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ABSTRACT 

Refinement of the fission track analysis technique has enabled 

accurate and reproducible determination of uranium in sediment pore 

waters at the sub-nanogram level, that is, with a sensitivity superior 

to that of the conventional radiochemical/a-spectrometric procedure. 

Since the former technique requires a simple polymeric trQck.recording 

medium rather than stable electronic nuclear counting equipment, with 

its associated high vacuum systems, it is inherently less expensive 

and more portable. other advantages are the low track backgrounds 

recorded by the track detector itself, the minimal degree of chemical 

processing required, the small sample sizes assayable (0.1 g or 0.1 ml) 

and the ability to increase or decrease the sensitivity as required 

by Using neutron irradiations of variable flux and duration. 

Results from oxic, deep-sea carbonate sediments show that the 

levels of dissolved uranium in squeezed pore waters are significantly 

less than those measured in the same pore waters collected by an in-situ 

device. This important discrepancy is explained by the presence of 

a pressure effect which acts on cores retrieved from the sea-bed such 

that CO 2 is lost as the core is brought to ambient pressures. This 

artificial perturbation of the carbonate equilibrium system therefore 

leads to precipitation of calcium carbonate which, in turn scavenges 

some uranium from solution. 

In deep-sea cores which exhibit anoxia, it is confirmed that 

the pore water uranium content is enhanced relative to sea water values. 

In-situ samples from one such core, containing a 20 cm thick turbidite 

laYer, have provided the first direct evidence for a uranium flux 

Within the pore waters, upwards into sea water. The flux is estimated 
-8 -2-1 

at 0.94 x 10 g U cm yr The geochemical behaviour of uranium 

in pore waters, however, seems to be less than straightforward, being 

dependent on a number of parameters such as alkalinity, organic 

carbon content and redox status of the sediment, with the major 

Speciations being uncertain. 

In/ 



In shallow nearshore sedimentary pore waters, uranium is fixed 

in the solid phase close to the sediment 

anoxic to suboxic conditions are attained. 

water interface where 

Increases in the pore 

water uranium content at greater depths (below -12 cm) in these 

sediments were regularly observed, indicating release from the 

sediment by a solubilisation mechanism. 

The behaviour of uranium during estuarine mixing was studied in 

three British estuaries by the radiochemical/ a-spectrometric analysis 

of water samples. The Clyde and Tamar. estuaries exhibited conservative 

behaviour, i.e. uranium concentration varied only with salinity. The 

Forth estuary, in contrast, showed evidence of uranium removal at 
o -1 

salinities<10 /00, where high particulate loads of up to 180 mgl 

ocCurred. Large fluxes of phosphate removal were also found. The 

uranium concentrations and 23 4u/ 238u activity ratios for the Clyde, 
-1 

Tamar and Forth rivers were, respectively, 0.15 ugl and 1.65, 

0.04 ugl-1 and 1.44, 0.09 ugl-1 and 1.50. The removal rate of uranium 
-1 

in the upper part of the Forth estuary was estimated at about 44' kgyr-

and consequently does not represent a significant removal mechanism when 
10 -1 

compared to the total oceanic uranium input value of 1 to 2 x 10 gyr 

Alpha-particle track analysis, which shares many of the advantages 

of the fission track techQique, is in addition non-destructive. However, 

it can sometimes require prolonged exposure periods for low-activity 

samples, it has a lower sensitivity than a-spectrometry and is not 

nUClide-specific. Nonetheless, it has been shown here to be useful in 

the dating of deep-sea sediment cores when combined with the fission 

track technique. Good agreement was found between the solid-phase 

uranium data generated by the fission track method and those from 

a-spectrometry, while the a- track results, in combination with these 
+ -1 uranium data, gave a similar sedimentation rate (0.26 - 0.06 cm kyr ) 

t 230 +-1 o that determined by direct Th measurement (0.26 - 0.02 cm kyr ). 

The role of the a-track method in an autoradiographic mode was 

illustrated by exposure of the a-sensitive plastiC to electroplated 

sources of various radionuclides and to some specially-prepared 

enVironmental thick sources. Sites of variable a-radiative intensity 

can be clearly identified, permitting semi-quantitative conclusions 

to be drawn. 

contain/ 

For example, the presence of 'hot particles' thought to 



contain Pu isotopes, was confirmed in estuarine particulates, 

while an autoradiograph from a hydrothermal ferromanganese nodule 
222 

showed that diffusion of Rn was occurring along microcracks and 

that~-emitting nuclides were concentrated at the surface which 

was exposed to sea water. 

The relative ease of use of dielectric track detectors makes 

them invaluable as analytical tools for the environmental radiochemist, 

either in their own right, as in fission track analysis, or in a 

complementary role with the more accepted and widely-used wet radio

chemical methods. 



CHAPTER ONE 

INTRODUCTION 

1.1 Marine Geochemistry of Uranium 

The concentration of uranium in the open ocean has been 

found to be roughly constant, varying only with salinity 

(Sackett and Cook, 1969; Turekianand Chan, 1971; Burton, 

1975; Ku et al., 1977), but, in nearshore and coastal 

waters, it is variable, being primarily related to the 

uranium contents of rivers entering these zones (Blanchard 

1. 

and Oakes, 1965; Sackett and Cook,1969; Bhat and Krishnaswami, 

1969; Bhat et al., 1969; Borole et al., 1977; Martin et al., 

1978 a,b; Nikolayev et al., 1979; Maeda and Windom, 1982; 

Borole et al., 1982). 

The behaviour of uranium in the estuarine zone, however, 

where mixing of these marine and riverine end-members occurs, 

is not well known. This mixing region is one in which 

the uranium input in fresh water could be either enhanced, by 

leaching from particulates, or lowered, by adsorption or 

flocculation and scavenging. In either case, the finite input 

from rivers and the constancy of the sea water content call for 

the removal of uranium from solution in areas on or beyond the 

continental shelves. Many such sinks have been identified 

and attempts made to quantify them. They include nearshore 

carbonate deposits (Sackett and Cook, 1969); organic-rich 

anoxic sediments, (Veeh, 1967; Mo et al., 1973; Kolodny and 

Kaplan, 1973) metalliferous ridge-crest deposits (Fisher and 

Bostrom, 1969; Bertine et al., 1970; Bender et al., 1971; 

Veeh and Bostrom, 1971; Bloch, 1980) and oceanic basalts (Aumento, 

1971; Macdougall, 1977; Bloch, 1980). Minor removal occurs 

in the pelagic clays and silicious oozes (Cochran, 1982). 

The continuous chemical diagenesis within deep-sea 

sediments can give rise to reducing conditions at depth and 

there concentrations of uranium in both the solid phase 

(Bonatti et al., 1971; Boulad and Michard,'1976; Aller and 

Cochran, 1976) and in pore waters (Baturin and Kochenov, 1973; 

Boulad! -



Boulad and Michard, 1976) which are enhanced over the oxic 

core sections above, have been observed. Diffusion upwards 

into the overlying sea water may result in a globally significant 

uranium flux if such sediments cover a sufficiently large area 

of the sea floor. Most workers, assuming a steady state for 

uranium, have performed calculations to establish whether or not 

the various known inputs and outputs indicate a balanced uranium 

bUdget and to derive limits for the flux values (Veeh, 1967; 

2. 

Bhat and Krishnaswami, 1969; Ku et al., 1977; Turekian and Cochran, 

1978; Mangini et al., 1979; Borole et al., 1982). 

Naturally-occurring uranium consists of three isotopes, 

namely 238u , 235u and 234
u , the former two being the primordial 

parent nuclides of two separate decay series which ultimately 

yield the stable isotopes 206pb and 207 pb respectively (Figure 1.1). 

Little natural fractionation of 238u and 235u has been observed 

and thus today almost all terrestrial materials contain 235u in 

constant ratio to 238u i.e. in a 238u/235u atom ratio of 137.88. 

[The one notable exception to this generality is at the natural 

fission reactor environment in Oklo (Gabon), a uraninite deposit 

where considerably lower 235u contents have been found due to 

Consumption in a natural reactor occurrence some 1.8x109years ago 

(West, 1976) ]. The third isotope of uranium, 23 4
u , is an 

intermediate daughter in the decay series of 238u and is formed 

from this precursor by the emission of one a and two ~ particles 

(Figure 1.1). At secular equilibrium, therefore, the abundance 

ratio of 234u/238u in atomic terms is equal to the corresponding 

h 234 -3 alf-life ratio, i.e. U comprises only 5.6 x 10 % of total 

natural uranium (Rogers and Adams,. 1969). Since chemical 

fractionation processes for these heavy nuclides might be expected 

to be negligible in the natural environment, the a- activity ratio 
234 238 

of U to U should equal the secular equilibrium value of 

1.00 and that for 235u/ 238u or 235u/234
u should be 0.046, as 

calculated from the equation 

A = ~ N 
M 

Here/ 

........................... (1 .. 1) 
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Here, A is the activity in disintegrations per unit time per 

unit mass of the particular uranium isotope, x is the mass of 

uranium isotope present and M is its atomic mass, N is Avogadro's 

constant and t; is the half-life of the particular isotope. 

However, as early as 1955, Cherdyntsev observed large fractionations 

of the isotopes 23 4u and 238u in rocks and in their leach 801utions 

4. 

234 238 
(Cherdynstsev et al., 1955), while.Thurber (1962) later found ul U 

activity ratios greater than 1.00 for ocean water, as inferred 

from carbonate deposits. It soon became apparent that such 

uranium disequilibrium was widespread, occurring in most natural 

waters and sediment samples, with the equilibrium situation being 

exceptional. 

The principal sources of uranium are in continental igneous 

rocks, particularly the silicic type in which uranium is 

concentrated relative to ultramafic rock. These contain one or 

more ferromagnesian minerals with little or no silica indicating 

that uranium is strongly fractionated from other elements into 

earlY-melting, silica-rich phases. Uranium is distributed in the 

igneous rocks mainly as minor or major components of accessory 

minerals like zircon and monaZite, and by adsorption onto crystal 

and grain boundaries. Fission-track studies (Hamilton, 1966; 

Fleischer et al., 1975) have confirmed such distribution patterns. 

The solubility of uraninite, UO , in distilled water is very 
-1 2 

low being <O.Olugl between pH 2 and 7 (Langmuir,. 1978), 

but increases by several orders of magnitude in oxidising 
2+ environments due to the formation of the uranyl ion U0

2 
,its 

sOlubility being enhanced in the presence of complexing ions 

(Allard et al., 1984). The important uranyl species between 

PH 6 and 8 are U0 20H+ and (U02 )3(OH)5 when other complexing 

ions are absent but, even at low concentrations of CO
2

, the 
2( -1)-mono-, di- and tricarbonate complexes UO (CO) n (n=1,2,3), 

2 3 n 
.~re the dominant species (Langmuir, 1978; Allard et al., 1984). 
A 2-nother soluble complex, U02 (HP04 )2 ,can also be formed between 

PH 4 and 7.5 at phosphate concentrations as low as ,Q.1ppm. 

andl 
Humic 



and fulvic substances can also be responsible for the mobility 

and deposition of uranium (Halbach et al., 1980) due to the small 

changes in pH which govern the solubility of the uranium humates 

and fulvates. If dissolved phosphate concentrations are low, 

complexation by such organic compounds may reduce the uranyl 

ion to the uranous state due to the decreasing redox potential 
~ .... -'" ...... , 

associated with the oxidation of organic matter in early diagenesis 

(Froelich et al., 1979). This ability of uranium to undergo 

inorganic/organic dissolution and reprecipitation is probably the 

most important natural process to cause disequilibrium between 

234u and 238u (Gascoyne, 1982). In conjunction with this, however, 

various physico-chemical processes have been proposed to explain 

the small excesses of 234u and some of these postulated mechanisms 

have been substantiated by laboratory experiments. Osmond and 

Cowart (1976) classified the various radiogenic fractionation 

processes which favour the preferential removal from minerals of 
th 234 e uranium daughter. These were (i) direct transfer of U into 

SOlution by a-recoil across the solid/liquid phase boundary, (ii) 

increased vulnerability to leaching of a-recoiled 234u arising from 

bond breakage and lattice disruption, the daughter atom ending up in 

an unstable location, and (iii) oxidation of 234u by removal of 

orbital electrons during a decay of 238u or during {3deCayof the 
it· 234 234 234 6+ n ermediate nucl1des Th and Pa, ultimately forming U , 

Or oXidation due to the change in energy levels between the original 
238 

U atom site and the dislocated site occupied by its a decay 
product. The uranyl ion so produced is more soluble than its 

5. 

uranous predecessor. Process (i) was demonstrated by Kigoshi (1971), 

Who showed that there was a time-related increase of 234
Th in the 

aqueous phase of a suspension of zircon powder (360ppm uranium), and 

by Fleischer and Raabe (1978), who showed by inducing fission that 
da h 235 239 ug ter U atoms from a Pu02 source were directly embedded in a 

qUartz detector placed 0.5mm distance away. Fleischer (1980) has 

'also indicated that, in addition to direct recoil ejection into 

the surrounding liquid (process (iii)), a second mechanism of 234u 

disPlacement results when recoiled nuclei become embedded in 

adjacent grains producing a -recoil tracks which are subsequently 

etched/ 



6. 

etched by natural solutions and release some of the recoil nuclei. 

The outcome of all or SOme of the above frationation processes is 

to produce natural waters whose 234u/238u a-activity ratio (A.R.) 

is >1.00. This is more readily seen in groundwaters and aquifers 

(Osmond and Cowart, 1976; Asikainen, 1981; Osmond and Cowart, 1982) 

where minerals and waters are intimately mixed. Here, surface areas, 

porosity and water residence times have large values and the 

Physico-chemical fractionation processes have enhanced opportunities 

to operate and manifest themselves. Groundwater samples with A.R. 

values of greater than 30 have been analysed (Osmond and Cowart, 1982) 

with a general inverse correlation between the A.R. in groundwaters 

and uranium concentration being found. The latter observation is 

eXplained firstly by the loss of uranium from solution to mineral 

Surfaces in the aquifer when reducing conditions are prevalent and 
234 seCondly by subsequent a-recoil of some surface-adsorbed Th to 

increase the solution 23 4
u/238 u A.R. Just as the aqueous phases take 

on an A.R. >1.00, the accompanying solid phases have a resultant 

A.R. of <1.00. The weathering of continental rocks to produce 

soils results in loss of 234u relative to 238u and yields typical 

A. R. values of -0.9 in soils and -1. 3 in runoff waters 

(Sackett and Cook, 1969). On erosion, soils can adsorb dissolved 

uranium from runoff with A.R. >1.00 and topsoils of high organic 

content can show a progressive increase in A.R. from -0.9 to 

-0.95 or greater (Rosholt et al., 1966). Sackett and Cook (1969) 

showed high uranium concentrations (5 to 8 ppm) and high A.R. 

values (1.04 to 1.18) in sediments from the Pettaquamscutt river 

and postulated that these values might be attributable to the 
6+ 4+ 

reduction of dissolved U to U and its uptake into the sediment. 

By extracting only the surface-adsorbed uranium from sediment 

particles, using an ammonium carbonate leach, Joshi and Ganguly 

(1976) found that the A.R. values of these leachates were in the 

~ange 1.12 to 1.14, the same as in overlying waters. This finding 

was shOWn to be consistent with an adsorption of uranium from the 

water. This adsorption could be due either to the presence of 

organic carbon itself or to the uranium reduction in the low Eh 

conditions commonly associated with it. In contrast, near-

equilibrium activ"ities were found in the leached residues. 

In/ 
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In rivers, there is a large variability of uranium concentrations, 
-1 -1 

from 0.02ugl for the Amazon (Bertine et al., 1970) to 6.6ugl 

for the Ganges (Bhat and Krishnaswami, 1969). The average A.R. 

values which are generally accepted as being representative of 

rivers are between 1.20 and 1.30 (although values as high as 

2.03~ 0.08 have been found (Scott, 1982», these values again 

reflecting the frequent disequilibrium situation. The higher 

uranium concentrations found in some rivers have occasionally 

been partly attributed to anthropogenic activity, particularly 

to the uranium present in phosphate fertilisers (Spalding and 

Sackett, 1972), but other rivers with catchment areas of low 

fertilisation can also show relatively high uranium values 

(Bhat and Krishnaswami, 1969), contradicting this pollution 

effect. Furthermore, no definite uranium - phosphate relationship 

in rivers of cultivated, industrial areas has been found. Mangini 

et al., (1979) calculated that less than 0.01% of the phosphate 

from applied fertilisers passes into ground or river waters in a 

well-fertilised German farming area, the vast majority being 

retained in the uppermost soil layers. If uranium transport 

Was similar to that for phosphate, then the uranium contamination 

wOUld amount to less than 0.004 ugl-1 • Mangini et al., (1979) 

did find that the ground water uranium content was well correlated 

With HC0
3
- content. This resemblance reflects the dominance in 

natural waters of the highly soluble anionic uranyl carbonate 

Complexes (Langmuir, 1978). Thus Mangini et al., (1979) suggested 

that the uranium concentration in surface waters depends on the 

HC03- concentration in river water and that high HC0
3 

values, rather 

than fertiliser contamination, is the cause of the high uranium 

Contents sometimes observed. Positive correlations between 

uranium content and total dissolved solids (T.D.S.) (Bhat and 

Krishnaswami, 1969; Turekian and Chan, 1971) and the sum of 

major cations (Borole et al., 1982) have also been found, 

. indicating that the uranium content in rivers is primarily 

dependent upon the intensity of weathering (Turekian and Cochran, 

1978)./ 



1978). This mutual correlation of HC0
3 

and T.D.S., however, 

was considered by Scott (1982) to be inevitable since HC0 3 
is the major anion present in most river waters and is 

therefore expected to correlate with T.D.S. by the constraints 

of charge balance. The pollutant effect of phosphate 

fertilisers was studied in detail in the Charente estuary 

which receives large releases from a phosphate processing plant 

(Martin et al., 1978a). This effluent, enriched in-' uranium, 

increased tQe soluble uranium concentration in the river from 
-1 -1 0 0.4 ugl to 2.0 ugl at chlorinities of~0.03 /00, and both 

uranium and phosphate removal during estuarine mixing was 

observed. In this case, then, an estuary is acting as a sink 

for soluble uranium. Most other studies on unpolluted estuaries, 

however, show that uranium behaves more or less conservatively 

during mixing (Borole et al., 1977; Martin et al., 1978a; 

Martin et al., 1978b; Borole et al., 1982; Maeda and Windom, 1982). 

although at low salinities <100/00) some evidence of uranium 

removal has been indicated (Borole et al., 1982; Maeda and Windom, 

1982) • As pointed out by Scott (1982), the quantities of uranium 

adsorbed on to particulates must be negligible and should make no 

appreciable difference to the mean riverine uranium input values 

currently being used for mass balance purposes. The inputs of 

8. 

the stably-dissolved uranium isotopes from rivers to the ocean 

SUmmate to fluxes which can be determined from estimates of average 

uranium concentrations in river waters if conservative estuarine 

behaviour is assumed. Mangini et al., (1979) and Borole et al., 

(1982) have both calculated a mean riverine uranium concentration 

of 0.3 ugl-1 using different approaches and indicated that the 

A.R. of river waters should be about.1.2. In a steady-state 

geochemical mass balance model incorporating a 234
u diffusional 

-2 -1 
input of 0.3 dpm cm kyr from marine sediments, Ku et al., (1977) 

Placed limits on the values of the uranium content and A.R. in 

river waters using the observed inputs of 234u and 238U and their 

open ocean values. 

uranium/ 

-1 A range of 0.1 to 0.3 ugl for the riverine 



uranium content resulted, with an A.R. of between 1.2 and 1.3. 
234 Neglecting the U input from sediments yields higher values, 

-1 
for both parameters, of 0.5 ugl and 1.3 respectively (Osmond 

and Cowart, 1976a). 

Uranium, however, is transported to the sea not just in 

surface runoff water and dissolved in groundwater but also in 

water - transported detrital sediments. The amount transported 

in Surface water is much greater than that in groundwaters and the 

latter source may be neglected, but the uranium transported by 

solids is about 5 times that carried in the dissolved state 

(Osmond and Cowart, 1976a). Rapid deposition of most of this 

material to sediments on the continental shelf region leads to 
-1 

low particulate concentrations in the sea (average -100 ugl 

Chester and Aston, 1976) resulting in the observation (Baturin, 

1973; Ku et al., 1977) that )99.7% of the uranium in sea water 
i 10 -1 s dissolved. The river supply of about 1 to 2 x 10 g U yr 

9. 

to the ocean (Mangini et al., 1979; Bloch, 1980; Borole et al., 1982; 

Cochran, 1982) can be used to calculate the mean residence time of 

For a mean uranium concentration of uranium in 
+ 

3.35- 0.20 

the oceans. 
-1 

ugl (Ku et al., 1977) and assuming an ocean volume 
of 1 21 . . ·37 x 10 I, the total amount of uran1um 1n the oceans is 

(4.59~ 0.27) x 1015g, which, together with the above river supply 

rate of uranium, yields a residence time of about 2.3 to 4.6 x 
5 

10 yrs. If the uranium concentration of sea water is to be 

maintained at a constant value, then the uranium output or 

removal must balance its input over a period of several of these 

residence times, under steady-state conditions. Thus, if the 

area of the world ocean is taken.as 3.6 x 1018cm2 (Turekian, 1967), 
-2 -1 a mean uranium deposition rate of 3 to 6 ug em kyr is required 

t 10 -1 
o balance the 1 to 2 x 10 g yr input. A review of the 

Contribution to such a uranium removal rate from various widespread 

and localised sites has been given in a detailed account by 

Cochran (1982). 

are/ 
It should be realised that the sinks discussed 

\ 



are equally applicable to 234
u as to 238u • By far the most 

significant uranium sink was claimed by Bloch (1980) to be the 

uptake of uranium by the low temperature weathering of oceanic 

basalts. A basalt thickness of 1000m was shown to be capable 
10 -1 of removing about 1.2 x 10 gUyr ,more than 60% of the input 

value. Removal into the carbonate sediments of the continental 

shelf and into the anaerobic sediments of the continental 

shelf and slope, in fjords and anoxic basins, due either to the 

formation of the relatively insoluble U4+ or the adsorption or 

complexing of uranium with organic matter, has been demonstrated 

by Veeh (1967) ,Sackett and Cook (1969), Kolodny and Kaplan (1973) 

and Mo et al., (1973). A recent uranium oxidation state study 

(Anderson, 1984) in the Cariaco Trench, an anoxic marine basin 

with significant concentrations of H
2
S, has revealed the virtual 

absence of u4+ thus "favourl. ng the adsorption/complexation 

10. 

mechanism for uranium uptake into anaerobic sediments. Veeh et al., 

(1974) have shown that the organic-rich sediments off south-west 

Africa, with their high uranium-containing phosphorites, represent an 
a -2 -1 verage uranium accumulation rate of 500ug cm kyr This 

value may be locally significant but, as the region constitutes 

only about 0.01% of the world ocean, the scavenging mechanism 

does not necessarily represent a globally-important uranium sink. 

Metalliferous ridge-crest sediments can account for the removal 

of about 1.4x109 guyr-1 (Bloch, 1980), a value derived from an 

estimated hydrothermal iron supply rate and an avera~e Fe/U ratio 

for metalliferous sediments. This flux represents a removal of 

less than 7% of the input by rivers. Ridge~crest deposits have 
234 238 

a U/ U ratio characteristic of sea water (Veeh and Bostrom, 

1971), consistent with their incorporation of uranium from sea 

water by adsorption on to, or coprecipitation with, Fe-Mn 

oXides. The possible importance of hydrothermal circulation at 

these ridge crests to the uptake of uranium was highlighted by 

,Cochran (1982) using the evidence of Edmond et al., (1979) that 

water debouching from hot springs from one such spreading centre 

is depleted in uranium. Uranium concentrations of yP to 500ppm 

have/ 



have been found in ridge crest sediments (Lalou and Brichet, 1980). 

Further work is required, however, to confirm the magnitude of the 

effect (possible removal of up to 50% of the uranium flux from 

rivers). Deep-sea clays and silicious oozes play only a minor 

role in the removal of uranium, being responsible for the uptake 
-2 -1 . 

of only about 0.04 ugcm kyr (Krishnaswami, 1976) i.e. about 

1% (Cochran, 1982), and (2% (Bloch, 1980) of the river uranium 

input respectively. 

11. 



1.2 Deep Sea and Nearshore Pore Waters 

The pore waters, or interstitial waters, of sediments are 

the aqueous solutions which occupy the pore spaces between the 

sedimentary particles or grains which constitute the solid 

phase. These pore waters represent the most important 

migration medium for the recycling of diagenetically-produced 

chemical constituents through the sediments, mainly by slow 

molecular diffusion. Since the mass ratio of solid to 

liquid in the sediments is high, chemical changes which 

may be undetectable in the solid phases can give rise to 

large signals in the pore waters and so these solutions 

act as the most sensitive indicators of chemical reactions 

within the sediments. Thus, by profiling the pore water 

concentrations of natural constituents with depth in the 

sediment column, estimates of diffusion can be obtained, 

and the kinetics and mechanisms of chemical reactions 

Occurring within the sediment can be elucidated. Alteration 

of the concentrations of pore water constituents by chemical 

reaction or by complexing with organic or inorganic ligands, 

can lead to gradients and fluxes of constituents upwards to 

12. 

Or downwards from the sediment/sea water interface, factors which 

can influence the overall geochemical balance within the 

oceans. The nature and extent of postdepositional changes 

are most fundamentally determined by the redox potential 

of the sediment, which in turn depends primarily. on the 

presence of free oxygen or on the amount and type of organic 

matter present. Other electron acceptors present are either 

thermodynamically (Froelich et al., 1979) or kinetically 

(Muller and Mangini, 1980) less favoured. The chemical 

species determining the actual redox potential are not well

defined, the problems involved in its operational measurements 

being numerous (Berner, 1971). Eh, as understood in the 

thermodynamic sense, is usually not directly measurable because 

many of the species which are involved in important sedimentary 

redox/ 
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2- + 
redox reactions (S04 ,N2 , N03 ' NH4 ' HC0 3 ' CH 4 ) are not 

electroactive, i.e. they do not readily accept or donate electrons 

at the surface of the Pt or Au electrodes used. Most oxidation-

reduction reactions in natural waters, which are in a highly 

dynamic rather than near-equilibrium state, also have a tendency 

to be much slower than acid-base reactions. Meaningful Eh results 

are obtained only if reversibly reacting components are present 

in sufficient concentration and if exchange processes at the 

electrode surface take place rapidly enough. However, Stumm 

and Morgan (1981) have discussed ,extensively the interpretation 

of measured potentials and the usefulness of pE - pH diagrams, 

and the Nernst equation,while Whitfield (1974) has discussed 

some limitations of redox measurements due to coatings on the 

Pt surface. In any case, it is known that gradual oxidation 

of deposited organic matter results in the establishment of 

reducing conditions at depth in a sediment. Since both the 

amount of organic matter deposited and its rate of burial 

(sedimentation rate) is greater nearer the continents, on the 

Shelf region, there exists an inverse correlation between the 

organic carbon content of the surface sediment and the thickness 

of the oxic zone (Lynn and Bonatti, 1965). This oxic zone 

thickness can be inferred from a distinct colour change in the 

sediment core from red/brown to green/grey (depending on 

lithOlogy), a transition which has been shown to be a marker of 

the Fe(III) - Fe(II) redox boundary (Lyle, 1983). 

13. 

It is generally assumed that organic carbon is oxidised 

continuously. in a sediment by a sequence of energy-yielding reactions 

in which the energy produced per mole of organic matter oxidised 

decreases. The simplest model of this organic diagenesis assumes 

that marine organic matter has Redfield composition (Redfield, 

1958), i.e. (CH 20)106(NH 3\6(Hl04), with the oxidants being 

utilised to depletion before further oxidation by the next most 

effiCient (free-energy prOducing) process lFroe~ich'et a~., 1979; 

Stumm/ 
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Stumm and Morgan, 1981). In a closed system, in which the reductant 

(organic matter) supplies electrons firstly to the lowest unoccupied 

energy level of the oxidant, the sequence of reactions (Froelich 

et al., 1979) is utilisation of oxygen in the oxic environment, 

manganese,iron and nitrate in suboxic environments, and sulphate 

in anoxic environments. Anaerobic fermentation of organic 

matter may also occur in a strongly-reducing anoxic environment 

giving rise to a methanic environment (Berner, 1981). The latter 

is not too important, however, at the shallow depths reached by 

Corers in the deep sea. The order of nitrate and Mn02 reduction 

depends on the stoichiometry of the nitrate reduction reaction 

(denitrification), the products formed (N
2 

alone or N2 plus NH
3

) 

and also on the Mn0
2 

phase being reduced. There will usually be 

Overlap, therefore, between the nitrate and manganese reduction 

Zones. These early interpretations are mechanistic and qualitative 

and are consistent with the shapes of pore water profiles. Further 

information on the rates of particular reactions is required 

(Jahnke et al., 1982) to evaluate the magnitude of elemental sinks 

.within the sediments and to estimate concentration gradients near 

the sediment/water interface. Figure 1.2 shows a schematic 

representation of the changes in concentration of some of the major 

redox indicators in pore waters (after Froelich et al., 1979). 

Sawlan and Murray (1983) have shown that the changes occurring in 

trace metal diagenesis, in a transect from oxic pelagic red clays 

through sUboxic terrigenous hemipelagic sediments to highly

reducing shelf sediments, is essentially due to the oxidation of 

organic matter during early diagenesis. For the pore waters 

stUdied, Sawlan and Murray (1983) found that manganese and iron were 

below detection in the oxic red clay sediments where only aerobic 

respiration was occurring. In the reducing hemipelagic sediments, 

however, denitification was occurring and manganese and iron 

,redUction to the Mn
2

+ and Fe
2

+ species led to their solubilisation 

and remobilisation. stations at which nitrate was being consumed 

within the top 10 - 15 cm of the core had interstitial manganese 

gradients which extended closest to the sediment/bottom water 

interface. 

reduction/ 

In the highly-reducing shelf sediments, sulphate 
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reduction was indicated from the high alkalinity values 
-1 (5 - 14 meqkg ) reached at depth in contrast to the idealised 

-1 
values of open ocean waters (2.2 to 2.3 meqkg (Broecker and 

Peng, 1982». Nitrate was totally consumed in all shelf sediments 

and high dissolved manganese levels were measured even at the top 

0-2cm sampling interval, while the surficial manganese oxidation 

Zone characteristic of the hemipelagic. sediments was either 

confined to a thin layer at the core top or was absent altogether. 

Diffusive fluxes across the sediment/sea water interface have 

been observed both in the deep sea and in nearshore environments 

for Some of the major and trace constituents of sea water, these 

arising from diagenetic changes in pore water concentrations. 

Such fluxes have been illustrated for silica (Fanning and Pilson, 

1974), trace metals (Elderfield and Hepworth, 1975; Eaton, 1979; 

Balzer, 1982; Klinkhammer et al., 1982; Sawlan and Murray, 1983) 

and major elements (Sayles, 1979; Sayles, 1981). 

In addition to the aforementioned sediment-water exchange 

of major and trace metals and nutrients, it has been recognised 

for a longer time that the naturally-occurring radioactive 
·t-"'cer 226R 228 222 .. t' tt . 
L~ S a, Ra and Rn have d1str1bu 10n pa erns 1n sea 

water that are consistent with their diffusion from sediments. 

SUPPort for this idea came from the work of Koczy (1958) who 

found an increase with depth in the 226Ra concentration and 

proposed this isotope as a useful tracer for mixing.studies. 

SUch tracer studies have been carried out for 226Ra (Chung and 

16. 

C 228 222 raig, 1980), Ra (Moore, 1969) and Rn (Broecker et al., 1968). 

In the East Equatorial and North-east Pacific, the 226Ra increase 

in the near-bottom waters (Chung et al., 1974; Chung, 1974) 

reflects a strong input from the sediments, with the flux varying 

as a function of sediment type. 

variation for 226 Ra , 0.0015 dpm 

A two orders of magnitude flux 
-2 -1 

cm yr (Atlantic) to 
o -2 -1 , .21 dpm cm yr (N.Equatorial Pacific) was found by Cochran (1980) 

Using 226Ra/230Th disequilibrium patterns in cores, showing a 

non-linear inverse correlation with the sedimentati0n rate. If the 
226 230 sedimentation rate is high, then Ra and Th penetrate to 

greater depths and the radium therefore has a longer path length 

out/ 



out of the sediment. Somayajulu and Church (1973) and, more 

recently, Cochran and Krishnaswami (1980) have produced pore 

water 226Ra measurements which show that concentrations of up 
-1 

to 14.19 dpm kg ,a factor of 35 greater than typical bottom-

water levels, can be present, a situation which would certainly 

result in a sediment to sea water flux. Indeed, there is 

little doubt that 226Ra diffuses upwards, since only about 1% 

of the 226Ra present in sea water is produced from the parent 

230Th • The marked vertical 226Ra gradient in most of the ocean 

regiohS studied -was interpreted as indicating this isotopes 

release from interstitial waters in accord with the considerable 

mObility of Ra2
+ in chloride containing waters (Levinson et al., 

1982), a mobilisation thought to be enhanced by ai-recoil on 

production by decay of its immediate, surface-adsorbed parent, 

2
3
0Th • This recoil may directly transfer the atom from the 

sediment solid phase to the aqueous phase (pore water) (Kigoshi, 

1971) or render it more susceptible to leaching from its 

radiation - damaged lattice position (Fleischer and Raabe, 1978). 

Decreases in the concentration of 228Ra with height above 

the sediment/water interface was observed by Sarmiento et al., 
( 226 1976), a feature analogous to Ra, but since its half-life is 

mUch shorter (5.75 yrs), its concentration decreases more 

17. 

rapidly to equilibrium with its parent 232
Th , which is essentially 

zero in sea water. Again, both the pore water studies by 

Somayajulu and Church (1973) and Cochran and Kri.shnaswami (1980) 

showed that the 228Ra in the pore water was enriched relative to 

bottom water. Reported results (Broecker, 1965; Key et al., 

1979) indicate that pore water 222Rn concentrations are high 

(10
2 

to 104 dpm kg-I) relative to those of 226 Ra • This daughter/ 

parent fractionation arises because the ai-recoiled 222Rn , not 

being chemically reactive, is not subjected to the removal processes 

undergone by 226Ra such as adsorption onto minerals and particles. 

The 222Rn is then free to diffuse into bottom waters where it 
222 226 

produces high Rn/ Ra ratios and mixes vertically in the 

water/ 



water column residing there an average of 5.5 days before 

undergoing radiodecay (t
i 

= 3.824 days). A near-exponential 

decrease in 222Rn activity with distance from the seafloor 

has been shown by Sarmiento et al., (1976). 

As far as uranium is concerned, there is a scarcity of 

reliable data on its pore water concentrations and behaviour, 

a situation which is attributable to the difficulties involved 

in sampling, from different sediment depths, the volumes 

necessary (hundred of ml) for accurate uranium analysis by 

Q! - spectrometry. Indeed it is the ability of fission track 

.LV. 

analysis to enable uranium analysis of small ~0.1 ml) samples 

which provided the stimulus for the detailed study here. 

Furthermore, it will be shown later (section 3.2) that it is 

preferable to obtain uranium data from the relatively smaller 

vOlumes sampled by an in-situ pore water sampler rather than 

squeezed core samples. 

The earliest studies, by Baturin (1971) and Baturin and 

Kochenov (1973) on squeezed pore waters f~om the Atlantic and 

Pacific oceans and the Black Sea gave an overall range of 1.3 

t -1 
o 650 ugl U, using a chemical luminescence method. In 

sediments of different type, 
-1 

the ranges were 1.3 to 650 ugl U 
-1 

for the diatomaceous oozes from the Atlantic shelf, 3 to 190 ugl 

for the terrigenous and calcareous oozes from the S.E. Atlantic 
-1 continental slope, 1.3 to 65 ugl for the deep-water Atlantic 

-1 oozes, 2 - 13 ugl -1 
for deep water Pacific clays and 2 - 65 ugl 

for Black Sea sediments, indicating that, on average, the uranium 

Contents of interstitial waters are much higher than the typical 
-1 

ocean water value of 3.3 ugl (Ku et al., 1977). The authors 

claimed that the uranium content of the interstitial waters was 

controlled by the parameters Eh, pH and the U and organic carbon 

contents of the sediment. The high pore water U contents in the 

continental shelf pore waters corresponded to very high levels 

of dissolved organic matter (DOM), an observation which may 

indicate that part of the enhanced uranium in the pore waters is 

associated/ 
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associated with some form of DOM, such as colloidal organic matter 

of fulvic acid type. Kolodny and Kaplan (1973), in their studies 

on pore water uranium in sediments from an anoxic fjord in the 

Saanich Inlet, found a range of 4.5 - 120 ugl-1 and illustrated 

that the amount of uranium dissolved in the pore waters appeared 

to be a function of (a) the amount of organic matter present 

in the sediment and (b) the state of reduction of the solid-phase 

uranium. The authors reasoned that, since the NH
2

0H.HCl 

and H202 - leached authigenic fractions of the sediment had a 

similar 234u;238u activity ratio to the interstitial waters 

themselves, then the uranium concentrations and activity ratios 

in these waters were a result of their interaction with the 

Co-existing solid phases. If this is the case, and if the solid 

Phase in equilibrium with the interstitial water is a simple 

U (VI) oXide, then the amount of uranium passing into solution 

Should be a strong function of dissolved CO
2 

in the water, a 

situation expected due to the well-known stability of uranyl-

carbonate complexes (Langmuir, 1978). If, on the other hand, 

the solid phase is a U (IV) compound then the amount of dissolved 

uranium may strongly depend on the redox potential of the local 

environment, especially if the Eh is close to that required for 

U (IV) oxidation to U (VI). From a leaching experiment with 

Na2C0
3 and NaOH, on one sample, the authors tentatively proposed 

that more than half of the authigenic uranium in the studied 

sediment was associated with organic matter, 50% of ' which was probably 

complexed as humates. It was also suggested that since only a 

small proportion (mean of 24.4%) of the total uranium in the 

sediment was removed in the first fraction (NH
2

0H.HCl leach), then 

it was complexed by organic matter, rather than just adsorbed by it. 

This suggestion is in accord with the good uranium-organic carbon 

Content correlation found (r = 0.9). A possibility not considered 

by KOlodny and Kaplan (1973) was the increase in phosphate ions 

,expected in the pore waters at the low Eh values encountered, 

which could compete with carbonate in complexing uranium. In a 
stUdy; 



study of the geochemistry of uranium in the Black Sea, further 

interstitial uranium data were obtained by Zhorov et al., (1982) 

using adsorption-colorimetry. Uranium concentrations in 

squeezed pore waters varied by more than an order of magnitude, 

20. 

-1 1 from 3.1 to 70 ugl as compared with the mean bottom water va ue 

of 1.9 ugl-1 • The higher uranium concentrations occurred in 

interstitial waters in zones of active sulphate reduction which 

were characterised by elevated values of pH and alkalinity. 

Lower uranium concentrations were present in zones of weak 

sUlphate reduction (low pH and alkalinity) allegedly due to 

the favourability of formation of the species U0
2

C0
3
° which 

dominates in carbonate solutions at pH values between 4.5 and 

6.5. Thus the maximum adsorption of the uranium on sediments 

occurs 

minimum 

believe 

at a pH corresponding to electrical neutrality and 
, 0 

solubility of the species U0
2

C0
3 

' which the authors 

is the complex governing the transfer of uranium from 

the solution to the solid phase. 

Somayajulu and Church (1973) analysed a composite pore 

Water sample consisting of equal volumes of waters squeezed from 

every 20cm of an Eastern Equatorial Pacific core by moderate 

hYdraulic pressing in a teflon squeezer. The authors assayed 

uranium, in the 800 ml sample by a-spectrometry and found a 

concentration of 1.9 Ugl-1 and a U234/U238 isotope activity ratio 

Of 1.19 ~ 0.15, a value which cannot be distinguished from either 

the equilibrium value of 1.0 or from the value reported for 
+ 

normal sea water, 1.14 - 0.02 (Ku et al.,1977). Since large 
uranium concentration gradients have already been observed for 
uranium in sediment pore waters (see above), the value of such 

composite sample results is in question, and the large errors 

involved in such data highlight the need for improved sampling 

techniques to provide greater pore water volumes from different 

sediment depths and/or the development of a more sensitive 

analytical technique. 

waters/ 

Reported values for uranium in pore 



21. 

waters from two southern ocean cores, (Dysart and Osmond, 1975a) 

using a new method of extraction (silica gel as dehydrating agent) 

revealed greater values than sea water for a pelagic mud (range 
-1 -1 

11.9 to 21.6 ugl ) and for a silicious ooze (range 1.0 to 6.8 ugl ). 

The observed initial decreases with depth in the 234u/238u 

activity ratio from about 1.44 + 0.06 to 1.25! 0.06 and from 
+ + about 1.38 - 0.06 to 1.04 - 0.04 respectively, were regarded as 

inconsistent with simple diffusion of 234
u upwards and out of 

the sediment as proposed by Ku (1965). High thorium concentrations 
-1 

in the pore waters, however, ranging from 40 to 199 ugl 

(Dysart and Osmond, 1975b), were over six orders of magnitude 
-5 -1 greater than that present in ocean water (6 x 10 ugl ~ 

Moore, 1981) and about four orders of magnitude greater than 
-1 

found in other deep-sea sediment pore waters (0 to 0.023 ugl 

Cochran and Krishnaswami, 1980). This discrepancy indicates 

that their silica-gel dehydration technique may have been 

SUbject to some contamination by sedimentary particles. Thorium 

was not detected in the pore waters from cores taken in the 

Angolan Basin, S.W. Atlantic by Boulad and Michard (1976). 

All four box cores exhibited a yellow/brown to grey colour 

change, evidence of a redox barrier, above which the cores were 

oxic with -1% organic carbon and below which they were reduced 

With ..... o. 6% organic carbon at 25 cm. Uranium was again more 

abundant in the reducing zones than in the oxidising zones for 

both sediments and pore waters. The small (40 to 100 ml) 

Samples analysed by a-spectrometry necessitated long counting 

times of 100 hours. Pore water uranium ranged from 2.7 to 

27 ugl-1 , again demonstrating that higher values than in sea 

water are found in reducing sediment pore waters, a situation 

which has some similarity to manganese and iron (Figure 1.2). 

The 234u/238u activity ratios were indistinguishable from sea 

Water due to the large errors, but may have been a little 

greater near the top of the cores. 

calculated/ 

Boulad and Michard (1976) 



calculated that the uranium in the reducing zone of the cores 

could theoretically just exist in the 4+ oxidation state, by 

deducing pE limits from oxidation states of the major elements 

Fe and Mn. In the top oxic zones, where solid phase Mn0 2 
was abundant with little dissolved Mn, the pE was estimated 

as greater than or equal to 8 (Eh ~ + 1.012v). In the 

reducing zone where iron was reduced and in equilibrium with 

sOlid phases, the pE was of the order of -3.6 (Eh~- 0.454v). 

The electron activity, pE, and the redox potential,Eh, are 

related (Stumm and Morgan, 1981) by the equation: 

pE = Eh/2.3 RTP-l .......... (1.2) 
. 0 -1 -1 

Where R is the gas constant (8.314 J K mol ), T is the 

absolute temperature (oK) and F is the Faraday constant 
( 4 -1 0 -1 -1 
9.649xl0 Cmol ). At 25 C, RTF equals 0.059 V mol and 

at 4°C equals 0.055 V mOI-1 . Since direct Eh measurements 

Were not performed on the cores described by Boulad and 

Michard (1976), only quantitative estimates could be obtained 

by use of pH-Eh-P diagrams (Garrels and Christ, 1965) and 
CC 

the expression: ~ 

pE = 5.18 - pH - log I:C0
2 

+ I log L:U ..•.. (1.3) 

which governs the redox equilibrium in the pH range 6 to 9 

between the species U0
2

(C0
3

)22- and U0
2

. Uranyl complexes 

are far more soluble than uranous species. The dO!llinant 

22. 

SpeCies present in solution will depend on the Eh/pH conditions, 

the Concentration and availability of complexing ions and the 

temperature. The carbonate complexes are the most important 

With the dicarbonate species being the most stable above 
-2 

PH 5 fvr P CO = 10 atm (34 mM). As outlined by Kolodny and 

Kaplan (1973), the U0 2
0 

might be immobilised by adsorption 

onto sedimentary organic matter at low Eh values, while 
UO 2+ ( 2-2 might be mobilised as U0 2 C0

3
)2 by desorption due 

to the high dissolved ~c02values. There is little 

information available at present regarding the importance of 

organic/ 



organic versus inorganic uranyl complexes in natural waters 

in the pH range 4 to 8 mainly because of the lack of 

thermodynamic data for the uranyl organics. Equilibria of 

several U(IV) and U(VI) species in the presence of CO 2 in 

an aqueous environment and Eh/pH diagrams have been given 

by Halbach et al., (1980). From one of these diagrams 

(Figure 1.3), for a solution at 1 bar, a.uranium concentration 

of 0.75ugl-1 (10-8 . 5 Molar) and 2:C0
2 

of 0.32mM 1-1 (10~3.5~), 
the redox potential for the transition from U(VI) to U(IV) 

is about -90mV at pH 7.4 with corresponding reaction U0 2(S) + 
2 HCO ( 2-

3 aq) + 2H20(1) = U02~C03)2(H20)2 (aq) + 
2~+(aq) + 2e-. The standard U +/U0

2
2+ oxidation potential, 

E , with corrections for uranyl-hydroxy complexing was 

indicated to be 0.273 ~ 0.005V at 2SoC (Langmuir, 1978) 

relative to the earlier value of 0.32 - 0.33V (Hostetler and 

Garrels, 1962) making U(IV) less stable than U(VI) than 

23. 

had previously been assumed. Langmuir (1978) also indicated 

that the pentavalent uranium species U0
2

+ had a greater stability 

field than previously thought, and which may be an important 

species in reduced water of pH 7. Eh values much lower than 

-0.090V were achieved in the Angolan Basin core, and Boulad and 

Michard (1976) therefore proposed that the uranium would be 

preferentially adsorbed in the reducing zone, which would then 

give rise to soluble complexes with large organic molecules 

Or to very fine suspensions ( < 0.1 urn) which would ):>e analysed 

as dissolved uranium in the filtrate from 0.1 urn Millipore 

filtrations. In a laboratory study on the effect of the 

parameters Eh, pH, adsorptive hydrous ferric oxide solids and 

kaolinite mineral on the mobility of uranium (Giblin et al., 1981), 

it was found, using 70 mgl-
1 

uranium solutions which are many 

orders of magnitude greater than encountered in natural systems, 

that measured levels of mobile uranium were sometimes greater 

than those calculated from the predicted concentrations of the 

eqUilibrium/ 
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Figure 1.3. Eh-pH diagram of uranium species in the presence of CO 2 , 
-1 

(T=298K, p= 1bar, U=0.75ugl ~C02= 0.32mM) 



2+ + U4+ () ° equilibrium species u0 2 ,U020H, 'U02 and U0 2 OH 2· H2 

at specific Eh-pR points. The formation of uranium oxides as 

mobile colloids (adsorbed on hydrous ferric oxide) in zones 

where UO is the thermodynamically-stable species can be explained 
2 

in terms of changes in particle surface charge. The zero point 

charge (ZPC) of hydrous ferric oxide occurs at around pH 8, below 

which its surface is positively charged and onto which posi~ively-
2+ charged uranium species such as U0

2 
would not absorb. The 

presence of CO greatly enhanced this uranium mobility due to 
2 0 2- 4-

the formation of U02C0
3

' U0
2

(C0
3

)2 and U0 2 (C0
3

)3 

above pH5, species which, as their negative charge increases, 

could be more effectively adsorbed by residual bond and electrostatic 

processes onto hydrous ferric oxide, until uranium mobility 
4-decreased at pH,8 and high Eh, where U0

2
(C0

3
)3 begins to 

predominate. It is clear from this laboratory simulation, 

however, that whatever colloidal or insoluble species are 

POstulated to exist in certain Eh-pH domains, thermodynamic 

eqUilibrium models which describe closed systems do not give a 

Complete representation of mobile and immobile uranium in real, 

oPen systems which contain large and varied amounts of other 

inorganic and organic species. These species result in the 

OCcurrence of more subtle reactions, giving rise to less abrupt 

Changes in mobility with changes in Eh and pH. 

Analyses of 4 core-top waters by Ku et al., (1977) have 

indicated that the 'pore water component' might have a uranium 

concentration lower than sea water, while analysis of two pore 

water samples from a metalliferous ooze showed a possible 10% 

enrichment over sea water, with values 3.61 ~ 0.11 and 3.68 ~ 
° 16 -1 + -1 . ugl . The mean of the six analyses was 3.44 - 0.25 ugl 

and as such did not supply definite evidence of a concentration 

gradient across the sea water/sediment interface. The 234
u/ 

238 
U activity ratios too, because of the small sample volumes 

and large cou~ting errors, were not distinguishable from that 
" + ' 
~n sea water, averaging 1.17 - 0.07. Much earlier it had been 
~ 234 uggested (Ku, 1965) that, based on the deficiency of U 

relat" 238" d d" t 234 "b"l" ~ve to U ~n eep-sea se ~men s, U was be~ng mo ~ ~sed 

by ~-recoil from the solid phase into the pore water and was 

diffusing/ 



diffusing out of the 
-2 -1 0·3 dpm cm kyr 

234 238 increasing U/ U 

sediment column at a rate estimated at 

This would show up as a downward

activity ratio in the pore waters. The 

p~ecise pore water uranium data obtained by Cochran and 

Krishnaswami (1980) as a result of combining from successive 

depths, 500-1000 ml samples from large (50 x 50 x 40cm) 

box cores, did indeed indicate an enrichment of recoil

prOduced 23 4u over 238u in the pore water, with higher ratios 

(1.17 ~ 0.02 to 1.23~ O.O~mean 1.22! 0.11) relative to sea 

water occurring at depths greater than 20cm. The total 

26. 

uranium concentration in the pore waters was relatively constant 

(mean 2.54~0.31 ug kg-1 ) and indicated a 238u depletion of 

between 11.8% to 30.3%compared with sea water values. The 

authors took this to imply that these Pacific sediments were 

acting as a sink for uranium, which diffused into them from 

OVerlying sea water, but since all total uranium analyses were 

performed on samples from depths greater than 10cm, no reasonable 

Uranium flux calculation could be attempted. 

In the foregoing discussion, it can be appreciated that 

a major difficulty arising from the study of pore water 

Chemistry and diagenesis is the perturbations of the physico

Chemical pore water system which occur as a result of the 

Sampling and handling procedures employed. The aim of any 

Pore water sampling system, if reliable compositional data are 

to be acquired, must be to provide samples Which are chemically 

representative of 'in-situ' pore waters, a requirement which calls 

for an awareness of the errors which can arise due to oxygen 

COntact and temperature and pressure artefacts. Studies have 

ShOWn that warming of marine sediments prior to pore water 

extraction can give rise to enrichments of potassium (Mangelsdorf 

et al., 1969; Bischoff et al., 1970) and silica (Fanning and 

Pilson, 1971), and depletions in manganese and calcium 

(BtsChoff et al., 1970). These differences are the result of 

Changes/ 



changes in the ion-exchange selectivity of the sediment as 

a function of temperature, and so to overcome this effect, 

sediment must be treated at 'in-situ' temperatures. Any 

exposure of anoxic marine or estuarine sediments to the 

atmosphere during sampling and handling of the core can 

27. 

lead to decreased values of ferrous iron, reactive phosphate 

and silica (Bray et al., 1973; Troup et al., 1974; Loder et al., 

1978; Lyons et al., 1979). This was shown from analyses of 

dUPlicate samples, manipulated both in air and under N
2

, where 

the concentrations of Fe (II) and p0
4

3- for the air samples 

were less than those in the unexposed samples, indicating the 

importance of protecting against oxidation. Small quantities 

of Oxygen present in the filters and trapped in the squeezer 

units oxidise ferrous to ferric iron. The Fe(III) produced 

removes inorganic phosphate and silicate from solution either 
b 3-y precipitating P04 as iron phosphate, or by scavenging 
PO 3- 4-4 and Si04 on hydrous ferric oxide by sorption. It 

is essential also to minimise the storage time of the core 

Prior to squeezing (Bischoff and Ku, 1971) in order to minimise 

reductions in ca2+ and Fe 2+ contents of the pore waters. Pre$sure 

effects on pore waters have recently been documented (Murray et al., 

1980; Emerson et al., 1982; Froelich et al., 1983), and are due 

to the well-known pressure-dependence of the equilibrium 

COnstants in the carbonate system. Thus, when a sediment core 

is cOllected from the deep-sea and brought to I atmo~phere 

pressure, the pore water must re-equilibrate rapidly ,caC0
3 

precipitates and the alkalinity measured in the pore water is 

less than that in samples collected by in-situ sampling devices. 

If Cac0
3 

precipitation and therefore the removal of C0
3

2- from 

SOlution occurs, then the magnitude of this effect should depend 

on the state of saturation of the pore water under in-situ 

Conditions. If a core which is undersaturated with calcite is 

being retrieved through the water column, it will become 

saturated at some particular depth which is less than the total 

water/ 
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water depth. Thus, the magnitude of the alkalinity change 

[ HC0
3 

] + 2 [C0
3 
2- ] due to the pressure change 

may not be proportional to water depth (Murray et al., 1980) 

and may prevent the application of a thermodynamic treatment 

due to a kinetic effect i.e. that equilibrium is not attained 

before sediment squeezing (Emerson et al., 1982; Jahnke et al., 

1982). Emerson etal., (1982) showed by intercalibration of 

squeezed box core and in-situ sampled pore water results 

that the pressure decrease effect on the carbonate system 

appears to depend on the presence of cac0
3 

in the sediments 

there was very little evidence for a pressure effect at a 

Silicious ooze site (MANOP site S) presumably because of the 

lack of CaC0
3
(8) nucleation sites whereas the carbonate system 

responds to the pressure change in a thermodynamically -

predictable way for sediments with low (0.5 - 1.0%) carbonate 

Content (Murray et al., 1980: Emerson et al., 1980). In 

nearly-pure cac0
3 

sediments (MANOP site C, Emerson et al., 1982) 

the pressure effect on alkalinity is much greater than predicted 

from thermodynamic considerations. Similarly, Froelich et al., 

(1983) observed a related pressure-induced artefact for pore 

water fluoride, whose values were significantly lower in pelagic 

red Clay, silicious ooze and carbonate ooze box cores than in 

the bottom water, due, it was proposed, to the formation of a 

carbonate fluoroapatite. It is eVident, then, that care must be 

eXerCised prior to pore water extraction and during .sample 

manipulation, with provisions being required for temperature 

Control, for avoidance of contamination and contact with oxygen 

and, if possible, for the circumvention of pressure effects. 

The pressure used in the extraction of the interstitial water 

from cores at depth has been shown to have little effect on 

salinity at pressures up to 9000psi (Sayles, 1970) and on other 

COnstituents before the cores are raised to the surface (Manheim 

'and Sayles, 1974). 

Among/ 



Among the various systems developed for the extraction of pore 

waters are leaching, centrifugation, liquid/gas displacement, 

liquid/liquid displacement and low and medium gas-pressure or 

mechanical-pressure systems (Emery and Rittenberg, 1952; 

kartmann,1965; Powers, 1967; Reeburgh, 1967). Some of these 

29. 

methods can be difficult to control, are slow, or can be 

inefficient for fine-grained sediments, producing only low

vOlume pore water samples. High-pressure hydraulic systems are 

mUch quicker and can provide large-volume samples with minimal 

air contact (Kalil and Goldhaber, 1973). A shipboard system, 

described in section 2.2 was used here for the extraction of pore 

waters from deep-sea sediments (Ridout, 1981), and included 

procedures which minimised the above effects of temperature, 

oXidation and contamination. Pressure effects on certain 

chemical species, however, could not be avoided during deep-sea 

core retrieval, but could be evaluated by comparison with the 

analytical results on samples taken by an in-situ sampler. 

Estuarine pore waters were collected as described in section 2.3, 

and were representative of in-situ conditions as they were not 

SUbject to large negative pressure differences. 
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1.3 Aims of the Project 

The primary objective of this research was to perfect 

the fission track analysis technique for sub-nanogram 

quantities of uranium, particularly with regards to its 

application to small-volume sediment pore water samples. 

Reliable pore water data are scarce for this element 

mainly because of the difficulties involved in collecting 

and extracting sufficient sample volumes from the sediment 

such that the samples are chemically representative of in-

situ conditions. Much of the experimental work was aimed 

at optimisation of neutron irradiation times, etching 

conditions and track counting criteria. Thus, the effects 

of varying the neutron fluencewerestudied, as was the 

variation of etching time and etching temperature. A clear, 

easily-distinguishable fission track record was of prime 

importance if automatic track counting was to be successful. 

Should the technique be shown to be sufficiently accurate and 

reproducible, the results of subsequent uranium determinations 

in pore water samples would be examined from a geochemical 

viewpoint with the help of as many auxiliary data as possible. 

Thus, attempts might then be made to explain the diagenetic 

behaviour of uranium from the observed pore water profiles. 

Application of the dual fission track! a-track method to 

deep-sea sediment geochronology was also to be assessed by 

comparison of the results with those already obtained by 

conventional techniques on the same samples and it was hoped, 

that the fission track technique could be applied to the 

accurate uranium analysis of solid sediment samples. 

It was also the intention of the project to illustrate the 

use of the a-sensitive plastic track detector in an auto

radiographic mode and therefore the provision of various types 

of samples which contained natural or enhanced level~ of 

a-emitting nuclides was planned. 

Furthermore! 



Furthermore it was thought beneficial that a 

reasonable portion of the work should involve the study 

of an aspect of uranium geochemistry by the related but 

more specialised procedure of radiochemical separation 

and a-spectrometry. The estuarine behaviour of this 

element was therefore selected for study and was to be 

achieved by collecting water samples along the salinity 

gradients of a number of U.K. estuaries. An assessment 

of the conservativeness or non-conservativeness of this 

behaviour was to be performed. 

31. 



CHAPTER TWO 

~PERIMENTAL METHODS 

2.1 Introduction 

This chapter describes in some detail the techniques 

used in sample collection and in development and application 

of the subsequent particle track and radiochemical methods 

32. 

for the determination of uranium-series nuclides. The relative 

advantages and disadvantages of the track technique and of 

the conventional wet radiochemical and a-spectrometric 

approaches will also be assessed. 

In summary, assay of total uranium by the fission-track 

method involves thermal neutron fission of the isotope 235u 

which is present with 238u at the known ratio of 1 : 137.88. 

Comparison of the fission track densities produced in external 

Lexan polycarbonate detectors between the samples and 

simultaneously-irradiated standards gives a direct measure 

of the 235u and hence the 238u content in the sample. It is 

important that the standards used are similar in chemical 

Composition, otherwise fission track range effects may become 

important. Thus, glasses from the National Bureau of 

Standards are used for sediment or soil analysis while 

gravimetrically-prepared uranium solutions in artificial sea 

Water are used for pore waters. The fission track technique 

has been successfully applied in the uranium analyses of one 

deep-sea core, estuarine bottom muds, an evaporite mineral, 

a series of intercalibration pore waters, eighteen pore water 

profiles from cores collected at different, geochemically

interesting locations using different coring and pore water 

Sampling methods, and finally to some environmental samples 

from the vicinity of nuclear installations. 

Conventional wet radiochemical analysis of 238u and 
234 U in aqueous samples involves co-precipitation of the 

actinides/ 
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actinides and other cations on hydrated ferric oxide and 

Subsequent purification steps including anion-exchange and 

Solvent extraction. Solid samples are completely digested 

by combinations of concentrated acids and purified as for 

aqueous samples. 232
U is used as internal tracer and as a 

gravimetric yield monitor. The purified uranium isotopes, 
238 234 232 u, U and U are electroplated onto a stainless 

steel disk from an ammonium sulphate electrolyte, which 

provides a thin source for a -spectometry. Individual 

acitivites are each determined by separation of their 

characteristic a-particle energies. The potential uses 

of such isotopes at, or out of, radioactive equilibrium 

include the determination of conservative or non-conservative 

behaviour of uranium, geochemical mass balances, their use 

as a hydrological tracer and in radiometric dating (Ku, 1976; 

Osmond and Cowart, 1976a; Borole et al., 1982; Broecker 

and Peng, 1982). 

Although it has recently been shown that highly specialised 

a-particle spectrometry can be achieved with the dielectric 

track detector CR-39 (Fews and Henshaw, 1982), the a-particle 

sensitive detector cellulose nitrate (Kodak LR115 Type II) used 

in this study is restricted to the study of the distribution 

or a-emitting nuclides ( a-autoradiography) and is not 

considered capable of energy resolution and radionuclide 

identification. The a -track technique was applied to the 

deep-sea sediment core 9936K and, as demonstrated by Fisher 

(1977a, 1978) and Crawford et al., (1982) an estimate of the 

sedimentation rate determined. Application of the cellulose 

nitrate (CLN) to pelletised marine particulate matter and 

Sail collected" from the Dounreay area, to filtered suspended 

particulates from the Esk estuary, to a sectioned hydrothermal 

manganese nodule and to a series of planchets of various 

electroPlated a-emitting nuclides was investigated to assess 

the presence or otherwise of hot-spots of a-activity and/or 

the extent of homogeneity of the nuclides. 

Sampling/ 

Details of 
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sampling locations and sampling methods used in this study 

will be given in sections 2.2 - 2.5. 

To assess the random and systematic errors associated 

with the fission track analytical procedures for aqueous 

samples, replicate analyses were performed on standard sea 

water (I.A.P.S.O. Standard Seawater service) and a pore 

water intercalibration experiment was conducted in collaboration 

With Woods Hole Oceanographic Institute. For solid samples, 

one core (9936K) was analysed by the fission track method and 

intercalibrated with previous results by a-spectrometry on 

dUPlicate samples (Thomson, pers. comm.). In a-spectrometric 

analyses, solid samples were analysed in duplicate, whenever 

POSsible, for their 238u content and 23 4u/ 238u activity ratio. 

Detector backgrounds were regularly determined over the same 

cOunting period as for samples, and reagent blanks were run 

for both procedures. Analytical-grade reagents were used 

throughout to minimise these blank contributions. 

Since the quantities of radionuclides present for analysis 

cOUld be as low as -7.6 x 1010 atoms in the case of pore 

Waters (100ul) and -1.0 x 1016 atoms in the case of river, 

estuarine or sea waters, depending on the volume of sample, 

precautions had to be taken to avoid cross-contamination. 

Consequently, small-volume pore water samples were evaporated 

Onto the Lexan polycarbonate detector in a dust-free environment, 

preferably in a laminar-flow clean hood, since the number of· 

uranium-rich particles in ordinary dust can be considerable. 

34. 

The absence of hot spots (fission stars) showed that such particles 

were absent. The Lexan itself has a uranium concentration of 

less than 10-10 atom fraction and as such does not constitute a 

Significant contribution to track density. During wet 

radiochemical operations, glassware and other apparatus (e.g. 

teflon P~~ting cells) were taken through a rigorous decontamination 

procedure; firstly they were rinsed in water and soaked at least 

Overnight in ~10% Decon solution, rinsed in distilled water 
and/ 



and then soaked in 7 molar nitric acid until required. 

SUites of estuarine water samples were analysed randomly 

to prevent the possibility of generating experimentally

derived trends after having been previously filtered and 

acidified to pH 1 to prevent adsorption of radionuclides 

onto the container walls. 

35. 



2.2 Deep Sea Sediments and Pore Waters 

All deep-sea pore water samples and sediment cores 

analysed in this study were collected on various cruises 

of the N.E.R.C. research vessel R.R.S. Discovery undertaken 

between 1979 and 1983 for the Institute of Oceanographic 

SCiences (I.O.S.), Wormley, Surrey with whom this research 

Work is, of course, collaborative. Table 2.1 shows the 

relevant cruise data for each of the cores examined, while 

Figure 2.1 shows their location on a world map. The 

cores were taken either by an I.O.S. 30cm - square box corer 

(Peters et al., 1980) and a Hydrowerkstatten Kastenlot corer 

with a 2 metre, 15 cm-square section box barrel, both of 

which are designed to retrieve samples with minimum 

disturbance of the sedimentary column. The Kastenlot 

corer (Figure 2.2) consists of a bronze weight-stand 

containing up to 1000kg of lead weights, and a 15 x 15 cm 

square galvanised steel core box of length 2, 4 or 6 metres 

which can be opened longitudinally in two sections. The 

core catcher at the bottom of the corer consists of a pair 

of spring-loaded overlapping doors which can be locked in the 

open position by means of a pair of trip-levers. A schematic 

diagram of the box corer in operation is shown in Figure 2.3. 

The core boxes are opened on deck and the cores subsampled 

for mineralogical and geochemical studies. Sub samples for 

pore water extraction are squeezed under hydraulic pressure 

36. 

at low temperatures, in a nitrogen-filled glove bag in an 

effort to minimise oxidation effects and to provide samples 

Which are as chemically representative as possible of 'in-situ' 

pore waters. The pore water extraction system is as described 

by Ridout (1981). Briefly, core samples were collected by 

inserting a precleaned 4-inch diameter butyric core liner 

near the centre of a box core and the top deadspace flushed 

With ni~rogen before capping. 

to; 

The samples were transferred 
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TABLE 2.1 

DATE LOCATION LATITUDE/LONGITUDE WATER DEPTH (m) SAMPLE 

18/1/79 Cape Basin 33
0
42'7"S, 15°39'6" E 3808 78cm Kastenlot core (9936K) 

17/6/79 - East Mediterranean 36°09.6'N. 20
0
28.5'E 2880 62cm Box core(10103 IBX) 

19/7/79 " " 2900 61cm Box core(10103 6BX) 

" " 2900 74cm Kastenlot core(10103 3K) 

23/2/80 Nares Abyssal Plain 26°14.0'N, 600 20.7'W 6135 205cm Kastenlot core(10164 1K) 

24/2/80 " " " 26
0
04.9'N 60

0
24.7'W 5550 55cm Box core(10164 5BX) 

26/2/80 " " " 23
0

45.0'N 61
0

27.5'W 5825 68cm Box core(10165 8BX) 

1/6/80 East Pacific Ocean 9
0

58.5'S 102
0

33.9'W 4445 Box core(10189 4BX) 

5/6/82 East Atlantic 00001.9'N 160 10.2'W 3150 200cm Kastenlot core(10549 6K) 

13/6/82 " " 19
0

23.1'N 29053.6'W 4683 170cm Kastenlot core(10552 2K) 

13/6/82 " " 19
0

24.5'N 29
0

52.7'W 4735 In-situ sampler (10552 =#=7) 

14/6/82 " " 19027.3'N ° 6' 29 53 .. W 4655 41cm Box core(10552 9BX) 

18/6/82 " " 31
0

29.7'N 24028.8'W 5370 190cm Kastenlot core(10554 2K) 

18/6/82 " " 31
0

29.9'N 24 0 26.1'W 5370 59cm Box core(10554 5BX) 

18/6/82 " " 31026.6'N 24026.8'W 5371 In-situ sampler(10554 =II: 12) 

Sampling data from all cruises. From Calvert et al., (1979), Kenyon et al. , (1980), 

Culkin et al., (1980), Searle et al. , (1980) and Wilson et al., (1982). 
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Figure 2.2. Diagram of the Hydrowerkstatten Kastenlot cor,er. 



Descent mode with arms open 
.and no-load release set 

Corer having penetrated the sediment 
and no-load release tripped 
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Figure 2.3. Schematic diagram of box corer in operation. 
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o to a cool cabinet at 4 C for storage prior to sectioning. 

These subcores and the squeezer units were sealed into a 

large glove bag, its contents flushed with nitrogen and the 

bag loosely inflated. Subcores were extruded from their 

liners by a PVC piston and sectioned by a plastic spatula 

into PVC squeezer units, so constructed that no metal 

contact with either the sediment or the pore water is 

allowed. The squeezer units, comprising the cylinder base, 

cylinder, retaining collar and piston were three-quarters 

filled for efficient squeezing and positioned on a hydraulic 

jack in steel frames inside a cool cabinet. After allowing 

time for the units to come to temperature, each one was 

pressurised to between 2000 and 4000 psi depending on 

sediment type. The first few ml of water through the 

Whatman 542 filter papers incorporated in the base were 

discarded to flush the dead volume and filter assembly before 

a 60 ml plastic syringe was inserted into the outlet port. 

About 100 to 200 ml of sample was collected by squeezing 

within half an hour, the pressure being maintained at 

approximately 5 - minute intervals. 

Figures 2.4 and 2.5 show schematic diagrams of the 

I.O.S. Mark II in-situ pore water sampler. It is a 

mOdification of the sampler described by Sayles et al., 

(1976). The sampler consists of a large, spring-operated 

master cylinder which provides the suction required for 

sampling, the instrument functioning rather like a large 

syringe. Instead of toggle valves previously used (Sayles 

et al., 1976), electromagnetic valves are incorporated, 

which are triggered when an electro-optical sensor enters 

the sediment, thus detecting the sea bottom. When this 

occurs, one of the three valves which is in circuit with a 

. hYdrauli~ ram coupled to a lever bar, is tripped and stops 

further/ 

41. 

( 
! 



Sampler 
Frame 

storage 

Probe 

Wire to 
Ship 

opens to 
allow sampling 

Suction 
Spring 

Bottom 
Detector 

Sea Water 

Sediment 

Figure 2.4. Schematic diagram of the I.O.S. Mark II pore 

water sampler in operation at the sea bed. 
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further descent of the sampler within its conical frame. 

The other two valves switch the unit to sampling mode, and 

samples are taken through filter-containing ports in the 

two sampling probes or 'harpoons', due to the pressure drop 

at these ports relative to the adjacent sediment, and are 

stored in coiled teflon capillary tubing which permits the 

recovery of uncontaminated pore water samples. Samples 

are taken at 50 cm and 1 cm above the sediment/sea water 

interface, and at 2, 3.5, 6.5, 12.5, 24.5 and 45.5 cm below 

the interface. The ports are concentrated near the sedimerit} 

water interface since it is here that the concent~ation 

gradients of certain chemical species have been demonstrated 

by many workers to be steepest, owing to the more intense 

diagenetic activity there. Examples of such species are 

trace metals (Klinkhammer, 1980; Klinkhammer et al., 1982), 

major ions (Sayles, 1979; Sayles, 1981), nutrients (Bender 

et al., 1977; Froelich et al., 1979; Emerson et al., 1980) 

and carbonate-system species (Fanning and Pilson, 1971; 

Emerson et al., 1980; Murray et al., 1980). Sampling is 

terminated either by a reed switch mounted on a sample 

indication cylinder, or by a preset clock built in to the 

electronic circuits. 



2.3 Estuarine Pore waters 

All the estuarine pore waters analysed were collected 

during 1982 at st. Johns lake in the Tamar Estuary, a low

energy, relatively undisturbed site (Clifton and Hamilton, 

1979) - position X on figure 2.6. In collaboration with 

45. 

the Earth Sciences Department, University of Leeds, cores 

were collected under about 5 cm of water at low tide by 

slowly pusing 25 cm long perspex liners vertically downwards 

into the mud and sealing the base with a watertight base 

plate. An undisturbed sediment/water interface, usually 

with some supernatant water, was thus collected. The 

cores were kept at 21 0 C until introduced to a nitrogen

filled, perspex glove box for squeezing (Upstill-Goddard 

and Alexander, 1982), maintaining a low oxygen level 

of between 0.2 and 0.0% and a small positive internal 

pressure. The sediment column was raised into the 

glove box from below by a scissor-jack through an air

tight seal and, after siphoning off any supernatant water, 

1 cm increments were sliced off into 250 ml centrifuge 

bottles and then removed and centrifuged at 10,000 G at 
o 

10 C for 30 minutes. The bottles were reintroduced to the 

glove box and the supernatant pore water drawn off through 

2 mm internal diameter silicon rubber tubing into acid

washed subsample bottles using a peristaltic pump with 

0.45 um Millipore filters in-line. Small-volume aliquots 

of these filtered samples were taken for uranium analysis 

by the fission-track method. 

1 
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2.4 Rivers and Estuaries 

Three sampling trips were made to the Clyde estuary 

in 1982 in order to recover water samples for uranium isotope 

and salinity measurement and bottom sediment for uranium 

isotopes and organic carbon. In March, 1982, water sampling 

~10 litre volumes) at the riverine end of the estuary was 

achieved by simply lowering a plastic bucket on a rope over 

the side of each of five Glasgow bridges and transferring to 

10 - litre sample bottles. 250 ml subsamples were taken 

for salinity determination after filtration through 0.45um 

Millipore filters with Whatman GF/B prefilters. Salinity 

measurements were performed on these samples conductimetrically 

at the Clyde River Purification Board (C.R.P.B.) on an 

inductive salinometer. Sampling at the sea water end of the 

estuary was performed from the C.R.P.B. research vessel 

'Endrick II' in an attempt to collect a good sea water 

salinity end-member. The main estuary transect was sampled 

in May, 1982 on the 'Endrick II' by pumping water from about 

6 foot depth during the course of one of C.R.P.B.'s regular 

'River Run' surveys. Figure 2.7 shows a map of the area and 

indicates all the sampling sites. 

Bottom mud sampling was achieved using a Craib corer 

(Craib, 1965) which, via soft-landing and hydraulically-damped 

sediment-penetration devices, is designed to retain the light, 

superficial layer of sediment intact. The top two to three· 

centimetres of each core were transferred to self-sealing 

sample bags. 

Samples were collected along a transect of the Tamar 

estuary, Plymouth on the 15th March, 1982 from the research 

vessel 'R.L. Gammarus' of the Marine Biological Association 

(M.B.A.) starting at zero salinity at Calstock and extending 

seaward to Drake's Island (Figure 2.6) where a maximum 

salinity ~f 28.55 was attained. Chlorinity determinations 

were performed on subsamples at M.B.A. by silver nitrate 

titration using dichlorofluorescein as indicator. Bottom 

muds/ 
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Figure 2.7. Sampling sites in the Clyde estuary 



muds were also obtained from shallow waters using a long

handled scoop. These muds were kept in self-sealing sample 

bags until required. 

Figure 2.8 indicates the sampling locations in the Forth 

river and estuary at which approximately 10-litre surface water 

samples were taken on 23rd June, 1983 between 2 and 0 hours 

before high water during one of the Forth River Purification 

Board's (F.R.P.B.) regular surveys. Particulates from each bulk 

sample were allowed to settle and were retained. Again 250 ml 

subsamples were filtered through GF/B prefilters and then through 

0.45 um Millipore filters. This was considered necessary because 

the particulate concentrations were visibly high. Salinity 

determinations were performed at the Institute of Oceanographic 

Sciences, Surrey, on a Guildline Salinometer against a primary 

salinity standard. 
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2.5 Particulates from the Vicinity of Nuclear Installations and 
Miscellaneous Samples 

After the gravitational settling of a 10-litre water sample 

from the Esk estuary, the supernate was filtered through a 

51. 

Whatman GF/B prefilter and then through a Millipore 0.45 urn filter. 

This provided a small particulate load on the Millipore filter 

sui table for a-track analysis. These particulates and the 

main settled load, were considered to be a possible sink for 

radionuclides discharged and dispersed from the British Nuclear 

Fuels pIc reprocessing plant at the nearby Windscale (Sellafield) 

site. The settled particulates were collected for a range of 

radionuclide analyses. 

At Oigin's Geo, about 0.5 km East of the Dounreay Nuclear 

Power Development Establishment (D.N.P.D.E.) in Caithness, a 

variety of environmental particulate samples (Table 2.2) was 

collected from the shoreline on 29th May, 1980 and between 

1st - 3rd June, 1981 during a sampling trip associated with an 

ongoing research contract between D.N.P.D.E. and the University 

of Glasgow. The samples were analysed by a combination of 

(Xand 'Y - spectrometry and particle track methods. 

Miscellaneous samples included a submarine hydrothermal 

manganese deposit from the south-west Pacific island arc, which 

was dredged up during a jOint New Zealand Oceanographic Institute/ 

Imperial College, London research cruise in May, 1981 (Cronan et al., 

1982) and was sectioned and polished by S.A. Moorby (Imperial College) 

for a -track autoradiography at Glasgow. This a -track technique 

was also applied to a series of planchets containing one of the 

electroplated radioisotopes Th, U, Pu and Am, which were 

provided by various workers in order to assess the degree of 

homogeneity obtained in the electrodeposition stages of their 

routine radioanalytical procedures. The planchet submitters 

were G.T. Coq,k and J. Toole (University of Glasgow), J. Thomson 

(I.O.S., Surrey), R. Fukai (I.A.E.A., Monaco) and A. B. Mackenzie 

(S.U.R.R.C., East Kilbride). 

A sample of gypsum was provided by T. M. Leatherland . 

(F.R.P.B.)/ 
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TABLE 2.2 

Environmental particulate samples from near Dounreay, Caithness~ 

SAMPLE NO. LOCATION DESCRIPTION 

1 Oigins Geo Dried Scrapings from Rocks(1980) 

2 Oigins Geo Dried Scrapings from Rocks(1981) 

3 Oigins Geo Dried Sea Foam (1980) 

4 0 Metres Inland Sandy Topsoil (1981 ) 

5 50 Metres Inland Higher Organic Soil (1981) 

6 100 Metres Inland Higher Organic Soil (1981 ) 

7 Offshore Sandy Marine Sediment (1981) 



(F.R.P.B.) for uranium analysis. The gypsum was a waste 

product generated during the manufacture of phosphates from 

a high-uranium bearing calcium phosphate ore. The calcium 

sulphate (gypsum) by-product generated is discharged directly 

into the Forth Estuary and was considered as a possible source 

of uranium. 
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2.6 Fission Track Method 

Development of the now commonly-utilised fission track 

technique (Fisher and Bostrom, 1969; Hashimoto, 1971; Carpenter 

and Cheek, 1970; Mahajan et al., 1978; Fleischer et al., 1972; 

Riley, 1981) is described here for the assay of uranium in 

sediments and sediment pore waters, with particular attention 

paid to optimisation of both the etching and irradiation 

parameters. The sample-preparation procedure described for 

deep-sea sediments was also applied to all other solid samples 

analysed by the method (e.g. soils, dried sea foam), while 

that for sea water, deep-sea pore waters and nearshore pore 

waters could easily be extended to uranium assay of other 

samples such as river water and human blood (Hamilton, 1970). 

54. 

Although there is now a myriad of dielectric track detectors 

available for fission track analysis (Fleischer et al., 1975), 

Lexan polycarbonate (A.G.Bayer, West Germany) was used throughout 

the period of research because of its low uranium content, high 

detection efficiency (Khan and Durrani, 1972; Qaquish and Besant, 

1976; Guo et al., 1981) and proven ability to yield accurate 

and reproducible results (Crawford, 1982). The polycarbonate 

plastic is sensitive to heavily-ionising fission fragments 

and to other massive ions whose energy loss per unit length in 
-1 -2 

the plastic exceeds the critical value of '" 4MeV mg cm 

(Fleischer et al., 1965). This critical energy-loss rate, 

(dE/dx) 0t' results from a rapid drop in track registration 
crl. • 

efficiency from unity to zero for a fairly narrow range of 

dE/dx values. 

Under a thermal neutron fluence, 235U atoms in samples 

and standards fission into two asymmetrical, heavily-ionising 

fragments with concurrent energy release of -200MeV 

per fission. Under 2~ geometry, one of these fragments 

typically imQ,inges on the Lexan detector, creating a narrow 

trail/ 
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trail of radiation damage on an atomic scale. These damage trails 

are revealed for counting in an ordinary optical microscope or 

Quantimet 720 automatic image analysing computer (Jesse, 1971; 

Lycos and Besant, 1976) simply by chemically etching the irradiated 

plastic in 6 molar NaOH at 45
0

C for 1 hour in a thermostatically

controlled water bath (FE-type, Grant Instruments Ltd.). The 

etchant rapidly and preferentially attacks the radiation-damaged 

material at a faster rate that it removes the surrounding 

undamaged or bulk matrix, leaving enlarged holes or tracks which 

mark the site of each individual damaged region. The molarity 

of the etching solution should be regularly checked to ensure 

that all samples are etched under the same conditions. Loss 

of water by evaporation increases the molarity of the NaOH, 

while absorption of CO
2 

from air produces Na
2

C0
3

, reducing the 

molarity. The etching process is terminated by immersion of 

the Lexan initially in a dilute (O.lM) solution of hydrochloric 

acid at 20
0

C to remove the NaOH, and then rinsing with distilled 

water to remove any particles or salt. The Lexan is then dried 

between lens tissues to reduce static attraction of dust. 

Solid Samples 
o Solid samples are oven-dried at 110 C and ground in a 

mortar and pestle. They are further homogenised to ~50um 

grain size in an agate ball-mill (15-20 minutes). Thereafter, 

about 100mg of the sample is accurately weighed, to better 

than O.lmg, and is hydraulically pressed in a 13 mm KBr die 

under 8 ton pressure for 5 minutes, using about 1.0 g of 

uranium-free cellulose powder as inert binder. This 

preparation affords a sample which is thicker than the range of 

fission fragments within it. It is important, too, that the 

elemental composition of the uranium standard used is not too 

appreciably/ 



appreciably different from that of the unknown, since the 

effective range of the fission fragments increases with 

increasing atomic number because of the tighter bonding of 

atomic electrons (Mory et al., 1970). Consequently, glass 

standards of nominal base composition 72% Si02 , 12% CaO, 

14% Na
2
0and 2% A1

2
0

3 
(SRM 962) were used in this study, their 

composition being comparable to that of compressed sediment or 

soil. These standards were obtained from the National Bureau 

of Standards (Carpenter and Reimer, 1974) and contained 37.38 ~ 
0.08 ppm uranium, with a 235u atom percent of 0.2392. This 

latter figure differs from the natural 235u abundance of 0.7200 

(Hamer and Robbins, 1960) in samples· because depleted uranium 

dopant was used in the glass preparation. A correction for 

this difference must be applied during uranium analysis. 

The uranium concentration expressed in weight fraction (ppm) 

in the unknown is given by 

Dx 
Ux - Ds U 

s 
Is 
Ix ..................... ( 2 . 1 ) 

where U and U are the uranium contents in ppm of the sample 
x s 

and standard respectively, D and D are the track densities 
-2 x s 

(cm ) produced in the Lexan by each, and I ,I are their 
235 238 x s 

respective U to U isotopic abundance ratios. Background 

track densities were found to be equivalent to about 0.03 ppm 

for uranium assay. 

Although deep-sea sediment samples generated easily-counted 

homogeneous fission track distributions, some solid samples, 

particularly soils and nearshore particulate muds, produced 

fission stars or 'hotspots' (Figure 2.9) due to the presence 

of uranium-bearing minerals such as sphene, zircon and mica 

(Hamilton, 1966, 1980). 

quantitative/ 

Although such fission stars preclude 
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Figure 2.9. Fission star or 'hotspot' from a uranium
bearing mineral in a solid sample. 
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2.6.2 

quantitative track counting, they are useful in uranium 

distribution studies (Kleeman and Lovering, 1967; Hamilton, 

1980) and it is important to be aware of their presence. 

Aqueous Samples 

The fission track technique was first applied to the 

determination of uranium in water samples by Fleischer and 

Lovett (1968) by evaporation of a defined volume onto the 

track detecting material to leave a thin deposit of non-

volatile constituents. After neutron irradiation, the 

authors found that all the fission tracks had to be counted 

to eliminate the effects of non-uniformity in their distribution. 

Since this procedure can become tedious for high track densities, 

Fleischer and Delaney (1976) described equations applicable to 

certain regular, non-uniform track distributions such as a 

constant track density along a circular outside rim, in an 

effort to avoid total track counting. However, irregular 

distributions and the presence of fission stars could not be 

accommodated in the equations. Hashimoto (1971) realised 

that such heterogeneous track distributions gave erroneous 

results and used condensed solutions in quartz ampoules for 

neutron irradiation, with pieces of muscovite mica immersed 

as the track detector medium. Although homogenous track 

distributions were achieved, the high uranium content of the 

mica relative to sea water meant that the uranium in the sea 

water sample had firstly to be pre-concentrated by aluminiuum 

phosphate co-precipitation, and processed to yield just 2 ml 

of solution. Furthermore, long-term neutron irradiation of 

sealed solutions' is to be avoided because of the high 

~ dose rates induced and of the risk of sample shattering by 

heat expansion of the solutions. 

Geraldo et al., (1979) used a similar wet irradiation 

method, with ~polystyrene vials holding about 50 ml of solution. 

The method involved complete evaporation of 80 ml samples and 

conversion/ 
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conversion of uranyl carbonate ions to uranyl nitrate before 

irradiation, again increasing the processing time per sample. 

Using a standard calibration curve, uranium concentrations in 

samples were determined with an overall error ranging from 

3.3% to 29.0%. 

The fission track technique employed in this study, as 

applied to sea water and pore waters, is an adaptation of the 

method used by Fleischer and Delaney (1976). No pretreatment 

of samples is necessary except filtration (0.45um). 100ul 

of pore water or sea water is pipetted onto a piece of Lexan by 

5 - 100 ul variable Eppendorf pipette with a precision of <0.3%. 

15ul of ethylene glycol is then added as a spreading agent and 

the mixture is evaporated to dryness in a laminar-flow fumehood 

under an infra-red lamp. A low-uranium fibre washer is taped 

round the deposit for protection against abrasion and an 

identification number impressed on the plastic. The thin, 

homogeneous deposit of non-volatile seasalt microcrystals is 

reproducibly produced on the plastic ensuring a homogeneous 

track distribution (Figure 2.10). After neutron irradiation, 

the samples and standards 

respect to decay of the 
82 products such as Br and 

are allowed to cool, particularly with 

~ and ~activities of activation 
24 

Na in the seasalt. The taped fibre 

washers are later removed from the plastic and the seasalt 

deposit rinsed off with distilled .water into a radioactive 

waste disposal drain. Subsequent chemical etching is identical 

to that for solid samples. It was found, as noted previously, 

that without the use of glycol,the salt crystals incorporating 

most of the uranium tend to concentrate on the outer rim of the 

deposit (Fleischer and Delaney, 1976; McCorkell and Huang, 1977) 

resulting in a non-homogeneous track distribution (Figure 2.11). 

The glycol thus acts as a spreading agent, preventing 

theformatiop of this outer rim. The uranium analysis is 

therefore simplified to one of comparative track density 

estimation/ 
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Figure 2.10. Homogeneous track distribution from a sea 
water sample using 15ul ethylene glycol as 
spreading agent. 
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Figure 2.11. Non-homogeneous track distribution from a sea 
water sample. No spreading agent used. 



estimation involving samples and standards and obviates 

the need for total track counting. With the further 

observation that fission stars or track-clustering were not 

in evidence, it could be concluded that aggregates of uranium 

or of uranium-bearing particulates were absent. 

The aqueous uranium standards used in the technique were 

prepared gravimetrically by dissolving 99.98% pure uranium 

foil of natural isotopic abundance (Goodfellow Metals, 

Cambridge) in nitric acid, diluting to the required concentrations 

in distilled water and adding the appropriate amounts of NaCl, 

MgC1
2

·6H
2
0, Na

2
s0

4
, caC1

2 
.2H

2
0 and KCl to give the required 

artificial sea water composition (Lyman and Fleming, 1940). 

The uranium content of the bulk standard solution was checked 

by isotope dilution ~-spectrometry and a concentration of 
+ -1 -1 

14.92- 0.31 ug ml was found, as compared to 15.15 ug ml by 

gravimetric calculation. As shown by Robertson (1968) it is 

difficult to maintain a known uranium concentration at low 

levels due to adsorption on container walls. For a sea water 
-1 

solution spiked to 120 ugl of uranium it was found (Robertson, 

1968) that after 50 days about 20% of the uranium was lost to 

Pyrex glass surfaces and about 10% to polyethylene surfaces, even 

with the addition of acid to the sea water. Consequently, the 

series of uranium artificial sea water standards prepared from 

the bulk sample were immediately evaporated with ethylene glycol 

to give multiple standard samples, thus minimising adsorption 

losses. Pore water samples themselves must also be evaporated 

as soon as possible after collection, although most samples had 

been stored either frozen prior to evaporation, thus preventing 

significant adsorption, or at bottom water temperature (40 C.) 

Figure 2.12 shows the linearity obtained between the 

uranium concentration of the standards and the corresponding 

track density as observed by the Quantimet. A limitation of the 

method arises, however, for samples with uranium concentrations 

greater/ 
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+ -1 
greater than standard F (149.20 - 3.10 ugl ), since the 

overlapping of tacks in close proximity to each other, even 

in the homogeneous distribution, destroys the linear 

relationship between the total number of tracks or the track 

density and the uranium concentration. This problem was 

also encountered by McCorkell and Huang (1977) and Piesch 

and Weng (1972) in their use of a discharge counter, but 

to a greater extent since their track widths were much larger. 

The simple solution to this problem was to re-irradiate 

such samples, when found, with the appropriate standard(s) 

in a lower neutron fluence either by shortening the irradiation 

time or by moving the samples to a lower n-flux position, or 

both. In a precision check, a series of 10 sea water samples 

(I.A.P.S.O. Standard Seawater Service) replicates were 

simultaneously irradiated, and track counting at x 600 

magnification under the optical microscope yielded a replicate 
-1 

error of 6.1% (Table 2.3) for a concentration of -3.3 ugl 

The intercalibration results for a series of pore water samples 

provided by J.K. Cochran of Woods Hole Oceanographic Institution 

are shown in Table 2.4. It is evident that the fission track 

method used at Glasgow compares favourably with the more 

established, although more involved, a- spectrometric 

procedure on which the Woods Hole data are based. Taking 

the paired differences (Woods Hole - Glasgow) of the results 

and performing a one-sample t-test (Moroney, 1979), it is 

found that a 95% confidence interval for the null hypothesis 

of 'no difference between both sets of results' is (-1.56,0.10). 

The calculated t-value of 1.886 does not exceed the critical 

value of 2.2 given by the 5% probability level for 15 degrees 

of freedom, and thus we cannot reject the null hypothesis, 

i.e. it is accepted that there is no difference, on average, 

between both sets of results. The computed 95% confidence 

interval above did, however, indicate that there was a slight 

systematic/ 
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TABLE 2.3 

I.O.S. Sea water replicates fission track counts for 

a 21 hour irradiation in a neutron fluence of _10 16 ncm-2, 
-2 2 

tracks counted over 50 fields of view (Total Area = 3.348x10 cm) 

Sample Total Tracks -2 Density(cm ) 

SW1 1200 35842 

SW2 1269 37903 

SW3 1335 39874 

S"4 1325 39576 

SW5 1205 35991 

sw6 1187 35467 

SW7 1285 38393 

sw8 1103 32945 

SW9 1268 37877 

SW10 1150 34349 

Mean count = + 1233 76 (6.1%) 
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TABLE 2.4 

Alpha spectrometry/fission track analysis pore water 

intercalibration. 

SamEle Uranium Concentration 
-1 (dpm kg ) Ratio 

Q!-sEec trometr~ (W . H. o. I .) Fission Track(Glasgow) 
+ 

M6348 + 0.08 -2.70 - 2.40 0.07 0.90 

M6505 2.09 + 3.50 + 0.12 1.67 - 0.07 -
M6506 1.13 + 0.08 1.18 + 0.04 1.04 - -
M6748 2.83 + 3.74 + 0.13 1. 32 - 0.12 -
M6749 1.24 + - 0.07 1.21 + - 0.05 0.98 

M6750 1.64 + 0.10 1.62 + 0.06 0.99 - -
M6629 + 13.16 + 0.43 1.03 12.73 - 0.38 -
M6630 7.22 + - 0.19 7.32 + - 0.22 1.01 

M6631 4.80 + 5.83 + 1. 21 - 0.11 - 0.19 

M6632 1.64 + 0.06 1.94 + 1.18 - - 0.07 

M6635 3.00 + 4.32 + 0.14 1.44 - 0.10 -
M6368 14.33 + + - 0.43 15.01 - 0.47 1.05 

M6493 18.04 + 16.58 + - 0.75 - 0.51 0.90 

M6495 15.26 + 0.64 17 .82 + - - 0.55 1.17 

M6618 7.31 + 0.37 7.14 + 0.22 0.98 - -
M6445 12.65 

+ 
- 0.63 17.99 + - 0.55 1.42 

(fission track values were converted to dpm 
-1 kg from 

ugl -1 by the factor 0.741 dpm 238U/ Ug 238u and a sea 

water density of 1.025 kg -1 
1 ) 
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systematic error involved, the fission track results being, on 

average, slightly higher. The Glasgow/Woods Hole ratios lay 

in the range 0.90 - 1.67 with a mean of 1.14, indicating that the 

Glasgow samples were about 14% higher on average. This is 

probably the result of a slight variation in the seasalt deposit 

diameter when acidified samples are used. Samples M6348 and 

M6618 were unacidified and show a mean difference of 6.0% 

which is within the 6.1% analytical precision (lu) of the method. 

Blank levels arising from artificial sea water and the Lexan 
-1 

amounted to 0.03 ugl equivalent. The relevant equation for 

uranium determination in aqueous samples is 
Dx U - -- Us ••••••.•••••••• (2.2) 

x Ds 
This is a simplified form of equation 2.1 since here the 

uranium foil used for the standard is undepleted in 235u, and 

A typical sample calculation for uranium in pore I = I . 
s x 

water is given in Appendix A. 

Track Counting Methods 

The etched fission tracks from either solid or liquid 

samples were counted manually under an optical microscope 

(Olympus Model BHB) at x400 or x600 magnification, fifty 

random fields of view giving a total counting area of 8.309mm
2 

2 
and 3.348mm respectively. If the track density becomes 

so great that counting the number of tracks per field of view 

on the optical microscope becomes difficult, then the use 

of the Quantimet 720 automatic image analyser is required. 

The Quantimet derives numerical data, in this case fission 

track counts, from a Vickers M41 Photoplan microscope with an 

attached Vidicon camera which is connected on-line to a processor 

with video display screen. By interfacing with a desk-top 

calculator (Hewlett-Packard 9810A Calculator, Model 10) containing 

a programmed magnetic card, the derived parameters total count, 

mean count and lu standard deviation are obtained and printed. 

The area of a field of view at X500 magnification was calibrated 

using/ 



using a 2 - 100 um micrometer scale and was found to be 
-4 2 1.397 x 10 cm. The basic track count parameter can, with 

appropriate modules, be made subject to variable conditions. 

For example, only features greater than a certain size can 

be detected and counted. Since the fission track lengths 

vary depending on the angle of incidence of the fission 

fragment in the plastic, a whole range of track dimensions 

from about 0.5 um diameter for tracks of normal incidence 

to about 30 um length for tracks near the critical angle of 
o 2.9 (Fleischer et al., 1904) are produced. It is useful, 

then, to use such a sizing parameter by applying a minimum 

critical value of -10 picture points length, above which 

features are detected. The Quantimet is permanently 

calibrated internally in picture points, one picture 

point being equal to 0.164 um at X500 magnification. 

only tracks greater than -1.64 um are counted. This 

Thus, 

restriction results in a marked improvement in accuracy, since 

background imperfections on the Lexan are selectively ignored, 

as long as the same sizing conditions are applied to both 

samples and standards. Further discrimination in detection 

is provided by the Standard Detector module which is based 

on a lower threshold setting above which everything darker is 

detected for counting. Since internal reflection of light 

causes fission tracks to appear as dark rods, only these are 

counted, provided that there are no large dust particles, 

etched dislocations or scratches in the fields of view scanned. 

Although it had previously been considered (Crawford, 1982) 

68. 

that fission tracks viewed under the Quantimet could not be 

satisfactorily distinguished from background damage and scratches 

arising from sample contact with the Lexan plastic, various 

improvements and modifications in the technique enabled the 

. Quantim~t system to be utilised successfully: (a) by 

varying the temperature and time parameters during etching of 

the Lexan, the background on the plastic can be reduced and the 

track/ 



2.6.4 

track dimensions controlled. Figures 2.13(a) and ~~13'b) 

show one field of view of etched tracks from identical sea 

water samples irradiated at the same position in the Scottish 

Universities Research Reactor. The lower etching temperature 

and longer etching time resulted in tracks which are more 

presentable to the Quantimet. It was therefore decided to 
o etch all Lexan samples at 45 C for 60 minutes in 6M NaOH. 

Fast neutrons, which constitute a small percentage of the 

reactor neutron flux used here, can produce tracks by causing 

nuclei to recoil elastically within the detector (Nishiwaki 

et al., 1971). This is especially true for protons, which 

constitute 45% of the Lexan atoms, since they have a higher 

elastic scattering cross-section and a greater range in the 

detector. It is these proton recoil tracks which are probably 

responsible for the background damage. (b) By using a 

combination of controlled transmitted light intensity with a 

red filter, the track contrast at the high Quantimet 

magnifications was sufficiently good for reproducible track 

counting when a drop of immersion oil was placed between a glass 

cover-slip and the objective lens. Table 2.5 shows the counts 

obtained, per field of view, for a high track density standard 

SRM 962. (c) Preparation of pore water samples as described 

in section 2.6.2 ensured that there was no abrasion of the 

plastic by the evaporated seasalt crystals, which had previously 

occurred when the deposit was sandwiched between two Lexan 

pieces (Figure 2.14). (d) By conducting a series of experiments 

at the Research Reactor, the sample irradiation parameters were 

optimised with regard to the extent of fast neutron damage, 

track interference from fission products of nuclides other than 

235u and the irradiation duration and position. These 

experiments are described in the following section. 

Sample Irradiation 

The UTR-300 Scottish Universities Research Reactor, 

with/ 



Figure 2.13. 
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(a) 

(b) 

o Appearance of fission tracks (a6 etched at 45 C 
for 60 minutes (b) etched at 80 C for 20 minutes. 



TABLE 2.5 

Fission track counts from N.B.S. Standard Glass 

SRM - 962 as recorded by the Quantimet - 720 
+ U = 37.38 - 0.08 ppm. 

-4 2 
Each field of view = 1.397 x 10 cm. 

11 -2-1 Neutron Flux = 5.08 x 10 ncm s 

Irradiation Time = 6 hours. 

Total Tracks Track Density 

153 1095204 

147 1052255 

151 1080888 

134 959198 

146 1045097 

143 1023622 

140 1002147 

143 1023622 

130 930565 

137 980673 

143 1023622 

147 1052255 

142 1016464 

152 1088046 

144 1030780 

140 1002147 

135 966356 

134 959198 

146 1045097 

138 987831 

Mean Density 1016750 + 41303 
-2 = - cm 

71. 

-2 (cm ) 

(4.1%) 



Figure 2.14. Abrasion of Lexan by a sandwiched 
seasalt deposit. 
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with its maximum power output of 300 kwatt, houses various 

neutron irradiation facilities. Amongst these are the 

Central Vertical Stringer (C.V.S.) which allows access to 

high-flux irradiation positions in the centre of the 

reactor core, and a large thermal column abutting against a 

4-inch thick lead gamma-ray shield ('Y curtain). This 

thermal column consists of a 6' x 4' x 4' stack of graphite 

and provides irradiation positions in a well-thermalised 

flux through 15 4-inch square stringers, access to which is 

gained by removal of the thermal column door. The C.V.S. 

irradiation position has a fast neutron component of about 

3%, but this does depend critically on actual position 

between the 2 fuel arrays. Thermal neutron fluxes were 

determined by the use of Specpure iron flux monitors (Johnson 

Matthey Chemicals Ltd.), one of which was irradiated within 

each sample package. The pre-weighed monitors underwent 

the reaction 58Fe (n,,,( )59Fe and the resulting 1.292 MeV 

,,(-ray emissions were detected on an 80cc Ge(Li) detector, 

Which was efficiency and energy-calibrated using a 60co 

standard source. The neutron flux was computed using a 

Program compiled in Fortran IV (Appendix B). From the 

results of fluxes for 5 monitors contained in the same 

10cm -long package, the mean was found to be (3.13 ~ 0.44) 
11 -2 \ 

x 10 ncm ,indicating an average flux variation of about 

73. 

1.4% per cm. In order to find the optimum irradiation position, 

six packages of identical samples were irradiated at different 

reactor locations. Each package contained one sediment pellet, 

five replicate sea water deposits, one flux monitor and a 

100 ul, glycol-free deposit of a thorium nitrate standard 

(thorium concentration -100ugl-1). Figure 2.15 shows the 

irradiation positions used, and Figure 2.16 shows the measured 

ther~al/ 
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thermaJ neutron flux plotted against distance in cm from the 

core. As expected, the flux decreases with distance in an 

approximately exponential manner. Tracks from the replicate 

sea water samples were counted, and since the irradiation times 

for each sample batch varied, the resulting track densities 

were normalised to the time-integrated flux at the C.V.S. 

position. It was found that at thermal column position 2 

there was an anomalously high track density produced on the 

plastic for all five sea water samples. Repetition of this 

experiment, using one pore water deposit of higher uranium 

76. 

content at each position exhibited the same phenomenon (Figure 2.17). 

Various possible explanations for this effect have been discussed, 

such as a path or hole in the graphite blocks through which an 

excess of thermal-neutrons can pass, or the presence of a 235u 

fission cross-section resonance at the neutron energies found 

at this position, but all have been subject to uncertainties. 

Neutron energy profiles, for instance, are not available for 

the reactor. Further researches by reactor staff into the 

phenomenon are in progress using a 235u_spike solution and 

restricting the number of variables. Whatever the cause, 

the apparent neutron flux per unit distance varies increasingly 

as this resonance peak is approached, and it was decided that, 

in routine analyses, samples would be irradiated near the 
-1 

~-curtain. Here the flux variation was low ( ...., 1.4% 'cm 

as noted previously), the irradiation time required for a 
16 -2 

neutron fluence of ...., 2 x 10 ncm was relatively short 

( ...., 21 hours compared to . ...., 93 hours at position 6), and the 

fast neutron and ~radiation damage was negligible. Figure 

2.18 illustrates the background-corrected track interference from 

23
2

Th fast fission ( q 232Th (fast) = 0.078b). The total 

number of tracks were counted over identical areas as for sea 
~ 

water samples to take account of track inhomogeneity, since 

ethylene/ 
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ethylene glycol was not used at this time, and track 

densities were calculated. The track interference from 

thorium near the 'Y -curtain even at the high concentrations 
-1 

used ( -100ugl ) amounted to only 1.6% of the tracks 

obtained from a typical sea water sample of uranium 
-1 concentration -3.3 ugl irradiated at the same position. 

This indicated that, for equal 232
Th and 238u concentrations 

78. 

of sea water/pore water, thorium interference would be -0.05%. 

However, in reality the 23 2
Th content of ocean water is 6 x 10-5 

-1 
ugl (Moore, 1981) and its effect can be neglected, even in 

sediments or soil samples where the Th/U ratio is -4. From 

the sediment irradiation results, a 6 hour irradiation at 
11 -2-1 this same position (flux -3 x 10 ncm s ) of a sample with 

-2 
U content of 1 ppm gave a sufficient track density of - 45 ,000 cm 

238u fission is also negligible 
-4 

(5xlO b. Another thermal 

because u 238 (thermal) is 

t f " iU l"d 239p neu ron- 1SS Ie nuc 1 e, u, 
240 is present with Pu at levels from around 0.2 fCi -1 

1 for 
-1 

unfiltered North Sea water (Murray et al., 1978) to around 1 pCi 1 

in filtered sea water near the Windscale reprocessing plant 

(Hetherington et al., 1975) and up to 130 pCi g -1 in 

intertidal Irish Sea sediments (Aston and Stanners, 1981). 

239pu has a thermal neutron fission cross-section of 742b, which 

is comparable to that for 235u (579b). However, the track· 

method of analysis is dependent on the mass of a particular 

fissile species and not on its specific activity. By considering 

the above cross-sections, the nuclides half-lives (7.1 x 108yrS 

for 235u, 2.44 x 104yrS for 239pu ) and the constant natural 

235u/ 238u ratio, a 239pu/ 238u a-activity ratio of 1.17 x 104 

is required for an equal probability of fission, a ratio which 

is not achieved even in the most Pu-active samples studied. 
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2.7 Alpha Track Method 

Particle track analysis of environmental apha-emitting 

nuclides, either from the three natural decay series or 

of anthropogenic origin, is a simple and inexpensive 

technique which offers certain advantages over classical 

wet radiochemical methods. Very low or high a-activities 

are detectable since the exposure period of the plastic can be 

varied from minutes to years. Unlike surface barrier detectors 

as used in a-spectrometry, the normal availability of the 

detection system is high, resulting in a high sample turnover 

rate. However, valuable isotopic data cannot be easily 

obtained, although Qaquish and Besant (1976) have shown 

that reasonable a-energy estimates may be possible by 

measuring 90°incident a-track diameters or producing range

energy relations after both carefully controlling etching 

procedures and ensuring bombardment by a~particles of known 

energy. Indeed, high resolution a-particle spectroscopy has 

been demonstrated by Fews and Henshaw (1981) using the track 

detector CR-39 , with an energy spread of -35 keV (0.6%) 

being illustrated for 6 MeV a particles. However, the time 

and instrumentation needed to measure the required track 

parameters was not available, and these methods have not yet 

been proven for real environmental samples. 

The nuclear track detector used in this study is the 

Kodak film LR 115. This medium consists of a thin film 

(13 um) of the a-sensitive cellulose nitrate (CLN), strongly 

coloured red, which is deposited on a thick (100 um) inert 

polyester base. The cellulose nitrate is specially treated 

to increase its response to ionising particles having a 

sufficiently high linear energy transfer (L.E.T.). The size 

and extent of the damage region is characterised by the parameter 

(dE/dx) , the critical energy loss rate for track formation 
c 

(Fleischer et al., 1965). The quantity dE/dx in the CLN medium 

is the specific ionisation and is a function of the energy, 

charge, and mass of the incident positive ion. Therefore 

with a knowledge of (dE/dx) for a particular detector~ it is 
c 

possible/ 
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possible to predict which size of charged particle would 

be registered, and the energy range necessary for track 

registration. The maximum value of dE!dx of the bombarding 

nuclei increases with atomic number so that for CLN(or indeed 

for any other material) there is a lower mass limit for ions 

which can produce tracks. Consequently, the LR115 films are 

totally insensitive to X or~ ray photons, electrons or to 

high-energy protons. They can be used to record the tracks of 

protons of energy ~ 100keV, a-particles of energy ~4MeV and 

heavy ions or fission fragments. In a-track formation, the 

primary energy-loss mechanism at the high initial a-particle 

velocities is ionisation and electronic excitation of the CLN 

molecules. As the energy of the a particle decreases as it 

progresses along its path, the Coulomb interaction time 

increases, resulting in an increase in the rate of energy loss. 

When the particle or positive ion reaches velocities comparable 

to K-she11 electron velocities, the ion starts to pick up 

electrons from the CLN, until velocities comparable to those 

of valence electrons are reached. The energy loss mechanism 

then becomes essentially one of elastic collisions between 

the particle or ion and the atoms of the detector (a process 

known as nuclear stoppin~ rather than one of electronic 

excitation. Thus the specific ionisation reaches a maximum 

at low energies or low residual ranges in the CLN, giving 

rise to tracks whose etched diameter shows a corresponding 

maximum. It is for this reason that, when recording tracks 

of a particles whose energies exceed about 4 MeV (for example 

any good, weightless a-source such as e1ectrodeposited Pu, 

Am, U or Po isotopes), a deceleration medium such as Al foil 

or polyester film must be inserted between the sample and 

the track detector. Hashimoto (1971) observed that 

electrodeposited 241Am apartic1es (5.486MeV) produced we11-
~ 

defined particle tracks only with polyester absorbers of 

thickness! 
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thickness 12 um or greater. Aluminium foils of thickness 
-2 4.50 mgcm were used in this work for autoradiography, since 

the range in Al of a particles of the isotopes of interest, from 
238 210 -2 

U (4.19 MeV) to Po (7.45 MeV) are about 5 to 10 mgcm Al 

respectively. Electrodeposited planchet samples of these isotopes, 

of known total a-activity, were applied to the CLN with inserted 

Al absorber for a period of time sufficiently"long (on the order 

of days) to produce high-density a-autoradiographs. For 

thick sources, such as a sediment pellet or manganese nodule, the 

self-absorption effect obviated the need for Al absorbers, and 

these samples were merely placed in intimate contact with the CLN 

by means of a screw-down perspex press. Such unprocessed samples, 

whether in the form of pellets or thin sections required much 

longer exposure periods, typically of about 6 to 8 months, because 

of their lower a-activities. For deep-sea sediment core 

9936K, double-sided sediment pellets were prepared. The first 

side of each was removed after 6 months to test different etching 

parameters and to obtain an indication of the necessary time to 

accumulate sufficient tracks. The second sides were removed and 

etched under the optimised etching conditions. After the 

appropriate exposure period, the CLN was subjected to an etchant 

solution of 2.5M NaOH at 60
0

C for 90 minutes in a thermostatically 

controlled water bath, etching being stopped by washing in a 1 : 1 

mixture of ethanol : distilled water. An initial examination of 

the plastic under XI00 or x400 optical magnification was c'arried out 

to affirm successful etching. For electrodeposited radionuclide 

samples, particularly those of the higher-energy a -emi t ters, it was 

considered prudent on,occasion to subject the sample to a further 

30-minute etch under the same conditions, in order to produce a 

higher proportion of tracks of greater width and which completely 

penetrated the sensitive layer. Examination of the track record 

and semi-quantitative trace counting are easily performed owing to the 

high contrast between the perforations and the red background, an 

effect/ 



83. 

effect which can be enhanced by use of a green filter or green 

light source. Non-quantitative a-autoradiography produces 

a permanent record of the general distribution of a-activity 

present on the surface of the sample, which for the samples 

under study can be homogeneous (Figure 2.19a) or can include 

hot-spots of activity (Figure 2.19b). Photographs such as 

those shown are taken on the Olympus BHB Microscope using a 

Pentax KI000 camera mounted on a Pentax microscope adaptor K. 

An exposure period of 1 second is used at a magnification of 

X40, with a green filter which is complementary to the hue of 

the film. For pelletised sediment, track counting is required, 

and as in the fission track method, this can be achieved either 

under a calibrated field-area light microscope or with the 

Quantimet 720 Automatic Image Analyser. Under the Quantimet, 
5 2 at XI00 magnification (field of view = 2.482xl0 urn), the 

a-tracks are counted .0ver 50 random fields of view with the 

Standard Detector module based on a lower threshold setting, 

above which all lighter features are detected and counted. 

Only completely-penetrating tracks are therefore recorded under 

these conditions. A 13mm diameter pellet constructed from a 
. 238 232 section of sedlment containing 0.76 ppm U, 3.89 ppm Th and 

5.26 dpm g-1 of 230Th typically produces a track density of 
-2 

"" 4520 cm for a CLN application time of ........ 8 months, background 

tracks being essentially zero. A typical track distribution 

after application of a sediment pellet to CLN for 334080 minutes 

is shown in Figure 2.20, with a typical data set of track 

counts in Table 2.6. As in the fission track method (section 

2.6),a programmable calculator interfaced with the Quantimet 

prints out the total number of tracks counted, the mean and the lu 

standard deviation. Replicate analyses of a-tracks produced 

from a National Bureau of Standards glass (SRM 962) containing 

37.38 pl)m U and 37.79 ppm Th showed a precision of 5.6% (Crawford, 

1982)/ 



Figure 2.19. 
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( a) 

(b) 

(a) Homogeneous and (b) heterogeneous alpha 
track distribution in cellulose nitrate detector. 



Figure 2.20. Typical alpha track distribution from a 13 mm 
sediment pellet, application time 8 months. 
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TABLE 2.6 

Typical Quantimet a-track count of a sediment pellet 

Field of View Count Field of View Count 

1 25 26 25 

2 18 27 19 

3 22 28 12 

4 17 29 34 

5 16 30 22 

6 13 31 20 

7 30 32 18 

8 23 33 20 

9 21 34 24 

10 15 35 21 

11 20 36 24 

12 17 37 25 

13 20 38 31 

14 25 39 18 

15 18 40 17 

16 24 41 18 

17 16 42 14 

18 23 43 15 

19 26 44 21 

20 11 45 27 

21 22 46 13 

22 18 47 21 

23 7 48 12 

24 27 49 15 

25 14 50 15 

Mean 19.68 + 5.37 -
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1982) • The rate R at which a-particle tracks are produced 

per square centimetre per minute is given by 

R = CiT ••••••••••••••••••• ( 2 • 3 ) 
TOT 

where T is the CLN - pellet contact time in minutes and C is the 

track density (cm-2 ). As a consequence of the incorporation of 

large amounts of 230Th in deep-sea sediments (Ku, 1976; Osmond, 

1979), the above calculation for each section in such a continuous 

sample, in this case core 9936K, gives rise to a decreasing a-track 

production rate with depth (Figure 3.1), reflecting 230Th/238u 

disequilibrium (Fisher, 1977; Crawford, 1982). In addition, 

when the results of the a-track (total a's) and fission track 

(parent U) analyses are combined, sedimentation rate date consistent 

with conventional a-particle spectrometry data can be derived 

(Crawford and Baxter, 1981). The excess a-track density, Rxs, 

is estimated from 

R = Ri xs 

where Ri is the total 

u ...................... (2.4) 
l. 

-track density for sample i, U. is the 
l. 

fission-track uranium content in ppm of the same sample and Um 

is the uranium concentration at a depth sufficiently great that 

all excess a-activity is assumed to have decayed back into 

secular equilibrium with the uranium parents, and Rm is the 

corresponding a-track density. The error on R 
xs 

is determined 

as shown in appendix A. Sedimentation rate calculation of a 
\ 

230 . 
pelagic core by the fla track and Th excess methods is discussed 

in section 3.1, and the relative merits and deficiencies of each 

approach is compared. 



2.8 Alpha Spectrometry 

In order to gain a broader understanding of the marine 

geochemistry of uranium, it is advantageous to study the well

documented isotopic disequilibrium (see, for example, Osmond 
238 and Cowart, 1976 ) between the two uranium isotopes U and 

234 U, which exists in both aqueous and solid samples. Therefore, 

since uranium is transported through rivers and estuaries into 

88. 

the oceans and other water basins, controlling the input of the 

geochemical mass balance (Bloch, 1980), isotopic analyses of river 

and estuary water samples, muds and, in one case, particulates were 

performed by a-spectrometry. The analytical methods used for the 

simultaneous determination of 238u and 23 4u in both the aqueous 

and solid samples collected are described here. 

2.8.1 Aqueous Samples 

All estuarine water samples are filtered through GF/B grade 

glass microfibre filters under suction. These filters have very 

high loading capacity and have to be renewed only infrequently. 

The oven-dried filters are retained for calculation of turbidity, or, 

if the turbidity is noticibly high, the particulates are allowed to 

settle and the supernate filtered. In the latter case, the turbidity 

is calculated as the sum of the dried, settled particulates and the 

weight on the filters for the same sample. The filtrate is then 

acidified to _pH 1 with 10 ml concentrated HN0
3 

to prevent bacterial 

growth. Five to ten litres of sample, the higher volumes being 

taken for samples of salinity less than about 10%., are thoroughly 

equilibrated with an aliquot of 232U/228Th tracer and about 50mg 

of Fe carrier. This carrie~is prepared by dissolving ferric 
J 

chloride hexahydrate in 8 molar HCI and extracting the iron 

into 8M HCl - saturated di-isoproply ether (DIPE). Ferric ion 

is back-extracted into 500 ml distilled water and 5 ml of this 
-1 

solution -10mg Fe ml ) taken as Fe (III) carrier. The 

sample is stirred and evaporated overnight on a hotplate to 

a volume of ...... 2 litres and carbonate-free ammonia solution 

added to a pH of about 7 - 8 when hydrated ferric oxide flocs, 

on which the uranium isotopes and other actinides are adsorbed, 

become apparent. It is essential that no carbonate ions 

are present in solution as the uranium forms a carbonate 

complex/ 



complex which remains in solution (Urry, 1941; Langmuir, 1978). 

The gelatinous precipitate is allowed to settle in the warm 

solution and the supernate decanted off and discarded. The 

precipitate is transferred with water washings to a 40 ml 

centrifuge tube and centrifuged on a bench centrifuge for '" 5 

minutes. It is then washed with 20 ml 0.05 Molar ammonia solution 

and the washings and supernate discarded. 5 ml of concentrated 

HC} is added together with 5 ml of 8 molar HCl to dissolve the 

precipitate. This solution is transferred, with '" 10ml 8 molar 

HCl washings, to a previously prepared anion exchange column 

(column I). The column consists of a 10 cm XO.9 cm i.d. glass 

tubing with a number 2 porosity glass frit at the lower end and a 

100 ml reservoir bulb at the top. It is filled to a depth of 

5 cm with Bio-rad AP1-X8 anion exchange resin (100-200 mesh) 

in the chloride form, which had previously been expanded in 

distilled water, and is preconditioned with 2 x 20 ml portions 

of 8 molar HCl prior to use. The strongly basic anion exchange 

resin consists of quaternary ammonium functional groups. Since 

strong anionic complexes of the uranyl and ferric ions such as 
2- -U0 2C1 4 and FeC14 are formed in aqueous hydrochloric acid 

solutions, separation of these elements from any other metals 

can be obtained. The adsorption of uranium and iron increases 

rapidly with increasing molarity of the HCl, the distribution 

coefficient for uranium being "'1 with 1 molar and "'103 for 

molarities ~8 (Korkisch, 1969). Thorium, which does not 

form an anionic complex in an aqueous hydrochloric acid medium 

(Kraus et al., 1956), passes through the column. However 

protactinium (Kraus and Moore, 1950) polonium and plutonium 

if present (Wish,1959; Talvitie, 1971; Ballestra et al., 1978) 

will closely follow the uranium behaviour. 

After loading the sample, the column is washed with 30 ml 8 

molar~HCl, and, since thorium is not to be determined, the 

eluate is discarded. 

column/ 

The iron and uranium are eluted from the 



column with 50 ml of 0.2 molar HCl into a 250 ml beaker, a 

procedure which leaves many co-adsorbed transition metals 

such as Zn and Bi still adsorbed on the column. The eluate 

is evaporated to dryness on a hotplate, and the black anhydrous 

residue taken up in 25 ml 8 molar HCl. The solution is then 

quantitatively transferred to a 100 ml separating funnel and 

shaken with the same volume of 8 molar HCl - saturated 

di-isopropyl ether (DIPE). The bulk of the iron is extracted 

into the organic phase by ion-pair formation between the 

protonated extractant cation and FeC1 4 ' while uranium remains 

in the aqueous phase. The lower aqueous phase is withdrawn 

into a 250 ml beaker and a 5 ml 8 molar HCl washing of the 

ether combined with it. The DIPE extraction is repeated and 

the aqueous layer brought to near dryness on a hotplate. 

The sample is wetashed by repeated addition of 5 ml concentrated 

HN03 and evaporation to near-dryness. It can become difficult 

to dissolve the residue completely in nitric acid if the 

solution is evaporated to complete dryness (8111,1974) because 

of the formation of a refractory oxide. Six ml of 7 molar 

HN03 is added to the beaker and the contents transferred with 

3 ml 7M HN03 washings to a second Bio-rad AGI-X8 anion 

exchange column (column II). This column, identical in design 

to that of column I, consists of a 14 cm resin bed, preconditioned 

with 2 x 50 ml 7 molar HN03 washings. In aqueous: HN03 solutions, 

the uranium complex anion is only weakly adsorbed on the anion 

exchange resin, the distribution coefficient, KD, being between 

12 and 16 (Korkisch, 1969) for a HN03 molarity of 7. However, 

since iron has an even smaller KD value in this nitric acid 

medium, further and essentially complete purification of uranium 

from iron can be achieved by controlled, slow washing of the 

sample through the column with 7 molar nitric acid. Therefore, 

after~ the 6 ml of sample plus 3 ml washings have been loaded onto 

column II , a further 20 ml of 7 molar HN03 is loaded by dropping 

funnel/ 
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funnel at a flow rate of ~2 ml per minute. The purified 

uranium is then eluted with 50 ml 0.2 molar Hel into a 50 ml 

beaker and 1 ml of concentrated H2S04 added. The solution 

is evaporated to fumes of S03' before which a yellow colour 

is observed due to organic residues from the column. The 

solution is allowed to cool, 5 ml concentrated HN0
3 

added and 

the organics oxidised by again taking to fumes of S03. The 

solution is then allowed to cool. For subsequent a-spectrometric 

analysis of the sample, the method of choice for source preparation 

from the many suitable techniques reviewed by Yaffe (1962) and 

Lally (1982), is electrodeposition. Ideally, the source 

should have a monatomic layer of the radionuclides of interest, 

with no intervening foreign material between source and detector 

to produce a attenuation. This situation is closely met by 

the electrodeposition method which affords the thin, uniform 

and nearly weightless sample mounts required for high resolution 

of the a-energies. The procedure used here is based on the 

work of Talvitie (1972) in which the sample is fumed with H2S04 
(preventing premature hydrolysis of the actinides) and an 

ammonium sulphate electrolyte prepared. If electrolytes 

containing chloride are used, chlorine evolution will result in 

the etching of the platinum anode and stainless steel cathode 

unless an organic acid such as oxalic acid is added (puphal 

and Olsen, 1972), and both the Pt and Fe will redeposit along 

with the actinides, resulting in a degraded a-spectrum 

(Kressin, 1977). 

To the cooled, concentrated sulphuric acid solution 

containing the purified uranium isotopes, 5 ml of distilled 

water and 2 - 3 drops of thymol blue indicator are added. 

The pH is then adjusted to 2.0 (using Whatman BDH pH1 - 4 

narrow range indicator papers) by addition of concentrated 

ammonia. The ammonia liquor should be silica-free, or 

vapour used, to prevent formation during electrolysis of 

floc~/ 



flocs which could adsorb the actinides present (Talvitie, 1972). 

The resulting ammonium sulphate electrolyte is quantitatively 

transferred with 5 ml distilled water washings to an assembled 

electrodeposition cell. The cell (Figure 2.21) is similar 

in design to that used by Thomson (pers.comm.). It consists 

of a brass base containing a water coolant jacket, spade-clip 

attachment for the cathode and a shallow recess for holding the 

planchet. The planchets (Nuclear Supplies) are 2.5 cm diameter, 

mechanically-polished stainless steel, which come provided with a 

protective screen to prevent scratching or contamination before 

use. The brass screw-down collar holds the teflon chimney 

and forces a watertight seal between the teflon and the planchet 

when tightened. The teflon cell incorporates two small 

exhaust holes near the top to allow escape of hydrogen during 

the plating procedure. The anode consists of 0.75 mm diameter 

platinum wire, partially enclosed in glass, the last 10 cm of 

which is wound into a coil. The rubber 'O'-ring is positioned 

round the sleeve so that when the anode and teflon cap are 

inserted into the cell, the anode-cathode distance is 0.5 cm. 

92. 

The total capacity of the assembled cell is 17.5 ml and the plating 
2 

area is 1.77 cm. Electrolyses were performed without stirring, 

using a Coutant LQ100/30 power supply capable of providing 0-30V 
-2 and 0-lA. A current of 1 amp (current density 0.57Acm ) is 

passed through the cell for 3 hours and the temperature maitained 

at '" 600 C by use of the water jacket. A voltage reading of 

between 8 and 9V indicated that the electrical resistance of the 

ammonium sulphate electrolyte was '" 8 0 for the 0.5 cm anode

cathode spacing, which compares favourably with other electrolytes; 

for example (Kressiq 1977) a NaHS0 4- Na2S0
4 

electrolyte with a 
-2 resistance of 180 for a 180-minute, 0.39 Acm plating and a 

5 mm electrode-planchet spacing resulted in evaporation of up 
~ 

to 25% of the electrolyte solution. When electrolysis is 

complete,2 ml of concentrated NH3 is added via one of the exhaust 

holes/ 
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holes and the plating left for 1 minute. After removing the 

Pt anode, the current is switched off and the electrolyte 

discarded. The cell is rinsed with ~2ml distilled water 

and the planchet removed and rinsed in methylated spirits, 

made to pH8 with dilute NH
4

0H. It is then heated on a 

hotplate at 200 to 250
0

C to remove volatile Po isotopes. 

Higher temperatures oxidise the planchet surface and result 

in poorer r'solution. From subsequent a-autoradiography 

(section 3.5) using cellulose nitrate plastic, it was observed 

that the activity was deposited homogeneously on the planchet. 

The sample is then ready for counting in an a-spectrometer 

system. 

Solid Samples 

Collected estuarine mud samples and particulate matter 

are dried overnight in an oven at 1100 C and these and other 

dry solid samples are broken up individually in a mortar and 

pestle to a small particle size. Thereafter they are further 

homogenised and powdered in an agate ball mill for 15 minutes. 

About 5g of sample is weighed accurately to better than O.OOOlg 

into a silica crucible and ashed overnight in a muffle furnace 
o 

at 500 C. Suspended particulates from the Clyde and Tamar 

estuaries, with total sample weights ranging only from 

0.1218 to 0.3974g and from 0.0498 to 0.2450g respectively, were 

not analysed for uranium isotopes, since it was estimated that 

an error of up to 20% would result for the 234u/ 238u activity 

ratio, assuming 100% chemical efficiency and a uranium content 

of ~1.5 ppm (Borole et al., 1982). This level of precision 

was considered unsatisfactory since sample activity ratios 

were unlikely to vary outside this ~ 20% range. For the Forth 

estuary samples, which had by far the greaterst turbidity at 

time of sampling, the total weight of suspended particulate . 
matter ranged from 0.2354 to 1.868g and it was decided to pool 

the high-salinity samples (low turbidity) together and low

salinity/ 
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salinity samples (high turbidity ) together for dissolution and 

uranium analysis. 
o Ashing in a muffle furnace at 500 C 

decomposes the organic matter present in the sample. Rapid 

reweighing of the silica crucible and ashed samples gives the 

% loss on ignition, which can be approximated as the% organic 

carbon. The sample is then carefully and quantitatively 

transferred to a 250 ml teflon beaker and moistened with 

f d f i . i f 232 . a ew rops 0 d st1lled water. An al quot 0 U tracer 1S 

95. 

238 added, equal in activity to about twice the expected U content, 

followed by 50 ml of 8 molar HCl. The solution is then heated 

to near-dryness to ensure, as far as possible at this stage, the 

equilibration of tracer and leached isotopes on which all such 

spike methods depend. 25 ml of concentrated HN0
3 

is added and 

the solution covered, and heated to '" 800 c for 2 hours, during 

which time brown N02 fumes are evolved. Since acid leaches 

have been shown to release around 33% (mainly authigenic) of the 

total uranium from sediments (Rona and Emiliani, 1969: Mo et al., 

1971), the balance of uranium must be incorporated within the 

lattice matrix of the minerals present and so complete dissolution 

of the silicates and any refractory clay minerals must be effected. 

Thus, 25 ml of HF (40% w/v) is added and the solution evaporated 

to small volume with release of volatile SiF4 . The solution 

is clear at this stage and if a gelatinous precipitate remains 

equal volumes of HF (40% w/v) and concentrated HN0
3 

are added 

and the mixture boiled. After again taking to near dryness, 

the residue is leached with 25 ml 8 molar HCl and heated to 

remove any HF and HN0
3

. Following filtration of the solution, 

a fine black powder sometimes remains on the filter paper, being 

less than 0.1% of the original sample weight. Microanalysis of 

this powder gave 95.9%C, 1% N, 0% H, suggesting that it might 

be coal dust. The filtrate is stirred, boiled down to "'10 ml 

and "50 ml distilled water added. Addition of concentrated CO2-

free ammonia precipitates the hydrous oxides of the iron and 

aluminium/ 



aluminium carriers naturally-present and the actinides are 

scavenged on these. The solution is cooled, transferred to a 

250 ml linear polyethylene centrifuge bottle and the precipitate 

centrifuged down at 2000 r.p.m. for ...... 20 minutes. The supernate 

is decanted off and 10 ml concentrated HCI, followed by 10 ml of 

8 molar HCI, added to dissolve the precipitate. After DIPE 

96. 

extraction of the bulk of the iron, the anion-exchange purification 

on Bio-rad AG-1X8 resin is identical to the procedure used for 

-aqueouslamples, unless plutonium isotopes are known to be present. 

This was certainly the case for the samples taken from the vicinity 

of the Dounreay Nuclear Power Development Establishment in Caithness, 

where the 239,240pu activities reached about 40 PCig-1 (Cook.et al.~ 
198~). Mackenzie and Scott (1982) found 239,240pu concentrations 

-1 
of 0.03 pCig in the intertidal surface sediment in the River Clyde, 

values which can constitute a significant interfering a-activity 

contribution,since the main a energies of 239pu and 240pu (5.157 

and 5.168 MeV respectively), are close to those of the added 232
U 

tracer (5.320 MeV (68.6%) and 5.263 MeV (31.2%)~ This interference 

is particularly bad for thick sources in which the a-spectrum 

peaks have low-energy tails. The activity contributions from 

plutonium isotopes in water samples are not so important, since 
-1 ./ 

the levels rapidly fall northwards to fCil level in the 7i:Sh 

Sea (Murray et al., 1978). 

The method for plutonium-uranium separation is that 

described by Lally and Eakins (1978). Although the authors 

were interested in the Pu fraction, the eluate from their first 

anion-exchange column can easily be assayed for U. The sample 

solution containing the Pu and U isotopes is loaded, as before, 

onto an 8 molar HC:rconditioned, 5 cm deep bed of Bio-rad AG-lX8 

(100-200 mesh) anion exchange resin. 8 molar HCl washing removes 

rare earths, thorium and radium isotopes; a subsequent 100 ml 

7 molar HN0
3 

washing removes iron, uranium and polonium isotopes, 

while plutonium remains on the column, capable of being removed 

only/ 
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3+ only by reduction to the non-adsorbed Pu species by eluting 

with, for example, 1.2 molar HCl - 0.6% H202 (Talvitie, 1971) 

or 11.1 molar HCl- 0.2 molar HI (Lally and Eakins, 1978). 

For samples with known high Pu concentrations, the nitric acid 

eluate is converted back to the chloride form and the above steps 

repeated to purify the uranium further from plutonium. The nitric 

acid eluate is taken to near-dryness, converted to chloride form 

and purified further from iron by 8 molar HCI/DIPE extraction, 

being subsequently processed as for water samples. In order to 

quantify the extent of U - Pu separation using the above 
. 232 228 242 method, 1 ml al~quots of U/ Th (11.94 dpm) and Pu 

(8.92 dpm) spike solutions were combined and taken through the 

procedure with -50 mg Fe carrier. Only one initial 5 cm column 
. f 242 k was used. Integrat~on 0 the counts under both the Pu pea 

and the 232u peak indicated a separation efficiency of 97.84%. 

Assuming a 1~ geometry factor, and neglecting backscatter and 

self-absorption (Faires. and Boswell, 1981), recoveries of uranium 

from aqueous samples ranged from 8.5 to 63.9% (mean 30.4%) and 

for solid samples from 10.4 to 61.0% (mean 33.8%). 

solid samples were analysed in duplicate. 

a- Spectrometry - Theory and Instrumentation 

Where possible, 

All radiation detectors, including the solid state dielectrics 

discussed in sections 2.6 and 2.7, work on the principle that 

the detected radiation gives up some or all of its energy to the 

medium of the detector either by primary or secondary ionisation 

97. 

processes. In a-spectometry, the silicon surface barrier detector, 

housed in a high vacuum chamber to reduce air scatter, is used 

to detect the a-radiation from the electrodeposited uranium sources. 

In the silicon semiconductor, the energy gap between the valence 

band and the conducting band is 1.leV, a value which results in 

minimal occupation of the conduction band by thermally-excited 
-electrons. n-type impurities present in the Si donate electrons to 

the conduction band, while p-type impurities accept electrons from 

the/ 



the valance band, thus if n - and p-type materials in contact 

are subjected to a bias voltage such that is is positive to the 

n-type material, the free charge carriers are drawn away from 

both sides of the n-p junction to leave a depletion layer with 

almost no charge carriers. Such a junction is prepared by 

allowing a thin surface· of a high purity n-type 

silicon wafer to oxidise (p-type layer). A thin gold film of 
-2 

uniform thickness ( -40 ugcm ) is then vacuum-deposited on 

this p-type surface to act as a contact, while a thin layer 
-2 

of aluminium ( -40 ugcm ) provides the contact for the rear 

n-type face (Goulding and Stone, 1970). Under these conditions, 

current flow through the device is highly limited since neither 

the n or p regions can supply carriers of appropriate sign. 

When an a-particle enters the detector, ionisation occurs and 

electrons are excited into the conduction band. Electron-hole 

pairs are thus produced in the Si, with an energy-loss rate 

of 3.6 eV per pair per a-particle, which are swept rapidly 

towards the electrodes under the applied electric field. Provided 

that the depth of the depleted or sensitive region is greater 

than the range of a-particles of interest and that electron-hole 

recombination does not occur, then the charge collected is 

proportional to the energy of the incident a-particle. 

Ancillary electronic equipment consists of a preamplifier which 

does some amplifying and pulse shaping, but its chief purpose 

is to match the small-voltage output pulses from the high

impedance cables between it and the detector, into low-impedance 

cables. The preamplifier also transfe~the bias voltage to the 

detector from the bias voltage supply unit. Further pulse shaping 

and amplification is performed by the main amplifier which 

incorporates a linear gain control, set so that the largest pulses 

do not overload the amplifier. A biased amplifier accepts the 

shape~ output pulses from the main amplifier (still proportional 

to the incident a-energy) and provides expansion of any selected 

portion/ 
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portion of the total spectral range for the analysis of 

a region of interest; the pulses are fed to a pulse height 

analyser, which sorts them according to their amplitude, 

and an analogue-to-digital converter (ADC) gives out a 

digital signal proportional to the pulse height. During 

counting, the multichannel analyser (MCA) accumulates a 

spectrum of the number of particles of a particular energy 

(channel contents) versus particle energy (channel number). 

In this work, four Ortec silicon/gold surface barrier 
2 

detectors (EG and G Ortec Instruments) of active area 300mm 

and minimum depletion depth 100 urn were used. Bias voltage 

was provided by two Ortec Model 428 dual voltage supplies 

through four preamplifiers (2 x Ortec Model 125, 2 x Ortec 

Model 142B). The detector output signals were fed through 

twin pulse-shaping spectroscopy amplifiers (Ortec Model 471) 

and twin bias amplifiers (Ortec Model 408A) into the quarters 

of a 204.2 channel ADC of a multichannel analyser (Canberra 

Series 80 MCA - version 2). 

Since sample count rates amounted to only a few counts 

per minute, low detector background and low blank contributions 

were desirable for the long counting times used ( '" 48 hours). 

For the four detectors, background count rates in the 238u, 
234 232 U and U peak regions are shoun in table 2.7 for the 

dates indicated. No evidence of background increase due to 

99. 

detector contamination by recoil nuclides (Sill, 1970) was 

evident for the 238u or 234u regions, but there were significant 
232 . 228 increases in the U sp1ke region, due probably to Th 

210 
recoil atoms on the detector face, or to Po (alpha energy 

5.305 MeV) transferred from sample mounts. Reagent blanks, 

using 5 ml of the Fe (III) carrier solution, were run and the 

blank contribution found to contribute 0.01 dpm 238u and 0.03dpm 

23
4u; corresponding to from 3.6 and 11.6% respectively of the 

lowest/ 
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TABLE 2.7 

Detector Backgrounds. Activity in counts per hour. 

Date: 4/10/B2. 

Detector 23B
u Region 234 U Region 23 2

u Region 

1 0.02 0.02 0.02 

2 0.04 0.32 0.21 

3 0.15 0.15 0.10 

4 o.oB 0.19 0.51 

Date: 20/7/B~ 

Detector 23Bu Region 234 U Region 23 2
U Region 

1 0.02 0.00 0.19 

2 O.OB 0.10 0.27 

3 0.10 O.OB 0.77 

4 0.02 0.19 1.02 
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lowest uranium content sample analysed, to 0.08 and 0.21% 

respectively of the highest uranium sample. Both the blank 

and detector backgrounds were substracted from the peak integrals 

and net counts used to give absolute concentrations and isotope 
238 234 ratios of U and U. Appendix C shows a Fortran IV program 

238 234 /238 t·· t compiled to calculate the U content and . U U ac 1V1 y 
-1 

ratio of water samples in dpm I . A conversion factor of 
238 . -1 238 1.343 ug/dpm U 1S used to give concentrations in ugl U. 

Figure 2.22 shows a typical sample spectrum, with 238u (97% 

4.196 MeV, 23% 4.149 MeV), 23
4

u (72% 4.774 MeV, 28% 4.723 MeV) 

and 232
U (69% 5.321 MeV, 31% 5.264 MeV) peaks clearly resolved 

101. 

(data from Lederer and Shirley, 1978). This particular spectrum 

was obtained from a source which was recounted 3 months after 

electroplating, and therefore shows ingrowth of the uranium 
228 224 

spike daughters Th( ti 1.91yrs, Ea 5.421 MeV) and Ra 

(t
i 

3.665d, Ea 5.686 MeV). Since samples were normally 

counted within 1 week of plating, the daughter peaks were not 

usually observed. As can be seen, the resolution (26 keV) 

with a 7 - 8 mm source-detector clearance is sufficiently good 

to show doublets for each nuclide, although a smaller source

detector distance will have a greater detection efficiency 

but at the expense of resolution. The spectral region can be 

energy-calibrated to check for electronic drift or (X-degradation 

by using a three-standard source (Radiochemical Centre, Amersham, 
241 244 239 . code AMR22) containing Am, Cm and Pu nucl1des of 

4 
combined activity 2.99 x 10 dpm, determined in a 2~ proportional 

counter. 

Spike Solutions 

Throughout the project, three different spike solutions were 

obtained. The first, an aged 232U/238Th solution was originally 

obtained from the Lamont-Doherty Geological Observatory, Columbia 

University, New York, 

out in January, 1950. 

ml-1 in August, 1968, 

to/ 

uranium purification having been carried 

The spike. had a 232u activity o~ 5.4 dpm 

and an alpha contribution from 233 u; equal 
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232 234 to 2.2% of the U activity, falling in the U peak region 

(Thomson, 1972). These values were decay-corrected on 
-1 

16th November, 1982 to 4.72 dpm ml and 2.5% respectively. 

Duplicate water samples were analysed, one using this Lamont 

spike and the other with one of the well-characterised Harwell 

spikes (discussed below) to determine whether adsorption of 

spike on the container walls had occurred over the long time 

period since its last use. Since both results agreed within 
+ -1 

error (2.33 - 0.11 ugl + -1 and 2.25 - 0.07 ugl ), it was 

assumed that the Lamont spike was good and could be used as 

and when required. 2.5% of the 232u peak must, however, be 

substracted from the 234u peak due to the 233u impurity. 
232 The other two U spikes were recent solutions from 

Harwell. A limited amount of the first spike (provided by 

A. B. Mackenzie, Scottish Universities Research and Reactor 
+ -1 Centre, East Kilbride) had an activity of 11.94 - 0.12 dpm g 

on 12th May, 1982. The second (provided by J. Thomson, 

Institute of Oceanographic Sciences, Surrey) had an activity 

of 33.5 dpm ml- 1 232
U on 30th April, 1980, corrected to 

-1 
32.79 dpm ml on 19th July, 1983. 
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CHAPTER THREE 

This chapter presents and analyses the particle track 

and a-spectrometric data obtained by the methods outlined 

in sections 2.6, 2.7 and 2.8. For the sake of clarity, the 

different applications of the fission track, a-track and wet 

radiochemical techniques will be discussed-individually in 

separate sections. 

3.1 Particle Track Dating of Deep-Sea Core 9936K 

The particle track analogue of the conventional 230Th 

dating technique (Ku, 1976; Osmond, 1979) can be applied usefully 

to deep-sea sediments. Both methods rely on the well-known 

104. 

isotopic disequilibrium situation which results from the preferential 

hydrolysis and particulate 
230 f . 1 Th, ormed cont1nuous y 
234 . i th U 1n sea water, s us 

scavenging of Th over U isotopes. 

by decay of its conservative parent 

quantitatively removed (Moore and 

Sackett, 1964) on settling particulate matter, and accumulates 
230 on the sea-floor as unsupported, or excess, Th. Subsequent 

parent-unsupported decay with a half-life of 7.52 x 10
4
yrS 

occurs in the sediment column, the specific 230Th activity 

decreasing with depth (time). Since the total 230Th content 

of a sediment is the sum of this excess contribution and of 

a 234u-supported component, both U and Th isotopic analyses 

must be performed. The development of analytical methods to 

measure 230Th directly (Isaac and Picciotto, 1953; Goldberg and 

. 8)· f f 226 /230 h· ·1·· . K01de, 195 prov1ded proo 0 Ra T d1sequ1 1br1UID 1n 

surface sediments. In the absence of diffusion, the 226Ra 

concentration of a continuous deep-sea core would increase with 

i . ·1· b· . th 230Th th depth unt 1 1t reaches equ1 1 r1um W1 ,en decrease 

from its peak concentration with the half-life of the 230Th 

t t ·l 1 ·1· b i . th 234 . t· Th paren un 1 secu ar equ1 1 r urn W1 U 1S a ta1ned. e 

f 226 . d f 230 
use~o Ra as an 1n ex 0 excess Th as assumed by Urry 

(1942, 1948, 1949) for the dating of several cores was brought 

into/ 



into question by Kroll (1953, 1954) who found an erratic 226Ra 

distribution in most of the cores studied, with secondary maxima 

and minima, suggesting Ra migration. Such diffusion was 

subsequently proven by Cochran and Krishnaswami (1980) and in 

226 f"l b model Ra pro 1 es y Kadko (1980). The current state of 
" 230 ref1nement of the Th dating technique is exemplified by 

Thomson (1982) who describes a fusion method for total sample 

dissolution before separate U and Th (X-activity determination, 

and variations of the method for use on different sediment types. 

In contrast, the particle track analysis (P.T.A.) method uses 

105. 

the measured depth-related trends in fission and a-particle damage 

track densities produced in the plastic detector films (sections 

2.6 and 2.7) as indicators of uranium isotope and total 230Th 

profiles respectively (Fisher, 1978; Crawford, 1982). The 
210 applicability of the track technique to the analogous Pb 

dating of rapidly-accumulating nearshore or lacustrine sediments 

has also been demonstrated (Baxter et al., 1981). 

Tables 3.1 and 3.2 display all the particle track and 

relevant radiochemical data respectively for core 9936K. In 

table 3.1, R
TOT 

is the total <X-track production rate calculated 

using equation 2.3 and a sediment pellet: CLN plastic application 

time of 341280 minutes. RXS is the excess (X-track production 

rate calculated from equation 2.4 using a mean Rm/Um value of 0.0110 
-2 -1 -1 

Tcm min ppmU to correct for (X-emitters in secular.equilibrium 

with 238u and 232
Th • In table 3.2, substraction of the 23 4u_ 

supported 230Th activity from the total 230
Th levels produces the 

230 Th excess values down the core. Figure 3.1 shows the variation 
-2 -1 

in R
TOT 

with depth, reaching maximum levels of up to 0.0237 Tcm min 

between about 5 and 15 cm and steadily declining beyond 20 cm to 
-2 -1 230 234 

-0.0070 Tcm min • Examination of the ratios of Th to U 

(Table 3.2) indicates that decay of 230Th excess to equilibrium is 

still not achieved at 68cm. This type of profile is interpreted 

as reflecting the radioactive decay with depth predominantly of the 

unsupported 230Th and of its ingrown (X-daughters 226Ra,through 210po . 

The/ 
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TABLE 3.1 

Particle Track data for core 9936K 

-2 -1 U(pprn) R (Tcrn -2 -1 % cac0
3 

Depth (crn) ~OT (Tcrn min ) -xs I!l~) 

o - 2 0.0077 + - 0.0003 0.73 
+ . 
- 0.03 74.35 

4 0.0078 + 0.0004 0.61 + 75.92 2 - - - 0.03 

4 - 6 + + 0.0146 + 0.0014 76.39 0.0225 - 0.0007 0.72 - 0.03 -

6 - 8 0.0144 + 0.0003 0.51 + 0.0088 + 0.0011 76.90 - - 0.02 -

10 - 12 + 0.54 + 0.0154 + 77.73 0.0213 - 0.0007 - 0.02 - 0.0015 

12 - 14 0.0186 + 0.0006 0.56 + 0.0124 + 0.0014 77.02 - - 0.02 -

14 - 16 + 0.48 + 0.0185 + 73.66 0.0237 - 0.0007 - 0.02 - 0.0013 

16 - 18 + 0.0005 0.73 + 0.0045 + 0.0016 71.28 0.0125 - - 0.03 -

18 - + 0.0005 0.69 + 0.0054 + 0.0016 20 0.0130 - - 0.03 - 71. 91 

20 - 22 0.0158 + 0.0006 0.79 - + + 0.0014 71.61 - 0.03 0.0072 -
26 - 28 0.0132 + 0.0005 0.78 + 0.0047 + 66.45 - - 0.03 - 0.0017 

28 - 30 0.73 + - 0.03 68.12 

32 - 34 0.75 + 0.03 66.73 -

38 - 40 0.77 + - 0.03 69.36 

42 - 44 0.0090 + 0.0004 0.59 + + 74.53 - - 0.03 0.0025 - 0.0015 

46 - 48 0.49 + - 0.02 73.18 

48 - 0.0085 + 0.0004 0.60 50 - + + 71.93 - 0.03 0.0020 - 0.0015 

52 - 54 0.0079 + - 0.0004 0.72 + 71.12 - 0.03 

54 - 56 0.77 + 71.20 - 0.03 

56 ft- 58 0.66 + - 0.03 70.19 

58 - 60 1.01 + 0.04 65.04 -

60 - 62 0.0066 + - 0.0003 0.89 + - 0.03 63.36 



TABLE 3.2 

a-spectorometric data for core 9936K 

Depth U 234u 230
Th 234

u 230Th 
cm ppm 238u dpm/g dpm/g d / excess pm g 

activity ratio 

4 0.60 + + + 0.44 + 10.6 + 0.2 2 - - 0.02 0.99 - 0.05 11.0 - 0.2 - 0.02 -

10 --12 8.91 + (8.5 + 0.2) - 0.17 -

14 - 16 0.66 + - 0.02 1.60 + - 0.05 8.25 + - 0.17 0.52 + - 0.02 7.7 + 0.2 -

18 - 6.31 + (5.9 + 0.2) 20 - 0.15 -
26 - 28 0.76 + + 0.06 5.26 + + 4.7 + 0.1 - 0.03 1.05 - - 0.10 0.59 - 0.03 -

34 0.83 + 0.04 + 0.06 5.44 + + 4.9 + 0.1 32 - - 0.93 - - 0.13 0.57 - 0.03 -

38 - 40 0.77 + 0.80 + 4.75 + 0.46 + 4.3 + 0.1 - 0.05 - 0.07 - 0.11 - 0.03 -

46 - 48 0.63 + 0.96 + 0.06 4.67 + 0.45 + 4.2 + 0.1 - 0.03 - - 0.07 - 0.03 -

- 54 
+ + 0.04 2.87 + 0.06 + 2.34:!: 0.06 52 0.77 - 0.03 0.93 - - 0.53 - 0.02 

66 - 68 + 0.91 - 0.04 0.89 + - 0.05 + 0.60 + + 0.06 2.20 - 0.05 - 0.03 1.60-
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The apparent loss of a-activity in the top 3 or 4 cm of the 

core (Figure 3.1) is calculated as -65% using equation 2.4 
-2 -1 

and an extrapolated R value of 0.0160 Tcm min at 2-4 cm 
xs 

depth from figure 3.3a. This loss is explicable in terms of 

outward diffusion and loss from the sediment of a fraction of 

the Ra and Rn isotopes with a consequent loss of their short-

lived daughters. Using the data in table 3.2 for the 2-4 cm 

section, it is possible to estimate the total activity from 

all a-isotopes, and to calculate the maximum possible % loss 

in a-activity due to Ra plus daughter diffusion. The total 

a-inventory at 3 cm depth is as follows:-
238u (0.44 

-1 dpmg ) plus 7 a-daughters at equilibrium 3.52dpmg 
238 -1 

Th(0.70dpmg ) plus 5 a-daughters at equilibrium 4.20dpmg 
230 -1 a-daughters equilibrium =63.60dpmg Th ~10.6dPmg ) plus 5 at 
231 x -1 

a-daughters = 5.16dpmg pax~0.86dPmg ) plus 5 at equilibrium 

Total a-activity =76.48dpmg 

Here, it is assumed that (a) The a-activity contribution of 

235u and its equilibrium daughters is negligible, (b) from the 

estimated sedimentation rate (0.26 cm kyr-1 ), the age of the 
226 

109. 

-1 

-1 

-1 

-1 

-1 

sediment at 3cm is 11,538 yrs and Ra (t
l 

1622 yrs) and its 

daughters have therefore grown into secular equilibrium with 230Thxs ' 

(c) the 230Th /23 1pa surface ratio equals the theoretical value 
xs xs 

of 10.8 (Krishnaswami and Cochran, 1978) and increases to 12.25 at 

3cm depth. If it is further assumed that all the Ra and Rn 

daughters from the surface-adsorbed, authigenic nuclides 230Th 

and 23 1pa are lost from the sediment core and that their short-

lived daughters decay in-situ before CLN plastic application, 

then the maximum loss 
-1 

4(0.86 dpmg ) = 56.44 

-1 
in a-activity equals 5(10.6 dpmg ) + 

-1 
dpmg ,or "'74%. The low total - a 

activity observed near the surface of the core is therefore 

attributed to the loss of such mobile radionuclides. From 

Figu~e 3.3b, it can be seen that 230Th activity decreases fairly 

regularly/ 



Figure 3.2. Depth profiles of uranium levels in core 9936K 

from both fission track and alpha spectrometry 

techniques. 
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reaularly,providing evidence for its non-mobility. Cochran 
226 230 

and Krishnaswami (1980) have found solid-phase Ra/ Th 

ratios of -0.3 at the top of N.Equatorial Pacific cores, 
226 

suggesting that at least 70% of the Ra atoms produced are 

lost from the sediment and diffuse out of the core, while 

228Th/232Th ratios less than 1.0 also suggest that 228Ra is 
210 226 + + 

being lost. Pb/ Ra ratios from 1.70 - 0.08 to 1.81 -
210 

0.07 ~n the top 1 cm of these same cores suggest that Pb 

112. 

210 (and consequently also Po) returns from the water column to 

the sediment (Nozaki et al., 1977) to contribute to the total 

a-activity. 

Figure 3.2 displays the uranium content of the core as 

determined by both analytical methods, and shows good agreement. 

In the fission track technique, which had previously been shown 

to be an accurate one for the determination of uranium in 

sediments (Rydell and Fisher, 1977), equation 2.1 is used 

for the uranium determination, with Is/Ix equal to 0.33. 

The uranium concentrations observed here, (mean value for whole 

core = 0.68 ppm) lie at the low end of the range found for pelagic 

sediments. For example, Bertine et al., (1970), using a fission-

track method, found values of 0.25 to 7.09 ppm U for non-reducing 

pelagic sediments, while Mo et al., (1973) using the delayed 

neutron counting method reported levels of between 0.57 to 4.3 ppm U 

for sediments from open marine basins having highly-v~riable calcium 

carbonate concentrations (1 - 86%). In pelagic sediments, the 

calcareous plankton material (coccoliths and foraminifera) can 

usually be regarded as diluting material of low-uranium content. 

Ku (1965) determined that coccoliths have less than 0.1 ppmU and 

foraminifera have 0.015 ppm. Holmes et al., (1968) measured 

U values in foraminifera as 0.13! 0.08 ppm in the Drake Passage, 
+ and 0.11 - 0.44 ppm in the South Pacific. Bertine et al., 

(1970) extrapolated the uranium concentration of clay/caC0
3 

sediment mixtures to the pure cac0
3 

end member to yield a value 

off 
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of 0.08 ppm. More recently, Delaney and Boyle (1983), analysing 

carefully-cleaned samples, found a maximum concentration of 

lattice-bound U of 0.023 ppm. Thus there seems to be discrimination 

against the incorporation of uranium into skeletal calcitic 

calcareous structures (excluding aragonitic types which have more U). 

Blanchard and Oakes (1965) found ratios of U/Ca in skeletal 

material to U/Ca in sea water to be usually below 0.1, and that 

calcitic molluscan shells show more discrimination than aragonitic 

types by a mean factor of about 7. A plot of the uranium and 

% cac0
3 

data for the calcareous ooze core 9936K is shown in 

Figure 3.4. The core contains high (63 - 78%) calcium carbonate 

concentrations composed predominantly of carbonate shells and 

foraminiferal tests, but the narrow range of cac0
3 

values is not 

conducive to providing a pronounced u-cac0
3 

inverse correlation. 

The linear correlation with equation U(ppm) = 2.27 - 0.022 caC0
3

(%) 

implies by extrapolation that the U concentration of pure cac0
3 

is 

0.06 ! 0.49 ppm, in reasonable agreement with the above values 

given the low (0.5) correlation coefficient. 

In the determination of the sedimentation rate by the decay 

of 230Th . Or of (X-track rate excess with depth, the initial excess 
(surficial) activity Co and that at depth xcm, Cx ' are related by 

the equation 

Cx = Co exp (-AxIS) •....••..•. (3.1) 

where A is the decay constant of 230Th and S is the sedimentation 

rate in cm per unit time down to depth x . 

in the form 

Rewriting equation 3.1 

InC 
x 

indicates that a plot of 

( - A /S)x + InC ..•..... ( 3 . 2 ) 
o 

InC 
x 

against x should afford a straight 

line whose slope yields the sedimentation rate, S. This has been 

done for the Rand 230Th - 1ata (Figure 3.3) giving 
xs ~xcess -1 + -1 

sedimentation rates of 0.20 - 0.06 cm kyr and 0.26 - 0.02 cm kyr 

re~pectively from the least-squares regression lines, a satisfactory 

agreement given the non-specific nature of the P.T.A. (X-detection 

process, and the characteristic migratory behaviour o~ certain (X

emitters/ 
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emitters as outlined previously. A greater regression 
2 coefficient, R , implies a greater likelihood of uniformity in 

the deposition of both 230
Th and total sediment over the 

230 
time period to depth x cm. Non-linear plots of Th 

excess 
against depth could be explained if the initial concentration of 
230 Th depositing varied with time. The likely cause of such 

a variation is a change in the bulk sediment settling rate, 
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since the long U oceanic residence time (105 to 10
6 

yrs) combined 

with the short 230Th residence time ( -100 yrs) favours a constant 
230 Th precipitation (Ku, 1976). The chemical scavenging of Th 

isotopes in the deep sea occurs by a reversible exchange process 

(Bacon and Anderson, 1983) whose rate is fast compared with the 

rate of removal of particulate matter. Another cause of deviation 

from linearity could be a result of rapid influx of material from 

the continental slope, possibly by turbidity currents. The 

location of core 9936K, near the bottom of the South African 

continental slope,means that the sediments here are vulnerable to 

such influxes, and examination of Figure 3.3b suggests that between 

-30 and 50 cm, a change in slope of the excess 230Th profile 

might be present. Co-incident with this is a textural and colour 

change in the core itself (0 - 28 cm brown, 28 - 52 cm grey). The 
230 decrease in slope of excess Th at these depths is consistent 

with the higher rate of sedimentation which would result if bottom 

currents or gentle density currents were transporting fine 

sediment to the area. The presence of sediment laminae over 

vast areas of the abyssal plains are due to frequent bottom

hugging, gentle density currents (Davies and Gorslin~, 1976). 

Fine-grained turbidites, separated by thin pelagic units alternating 

from oozes to pelagic clays have been found off the North West 

coast of Africa on the Madeira Abyssal Plain (Weaver and Kuijpers, 

1983). Assuming the presence of such'a turbidite unit within 

core 9936K, then this feature highlights a limitation of the P.T.A. 

method i.e. that of being unable to identify such details due to 

the scatter in the data (Figure 3.3a), although the data points 

are,/ 
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are, admittedly, poorly-spaced around the region of interest. 

The observed agreement between the 2 techniques in the 

estimation of sedimentation rate is within analytical error for 

core 9936K, and for other cores subjected to similar analyses 

(Fisher, 1978; Crawford, 1982). The data here formed part of a 

collaborative study (Crawford et al., 1984) which showed that the 

sensitivity of the P.T.A. method was poorer than that of the 

conventional method due to the non-specific nature of the a-particle 

detection process, a shortcoming which results in consistently 

larger errors on the derived sedimentation rates for pelagic cores. 

In contrast, the high analytical precision, down to 2% (Ku, 1976) 
230 

for Thexcess assay using a-particle spectrometry gives more 

precise rates, although large scattering in the data can be 

exhibited, especially in cores of varied lithology, resulting in 

greater uncertainty in rate estimates. Often, the more laborious 

radiochemical technique leads to sedimentation rates being calculated 

on the basis of few but good analytical data, whereas the more 

rapid and simple P.T.A. method, if used in an initial screening 
230 mode or used complementary to the conventional Th 

excess 
method, could yield more detailed, if less precise a-profiles 

for cores. The results shown here indicate that the track 

technique is accurate, comparable in performance with and simpler 

and more rapid than the conventional method. If the initial 

period of a-track accumulation is neglected and access to a 

reactor is available, then the a-track and fission track analyses 

require about 2 and 1 hours per O.lg sample respectively, enabling 

a whole core o~, say, 30 samples to be analysed by the P.T.A. 

procedure in under 4 man-days. This is to be compared with a 

turnover rate of about 1 man-day per 1.5 to 2g sample by 

radiochemistry and a-spectrometry (Thomson, 1982). It is evident, 

however, that because of equilibrium-disequilibrium uncertainties 

within the natural series nuclides in sediment cores, the 

radiochemical method is the more valuable one for a-analyses since 

~t measures specifically the isotopic activities of interest. 

Nevertheless/ 

\ 



Nevertheless, very good agreement between the particle track 

and radiochemical methods is found (Figure 3.2) for the 

uranium analyses, and so the fission track method would seem 

to offer unlimited potential. 
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3.2 Uranium in pore waters of deep-sea sediments 

The following results of porewater uranium analyses, 

obtained by the fission track method described in section 

2.6.2, are presented in non-chronological order so that the 

earliest uranium profiles obtained can be discussed in the 

light of important evidence of a pressure effect revealed in 

the latter stages of this study. This evidence of a 

sampling artefact comes from a comparison of the uranium 

data in squeezed Kastenlot and box core pore waters with 

those from in-situ samples pore waters (Toole et al., 1984). 

Table 3.3 shows the pore water uranium and alkalinity results 

for station 10552 on the Cape Verde abyssal plain. The 

calcareous marl/ooze sediments here consist of 36 - 78% cac0
3 

and are oxic down the whole length of the deepest core 

(1.7 metres). The dissolved oxygen contents, measured 

by a headspace analysis technique (Sorenson and Wilson, 

1984), indicate the presence of free oxygen falling from 66% 

of bottom water values just below the interface to 43% at 1.7m, 

and that by extrapolation of this profile, the sediment may 

118. 

be oxic to -10 metres. Manheim and Sayles (1974) observed 

that in slowly-deposited pelagic oozes with a high water 

content, there was little evidence of diagenesis and alteration 

and little change in pore fluid composition. From a study 

of the decomposition rates of metabolizable organic carbon 

in oxic silicious and calcareous ooze sediments, Muller and 

Mangini (1980) found large rate constants which reflected 

the higher efficiency of organic matter decomposition under 

oxygenated conditions and explained the prevailing oxic 

conditions of biogenic oozes and clays at depths beyond 

1 metre. A sedimentation rate threshold of between 1 and 
-1 

4 cm kyr was suggested below which the chemical environment 

remains/ 



119. 

TABLE 3.3 

Pore water uranium and alkalinity data for station 

10552 (Cape Verde Abyssal plain) (! 1 q error) 

Box Core 9Bx 19° 27'N 29° 54'W, In situ sampler4t7:19025'N 29
0

53'W 

Depth(em) 

o - 2.5 

5 - 7.5 

10 -12.5 

15 -17.5 

20 -24 

28 -32 

32-37 

4655m 4735m 

+ 2.14 0.09 

+ 2.04 0.09 

+ 1.99 0.08 

+ 1. 72 0.08 

+ 1. 77 0.08 

+ 1. 50 0.07 

+ 1.48 0.07 

Alkal~~ity 
(meq.!_)_ 

Kastenlot Core 2K : 

Depth uran~ym 
(em) (ugl ) 

8 - 13 1. 75 + 0.08 -

26 - 31 1.57 + 0.07 -

44 - 49 2.25 + 0.09 -

57 - 62 1.57 + - 0.07 

67 -73 1.29 + 0.06 -
84 - 89 1.20 + 0.06 -

103 - 108 1. 38 + 0.06 -
119 - 124 1.85 + 0.08 -

132 - 137 1.03 + 0.05 -
145 - 150 1.28 + 0.06 -
163 - 168 1.92 + 0.08 -

Depth(em) uran~ym 
(ugl ) 

-50 + 3.38 0.12 

- 1 3.41 + 0.13 

2 + 3.48 0.13 

3.5 2.90 :!: 0.11 

6.5 + 3.16 0.12 

12.5 + 3.28 0.12 

24.5 + 0.11 

45.5 + 4.04 0.14 

19
0

23'N 29054'w,4683m 

Alkal!~ity 
(me,gl ) 

1.99 

1.81 

1.91 

2.03 

2.09 

2.11 

2.09 

1.90 

2.36 

2.12 

2.09 

Alkal~~ity 
(megl ) 

2.32 

2.34 

2.49 

2.35 

2.55 

2.58 

2.62 
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remains oxic in pelagic regions of moderate productivity. Thus, 

since 230Th excess dating of cores from station 10552 showed them to 
-1 be accumulating slowly at a rate of about 0.4 cm kyr ,these oxic 

sediments were not expected to show any dramatic changes in pore 

water constituents (Grundmanis and Murray, 1982). No dissolved 

manganese was found at any depth in the cores. Although there 

was good agreement between the levels of silicate and phosphate 

for the box core, Kastenlot core and in-situ sampler at this station, 

there was a systematic difference in both the alkalinity and uranium 

content between the profiles from the corer.s and that from the 

in-situ pore water device (Table 3.3 and Figures 3.5 and 3.6). 

Over the depth range 0-49 cm, the core samples (combining both 
+ -1 

box and Kasten) have a mean uranium content of 1.82 - 0.03 ugl , 

while the in-situ samples (2 - 45.5 cm) have a mean value of 
+ -1 

3.27 - 0.05 ugl ,a reduction of 44%. For alkalinity, over a 

similar depth range (6.5 - 49 cm), a mean reduction of 27% in the 

squeezed samples relative to the pore water sampler is evident. 

The two in-situ bottom water 
+ concentration of 3.40 - 0.09 

samples give an average uranium 
-1 

ugl for bottom water, in agreement 

with the accepted value + -1 of 3.35 - Q.~ ~S~ ,with the pore waters 

below showing essentially conservative uranium behaviour with 

depth in this carbonate sediment. The loss of alkalinity from 

corer pore waters during recovery (Emerson et al., 1980; Murray 

et al., 1980; Sayles, 1981; Emerson et al., 1982; Jahnke et al., 

1982) is believed to be due to cac0
3
Precipitation and the removal of 

bicarbonate ions from solution as can be seen from the carbonate 

equilibrium 

ca2+ + 2HC0
3 

and the relationship 

Alkalinity = 
- 2-

[HC0
3 

] + 2[C0
3 

] ••··· •.••.•.•..•.. (3.4) 

When the concentration of B(OH)4 is neglected and other proton 
- 3-acceptors OH ,P04 and S;0(OH)3 are also not considered. 

The degassing (loss of CO
2

) from the core as it is recovered 

from the high-pressure deep waters displaces the equilibrium 

(equation 3.3) to the right, thus lowering the alkalinity. 
~ 

In/ 



In solutions such as sea water which have substantial carbonate 

alkalinities, uranyl carbonate complexes predominate (Langmuir, 

1978; Morse et al., 1984) and it is reasonable to assume that 

123. 

2+ the u0
2 

can adsorb initially from solution onto sediment surfaces 

due to the formation of hydroxy-carbonate precipitates or even just 

simple calcium carbonate. Morse et al., (1984) have reported rapid 

sorption of uranyl ion onto carbonate mineral solids, although only 

when the concentration of uranyl ion approached that of the carbonate 

alkalinity, values which are orders of magnitude in excess of natural 

soluble urariium levels. If a simple co-precipitate is formed 

consisting of occluded uranyl ions in a calcium carbonate lattice, 
2- -then this and the much larger concentration of c0

3 
/HC0

3 
(uM) over 

-2 uranium (10 uM) might explain the greater percentage decrease in 

uranium than in alkalinity, if it is assumed that every dissolved 
2-uranium species exists as U02(C0

3
)2 • This process can be 

considered analogous to calcite or aragonite deposition in fresh 

water which generally occurs by CO2 loss from groundwater f here 

uranium is corecipitated along with other dissolved trace elements 

such as Mg, Sr, Ra and Ac, or indeed analogous to the biogenic 

precipitation of carbonate minerals in sea water, a process which 

also incorporates uranium (Gascoyne, 1982). Murray et al., (1980) 

observed the systematic alkalinity decrease in a core containing 

essentially no cac0
3

, indicating that this need not be present as 

a nucleating surface for precipitation to occur on core retrieval. 

An attempt made by the authors to correct for the effect on alkalinity 

via thermodynamic considerations of the carbonate system was later 

shown not to be generally applicable (Emerson et al., 1982; Jahnke 

et al., 1982). 
-1 

The increase in alkalinity from 2.32 to 2.74 meq I 

with depth in core 10552 (in-situ samples, Table 3.3) is a result of 

aerobic oxidation of organic matter in the presence of CaC0
3 

which 

can be represented by the idealised stoichiometric equation (Sayles,1981) 
2+ 

(CH20)106 (NH
3

) 16(H
3
P04) + 13802 + 124 cac0

3 
= 124 Ca 

- 2-
230HC0

3 
+ HP0 4 + 16 N03 + 16 H20 ..••..•.••... (3.7) 

where the Redfield C 

assumed/ 

N : P ratio for the material oxidised is 
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assumed (Jahnke et al., 1982). There was .little evidence of 

denifrification at station 10552, with N0
3 

increasing irregularly 

from 35uM at the surface to 60uM at 166 cm depth. Phosphate 

remained roughly constant at a low level of about 1.2uM in the Kasten 

core 10552 2K indicating the absence of anoxic decomposition of 

P-containing organic matter. 

It would appear from the above discussion, therefore, that 

there is no . alternative to in-situ pore water sampling of deep-sea 

cores (from depths greater than 500 metres (Murray et al., 1980» 

if reliable pore water alkalinity and uranium results are to be 

obtained. This conclusion is confirmed on examination of uranium 

data obtained from squeezed cores taken from the Nares abyssal plain 

and the Bauer basin (stations 10164 and 10189 respectively). 

Table 3.4 and Figures 3.8(a) and (b) show the squeezed pore water 

uranium results in two box cores from the Nares abysqal plain stations 

in the Caribbean. In core 10164 5~, pore water uranium values 

decrease slightly from 2.82 to 1.83 
-1 

ugl in the 30cm depth sampled, 
+ with a mean value of 2.29 - 0.05 

-1 
ugl . In core 10165 8Bx, the 
-1 

decrease is from 3.20 to 1.44 ugl U 

the same depth range. Excess 230Th 

+ -1 (mean 2.20 - 0.25 ugl ) over 

dating of core 10164 5Bx gives 
-1 

a low sedimentation rate of about 0.6 cm kyr . Both of these cores 

are low in cac0
3 

( < 1 %) since they lie below the carbonate 

compensation depth (CCD) of about 5 to 5.5 km in this area (Berger, 

1976; Biscaye et al., 1976). At the CCD, the rate of supply of 

calcareous shells equals the rate of their dissolution, and the 

underlying sediments contain only a few per cent of carbonate. 

All the pore waters sampled gave indications of an oxic or very 
2+ 

mildly reducing environment. Thus, little dissolved Mn was found 
-1 

in the box cores, namely from 5 to 35 ugl for 10164 5Bx down to 
-1 

50 cm, and less than 60 ugl for 10165 8Bx down to 45 cm, and 

suggesting that these two cores remained oxic. Further evidence 

for this assumption comes from the iodate/iodide profiles, iodate 

to iodide interconversion occurring at a depth of ~30cm in core 

10164 5Bx and at 45cm in 10165 8Bx. 

is/ 

If this iodate-iodide couple 
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TABLE 3.4 

Uranium concentration in pore waters from stations 10164 

and 10165 (Nares Abyssal Plain). 

Box Core 5B 26° 12'N 60° 25'W, 5613m. 

DeEth (cm) Uranium -1 (ugl ) 

o - 5 2.82 
"f-

0.14 -

5 - 10 2.45 + - 0.13 

10 - 15 2.25 + - 0.12 

15 - 20 2.25 + - 0.12 

20 - 25 1.83 + - 0.11 

25 - 30 2.11 + - 0.12 

Box Core 8B 23° 45'N 61° 27' W, 5825m. 

DeEth ( cm) Uranium 
-1 

(ugl ) 

o - 5 3.20 + - 0.15 

5 - 10 2.65 + - 0.14 

10 - 15 2.22 + - 0.12 

15 - 20 1. 72 + - 0.11 

20 - 25 1.95 + - 0.11 

25 - 30 1.44 - 0.10 
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is considered as an Eh indicator with a value of + 1.42v (pEl0.5, 

Liss et al., 1973), then the former core might be regarded as 

slightly more reducing. Although diagenetic activity in these 

Nares abyssal plain cores was not intense, classic concentration 

profiles of increasing silicate and phosphate and the presence ofa 

manganese solid phase spike (Froelich et al., 1979) at '" 20cm 

indicated that diagenesis was occurring to some degree. The 

geochemical evidence, however, points to the pore water in the two 

box cores remaining oxic and if, as observed for core 10552 #7, 

the uranium concentration in the pore water should remain roughly 
+ -1 

constant at the sea water value of 3.35 - 0.20 ugl (Ku et al., 

1977), then the pressure effect was again evident in these low

carbonate cores, with mean uranium decreases of 30.6% and 33.3% 

for 10164'5Bx and 10165 8Bx respectively. Higher pore water 

uranium levels characteristic of strongly reducing sediments as 

noted earlier (section 1.2) were, of course, not observed. One 

other Caribbean core for which squeezed pore waters were analysed 

for uranium was the Kastenlot core 10164 lK, sampled to a depth of 

,...,2 metres. Only five pore water samples were available, and 

these were the first to be assayed by the fission track technique. 

Unfortunately the precautions required to guard against uranium 

adsorption on container walls as mentioned in section 2.6.2 were not 

followed at this time and it is thought that the prepared uranium 

standards had a lower concentration than the nominal value, thus 

giving rise to pore water uranium levels which were too high (equation 

2.2) by an unknown factor. With this in mind, examination of the 

systematically elevated data in Figure 3.7c indicates that the 

uranium concentration in the pore water for the upper two samples 

declines in a manner consistent with the two box cores, and removal 

onto the sediment at greater depths. The Kasten core was indeed 

quite similar in redox status to the box cores, to depths of about 

50 cm but became more reducing at greater depths. It is probable, 

therefore, that the pore water uranium values should be similar 

to the two box cores above about 50 cm, exhibiting the pressure 

effect. The core showed iodate/iodide interconversion at a depth 

~of 60 cm, and manganese mobilisation occurring at about 80 cm 

underlying a solid-phase Mn spike at 40 cm. 

rich/ 

A calcareous organic-



rich turbidite is present between 50 and 150 cm in this core. 
230 This is reflected by the presence of large excesses of Th 

at 51, 105 and 185 cm, and by a fivefold increase in the solid 

CaO concentration below 50 cm over the pelagic clay baseline 

above. Below 50 cm a non-steady state pattern of organic 

matter diagenesis was also evident, with the slopes of dissolved 

silicate, manganese and total iodine all approaching a constant 

positive value with depth rather than zero. Twice as much 

phosphate and silicate was apparent in the pore waters of the 

Kasten core relative to the two box cores, corresponding to 

the greater diagenetic activity associated with the higher, 

variable organic content of the turbidite (0.13 to 0.67%). 

As compared to uranium-organic carbon correlations found in 

sediments by Mo et al., (1972), Kolodny and Kaplan (1973) 

and Mangini and Dominik (1979), a moderate correlation 
2 

(r = 0.67) was observed here, which resulted in a variable 

solid-phase uranium content (2.2 to 4.0 ppm) over the whole 

depth range, but in uranium values identical to 10164 5Bx 

above 50 cm. The apparent uptake of uranium from the pore 

waters at depth onto the solid phase may actually be a 

manifestation of uranium enrichment in the turbidite prior 

to its emplacement. However, this feature has been discussed 

by Yamada and Tsunogai (1984) for a reducing core from the 

Bering Sea. The authors suggested that uranium diffuses from 

129. 

sea water through the pore waters of a surface oxidising sediment 

layer, to be precipitated in the deep reducing layer. The 

pore water uranium profiles found here, at station 10164, are 

consistent with this. Pore water uranium da~ from the other 

oxic sediment core, 10189 4Bx from the Bauer basin (see Figure 2.1), 

is shown in Table 3.5 and Figure 3.8. Also included is the 

phosphate content of the pore waters which are elevated relative 

to those found in natural sea water ( '" 1. 2uM) • 

lies/ 

The Bauer deep 
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TABLE 3.5 

Uranium and phosphate concentrations in pore waters 

from station 10189 (Bauer Basin). 

Box Core 4B 9
0 

58's 102
0 

34'W, 4445m. 

DeEth Uranium 
-1 

(ugl ) PhosEhate (uM) 

o - 5 + 2.73 - 0.15 3.21 

5 - 8 2.55 
T 

0.14 3.66 -

8 - 11 2.46 + 0.14 3.00 -
11 - 14 2.32 + - 0.13 3.15 

14 - 17 2.49 + 0.14 3.24 -

17 - 20 2.35 + - 0.13 2.85 

20 - 23 2.20 + 0.13 2.91 -

- 26 
... 

23 2.79 - 0.15 2.97 

26 - 29 2.57 + - 0.14 3.00 

29 - 32 3.22 + - 0.16 9.63 

35 39 + 3.21 - 2.09 - 0.12 

42 - 45 2.41 + - 0.13 3.79 

50 - 53 3.11 + - 0.16 34.20 

58 - 61 2.53 + 0.14 - 3.27 

64 - 67 3.06 + 0.16 6.51 -
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lies between the East Pacific Rise (EPR) and the extinct 

Galapagos Rise, and contains low carbonate concentrations 

of 1.2 to 1.6%, an abundance of fish teeth, high concentrations 

of metals (Fe, Mn, Ni) and zeolites (e.g. Phillipsite) 

which are all due to the precipitation of metal-rich, 

volcanically-derived hydrogenous phases into the slowly

accumulating sediments (Dymond and Veeh, 1975). From 

observed 234u/238u ratios of 1.00 ~ 0.02 to 1.04 ~ 0.02, it 

was concluded (Dymond and Veeh, 1975) that there was little 

uranium uptake from sea water, unlike the EPR sediments 

which showed higher activity ratios due to higher uranium 

accumulation rates there resulting from the precipitation of 

hydrothermal solutions by the reaction of sea water with 

cooling basalt lava. Bischoff and Sayles (1972) have 

shown, in a sampling transect across the Bauer deep and the 

EPR, that the Eh environment of all the sediments is between 

+100 and +200 MV. This mildly reducing environment showed 

no significant sulphate depletion from bottom-water values, 

and the most metalliferous cores in the Deep had amongst the 

lowest levels of dissolved manganese ( ~ 55 uM). In core 

10189, the solid-phase MnO (3.62 wt. %), Fe
2
0

3
(14.0 wt.% 

and P20
5 

(0.61 wt.%) signified enrichments relative to 

average ocean sediment (0.41, 4.89 and 0.16 wt. % respectively, 

Chester and Aston, 1976) and had very similar profiles 

indicating EPR crest VOlcanic activity as their common origin. 

Examination of the pore water uranium profile (Figure 3.8) shows 

again the pressure artefact of core retrieval and squeezing, 

with the uranium values down to 23 cm depth averaging 2.44 ~ 

0.05 ugl-
1

, indicating a depletion of 26% relative to sea 

water concentration. Below 23 cm the uranium concentration 
-1 

varies irregularly with depth between 2.09 and 3.22 ugl 

a/ 



a feature which may be related to the increased dissolved 

phosphate levels at 30 cm and 51 cm. The importance of 

phosphate complexes or uranium, particularly the species 
2-U0

2
(HP0

4
)2 ' was recognised by Langmuir (1978) and Dongarra 

3-and Langmuir (1980). Indeed, the presence of only 1uM P04 
will displace the stability field of carbonate complexes to 

pH 7.5 or greater (Tripathi, 1979). 

In all the previous cores discussed, the geochemical 

data available have indicated either oxic or mildly reducing 

environments, with essentially conservative pore water uranium 

behaviour. The uranium data for the squeezed pore waters were 

assumed to be subject to a pressure artefact and were translated 

as lower pore water values relative to sea water. However, to 

ensure that this is indeed the case, samples from the in-situ 

pore water sampler must be examined for each individual core. 

In the following discussion, all the deep-sea cores have 

anoxia at depth and show concomitant elevations in their pore 

water uranium contents. 

Station 10554 east of the Great Meteor seamount on the 

Madeira abyssal plain (Table 2.1, Figure 2.1) is the only other 

station where comparative corer and in-situ data are available. 

Table 3.6 shows the uranium and alkalinity results in the pore 

waters squeezed from the box core 10554 5B and the Kasten 

core 10554 2K, together with the in-situ sampler data 10554 

#12 PWS. Straightforward intercomparison of the profiles, 

133. 

however, is not possible here, since the composition of the cores 

taken only a few miles apart is variable, with pelagic sedimentation 

being interrupted sporadically by deposition of fine-grained, 

calcareous distal turbidites (Weaver and Kuijpers, 1983) whose 

possible source areas are the North-west African continental slope 

and the slopes of the Madeira and Canary archipelagos. The 

box core, about 60 cm long, showed a decreasing dissolved 02 profile, 

falling to less than 10% air saturation at 30 cm and to zero at 

40 cm./ 



TABLE 3.6 

Uranium and alkalinity data for station 10554 

(Madeira abyssal plain - Great Meteor seamount 

134. 

+ 
(-10" error) 

Box Core 5B : 310 30'N 240 26'W, 

5370m. 

In situ sampler ~12: 310 27'N 24 0 27'W, 
5371m 

Depth(cm) uran!¥m Alkal!~ity Depth(cm) uran!¥m Alkal!~ity 
(ugl ) (meql ) (ugl ) (me,gl ) 

o - 2.75 + 0.10 1.89 2 - 3.78 + - 50 - 0.13 2.25 

2 - 4 2.48 + - 0.09 1 2.37 + - 0.08 2.33 

4 - 6 2.44 + 1.81 4.96 + 2.63 - 0.09 2 - 0.17 

6 - 8 3.03 + 0.11 5.36 + 0.18 - 3.5 - 2.51 

8 - 10 2.23 + 0.08 1.80 6.5 6.43 + 0.24 - - 2.79 

12 - 14.5 2.20 + 0.08 8.76 + - 12.5 - 0.31 2.92 

14.5 - 17 3.37 + 0.12 24.5 8.69 + - 1.92 - 0.31 3.03 

17 - 19.5 2.24 + 0.08 -
19.5 - 22 2.20 + 0.09 1.85 -

22 - 24.5 2.22 + 0.09 -
24.5 - 27 2.31 + 0.09 2.04 -

27 - 29.5 1.66 + - 0.07 

Kastenlot Core 2K : 31
0

30'N 24 0 29'W, 5370m 

Depth(cm) uran!¥m Alkal!~ity 
(ugl ) (me <;1 ) 

21 - 26 14.63 + 0.48 - 1.93 

35 - 40 10.84 + 2.43 - 0.37 

53 - 58 10.92 + 0.37 - 2.50 

76 - 81 11. 34 + - 0.38 2.55 

95 - 100 8.20 + - 0.29 

113- 118 7.60 + 0.28 - 2.59 

138 - 143 4.45 + 0.18 2.48 -
157 - 162 5.63 + - 0.22 

184 - 189 4.75 + - 0.19 2.27 
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40 cm (Sorensen et al., 1984). Further evidence of reducing 

conditions was complete dentification by 40 cm (Sorensen et 

al., 1984) and manganese release. Dissolved silicate increased 

to about 5 times and dissolved phosphate to about 2.5 times 

their bottom-water values by this depth. From Figure 3.10, 

the alkalinity pressure effect was again observed for the 

box and Kasten cores, with a mean decrease in alkalinity of 

31.7% over the depth range 0 - 29.5 cm relative to the in-situ 

samples. Only the uranium content of the box core, however, 

showed a corresponding 26.3% mean decrease from the sea water 

value. Solid phase analysis of the box core showed high uranium 

137. 

values between 31 and 52 cm (range 3.59 to 9.77 ppm, mean = 6.75 ppm), 

with anoxic conditions here coincident with a 20 cm thick green 

layer, the lower part of a turbidite. This layer was also 

present in a nearby Kasten core (10554 11K) and had a mean 

organic carbon content of-. 1.5% as compared to 0.17% for 

the overlying and underlying calcerous ooze, and a mean cac0
3 

content of 23.7%, as compared to a mean 55.2% cac0
3 

for the 

overlying and underlying ooze. The observation that the pore 

water uranium values in the box core are depressed at all depths 

down to 29.5 cm was surprising with a high uranium, high organic 

carbon turbidite layer below 31 cm. It would perhaps have been 

expected that the upward diffusion of solubilised uranium, with 

this anoxic layer as source, would register as a gradient, positive 

downwards, in the pore waters as was observed in the PWS data 

(Figure 3.9). That the pressure effect alone cannot be responsible 

for suppressing such a gradient is shown by the results for 

core 10554 2K (Figure 3.9). Here, the pressure effect is 

operative (depressed alkalinity, Figure 3.10), yet the pore water 

uranium associated with the grey-green anoxic turbidite at 35 cm 

and beyond is enhanced. The explanation for these low pore 

water uranium values above the turbidite may lie in a combination 

of two effects. 

sediment/ 

The pressure effect in oxic, low-organic carbon 
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sediment (0.17% for 10554 5B overlying ooze) could depress 

pore water uranium, but as observed by Suess (1970), reduced, 

high-organic carbon sediment (1.5% in the turbidite here) may 

contain sufficient dissolved organic matter (DOM) to adsorb onto 

and saturate carbonate mineral surfaces, thus inhibiting 

calcium carbonate precipitation, a suggestion also made by 

Berner et al., (1970). Since plutonium and uranium are both 

actinide elements of variable oxidation state and may behave 

similarly in sediments, it is of relevance to consider the 

work of Pillai et al., (1982) on plutonium. These authors 

demonstrated that Pu can be present in sea water in association 

with high molecular weight organic compounds and that at 
-1 

levels of 20 mg DOM 1 ,values easily attained and often 

exceeded in marine pore waters (Nissenbaum et al., 1971; 

Nissenbaum et al., 1972; Krom and Sholkovitz, 1977; Lyons et al., 

1979; Barcelona, 1980; Elderfield, 1981), the solubility of Pu 

in waste effluent was increased by a factor of 5. Such 

'solubilisation was apparently higher, by a factor of about 26, 

in the presence of carbonates/bicarbonates. The amount of Pu 

released from sediments by sea water containing excess organic 
-1 -1 

matter (20mgl ) and added carbonate (140 mgl ) was less 

than 3.5%. Under reducing conditions, however, simulated 

by bubbling H2S gas through a sediment/sea water slurry, the 

Pu release was enhanced to 60%. 
-1 

The maximum pore water uranium of 14.63 ugl at the 

21 - 26 cm depth interval in core 10554 2K could be· due to an 

Eh boundary change within the sediment, where a high solid-phase 

uranium content is in contact with oxic pore water, resulting 

in oxidation of organic matter and release of bound uranium. 

This effect is similar to that observed in a grou.ndwater 

redox barrier (Cowart, 1980), and in a brown clay sediment from 

the/ 



the North East Atlantic(Colley et al., 1984), wherein a 

downward-advancing oxidation front released and mobilised uranium 

from the organic matter of a turbidite. It is assumed that 

there would be an upward flux of uranium within the pore waters 

for the Kasten core here, as well as the observed downward flux 

(Figure 3.9) which seems to be concave downwards indicating 

some uranium uptake by the reduced sediment below. In contrast 

to the conservative in-situ uranium values found in the oxic 

pore waters of core 10552 (Table 3.3), the in-situ sampler 

uranium profile here (Table 3.6) was enhanced over the sea water 

value. The two overlying water samples gave a mean uranium 
+ -1 

concentration of 3.08 - 0.08 ugl • The dissolved 02 profile 

for this core (10554 ~12) was similar to that of the box core 

(10554 58), decreasing with depth. The enhanced uranium 

levels probably had as their source the grey-green turbidite 

described earlier, whose top surface was assumed to lie about 

12.5 cm below the sediment water interface at the site of 

the PWS drop. Taking the uppermost four pore water uranium 
-4 -4 data pOints, a concentration gradient of 3.63 x 10 ug U cm 

was indicated. Fickls first law of diffusion (Lerman, 1979) 

states that 

F 
u 

D 
de 

- u u---
dx 

....................... (3.6) 

where F 
u 

-2 is the flux of solute U in g cm 
-1 

yr 

effective diffusion coefficient in 
2 -1 

cm yr and 
-4 concentration gradient of solute U in g cm • 

D is its 
u 

dCU/dX is the 

The formal 
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relationship between the diffusion coefficient in free solution, 
2 -1 

D , equal to 134 cm yr for the uranyl ion (Li and Gregory, 1974) 
o 

and the bulk sediment or effective diffusion coefficient D
U

' 

can be expressed as 

D 1212 ••••••••••••••••••••••• ( 3.7 ) 
o 

where 121 is the volume fraction of sediment occupied by water 

(porosity) and 0 ~ 121 s 1. If deposition is slow, then the porosity 

of a sediment tends to be low since the expulsion of pore water keeps 

pace/ 
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pace with pressure loading. In box cores porosity values are 
+ usually - 15% of the mean showing an exponential decrease with 

depth. Measurements of wet/dry ratios on core 10554 5B showed a 

constant porosity in the top 27 cm of 0.440 ~ 0.003, giving an 
2 -1 

effective diffusion coefficient DU of 26cm yr in the sediment at this 

station. This is in good agreement with the value used by Ku et al., 
2 -1 

(1977) of 30cm yr From equation 3.6, assuming transport of 
-8 -2-1 

uranium as the uranyl ion, an upward flux of 0.94 x 10 g cm yr 
-2 -1 

(7.0 dpm cm kyr ) is calculated. If it is supposed that the source 
-

of uranium for this flux was a turbidite identical to that found in 

core 10554 5B, i.e. 21 cm thick with a mean uranium content of 

6.75 and if a mean density of 2.5 
-3 

then the ppm, gcm is assumed, 

total uranium inventory in this band was 
-2 

354.5 ug cm (262.5 

dpm 
-2 

cm ) and so this flux of 7.0 dpm 
-2 

cm kyr 
-1 

could be maintained 

for 37,500 yrs in both directions and therefore for 18,750 yrs 

upwards if diffusion away from the band is considered symmetrical. 

The calculated uranium flux above is more than an order of 

magnitude greater than the flux of 234u from deep-sea sediments 
-2 -1 

(0.3 dpm cm _yr ) calculated by Ku (1965) based on the deficiency 
234 238 . of U with respect to U 1n the solid phase. If one considers 

234 238 . 
that the U/ U act1vity ratio in reducing sediment pore waters 

would be > 1.14 (see, for example, Cochran and Krishnaswami, 1980) 

then the actual 23
4

u flux (in activity units) from core 10554 # 12 

would be even greater, indicating the importance of such reducing 

sediments in the geochemical balance of uranium isotopes in the 

ocean. Using only solid-phase uranium data, Yamada and Tsunogai 

(1984) came to the conclusion that reducing sediments from the 

Bering Sea were acting as a sink for uranium. Both of these 

considerations, reducing sediments acting as a uranium source or 

sink, would place either lower or higher limits respectively on 

the riverine uranium concentrations and activity ratios required in 

any steady-state model (Ku et al., 1977). The above picture of 

uranium solubilisation by some organic or inorganic species within 

a high organic turbidite unit, with subsequent migration away from 

the/ 
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the pore water maximum concentration does not, unfortunately, 

explain the uranium profile obtained from core 10549 6K, shown 

in Figure 3. 11 . This core contained a glacial sediment section 

deeper than 50 cm ( "'70% cac0
3

, "'0.6% organic C) above which 

lay a postglacial carbonate ooze (75 - 85% caC0
3

, "'0.2 % organic C). 
14 -1-1 

C dating gave sedimentation rates of 8.3 cm kyr and 3.2 cm kyr 

for these layers respectively. Where the change in accumulation 

rate occurred, there was a noticeable green colour from 49 cm to 

the bottom, corresponding to the Fe(III)/Fe(II) redox boundary 

according to Lyle (1983). Dissolved O
2 

dropped to its minimum 

value at '" 50cm, just above which lay a solid-phase manganese spike, 

with manganese reduction and mobilisation in the pore waters below. 

The glacial sediment contains elevated uranium contents (mean 
+ concentration 4.50 - 0.11 ppm from 64 to 136 cm) as compared to that 

+ for the postglacial carbonate ooze (mean concentration 0.37 - 0.02 ppm 

from 0 to 51 cm). The pore water uranium concentration also increased 
-1 -1 

dramatically from 1.13 ugl to 8.51 ugl at 51 cm, to a maximum 
-1 

of 85 ugl at 65 cm within the suboxic zone (Figure 3.11). It was 

evident from the increased pore water phosphate concentration and 

alkalinity concentration (although only one datum point) that organic 

matter combustion was proceeding in the suboxic glacial layer, with 

the pore water uranium and alkalinity showing a possible correlation. 

This would be in accord with Kolodny and Kaplan's (1973) idea of high 

~C02 levels solubilising adsorbed or complexed or reduced uranium 

from the solid phase. However, this suggestion here must be qualified 

when it is expected that the pressure effect would occur in this deep

sea core. Down to 45 cm in core 10549 6K, the pore water uranium 
+ -1 + -1 

content decreased linearly from 2.89 - 0.11 ugl t~ 1.13 - 0.06 ugl 

(mean 1.98:: 0.04,Ugl1) suggesting a.40% mean raiuction.inthe.oxic, 

carbonate-rich layer relative to sea water. Again, the proposed 

explanation for high pore water uranium in the glacial sediment below 

is oxidation or combustion of the relatively high organic matter 

( '" 0.6%) and concurrent solubilisation of some adsorbed or complexed 

(authigenic) uranium. 

seal 

The observed linear uranium decrease from 
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TABLE 3.7 

Uranium, alkalinity and phosphate date for station 

10549 (East Atlantic) + (- 1 d error) 

Kastenlot Core 6K 000 01.9'N 16
0 

10.2'W, 3150m. 

DeEth (cm) Uranium -1 (ugl ) Alkalinit~ 
-1 (meg,l ) PhosEhate (uM) 

12 2.89 :!: 0.11 2.67 1.5 

19 2.56 + - 0.10 0.5 

27 2.29 + - 0.10 2.51 0.2 

33 1.68 + - 0.08 0.2 

39 1. 34 + - 0.06 2.51 0.1 

45 1.13 + 0.06 - 0.3 

51 8.51 + 0.33 2.34 - 1.7 

58 72.92 + 2.56 4.7 -
65 84.99 + 2.93 2.88 5.8 -
72 47.05 + 1. 76 2.40 6.8 -
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-1 
sea water value to a low value of 1.13 ugl seems to represent 

a sink for uranium, if the upper values in this core are not a 

reflection of the pressure artefact. As noted previously, such 

a sink has already been found by Yamada and Tsunogai(1984) in a 

reducing core from the Bering sea. If uranium mobilisastion is via 

organic complexation, then the pressure effect cannot be the reason 

for the absence of a downward-increasing profile to peak levels at 

depth in both this core and core 10554 5B (discussed earlier). 

More mystifying is the fact that such a profile was observed for the 

in-situ samples from this station (10554). Colley et al., (1984) 

have illustrated the downward-mobilisation of uranium in a core off 

the North West coast of Africa. From the solid-phase uranium data 

for this core, it was proposed that oxygen diffusion downwards into 

a turbidite layer progressively oxidised some of the combustible 

organic material, evidenced by a depression in the organic carbon 

content at the top of the turbidite, which released uranium to the 

pore waters, evidenced by a solid-phase uranium depression in the 

same sediment layer. About two-thirds of this remobilised uranium 

diffused downwards to be fixed again, giving rise to a uranium solid

phase spike at the base of the turbidite, with the other 30% assumed 

to have diffused upwards and out of the sediment column (Colley et al., 

1984). A strange pore water profile is implied to pump uranium in 

the downwards direction preferentially, but unfortunately pore water 

data were not available. Looking again at core 10549 6K, if we assume 

similar porositi~s . to 1055U 5B i.e. a mean water content of 58.2%, 

then in 1 kg of sediment there are 582 g of pore water and 418 g of 

sediment. For a mean uranium content of 4.50 ppm in the glacial 

sediment layer, this amount of sediment contains a total of 1881 ug 

of uranium which is in contact with the 582 g (568 ml) of pore 

water.To achieve the maximum observed pore water concentration of 
-1 -1 

85 ugl ,equal to an enhancement of -82ugl over the sea water 

value, the desorption of 46.6 ug of uranium from the solid phase 

by whatever method (released with oxidised organic matter, solubilised 

by organic complex formation, remobilised by the sharp redox change 

~accompanying anoxia, or by higher carbonate values)is required, an 

amount/ 



145. 

amount equal to only '" 2.5%. 

Core 10549 could be considered analogous to the high-organic 

carbon, sapropel-layered sediments found in confined, periodically 

stagnant basins such as the Ionian Sea in the Eastern Mediterranean 

region (Mangini and Dominik, 1979, Thomson, 1982) or to the sediments 

of deep-water basins with static cyclic circulation zones (Baturin, 

1973) both of which show large enrichments of uranium. Uranium 

concentrations of up to 50 ppm and organic carbon up to 7.2% 

together with a correlation between the uranium and organic matter 

content have been reported for Late Quaternary sapropels from the 

Mediterranean Ridge (Mangini and Dominik, 1979). The formation of 

the sapropel layers was suggested by Rossignol-Strick et al., (1982) 

to be a result of Nile river flooding, which spread a low-density, 

low-salinity discharge over the sea surface, resulting in the 

establishment of a steep vertical salinity gradient. The stable 

stratification triggered by this salinity and density gradient 

prevented thermohaline convection and resulted in the depletion 

of oxygen at depth and the formation of the sepropel due to the 

creation of a reducing environment. The increased erosion resulting 

from the flooding of the Nile supplied excess nutrients to the water 

column, producing a greater bacterial supply to the sediment and 

giving rise to the anoxic conditions which kills off the benthic 

community, preserving the organic carbon for the sapropel. The 

study of one such sapropel layer in detail by Mangini and Dominik 

(1979) led to the conclusion that uranium incorporation was indeed 

by authigenic deposition (234u/ 238u activity ratios around 1.15 for 

young sapropels less than '" 25 ,000 yrs) and was later confirmed by 

Thomson (1982). A half-closed system for uranium isotopes was 

proposed, however, for older sapropels of 130,000 yrs in a particular 

layer which exhibited uranium activity ratios close to unity for the 

middle 

higher 

above. 

sections with the highest uranium content, but remarkably 
+ ratios of up to 1.19 - 0.04 in the sections underneath and 

234 238 The expected U/ U activity ratio for a sapropel layer 

of this age would be 1.10. 

system/ 

This was explained by the half-closed 
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system in which only the 234
u produced in-situ by radioactive 

decay of 238u , which eventually replaces the originally deposited 

234u, is able to move. Such 234u production would be greatest in 

the highest uranium-containing sections of the sapropel layer, and 

this 23 4
u would diffuse along the produced concentration slope to 

yield the given activity ratios, and would 

the layer. However, if the total uranium 

are used, it can be shown that the 'total' 

eventually be lost from 

and 234u/238u ratios 

234u/238u ratio of the 

whole sapropel band is 1.10, a value equal to the expected ratio 

for a band of such an age, indicating very little escape, if any, 
234 even of U. Modelling of this diffusion process (Mangini and 

Dominik, 1979) gave a diffusion constant, Du ' of between 10-
11 

-12 2-1 
and 10 cm s ,about 5 to 6 orders of magnitude lower than that 

for uranium in oxic sediment pore water (Ku et al., 1977), indicating 
234 that the U has only a very small chance to diffuse freely, spending 

most of its lifetime adsorbed on particles in the sapropel, probably 

as 23
4
u

4
+ given the high reducing conditions present. If the D 

-12 2 -1 u 
value of 10 cm s (relevant for all isotopes of uranium) is used 

for the uranium present in the glacial layer of core 10549 6K, which 

is also under reducing conditions, then with the data at depths 45 cm 

and 65 cm from Table 3.7 giving a concentration gradient of 4.19 x 
-3 -4 -15 -2 -1 

10 ug cm ,an upward uranium flux of only 4.19 x 10 ug cm s 

is calculated from equation 3.6. Such a low flux should not (and 

from Figure 3.11 does not appear to) give rise to an increase in the 

uranium content in the overlying pore waters, even considering that, 
14 

from C dating of the neighbouring core 10549 lK, the glacial layer 

has had ~13,000 yrs in which to do so. Viewed another way, a 

breakthrough time for diffusional transport through a sediment can 

be defined (Thomson, 1978) as 

t = 
2 

Z ID ............................ ( 3.8 ) 
u 

where Z is the barrier thickness in cm and 0 is the diffusion 
2 -1 " coefficient in cm s The time required for the uranium in the 

pore water below 45 cm to break through just 5 cm to 40 cm depth 

using equation 3.8 and 
5 x 10 yrs. 

-12 2-1 
the above 0 value of 10 cm s ,is 7.96 

u 
Although this treatment is rather simplistic, the 

result/ 



result shows that a negligible amount of uranium would be expected 

to diffuse upwards in the pore waters of this reduced sediment. 

Squeezed pore waters taken from two box cores and one Kasten 
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core from Hellenic Trench sediments in the Eastern Mediterranean were 

analysed for uranium and the results are shown in Table 3.8. 

All three cores contained 30 cm calcareous ooze overlying sapropel 

layers of various thicknesses and overall sedimentation rates 

(Thomson, 1982), due to the complex physiography which controls 

sediment redistribution in this vicinity (Stanley, 1978). The 

sapropels have low concentrations of manganese, consistent with 

the behaviour of this element under anoxic conditions, enrichments 

of Cr, Cu, Mo, Ni and Zn due to organic matter or sulphide 

association (Calvert, 1976; Sutherland et al., 1984) and very 

high concentrations of uranium in both the sediment and pore waters. 

The pore water uranium data for the three cores 10103 1B, 6B and 

3K are given in Table 3.8 and are plotted in Figures 3.12 to 

3.14 respectively. 

A number of workers have found metal-organic associations 

in marine sediments and pore waters, and have shown that high 

molecular weight humic and fulvic acids and their dissolved 

precursors including degraded planktonic cellular material,amino 

acids and carbohydrates are most important for metal complexing 

(Nissenbaum, and Kaplan, 1972; Nissenbaum and Swaine, 1976; Krom 

and Sholkovitz, 1977; Krom and Sholkovitz, 1978; Lyons et al., 

1979; Elderfield, 1981). The various types of dissolved organic 

matter (DOM) in pore waters are higher than in the overlying water 

(Henrichs and Farrington, 1979; Lyons et al., 1979), stay about 

constant in oxic cores (Krom and Sholkovitz, 1977; Henrichs and 

Farrington, 1979) but become further enriched with depth in anoxic 

layers (Krom and Sholkovitz, 1977; Henrichs and Farrington, 1979; 

Lyons et al., 1979; Barcelona, 1980; Elderfield, 1981) In short

term laboratory tank experiments, too, a large increase with 

depth of dissolved organic carbon in the pore water, from 1 to 
-1 

10 mgl has been observed (Sholkovitz et al., 1983) indicating 

that/ 
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TABLE 3.8 

Uranium data for station 10103 (East Mediterranean) 

Box Core lB : 360 09.6'N, 200 28.5'E, 2880m. 

DeEth (em) Uranium 
-1 (ugl ) 

5 8.84 + 0.33 o - -
10 5.04 + 0.22 5 - -

10- 16 4.96 + 0.21 -
19 - 22 5.13 + 0.22 -
22 - 25 3.76 + 0.18 -
25 - 28 3.90 + 0.18 -
28 - 33 20.27 + 0.64 -
33 - 38 10.84 + 0.38 -
38 - 43 16.45 + - 0.53 

Box Core 6B 36
0

N 20oE, 2900m. 

DeEth ( em) Uranium -1 (ugl ) 

o - 6 3.85 + 0.18 -
10 - 16 3.52 + - 0.17 

24 - 29 34.87 + 1.16 -

Kastenlot Core 3K 360 N 20oE, 2900m. 

DeEth (em) Uranium -1 (ugl ) 

o - 5 3.38 + 0.14 -
8 - 13 4.36 + 0.18 -

16 - 20 3.24 + 0.13 -
21 - 26 3.90 + 0.15 -
27 - 32 37.68 + 1. 35 -
35 - 40 361. 27 + 4.2" -
44 - 49 99.21 + 2.84 -
54 - 59 68.46 + - 2.11 



o 

10 

20 

e 
u 

Q) 

H 
0 
u 

C 
'M 

.s:: 
+l 30 0-
Q) 

0 

40 

50 

I 

x 0 

I 
J , , , 

5 

• t 
I 
I 
I 
t 
I 
I 

T 

I 

, 
, , 

-1 
Uranium (ugl ) 

, , , 
, 

10 

~ 

149. 

15 20 

• Pore water uranium 

o Solid phase uranium 

>< % organic carbon 

t- ---- - --- - ----r --- - --~~ , 

.". 

~ 

7""" 
0 ~ 

0.. 
0 
0:: 
0.. 
< rn 

1 X ~ 

- ----. 

2 4 6 8 10 U(ppm) 

1 2 3 4 % organic C. 
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that the diagenetic reactions occurring in sediments, as were 

simulated here, are adding organic matter to the pore waters. 

The data of these authors tend to confirm the pathway of 

humification (Nissenbaum et al., 1971; Nissenbaum and Kaplan, 

1972) where marine humic acids can be formed in-situ from 

autochthonous material (degradation products of plankton) and 

152. 

are not necessarily allochthonous (transported from the continent). 
~ 13 

Since marine humates have a rather constant u C value of -20 

to -22%., whereas 0 13c of soil humic acid is related to its 

plant source material and ranges from -25 to -26%., the organic 

material in the eastern Mediterranean sapropels with its carbon 

isotopic signature of -20%. was distinctly of marine origin. 

Marine humic and fulvic substances can comprise up to 70% of 

the organic matter in recent sediments (Nissenbaum and Kaplan, 

1972) and the major products of their oxidation are aliphatic, 

benzenecarboxylic and phenolic acids which, together with the 

more abundant heterocyclic structures found in the marine humics 

relative to terrestrial humics (Nissenbaum and Swaine, 1976) could 

be the important species involved in the bonding or complexing of 

metals in the sediments and pore waters. Data from laboratory 

and field experiments have shown that humic acids and fulvic 

acids are 

of tracer 

( Shanbhag 

important in the geochemistry of uranium. The binding 
2+ 

level u0 2 to a soil humic acid was interpreted 

and Choppin, 1981) as involving one or two carboxylate 

groups, and it was shown that at pH6, if the concentration of 
2- -7 C0

3 
was low enough ( '" 10 M) and that of the humate high 

-4 enough ( ~ 10 M), then the uranyl ion would be complexed 

predominantly by humate. Uranium was almost completely removed 
2-

as a uranyl-organic anion from a c0
3 

solution by anion exchange 

resins in a < 1000 m.wt. filtrate (Bloomfield et al., 1973) 

indicating the formation of a small molecular weight uranium 

complex which was more stable than the carbonate. Such cation 

exchange properties of humic or fulvic acids are responsible for 

the/ 
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the observed geochemical enrichment of uranium in, for example, 

lignites (Szalay, 1964), peat bogs (Halbach et al., 1980) and 

reducing sediments (Kolodny and Kaplan, 1973). The latter authors 
-1 

found high levels of DOM up to 66mMl in the reducing pore waters 

of Saanich Inlet and it is reasonable to assume that, due to the 

greater organic matter deposition at the time of sapropel formation, 

the pore waters at the sapropel horizons in the cores from Station 

10103 will have much greater concentrations of DOM. Nevertheless, 

there might not be any statistically significant correlation 

between the concentration of organic carbon in the sediment and its 

concentration in the pore water (Nissenbaum et al., 1972). It is 

this DOM and the known uranium-organic matter correlation which is 

believed to be responsible here for the enhanced pore water uranium 

values for the three 10103 cores (Table 3.8) From Figures 3.12 to 

3.14 it is observed that only in the two box cores do the high 

uranium concentrations lie within the sapropel bands, the massive 
-1 

peak of -360 ugl for 10103 3K lying below this core's sapropel 

band. The reason for this downward displacement phenomenon is not 

clear, but as discussed by Crawford(1982),the siting of a rapid 

.Eh change or the draining of pore water on gravity coring were 

possible explanations. The coincidence of the pore water uranium 

peaks and sapropel bands in the other two profiles, in which the 

sediment was sampled by square box corer and therefore not 

subjected to severe disruption by penetration, favours the second 

of these explanations. The mean pore water uranium values in the 

top carbonate ooze sections of cores 10103 3K and 6B are similar 
+ +-1 

to the sea water value being 3.72 - 0.08 and 3.69 - 0.18 ugl 

respectively, and thus do not show the expected decr~ase due to 

the pressure effect. This may be due to a small systematic error 

in the uranium standard calibration, or to the fact that these 

cores were recovered from water depths less than 3000 m which 

could mean that any pressure artefact on alkalinity and uranium 

would be smaller than observed previously for deep-sea cores 

(26-44% uranium decrease relative to sea water in depths ranging 

from 3250 to 5600 metres), pressure being proportional to depth. 

Fori 



For core 10103 lB, however, the main carbonate ooze pore 
+ -1 

water uranium value of 5.27 - 0.21 ugl is certainly greater 

than in sea water, an observation that is difficult to reconcile 

with the data from the other two cores. The sedimentation rate 
-1 14 

for the ooze section is about ~ cm kyr from C data, while for 
230 the sapropel, Th data, based on water column supply 

excess -1 
considerations, ,yields a sedimentation rate of 3.1 cm kyr 

(Thomson, 1982) a value not greatly dissimilar to the mean long 

term rate (Mangini and Dominik, 1979). The typically high 

sedimentation rate for the ooze and its low organic carbon content 

(mean 0.26%) prevents significant uranium uptake from sea water, 
234 238 as signalled by the solid phase uranium ul u activity ratio 

of 0.99. In contrast to this is the ratio of 1.13 and the 3% 

organic carbon in the sapropel, levels which provide the necessary 

uranium and the DOM for enhancement of uranium in the pore waters. 

Levels above sea water are thus not expected in the carbonate ooze 

and their observation here, at values too large to be due to a small 

systematic error, could be a result of contamination of the pore 

water with sediment particles during the core squeezing process. 

A small amount of particulates was present in at least one of the 

top 6 pore water samples (19-22 cm) in 10103 lB as shown by a 

slight brown colouration in the sample vial. A possible argument 

against this, however, was the absence of fission track stars. 

Auxiliary geochemical data for the cores 10103 3K and 10103 6B 

are not available, but it is considered that the processes of 

organic complexation in the sapropel pore waters are operative, 

giving the uranium peak concentrations of 361 and 3~ ugl 
-1 

respectively, values which lie well within the range of reported 
-1 -1 

levels as high as 260ugl for Atlantic sediments and 650ugl 

for Black Sea sediments (Baturin and Kochenov,1973). As was 

observed in the East Atlantic cores 10554 )B and 10549 6K (but 

not, mysteriously, at 10554 *12 PWS), diffusion upwards to the 

sea water value at the surface from high uranium sources at depth 

does not occur probably for the same reasons, i.e. a very low 
-11 -12 2-1 effective diffusion coefficient of 10 to 10 cm s in a 

high organic, reduced environment (Mangini and Dominik, 1979). 
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3.3. Estuarine pore waters 

Rapidly-accumulating nearshore deposits are usually oxygen

deficient and more organic material is available for postdepositional 

reactions in these than in pelagic environments. These differences 

reflect the higher rate of primary organic production at the ocean 

margins and the more rapid burial and preservation of material by 

the land-derived sediment influx. Generally, anoxic conditions 

form below a thin oxidised surface layer and show a low redox 

potential following diagenesis. The organic fraction comprises 

about 5% of the Hudson river estuary sediment (McCrone, 1967), 

5.8% for a basin core from Loch Duich (Krom and Sholkovitz, 1977) 

and up to about 29% found here for the bottom muds of the Clyde 

estuary (section 3.4), although this latter figure probably arises 

from heavy sewage pollution. Because of the rapid burial of such 

relatively high concentrations of organic material, it is utilised 

by bacteria and other microorganisms within the sediments with 

the result that oxygen becomes depleted in the pore waters and 

production of H2S by sulphate-reducing bacteria leads to reducing 

conditions. The thickness of the upper oxidised layer is 

evidently a function of the total rate of accumulation of the 

sediment and decreases in thickness shorewards, becoming anoxic 

below only the top 0.5 to 20 mm of the sediments studied here 

at St. Johns Lake in the Tamar estuary (Upstill-Goddard and 

Alexander, 1982), and can disappear altogether to give rise to 

H S - rich bottom waters as found in some fjords, some upwelling 
2 

areas and restricted bays. Investigations into the isotopic 

composition of organic carbon from nearshore,estuarine and marine 

sediments (Sackett and Thompson, 1963; Nissenbaum and Kaplan, 1972) 
13 revealed an enrichment of C in marine samples as compared to 

terrestrial values, with the estuarine samples tending to be 

intermediate and exhibiting considerable variation, but nevertheless 

indicating that in estuaries the terrestrial organic matter 

contribution is dominant. 

ardehydes/ 

Gardner and Menzel (1974), using phenolic 
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aldehydes as indicators, suggested that the greatest deposition of 

terrestrially-derived organic material occurred where the terrestrial 

humic material rapidly precipitated - at the interface between fresh 

water and sea water (Sholkovitz, 1976). Thus the nature of the 

organic material in estuarine sediments will be substantially different 

from that in the foregoing discussion on deep-sea sediments, a situation 

which might lead to a difference in the behaviour of uranium in the 

pore waters if' organo-uranyl complexes are invoked. Specifically, 

it might explain partly why uranium is enriched in the anoxic pore 

waters of deep-sea sediments, and, as shown in the following discussion, 

is depleted in anoxic/suboxic layers of estuarine sediment pore waters. 

The anodic character of the humic content of river water DOM enables 

them to interact at least with trace metal cations, forming complex 

linkages of various kinds by ion-exchange, surface adsorption and 

chelation, and according to Reuter and Perdue (1977), the stability 

of these heavy metal-humic complexes in natural waters is higher than 

that of corresponding inorganic-metal complexes. 

The pore water uranium contents of the anoxic estuarine sediments 

carefully collected in the Tamar estuary (see section 2.3) were 

analyzed by the fission track method (section 2.6.2) and are shown 

in Table 3.9 and plotted in Figures 3.15 to 3.17. For core 075, some 

of the samples analyzed had been acidified to pH1 including 3 duplicates. 

It was observed from these duplicates that there was a systematic 

difference between the uranium results for the acidified and non-

acidified pore water samples. As previusly pointed out in the 

intercomparison exercise with the Woods Hole Oceanographic Institution 

(section 2.6.2), this discrepancy is the result of the more difficult 

homogeneous deposition of the acidified samples, in this case giving 

salt deposits of slightly greater diameter than normal and leading to 

slightly lower fission track densities and hence lower uranium 

concentrations. The mean values of these three duplicate samples are 

plotted amongst the rest of the uranium data for core 075 (Figure 3.17). 

A blank sample taken through the pore water squeezing and filtering 
+ -1 

procedure contained only 0.05 - 0.01 ugl of uranium. The dissolved 

Fe~ 



TABLE 3.9 

Pore water uranium data for cores from the Tamar estuary 
+ (st. John's Lake). (-ld error) 

Core 053 (pH1) Core 075 (pH1) 

-1 ( em) 
-1 

DeEth (em) Uranium (ugl ) DeEth Uranium (ugl ) 

o - 1 2.90 + - 0.07 1 - 2 1.57 + - 0.03 

2 - 3 0.81 + 0.04 - 3 - 4 0.25 + 0.09 -

10 - 11 1.48 + 4 - 0.30 + 0.08 - 0.05 5 -

15 - 16 5.63 + 0.28 6 0.31 + 0.08 - 5 - -

6 - 7 0.64 + - 0.05 

7 - 8 0.37 + 0.07 -

11 - 12 0.59 + 0.05 -

Core 054 (pH7) Core 075 (pH7) 

DeEth (em) Uranium 
-1 

(ugl ) DeEth ( em) -1 Uranium (ugl ) 

o - 1 3.28 + 0.11 3 0.36 + - 2 - - 0.03 

1 - 2 0.63 + 0.03 - 5 - 6 0.45 + - 0.03 

3 - 4 0.56 + 0.03 - 8 0.61 + 
7 - - 0.03 

4 - 5 0.72 + - 0.03 10 - 11 0.67 + - 0.03 

8 - 9 0.63 + 0.03 11 - 12 0.69 + - - 0.03 

9 - 10 0.50 + 0.03 12 - 13 0.63 + - - 0.03 

14 - 15 0.66 + 0.03 13 - 14 0.74 + - - 0.03 

15 - 16 1. 34 + 0.06 - 16 1.44 + - 15 - 0.05 

17 - 18 1. 48 + 0.06 16 - + - 17 1.51 - 0.05 

18 - 19 1.27 + 0.06 18 - 1. 76 + 0.06 - 19 -

20 - 21 1.27 + 0.06 -

157. 
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Figure 3.15. Pore water uranium, iron and manganese in 
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Fe and Mn values (Alexander, 1984) are also plotted in Figures 3.15 

to 3.17. The uranium concentrations consistently showed a decrease 
-1 

from a surface value of around 3.0 ugl ,a value expected assuming 

an overlying water salinity similar to the measured pore water 

salinity of around 32%. in the Tamar Estuary (section 3.4). It 
-1 

remained roughly constant between 0.25 and 0.81 ugl until a depth 

of 15 cm was reached, then increased abruptly by x 2.2to x 4.9 

Similar profiles for uraniuum have been found by Cochran (pers. comm.) 

in box cores from Buzzards Bay, where the concentration of uranium 

in the top 3 cm section had decreased to about half the overlying 

sea water value and then increased by a factor of about 4 beyond 

30 cm depth. Also, in laboratory tank experiments with dredged and 

sieved Buzzards Bay sediment, Cochran (pers. comm.) noticed a 

reduction in the uranium content of the overlying water and pore water 

with time, and proposed that uranium,was being reduced in these sediments 

and removed from solution. The only Eh values available for the 

Tamar cores, those measured on core 053 by placing an Eh electrode 

onto the top of each sediment slice as it was extruded into a N -
2 

filled glove bag (Alexander, 1984), showed a sharp decrease from 

+ 32.2 mV at 0-1 cm to - 117 mV at 1-2 cm, with the lowest value of 

-140.4mV at 3-4 cm. The Eh value at the greatest depth measured, 

7-8 cm, was - 110.6mV, thus showing evidence of a possible increase 

in Eh with depth. A decrease in Eh with depth is common in 

nearshore sediments, but the sharpness of the decrease and the minimum 

value reached can vary widely (Presley and Trefry, 1980), possibly a 

function of the difficulties involved in its measurement. The profiles 

of other pore water species showed that decomposition of organic matter 

was indeed occurring in these sediments (Upstill-God"dard, 1984; 

Alexander, 1984). Steady increases in NH3 from about 0 to 900 uM 

over '" 20cm, in phosphate from about 50 to 150uM and in silicate 

from about 30 to 500 uM were observed. If thermodynamic 

considerations are used to evaluate when the oxidised species present 

in the sediment-water environment are reduced with falling Eh, the 

order 02)N0
3
-, Mn02 ) Fe203)S042- is found (Froelich et al., 1979; 

Lyle,1983; Sawlan and Murray,1983) but overlap does occur depending on, 

fori 



for example, stoichiometry of reaction. Since sulphate can 

only be reduced below an Eh of about - 150 mV, no large decreases 

in pore water sulphate was expected in the Tamar cores, with 

their minimum Eh of - 140mV, and indeed none was observed, 

with levels remaining steady at '" 25mM. Highly anoxic conditions 

were therefore not attained in these cores, as also shown by 

alkalinity measurements which increased with depth from 4.36mM 

at 1 cm to only 9.04 mM at 13 cm in one core from st. John's Lake 

in the Tamar. This is to be compared to alkalinity values of 
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over 30 mM attained in more reducing cores up.-river (Upstill
-1 

Goddard, 1984), to values of 20 mM 1 at 12 cm in tank experiments 
-1 

(Sholkovitz et al., 1983) and to values of over 70mMl ;11 anoxiC 

marine sediments (Berner et al., 1970). These high alkalinity 

values are predominantly the result of a progressive bacterial 

reduction of sulphate which, as mentioned previously, does not 

occur 'here. For the trace metals Fe and Mn, pore water 

concentrations are often several orders of magnitude greater than in 

oxic overlying water (Elderfield and Hepworth, 1975), and steep 

concentration gradients such as those observed in Figures 3.15, 

3.16 and 3.17 are typical (Calvert and Price, 1972). Here, a 

thin layer of oxic sediment overlies a suboxic layer with maximum 

metal remobilisation occurring near the +/- Eh interface due to 

the reductive solubilisation of the adsorbed manganese or iron 

and its subsequent cycle of upward diffusion, fixation, reburial 

and reduction. It appeared from the decrease in pore water metal 

content with depth that Mn was being reduced before Fe with 

uranium perhaps in between (Figures 3.15 to 3.17) although the 

sharp redoxcline makes it difficult to tell. The negative 

pore water Mn and Fe gradients observed below their peak 

concentrations may be explained by the precipitation of their 

carbonates as suggested for Mn by Robbins and Callendar (1975). 

The decrease in pore water uranium levels is presumed to be due 

to the formation and fixation of insoluble UO , the thermodynamically-
2 

stable species (Figure 1.3) at the existing Eh levels, - 110 to -140mV, 

and pH levels, 7.1 to 7.3 (Halbach et al., 1980). 

propose/ 
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propose a cause for the uranium increase at depth, the basin 

sediments of Loch Duich (Krom and Sholkovitz, 1977) are 

considered, sediments which are rich in organic matter (5.8%) 

and contain a thin oxic surface layer. The decrease in 

sulphate concentration to zero and accumulations of titration 

alkalinity, phosphate and sulphide were characterestic of 

chemical changes that have been observed in estuaries (Berner 

et al., 1970). Although sulphate reduction was not occurring 

in the top ,::",20 cm of the Tamar cores ,reduction deeper in the 

cores cannot be ruled out. Ultrafiltration measurements on 

the Loch Duich pore waters indicated that the concentration of 

the low molecular weight organics in the DOC remained 
+ -1 

approximately constant (10 - 2.4 mgCl· ) for both oxic and 

anoxic cores and were at least partly autochthonous since their 

concentration was twice that in the overlying water. The 

ultrafiltration retentate from anoxic cores, however, showed that 

the observed,approximately linear increase in DOC accumulation 
-1 -1 

from about 10mgl to about 70 mgl beyond 70 cm was due almost 

entirely to the, accumulation of high molecular weight (HMW) 
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organic matter. There was also some suggestion of a greater rate 

of accumulation below 55 cm which coincided with the boundary 

between the sulphate reducing and methane producing zones. 

Although little sulphate depletion occurred in the Tamar cores, 

and hence little sulphjde would be produced, in the depths 

sampled, it is probable that the Eh would decrease beyond 20 cm 

to levels below - 150mV, not upturn as can be observed in certain 

circumstances (Presley et al., 1972; Kolodny and Kaplan, 1973), 

and allow conditions analogous to those described above to develop. 

Thus we may be seeing the top zone of enhanced uranium 

concentration below 15 cm (Figures 3.15 to 3.17) due to its 

complexing and solubilisation by autochthonous HMW organic matter. 

Stabilisation of trace metals in pore water by HMW organic materials 

has already been shown (Elderfield and Hepworth, 1975; Krom and 

Sholkovitz, 1978), although their insoluble sulphides may keep their 
" concentration down, assuming that the solubility product is the 

.controlling factor. 



3.4 Uranium in Rivers and Estuaries 

Section 1.1 has described the chemical weathering and 

mobilisation of uranium nuclides from rocks and soils and 

their transport to, and behaviour in, the marine environment. 

Complex chemical interactions between rivers and the ocean 

can modify the supply of many elements to the latter reservoir 

(Sholkovitz, 1976). Here, the variations in concentration of 

dissolved uranium along the salinity gradients of several 

estuaries are examined in order to assess its conservative 

or nonconservative behaviour. Precipitation of dissolved 

organic matter and iron and manganese hydroxides can all 
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occur during the mixing of river water with sea sater (Sholkovitz, 

1976; Boyle et al., 1977) and these substrates may adsorb 

dissolved elements from solution. Clay particles and hydroxides 

are flocculated by the inorganic salts of sea water, a process 

which can be promoted by a greater particle concentration 

(Dyer, 1972). A change in the surface charge of Fe(OH)3 from 

positive below pH7 to negative at higher pH's (Balustrieri and 

Murray, 1978) is partly responsible for this flocculation. 

Shen et al., (1983), for example, observed that plutonium 

underwent rapid coagulation under simulated estuarine conditions, 

with a strong correlation between the amount of coagulation of 

dissolved plutonium, humic acids and iron. The increase in 

dissolved salts as mixing of river and sea water progresses 

may cause a marked . desorption of some elements adsorbed on 

the surfaces of river sediment or particulate matter e.g. 

Ra and Ba (Li and Chan, 1979). For uranium in particular, the 

large influence of salinity on the pH and the carbonate systems, 

giving rise to a pH minimum at a specific mixing ratio (Mook 

and Koene, 1975), and the strong association between hydrous 

ferric oxide and adsorbed uranium (Langmuir, 1978; Giblin 

et al., 1981), could be competing processes affecting the 

behaviour of uranium in an estuary. 

Studies/ 



studies by various workers on the uranium nuclides in the 

estuarine mixing zone J.lave yielded conflicting and inconclusive 

results. Consevative behaviour has been reported by Borole 

et al., (1977), Martin and Meybeck (1978) and Martin et al., 

(1978a,b) while various removal processes particularly at low 

salinities have been suggested to operate on uranium (Martin 

et al., 1978a,b; Turekian and Cochran, 1978; Borole et al., 1982; 

Maeda and Windom, 1982). Martin and Meybeck (1978) have cited 
. f 234 f evidence of preferential leaching or desorpt10n 0 U rom 

suspended sediments during mixing at the head of the Zaire 

estuary and they attributed this to the well-known physico

chemical mechanisms of a-recoil and preferential leaching 

(see section 1.1). 

The conservative or nonconservative properties of uranium 

using salinity tie-lines, will be more profitably examined in 

estuaries where there is a single riverine end-member in order 

to prevent unwanted scatter in the dissolved uranium data. 

The spatial, temporal and chemical variability found in estuaries 

has been discussed by Elderfield (1978) who outlined factors such 

as highly variable river discharge, multiplicity of inputs and 

fluxes of dissolved species at the water-sediment interface, 

which can influence the speciation and concentration of uranium. 

The three main river-estuarine systems selected for this 

study were the Clyde on the west coast of Scotland (Figure 2.7), 

and the Tamar at Plymouth in the south of England (Figure 2.6) 

and the Forth on the eastern Scottish coast (Figure 2.8). 

Uranium concentrations and isotopic activity ratios were measured 

on filtered water samples by isotope dilution a-spectrometry 

described in section 2.8. The results for the individual river-

estuarine systems will be discussed in sequence, with the 

methodological approach gone into in more detail in the Clyde 

example. 

The/ 
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The Clyde estuary above Greenock(Figure 2.7) occupies 

a drowned river valley which now has a shipping channel 

maintained by regular dredging to a mean depth of about 

10 metres. Between Greenock and Erskine there are large areas 

of mudflats exposed at low tide but, above Erskine, the estuary 

is much narrower and is largely confined between man-made banks, 

with no appreciable intertidal area (Mackay and Leatherland, 1976). 

The Clyde Basin has a catchment area of -2600 km
2 

which in 

addition to the River Clyde itself includes those of two major 

tributaries, the Kelvin and the Carts. The second major 

catchment emptying into the estuary is that of Loch Lomond 

(785 km
2

) via the River Leven which has previously been shown 
-1 

to have a uranium concentration of 0.13 ugl (Conlan et al., 

1969). The drainage area rocks of the River Clyde are composed 

mainly of Upper Palaeozoic Lavas, Upper and Lower Old Red 

Sandstone and Carboniferous sequences (Natural Environment \ 

Research Council, 1974; Swan, 1978). As in most rivers, the 

daily average volume of fresh water entering the estuary from 

the River Clyde varies considerably during a typical,year. The 

99% and 1% exceedence levels, which are surpassed during most 
3 -1 years, are about 8 and 270 m s respectively. Such variable 

fresh water flow affects the salinity structure, retention time 

and the operation of storm water overflows at sewage works. 

The Clyde has a fairly pronounced salt wedge (Mackay and 

Leatherland, 1976), and is regarded as being very different 

in this respect from most other estuaries around the British 

coast which generally exhibit a greater degree of vertical 

mixing. Further complications arise due to the input of large 

amounts of mixed domestic and industrial wastes mainly from 

two sewage disposal works at -7 km and 14 km from the tidal 

weir and,through numerous outfalls, from the towns lower down 

the estuary. The much greater volume of water available at 

the lower estuary to dilute these effluents results in a minimal 

effect/ 
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effect on dissolved oxygen. However, the total biological 

oxygen demand (BOD) loading received by the upper estuary 

is greater than it can sustain during periods of low river flow, 

and so considerable portions of it can become anoxic for several 

months every summer. 
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The dissolved uranium data for the Clyde estuary are given in 

Table 3.10. The concentration in river water at the time of 
+ -1 

sampling just beyond the tidal weir was 0.155 - 0.005 ugl 
+ -1 

and increased linearly with salinity to 2.78 - 0.10 ugl at 

the most seaward sample, with a correlation coefficient of 0.994. 

Reported uranium concentrations in surface waters range from 
-1 

(0.01 to > 100 ugl (Osmond and Cowart, 1976), with 

concentrations presumably reflecting the geological composition 

of the drainage basins. The uranium content depends on such 

factors as contact time with the uranium-bearing horizon, 

uranium content of the horizon, amount of evaporation and 

availability of complexing ions (Gascoyne, 1982). Values for 
-1 

river waters range from 0.02 ugl for the Amazon (Bertine et al., 
-1 1970) to 6.6 ugl for the Gange. (Scott, 1982). 

Seasonal variations by a factor of 2 or 3 in the uranium 

concentrations of individual rivers have also been observed 

(Scott, 1982). Concentrations of dissolved uranium have been 

shown to exhibit a strong positive correlation with total major 

cations (Borole et al., 1982) and HC0
3 

(Mangini et al., 1979; 

Borole et al., 1982) suggesting that the release of uranium 

isotopes to these waters is controlled by the intensity of 

weathering of the source rocks. However, some of the higher 

uranium levels reported have been attributed to its release 

from phosphate fertilizers applied to the land (Spalding and 

Sackett, 1972; Sackett and Cook, 1969; Martin et al., 1978a), 

however Mangini et al., (1979) have indicated that very little 

if any uranium from fertilizer phosphate reaches the rivers, 

being adsorbed on the uppermost soil layers. The variation in 

the 238u concentration with salinity in the Clyde is shown in 

Fi~ure/ 
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TABLE 3.10 

Uranium concentrations and activity ratios in the Clyde 

+ estuary (- 1u error). 

Sam12le Code Salinit~ 
0 

( /00) Uranium 
-1 (ugl ) 234u/38u 

+ 1.63 + 0.06 RCll 0.0 0.155 - 0.005 -
RC13 0.1 0.149 + 1.68 + 0.10 - 0.007 -
RC14 0.5 0.173 + 0.011 1.45 + 0.11 - -
RC15 1.0 + 0.008 1.47 + 0.08 0.172 - -

END 1 3.6 0.41 + 0.02 1.46 + 0.06 - -
END 2 5.0 0.56 + 1.29 + 0.04 - 0.02 -
END 3 8.0 0.84 + 1.22 + 0.07 - 0.03 -

END 4 11.5 1.02 + 0.04 1.19 + 0.06 - -
END 5 14.5 1. 37 + 1.19 + - 0.05 - 0.05 

END 6 17 .1 1.47 + 1.24 + 0.06 - 0.07 -
END 19.7 1.52 + 0.11 1.27 + 7 - - 0.10 

END 8 25.8 2.34 + 1.12 + - 0.09 - 0.05 

END 9 29.8 2.70 + 0.11 1. 20 + 0.05 - -

END 10 30.2 2.52 + 0.14 1.20 + - - 0.07 

GT 2 30.25 2.54 + 0.08 1.16 + - - 0.03 

4 31.00 2.63 + + 0.04 GT - 0.10 1.13 -
GT 6 31.85 2.78 + + 0.04 - 0.10 1.10 -
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Figure 3.18 together with the regression equation. The 

interpretation of such mixing curves, where points over the 
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whole salinity range fall around the theoretical dilution line, 

with no systematic trend away from the line, is that conservative 

behaviour is indicated for the element concerned (Liss, 1976). 

It is most direct to use a dissolved constituent of known or 

assumed conservative behaviour, whose concentration is characteristic 

of the oceanic component, as a tracer of the degree of mixing of 

river and sea waters; Although salinity is not defined in rivers, 

it is more convenient to use it as an index of mixing since the 

levels of total river salts are sufficiently low in most instances 

to make the uncertainty introduced negligible (Boyle et al., 1974). 

In order to establish non-conservative behaviour the data points 

must be on a curve which cannot be split into straight-line segments, 

which would indicate simple physical mixing of a number of inputs 

to the estuary. This is clearly not possible here. Sample 
+ -1 

END 7 with a uranium content of 1.52 - 0.11 ugl . is the nearest 

sampling point to the River Leven tributary (lying just within 

2u of the regression line). This tributary has been shown to 

have a similar mean volume flow (in m3s-1 ) to the Clyde River 

(Clyde River Purification Board, 1971 - 1978) and if a uranium 
-1 

content of 0.13 ugl as found in Loch Lomond (Conlan et al., 1969) 

is assumed, then mixing with estuarine water of uranium content 
-1 

of 1.47 ugl (sample END 6) would result in a concentration of 
-1 < 1 ugl • Therefore it can be assumed that, at-the time of 

sampling, the effect of mixing of these two inputs on the uranium 

concentration was small, and that the uranium-salinity plot does 

indicate conservative behaviour for uranium within the estuary. 

Conservative behaviour was also observed for 226Ra and 137Cs in 
226 this estuary (Mackenzie, 1977) but, in the case of Ra, a sample 

taken near the mouth of the River Leven showed a 30% depletion below 

the radium-salinity regression line and indicated that dilution 

by water of low Ra content was occurring. It is possible that sample 

END 7/ 
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END 7 may reflect a similar but much smaller effect for uranium, 

but the experimental uncertainties are too large to be definitive 

on this point. Inspection of Figure 3.18 shows that the best-fit 

line does not meet the constant open ocean uranium value of 
+ -1 3.35 - 0.20 ugl (26 ) and suggests that a slight amount of 

uranium removal is occurring outside the estuary, recognising 

that, at high salinity values, the contribution of riverine 

uranium (and of other elements more abundant in sea water than 

in river water) is negligible in comparison with the ocean water 

contribution. The continued dumping of sewage and industrial 

sludge in the deep water south of Garroch Head off the Isle of 

Bute,and the discharges to both the upper estuary and the Ayrshire 

coast via local authority sewers,may result in the diagenetic 

formation of suboxic or reducing sediments in the Firth of Clyde, 

conditions required for the formation of manganese nodules which 

are found north of the Cumbraes (Natural Environment Research 

Council, 1974). However, manganese nodules can be formed without 

uranium fixation since a lower Eh is necessary for the latter. 

Two sites in the Clyde Sea Area studied by Smith-Briggs (1983) 

were completely anoxic because of the high oxygen demands 

imposed by pollutant dumping operations. Radiocaesium 

measurements (Baxter et al., 1979) have indicated that 90% of 

the water in the area is of Irish Sea origin with 9% contribution 

from the Atlantic and 1% fresh water, so that large areas of bottom 

sediment are available for stripping of uranium from the water 

column. Removal of uranium in inshore or shelf sediments was 

postulated by Koczy (1963) in order to explain the lqwer uranium 

contents of deep-sea sediments relative to continental sediments. 

Veeh's (1967) results on uranium deposition from the ocean seemed 

to bear this out. This would make the uranium.content of sea 

water dependent on the distribution and character of the shelf 

sediments. Aller and Cochran (1976) have found evidence for 

uranium uptake in the sediments of Long Island Sound where anoxic 

conditionsl 



conditions exist below a few cm of oxic sediment underlying an 

oxygenated water column. Cores from this area have an increasing 

uranium content with depth and Aller and Cochran (1976) took this 

to imply that uranium was being taken up in the lower anoxic 

sections. Several reports indicate that nearshore waters are 

highly variable in uranium concentration. Most of the nearshore 

samples analysed by Blanchard and Oakes (1965) exhibited lower 

uranium concentrations than sea water with a range of 0.98 to 
-1 -1 . 

6.37 ugl (mean 2.24 ugl ). Blanchard (1965) reported 
-1 

uranium levels in the Merrimack estuary of 1.31 and 1.46 ugl 

for samples with salinities of 28.6 and 29.5%. respectively and 

six other coastal marine samples with salinities from 24.41 to 
-1 

32.23%. had uranium concentrations between 0.98 and 1.90 ugl , 

indicating that some process capable of removing '" 50% of the 

dissolved uranium was operative. Bhat et al., (1969) found 
-1 -1 

uranium values of 1.6 to 2.8 dpml (2 - 3.7 ugl ) for near-

coastal waters in the Arabian Sea with salinities of 34.1 to 

All these low uranium values for nearshore waters 

might therefore be related to uranium removal processes. 

However, unequivocal supporting evidence for such removal 

processes occurring in the Firth of Clyde or Irish Sea is lacking. 
234 238 The ul u activity ratios in the Clyde samples are given 
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in Table 3.10 and their variation with salinity is shown in Figure 
+ 3.19. The ratios decrease from a river water value of 1.63 -

+ 0.06 to a seaward end-member value of 1.10 0.04, and follow 

closely the theoretical mixing line (TML). This line is 

calculated for each estuary using the equation (Borote et al., 

1977> : 

R mix 
xCswRsw + (1 - x ) CrwRrw 

••....... (3.9) 
xC sw + (1 - x ) Crw 

where x is the fraction of sea water at any point between pure 

end-members deduced from the salinity of these end-members (0.0%. 

fori 



for pure river water and 35.0%. for sea water), C is the 
238 234 238 concentration of U, R is the U/ U activity ratio 

(A.R) and the subscripts rw,sw and mix refer to river water, 

sea water and mixture respectively. The rapid decrease 

towards a roughly constant value shows that the riverine A.R. 

is swamped early in the mixing series by the contribution 

from the seaward A.R. The data points for the Clyde A.R.'s 

(Figure 3.19) confirm that the uranium isotopes behave 

conservatively in this estuary. Figure 3.20 shows another 

representation of the data, with the A.R. being plotted 
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against the reciprocal of concentration. A linear relationship 

between these two variables points to conservative mixing between 

two water types (Osmond and Cowart, 1976~ in this case sea water 

with a relatively high uranium concentration and low A.R. mixing 

with low-uranium, high-A.R. river water. Although there is some 

scatter in the data, it too suggests that mixing is conservative, 

but care should be exercised when making such deductions from 

a plot of this kind since the errors on the data points can be 

quite large, and here are up to ...... 8% (10- ). 

Apart from the water samples discussed above, bottom muds 

were also analysed for uranium. Analyses of suspended material 

would have permitted assessment of , for example,the fraction of the 

total uranium being transported in the dissolved phase, but the 

low turbidities ( < 40mgl, Figure 3.23) observed in the surface 

samples collected during the main sampling transect precluded this. 

Table 3.11 presents the uranium data for the mud samples. It 

has previously been reported (Natural Environment Research Council, 

1974) that the bottom sediments in the Clyde estuary are 

predominantly generated by influxing riverborne material (87.5%), 

with the rest being equally provided by solid sewage discharge and 

dredging spillage. They consist of fine silt, slowly increasing 

in particle size in the dredging channel between Glasgow and the 

Cart rivers. Fine sand is found before the River Leven is reached, 

becoming coarser with distance downstream. 

uranium/ 

From Table 3.11, the 



TABLE 3.11 

Uranium concentrations and activity ratios in Clyde muds 
+ (- 1 (T error). 

Saml2le Uranium (12I2m) 23 4u/ 238u LOI(%) 

M1 2.50 + 0.11 1.08 + 28.67 - - 0.05 

M2 2.48 + 0.15 1.05 + 0.06 - - 15.95 

M3 1. 58 + 0.11 1.04 + 6.10 - - 0.07 

For sample positions see Figure 2.7. 
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uranium contents of the mud samples M1 and M2 are seen to be 

identical within error, being about 2.5ppm (about equal to the 

mean coastal abundance) while the other sample, M3, had a lower 

concentration of 1.58 ppm, probably reflecting the gradual 

transition from fine silt to sand since quartz is low in uranium 

177. 

(Hamilton, 1966). Attempts to take a Craib core sample at station 

M4 (Figure 2.7) were unsuccessful because the corer could not 

penetrate the sandy sediment. McKay(1983) found by particle size 

analysis and X.R.D. that a nearby site off Greenock had 70% of 

its material> 20um diameter (sandy texture),being predominantly 

quartz. The 2.8% organic carbon present was concentrated in the 

(20um fraction, and only 1.23% cac0
3 

was present, indicating 

the general absence of skeletal planktonic remains. 

The high LOI (loss on ignition, 5000 C) for Ml and M2 are 

due predominantly to the high organic content of the muds which is 

a result of the sewage inputs along the narrow upper stretches 

of the estuary. 

The weathering and leaching of rocks gives rise to runoff 
234 238 waters with U/ U A.R.s greater than 1.00 and soils would be 

expected to have an A.R. (1.00. Any subsequent erosion or river 

transportation of these soils may allow adsorption of uranium from 

runoff waters under certain conditions and result in a progressive 

change in A.R. from ~0.90 to ~0.95 in river muds (Sackett and 

Cook, 1969). Scott (1968), however, has shown that the distribution 

of uranium isotopes varies with both sediment size fraction and 

geographical location and noted that the factors responsible for the 

isotope ratios of soils and their derivative sediments. were 

difficult to determine due to complex variability in the weathering 

process. Most river sediments for which uranium isotopes have 

been analysed have A.R.s between 0.90 and 1.0, with an average of 

about 0.95 (Scott, 1982). Nevertheless the A.R. values for the 

Clyde muds, 1.04 to 1.08, are in agreement with values> 1.00 found 

fori 



for sediments from two rivers (Scott, 1968) and for surface soil 

profiles (Rosholt et al., 1966). These were explained (Rosholt 

et al., 1966) by the leaching of uranium with A.R. > 1.00 from 

the lower portions of the soil profile (the Band C horizons) and 

its transportation to the surface layers where humus may provide 

a reducing condition for uranium accumulation. According to 
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Osmond and Cowart (1976), the inverse correlation between suspended 

solid loading and its A.R. observed for some suspended sediment 

could be interpreted to mean that, at low loading, only A horizon 

(high 234u/238u activity ratio) soil is eroded, but at higher 

sediment loads, B horizon soil is being removed. Thus it is not 

necessary to propose uranium removal from the estuarine waters in 

order to explain the higher than expected activity ratios found in 

the bottom muds. 

The Tamar estuary flows over geological formations of Devonian 

and Carboniferous slates, shales and grits. Its two main tributaries, 

the rivers Tavy and Lynher flow over these same formations but the 

Tavy rises among the peat bogs overlying the Dartmoor granite whereas 

the Lynher runs for most of its length over Carboniferous Rocks 

(Hartley and Spooner, 1938). The Tamar itself is tidal to ~30km, 

and there are a number of sewage outlets discharging from both banks. 

These banks and the bed of the estuary consist wholly of soft muds 

and there are considerable extents of intertidal mudflats bordering 

the river channel. From cores taken in the lower estuary (Butler 

and Tibbitts, 1972) the muds generally consist of a ~lcm oxic 

surface layer composed of flocculant brown material, a lower brown 

and black mixed layer, and a third, entirely black laye~ with 

metal sulphides present. The suspended matter in the estuary rises 
-1 after heavy rain and concentrations of up to 101 mgl have been 

recorded. From salinity data and isohaline plots (Milne, 1938) 

vertical salinity differences ranged from 2%. at high water to 

only ~9%. at low water in one transect (near T12 on Figure 2.6) 

indicating good vertical mixing. Salinity stratification increases 

in the up-river direction, however, and may become considerable 

during winter spate. 

The/ 
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TABLE 3.12 

Uranium concentrations and activity ratios in the Tamar 

+ estuary (- 10- error). 

Sam121e code Salinit;l 0 ( /00) Uranium -1 (ugl ) 234u/38u 

T1 0.0 0.041 + + 0.10 - 0 .. 003 0.95 -
T5 0.0 0.040 + 0.006 1.44 + 0.36 - -
T9 2.65 + 1.27 + 0.23 - 0.01 - 0.09 

T11 5.95 0.59 + + 0.06 - 0.03 1.10 -
T12 14.05 1. 33 + + - 0.07 1.11 - 0.07 

15.14 + + T15 1.57 - 0.06 1.12 - 0.05 

T16 19.00 1.67 + 1.18 + - 0.07 - 0.05 

T14 20.29 1.92 + + 0.06 - 0.10 1.15 -
T17 23.90 + + 0.04 2.25 - 0.07 1.17 -

T19 26.67 2.69 + 1.06 + 0.06 - 0.15 -

T20 28.55 2.83 + 0.10 1.12 + 0.04 - -
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The uranium results for the Tamar estuary waters and muds are 

presented in Tables 3.12 and 3.13 respectively. The uranium 
-1 

concentration was 0.04 ugl in the river end-member and increased 
-1 

linearly with salinity to 2.83 ugl at 29%. with a correlation 

coefficient of 0.994 (Figure 3.21). In contrast to the Clyde 

estuary, the uranium-salinity plot for the Tamar did meet the open 
+ -1 

ocean end-member concentration of 3.35 -0.20gUI , giving clear 

evidence of conservative uranium behaviour and indicating that, 

because of the mUCh smaller continental shelf area lying between 

the Tamar (relative to the Clyde) and the open ocean Atlantic waters, 

either no uranium removal processes were occurring or, more probably, 

that their magnitude was imperceptible. The Tavy and Lynher 

tributaries might conceivably have an effect on the uranium 

concentration of samples T12 and T14 respectively, but Figure 3.21 

shows that these samples do not deviate from the mixing line. 

This in turn indicates that the uranium content or U/S%. ratios in 

these rivers are not too different from their values in the Tamar 

river itself. Again, insufficient quantities of suspended material 
-1 

were present for uranium assay, turbidities being <25mgl at the 

time of sampling (see Figure 3.23). The 23 4u/ 238u A.R.s (Table 3.12) 

are plotted in Figure 3.22 except that for sample T5, which is 

considered to be statistically unreliable since the number of counts 
234 238 . under the U and U peak reg10ns in the a-spectrum were both 

less than 100 over the standard counting period. The A.R. for sample 

T1 is plotted on the figure, although it too had low net counts of 209 

and 220 respectively under these peak regions. The low A.R. for T1 
+ (0.95 - 0.10) is within error of values for fresh waters found by 

Bhat and Krishnaswami (1969) and Martin et al., (1978b). The 

latter authors discerned a definite increase in the A.R. from fresh 

water to low salinity waters at the head of the tropical Zaire 

estuary, suggesting a preferential leaching of 23 4u. This, they 

thought, was due to the increase in content of anions such as CI 
2-

and C0
3 

which occurs during the initial mixing of river water 

and sea water with which the radiogenic ally and physico-chemically 
- 234 6+ 2+ produced U cation (existing as U0

2 
) forms stable complexes 

(see section 1.1). In contrast, Borole et al., (1982),in common 

with/ 
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with most other workers on other rivers, find A.R.s of between 

1.12 and 1.67 for the Narbada river and its tributaries. The 

paucity of the A.R. data at low uranium concentrations in the 

Tamar and the similarity in their values at higher uranium 

concentrations do not make the results here amenable to interpretation 
1 via a /U versus A.R. plot. From Figure 3.22, however, it does 

look as though the A.R. might decrease initially before it converges 

to the sea water end-member value (1.14) implying conservative 

behaviour for 234u as well as for 238U . 

The mud samples collected near the banks of the river Tamar 

(Figure 2.6) show total uranium concentrations ranging from about 

3 to 4 ppm (Table 3.13). These analyses were performed by the 

fission track technique and thus isotopic activity ratios were not 

determined. Samples A to E inclusive, taken at the narrower upper 

stretches of the river, showed similar uranium contents with a 

mean of 3.89 ~ 0.09 ppm. The next three samples F, G and H showed 
+ lower. values with a mean of 3.07 - 0.08 ppm. It should be noted 

that the former 5 samples were scraped up and were black in colour 

reflecting their reduced state, while the other four samples, F to 

I, obtained from the boat's anchor, were light brown and were 

probably mainly from the top oxidised portion of the sediment 

(Butler and Tibbitts, 1972) which would be expected to increase in 

thickness as the estuary is traversed seawards. Without A.R~ 

measurements on these muds, the source of their relatively high 

uranium contents could not be determined unequivocally. Total 

uranium values of between 2.15 to 3.7 ppm were found by Martin 

et al., (1978a) for bottom sediments in the Charente .estuary and \~ 

showed a tendency for their uranium content to decrease from 

fresh water to low-salinity areas, a feature also observed in the 

suspended sediment. The A.R.s in these samples (Martin et al., 

1978a) were all < 1.00 and therefore typical of a terrigenous source. 

The third estuary to be examined was the Forth estuary (Figure 

2.8) which has a tidal limit 6 or 7km upstream from Stirling bridge 

and extends eastwards into the Firth of Forth past Edinburgh and 

out into the North Sea. 

The/ 
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TABLE 3.13 

Uranium concentration in the muds from the Tamar estuary, 

as determined by fission track analysis (:!: 1 (T error). 

SamEle Uranium (EEm) 

A 3.78 + 0.09 -

B 3.95 + - 0.09 

c 4.07 + 0.10 -

D 3.71 + - 0.09 

E 3.94 + - 0.09 

F 3.11 + - 0.08 

G 3.01 + 0.08 -
H 3.08 + - 0.08 

I 3.44 + - 0.08 

For sample positions see Figure 2.6. 



The principal geological formations of the drainage area of the 

Forth are Scottish Carboniferous limestones and Lower Old Red 

Sandstone, with lesser outcrops of Productive coal measures 

and Upper Old Red Sandstone (Geological map of Great Britain, 

Sheet 1). From limited studies of cores taken by the Forth 

River Purification Board, the bottom sediments are aerobic with 

oxic surface layers of 2 to 3 cm, at least in the lower estuary 

up to Kincardine bridge (between samples F4 and F5, Figure 2.8). 

The salinity structure corresponds to a typically well-mixed 

estuary, but under certain unusual hydrographic conditions it 

can have a partially-mixed structure (Leatherland, pers. comm.). 

Sampling was carried out during a period of unsettled weather 

following a 2 month interval of stable, dry conditions (Forth 

River Purification Board, 1982). Surface water samples were 

taken between 2 and 0 hours before high water, a slack period 
-1 

with weak tidal streams in the range 1.0 to 1.5 ml • The 
-1 

suspended solids ranged from about 4.7 to 187 mgl , with values 

at low salinities substantially greater than those observed for 

either the Clyde or the Tamar (Figure 3.23). The region of 

maximum turbidity generally moves with the tide : l.andwards 

with flood and seawards with ebb. If sampling had been carried 

out 2 or 3 hours earlier or later than high water, very much 

higher levels of suspended solids would have been encountered. 

This is because much of the solids content of the water literally 

drops out during the high and low water slack periods, only to be 

picked up and resuspended when the tide turns and starts to flow 

t I i L I f d d lid t 6l60mgl
-l 

s rong y aga n. eve s 0 sus pen e so s up 0 

have been recorded during tidal cycle surveys when the tide is 

running strongly (Leatherland, pers. corom.). The jump in 
-1 

turbidity to a value of 84.4 mgl at station FlO was probably 

185. 

due to the influx of material from the Bannock Burn (Figure 2.8), 

whose mean annual volume flow is only about 6% of that for the river 

Forth measured upstream beyond Stirling. All dissolved phosphate -

salinity plots derived from water quality surveys in this estuary 

show some sort of phosphate removal and the dissolved phosphate 

data on samples collected synchronously with those studied here 

showed/ 
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showed that phosphate removal was occurring (Figure 3.24) with 

approximately 75% removed before a salinity of 4%. was reached. 
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In such plots, sewage inputs along the estuary show up as high 

phosphate contents which affect only one station, implying that 

removal of phosphate must be fairly rapid (Leatherland, pers. comm.). 

The similar phosphate concentrations for the fresh and sea water end-

members (Figure 3.24) are coincidental and atypical. The sea 

water value is generally lower than the fresh water one. Because 

of the exceptionally poor light penetration in the upper estuary, 

it is very unlikely that the removal process is due to phytoplankton. 

The removal mechanism is usually regarded as one of adsorption of 

phosphate from solution onto the solid phase, so that the amount 

removed will depend on the concentration of phosphate in the water and 

the area of solid available for adsorption. The optimum pH for 

phosphate adsorption shows a broad maximum in the range 3 - 7 

where the dissolved species will be H
2

P0
4 

(Kester and Pytkowicz, 

1967) • At pH8, sea water has -87% of the phospho rus i.n solution 
2- -

as HP0 4 .. with ~1% as H2P0 4 ' implying that in an estuary where 

characteristically low pH water mixes with sea water of pH ~8, 

the efficiency of removal will be greater in the fresh water than 

in the saline part of the estuary (Liss, 1976). 

The uranium results for the Forth estuary, which are thought 

to be connected with the above chemisorptive removal process, .are 

given in Table 3.14. In Figure 3.25 a degree of uranium removal at 

low salinities can be discerned, coincident with the high turbidities 

here (Figure 3.23). The high concentrations of dissolved solids 

facilitate solid-solution chemical interactions. This could explain 

the resultant uranium removal, with possible enhancement by 

flocculation of dissolved organic and inorganic matter (Sholkovitz, 1976) 

and iron-bearing colloids (Boyle et al., 1977), processes which 

occur during the mixing of river water and sea water. According 

to Dongarra and Langmuir (1980), a typical natural water with 
-2.5 -8-1 PC02 = 10 atm., uranium concentration 10 M (2.4ugl ) and 

~ 3- 2-
~p04 = 1uM would have U02[HP04]2 as the dominant uranium 

species between pH4 and 7.5, within which range the pH values 

off 
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TABLE 3.14 

Uranium concentrations and activity ratios in the Forth 

estuary + (- 10" error) 

SamI21e code 
0 

Salinit;x:( /00) 
-1 

Uranium(ugl ) 234U/38U 234 -1 U(ug-eguiv.l 

F16 0.065 0.089 + 0.006 + 0.13 + 0.01 - 1.50 - 0.13 -
+ * + * + * F15 0.406 0.070 - 0.007 0.91 - 0.13 0.06 - 0.01 

F14 1.77 0.12 + 1. 34 + 0.16 + 0.02 - 0.01 - 0.17 -

F13 3.62 0.16 + 1.27 + 0.21 + 0.03 - 0.01 - 0.12 -

F12 5.46 0.23 + 0.01 1. 24 + 0.10 0.29 + 0.03 - - -

F11 6.82 0.35 + 1.28 + 0.09 0.45 + 0.04 - 0.02 - -
FlO 10.57 0.86 + 1.12 + 0.05 0.96 + - 0.03 - - 0.05 

F9 10.40 0.97 + 0.06 1.16 + 1.13 + 0.10 - - 0.07 -
F8 14.39 1.45 + 0.08 1.08 + + 0.13 - - 0.07 1.57 -

F7 15.97 1. 48 + 0.04 1.18 + 0.04 + 0.11 - - 1. 75 -
F6 16.63 1.73 + 0.06 1.15 + + 0.11 - - 0.05 1.99 -
F5 19.49 2.07 + - 0.11 1.17 + 2.42 + 0.19 - 0.07 -
F4 22.38 2.23 + 1.15 + 0.04 2.56 + 0.12 - 0.07 - -
F3 25.80 2.69 + 0.07 1.11 + 0.04 + - - 2.99 - 0.13 

F2 30.89 2.90 + 0.12 1.18 + 3.42 + - - 0.05 - 0.20 

F1 32.40 3.12 + 0.08 + :!: 0.13 - 1.19 - 0.03 3.71 

F20 33.20 3.53 + - 0.11 1.12 + - 0.03 3.95 :!: 0.16 

(* 234 238 Less than 100 counts under U and U peak regions.) 
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of the river Forth lie (Forth River Purification Board, 1982). 

Thus, since uranium can complex strongly with phosphate, it 

could be removed in concert with it. Martin et al., (1978a) 

noted a similar removal of uranium in the Charente estuary which 

had been polluted with orthophosphate originating from fertilizer 

processing unlike above where the phosphate was sewage-derived. 

In the Charente, below 4%. salinity, effluent from a calcium 

fluorophosphate processing plant artifically increased the 

phosphate content to ,.., 18uM (as compared to < 2uM in the Forth) 
-1 

and increased the uranium content from 0.4 to 2ugl • Both 

elements, phosphorus and uranium, showed non-conservative behaviour 

via removal processes during estuarine mixing. 

Examination of Figure 3.25 indicates that there might be a 

change of curvature from negative to positive, in the uranium 

profile, with the inflexion point at ~10%. salinity. Thus there 

is not a clear linear increase in concentration between the sample 

showing the maximum percentage deviation from the regression line 
-1 

(sample F12) and the extrapolated sea water end-member (3.50ugl 

at 35%.). This feature would suggest a reversible process, with 

some desorption of uranium from particulates on increasing 

salinity due to exchange with other ions as the ionic strength 

increases. The regression line in Figure 3.25 was calculated using 

the upper 9 data points only, since the other uranium points . 

signified removal and would have skewed the line if included. With 
2 R = 0.964, uranium appeared to show conservative behaviour at the 

lower end of the Forth estuary. The removal rate of uranium can be 

calculated by the approach of Li and Chan (1979) and Maeda and 

Windom (1982), in which the lower straight-line segment of the 

mixing curve (Figure 3.25) defines an intercept I on the ordinate. 

This intercept is given by 
Ru 

I=U·+ ....•................ (3.10) r Qr 

where Ur is the dissolved uranium concentration of the river water 
-1 

end-member (0.089 ugl ), Qr is the rate of river discharge 

(2.764 m3s-
1 

mean value for June 1982 in the Forth) and Ru is the 

removal rate or release rate of uranium from particulates/sediment 

depending on whether Ru is negative or positive respectively. 

For an I value of ~O.40 ugUI-1 (or mgum- 3), the uranium removal 

rate/ 
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-1 
rate was calculated from equation 3.10 as 1.4 mg s or 4.4 

4 -1 x 10 gyr • The total riverine uranium input to the oceans of 

between 1 and 2 x 1010g yr -1 was calculated assuming a world 
-1 

mean river/uranium concentration of 0.3 to 0.6 ugl (Cochran, 
20 -1 

1982) and a total river water flux of 0.35 x 10 g yr 

(Livingstone, 1963). Therefore the above removal process 
-2 

amounts to only 2 to 4 x 10 % of this total world uranium input 

value and as such does not constitute a significant removal 

process. It is likely, however, that the above calculated 

194. 

removal rate would be temporally variable, depending on such factors 

as runoff rate, tide, river uranium concentration, and would be 

highly sensitive to uncertainties in the intercept value I, especially 

during periods of large river discharges (Qr). 

Figure 3.26 shows the change in A.R. with salinity and from 

thiA is it would appear that the results follow the TML (Equation 

3.9) quite well within the uncertainty of the data. However, when 

the total uranium concentration (99.27% 238U) and 234u/238u activity 
234 ratio for each sample are used to calculate the absolute U 

concentration, these absolute values (Figure 3.27) show that a 
-1 4 -1 similar removal rate of 1.5 mg-equiv.s (4.7 x 10 g - equiv.yr ) 

234 234 -1 is also operative on V. Here, I= -0.42 ug-equiv. U I , 
234 . 234 -1 U 1S 0.13 ug-equiv. U I ,and again only the upper 9 data 

r 2 
points are used to define the regression line, giving R = 0.983. 

Since uranium concentrations in this work are reported in mass 
-1 238 units per volume (e.g. ugl ) for U, and since the concentration 

234 234 by weight of U is about four orders of magnitude less, the U 

values above are given in equivalent concentration units, i.e. the 

i f 238 . ' concentrat on 0 U that would be equ1valent in activity to the 

234u present (Osmond and Cowart, 1976). An alternative is to 
-1 quote both uranium isotope concentrations in dpm I. Taking 

both the calculated R 
u 

234 238 values for U and U, the activity ratio 

of the uranium removed from the upper estuary would be in the region 

of 1.07 (1.5/1.4), although subject to large errors due to 

uncertainties in I values and Qr levels. 

considered/ 
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considered worthwhile that, since turbidities were high and ample 

particulate matter was available for precise uranium analysis, the 

isotopic activities of the suspended matter should be investigated 

to see if it showed an A.R. signature compatible with this uptake of 

uranium. Borole et al., (1982) found A.R.s in the suspended phases 

of the Narbada estuary to be between 1.01 ! 0.02 and 1.06 ! 0.02 

(mean 1.03), samples which had been settled out from waters with 
+ + 

dissolved A.R.s of between 1.14 - 0.02 and 1.35 - 0.02 (mean 1.25). 

These solid phase A.R.s did not exhibit any systematic variation 

salinity, ruling out any major adsorption/desorption processes, 

and 238u both behaving conservatively. The small excess of 

in the suspended phases, however, was not explained. The 

non-conservative uranium behaviour found by Martin et al., (1978a) 

in the Charente estuary did not show such 23
4u enhancement in 

+ + the suspended matter, with A.R.s between 0.91 - 0.09 and 1.01 - 0.02 

(mean 0.95). The particulate matter from the Forth estuary was 

195. 

here allowed to settle and was oven-dried at 110°C. These samples 

which came from waters showing uranium removal, FlO to F15 inclusive, 

were combined to yield a 6.24 g composite sample (A), while the 
o others, F1 to F8 yielded a 2.78 g composite (B). A~ing at 500 C 

gave, respectively, LOI values of 18.7% and 21.0% due to oxidation 

of organic and carbonate carbon. 
+ 

Alpha-spectrometry gave at total 

uranium content of 4.10 - 0.09 ppm and an A.R. of 
+ 

1.00 - 0.02 
+ + for sample A, and 3.06 - 0.06 ppm and 1.00 - 0.03 for sample B. 

Thus, there was no definitive evidence for uptake of uranium with 

an A.R. of ~1.07, but the higher total uranium (2 38U), and higher 
234 U content (implied by the solid-phase A.R. of 1.00) of the 

particulates from the lower-salinity samples could be co~patible with 

uptake of uranium of A.R. >1.00 if the particulate input had an 

expected original ratio <1.00 (Sackett and Cook, 1969) and vice-versa. 

It should be noted that the mean uranium distribution coefficient 

(ratio of specific activity on the solid phasa to that in solution) 

for sample A is 1.37 x 107 while that for sample B is 1.38 x 10
6

. 

This decrease in KD could partly be a manifestation of the uranium 

adsorption on the sample A composites, although, for a constant 
~ 

particulate/ 
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particulate uranium concentration along an estuary, the natural 

increase in soluble uranium content seawards by ~2 orders of 

magnitude would easily account for the 1 order of magnitude 

decrease in KD. 

As a final indication of the conservative behaviour of 

uranium in sea water and in estuaries with low dissolved solids, 

a plot of uranium versus salinity was constructed from the 3 

studied estuaries except for (i) 8 samples (Forth F9 to F16) 

for which uranium removal was observed, and (ii) a further 8 

samples with salinities < 5%. in which. the salt content is not 

well-defined. Figure 3.28 under regression analysis gives a 
+ -8-1 U/S%. ratio of (9.53 0.84) x 10 gg for the salinity range 

5.0 - 33.2%.. This is in excellent agreement with the values 
+ -8-1 of Turekian and Chan (1971) : (9.21 - 0.04) x 10 gg , salinity 

+ 
range 33.50 - 34.68%. and of Ku et al., (1977) : (9.34 - 0.56) 

-8 -1 
x 10 gg salinity range 30.3 - 36.2% •. 

The results in this section add to the substantial body of 

data on the uranium concentration and activity ratio of river 

water (see Scott (1982) for summary) and may be used in a 

recalculation of the mean value of riverine uranium and its A.R. 

for mass balance purposes. The mean uranium contents and A.R.ls 
-1 

for the three estuaries are, respectively, 0.12 ugl and 
+ 

1.37 - 0.09. These can be compared to the weighted mean values 
-1 + 

of 0.22 ugl and 1.20 - 0.06 calculated from some major and 

minor world rivers (Borole et al., 1982). The data provided 

here can also be applied to the steady-state model of Ku et al., 

(1977). These authors derived an equation which could set 

limits on the mean uranium concentration of world rivers (Ur) 
-2 -1 '234 

and on the diffusional flux (in dpm cm kyr ) of U from 
238 deep-sea sediments (Is). Assuming that U input to the 

234 ocean comes mainly from rivers and that U input comes from 

two sources, rivers and sediments, then after Ku et al., (1977), 

0.05/U + 1.14 = A + I / 7.35 U .•....••.•...••• (3.11) r r s r 

where A is the 234u/ 238u activity ratio in rivers, and the left 
r 

hand side of the equation is the oceanic activity ratio due to 

riverine input, calculated from the following known parameters 
-1 river discharge rate (1 yr ), ocean volume ( 1 ), uranium 

concentration/ 



...... 
I 
rl 
bO 
;:l 

E 
;:l 

.r-! 
C 
t'I! 
H 
;:l 

3.0 

2.0 

1.0 

o 

U 

s%. 
n 

Figure 3.28. 

(9.53 + 0.84) x 10-8 g g -1 

29 

10 

• 

20 
Salinity (%.) 

30 

Uranium - salinity relationship for all three U.K. estuaries 

• 
sea water 

• 



-1 
concentration in the ocean (3.3 ugl ) and its activity ratio. 

234 Since losses of U have been observed from most pelagic clays 
234 

(Ku, 1965), then IS ~ 0, otherwise U would be depositing in 
238 preference to U. In addition, since the A.H. of river water 

(A ) is greater than the sea water value of 1.14, then from 
r 

equation 3.11, IS must be < 0.37. 

If, from Tables 3.10, 3.12 and 3.14, the U and A values 
r r 

for the Clyde, Tamar and Forth rivers are taken as, respectively, 
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-1 -1 -1 
0.15 ugl and 1.65, 0.04 ugl and 1.44, 0.09 ugl and 1.50 then 

-2 -1 
IS values of -0.19, 0.28 and 0.13 dpm cm kyr are generated from 

the above equation. This indicates that the data for the latter 

two of the three rivers compares favourably with the predicted 

model IS values, and that the combination of relatively higher 

uranium concentration and A.H. in the Clyde river leads to an 
234 IS value which is too low, implying preferential U deposition. 

However, world rivers show a considerable spread in their uranium 

concentration and each will have a characteristic, although 

sometimes temporally variable (Scott, 1982) A.H. value. Thus, 

values of IS which lie outside the predicted limits of 0 to 
-2 -1 

0.37 dpm cm kyr are bound to be found. It is the world 

mean A and U river input values which will provide the ultimate 
r r 

test for the model. 



3.5 Further applications of Particle Track Analysis 

The P.T.A. technique can be used to map out areas of 

a-radioactivity, i.e. in an autoradiographic mode, and it is 

shown here how useful information is obtained from the permanent 

track records resulting from the application of CLN to the samples 

described in section 2.5. The a-track records are discussed 

in the light of data obtained on the same samples by other 

analytical techniques (fission track analysis, wet radiochemistry, 

~-analysis etc.), when such data are available. 

The particulates in a 30.15%. salinity water sample from the 
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Esk estuary were allowed to settle and the supernate filtered firstly 

through a Whatman GF/B filter (nominal pore size 1.0um) and collected 

in a 0.45 um millipore filter. The millipore filter containing the 

0.45 - 1.0 um particles was then applied to CLN for a period of 44 days. 

After etching (see section 2.7), a number of areas of intense a

radioactivity could clearly be identified (Figures 3.29 and 3.30). 

These 'hot particles' are similar to those found by Hamilton and 

Clifton (1980) and Hamilton (1981) in resuspended sediment of the Esk, 

and are believed to be derived from the authorised discharge of 

radioactive effluent into the Irish Sea by the British Nuclear Fuels 

Limited (B.N.F.L.) reprocessing plant at Sellafield, some 10 km north 

of the estuary. Hamilton (1981) found by acid leaching of the 

particles that Pu and Am radionuclides were always present, with Cm 

nuclides occasionally present, but less than one in four of all the 

particles studied contained any uranium. No abnormally high 

concentrations of uranium were found in the particulates settled from 
+ -1 + the same water sample (1.19 0.07pCig , 3.53- 0.21 ppm), in the 

+ -1 water sample itself (2.76 - 0.12 ugl ) or in another water sample 
+ -1 

of salinity 3.15%. (0.45 - 0.02 ugl ). It is unlikely, then, 

that the a-track clusters in the CLN are due solely to natural 

uranium given the.low CLN : filter application time of 44 days. 

Table 3.15 contains the ~-spectrometry results for the settled 

particulates and shows a range of nuclides which are commonly found 

in the liqu!d effluent from the Magnox storage and decanning plant 

at BNFL, Sellafield (Hamilton and Clarke, 1984). The presence of 

these nuclides confirms BNFL as the source. Prior to discharge, 

~the effluents are neutralised with ammonia and the iron-rich effluent 

should/ 
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TABLE 3.15 

Radionuclide activities in particulate material from the 

Esk estuary, Cumbria. ( +- 6 8 ) 1. 9 (T error, 0.5 2g sample • 

Radionuclide Activity concentration 
-1 

(pCig ) 

144ce 42.2 + 10.4 -

60
co 8.8 + 1.90 -

13 4
cs 5.22 + 0.88 -

137cs 161 + 8.8 -

95Nb 555 
+ - 23.5 

106
RU 559 + 38.0 -

95 Zr 129 + - 7.9 



Figure 3.29. Alpha track clusters in cellulose nitrate from 
filtered particulates of the Esk estuary. 
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Figure 3.30. 

202. 

Enlarged alpha hot-spot from filtered particulates 
of the Esk estuary 



should contain flocculant material and particulate debris, which 

is transported by the tides to the estuary with a transit time of 

about 10-12 months (Hamilton and Clarke, 1984). In the Esk, a 

203. 

large proportion of the radi~nuclides are retained in the sediments, 

especially in the silty muds, and these are stirred up by the ebb and 

flow of the tide, accounting for the occurrence of the 'hot particles' 

found in the water column. 

A range of samples collected from an inlet East of Dounreay 

Nuclear Power Development Establishment (D.N.P.D.E.) were described 

in Table 2.2. Table 3.16 shows the uranium and plutonium results 

for these samples. As far as plutonium is concerned, the main 

observations are (1) that the scrapings from the rocks in the inlet 

have spatially and temporally-variable enrichments of plutonium 

compared to the soils and offshore sediment, and (2) the soil Pu 

inventories decrease inland by a factor of about 2 over 100 metres, 

a trend not unlike those described by Peirson et al., (1982) for 

coastal transects around Sellafield. This pattern reflects an 

on-land flux of material from the sea, such as wind-blown marine 

particulates/aerosols or foam, both of which are shown to be 

enriched in plutonium and some fission products (Cook et al., 

1984) • 

and 5. 

Fission track analysis was performed on samples 2, 3 

The fission track distribution for the dried sea 

foam (sample 3) was completely homogeneous and comparison with 

a fission track glass standard yielded a uranium concentration 
+ -1 

of 0.68 - 0.03 pCig (2.0 ppm). However, the track distributions 

from O.lg pellets of the 1981 rock scrapings (sample 2) and from a 

soil 50 metres inland (sample 5) were inhomogeneous, containing 21 

and 2 fission stars respectively. The fission track analysis value 
+ -1 

of 2.18 - 0.07 pCig U (6.56 ppm) for sample 5 must therefore be 

taken as approximate. A realistic uranium value for sample 2, however, 

could only be obtained by total dissolution and a-spectrometry, since 

the fission stars in this sample were more abundant and more dense 

(see Figure 3.31a). + Alpha-spectrometry gave values of 1.28 
-1 

0.11 pCig U (3.8 ppm) and 2.20 + -1 - 0.08 pCig U (6.67 ppm) for 

samples 1 and 2 respectively. It appears, therefore, that 

there is no enrichment of uranium in these samples as there was 

~ fori 



TABLE 3.16 

Plutonium and uranium concentrations of samples collected 

. + in the v1cinity of D.N.D.P.E., Caithness (- lr error) 

a 238u -1 23 4u;238u 239,240p ( C. -1) Sam:ele number (:eCig ) u :e 19 

1 1.28 + 0.11 0.97 + 0.11 - -

2 2.20 + 0.08 L05 + 0.03 - -
3 0.68 + 0.03

b -
4 

2.18 + b 
5 - 0.07 

6 

+ + 7 0.25 - 0.03 1.12 - 0.13 

a - For sample descriptions see Table 2.2 

b - Fission track analysis results 

-2 c.- Pu inventories to 30cm depth in pCicm . 

38.67 + 0.51 -
4.20 + 0.01 -

23.31 + - 0.29 

0.105 (1.47
c

) 

0.115 (1. 04 c ) 

0.181 (1.70c ) 

+ 0.95 - 0.004 
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3.31 (a) Fission track and (b) alpha track hot-spots 
from matrial scraped from rocks near Dounreay, 
Caithness 
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for plutonium, its concentration being similar to that of the 

nearby soil (sample 5). The clay components of the material 

scraped from the rock may therefore derive from local soil 

weathering and erosion. The offshore sediment also required 

total dissolution / a-spectrometry because the sandy material 

was difficult to bind into a pellet. A relatively low 
+ -1 concentration of 0.25 - 0.03 pCig U (0.75 ppm) was found 

since the sediment comprised mainly coarse (97% >200um) quartz 

and carbonate. 
234- 238 

It is interesting to note the U/ U activity ratio for 
+ 

sample 2 i.e. 1.05 - 0.03. This value is slightly higher than 

206. 

that expected for continental rocks or nearshore sediments (~1.00 

Sackett and Cook, 1969) and may indicate a uranium contribution 

from sea-spray which has an activity ratio of about 1.15. 

Fission stars such as that shown in Figure 3.31a (from 

sample 2) were initially thought to be due to 239pu , present 

at a concentration of 4.02 PCig-
1 

and possibl~ in 'hot particles' 

such as those found by Hamilton (1981) near Sellafield. However, 

abundant fission stars have recently been observed in 90um thick 

sections of white sandstone and organic-rich black shales from 

Sandside Bay, close to D.N.D.P.E. (Das, pers. comm.), and these 

can only be due to natural uranium inherent in the rock. In 

fact, by calculation alone, the fission stars observed here, 

which constitute about 13% of the total tracks from the sample 

must be due to 235u and not 239pu fission since a plutonium/ 
4 uranium alpha-activity ratio of 1.17 x 10 would be required for 

an equal probability of fission. So the nature of the plutonium-

particle association cannot be unequivocally determined due to this 

overwhelming 235u fission track contribution. From Figure 3.31a, 

the diameter 

10um, and, if 

approximately 

of the hot particle is estimated at approximately 
239 pure pu02 , would have an a-activity of 

324 pCi. The a-track density in the CLN detector 

(Figure 3.31b) after 6 months exposure to the particulates gives 

an approximate hot-spot a-activity of 0.02 pCi, some four 

orders/ 
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orders of magnitude less. 

Alpha-autoradiography was also performed on a hydrothermal 

manganese deposit, collected from an elevated submarine volcanic 

ridge. The deposit was similar to one described by Cronan et al., 
-1 

(1982) which had an accumulation rate of at least 500mm Myr , 

far higher than the rate for most hydrogenous nodules, and is 

consistent with it being of hydrothermal origin. The deposit 

was shown by X-ray diffraction to be a pure birnessite (Moorby, 

pers.comm.) and had a purplish-black crust and many internal 

laminations. It was thought that this internal structure may 

have resulted from a periodicity of its growth rate, and it 

was considered worthwhile to apply the CLN detector to a section 

of the nodule to determine whether bands of a -activity occurred 

along the laminae. Such an observation would be expected if 

periods of low nodule accumulation rate coincided with high 

levels of uranium and/or thorium uptake at its surface. Figure 

3.32 is an a -autoradiograph of the upper edge of the deposit 

after a CLN application time of 196 days. An enhanced level of 

a-activity is found at the edges relative to the internal bulk 

of the deposit. This distribution is quite similar to the 

radial profiles of a-activity described by Andersen and Macdougall 

(1977) which were found for most of the slices of manganese nodules 

they studied. These authors found a simple exponential decrease 

in total a-activity with depth and interpreted this in terms of the 
230 decay of Th during diagenetic nodule growth, growth rates 

excess -1 
being between 2 and 10 mm Myr in agreement with values found 

radiochemically by Ku and Broecker (1969). Such low nodule growth 
230 4 

rates mean that all the Th (t 1 = 7.7 x .10 y) is located excess "2 

in the outermost 1mm of the nodule, requiring the high resolution 

sampling ("30um, Andersen and Macdougall, 1977) provided by the 

track technique. In the hydrothermal manganese deposit similar 
230 to ,the one here, however, the Th activity was very low and 

230 23 b 234 variable with depth, the Th/ 'u ratio was low and the U/ 

238u ratio lay between 1.06 and 1. 24 (ero,nan et al., 1982) and thus 

most/ 



Figure 3.32. Alpha-autoradiograph of the upper edge of 
a hydrothermal manganese deposit. 
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most of the a-tracks at the edges are due to the uranium 

isotopes. Figure 3.32 would therefore seem to indicate the 

surface adsorption of uranium nuclides from sea water. 

Figure 3.33 illustrates another interesting phenomenon. 

Visible in the photograph are peculiar 'clouds' of a-tracks 

which lie outside the area of contact between the CLN and the 

manganese deposit. One of these clouds issued from a small 

crack which travelled along the deposit, the other from the 

209. 

bottom edge of the deposit. It is believed that these a-tracks 

are due to the diffusion of 222Rn , its decay and that of its two 

short-lived daughters 218po and 214 po • Such diffusion would 

also be expected from the top surface of the deposit but is not 

observed. This is a consequence of the top surface having been 

coated with a resin prior to sectioning in order to prevent 

splitting or crumbling and to facilitate the preparation of the 

flat surface required for CLN application. It is evident that 
222 Rn cannot diffuse through this resin (at least during the 

timescale of autoradiography) and so the amount of this nuclide 

.available for diffusion elsewhere is increased. Such diffusion 
222 of Rn has previously been observed by Krishnaswami and Cochran 

(1978) in their study of authigenic nodules. Depth profiles 
210 . 226 

of Pb in these nodules exhib~ted large excesses over Ra 
210 226 ( Pbl Ra activity ratios from 2.2 to 17.6) in the outermost 

layer of their upper face, 210pb/226Ra ratios of < 1.0 in the 

intermediate layers, and ratios slowly increasing to the secular 

equilibrium value in the deeper layers. This deficiency of 
210 Pb in the near-surface, intermediate layers (ratios < 1.0) was 

222 210 caused by the diffusive escape of Rn, the precursor of Pb. 
210 226 This loss was not reflected in the high Pbl Ra ratios on the 

upper surface of the nodules because of the deposition there of 

210pb from sea water. 

Stainless steel planchets containing purified electrodeposited 

radionuclidesl 



Figure 3.33. 
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Complete alpha-autoradiograph of a hydrothermal 
manganese deposit. 



radionuclides were also subjected to a-autoradiography. A 

thin aluminium absorber was used to slow down the a-particles 

for registration (Hashimoto, 1971) and the films were etched in 

2.5 molar NaOH at 600 C for 2 hours (see section 2.7). The 

a-track record produced in CLN from three of the planchets are 

shown in Figures 3.34, 3.35 and 3.36. Figure 3.34 shows the 

211. 

a-tracks produced from a source of 23 2
U (~4dpm) which had been 

applied to CLN for 25 days. The electroplating cell and plating 

parameters were as described in section 2.5.1. The 232
U a-tracks 

show an excellent homogeneous distribution over the planchet during 

plating. Figure 3.35, on the other hand, shows an inhomogeneous 

distribution of tracks obtained after a 40-day exposure of CLN to 

electroplated Pu isotopes on a planchet submitted by another 

laboratory. The observed pattern of tracks might be due to the 

Pt anode being positioned too close to the planchet during 

the plating procedure. It should be stressed, however, that such 

a distribution will have.no effect on the quantitativea~spectrometric 

analysis of the Pu isotopes present, and there may actually be 

a slight gain in counting efficiency, depending on the relative 

dimensions of the deposit and surface barrier detector and on the_ 

source to detector clearance. 

A slight inhomogeneous deposit of Pu isotopes (47.7 dpm total) 

was also found in a sample planchet from a different laboratory 

(Figure 3.36). A slight ridge of high a-activity can be seen 

which is present all the way round the deposit. Lexan 

polycarbonate was then applied to the same planchet and the package 

was irradiated for 6 hours in the research reactor at the ~-curtain 

(Figure 2.15). Subsequent etching yielded a fission track 

distribution(Figure 3.37) similar to the a-track distribution. 

Although more than half of the fission tracks will be due to the 
~ 241 
~ - emitter Pu (vf = 1011b), their distribution, when compared 

to the a-tracks, indicates that many are due to fission of 239pu 
238 (v

f 
= 7-42b) and pU(vf = 16.5b). This demonstrates the viability 

of the fission track technique in the mapping of plutonium. 

AI 
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Figure 3.34• Alpha-autoradiograph 053~ planchet 
containing about 4dpm U. 



Figure 3.35. Alpha-autoradiograph of a planchet 
containing Pu isotopes. 
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Figure 3.36. Alpha-autoradiograph of a planchet 
containing 47.7 dpm of alpha-emitting 
Pu isotopes. 
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Figure 3.37. Fission track distribution produced 
by irradiation of a planchet containing 
Pu isotopes. 
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A sample of gypsum (calcium sulphate) was analysed 

for uranium by both a-spectrometry and fission track analysis. 

The gypsum was a waste product from a fertilizer factory at Leith 

on the Firth of Forth and is generated during the chemical 

216. 

processing of high-uranium-bearing calcium phosphate ore. It was 

therefore considered to be a possible source of uranium to the Forth 

estuary into which the waste was discharged. The results from 
+ both methods agreed within 2~ and were 3.65 - 0.09 (fission track 

+ analysis, 1~ . )and 4.12 - 0.22 ppm ( ex -spectrometry, 1~ ). The 

234u/238u activity ratio was 0.92 ~ 0.05. The low uranium content 

of the gypsum relative to the calcium phosphate ore itself indicates 

that during the H2S04 treatment of the ore, the uranium complexes 

with phosphate rather than the sulphate in solution, and ends up 

predominantly in the fertilizer (Spalding and Sackett, 1972). 



APPENDIX A 

SAMPLE CALCULATIONS, ERRORS AND STATISTICS 

A physical magnitude can never be exactly determined; there 

is always an error associated with its measurement. These errors 

can be classified as either random or systematic, where the random 

error represents the unbiased fluctuations of the measuring system 

obtained after repeated measurement (precision). The systematic 

error, on the other hand, is caused by measurement bias and determines 

how closely mean experimental values correspond to the 'true' value 

(accuracy) . Inaccuracies can be introduced by faulty equipment, 

incorrect calibration or poor technique. 

In this study, random errors were evaluated by repeated 

measurements of replicates as illustrated in Tables 2.3, 2.5 and 2.6 

for the fission track and a-track methods, while systematic errors 

were evaluated by interlaboratory or intersystem comparison - Table 

2.4 (pore waters) and Tables 3.1 and 3.2 (sediments). The replicate 

217. 

analyses give an overall 1u error value, where the standard deviation 

is given by 

= (E(x -X)2\ l 
n-1 J (J'REP 

where x is the value obtained for an individual measurement and x 

is the mean valu~ of n observations. The error associated with 

replicate measurements, 0' REP' can be regarded as a combined or 

total error, O'TOT' divisible into two distinct components: (i) 

a statistical error, O'c, derived from the observed number of counts, 
t N, which, in radiocactivity measurement is equal to N , (ii) a non-

counting error, O'NC,arising from inaccuracies in, for example, 

weighing of sample or dispensing tracer by pipette - it is therefore 

non-quantifiable. The total error thus represents the maximum 

values of the experimental uncertainties, and 
= 2 2 t 

0' TOT O'REP = ( 0' C + 0' N C ) 

In the case of sea water replicates (Table 2.4), 0' REP was found 

to be 6.1%, and from the number of track counts (mean 1233) , 

O'c = 2.8% and so O'NC = 5·4%. With the achievement of homogeneous 

track densities, it was assumed that since the number of fission 

tracks/ 



tracks was .proportional to irradiation time, then the error on the 

track density (tracks/area) is equal to ( (tracks)l/area). From 

equation 2.2 therefore, the error on U by propagation of errors is 
x 

e(U ) 
x 

The following is a typical calculation for the uranium content of 

a pore water sample based on equation 2.2 and the above equation -

Mean background tracks 13..6 

8.309 x 
-2 2 

Total area counted = 10 cm 

Mean background track density = 163.7 

Uranium standard track count 1589 

Total area counted = 6.985 

Standard track density = 227487 

Sample track count = 1268 

Total area counted = 8.309 

Sample track density = 15260 

Uranium content of standard = 44.76 

Thus, from equation 2.2, 

U = 
x 

(15260 ~ 429) - (164 ~ 44) 

(227487 ~ 5707) -(164 ~ 44) 

= 
+ (15096 - 431) 

(227323 + 5707) 

+ -1 = 3.00 - 0.11 ugl 

44.76 

+ 44.4 cm -2 -

x 10-3 2 
cm 

+ 5707 
-2 - cm 

10-2 2 
x cm 
+ 429 

-2 - cm 

ugl -1 

• 44.76 
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The 1a errors quoted for the analyses of uranium by the fission track 

method are those derived from counting statistics only, and as such do 

not represent the total uncertainty, which can be derived from aREp . 

In the determination of the excessOt-track density (R ) down 
xs 

a deep sea core, each of the terms R
i

, R~ , U
i 

and U~ (equation 2.4) 

has its own associated error and the overall error function for R can 
xs 

be expressed in the form of a Maclaurin expansion. Since variances 

are/ 



are linearly additive, 

var(R
x

) = var (RT) 

and 

219. 

+ 

. Ui) = 9i 
2 e Ui~2 tR 

var (Roo) . + var (Uoo ) ~ + var(Ui) ~ 

The error on R is then given by 
xs 

(R ) 
xs 

[ var (R ) xs 

UQ) 00 UQ 

. l 
] 

From Table 3.1, this error ranges from about 7% to 36% for core 9936K. 
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APPENDIX B 

FORTRAN IV COMPUTER PROGRAMME FOR NEUTRON FLUX CALCULATION 

C This program evaluates neutron fluxes from activities obtained 

C from Geli 

DIMENSION A(100), FLUX (100), Tl(100), Cl174(100), C1333(100), 

*C1292(100), 01(100), 02(100), D3(100), ATFE(100), AOFE(100), X(100), 

*DELAY (100), WT(100), TIRRN(100) 

READ (5,1)N 

C1 FORMAT (12) 

C N is the number of fluxes to be calculated 

DO 8, I=l,N 

C 

READ (5,3) T1 (I), Cl174(I), C1333(I), C1292(I),DELAY(I), WT(I), 

*TIRRN(I) 

3 FORMAT (F8.5, 3F10.4, F4.2, 2F9.4) 

8 CONTINUE 

C Cl174, C1333 and C1292 ae taken to be in counts per second 

C 

C 

C 

C 

DO 2, I = 1,N 

A(I) = 3.7E4*11.67*EXP(-0.693*T1(I) /5.26) 

D1(I)= Cl174(I) *100.0/A(I) 

D2(I)= C1333(I) * 100.0/A(I) 

D3(I)= D1(I) - (0.188/0.159)*(D1(I)-D2(I) 

ATFE(I)=C1292(I) * 100.0/D3(I) 

2 CONTINUE 

DO 4, . I = 1,N 

AOFE(I) = ATFE(I)*EXP(0.693*DELAY(I)/45.1)*(190.0/42.75) 

X(I) = WT(I)*3.559E16 

FLUX (I) = AOFE(I) / (X(I)*1.23E7~4*(1.0-EXP(-6.402E!4*TIRRN(I»» 

4 CONTINUE 

WRITE (6,6) 

6 FORMAT (lH, lOX, 'NUMBER', 15X,'FLUX') 

DO 7, I=l,N 

WRITE (6,9) I, FLUX (I) 

9 FORMAT (lH1, 12X, 12, 14X,E13.6) 

7 CONTINUE 

STOP 

END 
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APPENDIX C 

FORTRAN IV COMPUTER PROGRAMME FOR EVALUATION OF THE URANIUM 

ACTIVITY OF NATURAL WATERS. 

1 

2 C 

3 C 

4 

5 * 

6 * 

7 

8 C 

9 

10 1 

11 

12 

13 2 

14 3 

15 C 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 5 

30 C 

31/ 

Program Hydro 2 

This program evaluates uranium-238 activity of natural waters 

and the U234/U238 activity ratio 

DIMENSION A,(20), B(20), C(20)" LT(20); SPIKE (20), Y(20)., Z(20), 

EA(20),EB(20),EC(20),EY(20),EZ(20),CU232(20), ECU232(20) 

CU238(20), ECU238(20) 

REAL LT 

READ (5,1)N 

FORMAT (2X,I2) 

DO 3, I=l,N 

READ (5,2)A(I),B(I),C(I),LT(I),SPIKE(I) 

FORMAT (3F6.1,2F4.2) 

CONTINUE 

DO 5, I=l,N 

EA(I) = SQRT(A(I» 

EB(I) = SQRT(B(I» 

EC(I) + SQRT(C(I» 

Y(I) = B(I)/A(I) 

EY(I)=Y(I) * SQRT(EA(I)**2+(EB(I)/B(I»**2) 

Z(I) = C(I)/B(I) 

EZ(I)=Z(I)*SQRT(EC(I)/C(I»**2+(EB(I)/B(I)**2) 

CU232(I)=SPIKE(I)/LT(I) 

ECU232(I) = CU232(I)*1.01E-2 

CU238(I)=CU232(I)*Y(I) . 

ECU232(I)=CU238(I)*SQRT( (ECU232(I)/CU232(I»**2+(EY(I)/Y(I»**2) 

CONTINUE 

Concentration of U-238 is in DPM per litre 
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31 WRITE (6,4) 

32 4 FORMAT (6X,'NUMBER', 4X, '[U238]' , 5X, 'ERROR', 5X '234/238', 5X, 

33 * 'ERROR') 

34 C 

35 DO 6 I = 1,N 

36 WRITE (6,7) I, CU238(I), ECU238 (I), Z(I), EZ(I) 

37 7 

38 6 

FORMAT (9X,I2,7X,F4.3,5X,F4.3,5X,F4.3,7X,F4.3 

CONTINUE 

39 STOP 

40 END 
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