
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Bolton, Jered (2004) Gestural extraction from musical audio
signals. PhD thesis.

http://theses.gla.ac.uk/5922/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5922/

Gestural Extraction from Musical Audio Signals

Jered Bolton

30th September 2004

This thesis is submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

Department of Electronics and Electrical Engineering

University of Glasgow

© Jered Bolton 2004

Pf)~:. l ~ \ ' . .-

fli-LII!/i:
. I ;~ ! 1: ~t i, ~

Abstract

Conventional exploration of gestures normally associated with musical

instruments can be a costly and intrusive process. This thesis presents

a novel approach to gestural extraction which overcomes these problems.

The motivation behind this research is that the result of gestural input

can be heard and therefore extracted from the acoustic signal produced

by a musical instrument. Therefore, the guiding principles of this work

are taken from the human auditory system.

The concept of temporal grouping, and the fact that any sound which

reaches the inner ear is conveyed to the brain, are two features of the

auditory system that are mimicked by the presented system. Pertinent

definitions are proposed for the sections of the note envelope and musi­

cal instrument gestures are classified according to those responsible for

excitation or control.

The extraction of gestural information is dependent upon successful

identification of note events. A note tracking system is presented which

exploits the structure of a note in order to perform preliminary note onset

detection. A backtracking function is employed to regress through audi­

tory data, providing a means of assigning individual start points to each

note harmonic. The note tracking system also records the end point of

each note harmonic. Note information is validated by a bespoke musical

comparison system which provides a means of comparing and evaluating

different note detection methods.

Information provided by the note tracking system is used to extract

gestural information regarding oboe key presses and excitation (articula­

tion) methods of string instruments. System tests show that it is possible

to correctly distinguish between bowed and plucked notes with an 89%

success rate, using only three discriminators associated with the onset of

a note.

In this thesis the foundations of a multifacetted gestural extraction

system are presented with useful potential for further development.

"And even things without life giving sound, whether pipe or harp,

except they give a distinction in the sounds, how shall it be known

what is piped or harped? For if the trumpet give an uncertain sound,

who shall prepare himself to the battle?"

1 Corinthians 14:7,8

Acknowledgements

First and foremost I would like to thank Dr N.J. Bailey and Prof. J Arnold

for their help and guidance. I am also greatly indebted to the following pro­

fessional Musicians who gave freely of their time to record their instruments in

an anechoic chamber: Miss Rosie Staniforth, Mr Donald Gillan and Miss Kate

Dunnho.

Thanks also to Mr. Tom O'Hara the lab technician for help, assistance and

encouragement.

I am also indebted to my younger sister Keri Bolton (an oboist) for providing

valuable advice on the mechanics of the oboe.

Finally I would like to thank my wife Katie for all her help and support.

Contents

1 Introduction

2 The Human Auditory System

2.1 The anatomy of the ear

2.1.1 The outer ear.

2.1.2 The middle ear .

2.1.3 The inner ear ..

2.2 The sensitivity of the ear

2.3 Hearing and Recognition.

2.3.1 The importance of context

2.3.1.1 Muscial context

2.3.2 Stream Segregation.

2.4 Chapter Summary

3 Gesture Taxonomy

3.1 Defining Gestures

3.1.1 What is a Gesture?

3.1.1.1 Ideas and Emotion . .

3.1.1.2 Expression and Emphasis

3.1.1.3 Motion

3.1.2 Sound Movements

3.1.3 Information Contained Within Audio Signals.

3.1.3.1 Ambiguous Information .. .

3.1.3.2 Conventions..

3.1.4 The General Definition of a Gesture

3.2 Identification of Gestures

3.2.1 The Scope of this Research

3.2.2 The Oboe ...

3.2.3 The Violin "

3.3 Extraction of Gestures

4 Note Detection Methods

4.1 The Definition of a Note.

4.1.1 When does a note actually start?

4.1.1.1 The ambiguity of the start of l}. note

4.1.2 When does a note actually end?

1

9

10

10

10

11

11

12

13

13

14

14

16

17
17
17
17
18

20

21

24

25
25
25
26
26
27

29
29

30

30
31

31

33

4.1.3 The general description of a note

4.2 The Nature of Onset ...

4.3 Note Detection Methods

4.4 System comparisons .

5 Comparison Techniques

5.1 The need for comparison

5.2 System Specification and Background

5.3 Proposed system

5.4 Diff

5.5 The Comparator

5.5.1 System Overview.

5.5.1.1 Error types

5.5.1.2 An ambiguous case

5.5.1.3 Semantics

5.5.2 The comparison function ..

5.5.2.1 The compare function

5.5.2.2 Checking for Errors

5.5.2.3 Combined Errors.

5.5.2.4 Special Cases.

5.5.3 Comparator Tests

5.5.3.1 Test 1 .

5.5.3.2 Test 2 .

5.5.3.3 Test 3 .

5.5.3.4 Test 4

5.5.3.5 Test 5 - Ambiguous Error Definitions

5.5.3.6 Test 6 - Special Cases ..

5.6 The Cost of the Performance Distance ..

5.6.1 String Length and Error Position.

5.6.2 Number of Errors.

5.6.3 The Error type

5.6.4

5.6.3.1 Extra Characters Errors.

5.6.3.2 Wrong Character Errors.

5.6.3.3 Combined Error Types .

Number of Repeated Error Characters.

Cached Results :.. 5.6.5

5.6.6 The Matrix approach

2

33

35

38

42

43

43

43

45

46

48
48
48
49

49

50

50

52

56

58

59

59

62

62

62

63

63

65

65

68

70
70
70
71

71

73
76

5.7 Timing Information .. 79

5.7.1 Onset times . . . 79

5.7.1.1 Test 1 . 81

5.7.1.2 Test 2 . 82

5.7.1.3 Test 3 . 83

5.7.2 Release Times 84

5.8 The Testing of Cirotteau's PitchTracker 85

5.8.1 Test One 87

5.8.2 Test Two 88

5.8.3 Test Three 89

5.8.4 Test Four 90

5.8.5 Test Five 91

5.8.6 Test Six .. 92

5.8.7 Test Seven 93

5.8.8 Test Eight. 94

5.8.9 Test Nine 95

5.8.10 Test Ten .. 96

5.9 Summary of PitchTracker Results. 96

6 The Detection of Notes 98
6.1 Overlapping Data. 98

6.2 Building Lists 101

6.3 Identifying Potential Onset Points 104

6.4 Harmonic Growth. 106

6.5 Grouping 107

6.6 Listening Backwards 108

6.7 Note Tracking 110

7 System Tests and Validation of Output 112

7.1 Monophonic CSound Test Case 112

7.2 Simple Polyphonic CSound Test Case 115

7.3 Comparator System Tests 116

7.3.1 Test One 116

7.3.2 Test Two 118

7.3.3 Test Three 120

7.3.4 Test Four 122

7.3.5 Test Five 124

3

7.3.6 Test Six ..

7.3.7 Test Seven

7.3.8 Test Eight.

7.3.9 Test Nine

7.3.10 Test Ten ..

7.4 Comparison of Note Detection Systems.

7.5 Real Instrument Test Cases

7.5.1 Oboe Test Cases

7.5.2 Violin Test Cases

7.5.3

7.5.4

7.5.5

7.5.2.1 Single legato notes.

7.5.2.2 A series of repeated notes.

7.5.2.3 Scales and arpeggios.

Cello Test Cases

Polyphonic Test Cases . .

7.5.4.1 Oboe and Violin

7.5.4.2 Oboe and Cello

Evaluation of Results

125

126

127

128

129

129

131

131

134

134

135

135

136

137

137

138

139

8 Gestural Analysis 140

8.1 String Instrument Bow Gestures. 140

8.1.1 Plucked and Bowed notes 140

8.1.1.1 Extraction of violin excitation gestures 140

8.1.1.2 Extraction of cello excitation gestures . 143

8.1.1.3 Extraction of cello gestures from polyphonic record-

ings 144

8.2 Oboe Key Presses 144

8.2.1 Analysis of the key press. 146

8.2.2 Towards the detection of an early key press

8.2.3 Chapter conclusions

9 Conclusion

10 Further work

10.1 Comparator

10.1.1 Efficiency

10.1.2 Musical representation.

10.1.3 Timing

10.2 Note Tracking system ...

4

150

151

152

153
153

153

153

154

154

10.2.1 Adaptive streaming '"

10.2.2 Heuristic Partial Tracking

10.3 Gestural Extraction

10.3.1 Oboe gestures

10.4 String instrument gestures.

A Appendix - A

B Appendix - B

List of Figures

154

154

154

154

155

166

182

1 A series of notes. .. 14

2 The notes from Figure 1 in a different layout. 15

3 Showing the relationship between composer and performer in

terms of a musial score. 18

4 Differences in gestures between a cello and piano playing a slurred

passage. .. 22

5 Similarities in gestures between a cello and piano playing the

same music 23

6 A series of "e"s. 24

7 Groupings showing the interaction of oboe gestures. 27

8 Groupings showing the interaction of violin gestures. 28

9 Traditional breakdown of a note into sections. . 30

10 The amplitude waveform of a violin note. 31

11 The beginnings of a note on an oboe. 32

12 A key press at the end of a note within a scale of tongued notes. 33

13 The new descriptions to be used for various parts of a note. 34

14 Showing the waveform of bowed and plucked note. 39

15 Proposed system overview 46

16 The workings of "diff" . 47

17 Missing character error . 50

18 Extra character error 53

19 Wrong character error . 53

20 Showing how the comparison function is used in lookahead mode

to evaluate the score of an error by taking fu~ure errors and

matches into account. 54

5

21
22

23
24

25

26
27

28
29

30

31
32

33

34

35

36

Combined errors.

System test of the three basic error types.

Showing the detection of a missing character.

Showing the detection of an extra character.

Showing the detection of a wrong character.

Breaking down the original string into sections.

A non-exhaustive example of the creation of virtual errors ..

Showing the performance distance path through a FLCS matrix.

Notes with timing information. . .

Test one using timing information. .

U sing timing information

Inaccurate notes used for Test Three

Test case with note lengths.

Overlapping zero padded FFT windows.

Fully populated overlapping FFT windows.

An example of the data structure used to store all potentially

56

60
60
61

64

68
74

78
80
81

82
83

84

99
100

relevant note information. 102

37 Showing the frequency and bin information of a spectral peak as

it is tracked across successive frames 103

38 Showing the tracking of glissando as it crosses successive bins ... 104

39 Magnitude of noise peaks and a genuine harmonic plotted against

time 105

40 Showing the difference between the onset growth of an ideal note

and an example of a typical note. 107

41 The detection of the onset of a note when stepping backwards. 109

42 Positioning of frames when detecting the onset of a note. . 109

43 The potential death point of a harmonic. 110

44 Note start points for a monophonic test case. 112

45 The frequency and magnitude of the first harmonic of a note

against time. 114

46 The frequency of all the harmonics from the first note in the

monophonic synthesized test case. 114

47 The frequency of the first harmonic from the second and third

notes in the monophonic synthesised test case. 116

48 Normalised results for the 10 sytem tests. 130

49 Results of note onset detection for a scales played on an oboe

using different methods. 132

6

50 The onset point of a note played on an oboe. 132

51 Results of note onset detection for a scale played at pp on an oboe. 133

52 Simultaneous oboe and violin (plucked) notes and their start points. 137

53 Showing the measurement of different harmonic attributes. ... 144

54 Showing the difference between a bowed (spiccato) and plucked

note. 145

55 Showing the spectral content of the first. click in Figure 11. .. 147

56 Showing a gap between notes with no key press click 148

57 Showing the appearance of a key press click between two notes. 148

58 A click between two notes. .. 150

59 The effect of a key press click has on the decay of the harmonics

of a note. 151

List of Tables

1 The number of comparisons relation to string length and error

position for a missing character.. 66

2 Repeated differentiation of a series containing a relationship of

the order aneventually yields a constant. 72

3 The number of comparisons for the repetition of one error character. 72

4 The number of comparisons for the repetition of both error char-

acters. .. 73

5 Showing t.he difference in cached and non-cached results for string

length: 10 and 2 missing characters (shown in bold in Orig) at

error positions l,n where 1 > n :s j. 75

6 Showing the difference in number of comparisons for the repeti-

tion of one error character when cached results are used. 76

7 Table of the first thirty items of data used to plot part of Figure

39 102

8 Extracts of the data used to plot Figure 46 115

9 A summary of string instrument excitation gestures. 141

10 Showing the results for automatic detection of the type of exci-

tation gesture used to playa violin. ; 142

11 Showing the results for automatic detection of the type of exci-

tation gesture used to playa cello. 144

7

12 Showing the results for automatic detection of the type of exci­

tation gesture used to playa cello. . . .

13 Showing the order of detected gestures.

8

145

146

1 Introduction

Johan Sundberg begins his introduction to a special "Motion and Music" issue

of the Journal of New Music Reasearch[88] with the statement:

"Music and motion are closely related."

Sound is produced as a result of a movement providing an input to a musical

instrument. Whilst the movements required to play an instrument are quite

basic, they take years of practice to master. Risset and Wessel[25, p135] com­

ment that "Acoustic instruments are controlled by carefully learned gestures".

Learning the wrong technique can ultimately hamper progress in musical pro­

ficiency. Researchers have therefore long sought facile methods that will allow

them to study the gestures and techniques associated with an instrument and

gain a detailed understanding of how movements or gestures influence the sound

produced.

This thesis presents strong evidence that a note tracking system can be used

to successfully and reproducibly identify specific gestures that control sound.

Information about these gestures can be extracted from audio signals and could

be utilised as a tool for assessment of musical technique.

The rationale for the design of this synthetic "listening" system is presented

in chapter two, exploiting aspects of the human auditory system. The following

chapter explores the link between music and motion. A taxonomy of gestures

is presented and the gestures associated with the oboe and violin are identified.

In chapt.er four the nomenclature of the traditional sections of a note is ad­

justed for gestural analysis purposes and published note onset detection methods

are reviewed.

The specifications of a tailor-made comparator which can validate the output

from a note detection system are presented in chapter five. The performance of

a published pitch tracker is rigorously tested for later comparison.

A novel note tracking system designed for the purpose of extracting infor­

mation pertinent to gesture and the tests that validate its output are described

in detail in chapters six and seven, respectively.

In chapter eight, excitation gestures common to string instruments are suc­

cessfully extracted from note information and oboe key clicks, 'which can be

detrimental to sound quality, are identified.

Finally, conclusions are drawn and further work on various aspects of the

system is recommended.

9

2 The Human Auditory System

The human auditory system consists of the combination of the ear and brain.

The ear serves as a means of gathering sound which it converts into information

which the brain can process. The role of the brain is to interpret, and in some

cases store, the information it receives.

Advances in the performance of personal computers have resulted in com­

puters that can perform complex operations on large amounts of data. Desktop

computers can now carry out signal processing tasks that were previously the

sole domain of super computers. Whilst the speed of computer data process­

ing has increased, the ability to automatically interpret data has not continued

apace. Any attempt to make a computer interpret data is essentially an at­

tempt at emulating a given human sense. In order to acheive this the gap

between computer objectiveness and human subjectiveness must be bridged.

Helpful analogies can be drawn between different senses, particularly hearing

and vision. Phenomena such as the persistence of vision and optical illusion can

help to describe comparable phenomena in the auditory domain.

This chapter considers different aspects of the human auditory system as a

means to establish the foundations of a system which will enable a computer to

"hear" music and interpret it.

2.1 The anatomy of the ear

The hearing system in humans shares common features with that of most mam­

mals. There are usually three physically identifiable stages of the hearing sys­

tem, namely: the outer ear, the middle ear and the inner ear. These three stages

result in a remarkable device that can detect sound intensities ranging from a

barely audible whisper to the noise of a jet taking off. The three linked stages

of the ear are considered in the following sections.

2.1.1 The outer ear

Some mammals have a greater degree of control over the outer ear than others.

In humans the outer ear faces forward such that the predominant field of hearing

is broadly matched by the field of vision. A simple experiment, whereby cupped

hands are placed over the ears so that sound is captured from behind the head,

serves to highlight the relationship between what we see and what hear. Thus

the brain has a twofold supply of information; a conclusion reached from one

10

sensory source can be reinforced with information from another.

Shaw[85] uses data from twelve different studies to show the transformation

of sound pressure to the ear drum, azimuthal dependence and interaural dif­

ferences as functions of frequency. Algazi et al.[2] show that in humans, the

shape of the outer ear (pinna) modifies high frequency components of incoming

sound. They also show that the filtering effect of the pinna is dependent on

sound source location and is therefore used as a localising aid.

2.1.2 The middle ear

It is suggested that the middle ear has two major functions, summarised by

Moore[62, p23]:

1. The combination of the ossicles1, the eardrum and the oval window of

the cochlea results in an acoustic impedence matcher. This functionality

is required as a result of the larger area of the eardrum relative to that

of the cochlea's oval window. This in turn ensures that more sound is

transmitted to the cochlea than if the oval window was directly exposed

to sound waves.

2. It isolates the inner ear from internally transmitted sounds. If the inner

ear was not isolated then certain actions (e.g. eating) would cause virtual

deafness due to the masking of external sounds by internal sounds. Moore

notes that birds and reptiles, whose inner ears are not isolated, swallow

their food whole whereas mammals chew their food.

2.1.3 The inner ear

The inner ear is the main processing centre where the movements of the ossicles

cause the basilar membrane to vibrate. The position of the vibration on the

basilar membrane is determined by the frequency of the sound wave entering the

ear. Vibrations of the basilar membrane cause hair cells, of which there are over

15,000, to be displaced resulting in neural activity. It is commonly agreed that

the basilar membrane effectively acts as a frequency analyzer[70][16, p52][62,

p66].

1 These are the three bones between the eardrum and the cochlea: the malleus, incus and
stapes, colloquially known as the hammer, anvil and stirrup respectively.

11

2.2 The sensitivity of the ear

The ear is a remarkably precise and sensitive device. Rasch and Plomp[25, p90]

comment that it can respond to changes in sound pressure of less than IdB

and changes in frequency of less than 1Hz. The following aspects of the ear's

sensitivity have been studied:

• Pitch. It is generally agreed that the ear is sensitive to frequencies within

the range 20-20,000Hz, though with the onset of old age, the upper limit

diminishes[35]. Studies have shown that due to the critical bandwidth

effect, it is only possible to distinguish between the lower 5 to 8 harmonics

of a complex tone[71]. Partials above the 6th to 8th harmonic usually

fall within one bandwidth. The obvious implication of this in terms of

computational analysis would be to restrict analysis to harmonics 1 to 8.

However, such an approach is flawed. Whilst it has been shown that the

ear cannot resolve higher harmonics into separate frequencies, it still hears

the effect the presence of higher harmonics have on a note.

• Intensity. As has already been mentioned, the human auditory system

can detect a remarkable range of sound intensities. Other studies have

examined how sensitive the ear is to changes in sound intensity levels. The

threshold of the smallest difference of signal intensity detectable by the ear

is known as the Just Noticable Difference[4]. Moore et al.[61] investigated

the effect the intensity of individual partials have on the perceived pitch

of complex tones.

• Temporal. Research shows that the ear is highly sensitive to the timing

of musical events. Krumbholz et al.[52] report that the human auditory

system can detect peaks in basilar-membrane motion with a resolution

as little as 1-20 microseconds. The word timing can also refer to the

order in which musical events are perceived. Ronken[77] investigated and

showed that the human auditory system is able to detect phase and power

differences between pairs of clicks. Darwin and Ciocca[23] investigated

the effect the timing of a mistuned component had on the perception of

a harmonic complex tone. They showed that if the mistuned harmonic

started too early it made no contribution to the perceived' pitch of the

complex tone, even thought it was present throughout the complex tone.

These different measures relate to the concept of grouping (also known as stream

segregation) and are discussed in this context in Section 2.3.2.

12

2.3 Hearing and Recognition

Humans respond to auditory stimulus whilst still in the womb[49]. Saldanha and

Corso[80] show that the identification of a sound source improves with practice.

In terms of sound source identification, an adult human typically has access to

years of learning experience (or practice). A computer only has the information

it has been programmed with. Thus any computerised system must at some

stage rely on a database of information that relates to the the auditory task it

is trying to emulate.

However, the human auditory system is subject to error. Deutsch[24, p.127]

and Bregman[lO, pp.21-29] both report on experiments which show that it is

possible to deceive the brain. They both cite the example of Dannenbring's

experiment (published in 1976, Canadian Journal of Psychology, pp99-114) in

which sections of a sine wave tone that changed in frequency were replaced by

bursts of noise. The experiment demonstrated that the brain was deceived in

that it perceived a continuous tone. Deutsch[24, pp108-114] also reports other

illusionary effects where the brain was unable to detect the reversal of a pair of

headphones used for listening to a sequence of tones.

Metois[65] states" our flexible and somewhat puzzling perception of time tends

to mislead us in expecting much more from a computer than we can achieve

ourselves." He comments that when the brain makes a mistake it is able to

recover "in a manner that makes it imperceptible to us." Any developed system

should therefore be able to recover from errors in a graceful manner.

2.3.1 The importance of context

The context within which music is listened to plays a significant role in reducing

the scope of what the listener can expect to hear. This context can be imposed

in a number of ways. One example is attendance at a concert where the type

of performance is known and expected. The scope of musical context provided

by the phrase "string quartet" is considerably smaller than that provided by

"symphony orchestra". An attendee of a performance given by a conventional

string quartet can expect to hear only three different types of string instrument.

Thus a priori knowledge of a given situation allows a human to visualise and

anticipate what they are going to hear. This anticipation is realised when the

actual performer and instrument can be seen and confirmed audibly when the

performance commences.

Visualisation (real or imaginary) of a sound source aids the identification of

13

II .JIo...r ~_80 r---'-L ----',

Figure 1: A series of notes.

the source. Risset and Wessel [26, p132j argue that listeners were more able to

identify synthesised instruments when they could ascribe something they heard

to a physical action - a gesture - despite the fact that no such movement was

used to generate the sound. Thus visualisation of the gesture and therefore the

instrument associated with it aids sound source identification.

2.3.1.1 Muscial context Context also plays an important role at note

level. The note to note transients which occur when a series of notes are played

on the same instrument are the temporal characteristics of music itself. Grey[44] ,

in his milestone work on timbre, states that:

"The various components of timbre recognition which exist between

a set of notes have not been given attention in the literature of tim­

bre perception, in that experiments have universally been done with

single, context-less musical tones."

Grey's observation highlights the relationship between timbral and gestural

analysis. A product of this relationship is the "screech" like sound produced

by a steel strung guitar when the guitarist moves between chords.

2.3.2 Stream Segregation

Stream segregation is a phrase promoted by Bregman[10] and is a means of

describing how the ear-brain combination channels auditory information. The

supporting hypothesis is that when presented with audio stimulus the brain

makes use of up to nine different methods of stream grouping[24, p.118-127].

Apart from grouping by amplitude these different methods can be .reduced into

two main areas:

• Temporal. Reference has already been made to rese~rch concerning the

effect timing has on the human perception of the onset of a note. Thus the

14

.J J J 1
, ., 21......-..... [' ___...r i

Figure 2: The notes from Figure 1 in a different layout.

timing of musical events is taken into account when determining whether

fusion takes place .

• Pitch. Research[10, p.58-67) has shown that the perceptual separation

of notes in Figure 1 depend on both frequency and time. If the notes are

played at a slow tempo they will be heard as one single fused stream of

sound. At a certain threshold tempo, the high notes will separate from

the low notes. The overall perception would be that of two sound streams,

even if the notes were played on the same instrument. This perception is

visualised in Figure 2, which shows the same notes in a different layout.

The separation point also depends on the pitch interval between the high

and low streams.

Other research into the grouping of pitch has been carried out at the har­

monic level. Darwin[22) reports on the effect the presence of one sound

has on another in terms of perception and the way the sounds are sub­

sequently grouped. Darwin showed that when a tone starts or stops at a

different time from other tones it forms its own perceptual stream.

The conclusion drawn from the above research is that in terms of the human

auditory system temporal information takes precedence over pitch.

Bregman[lO] suggests that our auditory systems employs two methods to

build mental descriptions of events in a current (sound) environment. The first

method is described as a primitive process of auditory grouping, where the

incoming sound energy is initially broken down into a large number of separate

analyses. The auditory system then has to decide how to group the results of

the analyses so that each group is derived from the same environmental event.

The second method is described as governing the listening process by schemas

that incorporate our knowledge of familiar sounds. Each schema incorporates

information regarding a specific event in the auditory environment. It is thought

that when schemas become active they detect their particular patterns.

15

Cooke and Ellis[17] provide a useful summary of streaming/grouping cues in

their report on the auditory organization of speech in listeners and machines.

2.4 Chapter Summary

The following aspects of the human auditory system are considered to be per­

tinent to the design of a computerised listening system.

• Apart from filtering at high frequencies, the ear relays all sound that it

receives to the brain.

• The human auditory system rejects noise or extraneous sound at a con­

scious level. All sound is heard, but a choice is made whether it should be

ignored or acted upon.

• The concept of grouping is fundamental to understanding how the human

auditory system organises and perceives sound.

• Temporal information is the predominant factor when grouping sound.

• Error recovery should be graceful.

16

3 Gesture Taxonomy

3.1 Defining Gestures

The purpose of this chapter is to rigorously define (within a musical context)

the scope and meaning of the word "gesture".

The request "Please play that passage staccato" is readily understood by

musicians, but is subject to interpretation because every musician plays staccato

notes slightly differently:!. Very little research has been done in the field of

gesture taxonomy, particularily within the context of auditory analysis. Before

meaningful analysis can take place, gestures need to be identified and formally

defined.

3.1.1 What is a Gesture?

gesture n 1 a motion of the hands, head or body to express or em­

phasize an idea or emotion. 2 something said or done as a formality

or as an indication of intention.

This dictionary[28] definition encapsulates three concepts that are key to con­

sidering gestures in a musical context:

1. Motion

2. Expression or emphasis

3. Idea or emotion

Figure 3 shows how the above concepts are related. Each item is discussed, in

reverse order, in the following sections.

3.1.1.1 Ideas and Emotion With reference to Figure 3, the composer

records their ideas on a score which is performed according to the interpre­

tation of the musician. Much has been written on the relationship between the

performance of a score and the score itself. Seashore[84] developed a means of

recording physical aspects (e.g. a measure of how long a pianist held down a

particular key) of a performance in addition to the sound. This allowed him to

not only compare a performance with its score, but also allowed for compari­

son between different performances of a score. The data produced by Seashore

2This is further complicated by the fact that it is virtually impossible for the same musician
to produce identical staccato notes (16).

17

Composer Performer

Score

(Idea J (Emotion J

Score Markings

I Performance of Score I
(Motion J

Figure 3: Showing the relationship between composer and performer in terms
of a musial score.

is essentially the same as that now produced by MIDI keyboards. Bresin and

Battel used MIDI data to analyse different performances of Mozart's Sonata in

G Major[ll]. Rather than relating the results of their analyses to the actual

gestures used to produce the data, they instead used the analogy of locomotion.

Different playing styles were judged to be the equivalent of walking or running,

for example. Similar work was carried out by Friberg et al.[40] who examined

whether the original motion of different gaits used to produce sound via purpose

built transducers, could be perceived by a listener. They concluded that each

tone could be catergorised in terms of motion. Gabrielsson[41] highlights four

categories of timing (tempo, different classes of duration, articulation and de­

viations from mechanical regularity) which can be varied within a peformance.

He discusses how variations in these catergories within a performance, result in

various motional-emotional responses from the listener.

3.1.1.2 Expression and Emphasis Score markings are the means by which

a composer can communicate their thoughts beyond that of the c~nstraints of

the staff, to give an indication of how the music should actually be played. The

level of communication goes from a simple pause sign above a note to a detailed

written instruction (e.g. Tchaikovsky's instruction (in Russian) in the percus-

18

sion score for The Nutcracker, to strike and then choke a suspended cymbal

with a soft beater). A limitation3 of score markings is their subjectiveness:

A pianist was playing requests. A viola player enquired:

"Do you know the famous one with the fast trill at the start?"

"1 'm not sure that 1 do." replied the pianist.

"You must do", said the viola player, "it goes ... "

- the viola player then hummed the opening of Fur Elise.

Miller and Heise[59] show that there is a subjective point, in terms of pitch,

where repeated notes are perceived as a trill rather than a series of unrelated,

interrupted tones. They used a fixed trill frequency of 5Hz meaning that their

trill threshold relates solely to pitch. A trill frequency threshold has both an

upper and lower limit. The upper limit is ultimately related to the temporal

resolution of the ear, of which much has been written [62, pp 163-183)[10, pp

59-671, but not in the context of trill resolution.

Rhapsody in Blue by Gershwin starts with an example of the lower trill

frequency threshold. The Clarinet's solo opening is scored:

mf
---==================

Having never seen the score, the author assumed (when hearing the piece per­

formed) that the solo was scored:

~ = 20

mf -==========
This assumption was influenced by the scale following the trill. This shows the

influence that context has on perception: a ''fast'' piece is likely to have fast

trills, wheras a "slow" piece is more likely to have slower trills.

3The word "limitation" is used here in an objective sense within a gestural extraction
context. In the context of performance, SUbjectiveness is usually seen as an advantage as it
allows freedom of expression.

19

Therefore, the definition of a given gesture can not be given in black and

white; areas of gray have to exist in order to acommodate subjectiveness.

Musicians often vary tempo to make their performances more expressive.

Dixon[31] presents a system for the tracking of the beat and therefore the tempo

of a performance. Extraction of such data allows the performances of different

musicians to be compared. Systems which perform similar comparisons but by

different means are discussed in Section 5.2 of Chapter 5.

3.1.1.3 Motion. Music and movement are inextricably linked. There is

much research that investigates the relationship between movement and sound.

In particular this research is centered on movement that can be seen. The

conductor's jacket[55] isa device that was made for recording expressive musical

gestures at an orchestral level. It provided a specific means of corrolating a

given movement (from the conductor) with the resulting sound produced by the

orche:;tra. Wanderley[9] used Infra-Red markers and video cameras to record

movement data. He stated that:

"A mong the various works on musical performance, few studies have

focused on the gestural behaviour of instrumentalists. These have

shown that musicians not only perform skilled movements directly

related to sound production, but also movements that seem not to

have a straight link to the generation of sound."

Wanderley investigated the effect movement of an instrument (in his case a

clarinet) had on the sound it produced.

Dahl[19] presents her observations on the playing of an accent by percussion­

ists. She used motion sensors to track the movement of LEDs attached to the

percussionist's right arm and drumstick. Although there were large differences

in the way each percussionist interpreted a given task (playing an accent within

a sequence of notes), Dahl found that the different approaches resulted in the

common outcome of raising the drumstick to a greater height than usual prior

to playing the accent.

Askenfelt[3] modified a violin bow so that it contained a length of resistance

wire and strain gauges. When used with a suitably modified violin he was able to

measure bow motion, force and position, showing how each of these parameters

varied according to the style or type of performance.

Other research looks at how gestures not normally associated with (tradi­

tional) musical instruments can be used to control electronic or virtual instru-

20

ments. 'Trueman and Cook[90] have developed a system that uses the gestures

associated with the violin to playa new electronic instrument (BoSSA - Bowed­

Sensor-Speaker-Array). Camurri et al., report on their EyesWeb project[14],

the aim of which is to develop a system that will perfrom real-time analysis of

body movement and gesture. Gestural information captured by video cameras

can then be used to both generate and control sound and music. Miillerl66]'

reporting on the development of the RUBATO project (an application for pro­

ducing computer-aided musical performances), describes how support for the

gestural control of performance is being incorporated into the RUBATO sys­

tem. Other systems which make use of gestural input for synthesis purposes are

CORDIS-ANIMA/iS} and MOSAICI64].

There are movements (e.g. of the tongue when playing wind and brass in­

struments) which are very difficult to physically measure and analyse. However,

the results of such movements are heard in the sound produced. Sapir[81], in

a paper concerning the gestural control of an audio environment, presents a

review of current gesture tracking technology. Having described various sensor

and MIDI based methods, Sapir states:

"It is also possible to indirectly capture gesture by analysing the sound

produced by an instrument and deducing information about the ges­

tures applied by a performer to generate it."

Having made this statement Sapir comments that such information would be

provided by "'/ler'y sophisticated programs". No further reference is made to this

form of gesture capture, The fact that a given movement can be identified from

the effect it has had on the resulting sound is fundamental to this thesis.

In a performance context, a musician with a stiffer posture is usually per­

ceived as a player of "cold" music[35]. This argument relies on visual cues to

determine the expressiveness of a performance and will not be discussed here.

This chapter, in the context of auditory analysis, seeks to identify basic

movements and therefore define basic gestures.

3.1.2 Sound Movements

The identification of movements which are gesturally relevant is a huge task,

mainly due to the large number of orchestral instruments. Each instrument has

a set of movements which a musician uses, often skillfully combining several, to

produce the desired sound. For the purposes of analysis, relevant movements

21

Key:
c .. control

When played on a Piano: Pce Pce Pee Pce e .. excitation

When played on a Cello: Cc Cc Cc Cc
Ce ..

Figure 4: Differences in gestures between a cello and piano playing a slurred
passage.

will be identified, defined and grouped according to type. Movements will be

classified in terms of the effect they have on the sound produced by the in­

strument. Using movement as the basis for gestural type definition results in

high level generic definitions which are instrument independent. Thus instru­

ment specific gestures, even those which are unique, can be grouped with other

gestures under a common type.

When considering the movements associated with playing a cello it is im­

mediately apparent that there are two distinct movements, of the left and right

arms/hands, which control the sound. Movement of the right arm i.e. the bow­

ing arm (assuming the right hand is holding a bow resting on a string) directly

causes sound to be made. Whilst movement of the left arm does not (with

the exception of left hand plucking) directly produce sound, it can fundamen­

tally alter the sound produced. There are clearly two different types of gesture,

defined as follows:

1. A gesture which causes sound

2. A gesture which alters the sound which is either playing or about to be

played.

Item 1, ca'using sound, is defined as an excitation gesture. Item 2 controls

the sound that already exists as a result of an excitation gesture, and is therefore

defined as a control gesture. Both aspects (Le. left and right arm movement) of

the gestures associated with a cello are combined into the gesture of striking a

selected piano key. This gesture produces a note from the pianQ, the pitch being

22

determined by the selected key. The difference between the two instruments, in

terms of gesture, is illustrated in Figure 4.

The excitation gesture of the cello spans the four control gestures which alter

the note being played, whereas each note played on the piano is a combination

of control and excitation gestures. The gesture requirements of the piano and

cello call be matched by removing the slurred phrasing, as shown in Figure 5.

When the mechanics of playing the cello are considered in more detail it

emerges that there is more to playing the cello than first meets the ear. Figure

6 shows a series of notes which can be played either with finger 3 (in fourth

position) on the G string, or with finger 1 (in first position) on the D string.

Musical sense4 helps the cellist decide how to play such notes. It is possible to

play this sequence sixteen different ways (in terms offingering), although only

a handful would actually be useful.

The choice made by the cellist has an impact on the gestures used to produce

the note. For example, if the first "e" is played on the D string, the next two

notes played on the G string and the final note played back on the D string, then

both the left and right hand have to simultaneously select the correct string. It

could be argued that there is a control gesture associated with the third note of

this example: a gesture to select the G string for the 2nd note and then another

gesture to reselect the same string.

Using only auditory cues, it is very difficult to detect which method, and

therefore which string, was used to play the notes in Figure 6. Reselection of the

same string can also be defined as not selecting one of the three other strings.

4Common sense in a musical context, derived from experience. For reasons of tone consis­
tancy it would usually be desireable to play such notes on the same string [87, p.ll8).

Key:
c .. control
e .. excitation

When played on a Piano: Pee Pee Pee Pee

2ircrEII
When played on a Cello: Gee Cce Gee Gee

Figure 5: Similarities in gestures between a cello and piano playing the same
music.

23

i):
? Ii r r r r I

Figure 6: A series of "e"s.

Similarly, reselection of the same note by the left hand cold be defined as not

selecting any other possible note on a cello. Failing to select something will not

be interpreted as a gesture; lack of change, in terms of note selection, points to

a lack of gesture. The influence of a control gesture can continue over similar

notes. A change in note pitch indicates the presence of a new control gesture.

Therefore in the context of auditory analysis:

• A gesture is an action which causes a definite change in the sound output.

Two types of gesture have been identified:

• An excitation gesture - sound causation

• A control gesture - alters sound which is either playing or about to be

played.

Hence for the example in Figure 6 there is one control gesture when the note is

selected by the left hand and four excitation gestures from the right hand.

These two gesture types incorporate and extend the concept of "musical

gestures" put forward by Metois in his work on Musical Sound information [65].

The use of the phrase "musical gestures" restricts the scope of his work to musical

control gestures. The focus of this thesis is gestures that relate to the physical

movements used to articulate the sound produced by a musical instrument.

3.1.3 Information Contained Within Audio Signals.

When listening to an instrument the result of gestural input can be heard,

therefore it is possible to infer the identity of the gesture used to produce the

sound.

Different gestures require the extraction of different information'. For ex­

ample, the gestural difference between a plucked and bowed note is found in

data at the beginning of a note, whereas the difference betwe:n slurred, legato

and staccato bowing is inferred from data at both the beginning and end of

24

notes. The plurality of "notes" in the second example is intentional. It indicates

how gesture identification can often depend on more than one note instance.

Thus, gesture extraction also depends on the contribution each note makes to

the overall musical context.

3.1.3.1 Ambiguous Information. The group of movements normally as­

sociated with playing a piano contain a problem case: the sustain pedal.

If a pianist holds down the sustain pedal whilst playing the music in Figure

4 each note will overlap over a subsequent note. The same effect can be a

achieved by holding down each key once it has been pressed. From an auditory

perspective, it is virtually impossible5 to tell the difference between these two

methods of playing and therefore virtually impossible to detect whether the

sustain pedal has been used. This example proves that metameric gestures do

exist6 . That is, two different means or gestures produce the same perceived end,

or sound. Therefore, just as it is impossible for a human to hear all types of

gestures it is also impossible for a system to identify all types of gesture.

3.1.3.2 Conventions. It can be argued that dropping a suitably large and

heavy object (usually an anvil) onto a piano from a great height is a gesture that

produces a rather unorthodox, piano sound. The scope of "gesture" is therefore

restricted to the group of physical movements conventionaly associated with

playing an instrument.

Accepted score notations and normal playing techniques are also used to

restrict the scope of analysis. Furthermore, the scope of gestures identified and

defined in this thesis will be restricted to a small subset of the total number of

possible gestures for all instruments.

3.1.4 The General Definition of a Gesture

A gesture is a positive action which provides some form of conven­

tional input to a musical instrument, as a result of either accepted

5For the sake of technical completeness, in theory it is possible to tell the difference between
these two gestures. When the sustain pedal is held down, all strings are undamped and
resonate in sympathy with the strings that are struck. Detection of these quiet sympathetic
resonances would in theory allow a system to identify that the pianist is pressing ,the sustain
pedal. The success of sympathetic resonance detection would not only depend on the pitch
and loudness of the actual notes played, but also on near perfect recording conditions. In
practice the notes played would usually mask any sympathetic resonances.

6Bregman [10, p. 122) likens the concept of metameric timbres to metameric colours where
different combinations of colour spectra can result in perceptually identical colours.

25

score notations or normal playing techniques, so that the effect of

the gesture is heard in the output of the instrument.

This general definition enables the movements associated with a given instru­

ment to be examined and identified as gesturally relevant. Valid movements

can then be explicitly defined in a gestural context. Emphasis on movement

distances this definition from that provided by Dubnov[32] who defined gesture
in terms of changes of texture over time (where texture relates to psychoacoustic

factors that evoke various emotional associations).

3.2 Identification of Gestures

As discussed at the beginning of this chapter the interpretation of score an­

notations depends on the individual musician. The consequence of this when
defining a gesture is that a definition cannot be absolute; it must relate to a

given set of boundaries or conditions. Difficulties arise where boundaries overlap

e.g. the difference between spiccato or staccato bowing.

Some gestures are common to a number of instrument families and some

are not. Stringed instruments, apart from the piano, can be plucked in order

to produce sound. However, only certain instruments within this family can be

bowed e.g. it is not possible to bow individual strings on a guitar.

This section uses the information presented in the previous section to exam­

ine specific instruments and identify movements which can be classified using

gestural nomenclature.

3.2.1 The Scope of this Research

Gestural analysis is a vast topic. The scope of research presented in this thesis

is therefore restricted to gestures associated with the violin, cello and the oboe.

The specific aims and objectives of the research is discussed at an instrument

level in the following sub-Sections.

This extraction of gestures will ultimately provide any developed system

with the means of distinguishing between instruments at a gestural, rather than

timbral level. Instrument identification is an area which gestural analysis could

impact heavily upon. The gestural information could be used to determine the

instrument family7 and subtleties of timbre to identify the actual instrument.

7The presence of an instrument family specific gesture in an acoustic signal could be used
to eliminate other instrument families. For example the presence of bow norse would eliminate
woodwind and brass families allowing instrument recognition to concentrate on strings.

26

I.

Figure 7: Groupings showing the interaction of oboe gestures.

3.2.2 The Oboe

The oboe is a member of the woodwind family and is usually considered to be

a solo instrument. It consists of a reed and then three sections which make up

the body. The reed is made up of two seperate reeds bound together onto a

tube of metal (known as the staple), the lower half of which is covered in cork

to help it mate with the body of the oboe. Producing sound from an oboe is

far from easy. It is not simply a matter of blowing air through the instrument.

Attempting to do so can lead to the conclusion that it is impossible to get air

through the instrument. The opening between the reeds is very small, therefore

high air pressure is needed in order to produce sound from an oboe. Only a

highly skilled player can generate and maintain the required pressure so that a

fine tone can be produced across the entire dynamic range of ppp to fff.
Movements associated with the oboe are that of embouchure, the tongue

and the fingers. Embouchure is the French noun used to describe the position

of the lips needed in order to play the oboe. Correct embouchure ensures that

the correct air pressure is provided for different notes (the higher the note the

greater the air pressure required). Tensing and relaxing the embouchure can

sharpen and flatten a note respectively. Such movements however are usually

employed in a subconscious manner by the experienced oboist to smooth out

the nuances of certain notes on their instrument before they sound the note.

Such movements are so subtle that they go beyond the scope of an identifiable

gesture.
Breathing also falls into this category. The existence of a note depends on

27

88
88

Figure 8: Groupings showing the interaction of violin gestures.

the oboist exhaling, which means they have also had to inhale. The dynamics

of a note are varied by changing the speed at which the oboist exhales. Part of

the skill of playing the oboe is knowing when to breathe in and out and doing

so in a way that is non-obvious to the listener. It is for this reason that this

kind of movement falls into the non-gesture category. Figure 7 shows how the

remaining oboe movements are grouped. In many ways the tongue acts like the

dampers on a piano; it is used to prevent the reed from vibrating and therefore

sound eminating from the instrument. Rothwell [781 writes:

" Tonguing is the equivalent of bowing on a stringed instrument. when

you have real tongue control, be guided by your sense of style and

musicianship to use it in the fullest possible way, as a fine string

player uses the bow."

The ability to articulate notes is obviously a desired ability for any musician.

In the context of the oboe this depends on the coordination of breathing and

fingering. The gesture to be investigated is therefore finger movement (key

presses), That is, to determine from the acoustic signal produced" whether

finger movement has occured at the appropriate time.

28

3.2.3 The Violin

The violin, a member of the string instrument family, is the most common instru­

ment in the modern orchestra. Although not physically part of the instrument

itself, a bow is vital if the full range of violin sounds are to be achieved. Thus

movements associated with both the violin and bow will be considered. Sound is

usually produced by drawing the bow across one of the strings. The bow is used

to control the dynamic level and tonal quality of the sound produced, making

its proper use a fundamental part of playing the violin. Some state that "the

right hand is the soul of the violin" [79, p.72j. Sound can also be produced by

plucking the strings with either hand, though this is predominantly done with

the right hand.

The violin produces a complex tone often made up of 20 or more partials

[79, p.ll] which arise as a result of its shape and construction. Figure 8 shows

how the movements associated with playing a violin are related and dependant.

Figure 8 is also applicable to the cello. The violin and cello movements to

be investigated will be the articulatory gestures of plucking and bowing. There

are two levels to this research:

1. The distinction between the method of excitation, i.e. plucked or bowed?

2. In the case of a bowed note: the distinction between different styles of

articulation (gesture) e.g. legato or staccato.

At set of discriminators will be identified which will enable a system analyse

thE' acoustic signal produced by the inst.rument and make a decision as to the

gesture type used.

3.3 Extraction of Gestures

The gestures described in this chapter either shape or form musical notes. The

extraction of gestural information from audio signals is therefore dependent on

the ability of a system to identify note events. The next chapter investigates

the definition of a note and then reviews methods of identifying them.

29

4 Note Detection Methods

In order to extract gestural information form a note event it is imperative to be

able to identify its onset point. Before reviewing note onset detection methods,

it is first necessary to consider what is meant by the word ''note''.

4.1 The Definition of a Note

The sections of a note have traditionally been described in terms of an amplitude

envelope, shown in Figure 9. The terms "attack", "steady-state" and "decay" are

not ideal descriptions of a note in a gestural context. Gordon[43] addresses

this problem by drawing a distinction between the perceptual attack and onset

times. The need for such a distinction arises from the fact that most notes do

not follow the traditional shape of Figure 9, for example:

• The majority of notes produced by plucking or striking do not have a

traditional "steady-state"[73, p70j.

• Even bowed notes do note have a "steady-state"[3j.

• A bowed note has no "decay" when the bow is brought to a sudden stop

and left in contact with the string.

Consider the violin note shown in Figure 10. It is a note played on the G string

of a violin which gets progressively louder.

Traditionally, this note would be described as having a long, slow attack

between (points B and D) followed by a fast decay. However, when listened to

it is clear that the note onset is at point A (highlighting the difference between

Amplitude

time

Attack Steady State Decay/Release

Figure 9: Traditional breakdown of a note into secti6ns.

30

Signal
Mag.

A B c o

Figure 10: The amplitude waveform of a violin note.

what we can see in the waveform and what we hear). At point C the sound of

a violin can clearly be identified. Hence the traditional definition of "attack" is

called into question. The section between points C and D contains an established

note increasing in volume. The word "attack" is therefore misleading and should

not be used to describe this section.

4.1.1 When does a note actually start?

The phrase "the start of a note" is ambiguous. If a wave file contains a single,

digitally generated note which occurs after exactly one second of silence, then

it is obvious that the note begins one second from the start of the file. It

is very difficult however to state when this note will be accurately perceived

by a human listener. Whilst humans can determine whether an ensemble of

instruments begin to play at the same time, the point at which we become

aware of individual notes will always lag the actual physical start of each note.

This is partly due to the fact that humans hear everything retrospectively and

partly because it takes some time for the brain to process the sound information

presented by the ears[96].

4.1.1.1 The ambiguity of the start of a note Consider the case of a

violin where the beginning of a note is a mess of noise as the bow is scraped

across the string; sound can be heard, but cannot be identified as the note itself.

It is from this mess of noise that the harmonics of the note grow and establish

31

Figure 11: The beginnings of a note on an oboe.

themselves. This situation is made worse when an ensemble of instruments begin

playing at the same time. It is impossible for a human listener to immediately

state which instruments are playing.

The question of where a note starts is subtly different again in the case of

the oboe. Instead of a bow exciting a string, air is forced through a double reed.

Figure 11 shows that at the beginning of this particular oboe note there are two

separate clicks (labelled A and B) before the note starts. When the clicks are

isolated and heavily amplified, a distinct pitch can be heard.

Such clicks are caused by key presses8 which are usually masked by the sound

of other instruments or even other notes played on the same instrument. Does

the note in Figure 11 start at point A, or at an unspecified point after point

B? To complicate things further, in some cases key clicks can be oberved in

unexpected places.

Figure 12 illustrates that a key press for the second note in a scale occurs

immediately after the first (previous) note. This key press is heard at the pitch

of the second note, giving the first note a clipped ending. This event is very

short and therefore extremely difficult to detect. The position of the occurrence

of the key press contributes to the perceived quality or purity of the note. Key

press events do not occur exclusively at the end of notes, in some instances they

can clearly be indentified during the interval between two notes. Such gestural

information when extracted could help a performer to consistently produce notes

free from key press interference.

8The note in Figure 11 is a Bb which is made by holding down the first two fingers of the
left hand.

32

Figure 12: A key press at the end of a note within a scale of tongued notes.

4.1.2 When does a note actually end?

Even in the context of an isolated note, the actual physical end of a note can be

very different from its perceived end point. A cymbal continues to vibrate for a

long time after the point at which sound can no longer be heard. Non-isolated
notes present a number of difficulties:

• Some notes fade imperceptively away, masked by the presence of other

sounds.

• The presence of a repeated note of the same pitch produced by the same

instrument causes a note to be replaced, rather than to end.

4.1.3 The general description of a note

For the purposes of this research:

• The start of a note is to be taken as the point at which it becomes 'possible

to distinguish note information from noise. The scope of "note informa­

tion" includes inharmonic partials and onset transients, e.g. the sound

heard at the beginning of a bowed note.

33

Signal
Mag.

Onset Note Release

Figure 13: The new descriptions to be used for various parts of a note.

• The end of a note is to be taken as the point at which it is no longer possible

to identify the separate harmonics which formed the note. Repeated notes

of the same pitch are treated as a special case. If a note is repeated on

the same instrument then the start point of the repeated note is also the

end point of the previous note.

The criteria for what constitutes the start and end of a note is subtly different.

The definition of the start of a note accomodates the need to take onset events

into account, the importance of which is discussed in Section 4.2.

A new naming convention for an individual note is proposed, shown in

Figurel3.

• The "onset" section of the note is defined as the part of the note during

which each harmonic of the note establishes itself. The noise associated

with this is also included as a vital part of the onset information. The end

point of the "onset" section is currently indeterminate. It is best defined

as the moment when no further information is needed to ascertain that a

note exists.

• The "note" section is defined as the part of the wave during which ~he note

is fully established. In this section the dynamics of the note can increase

or diminish. This section ends after the traditional end point of the attack

portion (point D in Figure 10).

34

• The "release" section of the wave is defined as the part during which the

wave diminishes to nothing. This part of the wave provides useful infor­

mation towards gesture identification.

In many ways this note description is a tailoured version of the traditional de­

scription illustrated in Figure 10. The new boundaries of each section depend on

auditory rather than visual information. It should be noted that the boundaries

of each section are fluid rather than fixed. If a note is played so that it grad­

ually diminishes in volume to nothing, it contains no defined "release" section.

Systems which identify instruments or timbre are not usually concerned with

the release of a note. For gestural analysis purposes, each section of a note is

important. Using the violin as an example:

• The onset section contains information as to whether a note was bowed

or plucked.

• The note section can be used to detect the presence of vibrato.

• The release section will allow the type of bowing to be inferred (e.g. stac­

cato, legato, spiccato etc).

Having established the importance of each part of a note, the remainder of

this chapter considers existing approaches to the problem of extracting note

information from audio signals.

4.2 The Nature of Onset

Early research in the field of audio signal analysis concentrated on features de­

rived from the steady state portion of the sound[48]. It is known that a human

can identify a sound within the first 10ms[96, p.111] of hearing it, suggesting

a large amount of information is contained within this part of the note. Other

literaturel97, 56, 941 highlights the need to examine the start of a note. Infor­

mation contained within the onset transients of a note provide the listener with

musical "fingerprint" information such as the sound source and method of excita­

tion. Systems which do not make use of both temporal and spectral features will

never achieve performance comparable to the human ear-brain combination[34].

The majority of work on timbral analysis has focused on the steady state part

of the wave. This is possibly because in this section of the wave transients and

noise have died down, and it is therefore cleaner and easier to analyse. Young's

35

comments on experiments that are only concerned with the steady state portion

of a complex tone are particularly relevant:

"In discussions of timbre (tone quality) it has long been the custom

to state that the differences in quality of tone are solely dependent

on the occurrence and strength of partial tones. Although H. von

Helmholtz{48j, in making this statement recognised that the charac­

teristic tone of some instruments is dependent upon the way the tone

stops and starts, he chose to restrict his attention to the 'peculiarities

of the musical tone which continues uniformly' and to consider as

musical only those tones with harmonic upper partials. Many writ­

ers since have adopted these simplifying but not realistic assump­

tions; according to such simplifications the piano is not a musical

instrument! The transient parts of a sound contain important clues

by which different instruments are identified. A sustained high tone

on the clarinet, for example, is practically indistinguishable from the

same tone (sustained) played on the /lute, but the initiation of the

sound is likely to be noticeably different on the two instruments."[97]

Martin[56], when writing about attack transient properties, states that:

"It is evident from the available human perceptual data that the at­

tack transient of an isolated musical tone played on an orchestral

instrument contains c1'1J.cial information for identifying the partic­

ular instrument that generated the tone. It is not clear, however,

which aspects of the attack transient provide the essential informa­

tion. Indeed, it is not even clear how to define when the '~ransient"

ends and the "steady-state" begins. The literature is at best equivocal

on these issues. "

There is much research that demonstrates the influence that the start of a note

has on perception. Grey and Moorer[45]' in their conclusions regarding the

perceptual evaluations of synthesized musical instrument tones, comment on

the" extreme importance of the offset". This statement was made as a result

of investigation into the perception of musical tones with no "attack" portion.

Saldanha and Corso [80] used tape splicing to create a variety of sounds that

allowed them to evaluate the contribution of each section of a note to perception.

They concluded that:

36

" ... the onset of the tone has certain characteristics that aid discrim­

ination, while the stopping of the tone contributes nothing to identi­

fication. "

The second half of their conclusion is open to question; the use of the word

"nothing" is sweeping and excludes the possibility that the "stopping" of a tone

reinforces an earlier decision. When Saldanha and Corso use the term "stopping"
in their article they appear to mean "decay". A pedant would argue that a

stopped tone contributes nothing because it has stopped! The argument of the

pedant and Saldanha and Corso fall down in a gestural context. The fact that

a tone has "stopped,,9 rather than "decayed" aids gestural identification.

Conversely, Fletcher and Sanders[37] in their work on the quality of violin

vibrato tones state that "the beginning and the ending of the tone" affect the

quality of tone produced. They used this fact to increase the "realness" of their

sythesized violin tones by adding transient effects to the beginning and end of the

sounds they generated. Previous to this Fletcher[36] highlighted the importance

of the ending of a violin tone stating that" certain partials decayed rapidly leaving

an afterring". Berger[6] also used tape splicing methods to create a set of

sounds based on recordings of wind instruments. He concluded that the attack

and release of a note provide important recognition clues which aid instrument

identification. However, his conclusion was based on the simultaneous, rather

than independent, removal of onset and decay when creating test sounds.

Fraser and Fujinaga[38] found that the system they used for real time acous­

tic musical instrument recognition acheived a 10-20% increase in recognition

rates when the "attack" portion of a note was used, rather than the "steady

state".

Whilst researchers generally concur that there is a large amount of important

information in the attack portion of a note, this portion has been little researched

to date. Martin[56] surmises:

"It has been suggested that the relative onset times of the harmonic

partials are important features, as are their attack rates (perhaps

measured in dB/ms). Little has been written, however, about how to

measure these properties from recordings of real instruments, and I

am aware of no published descriptions of techniques for measuri~g

these properties."

9 As in abruptly stopped.

37

Amongst the "little" that "has been written" is the work of Nolle and Boner[68}

who investigated the initial transients of organ pipes. They presented what

would now be regarded as a rather antiquated film-based method for measuring

transients. Their work followed the earlier work of Hall[46} who considered the

difficulties of measuring transient sounds. Richardson[76} later extended the

work of Nolle and Boner by using similar methods and enlarging the scope of

instruments included to orchestral wind instruments as well as organ pipes. In

related work Schroeder[83] showed the complimentary nature of sound buildup

and decay in an enclosure. Martin concludes that:

" A ttack transient characterization has received frustratingly little at­

tention in the acoustics and synthesis literature. This has the poten­

tial to be a fertile area for future research."

It is the character of the onset of a violin note that enables the listener to

distinguish between a bowed or plucked note. The characterisation of the start

of a note is therefore a very important facet of gestural extraction. After the

onset section is complete most of the initial gestural information will be lost.

This can be shown by considering a note played on a stringed instrument, in

this case a violin, using spiccato bowing, as shown in Figure 14 (top).

Although it cannot readily be seen, the crunch of the bow on the string is

clearly audible in the attack of the note. However, if the attack portion of the

wave is removed and the resulting sound wave auditioned, it sounds exactly

as if the string had been plucked, and not excited with the bow. The lower

waveform is the result of the same string on the same violin being plucked.

Even at this basic level the similarities in the decay of each note are strikinglO.

This highlights the importance of the attack portion of the wave in this example.

If the attack was ignored it would be very difficult to determine whether the

note was bowed or plucked.

4.3 Note Detection Methods

The detection of not.es is primarily concerned with the detection of note onset

points.
In its most basic form amplitude threshold onset detection is performed by

identifying all parts of a sound wave above a certain threshold as note. This

lOThis is to be expected: following an excitation gesture, if left undamped the vibrations of
a string will decay in the same manner.

38

Waveform of a note on a Violin using Spiccato bowing.

Waveform of the same nOle on the same Violin.
excepl this lime Ihe string was plucked using Ihe righl hand.

Figure 14: Showing the waveform of bowed and plucked note.

method is a compromise between identifying loud notes at the expense of quieter

ones. Amplitude threshold detection can therefore result in loud notes masking

quieter notes, producing at best a monophonic tracking of only the loudest

notes. This crude method however is still part of some of the most advanced

detection systems.

Moorer[63] used a bank of sharply tuned bandpass filters to process a mu­

sical signal, allowing the harmonics of each instrument to be extracted from

polyphonic music. The actual note was then inferred from this harmonic in­

formation. This system was considered a success despite the heavy restraints

placed on the definition of polyphonic music. The fundamental frequency of one

note was not allowed to overlay a harmonic of another simultaneously sounding

not.e; melodic grouping of notes relied on the restriction that parts would not

cross.

A polyphonic piano music transcription system, developed by Scheirer[82J, is

severely restricted in scope by the requirement that prior to transcription a MIDI

score of the piano music must be entered into the system. Scheierer's 'system

employed one of four different methods available to identify the onset of a note.

Each method was optimised for a given onset situation. All four methods are

39

undermined by a reliance on previously entered MIDI data when determining

whether an actual note has been found.

Dixon furthered work in this field by producing a system which required no

prior knowledge of the piano score to be transcribed[30j. Dixon's method used

spectral peaks in overlapping FFT windows to give a "reasonably accurate esti­
mate" of onset time, relying on the fact that due to the fast attack of a piano
note its onset is near to its spectral peak. Dixon went on to produce a sub­

sequent system which was able to transcibe music from other instruments[29].

Another onset detection system presented by Dixon made use of a linear regres­

sion technique to find the slope of the amplitude envelope of a signal[31].

The work of Klapuri[51] on automatic music transcription uses an onset de­

tection method which divides incoming sound into six different frequency bands

and then calculates the first order difference function of a smoothed amplitude

envelope for each band. The results from each band are combined to deter­

mine the onset point. This onset point is combined with information from tonal

models in order to determine the pitch of the note. As Klapuri admits, this

onset method relies on the percussive nature of piano sounds and is not suited

to non-percussive instruments, for example string instruments. Klapuri's sys­

tem is literally a note onset detector; the evolution of a note is not tracked

and therefore note endpoints (the knowledge of which being vital for gestural

extraction) are not detected. Klapuri[50j reused his onset detection method in

a later system which made use of psychoacoustic knowledge. His results con­

firmed his earlier report of the unsuitability of the method for the detection of

non-percussive sounds.

Martin[57] uses a blackboard framework in which a correlation based ap­

proach is favoured over sinusoidal analysis. Actual note onsets are found using

a system which makes use of first order difference approximation of an ampli­

tude envelope. This approach is virtually the same as that of Klapuri and is

therefore not suited for the detection of non-percussive sounds.

Duxbury et al.[33] use a hybrid approach to detect what they describe as

"hard" and "soft" note onsets. They use two different methods to detect high

and low frequency information from which note onsets are inferred. The use

of adaptive amplitude threshold levels and filter banks render their approach

unsuitable for gestural extraction purposes.

Marolt[54] presents a system for the transcription of music recordings. Adap­

tive oscillators are used to track partials. The motivation behind a system de­

signed for transcription differs from that for gestural extraction. Transcription

40

systems are concerned with the "steady state" portion of a note. In finding par­

tials, Marolt is seeking to isolate "the stable frequency components most likely

to belong to tones, and discards noisy components". Such a system is therefore

not suited for gestural extraction.
An alternative to the approach of the above systems is that of pitch tracking.

Instead of searching for note onset events, note pitches are tracked. Note start

and stop times can then be inferred from the output of the sytem. Walmsley

et al.[95] and Cirotteau et al.[15] present such systems. The performance of the

system presented by Cirotteau et al. is examined in Chapter Five.

The onset detection systems reviewed above are limited in a gestural context

because they either rely on threshold levels or remove possible note information

from the data by filtering. The human auditory system rejects noise or extra­

neous sound at a conscious level. That is to say, all sound is heard but a choice

is made whether to act following this. This feature is fundamental to the devel­

opment of a robust note detection system for gestural extraction purposes. If

a similar approach is adopted when developing a note onset detection method,

the following principles emerge:

• All data must be assumed to be valid. If it is filtered before processing

takes place then vital gestural information could be lost.

• Data can only be discarded once the system has established that it does

not contribute any gestural information.

• The ear can detect an enormous range of sounds[5] and does not use a

threshold cutoff for the elimination of unwanted sound. Therefore the only

allowable form of threshold is that which is related to the Just Noticeable

Difference threshold of the ear (commononly taken to be ldB)[4].

• Ensuring that the detection system works with recordings of real instru­

ments. Whilst it is usually necessary to restrict the scope of note onset

detection to that of "simple music"[57], such test cases should be recordings

of real instruments, rather than digitally generated. Of course this does

not rule out using digitally generated test cases for development purposes.

Freed and Martens[39] are particularly scathing on this point, stating that

"Research results obtained using oversimplified stimuli have little reievance

to perception under natural conditions - they lack... ecological validity".

• The end point of a note must also be detected.

41

4.4 System comparisons

Apart from comparison of the relative merits of a given system implementation,

direct comparison of system performance is often not possible. This is mainly

due to the use of different material for each system test. Results regarding the

number of detected notes do not always permit comparison as such a total can

be misleading. No proof is given to show that the total number of detected notes

is entirely made up of genuine notes. The total can be offset by the cancellation

of missing and extra notes, and the inclusion of "wrong" notesll , leading to a

false total. Performance in terms of temporal resolution for both note start and

stop points would also be a useful comparison parameter, but is rarely reported.

Clearly, it would be useful if researchers presented their results in terms of

the number of correct, wrong, extra and missing notes and reported on the

accuracy of notes start and stop points. These criteria are vital not only for

the comparison of different systems, but for the evaluation of the performance

of a given system. The next chapter presents an automated system evaluation

technique, which provides the means for onset detection system comparison.

11 A note detected in the correct place but ascribed the wrong pitch.

42

5 Comparison Techniques

This chapter, having explained the need for a comparison system, examines the

existing comparison techniques, drawing on the fields of string matching and

(musical) performance analysis. The semantics and rules of error definition are

discussed followed by the presentation of a comparator specifically designed for

musical comparison. The chapter ends with system tests (of the comparator

itself), followed by the testing of Damien Cirotteau's PitchTracker software[15].

The work presented in this chapter is furthered by the papers presented in

Appendices A and B.

5.1 The need for comparison

As explained at the end of the previous chapter, comparison of the output of a

note detection system with its input provides a quantifiable means of evaluating

its performance. Without such comparisons it would be a time consuming and

laborious process to manually prove the performance of a note detection system.

The output of the comparator can also be used to compare the performance

of different note detection systems using a common set of input files.

5.2 System Specification and Background

A comparator should compare the output of a system with its input, by calcu­

lating:

1. The number of extra notes

2. The number of missing notes

3. The number of wrong notes

4. The number of correct notes

5. The accuracy of note onset times

6. The accuracy of note lengths (release time)

Items 1-3 match the editing operations used by Ukkonen[91] in his work on string

matching. These editing operations, based on those formulated by Levenshtein[53],

are used to determine the edit distance (or minimum cost) of converting string

A into string B. At the computational level, pitches from a musical score are

43

represented as a string. Hence score note order is reflected in the order of pitches

in a string. Comparison of pitch information is therefore closely related to work

in the string matching arena, but not identical to it.

Item 4 is normally implicit in the results provided by items 1-3. However, the

purpose of string matching in a musical context is to determine how a musician

has performed a score. The edit distance which represents the performance of a

score is not necessarily the smallest. As a consequence of this, the comparator

presented in this chapter uses rules which cause it to find the edit distance

which corresponds to the deviation of a given performance from its score. Thus,

the number of correct notes becomes an important factor when evaluating the

performance of a score. The difference between the optimum edit distance and

what will be termed the performance distance, is discussed in Sections 5.5.2.2

and 5.5.2.3.

Items 5 & 6 introduce time dependencies not normally associated with string

matching, which move the work presented here into a new, though not unrelated,

string/ time matching arena.

Whilst similarities with work in the field of string matching have already

been highlighted, there are further parallels that can be drawn with the field of

musical performance analysis. Performance analysis is typically concerned with

examining how a musician has performed a piece of music, be it in comparison to

another performance or the performed score. The advent of computerised sound

processing techniques have opened up this particular field and allowed musicol­

ogists to perform rigorous analysis. Moelants[60] presents a system whereby he

is able to analyse both the score itself and perform comparative analysis of the

performance of the aforementioned score by three different musicians. Although

in depth computer-aided statistical analysis is performed, it appears from his

paper that score-performance matching was carried out by hand.

Dillon[27] presents a system to extract salient musical features which permit

the comparison of different perfomances and ultimately, recognition of the mu­

sicians that produced them. Bora et al.[7] present a tool specifically designed

for comparison of performances on a MIDI keyboard. Their system compares

virtually all the different variables represented in a MIDI file. However, for rea­

sons discussed in Section 5.5.2.2, their algorithm is susceptible to false error

matches and as a result does not always find the performance distance. Due

to a restriction imposed by a threshold number of (consecutive) errors allowed,

their system does not guarantee the successful comparison of two files.

44

As well as reviewing other comparison systems, Heijink et al.[47) present a

comparator that they claim copes with "extreme expressive timing" and "orna­

ments in a satisfactory way". Their approach is similar to that of Ukkonen, in

that an error and the identity of its type are evaluated in isolation. Each error

can be interpreted in a number of ways which leads to a number of alterna­

tive "paths" through the string. Each path represents different combinations of

matches and errors. The path with the least number of errors (Le. smallest

edit distance) is deemed to be correct. Section 5.5.2.3 shows that if errors are

processed in isolation then the performance distance will not be found.

Vercoe[93] and Dannenberg [21] are generally considered to be the pioneers

of real-time computerised score performance matching. The system described

by Dannenberg [20] is based on an offline matching system which uses similar

techniques to that of Ukkonen. Instead of calculating an array of edit costs,

Dannenberg populates an array with values that correspond to the Longest

Common Substring (LCS) for any given position. Despite the use of LCSs,

Dannenberg's system does not find the performance distance. Dannenberg's

work is revisited in Section 5.6.6.

Muller and Mazzola[67) complain that a lack of progress beyond "fuzzy com­

mon language descriptions" has prevented a truly scientific approach to musi­

cological performance theory. The problem of describing a musical concept was

discussed in Chapter 4 of this thesis. They present a real-time system designed

to track a performance and match it to a musical score. They tackle difficul­

ties associated with a real-time approach but produce a system unsuitable for

analysis when both the score and performance are known in full beforehand.

Pickens et al.[69] present a system for the retrieval of a musical score based

on an audio query. Such systems are more closely related to work in the field of

string searching[8, 92] rather than string matching.

The majority of systems referred to above are strongly influenced by a

MIDI/musical approach. In its most basic form, the problem is ultimately one

of string matching and will therefore be treated as such in the proposed system.

5.3 Proposed system

Comparisons can only be made between data of the same type. The abst:raction

of (stored) data from a given file type permits different levels of comparison.

For example comparison of two wave files can only indicate whether the files

are different or identical. Providing information on the actual-differences in

45

\ ".wav ~ Note MIDI file ".mid TiMidity
(Detection

:2
Common Source J ~ •

~7
Extract note)
pitch & timing ".mid
information \r

l 1 % of correct notes

~ % of wrong notes
Comparator % of extra notes y as found by note

onset detection system

Figure 15: Proposed system overview

the binary data (of which there would be legion) would be of very limited use.

Note detection systems usually output data which is different in type from

that inputted. Figure 15 gives an overview of the processes used to overcome

this problem of data incompatibility. Data type conversion must not introduce

errors. This ensures that the comparator measures only the performance of the

note detection system rather than that of the data type conversion process.

The MIDI file format has been chosen as the common source because it pro­

vides the system with the required note and timing information. The wealth

of readily available MIDI software provides convenient means of generating test

cases. The TiMidity[89] utility is a MIDI file interpreter which can be used to

produce wave files. TiMidity is a well established utility and it is assumed that

it performs error free MIDI to wave conversion. The wave file output of TiMidity

is read by a note detection system which "listens" to the wave file and produces

a MIDI file. The comparator takes the new MIDI file and compares it with the

original MIDI file, providing a means of measuring the performance of the note

detection system.

The heart of this system is the comparator, discussed in detail in section 5.5.

5.4 Diff

This section examines the unix utility "diff" to determine whether it can be

used for comparison within a musical context. Although musica(notes are the

46

a e
b d

d b
e a

Although "c" (in terms of order) is the common note,
"dill" has taken "a" as the common note.
"dill' looks for the quickest way of describing the
dillerenca between two files so that one can be rebuilt
from the other.

:-/difUesV> dill orlg comp
1 AdO .--____ -.J..l

<e
< d Remove e,d,c,b from comp

a <c
<b
5a2,5
<b .------~----------~
<c
<d
<e

Add b,o,d,e (from orig) to comp

Figure 16: The workings of "diff"

intended comparison material, this chapter will initially make use of the generic

term "character" rather than "note".

The output from the unix file comparator "diff" is the difference between

two files on a line by line basis. At first it would appear that "diff" could be

used as the engine for character comparison. However, the output from "diff"

only provides difference information such that one file can be modified so that

it matches the other. The example in Figure 16 shows the output from "diff" is

unsuitable for comparison of the the order of notes. The desired output would

be (with respect to the comp file) to declare: "e" & "d" as wrong characters,

"c" as a correct match and "b" & "a" as wrong characters.

Further problems with "diff" include:

• it only provides information concerning the difference between two files.

In result validation the similarities are also important.

• it cannot use note timing information to provide a measure of the accuracy

of a note in terms of onset and length.

For these reasons a bespoke comparator will be used, described in the next

section.

47

5.5 The Comparator

5.5.1 System Overview

All discussion in this section ignores timing information, which is considered in

Section 5.7.

5.5.1.1 Error types The three possible errors (defined with respect to the

file that is being compared, e.g camp in Figure 16, with the originatI2) are:

1. Missing - e.g. arig = "abc", camp = "ac". Output = "aec"

2. Wrong - e.g. arig = "abc", camp = "awc". Output = "a®c"

3. Extra - e.g. arig = "abc", camp = "abec". Output = "abEBc"

The example given in item 3 above could be described as a wrong character 'e'

immediately followed by an extra character 'c'. Two rules have been created to

prevent such ambiguity when identifying errors:

1. The rule of maximum matches. It is assumed that the performer attempts

to remain faithful to the score they are playing from. Therefore, errors are

identified in a manner which gives benefit of doubt to the performer and

ensures that the output preserves the original (particularly with respect to

order) whenever possible. The wrong and extra character interpretation

of item 3 (Extra error type) is rejected because it removes the letter 'c'

from the output.

2. The rule of least number of errors. A given scenario must be described

using the least number of single errors. Timing information could show

that the wrong and extra character interpretation of item 3 is correct.

Without such information, this description is rejected in favour of the

interpretation which describes the situation in terms of a single error.

These rules lead to non-optimal edit distances, as shown in Section 5.5.2.3.

By defininition, each error category is (in terms of a single error) mutually

exclusive. Therefore, the "least number of errors" rule will always result in

12In musical terms:

• orig (the original) equates to a musical score;

• comp (that which is compared to the original) equates to a performa~ce of a score.

48

a definite outcome. However, ambiguities can arise when describing multiple

errors; it is possible to create a situation whereby the removal and insertion of

characters cancel each other, possibly resulting in multiple wrong characters.

5.5.1.2 An ambiguous case The errors in the following strings give rise to

an ambiguous situation for which two different interpretations are equally valid:

orig abed

eomp aebd

Possible interpretations of the above include:

1. "a00d" - one correct, two wrong followed by one correct.

2. "aEBb8d" - one correct, an extra character 'c', one correct, a missing char­

acter 'c' and one correct.

3. "a8cEBd" - one correct, a missing character 'b', one correct, an extra char­

acter 'b', and one correct.

Application of the rule of maximum matches eliminates the first interpretation

as it only preserves 2 out of 4 characters from the original. The second and

third interpretations are the inverse of each other, both preserving 3 out of 4

characters from the original. The decision as to which interpretation is correct

is arbitrary.

5.5.1.3 Semantics Whilst 8EB and EB8 are semantically different, both er­

ror combinations are the equivalent of 0. The rules described above dictate

that 0 takes precedence over 8$ and EB8. The existence of 0 means that it

is impossible for both $ and 8 to consecutively appear in the same (multiple)

error definition. In terms of semantics the only valid multiple error definitions

are (quantities are assumed to start from zero):

• any number of 0.

• any number of $

• any number of 8

• any number of 0 immediately followed by any number of $

• any number of 0 immediately followed by any number of 8

Errors are separated by correct (matching) characters.

49

5.5.2 The comparison function

Algorithm 1 shows the underlying functionality of the comparator. The require­

ment to find the performance distance, rather than the edit distance, results in

an initial implementation that deviates from Ukkonen's shortest path through a

matrix method. A dual mode recursive method is used so that the comparator

takes subsequent errors and matches into account when evaluating a given error.
This lookahead functionality is key to finding the performance distance.

5.5.2.1 The compare function This function works by recursively calling

itself with the following arguments:

• orig - A pointer to the original string.

• comp - A pointer to the string being compared.

• mode - Determines how the function operates, discussed in detail below.

• iteration - Counts the number of recursions.

The function has two modes of operation, selected by the mode parameter,

which alter the way matching characters are handled:

1. Progressive mode. The matching character is sent to the output stream

when recursing. Reaching the end of a string terminates recursion.

2. Lookahead mode. Recursion takes place without outputting the match­

ing character. Reaching the end of a string causes the number of correct

matches found since entering this mode to be returned.

The input strings are compared character by character. If orig and comp point

to matching characters the comparison function recursively calls itself with an

orig

+
stringl • abcdefghijk
string2 • abcefghijk

t
comp

if orig+n == comp
Type: MISSING

Figure 17: Missing character error

50

Algorithm 1 The recursive compare function
compare(char *orig, char *comp, int mode, int iteration)
if * o rig && * comp then

if *orig == *comp then
if mode = = 1 then

output matching character
compare(orig+l, comp+l,mode, iteration+l)

return °
else

compare (o rig + 1, comp+ 1, mode, iteration+ 1)
return iteration

end if
end if
check_for_missing(orig, comp,mode==1 ? 0: iteration)
check _ for _ extra(orig, comp, mode = = 1 ? ° : iteration)
if mode = = 2 then

if a List of error candidates exists then
return winning_score

else
return iteration

end if
end if
if mode = = 1 && a List of error candidates exists then

find winning error candidate
output error code(s)
return (compare(orig+winning_ offset, comp+winning_ offset, mode, it­
eration + 1))

end if
Deal with no match situation
recurse with both strings offset by 1 - a wrong character
return (compare(orig+ l,comp+ 1,1,0»

end if
if mode ==2 then

return iteration
else

deal with any remaining characters
end if
return;

51

offset of 1 applied to both pointers. When the characters do not match the

system determines the type of error that has occurred by calling the following

functions:

• check_for _ missing_ characterO

• check for extra characterO - - -

The detection of wrong characters is inherently performed by both functions

making a third, check_for _ wrong_ character() function, redundant (the justifi­

cation for which is given in the next section).

5.5.2.2 Checking for Errors The error checking functions process the

strings searching for a position that would realign the orig and/or comp point­

ers to matching characters. Figures 17 - 19 show how the error type is inferred

from the realignment of each pointer. Algorithm 2 shows the workings of the

error checking functions; the example shown searches for missing characters.

Algorithm 2 The recursive comparison function
find _ missing_ characters (char * orig, char * comp, int iteration)
offset = 0
while *(orig+offset) && *(comp+offset) do

n=O
while *(orig+offset+n) && *(comp+offset) do

if *(orig+offset+n) == *(comp+offset) then
match[n] = compare((orig+offset+n), (comp+offset) ,2, iteration)

else
match[n] = 0

end if
n++

end while
find highest scoring match[n]
add highest match to current recursion level's list of realignment points
offset++

end while

52

orig

+
string1 • abcdefghijk
string2 • abcddefghijk

t
comp

if orig == comp+n
Type: EXTRA

Figure 18: Extra character error

orig

+
string1 • abcdefghijk
string2 • abcdwfghijk

t
comp

if orig+n == comp+n
Type: WRONG

Figure 19: Wrong character error

When an error checking function finds a match it stores the realignment

information in a structure which is added to a list13 • The elements of this

structure include:

• value

• orig index

• comp index

• offset

• type

The value attribute, a literal implementation of the rule of maximum matches,

is an accumulative score of the subsequent matches of a given realignment. It is

accumulative because it takes future errors into account by using the Lookahead

mode of the compare function. The implementation of this lookahead feature

ensures that the performance distance is found, rather than the edit distance.

The difference between these two measures is:

13Each level of recursion maintains its own list.

53

(1) '-r:I < _.
",oq
-c c ..,
~ (1)
(1) .,.;)

;.9
(1) en
en P­
(") 0
o :l'! .., _.
(1) ::s
ooq
'""'>P-

'" 0 ::s :l'!

(1) '"'" ::; p-
o (1) .., (")

0"0
'< S
'"'"'0

'" '" :»"..,
Er 00·

o-ooq 0
IIlo.,"",>::S

g.8"'
c ::s .., (")

(1) '"'"
(1) o·
::; ::s o _ .
.., en
en C
'" en ::s (1)
p.p.

S S·
~-(") 0
p-O

fJl S _. p-
::s (1)

'"'"'" o p.

'" S g 0
o p. c (1)

::s '"'"
'"'"0

orig.:cdefll'hijk
comp"deefghijk

orig=fghiJk
comp=efghijk

orig+l=defghi~k (orig=fghijk)
comp - deefghijk comp=efghijk,

MISSING

arig = cdefghijk
;:ornp+n=eefghijk

EXTRA

arig+2=efghijk
camp+2=efghiJk

WRONG

arig+n=ghijk
camp = efghijk

MISSING

orig - fghi:jk
comp+l=fghiJk

EXTRA

~;~g:g~~~~nk
WRONG

o matches

orig+n=ghijk
camp = efghijk

MISSING

orig • fghijk
~omp+l .. fghijk

EXTRA
arig+n=ghijk
camp+n=fgh1jk

WRONG

Key:

«)) -Error found

® - Determine error type.

e -Error result - T = Type. s=Score

I&----€J - Output in Progressive mode
- missing character
+ extra character

n Lookahead mode. No output. i x Matches accumatively counted.

• The minimum edit distance is determined by finding the most efficient

way of describing the minimum number of changes (errors) that would

convert string A into string B.

• The performance distance is determined by finding changes (errors) which

provide the best means of indicating how much of string A is present in

string B.

This is shown in Figure 20, in which the comp string contains two separate

errors: a missing character and an extra character. However, due to both the

position of the errors and the choice of extra character, this error could also be

defined as 2 wrong characters. Application of the rule of least number of errors,

described in section 5.5.1, shows that the correct interpretation is that of two

separate errors (a missing character and an extra character, separated by two

correct characters). As Figure 20 shows, the first error is successfully identified

because the second error is taken into account when evaluating the value of the

first. Thus, the correct interpretation preserves the letter 'd', showing it to be

present in the performance of the score. In a musical context, this is effectively

giving the benefit of doubt to the performer. It is assumed that the aim of

performer is to correctly perform as many notes from the score as possible.

Failure to take into account the repercussion of error identification on sub­

sequent matches is one of the downfalls of the algorithm presented by Bora et
al.[7]. Their system judges a realignment position to be correct as long it and the

next pair of characters in each string match. This, coupled with an unexplained

"if ... then ... else ... " ordering of error type checking (which imposes an order of

precedence on error types), results in their system finding false matches. For

example:

orig abcbcde

comp addbcde

It is obvious that "a00bcde" is the correct result. Due to the ordering of

error checking and the requirement that only two matches indicate success­

ful identification of an error, the system presented by Bora et al. would find

"aEfJEfJbceede"14 .

14This outcome is as a result of terminating error checking as soon as a realignment position
that conforms to their matching criteria is found. In other words, the possibility of two wrong
characters is not considered.

55

4 Wrong
Characters Scenario 1

ttH
orig=abcdef~hijk
comp=abcz h1 'Jk

Wrong
Character

2 missing
Characters
'e' & 'f'

Extra
Characters Scenario 2

Figure 21: Combined errors.

5.5.2.3 Combined Errors The offset element of the realignment structure

permits the detection of mUltiple errors. That is, a second error which occurs

immediately after the first, as shown in Figure 21. The rules given in Section

5.5.1.1 dictate that scenario 2 is correct. It uses three individual errors to

describe the first error15 (rather than the four individual errors used in the

first scenario) and preserves more of the original. This is an example of a non­

optimal edit distance; the performance distance (5 errors) is greater than the

edit distance (4 errors).

Thus far, searches for a realignment position have always been referenced

from the error point. This fixed reference point can only lead to Scenario 1

of Figure 21. The problem lies in the fact that the error position characters

('d' in orig and 'z' in comp) never occur again in either string; the missing

and extra error checks will never find a realignment position. However, if both

the comp and orig pointers are offset by an index of n (by definition a wrong

character, see Figure 19) and error checking resumes from this offset point, the

comp pointer (pointing at 'g' for n=l) will find a realignment position which

matches 2 subsequent characters. Thus the errors identified are:

• 1 wrong character 'z'

• 1 missing character 'e'

• 1 missing character 'f'

150ne wrong character and two missing characters, the extra characters identify a later,
separate error

56

Checking continues until the next error (two extra characters 'h' & 'i'). Thus the

offset value indicates the number of wrong notes found. Due to the cancelling

out of extra and missing characters (as explained in Section 5.5.1.3) it is only

possible for wrong character errors to combine with another error type. Thus by

increasing an offset from the initial error position, the missing and extra error

checking functions also check for wrong characters making a dedicated wrong

character function redundant, even in the case of a single wrong character.

Checking for a combination of errors is the key to ensuring that the perfor­

mance distance is found. Combining errors allows the comparator to evaluate

all valid error combinations. This functionality is missing from comparators

that evaluate errors in isolation 16.

Using Figure 19 as an example, the missing and extra functions would both

find a realignment position with the following values:

• value = 6

• orig index = a

• comp index = a

• offset = 1

• type = Missing or Extra

The type element is only used to determine which error character should be

printed (it also indicates which function found the wrong character - useful for

debugging purposes), rather than the actual type, which is inferred from the

index and offset values.

For each error encountered the error checking functions build a (global) list of

realignment positions. The realignment position with the highest value is chosen

from this list as the realignment position which identifies the error. Using the

highest value ensures the rule of maximum matches is adhered to.

If there is a draw between the values of different realignment positions, the

position which is closest (i.e. lowest sum of ol'ig index, camp index and offset)

to the error point is chosen as the winner (implementing the rule of least number

of errors). A number of situations can arise where there is no clear winner:

16There is a distinction to be drawn between multiple errors and combined errors. Multiple
errors can appear in the the results of systems which process errors one by one, whereas
combined errors are created speculatively by the comparator and then evaluated.

57

1. The two results are the same in terms of value, index and offset. By

definition (due to the exclusive nature of an error) both results represent

a wrong note or an ambiguous error (e.g. the situation shown in Section

5.5.1.2). In either case the choice of winner is arbitrary.

2. The two results are the same in terms of value and the sum of index and

offset.

The following example illustrates the second draw situation:

orig = abcdefg

comp accdefg

Inspection of the above leads to the conclusion that "a®cdefg" is the correct

representation of the error. However, a consequence of the implementation of the

rule of maximum matches (that future errors and matches are taken into account

when calculating the value of an error), results in a second representation17,

"aecEBdefg", which has the same value18
• The least number of errors rule dictates

that the first representation is correct. If a ''value only" draw arises, the "wrong"

error type takes precedence over "missing" and "extra" types. This is the only

situation when one error type takes precedence over another.

The evaluation of error candidates, along with the ability to combine error

types, enables the comparator to correctly identify errors and find the perfor­

mance distance.

5.5.2.4 Special Cases The comparator uses characters which follow an er­

ror to determine its type. On its own, such an approach contains a fundamental

flaw: the inability to cope with an error scenario characterised by both error

checking functions returning zero. For example, this flaw would manifest itself

when comparing strings of equal length when the error arises at the end of the

string:

orig abc

comp = abw

It would also occur when both strings contain no matching characters:

17This second representation is a result of using 'c' as the ''wrong'' error character which
creates a seond "virtual" error (see Section 5.6.4). Any other character would result in a single
unambiguous outcome.

18This result does not break the semantics of Section 5.5.1.3 as the errors :j,re separated by
a correct character.

58

orig aa

eomp bb

Algorithm 1 shows that such a scenario is handled by recursively calling the

comparison function with each string offset by 1. By definition this is a wrong

character error (as explained in Section 5.5.2.3).

Another special case is the occurence of extra or missing characters at the

end of strings which have unequal resolved lengths. The ''resolved length" refers

to a string length in which error types within the string are taken into account19 •

For example:

orig abed

eornp abeeeed

The comparator ceases recursion because the re-alignment caused by the detec­

tion of three extra characters results in the end of both strings being reached at

the same time. The following strings are of unequal resolved length:

orig abede

eornp abeeeed

Recursion, and therefore comparison, ceases when the end of a string is reached.

Termination conditions are applied when strings are of unequal resolved length.

The nature of such operations is dictated by the shortest string. For example, if

the end of orig is reached first, by definition comp contains n extra characters,

where n = the number of remaining characters in compo

5.5.3 Comparator Tests

5.5.3.1 Test 1 Figures 23 - 25 show possible realignment positions displayed

by a debugger and the position chosen as the winner for the three basic error

types shown in Figure 22.

System output:

orig

eomp

Output

abedefghijklrnnopqrstuvwxyz

abeefghijkklrnnopqrswuvwxyz

abe8 efghijk671rnnopqrs0uvwxyz

19In the example given the resolved length can be expressed either way. E.g. orig =
abEElEElEElcd, or comp = abcd (extra chararecters removed). Both result in strings of equal
resolved length. Note: the term "resolved length" does not necessarily imply the presence of
errors in a string; it merely indicates that if errors are present they will be taken into account
when measuring string length.

59

stringl = abcdefghijklmnopqrstuvwxyz
string2 = abcefghijkklmnopqrswuvwxyz

t t t
MISSING EXTRA WRONG

Figure 22: System test of the three basic error types.

Variable
-l...·W;rt~h-·

!
-··#0 compare (...)

'.··.orig
! comp

I···· mode
I
i···· Iteration
,L list of results r ,- -
! !····value

I I···· offset
I ! .
! r··· ong

i !····comp
i !

i :·.·c
: result_type

i ~ next_result

I·value
i·offset

i I .. ··orig

,.,1 i mp j co

I I...· c

I, I···· result_type
.+ .. next_result

.;. .. winner

I· .. ·value
I offset
i· .. ·orig
I r· comp

r" c

I"" result_type
+." next_result

!Value

Oxbffff3d3 "defghijklmnopqrstuvwxyz"

Oxbffff1d3 "efghijkklmnopqrswuvwxyz"

1
3
(realign *) Ox804b758

21
o
1
o
45 '.'

MISSING

Ox804cd70
15 This alignment has found
7 _"---17 wrong characters as a
o result 01 the cancelation
o of the missing character
43 '+' by the later extra character
EXTRA

OxO

(realign .) Ox804b758

21
o
1

o
45 ,.,

MISSING

Ox804cd70

Figure 23: Showing the detection of a missing character.

60

Variable

I···· Watch
- .. #0 compare (...)

I orig

! ... comp

i·mode

!. iteration

~ ··list_oUesults

i"value
! ! offset

! I I····orig
I j comp

I I c

I, ! result_type
I

I -." nexCresult

I

! value

I offset
I orlg
! i comp
L .. c

1 resuICtype
:+, .. next_result

.., .. winner

I"" value
i offset

I .. ·orig
I comp

l .. c
i ... resulCtype

l .. next_result

I Value I

Oxbffff3db "Imnopqrstuvwxyz"

Oxbffff1da "klmnopqrswuvwxyz"
1
11

(realign 'J Ox804d61 0
4
9
2
o

The offset of 9 means that
__ -------i this alignment has found

9 wrong characters, followed

45 '.'
MISSING

Ox804d830

14

o
o
1
43 '+'
EXTRA
OxO

by' two missing characters (u&v)
followed by three further
matches in xyz

(realign t) Ox804d830

14

o
o
1
43 '+'
EXTRA

. OxO

Figure 24: Showing the detection of an extra character.

61

5.5.3.2 Test 2 This test shows why the entire file is processed when looking

ahead. If the lookahead functionality was restricted to an arbitrary value, it

would prevent any consecutive errors which last longer than the lookahead value

from being detected.

orig abcdefghijklmnopqrstuvwxyz

comp a7ze

Output a0eeeeeeeeeeeeeeeeeeeeeeezEB

Application of the rule of maximum number of matches dictates that the above

is the correct output as the order of the original has been preserved when parsing

compo Without this rule, there would be an argument for the following output:

Output = a00eeeeeeeeeeeeeeeeeeeeeee

5.5.3.3 Test 3 This test relies on an offset applied to the initial error posi­

tion, allowing it to detect the combined error, rather than 4 wrong characters

(zghi).

orig

comp

Output

abcdefghijklmnopqrstuvwxyz

abczghihijklmnnnnpqrstuvwxy

abc0eeghiEBEB j klmn0EBEBpqrstuvwxye

5.5.3.4 Test 4 Choosing the wrong error has repercussions for all subse­

quent errors. The following test illustrates how future errors influence the choice

of the type of the current error, helping to ensure that the correct error type is

chosen. Chosing the error type which is the most successful in terms of subse­

quent matches ensures that the output matches the original string as closely as

possible (made more obvious in the use of a simple sentence):

orig the cat sat on the mat

comp tecatsatton on h rate

Output tee catesatEBEBEB on ehe 0atEB

The correct result for this test case hinges on the choice of the "on" which repre­

sents extra characters. Had the system decided that the third 't' in "catsatton"

corresponded with the space between "sat" and "on" in the first string, it would

result in the following outcome:

62

orig the cat sat on the mat

eomp = te eatsatton on h rate

Output tee eatesat®on ®EBEBhe ®atEB

This alternative outcome fails to preserve the word/space structure of the orig­

inal string, particularly around the second ''the''. The rule of maximum number

of matches shows that the first outcome is correct as it preserves more of the

original string in its output.

5.5.3.5 Test 5 - Ambiguous Error Definitions The test is included for

the sake of completeness, to show that the comparator can cope with the am­

biguous error definition described in Section 5.5.1.2.

orig abed

eomp aebd

Output aeeEBd

The choice of error definition in this example is arbitrary. This output has arisen

because check_for _ missinL character() is called before check_for _ extra_ character()

and its realignment candidate appears first in the list of realignment candidates

(in the event of a draw the default behaviour is to pick the first candidate from

the list of drawing candidates). If the calls to these functions are reversed, the

output is:

Output = aEBbed

The next test ensures that the comparator handles a drawn value situation:

orig

eomp

Output

abedefg

aeedefg

a®edefg

5.5.3.6 Test 6 - Special Cases These tests are included to show that the

comparator handles the special cases described in Section 5.5.2.4:

63

Variable

i"Watch
:"·#0 compare (...)

i orig
j comp
L .. mode
I I iteration

!Value

Oxbffff3e3 "tuvwxyz"

Oxbffff1 e3 "wuvwxyz"

1
20

(realign .) Ox804d290
-Iii: "Iir~~~~esults 4

Having found a matching w
..... ------H at orig+3, the system then

identifes u & v In comp as
extra characters, giving
three further matches In xyz

i offset
I • ! ong

! comp
I c
I
I result_type
I
.,. .. next_result

! value
!
I"" offset
! .. ·orlg

l comp

~ ----------o
45 '.'
MISSING

~X804d2dO _

1
o
o
45 '.'

I result_type
~ .. next_result

! .. value

MISSING

Ox804d7c8

6

These identical errors result
t----t- in a draw situation,

i offset
!

1
.... orig 0
.... comp 0

· .. ·c 43 '+'
.... resulUype EXTRA -

+ .. next_result OxO
.. winner

.... value

.... offset

.... orlg

.... oomp

.... 0

(realign .) Ox804d2dO

6

.... result_type

;"". next_result

1
o
o
45 '.'
MISSING

Ox804d7c8

denoting that a wrong character
(offset ==1) has been found.

Figure 25: Showing the detection of a wrong character.

64

orig = orig = a orig =
comp = comp = comp = bb

Output = Output = e Output = EI1E11

orig = orig = aa orig = a

comp = b comp = comp = b

Output = EI1 Output = ee Output = ®

orig = aa orig = aa orig = aaa

comp = bb comp = bbb comp = bb

Output = ®® Output = ®®EI1 Output = ®®e

5.6 The Cost of the Performance Distance

The genuine performance distance can only be found by performing exhaustive

string comparisons. This section investigates the consequence of the requirement

to find the performance distance and then looks at ways of improving efficiency.

The cost r of comparing two strings orig and comp of absolute length i

and j respectively, which consist of characters from an alphabet E, containing

c errors, is measured in terms of the number of comparisons which take place.

The efficiency of the comparator presented thus far is dependent on a number

of variables. The impact each variable has on efficiency will be considered in

this section.

5.6.1 String Length and Error Position

It is obvious that the longer the string, the greater the number of comparisons

that will be required. If comp = orig then2o :

r = i for c = 0

If there is an error in comp then the cost of comparison depends on the error

position, as shown in Table21 1.

As has already been explained, for a given error the comparator searches the

remaining length of both strings for realignment positions. It is the searching

for, and subsequent evaluation of, realignment positions which incur the greatest

cost. For example:

20The choice of i or j is arbitary because € = 0 and camp = arig.
21This table was obtained through modification of the comparator so that it counted every

comparison it made and displayed the final total.

65

II Error Position

String Length 0 1 2 3 4 5 6 7 8 9
1 - - - - - - - - - -
2 5 1 - - - - - - - -
3 13 6 2 - - - - - - -
4 24 14 7 3 - - - - - -
5 38 25 15 8 4 - - - - -
6 55 39 26 16 9 5 - - - -
7 75 56 40 27 17 10 6 - - -
8 98 76 57 41 28 18 11 7 - -
9 124 99 77 58 42 29 19 12 8 -
10 153 125 100 78 59 43 30 20 13 9

Table 1: The number of comparisons relation to string length and error position
for a missing character.

orig = abcdefgh

comp = abcefgh

An error occurs at position22 3. For all allowed values of offset, a realignment

match will occur at orig+ offset + 1 and comp+offset. For each match found, the

comparator will look ahead through the string to determine how long a given

match lasts:

offset matches substring length

0 efgh 4

1 fgh 3

2 gh 2

3 h 1
Total 10

This behaviour stems from the nested while loops in the error checking func­

tions (see Algorithm 2). The Total of the above table is given by:

(1)

22Error positions are:

• always defined in terms of the ong string.

• numbered from zero at the first character of the string.

66

Where a = the length of the substring of orig which matches an equivalent

substring of compo These offset matches occur when checking for a missing

character. The following table shows the comparisons that take place when

checking for a missing character:

I Compare Comparisons

e defgh 5

f efgh 4

g fgh 3

h gh 2

Total 14

There is a difference of 1 between each substring row for this and the previous

table23 . Thus the Total number of comparisons in the above table is given by:

(a
2 +a) --- +a

2
(2)

The number of comparisons taken by the check for an extra character function

is shown in the following table24 :

I Compare Comparisons

d efgh 4

e fgh 3

f gh 2

g h 1

Total 10

Thus the cost of checking for an extra character is provided by equation 1.

Combining these three costs gives:

(a2 + a) (a2 + a) (a2 + a) -- + -- +a+ --
222

(a2 + a) =3 -2- +a (3)

23Close examination of the two tables reveals an inefficiency in the implementation of the
comparator. A match found in an error checking function is recursively passed to the main
comparison function where the same check is re-performed. This second check is the begin­
ning of the evaluation process which gives a given realignment position a score. The cost of
this inefficiency is equivalent to the number of matching characters following an error and is
therefore deemed neglible when compared to other costs.

24Note that the single character does not appear in the substring it is being compared to.

67

orig

3
2~
~ = abcde£gh

I I
1---~~1-=----'

comp = acdegh

Figure 26: Breaking down the original string into sections.

By definition Q represents the number of correct characters following an

error. Adding the totals from each table to Q (10 + 14 + 10 + 4 = 38) gives

the same total (see Table 1) as a string of length 5 with an error at position

O. The cost of comparing the characters which proceeded the error (in this

case r([a, b, c], [a, b, c]) = 3) matches ep the error position. Thus the cost of

comparing strings of any length with one missing character is:

(
Q

2
+Q) = 3 -2- +2Q+ep (4)

Where Q = i -ep -e and ep= error position. The error position is limited to 0 ::;

ep < i.Thus as ep -t i, r(orig,comp) -t (i -1) and as i -t 0, r(orig,comp) -t

(i - 1). The constant "3" in equation 4 corresponds to the fact that there are

three possible error types.

5.6.2 Number of Errors.

The cost of comparison is also dependent on the number of errors in the comp

string. Equation 3 shows that the cost of comparison can be broken down into

sections. The boundaries of each section are determined by error position(s).

Figure 26 shows how a string is broken down into sections by its errors. The

contribution each section makes is described below:

1. If the letter ''f'' is removed from orig in Figure 26, effectively shortening

the string length by 1, it can be shown that

(a) for Q = i - e - eo (where e=no. of errors and eo is the position of

the first error):

(Q
2

; Q) + 2Q (5)

68

gives the cost of searching for a missing character

(b) equation 1 gives the cost of checking for an extra character.

In the previous section the cost of the offset lookahead function was also

given by equation 1, however in this case the lookahead function is inter­

rupted by the second error, resulting in a false result from equation 1. The

cost of the offset lookahead function is:

(A
2

: A) + e32 : {J) (6)

Where the number of characters between errors is given by A = ep+l-ep-1

(p= error number) and {J = i-el-l. Combining equations 1,5 and 6 gives:

= a2 + 3a + (A
2

: A) + ({J2 : {J) (7)

This cost is essentially the base cost to which subsequent error costs are

added.

2. This section serves a different purpose from that of sections 1 and 3. Its

role is to determine by virtue of its length (A in equation 7) how many

times section 3 is evaluated when processing section 1.

3. This section is effectively a string of length i - el with an error at position

O. Its cost is therefore determined by equation 3.

Adding the three sections gives:

where", = i-e. Thus the cost of comparison not only depends on string

length, but also on the position of errors. The principle of breaking the string

down into sections can be applied to calculate the cost of comparing strings

containing any number of missing character errors.

However equation 8 is only true for 1 < el < (i - 1) when:, > 1. For

example:

69

orig abcdefgh

comp cdefgh

In this case comp has two missing characters. Temporarily ignoring the the

letter "a" in comp results in comparison of strings of length 7 with an error at

position zero. Hence equation 4 gives the cost of this temporary comparison.

The additional cost of reinstating the letter "a" is that of comparing it with

compo Thus the cost of two consecutive errors is given by:

(
Q

2
+Q) = 3 -2- +3Q+co (9)

Where Q = i-co - C. Equation 9 also covers all cases when the second error

is at i-I

5.6.3 The Error type

Thus far the cost of comparison has only been considered in terms of a missing

character error. This section shows the cost of different error types.

5.6.3.1 Extra Characters Errors The cost of comparing strings contain­

ing extra characters is effectively the same as comparing two strings with missing

characters. Please consider the following strings:

orig abcdefgh

comp aabcdeefgh

It is obvious that for this error type the error position has to be defined in terms

of the comp string. With respect to comp, orig can be described as missing two

characters. Thus the cost of comparison is given by equation 8 having swapped

orig and compo

5.6.3.2 Wrong Character Errors The cost of comparing strings contain­

ing wrong characters is closely related to the cost of detecting other error types.

It can be shown that the cost of comparing two strings with a single wrong

character error is given by:

(
Q

2
+Q) 4 -2- -Q+c-I (10)

The cost of finding two or more wrong character errors is calculated us-
2 -

ing the same prinicple shown in Section 5.6.2. The n t n relationship remains

70

unchanged; the difference is in the constants by which it is multiplied. The

constant "4" in equation 10 corresponds to the fact that both error checking

functions find wrong character matches as described in Section 5.5.2.3.

5.6.3.3 Combined Error Types An immediate difficulty with combined

error types is the definition of error position. The position of a missing character

in comp is defined by where it appears in orig whereas an extra character in

comp is defined in terms of where it appears in comp. For example:

orig abcdefgh

comp acdeefgh

This difficulty is overcome by using the resolved length of comp. Hence the

error position at the extra character (the second "e") is 5 ("a+bcdee"). The

same approach of breaking the string down into seperate sections would yield

an an equation very similar to equation 8. The difference would lie in the

constants used to multiply the n2tn relationship. This difference arises from

the impact the second error has on the realignment of the last three characters

of the string which, in terms of offset, provide many more realignment positions

which must be evaluated. For example, the comparator makes 99 comparisons

when comparing strings 8 characters long with two missing character errors at

positions 1 and 5 respectively. It makes 173 comparisons if the second error is

changed to an extra character.

5.6.4 Number of Repeated Error Characters.

Error characters are the two differing characters pointed at by orig and comp

when an error occurs. Each subsequent re-use of an error character creates mul­

tiple realignment possibilites when determining the error type. The increased

complexity of multiple error and character interactions makes it very difficult

to derive a model of comparator behaviour. Instead comparator output will

be used to determine the underlying relationship between string variables and

comparator efficiency.

If it is assumed that for a given sequence of numbers a, a relationship of

the order an exists, then repeated differentiation of a will eventually yield a

series consisting entirely of a constant. The number of differentiations taken to

realise a constant yields the value of n and therefore the order of the underlying

relationship between the input and comparator efficiency. Table 2 shows this

process applied to the error position 1 column of Table 1.

71

String Length Error Position 1 Difference Difference

1 - - -
2 1 - -
3 6 5 -
4 14 8 3
5 25 11 3
6 39 14 3
7 56 17 3
8 76 20 3
9 99 23 3
10 125 26 3

Table 2: Repeated differentiation of a series containing a relationship of the
order o-neventually yields a constant.

Ori9 Comp I Comparisons I Diff I Diff I Diff I
abc ac 6 - - -
abcc acc 17 11 - -
abccc accc 36 19 8 -
abcccc acccc 65 29 10 2
abccccc accccc 106 41 12 2
abcccccc acccccc 161 55 14 2

Table 3: The number of comparisons for the repetition of one error character.

Repeated error characters increase the order of the underlying relationship

between the input and the cost of comparison. Consider the following strings:

orig abcccc

comp acccc

The repetition of "c" in both strings results in both error detection functions

finding multiple matches for a given offset. Table 3 shows that as the number of

repeated error characters increases, the increase in the number of comparisons

required is of the order 0-3 •

In this example the function which checks for extra characters finds fewer

realignment positions than the missing character function due to the absence

of the letter "b" in compo Table 4 shows that the effect of repeating both

error characters increases the order of the underlying relationship between string

length and number of comparisons to 0- 4 .

72

Ong Comp Comparisons Diff Diff Diff Diff

abcb acb 15 - - - -
abcbc acbc 29 14 - - -
abcbcc acbcc 66 37 23 - -
abcbccc acbccc 148 82 45 22 -
abcbcccc acbcccc 303 155 73 28 6
abcbccccc acbccccc 565 262 107 34 6
abcbcccccc acbcccccc 974 409 147 40 6

Table 4: The number of comparisons for the repetition of both error characters.

The relevance of a test case is determined by context. The strings in Tables

3 and 4 are equally valid in generic and musical contexts. Moving into a formal

language context exacerbates the efficiency problem25 • Consider the following

strings of length 45 characters, with a single missing character at error position

= 11:

orig This is a sentence that may have many repeats

comp This is a sntence that may have many repeats

It takes 26,698,407 comparisons to compare these strings. This is due to virtual

errors which are created (when the comparator is in "lookahead" mode) by

repeated error characters. Figure 27 shows the creation of virtual errors.

The example in Section 5.6.2 showed how the second error type is repeatedly

evaluated when evaluating the first error. This repetitious evaluation also occurs

when evaluating virtual errors. As the above example shows, such repetition

is hugely inefficient. Efficiency can be improved by caching the error type of

later errors, as described by Reingold[74], and using cached results rather than

recalculating the error type.

5.6.5 Cached Results

Section 5.6.1 showed how comparison strings can be broken into substrings. The

recursive nature of the comparator means that once the error type that caused

the last substring has been found, this result will always be true and can be

reused. Thus the position of the (virtual) error with respect to both ong and

25The example is given only for interest as a means of introducing the next section on cached
results. The comparator has been designed specifically for the comparison of music and as
such is not suited for comparing formal language sentences.

73

"Ij
Oti·
s:: ...,
(1)

IV
:-;l

;J>
;:l
0
;:l

ro
;.<
::>
~
'" .,...
~.

(1)
;.<
po

""'I S
~ '0

r0-
O ...,
.,...
::>
(1)

C"l ...,
(1)
po .,...
o·
;:l

0 ...,
<: ::; . .,...
s::
e:..
(1) ..., ...,
0 ...,
:"

orig=This is a sentence that may have many repeats
eomp=This is a sntenee that may have many repeats

TJ.....l.......

origeentence that may have many repeats
COIIlD&J1tence that aav have many reoeats

Orig Camp Comparisons Cached Comparisons

abcdefghij adefghij 106 106
abcdefghij acefghij 238 169
abcdefghij acdfghij 246 146
abcdefghij acdeghij 230 128
abcdefghij acdefhij 199 115
abcdefghij acdefgij 162 107
abcdefghij acdefghj 128 104
abcdefghij acdefghi 106 106

Table 5: Showing the difference in cached and non-cached results for string
length = 10 and 2 missing characters (shown in bold in Orig) at error positions
1, n where 1 > n ~ j.

comp can be used to reference a cache of error type26 . If the cache for a given

error position is not empty then the error type has previously been identified

and the cached error type is used27 •

The multiplication of equation 3 by >. in equation 8 corresponds to the

repeated evaluation of the second error. When cached results are used the

equation for the number of comparisons taken to compare two strings containing

two missing characters is reduced to:

a2 + 3a + (>.2: >.) + 2,62 + 3,6 + II: (11)

Table 5 shows the difference that cached results make to the number of

comparisons required when comparing strings containing two missing characters.

Section 5.6.4 showed that the underlying relationship between string length

and the number of comparisons was of the order 0'4 when both error characters

were repeated. Differentiation of the series shown in Table 6 reveals that whilst

the underlying relationship is still of the order 0'4, the use of cached results has

reduced the constant by which this relationship is multiplied. A comparator

26 An error (virtual or real) can interact with (and create) future (virtual) errors. Thus a
cached error type depends not only on its position with respect to orig, but also with respect
to which character in camp caused the (virtual) error.

27The implementation of a cache of error types results in slight changes to Algorithms 1
and 2. Apart form the obvious addition of code to store and use the cached error results, a
more subtle change is in the process by which the score of an error is accumulated. Previously
the iteration was passed to and fro between the compare and error checking functions, as a
means of accumulating the score of an error. Caching of results removes the need to pass the
iteration to the error checking functions, which in turn removes the mode check when calling
the error checking functions.

75

which takes advantage of cached results uses 31,911 comparisons to compare

the sentences in Section 5.6.4. For this example the comparator is just over 836

times more efficient when cached results are used.

The consequence of the requirement to find the performance distance when

comparing two strings is that, following an error, the remainder of the string

must be exhaustively compared. These comparisons are not in themselves in­

efficient as they are a system requirement. It is the repetition of the same

comparisons that is inefficient and is therefore overcome by the use of cached

information.

Speed of comparison could be further increased by dynamically limiting the

range of comparator when in "lookahead" mode, which would reduce the creation

of virtual errors. This however would compromise the ability of the comparator

to find the actual performance distance. Such restrictions would also require

the introduction of a limit on the amount by which the offset parameter could

be increased, otherwise errrors would be incorrectly identified.

5.6.6 The Matrix approach

This section is included as proof of concept and for the sake of completeness.

The work presented in this section was realised as a result of the work presented

in this entire chapter28 . The implementation of the recursive comparator gave

insights that led to the realisation of a matrix implementation.

Of all the comparison systems reviewed, Dannenberg'S offline method (upon

which his real-time method was based) came closest to finding the performance

distance. However, a path finding rule which consistently selected a "perfor-

281n other words, the matrix comparator was only realised (as a proof of concept) following
the full implementation, testing and use of the recursive comparator.

Orig Camp Comparisons Comparisons Using Cached Results

abcb acb 15 15
abcbc acbc 29 29
abcbcc acbcc 66 60
abcbccc acbccc 148 129
abcbcccc acbcccc 303 262
abcbccccc acbccccc 565 491

Table 6: Showing the difference in number of comparisons for the repetition of
one error character when cached results are used.

76

mance distance" path through the matrix for all test cases, could not be found.

Errors arose because of the limited information stored in the matrix. The matrix

did not contain information which would allow a path to be chosen (and there­

fore an error type to be determined) based on the consequence such a choice

would have on future errors. Furthermore, the matrix contained no information

regarding the number of subsequent matches a given error type would produce.

For a matrix M of size 0, c (where 0 and c are the lengths of orig and comp

respectively), Dannenberg follows the normal procedure of finding an optimum

path by starting at Mo•c and tracking backwards to Mo,o. He populates his

matrix row by row, starting at Mo,o calculating the LCS29 for given string

positions. This results in a matrix of information regarding sub-strings that

have already been processed. It has been shown in previous sections of this

chapter that correct error identification relies on choosing an error type such

that it creates the LCS from the remaining, unprocessed, sub-string.

Reversing Dannenberg's matrix populating method by starting at Mo,e gives

a matrix of Future Longest Common Substrings (FLCS). An example matrix

for the strings used Section 5.5.2.3 is shown in Figure 28. The performance

distance's path is found by starting at Mo,o and obeying the following rules (for

o = orig string and C = Comp string and 0 = 0, c = 0):

• If 00 = Cc then 0++, c++, else

1. if Mo,eH = Mo+1,eH = MoH,e then 0++, c++, else

2. if Mo,e+l > MoH,cH and Mo,cH > MoH,e then c++, else

3. if Mo+1,c > Mo+1,c+l and Mo+1,c > Mo,cH then 0++, else

4. if Mo,c+l = Mo+1,c then 0++ or c++

Numbered items 1-3 represent the identification of wrong, extra and missing

error types respectively. Item 4 is a special case for catching ambiguous errors

(see Section 5.5.1.2) where the choice between a missing or extra error is arbi­

trary. Each arrow on Figure 28 represents system output that is determined by

the above path finding rules.

Tests show that the matrix implementation acheives results that are iden­

tical to the recursive implementation. The matrix implementation is obviously

far more efficient than the recursive implementation. For example, the matrix

implementation uses 90 comparisons to complete the final test of Table 6. The

29Longest Common Substring

77

Orig: A B C 0 E F G H I J K
A 8" 7 6 5 5 5 5 4 3 2 1
B 7 1'7" 6 5 5 5 5 4 3 2 1
C 6 6 i"6" 5 5 5 5 4 3 2 1

C Z 5 5 5 1"'5" 5 5 5 4 3 2 1

0 G 5 5 5 5 1"5---5-f-5, 4 3 2 1

m H 4 4 4 4 4 4 4 "'4" 3 2 1

P I 4 4 4 4 4 4 4 4 I" 3" 2 1
H 4 4 4 4 4 4 4 4 3 I"? 1
I 3 3 3 3 3 3 3 3 3 2 1
J 2 2 2 2 2 2 2 2 2 2, 1
K 1 1 1 1 1 1 1 1 1 1 1"'1 " ..

Figure 28: Showing the performance distance path through a FLCS matrix.

sentences in Section 5.6.4 require only 2024 comparisons. The cost of compari­

son is now (0 x e) + min (o,e).

Section 5.6.2 shows that correct matches before the first error have no effect

on subsequent errors and matches. This fact can be exploited by comparing

strings until an error is found, prior to the creation of the matrix. The first

error would mark the start of substrings which would be used to create and

populate a FLCS matrix. The implentation of such a method reduced the

number of comparisons need to compare the sentences in Section 5.6.4 to 1155.

The cost of comparison is now dependent on the first error position and is given

by ((0 - eo) x (c - eo)) + min (0, e).

The efficie~cy of the matrix implementation could be improved further by:

• investigating whether the path finding rules can be optimised to eliminate

the need for string comparison when finding the performance distance

path .

• implementing an optimised matrix populating routine as described by

Ukkonen. The matrix population routine is inefficient as the majority

of matrix values calculated are never used.

This implementation obeys the rules of least number of errors and maximum

78

number of matches. It also adheres to the semantic rules laid down in Section

5.5.1.3. This matrix comparator and the recursive comparator are therefore

identical in terms of function and differ only in terms of implementation.

5.7 . Timing Information

As stated in the introduction to this chapter, the accuracy of timing information

is a useful measure of the performance of a note onset detection system. This

section considers the comparison of notes and their associated timings, rather

than just characters which have no function of time other than that implied by

the order of non-repeated characters. Without the use of timing information it

is impossible to properly compare a list of repeated notes30
•

5.7.1 Onset times

The introduction of timing information could lead to a fundamental change

in the implementation of the comparator. That is a move from a comparator

based on character postion, to one based on numerical values. Please consider

the following notes:

Original notes cdefgABC

Comparison notes = cddeffABC

In terms of order it would appear that the second "d" is an extra note and

the second ''f'' is a wrong note (corresponds with "g" from the original notes).

However Figure 29 shows that when timing information is taken into account,

the second "r' is an extra note and "g" is missing from the Comparison notes.

The example in Figure 29 uses convenient round numbers producing exact

matches between the original and comparison notes. In reality, the timing val­

ues of the orignal and comparison notes would not necessarily be exact round

numbers. This would mean that in order for the comparator to find mathces

in terms of time, two notes would have to occur within a certain time frame.

Difficulties would arise when trying to establish the limits of the frame. For

example, if the frame was too wide a series of fast notes could fall within the

catchment region of one original note. Making the frame too narrow would re­

sult in a matching pitch with poor timing being identified as an extra note and

the note it matched (in terms of pitch) marked as missing.

30For example comparison of "abed" and "acd" yields "aecd", whereas comparison of "aaaa"
and "aaa" yields "aaae". Only timing information can determine the genuine position of the
missing character.

79

Original

Note start times

Note start times

Figure 29: Notes with timing information.

Rather than using the timing information for note matching purposes it is

better to use the information as a measure of accuracy once a match has been

found, using both position and pitch. A numerically based comparator would

also lack the ability to perform comparison solely in terms of note pitch. Such

functionality is required when note timing information is either not available

(e.g. when testing the performance of a pitch tracking system which does not

give any timing output), or to be ignored to enable the pitch tracking ability

of a system to be tested without interference from (possibly inaccurate) timing

information. It is noted in passing that a numerical (i.e. time based) com­

parator can only detect missing and extra notes. A further check (using pitch

information) would be required in order to detect wrong notes. The conclusion

drawn is that the comparator should use both timing and pitch information,

but retain the ability to perform comparisons solely in terms of pitch.

The existing position based comparator was modified to use both timing and

note information when performing comparisons. The main modifications were

to:

1. Enable calculation of the accuracy of timing information for matching

characters.

2. Influence the result of a match if the matching note times differ by more

than half a second.

3. Change the "lookahead" capability of the error checking functions to take

timing information into account.

The following tests, based on the first two tests in Section 5.5.3, show how

timing information influences the output of the comparator.

80

I·

Original

Start times (secs) 1.0
~~~~-L-L-L-L~~+-~~L-~~~~~-L-L-L-L-L~ 

Figure 30: Test one using timing information. 

5.7.1.1 Test 1 Figure 30 shows the input strings and their timings and 

highlights where the errors occur. The table below shows the output from the 

comparator, with errors shown in bold. The timing column only shows the 

accuracy of timing for correct notes. A value of zero indicates an exact match. 

No. Orig Comp Output Timing No. Orig Comp Output Timing I 
1 a a a 0.00 16 n n n 0.00 

2 b b b 0.00 17 0 0 0 0.00 

3 C C C 0.00 18 P P P 0.00 

4 d e 19 q q q 0.00 

5 e e e 0.00 20 r r r 0.00 

6 f f f 0.00 21 S S S 0.00 

7 g g g 0.00 22 t W ® 

8 h h h 0.00 23 U U U 0.00 

9 i i i 0.00 24 V V V 0.00 

10 j j j 0.00 25 W W W 0.00 

11 k k k 0.00 26 X X X 0.00 

12 k El1 27 Y Y Y 0.00 

13 I I I 0.00 28 Z Z Z 0.00 

14 m m m 0.00 

As expected the comparator successfully identified correct notes as being in 

time. The timing of the certain Comparison notes in Figure 30 were modified 

as followed: 

• "C" - Changed from 3.0 to 4.0 

• the first "k" - Changed from 11.0 to 10.3 

• the second "k" - Changed from 11.2 to 11.0 

81 



• "w" - Changed from 20.0 to 20.7 

The Table below shows the new outcome as a result of these changes: 

No. Orig Comp Output Timing No. Orig Comp Output Timing 

1 a a a 0.00 16 n n n 0.00 

2 b b b 0.00 17 0 0 0 0.00 

3 C e 18 p P P 0.00 

4 d c 0 19 q q q 0.00 

5 e e e 0.00 20 r r r 0.00 

6 f f f 0.00 21 S S S 0.00 

7 g g g 0.00 22 t e 
8 h h h 0.00 23 W E9 

9 i i i 0.00 24 U U U 0.00 

10 j j j 0.00 25 V V V 0.00 

11 k E9 26 W W W 0.00 

12 k k k 0.00 27 X X X 0.00 

13 I I I 0.00 28 Y Y Y 0.00 

14 m m m 0.00 29 Z Z Z 0.00 

The comparator has taken these new timings into account and has produced 

an output which violates the semantics of Section 5.5.1.3. This is permissable 

however as the error definition semantics only apply when timing information 

is not available. Comparison of rows 11 and 12 with the previous table shows 

how timing information has effected the output revealing that the extra note 

was played before the correct note, rather than after it. 

5.7.1.2 Test 2 Figure 31 shows the input strings and their timings 

This test shows how timing information influences the outcome of a match: 

Original Notes 

'l'imes (secs) 

Figure 31: Using timing information 

82 



No. Orig Comp Output Timing No. Orig Comp Output Timing 

1 a a a 0.00 16 0 e 
2 b e 17 p e 
3 c 7 ® 18 q e 
4 d e 19 r e 
5 e e 20 s e 
6 f e 21 t e 
7 g e 22 u e 
8 h e 23 v e 
9 i e 24 w e 
10 j e 25 x e 
II k e 26 y e 
12 I e 27 z e 
13 m e 28 e E!1 

14 n z ® 

The timing information has influenced the position of the "z" so that a wrong 

note match would be found. 

5.7.1.3 Test 3 This test shows the system reporting on the accuracy of note 

onset times with respect to the timing of the origna!. Figure 32 shows the test 

case which produced the following output: 

Original Notes 

Onset Time (sees) 

Comparison Notes 

Onset Time (sees) 

Figure 32: Inaccurate notes used for Test Three 

83 



Original Notes abc d e f g 

Onset Time (sees) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

Note Length (sees) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Comparison Notes 

Onset Time (sees) 

Note Length (sees) 

a 
1.0 

1.0 

b w d 

2.0 3.0 4.0 

1.0 1.0 1.0 

e f g 

5.0 6.0 7.0 

1.2 0.7 1.0 

Figure 33: Test case with note lengths. 

Original Notes Comparison Notes Output Timing 

a a a 0.00 

b b b 0.1 

c c c -0.1 

d d d 0.23 

e e e 0.00 

f f f 0.00 

g g g 0.2 

Positive or negative times indicate late or early notes respectively. The 

comparator has worked as expected and has provided a measure of note start 

time accuracy. 

5.7.2 Release Times 

Another aspect of music transcription is the detection of the length of a given 

note. The compare function was modified so that the length of correct matches 

are compared and a measure of note length accuracy is given. 

Figure 33 shows the test case used to produce the output shown below: 

I Orig I Comp I Output I Timing I Length I 
a a a 0.00 0.00 

b b b 0.00 0.00 

c w 181 

d d d 0.00 0.00 

e e e 0.00 0.20 

f f f 0.00 -0.30 

g g g 0.00 0.00 

84 



The system behaves correctly in that it: 

• ignores the length of the incorrect note 

• shows note "e" is 0.2 seconds longer than its counterpart in the original 

• shows note ''P' is 0.3 seconds shorter than the original 

5.8 The Testing of Cirotteau's PitchTracker 

Cirotteau's[15] real-time PitchTracker system uses phase vocoder techniques to 

extract partials from a signal. A maximum-likelihood function is used to de­

termine which partial corresponds to the fundamental frequency of the signal. 

A tunable stability threshold is used to determine whether the detected funda­

mental corresponds to a note. If a fundamental is detected x times then a MIDI 

note-on event is recorded. A more detailed explanation of the PitchTracker can 

be found in Appendix A. 

The ten system tests used in the following sub-sections have been designed 

to test different aspects of note detection systems. MIDI files were generated by 

a modifed31 version of Gunter's MIDI Compiler (GMC)[86]. This MIDI file is 

the common start point defined in Figure 15. TiMidity was used to generate 

the wave files which were analysed by Cirotteau's PitchTracker system, which 

in turn produces a MIDI file of what it "hears,,32. A MIDI data extraction utility 

parses the MIDI files and creates an output file with the following stucture: 

• A list of notes 

• A list of note onset times 

• A list of how long each note lasts 

The comparator uses available data from the above above structure to compare 

the original and wave file derived MIDI files. TiMidity was configured to use a 

piano sound (which allows the decay of each note to overlap with the next note). 

For each test case the MIDI file output of GMC is shown as a musical score to 

give a good representation of the information the PitchTracker was presented 

with. 

31The modified software generates minimalist midi files, making the implementation of the 
midi data extraction utility much easier. 

32The wave files generated by TiMidity had to be amplified by -24dB. Without this ampli­
fication the PitchTracker was unable to detect the notes in the generated files. -

85 



The PitchThacker was tuned so that it was able to detect and register the 

fundamental frequencies of notes in the tests. The tests were performed three 

times; one run for each of the available FFT bin resolutions. Apart from Test 

Three, the detailed results that follow are all from tests performed with 512 

bins. The results of test three come from a test performed with 1024 bins. 

The PitchThacker does not provide timing information other than that im­

plied by note order. Comparisons will therefore be based on note order. 

86 



5.8.1 Test One 

This test consists of seven notes of 1 second duration, four of which are in a 

very high register (note the octave marking on the score). 

Original MIDI Score, notated by midi2ly33: 

B 

'BJ 
Comparator Output - Test One 

Orig Comp Output 

0 # ® 

J J J 

e -
T T T 

e -
J J J 
0 0 0 

The characters in the above table34 reflect the fact that the system is now 

comparing actual MIDI note data35 . The ASCII pitch note values used all fall 

within the printable range of characters. The comparator provides the following 

summary: 

Notes found: 

Total Correct 4 57.14% 

Total wrong 1 14.29% 

Total Missing 2 28.57% 

Total extra 0 0.00% 

33Midi2ly is a utility that comes with the lilypond[l) musical typesetting software used 
througout this thesis for all musical excerpts. 

34 This applies to all results tables in Section 5.8. 
35The pitch byte is used for comparison purposes. 

87 



5.8.2 Test Two 

This test is based on a two octave scale (29 notes) with the note length set to 

1 second. Original Score: 

$Cl)J) J I) J r ric E r rifEfE I 

J J I J t -

As can be seen from the score, the sixth and seventh notes of the second 

octave are an octave higher than normal. Such notes would be described as un­

expected by a human listener, as they will assume they are listening to a scale. 

The change in octave would lead to the human questioning their original as­

sumption. The inclusion of such high notes tests the ability of the PitchTracker 

to detect notes which are short due to their high register. 

Comparator Output - Test Two 

No. Orig Comp Output No. Orig Comp Output 

1 < < < 16 - e 
2 > > > 17 ) ) ) 

3 @ @ @ 18 0 0 0 

4 A A A 19 M e 
5 C C C 20 L L L 

6 E E E 21 J J J 

7 G G G 22 H H H 

8 H H H 23 G G G 

9 J .J J 24 E E E 

10 L L L 25 C C C 

11 M e 26 A A A 

12 0 0 0 27 @ @ @ 

13 I I I 28 :> > > 

14 - 8 29 < < < 

15 T T T - - - -

88 



As the above results show, the PitchTracker missed two of the "high" notes. 

Comparator Summary: 

Notes found: 

Total Correct 25 86.21% 

Total wrong 0 0.00% 

Total Missing 4 13.79% 

Total extra 0 0.00% 

5.8.3 Test Three 

This test consists of five repeated notes, at the same pitch, of 1 second duration. 

Original Score: 

~eJJJJIJt-

Comparator Output - Test Three 

Orig Comp Output 

A A A 

A e 
A e 
A e 
A e 

Comparator Summary: 

Notes found: 

Total Correct 1 20.00% 

Total wrong 0 0.00% 

Total Missing 4 80.00% 

Total extra 0 0.00% 

The summary table in Section 5.9 shows that the PitchTracker struggled with 

this test. The test performed with 1024 bins was ~~e only one that produced 

a result. This result arises as a direct result of the PitchTracker's approach 

to note detection. Each subsequent note is viewed by the PitchTracker as a 

continuation of the first. 

89 



5.8.4 Test Four 

This test is the same as Test Two but the note length has been halved. Original 

Score: 

Comparator Output - Test Four 

No. Orig Comp Output No. Orig Comp Output 

1 < Z 0 16 e -
2 > > > 17 I I I 
3 @ @ @ 18 0 0 0 

4 A A A 19 M e 
5 c C C 20 L L L 

6 E E E 21 J J J 

7 G G G 22 H H H 

8 H H H 23 G G G 

9 J J J 24 E E E 

10 L L L 25 C C C 

11 M e 26 A A A 

12 0 0 0 27 @ @ @ 

13 I I I 28 > > > 

14 = 0 29 < < < -
15 T T T - - - -

Comparator Summary: 

Notes found: 

Total Correct 24 82.76% 

Total wrong 2 6.90% 

Total Missing 3 10.340% 

Total extra 0 0.00% 

As the speed at which the notes are played increases, the accuracy of the 

PitchTracker decreases. 

90 



5.8.5 Test Five 

This test is the same as Test Two but the with a combination of note lengths. 

Original Score: 

Comparator Output - Test Five 

No. Orig Comp Output No. Orig Comp Output 

1 < < < 16 e -
2 > > > 17 I I I 
3 @ @ @ 18 0 0 0 

4 A A A 19 M e 
5 C C C 20 L L L 

6 E E E 21 J e 
7 G G G 22 H H H 

8 H H H 23 G G G 

9 J J J 24 E E E 

10 L L L 25 C C C 

11 M e 26 A A A 

12 0 0 0 27 @ @ @ 

13 I I I 28 > > > 

14 e 29 < < < -

15 T T T . -

Comparator Summary: 

Notes found: 

Total Correct 24 82.76% 

Total wrong 0 0.00% 

Total Missing 5 17.24% 

Total extra 0 0.00% 

The PitchTracker has missed higher, and in some cases shorter, notes. 

91 



5.8.6 Test Six 

This test is a five note ascending scale with each note repeated. The repeated 

note is twice the length of the first. Original Score: 

~e J J ) J J Ji J 

Comparator Output - Test Six 

Orig Comp Output 

< e 
< e 
> > > 
> e 
@ @ @ 

@ e 
A A A 

A e 
C C C 

C e 

Comparator Summary: 

Notes found: 

Total Correct 4 40.00% 

Total wrong 0 0.00% 

Total Missing 6 60.00% 

Total extra 0 0.00% 

Apart from the first pair, the PitchTracker has assumed that the harmonics 

of the second note are a continuation of the first note. 

92 



5.8.7 Test Seven 

This test is a three note ascending scale of grouped notes. Each group has three 

notes, of which each is an octave higher than the previous. Original Score: 

~B J r f J I r f J r f t -

Comparator Output - Test Seven 

Orig Comp Output 

< e 
H H H 

T T T 

> > > 
J J J 

V V V 
@ @ @ 

L L L 

X e 

Comparator Summary: 

Notes found: 

Total Correct 7 77.78% 

Total wrong 0 0.00% 
Total Missing 2 22.22% 

Total extra 0 0.00% 

93 



5.8.8 Test Eight 

This test contains twenty-four random notes all of length 1 second. Original 

Score: 

, II r r L J I r J t J I r J r r I J r r J It F r r IF r r r I 
Comparator Output - Test Eight 

No. Orig Comp Output No. Orig Comp Output 

1 Q r ® 13 @ @ @ 

2 L L L 14 H H H 

3 0 0 0 15 G G G 

4 > > > 16 > > > 

5 M = ® = EEl 

= EEl 17 S S S 

> EEl 18 H H H 

6 < < < 19 Q Q Q 

7 S S S 20 J J J 

8 @ @ @ 21 L L L 

9 M e 22 M e 
10 E E E 23 Q Q Q 

11 J J J 24 J J J 

12 L L L - - - -

Comparator Summary: 

Notes found: 

Total Correct 20 74.07% 
Total wrong 2 7.41% 

Total Missing 2 7.41% 
Total extra 3 11.11% 

94 



5.8.9 Test Nine 

This test is the same as Test Two but this time the note length is set to 1/3 of 

second. Original Score: 

Comparator Output - Test Nine 

No. Orig Comp Output No. Orig Comp Output 

1 < = ® 16 e 
2 > > > 17 I I I 
3 @ @ @ 18 0 0 0 

4 A A A 19 M e 
5 C C C 20 L L L 

6 E e 21 J J J 

7 G G G 22 H H H 

8 H H H 23 G G G 

9 J J J 24 E E E 

10 L L L 25 C C C 

11 M e 26 A A A 

12 0 0 0 27 @ @ @ 

13 I e 28 > > > 

14 e = EB 

15 T T T 29 < < < 

Comparator Summary: 

Notes found: 

Total Correct 22 73.33% 

Total wrong 1 3.33% 

Total Missing 6 20.00% 

Total extra 1 3.33% 

A consequence of the speed increasing is that the accuracy of the PitchTracker 

decreases. 

95 



5.8.10 Test Ten 

This test is a series of random notes interspersed with rests. Original Score: 

F r - F r r r 
Comparator Output - Test Ten 

Orig Comp Output 

Q # ® 

H H H 

J J J 

L L L 

M e 
0 0 0 
Q Q Q 

Comparator Summary: 

Notes found: 

Total Correct 5 71.43% 

Total wrong 1 14.29% 

Total Missing 1 14.29% 

Total extra 0 0.00% 

5.9 Summary of PitchTracker Results 

The results for the PitchTracker in terms of the number of Correct, Wrong, 

Missing and Extra notes are shown below36 (Bold entries indicate the best 

result for a given test): 

36 A blank entry indicates that the PitchThacker failed to detect any notes and as a result 
did not produce a MIDI file. 

96 



Test No. 

1 4 1 2 0 1 0 6 2 - - - -
2 25 0 4 0 21 0 8 0 20 7 2 12 

3 - - - - 1 0 4 0 - - - -
4 24 2 3 0 22 1 6 0 17 8 4 10 

5 24 0 5 0 21 0 8 0 20 4 5 15 

6 4 0 6 0 4 0 6 0 9 0 1 0 

7 7 0 2 0 8 1 0 0 6 2 1 3 

8 20 2 2 3 20 1 3 1 15 6 3 12 

9 22 1 6 1 21 0 8 0 13 4 12 7 

10 5 1 1 0 0 4 3 0 3 3 1 1 

The results of Tests Three and Six, highlight the problem with the approach 

of the PitchTracker: repeated consecutive notes of the same pitch will be missed. 

Systems which rely on the "steady state" of a note will always underperform 

when compared to systems that rely on note onsets. This is borne out by the 

correlation between an increase in the speed of play resulting in a decrease in 

note detection accuracy, shown most explicitly by Test Nine. 

The above results show that the PitchTracker performs best when set to use 

an FFT resolution of 512 bins. In theory, the performance for larger bin sizes 

could be improved by tuning other Pitch Tracker control variables. For example, 

the high number of extra notes in the case of 2048 FFT bins could be reduced by 

increasing the number of times a fundamental has to be present in consecutive 

windows before it is counted as a note. 

The fact that the PitchTracker has to be tuned can be viewed as both a 

weakness and a strength. It's weakness is that it is not suited to universal pitch 

tracking situations. The strength of tuning means that if only one instrument 

is to be tracked, the PitchTracker can be adjusted to find the optimum settings 

for the instrument in question. The comparator along with a script, could be 

to used determine the optimum settings for a given instrument. 

In summary the Pitch Tracker produced by Cirotteau has satisfactorily iden­

tified and track.9d the pitches in the test wave files. These tests have however 

highlighted the need to detect the actual start of a note. A note detection sys­

tem, based on the principles established in the preceding chapters, is presented 

in the next chapter. 

97 



6 The Detection of Notes 

Inherent characteristics of a musical note produced by a real musical instrument 

are its harmonic and inharmonic structure. These features can be exploited in 

order to determine: 

• the start of a note; 

• the life of a note. 

This section describes the processes involved in detecting the start of unknown 

notes and the subsequent tracking of their (unknown) harmonics through time 

sliced FFT frames and then storing relevant37 data. 

6.1 Overlapping Data 

When moving from the time to frequency domain it is customary to employ 

overlapping FFT windows in order to build the spectral content of a signal over 

time. However, whilst the actual FFT windows overlap, the data within the 

window is zero-padded according to the level of window overlap, such that the 

signal is sliced into thin strips as shown in Figure 34. The problem with slicing 

the signal in this way is that the abrupt crossover from zero padding to actual 

signal introduces artefacts in the FFT results. The greater the overlap, the 

thinner the strip of data. With a frame size of 2048 samples an overlap of 8 

gives a strip of data 256 samples wide, or 5ms long (using a Sample Rate of 

48000). By definition such thin slices of signal cannot yield as much spectral 

information as a FFT window populated entirely with signal data. This makes 

it very difficult to track the growth of note information on a frame by frame 

basis; such thin strips of data result in FFT bins with very low magnitudes. 

37Relevant data includes inharmonic and onset transient information. 

98 



Frame 
Number 

Time 

, . . . : I . I ,- - - - :- - - -: - - - - - -,. - - - ,- - - "i - - - - - - ~ - - -,- - - - - - --, 

kY1 
Padding: . 
Zeros : ____ , ___ ~ __ _ 

, . 
- - - '; - - - ;- - - ~ - - - :. - - - -- - - - -- - - - - -

, : 682: 

~ 
. , , 

Pa~ding : r-'---'--j 

ZEfQ~ -: - ~-=-=-=-==-=-=-='. 

Padding : 
I Zeros : I : I • : r - - - ;- - - -: - - - i' - - - :- - - - :- - - -. - - - -; - - - - - - - - - - - - - - -

' ~9 : ' : 
: : Padding : . : : . . I 

'- ___ : __ Zecos_l ___ ~ ___ : ___ .1 ___ : ___ ;", ___ , _______ _ 
I • , I . : I : • I 

. . 

Figure 34: Overlapping zero padded FFT windows. 

The alternative to thin strips of non-overlapping data is to use fully popu­

lated FFT frames as shown in Figure 35. This ensures that for a given slice of 

the input signal , there is sufficient data in the window to adequately represent 

each part ial. As there is no crossover from zero-padded entries to actual data 

within a window, FFT artefacts are vastly reduced. This latter approach was 

adopted because it gives consistent partial information from frame to frame. 

The system processes a wave by slicing it up into sections of 64 overlapping 

frames with an overlap of 256 samples. As each frame is processed the contents 

of each bin are stored in a number of arrays. These arrays store information 

concerning bin magnitude, phase and phase difference when compared to the 

same bin in the previous frame. Once the 64 frames of a given section have been 

processed, partiaU ists can be built which track spectral energy from frame to 

frame. 

In order to build such lists it is necessary to identify which bins contain 

spectral peaks which relate to note information. The orthodox methodolgy is to 

employ a peak picking algorithm, having first eliminated peaks whicq fall below 

99 



Frame 
Number I I:' 

Time 

!-- -: ---: ---~ ---:- -- ~-['F-'-~-W~'-ind-OW"""'r 
I :L i : : : · : 
I :: ;: : :: 

, : : I : : I : : 

~ - - -:- - - -;- _ •• - - - :- - - -;- - - ~- -- + - - - :- --
" , 

" , 
~---~ --~---t---~--~---~---;---~--, , , , 

I • • I • • , • • 

~ -- - :-- -~---~---~- - ~---~ ---~--- ~ --, , , 

, , , , 
- - T - - - - - - . ' . - - -. -

Figure 35: Fully populated overlapping FFT windows. 

a certain amplitude threshold[50] . Locating (in)harmonic peaks within FFT 

results is non-trivial and in the context of note onset detection, is something of a 

chicken and egg situation. Before a note starts its (in)harmonics are (obviously) 

unknown, the system will therefore not know which peaks are relevant. 

This problem could be overcome by employing some form of harmonic model. 

Such harmonic models have to make an assumption regarding the frequencies 

of the harmonics of a potential note. Such assumptions would be based on 

the "steady state" part of a note. This in turn relies on the false assumption 

that the harmonic content of the steady state is the same as that at the start. 

Such an approach would lead to vital, short lived (in)harmonics, being missed. 

At the start of a note the very low spectral energy of a harmonic makes it 

indistinguishable from surrounding noise peaks, rendering an amplitude-based 

peak picking algorithm virtually useless. 

An alternative approach adopted in this method is to treat all peaks in a 

frame as valid note information. Spectral peaks which relate to a genuine note 
.J , 

will persist in consecutive frames, whereas noise pe,:ks will feature inconsistently 

in non-consecutive frames. The outcome of this is that the relevant peaks au­

tomat ically group themselves into lists of genuine note data and spurious data 

e.g. noise. Noise produce very short intermittent lists which can be ignored but 

100 



not necessarily discarded. This method is in keeping with the guiding principles 

of the human auditory system, established in Chapter Two. 

As each peak is assigned to a list its frequency is calculated using the Phase­

Vocoder technique. The expected difference in phase from the same bin in 

the previolls frame is compared with the actual difference in bin phase. The 

expected phase difference is the advance in phase of the centering frequency of 

the bin, taking the proportion of frame overlap into account. The difference 

in the actual phase and expected phase relates directly to the deviation in 

frequency of the spectral peak from the centering frequency of the bin. This 

process is explained in depth by Cooper and Bailey[18], who in turn refer to the 

work of Brown and Puckette[12]. 

Algorithm 3 Peak Search Method 
while n < number _of _frames do 

if env[i] < 0 and env[i - 1] > 0 then 
create a new instance of a list item shown in Figure 36 
fill data structure instance with peak data 
n=n+1 

end if 
end while 

The first order differential of a frame is calculated and all positive to negative 

turning points are recorded as possible note related peaks, as shown in Algorithm 

3. Having processed all overlapping frames, each spectral peak is added to the 

list structure, shown in Figure 36. 

6.2 Building Lists 

The first frame of results are used to construct an initial list of spectral peaks 

against which subsequent frames are compared. Algorithm 4 shows how data 

from subsequent frames are either added to an existing partial list or used to 

create a new list resulting in a store of all known spectral information (an 

example of which is shown in Figure 36). From this point on the phrase "Partial 

Lists" will be used to refer collectively to each List of Partials (LoP). Table 

7 shows the raw.data (as stored by the data structure in Figure 36) used for 

Figure 39. The data is shown in an expanded form (non-consecutive list items 

have been padded with zeros) for ease of display in a table (in total, 50 items 

of data were used to plot Figure 39). 

The list building routines construct lists on a bin by bin basis.. Vibrato, 

101 



1- - - 1 -I I NUl lis! Next US! NeX( liM Next LisI ~ List of Partial LiSli ) 

__ ~~~~::~ __ 1~1-----~C-'-'-~~'~----~ -----~:~=~-i;j1-----~:t-:'-·:-i2jq------------------------------------
Bin Number Bin Number NULL Bin Number 

Frame I M.gnitude Magnitude T M'gnimde 

--~ --~ IL--~ 
- r Spcctnd Peak 
~'---'-----' 

___ ~~~~_~ __ ~~~:~------q--------::u~-~~~-~-:--~~~ _;;;_l ____ ~t!?~: ---l;q-----------------------
Bin Number Bin Numbcr Bin Number Bin Number 

Frame 2 Magnitude Masnitude Magnitude Magnirude 
FFT Frame No. FFT Fnuno No. FFTFrameNo. FFT Frame No. 

----------------"::--;~;:~------q------;~:;; -----~ --------;~~~:-lj----q-----~:.~~~-Iij---q----------
Bin Number Bin Number Bin Number 

FFT Prllme No. 
MlIgmtudc 

ffTFramc No . 
Frame 3 Magnitude 

fFT Frnmc No. 

Magnitude 

....... -...... -.- .. -.... ~;~'~?=·l-------- -··--1;-·-
Bin ~umhcr Bm ~umbcr Bin Number Bin Number 

Frame 4 ,\1Ul:lflHUJc 
------;---

MlIg"'u"Jc: Maglllludc Mllinilude 
FFT FnllllC ~u. FFr Frume Nu. FFTFrameNo. FFT Frume No. 
~cXl Pan tal l ~'" P,ni,l 

~ 
Ne,,' Partial 

1 
Nellol Panial 

- Pre\' Paniul - Prev Puniul ~ Prev Parlial - Prey Panial l 
Figure 36: An example of the data structure used to store all potentially relevant 
note information. 

Frame No. Noiae Genuine Harmonic Frame No. Noise Genuine Harmonic 

1 0 3.53 16 0 1.66 

2 0.74 3.27 17 0 3.85 

3 0.5 2.97 18 0 10.37 

4 0.54 2.78 19 0 19.73 

5 0 2.37 20 0 29.51 

6 0 1.76 21 0 38.27 

7 0 1.39 22 0 44.13 

8 0 0.83 23 0 47.56 

9 0 0.97 24 2.07 50.4 

10 0.98 0.86 25 0 53.8 

II 0 1.05 26 0 58 

12 028 1.01 27 0 62.76 

13 "p 62 I 28 0 67.06 

14 1.06 0.94 29 0 70.98 .. 
15 0 0.77 30 0 73.48 

Table 7: Table of the first thirty items of data used to plot part of ~igure 39 

102 



~ 
~ 
u. 

1425 

1424 
1423 
1422 
1421 

1420 
1419 

fI! 
V 
1 

1418 
1417 f-lvv 
1416 
1415 
1414 
1413 

1412 
1411 
1410 

400 

" v 

;, " 
" v 

'IV 

425 

h .- ...., 

? " 
3 "'!. ~~ 

v v V V V 

~ Ft 

" " • 
~ " " 
~ " " J \. J v 

V 

450 475 500 525 

Frame Number 

61 

~ 
v \ 

v • 

" I~ 

" v " " \} '\ : 
'(ol1 'Y 

60 

550 575 500 

Figure 37: Showing the frequency and bin information of a spectral peak as it 
is tracked across successive frames. 

and the volatile nature of transients in the onset of a note result in spectral 

energy peaks jumping back and forth across bin boundaries. A spectral peak 

tracking routine is used to determine whether an energy peak jumps, or "hops", 

from one bin to another. The routine builds a paired list of points where a 

LoP starts and stops. For example the start-stop list for the noise column of 

Table 7 would be {[2 --+ 4], [10 --+ 10], [12 --+ 14], [24 --+ 24]}. Starting with the 

LoP that contains the largest spectral peak, the start-stop list of each LoP is 

compared with an immediately adjacent LoP start-stop list. If the start-stop 

points inversely correspond, then the LoPs are merged. Start-stop lists that 

clash or overlap prevent LoPs from merging. 

Each data item in the merged LoP stores the bin number of the list it 

originated from. Figure 37 shows a small section of a LoP for the third harmonic 

of a note played with vibrato on an oboe, recorded at a sampling frequency of 

48,000Hz. As Figure 37 shows, the routine successfully tracks the spectral peak 

as it alternates between bins 60 and 61. According to Figure 37 the spectral 

peak "hops" from one bin to another when its frequency passes 1418Hz. This 

behaviour is entirely expected: the bin resolution for 2048 bins at a sample rate 

of 48,000Hz is 23.44Hz. Thus the cross over point, or bin hop threshold, of bins 

60 and 61 is (60 x 23.44) + 23244 = 1417.97Hz. 

At present LoPs are selected for submission to the spectral peak tracking 

routine using a top down approach, i.e. according to the magnitude of their 

103 



1000 

15)0 

1560 

1570 

~ 1.160 

~ 
1550 

u. 1 SolO 

1530 

1520 

1510 ~ 
""J 1500 

o 50 

L .......... 
~ 

I .."". 
~ 

100 H50 200 

Frame Number 

I 
..Y'" 

300 

.All 

67 

65 

04 

350 

Figure 38: Showing the tracking of glissando as it crosses successive bins. 

spectral peaks. This process is carried out once: that is, no attempt is made to 

merge a currently merged LoP with further LoPs. Further checks are deemed 

unnecessary because a spectral peak does not usually hop between more than 

two bins. The exception to this rule are glissandos which can tranverse a number 

of bins. For completeness, Figure 38 shows that if the peak tracking routine is 

made to operate accumulatively (that is, merged lists are subsequently compared 

to and merged with other adjacent LoPs (assuming such lists exist)), it can 

successfully track bin hops which result from glissandos. Figure 38 shows the 

tracking of a sine wave generated to change in a linear manner from 15,OOOHz 

to 16,000Hz. A generated tone has been used in this example to provide proof 

of concept. In practice interference from other harmonics within a note causes 

noise in sections of a LoP which would need to be empty in order for it to 

be repeatedly merged. Bin 67 in Figure 38 covers frames 220 to 305. Any 

spurious noise peaks in frames 131 to 219 and 306 to 342 would prevent the 

LoP associated with bin 67 from merging with adjacent LoPs. 

Spurious spectral peaks form non-consecutive lists of isolated peaks (e.g. 

the second list of Figure 36), which can be discarded. This method successfully 

tracks the growth of a harmonic from very low spectral energy levels as shown 

in Figure 39. 

6.3 Identifying Potential Onset Points 

At this stage the Partial Lists contain either noise or noise and a potential note 

onset. When presented with such a scenario, the brain-ear combination is able 

104 



Signal 
Mag. 

IIIilI Noise 
• Genuine Harmonic 

Figure 39: Magnitude of noise peaks and a genuine harmonic plotted against 
time. 

to identify a change in sound energy and distinguish whether the cause of this 

change was due to noise or a note. A factor in making this distinction is that 

the magnitude of data relating to a genuine note will increase throughout its 

onset, whereas whilst noise energy levels can fluctuate, they do not exhibit the 

same growth characteristics as a note. The sound from a musical instrument 

is complex, built up from a number of related harmonics, each contributing to 

the ·overall energy level of the note. The growth of a note can be identified 

as a rising trend in the Partial Lists, separating note data from that produced 

by noise. The system flags any LoP which contains four consecutive frames 

whose partial magnitudes exhibit an overall minium increase of 0.5% of the 

total available FFT energy. This mimics the just noticeable difference threshold 

of the human ear. Such growth is considered as primary growth and the LoP 

is modified to indicate this. A second sweep flags lists which exhibit an overall 

minium increase of 0.1 % of the total available FFT energy. This lower rate of 

change is considered as secondary growth. This second sweep ensures that as 
...,I 

much relevant information as possible is included i~, the data of a note. 

The purpose of these low minimum levels is twofold: it accounts for the fact 

that overall note energy is spread across a number of (in)harmonics, and also 

allows notes with slow onsets to be detected. Simultaneous primary.growth of 

105 



Algorithm 4 The creation of Harmonic Lists. 
for all peaks in the first fft frame do 

add apeak' sBin Index to the Harmonic List 
end for 
while n < number _of _frames do 

for all peaks in fft frame n do 
if peak Bin Index = Bin Index already in Harmonic List then 

add peak to end of list for current Bin Index 
else 

insert new list heading for this peak Bin Index 
end if 

end for 
n =n+ 1 

end while 

2 or more LoPs, which are non-adjacent in a numerical rather than list sense, 

are deemed to be genuine notes. In theory, ensuring that LoPs are numerically 

non-adjacent is surplus to requirement. A LoP is a series of the same spectral 

bin through time, which by definition means adjacent LoPs cannot represent 

consecutive bins. However, this situation can arise if LoPs have been merged 

because of bin hopping. For example, a merged list containing data from bins 2 

and 3 is considered numerically consecutive to another list containing data from 

bins 4 and 5. 

6.4 Harmonic Growth. 

Having found a position in a LoP which exhibits primary or secondary growth, 

the system progresses through the remainder of the LoP and records the number 

of list items which continue to exhibit growth. The harmonic growth length is 

not necessarily the length (through time) of the traditional "attack" of a note (Le. 

until peak amplitude is achieved). Figure 40 illustrates this difference. By the 

time point A in Figure is reached, the harmonics of the note are fully established, 

the subsequent growth of the harmonic is considered to be a change in the 

dynamic level of the note. Thus, point A is the stop point of the growth of that 

particular harmonic. This restriction reduces the range in which simultaneous 

growth of harmoniow'can be detected, which in turn aids the allocation of Partial 

Lists into groups, explained in the next section. 

106 



Q) 

(ij~ c .-
OIC 
.- 01 en co 

:::E 

Ideal Typical 

Time Time 

Figure 40: Showing the difference between the onset growth of an ideal note 
and an example of a typical note. 

6.5 Grouping 

Chapter Two discussed the manner in which the human auditory system groups 

incoming sound information. As the use of harmonic models is being avoided 

LoPs are grouped according to temporal information. Thus, in order to deter­

mine where (in)harmonic growth occurs, flagged LoPs are grouped according 

to their growth start and stop points. The scope of each group is determined 

by its members. A LoP can only be a member of one group. Membership of 

a group is dependent on the start or stop point of a LoP overlapping with the 

start or stop point of a group. 
Any group containing only one LoP does not meet the two or more LoP 

requirement set earlier and is therefore not indicative of the start of a new note. 

However, it is not immediately discarded. The single LoP is compared against 

existing note data, the reason for this is given in Section 6.7. The group with 

the ,lowest start point is taken to be indicative of the position in the Partial 

Lists where a genuine note starts. If this note start point is towards the end of 

the results in a section the system repositions itself by advancing forwards as 

if no note has been found and restarts the list building process. The potential 

note start will then appear towards the middle of a LoP, ensuring that all the 

(in)harmonics of a note and their growths will be detected. 

The overlap described in Section 6.1 gives a time resolution of 5.33ms. This 

resolution can be dramatically improved through the use of small steps to reverse 

through signal data . 
.-P 

107 



6.6 Listening Backwards 

In order to find an accurate actual note start, the system steps backwards38 

through the signal data by 16 samples, repositioning a single FFT frame as long 

as: 

• it detects 2 or more spectral peaks that correspond to the harmonics of a 

group . 

• for a given bin, the magnitude of the spectral peak detected is less than 

that of the bin in the original LoP where the potential start was detected. 

This is so that repeated notes which run into each other can be detected 

and tracked. 

The step back size of 16 samples results in a time resolution of 3331-£s (using a 

sample rate of 48,OOOHz). The plots39 shown in Figure 41, starting at the top 

left and ending at the bottom right, show what the system "hears" as it steps 

back through the wave. 

As the frame moves closer to the start of a note, it becomes more difficult to 

identify spectral peaks which correspond to the note. The spectral energy of a 

partial becomes spread across bins such that there is no discernable peak. This 

loss of peak marks the point at which a given partial begins to grow. In this way 

each note (in)harmonic is assigned an individual start point. The start point is 

taken as the end of the frame in which the (in)harmonic peak loss occured, as 

shown in Figure 4240 . The signal level at the assignment point is typically of the 

order of -49dB, compared to the signal at its peak. In reality (and by definition) 

this point will always lag the physical point in the wave file where data is known 

to begin. The note (rather than (in)harmonic) start point is derived from the 

average of its (in)harmonic start points. 

The details of the note including (in)harmonic start points, actual start point 

and LoP Bin numbers are gathered into an instance of a note storage class. Each 

instance of this class is added to a database of known notes. Having indentified 

a new note, the Partial Lists are used to find its peak and the next section of 

38This backtracking routine is designed to increase accuracy. However it can be thwarted 
by the presence of m<lot.f:hing harmonics in a previous note which obey the stated magnitude 
rule. Thus backtracking is limited to a quarter of a second ... In practice, this limit is rarely 
reached. . 

39 A plot was taken once every four steps - the equivalent of stepping back 64 samples at a 
time. 

40The positioning of the FFT frame in Figure 42 is purposely shown as ideal so that its 
position relative to the note can be seen. 

108 



1. .. ....-----------

.I.IG.+-..,....,~-_,i",'~,,----­
OJ 
<1l 
~ 
'iii 
c 
OJ 
(jj 

1 .• '+'- ------- ---

I.O,.L----------
Time 

'.01....-----------

~"'+-----------
<1l 
~ 
'iii 
c 
.g> 
(f) 

,.,+-.....r... ______ _ _ -;-, 
( 

I 
I 

I 

\ 
; 

.I,.J..I
J 
______ _ 

Time 

'.0',---------- ~.-----------~------

DlI' ~.."..,-', t, ,1\ I;, :'-4-- ,.,+ _________ __ 
g , " , '. g 
~ ~ 
'iii 
c 
OJ 
(jj 

'.0'+-----------

to, 
Time 

.. I 

'81 
<1l 
~ 

1\ ./'.~/.\./\I'\' .... 'iii 
c ;) \/\ 
OJ ,-",- \/\ 
(jj 

j-"- \",\ 
UI 

I} 
-

... 
Time 

c;; 
C 
OJ 
(jj 

""+~..;.---------' ..,... , 
!I 

'0' Ii 
Time 

LlI 

110+------------
C, 
<1l 
~ 
C;; 
c 
OJ 

/~--(jj ...... , 
/' \ 

'" 1 
..0 

Time 

Figure 41: The detection of the onset of a note when stepping backwards. 

Spectral 
Magnitude 

I ' 
I':, \ , 

~~i~h~1ihe t·; 
nole are no longer 
detected. 

" 

\. 

Note lound n ovemapping 
!rarnes in this section 

TIme 

Figure 42: Positioning of frames when detecting the onset of a note. 

109 



Time 

Figure 43: The potential death point of a harmonic. 

data starts from this peak. Hence the amount of overlap from section to section 

is not consistent. This ensures that if there is more than one onset in a section, 

each one will be found. If no note is found the system moves forwards through 

the data by half a section. 

6.7 Note Tracking 

The scanning of a wave file in sections serves two purposes. The first is to identify 

positions in the file which correspond to the onset of a note. The second, which 

can only occur once a note has been found, is to monitor its life. This monitoring 

takes place before the detection of new potential notes. Fully populated LoPs 

with bin indexes which correspond to existing note (in)harmonics are, subject 

to item 2 below, removed rom the Partial Lists. This removal prevents dynamic 

fluctuations from triggering the onset detection mechanism. As the system 

progresses through a file it changes the status of a note from "growing", to "alive" 

and finally "dead". Conversely, note (in)harmonics have only two states: living 

or dead. There are two circumstances which signal the death of a (in)harmonic: 

1. When the system can no longer detect partials that correspond to a given 

{in)harmonic, the {in)harmonic is allocated a death point (which corre­

sponds to the last occurence of a partial in a LoP). 

2. If a LoP contafns growth which is characteristis of a note onset (see Figure 

43 ), linear regression is used to determine if the harmonic has a negative 

gradient (indicative of a decaying note) prior to the growth point. If 

the harmonic is decaying it is given a death point which corre~ponds to 

110 



the beginning of the growth (point A on Figure 43). The LoP is not 

removed from the list of Partial Lists and can therefore trigger the onset 

detection routines. This permits the detection of overlaping, repeated 

identical notes. An isolated occurence of growth (as shown in Figure 43) 

is obviously not the beginning of a new note and this LoP will therefore 

be the sole member of a group, as described in Section 6.5. This LoP 

shows an increase in the dynamic level of the harmonic. The comparison 

referred to in Section 6.5 checks to see if this growth point corresponds to 

the death point of a matching note harmonic. If it does the harmonic is 

brought back to life by the removal of its death point. 

The status of the note is set by the number of live harmonics it contains. A 

note dies when less than two of its harmonics are alive. The status of a note 

helps to prevent the occurence of duplicate notes (which can occur if partials 

that correspond to existing note harmonics are allowed to retrigger the onset 

mechanism) . 

The non-linear repositioning and therefore non-linear spacing of each section 

make it very difficult to build a continuous LoP that lasts for the entire length of 

a note. To overcome this problem, the information in the note database is used 

to perform subsequent sweeps of the data on a per-note basis allowing LoPs to 

be built for the entire life of a note. 

The process of the second sweep is slightly different. The system auto­

matically sets the size of a data section using the start and stop points of a 

note. Appropriate calculations are made to determine the number of overlap­

ping frames needed in order to contruct LoPs which will depict the life of the 

note (in)harmonics. Each instance of a note provides the following information: 

• Onset times of its (in)harmonics. 

• Rise times of its (in)harmonics. 

• Frequency of its (in)harmonics. 

• Finishing times of its (in)harmonics. 

This note detectioii'system will hereby be referred t~. as a Note Tracking System 

(NTS). System tests are presented in the next chapter. . 

111 



7 System Tests and Validation of Output 

This chapter begins with the analysis of CSound generated test cases. The use 

of CSound gave complete control of the nature of the generated sounds allowing 

the performance of the frequency extraction routine to be evaluated. The ten 

system tests from Chapter Five used on the PitchTracker software, are used to 

test the NTS. Tests using recordings of real instruments are included at the end 

of the chapter. 

7.1 Monophonic CSound Test Case 

A wave file containg three notes was generated using CSound. Each note has 4 

harmonics weighted to be 25% less than the previous harmonic as shown below: 

f1 0 8192 10 0.76 0.6 0.26 

;ins strt dur amp(p4) freq(p6) attack(p6) release(p7) 

i3 1 30000 2930 0.46 0.26 

i3 3 30000 3412 0.46 0.26 

i3 6 30000 3413 0.46 0.26 

The first sweep of the data gave the following results (shown graphically 

in Figure 44 where each vertical line indicates where a note start has been 

identified) : 

TN 3 

nN 0 

46916 46866 96616 96266 4 

124 .t26 46096 96744 

260 0 46866 96266 

376 0 46866 96232 

600 0 46866 96232 

nN 1 

141916 141866 192128 193636 4 

146 146 142096 192000 

291 0 141866 191488 

Signal 
Mag. 

Figure 44: Note start points for a monophonic test case. _ 

112 

Time 



437 0 141856 191488 

582 0 141856 193536 

nN 2 
237916 237856 301312 287744 4 

146 0 237856 287488 

291 292 238096 287488 

437 0 237856 287488 

582 0 237856 287744 

Where TN =: Total Notes, nN =: Note Number. The line following the note 

number reports41 : the average harmonic start point, the lowest harmonic start 

point, the average harmonic finish point, the latest harmonic finish point and 

the number of detected note harmonics. Each subsequent line provides details 

of each harmonic: Bin number, merged bin number (zero if no bin hopping 

occurred) and the start and stop points of the harmonic (numbers relate to nth 

sample in a wav file). The NTS successfully found three notes each with four 

harmonics. Using the average start and stop points of nNO: 

. 45916 
start tzme = 48000 = 0.96s 

l n h = 96616 - 45916 = 1 035 
e gt 48000 . s 

Thus the NTS has determined that the first note lasted for 1.035s and started 

0.96s into the file. A second sweep of the data was made to enable a complete 

LoP. for each harmonic to be built, from which the frequency of the harmonic 

can be calculated. Figure 45 shows how the frequency and magnitude of a 

harmonic change on a frame by frame basis. 

As the harmonic number increases, the signal strength of the harmonic de­

creases making it harder to track its frequency. However, as Figure 46 shows, 

the NTS is able to correctly determine the frequency of each harmonic for the 

above example. A comparison of the CSound file and the data shown in Table 8, 

which contains extracts of the data used to create the graph in Figure 46, shows 

the accuracy of frequency resolution for a given note harmonic. For example, 

the 2nd harmonic i6.double the frequency of the first. 2930 x 2 = 5860Hz, which 

as Table 8 shows, is what the NTS has found. 

The 2nd and 3rd notes, described in the Csound score file, are only 1Hz 

41 In this example, due to the harmonic nature of the synthesised test case, all results are 
described in terms of harmonics. 

113 



2830 " 
2130 10 

20300' 
203000 

2930.03 

293000 

2128 .. 
2929115 ...... 
212110 .... " 

Hz 
212f l e 
28211.13 

2128'0 

"21.7' 
292175 

212173 

62170 

21121.ee 
28291515 

2112903 

.... eo 
:nIli II. 
282111511 

10 20 30 40 50 &0 10 10 80 100 ItO 120 130 '.0 150 1&0 110 180 190 200 2 10 

Frame Number 

Figure 45: The frequency and magnitude of the first harmonic of a note against 
time. 

12000 

11000 

10000 

DOOO 

8000 

Hz 7000 

8000 

5000 

4000 

3000 

2000 
0 25 50 

Harmonics of a note against time 

75 100 125 

Frame Number 

150 175 

,,'01 harmonic 
2m harmonic ":lid hormonlc 

" 4111 honnonlc 

200 

Figure 46: The frequency of all the harmonics from the first note in the mono­
phonic synthesized test case. 

114 



Frame No. Bin No. Frequency (Hz) Frame No. Bin No. Frequency (Hz) 

120 125 2929.998535 120 375 8789.994141 

121 125 2929.999268 121 375 8789.994141 

122 125 2929.998535 122 375 8789.994141 

123 125 2929.999268 123 375 8789.994141 

124 125 2929.998535 124 375 8789.994141 

125 125 2929.998535 125 375 8789.995117 

120 250 5859.997559 120 500 11719.995117 

121 250 5859.997070 121 500 11719.995117 

122 250 5859.997559 122 500 11719.995117 

123 250 5859.997559 123 500 11719.995117 

124 250 5859.997559 124 500 11719.995117 

125 250 5859.997070 125 500 11719.995117 

Table 8: Extracts of the data used to plot Figure 46 

apart. Figure 47 shows that the NTS has successfuly resolved the separate 

frequencies of these notes. 

7.2 Simple Polyphonic CSound Test Case 

The CSound score file was modified so that it contained two notes which would 
overlap: 

jins strt dur amp (p4) freq(p5) attack(p6) release(p7) 

i3 1 4 30000 2930 0.45 0.25 
i3 3 1 30000 3412 0.45 0.25 

The NTS correctly found two notes, as shown below: 

TN 2n 
N 0 

45848 45776 239790 240128 4 

125 0 45776 240056 

250 0 46064 240128 

375 0 45776 239360 
500 0 45776 239616 

nN 1 
142840 142832 215872 226560 4 

146 147 142848 22604,( 

290 291 142832 219648 
437 0 142848 226560 

582 583 142832 191232 

115 



3418 00 

3417.60 

341700 

341650 

341800 

341 560 

341600 
Hz 

341460 

3414 00 

341350 

3413 00 

341260 

341 200 

34 11 50 
0 20 '0 80 80 100 

Frame Number 

120 "0 leo leo 200 

Figure 47: The frequency of the first harmonic from the second and third notes 
in the monophonic synthesised test case. 

7.3 Comparator System Tests 

This sub-section is repeated from Section 5.8. For each test case the midi file 

output of gmc is shown as a musical score, having been converted into LilyPond 

format by midi2lily. The LilyPond user manual states that " human players 

are not rhythmically exact enough to make a midi to LY conversion trivial. 

midi21y tries to compensate for these timing errors, but is not very good at 

this. It is therefore not recommended to use midi2ly for human-generate midi 

files." The files generated by the NTS are rather "human" in nature. The 

outcome of midi2ly being ''not very good" at compensating for human timing is 

a segmentation fault. Consequently only test one shows a musical representation 

of the NTS's output. The NTS provides timing data which will be used in the 

tests. For ease of reference, the test descriptions will be repeated. 

7.3.1 Test One 

This test consists of seven notes of 1 second duration, five of which are in a very 

high register. .-J 

Original MIDI Score: 

116 



B 

$e J r r r I r r J t 

Detected MIDI Score: 
B 

$1; J r r H 
r r J 

Comparator Output - Test One 

Orig Comp Output Timing Length 

0 0 0 0.04 0 

J J J 0.04 -0.62 

0.04 -0.4 - - -
T T T 0.04 -0.03 

0,04 -0.6 -
1 1 } 0.04 -0.55 

0 0 0 0.04 0.04 

The comparator provides the following summary: 

Notes found: 

Total Correct 7 100.00% 

Total wrong 0 0.00% 

Total Missing 0 0.00% 

Total extra 0 0.00% 

Every note in this test has been given an onset time that leads the timing 

of the original MIDI data file. The onset position is recorded as the point at 

which note harmonics can no longer be heard. Thus it is acceptable for the 

onset position to lead in this way. 

The timings given in the Length column show the difference between the 

length of the original note and the measured note time. A negative number 

indicates that the measured note is shorter than the original. The shorter note 

lengths are accounted for by the difference between the MIDI note length (the 
~ 

time between the note-on and note-off signals) and, perceived note length .. As 

the musical scores above show, the notes for this test are in the upper registers 

of the piano where notes decay very quickly. Consequently the perceived length 

of the note will always be shorter than the MIDI note length. 

117 



7.3.2 Test Two 

This test is a two octave scale (29 notes) with the note length set to 1 second. 

Original Score: 

$ Il J J J J I J J r r I F E F r I f fl f fl 

J J J I J t -

Comparator Output - Test Two 

No. Orig Comp Output Timing Length I No. Orig Comp Output Timing 

1 < < < 0.04 0.03 16 0.04 

2 > > > 0.04 0.13 17 I I I 0.04 

3 @ @ @ 0.04 -0.07 18 0 0 0 0.04 

4 A A A 0.03 0.16 19 M M M 0.04 

5 C C C 0.04 0.14 20 L L L 0.05 

6 E E E 0.06 -0.01 21 J J J 0.04 

7 G G G 0.03 -0.13 22 H H H 0.04 

8 H H H 0.04 -0.14 23 G G G 0.04 

9 J J J 0.Q3 -0.12 24 E E E 0.05 

10 L L L 0.04 -0.23 25 C C C 0.04 

II M M M 0.04 -0.21 26 A A A 0.05 

12 0 0 0 0.04 om 27 @ @ @ 0.05 

13 I I I 0.04 -0.55 28 > > > 0.05 

14 - - 0.04 -0.53 29 < < < 0.05 

15 T T T 0.04 -0.56 - - - - -
Comparator Summary: 

." Notes found: 

Total Correct 29 100.'00% 
Total wrong 0 0.00% 
Total Missing 0 0.00% 

Total extra 0 O.OOY. 

118 

Length 

-0.55 

-0.66 

-0.24 

-0.02 

-0.02 

-0.03 

-0.12 

-0.15 

-0.08 

0.12 

0.03 

0.06 

0.11 

0.5 

-



The detected note start times lead those of the original data as expected. 

The following graph shows the deviation of the length of each note from the 1 

second length specified in the original MIDI file: 

Deviation of length for note pairs from a two Octave scale 
0.5 

0.4 

§ 0.3 

~ 
0.2 

:> 01 

-8 0 

~ ·0.1 
Q) ·0.2 
..J ·0.3 
Q) 

"5 ·0.4 
Z ·0.5 

.rn. ~. 
I" r..ra.. 

rg • ]I ~ f;;:r I%:r I%:r I ~ :% 
<£tIII1L4" ~ ~ I ~ ~ 

- -~ ~ 

~ :::.: 
:::.: ~ 

'" ·0.6 

-0.7 
1129 2128 3127 4126 5/25 6/24 7123 8122 9121 10/20 11119 12118' 13117' 14116' 17 

Note Pairs 

The last note of a scale is not masked by subsequent notes and is left to 

naturally decay.42. This accounts for the longer length of note 29 in the first 

note pair (similar behaviour is found in the other tests based on a 2 octave 

scale). The trend towards shorter notes on the right hand side of the graph is 

due to the rapid decay of high notes, as explained in Test one. 

42 Assuming the "steady state" section of a note is still sounding, unless given an explicit 
volume value of zero, a MIDI "note-off" command signals the start of a note's decay not its 
actual end[72, p.297). 

119 



7.3.3 Test Three 

This test consists of five repeated notes at the same pitch of 1 second MIDI 

duration. The actual sounds in the wave file overlap. Original Score: 

~t;JJJJIJt-1 

Comparator Output - Test Three 

Orig Comp Output Timing Length 

A A A 0.03 0.05 

A A A 0.05 -0.92 

A A A 0.05 -0.99 

A A A 0.07 -0.12 

A A A 0.04 0.35 

Comparator Summary: 

Notes found: 

Total Correct 5 100.001. 
Total wrong 0 0.001. 
Total Missing 0 0.001. 
Total extra 0 0.00% 

The MIDI conversion utilities were proved to be error free by extracting note 

and'timing information from MIDI files generated by GMC. It was therefore 

assumed that the length timing errors of the second and third notes were due 

to a bug in the NTS. Due to the fact that two of the notes have a measured 

length close to zero it was initially assumed that the death point of the previous 

note was somehow being used to inadvertently set the death point of the current 

note. A re-run with debugging information switched on however showed this 

was not the case. The following table shows a summary of average start and 

stop times (given in terms of sample position) for each note generated by the 

NTS, along with manually calculated length timings (sample rate = 48000Hz): 
,..;J 

120 



No. Start Stop Length (sees) 

1 46321 94911 1.01 

2 93336 139750 0.97 

3 141453 186628 0.94 

4 188766 229031 0.84 

5 237659 300393 1.31 

This table shows that NTS has performed correctly. Inspection of the re­

sulting MIDI file shows that an error has arisen from an assumption. The table 

above shows that note 1 ends after the start of note 2. The MIDI file reflects this 

with two consecutive note-on events, followed by the note-off event for the first 

note. When extracting note timings, the extraction utility assumed that having 

found a note-on event, the next note-off event with the same pitch would be the 

end point of the note. This assumption is correct as long as two consecutive 

(overlapping) notes are of different pitch43 • The extraction utility was modified 

so that it could not reuse note-off events and a new timing file was generated, 

giving the following results: 

Comparator Output - Test Three with note length correction 

Orig Comp Output Timing Length 

A A A 0.03 0.05 

A A A 0.05 0.01 

A A A 0.05 -0.02 

A A A 0.07 -0.12 

A A A 0.04 0.35 

43Technically this assumption is correct because it is impossible, using orthodox methods, 
to produce consecutive notes of the same pitch with overlapping note-on/off events. 

121 



7.3.4 Test Four 

This test is the same Test Two but the note length has been halved. Original 

Score: 

Comparator Output - Test Four 

No. Orig Comp Output Timing Length I No. Orig Comp Output Timing 

1 < < < 0.03 0.16 16 0.04 

2 > > > 0.04 0.29 17 ) ) ) 0.04 

3 @ @ @ 0.04 0.21 18 0 0 0 0.04 

4 A A A 0.04 0.33 19 M M M 0.05 

5 C' C C 0.04 0.17 20 L L L 0.04 

6 E E E 0.04 0.29 21 J J J 0.04 

7 G G G 0.04 0.18 22 H H H 0.04 

8 H H H 0.04 0.35 23 G G G 0.04 

9 J J J 0.04 0.08 24 E E E 0.04 

10 L L L 0.04 0.16 25 C C C 0.04 

11 M M M 0.04 0.34 26 A T ® -
12 0 0 0 0.04 -0.01 - - T EEl -
13 ) ) ) 0.04 -0.11 27 @ @ @ 0.04 

J4 - - 0.04 -0.13 28 > > > 0.04 

15 T T T 0.04 0.14 29 < < < 0.05 

Comparator Summary: 

Notes found: 

Total Correct 28 93.33% 
Total wrong 1 3.33% 
Total Missing 0 0.00% 
Total extra 1 3.33% 

This test sho~s similar trends in terms of note length, to Test 2. The wrong 

note (number 26) is as a result of the system faili"ng to detect the fundamental 

harmonic of the note. This failure is attributed to a combination of the over­

run of the previous note and the note order of the scale, resulting in a masking 

122 

Length 

-0.01 

-0.12 

-0.22 

0.3 

0.07 

0.15 

0.13 

0.14 

0.02 

0.13 

-
-

0.13 

0.17 

0.51 



effect. This failure has has had a subsequent effect as the same wrong note is 

re-detected causing an extra note error. Missing the fundamental frequency can 

result in the premature death of a note, allowing its harmonics to be redetected. 

123 



7.3.5 Test Five 

This test is the same as Test Two but the with a combination of note lengths. 

Original Score: 

Comparator Output - Test Five 

No. Orig Comp Output Timing Length No. Orig Comp Output Timing 

1 < < < 0.03 0.16 16 0.03 - - -
2 > > > 0.04 0.29 17 ) ) ) 0.04 

3 @ @ @ 0.04 0.21 18 0 0 0 0.04 

4 A A A 0.04 -0.01 19 M M M 0.04 

5 C C C 0.05 0.35 20 L L L 0.03 

6 E E E 0.04 0.23 21 J J J 0.04 

7 G G G 0.04 -0.11 22 H H H 0.03 

8 H H H 0.03 0.27 23 G G G 0.03 

9 J J J 0.03 -0.12 24 E E E 0.04 

10 L L L 0.04 0.12 25 C C C 0.04 

11 M M M 0.04 -0.21 26 A A A 0.05 

12 0 0 0 0.04 0 27 @ @ @ 0.04 

13 ) ) ) 0.04 -0.05 28 > > > 0.03 

14 0.04 -0.14 29 < < < 0.04 - - -
15 T T T 0.09 0.05 - - - - -

Comparator Summary: 

Notes found: 

Total Correct 29 100.00% 

Total wrong 0 0.00% 

Total Missing 0 0.00% 

Total extra 0 0.00% 
-' 

124 

Length 

-0.2 

-0.12 

-0.02 

-0.18 

0.09 

-0.06 

0.14 

-0.04 

-0.1 

0.15 

0.35 

0.16 

0.13 

0.51 

-



7.3.6 Test Six 

This test is a five note ascending scale with each note repeated. The repeated 

note is twice the length of the first. Original Score: 

~ C; J J ) J J 

Comparator Output - Test Six 

Orig Comp Output Timing Length 

< < < 0.03 0.85 

< < < 0.04 0.15 

> > > 0.04 0 

> > > 0.04 .13 
@ @ @ 0.04 0.03 
@ @ @ 0.05 0.04 

A A A 0.03 -0.01 

A A A 0.05 0.18 

C C C 0.03 0.02 

C C C 0.04 0.24 

Comparator Summary: 

Notes found: 

Total Correct 10 100.00% 

Total wrong 0 0.00% 
Total Missing 0 0.00% 
Total extra 0 0.00% 

As this test contains repeated notes the test results initally displayed the 

same timing errors as Test Three. The results above are from a second run with 

MIDI timing data provided by the modified extraction utility. 

125 



7.3.7 Test Seven 

This test is a 3 note ascending scale of grouped notes. Each group has three 

notes and each note is an octave higher than the previous note in a group. 

Original Score: 

r f J I r f J F -

Comparator Output - Test Seven 

Orig Comp Output Timing Length 

< < < 0.03 0.26 

H H H 0.04 -0.21 

T T T 0.04 -0.17 

> > > 0.04 0.24 

J J J 0.04 -0.1 

V V V 0.04 -0.08 
@ @ @ 0.04 -0.05 

L L L 0.04 -0.12 

X X X 0.04 0.12 

Comparator Summary: 

Notes found: 

Total Correct 9 100.00% 

Total wrong 0 0.00% 
Total Missing 0 0.00% 

Total extra 0 0.00% 

126 



7.3.8 Test Eight 

This test contains twenty-four random notes all of length 1 second. Original 

Score: 

, Il r IT r J I r J t J I r J rEI J F r J It F r r IE r r r I 
Comparator Output - Test Eight 

No. Orig Comp Output Timing Length I No. Orig Comp Output Timing 

1 Q Q Q 0.04 -0.05 13 @ @ @ 0.04 

2 L L L 0.04 -0.17 14 H H H 0.04 

3 0 0 0 0.04 -0.05 15 G G G 0.04 

4 > > > 0.04 0.04 16 > > > 0.04 

5 M M M 0.05 -0.28 17 S ® -
6 < < < 0.04 -0.03 18 H H H 0.05 

7 S ® - - 19 Q Q Q 0.04 

8 @ @ @ 0.07 0.2 20 J J J 0.04 

9 M M M 0.04 -0.27 21 L L L 0.05 

10 E E E 0.04 0.12 22 M M M 0.04 

11 J J J 0.05 -0.14 23 Q Q Q 0.05 

12 L L L 0.04 -0.26 24 J J J 0.04 

Comparator Summary: 

Notes found: 

Total Correct 22 91. 67% 

Total wrong 2 8.33% 

Total Missing 0 0.00% 

Total extra 0 0.00% 

The majority of the notes in this test are in the middle register of the key­

board resulting in small deviations from the MIDI data note length. The two 

wrong notes are as a result of the failure of the frequency extraction routine to 

find the fundamen~ frequency of the note. 

127 

Length 

0.03 

-0.11 

-0.11 

-0.05 

-
-0.17 

-0.03 

-0.11 

-0.16 

-0.1 

-0.02 

0.83 



7.3.9 Test Nine 

This test is the same as Test Two but this time the note length is set to 1/3 of 

second. Original Score: 

Comparator Output - Test Nine 

No. Orig Comp Output Timing Length I No. Orig Comp Output Timing 

1 < < < 0.03 0.21 16 0.04 

2 > > > 0.03 0.31 17 I I I 0.04 

3 @ s ® - - 18 0 0 0 0.04 

4 A A A 0.04 0.2 19 M M M 0.03 

5 C' C' C' 0.04 0.21 20 L L L 0.03 

6 E E E 0.03 0.25 21 J J J 0.04 

7 G G G 0.03 0.25 22 H H H 0.03 

8 H H H 0.04 0.2 23 G G G 0.03 

9 J J J 0.04 0.22 24 E E E 0.03 

10 L L L 0.04 0.16 25 C C C 0.03 

11 M M M 0.03 0.21 26 A A A 0.03 

12 0 0 0 0.04 0.17 27 @ @ @ 0.04 

13 I I I 0.03 0.12 28 > > > 0.03 

14 0.03 -0.01 29 < > ® -
.. 

15 T 
, ® - - - - - - -

Comparator Summary: 

Notes found: 

Total Correct 26 89.66% 

Total wrong 3 10.34% 

Total Missing 0 0.00% 

Total extra 0 0.00% 

The fact that th~ wrong notes occur in different places in the scale (i.e. no 

correlation between ascending and descending notes) indicates that the error 

has occured at the frequency extraction stage, rather than the note detection 

stage. 

128 

Length 

-0.01 

0.11 

-0.04 

0.18 

0.22 

0.21 

0.17 

0.2 

0.28 

0.3 

0.17 

0.2 

0.38 

-
-



7.3.10 Test Ten 

This test is a series of random notes interspersed with rests. Original Score: 

F r - F r r r 
Comparator Output - Test Ten 

Orig Comp Output Timing Length 

Q Q Q 0.03 0.26 

H H H 0.04 0.3 

J J J 0.04 0.23 

L L L 0.03 -0.16 

M M M 0.04 -0.31 

0 0 0 0.04 -0.03 

Q Q Q 0.04 0.28 

Comparator Summary: 

Notes found: 

Total Correct 7 100.00% 

Total wrong 0 0.00% 

Total Missing 0 0.00% 
Total extra 0 0.00% 

7.4, Comparison of Note Detection Systems 

The comparator output allows a direct comparison of the PitchTracker with the 

Note Tracking System described in this thesis. The following table displays the 

results from both systems "(PitchTracker values were taken from the best results 

for a given test), shown in terms of the number of Correct, Wrong, Missing and 

Extra notes: 

129 



1 
0.9 

III 0.8 
(I) 0.7 
(5 

0.6 Z 
ts 0.5 

~ 0.4 
0 0.3 

(,) 
0.2 
0.1 

0 

I? 
~ 

~ 
~ 
~ 

~ 17- ~ ~ 
f% I ~i ~ 

~I ~ i ~ 
~ ~ ~ 

~ 

r-~ ~ ~ 
t% 

fa l% 

~ 
l% 

~ ~ ~ l% 
~ ~ t:;; ~ ~ 

2 3 4 5 6 7 

Test Number 

I? 

~ 
~ 

~ 
~ 
~ 
~ 

8 

~ 

~ ~ 

~ 

~ ~ 

~ ~ 
~ ~ 

9 10 

~ PitchTracker 
aNTS 

Figure 48: Normalised results for the 10 sytem tests. 

PitchTracker NTS 

Test No. e W M E e W M E 

1 4 1 2 0 7 0 0 0 

2 25 0 4 0 29 0 0 0 

3 1 0 4 0 5 0 0 0 

4 24 2 3 0 28 1 0 1 

5 24 0 5 0 29 0 0 0 

6 9 0 1 0 10 0 0 0 

7 8 1 0 0 9 0 0 0 

8 20 2 2 3 22 2 0 0 

9 22 1 6 1 26 3 0 0 

10 5 1 1 0 7 0 0 0 

The results of Test Three, a series of five repeated notes of the same pitch, 

verify the earlier statement that systems which rely on the "steady state" of a 

note will always underperform when compared to systems which rely on note 

onsets. Figure 48 shows a direct comparison of the number of correct notes 

found by both systems. The results were normalised to allow for between test 

comparison. 

When rating performance, the error types assume a level of seriousness. A 

wrong note is the least severe error as it shows that the detection system has 

found a note in arr"'appropriate place but was unable to ascertain its correct 

pitch. It is opined that when considering extra a~d missing error types, the 

detection of extra notes is the lesser of two evils (as long as extra notes are not 

130 



detected to the detriment of genuine notes). That is, a false positive is better 

than a false negative. 

These results show that the Note Tracking System is capable of the identi­

fication and subsequent tracking of notes. 

7.5 Real Instrument Test Cases 

Recordings of an oboe, a violin and a cello played by professional musicians 

inside an anechoic chamber were made using an AKG C414 B-ULS condensor 

microphone, set to a cardioid response pattern, onto DAT at 48000Hz. The 

microphone was positioned approximately 80cm away from the instrument(s) 

being recorded. In the case of the oboe, the microphone was positioned below 

the instrument in line with its bell. Test cases were played as consistently44 as 

possible in spite of the unnatural conditions inside the anechoic chamber. All 

three musicians independently commented on the intimacy with their instru­

ments created by the chamber. 

Both the violinist and the oboist, whilst having a break from recording, took 

the opportunity to confirm that it was their perception of the sound that had 

changed rather than their playing. The test cases used in this section are taken 

from these recordings. 

7.5.1 Oboe Test Cases 

The oboe was the first instrument to be recorded. Consequently there are fewer 

test cases. When presented with a note (approximately 3 seconds long) played 

on an oboe, the NTS produces the following onset results: 

TN 1 
nN 0 

38764 38352 235878 242176 5 

20 21 38352 242176 
39 40 38896 237568 

60 61 38912 234496 

80 81 38864 233728 
100 101 38800 231424 

Figure 50 show~where the NTS has identified the start of the note. The 

first line indicates the earliest starting individual harmonic and the second line 

indicates where the average of the harmonic's start points occurs. 

44The tests included repetitive playing of scales at dynamic levels from pp to IJ. 

131 



'S75 

350 

325 

3:lO 

Z75 
rJl 
<ll 
(5 

2:50 

C 225 

15 2DO 
(jj 

175 .0 
E 

150 :J 
Z 

125 

100 

75 

50 

25 

Sur"" Sa:cst'b TofQ.fod 

Figure 49: Results of note onset detection for a scales played on an oboe using 
different methods. 

Figure 50: The onset point of a note played on an oboe. 

132 



Figure 51: Results of note onset detection for a scale played at pp on an oboe. 

The results above contain a crude indication that this note has been played 

with vibrato in that each harmonic has been tracked through two adjacent 

bins. This is proved when the calculated frequency is examined and shows the 

modulation of the frequency of the note. This note was used as the example in 

Section 6.2, Figure 37. 
Figure 49 shows how the NTS has performed when processing files that each 

contain 29 note scales performed on an oboe. Recordings where made from ppp 

_ fff, the entire dynamic range of the oboe. Figure 51 is an example of why the 

system has under-detected the amount of notes for slurred scales. This scale 

was was played at the dynamic level of pp. The slurred playing style causes 

each note to run into the next, making onset detection non-trivial. The error, 

highlighted by marker A, is as a result of the NTS failing to detect the death 

point;.. of harmonics from previous note(s). 

The debugging output of the NTS shows that it successfully found a potential 

note onset at the correct point, but discarded it because it was deemed to be 

a false onset due to it containing harmonics which matched an existing note. 

Point B has been highlighted to draw attention to the spike in the amplitude 

envelope. This spike occurs at the end of a note and is not a note onset. In this 

case the NTS detects the growth in harmonic energy at this point, and correctly 

identifies it as belonging to an already existing note. 

The results for staccato notes are expected to be due to the very fast rise 

and fall time of the-aQtesj each note in a scale lasts approximately 70m Seconds. 

Despite this short time, the system was able to detect the onset of 90% of notes 

in a staccato scale played played at ppp. The significance of this is that it is 

133 



far harder to produce a full bodied note when playing an oboe ppp. A human 

listener, aware that they are listening to a scale played at a certain speed, will 

anticipate the next note, both in terms of when it should occur and what note 

it should be, thus giving a contextual advantage over the computer. 

7.5.2 Violin Test Cases 

A greater number of violin test cases were recorded compared to the oboe. 

7.5.2.1 Single legato notes The NTS gave a wide variance in performance 

when presented with single legato notes (approximately three seconds long) 

played at different dynamic levels, using both up and down bows, on each open 

string. The table below shows the number of notes found by the NTS: 

I String: I G D A E 

Bow direction (Down/Up) 

Dynamic D U D U D U D U 

pp 5 11 5 2 6 2 3 1 

p 1 6 1 1 1 1 1 1 

mp 2 5 1 1 1 1 1 1 

mf 1 4 2 1 0 1 1 1 

f 2 1 1 3 1 1 2 2 

ff 1 6 2 2 1 1 1 5 

The variance in results for the G string can be partly explained by the 

physical shape of the violin and the way it is held. The G string is located on 

the opposite side of the bridge to the bowing arm. The combination of bow 

angle and the requirement to play quietly has resulted in the bow bouncing on 

the string45 • Bounces of the bow cause a change in dynamic level which causes 

the NTS to detect repeated notes. Other repeated notes are caused by the 

efficiency of the harmonic tracking routine assigning a stop point to a harmonic 

which has been absent from a few frames of data. Methods for overcoming this 

problem are discussed in Section 10.2. Despite these problems the NTS has still 

managed to identify and track 56% of the notes presented to it. 

45This is particularly true for the down bows because bow control levels diminish from the 
heel to the tip. ~ 

134 



7.5.2.2 A series of repeated notes Using open strings a series of 16 re­

peated notes were recorded at different dynamic levels. This presents a non­

trivial test for the NTS as each note overlaps the following note. The note 

repition rate was approximately 5Hz. The number of notes found by the NTS 

is shown below: 

String 

Dynamic G I D I A I E 

pp 15 17 17 15 

p 16 18 14 14 

mp 15 17 15 12 

mf 18 14 14 11 

f 17 18 17 11 

If 12 15 16 14 

Speed of playing and dynamic level account for the mssing notes on the 

E string. When listened to the louder test cases are particularly "scratchy" 

meaning the string has not been allowed to settle and vibrate in a steady manner. 

For the reasons dicussed at the end of Chapter Five, these results could be 

misleading in that they convey no information as to whether the identified notes 

are correct. The comparator could only be used to verify these results if a MIDI 

file with similar timings was generated as the evaluation of repeated notes is 

only possible when timing information is used. 

7.5.2.3 Scales and arpeggios The scale of G major 3 Octaves (43 notes) 

and its arpeggio (19 notes) were played at two dynamic levels (pp and ff) using 

a variety of bowing styles. The number of notes found by the NTS for each 

scenario is shown below: 

Scale Arpeggio 

Playing style pp If pp If 
Legato no data 38 21 20 

Staccato 43 43 19 19 

Slurred 41 43 19 21 

Plucked 40 40 18 19 
...;J 

The results for slurred bowing are particularly impressive when the speed 

the scale was played (43 notes in just over 7 seconds - 6 notes a second) is taken 

135 



into account. Visual inspection of the slurred-if result showed that of the 43 

notes reported, 41 were correct and two were false detections meaning that two 

genuine notes had been missed. 

As a scale contains sequential notes of differing pitch it is possible to gen­

erate a Midi file of the scale and use a pitch only comparator to evaluate the 

frequency detection performance of the NTS. Comparison showed that for the 

staccato-if scale there were 25 correct notes and 18 wrong notes. Examination 

of this disappointing result showed that of the 18 wrong notes, 12 were octave 

errors. Further investigation showed that whilst the fundamental frequency was 

presented to the pitch extraction routine it was not selected. With the cor­

rection of this error, the system would therefore report 37 correct notes and 6 

wrong notes. The remaing wrong notes are as a result of the NTS failing to 

actually detect the fundamental frequency. In these cases it was found to have 

a very low level of spectral energy compared to higher order harmonics. 

As the aim of this work is gestural extraction, this pitch extraction error 

remains the subject of further work. 

7.5.3 Cello Test Cases 

The least number of recordings were made for the cello due to the cellist's busy 

schedule and time constraints. The first seven notes of a scale were played in a 

number of different playing styles using different dynamic levels. The following 

table shows the number of notes detected for each test case: 

Dynamic 

Playing style p f 
Legato 7 7 

Staccato 7 7 

Spiccato 7 9 

Plucked 7 8 

The extra notes are caused by the NTS prematurely detecting the end of 

note harmonics. 

The following table shows the number of notes found by the NTS when 

presented with th~ scale C major 3 Octaves (43 notes) and its arpeggio (19 

notes) played at two dynamic levels (pp and ff) using a variety of bowing st~les: 

136 



Time 

Figure 52: Simultaneous oboe and violin (plucked) notes and their start points. 

I Playing style I 
Scale 

II 
Arpeggio 

p f p I f 
Legato no data no data 26 no data 

Staccato 43 43 19 20 
Slurred 73 73 32 33 
Plucked 43 44 no data no data 

7.5.4 Polyphonic Test Cases 

7.5.4.1 Oboe and Violin These two notes were mixed so that the notes 

overlap, as shown in Figure 52. The NTS produces the following results: 

TN 2 

nN 0 

39126 38352 236953 246272 5 

20 21 38352 233984 

39 40 39408 234752 

60 61 39424 235776 

80 81 39408 233984 

100 101 39040 246272 

nNl 
129563 129504 238994 248576 7 

12 13 129792 248576 

24 25 129504 233984 

31 32 129520 247296 
..,.P 

50 51 129536 233984 

74 75 129536 236288 

87 88 129536 236032 

114 115 129520 .236800 

137 



The system finds the same number of harmonics for the oboe (see results 

in Section 7.5.1) and finds two less for the violin (compared to analysis of the 

same violin note played in isolation). This is because when the signal is mixed 

the resultant wave is normalised - thus weaker harmonics become even weaker, 

making them more difficult to detect. The detection of the oboe notes' harmonic 

death points is affected by the presence of the release stage of the simultaneously 
sounding note. 

7.5.4.2 Oboe and Cello The following music was played using different 
combinations of style and dynamics. 

A two octave scale contains twenty nine notes. 

Test Dynamic Oboe Gesture Cello Gesture Total Notes Detected Notes 1 
1 P Staccato Staccato 58 56 

2 F Staccato Staccato 58 57 

3 P Slurred Slurred 58 66 

4 F Slurred Slurred 58 61 

5 P Tongued Legato 58 66 

6 P Slurred Plucked 58 53 

7 F Slurred Plucked 58 54 

As expected the staccato results are the most accurate. These results show 

that the NTS can track notes in a realistic polyphonic scenario. Further analysis 

is required to deterthine the breakdown of correctly detected notes on a per 

instrument basis. 

138 



7.5.5 Evaluation of Results 

• The ten comparator based tests shows that the NTS outperforms the 

PitchTracker. 

• The NTS correctly identifies 97% of the notes presented to it. 

• The PitchTracker identifies 80% of the notes presented to it. 

• The NTS copes with "difficult" test cases that by nature the PitchTracker 

cannot detect. 

• The NTS performs well with polyphonic sources. 

• Certain playing styles on real instruments presented the NTS with data 

that deceived its note tracking routines. Improvements are recommended 

and discussed in Section 10.2. 

The overall results show that the NTS is an appropriate system to take forward 

into the gestural analysis arena. 

139 



8 Gestural Analysis 

This section shows that it is possible to extract information from audio signals 

which leads to the identification of a gesture. The work presented in Sections 

8.1 & 8.2 are exemplars for further work. 

8.1 String Instrument Bow Gestures. 

This section considers different aspects of a note from a stringed instrument 

which can be used to extract gestural information relevant to it. 

8.1.1 Plucked and Bowed notes 

Table 9 provides a summary of the basic string instrument excitation gestures 

and it can be seen that plucked and staccato notes have the most similar discrim­

inating features. Figure 53 shows the measurements from which the following 

information can be calculated (Poli et al.[72] performed similar measurements 

on the amplitude envelope of a note, rather than its harmonics): 

• Position, in time, of the occurence of the peak of the harmonic46 

• The gradient of the growth of the harmonic. 

In addition the NTS provides information regarding the number of (in)harmonics 

present in a note. Figure 54 shows spectral plots for the beginning of plucked 

and bowed (spiccato) notes. As Figure 54 shows, the bowed note contains a 

number of short-lived (in)harmonics which are not present in the plucked note. 

It is anticipated that these three pieces of information will provide a means 

of distinguishing not between these two gestures alone, but between the four 

gesture types shown in Table 9. 

8.1.1.1 Extraction of violin excitation gestures Sample populations 

of 43 staccato, 42 slurred, 36 legato and 41 plucked violin notes were used to 

determine the mean value (corrected for statistical outliers) of each discriminator 

for each gesture type. The NTS was modified so that having performed the 

second sweep of audio data, it would analyse the start of each note and compare 

it to the average \falues for each gesture type. An accumulative measure of 

absolute difference was used to determine the similarity of a note to a given 

46This is the only discriminator which is common to those used by Martin and Kim[58] in 
their musical instrument identification system. 

140 



Gesture 

Pluck 

Slurred 

Legato 

Staccato 

Discriminating Features 

• Fast growth of note 

• Gradual decay 

• No bow noise 

• Slower growth rate com­
pared to a plucked note 

• Gradual decay similar 
to plucked note 

• Bow noise present 

• Initial growth rate simi­
lar to a slurred note 

• subsequent growth 
rates different from 
initial growth 

• Fast decay of note 

• More bow noise in first 
note than subsequent 

notes 

• As legato but much 
shorter. 

• discern able gap between 
notes 

Ideal Amplitude Waveform 

-~. 
,1m. 

-k==. 
,1m. 

v .... 
. ,1m. 

• 
11m. 

Table 9: A ~mmary of string instrument excitation gestures. 

141 



Test Type Gesture Staccato Slurred Legato Plucked Unknown Total 

SOp Staccato 19 22 0 1 1 43 

S-I Staccato 27 16 0 0 0 43 

Sop Slurred 9 22 0 10 0 41 

S-I Slurred 13 21 0 8 1 43 

S-I Legato 1 3 31 1 2 38 

A-p Staccato 10 9 0 0 0 19 

A-I Staccato 15 4 0 0 0 19 

A-p Slurred 6 9 0 4 0 19 

A-I Slurred 11 4 0 6 0 21 

A-p Legato 4 3 13 1 0 21 

A-I Legato 8 3 8 1 0 20 

Sop Plucked 1 3 0 35 1 40 

S-I Plucked 0 2 0 38 0 40 

A-p Plucked 0 3 0 12 0 15 

A-I Plucked 0 I 0 17 1 19 

Table 10: Showing the results for automatic detection of the type of excitation 
gesture used to playa violin_ 

gesture type. Table 10 shows the results for a plucked and bowed violin scales 

(G major three octaves, 43 notes - denoted by an'S') and arpeggios (G major 

3 octaves, 19 notes - denoted by an 'A'). 

The primary aim of this gestural extraction method was to enable the NTS 

to differentiate bowed and plucked notes. For the plucked note tests, 89% of 

notes were correctly identified as the result of a pluck excitation gesture. For 

the b6wed note tests, 89% of notes were correctly identified as the result of a 

bowed excitation gesture. 
The most sup rising result is the similarity bewteen staccato and slurred ges­

ture types. When staccato notes deviate from the average measurements they 

are judged to be more like slurred notes, whereas when slurred notes deviate 

from their average type they exhibit characteristics associated with both stac­

cato and plucked gesture types. Another interesting result is that when plucked 

notes deviate from their average type they are judged to be more like slurred 

notes. The reason for this is discussed below. 

In terms of the bdWing gestures the sytem is most able to distinguish legato 

bowing. The violinist was asked to play legato notes using as much bow as 

possible. The build up of sound from a fast moving bow coupled with the 

direction changing preparatory action of the wrist, has resulted in the average 

142 



peak magnitude postion for the legato gesture type to be up to nine times later 

than values recorded for other gesture types. 

Gesture identification could be further improved by sub-setting the charac­

teristics of certain gesture types. Table 9 shows that the onset of the initial 

note in a series played with either legato or slurred bowing will contain gestural 

information different from that of subsequent notes. When a series of legato 

notes are played on the same string notes following a change in bow direction 

contain less onset noise as the string is already vibrating. 

The first47 note in a series of slurred notes will exhibit similar onset char­

acteristics to other bowing styles. Subsequent notes played by the same bow 

stroke will not contain bow onset noise. This accounts for the judged similarity 

between plucked and slurred notes. The note that immediately follows a change 

of bow direction will exhibit similar characteristics to legato notes. The results 

in Table 10 support this notion. 

These results would display higher levels of discrimination if test notes had 

been hand picked to ensure that the NTS was evaluating a correctly identified 

note. Twenty four individually recorded staccato notes48 played on open strings 

at different dynamic levels were analysed by the NTS system. Checks were made 

to ensure that each note had been properly identified. The gestural discrimina­

tion routine reported that seventeen notes were produced using staccato bowing 

and the remaining seven using legato bowing. This result is significant as at 

first it seemed to be contrary to the patterns shown in Table 10 as a staccato 

note is never identified as a legato note. However, when the seven "legato" notes 

were listened to, it was found that they sounded like legato notes, despite the 

specific instructions given to the violinst. 

These results show that note detection techniques which depend upon "steady 

state" note harmonics would miss the vital information before point B in Figure 

54. This significance of this point is discussed in Section 10.4. 

8.1.1.2 Extraction of cello excitation gestures Recordings of the cello 

were analysed using the NTS without making any modifications to the average 

discriminator values for each gestural type. Table 11 shows the results of these 

tests. The gestural extraction routine has succesfully identified staccato and 
.,..II 

plucked test cases. In addition to the result for the plucked C major scale, it 

was noted emprically that plucked notes wei-e consistently recognised as slurred 

47In other words, the string to be played is at rest. 
48The,instruction given to the violinist was "Accented - attack the string" 

143 



Test Type Gesture Staccato Slurred Legato Plucked Unknown Total 

7 ascending notes Staccato 7 0 0 0 0 7 

7 ascending notes Legato 2 4 0 1 0 7 

7 ascending notes Plucked 0 0 0 7 0 7 

C major 3 octaves Plucked 0 10 0 34 0 44 

C major 3 octaves Staccato 39 3 0 0 1 43 

Table 11: Showing the results for automatic detection of the type of excitation 
gesture used to playa cello. 

Amplitude 

Pp 
time 

Figure 53: Showing the measurement of different harmonic attributes. 

notes. Unfortunately further legato test cases were unavailable. 

8.1.1.3 Extraction of cello gestures from polyphonic recordings This 

section tests whether the NTS is capable of correctly detecting plucked, staccato 

or slurred notes played on a cello whilst an oboe holds a note for the duration 

of the cello notes. In each case the oboe was judged to be using a "slurred" 

playing style. The results shown in Table 12 show that the NTS can correctly 

process gestural information from a polyphonic signal. The last test is particu­

larly encouraging in that the seven ascending notes were scored to be played as 

two staccato notes followed by three slurred notes finishing the sequence with 

two further staccato notes. The NTS dectected gestures in the order shown in 

Table 13. 

8.2 Oboe Key Presses 

The correct position in time of a key press is essential to produce a "clean" note. 

When playing a series of notes in a non-legato sytle, changes in fingering should 

ideally occur in the interval between notes. If the change in fingering occurs too 

144 



____________________________ ~Time 

Time 

Figure 54: Showing the difference between a bowed (spiccato) and plucked note. 

Test Description Gesture Sta.ccato Slurred Legato Plucked Unknown Total 

Oboe:1 long note Staccato 6 2 0 0 0 8 

cello:7 ascending 

notes 

Oboe:1 long note Plucked 1 2 0 5 0 8 

cello:? ascending 

note. 

Oboe: 1 long note Slurred 1 7 0 4 0 12 

cello:7 ascending 

note. 

Oboe:1 long note Siurred/ 4 2 0 2 0 8 

cello:7 ascending Staccato 

notes 

Table 12: Showing the results for automatic detection of the type of excitation 
gesture used to playa cello. 

145 



Note NTS output 

1 Slurred (oboe) 
2 Staccato 
3 Staccato 
4 Slurred 
5 Plucked 
6 Plucked 
7 Staccato 
8 Staccato 

Table 13: Showing the order of detected gestures. 

early then the end of the currently sounding note will be clipped. Changing the 

fingering too late results in the harmonics of the note taking longer to establish 

themselves. A key press "click" in the correct place can often be heard. Its 

presence is the equivalent of the screech heard when changing position on a 

steel strung guitar, or the actual noise of the bow heard in the upper registers 

of a violin. The click is heard and considered to be a member of the set of 

sounds belonging to an oboe. 

Extraction of this key click gesture could lead to the implementation of a 

practice aid whereby the "cleanness" of notes could be indicated. 

8.2.1 Analysis of the key press 

As well as being very low in spectral energy, key press events are very short. The 

following table shows manual timings taken from audible key presses between 

the notes of a staccato scale: 

Click number Length (ms) Click number Length (ms) 

1 23.22 7 25.76 

2 10.16 8 14.51 

3 8.71 9 15.24 

4 19.8 10 12.7 

5 16.33 11 9.07 

6 . 15.96 12 7.26 

Average: II 14.89 ms ·1 

146 



5.5 

' .5 

~ 3.5 

::;; 3 
0; 
§, 2.5 

en 2 

1.5 

0.5 
o . 

I' 

\ 

. , 
_.....;:._~lblf T ..... ....... _ ,.-- t:. r-

IO 11 12 13 '4 15 16 

Frame no. 

Figure 55: Showing the spectral content of the first click in Figure 11. 

Observation of a heavily zoomed in waveform shows that values for the longer 

clicks are due to a fiam49 like effect of two separate clicks. 

Figure 11 in Chapter four showed an isolated key press event that took place 

before the note. Similar key presses can be observed between isolated notes in 

a staccato scale. Therefore it is the actual press of the key that generates the 

sound of the click, which resonates in the body of the oboe5o . Thus each click has 

a percussive like pitch which is relative to the key pressed. When performing 

FFT analysis of a waveform there is usually a compromise between between 

frequency and temporal resolution . However , due to the nature of a key press, 

this compromise is an advantage. A short time frame is needed in order to 

detect the click. The wide frequency range of each bin ensures that the spectral 

energy of the click contributes to a smaller number of bins, rather than being 

spread acrosS many bins. 

Figure 55 shows a plot of LoPs constructed to cover the section of the wave 

containing the first click in Figure 11. Figure 56 shows the plot of a LoP 

corresponding to the interval between two notes, from a tongued scale, which 

does not contain a click from a key press. 

Figure 57 shows the plot of a LoP which covers the period between two 

notes. The key click appears appears as a spike between the notes. The data 

used in Figure 57 comes from LoPs created from data that was generated using 

a frame size of 512 bins. 

49 A flam is defined by Buddy Rich [75j as " a principle (large) note, preceded by a grace 
note". 

50String players make use of a similar effect, by firmly striking a string with an appropiate 
finger, to check their tuning before playing a note. 

147 



0.25 

.0.25 
... S 

CO .(1 ,75 

:& -1 

:? · 1.25 
::l! · 1.5 -i · 1.75 

·2 
·2.25 

(/J .2.5 

·2.75 

·3 · 
·3.25 
·3.5 ' 

'1 

r··············.· •. · ..... ·•·· .. ······· 
! 

f , 
(" 
I 

10 15 20 25 30 35 40 45 50 55 60 85 70 

Frame No. 

Figure 56: Showing a gap between notes with no key press click 

/"-_ ..... ".:: "'-.. -............ .............. . 
" .2 
-0.. • . .......... ............ . .......... 

/ 
/ CO -0.8 

." 
-; -0.8 .. 
::< ·1 

~ ·1.2 , 
.!l' 
(/J . 1,.4 . 

. 1.6 

-1.8 

·2 · 
10 

/ 
,/ 

I 

/ 

15 W 25 30 ~ 40 

Frame No. 

.. 50 55 60 65 

Figure 57: Showing the appearance of a key press click betw~en two notes. 

148 



The NTS was modified so that the second sweep of data was performed 

with a frame size of 512 bins. Having found the peak magnitude of a given 

note harmonic, the search routine for a key press click searches back towards 

the start point of the note for a turning point. A recording of the scale of D 

Major tongued at a dynamic level of ppp over two octaves was analysed using 

the modified NTS. LoPs were created using note start and stop data which were 

searched using the key press click search routine. It found the following clicks 

(Capital letters denote the first octave, lower case the second, and D top D. 
Px=Press finger x, and Lx=Lift finger x. T=Thumb ): 

Fingering Difference 

Note number following click Note Transition Left Hand Right Hand 

0 D T, Pl,P2,P3 Pl,P2,P3 

1 D-E - L3 

14 c#-D - P2,Ll 

18 a-g - PI 

21 e-d T,P3 -
23 C#-B P2 -
25 A-G - PI 

26 G-F# - P2 

Apart from the D-+E transition of note one, each key press click identified 

by the modified NTS has a corresponding key press. The interval between notes 

D (note number zero) and E (note number one) is shown in Figure 58. The 

click shown in Figure 58 can also be clearly heard between the notes when the 

waveform is played. Other recordings of the D Major scale were examined to 

rule out the possibility of extraneous noise being the source of the click. The 

click arises from the actual construction of the oboe. The keywork system of 

the oboe is made up of a complex lever and rod mechanism (the evolution of 

which is described by Goosens and Roxburgh[42, p.17 -271). Investigation of this 

mechansim showed that keywork system enables finger 2 of the right hand to 

hold down a pad at the back of the oboe. When finger 3 is lifted to play the E, 

the mechanism held in place by finger 2 prevents the key associated with finger 

3 from returning to its natural resting place, resulting in a metallic click as it 

hits. the mechanism of the oboe. This "click" would obviously not be present if 

the scale had been played on a classical oboe which has no keywork. 

149 



Figure 58: A click between two notes. 

The detection of key presses inbetween notes is an indication of good coor­

dination between the hands and mouth. The above table is not exhaustive as 

it does not include early key presses as shown in Figure 12, Section 4.1.1.1. In 

some instances the key press is gentle enough to go undetected. Further work 

is required to determine whether a classical oboe would actually produce the 

required auditory infromation. 

The current implementation contains a built in level of robustness that pre­

vents noise peaks from being identified as key clicks. LoPs are only searched for 

a key press event if they exhibit growth characteristic of the start of a note. 

8.2.2 Towards the detection of an early key press 

An early key press is characterised by a change in frequency at the end of 

a note. The method for calculating the instantaneous frequency of a spectral 

peak (described in Chapter six) relies on the assumption that only one harmonic 

contributes to the spectral peak in a given bin. As the magnitude of a harmonic 

decreases this assumption breaks down and the spectral peak in a bin becomes 

affected by noise and artefacts. The outcome of this is that for' signals of low 

magnitude the calculated frequency is incorrect. Thus the calcluated frequency 

cannot be used to detect an early key press. 

Figure 59 shows two LoPs that were constructed from data that was gener-

150 



!,: r --. ... _ ............. ~.-.--.." \ -';"::";"_':"::::::::'.:;::: .031 " ........ ..--................. ~ f 
.0. -I ......... " • Ii 

_ -0.5 I .. .. .. .. .. • .. .. .. • ... .. .. .. .. .. .. .. .' , I:" 
i!~ \ ,r; 
51' .o. .' 
:i -0.8 

"[ .,.; 
M·,·2 

·13 
.1.4 
.1.5 
-1.8 
·1.1 
.1.8 . 

W 11 ~ ~ ~ ~ ~ ~ m M 

FramaNo. 

Figure 59: The effect of a key press click has on the decay of the harmonics of 
a note. 

ated using a frame size of 512 bins. The characteristic spike associated with a 

key press occurs in the decay of the harmonics of the note. It has been observed 

that this spike often occurs in conjunction with a bin hop. Thus, the presence 

of the key press spike and a bin hop are two factors that would enable detection 

of early key press events. A third factor would be to look for a key press spike 

(which belongs to the second note) occuring in the release section of the first 

note. 

Such events would be detectable on both modern and classical oboes. 

8.2.3 Chapter conclusions 

• Initial tests indicate that one set of generic discriminators can be con­

structed for gestures common to the violin and the cello . 

• Oboe key presses have successfully been detected. Analysis of a recording 

of the D major scale showed that extracted key presses coincided with 

finger changes throughout the scale. 

151 



9 Conclusion 

The aim of this research was to extract gestural information from musical au­

dio signals. Work centred around the development of a Note Tracking System 

(NTS) which was modelled on features of the human auditory system. This ap­

proach has produced an effective method of mining note attributes. Proposed 

definitions for note features were justified by their continued use throughout 

this research. 
The comparator designed to validate the output of this NTS was first itself 

validated using simple tests analgous to music and found to be appropriate for 

this use. 
The output of the NTS was then validated using this bespoke comparator 

and in almost all cases the NTS was accurate in determination of pitch and 

timing. It outperformed published PitchTracker software in all test cases. The 

vast amount of note information it can command makes it a suitable system for 

retrieval of information about gestures that influence sound. 

Gestures have been defined in a logical manner identifying the pertinent type 

of gestures for this work. 
The oboe key press detection method shows that it is possible to extract 

articulatory key press timing information from an acoustic signal. This method 

could be developed as a tool to improve musical technique. 

The system also has the potential to determine in real situations the manner 

in which a note has been played on a stringed instrument. Initial steps were 

taken to find generic discriminators that would work for both the violin and 

the cello that would permit a system to identify the type of gesture used. Pre­

liminary tests show that not only was the system able to distinguish between 

plucked and bowed notes, it was also able, in the case of bowed notes, to deter­

mine the type of bowing used. This indicates that a set of generic discriminators 

does exist. 
The system can extract string and oboe based gestures with a promising 

degree of success, showing that it is possible to extract gestures from musical 

audio signals. 

152 



10 Further work 

10.1 Comparator 

10 .1.1 Efficiency 

The functional requirement of this comparator to compare a given error with the 

remainder of the string it occurs in, results in computational overhead. In a for­

mal language context, lookahead functionality could be legitimately restricted 

using an abstract top-down contextual approach. Text would be grouped ac­

cording to the abstraction levels provided by paragraphs, sentences, words and 

characters. Thus the length of the lookahead window for a given level would be 

bound by the level of abstraction above it. Each level of abstraction is separated 

by different delimiters: paragraphs by carriage returns, sentences by punctation 

marks and words by spaces. 

Comparision would begin at the top level comparing paragraphs with para­

graphs. If there is a difference each level of abstraction would be used to deter­

mine if the error was caused by a missing paragraph, sentence, word or character. 

For example, if a character was missing from a word, information from the com­

parison of words would be used to restrict the lookahead distance when finding 

the missing character(s) of the word. 

The equivalent in a musical context would be movements, phrases, bars and 

notes. Difficulties would arise in terms of musical representation: for example, 

determining where a phrase begins and ends. 

.. In order to make comparisons at each level of abstraction, it would be nec­

essary to perform some form of encoding operation to generate a unique tag 

(based on content and order) for each item within a level. The letters in a word 

would be used to generate a tag for each word. The tags from the words in a 

sentence would be used to generate the sentence tag, and so on. 

10.1.2 Musical representation 

Development of a musieal type language would enable the comparator to process 

scores and performances containing musical objects such as chords or embelish­

ments. Using the unique tag con~ept from the previous section, chords could 

be compared without the need for the complex parallel and sequential temporal 

structures as described by Heijink et al[47]. 

153 



10.1.3 Timing 

The problems associated with note length timing show that the MIDI file format 

is not ideal basis for note length comparisons. This is due to the manner in 

which the note-off event is used. In the original MIDI file it is used to indicate 

the point at which a note (if it has not already done so) can begin its decay. The 

comparison MIDI file uses the note-off event to indicate the actual end of a note. 

Some sort of compensation function is also needed to account for instruments 

(e.g. the piano) when note length is proportional to pitch. 

10.2 Note Tracking system 

10.2.1 Adaptive streaming 

When a note is found the onset slope for each harmonic could be characterised 

and used to distinguish between dynamic fluctuation of a harmonic and a gen­

uine repeated note. This would result in a dramatic reduction in the number of 

falsely detected notes. 

10.2.2 Heuristic Partial Tracking 

At present, gaps in a LoP are considered to be an indication of the end point of 

a partial. A better system would take the "strength" of the partial into account, 

whereby a strong partial would be judged to be able to sustain itself over a gap 

in a LoP. The maximum gap length would be proportional to the strength of 

the partial. Factors that contribute to the strength of the partial would include 

the number of items in the LoP before the gap and the gradient of the LoP 

leading up to the gap. This would reduce the number of falsely detected onsets 

which arise from gaps in LoPs which prematurely end the life of a partial. 

10.3 Gestural Extraction 

10.3.1 Oboe gestures 

This thesis has laid a foundation upon which further research can be built. At 

present the oboe key click extractibn routine only uses note start information 

and tracks backwards to find key clicks. Further work would provide the routine 

with the means of using both note end and start points so that it can analyse 

the gap between notes and find: 

154 



• Early key presses which cause the pitch of the next note to be heard before 

the current note has finished sounding. 

• Key presses which occur inbetween notes. 

• Late key presses which occur after the onset of the note. Such presses 

have been empirically observed. 

Such work would also provide information that would go towards extracting 

articulatory oboe gestures (e.g. legato/staccato playing styles) that are the 

equivalent of the string instrument gestures. A new set of discriminators would 

be needed; it is invisaged that necessary information would be provided by: 

• the note onset; 

• note length; 

• inter-note interval. 

Detection of the note onset would be particulary important when distinguishing 

between tongued and slurred playing styles. 

10.4 String instrument gestures 

Distinctions drawn between different gestures used to sound these instruments 

can be improved by including more discriminators in the analysis. The NTS 

~ytem provides details of the end points of the harmonics of a note. This infor­

mation can be used to calculate: 

• Inter-note intervals and inter-note onsets. 

• The gradient from the peak magnitude position of a harmonic to its end 

point. 

• The peak magnitude position of a harmonic relative to its end point. 

Implementation of the above may not improve the accuracy of cello gesture 

identification and would demonstrate that the fuller sound of the cello does not 

easily conform to note parameters established from violin notes. Such a result 

would justify the need for separate discriminator values for the violin and cello. 

Further .:work is needed to investigate point B in Figure 54. A number of 

short lived (in)harmonics come to an end at this point, though one rises from this 

155 



point. Given that the note in question was played using spiccato bowing, point 

B may be the point at which the bow was lifted from the string. The detection 

of this gesture would provide a further discriminator for the distinction of bow 

types. 
It is suggested that examination of the magnitude of the (in)harmonics that 

are seen to rise and fall from the onset to point B would provide information 

concerning the amount of bow force exerted to create the note, thus emulating 

the bow force measurements made by Askenfelt[3). 

Further work is also required to investigate whether the oboe key press rou­

tines can detect lack of coordination in string players when using legato bowing. 

Failure to change the left hand fingering in time with a change of bow direction 

would result in the same clipping effect at the end of a note. 

156 



References 

[I] Gnu lilypond - the music typesetter. http://www.lilypond.orgj. 

[2] V. Algazi, R. uda, R. Morrison, and D. Thompson. Structural composition 

and decomposition of hrtfs. Proc. IEEE Workshop on Applications of Signal 

Processing to Audio and Acoustics, pp103-106, 2001. 

[3] Anders Askenfelt. Measurement of bow motion and bow force in violin 

playing. Journal of the Acoustical Society of America, 80(4}:1007-1O15, 

October 1986. 

[4] J. Backus. The Acoustical Foundations of Music. W.W. Norton & Company 

Inc, New York, 1969. p 85. 

[5] A. H. Benade. Fundamentals of Musical Acoustics. Dove Publications Inc, 

31 East 2nd Street, Mineola, N.Y., 2nd edition, 1990. pp 223-225. 

[6] Kenneth W. Berger. Some factors in the recognition of timber. The Journal 

of the Acoustical Society of America, 36(10}:1888-1891, 1964. 

[7] Uzay Bora, Selmin Tufan, and Semih Bilgen. A tool for comparison of 

piano performances. Journal of New Music Research, 29(1}:85-99, 2000. 

[8] Robert S. Boyer and J Strother Moore. A fast string searching algorithm. 

Communications of the ACM, 20(10):762-772, 1977. 

[91 Annelies Braffort, Rachid Gherbi, Sylvie Gibet, James Richardson, and 

Daniel Teil, editors. Gesture-Based Communication in Human-Computer 

Interaction, International Gesture Workshop, GW'99, Gif-sur- Yvette, 

France, March 17-19, 1999, Proceedings, volume 1739 of Lecture Notes in 

Computer Science. Springer, 1999. 

[10] A. Bregman. Auditory Scene Analysis. Cambridge: MIT Press, 1990. 

[11] Roberto Bresin and Giovanni Umberto Batte!. Articulation strategies in 

expressive piano performance. analysis of legato, staccato, and repeated 

notes in performances of the an'dante movement of mozart's sonata in g 

major (k 545). Journal of New Music Research, 29(3}:211-224, 2000 .. 

[12] Judith Brown and Miller Puckette. A high resolution fundamental fre­

quency determination based on phase changes of the fourier transform. 

Journal of the Acoustical Society of America, 94(2}:662-667, 1993. 

157 



[13] Claude Cadoz, Annie Luciani, and Jean Loup Florens. Cordis-anima: A 

modeling and simulation system for sound and image sythesis - the general 

formalism. Computer Music Journal, 17(1}:19-29, 1993. 

[14] Antonio Camurri, Shuji Hashimoto, Matteo Ricchetti, Andrea Ricci, Kenji 

Suzuki, Riccardo Trocca, and Gualtiero Volpe. Eyesweb: Toward gesture 

and affect recognition in interactive dance and music systems. Computer 

Music Journal, 24(1}:57-69, 2000. 

[15] D. Cirotteau, D. Fober, S. Letz, and Y. Orlarey. Un pitchtracker mono­

phonique. Actes des Journes d'Informatique Musicale JIM2001, pages 217-

233, 2001. 

[16] Jean claude Risset and David 1. Wessel. The Psychology of Music, chapter 

5: Exploration of Timbre by analysis and synthesis, page 118. Academic 

press, 2nd edition, 1999. 

[17] Martin P. Cooke and Daniel P.W. Ellis. The auditory organization of speech 

in listeners and machines. Technical Report TR-98-016, International Com­

puter Science Institute, June 1998. 

[18] D. Cooper and N. Bailey. Perceptually smooth timbral guides by state­

space analysis of phase vocoder parameters. Computer Music Journal, 

24(1}:32-42, 2000. 

[19] Sofia Dahl. The playing of an accent - preliminary observations from the 
." temporal and kinematic analysis of percussionists. Journal of New Music 

Research, 29(3):225-233,2000. 

[20] Roger B. Dannenberg. Music understanding by computer. Carnegie Mellon 

School of Computer Science, pages 19-28, 1987/1988. 

[21] Roger B. Dannenberg. Music, Language, Speech, and Brain, chapter Recent 

Work in Real-Time music Understanding by Computer. Macmillan, 1991. 

[22] C.J. Darwin. Perceiving vowels in the presence of another sound: Con­

straints on formant perception. 'The Journal of the Acoustical Society of 

America, 76(6}:1636-1647, 1984. 

[23] C.J. Darwin and Valter Ciocca. Grouping in pitch perception: Effects of 

onset asynchrony and ear of presentation of a mistuned component. The 

Journal of the Acoustical Society of America, 91(6}:33-81, 1992. 

158 



[24] D. Deutsch, editor. The Psychology of Music. Academic Press Inc. (London) 

Ltd, 24/28 Oval Road, London, NW1 7DX, 1982. pp 4-6. 

[25] Diana Deutsch, editor. the Psychology of Music, chapter 5, Exploration of 

Timbre by analysis and synthesis. Academic Press, 2 edition, 1999. 

[26] Diana Deutsch, editor. the Psychology of Music, chapter 4, The Perception 

of Musical Tones. Academic Press, 2 edition, 1999. 

[27] Roberto Dillon. Classifying musical performance by statistical analysis of 

audio cues. Journal of New Music Research, 32(3):327-332,2003. 

[28] Diana Treffry (Editorial Director), editor. Collins Concise Dictionary. 

Harper Collins, 4th edition, 1999. 

[29] Simon Dixon. Extraction of musical performance parameters from audio 

data. In IEEE Pacific-Rim Conference on Multimedia, pages 42-45, 2000. 

[30] Simon Dixon. On the computer recognition of solo piano music. Mikropoly­

phonie, (6), 2000. 

[31] Simon Dixon. Automatic extraction of tempo and beat from expressive 

performances. Journal of New Music Research, 30(1), 2001. 

[32] Shlomo Dubnov. Emotion - is it measurable? In KANSEI - The Technology 

of Emotion, AIMI International Workshop, July 1997. 

[33] Chris Duxbury, Mark Sandler, and Mike Davies. A hybrid approach to 

musical note onset detection. In Proceedings of the 5th International Con­

ference on Digital Audio Effects, Hamburg, Germany, September 2002. 

[34] A. Eronen and A. Klapuri. Musical instrument recognition using cepstral 

coefficients and temporal features. In Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing, 2000. 

[35] Paul R. Farnsworth. The social Psychology of Music, chapter Chapter Four: 

Melody, page 57. the Iowa State University Press, 1969. 

[36] Harvey Fletcher, E. Donnell Blackman, and O. Norman Geertsen. Quality 

of violin, viola, 'cello, and bass-viol tones.i. The Journal of the Acoustical 

Society of America, 37(5):851-863, 1965. 

159 



[37] Harvey Fletcher and Larry C. Sanders. Quality of violin vibrato tones. The 

Journal of the Acoustical Society of America, 41(6):1534-1544, 1967. 

[38] A. Fraser and I. Fujunaga. Toward real-time recognition of acoustic musical 

instruments. In Proceedings of the International Computer Music Confer­

ence, 1999. 

[39] Daniel J. Freed and William L. Martens. Deriving psychophysical rela­

tions for timbre. In Proceedings of the 1986 International Computer Music 

Conference., pages 393-405. San Francisco: International Computer Music 

Association, 1986. 

[40] Anders Friberg, Johan Sundberg, and Lars Frydlm, Music from motion: 

Sound level envelopes of tones expressing human locomotion. Journal of 

New Music Research, 29(3):199-210,2000. 

[41] Alf Gabrielsson. Generative Processes in Music, chapter 2. Timing in music 

performance and its relations to music experience, pages 27-51. Clarendon 

Press, 1988. 

[42] Leon Goosens and Edwin Roxburgh. Yehudi Menuhin Music Guides: Oboe. 

MacDonald and Jane's, 1977. 

[43] John W. Gordon. The perceptual attack time of musical tones. Journal of 

the Acoustical Society of America, 82(1):88-105, July 1987. 

[44] J. Grey. An Exploration of Musical Timbre. PhD thesis, Stanford Univer­

sity, 1975. 

[45] John M. Grey and James A. Moorer. Perceptual evaluations of synthesized 

musical instrument tones. The Journal of the Acoustical Society of America, 

62(2):454-462, 1977. 

[46] Harry H. Hall. Sound analysis. The Journal of the Acoustical Society of 

America, 8:257-262, 1937. 

[47] Hank Heijink, Peter Desain, Henkjan Honing, and Luke Windsor. Make 

me a match: An evaluation of different approaches to score-performance 

matching. Computer Music Journal, 24(1):43-56, 2000. 

[48] H. Helmholtz. On The Sensations Of Tone As A Physiological Basis For 

The Theory Of Music. Longmans, Green and Co., 3 editioll, 1895. page 

127. 

160 



[49] Barbara S. Kisilevsky, LiHui Pang, and Sylvia M.J. Hains. Maturation of 

human fetal responses to airborne sound in low- and high-risk fetuses. The 

Journal of Early Human Development, 58:179-195,2000. 

[50] A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. 

In Proc. IEEE Int. Con/. Acoust., Speech, and Signal Proc. (ICASSP), 

volume 6, pages 3089-3092, 1999. 

[51] Anssi Klapuri. Automatic transcription of music. Master's thesis, Tampere 

University of Technology, Department of Information Technology, Novem­

ber 1997. 

[52] Katrin Krumbholz, Rod D. Patterson, Andrea Nobbe, and Hugo Fast!. Mi­

crosecond temporal resolution in monaural hearing without spectral cues? 

The Journal of the Acoustical Society of America, 113(5):2790-2800, May 

2003. 

[53] V.l. Levenshtein. Binary codes capable of correcting deletions, insertions, 

and reversals. Soviet Physics - Doklady, 10(8):707-710, February 1966. 

[54] Matija Marolt. Networks of adaptive oscillators for partial tracking 

and transcription of music recordings. Journal of New Music Research, 

33(1):49-59, 2004. 

[55] Teresa Marrin and Rosalind Picard. Proceedings of the international com­

puter music conference. In The "Conductor's Jacket": A Device for Record­

ing Expressive Muscial Gestures, October 1998. 

[56] K. Martin. Sound-Source Recognition: A theory and computational model. 

PhD thesis, Massachusetts Institute of Technology, June 1999. 

[57] K. D. Martin. Automatic transcription of simple polyphonic music: Robust 

front end processing. Technical Report 399, Massachusetts Institute of 

Technology, The Media Laboratory, December 1996. 

[58] Keith D. Martin and Youngmoo E. KIm. Musical instrument identification: 

A pattern-recognition approach. In Presented at the 196th meeting of the' 

Acoustical Society of America, October 1998. 

[59] G.A. Miller and G. A. Heise. The trill threshold. Journal of the ACQustical 

Society of America, 22(5):637-638, September 1950. 

161 



[60] Dirk Moelants. Statistical analysis of written and performed music. a study 

of compositional principles and problems of coordination and expression in 

"punctual" serial music. Journal of New Music Research, 29(1):37-60,2000. 

[61] Brian C. J. Moore, Brian R. Glasberg, and Robert W. Peters. Relative 

dominance of individual partials in determining the pitch of complex tones. 

The Journal of the Acoustical Society of America, 77(5):1853-1860, May 

1985. 

[62] Brian C.J. Moore. An Introduction to the psychology of Hearing. Academic 

Press, 5th edition, 2003. 

[63] James A. Moorer. On the segmentation and analysis of continuous musical 

sound by digital computer. Technical report, Center for Computer Research 

in music and Acoustics, Department of Music, Stanford University, May 

1975. 

[64] Joesph Derek Morrison and Jean-Marie Adrien. Mosaic: A framework for 

modal synthesis. Computer Music Journal, 17(1):45-56, 1993. 

[65] Eric Metois. Musical Sound Information. Musical Gestures and Embedding 

Synthesis. PhD thesis, Massachusetss Institute of Technology, February 

1997. 

[661 Stefan Muller. Computer-aided musical performance with the distributed 

rubato environment. Journal of New Music Research, 31(3):233-237,2003. 

[671 Stefan Muller and Guerino Mazzola. The extraction of expressive shaping 

in performance. Computer Music Journal, 27(1):47-58,2003. 

[68] A.W. Nolle and C.P.Boner. The initial transients of organ pipes. The 

Journal of the Acoustical Society of America, 13:149-155, October 1941. 

[691 Jeremy Pickens, Juan Pablo Bello, Giuliano Monti, Mark Sandler, Tim 

Crawford, Matthew Dovey, and Don Byrd. Polyphonic score retrieval using 

polyphonic audio queries: A harmonis modeling approach. Journal of New 

Music Research, 32(2):223-236,2003. 

[70] R. Plomp. The ear as a frequency analyzer. The Journal of the Acoustical 

Society of Am~:ica, 36(9):1628-1636, September 1964. 

[71] R. Plomp. Aspects of tone sensation: a psychophysical study. London New 

York: Academic Press, 1976. 

162 



[72] Giovanni De Poli, Antonio Roda, and Alvsie Vidolin. Note-by-note analysis 

of the influence of expressive intentions and musical structure in violin 

performance. Journal of New Music Research, 27(3):293-321, 1998. 

[73] Rudolf A. Rasch. Generative Processes in Music. The Psychology of Per­

formance, Improvisation and Composition., chapter 4. Timing and synchro­

nization in ensemble performance. Oxford Science Publications, 1988. 

[74] Edward M. Reingold. Algorithms and Theory of computation handbook, 

chapter Algorithm Design and Analysis Techniques, pages 16-18. CRC 

Press, 1999. 

[75] Buddy Rich. Buddy Rich's Modern Interpretation of Snare Drum Rudi­

ments. Embassy Music Corporation, 1942. 

[76] E.G. Richardson. The transient tones of wind instruments. The Journal of 

the Acoustical Society of America, 26(4):960-962, November 1954. 

[77] Don A. Ronken. Monaural detection of a phase difference between clicks. 

The Journal of the Acoustical Society of America, 1970. 

[78] Evelyn Rothwell. Oboe Technique. Oxford University Press, 2nd edition, 

1962. 

[79] Stanley Sadie, editor. The Violin Family, chapter Two. Macmillan Press, 

London, 1989. 

[80] E.L. Saldahna and John F. Corso. Timbre cues and the identification of 

musical instruments. The Journal of the Acoustical Society of America, 

36:2021-2026, October 1964. 

[81] Sylviane Sapir. Gestural control of digital audio environments. Journal of 

New Music Research, 31(2):119-129,2002. 

[82] D. Scheirer. Extracting expressive performance information from recorded 

music. Master's thesis, Massachusetts Institute of Technology, September 

1995. 

[83] M.R. Schroeder. Complementarity of sound buildup and decay. The Journal 

of the Acoustical Society of America, 40(3):549-551, 1966. 

[84] Carl Seashore. Psychology of Music. McGraw-Hill Book Company, 1st 

edition, 1938. 

163 



[85] E. A. G. Shaw. Transformation of sound pressure level from the free field to 

the eardrum in the horizontal plane. The Journal of the Acoustical Society 

of America, 1974. 

[861 Gunter Sohler. Gunter's midi compiler. 

http://mitglied.lycos.de/ gsohler /linux. 

[87] Robin Stowell. Violin Technique and Performance Practice in the Late 

Eighteenth and Early Nineteenth Centuries. Cambridge University Press, 

1985. 

[88] Johan Sundberg. Four years of research on music and motion. Journal of 

New Music Research, 29(3):183-185,2000. 

[89] Timidity. http://www.goice.co.jp/member /mo/timidity /. 

[90] Dan Trueman and Perry cook. Bossa: The deconstructed violin recon­

structed. Journal of New Music Research, 29(2):121-130,2000. 

[91] Esko Ukkonen. Algorithms for approximate string matching. Information 

and Control, (64):100-118,1985. 

[921 Esko Ukkonen and Derick Wood. Approximate string matching with suffix 

automata. Algorithmica, 10(5):353-364, November 1993. 

[93] B. Vercoe. The synthetic performer in the context of live performance. In 

Proceedings of the 1984 International Computer Music Conference., pages 

275-278. San Francisco: International Computer Music Association, 1984. 

[94] P. Walmsley, S. Godsill, and P Rayner. Polyphonic pitch tracking using 

joint bayesian estimation of multiple frame parameters. In IEEE Workshop 

on Applications of Signal Processing to Audio and Acoustics, Oct 1999. 

[95] Paul J. Walmsley, Simon J Godsill, and Pete J.W. Rayner. Polyphonic pitch 

tracking using joint bayesian estimation of multiple frame parameters. In 

Proceedin9s of the IEEE Worksop in Applications of Signal Processing to 

Audio and Acoustics, Oct 1999. 

[96] F. Winckel. Music, sound and sensation A modern exposition. Dover pub­

lications inc. New York, 1967. 

164 



[97] R. Young. McGraw-Hill Encyclopedia of Science and Technology, vol­

ume 11, chapter Musical Acoustics, page 581. McGraw-Hill, 8 edition, 

1997. 

165 



A Appendix - A 

166 



Quantitative Measurement of the Reliability of 
Automatic Pitch Detectors based on 

"Performance Distance" 

Nicholas J Bailey* Jered Boltont Damien Cirotteau* 

April 27, 2005 

Abstract 

A continuing problem in music technology is that of automatic tran­
scription of music from an audio recording. Currently, this process is only 
even moderately reliable for monophonic music. The testing of such a pro­
cess is problematic, as it requires either a huge investment of man-hours 
in comparing transcriptions with the original recordings, or otherwise can 
only produce anecdotal evidence of the transcriber's accuracy, being based 
on a small sample set. We propose a formal, semantically based automatic 
method of detecting transcription errors, wherein a large corpus of music 
may be presented to the automatic transcriber and the results analysed 
without human intervention. The new algorithm is used to produce an 
error analysis of a mature pitch-to-midi system. 

1 Introduction 

Pitch-to-MIDI conversion, or more generally, an automatic method for music 
transcription, is one of the holy grails of music technology. Various attempts 
have been adopted, with different goals and hence different requirements being 
placed on the converter. For example, extraction of melodies from a database 
rarely requires that the octave of a note be identified correctly, and in fact hardly 
depends upon the absolute pitch value being identified at all [GLCS95]. Auto­
matic accompanists. which listen to a soloist in order to generate synchronisia­
tion information require somewhat more accurate pitch identification depending 
upon their algorithmic sophistication[DM88], but the octave is still relatively 
insignificant. Transcription programs designed to notate melodies, such as au­
tomatic amanuensis, certain musicological tools or plagiarism detectors require 
a much greater degree of accuracy. 

In comparing the performance of such systems, it would be beneficial to be 
able to apply a standard metric which could be used to determine a somewhat 
standardised figure of merit (FoM). Although the problem will aJ.ways be genre­
specific to an extent, the very poor performance of existing programs, even with 

• Centre for Music Technology, The University of Glasgow 
tCentre for Music Technology, The University of Glasgow 
*CSC - DEI, University of Padua 

167 



relatively noise-free monophonic sources, makes the useful range of measure­
ment fall within the scope of relatively easily constructed tools. We propose an 
algorithm which can be used to calculate a musically significant FoM repeatably 
and fairly based upon the presentation of a fixed and possibly very large corpus 
of works to the candidate transcription algorithms. 

The algorithm has been tested using the Pitch-to-Midi converter from Grame 
[CFLOOl], described in Section 2, as an example. The experimental technique 
adopted is described in Sections 3 & 4. Section 5 presents an algorithm devel­
oped to detect errors in recorded pitch. 

2 The Grame Pitch-to-MIDI Converter 

This Pitch-to-MIDI Converter (or pitchtracker) is based on an enhanced phase 
vocoder [DCMOO], permitting the accurate determination of partial frequen­
cies. A maximum-likelihood function is then applied in order to extract the 
best candidate fundamental. We will briefly present the algorithm, its intended 
application and some empirically observed strengths and weaknesses. 

2.1 Algorithm 

Input signal 

Note On. Off Volume 
Pitch Bend 

Figure 1: The pitchtracker architecture 

The first step of the algorithm extracts the significant partials of the signal. 
Typically, after a noise gate which allows us to keep only significant signals, a 
Hanning window is applied and the spectrum is computed with a traditional 
FFT. The local maxima are then extracted and taken into consideration if 
greater than 3% of the global maximum of the spectrum. The precision in 
frequency of those partials is not as good as we would like. The traditional 
trade-off between time and frequency gives us a separation of 86.13 Hz between 
two consecutive bins if we work with a buffer of 512 points (11ms at a sam­
pling rate of 44.1 kHz). This is a quite strong, and well-known, limitation of 

168 



frequency domain analysis: if we want a good precision in frequency we have a 
low precision in time. 

To reduce the severity of this limitation the signal derivative is used in 
order to obtain a higher precision for the partials found in the spectrum. This 
technique is due to Marchand [DeMOO], and proceeds as follows: 

Suppose a perfect audio signal (composed only from sinusoidal partials and 
without noise). 

p 

a(t) = L ap(t) cos(c,op(t)) (1) 
p=l 

with 

(2) 

From (1) and (2): 

(3) 

The signal is discrete so let DFTk be the spectrum of the DFT of the k-th 
derivative of the signal. 

(4) 

Once the precise partials have been determined, the best candidate funda­
mental must be selected. A maximum likelihood function such as in [IB98], is 
used. For each partial, the value (5) is computed with f being the accurate 
frequency of the partial, p being the other components of the signal and P the 

... number of partial of the signal. 

p 

f(f) = L Op(f)Yp(f) (5) 
p=l 

Yp is a triangular function centered on the computed peak. This factor is 
the tolerance within a peak that is considered as a partial of a certain note. The 
nearer p is close to a multiple of f, the highest the value of Yp , and if p is too 
far from nf then Y is null. 

with n E [2, Pl· 

Yp(f) = nf - ~(p) + 1 fmin $ nf $ h(p) 
h(p) - fmin 
fmax - nf 

fmax - h(p) 
=0 

h(p) $ nf $ fmax 

otherwise 

(6) 

As lower partials have a greater importance than higher ones in the formation 
of a note, lower partial are awarded a higher higher score, Op: 

() 
0.9 

Op f = i _ 0.1 (7) 

169 



The partial which maximises f(f) is considered as the fundamental. The 
frequency is converted to a MIDI note and a pitchbend value which corresponds 
to the deviation between the theoretical value of the MIDI note and the detected 
frequency. 

A tunable stability threshold is then applied: a fundamental has to be de­
tected x consecutive times in order to be considered as a consistent note. The 
accuracy of the system is then x * w, with w being the size of the window. We 
note that we need a small value for x to obtain a good accuracy, but small a x 
produces more errors during the attack. Typically x = 3 gives a good compro­
mise between accuracy and reliability, but it has to be tuned depending on the 
instrument and the size of the window. Careful tuning helps the system to only 
detect stable notes, resulting in MIDI note data output which corresponds with 
the wave file input. 

3 Detecting Errors in Pitch 

In order that a large database be available to perform the tests, monophonic 
output is generated by a synthesiser from an existing MIDI file. The generating 
audio stream can be fed directly to the audio input of the pitch-to-midi converter 
under test, for example using a named pipe in a Posix-compliant operating 
system; the output from the converter may then be compared with the original 
MIDI file using the proposed pitch-error-detection algorithm. Error detection 
algorithms are presented with two sequences of tokens representing notes. The 
first is the reference sequence ("the score"), and the second is the output from 
the candidate pitch-to-MIDI converter (''the performance"). Two fundamental 
requirements of an error-detection algorithm are: 

1. that it reliably detects error categories identified in Table 1; and 

2. that errors are reported in a manner which maximises the number of 
matches between the score and its performance. 

The second requirement effectively gives the benefit of doubt to the per­
former. That is, it is expected that they will attempt to correctly perform as 
many notes as possible. 

Fault Musical Example 

Original 

Extra Notes EB 

Missing Notes e 

Wrong Notes ® 

.. 

~"" J J J J Ir t t iJlilDr r Ir flJ HI 
~ ~ . 
¥¥'rlu J i J i Ir t t jJlr t r r Ir t J J)I 

'''oJ r Ir iiJlrEtrFlrfJJiJI 

Table 1: Types of errors detected by the proposed algorithm 

Identification of errors relies on the assumption that a sequence of one or 
more mismatches are followed by "correct" notes. When a mismatch occurs the 

.. realignment of the score and performance allows the error type(s) to be inferred. 

170 



The errors presented in Table 1 correspond to the editing operations used 
by Ukkonen[Ukk85] in his work on string matching. These editing operations, 
based on those formulated by Levenshtein[Lev66], are used to determine the edit 
distance (or minimum cost) of converting string A into string B. Comparison of 
pitch information is closely related to string matching, but not identical to it. 

4 From Edit-Distance to "Performance Distance" 

The purpose of string matching is to find the most efficient sequence of editing 
operations so that string B can be modified to match string A. However, in a 
musical context the purpose of string matching is to determine how string B 
(the performance) deviates from string A (the score). This provides a means of 
measuring the accuracy of the performance (which in the context of this paper 
relates to the performance of the pitchtracker). The phrase "Performance Dis­
tance" (PD) is used to decribe editing operations that relate to score deviations 
rather than the shortest edit distance. The outcome of this approach is that the 
PD is not necessarily the same as the (shortest) edit distance, which in some 
cases can misrepresent the performance. 

Score ,,, J J J J I J J r t I r f 
Performance '" J J r J I r r r r I r f 

In the above example, assuming all edit operations have an equal cost, the 
edit distance is: 

Edit Distance I ,,, J J fa I eli r t I r f 
This misrepresents the performance as it eliminates the correctly performed 

G4. The PD of the above is: 

Performance Distance I 'n J J r d I J J r {ftt I r f 
This is more costly in terms of editing operations but preserves the correctly 

performed G4. Bora et al. present a tool specifically designed for comparison 
of performances on a midi keyboard[BTBOO]. Their system judges a realign­
ment position to be correct as long it and the next pair of notes in the score 
and performance match. This, coupled with an unexplained "if .. then ... else ... " 
ordering of error type checking (which imposes an order of precedence on error 
types), results in their system finding false matches. For example: 

Score '1\ J J J J I J J J AI 
Performance ,,, J J J J I J J J t I 

It is obvious that the performance contains two wrong notes in beats 'two and 
three of the first bar. Due to the ordering of error checking and the requirement 
that only two matches indicate successful identification of an error, the system 
presented by Bora et al. would find: 

Bora et al.I ,,, J J J J I J 4PJ J I J i;; I 
This outcome results from terminating error checking as soon as a realign­

ment position that conforms to their matching criteria is found; the possibility 

171 



of two wrong notes is not considered. Due to a restriction imposed by a thresh­
old number of (consecutive) errors allowed, their system does not guarantee the 
successful comparison of a score and its performance. 

As well as reviewing other comparison systems, Heijink et al. [HDHWOO] 
present a comparator which uses a similar approach to Ukkonen: an error and 
the identity of its type are evaluated in isolation. Each error provides a number 
of alternative "paths" which represent different combinations of matches and 
errors. The path with the least number of errors (Le. smallest edit distance) is 
deemed to be correct, meaning that the edit, rather than performance, distance 
is found. 

Vercoe[Ver84] and Dannenberg[Dan91] are generally considered to be the 
pioneers of real-time computerised score performance matching. The system 
described by Dannenberg[Dan88] is based on an offline matching system which 
uses similar techniques to that of Ukkonen. Instead of calculating an array 
of edit costs, Dannenberg populates an array with values that correspond to 
the Longest Common Substring (LCS) for any given position. Despite the use 
of LCSs, Dannenberg's system does not find the PD, as the "correct" path 
through the array is chosen in terms of efficiency resulting in the edit, rather 
than performance, distance. 

The detection of the PD is dependent on finding the combination of tokens 
which best represent the performance. The sequential nature of musical notes 
presented to a comparator dictates that the definition of error token combina­
tions adhere to a set of semantic rules. 

4.1 Incorporation of Error-Reporting Semantics 

An algorithm based on the mismatch of tokens across a limited window-length 
can be confounded by choosing a test case where it is unclear within the scope 
of the lookahead which candidate error is "correct". Furthermore, it is easy to 
'contrive an example which causes algorithms which find the edit distance to 
misrepresent the performance by combining the effect of several different errors 
within the scope tested. In order to overcome these limitations, it is necessary 
to take combinations of errors into account by assessing each combination of 
errors before declaring the winning candidate. 

4.1.1 Error Combination Semantics 

While employing the notation presented in Table 1, 8$ and $8 are semantically 
different, both error combinations are the equivalent of ®. The existence of ® 
means that it is impossible for both $ and 8 to appear consecutively in the same 
(multiple) error definition. It is olso impossible for ® to appear immediately 
after $ or 8 in an error combination. In terms of semantics the only valid error 
definitions and combinations are: 

• zero?r more ® immediately followed by zero or more $ 

• zero or more ® immediately followed by zero or more 8 

Errors are separated by correct (matching) characters. 

172 



4.1.2 An Example of Error Combination 

Suppose that when presented with ,M." i J I r i J r r I r iJ J ,the per­

former played '~b II J J I t J J F r I F iJ J clearly making an error in the 

upbeat and then pausing before resynchronising in the second beat of the first 
full bar. Algorithms which fail to evaluate error combinations misattribute this 
error as: 

No error combinations I &; Y'" J j I is r ri J P r I r iJ J 
This a clear misrepresentation of the performance. The "correct" account of 
the error is: 

With error combinations I ,~!~" J:J I piS r r I r iJ J 

4.2 Assessment of Token Combinations 

Algorithm 1 shows how an iterative scoring approach is used to find a combina­
tion of tokens which adheres to the prescribed error combination semantics and 
most appropriately describes the performance with respect to the score. The 
notation A !;;;; B is used to indicate that list A is a subsequence of B, which is to 
say that B contains the whole of A in order with zero or more additional tokens 
interspersed. 

Lists of token combinations are rated according to the number of matches 
they contain. The list which produces the highest number of matches is judged 
to be the winner. The consequence of this approach is that the entire score 
and performance must be evaluated. Failure to do so removes the certainty of 
finding the "correct" error candidate. 

5 Implementation in Haskell 

We present a reference implementation in Haskell[HF92, HJK+92], an object­
oriented, polymorphically typed, lazy, purely functional language. If the type 
Pitch has been defined which represents score and performance tokens appropri­
ately, the function report returns a comparison between score and performance, 
both being a list of Pitch. 

dataPer/Token. = CorrectPitch 
I MissingPitch 
I InsertedPitch 
I WrongPitc'hPitch 

deriving( Eq, Show) 

report :: [Pitch] -+ [Pitch] -+ [Per/Token] 
report score per/ = 

.errSeqToPer/Tokens score per/ (fst (getError score perf)) 

The return value is a list of type Per/Token, which can represent both pitch 
values and error types. 

errSeqToPer/Tokens :: [Pitch] -+ [Pitch] -+ [Error] -+ [Per/Token] 
errSeqToPer/Tokens (s : rscore) (p : rperf) (e : rerr) 

173 



case e of 
(Omitted, n) -+ - skip n notes in the score 

map ().. m -+ Missing m) (take n (s : rscore)) + + 
errSeqToPerfTokens (drop (n - 1) rscore) (p : rperf) rerr 

(Extra, n) -+ - skip n notes in the performance 
map ().. i -+ Inserted i) (take n (p : rperf)) + + 
errSeqToPerfTokens (5: rscore) (drop (n - 1) rperf) rerr 

(Incorrect, n) --+ - indicate notes in error 
map('\(a, b) --+ Wrong a b) 

(zip (take n (s : rscore)) (take n (p : rperf))) + + 
errSeqToPerfTokens (drop (n - 1) rscore) (drop (n - 1) rperf) rerr 

(NotAnError, n) --+ - score and performance agree 
map ().. c --+ Correct c) (take n (s : rscore)) + + 
errSeqToPerfTokens (drop (n - 1) rscore) (drop (n - 1) rperf) rerr 

If both arguments are non-null, and their first tokens match, the result is a 
Correct token followed by the result of applying the algorithm to the rest of the 
score and performance. 

If the first tokens fail to match, errSeqToPerfTokens is invoked to determine 
the type(s) and extent of the error. The appropriate information is prepended 
to the result, the required tokens dropped from the score and performance token 
list, and the getError function is invoked recursively to continue processing. 

Three termination conditions must be supplied because there is no guarantee 
that the score and performance will be of the same length 

errSeqToPerfTokens (s : rscore) 0 e = Missing s : errSeqToPerfTokens rscore 0 e 
errSeqToPerfTokens 0 (p : rperf) e = Inserted p : errSeqToPerfTokens 0 rperf 
errSeqToPerfTokens 0 0 - = 0 

errSeqToPerfTokens applies corruption tests to the remainder of the score 
and performance by invoking getError. 

getError ::[Pitch] --+ [Pitch] --+ ([Error], Int) 
- An empty score matches an empty performance 
- but with a match score of 0 
getError 00 =(0, 0) 
- If the score/performance runs out, all remaining notes are 
- extra/omitted and the match scores 0 points 
getError 0 perf = ([(Extra, lp)], 0) 

where 
lp = length perf 

getError score 0 = ([(Omitted, Is)], 0) 
where 

ls = length score 
- Otherwise, recurse to find best error description 
getError score perf =selectMaxPoints (tryAliCases score perf) 

We introduce the following types to represent the type of error ~nd its extent: 

data ErrorType = Omitted I Extra I Incorrect I NotAnError 
deriving (Eq, Show) 

type Error = (ErrorType, Int) 

174 



A tuple containing a list of errors and a rating ([Error], Int) is returned. 
selectMaxPoints is defined thus: 

selectMaxPoints :: [([Error), Int)) -> ([Error), Int) 
selectMaxPoints (st : points) = foldl maxPoints st points 

where 
maxPoints :: ([Error], Int) -> ([Error), Int) -> ([Error], Int) 
maxPoints e1@((firstel,_) : _, elcount) e2@((firste2, _) : _, e2count) 

I e1count > e2count = e1 
- Semantics demand that preference be given to error 
- sequences beginning (Wrong, _). 
- Humans prefer to say "Wrong x should be y" rather 
- than "y was omitted then x inserted", even though 
- the transformations are equivalent. 

I elcount == e2count = 
if firstel == Incorrect then el 
else if firste2 Incorrect then e2 
else e2 

I otherwise = e2 

The candidate lists of token combinations are formed by recursing through 
the top-level getError function testing all possible combinations of each candi­
date token (Omitted, Extra, Wrong and NotAnError). This results in the code 
presented in Figure 2. 

tryAllCases iterates from the end to the beginning of the score and perfor­
mance, returning the likelihood rating for each combination (list) of tokens. 
Since this could result in a string of errors of the same type, for example 
[(Omitted,l), (Omitted,l) , ... ], match_score), the infix operator <> is de­
fined which folds all such consecutive instances of the same error into the first 
tuple of the list. 

Finally, a summary function is also provided which writes out the results 
from report in a more compact form. 

5.1 Results 

The test examples from Table 1 were presented to the comparator with the 
following results. 

Hugs session for: 
/usr/share/hugs98/1ib/Prelude.hs 
MusicTypes.hs 
Report.hs 
Report> summary (report [E,Gsh~p,B,Gsharp,A,B,Gsharp, 
A,B,E,B,B,A,Gsharp,Fsharp,E] [E,Fsharp,Gsharp,A,B,Gsharp, 
A,B,A,Gsharp,A,B,E,B,B,A,Gsharp,Fsharp,E]) 
"E+Gsharp+BGsharpAB+GsharpABEBBAGsharpFsharpE" 
Report> summary (report [E,Gsharp,B,Gsharp,A,B,Gsharp, 
A,B,E,B,B,A,Gsharp,Fsharp,E] [E,Gsharp,B,Gsharp,A,B,B, 
E,B,Gsharp,Fsharp,E]) 
"EGsharpBGsharpAB--BEB--GsharpFsharpE" 
Report> summary (report [E,Gsharp,B,Gsharp,A,B,Gsharp, 
A,B,E,B,B,A,Gsharp,Fsharp,E] [E,E,B,Gsharp,A,B,Csharp, 

175 



- Make the exhaustive test for each offset and each error. 

tryAllCases :: Int - [Pitch] - [Pitch] - [([Error], Int)] 
tryAllCases_O =0 
tryAllCasesO_ =[] 
tryAllCasesscoreperJ = 

let 
omittedErr = tryOmittedscoreperJ 
extraErr = tryExtrascoreperJ 
wrongErr = try WrongscoreperJ 
notErr = tryNotAnErrorscoreperf 

in 
in 
[notErr, wrongErr, omittedErr, extraErr] 

- Assuming a token omitted/extra/wrong/correct, the following 
- counts the maximum possible number of matching tokens 
- by comparing score and performance lists. 

- To test for an omitted note in the performance, skip notes in 
- the score and count how many match. 
try Omitted :: [Pitch] - [Pitch] - ([Error], Int) 
try Omitted (s : rscore) perf =« Omitted, 1) <> getError rscore perf) 

- Testing for extra notes in performance is the reverse of the above 
tryExtra :: [Pitch] - [Pitch] - ([Error], Int) 
tryExtra score (p : rperf) =«Extra, 1) <> getError score rperf) 

- Check the conseqence of there being a wrong tokens by ignoring the 
- first token of the score and performance 
try Wrong ::[Pitch]- [Pitch] - ([Error], Int) 
- Suggesting a trailing score or performance is a 
- "wrong note" is penalised 
try Wrong []_ 
try Wrong - 0 
try Wrong (s : rscore) (p : rperJ) = 

([(Incorrect, 1)], -1) 
([(Incorrect, 1)], -1) 
«Incorrect, 1) <> getError rscore rperf) 

- Test for a correct tokens. Suggestions that non-matching tokens 
- are correct are penalised. 
tryNotAnError ::[Pitch] - [Pitch] - ([Error], Int) 
tryNotAnError (s : rscore) (p : rperf) 

Is == p «NotAnError, 1) <> (errors, count + 1) 
I otherwise = ([(NotAnError, 1)], -1) 

where 
(errors, count) = getError rscore rperf 

- Permit an error to collapse into the list if it is prepended to 
- an error of the same sott 
infix 5 <> «» :: Error - ([Error], Int) _ ([Error], Int) 
newErr <> (0, matches) = ([newErr], matches) 
ne.wErr@(neType, neLen) <> (oldErrs@«(fstEType, fstELen) : rErrs), matches) 

I neType == fstEType = «neType, neLen + fstELen) : rEr.rs, matches) 
I otherwise = (newErr : oldErrs, matches) 

Figure 2: The Main Body of the Error Description Algorithm 

176 



A,B,E,B,B,A,Gsharp,Fsharp,E]) 
"E/BGsharpAB/ABEBBAGsharpFsharpE" 

In each case, extra notes ('+'), missing notes ('-') and wrong notes ('I') 
have been correctly identified, and musical semantics are correctly taken into 
account. 

5.2 Efficiency Considerations 

The presented error detection algorithm is unconstrained by local window-size 
considerations, but is extremely poorly conditioned with respect to complexity. 
Each candidate error that is tested potentially results in a recursive call to the 
getError function which typically results in identical expressions being evalu­
ated many times. Consequently, the complexity of performing error matches on 
strings of notes length n is O(n3) which is entirely unacceptable even for very 
small score and performance fragments such as those included in this paper. 
The example quoted above required just over a minute and a half of processor 
time on a Motorola G4-series PowerPC! 

Report> summary (report [Gsharp,A,B,Gsharp,A,B,E,B,B,A,Gsharp] 
[Gsharp,Fsharp,Gsharp,A,B,E,B,B,A,Gsharp]) 

"Gsharp/-GsharpABEBBAGsharp" 
Report> :q 
[Leaving Hugs] 

real 1m35.662s 
user 1m35.350s 
sys Om1.180s 

A much improved version of the code has been implemented in C which 
unwraps one level of recursion into an iteration, and caches results from the re­
cursive examination using a hash table. The resulting joining of the search tree 

• is similar in efficacy to method used in [HDHWOOj. Compared with the Haskell 
prototype, the resulting C code is less transparent and less problem-oriented. It 
is not presented here, but along with with the complete code of the Haskell pro­
gram is available for download at http://cmt.gla.ac.uk/Software/software.html. 

6 Error Analysis Results 

6.1 Intended Applications and Empirical Observations 

GRAME's pitchtracker has been developed mainly for interactive music. Effi­
cient computing strategies were used in order to provide a low computing cost 
allowing real time analyses. Furthermore the high capacity of integration of this 
converter allows off-line analysis, and automatic part transcription (although 
this is not yet implemented). Different applications have been realised (under 
Linux, MacOS and Windows) with this library such as a MidiShare driver, some 
modules for block-diagram based environments (Max/MSP and EyesWeb), and 
stand alone applications. 

The GRAME pitchtracker has been tested in concert mainly with flute and 
voices. Other live tests (in studio) have been done with 'cello, guitar, trumpet 
and didgeridoo. All of them but didgeridoo (obviously) have produced good 

177 



results with accurate tuning, especially voices and flute, probably because more 
experiments have been conducted with those instruments. In the middle reg­
ister of the flute, some errors were observed, typically the lower octave being 
recognised during the attack of the note. Since the conversion was used in an 
interactive piece to trigger MIDI-controlled events, the mis-identification does 
therefore pose a problem for the composer and performer (wrong events started, 
for example). Analysing the spectrum of the medium register of the flute, it 
was noticed that the attack was always one octave lower. This limitation was 
overcome in practice by increasing the stability-time threshold. 

'Cello, guitar and trumpet produced good results too even if more errors 
were detected. The low registers of the 'cello and the guitar were not very well 

, recognised: mainly mistaken notes and octave errors. Rapid phrases in trumpet 
were hardly recognised due to noisy attack and too weak accuracy of the system. 

One of the main weakness of this pitchtracker is imposed upon it by its 
real-time nature. Off-line processing can detect stable notes and then adjust 
the timings: once it finds a stable note, it can decide that the preceding attack 
was part of that note and then adjust the timing in order to match as best as 
possible the played sequence. With a real-time process, such a procedure is not 
possible. Every slice has to be characterised on the fly. In consequence, attacks 
are hardly detected because of their unvoiced structure. Trying to detect the 
attack exposes us to mistaken notes. Therefore, we have to deal with a trade-off 
between accurate timing and strength of the recognition. 

6.2 Pitch Tracker Tests 

Ten test scores were created such that each score provided a typical example of 
a difficult note detection scenario. Table 2 shows the results for each test. 

Each test was performed with the PitchTracker set to use a buffer of 512 
points, except test three which used 1024 points. The test results reflect the 
realtime nature of the pitch tracker. For example, tests 3 and 6 show that the 
pitch tracker consistently failed to detect consecutive repeated notes. It also 
failed to detect the very high register notes of tests 1, 2, 4, 5, 7 and 9. This 
again is consistent with the form of the pitch tracker in that note harmonics 
were too short to satisfy the pitch tracker's criteria for what constitutes an 
established note. 

The comparator presented here guarantees a correct comparison of a score 
and performance without the constraints of a finite and arbitrary window length. 
Semantics of musical performance are also taken into account. With a reliable 
and automatic method of assessment of accuracy for pitch trackers, the com­
parator could be used in conjuction with a genetic algorithm to repeatedly test 
the pitch tracker using different parameters allowing its settings to be optimised 
for a given instrument. • 

References 

[BTBOOj Uzay Bora, Selmin Tufan, and Semih Bilgen. A tool for comparison 
of piano performances. Journal of New Music Research, 29(1}:85-
99,2000. 

178 



I Test No. I Score I Correct I ® I e I EB I 
1 ill ~~~~I~~~~I 4 1 2 0 

2 i"JuJU IJJr~lrerrIFf~fl 25 0 4 0 

i I! ~ ~ r ~ I r ~ r ~ I ~ ~ n IJI- I 

3 il! HH I ~ • Ii I 1 0 4 0 

4 ,I! lJJuJJ191 arrFf~fl 24 2 3 0 

i I! ~E~~EWI~H~~U I 
5 i 1\ j1iJ Jd I r pC pm I 24 0 5 0 

ill S~~~I~E@l ~ pr _H~iU ~!I ::::a 

6 i I! ~J ~U H!i~H~ • I 4 0 6 0 

7 i IlJ ~ ~ U I r ~ ~ ~ I ~. Ii I 7 0 2 0 

8 , II ~ r rJI~JrJ IrA rei 20 2 2 3 

il! J ~ r rl~~~rln~rl 

9 , HJJ JJ I JJ r rlr r r rlFfffl 22 1 6 1 

il!~n~,r ~ r ~ In n IJ. Ii I 

10 i l! .E.~llrli Inl~I~11i I 5 1 1 0 

Table 2: Test Results for the GRAME Pitch Tracker 

179 



[CFL001] D. Cirotteau, D. Fober, S. Letz, and Y. Orlarey. Un pitchtracker 
monophonique. In IMEB, editor, Actes des Journes d'Informatique 
Musicale JIM2001, Bourges, pages 217-223, 2001. 

[Dan88] Roger B. Dannenberg. Music understanding by computer. Carnegie 
Mellon School of Computer Science, pages 19-28, 1987/1988. 

[Dan91] Roger B. Dannenberg. Music, Language, Speech, and Brain, chap­
ter Recent Work in Real-Time music Understanding by Computer. 
Macmillan, 1991. 

[DCMOO] M. Desainte-Catherine and S. Marchand. High precision Fourier 
analysis Using Signal Derivatives. Journal of the Audio Engineering 
Society, 48(7/8):654-667, July/August 2000. 

[DM88] Dannenberg and Mukaino. New techniques for enhanced quality 
of computer accompaniment. In Pro- ceedings of the International 
Computer Music Conference, pages 243-249. Computer Music As­
sociation, September 1988. 

[GLCS95] Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C. 
Smith. Query by humming - - musical information retrieval in an 
audio database. In A CM Multimedia 95 - Electron Proceedings, 
1995. 

[HDHWOO] Hank Heijink, Peter Desain, Henkjan Honing, and Luke Wind­
sor. Make me a match: An evaluation of different approaches to 
score-performance matching. Computer Music Journal, 24(1):43-
56,2000. 

[HF92] Paul Hudak and Joseph H Fasal. A gentle introduction to haskell. 
ACM SIGPLAN Notices, 27(5):1-52, May 1992 . 

. , [HJK+92] Paul Hudak, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, 
Will Partain, John Peterson, Simon Peyton Jones, Philip Wadler, 
Brian Boutel, Jon Fairbairn, Joseph Fasel, Mara M. Guzmn, Kevin 
Hammond, and John Hughes. Report on the programming language 
haskell, v1.2. ACM SIGPLAN Notices, 27(5), May 1992. 

[IB98] O. Izmirli and S. Bilgen. Multiple Fondamental Tracking for 
Polyphone Note Recognition. In Recherches et applications en in­
formatique musicale, pages 305-314. Paris, hermes edition, 1998. 

[Lev66] V.1. Levenshtein. Binary codes capable of correcting deletions, in­
sertions, and reversals. Soviet Physics - Doklady, 10(8):707-710, 
February 1966. 

[Ukk85] Esko Ukkonen. Algorithms for approximate string matching. In­
formation and Control, (64):100-118, 1985. 

[Ver84]" B. Vercoe. The synthetic performer in the context of live perfor­
mance. In Proceedings of the 1984 International Computer Music 
Conference., pages 275-278. San Francisco: International Computer 
Music Association, 1984. 

180 



Algorithm 1 Determine the combination of tokens which leads to the maximum 
number of matches between the score and performance 
Require: Score Sl.oom, Performance Pl. .. n 

Ensure: Analysis R = {xJxP = Sq V xp = EEl V xp = e V xp = ®}*, R;;;;) S 
8+-1 

p+-1 
while Ss ... =I € 1\ Pp oo. =I € do 

if Ss = Pp then 
Append Ss to R 
Increment 8 and p by 1 

else Mismatch detected 
for n E 1 ... (max(m-q, n-p)) do 

for e E (Missing, Extra, Wrong) do 
Evaluate rating r assuming error e lasting n input tokens 
Error E +- (e,n)Jrmax 

end for 
end for 
Now perform corrections in the light of highest-scoring error combination 
if e = Missing then tokens missing from Performance 

Append n e to R 
Increment 8 by n 

else if e = Extra then extra tokens in Performance 
Append n EEl to R 
Increment p by n 

else if e = Wrong then Performance and Score do not agree 
Append n ® to R 
Increment p and 8 by n 

else if e = Wrong,Missing then Performance and Score do not agree 
and tokens are missing from Performance 

Append n ® and m e to R 
Increment p by m and s by n + m 

else if e = Wrong,Extra then Performance and Score do not agree and 
extra tokens are in Performance 

Append n @ and m EEl to R 
Increment p by m + nand s by n 

end if 
end if 

end while 

181 



B Appendix - B 

182 



Towards Real Time Score Performance 
Matching Using Musical Performance 

Distance. 

Jered Bolton and Nicholas J. Bailey 

29th April 2005 

Abstract 

Real time performance tracking systems are usually based on offline 
score performance comparators. Such a derivation leads to a compromise 
of performance which can result in the derived system failing to properly 
track a performance. Tracking systems can be improved by factOring in 
performance error models. However, su ch errors are not necessarily made 
by the performer but are as a result of the actual approach used to compare 
a score and performance. We re-examine the assumption that a straight for­
ward string matching algorithm can adequately represent a performance 
(and in doing so examine the semantics of tokens used for the representa­
tion of a performance) and present a new algorithm which gives a musi­
cally fair representation of a performance and works without modification 
in both real time and offline environments. 

Introduction 

Comparison systems, both offline and online (realtime), which compare a score 
with a performance use techniques from the field of string matching. The three 
editing operations of wrong (denoted ®), missing (e) and extra (EEl) characters 
correspond directly with possible performance errors. 

Existing comparators Bora et al. (2000); Dannenberg (1991); Heijink et al. (2000); 
Pardo and Birmingham (2002) make the assumption that algorithms designed 
for string matching are apprppriate for use in a musical context. 

In a bid to improve performance Pardo and Birmingham (2002) extend their 
performance follower by modeling typcial transcription errors and exploiting 
timing information. Their work assumes that the underlying comparison algo­
rithms are providing a correct representation of the performance. 

Performance errors are detected by exploiting the assumption that follow­
ing an error(s), correct notes will be performed. A system determines the best 
way of realigning a performance with its score by finding" correct" notes which 
match the score. It is well known that although a recursive approach appears 

183 



to be intuitively correct, it is grossly inefficient. Instead the dynamic program­
ming method of using a two.dimensional array or matrix, populated using cer­
tain rules, has emerged as an efficient way of tackling the problem (Levenshtein 
(1966); Ukkonen (1985». 

There are two schools of thought as to how the matrix should be populated: 
edit cost and Longest Common Substring (LCS). In the case of the former, the 
value of each location is calculated according to the "cost" of converting (if 
necessary) the performance into the score, whereas for the latter, each location 
is filled with an integer representing the LCS for the available substrings. 

The use of LCS provides a certain amount of context for editing opera­
tions. Context allows the identification of a given error to have repurcussions 
for other errors. This advantage is lost when a matrix is populated purely in 
terms of the cost of character substitution. The use of LCS by Dannenberg 
(1987/1988) positions his comparator as being the best in terms of musical rep­
resentation. It is for this reason that his comparator will be used as a starting 
point for investigating whether string matching techniques are appropriate in 
a musical context. 

Longest Common Substrings 

For a matrix M of size s, p (where sand p are the lengths of the score and per­
formance respectively), Dannenberg (1987/1988) adheres to the normal proce­
dure of finding an optimum path (which corresponds to the shortest, or most 
efficient, edit distance) through the matrix by starting at Ms,p and tracking 
backwards to Mo,o. He populates his matrix row by row, starting at Mo,o fill­
ing each location with an integer representing the LCS for the available sub­
strings. This results in a system that finds the longest common substring with 
respect to the the start of the score but does not easily lend itself to real time 
processing. 

The consequence of this are twofold. Firstly, errors are identified in a man­
ner which does not account for any impact a given decision may have on the 
system's ability to correctly identify future errors. Whilst this does not pre­
vent Dannenberg's method from finding an edit distance, it does allow for the 
performance to be misrepresented. Secondly, because the system commences 
evaluation at Ms,p or from the end of a look-ahead region if windowing is be­
ing used, the path finding routine must first process unperformed notes in the 
score before reaching actual performance data. This also automatically results 
in an outcome which is not musically relevant. Consider the following snap­
shot of a performance: 

Score :: abdefg 

Performance :: abc 

The performer has misenterpreted the score as a simple scale, clearly mis­
playing the third note. The matrix for this stage is shown in Table 1. Starting at 
Ms,p forces the comparator to produce the following output: 

184 



II Score 
a b d e f g 

Performance a 1 1 1 1 1 1 
b 1 2 2 2 2 2 
c 1 2 2 2 2 2 

Table 1: A LCS populated array for comparison of a score and performance. 

Output = abeee® 

Thus the system has misrepresented the performance. 
Dannenberg acknowledges this problem by reporting "strange behaviour", 

which also arises from a "wrong" note matching a note much later on in the 
score. This problem is discussed in the Future Common Longest Substrings 
section on page 186. 

Error Semantics 

Error semantics are discussed in depth in Bailey et ai. (2005) and will only be 
summarised here. The possible errors a performer can make (when only taking 
sequential order into account) can be defined as: 1) zero or more ® immediately 
followed by zero or more $; 2) zero or more ® immediately followed by zero 
or more e. 

LCS and the performance distance 

A correct representation of the performance must maximise the number of 
(musically) "correct" notes that follow an error. 

The prima facie approach would be to process the score and performance 
backwards (by starting at Ms,p) as the "correct" notes that follow an error will 
(by default) be processed first. 

However, this is not the case. The path finding algorithm makes use of in­
formation provided by a grid population routine. Such routines work forwards 
through the score and performance, populating the grid with the results of the 
comparisons it makes. Consequently LCSs primarily consist of notes that pre­
cede an error. By definition a'H notes leading up to the first error are correct. In 
terms of error identification the information provided by: 

Score = abcdefghijklmno 

Performance = abcdefghijklXno 

is the same as: 

185 



5: abcdefghijklrnn recUrliC 10 tind error 
P: abcefgwijk.klmn 

s: abcde£ghijklmn 
P: abc-efg?ijk+lrn 

Missing char error Wrong char error Extra char error 

Figure 1: A simplified recursive comparator identifying the three error types. 

Score = mno 

Performance = Xno 

Hence, errors are processed in the order in which they are made, preventing 
the system from taking the knock-on effect identifying an error can have on 
future (virtual) errors into account. . 

Virtual error(s) occur when a comparison system finds a non-ideal align­
ment position. Such positions match only a few notes before another "virtual" 
error is found, i.e. one that has arisen as a result of the non-ideal realignment 
position ra ther than performer error. 

Whilst systems which use LCSs can guarantee to find an edit distance (usu­
ally the most efficient) there is no guarantee that it is musically relevent, as 
such systems do no seek to maximise the number of correct notes that follow 
an error(s). Thus the performance distance (PD) is the edit distance which max­
imises the number of musically relevent matches following an error, irrespetive 
of efficiency. 

Although grossly inefficient, a recursive implementation, as shown in Fig­
ure I, helps to explain why errors must be processed in reverse. The occurrence 
of an error causes recursion to take place. Thus the last error is identified first 
meaning this result is taken into account when identifying the second and first 
errors. The same outcome can be achieved using a matrix if the direction of the 
matrix population and path finding routines is reversed. 

Future Common Longest Substrings 

The matrix is still populated row by row, but the routine commences at at Ms,p; 
a resulting matrix is shown in Table 2. Consequently the path finding routine 
starts at Mo,o resulting in a semantically correct outcome and better efficiency 
as the path finding routine can terminate as soon as the end of the performance 
is reached. 

The path corresponding to the PD is found by starting at Mo,o and obeying 
the rules shown in Algorithm 1 (for S = the score, P = th~ performance and 
s = 0, p = 0). 

186 



II Score 
a b d e f g 

Performance a 2 1 0 0 0 0 
b 1 1 0 0 0 0 
c 0 0 0 0 0 0 

Table 2: Showing a FLCS populated array for comparison of a score and per­
formance. 

if So = Pc then 5++, p++, else 

1. if M s ,p+l = M S +1,p+1 = M s+1,p then increment 5 & p, else 

2. if M s ,p+1 > M s+1,p+1 and M s ,p+l > M s+1,p then increment p, else 

3. if M s +1,p > M s+1,p+1 and M s+1,p > M s ,p+1 then increment 5, else 

4. if M s ,p+1 = M s+1,p then increment 5 or p 

Algorithm 1: Path Finding Rules 

Items 1-3 of Algorithm 1 represent the identification of wrong, extra and 
missing error types respectively. Item 4 is a special case for catching ambigu­
ous error situations where the choice between a missing or extra error type is 
arbitrary for an isolated error and dependent on the previous error type for 
multiple errors. Thus errors are processed in reverse allowing the system to 
find a path through the grid which corresponds to the performance distance. 
Whilst this approach solves Dannenberg's "strange behaviour" problem of a 
"wrong" note causing the system to immediately jump to the end of the score, 
the same symptoms caused by a "wrong" note appearing later on in a score are 
still present. 

The use of FLCS guarantees the detection of a PO which is semantically 
correct. However, it can result in an outcome that is musically unlikely. Factors 
which contribute to a such an outcome include the instrument used for the 
performance, tempo, complexity of score and the number and combination of 
repeated notes within the score: 

Score = abdefgfcdefg 

Performance = acdefg 

The PO of the above is: 

PD = ae e e e eecdefg 

The comparator has ensured that the maximum number of matches has been 
found between the performance and the score. From a musical perspective, 

187 



why would a performer jump six notes in the score? It is more likely that the 
performer having noticed their mistake, stops playing. The Musical Perfor­
mance Distance (MPD) is therefore: 

MPD = a®defge e e e ee 

The comparator in giving the benefit of doubt to the performer assumes that 
any note played by the performer will be from the score. The consequence of 
this is that a wrong note can only be immediately identified if it is not part 
of the remaining score. In the example above, if the performer had continued 
playing past the second "f" then the comparator would have realigned itself, 
resulting in the first" c" being recognised as a wrong note. 

Dannenberg addresses this problem by modifying his array populating al­
gorithm (in a manner that he acknowledges "seems to work best in practice") 
such that the matrix contains localised common substring information, poten­
tially removing the resulting edit distance even further from the PD. It also 
prevents the system from correctly spotting that the performer has genuinely 
jumped a number of notes. Dannenberg's modification appears to make the 
assumption that the performer will not jump any notes, which is musically un­
sound. Semantically, wrong notes are better than extra or missing notes, but 
this modification is done at the expense of overall functionality. 

Semantic Extensions 

Wrong notes are musically more acceptable than missing or wrong notes. A 
performance containing wrong notes preserves the rhythmic (and to a certain 
extent, musical) structure of the score, which is lost when notes are (inadver­
tently) added or missed by the performer. This is also borne out by considering 
that the route through the matrix for a wrong note is the same as a correct note. 
Ascribing a wrong note with same value as a correct note when determining 
the length of a FLCS, effectively gives precedence to a wrong note error over a 
"correct" note that occurs much later having missed many notes in the score. 
The problem of knowing which notes are "wrong" when populating the ma­
trix is overcome by exploiting the dependence matching systems have on the 
"correct" notes that follow the occurrence of an error. 

Blip Sequencing . 
A series of "blips" are calculated on a separate matrix and occur at locations 
where the score and performance match. The MPD is realised by.adding the 
blip sequence matrix to the FLCS matrix which modifies the route taken by 
the pa~h finding routine. Additional rules, shown in Algorithm 2, and code to 
enforce the semantic rules, are added to the path finding routine, to cater for 
new scenarios created by the blip sequences. -

Table 3 shows a matrix before addition of the blip sequence matrix (Table 
4). Table 5 shows the blip sequences of Table 4 added to Table 3. This method 

188 



FLCS 
a b d e f g f c d e f g 

a l6J 5 5 5 5 5 5 5 4 3 2 1 

c 5 J;l I S1 JsJ lS J lsi 151 151 4 3 2 1 

d 4 4 4 4 4 4 4 4 l4J 3 2 1 

e 3 3 3 3 3 3 3 3 3 J3J 2 1 

f 2 2 2 2 2 2 2 2 2 2 121 1 

g 1 1 1 1 1 1 1 1 1 1 1 llJ 

Table 3: An FLCS showing the PD. 

Blip Sequences 
a b d e f g f c d e f g 

a 1 0 0 0 0 0 0 0 0 0 0 0 

c 0 0 0 0 0 0 0 1 0 0 0 0 

d 0 0 1 0 0 0 0 0 1 0 0 0 

e 0 0 0 1 0 0 0 0 0 1 0 0 

f 0 0 0 0 1 0 1 0 0 0 1 0 

g 0 0 0 0 0 1 0 0 0 0 0 1 

Table 4: The blip sequences for Table 3. 

FLCS with added Blip sequences 
a b d e f g f c d e f g 

a 171 5 5 5 5 5 5 5 4 3 2 1 

c 5 151 5 5 5 5 5 6 4 3 2 1 

d 4 4 151 4 4 4 4 4 5 3 2 1 

e 3 3 3 14J 3 3 3 3 3 4 2 1 

f 2· 2 2 2 13J 2 3 2 2 2 3 1 

g 1 1 1 1 1 [2J 1 1 1 1 1 2 

Table 5: An FLCS showing the MPD. 

189 



if M s+l,p+l > M s +1,p and M s+l,p+1 > Ms,p+l then increment s & P 
if Ms,p+l = Ms+l,p+l then increment s & P 

Algorithm 2: Additional path finding rules. 

preserves the FLCSs meaning the system's ability to find a musical PO is not 
compromised. 

Test Applet 

A Java applet using the techniques described is available at: 
http://cmt.gla.ac. uk/Software/ software.html 

Further Efficiency Considerations 

Efficiency is further improved by delaying the use of the matrix until the occur­
rence of an error. A simple comparator with no error identifcation capability is 
used to compare the score and performance until an error occurs. At this point 
comparison operations are passed to the matrix routines. This prevents known 
"correct" notes from being included in the matrix which, depending on the po­
sition of the first error, can leading to considerable savings in computational 
overhead. 

Conclusion 

Having highlighted the short comings of using standard string comparison 
techniques in a musical context, we have presented techniques that overcome 
the problems encountered as a result of requirements imposed by such a con­
text. These techniques can be used to provide semantically correct representa­
tions of a performance that allows for accurate score matching, leading to the 
implementation of, for example, an auto-accompanient system. 

References 

Nicholas J Bailey et al. (2005). Quantitative measurement of the reliability of 
automatic pitch detectors based on "performance distance". In Press. 

Uzay Bora et al. (2000). A tool for comparison of piano performances. Journal 
of New Music Research, 29(1):pages 85-99. 

Roger B. Dannenberg (1987/1988). Music understanding by computer. 
Carnegie Mellon School of Computer Science, pages 19-28. 

190 



Roger B. Dannenberg (1991). Music, Language, Speech, and Brain, Macmillan, 
chapter Recent Work in Real-Time music Understanding by Computer. 

Hank Heijink et al. (2000). Make me a match: An evaluation of differ­
ent approaches to score-performance matching. Computer Music Journal, 
24(1):pages 43-56. 

v.1. Levenshtein (1966). Binary codes capable of correcting deletions, inser­
tions, and reversals. Soviet Physics - Doklady, 10(8):pages 707-710. 

Bryan Pardo et al. (2002). Improved score following for acoustic performances. 
In ICMe. pages 262-265. 

Esko Ukkonen (1985). Algorithms for approximate string matching. Informa­
tion and Control, (64):pages 100-118. 

191 

r 
'I', ,",' 

Ii ~ "/Cr 


