4+ T cells taken from a systemic model of Ag-specific priming and tolerance (89, 378, 

382, 383). Thus, 24 h after adoptive transfer of Ag-specific TcR Tg T cells, recipient mice 

received OVA323-339 peptide i.v., either alone or together with LPS to induce systemic 

tolerance or priming respectively. The efficacy of these regimes was confirmed by 

assessing the clonal expansion (Figure 5.5) and follicular migration (Figure 5.6) of Ag-

specific CD4+ T cells in the peripheral lymph nodes (PLN), mesenteric lymph nodes 

(MLN) and spleen, 0, 3, 5 and 10 days after primary exposure to Ag ± LPS. In addition, the 

proliferative (Figure 5.7A) and cytokine (Figure 5.7B) recall responses of such Ag-specific 

CD4
+
 T cells from peripheral lymph nodes were assessed ex vivo. 

The peak of Ag-specific clonal expansion of each of the PLN, MLN and splenocyte 

populations (Figure 5.5A, B and C, respectively) was observed, as previously reported 

(378, 382, 569), at D3 after immunisation in both the tolerised and primed groups. 

Moreover, and, as also shown previously (378, 384), at all times after primary 

immunisation there was significantly higher clonal expansion in the tissues harvested from 

primed compared to tolerised mice. In addition, quantitation of the percentage of Ag-

specific T cells in follicular and paracortical areas of the PLN at D3 after primary 

immunisation indicated that the proportion of Ag-specific T cells present in the follicular 

areas of these tissues was significantly lower in the tolerised compared to primed groups 

(Figure 5.6), suggesting that fewer tolerised than primed Ag-specific CD4
+
 T cells had 

migrated into the B cell-rich follicles of these PLN. These latter results are consistent with 

previous findings that during the primary response to Ag, anergic Ag-specific T cells are 

defective in their ability to migrate to B cell follicles and hence, provide B cell help (378, 



179

384). Similar results were obtained when the MLN and spleen were examined (data not 

shown). Furthermore, after re-stimulation with OVA323-339 in vitro, tolerised T cells from 

PLN also showed reduced proliferation (Figure 5.7A) and IFNγ production (Figure 5.7B) 

relative to cells from primed mice. PLN cells from naïve mice proliferated significantly 

more than the tolerised group but less than the primed group. Finally, tolerised mice 

showed considerably lower serum OVA-specific IgG1 antibody responses after challenge 

with Ag in vivo than primed mice (Figure 5.7C). Collectively, these data show that i.v. 

administration of OVA with or without LPS as an adjuvant, induced priming and tolerance 

respectively in vivo. 

5.6 Investigation of the role(s) of pERK and Rap1 signalling in the maintenance phase 

of systemic priming and tolerance in vivo. 

The experiments investigating the role(s) of pERK (Section 4.2) and Rap1 (Section 

5.1) in the induction and maintenance of tolerance in vitro suggested that these molecules 

may play a role in the effector, but not induction phase, of priming and tolerance 

respectively. To determine whether this was also the case in vivo, mice were immunised, 24 

h after adoptive transfer of Ag-specific TcR Tg T cells, with OVA323-339 peptide i.v., either 

alone or together with LPS to induce systemic tolerance or priming respectively. Seven 

days after the primary immunisation, recipient mice were challenged with OVA323-339/LPS 

i.v. in order to examine the maintenance phase of tolerance. Following antigenic challenge 

(24 h), the expression of both pERK and Rap1 in Ag-specific T cells in the PLN was 

examined in situ by LSC, as described in Section 2.6.3. 

In situ analysis of Ag-specific T cells primed or tolerised in vivo, corroborated the 

in vitro findings in that a significantly lower percentage of in vivo tolerised compared to 

primed T cells expressed pERK (Figure 5.8B, C). However, the level of ERK activation did 

not differ significantly between the groups at this time (Figure 5.8D). Moreover, and also in 

agreement with the in vitro data, a significantly higher percentage of Ag-specific T cells in 

PLN from the tolerised group expressed Rap1 compared to those from the primed group 

(Figure 5.8F, G). Furthermore, when the levels at which Rap1 was being expressed in these 

PLN cells in situ were measured, the tolerised Ag-specific T cells were found to be 

expressing Rap1 at significantly higher levels than the primed Ag-specific T cells (Figure 

5.8H). In addition, when splenic tissue was examined, a significantly higher percentage of 

tolerised compared to primed Ag-specific T cells were expressing Rap1 and the pERK-
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expressing tolerised T cells exhibited significantly lower levels of ERK activation than the 

primed T cells (data not shown). From these data, it seems possible that the increased Rap1 

expression observed in the in vivo tolerised T cells in situ, may correlate with the 

downregulation of ERK activation detected in these cells in vivo. 

5.7 Does Rap1 also have a role in the maintenance of oral tolerance in vivo? 

 To determine whether elevated Rap1 expression is generally associated with the 

maintenance of tolerance in vivo, or restricted to that induced systemically, the pattern of 

pERK and Rap1 expression in a more physiologically relevant model of oral tolerance (58, 

384) was examined. Mice were thus fed soluble OVA to induce tolerance or immunised 

subcutaneously with OVA/CFA to induce priming. The efficacy of this immunisation 

regime to induce priming and oral tolerance has previously been demonstrated (58). For 

example, Smith et al showed that animals tolerised in this manner generated a significantly 

lower Ag-specific delayed type hypersensitivity (DTH) response, less clonal expansion and 

fewer divisions of the Ag-specific T cells in the MLN than the primed animals (58), 

significantly reduced serum Ab production, a defect in follicular migration during the 

primary response to Ag and an inability to provide B cell help after challenge with Ag 

(384). In summary, this oral tolerising regime has been shown to be highly effective at 

inducing a state of tolerance in vivo. 

Ten days after primary immunisation, mice were challenged with OVA323-339 i.v. 

and 1 h later the expression of pERK and Rap1 in Ag-specific Tg T cells was examined in 

the inguinal PLN. In agreement with the in vitro and in vivo systemic models of tolerance, a 

significantly lower percentage of tolerised compared to primed Ag-specific T cells 

expressed pERK, after challenge with Ag (Figure 5.9B, C). Moreover, there did appear to 

be a trend indicating that the primed T cells were expressing higher levels of ERK 

activation, however this was not significantly different between the groups (Figure 5.9D), 

although it is possible that if more tissue sections per group were analysed, this apparent 

trend would be substantiated. By contrast, when Rap1 expression was assessed in these 

samples, a significantly higher proportion of tolerised compared to primed Ag-specific T 

cells expressed Rap1 (Figure 5.9F, G). In addition, and in agreement with the in vitro data, 

the tolerised Ag-specific T cells expressed Rap1 at significantly higher levels than the 

primed Ag-specific T cells (Figure 5.9F). Collectively, these data demonstrate that pERK 

and Rap1 exhibit inverse patterns of expression in both systemic and oral models of 
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tolerance and priming, which lends further support for the potential contributory role of 

Rap1 in the downregulation of ERK activation observed in tolerised T cells in vivo. 

5.8 Assessing the migratory capacity of Rap1 expressing Ag-specific T cells 

As described above, Ag-specific T cells tolerised in vivo do not enter B cell 

follicles. However, when re-challenged with a priming antigenic signal in vivo, such 

tolerised T cells are able to enter B cell follicles but they remain unresponsive as evidenced 

by their inability to provide B cell help (384). To investigate whether such 

unresponsiveness of follicular-located T cells reflects Rap1 expression, the percentage of 

Ag-specific T cells expressing Rap1 in distinct areas of the PLN was quantitated in situ by 

LSC, as described in Section 2.6.3. Consistent with the finding that re-challenge with 

priming Ag abrogates the block in follicular migration of tolerised T cells, there was no 

difference in the percentage of Ag-specific T cells expressing Rap1 in the B cell follicles or 

paracortex between groups, when this was measured as a percentage of the total number of 

Rap1-expressing Ag-specific T cells in the whole tissue (Figure 5.10C). However, the 

follicular tolerised Ag-specific T cells expressing Rap1 were found to express Rap1 at a 

significantly higher level than follicular primed Ag-specific T cells in the PLN (Figure 

5.10D). Interestingly, when the number of Ag-specific T cells expressing Rap1 was 

expressed as a percentage of the total number of Ag-specific T cells in the follicle or 

paracortex, there was a significantly higher percentage of tolerised compared to primed Ag-

specific T cells expressing Rap1 in the follicles and this also appeared to apply to 

paracortical cells in the PLN where a significant difference was detected (Figure 5.10E). 

Although tolerised T cells regain migratory capacity following antigenic challenge, 

they have been shown to be defective in their ability to provide B cell help (384). As Rap1 

may be involved in the disruption of MAPK signalling in tolerised T cells after challenge 

with Ag in vivo, the upregulated expression of Rap1 detected in tolerised compared to 

primed follicular Ag-specific T cells could therefore potentially implicate a role for Rap1 in 

incapacitating T cells from providing B cell help. 

5.9 Examining Rap1 expression in Ag-specific T cells situated in distinct tissue 

locations during the maintenance phase of oral tolerance 

The microenvironment location of Ag-specific T cells following oral induction of 

tolerance was also assessed to determine whether such localisation reflected the level of 
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Rap1 expression in these cells. Again, tissue was processed for analysis by LSC as 

described earlier for Figure 5.10 and the percentage of Ag-specific T cells expressing Rap1 

as well as the intensity of Rap1 expression in these cells was quantitated in distinct areas of 

the lymph node in situ (Figure 5.11). There was no significant difference in the number of 

Ag-specific T cells expressing Rap1 in the B cell follicles or paracortex between groups, 

when this was measured as a percentage of the total number of Rap1-expressing Ag-

specific T cells, in the PLN (Figure 5.11A). However, the follicular tolerised Ag-specific T 

cells expressing Rap1 were found to express Rap1 at a significantly higher level than 

follicular primed Ag-specific T cells (Figure 5.11B). In addition, no difference was 

observed, between the primed and tolerised T cells, when the number of Ag-specific T cells 

expressing Rap1 was expressed as a percentage of the total number of Ag-specific T cells 

in the follicle or paracortex (Figure 5.11C). 

5.10 Preliminary investigation of the role(s) of pERK and Rap1 signalling in the 

induction phase of systemic priming and tolerance in vivo. 

As described previously, the data generated from the in vitro studies indicated that 

pERK and Rap1 play roles in the maintenance but not induction phases of priming and 

tolerance. To investigate whether these molecules played roles in the induction phase of 

tolerance in vivo, pERK and Rap1 expression was assessed in situ in tolerised and primed 

Ag-specific T cells following primary exposure to Ag in vivo. Thus, 24 h after adoptive 

transfer of Ag-specific TcR Tg T cells, recipient mice were immunised with OVA323-339

peptide i.v., either alone or together with LPS to induce systemic tolerance or priming 

respectively. At 0, 4, 8, 12, 24 and 72 h following immunisation, PLN were harvested and 

the clonal expansion of the Ag-specific TcR Tg (CD4
+
 KJ1.26

+
) T cell population in each 

group was analysed by flow cytometry, as described in Sections 2.3.1 and 2.3.6. As 

expected and shown earlier (Figure 5.5), the peak of clonal expansion was observed 72 h 

after immunisation in both the tolerised and primed groups (Figure 5.12A). However, no 

clonal expansion was observed prior to this timepoint in any of the groups examined 

(Figure 5.12A). 

Due to the lack of Ag-specific T cell clonal expansion at any of the timepoints 

examined except 72 h, the frequency of Ag-specific T cells per tissue section was 

inadequate for quantitative analysis of pERK and Rap1 expression in these cells by LSC. 

Instead, frozen archived tissues from each group were thawed and processed for detection 
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of CD4, KJ1.26 and pERK or Rap1 expression by flow cytometry as described in Sections 

2.3.1 and 2.3.6. When the proportion of Ag-specific T cells expressing pERK was assessed, 

a significantly higher percentage of primed (22 %) compared to tolerised (12 %) T cells 

were found to exhibit ERK activation at 12 h (Figure 5.12B). However, an inverse pattern 

was observed at 24 h, when significantly more tolerised (47 %) than primed (6 %) T cells 

expressed pERK. A negligible percentage of naive T cells expressed pERK at all of the 

timepoints examined. A more detailed kinetic study of pERK expression at, and between, 

these timepoints may shed further light on the possible role of these differential kinetics of 

ERK activation during this part of the induction phase of tolerance. 

By contrast, Ag-specific T cells displayed similar kinetics of Rap1 expression 

during the induction of priming and tolerance and a higher proportion of both tolerised and 

primed groups expressed Rap1 compared with naïve T cells at 4, 8, 12 and 24 h after 

immunisation (Figure 5.12C). Such data indicates that elevated percentages of Rap1-

expressing T cells are required for induction of both tolerance and priming. When the levels 

of both pERK and Rap1 expression in the different Ag-specific T cell populations were 

measured, no differences were detected between the groups, suggesting that the levels of 

ERK activation or Rap1 expression did not play a determining role in the induction phase 

of tolerance or priming (Figure 5.12D, E). 
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Discussion 

It was shown in the previous chapter that marked differences in the kinetics, 

amplitude and localisation of pERK signals were found in individual naïve, primed and 

tolerised primary Ag-specific T cells responding to Ag in vitro (Chapter 4; (12)). In 

particular, it was shown that primed T cells display higher levels of phosphorylation and 

activation of ERK, upon challenge, than tolerised T cells. In addition, the low levels of 

pERK found in tolerised T cells were distributed diffusely throughout the cell, whereas in 

primed T cells, pERK appeared to be targeted to the same regions of the cell as the TcR 

(Chapter 4; (12)). These studies have now been extended to physiological in vivo models of 

Ag-specific priming and tolerance and have shown that a higher percentage of primed, 

relative to naïve or tolerised Ag-specific T cells in situ exhibit pERK expression following

re-challenge with Ag indicating that sustained ERK signalling in vivo correlates with 

productive T cell responses whilst defective ERK signalling is associated with the 

maintenance of tolerance. The precise mechanisms underlying such differential ERK 

signalling remain unclear but the data provided in this chapter show that the GTPase Rap1, 

which has previously been reported to accumulate and antagonise signals upstream of ERK 

activation under tolerogenic conditions in vitro (50, 347), is expressed in a significantly 

higher percentage of tolerised Ag-specific T cells, and at significantly higher levels, 

compared with primed T cells following challenge with Ag, both in vitro and in vivo. It is 

important to emphasise that, in accordance with the in vitro experiments, the inverse 

relationship between the accumulation of Rap1 and antagonism of ERK activation was also 

observed during the maintenance of tolerance in vivo. Moreover, as such a relationship was 

also observed in an oral tolerance model in vivo, these findings may have potential 

implications for clinical application, as oral tolerance has been suggested as a therapy for 

inflammatory disorders (570) and also because oral administration of compounds offers a 

more attractive route for drug delivery in humans. 

 The finding that Rap1 expression is downregulated in naïve and primed T cells 

after activation in the presence of costimulation is consistent with previous reports that 

CD28-signalling downregulates Rap1 (351-353). Moreover, the pattern of expression of 

Rap1 in such cells is the inverse to that of pERK thus, in anergic T cells, Rap1 shows a 

highly focused, peripheral expression that mirrors that of the TcR and is reminiscent of the 

formation of an immunological synapse, whereas in primed T cells, despite still forming 

foci at the periphery, expression of Rap1 is less polarised to the periphery and more diffuse 
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throughout the cell. The finding that Rap1 could be localised to the periphery of both 

primed and anergic T cells suggested that localisation alone was not sufficient to disrupt the 

peripheral recruitment and activation of pERK necessary for priming and that Rap1 

activation and/or complex formation with other signal transducers may be required. 

In this respect, it should be noted that the association between pERK and Rap1 and 

lipid rafts in re-stimulated, primed and tolerised cells also revealed an inverse relationship, 

with pERK being localised within such membrane microdomains in primed but not 

tolerised cells and Rap1 being targeted to lipid rafts in tolerised Ag-specific T cells. 

Collectively, these data suggest that Rap1 may be up-regulated and recruited to the immune 

synapse upon stimulation of tolerised T cells with Ag and that this may result in 

downregulation of ERK recruitment and activation, possibly as a result of Raf-1 

sequestration. This would lead to the uncoupling of the RasERKMAPkinase pathway from 

the TcR as has been observed in tolerant cells (571-573). 

As mentioned previously, Ag-specific unresponsiveness can result in cell cycle 

arrest at the transition from G1-S phase and associated with this, enhanced ERK activation 

observed in primed relative to anergic T cells correlated with increased ERK activation at 

all stages of cell cycle progression but not in cells arrested in G1 or undergoing apoptosis 

(Figures 4.9-4.11). It therefore seemed possible that the highest proportion of Rap1-

expressing anergic T cells would be detected in G0/G1. However, when Rap1 expression 

was assessed in such cells at different stages of cell cycle, no differences were observed 

between the groups (Figure 5.3). Such data may also reflect the dual roles of Rap1, as Rap1 

may be fulfilling a positive regulatory role in primed Rap1hi Ag-specific T cells. Moreover, 

the current data only provide a snapshot, at two timepoints, of Rap1 signalling in relation to 

cell cycle status of T cells and in order for this relationship to be fully investigated, 

extensive kinetic studies would be required in which regular, frequent timepoints from 0 to 

at least 48 h following co-culture of T cells with APC, need to be assessed. Such analysis 

would be necessary to investigate the possibly differential kinetics of the responses elicited 

by anergic versus primed T cells. For example, the rate of cell cycle progression may be 

different in these two cell types thus, kinetic studies should enable a more informed 

interpretation of the signalling profiles within these different cellular populations. 

Integrins are known to play a role in the migration and localisation of T cells (574, 

575) and Rap1 has received recent attention for its role in enhancing the function of a 

variety of integrins including LFA-1 & VLA-4 (576, 577). Consistent with this, Rap1A-
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deficient T cells have been shown to exhibit impaired integrin-mediated cellular adhesion 

(578) and Rap1-dependent adhesion via different integrin subsets is known to facilitate T 

cell migration and augment Ag-dependent T cell activation (560, 577). Thus, further to the 

differential expression of Rap1 observed in in vivo tolerised and primed T cells, Rap1 

signalling was examined in Ag-specific T cells which were situated in distinct areas of the 

lymph node. Although tolerised T cells regain their ability to migrate into the B cell-rich 

follicles following antigenic challenge, they have been shown to be defective in their ability 

to provide B cell help (384). As Rap1 may be involved in the disruption of MAPK 

signalling in tolerised T cells after challenge with Ag in vivo, the upregulated expression of 

Rap1 detected in tolerised compared to primed follicular Ag-specific T cells in this work 

could potentially implicate a role for Rap1 in incapacitating T cells from providing B cell 

help. 

Rap1 has long been implicated in the desensitisation of ERK and the consequent 

defective IL-2 production found in tolerised T cells (50, 352, 354, 579). Moreover, recent 

studies by Boussiotis and coworkers (580) have directly demonstrated that CD4
+
 T cells 

from Tg mice expressing a constitutively active Rap1 mutant, Rap1E63, exhibit defective 

ERK activation, IL-2 production and proliferation when primed in vivo and re-stimulated 

with specific Ag in vitro. These results were interpreted as showing that the expression of 

Rap1E63 may be responsible for maintaining the anergic state. Interestingly, Rap1E63-Tg 

mice also exhibit increased numbers of CD4
+ 

CD103
+
 T cells with regulatory function 

(581) and other recent work shows that CD4
+ 

CD25
+
 Tregs, from human cord blood display 

sustained Rap1, but impaired ERK, signalling in response to challenge with Ag, resulting in 

defective IL-2 production, cell cycle arrest and apoptosis (581). Together these results 

suggest a central role for Rap1 in T cell hyporesponsiveness in general rather than simply 

being restricted to T cell anergy. 

 Indeed, the mechanisms responsible for the tolerance observed in the present studies 

have not been fully elucidated, as this is an area of considerable uncertainty in the field in 

general and with tolerant T cells in vivo in particular. The anti-CD3 treatment regime has 

classically been used to induce “anergy” in T cells in vitro (53, 582, 583) and in the current 

studies, the behaviour of such treated cells was entirely consistent with this definition, as 

they do not proliferate or produce IL-2 when restimulated with antigen (12). Similarly, the 

T cell proliferation (clonal expansion) observed during the induction phase of tolerance in 

vivo, followed by failure to proliferate or make effector cytokines on restimulation, is 



187

entirely consistent with this form of tolerance (13-18). Nevertheless, in the absence of 

specific markers of anergy, it is difficult to prove that the T cells studied here in vivo are 

truly “anergic”. Moreover, such T cell proliferation during the induction phase of tolerance 

with consequent failure to expand in response to a secondary antigenic challenge is an 

almost universal feature of all models of peripheral tolerance. Therefore, cells have simply 

been described as “tolerised” as it is possible that more than one form of T cell 

unresponsiveness could be present (12, 582).    

Despite Rap1 upregulation being widely associated with tolerance, the precise 

role(s) of Rap1 in T cell biology has become increasingly controversial. Indeed, mice 

transgenic for a different constitutively active mutant of Rap1, Rap1V12, showed normal T 

cell proliferation and ERK activation in response to anti-CD3 stimulation (560). Other 

studies have also implicated a positive role for Rap1 in T cell signalling (356, 357), 

possibly mediated by the adhesion and degranulation-promoting protein (ADAP) (584, 

585) which plays a key role in cytoskeletal rearrangement and in the regulation of synapse 

formation following TcR activation (586). It is not known how the TcR and Rap1 might 

connect to ADAP signalling, but it is likely to involve Fyn and SLP-76 (584, 585) 

activating Rap1 via PLC�, which contains a Ras-Rap-binding domain (RBD) and can act as 

a guanine nucleotide exchange factor (GEF) for Rap1 (587, 588). Consistent with this, there 

is evidence that Rap1 activation after antigen-specific triggering of lymphocytes requires 

PLC activation and consequent calcium mobilisation and DAG generation (560, 589, 590).  

At first sight it might appear difficult to reconcile such opposing models of Rap1 

signalling. However, it is possible that Rap1 may play distinct roles depending on the 

context of the signal and/or on stage of priming and tolerance. Indeed, it has been shown 

here that Rap1 expression is up-regulated during the induction phases of both priming and 

tolerance, relative to the levels seen in naïve cells. Thus, in the early stages of T cell 

activation common to the induction of both priming and tolerance, Rap1 may act to 

promote TcR signalling via integrin-mediated inside-out signalling. However, once priming 

or tolerance is established, it is possible that “rewiring” of Rap1 signalling occurs, 

reflecting differential levels/kinetics of Rap1 expression. Consistent with a role for signal 

strength in directing these processes, Boussiotis et al (580) suggested that the differential 

responses of the Rap1V12- and Rap1E63-Tg mice might reflect the finding that the 

Rap1E63 mutant exhibits 5x the biological activity of Rap1V12 (591) being insensitive to 

the negative regulator of Rap1, Rap1GAP (592). This proposal is supported by recent 
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studies showing that mice which are deficient in the Rap1GAP, SPA-1, exhibit defective 

ERK activation and progressive unresponsiveness or tolerance of T cells (355).  

Alternatively, rewiring of Rap1 signalling may reflect compartmentalisation 

mediated by the Fyn-Cbl-CrkL-C3G-Rap1 complex which is generated selectively in 

tolerant T cells (50). Consistent with this latter idea, the preferential expression of Rap1 in 

tolerised cells showed an inverse pattern of expression to that of pERK, with Rap1 

expression being localized within lipid rafts at the plasma membrane of tolerised cells (12). 

The mechanisms involved in such temporal and spatial segregation are not clear but may 

reflect the functional sequestration of Fyn (within lipid rafts) from Lck in the absence of 

productive priming (593). Defective partitioning of Lck and Fyn has been postulated to be 

an early negative signal in the induction of T cell anergy (594) and may contribute to the 

reduced phosphorylation and lipid raft recruitment of LAT (327), with the consequent 

uncoupling of downstream signals such as PLCγ, PKC and ERK (225, 595) observed in 

tolerised T cells. Such decreased PLC-γ1 and PKC-θ signalling, and the subsequent 

decrease in LFA-1 function, have in turn been suggested as being responsible for the 

defective translocation of TcR, PKC-θ and lipid rafts into the immunological synapse in 

tolerised T cells (564, 565). However, the inverse localisation of pERK staining within 

plasma membrane lipid rafts in primed but not tolerised cells might suggest that Rap1 

antagonism of ERK activation could also reflect disruption and termination of productive 

synapse formation and signalling. Consistent with this, recent reports have indicated that 

ERK is an intermediate signal in the Vav/Rac2-mediated pathway (552) leading to 

nucleation of actin filaments and cytoskeleton remodelling at the immunological synapse 

(553). Thus, partitioning of Fyn and Lck and the consequent generation of the negative 

regulatory complex comprising Fyn, PAG and Csk (596, 597), might be required for 

compartmentalisation and rewiring of Rap1 signalling via the assembly of the Fyn-Cbl-

CrkL-C3G-Rap1 complex (322, 323, 598), that is found to  be selectively expressed in 

tolerised cells (50).  

In summary, these data show that the defective ERK signalling observed in tolerised 

Ag-specific CD4+ T cells (12) correlates with up-regulation of Rap1 in tolerised, relative to 

primed, cells following subsequent stimulation with Ag in vitro and in both systemic and 

oral tolerance models in vivo. Importantly, they demonstrate for the first time, a 

physiologically relevant, inverse relationship between endogeneous Rap1 and pERK 
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expression and signalling, in situ, in individual antigen-specific CD4
+
 T cells that have 

been primed or tolerised in vivo. As this occurs after the induction of both systemic and oral 

routes of tolerance, these data suggest that Rap1 antagonism of pERK signalling may play 

an important and general role in the maintenance of antigen-specific CD4
+
 T cell tolerance.
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Figure 5.1 Quantitation of Rap1 expression in primed and tolerised Ag-specific T cells 

at the single cell level by LSC. Naïve T cells were freshly isolated from resting mice 

whilst tolerised or primed Tg Ag-specific T cells were generated in vitro using anti-CD3 ± 

anti-CD28, as described in Chapter 2. The cells were then re-stimulated with DC alone 

(open bars) or DC + OVA323-339 (closed bars) for 20 h. In panel A, IL-2 production was 

determined by analysis of culture supernatants by ELISA and the ELISA results shown are 

the mean ± SD of triplicate cultures. In panel B, exemplar LSC histograms showing cells 

re-stimulated with DC alone (i) or DC + OVA323-339 (ii) depict how cells were gated upon 

for analysis. From these it was clear that whilst the level of Rap1 expression was similar in 

all groups, the percentage of anergic KJ1.26
+
 T cells expressing Rap1 was greater 

compared with naïve and primed KJ1.26
+
 T cells upon re-stimulation with Ag (panel B. ii.). 

All data are representative of at least three individual experiments with quantitative 

population statistical analysis being performed on at least 200 KJ1.26
+
 T cells in each 

group. The proportion of Ag-specific (KJ1-26
+
) T cells expressing Rap1 (panel C) and the 

total cellular level of Rap1 expression (panel D) in Rap1
+
 Ag-specific (KJ1-26

+
) T cells 

was determined by LSC analysis (panel B). 
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Figure 5.2 Intracellular localisation of Rap1 expression in Ag-specific Tg T cells. 

Anergic and primed Ag-specific Tg T cells were generated in vitro using anti-CD3 ± anti-

CD28, as described in the Methods section, and re-stimulated with DC alone (open bars) or 

DC + OVA323-339 (closed bars) for 20 h. Cells were treated with DAPI to stain the nuclei 

(blue) and the clonotypic Ab KJ1-26 to visualise the Tg TcR (red). Rap1 or pERK 

expression was detected using specific Abs (green). KJ1-26
+
 Rap1

+
 T cells from anergic 

and primed samples were randomly relocated by LSC. Representative individual anergic 

and primed cells were identified and imaged as described previously ((12); panel A) 

showing the relative levels of expression of Rap1 and pERK in primed and anergic cell 

populations. pERK expression in anergic cells was also imaged using a higher exposure 

time to demonstrate better the distribution of signal within these cells (pERK*, panel A). 

Panel B shows an example of 3-colour merged images depicting a Rap1+ (green staining) 

KJ1-26
+
 (red staining) T cell (panel i) with threshold (red), integral (green) and peripheral 

(yellow) contours applied (panel ii). Peripheral contours discriminate the periphery of the 

cell, external to the nucleus, and the fluorescence detected therein was plotted as 

histograms (panel C). In panel D, the percentage of KJ1-26
+
 T cells expressing Rap1 at 

their periphery was therefore quantitated by peripheral contouring using LSC. Similarly, 

the peripheral MFI of Rap1 is shown in Panel E, while Panel F shows the intensity (Max 

Pixel value) of Rap1 expression within the periphery, calculated as the difference between 

the Max Pixel of cells cultured with DC alone and those stimulated with DC + OVA323-339. 

Rap1 expression was assessed in 200 anergic (open bars) and primed (closed bars) Rap1
+

KJ1-26+ T cells per samples and results are representative of three replicate experiments. In 

panel G, anergic and primed Ag-specific T cells were induced and re-stimulated with DC + 

Ag for 20 h. Ag-specific Tg T cells were identified by the clonotypic Ab KJ1-26 (blue) 

whereas Rap1 or pERK expression was detected by the relevant specific Abs (red) and lipid 

raft structures were identified using a Cholera Toxin subunit B-Alexa Fluor® 488 

conjugate (green). KJ1-26+ pERK+ and KJ1-26+ Rap1+ T cells from anergic and primed 

samples were randomly relocated by LSC and the localisation of pERK and Rap1 in 

KJ1.26
+
 T cells was determined in relation to lipid rafts (KJ1-26 staining not shown). 

Yellow indicates co-localisation of signal with lipid rafts. Representative individual anergic 

and primed cells were identified and imaged as described previously (12).



192

Figure 5.3 Analysis of cell cycle progression of Rap1 expressing Ag-specific primary T 

cells after stimulation with Ag-pulsed or unpulsed APCs by LSC. Anergic (open bars) 

and primed (closed bars) Ag-specific T cells were re-stimulated with DC alone (A, B) or 

DC loaded with OVA323-339 (C, D), for 1 (A, C) or 20 h (B, D). Ag-specific TcR Tg T cells 

were identified by staining with the clonotypic Ab KJ1-26 and Rap1 was detected using an 

appropriate Ab. All cell nuclei were stained with DAPI and the cell cycle status of the 

Rap1-expressing Ag-specific T cell population was analysed by LSC as described in 

Sections 2.5.1 and 4.5. The percentage of Ag-specific T cells expressing Rap1 following 

incubation with DC alone or DC loaded with OVA323-339 in each stage of cell cycle was 

calculated. The number of Ag-specific T cells in each stage of cell cycle was also measured 

by LSC (E).  
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Figure 5.4 Measurement of Rap1 expression levels in Ag-specific primary T cells in 

different stages of cell cycle by LSC. Anergic and primed Ag-specific T cells were re-

stimulated with DC alone or DC loaded with OVA323-339, for 1 or 20 h. Ag-specific TcR Tg 

T cells were identified by staining with the clonotypic Ab KJ1-26 and Rap1 was detected 

using an appropriate Ab. All cell nuclei were stained with DAPI and the cell cycle status of 

KJ1.26
+
 Rap1

+
 T cells was analysed by LSC as described in Chapters 2-4. The level of 

Rap1 expression in anergic (open bars) and primed (closed bars) KJ1.26+ Rap1+ T cells was 

assessed for each stage of the cell cycle. Such analysis was performed following incubation 

with DC alone (A, B) or DC loaded with OVA323-339 (C, D) for 1 (A, C) or 20 h (B, D). 
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Figure 5.5 Clonal expansion of Ag-specific CD4
+
 T cells in vivo. Ag-specific TcR Tg T 

cells were adoptively transferred into naïve recipients 24 h prior to i.v. injection with 

OVA323-339 + LPS (primed; closed squares), OVA323-339 alone (tolerised; open squares) or 

sterile PBS (naïve; triangles). At D0, 3, 5 and 10 after immunisation, PLN (A), MLN (B) 

and spleens (C) were harvested, single cell suspensions were prepared and stained for 

expression of CD4 and KJ1.26 as described in Section 2.1.7. Subsequently, the percentage 

of CD4+ Ag-specific Tg T cells in each tissue was assessed by flow cytometry. Data 

represent mean ± SD for three mice per group *p<0.05, **p<0.01. 
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Figure 5.6 Analysis of T cell migration into B cell follicles. Ag-specific TcR Tg T cells 

were adoptively transferred into naïve recipients 24 h prior to i.v. injection with OVA323-339

+ LPS (primed), OVA323-339 alone (tolerised) or sterile PBS (naïve). At D3 after 

immunisation, PLN were harvested, and the percentage of Ag-specific Tg T cells present in 

follicular and paracortical areas of this tissue was determined by LSC (392, 479, 480). LSC 

histograms depicting how B220
+
 B cells (A) and KJ1-26

+
 T cells (B) were gated are shown, 

together with a sample tissue map which illustrates how KJ1-26+ T cells situated in 

follicular and paracortical areas of the lymph node were quantitated (C). The proportions of 

naïve, tolerised and primed Ag-specific T cells situated in follicular (open bars) and 

paracortical (closed bars) areas of the lymph node were quantitated by LSC (D). The data 

represent mean ± SD for three mice per group *p<0.05. 
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Figure 5.7 Functional analysis of T cells tolerised or primed in vivo. Ag-specific TcR 

Tg T cells were adoptively transferred into naïve recipients 24 h prior to i.v. injection with 

OVA323-339 + LPS (primed), OVA323-339 alone (tolerised) or sterile PBS (naive). At D10 

after immunisation, PLN were harvested and single cell suspensions were re-stimulated in 

vitro with or without Ag to assess proliferation (A) and IFNγ production (B). Proliferation 

was assayed by [
3
H] thymidine uptake at 72 h and the level of IFNγ in culture supernatants 

was detected by ELISA at 48 h after re-stimulation in vitro. Both proliferation and IFNγ

data are expressed as fold increase in signal from samples re-stimulated in the presence of 

Ag compared with the signal from those re-stimulated with media alone. Ova-specific IgG1 

antibody levels in serum, of mice challenged with OVA/CFA 7 days after the induction of 

priming or tolerance with OVA323-339 ± LPS, were also measured (C). Data represent mean 

± SD for three mice per group and each animal sample was performed in triplicate. 

*p<0.05, **p<0.01.  



197

Figure 5.8 Quantitation of Ag-specific pERK and Rap1 expression in primed and 

tolerised Ag-specific T cells in PLNs in situ by LSC. Following induction of systemic 

priming or tolerance of adoptively transferred Tg TcR T cells in vivo, all groups were 

challenged with 100 µg OVA323-339/1 µg LPS 7 days after primary immunisation. Inguinal 

lymph nodes (PLN) were harvested 24 h after challenge, sectioned and stained using the 

appropriate specific Abs, for TcR Tg T cells (KJ1-26; red), B cells (B220; green) and 

pERK or Rap1 (blue). Sample stained tissue sections from tolerised and primed animals are 

shown (A, E). LSC analysis (as described previously (1); B, F) were used to determine the 

proportion of Ag-specific T cells expressing pERK (C) and Rap1 (G) as well as the total 

cellular levels of pERK (D) and Rap1 expression (H) in situ. Representative LSC 

histograms depicting the pERK and Rap1 signalling profiles in tolerised and primed T 

cells, in situ, are shown in panels B & F. Results presented in panels C, D, G & H are mean 

values ± SD of three animals per group. *p<0.05, **/*p<0.01. 
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Figure 5.9 Quantitation of Ag-specific pERK and Rap1 expression in primed and 

orally tolerised Ag-specific T cells in PLNs in situ by LSC. Following induction of 

priming or tolerance of adoptively transferred Tg TcR T cells in vivo, all groups were 

challenged with 100 µg OVA323-339 10 days after primary immunisation. Inguinal lymph 

nodes were harvested 1 h after secondary challenge and stained using the appropriate 

specific Abs, for TcR Tg T cells (KJ1-26; red), B cells (B220; green) and pERK or Rap1 

(blue). Sample stained tissue sections from orally tolerised and primed animals are shown 

(A, E). Analysis by LSC (as described previously (1); B, F) were used to determine the 

proportion of Ag-specific T cells expressing pERK (C) and Rap1 (G) as well as the total 

cellular levels of pERK (D) and Rap1 expression (H) in situ. Representative LSC 

histograms depicting the pERK and Rap1 signalling profiles in tolerised and primed T 

cells, in situ, are shown in panels B & F. The results shown in C, D, G & H are expressed 

as mean section values ± SD where sections were derived from three animals per group. 

*p<0.05, **p<0.01. 
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Figure 5.10 Detection of Rap1 expression by Ag-specific T cells in different tissue 

locations ex vivo by LSC. Following induction of priming or tolerance of adoptively 

transferred Tg TcR T cells in vivo, all groups were challenged with 100 µg OVA323-339/1 µg 

LPS 7 days after primary immunisation. Inguinal lymph nodes were harvested 24 h after 

challenge, sectioned and stained using the appropriate specific Abs, for TcR Tg T cells 

(KJ1-26; red), B cells (B220; green) and pERK or Rap1 (blue). A sample stained tissue 

section from a primed animal is shown (A). The location of the Ag-specific Tg T cells and 

B cell follicles within the lymph node sections was determined by LSC, as described in 

Figures 3.10 and 3.11 (B). Gates were placed on all follicular and paracortical regions 

depicted on a tissue map (B) and statistics from these gates were used to calculate the 

proportion of Ag-specific T cells expressing Rap1 (C) and the level at which they were 

expressing Rap1 (D) in different locations within the lymph node in situ. The number of 

Ag-specific, Rap1-expressing T cells in the follicles and paracortex was also expressed as 

the percentage of total Ag-specific T cells in the follicles or paracortex (E). Data represent 

mean ± SD for three mice per group *p<0.05, **p<0.01. 
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Figure 5.11 Detection of Rap1 expression by orally tolerised Ag-specific T cells in 

different tissue locations ex vivo by LSC. Following induction of priming or oral 

tolerance of adoptively transferred Tg TcR T cells in vivo, all groups were challenged with 

100 µg OVA323-339 10 days after primary immunisation. Inguinal lymph nodes were 

harvested 1 h after challenge and stained as described in Figure 5.10 legend. The location 

of the Ag-specific Tg T cells and B cell follicles within the lymph node sections was 

determined by LSC as described in Figure 5.10 legend. All follicular and paracortical 

regions were gated upon using tissue maps and statistics from these gates were used to 

calculate the proportion of Ag-specific T cells expressing Rap1 (A) and the level at which 

they were expressing Rap1 (B) in different locations within the lymph node in situ. The 

number of Rap1-expressing Ag-specific T cells was also expressed as a percentage of the 

total number of Ag-specific T cells in the follicular or paracortical areas (C). Data represent 

mean ± SD for three mice per group *p<0.05. 
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Figure 5.12 Quantitation of Ag-specific pERK and Rap1 expression in the induction 

phase of tolerance in vivo. Twenty four h after adoptive transfer of Ag-specific TcR Tg T 

cells, recipient mice were immunised with OVA323-339 peptide i.v., either alone or together 

with LPS to induce systemic tolerance (blue triangles) or priming (red triangles) 

respectively. Control mice received sterile PBS i.v. and are denoted “Naïve” (black 

squares). Zero, 4, 8, 12, 24 and 72 h following immunisation, PLN were harvested and 

processed for detection of CD4, KJ1.26 and pERK or Rap1 expression by flow cytometry, 

as described in Sections 2.3.1 and 2.3.6. Clonal expansion of the Ag-specific TcR Tg T cell 

population was assessed for each group (A) and the percentage of Ag-specific TcR Tg T 

cells expressing pERK (B) or Rap1 (C) as well as the level at which these molecules are 

expressed in these cells (D, E) are also shown here. These data are representative of three 

animals per group. *p<0.05, **p<0.01.
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Chapter 6 

General Discussion 
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6. General discussion 

The immune system in a healthy individual is capable of distinguishing self, or 

harmless, from harmful non-self antigens. This discriminatory capacity enables the body to 

both elicit a productive primed immune response against invasive pathogens and generate a 

state of antigen-specific hyporesponsiveness towards self components (30) or harmless 

food antigens. This state of antigen-specific hyporesponsiveness, known as peripheral 

tolerance, is induced when T cells are exposed to antigen under sub-optimal activating 

conditions (46). Once it is induced, it can suppress many aspects of the antigen-specific 

immune response to subsequent antigenic challenge, including lymphocyte proliferation, 

cytokine production, delayed-type hypersensitivity and antibody production (114). A 

breakdown in tolerance within an individual can result in the development of a variety of 

autoimmune disorders e.g. Type 1 diabetes, rheumatoid arthritis, systemic lupus 

erythematosus and inflammatory bowel disease (IBD). Despite a plethora of work in this 

field, however, the mechanisms by which the immune system can discriminate harmless 

and pathogenic antigens remain to be fully elucidated. If these mechanisms are further 

understood, hopefully this information could be exploited to help develop better therapies 

for autoimmune diseases, improve the rate of successful transplantations and increase the 

efficacy of vaccines. 

6.1 Development of a quantitative imaging technology for examining signalling in situ 

It has been widely proposed that both qualitative and quantitative differences in T 

cell signalling may underlie the differential functional outcomes of tolerance and priming 

(525, 539). However, the majority of these studies have relied upon biochemical 

assessment of signalling in T cell lines or clones, at the population level following 

polyclonal stimulation in vitro, leading to conflicting data. Moreover, these data do not 

necessarily reflect the responses of physiological frequencies of individual antigen-specific 

T cells within their environmental niche within primary or secondary lymphoid tissue. In 

addition, such data represents the responses of all of the cell types in the sample population 

at any one time and hence does not provide any information on the differential kinetics, 

amplitude or subcellular localisation of signals generated by functionally distinct subgroups 

within the population. 

Flow cytometry offers the rapid assessment of intracellular signalling in such 

distinct cell sub-populations and these signalling data can be directly related to the 
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functional status of the cells, in terms of activation status, proliferative capacity and 

cytokine production. However, a newer technology, laser scanning cytometry (LSC), offers 

further possibilities as it essentially marries the quantitative capabilities of flow cytometric 

analysis of cells in suspension with the ability to analyse spatially the fluorescence of large 

numbers of individual cells, either in suspension or in tissue in a slide-based format. 

Although LSC and flow cytometry should be viewed and used as complementary 

quantitative technologies, LSC has the potential to provide a quantum leap in the analysis 

of immune function, due to the wide range of novel applications that it offers and have been 

described in Chapter 3. 

Previously, such in situ analysis of cells in tissue sections by LSC has been 

achieved by contouring on nuclei. Due to the close proximity of cells in tissue, this work 

necessitates multiple repeat scans of the same area of tissue at different threshold levels, 

followed by merging of single threshold level data files into one file (478). Whilst 

informative, this type of in situ analysis does not detect all of the cells in the sample and 

there is also the possibility of detecting false positives, as it is likely that certain cells will 

be counted more than once. Thus, the limited adoptive transfer system involving TcR Tg T 

cells (569) provides an attractive means of studying antigen-specific responses occurring at 

physiological frequencies in situ, as it generates an even distribution of antigen-specific 

TcR Tg T cells throughout the thymus-dependent area of the lymph node. Such antigen-

specific T cells can be readily distinguished from the endogenous T cells by LSC, 

following fluorescent staining of their Tg TcR, as they are sparsely situated amongst the 

endogenous T cell population within the lymph node. The studies reported in Chapter 3 

describe how use of the adoptive transfer system, in combination with LSC analysis, has 

enabled the development of a quantitative imaging technology with which to study T cell 

signalling in individual antigen-specific T cells in vitro and in situ. 

6.2 Differential TcR-mediated signalling in tolerance versus priming in vitro and in 

vivo

 In T cells, the maintenance phase of anergy has been reported to reflect defective 

activation of transcription factors, such as c-Jun/c-Fos, that are involved in formation of the 

AP-1 complex which is required for inducing transcription of the IL-2 gene and optimal 

activation and effector function of T cells (318, 331, 333, 336-338, 488). In turn, this 

appears to be determined by the lack of recruitment of the ERK, JNK and p38 MAPK 
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signalling cascades (333, 336, 338). In addition, Rap1 has long been implicated in such 

desensitisation of ERK, and the consequent reduced IL-2 production, observed in tolerised 

T cells (50, 352, 354, 579). However, as described earlier, the majority of these findings 

were obtained from in vitro studies of T cell lines or clones and as such are not necessarily 

representative of physiological responses of primary Ag-specific T cells in situ. 

The studies in Chapters 4 and 5 therefore describe, for the first time, an inverse 

relationship between ERK activation and Rap1 expression in individual primary Ag-

specific T cells during the maintenance phases of tolerance and priming, both in vitro and 

in vivo (Figures 6.1 and 6.2). Thus, the signalling events underlying antigen-specific 

responses in individual primary T cells were shown to demonstrate marked differences in 

the kinetics, amplitude and localisation of the MAPkinase pERK in priming versus anergy 

(Chapter 4). In accordance with the traditional biochemical studies in the literature, this 

work demonstrated that whilst ERK activation was elevated in all populations of T cells 

that were challenged with Ag, it was always lower in the anergic relative to primed 

populations. Analysis at the single cell level further revealed that the proportion of Ag-

stimulated cells expressing pERK was also lower in the anergic relative to primed groups 

and the few anergised T cells expressing pERK did so at a lower level than the primed 

cells. Moreover, when these studies were extended to physiological in vivo models of Ag-

specific priming and tolerance, it was shown that a significantly greater proportion of 

primed, relative to naïve or tolerised Ag-specific T cells in situ exhibited pERK expression 

following re-challenge with Ag, further indicating that elevated ERK signalling in vivo

correlates with productive T cell responses whilst reduced ERK signalling is associated 

with the maintenance phase of tolerance. 

 In contrast, the data presented in Chapter 5 demonstrated that Rap1 was expressed 

in a greater proportion of anergic Ag-specific T cells, and at considerably higher levels, 

compared with primed T cells following re-stimulation with Ag in vitro. This inverse trend 

of Rap1 expression was also observed in tolerised Ag-specific T cells in situ, when in vivo

models of priming and tolerance were examined. It is important to note that the inverse 

relationship between the accumulation of Rap1 and antagonism of ERK activation was 

observed during the maintenance phases of both systemic and oral tolerance in vivo, 

suggesting that such Rap1 signals play a general role in T cell hyporesponsiveness. As this 

type of tolerance induction has been proposed as a potential therapy for autoimmune 
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disorders (570) and, oral administration of compounds offers a more attractive route for 

drug delivery in humans, these findings may have potential clinical applications. 

6.3 Differential T cell signalling during the induction and maintenance phases of 

tolerance 

 Strikingly, correlation of increased Rap1 expression with decreased ERK activation 

in tolerised T cells was only observed during the maintenance phase of tolerance both in 

vitro and in vivo. Indeed, similar patterns of Rap1 expression and ERK activation were 

observed in Ag-specific T cells during the induction phases of tolerance and priming both 

in vitro and in vivo. This was not necessarily surprising, as tolerised T cells are known to 

up-regulate expression of the early activation marker, CD69, to similar levels as detected 

for primed T cells and it is known that these T cells can clonally expand in response to 

primary immunisation in vivo, albeit to a significantly lower level than primed T cells. 

Therefore, such tolerised T cells exert some level of response upon initial encounter with 

Ag or Ab-mediated stimulation through the TcR. 

 The increased proportions of Rap1-expressing Ag-specific T cells observed in both 

the anergic and primed populations compared to the naïve population in vitro suggested 

that such increased percentages of Rap1-expressing T cells were required for the induction 

of both tolerance and priming. This hypothesis may fit with the reported positive regulatory 

role for Rap1 in T cell activation (356, 357, 560). In these studies, Sebzda et al generated 

mice in which constitutively active expression of Rap1A, V12Rap1A, was restricted to the 

T cell lineage and demonstrated that Rap1A activation was sufficient to induce 

considerable activation of the β1 and β2 integrins and hence T cell activation through 

avidity modulation (560). No evidence for a negative regulatory role for Rap1 in T cells 

was observed in these mice. However, although they did not display defective T cell 

activation in vitro, these studies did not extend to examine the effects of V12Rap1A on the 

induction or maintenance of tolerance in vitro or in vivo. Therefore, it seems possible that 

Rap1 may play distinct roles depending on the context of the signal and/or the stage of 

priming or tolerance. For example, in the early stages of T cell activation common to the 

induction of both priming and tolerance, Rap1 may act to promote TcR signalling via 

integrin-mediated inside-out signalling. In contrast, once priming or tolerance is established 

it is possible that “rewiring” of Rap1 signalling occurs, reflecting differential levels/kinetics 

of Rap1 expression. 
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6.4 Inverse subcellular localisation of pERK and Rap1 in tolerance 

 The inverse subcellular localisation of pERK and Rap1 found in tolerised versus 

primed Ag-specific T cells indicates that perhaps, compartmentalisation of at least these 

two molecules in addition to their differential expression levels is responsible for the 

downstream effects of tolerance, namely decreased IL-2 production, cell cycle progression 

and proliferation. Indeed, the subcellular positioning of these molecules may also play a 

role in maintaining a tolerogenic or primed state in T cells. Quantitation by LSC showed 

that the majority of the pERK signal appeared to be localised at the periphery of re-

stimulated primed T cells, possibly in association with the TcR, in vitro. In contrast, pERK 

was distributed more diffusely throughout the anergic cells that expressed lower levels of 

pERK. These results were somewhat surprising, as it had been hypothesised that re-

stimulation of primed cells would cause the translocation of pERK into the nucleus where it 

would activate the transcription factors required for IL-2 production (549) and that this 

process would be defective in anergic T cells. Rather, it appeared that after priming, pERK 

may associate with cytoskeletal- and/or membrane-associated scaffolds such as lipid rafts 

which contain the TcR and other proximal signalling molecules. Thus, these structures, or 

the association of pERK with them, may be defective in anergic T cells. 

 Here again, an inverse relationship was observed between pERK and Rap1, this 

time with respect to their subcellular localisation. Thus, in anergic T cells, Rap1 exhibited a 

highly focused peripheral expression that mirrored that of the TcR and was reminiscent of 

the formation of an immunological synapse. In contrast, whilst Rap1 still formed foci at the 

periphery in primed T cells, the expression of Rap1 in these cells was less polarised to the 

periphery and appeared more diffuse throughout the cell. The finding that Rap1 could be 

localised to the periphery of both primed and anergic T cells suggested that localisation 

alone was not sufficient to disrupt the peripheral recruitment and activation of pERK 

necessary for priming and that Rap1 activation and/or complex formation with other signal 

transducers may be required. Moreover, whilst pERK appeared to co-localise with lipid raft 

structures in primed but not anergic T cells, Rap1, conversely, appeared to be targeted to 

lipid rafts in anergic but not primed T cells. Collectively, these data suggest that Rap1 may 

be up-regulated and recruited to the immunological synapse upon re-stimulation with Ag in 

anergic T cells and that such Rap1 localisation and expression may contribute to the 

downregulation of ERK recruitment and activation in these cells. It is possible that Rap1 

may achieve this by sequestering the Ras effector, Raf-1, which would lead to the 
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previously reported uncoupling of the Ras-Raf-MEK-ERK signalling cascade in tolerised T 

cells (571-573). 

It seems likely that Raf-1 would be expressed at the periphery of both tolerised and 

primed T cells as this is where it may act to activate MEKK-ERK signalling thus, time 

permitting, the above hypothesis that Rap1 may exert its negative regulatory effects on T 

cell activation by competitively binding and sequestering Raf-1, would have been tested by 

assessing the localisation/co-localisation of Ras and Raf-1 or Rap1 and Raf-1 in tolerised 

and primed T cells. This could be achieved using fluorescence resonance energy transfer 

(FRET), a distance-dependent interaction between the electronic excited states of two 

fluorescent molecules (each with a different emission wavelength) in which excitation is 

transferred from a donor molecule to an acceptor molecule. The donor molecule would be 

attached to the GTPase (Ras /Rap1) and the acceptor molecule would be bound to Raf-1 

thus, any co-localisation of Ras and Raf-1 or Rap1 and Raf-1 would be indicated by 

fluorescence emitted from the acceptor molecule. In addition, the localisation of scaffolds 

and other molecules indicated as having roles in Ras-mediated ERK activation, could be 

assessed in tolerised relative to primed cells. For example, the adaptor molecule CrkL and 

the guanidine nucleotide-releasing factor C3G, reported to be constituents of a Fyn-Cbl-

CrkL-C3G-Rap1 signalling complex found in tolerised but not primed T cells (50, 347), 

could be assessed for their proximity to Rap1 in tolerised relative to primed T cells.

6.5 Do lipid rafts exist in vivo? 

Lipid raft structures have been proposed to function as specialised signalling 

compartments in the cellular membrane (219) wherein molecules are phosphorylated and 

activated, and subsequently act to recruit and activate downstream signalling molecules. 

Consistent with the idea that peripheral pERK was associated with T cell activation, pERK 

co-localised with lipid raft staining in primed Ag-specific T cells and such co-localisation 

was not observed in anergic Ag-specific T cells (Figure 4.9) suggesting that lipid raft 

formation or the interaction and trafficking of pERK with these structures is defective 

under conditions of anergy. 

However, the very existence of lipid rafts in vivo is a topic of great controversy and 

indeed, direct evidence for lipid rafts occurring in vivo is sparse. Moreover, there are two 

schools of thought regarding the nature of lipid rafts: one being that they are large micron-

sized cholesterol- and sphingolipid-rich structures which likely contain high concentrations 
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of proteins (219, 599) and the other being that they are small (nanometer-sized), dynamic 

associations wherein lipid-associated molecules reside (600). The location and prevalence 

of the latter type is thought to be a result of the presence of large protein complexes in the 

plasma membrane (600). Whilst large micron-sized lipid rafts have been readily observed 

in artificial membranes (601), studies utilising fluorescence microscopy and conventional 

electron microscopy have failed to detect such large scale lipid rafts in living cells (602, 

603), suggesting that lipid rafts of this size do not occur in vivo. By contrast, recent work 

by Sharma et al has revealed a nanometer scale organisation of lipid rafts in vivo (217) as 

indicated by FRET analysis of lipid-dependent organisation of glyosylphosphatidylinositol-

anchored proteins (GPI-APs) in living cells. Further support and explanation for the 

existence of such small scale lipid rafts in vivo has very recently been provided by Yethiraj 

and Weisshaar (604). They suggest that integral membrane proteins attached to the 

cytoskeleton act as obstacles that limit the size of lipid rafts in the plasma membrane. Such 

large obstacles are not present in artificial membranes hence large scale lipid rafts are free 

to assemble. In conclusion, it appears that lipid rafts may indeed exist in vivo but on a much 

smaller scale than was previously imagined. 

6.6 Regulation of cell cycle progression by ERK and cell cycle regulators in anergy 

 Primed, but not anergic, T cells progress through cell cycle and this study has 

shown that such cell cycle progression correlated with increasing levels of pERK (Figure 

6.3). From these data, it was hypothesised that sustained ERK activation above a certain 

threshold level may be required for proliferation, as whilst anergic T cells in G0/G1

exhibited low levels of pERK, they did not progress through cell cycle. Consistent with 

this, sustained, but not transient, ERK activation has been shown to increase cyclin D 

expression (501, 504, 544). Anergic T cells are believed to arrest in the G1 phase of the cell 

cycle and such arrest has previously been associated with the up-regulation of p27
kip1

 (326, 

441, 503-505). Consistent with such earlier studies (473, 504, 544), the current data shows 

that the decreased ERK activation observed in anergic relative to primed T cells correlated 

with an increase in the level of p27
kip1

 expression in those anergic T cells. Perhaps such 

upregulation of p27
kip1

 and/or decreased activation of CDKs is required, in addition to 

reduced ERK activation and consequent cyclin D induction, to prevent cell cycle 

progression in anergy. Indeed, the proportion of anergic, compared to primed, T cells 

expressing inactive forms of cdc2/CDK2 doubled upon re-stimulation with Ag at 20 h and 
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this change was not observed in the primed population. Moreover, almost ten-fold fewer of 

those anergic compared to primed T cells were expressing p-Rb and those anergic T cells 

that expressed Rb were expressing it at much lower levels. Together these findings suggest 

that it could be that up-regulation of p27
kip1

 resulting in inactivation of cdc2/CDK2 with 

consequent downregulation of nuclear p-Rb expression is necessary, together with reduced 

ERK MAPK signalling, for the anergic state to be maintained (Figure 6.4). 

In Chapter 4, the possibility that, under conditions of anergy, p-Rb rapidly (within 1 

h of antigen re-stimulation) translocates out of the nucleus via association with the nuclear 

export receptor, Exportin1, was suggested. Such nuclear export may prevent further 

hyperphosphorylation of p-Rb at serine 780 (251), 795 (529) and 807/811, which is 

required for its positive regulatory role in cell cycle progression. Therefore, time 

permitting, it would have been interesting to assess the phosphorylation of Rb at all of these 

different sites, in tolerised and primed Ag-specific T cells at different stages of cell cycle. 

Perhaps such investigation may reveal at which phosphorylation site and/or cell cycle stage, 

the downregulation of hyperphosphorylated Rb occurs, in anergy. 

Moreover, it would have been informative to simultaneously assess the expression 

and activation of CDK4/6 and CDK2 in such cells. For example, it is known that Rb is first 

phosphorylated by CDK4 at serine 780 (452), but requires further phosphorylation by 

CDK2 at serine 807/811 (452, 530) for hyperphosphorylation to occur, and which 

ultimately results in E2F release and progression through S phase. Furthermore, it has been 

shown that mutation of serine 807/811 does not abolish the regulation of E2F binding 

(605), suggesting that phosphorylation of Rb, at multiple sites, is indeed required for 

release of E2F and cell cycle progression. Therefore, such studies may identify defects in 

CDK-mediated phosphorylation(s) of Rb in anergy.

6.7 Dissecting the mechanisms underlying the differential T cell signalling observed in 

tolerance and priming 

In Chapters 4 & 5, the defective ERK signalling observed in tolerised versus primed 

antigen-specific T cells was shown to correlate with increased Rap1 expression in tolerised 

compared to primed T cells after challenge with antigen in vitro and in vivo (12, 13). Whilst 

these data potentially indicate a key role for Rap1 in inducing the dowregulation of ERK 

activation observed in tolerised T cells, they only provide circumstantial evidence for Rap1 

directing maintenance of T cell tolerance. Therefore, to assess the causal relationships 
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underlying the differences in ERK activation and Rap1 expression in antigen-specific T 

cells observed under conditions of tolerance and priming, an adenoviral gene delivery 

system has now been developed (Chapter 3). 

Thus, the generation of murine transgenic lines in which expression of the human 

coxsackie/adenovirus receptor with a truncated cytoplasmic domain is limited to T cells 

expressing a Tg TCR (hCAR�cyt.DO11.10) has enabled efficient gene transfer of resting 

(naïve) and effector antigen-specific CD4+ T cells without perturbing their development, 

migration, activation status or functional responses (402, 419). hCAR�cyt and 

hCAR�cyt.DO11.10 Tg murine lines have now been established in this facility and this 

current study has demonstrated successful transduction of naïve, anergic and primed CD4
+

and Ag-specific CD4
+
 T cells from these mice with GFP-containing adenoviral vectors 

(Chapter 3), indicating the feasibility of dissecting causal functional signalling relationships 

in these differential effector cells. In addition, these data suggested that by varying the MOI 

of bicistronic-GFP vectors used, it will be possible to analyse the effect of no, low and high 

expression of particular signalling elements within a single population of cells (483). For 

example, if time had permitted, a range of adenoviral Ras- and Rap1-GFP constructs could 

have been generated and their effects on naïve, tolerised and primed Ag-specific primary T 

cells in vitro and in vivo assessed (Figure 6.5). 

Thus, for example, the effect of sustained activation of ERK in tolerised antigen-

specific T cells could be investigated. The reduced ERK activation in tolerised T cells 

relative to primed T cell populations, suggests that defective ERK signalling may play a 

role in maintaining tolerance. Therefore, it would have been interesting to investigate as to 

whether ectopic expression of active RasV12-GFP bicistronic constructs following 

induction of anergy in vitro could break tolerance to subsequent antigen challenge as 

assessed by cell cycle progression, proliferation and cytokine production (12, 392). 

Moreover, the effects of the constitutively active parent RasV12 mutant that can signal to 

both Raf and PI3K, as well as two related constructs, RasV12S35-GFP which can couple to 

ERK via Raf and MEK but not PI3K signalling, and RasV12C40-GFP which can couple to 

PI3K but not to the Raf/MEK/ERK cascade, could be assessed. Likewise, it would have 

been ascertained as to whether expression of the dominant negative construct, RasN17-GFP 

or the constitutively active construct, Rap1V12, following induction of priming, converts 

antigen-specific T cells to a tolerised phenotype. Adenoviral vectors expressing GFP alone 

would have been used as controls for the adenoviral gene transfer procedure. 
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Such mutant naïve, primed and tolerised cells could also be transferred to recipient 

BALB/c mice to assess the effects of these constructs on the induction and maintenance 

phases of systemic and oral tolerance and priming in vivo. For example, to specifically 

address the role of ERK activation in the induction of tolerance and/or priming, these 

mutants could be expressed in hCAR�cyt.DO11.10 T cells prior to the induction of 

tolerance or priming to determine whether reduced ERK activation plays a role in the 

induction of tolerance. The effects of these constructs on the early interactions between T 

cells and APCs (duration, cluster size etc) and how these processes correlate with induction 

of priming and tolerance could be assessed by 2-photon microscopy (606), as it is known 

that primed T cells form larger and longer-lived clusters within mucosal and peripheral 

lymph nodes than tolerised T cells (606). As the expression levels of the Ras/Rap1 mutants 

could be quantified by LSC/flow cytometric analysis of GFP expression, this approach 

allows both the relative behaviour of wild type and Ras/Rap1 mutant-expressing Ag-

specific T cells, as well as the effect of differential signal strengths, to be assessed. Indeed, 

signal strength has been suggested as having a role in directing differential functional 

processes (580). For example, the differential responses of Rap1V12- and Rap1E63-Tg 

mice may reflect the finding that the Rap1E63 mutant exhibits 5x the biological activity of 

Rap1V12. 

In addition, Ras and interacting chimeric unit (Raichu) probes, which are GFP-

based FRET probes that allow direct and non-destructive monitoring of the activation status 

of Ras and Rho proteins, could be used to investigate Ras and Rap1 regulation in primed 

and tolerised T cells. Indeed, Raichu probes have already been utilised to examine the 

spatio-temporal regulation of Ras and Rho proteins in living cells (607, 608) and in some 

cases such probes were cloned into adenoviral vectors prior to use (607). Thus, such probes 

could easily be introduced to the hCAR∆cyt.DO11.10 system described above. The FRET 

efficiency of a Raichu probe correlates with the GTP/GDP ratio of the GTPase in question. 

Hence, the activities of Ras and Rap1 could be estimated in such a manner. Furthermore, 

such probes can be modified in order to detect Ras/Rap1 activation in different subcellular 

locations e.g. plasma membrane, endomembranes, lipid rafts and non-raft domains (609). 

Such modified probes would provide a means to examine the spatial regulation of Rap1 and 

this may help in dissecting the mechanisms underlying the differential subcellular 

localisation of Rap1 observed in tolerised versus primed T cells. 
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6.8 Potential role for Rap1 in mediating T cell-dependent B cell help? 

 The inability of T cells to migrate into B cell-rich follicles following the induction 

of tolerance in vivo has been established (378, 384) and although tolerised T cells regain 

such migratory capacity upon antigenic challenge, they are known to be ineffectual at 

providing B cell help (384). The work described in this study indicates that Rap1 may be 

involved in the disruption of MAPK signalling in tolerised T cells after challenge with Ag 

in vivo. Thus, the upregulated expression of Rap1 observed in tolerised compared to primed 

follicular Ag-specific T cells could also potentially implicate a role for Rap1 in 

incapacitating T cells from providing B cell help (Figure 6.6). At least, these data provide 

an interesting starting point for further investigation. Thus, if time had allowed, Ag-specific 

T cells could then be adenovirally transduced with a dominant negative Rap1 mutant 

(Rap1N17) before being adoptively transferred into recipients in which tolerance and 

priming would then have been induced. The ability of such Rap1-deficient T cells to 

provide Ag-specific B cell help could be investigated following antigenic challenge in vivo 

by measuring serum Ab production. The hypothesis would be that such Rap1-deficient T 

cells would indeed, be able to provide B cell help (Figure 6.6H), that would perhaps be 

evidenced by increased serum Ab production relative to that detected in normally tolerised 

animals. In addition, as Rap1 has been shown to have a possible role in the induction 

phases of both priming and tolerance, such Rap1-deficient T cells may exhibit a reduced 

ability to migrate into the B cell follicles during the induction phase of priming (Figure 

6.6E) relative to normal T cells (Figure 6.6A).  

6.9 Summary 

In summary, defective ERK signalling correlates with the up-regulation of Rap1 

expression in tolerised relative to primed Ag-specific CD4
+
 T cells during the maintenance 

phases of tolerance in vitro and in vivo. As this association occurs after the induction of 

both systemic and oral routes of tolerance, these data suggest that Rap1 antagonism of 

pERK signalling may play an important and general role in the maintenance of antigen-

specific CD4
+
 T cell tolerance. By advancing our knowledge of these key signals in 

regulating tolerance and priming at the single cell level in vitro and in vivo, we will 

increase our understanding of an important physiological process at the molecular level, 

ultimately leading to identification of potential targets for enhancing or inhibiting immunity 

and tolerance. 
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Figure 6.1 Activatory T cell signalling. Schematic depiction of the T cell signalling 

cascades initiated upon ligation of the TcR in combination with co-stimulation. Under such 

conditions of priming, both Ras- and Rho-GTPase-mediated signalling pathways are 

induced which lead to the activation of ERK, SAPK and p38 MAPKs. In turn, each of these 

MAPK activates one or more of the transcription factors required for transcription of the 

IL-2 gene. Upon activation of all of the necessary transcription factors, IL-2 is produced 

followed by cell cycle progression and proliferation. Subsequently the primed T cell can 

exert full effector function.  
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Figure 6.2 Inhibitory T cell signalling. Tolerance can be induced in T cells when the TcR 

is ligated in the absence of co-stimulation. Consequently, not only are the co-stimulatory 

signals absent, additional inhibitory signalling pathways are initiated. Under such 

conditions, the small GTPase Rap1 competitively binds the known Ras effector, Raf, and 

susbsequently Raf is unable to bind and activate its effector, MEK1/2. In its unactivated 

state, MEK1/2 cannot bind and activate ERK1/2 hence the AP-1 transcription factor 

complex cannot be activated. In the absence of AP-1 activation, IL-2 cannot be transcribed. 

In summary, such tolerogenic signalling results in a state of antigenic unresponsiveness, 

known as anergy, in the T cell. Anergy/tolerance is evidenced by the downregulation of IL-

2 production and G1 cell cycle arrest, and the consequent decrease in proliferation. Such 

tolerised T cells are incapable of mounting a productive immunological response to 

antigenic challenge. 
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Figure 6.3 Cell cycle progression in primed T cells. Upon TcR ligation in the presence of 

CD28-mediated co-stimulation, the Ras-ERK and p38/JNK MAPK signalling cascades are 

initiated and subsequently, AP-1 is activated following induction of c-Jun/c-Fos. Such 

ERK-dependent AP-1 transcription contributes to the upregulation of cyclin D as c-Jun, an 

AP-1 constituent, activates the cyclin D1 promoter. CDK4, CDK6 and D-type cyclins can 

then associate and act to phosphorylate Rb, first by cyclin D–CDK4/6 then further by 

cyclin E-cdk2, thereby altering its conformation. Phosphorylated Rb (p-Rb) releases bound 

E2F family transcription factors which are then free to activate the genes required for entry 

into S phase (e.g. cyclin A and cyclin E) and hence proliferation. Cdc2 (CDK1) and CDK2 

are then activated and can both associate with cyclin A at S phase where they also act to 

hyperphosphorylate and inactivate Rb thus, further fuelling cell cycle progression. 
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Figure 6.4 Induction of G1 arrest in anergic T cells. Ligation of the TcR in the absence 

of co-stimulation can result in a state of anergy. Anergy is believed to occur as a result of 

reduced activation of the Ras-Raf-MEK-ERK signalling cascade, which in turn leads to 

reduced IL-2 production, cell cycle progression and proliferation. It is believed that Rap1 is 

involved in the uncoupling of the Ras-ERK cascade via competitive binding and 

sequestration of Raf. It seems likely that this downregulation in ERK activation would lead 

to reduced phosphorylation and activation of the AP-1 complex, which in turn would result 

in decreased cyclin D activation and complex formation with CDK4/6. Consequently, there 

may be a reduction in CDK4/6-mediated phosphorylation of Rb. Moreover, upregulation of 

p27
kip1

, which is also observed in anergy, may cause downregulation of CDK1/2-mediated 

phosphorylation of Rb. Such downregulation in the phosphorylation of Rb would reduce 

E2F release and transit into S phase thus, cell cycle arrest at the G1 phase would likely 

result. In summary, it is possible that up-regulation of p27
kip1

 (B) and downregulation of 

nuclear p-Rb expression (C) is necessary, together with reduced ERK MAPK signalling 

(A), for the anergic state to be maintained. 
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Figure 6.5 Genetic modulation of ERK activation in primed and tolerised T cells. 

Hypothesised effects of a range of adenoviral constructs on tolerised (A) and primed Ag-

specific primary T cells. Transduction of Ag-specific T cells, following induction of 

anergy, with a constitutively active parent RasV12-GFP mutant (A. ii) that can signal to 

both Raf and PI3K, or the related construct, RasV12S35-GFP (A. iii) which can couple to 

ERK via Raf and MEK but not PI3K signalling, may break tolerance in these cells. This 

break in tolerance would be evidenced by increased IL-2 production, cell cycle progression 

and proliferation, relative to anergic T cells that had been transduced with the empty vector. 

Alternatively, transduction with RasV12C40-GFP (A. iv) which can couple to PI3K but not 

to the Raf/MEK/ERK cascade, would perhaps result in no detectable difference in ERK 

activation relative to control anergic cells (A. i). Adenoviral vectors expressing GFP alone 

(empty vectors) would have been used as controls for the adenoviral gene transfer 

procedure (A. i, B. i). Transduction of Ag-specific T cells, following induction of priming, 

with the dominant negative form of Ras (RasN17-GFP; B. ii) or the constitutively active 

form of Rap1 (Rap1V12; B. iii) would perhaps convert such Ag-specific T cells to a 

tolerised phenotype, as evidenced by reduced IL-2 production, cell cycle progression and 

proliferation, relative to primed T cells that had been transduced with the empty vector. 
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Figure 6.6 Potential role for Rap1 in mediating T cell-dependent B cell help. Schematic 

diagram depicting the differential migration and capacity to provide B cell help of Ag-

specific T cells in response to antigenic stimulation during the induction (A, B) and 

maintenance (C, D) phases of tolerance (B, D) and priming (A, C) in vivo. The up-regulated 

expression of Rap1 detected in tolerised compared to primed follicular Ag-specific T cells 

in response to challenge with Ag in vivo indicates a potential role for Rap1 in incapacitating 

T cells from providing B cell help which may contribute to the downregulation of Ab 

production observed during the maintenance phase of tolerance in vivo (D). Such Rap1-

expressing tolerised follicular Ag-specific T cells are denoted as Rap1
hi

 here. Time 

permitting, Ag-specific T cells would have been adenovirally transduced with a dominant 

negative Rap1 mutant (Rap1N17), here termed Rap1
lo

 cells, before being adoptively 

transferred into recipients, in which tolerance and priming would then have been induced. 

As Rap1 has been shown to have a possible role in the induction phases of both priming 

and tolerance, it is hypothesised that Rap1
lo

 T cells may exhibit a reduced ability to migrate 

into the B cell follicles during the induction phase of priming (E), relative to normal T cells 

(A). This proposed reduced migration would perhaps result in decreased serum Ab 

production in these animals. The ability of these Rap1-deficient T cells to provide Ag-

specific B cell help would also have been investigated following antigenic challenge in vivo 

by measuring such serum Ab production. The hypothesis would be that tolerised Rap1-

deficient T cells would indeed, be able to provide B cell help, following challenge with Ag 

(H). Such “restored” B cell help would perhaps be evidenced by increased serum Ab 

production relative to that detected in control tolerised animals (B).
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