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Abstract

Formal methods is an area in theoretical computer science that provides the theories

and tools for describing and verifying the correctness of computing systems. Usually,

such systems comprise of concurrent and communicating components. The success of

this field led to the development of quantum formal methods by transferring the ideas of

formal methods to quantum systems. In particular, formal methods provides a system-

atic methodology for verification of systems. Quantum process calculus is a specialised

field in quantum formal methods that helps to describe and analyse the behaviour of

systems that combine quantum and classical elements.

We focus on the theory and applications of quantum process calculus in particular to use

Communicating Quantum Processes (CQP), a quantum process calculus, to model and

analyse quantum information processing (QIP) systems. Previous work on CQP defined

labelled transition relations for CQP in order to describe external interactions and also

established the theory of behavioural equivalence in CQP based on probabilistic branch-

ing bisimilarity. This theory formalizes the idea of observational indistinguishability in

order to prove or verify the correctness of a system, and an important property of the

equivalence is the congruence property. We use the theory to analyse two versions of a

quantum error correcting code system. We use the equational theory of CQP from the

previous work and define an additional three new axioms in order to analyse quantum

protocols comprising quantum secret-sharing, quantum error correction, remote-CNOT

and superdense coding.

We have expanded the framework of modelling in CQP from providing an abstract view

of the quantum system to describe a realistic QIP system such as linear optical quantum

computing (LOQC) and its associated experimental processes. By extending the theory

of behavioural equivalence of CQP, we have formally verified two models of an LOQC

CNOT gate using CQP. The two models use different measurement semantics in order

to work at different levels of abstraction. This flexibility of the process calculus ap-

proach allows descriptions from detailed hardware implementations up to more abstract

specifications.

The orbital angular momentum (OAM) property of light allows us to perform experi-

ments in studying higher dimensional quantum systems and their applications to quan-

tum technologies. In relation to this work, we have extended CQP to model higher

dimensional quantum protocols.
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Chapter 1

Introduction

As predicted by Moore [127] in 1965, computers have become faster and more powerful

and, in the same time, decreased in size. This is explained by the exponential growth

in the number of transistors on a microprocessor while the size of the processor remains

constant. Keyes [99] extrapolates that the constant decrease in size of the computer

circuits will reach the atomic level at a stage where a bit will be represented by a single

atom in the year 2020: at this point quantum effects begin to play. This is an important

reason for the significant research advancement in quantum computing, which is believed

to be the next computing revolution.

A quantum computer is a computation device that uses certain quantum mechanical

properties such as superposition and entanglement to perform computations on data.

The technology promises to offer a very high degree of improvement over its classical

counterpart. Some of the potential improvements provided by quantum computing over

classical computing are:

• A quantum computer is defined in terms of fundamental microscopic systems which

can be implemented by using the smallest known states.

• Quantum algorithms are much more efficient and outperform the classical algo-

rithms for very specific tasks. For instance, Shor’s algorithm [154] for prime

factorisation, Grover’s algorithm [83] for searching unstructured databases and

the quantum Fourier transform [132] for performing Fourier transforms provide a

significant improvement in complexity than the best known classical algorithms

performing the same tasks.

• Quantum cryptography has already provided secure communication systems. The

key distribution network (i.e. the process by which two or more users agree on a

1



Chapter 1 Introduction

shared secret, referred to as the key) has been tested [64, 143]. Quantum cryp-

tographic systems are already commercially available from several companies like

MagiQ Technologies [116], ID Quantique [93], NEC, Toshiba and so on. Protocols

for quantum key distribution, such as BB84 [23] offer unconditional security, a

result which is not yet achieved in classical computation.

Thanks to the above potential factors, quantum computing is already an advanced field

of research involving computer science, physics, mathematics, chemistry and engineering,

with the eventual aim of making a computer that works on the principles of quantum

mechanics. D-Wave Systems [43] claimed to have built the first commercial quantum

device, i.e quantum annealer, although it is yet to perform Shor’s Algorithm. Recently,

the scientists of D-Wave showed that their computer exhibits the quantum phenomenon

called entanglement [111].

In the context of hardware and software technologies, formal verification is the method of

proving the correctness of software programs or algorithms underlying a system. These

techniques play a major role in proving the correctness of systems such as cryptographic

protocols, digital circuits, and provide us an in depth understanding of interactive and

complicated distributed systems. This approach has been successful in verifying mission

critical or safety critical software and is considered as an alternative to testing. SPARK

a formally defined computer language based on the Ada programming language is used

in the systems that are safety and security related [15].

With the emergence of automated formal verification techniques over the past few years,

the field is promising and has several industrial applications, including microprocessor

design, automated business processes. The French railway company (SNCS) uses the

B-Software [13], an automated verification tool, for modelling and verifying the auto-

matic train protection system. Peugeot automobiles uses the B-System [13] for formally

modelling the functioning of subsystems such as lightings, airbags, engine, and so on for

their after sales service.

The aim of this thesis is to describe the theory and applications of the formal techniques

for modelling and verifying quantum information processing systems. This chapter pro-

vides the context by giving a brief account of the research field; the motivation for our

work and the contribution are described. Finally, the contents of the remaining chapters

are outlined.
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1.1 Context

In this section, we review some of the important aspects of quantum information and

quantum computation.

1.1.1 Quantum Information

Information in general is referred to as the data that is contained in a physical system.

Classical information theory provides the mathematical foundation for the storage, trans-

mission and processing of information. Quantum information theory is the study of the

same tasks using quantum mechanical systems.

In quantum mechanics, the state of the system is described by a wave function. The

following six properties are the most important properties of quantum states for differ-

entiating the quantum information from classical information [164]:

• Superposition

• Non-determinism

• Interference

• Uncertainty

• Non-cloneability

• Entanglement

Superposition. The superposition [30, 41] principle states that if a quantum particle

can be in one of several given states, then it can also be in a state that is a linear

combination of any two or more allowable states. This principle is due to the linearity

of the quantum theory and is fundamental in distinguishing qubits (i.e. quantum bits)

from classical bits, which can only ever be in one of the two states 0 and 1, but not in

both. This principle gives rise to the notion that a particle can exist in one location

and another at the same time. There are different interpretations of the meaning of

this principle, but we will be concentrating on a few in the later part of this thesis.

For instance, a photon has the intrinsic property of polarisation, which can either be

horizontal (H), vertical (V) or a superposition of both.
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Non-determinism. To extract the information from a quantum system, one has to

perform a measurement. The quantum theory is non-deterministic as the outcome of a

measurement is not predictable. For example, if an observer measures the polarisation of

a photon, which is assumed to be in a superposition of H and V . Then, the measurement

causes the photon’s polarisation to collapse, at random, to either the H or V with certain

probabilities. This important non-deterministic aspect of quantum theory is in sharp

contrast with the deterministic classical theory more often predicted by the Newtonian

laws of classical physics.

Interference. This is a feature which is exhibited by the wave-like behaviour of the

particle. According to classical theory, constructive interference occurs when the crest

of one wave joins with the crest of the other to produce a much stronger wave, while

destructive interference occurs when the crest of one meets with the trough of the other,

resulting in nothing only when both wave amplitudes are identical. Also, another widely

known fact is that the quantum system can show not only wave-like behaviour but also

particle-like behaviour, referred to as the wave-particle duality [41].

Uncertainty. The common example for this property occurs in quantum theory for a

single particle. The uncertainty principle states that it is impossible to know precisely

both the position and momentum of a quantum particle. Many quantum protocols rely

on this property. For example, BB84 [23] uses the uncertainty principle and statistical

analysis to determine the presence of an eavesdropper on a quantum communication

channel by encoding the information into two complementary variables.

Non-cloneability. The no-cloning theorem [166] states that an unknown quantum

state cannot be cloned or copied. This property is used in many quantum cryptographic

protocols and we illustrate it in Chapter 4.

Entanglement. The last and most striking quantum feature that has no classical

analog is called the entanglement. This refers to the strong quantum correlations that

two or more quantum particles can possess and is used in most communication protocols.

The direct interaction between these quantum particles that are separated in space with

no intermediate mechanism between them is also referred to as the quantum non locality.

For example, entanglement is a resource which is used in the teleportation protocol [24]

that teleports a quantum state from one location to another. More examples of exploiting

this feature is seen in the coming chapters of this thesis.
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Noise is a common feature which is visible in both classical and quantum information.

In quantum information theory the noise is referred to as decoherence [132]. The sta-

bility of a quantum state tends to reduce when the quantum particle interacts with its

environment and this phenomenon is also known as decoherence. This phenomenon is an

obstacle to carry out computation and communication. The development of quantum

error correction techniques (discussed in Chapters 2, 4 and 5) helps to overcome this

problem. Quantum systems such as photons are less susceptible to decoherence than

other systems. This is the main reason which makes photons one of the most prominent

candidates for implementing quantum computing.

The above six phenomena capture the essence of the quantum theory. More aspects of

it will be clearly seen as we progress in the later chapters of the thesis.

1.1.2 Quantum Computation

The concept of using quantum physics for computation was first introduced by Yuri

Manin [117] in 1980 and then by Richard Feynman [67] in 1982. Feynman also described

the difficulties of simulating quantum mechanical systems on classical computers. In

1985, Deutsch [54] proposed an abstract machine that could be used to model the effect

of a quantum computer. This device, called the universal quantum computer or the

quantum Turing machine, is meant to be a simple model which has all the power of

quantum computation.

In analogy with a classical algorithm, a quantum algorithm is a sequence of steps that can

be performed on a quantum computer. Deutsch and Josza [55] proposed one of the first

examples of a quantum algorithm that is exponentially faster than any other classical

algorithm. It is a deterministic algorithm that always provides the correct answer and

demonstrates that there exists, a certain class of problems outside the complexity class

P which could be solved in polynomial time on a quantum computer.

This generated a widespread interest and led to the development of the most well known

algorithms of Shor [154] and Grover [83]. Shor’s algorithm runs exponentially faster

for prime factoring than any known classical algorithm. According to [84], the best

known classical algorithm (the quadratic sieve) for n bit number factorisation runs

in time O(exp(c.log(n)
1
3 loglog(n)

2
3 )) for c = (64

9 )
1
3 while Shor’s algorithm requires

O(n2log(n).log(log(n))) steps on a quantum computer. This is very important, as the

most popular public key system such as RSA [103], based on the one-way character of

multiplying two large prime numbers (typical over 200 decimal digits), assumes that
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there is no polynomial time factorisation algorithm. A quantum computer implement-

ing Shor’s algorithm may be the only possibility which could break the security of such

systems.

In 1996, Grover [83] proposed a quantum algorithm for the efficient search of unordered

lists. The classical algorithm for this problem has a complexity of O(N) for a list of N

elements while the Grover’s algorithm takes O(
√
N) computations. Grover’s algorithm

doesn’t have exponential speed up, but it clearly shows to solve certain computation

problems with high efficiency.

The above quantum algorithms are designed to run on a quantum computer. In re-

cent years, there has been an intense research in developing suitable architectures that

can perform the role. Some of the leading candidates are: atoms in optical cavi-

ties [122], trapped ions [100], superconducting charge [130], nuclear magnetic resonance

in molecules [162], spin and charge based quantum dots [104], trapped electrons and

single photons [107].

Optical quantum computing has the advantage of exhibiting less decoherence when it

comes to transmission of information over large distances which is needed for quantum

key distribution (QKD) [22, 23]. Also with the fact that the present infrastructure

on communication is based on fibre and integrated optics, it provides an experimental

advantage as the components are readily available. Quantum cryptographic systems

are now commercially available [93, 116] and there has been a significant progress in

demonstrating several quantum protocols experimentally.

In this thesis, we concentrate on a certain optical implementation of system for QIP,

and photons naturally allow to integrate quantum computation and quantum communi-

cation. Photons can easily be generated, manipulated and detected. The fact that they

possess large coherence times makes them the excellent candidates for computation and

communications. Linear optical quantum computing (LOQC) is an optical implemen-

tation of small-scale quantum computing [106]. We will be discussing in detail about

LOQC in the later part of the thesis (Chapter 6 and Chapter 7) as we work to model

and verify LOQC, using the mathematical tools and techniques of theoretical computer

science.

1.1.3 Quantum Communication and cryptography

The idea of quantum cryptography was first introduced by Wiesner [163] and later on

further developed by Bennett and Brassard [23] which resulted in the BB84 quantum key

distribution (QKD) protocol. QKD exploits the properties of quantum physics to provide
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a secure communication. This allows two parties to create a shared random key that is

known only to them. This key is used to encrypt and decrypt the messages. In contras

to the bits of classical communication, quantum communication involves encoding of

information in quantum states or qubits. Mostly, photons are used for these quantum

states. The BB84 protocol may be realised with photon polarisaton, ionic quantum

levels or any other quantised 2 level system. Assuming the quantum information is

encoded using the polarisation of photons. The qubits are encoded either in the H − V
basis or the diagonal basis. The presence of the eavesdropper can be detected if he/she

measures the information in the wrong basis which generates random errors that are

communicated to the parties. This was later implemented experimentally over a certain

distance (32cm) [22].

EPR protocol by Ekert [62] and the B92 protocol by Bennet et al. [21] are other examples

for QKD. The EPR protocol uses an entangled pair of qubits from a third party source

and Bell’s theorem [20] to detect the presence of an eavesdropper while in B92 the

Bell’s theorem is not needed. Examples of other cryptographic protocols include bit

commitment [32], coin flipping [23, 27] and secret sharing [88, 118].

Several applications of quantum communication like quantum teleportation [24], super-

dense coding [24] and quantum gate teleportation [79] have been demonstrated. Quan-

tum teleportation is a protocol that enables a quantum state to be transmitted using

entanglement and the communication of two classical bits. Superdense coding is the

reverse of teleportation where two classical bits are transmitted by communicating a

qubit. The protocols are the building blocks to provide information on the construc-

tion of a quantum computer based on just single qubit operations, measurements and

entanglement [79].

In quantum information processing (QIP), qudits (d-level systems) are an extension of

qubits that could improve the speed of computation in comparison to the two dimen-

sional quantum systems. Higher-dimensional QIP and cryptography is an exciting fea-

ture which is exhibited by optical quantum computing using another intrinsic property

of photon called the orbital angular momentum (OAM). There has been a significant

interest in this area of research as it offers the possibility of higher rate of data trans-

mission and more powerful security of cryptographic systems. We will be looking into

this property of light in more detail in Chapter 8 of the thesis.
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1.2 Motivation

After a brief review of the field of quantum computation and information, we focus our

attention now on the motivation of our research in the theory and applications of formal

methods to quantum computing and quantum information.

Formal methods comprise a range of mathematical techniques and tools that are used

in the field of theoretical computer science for modelling and verifying the correctness

of systems. Each technique comes with a specification language for modelling systems

and semantics that helps to describe the systems’ behaviour.

Lowe [115] used process algebra CSP [90] and the automated Failure Divergences Re-

finement (FDR) model checking tool [147] to formally analyse the Needham-Schroeder

public key authentication protocol [131]. He discovered a flaw in the security of the

protocol and verified a corrected version. NASA uses formal methods in a number

of projects. These methods also have an impact in certain areas like microprocessor

designs [98] and safety-critical or high assurance systems [165].

The success of these methods in classical computer science is one of the prime motivation

for applying them to quantum information processing (QIP) systems. We are mainly

concerned with communication and cryptographic systems, which will produce benefits

similar to those already achieved for classical systems. We use formal methods in the

following ways:

• Formal modelling languages for describing systems at various levels of abstraction.

• Property specification languages for characterising the properties of systems.

• Compositional analysis for verifying systems by analysing their individual compo-

nents in isolation.

• Automated tools for facilitating modelling and analysing for large scale applica-

tions.

Quantum process calculi have been developed as part of a programme to transfer ideas

form the field of formal methods to quantum systems. On applying these techniques

to QIP systems, one could achieve a conceptual understanding of concurrent, commu-

nicating systems. Mayers [120] has proved that the quantum key distribution protocol

BB84 is unconditionally secure. But, the information-theoretic proof doesn’t necessarily

confirm that the implemented systems are unconditionally secure. Hence, another mo-

tivation to use formal techniques in QIP is to develop tools for verifying the correctness

of practical quantum technologies such as cryptosystems.
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Communicating Quantum Processes (CQP), a quantum process calculus developed by

Gay and Nagarajan [74], is based on the classical π-calculus [126, 150] with the addition

of operations for QIP. Another established quantum process calculus is qCCS by Feng

et al. [65]. The property of behavioural equivalence of processes in quantum process

calculus helps to verify the correctness of a system. First, we define two processes:

System (which models the system of interest) and Specification (which expresses the

desired behaviour of System), and then prove that these two processes are equivalent, i.e.

the behaviour of the two processes are indistinguishable to an observer. The congruence

property of equivalence makes it more powerful by preserving the equivalence in any

environment. This has been defined for CQP [51] and qCCS [66]. Also, the property

supports equational reasoning which reduces the need to explicitly construct bisimulation

relations which is reported in [51] for CQP with an analysis of the quantum teleportation

protocol.

1.3 Thesis Contribution

The aim of the work described in this thesis is to investigate the theory and applications

of quantum process calculus, Communicating Quantum Processes (CQP). By using the

theory of behavioural equivalence of CQP [51], we analyse a simple three qubit flip error

correcting code [132] and verify two models of the error correction systems by proving

that they are equivalent to their respective specifications. The work is presented in

Chapter 4 of this thesis and is also reported at 8th International Workshop on Quantum

Physics and Logic (QPL 2011) [52].

Automated tools [11, 12, 77], are able to verify that a quantum protocol satisfies a spec-

ification by using the stabilizer formalism [132]. The formalism provides an efficient

simulation but is restricted to Clifford group operations [132]. The use of process calcu-

lus approach that is demonstrated in this thesis provides two significant advantages in

comparison with the automated tools:

• First, since there is no computer simulation, we are not restricted to stabilizer

states.

• Second, since the equivalence is a congruence [51], we can use equational reasoning.

The equational theory of CQP [51] helps to deduce further equivalences, whereas in the

model-checking approach we only obtain the particular fact that is checked. The equa-

tional axioms are presented in [51] and are used in the analysis of quantum teleportation.
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We define an additional three new axioms which helps us to take a step further to anal-

yse protocols comprising superdense coding, quantum error correction, quantum secret

sharing and remote CNOT.

In all previous work of quantum process calculus, a qubit is considered as a localised unit

of information. Modelling in CQP provides us an abstract view of the quantum system.

We present in this thesis an extension of the language CQP to model realistic QIP

systems such as LOQC and the associated experimental processes. This work has been

reported at the 5th International Conference on Reversible Computation (RC2013) [70].

In order to have a physical understanding on the property of equivalence, we present

in Chapter 8 the extension of the theory of equivalence of CQP to verify linear optical

quantum computing (LOQC). This work has ben reported at the Combined 21st Inter-

national Workshop on Expressiveness in Concurrency and 11th Workshop on Structural

Operational Semantics (EXPRESS/SOS 2014) [71].

As mentioned in the earlier section, there has been a significant interest in higher-

dimensional QIP and cryptography. The earlier work of CQP has been primarily fo-

cussed on describing systems comprising quantised 2 level systems. The general frame-

work of CQP makes it easier to adapt to certain tasks. We demonstrate this by extending

the language to describe higher dimensional quantum protocols, i.e. qudit teleportation

and superdense coding. This work has been reported at the 9th International Work-

shop on Quantum Physics and Logic (QPL 2012) [78]. Recent optical experiments have

demonstrated higher-dimensional quantum systems by using the orbital angular momen-

tum (OAM) of a photon. In the later part of the thesis, we present an investigation in

order to describe or model the experiments in CQP.

1.4 Publications

1. S. Franke-Arnold, S. J. Gay and I. V. Puthoor (2014). Verification of linear

optical quantum computing using quantum process calculus. In Proceedings of

Combined 21st International Workshop on Expressiveness in Concurrency and 11th

Workshop on Structural Operational Semantics, Electronic Proceedings in Theo-

retical Computer Science (EPTCS), 160, 111-129.

2. S. Franke-Arnold, S. J. Gay and I. V. Puthoor (2013). Quantum Process Cal-

culus for linear optical quantum Computing. In Proceedings of 5th Conference

on Reversible Computation (RC 2013), Lecture Notes in Computer Science, 7948,

264-276.
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3. S. J. Gay and I. V. Puthoor (2012). Applications of Quantum Process Calculus

to Higher Dimensional Quantum Protocols. In Proceedings of 9th International

Workshop on Quantum Physics and Logic (QPL 2012), EPTCS, 158, 15-28.

4. T. A. S. Davidson, S. J. Gay, R. Nagarajan and I. V. Puthoor (2011). Anal-

ysis of a Quantum Error Correcting Code using Quantum Process Calculus. In

Proceedings of 8th International Workshop on Quantum Physics and Logic (QPL

2011), EPTCS, 95, 67-80.

5. S. J. Gay and I. V. Puthoor (2014). Equational reasoning about quantum pro-

tocols. Under preparation.

1.5 Outline

A short outline of the work presented in this thesis is as follows:

• Chapter 2 discusses the literature review.

• Chapter 3 provides a short review of the relevant background theory and con-

cepts needed in this thesis. We start with some fundamental concepts of quantum

information and, then introduce the theory of process calculus in the classical

regime.

• In Chapter 4, we review the syntax and semantics of CQP and summarise the

theory of behavioural equivalence of CQP [51] based on the probabilistic branching

bisimilarity. The equivalence is also proved to be a congruence. We use this theory

to analyse models of quantum error correction and a model of quantum secret

sharing protocol.

• In Chapter 5, we present briefly the equational theory of CQP [51] for full prob-

abilistic branching bisimilarity. Then, we define three new axioms and illustrate

how we could analyse the protocols comprising superdense coding, quantum error

correction, quantum secret sharing and remote CNOT. We also prove that the new

axioms are sound.

• In Chapter 6, we present an attempt to extend CQP to model linear optical

quantum computing. We do this by allowing multiple particles as information

carriers, described by Fock states. We consider the transfer of information from

one particular qubit realisation (polarisation) to another (path encoding), and

describe post-selection. We illustrate this approach by presenting a model of an

LOQC CNOT gate.
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• In Chapter 7, we extend the theory of probabilistic branching bisimulation in

CQP to model and verify LOQC. We introduce two new measurement semantics

in order to work at different levels of abstraction. To illustrate this we present two

models of an LOQC CNOT gate and verify them with respect to their specifica-

tions. This demonstrates the flexibility of the process calculus approach.

• In Chapter 8, we investigate extensions of the syntax and semantics of CQP to

model higher dimensional protocols. With the help of the extensions, we model

two higher dimensional quantum protocols namely teleportation and superdense

coding. We present a study on the OAM of light.

• Chapter 9 concludes with a final review of our contributions and discussion, as

well as directions of future work.
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Chapter 2

Literature Review

In this chapter, we provide the six areas of literature that we review in this thesis

• Process Calculus

• Quantum Process Calculus

• Automated verification of quantum systems

• Semantic techniques for the analysis of quantum systems

• Quantum Programming Languages

• Quantum computing using linear optics

Each area is discussed as separate sections in this chapter.

2.1 Process Calculus

Process calculi are formal techniques that help us to describe and analyse the be-

haviour of classical concurrent systems that combine both computation and commu-

nication. Some of the most common examples are Calculus of Communicating Sys-

tems (CCS) [124], Algebra of Communicating Processes (ACP) [26], Communicating

Sequential Processes (CSP) [90] and Language Of Temporal Ordering Specification (LO-

TOS) [60].

CCS and CSP are used for describing communicating and concurrent processes at a high

level syntax. CCS uses operational semantics while CSP and ACP uses denotational and

axiomatic semantics respectively. In process calculus, a system and the sub-components
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of the system are defined as processes. The process communicate with each other through

channels. To illustrate the semantics of CCS, we consider an example of communication

between a student and a coffee machine that are defined as processes, ST and CM

respectively

ST = coin . coffee .ST

CM = coin . coffee .CM

coin and coffee are the actions of the two processes. The over line indicates an output

action and the communication between the two processes is given by ST |CM.

Mobility is an important concept which is not modelled by CCS. This can mean several

things:

• processes move in the physical space of computing sites;

• processes move in the virtual space of linked processes;

• links or channels move in the virtual space of linked processes.

π-calculus [126, 150] is regarded as an extension of CCS which includes the channel mo-

bility in processes. The ambient calculus [34] evolved from π-calculus and describes the

movement of processes through administrative domains. Various notions of equivalence

between processes have been defined for these process calculi.

Equivalence relations are important in order to verify the correctness of a system. This

is performed by initially defining two processes, System and Specification. The former

models the system of interest and the latter expresses the desired behaviour of System.

Finally, in order to prove the correctness of System, it is required to prove that System

and Specification are equivalent to each other, which means that their behaviour are

indistinguishable by any observer. Such a proof can be automated and the Concurrency

Workbench of the New Century (CWB-NC) [39] is an automation tool which tests the

equivalence of processes for formalisms CCS, CSP and others.

2.2 Quantum Process Calculus

Quantum process calculi are the quantum versions of process calculus. In addition to the

basic principles of process calculus, quantum process calculus includes certain principles

and operations of quantum mechanics in order to take into account of the quantum

systems. The quantum process calculi developed up to now are Quantum Process Algebra

(QPAlg) [95], Communicating Quantum Processes (CQP) [74] and qCCS [66].
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QPAlg [95] is a language for modelling quantum systems and is quite similar to the

classical process calculi CCS [124] and LOTOS [60]. The extensions that are added

in this quantum process calculus to describe QIP are the rules for applying unitary

operators, measurements and the ability to send and receive qubits. QPAlg uses the

density matrix representation and an operational semantics is given where the labelled

transitions are complemented by probabilistic transitions. The probabilistic transitions

arise due to the result of quantum measurements.

There has been investigations on the equivalence of processes in QPAlg [110]. This

is obtained by defining a probabilistic branching bisimilarity based on the branching

bismilarity given by van Glabbeek and Weijland [160]. The equivalence is shown to

be preserved by all operators except for parallel composition. The two problems that

prevent this preservation of parallel composition are: the restriction of quantum variables

to individual processes and the comparison between probabilistic and non-deterministic

actions. As a result, the equivalence relation is not a congruence for QPAlg. Apart from

this result, there has not been much of a progress in research in QPAlg.

However, there has been a significant progress of research to date for the quantum

process calculi CQP and qCCS. Gay and Nagarajan [129] analysed BB84 by modelling

it in CCS in combination with the results of some initial analysis using CWB-NC for

the verification of the protocol. Their investigations lead them to the development of

CQP [74]. A classical model checking tool PRISM [109] has been used for the analysis

of the quantum systems as a part of the same research programme [76].

CQP is a quantum process calculus which is based on the π-calculus [150] with the

addition of primitive operations for quantum information inspired by Selinger’s quan-

tum programming language (QPL) [152]. The original operational semantics of CQP is

defined using reductions under the assumption that the transmission of qubits is inter-

nal and no external communication is considered. In other words, it is assumed that

the quantum systems are closed to any environment. The quantum measurements lead

to probabilistic transitions, and this is similar to the approach of QPAlg. One of the

distinctive features of CQP is its type system, which ensures that operations can only

be applied to data of the appropriate type. The purpose of the type system is not

only to classify quantum and classical data but also to enforce the view of qubits as

physical resources, each of which has a unique owning process at any given time. A

complete treatment of the type system with associated proofs is presented by Gay and

Nagarajan [75].

The reduction semantics allows to define the behaviour of a complete system but it is

the labelled transitions that are needed to define equivalence between processes. David-

son [51] in his PhD work has provided a different style of definition compared to the

15



Chapter 2 Literature Review

previous work of CQP. The significant difference is in the treatment of quantum measure-

ment by the semantics. As discussed earlier that using the reduction semantics of CQP,

a quantum measurement leads to a probabilistic transition. But to prove equivalence of

processes to have the important property of congruence, the semantics incorporates an

analysis such that a quantum measurement would result in a probabilistic distribution

if the measurement outcome is communicated to the environment. Otherwise, if the

outcome is communicated internally, it would not result in a probabilistic distribution

but would give rise to a mixed distribution. By defining the labelled semantics of CQP,

Davidson defined the theory of equivalence in CQP based on probabilistic branching

bisimilarity [10] and applied the result to protocols quantum teleportation and super-

dense coding. The result is similar to that obtained independently by Feng et al. [66]

for qCCS. The theory is briefly discussed in Chapter 4 and is applied to quantum error

code correction.

The language qCCS by Feng et al. [65] is a quantum extension of the classical value-

passing CCS. The language uses probabilistic transitions to deal with measurement,

however it doesnt treat these as branching transitions, instead maintaining a distribu-

tion over each outcome. There has been investigations on process equivalences, namely

strong and weak probabilistic bisimilarity, which are shown to be preserved by various

operators. More importantly, their equivalences are preserved by parallel composition

with processes that do not change the quantum context.

A later version of qCCS [170] excludes classical information in an attempt to better

understand quantum processes. In qCCS, the quantum operations are modelled us-

ing super-operators. This enables the operational semantics to be defined by a non-

probabilistic transition system. Several notions of equivalence are considered by Ying et

al. [169, 170] and introduced the notion of approximate bisimilarity as a way of quan-

tifying differences in purely quantum behaviour. Their strong reduction-bisimilarity as

a congruence is not sufficient for the analysis of most interesting quantum protocols, as

the language does not include a full treatment of measurement.

A couple of years later Feng et al. [66] define a new version of qCCS. This latest version

models general processes comprising classical and quantum and also maintains the use of

super-operators. They prove that their weak bisimilarity is a congruence and apply their

result to quantum teleportation and superdense coding. Also, using the same result of

qCCS, Kubota et al. [108] verified the security proof of quantum key distribution protocol

BB84 in qCCS.
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2.3 Automated verification of quantum systems

Automated model checking techniques have been applied to many quantum protocols.

Gay et al. [74] use the probabilistic model checker PRISM [109] for the analysis of pro-

tocols namely quantum teleportation, superdense coding and quantum error correction

protocols. Elboukhari et al. [63] also used PRISM for the verification of B92 quantum

key distribution protocol [21].

The QMC (Quantum Model-Checker) system [77] is a model checking tool that is devel-

oped by Papanikolaou to verify quantum protocols satisfying a specification expressed

in a quantum logic. The use of logical formulae is known as property-oriented specifi-

cation, which is different from the process-oriented specification adopted in this thesis.

For simulation efficiency reasons, QMC is restricted to stabilizer formalism and checks

properties in Quantum Computation Tree Logic (QCTL) [14] on models which lie within

the formalism.

Belardinelli et al. [18] developed a technique for the verification of quantum proto-

cols using a model checker MCMAS [114]. They used the framework of D’Hondt and

Panangaden [57] to specify protocols on the basis of epistemic properties. A compiler

is implemented to translate the description of the protocols to the language of MCMAS

for analysis.

Recently, Ardeshir-Larijani et al. has developed a model checking tool [11] for the veri-

fication of quantum protocols using equivalence checking based on Selinter’s QPL. The

tool uses the stabilizer formalism, verified quantum teleportation and error correction.

In a later version, the techniques were extended to model systems comprising concurrent

components [12]. The input-output relations are abstracted by superoperators. This en-

ables the analysis of various quantum protocols with arbitrary input, by simulating their

operation on a finite basis set consisting of stabilizer states.

2.4 Semantic techniques for the analysis of quantum sys-

tems

Abramsky and Coecke [2, 3] developed an approach for analysing quantum protocols by

using the mathematical tools of category theory. Their approach is based on recasting

the standard axiomatisation of quantum mechanics by employing category theory to

describe the protocols at a more abstract level. The method allows for a mathematical

analysis of information flow in quantum protocols and have verified the correctness of

17



Chapter 2 Literature Review

teleportation protocol. Related to the work, Duncan [59] constructed a new category-

theoretic semantics of multiplicative linear logic within Abramsky and Coecke’s frame-

work. The research led to the development of a graphical calculus [40] for reasoning

about quantum systems. The diagrammatic reasoning is supported by the underlying

categorical theory and using graph rewriting techniques, the idea has been implemented

in the tool Quantomatic [58, 101, 102].

Perdrix [139] analysed the properties of entanglement using an abstract interpretation

method. The study focussed on the evolution of the entanglement, while Prost and

Zerrari [144] used the logical approach for the same purpose. Blute et al. [29] introduced

another category-theoretic framework to understand the behaviour of quantum systems.

The focus is on the connections between their approach and linear logic to describe

entanglement.

Adao and Mateus [4] designed a process algebra for the analysis of quantum crypto-

graphic systems based on the quantum random access machine (QRAM). The language

describes the computational complexity of systems and implements a cost model. They

develop the theory of observational equivalence of processes and computational indis-

tinguishability. The language is different from CQP as it describes a system that is a

parallel combination of QRAMs.

2.5 Quantum Programming Languages

Some of the programming languages defined for quantum systems till date are: QCL [135,

136], qGCL [149], QPL [151, 152], QML [7, 8] and the quantum λ-calculus of Van Ton-

der [161]. For more details, see the survey by Gay [73] and Sofge [155].

The general idea of the research in quantum programming languages was to provide

an alternate approach to describe quantum systems compared to the one given by the

quantum circuit diagrams. Probably, the earliest proposal was given by Knill [105] in

1996 where he defines a pseudocode for the description of quantum algorithms. This was

connected to the QRAM. Omer developed one of the first real quantum programming

language QCL [135, 136]. He defined the syntax using C and implemented a simulator

for the language. QCL contains a full programming language as a sublanguage and

provides several useful features such as memory management and automatic derivation

of conditional versions of operators.

Sanders and Zuliani [149] defined a guarded-command language called qGCL. The se-

mantics of the language is in the form of either predicate transformers or relations, and

refinement calculus. The focus of the work is on the derivation of quantum algorithms.
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Selinger [152] defines a functional language QPL, with a static type system. The deno-

tational semantic approach uses the standard mechanism of complete partial orders and

continuous functions in the framework of vector spaces and superoperators. One of the

important feature is the treatment of partiality arising from non-terminating recursion

and loops. There are other ideas suggested by the same author [153] for denotational

semantics of a higher-order quantum programming language aiming to provide a secure

theoretical foundation for different styles of quantum programming language.

Altenkirch and Grattage [7, 8] developed a functional programming language, QML,

where the semantics of the language is expressed in category-theoretic terms. The type

system of QML is based on linear logic and a sound and complete equational theory for

the measurement free QML is given in [9].

Danos et al. [47, 48] studied the one-way model of quantum computation. They devel-

oped notations based on patterns for entanglement, measurement and local correction.

The research focussed on defining a measurement calculus based on the equation of pat-

terns. This led to the development of an algorithm where any pattern can be transformed

to a form consisting of entanglement, then followed by measurement and by correction.

This formalism has been used to derive several properties of measurement-based circuits.

A notion of operational equivalence is considered and is applied to shown that quantum

teleportation is equivalent to a direct quantum channel [46].

Recently, Green et al. [81] introduced an embedded functional programming language for

quantum computation called Quipper. The language uses Haskell as the host language

and thereby it can use a collection of data types, combinators, and a library of functions

of Haskell, along with an idiom (i.e. a preferred style of writing embedded programmes).

The authors illustrate the language by describing quantum teleportation, the quantum

Fourier transform (QFT), and an application of QFT known as quantum adder.

2.6 Quantum computing using linear optics

Optical implementations are one of the prominent candidates of quantum computing.

The important reason is that photons are easily generated, manipulated and detected.

Several proposals that manipulate the state of light are carried out. This ranges from cat

state logic [145] to encoding a qubit in harmonic oscillator [80] and continous-variable

quantum computing [113].

In this thesis, we focus on quantum computing with linear quantum optics and single

photons. The advantage of using photons is that it possess large coherence times which

makes them suitable for computation and communication applications. The drawback
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is that there is no natural interaction between photons which makes it hard to imple-

ment two-qubit quantum gates that are essential for quantum computing. To introduce

an effective interaction between photons in one way or another is the interesting and

essential part in an optical quantum computer.

One of the methods to induce the interaction is to introduce nonlinearities referred

to as cross-Kerr effects [37, 92]. Although these nonlinearities induce a single-photon

controlled-Not operation, they are very small in magnitude to serve the actual purpose

of quantum computing. Another alternate method to produce an effective interaction

between photons is to make projective measurements with photodetectors. The difficulty

of this technique arises due to the probabilistic nature of the optical quantum gates.

This is because the gate fails more often and destroys the information in the quantum

computation. But this can be overcome by using a polynomial number of optical modes.

In [36], Cerf et al. proposed a scheme for quantum logic with only linear optical devices

and a single photon. To simulate n qubits, a single photon is put into 2n different paths.

They show that implementation of a universal set of gates is possible by demonstrating a

Hadamard, CNOT and reverse CNOT gates. To implement a Hadamard gate, they use

linear optical elements like beam splitter and phase shifters. These elements are vital

and more discussions are present in Chapters 6 and 7 of the thesis. Their CNOT gate is

encoded with respect to the polarisation and position of photon. The problem with this

scheme is that n qubits requires 2n paths which in turn requires 2n − 1 beam splitters

to setup, which is not scalable as it means that one qubit encoded in polarisation will

need 2n−1 optical paths.

In 2001, Knill, Laflamme and Milburn (KLM) [106] designed a protocol showing the

possibility of scalable quantum computing by using only single photon sources and de-

tectors, and simple (linear) optical circuits consisting of beam splitters. They demon-

strated that two-photon gates that are probabilistic can be teleported into a quantum

circuit with high probability. The protocol initiated experiments in quantum optics that

demonstrate the operation of high-fidelity probabilistic gates [134, 141].

Prior to the work of KLM, the concept of scalable quantum computing was believed

to be performed using a non-linear component, such as Kerr medium. These media

are characterised by having a refractive index that contains a nonlinear component.

Yamamoto et al. [168] developed a Kerr base Fredkin gate which gave rise to several

architectures based on nonlinear optical gates [49, 91]. More details are provided in the

review article by Kok et al. [107].
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Background

In this chapter, we provide a review on the important concepts that are needed for the

understanding of the thesis.

3.1 Qubits

The fundamental unit of quantum information processing (QIP) is a quantum bit or a

qubit. A qubit is quantum analogue of a classical bit. It is associated with a complex

Hilbert space H, called its state space. Any quantum system is completely described by

a state vector |ψ〉 within its state space, which is a 2-dimensional vector space over the

complex numbers (C).

The set of vectors {|0〉, |1〉} is called the standard basis of the state space H. We can

write the general state of a qubit as

|ψ〉 = α0|0〉+ α1|1〉 (3.1)

where α0, α1 ∈ C are complex amplitudes such that |α0|2 + |α1|2 = 1. In comparison to

a classical bit, whose state is either 0 or 1, the state space of a qubit therefore consists

of all superpositions of the basis states. The states alternatively can be represented by

column vectors: (
α0

α1

)
= α0

(
1

0

)
+ α1

(
0

1

)
= α0|0〉+ α1|1〉

The state space of a multiple qubit system is given by the tensor product (⊗) of each

qubit state space. An n-qubit is a state in the tensor product Hilbert space given by

(H)⊗n = H ⊗ . . . ⊗ H. The standard basis is the orthonormal basis given by the 2n
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classical n-qubits.

|i1i2 . . . in〉 = |i1〉 ⊗ |i2〉 ⊗ . . . ⊗ |in〉

where ij ∈ {0, 1}.

For example, a two-qubit system has the orthonormal basis {|00〉, |01〉, |10〉, |11〉}. The

general state is given by the state vector:

|ψ〉 = α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉 =


α0

α1

α2

α3

 (3.2)

where α0, α1, α2, α3 ∈ C and |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1

The two-qubit state can be represented by the tensor product of two single qubit states

provided the two-qubit quantum state is separable. For example, if we have have a

two-qubit state given by |ψ〉 = α0α2|00〉 + α0α3|01〉 + α1α2|10〉 + α1α3|11〉. This state

can be written as (α0|0〉+ α1|1〉)⊗ (α2|0〉+ α3|1〉) and is given by the vector notation:

|ψ〉 =


α0α2

α0α3

α1α2

α1α3

 =

(
α0

α1

)
⊗

(
α2

α3

)
(3.3)

3.2 Quantum entanglement

One of the concepts which has brought a lot of discussions in the foundations of quantum

mechanics is quantum entanglement. This originates from the famous Gendanken ex-

periment proposed by Einstein, Podolsky and Rosen (EPR) in 1935 [61]. Entanglement

is a non local quantum correlation between two or more quantum-mechanical systems.

This means that the individual outcomes of the observables cannot be determined with

certainty for each of the two or more EPR systems, but the outcomes of the observables

for the systems are always strictly correlated. The existence of such non local quantum

correlation was established by Bell in 1960 and can be quantified by the Bell’s inequal-

ity [20]. The generalisation is known as CHSH-Bell’s inequality [38]. Quantum systems

that exhibit entanglement may be either two-level (qubit) systems such as electron spins

and photon polarisations, or continuous variable systems such as position-momentum

[61, 159], or discrete systems in higher dimensions, as orbital angular momentum (OAM)

[94, 121]. In our work, we use the most simple and primary entangled system, that is

the entanglement shared between two qubits.
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An example for an entangled state between two qubits in two distinguishable systems

are given by

|φ+〉 =
1√
2

(|00〉+ |11〉) (3.4)

The state given by Eq. 3.4 cannot be written as a direct product of two separate sys-

tems which means that the two systems are no longer independent but hold quantum

correlation between them.

The Bell bases or Bell states are the four orthogonal states that are given by:

|φ±〉 = 1√
2
(|00〉 ± |11〉),

|ψ±〉 = 1√
2
(|01〉 ± |10〉)

These states hold complete entanglement and any 2-qubit state can be produced by a

linear combination of the Bell states.

3.3 Quantum operators for qubits

The time-evolution of a closed quantum system can be described by unitary operations

that are acted upon the quantum state. A linear operator M on the Hilbert space H is

a mapping that assigns to every state |ψ〉 in H a state M|ψ〉 in H , in such a way that

M(|ψ〉+ |φ〉) = M|ψ〉+ M|φ〉

A linear operator U is unitary if UU† = U†U = I, where I is the identity operator and the

symbol U † is the conjugate transpose of U . For example, the Hadamard transformation

is defined by

H|0〉 =
1√
2
|0〉+

1√
2
|1〉

H|1〉 =
1√
2
|0〉 − 1√

2
|1〉

This is interesting as it can create and remove superpositions and corresponds to the

matrix:

H = 1√
2

(
1 1

1 −1

)
.

We will also make use of the Pauli operators and give their matrix representations with

respect to the standard basis. These are single qubit operators, denoted by I,X,Y,Z or
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σ0, σ1, σ2, σ3.

I =

(
1 0

0 1

)
X =

(
0 1

1 0

)

Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)

The action of these quantum operators on the quantum state |ψ〉 given by Eqn. 3.1 are

as follows:
I|ψ〉 = α0|0〉+ α1|1〉
X|ψ〉 = α0|1〉+ α1|0〉

Y|ψ〉 = −iα1|0〉+ iα0|1〉
Z|ψ〉 = α0|0〉 − α1|1〉

The next quantum operator is important as it is a primary component in building

a quantum computer. This is the controlled-NOT or CNOT operator. The matrix

representation for a two-qubit CNOT operator is given by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The action of the CNOT operator is that it flips the second qubit (target qubit) if and

only if the first qubit (control qubit) is 1. On basis states, we have CNOT|0x〉 = |0x〉
and CNOT|1x〉 = |1y〉 where x, y ∈ {0, 1} and y = x ⊕ 1 with ⊕ denoting addition

modulo 2. The combination of CNOT and Hadamard operator, is mainly used to create

and remove entanglement. For example, if we have a two qubit state |ψ〉 = |00〉 (which

is separable), we then apply the Hadamard operator on the first qubit, followed by a

CNOT operation to both qubits, to get:

CNOT.(H⊗ I)|00〉 = CNOT(
1√
2

(|00〉+ |10〉)) =
1√
2

(|00〉+ |11〉)

3.4 Pure and mixed states: density matrix

A quantum state is said to be pure if it is represented by a single ket vector in a

Hilbert space, which is |ψ〉 =
∑

i∈{0,1} αi|i〉. The Bell states are pure states since they

are expressed by the linear combination of the basis vectors. A mixed quantum state

is a collection of pure states |ψi〉, each associated with probability pi satisfying the

conditions 1 ≥ pi ≥ 0 and
∑

i pi = 1. The main reason to consider mixed states is

24



Chapter 3 Background

because the quantum states are difficult to isolate and hence are often entangled with

the environment. So, in order to express quantum systems which includes mixed states

in general, we introduce the density matrix (denoted as ρ) representation for an ensemble

of pure states {pi, |ψi〉}

ρ =
∑

i pi|ψi〉〈ψi|

For example, for a given state |ψ〉, if |α0|2 and |α1|2 are respective probabilities for the

states |0〉 and |1〉, then the density matrix is given by

ρ = |α0|2|0〉〈0|+ |α1|2|1〉〈1| =

(
|α0|2 0

0 |α1|2

)

The density matrix representation also helps to describe subsystems within a composite

system. Suppose, we have a composite system whose Hilbert space is given by the tensor

product HA⊗HB where HA and HB are the Hilbert spaces for the subsystems A and B

respectively. If |Ψ〉 =
∑

i |ψi〉A|φi〉B and ρAB is the density matrix of the system, then

the subsystems can be described by their reduced density matrices. The reduced density

matrix of A (respectively B) is

ρA = TrB(ρAB) ρB = TrA(ρAB)

Here the trace is performed over HB only (respectively HA). This is called a partial

trace and can be defined as follows

ρA = TrB(ρAB) = TrB(|ψi〉〈ψj | ⊗ |φi〉〈φj |) = |ψi〉〈ψj |(Tr|φi〉〈φj |) = |ψi〉〈ψj |〈φj |φi〉

For instance, if we consider an entangled 2-qubit system such as |φ+〉 = 1√
2
(|00〉+ |11〉)

then the reduced density matrix ρA of the qubit A is given by

ρA =
|0〉〈0|+ |1〉〈1|

2
=

1

2

(
1 0

0 1

)
(3.5)

This is the completely mixed state in the 1-qubit system. In general, any state whether

it’s pure or mixed is characterised by its density matrix. It’s also important to note that

two systems can have the same density matrix but need not have the same state and still

would produce the same results on measurement. To illustrate this, we consider a mixed

state |+〉 (with probability 1
2) and |−〉 (with probability 1

2) where |+〉 = 1√
2
(|0〉 + |1〉)

25



Chapter 3 Background

and |−〉 = 1√
2
(|0〉 − |1〉). Then, we get:

ρA =
|+〉〈+|+ |−〉〈−|

2
=

1

2

(
1 0

0 1

)
(3.6)

Therefore, from Eq. 3.5 and Eq.3.6 we can say that two different mixed states can have

the same density matrix.

3.5 Measurement

Measurement is a process performed to extract information from a quantum state |ψ〉.
This is an irreversible process as once it is completed and the information is obtained,

it is not possible to return to the initial state. It is also a non - deterministic process as

quantum measurements produce a probabilistic outcome that is dependent on the state

of the system. Quantum measurements are described by a set of measurement operators

{Mm} that act on the state space of the system. For an orthonormal basis {|ψm〉}, a

measurement on the quantum state |ψ〉 in the basis representation will provide the value

ψm. This defines the measurement operator

Mm = |ψm〉〈ψm| (3.7)

that acts on the state |ψ〉 =
∑

i∈{0,1} αi|i〉. Thus, the measurement operator Mm extracts

the component of a quantum state associated with ψm,

Mm|ψ〉 = |ψm〉〈ψm|ψ〉 =
∑

i∈{0,1}

αiδim|ψm〉 = αm|ψm〉 (3.8)

Measurement operators are Hermitian, that is M† = M, and the index m refers to the

possible measurement outcomes. For a system in state |ψ〉, the probability that the

outcome of the measurement is m is given by

p(m) = 〈ψ|M†mMm|ψ〉 (3.9)

and the state after the measurement is Mm|ψ〉√
〈ψ|M†mMm|ψ〉

.

An important consequence of the measurement process is that it changes the quantum

state. Unlike unitary operators, this change is not reversible and hence is not possible to

discover more information about the original state through multiple measurements. The
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Hadamard H PauliX X qubit

Pauli Y Y Pauli Z Z classical bit

Unitary U Measurement

Classical control Controlled U • CNOT •

U U

Figure 3.1: Basic elements that are used in a quantum circuit

measurement operators of a quantum measurement satisfy the completeness property

∑
m

M†mMm = I (3.10)

This corresponds to the condition that the probabilities sum to 1.

3.6 Modelling for Quantum computation: Quantum cir-

cuits

The fundamentals of quantum operations which can be applied to qubits were introduced

in the previous sections. In general, a quantum computation of an algorithm consists of

these operations.

The Quantum circuit model was first introduced by Deutsch [54], a convenient method

of describing a sequence of quantum operations. This is analogous to classical computing

circuits where the logic gates are replaced by quantum gates and the classical wires with

quantum wires.

A quantum circuit consists of a finite sequence of parallel wires which run in a single

direction from left to right. Each wire represents the state of one qubit. The quantum

gates corresponding to the unitary operations that are acting upon the qubits are repre-

sented by different boxes, which are denoted in Figure 3.1. The quantum measurements

are normally performed on the standard basis {|0〉, |1〉} and are designated by a meter

symbol. The outcomes of the measurement are classical values represented as double

wires or lines. The time scale is increasing, when the circuit is read from left to right.

All quantum gates have the same number of input qubits as output qubits. The classical

control of quantum gates is represented by a classical wire entering a quantum gate.
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Alice

x = |ψ〉 • H •

EPR y = |0〉 H • •

z = |0〉 XM1 ZM2 |ψ〉

Bob

Figure 3.2: Teleportation

Controlled U and CNOT are the controlled quantum gates. The symbol • represents

the control qubit for both gates and for CNOT gate, the target is represented with ⊕.

In the next section, we describe the modelling and working of certain quantum protocols

with the help of quantum circuits.

3.7 Quantum Protocols

3.7.1 Quantum Teleportation

Quantum teleportation [16, 24, 72] is a process by which a quantum state can be trans-

ferred from one user to another. This is performed with the help of communicating two

classical bits and using an entangled pair of qubits that is shared between the two users.

The quantum circuit model of the protocol is shown in Figure 3.2. Using the familiar

convention, we say the sender is Alice and the receiver is Bob.

Alice possess the qubit labelled x which is in some unknown state |ψ〉; this is the qubit

to be teleported. Qubits y and z is an EPR pair, which is generated by applying a

Hadamard and CNOT operation to the qubits. This is represented by the Figure 3.3

which is a part of the teleportation circuit.

y = |0〉 H •

z = |0〉

}
|φ+〉

Figure 3.3: Entangled pair (EPR pair)

The entangled state or EPR pair, is the Bell state represented as |φ+〉 which is 1√
2
(|0〉y|0〉z+

|1〉y|1〉z). The qubits y and z are given to Alice and Bob respectively.

Before measurement, Alice applies the CNOT operation to her qubits x and y, followed

by the Hadamard operator to qubit x. After measuring her qubits, she sends the results
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(classical values M1 and M2) to Bob. Assuming the arbitrary state is |ψ〉 = α|0〉+β|1〉,
then there are four possible measurement results with each having the same probability

of 0.25.

Quantum State M1 M2 Bob’s unitary operators

α|000〉+ β|001〉 0 0 I

α|010〉 − β|011〉 0 1 Z

α|101〉+ β|100〉 1 0 X

α|111〉 − β|110〉 1 1 ZX

Table 3.1: Teleportation: Operation of Bob

Table 3.1 shows the four possible cases where Bob can fix up his state to recover |ψ〉 by

applying the appropriate unitary operations. Based on the classical bits (M1 and M2),

Bob applies the necessary quantum operators to his qubit z. By performing this, he can

recover the original state |ψ〉. For example, if we see the first case, Bob gets 0 as both

values from Alice. He knows that the state of his qubit z is the same as that of |ψ〉 and

it is not necessary for him to apply any unitary operations.

3.7.2 Superdense Coding

Superdense coding [25] is a protocol which is similar to quantum teleportation as it

involves two parties (Alice and Bob). As in the previous protocol, Alice and Bob may

be a long distance away from one another. The difference between this protocol and

teleportation is that in this case the goal is to transmit some classical data from Alice

to Bob. Alice is in possession of two classical bits which she communicates to Bob by

exchanging a single qubit. The term superdense refers to this doubling of efficiency.

a • Alice

b • Bob

EPR y = |0〉 H • X Z • H a

z = |0〉 b

Figure 3.4: Superdense coding protocol

The quantum circuit for this protocol is given in Figure 3.4. As in teleportation, this

protocol also involves the two users sharing a pair of entangled qubits (EPR Pair). Alice

is having the first qubit y, while Bob has possession of the second qubit z. Alice also

has two classical bits a and b, which she intends to communicate to Bob. She performs
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the task by applying a combination of the Pauli operators X and Z to her qubit y

depending on the classical values a and b. The theory of Pauli operators were discussed

in the previous section 3.3. By sending the single qubit in her possession to Bob, it

turns out that Alice can communicate two classical bits to Bob. Table 3.2 provides the

operation of the protocol. First, Alice performs her encoding.

a b Alice Operation Resulting quantum state Bob’s quantum state

0 0 I 1√
2
(|00〉+ |11〉) |00〉

0 1 X 1√
2
(|10〉+ |01〉) |01〉

1 0 Z 1√
2
(|00〉 − |11〉) |10〉

1 1 XZ 1√
2
(|01〉 − |10〉) |11〉

Table 3.2: Operation of superdense coding protocol

After the encoding, she sends her qubit to Bob. Bob now has two qubits. He does a

CNOT and a Hadamard operations before he performs the measurement on the two

qubits. The quantum state before measurement is |ab〉 and the results he obtains from

the measurement are the classical bits that Alice wishes to communicate. The outcomes

are certain because the resulting quantum state is not a superposition.

3.8 Quantum Error Correction

As in any information processing systems, noise or errors are a great problem in quantum

computing. Errors can arise when qubits are sent along quantum channels which causes

decoherence. It can also arise from entanglement with the environment. This can result

in the input state being changed. Quantum error-correcting codes [56, 132, 157] are

introduced to protect the quantum information against the noise. The idea, called

redundancy, is to introduce additional information apart from the original message.

Redundancy is performed by encoding the qubits in a way to protect them against the

effects of noise. Later after the computation, the qubits are then recovered by the process

of decoding. We assume that encoding and decoding are done perfectly and do not cause

any error. There are quite a few quantum error correcting codes and in this thesis, we

concentrate on the three qubit bit flip code.

3.8.1 Quantum Error Correction Codes (QECC)

Like the classical error correction code, a QECC system comprises of four stages as

represented in Figure 3.5.
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|ψ〉 |ψ〉Encoder Error Detection Recovery Decoder

Figure 3.5: Four main stages of quantum error correction.

The first stage involves encoding the m qubits into n qubits where n > m and the extra

n−m qubits are the redundancy which protects actual data from noise. It is assumed

that the errors can only occur during the transmission. The next two stages are error

detection and recovery, which happens before the message is received. These two stages

combine to form the error-correction. The final phase is decoding the qubits to retrieve

the original data. The two simplest codes are the three qubit bit flip code and the three

qubit phase flip code. In this work, we concentrate on the three qubit bit flip code and

the quantum circuit for the three qubit error correction is given in Figure 3.6. The boxed

lines in the circuit represents the stages of the quantum error correction code.

Encoding Potential Error Detection Recovery Decoding

|ψ〉 • • Xjk • • Xjk • • |ψ〉

|0〉 Xjk • Xjk

|0〉 Xjk • Xjk

|0〉 H • • • |0〉 • • •

|0〉 H • • • |0〉 • • •

Figure 3.6: Three qubit error correction

The encoding for the two pure states of the three qubit bit code are defined as

|0〉 → |0L〉 ≡ |000〉

|1〉 → |1L〉 ≡ |111〉

This is similar to the classical three bit repetition code but in this case only the basis

states are cloned. This is because of the no-cloning theorem. Hence, an arbitrary qubit

|ψ〉 = α|0〉 + β|1〉 is encoded as |ψL〉 = α|0L〉 + β|1L〉. Each of the three qubits is then

transmitted along a channel which can cause a bit flip. The code can correct up to 1 bit

flip error. Bit flip error is equivalent to a Pauli X operator on a qubit.

Error-correction involves first detecting the error and then correcting it. The detection

involves in carrying out a projection measurement performed by the projection operator

P . This helps to determine about the occurrence of the error and also provides the

information on which qubit is flipped if the error has occurred. The measurement result

is called the error syndrome and there are four different error syndromes corresponding
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to a projection operator being used. Table 3.3 shows the projection operators used and

the type of error that has occurred.

Projection Operator Error indication Syndrome Results Action

P0 ≡ |000〉〈000|+ |111〉〈111| No error 0 No action

P1 ≡ |100〉〈100|+ |011〉〈011| Bit flip on qubit 1 1 X1

P2 ≡ |010〉〈010|+ |101〉〈101| Bit flip on qubit 2 2 X2

P3 ≡ |001〉〈001|+ |110〉〈110| Bit flip on qubit 3 3 X3

Table 3.3: Three qubit bit flip code

For example, if the bit flip occurs on the first qubit then the quantum state with error

is |ψL〉 = α|100〉+ β|011〉. Hence, the outcome of the operation 〈ψL|P1|ψL〉 is always 1.

It is important to note that the error syndrome measurement does not alter the state

before and after the measurement but only contains the information about the kind of

error which has occurred. The result of the error syndrome results are provided in table

3.3. Depending on the result the necessary unitary operation is performed on the qubit

to flip it again in order to recover the original state

3.9 Process Calculus

Process calculi (or process algebras) are algebraic methods which are used for formally

modelling systems that involve concurrent and communicating components. They pro-

vide laws that allow formal reasoning about equivalences between systems. The most

common process calculi are CCS [123, 124], ACP [26] and CSP [89]. The key features

for all process calculi are the following:

• Syntax. This is the basic component of process algebra and is determined by the

combination of operators and some primitives. This is a set of rules that define the

combinations of objects that are considered to be perfectly structured programs

in that language.

• Semantics. The syntax is accompanied with the semantics to describe the be-

haviour of the system. There are many approaches in describing the semantics of

sequential systems and the main ones are namely operational, denotational and al-

gebraic semantics. The work in this thesis follows structural operational semantics

that defines step by step execution of a system.

• Behavioural equivalence. Mechanisms that allow to analyse the systems and iden-

tify whether they exhibit the same behaviour. In some of the process algebras,

there are certain algebraic rules which are called equational axioms that helps
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in capturing certain identical properties of the systems through the behavioural

operational semantics.

The process calculus approach to verification is to define a process Model which models

the system of interest, another process Specification which expresses the specification

that Model should satisfy, and then prove that Model and Specification are equivalent.

Usually Specification is defined in a sufficiently simple way that it can be taken as self-

evident as it describes the intended behaviour at a high-level. The correctness of the

Model with respect to the Specification can be proved by using the theory of behavioural

equivalence, which is discussed in detail in the later part of the thesis.

3.9.1 Labelled Transition Systems

An operational semantics of process calculus models a system by either a reduction

system or a labelled transition system (LTS). The first scenario describes the evolution

of a system without interacting with the environment by using sequentialisation or inter-

process communications. The second case describes the evolution of a system which also

includes the interactions between the system and the environment. This is essential as we

study the behaviour of communications systems not only with respect to the interactions

between its components but also the influence of the surrounding the system is placed

in. Hence, we concentrate the rest of the thesis on the use of LTS rather than the

reductions.

The LTS consists of a set of states, a set of transition labels and a transition relation. The

states {Qi} are generally the process terms while the transition labels are the actions

{αi}. The actions represent the interactions that are possible between the states and

normally are classified as visible or observable and invisible. The visible actions include

the input and the output. We will use the notations a?[x] and a![x] for input and output

respectively, where a is the channel through which the data x is communicated. The

invisible action is denoted as τ which represents the internal action. Together, we use

the notation P
α−→ Q as a transition relation, which means that the process P can

perform an action α and after completing the action it would reach to the state where

its remaining behaviour is Q.

The transition relation P
αi−→ Qi represents branching where {Qi} is a set of states and

{αi} is a set of actions which P can perform, which we can infer to the capability of P .

In order to associate an LTS to a process term, the inference systems are used [140].
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Inference System. This is a set of inference rules of the form:

p1, . . . , pn

c

where p1, . . . , pn are the premises and c is the conclusion. Each rule implies that if all

the premises are true then the conclusion is true. If there are no premises then the rule

is called an axiom and is of the form:

c

Transition Rules. The set of rules for operational semantics using the above inference

system are defined as actions (α . P performs α and then behaves as P ), parallel composi-

tion (P |Q allows computation in P and Q to proceed simultaneously and independently)

and choice (P +Q behaves as P or as Q):

α . P
α−→ P

P
α−→ P ′

P |Q α−→ P ′ |Q

P
α−→ P ′

P |Q α−→ P ′ |Q

P
α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

The rule for synchronisation which allows interaction between the processes, that is the

communication between P and Q, and the value-passing is:

P
a![y]−→ P ′ Q

a?[x]−→ Q′

P |Q τ−→ P ′ |Q′{y/x}

In the above case, communication results from an output by one process (P ) and a

corresponding input by another process (Q). A common feature in value-passing calculus

is that the output values are substituted in the receiving side. This is denoted as Q′{y/x}
where the value y is substituted in place of x. The communication is considered as an

internal action , and hence is classified as a τ action.

Null process. Process algebra also includes a null process (denoted as 0) which has no

transition. The semantics of this process is designed by the fact that there is no rule to

define its transition.

In a formal way, we say that an LTS represents a directed graph where the nodes

corresponds to the process terms or states and the transition relation
α−→ between

34



Chapter 3 Background

d?[1] . a![5] .0 | a?[v] .0

a![5] .0 | a?[v] .0

a![5] | 0

0 | 0

a![5]

a?[v]

0 | a?[v] .0

0 | 0

a?[v]

a![5]

0 | 0

τ

d?[1]

d?[1] .0 | 0

0 | 0

d?[1]

τ

d?[1] . a![5] .0 | 0

a![5] .0 | 0

0 | 0

a![5]

d?[1]

d?[1] .0 | 0

0 | 0

d?[1]

a![5]

a?[v]

Figure 3.7: A labelled transition system

nodes corresponds to process transitions. Figure 3.7 is an example of a LTS where the

transitions through the graph represent the possible computations.

The process d?[1] . a![5] .0 | a?[v] .0 has two components which are in parallel. The

branches show the possible computations of these two processes. The leftmost branch,

labelled as d?[1], represents an external communication (that is input from environment)

and then is followed by a synchronisation or internal communication, which is again

represented by a τ . The middle branch shows that the synchronisation step happens

first and is then followed by unitary operation which in case of parallel composition that

the computations can occur independently. The right most branch shows an external

input action and every node represents a process term that describes the behaviour at

that point.

3.9.2 Behavioural Equivalence - Bisimulation

The concept of behavioural equivalence helps to analyse the behaviour of the system. It

is useful to have theories which can establish whether two systems are equivalent or how

”approximately” equivalent they are with each other. The idea is that two processes are

equivalent if their behaviour is indistinguishable by an observer. That is, if they do the

same thing in the same circumstances. If the same techniques are used to model what

is required of a system (its Specification) and how it can actually be implemented (its

System) then it is possible to use the concept of equivalence to prove that a particular

description of a system is correct with respect to a given abstract version.
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P
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P ′
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P ′′
β

β

P ′′′

Q

α

Q′

β

Q′′

Figure 3.8: Strong Bisimulation

Bisimulation equivalence also known as observational equivalence was developed by Park

[138]. This considers two systems to be equivalent if they can simulate each other step

after step which is based on the concept of simulation due to Milner [123]. Bisimulation

requires that the simulation relation to be symmetric. Hence this is stronger than the

simulation relation as it not only requires the two processes to simulate each other but

their simulation relations has to be symmetric to each other.

Strong Bisimulation

Strong bisimulation requires every action, whether its visible or internal of the processes

to match each other.

Definition 3.1 (Strong Bisimulation). A relation R is a strong bisimulation if whenever

(P,Q) ∈ R then for all labels α, both

1. if P
α−→ P ′ then Q

α−→ Q′ and (P ′, Q′) ∈ R, and

2. if Q
α−→ Q′ then P

α−→ P ′ and (P ′, Q′) ∈ R.

For a given labelled transition system there are many relations that have the property

of strong bisimulation, including (trivially) the empty relation. The key idea is to define

the largest strong bisimulation which is strong bismilarity. In other words, P and Q are

strong bisimilar (denoted P ∼ Q) if and only if there exists a bisimulation R such that

(P,Q) ∈ R. Figure 3.8 gives an example of strong bisimulation (P ∼ Q). We find that

there exists a relation where R = {(P,Q), (P ′, Q′), (P ′′, Q′), (P ′′′, Q′′)}.

Weak Bisimulation

Generally in any two system, the internal behaviours are often different. Strong bisim-

ulation requires each and every computation to be matched which makes it not possible

to verify the systems if their internal actions are not the same. In order to solve this

problem, there is another useful concept in process algebra called the weak bisimulation
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P
α

P ′

τ

P ′′

α

P ′′′

Q

α

Q′

Figure 3.9: Weak Bisimulation

which verifies the system that possess external actions in spite of having different inter-

nal actions. In general, weak bisimulation allows internal actions to be matched by zero

or more τ actions.

We use the notation =⇒ to denote zero or more τ transitions; and
α

=⇒ be equivalent to

=⇒ α−→=⇒.

Definition 3.2 (Weak Bisimulation). A relation R is a weak bisimulation if whenever

(P,Q) ∈ R then, both

1. if P
α−→ P ′ then Q

α
=⇒ Q′ and (P ′, Q′) ∈ R, and

2. if Q
α−→ Q′ then P

α
=⇒ P ′ and (P ′, Q′) ∈ R.

Processes P and Q are weak bisimilar (denoted P ≈ Q) if and only if there ex-

ists a bisimulation R such that (P,Q) ∈ R. An example for weak bisimilar pro-

cesses (P ≈ Q) is provided in Figure 3.9. We find that there exists a relation where

R = {(P,Q), (P ′, Q′), (P ′′′, Q′)}.

Branching Bisimulation

Branching bisimulation [160] is another equivalence property similar to weak bisimula-

tion which also does not give importance to internal actions. The difference between the

equivalences is that in branching bisimulation the branching structure is also matched.

Definition 3.3 (Branching Bisimulation). A relation R is a branching bisimulation if

whenever (P,Q) ∈ R then, both

1. if P
α−→ P ′ then Q

τ
=⇒ Q′

α−→ Q′′ , (P,Q′) ∈ R and (P ′, Q′′) ∈ R, and

2. if Q
α−→ Q′ then P

τ
=⇒ P ′

α−→ P ′′ , (Q,P ′) ∈ R and (Q′, P ′′) ∈ R.

37



Chapter 3 Background

P
τ

P ′

α

P ′′

Q

α

Q′

Figure 3.10: Branching Bisimulation

Processes P and Q are branching bisimilar (denoted P ' Q) if and only if there exists

a bisimulation R such that (P,Q) ∈ R.

The relationship between branching bisimilar processes are shown in Figure 3.10. The

addition of (P ′, Q) in R is the difference between branching bisimilarity and weak bisim-

ilarity. Hence, there exists a relation where R = {(P,Q), (P ′, Q), (P ′′, Q′)}.

Congruence

Equivalence relations in this style are generically called behavioural equivalences. Sup-

pose that ∼= is an equivalence relation on processes. The ideal situation is for ∼= to

have a further property called congruence, which means that it is preserved by all of the

constructs of the process calculus. A convenient way to express this property involves

the notion of a process context C[]. This is a process term containing a hole, represented

by [], into which a process term may be placed. For example, c?[x] . [] is a context, and

putting the process d![x] .0 into the hole results in the process c?[x] . d![x] .0.

Definition 3.4. An equivalence relation ∼= on processes is a congruence if ∀P,Q. P ∼=
Q⇒ ∀C[]. C[P ] ∼= C[Q].

This definition of congruence corresponds to the idea that observers are themselves

expressed as processes. Congruence, in addition to the property of being an equivalence

relation, is what is required in order to allow equational reasoning about equivalence of

processes. It means that if a system satisfies its specification, then it continues to satisfy

its specification no matter what environment it is placed in.

The main advantage of the congruence property of equivalence is composability. This is a

key property of process calculus based models that can help to manage complexity and

provides scalable solutions in modelling. In particular, composability of the algebraic

operators is widely used in process calculi based modelling of computer systems and is

instrumental in ecological modeling [97]. For example, if P is a complicated process

which is indistinguishable from the simple ideal behaviour process Q, and process R is
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similarly indistinguishable from S, then P composed with R is indistinguishable from

Q composed with S. In general, many processes do not compose but the importance of

comparability should not be underestimated.

In the following chapters, we will be discussing the complete syntax and semantics of

CQP.
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Chapter 4

Theory and Applications of

Communicating Quantum

Processes (CQP)

This chapter provides an introduction to CQP and presents the use of CQP in the

verification of quantum error correction. This study involves in applying the theory

of behavioural equivalence in CQP defined in Davidson’s Thesis [51]. Davidson in his

Ph.D work has developed the theory of behavioural equivalence in CQP and used it in

the verification of quantum protocols namely quantum teleportation and super dense

coding. We use the operational semantics of CQP using labelled transition system as

defined in [51] in order to describe two models of a three qubit error correcting code

and quantum secret sharing protocol. We focus on quantum error correction, which

helps us to begin a simple study on noise and also the error correction, and quantum

secret sharing models has a simple high-level specification that is identical as that of

the teleportation protocol described in [51]. With the help of the process equivalence

(probabilistic branching bismilarity), we prove the correctness of the models by verifying

with respect to their specifications.

4.1 Syntax and semantics of CQP

Simon Gay and Rajagopal Nagarajan designed the language CQP based on pi-calculus [125,

150], with the addition of primitive operations for quantum information processing. The

general picture is that a system consists of a number of independent components, or pro-

cesses, which can communicate by sending data along channels. In particular, qubits

can be transmitted on channels. The complete description of the language is provided
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T ::= Int | Qbit | [̂T̃ ] | Op(1) | Op(2) | · · ·
v ::= 0 | 1 | · · · | H | · · ·
e ::= v | x | measure ẽ | ẽ ∗= ee | e+ e

P ::= 0 | (P |P ) | P + P | e?[x̃ : T̃ ].P | e![ẽ].P | {e}.P | [e].P | (qbit x)P |
(new x : [̂T ])P

Figure 4.1: Syntax of CQP.

in [73, 74]. One of the distinctive features of CQP is its type system, which ensures

that operations can only be applied to data of the appropriate type. The type system is

also used to enforce the view of qubits as physical resources, each of which has a unique

owning process at any given time. If a qubit is send from A to B, then ownership is

transferred and A can no longer access it.

Syntax

The syntax of CQP is defined by the grammar as shown in Figure 4.1. We use the

notation ẽ = e1, . . . , en, and write |ẽ| for the length of a tuple. The syntax of CQP

which consists of types T , values v, expressions e (including quantum measurements

and the conditional application of unitary operators ẽ∗=ee), and processes P . The data

types include integers of type Int, qubit of type Qbit, channel types [̂T̃ ], and n-qubit

unitary operators types Op(n). Other data types can also be easily included which is

evident in the later part of the thesis. Values v consist of variables (x,y,z etc), literal

values of data types (0,1,..), unitary operators such as the Hadamard operator H.

Expressions e consist of values, measurements measure e1, . . . , en, applications e1, . . . , en∗=
e of unitary operators, and expressions involving data operators such as e + e′. Pro-

cesses include the nil process 0, parallel composition P |P , inputs e?[x̃ : T̃ ].P , outputs

e![ẽ].P , actions {e}.P (typically a unitary operation or measurement), typed channel

restriction (new x : [̂T̃ ])P , and qubit declaration (qbit x)P . We use the notation

x̃ : T̃ = x1 : T1, . . . , xn : Tn in declaring the types of all input-bound variables.

In order to define the operational semantics we provide the internal syntax in Figure 4.2.

Values are supplemented with qubit names q and channel names c. The qubit names

are generated at run-time and substituted for the variables used in qbit declarations

respectively. Evaluation contexts for expressions (E[]) and processes (F []) are used to

define the operational semantics [167]. The structure of E[] is used to define call by

value evaluation of expressions and the hole [] provides the first part of the expression
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v ::= · · · | q | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | · · · | measure ṽ, E | E + e | v + E

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P | {[]}.P

Figure 4.2: Internal syntax of CQP.

to be evaluated. The structure of F [] is used to define the reduction of the processes by

specifying the expressions within a process which needs to be evaluated.

Given a process P we define its free variables fv(P ), free qubit names fq(P ) and free

channel names fc(P ) as usual; the binders (of x or x̃) are y?[x̃ : T̃ ], (qbit x) and (new x :

T ).

4.1.1 Operational Semantics

The first presentation of CQP [73, 74] defined the operational semantics based on re-

ductions instead of labelled transitions. These correspond to τ transitions and were

defined directly. The reduction semantics considers the use of closed quantum systems,

i.e. there are no qubits outside the system. This is primarily motivated due to the

inability to completely describe the state of a quantum subsystem. However, the re-

duction semantics allows the behaviour of a complete system to be defined but is not

sufficient in describing the potential interactions of a process. The interpretations of

these interactions are necessary in order to define the behavioural equivalence between

the processes.

The next version of CQP was introduced in Davidson’s Ph.D thesis [51] in order to

consider behavioural equivalence, which defined the operational semantics of CQP using

a labelled transition system. The main difference in reduction semantics and the labelled

transition system is the consideration of external interactions of a process, that is the

inclusion of the input and output transitions. Here, the quantum systems are considered

to be open which allows the system to interact with its environment. We use the

remaining definitions from [51] in our analysis for quantum error correction.

Configurations

In a quantum process calculus such as CQP, the execution of a system is not completely

described by the process term (which is the case for classical process calculus) but

also depends on the quantum state. Hence the operational semantics are defined using

configurations, which represent both the quantum state and the process term.
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Definition 4.1 (Configuration). A configuration is defined as a tuple of the form

(σ;ω;P ) where σ is a mapping from qubit names to the quantum state and ω is a

list of names associated with the process P.

We operate with configurations such as

([q0, q1 7→
1√
2

(|00〉+ |11〉)]; q1; c![q1] . P ). (4.1)

For example, in this case, q0 and q1 represent the two qubits. This configuration means

that the global quantum state consists of the qubits, q0 and q1, in the specified state;

that the process term under consideration has access to qubit q1 but not to q0 and that

the process itself is c![q1] . P .

Now consider a configuration with the same quantum state but a different process term:

([q0, q1 7→
1√
2

(|00〉+ |11〉)]; q0; d![q0] . Q).

The parallel composition of these configurations is the following:

([q0, q1 7→
1√
2

(|00〉+ |11〉)]; q0, q1; c![q1] . P | d![q0] . Q)

where the quantum state is still the same.

The semantics of CQP consists of labelled transitions between configurations, which are

defined in a similar way to classical process calculus. For example, configuration (4.1)

has the transition

([q0, q1 7→
1√
2

(|00〉+ |11〉)]; q1; c![q1] . P )
c![q1]−→ ([q0, q1 7→

1√
2

(|00〉+ |11〉)]; ∅;P ).

The quantum state is not changed by this transition, but because qubit q1 is output, the

continuation process P no longer has access to it; the final configuration has an empty

list of owned qubits. These configurations are also called pure configurations.

Another major difference between the reduction semantics [73, 74] and LTS semantics

[51] of CQP is in the treatment of quantum measurement. In the reduction semantics

of CQP, a measurement leads to a probability distribution over configurations, which

at the next step reduces probabilistically to one particular configuration. But, the LTS

semantics treats the analysis of measurement in a different manner. In LTS semantics,

the measurement leads to a distribution of pure configurations (defined as mixed con-

figuration) if the measurement result is communicated within the system. But, if the

measurement result is communicated to the environment (i.e. outside the system) then
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this leads to a probability distribution of configurations. The role of mixed configurations

is important when considering the congruence property of the equivalence of processes.

Definition 4.2 (Mixed Configuration). [51] A mixed configuration is a weighted distri-

bution (denoted as ⊕) of pure configurations, written as ⊕i∈I gi ([x̃ 7→ |ψi〉];ω;λỹ•P ; ṽi)

with weights gi where
∑

i∈I gi = 1 and for each i ∈ I, 0 < gi ≤ 1 and |ψi〉 ∈ H (which is

a two dimensional Hilbert space) and |ṽi| = |ỹ|.

The operator ⊕ (not to be confused with � which represents the probabilistic distri-

bution) represents a distribution over the set I with weights gi. The process term is

replaced by the expression λỹ •P that shows the components of the mixed configuration

have the same process structure. The components differ with each other in respect to

the values ṽi that are substituted in the expression λỹ •P , which is the reason for the λ

notation. The variables ỹ are placeholders in the expression. If the result of a quantum

measurement is not made available to an observer then the system is considered to be

in a mixed state, but it is not sufficient to simply write a mixed quantum state in a con-

figuration. In general the mixture includes the process term, because the measurement

result occurs within the term.

Example 4.1. ([q 7→ α0|0〉+α1|1〉]; q; c![measure q].P )
τ−→ ⊕i∈{0,1} |αi|2 ([q 7→ |i〉]; q;λx•

c![x].P ; i).

This transition represents the effect of a measurement, within a process which is going

to output the result of the measurement. But, the output, however, is not part of the

transition. Hence, it is a τ transition and the process term on the right still contains

c![]. The configuration on the left is a pure configuration, as described before. On the

right we have a mixed configuration in which the ⊕ ranges over the possible outcomes

of the measurement and the |αi|2 are the weights of the components in the mixture.

The quantum state [q 7→ |i〉] corresponds to the measurement outcome. The expression

λx • c![x].P represents the fact that the components of the mixed configuration have

the same process structure and differ only in the values corresponding to measurement

outcomes. The final term in the configuration, i, shows how the abstracted variable x

should be instantiated in each component. Thus the λx represents a term into which

expressions may be substituted. So the mixed configuration is essentially an abbreviation

of

|α0|2([q 7→ |0〉]; q; c![0].P{0/x})⊕ |α1|2([q 7→ |1〉]; q; c![1].P{1/x}).

If a measurement result is output to the environment, then the observer would know

the possible state of the system. This is represented by probabilistic branching in which

case the system is no longer a mixture of the two.
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Definition 4.3 (Probabilistic Configuration). A probabilistic configuration is a prob-

ability distribution of configurations, written as �i∈Ipi([x̃ 7→ |ψi〉];ω;λỹ • P ; ṽi) with

weights pi where
∑

i∈I pi = 1 and for each i ∈ I, pi > 0 and |ψi〉 ∈ H (i.e. a two

dimensional Hilbert space) and |ṽi| = |ỹ|.

Example 4.2.

⊕i∈{0,1} |α|2i ([q 7→ |i〉]; q;λx • c![x].P ; i)
c![{0,1}]−→ �i∈{0,1}|αi|2([q 7→ |i〉]; q;λx • P ; i)

|α0|2
 ([q 7→ |0〉]; q;λx • P ; 0)

Example 4.2 shows the effect of the output from the final configuration of Example 4.1.

The output transition produces the intermediate configuration called the probabilistic

configuration (in contrast to a mixed configuration; note the change from ⊕ to �).

Because it comes from a mixed configuration, the output transition contains a set of

possible values. From the intermediate configuration there are two possible probabilistic

transitions, of which one is shown (
|α0|2
 ).

Example 4.3.

⊕i∈{0,1} gi ([q 7→ |i〉]; q;λx • (c![x].P | c?[y].Q); i)
τ−→

⊕i∈{0,1} gi ([q 7→ |i〉]; q;λx • (P |Q{x/y}); i)

The measurement results could be communicated internally. This would not create a

probability distribution and the system would still be in a mixed configuration. In Ex-

ample 4.3 there is a mixed configuration on the left, with arbitrary weights gi, which

we imagine to have been produced by a measurement. However, there is now a receiver

for the output. Although there is no difference in process Q between the two compo-

nents of the mixed configuration, we include it in the λ because the communication will

propagate the different possible values for x to Q.

We now present the labelled transition rules of CQP and the type system which are

discussed in detail in [51].

Expression Transition Rules

The semantics of expressions [51] is defined by the reduction relations −→v (on values)

and −→e (on expressions), given in Figure 4.3. Rule R-Plus deal with the evaluation

of terms that result in values. The rule introduces a variable x which is a placeholder

for the value w. The placeholder plays an important part in mixed expression config-

uration. This is evident in R-Context where each component of the configuration
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([q̃ 7→ |ψ〉];ω;u+ v) −→v ([q̃ 7→ |ψ〉];ω;λx • x;w) where w = u+ v (R-Plus)

([q0, . . . , qn−1 7→ α0|φ0〉+ · · ·+ α2n−1|φ2n−1〉];ω;measure q0, . . . , qr−1) −→v

⊕0≤m<2r gm ([q0, . . . , qn−1 7→ αlm√
gm
|φlm〉+ · · ·+ αum√

gm
|φum〉];ω;λx • x;m)

(R-Measure)

where lm = 2n−rm,um = 2n−r(m+ 1)− 1, gm = |αlm |2 + · · ·+ |αum |2

([q0, . . . , qn−1 7→ |φ〉];ω; q0, . . . , qr−1 ∗= Um) −→v (R-Trans)

([q0, . . . , qn−1 7→ (Um ⊗ In−r)|φ〉];ω; unit; ·)
∀i ∈ I.([q̃ 7→ |ψi〉];ω; e{ũi/ỹ}) −→v ⊕j∈Ji gij ([q̃ 7→ |ψij〉];ω;λx̃ • e′{ũi/ỹ}; ṽij)

⊕i∈I hi ([q̃ 7→ |ψi〉];ω;λỹ • E[e]; ũi) −→e ⊕ i∈I
j∈Ji

higij ([q̃ 7→ |ψij〉];ω;λỹx̃ • E[e′]; ũi, ṽij)

(R-Context)

Figure 4.3: Transition rules for values and expressions. [51]

gives rise to a particular value. R-Measure is measurement rule which produces a

mixed configuration over the possible measurement outcomes m. R-Trans deals with

unitary transformations which result in literal unit. The important aspect of R-Trans

and R-Measure is the effect they have on the quantum state. R-Context is used

for the evaluation of expressions in an expression context E and also for the evalua-

tion of the expressions in mixed configurations. The mixed expression configuration

⊕i∈I hi (σi;ω;λỹ.E[e]; ũi) is evaluated by determining each individual component of the

mixed configuration.

Pure Configuration Transition Rules

The transition rules for pure process configurations [51] are given in Figure 4.4. This

defines the input and output transitions for pure configurations. The rules P-Par and

P-Res are needed to define input and output actions for arbitrary processes.

Now we define some notation. There are two types of transition: probabilistic transitions

which take the form �ipisi
pi si where ∀i.(pi < 1), and non-deterministic transitions

which have the general form s
α−→ �ipisi where ∀i.(pi ≤ 1) and α is an action. The

notation �ipisi ≡ p1 • s1 � · · ·� pn • sn denotes a probability distribution over config-

urations in which
∑

i pi = 1. If there is only a single configuration (with probability 1)

we omit the probability, for example s
α−→ s′.

Mixed Configuration Transition Rules

The transition rules for mixed configurations are defined in Figure 4.5. The rule L-Prob

is a probabilistic transition in which pi is the probability of the transition. The rules

L-In and L-Out represent the input and output actions respectively, which are the

visible interactions with the environment. When the two processes of input and output
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([p̃q̃r̃ 7→ |ψ〉]; p̃, q̃; c![ṽ, q̃].P )
c![ṽ,q̃]−→p ([p̃q̃r̃ 7→ |ψ〉]; p̃;P ) (P-Out)

([q̃ 7→ |ψ〉];ω; c?[ỹ].P )
c?[ṽ,r̃]−→p ([q̃ 7→ |ψ〉];ω, r̃;P{ṽ, r̃/ỹ}) (P-In)

([q̃ 7→ |ψ〉];ω;P )
α−→p ([q̃ 7→ |ψ〉];ω′;P ′)

([q̃ 7→ |ψ〉];ω;P |Q)
α−→p ([q̃ 7→ |ψ〉];ω′;P ′ |Q)

(P-Par)

([q̃ 7→ |ψ〉];ω;P )
α−→p ([q̃ 7→ |ψ〉];ω′;P ′)

([q̃ 7→ |ψ〉];ω;P +Q)
α−→p ([q̃ 7→ |ψ〉];ω′;P ′)

(P-Sum)

([q̃ 7→ |ψ〉];ω;P )
α−→p ([q̃ 7→ |ψ〉];ω;P ′)

([q̃ 7→ |ψ〉];ω; (new c)P )
α−→p ([q̃ 7→ |ψ〉];ω; (new c)P ′)

if α /∈ {c?[·], c![·]}

(P-Res)

Figure 4.4: Transition rules for pure process configurations. [51]

actions are put in parallel then each has a partner for its potential interaction, and

the input and output can synchronise, resulting in a τ transition which is given by the

rule L-Com. The rule L-Act converts the action expression to a value, which can be

removed. This is a reduction which involves effects like measurement or transforma-

tion of the quantum state. Rule L-Qbit introduces additional Qbit variable. The rule

L-Out is the output rule which combines mixed configurations along with probabilistic

branching. The branching happens only when there is an information to differentiate

the components. Normally, the information are classical values that are given as outputs

and these can vary between the components.

4.1.2 Type System

In this section we introduce the type system for the LTS semantics of CQP that is

presented in detail in [51], which is similar to the type system has been originally defined

for CQP using reduction semantics [74, 75]. The important contribution of the type

system is that it gives an assurance that each qubit is owned by a unique process and

cannot be duplicated. Hence, the well-typed processes respect the no-cloning principle

and the treatment of qubits as physical resources. For the analysis of executing processes,

it is necessary that the types be preserved, which is one of the main results in [51].

The typing rules for the syntax defined in Figure 4.1 are shown in Figure 4.6. Environ-

ments Γ are mappings from variables to types in the usual way. There are two kinds of

typing judgements: Γ ` e :T means that an expression e has type T in the environment

Γ, and Γ ` P means that a process P is well-typed in the environment Γ.

47



Chapter 4 Theory and Applications of Communicating Quantum Processes (CQP)

�jpj(⊕i gi (σi;ω;Pi))
pi ⊕i gi (σi;ω;Pi) (L-Prob)

⊕i gi (σi;ω;λx̃ • c?[ỹ].P ; ṽi)
c?[ũ,r̃]−→ ⊕i gi (σi;ω, r̃;λx̃ • P{ũ, r/ỹ}; ṽi) where |ũ|+ |r̃| = |ỹ|

(L-In)

∀i ∈ I.([p̃q̃ 7→ |ψi〉]; p̃;P{ṽi/x̃})
c![ũi,r̃]−→p ([p̃q̃ 7→ |ψi〉]; p̃′;P ′{ṽi/x̃})

⊕i∈I gi ([p̃q̃ 7→ |ψi〉]; p̃;λx̃ • P ; ṽi)
c![U,r̃]−→ �j∈Jpj(⊕i∈Ij

gi
pj

([p̃′r̃q̃ 7→ Π|ψi〉]; p̃′;λx̃ • P ′; ṽi))

(L-Out)

where U = {ũi | i ∈ I} = {ũkj | j ∈ J} and ∀j ∈ J, Ij = {i|ũi = ũkj}, pj =
∑
i∈Ij

gi

and r̃ ⊆ p̃, p̃′ = p̃ \ r̃,Π corresponds to the permutation π : p̃q̃ 7→ p̃′r̃q̃ .

∀i ∈ I.(σi;ω, r̃;P{ṽi/x̃})
c![ũi,r̃]−→p (σi;ω;P ′{ṽi/x̃})

∀i ∈ I.(σi;ω;Q{ṽi/x̃})
c?[ũi,r̃]−→p (σi;ω, r̃;Q

′{ṽi/x̃})
⊕i∈I gi (σi;ω, r̃;λx̃ • P |Q; ṽi)

τ−→ ⊕i∈I gi (σi;ω, r̃;λx̃ • P ′ |Q′; ṽi)

(L-Com)

⊕i∈I gi (σi;ω;λx̃ • P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ • P ′; ṽiw̃ij)

⊕i∈I gi (σi;ω;λx̃ • P |Q; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ • P ′ |Q; ṽiw̃ij)
(L-Par)

⊕i∈I gi (σi;ω;λx̃ • P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ • P ′; ṽiw̃ij)

⊕i∈I gi (σi;ω;λx̃ • P +Q; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ • P ′; ṽiw̃ij)
(L-Sum)

⊕i∈I gi (σi;ω;λx̃ • P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ • P ′; ṽiw̃ij)

⊕i∈I gi (σi;ω;λx̃ • (new c)P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (σij ;ω

′;λx̃ỹ • (new c)P ′; ṽiw̃ij)

(L-Res)

if α /∈ {c?[·], c![·]}

⊕i∈I gi ([q̃ 7→ |ψi〉];ω;λx̃ • (qbit y)P ; ṽi)
τ−→ ⊕i∈I gi ([q̃, q 7→ |ψi〉|0〉];ω, q;λx̃ • P{q/y}; ṽi)

where q is fresh (L-Qbit)

⊕i∈I gi (σi;ω;λx̃ • {u}.Pi; ṽi)
τ−→ ⊕i∈I gi (σi;ω;λx̃ • P ; ṽi) (L-Act)

⊕i∈I hi (σi;ω;λỹ • e; ũi) −→e ⊕ i∈I
j∈Ji

higij (σij ;ω;λỹx̃ • e′; ũiṽij)

⊕i∈I hi (σi;ω;λỹ • F [e]; ũi)
τ−→ ⊕ i∈I

j∈Ji
higij (σij ;ω;λỹx̃ • F [e′]; ũiṽij)

(L-Expr)

Figure 4.5: Transition rules for mixed process configurations. [51]
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The treatment of qubits in they type system is the key to ensuring that the no-cloning

principle is obeyed. It is ensured that in rules T-Msure, T-Out and T-Trans the

qubit variables are distinct which prevents qubits being cloned at a local level. With

the use of the + operation on environments (Definition 4.4) in rule T-Par, we ensure

the unique ownership of qubits amongst parallel components.

Definition 4.4 (Addition of Environments). [51, 75] The partial operation of adding

a typed variable to an environment, Γ + x :T , is defined by

Γ + x :T =


Γ, x :T if x /∈ dom(Γ)

Γ if T 6= Qbit and x :T ∈ Γ

undefined otherwise.

This operation is extended inductively to a partial operation Γ + ∆ on environments.

The soundness of the type system are proved in [51].

4.2 Equivalence in quantum process calculus

In the previous section, we have discussed the labelled transition semantics of CQP,

which helps us to describe the interactions within and outside a quantum system. Based

on these semantics, we will now consider behavioural equivalence of quantum processes,

which is important in proving the correctness of a system. We have introduced bisimula-

tion in our previous chapter and we shall now extend this concept to quantum systems.

Bisimulation is a binary relation, which associates two systems to match each other’s

actions or simulate one another. This means that an observer cannot distinguish each

of the systems from each other. Actions can either be internal or external. The internal

actions are generally labelled as τ and is straightforward to match for a quantum system.

But, for external actions which is either input or output, it is not quite straightforward

as the system depends not only depends on the process but also on the quantum state of

the system. Hence, in order to capture the behaviour of the system, one must consider

matching the qubits associated with the system or the quantum state or both.

One of the characteristics of strong bisimilarity is that it is a stronger relation than trace

equivalence; it is possible for two processes to generate the same sequences of labels,

but not be strong bisimilar. Strong bisimilarity depends on the branching structure

of the processes as well as on their sequences of labels. Another characteristic is that

every transition must be matched exactly, including τ transitions. However, because

they arise from internal communications, it is often undesirable to insist that equivalent
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Γ ` v : Int if v is an integer literal (T-IntLit)

Γ ` unit :Unit (T-Unit)

Γ ` H :Op(2) etc. (T-Op)

Γ, x :T ` x :T (T-Var)

∀i(Γ ` xi :Qbit) x1, . . . , xn distinct

Γ ` measure x1, . . . , xn : Int
(T-Msure)

Γ ` e : Int Γ ` e′ : Int

Γ ` e+ e′ : Int
(T-Plus)

Γ ` 0 (T-Nil)

Γ, x :Qbit ` P

Γ ` (qbit x)P
(T-Qbit)

Γ1 ` P Γ2 ` Q Γ1 + Γ2 defined

Γ1 + Γ2 ` P |Q
(T-Par)

Γ ` P Γ ` Q

Γ ` P +Q
(T-Sum)

Γ ` x :̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn ` P

Γ ` x?[y1 :T1, . . . , yn :Tn].P
(T-In)

Γ ` x :̂[T1, . . . , Tm,Qbit, . . . ,Qbit] ∀i.(Ti 6= Qbit)
∀i.(Γ ` ei :Ti) yi distinct Γ ` P

Γ, y1 :Qbit . . . , yn :Qbit ` x![e1, . . . , em, y1, . . . , yn].P

(T-Out)

Γ, x :̂[T1, . . . , Tn] ` P

Γ ` (new x :̂[T1, . . . , Tn])P
(T-New)

Γ ` e :T Γ ` P

Γ ` {e}.P
(T-Act)

∀i(Γ ` xi :Qbit) x1 . . . xn distinct Γ ` U :Op(n) Γ ` e : Int Γ ` P

Γ ` x1, . . . , xn ∗= U e :Unit
(T-Trans)

Figure 4.6: Typing rules. [51]

processes must match each other’s τ transitions. Hence weaker variations of bisimilarity

have been defined, including weak bisimilarity [124], which ignores τ transitions, and

branching bisimilarity [160], which reduces the significance of τ transitions but retains

information about their branching structure.

Lalire [110] defined a probabilistic branching bisimilarity for the process calculus QPAlg

(Quantum Process Algebra). This is based on the branching bisimilarity of van Glabbeek

and Weijland [160], which identifies quantum processes associated with graphs having

the same branching structure. However, the bisimulation was not preserved by parallel

composition and hence not congruent. Feng et al. [65] developed qCCS and defined

strong and weak probabilistic bisimilarity. Their equivalences are preserved by parallel
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composition with processes that do not change the quantum context. A later version

of qCCS [170] excluded classical information and introduced the notion of approximate

bisimilarity as a way of quantifying differences in purely quantum process behaviour. In

the latest version of qCCS, Feng et al. [66] prove that weak bisimilarity is a congruence.

They apply their result to quantum teleportation and superdense coding. Kubota et

al. [108] has described BB84 using qCCS and proved that it is equivalent to an EDP

(entanglement distillation protocol)-based protocol using the property of bisimulation

in qCCS.

4.2.1 Probabilistic branching bisimulation in CQP

Davidson defined an equivalence of CQP [51] based on probabilistic branching bisimi-

larity [10] which combines the notion of branching bisimulation along with probabilistic

transitions. This is similar to the equivalence defined for QPAlg [110] with a difference in

the treatment of non deterministic actions. In QPAlg [110] non deterministic branching

happens with equal probability which is a drawback as this is not preserved by parallel

composition. Davidson in his definition differentiates non deterministic and probabilistic

branching by using a function that is preserver in parallel composition. This is based

on the bisimulation [158] which assigns a probability 1 to all non-deterministic transi-

tions. The separation of probabilistic and non-deterministic transitions avoids the need

to consider non-deterministic and probabilistic transitions from the same configuration.

Another important point is that when considering matching of input or output transi-

tions involving qubits, it is the reduced density matrices of the transmitted qubits that

are required to be equal. The definitions in the remainder of this section are from [51].

The relations
α−→ and

π
 induce a partition of S (a set of all configurations) into

non-deterministic configurations Sn and probabilistic configurations Sp: let Sp = {s ∈
S | ∃π ∈ (0, 1), ∃t ∈ S, s π

 t}; and let Sn = S \ Sp. By this definition a configuration

with no transitions belongs to Sn.

Definition 4.5 (Density Matrix of Configurations [51]). Let σi = [p̃ 7→ |ψi〉] and q̃ ⊆ p̃
and si = (σi;ω;λx̃ • P ; ṽi) and s = ⊕i gi si. Then

1. ρ(σi) = |ψi〉〈ψi| 4. ρq̃(si) = ρq̃(σi)

2. ρq̃(σi) = trp̃\q̃(|ψi〉〈ψi|) 5. ρ(s) =
∑

i giρ(si)

3. ρ(si) = ρ(σi) 6. ρq̃(s) =
∑

i giρ
q̃(si)

Here, the notation ρE denotes the reduced density matrix of the environment qubits.

Formally, if s = ([q̃ 7→ |ψ〉]; p̃;P ) then ρE(s) = ρr̃(s) where r̃ = q̃ \ p̃. The definition of

ρE is extended to mixed configurations in the same manner as ρ.
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The probabilistic function µ : S × S → [0, 1] is defined in the style of [158]. This allows

the possibility of treating non-deterministic transitions as transitions with probability

1, which is necessary when calculating the total probability of reaching a terminal state.

µ(s, t) = π if s
π
 t; µ(s, t) = 1 if s = t and s ∈ Sn; µ(s, t) = 0 otherwise.

Let
τ−→

+
denote zero or one τ transitions; let =⇒ denote zero or more τ transitions; and

let
α

=⇒ be equivalent to =⇒ α−→=⇒. We write q̃ for a list of qubit names, and similarly

for other lists.

Definition 4.6 (Probabilistic Branching Bisimulation [51]). An equivalence relation R
on configurations is a probabilistic branching bisimulation on configurations if whenever

(s, t) ∈ R the following conditions are satisfied.

I. If s ∈ Sn and s
τ−→ s′ then ∃t′, t′′ such that t =⇒ t′

τ−→
+
t′′ with (s, t′) ∈ R and

(s′, t′′) ∈ R.

II. If s
c![V,q̃1]−→ s′ where s′ = �j∈{1...m}pjs

′
j and V = {ṽ1, . . . , ṽm} then ∃t′, t′′ such that

t =⇒ t′
c![V,q̃2]−→ t′′ with

a) (s, t′) ∈ R,

b) t′′ = �j∈{1...m}pjt
′′
j ,

c) for each j ∈ {1, . . . ,m}, ρE(s′j) = ρE(t′′j ).

d) for each j ∈ {1, . . . ,m}, (s′j , t
′′
j ) ∈ R.

III. If s
c?[ṽ]−→ s′ then ∃t′, t′′ such that t =⇒ t′

c?[ṽ]−→ t′′ with (s, t′) ∈ R and (s′, t′′) ∈ R.

IV. If s ∈ Sp then µ(s,D) = µ(t,D) for all classes D ∈ S/R.

This relation follows the standard definition of branching bisimulation [160] with addi-

tional conditions for probabilistic configurations and matching quantum information. In

condition II we require that the distinct set of values V must match and although the

qubit names (q̃1 and q̃2) need not be identical, their respective reduced density matrices

(ρq̃1(s) and ρq̃2(t′)) must.

Following the approach of [158], we have Condition IV that provides the matching

on probabilistic configurations . In this relation, a probabilistic configuration which

necessarily evolves from an output will satisfy IV if the prior configuration satisfies II

d). It is important to have Condition IV as it ensures that the probabilities are paired

with their respective configurations, which thereby leads to the following definition of

bisimilarity on configurations.
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Definition 4.7 (Probabilistic Branching Bisimilarity [51]). Configurations s and t are

probabilistic branching bisimilar, denoted s - t, if there exists a probabilistic branching

bisimulation R such that (s, t) ∈ R.

Since, we require equivalence of processes, independently of configurations (i.e. inde-

pendently of particular quantum states), we get:

Definition 4.8 (Probabilistic Branching Bisimilarity of Processes [51]). Processes P

and Q are probabilistic branching bisimilar, denoted P - Q, if and only if for all σ,

(σ; ∅;P ) - (σ; ∅;Q).

For convenience, in the remainder of this thesis we refer bisimilarity as probabilistic

branching bisimilarity and it will be clear from the context whether this is the relation

on processes or configurations. The same symbol, -, is used for both relations.

We now consider the preservation properties of bisimilarity on processes. The first

main result of [51] is that bisimilarity is a non-input, non-qubit congruence (Theorem

4.18). The key to this result is that the bisimilarity is preserved by parallel composition

(Theorem 4.13) and is also shown for qCCS independently by [66]. The important

congruence property of equivalence helps to realise that the equivalent processes remain

equivalent in any context.

Before continuing, we use the formal definitions of contexts and congruence, and their

non-input, non-qubit variants presented in [51]. The reason for considering variants

without input and qubit declaration prefixes, is that substitution must also be considered

when these are included.

Definition 4.9 (Context [51]). A context C is a process where occurrence of 0 replaced

by a hole, [·]. Formally,

C ::= [] | (C | P ) | α.C + P | α.C | (new x̂ [T ])C

for α ∈ {e?[x̃ : T̃ ], e![ẽ], {e}, (qbit x)}.

Definition 4.10 (Congruence [51]). An equivalence relation R on processes is a con-

gruence if (C[P ], C[Q]) ∈ R whenever (P,Q) ∈ R and C is a context.

Definition 4.11 (Non-input, non-qubit context [51]). A non-input, non-qubit context

is a context in which the hole does not appear under an input or qubit declaration.

Definition 4.12 (Non-input, non-qubit congruence [51]). An equivalence relation R on

processes is a non-input, non-qubit congruence if (C[P ], C[Q]) ∈ R whenever (P,Q) ∈ R
and C is a non-input, non-qubit context.
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Theorem 4.13 (Parallel preservation for configurations [51]). Assume that Γ ` P ,

Γ ` Q, Γ ` P |R, and Γ ` Q |R. If (σ; ∅;P ) - (σ; ∅;Q) then (σ; ∅;P |R) - (σ; ∅;Q |R).

Theorem 4.14 (Parallel Preservation [51]). If P - Q then for any process R such that

Γ ` P |R and Γ ` Q |R then P |R - Q |R.

Theorem 4.15 (Probabilistic branching bisimilarity is a non-input, non-qubit congru-

ence [51]). If P - Q and for any non-input, non-qubit context C if Γ ` C[P ] and

Γ ` C[Q] then C[P ] - C[Q].

It turns out that probabilistic branching bisimilarity is not a congruence because it is not

preserved by substitution of values for variables, which is significant because of the use

of substitution to define the semantics of input. We therefore define a stronger relation,

full probabilistic branching bisimilarity, which is the closure of probabilistic branching

bisimilarity under substitutions.

Definition 4.16 (Full probabilistic branching bisimilarity [51]). Processes P and Q are

full probabilistic branching bisimilar, denoted P -c Q, if for all substitutions κ and all

quantum states σ, (σ; q̃;Pκ) - (σ; q̃;Qκ).

We are now able to state the main result of [51].

Theorem 4.17 (Full probabilistic branching bisimilarity is a congruence [51]). If P -c

Q then for any context C[], if C[P ] and C[Q] are typable then C[P ] -c C[Q].

The condition that C[P ] and C[Q] are typable is used to ensure that the context does

not manipulate qubits that are owned by P or Q.

4.3 Applications

In this section, we demonstrate the verification of quantum error correction and quantum

secret sharing by applying the theory of behavioural equivalence of CQP. Verification of

quantum protocols like quantum teleportation and superdense coding are demonstrated

in [51]. We will present two models of three qubit flip error correction and a model of

quantum secret sharing in CQP and formally define a specification process for each of the

model, that is a high-level abstraction of the model. Proving that they are equivalent or

bisimilar to their respective specification processes achieves verification of these models.

By showing that each process is bismilar to its specification, we find that these processes

are equivalent to one another.
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Alice NoiseErr BobRec

|ψ〉 • • Xjk • • Xjk • • |ψ〉

|0〉 Xjk • Xjk

|0〉 Xjk • Xjk

|0〉 H • • • |0〉 • • •

|0〉 H • • • |0〉 • • •

NoiseRnd BobCorr

Figure 4.7: QECC

4.3.1 Error Correction - First Model

Our model of a quantum error correction system as shown in Figure 4.7 consists of

three processes: Alice, Bob and Noise. Alice wants to send a qubit to Bob over a

noisy channel, represented by Noise. She uses a simple error correcting code based on

threefold repetition [132, Chapter 10]. This code is able to correct a single bit-flip error

in each block of three transmitted qubits, so for the purpose of this example, in each

block of three qubits, Noise either applies X to one of them or does nothing. Bob uses the

appropriate decoding procedure to recover Alice’s original qubit. The CQP definition

of Alice is as follows.

Alice(a : [̂Qbit], b : [̂Qbit,Qbit,Qbit]) = (qbit y, z)a?[x :Qbit] . {x, z ∗= CNot} .
{x, y ∗= CNot} . b![x, y, z] .0

Alice is parameterized by two channels, a and b. In order to give Alice a general definition

independent of the qubit to be sent to Bob, she will receive the qubit on channel a. The

type of a is [̂Qbit], which is the type of a channel on which each message is a qubit.

Channel b is where Alice sends the encoded qubits. Each message on b consists of three

qubits, as indicated by the type [̂Qbit,Qbit,Qbit].

The right hand side of the definition specifies Alice’s behaviour. The first term, (qbit y, z),

allocates two fresh qubits, each in state |0〉, and gives them the local names y and z.

Then follows a sequence of terms separated by dots. This indicates temporal sequencing,

from left to right. a?[x :Qbit] specifies that a qubit is received from channel a and given

the local name x. The term {x, z ∗= CNot} specifies that the CNot operation is applied

to qubits x and z; the next term is similar. These operations implement the threefold

repetition code: if the intial state of x is |0〉 (respectively, |1〉) then the state of x, y, z

becomes |000〉 (respectively, |111〉). In general, of course, the initial state of x may be

a superposition, and then so will be the final state of x, y, z. Finally, the term b![x, y, z]
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means that the qubits x, y, z are sent as a message on channel b. The term 0 simply

indicates termination.

We model a noisy quantum channel by the process Noise, which receives three qubits

from channel b (connected to Alice) and sends three (possibly corrupted) qubits on

channel c (connected to Bob). Noise has four possible actions: do nothing, or apply X

to one of the three qubits. These actions are chosen with equal probability. We produce

probabilistic behaviour by introducing fresh qubits in state |0〉, applying H to put them

into state 1√
2
(|0〉 + |1〉), and then measuring in the standard basis. The definition of

Noise is split into two sub-processes, of which the first, NoiseRnd , produces two random

classical bits and sends them to the second, NoiseErr , on channel p. This programming

style, using internal messages instead of assignment to variables, is typical of pi-calculus.

NoiseRnd(p : [̂bit, bit]) = (qbit u, v){u ∗= H} . {v ∗= H} . p![measure u,measure v] .0

The process NoiseErr receives three qubits from channel b, and two classical bits from

channel p. It interprets the classical bits, locally named j and k, as instructions for cor-

rupting the qubits. This uses appropriate Boolean combinations of j and k to construct

conditional quantum operations such as Xjk.

NoiseErr(b : [̂Qbit,Qbit,Qbit], p : [̂bit, bit], c : [̂Qbit,Qbit,Qbit]) = b?[x :Qbit, y :Qbit, z :Qbit] .

p?[j :bit, k :bit] . {x ∗= Xjk} . {y ∗= Xjk} . {z ∗= Xjk} . c![x, y, z] .0

The complete Noise process consists of NoiseRnd and NoiseErr in parallel, indicated

by the vertical bar. Channel p is designated as a private local channel; this is specified

by (new p). This construct comes from pi-calculus, where it can be used to dynamically

create fresh channels, but here we are using it in the style of older process calculi such

as CCS, to indicate a channel with restricted scope. Putting NoiseRnd and NoiseErr

in parallel means that the output on p in NoiseRnd synchronizes with the input on p in

NoiseErr , so that data is transferred.

Noise(b : [̂Qbit,Qbit,Qbit], c : [̂Qbit,Qbit,Qbit]) = (new p)(NoiseRnd(p) |NoiseErr(b, p, c))

Bob consists of BobRec and BobCorr , where BobRec receives the qubits and measures the

error syndrome, and BobCorr applies the appropriate correction. An internal channel p

is used to transmit the result of the measurement, as well as the original qubits, again

in pi-calculus style. After correcting the error in the group of three qubits, BobCorr

reconstructs a quantum state in which qubit x has the original state received by Alice
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and is separable from the auxiliary qubits. Finally, BobCorr outputs x on channel d.

BobRec(c : [̂Qbit,Qbit,Qbit], p : [̂Qbit,Qbit,Qbit, bit, bit]) = (qbit s, t) .

c?[x :Qbit, y :Qbit, z :Qbit] . {x, s ∗= CNot} . {y, s ∗= CNot} . {x, t ∗= CNot} .
{z, t ∗= CNot} . p![x, y, z,measure s,measure t] .0

BobCorr(p : [̂Qbit,Qbit,Qbit, bit, bit], d : [̂Qbit]) = p?[x :Qbit, y :Qbit, z :Qbit, j :bit, k :bit] .

{x ∗= Xjk} . {y ∗= Xjk} . {z ∗= Xjk} . {x, y ∗= CNot} . {x, z ∗= CNot} . d![x] .0

Bob(c : [̂Qbit,Qbit,Qbit], d : [̂Qbit]) = (new p)(BobRec(c, p) | BobCorr(p, d))

The overall effect of the error correcting system is to input a qubit from channel a and

output a qubit, in the same state, on channel d, in the presence of noise. The complete

system is defined as follows.

QECC (a : [̂Qbit], d : [̂Qbit]) = (new b, c)(Alice(a, b) |Noise(b, c) | Bob(c, d))

When we consider correctness of the error correction system, we will prove that QECC

is equivalent to the following identity process, which by definition transmits a single

qubit faithfully.

Identity(a : [̂Qbit], d : [̂Qbit]) = a?[x :Qbit] . d![x] .0

Correctness of QECC

We now sketch the proof that QECC -c Identity , which by Theorem 4.17 implies that

the error correction system works in any context. An interesting consequence is that

the qubit being transmitted may be part of any quantum state, meaning that it is

correctly transmitted with error correction even if it is entangled with other qubits;

the entanglement is also preserved by the error correction system. This property of

error correction, although easily verified by hand, is not usually stated explicitly in the

literature.

Lemma 4.18 (Identity -c QECC ).

Proof. First we prove that QECC - Identity , by defining an equivalence relation R
that contains the pair ((σ; ∅; QECC ), (σ; ∅; Identity)) for all σ and is closed under their

transitions. R is defined by taking its equivalence classes to be the Si(σ) defined below,

for all states σ. The idea is to group configurations according to the sequences of

observable transitions leading to them. S2 is also parameterized by the input qubit, as
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this affects the output qubit and hence the equivalence class.

S1 (σ) = {s | (σ; ∅;P ) =⇒ s and P ∈ {QECC , Identity}}

S2 (σ, x ) = {s | (σ; ∅;P )
a?[x]
=⇒ s and P ∈ {QECC , Identity}}

S3 (σ) = {s | (σ; ∅;P )
a?[x]
=⇒d![x]

=⇒ s and P ∈ {QECC , Identity}}

We demonstrate the interesting steps in one possible execution of QECC, omitting the

new declarations from the process terms to reduce clutter. The semantics of CQP is non-

deterministic, so transitions can proceed in a different order; the order shown here is cho-

sen for presentational convenience. The initial configuration is (σ; ∅; Alice |Noise | Bob),

where σ is [x 7→ α|0〉+ β|1〉]. In the first few steps which is a sequence of τ transitions,

the processes execute qbit terms (denoted as =⇒), constructing a quantum state:

([x, y, z, u, v, s, t 7→ α|0〉+ β|1〉 ⊗ |000000〉]; y, z, u, v, s, t; Alice ′ |Noise ′ | Bob′)

Alice receives qubit x, in state α|0〉+ β|1〉, from the environment, via transition
a?[x]−→ .

We now abbreviate the list of qubits to q̃ = x, y, z, u, v, s, t. After some τ transitions

corresponding to Alice’s CNot operations, we have:

([q̃ 7→ α|0000000〉+ β|1110000〉]; q̃; b![x, y, z] .0 |Noise ′ | Bob ′)

Noise ′ = NoiseErr | NoiseRnd ′ (NoiseRnd ′ has already done its qbit). The output

on b interacts with the input on b in NoiseErr . Meanwhile, the measurements in

NoiseRnd produce a mixed configuration because the results are communicated inter-

nally, to NoiseErr :

⊕j,k∈{0,1}
1

4
(|ψ〉; q̃;λjk • {x ∗= Xjk} . {y ∗= Xjk} . {z ∗= Xjk} . c![x, y, z] .0 | Bob′; j, k)

Where |ψ〉 is [q̃ 7→ α|000jk00〉+ β|111jk00〉]. After τ transitions from the controlled X

operations, we can write the mixed configuration explicitly:

1
4([q̃ 7→ α|0000000〉+ β|1110000〉]; q̃; c![x, y, z] .0 | Bob′)

⊕1
4([q̃ 7→ α|0010100〉+ β|1100100〉]; q̃; c![x, y, z] .0 | Bob′)

⊕1
4([q̃ 7→ α|0101000〉+ β|1011000〉]; q̃; c![x, y, z] .0 | Bob′)

⊕1
4([q̃ 7→ α|1001100〉+ β|0111100〉]; q̃; c![x, y, z] .0 | Bob′)

The remaining transitions operate within the mixed configuration. In each component

of the mixture, the measurement of s, t by BobRec has a deterministic outcome, so no

further mixedness is introduced. Eventually we have a mixed configuration in which

the process term is the same, d![x] .0, in every component, so we can just consider the
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mixed state, which is

⊕j,k∈{0,1}
1

4
[x, y, z, u, v, s, t 7→ α|000jkjk〉+ β|100jkjk〉].

The mixture over j, k is the residue of the random choice made by NoiseRnd , and the

dependence of s and t on j, k is because BobRec’s measurement recovers the values of

j and k (which is what allows the error to be corrected). In this final mixed state, the

reduced density matrix of x, which is what we are interested in when x is output, is the

same as the original density matrix of x.

Now, we define R to be the relation where S1(σ),S2(σ) and S3(σ) are the equivalence

classes:

R =
⋃
i∈{1,2,3}{(s, t) | s, t ∈ Si(σ)}

We now prove that R is a probabilistic branching bisimulation. It suffices to consider

transitions between Si classes, as transitions within classes must be τ and are matched

by τ .

If s, t ∈ S1(σ) and if s
τ

=⇒ s′ then we have s′ ∈ S1(σ). Therefore (s′, t) ∈ R. Otherwise

if s
a?[x]−→ s′ then s′ ∈ S2(σ) and we find t′, t′′ such that t =⇒ t′

a?[x]−→ t′′ with t′ ∈ S1(σ)

and t′′ ∈ S2(σ), so (s, t′) ∈ R and (s′, t′′) ∈ R as required.

Transitions from S2(σ) are matched similarly. There are no transitions from S3(σ).

There is no need for a probability calculation (case IV of Definition 7.3) because no prob-

abilistic configurations arise; measurement results are always communicated internally,

and never to the external environment.

Finally, because QECC and Identity have no free variables, their equivalence is trivially

preserved by substitutions.

4.3.2 Error Correction - Second Model

We now consider a different noise model shown in Figure 4.8, in which random X errors

are applied independently to each of the three qubits being transmitted. In our previous

model, the error causes only one of the qubit to be flipped, in which case the error could

be corrected. Here, the error can cause any number of qubits to be flipped. The new

definition of Noise is shown below; we use the original definitions of Alice and Bob; the

overall system is now QECC 2.

NoiseRnd(p : [̂bit, bit, bit]) =

(qbit u, v, w) . {u ∗= H} . {v ∗= H} . {w ∗= H} . p![measure u,measure v,measure w] .0
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Alice NoiseErr BobRec

|ψ〉 • • Xj • • Xjk • • |ψ〉

|0〉 Xk • Xjk

|0〉 X l • Xjk

|0〉 H • |0〉 • • •

|0〉 H • |0〉 • • •

|0〉 H •

NoiseRnd BobCorr

Figure 4.8: QECC2

Error qubits |uvw〉 Error indication Action Final three qubit

|000〉 No flip/error No action α1|000〉+ β1|100〉
|001〉 Bit flip on qubit 3 Flip qubit 3 (X3) α1|000〉+ β1|100〉
|010〉 Bit flip on qubit 2 Flip qubit 2 (X2) α1|000〉+ β1|100〉
|011〉 Bit flip on qubits 2,3 Flip qubit 1 (X1) α1|100〉+ β1|000〉
|100〉 Bit flip on qubit 1 Flip qubit 1 (X1) α1|000〉+ β1|100〉
|101〉 Bit flip on qubits 1,3 Flip qubit 2 (X2) α1|100〉+ β1|000〉
|110〉 Bit flip on qubits 1,2 Flip qubit 3 (X3) α1|100〉+ β1|000〉
|111〉 Bit flip on all qubits No action α1|100〉+ β1|000〉

Table 4.1: Analysis for QECC2

NoiseErr(b : [̂Qbit,Qbit,Qbit], p : [̂bit, bit, bit], c : [̂Qbit,Qbit,Qbit]) =

b?[x :Qbit, y :Qbit, z :Qbit] . p?[j :bit, k :bit, l :bit] . {x ∗= Xj} . {y ∗= Xk} . {z ∗= Xl} .
c![x, y, z] .0

Noise(b : [̂Qbit,Qbit,Qbit], c : [̂Qbit,Qbit,Qbit]) = (new p)(NoiseRnd(p) |NoiseErr(b, p, c))

QECC 2(a : [̂Qbit], d : [̂Qbit]) = (new b, c)(Alice(a, b) |Noise(b, c) | Bob(c, d))

The overall analysis of QECC 2 is provided in the table 4.1. We have eight possible

ways of error actions which are shown in the table. Only four of them could be corrected

which is an indication that the model corrects only if there is a bit flip on one of the

qubits and not for the rest of the possibilities. The threefold repetition code is not able

to correct multiple errors, so we do not have QECC 2 -c Identity .

For a successful outcome, we get the final quantum state as α1|000〉 + β1|100〉 and

otherwise the state is α1|100〉 + β1|000〉. The error correction system has a probability

of 1
2 of transmitting a qubit with an X error. We can express this in CQP by using
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BitFlip as a specification process:

Rnd(p : [̂bit]) = (qbit u){u ∗= H} . p![measure u] .0

Flip(a : [̂Qbit], p : [̂bit], d : [̂Qbit]) = a?[x :Qbit] . p?[j :bit] . {x ∗= Xi} . d![x] .0

BitFlip(a : [̂Qbit], d : [̂Qbit]) = (new p)(Rnd(p) | Flip(a, p, d))

As in the previous scenario, we perform a similar analysis for the model QECC 2 and

prove that it is equivalent to the its high-level specification, BitFlip.

Lemma 4.19 (BitFlip -c QECC 2).

Proof. We prove that QECC 2 - BitFlip, by defining an equivalence relation R that

contains the pair ((σ; ∅; QECC 2), (σ; ∅; BitFlip)) for all σ and is closed under their tran-

sitions. First, we shall describe the execution of QECC 2 and then we shall formally

define an equivalence relation. Based on the execution, we analyse that this relation is

a probabilistic branching bismulation

Consider an arbitrary quantum state x = α|0〉+ β|1〉. Let s = (α|0〉+ β|1〉; ∅; QECC 2),

then the execution is as follows.

s
τ

=⇒ ([x, y, z, u, v, s, t 7→ α|0〉+ β|1〉 ⊗ |000000〉]; y, z, u, v, s, t; Alice ′ |Noise ′ | Bob′)
a?[x]
=⇒ ([q̃ 7→ α|0000000〉+ β|1110000〉]; q̃; b![x, y, z] .0 |Noise ′ | Bob′)
τ

=⇒ ⊕j,k,l∈{0,1} 1
8(|ψ〉; q̃;λjkl • {x ∗= Xj} . {y ∗= Xk} . {z ∗= Xl} . c![x, y, z] .0 | Bob ′; j, k, l)

d![x]
=⇒ ⊕j,k,l,m,n∈{0,1} 1

8(|φi〉; q̃;λjklmn • 0; j, k, l,m, n)

where i ∈ {0, 1}, φ1 = α|000jklmn〉+β|100jklmn〉 such that j, k, l ∈ {000, 001, 010, 100}
and φ2 = α|100jklmn〉+ β|000jklmn〉 such that j, k, l ∈ {101, 110, 011, 111}. Thus, we

find that out of the eight possible outcomes of the QECC 2, four are correct and the

other four are not. Hence, this model works with a probability of 1
2 .

As before, R is defined by taking its equivalence classes to be the Si(σ) defined below,

for all states σ.

S1 (σ) = {s | (σ; ∅;P ) =⇒ s and P ∈ {QECC 2,BitFlip}}

S2 (σ, x ) = {s | (σ; ∅;P )
a?[x]
=⇒ s and P ∈ {QECC 2,BitFlip}}

S3 (σ) = {s | (σ; ∅;P )
a?[x]
=⇒d![x]

=⇒ s and P ∈ {QECC 2,BitFlip}}

There is still no probability calculation because the results of the measurements in

NoiseRnd and Rnd are not output. The equal probability of correct and incorrect

transmission manifests itself in the fact that the reduced density matrix of the final out-

put qubit, from both QECC 2 and BitFlip, is an equal mixture of the input qubit and its

inverse. For error qubits that are having values in set J where J = {011, 101, 110, 111},
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Alice

|ψ〉 • H

GHZ |0〉 H •

|0〉 • H

|z〉 Zk Xj Zi |ψ〉

Bob Charlie

Figure 4.9: Quantum circuit for quantum secret sharing

we get the ouput qubit having a quantum state that is the inverse of the original input

quantum state. We only get the correct output if the error qubits are having values

that are in the set comprising {000, 001, 010, 100}. The transitions that happen between

configurations from S2 and S3 which produces this inversion works with a probability of
1
2 which clearly proves that QECC 2 is not equivalent to the Identity . The only way to

introduce probability into this example is for Flip to observably output j and NoiseErr

to observably output the majority value of j, k, l, before the final qubit output.

We know from the standard analysis of this error correction system that if the indepen-

dent probability of flipping each qubit is p < 1
2 , QECC 2 reduces the overall probability

of a bit-flip error to p2(3− 2p) < p. This could be achieved if we could define a process

that generates a probability p and the specification process would need to explicitly

include the error probability. With a slightly more complicated analysis we could also

express this property in CQP. In the later part of the thesis (Chapter 7), we demonstrate

this property in our definition of the specification process to work with a probability of
1
9 for the application of linear optical quantum computing.

4.3.3 Quantum Secret Sharing

We describe a quantum secret sharing protocol [88] that consists of three users repre-

sented by the processes Alice, Bob and Charlie. The quantum circuit of the protocol is

represented in Figure 4.9. Alice would like to send a message to Bob and Charlie. She

encodes her message in a way such that Bob and Charlie must cooperate with each other

to retrieve it. The protocol begins by applying a Hadamard (H) and CNot operations to

qubits x, y and z in order to generate the GHZ state ( 1√
2
(|000〉+ |111〉) [82]. The qubits

are shared between the three users. Alice also possesses the qubit labelled q which is in
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some unknown state |ψ〉; this is the qubit she wishes to send. We analyse a scenario in

which Charlie ends up with the original qubit.

Alice receives the qubit q ([q 7→ |ψ〉]) from the environment through her channel c and

performs unitary operations (CNot and H) before measuring her qubits. She sends the

outcomes which are classical bits i and j through channel e to Charlie. Charlie cannot

retrieve the information without the help of Bob. Bob performs a Hadamard operation

on his qubit y before measuring it. Then, he sends the outcome to Charlie. Using the

classical bits from Alice and Bob, Charlie performs the necessary unitary operations

on his qubit z in order to recover the original state |ψ〉. The CQP definitions of the

processes are:

Alice(c, e, x) = c?[q :Qbit] . {q, x ∗= CNot} . {q ∗= H} . e![measure q,measure x] .0

Bob(f, y) = {y ∗= H} . f ![measure y] .0

Charlie(e, f, d, z) = e?[i :Bit, j :Bit] . f?[k :Bit] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} . d![z] .0

The whole system is a parallel composition of the processes given by:

QSS (c, d) = (qbit x, y, z)({x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} .
(new e, f)(Alice(c, e, x) | Bob(f, y) | Charlie(e, f, d, z))

QSS process consists of Alice, Bob and Charlie in parallel. That is the outputs on e

and f in Alice and Bob respectively synchronise with the inputs on e and f in Charlie.

Channel e and f are designated as private local channels. The next three terms create

the GHZ state with qubits x, y and z. The aim is to prove that QSS is equivalent to

its specification process Identity . The execution of the protocol is shown in Figure 4.10.

Lemma 4.20 (Identity -c QSS ).

Proof. As similar to our previous examples, we prove that QSS - Identity , by defining

an equivalence relation R that contains the pair ((σ; ∅; QSS ), (σ; ∅; Identity)) for all σ

and is closed under their transitions. R is defined by taking its equivalence classes to

be the Ti(σ) defined below, for all states σ. We group configurations according to the

sequences of observable transitions leading to them. T2 is also parameterized by the

input qubit.

T1 (σ) = {t | (σ; ∅;P ) =⇒ t and P ∈ {QSS , Identity}}

T2 (σ, q) = {t | (σ; ∅;P )
c?[q]
=⇒ t and P ∈ {QSS , Identity}}

T3 (σ) = {t | (σ; ∅;P )
c?[q]
=⇒d![q]

=⇒ t and P ∈ {QSS , Identity}}

63



Chapter 4 Theory and Applications of Communicating Quantum Processes (CQP)

([q 7→ α|0〉+ β|1〉]; ∅; QSS )
τ

=⇒ (L-Qbit,R-Trans,L-Act,R-Trans,L-Act,R-Trans,L-Act)

([q, x, y, z 7→ α|0〉+ β|1〉 ⊗ 1√
2

(|000〉+ |111〉)];x, y, z; (new e, f)(Alice(c, e, x)|

Bob(f, y) | Charlie(e, f, d, z)))

c?[q]−→ (L-In,L-Act)

([q, x, y, z 7→ α|0〉+ β|1〉 ⊗ 1√
2

(|000〉+ |111〉)]; q, x, y, z; (new e, f)({q, x ∗= CNot} . {q ∗= H} .

e![measure q,measure x] .0 | Bob(f, y) | Charlie(e, f, d, z)))

τ
=⇒ (R-Trans,L-Act,R-Trans,L-Act,R-Measure,L-Act)

⊕i∈{0,1}
j∈{0,1}

1

4
([r̃ 7→ |ψij〉]; r̃;λij .(new e, f)(e![i, j] .0 | Bob(f, y) | Charlie(e, f, d, z)); i, j)

τ
=⇒ (R-Trans,L-Act,R-Measure,L-Act)

⊕ i∈{0,1}
j∈{0,1}
k∈{0,1}

1

8
([r̃ 7→ |φijk〉]; r̃;λijk.(new e, f)(e![i, j] .0 | f ![k] .0 | Charlie(e, f, d, z)); i, j, k)

τ
=⇒ (L-Com,L-Act,L-Com,L-Act,R-Trans,L-Act,R-Trans,L-Act,R-Trans,L-Act)

⊕ i∈{0,1}
j∈{0,1}
k∈{0,1}

1

8
([r̃ 7→ |φ′ijk〉]; r̃;λijk.(new e, f)(d![z] .0); i, j, k)

d?[z]−→ (L-Out)

⊕ i∈{0,1}
j∈{0,1}
k∈{0,1}

1

8
([r̃ 7→ |φ′ijk〉]; r̃;λijk .0; i, j, k)

where r̃ = q, x, y, z; |ψ00〉 = α|0000〉+ β|0011〉, |ψ01〉 = α|0111〉+ β|0100〉,
|ψ10〉 = α|1000〉 − β|1011〉, |ψ11〉 = α|1111〉 − β|1100〉, |φ000〉 = α|0000〉+ β|0001〉,
|φ001〉 = α|0010〉 − β|0011〉, |φ010〉 = α|0101〉+ β|0100〉, |φ011〉 = −α|0111〉+ β|0110〉,
|φ100〉 = α|1000〉 − β|1001〉, |φ101〉 = α|1010〉+ β|1011〉, |φ110〉 = α|1101〉 − β|1100〉,
|φ111〉 = −α|1111〉 − β|1110〉, |φ′000〉 = α|0000〉+ β|0001〉, |φ′001〉 = α|0010〉+ β|0011〉,
|φ′010〉 = α|0100〉+ β|0101〉, |φ′011〉 = α|0110〉+ β|0111〉, |φ′100〉 = α|1000〉+ β|1001〉,
|φ′101〉 = α|1010〉+ β|1011〉, |φ′110〉 = α|1100〉+ β|1101〉, |φ′111〉 = α|1110〉+ β|1111〉.

Figure 4.10: Execution of quantum secret sharing.
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As before, we defineR to be the relation where T1(σ),T2(σ) and T3(σ) are the equivalence

classes:

R =
⋃
i∈{1,2,3}{(t, u) | t, u ∈ Ti(σ)}

We now prove that R is a probabilistic branching bisimulation. It suffices to consider

transitions between Ti classes, as transitions within classes must be τ and are matched

by τ .

If t, u ∈ T1(σ) and if t
τ

=⇒ t′ then we have t′ ∈ T1(σ). Therefore (t′, u) ∈ R. Otherwise

if t
c?[q]−→ t′ then t′ ∈ T2(σ) and we find u′, u′′ such that u =⇒ u′

c?[q]−→ u′′ with u′ ∈ T1(σ)

and u′′ ∈ T2(σ), so (t, u′) ∈ R and (t′, u′′) ∈ R as required.

If t, u ∈ T2(σ) and if t
τ

=⇒ t′ then we have t′ ∈ T2(σ). Therefore (t′, u) ∈ R. Otherwise

if t
d![q]−→ t′ then t′ ∈ T3(σ) and we find u′, u′′ such that u =⇒ u′

d![q]−→ u′′ with u′ ∈ T2(σ)

and u′′ ∈ T3(σ), so (t, u′) ∈ R and (t′, u′′) ∈ R as required. If t happens to be a

mixed configuration arising from QSS then for an arbitrary state σ = [q 7→ α|0〉+β|1〉],
with reference to Figure 4.10, we have ρz(t) = ρz(u′). There are no transitions from

T3(σ).

Lemma 4.21 (QECC -c QSS -c Teleport).

Proof. We have in [51] that Teleport -c Identity . From Lemma 4.18 and Lemma 4.20,

we have QECC -c Identity and -c Identity . Therefore, it is obvious that QECC -c

QSS -c Teleport .

Corollary 4.22 (QECC = QSS = Teleport).

All the three protocols (QECC ,QSS ,Teleport) have a common function which is to input

a qubit and provide the same identical qubit as an output through a definite channel. We

consider a version of quantum secret sharing where the processes Bob and Charlie share

the secret but we decide Charlie ends up with the original qubit. QECC and Teleport

also has a definite input and an output. Hence, all these three processes perform similar

function. This makes them equivalent to the specification process Identity and all three

of them to be equal to each other.

4.3.4 Universal Composability

Universal composability [33] involves a system to be tested, a specification process which

demonstrates an ideal functionality, two adversaries, and an environment. The system or

protocol is said to have the ideal functionality if, for every attack on the protocol, there

exists an attack on the specification, such that the observable behaviour of the protocol
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P R
a

io io

= Q R∗
a

io io

Figure 4.11: Universal Composability [50]

under attack is the same as the observable behaviour of the idealised functionality under

attack. Now, we define the universal composability reaction on processes.

Definition 4.23 (Universal Composability). A Process or protocol P is said to be

equivalent to process Q (assuming Q is an idealised functionality) if for any adversary

R attacking the protocol, there exists an adversary R∗ attacking the ideal functionality,

such that no context can distinguish whether it is interacting with P and R or with Q

and R∗. Formally, ∀R.∃R∗.(new a)(P |R) -c (new a)(Q |R∗)

Figure. 4.11 illustrates universal composability. We can think of the protocol (P ) as

QECC and the ideal functionality (Q) of the protocol as the Identity process. These

processes communicate with the respective adversary processes over the channel (de-

noted a in the figure). These channels are not visible to the context or environment.

However, the context gets to communicate with these processes over the input-output

channels (denoted io in the figure).

We have seen that the two process expressions (QECC and Identity) in the definition of

Universal Composability are observationally equivalent. This suggests that if there is an

attack on the real protocol, then there exists an equivalent attack on the specification.

Also, the congruence property of the equivalence confirms that the equivalence relation-

ship holds good in any context. Therefore, QECC |R -c Identity |R. This gives a much

stronger property to the definition. 4.23 where we have R = R∗. Hence, if the specifi-

cation is unaffected to attack by any construction, then QECC that satisfies the above

definition with respect to the ideal functionality also cannot be attacked. While [33]

discuss an adversary and environment, the environment here is provided by the context

used in the definition of -c, which is similar to the application in [50] for asynchronous

classical communication.
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a
|ψ〉 Teleport QSS

b c
QECC

d |φ〉

=

a
|ψ〉 Teleport QSS

b c
Teleport

d |φ〉

=

a
|ψ〉 Identity QSS

b c
Identity

d |φ〉

Figure 4.12: Compositional analysis

4.3.5 Compositional Analysis

Compositional analysis is the use of formal methods to support modular reasoning about

systems that are constructed as combinations of sub-systems. These techniques have

been developed for many concurrent languages [112]. Figure. 4.12 demonstrates compo-

sitional analysis where there is a system which is assumed to be made up of a combi-

nation of sub-systems like Teleport , QSS , QECC and so on. We have seen that QECC

and Teleport are equivalent to each other as they have the same specification process

Identity . The figure demonstrates the method of analysing each modules of a process

that could be be a complicated combination of many subsystems.
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4.4 Discussion

The labelled transition semantics of CQP are introduced in [51] to record the obser-

vational properties of both quantum and classical states. The important part of this

semantic approach is the introduction of the mixed configuration that arises when the

measurement outcomes are not communicated to the environment but rather internally

between the sub-components of a system. Another crucial part of the mixed configu-

rations is that it provides the equivalence of processes to have an important property

of congruence and the theory has been used in the verification of quantum protocols

namely teleportation (Teleport) and superdense coding (SDC ).

We essentially use the theory as described in [51] and apply to quantum error code

correction system. Quantum error correction can easily be analyzed by pen and paper,

but the point of process calculus is that it forms part of a systematic methodology for

verification of quantum systems. Two versions of a qubit error correction system based

on the three qubit flip error correcting code are analysed and verified with respect to

their specifications. We also prove that a version of the quantum secret sharing protocol

is equivalent to the same specification process as that of the first model of quantum

error code correction system.

Other error correcting codes. An interesting line of future work regarding this

study would be to analyse other error correcting codes such as the three qubit phase

flip code and the Shor code. In a phase flip error correction model, the Z operator is

applied to the qubits to cause the phase flip, similar to the X operator in the bit flip

error correction system. But a phase flip channel could be converted into a bit flip

channel [132] if we work in the qubit basis, |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉).

We have seen that in bit flip error correction model the X operator acts as a bit flip

taking |0〉 to |1〉 and vice versa. In a similar approach, the Z operator takes |+〉 to

|−〉 and vice versa. The states in the phase flip error correction model are encoded as

|0L〉 = | + ++〉 and |1L〉 = | − −−〉 as logical zero and one states. The operations

that are involved in the error correction system such as encoding, flip error, detection

and recovery, are performed the same as the bit flip. This is done with respect to the

|+〉,—-〉 basis instead of |0〉, |1〉 basis. To obtain the basis change we need to apply the

Hadamard (H) gate and its inverse (also the Hadamard gate) at appropriate points and

this is can be achieved in CQP without much difficulty.

The Shor code protects the effect of an arbitrary error on a single qubit. The code

is a combination of three qubit phase flip and three qubit bit flip codes. In a similar

approach as shown in this chapter, we could model and analyse the Shor code system
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in CQP, which is a detailed study that could be done as a future work in this field of

research.

Congruence. This property of behavioural equivalence explicitly guarantees that equiv-

alent processes remain equivalent in any context, and supports equational reasoning. For

example: we have shown that QECC -c Identity and QSS -c Identity ; there is a proof

in [51] that Teleport -c Identity ; so we have, for free, that QECC -c Teleport -c QSS ,

in any context. This is also discussed in the next chapter.

Difference with qCCS. We shall briefly discuss the important differences in the

definitions of processes in CQP and qCCS and a more detailed study is a part of the

future work. The language presented in [66] and [170] models quantum information

processing system that combines both quantum and classical information. The theory

of equivalence is based on strong and weak bisimulation that is proposed in [66] and is

proved to be a congruence. The theory is illustrated by verifying quantum teleportation

and superdense coding protocols.

qCCS has a simpler syntax in comparison to CQP. The framework of qCCS does not

include the evaluation of arbitrary expressions, which is included in CQP. The quantum

operations are described usually by the application of a superoperator (E [q̃].P ). We

show that the specification process for QECC is Identity which is the same for Teleport

in [51]. But for qCCS, the specification process for teleportation is defined as a three

qubit unitary operator, SWAP1,3, which interchanges the first and third qubits. The

specification process expressed in CQP is defined as

Telspec = a?[x] . {x, y, z ∗= SWAP1,3} . d![z] .0

The swap operator is introduced in qCCS, as the number of qubits and their names must

be matched in the output action. In a similar approach, the specification process for the

models (quantum error correction system and quantum secret sharing protocol) that we

have analysed in this chapter, would be defined as processes QECCspec and QSSspec in

qCCS. These processes are expressed in CQP as:

QECCspec = a?[x] . {x, y, z, u, v, s, t ∗= I} . d![x] .0

QSSspec = c?[q] . {q, x, y, z, ∗=SWAP1,4} . d![z] .0

Here I is defined as the identity operator which does not change the qubits. We find

that the specification processes for quantum protocols are to be defined differently in

qCCS even though the processes provide the same output. But in CQP we have the
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same specification process as our abstraction requires only the matching of the quantum

state and not the quantum variables involved.

One of the essential conditions for a pair of processes to be bisimilar in qCCS is that the

processes should have the same free quantum variables. From [66], we find that having

identical free quantum variables is an essential requirement for strong bisimilarity ∼ ,

weak bisimilarity ≈ and equality '. This requirement excludes the pair of processes

P and Q from being weakly bisimilar (or strongly bisimilar or equal), as highlighted

in [66]. The definitions of P and Q, where I is the identity operator, written in qCCS

syntax are:

P = I[q] .nil and Q = τ .nil

The corresponding processes defined in CQP,

P = {q ∗= I} .0 and Q = 0,

where I is the identity operator on a single qubit, are, in contrast bisimilar in an ap-

propriate way. In fact, processes P and Q can be proved easily to be full probabilistic

branching bisimilar.

Approximate bisimulation. Another interesting theory to be developed is the the-

ory of approximate bisimulation. We have seen the model of quantum error correction

(QECC 2) that demonstrates correction with a probability of 1
2 . The theory of approxi-

mate bisimulation will help us to give more knowledge on the approximate equivalence

of these systems with regard to certain specifications and would help to study more

about the influence of decoherence in quantum information processing. The theory of

approximate strong bisimulation has been defined for qCCS [66].
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Equational reasoning about

quantum protocols

The congruence property of behavioural equivalence guarantees that equivalent processes

remain equivalent in any context, which is the foundation for equational reasoning. In

this Chapter, we define three new equational axioms to the existing work of CQP [51].

We show that we could analyse various quantum protocols like quantum secret sharing,

superdense coding, quantum error correction and remote-CNOT by using the previous

work [51] provided by Davidson along with the new axioms that are introduced in this

thesis. This is achieved by using the theory to equate bisimilar process terms.

With the help of axiomatisation, one can avoid the use of computation of process terms

and bisimulation relations. This gives rise to the possibility of automated reasoning,

so that we can have a mechanised derivation that two process terms are bisimilar. In

the previous work [51], Davidson proposed some axioms for full probabilistic branching

bisimilarity and proved that the axioms are sound. The axioms were applied in the

reasoning of quantum teleportation. Here, we look at a wider range of examples with

applications involving quantum communication and quantum cryptography, which has

led to the definition of some additional necessary axioms for the reasoning of these

systems. The completeness of the axioms is not yet proved and is still a subject for

future work.

5.1 Equational axioms of CQP

The axioms for full probabilistic branching bismilarity are shown in Figure 5.1 and have

been proved to be sound in [51]. The axioms which are introduced in this thesis are
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M |N = Σmi=1αi.(Pi |N) + Σnj=1βj .(M |Qj) + ΣαiCβjτ.(Pi |Qj) (E1)

where M = Σmi=1αi.Pi, N = Σnj=1αj .Qj and αiCβj if αi is c![x̃] and βj is c?[x̃]

{x̃ ∗= V }.{x̃ ∗=W}.P = {x̃ ∗= U}.P if U = WV (Qi1)

{ỹ ∗= Umeasure x}.P = {x, ỹ ∗= CU}.{measure x}.P (Qi2)

{ỹ ∗= Umeasure x.measure z}.P = {(x, z), ỹ ∗= CU}.{measure x} . {measure z}.P (Qi3)

{x̃ ∗= U}.{ỹ ∗= V }.P = {ỹ ∗= V }.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc1)

{x̃ ∗= U}.{measure ỹ}.P = {measure ỹ}.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc2)

{x̃ ∗= U}.(qbit ỹ).P = (qbit ỹ).{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc3)

{measure x̃}.{measure ỹ}.P = {measure ỹ}.{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc4)

{measure x̃}.(qbit ỹ).P = (qbit ỹ).{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc5)

(qbit x̃).(qbit ỹ).P = (qbit ỹ).(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc6)

α.{ỹ ∗= U}.c?[x̃].P = α.c?[x̃].{ỹ ∗= U}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc7)

α.{ỹ ∗= U}.c![x̃].P = α.c![x̃].{ỹ ∗= U}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc8)

α.{measure ỹ}.c?[x̃].P = α.c?[x̃].{measure ỹ}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc9)

α.{measure ỹ}.c![x̃].P = α.c![x̃].{measure ỹ}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc10)

(qbit x̃).c?[ỹ].P = c?[ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc11)

(qbit x̃).c![ỹ].P = c![ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc12)

{measure x}.0 = 0 (Qs1)

{x̃ ∗= U}.0 = 0 (Qs2)

(qbit x).0 = 0 (Qs3)

α . τ . P .0 = α . P .0 (Tau1)

α.{x̃ ∗= Π}.P{π(q̃)/x̃} = α.P if x̃ ⊆ n(α) (Qp1)

(qbit x).{ỹ, x ∗= U}.P = (qbit x).{ỹ, x ∗= V }.P if U(Iỹ ⊗ |0〉) = V (Iỹ ⊗ |0〉) (Qd1)

c?[x : Bit] . P (x) = c?[x : Bit] . Q(x) if P (x) = Q(x) for all x ∈ {0, 1} (Cv1)

(new c)(P +Q) = (new c)P + (new c)Q (R1)

(new c)α.P = 0 if α ∈ {c?[·], c![·]} (R2)

(new c)α.P = α.(new c)P if α /∈ {c?[·], c![·]} (R3)

Figure 5.1: Axioms for full probabilistic branching bisimilarity.

Cv1, Qi3 and Tau1.

c?[x : Bit] . P (x) = c?[x : Bit] . Q(x) if P (x) = Q(x) for all x ∈ {0, 1} (Cv1)

The classical value rule Cv1 enables us to compare processes that are controlled by the

classical bit, say x. The emphasis of this rule is clearly visible when we analyse the

superdense coding protocol.

The rules Qi1 and Qi2 that are introduced in [51], are called the quantum identity rules.

The rule Qi2 expresses the principle of deferred measurement [132] for an arbitrary

unitary operator U . The rule is useful in the analysis of quantum protocols where the

operator U is controlled by the measurement of a single qubit only. Rule Qi3, introduced

in this thesis, is an extension of the rule Qi2. This rule expresses the principle of deferred
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measurement, where the operator U is controlled by the measurement of more than one

qubit.

{ỹ ∗= Umeasure x.measure z}.P = {(x, z), ỹ ∗= CU}.{measure x} . {measure z}.P (Qi3)

In the previous chapter, we have analysed the quantum error code correction system,

QECC . The protocol uses operators that are controlled by the measurement of two

qubits. We show the need of the rule Qi3 in section 5.5 to analyse QECC , by not

creating bisimulation relations as seen in Chapter 4.

We define the rule Tau1 by

α . τ . P = α . P (Tau1)

Although this rule does not play a major role but it is needed to remove the un necessary

τ which arise when we eliminate the parallel composition of processes.

5.2 Quantum Secret Sharing

GHZ

|ψ〉 Alice

Bob

|ψ〉Charlie

c e

f

d
|x〉

|y〉

|z〉

Figure 5.2: Quantum secret sharing protocol

In general, the schematic representation of the protocol is given in Figure 5.2 and the

quantum circuit of the protocol is given in Figure 4.9. The boxes indicate the processes

and the thick lines indicate the channels through which the processes communicate.

The dashed lines represent the qubits that are associated with the respective processes.

As seen earlier, we recall the CQP definitions of the processes that are involved in the

protocol:

Alice(c, e, x) = c?[q :Qbit] . {q, x ∗= CNot} . {q ∗= H} . e![measure q,measure x] .0

Bob(f, y) = {y ∗= H} . f ![measure y] .0

Charlie(e, f, d, z) = e?[i :Bit, j :Bit] . f?[k :Bit] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} . d![z] .0

QSS (c, d) = (qbit x, y, z)({x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} .
(new e, f)(Alice(c, e, x) | Bob(f, y) | Charlie(e, f, d, z)))
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As before, our aim is to prove that QSS is equivalent to its specification process given

by the following definition

Identity(a : [̂Qbit], d : [̂Qbit]) = a?[x :Qbit] . d![x] .0.

5.2.1 Expanding quantum secret sharing

The expansion law of CQP is used in expanding the definitions of the quantum processes

[51]. The law is defined as:

If M = Σm
i=1αi.Pi and N = Σn

j=1βj .Qj , then

M |N = Σm
i=1αi.(Pi |N) + Σn

j=1βj .(M |Qj) + ΣαiCβjτ.(Pi |Qj) (E1)

where αiCβj identifies complementary actions, that is when αi is an output (c![x̃]) and

βj is a matching input (c?[x̃]). The law is adapted from the expansion lemma of the

π-calculus [150]. The prefixes of the terms in the first two parts of the summation

correspond to the actions that the processes M and N can execute respectively. The

third part is a summation corresponding to the communications between M and N .

The expansion law makes every action explicit by eliminating the parallel composition

into a summation, in which each summation eliminates the parallel composition at the

top level. Using this law many times results in a summation of sequential processes,

where each term corresponds to a single interleaving of parallel operations. From [51], it

is understood that a straightforward adaptation of the expansion law from the π-calculus

is not possible due to the semantics of expressions in CQP.

We begin by applying the expansion law E1 to the definition of QSS , to get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . (new e, f)(c?[q] .

(Alice ′ | Bob | Charlie) + {y ∗= H} . (Alice | Bob′ | Charlie)+

e?[i, j] . (Alice | Bob | Charlie ′))

(5.1)

where Alice = c?[q :Qbit] .Alice ′, Bob = {y ∗= H} .Bob′ and

Charlie = e?[i : Bit, j : Bit] .Charlie ′. The rules for manipulating restrictions represented

in Figure 5.1 are R1, R2 and R3. These are common laws for classical process calculi.

Using the rules R1 and R2 on Eq. 5.1, the third term of the sum vanishes to give:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . (new e, f)(c?[q :Qbit] .

(Alice ′ | Bob | Charlie) + {y ∗= H} . (Alice | Bob′ | Charlie))
(5.2)
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Expanding Eq. 5.2 as before, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . (new e, f)(c?[q] . {y ∗= H} .
(Alice ′ | Bob′ | Charlie) + {y ∗= H} . c?[q] . (Alice ′ | Bob′ | Charlie) + {y ∗= H} .

f ![measure y] . (Alice | Bob′ | Charlie) + c?[q] . {q, x ∗= CNot} . (Alice ′ | Bob | Charlie))

(5.3)

The rules Qc1 - Qc12 are called the commuting operators. These rules help to swap

the operators, actions and declarations around by using the commutativity principle.

For example, the rule Qc1 shows that we can swap the order of operators provided the

qubits x and y are independent.

Now, using rules R1−R3 and Qc7,Qc8, we can commute between the process terms,

which leads to the first two terms in Eq. 5.3 remaining the same and the third term is

eliminated to give:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . c?[q] . ({y ∗= H} . (new e, f)

(Alice ′ | Bob ′ | Charlie) + {q, x ∗= CNot} . (new e, f)(Alice ′ | Bob | Charlie))

(5.4)

Expanding Eq. 5.4 and repeating the same procedure, we arrive at:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . c?[q] . {q, x ∗= CNot} .
{q ∗= H} . {y ∗= H} . (new e, f)(e![measure q,measure x] .0 | f ![measure y] .0|

e?[i :Bit, j :Bit] . f?[k :Bit] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} . d![z] .0)

(5.5)

The next application of the expansion law results in the communication between Alice

and Charlie, giving

(e![measure q,measure x] .0 | f ![measure y] .0 | e?[i, j] . f?[k] . {z ∗= Zk} . {z ∗= Xj} .
{z ∗= Zi} . d![z] .0) = e![measure q,measure x](0 | f ![measure y] .0 | e?[i, j] . f?[k] .

{z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} . d![z] .0) + f ![measure y](e![measure q,measure x] .

0 | 0 | e?[i :Bit, j :Bit] . f?[k :Bit] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} . d![z] .0) + e?[i, j]

(e![measure q,measure x] .0 | f ![measure y] .0 | f?[k] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} .
d![z] .0) + τ(0 | f ![measure y] .0 | f?[k] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} . d![z] .0)

In this case, we have the complementary actions e?[i, j] and e![measure q,measure x],

which result in the fourth term in the summation as representing the internal commu-

nication τ . Using the above in Eq. 5.5 and by including the restriction rules R1 and

R2, we are able to identify the first three terms in the summation as semantically null
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processes, thereby we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . c?[q] . {q, x ∗= CNot} .
{q ∗= H} . {y ∗= H} . (0 + 0 + 0 + (new e, f) . τ . f ![measure y] .0 | f?[k :Bit] .

{z ∗= Zk} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0)

(5.6)

Similarly, the internal communication between Bob and Charlie gives rise to another τ

and we get by using the expansion law and restriction rules:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . c?[q] . {q, x ∗= CNot} . {q ∗= H} .
{y ∗= H} . (new e, f) . τ . τ . {z ∗= Zmeasure y} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(5.7)

Finallly, after several iterations using R3 and followed by (new e, f) .0 = 0, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . c?[q] . {q, x ∗= CNot} . {q ∗= H} .
{y ∗= H} . τ . τ . {z ∗= Zmeasure y} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(5.8)

The additional two τ transitions serves no purpose in this case. This is where the new

rule Tau1 plays an important part. By using this rule, we remove the unwanted τ and

arrive at the sequentialised definition of QSS represented by Eq. 5.9.

5.2.2 Analysis of QSS

In this section, we prove that quantum secret sharing (QSS ) is equivalent to it’s specifica-

tion process (Identity), by using the axiomatic approach with respect to full probabilistic

branching bisimilarity.

Proposition 5.1. QSS -c Identity

Proof. Using the expansion law (E1) in process calculus, we can eliminate the parallel

composition in the definition of the QSS process to a summation of sequential processes.

Rules R1-R3 are common laws of classical process calculus and can be used for manip-

ulating restrictions which gives rise to the following definition in sequentialised form for

QSS , which was seen in the previous section:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNot} . {y, z ∗= CNot} . c?[q :Qbit] . {q, x ∗= CNot} .
{q ∗= H} . {y ∗= H} . {z ∗= Zmeasure y} . {z ∗= Xmeasure x} . {z ∗= Zmeasure q} . d![z] .0

(5.9)

We will now simplify the above process and transform it into the Identity process by

using the axioms in Figure 5.1. First, we use rule Qi1 that allows us to manipulate
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quantum operators by combining the unitary actions into a single operation:

(qbit x, y, z) . {x, y, z ∗= CNotyz.CNotxy.Hx} . c?[q :Qbit] . {q, x, y ∗= Hy.Hq.CNotqx} .
{z ∗= Zmeasure y} . {z ∗= Xmeasure x} . {z ∗= Zmeasure q} . d![z] .0

The subscripts on the unitary operators indicates to which qubits they are applied. Rule

Qi2 expresses the principle of deferred measurement [132]. Applying the rule Qi2 to

the measurement operations in the above process and noting that CX = CNOT, we get:

(qbit x, y, z) . {x, y, z ∗= CNotyz.CNotxy.Hx} . c?[q :Qbit] . {q, x, y ∗= Hy.Hq.CNotqx} .
{y, z ∗= CZ} . {measure y} . {x, z ∗= CNot} . {measure x} .
{q, z ∗= CZ} . {measure q} . d![z] .0

Then, we swap the operators around due to commutativity, provided that the operators

are not acting on the same qubits. For example, we swap the order of the measurement

on z and the controlled-Z operator on x and y because the qubits are independent;

mathematically, this is due to the use of the tensor product. The commutativity of

internal operators are expressed by the rules Qc1-Qc6. Using Qc2 on the above process,

we can move the measurements, and then using Qi1, the unitary operators are combined

to give the resulting process:

(qbit x, y, z) . {x, y, z ∗= CNotyz.CNotxy.Hx} . c?[q :Qbit] . {q, x, y ∗= Hy.Hq.CNotqx} .
{q, x, y, z ∗= CZqz.CNotxz.CZyz} . {measure y} . {measure x} . {measure q} . d![z] .0

The rules, Qc7-Qc10, consider the commutativity of unitary operations with input and

output actions by applying certain conditions if ỹ ⊆ n(α) and x̃ ∩ ỹ = ∅. The first

condition is important as it ensures that there is no blocking behaviour. This enables us

to commute qubit declarations with input and output actions since a qubit declaration

is never blocking. This is expressed by the rules Qc11 and Qc12. We use these rules

to bring the input action to the top and move the measurement operations after the

output to give:

c?[q] . (qbit x, y, z) . {x, y, z ∗= CNotyz.CNotxy.Hx}{q, x, y ∗= Hy.Hq.CNotqx} .
{q, x, y, z ∗= CZqz.CNotxz.CZyz} . d![z] . {measure y} . {measure x} . {measure q} .0

With the help of the principle of deferred measurement, we were able to swap classical

control for quantum control. Now we consider the principle of implicit measurement

[132] which states that, any qubits at the end of a circuit may be assumed to be measured.

This is provided by the rule Qs1. Applying this rule to eliminate the measurements and

77



Chapter 5 Equational reasoning about quantum protocols

combining the remaining quantum operators with Qi1, we obtain:

c?[q] . (qbit x, y, z) . {q, x, y, z ∗= CZqz.CNotxz.CZyz.Hy.Hq.CNotqx.CNotyz.CNotxy.Hx} .
d![z] .0

Unitary operators and qubit declarations provide no observable effect at the end of a

process. Hence, we have the rules Qs2 and Qs3. We see that the qubits y, q and x will

each finish in the state 1√
2
(|0〉+ |1〉). So, we apply the Hadamard operator to each using

the rule Qs2 which allows these operations to be added. Combining these operators to

a single unitary action by using Qc8 and Qi1; we get:

c?[q] . (qbit x, y, z) . {q, x, y, z ∗= Hy.Hq.Hx.CZqz.

CNotxz.CZyz.Hy.Hq.CNotqx.CNotyz.CNotxy.Hx} . d![z] .0

Next, we insert a permutation in order to swap the output qubit z with q. Rule Qp1

defines this action where π is the permutation of qubits and the corresponding permu-

tation on the quantum state is given by Π. Applying this rule and followed by Qi1, we

get:

c?[q] . (qbit x, y, z) . {q, x, y, z ∗= U} . d![q] .0 (5.10)

where π(q) = z, π(z) = q, π(x) = x, π(y) = y and U = Π.Hy.Hq.Hx.CZqz.CNotxz.CZyz.Hy.

Hq.CNotqx.CNotyz.CNotxy.Hx. Now, we have the qubit declaration (qbit x, y, z) which

introduces three qubits in the combined state |000〉. We can define a linear map Q for

which the action of teleportation on the single qubit q is given by UQ. We use the rule

Qd1 to deal with quantum operators that appear under qubit declarations.

We have UQ = IqxyzQ where Iqxyz is the identity operator on qubits q, x, y, z. Then by

applying Qd1 to Eq. 5.10, we get:

c?[q] . {q, x, y, z ∗= I} . d![q] .0

We now apply the following rules, Qi1, Qc8 and Qs3 to give:

c?[q] . {q ∗= I} . d![q] .0

This is a special case of Qp1, where we consider identity permutation that results in the

process, which we are aiming for:

c?[q] . d![q] .0
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5.3 Superdense Coding (SDC)

We recall the discussion on the protocol from Section 3.7.2. SDC [25] involves two

users (Alice and Bob) sharing a pair of entangled qubits. In this protocol, two classical

bits are communicated by exchanging a single qubit. Alice is in possession of the first

qubit, while Bob has possession of the second qubit. By sending the single qubit in her

possession to Bob, it turns out Alice can communicate two classical bits to Bob. The

specification process for this protocol is CIdent . The CQP definitions of the processes

involved in the protocol are:

Alice(c, e, x, y) = c?[a :Bit, b :Bit] . {x ∗= Xb} . {y ∗= Za} . e![x] .0

Bob(e, d, y) = e?[x :Qbit] . {x, y ∗= CNot} . {x ∗= H} . d![measure x,measure y] .0

SDC (c, d) = (qbit x, y)({x ∗= H} . {x, y ∗= CNot} . (new e)(Alice(c, e, x, y) | Bob(e, d, y))

CIdent(c, d) = c?[a :Bit, b :Bit] . d![a, b] .0

5.3.1 Analysis of SDC

As in the previous case, we apply the expansion law E1 to the definition of SDC , we

get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNot} . (new e)(c?[a, b] . (Alice ′ | Bob)+

e?[x] . (Alice | Bob′))
(5.11)

where Alice ′ = c?[a, b] .Alice and Bob′ = e?[x] .Bob.

Using the rules R1−R3 on Eq. 5.11, the second term of the sum vanishes. Rearranging

the terms, we get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNot} . c?[a, b] . (new e)({x ∗= Xb} . {y ∗= Za}
. e![x] .0 | e?[x] . {x, y ∗= CNot} . {x ∗= H} . d![measure x,measure y] .0)

(5.12)

Expanding Eq. 5.12 as before and doing similar manipulations, we arrive at:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNot} . c?[a, b] . {x ∗= Xb} . {y ∗= Za} .
(new e)(e![x] .0 | e?[x] . {x, y ∗= CNot} . {x ∗= H} . d![measure x,measure y] .0)

(5.13)

Again using the expansion law and the restriction rules, we get a summation of three

terms of which one of them is an internal communication (τ transition). Performing
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several iterations using R3 and followed by (new e) .0 = 0, we arrive at:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNot} . c?[a, b] . {x ∗= Xb} . {y ∗= Za} .
τ . {x, y ∗= CNot} . {x ∗= H} . d![measure x,measure y] .0

(5.14)

Removing the τ from Eq. 5.14 by using the rule Tau1, we get the sequentialised form

of the definition of SDC :

(qbit x, y) . {x ∗= H} . {x, y ∗= CNot} . c?[a, b] . {x ∗= Xb} . {y ∗= Za}
{x, y ∗= CNot} . {x ∗= H} . d![measure x,measure y] .0

(5.15)

Proposition 5.2. SDC -c CIdent

Proof. We begin with Eq. 5.15, and using the rule Qi1 to combine the unitary actions

to get:

(qbit x, y) . {x, y ∗= CNotxy.Hx} . c?[a, b] . {xy ∗= Hx.CNotxy.Z
a
y.X

b
x} .

d![measure x,measure y] .0
(5.16)

Moving the input actions to the top by applying Qc7 and Qc11 on Eq. 5.16, we get:

c?[a, b] . (qbit x, y) . {x, y ∗= CNotxy.Hx}{xy ∗= Hx.CNotxy.Z
a
y.X

b
x}

d![measure x,measure y] .0
(5.17)

Applying Qi1 on Eq. 5.17, we arrive at:

c?[a, b] . (qbit x, y) . {x, y ∗= Hx.CNotxy.Z
a
y.X

b
x.CNotxy.Hx} . d![measure x,measure y] .0

Rewriting the above as:

c?[a :Bit, b :Bit] . (Qbit : x, y) . {xy ∗= Uab} . d![measure x,measure y] .0 (5.18)

Here, Uab = Hx.CNotxy.Z
a
y.X

b
x.CNotxy.Hx, is a unitary operator which depends on the

classical bits a and b.

Eq. 5.18 is a process, which is parameterised by the classical bits a and b. The original

axioms of CQP [51] did not have the rule to analyse a process that depends on the

classical bits. Hence, it was necessary to define a new rule Cv1 that enables us to

analyse process parametrised by classical values.
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Anna

|ψ〉

Elsa |0〉 H • • X Z |ψ〉 Bob

|0〉 X Z |φ⊕ ψ〉

|φ〉 • H

Iven

Figure 5.3: Remote CNOT

In order to do this, we define two processes P and Q that are parameterised by the

classical bits a and b:

P (a, b) = (Qbit : x, y) . {xy ∗= Uab} . d![measure x,measure y] .0 and

Q(a, b) = d![a, b] .0

We evaluate the outcomes of the processes P (a, b) and Q(a, b) for all values of a and b.

The results are provided in the Table 5.1.

a b |x〉 |y〉 {xy ∗= Uab} Result of P (a, b) Result of Q(a, b)

0 0 |0〉 |0〉 |00〉 00 00

0 1 |0〉 |0〉 |01〉 01 01

1 0 |0〉 |0〉 |10〉 10 10

1 1 |0〉 |0〉 |11〉 11 11

Table 5.1: Outcomes of processes P (a, b) and Q(a, b)

From Table 5.1, we find that the results for the processes P and Q, are the same for

all values of a and b. Hence using the rule Cv1, we can confirm that P (a, b) -c Q(a, b)

for all possible values of a and b. There by, Eq. 5.18 -c c?[a, b] . d![a, b] .0, which is the

specification process CIdent .

5.4 Remote CNOT (RCNOT)

The quantum circuit of the protocol (RCNOT ), shown in Figure 5.3 [172], demonstrates

the concept of teleporting a quantum logic gate. Here, the principle of quantum telepor-

tation is extended to quantum gates. The concept involved is to act on remote qubits

from a distance. This is referred to as distributed quantum computation [53] where a
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CNOT from one user’s state is transferred to other’s, without communicating any quan-

tum information between them. To perform this, we need to use qubit teleportation

back and forth to perform computations as demonstrated in [172]. We assume that the

protocol consists of four users: Elsa,Anna, Iven and Bob given by the respective CQP

definitions.

Elsa(a, c, d) = (qbit x, y)a?[q :Qbit, r :Qbit] . {x ∗= H} . {x, y ∗= CNot} . c![q, x] . d![r, y] .0

Anna(c, e, f, g) = c?[q, x] . {x, q ∗= CNot} . e?[j :Bit] . {x ∗= Xmeasure q} . f ![measure q] .

{x ∗= Zj} . g![x] .0

Iven(d, f, e, h) = d?[r, y] . {r, y ∗= CNot} . {r ∗= H} . e![measure r] . f?[i :Bit] . {y ∗= Xi} .
{y ∗= Zmeasure r} . h![y] .0

Bob(g, h, b) = g?[x] . h?[y] . b![x, y] .0

Anna and Iven have in their possession qubits q and r respectively, which they have

received from Elsa. Also, Elsa has prepared an EPR pair with qubits x and y before

sharing it with Anna and Iven. The objective of the protocol is that Anna and Iven

would like to perform a CNot operation with their qubits q and r, without communi-

cating any quantum information between them. Anna entangles her qubits q and x by

performing a CNot. Iven performs the same with his qubits in addition to a H operation

on r, before measuring it. He then sends the result to Anna. She measures her qubit

q and performs certain unitary operations on x based on the outcomes of her and Iven

measurements. Also, she sends her measurement outcome to Iven. Hence, Anna and

Iven communicate only their classical results between them, which are used to perform

unitary operation on their EPR pair. Essentially Iven’s qubit y is a CNot operation of q

and r and they communicate their EPR pair qubits (x and y) to Bob. The specification

of RCNOT is SCNOT . Let k̃ be a list of channels that comprises c, d, e, f, g and h. The

CQP definitions of the protocol and it’s specification are:

RCNOT (a, b) = (new k̃)(Elsa(a, c, d) |Anna(c, e, f, g) | Iven(d, f, e, h) | Bob(g, h, b))

SCNOT (a, b) = a?[q :Qbit, r :Qbit] . {r, q ∗= CNot} . b![q, r] .0

5.4.1 Analysis of RCNOT

Proposition 5.3. RCNOT -c SCNOT

Proof. We begin with the sequential form of the CQP definition of RCNOT . This is

achieved like the previous cases by applying the expansion law and manipulation of
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restrictions.

(qbit x, y) . a?[q :Qbit, r :Qbit] . {x ∗= H} . {x, y ∗= CNot} . {x, q ∗= CNot} .
{r, y ∗= CNot} . {r ∗= H} . {x ∗= Xmeasure q} . {y ∗= Xmeasure q} . {x ∗= Zmeasure r} .

{y ∗= Zmeasure r} . b![x, y] .0

Applying Qi1 and Qi2 to combine the unitary operations, we get:

(qbit x, y)a?[q, r] . {q, r, x, y ∗= Hr.CNotry.CNotxq.CNotxy.Hx} . {q, x, y ∗= CNotqy.CNotqx} .
{measure q} . {r, x, y ∗= CZry.CZrx} . {measure r} . b![x, y] .0

(5.19)

Now, we use the rules Qc2,Qc10, and Qs1 on Eq. 5.19 to remove the measurements:

(qbit x, y)a?[q, r] . {q, r, x, y ∗= Hr.CNotry.CNotxq.CNotxy.Hx} .
{q, x, y ∗= CNotqy.CNotqx} . {r, x, y ∗= CZry.CZrx} . b![x, y] .0

(5.20)

With the help of Qc11 and Qi1, we move the input action in the front of Eq. 5.20 and

combine the unitary operations to get:

a?[q, r] . (qbit x, y) . {q, r, x, y ∗= CZry.CZrx.CNotqy.CNotqx.

Hr.CNotry.CNotxq.CNotxy.Hx} . b![x, y] .0
(5.21)

Applying Qs2,Qc8 and Qi1 on Eq. 5.21, to add a Hadamard operation on qubit r to

give:

a?[q, r] . (qbit x, y) . {q, r, x, y ∗= Hr.CZry.CZrx.CNotqy.CNotqx.Hr.

CNotry.CNotxq.CNotxy.Hx} . b![x, y] .0
(5.22)

Now we apply the permutation operator to perform π(q) = x and π(x) = q by using the

rule Qp1 to give

a?[q, r] . (qbit x, y) . {q, r, x, y ∗= Π.Hr.CZry.CZrx.CNotqy.CNotqx.

Hr.CNotry.CNotxq.CNotxy.Hx} . b![q, y] .0
(5.23)

By using Qs2,Qc8 and Qi1 to add a Hadamard operation on qubit x. We get:

a?[q, r] . (qbit x, y) . {q, r, x, y ∗= Hx.Π.Hr.CZry.CZrx.CNotqy.

CNotqx.Hr.CNotry.CNotxq.CNotxy.Hx} . b![q, y] .0

Applying Qp1 a permutation operator as before to perform π(r) = y and π(y) = r, we

get:

a?[q, r] . (qbit x, y) . {q, r, x, y ∗= Π.Hx.Π.Hr.CZry.CZrx.CNotqy.CNotqx.

Hr.CNotry.CNotxq.CNotxy.Hx} . b![q, r] .0
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Then using Qd1, to get:

a?[q, r] . (qbit x, y) . {r, q ∗= CNot} . {x, y ∗= I} . b![q, r] .0

Finally, using the rules Qc8,Qs2,Qc3 and Qs3, we get:

a?[q, r] . {r, q ∗= CNot} . b![q, r] .0 (5.24)

where Eq. 5.24 is the same as the specification process SCNOT .

5.5 Verification of quantum error correction by equational

reasoning

We have seen in Chapter 4 that the process QECC is equivalent to Identity . This

has been proved by using the bisimulation relations. Now, we show through equational

theory that these processes are equivalent to each other. Recalling the CQP definitions

of QECC which consists of three processes: Alice, Bob and Noise. Alice wishes to send

a qubit to Bob over a noisy channel, represented by Noise. She uses a error correcting

code based on threefold repetition [132]. The code is able to correct single bit-flip error

in each block of three transmitted qubits. Bob uses the appropriate decoding procedure

to recover Alice’s original qubit. The CQP definitions of the system are:

Alice(a, b) = (qbit y, z)a?[x :Qbit] . {x, z ∗= CNot} . {x, y ∗= CNot} . b![x, y, z] .0
NoiseRnd(p) = (qbit u, v){u ∗= H} . {v ∗= H} . p![measure u,measure v] .0

NoiseErr(b, p, c) = b?[x :Qbit, y :Qbit, z :Qbit] . p?[j :bit, k :bit] . {x ∗= Xjk} . {y ∗= Xjk} .
{z ∗= Xjk} . c![x, y, z] .0
Noise(b, c) = (new p)(NoiseRnd(p) |NoiseErr(b, p, c))

BobRec(c, p) = (qbit s, t)c?[x, y, z] . {x, s ∗= CNot} . {y, s ∗= CNot} . {x, t ∗= CNot} .
{z, t ∗= CNot} . p![x, y, z,measure s,measure t] .0

BobCorr(p, d) = p?[x, y, z, j :bit, k :bit] . {x ∗= Xjk} . {y ∗= Xjk} . {z ∗= Xjk} .
{x, y ∗= CNot} . {x, z ∗= CNot} . d![x] .0

Bob(c, d) = (new p)(BobRec(c, p) | BobCorr(p, d))

QECC (a, d) = (new b, c)(Alice(a, b) |Noise(b, c) | Bob(c, d))

Proposition 5.4. QECC -c Identity
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Proof. We begin with the configuration which is obtained after eliminating the parallel

composition and after the application of the rule Qi1.

(qbit y, z) . a?[x] . {x, y, z ∗= CNotxy.CNotxz} . (qbit u, v){u, v ∗= Hv.Hu} .
{x ∗= Xmeasure u.measure v} . {y ∗= Xmeasure u.measure v} . {z ∗= Xmeasure u.measure v} .

(qbit s, t) . {x, y, z, s, t ∗= CNotzt.CNotxt.CNotys.CNotxs} . {x ∗= Xmeasure s.measure t} .
{y ∗= Xmeasure s.measure t} . {z ∗= Xmeasure s.measure t} . {x, y, z ∗= CNotxz.CNotxy} . d![x] .0

(5.25)

Applying the rules Qi3,Qc2,Qs1 and Qc3 one after other on Eq. 5.25, we get:

(qbit y, z)a?[x] . (qbit u, v) . (qbit s, t){x, y, z, u, v ∗= CNot(uv)z.CNot(uv)y.

CNot(uv)x.Hv.Hu.CNotxy.CNotxz} . {x, y, z, s, t ∗= CNotxz.

CNotxy.CNot(st)z.CNot(st)y.CNot(st)x.CNotzt.CNotxt.CNotys.CNotxs} . d![x] .0

(5.26)

Using rules Qc11 and Qi1 on Eq. 5.26 to get:

a?[x] . (qbit y, z, u, v, s, t) . {x, y, z, u, v, s, t ∗= CNotxz.CNotxy.CNot(st)z.

CNot(st)y.CNot(st)x.CNotzt.CNotxt.CNotys.CNotxs.CNot(uv)z.CNot(uv)y.

CNot(uv)x.Hv.Hu.CNotxy.CNotxz} . d![x] .0

(5.27)

Applying Qs2,Qi1 and Qd1 on Eq. 5.27 to give

a?[x] . (qbit y, z, u, v, s, t) . {x, y, z, u, v, s, t ∗= I} . d![x] .0 (5.28)

Then using Qi1 on the above equation, we get:

a?[x] . (qbit y, z, u, v, s, t) . {x ∗= I} . {y, z, u, v, s, t ∗= I} . d![x] .0 (5.29)

Finally after applying the rules Qc10,Qs1,Qc12 andQs3 on the Eq. 5.29, we arrive at

the desired result: a?[x] . d![x] .0.

Proposition 5.5. Teleport -c QSS -c QECC

Proof. Quantum teleportation (Teleport) is a protocol, which allows two users who share

an entangled pair of qubits, to exchange an unknown quantum state by communicating

only two classical bits. There is a proof in [51] that Teleport -c Identity . We prove

the proposition easily by using the transitivity of -c as we have seen that QECC and

QSS are equivalent to Identity through Propositions 5.1 and 5.4. The congruence

property helps to analyse a combination of systems. For example, if we consider a process

defined as System = Teleport | QECC . We can consider this equivalent to a process

Teleport | Identity by using Proposition 5.4. This is also equivalent to Identity | Identity

which is equivalent to Identity .
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5.6 Proof of Soundness of axioms

The equational axioms except for Cv1, Qi3 and Tau1, are proved to be sound in [51].

Now, we will prove the soundness of the new rules that are introduced with respect to

full probabilistic branching bisimilarity. This proof holds for any arbitrary quantum

states and substitutions.

Lemma 5.6 (Classical rule Cv1). Let P and Q be two processes that are parameterised

by a classical bit x. Then for all values of x ∈ {0, 1}, we have P (x) -c Q(x). Therefore,

there exists bisimulations R0 and R1 such that (P (0), Q(0)) ∈ R0 and (P (1), Q(1)) ∈
R1, and we have

c?[x : Bit] . P (x) -c c?[x : Bit] . Q(x)

Proof. For any arbitrary states σ, let σ = [p̃ 7→ |ψ〉] and

s1 = (σ; p̃; c?[x : Bit] . P (x)),

s2 = (σ; p̃;P (x)),

s3 = (σ; p̃; c?[x : Bit] . Q(x)),

s4 = (σ; p̃;Q(x)) .

We define an equivalence relation R as

R = R0 ∪R1 ∪ {(s1, s3))} ∪ I

where I is the identity relation. We now prove easily that R is a probabilistic branching

bisimulation by the transitions of s1 and s3.

If s1
c?[x]−→ s2 then we have s3

c?[x]−→ s4 where (s2, s4) ∈ R. With some formal definitions

and inductions, we achieve P (x)RQ(x).

Lemma 5.7 (Deferred measurement Qi3). Assume x, z /∈ ỹ. If U is a unitary operator

and CU is the corresponding controlled operator then

{ỹ ∗= Umeasure x.measure z}.P -c {(x, z), ỹ ∗= CU}.{measure x}.{measure z}.P.
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Proof. This is a straightforward adaptation from [51]. Assume that κ = {p, q̃/x, r̃/z, ỹ}.
Let

s1 = ([pq̃r̃ 7→ |ψ1〉]; p, q̃, r̃; ({ỹ ∗= Umeasure x.measure z}.P )κ),

s2 = ⊕i∈I gi ([pq̃r̃ 7→ |ψ2i〉]; p, q̃, r̃;λi • ({ỹ ∗= U i.measure z}.P )κ; i),

s3 = ⊕ i∈I
j∈J

gi hij([pq̃r̃ 7→ |ψ3ij 〉]; p, q̃, r̃;λij • ({ỹ ∗= U i.j}.P )κ; i, j),

s4 = ⊕ i∈I
j∈J

gi hij([pq̃r̃ 7→ |ψ4ij 〉]; p, q̃, r̃;Pκ),

s5 = ([pq̃r̃ 7→ |ψ1〉]; p, q̃, r̃; ({(x, z), ỹ ∗= CU}.{measure x}.{measure z}.P )κ),

s6 = ([pq̃r̃ 7→ |ψ5〉]; p, q̃, r̃; ({measure x}.{measure z}.P )κ),

s7 = ⊕i∈I gi ([pq̃r̃ 7→ |ψ6i〉]; p, q̃, r̃; ({measure z}.P )κ),

s8 = ⊕ i∈I
j∈J

gi hij([pq̃r̃ 7→ |ψ7ij 〉]; p, q̃, r̃;Pκ)

where I = {0, 1} and J = {0, 1}.

Let Mi and Mj be the measurement operators corresponding to the measurement of x

and z respectively. Then |ψ2i〉 = Mi|ψ1〉, |ψ3ij 〉 = Mj |ψ2i〉 and |ψ4ij 〉 = U ij |ψ3ij 〉 =

U ijMi.Mj |ψ1〉 and |ψ5〉 = CU |ψ1〉 and |ψ6i〉 = Mi|ψ5〉 = MiCU |ψ1〉 and |ψ7ij 〉 =

Mj .|ψ6i〉. For each i ∈ I and j ∈ J , a straightforward calculation shows U ijMj .Mi =

Mj .MiCU , therefore |ψ4ij 〉 = |ψ7ij 〉 and s4 = s8.

Now define an equivalence relation where

R = {(s1, s5), (s2, s6), (s3, s7), (s4, s8)} ∪ I .

We have s1
τ−→ s2

τ−→ s3
τ−→ s4 and s5

τ−→ s6
τ−→ s7

τ−→ s8. Therefore it is

straightforward to see that R is a probabilistic branching bisimulation.

Lemma 5.8 (Tau rule Tau1).

α . τ . P -c α . P

Proof. Let σ1 be an arbitrary quantum state, and let

s1 = (σ1;ω; (α . τ . P ) and s2 = (σ1;ω; (α . P )) .

Then define an equivalence relation R where R = {(s1, s2)} Then we have the transition

s1
τ−→ s2 and ρE(s1) = ρE(s2).
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5.7 Discussion

Davidson [51] has introduced the equational theory in CQP. By using the axioms, he has

verified the quantum teleportation protocol. In this chapter, we show that by defining

three additional axioms, we have taken a step further in analysing various other quantum

protocols like superdense coding, quantum secret sharing, remote CNOT and quantum

error correction. It is interesting to note that the new axioms Cv1 and Qi3 were not

required in the analysis of the quantum teleportation protocol. This is because the

teleportation protocol did not involve processes that are parameterised by classical bits

and also did not have operators that are controlled by two qubits. The proofs of the

soundness of the axioms, which are defined in this thesis, are presented. The soundness

of the other remaining equational laws are not presented in this work as it is given in

complete detail in [51].

Verification of the quantum protocols using the bisimulation relations requires hard

work. First, we need to perform the computations of the System and the Specification,

and then we need to establish a bisimulation relation based on the requirements of the

bisimulation definition. Like for example, the transitions of the processes should be

compared according to the type of bisimulation and also checking the reduced density

matrices for the resulting states. Because of equational reasoning, we show that we can

reduce the need to explicitly construct bisimulation relations.

Abramsky and Coecke [2] have developed an approach for analysing quantum protocols

by using the mathematical tools of category theory. Their approach is based on recasting

the standard axiomatisation of quantum mechanics by employing category theory to

describe the protocols at a more abstract level. They have verified the correctness of

quantum teleportation, logic gate teleportation and entanglement swapping. Ying et

al. [171] defined an automata model for reasoning about information-flow security of

quantum systems which provides a quantitative description of quantum information flow.

An important advantage of using the equational axioms is that it helps in automated rea-

soning. Automated reasoning has been applied to many quantum protocols. Ardeshir-

Larijani et al. developed a model checking tool [12] called the equivalence checker for

the verification of quantum protocols. The tool uses the stabilizer formalism and is re-

stricted to use the operators that are only in the Clifford Group. This puts a limitation

in solving problems that cannot be defined by the Clifford group operators.

The equational theory of CQP is not based on the stabiliser formalism and hence not

restricted to Clifford group operations. One of the future tasks is to prove the com-

pleteness of the axioms. Following from the recent work on equivalence checker, our

88



Chapter 5 Equational reasoning about quantum protocols

long-term goal is to develop an automated tool based on the equational theory of CQP

that allows the possibility to verify quantum programs beyond the stabilizer formalism.

89



Chapter 6

Quantum Process Calculus for

Linear Optical Quantum

Computing

In this chapter, we describe the use of quantum process calculus (CQP) to model a real-

istic experimental system that demonstrates quantum computing such as linear optical

quantum computing (LOQC). We begin by providing the foundations to understand

linear optics and then extending CQP to describe the basic linear optical elements that

are used in LOQC. In all previous work on quantum process calculus, we have seen that

a qubit was considered as a localised unit of information. Now, we present our first

attempt to model realistic ideal systems and the associated experimental processes.

6.1 Linear optical quantum computing (LOQC)

Many different architectures for quantum computers based on different physical sys-

tems have been proposed. These include atom/ion trap quantum computing, nuclear

magnetic resonance, nuclear spin quantum computing and optical quantum computing.

A detailed review is provided in [156]. Each of these systems has its own advantages

and disadvantages. For example, in an ion trap, two qubit gates are relatively easy to

implement but isolating the ions from the environment is difficult. This is due to the

motion of ions being susceptible to decoherence.

We focus our attention on optical quantum computing which uses single photons as

qubits and energy-preserving optical elements (linear optics). A photon is an elementary

particle or called the quantum of light. Optical implementations offer to date the most
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advanced system for quantum information processing (QIP), and photons naturally allow

to integrate quantum computation and quantum communication. Photons possess large

coherence times and can easily be generated, manipulated and detected thereby making

them suitable candidates for computation and communications. The downside is that

photons do not naturally interact with each other, and in order to apply two-bit quantum

gates such interactions are essential.

LOQC is one potential way for implementing small-scale quantum computing [106]. The

basic building blocks of linear optics are beam splitters, phase shifters and detectors.

The difficulty in using these elements in the experiments is in the alignment in order

to ensure interference of photons. In order to overcome these drawbacks, linear optical

circuits can be miniaturised using optical fibre and integrated waveguide circuits. These

waveguide circuits follow the same principle as that of the macroscopic laboratory setups

and have more stability [141]. The computation is based on spatial encoding where a

quantum bit is represented by two optical or spatial modes containing a single photon.

Precise manipulation of the quantum information inscribed in the internal (polarisa-

tion) and external (path) states of a photon are routinely achieved using linear optical

elements [134].

In the following paragraphs we will provide the basic concepts which will be used in the

subsequent sections when we discuss LOQC.

Qubits and modes A qubit or a quantum bit is one of the fundamental unit of

quantum information processing (QIP). We have seen in Chapter 3 that a qubit is

represented by the quantum state |ψ〉 = α0|0〉 + α1|1〉 where α0 and α1 are complex

values. The state |ψ〉 is a superposition of the basis states |0〉 and |1〉 having the

respective amplitudes of probability, |α0|2 to be in |0〉 state and |α1|2 to be in |1〉 state.

In LOQC, a qubit is represented by a single photon where the states |0〉 and |1〉 could

represent the polarisation state of a photon (i.e. |0〉 = |H〉 and |1〉 = |V 〉 where H and

V are the respective horizontal and vertical polarisations of the photon). We can then

write the state |ψ〉 as:

|ψ〉 = α0|0〉+ α1|1〉 = α0|H〉+ α1|V 〉 (6.1)

We refer to the qubit represented by Eq. (6.1) as a polarisation qubit. Here polarisation

is a distinguishable property of the qubit. In general, we say that any distinguishable

property of a photon is defined as a mode and the two most common examples for a mode

in LOQC that we concentrate in this thesis are polarisation and spatial path traversed

by a photon. A qubit in LOQC has generally the choice of two different modes [107].
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X

|ψ〉 = α|10〉HV + β|01〉HV
a

b

}
α|10〉ab + β|01〉ab

PBS

PR

Figure 6.1: Conversion of a polarisation qubit to a spatially encoded qubit by using
the linear optical elements, polarisation beam splitter (PBS) and phase shifter (PR). X

is the unused port of PBS, a and b are the optical paths.

For example, we say that the state |H〉 is equivalent to the state |1〉H |0〉V , which means

a state with 1 photon in polarisation mode H and 0 photon in polarisation mode V .

Fock States. We use the notation |n〉x for a state that represents the number of pho-

tons n (where n = 0, 1, 2...) of the given optical mode x (i.e indicated by the subscript).

We refer this as the number states or Fock states. The standard basis of Fock states

(|n〉) are |0〉, |1〉, |2〉 and so on. The general quantum state represented in Eq. (6.1) can

be considered as a linear combination of these basis states given by:

α0|H〉+ α1|V 〉 = α0|10〉HV + α1|01〉HV (6.2)

where the entries in the ket states on the RHS of Eq. (6.2) represent the number of

photons and the subscripts indicate the optical mode, which in this case is polarisation.

Using the above concepts, we can generalise the notation to more than one photon. For

example, two photons can then be encoded in polarisation mode given by α|20〉HV +

β|02〉HV + γ|11〉HV , if they are indistinguishable in all other parameters.

Spatial Encoding. Apart from polarisation, qubits can also be considered to be en-

coded in different optical paths ’a’ and ’b’ in LOQC [106]. This is known as spatial

encoding also referred to as dual rail logic. Here, we denote the entries in the kets as the

number of photons travelling along the different paths (i.e. indicated in the subscripts).

The basis states in dual rail logic are then |0〉 = |1〉a|0〉b ≡ |10〉ab, and similarly for

|1〉 = |0〉a|1〉b ≡ |01〉ab. Therefore, |10〉ab means 1 photon travelling in path a and no

photon in path b.

Coding Conversion. In experiments, the conversion of a polarisation qubit into a

dual rail qubit is accomplished by the combination of a polarising beam splitter (PBS)
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and a phase shifter (PR) as shown in Figure 6.1. The PBS has two input ports and two

output ports, where the unused input port is denoted by X. The superposition of |H〉
and |V 〉 is converted into a superposition of paths a and b. The polarising beam splitter

changes the path of the incident photon if it is vertically (V ) polarised. That is, the

photon is reflected and comes out of PBS in a direction perpendicular to the original

path of the photon. But, a horizontal polarised (H) photon would come out of the PBS

in the same direction or we say that the photon is transmitted. The PBS therefore

links polarisation information with path information. A subsequent phase shifter (PR)

rotates the polarisation of the vertical output by 90◦ so that the components of the dual

rail qubit are indistinguishable in their polarisations and can interfere [134]. We define

the combined operation of PBS and PR as a unitary operation, PS, which converts a

polarisation encoded qubit into a dual rail or spatial encoded qubit.

Definition 6.1 (PS operator). A PS is an operator that transforms a polarisation qubit

|ψ〉 ∈ H1 to a dual rail qubit |φ〉 ∈ H2 represented by spatial modes (a, b).The action of

PS is defined by

PS|H〉 = |10〉ab and PS|V 〉 = |01〉ab

The evolution of a lossless closed quantum system can be described by unitary trans-

formations that is performed by the linear optical elements such as phase shifters and

beam splitters. The total photon number is preserved by these transformations. If the

state of a qubit is represented by a column vector then a unitary transformation U can

be represented by a matrix.

Transformation on Fock states. Operations on number states or Fock states (|n〉)
are described in terms of the creation operator (â†) and destruction operator (â), which

satisfy the following commutation relations:

[âi, âj
†] = δi,j

[âi, âj ] = [âi
†, âj

†] = 0

The action of the abive operators on the number states |n〉 increase or decrease the

photon number (n) by one. This is given as:

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉.
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In this scheme, |0〉 corresponds to the vacuum state (i.e. absence of photon), |1〉 cor-

responds to single photon and so on. Therefore, each Fock state can be built up from

creation operators given by

|n〉 = (â†)n√
n!
|0〉.

Post-selection. This plays a vital role in LOQC, where one considers only a subset

of all experimental runs that fulfil predefined criteria, e.g. given by the desired number

of detected photons in particular channels. Therefore the computation succeeds with a

certain probability, and with the complementary probability it is aborted with no result.

We describe post-selection in CQP by modelling a linear optical CNOT gate.

6.1.1 Unitary transformation in LOQC

An optical component is defined to be linear if the output mode operators of the com-

ponent are a linear combination of its input mode operators [128]. If b̂†j are the output

mode operators and ĉ†k are the input mode operators, then

b̂†j =
∑

kMjkĉ
†
k

(6.3)

A unitary transformation in LOQC [128] can be described by its effect on each mode’s

creation operator. The basic and common linear optical components are phase shifters

and beam splitters.

A non polarising beam splitter (BS) is defined by the transformation matrix [107, 146]

U(BS) =

(
cos θ eiφ sin θ

e−iφ sin θ − cos θ

)
(6.4)

where the input mode operators (ĉ†) are related to the output mode operators (b̂†) by

(b̂†j)
n|0〉 =

∑
k Ujk(ĉ

†
k)
n|0〉. (6.5)

The reflectivity of BS is given by η = cos2 θ, where cos θ and sin θ are the probability

amplitudes for reflection and transmission, and φ is the relative phase. Here we consider

φ = 0, which is the case for BSs in integrated circuits.

If we consider the state |mn〉pq incident on a beam splitter with m photons along path

p and n photons along path q, the transformation is [128]:
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|mn〉pq =
(â†p)m√
m!

(â†q)n√
n!
|00〉pq =

1√
m!n!

(â†p cos θ + â†q sin θ)m(â†p sin θ − â†q cos θ)n|00〉pq.
(6.6)

For example, we get:

|10〉 → cos θ|10〉+ e−iφ sin θ|01〉
|01〉 → eiφ sin θ|10〉 − cos θ|01〉
|11〉 →

√
2eiφ cos θ. sin θ|20〉+ (sin2 θ − cos2 θ)|11〉 −

√
2e−iφ cos θ. sin θ|02〉

|20〉 → cos2 θ|20〉+
√

2e−iφ cos θ. sin θ|11〉+ e−2iφ sin2 θ|02〉
|02〉 → e2iφ sin2 θ|20〉 −

√
2eiφ cos θ. sin θ|11〉+ cos2 θ|02〉

In general, for a beam splitter of reflectivity 1
2 (assuming φ = 0), the transformation

matrix is given as:

U =

 1√
2

1√
2

1√
2
− 1√

2

 .

The output modes of this beam splitter are then given as:

|10〉 → 1√
2
(|10〉+ |01〉)

|01〉 → 1√
2
(|10〉 − |01〉)

|11〉 → 1√
2
(|20〉 − |02〉)

|20〉 → 1√
2
( 1√

2
|20〉+ |11〉+ 1√

2
|02〉)

|02〉 → 1√
2
( 1√

2
|20〉 − |11〉+ 1√

2
|02〉)

Similarly for a beam splitter of reflectivity 1
3 with cos θ = 1√

3
, we get the transformation

matrix as:

U =

 1√
3

√
2√
3√

2√
3
− 1√

3

 .

95



Chapter 6 Quantum Process Calculus for Linear Optical Quantum Computing

X0,outX0,in

C1,in

C0,in

C1,out

C0,out

A

B

C

D

E

T1,in

T0,in

T1,out

T0,out

X1,outX1,in

Figure 6.2: LOQC CNOT Gate. A sign change occurs upon reflection of the optically
thicker side (indicated in black) of the BSs.

The output modes are given as:

|10〉 → 1√
3
|10〉+

√
2√
3
|01〉

|01〉 →
√

2√
3
|10〉 − 1√

3
|01〉

|11〉 → 1
3(2|20〉+ |11〉 − 2|02〉)

|20〉 → 1
3(|20〉+ 2|11〉+ 2|02〉)

|02〉 → 1
3(2|20〉 − 2|11〉+ |02〉)

Using the transformations of the above beam splitters, we will discuss the operation of

the LOQC CNOT gate in the next section.

6.1.2 Working of LOQC CNOT gate

We consider the CNOT gate of O’ Brien et. al [134, 141], depicted in Figure 6.2, which

is an implementation of the gate proposed by Ralph, Langford, et al. [146]. This is a

postselected two-photon gate where two polarised qubits are created in a spontaneous

parametric down-conversion (also known as SPDC). This is used especially to create

entangled photon pairs, and of single photons. To perform this task, a laser beam is

incident on a non linear crystal which is used to split photons into pairs of photons

that have combined energy and momentum equal to the energy and momentum of the

original photon. The polarisation qubits can be converted to dual-rail qubits with the
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bo1

ci2

bo2ci1

Figure 6.3: The beam splitter

help of a polarising beam splitter and a phase shifter combination. Both the control and

target qubits can be prepared in an arbitrary pure superposition of the computational

basis states. The LOQC CNOT gate shown in Figure 6.2 is a combination of five beam

splitters (BSs) A,B,C,D and E.

Experiment: In [134], the experiment is analysed as follows: if the control qubit is

in the state where the photon enters the top input port C0,inp, there is no interaction

between the control and target qubits. On the other hand, when the control photon

enters the lower input port C1,inp, the control and target photons interfere non classically

at the central beam splitter giving two photon interference which causes a π phase shift in

the upper arm of the target T0,inp, and as a result the target photon is switched from one

output mode to the other. Otherwise we can say that, the target state experiences a bit

flip. The control qubit remains unaffected, hence the interpretation of this experiment

as a CNOT gate. We do not always observe a single photon in each of the control and

target outputs. But, when a control and a target photon are detected we know that the

CNOT operation has been correctly realised.

Theory: All the beam splitters are assumed to be asymmetric in phase. This means

that if ĉ†i1 and ĉ†i2 are the two input mode operators and b̂†o1 and b̂†o2 are the corresponding

output operators as shown in Figure 6.3, then the relations between the input and output

operators are given by:

b̂†o1 = cos θĉ†i1 + sin θĉ†i2

b̂†o2 = sin θĉ†i1 − cos θĉ†i2
(6.7)

Eq. (6.7) is obtained by using Eq. (6.5) and the unitary matrix of beam splitter given

by Eq. (6.4).

The theory and operation of the gate are provided in [146] and are used here for our

understanding. Beam splitters A and E are of reflectivity 1
2 and the rest B,C and D are

of reflectivity 1
3 . X indicates the respective input port of the BS that is not used and also
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the photons coming out of output ports X1,out and X0,out are not considered. C0,in, C1,in

are the control (C) input ports and T0,in, T1,in are the target (T ) input ports. The output

ports are C0,out, C1,out, T0,out, T1,out. The relationships between the corresponding input

and output operators are the following:

ĉ†0,out = 1√
3
(
√

2x̂†0,in + ĉ†0,in)

ĉ†1,out = 1√
3
(−ĉ†1,in + t̂†0,in + t̂†1,in)

t̂†0,out = 1√
3
(ĉ†1,in + t̂†0,in + x̂†1,in)

t̂†1,out = 1√
3
(ĉ†1,in + t̂†1,in − x̂

†
1,in)

x̂†0,out = 1√
3
(−x̂†0,in +

√
2ĉ†0,in)

x̂†1,out = 1√
3
(t̂†0,in − t̂

†
1,in − x̂

†
1,in)

(6.8)

Consider the general two photon input state given by Eq. (6.9), where the notation e.g.

|HV 〉 refers to a control photon with horizontal polarisation and a vertically polarised

target photon

|φ〉 = (α|HH〉+ β|HV 〉+ γ|V H〉+ δ|V V 〉)|00〉
= (αĉ†0,int̂

†
0,in + βĉ†0,int̂

†
1,in + γĉ†1,int̂

†
0,in + δĉ†1,int̂

†
1,in)|0000〉|00〉

(6.9)

where the ordering in the kets is |c0c1t0t1〉|x0x1〉. Here c0, c1 are the number states for

the control qubit, t0, t1 are for the target qubit and x0, x1 are the vacuum states and

we use the shorthand |1010〉 = |HH〉, etc., where appropriate. Using the operators

as discussed in Eq. (6.8) and applying it to Eq. (6.9) by substituting input operators

for the output operators, we get the number of photons in the respective output ports

(C1,out, C0,out, T1,out, T0,out, X1,out and X0,out) of the CNOT gate as shown in Figure 6.2.

|φ〉out = (αĉ†0,outt̂
†
0,out + βĉ†0,outt̂

†
1,out + γĉ†1,outt̂

†
0,out + δĉ†1,outt̂

†
1,out)|0000〉|00〉

= 1
3{(α|HH〉+ β|HV 〉+ γ|V V 〉+ δ|V H〉)|00〉+

√
2(α+ β)|0100〉|10〉+

√
2(α− β)|0000〉|11〉+ (α+ β)|1100〉|00〉+ (α− β)|1000〉|01〉+

√
2α|0010〉|10〉+

√
2β|0001〉|10〉 −

√
2(γ + δ)|0200〉|00〉 − (γ − δ)|0100〉|01〉+

√
2γ|0020〉|00〉

+(γ − δ)|0010〉|01〉+ (γ + δ)|0011〉|00〉+ (γ − δ)|0001〉|01〉+
√

2δ|0002〉|00〉}.
(6.10)

From these states we post-select only those where one photon is found in the target and

one in the control state, giving

|φ〉ps = α|HH〉+ β|HV 〉+ γ|V V 〉+ δ|V H〉. (6.11)

Because of the BSs (that have reflectivity 1
3), we essentially do not always have a single

photon in each of the control and target outputs. But, when a single photon is detected

at each of the outputs, it is recorded as a coincidence count that occurs with a probability
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T ::= Int | Qbit | NS | [̂T̃ ] | Op(1) | Op(2) | · · ·
v ::= 0 | 1 | · · · | H | PS | · · ·
e ::= v | x | measure ẽ | ẽ ∗= e | e+ e | x : NS, y : NS ∗= PS(z)

P ::= 0 | (P |P ) | P + P | e?[x̃ : T̃ ].P | e![ẽ].P | {e}.P | [e].P | (qbit x)P | (ns x)P |
(new x : [̂T ])P | if e then P else Q

Figure 6.4: Syntax of CQP.

of one-ninth and the relationship between Eq. (6.10) and Eq. (6.11) is a controlled-NOT

transformation.

With the understanding of the above theory and operation of the gate, we provide the

extensions of CQP in the next section to describe LOQC.

6.2 Extensions of CQP for LOQC

Modelling in CQP provides us an abstract view of the quantum system. Our aim is to

model realistic (non-localised) systems and the associated experimental processes. CQP

assumes that a qubit is a localised unit of information. This view works well with QKD

but not with LOQC, as it cannot describe spatial encoding. In this section we extend

CQP in order to model LOQC. We illustrate this by defining various linear optical

elements such as beam splitters and phase shifters in CQP and by modelling an LOQC

CNOT gate.

6.2.1 Syntax

The syntax of CQP for LOQC is defined by the grammar as shown in Figure 6.4. This

is very similar to the previous version of CQP as shown in Figure 4.1. The framework

of CQP helps us to extend or generalise the language to be suited for other applications.

The description of the syntax is the same as discussed in the earlier chapters which

consists of types T , values v, expressions e (including quantum measurements and the

conditional application of unitary operators ẽ ∗= ee), and processes P . We have a new

type called NS for number state. Values v consist of variables (x,y,z etc), literal values of

data types (0,1,..), and a new unitary operator PS which is provided by the Definition 6.1.

An important addition to the expression is the unitary operation of PS that converts a

polarisation qubit, say z, to spatially encoded number states x and y. Processes now

include the following [e].P (typically for PS operation), if . . . else conditions and number
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state declaration (ns x)P , that are needed for the extension of the language to model

LOQC.

In order to define the operational semantics we provide the internal syntax in Figure

6.5.

v ::= . . . | q | s | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E | E + e | v + E

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P | {[]}.P

Figure 6.5: Internal syntax of CQP.

The addition to the values are the number state names s that are generated at run-time

and substituted for the variables used in ns declarations respectively.

6.2.2 Type System for LOQC

In this section, we introduce the extensions of the type system of CQP that is presented

in the previous chapter (section 4.1.2) and [51]. This is a straight forward approach as

we introduce the number states (NS). The modified typing rules for the syntax defined

in Figure 6.4 are shown in Figure 6.6. Environments Γ are mappings from variables to

types in the usual way.

Definition 6.2 (Addition of Environments). [51, 75] The partial operation of adding

a typed variable to an environment, Γ + x :T , is defined by

Γ + x :T =


Γ, x :T if x /∈ dom(Γ)

Γ if T 6= (Qbit,NS) and x :T ∈ Γ

undefined otherwise.

6.2.3 Linear optical elements in CQP

We have seen earlier that the combination of a PBS and PR converts a polarisation qubit

to a dual rail qubit as shown in Figure 6.1. We define the combination as a process PolSe

which provides the input to the LOQC CNOT gate.

PolSe(a : [̂Qbit], c : [̂NS], d : [̂NS]) = a?[q0 :Qbit] . [s0 :NS, s1 :NS ∗= PS(q0)]

. c![s0] . d![s1] .0
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∀i(Γ ` xi :NS) x1, . . . , xn distinct

Γ ` measure x1, . . . , xn : Int
(T-Msure-Ns)

Γ, x :ns ` P

Γ ` (ns x)P
(T-NS)

Γ ` x :̂[T1, . . . , Tm,NS, . . . ,NS] ∀i.(Ti 6= NS)
∀i.(Γ ` ei :Ti) yi distinct Γ ` P

Γ, y1 :NS . . . , yn :NS ` x![e1, . . . , em, y1, . . . , yn].P

(T-Out)

∀i(Γ ` xi :NS) x1 . . . xn distinct Γ ` U :Op(n) Γ ` e : Int Γ ` P

Γ ` x1, . . . , xn ∗= U e :Unit
(T-Trans)

Figure 6.6: Modified typing rules for the syntax of CQP needed for LOQC.

PolSe is parameterized by three channels, a,c and d. The polarisation qubit (say q0) is

received through channel a whose type is [̂Qbit]. The qubit q0 will be encoded in terms

of the number of photons (s0 and s1) travelling along channels c and d respectively.

The right hand side of the definition specifies the behaviour of the process PolSe. The

first term, a?[q0 :Qbit] specifies that the qubit is received from channel a and given the

local name q0. The following sequence of terms, separated by dots, indicate temporal

sequencing. The term [s0 :NS, s1 :NS∗=PS(q0)] specifies that the PS operation is applied

to qubit q0 thereby generating s0 and s1 of type number states (NS). PS corresponds

to the transformation produced by the combination of PBS and PR, introduced by

Definition 6.1. The last two terms (c![s0] and d![s1]) indicate that the respective values

of the number states are sent through the respective output channels. The term 0 simply

indicates termination.

The CQP definition of the beam splitter BS is

BS (e : [̂NS], f : [̂NS], h : [̂NS], i : [̂NS], η) = e?[s2 :NS] . f?[s3 :NS] . {s2, s3 ∗= Bη} .
h![s2] . i![s3] .0

where η is the reflectivity. Process BS has input channels e and f , and output channels

h and i, all of type [̂NS]. After receiving inputs s2 and s3 from e and f , the unitary

operation of BS represented by {s2, s3 ∗=Bη} is carried out on the input number states

as defined by Eq. 6.6. Here Bη is the unitary operation represented by the matrix U(BS)

for φ = 0. The number states are then output on h and i.

Finally, we define the process Det which encapsulates measurement of a number state

as a detector component. This will be used for the post-selecting measurement of the
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outputs of the CNOT gate.

Det(l : [̂NS], u : [̂Val]) = l?[s0 :NS] . u![measure s0] .0

The expression measure s0 probabilistically evaluates to a positive integer which is the

number of photons detected.

6.2.4 Semantics

In this section we will explain the operational semantics of CQP. Our focus is to provide

the new additions to the previously defined formal syntax and semantics of CQP [51],

in order to describe the behaviour of the linear optical CNOT gate. We have seen that

the execution of a system is not completely described by the process term (which is

the case for classical process calculus) but also depends on the quantum state. Hence

the operational semantics are defined using configurations, which represent both the

quantum state and the process term.

In LOQC, a qubit can be encoded with respect to the polarisation of a photon which

we denote as Qbit and also it can be encoded with respect to the path traversed by the

photon which we denote as NS. Therefore, our quantum state now can comprise both

Qbit and NS. Hence, we have an additional term in our configuration which gives the

list of elements and their types that are associated to the quantum state.

Definition 6.3 (Configuration). A configuration is defined as a tuple of the form (x̃ :

T̃ ;σ;ω;P ) where x̃ is a list of names (qubits q̃, number states s̃ or both) associated with

their types T̃ , σ is a mapping from names (x̃) to the quantum state and ω is a list of

names associated with the process P

We operate with configurations such as

(q1 : Qbit, s0 : NS, s1 : NS; [q1, s0, s1 7→ (|0〉|10〉+ |1〉|01〉)]; q1; c![q1] . P )

We interpret the NS variables as dual-rail representations of qubits, which were in the

initial configuration. For example, in this case, s0 and s1 represent the original qubit q0.

There is a fixed relationship between the indices of qubits and number state variables:

qi is represented by s2i, s2i+1. There may be additional NS variables, introduced by the

ns declarations, representing vacuum states. This configuration means that the global

quantum state consists of a qubit, q1, number states s0 and s1, in the specified state;

that the process term under consideration has access to qubit q1 but not to the number

states; and that the process itself is c![q1] . P . The suffix is important as it not only
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(x̃ : T̃ ;σ;ω;u+ v) −→v (x̃ : T̃ ;σ;ω;w)if u and v are integer literals and w = u+ v
(R-Plus)

(x̃ : T̃ ; [x̃ 7→
∑
s̃

αs̃|β〉|γ〉];ω;measure sr) −→v (R-Measure-NS)

�u≥0pu • (x̃ : T̃ ; [x̃ 7→
∑
s̃′

αs̃′

pu
|β〉|γ′〉];ω;u) where pu =

∑
ĩ

|αs̃′ |
2,

s̃ = s0, . . . , s2n−1, s̃′ = s0, . . . , sr−1, u, sr+1, . . . , s2n−1, ĩ = s0, . . . , sr−1, sr+1, . . . , s2n−1

(q̃ : Qbit, s̃ : NS; [q̃, s̃ 7→ |β〉|γ〉];ω; s0, . . . , s2r−1 ∗= U) −→v (R-Trans-NS)

(q̃ : Qbit, s̃ : NS; [q̃, s0, . . . , s2n−1 7→ |β〉(U ⊗ I(n−r))|γ〉];ω; unit)

(x̃ : T̃ ;σ;ω; e) −→v �ipi • (x̃ : T̃ ;σi;ωi; ei)

(x̃ : T̃ ;σ;ω;E[e]) −→e �ipi • (x̃ : T̃ ;σi;ωi;E[ei])
(R-Context)

Figure 6.7: Transition rules for values and expressions.

indicates the position of the qubit or number state in the quantum state but it shows

the relationship between them, that is qi = s2i, s2i+1. Here the configuration shows that

the number states s0 and s1 are associated with the qubit q0 which in this case is not

accessible by the process term.

For the evaluation of expressions we have expression configurations (x̃ : T̃ ;σ;ω; e), which

are similar to configurations, but include an expression in place of the process. The se-

mantics of expressions is defined by the reduction relations −→v (on values) and −→e (on

expressions), given in Figure 6.7. Rules R-Plus, R-Measure-NS and R-Trans-NS

deal with the evaluation of terms that result in values, including measurement which

produces a probabilistic distribution over the possible measurement outcomes u, and

unitary transformations which result in literal unit. The rules R-Measure-NS and

R-Trans-NS are the new rules which are added to the semantics to operate with num-

ber states. R-Trans-NS defines the action of the unitary operators that operate on

number states listed first in the state.

Example 6.1.

(q1 : Qbit, s0 : NS, s1 : NS; [s0, s1, q1 7→ α1|10〉|0〉+α0|01〉|1〉]; s0, s1; {s0, s1∗=B 1
2
} . P )

τ−→

(q1 : Qbit, s0 : NS, s1 : NS; [s0, s1 7→ 1√
2
((α1 + α0)|10〉|0〉+ (α1 − α0)|01〉|1〉)]; s0, s1;P ).

The above example shows the effect of the unitary operation of a beam splitter (reflec-

tivity η = 1
2) on the number states s0 and s1. The important aspect of R-Trans-NS

and R-Measure-NS is the effect they have on the quantum state. R-Measure-NS is

a rule defined for the measurement of number states.
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�ipi • (x̃ : T̃ ;σi;ω;Pi)
pi−→ (x̃ : T̃ ;σi;ω;Pi) (L-Prob)

(x̃ : T̃ ;σ;ω, ṽ; c![ṽ].P )
c![ṽ]−→ (x̃ : T̃ ;σ;ω;P ) (L-Out)

(x̃ : T̃ ;σ;ω; c?[ỹ].Q)
c?[ṽ]−→ (x̃ : T̃ ;σ;ω, ṽ;Q{ṽ/ỹ}) (L-In)

(x̃ : T̃ ;σ;ω, ṽ;P )
c![ṽ]−→ (x̃ : T̃ ;σ;ω;P ′) (x̃ : T̃ ;σ;ω;Q)

c?[ṽ]−→ (x̃ : T̃ ;σ;ω, ỹ;Q′)

(x̃ : T̃ ;σ;ω, ṽ;P |Q)
τ−→ (x̃ : T̃ ;σ;ω, ṽ;P ′|Q′)

(L-Com)

(x̃ : T̃ ;σ;ω;P )
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi)

(x̃ : T̃ ;σ;ω;P +Q)
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi)

(L-Sum)

(x̃ : T̃ ;σ;ω;P )
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi)

(x̃ : T̃ ;σ;ω;P |Q)
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi|Q)

(L-Par)

(x̃ : T̃ ;σ;ω;P )
α−→ (x̃ : T̃ ;σ′;ω;P ′)

(x̃ : T̃ ;σ;ω; (new c : [̂T ]).P )
α−→ (x̃ : T̃ ;σ′;ω; (new c : [̂T ]).P ′)

if α /∈ {c?[.], c![.]}

(L-Res)

(x̃ : T̃ ;σ;ω; {v}.P )
τ−→ (x̃ : T̃ ;σ;ω;P ) (L-Act)

(x̃ : T̃ ; [x 7→ |φ〉];ω; (ns s)P )
τ−→ (x̃ : T̃ , s : NS; [x̃, s 7→ |φ〉|0〉];ω, s;P ) if s is fresh

(L-Ns)

(x̃, ỹ : ˜Qbit, qc : Qbit, z̃ : ÑS; [x̃, qc, ỹ, z̃ 7→ |φ〉];ω; [s2c, s2c+1 ∗= PS(qc)] . P ) (L-PS)
τ−→ (x̃, ỹ : ˜Qbit, z̃ : ÑS, s2c : NS, s2c+1 : NS; [x̃, ỹ, z̃, s2c, s2c+1 7→ |ψ〉];ω′;P )

(x̃ : T̃ ;σ;ω; e) −→e �ipi • (x̃ : T̃ ;σi;ω; ei)

(x̃ : T̃ ;σ;ω;F [e])
τ−→ �ipi • (x̃ : T̃ ;σi;ω;F [ei])

(L-Expr)

Figure 6.8: Transition Relation Rules.

Example 6.2.

(s0 : NS, s1 : NS; [s0, s1 7→ α1|10〉+ α0|01〉]; s0, s1;measure s0 . P )
τ−→

�i,j∈{0,1},i 6=j |αi|2(s0 : NS, s1 : NS; [s0, s1 7→ |ij〉]; s0, s1;P ).

Example 6.2 shows the effect of measurement(R-Measure-NS) within a process. On

the right of the transition, we have a probabilistic configuration in which the � ranges

over the possible outcomes i of the measurement and the |αi|2 are the weights of the

components of the mixture. The measurement outcomes are classical values which are

the number of photons detected.

The labelled transitions between configurations are defined given by the set of rules

shown in Figure 6.8. The rule L-Prob is a probabilistic transition in which pi is the

probability of the transition. The rules L-In and L-Out represent the input and output

actions respectively, which are the visible interactions with the environment. Q{ṽ/ỹ} in

rule L-In indicates that Q with a list of values ṽ substituted for the list of variables ỹ.

When the two processes of the input and output actions are put in parallel then each
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has a partner for its potential interaction, and the input and output can synchronise,

resulting in a τ transition which is given by the rule L-Com. The rule L-Act just

removes actions. This is a reduction of the action expression to v which would involve

effects like measurement or transformation of the quantum state. The rules discussed

are similar to the rules in [51] with the modification of introducing the number states

into the configuration in order to describe the behaviour of LOQC.

Rule L-PS describes the PS operation, which is the conversion of a polarisation qubit (qc)

to the number states (s2c and s2c+1). Here x̃, ỹ and z̃ means a list of names of the form

qi, qj and sk where k 6= (2i, 2i+1, 2j, and 2j+1). The quantum state of the system before

the operation is given as |φ〉 = |α〉|0〉|β〉|γ〉 + |α′〉|1〉|β′〉|γ′〉. The initial configuration

shows that qc ∈ ω and s2c, s2c+1 /∈ ω where ω is a list of names that is owned by the

process P and after the operation we have a new list ω′ (where qc /∈ ω′ and s2c, s2c+1 ∈ ω′)
and the quantum state of the system is given as |ψ〉 = |α〉|β〉|γ〉|10〉+ |α′〉|β′〉|γ′〉|01〉.

Example 6.3.

(q0 : Qbit, q2 : Qbit, s2 : NS, s3 : NS; [q0, q2, s2, s3 7→ α|00〉|10〉+ β|11〉|01〉];
q0, q2, s2, s3; [s0, s1 ∗= PS(q0)] . P )

τ−→
(q2 : Qbit, s̃′ : ÑS; [q2, s0, s1, s2, s3 7→ α|0〉|1010〉+ β|1〉|0101〉]; q2, s0, s1, s2, s3;P ).

Example 6.3 shows the effect of PS operation on qubit q0. The qubit is converted to the

number states s0, s1 and s̃′ indicates that it is a list of names comprising s0, s1, s2 and

s3 of type NS.

In the next section, we will discuss to model an LOQC CNOT gate using the CQP

definitions of the linear optical elements that has been explained earlier.

6.3 CQP model of an LOQC CNOT gate

The structure of the system is shown in Figure 6.9. The system receives two polarisation

qubits (control and target) as inputs through the channels a and b. The qubits are then

converted to number states by the process PolSeCT , and these are provided as the

input to the CNOT gate represented by process CNOT . The output of CNOT is then

post-selected by the process PSM . We demonstrate this by removing the unsuccessful

outcomes of the gate and recording a coincidence count for every successful outcome.

The output of the system are the classical values of the CNOT gate output for which a

coincidence count is obtained. The whole system is then defined as a parallel composition

of PolSeCT |CNOT |PSM , which means that the processes can proceed simultaneously

105



Chapter 6 Quantum Process Calculus for Linear Optical Quantum Computing

PolSe
a

c

d

PolSe
b

e

f BS1

g

h

BS2

i jk

BS3

l

m

BS4n

o

p

BS5

q

r

Det1
u

Det2

v

Det3
w

Det4

x

Counter
cnt

s

t

PolSeCT CNOT Postselective measurement (PSM)

Figure 6.9: Model of LOQC CNOT gate: The dashed lines enclose the subsystems
which are defined in the text.

and interact with each other, and the CQP definition of the system is

System(a, b, s, t, cnt) = (new c, d, e, f, g, h, i, j, k, l,m, n, o, p, u, v, w, x, q, r)

(PolSeCT (a, b, c, d, e, f) | CNOT (c, d, e, f, i, j, n, j, k, l, p, q, r)|
PSM (k, l, q, r, s, t, cnt))

where the channels (a,b) are of type [̂Qbit], channels (c,. . . ,r) are of type [̂NS], channels

(s,. . . ,x) are of type [̂Val] and the channel cnt is of type [̂Bit]. We have omitted the

types from our definitions, for brevity. Each process is parameterised by the channels

on which it interacts with other processes.

PolSeCT represents the conversion of the control and target qubits from polarisation

encoding to spatial encoding or number states given by the definition:

PolSeCT (a, b, c, d, e, f) = PolSe(a, c, d) | PolSe(b, e, f)

Recall from Section 6.2.3 that PolSe represents the combination of a PBS and PR. The

number states are then provided as inputs to the CNOT gate.

The CNOT gate, represented by the process CNOT , is a combination of five beam

splitters. Each BS is represented by a process BS and is annotated to show the cor-

respondence with Figure 6.9. The process CNOT consists of all BSs in parallel. BS2

and BS3 have their inputs crossed over, corresponding to their orientation in Figure 6.2.

Vacuum states y and z (which means absence of a photon) are created by (ns y, z) and

communicated to BS2 and BS4 respectively through the channels i and n. The CQP

definition of CNOT is:
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CNOT (c, d, e, f, i, n, j, k, l, p, q, r) = (new g, h,m, o)(ns y, z)(BS1 (e, f, g, h, 1
2)|

i![y] .0 | BS2 (i, c, j, k, 1
3) | j?[y : NS] .0 | BS3 (d, g, l,m, 1

3) | n![z] .0|
BS4 (h, n, o, p, 1

3) | p?[z : NS] .0 | BS5 (m, o, q, r, 1
2))

The parallel composition of processes in CNOT permits interaction between processes.

This means that the output on the channels g,h,m and o of the respective processes

BS1 , BS3 and BS4 synchronises with the input on channels g,h,m and o of processes

BS3 , BS4 and BS5 . The outputs (number states) of CNOT are communicated through

the channels k, l, q and r, to the process PSM . The unused BS outputs j and p are

absorbed by j?[y : NS] and p?[z : NS].

PSM (k, l, q, r, s, t, cnt) = (new u, v, w, x)(Det1 (k, u) |Det2 (l, v) |Det3 (q, w)|
Det4 (r, x) | Counter(u, v, w, x, s, t, cnt))

PSM performs the post-selective measurement. This is achieved with the parallel com-

position of detectors and a process Counter . Detectors Det1 ,Det2 ,Det3 ,Det4 are an-

notated to match Figure 6.9 and measure the number states associated with the control

and target qubits. The output of a detector is a classical value which represents the

measurement outcome, that is the number of photons detected. The outcomes of the

detector processes are given as inputs to the process Counter .

Counter(u, v, w, x, s, t, cnt) = u?[c0 :Val] . v?[c1 :Val] . w?[t0 :Val] . x?[t1 :Val] .

if (c0 + c1 = 1 and t0 + t1 = 1) then s![c1] . t![t1] . cnt![1] .0 else cnt![0] .0

Counter is a process which represents the coincidence measurement. Coincidence is

observed by detecting two photons, one at channels u or v and the other at w or x. It

also provides the correct output of the CNOT gate in terms of classical values through

the channels s and t. The output is received only for coincidence. This is determined

by the if . . . else conditions in the definition. When the condition is satisfied, then a

count is registered by outputting a value 1 through the channel cnt. If the condition

is not satisfied then a value 0 is given as output, which signifies no coincidence and we

don’t get any values from the channels s and t. Thus, we achieve post-selection in the

coincidence basis in our model.
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(q : Qbit, s : NS; [qs 7→ |ψ〉]; 0;P )

(q : Qbit, s : NS, x : Qbit; [qsx 7→ |ψ〉|0〉];x; {x ∗= H} . a![measure x]

|a?[j :Bit] . if (j = 0) then c?[y] . Q else d?[y] . R)

(q : Qbit, s : NS, x : Qbit; [qsx 7→ 1√
2
|ψ〉(|0〉+ |1〉)];x; a![measure x] | a?[j :Bit] .

if (j = 0) then c?[y] . Q else d?[y] . R)

1
2(q : Qbit, s : NS, x : Qbit; [qsx 7→ |ψ〉|0〉];x; if (j = 0)

then c?[y] . Q else d?[y] . R)

⊕1
2(q : Qbit, s : NS, x : Qbit; [qsx 7→ |ψ〉|1〉];x; if (j = 0)

then c?[y] . Q else d?[y] . R)

1
2(q : Qbit, s : NS, x : Qbit; [qsx 7→ |ψ〉|0〉];x; c?[y] . Q)

⊕1
2(q : Qbit, s : NS, x : Qbit; [qsx 7→ |ψ〉|1〉];x; d?[y] . R)

τ

τ

τ

τ

Figure 6.10: Example 6.4

6.4 Discussion

In this section, we present an analysis of the labelled transition system of CQP that

has been extended to model LOQC. We worked towards in presenting our first model

of an LOQC CNOT gate. The present semantics of CQP excludes the idea of mixed

configurations, as our intention was to develop CQP in order to describe or model

LOQC. But in order for the equivalence of processes to have the important property

ofcongruence, the semantics must include mixed configurations as it plays a vital role in

the analysis of the measurement, which is explained in the earlier part of the thesis.

Our next task would be to extend the theory of equivalence in CQP to LOQC. This would

help us to verify systems but also would provide us a more physical understanding of

the property of equivalence. Extending the semantics of CQP to verify LOQC is not

a straightforward task. For example in the previous section, the CQP definition of

the experimental system that demonstrates a LOQC CNOT gate consists of a process

called Counter . This records or represents the coincidence measurement of two photons.

We perform this task by employing an if − then condition. The presence of mixed
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configurations appears to make it difficult to introduce the if − then statement into

CQP.

A mixed configuration is a mixture of pure configurations with the same process term.

In an if-then statement, different processes would follow depending on the value of the

condition. Suppose the value of the condition comes from a quantum measurement as in

the case of the process Counter and there is some probability that the condition is true.

Then it requires that the mixed configurations needs to evolve to become a mixture with

different process terms, which is not possible with the present definition of the process

Counter . To illustrate this, we will define a simple process P given by the following

example:

Example 6.4.

P = (qbit x) . {x∗=H} . a![measure x]|a?[j :Bit] . if (j = 0) then c?[y] . Q else d?[y] . R

Here, Q and R are different processes which are executed depending on the outcome of a

quantum measurement with a probability 1
2 resulting in 0 and a probability 1

2 resulting

in 1.

Let the initial configuration be (q : Qbit, s : NS; [qs 7→ |ψ〉]; 0;P ). The execution of the

process shown in Figure 6.10. We find that the final mixed configuration consists of

different processes which would not be allowed.

With this initial investigation, we will discuss in detail the semantics that are required

for the extension of the theory of equivalence of CQP for LOQC.
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Formal verification of LOQC

using CQP

Chapter 6 presented an initial attempt at modelling a realistic experimental system asso-

ciated with quantum computing. In this chapter, we improve our semantics by including

the concept of mixed configurations and there by extend the theory of equivalence in

CQP in order to analyse and verify LOQC. This provides us for the first time with a

more physical understanding of the property of equivalence. We present two models of

an experimental system that demonstrates a LOQC CNOT gate and prove that they are

equivalent to their specification. In our second model, we describe the process of post-

selection, which plays an important role in LOQC, where one considers only a subset of

all experimental runs that fulfil predefined criteria.

7.1 Modified syntax and semantics of CQP for LOQC

7.1.1 Syntax

The syntax of CQP for LOQC is defined by the grammar as shown in Figure 7.1.

This is very similar to the syntax (Figure 6.4) as described in the previous chapter

with some changes. We have a new addition to the expression called post-selective

measurement psmeasure e1, . . . , en and the if . . . then conditions are introduced into the

expression and not in the processes. As discussed in the previous chapter, this is due

to the fact that the presence of mixed configuration makes it hard to employ if − then

conditions in processes. The conditions allow different processes to be computed in

a mixed configuration which should not happen. The reason being that the mixed
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T ::= Int | Qbit | NS | Bit | [̂T̃ ] | Op(1) | Op(2) | · · ·
v ::= x | 0 | 1 | · · · | H | · · ·
e ::= v | measure ẽ | psmeasure ẽ | ẽ ∗= e | e+ e′ | (e, e) | if e then e else e | x : NS, y : NS ∗= PS(z)

P ::= 0 | (P |P ) | P + P | e?[x̃ : T̃ ].P | e![ẽ].P | {e}.P | (qbit x)P | (ns x)P | (new x : [̂T ])P

Figure 7.1: Syntax of CQP for LOQC

v ::= . . . | q | s | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E | E + e | v + E | if E then e else e

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P | {[]}.P

Figure 7.2: Internal syntax of CQP for LOQC.

configuration is defined as components that differ in values but has the same process

structure. The internal syntax is provided in Figure 7.2

7.1.2 Linear Optical Elements in CQP

Recall the definitions from Section 6.2.3, we define the process PolSe which provides the

input to the LOQC CNOT gate.

PolSe(a : [̂Qbit], c : [̂NS], d : [̂NS]) = a?[q0 :Qbit] . {s0 :NS, s1 :NS ∗= PS(q0)} . c![s0] . d![s1] .0

PS corresponds to the transformation produced by the combination of PBS and PR,

introduced by Definition 6.1. The CQP definition of the beam splitter BS is

BS (e : [̂NS], f : [̂NS], h : [̂NS], i : [̂NS], η) = e?[s2 :NS] . f?[s3 :NS] . {s2, s3 ∗= Bη} .
h![s2] . i![s3] .0

Now, we define two types of detectors, Det and PDet . In the previous chapter we de-

fined the detector to only measure a single number state. Since, a polarisation qubit

is represented by a pair of number states, we define the detector Det to perform mea-

surement of a pair of number states. This also makes a simpler and easier analysis of

the CQP models of LOQC. We define another type of detector represented by process

PDet that performs post-selective measurement. Both Det and PDet are used for the

measurement of the outputs of CNOT gate.

Det(l : [̂NS],m : [̂NS], u : [̂Val,Val]) = l?[s0 :NS] .m?[s1 :NS] . u![measure s0, s1] .0

PDet(l : [̂NS],m : [̂NS], u : [̂Val]) = l?[s0 :NS] .m?[s1 :NS] . u![psmeasure s0, s1] .0
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The expression measure s0, s1 probabilistically evaluates to a pair of positive integers

which is the number of photons detected in the respective channels and psmeasure s0, s1

produces a zero or one which is a result of post-selection.

7.1.3 Semantics of CQP

We will now explain the formal semantics of CQP. The pure configuration has the same

form as the configurations that are defined in Chapter 6. We have seen in Chapter 4

that a mixed configuration is defined as a weighted sum of pure configurations. Mixed

configurations arise from measurements whose results are not made visible to an ob-

server. In a similar case, we also define a mixed configuration where the list of elements

that forms a quantum state can comprise of qubits or number states.

Definition 7.1 (Mixed Configuration). A mixed configuration is a weighted distribution

of pure configurations, written as

⊕i∈I gi (x̃ : T̃ ; x̃ = |ψi〉;ω;λỹ • P ; ṽi)

with weights gi where
∑

i∈I gi = 1 and for each i ∈ I, 0 < gi ≤ 1 and |ψi〉 ∈ H = Hq⊗Hs

and |ṽi| = |ỹ|.

This is required for the equivalence of processes to have the important property of

congruence. We now present the different types of labelled transition rules of CQP that

are extended from the previous work [51] in order to verify LOQC, which is the focus of

this Chapter.

Expression Transition Rules. Earlier, we have seen the expression transition rules

of CQP for qubits that are given in Figure 4.3. Now, we present the expression transition

rules of CQP that are applicable to qubits and number states. The rules are shown in Fig-

ure 7.3. Rules R-Measure-NS-2, R-PS-Measure and R-Measure-QBIT are mea-

surement rules which produces a mixed configuration. The first two measurement rules

measure a pair of number states and the last rule measures qubit. R-Measure-NS-2

produces a mixed configuration over the possible measurement outcomes k and l. The

measurement outcomes are classical values which are the number of photons detected.

R-PS-Measure is a post-selective measurement rule which produces a mixed configu-

ration over the possible measurement outcome l. Rule R-Trans-NS deals with unitary

transformations which result in literal unit. We introduce new rules called R-IfThen-T

and R-IfThen-F that is necessary for the if . . . else conditions in the expression con-

figurations.
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(x̃ : T̃ ;σ;ω;u+ v) −→v (x̃ : T̃ ;σ;ω;w)if u and v are integer literals and w = u+ v
(R-Plus)

(x̃ : T̃ ; [x̃ 7→
∑
s̃≥0

αs̃|βs̃〉|s̃〉];ω;measure sa, sb) −→v (R-Measure-NS-2)

⊕k,l≥0gkl(x̃ : T̃ ; [x̃ 7→
∑
s̃′≥0

αs̃′√
gkl
|β
s̃′
〉|s̃′〉];ω;λyz • (y, z); k, l)

where gkl =
∑
ĩ

|αs̃′ |
2,s̃ = s0, . . . , sn−1, s̃′ = s0, . . . , sa−1, k, . . . , l, sb+1, . . . , sn−1,

ĩ = s0, . . . , sn−1 \ (sa, sb)and (a, b) ∈ {0, . . . , n− 1} and a 6= b

(x̃ : T̃ ; [x̃ 7→
∑
s̃≥0

αs̃|βs̃〉|s̃〉];ω; psmeasure sa, sb) −→v (R-PS-Measure)

⊕k,l∈{0,1},k 6=lhkl(x̃ : T̃ ; [x̃ 7→
∑
s̃′≥0

αs̃′′√
hkl
|β
s̃′
〉|s̃′〉];ω;λz • z; l)

where hkl =
√
gop

1∑
j̃ |αs̃′′ |2

and gop =
∑
ĩ

|αs̃′ |
2, o, p ≥ 0, s̃ = s0, . . . , sn−1,

s̃′ = s0, . . . , sa−1, o, . . . , p, sb+1, . . . , sn−1,

ĩ = s0, . . . , sn−1 \ (sa, sb) s̃′′ = s0, . . . , sa−1, k, . . . , l, sb+1, . . . , sn−1,

and j̃ = s0, . . . , sa−1, k, . . . , l, sb+1, . . . , sn−1 and (a, b) ∈ {0, . . . , n− 1} and a 6= b

(q0, . . . , qn−1 = α0|φ0〉+ · · ·+ α2n−1|φ2n−1〉;ω;measure q0, . . . , qr−1) −→v

(R-Measure-QBIT)

⊕0≤m<2r gm (q0, . . . , qn−1 =
αlm√
gm
|φlm〉+ · · ·+ αum√

gm
|φum〉;ω;λx • x;m)

where lm = 2n−rm,um = 2n−r(m+ 1)− 1, gm = |αlm |2 + · · ·+ |αum |2

(q̃ : Qbit, s̃ : NS; [q̃, s̃ 7→ |ψ〉];ω; s0, . . . , s2r−1 ∗= U) −→v (R-Trans-NS)

(q̃ : Qbit, s̃ : NS; [q̃, s0, . . . , sn−1 7→ (I|q̃| ⊗ U ⊗ I(n−2r))|ψ〉];ω; unit)

(x̃ : T̃ ;σ;ω; if true then e else e′) −→v (x̃ : T̃ ;σ;ω; e) (R-IfThen-T)

(x̃ : T̃ ;σ;ω; if false then e else e′) −→v (x̃ : T̃ ;σ;ω; e′) (R-IfThen-F)

∀i ∈ I.(x̃ : T̃ ; [x̃ 7→ |ψi〉];ω; e{ũi/ỹ}) −→v ⊕j∈Ji gij (x̃ : T̃ ; [x̃ 7→ |ψij〉];ω;λz̃ • e′{ũi/ỹ}; ṽij)

⊕i∈I hi (x̃ : T̃ ; [x̃ 7→ |ψi〉];ω;λỹ • E[e]; ũi) −→e ⊕ i∈I
j∈Ji

higij (x̃ : T̃ ; [x̃ 7→ |ψij〉];ω;λỹz̃ • E[e′]; ũi, ṽij)

(R-Context)

Figure 7.3: Transition rules for values and expressions.

Pure Configuration Transition Rules. The transition rules for pure process con-

figurations are given in Figure 7.4. This is a straightforward extension of the rules

represented in Figure 4.4, with the inclusion of number states.
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(p̃, q̃ : ˜Qbit, r̃, s̃ : ÑS, [p̃q̃r̃s̃ 7→ |ψ〉]; p̃, q̃, r̃, s̃; c![ṽ, q̃, s̃].P )
c![ṽ,q̃,s̃]−→p (P-Out)

(p̃, q̃ : ˜Qbit, r̃, s̃ : ÑS, [p̃q̃r̃s̃ 7→ |ψ〉]; p̃, r̃;P )

(q̃ : ˜Qbit, s̃ : ÑS, [q̃s̃ 7→ |ψ〉];ω; c?[ỹ, x̃].P )
c?[ṽ,p̃,r̃]−→p (P-In)

(q̃ : ˜Qbit, s̃ : ÑS, [q̃s̃ 7→ |ψ〉];ω, p̃, r̃;P{ṽ, r̃/ỹ, p̃/x̃})

(x̃ : T̃ , [x̃ 7→ |ψ〉];ω;P )
α−→p (x̃ : T̃ , [x̃ 7→ |ψ〉];ω′;P ′)

(x̃ : T̃ , [x̃ 7→ |ψ〉];ω;P |Q)
α−→p (x̃ : T̃ , [x̃ 7→ |ψ〉];ω′;P ′ |Q)

(P-Par)

(x̃ : T̃ , [x̃ 7→ |ψ〉];ω;P )
α−→p (x̃ : T̃ , [x̃ 7→ |ψ〉];ω′;P ′)

(x̃ : T̃ , [x̃ 7→ |ψ〉];ω;P +Q)
α−→p (x̃ : T̃ , [x̃ 7→ |ψ〉];ω′;P ′)

(P-Sum)

(x̃ : T̃ , [x̃ 7→ |ψ〉];ω;P )
α−→p (x̃ : T̃ , [x̃ 7→ |ψ〉];ω;P ′)

(x̃ : T̃ , [x̃ 7→ |ψ〉];ω; (new c)P )
α−→p (x̃ : T̃ , [x̃ 7→ |ψ〉];ω; (new c)P ′)

if α /∈ {c?[·], c![·]}

(P-Res)

Figure 7.4: Transition rules for pure process configurations.

Mixed Configuration Transition Rules. The transition rules on mixed configura-

tions are defined in Figures 7.5 and 7.6. The rules L-In, L-Out-Qbit and L-Out-Ns

represent the input and output actions respectively, which are the visible interactions

with the environment. L-Com and L-Act perform the same function irrespective of

qubits and number states. Rules L-Qbit and L-Ns are for introducing additional Qbit

and NS variables respectively. ns declarations represents vacuum states. Since the val-

ues associated with the an input action are determined by the environment, this action

is identical across all components in a mixed configuration. The rule L-PS describes

the PS operation, which is the conversion of a polarisation qubit (qc) to the number

states (sa and sb). The quantum state of the system before the operation is given as

|φ〉 = |α〉|0〉|β〉|γ〉 + |α′〉|1〉|β′〉|γ′〉. The initial configuration shows that qc ∈ ω and

sa, sb /∈ ω where ω is a list of names that is owned by the process P and after the

operation we have a new list ω′ (where qc /∈ ω′ and sa, sb ∈ ω′) and the quantum state of

the system is given as |ψ〉 = |α〉|β〉|γ〉|10〉+ |α′〉|β′〉|γ′〉|01〉. The rule L-Out-Qbit and

L-Out-Ns is the point at which mixed configurations are combined with probabilistic

branching. Branching occurs only when there is information to distinguish the compo-

nents. This information is represented by the classical values that are outputs, which

may vary between the components.

Next we illustrate with a few examples of some of the labelled transition rules of CQP.

Example 7.1.

(q, s, t : T̃ ; [q, s, t 7→ α10|0〉|10〉+ α01|1〉|01〉+ α20|0〉|20〉]; q, s, t; c![measure s, t] . P )
τ−→

⊕i∈I,j∈J | αij |2(q, s, t : T̃ ; [q, s, t 7→ |β〉|ij〉]; q, s, t;λyz • c![y, z] . P ; i, j).

114



Chapter 7 Formal verification of LOQC using CQP

�jpj(⊕i gi (x̃ : T̃ ;σi;ω;Pi))
pi ⊕i gi (x̃ : T̃ ;σi;ω;Pi) (L-Prob)

⊕i gi (x̃ : T̃ ;σi;ω;λz̃ • c?[q̃, s̃].P ; ṽi)
c?[p̃,r̃]−→ (L-In)

⊕i gi (x̃ : T̃ ;σi;ω, r̃, p̃;λz̃ • P{p̃/q̃, r̃/s̃}; ṽi)

∀i ∈ I.((p̃, q̃) : Q̃bit, s̃ : ÑS; [p̃q̃s̃ 7→ |αi〉|β〉]; p̃, s̃;P{ṽi/x̃})
c![ũi,r̃]−→p

((p̃, q̃) : Q̃bit, s̃ : ÑS; [p̃q̃s̃ 7→ |αi〉|β〉]; p̃′, s̃;P ′{ṽi/x̃})

(L-Out-Qbit)

⊕i∈I gi ((p̃, q̃) : Q̃bit, s̃ : ÑS; [p̃q̃s̃ 7→ |αi〉|β〉]; p̃, s̃;λx̃ • P ; ṽi)
c![U,r̃]−→

�j∈Jpj(⊕i∈Ij
gi
pj

((p̃′, q̃) : Q̃bit, s̃ : ÑS; [p̃′r̃q̃s̃ 7→ Π|αi〉|β〉]; p̃′, s̃;λx̃ • P ′; ṽi))

where U = {ũi | i ∈ I} = {w̃j | j ∈ J} and ∀j ∈ J, Ij = {i|ũi = w̃j}, pj =
∑
i∈Ij

gi

and r̃ ⊆ p̃, p̃′ = p̃ \ r̃,Π corresponds to the permutation π : p̃q̃s̃ 7→ p̃′r̃q̃s̃ .

∀i, j ∈ I.(p̃ : Q̃bit, (t̃, s̃) : ÑS; [p̃t̃s̃ 7→ |α〉|βij〉]; p̃, s̃;P{ṽij/x̃})
c![ũij ,r̃]−→p

(p̃ : Q̃bit, (t̃, s̃) : ÑS; [p̃t̃s̃ 7→ |α〉|βij〉]; p̃, s̃′;P ′{ṽij/x̃})

(L-Out-Ns)

⊕i,j∈I gij (p̃ : Q̃bit, (t̃, s̃) : ÑS; [p̃t̃s̃ 7→ |α〉|βij〉]; p̃, s̃;λx̃ • P ; ṽij)
c![U,r̃]−→

�k∈Jpk(⊕i,j∈Ik
gij
pk

(p̃ : Q̃bit, (t̃, s̃′ : ÑS); [p̃t̃s̃′r̃ 7→ Π|α〉|βij〉]; p̃, s̃′;λx̃ • P ′; ṽij))

where U = {ũij | i, j ∈ I} = {ẽk | k ∈ J}, and ∀k ∈ J, Ik = {i, j|ũij = ẽk}, pk =
∑
i,j∈Ik

gij

and r̃ ⊆ s̃, s̃′ = s̃ \ r̃,Π corresponds to the permutation π : p̃t̃s̃ 7→ p̃t̃r̃s̃′ .

∀i ∈ I.(x̃ : T̃ ;σi;ω, r̃;P{ṽi/z̃})
c![ũi,r̃]−→p (x̃ : T̃ ;σi;ω;P ′{ṽi/z̃})

∀i ∈ I.(x̃ : T̃ ;σi;ω;Q{ṽi/z̃})
c?[ũi,r̃]−→p (x̃ : T̃ ;σi;ω, r̃;Q

′{ṽi/z̃})
⊕i∈I gi (x̃ : T̃ ;σi;ω, r̃;λz̃ • P |Q; ṽi)

τ−→ ⊕i∈I gi (x̃ : T̃ ;σi;ω, r̃;λz̃ • P ′ |Q′; ṽi)
(L-Com)

⊕i∈I gi (x̃ : T̃ ;σi;ω;λz̃ • P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (x̃ : T̃ ;σij ;ω

′;λz̃ỹ • P ′; ṽi, w̃ij)

⊕i∈I gi (x̃ : T̃ ;σi;ω;λz̃ • P |Q; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (x̃ : T̃ ;σij ;ω

′;λz̃ỹ • P ′ |Q; ṽi, w̃ij)

(L-Par)

Figure 7.5: Transition rules for mixed process configurations
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⊕i∈I gi (q̃ : Q̃bit, s̃ : ÑS; [q̃s̃ 7→ |βi〉|γi〉];ω;λz̃ • (qbit : y)P ; ṽi)
τ−→

⊕i∈I gi (q̃ : Q̃bit, q : Qbit, s̃ : ÑS; [q̃, q, s̃ 7→ |βi〉|0〉|γi〉];ω, q;λz̃ • P{q/y}; ṽi) where q is fresh
(L-Qbit)

⊕i∈I gi (q̃ : Q̃bit, s̃ : ÑS; [q̃s̃ 7→ |βi〉|γi〉];ω;λz̃ • (ns : y)P ; X̃)
τ−→

⊕i∈I gi (q̃ : Q̃bit, r : NS, s̃ : ÑS; [q̃, r, s̃ 7→ |βi〉|0〉|γi〉];ω, r;λm̃ • P{r/y}; ṽi) where r is fresh
(L-Ns)

⊕i∈I gi (x̃ : T̃ ;σi;ω;λz̃ • {u}.Pi; ṽi)
τ−→ ⊕i∈I gi (x̃ : T̃ ;σi;ω;λz̃ • P ; ṽi) (L-Act)

⊕i∈I gi (p̃, q̃ : ˜Qbit, qc : Qbit, r̃ : ÑS; [p̃, qc, q̃, r̃ 7→ |φ〉];ω;λz̃ • {sa, sb ∗= PS(qc)}; . P, ṽi)
(L-PS)

τ−→ ⊕i∈I gi (p̃, q̃ : ˜Qbit, r̃ : ÑS, sa : NS, sb : NS; [p̃, q̃, r̃, sa, sb 7→ |ψ〉];ω′;λz̃ • P ; ,ṽi)

⊕i∈I hi (x̃ : T̃ ;σi;ω;λỹ • e; ṽi) −→e ⊕ i∈I
j∈Ji

higij (x̃ : T̃ ;σij ;ω;λỹz̃ • e′; ṽi, w̃ij)

⊕i∈I hi (x̃ : T̃ ;σi;ω;λỹ • F [e]; ṽi)
τ−→ ⊕ i∈I

j∈Ji
higij (x̃ : T̃ ;σij ;ω;λỹz̃ • F [e′]; ṽi, w̃ij)

(L-Expr)

⊕i∈I gi (x̃ : T̃ ;σi;ω;λz̃ • P ; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (x̃ : T̃ ;σij ;ω

′;λz̃ỹ • P ′; ṽi, w̃ij)

⊕i∈I gi (x̃ : T̃ ;σi;ω;λz̃ • P +Q; ṽi)
α−→ ⊕ i∈I

j∈Ji
gihij (x̃ : T̃ ;σij ;ω

′;λz̃ỹ • P ′; ṽi, w̃ij)

(L-Sum)

Figure 7.6: Transition rules for mixed process configurations

This transition represents the effect of a measurement of a pair of number states (s, t),

within a process which is going to output the result of the measurement. The configu-

ration on the left is a pure configuration and on the right we have a mixed configuration

in which the ⊕ ranges over the possible outcomes of the measurement and the |αij |2

are the weights of the components in the mixture. Here, I = {0, 1, 2} and J = {0, 1}.
The quantum state [q, s, t 7→ |β〉|ij〉] corresponds to the measurement outcome. The

expression λyz • c![y, z].P represents the fact that the components of the mixed config-

uration have the same process structure and differ only in the values corresponding to

measurement outcomes. The final terms in the configuration, i and j, shows how the

abstracted variables y and z should be instantiated in each component. Thus the λyz

represents a term into which expressions may be substituted, which is the reason for the

λ notation. So the mixed configuration is essentially an abbreviation of

|α10|2(q, s, t : T̃ ; [q, s, t 7→ |0〉|10〉]; q, s, t; c![1, 0]..P{1/y, 0/z})
⊕|α01|2(q, s, t : T̃ ; [q, s, t 7→ |1〉|01〉]; q, s, t; c![0, 1].P{0/y, 1/z})
⊕|α20|2(q, s, t : T̃ ; [q, s, t 7→ |0〉|20〉]; q, s, t; c![2, 0].P{2/y, 0/z}).
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The next transition (R-PS-Measure) represents post-selective measurement which fil-

ters out the measurement values that satisfies a predefined criteria.

Example 7.2.

(q : Qbit, s : NS, t : NS; [q, s, t 7→ α10|0〉|10〉+ α01|1〉|01〉+ α20|0〉|20〉; q, s, t;
c![psmeasure s, t] . P )

τ−→
⊕i,j∈{0,1},i 6=j | βij |2(q : Qbit, s : NS, t : NS; [q, s, t 7→ |δ〉|ij〉]; q, s, t;λy • c![y] . P ; j).

This transition represents the effect of a post-selective measurement of a pair of number

states (s, t), within a process which is going to output the result of the measurement.

Here, we have a mixed configuration in which the ⊕ ranges over the possible outcomes

of the measurement with |βij |2 (where |βij |2 =
|αij |2∑

ij∈{0,1} |αij |2 ) representing the weights

of the components in the mixture. Here i and j can have values either 0 or 1 and

i 6= j, which filters out the measurement values. This is the criterion for post-selection.

The quantum state [q, s, t 7→ |δ〉|ij〉] corresponds to the measurement outcome. The

post-selective measurement produces one value at the output whereas the normal mea-

surement as seen in the above Example 7.1 produces two values at the output. If a

measurement outcome is output then it becomes apparent to an observer which of the

possible states the system is in, which is represented by probabilistic branching. Then

the system is considered to be in one branch or the other and is no longer a mixture.

Example 7.3.

(q : Qbit, s : NS, t : NS; [q, s, t 7→ |ψ〉; q, s, t;
c![if (x = 1) then psmeasure s, t else 0] . P )

⊕i,j∈{0,1},i 6=j | βij |2(q : Qbit, s : NS, t : NS;

[q, s, t 7→ |δ〉|ij〉]; q, s, t;λy • c![y] . P ; j)

τ

(q : Qbit, s : NS, t : NS; [q, s, t 7→ |ψ〉;
q, s, t; c![0] . P

τ

Example 7.3 is a demonstration of the transition rule . Here, |ψ〉 is α10|0〉|10〉 +

α01|1〉|01〉 + α20|0〉|20〉. With the use of the if . . . else conditions in the expression

and not in the process, we would not have the conflict which was discussed in the pre-

vious chapter. In this example, the execution can proceed in two ways depending on

the condition. If the condition is true, i.e x = 1, then we get a mixed configuration due

to the measurement. If false then we would not get a mixed configuration as there is

no measurement and we get a pure configuration. Example 7.4 shows the effect of the

output from the mixed configuration of Example 7.3.
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Example 7.4. ⊕i,j∈{0,1},i 6=j | βij |2(q : Qbit, s : NS, t : NS; [q, s, t 7→ |δ〉|ij〉]; q, s, t;λy •

c![y] . P ; j)
c![j]−→ �ij∈{0,1},i 6=j |βij |2(q : Qbit, s : NS, t : NS; [q, s, t 7→ |δ〉|ij〉]; q, s, t;λy •

P ; j)
|β01|2
 (q : Qbit, s : NS, t : NS; [q, s, t 7→ |1〉|01〉]; q, s, t;λy • P ; 1)

The output transition produces the intermediate configuration, which is a probability

distribution over pure configurations (in contrast to a mixed configuration; note the

change from ⊕ to �). Because it comes from a mixed configuration, the output transition

contains a set of possible values. From this intermediate configuration there are two

possible probabilistic transitions, of which one is shown (
|β01|2
 ).

Example 7.5. ⊕i,j≥0 g ij(x̃ : T̃ ; [x̃ 7→ |q0〉|ij〉]; x̃;λyz • (c![y] . P | c?[y] . Q); i, j)
τ−→

⊕i,j≥0 g ij(x̃ : T̃ ; [x̃ 7→ |q0〉|ij〉]; x̃;λyz • (P |Q); i, j)

Measurement outcomes may be communicated between processes without creating a

probability distribution. In these cases an observer must still consider the system to be

in a mixed configuration as the outcomes are communicated internally and not to the

environment. In Example 7.5 there is a mixed configuration on the left, with arbitrary

weights gij , which we imagine to have been produced by a measurement. However,

there is now a receiver for the output. Although there is no difference in process Q

between the two components of the mixed configuration, we include it in the λ because

the communication will propagate the different possible values for y to Q.

Example 7.6.

(q : Qbit, r : Qbit, p : NS, t : NS; [q, r, p, t 7→ α|00〉|10〉 + β|11〉|01〉]; q, r, p, t; {u : NS, v :

NS∗=PS(q)} . P )
τ−→ (r : Qbit, s̃′ : ÑS; [r, p, t, u, v 7→ α|0〉|1010〉+β|1〉|0101〉]; r, p, t, u, v;P ).

Example 7.6 represents the transition which is the conversion of a polarisation qubit (q)

to the number states (u and v). s̃′ indicates that it is a list of names comprising p, t, u

and v of type NS.

7.2 Behavioural Equivalence of CQP for LOQC

In the previous section, we have explained the new operational semantics of CQP to

describe LOQC. We have discussed the two measurement semantics and described an

experimental model that demonstrates a LOQC CNOT gate. In this section, we begin

our task to extend the theory of equivalence in CQP to apply it for LOQC. The process

calculus approach to verification is to define a process Model which models the system

of interest, another process Specification which expresses the specification that Model

should satisfy, and then prove that Model and Specification are equivalent. Usually
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Specification is defined in a sufficiently simple way that it can be taken as self-evident.

We will now define probabilistic branching bisimilarity in full. The definitions in the

remainder of this section are an extension from Davidson’s thesis [51].

Notation: Let
τ−→

+
denote zero or one τ transitions; let =⇒ denote zero or more τ

transitions; and let
α

=⇒ be equivalent to =⇒ α−→=⇒. We write q̃ for a list of qubit

names, and similarly for other lists.

Definition 7.2 (Density Matrix of Configurations). Let σij = [x̃ 7→ |ψij〉] and ỹ ⊆ x̃

and tij = (x̃ : T̃ ;σij ;ω;λw̃z̃ • P ; ṽij , õij) and t = ⊕ij gij tij . Then

1. ρ(σij) = |ψij〉〈ψij | 4. ρỹ(tij) = ρỹ(σij)

2. ρỹ(σij) = trx̃\ỹ(|ψij〉〈ψij |) 5. ρ(t) =
∑

ij gijρ(tij)

3. ρ(tij) = ρ(σij) 6. ρỹ(t) =
∑

ij gijρ
ỹ(tij)

Definition 7.3 (Probabilistic Branching Bisimulation). An equivalence relation R on

configurations is a probabilistic branching bisimulation on configurations if whenever

(t, u) ∈ R the following conditions are satisfied.

I. If t ∈ Tn and t
τ−→ t′ then ∃u′, u′′ such that u =⇒ u′

τ−→
+
u′′ with (t, u′) ∈ R and

(t′, u′′) ∈ R.

II. If t
c![V,X̃1]−→ t′ where t′ = �j∈{1...m}pjt

′
j and V = {ṽ1, . . . , ṽm} and X̃1 is either q̃1 or

s̃1 then ∃u′, u′′ such that u =⇒ u′
c![V,X̃2]−→ u′′ with

a) (t, u′) ∈ R,

b) u′′ = �j∈{1...m}pju
′′
j ,

c) for each j ∈ {1, . . . ,m}, ρE(t′j) = ρE(u′′j ).

d) for each j ∈ {1, . . . ,m}, (t′j , u
′′
j ) ∈ R.

III. If t
c?[ṽ]−→ t′ then ∃u′, u′′ such that u =⇒ u′

c?[ṽ]−→ u′′ with (t, u′) ∈ R and (t′, u′′) ∈ R.

IV. If s ∈ Tp then µ(t,D) = µ(u,D) for all classes D ∈ T /R.

Definition 7.4 (Probabilistic Branching Bisimilarity). Configurations t and u are prob-

abilistic branching bisimilar, denoted t - u, if there exists a probabilistic branching

bisimulation R such that (t, u) ∈ R.

Definition 7.5 (Probabilistic Branching Bisimilarity of Processes). Processes P and

Q are probabilistic branching bisimilar, denoted P - Q, if and only if for all σ, (x̃ :

T̃ ;σ; ∅;P ) - (x̃ : T̃ ;σ; ∅;Q).

Lemma 7.6. If R is a probabilistic branching bisimulation and tRu, and t =⇒ t′ then

there exists u′ such that u =⇒ u′ and (t′, u′) ∈ R.
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Proof. Follows directly from [51]. This is a straightforward induction.

Lemma 7.7. Probabilistic branching bisimilarity is an equivalence relation.

Proof. [51]. This is a straightforward extension where we replace (σ; ∅;P ) by (x̃ :

T̃ ;σ; ∅;P ) to show that probabilistic branching bismilarity is reflexive, symmetric and

transitive.

7.2.1 Preservation Properties

To consider the preservation properties of bisimilarity on processes, we begin by for-

mally defining contexts and congruence, and their non-input, non-qubit, non-number

state variants. The reason for considering variants without input, qubit and number

state declaration prefixes, is that substitution must also be considered when these are

included. We later define full probabilistic branching bisimilarity where we will also

consider invariance under substitution.

Definition 7.8 (Context). A context C is a process with a non-degenerate occurrence

of 0 replaced by a hole, [·]. Formally,

C ::= [] | (C ‖ P ) | α.C + P | α.C | (new x̂ [T ])C

for α ∈ {e?[x̃ : T̃ ], e![ẽ], {e}, (qbit x), (ns r)}.

Definition 7.9 (Congruence). An equivalence relation R on processes is a congruence

if (C[P ], C[Q]) ∈ R whenever (P,Q) ∈ R and C is a context.

Definition 7.10 (Non-input, non-qubit or non-number state context). A non-input,

non-qubit or non-number state context is a context in which the hole does not appear

under an input or qubit and number state declaration.

Definition 7.11 (Non-input, non-qubit or non-number state congruence). An equiva-

lence relation R on processes is a non-input, non-qubit or non-number state congruence

if (C[P ], C[Q]) ∈ R whenever (P,Q) ∈ R and C is a non-input, non-qubit or non-number

state context.

Next lemma provides a general form for representing mixed configurations related by

internal transitions. The main purpose is to simplify the notations in the following

proofs.

Lemma 7.12 (General form of internal transitions). If

t = ⊕ab∈Ikl
kl∈J

gabkl (x̃ : T̃ ;σabkl; q̃, s̃;λỹz̃ • P ; w̃abkl) and t =⇒ t′ then there exist sets I ′kl

such that t′ = ⊕ab∈I′kl
kl∈J

g′abkl (x̃ : T̃ ;σ′abkl; q̃
′, s̃′;λỹ′z̃′ • P ′; w̃′abkl).
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Proof. Adapted from [51], we replace s = ⊕i∈Ij
j∈J

gij (σij ; q̃;λx̃ • P ; ṽij) by t and by

induction on the length of the sequence of τ -transitions. The inductive step is proved

by a straightforward induction on the derivation of this transition.

The following 3 lemmas prove that the state of qubits and number states that are not

owned by a particular process is unaffected by any transitions of that process.

Lemma 7.13 (External state independence for −→v ). If Γ; s̃ ` e : T and t −→v t
′

where t = (s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψ〉]; q̃, s̃; e) then ρq̃r̃(t) = ρq̃r̃(t′)

Proof. By case analysis.

R-Plus: The quantum state and distribution are unchanged.

R-Trans-NS: We have

t′ = (s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; |ψ′〉; q̃, s̃; unit)

where |ψ〉 =
∑
|β〉s̃|αβ〉q̃r̃ and |ψ′〉 = (Um ⊗ I)|ψ〉 then |ψ′〉 =

∑
|β′〉s̃|αβ′〉q̃r̃ =∑

Um|β〉s̃I|αβ〉q̃r̃. Now, We have

ρq̃r̃(t′) =
∑
〈β′|β′〉s̃|αβ′〉〈αβ′ |q̃r̃ =

∑
〈β|(Um)∗Um|β〉s̃I|αβ〉〈αβ|q̃r̃I∗

ρq̃r̃(t′) =
∑
〈β|β〉s̃|αβ〉〈αβ|q̃r̃ = ρq̃r̃(t)

R-Measure-NS-2: We have the transition

(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→
∑

γβ|β〉s̃|αβ〉q̃r̃]; q̃, s̃;measure sasb) −→v

⊕k,l≥0 g kl(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→
∑ γβ′√

gkl
|β′〉s̃|αβ′〉q̃r̃]; q̃, s̃;λyz • yz; k, l)

where β = s0, . . . , sn−1 and β′ = s0, . . . , sa−1, k, l, sb+1, . . . , sn−1.

Let {|βkl〉} and {|β′i〉} be an orthonormal basis for number states {sa, sb} and

{s0, . . . , sn−1}/{sa, sb} respectively. Then

|ψ〉 =
∑

(k,l)≥0,i≥0

γikl√
gkl
|βkl〉|β′i〉|αikl〉.

Now,

trsa,sb(|ψ〉) =
∑

(k,l)≥0,i≥0

∑
(m,n)≥0,j≥0

γikl√
gkl

γ∗jmn√
gmn
〈βkl|βmn〉|β′j〉〈β′i||αjmn〉〈αikl|

=
∑

(k,l)≥0,i≥0

∑
j≥0

γikl√
gkl

γ∗jmn√
gmn
|β′j〉〈β′i||αjmn〉〈αikl|

(7.1)
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Since, 〈βkl|βmn〉 = 1 if kl = mn and 0 otherwise. Then,

trsa,sb(|ψ〉) =
1

gkl

∑
i≥0,j≥0

γiklγ ∗jmn |β′j〉〈β′i||αjmn〉〈αikl| (7.2)

Let t′ = ⊕k,l≥0 g klt
′
kl, then we have

ρq̃r̃(t′) =
∑
k,l≥0

gklρ
q̃r̃(t′kl) =

∑
k,l≥0

gkltrs0...sn−1/{sa,sb}(trsa,sb{|ψ〉}) (7.3)

By substituting Eq. 7.2 in Eq. 7.3, we get

ρq̃r̃(t′) = trs0...sn−1/{sa,sb}(
∑

(k,l)≥0

∑
i≥0,j≥0 γiklγ ∗jmn |β′j〉〈β′i||αjmn〉〈αikl|

= trs0...sn−1/{sa,sb}(trsa,sb(|ψ〉)) = ρq̃r̃(t)

(7.4)

R-PS-Measure: This is similar to the previous case and hence proved.

Lemma 7.14 (External state independence for−→e ). If Γ; s̃ ` e : T and t −→v t
′ where

t = ⊕kl∈I g kl(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψkl〉]; q̃, s̃;λỹ • e; w̃kl) then ρq̃r̃(t) = ρq̃r̃(t′)

Proof. The transition t −→e t′ is derived by R-Context with a hypothesis where

(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψkl〉]; q̃, s̃; e{w̃kl/ỹ}). For each k, l ∈ I we have

ρq̃r̃(tkl) = ρq̃r̃(t′kl) by Lemma 7.13. From definition 7.2, we have ρq̃r̃(tkl) =
∑

kl∈I ρ
q̃r̃(tkl)

and ρq̃r̃(t′) =
∑

kl∈I ρ
q̃r̃(tkl). Hence, we arrive at the equality ρq̃r̃(t) = ρq̃r̃(t′).

Lemma 7.15 (External state independence for
τ−→). If Γ; s̃ ` P and t

τ−→ t′ where

t = ⊕kl∈I g kl(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψkl〉]; q̃, s̃;λỹ•P ; w̃kl) then ρq̃r̃(t) = ρq̃r̃(t′)

Proof. By induction on the derivation of the transition t
τ−→ t′. Cases L-Par and L-Res

are straight forward applications of the inductive hypothesis. The quantum state and

distribution are unchanged for L-Com and L-Act. Therefore these cases are simple.

L-Qbit and L-Ns: We have the transition ⊕kl∈I g kltkl
τ−→ ⊕kl∈I g klt′kl, where for each

kl ∈ I, ρ(t′kl) = ρ(tkl)⊗ |0〉〈0|. Therefore, ρq̃r̃(t′kl) = ρq̃r̃(tkl)⊗ 〈0|0〉 = ρq̃r̃(tkl).

L-PS: We have |ψkl〉 = |αkl〉s̃|βkl〉q̃|γkl〉r̃. Then

|ψ′kl〉 = PS|ψkl〉 = |αkl〉s̃PS|βkl〉q̃|γkl〉r̃ = |α′kl〉s̃′ |β
′
kl〉q̃′ |γkl〉r̃

Therefore, we have

ρs̃r̃(t′) =
∑
〈β′kl||β′kl〉|α′kl〉〈α′kl||γkl〉〈γkl| =

∑
〈β′kl|(PS)∗PS|β′kl〉|α′kl〉〈α′kl||γkl〉〈γkl|

=
∑
〈βkl||βkl〉|α′kl〉〈α′kl||γkl〉〈γkl| = ρs̃r̃(t).
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L-Expr: We have P = F [e] and P ′ = F [e′] for some process context F and the hy-

pothesis u −→e u
′ where u is ⊕kl∈I g kl(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; |ψkl〉; q̃, s̃;λỹ • e; w̃kl)

and u′ is ⊕ kl∈I
mn∈Jkl

g klhklmn(s̃ : ÑS, q̃ : Q̃bit, r̃ : Q̃bit; |ψkl〉; q̃, s̃;λỹz̃ • e′; w̃kl, w̃klmn).

By Lemma 7.14, we have ρq̃r̃(u) = ρq̃r̃(u′). It follows then from the definition that

ρq̃r̃(t) = ρq̃r̃(u) and ρq̃r̃(t′) = ρq̃r̃(u′), hence we get ρq̃r̃(t) = ρq̃r̃(t′)

The next lemma proves that the action of a context on the quantum state is independent

of the quantum subsystem owned by a process.

Lemma 7.16 (Independence of context transitions). Assume that Γ; s̃R ` R. Let t and

u be configurations where

t = ⊕kl∈I g kl(x̃ : T̃ ; [q̃P q̃Rq̃E s̃P s̃Rs̃E 7→ |ψkl〉]; q̃P , q̃R, s̃P , s̃R;λỹ •R; w̃R)

u = ⊕mn∈J h mn(x̃ : T̃ ; [q̃Qq̃Rq̃E s̃Qs̃Rs̃E 7→ |φmn〉]; q̃Q, q̃R, s̃Q, s̃R;λỹ •R; w̃R)

If ρq̃P q̃E s̃P s̃E (t) = ρq̃Qq̃E s̃Qs̃E (u) and t
τ−→ t′ where

t = ⊕kl∈I′ab
ab∈K

g ′klab(x̃ : T̃ ; [q̃P q̃
′
Rq̃E s̃P s̃

′
Rs̃E 7→ |ψklab〉];ωP , ω′R;λỹ′ •R′; w̃Rab

)

then there exists

u = ⊕mn∈J ′ab
ab∈K

h ′mnab(x̃ : T̃ ; [q̃Qq̃
′
Rq̃E s̃Qs̃

′
Rs̃E 7→ |φmnab〉];ωQ, ω′R;λỹ′ •R′; w̃Rab

)

such that u
τ−→ u′ and ρq̃P q̃E s̃P s̃E (t′) = ρq̃Qq̃E s̃Qs̃E (u′)

Proof. By induction on the derivation of t
τ−→ t′.

The next two lemmas prove some simple results which are used in the proof of Theo-

rem 7.19.

Lemma 7.17. Let t = ⊕kl∈I g kltkl and t′ = ⊕kl∈I g klt
′
kl then t

α−→ t′ if and only if

∀kl∈I(tkl
α−→ t′kl) for α ∈ {.?[·], τ}

Proof. By induction on the derivation of t
α−→ t′. This is because process structure is

constant for all kl ∈ I.

Lemma 7.18. Let tmn = ⊕kl∈Imn g klmn(x̃ : T̃ ;σklmn;ω;λỹ • P ; w̃klmn) and tklmn =

(x̃ : T̃ ;σklmn;ω;P{w̃klmn/ỹ}) then ∀mn∈J,kl∈Imn .(tklmn
c?[ũmn,q̃,s̃]−→p t′klmn) if and only if

∀mn∈J .(tmn
c?[ũmn,q̃,s̃]−→p t′mn)
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Proof. By induction on the derivation of tmn
c?[ũmn,q̃,s̃]−→p t′mn. If the transition is derived

from P-In then by L-In we have

∀mn∈J,kl∈Imn .((x̃ : T̃ ;σklmn;ω;P )
c?[ũmn,q̃,r̃]−→p (x̃ : T̃ ;σklmn;ω′;P ′))

and by Lemma 7.17, we have

∀mn∈J ⊕kl∈Imn g klmn(x̃ : T̃ ;σklmn;ω;λỹ • P ; w̃klmn)
c?[ũmn,q̃,r̃]−→p

⊕kl∈Imn g klmn(x̃ : T̃ ;σklmn;ω′;λỹ • P ′; w̃klmn)

The cases for P-Par and P-Res are similar, making uses of L-Par and L-Res respec-

tively. The argument is easily reversed to obtain the opposite direction.

We are now in a position to prove that bisimilarity is preserved by parallel composition.

To prove this, we define an equivalence relation that contains the pair ((x̃ : T̃ ;σ; ∅;P |
R), (x̃ : T̃ ;σ; ∅;Q |R)) and that is closed under transitions from these configurations.

Theorem 7.19 (Parallel preservation for configurations). Assume that Γ ` P , Γ ` Q,

Γ ` P |R, and Γ ` Q |R. If (x̃ : T̃ ;σ; ∅;P ) - (x̃ : T̃ ;σ; ∅;Q) then (x̃ : T̃ ;σ; ∅;P | R) -

(x̃ : T̃ ;σ; ∅;Q |R).

Using this result, we prove that the bisimilarity of processes is preserved by parallel

composition.

Proof. This proof is structured as follows. First, we introduce the notational conven-

tions that will be used in this proof. We define an equivalence relation R on general

configurations, in which the pair (x̃ : T̃ ;σ; ∅;P |R), (x̃ : T̃ ;σ; ∅;Q |R) from the statement

is a particular case. The remainder of the proof is dedicated to proving that R is a

probabilistic branching bisimulation.

Let P,Q and R be general processes and assume that Γ; q̃P , s̃p ` P,Γ; q̃Q, s̃Q ` Q,Γ;

q̃P , s̃P , q̃R, s̃R ` P |R, and Γ; q̃Q, s̃Q, q̃R, s̃R ` Q |R. Let, K be an arbitrary indexing set.

For each kl ∈ K, let tkl and ukl be configurations given by

tkl = ⊕ab∈Ikl g abkl(x̃ : T̃ ;σabkl;ωP ;λỹP • P ; w̃Pabkl
)

ukl = ⊕cd∈Jkl h cdkl(x̃ : T̃ ; τcdkl;ωQ;λỹQ •Q; w̃Qcdkl
)

where ωP is q̃P , s̃P and ωQ is q̃Q, s̃Q and σabkl = [q̃P q̃Rq̃E s̃P s̃Rs̃E 7→ |ψabkl〉], τcdkl =

[q̃Qq̃Rq̃E s̃Qs̃Rs̃E 7→ |φcdkl〉] and q̃E , s̃E are qubits and number states in the environment.

For each kl ∈ K, we have ρE(tkl) = ρE(ukl).
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We use the convention that configurations tw and uw are defined in relation to {tkl}
and {ukl} where

tw = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP , ωR;λỹP ỹR • P |R; w̃Pabkl
, w̃Rkl

)

uw = ⊕cd∈Jkl
kl∈K

f klhcdkl(x̃ : T̃ ; τcdkl;ωQ, ωR;λỹQỹR •Q |R; w̃Qcdkl
, w̃Rkl

)

and {fkl} is a set of weights. Following this convention, the configurations {t′kl}, {u′kl}, tw′

and uw′, for example, are related in same manner.

We use the convention that ỹP (respectively ỹQ, ỹR) appear only in the process P

(respectively Q,R). Therefore we are able to use the fact that the configurations

(x̃ : T̃ ;σ;ω;λỹP ỹR •P ; w̃P , w̃R) and (x̃ : T̃ ;σ;ω;λỹP •P ; w̃P ) are structurally congruent.

This is used implicitly throughout the proof.

Now define the equivalence relation R1 as

R1 = {(tw, uw) | ∀kl ∈ K . (tkl - ukl)}

Then define R to include probabilistic distributions, where

R = {(�m∈Mpm • tm,�m∈Mpm • um)|∀m∈M . (tm - um ∈ R1)}

Now we prove that R is a probabilistic branching bisimulation. By case analysis of the

possible transitions of tw; we have an internal transition by P , output by P , input by P ,

communication from P , the respective transitions by R, and probabilistic transitions.

In this proof we will use the convention that t = ⊕kl∈K f kltkl and tw = ⊕kl∈K f kltwkl

in order to simplify the notation.

Internal transition by P :

If tw
τ−→ tw′ then by L-Par we have the hypothesis t

τ−→ t′ where

t′ = ⊕ab∈I′kl
kl∈K

f klg
′
abkl(x̃ : T̃ ;σ′abkl;ω

′
P , ωR;λỹ′P • P ′; w̃′Pabkl

)

and

tw′ = ⊕ab∈I′kl
kl∈K

f klg
′
abkl(x̃ : T̃ ;σ′abkl;ω

′
P , ωR;λỹ′P ỹR • P ′ |R; w̃′Pabkl

, w̃Rkl
)
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Lemma 7.17 gives ∀kl∈K . (tkl
τ−→ t′kl). Then, for each kl ∈ K, because tkl - ukl there

exist configurations u′kl, u
′′
kl such that ukl =⇒ u′kl

τ+−→ u′′kl with tkl - u′kl and t′kl - u′′kl.

Therefore by Lemma 7.17 we have u =⇒ u′
τ+−→ u′′ where

u′ = ⊕cd∈J ′kl
kl∈K

f klh
′
cdkl(x̃ : T̃ ; τ ′cdkl;ω

′
Q, ωR;λỹ′Q′ •Q; w̃′Qcdkl

)

and

u′′ = ⊕cd∈J ′′kl
kl∈K

f klh
′′
cdkl(x̃ : T̃ ; τ ′′cdkl;ω

′′
Q, ωR;λỹ′′Q •Q′; w̃′Qcdkl

).

By L-Par we obtain the transitions uw =⇒ uw′
τ+−→ uw′′ where

uw′ = ⊕cd∈J ′kl
kl∈K

f klh
′
cdkl(x̃ : T̃ ; τ ′cdkl;ω

′
Q, ωR;λỹ′QỹR •Q′ |R; w̃′Qcdkl

, w̃Rkl
)

and

uw′′ = ⊕cd∈J ′kl
kl∈K

f klh
′′
cdkl(x̃ : T̃ ; τ ′′cdkl;ω

′′
Q, ωR;λỹ′′QỹR •Q′ |R; w̃′Qcdkl

, w̃Rkl
).

Lemma 7.15 gives for each kl ∈ K, ρE(tkl) = ρE(t′kl) and ρE(ukl) = ρE(u′kl) = ρE(u′′kl)

hence ρE(tkl) = ρE(u′kl) and ρE(t′kl) = ρE(u′′kl). Therefore (tw, uw′) ∈ R and (tw′, uw′′) ∈
R.

Internal transition by R:

The transition tw
τ−→ tw′ has the hypothesis w1

τ−→ w′1 where

w1 = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP , ωR;λỹR •R; w̃Rkl
)

and

w′1 = ⊕ab∈I′kl
kl∈K

f klg
′
abkl(x̃ : T̃ ;σ′abkl;ωP , ω

′
R;λỹ′R •R′; w̃′Rkl

).

By Lemma 7.16 there exists w′2 such that w2
τ−→ w′2 where

w2 = ⊕cd∈Jkl
kl∈K

f klhcdkl(x̃ : T̃ ; τcdkl;ωQ, ωR;λỹR •R; w̃Rkl
)

and

w′2 = ⊕cd∈J ′kl
kl∈K

f klh
′
cdkl(x̃ : T̃ ; τ ′cdkl;ωQ, ω

′
R;λỹ′R •R′; w̃′Rkl

)

and ρq̃
′
Rq̃E s̃

′
Rs̃E (w′1) = ρq̃

′
Rq̃E s̃

′
Rs̃E (w′2). By L-Par we have uw

τ−→ uw′. Let t′kl =

⊕ab∈Ikl g abkl(x̃ : T̃ ;σ′abkl;ωP ;λỹP •P ; w̃abkl) and u′kl = ⊕cd∈Jkl h cdkl(x̃ : T̃ ; τ ′cdkl;ωQ;λỹQ•
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Q; w̃cdkl). We must show that ∀kl∈K . (t′kl - u′kl). It is only necessary to consider the

possible cases for the derivation of wi
τ−→ w′i in which the quantum state is altered;

these are R-Trans-NS,R-Measure-NS,R-PS-Measure,L-Qbit,L-Ns,L-PS (in all

other cases tkl - t′kl and ukl - u′kl).

R-Trans-NS: For σ′abkl, we have [|ψ′abkl〉 = (IP ⊗ U ⊗ IE)|ψabkl〉] for some unitary

operator U , where IP and IE are identity operators on elements of P and E respectively.

Similarly, for τ ′cdkl, we have [|φ′cdkl〉 = (IQ⊗U⊗IE)|φcdkl〉]. Now define a relationRu such

that (t′kl, u
′
kl) ∈ Ru if tkl - ukl and ρ(t′kl) = (IP⊗U⊗IE)†ρ(tkl)(IP⊗U⊗IE) and ρ(u′kl) =

(IQ⊗U⊗IE)†ρ(ukl)(IQ⊗U⊗IE). If t′kl
τ−→ t′′kl then, by a straight forward induction on

the derivation, we have tkl
τ−→ t′′′kl and ρ(t′′kl) = (I ′P⊗U⊗IE)†ρ(t′′′kl)(I

′
P⊗U⊗IE). Because

tkl - ukl, we have ukl =⇒ u′′kl
τ+−→ u′′′kl and tkl - u′′kl and t′′kl - u′′′kl. By induction on

the derivation of each transition in the sequence, we obtain u′kl =⇒ u′′′′kl
τ+−→ u′′′′′kl where

ρ(u′′′′kl ) = (I ′′Q⊗U⊗IE)†ρ(u′′kl)(I
′′
Q⊗U⊗IE) and ρ(u′′′′′kl ) = (I ′′′Q⊗U⊗IE)†ρ(u′′′kl)(I

′′′
Q⊗U⊗IE).

Therefore (t′kl, u
′′′′
kl ) ∈ Ru and (t′′kl, u

′′′′′
kl ) ∈ Ru. If t′kl

c?[q̃,r̃,s̃]−→ t′′kl then similar reasoning

applies as in previous case. If t′kl
c![V,X̃]−→ �mpm • t′′klm then tkl

c![V,X̃]−→ �mpm • t′′′klm and

ρ(t′′klm) = (I ′P ⊗ U ⊗ IE)†ρ(t′′′klm)(I ′P ⊗ U ⊗ IE) and then we have ρX̃q̃Rq̃E s̃Rs̃E (t′′klm) =

(I
X̃
⊗ U ⊗ IE)†ρX̃q̃Rq̃E s̃Rs̃E (t′′′klm)(I

X̃
⊗ U ⊗ IE). Because tkl - ukl, we have ukl =⇒

u′′kl
c![V,Ỹ ]−→ �mpm•u′′′klm and tkl - u′′kl and ∀m . (t′′klm - u′′′kl). By induction on the derivation

of each transition in this sequence, we obtain u′kl =⇒ u′′′′kl
c![V,Ỹ ]−→ �mpm • u′′′′′klm where

ρ(u′′′′kl ) = (I ′′Q⊗U⊗IE)†ρ(u′′kl)(I
′′
Q⊗U⊗IE) and ∀m . (ρ(u′′′′′klm) = (I ′′′Q⊗U⊗IE)†ρ(u′′′klm)(I ′′′Q⊗

U⊗IE)). Therefore ρỸ q̃Rq̃E s̃Rs̃E (u′′′′′klm) = (I
X̃
⊗U⊗IE)†ρỸ q̃Rq̃E s̃Rs̃E (u′′′klm)(I

X̃
⊗U⊗IE) and

because ρX̃...s̃E (t′′′klm) = ρỸ ...s̃E (u′′′klm) we have ρX̃...s̃E (t′′klm) = ρỸ ...s̃E (u′′′′′klm). Therefore

(t′kl, u
′′′′
kl ) ∈ Ru and ∀m . (t′′klm, u′′′′′klm) ∈ Ru. We find that Ru is a probabilistic branching

bisimulation, hence t′kl - u′kl.

R-Measure-NS-2/R-PS-Measure: We have a set of measurement operators {Mm}
such that ρ(t′kl) =

∑
m fm(IP⊗Mm⊗IE)†ρ(tkl)(IP⊗Mm⊗IE) and ρ(u′kl) =

∑
m fm(IQ⊗

Mm⊗ IE)†ρ(u′kl)(IQ⊗Mm⊗ IE). We construct a relation Rm such that (t′kl, u
′
kl) ∈ Rm

if tkl - ukl and ρ(t′kl) =
∑

m fm(IP ⊗Mm ⊗ IE)†ρ(tkl)(IP ⊗Mm ⊗ IE) and ρ(u′kl) =∑
m fm(IQ⊗Mm⊗IE)†ρ(ukl)(IQ⊗Mm⊗IE). By similar reasoning to the previous case,

we find that Rm is a bisimulation, hence tkl - ukl.

L-Qbit/L-Ns: We have the relationships ρ(t′kl) = ρ(tkl)⊗ |0〉〈0| and ρ(u′kl) = ρ(ukl)⊗
|0〉〈0|. We construct a relation and follow similar reasoning to the previous cases.

L-PS: We have the relationships ρ(t′kl) = ρ(tkl) and ρ(u′kl) = ρ(ukl) and follow similar

reasoning.
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Communication from P :

The derivation by L-Com is

∀kl ∈ K, ab ∈ Ikl . ((tabkl
c![ũabkl,X̃]−→p t′abkl)(wabkl

c?[ũabkl,X̃]−→p w′abkl))

(tw
τ−→ tw′)

where
tabkl = (x̃ : T̃ ;σabkl;ωP , ωR;P{w̃Pabkl

/ỹP }),
t′abkl = (x̃ : T̃ ;σabkl;ω

′
P , ωR;P ′{w̃Pabkl

/ỹP }),
wabkl = (x̃ : T̃ ;σabkl;ωP , ωR;R{w̃Rkl

/ỹR}),
w′abkl = (x̃ : T̃ ;σabkl;ωP , ω

′
R;P ′{w̃Rkl

/ỹR})

and

tw′ = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ω
′
P , ω

′
R;λỹP ỹR • P ′ ‖ R′; w̃Pabkl

, w̃Rkl
).

For each kl ∈ K, we derive by L-Out-Ns or L-Out-Qbit, the transition (tkl
c![Wkl,X̃]−→

t′klo) where Wkl = {wabkl|ab ∈ Ikl} and

t′klo = �m∈Mkl
pm • tklmo and tklmo = (⊕ab∈Iklm ( gabkl/pm)(x̃ : T̃ ;σ′abkl;ω

′
P ;λỹP •

P ′; w̃Pabkl
).

For each kl ∈ K, because tkl - ukl, we get u′kl, u
′′
klo

such that ukl =⇒ u′kl
c![wkl,X̃]−→ u′′klo

where

u′kl = ⊕cd∈J ′kl h
′
cdkl(x̃ : T̃ ; τ ′cdkl;ω

′
Q;λỹ′Q •Q′; w̃′Qcdkl

),

u′′klo �m∈Mkl
pm • u′′klmo

,

u′′klmo
= ⊕cd∈J ′kl h

′
cdkl(x̃ : T̃ ; τ ′′cdkl;ω

′′
Q;λỹ′Q •Q′′; w̃′cdkl)

and tkl - u′kl and for each m ∈Mkl, t
′
klmo

- u′′klmo
and ρE(tklmo) = ρE(u′klmo

). Applying

Lemma 7.17 to each step in ukl =⇒ u′kl gives uw =⇒ uw′. By L-Com, we can derive

the transition uw′
τ−→ uw′′. Now by Lemma 7.15 we have for each kl ∈ K, ρE(ukl) =

ρE(u′kl), therefore it follows that ρE(tkl) = ρE(u′kl) and because tkl - u′kl we have

(tw, uw′) ∈ R.

By convention we have

t′kl = ⊕ab∈Ikl g abkl(x̃ : T̃ ;σabkl;ω
′
P ;λỹP • P ′; w̃Pabkl

)

and

u′′kl = ⊕cd∈J ′kl h
′
cdkl(x̃ : T̃ ; τ ′cdkl;ω

′′
Q;λỹQ •Q′′; w̃′Qcdkl

)
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where σabkl and σ′abkl (respectively τ ′cdkl and τ ′′cdkl) differ by the permutation and renam-

ing applied by L-Out-Ns/L-Out-Qbit. Because for each m ∈ Mk, t
′
klmo

- u′′klmo
, it

follows that t′kl - u′′kl. It follows from ρE(tkl) = ρE(u′kl) and ρE(t′kl) = ρE(u′′kl), therefore

(tw′, uw′′) ∈ R.

Communication from R:

The derivation by L-Com is

∀kl ∈ K, ab ∈ Ikl . ((tabkl
c![õkl,X̃]−→p t′abkl)(wabkl

c?[õkl,X̃]−→p w′abkl))

(tw
τ−→ tw′)

Because the output is from R, the classical values õkl that are transferred in the com-

munication must be dependent on the index kl and be independent of ab. We rewrite

the configurations so that õkl are copies of the respective values in w̃Rkl
; this helps us

to maintain the distinction between variables appearing in the respective processes P,Q

and R after the communication. Therefore we have

tw = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP , ωR;λỹP ỹRz̃ • P |R; w̃Pabkl
, w̃Rkl

, ũkl)

and

tw′ = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ω
′
P , ω

′
R;λỹP ỹRz̃ • P ′ |R′; w̃Pabkl

, w̃Rkl
, ũkl).

For each kl ∈ K, because ∀ab ∈ Ikl . (tabkl
c?[õkl,X̃]−→p t′abkl) we obtain by Lemma 7.18 that

(tkl
c?[õkl,X̃]−→p t′kl). Furthermore, because tkl - ukl there exist u′kl and u′′kl such that

ukl =⇒ u′kl
c?[okl,X̃]−→ u′′kl where tkl - u′kl and t′kl - u′′kl. Then by applying L-Par to each

step of the transition ukl - u′kl we obtain uw =⇒ uw′, and by applying Lemma 7.18 to

the transition u′kl
c?[okl,X̃]−→ u′′kl gives ∀cd ∈ J ′kl . (u′cdkl

c?[õkl,X̃]−→p u′′cdkl). Therefore by L-Com

we can derive the transition

∀kl ∈ K, cd ∈ J ′kl . ((u′cdkl
c?[õkl,X̃]−→p u′′cdkl)(wcdkl

c![õkl,X̃]−→p w′cdkl))

(uw
τ−→ uw′)

Using Lemma 7.15 we have ρE(ukl) = ρE(u′kl), hence ρE(tkl) = ρE(u′kl). Then we have

ρE(t′kl) = tr
X̃
ρE(tkl) and ρE(u′′kl) = tr

X̃
ρE(u′kl), from which we obtain ρE(t′kl) = ρE(u′′kl).

Therefore we have (tw, uw′) ∈ R and (tw′, uw′′) ∈ R as required.
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Output by P :

If tw
c![U,X̃]−→ tw′ where

tw′ = �m∈Mpm • ⊕ab∈Iklm
kl∈K

( fklgabkl/pm)(x̃ : T̃ ;σ′abkl;ω
′
P , ωR;λỹP ỹR • P ′ |R; w̃Pabkl

, w̃Rkl
)

then the derivation by L-Out-Ns/L-Out-Qbit and P-Par has the hypothesis ∀kl ∈

K, ab ∈ Ikl . (tabkl
c![õabkl,X̃]−→p t′abkl) where U = {õabkl|ab ∈ Ikl, kl ∈ K} and

tabkl = (x̃ : T̃ ;σabkl;ωP , ωR;P{w̃Pabkl
/ỹP })

and

t′abkl = (x̃ : T̃ ;σabkl;ω
′
P , ωR;P ′{w̃Pabkl

/ỹP }).

Then, for each kl ∈ K, by L-Out-Ns/L-Out-Qbit, we have tkl
c![õkl,X̃]−→p t′kl where

tkl = ⊕ab∈Ikl g abkltabkl,

t′kl = �m∈Mkl
pklm • t′klm

and

t′klm = ⊕ab∈Iklm
gabkl
pklm

t′abkl.

For each kl ∈ K, because tkl - ukl then there exists u′kl, u
′′
kl such that ukl =⇒ u′kl

c![okl,X̃]−→
u′′kl and tkl - u′kl and u′′kl = �m∈Mkl

pklm • u′′′klm and ∀m ∈Mkl . (t
′
klm - u′′klm) and

ρE(t′klm) = ρE(u′′klm). Then for each kl ∈ K, the derivation of u′kl
c![okl,X̃]−→ u′′kl gives the

hypothesis ∀cd ∈ Jkl . (u′cdkl
c![õabkl,X̃]−→p u′′cdkl) where

u′kl = ⊕cd∈J ′kl h
′
cdkl(x̃ : T̃ ; τ ′cdkl;ω

′
Q, ωR;λỹ′Q •Q′; w̃Q′cdkl),

u′′klm = ⊕cd∈J ′klm ( h′cdkl/pklm)(x̃ : T̃ ; τ ′cdkl;ω
′′
Q, ωR;λỹ′Q •Q′′; w̃Q′cdkl),

u′cdkl = (x̃ : T̃ ; τ ′cdkl;ω
′
Q, ωR;Q′{ỹ′Q/w̃Q′cdkl}),

u′′cdkl = (x̃ : T̃ ; τ ′cdkl;ω
′′
Q, ωR;Q′′{ỹ′Q/w̃Q′cdkl})

Now applying Lemma 7.17 to each step in the transitions ukl =⇒ u′kl gives uw =⇒ uw′

where

u′kl = ⊕cd∈J ′kl
kl∈K

f klh
′
cdkl(x̃ : T̃ ; τ ′cdkl;ω

′
Q, ωR;λỹ′QỹR •Q′ |R; w̃′Qcdkl

, R̃kl)
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Using P-Par and L-Out-Ns/L-Out-Qbit we can derive the transition uw′
c![U,X̃]−→ uw′′

where
uw′′ = �m∈Mpm • ⊕cd∈J ′klm

kl∈K
( fklh

′
cdkl/pm)(x̃ : T̃ ; τ ′′cdkl;ω

′′
Q, ωR;

λỹ′QỹR •Q′′ |R; w̃′Qcdkl
, R̃kl)

noting that pm =
∑

kl∈K pklm. Let

tw′m = ⊕ab∈Iklm
kl∈K

( fklgabkl/pm)(x̃ : T̃ ;σ′abkl;ω
′
P , ωR;λỹP ỹR • P ′ |R; w̃Pabkl

, R̃kl) and

uw′′m = ⊕cd∈J ′klm
kl∈K

fklh
′
cdkl

pm(x̃ : T̃ ; τ ′′cdkl;ω
′′
Q, ωR;λỹ′QỹR •Q′′ |R; w̃′Qcdkl

, R̃kl)

then for each m ∈ M because ∀kl ∈ K(t′klm - u′′klm) and ρE(t′klm) = ρE(u′′′klm) we have

(tw′m, uw
′′
m) ∈ R. For each kl ∈ K, using Lemma 7.15 we have ρE(ukl) = ρE(u′kl), hence

ρE(tkl) = ρE(u′kl) and therefore (tw, uw′) ∈ R as required.

Output by R:

If tw
c![U,X̃]−→ tw′ then the derivation by L-Out-Ns/L-Out-Qbit and P-Par gives the

hypothesis

∀kl ∈ K, ab ∈ Ikl(x̃ : T̃ ;σabkl;ωP , ωR;R{R̃kl/ỹR})
c![õkl,X̃]−→p

(x̃ : T̃ ;σabkl;ωP , ω
′
R;R′{R̃mn/ỹR})

where U = {õkl} = {w̃m} and each list of values õkl is only dependent on kl since it must

be continued within w̃Rkl
. Because these transitions are independent of the quantum

state, we get

∀kl ∈ K, cd ∈ Jkl(x̃ : T̃ ; τcdkl;ωQ, ωR;R{R̃kl/ỹR})
c![õkl,X̃]−→p

(x̃ : T̃ ; τcdkl;ωQ, ω
′
R;R′{R̃mn/ỹR})

By applying P-Par and L-Out-Ns/L-Out-Qbit we can derive the transition uw
c![U,X̃]−→

uw′ where

uw′ = �m∈Mp′m • ⊕cd∈J ′kl
kl∈Km

( fklhcdkl/p
′
m)(x̃ : T̃ ; τ ′cdkl;ωQ, ωR;

λỹQỹR •Q |R; w̃Qcdkl
, R̃kl)

For each m ∈M let Km = {kl|õkl = w̃m}, then we have

pm =
∑

kl∈Km
fkl
∑

ab∈Ikl gabkl =
∑

kl∈Km
fkl =∑

kl∈Km
fkl
∑

cd∈Jkl hcdkl = p′m
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Let tw′ = �m∈Mpm • tw′m and uw′ = �m∈Mpm • uw′m and let Π be the permutation

operator corresponding to the permutation q̃Rs̃Rq̃E s̃E 7→ q̃′Rs̃
′
Rq̃E s̃EX̃ (this permuta-

tion is applied in the transformation from σabkl to σ′abkl and from τcdkl to τ ′cdkl due to

L-Out-Ns/L-Out-Qbit). Then we have

ρq̃
′
R...X̃(tw′m) =

∑
kl∈Km

(fkl/pm)(IP ⊗Π)†ρE(tkl)(IP ⊗Π) and

ρq̃
′
R...X̃(uw′m) =

∑
kl∈Km

(fkl/pm)(IQ ⊗Π)†ρE(ukl)(IQ ⊗Π)

Because for each kl ∈ K, ρE(tkl) = ρE(ukl) and ρE(tw′m) = trq̃′Rs̃
′
R

(ρq̃
′
R...X̃(tw′m)) and

ρE(uw′m) = trq̃′Rs̃
′
R

(ρq̃
′
R...X̃(uw′m)) we have ρE(tw′m) = ρE(uw′m). Then, because for each

kl ∈ K, (tkl - ukl) we have ∀m ∈M . ((tw′m, uw
′
m) ∈ R).

Input by P :

We have the transition tw
c?[õ,X̃]−→ tw′ where

tw′ = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ω
′
P , ωR, X̃;λỹP ỹR • P ′ |R; w̃Pabkl

, w̃Rkl
)

The derivation of this transition by L-Par gives the hypothesis t
c?[õ,X̃]−→ t′ where

t = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP ;λỹP • P ; w̃Pabkl
) and

t′ = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP , X̃;λỹP • P ′; w̃Pabkl
)

Applying Lemma 7.17 gives ∀kl ∈ K . (tkl
c?[õ,X̃]−→ t′kl) where

t′kl = ⊕ab∈Ikl g abkl(x̃ : T̃ ;σabkl;ωP .X̃;λỹP • P ′; w̃Pabkl
).

For each kl ∈ K, because tkl - ukl there exist configurations u′kl, u
′′
kl such that ukl =⇒

u′kl
c?[õ,X̃]−→ u′′kl where tkl - u′kl and t′kl - u′′kl. We now apply Lemma 7.17 to these

transitions to get u =⇒ u′
c?[õ,X̃]−→ u′′. Applying L-Par then gives the required transition

uw =⇒ uw′
c?[õ,X̃]−→ uw′′. For each kl ∈ K, we have ρE(t′kl) = tr

X̃
(ρE(ukl)) and ρE(u′′kl) =

tr
X̃

(ρE(u′kl)) and by Lemma 7.15 ρE(u′′kl) = ρE(u′kl), then because tkl - u′kl and t′kl -

u′′kl, we have (tw, uw′) ∈ R and (tw′, uw′′) ∈ R.
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Input by R:

We have the transition tw
c?[õ,X̃]−→ tw′ where

tw′ = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP , ω
′
R, X̃;λỹP ỹR • P |R′; w̃Pabkl

, w̃Rkl
)

The derivation of this transition by L-Par gives the hypothesis w1
c?[õ,X̃]−→ w′1 correspond-

ing to the action of R in isolation, where

w1 = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP ;ωR;λỹR •R; w̃Rkl
) and

w′1 = ⊕ab∈Ikl
kl∈K

f klgabkl(x̃ : T̃ ;σabkl;ωP , ω
′
R;λỹR •R′; w̃Rkl

).

Since this transition is independent from the quantum state we obtain the transition

w2
c?[õ,X̃]−→ w′2 where

w2 = ⊕cd∈Jkl
kl∈K

f klhcdkl(x̃ : T̃ ; τcdkl;ωQ;ωR;λỹR •R; w̃Rkl
) and

w′2 = ⊕cd∈Jkl
kl∈K

f klhcdkl(x̃ : T̃ ; τcdkl;ωQ, ω
′
R;λỹR •R′; w̃Rkl

)

Applying L-Par to this transition gives uw
c?[õ,X̃]−→ uw′ where

uw′ = ⊕cd∈Jkl
kl∈K

f klhcdkl(x̃ : T̃ ; τcdkl;ωQ, ωR;λỹQỹ
′
R •Q |R′; w̃Qcdkl

, w̃Rkl
).

Because the elements X̃ are contained within ωE(q̃E , s̃E), we have q̃′R = q̃R, X̃ or s̃′R =

s̃R, X̃ and q̃E = q̃′E , X̃ or s̃E = s̃′E , X̃. Therefore, ρq̃Rs̃Rq̃E s̃E (tw) = ρq̃
′
Rs̃
′
Rq̃
′
E s̃
′
E (tw′) and

ρq̃Rs̃Rq̃E s̃E (uw) = ρq̃
′
Rs̃
′
Rq̃
′
E s̃
′
E (uw′). So ∀kl ∈ K . (tkl - ukl), we have (tw′, uw′) ∈ R.

Theorem 7.20 (Parallel Preservation). If P - Q then for any process R such that

Γ ` P |R and Γ ` Q |R then P |R - Q |R.

Proof. Because P - Q we have for all σ, (x̃ : T̃ ;σ; ∅;P ) - (x̃ : T̃ ;σ; ∅;Q). We define

a relation R, then we have for all σ, ((x̃ : T̃ ;σ; ∅;P | R), (x̃ : T̃ ;σ; ∅;Q | R)) ∈ R. By

Theorem 7.19 R is a bisimulation, hence P |R - Q |R.

We now consider preservation with respect to other process constructions and can be

shown that probabilistic branching bisimilarity is preserved by all process constructs

except input and qubit or number state declarations.

Lemma 7.21. Probabilistic branching bisimilarity is preserved by output prefix, action

prefix, channel restriction and non-deterministic choice.
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Proof. This proof consists of a subset of the cases from the proof of Lemma 7.24.

Theorem 7.22 (Probabilistic branching bisimilarity is a non-input, non-qubit congru-

ence and non-number state congruence). If P - Q and for any non-input, non-qubit or

non-number state context C if Γ ` C[P ] and Γ ` C[Q] then C[P ] - C[Q].

Proof. Follows directly from Theorem 7.20 and Lemma 7.21.

Definition 7.23 (Full probabilistic branching bisimilarity). Processes P and Q are

full probabilistic branching bisimilar, denoted P -c Q, if for all substitutions κ and all

quantum states σ, (x̃ : T̃ ;σ; q̃, s̃;Pκ) - (x̃ : T̃ ;σ; q̃, s̃;Qκ).

We now show that full probabilistic branching bisimilarity is preserved by all process

constructs. The following lemma is used in the proof of Lemma 7.25 which in turn is

used in the proof of Theorem 7.26.

Lemma 7.24. If ∀ij ∈ I . ((x̃ : T̃ ;σij ;ω;P ) - (x̃ : T̃ ;σij ;ω;Q)) and
∑

ij∈I gij = 1 then

⊕ij∈I g ij(x̃ : T̃ ;σij ;ω;P ) - ⊕ij∈I ( x̃ : T̃ ;σij ;ω;Q)

Proof. There is a bisimulationR1 such that ∀ij ∈ I, ((x̃ : T̃ ;σij ;ω;P ), (x̃ : T̃ ;σij ;ω;Q)) ∈
R1. Now define a relation R2 as

R2 = {(⊕ ij∈I
kl∈Jij

f ijgijkl(x̃ : T̃ ;σijkl;ωP ;λỹP • P ; w̃Pijkl
),

⊕ ij∈I
mn∈Kij

f ijhijmn(x̃ : T̃ ; τijmn;ωQ;λỹQ •Q; w̃Qijmn),

| ∀ij ∈ I . (((x̃ : T̃ ;σijkl;ωP ;λỹP • P ; w̃Pijkl
), (x̃ : T̃ ; τijmn;ωQ;λỹQ •Q; w̃Qijmn)) ∈ R1)}

Then extend this relation to include probabilistic configurations:

R3 = {(�m∈Mpm • tm,�m∈Mpm • um) | ∀m ∈M . ((tm, um) ∈ R2)}

We now show that R2 ∪R3 is a bisimulation.

For (t, u) ∈ R2, if t
α−→ t′ where

t′ = ⊕ ij∈I
kl∈J ′ij

f ijg
′
ijkl(x̃ : T̃ ;σ′ijkl;ω

′
P ;λỹ′P • P ′; w̃P ′ijkl)

then by Lemma 7.17 we have ∀ij ∈ I . (tij
α−→ t′ij) where

tij = ⊕kl∈Jij g ijkl(x̃ : T̃ ;σijkl;ωP ;λỹP • P ; w̃Pijkl
) and

t′ij = ⊕kl∈J ′ij g
′
ijkl(x̃ : T̃ ;σ′ijkl;ω

′
P ;λỹ′P • P ′; w̃′Pijkl

)
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For each ij ∈ I, because (tij , uij) ∈ R1, there exists u′ij , u
′′
ij such that uij =⇒ u′ij

α−→ u′′ij

where
uij = ⊕mn∈Kij h ijmn(x̃ : T̃ ; τijmn;ωQ;λỹQ •Q; w̃Qijmn),

u′ij = ⊕mn∈K′ij h
′
ijmn(x̃ : T̃ ; τ ′ijmn;ω′Q;λỹ′Q •Q′; w̃′Qijmn

), and

u′′ij = ⊕mn∈K′′ij h
′′
ijmn(x̃ : T̃ ; τ ′′ijmn;ω′′Q;λỹ′′Q •Q′′; w̃′′Qijmn

).

By Lemma 7.17 we have u =⇒ u′
α−→ u′′ where

u′ = ⊕ ij∈I
mn∈K′ij

h ′ijmn(x̃ : T̃ ; τ ′ijmn;ω′Q;λỹ′Q •Q′; w̃′Qijmn
)

u′′ = ⊕ ij∈I
mn∈K′′ij

h ′′ijmn(x̃ : T̃ ; τ ′′ijmn;ω′′Q;λỹ′′Q •Q′′; w̃′′Qijmn
)

and (t, u′) ∈ R1 and (t′, u′′) ∈ R2.

If t
c![U,X̃]−→ t′ where t′ = �m∈Mpm • t′m and

t′m = ⊕ ij∈Im
kl∈J ′ijm

( fij/pm)gijkl(x̃ : T̃ ;σijkl;ω
′
P ;λỹ′P • P ′; w̃′Pijkl

)

then by L-Out-Ns/L-Out-Qbit we can derive ∀ij ∈ I . (tij
c![Ũij ,X̃]
−→ t′ij) where

t′ij = �m∈Mij • ⊕kl∈Jijm ( gijkl/pijm)(x̃ : T̃ ;σijkl;ω
′
P ;λỹ′P • P ′; w̃′Pijkl

)

and U =
⋃
ij∈I Uij and M =

⋃
ij∈IMij and pm =

∑
ij∈Im pijm∑
ij∈I pijm

.

For each ij ∈ I, because (tij , uij) ∈ R1 there exists u′ij and u′′ij such that uij =⇒

u′ij
c![Ũij ,X̃]
−→ u′′ij . Using L-Out-Ns/L-Out-Qbit, we can derive the transitions u =⇒

u′
c![Ũij ,X̃]
−→ u′′, where u′′ = �m∈Mpm • u′′m and (t, u′) ∈ R2 and (t′, u′′) ∈ R3 and ∀m ∈

M . ((t′m, u
′′
m) ∈ R2).

Lemma 7.25. Full probabilistic branching bisimilarity is preserved by input prefix, out-

put prefix, action prefix, qubit and number state declaration, channel restriction and

non-deterministic choice.

Proof. Because P -c Q, there exists a bisimulation R1 such that for all quantum states

σ and for all substitutions k we have ((x̃ : T̃ ;σ;ω;Pk), (x̃ : T̃ ;σ;ω;Qk)) ∈ R1.

Input prefix: Let R2 be a relation such that ∀σ, k′ = {ṽ, r̃/ỹ},

((x̃ : T̃ ;σ; r̃; c?[z̃] . Pk′), (x̃ : T̃ ;σ; r̃; c?[z̃] . Qk′)) ∈ R2

135



Chapter 7 Formal verification of LOQC using CQP

We now show that R = R1∪R2 is a bisimulation. There is only one transition possibly,

namely an input action. If (x̃ : T̃ ;σ; r̃; c?[z̃] . Pk′)
c?[ũ,X̃]−→ (x̃ : T̃ ;σ; r̃, X̃;Pk′k) = t′ then

we also have (x̃ : T̃ ;σ; r̃; c?[z̃] . Qk′)
c?[ũ,X̃]−→ (x̃ : T̃ ;σ; r̃, X̃;Qk′k) = u′ and (t′, u′) ∈ R1.

L-PS: We define a relation R2 such that

((x̃ : T̃ ;σ; q̃, s̃; {a : NS, b : NS∗=PS(c)} . Pk), ((x̃ : T̃ ;σ; q̃, s̃; {a : NS, b : NS∗=PS(c)} . Qk)) ∈ R2

We now show that R = R1∪R2 is a bisimulation. There is only one transition possibly,

namely a τ transition.Then, If

(x̃ : T̃ ;σ; q̃, s̃; {a : NS, b : NS ∗= PS(c)} . Pk)
τ−→ (x̃′ : T̃ ′;σ′; q̃′, s̃′;Pk)

we also have

(x̃ : T̃ ;σ; q̃, s̃; {a : NS, b : NS ∗= PS(c)} . Qk)
τ−→ (x̃′ : T̃ ′;σ′; q̃′, s̃′;Qk)

where ((x̃′ : T̃ ′;σ′; q̃′, s̃′;Pk), (x̃′ : T̃ ′;σ′; q̃′, s̃′;Qk) ∈ R1. Hence, R = R1 ∪ R2 where

s̃′ = s̃, a, b and q̃′ = q̃/r.

Output prefix: Define an equivalence relation R2 such that for all σ, k,

((x̃ : T̃ ;σ; r̃; c?[z̃] . Pk′), (x̃ : T̃ ;σ; r̃; c?[z̃] . Qk′)) ∈ R2

whenever P - Q. Then define R as the relation

R = {(�m∈Mpm • ⊕ij∈Im g ij(x̃ : T̃ ;σijm; q̃, s̃;λỹ • Pk; w̃ijm),

�m∈Mpm • ⊕ij∈Im g ij(x̃ : T̃ ;σijm; q̃, s̃;λỹ •Qk; w̃ijm)),

| ∀m ∈M, ij ∈ Im . ((x̃ : T̃ ;σijm; q̃, s̃;Pkk′), (x̃ : T̃ ;σijm; q̃, s̃;Qkk′)) ∈ R1 ∪R2}

where k′ = {w̃iim/ỹ}. We also include non-probabilistic configurations in R. The

possible transitions are ultimately derived by either R-Plus, ,R-PS-Measure,

R-Measure-NS-2,R-Trans-NS,L-Out-Ns or L-Out-Qbit; we consider each case in

turn:

R-Plus/: Let

t = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ • c![ẽ] . Pk; w̃ij) and

t′ = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹz • c![ẽ′] . Pk; w̃ij , ũij).
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If t
τ−→ t′ then u

τ−→ u′ where

u = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ • c![ẽ] . Qk; w̃ij) and

u′ = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹz • c![ẽ′] . Qk; w̃ij , ũij).

We have
∀ij ∈ I, ((x̃ : T̃ ;σij ; q̃, s̃; c![ẽ

′]{w̃ijuij/ỹz}Pk),
(x̃ : T̃ ;σij ; q̃, s̃; c![ẽ

′]{w̃ijuij/ỹz}Qk)) ∈ R2.

Therefore (t′, u′) ∈ R.

R-PS-Measure/R-Measure-NS-2: Let

t = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ • c![ẽ] . Pk; w̃ij) and

t′ = ⊕ ij∈I
kl∈Jij

g ijhijkl(x̃ : T̃ ;σij ; q̃, s̃;λỹz̃ • c![ẽ′] . Pk; w̃ij , ũijkl).

If t
τ−→ t′ then u

τ−→ u′ and as in previous case, we apply the same reasoning. Therefore

(t′, u′) ∈ R.

R-Trans-NS: Let

t = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ • c![ẽ] . Pk; w̃ij) and

t′ = ⊕ij∈I g ij(x̃ : T̃ ;σ′ij ; q̃, s̃;λỹ • c![ẽ′] . Pk; w̃ij).

If t
τ−→ t′ then u

τ−→ u′ where

u = ⊕ij∈I g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ • c![ẽ] . Qk; w̃ij) and

u′ = ⊕ij∈I g ij(x̃ : T̃ ;σ′ij ; q̃, s̃;λỹ • c![ẽ′] . Qk; w̃ij).

We have

∀ij ∈ I, ((x̃ : T̃ ;σ′ij ; q̃, s̃; c![ẽ
′]{w̃ij/ỹ}Pk), (x̃ : T̃ ;σ′ij ; q̃, s̃; c![ẽ

′]{w̃ij/ỹ}Qk)) ∈ R2.

Therefore (t′, u′) ∈ R.

L-Out-Ns: If

⊕ij g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹz̃ . c![ỹ, r̃] . Pk; w̃ij , ṽij)
c![W,r̃]−→ �m∈Mpm • t′m

where t′m = ⊕ij∈Im ( gij/pm)(x̃ : T̃ ;σij ; q̃, s̃
′;λỹz̃ . Pk; w̃ij , ṽij) and s̃ = s̃′r̃ andW = {w̃ij}

then

⊕ij g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹz̃ . c![ỹ, r̃] . Qk; w̃ij , ṽij)
c![W,r̃]−→ �m∈Mpm • u′m

where u′m = ⊕ij∈Im ( gij/pm)(x̃ : T̃ ;σij ; q̃, s̃
′;λỹz̃ . Qk; w̃ij , ṽij).
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We have Pk = Pk′ and Qk = Qk′ where k′ = {w̃s̃′/ỹ}. Then we have ∀m ∈M, ij ∈ Im

((x̃ : T̃ ;σij ; q̃, s̃
′;Pk′{w̃ij ṽij/ỹz̃}), (x̃ : T̃ ;σij ; q̃, s̃

′;Qk′{w̃ij ṽij/ỹz̃}) ∈ R1

Therefore ∀m ∈M . (t′m, u
′
m) ∈ R.

Number state declaration: Define a relation

R2 = {(x̃ : T̃ ;σ; q̃, s̃; (ns y) . Pk), (x̃ : T̃ ;σ; q̃, s̃; (ns y) . Qk)) |
(x̃ : T̃ ;σ; q̃, s̃;Pk), (x̃ : T̃ ;σ; q̃, s̃;Qk)) ∈ R1}.

Then,

(x̃ : T̃ ;σ; q̃, s̃; (ns y) . Pk)
τ−→ (x̃′ : T̃ ′;σ′; q̃, s̃, r;Pkk′)

where k′ = {r/y} and r is fresh. We also have (x̃ : T̃ ;σ; q̃, s̃; (ns y) . Qk)
τ−→ (x̃′ :

T̃ ′;σ′; q̃, s̃, r;Qkk′). Then

((x̃′ : T̃ ′;σ′; q̃, s̃, r;Pkk′), (x̃
′ : T̃ ′;σ′; q̃, s̃, r;Qkk′)) ∈ R1},

Hence, R1 ∪R2 is a bisimulation.

Restriction: Given a configuration t = ⊕ij g ij(x̃ : T̃ ;σij ;ω;λỹ •P ; w̃ij), lt tn denote the

corresponding configuration with a restriction ⊕ij g ij(x̃ : T̃ ;σij ;ω;λỹ • (new c)P ; w̃ij).

Define a relation R2 = {(tn, un) mod (t, u) ∈ R1}.

If tn
α−→ t′n then by L-Res we have t

α−→ t′. Because (t, u) ∈ R1 there exist u′, u′′

such that u =⇒ u′
α−→ u′′ and (t, u′) ∈ R1 and (t′, u′′) ∈ R1. By L-Res we have

un =⇒ u′n
α−→ u′′n and (tn, u

′
n) ∈ R2 and (t′n, u

′′
n) ∈ R2. We follow a similar reasoning

for action prefix.

Action prefix: Define a relation

R2 = {((x̃ : T̃ ;σ; q̃, s̃; {e} . Pk), (x̃ : T̃ ;σ; q̃, s̃; {e} . Qk)) |
((x̃ : T̃ ;σ; q̃, s̃;Pk), (x̃ : T̃ ;σ; q̃, s̃;Qk)) ∈ R1}

Then define

R3 = {(⊕ij g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ . {e} . Pk; w̃ij),⊕ij g ij(x̃ : T̃ ;σij ; q̃, s̃;λỹ . {e} . Qk; w̃ij))
| ∀ij((x̃ : T̃ ;σ; q̃, s̃; {e}{w̃ij/ỹ}Pk), (x̃ : T̃ ;σ; q̃, s̃; {e}{w̃ij/ỹ}Qk)) ∈ R2}

Then for (t, u) ∈ R3, if t
τ−→ t′ where

t′ = {(⊕ijkl g ijhijkl(x̃ : T̃ ;σijkl; q̃, s̃;λỹỹ
′ . {e′} . Pk; w̃ij , w̃ijkl),
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then u
τ−→ u′ where u′ = {(⊕ijkl g ijhijkl(x̃ : T̃ ;σijkl; q̃, s̃;λỹỹ

′ . {e′} . Qk; w̃ij , w̃ijkl), and

for each i, j, k and l we have

((x̃ : T̃ ;σijkl; q̃, s̃; {e}{w̃ijw̃ijkl/ỹỹ′}Pk),
(x̃ : T̃ ;σijkl; q̃, s̃; {e}{w̃ijw̃ijkl/ỹỹ′}Qk)) ∈ R2

Therefore (t′, u′) ∈ R3. If t
τ−→ t′ by L-Act where t′ = {(⊕ijkl g ijhijkl(x̃ : T̃ ;σijkl; q̃, s̃;Pk)

since variables ỹ are not in Pk, then u
τ−→ u′ where u′ = {(⊕ijkl g ijhijkl(x̃ : T̃ ;σijkl; q̃, s̃;Qk).

By Lemma 7.24 we have t′ - u′.

Non-deterministic choice: There exists a bisimulationR2 such that ∀σ, k . ((x̃ : T̃ ;σ; q̃, s̃;R), (x̃ :

T̃ ;σ; q̃, s̃;R)) ∈ R2, and because α . P -c α .Q from the previous cases, there is a bis-

miulation R3 such that ∀σ, k . ((x̃ : T̃ ;σ; q̃, s̃;α . Pk), (x̃ : T̃ ;σ; q̃, s̃;α .Qk)) ∈ R3. Now

define a relation R4 such that

R4 = {((x̃ : T̃ ;σ; q̃, s̃;α . Pk +R), (x̃ : T̃ ;σ; q̃, s̃;α .Qk +R), | P -c Q}

If we have the derivation

(x̃ : T̃ ;σ; q̃, s̃;α . Pk)
β−→ t′

(x̃ : T̃ ;σ; q̃, s̃;α . Pk +R)
β−→ t′

then (x̃ : T̃ ;σ; q̃, s̃;α .Qk)
β−→ u′ and (t′, u′) ∈ R3. Therefore by L-Sum we have the

transition (x̃ : T̃ ;σ; q̃, s̃;α .Qk +R)
β−→ u′. The prefix α guarantees that this transition

is strongly matched. If (x̃ : T̃ ;σ; q̃, s̃;α . Pk + R)
β−→ t′′ is derived form the transition

(x̃ : T̃ ;σ; q̃, s̃;α .R)
β−→ t′′ then by L-Sum we have (x̃ : T̃ ;σ; q̃, s̃;α .Qk + R)

β−→ t′′

where t′′ - u′′, hence (t′′, u′′) ∈ R2. Therefore, R2 ∪R3 ∪R4 is a bisimulation.

Theorem 7.26 (Full probabilistic branching bisimilarity is a congruence). If P -c Q

then for any context C[], if C[P ] and C[Q] are typable then C[P ] -c C[Q].

Proof. Follows directly from Theorem 4.14 and Lemma 7.25.

7.3 Applications

7.3.1 The LOQC CNOT Gate in CQP : Revised first model

We have seen the CQP model of a experimental system that demonstrates the LOQC

CNOT gate in Chapter 6 shown in Figure 6.9. Here, we present a revised model of

the LOQC CNOT gate which is very similar to the previous model but with our new
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Figure 7.7: Model of LOQC CNOT gate: (i) Model1.The dashed lines enclose the
subsystems which are defined in the text. (ii) Specification1. The dotted lines enclose

the unitary operations involved in the system.

definitions. The structure of the new model is shown in Figure 7.7 (i). The differences

between the two models are in the final two stages of the experimental system. First,

in the older model, we used a detector which measures a number state or a presence

of a photon in one path. The detector then sends the outcome in one channel. In the

present model, we use a detector which measures a pair of number states, that is the

presence of photon in two paths and sends the two measurement values in one channel.

The second difference is in the definition of the process Counter .

We present the CQP definition of the new system:

Model1 (X̃) = (new Ỹ )(PolSeCT (Ũ) | CNOT (Ṽ ) |MMT (W̃ ))

where each process is parameterised by their respective list of the channels (X̃, Ũ , Ṽ

and W̃ ) on which it interacts with other processes. X̃ contains channels a, b, out1, cnt

and out2. Ũ contains a, b, c, d, e, f and W̃ contains k, l, q, r, out1, cnt, out2. The scope of

the list of channels (Ỹ ) is restricted, indicated by new in the definition. Ỹ comprises

of the channels c, d, e, f, g, h,m, l, k, o, q, r, u and v. We have omitted the types from
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our definitions, for brevity. Also, the definitions include a list of channels rather than

individual channel names.

We recall the definitions of the processes PolSeCT and CNOT from Section 6.3. The

CQP definitions for PolSeCT and CNOT are:

PolSeCT (Ũ) = PolSe(Ã) | PolSe(B̃).

CNOT (Ṽ ) = (new C̃)(ns y, z)(BS1 (D̃, 1
2) | i![y] .0 | BS2 (Ẽ, 1

3)|
j?[y] .0 | BS3 (F̃ , 1

3) | n![z] .0 | BS4 (G̃, 1
3) | p?[z] .0 | BS5 (H̃, 1

2))

Here Ṽ contains the channels c, d, e, f, k, l, q and r. The outputs of CNOT are sent

through the channels k, l, q and r, to the process MMT which performs the measurement.

MMT (W̃ ) = (new Ĩ)(Det1 (J̃) |Det2 (K̃) | Counter(L̃))

Detectors Det1 and Det2 are annotated to match Figure 7.7(i) and measure the number

states associated with the control and target qubits. The output of a detector are

two classical values which represents the measurement outcome, that is the number of

photons detected. The outcomes of the detector processes are given as inputs to the

process Counter .

Counter(L̃, b : bit) = u?[c0 : Int, c1 : Int] . v?[t0 : Int, t1 : Int] .

out1![if (c0 + c1 = 1) then c1 else 0] . out2![if (t0 + t1 = 1) then t1 else 0] .

cnt![if (c0 + c1 = 1) and (t0 + t1 = 1) then b = 1 else b = 0] .0

Counter represents the coincidence measurement in optical experiments. Coincidence is

observed by detecting two photons, one at channel u and the other at v. It also provides

the correct output of the CNOT gate in terms of classical bits through the channels out1

and out2. The coincidence count is recorded as 1 at the output of the channel cnt. The

unsuccessful outcomes of the CNOT gate are recorded as 0 at the three output channels.

This is determined by the if . . . else conditions in the definition. The position of these

conditions is an important difference between the two models of the LOQC CNOT gate.

In the first model presented in Chapter 4, we had the if . . . else conditions included in

the process definitions but in this model we include the conditions in the expression and

not in the process. This is a significant change as it helps in proving the correctness of

the model which is explained in the later sections of the Chapter.

When we consider the correctness of the system, we will prove that Model1 is equivalent

to the following Specification1 process represented in the Figure 7.7 (ii). We use the
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same process PolSeCT as the input for Specification1 .

Specification1 (Ẽ) = (new G̃)(PolSeCT (Ũ) |OP(C̃) |Output(D̃))

OP performs the CNOT operation with a certain probability and is defined by

OP(C̃) = (qbit : q2) . c?[s0] . d?[s1] . e?[s2] . f?[s3] . {s2, s3 ∗= H} .
{q2 ∗= U 1

9
} . {(s0, s1), (s2, s3) ∗= CZ} . {s2, s3 ∗= H} .

h![s0] . i![s1] . j![s2] . k![s3] . g![measure q2] .0

OP possesses a qubit q2 (initialised to |0〉). A random bit is generated with certain

probability (8
9 for bit 0) by measuring q2 after the unitary operation with U 1

9
. This

is followed by a series of unitary operations namely Hadamard operation (H) which is

applied twice on a pair of number states (s2,s3) and a controlled Z (CZ) where s0, s1

acts as the control pair and s2, s3 is the target pair. The number states and the random

bit are then communicated to the process Output :

Output(D̃) = g?[x :bit] . h?[s0] . i?[s1] . j?[s2] . k?[s3]|
Det1 (h, i, l) |Det2 (j, k,m) |Outcome(l,m, out1, out2, cnt)

Output is a process which is a parallel compositions of the processes Det1 , Det2 and

Outcome. The first two processes are the detectors which measures the number states

and the results are communicated internally to the process Outcome.

Outcome(l,m, out1, out2, cnt) = l?[c0 : Int, c1 : Int] .m?[t0 : Int, t1 : Int] .

out1![if (x = 1) then c1 else 0] . out2![if (x = 1) then t1 else 0] . cnt![x] .0

Outcome gives the correct output in the form of classical bits of the CNOT operation

when x equals one, which is artificially making the specification work with a certain

probability (1
9). When x equals zero, the specification does not work and we get zero at

all the output channels.

7.3.2 Execution of Model1

Let t = (∅; ∅; ∅; Model1 ) be the initial configuration. The semantics of CQP is non-

deterministic and hence the transitions can proceed in different order. In the first few

steps, the process PolSeCT receives qubits q0 and q1 from the environment, constructing

a global quantum state |φ〉q = α|00〉 + β|01〉 + γ|10〉 + δ|11〉. We get the configuration
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as:

(q1 : Qbit, q2 : Qbit, q1q2 = |φ〉q; q0, q1; (PolSeCT
′ | CNOT |MMT ))

After some τ transitions corresponding to PolSeCT operations, the qubits are converted

to the respective number states s0, s1, s2 and s3 by PS operator giving the quantum

state |φ〉s = α|1010〉+ β|1001〉+ γ|0110〉+ δ|0101〉. The configuration is now:

(s̃ : ÑS; s̃ = |φ〉s; s0, s1, s2, s3; (PolSeCT
′′ | CNOT |MMT ))

After another set of τ transitions corresponding to the CNOT process, we get the state

|φ〉out which is given by Eq. (6.10). The configuration now becomes

(s̃ : ÑS; s̃ = |φ〉out; s0, s1, s2, s3; (CNOT ′ |MMT ))

After the measurement by both detectors, the outcomes are communicated to the

Counter . This happens internally and hence, we get the mixed configuration:

⊕ij≥0
kl≥0

gijhijkl (s̃ : ÑS; s̃ = |φijkl〉; s0, s1, s2, s3;λỹ • Counter ′; i, j, k, l)

Here ỹ is a list of measurement outcomes (c0, c1, t0 and t1). The output transitions

produces the configuration below, which is a mixed state.

⊕i,j,k,l,m∈{0,1} gijmhijklm (s̃ : ÑS; s̃ = |φijkl〉; s̃;λz̃ • 0; i, j, k, l,m)

where z̃ is c1, t1, b. The mixture contains both the successful and unsuccessful outcomes

of Model1 .

7.3.3 Correctness of Model1

We now sketch the proof that Model1 -c Specification1 , which by Theorem 7.26 implies

that the LOQC CNOT gate works in any context.

Proposition 7.27. Model1 -c Specification1 .

Proof. First we prove that Model1 - Specification1 , by defining an equivalence relation

R that contains the pair ((x̃ : T̃ ;σ; ∅; Model1 ), (x̃ : T̃ ;σ; ∅; Specification1 )) for all σ and

is closed under their transitions. R is defined by taking its equivalence classes to be

the Fi(σ) defined below, for all states σ, which group configurations according to the
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sequences of observable transitions leading to them.

F1 (σ, q0 ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ f and P ∈ E}

F2 (σ, q0 , q1 ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ f and P ∈ E}

F3 (σ, q1 ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ out1![c1]
=⇒ f and P ∈ E}

F4 (σ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ out1![c1]
=⇒ out2![c3]

=⇒ f and P ∈ E}

F5 (σ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ out1![c1]
=⇒ out2![c2]

=⇒ cnt![y]
=⇒ f and P ∈ E}

Here E is {Model1 ,Specification1} and we now prove that R is a probabilistic branching

bisimulation. It suffices to consider transitions between Fi classes, as transitions within

classes must be τ and are matched by τ . If f, g ∈ F1(σ) and f
a?[q0]−→ f ′ then f ′ ∈ F2(σ)

and we find g′, g′′ such that g =⇒ g′
a?[q0]−→ g′′ with g′ ∈ F1(σ) and g′′ ∈ F2(σ), so

(f, g′) ∈ R and (f ′, g′′) ∈ R as required. Transitions from F2(σ),F3(σ) and F4(σ)

are matched similarly. There are no transitions from F5(σ). There is no need for a

probability calculation (case IV of Definition 7.3) because the probabilistic configurations

do not arise as the measurement results are communicated internally. Finally, because

Model1 and Specification1 have no free variables, their equivalence is trivially preserved

by substitutions.

7.4 Post-selective Model

The first model includes an explicit implementation of the post-selection procedure,

meaning that the specification process has to include the success probability of 1
9 . We

now consider a more abstract model shown in Figure 7.8(a), by introducing a new mea-

surement operator which includes post-selection and restricts attention to the successful

outcomes. This is achieved by replacing the process MMT of our first model by the pro-

cess PSM which performs post-selective measurement and enables a simpler specification

to be used. The CQP definition of Model2 is given as:

Model2 (Ã) = (new B̃)(PolSeCT (C̃) | CNOT (D̃) | PSM (Ẽ))

Processes PolSeCT and CNOT are defined in the previous model. The difference between

the two models lies in the measurement process. The process PSM is defined as

PSM (Ẽ) = PDet1 (F̃ ) | PDet2 (G̃).
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Figure 7.8: Model of LOQC CNOT gate: (a) Model2.The dashed lines enclose the
subsystems which are defined in the text. (b) Specification2. The dotted lines enclose

the unitary operations involved in the system.

Model2 is equivalent to Specification2 shown in Figure 7.8(b). The post-selective mea-

surement is an in built operation in the new measurement semantics and this helps us

to avoid the process that works on a certain probability to be used in the specifica-

tion. In a way this demonstrates the flexible approach of process calculus and we define

Specification2 as the following:

OPCNOT (C̃) = c?[s0] . d?[s1] . e?[s2] . f?[s3] . {s2, s3 ∗= H} .
{(s0, s1), (s2, s3) ∗= CZ} . {s2, s3 ∗= H} . h![s0] . i![s1] . j![s2] . k![s3] .0

Output(D̃) = h?[s0] . i?[s1] . j?[s2] . k?[s3] . l![measure s0, s1] .

m![measure s2, s3] |Outcome(l,m, out1, out2)

Outcome(l,m, out1, out2) = l?[c0 : Int, c1 : Int] .m?[t0 : Int, t1 : Int] . out1![c1] . out2![t1] .0

Specification2 (Ã) = (new Ẽ)(PolSeCT (B̃) |OPCNOT (C̃) |Output(D̃))

Execution of Model2: Let t = (∅; ∅; ∅; Model2 ) be the initial configuration. Like in

previous case after receiving input qubits, we get the configuration as:

(q1 : Qbit, q2 : Qbit, q1q2 = |φ〉q; q0, q1; (PolSeCT
′ | CNOT | PSM ))
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As before the qubits are converted to the number states after some τ operations and the

configuration is now:

(s̃ : ÑS; s̃ = |φ〉s; s0, s1, s2, s3; (PolSeCT
′′ | CNOT | PSM ))

After another set of τ transitions corresponding to the CNOT process, we get the state

|φ〉out which is given by Eq. ??. The configuration now becomes

(s̃ : ÑS; s̃ = |φ〉out; s0, s1, s2, s3; (CNOT ′ | PSM ))

Measurement by both detectors produces the following the mixed configuration:

⊕ij∈{0,1},i 6=j
kl∈{0,1},k 6=l

gijhijkl (s̃ : ÑS; s̃ = |φijkl〉; s0, s1, s2, s3;λỹ • PSM ′; j, l)

Here ỹ is a list of post-selective measurement outcomes, which are given as output to

the environment, that results in a probabilistic configuration given as:

�ij∈{0,1},kl∈{0,1}gijhijkl(s̃ : ÑS; s̃ = |φijkl〉; s0, s1, s2, s3;λỹ • 0; j, l)

7.4.1 Correctness of Model2

Proposition 7.28. Model2 -c Specification2 .

Proof. This is similar to the previous case with few differences. We will always get a

correct output here since we do not consider any error and the probability of getting one

of the outputs is 1
4 . Since, this model involves post-selection, two classical values are

given as output to the environment that resulted in a probabilistic configuration, which

was not the case for Model1 .

F1 (σ, q0 ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ f and P ∈ E}

F2 (σ, q0 , q1 ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ f and P ∈ E}

F3 (σ, q1 ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ out1![c1]
=⇒ f and P ∈ E}

F4 (σ) = {f | (x̃ : T̃ ;σ; ∅;P )
a?[q0]
=⇒ b?[q1]

=⇒ out1![c1]
=⇒ out2![c2]

=⇒ f and P ∈ E}

Here E is {Model2 ,Specification2} and we now prove that R is a probabilistic branching

bisimulation. It suffices to consider transitions between Fi classes, as transitions within

classes must be τ and are matched by τ . If f, g ∈ F1(σ) and f
a?[q0]−→ f ′ then f ′ ∈ F2(σ) and

we find g′, g′′ such that g =⇒ g′
a?[q0]−→ g′′ with g′ ∈ F1(σ) and g′′ ∈ F2(σ), so (f, g′) ∈ R

and (f ′, g′′) ∈ R as required. Transitions from F2(σ) and F3(σ) are matched similarly.
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There are no transitions from F4(σ). There is a need for a probability calculation (case

IV of Definition 7.3) because the probabilistic configurations arise as the measurement

results are communicated internally. The probability of getting one of the outputs is 1
4 .

Finally, because Model2 and Specification2 have no free variables, their equivalence is

trivially preserved by substitutions.

7.5 Discussion

In this section, we discuss the extension of the theory of equivalence of CQP to verify

linear optical quantum computing. This is the first work in using quantum process

calculus to verify LOQC.

LOQC is considered as one of the physical realisations of quantum computing and the

aim of this work is to study the physical understanding of the concept of behavioural

equivalence. The syntax and semantics presented in this chapter helps not only to

describe or model LOQC but also to verify it. Conditional operations like if ..else are

essential in quantum computing. We have seen that the presence of mixed configuration

in CQP allows each component in the mixed configuration to have the same process

structure. This means that only values can differ between the components. Because of

this reason it is complicated to include the conditional operations in processes at present

and is part of a study in future. But, it is easier to include the conditional operations

in expression configuration. This helps to model and verify LOQC in CQP.

We have defined certain linear optical elements in CQP like the combination of polar-

ising beam splitter (PBS) and phase shifter (PR) to convert polarisation encoding of

a qubit to spatial encoding, beam splitter and photon detectors. These elements were

considered as they were potentially used in the experimental system that demonstrates

the LOQC CNOT gate. Phase shifters like Quarter and half wave plates, which change

the polarisation state of a photon, could also be explicitly defined in CQP but are not

done in this thesis. We have described the conversion of polarisation encoding to spatial

encoding by defining the process PolSe, which is a combination of PBS and PR. These

elements could also be explicitly defined in CQP but we define the two as a combination,

which generates spatial encoded qubits of same polarisation. Although, this is impor-

tant in the experimental system but is not essential in integrated waveguide circuits

exhibiting LOQC CNOT gate.

We have described and analysed two models (Model1 and Model2) of the linear optical

experimental system that demonstrates a CNOT gate. Verification is performed by

proving that Model1 and Model2 are equivalent to their respective specification process
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(Specification1 and Specification2). Post-selection is an essential property in LOQC

and using our second model, we have also described and verified post-selection in CQP.

These two models use different measurement semantics in order to work at different

levels of abstraction. This shows that the process calculus is flexible enough to support

a range of descriptions, from detailed hardware implementations up to more abstract

specifications.

The specification processes for the models are defined in a manner to relate closely to

the experimental system. For example, Specification2 is given as:

Specification2 (Ã) = (new Ẽ)(PolSeCT (B̃) |OPCNOT (C̃) |Output(D̃))

where the processes PolSeCT , OPCNOT and Output are given by the definitions in

section 7.4. We can also define another process Specification3, which expresses the

same behaviour:

Specification3 (a, b, c, d) = a?[q : Qbit] . b?[r : Qbit] . {q, r ∗= CNot} . c![measure q] .

d![measure r] .0

It can easily be shown that Specification3 - Specification2 which in turn we get

Model2 - Specification3. This illustrates the flexibility of the process calculus in

describing abstract specifications. The essential property that the equivalence is a con-

gruence guarantees that equivalent processes remain equivalent in any context, and

supports equational reasoning, which was discussed in Chapter 5. Another task would

be to develop the equational theory of CQP that is applicable to number states..

We discuss primarily the application of CQP to LOQC which is concerned with the

polarisation and spatial encoding of qubits. There has been other work in LOQC CNOT

gate like photonic quantum gates that are applicable only to polarisation qubits [42] and

CNOT gate which uses both polarisation and orbital angular momentum of photon [96].

Although these works are not discussed but the language could be easily extended to

suit the application. This is an interesting line of future work, as it would increase the

compatibility of CQP to be suited for applications of optical quantum computing.

Shor’s algorithm operating on four qubits using the basic linear optical elements has

been demonstrated in [142]. This is using the same optical elements that are described in

this Chapter. Recently it has been demonstrated to experimentally verify the quantum

complexity in linear optics [35]. Formally analysing Shor’s algorithm in CQP using

LOQC would be another interesting part in future work, and would provide a platform

to learn about quantum complexity and formally verify it in CQP.
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Chapter 8

CQP for higher dimensional

protocols

This chapter provides the use of CQP in order to describe higher dimensional quantum

protocols. The study encapsulates the theory of CQP that is described in the previous

chapter in order to model higher dimensional quantum systems. The quantum pro-

cess calculi, which have been developed to date, are defined for modelling systems that

involves qubits, which are transmitted from process to process along communication

channels. Experiments in quantum optics show that the physical systems that repre-

sent quantum information processing need not be limited to quantum bits (qubits) but

can use higher dimensional systems, i.e. qudits (a quantum system with d-dimensional

Hilbert space) [44]. We extend the operational semantics of CQP as described in chap-

ter 4 to model higher dimensional quantum protocols namely qudit teleportation and

superdense coding.

8.1 Preliminaries

8.1.1 Qudit

A qudit is a physical system which is described by a state vector |ψ〉. The state vector is

an element of a d-dimensional complex Hilbert space, where d corresponds to the number

of degrees of freedom of that system. Here we consider only systems with a finite number

of degrees of freedom. As seen earlier, the orthonormal basis for qubits is {|0〉, |1〉} and

similarly for qudits, we fix each orthonormal basis state of the d-dimensional Hilbert

space to correspond to an element of Zd. This is called the computational basis or

standard basis [17, 133] which is given by {|0〉, |1〉, , |d− 1〉}.
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We can write the general state of a qudit as

|ψ〉 =
d−1∑
i=0

αi|i〉

where αi ∈ C are complex amplitudes and Σd−1
i=0 | αi |2= 1.

8.1.2 Quantum operators for qudits

We have discussed the quantum operators for qubits in Chapter 3. Using the same

theory, we now introduce the elementary quantum gates or operators for d -dimensional

systems.

Let HA and HB be d-dimensional Hilbert spaces, consider the set of d2 × d2 unitary

transformations U ∈ U(d2) that act on the two-qudit quantum system HA ⊗ HB. The

first gate we generalise is the CNOT gate. We have seen that in the context of qubits,

the CNOT gate, is basically a mod-2 adder.

For qudits, this operator gives way to a mod-d adder, or a CNOT Right-Shift gate. Let

RC ∈ U(d2) represent the CNOT Right-Shift gate that has control qudit |ψ〉 ∈ HA and

target qudit |φ〉 ∈ HB. The action of RC on the set of standard basis states |m〉 ⊗ |n〉 of

HA ⊗HB is given by

RC|m〉 ⊗ |n〉 = |m〉 ⊗ |n⊕m〉, m,n ∈ Zd

with ⊕ denoting addition modulo d.

Similarly, LC ∈ U(d2) denote the generalised CNOT Left-Shift Gate which is defined as:

LC|m〉 ⊗ |n〉 ≡ R−1C |m〉 ⊗ |n〉 = |m〉 ⊗ |n	m〉

LC is the inverse of RC and also we note that RC
d = I.

Generalised Pauli Gates

The next set of operators which are used to perform theoretical investigations of quantum

systems are the Pauli operators. We now define the generalised Pauli operators for d-

level quantum systems [17].

U = {XjZk : j, k ∈ Zd}.

where X and Z are defined by their action on the standard basis. This is given by

Xj|m〉 = |m⊕ j〉,
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Zk|m〉 = e2π ikm
d |m〉 = ωkm|m〉,

where ω is e2π i
d . The indices j and k refer to shift and phase changes in the standard

basis, respectively. Therefore the generalised Pauli operators can be represented in the

form

Ujk = Σm∈Zd
ωkm|m⊕ j〉〈m|

Note that X and Z do not commute; they obey

ZkXj = ωjkXjZk

and Xd = Zd = I.

Generalised Hadamard Gate and Bell States

We now define a generalisation of the Hadamard gate which is useful in manipulating

qudits for various applications [72].

H|j〉 =
1√
d

d−1∑
m=0

ω−jm|m〉

This operator is also known as the quantum Fourier transform when d = 2n. In that

case it acts on n qudits. Here we assume it to be a basic gate on one single qudit, in the

same way that the ordinary Hadamard gate is a basic gate on one qubit. This operator

is symmetric and unitary, but not Hermitian.

A generalisation of the familiar Bell states for qudits has been introduced in [16]. The

entangled state |Ψnm〉AB is called the generalised Bell state whereby A and B each

possess one qudit of this two qudit state. These are a set of d2 maximally entangled

states and can be explicitly written as:

|Ψnm〉AB =
1√
d

d−1∑
j=0

ω−jn|j〉A ⊗ |j ⊕m〉B

where m and n run from 0 to d− 1. These states have the properties:

• 〈Ψnm||Ψn′m′〉 = δnn′δmm′(orthonormality) and

• tr(|Ψnm〉〈Ψnm|) = 1
dI(maximal entanglement).
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T ::= Int | Qdit | Val | [̂T̃ ] | Op(1) | Op(2) | · · ·
v ::= 0 | 1 | · · · | H | · · ·
e ::= v | x | measure ẽ | ẽ ∗= ee | e+ e

P ::= 0 | (P |P ) | P + P | e?[x̃ : T̃ ].P | e![ẽ].P | {e}.P | [e].P | (qdit x)P |
(new x : [̂T ])P

Figure 8.1: Syntax of higher dimensional CQP.

To construct the generalised Bell state, we fist apply the Hadamard transform (H⊗ I)

to the qudit A. This acts on basis states |n〉A|m〉B as follows

(H⊗ I)|n〉A|m〉B =
1√
d

d−1∑
j=0

ω−jn|j〉A ⊗ |m〉B (8.1)

where ω is a primitive dth root of unity in C such that ωd = 1. Then we apply CNOT

Right-Shift gate on Eq. (8.1) and we obtain the generalised Bell state given by Eq. (8.2).

|Ψnm〉AB = RC[(H⊗ I)|n〉A|m〉B] =
1√
d

d−1∑
j=0

ω−jn|j〉A ⊗ |j ⊕m〉B (8.2)

In the later sections, we will use the particular Bell state (represented as Eq. (8.3) which

is obtained by substituting m and n as 0.

|Ψ00〉AB =
1√
d

d−1∑
j=0

|j〉A ⊗ |j〉B (8.3)

We will now explain the syntax and semantics of CQP which are needed to describe

higher dimensional quantum protocols.

8.2 Syntax and Semantics for higher dimensional CQP

8.2.1 Syntax

The syntax for higher dimensional CQP is defined by the grammar as shown in Fig-

ure 8.1. This is similar to the syntax for qubits described in Chapter 4 (shown in

Figure 4.1) with a difference in the types T . In the previous syntax, we had qubit as one

of the types T but now we have qudits (Qdit) instead of qubits. Another difference is

in the data types which includes qudit of type qdit and n-qudit unitary operator types

Op(n). We have a new process qudit declaration (qdit x)P . The internal syntax of CQP
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([q0, . . . , qn−1 7→ α0|φ0〉+ · · ·+ αdn−1|φdn−1〉];ω;measure q0, . . . , qr−1) −→v

⊕0≤m<dr gm ([q0, . . . , qn−1 7→ αlm√
gm
|φlm〉+ · · ·+ αum√

gm
|φum〉];ω;λx • x;m)

(R-Measure)

where lm = dn−rm,um = dn−r(m+ 1)− 1, gm = |αlm |2 + · · ·+ |αum |2

⊕i∈I gi ([q̃ 7→ |ψi〉];ω;λx̃ • (qdit y)P ; ṽi)
τ−→ ⊕i∈I gi ([q̃, q 7→ |ψi〉|0〉];ω, q;λx̃ • P{q/y}; ṽi)

where q is fresh (L-Qdit)

Figure 8.2: Modified transition rules for qudits

is the same as shown in Figure 4.2 with the reference to qudits instead of qubits. The

values are supplemented with either qudit names q which are generated at run-time and

substituted for the variables used in qdit declarations respectively.

8.2.2 Operational Semantics for qudits

The framework of CQP makes it easier to extend the language to describe higher di-

mensional systems. This is evident in the present section as we present the transition

rules of CQP for higher dimensional systems. We modify the operational semantics of

CQP using labelled transition system presented in Chapter 4. Most of the transition

rules that are applicable to qubits could also be applied to qudits due to the general

framework of CQP. This can be clearly seen by the fact that most of the transition rules

are the same. Now, we present only the necessary transition rules which has been modi-

fied for qudits. The expression transition rules R-Plus, R-Trans and R-Context are

virtually the same as that of qubits with the difference that the list of elements q̃ now

represents qudits.

The only change in the expression transition rules is in the measurement rule R-Measure.

Since qudits are d-level quantum systems, we need to take into account the the dimen-

sion (d) of the system. We generalise the R-Measure rule for qudits and the second

modification is in the qudit declaration rule which we present as L-Qdit. Essentially, the

modification to the semantics is only to the two rules. The modified rules are presented

in Figure 8.2.

As before, we work with configurations and one such is given as:

([q, r 7→ 1√
d

d−1∑
j=0

|j〉q ⊗ |j〉r]; q; c![q] . P ).
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Here, the global quantum state consists of two qudits, q and r, in the specified state;

that the process term under consideration has access to qudit q but not to qudit r ; and

that the process itself is c![q] . P .

Example 8.1. ([q 7→
∑d−1

l=0 αl|l〉]; q; c![measure q].P )
τ−→ ⊕i∈{0,1,..,d−1} |αi|2 ([q 7→

|i〉]; q;λx • c![x].P ; i).

Example 8.1 illustrates a transition that represents the effect of measuring a qudit q.

The measurement is within a process which is going to output the result through the

channel c. This is very similar to the example of qubit measurement (Example 4.1).

The only difference is in the quantum state. In this case, the mixed configuration on

the right of the transition is essentially an abbreviation of

|α0|2([q 7→ |0〉]; q; c![0].P{0/x})⊕ |α1|2([q 7→ |1〉]; q; c![1].P{1/x} . . .
⊕|αd−1|2([q 7→ |d− 1〉]; q; c![d− 1].P{d− 1/x})

We recall the concept of probabilistic branching that arises when the measurement result

is given as output. The system is said to be in one branch or the other and is not a

mixture of components. This indicates that the observer would know which of the

possible states the system is in.

Example 8.2.

⊕i∈Ω |α|2i ([q 7→ |i〉]; q;λx • c![x].P ; i)
c![Ω]−→ �i∈Ω|αi|2([q 7→ |i〉]; q;λx • P ; i)

|α0|2
 ([q 7→ |0〉]; q;λx • P ; 0)

Example 8.2 shows the effect of the output from the final configuration of Example 8.1.

The output transition produces the intermediate configuration, which is a probability

distribution over pure configurations. Because it comes from a mixed configuration, the

output transition contains a set of possible values. From the intermediate configura-

tion there are probabilistic transitions and the number of transitions depends on the

dimension d, of which one is shown (
|α0|2
 ). Here Ω is a set of values given by {0,1,..,d-1}.

Example 8.3.

⊕i∈Ω gi ([q 7→ |i〉]; q;λx•(c![x].P | c?[y].Q); i)
τ−→ ⊕i∈Ω gi ([q 7→ |i〉]; q;λx•(P |Q{x/y}); i)

Example 8.3 illustrates qudit communication between the processes P and Q, which is

similar to that of Example 4.3.

In the next section, we focus our attention to describe the execution of the higher

dimensional quantum protocols namely teleportation and superdense coding.
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Alice

x = |ψ〉 • H •

z = |0〉 H • LC •

y = |0〉 RC X−M1 ZM2 |ψ〉

EPR Bob

Figure 8.3: Qudit Teleportation

8.3 Qudit Protocols

8.3.1 Qudit Teleportation

We have seen in Chapter 3 that quantum teleporation is a protocol where a quantum

state can be transferred from one location to another. The protocol explains how a

qubit could be communicated from one user to another by using an entangled pair of

qubits. In this section, we explain qudit teleportation which is an extension of the qubit

teleportation.

Qudit teleportation [16, 72] is a protocol, which allows two users who share an entangled

pair of qudits, to exchange an unknown quantum state by communicating only two

classical values. The quantum circuit model of the protocol for qudits is shown in

Figure 8.3. This circuit model is similar to the quantum teleportation for qubits shown

in Figure 3.2. The difference is in the use of generalised quantum gates (CNOT and

Hadamard) for qudits that was explained in section 8.1.2.

Although the circuit model represents the teleportation protocol, it defines the operation

involved in the protocol, but it does not give a full description of the protocol itself. For

example, the circuit model does not explain that the protocol consists of a definition

of two users and the way in which they communicate, as well as the definition of the

quantum operation involved in the protocol. The benefit of using our CQP model is that

it not only provides the definition of the system but gives a clear and formal description

of actions of the two users involved in the protocol.

Our model of qudit teleportation protocol consists of two processes: Alice and Bob, we

say the sender is Alice and the receiver is Bob. Alice possesses the qudit labelled x

which is in some unknown state |ψ〉; this is the qudit to be teleported. Qudits y and z

are an entangled pair, which is generated by applying a Hadamard and CNOT- Right

Shift gate to the qudits. The entangled state |Ψ00〉zy is given by equation (14). Then
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qudit z is given to Alice and qudit y is given to Bob. The CQP definition of Alice is as

follows

Alice(c : [̂Qdit], e : [̂Val,Val], z : Qdit) = c?[x :Qdit] . {x, z ∗= Lc} .
{x ∗= H} . e![measure z,measure x] .0

Alice is parameterized by two channels, c and e. She receives the qudit on channel c.

The type of c is [̂Qdit]. Channel e is where Alice sends the classical values resulting

from her measurement. Each message on e consists of two classical values, as indicated

by the type [̂Val,Val].

We recall that the right hand side of the definition specifies the behaviour of Alice. The

first term, c?[x :Qdit] specifies that a qudit is received from channel c and given the local

name x. The term {x, z ∗= Lc} specifies that the CNOT- Left Shift operation is applied

to qudits x and z and next term {x ∗= H} specifies that the Hadamard operation is

applied to qudit x. The final term e![measure z,measure x] indicates that the qudits x

and z are measured which results in two classical values (M1 and M2) ranging from 0 to

d− 1 (where d is the dimension of the system). These two values are sent as a message

on channel e.

We model the process Bob, which receives the two classical values from channel e (con-

nected to Alice) and outputs the teleported qudit through channel d.

Bob(e : [̂Val,Val], d : [̂Qdit], y : Qdit) = e?[M1 :Val,M2 :Val] . {y ∗= X−M1} .
{y ∗= ZM2} . d![y] .0

Using the classical values, Bob performs the necessary unitary operations on his qudit y

as indicated by the terms {y ∗=X−M1} and {y ∗=ZM2}. By doing this, Bob can recover

the original state |ψ〉. The complete system is defined as follows.

Teleport = (qdit y, z)({z ∗= H} . {z, y ∗= Rc} . (new e)(Alice(c, e, z) | Bob(e, d, y)))

8.3.2 Execution of Teleportation

Consider a qudit to be teleported is given by the quantum state |ψ〉 =
∑d−1

l=0 αl|l〉.
The initial configuration is ((r̃x =

∑d−1
l=0 αl|l〉x); ∅; Teleport). In the first few steps, the

system executes Qdit terms, the Hadamard operation and the CNOT Right-Shift (RC),

constructing the global quantum state:

(r̃pq1q2 =
d−1∑
l=0

αl|l〉x ⊗
1√
d

d−1∑
k=0

|k〉q2 ⊗ |k〉q1); q1, q2; (new e)(Alice{q2/z} | Bob{q1/y}))
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Alice receives the qudit x, in state ψ, from the environment, through the input transition
c?[x]
−→ , which gives us the 3 qudit state. After some τ transitions corresponding to Alice ′s

Hadamard and CNOT Left-Shift (LC) operations, we have:

(r̃xq1q2 = |Φ2〉); q1, q2, p; (new e)(e![measure q2,measure x] .0 | Bob{q1/y}))

where |Φ2〉 = 1
d

∑d−1
l,j,k=0 ω

−ljαl|j〉x⊗|k	 l〉q2 ⊗|k〉q1 . Alice does the measurement of her

qudits in the standard basis and the results are communicated to Bob via channel e. Since

the communication is internal within the system, this produces a mixed configuration

which is given as:

⊕j∈Ω,s∈Ω((r̃xq1q2 = |Ψjs〉); q1, q2, x;λM1,M2 . (new e)(e![M1,M2] .0 | Bob{q1/y}); j, s)

where |Ψjs〉 = 1
d2
∑d−1

j,s=0 |j〉x|s〉q2
∑d−1

l=0 ω
−ljαl|l⊕s〉q1 . Depending on the classical values

(M1 and M2) Bob does his unitary operations on his qudit q1 to get the same state of

the qudit x which Alice possesses. The qudit is then output through channel d.

⊕j∈Ω,s∈Ω((r̃pq1q2 = |Ψ′js〉); q2, p;λM1,M2 .0; j, s)

where |Ψ′js〉 = 1
d2
∑d−1

l=0 αl|l〉q1 .

8.3.3 Superdense Coding for qudits

Now, we will describe the superdense coding protocol with respect to qudits. This proto-

col is considered the opposite of teleportation, where two values of classical information

are communicated by exchanging a single qudit. Superdense coding also involves two

users sharing a pair of entangled qudits. The quantum circuit for this protocol is given

in Figure 8.4. The goal is to transmit some classical information from one user (Alice)

to another (Bob). Like the previous protocol, this also begins with the preparation of

an entangled pair. Alice is in possession of the first qudit, while Bob has possession of

the second qudit. By sending the single qudit in her possession to Bob, it turns out that

Alice can communicate two classical values (ranging from 0 to d− 1) to Bob, where d is

the dimension of the system. The CQP definition of the system is given below:

SDC = (qdit q1, q2)({q1 ∗= H} . {q1, q2 ∗= Rc} . (new e)(Alice(c, e) | Bob(e, d)))

Alice(c : [̂Val,Val], e : [̂Qdit]) = c?[a :Val, b :Val] . {q1 ∗= Xb} . {q1 ∗= Za} . e![q1] .0

Bob(e : [̂Qdit], d : [̂Val,Val]) = e?[q1 :Qdit] . {q1, q2 ∗= Lc} . {q1 ∗= H} .
d![measure q1,measure q2] .0
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Alice

a •

b •

q1 = |0〉 H • X Z • H a

q2 = |0〉 RC LC b

EPR Bob

Figure 8.4: Superdense Coding Protocol

This CQP model, unlike the circuit model (Figure 8.4), is able to clearly describe the

actions of the two users using the processes Alice and Bob. Alice takes one qudit (q1)

of the pair and Bob takes the other (q2). The classical values to be transmitted are

labelled a and b. When Alice is ready to send, she applies a combination of the X and

Z operators to qudit q1 depending on the values a and b.

After Alice has done her encoding, she send her single qudit to Bob. Now that Bob

has both qudits, he can determine which encoding Alice used, and therefore the corre-

sponding values a and b. First, he applies a CNOT Left shift operator to qudits q1 and

q2, followed by the Hadamard operator applied to q1. He then measures both of these

qudits to reveal the respective values. Since the state he measures is not a superposition,

the outcome will be certain.

8.3.4 Execution of SDC

In this section, we show the step-by-step execution of the superdense coding protocol,

in order to illustrate the operational semantics. Teleportation can also be executed in a

similar way according to the transition rules.
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Consider an arbitrary quantum state r̃ = |ψ〉. Let s = (r̃ = |ψ〉; ∅; SDC ), then the

execution of superdense coding is as follows.

s
τ

=⇒((r̃q1q2 = |ψ1〉); q1, q2; (new e)(Alice(c, e) | Bob(e, d))
c?[a,b]−→ ((r̃q1q2 = |ψ1〉); q1, q2; (new e)({q1 ∗= Xb} . {q1 ∗= Za} . e![q1] .0 | Bob(e, d)))

τ−→((r̃q1q2 = |ψ2〉); q1, q2; (new e)({q1 ∗= Za} . e![q1] .0 | Bob(e, d)))

τ−→((r̃q1q2 = |ψ3〉); q1, q2; (new e)(e![q1] .0 | Bob(e, d)))

τ−→((r̃q1q2 = |ψ3〉); q1, q2; (new e)({q1, q2 ∗= Lc} . {q1 ∗= H} . d![measure q1,measure q2] .0))

τ−→((r̃q1q2 = |ψ4〉); q1, q2; (new e)({q1 ∗= H} . d![measure q1,measure q2] .0))

τ−→((r̃q1q2 = |ψ5〉); q1, q2; (new e)(d![measure q1,measure q2] .0))

d![a,b]−→ ((r̃q1q2 = |ψ6〉); q1, q2; 0)

where

|ψ1〉 = 1√
d

∑d−1
j=0 |j〉q1 ⊗ |j〉q2

|ψ2〉 = 1√
d

∑d−1
j=0 |j ⊕ b〉q1 ⊗ |j〉q2

|ψ3〉 = 1√
d

∑d−1
j=0 ω

a(j⊕b)|j ⊕ b〉q1 ⊗ |j〉q2

|ψ4〉 = 1√
d

∑d−1
j=0 ω

a(j⊕b)|j ⊕ b〉q1 ⊗ |j 	 (j ⊕ b)〉q2 = 1√
d

∑d−1
k=0 ω

ak|k〉q1 ⊗ | − b〉q2

|ψ5〉 = |ψ6〉 = |a〉q1 ⊗ | − b〉q2

8.4 Orbital Angular Momentum (OAM) of light

In the previous sections, we have provided a theoretical framework which helps us to

describe a higher dimensional quantum system using CQP. The higher-dimensionality

of the quantum system could be realised with the use of an intrinsic property of light

called as the orbital angular momentum (OAM). The present section describes this

intrinsic property of light. It has been known that light carries linear momentum [119].

In classical physics, angular momentum J is an intrinsic property of light and in most
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cases it can be separated into two parts: spin angular momentum (SAM) [28] represented

as S and orbital angular momentum (OAM) represented as L [19]. We get:

J = L + S (8.4)

In optical quantum computing, a qubit is represented by a single photon, which is an el-

ementary particle or the quantum of light. A photon can carry both SAM and OAM and

either or both of these properties can be used to represent quantum information. The

SAM is due to the rotation of the electric field of light as it propagates which results in

the polarisation of light, which is the direction of the electric field amplitude as the elec-

tromagnetic wave propagates. The polarisation of light is described completely within

a two dimensional Hilbert space and is utilised in linear optical quantum computing

(LOQC), which we have seen in Chapters 6.

OAM depends on spatial distribution of the electric field that arises due to the direction

of the energy flow around the beam axis [137]. The light field of this form are usually

described in the cylindrical coordinate system:

E(r, φ, z) = E0(r, z)eilφ (8.5)

where the OAM is characterised by an azimuthal phase term eilφ. The index l is referred

to as the azimuthal index. Unlike SAM (which has two unique modes of rotation), the

azimuthal index, l is unbound and can have any value. These values which are the OAM

states of light constitute an infinite-dimensional Hilbert space with orthonormal basis

states |l〉, carrying an OAM of l} per photon,

|ψ〉 =
∞∑

l=−∞
al|l〉

Restricting to a finite number of basis states then leads to the implementation of qudits,

which carry quantum information in a finite d-dimensional basis.

Examples of light modes which carry OAM are the Laguerre-Gaussian (LG) modes [5].

These modes are light field that has helical wavefronts where the direction of energy

flow rotates around the beam axis upon propagation and some of the modes are shown

in Figure. 8.5. The field amplitude of such a mode is given by [6]

LGlp(r, φ, z) = CLGl,p

(
r
√

2
w(z)

)|l|
L
|l|
p

(
2r2

w2(z)

)
exp

(
− r2

w2(z)

)
exp

(
− ik2r2z

2(z2+z2R)

)
×exp(ilφ)exp

(
i(2p+ |l|+ 1)tan−1

(
z
zR

)) (8.6)
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Figure 8.5: Laguerre-Gaussian (LG) modes

where k is the wave-vector magnitude of the field, zR is the Rayleigh range, w(z) is the

radius of the beam at a position z, l is the azimuthal index number and p is the radial

index number. L
|l|
p is the associated Laguerre polynomial. The indices l and p provide

information about the OAM of the beam. It can be shown that each photon in such a

beam carries an OAM of l}.

In order to provide a platform to describe in CQP the optical experiments with respect

to OAM, it is essential to understand the quantum operators of OAM. We present the

theory of OAM operators and the theory of manipulation of OAM using a blazed phase

grating. The role of OAM operators is important as it leads to the understanding of

the diffractive optical elements used in the experiments. This is similar to the approach

in LOQC that we have demonstrated in Chapters 6 and 7. Although this is a task

that is not yet achieved, we provide an initial attempt to describe the diffractive optical

elements in OAM operators in this chapter.

8.4.1 Generation of orbital angular momentum

As it can be seen from Eq. (8.6) that for different values of l gives rise to LG modes of

different helical phase structures. The radial distribution of the mode also depends on

the index l. Importantly, one LG mode cannot be converted to another by any means

but rather the technique used is to generate optical beams carrying OAM, by sending

a fundamental Gaussian beam (LG0
0) through a diffractive optical element. Two of the

most commonly used diffractive optical elements for the generation of OAM are the

computer-generated phase hologram and the spiral phase plate. Heckenberg et. al. [87]

demonstrated that OAM beams of any desired order can be generated through diffraction

by the incidence of a Gaussian beam on a l-forked hologram. The beam diffracted in

the first-order is mostly considered and has a helical phase front that is described by

exp(ilφ). When operated in reverse, the diffraction holograms help to detect the OAM

of a laser beam.

Blazed phase grating
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Figure 8.6: Blazed grating

Generally, any optical element such as blazed gratings, apertures, prisms and lenses are

described by a transmission function [86]. The transmittance function t describes how

the optical element changes the amplitude and phase of the propagating wave through

the component. For a general case, the transmittance function is defined as:

t(x, y) = A(x, y)eiΘ(x,y) (8.7)

where A(x, y) is the amplitude function and Θ(x, y) is the phase function of the element.

A one dimensional blazed phase grating is shown in Figure. 8.6. The dark and light

shading indicates the variation of phase shifts. This is the simplest diffractive optical

element (DOE) that is defined by the transmission function t(x) = ei.k.Θ(x). Here Θ(x) =

|Φ0.x|2π is a modulo 2π operation on the phase function of an ideal linear blazed grating.

The grating is referred to as blazed as it directs a large fraction of the incident light

into one of the diffracted grating orders. The phase grating is assumed to transmit light

with no attenuation but imparts a phase variation across the wavefront.

In order to generate a fork hologram, the phase shift (l.φ) is added to the regular blazed

phase grating. The overall phase shift is given as:

Θ(x, y) =

∣∣∣∣l.φ+
2π.x

Γ

∣∣∣∣
2π

(8.8)

where Γ is the grating constant and we consider the variation of Θ along the x direc-

tion. The fork holograms for l equals 1 and 11 is shown in Figure. 8.7. In cylindrical
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(a) (b)

Figure 8.7: Fork Hologram

coordinates, we can rewrite the above equation as:

Θ(r, φ) =

∣∣∣∣l.φ+
2π.r cosφ

Γ

∣∣∣∣
2π

(8.9)

8.4.2 Orbital angular momentum in quantum mechanics

Using the classical mechanics approach, Allen et. al. [6] demonstrated that Lagurre-

Gaussian modes carry a well defined OAM. The quantum mechanical approach shows

that the LG modes are eigenvectors of the OAM operator L̂z [148]. For a single-photon

state, |ψ〉, say an LG-mode, the x, y, z components of the OAM operators in cartesian

coordinates (x, y, z) are given by:

L̂x = −i}
(
ŷ ∂
∂ẑ − ẑ

∂
∂ŷ

)
L̂y = −i}

(
ẑ ∂
∂x̂ − x̂

∂
∂ẑ

)
L̂z = −i}

(
x̂ ∂
∂ŷ − ŷ

∂
∂x̂

)
(8.10)

Transforming the above operators represented in Eq. (8.10) to cylindrical coordinates

(r, φ, z) to get:

L̂x = i} cosφ ∂
∂φ

L̂y = i} sinφ ∂
∂φ

L̂z = −i} ∂
∂φ

(8.11)

Since, the wave is assumed to be propagated along the z direction, we consider the eigen-

states of the OAM operator L̂z, with eigenvalues l}. That is the eighenvalue equation

163



Chapter 8 CQP for higher dimensional protocols

is given by L̂zΨ = l}Ψ which leads to :

Ψ = A.exp(ilφ) (8.12)

From Eq. (8.12), it is understood that any mode with a phase factor can be considered

as a eigenvector of L̂z and therefore has a well defined OAM. A photon is represented

by a single LG mode that is in a quantum state having a definite value of OAM. It is

essential to note that the eigenvalues of L̂z can assume all integer values both positive or

negative and this makes the possibility of having an infinite-dimensional Hilbert space.

Another operator L̂2 is given by the sum of L̂2
x, L̂2

y and L̂2
z, which is:

L̂2 = −2}2 ∂2

∂φ2

The combination of L̂x and L̂y gives rise to the ladder operators L̂+ and L̂−. The ladder

operators are defined by:

L̂+ = i}exp(iφ) ∂
∂φ and L̂− = i}exp(−iφ) ∂

∂φ
(8.13)

The commutation relations between these operators are provided as, [L̂x, L̂y] = i}L̂z,
[L̂y, L̂z] = i}L̂x, [L̂z, L̂x] = i}L̂y, [L̂+, L̂−] = 2}L̂z, [L̂z, L̂+] = }L̂+, [L̂z, L̂−] =

−}L̂−and [X̂, L̂2] = 0 where {L̂x, L̂y, L̂z, L̂+, L̂−} ∈ X.

Manipulation of OAM

The Huygens-Fresnel integral is an equation which describes the diffraction due to the

diffractive element based on certain assumptions. It is assumed that the source of light

is at infinite distance and therefore the aperture is illuminated by a plane wave travelling

along the z-axis. Another approximation is that the diffraction makes only small pertur-

bations which is called the paraxial approximation. Based on these approximations, the

Huygens-Fresnel integral is formulated as a 2D Fourier transform in polar coordinates

given by [85]

Ep =
i.A

λR0
.e−ik.R0

∫ b

0

∫ 2π

0
t(r, φ)exp

[
−i.k.r.ρ
R0

cos(θ − φ)

]
r.dr.dφ (8.14)

where Ep is the diffraction field, A is the amplitude of plane wave illuminating the

aperture, R0 is the distance between the observation point and aperture plane. t(r, φ)

is the complex transmission function given by ei.Θ(r,φ).

164



Chapter 8 CQP for higher dimensional protocols

We use Eq. (8.8) in Eq. (8.14) to get:

Ep =
i.A

λR0
.e−ik.R0

∫ ∞
0

∫ 2π

0
exp

[
i

(
l.φ+

2π.r cosφ

Γ

)]
exp

[
−i.k.r.ρ
R0

cos(θ − φ)

]
r.dr.dφ

(8.15)

To simplify the equation, we say, G = 2π.r
Γ and C = i.A

λR0
.e−ik.R0 and with a small

manipulation, we get:

Ep = C.exp(i.l.θ)

∫ ∞
0

r.dr

∫ 2π

0
exp(i.l.(φ−θ))×exp(i.G.r cosφ)×exp

[
−i.k.r.ρ
R0

cos(θ − φ)

]
dφ

(8.16)

Now, we will try to solve the integral
∫
dφ in Eq. (8.16). Let,

I =

∫ 2π

0
exp(i.l.(φ− θ))× exp(i.G.r cosφ)× exp

[
−i.k.r.ρ
R0

cos(θ − φ)

]
dφ (8.17)

Assuming the integral I is
∫ 2π

0 u.dv where
∫ 2π

0 u.dv = [uv]2π0 − v
∫ 2π

0 du. Then, if u =

exp(i.G.r cosφ) and dv =
∫ 2π

0 exp(i.l.(φ − θ)) × exp
[
−i.k.r.ρ
R0

cos(θ − φ)
]
dφ. The term

[uv]2π0 vanishes on substitution of u and v. We get

I = i.G.r ×
Jl(

k.r.ρ
R0

)

(k.ρR0
)

∫ 2π

0
sinφ× exp(i.G.r cosφ)dφ (8.18)

where Jl(
k.r.ρ
R0

) is defined as the Bessel function. We can solve the integral in Eq. (8.18)

to be: ∫ 2π

0
sinφ× exp(i.G.r cosφ)dφ =

2.πJ ′0(Gr)

G
(8.19)

Using Eq. (8.19) and Eq. (8.18) in Eq. (8.16) to get:

Ep = −2.π.C.exp(i.l.θ)

(k.ρR0
)

∫ ∞
0

r2.Jl(
k.r.ρ

R0
).J ′0(Gr)dr (8.20)

Using the Bessel’s differential identity that [x−aJa(x)]′ = −x−aJa+1(x), we get J ′0(Gr) =

−J1(Gr) and using it in the above equation to give:

Ep =
2.π.C.exp(i.l.θ)

(k.ρR0
)

∫ ∞
0

r2.Jl(
k.r.ρ

R0
).J1(Gr)dr (8.21)

8.5 Discussion

In this section, we consider the motivation of extending quantum process calculus to

describe higher dimensional protocols.
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Our aim in extending the semantics of CQP is to use the theories and methodologies of

quantum process calculus to model optical experiments that exhibits higher dimension-

ality involving OAM of photon. Experiments have shown that photon pair entangled in

their OAM up to a higher quantum number, can be produced with high-fidelity [68, 94].

In relation to quantum computation and communication, the higher dimensional Hilbert

space of orbital angular momentum allows the implementation of new quantum proto-

cols, which can offer higher information capacity and greater degree of security [69].

Recent studies have adopted the higher dimensionality encoded in the polarisation and

orbital angular momentum for quantum information and cryptographic processing [45].

Boyd et. al [31] describe a method to construct a free-space quantum key distribution

system that can carry many bits of information per photon, based on the use of LG

modes and other field modes that carry OAM.

There has been a significant interest in the use of higher-dimensional systems for quan-

tum information processing and cryptography mainly due to the large state space, which

offers the higher rate of data transmission and increased security of cryptographic sys-

tems. This provided the motivation to extend the theory of quantum process calculus

to model higher dimensional quantum systems.

We have presented only the transition rules that have been extended. Few rules such as

R-Measure and L-Qdit are extended and the other rules are the same which demon-

strates the compatibility of the general framework of the language. Using the theory of

quantum operators in higher dimensions and with the help of the extended semantics,

we show that we can model higher dimensional protocols namely qudit teleportation

and superdense coding in CQP. We have seen that quantum process calculus provides a

systematic methodology for verification of quantum systems. The theory of behavioural

equivalence of CQP [51] is defined with respect to qubits and is extended to describe

LOQC which is one of the main works of the present thesis. A future work in this regard

is to extend the theory of equivalence to qudits, which is believed to be a straightforward

task.

We present the theory of OAM operators and the theory of manipulation of OAM using

a blazed phase grating. The role of OAM operators is important as it leads to the

understanding of the diffractive optical elements used in the experiments. Further work

needs to be done in order to describe the diffractive optical elements such as the blazed

phase grating and other elements in terms of OAM operators, an approach which is

similar to that we have seen in the previous chapters 6 and 7 for linear optical quantum

computing. This would then aid us to formally define the diffractive optical elements

using CQP and lead to use the mathematical tools of quantum process calculus CQP to

model and analyse the quantum optical experiments involving OAM.
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Conclusion

The thesis describes the theory and applications of quantum process calculus, CQP. We

have analysed quantum error code correction system, QECC, in CQP and verified the

protocol by proving it equivalent to its specification. In addition to the existing axioms

that are defined in [51], we have defined a few axioms in this thesis that helps us to

reason quantum protocols namely superdense coding, quantum secret sharing, remote

CNOT and quantum error code correction.

We have extended CQP to describe and verify the experimental processes associated

with linear optical quantum computing (LOQC). In addition, we have extended CQP to

model higher dimensional quantum systems. In this chapter, we summarise and discuss

the work presented, and outline directions for future work.

9.1 Summary

The following is a detailed summary of the work that are presented in the thesis.

Chapter 1. The first chapter discussed the emergence and significance of the quantum

information and quantum computation discipline. We reviewed the characteristics of

quantum systems and discussed the key factors that highlighted their peculiarities such

as entanglement and non-determinism. Some key results of this field were listed and the

motivations for formal analysis of quantum systems were presented.

Chapter 2. A brief overview of formal methods was provided in this chapter and we dis-

cussed the recent work in the development of formal modelling and analysis of quantum

systems. The chapter provides a short survey of the related work, which includes the
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discussion of quantum programming languages, automated verification of quantum sys-

tems, semantic techniques for the analysis of quantum systems and quantum computing

using linear optics.

Chapter 3. This chapter presented the theoretical background of relevance to this work,

including the essential concepts of quantum computation and an introduction to process

calculus.

Chapter 4. This chapter reviewed the operational semantics of CQP based on labelled

transition systems (LTS). The LTS and its interpretation are essential in order to define

the equivalence between processes. We describe the theory of behavioural equivalence

provided in [51] and demonstrated that two models of a quantum error correcting code

are each congruent to their respective high-level specification processes.

Chapter 5. This chapter focused on the axiomatic approach that is discussed in detail

in [51]. By defining the additional axioms, we show that we can reason several other

quantum protocols like superdense coding, quantum secret sharing, remote CNOT and

quantum error correction code. The new axioms that are introduced are proved to be

sound. Finally, the chapter discussed the significance of the role of these axioms in

reasoning these protocols.

Chapter 6. The chapter presented an investigation into extending CQP to model linear

optical quantum computing. In all previous work on quantum process calculus, qubit was

considered as an information encoded within a 2 dimensional Hilbert space describing the

internal states of a localised particle. We presented the extension of CQP by allowing

multiple particles as information, described by Fock states. We described a physical

realisation of quantum computing by defining the linear optical elements in CQP, and

have demonstrated a model of an LOQC CNOT gate. Using our model, we have also

described post-selection in CQP.

Chapter 7. This chapter provided the extension of theory of equivalence of CQP to

verify LOQC. We have addressed the issues concerning the semantics that was discussed

in the previous chapter. We described and analysed two models of the linear optical

experimental system that demonstrates a CNOT gate. The two models used different

measurement semantics in order to work at different levels of abstraction. This demon-

strates the flexibility of process calculus to support a range of descriptions.

Chapter 8. This chapter presented the extensions of CQP to model higher dimensional

quantum processes. We presented the semantics that are modified to describe the higher

dimensional quantum systems. Using the extended semantics, we modelled higher di-

mensional quantum protocols namely qudit teleportation and superdense coding. The

prime motivation of this work was mainly due to optical experiments that exhibit higher
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dimensionality using the intrinsic property of light, i.e. OAM of a photon. We presented

a brief study on OAM operators and the theory of manipulation of OAM by the diffrac-

tive optical element (e.g. blazed phase grating).

9.2 Concluding Remarks

The main focus of this thesis is to further develop the theory of quantum process calculus.

In doing so, we extend the applications of the formal techniques from describing abstract

models to that of experimental systems associated with quantum information processing.

The previous work on the quantum process calculus, Communicating Quantum Processes

(CQP), has provided the foundation for much of this work. The flexibility of the language

to adapt to different situations has led to the achievement of these tasks. In Chapters 4

and 5, we reviewed the previous work of CQP. The work defined the theory of behavioural

equivalence in CQP and applied the theory to teleportation and superdense coding. We

employ the theory (also described in Chapter 4) and extend the application of it by

verifying quantum error code correction.

The existing equational theory of CQP based upon the full probabilistic branching bisim-

ilarity provided the motivation of the work presented in Chapter 5. The previous work

illustrated the theory in the reasoning of quantum teleportation. We define a few ad-

ditional rules in Chapter 5 and illustrate its significance by improving the ability to

reason equationally. We take a step further in reasoning other protocols namely su-

perdense coding, quantum secret sharing, remote CNOT and quantum error correction

code.

The motivation for developing formal methods to quantum systems is to provide an

understanding of concurrent, communicating quantum systems, and to use the tools for

verifying the correctness of crypto-systems. Using higher-dimensional quantum systems

for applications in quantum information and cryptography are becoming of significant

interest as it improves the data transmission rate and security of cryptographic interest.

Chapter 6 provides the extensions of CQP to model higher dimensional quantum sys-

tems, in particular, focussing on the representation and manipulation of the quantum

state. The protocols quantum teleportation and superdense coding for higher dimen-

sional quantum systems are studied, as these constitute the building blocks of large

and complex systems. In the later part of the work, we attempt to study the optical

experimental systems that demonstrate this property of higher-dimensionality.

Optical implementations offer to date the most advanced system for quantum infor-

mation processing. LOQC is one potential way of implementing small-scale quantum
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computing. Chapter 7 provides a deep understanding of the application of quantum

process calculus to LOQC. This understanding set out the foundations of Chapter 8, in

which different measurement semantics are presented. Another important development

is the extension of the theory of equivalence to verify LOQC. This helps to understand

and verify a physical realisation of quantum computing.

Another quantum process calculus, qCCS, developed by Feng et. al. [66] is similar to

our previous work that considers qubit as an abstract information that can be sent or

received through channels. qCCS is a quantum extension of the classical value-passing,

CCS [124], and proved that the weak bisimilarity is a congruence. Their result is applied

to protocols: teleportation, superdense coding and quantum key distribution [108].

9.3 Future Work

In the final section, we provide several directions for further work based around the

framework of CQP presented in this thesis.

The extensions of CQP to describe the optical experimental systems that demonstrate

the higher-dimensionality is a study which is to be investigated. The study would help us

to model the experiments and would also provide an understanding on the decoherence

or noise that is involved in the experiments, which is an important aspect of quantum

communication devices. Extending the theory of equivalence for higher-dimensional

quantum systems is believed to be a straightforward task but needs to be verified.

Ying et. al. [169, 170] demonstrated the theory of approximate bisimulation based on

strong bisimilarity. It would be interesting to implement this concept of approximate

equivalence in CQP as it would provide an understanding on quantum noise that could

occur in physical implementations of quantum systems.

Also of interest would be an analysis of integrate waveguide circuit demonstrating Shor’s

algorithm operating on four qubits [142]. The linear optical circuit uses the basic ele-

ments that is defined in this thesis. This helps to formally analyse quantum algorithms

in CQP using LOQC and may provide another platform to learn about quantum com-

plexity in LOQC using formal techniques. Another potential task would be to extend

the equational theory of CQP to be applied in the setting of LOQC.

The long-term goal is to develop software for automated analysis of CQP models, fol-

lowing the established work in classical process calculus and recent work on automated

equivalence checking of concurrent quantum programs [12]. The equivalence checking

tool uses the stabilizer formalism for the verification of quantum protocols. It would be
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interesting in the possibility of extending this simulation to universal quantum compu-

tation. Although this task is not possible to do in an efficient way but in [1] it is shown

that stabilizer circuits can be extended to include a limited number of non-clifford gates

by not reducing the gain efficiency.

As mentioned earlier, quantum process calculus provides a systematic methodology for

verification of quantum systems. This is an important factor as we believe that quantum

cryptographic applications will drive the market, and formal methods provide a useful

way in analysing the behaviour of these implemented systems. There are many other

interesting directions for further study and it is hoped that the present work has provided

a good indication for future progress in quantum process calculus.
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[24] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-

Rosen channels. Physical Review Letters, 70(13):1895–1899, 1993.

173



Bibliography

[25] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle oper-

ators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–2884, 1992.

[26] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.

Information and Control, 60:109 – 137, 1984.

[27] G. Berlin, G. Brassard, F. Brussieres, and N. Godbout. Loss-tolerant quantum

coin flipping. In Second International Conference on Quantum, Nano and Micro

Technologies (ICQNM 2008), 3121:1–9, 2008.

[28] R. A. Beth. Mechanical detection and measurement of the angular momentum of

light. Physical Review, 50(2):115, 1936.

[29] R. F. Blute, I. T. Ivanov, and P. Panangaden. Discrete quantum causal dynamics.

International Journal of Theoretical Physics, 42(9):2025–2041, 2003.

[30] D. Bohm. Quantum Theory. Prentice Hall, 1951.

[31] R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier.

Quantum key distribution in a high-dimensional state space: exploiting the trans-

verse degree of freedom of the photon. In SPIE OPTO, pages 79480L–79480L.

International Society for Optics and Photonics, 2011.

[32] G. Brassard and C. Crepeau. Quantum bit commitment and coin tossing protocols.

Advances in Cryptology-CRYPT0 90, 537:49–61, 1991.

[33] R. Canetti. Universally composable security: a new paradigm for cryptographic

protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE

Symposium on, pages 136–145, Oct 2001.

[34] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software

Science and Computation Structures, pages 140–155. Springer, 1998.

[35] J. Carolan, P. Shadbolt, J. D. A. Meinecke, N. J. Russell, N. Ismail, K. Wörhoff,
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