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SUMMARY 

Flavonoids are polyphenolic compounds whose main dietary sources are fruits 

and vegetables. Epidemiological evidence has suggested that dietary flavonoids 

may protect against heart disease but biological effects have not hitherto been 

demonstrated directly in humans and there was no consistent evidence about the 

absorption of flavonoids. The studies performed for this thesis aimed to test 

antioxidant properties of flavonoids using an in vitro system, ex vivo tests on 

human tissue (lymphocytes) and in a dietary intervention. 

The antioxidant effects of pre-treatment with flavonoids and vitamin C (as a 

positive control) in standardised concentrations (7.6, 23.2, 93 and 279.4 

J.lmol/l), on oxygen-radical-generated DNA damage from hydrogen peroxide 

(lOO J.lmolll) in human lymphocytes were examined using the single-cell gel 

electrophoresis assay (SCGE assay or "comet assay"). Pre-treatment with all 

flavonoids and vitamin C produced dose-dependent reductions in oxidative DNA 

damage. At a concentration of 279 J.lmol/l, they were ranked in decreasing order 

of potency as follows: luteolin (9% of damage from unopposed hydrogen 

peroxide), myricetin (10%), quercetin (22%), kaempferol (32%), quercitrin 

(quercetin-3-L-rhamnoside) (45%), apigenin (59%), quercetin-3-glucoside 

(62%), rutin (quercetin-3J3 D-rutinoside), (83%) and vitamin C (78% of 

damage). The protection of vitamin C against DNA damage at this 

concentration was significantly less than that of all the flavonoids except 

apigenin, quercetin-3-glucoside and rutin. The protective effects of quercetin 
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and vitamin C at a concentration of23.2 ~molll were found to be additive 

(quercetin 71% of maximal DNA damage from unopposed hydrogen peroxide, 

vitamin C 83%, both in combination 62%). These data suggest that the free 

flavonoids are more protective than the conjugated flavonoids (e.g. quercetin 

versus its conjugate quercetin-3-glucoside, p<O.OOI). They are also consistent 

with the hypothesis that antioxidant activity of free flavonoids is related to the 

number of hydroxyl groups. 

The next study involved detection of antioxidant activities of flavonoids in 

isolation and in human plasma in the trolox equivalent antioxidant capacity 

(TEAC) assays, to compare the antioxidant activities of some common 

flavonoids and vitamin C with that oftrolox (a synthetic vitamin E) and to 

evaluate the effect of in vitro addition of flavonoids on the total antioxidant 

activity of human plasma. The antioxidant activities of 17 free and conjugated 

flavonoids and related polyphenolic compounds at the concentrations of lmmolll 

were tested in vitro and compared with vitamin C at the same concentrations in 

the TEAC assay. The total antioxidant activity of human plasma was measured 

using the same assay before and after adding rutin, quercetin and 1 00 ~mol/l 

kaempferol in concentrations 10-1 00 ~mol/l. 

It was found that all flavonoids tested, except naringin, had more antioxidant 

activity than vitamin C (p<0.05) as measured in the standard TEAC assay. In 

addition, since Trolox, which is an analogue of vitamin E, at 1 mmolll has a 

14 



TEAC of 1.0 (and this is the basis of calibration) then all flavonoids, (except 

narigin) also have greater antioxidant activity than vitamin E. Quercetin and 

rutin produced a dose-related increase in antioxidant capacity of normal human 

plasma. The addition of 50 ~molll quercetin and 1 00 ~mol/l quercetin, rutin 

and kaempferol significantly increased the total antioxidant capacity of human 

plasma (p<0.001). There was a strong positive correlation between the number 

of hydroxyl group offlavonoids and the antioxidant activity (p<0.001, R = 0.86). 

The flavonoid aglycones were more potent in their anti-free radical action than 

their corresponding glycosides (p<0.05). 

Pilot studies were unable to show absorption of oral quercetin administration, so 

a dietary study was conducted to search for effects from food-derived flavonoids 

in diabetic patients (NIDDM). Non-insulin dependent diabetic patients were 

chosen because they have reduced antioxidant defences and suffer an excess of 

free-radical mediated diseases like coronary heart disease. Ten stable non

insulin dependent diabetic patients were treated for 2 weeks on a low flavonoid 

diet and for 2 weeks on the same diet supplemented with 110 or 76 mgs of 

flavonoids (mostly quercetin) provided by 400 g onions with (n = 5) or without 

(n = 5) tomato ketchup and 6 cups oftea daily, in random order. 

Fasting plasma of flavonoid concentrations were undetectable « 1 ng/ml) in 

7/10 subjects, mean 5.6 ± 2.9 ng/ml on the low flavonoid diet. This was 

increased to 52.2 ± 12.4 ng/ml on onion and tea supplemented diet containing 
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76.3 mg flavonoids daily (p<0.001), almost all from quercetin. Fasting plasma 

flavonoid rose to 87.3 ± 26.7 mg/l on the onion, tomato ketchup and tea 

supplemented diet which contained 110 mg/day flavonoids. Urine collections 

revealed a similar 13-fold increase in flavonoid excretion on the supplemented 

diets, and the fasting plasma and 24 hour urinary flavonoids were highly 

correlated (r = 0.75). 

Oxidative damage to lymphocyte DNA on an arbitrary scale 0 to 400 units was 

220 ± 12 on the low flavonoid diet and 192 ± 14 on the high flavonoid diets 

(p=0.037). This increased antioxidant activity on the high flavonoid diet was not 

accounted for by any change in measurements of diabetic control (fasting plasma 

glucose or fructosamine), nor by any change in plasma measurements of known 

antioxidants including vitamin C, carotenoids, tocopherols, urate, albumin, 

bilirubin. Other phenolics, e.g. catechins were not measured. 

Analysis of the plasma, urinary and dietary flavonoids indicated that dietary 

consumption can be predicted by 24 hour urine (r2 = 0.75) or fasting plasma 

concentration (r2 = 0.51). The habitual (baseline) diets of these diabetic patients 

contained 20-80 mg/day, mean 33 mg/day. 
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The main conclusions of this thesis are: 

1. There is a potent antioxidant action of dietary flavonoids demonstrated by 

the comet assay, of potential importance in protection against cardiovascular 

disease and cancer. 

2. The antioxidant capacities of most major dietary flavonoids are greater than 

vitamin C. 

3. Results from the comet assay and TEAC show reasonable agreement in 

ranking. 

4. Antioxidant activities of free flavonoids are more than the conjugated 

flavonoids. 

5. There were a strong positive correlation between the number of hydroxyl 

group of flavonoids and the antioxidant activity 

6. Dietary flavonoids are absorbed and the fasting plasma concentration can be 

increased 12 fold by a simple and palatable food supplement. 

7. Supplementation with onions, tomato ketchup and tea lead to protection of 

lymphocytes against free radical damage (H20 2), a biological effect of 

potential medical importance possibly attributable to the absorption of 

dietary flavonoids. 

8. Dietary flavonoids intake (and specifically quercetin) can be estimated with 

reasonable accuracy from 24 hour urinary flavonoid excretion or fasting 

plasma concentration. 

9. The range of dietary flavonoid consumption in ten NIDDM patients was 

estimated at 20-80 mg/day from their normal diets. On the basis of results in 
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this thesis, dietary difference within this range would influence tissue 

antioxidant status. 
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1.1 Free radical and antioxidants in health and disease 

1.1.1 What is a free radical and why it is important 

A free radical is an atom or molecule that contains one or more unpaired 

electrons (Halliwell 1994) or a chemical species with unpaired electron which 

can be formed by loss or adding a single electron to a normal molecule or by the 

cleavage of a covalent bond of a normal molecule, such that each fragment 

corrtains one of the paired electrons (Cheeseman & Slater 1993). The hydrogen 

radical contains one proton and electron, and is the simplest free radical 

(Halliwell 1994) and oxygen is the most important free radical in biological 

systems (Cheeseman & Salter 1993). The halflife of free radicals is short and 

they do not travel far because they are highly reactive, often reacting at their site 

of formation (Halliwell 1994). The main pathological importance of free 

radicals is their destructive action against three molecular forms in the body: 

DNA, proteins and lipids. They release high energy, and may initiate chain 

reactions by producing further free radicals. Their oxidative actions against 

DNA, proteins and lipids are often permanent. 

1.1.2 The source of free radicals 

Free radicals produced as a normal consequence of aerobic metabolism and for 

microbial killing by neutrophils (Halliwell et aI1994). Within the human body, 

some conditions promote generation of hydroxyl radical (OH'-) and superoxide 

(02'). Approximately 1-3% of oxygen we breath is us~d to make superoxide 

by activated phagocytes cells (neutrophils, monocytes, macrophages and 
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eosinophils) for killing the foreign organisms (Catapano et al1997). Nitric 

oxide (NO") is another physiological free radical which is produced by the 

enzyme nitric oxide synthase from L-arginine in phagocytes and by vascular 

endothelium where it acts as a relaxing factor (Moncada et al 1993). 

Some free radicals are formed in the human body both by accidents of chemistry 

and for useful metabolic purposes (Halliwell 1996). Free radicals are generated 

by normal metabolic processes e.g. reduction of oxygen to water by 

mitochondrial electron transport chain. From all oxygen used in metabolism, 1-

5% escapes as free radical intermediates (Neville et al 1996). Loss of a single 

electron of oxygen produces the superoxide free radical anion (0-'2) or reduction 

of two-electron of oxygen produce (H20 2) and H20 2 can also be produced by 

reaction of two superoxide together with (20-'2 + 2H+ ~ H20 2 + O2) 

(Cheeseman & Slater 1993). Ionizing gamma rays, radiation ultraviolet can split 

water in the human body to generate (OH") (Halliwell 1994). Table 1.4 presents 

a summary of generation of free radicals. Excess exposure to free radicals, 

whether endogenously produced or derived from environment, leads to oxidative 

stress and potential severe damage through an oxidative cascade affecting lipids, 

proteins or nucleic acids 
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1.1.3 Effects of free radical on lipids 

Lipid peroxidation of cell membranes begins with the abstraction of (H) atom 

from a (CH3) group, and most often occurs in the proximity of a double bond. 

The free radical then re-arranges into conjugated diene, that can react with an 

oxygen molecule to form a peroxyl radical (ROO'). Peroxyl radicals can be 

changed to form lipid hydroxides (ROOH) by removing (H) from other lipid 

molecules, and setting in motion a chain reaction that can oxidase unsaturated 

fatty acids in the membrane. Lipid hydroperoxides (ROOH) can react with 

transition metals (Fe, Cu) to produce hydroperoxy (ROO") or alkoxy (RO") 

radicals, they can react with Fe2
+ to form Fe3

+, hydroxide ion and alkoxyl radical 

(RO) radicals. This is similar to the Fenton reaction 

(ROOH + Fe2
+ ~ Fe3

+ + OIr + RO") (Hunt 1993). 

Lipid peroxidation commonly starts in polyunsaturated fatty acids (PUF A) in 

LDL, and in surface phospholipids, and the process gives rise to a wide variety 

of active molecules such as oxidised sterols, modified phospholipids, products of 

oxidised fatty acids (Malonyldialdehyde and hydroxynonenal) that can react with 

Lysine_ in apolipoprotein B (APo-B) and produce lysophosphatidylcholine, can 

which if released from the modified LDL causes damage to artery walls 

(Witztum 1994). Oxidised LDL is not recognised by the normal LDL receptors, 

and can only be removed from the circulation via the scavenger pathway. 

Accumulation of oxidised LDL in macrophages to form "foam cells" is 

-
considered an important factor in the origin of .coronary heart disease (CHD). 
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Superoxide has a role in the oxidation oflow density lipoprotein (LDL) and also 

(NO) may act both as an oxidant and antioxidant and by its ability to form 

peroxynitrite with superoxide radicals, it would be expected to oxidise LDL 

(Catapano et aI1997). Therefore antioxidants could prevent peroxidation oflipid 

by free radicals and protect from vascular disease. 

Excess generation of reactive oxygen species (ROS) in vivo occur by the action 

of catalytic ions (Fe, Cu) in the cell membrane which can induce lipid 

peroxidation (Ha1liwe111996). Oxidation of PUF A generates fatty acid radicals 

(L") which by adding O2 produce fatty acid peroxyl radicals (LOa), which in 

turn can be carriers of the chain-reaction to oxidise further (PUFA) molecules, 

finally producing lipid hydroperoxides (LOOH), more radical species and 

aldehydes (Cheeseman & Slater 1993). 

(1) LH + R' ~ L" + RH 

(2) L' + O2 -+ LOa' 

(3) LOa' + LH-+ LOOH + L . 

(4) LOOH ~ La', LOa', aldehydes 

Oxidised fatty acids in LDL can react with lysine in APo-B and produce a new 

oxidised LDL which is then recognised by the macrophages scavenger receptors 

(Witztum 1994). PUF A appear more susceptible to free radical attack than 

proteins and nucleic acids (Cheeseman & Slater 1993). 
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1.1.4 Effect of free radical damage on protein and DNA 

Peroxynitrite, formed from two free radical molecules (superoxide and nitric 

oxide) at physiological pH, directly damages proteins (Halliwell 1994). 

Hydroxyl radicals induce DNA damage by interaction of hydrogen peroxide and 

superoxide with transition metals (Guyton & Kensler 1993). Both Fe and Cu 

ions can promote DNA damage by active oxygen species in vivo (Aruoma et al 

1991). Incubation cells with H20 2 induces DNA damage which can be inhibited 

by catalase, while (SOD) does not usually inhibit this process much (implying 

possibly that DNA damage is not mediated by O2"), It seems OH" , generated 

from H20 2, crosses biological membranes, and can diffuse to the nucleus 

(Halliwell & Gutteridge 1990). Prutz et al (1990) suggested that metal ions are 

always present bound to the DNA, for example Cu is in the chromosomes, and 

are very effective in promoting H20 2 dependent damage to chromatin DNA or 

isolated DNA. Another possibility is that interacellular free Ca ++ is released 

within the cells as a result of oxidative stress, and bind to the DNA to make it a 

target for oxidative damage (Halliwell & Aruoma 1992). 

Oxidative stress causes rises in intracellular free Ca ++ which fragment DNA by 

activating Ca ++ dependent nuclease (Orrentus et al 1989). Both mechanisms, 

DNA damage by OH" or by activation of Ca ++ -dependent nuclease, could take 

place (Halliwell & Aruoma 1992). Chelating agents can protect cells against 
...•. 

DNA damage and other effects of oxidative stress (Mello-Fiho et al1984) by 
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removing metal ions from the vicinity of DNA, so that any OH' generated no 

longer attacks molecules (Halliwell & Gutteridge 1990), 

Comparing reaction mixtures ofH20 2 and 0'-2 showed that Cu mediates much 

more damage to DNA bases by OH' generated from H20 2 than Fe (Aruoma et al 

1991) because Cu reacts faster than Fe with H20 2 to form OH' (Halliwell & 

Gutteridge 1989). The radical OH' is an oxidant from normal metabolism and 

endogenous processes leading to significant DNA damage which is likely to 

involve oxidation, methylation, deamination and depurination (Ames & 

Shigenaga 1992). 

e- ~ OH' 

The genotoxic effects of hydrogen peroxide, a common end product of many 

types of oxidative stresses, have been studied (Martins et aI1990). Hydroxyl 

radical generated from H20 2 produces DNA strand breaks. In the Fenton 

reaction model, DNA-bound Fe2
+ reacts with H20 2 to generate OH radical, and 

this reactive site-generated radical will then attack DNA to produce damage 

(Meneghine et al 1988). 

Hydroxyl radicals can attack the purine and pyrimidine bases and cause 

mutations e.g. guanine is converted into 8-hydroxyguanine(Halliwell1994) or 

can attack both the deoxyribose sugar and the purine and pyrimidine bases, 
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forming a wide range of products. At least 18 products of oxidative damage to 

the DNA bases, have been detected, for example: 8-hydroxyguanine, 8-

hydroxyadenine, 2-hydroxyadenine, 5-hydroxycytosine, 5-hydroxyuracil and 5, 

6-dihydroxyuracil. The amount of these OH-derived products in urine or DNA 

extracted from tissue shows attack by (OH") and unrepaired DNA damage 

(Halliwell 1996). 

The compound 8-oxod G (8-oxo-7, 8-dihydro-2'-deoxyguanosine) is potentially 

the most mutagenic compound induced in DNA by reactive oxygen species 

(Olinski et aI1992). After DNA repair by excision the resulting product, 8-

oxodG, is excreted unchanged into the urine (independently of diet) and is a 

good biomarker of oxidative DNA damage in the whole body (Shigenaga et al 

1989). Verhagen et al (1995) using the 8-oxodG method found a reduction of 

oxidative DNA damage in humans with consumption of 300 g/day of cooked 

brussel sprouts during 3 weeks in 10 SUbjects. They concluded that the 

consumption of cruciferous vegetables (cabbage, broccoli, brussel sprouts) may 

decrease cancer risk. 

Oxidative DNA damage is considered a pathogenic event in many cancers 

(Ames and Gold 1991, Cenitti 1994), therefore decreases in the rate of oxidative 

DNA damage may indicate a reduced risk of cancer. Antioxidant vitamins, 

flavonoids, glucosinolates, organosulfur compounds) h~ve been claimed to have 

antimutagenic or anticarcinogenic potential (Verhagen et al 1995). Oxidative 
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damage to DNA by free radical mechanisms is a main cause of cancer in 

humans. However the process may not necessarily lead to cancer, as low levels 

of damage may be repaired with a minimal risk of error (Breimer 1991). 

Therefore it may not be necessary for antioxidants to stop free-radical 

production, but to restrict it to a certain level. 

1.1.5 Antioxidant defence against free radicals 

There are several interacting systems in the body which neutralise free radicals, 

or prevent their production, and stop free-radical chain reactions. They appear to 

operate in a cascade. Some antioxidant defence against free radical present in 

(Table 1.5). 

Superoxide dismutase (SOD) is a free radical scavenger (Cheeseman & Slater 

1993) which converts superoxide to hydrogen peroxide in the mitochondria and 

cytosol (202" + 2H+ -+ H20 2 + O2), Glutathione peroxidase is a major enzyme 

that removes hydrogen peroxide generated by SOD in cytosol and mitochondria 

(Chance et aI1979), by changing to oxidised form (GSSG): 

(2GSH + H20 2 -+ GSSG + 2H20). Catalase also remove H20 2 in peroxisomes 

in most tissues (Halliwell 1994). 

Diets rich in fruits, nuts, grains and vegetables seem to be protective against 

several human diseases (Catapano et aI1997). The assumption is made that 
... 

common dietary and endogenous antioxidants.operate at different sites. Vitamin 
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C (as a cytosolic antioxidant), vitamin E (as membrane antioxidant), GPX (as a 

membrane, cytolic and plasma antioxidant), SOD (as a mitochondial, cytosolic 

and extracellular antioxidant), catalase, carotenoids and ubiquinones are believed 

to act together to protect both cytosol and membranes against free radical attack 

(Neville et a11996). Catalase and GPX are enzymes whose role is to decompose 

peroxides safely, mainly located in peroxisomes and cytosol. Antioxidant 

proteins (enzyme and non-enzyme), lipid and water soluble antioxidants in 

human plasma and urine and also some flavonoids and polyphenols antioxidants 

are presented in Table 4.1. 

The most important lipid chain breaking antioxidant is a-tocopherol. It works 

by intercepting lipid peroxyl radicals (LOO') to form a tocopheroxyl radical 

which is insufficiently reactive to initiate lipid peroxidation itself (Stocker et al 

1991). 

LOO· + a-tocopherol-OH --+- LOOH + a-tocopherol- O· 

The tocopherol radicals (located in membranes and lipids) is then restored to a

tocopherol through the action of ascorbic acid and other water soluble and 

circulating antioxidants at the surface of membranes and lipoproteins (Mukai et 

aI1993). 

(aTH + LOO· --+- aT· + LOOH) 
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Another part of natural antioxidant defence is the repair of oxidative damaged 

nucleic acids by specific enzymes, oxidised protein by proteolytic systems and 

the removal of oxidised membrane lipids removed by lipases, peroxidases and 

acyltransferases (Cheeseman & Slater 1993). 

Haemopexin and haptoglobin bind free heme and heme proteins to reduce their 

ability to catalyse free-radical damage. Albumin which has antioxidant 

properties because it contains a sulphydryl group, can scavenge several radicals 

and binds copper ions in plasma (Halliwell 1990). 

1.1.6 Free radicals in human disease 

Inflammatory reaction: In the normal inflammatory reaction, leucocytes, 

neutrophils and macrophages possess NADPH oxidase and release superoxide 

by one electron reduction of oxygen. Reactive oxygen species (ROS) are 

normally created by leucocytes to kill ingested or extracellular bacteria (Neville 

et aI1996). 

Ischaemia: Xanthine oxidase acts as a source of oxygen free radicals (OFRs) 

and superoxide (02.-). These products playa major role in generating tissue 

damage and endothelial dysfunction (Neville et a11996). Animal studies 

suggest that myocardial ischaemia reperfusion causes oxidative stress, referred to 

by Oostenbrug et al (1997). 
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Skin cancer: Exposure to ultraviolet radiation and the effects of sunburn 

generate free radicals in the skin. The decrease in the protective ozone layer has 

relation with increased level of ultraviolet radiation and lead to risk of skin 

cancer (Neville et al 1996). 

Granulomatous disease: Children with chronic granulomatous disease die 

from bacterial infections because they have genetic deficiency which prevents 

their leucocytes from generating OFRs (Neville et al 1996), needed to set up 

normal inflammatory responses to infection. 

Hypertension: Free radicals are believed to playa role in the control of blood 

pressure (Kumar & Das 1997). Excess vascular ot could lead to hypertension 

(N akazone et a1 1991) because of imbalance between (NO") as a relaxor of vessel 

walls and (02°) as a vascoconstrictor by removing (NO") (Laurindo et al 1991). 

Therefore over production of superoxide might be one cause of hypertension 

(Halliwe111994). 

Atherosclerosis: Free radicals can induce oxidative damage and have been 

implicated in diseases such as atherosclerosis (Witztum et al 1994). PUF A in 

membranes can be oxidised by free radicals producing lipid hydroperoxides 

(directly) and reactive aldehydes (indirectly). Lipid peroxidation may be 

involved in the pathogenesis of atherosclerosis. Oxidised lipoproteins (LDL) 
." 

~ 

cannot be processed by the normal receptors, and tend to accumulate in 
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macrophages through scavenger receptors. These accumulate within vessel 

walls as foam cells, the precursors to fatty streaks (Cheeseman & Slater 1993). 

Diets rich in fruits and vegetables are protective against cardiovascular disease, 

and their antioxidant content is a possible mechanism (WHO 1990). 

Lung related disease: Evidence of oxidative reactions is often associated with 
(. 

fibrogenesis ocurring in liver and lung (Poli & Parola, 1997). Lung fibrosis and 

cancer caused by dusts such as silicates and asbestos may be partly mediated by 

ROS (Janssen et aI1993). Peroxynitrite (combined superoxide and nitric oxide) 

(ONOO) is a strong oxidant that may contribute to lung injury. An increase in 

ROS has been shown in asthma and cystic fibrosis (Cross et aI1994). Lungs are 

vulnerable to infection (pneumonia) if protecting ROS are not released by 

leukocytes as part of the normal inflammatory response. 

Neurodegenerative disease: In both Parkinson's disease and Alzheimers 

disease iron increases in substantia nigra and cortical regions and there is also 

reduced GSH. In Parkinson's disease hydroxylated guanine (8-oxod G) a 

product of free radical attack on guanine in DNA, is raised. However SOD 

(CU/Zn and Mn) are above normal which may be an adaptative change to 

increased free radical load, (Jenner 1994). Deficiency of vitamin E, specifically 

in abetalipoproteinaemia, results in optic atrophy and cerebral degeneration 

which are believed to be the result of unopposed free radical' activity. 
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Premature babies: Exposure to high concentrations of oxygen before adequate 

antioxidant defences are developed, produce toxic reactions and tissue injury 

(Neville et al 1996). 

1.1.7 Antioxidant intervention studies 

Most analyses have sought mechanisms based on antioxidants routinely included 

in nutrient data bases, and on the basis of this type of research, intervention 

studies using vitamin C, vitamin E and beta carotene have been mounted. The 

potential for error in this approach was demonstrated by studies (The Alpha-

tocopherol group 1994) which showed no benefit, indeed potential harm, from 

isolated beta carotene supplementation. On the other hand vitamin E 

supplementation seems to protect against heart disease, and vitamin C and E 

against cataract. Foods which contain the conventional antioxidant vitamins are 

often rich in phenolecs which may be bioactive. On this basis, food-based 

interventions may be safer and more successful than using isolated vitamins: or 

other compounds. 

1.1.8 Free radicals and antioxidants in diabetes 

Diabetes mellitus is a metabolic disorder characterized by high blood glucose, 

polyuria, thirst, hunger, emaciation and weakness. Underlying the disease is 

either deficiency (Type I) or resistance (Type II) to insulin. Type I patients are 

characteristically young and lean, totally dependent on exogenous insulin, while 
... 

Type II are usually obese and older and can be treated with dietary changes, 
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exercise and oral medication (Oberley 1988). The main clinical hazards of Type I 

diabetes are microvascular diseases, and in Type II diabetes an acceleration of 

ischaemic heart disease and cerebrovascular disease. Colditz et al (1992) have 

produced evidence from the Boston Nurses Study that fruit and vegetables 

protect against the development of diabetes. Antioxidants provide one possible 

mechanism. 

Diabetic patients. both Type I and Type II, have abnonnal antioxidant status, 

with auto-oxidation of glucose and excess glycosylated protein (Jones et al 

1985). Oxidative stress leads to tissue damage, increased reactive oxygen 

species, inactivation of proteins, fragmentation of DNA and tissue degeneration 

in diabetes mellitus (Loven et al 1985). There is already abnormal antioxidant 

status in the pre-diabetic state of impaired glucose tolerance (IGT) and this may 

relate to the high coronary heart disease risk in IGT (Vijayalingan et al. 1996). 

Sinclair et al reported that there is a negative correlation between serum ascorbic 

acid and fiuctosamine concentration in diabetic patients with complications 

(Sinclair et al, 1992). They also found a low concentration of plasma ascorbate 

in patients with type 2 diabetes mellitus consuming adequate dietary vitamin C, 

and suggested that this implies increased utilisation of vitamin C to inactivate free 

radicals. Decreased lipid peroxidation and improved antioxidant status may be 

one mechanism by which dietary treatment contributes to the prevention of 

diabetic complications (Armstrong et al 1996). Increased free radical activity in 

diabetes mellitus may contribute to higher prevalence .and mortality from 
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macrovascular disease in diabetic patients (MacRury et al 1993). Peripheral 

vascular disease, renal failure, coronary heart disease, cataract blindness, 

infections and artherosclerosis in diabetic patients all involve processes in which 

oxygen free radicals have been implicated (Oberley 1988). 

A general increase in free radical activity in diabetes might be expected to result 

in increased cancer risk. According to recent research, IDDM and NIDDM 

patients demonstrate greater oxidative DNA damage with increased generation of 

reactive oxygen species than controls (Dandona et aI, 1996). These findings are 

consistent with previous studies which have shown diabetes to be a risk factor for 

cancer of the uterine corpus and a positive association with prior diagnosis of 

diabetes was also noted for kidney cancer and non melanoma skin cancer in 

females (0' Mara et al 1985). In general, however, diabetes is not a major risk 

factor for cancer, and this argues for free radicals having a relatively lesser impact 

on cancer than on vascular disease, at least in this condition. 

Defective serum antioxidant status contributes to the increased oxidative stress in 

diabetic patients. (Asayama et al 1993). Ceriello and co-workers (1997) 

suggested, decreased total radical-trapping antioxidant parameter (TRAP) levels 

in NIDDM patients is caused by lower antioxidant defences. In diabetic patients 

changes in superoxide dismutase (SOD) and catalase (CAT) activity, GSH 

metabolism, vitamin C and E level, and in lipid peroxides have been observed. 
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These topics are summarised below: 

A: Superoxide dismutase 

Matkovics (1982) found a 97% reduction in erythrocyte Cu-Zn SOD activity 

with increased glutathione peroxidase in NIDDM subjects maintained on oral 

hypoglycaemic agents. A glycosylated form of Cu-Zn SOD, which had a lower 

enzymatic activity, was increased in the erythrocytes of diabetic patients (Arai et 

al 1987). 0'2' in polymorphonuc1ears (PMNs) from diabetic patients were higher 

than normal (Nath et al 1984) which attributed to the decrease in the SOD 

activity in mitochondrial and cytoplasma. Treated diabetic patients with insulin 

showed increasing levels of SOD (Oberley 1988), and high level of glucose is not 

responsible for dysfunction of white blood cells (Pickering et al 1982). 

Erythrocyte SOD ofNIDDM cases (n=467) was lower than normal (n=180) 

(Sundaram et al 1996), but the results ofKaji et al (1985) showed no changes in 

erythrocytes SOD activity in 60 NIDDM compared with 71 healthy control 

women. Although the literature is not entirely consistent it is concluded that 

SOD is reduced in diabetic patients. 

B: Vitamins 

Measurement of vitamin C and E in cases ofNIDDM compared with healthy 

controls showed low levels of these scavenger vitamins (50% decrease for 

vitamin C), but no change in vitamin A (Sundaram et al 1996). Ascorbic acid 

(AA) and dehydroascorbic acid (DHA) in NIDDM patients showed low plasma 
.. 

-,' 

levels compared with control (Sinclair et al 1994) which appeared to be a 
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consequence of the disease itself and not due to inadequate dietary intake of 

vitamin C. Low AA in NIDDM patients (despite high intake of vitamin C) may 

result from increased oxidative stress (Sinclair et aI1991). DHAlAA ratio of 

elderly diabetic patients (n=50) was higher than in controls (n=40) which implies 

that there had been increased utlisation (Sinclair et al 1992). Plasma a.-

tocopherol ofNIDDM patients (n=23) observed by Vatassery et al (1983) were 

31 % higher than in a control group (n=30). This result is probably explained by 

the elevated plasma lipoproteins in the diabetic subjects, tocopherol being 

transported in lipoproteins. 

c: GPX and GSH 

Reduced glutathione (GSH) content of erythrocytes NIDDM patients was 

decreased (25%) compared with controls, but GPX was increased by 25% in 

NIDDM without complications, and by 85% in NIDDM with multiple 

complications, when compared with the controls. This may be an adaptive 

mechanism developed to deal with the increased generation of free radicals 

(Sundaram et aI1996). Kaji et at (1985) and Sinclair et al (1992) found no 
Ii ,I 
H 

Ii 
changes in GPX activity in NIDDM subjects. However, Uzel and Co workers 

(1987) found it decreased and Matkovics et al (1982) found increased GPX 

activity. On balance it is concluded that there may be increased demand for 

(GPX and therefore selenium) in diabetic patients, at least in certain situations. 
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D: Lipid peroxidation 

Plasma and erythrocytes lipid peroxidation products (TBARS) in NIDDM 

patients showed a significant elevation (by 80%) in patients within the first 2 

years of diagnosis compared with healthy subjects (n= 180). Inactivation or 

inhibition of antioxidant enzymes by glycosylation in poorly controlled diabetes 

mellitus may give rise to increased lipid peroxidation (Sundaram et al 1996). 
d 

Sinclair et al (1992) examined TBA reactivity of 50 NIDDM patients and 

control(n= 40) subjects and found no significant differences. But Hayaishi and 

Shimizu (1982) found 91 % elevated TBA in NIDDM with angiopathy relative to 

controls and they suggested increased TBA-reactive material originated from 

intima of the blood vessel and might be related to the development of 

atherosclerosis. Well controlled NIDDM patients were unchanged in serum 

(TBA) reactive material, while there was an 61 % increase in adult subjects with 

poorly controlled diabetes (Sato et al 1979). The evidence is therefore 

reasonably certain that lipid peroxidation is increased in diabetic patients, in 

keeping with their increased atheroma and vascular disease. 

E: Catalase 

Kaji et al (1985) found no change in erythrocytes CAT activity of either NIDDM 

or IDDM subjects. However, Sundaram and coworkers (1996) found decreased 

catalase in NIDDM (n=467) compared to controls (n=180). Also Matkovics et al 

(1982) presented data to show a lower CAT in diabetic patients. There is 
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therefore no clear abnormality of catalase in diabetic patients. Wataa et al 

(1986) showed increase in CAT activity in erythrocytes of diabetic children. 

F: Treatment of diabetic patients with antioxidants 

Treatment with antioxidants may thus be predicted to prevent or delay 

abnormalities associated with diabetes mellitus (Dandona et al 1996). Taken as 

a whole, the evidence discussed above points strongly to an increase in free 

radical mediated processes, and a reduction in several antioxidant defences in 

patients with diabetes. These processes are involved in long term tissue damage 

and diabetic complications. There appears to be increased demand for 

exogenous antioxidants and a case can be made for examining treatment with 

antioxidants. At present there is surprisingly little published information on 

administration of vitamin C, andlor vitamin E in diabetic patients to indicate 

long term benefit. Jacques et al (1997) have shown protection against cataract 

with vitamin C supplementation, and against CHD with vitamin E 

supplementation, but these studies did not include diabetic individuals. High 

dose vitamin E appears to increase insulin secretion (Paolisso et a11993) but this 

is not a physiological mecahnism. 
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1.2 Chemical structure of flavonoids 

Flavonoids are of the more numerous groups of natural products. Over 4000 

different naturally occuring flavonoids have been described (Middleton & 

Kndaswami 1994) and the number offlavonoids is still growing. Subclasses of 

flavonoids and classification are based on variations in the heterocyclic ring 

shown in six groups: flavones, flavonols, flavanones, catechins, anthocyanidins 

and isoflavones (Figure 1.1) (Hollman et al 1997). The polyphenol bases have 

multiple hydroxyl groups, which are variably conjugated, giving rise to the huge 

number of specific compounds. 

Plant flavonoids are a wide range of low-molecular-weight secondary 

metabolites (Rhodes 1996). The structural basis of flavonoids includes two 

benzene rings (A and B) combined by mediation of the oxygen containing ring C 

(Figure 1.1) (KUhnau et aI1976). The flavonoids are a related group of 

compounds based on the flavone nucleus, biosynthetically derived from 

phenylalanine and malonate (Rhodes 1996). 

Flavonoids in plant materials can be in the fonn of glycosides. The most 

common glycosides of quercetin occuring in food plants appear to be the 

3-glucoside (iso quercetin), 3-rhamnoside (quercitrin), 3-rhamnoside-galactoside 

(bioquercetin) and 3-rutinoside (rutin) (Brown 1980). 

In the flavonol and anthocyanin series, conjugates with ~ugars and organic acid 

at 3 position in the C ring are common and sometimes at position 5 and 7 in the 
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A ring. Glucose, galactose, rhamnose, rutinose, malonate/acetate, and caffeic 

acid are linked with flavonoids and significantly increases the molecular weight 

of the flavonoids (Rhodes 1996). 

Flavonoids generally occur as glycosides with sugars bound at the C3 position in 

our diet (Hertog et al 1993b). Flavonoids consist mainly of anthocyanidins, 

flavones, flavonols, catechins and flavonones (Herrmann 1988 and Hollman 

1995). Anthocyanins are the pigments responsible for the red and blue colours 

of many fruit and vegetables (Rhodes 1996). Flavonoid compounds range from 

the yellow and colourless flav<l!1ones in citrus fruit to the red and blue 

anthocyanins in berries (Klihnau 1976). Two benzene rings (A and B) are linked 

to a heterocyclic ring (C) of flavonoids. This basic structure, particularly in C 

ring (C3) allows links with diferent substances and produce variations of 

flavonoids e.g. quercetin has been described with more than 179 different types 

of glycosides (Hertog et al 1996). Tannins are based on the flavon-3-01 structure. 

Flavonoids structure are based on the flavone nucleus, biosynthetically derived 

from phenylalanine and malonate. The various classes of flavonoids differ in the 

pattern of substitution of the A, Band C rings. From a dietary point of view, the 

most important classes of flavonoids are the flavones, flavonols, catechins, 

anthocyanins. Whereas these flavonoids are found in nearly all fruit and 

vegetables, the isoflavones found in legumes have activity as phyto-oestrogens 

3 
in which the aromatic B ring is attached to positionl'0f the C ring rather than 

position 2 as in the flavonoid series (Figure 1.1) (Rhodes 1996). 
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Optimum antioxidant activity of flavonoids is associated with mUltiple phenolic 

groups (3' and 4' hydroxy groups), a double bond in C2-C3, a carbonyl group at 

C4 and free C3 and C5 hydroxy groups (Roback et a11988a; Rice-Evans et al 

1996) (Figure 1.1). Glycosylation is believed to reduce antioxidant activity 

(Shahidi 1992). 

From the nutritional point of view, the physiochemical properties offlavonoids 

(flavonones, flavonols, flavones and even most anthocyanins) are relatively 

stable substances resistant against heat, oxygen, dryness and moderate degrees of 

acidity, but they are sensitive to light in in vitro situations). Therefore during the 

preparation in the kitchen or food processing, flavonoids are not greatly damaged 

(Kiihnau et al 1976). 

1.3 Biological function of flavonoids 

1.3.1 Essential food factors 

Claims of vitamin like activity for citrus groups of flavonoids have been made 

for several decades. They are marketed as "Bioflavonoids" in many countries. 

However, no conclusive data have been obtained to show that the flavonoids are 

essential food elements in humans. However some observations point to quite a 

fundamental and essential role of flavonoids in some insects (butterflies and silk 

worm larvae) which could be defined as 'vitamin like'. There are strong 
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indications that in lower stages of animal life flavonoids have indeed the 

character of essential food components, e.g. insects (Kiihnau 1976). There is 

certainly evidence for "vitamin-like" actions. After oral supplementation with 

flavonols (catechins) the storage and antiscorbutic: potency of vitamin Cis 

increased in guinea pig organs, primarly in adrenals, kidneys, spleen and liver 

(Hughes and Jones 1971). 

In the past a number of terms have been used for flavonoids e.g. 

"pseudovitamins" by Herbert (1988) and "semi essential food factors" or 

'vitamin like' by Kiihnau (1976), "vitamin P" for decreased permeability of the 

blood capillaries by "bioflavonols" (Rusznyk & Szent-Gyorgy 1936), "vitamin 

C2" for protection of vitamin C from oxidation by flavonoids (Singleton 1981). 

In 1950 the term 'vitamin P' was discontinued and the term bioflavonols has 

replaced it (Herbert 1988). 

1.3.2 Metal-chelating capacity of flavonoids 

Flavonols chelate metal ions at the 3-hydroxy-4-keto group (when the A ring is 

hydroxylated at position 5). An O-quinol group at the B ring can also 

demonstrate metal chelating activity (Pratt & Hudson 1990). The 3' and 4' 

groups in the B-ring have only weak Cu-chelating activity (Letan 1966). One or 

two copper atoms can be bound by chelation to one flavonoid molecule and may 

be withdrawn from the biological medium in this way. This effect will therefore 

potentially have an effect on copper dependent or copper containing enzymes. 
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There is inactivation of ascorbic acid oxidase, a copper enzyme, by flavonoids 

(Kiihnau 1976). 

Flavonoids are also good Fe chelators (Rhodes 1996). The iron chelating activity 

of rutin in lipid peroxidation may be explained by the fonnation of inactive iron

rutin complexes (ferrous ~ ferric ions into the complex) (Kozlov et al 1994). 

1.3.3 Antioxidant activity and free radical scavenging of flavonoids 

Fruit and vegetables are protected to some degree against oxidative condition by 

their natural flavonoids and at least in this sense certain flavonoids do possess an 

useful nutritive role (Kiihnau 1976). They are very strong antioxidants, and may 

be more potent than other known antioxidants (e.g. Vitamin C and E) (Robak et 

a11988a; Salah et a11995; Chen et alI996). Flavonoids can inhibit xanthine 

oxidase which is responsible for superoxide production (Robak and Gryglewski 

1988a). 

FI (OH)+R· ~ FI(O,)+RH FI(OH)+02·· ~ FI(O,)+HOO· 

Husain et al (1987) show many flavonoids scavenge hydroxyl radicals produced 

by the photolysis of hydrogen peroxide or in a Fenton system. Hanasaki et al 

1994 observed rutin to be lOO-fold superior as a hydroxyl scavenger to mannitol. 

Free radical chelating properties of flavonoids are responsible for inhibition of 

lipid peroxidation (Korkina & Afanas'ev 1997). 
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Flavonoids and polyphenols are good scavengers of free radicals due to their 

hydroxyl substitutes in the hydrogen atom. 

Mangiapane et al (1992) suggested catechin, a natural flavonoid inhibits the 

oxidation of LDL. Rutin inhibited lipid peroxidation and free radical production 

of neutrophils and macrophages in iron-overloading rats (Afanas' ev et al 1989). 

Quercetin and other flavonoids also inhibit the in vitro oxidation and 

cytotoxicity ofLDL (De Whalley et al1990 and Negre et al1992). 

Quercetin, kaempferol, catechin and taxifolin reduced the cytotoxicity of 

superoxide ion and hydrogen peroxide (Nakayma et al1993) and morin can 

protect cells from the human circulatory system against oxygen radical-mediated 

damage (Wu et al 1995). 

The antioxidant property of flavonoids is believed to be due to the presence of 

phenolic hydroxyl groups on the A and B rings. A very recent publication 

supports the view that the reactivities of flavonoids increase with increasing 

number of hydroxyl substitutes in ring B (Korkina & Afanas' ev 1997). All 

flavonoids with 3', 4' -dihydroxy configuration possess antioxidant activity. 

Other important features include a carbonyl group at position 4 and a free 

hydroxy group at position 3 and/or 5 (Dziedzic & Hudson 1983). But the single 

hydroxyl substitution at position 5 provides no activity (Cao et alI997). The 

structure relating antioxidant activities of flavonoids are explained in Chapters 3 
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and 4.The chemical structures offlavonoids used in this thesis are shown in 

(Figure 2.4) and a summary of antioxidant activities of flavonoids and 

polyphenols is shown in (Table 4.~). 

1.3.4 Other biological effects of flavonoids 

Flavonoids are not a homogenous group of compounds with similar chemical 

properties. Autoxidation of flavonoids can occur in some situations e.g. in the 

presence of iron ions or Fe-EDTA (Laughton et al 1989) may be responsible for 

a cytotoxic activity of these compounds (Korkina & Afans'ev 1997). Mutagenic 

activity of quercetin in some in vitro (but not in vivo) reports may be induced by 

metal ions or through degradation of quercetin by superoxide and finally 

autoxidation. An antimutagenic activity of some flavonoids is known, e.g. rutin 

inhibited the mutagenic effects on mineral fibres and dusts on human 

lymphocytes (Korkina et al 1992). This action is believed to be related to 

antioxidant and chelatory properties. 

A wide range of other actions is suggested from in vitro experiments. 

Flavonoids inhibit platelet aggregation (Herbert 1988) and they have anti-viral 

and anti-bacterial properties (Rhodes 1996). Quercetin and quercitrin are the 

most potent inhibitors of aldose reductase known so far. which suggests that they 

may be useful in preventing the onset of diabetic or galactosemic cataracts, and 

may potentially oppose diabetic neuropathy and angiopathy. Some of the other 

biological effect of dietary flavonoids are shown in (Table 1.2), 
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1.4 Food sources of flavonoids 

Infonnation about the flavonoid contents of foods comes from a large number of 

ad hoc reports over many years. A variety of assays have been used, often 

measuring only the aglycone base. There is much less infonnation about food 

contents of specific conjugates. 

The total daily flavonoid consumption in nonnal western diets has been 

estimated at about 19/day (Kuchnau 1976), or at about 25.9 mg/day from HPLC 

assays on foods in the Dutch diet. These amounts compare with intakes in the 

general population of 8-12 mg/day Vitamin E, or 73-74.6 mg/day of vitamin C 

in the UK (Gregory et al). 

1.4.1 Onions 

Leighton found quercetin agylcone and quercetin 4' -D-glucoside in onions 

(Leighton et al 1992). Quercetin compounds from onions have a higher 

bioavailability than those from tea (Hollman et al 1996a). Red onions contain 

very high amount of flavonoids (> 1 000 mglkg) more than yellow onions (60 

mglkg) and non detectable flavonoids in white onions (Leighton et al 1992). The 

extracts of red onion skins (0.3%) reduce the peroxide value and act as a 

commercial antioxidant (Akaranta & Odozi 1986). White skins onions (allium 

cepa) have less flavonol content than coloured skins. Hernnan (1976) has shown 

outer dry skin of coloured onions contain 2.5 to 6.5% quercetin aglycone. 
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Contrary to the results of Herrman (1988),Crozier and co-workers (1997a) 

recently found the red skinned onion did not contain higher levels of quercetin 

than the white skinned varieties. Also in contrast to the findings of Bilyk et al 

(1984) they did not detect kaempferol in any of the onion extracts, but they 

found quercetin (185-634 j.lg/gol fresh weight onions) very similar to the result of 

Hertog et al (1992) (Table 1.3). 

Onions are a major source of dietary flavonoids in some populations, particular 

when consumption of other sources offlavonoids (e.g. wine and tea) is low. 

Onions were considered the most important sources of flavonoids at 29% of total 

after tea in the Netherlands (Hertog et al 1993b), while in Finland onions provide 

64% of all dietary flavonoids (Knekt et al 1996). Flavonoids glucosides of 

onions are better absorbed than the aglycones by human gut in ileostomy 

subjects (Hollman et aI1995), and this work disproved the earlier belief that 

flavonoids in foods cannot be absorbed from the intestine because they are 

bound to sugars as glycosides, and only free flavonoids are able to pass through 

the gut wall (Kiihnau et al 1976). Consumption of onions is related to reduced 

risk of stomach carcinoma, but not protective against lung carcinoma (Dorant et 

aI1994). 

Quercetin levels in onions show variations between seasons in the range 28.4-

48.6 mg/l00g in the Netherlands (Hertog et aI1996), and 185 - 634 j.lg quercetin 

gol fresh weight in a Glasgow study (Crozier et aI1997). Rhoudes et al 1996 

reported up to 1.2-1.6 mg quercetin glycosides/g fresh weight. Leighton et al 
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(1992) found that shallots contains very high amount of (quercetin 4' -glucoside, 

quercetin aglycone, 3-quercetin diglucosides, isorhamnetin and kaempferol 

monoglycoside) (Table 1.3). Using an older assay, the highest quercetin content 

of 8 varieties of onions was 60 mg/kg, kaempferol 7 mg/kg and no myricetin was 

detected in a sweet spanish hybrid (Bilyk et al 1984). Two glycosides fonn of 

quercetin (quercetin-4' -glucoside and quercetin-3,4' -diglucoside) were purified 

from onions (Williamson et al 1996). 

You et al (1989) by using interviews in 564 patients with stomach cancer in 

China found the protective effects of onions were seen against stomach cancer. 

1.4.2 Tea 

Tea is a widely consumed beverage throughout the world and has a wide range 

of consumption up to 20 cups or more/day. Tea leaves contain more than 35% 

of their dry weight in polyphenol compounds (Balentine 1992, quoted by 

Serafini et al 1996). Green tea is a non fermented type of tea which is consumed 

in China and Japan and black tea is a fennented tea and mostly consumed in the 

Western world, Asian countries (South and South east) and over the whole of 

African (Serafini et al 1996). In China, tea has been consumed as beverages and 

a crude medicine for 4000 years (Ho et al 1992). Tea contains mild stimulants 

(caffeine, theobromine) and is not usually drunk by children in western cultures, 

but it is a common weaning food in East Africa. 
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Tea was the most plentiful source of dietary flavonoids in the Netherlands, 

kaempferol and quercetin being the main flavonoids (Hertog et al 1993b). 

Estimates from dutch food analyses suggests that tea provided 82% of total 

flavonol intake of 1900 Welsh men in the Caerphilly Study (Hertog et al 1997). 

Black tea contributed about 70% of total flavonoid intake of the Zutphen Study 

in the Netherlands (Keli et al 1996). 

Both black (fermented) and green teas are rich in polyphenols which can 

increase antioxidant activities in vivo. Adding milk to black tea was suggested 

to reduce flavonoids bioavailibility (Serafini et al 1996; but unpublished data 

from Katan do not show any such effect (personal communication). Flavonoid 

content of tea bags is generally higher than tea prepared with loose leaves, 

perhaps because the leaf fragments are smaller. Black tea infusions contain 

quercetin (10-25 mglL), kaempferol (7-17 mgIL) and myricetin (2-5 mglL) 

(Hertog et al 1993b). Quercetin has a higher level in infusions from black tea 

bags (5 varieties) than kaempferol and myricetin (Hertog et a11996) (Table 1.3). 

Finger and Englehant (1991) found plenty of flavonol glycosides, quercetin 

rhamnodiglucoside (0-0.95 g/ kg-I) and kaempferol rhamnodiglucoside (0.5-1.25 

g/kg-I) by GC-MS methods in black tea. 

Catechin and catechins esters (ECG, EGC and EGCG) are polyphenolic 

flavonols which act as scavengers of free radical and antioxidants (Salah et al 
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1995). Quercetin-3-0-~-rutinoside (rutin) is the major quercetin compound in 

tea, and 17% absorption has been shown in human gut) (Hollman et al 1995). 

Ho and Co workers isolated four catechins (EC, EGC, ECG and EGCG) from 12 

types of green, black and semi-fermented tea. Also they found EGC, EGCG and 

ECG at the concentration of 10-20 /-lmoVI antioxidants in the soybean 

lipoxygenase assay (Ho et al 1992). EGCG in green tea may be cancer protective 

in humans (Fujiki et al 1996). 

Polyphenol theaflavins are responsible for the reddish colour of tea (Serafini et al 

1996) and are formed during the manufacture of black tea from the enzymic 

oxidation of the flavonols, catechin and gallocatechins by polyphenol oxidase. 

All of these polyphenols are antioxidant (Miller et al 1996; Salah et al 1995). 

EGCG is a major polyphenol in green tea and is effective in inhibiting DNA 

single-strand breaks in vitro with different mutagenic substances (Hayatsu et al 

1992). Antiomutagenicity and antigenotoxic activities were attributed to green 

tea polyphenols by Wang et al1989. Protection against rat liver oxidative DNA 

damage by epigallo catechin gallate in green tea was shown by Hasegava et al 

1995. 
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1.4.3 Other important source of flavonoids 

Flavonoid content analysis of 28 vegetables and 9 fruits commonly consumed in 

the Netherlands found leafy vegetables to have highest flavonoid levels in 

summer. Quercetin levels were present in the edible parts of most vegetables 

were lower than onions e.g. kale, broccoli, french beans and slicing beans. 

Kaempferol was only detected in kale, endive, leek and turnip (Hertog et al 

1992) (Table 1.3). Crozier et al (l997a) found large amounts of quercetin in 

onions, lettuce, cherry tomatoes, Scottish or Spanish or Dutch beef tomatoes, and 

luteolin and apigenin in celery. They found cooking lowered the quercetin 

content of both tomatoes and onions with more reductions being detected 

following microwaving (65% in tomato, 64% in onoins) and boiling (81.7% in 

tomatoes, 74.6% in onions) th®. after frying (35.2% in tomatoes, 21.3% in 

onions) (Crozier et aI1997a). Some natural sources of plant antioxidants contain 

flavonoids and polyphenols presented in (Tables 1.1 and Tables 1.3). Virtually 

all fruit and vegetables contains some flavonoids (Bilyk & Sapers, 1985 & 

1986), but isoflavones are largely limited to one plant family, the leguminosae 

(pea family) (Rhodes et al 1996; Shahidi et al 1992). Naringin is the 

predominant flavanone in grapefruit (citrus paradisi) and hesperidin is the 

primary flavanone in orange (citrus sinensis), and both are absorbed by the 

human gut (Ameer et al 1996). 

For the present thesis, onions and tea were selected as the principal foods for 

study, because Hertog et al (1992 and 1993b) had identified these as the most 
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important contributors to total flavonoid intake in European diets, and because 

their contents of other known antioxidants (e.g. Vitamin C, E, A, carotenoids) is 

low. A quantitative analysis of the flavonoid content of commercial fruit and 

vegetable in Glasgow found high amount of flavonoids, mostly quercetin in 

onions and tea. Tomato ketchup was used for half the subjects in the 

intervention study. Tomatoes contain mainly quercetin (Crozier et aI, 1997a). 

1.5 Relationship between dietary flavonoids and health 

Recognising potential links between flavonoids mainly through their antioxidant 

actions, and health, several analyses have been applied to epidemiological 

studies. The usual approach has been to apply figures for total flavonoid 

contents of foods to studies with dietary inventories or food frequency 

questionnaires. The main problem with this approach is that foods, or dietary 

patterns, high in flavonoids are likely to be high in other compounds with 

potential biological activity. Thus dietary flavonoids could be non-causal 

markers of other dietary or nutrient effects. 

1.5.1 Flavonoids and cardiovascular disease 

After S years of follow up in the Zutphen Elderly Study (Netherlands) there was 

inverse relation between mortality from CHD and high flavonoids intake 

(flavonol and flavone >29.9 mg/day) estimated from diet questionnaire and local 
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flavonoid analysis of key foods (Hertog et al 1993a). The same relation 

appeared in the the 25 years of follow-up of The Seven Countries Study (Hertog 

et aI1995). Tea was the major source offlavonols in both studies (Hertog et al 

1996), from which it might appear that tea has a special protective role. 

However, Brown et al (1993) in Scottish people and Grobbee et al (1990) in US 

people found no relation between CHD and drinking of tea. It is not clear 

whether positive associations can be caused by flavonoids or other substances in 

tea e.g. caffeine or alkaloids. It can only be concluded that more studies on the 

relation of tea, its flavonoids and CHD are necessary. 

Recently in the Caerphilly study, Hertog et al (1997) re analysed food frequency 

data, using Dutch figures for flavonoid contents of foods. They reported the 

incidence of heart disease mortality over 14 years in 1900 men (in Caerphilly, 

Wales, UK) went up with tea but down with onion consumption (Katan, Hertog 

et al 1997), but they could not find any association with their estimate of 

flavonoid consumption. 

Again based on diet records, 20 years follow up in Finland suggested that people 

with very low intakes of flavonoids have higher risks of coronary disease (Knekt 

et a1 1996). The low incidence of heart disease in France has been related to high 

flavonoid intake particularly from from red wine (Katan 1997). 
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The antioxidant properties of flavonols and catechins suggested that their intake 

might prevent atherosclerosis although other components, or associated patterns 

of nutrient intake could be reponsible. 

Ishikawa et al (1997) showed tea flavonoids added to in vitro protected LDL 

from copper-induced oxidation and macrophage-mediated oxidation. Also tea 

consumption decreased oxidative modification ofLDL, and may have favourable 

effects to protect atherosclerosis (Steinberg et al 1989). In the Zutphen Study 

there were a strong inverse relation between intake of flavones and flavonols and 

stroke risk (Keli et al 1996). The highest category of flavonol and flavone iriake 

(>30 mglday) had about one-third the risk of stroke compared to men in the 

lowest category (Hertog et al 1996). 

In conclusion, more research including randomised controlled clinical trials 

needs to be the solution of questions about relations between CHD and 

flavonoids. A benefit to cardiovascular health is suggested by some 

epidemiological data but remains unproven in the absence of experimental 

studies of atherosclerosis or appropriate clinical trials (Muldoon & Kritchevsky 

1996). 

1.5.2 Flavonoids and cancer 

Quercetin can inhibit growth in vitro of cells from various human cancers such 

as colon (Ranelli et al 1992), ovarian (Scambia et al 1991) and stomach 
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(Yoshida et al1990). Wei and Co Worker (1990) by using ODC assay 

(ornithine decarboxylase activity) found 20 J.lmolll of apigenin inhibited the 

promotion of papillomas in mice induced by dimethylbenzanthracene (DMBA). 

Also they reported the inhibition by apigenin (a plant flavonoid) of mutagenesis 

in the salmonella system (Ames assay). At very high doses, the two most 

common flavonoids, quercetin and kaempferol, exhibit some mutagenicity in the 

Ames assay. Probably autoxidation of quercetin and kaempferol interfere during 

the Ames assay induces a false result. By using ornithine decarboxylase activity 

assay Kato et al (1983) & Verma et al (1988) observed quercetin (10-30 )lmol/l) 

or apigenin (Wei et a11990) inhibit tumour promotion. Dietary quercetin at a 

level of 2% inhibited colon tumour incidence and both rutin and quercetin 

suppress multiplication of colonic neoplasia induced by azoxymethanol in mice 

(Deschner et al 1991). 

The results of a middle aged cohort study in the Netherlands (n=120,852; age 

55-69, during 4.3 years) suggested that intake of quercetin alone or quercetin and 

other flavonols and flavones was not associated (either postively or inversely) 

with cancers of the stomach, colon and lung (Hertog et aI1996). According to 

the results of the 25 years of follow-up in the seven countries study, flavonol and 

flavone intake (e.g. tea and red wine) at baseline was not related to differences in 

lung, colorectal and stomach cancer mortality rates (Hertog et al 1995). In other 

studies, there was not any association between risk of cancer and consumption of 

red wine (IARC 1988) or consumption of tea (Yang & Wang 1993). Dorant 
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found an inverse association between cancer of stomach, colon and rectum and 

consumption of allium vegetables (Dorant et al 1994a and 1996; Hertog et al 

1996), but not female breast carcinoma (Dorant et al 1995). However, 

Kohlmeier et al (1997) did not find relation between tea consumption and risk of 

cancer. Yoshida et al (1997) suggested that in vitro anti-proliferative effects of 

quercetin were due to the specific arrest of the G 1 phase of the cell cycle. 

The exact mechanism responsible for the reported anti tumour effect of 

flavonoids is not yet understood, but it is possible the flavonoids (mainly 

c. 
quercetin) inhibit the growth of malignant cells e.g. with activation of glyolytic 

enzymes or protein synthesis (Korkina & Afanas'ev, 1997). 

In conclusion, several flavonoids have fairly conistent anti-tumour effects in 

vitro, and at high doses in animal models. Earlier reports of mutagenic effects 

were probably artefactual. The human evidence, however, provides little support 

for anti cancer effects. More conclusive research will require better knowledge 

of dietary flavonoid content and absorption, and of their fats in the body. 

1.5.3 Other diseases and flavonoids 

In 1936 Gyorgi separated two flavonoids from citrus fruits and found they can 

decrease capillary fragility and permeability (thus called vitamin P) in humans 

(Rusznyak & Szent-Gyorgyi 1936). The tenn "Vitamin P" was coined from this 

study. The explanation may lie in substitution of vitamin C in its antioxidant 
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role. Flavonoids can inhibit the cyclooygenase activity and thus decrease 

platelet aggregation and tendency to thrombosis (Laughton et al 1991). 

Flavonoids demonstrated a wide range of biochemical and pharmacological 

effects, including anti-inflammatory and anti-allergic effects (Middleton et al 

1992). There is not enough information to draw conclusions about any roles for 

flavonoids in other diseases, but most of the evidence points towards beneficial 

actions. 
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1.6 Aims and Research Questions of the thesis 

Aims 

1. The first aim was to develop and evaluate the SCGE or comet assay as a 

reproducible method for measurement of the oxidative DNA damage to human 
. 

lymphocytes (ex vivo), which might be appl~d in a dietary study. 

2. The second aim was to assess the antioxidant activities of food derived 

flavonoids by observing the protection against DNA damage caused by oxygen-

radical. This was a novel application and was used to compare the actions of 

flavonoids with Vitamin C. 

3. The third aim was to establish if dietary flavonoids are absorbed, and if there 

is any associated improvement in antioxidant defences in diabetic patients. 

Several specific Research Questions were addressed: 

Research Question 1 

Do flavonoids add to the antioxidant activity of vitamin C in the SCGE assay 

when given in combination? 

Research Question 2 

What is the relation between the number of hydroxyl groups offlavonoids and 

their antioxidant activity in the SCGE assay? 

Research Question 3 

Is there any association between the free and conjugated flavonoids and their 

antioxidant activity in the SCGE assay? 
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Research Question 4 

How do the SCGE and TEAC assays compare in ranking antioxidant effects of 

flavonoids? 

Research Question 5 

What is the flavonoid consumption from normal Scottish diets, and is the range 

of consumption likely to influence antioxidant status? 
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Table 1.1 - Major dietary sources offlavonoids and polyphenols 

Flavonoids 

Catechins 

Flavanones 

Flavones 

Flavonols 

Anthocyanidins 

Isoflavones 

Major Dietary sources 

Tea, apples, apricots, 
cherries 

Citrus fruits, 
(grapefruit orange) 

Parsley, thyme 

Onions, kale, broccoli, 
apple, cherries, 
tea, berries 

Grapes, cherries 

Legumes,soybean 

References 

Hollman (1997) 

Ameer et al (1996) 
KUhnau (1976) 

Hertog et al (1992) 

Hertog et al (1993b) 

KUhnau (1976) 

Adlercrentz (1993) 
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Table 1.2 - Some of the biological effects of dietary flavonoids 

Effect 

Heavy metal chelator 
Anti bacterial! anti viral 
(1972) 

Antitumour 

Antiproliferative effect 
Ascorbic acid synergist 

Inhibitors of enzymes: 
(a) catechol-O-methytransferase 
(b) membrane Na+/ K+ ATPase 
(c) mitochondrial ATPase 
(d) GSH S-transferase activity 

(cytosolic) 

Antimutagen 

Type of flavonoid 

flavonol 
flavonol 

flavonols-flavones 

quercetin 
rutin 

quercetin 
flavonol aglycones 
flavonol aglycones 
quercetin, kaempferol, 
morin, luteolin 

flavonoids 

Methods/cell 

copper 
staphylococcus aureus 
shigella sonnei 

human carcinoma of 
nasopharynx 
human leukemic T -cells 

. . 
gumeaplg 

rat mitochondria 
beef heart 
mitochondria 
rat liver 

against mutagenicity of 
indolic carcinogen formed 
during cooking of meat 

References 

Ktihnau (1976) 
Ramaswamy et al 

Suolinna et al (1975) 

Yoshida et al (1992) 
Ktihnau (1976) 

KUhnau (1976) 
Carpenedo et al (1969) 
Lang et al (1974) 
Zhang & Das (1994) 

Sanejima et al (1995) 
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Table 1.3 - Flavonoids content of some vegetables and fruit 

Fruit and Concentration Kinds of flavonoids References 

vegetables of flavonoids 

Sweet spanish 60.7 mg/kg Quercetin Bilyk et al 
hybrid (8 7 mg/kg Kaempferol (1984) 
varieties) onions 
Shallots (quercetin 4' glucoside), Leighton et al 

quercetin aglycone (1992) 
>800 mg/kg (3 quercetin diglucosides), 

isorhamnetin 
(kaempferol monoglycoside) 

Red onions >1000 mg/kg Leighton et al 
Yellow onions 60 mg/kg Quercetin aglycone (1992) 
White onions non detectable 
Coloured 2.5-6.5 y Quercetin aglycone Herrman 
onions (1976) 
White onion 185-634 mg/kg Quercetin 

fresh weight 
Red Onion 201 Quercetin 
tomatoes 17 -203 mg/kg Quercetin 
(Spanish cherry) 
Round lettuce 450 -911mg/kg Quercetin 

Tomato (Dutch, 2.2 -11.2 Quercetin Crozier et al 
Scottish, mg/kg (1997a) 
Spanish) 
Celery 191 mg/kg Apigenin 
Celery 0-40 mg/kg Luteolin 

English yellow 142 " Quercetin (glycoside & free) 
onions 0.72 " kaempferol (glycoside & free) 

6.21 " isorhamnetin (glycoside & free) 
Typhoo tea bag 7.0 mglL Quercetin (glycoside & free) Crozier et a1 
infusion (5 3.3 mglL Kaempferol (glycoside & free) (unpublished 
minl250 ml) 0.8 mglL Isorhamnetin (glycoside & free) data) 

10-25 mg/L Quercetin 
Black tea 7-17 mglL Kaempferol Hertog et al 
infusions 2-5 mglL Myricetin (1997) 
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Black tea (5 17-25 mg/L Quercetin Hertog et al 
varieties) 13-17 mglL Kaempferol (1996) 

3-5 mglL Myricetin 
Black tea 50-1250 mg/kg Kaempferol Finger & 

Eng 1 ehant 
(1991) 

Soy bean 10-20 J.lmolll EGC, EGCG-ECG Ho et al 
(1992) 

Endive 15-91 mg/kg Hertog et al 
Leek 11-56 mg/kg (1992) 
Turnip 31-64 mg/kg 
Kale 110 mg/kg 
Brocolli 30 mg/kg Quercetin 
French beans 32-45 mg/kg 
Slicing beans 28-30 mg/kg 
Onions 
(variation of 3 284-486 mg/kg 
seasons) 
Grapefruit juice 373.1 mg/L Naringin (glycoside) Ameer et al 

241.1 mglL Naringenin (aglycone) (1996) 
6.5 mglL Hesperidin (glycoside) 
3.2 mglL Hesperitin (aglycone) 

Orange juice 37.6 mg/L Narirutin (glycoside) Ameer et al 
17.6mglL Naringenin (aglycone) (1996) 
65.0 mglL Hesperidin (glycoside) 
32.2 mglL Hesperitin (aglycone) 
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Table 1.4 - Generation of free radicals 

Name 
Oxygen radical" 

Perhydroxyl radicalb 

Alkoxyl radicala 

Superoxideb 

Hydrogen peroxideb 

Hydrogen peroxideb 

Hydroxy radicalb.g' 

Hydroxy radicalb 

SlIperoxideb 

SlIperoxideb 

Hydroxyl radicald 

Nitric oxide radicale 

Ilydroxyl radical f 

Nitrogen dioxide radicalsc 

Trich loromethylb.c,d 

a) Neville et al (1996) 
b) Cheeseman & Slater et al (1993) 
c) Halliwell (1996) 

Chemical Formula 

0' 

H02' 

RO' 

O2-' 

HzOz** 
H20 2** 
OB' 

OB' 

O2-' 

O2-' 

OH' 

NO' 

OH' 

NO.2 

CCh' 

d) Halliwell (1994) 
e) Moncada & Higgs (1993) 
f) Candeias et al (1993) 

Process 
1-5% of all oxygen used in metabolism 

0' low PH. HO'z (more reactive than 0') 

lipohydroperoxy (ROOH+Fe2+ ---+ FeJ++OH-+RO') 

O2 + e ---+ 0-'2 (by phagocytic cells) 

O2+ 2e+ 2H+ -. HZ0 2 

20z-'+2H+ -. B20 2+02 

B20z+Fe2+ ---+ 'OB+OH-+FeJ+ 

Oz-'+HzOz -. 'OH+OH-+02 

* Fe2++0z • Fe3++0z-' 

CU++02 • CU2++02-' 

H20 gammarays. OH'+H (in the body) 

L-arginine • NO' (by vascular endothelium) 

O[+H.. O'H+Ofr+02 (from hypocholorous acid) 

NO"+02 • NO'2 (in cigarette smoke, polluted air) 

CCI P-450 CCI • (CCI +0 CCI 0 .) in the liver 4 • J J 2 ---+ 3 2 

g) Hunt& Nixon (1993) 
* Ferrous (Fe2+), Ferric (Fe3+) 
**) Not free radicals 
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Table 1.5 - Antioxidant defences against free radicals in humans 

Mainly Intracellular 

Catalasec•h 

a) Halliwell et al (1990) 
b) Nevil! e et al (1996) 
c) StockerR& Frei (1991) 

Mainly Extracellular 

Tranferrin (plasma iron 
binding protein)a.e 

lactoferrin 
(iron binding protein)" 

cerulop lasmin 
(copper transponer)a 

Uric acid (in plasma)' 

Haemopexin (bind free haeme)C 

Haptoglobin (bind free haeme)C 

Albumin (bind with SH group l 

Bilirubinf 

Cartenoidsf 

Ubiquinol f 

e) Halliwell (1994) 
f) Frei et al (1992) 
h) Lunec (1990) 

i) Sinclair 

." 

Both 
(Intra and 
extracellular) 

superoxide dismutaseb 

Glutathione peroxidaseb
.
h 

Ascorbic acidb,L j 

a-tocopherol!; 

68 



HO HO 

OH 0 OH 0 

Flavones Flavonols 

OH 

HO HO 

OH 0 OH 

Flavanones Catechins 

HO 
HO 

OH 
Anthocyanidins Isoflavones 

Figure 1.1 Subclasses of flavonoids on based variations in the heterocyclic ring. 
(Hollman PCH, 1997) 
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Chapter 2: Methods 

2.1 

2.2 

Methods to measure antioxidant activity 

Single cell gel electrophoresis (Comet assay) to detect oxidative 

DNA strand breaks in human lymphocytes 

71 

74 

2.3 Endonuclease III assay to detect endogenous oxidative damage to 85 

pyrimidine bases in human lymphoycte DNA 
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2.1 Methods to measure antioxidant activity 

Many compounds in the human body have antioxidant activity, which may 

contribute to biological effects. They can be classified into four main groups: 

1. Water soluble antioxidants, including: ascorbic acid, glutathione, uric acid, 

bilirubin (Frei et all992) and D-mannitol (Jeng et alI994). 

2. Lipid soluble antioxidants, including: a-tocopherol, ubiquinol-l0, (Kontush 

et al 1995) lycopene, p-carotene, lutein and oxycarotenoids (Motchinik et al 

1994). 

3. Protein non-enzyme antioxidants, including: albumin, lactoferrin, ferritin, 

protein thiols, transferrin, caeruloplasmin, haptoglobin (Langlois 1997), 

hemopexin (extracellular hemoglobin-binding protein antioxidant mainly p 

globulin), and N-acetyl cysteine (Satoh & Sakagami 1997). 

4. Protein enzyme antioxidants: catalase, eu & Zn superoxide dismutase, 

gluthione peroxidase and ceruloplasmin (Frei et al 1992). 

It is likely that many other compounds exert antioxidant activity, but these 4 

groups make up most of the total antioxidant capacity of plasma (Table 4.1). 

Recent interest in the antioxidant activities of flavonoids, including quercetin 

and quercetin glucoside (Gugler et a11975; Hollman et al 1995 and Paganga et 

al 1997), diosmin and rutin (Paganga et al 1997), catechin (Hollman et al 1997) 

has added these compounds to the list. Most flavonoids are largely lipid soluble 

in the free (aglycone) state, but may become water soluble in the conjugated 

state. 
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Many assays are described for measuring specific activities of plasma 

antioxidants and also a variety of methods exist for detection of the total 

antioxidant capacity of human plasma blood components and cells (Affany et al 

1987; Chen et a11996; Cholbi et a11991; Galvez et a11995; Pratt & Hudson 

1990; Shahidi et al 1992 and Vinson et al 1995). This variety indicates a lack of 

an ideal method suited to all compounds or all conditions. 

2.1.1 Isolated Compounds 

The Fenton reagent assay (Fe2+ IH202) has been widely used for detection of 

antioxidant activity of isolated substances (Shimoi et al 1994), based on a purely 

in vitro chemical reaction. In the present thesis, in vitro Trolox equivalent 

antioxidant capacity (TEAC) assay was used to rank the potency of 17 

flavonoids chosen either because they are common in foods or to provide a range 

of structures, and the standard technique was adapted to examine the influence of 

flavonoids on the antioxidant capacity of human plasma. 

This may not relate directly to antioxidant activity against free-radical-mediated 

damage in vivo. The lipoprotein oxidation model ( Chen et al 1996, Galvez et al 

1995, Vinson et al 1995, Shahidi et al 1992 and Pratt & Hudson 1990) has 

greater biological validity but requires sophisticated GLC measurement. 

Measurements of DNA damage are good markers of oxidative damage in 

isolated cell nuclei. Detection of DNA damage by different methods has 
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recently been presented as a new and interesting area (Halliwell et al 1997). A 

number of the toxic processes, e.g. cytotoxic drugs, can cause DNA damage. 

Oxidative damage to DNA occurs firstly through oxidation of pyrimidine bases, 

and then by production of DNA strand breaks. 

Single cell gel electrophoresis (the comet assay) is a sensitive and rapid method 

to detect DNA breaks at the individual cell level (Mackelvey-Martin et al 1993 

and Fairbairn et al 1995 ) and specifically for detecting oxidative DNA strand 

breaks (Collins et al 1995 and Singh et al 1988). It is considered a useful tool 

for investigating issues related to a standardised oxidative stress in human 

lymphocytes and to quantify the protection from possible antioxidants (Green et 

al 1992) but has not previously been used with flavonoids. A range of cell types 

can be employed, e.g. hepatocytes, sperm, cultured cell line, but the present 

thesis used normal human lymphocytes in the comet assay to evaluate the 

antioxidant capacity of some major dietary flavonoids, with vitamin C as a 

positive control. The standardised oxidative stresses most commonly used are 

from gamma rays, X rays, UV light and H202. 

In parallel with the standard comet assay, we treated extra slides of patients 

lymphocytes with endonuclease III, in order to estimate the existing oxidative 

damage acquired over previous days. This enzyme introduces breaks in the 

DNA at sites of oxidised pyrimidines and breaks are detected by adaptation of 
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the comet assay (single cell gel electrophoresis). This test was applied after low 

and high flavonoid diets in every subject, to look for differences. 

2.2 Single cell gel electrophoresis (Comet assay) 

2.2.1 Principle 

Low concentrations of hydrogen peroxide cause oxidative damage and strand 

breaks in lymphocyte DNA. Under alkaline conditions, DNA loops containing 

breaks lose supercoiling, unwind, and are released from the nucleus. They can 

be visualised as a "comet tail" after gel electrophoresis. DNA strand breaks are 

thus visualized by the comet assay (Figure 2.1, 2.2, 2.3) and can be quantified 

by image intensification and computer analysis or by visual grading. Pre

treatment of lymphocytes with antioxidant compounds would be expected to 

decrease H202 induced DNA damage, and this forms the basis for using the 

comet assay to assess antioxidant capacity. 

2.2.2 Chemicals, solutions and materials 

The solutions and chemicals used in this study were purchased from the 

following companies: High melting point agarose (HMP) and low melting point 

agarose (LMP) both electrophoresis grade from Gibco Ltd., Paisley, Scotland; 

Phosphate-buffer saline (PBS) tablets, L-ascorbic acid, kaempferol, quercetin, 

apigenin, myricetin, rutin (quercetin-3-D-rutinoside), e~ylenediamine tetraacetic 
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acid disodium salt dihydrate (EDTA Na2), trypan blue solution (0.4%), RPMI 

(1640) medium with NaHC03 without L-glutamine and phenol red, Histopaque-

1077 (Ficoll), ethidium bromide (EtBr) and diamidine-2-phenylindol

dihydrochloride (DAPI) all from Sigma Chemicals Co. Ltd., Irvine, Scotland; 

fetal calf serum (FCS) from Globepharm Ltd., Esher, Surrey, England; sodium 

hydroxide, hydrogen peroxide, Triton X-I 00, sodium chloride from BDH 

Chemicals Co. Ltd., England; Tris from Boehringer, Mannheim Ltd., Sussex, 

England; quercetin-3-glucoside, quercitrin (quercetin-3-L-rhamnoside) and 

luteolin provided by Apin Chemicals Co., Ltd., Oxon, England. Fully frosted 

Dakin microscope slides were supplied by Richardson Supply, London, England. 

2.2.3 Procedure 

Fasting blood samples were drawn from the antecubital vein of healthy 

volunteer. Fresh peripheral human lymphocytes were isolated by centrifugation 

with Histopaque 1077 (Ficoll) and incubated with different concentrations (0, 

7.6,23.2,93 and 279.4 ~mol/l) offlavonoids or vitamin C for 30 minutes at 

37°C. After pretreatment, cells were washed with phosphate-buffered saline and 

were treated with H202 (100 ~mol/l, 5 min on ice). Then cells were suspended 

in low-melting-point agarose set on a frosted Dakin microscope slide and lysed 

with lysis solution containing 1 % Triton X-I 00 for 1 h. Gel electrophoresis was 

then used to estimate tail DNA content of 600-1200 lysed nuclei ( comets) at 

each concentration. Visual scoring was used routinely, validated using an 

Imaging Research BRS2 Image Analyser (Imaging Research Inc., Ontario, 
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St Catherine's, Canada), with the fluorescence dye ethidium bromide to quantify 

comet tail DNA. 

2.2.4 Cell preparation 

Human lymphocytes were isolated from fresh whole blood by adding 30 III 

blood to 1 m1 RPMI 1640 + 10% FCS on ice for 30 minutes, then underlaying 

with Histopaque 1077 (Ficoll) before spinning at 200 G for 3 minutes at 40 C. 

Lymphocytes were separated as a pink layer at the top of the Histopaque. 

2.2.5 Antioxidant pre-treatment and wash cells 

Cells were incubated with different concentrations of flavonoids or vitamin C for 

30 minutes at 370 C in a dark incubator together with untreated control samples. 

Samples were then spun at 200 G for 3 minutes at 40 C. After pre-treatment cells 

were spun and washed twice with PBS (0.01 M) at 200 G for 3 minutes at 40 C. 

2.2.6 Oxygen-radical treatment 

Samples were suspended in PBS with 100 Ilmol/l hydrogen peroxide for 5 

minutes on ice in the dark. Samples were then spun at 200 G for 3 minutes at 

40 C. Control samples were treated with PBS alone without hydrogen peroxide. 

2.2.7 Slide preparation 

Two layers of agarose were prepared. For the first laye~, 85 III of 1 % high 

melting point agarose (HMP) or standard agarose prepared at 40°C in PBS was 
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dispensed onto fully frosted slides and covered with a 22 x 22 mm (No.1) 

coverslip. To solidify the agarose, the slides were stored at 4°C for 10 minutes. 

Lymphocytes were suspended in 1 % low melting point agarose (LMP) in PBS 

(prepared at 370 C) and 85/-11 containing approximately 20,000 lymphocytes 

were plated out on to the first layer of agarose, covered with a coverslip and 

stored for 10 minutes at 4°C to solidify. After removing the coverslips the slides 

were immersed in freshly prepared cold lysing solutions. 

2.2.8 Cell-lysis 

Slides were treated at 40 C for 60 minutes (vertically without cover slip) with 

lysis solution of2.5 mol NaCl, 100 mmolll Na2EDTA and 10 mmol/l Tris, 

adjusted to pH 10 with NaOH plus 1 % Triton X-I 00 (added immediately before 

use). Different lysis tanks were used for control slides. The lysis solution was 

stored at 40 C before use. 

2.2.9 Alkaline treatment 

After the slides were removed from the lysis solution, they were placed in a 

electrophoresis tank horizontally side by side. Up to 18 slides, in two rows of 9, 

were electrophoresed simultaneously. Any gaps were filled with blank slides to 

avoid spaces between slides. Slides were covered with fresh electrophoresis 

buffer (300 mmolll NaOH and 1 mmol/l Na2EDTA, pH 13) at 40 C for 40 

minutes to a depth of2-3 mm above the slides. Buffer was made up freshly 
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each day and stored at 40 C prior to use. To prevent additional DNA damage 

from light, slides were processed in dark conditions. 

2.2.10 Electrophoresis, Neutralising and Staining 

The electrophoresis was run at 25V for 30 minutes at 40 C, covered with black 

paper against light. Before staining, slides were placed vertically without a 

cover slip in a neutral ising tank and gently washed 3 times for five minutes with 

neutralising buffer (0.4 mmoVI Tris adjusted to pH 7.5 with HCI) at 40 C in the 

dark. To stain, 60 III of20 Ilglml of 4' 6 Diamidine-2-phenylindol 

dihydrochloride (DAPI) or 60 III of ethidium bromide (EtBr , 20 Ilg/ml) was 

dispensed directly onto slides and covered with a cover slip. Slides were kept 

for up to 12 hours in a dark and air-tight moist chamber to prevent drying of the 

gel before viewing. 

2.2.11 Quantification of DNA damage 

Slides were examined at 400x magnification on an Olympus fluorescence 

microscope with excitation at 520 nm and a 620 nm emission barrier filter. As 

the study involved the individual assessment of DNA damage in more than 

30,000 cells, it was necessary to develop a rapid visual scoring system. Cells 

were assigned a score on a five-point scale (range 0-4) according to the amount 

of DNA in the tail of the comet as estimated by the observer (Figure 2.1). 
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To validate this system, objective measurements of the distribution of DNA were 

performed for a sample of cells using an Imaging Research BRS2 Image 

Analyser. These measurements were conducted by quantifying the fluorescent 

intensity distribution of the comet as a function of distance from the leading edge 

of the head (Figure 2.2). 

There was a close relationship between the subjective visual score and the 

measurements of the percentage of DNA in the tail by image analysis as shown 

in (Figure 2.3). In 90 per cent of cells, the percen~age of DNA in the tail for 

different visual grades of damage fell in the following ranges: 

Grade 0 (no damage), < 5%; Grade 1 (low damage), 5-25%; Grade 2 (medium 

damage), 25-45%; Grade 3 (high damage), 45-70%; Grade 4 (very high 

damage), > 70%. 

2.2.12 Slide scoring 

Randomly selected lymphocytes were visually graded for each slide. A total 

damage score for the slide was derived by multiplying the number of cells 

assigned to each grade of damage by the numeric value of the grade, and 

summing over all grades (giving a maximum possible score of 400, 

corresponding to 100 cells of grade 4). In a given experiment, duplicate slides 

were prepared and scored for each concentration of the antioxidant. Experiments 

were repeated three to six times. Therefore, for each concentration of each 

antioxidant, 6-12 samples of 100 randomly selected cells were analysed in total. 
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FIGURE 2.1 Human lymphocytes showing varying degrees of DNA damage 

following treatment with 1 00 ~mo1JL hydrogen peroxide. The grade of damage 

was visually assessed on five-point scale: Grade 0 (no damage), < 5%; Grade 1 

(low damage) , 5-25%; Grade 2 (medium damage), 25-45%; Grade 3 (high 

damage) , 45-70%; Grade 4 (very high damage), > 70%. 
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Grade 0: 

(No DNA damage) 

Grade 1: 

(Low DNA damage) 

FIGURE 2.2 Fluorescent intensity profiles of comets with different grades of 

damage as measured by image analysis. Intensity is recorded in arbitrary units. 

The percentage of DNA in the tail of the comet was calculated as 100 CA I -

2A2)/A
1

, where Al = area under curve for whole comet and A2 = area under 

curve from leading edge to centre of head of comet. 
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Grade 2: 

(Medium DNA damage) 

Grade 4: 

(Very high DNA damage) 

83 



100 .. 

90 T 
80 • 1 - 70 .ct; 

T I- 60 ::: I .-
<t: 50 z 
0 40 ... 
0 
~ c 30 

20 T • 10 1 
0 

0 1 2 3 4 
Visual Score 

FIGURE 2.3 Relationship between the subjective visual score and the 

measurements of the percentage of DNA in the tail by image analysis. Each point 

represents (Mean±SD) for 8-22 comets. 
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2.3 Endonuclease III assay to detect endogenous oxidative 

pyrimidine base damage in human lymphocytes 

2.3.1 Principles 

The bacterial enzyme endonuclease III is specific for oxidised pyrimidines, 

making a break in the DNA at site of damage. The endonuclease III assay and 

adaptation of the comet assay is used to detect the presence of oxidative DNA 

damage received already in vivo in lymphocytes, by converting oxidised bases to 

strand breaks using the enzyme, which specifically nicks DNA at sites of 

oxidised pyrimidines (Collins et al 1995). Endonuclease III thus introduces 

breaks in the DNA at sites of oxidised pyrimidines and breaks are detected by 

the comet assay (single cell gel electrophoresis). 

2.3.2 Chemicals 

Endonuclease III is purified by method of Asahara et al (1989) and modified by 

Collins et al (1993). The solutions and chemicals used in this study were 

purchased from the following companies: 

Purified endonuclease III (EC 3.1.25.1) was received by collaboration with 

Rowett Research Institute, Aberdeen (Collins et al 1993). Hepes (#H-3375), 

Bovine Serum Albumin (BSA) (#A-9418) and Na2EDTA (#A-9418) from 

Sigma Chemicals Co Ltd, Irvine, Scotland. KCL and KOH from BDH 

Chemicals Co Ltd, England. Other solutions and chemicals were purchased with 

the comet assay. 
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2.3.3 Procedures 

Fresh peripheral human lymphocytes were isolated from fresh whole blood by 

adding 30 III blood to 1 ml RPMI 1640 + 10% FCS on ice for 30 minutes, then 

underlaying with histopaque 1077 before spinning at 200 g for 3 minutes at 40 C. 

Lymphocytes were separated as a pink layer at the top of the histopaque. Slide 

preparation and cell-lysis were the same procedure as with the comet assay. 

2.3.4 Treatment with Endonuclease III enzyme and buffer 

Following lysis lymphocytes slides were washed three times for 5 minutes each 

in endonuclease III buffer (40 mmol/l HEPES - KOH), 0.1 mmolll KCI; 0.5 

mmolll EDTA; 0.2 mg/ml BSA (bovine serum albumin), adjust PH 8.0, drained 

and the agarose covered with 50 III of either endonuclease III in buffer, (I Jlg of 

protein/ml) or buffer only, then slides sealed with a cover slip and incubated for 

30 minutes at 37°C (Collins et aI1993). Alkaline treatment, electrophoresis, 

neutralising, staining, quantification of DNA damage and slide scoring followed 

as explained before in the comet assay. 

It was not possible to check the activity of the endonuclease III independently, 

but results obtained on healthy normal lymphocytes were similar to those 

reported by Collins (personal communication). 
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2.4 Trolox equivalent antioxidant capacity (TEAC assay) 

2.4.1 Principles 

TEAC assay was used, based on the method of Miller et al (1993). Briefly, 

metmyoglobin is incubated with H202. The ferrylmyoglobin produced reacts 

with the chromogen ABTS (2, 2' - Azino-di- [3-ethyl benzthiazoline sulphonate] 

to form a radical cation which has a blue colour. Colour production at a fixed 

time is inversely proportional to the antioxidant capacity of the fluid being 

studied. The presence of any antioxidant in the reaction mixture delays the 

production of colour. 

Metmyoglobin + H202 ~ Ferrylmyoglobin + H20 

.+ 
Ferrylmyoglobin + ABTS ~ ABTS (blue-green colour) 

2.4.2 Chemicals and Solutions 

The solutions and chemicals used in TEAC assay of flavonoids were purchased 

from the following companies: kaempferol, L-ascorbic acid, quercetin, apigenin, 

myricetin, rutin (quercetin-3-rutinoside), quercitrin (quercetin-3-L-rhamnoside), 

luteolin, cathecin, naringenin, pyridine, chrysin, epigallocatechin gallate, 

hesperidin, epicatechin gallate, silymarin, naringin were purchased all from 

Sigma Chemicals Co. Ltd., Irvine, Scotland; hydrogen peroxide from BDH 

Chemicals Co. Ltd., England; quercetin-3-glucoside and isorhamnetin from Apin 

Chemicals Co. Ltd., Oxon, England. 

87 



The flavonoids and polyphenols chosen provided a range in the number of 

hydroxyl groups from 2 to 8 (Figure 2.4). For measurement of the total 

antioxidant capacity used a rapid and sensitive TEAC assay (CV=2.1 %), 

available on commercial kit (Randox # 2332, Crumlin, Co antrim, Ireland, UK). 
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Figure 2.4 The structures of flavonoids and polyphenols used in the present study 

(1) KandOl.Swami Co et aI (1994) (3) Shahidi F. et aI (1992) (5) Umasset B. et aI (1993) 
(2) HarbamJ. et aI (1975) (4) Robak 1. et aI (1988) (6) Vinson 1. (1995) 
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2.4.3 Procedures 

Trolox (6-hydroxy - 2,5,7,8 - Tetramethylchroman, a water soluble vitamin E 

analogue) is used as a standard. Trolox is twice as potent on a molar basis as 

vitamin E. Spectrophotometric measurements were made on a Roche Cobas 

Mira Discrete Analyser. The TEAC of test compounds are expressed as the 

millimolar concentration of a Trolox solution having the antioxidant capacity 

equivalent to a 1.0 mmoVI solution of the substances under investigation. 

For in vitro measurement offlavonoids all substances were dissolved in absolute 

ethanol at 37oC, except hesperidin which was dissolved in pyridine at:: 450 C. 

Total antioxidant activity of absolute ethanol was found to be negligible (0.07 ± 

0.01 f.lmoVI). 

In the standard assay compounds are tested at a concentration of 1 mmol/I. 

Since several of the flavonoids in the present study exceeded the maximum 

TEAC value of 2.5 mmoVI, all samples were tested at the reduced concentration 

of 300 f.lmoVI compared with a conventional TEAC at 1 mmoVI, all values were 

mUltiplied by 3.33. All solutions were prepared at the same time and measured 

on the day of preparation. For experiments in human plasma, solutions of 

quercetin, rutin and kaempferol in ethanol were added to fresh plasma to achieve 

a final concentration of 10, 20, 50 or 100 f.lmoVI. 
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Purity tests of quercetin aglycone, plasma and urine quercetin were measured by 

reversed-phase high performance liquid chromatography in collaboration with 

the Institute of Biomedical and Life Sciences, University of Glasgow and is 

described in Chapter 2, part 2.5 of the thesis. 

For TEAC tests on human plasma, fasting heparinised plasma from healthy 

volunteers (10 male, age 25-37 all non smokers) was freshly prepared by 

centrifugation of venous blood samples at 3000 rpm for 10 minutes, and 

measurements on day of preparation. Flavonols were added from stock solutions 

in ethanol, to a final concentration 10, 20, 50 and 100 Jlmolli. 

2.5 Determination of flavonoids in plasma, urine and food 

(test meal) 

2.5.1 Introduction 

Concentrations of free and conjugated flavonoids in plasma, urine and food (test 

meal) were determined by reversed-phase (RP) HPLC through collaboration 

with Miss Jennifer Burns and Dr Alan Crozier at the Institute of Biomedical and 

Life Sciences, University of Glasgow (Crozier et al 1997b) and methods were as 

follows: 
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2.5.2 Extraction and hydrolysis conditions 

The test meals, tea, serum and urine samples were hydrolysed using a 3 ml glass 

V -vial. A teflon coated magnetic stirrer was added to the vial and sealed tightly 

with a PTFE-faced septum prior to heating at 900 C for the required time. 

The pre and post hydrolysed serum and urine samples are centrifuged at 13000 

rpm for 10 minutes and 100 III aliquots of serum and urine samples, taken both 

before and after hydrolysis were made up to 250 III with distilled water adjusted 

to pH 2.5 with Trifluoracetic acid (TF A), prior to the analysis of 200 III volumes 

by gradient elution reversed phase HPLC. 

In the case of the test meals and tea, extract aliquots of 100 Ill, taken before and 

after hydrolysis, were filtered through a 0.45 Ilm filter (Whatman, Maidstone, 

Kent, UK) and made up to 250 III with distilled water adjusted to pH 2.5 with 

TF A prior to the analysis of 100 III volumes by gradient elution RP HPLC. All 

samples were hydrolysed and analysed in triplicate. 

2.5.3 High performance liquid chromatography 

Samples are analysed using a Shimadzu (Kyoto, Japan) LC-I OA series 

automated liquid chromatography system comprising of a SCL-l OA system 

controller, two LC-I OA pumps, a SIL-l OA autoinjector with sample cooler, a 

CTO-IOA column oven, an SPD-l OA UV -VIS detector and an RF -I OAXL 

spectrofluorimetric detector linked to a Reeve Analytical (Glasgow, UK) 2700 

data system. Reversed phase separations are carried out at 40°C using a 150 x 
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3.0 nun (internal diameter) C18 separation column (Genesis, Jones 

Chromatography, Mid-Glamorgan, UK), with a 4)lm CI8 guard cartridge in an 

integrated holder. 

The mobile phase was a 20 min, 20-40% gradient of acetonitrile in water 

adjusted to pH 2.5 with trifluoroacetic acid (TF A) pumped at a flow rate of 0.5 

ml/min. Column eluent is directed first to the SPD-I0A absorbance detector set 

at 365 nm after which postcolumn derivatisation is achieved by the addition, of 

0.1 M aluminium nitrate in methanol containing 7.5% glacial acetic acid pumped 

at 0.5 mllmin by a pulse-free reagent delivery unit (Reeve Analytical). The 

mixture is passed through a 0.02" Ld. x 200 cm coil of peek tubing at 400 C 

before detection of fluorecent flavonoid complexes with the RF -1 OAXL 

fluorimeter (excitation 425 nm, emission 480 nm). 

The reversed phase HPLC system separates a range of flavonoid conjugates and 

aglycones, all of which can be detected spectrophometrically at 365 nm. The 

limit of detection was <1 ng/g food « 10 ng/ml plasma or urine) and linear 5-

250 ng calibration curves can be obtained for morin, quercetin, kaempferol and 

isorhamnetin. The fluorescence intensities of the individual flavonoid 

derivatives vary, however, 100 pg-100 ng linear calibration curves can be 

obtained for morin, quercetin, kaempferol and isorhamnetin. 
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2.5.4 Hydrolysis techniques 

2.5.4.1 Tissue hydrolysis 

20 mg powdered, freeze dried tissue 

1.6 ml 60% methanol + 20 mM diethyldithiocarbamic acid (antioxidant) 

400 1l16M HCI 

20 ,.11 of 500 Ilg/ml morin Internal Standard 

Hydrolysed at 90°C for 1.5 hours with continuous stirring 

(result - 1.2M HCI and 50% methanol) 

2.5.4.2 Tea Hydrolysis 

450 III liquid tea, made using a standard infusion method 

1200 Jl180% methanol + 20 mM diethyldithiocarbamic acid (antioxidant) 

300 III 6M HCI 

Hydrolysed at 90°C for 2 hours with continuous stirring 

(result - 0.9M HCI and 50% methanol) 

2.5.4.3 Plasma hydrolysis 

300 JlI plasma 

500 JlII00% methanol + 20mM diethyldithiocarbamic acid (antioxidant) 

200 Jll6M HCI 

Hydrolysed at 90°C for 3 hours with continuous stirring 

(result - 1.2M HCI and 50% methanol) 
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2.5.4.4 Urine hydrolysis 

0.75 ml urine 

1.25 mllOO% methanol + 20 mM diethyldithiocarbamic acid (antioxidant) 

0.50 ml 10M HCI 

Hydrolysed at 900 C for 2 hours with continuous stirring 

(result - 2M HCI and 50% methanol) 

2.5.5 Calculations of flavonoids in plasma, tea and test meal 

2.5.5.1 Plasma 

All the plasma results are expressed in ng of flavonoid per ml of plasma. 

2.5.5.2 Tea 

The tea results are determined from the the fluorimetric analysis of the sample. 

They are in flavonoid per ~g/ml of tea. Multiplying by 250 will give an estimate 

of the amount of flavonoids present in 1 mug of tea. 

2.5.5.3 Test meals 

All the results are given as flavonoid j..lg/g fresh weight of the test meal. Since 

each person ate 400 g per day then mUltiplying by 400 will give the amount of 

flavonoids ingested per day. 
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2.6 Human plasma and urine biochemistry including 

antioxidant measurement 

These routine analyses were conducted by staff under the supervision of Dr 

Dinesh Talwar and Dr Naveed Sattar, Institure of Clinical Biochemistry, 

University of Glasgow, Glasgow Royal Infirmary. Methods are described only 

in outline. 

2.6.1 Vitamins 

2.6.1.1 Simultaneous determination of Vitamin A and E and carotenoids in 

plasma by reverse phase HPLC 

Principle 

Heparinized plasma is deproteinised with ethanol containing internal standards. 

After centrifugation vitamin A and E, carotenoids, and internal standards are 

extracted with hexane. The hexane is evaporated and the residue dissolved in the 

developing solvent. An aliquot ofthis solution is injected on to a C 18 

chromatographic column and vitamin A, E and carotenoids detected at 325 run, 

290 nm and 450 run respectively. (TaIwar et al- in press). 

2.6.1.2 Determination of vitamin C in plasma 

Principle 

Protein is precipitated from heparinized plasma with trichloroacetic acid. The 

oxidised form of ascorbic acid and dehydroascorbic aci~ is then coupled with 
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2,4, dinitrophenyl hydrazine to form the 2,4 dinitrophenylosazone (DNPH). 

Treatment of the osazone with sulphuric acid causes rearrangement which yields 

a reddish complex which is measured at 520 run using a Phillips 

spectrophotometer (Denson & Bowers 1961). 

Table 2.1 Laboratory Reference ranges, obtained in a survey of healthy 

Glasgow residents (n=111) 

%Coefficient Minimum 
Range of variation detectable 

Vitamins (p.molll) (inter batch) concentration 
(p.mol/l) 

Vitamin A 1.4-2.6 8.1 0.3 

VitaminE 22 - 37.2 9.0 2.5 

Vitamin C 11-114 12.6 >10 

Lutein 0.15 - 0.37 8.5 0.019 

Lycopene 0.19 - 0.55 11.0 0.028 

a-carotene 0.03 - 0.11 13.0 0.028 

p-carotene 0.18 - 0.58 9.6 0.028 

p-cryptoxanthin 0.14 - 0.36 8.7 0.019 

Talwar D et al (in press) 
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2.6.2 Antioxidant enzyme measurements 

2.6.2.1 Glutathione Peroxidase in plasma 

Principle 

GSH-Px activity is determined using the coupled enzyme procedure shown 

below. The second enzyme is glutathione reductase (GSSG-R). The substrates 

for GSH-Px are reduced glutathione (GSH) and butyl hydroperoxide. The 

substrates for (GSSG-R) is oxidase glutathione (GSSH). The reaction is 

followed by measuring the decrease in absorbance at 340 nm due to the 

decreasing concentration ofNADPH. 

GSHPx GSSG-R 

2 GSH + ROOH -+ ROH + GSSH -+ 2 GSH 

Sensitivity was to 1 unitlg Hb. GSH-Px was adapted on to an automated 

instrument the spectrophometric method (Cobas Mira, Roche Company) (Beatier 

et at 1977). 

2.6.2.2 Superoxide dismutase activity of plasma 

Principle 

Superoxide dismutase (SOD) activity was determined using an assay kit from 

Calbiochem (Nottingham, UK). This kit makes use of a proprietary reagent that 

undergoes alkaline auto-oxidation which is accelerated by SOD. 
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Interference from haemoglobin was eliminated by precipitation prior to assay 

using ice-cold ethanol/chloroform (62.5/37.5 v/v) followed by centrifugation at 

3000 g for 5 min at 4°C. SOD activity was determined from the 

presence/absence ratio of the auto-oxidation rates measured in the presence (Vs) 

and absence (Vc) of plasma. The data obtained was expressed as SOD activity 

units per ml of plasma. One SOD activity unit is the activity that doubles the 

auto-oxidation background (VsNc = 2) sensitivity is 0.2 U/ml and CV = <5% 

(Nebot et aI, 1993). 

2.6.3 Selenium in plasma 

Principle 

The method used was a direct determination of selenium in plasma by 

electrothermal atomic absorption spectrometry with deuterium-arc background 

correction. Samples are diluted (1 + 2) with a modifier containing palladium 

nitrate and Triton X-IOO. Samples are atomised from a L'vov platform in a 

pyrolytically-coated electro graphite tube and peak area signals are measured. 

Selenium standards are matched to the physiological concentrations of sodium 

chloride, calcium and phosphate. The detection limit was 6 J.lglL in the original 

sample, C.V.=5.0% (Gardiner et aI1995). 
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2.6.4 Human plasma and urine routine biochemistry 

2.6.4.1 Microalbuminur il 

Principle 

The method was an immunoturbidometric test for the quantitative determination 

of human albumin in urine. A 24 hour urine collection was made in a plain 

bottle. Samples were analysed within 24 hours. The reagent was obtained from 

Behringwerke AG, Marbury, Germany and anti-human albumin, from Scottish 

Antibody Production Unit, Law Hospital, Carluke, turbidity was measured using 

a Hitachi, 911 Discrete analyser, Boehringer Mannheim (UK), Sensitivity was 7 

mg/l and C.V.= 2.50%., 

2.6.4.2 Albumin in plasma 

Principle 

Albumin binds with bromocresol green to produce a blue complex which can be 

measured at 600 nm. The resulting absorbance from samples was compared 

with that of a standard and the concentration calculated.. (Albumin reagent kit -

Olympus Optical Co Ltd.), Cat No 66001 was used and analysed using a 

multichannel automated analyser Olympus A V 5200, Sensitivity was 16 gil the 

C.V. of the assay is 0.57 - 0.91 % repsectively (Doumas et al1971) . 

. ' 
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2.6.4.3 Fasting blood sugar in plasma 

Principle 

The glucose is determined after conversion to gluconate-6-phosphate with 

hexokinase and glucose-6-phosphate-dehydrogenase in the presence of ATP and 

NAD +. The increase in absorbance ofNADH at 340 run is proportional to the 

glucose concentration. 

HK 

Glucose + ATP 

+ Glucose-6-phospate + NAD 

Glucose-6-phosphate + ADP 

G6P-DH 

+ Gluconate-6-p + NADH + H 

Fluoride oxalate used as a blood anticoagulant. Glucose reagent kits were used 

prepared from Olympus Optical Co., Ltd., Cat No 066006 and measured by 

using an Olympus AV 5200, The C.V. of the assay is 1.9% (Teuscher et al 

1971). 

2.6.4.4 Urea in plasma 

Principle 

Urea is hydrolysed to ammonia and carbon dioxide by the catalytic action of 

urease. The ammonia serves to aminate 2 a-ketoglutarate to glutamate with the 

concurrent oxidation ofNADH to NAD in the reaction catalysed by glutamate 

dehydrogenase. The disappearance ofNADH is monitored by the rate of 

decrease in absorbance at 340 nm. Reagents and kit prepared from Olympus 
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Optical Co Ltd, Cat No 66048 and measured by using an Olympus A V 5200 

analyser. The C.V. of the assay is 1.08% (Olympus insert). 

2.6.4.5 Bilirubin in plasma 

Principle 

Indirect albumin bound bilirubin was released by a caffeine buffer. The total 

bilirubin reacts with diazotised sulphanilic acid to give a red azo dye. The 

colour produced was measured and the concentration calculated. Reagent 

prepared from Randex Lab Ltd., Ardmore, Crumlin, Co Antrim, Cat No 

OBR426, 03C and 04C. Bilirubin was measured using an Olympus Av 5200 

Olympus Otpical Co Ltd. The C.V. of the assay is 0.86% and sensitivity was 5 

~mol/l (Sherlock 1951). 

2.6.4.6 Creatinine in plasma 

Principle 

Creatinine fonns a yellow-orange colour with alkaline picrate solution. The 

increase in colour over a fixed period of time was measured photometrically, the 

increase in colour being directly proportional to the concentration of creatinine 

in the sample, was measured using an Olympus A V 5200 analyser, Olympus 

Optical Co Ltd, Boehringer Mannheim Jaffe cretainine, reagent kit, Cat No 

1040847. The C.V. of the assay is 3.67%, 1.43% and 1% in low medium and 

high concentrations and sensitivity was to 30 ~mol/l (Bartels et al 1972). 
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2.6.4.7 Total protein in plasma 

Principle 

Protein forms a purple complex when treated with biuret reagent (copper 

sulphate-alkaline tartrate-iodide) (Tietz 1987a). The amount of colour produced 

was measured at 540 nm. The resulting absorbancies is compared with that of a 

standard and the concentration calculated. 

Total protein reagent kit was purchased from Olympus Optical Co Ltd., Cat No 

66014 and measured by using an Olympus AV 5200. The C.V. of the assay is 

1.12%,0.96% and 0.96% for low, medium and high concentrations and 

sensitivity is 16 gil. Globulin (Glob) was calculated by subtracting albumin 

(alb) from total protein (TP), Glob = (TP - Alb). 

2.6.4.8 Alkaline phosphatase in plasma 

Principle 

AP 

P-nitrophenyl phosphate + H20 phospate + p-nitrophenol 

The concentration ofPNP is measured spectrophotometrically and is 

proportionally to the enzyme activity. 

Alkaline phosphatase reagent kit was purchased from Olympus Optical Co Ltd, 

Cat No 066020 and 066021 and was measured by using, an Olympus AV 5200. 
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The C.V. of the assay is 2.78%, 4.9% and 3.6% for low, medium and high 

concentrations and sensitivity is 5 UIL (Klin 1972). 

2.6.4.9 AL T (Alanine Aminotransferase) in plasma 

Principle 

GPT 

a-oxoglutarate + L-alanine ~ 

+ 
Pyrurate + NADH + H 

LDH 

I-glutamate + pyrurate 

+ I-lactate + NAD 

The decrease in NADH concentration is monitored spectrophotometrically at 

340 nm and is proportional to the AL T activity, and was measured using AL T 

kit, Boehringer Mannheim (UK) Ltd, Cat No RI 360205 and R2 127799. The 

C.V. of the assay is 5.1%, 1.7% and 1.5% for low, medium and high 

concentrations and sensitivity is 5 U/I (Kennedy et al 1976). 

2.6.4.10 AST (Aspartate Aminotransferase) in plasma 

Principle 

a-oxoglutarate + L-aspartate 

+ Oxaloacetate + NADH + H 

GOT 

I-glutamate + oxaloacetate 

MDH 

I-malate + NAD 

104 



Measurements were made using AST reagent kit, Boehringer Mannheim (UK) 

Ltd, Cat No RI 360183 and R2 127764. The C.V. of the assay is 3.5%, 2.4% 

and 1.9% for low, medium and high concentrations and sensitivity was to 5 U/I 

(Thefeld 1974). 

2.6.4.11 Urate in plasma 

Principle 

uricase 

Uric acid + 2 H20 + 02 allantoin + C02 + H202 

POD 

2 H202 + H+ + TOOS+ + 4-aminophenazone 

+4H20 

~ quinone di-imine dye 

The concentration of the oxidised dye is measured spectrophotometrically and is 

proportional to the concentration of urate in the sample. 

Measurements were made using an Olympus A V 5200 analyser, Olympus 

Optical Co Ltd. Uric acid reagent kts prepared from Boehringer Mannheim 

(UK) Ltd, Cat No RI 661 884 and R2 1661 892. The C.V. of the assay is 0.97% 

and sensitivity is 10 l-lmo/l (Thefield et al 1973). 
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2.6.4.12 Urine creatinine 

Principle 

Creatinine forms a red pigment with alkaline picrate solution. The colour 

develops slowly. The rate of increase in absorbance is directly proportional to 

the concentration of creatinine in the sample. 

Measurements were made using Hi Co creatinine test kit, Boehringer Mannheim 

(UK) Ltd, Cat No 1040847 and measured by a Hitachi 911 Discrete analyser. 

The C.V. of the assay is 2% at 2000 flmo1l1 and sensitivity is 20 Jlmolll (Bartels 

et aI1972). 

2.6.4.13 Fructosamine 

Principle 

Determination of non enzymatic glycated protein (fructosamine) in plasma was 

based on the ability ofketoamines to reduce nitroblue tetrazolium in alkaline 

solution. Fructosamine reagent kits (Roche art # 42388) was used and measured 

photometrically at 500 nm using automated analyser (Roch Cobas Mira Discrete 

Analyser). Range = 205-285 Jlmolll (non diabetic adult, n = 555) and 228 - 563 

Jlmol/l for diabetic patients and C.V. = < 3%. Sensitivity was 5.72 Jlmoi/l. 

(Johnson et al 1983; Schleicher & Vogt 1990). 
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2.6.5 Lipids and lipoproteins measurements 

2.6.5.1 Cholesterol in plasma 

Principle 

Cholesterol was measured by enzymatic procedures. The intitial reaction step 

being (a) the hydrolysis of cholesterol esters to release free cholesterol and (b) a 

subsequent oxidation step to produce hydrogen peroxide which was quantified 

by (c) the formation of a coloured oxidation product quinoneimine which 

absorbs light at 505 nm. 

cholesterol esterase 

(a) cholesterol esters + H20 cholesterol + RCOOH 

cholesterol oxidase 

(b) cholesterol + 02 4-cholestenone + H202 

POD 

(c) 2H202 + 4-aminophenazone + phenol -+ 

mono-imino)-phenazone + H20 

4-(p-benzoquinone-

Sensitivity was 0.1 mmolll using a cholesterol reagents kit Boehringer 

Mannheim, Cat No 1489437. Samples were measured by Hitachi 717 analyser 

(Boehringer Mannheim) (Manual oflaboratory operations 1974) (Siedel et al 

1983). 
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2.6.5.2 Triglyceride in plasma 

Principle 

Triglyceride was measured by enzymatic hydrolysis with subsequent enzymatic 

detennination of the liberated glycerol by colorimetry (a) hydrolysis of 

triglycerides to fonn glycerol is achieved by lipase. Glycerol produced by 

hydrolysis was assayed by a coupled-enzyme approach. First step was (b) 

conversion of glycerol to glycerol-3-phospate by glycerol kinase (GK) and (c) 

glycerol phosphate oxidase (GPO) produces hydrogen peroxide which was 

reacted with (d) peroxidase to give a red quineimine dye which absorbs light at 

505 nm. 

lipase 

(a) TG+3H20 

GK 

(b) glycerol + ATP -+ 

glycerol + 3 R COOH 

glycerol-3-phosphate + ADP 

GPO 

(c) glycerol-3-phosphate + 02 -+ dihydroxyacetone phosphate + H202 

peroxidase 

(d) H202 + 4-aminophenazone + 4-chlorophenol -+ 4-(p-

benzoquinone-mono-imino)-phenazone + 2H20 + Hcl 
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Sensitivity was 0.05 mmolll. Reagents were prepared from Boehringer 

Mannheim reagent kit, Cat No 1488899 used and measured by a Hitachi 717 

analyser (Boehringer Mannheim) (Trinder et al 1969). 

2.6.5.3 Full lipoprotein analysis (LDL, HDL and VLDL) in plasma 

Principle 

Lipoproteins can be selectively precipitated by adding combinations of sulphated 

polysaccharides and divalent cations to plasma. 5 ml of plasma in a 

thermoplastic ultra centrifuge tube was overlayed with normal saline, density 

1.006 kg/I. The tube was then sealed with a cap and ultracentrifuge (Beckman, 

USA) at 35000 rpm at 40 C for 16 hours after which two fractions were obtained, 

a "top" fraction containing VLDL and a "bottom" fraction containing HDL and 

LDL. The LDL component precipitated by using heparin and manganous 

chloride leaving the HDL in solution (Manual oflaboratory operations 1974). 

2.7 Test diets 

2.7.1 Design of low and high flavonoids diet for flavonoid study in diabetic 

patient 

Ten diabetic patients followed a low flavonoids diet for a 28 days study 

(according to the dietetic instruction). They were randomly assigned to receive 

either high or low flavonoids diet for 14 day periods. After this they received 
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the alternative low or high flavonoids diet for 14 days, in a crossover design. 

Each subject thus acted as their own control. 

2.7.2 Dietary Intervention 

2.7.2.1 Low flavonol diet (28 days): 

Patients were advised by a state-registered dietitian to avoid eating high flavonol 

foods including certain drinks (red wine, fruit juices of all varieties, tea), fruit; 

especially apples, oranges, strawberries, grapes, berries, currants and sultanas, 

vegetables and salads, particularly onion, garlic, shallots, tomatoes, lettuce, celery, 

beans, parsley, cabbage leaves, peppers (red, green, yellow) and nuts (walnut, 

hazelnut, peanut). Advice was given to maintain normal energy intake, to avoid 

weight change. 

2.7.2.2 High flavonol diet: 14 days supplements in addition to low flavonol 

diet 

Introduction 

According to published data, onions have a particularly high flavonoid content 

(Herrman et al 1988, Hertog et al 1992, Dorant et al 1994, Hollman et al 1996a 

and Crozier et al 1997a). Also teas are beverages with very high flavonoid 

content (Herrman et a11988 , Shahidi et al 1992, Xie et a11993, Hertog et al 

1993b, Rice-Evans et al1995 and 1996,and Guo et aI1996). Hertog suggested 

that the most important sources of total flavonoid intake in the Netherlands are 

onions (29%) and tea (48%) (Hertog et a11993a). 
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Following collaborative studies between the Department of Human Nutrition and 

the Division of Biochemistry and Molecular Biology of University of Glasgow, 

we concluded that purified flavonoids were not adequately absorbed. Onion and 

tea were chosen as diet supplements for flavonoids study on diabetic patients, on 

the basis of high flavonoid contents. It was recognised that these foods also 

contain other potentially bioactive compounds, notably catechins and 

epicatechins in tea. At the time of study design, there was no evidence for 

absorption in humans. 

Onion Supplement: 400 g yellow English onions, without dry skin, were chopped 

with a food processor into medium slices and fried lightly for 1.5 min with 20 g 

olive oil (extra virgin). Immediately after cooking the fried onions were divided 

into three freezer bags (to be consumed in 133 g bags as three meals daily) and 

frozen for storage at -20°C before eating. 

Onion, tomato ketchup and herb supplement: 400 g yellow English onions, 

without dry skin, were chopped with a food processor into medium slices and 

lightly fried with for 1.5 min with 20 g olive oil (extra virgin), 20 g tomato ketchup 

(Heinz) and 1 g Italian seasoning herbs (Safeway) and consumed in three equal 

mealtime supplements. 

Tea Supplement: six mugs (250 ml) of tea/day (Typhoo tea bag, 5 minutes 

infusion). 
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Fried onion bags for consumption during the 14 days on high flavonoid diet 

were provided to subjects in deliveries every 4 days (each of26 x 133 g bags). 

One subject used decaffeinated tea at his own request. During these periods they 

continued to avoid eating other high flavonoids foods (according to the low 

flavonoid diet instruction). 

2.7.2.3 Composition of supplements: Flavonols were measured by HPLC and 

the results shown in Table 6.2. The onion and tomato ketchup supplements were 

analysed for their antioxidant vitamin contents. Vitamin C content was measured 

using a colorometric method and was 3.6 mg/IOO g while vitamins E and A were 

both undetectable « 2 mg/IOO g) using HPLC methods. Tea did not contain any 

of these vitamins. 

2.7.3 Four days food diary records 

Four days before start of the flavonoid study (including weekend days) all 

subjects completed a 4 days food diary. Instruction for completing 4 -days food 

and drink dairy by picture and scale was explained to all subjects by a dietitian 

(Irene Kelly, MSc, SRD). Diabetic subjects recorded everything that they ate 

and drank, and included a description and weight of each individual food and 

drink item and how much food was left in plate or cup. 

Energy and nutrient intake for subject was calculated by a state registered 

research dietitian. This information was then analysed by COMP-EAT , v. 4.0 
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software (Nutrition System, Carlson Bengslon consultant Ltd., England, UK). 

This programme is based on the data in McCance & Widdowson Composition 

of Foods 8th edition food composition table (McCance and Widdowson et al 

1991). 

2.7.4 Determination of antioxidant vitamins in the test diet 

2.7.4.1 Determination of vitamins A and E in test diet 

Both vitamins A (retionol) and E (alpha-tocopherol) were determined by 

(HPLC) technique. In order to free the vitamins from the food matrix and 

eliminate bulk components such as triglycerides, the food samples were 

saponified. 

Owing to sensitivity of vitamins A and E to oxidation and to destruction by light, 

all determinations were carried out in the absence of oxygen (under nitrogen gas) 

and shielded from light using amber coloured actinic glass. 

The vitamins were detected and quantified by HPLC using an ACS 352 HPLC 

pump running isocratically with methanol and water as mobile phase (2mllmin) 

and a Cecil CE 1400 refractive index detector. Separation was achieved on a 25 

cm x 4.6 mm Techsphere 50DS column (HPLC Technology Ltd, Warrington, 

UK) (Pearson's composition and analysis of foods, 1991). 
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2.7.4.2 Determination of vitamin C in test diet 

A 25% of the solid food sample was prepared in triple distilled water. Fifty to 

one hundred millilitres of the prepared sample was added to equal volume of 

extraction solution and mixed thoroughly. An aliquot containing about 2 mg of 

ascorbic acid was titrated with standard indophenol solution and corrected for 

blank using an equivalent amount of extraction solution. Extraction solution -

dissolve 15 g of phosphoric acid in 40 ml acetic acid and 200 ml water, dilute to 

500 ml and filter. 

Standard solution - dissolve 0.05 g ascorbic acid in 45 ml of the extraction 

solution and make up to 50 ml. Prepare immediately before use. Indophenol 

standard solution - dissolve with shaking 0.05 g of2,6-

dicholorophenolindophenol (sodium salt) in 50 ml water containing 42 mg 

sodium bicarbonate. Dilute to 200 ml with water. Filter. Standardise by 

titration against 2 ml of standard ascorbic acid solution added to 5 mlofthe 

extraction solution.Indicator - dissolve 0.1 g thymol blue in 10.75 ml 0.02N 

sodium hydroxide solution, dilute to 250 ml with water (Pearson's composition 

and analysis of foods, 1991). 

2.8 Statistical methods 

2.8.1 Statistical methods in the comet assay (Chapter 3) 

Linear regression analysis of damage score versus log concentration of 

antioxidant was used to assess the dose-dependency of the protective effect. The 
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concentration that would reduce the damage score obtained in the absence of the 

flavonoid by 50% (ED 50) was estimated from the regression line (in some cases 

by extrapolation) as a comparative measure of efficacy. Separate comparisons of 

the antioxidant activity of different agents were performed at each concentration, 

using one-way ANOV A together with Tukey's method for all pairwise 

comparisons between flavonoids, and Dunnett's method for comparing all 

flavonoids with vitamin C. The significance levels reported refer to error rates 

for each family of comparisons. 

The effect of quercetin and vitamin C in combination was analysed by two-way 

ANOVA. For free flavonoids, the relationship between the number of hydroxyl 

groups in the structure of the agents and the degree of protection against DNA 

damage was assessed by linear regression analysis. Statistical significance in all 

cases was assessed at the 5 per cent level. 

2.8.2 Statistical methods in the TEAC assay (Chapter 4) 

Comparisons between the antioxidant activity of different agents (flavonoids, 

polyphenols and vitamin C) were performed by using one-way ANOV A with 

Tukey's method of analysis. Associations between TEAC and concentration of 

rutin and quercetin in human plasma and between TEAC and the number of OH

groups in each flavonoid were tested by calculating the Pearson correlation 

coefficient (R) and the coefficient of determination (R
2

), which was expressed as 

a percentage (i.e. R2 gives the percentage variance expl~ined by the independent 
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variable). The significance of association between pairs of variables was 

determined by linear regression. 

2.8.3 Statistical methods in the response of diabetic patients with high 

flavonoids diet (Chapter 6) 

Appropriate parametric or non-parametric analyses for paired data were used, to 

compare data at the ends oflow and high flavonol-diet periods. Wilcoxon's test 

was used for all comparisons except SCGE and endonuclease III, whose data 

appeared to be normally distributed and paired t-tests were employed. All data 

are presented as mean ± standard error of mean. Ap value <0.05 is regarded as 

statistically significant. 

2.8.4 Statistical methods in the prediction of dietary flavonol consumption 

from fasting plasma concentration or urinary excretion (Chapter 7) 

The data on total flavonoids, and on quercetin combine both free (aglycone) and 

conjugated forms. Linear regression analysis of plasma and urine quercetin and 

flavonoids versus flavonoids and quercetin diet were used to assess the relation 

between the factors. Statistical significance in all cases was assessed at the 5% 

level. The equations of the regression lines were used to estimate flavonol and 

quercetin intakes given in tables 7.3 & 7.4. 
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CHAPTER 3: Protection from pre treatment with various 

flavonoids and vitamin C against oxygen radical generated DNA 

damage in ex vivo lymphocytes 

(paper accepted for publication in American Journal of Clinical Nutrition, 

co-authors W Angerson, MEJ Lean) 

Abstract 

This study assessed the antioxidant potencies of several widespread dietary 

flavonoids, across a range of concentrations and compared to vitamin C as a 

positive control. The antioxidant effects of pre-treatment with flavonoids and 

vitamin C, in standardised concentrations (7.6, 23.2, 93 and 279.4 )lmollL), on 

oxygen-radical generated DNA damage from hydrogen peroxide (100 )lmoI/L) 

in human lymphocytes were examined using the single-cell gel electrophoresis 

assay (SCGE assay or "comet assay"). 

Pre-treatment with all flavonoids and vitamin C produced dose-dependent 

reductions in oxidative DNA damage. At a concentration of 279 )lmollL, they 

were ranked in decreasing order of potency as follows: luteolin (9% of damage 

from unopposed hydrogen peroxide), myricetin (10%), quercetin (22%), 

kaempferol (32%), quercitrin (quercetin-3-L-rhamnoside) (45%), apigenin 
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(59%), quercetin-3-g1ucoside (62%), rutin (quercetin-3~ D-rutinoside), (83%) 

and vitamin C (78% of damage). 

The protection of vitamin C against DNA damage at this concentration was 

significantly less than that of all the flavonoids except apigenin, quercetin-3-

glucoside and rutin. Ranking was similar using estimated ED50 (concentration 

to produce 50% protection). The protective effect of quercetin and vitamin C at 

a concentration of 23.2 JlmoVL was found to be additive (quercetin 71 % of 

maximal DNA damage from unopposed hydrogen peroxide, vitamin C 83%, 

both in combination 62%). These data suggest that the free flavonoids are more 

protective than the conjugated flavonoids (e.g. quercetin versus its conjugate 

quercetin-3-glucoside, p<0.001). They are also consistent with the hypothesis 

than antioxidant activity of free flavonoids is related to the number of hydroxyl 

groups. 

3.1 Introduction 

Flavonoids were initially considered to be non-nutrients i.e. substances without 

any nutritive value for humans. However in 1936 Szent Gyorgi had shown that 

two flavonoids derived from citrus fruits decreased capillary fragility and 

permeability in humans (Rusznya'k & Gyorgyi et al 1936). 

118 



The aim of this study was to determine the antioxidant capacities of various 

flavonoids and vitamin C against the oxidative DNA damage produced in ex 

vivo human lymphocytes by hydrogen peroxide. 

The antioxidant effect of flavonoids 

Quercetin, myricetin, kaempferol, rutin and vitamin C are powerful antioxidants 

in the oxidation of low-density lipoprotein and provide a possible mechanism for 

the beneficial epidemiological effect of dietary fruit and vegetables on heart 

disease (Vinson et aI1995). Evidence comes from several sources. Using a high 

temperature incubation method Mehta first reported that quercetin has an 

antioxidant action (Mehta et alI958). Hudson found that quercetin and luteolin 

have good primary antioxidant activity in the stability of lard, using the 100°C 

method (Hudson et aI1983). A study using uv-induced oxidation ofLDL 

(Negre et al1995) showed that rutin, a polyphenolic flavonoid, vitamin C and 

vitamin E were able to inhibit the peroxidation ofLDL and their subsequent 

cytotoxicity . 

Quercetin (3',5,7,3',4' pentahydroxyflavon) prevents oxidation ofLDL by 

macrophages in vitro by reducing the formation of free radicals (De Whalley et 

a11990; Chen et al 1996) and dietary intake of quercetin estimated from dietary 

records is inversely related to coronary heart disease mortality (Hollman et al 

1995). A number of more recent studies, using superoxide assays, have 

119 



confirmed that quercetin is a strong antioxidant, and most flavonoids show 

antioxidant activity (Yukiko et al 1994; Laughton et al 1989). 

Single cell gel electrophoresis (the comet assay) is a sensitive and rapid method 

for the detection of DNA damage at the individual cell level (McKelvey-Martin 

et al 1993; Fairbairn et al 1995) and specifically for detecting oxidative DNA 

strand breaks (Duthie 1997; Collins et al 1995 & 1997; Singh et al 1988). It is 

considered a useful tool for investigating issues related to oxidative stress in 

human lymphocytes (Green et al 1992) but has not previously been used with 

flavonoids. We therefore used the comet assay to evaluate the antioxidant 

capacity of some major dietary flavonoids, with vitamin C as a positive control. 

Material and methods 

The study design and methods are explained in detail in Chapter 2 part 2.2. 

Statistical methods 

Explained in detail in Chapter 2 part 2.8.1. 

3.2 Results 

All the flavonoids and vitamin C produced dose-dependent reductions in 

oxidative DNA damage as assessed by linear regression analysis of the log-dose 
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response curves. The coefficient of variation was 19% for duplicate assessments 

of DNA damage and 20% for repeated identical experiments. 

The effects of flavonoids and vitamin C treatment against oxidative DNA 

damage in human lymphocytes in the comet assay are shown in Tables 3.1.A to 

3.1.1. 

Examples of dose-response curves are shown in Figure'; 3.1. The concentrations 

that would produce a 50% reduction in DNA damage as estimated from the 

regression equations were, in decreasing order of efficacy: quercetin 47 llmollL, 

luteolin 5111mollL, myricetin 64 llmollL, kaempferol 104 llmol/L, quercitrin 288 

llmollL, quercetin-3-glucoside 984 llmollL, apigenin 1.5 mmollL, rutin 43 

mmollL and vitamin C 233 mmollL (Figure 3.2). The values for quercitrin, 

quercetin-3-glucoside, apigenin, rutin and vitamin C were derived by 

extrapolation of the dose-response curves and should be regarded as approximate 

measures of relative efficacy rather than true ED50 values. 

The results of all pairwise comparisons of the antioxidant effect of the nine 

agents at a concentration of27911mollL are shown in Table 3.2. Although there 

are minor differences in the ranking of the agents as compared with the ED50 

values, none of these relate to any statistically significant differences. The four 

most potent agents studied (lute olin, myricetin, quercetin and kaempferol) are all 

members of the group of free flavonoids (which also includes apigenin) and in 
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most pairwise comparisons were significantly more effective than the conjugated 

flavonoids (quercitrin, quercetin-3-glucoside and rutin). Vitamin C was 

significantly less potent than luteolin, myricetin, quercetin, kaempferol and 

quercitrin. It did not differ significantly in efficacy from quercetin-3-g1ucoside, 

apigenin and rutin. At lower concentrations, there were fewer statistically 

significant differences between the agents. Rutin was consistently the weakest 

antioxidant of all the flavonoids tested, and vitamin C also remained less 

effective than the majority of other agents. Quercetin was consistently one of the 

most potent. 

In a single experiment, the antioxidant effects of vitamin C, quercetin, and both 

these agents combined were assessed at a fixed relatively low concentration of 

23.2 Jlmol/L. The results are shown in Figure 3.3. Quercetin alone reduced 

oxidative DNA damage by 29% relative to untreated control cells, while vitamin 

C alone reduced damage by 17% . The two agents combined reduced damage by 

38%. Two-way ANOVA showed that the treatment effects of both agents were 

significant (quercetin, F=18.49, dj=1,16, p<O.OOl; vitamin C, F=5.08, dj=1,16, 

p=O.04) and that the interaction between them was insignificant. The analysis 

therefore suggests that the protective effects of these agents at the doses 

investigated were additive. 

The mean damage score for the five free flavonoids at a concentration of279 

JlmollL is plotted against the number of hydroxyl groups in the structure of the 
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molecule in Figure 3.4. There was a negative correlation between these 

variables, although for the small number of agents studied it failed to reach 

statistical significance (r=-0.60, n=5, p=O.l 7). 

3.3 Discussion 

The results of the present study indicate that the aglycones quercetin, luteolin, 

myricetin (Figure 3.5) and kaempferol have a greater antioxidative capacity than 

the conjugate flavonoids, such as quercetin-3-g1ucoside, quercitrin and rutin 

(Figure 3.6). This is in agreement with the results of several other studies using 

a wide range of methods for assessing antioxidant activity, as shown in Table 

3.3. In our study, apigenin was the least potent of the free flavonoids, and this is 

in agreement with the previous studies (Galvez et al 1995; Vinson et al 1995). 

Also, Chen et al reported that apigenin demonstrated no antioxidant activity in 

rape seed oil heated at 105
0

C (Chen et a1 1996). 

The position and number of hydroxyl groups has an important role in antioxidant 

activity (Chen et al 1996; Shimoi et aI1994). In our study, at a concentration of 

279 Ilmol/L, the protection of myricetin, quercetin, kaempferol and apigenin 

against DNA damage would be consistent with a relationship to the number of 

hydroxyl groups. For apigenin, the three hydroxyl groups at positions 5, 7 and 4' 

were associated with a small but definite antioxidant effect, whereas others have 

found this agent to provide no protection against oxidative damage (Chen et al 
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1996). Kaempferol, with an additional hydroxyl group at position 3, was more 

protective than apigenin, and quercetin and myricetin, with further groups at the 

3' and 5' positions, were still more effective (Figure 3.7). The antioxidant 

activity of quercetin involves hydrogen-atom donation to peroxy radicals, thus 

terminating the chain radical reaction (Torel et aI1986). Shahidi has shown 

flavonoids are excellent hydrogen donors and those with a 3',4' dihydroxy 

configuration such as quercetin possess strong antioxidant activity (Shahidi et al 

1992). Luteolin, with a similar number of hydroxyl groups to kaempferol, was 

significantly more effective in the present study, as others have also reported 

(Galvez et al 1995; Shimoi et aI1994). This may be because the hydroxyl group 

at the 3' position in luteo1in confers greater antioxidant activity than the group at 

the 3 position in kaempferol. 

The single cell gel electrophoresis (comet) assay has been explored as a potential 

tool for detecting the antioxidant effect of foods or nutrients. Supplementation 

with vitamin C (100 mg/d), vitamin E (280 mg/d) and beta carotene (25 mg/d) 

for 20 wk significantly decreased endogenous oxidative DNA damage in human 

lymphocytes (Duthie et al 1996). Hartman et al used the comet assay to study 

DNA damage in peripheral white blood cells of humans after exhaustive exercise 

and reported that vitamin E supplementation prevents exercise induced DNA 

damage (Hartman et al 1995). Green et al found a reduction in radiation-induced 

DNA damage following vitamin C ingestion (35 mg/kg) (Green et al 1994). The 

effect of various antioxidants on oxygen-radical-generated DNA damage in 
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human lymphocytes has been investigated by using the comet assay. There were 

small protective effects of vitamin C at low doses of 40 IlmollL and no 

protection at high doses of 5 mmollL. Trolox (water soluble analogue of vitamin 

E) produced no effect against DNA damage (Anderson et a11994). 

The present study showed that the SCGE or "comet assay" can be used to give 

reproducible results in estimating the extent of DNA damage to human 

lymphocytes. It thus proved possible to rank the potency of the antioxidant 

agents tested with high confidence. Vitamin C, well recognised as a dietary 

antioxidant, and the concentrations of vitamin C tested were chosen to span the 

normal plasma concentrations 34-114 IlmoVL (Tietz 1987). Much higher 

concentrations 15 mg/IOO mL are found in leucocytes including lymphocytes 

which concentrate vitamin C to levels 14 fold greater than plasma (Tietz 1987; 

Levine et al 1996). Intracellular concentrations were not measured in the present 

study. Fruit and vegetables provide about 60% of total vitamin C intake and 

these foods are likely to contribute other antioxidants including flavonoids. At 

equimolar concentrations the results demonstrate very clearly a greater 

antioxidant potency from most of the flavonoids tested than from vitamin C. 

The results also showed that the effects of quercetin, one of the most potently 

antioxidant flavonoids, and vitamin C, could be additive when cells were 

pretreated with both at concentrations of 23.2 IlmollL. 
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The conclusions from these in vitro experiments must remain tentative, until 

more is known about the absorption, distribution, metabolism and biological 

effects offlavonoids within the body. The present study supports the possibility 

that other bioactive compounds such as flavonoids, which are known to have 

appropriate actions (Table 3.3), may be important factors for health which 

coexist with the more familiar antioxidant vitamins. The importance of 

quercetin, one of the most widespread and also most potent antioxidant flavonol, 

is underlined by the results of the present study. 
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TABLE 3.l.A The effect of Kaempferol pre-treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay). 

Percentage of the cells showing different grades of DNA damage a 

Treatment No damage Low damage Medium damage IIigh damage Very High damage Total score 
«5%) (5-25 %) (25-45 %) (45-70 %) (>70 %) (out of 400) 

100 J..lmol/L H20 2 (no kaempferol) 14.0 ±4.6 22.0± 2.5 1O.4±2.2 13.2±2.2 40.3±3.0 243.6±12.7 

Control b 86.3±2.1 12.3±1.9 O.5±0.3 0.7±0.3 0.2±0.2 16.0±2.5 

7.6 J..lmollL Kaempferol + 100 J..lm H202 27.4 ±6.2 23.2± 3.7 7.5±1.8 11.3±1.4 30.6±3.1 194.S±IS.2 

Control 88.6±3.1 9.8±2.9 0.8 ± 0.4 0.S±0.2 0.2±0.2 13.7±3.4 

23.3 J..lmollL Kaempferol+ 100 J..lm H202 33.0 ± 3.4 23.8± 3.9 6.2±1.0 II.S±1.0 2S.6±2.5 1 73.7±8.2 

Control 85.2±2.7 12.2±2.8 1.3±0.5 0.8±0.3 0.5±0.3 19.3±3.0 

93 J..lmol/L Kaempferol + 100 J..lm H202 47.8 ± 4.3 17.8±3.0 3.2±1.0 8.5±1.3 22.8± 2.4 140.9±10.2 

Control 94.3±1.6 4.8±1.6 0.5±0.2 0.3±0.2 O.O±O.O 6.8±1.4 

279.4 J..lmol/L Kaempferol+lOO J..lmH202 68.8 ± 2.4 1 0.2±2. 1 4.5±0.9 5.6±1.0 1 \.0±1.5 78.6±8.2 

Control 94.2±1.3 4.8±1.5 0.3±0.2 0.7±0.4 O.O±O.O 7.5±1.2 

a Values represent duplicates from six experiment s (means ± SEM) 
b . 

Control samples wIth no H202 
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TABLE 3.l.B The effect of quercetin treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage ofthe cells showing different grades of DNA damage a 

Treatment 
No damage Low damage Medium damage High damage Very High damage Total Score 

«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 J.1mol/L 1120 2 (no quercetin) 16.2±3.6 10.5± 2.2 5.3±1.9 14.5±1.7 53.5±4.5 278.7±15.6 

Control b 91.3±2.3 3.7±0.9 3.0±1.2 1.3±0.6 0.7±0.7 16.3±5.8 

7.6 J.1m ollLquercetin + 100 J.1m H202 26.5 ± 3.7 12.0± 2.4 7.3±1.3 23.0±2.0 31.2±4.2 216.3±12.6 

Control 84.7±4.8 6.7±1.2 2.7 ± 0.9 5.3±3 0.7±0.7 30.7±12.7 

23.3 J.1mollL quercetin + 100 J.1m H202 36.8± 4.3 12.3± 2.3 7.8±1.4 19.7±4.1 23.3±4.3 180.3±15.2 

Control 92.0±5.1 6.3±5.4 0.7±0.3 1.0±0.6 O.O±O.O 1O.7±4.6 

93 J.1mol/L quercetin + 100 J.l.m H202 48.8± 3.6 15.0±3.0 7.7±1.0 24.0±4.7 4.2± 1.4 119.0±15.11 

Control 97.02:2.0 2.7±1.7 0.3±0.3 O.O±O.O O.O±O.O 3.3±4.0 

279.4 J.1mol/L quercetin + I 00 J.1mH202 63.2±2.8 20.5±2.3 9.0±2.1 7.2±2.3 0.2±0.2 60.7±8.3 

Control 94.3±2.3 6.0±2.8 O.O±O.O 1.3±1.3 O.O±O.O 8.3±3.3 

ft 
Values represent duplicates from three experiment (means ± SEM) b Control sampels with no H20 2 
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TABLE 3.1.C The effect of Myricetin treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage of the cells showing dilTerent grades of UNA d:lInagca 

Treatment No damage Low damage Medium damage High damage Very High damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 /--lmol/L 1120 2 (no Myricetin) 17.3±3.6 20.3±2.1 8.8±1.4 16.0±1.4 37.5±1.6 236.0±9.6 

Control b 89.0±6.7 9.0±5.1 1.0±1.0 0.7±0.7 0.3±0.3 14.3±8.6 

7.6 /--lmol/L (Myricetin)+ 100 /--lm 11202 25.2±3.7 22.2±1.7 16.3±3.9 12.0±1.l 24.3±1.9 I 89.7±9.8 

Control 89.0±2.6 7.3±2.2 2.7±0.7 1.0±0.6 O.O±O.O 15.7±3.8 

23.3 /--lmollL (Myricetin ) + 100 /--lm H20 2 30.5±4.9 24.7±4.5 7.7±2.1 14.3±2.2 22.8±2.9 174.8±10.3 

Control 86.0±4.0 12.0±4.6 1.7±0.9 0.3±0.3 O.O±O.O 16.3±3.8 

93 /--lmol/L (Myricetin ) + 100 /--lm H202 40.2±4.3 23.8±2.2 8.2±1.7 16.2±3.3 11.7±1.7 135.3±14.9 

Control 85.0±3.6 13.0±2.9 2.0±1.2 O.O±O.O O.O±O.O 17.0±4.5 

279.4 /--lmollL (Myricetin) + I 00 /--lmI1202 79.2±6.2 17.8±6.1 2.33±O.67 0.67±O.21 O.O±O.O 24.5±6.3 

Control 89.0±8.5 IO.0±8.0 O.3±O.3 O.7±O.3 O.O±O.O 12.7±9.3 

8 Values represent duplicates from three experiment (means ± SEM). 1) Control samples with no H202 
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TABLE 3.1.0 The effect of Luleolin treatment against oxidative DNA damage in human lymphocytes in the cornet assay (SCGE assay) 

Percentage ofthe cells showing different grads of DNA damagea 

Treatment No damage Low damage Medium damage High damage Very High damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of score) 

100 Jlmoi/L H202 (no Luteolin) 19.5±2.8 21.0±2.4 9.3±1.5 17.0±l.t 33.2±5.0 223.3±16.5 

Control b 89.7±2.3 9.7±2.0 0.3±0.3 0.3±0.3 O.O±O.O 11.3±2.7 

7.6 Jlmol/L (Luteolin)+ 100 Jlm H202 26.7±5.3 17.0±3.2 7.8±2.1 18.8±1.9 29.7±6.4 207.8±21.6 

Control 91.0±1.0 8.7±O.9 0.3 ± 0.3 O.O±O.O O.O±O.O 9.3±1.2 

23.3 Jlmol/L (Luteo/in) + 100 Jlm H202 37.7± 3.4 9.8± 2.7 8.3±0.6 28.5±4.2 15.7±3.3 174.7±14.5 

Control 94.0±0.6 5.7±0.3 0.3±0.3 O.O±O.O O.O±O.O 6.3±0.9 

93 Jlmol/L (Luteolin) + 100 Jlm H202 61.2±5.0 20.2±3.4 7.3±1.9 10.7±3.0 0.8±0.5 70.2±11.1 

Control 94.0±1.2 5.3±1.5 0.3±0.3 0.3±0.3 O.O±O.O 7.0±0.6 

279.4 JlmollL (Luteolin) + 100 JlmH202 84.8±4.0 11.0±2.8 3.3±1.l 0.8±0.4 O.D±O.O 20.2±5.5 

Control 96.7±1.2 3.3±1.2 D.O± D.O D.D±O.O O.D±O.D 3.3±1.2 

8 
Values represent duplicates from three experiment (means ± SEM). b Control samples with no H202 
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TABLE 3.l.E The effect of Quercitrin treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage of the cells showing different grades of DNA damagea 

Treatment No damage Low damage Medium damage High damage Very High damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 J..lmol/L 11202 (no Quercitrin) 24.4 ±.6.7 18.9±. 2.1 7.6±.0.9 14.1±.2.4 35.0±.4.2 216.4±.21.8 

Control b 90.0±.2.8 7.3±.2.7 1. 8.±0. 3 1. O.±O. 0 O.O.±O.O 13.8.±2.96 

7.6 J..lmol/L (Quercitrin)+ 100 J..lm H202 31.2.±3.8 21.8,±2.2 10.3.±3.6 14.7:!::2.5 22.0:!::4.2 166.2:!::17.7 

Control 88.8:!::2.2 9.8±.2.8 1.3 ±. 0.5 O.3±.0.3 O.O.±O.O 13.0±.1.6 

23.3 J..lmol/L (Quercitrin) + 100 J..lm H202 34.0±, 6.8 21.3.± 1.8 7.5:!::2.2 16.8±.2.5 20.3±. 4.2 168.2±.19.2 

Control 86.6.±4.3 1O.8±.4.1 2.0:!::0.5. 0.4:!::0.4 O.2.±0.2 16.8±.4.4 

93 J..lmol/L (Quercitrin ) + 100 Jlm H202 45.3.±6.7 I 7. 0±.4. 9 6.7±.0.8 13.8±.2.9 17.2±,1.8 140.5:!::13.2 

Control 90.3.±4.4 9.0.±4.2 0.5±.0.3 O.3±.O.3 O.O±.O.O 10.8.±4.4 

279.4 Jlmol/L (Quercitrin) +100 J..lmH202 56.0±.6.7 14.5.±2.4 6.3.±1.4 15.5.±2.2 7.7±3.2 97.7±J9.2 

Control 94.7±3.0 4.7±2.3 O.7±. 0.7 O.O±.O.O O.O±.O.O 6.0±.3.6 

8 Values represent duplicates from three experiment (means ±. SEM). b Control samples with no H202 

131 



TABLE 3.l.F The effect of Apigenin treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage of the cells showing different grades of DNA damagea 

Treatment No damage Low damage Medium damage High damage Very High damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 JlmollL 11202 (no Apigenin) 13.8±1.4 22.5±1.6 8.2±1.l 16.7±2.1 38.8±1.4 244.2±4.S 

Control b 81.7±6.7 13.7±7.1 4.0±2 .. S O·nO.3 O.O±O.O 23.7±6.9 

7.6 Jlmoi/L (Apigenin)+ 100 Jlm H202 26.3±3.2 23.5±1.5 7.S±1.9 IS.7±2.4 27.0±I.8 191.2±7.2 

Control 91.7±1.8 3.7±2.3 3.7± 2.7 1.0±O.6 O.O±O.O Il.O±2.S 

23.3 IlmollL (Apigenin) + 100 Jlm H202 19.8±3.9 29.3±1.9 12J±1.0 18.2±2.9 IS.7±2J 189.8±8.8 

Control 8S.3±2.9 12.7±2.0 1.7±1.2 0.3±0.3 O.O±O.O 17.0±3.6 

93 Jlmoi/L (Apigenin) + 100 Jlm H202 36.7±2.0 21.8±2.4 6J±1.0 lS.7±0.7 19.5±1.4 161.0±6.0 

Control 86.0±2.9 13J±3.2 0.3±OJ 0.3±O.3 O.O±O.O lS.0±2.3 

279.4 JlmollL (Apigenin) + I 00 JlmH202 40.0±2.3 24.S±2.5 6.S±2.1 10.7±1.4 18.3±2.S 1 43.2±S.5 

Control 90.0±2.3 8.0±2.1 l.7±0.3 0.3±O.3 O.O±O.O 12.3±3.0 

8 Valucs represent duplicates from three experiment (means ± SEM). b Control samples with no H202 
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T A 8LE 3.1.G The effect of Qllercetin-3-g111coside treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage of the cells showing different grades of DNA damagea 

Treatment No damage Low damage Medium damage High damage Very lIigh damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 ~mol/L 1120 2 (no Q-3-G) 12.7 :!:3.0 16.2± 4.8 10.8±1.9 16.3±0.7 44.8±5.7 266.2±17.9 

Control b 81.0±2.5 16.0±1.2 I. 7±0. 7 1.3±0.5 0.3±0.3 24.7±4.8 

7.6 ~mol/L (Q-3-G)+ 100 ~m H202 16.8 ±3.l 21± 4.3 8.7±1.6 20.7±1.4 33.7±2.0 241.5±5.4 

Control 80.0±4.2 14.7±2.7 2.0 ±1.5 3.3±0.8 O.O±O.O 28.7±6.1 

23.3 ~mollL (Q-3-G) + 100 ~m H202 26.7 ± 4.1 24.7± 4.5 8.3±0.5 16.7±1.I 24.5±2.1 189.3±7.7 

Control 89.7±0.9 9.7±0.9 0.3±0.3 O.O±O.O 0.3±0.3 11.7±1.7 

93 ~mol/L (Q-3-G)+ 100 ~m (1202 39.8 ±3.2 12.5±3.7 5.8±1.6 17.5±1.8 24.5± 2.6 1 74.7±1O.4 

Control 87.0±0.6 10.3±0.9 1.3±0.3 1.3±0.3 O.O±O.O 17.0±1.2 

279.4 ~mol/L (Q-3-G)+ 1 00 ~I1lH202 42.8± 3.5 13.7±2.4 7.5±1.5 12.7±1.4 24.3±1.3 164.0±14.1 

Control 89.7±2.0 9.3±\.9 O.O±O.O 1.0±0.6 O.O±O.O 12.3±2.7 

II Values represent duplicates from three experiment (means ± SEM) b Control samples with no H202 (Q-3-G) = Quercetin-3-glucoside 
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TABLE 3.1.11 The effect of Vitamin C treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage of the cells showing different grades of DNA damagea 

Treatment No damage Low damage Medium damage High damage Very High damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 J-lmollL 1-1202 (no vitamin C) 18.7±2.3 19.8±3.5 7.2±1.2 15.0±1.9 39.3±2.6 236.5±6.8 

Control b 94.0±3.0 6.0±3.0 O.O±O.O O.O±O.O O.O±O.O 6.0±3.0 

7.6 J-lmol/L (Vitamin C)+ 100 J-lm 1-1202 19.3±3.9 19.7±3.6 9.2±1.4 19.8±3.3 32.0±4.3 225.5±18.8 

Control 97.5±1.5 2.5±1.5 O.O±O.O O. O:!:O. 0 O.O±O.O 2.5±1.5 

23,3 J-lmollL (Vitamin C) + 100 J-lm 112°2 28.7±4.5 24.5±3.9 5.5±1.I 14.8±1.7 26.5±1.3 I 86.0±5.2 

Control 97.5±1.5 1.5±0.5 0.5±0.5 0.5±0.5 O.O±O.O 4.0±3.0 

93 J-lmollL (Vitamin C) + 100 J-lm H202 29.8±3.7 19.5±3.2 7.2±1.I 15.2±2.6 28.3±2.3 I 92.7±3.4 

Control 94.0±5.0 5.5±5.5 O.O±O.O 0.5±0.5 O.O±O.O 7.0±4.0 

279.4 J-lmol/L (Vitamin C) +100 J-lm1-l202 34.3±3.4 15.3±3.3 7.7±1.4 16.7±2.4 26.0±4.9 184.7±12.1 

Control 92.5±5.5 6.0±4.0 1.0±1.0 0.5±0.5 O.O±O.O 9.5±7.5 

8 Values represent duplicates from three experiment (means ± SEM). b Control samples with no H202 
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TABLE 3.1.1 The effect of Rutin treatment against oxidative DNA damage in human lymphocytes in the comet assay (SCGE assay) 

Percentage ofthe cells showing different grades of DNA damagea 

Treatment No damage Low damage Medium damage High damage Very lligh damage Total score 
«5%) (5-25%) (25-45%) (45-70%) (>70%) (out of 400) 

100 ~mol/L 1120 2 (no Rutin) 22.2 ±2.2 19'<)± 3.7 9.7±2.1 22.2±3.6 27.0±.4.9 212.8±16.8 

Control b 78.7±2.8 16.7±4.1 2.7±0.9 2.0±1.2 O.O±O.O 2S.0+2.0 

7.6 ~mol/L (Rutin)+ 100 ~m 1-1202 21.3±1.9 16.7± 2.0 1O.2±2.0 26.3±3.1 25.5±3.9 2IS.0±9.7 

Control SI.7±.5.2 13.3±4.5 2.3 ± 1.9 2.3±0.9 0.3±0.3 26.3±7.6 

23.3 ~mol/L (Rutin) + 100 ~m H202 22.7±2.9 IS.7±3.2 11.7±2.0 25.5±2.3 21.5±1.9 205.0±S.2 

Control 89±1.5 9.7±.1.5 1.0±0.0 0.3±0.3 O.O±O.O 12.7±1.9 

93 ~mol/L (Rutin)+ 100 ~m H202 28.8:!: 4.1 22.7±3.S 12.3:!: 2.0 I 7. 7:!:4. 2 IS.5:!: 2.0 173.7±13.S 

Control S5.0± 5.1 11.7± 4.6 2.7±I.S 0.7±0.3 O.O±O.O 19.0±6.0 

279.4 J.lmollL (Rutin)+ I 00 ~mH202 33.2:!: 4.5 17.3:!:2.3 9.2±2.4 19.7:!:3.S 20.7:!:7.3 177.3:!: 18.5 

Control 84.3±6.7 7.3±4.S 6.7±2.4 I.O±O.O 0.7±0.7 26.3±9.1 

8 Values represent duplicates from three experiment (means ± SEM). b Control samples with no H202 
---
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Table 3.2. Comparison of the antioxidant effect of the flavonoids and vitamin C at the concentration of279 ~mol/L. Results are 
expressed as a percentage of the total DNA damage score obtained in the absence of the antioxidant (mean ± SEM, n = 12 for 
kaempferol, n = 6 for the other agents). Inter-agent comparisons were peformed by Tukey and Dunnett's tests as described in the text 
(*p<O.05, **p<O.Ol, ***p<O.OOl) 

Percentage of maximal DNA damage Significantly more protective than: 

Luteolin (L) 9±2% K* Q *** A*** Q3g*** VitC*** R*** , r, , , , 

Myricetin (M) IO±3% K* Q *** A*** Q3g*** VitC*** R*** , r, , , , 

Quercetin (Q) 22±3% A*** Q3g*** VitC*** R*** , , , 

Kaempferol (K) 32±3% A** Q3g** VitC*** R*** , , , 

Quercitrin (Qr) 45±9% VitC***, R*** 

Apigenin (A) 59±2% R* 

Quercetin-3-glucoside (Q3g) 62±5% 

Vitamin C (VitC) 78±5% 

Rutin(R) 83±9% 
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Tables 3.3 The rankings of antioxidant activity of flavonoids tested in the present study and some vitamins in order of decreasing potency using different methods 

Ranking of antioxidant activity in order of decreasing potency 

Quercetin, myricetin, rutin, trolox, vitamin C, kaempferol, a-tocopherol, 13-carotene, apigenin 

Myricetin, quercetin 

Quercetin, luteolin, quercitrin 

Quercetin, myricetin, kaempferol, apigenin 

Quercetin, myricetin, rutin, quercitrin 

Myricetin, quercetin, rutin, quercitrin 

Myricetin, quercetin, rhamnetin, apigenin, kaempferol 

luteolin, quercetin, kaempferol, apigenin 

luteolin, kaempferol, rutin, quercetin, myricetin 

Kaempferol, luteolin = rutin, quercetin 

Quercetin, kaempferol, rutin 

luteolin, apigenin 

Myricetin, a-tocopherol, 13-carotene 

Quercetin, a-tocopherol 

Myricetin, quercetin, quercitrin, rutin 

Methods 

lipoprotein oxidation model 

antioxidant against peroxide (induction period of lard at 60° C) 

stability of lard at 100°C 

lipid peroxidation in red blood cells membrane 

xanthine-xantine oxidase system 

superoxide generation by Fenton methosulphate model 

hydroxyl radical scavenging activity 

nonenzymic lipid peroxidation in rat liver 

Fenton reagent assay (Fe2+1H20 2) 

antioxidation of linoleic acid inhibition 

free radical scavenging mechanism in meat 

CCL. induced microsomal lipid peroxidation 

inhibition of strand breaks in plasmid by singlet molecular oxygen 

inhibition of human low-density lipoprotein model 

lipid peroxidation in com oil 

Quercetin, luteolin, rutin lipid peroxidation in lard 

Quercetin, rutin autooxidation of rat cerebral membranes assay 

Quercetin, luteolin, myricetin, kaempferol, quercitrin, quercetin-3-glucoside, apigenin, rutin, vitamin C (ED50 in the comet assay on human lymphocytes DNA) 

References 

(Vinson J et ai, 1995) 

(Mehta B et ai, 1958) 

(Hudson B et ai, 1983) 

(Chen Z et ai, 1996) 

(Robak J et ai, 1988a) 

(Robak J et ai, 1988a) 

(Husain Set ai, 1987) 

(Galvez J et ai, 1995) 

(Shimoi K et ai, 1994) 

(Tore I J et ai, 1986) 

(Shahidi F et ai, 1992) 

(Cholbi M et ai, 1991) 

(Davasagayam T et ai, 1995) 

(Frankel E et aI, 1993) 

(Pratt 0 et ai, 1990) 

(Pratt 0 et ai, 1990) 

(Saija A et ai, 1995) 

(Noroozi M et ai, 1998a) 

137 



-(l) .... 
o 
u 
If) 

(l) 

.~ 
ro 
~ -(l) 
Ol ro 
E 
ro 
"0 

<! 
Z o 
(l) 
> ; 
ro 
"0 ·x 
o 

1.0 

0.5 

0.0 

• 
I • 
~ 
I • • • I 

1.0 1.5 2.0 

log concentration of kaempferol (umoIlL) 

I 

2.5 

p<O.OOOI 

r=0.74 

A 
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in the comet assay. There are statistically significant dose response ralationships with 

significant (p< 0.0001), (vitamin C,p=0.04) protection effects for each coumpound. 
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vitamin C 233 mmollL I ' 
i 
I 

I ' 
I 

I I 
I 

rutin' 
~--------------------~----~----~ 

43 mmollL 

apigenin 1.5 mmol/L 

quercetin-3-glucoside 984 umol/L 

quercitrin 288 umol/L 

kaempferol 104 umol/L 

myricetin 64 umol/L 

luteolin 51 umol/L 

quercetin 47 umol/L 

10 100 1000 10000 100000 1000000 

ED 50 (50% dose inhibition of oxidation DNA damage) 
L 

FI GURE 3.2. Comparison of the total antioxidant activities of fiavonoids on human 

lymphocytes in the comet assay assessed by estimated dose which would result in 50% 

reduction in oxidative DNA damage from unopposed H20! (100~oIJL). 
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FIGURE 3.3. Antioxidant activities offlavonoids (quercetin) and L-ascorbic acid (vitamin C) 

each 23!JlD.ollL on human lymphocytes in the comet assay. Values represent means (±SEM) 

from 500 cells pretreated with each substance. Quercetin was significantly more protective than 

vitamin C against oxygen radical-generated oxidative DNA damage (Quercetin:p< 0.0001), 

(Vitamin C: p=O.03).The effect of quercetin and vitamin C were additive when both were at the 

same concentration. 
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CHAPTER 4: Total antioxidant activity of vitamin C 

and flavonoids 

(paper submitted to American Journal of Clinical Nutrition, co-authors H 

Miller, N Sattar, MEJ Lean) 

Abstract 

To compare the antioxidant activities of some common flavonoids with vitamin 

C and to evaluate the effect of in vitro addition of flavonoids on the total 

antitxidant activity of human plasma. The total antioxidant activities of 17 free 

and conjugated flavonoids and related polyphenolic compounds at the 

concentrations of 1 mmolll were tested in vitro and compared with vitamin C at 

the same concentrations. The total antioxidant activity of human plasma was 

measured before and after adding rutin, quercetin and 100 JlmoVI kaempferol in 

concentration 10-100 JlmoVl. 

All flavonoids tested except naringin had more antioxidant activity than vitamin 

C (p<0.05). Quercetin and rutin produced dose-related increases in antioxidant 

capacity of human plasma. The addition of 50 Jlmol/l quercetin and 100 IlmoVI 

quercetin, rutin and kaempferol significantly increased the total antioxidant 

capacity of human plasma (p<0.001). There was strong positive correlation 

between the number of hydroxyl group offlavonoids and the antioxidant activity 

(p<0.001, r = 0.85). The flavonoid aglycones were ~or.e potent in their anti-free 
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radical action than their corresponding glycosides (p<O.05). This evidence 

indicates a potent antioxidant action of dietary flavonoids, of potential 

importance in protection against cardiovascular disease and cancer. 

4.1 Introduction 

The aim of this study was to determine the antioxidant capacities of various 

dietary flavonoids compared to vitamin C, and their antioxidant potential in 

human plasma. Antioxidant rich nutrients provide part of the defence 

mechanism in conjunction with endogenous antioxidants such as uric acid. The 

importance of dietary antioxidants in the maintenance of health and protection 

from disease is becoming increasingly well recognised (Miller et al 1995). 

Vitamin C (ascorbic acid), a-tocopherol, and ~-carotene are well established 

antioxidants (Serafini et al1996) whose importance may have been distorted 

since they are relatively easily and widely measured, but occur in foods which 

also contain other less familiar antioxidant compounds. Flavonoids are being 

added to the list of potentially significant diet-derived antioxidants. 

Table 4.1 shows a range of some antioxidants in the body, and table 3.3 shows 

the rankings of antioxidant potency, using a range 0 i-methods and including the 

present thesis. For the present study we have employed the in vitro Trolox 

equivalent antioxidant capacity (TEAC) assay to rank the potency of vitamin C 
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and 17 flavonoids and polyphenols chosen either because they are common in 

foods or to provide a range of structures. Also we adapted the standard technique 

to examine the influence of flavonoids on the antioxidant capacity of human 

plasma. 

Material and Method 

Study design and methods are explained in detail in Chapter 2, part 2.4 

Statistical methods 

Explained in Chapter 2, part 2.8.2 

4.2 Results 

4.2.1 Total antioxidant activities of vitamin C and flavonoids 

Solutions of 17 flavonoids, polyphenoles and vitamin C were tested in the TEAC 

assay. The solvents used were ethanol except hesperidine, for which pyridine 

was used. Absolute ethanol had negligible antioxidant activity (0.07 mmolll) or 

no antioxidant activity in previous study (Miller et aI1993). Pure pyridine 

solution used had TEAC 0.94 mmolli. This value was subtracted from the 

results of hesperidin in solution, since the concentration of pure pyridine 

remained relatively unaltered, when hespiridin was added . 

.. 
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The results of the TEAC assay showed all flavonoids and vitamin C have 

antioxidant activity. Because of the high potency of many of the compounds 

total exceeding that of Trolox several-fold, the standard TEAC sample 

concentration of 1 mmolll was reduced to 300 ~mol/l. Flavonoids at 1 mmolll 

had antioxidant activities between range of 0.83 - 6.49 mmol/l Trolox 

equivalents. In order to relate the results of the present study to TEAC data in 

the literature (Table 4.2, Figure 4.3, Figure 4.3). All flavonoids and 

polyphenols (except naringin) have greater antioxidant potency than vitamin C 

on a molar basis (p<0.05) (Table 4.3). A summary ofliterature reports of 

relative antioxidant activities offlavonoids is given in Table 3.3. 

4.2.2 The effect of chemical structure of flavonoids on antioxidant activity 

The characteristics of flavonoids tested in present study ranged from 

epigallocatechin gallate (EGCG) with 8 hydroxyl groups to chrysin with 2 

hydroxyl groups. Distribution of the number of hydroxyl groups were: 

epigallocatechin gallate (8-0H); epicatechin gallate (ECG) (7-0H); myricetin (6-

OH); quercetin and catechin (5-0H); isorehamnitin, quercitrin, quercetin-3-

glucoside (Q-3-g), rutin, luteolin and kaempferol (4-0H); naringenin, apigenin, 

silymarin, (3-0H); naringin, hesperidin and chrysin (2-0H) (Figure 2.4). 

Higher numbers of hydroxyl groups in ring A, B or C offlavonoids and 

polyphenols significantly increased the TEAC (p<0.001, R~ 0.85) (Figure 4.1) 
-.. --

There was a positive relation between the number-of hydroxyl groups of 
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flavonoids and total antioxidant activity of flavonoids. The highest TEAC was 

for epicatechin gallate, with the 7 hydroxyl groups (6.49 mmolll) (Table 4.2) 

and the lowest TEAC was in naringin with 2 hydroxyl groups was (0.83 

mmolll). 

The number and the position of hydroxyl groups in ring A, Band C of 

flavonoids (Figure 2.4) also glycosylation of flavonoids may have an effect on 

antioxidant activity. The relation between chemical structure of flavonoids used 

in present study and TEAC merits consideration. Quercetin and catechin both 

have 5 hydroxyl groups but TEAC of quercetin is signficantly more than 

catechin (4.67 ± 0.45) versus (3.10 ± 0.09), which may be attributable to the 2,3 

double bond and 4-oxo group in C ring of quercetin (Figure 2.4, Table 4.2). 

4.2.3. Influence of glycosylation on antioxidant activity 

Glycosylation of quercetin (at 3-hydroxyl group in the C ring) to form rutin (3-

rutinoside), quercitrin (3-L-rhamnoside) and quercetin-3-glucoside decreases the 

antioxidant activity of these substances. Similarly methylation at 3-hydroxyl 

groups of ring C in isorhamnetin reduces the antioxidant activity. 

Total antioxidant activity of quercetin (4.67 ± 0.45) is significantly greater than 

rutin (3.18 ± 0.12), quercitrin (3.35 ± 0.02) and quercetin-3-glucoside (3.65 ± 

0.12) as glycosylated form of quercetin (Table 4.2, Figure 2.4). Glycosylation 

of naringenin to form naringen (7 -rhamnoglucoside) gave a ?O% reduction in 

antioxidant activity (2.53 ± 0.09) versus (0.83 ± 0.00) (p<0.05). The result of 
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our previous study indicated that the aglycones quercetin, luteolin, myricetin and 

keampferol have a more protection against oxygen radical on human 

lymphocytes than glycosylate flavonoids (Noroozi et a11997 & 1998a). This is 

in agreement with the results of several other studies using a wide range of 

methods for assessing antioxidant capacity (Table 3.3). 

4.2.4 Total antioxidant capacity of flavonoids added to fresh human 

plasma 

To test the effect of adding flavonoids to fresh human plasma we chose quercetin 

(an aglycone) and quercetin-3-rutinoside (rutin, a conjugated quercetin) and 

kaempferol (aglycone). Total antioxidant capacity of fresh heparinised plasma 

in this study was 1.394 ± 0.043, (n = 10). 

Significant increases were measured when 50 or 100 IlmoVI quercetin and 100 

IlmoVi rutin and kaempferol were added to the plasma. Linear correlation 

suggested a dose-related effect from 10 to 100 IlmoVI for quercetin (R2 = 

98.9%, p<O.OOl) and for rutin (R2=95.3%, p=0.004) (Table 4.4). 

4.3 Discussion 

In our previous study quercetin was the most protective flavonoid against 

oxygen-radical generated DNA damage to human lymphocytes in the comet 
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assay (Noroozi et al1997 and 1998a). The present study using TEAC extends 

our understanding of these compounds, which are more potent antioxidants than 

vitamin C or vitamin E (Trolox). Our work (Comet assay) showed quercetin and 

myricetin, with hydroxyl groups at the positions 3', 4' containing the unsaturated 

2, 3-double bond in the C ring, were the strong antioxidants (Figure 2.4, 

Table 3.3). This agrees with the work of other researchers, (Chen et al 1996; 

Shahidi et al1992) which relates the position and number of hydroxyl groups to 

antioxidant capacity. The total number of hydroxyl groups is considered a crude 

indicator of antioxidant capacity. For maximal radical scavenging, it appears 

that the 3-0H should be associated with a group 2, 3-double bond and 4-

carbonyl in the C ring. The availability of phenolic hydrogens as hydrogen 

donating radical scavengers is believed to explain their antioxidant activity 

(Rice-Evans et al 1996). Polyphenols and flavonoids with a 3', 4' dihydroxy 

configuration such as quercetin are believed to possess particularly strong 

antioxidant activity (Shahidi et al 1992) (Figure 2.4). 

The present study provides a ranking of antioxidant activities similar to previous 

studies and supporting the view that the number of hydroxyl groups and the 

conjugation status are both important in determining antioxidant activity. 

Glycosylation offlavonoids consistently reduced the TEAC compared with 

aglycone flavonoids. These results are supported by other rankings of 

antioxidant activity using different methodologies. Both rutin and quercitrin 

(glycated compounds) show lower antioxidant activity than aglycone quercetin 
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(Robak et a11988a; Ratty et a11988; Pratt et al1990). These findings are of 

pratical relevance since most flavonoids in foods occur as conjugates, not as 

aglycones (Crozier et al 1997a). 

The adaptation of the TEAC assay to test the putative antioxidants in fresh 

human plasma in supra-physiological concentrations (10, 20,50, 100 Jlmolll), 

produced results which could support a physiological role for flavonoids in the 

body's antioxidant defence system (Table 4.4). As before, quercetin proved the 

most potent, above kaempferol and rutin at 100 Jlmolli. Increasing 

concentrations of both quercetin and rutin from 10 to 100 Jlm resulted in dose-

related responses with R2 > 90% from linear regression. 

Paganga et al (1997) showed the concentrations of polyp he no Is in plasma is 0.5 -

1.6 Jlmol/l and this level may have important effects on antioxidant capacity of 

plasma. The TEAC assay results were suggestive of a detectable effect of 

quercetin at 1 ° Jlmolll in plasma, although in this study the effect was not clearly 

statistically significant until 50 Ilmolll. 

The physiological importance of flavonoids depends on their antioxidant 

activities but also on their availability from the diet and the extent to which they 

may be dehydrosylated. The analysis of flavonoids in human diet, plasma and 

urine is now possible (Crozier et a11997a; Paganga et al1997;Gross et al1996; 
, ," 

Ameer et al 1996; Hollman et a11995) and the factors which influence 
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absorption of free and conjugate form of flavonoids by human gut are becoming 

better understood. The absorption rate for quercetin aglycone was found to be 

very variable with mean of24% but the absorption from onions was 52%, which 

suggests that quercetin glucosides of onions are better absorbed than the 

aglycone (Hollman et a11995). 

The mechanisms and the sites of absorption of flavonoids in humans and their 

bioavailability in general have not yet been elucidated. Rutin and quercetin, 

glycosides are absorbed by human gut (Paganga et al 1997) and the time course 

for absorption of quercetin from onions corresponds with our own unpublished 

findings. 

The results of Knekt et a1 (1996) and Hertog et al (1993a) suggest that people 

with very low intakes of flavonoids have higher risks of coronary heart disease. 

The habitual intake offlavonoids (flavonol) and of their major food source, tea, 

may also protect against stroke (Keli et al 1996). Drinking of tea increases the 

antioxidant capacity of plasma (Serafini et al 1996). Hertog et a1 (1997) 

considered tea to be the most important source of dietary flavonol for people 

who do not drink red wine. Tea is a major source of dietary polyphenols and 

rich source of flavonols, catechins and catechin esters (Shahidi et al 1992; Rice

Evans et al 1995). Our results on the TEAC of catechin, catechin esters (ECG 

and EGCG) and rutin indicate the antioxidant properties of these compounds 

which are found in teas. ECG had the greatest antioxidant activity of the 17 

154 



flavonoids and polyphenols tested, seven fold greater than vitamin C. In the 

TEAC assay all these flavonols were antioxidants (Table 4.2) and in decreasing 

order of potency are: ECG:: EGCG > rutin> catechin. The antioxidant activity 

of catechin esters (gallic acid linked to catechin) was also supported by Guo et 

al (1996) and Salah et al (1995). 

As well as tea and many fruits and vegetables contain flavonols and flavone 

glycosides in high concentrations (Herrman et al 1988, Crozier et al 1997a). 

Estimating the overall impact of dietary flavonoids on health will depend on 

understanding the antioxidant activity of the specific compounds and their 

conjugates - demonstrated in the present study. We also need to know that foods 

with absorbable flavonoids are being consumed, and how the food is prepared 

since storage and cooking may effect composition (Crozier et al 1997a). When 

this detailed information is available, a better indication of the health impact of 

flavonoids will be possible than can be derived from simplistic application of 

"food tables" of the total aglycone flavonoid contents. 

From the results of the present study, the flavonoids most likely to be of 

relevance to human diets and health are quercetin-3-glucoside, quercitrin and 

rutin, as the most potent flavonoid conjugates, which are likely to be absorbed. 

The concentrations offlavonoids detected in human plasma (Table 4.1) might be 

too low to have a major impact on the antioxidant capacity of plasma, but it is 

possible that these compounds may concentrate in tissues. 

155 



Table 4.1 - Antioxidant defences in human plasma and some polyphenolic and flavonoid antioxidants detected in human plasma and urine 

Antioxidant proteins 

Enzyme': 

Catalase 

Cu, Zn superoxide dismatase (Mitocondria) 

(5-20 units/ml) 

Glutation peroxidase (GSH)(O.4 units /ml) 

Ceruloplasmin (ferroxidase activity) 

(O.IS - 0.40 gil) 

Non Enzyme:' 

Albumin (3S-52 gil) 

Lactoferrin (0.03-0.2S mgll) 

(Ferritin) (0.2-0.44 mg/l) 

Protein thiols (350-500 /lM) 

Transferrin (1.5-3.4 gil) 

Ceruloplasmin (0. I S-OAO gil) 

Haptoglobin (0.5-3.6 gil) 

Hemopexin (0.5-1.2 gil) 

N-acetyl cysteine ferritin (0.02-0.44 mgll) 

1 Frei Bet al (1992) 
2 Noroozi Met al (present study) 
3 Hollman PCH et al (1995) 

SmaJlmoleeule antioxidants 

Lipid-soluble (Iipoprotein

associa ted) t: 

a-tocopherol (15-40 /lM) 

Ubiquinol-IO (0.4-1.0 /lM) 

Lycopene (0.5 - 1.0 /lM) 

J3-carotene (OJ - 0.6 11M) 

Lutein (0.1 - OJ 11M) 

Water Soluble:' 

Ascorbic acid (30-150 /lM) 

Glutathione «211M) 

Uric acid (160-450 /lM) 

Bilirubin (5-20 /lM) 

D-mannitol~ 

4 Jeng J et al (1994) 
5 Gross Met al (1996) 
6 Paganga G et al (1997) 

Flavonoid and Antioxidant lIavonoids detected in human plasma and urine 
polyphenolie antioxidants! 

EI)CO+ 

EPGCGH 

Quercetin 

Myricetin 

Isorhamnetin 

Quercetin-3-glucoside 

Chrysin 

Quercitrin 

Rutin 

Luteolin 

Kaempferol 

Silymarin 

Catechin 

Naringenin 

Hesperidin 

Naringin 

Apigenin 

7 Gugler(1975) 
S Booth AN et al (I95Sa,b) 
9 Ameer Bet al (1996) 

I'lasma 

quercetin (24% absorption of orally administration) 1 

quercetin glucoside3 

diosmin (50-400 ng/mlt 

quercetin (196 ng/ml)6 

3-o-methyl-catechin (II-IS /lglml)6 

rutin (0.76-0.72 /lMt 

quercetin rutinoside3 

quercetin glycoside (0.60-1.34 IlMt 

phloridzin (dihydrochalcone) (0.60-1.64 IlM)6 

Quercetin «1%)7 

Naringin and hesperidin9.8 

Urine 

quercetin metabolite: 

(homoprotocatechuic acid) (0.7 Ilg/ml)~ 

(homovanillic acid) (2.S /lg/ml)s 

(metahydroxy phenylacetic acid) (4.S Ilg/ml)s 

Naringin and hesperidin «25%)9.8 

+ epicatechin gallate 
++ epigallocatechin gallate 
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Table 4.2 Characteristics offlavonoids, polyphenols and Vitamin C with antioxidant capacity (I mmollL Trolox equivalent) 

Compound Family Free hydroxyl Conjugation TEAC (mmoIlL) Major food and plant source 
positions (mean + SD) 

Epicatechin gallate 4 5,7,3',4' ,3 ",4" ,5" Aglycone 6.49 ± 0.000 green and black tea 

Epigallocatechin gallate 4 5,7,3',4',5',3 ",4",5" Aglycone 5.99 ± 0.094 green and black tea 

Quercetin 3,5,7,3',4' Aglycone 4.67 ± 0.0454 Onions, lettuce, apple skin, berries brocolli 

Myricetin 3,5,7,3',4',5' Aglycone 4.53 ± 0.134 grapes, cranberry 

Isorhamnetin 1 3,5,7,4' 3'-OCH3 4.43 ± 0.52 onions, plant foods 

Quercetin-3-glucoside 1 5,7,3',4' 3-glucoside 3.65 ± 0.12 onions, plant foods 
Chrysin 2 5,7 Aglycone 3.45 ± 0.07 fruit skins** 

Quercitrin 5,7,3',4' 3-L-rhamnoside 3.35 ± 0.02 plant foods*** 

Rutin 5,7,3',4' 3-rutinoside 3.18±0.12 Tea 

Luteolin 2 5,7,3',4' Aglycone 3.16 ± 0.09 Celery 

Silymarin 5,7,4' * 3' -OMe 3.15 ± 0.02 Fruit of silybum marianum 
(milk thistle used in folk medicine) 

Catechin 4 3,5,7,3',4' Aglycone 3.10 ± 0.09 Tea 

Apigenin 2 5,7,4' Aglycone 2.96 ± 0.095 celery, parsley 

Naringenin 3 5,7,4' Aglycone 2.53 ± 0.09 Citrus fruits (orange, lemon, grapefruit) 

Kaempferol 3,5,7,4' Aglycone 2.49 ± 0.134 Leek, radish, endive, brocolli, tea, grapefruit 

Hesperidin 3 5,3' 7-rhamnoglucoside 2.40 ± 0.14 ++ citrus fruits (grapefruit, sour orange juice) 

Naringin 3 4',5 7 -rhamnogl ucoside 0.83 ± 0.00 Grapefruit, orange 

Vitamin C 0.91 ± 0.226 fruits and vegetables 

Family: (l = Flavonol) (2 = Flavone) (3 = Flavanone) (4 = Flavanol) 
* 5,7,4' - Trihydroxy-3' -methoxydihydro flavonol (Harborne et al 1975) and flavolignan (Vinson et al 1995) ++(Mouly et al 1993) 
** Sedative folk medicine and plants e.g. Chrysanthemum morifolium (Hu et a11994) 
All experiments were conducted in duplicate except 4(n=6), 5(n=3) and 6(n=lO) 

*** e.g. hypericum brasiliense (Rocha et al 1995) 
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Table 4.3 Comparison of the antioxidant effect of the flavonoids. polyphcnol and vitamin C. The flavonoids are listed in decreasing order of potency. 

[Pce' [PCCCz Quercet l\hri !sur Q_3_C1 (:hn Quercit Rutin Lute Sit\" Cate Api Nllr Kae lies Vit. C 

EPGCG NS 

Quercetin * * 

Myricetin * * NS 

Isorhamnetin * * NS NS 

Quercctin-3-G * * * * NS 

Chrysin * * * * * NS 

Qucrcitrin * * * * * NS NS 

Rutin * * * * * NS NS NS 

Luteolin * * * * * NS NS NS NS 

Silymarin * * * * * NS NS NS NS NS 

Catcchin * * * * . * NS NS NS NS NS NS' 

Apigenin * * * * * NS NS NS NS NS NS NS 

Naringcnin * * * * * * * NS NS NS NS NS NS 

Kaempfcrol * * * * * * * * * NS NS NS NS NS 

Hesperidin * * * * * * * * NS NS NS NS NS NS NS 

Vitamin C * * * * * * * * * * * * * * * * 

Naringin * * * * * * * * * * * * * * * * NS 

NS = p>O.05; * = p<O.05 (I) EPCG = Epicatechin gallate (2) EPGCG = Epigallocatechin gallate Q-3-G = Quercetin-3-Glucoside 
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Table 4.4 Total antioxidant capacities offlavonoids added to human plasma'. 

TEAC (mmoI/L) 
n (mean) 

Human plasma (control) 10 1.394 

Plasma + 10 JlmollL Rutin
l 3 1.397 

Plasma + 20 Jlmol/L Rutin 3 1.400 

Plasma + 50 JlmollL Rutin 3 1.443 

Plasma + 100 Jlmol/L Rutin 3 1.560 

Plasma + 10 Jlmol/L Quercetin
2 3 1.423 

Plasma + 20 JlmollL Quercetin 3 1.427 

Plasma + 50 JlmollL Quercetin 8 1.498 

Plasma + 100 JlmollL Quercetin 10 1.637 

Plasma + 100 Jlmol/L Kaempferol 3 1.597 

i TEAC = 1.39 + 0.00241 x (quercetin concentration), R2 = 98.9% ,p<O.OOI. 

2TEAC = 1.38 + 0.00171 x (rutin concentration), R2 = 95.3% ,p= 0.004. 

SD 

0.043 

0.032 

0.000 

0.041 

0.026 

0.015 

0.020 

0.031 

0.041 

0.020 

Difference from 
human plasma 
P(ANOVA) 

NS 

NS 

NS 

p<O.OOI 

NS 

NS 

p<O.OOI 

p<O.OOI 

p~O.OOI 
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Figure 4.2 Comparison between the total antioxidant activities of vitamin C, 
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CHAPTER 5: Absorption of pure quercetin aglycone in humans 

5.1 Introduction 

The present study was designed to determine absorption of quercetin aglycone 

by human gut, with a view to undertaking a quercetin supplementation study. 

Quercetin (3,5,7,3' ,4'pentahydroxyflavon) is one of the strongest antioxidant 

flavonoids, with a carbonyl group in C ring in position 3, two hydroxy groups in 

ring A and two hydroxyl group (3' ,4') in ring B (Figure 2.4 and 3.2). 

Quercetin was selected for this study because it is one of the most widespread 

flavonoids in fruit and vegetables, and its consumption is also inversely 

associated with coronary heart disease mortality (Hollman et al 1995). However, 

the absorption of quercetin in humans is unclear. 

5.2 Experimental design 

Three single pilot experiments were designed and two volunteers (male) 

participated after giving informed consent. Subject A was 27 years, 80.2 kgs in 

weight, and subject B was 28 years, 64 kgs in weight. They were both 

considered healthy, non smokers, taking no medication or special 
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supplementation. They were both gastroenterologists in the Royal Infirmary, 

Glasgow. 

5.2.1 Oral administration 

Subject A: The experiment was repeated twice under same conditions and called 

AlandA2. 

Al - After fasting overnight 500 mg quercetin dihydrate (aglycone) powder 

obtained (6.2 mg/kg body weight) from Gee Lawson Nutritional, London, UK, 

#3836, was mixed in 200 mls drinking water and swallowed within 20 seconds. 

A2 - For the second experiment on subject A, 483 mg (6.0 mg/kg) of quercetin 

aglycone was used (Gee Lawson Nutritional, London, UK, #3836). The 

protocol was otherwise the same as for experiment AI. 

Heparinised venous blood was taken at baseline and 0.5, 1,1.5,2,3,5,6.5 hours 

after administration. Plasma was separated immediately after the blood was 

taken and stored at -70°C until measurement. Duplicate samples were prepared 

for measurement of total antioxidant capacity by TEAC asay and HPLC analysis 

of quercetin. Urine was collected at baseline and 1,2,3,5,6.5 hours after 

administration of quercetin powder. Thimerosal (0.1 g) (Sigma Chemicals Co 

Ltd, Irvine, Scotland, #T -5125) was added in urine bottle before freezing at -
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70°C as an antibacterial to prevent bacterial degradation of quercetin before 

measurement. The quercetin aglycone powder was analysed for purity. 

Subject B: Quercetin dihydrate aglycone (112 mgs) (1.8 mg/kg body weight) 

from Gee Lawson Nutritional, London, UK, #3836, was dissolved with 10 ml 

vodka (Smirnoff, 50% ethanol, produced from grain) by heating for 15 seconds 

in a microwave and swallowed within 20 seconds. Heparinised blood was 

collected in baseline and 0.5, 1, 1.5,2,3,4.15 ,6.25 hours after administration. 

Urine was collected at baseline, and between baseline and 6.25 hours. The 

protocol was the same as for subject A. 

5.2.2 Materials and methods 

Explained in detail in Chapter 2, part 2.4 (total antioxidant activity of plasma) 

and part 2.5 (measurement offlavonoids in plasma and urine) of the thesis. 

5.3 Results 

Administration of pure quercetin aglycone in this study was well tolerated by 

both subjects. No effects were detected by the subjects. Total antioxidant 

capacity of plasma increased in one experiment (A2) from 0 (baseline) to 120 

minutes after administration of quercetin aglycone (Table 5.1, Figure 5.1) 

. but fell in two (AI, B), and there was no evident linear relation with time 0 

(baseline) to 240 minutes. 
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After oral administration of 500 mg, 483 mg and 112 mg of pure querecetin in 

the three experiments no measurable plasma concentrations could be detected at 

any time point (limit of detection < 3 ng/ml), nor was any quercetin found in 

urine at any time (figure 5~). 

5.4 Discussion 

This study was designed to establish the absorption of pure quercetin in humans 

but no detectable quercetin was found in urine and plasma in the first three 

experiments. This study was therefore abandoned. 

Two previous published reports have used urine measurements to detect 

quercetin absorption. After oral administration of 4 g pure quercetin or 100 mg 

single intravenous quercetin (60 mg/kg body weight), Gugler and Co-workers 

(1975) found no measurable quercetin in plasma or urine. Their method of 

analysis in urine was not sensitive enough, (>200 J.lg/24 h urine sample). 

Hollman et al (1995) estimated 24% absorption of orally administrated quercetin 

aglycone (1.4 mg/kg body weight) while 52% for quercetin glucoside from 

onion (two fold more than aglycone). This assay was much more sensitive (5 

ng/g urine). In the present study we used a highly sensitive flurometric HPLC 

analysis « 3 ng/ml plasma, or urine) and still none could be detected. 
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One possible limiting factor for finding quercetin in human plasma is the 

conjugation form of quercetin. Kuhnau (1976) considered that aglycones are 

able to pass the gut wall, and that flavonoids present in foods cannot be absorbed 

from the small intestine because they are bound to sugars as glycosides. This 

view is clearly incorrect. Our results, and those of Nieder (1991); Hollman 

(1995); Aziz et al (1998) and McAnlis et al (1998) have all shown good 

absorption of quercetin glycoside from food sources (onions). 

The measurements of TEAC in the present study cannot be considered 

statistically robust, but could suggest a rise in antioxidant capacity up to 120 

minutes (Figure 5.1), which would coincide with peak quercetin absorption 

from food sources (McAnlis et al 1998). These results seem unlikely to be 

attributable to a rise in plasma quercetin of less than 1 ng/ml. It remains possible 

that the plasma quercetin results were artificially reduced, e.g. by deterioration of 

samples, although no obvious reason can be offered. The plasma quercetin 

measurements were made 8 weeks after the experiment but this should be within 

the safe period for storage at -70°C, which has been established from work in Dr 

Crozier's laboratory (Crozier et aI1997a). It would be reasonable to undertake 

more detailed evaluation of the absorption of pure quercetin and its effect on 

antioxidant capacity. Because of lack of absorption of quercetin aglycone, it was 

decided to proceed to a diet study, based on onions and tea as rich sources of 

absorbable quercetin. 
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Table 5.1 Total antioxidant capacity of human plasma after administration of pure 
quercetin aglycone . 

Supplement (quercetin aglycone) 
(mglkg body weight) 

Baseline 

30 (min)* 

60 (min) 

90 (min) 

120 (min) 

180 (min) 

240 (min) 

TEAC (mmolfl) 

Subject Al * Subject A2** Subject B*** 

(6.2) (6.0) (1.8) 

1.63 1.52 1.53 

1.53 1.56 

1.53 1.55 1.55 

1.59 1.56 1.56 

1.59 1.67 1.55 

1.57 1.53 

1.55 

* Administered 500 mg oral pure quercetin aglycone dissolved in 200 ml water 

** Administered 483 mg oral pure quercetin aglycone dissolved in 200 ml water 

*** Administrated 112 mg oral pure quercetin aglycone dissolved in 10 ml Smimoff 

50% ethanol vodka 
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Chapter 6: Dietary flavonols protect diabetic human 

lymphocytes against oxidative damage to DNA 

(paper submitted to Diabetes, co-authors MEJ Lean, J Bums, D Talwar, 

N Sattar, A Crozier) 

Abstract 

Diabetic patients have reduced antioxidant defences and suffer from an increased 

risk of free-radical mediated diseases such as coronary heart disease. 

Epidemiological evidence has suggested that dietary flavonoids may protect 

against heart disease but a biological effect has yet to be demonstrated directly in 

humans. Ten stable NIDDM patients were treated for 2 weeks on a low flavonol 

diet and for 2 weeks on the same diet supplemented with 76-110 mg offlavonols 

(mostly quercetin) provided by 400 g onions (and tomato sauce) and 6 cups of tea 

daily. Freshly collected lymphocytes were subjected to standard oxidative 

challenge with hydrogen peroxide, and DNA damage was measured by single cell 

gel electrophoresis. Fasting plasma flavonol concentrations (measured by HPLC) 

were 5.6 ± 2.9 ng/ml on the low flavonol diet which increased twelve-fold to 72.1 

± 15.8 ng/ml on the the high flavonol diet (p<0.001). Oxidative damage to 

lymphocyte DNA was 220 ± 12 on an arbitrary scale 0 to 400 units on the low 

flavonol diet and 192 ± 14 on the high flavonol diet (p=0.037). This decrease was 

not accounted for by any change in the measurements of diabetic control (fasting 

plasma glucose or fructosamine), nor by any change in the plasma levels of known 

antioxidants including vitamin C, carotenoids, tocopherols, urate, albumin and 
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bilirubin. In conclusion we have shown, a biological effect of potential medical 

importance which appears to be associated with the absorption of dietary 

flavonols. 

6.1 Introduction and Background 

Diabetic patients, both IDDM and NIDDM, exhibit abnormal antioxidant status, 

auto-oxidation of glucose and excess glycosylated proteins (Young et al 1992; 

Davie et a11992; Ceriello et a11991; Jones et a11985; Asayama et al1993). 

Oxidative stress leads to tissue damage, increased reactive oxygen species, 

inactivation of proteins, fragmentation of DNA and tissue degeneration in diabetes 

mellitus (Wolffe et a11991; MacRury et al1993; Sinclair et a11991; Dandona et 

al 1996). These factors are proposed to be important contributors to the 

development of the micro- and macro-vascular complications associated with 

diabetes. These complications include retinopathy, nephropathy and an increased 

risk of developing coronary heart disease (Sinclair et al 1991; Lyons et a11991; 

Oberley et a11988; Jennings et a11991; Valezquez et aI1991). Dietary 

antioxidant compounds, including ascorbic acid and tocopherol, offer some 

protection against these complications through their roles as inhibitors of glycation 

and as free radical scavengers. In particular one study has reported that the 

flavonoid diosmin has the capacity to inhibit non-enzymatic protein glycation. 
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Flavonoids are a family of antioxidant polyphenolic compounds ubiquitously 

found in plants, typically as sugar conjugates. The family comprises of six sub

groups; flavonols, flavones, flavanones, isoflavones, anthocyanins and catechins 

(Figure 1.1). They are present in significant amounts in commonly consumed 

fruits and vegetables, particularly onions, apples and tomatoes, and beverages such 

as red wine and tea. Consumption of flavonoids, particularly the flavonol 

quercetin (3,5,7,3',4'-pentahydroxy-flavone) has been associated with a reduced 

incidence of heart disease and cancer (Hertog et a11992; Hollman et al 1995; 

Knekt et al1996). This protection is hypothesised to be due to the antioxidant 

properties offlavonoids. We have recently shown that flavonoids have very high 

antioxidant activities when compared to vitamin C, with quercetin and its 

conjugates consistently amongst the most potent (Noroozi et al 1998a). Although 

in vitro and epidemiological evidence indicate an important dietary role for 

flavonoids (Knekt et al 1996; Hertog et al 1993a; Keli et al 1996) debate has 

surrounded the issue of flavonol absorption. Current evidence suggests that while 

quercetin is poorly absorbed, its conjugates have been detected in significant 

quantities in plasma (Hollman et al 1996a & b). 

The present study was designed to establish two factors, firstly whether dietary 

supplements of flavonol rich foods were absorbed consistently, and secondly 

whether they might have a biological effect in the protection against oxidative 

stress in NIDDM patients. The dietary supplement was of onions and tea on a 

setting of a low flavonol diet in a cross-over study. HPLC analysis was used to 
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determine the extent of flavonol absorption and a SCGE assay was used to 

determine the level of antioxidant defences. This was realised by measuring the 

oxidative damage incurred by fresh lymphocytes after both the low flavonol and 

supplemented flavonol diets. Possible confounding effects from other antioxidant 

systems were excluded by the measurement of known antioxidant vitamins, 

tocopherols, carotenoids and other compounds such as urate, albumin etc. 

6.2 Subjects and study design 

Patients with stable NIDDM, but healthy in other respects, were recruited from 

outpatient clinics. The inclusion criteria were NIDDM, no medication change 

during the study period, no vitamin supplements and not pregnant. Details of the 

patients and their pre-study diets (4 day weighed inventory) were analysed using 

COMPEAT (Table 6.1). Of the ten subjects, 4 were treated with diet and oral 

hypoglycaemic agents (2 sulfonylureas, 2 biguanide) and 6 by diet alone. They 

were assigned, in random order, to follow either a high (supplemented) or low 

flavonol diet for 14 day periods in a crossover study. Two high flavonol diets 

were used, prepared as a palatable dish to be eaten in three equal portions with 

meals. Five subjects received a simple fried onion supplement (60.2 mg flavonols 

dail) and five subjects the same onion supplement with tomato ketchup and herbs 

(93.7 mg flavonols day-I). Full details of the diet composition are given in 

Chapter 2 (part 2.7). All subjects also received a daily tea supplement containing 
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16.7 mg flavonols. Total flavonol supplements were thus 76.3 and 110.4 mg daily 

(Table 6.2). Fasting blood samples and 24 hr urine collections were obtained at 

the baseline, low and high flavonol diet. 

The protocol was approved by the Glasgow Royal Infirmary Medical Research 

Ethical Committee and all subjects signed a form of informed consent. 

Dietary intervention (low and high flavonoid diet) are explained in detail in 

Chapter 2 (part 2.7). 

SCGE Assay, Endonuclease III assay, TEAC assay, HPLC analysis of 

flavonols, routine biochemistry methods are explained in detail in Chapter 2 

(part 2.2 - 2.6). 

Statistical methods are explained in Chapter 2 (part 2.8.3). 

6.3 Results 

Subjects reported high compliance with the low flavonol background diet 

throughout the study. The dietary supplements of onions and tea were well 

accepted and tolerated. Body weights did not change during the study (baseline 

81.2 ± 3.5 kg, low flavonol diet 82.3 ± 3.8 kg, high flavonol diet 81.5 ± 4 kg). 
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Three subjects were smokers and did not change their habit during the study. The 

liver function tests judged by AL T, AST, bilirubin and ALP were essentially 

normal. 

On the low flavonol diet, plasma flavonols were detectable in fasting plasma 

(above 1 nglml) in 3 subjects (mean 18.6 nglml) and undetectable in 7 subjects. 

The mean concentration for the whole group was 5.6 ± 2.9 nglml. On the high 

flavonol diets, fasting plasma flavonols were detectable in all subjects with a mean 

concentration of 72.1 ± 15.6 nglml for the whole group. The plasma concentration 

was numerically higher with the tomato ketchup and onion supplement than with 

onions alone, but the difference was not significant. Quercetin provided the 

greatest proportion of flavonols in the supplement (Table 6.2) and was also the 

major component of plasma flavonols (Table 6.3). The supplements of 76.3 or 

110.4 mg of flavonols (equivalent· to 67-100 .1 mg quercetin) on the background 

of a low flavonol diet therefore increased fasting flavonoid concentrations 

approximately twelve-fold. 

Since the plasma and urine flavonols concentrations were not significantly 

different between the two high flavonol diets subjects were considered as a single 

high flavonol group. The scores from the SCGE give a measure of tissue 

protection against standard oxidative stress. The results showed a significant 

difference between the low and high flavonol diets supporting the hypothesis that a 

higher intake, and a greater absorption of flavonols are associated with a 
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significantly greater protection against oxidative stress at tissue level (Figure 6.1, 

6.2 & 6.3). Other measures used in this study to assess antioxidant effect were the 

endonuclease III assay, to detect endogenous oxidative damage to pyrimidine 

bases, and the TEAC assay to estimate the total antioxidant capacity of plasma. 

Neither of these tests gave significantly different results between the two diets and 

both showed relatively high variability (Table 6.3 & 6.4). 

Since many other factors may affect free radical antioxidant systems in the body, 

strenuous efforts were made to avoid any significant differences between the two 

diets in their content of other known antioxidant systems. The data in Table 6.4 

shows no change between high and low flavonol diets in any of the antioxidant 

vitamins or carotenoids, nor in selenium, superoxide dismutase, or glutathione 

peroxidase. There were no changes in plasma urate, albumin or bilirubin, all 

known to be powerful endogenous antioxidants. Plasma fructosamine was 320 

Ilmolll on the low flavonol diet, and 323 Ilmolll with supplements, so the better 

antioxidant activity cannot be attributed to any improvement in diabetic control. 

6.4 Discussion 

Flavonols have been considered to be potentially beneficial components of fruits 

and vegetables for over sixty years. Their importance first came to light when a 

vitamin C sparing effect was observed, however although initially given the name 
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vitamin P they did not fulfil the criteria for essentiality (Rusznyak et al 1936). In 

vitro work has suggested a number of potentially important functions for flavonols. 

Their antioxidant activity is of particular importance, notably in the protection 

against LDL oxidation, an key process in the pathogenesis of artherosclerosis (De 

Whalley et al 1990). Recent work using HPLC has provided improved 

information about the flavonol content of foods. Available data from the 

Netherlands suggests that flavonols are present in the diet at levels in the order of 

23 mg per day, mostly in the form of quercetin and largely obtained from tea 

(61%), onions (13%) and apples (10%) (Hertog et al1992). Much larger daily 

intakes might be expected in high consumers of these food, and of specific 

varieties in particular as it appears that there are clear and consistent differences 

between the flavonol contents of distinct varieties offruits and vegetables (Crozier 

et alI997a). 

Until recently there was very little information available on whether dietary 

flavonoids, particularly flavonols are absorbable. Early data suggested that the 

conjugated flavonols, in contrast to the aglycone, were precluded from intestinal 

absorption (Kuhnau et al 1976). However, acute dosing experiments have recently 

indicated the opposite ie greater absorption of conjugated flavonols and minimal 

absorption of the aglycone (Hollman et al1996a; Aziz et al1998; McAnlis et aI, 

1998). These acute experiments have shown an elevation of plasma flavonols for 

1-5 hours after dosing. The present study is the first to examine the extended 

treatment of high flavonol supplements, and relate this to' measurements of 
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protection against oxidative stress at a tissue level. Very clear evidence has 

emerged showing significant absorption of dietary flavonols, specifically quercetin 

and its conjugates. There is evidence of flavonol absorption in all 10 subjects with 

a mean increase in fasting plasma flavonol concentrations of approximately twelve 

fold from a relatively small supplement. 

Several studies have demonstrated improved antioxidant defences in subjects 

given foods or diets which might contain increased flavonoids. However these 

studies are largely without evidence that flavonoids are absorbed and thus 

responsible for the improvement observed. In addition the potential confounding 

effects from other antioxidant factors may not have been rigorously excluded in all 

instances. Direct evidence on the biological effects of flavonoids is very limited. 

Maxwell et al (1994) demonstrated improved antioxidant status from the 

consumption of red wine, known to be a rich source of flavonoids. Red wines vary 

in their flavonol content from 4.6 to 41.6 mg/l, so may certainly contribute some 

antioxidant flavonols to the diet (McDonald et al 1998) but other phenolic in wines 

may be more quantitatively important than the flavonols. Ishikawa et al (1997) 

have recently found a reduction in LDL oxidation in subjects fed 750 ml black tea 

daily for 4 weeks. They showed absorption of catechins, a sub-group of the 

flavonoid family, and suggested that this may have accounted for the reduced LDL 

oxidation, although tea does also contains conjugated quercetin, myricetin and 

kaempferol. 
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The acute consumption study of McAnlis (McAnlis et al 1994) showed no effect 

from 225 g of onions on the resistance of plasma to copper induced oxidation. 

This test is similar to the TEAC assay used in the present study, which also 

showed no significant difference on the fasting antioxidant capacity of plasma 

between high and low flavonol diets over 28 days. These tests are relatively crude, 

and may not relate directly to free-radical mediated damage within cells. Our use 

of SCGE on fresh lymphocytes to assess the result of a dietary intervention was a 

novel approach and showed, at a tissue level, a significant increase in the 

protection against DNA damage from H202. We have previously employed the 

SCGE assay to study the antioxidant effect of pre-incubation with flavonoids 

including flavonols, and have found dose-dependent effects with all common 

flavonoids most being significantly more potent that vitamin C (Noroozi et al 1998 

a&b) 

There is growing awareness that free-radical processes may be of particular 

importance in the microvascular and macro vascular complications of diabetes 

(Gazis et alI997). There is already abnormal antioxidant status in the pre

diabetic state of impaired glucose tolerance (IGT) and this may contribute to the 

high coronary heart disease risk in IGT (Vijayalingam et al1996). Decreased lipid 

peroxidation and improved antioxidant status may be one mechanism by which 

dietary treatment contributes to the prevention of diabetic complications 

(Annstrong et al1996). Sinclair et al (1992a) have reported that there is a negative 
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correlation between serum ascorbic acid and fructosamine concentration in 

diabetic patients with complications. This group has also reported a low 

concentration of plasma ascorbate in patients with type 2 diabetes mellitus 

consuming adequate dietary vitamin C, and suggested that this implies increased 

utilisation of vitamin C to inactivate free radicals. Dietary recommendations for 

diabetes encourage high fruit and vegetable intakes (Diabetes and Nutrition Study 

Group (DNSG), 1995). The present study provides further evidence to justify this 

recommendation, primarily aimed at reducing cardiovascular disease. 

Evidence linking flavonoids with protection against cancers is weaker than that for 

cardiovascular disease in the general population (Hertog et al 1993a) although 

Dorant et al (1994a) found an inverse relationship between onion consumption and 

cancer risk - particularly stomach, colon and rectum. There is probably no major 

increase in cancer risk amongst diabetic patients, but these findings are consistent 

with previous studies which have shown diabetes to be a risk factor for cancer of 

the uterine corpus, similarly a positive association between prior diagnosis of 

diabetes was noted for kidney cancer and non-melanoma skin cancer in females 

(OMara et al 1985). 

Very few studies in diabetic subjects have sought improvements from 

administration of known antioxidants although claims have been made for high 

dose vitamin C and E (Paolisso et al 1993). In SCGE studies we have shown that 

the effect of flavonols is additive to that of vitamin C and on this basis it would 

180 



seem appropriate to suggest that diets relatively high in flavonols as well as 

conventional antioxidant vitamins should be recommended for patients with 

diabetes. It might be hypothesised that diabetic patients with high intake of 

flavonol rich foods, and specifically onions, might be relatively protected against 

long term complications. Evidence for such an effect does not exist at present but 

appropriate analyses of large data bases might be encouraged to seek supporting 

evidence of this kind. 
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Table 6.1 Characteristics of 10 NIDDM patients (5 male,S female) and background daily 
nutrient intake assessed by four days weighed diet diary (2 weekdays, 2 weekend days) 

Nutrient Intake Group mean ±SD Range 

Age(years) 60.l±6.95 50 -74 

Height(m) 1.64±O.1 1.49 - 1.83 

Weight(kg) 81.24±I1.06 69.4 -107.2 

BMI(kg/m2
) 30.15±3.53 24.9 - 38.31 

Duration of diabetes (years) 6±4 2-11 

Energy (kcal) 1989.7±703.4 805 - 2897 

Fat (%E) 38.4±6.18 32.30 - 53.30 

Protein (%E) t 19.9±3.3 16.80 - 27.70 

Carbohydrate (%E) 39.0±7.33 28.5 - 49.50 

Ethanol (%E) 2.52±4.02 0.00 - 10.5 

NSP! (g/day) 14.6±8.41 3.00 - 32.04 

Iron (mg/day) 15.97±7.24 4.75 - 31.27 

Copper (mg/day) 1.26±0.44 0.52 - 1.99 

Selenium (Jlg/day) 40.9±27.21 14.15 - 96.72 

Vitamin C (mg/day) 56.7±33.37 22.00 - 123.00 

Vitamin E (mg/day) 4.85±2.98 1.21-9.80 

Vitamin A (Jlg/day) 559.2±275.31 76.0 - 928.00 

Tea (mllday) 717.2±498.05 0-1425 

Onions (g/day) 4.15±4.5 o -12.5 

t %E = percent oftotal daily energy intake ; NSP = non starch polysaccharides 

"None of the patients had clinically detectable micro or macro vascular 
complications of diabetes." 

182 



Table 6.2 Flavonol and vitamins content of food supplements (tea and onion dish) used for the high 
flavonol diet 

Tea 6 mug Plain Onion Onions and tomato 
(1500 mls) (400 g) ketchup and herb (400 g) 

Flavonols and vitamins ~g/ml mg/day ~g/g mg/day ~g/g mg/day 

Vitamin A (retinol) 0 0 <0.02 <8g/day <0.02 <8g/day 

Vitamin E (a-tocopherol) 0 0 n.d. n.d. n.d. n.d. 

Vitamin C 0 0 3.6 14.4 1.1 4.4 

Free quercetin 0.41 5.4 4.20 

Conjugate quercetin 7.04 136.9 221.07 

Total auercetin 7.08 10.0 142.0 57.0 225.37 90.15 

Free kaempferol 0.18 0.03 0.03 

Conjugate kaempferol 3.24 0.66 0.98 

Total kaempferol 3.26 4.89 0.72 0.7 1.01 0.41 

Free myricetin n.d. n.d. n.d. 

Conjugate myricetin 0.79 n.d. n.d. 

Total mvricetin 0.79 0.78 n.d. 0 n.d. 0 

Free isorhamnetin n.d. 0.19 0.17 

Conjugate isorhamnetin n.d. 6.03 7.59 

Total isorhamnetin n.d. n.d. 6.21 2.5 7.78 3.11 

Total flavonols 11.14 16.7 148.94 60.2 234.2 93.67 

Total daily intake of flavonols provided by test diet with onion, tomato ketchup, 110.37 mg/day 
and with plain onion, 76.3 mg/day. 
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Table 6.3 Plasma and urine flavonol responses of diabetic patients (NIDDM) to 
high flavonol d~et, SCGE assay to measure protection of fresh lymphocytes against 
H20 2 damage to DNA and endonuclease III assay for endogenous DNA damage 
analysis 

Low flavonol diet High flavonol diet P-value 

Fasting plasma S.6±2.9 67.8±lS.2 <O.OOS 
Quercetin (ng/ml) 

Fasting plasma S.6±2.9 72.1±lS.7 <0.005 
total flavonols 
(ng/ml) 

24 h urine quercetin 12.S±S.2 112.4±17.7 <0. ODDS 
concentration (ng/ml) 

24 h urine total flavonols lS.2±6.2 148.9±20.7 0.0001 
concentration (ng/ml) 

24 h urine quercetin 17.3±7.5 218.0±52.5 <0.005 

excretions (J.lg/day) 

24 h urine total flavonol 21.2±9.0 281.8±S9.1 <0.005 

excretion (J.lg/day) 

SCGE (out of 400) 
t 220.0±12.0 191.S±13.5 0.037 

Endonuclease III 82.4±4.S 91.4±10.9 0.42 
(out of 400) 

Data are meanS ± SE (n = 10) t Single Cell Gel Electrophoresis (SCGE) 
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Table 6.4 Plasma and urine measurements of antioxidant factors on high and low flavonol 
diets 

Low flavonol diet High flavonol diet P-value 

Superoxide dismutase 0.027±0.01 0.051±0.021 0.30 
activity (units/ml) 

Gluthathione peroxidase 210.30±12.78 213.0±8.83 0.86 
(unitslL) 

Selenium (llmolll) 1.278±0.095 1.238±0.084 0.36 

TEAC+ (mmol/l) 1.40±0.03 1.44±0.03 0.22 

Plasma Albumin (gil) 45.10±0.82 45.86±0.64 0.69 

Urine Albumin (mgll) 13.38±4.60 16.40±6.40 0.12 

Plasma globulin (gil) 30.78±1.21 30.0±1.03 0.74 

Total plasma protein (gil) 72.80±3.67 76.0±1.65 0.86 

Plasma bilirubin (unit/l) 13.78±2.76 15.57±3.32 0.83 

Fructosamine (llmolll) 320.4±22.4 323±20.l 0.72 

+ 
Data are means ± SE (n = 10) =Trolox equivalent antioxidant capacity of plasma 
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Tables 6.4 (continued) Plasma antioxidant vitamins and carotenoids on low and high 
flavonoid diets 

Low flavonoid diet High flavonoid diet P-value 

Vitamin A ()..lmol/l) 2.62±0.48 2.74±0.43 0.28 

Vitamin C (mmolll) 35.7±3.43 30.l0±3.2 0.13 

Vitamin E ()..lmol/l) 42.0±5.52 4S.70±6.11 0.11 

Vitamin E/chol t 6.69±0.67 7.24±0.S7 O.IS 

p-carotene ()..lmolll) O.l6±0.03 O.l6±0.04 0.95 

p-carotene/chol t 0.028±0.O07 0.027±0.008 0.47 

p-cryptoxanthine ()..lmolll) 0.04±0.OI O.O4±O.01 0.39 

p-cryptoxanthine/cholt 0.006±0.001 0.006±0.00I 1.00 

Lycopene ()..lmolll) 0.I97±0.039 0.244±0.059 0.22 

Lycopene/chol t 0.034±0.007 0.042±0.0 11 0.22 

Total carotenoids()..lmolll) 0.60S±0.067 0.652±O.l03 0.44 

Total carotenoids/chol
t O.I 04±0.01 6 O.l12±0.020 0.38 

Lutein ()..lffiolll) 0.16±0.02 0.15±0.02 0.57 

Lutein/chol t 0.03±0.004 0.03±0.00S 1.00 

a-carotene (J..lffiolll) 0.O5±0.008 0.O5±0.01 0.62 

a-carotene/chol t O.OO9±0.O02 0.O09±0.002 0.17 

cholesterol (mmol/l) 6.32±0.55 6.32±0.63 1.00 

Data are means ± SE (n = 10) 
. 3 

'RatiO to plasma cholesterol (xl0 = mmol/l) 

Laboratory Reference ranges: Vitamin A (1.4 - 2.6 )..lmol/!), Vitamin E ( 2 2-
37.2)..lmolll),Vitamin C (11-114 )..lmol/l), Lutein (0.1S-0.37 )..lmol/l), Lycopene (O.l9-0.5S 
)..lmol/l),a-carotene (0.03-0.11 )..lmol/l), p-carotene (0.18-0.S8 )..lmol/l), P-cryptoxanthine 
(0.14-0.36 )..lmol/l). 
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Chapter 7: Prediction of dietary flavonol consumption from 

fasting plasma concentration or urinary excretion 

(paper submitted to American Journal o/Clinical Nutriton, co-authors: 

Lean MEJ, Burns J, Crozier A, Kelly I 

7.1 Introduction 

The flavonols belong to the large group of flavonoids, and quercetin is the major 

representative of the flavonols subclass, whose chemical structures depend on 

the differences in the 3', 5' and 3 positions of the band C rings (Figure 1.1 and 

2.4). Major dietary sources of flavonols are onions, kale, brocolli, apples, 

cherries, berries, tea (Hollman 1997; Hertog 1993b;Hertog et alI992). 

Little information is available on the absorption, metabolism and excretion of 

flavonols in humans, although there is information about the flavonoid contents 

of certain foods, for example those analysed by Hertog et al (1992), Crozier et al 

(1997a). Estimates of total flavonoid consumption vary from 29 mg/day (Hertog 

et al1993a) to 1 glday, (Kiihnau 1976). These estimates are based on 

incomplete analysis of a relatively small number of foods applied to dietary 

records. Based on the work of Gugler et al (1975), who observed no absorption 

of the quercetin aglycone by human gut, Kiihnau (1976) concluded that 

conjugate flavonoids in foods are not absorbed and only aglycones are absorbed 

189 



in the human gut. However, this conclusion was clearly incorrect: the 

bioavailability of flavonoids has more recently been assessed using modem 

HPLC methods (Hollman 1997 and 1995), (Paganga et al 1997), (Hertog and 

Hollman 1996), (McAnlis et aI1998), (Aziz et a11998) and have all shown 

definite but variable absorptions from foods. Hollman et al (1995) found much 

lower absorption of aglycone quercetin than glycosides from onions (24% versus 

52%), but most flavonoids in foods are in conjugated form. 

This study focusses on the relationship between flavonols intake (on test diets 

designed to have either low or high contents), urine excretion and plasma 

concentration of flavonols, with the aim of establishing a biomarker for the 

flavonol content of the habitual diets of free-living subjects. 

7.2 Subjects and study design 

Three test diets were designed. The basis was dietary advice to follow a low 

flavonoid diet, assumed to contain no flavonols. Two high flavonol diets both 

contained tea (6 cups daily), and an onion dish or an onion/tomato ketchuplherb 

dish, taken in 3 equal portions with meals. (Full details in table 6.2 and part 6.2 

(Chapter 6). 
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Ten NIDDM subjects were studied, allocated in 14-day periods to consume the 

low flavonol diet, or to one of the two high flavonol diets, in randomised 

crossover design. The characteristics of the subjects are shown in Table 6.1. 

Seven day weighed diet records at baseline (Le. on each subject's habitual diet) 

were analysed by a research dietitian using the COMPEAT nutrient database 

(McCance and Widdowsons). A 24 h urine collection and fasting venous blood 

sample were taken at baseline (on their usual diet) and at the end of each 14 day 

test period. 

Test diet, flavonols analysis and statistical analysis methods are explained in 

detail in Chapter 2 (part 2.7,2.5 and 2.8.4). 

7.3 Results 

High flavonol supplements 

Total flavonols in the high flavonol supplements showed the highest 

concentration offlavonoids in onion combined with tomato ketchup (234.2±5 J.l 

gig) followed by plain onion (148.9±8.5 Ilg/g). The tea contained 11.1±OA J.l 

glml. Most of the flavonols were quercetin and most of flavonoids in the 

supplements were quercetin conjugates (96-98%) (Table 7.1). 
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Daily flavonol consumption 

Total daily intake of flavonol on the test diets (from supplements plus tea) was 

calculated at 110.4 mg with tea, onion and tomato ketchup and herb supplement, 

while from plain onion test diet consumption was 76.3 mg. The major flavonol 

in the two high flavonoid test diets was quercetin, (90.1 and 57.0 mg 

respectively). Tea in the high flavonols test diets provided 16.7 mg total 

flavonols, 10.8 mg quercetin. 

Total flavonols 

Fasting plasma and urinary flavonols concentration of individual or all subjects 

are shown in (Table 7.2 and 7.3) on low and high flavonol diets. In urine the 

percent of flavonols present as conjugates on baseline, low and high flavonoids 

diet were 82.3%, 67% and 87.4%. In plasma 100% of flavonols were in 

conjugated forms. Fasting plasma and urinary flavonols concentrations were 

highly correlated. 

Both fasting plasma and urinary (Figure 7.2) flavonol concentrations were 

highly significantly related to dietary intake. For the purposes of determining 

dietary intake, however, urinary values appear marginally better (r2= 71.8% vs 

55.6%, bothp < 0.001). There was little additional benefit from using both 

parameters in an equation to predict dietary intake derived from multiple 

regression analysis (r=72.4%,p < 0.001). 
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Quercetin 

Fasting plasma and urinary concentrations are shown in Table 7.4. These values 

were highly correlated (Figure 7.3). Both plasma and urinary flavonol (Figure 

7.5) values were highly significantly related to dietary intake. For the purposes 

of determining dietary intake, as with total flavonols, urinary values appear 

marginally better (r2= 66.3% vs 55.3%, bothp < 0.001). There was little 

additional benefit from employing both parameters in a multiple regression 

equation (r=69.6%, p < 0.001). 

Total 24 hour urine excretion of flavonols 

It might be expected that total urinary excretion should give a better prediction 

of intake than urine concentration. However, in the present study on free living 

diabetic subjects this did not prove to be the case. Thus regression coefficients 

for 24 h urinary excretion of total flavonols (r=0.728, p<O.OO 1) (Figure 7.2) and 

for 24 h urinary quercetin excretion (r=0.681,p=0.001) (Figure 7.4) were 

weaker than those for urinary concentrations. Tests for completeness of urine 

collection were not employed. Urine volume ranged from 0.81-2.64, at baseline, 

0.86-2.48 on low flavonol diet and 0.87 - 4.45 on high flavonol diet. 

Flavonol intake on habitual diets 

The measurements of fasting plasma flavonols (and quercetin), and of urinary 

flavonols, made at baseline on each subject's habitual diet, were applied to the 
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regression equations to estimate the flavonol consumption of each subject on 

their habitual diet, shown in Tables 7.3 and 7.4. 

The average flavonol intake on the baseline diet, estimated from a regression 

equation based on fasting plasma flavonols, was 35.2±3.5 SD mg/day. 

Estimated from urine concentration, the flavonol concentration was 33.2±7.2 SD 

mg/day. There was a wide range of values from 17-50 mg/day based on plasma 

concentrations, 18-82 mg/day from urine measurements. 

Estimates of quercetin intake from fasting plasma quercetin (31.9±SD mg/day) 

and from urine concentration (41.2±SD mglday) were closely related to 

flavonols intakes (Table 7.4). 

Dietary analyses 

Table 6.1 shows the nutrient analyses of subjects at baseline, during the 4 days 

immediately before the measurements were made. The mean and range for key 

nutrients in these diabetic patients are very similar to those of the general 

population. In particular, the figures for dietary fibre, vitamin C and vitamin E 

do not point to an unusual consumption of fruit or vegetables in these diabetic 

subjects. There were no statistically significant relationships between plasma 

flavonols and quercetin and dietary intakes of total fruit and vegetable intake, 

total vegetable intake, total potato intake, total fruit intake or total tea intake at 
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baseline. The highest correlations observed were with total vegetable intake and 

plasma flavonols (r=O.38, p=0.40) or plasma quercetin (r=O.36, p=0.43). 

7.4 Discussion 

The baseline measurements, reflecting the habitual diets of free-living adults 

revealed detectable flavonols in both fasting plasma and in urine of 8/10 

subjects. The main contributor to dietary flavonols was quercetin at 92.4% of 

total flavonols in diet and both urine and plasma measurements. For both total 

flavonols and quercetin there was a close correlation between the fasting plasma 

and 24 h urinary concentration so regression equations employing plasma or 

urine gave very similar results, and either could be employed to estimate dietary 

exposure. 

The average flavonol intake estimated in the present study (in Glasgow) is 

higher at 35 mglday than in the countries, except Japan and Croatia, estimated 

from food records by Hertog et al (1995) and quercetin intake in the present 

study (32 mglday) is more than any of the 8 countries presented in Table 7.5. 

The subjects in the present study were not necessarily representative of the adult 

Scottish population and the influence of their NIDDM cannot be assessed, but 

they were free living adults, with diet compositions very similar to those of the 

general population. There is no priori reason to expect NIDDM to affect the 
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results, although vitamin C levels may be low in diabetic subjects (Sinclair et al 

1994). The consumption of fruits and vegetables were low by international 

standards, so the flavonoid intakes in other countries are likely to be 

considerably higher. Given their powerful antioxidant actions, the large range in 

flavonol consumptions found in the present study (18-82 mg/day), and the wide 

range in plasma concentrations (0-44 ng/mL), point to the possibility of a wide 

range in dietary antioxidant protection between individuals with different diet 

compositions. 

The method we have developed offers the potential to make simple estimates of 

flavonols consumption of free-living individuals on the basis of a urine 

collection, or from a fasting blood sample. The failure of a figure of total 24 h 

urine excretion to give a better prediction of intake probably illustrates the 

difficulty in obtaining complete urine collections, and it is interesting that the 

urine flavonol concentration gave such good results. In routine research, a 

fasting plasma sample is likely to be a more widely applicable and reliable test. 

For application in the general population the results of the present study should 

ideally be supported by similar data in non-diabetic individuals. The data in this 

small study of 10 subjects offers some hope that plasma or urinary flavonol 

measurement might prove a useful biomarker for vegetable, or fruit and 

vegetable intake. The present study suggests that this approach is feasible, but 

relies on the "low flavonoid" diet having an assumed zero content of the 

flavonols. A larger range of intakes will need to be studied to establish a true 

196 



dose response, and to investigate if this saturation kinetics, develop at high 

intakes. 
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Table 7.1 Daily flavonol content of test diets containing 400 g onion or 400 g onion plus tomato ketchup and herb plus 1500 mllL of 
tea/day. Data are presented as means of3 triplicate analyses 

High Flavonoid Quercetin Myricetin 
diet (mg) (mg) 

Free Conj Free Conj 

Onion + tomato 
Ketchup + tea* 1.7 88.4 nd+ nd 

Plain onion** 2.2 54.8 nd nd 

Tea 0.1 10.7 nd 1.2 

*(Total daily intake plus tea = 110.4 mg/d) 
**(Total daily intake plus tea = 76.3 mg/d) 
+ 

= none detected 

Kaempferol 
(mg) 

Free Conj 

nd 0.4 

nd 0.7 

0.3 4.8 

Conjugated flavonoids 
Total Total 

flavonol quercetin 
Isorbamnetin content content % of total 

(mg) (rug/d) (rug/d) (mg/d) flavonoids 

Free Conj 

0.1 3.0 93.6 90.1 91.8 98% 

0.1 2.4 60.2 57.0 57.9 96% 

nd nd 17.1 10.8 16.7 97.7% 
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Table 7.2 Plasma and urine flavonol concentrations of diabetic patients 
(NIDDM) on low and high flavonol diets 

Fasting plasma 
Total flavonols (ng/ml) 

Fasting plasma 
Quercetin (ng/ml) 

24 h urine quercetin 
concentration (ng/ml) 

24 h urine flavonols 
concentration (ng/ml) 

24 h urine quercetin 
excretions (Ilg/day) 

24 h urine total flavonol 
excretion (Ilg/day) 

Data are means ± SEM 

Low (0) 
flavonol diet 

n = 10 

5.6±2.9 

S.6±2.9 

12.5±5.2 

15.2±6.2 

17.3±7.5 

21.2±9.0 

76 mg/day 
flavonol diet 

n=5 

52.2±12.4 

48.3±11.9 

93.7±15.0 

126.5±15.5 

186.8±50.5 

246.9±S7.l 

110 mg/day 
flavonol diet 

n=5 

91.9±27.6 

87.3±26.7 

131.2±31.8 

171.2±37.9 

262.0±80.1 

27S.6±82.7 
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Table 7.3 Prediction of dietary flavonols consumption from fasting plasma or urine 
concentration on baseline diets 

fasting estimated 24 h urine urine estimated 
Subjects plasma flavonols flavonols flavonols flavonols 

flavonols intake excretion concentration intake 
(ng/mL) (mg)* (Jlg) (ng/mL) (mg)** 

1 43.7 50.4 300.7 151.9 81.9 
2 22.1 33.9 46.1 37.5 24.2 
.., 0 17 16.8 12.1 11.4 .) 

4 40.2 47.7 36.4 25.1 18 
5 0 17 50.7 31.7 21.3 
6 30.5 40.3 260.1 122.7 67.2 
7 23.3 34.8 122.4 46.4 28.7 
8 31.1 40.8 69.4 39.4 25.2 
9 26.8 37.5 39.1 48.9 30 
10 20.5 32.7 31.3 37.3 24.1 

Mean:!:SEM 23.8:!:4.6 35.2:!:3.5 97.3:!:32 55.3:!:14.2 33.2:!:7.2 

*(flavonols intake (mg) - 17.0+0.764 x fasting plasma flavonols concentration) r=O.74,p<O.001 
**(flavonols intake (mg) = 5.34+0.504 x urine flavonols concentration) r=O.847,p<0.OOl 

Table 7.4 Prediction of dietary quercetin consumption from fasting plasma or urine 
concentrations on baseline diets 

fasting estimated 24 h urine urine estimated 
Subjects plasma quercetin quercetin quercetin quercetin 

quercetin intake excretion concentration intake 
(ng/mL) (mg)* (Jlg) (ng/mL) (mg)** 

1 41.7 45.8 250.1 126.3 78 
2 22.1 31.7 36.8 29.9 23.9 
3 0 15.8 16.8 12.1 13.9 
4 40.2 44.7 25.8 17.8 17.1 
5 0 15.8 28.6 17.9 17.1 
6 21.8 31.5 203.3 95.9 60.9 
7 23.3 32.6 72.0 27.3 22.4 
8 28.2 36.1 39.0 22.2 19.6 
9 26.8 35.1 28.8 35.9 27.2 
10 20.5 30.5 22.6 26.9 22.2 

Mean:!:SEM 22.5:!:4.4 31.9:!:3.2 72.4:!:26.4 41.2:!:12.1 30.2:!:6.8 

*( quercetin intake 15.8+0.719 x fast.ing plasma. quercetin) ~O. 744, p<O.OO 1 
**(quercetin intake = 7.10+0.561 x urme quercetm concentratIOn) r=0.814, p<O.OOI 
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Table 7.5 Comparison between estimation of flavonol and quercetin intake 
estimated from diet records in middle aged men in the Seven Countries 
Study (Hertog et al1995) and in the present study (Glasgow) 

Quercetin intake Flavonol and 
(mg/d) flavonone intake 

(mg/d) 

Finland 6 6 

USA 11 13 

Serbia 10 12 

Greece 15 16 

Italy 21 27 

The Netherlands 13 33 

Croatia 30 49 

Japan 31 64 

Glasgow (present study) 31.9 35.2 

Predicted from flasting plasma flavonols, n = 10, age 60±69.5 y, 5 male and 
5 female 
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Chapter 8: General conclusions 

8.1 Answers to the research questions 

8.2 Interpretations and recommendation for future research 

The purpose of this chapter is to evaluate the extent to which this thesis has 

addressed the aims and answered the research questions which were outlined in 

Chapter 1, part 1.6). 

Chapter 8.1 summarises and brings together the results of the various 

investigations within this thesis on aspects of antioxidant activity of flavonoids, 

specifically the major flavonols. An attempt is made at comparing antioxidant 

activity of flavonols with known antioxidants (e.g. vitamin C). This chapter also 

considers the biological effects of potential medical importance attributable to 

the absorption of dietary flavonols. Chapter 8.2 concludes with a brief note on 

the possible directions for future research in this field. 

8.1 Answers to the research questions 

8.1.1 Protection from various flavonoids and vitamin C against oxygen 

radical generated DNA damage in ex vivo lymphocytes in 

the SCGE or comet assay 

Addressing Aim 1 and Aim 2, the work described in this thesis (Chapter 3) has 

explored the single cell gel electrophoresis (SCGE or comet assay) as a potential 
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tool for detecting the antioxidant effect of nutrients, and has shown reproducible 

results in estimating the extent of DNA damage to human lymphocytes to a 

standard challenge, and the degree of protection provided by pre-treatment with 

a range offlavonoids and vitamin C. It thus proved possible using this method 

to rank the potency of the antioxidant agents tested with high confidence. 

All flavonoids tested in the comet assay demonstrated antioxidant capacity. 

Quercetin, myricetin and luteolin, with hydroxyl groups at the positions 3',4' 

containing the unsaturated 2, 3-double bond in the C ring, were the most potent 

antioxidants. Luteolin, despite having a similar number of hydroxyl groups, was 

significantly more effective than kaempferol. This may be because the hydroxyl 

group at the 3' position (in the B ring) in luteolin confers greater antioxidant 

activity than the group at the 3 position (in the C ring) in kaempferol. 

At equimolar concentrations the results demonstrate very clearly a greater 

antioxidant potency from most of the flavonoids tested than from vitamin C. 

Research Question 1 

The effects of quercetin, one of the most potently antioxidant flavonoids, and 

vitamin C, were additive when cells were pretreated with both at concentrations 

of 23.2 J.1mollL in the comet assay. This does not necessarily imply that their 

actions would always be additive, if in fact they operate via the same 
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mechanisms. This finding does suggest that quercetin might provide a 

functional substitute when vitamins C status is low. 

Research Question 2 

This work extended the evidence that the position and number of hydroxyl 

groups have important roles in determining antioxidant activity. In our study, at 

a concentration of279 J.lmolll, the protection of my rice tin, quercetin, kaempferol 

and apigenin against DNA damage would be consistent with a relationship to the 

number of hydroxyl groups. 

Research Question 3 

Aglycones quercetin, luteolin, myricetin and kaempferol had a greater 

antioxidative capacity than the conjugate flavonoids, such as quercetin-3-

glucoside, quercitrin and rutin. Apigenin was the least potent of the free 

flavonoids. These results are in broad agreement with the other studies (Chapter 

3, table 3). 

The implications of this finding is that the flavonoids found in foods (almost all 

as conjugates) do not have the extreme potency of free flavonoids. It is too early 

to say how potent flavonoids are in the body, until more is known about their 

dispersal and metabolism. It does appear that some free flavonols may exist, at 

least in urine. 
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8.1.2 What are antioxidant activities of flavonoids and vitamin C in the 

trolox equipment antioxidant capacity (TEAC assay)? 

As part of Aim 1, comet and TEAC assays were compared. All the flavonoids 

and polyphenols tested (except naringin) had greater antioxidant potency than 

vitamin C and several had greater capacity than Trolox itself, on a molar basis in 

the TEAC assay. 

Greater numbers of hydroxyl groups in ring A, B or C offlavonoids and 

polyphenols significantly increased the TEAC. There was a positive relation 

between the number of hydroxyl groups offlavonoids and total antioxidant 

activity of flavonoids. 

As with the comet assay, glycosylation of flavonoids consistently reduced the 

TEAC compared with aglycone flavonoids. Glycosylation of quercetin (at 3-

hydroxyl group in the C ring) to form rutin (3-rutinoside), quercitrin (3-L

rhamnoside) and quercetin-3-glucoside decreases the antioxidant activity of 

these substances. These findings are of practical relevance since most flavonoids 

in foods occur as conjugates, not as aglycones. 

A novel adaptation of the TEAC assay tested the putative antioxidants when 

added to fresh human plasma in supra-physiological concentrations (10, 20, 50, 

100 J.lmolll). The results support a physiological role for flavonoids in the 

body's antioxidant defence system. Quercetin proved the most potent, above 
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kaempferol and rutin at 100 Ilmolli. Increases in the TEAC were observed when 

50 or 100 Ilmolll quercetin and 100 Ilmolll rutin and kaempferol were added to 

the human plasma. 

There has been particular interest recently in the antioxidant properties of tea. 

The results ofTEAC on catechin, catechin esters (ECG and EGCG) and rutin 

indicate the antioxidant properties of these compounds which are found in teas. 

ECG had the greatest antioxidant activity of the 17 flavonoids and polyphenols 

tested, seven fold greater than vitamin C. These results were sufficiently 

persuasive to adopt tea as part of the later intervention study. 

Research question 4 

There was reasonable agreement between the comet and TEAC assays in the 

rank ordering of the 9 agents tested by both methods, although this failed to 

reach statistical significance (Spearman's rank correlation coefficient = 0.57, P 

=0.11). Both assays agreed in ranking quercetin the strongest and vitamin C the 

weakest antioxidant. However, luteolin and kaempferol, which were hightly 

ranked by the comet assay, appeared to have much weaker relative antioxidant 

activity by the TEAC assay, while the converse applied to rutin and quercetin-3-

glucoside. 

There are no strong a priori reasons for considering the comet or TEAC method 

to be more likely to be the "correct" one, and both gave reproducible results. It 
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seems reasonable to consider that the comet assay is more likely to relate to in 

vivo situations. 

Luteolin was markedly more antioxidant in the comet assay than in the TEAC 

assay. One possible reason for differences between these methods is that the 

compounds tested may vary in lipid solubility. This would be expected to 

influence the comet assay by promoting uptake of more fat-soluble compounds 

into lymphocytes during the pre-treatment stage - much as might happen in the 

in vivo situations. Unfortunately it was not possible to test this by measuring the 

flavonoid content of lympocytes in the present studies. 

8.1.3 Absorption of pure quercetin aglycone in humans 

Addressing Aim 3, a major intervention study was undertaken. In the previous 

studies of this thesis, quercetin was found to be one of the strongest antioxidants, 

but the abo sorption of quercetin in humans is unclear and unpredictable. Oral 

administation of quercetin dihydrate (aglycone) powder (1.8 and 6.2 mg/kg body 

weight) with different solvents (water or vodka 50% ethanol) did not change 

significantly the total antioxidant capacity of plasma (TEAC). There was some 

suggestion from one subject, after administration at 120 min showed a rise 

versus 0, 30, 60, 90, 180 and 240 minutes. However no detectable quercetin 

agylcone in plasma or in urine were found, and it was decided to proceed to a 

diet study. This was justified in that most flavonoids in normal diets are 

conjugated, and although the antioxidant capacity of conjugated forms of 
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flavonoids is less than aglycone (Chapter 3 and 4) they are present in high 

amounts of this fonn in the nonnal diet, and early evidence indicated greater 

absorption. It must be recognised that food sources of quercetin (e.g. onions and 

tea) are likely to contain other bioactive compounds, including other flavonoids 

such as catechins. 

8.1.4 Form offlavonols in plasma and urine, and prediction of dietary 

flavonol consumption from fasting plasma concentration or urinary 

excretion 

Chapter 7 focussed on the absorption and excretion of flavonols in humans, with 

the aim of establishing a biomarker for the flavonols intakes of free-living 

subjects. Onions and tea were chosen as the main foods, as important sources of 

quercetin although they do contain other potentially bioactive phenolics. 

Quercetin was the major flavonol in the test diets, and most flavonols in 

supplements were provided as conjugates. Flavonols in plasma were 100% 

conjugated, but in urine on baseline, low and high flavonoids diets the 

proportions conjugated were 82%, 67% and 87%. It cannot be ascertained from 

this study if free flavonols are more actively excreted in urine, or if 

deconjugation occurs as part of the excretion process. 

Flavonols, mainly quercetin, were present in urine and plasma on the baseline 

diets of these subjects in every case. The dietary exposure was estimated from 

regression plots against intake on low flavonoid and one of two high flavonoid 

diets. Urinary and fasting plasma concentration offlavonols were highly 
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correlated and both values were highly significantly related to dietary intake. 

The average flavonol intake on the baseline diet estimated from fasting plasma 

flavonols was 35 mg/day, with a range 18-82 mg/day (32 mg/day quercetin). 

The subjects in this study (NIDDM) were not necessarily representative of the 

adult non diabetic population, but the results indicate that plasma or urine 

flavonols could be used to predict flavonols intake in future survey work. 

8.1.5. Do dietary flavonols protect against oxidative DNA damage 

Test diets based on onions and tea showed that the major flavonols were 

absorbable and the high flavonoids supplements, on the background of a low 

flavonoid diet, increased fasting flavonoid concentration approximately twelve-

fold. 

Diabetic patients, were chosen as a test group since they have increased free

radical production and also reduced antioxidant defences. Comet assay and 

endonucleuse III assay were used to attempt to identify and quantify oxidative 

DNA damage in the sugar phosphate backbone and in the bases of DNA. 

High flavonoid diet designed based on onions and tea protected diabetic 

lymphocytes DNA against oxidative DNA damage from a standard H20 2 

challenge and this effect was not induced by any change in known antioxidants 

including plamsa, vitamin C, tocopherol, carotenoids, urate, albumin, bilirubin. 
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The result was not related to fructosamine or fasting plasma glucose, so could 

not be ascribed to improved overall diabetic control. 

This study has shown beneficial biological effect of flavonoids provided by a 

palatable test diet, it would seem appropriate to suggest the diets relatively high 

in flavonoids as well as other antioxidant vitamins should be recommended to 

protect diabetic patients against coronary complications. The evidence from the 

present study shows a potentially valuable effect of dietary flavonols in the range 

76.3 - 110.4 mg/day, from diets containing about 500 g/day of fruit and 

vegetables and six cups of tea. Maintaining this level would offer a new benefit 

from achieving the existing recommendation of>400 g/day of fruits and 

vegetables. Onions are rich in flavonols, but other food combinations are 

possible. 

8.2 Interpretations and recommendation for future research 

The work in this thesis has extended knowledge in several theoretical and 

practical aspects of dietary flavonoids. However, a simple conclusion that 

flavonoids are beneficial cannot be drawn. There are many natural flavonoids, 

and some may have toxic effects at high concentrations or high intakes including 

the extracellular production of active oxygen species (in vitro) by dietary 
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flavonols (Canada et al 1990) or mutagenic activity of quercetin and related 

compounds (in vitro) (Bjeldanes et al 1977). 

Bioactive compounds such as flavonoids, which are known to be absorbed and to 

have appropriate actions may be important factors for health which coexist in 

foods with the more familiar antioxidant vitamins, to which many health benefits 

have been attributed from dietary analyses. Flavonoid analysis in human diets is 

now becoming possible and the factors which govern their concentrations in 

foods are becoming better understood. Future work will need to consider which 

specific food sources to promote for health reasons recognising differences 

between strains. 

The conclusions from these in vitro and ex vivo experiments that flavonoids may 

have important biological effects must remain tentative, until more is known 

about the absorption, distribution, metabolism and biological effects of 

flavonoids within the body. It is necessary to know that foods with absorbable 

flavonoids are being consumed, or the extent of absorption, and how food 

preparation, storage and cooking may affect composition. When this detailed 

information is available, a better indication of the health impact of flavonoids 

will be possible than can be derived from simplistic application of "food tables" 

of the total aglycone flavonoid contents. 

From the work in this thesis, several future projects of interest can be identified: 
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I. Using SCGE assay and TEAC assay to quantify of antioxidant activity of 

more dietary flavonoids - such as epicatechins, gallate, catechin, silymarin, 

epigallocatechin gallate within the body (in tissues or body fluids rather than just 

in vitro), and their interactions with antioxidant vitamins. 

2. Fate and metabolism offlavonoids in the body. 

3 Epidemiological survey using plasma concentrations to explore relations 

between flavonoids consumption and diseases e.g. CHD, cancer, diabetes which 

involve free-radical-mediated processes. 

4. The effect of high protein diet (milk, cheese, etc) or other dietary factors on 

absorption of flavonoids in human gut. 

5. The effect of high flavonoids diet on absorption of iron and other elements in 

human diet. 

5. The possible activity within the bowel of non-absorbed flavonoids when 

flavonoid intake is increased. 

7. The impact of dietary flavonoids on free-radical mediated processes in 

diabetic patients - e.g. cataract, vascular disease, renal disease, glycosylation. 
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