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I. Abstract 

Power ultrasonic surgical devices operating at low ultrasonic frequencies (20-100 kHz) 

have been shown to provide some advantages over reciprocating or manual devices in 

removal of tissue. Despite opportunities for widespread applications in orthopaedic, dental, 

ophthalmic and general surgical procedures, the mechanisms of interaction between high 

power ultrasound and human tissue is not well understood and little is known about the 

effects and safety implications for power ultrasonics in human tissue. Therefore, the effects 

of power ultrasonic devices on human tissue are investigated in this thesis. 

From the limited literature on this topic, the basic effects caused by high power ultrasound 

on human tissue can be summarized into three main categories: mechanical response, 

thermal effects and acoustic cavitation. However, the relative contribution of each of these 

remains unclear. Thus, this study aims to analyse these responses and effects of tissue 

mimic materials subject to power ultrasonic excitation and hence investigate the potential 

to quantitively characterise the power ultrasonic damage on tissue. Due to the complexity 

of the interaction between cutting surface with tissue, the damage caused by cutting 

process was not covered. But the investigation of the damage by accumulated ultrasound 

energy in tissue was the main research topic in this thesis. 

To substitute for human tissue, representative materials such as E-glass filled epoxy resin 

(ER), polyurethane foam (PUF) and transparent silicone elastomer (SE) were used in 

experimental studies to simulate the behaviour of cortical bone, cancellous bone and soft 

tissue respectively. Their mechanical properties were characterised using uni-axial 

compression and tensile tests to measure elastic modulus and dynamic mechanical analysis 

(DMA) to study the viscoelastic behaviour. Frequency and temperature dependent 

behaviour of tissue surrogates under power ultrasonic excitation were determined using the 

DMA data based on the time/frequency temperature superposition principle (TTS). The 

parameters relevant to thermal properties, including thermal conductivity and specific heat 

capacity were measured using the heat flow method and differential scanning calorimetry 

(DSC).  

Ultrasonic horns were designed using the finite element (FE) method. The performance of 

the power ultrasonic system was then examined using experimental modal analysis (EMA) 
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with a laser Doppler vibrometer (LDV) to ensure the system met the experimental 

requirements.  

To characterise the responses and effects of tissue mimics subject to power ultrasonic 

excitation, non-invasive field measurements have been developed for the fast and 

reproducible experimental assessment of ultrasonic displacement, strain, stress and 

temperature fields. An ultra-high speed camera and an infrared (IR) camera were used 

simultaneously for ER and PUF plate samples to obtain the imaging data which provided 

the displacement and strain fields with digital image correlation (DIC) technique and the 

steady-state temperature distribution with thermal imaging. The stress field in a transparent 

rectangular cubiod SE sample during power ultrasonic loading was mapped using a laser 

interferometer with acousto-optic effects. Due to the absorption of IR light by transparent 

SE, the temperature distribution of SE was not recorded by IR camera. 

Numerical and analytical models were developed to simulate the ultrasonic wave 

propagation using ABAQUS FE software package and Mathematica respectively. These 

models incorporated frequency dependent mechanical properties of the mimic materials to 

verify experimental results. The results of the models matched well with the experimental 

findings of ultrasonic displacement, strain and stress fields. To assess the thermal effects of 

power ultrasound on the viscoelastic tissue mimics, thermo-mechanical FE models were 

created using the PZFlex FE software package. Furthermore, FE models for thermal 

analysis were parameterized in terms of dynamic modulus and acoustic damping 

coefficient with frequency and temperature dependency for determination of the heat 

generation and thermal conductivity and specific heat capacity for characterisation of the 

heat transfer. The FE results have close correlation with measurement results by an IR 

camera. 

Based on the experimental and numerical studies, the damage of tissue mimicking 

materials under power ultrasonic excitation is related to accumulations of cyclic 

deformation and heating. Non-invasive full-field surface displacement, strain, stress and 

temperature measurements have the potential to be used to predict the damage of tissue 

samples interacting with the power ultrasonic devices. This study has provided confidence 

that the methodology can be applied to study tissue samples subject to excitations typical 

of ultrasonic surgical devices, including those for orthopaedic bone cutting.     
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1. Introduction 

1.1 Research Background 

1.1.1 Ultrasound 

Ultrasound, where sound is defined as “energy in the form of vibrational waves in matter” 

[1], is sound waves having a frequency greater than the range of human hearing, generally 

considered as frequencies over 20 kHz. In general, ultrasonic waves vibrating or oscillating 

along or parallel to their propagational direction are referred to as longitudinal waves (Fig. 

1.1). Transmission of longitudinal waves through a coupling medium produces alternating 

regions of compression and rarefaction, which create continually varying density in the 

medium. The cycles of compression and rarefaction in ultrasound waves exert positive and 

negative pressure or stress, which work on the molecules by first pulling them together and 

then pushing them apart. Energy transported via ultrasound waves results in changes in 

pressure or stress, temperature, density and particle displacement. 

  

Fig. 1.1 A longitudinal wave show 

 

There are various parameters to characterise ultrasound, such as frequency, amplitude, 

wavelength, speed, intensity and power. Depending on the power level, ultrasound can be 

divided into two broad categories, low power and high power. Low power ultrasound, 

usually in the range 0.1-10 W at a frequency typically above 1 MHz, is mainly used for 

non-invasive scans, such as medical imaging for diagnosis (medical ultrasonography) and 

non-destructive testing (NDT) such as crack-testing for materials and structures. Low 

power ultrasound leaves no permanent physical change in the coupling medium. These 

applications employ ultrasound to investigate boundary changes in a medium by ultrasonic 

wave propagation and reflection through the material. The obtained reflection signals 

provide information about acoustic impedance changes at boundaries between dissimilar 

materials, which cause the ultrasonic wave to be reflected back to the receiving transducer. 

In high power ultrasonic applications, the frequencies are at the lower end of the ultrasonic 

http://en.wikipedia.org/wiki/Medical_ultrasonography
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spectrum, typically, 20-100 kHz and vibration amplitudes range from around 10 to 100 

µm. Physical effects produced in the coupling solid, liquid or gaseous media change the 

structure of the medium irreversibly [2]. To utilise and study the effects of high power 

ultrasound, power ultrasonics is introduced.  

1.1.2 Power Ultrasonics 

Power ultrasonics is a research area where low frequency ultrasonic vibrations from around 

20 kHz up to a few hundred kHz, and high power, normally in the range between tens of 

Watts and several kiloWatts, are applied to affect a desirable change in a material or 

medium. In order to maximise the desired effects, high vibration amplitude is normally 

used in power ultrasonic applications. In practical terms, typical amplitudes range from 

about 10 to 100 µm [3]. The fundamental research on power ultrasonics is to identify, 

model and characterise the mechanisms of ultrasound interaction with the medium in a 

particular application. 

Generally, there are four main industrial applications: machining [4], welding [5], cleaning 

[6] and cutting [7]. Power ultrasonic techniques are applied to these existing processes to 

improve energy transmission, reduce or eliminate the need for chemicals, and increase 

effectiveness and efficiency. High power ultrasonic devices are also used in medical and 

clinical applications, for example, to cut and coagulate tissue. Surgical techniques using 

power ultrasonic devices offer surgeons some important benefits, which will be discussed 

in the next section.  

A typical power ultrasonic system consists of a generator, a piezoelectric transducer, a 

horn and a working tip (Fig. 1.2). The ultrasonic generator is used to drive the transducer. 

Tuned at the resonant frequency, the piezoelectric transducer converts electrical to 

mechanical energy and provides a mechanical vibration along the axis. A horn, usually 

designed in a taper shape and tuned to the frequency of the transducer to amplify the 

vibration amplitude, is attached to the transducer by a threaded joint. A working tip, for 

contacting, cutting, or loading test samples, is incorporated with the horn.  
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Fig. 1.2 Schematic configuration of generic power ultrasonic system 

 

Several electric parts are incorporated in the ultrasonic generator system, including a wave 

generator and a power amplifier [8]. The ultrasonic generator is a high-voltage and high-

frequency device, which is responsible for transforming a mains power supply from a 

frequency of 50 or 60 Hz to a high frequency alternating voltage or current required by the 

ultrasonic transducers. The generator supplies the required electrical signal to make the 

transducer work efficiently at transforming electrical power into mechanical vibration 

power. 

Piezoelectric transducers are used in power ultrasonic systems due to being more efficient, 

having wider range frequency range and smaller size than magnetostrictive counterparts. 

The efficiency of piezoelectric transducers is over 90% and they are stable over a broad 

range of temperatures. The piezoelectric transducer produces a high frequency mechanical 

vibration through piezoelectric materials, such as crystals and certain ceramic materials. 

These materials have the ability to generate an alternating mechanical stress in response to 

an applied alternating voltage. 

The horn fixed to the transducer amplifies the mechanical vibration and concentrates the 

energy into the working tip. Because the maximum amplitude of vibration provided by the 

transducer is usually insufficient for most power ultrasonic applications, a horn is 

necessary to act as an amplifier. The horn is tuned exactly to the transducer frequency. 

Horns are designed and manufactured in various geometric and material forms to meet the 

requirements of different applications.  

In the applications of ultrasonic cutting, blades are required, which offer high precision 

cutting with very little debris. Ultrasonic blades can be made in different shapes for plunge 

and shear cuttings. Generally, a cutting blade operating at shear cutting mode is used in 
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most surgical applications, except ophthalmic surgery, in which plunge cutting is more 

appropriate for the removal of cataracts [9].  

1.1.3 Power Ultrasonic Surgery 

High power low frequency ultrasound has wide clinical applications from dental drilling to 

tissue removal. The use of high-power low-frequency ultrasound in surgery has been 

available for several decades since the introduction of cavitational tissue dissection in 1972 

[10] and coagulation in 1991 [11]. Power ultrasonic surgical units have been widely used 

in many surgical procedures including dental [12], ophthalmic [13], orthopaedic [14] and 

neurosurgery [15] due to reduced tissue damage, decreased operating times, fewer 

instrument exchanges and more rapid healing. Moreover, when utilising ultrasonic energy 

to cut and coagulate tissue simultaneously, power ultrasonic surgery has been reported to 

achieve effective coagulation and safe cutting with relatively small thermal injury [16-18]. 

Operating in the high power and low frequency (20-100 kHz), ultrasonic surgical devices 

are used for biological tissue cutting, ablation, fragmentation and removal. In ultrasonic 

surgery, these are achieved through the surface application of high power ultrasound to the 

tissue. Although there are many research reports on the clinical effectiveness of ultrasonic 

surgical devices, little attention has been given to the interaction of ultrasonic devices and 

biological tissue, especially the responses of biological tissue to ultrasound exposure and 

ultrasonic wave or energy propagation through biological tissue. The power ultrasound 

effects on biological tissue are poorly understood and the mechanisms of ultrasonic wave 

interactions with viscoelastic biological tissues have not been clearly defined.   

1.1.4 Effects of Power Ultrasound on Biological Tissue 

Different effects can be induced by high power ultrasound. These effects depend on 

compound acoustic phenomena, which, in turn, are caused by primary vibratory inputs. 

Acoustic pressure causes cavitation and microstreaming in liquids, vibratory stress causes 

heating and fatiguing in solids and ultrasonic acceleration causes surface instability at 

liquid-liquid and liquid-gas interfaces [19]. 

From the limited literature, the effects of ultrasound on tissue can be summarized into three 

dominant aspects: acoustic cavitation, thermal effects and mechanical effects. Most power 

ultrasound applications rely on these vibration-induced phenomena occurring in the tissue. 
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However, the relative contributions of acoustic cavitation, thermal effects and mechanical 

effects on tissue types remains unclear [20]. Therefore, to assess the effects of ultrasonic 

surgical devices on tissue, these contributions need to be characterised quantitatively.  

However, obtaining reliable information on these effects in power ultrasonic surgical 

applications is problematic at present. Conventional measurement methods have been used 

to investigate the effects of ultrasonic cutting of tissue by comparison between ultrasonic 

surgical devices and traditional saws or scalpels by varying parameters, such as vibration 

frequency, cutting force or application time. The research has focussed more on the 

ultrasonic cutting ability rather than the interaction between ultrasonic surgical devices and 

tissue. A better and more detailed evaluation of the device-tissue interaction is required. 

1.1.5 Ultrasonic Field Characterisation 

To provide an understanding of the ultrasonic effects in device-tissue interaction, the 

ultrasonic field in tissue during ultrasonic loading need to be characterised. Ultrasonic field 

characterisation is also useful for evaluating ultrasonic surgical instrument performance. 

1.1.5.1 Surrogate Tissue Materials 

The response of biological tissue to power ultrasound is variable due to the various 

biological properties. It is therefore necessary to characterise the properties of tissue for 

power ultrasonic applications. The complex geometry, availability and controls of living 

tissue often make its use impractical, as well as very expensive for laboratory based study. 

Additionally, its ultrasonic characteristics are not currently well defined, especially for 

transmission of high power and low frequency ultrasonic waves. Ideally, the creation of 

suitable surrogate tissue materials would solve many of the characterisation challenges. 

The mechanical, thermal and acoustic properties of surrogate tissue materials can be 

characterised using various tests to explain frequency and temperature dependent 

behaviour due to the intrinsic viscoelastic nature. 

1.1.5.2 Non-invasive Ultrasonic Field Measurements  

To characterise quantitatively the interaction between power ultrasound and tissue mimics, 

experimental work is required to measure ultrasound induced displacement, strain, stress 

and temperature fields in the materials. These measured fields can be used to understand 
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mechanical responses and thermal effects. The use of non-invasive measurement 

techniques with high sensitivity and fine resolution offer the opportunity to assess the full 

field ultrasonic effects on tissue. Compared to conventional disruptive measurements by 

manipulation of a probe to positions within the material, a non-invasive technique 

improves reliability and accuracy for detection of ultrasonic fields. 

1.1.5.3 Numerical Models for Validation 

To validate the experimental results, numerical models can be created to simulate the 

ultrasonic process in surrogate tissue materials. Accurate numerical simulations including 

finite element and analytical methods, which are adaptable to wide ranging design 

parameter changes, can be developed to build reliable predictive models. The models can 

be compared with the measurements to evaluate the interaction of ultrasound and tissue. 

1.1.5.4 Methods for Characterising Ultrasonic Field 

If the power ultrasonic input and the properties of tissue mimics are known, both the full-

field non-invasive measurements and the subsequent development of reliable finite element 

and analytical models incorporating the material properties derived from various tests can 

be used as a platform to perform further evaluation of ultrasound effects on tissue to allow 

better understanding the performance of power ultrasonic surgical devices in cutting or 

vibrating tissue. Therefore, this work aims at characterising the effects of power ultrasonic 

devices on surrogate tissue materials using experimental and numerical methods. 

1.2 Aims and Contributions of the Thesis 

1.2.1 Aims of the Thesis 

1. To extensively characterise the frequency and temperature dependent viscoelastic 

behaviour of tissue mimicking materials for use in high power ultrasonic 

applications. 

2. To design a high power ultrasonic system, including ultrasonic horns, using finite 

element methods, for applying sufficient ultrasonic vibration to tissue mimicking 

materials.  
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3. To incorporate non-invasive measurement procedures in the characterisation of 

high power low frequency ultrasonic stress, strain and thermal fields within elastic 

and viscoelastic solids. The techniques can be used to provide accurate spatial 

strain, stress and thermal mapping without invasive damage caused by insertion of 

measurement sensors. 

4. To develop finite element and analytical models which can be useful in providing a 

firm scientific basis for investigations of power ultrasound on elastic and 

viscoelastic solids and evaluation of the influence in the non-linear materials of 

ultrasonic wave propagation. 

5. To perform damage analyses of tissue mimicking materials during power ultrasonic 

excitation by assessing the thermo-mechanical effects. 

1.2.2 Contributions to the Research Fields 

A comprehensive review of conventional measurement techniques for ultrasonic cutting 

tissue and their use in characterising ultrasonic cutting is presented. A literature review of 

full-field non-contact measurements to examine the mechanical response of specimens in 

the areas of fracture mechanics and materials is given, which serves to highlight some 

research on the behaviour of specimens under impact loading. 

Power ultrasonic horns have been designed and manufactured for the experimental study. 

Their modal parameters are determined by experimental modal analysis. A novel triangular 

slotted ultrasonic horn has been made, which doubles the vibration amplitude from the 

transducer and can provide a contact surface for mounting tissue mimic samples, having a 

larger contact area than the output surface of the transducer. Moreover, a test rig is 

designed with features of providing high vibration amplitude uniformity at the horn 

contacting surface with samples. All horns are coordinated well with the commercial 

ultrasonic piezoelectric transducer, which is modelled using finite element method for 

validating its characteristics.  

The time/frequency temperature superposition principle has been applied to experimental 

data from a dynamic mechanical analyser for estimation of frequency and temperature 

dependent behaviour of tissue mimicking viscoelastic materials. Furthermore, the 

behaviour of the viscoelastic materials during ultrasonic loading has been experimentally 
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characterised to validate the assumption of the time/frequency temperature superposition 

principle. Therefore, this validated principle provides a unique way of estimating material 

viscoelastic properties over time/frequency variations, which is applicable for power 

ultrasonic vibration.  

Experimental procedures for non-invasive full-field displacement, strain, stress and 

temperature measurements of ultrasonic fields in the viscoelastic samples are described 

and developed. These techniques are based on digital image correlation, thermograpic and 

acousto-optic principles, which utilise an ultra-high speed camera, an infrared camera and 

a laser interferometer respectively to map displacement, strain, stress and temperature 

fields. Because conventional measurements by probe position within the material can alter 

the wave propagation within the materials, these non-invasive full-field measurements 

have the potential for accurate power ultrasonic field measurements.  

Finite element models for simulating ultrasonic wave propagation in the materials and their 

thermo-mechanical behaviour during ultrasonic loading have been created.  These models 

feature accurate representations of elastic and viscoelastic materials subject to power 

ultrasonic excitation. They can be used as rapid virtual prototyping tools with reliable 

knowledge of the transmission materials employed. Furthermore, analytical models are 

presented to analyse the ultrasonic wave propagation in elastic materials. The results from 

these analytical models are compared with the results from finite element models and 

experimental studies to show that experimental and numerical data correlate well in this 

application. 

From the preliminary work described in this thesis, the full-field non-invasive 

measurement techniques and the numerical methods can be used as a solid basis for further 

investigation into power ultrasonic tissue interaction.  

1.3 Overview of the Thesis 

The project has five individual parts, including dynamics, materials, experiments, finite 

element analysis, and results and conclusions. The structure of the project is shown as 

follows:  
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Chapter 2: Literature Review 

This chapter presents a review of ultrasound, especially introducing common industrial and 

clinical applications of high power ultrasound and the effects of ultrasound on tissue. From 

this review, the thermal and mechanical interactions of power ultrasound with tissue 

emerge as the main mechanisms for the efficacy of the application. Invasive and non-

invasive measurement techniques for characterisation of the power ultrasonic induced 

effects are described, which highlight the relative merits of non-invasive methods for 

quantifying high power ultrasonic fields. 

Chapter 3:  Power Ultrasonic System Design 

This chapter describes the design procedure of power ultrasonic components by the use of 

finite element analysis for the ultrasonic experimental preparation. Firstly, a brief 

introduction and finite element analysis of the piezoelectric transducer are described. The 

finite element model of the transducer demonstrates a longitudinal mode at the resonance 

frequency and show a good match with experimental analysis. Next, the theoretical, finite 

element modelling investigation into the use of ultrasonic horns is developed and validated 

by experimental modal analysis using a laser Doppler vibrometer. The model accurately 
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predicts the performance of vibrating horns. Finally, a power ultrasonic test rig is made to 

facilitate the loading of samples.  

Chapter 4: Tissue Mimicking Materials 

Following the introduction of tissue mimics, Chapter 4 considers in greater detail the 

experimental characterisation of the viscoelastic behaviour of the materials during dynamic 

loading. Firstly, the biological tissue properties are presented. Next, tissue surrogates are 

manufactured and applied and their general properties are reviewed and summarised from 

the literature. Then, their mechanical and thermal properties, and frequency and 

temperature dependency are characterised by static mechanical, thermal and dynamic 

mechanical tests respectively. Finally, the experimental data is used to explain and model 

the behaviour of these tissue mimics under ultrasonic loading. 

Chapter 5: Non-invasive Field Measurement Techniques and Numerical Models 

Since the experimental set-up for ultrasonic loading of tissue mimicking materials was 

successful, non-invasive field measurement techniques are developed to quantitatively 

characterise the ultrasonic effects by measuring and calculating the displacement, strain, 

stress and thermal fields. An experimental investigation combining the use of digital image 

correlation and an ultra-high speed camera is described for the accurate characterisation of 

displacement and strain fields generated by the power ultrasonic system in hard tissue 

mimics. The experimental principles, requirements and procedures are illustrated. The 

detection of temperature increases occurring in the materials during ultrasound exposure 

using an infrared camera is presented as another non-contact method to display visually the 

images of thermal radiation. Thermo-mechanical effects are introduced to explain the 

temperature rise of the materials during ultrasonic loading. In addition, the application of 

the acousto-optic effect combined with laser interferometry for stress field quantification is 

presented to characterise the power ultrasonic wave propagation in transparent soft tissue 

mimics.  

Finally, chapter 5 describes the creation of numerical models including analytical and 

finite element models. The analytical models created using Mathematica software provides 

full-field displacement and strain maps. The displacement, strain and stress produced by 

steady state longitudinal ultrasonic wave propagation in viscoelastic materials are 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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calculated using the finite element software packages ABAQUS and PZFlex. Due to the 

different time scales in mechanical and thermal simulation, it is hard to do a coupled 

thermo-mechanical analysis of the power ultrasonic vibration of viscoelastic materials by 

writing user subroutines with ABAQUS. Therefore, thermal responses are obtained using 

PZFlex by calculating the heat generation due to mechanical loss during ultrasonic loading 

and heat transfer due to convection. Material properties assigned to numerical models are 

determined from the experimental characterisation in chapter 4.  

Chapter 6: Measurement of Ultrasonic Fields and Correlation with Numerical Models 

This chapter presents the experimental results of non-invasive ultrasonic field 

measurements, which show excellent agreement with numerical simulations. The possible 

reasons for the material behaviour during ultrasonic loading are discussed and several 

factors affecting field profiles are investigated. Furthermore, accurate mapping of the 

mechanical and thermal fields can be achieved through finite element models created using 

frequency and temperature dependent material data.  

Chapter 7: Conclusions and Future Work 

It can therefore be stated that the accurate mapping of power ultrasonic fields within 

viscoelastic solids can be achieved through non-invasive measurements by a combination 

of digital image correlation with an ultra-high speed camera, thermal imaging techniques 

with an infrared camera and acousto-optic measurements with laser interferometry. 

Reliable finite element models for simulating ultrasonic mechanical and thermal responses 

can be created with consideration of the frequency and temperature dependent behaviour of 

the viscoelastic materials under ultrasonic loading. The platform for characterising the 

power ultrasonic effects on tissue can be built based on the experimental and numerical 

studies. Finally, practical suggestions for furthering the knowledge in this field are 

proposed.  
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2. Literature Review 

2.1 Historical Background 

Ultrasound has been present in nature for millions of years, where animals such as whales 

and dolphins use ultrasound for range-finding, target identification and communication 

over large distances by transmitting and receiving acoustic waves through water. 

Felix Savart, a French physicist and medical doctor, designed the first ever ultrasonic 

generator (working at up to 24 kHz), the Savart wheel, in 1830 [21, 22]. The Galton 

whistle, which worked in the range 3 to 30 kHz, was invented in 1876, in an attempt to 

investigate the audio threshold of animals [23]. Tuning forks, producing frequencies from 

16 to 90 kHz, were developed by Koenig in 1899 [24] for a more thorough study on the 

limit of human hearing.  

1880 marks a milestone in the history of ultrasonics when Pierre and Paul-Jacques Curie 

discovered the piezoelectric effect [21, 25]. The development of ultrasonics was stimulated 

by the discovery of piezoelectricity, however it remained a laboratory curiosity for several 

decades afterwards. In 1896, pioneering work on the theory of sound was published by 

Lord Rayleigh, who defined fundamental discoveries in acoustics and optics. The research 

was fundamental to wave propagation and included atomization, surface (or Rayleigh) 

waves, molecular relaxation, acoustic pressure and bubble collapse which all have 

important influence within ultrasonics [21].  

After the RMS Titanic collided with an iceberg mid-Atlantic on her maiden voyage, the 

potential of using ultrasonics as a viable means for detecting submerged objects became 

apparent. The beginning of World War I gave further impetus to development of 

underwater detection systems using ultrasonics. Chilowski designed an ultrasonic device 

for the French navy in 1914, but it had weak acoustic intensity. Langevin then adapted 

Chilowski’s design to produce piezoelectric transducers working at resonance with high 

ultrasonic intensities for a joint U.S., British and French venture [26]. 

In the inter-war years, innovative work involving ultrasound continued with attention 

turning away from large scale inspection within vast regions of the oceans to small scale 

probing applications in specific regions of interest, such as applications in laboratories, 

factories and hospitals. Non-destructive testing was pioneered by Sokolov in 1920 who 
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investigated the possibility of ultrasonic detection of flaws and voids within manufactured 

components [27]. The potential of ultrasound in medicine as a diagnostic tool was 

investigated independently in the U.S. and Japan by 1948. 

The destructive ability of ultrasound was first noted by Langevin. Initial pulse echo 

investigations at frequencies of 150 kHz were found to kill fish that were insonated with 

the ultrasonic beam [28]. Industrial processes using high intensity or power ultrasound then 

began.  

2.2 Power Ultrasonic Applications 

2.2.1 Power Ultrasonic Applications in Industry 

Power ultrasound has been used in industry for materials processing (metals, ceramics and 

plastics) for almost century and in medical applications for dental and surgical procedures 

for more than half a century [20]. Early power ultrasonic applications in industry included 

machining, cleaning, metal and plastic welding and soldering [29].  

Initially, material removal by ultrasonic energy was introduced by Wood and Loomis in 

1927 [30]. High frequency vibration was applied to a vibrating tool for removing material 

from the workpiece, aided by fine abrasive grains in slurry that flows freely between the 

workpiece and the tool. [31]. The tool vibrates at a resonance frequency with low 

amplitude, which provides a velocity to the abrasive grains. Cyclic impacts of abrasive 

particles produce stresses, which cause microchiping and erosion of the workpiece surface. 

Ultrasonic machining has proved effective for machining hard, brittle materials, such as 

alumina, ceramics and glass [29]. 

Ultrasonic cleaning dated back to the early 1950s. Ultrasonic cleaners began being used in 

industry in about 1950, and came into use in relatively inexpensive household appliances 

in about 1970 [32]. In the ultrasonic cleaning process, the equipment, normally operating 

in the range of 20 to 50 kHz, produces ultrasonic waves in the cleaning fluid, where 

industrial components (metals, glasses, ceramics and plastics) were placed. Cavitation 

occurs when high frequency alternating pressure tears the liquid apart and leaves behind 

many microscopic voids which grow to a certain size, then collapse, causing high 

instantaneous temperatures and pressures. This implosion of cavitational bubbles removes 

surface dirt and contaminants on the workpiece [29]. 
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The ultrasonic metal welding process was in the stage of research and development by 

1955. It found original acceptance in the semiconductor industry for welding of miniature 

conductors. After that, the technique was used widely in many fields, such as automotive 

engineering and manufacturing processes. The main advantages of ultrasonic metal welds 

are low heating and thus relatively low distortion. As the welding temperatures are 

typically below the melting temperatures of the metal, the technique helps to avoid 

brittleness and formation of high resistance intermetallic compounds in dissimilar metal 

welds [29].  

In the 1960s, the practical application of ultrasonic welding used for rigid plastics was 

developed. A patent was awarded in 1965 to Robert Soloff and Seymour Linsley, who 

contributed to the invention of ultrasonic welding [33]. Welding of plastics using 

ultrasonics is typically used for small parts in packaging, toys and many others. The 

process involves that ultrasonically induced heat melts the plastic workpieces precisely at 

the interface to join and bond them together without indiscriminate heating of the 

surrounding material.  

The original work of ultrasonic soldering was done as early as 1936 and patents were 

issued in Germany in 1938 and 1939 [34].  Ultrasonic energy is used to solder materials to 

form a joint in the process of ultrasonic soldering. It is fundamentally similar to ultrasonic 

cleaning with cavitation in molten solder for eroding surface oxides and exposing the metal. 

The difference of ultrasonic soldering and welding is the presence or absence of a filler 

material. 

Fig. 2.1 schematically illustrates the ultrasonic material processing in machining, cleaning 

and welding. 
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(a)                                             (b)                                               (c) 

Fig. 2.1 Ultrasonic materials processing (a) machining [35] (b) cleaning (c) welding [35] 

 

With advancements in materials, transduction methods and electronics, modern power 

ultrasonic applications have expanded, spanning from drilling, motors, food cutting, 

sonochemistry and many others. 

The drilling-cutting action of ultrasonics was observed by Wood and Loomis in 1927, but 

it was not further exploited in the following years until the issue of British Patent 602801 

to Balamuth in 1948. Ultrasonic drills were produced by several equipment makers by the 

early 1950s [36]. From 2000s, ultrasonic drilling devices were designed and used by 

NASA to bore through rock for a planetary exploration with advantages of their weight 

saving, miniaturisation and low axial load requirement [37]. An ultrasonic driller is a 

boring device, which utilise vibrations to hammer its bit through materials. Incorporation 

of torsional motion to the longitudinal ultrasonic vibration during drilling processes has 

shown improving cutting removal and increased rate of drill penetration. Cardoni et al. 

developed ultrasonic rock sampling devices by use of longitudinal-torsional vibrations (Fig. 

2.2). The devices enhance drilling/coring performance during drilling and coring tests on 

sandstone [38]. The ultrasonic bit was designed for the attempt to generate combined 

longitudinal-torsional mode vibration. 

Widely used in auto-focusing lens systems in cameras, small ultrasonic motors provide 

high holding torque with minimal noise, absence of electromagnetic interference and 

higher efficiency at low velocity compared with electromagnetic motors [39-41]. 

Ultrasonic motors are divided into two categories depending on the principle that generates 

the energy to move the drive: a travelling wave motor and a standing wave motor. By 

coupling longitudinal and torsional ultrasonic vibration, the standing wave motor uses one 

rotor and two stators to produce larger output torque. Two stators generate two orthogonal 

http://www.substech.com/dokuwiki/doku.php?id=ultrasonic_processing#sonochemistry
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vibrations excited by a longitudinal transducer (L-PZT) for longitudinal vibration and 

torsional transducer (T-PZT) for torsional vibration (Fig. 2.3) [42]. The surfaces of the 

stators transfer the generated vibrations through friction forces to the rotor, which produces 

the rotation. 

 

Fig. 2.2 The architecture of an ultrasonic 
drilling/coring system [38] 

 

Fig. 2.3 Sketch of a longitudinal and 
torsional motor [42] 

  
 

Power ultrasonic cutting systems revolutionised the food industry in 1990s by improving 

cut quality and accuracy with minimal wastage of food material [43]. Ultrasonic food 

cutting process involves a vibrating blade producing a nearly frictionless surface to which 

food products do not stick nor deform. Povey and Mason reviewed the ultrasonic cutting 

technique in the food industry, described the ultrasonic cutting process, driving machines 

and knife blades, and discussed the benefits of ultrasonic food cutting [44]. A 

superposition of the cutting movement of a blade and the vibrational movement generated 

by ultrasound makes cutting of food with several advantages such as reduced smearing, 

low product lost, less deformation, less tendency to shatter for brittle products and being 

able to handle sticky or brittle foods. It finds popular uses in cutting of fragile, 

heterogeneous, fatty and sticky foodstuffs such as cakes, pastry, bakery products and 

cheeses [45]. An ultrasonic cutting system designed by Sonics & Materials, Inc. with a 

guillotine blade to cut different kinds of food, is shown in Fig. 2.4 [46]. 

Sonochemistry is when power ultrasound is applied as an energy source to provoke 

chemical activity. In 1927, Loomis first observed the chemical effects of ultrasound [47], 

which derive principally from acoustic cavitation. During the 1950s and 1960s, many 

studies on cavitation culminated in a relatively detailed understanding of sonochemistry. 

Although the field of sonochemistry lay fallow for nearly 60 years, the renaissance of it 
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occurred with commercial availability of inexpensive and reliable power ultrasonic 

generators in 1980s. Sonochemical reactions do not generally take place during the 

ultrasonic irradiation of solids or solid-gas system, but occur in liquids, where cavitation 

effects can be produced by high frequency alternating pressure [48]. In Fig. 2.5, a titanium 

rod vibrating at 20 kHz gives rise to a cloud of cavitating bubbles that emit flashes of light 

and house an array of chemical reactions [49]. Micro-bubbles are formed at the beginning 

of cavitation and grow until they reach a critical size, several times larger than their initial 

size, before violently undergoing collapse. According to the generally more accepted hot 

spot theory, the diffuse energy of the sound is concentrated in chemically useful energy. 

The high temperature and large pressure caused by the localized “hot spot” where bubbles 

collapse induce sonication of water into   and    radicals and the production of hydrogen 

peroxide (    ) [50, 51]. Power ultrasound can contribute to electrochemistry and green 

chemistry together with water and sewage treatment [52].  

 

Fig. 2.4 An ultrasonic food cutting system 

 

Fig. 2.5 Cavitating bubbles [49]

 

Other established industrial applications of power ultrasonics include metal working 

processes such as forming [53] and drawing [54], degassing [55] and homogenizing [56]. 

The power ultrasonic metalworking processes have lots of advantages such as force 

reduction, surface improvement and cost effectiveness. The techniques of power 

ultrasound make the applications of degassing and homogenizing reliable, of easy use and 

energy-saving. 

2.2.2 Power Ultrasonic Applications in Medicine 

Ultrasound is widely used in a variety of medical procedures including diagnostic, 

therapeutic and surgical procedures. Diagnostic ultrasound, as a non-invasive tool in 

http://www.hielscher.com/ultrasonics/technolo.htm?gclid=CIHD4ZSZu7UCFZTHtAodNQ8AcA#Ultrasonic_Homogenizing
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clinical medicine, is now applied extensively to visualisation of muscles, tendons and 

many internal organs to obtain their size, structure and to identify any pathological lesions 

[57]. Due to the low power (<0.5-3 W/cm
2
) and high frequency (1-20 MHz), ultrasound 

employed in diagnostic applications such as obstetric sonography, B-scan ultrasonography, 

and Doppler echocardiography has no destructive effects on the scanned biological tissue. 

Therapeutic applications of ultrasound in physiotherapy have been extensively used in 

clinical practice and other therapeutic applications of ultrasound include treatment of 

tendon injuries, stimulation of bone repair, haemostasis and the targeted delivery of drugs 

[58, 59]. Similar to diagnostic ultrasound, therapeutic ultrasound in these applications are 

high frequency and at low or intermediate intensity levels (Table 2.1) and causes minimal 

damage. In contrast, high power ultrasound in medicine tends to permanently affect the 

biological tissue. 

Table 2.1 General characteristics of ultrasound used for different therapeutic applications 

[60] 

Therapeutic 

Applications 

Frequency 

(MHz) 

Intensity 

(W/cm
2
) 

Pressure 

(MPa) 

Physiotherapy 1-3 1 <0.5 

Haemostasis 1-10 100-5000 5 

Bone growth stimulation 1.5 0.03 0.05 

Drug delivery Up to 2 Various 0.2-8 

 

Lithotripsy has been a growing application of ultrasound since 1980 [61], for the physical 

destruction of hardened masses such as kidney stones and gallstones. The ultrasonic waves 

used in lithotripsy (frequency at 0.25 or 0.5 MHz [60]), called high-energy shock waves, 

are targeted at the stones from outside the body causing them to fragment. The stones are 

broken into tiny sand-like pieces, which usually pass easily through the ureters and 

the cystic duct. Due to being the least invasive stone treatment method, it has become a 

standard treatment [62].  

High intensity focused ultrasound (HIFU), an application of ultrasound with an intensity 

over 1000 W/cm
-2

 and a frequency of 0.8-3.5 MHz, is a non-invasive surgical technique 

for the ablation of regions of target tissue such as tumours, without adversely affecting 

healthy surrounding tissue. The first work to consider potential HIFU applications was 

published in 1942 [63], and demonstrated that focused ultrasound beams could produce 

regions of highly localized biological effect. Fry et al. [64] used HIFU for treatment of 

Parkinson’s disease in the 1950s. Tissue damage using HIFU (Fig. 2.6) encompass two 
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main processes: conversion of mechanical energy into heat and acoustic cavitation. 

Focused ultrasound beams from the concave oscillating piezoelectric transducer are 

concentrated on the target tissue. As the ultrasound beams propagate through the tissue, 

part of ultrasonic energy is absorbed by tissue and converted to heat. With focused 

ultrasound beams, a very small focus can be achieved deep in tissues. Significant energy 

deposition at the focus leads to coagulative necrosis of tissue causing irreversible cell death. 

Cavitation results in cell necrosis induced through a combination of mechanical stress and 

thermal injury [65, 66]. The use of HIFU for treatment of cancer was first suggested by 

Burov in 1956 [67]. Now, it is widely used in various cancer therapies of liver, prostate, 

bladder, kidney, and breast etc [65, 66, 68]. From the clinical outcomes, HIFU has been 

demonstrated to be effective in tumour ablation and has a lower side-effect profile than the 

traditional surgery. 

 

Fig. 2.6 A schematic representation of HIFU lesion production [65] 

 

Studies on the potential use of power ultrasonics in clinical procedures such as soft and 

hard tissue cutting, or dissection and dental hygiene procedures were first undertaken 

during the 1950s [69, 70]. The power ultrasonic devices were used to cut, shatter or scale 

hard tissue or to dissect and emulsify soft tissue in surgery. Conventional surgical 

instruments for bone cutting such as burrs, saws and chisels, offer limited accuracy and 

manoeuvrability to surgeons [71], and electro-surgery for soft tissue dissection vaporizes 

the tissue with excess heat generation, which can damage adjacent tissue [72]. Ultrasonic 

surgical tools are safer and more effective than other instruments, because of the precise 

control, accurate and high quality cut, reduced cutting forces, limited debris, reduced 

bleeding and avoidance of surrounding tissue damage. 
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2.2.2.1 Dentistry 

The use of ultrasound in dentistry is one of the most widespread power ultrasonic surgical 

applications. Power ultrasonic devices are capable of refining cavity preparation [73], 

removing deposits from the tooth structure [74] and assisting endodontic treatment such as 

locating calcified canals, removal of intracanal obstructions and root-end preparation [75]. 

An industrial ultrasonic drilling machine was first used to cut cavities in extracted teeth in 

1952 [76]. Based on pioneering work by Balamuth [77], oral prophylaxis using ultrasound 

was first reported by Zinner in 1955 [74], while Richman first introduced ultrasonics to 

endodontics in 1957 [78]. 

The early uses of an ultrasonic drill required an abrasive slurry of aluminium oxide to 

assist the process of cutting or grinding enamel and dentine was reported by Postle in 1958 

[79]. At that time, due to relatively slow action and the absence of efficient suction 

apparatus, ultrasonic cavity preparation did not compete with the more effective and 

convenient high speed drill [80]. The potential of ultrasound was exploited by Zinner as a 

scaling instrument for the removal of dental plaque and calculus from the surface of teeth 

[74]. By 1957, widely accepted dental use was established by Johnson et al. who made 

ultrasonic scaling as a rapid and simple alternative [81, 82]. In endodontic therapy, power 

ultrasonic instruments were also not recognised until Martin demonstrated their ability in 

the cleaning and preparation of root canals before filling and obturation [83]. Currently, 

although ultrasonic cleaning baths are available for the cleaning of dental instruments 

before sterilization, the main use of power ultrasound in dentistry is for dental scaling to 

remove calculus from teeth, root planning of teeth, and root canal therapy [84-86]. A 

modern ultrasonic dental scaling system from Mectron is shown in Fig. 2.7 [87]. 

  

Fig. 2.7 An ultrasonic dental scaling system from Mectron [87] 

 

2.2.2.2 Soft Tissue cutting 

For cutting and ablation of soft tissues, such as blood vessels, the acknowledged 

advantages of an ultrasonic surgical instrument are safety [88], precision [89] and 
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improved haemostasis [90] [20]. Especially in minimally invasive surgery, the technique of 

ultrasonic dissecting without blood loss is of paramount importance [91]. There are two 

main types of ultrasonic devices used for soft tissue cutting or ablation including ultrasonic 

cavitational aspirators for removing cataracts in the eye and debulking solid tissues, and 

ultrasonically activated dissecting and coagulation devices with sharper tips operating at 55 

kHz for directly cutting and coagulating tissue in general or laparoscopic surgery [11].  

In 1967, Kelman reported the use of a combination of power ultrasound and aspiration for 

fragmentation of human tissue and removal of the fragmented particles, which is the first 

study describing lens phacoemulsification in cataract surgery [13]. In 1978, Flamm et al. 

studied the effects of ultrasound on cat brain and spinal cord tissue, and concluded that 

ultrasonic cutting was effective in fragmentation of tissue with significant water content 

[92]. In the 1980s, Wuchinich et al. developed ultrasonic aspirators, which were suitable 

for endoscopic surgery [93] and extended the technology to the removal of tissue, such as 

brain neoplasms and other tumours, previously resistant to attack from vibration [94]. In 

1994, Amaral developed an ultrasonically activated scalpel for laparoscopic use using an 

animal model and proved the efficacy of a hook-spatula blade on producing both cutting 

and coagulation [88]. Nowadays, an ultrasonic surgical system (Fig. 2.8) facilitates 

difficult procedures, minimises intraoperative blood loss, causes minimal tissue injury, 

improves intraoperative visualisation with absence of smoke, reduces cost, time and 

intraoperative instrument exchanges by combining grasping, cutting and coagulation into 

one integrated tool set, and is safe to both the surgeon and patient. The popularity of 

ultrasonic surgical systems is growing. Fig. 2.9 illustrates the clinical procedures with the 

highest growth in the application of ultrasonic surgical systems between 2003 and 2008 

[95, 96]. 

 

Fig. 2.8 An ultrasonic surgical system 
from Ethicon [95] 

 

Fig. 2.9 High growth applications of 
ultrasonic surgical systems [96] 
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2.2.2.3 Bone Cutting 

Ultrasonic surgical devices for cutting bone can be used for osteotomy, osteoplasty, 

drilling, shaping, and smoothing of bones in a variety of surgical procedures, including 

general, orthopaedic, maxillofacial, oral, hand, foot, neurosurgical, spine and 

plastic/reconstructive surgery. The advantages of the ultrasonic device in bone cutting 

include high precision cut, less damage to both soft and hard tissues, quicker recovery 

times than traditional saws or burs and safe use. 

Longitudinally vibrational cutting tools operating at high frequency (6-12 kHz) for 

biological materials were made and described by Vang dating back to 1955 [70]. The first 

ultrasonic cutting instrument (named as URSK 7N, designed by Loshilov) used in bone 

surgery was reported by Giraud [71]. The instrument operating at a frequency of 25-30 

kHz with amplitude of 50    was tested for transaction, rejoining and sawing of biological 

tissue by Volkov and Shepeleva in 1974 [97]. They concluded that orthopaedic procedures 

could be facilitated with the help of ultrasonic cutting devices after conducting 311 

operations [97]. Polyakov did cutting comparison tests on bone using the instruments with 

and without superimposed ultrasonic vibration and found that ultrasonic vibration exciting 

the instrument in longitudinal resonant conditions could greatly increase the cutting rate 

and reduce the applied pressures [98]. Since the 1980s, scientists have been developing 

ultrasonic bone cutting instruments and bone cutting systems (eg. Fig. 2.10). These have 

interchangeable tool tips and an irrigation system to limit cutting temperature. The 

advantages of these devices identified the successful use through studies in small bone 

cutting [99, 100] include precise bone osteotomy [14], reduced cutting damage to bone 

[101, 102] and adjacent soft tissue [102, 103], reduced bleeding by promoting coagulation 

[104] and ease of use at the surgical site [105]. The claimed limiting factor of ultrasonic 

bone surgery is that it increases operative time compared to traditional techniques [105, 

106].  
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Fig. 2.10 An ultrasonic bone cutting system by PIEZOSURGERY® medical, Mectron [107] 

 

2.3 Power Ultrasonic Effects on Materials 

2.3.1 Introduction 

Physical effects can be created in various (solid, liquid and gas) media by ultrasonic waves. 

Although physical laws governing the propagation of ultrasound can be used to describe 

the effects of ultrasound in the media, the biophysical effects of power ultrasonic waves in 

nonlinear biological tissues are difficult to characterise. The interaction between an 

ultrasonic surgical device and biological tissue is poorly understood, although considerable 

efforts have been made towards studying aspects such as mechanical and thermal effects, 

and the cutting ability of devices [108-116].  

2.3.1.1 Power Ultrasonic Effects of Solid, Liquid and Gas 

Graff discussed the major physical effects of ultrasound on solids, liquids and gases in 

process applications of power ultrasonics [2]. When a vibrating tool is pressed against a 

solid material, physical effects of surface and bulk stressing occur. The most common 

surface stressing effect is that of friction reduction between the vibrating surface and the 

load in drawing and rolling processes. Bulk stressing has been considered as the basis for 

many power ultrasonic processes. The induced stress level may be the cause of brittle 

fracture in slurry drilling and enhance dislocation activity in certain forming. In welding of 

plastics, where melting is found, it can be considered that the heating of material comes 

from ultrasonic bulk stressing. The cavitation, referred as the growth and collapse of small 

bubbles in a liquid under the cyclic phases of rarefaction-compression occurred during 

ultrasonic vibration, is the main physical phenomena associated with ultrasound in liquid. 
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Acoustic streaming is another phenomenon in ultrasonic interaction with liquid, which is 

of lesser importance than cavitation. The phenomenon of acoustic streaming is the intense, 

local circulation and vortex flow fields observed near the contacting surface of the 

vibrating tool. These fields can enhance the rates of heat and mass transfer in ultrasonic 

processes. A net radiation pressure was the main finding for a power ultrasonic tool 

radiating into a gas [2]. 

The mechanism of material removal in ultrasonic machining, well documented by Thoe et 

al., was summarized as mechanical abrasion by direct hammering of abrasive particles 

against a workpiece surface, micro chipping by impact of the free moving abrasive 

particles, cavitation effects from the abrasive slurry and chemical action associated with 

the fluid employed. The effects of the above mechanisms result in material removal by 

shear and fracture and displacement of the material at the surface by plastic deformation in 

the ultrasonic machining process [4]. Similar mechanisms were found in tissue removal 

and damage using power ultrasonic devices. 

Humphrey reviewed the physical interactions between ultrasound and various fluids and 

these were categorized into fundamental physical effects, ultrasonic heating, cavitation and 

secondary effects. The fundamental physical effects due to wave propagation included 

particle motion, energy deposition, transmission and reflection, and nonlinear propagation. 

Secondary effects involved radiation pressure and streaming. The main changes in a fluid 

medium produced by ultrasonic propagation were outlined as heating and cavitation [117]. 

2.3.1.2 Power Ultrasonic Effects of Biological Tissues 

The response of biological tissue to ultrasound is quite variable and depends on the 

acoustic and biological properties of the tissue as well as location and function of the tissue 

[118].  

Power Ultrasonic Effects of Soft Tissue 

Both mechanical action and cavitation at the tip of the ultrasonic surgical device have been 

suggested as the mechanism of fragmentation during cataract surgery by Schafer [119]. 

Rosenschein et al. developed an experimental ultrasonic angioplasty device and concluded 

that mechanisms of ultrasound in percutaneous ultrasonic angioplasty primarily included 

direct mechanical effects and cavitation, but there may also be thermal effects and 
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generation of microcurrents at the cellular level [120]. Amaral found the mechanical and 

thermal effects of an ultrasonically activated scalpel in cholecystectomy on producing the 

best mix of both cutting and coagulation [88]. Bond and Cimino reported that the 

mechanism in soft tissues is predominantly related to mechanical impact of direct shear, 

pressure wave components and acoustic streaming [113]. It can be found that the main 

effects of soft tissue to ultrasonic vibration are mechanical effect, thermal effect and 

acoustic cavitation, while secondary effect includes streaming. 

Power Ultrasonic Effects of Hard Tissue 

Cimino and Bond described that the mechanism of bone and hard tissue removal in 

ultrasonic cutting applications cannot be the same as in soft tissues [110, 111]. The effects 

of ultrasonic vibration in bone surgery involved mechanical cutting, fatigue failure of 

osteotome parts and high temperature [71]. Micro fracture along with mechanical impact 

and shock waves in a fluid were also more likely to occur in the bone and hard tissue 

removal in ultrasonic cutting applications [20]. Therefore, the main effects of ultrasonic 

vibration of hard tissue are both mechanical (impact and wave propagation) and thermal 

effects.  

Barnett et al. summarized that mechanical and cavitation effects are time independent 

biological responses to ultrasonic exposure but that the thermal effect is time dependent. 

However, the magnitude of the resulting effect is dependent on the duration of exposure 

for any mechanism once a threshold value has been exceeded [118]. 

2.3.2 Direct Mechanical effects 

Direct vibrating contact between the oscillating horn or blade tip and biological tissue 

results in fragmentation and ablation of materials into microscopic particles. If the tissue is 

not fragmented in one vibration cycle, repeated impacts may occur. Micro-damage may be 

progressively induced in the tissue applying power ultrasonic vibration. Ultrasonic waves 

can be delivered to the tissue by direct contact with the oscillating horn or blade tip [20]. 

Therefore, the mechanical interaction of the ultrasound with the tissue can be considered as 

producing ultrasonic wave propagation and effect of mechanical forces.  
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2.3.2.1 Ultrasonic Wave Propagation 

Small amplitude ultrasonic waves propagating through media as linear elastic waves result 

in particle oscillations about their equilibrium position. In ideal fluids and gases, only a 

longitudinal mode exists, where particle displacements are parallel to the direction of 

ultrasonic propagation. Elastic solids can accommodate transverse waves (where particle 

displacements are perpendicular to the direction of propagation) as well as longitudinal 

waves.  

Biological tissues are viscoelastic solids, where both longitudinal and transverse waves can 

propagate. However, similar to fluids, only longitudinal waves are of significance in soft 

tissues, because shear waves are highly attenuated at ultrasonic frequencies. In hard 

tissues, such as bone, both longitudinal and transverse waves should be considered [117, 

121].  

The equations of longitudinal and shear waves propagation in an isotropic linear elastic 

solid can be obtained as following,  
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where    denotes the elementary particle displacement vector,   (bulk modulus) and   

(shear modulus) are elastic constants and   denotes the Laplacian operator. 

If the cross-sectional dimensions are much smaller than the wavelength, only a 

longitudinal stress component is considered along the propagation direction of a slender 

bar (a bar whose cross-sectional area is considerably smaller than its length). The 

mathematical expressions for the transmission of plane waves through inviscid fluid 

medium are very similar to transmission of longitudinal waves along the bar. The 

governing differential equation is 
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where   is the longitudinal displacement of a particle in the bar and   is the particle 

displacement at the reference orientation.  

Under the assumption that the cross-sectional dimensions of the bar are much smaller than 

the wavelength, the longitudinal wave propagation velocity    can be obtained by  
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where   is the Young’s modulus of the material and   is the density [122]. 

If the cross-sectional dimensions are comparable with the wavelength, wave propagation 

velocities corresponding to the case of longitudinal and shear wave modes are given by: 
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where    is the longitudinal wave propagation velocity,    is the shear wave propagation 

velocity and    is the Poisson’s ratio [123]. 

Equation 2.5 has been used extensively to predict the elasticity of cortical (compact) bone 

[124]. It has also been suggested that in a cancellous bone a wave travels along each 

trabecula with the bar longitudinal wave velocity [125].  

2.3.2.2 Effects of Mechanical Forces 

Tissue fragmentation and ablation are related to the effects of mechanical forces which 

include direct mechanical impacts and shearing stress [111, 126]. For phaco-

emulsification, it is thought that repeated impacts (a mechanical ‘jack-hammer’ effect) at a 

higher frequency (40 kHz) can make the cutting smoother than at a lower frequency (i.e. 

20 kHz) [20]. In neurosurgery with the help of power ultrasonic vibration, the tissue 
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fragmenting action occurs without significant manually applied pressure, which can 

minimise unwanted damage and the pulling and distortion of surrounding tissue [108]. It 

was observed by Cimino et al. that the horn-tip peak-to-peak displacement, which 

influenced the applied pressure, was one of the most significant operating parameters 

affecting the rate of soft tissue fragmentation. By adjusting the tip amplitude, the surgeon 

could choose a sufficient level of fragmentation [110]. Khambay et al. recorded the applied 

force during bone cutting by an ultrasonic chisel and concluded that low force was a 

contributor to optimum cutting with high precision [112, 113]. The use of vibration forces 

to create a ‘microchipping’ effect is described by Balamuth et al. for tissue removal in 

dentistry [73]. In various soft tissues, the effect of mechanical forces in tissue ablation is 

thought to be shear forces, which result from difference in force levels across the boundary 

between horn-tip and the surface of soft tissues [20]. Frost and Fill described that 

ultrasonic penetration by high shearing stresses near the horn tip can lead to flow and 

creation of a viscous fluid layer [127]. Further tissue disruption may be due to the induced 

shear forces, particularly in the presence of acoustic streaming where forces will be greatly 

magnified [126].  

It is found that the mechanism of soft tissue removal for ultrasonic applications mainly 

includes mechanical effects of direct shear and impact and ultrasonic wave components. 

The mechanism in hard tissue is predominantly related to the mechanical impact and 

micro-fracture induced by stress waves.    

2.3.3 Thermal effects 

Another effect observed in the power ultrasonic surgery is ultrasonic heating, which is due 

to the absorption of the ultrasound wave energy and the mechanical friction between an 

ultrasonic surgical tip and tissue. Thermal effects are significant contributors to tissue 

damage, such as protein denaturation and necrosis [20]. Denaturation occurs when proteins 

in tissue and blood undergo an irreversible physical change at an elevated temperature of 

more than 40  . Changes in protein folding arrangements occur when tissue is heated and 

then denaturation happens when the heating is severe, causing gross shrinkage, changed 

hydration levels and other properties changes [128]. Protein loses its tertiary structure, 

enzymes are no longer able to support vital chemical reactions and cell death or necrosis 

occurs [129]. Denaturation and coagulation of the protein in sectioned tissue may be 
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desirable in certain applications for closing vascular structures and haemostasis, supporting 

the cutting process [88]. 

In the process of ultrasonic surgery, an acoustic field is generated by the tip-tissue 

interaction. The ultrasonic energy is transmitted across the contacting surface of the tissue 

and into the bulk and a thermal effect is generated due to the ultrasonic energy being 

absorbed by the biological tissue. Goldman et al. discussed energy absorption during 

ultrasound propagation in tissue. The absorption coefficient of bone was found to be many 

times greater than soft tissue in their study [130]. In ultrasound-assisted lipoplasty, the 

thermal effect by absorption of ultrasonic energy in fatty cells spreads to surrounding 

tissues which can be infiltrated by liquids at ambient temperature [131]. Humphrey [117] 

gave expressions to calculate the ultrasonic heating. The acoustic energy removed from the 

ultrasonic wave by absorption is deposited in the tissue in the form of heat at a rate    per 

unit mass,  

 
        2.8  

where   is the intensity of the wave at the measurement location,    is the absorption 

coefficient of the tissue. When the wave propagates through a homogeneous media, its 

intensity diminishes with distance as a result of acoustic absorption. Attenuation 

coefficient   and absorption coefficient    can be generally used interchangeably. The 

ultrasonic wave, in the case of a harmonic plane wave, can be characterised in terms of its 

intensity 
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where   is the stress/pressure amplitude of the wave,   is the density and   is the wave 

velocity. As a result of the heat deposition, the temperature   at a point in the field initially 

rises at a rate given by 
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where    is the specific heat capacity at constant pressure. Once the temperature of the 

medium rises above the ambient value, a number of processes come into play that result in 
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heat being transferred from warmer to cooler regions mainly by heat conduction. The 

process can be described by 
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where   is the heat conductivity.  

The ultrasonic cutting process is accompanied by high temperature on the cutting tool 

surface, which is due to the generation of frictional heat between the tissue and the 

vibrating tip. It was observed by Brooks et al. that the temperatures produced by power 

ultrasonic devices penetrating the bone are no higher than the temperatures generated by 

high speed drills [132]. Koch et al. studied the temperature distribution in soft tissue 

dissection using a harmonic scalpel. The maximum temperature elevation was detected 

near the blade [115]. Amaral concluded that the energy produced by a high power 

ultrasonic dissection system in a laparoscopic application is frictional energy, proportional 

to both the vibration frequency and the displacement of the instrument tip [88]. Klapper et 

al. conducted orthopaedic revision arthroplasty using ultrasonically driven tools. The 

clinical studies indicated that the absorbed energy due to the friction at the interface of 

ultrasonic tip and polymethylmethacrylate (PMMA) cement and intermolecular friction 

within the cement mantle alters the structure and mechanical properties of the cement in 

contact with the surface of the working tool bit and softens the cement. The friction heat 

can facilitate accelerated cement removal [133]. Dominici et al. analysed the heat 

generation for post removal in endodontics. The temperature change produced by the 

ultrasound may be enough to cause damage to the periodontal tissues and the main 

temperature increase was observed at the contact surface during ultrasonic vibration [134]. 

Similarly, Nicoll and Peters found the increased temperature was mainly on the dentinal 

surface during ultrasonic periodontal scaling procedures in vitro [135]. Thermal mapping 

of soft tissues during ultrasonic dissection was performed with an infrared thermal camera 

by Emam and Cuschieri [114]. The results demonstrated that the frictional heat produced 

during ultrasonic dissection results in histologic injury of tissues, which depends on the 

power setting and activation time of the ultrasonic system.  
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2.3.4 Acoustic Cavitation 

When the ultrasonic tip is vibrating with sufficient amplitude and frequency, acoustic 

cavitation occurs in tissue, typically in liquids and soft tissue because of the large amount 

of contained water. The expansion and collapse of gas bubbles results in the generation of 

shock waves [20]. Within a reverberant environment, it is possible to initiate the 

phenomenon of acoustic cavitation, because threshold conditions for the onset of cavitation 

are reached easily. Exceptionally high localized pressures and temperatures are produced 

due to the formation and collapse of bubbles in aqueous tissue.  

Propagation of the ultrasonic wave causes alternating compression and rarefaction cycles 

within tissue. Cavitation occurs during the rarefaction cycle, for example, when the tip is 

retracted and the particles within the tissue are farther away from one another. If the 

negative pressure exceeds the tensile strength of the liquid or tissue, the average distance 

between molecules reaches the critical molecular distance necessary to keep the tissue 

intact, the tissue tears apart and bubbles can be formed. If the amplitude of the ultrasonic 

wave is sufficient, bubbles in aqueous tissue will experience several rapid expansions to 

reach a critical size, several times larger than its initial size. After reaching the critical size 

a violent collapse of bubbles occurs [136]. Within the region of collapse, several extrme 

effects can occur, such as an internal bubble temperature of 3000 K, a pressure shockwave 

emission reaching 6 GPa [137] and a jet-like ejection with velocity up to 700-900 m/s 

[138]. 

Cavitational effects in fat tissue result in cell destruction and fat liquefaction during 

ultrasound-assisted lipoplasty [139]. Coleman et al. considered the violent collapse of the 

cavitation generated in lithotripsy as a contributor to stone disintegration, as well as 

contributing to undesirable biological effects such as tissue trauma [140]. Brock et al. 

found that the jetting effect of the collapsing cavitation bubbles is responsible for the 

break-down of the tumour in brain tumour surgery using ultrasonic aspiration [141]. 

Theoretical models were proposed by Brujan for pressures generated in cavitation jets 

when the bubble collapses close to biomaterials, resulting in fragmentation of dental tartar 

or intraocular lenses [142]. 
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2.3.5 Other Effects 

Other effects, such as acoustic streaming [110, 111] and radiation force [143], have been 

investigated in the literature. Acoustic streaming is a vigorous circulatory motion produced 

by oscillating bubbles in a sound field and radiation force is a time averaged force exerted 

by an acoustic field on an object. These are not direct effects, but secondary physical 

effects generated by an ultrasonic field in tissue [117]. Generally, although they can 

contribute to tissue ablation and fragmentation, these secondary effects influence tissue in 

a small scale producing small forces and motions. 

2.3.6 Summary 

Although ultrasonic effects on tissue can be categorized into several aspects mentioned 

above, the relative contribution of each of these remains unclear during power ultrasonic 

surgery. It requires more detailed evaluation, predictive modelling and experimental 

investigation of the tip tissue interaction especially in the cases of micro-fracture in hard 

tissues, energy absorption by tissue during ultrasonic propagation and the damage 

mechanism of cavitation. 

2.4 Measurements of Ultrasonic Effects 

Quantitative characterisations of power ultrasonic effects on tissue are required for 

assessing the performance of ultrasonic surgical devices. Many researchers have 

investigated the effect of mechanical forces from experimental work and obtained 

parameters relating to the damage mechanism [110]. These influential parameters include 

ultrasonic power, horn geometry, tip amplitude and tip pressure [20]. Temperature 

increases have been estimated using thermocouples to determine the thermal damage 

during ultrasonic surgical applications [116]. The power ultrasonic thermal effect on tissue 

is relevant to tissue type, onset of damaging temperature, ultrasonic power setting, type of 

horn tip used, length of application time and the effect of instrument pressure applied 

during ultrasonic use. Ultrasonic cavitation bubbles have complex dynamic behaviours, 

which have been experimentally studied by researchers using high speed cameras [144] or 

mathematic models [138]. The cavitation in tissue caused by power ultrasound are mainly 

dependent on tissue water content, applied frequency and power, and tip amplitude.  
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Apart from researches studying effect of mechanical forces, thermal effect and acoustic 

cavitation during ultrasonic surgery, it is necessary to study the power ultrasonic wave 

propagation in tissue, which could cause severe damage inside tissue. The stress field 

produced by wave propagation in tissue can influence its absorption of ultrasonic energy. 

The heat produced by the ultrasonic energy absorption can alter the mechanical properties 

of the tissue. Therefore, the visualisation of ultrasonic stress field and mapping of thermal 

distribution in tissue are necessary to characterise the damage mechanisms during power 

ultrasonic application. 

2.4.1 Visualisation Techniques of the Ultrasonic Field 

Power ultrasonic fields are extremely difficult to characterise, as not only can mechanical 

impacts cause damage to the measurement instrumentation being used, but cavitational 

bubbles can also destroy or scatter the acoustical signal under investigation. In particular, 

insertion or embedment of measurement instruments into tissue can change its structure 

and disturb the ultrasonic wave propagation. Thus measurements should be obtained under 

non-invasive conditions. Conducting non-contact optical measurements in tissue can be 

used to identify stress distribution experienced during power ultrasonic applications [145]. 

Firstly, existing methods of experimental characterisation of ultrasonic fields are reviewed. 

Secondly, non-invasive optical methods for visualising ultrasonic fields are introduced. 

These optical methods are helpful for understanding the physics of ultrasound wave 

propagation and the interaction of ultrasound and tissue. 

2.4.1.1 Hydrophones 

Traditionally, the principal devices for field characterisation of medical ultrasound are 

piezoelectric hydrophones, which operate based on piezoelectric effects that generate an 

electrical signal when subjected to a pressure change. Fibre optic hydrophones, one of the 

first application of fibre optic sensing in the late 1970s [146], are utilised to characterise 

ultrasonic fields by measuring the phase change of the light travelling in an optical fibre 

due to the strains developed in the fibre by the applied ultrasonic pressure. Therefore, the 

types of hydrophone for measuring and evaluating the ultrasonic wave emitted from an 

ultrasonic probe in gases and fluids include piezoelectric ceramic hydrophones, 

piezoelectric composites, piezoelectric polyvinylidene fluoride (PVDF) hydrophones and 

fibre optic hydrophones. 
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Piezoelectric Ceramic Hydrophones 

A conventional piezoceramic hydrophone (Fig. 2.11) consists of lead zirconate titanate 

(PZT) as an active piezoelectric element, a backing block and a matching layer. The 

matching and backing layers are optimised to widen bandwidth and increase measurement 

sensitivity [147]. Two electrodes are deposited on opposite faces of the piezoelectric 

element to detect and sense the incident mechanical wave and generate the charge within 

the material. A visual representation of the acoustic waveform can be observed as a voltage 

on an oscilloscope by amplification of the acquired electrical signal.  

 

Fig. 2.11 Schematic of piezoelectric ceramic hydropone 

 

The early use of piezoceramic hydrophones was during World War I, by convoy escorts in 

detecting U-boats, which greatly impacted on the effectiveness of submarines [148]. The 

hydrophone was designed to have features of relatively non-perturbation at higher 

frequency, uniform frequency response over the bandwidth, maintaining reasonable 

sensitivity and a good acoustic impedance match to water. However, the stiff and dense 

piezoelectric element also has the disadvantages of poor acoustic coupling to water, limited 

bandwidth and spurious modes dependent on physical geometry [145, 149]. Therefore, 

new materials with improved piezoelectric properties and better qualities for hydrophone 

applications, obtained by introducing inhomogeneities into piezoelectric ceramics and 

polymers have been investigated and tested.   
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Piezoelectric Composites 

Typically, a piezoelectric composite is a combination of a piezoelectric ceramic as the 

active phase and a non-piezoelectric polymer as the passive phase to form a new 

piezoelectric material [150]. By changing the ceramic/polymer volume ratios, the 

piezocomposite transducer can efficiently transmit acoustic energy into the medium. 

Compared with conventional monolithic dense materials, piezocomposites have potential 

for increased bandwidth, lower acoustic impedance, higher piezoelectric constants and 

higher electromechanical coupling co-efficients [151]. The benefits of piezocomposites 

make it a preferential choice for many hydrophone applications, particularly at lower 

ultrasonic frequencies.  

Coupled with matching layer and backing block technologies [147] piezocomposites can 

be fabricated in various connectivities such as 0–3, 1–3, 2–2 and 3–3 architectures. 

Connectivity is defined as the number of dimensions through which the material is 

continuous and the first digit refers to the piezoelectrically active phase. Smith reviewed 

piezocomposites in ultrasonic transducers on various arrangements of connectivities and 

found 1-3 and 2-2 connectivities are more useful for transducer applications [150].  

Since it was invented by Newnham and Cross in the late 1970’s, the 1-3 composite has 

been studied extensively. Today, it is the major piezocomposite on the market for 

ultrasonic transducers, actuators and sensors [152]. It can be manufactured by a dicing 

process of ceramic with a filled epoxy resin polymer. In 1-3 composites (Fig. 2.12), the 

ceramic is cut orthogonally in the form of elongated pillars or rods, connected continuously 

in only one direction, which were surrounded by the polymer matrix connected 

continuously in 3 directions [145]. 

 

Fig. 2.12 Schematic of a 1-3 piezoelectric composite 



CHAPTER 2 LITERATURE REVIEW  36 

 

 

Although it has improved piezoelectric properties and better qualities than the 

piezoceramic hydrophone, the piezocomposite hydrophone also perturbs the ultrasonic 

field when the hydrophone is inserted into the field. However, the problem can be 

overcome by the use of an alternative piezoelectric polymer, polyvinylidene fluoride.  

Polyvinylidene Fluoride (PVDF) Hydrophones 

The polymer PVDF has a strong piezoelectric effect for pressure to voltage conversion, 

which was discovered by Kawai in 1969 [153]. A small piece of piezoelectric PVDF film 

can be attached and electrically contacted to the surface of a hydrophone to work as the 

pressure sensitive element of the measuring instrument. The main advantages of a PVDF 

hydrophone over a ceramic one are better acoustic impedance matching condition to water 

and tissue, smaller physical size, configuration in flexible probe and membrane types, flat 

frequency response over a wide frequency. It is used as a “gold standard” in the 

characterisation of low intensity medical ultrasonic fields in water [145]. Due to minimal 

disturbance and diffraction effects to the investigated acoustic field, it can be used as an 

alternative in high power ultrasonic applications when used below the cavitational 

threshold.  

PVDF hydrophones can be constructed using either membrane or needle designs (Fig. 

2.13). One design of PVDF membrane hydrophone is known as the hoop-supported 

membrane approach. It consists of an annular frame with a diameter of 100 mm and a 9 

   thick sheet of PVDF stretched and mounted onto the frame. Gold or chromium 

electrodes are vacuum deposited at the centre of the film surface to work as active 

elements with diameters in the range of 0.2-1.0 mm [154]. Due to being thin compared to 

the acoustic wavelength and having a matched acoustic impedance with water, the 

membrane has a negligible effect on an ultrasonic field under investigation. A typical 

PVDF needle hydrophone has an active element made of PVDF film (500    diameter 

and 15    thickness) mounted onto the end of a hollow cylindrical tube, which has a 

diameter of 600 µm and is filled with an acoustically absorbing material. The backing 

material inside the hollow tube has a higher characteristic impedance than water and the 

membrane [154]. 
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(a)                                                                              (b) 

Fig. 2.13 Schematic of (a) needle type (b) membrane types PVDF hydrophone 

 

An important advantage of the membrane hydrophone over the probe device is that the 

connecting cable does not pass through the ultrasound field. Consequently, the hydrophone 

neither perturbs the field nor adds to the received signal as a result of piezoelectric activity 

in the cable [155]. A needle hydrophone is more suitable for certain application in vitro 

and measuring field distribution in confined spaces [156].  

The main drawback of PVDF as a hydrophone is its susceptibility to noise. The 

cavitational activity and temperature rises induced in power ultrasonic applications can 

readily damage PVDF hydrophones.  

Fibre Optic Hydrophones 

A fibre optic hydrophone consists of light from a laser diode coupled into a glass fibre with 

the end placed into the load medium. A fibre optic hydrophone is also referred to as a laser 

optic probe hydrophone, in which the ultrasonic pressure wave modulates the refractive 

index of the fluid in front of the tip of the fibre, leading to a change in reflectivity that can 

be measured with a photodiode at the other end of the fibre [154]. A more subtle design 

has a thin polymer film deposited onto the front of the tip of the fibre to sense the acoustic 

change. The photodiode detects the light reflected back along the core from the 

polymer/medium boundary. This type of fibre-optic hydrophone (Fig. 2.14) works on the 

principle of interferometric detection of changes in the optical thickness of a thin polymer 

film at the tip of the optical fibre sensor downlead [157]. 



CHAPTER 2 LITERATURE REVIEW  38 

 

 

Fig. 2.14 Schematic of a fibre optic polymer film hydrophone 

 

Power ultrasonic field measurement by fibre-optic hydrophones has the potential to 

overcome some problems associated with conventional ceramic, piezocomposite and 

PVDF hydrophones. A fibre optic hydrophone has small element size and significantly 

higher sensitivity than others of comparable dimensions. In addition, being capable of 

resistance to bubble collapse, it may withstand cavitation activity [157]. 

Summary 

Although various hydrophones are available for ultrasonic field mapping, many 

hydrophones suffer from a lack of uniform response over a wide range of frequencies 

while still maintaining sensitivity, particularly below 200 kHz where power ultrasonic 

applications operate. Furthermore, any measurement device must be robust enough to 

withstand the vibration associated with high power ultrasound measurement. To attain 

increased levels of sensitivity, spatial resolution and non-invasiveness, hydrophone devices 

are generally quite delicate and fragile in nature, which can be easily damaged by power 

ultrasound. Thus there is limited literature on the use of hydrophones for the measurement 

of acoustic fields generated by high power applications [145]. Finally, as hydrophones are 

designed to be used in gases or fluid, they are poor for measuring ultrasonic fields in 

solids. Therefore, it is necessary to conduct the measurements using non-invasive 

techniques.   

2.4.1.2 Non-invasive Techniques 

To remove the perturbation caused by a hydrophone, quantification of the ultrasonic field 

can be performed without the insertion of a sensor. Several optical methods are available to 

provide information of ultrasonic fields without physical interaction, including Schlieren 

photography, interferometry and digital image correlation with an ultra-high speed camera. 
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Schlieren Photography 

In 1935, Raman and Nath firstly proposed that ultrasonic waves behave like a phase 

grating to a propagating light wave [158]. The phase grating results from the fact that 

ultrasonic waves produce a periodic density variation in the medium and thus a change in 

the optical refractive index of the medium. As a traditional qualitative technique, Schlieren 

imaging of ultrasonic waves produces the visualisation of ultrasonic fields in a transparent 

medium, based on the detection of changes in the optical refractive index due to ultrasonic 

wave induced variation of the density of the medium. The intensity of the diffraction 

pattern is proportional to the integral of pressure along the light path. Appropriate optics 

can be used to allow the formation of an image of the phase grating on a film or a video 

array. The video gray level intensity in an image is related to the pressure (acoustic 

intensity) integrated over the light path [159]. 

Schneider and Shung did a quantitative analysis of pulsed ultrasonic beam patterns using a 

Schlieren optical system based on the principle of optical diffraction. The results of 

temporal average acoustic intensity over the light path were obtained, which were in good 

agreement with that obtained by the hydrophone [159]. Kudo et al. used Schlieren imaging 

to monitor ultrasonically induced changes in refractive index. The ultrasound field was 

visualised using a CCD camera and a simple image processing method instead of the 

complex Schlieren optical setup. Good agreement was found between the simple Schlieren 

imaging measurement and simulation [160]. 

Schlieren imaging offers a fast, accurate and non invasive detection of the whole pressure 

field and is an alternative to hydrophone measurement. However, the technique has 

limitation in accuracy for evaluating a 3D ultrasonic field because a 2D Schlieren image is 

given by the integral of 3D pressure intensities. In addition, due to its sensitivity to phase 

distortion of light, the Schlieren method requires high quality optical elements and a 

transparent medium which prevents its operation with an opaque load fluid or solid.  

Interferometry 

The principle of interferometry is based on the optical interference observed when two 

coherent light beams, reference and measurement, are made to coincide onto a photo 

detector. From the interference detected, the frequency and phase difference between the 
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measurement and reference beam can be determined. Hence, interferometry can be used as 

a measurement technique in quantify the phase alteration due to acoustic fields. 

A laser Doppler vibrometer is typically used to determine time variant velocity of a 

reflective surface in motion by measuring the Doppler frequency shift of the reflected light 

to provide displacement amplitude measurements through the use of a phase detector. The 

laser vibrometer has been used with great success in experimental modal analysis which is 

a widely used technique to determine the parameters of resonant vibration in terms of 

modes of vibration, defined by natural frequency, mode shapes and damping factors. 

Through a laser scanning procedure, a laser vibrometer can be utilised to map the mode 

shapes of the whole resonant vibrating structure. 

In addition, the signal of a laser vibrometer is sensitive to the strain of a transparent 

medium due to the acousto-optic effect. Another use of a laser vibrometer is to measure the 

average change in refractive index through the width of the laser beam. Through a 

complete scan, the technique can provide a reasonably accurate spatial representation of 

acoustic intensity distribution. 

The use of a scanning laser vibrometer for sound measurements was proposed by Zipser 

and Lindner in 2000 [27, 161]. The acoustic field of an ultrasonic transducer in water was 

mapped by Mattei and Adler using a laser vibrometer based on the acousto-optic effect 

with a tomographic reconstruction of acousto-optic profiles [162]. Henderson et al. utilised 

the acousto-optic modulation of an optical path to measure the phase velocity and 

attenuation of a longitudinal plane elastic wave in a transparent solid media, 

polymethylmethacrylate (PMMA). The method provides averaged measurements inside 

the object not limited to the sample surface, which has the potential for use in acoustic 

tomography of a transparent solid medium [163].  

This methodology also suffers from the same difficulties as Schlieren imaging as a 

transparent medium is needed. If the structure is not resonating in a steady state, the 

ultrasonic field is time dependent, thus due to data was not simultaneously collected during 

the scanning procedure, the full-field transient displacement and pressure/stress cannot be 

extracted using a laser vibrometer.   
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Ultra-high Speed Camera 

Bond and Cimino [111] investigated the interaction between the ultrasonic horn tip and the 

surface of tissue using high-speed photography. Visual observations of the tip-tissue 

interaction and separation were obtained. In a study carried out by Simon et al., cavitation 

bubbles in a HIFU application of tissue fragment were observed using high speed 

photography [164]. These results were applications of high speed photography in capturing 

transient response of ultrasonic vibration. They did not use image processing analysis to 

investigate the ultrasonic field in the tissue.  

There are many applications using ultra-high speed cameras with digital image correlation 

(DIC) technique, a kind of image processing analysis, for visually measuring and 

evaluating the high-strain rate impact loading of structures and resonant vibrating 

structures to track the deformation of specimens to impact loading and to study the 

mechanical behaviour of specimens to dynamic loading. Barthelat et al. [165] studied the 

response of nano-crystalline-coated thin-walled cylinders subjected to high strain rate 

torsional loading using an ultra-high speed camera along with two-dimensional DIC. 

Tiwari et al. [166] used this technique to track deformation in a split Hopkinson pressure 

bar during impact loading. Kirugulige et al. investigated dynamic crack growth behaviour 

of a polymeric beam subjected to impact loading by DIC combined with a rotating mirror 

type high speed digital camera [167]. These studies all focused on the high strain rate 

behaviour of test pieces, but characterisations of high frequency cyclic loading have not 

previously been reported. DIC has been used previously for vibration measurement by 

Helfrick et al. [168], in a study to determine the natural frequencies and mode shapes of a 

dryer-cabinet panel. The measurements were in a low frequency range and the DIC results 

were compared with those obtained using a scanning laser Doppler vibrometer. As well as 

successfully using DIC to record surface vibration responses, the authors of this study 

noted that the highest measureable frequency is largely dictated by the camera used and, 

importantly, the vibrating structure must excite displacements that are larger than the noise 

level of the measurements. Siebert et al. [169] carried out experiments using a high speed 

digital image correlation technique for vibration mode shape analysis at low harmonic 

loading frequencies (59.9 and 36.5 Hz). Wang et al. [170] applied high speed digital image 

correlation technique to measure displacement responses of a complex car bonnet surface 

under random excitation from 0 to 128 Hz for identifying modal properties. These 

vibration tests were not applications using ultrasonic frequencies. Therefore, it is necessary 
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to explore the possibilities for detection of power ultrasonic field using an ultra-high speed 

camera. Images were recorded in a short time to capture the motion of the vibrating 

structure. With the use of image processing technique, steady state or transient response of 

ultrasonic vibration can be characterised. 

The ultra-high speed camera along with image processing analysis can be used to study 

both the steady-state response and transient build-up of vibration in a solid. Results are 

obtained for full field in a short time. However, there are some disadvantages in the use of 

this technique including requirements of additional image processing programs, surface 

preparation of the test sample and high intensity light.  

2.4.2 Measurements of Temperature Field during Ultrasonic 
Vibration 

Thermal damage occurring in ultrasonic surgery has been experimentally characterised by 

researchers using insertion of thermocouples or infrared thermography.  

Huttula et al. measured root surface temperature changes when ultrasonic vibration was 

applied to cemented endodontic posts by positioning thermocouples at locations on the 

proximal root surfaces. A trend for higher temperatures was observed at thermocouples of 

non-irrrigated teeth. Irrigation had a significant impact on minimising the risk of thermal 

injury to the surrounding periodontium and bone during post removal with ultrasonics 

[171].  

Goldberg et al. conducted bone cement removal with use of an ultrasound device during 

revision arthroplasty on cadaveric specimens. In their study, t-type thermocouples were 

placed on locations including the humeral cortex, the triceps muscle and the radial nerve 

around the ultrasonic cutting sites to measure temperature. They found the temperature in 

the humerus, the triceps and the radial nerve can reach to potentially dangerous levels, 

because cellular injury and necrosis had been established in the tissue. To limit the thermal 

damage, intermittent cold irrigation of the canal between passes of the ultrasonic device 

was applied [116]. 

In an attempt to prove the hypothesis that an ultrasonically activated scalpel provides a 

system that is able to enhance surgery without damage, infrared video thermography was 

used for in vivo and in vitro research studies. Temperature changes at and around the 
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ultrasonic activated blade or the tip of an electric cautery probe were investigated under 

various conditions. It is concluded that the risk of tissue damage is minimized by the use of 

an ultrasonic scalpel [91].  

An infrared camera was used to record precise heat tissue mapping during ultrasonic 

dissections in vivo on a pig model by Emam et al. to investigate the effect of ultrasonic 

energy and the extent of residual tissue damage. They found that the regions with 

temperatures greater than 60   were located at the ultrasonic dissector shaft, cutting jaw 

and distances up to 25 mm from the instrument action spot during 10-15 second action. 

The thermal damage could be reduced when a low level of power is set and action time did 

not exceed 5 seconds at any one time [114]. 

Reduction of thermal damage during ultrasonic surgery is one of the main concerns of 

surgeons. Researchers measured the temperature elevation caused by mechanical friction, 

energy absorption and cavitation. Studies of heat generation during absorption of ultrasonic 

energy in ultrasound assisted surgery are lacking in the literature. Therefore, this project 

will focus on the study of thermal damage induced by absorption of ultrasonic energy. Due 

to interaction of the ultrasonic vibrations and the thermocouples not only causing 

erroneous measurements of test specimen temperatures but also producing localized 

heating in the specimen being monitored, the technique of non-contact thermal imaging 

was used in this study.   
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3. Power Ultrasonic System Design 

This chapter introduces the work that was done on the design of the power ultrasonic 

system for this project. There are two sections in the chapter: introduction of piezoelectric 

transducer and the design of ultrasonic horns. In Sec. 3.1, a brief introduction of 

piezoelectric transducers, with special emphasis on high power ultrasonic transducers is 

given. Sec. 3.2 is related to the design of ultrasonic horns, which is based on finite element 

calculations (a modal analysis) of the designed resonance frequencies with corresponding 

eigenmodes of the horns. Dynamic modal analysis is discussed as the characterisation 

method to check experimentally the performance of ultrasonic horns. A test rig was 

designed to conduct the power ultrasonic vibration tests, which is discussed in Sec. 3.2.  

3.1 Piezoelectric Transducer 

3.1.1 Introduction 

One of the most important parts in a power ultrasonic instrumentation system is the 

transducer, which is capable of converting electrical energy to acoustic energy for 

generation of ultrasonic waves. The two main types of transducers used in power ultrasonic 

applications are the magnetostrictive and piezoelectric transducers. The most commonly 

used are piezoelectric transducers. 

The active element of the piezoelectric transducer is basically a piece of polarised material 

with electrodes attached to two of its opposite faces. When a voltage (Ve) is applied across 

the material, some parts of the molecule are positively charged, while others are negatively 

charged, therefore the polarized molecules will align themselves with the electric field 

generated by the voltage, resulting in induced dipoles within the material. The 

rearrangement of the molecules will cause the material to undergo a mechanical 

deformation. Conversely, a voltage can be produced as a result of an imposed mechanical 

stress (F) on the polarised material. These phenomena are known as the inverse and direct 

piezoelectric effects (shown in Fig. 3.1, where the poling axis represents the direction of 

piezoelectric effect), which are the basic functional principles of piezoelectric transducers. 

If a rapidly alternating voltage is applied, the piezoelectric material will vibrate at the same 

frequency as the applied voltage, which results in the production of ultrasonic vibration. 



CHAPTER 3 POWER ULTRASONIC SYSTEM DESIGN 45 

 

 

Fig. 3.1 The direct and inverse piezoelectric effect [172] 

 

Materials demonstrating the piezoelectric effects include natural materials such as quartz 

and Rochelle salt or manufactured piezocomposite, such as lead zirconate titanate and 

barium titanate.  Originally used in devices such as the very early types of underwater 

ranging equipment, quartz is not a particularly good material for power ultrasonic 

applications due to its mechanical properties, it is a somewhat fragile and difficult to 

machine. Currently, the PZT is one of the most frequently employed piezoelectric ceramics 

exhibiting better performance in power ultrasonic applications. To manufacture the 

piezoceramic, a suitable ferroelectric material, which is composed of a multitude of 

randomly oriented crystals, is firstly fabricated into the desired shape and attached to 

electrodes. Then, a strong direct current field is applied when the material is heated to 

Curie temperature. This is the process of polarisation. The polarisation of the material 

makes it into a piezoelectric ceramic with piezoelectric properties.  

3.1.2 High Power Piezoelectric Transducers 

Normally, piezoelectric transducers are designed to operate in a frequency range between 

20-100 kHz to obtain higher output intensities in power ultrasonic application. Most 

transducers are designed to be driven at a resonance frequency for maximising vibration 

amplitudes and are generally half-wavelength units.  
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The piezoelectric transducer is a combination of different parts and materials. The most 

common type of piezoelectric transducer, called a Langevin transducer, is assembled in a 

sandwich form, in which piezoelectric components are embedded between electrodes and 

pre-stressed by two metals (front matching mass and backing mass) using a central bolt. 

Langevin transducers are specially designed for high power ultrasonic applications and 

mainly have two types of materials: piezoelectric materials representing the vibration 

generator and metals for the vibration transmitter.  

For this high power application, PZT-8, a hard piezoceramic material with desirable 

properties, is used in the piezoelectric transducer. It can withstand high electrical driving 

and intensive mechanical load. It offers extremely high mechanical strength, high 

resistance to depolarization under mechanical stress, high electromechanical coupling 

factor and low dielectric losses under high electric excitation. The high Curie temperature 

of around 300   is also suited for high voltage and high power generator [173]. Several 

ring shape PZT-8 components are stacked in the Langevin transducer with a central pre-

stressed bolt. The dimensions of these components are designed based on the output 

acoustic power required, the operating mode of vibration and the type of transducer model. 

The front and back materials are titanium alloys, which have high fatigue strength and 

good acoustic properties. These metals are designed to guide most of generated vibration 

towards the front mass rather than back mass achieving efficient transmission of acoustic 

energy from PZT ceramics. 

The structure of a Langevin transducer is shown in Fig. 3.2, in which two polarised 

piezoceramic rings are sandwiched between front matching mass and back mass. The 

electrodes, used for applying the excitation voltage, are attached between the rings and the 

backing and matching layers. The polarisation directions of the pair of the rings are 

opposite to enable parallel switching under simultaneous opposing electric fields by the 

paralleled electrodes. The whole structure of the transducer is clamped by a bolt through 

the centre of the assembly. The central bolt is tightened to provide a precise amount of 

compression preventing the ring failure, reducing transducer losses and stabilizing the 

operating frequency, which are important to the proper operation of the transducer.  A 

polymer is used as the insulating material to insulate electrically the central bolt from the 

rings. An ultrasonic horn or tool is fixed to the transducer by a stud. 
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Fig. 3.2 A Langevin transducer 
 

3.1.3 Transducer Characterisation 

The power ultrasonic transducer used in this study was designed and manufactured by 

Sonic System Ltd, UK. The piezoceramic rings are made of PZT-8, and the backing and 

matching layers are titanium alloys, the electrodes are copper and the central bolt is steel. 

The tuned device operates in a longitudinal mode at the resonant frequency around 20 kHz. 

To characterise this transducer, the resonant frequency and the maximum output amplitude 

were measured when it was in harmonic excitation. 

To obtain the resonant and anti-resonant frequencies, using an impedance analyser is a 

good method of measuring the specification of the transducer. The test was conducted 

using an Agilent 4294A precision impedance analyser (Fig. 3.3), which has sweeping 

frequency ranging from 40 Hz to 110 MHz and resolution down to 1 mHz. In this 

application, the sweeping frequency was set between 18 kHz to 34 kHz with resolution of 

5 Hz and the experimental impedance-versus-frequency diagram is shown in Fig. 3.4, in 

which resonant and anti-resonant frequencies are both illustrated.  

 

Fig. 3.3 Agilent 4294A precision 
impedance analyser 

 

Fig. 3.4 Resonant (fr) and anti-resonant (fa) 
frequencies of the transducer  
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The resonant frequency of the transducer in 1
st
 longitudinal mode obtained from the test is 

19.97 kHz, which is quite close to the desired frequency, 20 kHz. Using a laser Doppler 

vibrometer, the measured maximum peak to peak output amplitude of the transducer is 12 

  , which is not sufficient for this power ultrasonic application.  

3.2 Design of Power Ultrasonic Horn 

3.2.1 Introduction 

Generally, ultrasonic energy generated by a piezoelectric transducer is transmitted from the 

transducer to the test piece by an ultrasonic tool in a power ultrasonic system. Due to the 

transducer cannot excite sufficient vibration amplitude to load the test sample, the 

ultrasonic tool is a key component of the ultrasonic system, acting as a vibration amplifier 

by providing the necessary amplitudes of vibrations to induce desired effects on the test 

sample.  

The component placed between the piezoelectric transducer and the test sample for 

augmenting vibration amplitudes is termed the horn. The ultrasonic horn is commonly a 

solid metal rod with a round transverse cross section. Commonly used ultrasonic horns 

driven at resonance are designed in tapered shapes such as conical, catenoidal, exponential, 

stepped, or more complex shapes (Fig. 3.5), with the tip area smaller than the base. These 

horns decrease in cross-sectional area to concentrate the ultrasonic energy in the direction 

of the load to amplify the vibration.  

 

(a)                  (b)                  (c)                (d) 

Fig. 3.5 Typical shapes of ultrasonic horns (a) conical (b) catenoidal or exponential (c) 
stepped (d) complex  

 

The construction of each part of the horn is crucial for good performance. Generally, to 

drive longitudinal oscillation, the horn vibrates at longitudinal resonance frequency the 

same as the transducer, which is typically connected to the base (input surface) of the horn 
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using a threaded stud. The tip (output surface) of the horn is usually used for contact with 

the sample. The dimension of the base is restricted by the size of the transducer stack. The 

size of the tip depends on the dimensions of the test sample in contact with the horn. 

Although widely used and able to provide high ultrasonic amplitudes, the conventional 

rod-type horns mentioned above suffer from an important limitation: they are incapable of 

providing a large contact area to interface with the test sample. In this work, due to a large 

cross-sectional area of output face required, a novel rod-type horn was designed and 

manufactured with high magnification and large output surface to transmit efficiently 

ultrasonic energy into tissue mimicking materials.  

3.2.2 Design of the Horn 

Traditionally, the methods used for the horn design are based on the equilibrium of  a 

element under elastic forces and integration over the horn length to achieve resonance. The 

applied excitation from the transducer can be effectively transmitted, when the designed 

horn vibrates at or particularly close to its resonance frequency. The horn should be 

designed properly and manufactured accurately to achieve satisfied vibration transmission.  

To ensure a reliable performance of the horn, several performance criteria should be 

satisfied in the design of the ultrasonic horn including resonant frequency at close to the 

operating frequency of the transducer, high vibration amplitude of the operating mode, 

isolation of the operating frequency from close non-tuned modes and high amplitude 

uniformity at output surface. 

3.2.2.1 Resonant Frequency 

To effectively apply vibration on the test sample, the horn must be properly designed to 

vibrate at or particularly close to the transducer resonance frequency. In the case of 

longitudinal mode horn it is common to design the horn working at the first longitudinal 

vibration mode where the highest amplitude can be obtained. The resonance frequency of 

the horn is mainly determined by the length of the horn [173]. Normally, a horn is designed 

to be a half-wavelength in length. When designing an ultrasonic horn, the operating 

frequency of the transducer   can be used to calculate the horn length  . If the horn has a 

uniform cross section, it can be obtained by:  



CHAPTER 3 POWER ULTRASONIC SYSTEM DESIGN 50 

 

 
  

 

 
 

 

  
 

 

  
 

 

 
 3.1  

 

where    and   are the wavelength and the velocity of the longitudinal wave, and the 

velocity of the wave   is found: 
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where   is the Young’s modulus and   is the density of the material. However, for a non-

uniform cross-sectional horn, such as an exponential horn, the horn length of half-

wavelength pattern can be calculated:   
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where   is the ratio of the output surface to the input surface radius. For the horn with 

complex shapes, the equations cannot be utilised directly to calculate the exact overall 

length. Therefore, to ensure the resonant frequency of the horn at close to the operating 

frequency of the transducer, finite element analysis is now used for the design of the 

ultrasonic component. 

There are several parameters to be considered in the design of the horn including output 

face area, gain, tuning frequency and output surface uniformity of vibration amplitude. For 

an optimal operation of an ultrasonic horn system, the maximum cross-sectional dimension 

of any part of the rod-type horn should be less than about a quarter-wavelength of the 

corresponding longitudinal acoustic wave at the horn’s resonance frequency [174, 175].  

3.2.2.2 Vibration Amplitude 

Vibration amplitude can be defined as the peak-to-peak displacement of the horn at its 

output surface. In some power ultrasonic systems, the amplitude is a dependent variable 

related to the power applied to the system and gain factor. If the applied power is being set 

and controlled, an alternative approach to improving vibration amplitude is investigated by 

making the horn with high gain. The gain of the horn can be defined as the ratio in 

vibration amplitude between the output surface and the input surface. Normally, the gain is 
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dependent on the rate of change in cross-sectional area from the input surface to the output 

surface. The horn profile mainly affects the magnification. Therefore, modification of the 

cross-sectional area between the input and output surfaces of the horns leads to a change in 

vibration amplitude and subsequently induces an alternation of the gain.  

The modal frequency of a column depends on its length, while vibration amplitude and 

gain are sensitive to width variation. It is possible to reduce the column widths whilst 

maintaining the horn global dimensions by incorporating a number of slots in the horn. For 

this application, requiring high vibration amplitude and large output surface, slotted rod 

type horns are designed and used, but these are prone to modal coupling at the operating 

frequency. 

3.2.2.3 Frequency Separation 

Modal frequency separation of the horn response is important in examining the 

performance of the horn. To avoid the coupling of the resonant frequency at the operating 

frequency, it is necessary to maximise the spread between the tuned and non-tuned modal 

frequencies of the horn. In this application, the horn requires a pure longitudinal vibration 

mode with a good separation from torsional and bending vibration modes. It is suggested 

that the frequency separation should be at least 1 kHz from the longitudinal mode 

frequency. Modal coupling at the operating frequency can induce distortion in horn 

movement, reduction of horn gain and poor uniformity of vibration amplitude at output 

surface. It is not easy to improve the frequency separation of the slotted rod-type horn due 

to the inclusion of additional slots, which may lead to a reduction of the separation by any 

change in dimensions of these slots. Finite element analysis can be used to design a horn 

with good frequency separation. 

3.2.2.4 Uniformity of Vibration Amplitude 

In order to operate the horn effectively with high amplitude gain, high uniformity of 

vibration amplitude should be achieved at the output surface of the horn. The vibration 

amplitude uniformity of the horn can defined as 

 
            

  

  
       3.4  
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where    and    are the maximum and minimum amplitudes of the ultrasonic vibration on 

the horn output surface. The vibration amplitude uniformity requirement is estimated to be 

80%. To achieve uniform amplitude distribution on the output surface of the horn, finite 

element analysis and optimum design can be used for the design of an ultrasonic horn 

[176].  

3.2.2.5 Design of a Slotted Rod-type Horn 

The first consideration in the horn design is the geometry. The length of a column, the first 

attempt of the horn, was calculated using equation 3.1, when the material properties and 

desired resonant frequency were determined. The resonant frequency of a column uniquely 

depends on its length, but vibration amplitude is sensitive to cross-sectional variation. 

Then, the column was cut into multi-element rods, which have cylindrical elements and 

elements of variable cross sections. The complex structure of the multi-element horn made 

its length from the base to the tip not only determines the frequency of resonance but also 

affects the gain. The rod model is well suited to determine the approximate vibration 

behaviour, provided that the maximum cross-sectional dimension of the horn is less than a 

quarter wavelength of the operating frequency. The cross sections of the horn’s input and 

output surfaces are restricted by the transducer output surface, which is connected to the 

base of the horn and the dimension of the test specimen, which is contact with the tip of the 

horn. The horn input surface area with a diameter of 38 mm was same as the diameter of 

the transducer output surface, in order to achieve interface continuity and transfer 

ultrasonic energy efficiently. The output surface area with a diameter of 50 mm was 

designed to contact with the test sample, whose cross-sectional dimensions were 40 mm by 

25 mm. The cross-sectional dimension of the output surface is larger than the input surface. 

To obtain high vibration amplitude at the output surface and high gain factor, thus it is 

possible to reduce the element cross-sectional area whilst maintain the horn global 

dimensions by incorporating a number of slots. Two symmetrical triangular cuts were 

taken from the cylindrical element to reduce the cross sectional area from the base to the 

tip. To avoid high stress concentrations, fillets were fabricated at the junction in the region 

where the diameter changes abruptly.  

Another consider consideration is the material selection for the ultrasonic horn, which was 

very important to ensure it works correctly and achieves maximum efficiency [177]. 

Aluminium alloy (6082) was selected for the horn due to its high mechanical quality 
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factors, such as strength and durability. The properties of the material are listed in Table 

3.1.  

Table 3.1 The properties of the horn material [177] 

Aluminium alloy 6082 

Ultimate strength  500 MPa 

Endurance limit 225 MPa 

Young’s modulus 72 GPa 

Density 2660 kg/m
3
 

Speed of sound 5200 m/s 

Wavelength 252 mm 

Acoustic impedance 13.86×10
6
 kg/m

2
·s 

Quality factor 3333 

 

For this application requiring high amplitude of vibration as well as high amplitude 

uniformity, a triangular slotted horn with multi-element rods was designed (shown in Fig. 

3.6) which was operating at longitudinal resonant frequency close to 20 kHz, the operating 

frequency of the transducer.  

  

 

                                                (a)                                                      (b) 

Fig. 3.6 The triangular slotted horn with multi-element rods (a) the drawing (b) as 
manufactured 

 

To design the horn resonated at the desired frequency of longitudinal mode with high gain 

and uniformity, finite element models were created using ABAQUS software. Natural 

frequency and steady state dynamic analyses were used to predict the resonant frequencies, 

the mode shapes, the amplitude uniformity, gain factor, frequency separation and 

amplitude uniformity of the models. A multi-element rod type horn operating close to 20 

kHz with the maximum lateral dimension less than a quarter wavelength and a length of 

around a half wavelength was designed and manufactured using aluminium alloy for this 

application. Experimental modal analysis (EMA) is then required to validate the results 
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found from the finite element models. The horn configurations were finalised when they 

satisfied the performance criteria in both the predicted models and the experimental tests. 

The process of ultrasonic horn design is detailed in Fig. 3.7.  

 

Fig. 3.7 The ultrasonic horn design process 

 

3.2.3 Finite Element Analysis 

3.2.3.1 Introduction 

Finite element analysis is one of numerical modelling methods, which can be used to 

provide an approximate solution for the equations governing the system’s behaviour. To 

find solutions to vibration problems, Courant introduced finite element analysis by utilising 

the Ritz method of numerical analysis in the 1940’s [178]. Further development of FEA 
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followed for practical use in various industries, including defence, aerospace and 

automotive by the 1970’s. With the rapid development of powerful computers, FEA 

became widely used to model complex structures under different loads. Many FEA and 

simulation software packages are commercially available to assist engineers in designing 

or troubleshooting.  

As a numerical technique, finite element analysis is used to obtain approximate solutions 

of differential equations, which are the mathematical models of many physical, chemical 

and biological phenomena and include the heat equation and the wave equation. FEA 

solves problems by mesh discretisation of a continuous system into a set of discrete small 

elements, which have easy representation of the total solution. Assembled using nodes to 

define a complete system, the meshed elements are then modelled by applying material and 

structural properties to characterise the behaviour under certain loading and boundary 

conditions. A variety of numerical results can be provided by different analysis steps 

according to user defined parameters and requests. 

3.2.3.2 Finite Element Modelling 

In this application, the FE software package ABAQUS v6.9 (Simulia, France) was used to 

calculate the natural frequencies of the horn at the first step and the steady-state response, 

with displacement, strain or stress distributions obtained for the horn under power 

ultrasonic loading at the second step. In the FE models, the material properties of 

aluminium alloy used for the horn, were assumed to be linearly elastic with density and 

Young’s modulus as listed in the Table 3.1. The horn models were analysed using the 

recommended element (C3D20R) which is for linear stress analysis with accurate results. 

C3D20R indicates a continuum (solid) element in 3D with 20-node quadratic brick and 

reduced integration, which reduces running time by reducing the integrating points from 27 

(C3D20) to 8. The quadratic elements made the solution more accurate in modal behaviour 

investigations than linear elements. Sufficient element densities were defined for a fine 

mesh to obtain accurate results and converged solutions. 

Firstly, frequency analysis was utilised to determine the natural frequencies and mode 

shapes of the horn. In this analysis step, no loading was applied to the models with free 

boundary conditions. The horn designed in FEA should be resonant as near to 20 kHz as 

possible with the mode shape of longitudinal vibration. If it was found not to be tuned to 
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longitudinal mode at 20 kHz, the horn geometry was modified. The accepted result, 

checked by frequency analysis, was transferred to the next analysis step. 

Secondly, the horn’s dynamic response to a predefined power ultrasonic loading at a 

specified frequency with harmonic excitation was prescribed in a steady-state dynamics 

direct step, which can be used to calculate the steady-state displacement amplitude, strain 

and stress. The response was recorded by performing a frequency sweep. The distributed 

pressure was applied on the input surface of the horn to maintain a specified input 

vibration amplitude. The results for the displacement amplitude, strain and stress of the 

horn were obtained for the applied loading at the desired frequency. The gain of the horn 

could then be estimated by comparison between the amplitudes of the output and the input 

surfaces. 

3.2.3.3 Horn with Uniform Cross Section 

The first FE model of the horn with uniform cross section in one mode of vibration, which 

can be bending, torsional or longitudinal mode was extracted in Fig. 3.8. Based on the 

equation 3.1, the FE model shows an accurate prediction of the longitudinal mode at 20 

kHz. 

 

                                         (a)                                    (b)                                       (c) 

Fig. 3.8 Mode shapes with contour of displacement for (a) 1
st

 longitudinal mode (b) 1
st

 
bending mode (c) 1

st
 torsional mode of the horn with uniform cross section 

 

3.2.3.4 Multi-elements Horn 

Second attempt for the horn design is to create a FE model, which has a larger output 

surface than input’s and a proper gain. Due to the vibration amplitude is related to cross-

sectional variation, the initial horn with uniform cross section was cut into multi-element 

rods with variable cross sections. In this application, four-element horn was selected. To 

obtain a proper gain, the length of the horn is designed less than the half wave length and 

around 70% of the length of the horn with uniform cross section. The longitudinal mode of 
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the multi-element horn is shown in Fig. 3.9 and it is tuning at 24.3 kHz with the gain of 

1.75. Based on the trial and error method, this model is the optimal model with a large 

gain, close to 20 kHz and a good frequency separation. The nearest bending mode 

frequency is 27.1 kHz.  

 

Fig. 3.9 The mode shape with contour of displacement for 1
st

 longitudinal mode of the multi-
elements horn  

 

To increase the gain of the horn, it is necessary to decrease the cross sectional area of the 

rod elements. Triangular slots were introduced on the cylindrical rod element. Due to the 

bending mode frequency is proportional with the radius for the rod with uniform cross 

section, the decrease of the cross sectional area would decrease the gap between the 

longitudinal and bending mode frequencies. Therefore, modification of the triangular 

slotted horn was applied by creating a flange at the node plane of the horn and clamping 

the horn in a test holder. Finally, a test rig was designed by FEA with a complex structure 

of the multi-element triangular slotted horn, which met the design criteria. The FEA results 

of the designs were shown in the sections 3.2.5 and 3.2.6. 

3.2.4 Experimental Modal Analysis 

3.2.4.1 Introduction 

Experimental modal analysis (EMA) is a widely used technique to determine the modal 

parameters of natural frequencies, mode shapes and damping factors of a linear, time-

invariant structure using a set of frequency response measurements extracted from an 

excited structure [179]. EMA can be used to measure the response of the vibrating 

structure subjected to a vibrational load and to validate theoretical predictions (analytical 

or finite element models). Based on measuring frequency response functions (FRFs) on the 
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excited structure, EMA works when energy supplied to the structure with known of 

frequency content. It can be found that the response spectra of the resonance system are 

clearly amplified. The FRF can be then determined by analysis of the response and force 

spectra as a function of frequency. An FRF measurement isolates the inherent dynamic 

properties of a mechanical structure such as natural frequencies and mode shapes. 

Experimental modal parameters can be obtained from a set of FRF measurements.  

The process of EMA is to measure the displacement, velocity or acceleration of the 

vibrating structure from a grid of points covering the vibrating structure surface. These 

vibration responses are obtained in the time domain. To convert them to the frequency 

domain, a fast Fourier transform (FFT) is performed to obtain the FRF, which is defined as 

a ratio of the Fourier transforms of an output response and the input force. FRFs, the 

complex transfer functions with real and imaginary components (magnitude and phase), 

are used to characterise modal parameters by curve-fitting procedures, which is described 

in detail by Ewins [180]. 

In this work, EMA was used to extract and characterise the dynamic properties of the horn 

and validate the FE simulations. 

3.2.4.2 EMA Measurement System 

Generally, the experimental testing equipment for modal analysis is composed of a signal 

generator for producing an excitation waveform, an amplifier for magnifying the generated 

signal, a transducer, which converts the amplified electrical signal into the mechanical 

vibration for vibrating the loaded structure, and a response measurement system, such as 

an accelerometer or a laser vibrometer.  

In this application, the horn was excited by a transducer, which was driven by an amplified 

random signal. The desired input waveform was generated by a Data Physics SignalCalc 

Quattro analyser (Data Physics Corporation), which had two main functions, signal 

generation and data acquisition for analysing the dynamic signal. To measure the response 

of the horn, a 3D laser vibrometer (Polytec, 3D CLV-3D) was used. The measured signals 

were amplified, conditioned and collected by data acquisition hardware (the Quattro 

analyser), which was connected to a computer for further signal processing. The time 

domain data was recorded and transformed to the frequency using FFT to generate the 
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FRFs, which was produced in the computer consisting a digital signal analyser using data 

acquisition software (Signal Calc ACE, Data Physics Corporation).  

The visualisation of the mode shapes of the horn was performed by the specialised modal 

extraction software ME’ScopeVES (Vibrant Technology Inc). Based on a curve fitting 

process, the software extracts a set of modal parameters, which are represented in a set of 

FRFs. Before mode shape extraction, measurements of vibration response are conducted 

from a set of a grid of points covering the whole surface of the horn. A schematic of EMA 

is shown in Fig. 3.10.  

 

Fig. 3.10 Schematic of EMA 

 

Excitation Signals 

The signals used to excite the structure in modal analysis can be generated by various 

methods such as the periodic, transient and random methods depending on requirements of 

the test. However, EMA for exciting ultrasonic transducers uses a true random signal 

generated by the random method or a swept sine signal by the periodic method. Although 

the response of an ultrasonic transducer excited by the swept sine signal can be identically 

related to the excitation signal, the random excitation is more commonly used, because it 

excites all frequency at same time and can be easily implemented in EMA.  

Response Measurement  

Laser Doppler vibrometry is a well-established optical metrology tool, conventionally used 

to record surface velocity measurements from vibrating objects. To measure the response 

of the vibrating structure to the applied excitation for determining the FRFs, a laser 
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Doppler vibrometer (LDV) is used due to the requirements for non-invasive measurement 

of the vibrating structure and non disturbance of the structure. The experimental tests were 

carried out using a 3D LDV for response measurement in three mutually orthogonal 

directions as well as using a 3D scanning LDV, which can measure a designed grid of 

points on the target surface automatically over a short time period. 

Basic principle of LDV 

Based on the principles of the Doppler effects and optical interferometry, laser Doppler 

vibrometers can detect the instantaneous velocity response of a vibrating structure surface. 

The EMA tests were conducted using LDVs by shining a laser beam on a vibrating surface 

and analysis of the difference between the reflected beam from the target and reference 

beam from the source. As shown in Fig. 3.11, a LDV light beam from a helium neon laser 

is split into two coherent light beams, a reference beam and a measurement beam, by a 

beam splitter (BS 1). The measurement beam is focused onto the vibrating surface under 

investigation, reflected by the vibrating surface and deflected by BS 2. Through BS 3, the 

deflected beam is then collected and overlapped with the reference beam onto a photo 

detector.  The resultant light intensity is not just the addition of the two beam intensities, 

but is modulated according to the formula  

 
                                   3.5  

 

where    &    and    &    are respective light intensities and path lengths of the two 

splitting beams and   , the path length of the reference beam, should be constant. The 

phase difference between two coherent light beams is proportional to the difference in the 

respective path lengths transverse by the two light beams between their origin and the point 

at which they interfere. The optical interference of the two coherent light beams generate a 

dark and bright (fringe) pattern on the photo detector, which can be utilised to discern the 

frequency and phase difference between the measurement and reference beams. One 

complete dark and bright cycle on LDV means the displacement of the vibrating sample is 

half the wavelength of the used light. The change of LDV pattern with the modulation of 

the measurement frequency is proportional to the velocity of vibrating sample. To obtain 

the direction of the vibrating sample, a Bragg cell is placed in the reference beam, which 

introduces a shift of light frequency by 40 MHz. The modulation frequency is introduced 
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at 40 MHz when the vibrating sample is at rest. The presence of a Bragg cell makes it 

possible to not only detect the amplitude of movement but also clearly define the direction 

of movement by reduction or increase of the modulation frequency around 40 MHz due to 

vibrating sample moving toward or away the LDV [181]. A standard frequency modulated 

signal with the Bragg cell frequency and the modulation frequency is the photo detector’s 

output signal, which can be demodulated to derive the velocity of the vibrating target. 

 

Fig. 3.11 Schematic diagram of LDV [181]  

 

Signal Processing 

The measurement signals at various locations on the horn surface obtained from the LDVs 

were collected by data acquisition equipment, the Quattro analyser, which can also be used 

as a spectrum analyser to extract and display the frequency response functions by 

digitising, sampling and transforming the measurement time domain signals to frequency 

domain and displaying them on the monitor. The sampling rate and resolution of the 

frequency spectrum of spectrum analysers can be varied depending on the requirements. In 

this work, the sampling rate of the spectrum analyser was set as 204.8 kHz and the 

resolution was 1.56 Hz over the frequency 0-40 kHz.  

Initially, the measurement data collected from LDV are analogue signals, which need to be 

processed using a low pass filter as the anti-aliasing filter to ensure no aliasing of high 

frequency signals into the analysis frequency range. An analogue to digital converter (AD 

converter) is then used to digitise the data and control the resolution of the digitised signals 

to resemble the sampling rate parameter. The next step is to convert the signals from time 

domain to frequency domain using FFT for calculating the FRFs. The data for FFT was 
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required to be recorded as a finite length of time coupled with the periodicity principle, i.e. 

as periodic repetition data. The collected signals with the random excitation are non-

periodic signals, which lead to a leakage problem when they are used directly in the FFT 

process. If the signal is ideal sampled and periodic, the resulting spectrum will display a 

single line at the frequency of the sine wave. However, because of the non-periodic signals 

used, the resulting spectrum in frequency domain displayed several frequency lines 

surrounding the resonant frequency line, which indicated the original signal possessing 

additional frequencies around the resonant frequency. To minimise the undesired effects, 

weighting functions (windows) can be applied to the sampled data in time domain prior to 

the Fourier transform calculation. The data are forced into a form more satisfactory to the 

periodicity requirements of the FFT by imposition of the windows.  

This requirement was not met when a random signal was applied as input, which meant 

leakage occurred during FFT. Through the windowing technique, the measured signals 

were forced into the periodic signals to satisfy the FFT requirements. Many types of 

window are available for processing different types of time domain signals such as Gauss, 

Hanning, Cosine taper, Hamming, Dirichlet, and Exponential. A Hanning window was 

adopted in this application, which was commonly used for processing the continuous 

signal (random). 

3.2.4.3 Visualisation of Mode Shape 

After data collection and signal processing, the final step is to extract the modal parameters 

for each mode of vibration from the measurement data. There was one FRF per grid point 

for each of the three measurement directions in 3D LDV measurement. A set of FRFs were 

produced from the EMA of grid points over the horn structure. Modal parameters are 

identified by curve fitting the set of FRFs. The modes of vibration were visualised in a 3D 

model using the software ME’ScopeVES.  

3.2.5  Results of FEA and Experiments 

This study describes the modelling, design and fabrication of an ultrasonic horn which can 

be used to study the vibrational response of tissue mimic materials under power ultrasonic 

excitation. Characterisation of the vibration response of the horn is essential to ensure a 

reliable performance. Experiments including EMA were carried out to obtain the resonant 

frequency, the amplitude gain, the frequency separation between the operating frequency 



CHAPTER 3 POWER ULTRASONIC SYSTEM DESIGN 63 

 

and the close non-tuned modes and the uniformity of the vibration displacement amplitude 

on the output surface. It is necessary to compare the results of the FEA and experiments for 

validation. 

3.2.5.1 Longitudinal Resonant Frequency 

To ensure that the longitudinal resonant frequency and the mode shape predicted by FEA 

are consistent with those found through EMA, the designed horn were modelled using 

finite element method and analysed using experimental modal analysis.  

In Fig. 3.12, the spectrum (raw data, presenting FRF traces) shows the resonant 

frequencies of the horn in the range between 0 and 40 kHz and the value of the 

longitudinal mode is clearly identified at 19.7 kHz. The FEA and EMA longitudinal mode 

shape results for the horn are shown in Fig. 3.13. 

 

Fig. 3.12 Experimental FRF traces found through EMA 

 

 

(a)                                           (b)    

Fig. 3.13 Comparison of (a) FE predicted and (b) EMA measured longitudinal mode shape 
and modal frequency 
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It shows the FEA and EMA modal responses for the designed ultrasonic horn in the 

longitudinal mode at frequency close to 20 kHz. FEA predicted the longitudinal resonant 

frequency of the horn is 19.95 kHz, while EMA measured the frequency at 19.7 kHz. A 

percentage difference of 1.25% was found in longitudinal resonant frequency between the 

predicted FEA and the measured EMA. The slight variation in the natural frequency found 

between experimental and numerical results could be due to the accuracy of the input 

material parameters in the finite element model, errors in the manufacture of the horn or 

accuracy of FRF calculations using the FFT method. 

3.2.5.2 Amplitude Gain 

It is possible to design a rod-type horn with high gain while ensuring the cross sectional 

area of the output surface is larger than the input surface’s. The displacement amplitudes 

were measured along a path of 19 equally spaced points positioned on the profile of the 

horn parallel to the axis of the multi-element rod using 3D LDV. The displacement 

amplitudes were measured along a path of 19 points positioned on the profile of the horn 

using 3D LDV. These points are equally spaced along the axis of the multi-element rod 

from the base to the tip of the horn. The normalised vibration amplitudes of these points 

from the FEA and the experiment are shown in Fig. 3.14. The predicted and measured 

amplitude gains of the horn were 2.65 from the FEA and 2.80 from the experiment 

respectively. 

 

Fig. 3.14 The normalised amplitude distribution along the horn axis for both FEA and 
experimental results 
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3.2.5.3 Frequency Separation 

For reliable operation of the horn in this application, the longitudinal mode frequency has 

to be isolated from other close modes which can participate in the response at the operating 

frequency. It is necessary to measure the spread between the tuned and non-tuned modal 

frequencies of the exciting horn in examining its performance. FEA and EMA were used to 

estimate and measure the separation of the horn frequencies. The longitudinal mode of the 

horn was determined to be at 19.95 kHz from FEA and 19.7 kHz from EMA, whereas a 

bending mode around the longitudinal mode was recorded at 18.86 kHz from the FEA and 

18.8 kHz from the EMA (shown in Fig. 3.15). The tuned longitudinal frequency has a 

frequency separation of 1.06 kHz (FEA) and 0.9 kHz (EMA) from the bending mode, 

which makes the horn not satisfy the performance criteria of at least 1 kHz frequency 

separation in EMA. The coupling of longitudinal and bending modes may lead to a 

reduction in the vibration amplitude uniformity on the output surface the horn. 

 

(a)                                             (b)        

Fig. 3.15 (a) FEA predicted and (b) EMA measured bending mode shape and modal 
frequency 

 

3.2.5.4 Uniformity of Vibration Amplitude 

To measure the vibration amplitude uniformity, the output surface of the horn was scanned 

over a set of grid points using a 3D laser scanning vibrometer (Polytec PSV-400), when the 

horn was driven by the transducer at the operating frequency. The experimental set-up is 

shown in Fig. 3.16. Three laser heads simultaneously scanned the output surface of the 

horn to obtain the displacements at the grid points.  
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As shown in Fig. 3.17, the normalised vibration displacements over the output surface of 

the horn were obtained from the FEA and the measurement. The vibration amplitude 

uniformity can be calculated using the equation 3.4. The FEA predicts good estimation to 

the amplitude uniformity on the horn tip, which is about 95.5%. Due to the problem of 

modal coupling at the operating frequency, the measurement result is 77.8%. The vibration 

displacement on the output surface of the horn in 3 dimension predicted from the FEA and 

measured from the experiment are shown in Fig. 3.18. It is found that when the horn is 

driven at the operating frequency of 20 kHz, a coupled (longitudinal and bending) mode is 

excited. 

 

Fig. 3.16 The experimental set-up for measuring the vibration amplitude uniformity on the 
output surface of the horn using 3D scanning laser vibrometer 
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FEA Grid 

 

UniformityFEA=95.5% 

(a) 

 

 

Measurement Grid 

 

UniformityMEA=77.8% 

(b) 

Fig. 3.17 The normalised displacement and amplitude uniformity on the output surface of 
the horn obtained from (a) the FEA and (b) the Experiment 

 

 

   (a)                                                                   (b) 

Fig. 3.18 The vibration displacement on the output surface of the horn in 3D from (a) the 
FEA and (b) the experiment 
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3.2.5.5 Validation between FEA and Experiment 

There is good correlation in terms of resonant frequencies and mode shapes between FEA 

and EMA. The small difference between FEA and EMA in the predicted modal 

frequencies and shapes can be used to verify that the finite element model is suitable for 

the design of the ultrasonic horn. However, it can be observed that the coupled mode due 

to poor frequency separation for the excited horn at the operating frequency is difficult to 

recognise in the FEA. In order to obtain a reliable operation of the horn at the operating 

frequency with high gain factor and high amplitude uniformity, it is necessary to improve 

the frequency separation of the horn. 

3.2.6 Test Rig 

To hold and test the tissue mimics subjected to ultrasonic vibration, a test rig (Fig. 3.19) 

was designed and manufactured, which could enabled tests to be performed on a stable 

platform. Due to the poor frequency separation of the triangular slotted horn, the test rig 

has to be designed with an improved feature in the frequency separation. The test rig 

consists of a holder structure and a modified triangular slotted horn designed with a fixing 

flange (Fig. 3.20), which is clamped within the test rig. The location of the nodal plane of 

the horn was used for determining the clamping position. The holder structure uses pillars 

and plates to make the ultrasonic excitation system work properly. 

 

(a)                                                      (b) 

Fig. 3.19 (a) the manufactured test rig and the (b) drawing  
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(a)                                                          (b) 

Fig. 3.20 The modified triangle slotted horn with flange (a) the manufactured horn and (b) 
the drawing 

 

A finite element model of the modified horn with the clamping plate for simulation of the 

test rig was developed to find the resonant frequencies, the amplitude gain and the 

frequency separation. In the model, a fixed boundary condition was applied at the flange to 

implement no motion at this feature. The modal frequencies of the longitudinal and 

bending modes and the gain factor were calculated by the FEA and measured by the 

experiment using LDVs (Fig. 3.21). The results are shown in Fig. 3.22-4.  

 

Fig. 3.21 Experimental characterisation of the test rig using LDVs 

 

 

Fig. 3.22 The bending and longitudinal mode shapes of the test rig predicted by the FEA 

 



CHAPTER 3 POWER ULTRASONIC SYSTEM DESIGN 70 

 

 

Fig. 3.23 The modal frequencies of the test rig obtained from the FEA and the experiment 

 

 

Fig. 3.24 The gain factor of the test rig obtained from the FEA and the experiment 

 

It is found that the gain factor of the test rig is around 2, a small difference between the 

FEA and the experiment in prediction of resonant frequencies (tabulated in Table 3.2) and 

the frequency separation is greater than 1 kHz, which satisfy the performance criteria. 

Therefore, the designed test rig with power ultrasonic excitation system was used to do the 

vibration tests of tissue mimicking materials with large contacting surface in this work. 

Table 3.2 The modal frequencies of the longitudinal and bending modes and frequency 
separation between them obtained from the FEA and the experiment 

Modal frequency (kHz) FEA Experiment 

1
st
 Bending mode 17.99 18.28 

1
st
 Longitudinal mode 19.94 19.64 

Frequency separation 1.95 1.38 
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3.2.7 Probe Horn 

To provide large ultrasonic amplitude to the smaller cross-sectional area tissue mimicking 

samples, a probe horn was used, which has a higher gain factor than the test rig. The 

vibration response was characterised using a laser vibrometer. The probe horn (Fig. 3.25) 

was made from aluminium alloy with a 38 mm diameter base fixed to the transducer and a 

22 mm diameter tip attached to the test samples.  

 

Fig. 3.25 The manufactured probe horn 

 

The finite element model for the probe horn was created and the experiment was carried 

out to find the resonant frequencies and the gain factor. The resonant frequency of the 

probe horn in the 1
st
 longitudinal mode was 20.51 kHz obtained from the FEA and 20.62 

kHz from the experiment, as shown in Fig. 3.26. The gain of the probe horn (Fig. 3.27) 

was predicted as 2.99 by the FEA and 2.96 measured by the experiment. 

 

Fig. 3.26 The resonant frequencies and the 1
st

 longitudinal resonant frequency of the probe 
horn obtained from the FEA and the experiment 
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Fig. 3.27 The gain factor of the probe horn obtained from the FEA and the experiment 

 

Good correlations can be obtained between the FEA and the experiment for these 

characterisations of the probe horn.  

3.3 Chapter Summary 

The design of a power ultrasonic system has been investigated, initially from a 

fundamental transducer, in which resonant and anti-resonant frequencies was predicted 

using a finite element model and measured using an impedance analyser, to ultrasonic 

horns and a test rig which rely on finite element models to ensure tuning and reliability. 

The performance of the power ultrasonic components was experimentally characterised by 

experimental modal analysis and experiments using laser Doppler vibrometers.  

A rod-type triangular slotted horn with larger output surface was designed, using finite 

element analysis as part of the design process. Many performance criteria were examined 

in the design of the horns such as resonant frequency of the longitudinal mode, gain factor, 

frequency separation and vibration amplitude uniformity. Overall, a good correlation 

between the predicted and the measured resonant frequencies, mode shapes and gain 

factors of the designed component was achieved and ensured validity of the finite element 

models. To improve the frequency separation of the triangular slotted horn, the test rig was 

discussed, which satisfies the performance criteria. To obtain higher vibration amplitude, a 

probe horn with a higher gain was used to apply ultrasonic vibration on small cross-

sectional area samples. These designed ultrasonic components provide reliable 

performance for power ultrasonic vibration tests on tissue mimicking materials.  
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4. Tissue Mimicking Materials 

Tissue mimicking materials were used for experimental tests in the power ultrasonic 

application to evaluate the device-tissue interaction. E-glass filled epoxy resin (ER) and 

rigid polyurethane foam (PUF) were the alternatives for hard tissue (cortical bone and 

cancellous bone respectively) and silicone elastomer (SE) was the surrogate for soft tissue. 

In this chapter, the mechanical and thermal properties of surrogate tissue materials were 

accessibly characterised by performing several tests to determine the power ultrasound 

induced behaviour. The dynamic loading induced on the tissue mimics, because of its 

viscoelastic property, caused significant frequency and temperature dependent behaviour to 

be displayed. There are two sections in this chapter, an introduction and the 

characterisation of the thermo-mechanical properties of the viscoelastic surrogates.  

The brief introduction is followed by section 4.1.2 covering the general properties of 

human tissue and the tissue mimicking viscoelastic materials. Section 4.2 characterises the 

properties of the tissue mimicking materials, which can be categorized into mechanical 

properties, thermal properties and frequency and temperature dependent thermo-

mechanical properties. To do these characterisations further, several experimental tests 

were designed and illustrated in this section. The experimental data obtained from these 

tests was utilised in the finite element analysis to validate the behaviour of viscoelastic 

mimics during power ultrasonic vibration. 

4.1 Properties of Tissue Mimicking Materials 

4.1.1 Introduction 

The mechanism of interaction for ultrasonic surgical devices is poorly understood, 

although considerable effort has been directed by many authors and organisations towards 

reviewing it from several aspects, such as, deleterious mechanical and thermal effects, and 

the cutting ability of devices [108-112, 115, 116, 182-184]. From the limited literature, the 

mechanism of ultrasound effects on biological tissue can be summarized into three main 

topics: direct mechanical effects, thermal effects and acoustic cavitation [20]. 

Although all of these effects often occur simultaneously in the presence of power 

ultrasound on tissue, the response of tissue to power ultrasound can be quite variable due to 

the range of biological properties. For power ultrasonic applications, the biological 
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properties of tissue have a strong impact on ultrasonic tissue interaction. A general 

discussion of the physical properties of biological tissue is given by Duck [185]. 

Biological tissue shows non-linear, anisotropic and viscoelastic behavior [186]. Many 

experimental studies on hard and soft tissues have done concentrating on the aspects of 

their elastic and viscoelastic behaviour. Tissue requires viscoelastic parameters (dynamic 

mechanical property) in addition to the elastic modulus (static mechanical property) to 

fully describe their mechanical behaviour. However, ultrasonic excitation gives a limited 

strain of tissue in a very small range. The equivalent strain-stress relationship could be 

linear, which could be assumed that tissue shows elastic behaviour when subject to 

ultrasonic vibration. The physical and elastic properties of tissue were given in the Table 

4.1. 

Table 4.1 Physical and elastic properties of tissue [185, 187, 188] 

 
Density 

(kg/m
3
) 

Young’s 

modulus 

(MPa) 

Poisson’s 

ratio 

Tensile 

strength 

(MPa) 

Compressive 

strength 

(MPa) 

Skin 1093-1190 4.6-20 0.48 3.7-11  

Muscle: Cardiac 1060 0.0062-0.11 

(10% strain) 

0.49 

(average) 

0.11  

Muscle: Skeletal 1038-1056 0.11  

Bone: Cortical 1990 27 
16000-

23000 

0.40-0.62 130-160 150-210 

Bone: Trabecular 1920 20 
0.32 

(bovine) 
 0.4-7.7 

Cartilage 1092-1104 

5.0 (costal) 

 
2.8 

(costal) 
7.8 (costal) 0.79 0.36 

(articular) 

Fat 917-939     

 

Thermal damage in the ultrasonic exposure of tissue is related to ultrasound absorption and 

thermal conduction [118]. Ultrasonic absorption coefficient is relevant to conversion of the 

ultrasonic energy into tissue heat and thermal properties of tissue can reveal the heat 

transfer. Data about ultrasound absorption and thermal properties of tissue have been 

collected for reference shown in Table 4.2. 
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Table 4.2 Ultrasound absorption and thermal properties of tissue [185, 187, 188] 

 
Ultrasound absorption 

coefficient (dB/cm) 

Thermal 

conductivity 

(W/m K) 

Specific heat 

capacity 

(J/g K) 

Heat of 

Ablation 

(kJ/g) 

Skin 3.5 1.2 (1MHz) 
0.293 0.016 

0.385-0.393 
3.15-3.71 4.27 

Muscle: Cardiac 1.3-3.3, 4.7 0.44 

(4.3 MHz) 

0.492-0.562 3.72 1.51 

Muscle: Skeletal 0.449-0.546 3.43 (bovine)  

Bone: Cortical 1.5-38.2 (1MHz) 0.373-0.496   

Bone: Trabecular 1.9-15.7 (0.5MHz) 
0.27-0.33 

(cow) 

1.15-1.73 

(bovine) 
 

Fat 1.8 0.1 (1MHz) 0.23-0.27 3.59 (bovine)  

 

Due to their availability, reproducibility and properties which are similar to biological 

tissue, three viscoelastic biomechanical test materials, ER, PUF and SE, were used for this 

study to represent hard and soft tissues. The materials are available to allow test data to be 

incorporated in the model making experimental validation achievable and offering a more 

consistent alternative to real tissue. Therefore, it is necessary to know the mechanical and 

thermal properties of the tissue mimics in this power ultrasonic application. 

4.1.2 Properties of Tissue Mimicking Materials 

4.1.2.1 Soft Tissue Mimicking Materials 

To obtain reliable information on ultrasound tissue interaction, phantom studies are 

essential to mimic biological tissue. It is important to make the phantoms with the same 

mechanical and thermal properties of the corresponding tissue. Several soft tissue 

mimicking materials were developed for power ultrasound applications. 

Hydrogels are similar to many biological tissues, due to their large water content. Hence, 

to explore the high temperature and stress regimes involved in power ultrasound 

applications, polyacrylamide gel (PAA gel, a hydrogel) containing egg white was made to 

facilitate the experimental work. The physical properties of PAA gel match well with those 

of soft tissue. Data on the physical properties of PAA gel were obtained from the literature 

and is shown in Table 4.3. To visualise the temperature rise for power ultrasound 

propagation in tissue, egg white, a protein, was added in the gel to work as a temperature 

sensitive indicator for promoting coagulation of organic tissue. The procedure to fabricate 

the PAA gel containing egg white is given in Appendix 1 [189].  
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Table 4.3 Properties of PAA gel [190, 191] 

 
Young’s modulus 

(kPa) 

Poisson’s 

ratio 

Tensile strength 

(MPa) 

Glass transition 

temperature ( ) 

PAA gel Max. approx. 78 0.318-0.467 0.00271-0.01013 187.85 

 

In the fabrication of PAA gel egg white mixture, too much egg white resulted in an opaque 

gel, while too little caused low sensitivity and low optical contrast. The phantom 

containing 30% egg white by mass was best for visualisation of temperature rise produced 

by power ultrasonic exposure. However, due to the poor laser transparency of the PAA gel 

with egg white preventing mapping of the stress field using the laser Doppler vibrometer, 

which was one of the experimental methods used in this study, therefore the PAA gel was 

not utilised as a soft tissue mimicking material.  

Another soft synthetic material, silicone elastomer (Fig. 4.1), was an alternative for 

characterisation of ultrasonic effects. SE is cheap and easily formed into a solid shape at 

room temperature and is optically transparent, which made it an attractive candidate for 

this research. The mechanical properties of SE are summarized in Table 4.4 [190, 192]. 

 

Table 4.4 Physical and mechanical properties of silicone elastomer [190, 192] 

 Density 

(g/cm
3
) 

Young’s 

modulus 

(MPa) 

Tensile 

strength 

(MPa) 

Poisson’s 

ratio 

Thermal 

conductivity 

(W/m K) 

Specific heat 

capacity 

(kJ/kg· ) 

Glass transition 

temperature ( ) 

SE 1.3-1.8 0.005-0.02 2.4-5.5 0.5 0.3 1.3 -123 

 

Samples of the silicone elastomer were made according to the manufacturer’s instruction 

(ELASTOSIL® RT 601 A/B, Wacker Chemicals Ltd). There are two components: the 

platinum catalyst and the crosslinker. These material elements were mixed in 9:1 mixing 

ratio by weight to form the final elastomer at room temperature. After intensive mixing for 

several minutes in a fume hood, the mixture was poured into a prepared mould. The mould 

was then placed in a vacuum degas tanker above a horizontally levelled table to release air 

bubbles from the mixture and ensure parallel sample surfaces. Samples were left to cure 

either for 24 hours in a well-ventilated area or for 20 minutes in the oven at 80   before 

removing from the mould. 
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Fig. 4.1 A silicone elastomer sample 

 

 

4.1.2.2 Hard Tissue Mimicking Materials 

Samples of hard tissue mimicking materials were made from biomechanical test materials, 

Sawbones Europe, including E-glass filled epoxy resin (ER, Fig. 4.2a) for cortical bone 

and solid rigid polyurethane foam (PUF, Fig. 4.2b) for cancellous bone. They are primarily 

used as alternative testing medium to human bones, because they provide consistent and 

uniform mechanical properties in the range of human bone. The mechanical properties of 

the materials are listed in Table 4.5.  

 

                                                (a)                                                       (b) 

Fig. 4.2 Hard tissue mimics (a) E-glass filled epoxy resin for cortical bone (b) rigid 
polyurethane foam for cancellous bone [193] 

 

Table 4.5 Mechanical properties of hard tissue mimics [193] 

 
Density 

(g/cm
3
) 

Modulus 

(MPa) 

Strength 

(MPa) 

Poisson’s 

ratio 

ER 1.64 16,000 106 0.3 

PUF 0.48 592 12 0.3 
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4.2 Characterisation of the Properties of Tissue 
Mimicking Materials 

4.2.1 Introduction 

Deriving properties data for tissue mimicking materials is a crucial factor for determining 

whether the performance assessment of ultrasonic surgical devices gave correct and 

realistic results. Reliable finite element analysis is required for engineering simulations, 

which are largely dependent on accurate and realistic material data. To model the materials 

accurately, the properties of tissue mimics were characterised mechanically and thermally 

using different parameters and experimentation. In this study, frequency and temperature 

dependent mechanical and thermal properties data were required in order to develop finite 

element models of power ultrasonic loading processes. Standard and specific materials 

characterisation techniques were assessed.  

Three materials: ER, PUF and SE were used to determine their properties for 

implementation in FEA, particularly mechanical and thermal simulations during the power 

ultrasonic loading. These tissue mimicking materials were considered to be general 

representations of hard and soft tissue but are not considered to accurately represent the 

full spectrum of biological tissue. They have different mechanical and thermal behaviour 

and display diverse frequency and temperature dependencies.  

4.2.2 Mechanical Properties 

To extract the mechanical properties, such as Young’s modulus and strength, tensile and 

compression tests were conducted using a test rig by loading a specimen with a predefined 

geometry until failure occurs. The elastic behaviour during the tests was derived from the 

linear region of the stress-strain relationship, which was calculated from the measured load 

and displacement data. 

 

4.2.2.1 Characterisation of the Mechanical Properties of ER and PUF 

Generally, to determine the mechanical properties well, it would be advantageous to 

characterise the material in tension as well as compression. In the application of ultrasonic 

surgical cutting or loading, samples are firstly compressed and then sheared. Failure occurs 

more often under compression than tension at the interface between the ultrasonic horn and 
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the material. Compression tests for ER and PUF were performed following the standard 

ISO 604:2003 to obtain compressive stress-strain data [194].  

Principle of Characterisation of the Mechanical Properties of ER and PUF 

ER and PUF were machined to a standard size of 50mm (Length) × 10mm (Width) × 4mm 

(Thickness). Machining operations were carried out by a milling machine ensuring smooth 

surfaces. Then, ER and PUF were tested in a uni-axial compression testing machine 

(Zwick Roell Z250) at temperatures of 22, 30, 40, 50 and 60   for ER and room 

temperature of 22   for PUF at crosshead velocities of 1 mm/min. The centre of each 

specimen was carefully positioned at the centrelines of the compression plate surfaces to 

ensure the compression force was applied axially and the specimen was parallel to the 

compression plate surfaces of the test machine. The specimen was placed in the 

temperature controlled chamber (Fig. 4.3) and allowed to soak for half an hour to ensure 

the whole specimen was at the desired testing temperature. A small preload of 100N was 

applied prior to the test and then the specimen was compressed to failure.  

 

Fig. 4.3 Compression tests at different temperatures 

 

Results of Mechanical Properties of ER and PUF 

The nominal strain was determined by crosshead travel and compressive modulus was 

defined on the basis of two specified strain values at the strain of 0.05% and 0.25%. The 

stress-strain relationship in compression tests are shown in Fig. 4.4 for ER and Fig. 4.5 for 

PUF. The compression modulus were calculated and listed in Table 4.6 for ER and Table 

4.7 for PUF. It could be assumed that the compression modulus of ER and PUF are 

identical to the tensile Young’s modulus.  
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Fig. 4.4 Typical stress-strain curves of ER in compression at different temperatures 

 

Table 4.6 Typical compression modulus of ER at different temperatures 

Temperature ( ) Young’s modulus (MPa) 

22 9962.3 

30 8508.5 

40 7493.8 

50 540.88 

60 354.38 

 

 

Fig. 4.5 The stress-strain curves of PUF for compression tests at room temperature 22   

 

Table 4.7 The compression modulus of PUF 

Test Compression modulus (MPa) 

1 556.5 

2 562.2 

3 571.5 

Mean 563.4 

Standard deviation 7.6 

 

Due to the glass transition temperatures of ER is around 50   and PUF is above 120  , 

which will illustrate in section 4.2.4, the mechanical properties of ER is more temperature 

dependent than PUF. Therefore, compression modulus of ER at different temperatures up 
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to 60   were obtained but the compression modulus of PUF at room temperature was 

calculated.  

4.2.2.2 Characterisation of the Mechanical Properties of SE  

The majority of mechanical tests for silicone elastomers use uni-axial tests, either a tensile 

test or a compression test, to determine the tensile and compressive stress-strain properties. 

Standard test pieces were prepared in advance. Dumb-bell shaped specimens (gauge length 

20mm, type 1A) were made for tensile tests and cylindrical specimens with diameter 29 

mm and height 12.5 mm were fabricated for compression tests. Standard test pieces were 

produced from polytetrafluoroethylene (PTFE) mouldings (Fig. 4.6 and 4.7), to allow the 

specimens to release easily. The test procedures were followed the standards ISO 37:2005 

and ISO 7743:2008.  

 

Fig. 4.6 Tensile test specimen moulds and 
SE specimen 

 

Fig. 4.7 Compression test specimen 
moulds and SE specimen 

 

Principle of Characterisation of Mechanical Properties of SE 

In tensile tests at room temperature, dumb-bell test pieces were gripped by clamps and 

stretched in a tensile testing machine (Zwick Roell Z250) at a fixed rate (500 mm/min). 

Force and elongation data were collected until the sample broke. Due to the difficulties of 

griping the sample without clamp induced failure and making samples without flaws, 

tensile tests proved difficult to perform. Compression tests were simple to perform for SE. 

A standard test piece was lubricated by oil on the flat top and bottom surfaces, which were 

contacted with the metal plates of test machine. The lubricant was used to reduce friction 

with the loading platens, where the specimen attained a barrel shape. In the compression 

test, the lubricated test sample was pressed between two compression platens of the test 

machine (Zwick Roell Z250) at a constant speed of 10 mm/min until a reduction of 
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specimen’s height of 25% reached. The strain was released at the same speed and the 

compression release cycle repeated three more times. The four compression cycles form an 

uninterrupted sequence. The measured load and displacement data were recorded to 

determine the force-deformation relationships for calculating the compression modulus 

during the four cycles. The experimental set-ups for characterisations of the mechanical 

properties of SE are shown in Fig. 4.8. 

                               

(a)                                                                                            (b) 

Fig. 4.8 Mechanical experimental set-ups for (a) tensile test (b) compression test 

 

Results of Mechanical Properties of SE 

The test specimens were all moulded from the same batch. Although the specimens were 

manufactured from the same mixture, small variations occurred during setting and test 

preparations. It was difficult to obtain consistent values for their mechanical properties. 

The tensile stress-strain results for SE from three tests obtained to provide Young’s 

modulus and tensile strength are plotted in Fig. 4.9. The strain was determined by the 

displacement travelled by the crosshead of the machine, which produced similar results at 

low strain but as the strain increased the results diverged when compared with the results 

from the more accurate laser extensometer. In this thesis, for the purpose of finite element 

modelling, the strain calculated using the change in displacement of the crosshead can be 

Tensile 

specimen 

Compression 

specimen 
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considered accurate but future considerations of materials testing should employ optical 

extensometry techniques to improve the accuracy.  

Three compression results were derived from the recorded force-deformation diagrams 

(Fig. 4.10). There were four compression loading cycles in each test, where the strain was 

measured from the point at the curve in the last (fourth) cycle and the compression 

modulus is calculated between 10% and 20% deformation. The compression tests of SE 

show that the material is stiffer in compression than in tension. The compressive elastic 

modulus is higher than the tensile (Table 4.8). 

 

Fig. 4.9 Results of tensile tests for SE 
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Fig. 4.10 Results of compression tests for SE 

Table 4.8 Results of mechanical tests for SE 

Test 
Young’s modulus 

(MPa) 

Tensile strength 

(MPa) 

Elongation 

at break 

Compression 

modulus (MPa) 

1 0.83 0.66 101.50% 2.31 

2 0.79 0.77 112.25% 2.28 

3 0.79 0.86 99.58% 2.35 

Mean 0.80 0.76 104.33% 2.35 

Standard deviation 0.02 0.10 0.07 0.09 

 

4.2.3 Thermal Properties 

Heat induced by rapid strain cycling is another effect of power ultrasound on biological 

tissues. To map the thermal distribution during power ultrasonic loading, it was necessary 

to obtain the thermal properties of the tissue mimics. In addition, heat transfer in the 

specimen during ultrasonic vibration can be modelled with FEA, if the thermal properties 

of the materials are available. These parameters include thermal conductivity and specific 

heat capacity, which can be used to predict heat build-up with time. 

4.2.3.1 Measurement of Thermal Conductivity  

When an object is placed between two different temperature parts, heat flows from the hot 

part to the cold part of the object occurs through thermal conduction. To measure heat 

flows through the object, the guarded heat flow meter method was applied in the 

experiment following the International Standard ISO 22007-1:2009 [195].  

The Principle of Thermal Conductivity Measurement 

The test apparatus is shown in Fig. 4.11 (a) and the schematic in Fig. 4.11 (b). 
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(a) 

 

 

(b) 

Fig. 4.11 Setup for thermal conductivity measurement (a) experimental (b) schematic 
apparatus 
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A plate heater attached on the lateral surface of a copper bar works as a heat source. The 

sheet of solid specimen was clamped tightly under a compressive load between the two 

copper bars with known geometry, thermal conductivity and thermal emissivity. A load 

cell sitting on top of the upper copper bar (Cu1) was used to measure the compressive load. 

The lower copper bar (Cu2) was maintained at a constant lower temperature by a liquid 

cooled chiller. For higher accuracy and to check repeatability, resistance temperature 

detectors (RTD) with four-wire configuration were attached on the copper bars for precise 

temperature measurement. Two calibrated resistance temperature detectors (RTD1 and 

RTD2), placed on the two copper bars (Cu1 and Cu2), were used to measure the total 

temperature drop (     ) between RTD1 and RTD2, including the temperature drop 

through the specimen (          ) between the top (   ) and bottom (   ) surfaces of 

the sample, temperature difference (       ) from RTD1 to Cu1 bottom edge and 

temperature difference (      ) from Cu2 top edge to RTD2. The average temperature 

between    and    was kept at room temperature to minimize lateral heat flow. 

Temperature measurements, performed by the calibrated RTDs at the heater (       ) and 

top edge of Cu1 (    ) were used for calculation of emitted heat radiation to ambient 

environment. The ambient environment temperature (   ) was recorded by a digital 

thermocouple. All temperatures were measured in   but converted to Kelvin. 

After reaching thermal equilibrium, an axial temperature gradient was established through 

these components and the temperature drop (  ) across the specimen was determined from 

measurements and calculations as follows: 

              
                          

     
   

 
                          

     
 

4.1  

  

   is the power of the heater, which is the product of supplied voltage ( ) and current ( ), 

    is the radiation emitted by the heater (       ),        is the maximum radiation 

emitted by the upper part of  Cu1 at     ,        is the maximum radiation emitted by the 

lower part of Cu1 at   ,     is the length from RTD1 to Cu1 bottom edge,     is the length 

from Cu1 top edge to RTD1,     is the thermal conductivity of copper,   is the cross-

sectional area of the copper.  It was assumed that there was no emitted heat radiation from 

the thin sheet specimen.  Because a hot object is radiating energy to its cooler surroundings 

at    , the radiation loss takes the form: 
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   4.2  

where    is the total emitted radiation,   is radiation emissivity,   is the Stefan–

Boltzmann constant equal to 5.67×10
-8

 W/m
2
·K

4
,   is the radiating surface area. The 

amount of heat that flows through the specimen (  ) can be obtained by: 

 
                                         4.3  

where         is the total emitted radiation,       is the maximum radiation by the upper 

part of Cu2 at   .    is dominated by thermal conductivity (  ), thickness (  ) and cross-

sectional area ( ) of the specimen and the temperature drop (  ) through the specimen 

according to the Fourier equation:  

 

      
  

  
 4.4  

 

Thermal conductivity of the specimen was calculated from: 

 

   
     

    
 4.5  

 

The thermal conductivity of the specimens (ER, PUF and SE) were tested using the setup 

described above at the School of Physics and Astronomy, University of Glasgow. After 

allowing 30 minutes to reach thermal equilibrium, the temperature data from RTDs was 

recorded using a LabView controlled system for 10 minutes. Thermal conductivities of the 

specimens were obtained by a combination of their measurements and equations. 

Results of thermal conductivity 

The measurement results of thermal conductivity for three materials: ER (    ), PUF 

(    ), and SE (   ) are listed in Table 4.9. Two tests for each specimen were conducted 

and average results were taken as the inputs for finite element models. 

Table 4.9 Results of thermal conductivity for ER (kER), PUF (kPUF) and SE (kSE) 

     (W/m K)      (W/m K)     (W/m K) 

Exp. 1 0.57 0.029 0.18 

Exp. 2 0.57 0.027 0.19 

Average 0.57 0.028 0.185 

http://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constant
http://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constant
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4.2.3.2 Measurement of Specific Heat Capacity 

Specific heat capacity, a measurable physical quantity, is the quantity of heat required to 

raise the temperature of a material per unit mass by one degree. The specific heat capacity 

of the material was determined using differential scanning calorimetry, a thermal testing 

method for measuring the response of a specimen over a temperature range. Differential 

scanning calorimetry (DSC) was used to measure the physical properties of a sample 

change (material transition) as a function of time and temperature. Following the stepwise-

scanning method in British Standard BS ISO 11357-4:2005, the specific heat capacity of 

the materials at different temperatures was obtained [196]. 

The Principle of Specific Heat Capacity Measurement 

To measure specific heat capacity of a sample, the scanning calorimeter monitored the 

temperature and heat flow from the quantity of heat (energy) absorbed or dissipated by the 

sample when subjected to a temperature profile. A standard reference sample was in the 

same controlled atmosphere. Based on a temperature difference between the sample and 

the reference material, the variation in heat flow was measured against temperature, to 

determine the endothermic heat absorbed and exothermic heat expelled by the sample and 

hence obtain the specific heat capacity. 

A differential scanning calorimeter Q100 (Fig. 4.12 (a)) from TA Instruments was used in 

this study. The sample of mass of approximately 20 mg was encapsulated in a pan and an 

empty pan (Fig. 4.12 (b)) was used for reference. These pans were placed on a 

thermoelectric disk surrounded by a furnace, which was heated at a heating rate of 5 

 /min from 0   to 150  . In the furnace, the heat energy was transferred from the 

thermoelectric disk to the sample and the reference. The temperature difference between 

the sample and reference, caused by heat capacity of the sample, was measured by 

thermocouples on the underside of the thermoelectric disk. The specific heat capacity of 

the sample was calculated from the results of the temperature difference. 
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(a)                                                        (b) 

Fig. 4.12 The instrument for measuring specific heat capacity (a) DSC Q100, TA Instruments, 
(b) DSC system components [197]  

 

Results of Measurements of Specific Heat Capacity 

The results of specific heat capacity of the materials (ER, PUF and SE) are shown in Fig. 

4.13, which were obtained from the School of Chemistry, University of Glasgow. The 

values were used for thermal properties data in finite element models.  

 

Fig. 4.13 The specific heat capacities of ER, PUF and SE between 0   and 150   

 

4.2.4 Frequency and Temperature Dependency of the Materials 

The tissue surrogates ER, PUF and SE are all polymers, which belong to a class of 

substances known as viscoelastic materials [198]. Because of the long-chain nature of 

polymeric materials, polymer viscoelasticity is a type of inter-relationship between 

elasticity, flow and molecular motion. The deformation of the materials includes some 

elements of both elasticity and flow, in other words, the materials respond to external 

Pans 
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forces in a manner somewhere between the behaviour of an elastic solid and a viscous 

liquid thus known as viscoelastic [198, 199].  

The mechanical properties of tissue mimics were obtained using uni-axial tests at a 

constant rate of strain similar to those used for other materials, such as metals. If 

mechanical tests were performed at different strain rates or temperatures, the stress-strain 

response varied. The response of polymer based materials is time/frequency and 

temperature dependent, which is inherent due to the intrinsic viscoelastic nature of the 

material. For characterisation of viscoelastic behaviour of polymeric materials during 

ultrasonic loading, tests and analysis approaches should be adopted for the tissue mimics to 

determine the manner in which properties vary with time/frequency and temperature. 

4.2.4.1 Viscoelastic Materials 

For elastic materials, stress is proportional to strain under small strain condition, which is a 

linear relationship known as Hooke’s law. The relationship between stress   and strain   

can be expressed as:  

 
          4.6  

where   is the elastic modulus and   time. When the elastic solid is subjected to an 

external load, it will deform into a new equilibrium condition which stores all of the 

external energy. It will return to the original shape immediately the load is removed. No 

energy dissipation occurs in the elastic deformation regime. 

In viscoelastic materials, the behaviour during deformation is dependent on both time 

(frequency) and temperature. For example, if the viscoelastic material is deformed by a 

constant load, which means the stress is held constant, the strain will increase with time. 

The mechanical behaviour of viscoelastic materials can be represented in terms of stress-

strain as 

 
         4.7  

Stress is a function of time and strain. If strain and strain rate are infinitesimally small, the 

viscoelastic materials will behave linearly, which can be written as  
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         4.8  

where stress is proportional to a product of strain and a function of time. Energy is 

dissipated in viscoelastic materials when they are deformed under cyclic stresses. 

In this application, power ultrasonic tests of the viscoelastic materials are based on time 

varying deformations or cyclic loading. When a viscoelastic material is subject to a force 

varying sinusoidally with time, a sinusoidal stress is developed and a sinusoidal strain is 

generated but lags behind the corresponding stress by a phase angle  . The stress and strain 

can be express as follows, 

 
          4.9  

 
                                      4.10  

There are two components in the strain expression, the one (           ) in phase with 

strain and another (                          
 

 
 ) out of phase of stress by 

 

 
. 

Because of phase lag and stiffness, the dynamic modulus of viscoelastic materials is 

regarded as a complex modulus   , represented by ordinary dynamic elastic (storage) 

modulus    , measuring the material’s elastic behaviour and mechanical loss modulus    , 

measuring the viscous component of the modulus. 

 

   
  

  
         4.11  

In terms of energy, the storage modulus is used to measure energy stored per cycle of 

sinusoidal deformation, and the loss modulus is used to measure energy dissipation or heat 

loss. The ratio of the loss modulus to the storage modulus is called damping or damping 

tangent, expressed as 

 

     
   

  
 4.12  

The tangent of the phase angle is primarily used for calculating the energy dissipation in 

viscoelastic materials.  

Applying sinusoidal strain (       ) to a viscoelastic sample, the total work done in one 

cycle   can be calculated as:  
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             4.13  

Because the stress can be related to the strain using the expression 

                                                           4.14  

 

     

  
 

 

                                                  
 

  
 

 

 4.15  

 

The average energy dissipated by heat loss per unit time,     , is calculated by,  

 

     
 

    
 

   
    

 
 4.16  

 

4.2.4.2 Experimental Determination of Viscoelastic Properties 

Dynamic mechanical analysis (DMA) is one of the fundamental methods to characterise 

the viscoelastic time/frequency and temperature dependent behaviour of a polymer. The 

time/frequency and temperature dependent behaviour of can be determined when a 

material sample with a known geometry is loaded with sinusoidal deformation. The 

monitored force at different temperatures is used to calculate the storage modulus, loss 

modulus and phase difference. These are related to the sample’s stiffness, ability to 

dissipate mechanical energy and information on the relationship between the elastic and 

inelastic components respectively. The modulus-frequency and modulus-temperature 

behaviour for the tissue mimicking materials was determined using DMA to characterise 

their responses to cyclic loading.  

The principle of DMA 

DMA was used to measure the material response to sinusoidal stress under specific 

temperature conditions. A controlled sinusoidal deformation was applied to a sample of 

known geometry. By measuring both the amplitude of the deformation at the peak of the 

sine wave and the phase lag between the sinusoidal stress and strain, dynamic properties of 

the viscoelastic materials, quantities such as modulus and damping, were obtained [200].  
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As the dynamic modulus is a function of temperature and frequency, each time a sine wave 

is applied, the result of a modulus can be obtained by scanning a temperature or frequency 

range. This allows a series of data to be recorded. Traditionally, experiments are performed 

by cooling or heating the sample to a temperature, equilibrating, performing the 

experiments at each strain rate, and then loading a new sample and repeating them at the 

new temperature. Compared with traditional approaches, the modulus as a function of 

temperature and frequency can be obtained from DMA faster.  

It is important for the application of power ultrasound to viscoelastic solids to map 

modulus or viscosity as a function of frequency. Modulus-frequency plots can show the 

change of a material’s properties as frequency changes. Based on the time-temperature 

superposition principle and under certain conditions, experimental data obtained from 

frequency sweeps at a range of temperatures can be used to predict the behaviour of the 

material at high frequencies, which are not directly measurable by DMA. This will be 

discussed in detail in the next section.  

Time temperature superposition principle 

The time temperature superposition principle (TTS) provides a unique way of estimating 

material viscoelastic properties over time (frequency) for specific end-use applications. For 

viscoelastic solids, it states that time and temperature are equivalent so that the dynamic 

modulus at one temperature can be superimposed upon the modulus at another temperature 

by shifting the curves horizontally along the log time or log frequency scale [201].  

Using the idea of time/frequency temperature equivalence, it was assumed that the changes 

seen by altering the temperature were similar to those caused by frequency changes. 

Therefore, to estimate the material properties at high frequencies where it is impossible to 

measure experimentally, modulus data, collected by DMA at different temperatures over 

smaller ranges of frequency, was used to build a master curve, which extends to the higher 

frequencies range. The frequency scan data was overlapped to construct the master curve. 

The master curve was created by selecting a series of frequency scan data, which was 

collected at specific temperatures in the vicinity of the glass transition temperature (  ) 

over a short frequency range, to use as a reference curve. Other frequency scan data at 

other temperatures were then shifted to the reference curve with respect to frequency to 
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perform the superposition. After shifting the curves, the resulting master curve covered a 

range much greater than that of the original data [201].  

There are two mathematical models commonly used for shifting a given set of data upon a 

temperature reference curve with respect to temperature. The theory of the models is based 

on considering the effect of temperature on relaxation time and the properties of 

viscoelastic solid. The time-temperature shift factor (  ) reveals the relationship between 

the relaxation time at a given temperature      and the relaxation time at a reference 

temperature      , which is expressed as  

 
   

    

     
 4.17  

 

For most polymers, the shift factor is calculated using the Williams-Landel-Ferry (WLF) 

equation as  

 
         

        

         
 4.18  

 

In this equation,    and    are constants,   is the measurement temperature,     is the 

reference temperature. Therefore, the relevant modulus data at 20 kHz can be estimated 

using the resulting master curve after shifting a series of multiplexed frequency scans to a 

reference curve using TTS, which was described by Ferry as a “method of reduced 

variables” [202]. 

DMA experimental set-up 

The Q800 Dynamic Mechanical Analyser (Fig. 4.14 (a)) from TA Instruments (Crawley, 

UK) is a thermal analysis instrument used to test the dynamic properties of the materials. 

By use of a dynamic force to deform a sample, viscoelastic behaviour can be derived. 

Dynamic mechanical analysers consist of several parts controlling the deformation, the 

temperature and sample geometry and environment. In this application, the fixture for 

controlling the deformation was dual cantilever (Fig. 4.14 (b)), which clamped both ends 

of the specimen but allowed the middle to flex. The dual cantilever bending mode is an 

appropriate general-purpose mode for evaluating thermoplastics and elastomers. The test 

samples of ER and PUF were cut to a size of 60 (length) ×10 (width) × 3 (thickness) mm. 
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To ensure accuracy, a digital calliper was used to measure the specimens’ width and 

thickness prior to testing and the measured data was used as the input in the analyser. 

During the experiments, the sample was mounted on the dual cantilever clamp in a 

standard furnace, where the temperature was precisely controlled. The analyser was 

operated in multi-frequency, step-temperature mode, which assessed viscoelastic properties 

as a function of frequency, while the oscillation amplitude was held constant at 15 µm 

maximum. The test was run at multiplexed frequencies of 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 

100 Hz in temperature step experiments. In total, 10 frequencies were swept at set 

temperatures ranging from -20 to 100   for ER and -20 to 170   for PUF, increasing in 

10   steps. Cold nitrogen gas was supplied by controlled heating of liquid nitrogen and 

programmed during the run to make the analyser operate at subambient temperatures.  

 

                                         (a)                                                              (b) 

Fig. 4.14 Dynamic mechanical analyser (a) Q800 and (b) dual cantilever clamp [197]  

 

The DMA tests for SE were different from the tests for ER and PUF, due to the use of a 

compression clamp (Fig. 4.15) instead of a dual cantilever. The compression clamp fixture 

was designed for elastomers with low Young’s modulus. The prepared sample for 

compression DMA was moulded into a cylinder 8 mm thickness and 15 mm diameter. In 

the compression mode, the sample was placed on a fixed flat surface and a top oscillating 

plate applied the force. The test was run at multiplexed frequencies in temperature step 

experiments (from -60 to 60  ). Other experimental settings were the same as for ER and 

PUF.     
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Fig. 4.15 The compression clamp of the dynamic mechanical analyser for SE 

 

DMA experimental results 

The frequency and temperature dependent behaviour of ER, PUF and SE were measured 

using frequency multiplexing techniques (0.1-100 Hz) in the temperature ranges -20 to120 

  for ER, -20 to 160   for PUF, and -60 to 60   for SE by the dynamic mechanical 

analyser at the Department of Mechanical and Aerospace Engineering, University of 

Strathclyde.  

As shown in Fig. 4.16, the storage modulus of ER decreased with increasing temperature, 

and a critical change of mechanical properties was observed between 40 and 50   with 

reduction in the storage modulus by 85%-90%, which corresponds to the glass transition 

temperature. To align the individual experimental data points with points on the reference 

temperature curve, TTS generated the master curve of storage modulus (Fig. 4.17) by 

shifting the points using the equation 4.18. A commercial software package, TTS Rheo 

Advantage Data Analysis from TA Instruments was used to determine the constants 

  =146.8,   =655.4 K, standard error: 10.72, shown in Fig. 4.18. The shift factor was 

calculated based on a reference temperature of 19.9  . The storage modulus of ER was 

obtained around 13.9 GPa at 20 kHz from the master curve in Fig. 4.17. The damping 

tangent was not constant in the temperature range from 20 to 100  , shown in Fig. 4.16.  
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Fig. 4.16 The storage modulus, loss modulus and damping tangent of ER at multiplexed 

frequencies in different temperatures between -20   and 100   

 

  

Fig. 4.17 The master curve of storage modulus generated for ER at reference temperature of 

20   and frequencies between 10
-18

 and 10
12 

Hz 

 

 

Fig. 4.18 The WLF equation of storage modulus shift factor kit for ER at temperature 

between -25   and 100   

 

The storage modulus, loss modulus and tan delta of PUF are shown in Fig. 4.19. The glass 

transition temperature of PUF was around 130  , which was much higher than room 

temperature. Compared with ER, the frequency and temperature dependent behaviour of 

PUF is not obvious. It was not possible to obtain the master curve at room temperature for 

reference using TTS, because the glass transition temperature was not near room 

temperature. At high frequencies and low temperature, the storage modulus increased into 

100 Hz 

0.1 Hz 
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the glassy range. As the frequency increases beyond the capability of the polymer chains to 

respond, the polymer glassifies with a nearly constant storage modulus. Therefore, the 

value of the elastic modulus obtained from static compression tests was constant in 

ultrasonic application around room temperature. The elastic modulus was considered to be 

the storage modulus in the high frequency low temperature applications. The damping 

tangent was obtained from the master curve of damping at frequency 20 kHz and 120  , 

which was around    (Fig. 4.20).  

 

Fig. 4.19 The storage modulus, loss modulus and damping tangent of PUF at multiplexed 

frequencies at temperature between -20   and 170   

 

 

Fig. 4.20 Damping tangent of PUF at frequency 20 kHz and temperature 120   

 

From the DMA results of SE (Fig. 4.21), the storage modulus was not dependent on the 

surrounding temperature in the range of -60 to 60  , but increased with loading frequency 

from 0.1 to 100 Hz. The master curve of SE cannot be generated based on the WLF 

equation and so the modulus of SE used in the finite element model for ultrasonic loading 

was not determined from the DMA tests. 

0.1 Hz 

100 Hz 
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Fig. 4.21 The storage modulus and loss modulus of SE at multiplexed frequencies at 

temperatures between -60   and 60   

 

Extensive measurements in the frequency and temperature domains of ER and PUF and 

subsequent deduction of the master curves establish the mechanical and thermal behaviour 

for cyclic deformations over a frequency range of several decades, not all of which can be 

accessed realistically at any one temperature and frequency. To examine the applicability 

of the TTS principle for this ultrasonic application, experiments and FE models were 

carried out and created. The comparisons between experiments and FE models determined 

by the experimental materials characterisation and with the aid of TTS principle could 

provide the confidence in determination of viscoelastic behaviour in ultrasonic application 

using DMA and TTS principle. 

4.2.5 Extracting Material Properties for Finite Element 
Modelling 

Once the thermal and mechanical properties of the specimen had been characterised, it was 

necessary to determine the material response to power ultrasonic loading using finite 

element analysis. Material models in the finite element packages were used to represent the 

experimental data in a convenient form, which was used in the solution of the finite 

element problems.  

An elastic material model was available in ABAQUS to simulate the harmonic vibration 

response at 20 kHz using displacement and strain fields. The elastic material model 

describes the material behaviour using fundamental engineering properties including 

density, Young’s modulus and Poisson’s ratio. Due to the frequency effect on modulus, the 

Young’s modulus for ultrasonic loading at 20 kHz for ER was calculated from the DMA 

data instead of from static compressive test data. In contrast, the Young’s modulus for PUF 

during ultrasonic loading used in the finite element models was from the data by static 
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compressive test data operating at room temperature. In the tests of ultrasonic loading, the 

sample was vibrated at 20 kHz. Because the glass transition temperature of PUF was 

measured up to 130   and the loading frequency was high, the storage modulus was in the 

glass range beyond the capability of the polymer chains to respond. In contrast, due to the 

rubber region of SE being at room temperature, the storage modulus of SE was heavily 

dependent on loading frequency. The Young’s modulus used in the finite element model 

for SE was not from compressive tests but calculated from the shear relaxation modulus 

data measured by Lu et al. using a dynamic nanoindentation test following the equation  

 
          4.19  

where   is the Young’s modulus,   is the shear modulus, and   is the Poisson’s ratio [203-

205]. 

To obtain the thermal response during ultrasonic loading, another finite element package 

PZFlex was adopted with a thermo-mechanical model, which was represented by density, 

Young’s modulus, Poisson’s ratio, damping   factor, thermal conductivity, and specific 

heat capacity. The damping   factor was calculated from DMA tan  data following [206] 

 
  

 

      
 4.20  

 

to extract internal heat generation by ultrasonic vibration induced heat dissipation. Thermal 

conductivity and the specific heat capacity were used for mapping the temperature field by 

thermal conduction. Because it is not measureable for transparent SE using non-contact IR 

camera, the thermal response was not recorded for SE. 

The parameters of materials properties for finite element models (listed in Table 4.10) will 

be explained in chapter 5.  

Table 4.10 The parameters of materials properties for finite element models 

 

PZFlex Models 

ABAQUS Models 

Q 

Value 

Thermal Conductivity 

(W/m K) 

Specific 

Heat 

(kg/(J·K) 
Density 

(kg/m
3
) 

Young’s 

Modulus 

(MPa) 

Poisson’s 

Ratio 

ER 1640 13.9 0.3 36.62* 0.57 760 

PUF 500 563 0.3 34.8 0.028 1573 

SE 1100 13 0.495 - - - 
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*Damping loss Q value for ER is temperature dependent and the value 36.62 is measured at room 
temperature.  
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5. Non-invasive Field Measurement Techniques and 
Numerical Models 

5.1 Introduction 

Measurements of a wave front using a hydrophone, a traditional device for ultrasonic 

pressure field characterisation, have shown to be extremely difficult in solid materials. 

Thus, it is necessary to develop other methods to study the power ultrasonic effect on 

biological tissue. Compared with conventional ultrasonic field measurement techniques 

involving hydrophone or sensor probe insertion into the medium, non-invasive field 

measurement techniques are a more attractive option for development in this project. 

In this chapter, non-invasive field measurement techniques instead of traditional contact 

measurement techniques are introduced and developed to evaluate the power ultrasonic 

mechanical and thermal effects on solids, and numerical models are created to compare 

with the experimental findings with the aim of validating the approach. 

First, a brief introduction of the ultra-high speed camera system and image techniques, 

with special emphasis on 2D in-plane full-field digital image correlation (DIC) is 

presented. In addition, the experimental preparation and set-up are presented, which 

included specimen preparation, set-up of the power ultrasonic system, and camera 

configuration and lighting set-up. The displacement and stress/strain fields of the solids 

during power ultrasonic loading can be characterised by the DIC technique with an ultra-

high speed camera. 

Next, a non-contact temperature measurement technique, thermal imaging, using an infra-

red (IR) camera is presented. Under ultrasonic loading, heat generation can take place in 

the specimen leading to high temperatures in the zones where stresses are concentrated. 

The heat generated in the specimen due to conversion of mechanical energy to thermal 

energy was detected by the IR camera, which provides the results of temperature 

distribution. The fundamental process by which ultrasonic wave energy is converted to 

thermal energy and thermal imaging techniques are discussed. 

Then, an optical measurement technique is described for characterising the power 

ultrasonic field generated in a transparent viscoelastic solid using the acousto-optic effect, 

with a laser Doppler vibrometer and full-field scanning techniques. The experimental 
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arrangement by precise manipulation of the laser scanning of the transparent specimen is 

presented followed by an introduction to the basic principle of acousto-optic theory. 

Finally, the numerical models for verification of and comparison with experimental results 

were created based on analytical and finite element methods. Ultrasonic fields including 

displacement and stress/strain fields were simulated by numerical analyses. Temperature 

distributions in the process of ultrasonic loading on materials were modelled by a coupled 

thermo-mechanical finite element analysis. 

5.2 Digital Image Correction & Ultra-high Speed Camera 

5.2.1 Introduction 

The primary aim of this study was to find techniques to detect the stress/strain and 

temperature fields in surrogate tissue specimens, which are excited at ultrasonic 

frequencies. Traditionally, contact extensometery is used to measure the strain between 

two points, which provides the average strain over the gauge length. However, the 

extensometer can influence small or delicate test specimens due to being attached to the 

specimen thus applying additional mechanical loading.  

A non-contact and full-field strain measurement system with high accuracy is required for 

this application for dynamic testing at ultrasonic frequencies. The advent of digital imaging 

at ultra-high frame rates now allows recording of the response of vibrating samples using 

laboratory or commercial systems. Post-image processing can be used to measure vibration 

displacements and calculate the associated strain in full-field. By this non-contact imaging 

technique, it is possible to image vibrating samples at ultrasonic frequencies and, 

specifically, visualise the mechanical deformation during ultrasonic excitation of tissue 

surrogate samples. Experimental setups were developed to facilitate the manipulation of 

the displacement and strain/stress fields under evaluation.  

5.2.2 Digital Image Correlation 

5.2.2.1 Description of the Digital Image Correlation Method 

Digital image correlation (DIC), a non-contact displacement measurement technique, is a 

full field image analysis method, which is based on a comparison between grey-scale 

digital images of a test piece at different stages of deformation under load. By tracing 
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blocks of pixels, 2D DIC determines the surface displacements of the test piece in order to 

create in-plane surface strain maps. 

 

Fig. 5.1 The principle of 2D digital image correlation showing the relative motion of pixels 
between frames that are used to calculate the displacement vector field and thus the strain 
field [207] 

 

The basic principle of 2D DIC (Fig. 5.1) is to match the same pixels between sequential 

images, which are recorded in different states of deformation at different times. The 

recorded images are divided into overlapping subsets, which are formed by adjacent pixels. 

The pixels contain a numerical grey-scale value, which is related to the digitized light 

intensity. The distribution of pixel intensity is used to correlate the images. Because the 

subset has a wider variation in grey levels, it can be more uniquely identified and can be 

used in a correlation procedure more accurately than an individual pixel. During the DIC 

process, the undeformed image is adopted as a reference image and is then compared with 

subsequent images after deformation using pattern recognition and matching procedures to 

search for and recognise a specific subset in the series of images.  

The numerical correlation procedure is a feature of the software (Fig. 5.2). In an 

undeformed reference image, there is a square reference subset, inside which a point   

with coordinates (      ) is located. The intensity of the reference subset pixels is 

represented by         and the point          is located at the centre of the reference 

subset. After deformation, the reference subset has moved to a new location means that 

point   has moved to    of coordinates    
    

   and centre point from   to    of 

coordinates   
    

  . The coordinates of point   can be obtained from equations 5.1 and 

5.2,  
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5.1  

 
  

       
  

  
   

  

  
   

5.2  

where   and   are the horizontal and vertical components of the displacement of the centre 

marker         . By solving the variables   and  , the in-plane (subset) deformation in 

the x direction and y direction can be obtained respectively. Using the intensity of the 

reference subset        and target subset          , the best match between the reference 

and target subset to find the values  ,   and                         (subset 

distortion) can be achieved by minimizing the correlation function  , which is expressed as 

follows, 

 
    

           
    

    
    

                    
    

      

 
5.3  

 

Fig. 5.2 The numerical scheme of the correlation procedure 

 

To obtain better distinguishing subsets in each image, a high-contrast speckle pattern is 

applied to the sample prior to imaging. A comprehensive review of the 2D DIC process has 

been presented by Pan et al. [208]. 

5.2.2.2 DIC Analysis for the Application 

In this application, the DIC analysis was conducted using a Matlab based program 

developed at Johns Hopkins University [209, 210]. The software was based on the 

implementation of the Matlab image registration function CPCORR, which performs 

normalized cross-correlation to track user-defined marker positions between the 

undeformed reference and subsequent deformed images. Each marker point is centred on 

the subset (region-of-interest). Displacement vectors for each marker can be determined by 

the difference between the pixel coordinates of the reference and deformed subset centre 
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points. Using a grid of equally spaced marker positions, displacements can be interpolated 

to give full-field displacement measurements. The strain was calculated by differentiation 

of the displacement field. During the process of correlation, since the subsets are tracked, 

rather than individual pixels, highly accurate measurements can be obtained at sub-pixel 

resolution.    

The ultrasonic vibration amplitude within the surrogate bone samples used in this study 

was of the order of a few microns. These displacements are less than the maximum 

traceable displacement (up to 4 pixels) in the range of the subset, and therefore DIC could 

track the displacement in the subset by correlating consecutive images using the 

undeformed image as a reference. Another consideration is the density and size of the grid. 

Markers were used on the grid to represent the position of each image subset to be tracked. 

A grid with a marker spacing of 10 pixels in the horizontal and vertical directions of the 

image was created, using a subset size of 20×20 pixels, giving sufficient accuracy and 

sufficient subset size for the limited camera resolution, which defined by the camera 

(Shimadzu HPV-1 hired from EPSRC engineering instrument pool). The size of grid 

markers should be selected to avoid marker overlap and smoothing effects. 

5.2.3 Ultra-high Speed Camera 

Ultra-high speed photography was used to monitor the deformation of the specimen during 

ultrasonic vibration. The introduction of the charge coupled device (CCD) revolutionized 

imaging technology from film to digital and sped up the development of high speed 

photography. There is a new technique for capturing images at extremely high speeds with 

an ISIS-CCD chip (in situ storage image sensor CCD), a typical interline transfer CCD 

chip, which can quickly transfer each pixel into its register in microseconds by integrating 

the memory on board into the CCD chip [211].  

In order to capture in detail the initial transient interval where the cycles of vibration 

amplitude build-up can be characterised for power ultrasonic excitation at 20 kHz, an 

image acquisition rate of more than 200 kHz is required, which is dependent on the 

performance of the ISIS-CCD camera. The Shimadzu HPV-1, ultra-high speed camera 

(Fig. 5.3 (a)) is capable of up to 1 million frames per second (fps), recorded image data at 

250 kfps. The camera resolution is limited to 312×260 pixels with a 10 bit dynamic range. 

The number of acquired frames at any frame rate was fixed at 102. The digital frame was 8 
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bit images, which provided pixel intensity with 256 greyscales. To provide adequate 

lighting, two photographic flash guns, Nikon speedlight SB 900 (Fig. 5.3 (b)), were used 

for specimen illumination. To improve the quality of images, the aperture of the camera 

lens was set at f2.8, using a Nikon 24-85mm macro zoom lens, and the camera exposure 

time was fixed at 1/8
th

 of frame rate, which was the minimal setting for the camera.  

 

(a)                                                             (b) 

Fig. 5.3 Ultra-high speed photographic system: (a) Shimadzu HPV-1, high speed camera and 
image control and display system [212], (b) flash gun: Nikon speedlight SB 900 [213] 

  

5.2.4 DIC & Ultra-High Speed Camera for Dynamics 

Due to the availability of ultra high speed cameras at high resolution and new 

developments of computer technology, DIC has a wide range of applications in 

experimental mechanics and is being used in transient dynamic events. There have been a 

number of published studies using DIC with ultra-high speed cameras for full-field 

measurements to examine the mechanical response of specimens to dynamic loading, 

which were reviewed in section 2.4. The vibration measurements reported previously 

mainly illustrated the observed full displacement field of the test pieces. The strain field, 

relevant in investigating internal heat generation, was not extracted from the displacement 

field. To extract the vibration response including displacement and strain distributions 

from test-pieces excited at ultrasonic frequencies, it is possible to use an ultra-high speed 

camera. In this study, the Shimadzu HPV-1 with 2D DIC was used as described by Reu 

[211], allowing full-field measurement of the vibrational response of surrogate bone 

material specimens excited by a power ultrasonic device.   
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5.2.5 Experimental Set-up 

5.2.5.1 Specimen Preparation 

To compute the specimen full field deformation under dynamic load, the surface of the 

sample should have a random speckle pattern for image tracking. The pattern should be 

non-repetitive, isotropic and high contrast.  Normally, the surface should be coated by 

spraying a black and white pattern of adequate spot size, which should cover several pixels 

(3-5 pixels) on images, avoiding too fine pattern elements. 

The sample size was 50×10×4 mm and the sample surface was prepared with a random 

speckle pattern (shown in Fig. 5.4), achieved by spraying first with white paint and then 

adding black paint such that the random black dots met the required size of several pixels 

[214]. It was essential that adequate contrast was applied to the sample, to allow for precise 

measurement of the changes in grey scale distribution. Matt paints were used to avoid 

specular reflections and ensure all areas were covered by the speckles. 

 

Fig. 5.4 The prepared sample captured using Shimadzu HPV-1 

 

5.2.5.2 Image Acquisition by Camera Setting 

The vibration response of samples to excitation at 20 kHz by the ultrasonic horn as 

described in chapter 3 was measured using 2D DIC with an ultra-high speed camera. The 

DIC experimental setup is shown in Fig. 5.5 (a), with the schematic in Fig. 5.5 (b). The test 

sample was bonded to the output face of the tuned ultrasonic horn, which was excited by a 

longitudinal mode Langevin transducer incorporating a piezoceramic PZT stack tuned at 

20 kHz. The PUF sample vibrated in resonance in its second longitudinal mode, as 

 

X 

Y 
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predicted by finite element analysis. The ER sample was not vibrating in resonance due to 

the single excitation frequency being some way from the natural frequency of the sample.   

During ultrasonic excitation of the specimen, the Shimadzu HPV-1 ultra-high speed 

camera captured images, while two Nikon SB 900 flash guns were utilised simultaneously 

with the camera to illuminate the specimen, which was planar, parallel to and at a constant 

distance from the camera. The trigger was controlled to initiate image acquisition and flash 

exposure with a delay of 400 μs, giving stable lighting during image acquisition. Since the 

flash exposure lasted over 1 ms, which is longer than the frame integration time, 102 

frames could be obtained during one exposure. The camera control unit allowed control of 

the camera set-up and stored the images for DIC analysis. 

  

(a) 

 

(b) 

Fig. 5.5 (a) DIC Experimental set-up and (b) schematic of DIC experimental set-up  
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To record images of the planar surface of the specimen before and after loading, two sets 

of images were acquired. The first set was acquired from the undeformed specimen, 

providing the reference image. During ultrasonic excitation, acquisition of a second set of 

images was controlled by the external trigger, which was used to capture images when a 

steady-state vibration in the sample was achieved. 

5.3 Thermal Imaging by Infra-red Camera 

5.3.1 Introduction 

Mechanical vibrations at sufficiently high amplitude can influence the physical properties 

of materials. In power ultrasonic applications, high frequency mechanical oscillations 

generate heat inside the materials as a result of absorption of the ultrasonic wave energy. 

Damage to the materials can be caused by cyclic loading and internal heating induced by 

the high temperature. It is therefore necessary to obtain the temperature distribution to 

assess the ultrasonic effects on materials.  

The temperature of specimens subjected to power ultrasonic vibration rose due to heat 

generated during cyclic deformation [215]. Since the thermal effects of ultrasonic 

excitation are also critical in characterising the potential benefits or hazards of ultrasonic 

surgery, thermal analysis using thermal imaging is also adopted as a noncontact system 

that displays thermal radiation visually. An IR camera is suitable and the device, that 

detects and displays the amount of infrared energy emitted, transmitted and reflected by the 

sample.  It means that the temperature distribution of the sample under ultrasonic vibration 

can be determined. 

5.3.2 Infra-red Camera 

Thermocouples, often used to detect temperature, can either be attached to or inserted into 

the samples being measured. However, these methods are invasive, altering both the 

geometry and dynamic behaviour of the sample, and are subject to other limitations, 

including difficulty in locating the peak temperature and mapping the thermal distribution 

and producing localized heating in the sample. Therefore, for full-field surface temperature 

detection, IR thermography can produce images of specimen surface temperature due to 

ultrasonic excitation using a thermographic camera.  
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The IR camera (T425, Flir, Wilsonville, US) was chosen as a noncontact instrument to 

provide a visual display of specimen heating. The camera, shown in Fig. 5.6, measures 

temperature in the range -20 to 1200   and captures thermal images at 9Hz, which is 

sufficient for recording the heating accumulated from ultrasonic excitation. The thermal 

sensitivity is 50 mK and the image resolution is 320×240 pixels.   

 

Fig. 5.6 Infra-red camera, Flir T425 [216] 

 

5.3.3 Thermo-mechanical Effects 

Several thermo-mechanical effects are activated when mechanical cyclic loading is applied 

to a sample material. Temperature changes observed in the material during cyclic loading 

are caused by a combination of thermoelasticity (temperature variation due to 

thermoelastic effects), heat generated by reversible anelastic damping and irreversible 

plastic deformation (temperature variation due to heat dissipation) and internal friction 

[217].  

During elastic loading, the temperature change varies in proportion to applied stress due to 

thermoelastic effects. It is related to the thermal expansion coefficient, specific heat 

capacity and initial temperature. Detection of thermoelastic effects requires high resolution 

due to small temperature changes. A small amount of dissipated heat energy due to 

anelastic thermal effect is generated by the energy loss in the mechanical hysteresis loop, 

which induces the temperature changes. As the stress amplitude approaches the yield 

strength, large amounts of dissipated heat are observed due to additional micro-plastic or 

https://www.google.co.uk/search?espv=210&es_sm=93&q=wilsonville+oregon&stick=H4sIAAAAAAAAAGOovnz8BQMDgysHnxCXfq6-gVFBXmVRhhIniG1onJ1VrKWVnWyln1-UnpiXWZVYkpmfh8KxykhNTCksTSwqSS0qDsy_pxNcceaKmdJffYfrGYWbfe7XAgBreae9YgAAAA&sa=X&ei=9mVlUuH1K4WI7Aa8-IH4Dw&ved=0CK4BEJsTKAIwDQ
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plastic deformations. Almost all the irreversible mechanical energy due to the anelastic 

deformation will be converted into heat. 

Excitation of the thermo-mechanical effects at ultrasonic frequencies at low stress levels 

results in different damping mechanisms [217]. Because stress in the specimen is below the 

elastic limit, the dissipated energy mainly comes from internal material damping and the 

local plastic deformation at a microscopic scale. 

The energy loss of ultrasonic waves passing through a medium increases with travel 

distance. The ultrasonic wave experiences attenuation (mainly induced by internal material 

damping) which is a type of viscoelastic response in the material. A distributed 

temperature field can be produced due to attenuation of the waves when the ultrasound is 

propagating in a solid.  

5.4 The Acousto-optic Effect and its Measurement 

5.4.1 Introduction 

By detecting optically the change in refractive index, which is due to the change in density 

of transparent medium during the propagation of ultrasound, a non-invasive method based 

on the acousto-optic effect has been developed for stress field characterisation in a 

viscoelastic solid. A laser Doppler vibrometer, producing a laser beam passing through an 

acoustic field generated by an ultrasonic horn, is used to detect ultrasonic stress induced 

optical phase shifts. The total phase change induced in the laser beam is representative of 

the average stress value along the laser path. Stress can be calculated from the optical 

phase change across the width of the acoustic field. Scanning routines and image 

reconstruction algorithms combine together to map the stress field from the acquired phase 

modulated data [218]. 

5.4.2 Acousto-optic Effect 

The interaction between low-frequency ultrasound and light waves provides a method to 

visualise the acoustic field, which modulates the amplitude and phase of light in a 

transparent medium.  The basic principle of the visualisation of a sound field by light is 

known as the acousto-optic effect, which was first predicted by Brillouin in 1921 [219] and 

experimentally confirmed by Debye and Sears [220] and Lucas and Biquard in 1932 [221]. 
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Raman and Nath in 1936 [158] and Phariseau in 1956 [222] presented theoretical models 

to explain this phenomenon. The developments of laser technology in the 1960s and signal 

processing technologies benefited the broad applications of acousto-optics.  

The technique for the non-invasive measurement of acoustic fields is to characterise the 

acoustic stress fluctuation due to ultrasonic vibration. For a harmonic low-frequency 

ultrasonic wave, in this case a longitudinal wave oscillating along its propagational 

direction, the longitudinal displacement        in the medium can be described by: 

                 
 

 
     5.4  

where   is amplitude,   is angular frequency,   is phase angle at      ,   is phase 

velocity. 

When the wave propagates through the medium, a series of alternating regions of 

compression and rarefaction (Fig. 5.7) are produced under the action of the mechanical 

strain. Compression regions have greater number of molecules per unit volume than 

rarefaction regions, which means the compression and rarefaction phases change the 

permittivity of the medium, alter its density and cause the inhomogeneous distribution of 

refractive index, in this case dynamically by the oscillating ultrasonic wave. The 

compression phase results in a stress increase to the ambient stress in the medium, whereas 

the rarefaction phase results in a stress deficit. 

 

Fig. 5.7 Compression and rarefaction regions due to longitudinal wave propagation through 
a medium 

 

In general, the refractive index of the transparent medium which is a function of 

permittivity (equation 5.5) increases with its density. The variation of the transparent 

refractive index of the medium diffracts the incident light and influences its amplitude and 
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phase. Practically, diffraction of light by an acoustic field can be neglected due to the small 

amplitudes of acoustic field in the low ultrasonic frequency application [223].    

The refractive index is defined as 

 

        5.5  

 

where   is the refractive index of the medium,    is the relative permittivity of the 

medium,    is the relative permeability (for most materials,    is very close to 1 at optical 

frequencies [224]). 

The relative permittivity is expressed as: 

 
   

 

  
 5.6  

 

where   is the absolute permittivity of the medium,    is the permittivity of free space 

approximately 8.85×10
-12

 F/m. 

As discussed above, in a transparent coupling medium, acoustic stress fluctuations induce 

alternations in local density, which modulates the refractive index of the medium. In this 

case, the viscoelastic properties of the medium, silicone elastomer, which has a sufficiently 

low refractive index to prevent light loss, is similar to a incompressible liquid. Therefore, 

the applied acoustic stress to the incompressible medium makes it without changing its 

shape. The density of the medium goes up as the stress increases. The relationship can be 

considered linear between acoustic stress and refractive index, shown in equation 5.7, 

when the acoustic wave propagates in the medium. 

 

    
  

  
 5.7  

 

where    is the variation in ambient refractive index,    is the variation in ambient stress, 

     2.7×10
-9 

Pa
-1 

in air. 

The refractive index of the compression and rarefaction regions can be defined as: 
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        5.8  

 

where    is refractive index when there is no acoustic wave present. 

As demonstrated above, the variations of refractive index,   , due to harmonic wave 

propagation can be presented as: 

 
                 

 

 
   5.9  

 

where    is the maximum change in refractive index,   is the speed of ultrasound wave in 

the medium. 

Under such conditions, as light travels through the ultrasonic wave field, due to change in 

refractive index, the path length of the light   is modified according to equation 5.10, 

which means the light travels faster or slower depending on the stress fluctuations.  

 
     5.10  

where   is the geometric length of the path light follows through the medium. 

The change in the optical path length produces variations in phase of emerging light from 

the unchanged incident light (Fig. 5.8), when the light travels through the transparent 

medium with different refractive index at different parts.  

 

Fig. 5.8 Light wavefronts impinging on a refractive index variation due to ultrasonic wave 
propagation where ‘C’ represents compression and ‘R’ represents rarefaction 
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To quantify the variations in phase, a laser Doppler vibrometer has been used to perform 

the measurements, which is a non-invasive method of measuring the acoustic field in the 

transparent solid caused by ultrasonic vibration.  

5.4.3 Laser Doppler Vibrometer 

The LDV is designed to make measurements of the velocity and displacement of a 

vibrating surface. Based on the principle of LDV discussed in section 3.2, the displacement 

of a vibrating surface can be determined by measuring the phase difference between the 

measurement and reference laser beams. Hence, phase variations introduced by an 

ultrasonic wave in the transparent medium are readily attainable using LDV. Hence, the 

laser Doppler Vibrometer was used to measure ultrasonic stress distribution by quantitative 

analysis of the acousto-optic modulation of the optical path. 

5.4.3.1 Quantification of Phase Variations 

As discussed above, due to the sinusoidal wave generated by the ultrasonic transducer, the 

pressure or stress change in the homogeneous isotropic medium can be considered as a 

harmonic function [218] given by: 

 
                             

 

 
      5.11  

 

where    is the change in ambient stress,    is the constant phase front 

Changes in the refractive index    will modulate the optical path and phase of the light 

[225, 226] according to: 

 

     
        

 
 5.12  

 

where      is the phase change of the light,   is the width of the specimen through which 

light passes,   is optical wavelength. 

Combining equation 5.11 with equation 5.12, the phase change induced by stress variation: 

          can be represented in a harmonic function by 
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 5.13  

 

For the experimental arrangement depicted in Fig. 5.9, where the laser beam passes 

through the ultrasonic field of width   twice following reflection from a reflective surface 

to the sample. Therefore, the phase change will be representative of the average stress 

along the path of the light and the total phase change must be doubled: 

     
     

 
               

 

 

     

 
                  

 

 
       

 

 

 5.14  

 

Fig. 5.9 Experimental arrangement of stress field detection by laser Doppler vibrometer  

 

It is can be found that the phase component of laser light is proportional to the frequency 

and the ‘average’ rate of change of ultrasonic stress along the optical beam. Based on the 

principle of LDV, the phase change causes an additional modulation to the intensity of 

light incident upon the photo detector, which can be written as: 

 

  
                        

 
 5.15  

 

where    is the light intensity at source,      is the phase of the reference beam and    is 

the phase of the measurement beam [145]. Since the reflective surface is assumed to be 

stationary, phase variation measured by the LDV is due to a change in refractive index 

inside the transparent medium. Therefore, the output from the LDV is purely a function of 

the phase variation caused by stress. The spatial distribution of the ultrasonic field in the 

plane perpendicular to the laser beam can be mapped using a LDV with scanning 

manipulation.   
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5.4.4 Experimental Arrangements 

Silicone elastomers have a long history of excellent performance in very demanding 

applications. Due to high optical transmittance in the UV-visible region, stable thermo-

mechanical properties upon exposure to heat and humidity and easy processing into 

arbitrary 3D solids, a two-component silicone elastomer (Elastosil RT 601, Wacker-

Chemie GmbH, Munich, Germany) was chosen.  

5.4.4.1 Specimen Preparations 

For the preparation of the silicone block, a SE specimen (Fig. 5.10 (a)) (117×26×35mm) 

was manufactured in a rectangular parallelepiped mould made of polished Perspex
®
 (Fig. 

5.10 (b)). The specimen had parallel transparent surfaces, which allowed a laser beam to 

traverse the thickness of the specimen without reflecting or refracting. Special care must be 

taken during placement of the specimen. The front and back surfaces of the specimen 

should be exactly parallel and perpendicular to the laser beam, otherwise, significant error 

will be induced, due to the loss of reflected laser beam. 

 

(a)                                                           (b) 

Fig. 5.10 (a) the specimen of silicone elastomer and (b) the Perspex parallelepiped mould 
with the specimen 

 

5.4.4.2 Experimental Set-up 

The experimental set-up and the schematic for detection of the ultrasonic field using a 

LDV with the acousto-optic principle are illustrated in Fig. 5.11. The cuboid prepared 
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specimen was affixed on the top of the ultrasonic horn using same uncured silicone, which 

then vulcanised with time. The ultrasonic horn was fixed on the holder and rigidly 

connected to the ultrasonic transducer using a threaded stud.  

The experiment for ultrasonic field mapping was performed at the Centre for Ultrasonic 

Engineering, University of Strathclyde using the LDV system including an optical head 

(Polytec OFV 303) and a modular vibrometer controller (Polytec OFV-3001) incorporating 

an OVD-01 velocity decoder. The high sensitivity measuring head produces a CW 2mW 

helium-neon laser focussed to below 40    diameter spot size. The controller provides 

power for the optical head and processes the vibration signal, which is decoded to achieve 

velocity information. The velocity decoder converts the frequency seen by the photo 

detector into a voltage proportional to the vibration velocity and can measure from DC (0 

Hz) to ultrasonic signals (1.5 MHz) with high linearity (0.5%) and low noise level. Due to 

the small amplitude of the signals and the use of a low ultrasonic frequency (19.6 kHz) 

device, a velocity decoder in the measurement range 5 mm/s/V would be suitable for this 

application.   

A sinusoidal waveform generator (Tiepie, Handyscope HS3) was used to excite a 

continuous vibration signal, which was amplified by an RF power amplifier (Kalmus 

155LCRH) and then input to a power ultrasonic system, including a transducer and an 

ultrasonic horn, with a resonant frequency of 19.6 kHz.  

In order to obtain the full-field stress distribution, a customised scanning facility was used. 

The sensor head and a reflector were mounted on the linear positioning unit which had 

controllable motion in the vertical and horizontal axes. The linear positional stage 

providing a horizontal plane of motion was a PI M521 DG from Physik Instrumente 

(Karlsruhe/Palmbach, Germany), controlled by a PI C842 ISA controller capable of 1   

resolution. The vertical plane of motion was provided using custom built scanning 

equipment by Phoenix ISL, which can resolve vertical motion to less than 0.5 mm. To 

make the laser beam pass through the specimen and reflect back along the same path, the 

sensor head and reflector were aligned parallel on opposite sides of the specimen and their 

motion was synchronised by the positioning unit. 

The output signal of the LDV was acquired by an Agilent 54622 oscilloscope controlled by 

a PC. To enhance the SNR, signal averaging of 10 measurements was carried out and the 
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output data at each sampling position was stored as the peak to peak value. To re-construct 

the image in terms of stress, the data was analysed in the Matlab plotting tool. 

  

     (a)                                                                                     (b) 

Fig. 5.11 Scanning LDV setup for measurement of ultrasonic field in a vibrating transparent 
solid (a) experimental (b) schematic 

 

5.5 Numerical Models 

5.5.1 Introduction 

To assess the performance of ultrasonic surgical devices on tissue, it is important to 

simulate the thermo-mechanical effects using numerical models, which allow for an 

accurate description of thermal and mechanical behaviour by calculating the displacement, 

stress, strain and temperature. Validated numerical models provide the potential to predict 

the effects of ultrasonic devices on tissue at the design stage. 

Analytical modelling of wave propagation in acoustic media is employed as an alternative 

method to obtain the steady state wave pattern of a sample. It is widely used in one-

dimensional (1D) vibration theory when the longitudinal dimension of the test sample is 

greater than its lateral dimension. The method considers the longitudinal modes of 

vibration and it assumes that a plane stress wave propagates in the axial direction of the 

test sample. 

Engineering analysis of mechanical systems have been addressed by deriving differential 

equations relating the variables through basic physical principles such as equilibrium, 

conservation of energy, conservation of mass, the laws of thermodynamics, Maxwell’s 

equations and Newton’s laws of motion. To solve engineering problems concerning the 

mechanical deformation and heat conduction, FEA is one of the most flexible and powerful 
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computational tools, which can make the resulting mathematical models tractable. As a 

discretisation technique in structural mechanics, the finite element method subdivides the 

mathematical model into non-overlapping components of simple geometry called finite 

elements. Simplifying complex profile shapes with simple boundary conditions is achieved 

using meshing, in which each element is connected or assembled by a grid of nodes. The 

response of each element is expressed in terms of a finite number of degrees of freedom 

characterised as the value of functions at a set of nodal points. The material and structural 

properties are assigned to the mesh to define how the model reacts to the applied loading 

conditions. The response of the model is then considered to be approximated by that of the 

discrete model obtained by assembling the collection of all elements. 

5.5.2 Analyses of Mechanical Response  

5.5.2.1 Analytical and Finite Element Models 

Analytical models (AMs) and finite element models were created to the study the 

ultrasonic effects on ER and PUF. Numerical analyses were performed for a rectangular 

sample, which is benchmarking the technique. 

Analytical Model for PUF 

As the test sample has longitudinal dimension greater than its lateral dimension, for the 

AM, the sample can be treated as a uniform beam vibrating in the longitudinal direction 

(Fig. 5.12) and it is assumed that the stress,        , is uniformly distributed in the cross-

section [227] and the cross-section remains plane during deformation. In general, this 

approximation holds for vibration where the wavelength is long compared with the width 

of the beam [228]. Since only longitudinal vibration is applied, only the displacement 

component,       , in the longitudinal direction is considered. 
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Fig. 5.12 Longitudinal vibration of a beam 

 

By considering an element of the beam of length   , we have 

 

            
       

  
                    

        

   
   5.16  

 

where       is the cross-sectional area and   is the density of the material.  

Since,  

 
                

       

  
 5.17  

 

where   is the Young’s modulus. 

The solution for harmonic vibration is given by 

 
                                5.18  

 

where   and   are dependent on initial conditions,   is the circular frequency and       is 

the mode shape function. 

In this case the equation of motion can be written as 
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        5.19  

 

where prime denotes differentiation with respect to  . This provides the equation for 

calculating the longitudinal mode shape function. 

In this application, the ultrasonic excitation frequency at 20.7 kHz is also the modal 

frequency of the second longitudinal mode for the specimen. When the specimen vibrates 

in one of its natural modes of vibration, all points of the specimen will undergo 

synchronous simple harmonic vibration, which means that all points will pass 

simultaneously through their equilibrium positions [229]. Hence the analytical solution for 

the mode shape, which is stationary, can be used to calculate the specimen’s steady-state 

response to the dynamic loading.  

Considering the mechanical properties: density      kg/m
3
, and Young’s modulus 

      MPa and boundary conditions:                m and         , the 

equation 5.19 can be solved using the method of separation of variables to obtain      . As 

a continuous wave is emitted by the ultrasonic transducer, the wave pattern in the sample is 

a standing wave in steady-state. 

Finite Element Model for PUF 

In the FEM, a direct-solution steady-state dynamic analysis was adopted, where a linear 

perturbation procedure is used to calculate the system’s linearised steady-state response to 

harmonic excitation.  

The specimen is excited by an oscillatory force such that a steady-state response is 

achieved, and the vibration displacement amplitude response of the specimen at 20.7 kHz 

longitudinal vibration is calculated. All computations are performed using the 

commercially available finite element modelling software ABAQUS. 

The main aim of the FEA is to calculate the steady state dynamic response of the specimen 

under harmonic excitation at the tuned frequency. The analysis was performed as a 

frequency sweep, recording the response at a set of discrete frequencies. In order to capture 

fully the specimen surface deformation and associated stress/strain fields, a fine mesh was 

employed in the 2D model, incorporating a total of 3125 4-node, bilinear plane-strain 



CHAPTER 5 NON-INVASIVE FIELD MEASUREMENT TECHNIQUES AND NUMERICAL  
MODELS  124 

 

quadrilateral, reduced integration, hourglass control elements. Free boundary conditions 

were used for the model except from the excitation input plane.  

The material properties, determined from tests or obtained from references [230], for rigid 

polyurethane foam were: elastic modulus       MPa ; density       kg/m
3
; 

Poisson’s ratio,      . The material was assumed to be isotropic and linear. For this 

model, free boundaries were set on all sides of the PUF sample. The sample was subjected 

to a sinusoidally varying pressure along its base to excite a peak-peak (pk-pk) vibration 

amplitude of 24    at a frequency of 20.7 kHz. 

Analytical Model for ER 

The differential equation 5.16 is based on the assumption that the cross-section of the 

specimen remains plane and the motion of the cross-section is only in the axial direction of 

the specimen. The longitudinal vibration of the ER specimen, which is a thin uniform 

beam, can be described using this equation. As the cross-sectional area of the specimen is 

constant, equation 5.16 can be written: 

        

  
  

        

   
 5.20  

Since 

 
                

       

  
 5.21  

and  

 

   
 

 
 5.22  

equation 5.20 can be expressed as  

         

   
 

 

  

        

   
 5.23  

 

where   is the velocity of propagation of the displacement or stress wave in the specimen.  
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The longitudinal wave equation can be solved by separation of variables and assuming a 

solution of the form  

 
                 5.24  

Substituting this solution into the wave equation gives 

  

    

      

   
 

 

  

 

    

      

   
 5.25  

 

From equation 5.25, the partial derivatives are no longer required, the left hand side is a 

function of   only and the right hand side is a function of  only. For convenience of 

solution,        
is applied to each side as a constant. Then  

       

   
  

 

 
 
 

       5.26  

and  

 
      

   
          5.27  

Hence, the solution can be given as  

 
          

 

 
        

 

 
   5.28  

and 

 

                   5.29  

where   and   are dependent on the boundary conditions of the vibrating specimen, and   

and   on the initial conditions.  

Therefore, the displacement component for the wave equation is 

             
 

 
        

 

 
                  

            
 

 
                       

5.30  

 

where   and   are phase angles dependent on   and  , and   and   respectively. 
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Considering the boundary conditions           and input vibration amplitude at the 

specific time point, when               mm, the vibration shape of the specimen at 

  can be obtained and considered as the wave pattern in the steady-state. In the analytical 

model for ER, Young’s modulus   and density   were 13.9 GPa and 1640 kg/m
3 

respectively. 

Finite Element Model for ER 

The simulating procedure of 2D FEM for ER was similar to PUF using ABAQUS. The 

direct-solution steady-state dynamics analysis was used to calculate the steady state 

dynamic response of the specimen under harmonic excitation. The same calculating step 

was adopted using the same frequency sweep, type of elements, specimen geometry, 

boundary conditions and outputs, but with different material properties and excitation 

input. 

The material properties, determined from tests and references [231, 232], for ER were: 

elastic modulus        GPa; density        kg/m
3
; Poisson’s ratio      . The 

material was assumed to be isotropic and linear. For this model, free boundaries were set 

on all sides of the ER sample. The sample was subjected to a sinusoidally varying pressure 

along its base to excite a pk-pk vibration amplitude of 24    at a frequency of 20.8 kHz. 

Finite Element Model for SE 

To model the SE specimen under ultrasonic excitation, a FEM with density, Young’s 

modulus and Poisson’s ratio of SE was created using ABAQUS. The specimen was 

modelled as excited by an oscillatory force at 19.6 kHz and in steady-state response by 

coupling a direct-solution steady-state dynamics step. 

The analysis was performed as a frequency sweep, recording the response at a set of 

discrete frequencies. In order to capture the deformation of the specimen, a fine mesh was 

employed in the 2D model with dimension of 115×40 mm, incorporating a total of 4600, 4-

node, bilinear plane-stress quadrilateral, reduced integration, hourglass control elements. 

Free boundary conditions are applied to the model except the plane of input vibration. 
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The material properties, obtained from references, for SE were: elastic modulus      

MPa [203]; density        kg/m
3 

[233]; Poisson’s ratio         [205]. Lu et al. 

measured the viscoelastic properties of SE using nanoindentation tests, which provided the 

shear relaxation modulus of SE as 4.4 MPa. The results from nanoindentation tests can be 

used to characterise the frequency dependent dynamic properties of SE. The elastic 

modulus (dynamic) can be obtained from [234]: 

 
          5.31  

where    is elastic modulus,   is the shear modulus,   is Poisson’s ratio. 

The material was assumed to be isotropic and linear. For this model, free boundaries were 

set on all sides of the SE sample. The sample was subjected to a sinusoidally varying 

pressure along its base to excite a peak-peak vibration amplitude of 20    at a frequency 

of 19.6 kHz. 

5.5.3 Finite Element Models for Thermal Response Calculation 

5.5.3.1 Introduction 

Finite element models were developed to aid in the analysis of the coupled mechanical 

thermal problems using the finite element software PZFlex (Weidlinger). The model 

calculates damping losses per vibration cycle in the mechanical analysis. This then 

constitutes a steady-state event for the thermal analysis such that a constant thermal input 

results for each thermal time-step. Hence, the thermal analysis solves for the temperature 

field [235]. The temperature dependence of material properties is not significant for PUF, 

but significant for ER. The damping losses calculated by mechanical analysis are coupled 

with the general heat transfer module in thermal analysis to provide predicted temperature 

distribution. 

5.5.3.2 Finite Element Model of Thermal Response for PUF 

In the finite element model, the internal loss is modelled as visco damping. In the model 

for PUF, a wave velocity of 1231 m/s was calculated based on the density, Young’s 

modulus and Poisson’s ratio of the PUF and a mechanical Q value of 34.8, which was 

calculated by equation 4.20 [206] 
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The damping         at 20 kHz was obtained using the TTS generated master curve based 

on the damping results from experimental dynamic mechanical analysis, shown in Fig. 

4.20. A 2D model was employed and time steps of 5 nanoseconds were used in the 

mechanical analysis to provide sufficient steps per cycle. The oscillation amplitude of 24 

   (pk-pk) excited by the horn at the contacting end of the PUF sample was simulated in 

the mechanical analysis model by applying an oscillating pressure. Free boundary 

conditions were used in the PUF mechanical model except the contacting end with the 

horn. 

In the thermal analysis, the initial temperature was 20  , which was the specified 

temperature boundary conditions for the specimen model and, in this case, the time step 

was 0.5 seconds. Ultrasonic excitation was applied to the specimen for 14 seconds. A 

specific heat of 1573 J/kg·K and conductivity of 0.028 W/m·K were incorporated based on 

experimental measurements. Table 5.1 lists the parameters used in the finite element 

thermal models.  

Table 5.1 The parameters of finite element thermal models for PUF used in PZFlex analysis 

Mech. 

analyses 

Density 

(kg/m
3
) 

Poisson’s 

ratio 

Q 

value 

Pressure 

(MPa) 

Wave speed 

(m/s) 

Young’s 

modulus (MPa) 

 500 0.3 34.8 0.827 1231 563 

Thermal 

analyses 

Time 

(s) 

Environment 

Temp. ( ) 

Specific heat 

capacity (J/Kg K) 

Thermal conductivity 

(W/m K) 

 0-14 20 1573 0.028 

 

 

5.5.3.3 Finite Element Model of Thermal Response for ER 

During ultrasonic excitation, the temperature of ER increases with time. Due to the low 

glass transition temperature of ER around 60  , the mechanical properties of ER are 

heavily temperature dependent. Accurate finite element models of ER are challenging in 

this application. Compared with heat generation by damping losses, a small amount of heat 

was transferred by convection. The thermal response of ER is dominated by the internal 

heat generation other than heat convection during power ultrasonic loading. The detected 

peak temperature due to heat generation in the specimen is associated with viscoelastic 

damping, which is temperature dependent. In a short spell of ultrasonic excitation, the 

temperature rise is limited, which means the value of viscoelastic damping is held 

relatively constant. Therefore, the goal of the finite element models of thermal response for 

ER was to find a peak temperature and include several iterations with different viscoelastic 
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damping assumptions. The models were divided in time sequence, which meant that the 

damping coefficient of each new iteration was based on the peak temperature obtained in 

the previous model. In this study, due to nonuniform distribution of temperature in the 

whole sample, the other temperature dependent mechanical properties were ignored. The 

viscoelastic damping is the only consideration with temperature and frequency 

dependencies. The finite element ER models were created using the same material 

properties, with density        kg/m
3
, Young’s modulus        GPa and Poisson’s 

ratio       but with different damping loss Q value.  

Model A was to simulate the thermal response from the start of ultrasonic excitation up to 

1s. The surrounding temperature was measured at 25.1 . The Q value, valued at 36.63, 

was predicted by the master curve of         at the reference temperature of 20   and 20 

kHz from the results of experimental dynamic mechanical analysis. The Q value in model 

B was obtained by the master curve of          at a reference temperature of the peak 

temperature in model A and 20 kHz. The following models were all created based on this 

assumption. The values of Q at 20 kHz at different reference temperatures are listed in 

Table 5.2. 

Table 5.2 The Q values at 20 kHz at different temperatures for FEA in PZFlex 

Temperature           Q value 

20 0.02731 36.62 

30 0.02962 33.76 

40 0.03719 26.89 

50 0.1005 9.95 

60 0.2023 4.94 

70 0.4114 2.43 

 

As discussed above, finite element simulation of thermal response in PZFlex has separate 

mechanical and thermal analyses. The model with damping loss Q value calculated 

damping losses per vibration cycle in the mechanical analysis. The constant thermal input 

results obtained by damping losses were used in thermal analysis to provide the steady-

state temperature field. 

Time steps of 5 nanoseconds were employed in the mechanical analysis to provide 

sufficient steps per cycle. The oscillation amplitude of 24    (pk-pk) excited by the horn 

at the contacting end of the ER sample was simulated in the mechanical analysis model by 

applying an oscillating pressure. The boundary conditions applied to the ER models were 

same with the PUF models. 
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In the thermal analysis, the specified temperature of 20   was applied to all boundaries of 

the thermal models. The time step was set at 0.5 seconds. A specific heat of 760 J/kg·K 

and conductivity of 0.57 W/m·K were incorporated based on experimental measurements.  

5.6 Chapter Summary 

To minimize any detrimental impact on the ultrasonic field profile, non-invasive field 

measurements were developed for the fast and reproducible experimental assessments of 

ultrasonic displacement, stress/strain and temperature fields in solids. This chapter 

described several non-invasive techniques utilising the digital image correlation technique 

with an ultra-high speed camera, the thermo-mechanical effect with an infrared camera, 

and the acousto-optic effect with a laser Doppler vibrometer that were implemented to 

characterise the ultrasonic fields generated by low-frequency power ultrasonic transducers 

operating on different (elastic, viscoelastic and transparent) solids. Measurement principles 

and experimental arrangements with specimen preparations were used to show how and 

why they work to make non-invasive field measurements possible. 

Numerical models, including analytical and finite element models, were developed to 

analyse the power ultrasonic mechanical effects on tissue mimics. The finite element 

mechanical analyses provided the damping losses of the viscoelastic materials, which were 

used to calculate the thermal response during power ultrasonic loading. Due to the 

frequency and temperature dependent behaviour of the materials, the finite element models 

were created with the help of the time/frequency temperature superposition principle. 

Both experimental and simulation results will be utilised to assess the ultrasound 

interaction with tissue in the next chapter. 
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6. Measurement of Ultrasonic Fields and 
Correlation with Numerical Models 

6.1 Introduction 

Previous chapters have outlined non-invasive measurement techniques for displacement, 

strain/stress and temperature fields in viscoelastic solids under power ultrasonic excitation 

and detailed the numerical models for use in simulations of these fields. 

This chapter assesses the veracity of results from both the non-invasive measurement 

methods and the detailed finite element models. Firstly, the behaviour of the bone 

surrogate materials, PUF and ER, subject to power ultrasonic vibration excitation were 

studied, by combining the use of an ultra-high speed camera and 2D in-plane DIC 

techniques to provide a non-invasive methodology for investigating the effects of 

ultrasonic surgical devices applied to biological tissue materials. These materials were then 

modelled by analytical and finite element methods for the prediction of and subsequent 

comparison with the experimental results. Following this, thermal effects of power 

ultrasound on ER and PUF were evaluated using an IR camera and verified by coupled 

thermo-mechanical finite element models. Based on the experimental and numerical 

findings, ultrasonic damage mechanisms in hard tissue mimics are discussed. Additionally 

the ultrasonic fields of transparent SE were characterised using LDV, based on the 

acousto-optic effect and a full-field scanning technique and then simulated by finite 

element models using dynamic material properties. 

6.2 Mechanical Effects for PUF and ER 

6.2.1 Introduction 

During ultrasonic excitation, the mechanical deformations of both PUF and ER samples 

were determined utilising an ultra-high speed camera with the digital image correlation 

technique. This technique is new for full-field measurements in power ultrasonic 

applications. Due to the high frequency vibrations with small amplitude, it was first 

necessary to analyse the noise and sensitivity of the measurements. Deformation of the 

samples under ultrasonic excitation was then measured by correlating the displacement 

field of a set of images, which were taken over a single vibration cycle. Finally, the 

experimental results were compared with the numerical models. 
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6.2.2 Ultrasonic Field Measurement 

6.2.2.1 Noise Analysis and Sensitivity 

The vibration amplitude of the output surface of a nominal 20 kHz ultrasonic transducer is 

controllable up to a few tens of microns and therefore it is essential to determine that the 

sensitivity of the measurement system allows for detection of the ultrasonic vibration 

response above the measurement noise floor. A group of images from a sample surface 

without ultrasonic excitation was captured by the ultra-high speed camera in order to 

investigate the noise floor. A set of 102 images was recorded for the sample surface of 

10×50 mm via a pixel array, each pixel representing 0.2174 mm for PUF and 0.2 mm for 

ER in the digital images. Fig. 6.1 shows the displacement field from correlation of the PUF 

images and Fig. 6.2 is for the ER sample in an unexcited state. The y-direction is in the 

direction of proposed excitation through longitudinal mode vibration of the ultrasonic 

transducer. From these results, it is clear that displacement measurements below 1.1    

for PUF and 0.7    for ER are noise, largely as a result of camera noise plus 

imperfections and variations in the lighting conditions [168]. However, these displacement 

noise floors do not preclude measurements of the displacement of the specimens due to 

ultrasonic excitation in this study, which are well above this noise floor. 

 

(a)                                                                    (b) 

Fig. 6.1 PUF displacement field in Y axis in the undeformed state to demonstrate noise floor 
(a) in 3D in pixels, (b) 2D in millimetres  
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(a)                                                            (b) 

Fig. 6.2 ER displacement field in Y axis in the undeformed state to demonstrate noise floor 
in (a) 3D in pixels, (b) 2D in millimetres 

 

6.2.2.2 Deformation Measurement of PUF and ER Samples 

Capturing a Single Vibration Cycle for PUF 

The capability of DIC measurements for providing an accurate characterisation of the 

displacement field under ultrasonic excitation was demonstrated initially by capturing the 

vibration response from the PUF specimen surface during one vibration cycle. Fourteen 

images are presented in Fig. 6.3 (1)-(14), with (1) being the undeformed reference image, 

and the evolution of the displacement response in the y-direction (the axial vibration 

displacement) is shown in each subsequent image. The results of measurements are 

displayed as a 3-dimensional model for the full field information. The colours represent the 

amplitudes of displacements in the y-direction, the direction of the input vibration. From 

the 4  s fixed time between successive images, the vibration frequency, 20.83 kHz can be 

estimated from the DIC measurements, as compared to the known vibration frequency of 

the transducer with the horn, verified by LDV measurement, of 20.7 kHz. 
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(1)                                                               (2) 

 

(3)                                                                  (4) 

 

(5)                                                                (6) 

 

(7)                                                              (8) 
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(9)                                                                (10) 

 

(11)                                                                   (12) 

 

(13)                                                                (14) 

Fig. 6.3 Evolution of displacement field in one cycle of vibration for PUF 

 

Capturing a Single Vibration Cycle for ER 

The DIC experimental data for ER was collected after 3 seconds of ultrasonic vibration and 

captured the vibration responses from the specimen surface for the displacement field in 

the y-direction. There are 14 images in Fig. 6.4 displaying the evolution of displacement 

during one vibration cycle. The displacement contour information in image (5) shows the 

deformation of the ER specimen at the maximum distortion during one vibration cycle in 

the test. The image acquisition rate was 250,000 frames per second and the frequency of 
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vibration was around 20.7 kHz, giving about 12 images per cycle. Therefore, the true peak 

vibration amplitude was not necessarily captured with this sampling rate. 

 

(1)                                                                  (2) 

 

(3)                                                                  (4) 

 

(5)                                                                    (6) 
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(7)                                                                    (8) 

 

(9)                                                                 (10) 

 

(11)                                                                 (12) 

 

(13)                                                                 (14) 

Fig. 6.4 Evolution of displacement field in one cycle of vibration for ER 
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Since the data of all surface points were recorded simultaneously, the technique of DIC 

with an ultra-high speed camera could be advantageously used for the study of ultrasonic 

vibration, the transient behaviour and vibration shape could easily be obtained and 

analysed. In comparison, point by point scanning measurements across a grid, for example 

using a laser vibrometers, cannot capture full field data simultaneously and rely on each 

point on the grid having a time invariant response. This is rarely the case for surface 

responses of tissue materials under ultrasonic excitation, where heating and material 

properties changes mean that vibration response change with time.  

6.2.3 Correlation between Experiments and Simulations 

Experimental displacement results were compared with the numerical models for 

validation. Strain fields derived from the displacement results were also compared with the 

numerical simulations. 

6.2.3.1 Displacement and Strain Fields for PUF 

Displacement Response in the Y-axis 

The displacement amplitude (Fig. 6.5) of the longitudinal wave, in the y-direction, was 

obtained from the AM, and compared with that predicted by the FEA (using ABAQUS) 

and the peak displacement in Fig. 6.3, image (10) from DIC measurements. 

 

Fig. 6.5 Measured (DIC) and predicted displacement amplitude (AM and FEA) along the 
centre-line for PUF sample 
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Comparison of Displacement and Strain Fields by AM, FEA and DIC 

Fig. 6.6 shows a comparison of contour plots of the displacement field estimated from the 

AM, FEA and DIC measurements. The vibrational response in the sample clearly exhibits 

the second longitudinal mode for all methods used. For clarity, the contour plot of the 

displacement field in the region of interest from the DIC measurements, with images 

captured after 2s of excitation, is overlaid on the surface of the sample in Fig. 6.6 (c).  

 

   (a)                        (b)                     (c) 

Fig. 6.6 The results of displacement field by (a) AM (b) FEA and (c) DIC for PUF excited at 
around 20 kHz and 24 µm  

 

The full-field strain maps were calculated directly from the displacement fields and are 

shown in Fig. 6.7 (c). Comparing the two numerical model results (AM and FEA in Fig. 

6.7 (a), (b)), the strain maps were a very close match.  



CHAPTER 6 MEASUREMENT OF ULTRASONIC FIELDS AND CORRELATION WITH 
NUMERICAL MODELS  140 

 

 

(a)                          (b)                          (c) 

Fig. 6.7 The results of strain distribution by (a) AM (b) FEA (c) DIC for PUF excited at around 
20 kHz and 24 µm magnitude 

 

The displacement and strain contour plots obtained from the DIC measurements, shown in 

Fig. 6.5 (DIC), 6.6(c) and 6.7(c), illustrate two problems associated with the 

measurements. First, the data at the highest amplitude locations, which in this case are the 

anti-nodes located at the upper and lower ends of the specimen, are lost due to difficulties 

with extending the measurements out to the specimen boundaries. The correlation errors of 

displacements at boundaries are larger than those from other locations on the specimen and 

therefore, the results at boundaries were discarded and not shown in the contour plots. 

Second, although Fig. 6.3 image (10) is the maximum amplitude measurement image in the 

cycle, the image is not captured precisely at the time in the cycle associated with peak 

vibration amplitude. Capturing the peak vibration amplitude more precisely relies on 

synchronization of the ultrasonic vibration cycle and image capture triggering, along with 

even higher fps capabilities. Although this was not achievable in this experiment, it is not 

necessarily a limiting factor in the technique. However, the mode shape is clearly captured 

and the correlation of displacement is, at the worst, over 90% at the peak of the vibration 

cycle as clearly shown in Fig. 6.5. The agreement between model and DIC measurement 
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data is much closer if images away from peak vibration are compared but the images 

themselves are less sharp with a lower signal to noise ratio. 

To measure the response of a sample to an ultrasonic excitation frequency, the DIC 

technique provides an advantage of being able to capture the full-field surface 

displacement and strain, however more precise triggering is required to enable capture of 

the exact peak response in the vibration cycle, which can be more easily captured using, 

for example, LDV. However, a very significant advantage of DIC with an ultra-high speed 

camera over LDV is the ability to map the surface strain without having to deal with the 

significant influence of changing temperature in the sample due to absorption of ultrasonic 

energy for the duration of the scanning point-by-point LDV measurement process. The 

DIC measurement technique also enables full-field characterisation during transient events, 

such as amplitude build-up during the first few vibration cycles, even at high frequencies. 

Comparison of Displacement Fields from FEA and DIC in the X-axis 

The displacement fields in the transverse direction from FEA and DIC are shown in Fig. 

6.8. The grid used was 5×15 pixels and the markers are shown as green dots in Fig. 6.8 (b). 

The result for DIC was recorded at maximum displacement during ultrasonic vibration. 

The FEA result was used for correlation with the DIC experimental data. Over 150 points 

were correlated in the DIC test and over 3000 nodes were created in the FEA model. The 

data from these two methods matched very well in the x-axis. 
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(a)                                         (b) 

Fig. 6.8 Displacement fields in x-axis by (a) FEA (b) DIC for PUF excited at around 20 kHz 
and 24 µm magnitude in y-axis 

 

6.2.3.2 Displacement and Strain Fields for ER 

Displacement Response in the Y-axis 

The displacement amplitude (Fig. 6.9) of the longitudinal wave, along the centre line of the 

ER specimen in the y-direction, was obtained from the AM, and compared with those 

predicted by the FEA and the maximum deformation from DIC measurements (Fig. 6.4, 

image (10)). 
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Fig. 6.9 Measured and predicted displacement along the centre-line of the ER sample 

 

Comparisons of Different Elastic Modulus by Static Compression Test, DIC and TTS 

The centre-line displacement of ER in the y-direction from DIC measurement is shown in 

Fig. 6.10. The wavelength ( ) of the longitudinal wave, propagating in the y direction, can 

be obtained from: 

 

                  6.1  

 

Based on longitudinal wave propagation in a bar, the wave speed can be calculated by 

 

          6.2  

 

Therefore, the elastic modulus   can be expressed as: 

 

                   6.3  

 

where density    1640 kg/m
3
 and frequency    20.8 kHz. 
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In comparison, the elastic modulus from a standard static compression test was found to be 

9.96 GPa. The storage modulus calculated from the master curve of TTS using DMA data 

is 13.9 GPa, which is comparable with the results obtained by DIC. Therefore, ER has 

frequency dependent behaviour, in which the dynamic response cannot be described by the 

static modulus in a power ultrasonic application. The master curve of TTS is a good 

predictor for ER under ultrasonic excitation. 

 

Fig. 6.10 Measured displacement along the centre-line of the sample at its maximum 
amplitude by DIC 

 

Comparisons of Displacement and Strain Fields by AM, FEA and DIC 

A comparison of contour plots of the displacement field estimated from the AM, FEA and 

DIC measurements is illustrated in Fig. 6.11. The displacement fields were captured at the 

measured maximum deformation of the specimen during one ultrasonic vibration cycle. 

The results from the DIC test for a transient response are very promising. There are strong 

correlations with the results of the analytical and finite element models. From the 

time/frequency temperature superposition principle explained in Chapter 4, it is clear that 

the specimen will be stiffer under dynamic loading at the ultrasonic frequency, where the 

elastic modulus increases from 9.96 GPa (static measurement) to 13.75 GPa (dynamic 

measurement). 
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 (a)                            (b)                            (c) 

Fig. 6.11 The results of displacement field by (a) AM (b) FEA and (c) DIC for ER excited at 
around 20 kHz and 24 µm 

 

The estimated strain field (shown in Fig. 6.12) can be calculated by a numerical 

differentiation process from the displacement gradient. However, in DIC measurements 

differentiation can amplify the background noise which is contained in the displacement 

gradient, leading to inaccurate strain results. Due to the small deformation during 

ultrasonic excitation of the ER specimen and the uncompensated noise in the measurement, 

the strain field is computed not accurately by the DIC method. The maximal strain is only 

0.06% predicted by the analytical and finite element models. Hence, the errors of 

displacement estimation caused by noise can hide the underlying strain information. So, it 

is believed that the accuracy of strain estimation would be improved in future work by 

implementation of a smoothing algorithm on the displacement field. 

(m) (m) (m) 
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(a)                             (b)                              (c) 

Fig. 6.12 The results of strain distribution by (a) AM (b) FEA (c) DIC for ER excited at around 
20 kHz and 24 µm  

 

6.2.4 Conclusions 

The feasibility of using an ultra-high speed camera with a 2D digital image correlation 

technique to examine the dynamic behaviour of bone mimic materials (PUF and ER) under 

excitation from an ultrasonic device has been demonstrated. The full-field surface 

displacement evolution can be obtained using a high speed DIC system, enabling the 

capture of both the steady state response and cycles during the transient build-up of 

ultrasonic displacements. For PUF, the experimental results of displacement and strain 

show close correlation with analytical and finite element models, however a more accurate 

measure of the peak displacement amplitude requires some further refinement of the DIC 

triggering or measurement of a large number of images per cycle. For ER, the experimental 

data of the displacement field from DIC correlates well with the analytical and finite 

element models. However, due to the small deformation of the sample and uncompensated 

2 3 4 5 6 
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background noise in the images, the strain field was not accurately computed by the 

differentiation process of the displacement field using the DIC technique. The significant 

benefit for characterising the response under ultrasonic excitation using the ultra-high 

speed camera with the DIC technique over current measurement techniques, such as point-

wise LDV measurements, is that it provides significant mitigation of temperature effects. 

Also, the scanning process during LDV measurements makes it impossible to capture 

transient events. Full-field surface strain measurements can be used to predict regions 

where tissue damage can occur close to or remote from the site where the ultrasonic 

surgical device is interacting directly with the tissue. 

Compared with other techniques used for deformation measurement, the technique of DIC 

with an ultra-high speed camera for dynamic measurements has many advantages and 

several disadvantages. Experimental setup and specimen preparation are straightforward. 

The ultra-high speed camera requires secure mounting and will record the images if 

enough light is available during ultrasonic excitation. The preparation of specimens is a 

simple process, which involves spraying a random speckle pattern on a flat surface of the 

specimen. In addition, there is no contact with the measurement system and the results can 

be obtained for full field in one snapshot. Finally, based on a non-contact full field method, 

the technique of DIC with ultra-high speed camera allows the determination of 

displacement amplitudes and vibration phases with high spatial and temporal resolution. 

Displacements down to a few microns and frequencies up to several tens of kHz can be 

covered, giving rise to applications of displacement and strain measurements in a large 

dynamic range. The application of high frequency vibration can be demonstrated with 

accurate full-field measurements of displacements, especially for mode shape analysis. 

Nevertheless, the application of this technique for power ultrasonic applications also 

suffers from some disadvantages. Because the estimation of strain by a numerical 

differentiation process can amplify the background noise contained in the extracted 

displacement, it is not recommended as an effective method for very small deformation 

measurement, where the noise floor cannot be ignored.  For vibration at high frequency 

and low amplitude, the results are heavily dependent on the quality of the imaging system 

which requires a high quality CCD sensor and a high level of constant light. 
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6.3 Thermal Effects for PUF and ER 

6.3.1 Introduction 

In power ultrasonic applications, high frequency mechanical oscillations generate heat 

inside the materials as a result of absorption of the ultrasonic wave energy. Damage is 

possibly caused by internal heating as a result of local strain and material damping. It is 

therefore necessary to obtain the temperature distribution to assess the thermo-mechanical 

effects. 

The temperature of the specimen subjected to ultrasonic excitation was captured by an IR 

camera. Images from the whole sample surface were recorded, from the initiation of 

ultrasonic excitation until failure, and the resultant thermal field was also calculated by 

finite element models. 

6.3.2 Thermal Measurements 

6.3.2.1 Thermal Measurement of the PUF Specimen 

Thermal mapping of the PUF sample during ultrasonic excitation was performed with an 

infra-red thermal camera in real-time. Thermal images were obtained from the starting 

time of vibration excitation (0 s) up to the failure of the sample (16 s). Fig. 6.13 shows that 

the maximum temperature in the sample reached 160   at 16 seconds, when the sample 

failed and the peak temperature captured in the thermal image at 14s was around 120  , 

which is the    of PUF. The test sample illustrates that the local temperature increases 

sharply, especially at displacement node positions. During the ultrasonic excitation, the 

maximum temperature was generated at the high strain locations. Thus, the material 

failures were located at the thermal damage positions where the temperature also increased 

sharply. 
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Fig. 6.13 Thermal image of PUF during ultrasonic excitation at 14s and 16s showing surface 
temperature in    

 

6.3.2.2 Thermal Measurement of the ER Specimen 

The temperature distribution on the ER sample during ultrasonic excitation was recorded 

with the IR thermal camera in real-time. Data was recorded from the start time of vibration 

excitation (0 s) up to failure of the sample at around 20 s. Fig. 6.14 shows the evolution of 

temperature distribution for ER during ultrasonic vibration from 0 to 11 s. The recordings 

illustrate that the local temperature increases sharply especially at the displacement node 

(Fig. 6.15). During ultrasonic excitation, the highest temperature was generated at the 

highest strain location, which is a local stress concentration (Fig. 6.15). Thus, sample 

failure is located at the cyclic loading induced fracture damage position where the 

temperature is highest. 
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(a) 0s                                          (b) 1s                                          (c) 2s 

 

(d) 3s                                          (e) 4s                                          (f) 5s 

 

(g) 6s                                          (h) 7s                                          (i) 8s 

 

   (j) 9s                                          (k) 10s                                          (l) 11s 

Fig. 6.14 Evolution of temperature distribution on ER sample during ultrasonic vibration 

showing the temperature in   between (a) 0 second and (l) 11 second 
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Fig. 6.15 Correlations between thermal measurement and DIC data and strain field from FEA 

 

6.3.3 Correlation between Thermal Measurement and FEA 

6.3.3.1 Temperature Distribution for PUF 

The temperature field in the PUF sample as predicted by the finite element model using 

PZFlex is shown in Fig. 6.16 (b). The thermal map data was extracted 14s after the start of 

ultrasonic excitation, consistent with the results of thermal imaging measurement (Fig. 

6.16 (a)) obtained at the same time. From Fig. 6.16 (c, d), ultrasonic damage to the PUF 

sample during the test was found at the same maximum temperature locations as predicted 

in the measurement. The results of the thermal maps in Fig. 6.16 matched well between the 

experiments and FEA. 
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                        (a)                               (b)                                    (c)                               (d) 

Fig. 6.16 Thermal distributions in PUF from (a) thermal imaging at 14s (b) FEA at 14s, and (c) 
thermal imaging at 16s, (d) the sample after the test 

 

During ultrasonic excitation, the maximum heat generated in the PUF specimen was 

located at displacement nodes, which were captured by the IR camera and verified by 

FEM. The evolution of maximum temperature from measurements and FEA are illustrated 

in the Fig. 6.17. From 0 s to 14 s of ultrasonic loading, the peak temperature increases 

linearly with time from the FEA data due to the heat conduction effect being small enough 

to be ignored. During vibration cycles, the rate of heat generated is significantly higher 

than the rate of heat loss. The nearly adiabatic conditions result in a linear increase in 

temperature with time. A similar trend can be found in the thermal imaging results. The 

temperature increases almost linearly up to the glass transition temperature    is reached 

around 120  , thereafter it rapidly rises to 160  . A significant increase of damping loss 

tan ( ) at    can be observed in Fig. 6.18, which means a large amount of heat is generated 

at that temperature. Although the stress applied to the specimen is lower than the elastic 

limit, the dissipated energy comes from internal material damping and local plastic 
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deformation at a microscopic scale, which can be considered as contributors to the material 

failure. 

 

Fig. 6.17 Evolution of temperature at the position of displacement antinodes for PUF 
specimen during ultrasonic exciation obtained from FEA and IR camera 

 

 

Fig. 6.18 The loss modulus and damping cofficient of PUF at 1Hz at different temperatures 

 

6.3.3.2 Temperature Distribution for ER 

Due to the nonlinear heat generation in ER during ultrasonic excitation, the finite element 

simulation of ER for thermal response was divided into several time period sub-models. 

Results of peak temperature from each model were used as the input in the next iteration to 

evaluate damping loss. 

For the initial 1s time period, the thermal distribution in the ER sample was predicted by 

the finite element model, identified as model A in the Table 6.1, using a damping factor Q 

at 20 kHz for a reference temperature of 20  . The thermal field at a time of 1s is shown 

in Fig. 6.19 (b), which is compared with the experimental result in Fig. 6.19 (a). Due to the 

peak temperature in model A being 32.2  , the damping factor Q of model B for 
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simulation of the next 1s time frame was valued at 33.76, which is the Q value at a 

reference temperature of 30  . The result of model B for simulation of the thermal 

response at time 2s is shown in Fig. 6.19 (d) and is compared with the corresponding 

experimental results in Fig. 6.19 (c) from thermal imaging. Based on this procedure for 

FEA, the thermal responses of ER during ultrasonic excitation from 0 s to 5 s are shown in 

Fig. 6.19 and the parameters for the models are listed in Table 6.1. 

Table 6.1 The parameters for finite element thermal models 

Model 

Ultrasonic 

loading time 

period (s) 

Initial peak 

temperature 

( ) 

Q value 

Peak 

temperature 

( ) 

Results 

A 0-1 25.1 36.62 32.2  Fig.6.19 (b) 

B 1-2 32.2 33.76 40.2  Fig.6.19 (d) 

C 2-3 40.2 26.89 50.2  Fig.6.19 (f) 

D 3-4 50.2 9.95 75.9  Fig.6.19 (h) 

E 4-5 75.9 2.43 166.7  Fig.6.19 (j) 
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              (a)                  (b)                         (c)                 (d)                         (e)                 (f) 

 

 

                                        (g)                 (h)                          (i)                  (j) 

Fig. 6.19 Correlation of (a, c, e, g and i) thermal measurement and (b, d, f, h and j) FEA at 
times between 0s and 5s 

 

In FEA, after an ultrasonic excitation time of 5s, the peak temperature is over 160  , at 

which temperature the damping loss Q value cannot be extracted from the DMA tests. 

Therefore, subsequent thermal finite element models were not possible in this study but 
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should be considered for further work. The temperature distributions in FEA were 

correlated with the thermal data from IR camera during the initial 5 s. 

During continuous ultrasonic excitation, the peak temperature in the ER sample did not 

increase linearly, due to the temperature dependent properties of ER. The evolution of peak 

temperature in FEA compared with experiment data is illustrated in Fig. 6.20. At the 

beginning of ultrasonic excitation, the peak temperature increases steadily to the region of 

glass transition temperature    at around 60  , then there is a rapid increase up to 175  . 

The temperature is then constant with time due to the decrease in damping Q at high 

temperature, such that the rate of heat generated is equal to the rate of heat convected. 

Finally, the specimen failed at around 190  , which can be possibly considered to be due 

to a combination of plastic deformation induced by crack initiation and material melting. 

 

Fig. 6.20 Peak temperature evolution of ER specimen during ultrasonic loading experiment 
detected by IR camera and modelled by finite element method 

 

6.3.4 Conclusions 

The temperature distributions in PUF and ER during application of ultrasonic excitation 

were measured using an IR camera. The use of thermal imaging has provided good 

correlation with FEA predictions in the location of damage sites in hard tissue mimic 

materials and offers opportunities to initiate studies for a range of ultrasonic surgical 

devices. 

Heat generation in hard tissue mimic materials was determined using temperature and 

frequency dependent damping losses, which were characterised by dynamic mechanical 

analysis. The important material parameters for modelling the thermal response during 



CHAPTER 6 MEASUREMENT OF ULTRASONIC FIELDS AND CORRELATION WITH 
NUMERICAL MODELS  157 

 

ultrasonic excitation were wave velocity, applied stress, damping Q, density, Young’s 

modulus, specific heat and heat conductivity. Due to the complexity of tissue mimic 

materials, the finite element models were updated with temperature dependent properties, 

in an iteration manner. 

6.4 Mechanical Effects on SE 

A non-invasive method based on the acousto-optic effect, using a LDV, has been 

developed for stress field characterisation in the transparent viscoelastic soft tissue mimic 

SE. By a combination of basic scanning routines and image reconstruction algorithms, 

accurate full-field stress information is presented. The experimental result is validated by 

finite element analysis using ABAQUS. The technique was introduced in Chapter 5. 

6.4.1 Experimental Results 

Experiments were conducted with the setup according to Fig. 5.11. The normalised 

measured and finite element generated harmonic stress fields through the specimen are 

shown in Fig. 6.21, and comparison of the normalized axial stress profiles from the 

measured and FEA predicted data is presented in Fig. 6.22. 

In Fig. 6.21 (a), the incident ultrasound wave was from the vibrating horn to the PUF 

sample as shown at distance 0. Measurement proved problematic up to a distance of 7 mm 

from the excited end, where some extra silicone rubber was used to affix the sample on the 

top of the horn. The surfaces between distance 0 and 7 mm were not perfectly 

perpendicular to the laser beam and therefore laser scanning was employed only from 7 to 

115 mm above the vibrating horn surface. 



CHAPTER 6 MEASUREMENT OF ULTRASONIC FIELDS AND CORRELATION WITH 
NUMERICAL MODELS  158 

 

 

(a) 

 

(b) 

Fig. 6.21 Normalised stress map of SE under ultrasonic exciation (a) experimentally 
measured, (b) FEA predicted 

 

 

Fig. 6.22 Comparison of normalised axial stress profiles from the measured stress field and 
that predicted by FEA 

 

Notable harmonics were detected in the measured data with a wavelength   around 34 mm. 

The longitudinal wave speed,  , can be calculated from the longitudinal wavelength,  , and 

frequency   by the equation: 

 
     6.4  

 

For isotropic materials, the longitudinal wave speed,  , is related to its Young’s modulus, 

 , the Poisson’s ratio,  , and density,  , [236] and  the equation is expressed as: 
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 6.5  

 

By a combination of equations 6.4 and 6.5, the Young’s modulus   can be obtained as 

 
        

           

     
          6.6  

 

where frequency    19.6×10
3
 Hz, density   1020 kg/m

3
, Poisson’s ratio   0.495 and 

wavelength   0.034 m. 

The Young’s modulus from standard static compression and tensile tests was around 1 

MPa. The dynamic modulus obtained from a reference using the nanoindentation tests was 

13 MPa, which was correlated well with the result of 13.4 MPa obtained by a non-invasive 

ultrasonic field test. SE has frequency dependent behaviour, in which the dynamic 

response in high power ultrasonic applications cannot be described by the static modulus. 

6.4.2 Error Analyses 

Consider a laser beam entering the transparent sample of thickness   at an angle   to the x 

axis as shown in Fig. 6.23. When the laser beam encounters changes in the refractive index 

it will generally travel in a curved path. It is assumed that the beam travels in a straight line 

  from sample input position O to sample output position A given by:  

 
          6.7  

 

Fig. 6.23 Schematic diagram of the acoustic wave and laser beam 
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Total phase change was expressed as equation 5.14, where 

 
              6.8  

Integrating gives  

    
  

     
    

      

  
           

      

  
 

                     
      

  
  

6.9  

 

For the fixed frequency (19.6 kHz), speed of ultrasound (666.4 m/s) and sample thickness 

(0.026 mm), phase change depends on   through           . In this case, an error of 1
0
 

in   will only give an error of 0.014% in      and a variation of 5
0
 will only give an error 

of 0.36% in     . This shows the measurement of the phase change is not sensitive to the 

angle  . Therefore, the setup using this technique for mapping stress field of this 

transparent sample is relatively simple with small errors on aligning the laser beam to the 

direction of propagation of ultrasonic field. It is clear from equation 6.9 that the error will 

increase linearly with   in the small   limit. 

6.4.3 Discussion 

It is evident that several high stress fields are present in Fig. 6.21, separated by a half 

wavelength from each other. The close correspondence between finite element analysis and 

measured stress data is clear. However, some discrepancies do exist especially at the far 

end of the specimen. Due to the impendence mismatch between the specimen and 

surrounding air, more ultrasonic energy was reflected at the interface, which increased the 

stress at the region of the interface in the specimen. Nevertheless, agreement between 

theoretical and experimental results is better over the majority of the specimen. It indicates 

that the internal stress field of transparent solid during ultrasonic excitation can be 

accurately characterised using such an scanning system with a simple setup. However, 

some limitations of this method can be summarised. Firstly, for ultrasonic field 

measurements the application of the LDV is limited since it acts to integrate the stress over 

the entire laser path. Moreover, it should be noted that it is not yet possible to derive 

acoustic stress or intensity at a specific point.  
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6.4.4 Conclusions 

The work reported here describes a non-contacting and thus nonperturbing optical method 

for recording spatially distributed measurements of an acoustic field. The technique 

exploits the acousto-optic interaction to map the ultrasonic field in two-dimensions by 

traversing the optically beam across the ultrasonic field. Scanning LDV measurements 

enable construction of an image of the normalised stress field of a transparent solid when it 

is subject to ultrasonic vibration. The obtained stress field can be used to characterise the 

dynamic properties of the solid. The technique offers considerable potential for use in 

measuring the low frequency high power ultrasonic field and characterising the properties 

of the test sample. Favourable comparison has been obtained between measurement and 

FEA data. The acousto-optic study presented has demonstrated that it is possible to 

characterise ultrasonic fields of a transparent solid non-invasively. The ability of the 

scanning LDV system to rapidly record data from a grid through the ultrasonic field was a 

significant factor in the establishment of this method as a valuable tool for use in 

measurement of the stress field in a transparent solid subject to ultrasonic excitation. 

6.5 Chapter Summary 

The non-invasive ultrasonic field measurement methods have proved effective in mapping 

displacement, strain, stress and temperature fields of vibrating solids under free-field 

conditions. Additionally, the numerical models of ultrasonic fields show excellent 

correlation with experimental measurements. Hence, measurement methods and theoretical 

frameworks for the quantification and simulation of power ultrasonic fields exist. This 

combination offers the potential to confirm mutually both the experimental technique and 

the viability of numerical methods as a virtual prototyping tool.  
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7. Conclusions and Future Work 

7.1 Conclusions 

It is becoming increasingly important to understand how power ultrasound interacts with 

biological tissue during power ultrasonic surgery. The aim of this thesis was to 

quantitatively characterise the power ultrasonic effects on tissue. This was carried out in 

four stages. Firstly power ultrasonic horns were designed and manufactured. Next the 

material properties of the specimens were experimentally characterised before sample 

testing. Then experimental studies of the ultrasonic field on the surfaces of specimens were 

conducted using several non-invasive techniques. Finally, these experimental results were 

compared to numerical analysis and the damage mechanism of the specimen during 

ultrasonic loading was then assessed. 

A review of the literature indicated that three main effects of ultrasonic interaction of 

biological tissue can be summarized as including direct mechanical effects, thermal effects 

and acoustic cavitation. The use of an ultrasonic horn in ultrasound based surgery for 

investigating the tissue damage by ultrasonic heating and cyclic loading is not well 

developed.  Especially, for ultrasound and hard tissue interaction, the heat generated by 

ultrasonic waves can alter the mechanical properties of the hard tissue analogue and soften 

it to gum-like properties, in which cavitation probably occurs with simultaneous 

mechanical impact and thermal heating. This work focused on the study of ultrasonic wave 

propagation induced combined mechanical and thermal effects during ultrasonic surgical 

procedures. It presented detailed evaluation of power ultrasonic effects on hard and soft 

tissue by predictive models using numerical methods and experimental investigations using 

non-invasive detection. 

Due to the complexity and nonuniformity of biological tissue, tissue mimic materials were 

manufactured and utilised instead of real tissue to obtain reliable information of ultrasound 

tissue interaction. The mechanical and thermal properties of tissue mimics were 

characterised to evaluate and simulate the biological tissue, in which static Young’s 

modulus, heat conductivity and specific heat capacity were determined by 

compression/tensile tests, guarded heat flow meter method and differential scanning 

calorimetry respectively. Because of significant viscoelastic behaviour in application of 

ultrasonic loading on tissue mimics, dynamic mechanical analyses were performed to 
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record the frequency and temperature dependent viscoelastic properties. The 

time/frequency temperature superposition principle was applied to predict the material’s 

behaviour at high frequencies, which are not directly measurable by dynamic mechanical 

analysis. 

Two ultrasonic horns were designed using finite element methods and manufactured. The 

horns worked as the vibration input to load the test samples with sufficient vibration 

amplitude. The modal characteristics of the horns were confirmed using experimental 

modal analysis.  

In this study, non-invasive ultrasonic field measurement techniques were introduced in the 

application of solids. This is the first application of ultra-high speed camera with digital 

image correlation technique for characterisation of power ultrasonic fields. This non-

invasive technique has been proved as a successful alternative in power ultrasonic 

applications, in which loading frequency is over 20 kHz. Another technique combined the 

acousto-optic principle and laser interferometry in order to characterise the power 

ultrasonic stress field in transparent solids. Examination of ultrasonic waves propagating in 

transparent, isotropic and viscoelastic solids is particularly applicable to the very quick 

testing of the dynamic mechanical properties of transparent viscoelastic solids. 

Furthermore, non-contact thermal imaging technique by IR camera is a good choice for 

mapping temperature distribution of materials during power ultrasonic vibrating, which 

can be used for determination of internal heat generation induced by absorption of 

ultrasonic wave energy and understanding the damage mechanism of ultrasonic effects on 

solids. Due to the internal heat generated during power ultrasonic vibration, the materials 

are subject to mechanical and thermal loading simultaneously. Based on the quantitative 

characterisation of ultrasonic stress/strain and temperature fields in solids, the frequency 

and temperature dependent behaviour of materials were determined, which included a 

significant viscous effect of biological tissue or polymers in dynamic application. 

Numerical models including finite element models and analytical models were defined by 

frequency dependent mechanical properties to predict and verify the experimental results. 

The results of numerical models matched well with experimental findings in the prediction 

of ultrasonic stress/strain fields. Therefore, static mechanical properties are not appropriate 

for characterisation of the dynamic behaviour of viscoelastic solid. Furthermore, finite 

element models for thermal analysis can be parameterized utilising thermal conductivity 
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and specific heat capacity to characterise heat transfer in materials and damping coefficient 

to determine the heat generation in materials. These thermal parameters were used in FEA 

models to obtain temperature distribution during ultrasonic wave propagation. The models 

have good correlations with experimental data captured using an IR camera. 

During power ultrasonic loading, the damage to the material sample is accompanied by an 

accumulation of cyclic deformation and heating. When the accumulated heat softens the 

material to a gum-like pliable, which has a lower yield stress value than its initial, the 

cyclic deformation creates stress higher than the yield stress to make the strain becomes 

irreversible. Plastic deformation occurs in the materials initiating cracks and propagating 

existing cracks. Especially, as the temperate of the material rises to its glass transition 

temperature, when maximum damping induces lager amounts of heat to make plastic 

deformation more easily and melting occurs causing the solid to expand. Typically, the 

damage is associated with material damping and phase transition. No cavitation effect was 

found to contribute to solid material damage.  

Through this work, the time/frequency temperature superposition principle was found to be 

a good predictor to analyse the frequency and temperature dependent behaviour of 

polymeric materials. The data from dynamic mechanical analyser is useful in generating 

the master curve to predict the polymers response in high frequency loading applications. 

In power ultrasonic applications, three viscoelastic tissue mimic materials were categorized 

as follows: ER, a frequency and temperature dependent material; PUF, no obvious 

frequency and temperature dependency; SE, dependant on frequency but not temperature. 

In the preparation of experimental study, the horn with triangular slots was designed using 

a finite element method. The technique of manufacturing the horn with triangular slots is a 

new method for designing an ultrasonic horn, which make it possible that the horn has a 

smaller input face and larger output face without the loss of surface uniformity and gain. 

The resonant response of the horn was checked by experimental modal analysis, which 

proves that the novel horn has a longitudinal mode around the predefined 20 kHz with an 

gain greater than 2. The uniformity of the output face was experimentally examined using 

3D laser scanning vibrometer, which gave acceptable results for uniformity. Compared 

with conventional ones, the horn with triangular slots can work as a vibration amplifier 

with larger output face than input for contact with loading sample. 
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This study has provided confidence that the methodology could be applied to study tissue 

samples subjected to excitations typical of ultrasonic surgical devices, including those for 

orthopaedic bone cutting procedures. Full-field surface strain measurement has the 

potential to be used to predict regions where tissue damage can occur remote from the site 

where the ultrasonic surgical device is interacting directly with the tissue.  

7.2 Suggestions for Further Work 

The work presented in this thesis has identified further research which could be carried out. 

Future applications of this work within the context of power ultrasonic systems is three-

fold: firstly, the non-invasive technique has potential to be extended to measure ultrasonic 

fields in biological tissues and more accurate tissue mimics; secondly, fully coupled 

mechanical and thermal finite element models could be developed to enable more accurate 

simulations and 3D FE models would be a great benefit. Finally, this work forms a 

platform from which further research into power ultrasonic surgery for cutting tissue could 

be launched. 

7.2.1 Applications in Tissues and More Accurate Tissue Mimics 

The use of DIC combined with thermal imaging has provided good correlation with FEA 

data in the location of damage sites in hard tissue mimic materials subject to power 

ultrasound excitation and offers opportunities to initiate a study for a range of biological 

tissues or more accurate tissue mimicking samples. 

7.2.1.1 Hard Tissue and Mimics 

In the future, to characterise the power ultrasonic effects on biological tissues, 

experimental investigations could be conducted using hard tissue with intricate shapes. The 

shape of the specimen has great effects on ultrasonic energy distribution. Full field strain 

and stress measurements and thermal imaging of complex tissue will provide more 

accurate and reliable experimental data for use during power ultrasonic surgery. Due to the 

limited image resolution of the high speed camera HTV-1, image captures of the tissue 

sample in an intricate shape with large surfaces will be performed separately in several 

times to cover the whole surface. Post image processing will be needed to combine these 

images into a single image for providing results of full field measurements.  
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Tissue mimicking materials which can closely mimic the mechanical and thermal 

properties of tissue play an important role in evaluating the effects of power ultrasound on 

hard tissues. 3D printing is a good technique for fabricating hard tissue mimics which 

accurately simulating the anatomy as well as the physical properties of tissue. The use of 

the additive manufacturing technologies makes the 3D printed bone tissue mimics possible. 

It has the ability to directly print porous bone mimics with desired shape, controlled 

chemical components and interconnected porosity. Instead of polymer based tissue mimics 

used in this study, a composite of hydroxyapatite and bioactive glasses could be 

manufactured via 3D printing process. Due to the bone is largely composed of the 

inorganic mineral hydroxyapatite, the 3D printed composite is advantageous for mimicking 

the mechanical and thermal properties of bone. According to a sliced virtual model of a 

bone sample, the granulated composite used as powder is printed into layers and formed 

into the customised structure. This accurate tissue mimics can be used to investigate its 

mechanical and thermal effects of ultrasound by the non-invasive techniques. 

7.2.1.2 Soft Tissue Mimics 

This work focussed on mechanical and thermal effects in the tissue mimics under 

ultrasonic loading. Further research could be carried out to investigate the cavitation 

effects in the process of ultrasonic surgery of soft tissue. Due to large amount of water in 

soft tissue, mechanical impact and heat generation will be highly dependent upon the 

cavitation field generated during power ultrasonic loading. To study the cavitation-induced 

damage to tissue, a tissue phantom with similar acoustic and mechanical properties to 

tissue could be developed. 

The transparent agarose phantom with red blood cells introduced by Maxwell etc. [237] 

was found to be very sensitive indicator of cavitation damage. Experimental 

characterisation of cavitation could also be developed using non-invasive measurements. 

High speed imaging of the phantom could be performed while power ultrasound applied. 

The images of cavitation cloud generated in the cell phantom due to power ultrasonic 

excitation could be captured. Individual red blood cells could be observed in the agarose. 

Prior to ultrasound exposure, an image of the cell phantom could be recorded as the 

reference image and then consecutive images could be captured using high speed camera 

during ultrasound exposure. The movements of individual cells in the phantom caused by 

cavitation could be tracked and correlation based speckle tracking algorithm could be 
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developed to estimate the cell displacements. Cavitation damage could be identified and 

characterised based on the movement tracking of red blood cells in the phantom. 

Therefore, with the help of the cell tissue phantom, high speed imaging could be used to 

show the damage with the presence of cavitation. 

7.2.2 Finite Element Updates 

In this work, finite element studies of the heat generation in the specimen under ultrasonic 

loading were developed from two analytical steps. Firstly, damping losses per vibration 

cycle were calculated in the mechanical analysis. Then the damping losses became the heat 

source and were considered as the constant thermal input in thermal analysis to solve the 

heat equation and predict temperature distribution.  

In the process of the ultrasound induced materials deformation, cyclic accumulation of heat 

flux transferred from the work under cyclic loading results in an increased temperature. 

The heat affects the mechanical properties. The heat generation per unit volume could be 

introduced as a source for a thermal-mechanical analysis. In further studies, the finite 

element model could be defined by the material data coupled with frequency and 

temperature dependent properties. A user-defined material model could be created by 

writing user subroutines with ABAQUS. Transient coupled temperature-displacement 

finite element analysis could be carried out to investigate thermo-mechanically coupled 

behaviours under power ultrasonic loading. The contribution of cyclic loading to internal 

heat generation could be addressed. The coupled model is more realistic even though it is 

computationally expensive due to involving handling of a large system of equations at 

every increment. The model could accurately simulate the actual situation in a time domain 

by providing mechanical deformation and thermal distribution simultaneously. Therefore, 

more accurate models could be developed to correlate the experimental and numerical data 

for improved simulation of ultrasonic surgical procedures.  

A 3D finite element model with involving bone and soft tissue connections could be 

developed to solve the elastic wave equation and study the power ultrasound induced stress 

fields. The model could provide the results inside and on the surface of tissue. By 

modifying the coupling state, the boundary condition, and the mechanical characteristics of 

tissue, the model could be effectively used to analyse the ultrasonic tissue damages. 
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7.2.3 Involvement with Cutting Procedures 

Damage of hard tissue in ultrasonic surgery could be discussed in more details by 

experimental characterisation of damage caused by a combination of cyclic loading 

induced fatigue and thermal damage and blade cutting induced tissue removal. 

7.2.3.1 Experimental Ultrasonic Cutting 

In this work, when tissue is only subject to longitudinal ultrasonic excitation, damage is 

closely related to stress distribution and thermal response due to heat generation by cyclic 

loading. With the effect of friction between the cutting edge and the material being cut, 

tissue damage in ultrasonic surgery could be considered mainly by separation of material 

bonds by stressing structural elements and frictional heats. Therefore, experimental 

investigations of ultrasonic cutting tissue should involve investigating the conventional 

cutting process and friction process in the presence of the superimposed ultrasonic 

vibration.  

Conventional cutting applications are complex combinations including fracture, 

deformation and friction. Friction typically depends on the contacting area and sliding 

velocity. Superimposed with ultrasonic vibration, the mechanical interactions between 

contacting surfaces may be influenced. Apart from modifying mechanical interactions, 

friction is also related to the heat generation by the conversion of the mechanical vibration 

energy into thermal energy. Firstly, resonant cutting blades could be designed according to 

the horn design in this thesis. Then, thermal imaging technique could be used to monitor 

the temperature distribution around the cuts. Although it is difficult to obtain images from 

the contacting area using high speed camera, the displacements of the cutting blade and the 

fracture of the specimen during ultrasonic cutting could be monitored and calculated using 

DIC technique, which could be used to study the damaging process of the cut surface.  

7.2.3.2 Finite Element Simulation of Ultrasonic Cutting 

FE models for ultrasonic cutting of tissue could be developed to simulate the thermo-

mechanical behaviour. Estimations of accurate mechanical and thermal properties of 

materials for inclusion in the models could be determined experimentally using the tests 

mentioned in this thesis. The hard/soft tissue could be modelled as linear homogenous 

isotropic elastic/viscoelastic-plastic materials and a shear failure criterion should be 
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applied for the failed element deletion. The cutting blade could be modelled as a rigid body 

for simplification in a 2D model. A velocity profile and vibrating displacement should be 

assigned to the blade in the boundary condition. Modelling the interaction between the 

cutting blade and the materials could be selected as Arbitrary Lagrangian Eulerian 

formulation, which could adopt an explicit integration solution for fast convergence.  
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Appendix 1 

The Fabrication of PAA Gel Phantom 

 

The PAA gel phantom was made based on the research of Takegami, 2004:  

Ingredients Concentration in phantom 

Degassed water 44.50% 

Fresh egg white 30% 

40% w/v acrylamide  24.80% 

10% w/v APS 0.50% 

TEMED 0.20% 

 

However, some changes were made for this project. 

Ingredients Concentration in phantom 

Degassed water 44.50% 

Fresh egg white 30% 

40% w/v acrylamide+ 

 2% w/v N,N’-Methylene-bis-

Acrylamide (powder) 

24.80% 

10% w/v APS (powder) 0.50% 

TEMED 0.20% 
Too much egg white results in an opaque gel, while too little causes low sensitivity and low optical contrast.  

 

The directions: 

All preparations take place at room temperature, as followed:  

1. Stir fresh egg white and degassed water together by using magnetic stirrer until 

mixture appears uniform in color and consistency. 

2. Remove the bubbles or foam from the top of the liquid mixture by using a pipette. 

3. Add the acylamide solution to the mixture, stir and then remove the foam. 

4. Stir APS and TEMED to catalyze the polymerization of the acrylamide. 

5. Pour the mixture to the mold and allow the mixture to polymerize for 20-30 mins. 

 

Notice: the mixture will solidify when APS meets TEMED, so please make sure that any 

of these two is added as the last step. 
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Appendix 2   

Publications 
 
Journal papers 

1. D. WANG, M. Lucas, K. E. Tanner, “Characterising the Strain and Temperature 

Fields in a Surrogate Bone Material Subject to Power Ultrasonic Excitation”, 

Strain, 49: 409-419. 

Conference papers 

2. D. Wang, M. Lucas, K. E. Tanner, “Surrogate Bone Materials for Assessing the 

Effects of Ultrasonic Surgical Devices”, 24th European Conference on 

Biomaterials, Dublin, 2011 

3. D. Wang, M. Lucas, K. E. Tanner, “Surrogate Bone Materials for Assessing the 

Effects of Ultrasonic Surgical Devices”, UK Society for Biomaterials Annual 

Conference, Glasgow, 2010 

 

 
 

 


