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Abstract 

Malaria, caused by infection with intracellular protozoan parasites of the genus 

Plasmodium, is responsible for 300 to 600 million clinical cases annually (Snow et al., 

2005), resulting in the deaths of up to three million people every year (Breman, 2001, 

Breman et al., 2004). There is a clear need for further research aimed at identifying novel 

drug targets (Ridley, 2002). Reversible phosphorylation of proteins is a major regulatory 

mechanism in most cellular processes, and protein kinases are considered promising drug 

targets, comprising as much as 30% of all protein targets under investigation (Cohen, 

2002). The divergences between human and plasmodial protein kinases suggest that 

specific inhibition of the latter is an achievable goal (Doerig, 2004, Doerig and Meijer, 

2007). This study investigates protein kinase CK2 of Plasmodium falciparum, seeking to 

establish by reverse genetics and biochemical approaches whether it represents a possible 

antimalarial drug target. 

Protein-kinase CK2, formerly known as Casein Kinase II, is a dual-specificity 

(Serine/Threonine and Tyrosine) protein kinase ubiquitously expressed in eukaryotes. It 

has over 300 cellular substrates catalogued to date (Meggio and Pinna, 2003). Consistent 

with its multiple substrates, the enzyme plays a crucial role in many cellular processes, and 

is essential to viability in yeast and slime mould (Padmanabha et al., 1990, Kikkawa et al., 

1992). The human CK2 holoenzyme consists of two catalytic α or α’ subunits and two 

regulatory β subunits, and recent evidence indicates that the latter interact with several 

protein kinases in addition to CK2α (reviewed in (Bibby and Litchfield, 2005)), pointing to 

a likely role in the integration of numerous signalling pathways. A putative CK2α 

orthologue and two predicted CK2β subunits were identified in the P. falciparum genome 

(Ward et al., 2004, Anamika et al., 2005). Here we present the biochemical 

characterisation of the PfCK2α orthologue and both PfCK2β orthologues, and demonstrate 

by using a reverse genetics approach that each of the three subunits is essential for 

completion of the erythrocytic asexual cycle of the parasite, thereby validating the enzyme 

as a possible drug target. Recombinant PfCK2α possesses protein kinase activity, exhibits 

similar substrate and co-substrate preferences to those of CK2α subunits from other 

organisms, and interacts with both of the PfCK2β subunits in vitro. PfCK2α is amenable to 

inhibitor screening, and we report differential susceptibility between the human and P. 

falciparum CK2α enzymes to a small molecule inhibitor. Taken together, the data indicate 

that PfCK2α is an attractive, validated target for antimalarial chemotherapeutic 

intervention.
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1 Introduction 

1.1 Malaria  

Malaria, caused by parasitic protozoa of the genus Plasmodium, is responsible for the 

deaths of one million people every year, and more than 500 million clinical cases (Snow et 

al., 2005). These burdens of morbidity and mortality present a serious hindrance to the 

socio-economic development of the affected countries (Sachs and Malaney, 2002). 

Although malaria presents a health risk across large parts of the world (Fig. 1-1), the vast 

majority of deaths (90%) occur in Sub-Saharan Africa (Greenwood and Mutabingwa, 

2002), and in children (Snow et al., 2005). 

 
Figure 1-1 World distribution of malaria transmission risk 
This image was taken from the World Health Organisation (WHO)’s World Malaria Report, 
2005 (http://rbm.who.int/wmr2005/). 

Malaria parasites belong to the Apicomplexan phylum, all members of which possess 

apical organelles required for the invasion of their host. Many vertebrate species can be 

infected with malaria parasites, including reptiles, birds, rodents, and primates. There are 

four species of Plasmodium parasites that cause malaria in humans: P. falciparum, P. 

vivax, P. ovale, and P. malariae. Recently, a fifth species has been added to the list: P. 

knowlesi, originally a malaria parasite of long-tailed macaque monkeys, which has recently 

jumped the species barrier and can naturally infect humans (Singh et al., 2004a). Infections 
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with the different species lead to differences in symptoms and clinical outcomes. P. 

falciparum is the most deadly, being responsible for the majority of malarial deaths. In part 

this lethality stems from the unique ability of the mature stages of this parasite to modify 

its host erythrocyte membrane so that it is able to adhere to endothelial surfaces and 

sequester in microcapillaries of major organs such as the brain. P. vivax is less deadly, but 

highly debilitating. P. malariae can persist for decades as an asymptomatic infection (a 

period of 53 years has been documented (Guazzi and Grazi, 1963)). P. vivax and P. ovale 

can form dormant stages in the liver, known as hypnozoites, which can reactivate and 

cause relapses, rendering infections with these species difficult to eradicate. Clinical 

symptoms of malaria include fever, shivering, joint pain, headaches, diarrhoea, vomiting, 

and in more severe cases, anaemia, respiratory distress, organ failure, and coma and death. 

Human malaria parasites are transmitted by the bite of infected female mosquitoes of the 

Anopheles genus. Malaria parasites can be transmitted by a variety of species of anopheline 

mosquitoes, whose differing behavioural patterns contribute to the epidemiology of the 

disease (Greenwood et al., 2005). The most globally significant mosquitoes for the 

transmission of malaria are those of the Anopheles gambiae complex, which is 

predominant in Sub-Saharan Africa. A. gambiae feeds preferentially on humans, and has a 

long life span, making it an excellent transmitter of malaria parasites. The entomological 

inoculation rate (EIR), a measure of how many infectious bites an individual receives each 

year, is rarely above 5 in Asia and South America, but can reach over 1000 in parts of 

Africa (Greenwood and Mutabingwa, 2002). The parasite has obligatory life cycle stages 

in the mosquito, and therefore the mosquito is a target for anti-malarial intervention.  

 
1.2 Lifecycle of Plasmodium falciparum 

The parasite lifecycle is complex, involving sexual, and various rounds of asexual, 

multiplication, and metamorphoses into motile, invasive, intracellular, encysted and 

dormant forms. Infection of the human host begins with the injection of sporozoites during 

a bite from an infected female Anopheline mosquito. These motile forms rapidly locate a 

blood vessel and travel to the liver, where they traverse through several hepatocytes before 

setting up an infection in a hepatocyte (Mota et al., 2001). The liver stage of the infection 

is asymptomatic, and lasts roughly six days, during which the parasites undergo huge 

asexual replication (exoerythrocytic schizogony), with one sporozoite producing up to 

30,000 merozoites (Prudencio et al., 2006). These are released into the blood stream where 

they invade erythrocytes, invaginating the erythrocyte membrane to form a 
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parasitophorous vacuole surrounding the parasite and separating it from the cytoplasm of 

the host cell. The parasites develop within the erythrocyte for 48 hours (or 72 hours for P. 

malariae), beginning with the ring stage, during which the parasite begins to export 

proteins to the host erythrocyte, modifying the membrane and allowing the adhesion to 

non-infected erythrocytes (rosetting) and to the lining of blood vessels (cytoadherence) 

(Pouvelle et al., 2000). The parasite grows into the trophozoite stage, the period of the 

most active feeding and erythrocyte modification (Bannister and Mitchell, 2003). During 

this stage, exported parasite proteins form knobs on the erythrocyte surface, and proteins 

such as PfEMP1 bind strongly to the endothelium of blood vessels, sequestering the 

infected erythrocytes away from the normal circulation and therefore avoiding parasite 

clearance by the spleen. Adhesion to the blood vessels of the brain can lead to a severe 

form of malaria known as cerebral malaria, and adhesion to the placenta can adversely 

affect foetal growth (Bannister and Mitchell, 2003). The parasite feeds on haemoglobin, 

crystallizing the toxic haem by-products into the non-toxic dark pigment haemozoin, which 

accumulates in the food vacuole. The parasite is termed a schizont when nuclear division 

occurs, generating up to 32 nuclei, which bud off from the main body of cytoplasm, and 

eventually become separate merozoites (erythrocytic schizogony), released on schizont 

rupture to invade new erythrocytes. This leads to rapid multiplication of parasites within 

the host, with parasite numbers reaching up to 1013 per infected host (roughly 30% 

parasitaemia). The asexual blood stages of the parasites are responsible for malaria 

pathogenesis, including the periodic fevers (every 48 or 72 hours) accompanying the 

rupture of erythrocytes, and are therefore the targets of most of the antimalarial 

chemotherapies. On invasion of an erythrocyte, some merozoites cease asexual 

multiplication and differentiate into non-pathogenic, cell cycle arrested male and female 

sexual forms (gametocytes). The molecular mechanisms underlying this differentiation are 

not understood (Dyer and Day, 2000), but situations leading to cellular stress, such as sub-

lethal doses of antimalarial drugs, high parasitaemia, and host immune responses, stimulate 

gametocytogenesis (Dyer and Day, 2000, Talman et al., 2004).  
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Figure 1-2 Lifecycle of P. falciparum 
The various stages of the parasite lifecycle are illustrated. A: human host. B: Mosquito host. 
Reprinted by permission from Macmillan Publishers Ltd: Nature (Wirth, 2002), copyright 
2002. 

When a female Anopheles mosquito takes a blood meal from an infected person, the 

mature male and female gametocytes (micro- and macrogametocytes) that are taken up into 

the mosquito develop into gametes and initiate the mosquito infection (sporogonic cycle). 

The microgametocyte divides to form eight flagellated gametes, a process known as 

exflagellation, and the macrogametocyte escapes from the erythrocyte membrane. 

Fertilization of the female gamete leads to the formation of a diploid zygote (the parasite is 

haploid for most of its lifecycle). The zygote rapidly differentiates into a motile elongated 

form known as the ookinete, in which meiotic reduction occurs. The motile ookinete 

traverses the mosquito midgut epithelium and encysts on the outer wall, forming an oocyst. 

Within this structure, the parasite undergoes intense asexual replication (sporogony) to 

form thousands of haploid sporozoites. On oocyst rupture, the sporozoites migrate to and 

invade the mosquito salivary glands, where they wait to be injected into another human 

host when the mosquito feeds, thus completing the life cycle. The mosquito stages of the 

lifecycle take two weeks, from ingestion of the mature gametocytes to the presence of 

infectious sporozoites in the salivary glands, although this time period is influenced by 

external temperature, thus rendering the distribution of malaria transmission highly 

temperature-dependent. 
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1.3 P. falciparum biology 

P. falciparum has a number of unique features, including the ability to modify the 

membrane of its host erythrocyte, which mediates the phenomena of rosetting and 

sequestration, which have already been mentioned. The parasite sequesters in a variety of 

organs, including the heart, lungs, kidneys, brain, liver, placenta, and subcutaneous tissues. 

These organs express different receptors on their endothelial cell surfaces, which are all 

recognised by the same molecule, Plasmodium falciparum erythrocyte membrane protein 1 

(PfEMP-1) (Miller et al., 2002). PfEMP-1 is an antigenically variant protein encoded by 

the large and diverse var gene family (roughly 60 members (Chookajorn et al., 2007)), and 

is expressed on the surface of infected erythrocytes. The extracellular domain contains 

multiple adhesion modules, which can recognise the different receptors on the endothelial 

cell surfaces. The sequestration of parasites prevents their clearance by the spleen, 

allowing high parasitaemia to develop. Sequestration in different organs can lead to some 

of the unique pathologies associated with P. falciparum: binding to the placenta can lead to 

low birth weight, premature birth, and anaemia in the mother; sequestration in the brain is 

related to cerebral malaria.  

The parasite exports a variety of proteins to the erythrocyte cytoplasm and cell surface. 

These exported proteins have functions in cytoadherence, nutrient acquisition and evasion 

of the host immune response (Charpian and Przyborski, 2008). To reach the erythrocyte 

cytoplasm, parasite proteins must cross the parasite plasma membrane and the 

parasitophorous vacuole membrane. Short signal sequences named PEXELs (Plasmodium 

export elements) appear to be responsible for directing many soluble and membrane 

proteins to the infected erythrocyte (Hiller et al., 2004, Marti et al., 2004), although the 

mechanistic details of the translocation remain to be elucidated (Charpian and Przyborski, 

2008). 

The ability to culture the P. falciparum parasites in vitro (Trager and Jensen, 1976) has 

been an enormous advantage in the study of the parasite. The genome sequence of the 

laboratory strain of the human malaria parasite P. falciparum, 3D7, was published in 2002 

(Gardner et al., 2002). The parasite was revealed to possess a genome of 22.8 Mb, roughly 

double the size of the Schizosaccharomyces pombe genome, on 14 chromosomes that 

varied between 0.642 and 3.29 Mb in length. One of the striking features of the genome 

was the extreme A+T bias, with 80.6% of the genome comprised of A or T bases, rising to 

90% in the introns and intergenic regions. Gene searches revealed just fewer than 5300 
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putative genes, which is roughly the same number as are present in the genome of S. 

pombe. 54% of the predicted parasite genes have introns. 60% of the genes encode 

predicted proteins with insufficient similarity to proteins from other organisms for their 

functional assignment (thus they are listed as ‘hypothetical proteins’), reflecting the 

divergence in phylogeny of the parasite from other organisms whose sequence had been 

investigated (Fig. 1-3).  

 
Figure 1-3 Phylogenetic tree of eukaryotes 
P. falciparum is an apicomplexan parasite, which clusters with the alveolates. The 
phylogenetic distance of the Apicomplexa from the Opisthokonts (which include humans, 
yeast, and many other model organisms) is evident. Both groups are circled in black. 
Personal communication from Prof Sandie Baldauf, University of York.  

 

1.4 Current chemotherapies 

Efforts to control malaria are decreasingly successful due to rising resistance in parasite 

populations to antimalarial drugs, resistance in mosquito populations to insecticides, and 

increasing human movements caused by conflict and travel, although “drug resistance is 

probably the major cause of the deterioration in Africa” (Greenwood et al., 2005). 

Treatment and prevention of malaria relies heavily on chemotherapy and 

chemoprophylaxis. There are a number of different antimalarial drugs available, although 

parasite resistance is becoming an increasing problem, especially for the most commonly 
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used antimalarials chloroquine and sulfadoxine-pyrimethamine (Fig. 1-4). Resistance 

arises due to overuse of the antimalarials and over diagnosis of malaria, incomplete 

treatment of infections, the adaptability of the parasite, and the massive proliferation rate 

of the parasite, which allows resistant populations to be selected fairly rapidly (Hyde, 

2007). The presence on the market of fake drugs, containing sub-lethal concentrations of 

antimalarials, can also select for resistance. Because P. falciparum malaria is the most 

lethal species, and because it is the one that has developed resistance against multiple 

drugs, the following summaries of some of the major therapeutic and prophylactic drugs 

focus upon this species.  

1.4.1 Quinolines 

Quinine is a naturally-occurring compound derived from Cinchona bark, imported into 

Europe from Peru from the seventeenth century as a cure for malaria (Ridley, 2002). The 

elucidation of the structure of quinine allowed the synthesis of the artificial 4-

aminoquinolines chloroquine and amodiaquine. Chloroquine was the antimalarial of choice 

for several decades from the mid-forties, being safe, cheap and effective. Resistance to 

chloroquine was first detected in Thailand in 1957 (Harinasuta et al., 1965), and three more 

independent foci of resistance arose, in Colombia and Venezuela in 1960 (Moore and 

Lanier, 1961), and in Papua New Guinea in 1976 (Grimmond et al., 1976). Resistance had 

spread over most of Africa by 1988, and now only a few places remain where chloroquine 

is effective (Talisuna et al., 2004). As mentioned above, haem is a toxic by-product of 

haemoglobin digestion, and is detoxified by the parasite by crystallisation to form inert 

haemozoin. Chloroquine forms a complex with haem, preventing its crystallisation and 

therefore maintaining its toxicity. Chloroquine-resistant parasites accumulate much less 

chloroquine in their digestive vacuoles than sensitive parasites, and the genetic basis for 

resistance has been traced to the pfcrt gene, encoding a putative transporter located in the 

membrane of the digestive vacuole (Fidock et al., 2000b). These mutations have also been 

linked to resistance to the related quinoline drugs mefloquine, halofantrine and 

lumefantrine, although many strains of P. falciparum that are resistant to chloroquine 

remain sensitive to amodiaquine (Winstanley and Ward, 2006). Amodiaquine has been 

limited in use since the 1980s, when it was causally linked with agranulocytosis in 

travellers taking the drug for prophylaxis (Ridley, 2002). However, because it remains 

effective against most chloroquine-resistant parasites, it has been coming back into use. 

Primaquine, an 8-aminoquinoline, is used for the treatment of hypnozoites of P. vivax and 

P. ovale, in combination with chloroquine or quinine, which potentiate its activity (Alving 
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et al., 1955). The eradication of hypnozoites is necessary to prevent these dormant stages 

from reactivating and causing relapse of the disease. 

 
Figure 1-4 Distribution of drug resistance in P. falciparum 
Drug resistance as monitored in sentinel sites, up to 2004. From the WHO’s World Malaria 
Report 2005 (http://rbm.who.int/wmr2005/). 

 

1.4.2 Antifolates 

Antifolates target the folate biosynthesis pathway. The most widely used antifolate is 

sulfadoxine-pyrimethamine (SP), a combination of 2,4-diaminopyrimidine pyrimethamine, 

a dihydrofolate reductase (DHFR) inhibitor, and sulfadoxine, an inhibitor of 

dihydroperoate synthase (DHPS). The effect of these compounds is to block the parasite 

DNA synthesis (Hyde, 2007), by depleting the stocks of tetrahydrofolate, a cofactor 

required for DNA synthesis (Winstanley and Ward, 2006). The compounds are synergistic 

in activity, and are used in combination for the treatment of P. falciparum malaria (Hyde, 

2007). Many countries adopted SP as the first line drug for treatment of malaria after 

resistance to chloroquine rendered the drug ineffective. Sulfadoxine and pyrimethamine 

both have long half-lives, thus new infections are exposed to sub-lethal concentrations of 

the drugs, facilitating the selection of resistant parasites. Resistance to the sulfadoxine-

pyrimethamine combination is now widespread (Fig. 1-4). The genetic basis of resistance 

is point mutations in the target genes. In South East Asia and South America, parasites 
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harbouring quadrupally-mutated dhfr and doubly-mutated dhps are completely resistant to 

maximum tolerated levels of sulfadoxine-pyrimethamine, and there are indications that 

these mutation combinations have now spread to Africa (Hyde, 2007).   

1.4.3 Artemisinin-Combination Therapies 

Artemisinins are derived from the shrub Artemisia annua, which has been used in Chinese 

medicine for centuries in the treatment of malaria and other parasitic diseases. Several 

semi-synthetic derivatives of artemisinin have been developed, and are now in widespread 

use. Artemisinin-based drugs are fast acting, offering rapid relief from clinical symptoms, 

and gametocidal, reducing the carriage of the transmission stages (Talisuna et al., 2004). 

Recrudescence occurs if artemisinins are used in monotherapy, due to the short half-lives 

of the drugs (which are rapidly metabolized, with half-lives of roughly four hours), but in 

combination with other drugs they are now the recommended antimalarial treatment. Their 

use in combination therapy is recommended by WHO, as it is thought that the rapid 

clearance of parasites by artemisinin decreases the likelihood of resistance developing 

against the partner drug, and that the partner drug can eradicate the small numbers of 

parasites that escape the artemisinin, thus preventing recrudescence. However, if there is 

already resistance in the field to the partner drug, the artemisinin-combination therapy 

(ACT) may also be compromised, as is the case with the popular combination artemether-

lumefantrine (Coartem®) (Dokomajilar et al., 2006, Duffy and Mutabingwa, 2006, 

Sisowath et al., 2005), and with artesunate + sulfadoxine- pyrimethamine (Rwagacondo et 

al., 2003, Staedke et al., 2001). ACTs are relatively expensive drug regimens, and the cost 

represents probably the biggest challenge to their implementation as the first line treatment 

in many developing countries (Mutabingwa, 2005).  

1.4.4 Antibiotics 

Some common antibiotics that target bacterial protein synthesis, such as clindamycin and 

the tetracyclines, are also effective antimalarials. They are thought to target protein 

synthesis in the apicoplast, an apicomplexa-specific plastid organelle thought to originate 

from a green algal symbiont, or the mitochondrion, due to the similarity of these organelles 

to bacteria (Dahl and Rosenthal, 2008, Dahl et al., 2006, Goodman et al., 2007). These 

antibiotics are used as prophylactics, and in combination with other antimalarials: quinine 

plus tetracycline or quinine plus doxycycline are common treatments in South East Asia. 

However, tetracycline and doxycycline are contra-indicated in children under eight years 
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of age, so these treatments are unlikely to be widely used in Africa, where the main burden 

of disease is born by the under fives (Ridley, 2002).  

The emergence and spread of resistance in parasite populations highlights the need to 

develop new antimalarial drugs. Of the 1223 new drugs developed between 1975 and 

1996, only 3 were antimalarials (Greenwood and Mutabingwa, 2002). There is an urgent 

need for further research in order to identify new drug targets (Ridley, 2002, Sahu et al., 

2008).  

1.5 Protein kinases 

Reversible protein phosphorylation was discovered over fifty years ago. (Sutherland and 

Wosilait, 1955, Fischer and Krebs, 1955, Krebs and Fischer, 1956). This covalent 

modification of cellular proteins is involved in the regulation of almost all cellular 

functions, and up to a third of cellular proteins are thought to be phosphorylated (Ahn and 

Resing, 2001, Ficarro et al., 2002). The addition of phosphate groups to proteins can bring 

about changes in the stability, localisation, enzymatic activity, or binding properties of the 

proteins. Enzymes that catalyse protein phosphorylation are known as protein kinases, 

most of which are members of a large conserved gene family, the eukaryotic protein 

kinases (ePKs). EPKs are enzymes that catalyse the transfer of the γ-phosphate of ATP (or 

GTP) to an acceptor hydroxyl residue (serine, threonine or tyrosine) of proteins, and form 

the largest enzyme family encoded by the human genome, with 478 members (there are 

also 40 atypical protein kinases, bringing the total protein kinase complement to 518 

members in 20 families) (Kostich et al., 2002, Manning et al., 2002). All members of the 

family share a highly conserved catalytic domain of 250 to 300 amino acids (Hanks et al., 

1988), which folds into a common catalytic core structure. The catalytic domain can be 

divided into eleven conserved subdomains (Hanks et al., 1988), defined as regions that are 

never interrupted by long stretches of amino acid insertions, and that contain characteristic 

patterns of conserved residues (Hanks and Hunter, 1995) (Fig. 1-5). Twelve residues in the 

protein kinase catalytic domain are nearly invariant across the eukaryotic protein kinase 

family (using the cAMP-dependent protein kinase PKA as the reference): Gly50 and Gly52 

in subdomain I, Lys72 in subdomain II, Glu91 in subdomain III, Asp166 and Asn171 in 

subdomain VIB, Asp184 and Gly186 in subdomain VII, Glu208 in subdomain VIII, 

Asp220 and Gly225 in subdomain IX, and Arg280 in subdomain XI (Hanks and Hunter, 

1995). Some protein kinases are extremely specific, phosphorylating only one or two 

cellular targets (for example, wee1 and MEK (mitogen-activated protein kinase 
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(MAPK)/extracellular-signal-regulated kinase (ERK) kinase) (Litchfield, 2003)), whereas 

others have a much broader specificity. 

 
Figure 1-5 Primary structure of the ePK catalytic domain 
The eleven conserved subdomains of ePK catalytic domains are shown in the central bar, 
and the twelve nearly invariant residues conserved across ePKs (Hanks, 2003) are indicated 
at the top. The two main lobes of the catalytic domain and their main functions are indicated 
at the bottom. 

The catalytic domain of a kinase folds into a two-lobed structure (Knighton et al., 1991): 

the amino-terminal lobe, involved in anchoring and orientating the nucleotide, includes 

subdomains I-IV, and has a primarily β-sheet structure, and the C-terminal lobe, which is 

mainly involved in anchoring the peptide substrate and in initiating phosphotransfer, 

includes the subdomains VIA-XI, and is primarily α-helical in structure (see Fig. 1-6). 

Subdomain V residues span the two lobes. The catalytic site is located in the deep cleft 

between the two lobes.  

 
Figure 1-6 Crystal structure of a protein kinase 
The cAMP-dependent PK (PKA) was the first ePK crystal structure to be solved (Knighton et 
al., 1991). A ribbon diagram of the conserved catalytic core (PKA residues 40 – 280) shared 
by all protein kinases is shown. Note the bilobal structure, with the N-terminal lobe 
composed mainly of β-sheets and the C-terminal lobe composed mainly of α-helices. Cover 
reprinted with permission from AAAS. 
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There are two main divisions of the ePK family, based on their phosphate acceptor amino 

acid group: protein-serine/threonine kinases, and protein-tyrosine kinases. The ePK 

superfamily was divided initially into four families, based on phylogenetic tree analysis 

(Hanks and Quinn, 1991, Hanks and Hunter, 1995). The AGC group includes the PKA and 

PKG families of cyclic-nucleotide dependent kinases, the PKC family, the β-adrenergic 

receptor kinase family, the ribosomal S6 kinase family, and other close relatives. The 

CaMK group includes the family of kinases regulated by calcium/calmodulin, the 

Snf1/AMPK group, and other close relatives. The CMGC group includes the family of 

cyclin-dependent kinases, the MAP kinase family, the glycogen synthase 3 (GSK3) family, 

the Clk (cyclin-dependent-kinase-like kinase) family, the casein kinase II family, and close 

relatives. The protein-tyrosine kinase (PTK) group includes the conventional protein 

tyrosine kinases (‘conventional’ to distinguish it from other protein kinases that have been 

reported to exhibit dual specificity, capable of phosphorylating both tyr and ser/thr 

residues). Members of each family tend to share related functions, and similarities in mode 

of regulation and substrate specificity (Hanks and Hunter, 1995). Protein kinases of the 

AGC and CaMK groups tend to phosphorylate at serines or threonines in close proximity 

to the basic amino acids arginine and lysine. The CaMK group of kinases, as its name 

suggests, includes kinases activated by calcium or calmodulin. Protein kinases of the 

CMGC group are, in the most part, proline-directed kinases, phosphorylating residues 

lying in a proline-rich environment. The cyclin-dependent kinase family, for example, 

requires a proline residue in the n+1 position of the protein substrate. The casein kinase II 

family is a notable exception within the CMGC group, showing strong preferences for sites 

surrounded by acidic residues, with the presence of proline being a negative determinant 

(Meggio and Pinna, 2003). The TyrK group of kinases phosphorylates specifically on 

tyrosine residues, and cannot phosphorylate serine or threonine amino acids. They include 

many membrane-spanning receptor families. With the publication of analyses of the 

kinomes of increasing numbers of species, three additional major groups of ePKs have 

been defined (Hanks, 2003): (1) the CK1 group, which includes casein kinase 1 and related 

enzymes; (2) the STE group, which includes enzymes that were first described during the 

characterisation of yeast sterile mutants, and which function in the MAPK kinase pathway; 

and (3) the TKL (tyrosine-kinase like) group of enzymes phylogenetically related to the 

tyrosine kinases, although they function as serine-threonine kinases. 
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1.5.1 Protein kinases as drug targets  

Reversible phosphorylation is an integral part of many cellular processes, and perturbations 

in its regulation have been identified in many diseases such as cancer, diabetes and 

rheumatoid arthritis (Cohen, 2001). Protein kinases are therefore attracting much interest 

as potential drug targets (Cohen, 2002, Doerig et al., 2002). Initial concerns over the 

suitability of protein kinases as drug targets, due to the common catalytic mechanism 

across the kinase family, and the high intracellular concentrations of ATP in relation to the 

potential concentrations of ATP-competitive inhibitors, have been assuaged by the 

successful clinical use of drugs based on kinase inhibition (Dancey and Sausville, 2003). 

The recent success of drugs whose mode of action is kinase inhibition demonstrates that 

kinase inhibitors can perform as drugs with appropriate selectivity, potency and 

pharmacokinetic properties (Giamas et al., 2007). The first kinase inhibitor in clinical trials 

was fasudil hydrochloride, approved in Japan in 1995 (Cohen, 2002). It was followed by 

imatinib mesylate (Gleevec®, Novartis), the first important drug to be developed against a 

specific protein kinase (Abelson tyrosine kinase, although it has subsequently been 

demonstrated that it targets other PKs such as KIT as well (Buchdunger et al., 2000)). 

Gleevec® was approved for clinical use in America in 2001 and is a successful anti-cancer 

drug for chronic myelogenous leukaemia. There are now over 60 drugs based on kinase 

inhibition in clinical development (Giamas et al., 2007), and protein kinases are rapidly 

becoming major drug targets, comprising 30% of all protein targets under investigation 

(Cohen, 2002, Giamas et al., 2007), and second only to the G-protein coupled receptors in 

the number of targets under investigation by the pharmaceutical industry (Doerig and 

Meijer, 2007). A recent investigation of the druggability of the genome revealed 

serine/threonine protein kinases as one of the most promising groups for future small 

molecule inhibitors, comprising up to 20% of the druggable genome (Hopkins and Groom, 

2002). 

 
1.5.2 The P. falciparum kinome 

The sequencing of the P. falciparum genome (Gardner et al., 2002) allowed an analysis of 

the entire complement of P. falciparum protein kinases (Anamika et al., 2005, Ward et al., 

2004). These studies revealed a set of 85 (Ward et al., 2004) – or 99 (Anamika et al., 

2005), depending on stringency criteria for inclusion – ePKs, a smaller group than was 

expected from analogy with other organisms (Ward et al., 2004). The parasite possesses 

ePKs belonging to all of the major groups with the exception of the STE and TyrK groups 
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(Fig. 1-7). TyrK are absent from yeast and most other unicellular eukaryotes (Shiu and Li, 

2004), and their function has been linked to cell-cell signalling and the multicellular mode 

of life, so the absence of this group of kinases from P. falciparum is perhaps not surprising. 

The STE group contains enzymes of the MAPK pathways, which are signalling pathways 

that link stimuli transmitted through cell surface receptors to regulatory targets within the 

cell. These pathways are composed of a MAPK, a MAPK kinase (MAPKK, or MEK) and 

a MAPKK kinase (MAPKKK, or MEKK), and are found in all other eukaryotes bar the 

microsporidian Encephalitozoon cuniculi, which has the smallest genome (2.9 Mb) and 

kinome (32 ePKs) in any eukaryote described to date (Miranda-Saavedra et al., 2007). The 

absence of the STE group of kinases in P. falciparum points to the lack of typical three-

component MAPK pathways in the parasite (Ward et al., 2004, Dorin et al., 2005). Other 

divergences in signalling pathways include the absence of PKC homologues, signalling 

enzymes present in most other eukaryotes (Doerig and Meijer, 2007), and the presence of 

calcium-dependent protein kinases (CDPKs), which are found in ciliates, plants, and 

Apicomplexa, but not in vertebrates (Harper and Harmon, 2005, Doerig, 2004, Kappes et 

al., 1999). 

Unusual features of the P. falciparum kinome include a novel group of 20 ePKs unique to 

the apicomplexa (the FIKK family), at least four ‘composite’ protein kinases with features 

from more than one ePK family, and a number of parasite ePKs that have no clear 

homologues in other organisms and do not fall into any of the major groupings, which have 

thus been classified as ‘orphan’ kinases (Ward et al., 2004). There are large N- or C-

terminal extensions in many of the malarial PKs, and occasionally large insertions within 

the catalytic domain (Doerig, 2004). The phylogenetic distance of Plasmodium from 

vertebrates and from other model organisms (Fig. 1-3) is reflected in the structural and 

functional features of individual kinases, and the divergent kinase repertoire. The 

differences between the P. falciparum and mammalian kinomes lend weight to the 

hypothesis that specific intervention can be achieved (Doerig, 2004). 
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Figure 1-7 The P. falciparum kinome 
Figure from (Ward et al., 2004). The P. falciparum kinome has members from each major 
grouping of kinases, except for the tyrosine kinases and the STE group. The 65 P. 
falciparum kinases are shown in red, and representative members of each major group of 
kinases from the human kinome are shown in black. Branches with bootstrap values of over 
70 are shown in red, and those with bootstrap values over 40 are shown in blue. The scale 
bar represents 0.1 mutational changes per residue. For detailed discussion of the kinome, 
see (Ward et al., 2004). Figure reproduced with permission. 
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1.6 CK2  

Phosphorylation activity from rat liver against exogenous casein was discovered in 1954 

(Burnett and Kennedy, 1954), and the kinases responsible were later named casein kinase I 

(CKI) and casein kinase II (CKII) (Hathaway and Traugh, 1979). It is unlikely that casein 

kinase II has a role in the in vivo phosphorylation of casein (Litchfield, 2003), therefore it 

was renamed CK2. CK2 is a serine/threonine protein kinase that exhibits extraordinary 

evolutionary conservation, and orthologues have been found in all eukaryotes whose 

genomes have been sequenced, including the microsporidian Encephalitozoon cuniculi, 

which possesses an extremely reduced kinome (Miranda-Saavedra et al., 2007). These 

facts point to a fundamental role for CK2 in eukaryotic cellular function.  

CK2 has a number of unusual biochemical properties. It is the most pleiotropic kinase 

known, with over 300 substrates catalogued so far, most of which have been confirmed in 

vivo (Meggio and Pinna, 2003). Indeed, an analysis in yeast (Ficarro et al., 2002) lead to 

the suggestion that CK2 is responsible for up to a quarter of the eukaryotic 

phosphoproteome (Meggio and Pinna, 2003). CK2 is a dual-specificity kinase: although it 

has long been known as a serine/threonine kinase, many reports in recent years reveal the 

enzyme’s ability to phosphorylate tyrosine (Marin et al., 1999b, Wilson et al., 1997, 

Chardot et al., 1995). CK2 also has dual-co-substrate specificity, being able to utilize both 

ATP and GTP as phosphoryl donors (Niefind et al., 1999). Unlike most protein kinases, 

CK2 phosphorylates at acidic locations, with the consensus sequence S/T-D/E-X-

D/E/phosphoS/phosphoY, with the n+3 position being the most significant (Meggio and 

Pinna, 2003, Songyang et al., 1996, Pearson and Kemp, 1991, Kuenzel et al., 1987). 

Protein kinases are generally tightly controlled, with their activity turned on by 

extracellular ligands, second messengers, association or dissociation of regulatory subunits, 

or phosphorylation/dephosphorylation of residues. CK2 is highly unusual in that it is 

constitutively active, and not switched on or off under the control of these regulatory 

devices, and is therefore widely called a secondary messenger-independent kinase. 

These unusual biochemical properties, and the importance of the enzyme in cancer and 

tumorigenesis (Pinna, 2002, Ahmed et al., 2002, Unger et al., 2004, Morales and 

Carpenter, 2004), have rendered CK2 a popular subject of research and drug discovery 

efforts. The majority of research has been undertaken on mammalian and yeast CK2. The 

following sections highlight some of the most significant features of CK2 under the 

headings of structure, function, and regulation. 
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1.6.1 Structure 

In vivo, CK2 exists mainly as a heterotetramer composed of two catalytic (alpha) subunits 

and two regulatory (beta) subunits (see Fig. 1-8). Many organisms possess more than one 

distinct isoform of each subunit. Two isoforms of the alpha subunit have been 

characterised in humans: alpha and alpha prime (Lozeman et al., 1990), which share 90% 

identity within their catalytic domains. They are the products of two different genes. More 

recently, a third isoform has been identified, alpha double prime, almost identical to alpha 

except for the unique C-terminal domain, and thought to arise from alternative splicing 

(Shi et al., 2001). Tetrameric CK2 may contain identical or non-identical catalytic subunits 

(Chester et al., 1995, Gietz et al., 1995). Only one form of the beta subunit has been found 

in mammals (Bibby and Litchfield, 2005), but other organisms such as Saccharomyces 

cerevisiae and Arabidopsis thaliana possess multiple isoforms (Glover, 1998, Salinas et 

al., 2006). The beta subunit does not display extensive homology to any known protein 

kinase regulatory units, but is highly conserved amongst species (Allende and Allende, 

1995), with the 215 amino acid sequence 100% conserved between chicken and mammals 

(Maridor et al., 1991). 

 
Figure 1-8 CK2 holoenzyme crystal structure 
The crystal structure of the recombinant human CK2 holoenzyme (Niefind et al., 2001). 
Catalytic subunits are shown in pink, and the regulatory subunits in blue and yellow. The 
holoenzyme was co-crystallized with an ATP analogue, AMPPNP, showing where the active 
site is located. Figure from (Litchfield, 2003), reproduced with permission from Portland 
Press Ltd: Biochemistry Journal. 

The crystal structure of the recombinant human CK2 holoenzyme (Niefind et al., 2001) 

established that the central part of the holoenzyme is the dimer of CK2β subunits (Fig. 1-

8). Both CK2β subunits make contact with both of the CK2α subunits, which make no 
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contact with each other. This crystal structure confirms the earlier findings from yeast-two-

hybrid screens that beta subunits interact with alpha, alpha’ and other beta subunits, and 

that the CK2α and CK2α’ subunits can interact with the beta subunit but not with each 

other (Gietz et al., 1995). Both CK2α subunits show the typical bilobal structure of ePKs, 

with the β-sheet-rich N-terminal lobe and the α-helical C-terminal lobe, and the catalytic 

cleft in between (Niefind et al., 2001). 

In vitro, CK2 tetramers form spontaneously by self-assembly around the CK2β dimer, and 

are stable (Pinna and Meggio, 1997, Graham and Litchfield, 2000). However, when the 

holoenzyme structure was solved (Niefind et al., 2001) (see Fig. 1-8), it was discovered 

that the size of the interface of the holoenzyme (832Å2) is in the range of the non-obligate 

protein-protein complexes (804Å2) rather than that of permanent protein-protein 

complexes, whose average interface size is 1722Å2 (Jones and Thornton, 1996). These 

findings suggest that the CK2 tetramer is a transient complex. Live cell imaging 

corroborates these findings, showing extensive but not exclusive overlap in the localisation 

of the CK2α and CK2β subunits, and independent translocation into the nucleus (Martel et 

al., 2001, Filhol et al., 2003). The potential role of the independent subunits is discussed 

further in section 1.6.2.7. 

The crystal structure of the catalytic subunit (Niefind et al., 1998) revealed the structural 

basis for the constitutive activity of the catalytic subunit. To achieve full activation, many 

protein kinases require the phosphorylation of residues within their activation loop 

(Johnson et al., 1996), to convert the enzyme to the active conformation. In contrast, “there 

is no indication that phosphorylation of the activation loop of CK2α is important for 

activation of the enzyme” (Olsten and Litchfield, 2004). Instead, the N-terminal region of 

CK2α stabilizes the active conformation of the free catalytic subunit by extensive contacts 

with the activation region (Niefind et al., 1998, Sarno et al., 2002), similar to the way by 

which cyclin A stabilizes the active conformation of CDK2 (see Fig. 1-9). This interaction 

is essential for the activity of the isolated catalytic subunit (Sarno et al., 2002, Sarno et al., 

2000).  
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Figure 1-9 Structure of the CK2α  subunit 
The N-terminus of CK2α  stabilizes the active conformation. Superposition of the crystal 
structures of recombinant maize CK2α  (grey), the inactive conformation of CDK2 (red), and 
the partially active form of CDK2 (yellow) bound to a fragment of cyclin A (green). The N-
terminus of maize CK2α forms similar interactions with the activation loop of the kinase to 
the interactions formed by cyclin A with CDK2, which stabilize the active conformation of 
the kinase. Reprinted by permission from Macmillan Publishers Ltd: EMBO J (Niefind et al., 
1998), copyright 1998. 

The ability of CK2 to utilize both ATP and GTP as co-substrate has also been explained by 

the recent crystal structure: a non-restrictive hydrogen-bonding pattern at the purine 

binding site allows dual co-substrate specificity (Niefind et al., 1998). Crystal structures of 

CK2α in complex with the ATP analogue adenylyl imidodiphosphate (AMPPNP) and with 

the GTP analogue guanylyl imidodiphosphate (GMPPNP) corroborate this finding, 

revealing that the ability of CK2 to use GTP as well as ATP is due to the provision of 

enough space at the nucleotide-binding site for shifts in the hydrogen bonding pattern, and 

to the presence of water molecules that allow the purine bases to utilize the full hydrogen 

bonding potential of the site (Niefind et al., 1999).  

The crystal structure of the core of the regulatory subunit of CK2 (Chantalat et al., 1999) 

reveals that CK2β has no structural homology to any other known protein. Acidic residues 

contribute over 40% of the surface area of the monomer. Notable features of the CK2β 

subunit are shown in Fig. 1-10, and include three phosphorylation sites (see section 

1.6.3.3), a destruction box, which may be related to the ubiquitination and degradation of 
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CK2β (Litchfield, 2003), and an acidic loop, which is responsible for downregulation of 

CK2 (this downregulation is reversed by the binding of polyamines) and association with 

the plasma membrane (Leroy et al., 1999, Meggio et al., 1994a). Zinc fingers, held in place 

by two pairs of cysteine residues, mediate dimerisation of the beta subunits. Mutation of 

two of these cysteine residues (one of the pairs) resulted in a loss of beta dimer formation 

(Canton et al., 2001), and these mutant betas also failed to interact with alpha subunits in 

vivo and in vitro. The dimerisation of beta units is a necessary precursor to tetramer 

formation (Graham and Litchfield, 2000). The crystal structure of the regulatory subunit in 

monomeric form (Chantalat et al., 1999) and in the holoenzyme (Niefind et al., 2001) 

reveals that the large insertion sequences seen in organisms such as Arabidopsis thaliana 

and Saccharomyces cerevisiae are found in areas that are distant from the core, and which 

form loops out from the core structure, therefore they are unlikely to interfere with the 

conserved structure of the CK2β subunit. P. falciparum also has lengthy insertion 

sequences in these locations in one of its two beta subunit isoforms (PfCK2β2, see Chapter 

5).  

The C-terminus of the regulatory subunit binds to the alpha units and is responsible for 

enhancing and stabilising CK2 activity (Bibby and Litchfield, 2005, Marin et al., 1997, 

Sarno et al., 2000) (“positive regulatory region” in Fig. 1-10). The beta chain contacts the 

alpha chain within the conserved kinase core, which may explain the experimental 

observations that free beta subunits are able to interact with other protein kinases such as 

A-Raf (Boldyreff and Issinger, 1997) and c-Mos (Chen et al., 1997). The crystal structure 

of the holoenzyme revealed that the beta C-terminal tail is involved in beta-beta 

dimerisation as well as in alpha-beta contacts (Niefind et al., 2001). 

Polymerisation of CK2 into filaments and rings has also been observed (Glover, 1986, 

Valero et al., 1995), under conditions that may occur in vivo. Molecular modelling of these 

filaments (Poole et al., 2005), combined with biochemical data on autophosphorylation 

(Pagano et al., 2005), lead to hypotheses that the filamentous form of CK2 is inactive 

against exogenous substrates (although capable of autophosphorylation) (Poole et al., 

2005), thus opening up another possible regulatory mechanism for CK2 in addition to 

those reviewed in section 1.6.3. At present, however, there is no direct evidence for the 

formation of such higher order CK2 structures in vivo. 
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Figure 1-10 Structure of the CK2β  subunit 
A. Primary structure of the human CK2β  subunit, showing key features mentioned in the 
text. B. The crystal structure of the CK2 holoenzyme with one CK2β  subunit highlighted in 
yellow, and showing the location of the motifs from part A. The black dot represents the 
Zn2+ that is involved in the formation of the zinc finger. Figure from (Litchfield, 2003), 
reproduced with permission from Portland Press Ltd: Biochemistry Journal. 

 

1.6.2 Function 

CK2α has been shown to be essential for viability in all organisms in which its role has 

been assessed, such as Saccharomyces cerevisiae (Padmanabha et al., 1990) and 

Dictyostelium discoideum (Kikkawa et al., 1992). The requirement for the beta subunit of 

CK2 for viability varies across species, with disruption of the beta subunit being lethal in 

mice (Buchou et al., 2003) and Caenorhabditis elegans (Fraser et al., 2000), whereas 

disruption of either or both of the CK2β subunits in S. cerevisiae is not lethal (Ackermann 

et al., 2001, Bidwai et al., 1995, Reed et al., 1994). Disruption of the beta gene of 

Schizosaccharomyces pombe yields a cold-sensitive phenotype, slow growth, and cell 

shape abnormalities (Roussou and Draetta, 1994). 
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Studies on species possessing more than one isoform of a subunit demonstrate that the 

isoforms exhibit substantial but incomplete functional compensation. Saccharomyces 

cerevisiae has two catalytic subunit isoforms, CKA1 and CKA2. Disruptions in either one 

can be tolerated, indicating functional compensation, but disruption of both simultaneously 

is lethal (Chen-Wu et al., 1988, Padmanabha et al., 1990). Temperature-sensitive alleles of 

CKA1 and CKA2 exhibit distinct phenotypes (Glover, 1998), indicating incomplete 

functional overlap. Knockout of CK2α1 in mice is embryonic lethal (Lou et al., 2008), 

whereas knockout of CK2α2 is not lethal, although male mice with knockouts in CK2α2 

exhibit spermatogenesis defects and are infertile (Escalier et al., 2003, Xu et al., 1999), 

indicating that CK2α1 cannot compensate entirely for the loss of CK2α2. Overexpression 

of a kinase-inactive form of CK2α’ in human osteosarcoma U2-OS cells lead to a dramatic 

reduction of proliferation, which was not seen with overexpression of a kinase-inactive 

form of CK2α (Vilk et al., 1999). These examples show that functional overlap between 

the isoforms is incomplete, with the different forms of the subunits performing distinct 

functions.  

The Drosophila gene encoding the CK2 alpha subunit is capable of rescuing haploid S. 

cerevisiae cells lacking both alpha genes (which would otherwise be inviable), implying 

that function as well as structure of these genes is highly conserved across evolution 

(Padmanabha et al., 1990). 

CK2 is probably the most pleiotropic of all protein kinases, with over 300 substrates 

identified so far (Meggio and Pinna, 2003). Its pleiotropy is reflected in its myriad 

functions: the enzyme has been implicated in a wide array of cellular processes, including 

differentiation, proliferation, survival, translation, apoptosis, transformation and 

tumorigenesis, RNA synthesis, cell cycle progression, cell morphology and polarity, 

cellular responses to stress and to DNA damage, and circadian rhythms (Bibby and 

Litchfield, 2005, Canton and Litchfield, 2006). Some of these functions are highlighted in 

more detail below. 

1.6.2.1 Proliferation and cell cycle regulation 

CK2 plays a significant role in the control of cellular proliferation. The enzyme 

phosphorylates a range of DNA binding proteins, nuclear oncoproteins and transcription 

factors involved in cellular proliferation (topoisomerase II, c-Myb, c-Myc, Max, c-Jun, 

serum response factor, and the p53 tumour suppressor), and is thereby implicated in the 

control of cellular proliferation (Olsten and Litchfield, 2004). Other experimental 
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observations concur: gene disruption of CK2β in Schizosaccharomyces pombe produces a 

slow growth phenotype, indicating a role for the CK2 enzyme in proliferation (Roussou 

and Draetta, 1994); induced expression of catalytically inactive CK2α’ in human 

osteosarcoma U2-OS cells resulted in a significant decrease in proliferation (Vilk et al., 

1999), and growth stimuli cause a rapid translocation of CK2 to the nuclear matrix, which 

has been suggested to be an important feature of early growth control (Yu et al., 2001). 

Tumor and leukemic cells exhibit higher levels of expression of CK2 (Daya-Makin et al., 

1994, Faust et al., 1996, Munstermann et al., 1990). In general, cells exhibiting higher rates 

of proliferation have higher levels of CK2 (Litchfield, 2003, Munstermann et al., 1990). 

CK2 has also been implicated in the regulation of cell division (Bosc et al., 1999). CK2 

interacts with the replication checkpoint protein Pin1 (Messenger et al., 2002, Winkler et 

al., 2000), yeast CK2 is necessary for the G1/S and G2/M cell cycle transitions (Hanna et 

al., 1995, Glover, 1998), and CK2 is required at multiple stages of the mammalian cell 

cycle (Pepperkok et al., 1994). However, the precise role of CK2 in cell-cycle progression 

remains largely unknown (Oh et al., 2007). 

1.6.2.2 Transcription 

Several studies analysing the substrates or interacting proteins of CK2 have highlighted the 

predominance of substrates/interactors involved in transcription, chromatin structure, and 

gene expression (Ackermann et al., 2001) (Gyenis and Litchfield, 2008, Meggio and Pinna, 

2003, Poole et al., 2005), implicating regulation of transcription as one of the major roles 

of the enzyme. Knockout of the gene coding for CK2α1 in mice resulted in the reduced 

abundance of a number of mRNAs (Lou et al., 2008). Substrates of CK2 include subunits 

of all three classes of RNA polymerases (Glover, 1998), for example, CK2 associates with 

and activates the TATA binding protein of TFIIIB, a step which is necessary for RNA 

polymerase III transcription (Ghavidel and Schultz, 2001), and CK2 regulates RNA 

polymerase I transcription re-initiation by stabilizing the interaction between the associated 

factors SL1 and UBF (Lin et al., 2006). Analyses of CK2 null mutants in yeast implicate 

CK2 in chromatin remodelling (Barz et al., 2003). CK2 associates with key molecules 

involved in translation initiation, such as eukaryotic translation initiation factors 5 (eIF5) 

(Homma et al., 2005) and 2 (eIF2) (Gil et al., 1996, Llorens et al., 2003); and with key 

molecules involved in elongation, such as transcription elongation factor-1 (Elf1) (Prather 

et al., 2005). A recent study using oligonucleotide array chips to examine the effects of 

functional deletion of the different subunits of CK2 on global gene transcription in yeast 

(Ackermann et al., 2001) demonstrated that CK2 has a distinct role in the control of gene 
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transcription, with 118 genes affected with a functional knockout of CK2α1, 57 with 

CK2α2, and 54 with a double knockout of the beta genes. Thus there are distinct functional 

differences in the catalytic isoforms in gene targeting, and the beta subunits also have a 

role in the control of transcription.  

1.6.2.3 Apoptosis 

CK2 has been widely reported to have a role in apoptosis (Ahmed et al., 2002, Litchfield, 

2003). CK2 inhibitors have been reported to induce apoptosis (Faust et al., 2000, Ravi and 

Bedi, 2002, Ruzzene et al., 2002, Fan et al., 2008), and an increase in expression of CK2 is 

protective against drug-induced apoptosis (Guo et al., 2001). CK2 inhibits apoptosis and 

controls caspase activity following DNA damage (Yamane and Kinsella, 2005a). The 

consensus target sequences for CK2 and caspases are similar, suggesting that CK2 may 

achieve its antiapoptotic role by phosphorylating caspase cleavage sites and therefore 

inhibiting the cleavage of important cellular proteins (Ruzzene et al., 2002, Litchfield, 

2003, Ahmed et al., 2002). Supporting evidence is provided by proteins such as Bid, Max 

and HS1, which are phosphorylated by CK2 and as a result are protected from caspase-

mediated cleavage (Pinna, 2002). 

1.6.2.4 Cellular response to stress 

CK2 is involved in cellular responses to a number of different stresses, such as ionizing 

radiation, heat shock, hypoxia, and DNA damage. CK2 participates in inhibition of 

apoptotic responses and negatively regulates caspase activity after ionizing radiation and 

DNA damage (Yamane and Kinsella, 2005a, Yamane and Kinsella, 2005b).  

CK2 activates heat-shock factor-1 by phosphorylation, allowing the protein to bind heat 

shock elements in the nucleus (Soncin et al., 2003), thus indicating that CK2 has important 

functions in cellular response to heat shock. CK2 is also relocated after cellular exposure to 

heat stress (Gerber et al., 2000), being trafficked between cytosolic and nuclear 

compartments in response (Davis et al., 2002).  

Hypoxia increases the expression of CK2β, and induces a relocalization of this subunit to 

the plasma membrane (Mottet et al., 2005). It also induces the nuclear translocation of the 

CK2α subunit, and increases CK2 activity, which may be involved in regulating the 

transcriptional activity of HIF-1, a transcription factor playing a major role in cellular 

adaptation to hypoxia (Mottet et al., 2005). 
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CK2 has been implicated in cellular responses to DNA damage (Ghavidel and Schultz, 

2001, Toczyski et al., 1997, Morales and Carpenter, 2004, Loizou et al., 2004). CKB2 of 

yeast has been implicated in adaptation and recovery from the G2 arrest caused by DNA 

damage (Toczyski et al., 1997). CK2 phosphorylates the scaffold protein XRCC1, enabling 

the formation of DNA single strand break repair complexes in vitro, and at sites of 

chromosomal damage (Loizou et al., 2004). CK2 catalytic subunits dissociate from the 

TFIIIB complex in response to DNA damage, repressing RNA polymerase III transcription 

(Ghavidel and Schultz, 2001). 

1.6.2.5 CK2 in erythrocytes 

It has long been known that casein-phosphorylating kinases exist in the cytosolic and 

membrane fractions of erythrocytes (Boivin et al., 1980, Simkowski and Tao, 1980, Tao et 

al., 1980). CK2 has been purified from the erythrocyte cytosol and membranes, and can 

phosphorylate spectrin, ankyrin and adducin, but not actin (Wei and Tao, 1993). Wei and 

Tao (1993) hypothesize a role for CK2 in the regulation of cytoskeletal protein 

interactions. This hypothesis is supported by the finding that CK2 is the major ankyrin 

kinase in chicken erythroid cells, and regulates the ability of ankyrin to bind to spectrin 

(Ghosh et al., 2002). 

The COP9 signalosome is a multi-subunit conserved protein complex involved in the 

control of ubiquitin-proteasome-mediated protein degradation (Wei and Deng, 2003). In 

erythrocytes, CK2 associates with the COP9 signalosome, potentially to regulate ubiquitin-

conjugate formation (Uhle et al., 2003). 

1.6.2.6 Function of the CK2β  subunit in the tetramer 

The various roles of the CK2β subunit have been reviewed recently (Litchfield, 2003, 

Bibby and Litchfield, 2005). Although not absolute regulators of CK2 activity in a manner 

analogous to Protein Kinase A, the CK2β subunits have important roles in the assembly of 

CK2, in enhancing the catalytic activity and stability of the catalytic units, and in 

modulating the substrate specificity of CK2 (Litchfield, 2003). Dimers of beta subunits are 

a necessary precursor to CK2 holoenzyme formation (Luscher and Litchfield, 1994), as 

outlined above in section 1.6.1. CK2β can enhance the catalytic activity of alpha by 

between 4 and 10 fold (Romero-Oliva et al., 2003, Bidwai et al., 1994, Bodenbach et al., 

1994). The activity towards the synthetic peptide RRDDDSDDD is stimulated by a factor 

of four by the CK2β subunit (Boldyreff et al., 1994b). The CK2β subunit can decrease the 
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activity of CK2α towards some substrates, for example, calmodulin (Marin et al., 1999a). 

However, these stimulatory and inhibitory effects of the beta subunit are strongly 

dependent on the salt concentration and the presence of polyamines or polybasic peptides 

(Pinna and Meggio, 1997), and as a result, the CK2β subunit has been termed “an 

environmental- and substrate-dependent modulator of CK2α activity rather than an on-off 

switch” (Niefind et al., 2001). The two main ways in which the CK2β subunit modulates 

the activity of CK2 are through its role as a substrate-docking site, and through interaction 

with regulatory proteins (Bibby and Litchfield, 2005). A number of CK2β-dependent 

interacting partners of CK2 have been identified (Bibby and Litchfield, 2005). For 

example, topoisomerase II and p53 depend on interactions with CK2β in order to be 

phosphorylated by CK2 (Appel et al., 1995, Bojanowski et al., 1993). Regulatory proteins 

can exert their effect on CK2 substrate specificity through their interaction with CK2β, one 

example being FGF-2, which stimulates the in vitro activity of CK2 towards nucleolin 

through its interaction with CK2β (Bonnet et al., 1996). The CK2β units have a role in the 

localisation of the kinase, mediating the association of the CK2 holoenzyme with the 

plasma membrane (Leroy et al., 1999, Sarrouilhe et al., 1998), and are necessary for its 

export as an ectokinase (Rodriguez et al., 2005, Rodriguez et al., 2008). 

1.6.2.7 CK2-independent functions of the alpha and beta subunits  

In addition to having many and varied roles as part of the CK2 heterotetramer, the catalytic 

and regulatory subunits have CK2-independent functions. Free populations of both 

subunits have been detected, in locations where the other subunit is absent (Filhol et al., 

2003, Guerra et al., 1999, Krek et al., 1992, Salinas et al., 2006, Faust et al., 2001). Two 

recent studies of protein complexes in the yeast proteome found that the catalytic and 

regulatory CK2 subunits show incomplete overlap, with all four (yeast has two CK2α and 

two CK2β genes) found in some multi-protein complexes, but only one, two or three of the 

subunits found in other protein complexes (Bibby and Litchfield, 2005, Gavin et al., 2002, 

Ho et al., 2002). The independent functions of the beta subunit have been recently 

reviewed (Bibby and Litchfield, 2005). CK2β bound to over 30 different proteins in yeast 

two-hybrid studies, and in the case of the PKs c-Mos, A-Raf and Chk1, the region of CK2β 

responsible for interaction is the same stretch which binds CK2α (Olsten and Litchfield, 

2004), indicating that only the uncomplexed beta units are able to interact with these 

kinases. CK2β has been shown to enhance the activity of A-Raf and Chk1, and reduce the 

activity of c-Mos (Chen et al., 1997, Guerra et al., 2003, Hagemann et al., 1997). It has 

been speculated that CK2β could be acting as a substrate docking site and transducer of 
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regulatory signals for these kinases in an analogous manner to the way in which it acts in 

the CK2 complex (Bibby and Litchfield, 2005). In vitro, CK2β interacts with the cell-cycle 

regulator PK Wee1, removing its inhibition of the kinase CDK1, which suggests that the 

independent CK2β subunit may function in the regulation of protein kinases involved in 

cell-cycle progression (Olsen and Guerra, 2008). CK2α as a free subunit is able to 

phosphorylate calmodulin (Benaim and Villalobo, 2002, Marin et al., 1999a, Meggio et al., 

1987), but tetrameric CK2 is not, implying that CK2α may have CK2-independent 

substrates and functions. Interactions between CK2 and CK2-interacting proteins are often 

mediated by just one of the subunit types (Olsen and Guerra, 2008, Gyenis and Litchfield, 

2008), and thus these interactions may also occur with the free subunits.  

1.6.3 Regulation 

CK2 is independent of second messenger small molecules such as calcium, lipids and 

cyclic nucleotides that act as activators for many cellular enzymes including some PKs 

(Olsten and Litchfield, 2004). The natural assumption given the pleiotropy of CK2 and its 

importance in myriad cellular functions is that it would be tightly regulated. The catalytic 

subunit of CK2 is associated with regulatory subunits, but unlike other heterooligomeric 

kinases such as Protein Kinase A and the cyclin-dependent kinases, both the CK2 

holoenzyme and its free catalytic subunits are constitutively active in vitro (Olsten and 

Litchfield, 2004).  

However, CK2 is not unregulated: there is evidence for regulation by expression and 

assembly, phosphorylation, interactions with small molecules and other proteins, and by 

localisation.  

1.6.3.1 Expression and assembly 

Given the importance of the interaction of the alpha and beta subunits for the function of 

the CK2 holoenzyme, and the emerging picture of the CK2-independent functions of the 

two subunits, one obvious area of regulation for the kinase is in the relative proportions of 

CK2α and CK2β subunits, and the assembly and disassembly of the tetramer. Studies have 

indicated that there may be imbalances in the levels of CK2α and CK2β subunits within 

certain cells (Guerra et al., 1999, Stalter et al., 1994), and that beta subunits are synthesized 

in excess of alpha units, and the uncomplexed units are rapidly degraded (Luscher and 

Litchfield, 1994). The subunits may cross-regulate: loss of CK2α1 in mouse embryos leads 
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to a reduction in levels of CK2β (Lou et al., 2008). This is also observed when CK2α 

levels in cells are reduced using siRNA (Seldin et al., 2005). However, all CK2 subunits 

are expressed throughout the cell cycle (Bosc et al., 1999). 

CK2 substrate preferences and activity can be modulated by the presence of the beta 

subunit, as outlined above, and there are many reports of the independent existence of CK2 

subunits (Filhol et al., 2003, Ghavidel and Schultz, 2001, Guerra et al., 1999, Krek et al., 

1992, Martel et al., 2001). Together with the observations that the tetrameric form of CK2 

has an area of interaction much more in keeping with that of a non-obligate complex than a 

permanent association, these data indicate that regulation of CK2 may occur through the 

regulated assembly and disassembly of the CK2 tetramer. For example, on DNA damage, 

there is a decrease in the amount of CK2, and the subunits dissociate (Ghavidel and 

Schultz, 2001). The localisation of the holoenzyme and that of the individual subunits is 

thought to play a large part in the regulation of the enzyme. 

1.6.3.2 Localisation 

Localisation is important for the function of CK2 (Lorenz et al., 1993). Although 

predominantly nuclear (Krek et al., 1992, Huh et al., 2003), CK2 has also been shown to be 

localised to the cytoplasm, and a number of organelles such as the golgi, endoplasmic 

reticulum and ribosomes, and in the chloroplasts of plants (Salinas et al., 2006, Faust et al., 

2001, Issinger, 1977). CK2α is also exported as an ectokinase in human cells (Walter et 

al., 1994, Rodriguez et al., 2005, Rodriguez et al., 2008) in epithelial cells, neutrophils, 

platelets and endothelial cells (Seger et al., 2001), and phosphorylates extracellular 

Vitronectin, possibly regulating the adhesion of cells to the extracellular matrix (Seger et 

al., 2001, Stepanova et al., 2002), C9 complement, regulating the control of cell lysis by 

this factor (Bohana-Kashtan et al., 2005), and collagen XVII receptor (Zimina et al., 2007). 

There is abundant evidence for the regulation of CK2 via its localisation, with CK2 

altering its subcellular location in response to a range of stimuli. Growth stimuli cause a 

rapid translocation of CK2 to the nuclear matrix, which has been suggested to be an 

important feature of early growth control (Yu et al., 2001); CK2 may also be targeted to 

the nuclear matrix in a cell-cycle dependent manner (Wang et al., 2003); CK2 is trafficked 

between cytosolic and nuclear compartments in response to heat shock (Davis et al., 2002, 

Gerber et al., 2000); and hypoxia induces a relocalization of CK2β to the plasma 

membrane and the nuclear translocation of the CK2α subunit (Mottet et al., 2005). Under 

fluorescence imaging of live cells, the different subunits appear to exhibit different nuclear 

localisation dynamics, which, given the alterations to CK2α activity and specificity that 
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CK2β can make, indicates that independent localisation of the CK2 subunits may be an 

important mechanism of regulation (Filhol et al., 2003, Martel et al., 2001). The 

subcellular location of the CK2 holoenzyme and the individual CK2 subunits will also be 

likely to have an impact on their availability to other forms of regulation, and it is 

postulated that there may be many distinct, independently-regulated subpopulations of 

CK2 within the cell (Litchfield, 2003, Olsten and Litchfield, 2004).  

1.6.3.3 Phosphorylation 

Phosphorylation is not an absolute requirement for the activation of CK2, as it is, for 

example, for the MAP kinases (Litchfield, 2003). The autophosphorylation of CK2β at 

Ser2 and Ser3 (Boldyreff et al., 1993a, Litchfield et al., 1991) serves to enhance the 

stability of the subunit (Zhang et al., 2002) and therefore of the tetramer. This may regulate 

ubiquitination and proteasome-dependent degradation of CK2β (Zhang et al., 2002), and 

perhaps the association of tetramers into filaments of CK2 (Olsten and Litchfield, 2004), 

which have been proposed as inactive forms of CK2. The human CK2β is phosphorylated 

at S209 in a cell-cycle dependent manner by p34cdc2 (Litchfield et al., 1995, Litchfield et 

al., 1991, Meggio et al., 1995), although the function of this phosphorylation is unknown. 

CK2α is also phosphorylated by p34cdc2 (but alpha prime is not) in mitotic cells, indicating 

that the CK2α isoforms are differentially regulated during mitosis (Bosc et al., 1999, 

Litchfield et al., 1992). When CK2α is phosphorylated by p34cdc2, it interacts with Pin1, 

and this interaction inhibits the phosphorylation of Topoisomerase II by CK2 (Messenger 

et al., 2002). This is an example of how the phosphorylation of a specific target may be 

regulated, by a phosphorylation-specific interaction.  

There is evidence that HsCK2α can undergo autophosphorylation at tyrosine 182 in vitro 

(Donella-Deana et al., 2001), but tyrosine phosphorylation of CK2 has not been detected in 

intact cells, and the physiological significance of this observation is unknown (Olsten and 

Litchfield, 2004). 

1.6.3.4 Interactions with small molecules 

The activity of CK2 is not absolutely regulated by calcium, lipids and cyclic nucleotides, 

and the enzyme has therefore traditionally been classed as a messenger-independent 

kinase. However, it is possible that small molecules do make a contribution to its 

regulation. It is well established that CK2 is inhibited by negatively charged compounds 

such as heparin, and stimulated by positively charged compounds such as polyamines in 
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vitro (Tuazon and Traugh, 1991, Boldyreff et al., 1993b, Meggio et al., 1992b). There is 

also some evidence for the role of polyamines in activating CK2 in vivo (Olsten and 

Litchfield, 2004). Recent studies indicate that phosphoinositides can activate CK2 whose 

activity has been lowered by a negatively charged inhibitor (Solyakov et al., 2004). 

1.6.3.5 Interactions with proteins 

The essential role of protein-protein interactions in many signal transduction events has 

been reviewed elsewhere (Pawson and Nash, 2000, Pawson and Scott, 1997). CK2 has 

multiple substrates in different cellular locations, but it is not clear how different 

subpopulations of CK2 are targeted to different subcellular locations. Protein-protein 

interactions might be responsible. A subset of the proteins that interact with CK2 could be 

potential adaptor/scaffold proteins, such as tubulin, FAF-1, and CKIP-1 (Bosc et al., 2000, 

Kusk et al., 1999, Meggio and Pinna, 2003, Olsten and Litchfield, 2004).  

Protein partners of CK2 can be involved in several processes: (1) enzyme-substrate 

interactions (the majority of interactions fall into this category); (2) direct modulation of 

the catalytic activity of CK2, (e.g. FGF-1 and -2, HSP90, and cdc37); (3) indirect 

regulation of CK2 by acting as adaptors/scaffolds/targeting proteins, for example, CKIP-1 

targets CK2α to the plasma membrane (Olsten et al., 2004); (4) disruption/enhancement of 

CK2 activity towards specific substrates (e.g. Pin1 interacts with CK2 in a 

phosphorylation-dependent manner to inhibit the phosphorylation of topoisomerase II 

(Messenger et al., 2002), and the FACT complex interacts with CK2, facilitating the 

phosphorylation of p53 (Keller et al., 2001)).  

1.6.4 Plasmodium falciparum CK2 

Phylogenetic analysis of plasmodial ePKs (Ward et al., 2004, Anamika et al., 2005) 

identified sequence PF11_0096 (hereafter called PfCK2α) as a CK2α orthologue (see Fig. 

1-11), and PF11_0048 and PF13_0232 as putative CK2 beta subunits (hereafter referred to 

as PfCK2β1 and PfCK2β2, respectively). 
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Figure 1-11 PfCK2α clusters with human and yeast CK2α  on a three-species kinase tree 
A portion of a three-species kinase tree of the CMGC group of kinases from P. falciparum, 
human and yeast is shown. The P. falciparum kinases are shown in red, the human kinases 
in black and the yeast kinases in blue. Branches with bootstrap values of over 70 are shown 
in red, and those with bootstrap values over 40 are shown in blue. Figure taken from (Ward 
et al., 2004); reproduced with permission. 

Genome-wide analyses of transcription reveal that all three subunits are expressed 

throughout the asexual erythrocytic stage of the parasite lifecycle, in gametocytes and in 

sporozoites (i.e. in all stages for which gene expression data are available) (Bozdech et al., 

2003, Le Roch et al., 2003). Proteomics data are available for PfCK2α and PfCK2β1, and 

indicate that both proteins are present in the asexual erythrocytic stages and gametocytes, 

and that the PfCK2α subunit is also present in sporozoites (Florens et al., 2004, Florens et 

al., 2002). No proteomics data are currently available for PfCK2β2. PfCK2α encodes a 

predicted protein of 335 amino acids, PfCK2β1 a predicted protein of 245 amino acids, and 

PfCK2β2 a predicted protein of 385 amino acids. 

1.7 Aims 

• Determining whether the three PfCK2 subunits are required for the completion of 

the parasite lifecycle, through reverse genetics approaches; a major objective is the 

validation of PfCK2 as a potential drug target 

• Assessing whether the two PfCK2β subunits can functionally compensate for each 

other, by reverse genetics approaches 

• Determining whether PfCK2α can be expressed in an active form as a recombinant 

enzyme, and assessing the impacts of the PfCK2β subunits on substrate specificity 

and activity of the kinase 

• Characterisation of the PfCK2 subunits at the biochemical and enzymological 

levels  
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• Investigating the substrates of the enzyme and the effects of small molecule 

inhibitors on enzymatic activity 

Three results chapters cover the data gathered during the period of study: reverse genetics 

studies are covered in Chapter 3, data pertaining to PfCK2α is covered in Chapter 4, and 

data pertaining to the PfCK2β subunits in Chapter 5. Discussion of the results will take 

place primarily in the context of the results chapters, with a general discussion and 

conclusion chapter (Chapter 6) at the end. 
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2 Materials and Methods 

2.1 Companies from which chemicals and kits were 

purchased 

BDH Saponin; Giemsa stain 
Biogenes All custom antibodies 
BioRad 10 X TG-SDS; Coomassie Brilliant Blue R-250; Blocking Grade 

Blocker Non-Fat Dry Milk; 30% Acrylamide/Bis Solution 
Blood transfusion 
service 

Human erythrocytes 

BOC 5% CO2 gas 
Calbiochem Blasticidine-S-HCl 
Eurogentec SmartLadder DNA ladder 
Fermentas PageRuler Prestained protein ladder (#5M0671) 
Fisher Scientific Ampicillin 
GE Healthcare Gene Images Random Prime DNA Labelling Kit (RPN 3520); 

Gene Images CDP-Star Detection Kit (RPN 3555); Hybond-N+ 
Positively Charged Nylon Transfer Membrane; Amersham 
Hyperfilm ECL; pGEX-4T-3 expression plasmid 

Gibco RPMI 1640, GlutaMAX-1 
Invitrogen Custom oligonucleotides; Ultrapure 10XTAE buffer; Luria Broth 

Base; Pfx Platinum polymerase; T4 DNA Ligase; Agarose 
(electrophoresis grade) 

Jacobus 
pharmaceuticals 

WR99210 

Kodak Medical X-Ray film 
Millipore Montage Life Science Kits DNA Gel Extraction Kit  
New England Biolabs All restriction endonucleases; Protein marker, broad range (2-

212kDa) P7702S 
Promega Wizard PCR Preps DNA Purification System; pGEM-T Easy 

Vector System I (A1360); Kinase-GLO Luminescent Kinase 
Assay kit 

Qiagen QIAprep Spin Miniprep Kit; Plasmid Maxi kit; QIAamp DNA 
Minikit; Ni-NTA agarose; pQE30 expression vector 

Roche Complete protease inhibitor tablets 
Sigma All chemicals unless otherwise stated  
TaKaRa Bio Inc. Ex Taq polymerase 
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2.2 Biological and chemical reagents 

2.2.1 Solutions and buffers 

Electrophoresis 

6x DNA loading buffer: 0.25% Bromophenol Blue, 0.25% Xylene Cyanol FF, 30% 

glycerol 

4x Laemmli buffer: 40% glycerol, 2% SDS, 20% BME, 250mM Tris-HCl pH 6.9  

1xTAE: Diluted from 10x stock (Invitrogen) in ddH2O to give 40mM Tris-Acetate, 1mM 

EDTA 

1xTG-SDS: Diluted from 10x stock (BioRad) in ddH2O to give 25mM Tris, 192mM 

Glycine, 0.1% SDS, pH 8.3 

Coomassie stain: 5g/L Coomassie Brilliant Blue stain (BioRad), 50% ethanol, 10% acetic 

acid 

Coomassie destain: 45% Methanol, 10% Acetic Acid 

Western blotting 

Towbin buffer: 10x TG stock (BioRad) diluted 1/10 in methanol/ddH2O to give 25mM 

Tris pH8.3, 192mM Glycine, 20% methanol  

PBS: 8g/L NaCl, 40mg/L KCl, 1.15g/L Na2HPO4, 328mg/L KH2PO4, 0.1g/L CaCl2, 0.1g/L 

MgCl2, pH7.2, in ddH2O 

PBST: PBS with 0.05-0.3% Tween20 (Sigma) 

Southern blotting 

Buffer A: 100mM Tris/HCl, 300mM NaCl, pH 9.5 

1xSSC : 15mM Tri-sodium citrate, 150mM NaCl 
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Depurination solution: 0.25M NaCl 

Denaturation solution: 1.5M NaCl, 0.5M NaOH 

Neutralisation solution: 1.5M NaCl, 0.5M Tris HCl pH7.5 

Bacterial culture 

LB media: 10g/L Tryptone (Oxoid L.42), 5g/L Yeast Extract (Oxoid L.21), 10g/L NaCl, 

pH7.5, in ddH2O 

LB agar: 15g/L Tayo agar, 10g/L Tryptone (Oxoid L.42), 5g/L Yeast Extract (Oxoid L.21), 

10g/L NaCl, pH7.5, in ddH2O 

Ampicillin: 100mg/ml in ddH2O, stored at -20oC 

Kanamycin: 10mg/ml in ddH2O, stored at -20oC 

Tetracyclin: 5mg/ml in ethanol, stored at -20oC 

Chloramphenicol: 34mg/ml in ethanol, stored at -20oC  

Plasmodium culture and protein extract preparation 

Complete RPMI: 15.89g/L RPMI 1640, 0.05g/L hypoxanthine, 10ml/L GlutaMAX-1, 5g/L 

Albumax, 2g/L NaHCO3, 0.01g/L Gentamycin sulphate, pH 7.4  

Saponin solution: 1.5g/L saponin in PBS 

Sorbitol solution: 5% sorbitol (w/v) in ddH2O 

Giemsa staining solution: 10% Giemsa, 0.3% Na2HPO4 (w/v), 0.06% KH2PO4 (w/v) in 

ddH2O 

Cytomix buffer: 120mM KCl, 0.15mM CaCl2, 2mM EGTA, 5mM MgCl2, 10mM 

K2HPO4/KH2PO4, 25mM HEPES 

Freezing solution: 0.583g/L sorbitol, 0.125g/L NaCl, 28% glycerol 
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Defrosting solutions: A 12% NaCl (w/v); B 1.6% NaCl (w/v); C 0.2% Dextrose (w/v), 

0.9% NaCl (w/v) 

RIPA buffer: 30mM Tris pH8, 150mM NaCl, 20mM MgCl2, 1mM EDTA, 0.5% Triton X-

100, 1% NP-40, 10mM β-glycerophosphate, 10mM NaF, 1mM PMSF, 10mM 

benzamidine hydrate, 1x Roche Complete protease inhibitors 

2.2.2 E. coli strains 

XL10-Gold (Stratagene) TetrΔ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 

recA1 gyrA96 relA1 lac Hte [F´ proAB lacIqZΔM15 Tn10 (Tetr) Amy Camr] 

BL21 Gold (Stratagene) E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal endA 

BL21 Gold (DE3) (Stratagene) E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal λ(DE3) 

endA Hte 

BL21 Gold (DE3)pLysS (Stratagene) E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal 

λ(DE3) endA Hte [pLysS Camr] 

SG13009[pREP4] (Qiagen) E. coli B F- his pyrD Δlon-100 rpsL 

Rosetta2(DE3)pLysS (Novagen) E. coli B F– ompT hsdSB(rB– mB–) gal dcm (DE3) 

pLysSRARE2 

2.2.3 Oligonucleotide primers 

The oligonucleotide primers used in this study (custom synthesized by Invitrogen) are 

listed below (Table 2-1). Oligonucleotide primers were designed for site-directed 

mutagenesis, colony screening PCR, and the amplification of genes for recombinant 

protein expression and reverse genetics studies. 
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Table 2-1 Oligonucleotide primers used in this study 
Restriction endonuclease recognition sites are underlined. 

CK2aForBam GGGGGGATCCATGTCGGTTAGCTCAATTAATAAA 
CK2aRevSal GGGGGTCGACTTATGATTCCTCACGGACTTCTC 
CK2b1ForEco GGGGGAATTCATGGAAAATAGTGATTCGAATAAA

GAC 
CK2b1RevSal GGGGGTCGACTTACGTTTCAGAAATTTGTAGTTCT

TCC 
CK2b2ForBam GGGGGGATCCATGGAGTTTGTTTCAAACGATGAA

AG 
CK2b2RevSal GGGGGTCGACTCATTGACACTCTTCAGAGGATTC

CG 
CK2b2RSpe GGGGACTAGTTCATTGACACTCTTCAGAGGATTC

CG 
CK2b1FBgl GGGGAGATCTATGGAAAATAGTGATTCGAATAAA

GAC 
CK2b2shortForBam GGGGGGATCCATGGAAGCAACAGTGTCTTGGATT

G 
CK2a3primeRev GTCTGATATATCAAAGATAAGC 
CK2b13primeRev GCATTAAAATATGAGATGTACAC 
CK2b23primeRev CAAACTATGTCAACTGTTTTGGG 
CK2a5primeFor GAGACAGGAATAATG 
CK2b15primeF CTTAAGTGTTAATCGG 
CK2b25primeF GGCATAGGAATATTTAAC 
CK2aK72MFor GTGCTATTATGGTATTAAAGCC 
CK2aK72MRev GGCTTTAATACCATAATAGCAC 
I178ACK2aF CAAATTAGATTAGCTGATTGGGGTC 
I178ACK2aR GACCCCAATCAGCTAATCTAATTTG 
F117ACK2aRev CTATATTGTTAATATATTCAGCTATTAAAGATGG 
F117ACK2aFor CCATCTTTAATAGCTGAATATATTAACAATATAG 
CK2aKOForBam GGGGGGATCCAGTGAGGTGTTTAATGG 
CK2aKORevNot GGGGGCGGCCGCACCTTTATAATATCTACT 
CK2b1KOForBgl GGGGAGATCTTAAGAAAATAGTGATTCGAATAAA

GAC 
CK2b1KORevNot GGGGGCGGCCGCATATACATGAACTTTGGC 
CK2b2KOForBam GGGGGGATCCTAAGATGAAAGTGCAGATGACATA

ATC 
CK2b2KORevNot GGGGGCGGCCGCATATAATAATGGGCTTAAAAAT

TTAG 
CK2aTAGForPst GGGGCTGCAGGCATAGAGATGTTAAACC 
CK2aTAGRevBam GGGGGGATCCTGATTCCTCACGGACTTCTC 
CK2b1TAGForPst GGGGCTGCAGGCTGGGGATGCACCTGAAG 
CK2b1TAGRevBglII GGGGAGATCTCGTTTCAGAAATTTGTAG 
CK2b2TAGForPst GGGGCTGCAGGTTCCTCATTTTAAGAAGC 
CK2b2TAGRevBam GGGGGGATCCTTGACACTCTTCAGAGGATTCC 
pCAMBSDFor TATTCCTAATCATGTAAATCTTAAA 
pCAMBSDRev CAATTAACCCTCACTAAAG 
T7 GCTAGTTATTGCTCAGCGG 
SP6 ATTTAGGTGACACTATAG 
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2.2.4 Antibodies 

Primary and secondary antibodies and their dilutions for western blotting are shown in 

Tables 2-2 to 2-4. Antibodies used in this study were bought from commercial suppliers, or 

commissioned from a custom antibody supplier (BioGenes). Pre-immune sera from the 

rabbits were used as negative controls for the custom antibodies, and used at 1:500 

dilution.  

Table 2-2 Custom affinity-purified primary antibodies from BioGenes (raised in rabbit) 
Antibody  Peptide against which 

antibody was raised 
Antibody stock 
concentration 

Dilution for 
western blotting 

Anti-PfCK2α ADVNIHKPKEYYDY-
amide 

0.827 mg/ml 1:200 

Anti-PfCK2β1  DSNKDLQDSKSDKS-
amide 

0.27 mg/ml 1:500 

Anti-PfCK2β2 DEINRDSEEMYKNK-
amide 

0.648 mg/ml 1:750-1:1000 

 
 
Table 2-3 Commercial primary antibodies 
Antibody (animal species 
raised in) 

Dilution for western blotting Source 

Anti-His-tag (rabbit) 1:1000 Santa Cruz Biotechnology 
Anti-HA (mouse) 1:1000 Roche 
Anti-GST-tag (rabbit) 1:10,000 Sigma 
 
 

Table 2-4 Secondary antibodies 
Antibody (animal species 
raised in) 

Dilution for western blotting Source 

Anti-rabbit IgG (whole 
molecule)-Peroxidase (Goat) 

1:10,000 Sigma 

Anti-mouse IgG (whole 
molecule)-Peroxidase 
(Sheep) 

1:10,000 Sigma 

 
 

2.3 Plasmodium falciparum cell culture techniques 

2.3.1 Malaria parasite culture 

Cultures of the P. falciparum strain 3D7A (Walliker et al., 1987) were maintained 

according to standard methods (Trager and Jensen, 1976). Parasites were incubated at 

37°C in a humidified atmosphere of 5% CO2 in 5% (v/v) human erythrocytes in complete 
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RPMI 1640 medium buffered with 25mM HEPES and supplemented with 25mM sodium 

bicarbonate, 2mM L-glutamine, 300mM hypoxanthine, 10mg/L gentamycin and 5g/L 

albumax II (Sigma). Cultures were seeded at a 5% haematocrit and maintained at a 

parasitaemia of 1-10% with daily changes of medium. Smears were fixed in methanol then 

stained with Giemsa staining solution. Smears were viewed under a light microscope with 

an objective magnification of 100, and parasitaemia (percentage of infected erythrocytes) 

was determined. 

2.3.2 Plasmids for parasite transfection 

To produce parasite lines expressing proteins with 3’ haemaglutinin (HA) tags, the plasmid 

pCAM-BSD-HA (as described in Dorin-Semblat 2007 (Dorin-Semblat et al., 2007), except 

with the Pfmap-2 sequence removed; Fig. 2-1) was used. The pCAM-BSD-HA plasmid is 

derived from the pCAM-BSD plasmid (see Fig. 2-2) of Sidhu and colleagues (Sidhu et al., 

2005), through the addition of a sequence encoding a haemaglutinin (HA) epitope allowing 

the in-frame insertion of any sequence of interest, and resulting in C-terminal tagging with 

the HA epitope (Jean Halbert, this laboratory). The original pCAM-BSD plasmid was used 

for gene disruption experiments in the present study. Both plasmids (pCAM-BSD and 

pCAM-BSD-HA) contain a blasticidine-S-deaminase expression cassette, conferring 

resistance to blasticidine and allowing for selection in P. falciparum.  

 
Figure 2-1 Map of the pCAM-BSD-HA plasmid 
This figure shows the main features of the vector pCAM-BSD-HA. The plasmid contains an 
ampicillin cassette for selection in E. coli, and a BSD cassette for selection in P. falciparum. 
The 3’ end of a gene can be inserted between the PstI and BamHI sites, in frame with a C-
terminal HA tag, which is followed by the 3’ untranslated region of P. berghei dihydrofolate 
reductase (Pb DHFR). Figure produced using Vector NTI software (Invitrogen). 
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Figure 2-2 Map of the pCAM-BSD plasmid 
This figure shows the main features of the vector pCAM-BSD. The plasmid contains an 
ampicillin cassette for selection in E. coli, and a BSD cassette for selection in P. falciparum. 
The truncated gene fragment can be inserted between the BamHI and NotI restriction sites. 
Figure produced using Vector NTI software (Invitrogen). 

Complementation plasmids for use in the reverse genetics studies were produced by 

Gateway cloning technology (Invitrogen), which is based on the bacteriophage lambda 

site-specific recombination system. The complementation plasmids allow the episomal 

expression of a gene in the P. falciparum parasite. The entry plasmid pHGB and the 

destination plasmid pCHD-1/2 (see Fig. 2-3), with the selectable marker DHFR, were used 

in this study (Tonkin et al., 2004). PfCK2α, PfCK2β1, PfCK2β2 and 

F117AI178APfCK2α were cloned into the plasmid pHGB using the restriction 

endonucleases BamHI (or BglII which generates complementary sticky ends to BamHI) 

and NotI, placing the genes in an expression cassette under the control of the P. falciparum 

Hsp86 promoter. The expression cassette of pHGB, containing the gene of interest, was 

then transferred into pCHD-1/2 by site-specific recombination of the attL and attR sites, 

via a LR clonase reaction, carried out according to Invitrogen instructions.  
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Figure 2-3 Maps of pHGB and pCHD-1/2 plasmids 
This figure displays the important features of the SingleSite gateway vectors described by 
(Tonkin et al., 2004). The entry vector, pHGB, contains a kanamycin resistance cassette 
(KanR), for selection in E. coli, and an expression cassette flanked by the attL1 and attL2 
sites. The gene of interest is cloned into the expression cassette, replacing the green 
fluorescent protein (GFP) coding sequence. The expression cassette is under the control of 
the P. falciparum heat shock protein 86 promoter (PfHsp86 5’), and the P. berghei 
dihydrofolate reductase/thymilidate synthase 3’ untranslated region (PbDT 3’). The 
destination vector pCHD-1/2 contains an ampicillin resistance cassette (AmpR) for selection 
in E. coli, and the attR1 and attR2 sites. It also contains the variant form of the human 
dihydrofolate reductase gene (hDHFR), which confers resistance to the drug WR99210 
(Fidock and Wellems, 1997), for selection in P. falciparum. The hDHFR gene is under the 
control of the P. falciparum calmodulin promoter (PfCAM 5’) and the P. falciparum histidine-
rich protein 2 3’ untranslated region (PfHrpII 3’). The pCHD-1/2 plasmid has a selection 
cassette between the attR1 and attR2 sites, with a chloramphenicol resistance cassette 
(CamR) and a ccdB death gene, a negative selectable marker for recombination. Upon 
recombination, the expression cassette of pHGB replaces the selection cassette of pCHD-
1/2, and the ccdB gene is lost, allowing retention of the recombined plasmid in bacterial 
strains susceptible to the effects of the ccdB gene. Figure adapted from (Tonkin et al., 
2004). 

All plasmids were sequenced (see 2.5.9) prior to use for transfection of P. falciparum, and 

produced in sufficient quantity using the Plasmid Maxi kit (Qiagen; see 2.5.6). 

2.3.3 Parasite transfection 

Asexual blood stage parasites were synchronized by sorbitol treatment (Lambros and 

Vanderberg, 1979) to obtain a majority of ring stage parasites. Forty-eight hours later, ring 

stage parasites were transfected by electroporation with 100µg of purified plasmid DNA 

(produced by maxiprep, see 2.5.6) in cytomix buffer as described (Fidock et al., 2000a, 

Fidock and Wellems, 1997). Briefly, parasites from a 4ml ring stage culture were washed 
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in sterile cytomix buffer and resuspended in cytomix buffer containing 100µg of plasmid 

DNA. The culture was transferred to an electroporation cuvette (0.2cm) and electroporated 

at 0.31kV, 950µF and infinity resistance. Complete medium was added immediately, and 

the contents of the cuvette transferred to a prewarmed tissue culture flask. Complete 

medium and blood were added to give a 5ml culture of 5% haematocrit. Lysis products 

were removed by a change of medium 4 hours post-transfection. Transformed parasites 

were selected by inclusion of blasticidine-S-HCl in the culture medium from two days 

post-transfection at a concentration of 2.5µg/ml, and if appropriate (i.e. if a 

complementation plasmid was also present, see below) 5nM WR99210 was also included 

in the culture medium. Parasites were maintained in this supplemented medium from two 

days post transfection.  

Parasites from transformed populations harbouring chromosomal integration events (as 

determined by PCR analysis) were cloned by limiting dilution. The haematocrit of a 

culture at 3% parasitaemia was determined using a haemocytometer, and the culture was 

diluted in complete culture medium to give 105 cells per millilitre. A range of dilutions in 

complete culture medium with 1% haematocrit was performed, to give 1 infected cell per 

200µl, 666µl or 2ml. 200µl of these dilutions were transferred to each well of a 96-well 

tissue culture plate. After 6 days’ growth the medium was changed and supplemented with 

1% (v/v) erythrocytes and the appropriate drugs to select for transfection. Parasites were 

detected by blood smears, and the contents of parasite-positive wells were bulked up to 

2ml cultures (5% haematocrit) in 12 well plates. These were monitored by blood smears 

and transferred to 5ml cultures in flasks when the parasitaemia reached 1%. 

2.3.4 Saponin lysis of P. falciparum parasites 

Parasite cultures (25ml) to be harvested by saponin lysis were centrifuged for two minutes 

at 4°C and 1300g, the pellet was washed in 30ml PBS (centrifuging as before), and the 

erythrocytes were lysed on ice in 7ml of 0.15% saponin solution by repeated pipetting. 

Forty millilitres of cold PBS was added and the cells centrifuged at 5500g for five minutes 

at 4°C. After two additional washes with PBS, the pellets were stored at -80°C until 

needed. 
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2.3.5 DNA extraction from parasite cultures 

Parasite cultures were saponin-lysed (see 2.3.4), then resuspended in 500µl of cold PBS. 

Proteinase K was added to a final concentration of 150mg/ml, and SDS to a final 

concentration of 2%, and the tubes incubated at 55oC for 2-3 hours. The DNA was 

extracted in an equal volume of Phenol:chloroform:isoamyl alcohol (25:24:1), saturated 

with 10mM Tris pH8 and 1mM EDTA (Sigma). The contents of the tube was gently mixed 

and then centrifuged at 16000g for 5 minutes. The top aqueous layer was transferred to a 

new tube. Once the phenol extraction had been repeated twice more, 0.1 volumes of 3M 

sodium acetate pH5.2 was added, and the DNA precipitated in 2-4 volumes of ethanol at -

20oC for 30 minutes or -70oC for 15 minutes. The tubes were then centrifuged to recover 

the DNA pellet at 16000g for 12-15 minutes, and the pellet resuspended in sterile water.  

2.3.6 Cryopreservation of parasites 

A stock culture of 5-10% parasitaemia was selected, containing a high proportion of ring 

stages. Three to five millilitres were resuspended and centrifuged at 2000rpm (Sigma 4K15 

centrifuge, rotor 11150) for 5 minutes. The supernatant was removed and the volume of the 

cell pellet measured. An equal volume of deep freeze solution (28% glycerol, 3% sorbitol, 

0.65% NaCl) was added and a final volume of 0.2-0.5ml was placed into a cryovial and 

frozen immediately in liquid nitrogen.  

2.3.7 Defrosting parasite stabilates 

Vials of frozen parasites (‘stabilates’) were thawed at room temperature; the parasites were 

then transferred to a sterile 15ml falcon tube and the volume of culture measured. For each 

1ml of thawed culture, 0.2ml of defrosting solution A (12% NaCl) was added. The tube 

was incubated at room temperature for 3 minutes, then 10ml of defrosting solution B (1.6% 

NaCl) were added for each 1ml of thawed culture. The solution was mixed well, then 

centrifuged at 2000rpm (Sigma 4K15 centrifuge, 11150 rotor) for 5 minutes. The 

supernatant was discarded, then for each original 1ml of thawed culture, 10ml of defrosting 

solution C (0.2% dextrose, 0.9%NaCl) was added and mixed by pipetting. After 

centrifugation (2000 rpm 5 minutes), the supernatant was discarded and the cells 

resuspended in 5ml complete medium in a small culture flask, and several drops of fresh 

red blood cells were added.  
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2.4 Bioinformatics 

2.4.1 Multiple sequence alignments 

Alignments of P. falciparum protein sequences and homologues were performed using 

ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html). 

BLAST searches were performed using the NCBI BLAST tools 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Searches for destruction box motifs were performed using the D box finder 

(http://bioinfo2.weizmann.ac.il/~danag/d-box/main.html). 

2.5 Molecular biology methods 

2.5.1 Polymerase Chain Reaction 

The proof-reading polymerase Pfx Platinum (Invitrogen) was used to amplify DNA 

sequences where the fidelity of the amplified sequence to the original sequence was 

important (for example, when amplifying parasite genes for insertion into a bacterial 

expression plasmid), and the non-proof-reading polymerase ex Taq (TaKaRa) was used 

when the size of the amplified sequence was more important than whether any mutations 

might have been introduced into the amplified sequence (for example, when using PCR for 

reverse genetics diagnosis, or colony screening (see 2.5.1.3)). 

2.5.1.1 Pfx Platinum polymerase 

Reactions were set up to contain 0.3mM of each dNTP, 1µM of each oligonucleotide 

primer, 1.25U Pfx Platinum polymerase, 1x Pfx buffer (supplied with the polymerase), 

template DNA, and an oligonucleotide-specific concentration of MgSO4 (1-10mM), in a 

final volume of 25µl. The PCR was performed under the following conditions: 
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Initial denaturation 94oC, 5 minutes 

30 cycles of: 

Denaturation  94oC, 30 seconds 

Annealing  oligonucleotide-specific temperature, usually 55oC, 30 seconds 

Elongation  68oC, 1 minute per kb DNA to be amplified 

Followed by: 

Final elongation 68oC, 10 minutes 

2.5.1.2 ex Taq polymerase 

Reactions were set up to contain 0.2mM of each dNTP, 1µM of each oligonucleotide 

primer, 0.75U ex Taq polymerase (TaKaRa), 1x ex Taq buffer (supplied with the 

polymerase; final MgCl2 concentration: 2mM), and template DNA in a final volume of 

25µl. The PCR was performed under the following conditions: 

Initial denaturation 94oC, 5 minutes 

35 cycles of: 

Denaturation  94oC, 30 seconds 

Annealing  oligonucleotide-specific temperature, 30 seconds 

Elongation  68oC, 1 minute per kb DNA to be amplified 

Followed by: 

Final elongation 68oC, 10 minutes 
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2.5.1.3 Colony-screening PCR 

Bacterial colonies transformed with a ligation mixture (see 2.5.5 and 2.5.2.1-2) were 

spread on agar plates with antibiotic selection. Those bacteria that were able to grow were 

screened by PCR to see which colonies contained plasmids with ligated inserts of the 

correct size.  

Individual colonies were picked off the agar plate and resuspended in 25µl PBS. 2µl of this 

suspension was used as the template in an ex Taq PCR screen (see 2.5.1.2).  

2.5.1.4 Site-directed mutagenesis 

To obtain plasmids encoding mutated CK2α proteins, oligonucleotides were designed to 

perform site directed mutagenesis by overlap extension PCR (Ho et al., 1989). The 

template used was the PfCK2α expression plasmid, pGEX-4T-3-PfCK2a, constructed as 

described in section 4.4. PfCK2α sequences containing a lysine to methionine change at 

residue 72 (‘kinase dead mutant’) were constructed, using the CK2aForBam and 

CK2aK72MRev, and CK2aK72MFor and CK2aRevSal, primers for the first round of 

amplification, producing two DNA fragments having overlapping ends that contain the 

mutation. The PCR products from the first rounds of amplification were purified using the 

Wizard PCR Preps DNA Purification System (Promega), prior to their use as templates in 

the second round of PCR amplification. In the second round of PCR amplification, the 

overlapping ends anneal, acting as primers for the extension of the complementary strand. 

The CK2aForBam and CK2aRevSal oligonucleotide primers were also included in the 

second round PCR reaction. PfCK2α sequences containing a phenylalanine to glycine 

change at residue 117 and an isoleucine to alanine change at residue 178 (‘chemical 

genetics mutant’) were constructed in a similar manner, first producing the F117A 

mutation as outlined above and verifying the sequence by DNA sequencing (see 2.5.9), 

then producing the I178A mutation by site-directed mutagenesis using the F117A sequence 

as a template. The F117A mutation was produced in a similar manner to the K72M 

mutation above, using the primer pairs CK2aForBam and F117ACK2aRev, and 

F117ACK2aFor and CK2aRevSal, for the first round of amplification, and CK2aForBam 

and CK2aRevSal for the second round of amplification. The I178A mutation was produced 

using the primer pairs CK2aForBam and I178ACK2aRev, and I178ACK2aFor and 

CK2aRevSal, for the first round of amplification, and CK2aForBam and CK2aRevSal for 

the second round of amplification. 
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The sequences were cloned into the vector pGEM-T-Easy (Promega; see 2.5.2.1) for 

sequencing, to confirm that the correct sequences (and no additional mutations) were 

generated by PCR amplification. Vectors containing the correct insert were digested using 

the restriction endonucleases BamHI and SalI, and the PfCK2α mutant sequences were 

inserted into the expression vector pGEX-4T-3, digested by the same enzymes. The inserts 

were resequenced prior to expression in the E. coli strain BL21 Gold.  

2.5.2 Cloning techniques 

2.5.2.1 pGEM-T-Easy cloning 

All PCR products were initially cloned into the pGEM-T-Easy vector using the pGEM-T-

Easy Vector System I kit (Promega), for verification by DNA sequencing, before being 

subcloned into their destination vector. The TaKaRa ex Taq polymerase is a non-

proofreading enzyme, and produces PCR products with adenine overhangs at the 3’ ends, 

allowing ligation into the pGEM-T-Easy vector (Fig. 2-4), which contains thymine 

overhangs in the cloning site. DNA sequences amplified by Pfx Platinum, the proofreading 

polymerase, could also be ligated into pGEM-T-Easy if they first had a 10-minute 

incubation at 68oC with 0.75U of TaKaRa ex Taq polymerase, to add adenosine overhangs. 

Ligation reactions were performed according to the manufacturer’s instructions, and their 

products subsequently transformed into thermocompetent E. coli XL10 Gold cells 

(Stratagene) (see 2.5.5). These were plated on LB agar plates containing 100µg/ml 

ampicillin, and which had had 100µl of 100mM IPTG and 20µl of 50mg/ml X-Gal 

absorbed into the surface. The addition of IPTG and X-Gal allows visual discrimination 

between bacterial colonies harbouring self-ligated vectors, and those harbouring vectors 

with inserts of DNA. Successful cloning of PCR products into the pGEM-T-Easy plasmid 

results in white bacterial colonies, whereas bacteria containing self-ligated vectors are 

blue. The ability of β-galactosidase to hydrolyse the sugar X-Gal lies behind this colour 

distinction, with the hydrolysed X-Gal producing a characteristic blue colour in the 

colonies in which the LacZ gene remains intact. Insertion of a PCR product into the 

pGEM-T-Easy vector disrupts the LacZ gene, and therefore the cells are unable to produce 

β-galactosidase, and unable to hydrolyse the marker, resulting in white colonies. IPTG is 

added to the plates to induce transcription of the LacZ gene. Colony PCR was used to 

screen the white colonies for bacteria harbouring plasmids with the appropriate size of 

inserts (see section 2.5.1.3), using oligonucleotide primers which bind to the T7 and SP6 

sequences of the pGEM-T-Easy vector (see Fig. 2-4). Single bacterial colonies containing 
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the correct size of insert were used to inoculate 5ml cultures of LB medium containing 

100µg/ml ampicillin, and grown in a shaking incubator at 37oC overnight. Plasmid DNA 

was extracted from the bacteria (see section 2.5.6), and analysed by restriction 

endonuclease digestion (see section 2.5.8). The plasmid DNA was sequenced (see 2.5.9) 

using the SP6 and T7 primers, to verify that it contained the correct insert, without any 

unwanted mutations. 

 
Figure 2-4 Map of the pGEM-T-Easy plasmid. 
This figure shows the important features of the pGEM-T-Easy cloning plasmid (Promega). 
The plasmid contains an ampicillin resistance cassette for selection in E. coli. The plasmid 
has been cut in the middle of the lacZ gene, and has a single 3’ terminal thymidine at each 
end, providing compatible overhangs for the insertion of PCR products amplified by Taq 
based polymerases, such as TaKaRa ex Taq, which often add single deoxyadenosines to 
the 3’ ends of amplified sequences. Bacterial colonies containing vectors with inserts were 
distinguished from bacterial colonies containing self-ligated vectors by blue-white colony 
screening (see 2.5.1.3). Colonies identified as containing vectors with inserts were screened 
for the correct size insert using the primers T7 and SP6, which bind to the T7 and SP6 RNA 
polymerase promoters, flanking the multiple cloning region. The insertion site is in the 
middle of the multiple cloning region, allowing the insert to be easily removed and 
reinserted into destination vectors. Figure taken from the Promega website 
(www.promega.com). 

 

2.5.2.2 Sub-cloning into destination vectors 

Verified correct sequences in pGEM-T-Easy clones were sub-cloned into destination 

vectors. The inserts were released from the pGEM-T-Easy plasmid by restriction 

endonuclease digestion (see section 2.5.8), and the destination plasmid linearised using the 

same restriction endonucleases, or restriction endonucleases with complementary sticky 

ends (e.g. BamHI and BglII) to those used to release the insert. The digests were separated 

by agarose gel electrophoresis (see section 2.5.10), and the inserts and plasmids were 
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excised from the gel under UV illumination and purified using the Millipore Montage Life 

Science Kits DNA Gel Extraction Kit according to manufacturer’s instructions.  

The insert sequence was ligated into the destination plasmid in a 10µl ligation reaction 

containing 5 units of T4 DNA ligase (Invitrogen), 1x DNA ligase reaction buffer and a 

range of molar ratios of vector to insert. Ligated plasmids were transformed into 

chemically competent E. coli (see 2.5.5) and plated on LB agar plates containing the 

appropriate antibiotics. Colony PCR (see section 2.5.1.3) was used to identify colonies 

containing the correct insert. Plasmid DNA was produced from these colonies (see section 

2.5.6), analysed by restriction endonuclease digestion (see section 2.5.8), and verified by 

sequencing (section 2.5.9). 

2.5.2.3 Gateway cloning 

The Gateway cloning system (Invitrogen) was used to generate ‘complementation’ 

plasmids, for use in reverse genetics studies, as described in section 2.3.2.  

2.5.3 Preparation of thermocompetent E. coli 

An overnight culture was used to inoculate 25ml LB medium at a 1:100 dilution. The 

culture was shaken at 37oC until the OD600 reached 0.4. The cells were centrifuged at 

1600g, 4oC, for 10 minutes. The supernatant was discarded and the cell pellet resuspended 

in 12.5ml sterile 4oC 50mM CaCl2. Cells were incubated on ice for 30 minutes, then 

centrifuged as previously. The supernatant was discarded, and the cell pellet resuspended 

in 2.5ml CaCl2. Glycerol was added to a final concentration of 10%, then the cells were 

rapidly frozen on dry ice in 100µl aliquots, and stored at -80oC.  

2.5.4 Preparation of chemically competent E. coli 

One litre of LB medium was inoculated with an overnight culture of the appropriate 

bacterial strain, at a 1:100 dilution. Cells were shaken at 37oC until the OD600 reached 

between 0.5 and 0.7. The cells were chilled on ice for 15 to 30 minutes, and centrifuged at 

4000g and 4oC for 15 minutes. The supernatant was discarded, the pellet resuspended in 

one litre of cold water, and then centrifuged again. The supernatant was discarded, the 

pellet resuspended in 0.5L cold water, and then centrifuged again. The supernatant was 

discarded, the pellet resuspended in 20ml of cold 10% glycerol, and then centrifuged again. 

The pellet was resuspended to a final volume of 2 to 3ml in cold 10% glycerol. The cell 
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concentration should be about 1-3 x 1010 cells/ml. The suspension was frozen in aliquots of 

50µl on dry ice, and stored at -80oC. 

2.5.5 E. coli transformation 

Thermocompetent or chemically competent E. coli cells were used as recipients for 

plasmid DNA or ligation reactions. For transformation of thermocompetent E. coli, an 

aliquot of cells (100µl) was thawed on ice for 10 minutes, then the DNA or ligation 

product was added. Cells were incubated on ice for a further 5 minutes, then heat-shocked 

at 42oC for 30-40 seconds, and immediately returned to the ice for 2 minutes. LB medium 

at 37oC was then added (100µl). The cells were incubated at 37oC for one hour prior to 

plating out on agar plates containing antibiotic to allow expression of the resistance gene. 

The plates were incubated at 37oC overnight to allow colonies to grow. 

For the transformation of chemically competent E. coli cells, a 50µl aliquot of cells was 

thawed on ice for 10 minutes. 0.5µl of plasmid DNA was added and then cells transferred 

to an ice-cold electroporation cuvette (0.2cm). Electroporation was performed at 2.5kV, 

and one millilitre of LB medium was immediately added. Cells were shaken at 37oC for 45 

minutes to one hour to allow the cells to recover before being plated out onto an agar plate 

containing the appropriate antibiotic. Plates were incubated at 37oC overnight to allow 

colonies to grow. 

2.5.6 Plasmid DNA isolation from E. coli 

The Qiaprep Spin Miniprep kit from Qiagen was used for small-scale plasmid isolation. 

Four millilitres of LB medium, containing appropriate antibiotic selection, was inoculated 

with a single bacterial colony, and incubated overnight at 37oC in a shaking incubator. The 

bacteria were pelleted by centrifugation and the plasmid purified according to the 

manufacturer’s instructions. Plasmid DNA was eluted in 35µl ddH2O and quantified by 

spectrophotometry (see section 2.5.7). 

The Plasmid Maxi kit from Qiagen was used for large-scale plasmid isolation of constructs 

to be used for transfection of parasites. A 3ml culture was inoculated with bacteria and 

incubated at 37oC in a shaking incubator for six to eight hours, then used to inoculate a 

250ml culture of LB medium at a 1:1000 dilution. This culture was incubated at 37oC in a 

shaking incubator overnight, with appropriate antibiotics. The bacteria were centrifuged at 
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5500rpm (Beckman Coulter Avanti J-26XP, JA-14 rotor) for 15 minutes at 4oC, and the 

pellet treated for plasmid extraction according to the manufacturer’s instructions.  

2.5.7 Spectrophotometric quantification of DNA 

The DNA to be quantified was diluted fifty fold in ddH2O, and the concentration 

determined by measuring the UV absorbance at A260 using an UV spectrophotometer, and 

comparing it with the following standards: an absorbance of 1 indicates 50µg/ml double 

stranded DNA, 40µg/ml single stranded DNA/RNA, or 20µg/ml of oligonucleotide. 

2.5.8 Restriction endonuclease digestion 

Restriction endonuclease digestion was used to analyse plasmid DNA, to release DNA 

sequences from plasmids for insertion into other vectors, and to prepare vectors for the 

insertion of a DNA sequence. For the analysis of plasmid DNA, reactions took place in a 

10µl volume, containing 1µl plasmid DNA, 1µl of the appropriate buffer (supplied with 

the restriction endonuclease), 0.5µl of each restriction endonuclease, and ddH2O to 

complete the 10µl. For the release of an insert from a plasmid, or to prepare a plasmid for 

receiving an insert, larger reaction volumes were used: reactions took place in 20µl 

volumes, containing 15µl plasmid DNA, 2µl of the appropriate buffer (supplied with the 

restriction endonuclease), 0.5µl of each restriction endonuclease, and ddH2O to complete 

the 20µl. Digestions took place at 37oC for 1-3 hours. An appropriate volume of 6x DNA 

loading buffer was added, and the reactions were analysed by agarose gel electrophoresis 

(see 2.5.10). 

2.5.9 DNA sequencing 

DNA was sequenced at The Sequencing Service at the School of Life Sciences at the 

University of Dundee (www.dnaseq.co.uk).  

2.5.10 Agarose gel electrophoresis 

Standard agarose gels were prepared by adding 1% (w/v) agarose to 1xTAE buffer and 

boiling the solution in a microwave to allow the agarose to dissolve. Once the mixture had 

cooled to 40-50oC, SYBR safe (Invitrogen, 1:10,000) or ethidium bromide (0.5µg/ml) was 

added and the mixture poured into a gel tray. Combs were slotted into the tray to provide 
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wells for the DNA samples to be loaded into. DNA samples were mixed with 6x DNA 

loading buffer, and loaded into the wells alongside DNA ladder (Eurogentec) to allow size 

determination of the bands. Electrophoresis was performed at 100-120 V in 1xTAE buffer. 

The bands were visualised under UV illumination in a Gel Doc system (Bio-Rad).  

2.5.11 Southern blot analysis 

Parasite DNA was analysed by Southern blot to detect plasmid integration. Restriction 

endonuclease digestions (see 2.5.8) were performed in 30µl volumes, with 3µg of parasite 

DNA (see 2.3.5), and incubations lasting 20-24 hours. Restriction endonucleases were 

chosen to provide a diagnostic pattern of bands detectable on a Southern blot. The digested 

DNA was mixed with an appropriate volume of 6x DNA loading buffer, and loaded into 

wells of a 0.8% (w/v) agarose gel. Electrophoresis was performed at 23 V, and monitored 

by UV illumination so that it could be stopped when the DNA ladder had migrated an 

appropriate length of the gel for the best distinction of bands. The gel was then incubated 

in depurination solution (0.25 M HCl) for 10 minutes, in denaturation solution (1.5 M 

NaCl, 0.5 M NaOH) for 25 minutes, and in neutralisation solution (1.5 M NaCl, 0.5 M 

TrisHCl pH7.5) for 30 minutes (with ddH2O washes in between each incubation). The 

DNA was then transferred from the gel to a nylon membrane (Hybond-N+, GE Healthcare) 

in 10x SSC buffer by means of overnight wicking transfer (see Fig. 2-5). The DNA was 

crosslinked to the membrane by UV (1200µJ), using the UVP Crosslinker CX-2000. DNA 

bands on the membrane were visualised using the GE Healthcare Gene Images CDP-Star 

detection kit, and fluorescein-labelled probes made using the GE Healthcare Gene Images 

Random Prime Labelling kit, according to manufacturer’s instructions. The membrane was 

incubated in preheated (60oC) pre-hybridisation solution (5x SSC, 0.1% SDS, 5% dextran 

sulphate, and a 1:20 dilution of the liquid block provided in the kit) at 60oC for over two 

hours. Fluorescein-labelled probe was denatured at 100oC for 5 minutes, then added to the 

buffer (2µg of probe per millilitre of pre-hybridisation solution) and incubated with the 

membrane at 60oC overnight. The membrane was washed twice for 10 minutes in 60oC 1x 

SSC + 0.1% SDS, twice for 10 minutes in 60oC 0.5x SSC + 0.1% SDS, then blocked at 

room temperature for an hour in a 1:10 dilution of Gene Images liquid block buffer in 

buffer A (100mM Tris HCl pH9.5, 100mM NaCl). The Gene Images anti-fluorescein 

alkaline phosphatase-conjugated antibody was diluted 1:5000 in buffer A with 0.5% (w/v) 

BSA and incubated with the membrane for one hour. Three 30-minute washes in buffer A 

with 0.3% Tween20 (Sigma) were performed, then the detection solution was pipetted on 

to the membrane and left to react for 5 minutes. Autoradiography film (Kodak, or 
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Hyperfilm ECL from GE Healthcare) was used to detect the light produced by the alkaline 

phosphatase reaction. 

 
Figure 2-5 Wicking transfer apparatus 
This figure shows how the wicking transfer apparatus was put together. A: Three pieces of 
Whatman paper, soaked in 10x SSC, and with the ends resting in the buffer reservoir. B: 
Saranwrap, with a hole the size of the gel cut in it. This will stop evaporation from the 
reservoir, and ensure that the only route for the buffer to get to the absorbent paper is 
through the gel and membrane. C: The gel, laid to cover precisely the hole in the Saranwrap. 
D: H+ Hybond nylon membrane, cut to exactly the same size as the gel. E: Three more 
pieces of Whatman paper, cut to the same size as the gel, and soaked in 10x SSC.  

To reuse the membrane with another probe, the membrane was first stripped by washing 

for 2 minutes in 5x SSC buffer, and washing twice for 10 minutes in freshly boiling 0.1% 

SDS. The membranes could then be probed again, starting with the incubation in pre-

hybridisation buffer. 

2.6 Biochemistry methods 

2.6.1 Expression and purification of proteins with a GST tag 

The plasmid pGEX-4T-3 (GE Healthcare, Fig. 2-6) was used for the expression of 

recombinant proteins with an N-terminal GST tag, in BL21 Gold (Stratagene) or Rosetta2 

cells (Novagen). The recombinant proteins GST-PfCK2α, GST-PfCK2β1, and GST-

shPfCK2β2 (and GST alone) were expressed in E. coli using this plasmid.  

10xSSC 
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Figure 2-6 Map of the pGEX-4T-3 plasmid 
The figure shows the main features of the plasmid pGEX-4T-3 (GE Healthcare) for 
recombinant expression of proteins with an N-terminal glutathione-S-transferase (GST) tag. 
The plasmid contains an ampicillin resistance cassette for selection in E. coli, and a 
multiple cloning site. The expression of the GST and any 3’ in-frame coding sequence is 
under the control of the tac promoter, which is induced by the lactose analogue IPTG. 
Figure taken from the GE Healthcare website (www6.gelifesciences.com). 

For expression of recombinant proteins, 3-5ml of an overnight culture of bacteria 

containing the expression plasmid was used to inoculate a 300ml flask of LB medium 

containing 100µg/ml ampicillin. The flask was placed in a shaking incubator at 37oC until 

the OD600 reached 0.5-0.7. The flask was then cooled to 20oC before expression of 

recombinant protein was induced by the addition of 0.1mM isopropyl thio-β-D-galactoside 

(IPTG). The proteins were induced in a shaking incubator at 20oC for 16 to 20 hours. The 

cells were then centrifuged at 5000g and 4oC for 30 minutes (Beckman Coulter Avanti J-

26XP with the JA-14 rotor), and the pellets frozen at -20oC. When the protein was to be 

purified, the pellets were defrosted on ice, and resuspended in lysis buffer (PBS pH7.5, 

2mM ethylenediaminetetraacetic acid (EDTA), 1mM dithiothreitol (DTT), 0.5% Triton 

x100). Lysozyme was added to a final concentration of 1mg/ml, and the suspension 

incubated on ice for 10 minutes. Protease inhibitors (1mM Phenyl Methyl Sulphonate 

(PMSF), 1mM benzamidine hydrate and 1x complete cocktail inhibitors (Roche)) were 

then added and the cells were disrupted by sonication at 20% amplitude for six 15-second 

pulses using a Bioblock Scientific Vibra Cell 72405 sonicator. The soluble (supernatant) 

and insoluble (pellet) fractions were separated by centrifugation at 8000g, 4°C, for 15 

minutes (Sigma SK15 with the 12150 rotor).  
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Optimal expression conditions (0.1mM IPTG, 20oC, 16-20 hours) were determined by 

analysing samples taken before IPTG induction, after IPTG induction, and from the pellet 

(insoluble) and supernatant (soluble) fractions, from small-scale protein expressions at a 

range of temperatures (37 oC, 30 oC, 20oC) and IPTG concentrations (0.1-1mM). These 

samples were analysed by Coomassie-stained polyacrylamide gels and western blots, and 

the expression conditions that resulted in the highest levels of soluble recombinant protein 

production were selected for large-scale expressions.  

For purification of the proteins, the supernatant from the centrifugation following 

sonication (soluble fraction) was transferred to a tube containing glutathione-agarose 

beads, which had been pre-equilibrated by washing four times in lysis buffer. The 

supernatant and beads were rotated at 4oC for two hours to allow the GST-tagged proteins 

to bind to the glutathione beads. The mixture was then centrifuged for 2 minutes to collect 

the beads, and washed four times in lysis buffer and once in pre-elution buffer (40mM 

TrisHCl pH8.7, 75mM NaCl). The recombinant proteins were eluted in elution buffer (pre-

elution buffer plus 15mM reduced glutathione). Protein concentration was estimated using 

the Biorad reagent assay (see 2.6.3), with bovine serum albumin as a control. Glycerol was 

added to the eluate to a final concentration of 20%, and the protein was stored at -20oC 

until required.  

2.6.2 Expression and purification of proteins with a His tag 

The plasmid pQE-30 (Qiagen; Fig. 2-7) was used for the expression of recombinant 

proteins with an N-terminal 6x His tag, in SG13009 cells (Qiagen). The proteins PfCK2α 

and shPfCK2β2 were recombinantly expressed using this plasmid. The plasmid pET29-

PfCK2a was used for the expression of recombinant PfCK2α protein with a C-terminal 

6xHis tag, in BL21 Gold DE3 cells (Stratagene) or Rosetta2 DE3 cells (Novagen). The 

plasmid was produced in Debopam Chakrabarti’s laboratory (University of Central 

Florida), and verified by sequencing before use; pET29 is available from Novagen. 

Expression of recombinant His-tagged proteins was carried out following the same 

protocol as for the GST-tagged proteins, with the following modifications: the antibiotics 

used were 100µg/ml ampicillin and 20µg/ml kanamycin (for pQE30 expressions), or 

20µg/ml kanamycin (for pET29 expressions), and the lysis buffer was 100mM TrisHCl pH 

7.5, 300mM NaCl. Optimal expression conditions were deduced as outlined for the GST-

tagged proteins (see 2.6.1).  
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Figure 2-7 Map of the pQE-30 plasmid 
This figure shows the main features of the pQE-30 plasmid (Qiagen) for recombinant 
expression of proteins with an N-terminal 6x His tag. The plasmid contains an ampicillin 
resistance cassette for selection in E. coli, and an expression cassette containing the phage 
T5 promoter (PT5), two lac operator repression modules (lac O), a ribosome binding site 
(RBS), a start codon (ATG), a 6xHis tag, a multiple cloning site (MCS), and stop codons. 
Expression is induced with IPTG. Figure taken from the Qiagen website (www1.qiagen.com). 

For purification of the proteins, the supernatant from the centrifugation following 

sonication (soluble fraction) was transferred to a tube containing Ni-NTA beads (Qiagen), 

which had been pre-equilibrated in lysis buffer by washing four times. The supernatant and 

beads were rotated at 4oC for two hours to allow the His-tagged proteins to bind to the 

beads. The mixture was then centrifuged for 2 minutes to collect the beads, and washed 

twice in lysis buffer plus 10mM Imidazole, twice in lysis buffer plus 60mM Imidazole, and 

once in pre-elution buffer (50mM TrisHCl pH8, 400mM NaCl). The recombinant proteins 

were recovered by incubation of the beads in elution buffer (pre-elution buffer plus 

500mM imidazole). Protein concentration was estimated using the Biorad reagent assay 

(see 2.6.3), with bovine serum albumin as a standard. Glycerol was added to the eluate to a 

final concentration of 20%, and the protein was stored at -20oC until required.  

2.6.3 Determining protein concentration 

The protein concentration of a solution can be determined by the Bradford Assay 

(Bradford, 1976). The absorbance at 595nm of the protein solution of interest in Bradford 

reagent (Bio-Rad) was measured and the result compared with a range of BSA standards to 

determine the protein concentration of the solution. The calculated protein concentration 

was checked by SDS-PAGE analysis (see section 2.6.4). 
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2.6.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) 

Proteins were separated by polyacrylamide gel electrophoresis with self-made 10%, 12% 

or 15% polyacrylamide gels, depending on the range of protein sizes at which the best 

separation was desired. The separating gel consisted of 10-15% Acrylamide, 375mM 

TrisHCl pH8.7, 0.1% SDS, 0.0008% TEMED and 0.034% APS. The separating gel was 

poured between glass plates (BioRad Mini-PROTEAN 3 system) and allowed to set. The 

stacking gel consisted of 3% Acrylamide, 120mM Tris pH6.7, 0.1% SDS, 0.0024% 

TEMED and 0.05% APS. This was poured on top of the separating gel, and an appropriate 

comb was placed in the top, to provide 10 wells or 15 wells for the loading of samples.  

Samples for separation by SDS-PAGE were boiled in Laemmli buffer for 3-5 minutes 

(100oC), and loaded into the wells of the gel, alongside protein markers (either PageRuler 

prestained protein marker (Fermentas) or unstained broad range protein marker (NEB 

p7702)). The samples were separated in 1x TG-SDS buffer at 80V until the front had left 

the stacking gel, then 180-200V until the front had left the separating gel. The separated 

proteins were then analysed by staining or western blotting. 

2.6.5 Coomassie Blue staining of polyacrylamide gels 

Following electrophoresis (see 2.6.4), the gels were removed from the glass plates, and 

incubated in Coomassie stain for 10 minutes at room temperature. The stain then was 

drained off and the gels incubated in destain solution for 1-3 hours at room temperature. 

2.6.6 Silver staining of polyacrylamide gels 

To allow Mass Spectrometry analysis of excised bands from polyacrylamide gels, samples 

were separated by SDS-PAGE on NuPAGE 4-12% BisTris pre-cast gels (Invitrogen), 

using the NuPAGE electrophoresis system and MOPS buffer (Invitrogen), to avoid the 

potential keratin contamination that could be present in self-made gels. The gels were 

stained using the GE Healthcare PlusOne Silver Staining Kit, following the mass-

spectrometry compatible protocol recommended by the manufacturers. 



2. Materials and Methods   76 

2.6.7 Western blot analysis 

Western blots were performed according to conventional protocols, using commercial 

antibodies, or custom-made immunoaffinity purified rabbit antibodies (see Tables 2-2 to 2-

4). 

Proteins previously separated in polyacrylamide gels were transferred onto nitrocellulose 

membrane (BioRad) in Towbin buffer in a Trans-Blot SD Semi-Dry Transfer Cell 

(BioRad; transferred at 20V and 150mA for 45 minutes), or in BioRad Mini Trans-Blot 

cells (transferred at 100V for 90 minutes), both according to manufacturer’s instructions. 

The nitrocellulose membranes were then blocked for one hour at room temperature in PBS 

with 5% (w/v) non-fat dried milk and 0.05-0.3% Tween20, and the transfer efficiency 

checked by staining the gels after transfer with Coomassie blue (see 2.6.5). The primary 

antibody (for dilutions, see Tables 2-2 or 2-3) was added to the blocking solution and 

incubated with the membrane for one hour. After washing four times in PBS containing 

0.05-0.3% Tween20 (PBST), membranes were incubated for 45 minutes to one hour with 

peroxidase-conjugated secondary antibody in blocking buffer. The secondary antibodies 

were raised against immunoglobulin from the animal species in which the primary 

antibody was raised, and their dilutions for western blotting are listed in Table 2-4. 

Membranes were washed thoroughly in PBST and developed by enhanced 

chemiluminescence according to the manufacturer’s instructions (PerkinElmer Life 

Sciences). The light generated by the reaction between the reagents and the peroxidase was 

detected on autoradiography film (Kodak).  

To reprobe a membrane using a different antibody, the membrane was stripped of 

antibodies by washing for four times 5 minutes in PBST, incubating for 30 minutes at 50oC 

in stripping buffer (62.5mM TrisHCl pH6.8, 2% SDS, 100mM 2-mercaptoethanol), and 

washing in PBST again for six times five minutes. The membrane could then be used 

again, starting with the blocking step.  

2.6.8 Immunoprecipitation 

Immunoprecipitations (IPs) were performed in order to analyse potential protein 

complexes the PfCK2 subunits might be involved in. IPs using the anti-HA antibody (see 

Table 2-3) were performed on protein extracts from parasite lines that had integrated the 

HA tag at the three-prime end of one of the genes of interest. One or two pellets of 

parasites (see 2.3.4) from 25ml cultures of each parasite line of interest were resuspended 
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in 200µl RIPA buffer, and sonicated twice at 20% amplitude for 3 seconds using a 

Bioblock Scientific Vibra Cell 72405 sonicator. Cells were then centrifuged for 30 minutes 

at 4oC and 11000rpm (Sigma SK15 centrifuge, rotor 12131). The concentration of proteins 

was then estimated using the Bradford Assay (see 2.6.3). Parasite proteins were diluted to 

1mg/ml in RIPA buffer, and 200µl were then incubated with 3µg anti-HA antibody on ice 

for 2 hours. Meanwhile, Protein A sepharose beads (GE Healthcare) that had been swollen 

for several hours in RIPA buffer were washed four times in 500µl RIPA buffer. The beads 

were resuspended to a 50% slurry, and 40µl were added to the protein plus antibody mix, 

and rotated for 1 hour 45 minutes at 4oC. The beads were then washed four times in 500µl 

RIPA buffer, twice in RIPA plus 0.1% SDS, and once in 50mM TrisHCl pH7.5. The beads 

were then used in a kinase assay, or boiled in Laemmli buffer for analysis by SDS-PAGE.  

2.6.9 Kinase assays 

2.6.9.1 Standard kinase assays 

Standard kinase assays were performed according to published procedures (Dorin et al., 

2001). Briefly, kinase reactions (30µl) occurred in a standard kinase buffer (20mM 

TrisHCl pH7.5, 20mM MgCl2, 2mM MnCl2 and 10µM ATP) containing 0.075MBq [γ-
32P]ATP (220TBq/mmol; GE Healthcare), 1µg of recombinant kinase, and 5µg of substrate 

(β-casein). After 30 minutes at 30°C, the reaction was stopped by the addition of 8µl of 4x 

Laemmli buffer and boiled for 3 minutes at 100°C. Samples were separated by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on 12% acrylamide gels, 

which were stained with Coomassie blue, dried, and exposed for autoradiography.  

2.6.9.2 Scintillation count (or phosphocellulose) kinase assays 

Kinase assays were also analysed by the phosphocellulose method (Glass et al., 1978). A 

final assay volume of 18µl contained 36ng of PfCK2α, 167mM of peptide substrate, 

50mM TrisHCl pH7.5, 20mM MgCl2, 20µM ATP, 40-150mM NaCl, and 0.037 MBq [γ-
32P]ATP (220 TBq/mmol; GE Healthcare). Reactions took place for 10 minutes at room 

temperature, and were terminated by the addition of 60µl of 4% trichloroacetic acid. 

Reactions were chilled on ice for 10 minutes, then centrifuged at 10000g for 15 minutes. 

60µl of supernatant was spotted onto 4x4cm Whatman P81 phosphocellulose paper 

squares. The squares were washed three times 15 minutes in 0.5% orthophosphate then the 

amount of precipitable radiolabel incorporated into the peptide substrate was quantified by 
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scintillation counting (in microbeta vials, with Optiphase HiSafe scintillation fluid). Three 

peptides substrates were used in this study, the NEB peptide p6012 (RRRADDSDDDDD), 

the custom peptide RRREDEESDDEE, obtained from NeoMPS, and the eIF2β-derived 

peptide MSGDEMIFDPTMSKKKKKKKKP (Poletto et al., 2008, Salvi et al., 2006) 

obtained from Genecust (Evry, France). 

2.6.9.3 Kinase-GLO kinase assays 

The Kinase-GLO Luminescent Kinase Assay kit from Promega was used for large-scale 

initial screens of a library of potential inhibitor compounds against PfCK2α. This method 

measures kinase activity indirectly, by measuring the amount of ATP remaining in solution 

following a kinase reaction. The assay is luciferase-based, and the luminescent signal 

produced is correlated with the amount of ATP present (and therefore is inversely 

correlated with the amount of kinase activity). The Kinase-Glo assays were performed and 

according to manufacturer’s instructions using 10µM ATP, 20µM compound, 60ng of 

kinase. Kinase reactions were performed in black multiwell plates, and quantified after one 

hour by adding an equal volume of Kinase-Glo Reagent to the completed reactions and 

measuring luminescence in a plate reader.  

2.6.10 Km calculations 

Kinases assays were performed according to 2.6.9.2, with varying concentrations of ATP, 

GTP or peptide, to allow calculation of the Km of CK2α for the nucleotides and substrates. 

Experiments were carried out in duplicate or triplicate. Scintillation count outputs were 

converted into moles of phosphate incorporated into the substrate, by comparison with the 

scintillation count output for an aliquot of the radioactive ATP/GTP mix used for the 

experiment. These values were converted into reaction rates by dividing the number of 

moles by the length of the experiment in minutes, to give an output of nmol/min. 

Lineweaver-Burke plots were performed by taking the reciprocals of the kinetic data. The 

intercepts of the lines of best fit with the x-axis give the reciprocal of the Km values, and 

the intercepts with the y-axis give the reciprocal Vmax values.  

2.6.11 IC50 measurements (enzymatic assays) 

To test the effect of human CK2α inhibitors on PfCK2α, kinase activity was tested in 

kinase reactions in the presence of a range of concentrations of the potential inhibitor 

molecules. Stock solutions of inhibitors were at 10mM in dimethyl sulphoxide (DMSO), 
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and each reaction contained a final concentration of 1% DMSO. Negative controls were 

provided by reactions containing 1% DMSO alone (no inhibitor). Kinase reactions were 

performed in 18µl volumes as detailed above (2.6.9.2), except that 25µM ATP was used in 

each reaction.  

2.6.12 IC50 measurements (cellular assays) 

To test the effect of human CK2α inhibitors on P. falciparum culture, 96-well plates were 

inoculated with cultures at 0.5% parasitaemia and 2.5% haematocrit, and a range of 

inhibitor concentrations (0.04-100µM). Controls were provided by wells containing 

chloroquine, and wells containing uninfected or infected erythrocytes without inhibitors. 

Plates were incubated at 37oC for 24 hours, then 0.037MBq per well of [3H]-hypoxanthine 

were added and the culture resumed for a further 24 hours. The experiment was terminated 

by incubation of the plates at -20oC for 24 hours. The material was collected on a filter mat 

by a cell harvester, incubated with scintillation fluid, and quantified for amount of 

incorporated radiolabel.  

2.6.13 Protein-protein interaction assay 

A mixture of 5µg of each GST-tagged and His-tagged recombinant protein in reaction 

buffer (20mM Tris-HCl pH7.5, 0.2 M NaCl, 0.1% Nonidet-p40 (IGEPAL) and 10% 

glycerol) was incubated for 30 minutes at 4oC. Glutathione-agarose beads were washed 

three times in reaction buffer, and resuspended to a 50% slurry. 40µl of 50% beads was 

added to each reaction. Reactions were rotated at 4oC for one hour, and centrifuged at 500g 

and 4oC for 5 minutes to recover the beads. The beads were washed four times in 1ml 

reaction buffer, then boiled in Laemmli buffer and stored at -20oC until analysis by SDS-

PAGE and western blotting using an anti-His antibody.  
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3 Reverse genetics 

3.1 Introduction 

The primary criterion for suitability for a drug or vaccine target is the essentiality of the 

protein for organism viability (Greenbaum, 2008). CK2α is essential in all organisms in 

which essentiality has been tested, including Saccharomyces cerevisiae (Ackermann et al., 

2001, Glover, 1998, Padmanabha et al., 1990), Dictyostelium discoideum (Kikkawa et al., 

1992), and mice (Lou et al., 2008). In contrast, CK2β is essential in mice (Buchou et al., 

2003) and Caenorhabditis elegans (Fraser et al., 2000), and not essential in 

Schizosaccharomyces pombe (Roussou and Draetta, 1994), or Saccharomyces cerevisiae 

(Ackermann et al., 2001). This chapter describes attempts to knock out the three CK2 

genes in Plasmodium falciparum.  

We adopted the gene disruption technique to test for essentiality of the genes (Sidhu et al., 

2005). A truncated portion of the gene, lacking regions coding for motifs essential to the 

function of the encoded protein, is inserted into a plasmid that contains a drug resistance 

cassette for selection in P. falciparum. Upon integration at the gene locus by single-cross-

over homologous recombination, a pseudo-diploid locus is generated, with both truncated 

copies of the gene lacking essential regions. Neither copy is expected to be capable of 

producing functional protein, since one lacks a 3’UTR, and the other lacks a promoter and 

initiation codon. Even if the genes were to be expressed, neither of the truncated proteins 

would be expected to be functional, since both lack motifs essential for the protein activity. 

The PfCK2 proteins are expressed in both the asexual and the sexual intraerythrocytic 

stages of the parasite (see sections 4.3 and 5.3). The proteins may be required for sexual 

development, the asexual cycle, or both. To distinguish between these possibilities, we 

transfected parasites with (i) a knockout (or disruption) plasmid alone, or (ii) a knockout 

plasmid and a complementation plasmid, which expresses a functional copy of the gene 

targeted for disruption. The parasite is haploid during the intraerythrocytic stages, so the 

disruption of an essential gene leads to inviable parasites. If parasite populations can be 

recovered in which the gene has been disrupted in the absence of the complementing 

plasmid, the gene is not essential for asexual growth. If, on the other hand, viable parasites 

harbouring gene disruptions can only be recovered when they have also been transfected 

with the complementation plasmid, the gene is considered to be essential for asexual 

growth.  
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We performed an additional set of transfections to test for the recombinogenicity of the 

gene loci. Plasmids were constructed that on integration into the genomic locus would add 

a sequence coding for an HA tag to the 3’ end of the targeted PfCK2 gene. The integration 

of these tags should not interfere with the functions of the proteins, therefore if they cannot 

integrate into the genomic locus, it indicates that the locus is non-recombinogenic. These 

parasite lines will be used for protein-protein interaction studies as well as for the reverse 

genetics information they provide. 

This chapter describes the production of parasite lines expressing HA-tagged PfCK2 

subunits, and attempts to knock out the PfCK2 genes by gene disruption experiments, in 

the presence or absence of complementation plasmids.  

3.2 Construction of plasmids for transfection 

3.2.1 Plasmids for in vivo 3’ tagging 

In order to (i) demonstrate locus accessibility for recombination, and (ii) generate tools 

allowing the isolation of protein complexes from in vivo contexts, and thus begin to 

determine binding partners of the three subunits, vectors were designed that would add 

sequences coding for haemaglutinin (HA) tags to the 3’ ends of each of the three PfCK2 

subunit genes, without affecting protein function. The modified genes will encode HA-

tagged subunits, allowing for purification of protein complexes containing any of the 

subunits. The pCAM-BSD-HA vector (Jean Halbert, this laboratory) is based on the 

pCAM-BSD plasmid (Sidhu et al., 2005), and is designed to contain PstI and BamHI sites 

between which to clone ~500bp of the 3’end of the gene of interest, lacking a stop codon. 

This is followed by the HA tag sequence, a stop codon and a 3’ UTR. Single crossover 

homologous recombination of the tagging plasmid with the gene locus should result in the 

gene locus being modified to encode the PfCK2 subunit with a C-terminal HA tag (see Fig. 

3-7D for a schematic of the strategy). pCAM-BSD contains the Aspergillus terrus 

blasticidine-S-deaminase gene, whose gene product mediates resistance to the drug 

blasticidin, allowing for selection in P. falciparum. 

The 3’ end of the PfCK2α gene (535bp), without the stop codon, was amplified from the 

pGEM-T-Easy-PfCK2a plasmid (see 4.4.1) using Pfx Platinum polymerase and the 

oligonucleotide primers CK2aTAGForPst and CK2aTAGRevBam, which add a PstI and 

BamHI site to the 5’ and 3’ ends of the PCR product respectively. The PCR products were 

ligated into the vector pGEM-T-Easy (see section 2.5.2.1) and transformed into XL10 
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Gold bacteria. Bacterial colonies containing plasmid with insert of the correct size were 

identified by colony screen PCR (section 2.5.1.3) using the primers T7 and SP6. Plasmid 

DNA was extracted (section 2.5.6) and the insert regions of the plasmids were sequenced 

(2.5.9) to verify that they contained the correct sequence (with no mutations), before the 

insert was subcloned (section 2.5.2.2) into pCAM-BSD-HA using the restriction enzymes 

PstI and BamHI. This plasmid was named pCAM-BSD-HA-PfCK2a (see Fig. 3-1), and the 

insert region was sequenced before use. Prior to transfection of P. falciparum cells, the 

plasmid was extracted from 250ml cultures of bacteria using the Maxiprep kit (Qiagen).  

 
Figure 3-1 Map of the pCAM-BSD-HA-PfCK2a plasmid 
The plasmid contains two selectable markers: an ampicillin resistance cassette allowing for 
selection in E. coli, and the blasticidin-S-deaminase gene under the control of the 
Plasmodium calmodulin promoter (cam 5’) allowing for selection in P. falciparum. The 3’ 
end of PfCK2α  was inserted between the restriction sites PstI and BamHI, in frame with the 
HA tag coding sequence, which is followed by the 3’ UTR of P. berghei dihydrofolate 
reductase (Pb DHFR). Restriction sites in black are for the enzymes that have multiple sites 
in the plasmid, and those in red are for the enzymes that will only cut the plasmid in one 
location. Figure produced using Vector NTI software (Invitrogen). 

The plasmids pCAM-BSD-HA-PfCK2b1 and pCAM-BSD-HA-PfCK2b2 (Appendix 1) 

were constructed as described for pCAM-BSD-HA-PfCK2a above, with the following 

changes. For PfCK2β2, the 3’ end of the second exon of the gene (573bp) was amplified 

from the pGEM-T-Easy-PfCK2b2 plasmid (section 5.5) using the oligonucleotide primers 

CK2b2TAGForPst and CK2b2TAGRevBam. For PfCK2β1, the 3’ end of the gene (540bp) 

was amplified from the pGEM-T-Easy-PfCK2b1 plasmid using the oligonucleotide 

primers CK2b1TAGForPst and CK2b1TAGRevBgl. The restriction enzymes PstI and 

BglII were used to release the PCR product from pGEM-T-Easy, and PstI and BamHI were 

used to cut pCAM-BSD-HA. The enzymes BglII and BamHI have compatible sticky ends, 
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enabling successful ligation of the PCR product into the destination vector. BamHI could 

not be used to digest the 3’ fragment of PfCK2β1, because it contains an internal BamHI 

site. Both plasmids pCAM-BSD-HA-PfCK2b1 and pCAM-BSD-HA-PfCK2b2 were 

confirmed as containing the correct sequences by DNA sequencing of the insert, and 

extracted in bulk using the Plasmid Maxi kit (Qiagen; see 2.5.6) for use in transfection of 

P. falciparum cells. 

3.2.2 Gene disruption plasmids 

To analyse the role of PfCK2 in the parasite lifecycle, and validate it (or not) as a potential 

drug target, we performed gene disruption experiments. Truncated versions of the PfCK2 

genes were inserted into plasmids with drug-selectable markers. Single crossover 

homologous recombination of the truncated gene in the plasmid with the parasite 

chromosomal gene locus should result in a pseudo-diploid locus, with two truncated and 

non-functional versions of the gene (see Fig. 3-8A for a schematic of the strategy). 

The sequence used for homologous recombination with PfCK2α, KOPfCK2α, was 

amplified from 3D7 cDNA using primers CK2aKOForBam and CK2aKORevNot to 

produce a 447bp sequence of the PfCK2α gene. This truncated sequence lacks the 3’ and 

5’ ends of the coding region, which code for the protein kinase motifs GxGxxG and APE 

(present as GxGxxS and GPE in PfCK2α) respectively; both motifs are necessary for the 

catalytic function of the encoded protein. The PCR product was cloned into the pGEM-T-

Easy plasmid, verified by sequencing, and subcloned into the pCAM-BSD plasmid 

between the BamHI and NotI sites. The construct was named pCAM-BSD-KOPfCK2a 

(Fig. 3-2). This plasmid was also sent for sequencing, to verify that it contained the correct 

insert.  
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Figure 3-2 Map of the pCAM-BSD-KOPfCK2a plasmid 
This figure shows the main features of the plasmid pCAM-BSD-KOPfCK2a. The plasmid 
contains an ampicillin resistance cassette for selection in E. coli, and a BSD cassette for 
selection in P. falciparum. The KOPfCK2a fragment was inserted between the BamHI and 
NotI sites. Several of the restriction enzyme sites are shown. Those in black are for the 
enzymes that have multiple sites in the plasmid, and those shown in red are for the 
enzymes that will only cut the plasmid in one location. Enzymes for the digestion of 
transfected parasite gDNA for analysis by Southern blotting were chosen out of the list of 
enzymes that cut the plasmid once. Figure produced using Vector NTI software (Invitrogen). 

CK2β proteins possess two pairs of cysteine residues that form the base of a Zinc finger 

required for homo- and hetero-dimerisation of the CK2β subunits (Canton et al., 2001), 

which is a prerequisite for CK2 holoenzyme formation (Graham and Litchfield, 2000). 

Constructs for the disruption of the two beta genes were designed in such a way that after 

integration, neither copy of the gene will be active: one truncated copy will possess its 

promoter and initiation codon, but lack the C-terminal cysteine pair, a stop codon and a 

3’UTR, while the other copy will possess both cysteine pairs but lack a promoter and an 

initiation codon, and have an artificial stop codon introduced; therefore, the target gene 

will be inactivated. The sequence used for homologous recombination with PfCK2β1, 

KOPfCK2b1 (429bp), was amplified using Pfx Platinum polymerase and the 

oligonucleotide pairs CK2b1KOForBgl and CK2b1KORevNot, and as template an 

amplified PfCK2β1 construct that had been verified by sequencing (section 2.5.9). The 

oligonucleotide pairs CK2b2KOForBam and CK2b2KORevNot were used to amplify 

KOPfCK2b2, a 1061bp product from the PfCK2β2 gene. The KOPfCK2b2 sequence 

extends over the intron of the PfCK2β2 gene, so 3D7 gDNA rather than cDNA was used as 

the template. The KOPfCK2b1 and KOPfCK2b2 constructs were inserted between the 

BamHI and NotI sites of the pCAM-BSD plasmid. The final constructs were sequenced 
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prior to use, and named pCAM-BSD-KOPfCK2β1 and pCAM-BSD-KOPfCK2β2 

(Appendix 1).  

All three disruption/knockout plasmids were extracted from 250ml cultures of bacteria 

using the Plasmid Maxi kit (Qiagen; see 2.5.6) for transfection into P. falciparum cells.  

3.2.3 Complementation plasmids 

To provide a control for the gene disruption experiments, complementation plasmids were 

produced. These plasmids are designed to provide a fully functional episomal copy of a 

gene, such that on integration of a co-transfected knockout plasmid into the chromosomal 

gene locus, the protein will still be produced episomally. These studies will test the 

hypothesis that the gene loci can be disrupted if an additional functional copy of the gene is 

present.  

Full-length coding sequences for PfCK2α and PfCK2β2 were digested out of the 

expression plasmids pGEX-4T-3-PfCK2a (see 4.4.1) and pGEX-4T-3-PfCK2b2 (see 5.5.1) 

using the restriction enzymes BamHI and NotI. PfCK2β1 was digested out of the plasmid 

pGEM-T-Easy-PfCK2b1 (see 5.4.1) using the restriction enzymes BglII and NotI. The 

fragments were sub-cloned into the BglII/NotI sites of the expression cassette of the 

plasmid pHGB (Tonkin et al., 2004) (see Fig. 2-3), between the P. falciparum heat shock 

protein 86 promoter (PfHSP86 5’UTR) and the 3’ untranslated region of P. berghei 

dihydrofolate reductase/thymilidate synthase (PbDT 3’). The P. falciparum heat shock 

protein 86 displays a similar expression profile to the three PfCK2 genes (Le Roch et al., 

2003), therefore the Hsp86 promoter is presumably an appropriate choice for the 

complementation plasmid promoter. These expression cassettes from pHGB replaced the 

selection cassette in the complementation plasmid pCHD-1/2 (Tonkin et al., 2004) by a 

clonase reaction, as described in section 2.3.2, to produce the pCHD-PfCK2a, pCHD-

PfCK2b1 and pCHD-PfCK2b2 plasmids (Fig. 3-3, and Appendix 1). The pCDH-1/2-based 

plasmids can be selected for in P. falciparum under WR99210 treatment.  
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Figure 3-3 Map of the pCHD-PfCK2a plasmid 
This figure shows the important features of the plasmid pCHD-PfCK2a. The plasmid 
encodes two selectable markers, the ampicillin resistance gene (AmpR) for selection in E. 
coli, and the human dihydrofolate reductase (hDHFR) gene, which mediates WR99210 
resistance, for selection in P. falciparum. Some restriction enzyme recognition sites are also 
shown. See also Fig. 2-3. Figure produced using Vector NTI software (Invitrogen). 

Schematics of the PfCK2 gene structures, and the portions of the genes used for cloning 

and for generation of gene-specific probes for Southern blots are shown in Figs. 3-4, 5 and 

6.  

 

Figure 3-4 PfCK2α  schematic 
PfCK2α gene structure and portions of the gene used for cloning and production of the 
gene-specific probe are shown. i) PfCK2α  gene. ii) Portion of PfCK2α  gene used for 
generation of the 3’-tagging plasmid pCAM-BSD-HA-PfCK2a. iii) Portion of PfCK2α  gene 
used for generation of the knockout plasmid pCAM-BSD-KOPfCK2a. iv) Portion of PfCK2α 
gene (whole gene) used for generation of the complementation plasmid pCHD-PfCK2a. 
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Figure 3-5 PfCK2β1 reverse genetics cloning schematic 
PfCK2β1 gene structure and portions of the gene used for cloning and production of the 
gene-specific probe are shown. i) PfCK2β1 gene. ii) Portion of PfCK2β1 gene used for 
generation of the 3’-tagging plasmid pCAM-BSD-HA-PfCK2b1. iii) Portion of PfCK2β1 gene 
used for generation of the knockout plasmid pCAM-BSD-KOPfCK2b1. iv) Portion of PfCK2β1 
gene (whole gene) used for generation of the complementation plasmid pCHD-PfCK2b1. 

 

 

Figure 3-6 PfCK2β2 reverse genetics cloning schematic 
PfCK2β2 gene structure and portions of the gene used for cloning and production of the 
gene-specific probe are shown. i) PfCK2β2 gene. ii) Portion of PfCK2β2 gene used for 
generation of the 3’-tagging plasmid pCAM-BSD-HA-PfCK2b2. iii) Portion of PfCK2β2 gene 
used for generation of the knockout plasmid pCAM-BSD-KOPfCK2b2. iv) Portion of PfCK2β2 
gene (whole of both exons, no intron) used for generation of the complementation plasmid 
pCHD-PfCK2b2. 
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3.3 PfCK2α  

3.3.1 In vivo tagging 

P. falciparum 3D7 parasites were transfected with p-CAM-BSD-HA-PfCK2a (see sections 

2.3.2&3) and maintained under blasticidin selection. Screening to test for integration was 

first conducted at 90 days post-transfection, by gDNA extraction and PCR screening using 

TaKaRa ex Taq polymerase and the diagnostic oligonucleotide pairs detailed in Table 3-1. 

There was clear evidence of integration (Fig. 3-7A). Twelve clonal lines were produced by 

limiting dilution, and the clones similarly screened for integration by PCR (two shown 

here, Fig. 3-7B&C).  

Table 3-1 Oligonucleotide pairs for detecting integration of pCAM-BSD-HA-PfCK2a 
The number in brackets after the oligonucleotide primer names is how the primers are 
identified in Fig. 3-7D. 

Band to be amplified Forwards 
oligonucleotide 

Reverse 
oligonucleotide 

Expected size of 
amplified band (bp) 

Wild type CK2aForBam (1) CK2a3primeRev (2) 1176 
5’ integration CK2aForBam (1) pCAMBSDRev (4) 1973 
3’ integration pCAMBSDFor (3) CK2a3primeRev (2) 810 
Plasmid pCAMBSDFor (3) pCAMBSDRev (4) 1577 
 
DNA from two of the clonal lines was also analysed by Southern blotting (Fig. 3-7E). 

Probing the Southern blot with a BSD gene probe demonstrated that the plasmid had 

integrated, with the expected size band clearly seen (14.5kb) in the gDNA from the clonal 

lines (lanes 2&3), and no band seen in the gDNA from untransfected parasites (lane 1). 

Probing the Southern blot with PfCK2α showed that no wild type band (13kb) remained in 

the clonal cultures, and the expected sizes of bands indicative of integration were seen 

(14.5kb and 4.4kb). Hence, the plasmid pCAM-BSD-HA-PfCK2a is able to integrate into 

the PfCK2α genomic locus, demonstrating that the locus is amenable to recombination. 

The 5.9kb band corresponding to the linearised plasmid could represent linearised 

episome, or integrated concatemers of the plasmid. Repetition of the Southern Blot using a 

different restriction enzyme that does not have a recognition site in the plasmid would 

clarify whether there is more than one integrated copy of the plasmid in the locus.  
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Figure 3-7 HA tagging of PfCK2α 
Panel A: PCR screening for integration in gDNA from parasites transfected with pCAM-BSD-
HA-PfCK2a revealed the presence of parasites in which integration events had occurred 
(lane 2: 1973 bp, lane 3: 810 bp). This culture still contained the wild type locus (lane 1: 
1176bp), and therefore clonal lines were derived from the culture by limiting dilution. The 
plasmid was still present in the cultures (lane 4: 1577bp diagnostic band). Panels B and C: 
PCR screening for integration in gDNA from two of the parasite lines derived by limiting 
dilution (B: clone B3, C: clone E1) revealed that the wild type band had been lost (lane 1) 
and only the integration bands were seen (lanes 2 and 3). These clonal lines were further 
analysed by Southern blotting (Panel E). Panel D is a schematic of the chromosomal gene 
locus, the pCAM-BSD-HA-PfCK2a plasmid and the recombined locus, and shows the 
locations of oligonucleotide primers (indicated by numbered arrowheads) used for the PCR 
screens (Panels A-C). Oligonucleotide identities are listed in Table 3-1. The locations of the 
HindIII restriction enzyme recognition sites are depicted and the expected sizes of the 
fragments of gDNA after restriction digestion are shown. Fragments of gDNA resulting from 
restriction endonuclease digestion were analysed by Southern blotting (Panel E). 1: 
untransfected 3D7 parasites, 2: PfCK2αHA clone B3, 3: PfCK2αHA clone E1. The wild type 
locus, recognised by the PfCK2α probe, disappears in the clonal lines, and integration 
bands of the expected sizes are seen, indicating that the plasmid successfully integrated 
into the locus.  

The modified gene should encode an HA-tagged PfCK2α subunit, allowing for 

purification of protein complexes containing PfCK2α. Two clonal lines were tested for the 

presence of HA-tagged PfCK2α subunits by anti-HA immunoprecipitations, with 

untransfected parasites as negative controls (see Fig. 5-7). 

3.3.2 Knockout and complementation 

To determine whether PfCK2α has essential functions for parasite survival, and is thus a 

valid (or not) potential drug target, we attempted to disrupt the PfCK2α gene. To generate 



3. Reverse Genetics   90 

a plasmid able to disrupt the PfCK2α gene, an internal fragment of the coding sequence, 

excluding the DNA coding for the critical motifs Gly-x-Gly-x-x-Ser (subdomain I, 

involved in anchoring of the ATP molecule) and Gly-Pro-Glu (subdomain VIII, required 

for structural stability of the C-terminal lobe, see Figs. 1-5 and 4-1), was amplified and 

cloned into the transfection vector pCAM-BSD, which confers resistance to blasticidin. 

Integration of this construct (pCAM-BSD-KOPfCK2α) into the genomic locus by single 

cross-over homologous recombination is expected to result in a pseudo-diploid 

configuration, where both truncated copies will be unable to express a functional enzyme, 

since one will lack a stop codon and 3’UTR, the other will lack a promoter, and both will 

lack one of the essential motifs for enzyme activity (Fig. 3-8A).  

After two independent transfections of pCAM-BSD-KOPfCK2α into 3D7 parasites, 

integration was monitored in the blasticidin-resistant populations by PCR (Fig. 3-8B), 

using primer combinations that allow discrimination between the episome, the wild-type 

locus and the disrupted locus (Table 3-2). Only the episome (610bp, lane 4) and the wild-

type locus (1030bp, lane 1) were detectable, with no sign of integration even after 

prolonged culture (16 weeks). In contrast, we regularly observe disruption of non-essential 

genes 6-7 weeks post transfection (for example, see (Dorin-Semblat et al., 2007, Dorin-

Semblat et al., 2008)), and integration of the PfCK2α tagging construct was readily 

observed 12 weeks after transfection (see section 3.3.1). 

Table 3-2 Oligonucleotide pairs for detecting integration of pCAM-BSD-KOPfCK2a 
The number in brackets after the oligonucleotide primer names is how the primers are 
identified in Fig. 3-8A. 

Band to be 
amplified 

Forwards 
oligonucleotide 

Reverse 
oligonucleotide 

Expected size of 
amplified band (bp) 

Wild type CK2a5primeFor (1) CK2aRevSal (2A) 1030 
5’ integration CK2a5primeFor (1) pCAMBSDRev (4) 677 
3’ integration pCAMBSDFor (3) CK2a3primeRev (2B) 1060 
Plasmid pCAMBSDFor (3) pCAMBSDRev (4) 610 
 
Two hypotheses can account for the non-integration of the disruption plasmid: the presence 

of an intact gene is crucial for parasite asexual multiplication, or the locus is not amenable 

to recombination. We have already demonstrated that the PfCK2α locus is 

recombinogenic, by integration of the pCAM-BSD-HA-PfCK2a construct into the locus 

(Fig. 3-7). We nevertheless wanted to ascertain that PfCK2α can be disrupted if the 

PfCK2α protein is provided through expression of an episomal copy of the gene. To this 

effect, a complementation plasmid (pCHD-PfCK2a, Fig. 3-3) was constructed as described 

above (section 3.2.3). In parallel with the transfection of the pCAM-BSD-KOPfCK2a 
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plasmid alone, two further populations of parasites were co-transfected with both pCAM-

BSD-KOPfCK2a and pCHD-PfCK2a (however, one of these parasite lines never recovered 

to a visible parasitaemia under double drug selection, and was discarded). PCR analyses 

(Fig. 3-8B) showed that disruption of the targeted locus occurred only in the doubly 

transfected, doubly resistant parasites. Integration was detected at 10 weeks post-

transfection (the first time it was tested) in the doubly-transfected line, whereas even after 

16 weeks post-transfection, no integration was detected in the singly-transfected lines. 

Southern blot analysis confirmed this result (Fig. 3-8C). The P. falciparum PfCK2a probe 

hybridised to a 13kb band that represents the wild type locus in the lanes that contained 

gDNA from untransfected parasites and parasites transfected with the knockout plasmid 

alone (lanes 1-3). The intensity of this band dramatically decreased in the gDNA from 

doubly-transfected parasites, and was undetectable in two clonal lines (E7 and G9) that 

were derived from this culture by limiting dilution, indicating that the gene can be 

disrupted only when an additional cassette coding for the PfCK2α enzyme is provided to 

the parasites. There are multiple possibilities for the recombination of the knockout and 

complementation plasmids with each other before or after integration, which could account 

for the additional bands of unexpected size observed (6kb, 14kb), and the lack of the band 

corresponding to the 3’ end of the integration site (10kb). The most important observation 

is that the wild type band only disappears in the doubly-transfected parasites. 

Taken together, these data provide strong evidence that PfCK2α is essential to viability of 

the asexual erythrocytic stage parasites. This fits with what we know of the essentiality of 

CK2α orthologues in other species (Kikkawa et al., 1992, Lou et al., 2008, Padmanabha et 

al., 1990), and validates the enzyme as a potential drug target. 
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Figure 3-8 Knockout studies of PfCK2α 
3D7 parasites transfected with pCAM-BSD-KOPfCK2a with or without pCHD-PfCK2a were 
analysed by PCR and Southern blotting. Panel A: Diagram showing the locations of the 
primers used for PCR screening (indicated by numbered arrowheads; their identities are 
listed in Table 3-2), and the recognition sites for the HindIII restriction enzyme used to cut 
the gDNA to give a diagnostic pattern of bands for analysis by Southern blotting. Panel B: 
PCR screening of gDNA from two separate pCAM-BSD-KOPfCK2a-transfected lines 
(KOCK2a 1 and KOCK2a 2), and parasites transfected with both the knockout plasmid and 
the complementation plasmid (KOCK2a + complement). 1: amplification of the wild type 
PfCK2α locus. 2: amplification over the 5’ integration boundary. 3: amplification over the 3’ 
integration boundary. 4: amplification of the insert in the pCAM-BSD-KOPfCK2a plasmid. 
Evidence of integration is seen only in gDNA from the doubly-transfected parasite culture 
(KOCK2a + complement). Clonal cultures were derived from this population by limiting 
dilution, and the gDNA analysed by Southern blotting (Panel C). The restriction enzyme 
HindIII was used to digest the gDNA, and the fragments were analysed by Southern blotting 
using BSD and PfCK2α as probes. 1: untransfected 3D7, 2: KOCK2a1, 3: KOCK2a2, 4: 
KOCK2a + complement, 5: KOCK2a + complement clone E7, 6: KOCK2a + complement 
clone G9. Stars mark unexplained bands. 
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3.4 PfCK2β1  

3.4.1 In vivo tagging 

P. falciparum 3D7 parasites were transfected with p-CAM-BSD-HA-PfCK2b1 (see 

sections 2.3.2&3) and maintained under blasticidin selection. Screening to test for 

integration was first conducted at 73 days post-transfection, by gDNA extraction and PCR 

screening using TaKaRa ex Taq polymerase and the diagnostic oligonucleotide pairs 

detailed in Table 3-3. Evidence of integration was clearly seen (Fig. 3-9A). Three clonal 

lines were produced by limiting dilution (2.3.3), and the clones screened for integration by 

PCR (two are shown here, Fig. 3-9B&C).  

Table 3-3 Oligonucleotide pairs for detecting integration of pCAM-BSD-HA-PfCK2b1 
The number in brackets after the oligonucleotide primer names is how the primers are 
identified in Fig. 3-9D. 

Band to be 
amplified 

Forwards 
oligonucleotide 

Reverse 
oligonucleotide 

Expected size of 
amplified band (bp) 

Wild type CK2b1ForEco (1) CK2b13primeRev (2) 804 
5’ integration CK2b1ForEco (1) pCAMBSDRev (4) 1673 
3’ integration pCAMBSDFor (3) CK2b13primeRev (2) 722 
Plasmid pCAMBSDFor (3) pCAMBSDRev (4) 1582 
 
DNA from the clonal lines was also analysed by Southern blotting (Fig. 3-9E). Probing the 

Southern blot with a BSD gene probe demonstrated that the plasmid had integrated, with 

the expected size band (6.2kb) seen in the gDNA from the clonal lines (lanes 2&3), and no 

band seen in the gDNA from untransfected parasites (lane 1). The PfCK2β1 probe 

hybridised to the wild type band (4.1kb) in the untransfected parasites (Fig. 3-9E, lane 1), 

but no band of this size was seen in the clonal HA-tagged lines (lanes 2&3). The expected 

sizes of bands indicative of integration were seen in these clonal lines (3.3kb and 6.2kb). 

We can thus conclude that the plasmid pCAM-BSD-HA-PfCK2b1 is able to integrate into 

the PfCK2β1 genomic locus, demonstrating that the locus is available for recombination. 

The modified gene should encode an HA-tagged PfCK2β1 subunit, allowing for 

purification of protein complexes containing PfCK2β1. Two clonal lines were tested for 

the presence of HA-tagged PfCK2β1 subunits by anti-HA immunoprecipitations, with 

untransfected parasites as negative controls (see Fig. 5-7). 
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Figure 3-9 HA tagging of PfCK2β1 
Panel A: PCR screening for integration in gDNA from parasites transfected with pCAM-BSD-
HA-PfCK2b1 revealed the presence of parasites in which integration events had occurred 
(lane 3: 722bp. This lane is shown overexposed (5), where the 3’ integration band, which is 
indicated with an arrowhead, can more clearly be seen). Lane 1: amplification of the wild 
type locus, lane 2: amplification over the 5’ integration boundary, lane 3: amplification over 
the 3’ integration boundary, lane 4: diagnostic band for the presence of the plasmid. Panels 
B&C: PCR screening for integration in gDNA of parasite lines derived by limiting dilution (B: 
clone C9, C: clone E8) revealed that the wild type band had been lost (lane 1) and only the 
integration bands (lane 2: 1673bp, lane 3: 722bp) were seen. These clonal lines were further 
analysed by Southern blotting (Panel E). Panel D is a schematic of the chromosomal gene 
locus, the pCAM-BSD-HA-PfCK2b1 plasmid and the recombined locus, and shows the 
locations of oligonucleotide primers (indicated by numbered arrowheads) used for the PCR 
screens (Panels A-C). Oligonucleotide identities are listed in Table 3-3. The location of the 
restriction enzyme recognition sites are depicted and the expected sizes of the fragments of 
gDNA after restriction endonuclease digestion are shown. Fragments of gDNA resulting 
from restriction endonuclease digestion were analysed by Southern blotting (Panel E), 
using PfCK2β1 and BSD as probes. gDNA from wild type 3D7 parasites (lane 1), and 
PfCK2b1HA clonal lines C9 (lane 2) and E8 (lane 3), was digested using the restriction 
enzyme NdeI. The wild type locus, recognised by the PfCK2β1 probe, disappears in the 
clonal lines, and integration bands appear in the clonal lines, indicating that integration has 
occurred.   
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3.4.2 Knockout and complementation 

We wanted to determine whether PfCK2β1 has essential functions for parasite survival. 

Reverse genetics data for CK2β from other organisms gives a mixed picture: for some 

organisms the beta subunits are essential, for others they are not (see sections 1.6.2 and 

3.1). Plasmids were constructed to achieve gene disruption by single crossover integration. 

Constructs for the disruption of the two beta genes were designed as detailed in section 

3.2.2 above.  

After two independent transfections of pCAM-BSD-KOPfCK2b1 into 3D7 parasites 

(parasite lines named KOCK2b1 1 and 2), integration was monitored in the blasticidin-

resistant populations by PCR (Fig. 3-10B), using primer combinations that allow 

discrimination between the episome, the wild-type locus and the disrupted locus (Table 3-

4). Only the episome (604bp diagnostic fragment amplified, lane 4) and the wild-type 

locus (934bp fragment amplified, lane 1) were detectable, with no sign of integration even 

after prolonged culture (15 weeks). We have already confirmed that the PfCK2β1 locus is 

recombinogenic, since the pCAM-BSD-HA-PfCK2b1 plasmid was able to integrate into 

the locus (Fig. 3-9). The lack of integration of the knockout plasmid therefore indicates 

that the gene is essential to the survival of asexual erythrocytic stage parasites. 

Table 3-4 Oligonucleotide pairs for detecting integration of pCAM-BSD-KOPfCK2b1 
The number in brackets after the oligonucleotide primer names is how the primers are 
identified in Fig. 3-10A. 

Band to be 
amplified 

Forwards 
oligonucleotide 

Reverse 
oligonucleotide 

Expected size of 
amplified band (bp) 

Wild type CK2b15primeF (1) CK2b13primeRev (2) 934 
5’ integration CK2b15primeF (1) pCAMBSDRev (4) 598 
Plasmid pCAMBSDFor (3) pCAMBSDRev (4) 604 
 
We nevertheless wanted to ascertain that PfCK2β1 can be disrupted if the subunit is 

provided through expression of an episomal copy of the gene. To this effect, a 

complementation plasmid (pCHD-PfCK2b1, Appendix 1) was constructed, containing the 

full-length PfCK2β1 gene under the control of the PfHsp86 promoter and preceding a 

3’UTR. In parallel with the transfection of the pCAM-BSD-KOPfCK2b1 plasmid alone, 

two further populations of parasites were transfected with both pCAM-BSD-KOPfCK2b1 

and pCHD-PfCK2b1. These parasite cultures were named KOCK2b1 + comp 1 and 

KOCK2b1 + comp 2. PCR analyses (Fig. 3-10B) showed that disruption of the targeted 

locus occurred only in a doubly transfected, doubly resistant parasite culture (lanes for the 

KOCK2b1 + comp 1 gDNA: wild type band absent in lane 1, and weak integration band 
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present in lane 2 (598bp), Fig. 3-10B). Integration was detected at 10 weeks post-

transfection (the first time it was tested) in one of the doubly-transfected parasite lines, 

whereas even after 15 weeks post-transfection, no integration was detected in the singly-

transfected lines. Southern blot analysis independently confirmed that integration only 

occurred in a doubly-transfected parasite culture (Fig. 3-10C, with the expected sizes of 

DNA fragments after digestion with the restriction enzymes EcoRI and ClaI shown in Fig. 

3-10A). When the membrane was probed with the BSD probe (Fig. 3-10C, left panel), the 

only bands recognised other than the linearised plasmid were in lane 4, indicating that 

integration only occurred in parasites transfected with both the knockout and 

complementation plasmids. Probing the membrane with the PfCK2β1 probe corroborated 

these findings (Fig. 3-10C, right panel). The probe hybridised to a 11.1kb band that 

represents the wild type locus in the lane that contained gDNA from untransfected 

parasites and parasites transfected with the knockout plasmid alone (lanes 1-3). This band 

was undetectable in gDNA from parasites transfected with both the knockout and 

complementation plasmids (KOCK2b1 + comp 1, lane 4), indicating that the gene can be 

disrupted only when an additional cassette coding for the PfCK2β1 subunit is provided to 

the parasites. There are multiple possibilities for the recombination of the knockout and 

complementation plasmids with each other before or after integration, which could account 

for the additional bands of unexpected size observed (9, 6, 4.8kb, and just above 6kb), and 

the lack of the 8.1kb integration band. The lack of integration in the second doubly-

transfected parasite line (KOCK2b1 + comp 2, Fig. 10B and lane 5 in Fig. 10C), contrasted 

with the complete integration (and disappearance of the wild type band without the need to 

clone the culture by limiting dilution) in the first doubly-transfected line, is intriguing and 

should be further investigated. The presence of an unexpected-size band in the digested 

KOCK2b1 + comp 2 gDNA when probed with the PfCK2β1 probe (Fig. 10C, right panel, 

lane 5) may indicate recombination between the two plasmids, or spurious integration of 

one or both plasmids. Plasmid rescue experiments on this parasite culture should be 

performed to determine whether it still possesses both plasmids (although the continued 

survival of the parasite line when cultured in the presence of both selective drugs indicates 

that both plasmids are likely to be present), pulsed-field gel experiments should be 

performed to determine whether the plasmids have integrated in another chromosome, and 

all of the cultures should be propagated for a longer period of time and the Southern blots 

repeated.  

The ease of integration of the HA-tagging plasmid, and of the knockout plasmid in the 

presence of the complementation plasmid (albeit only in one of the two parallel cultures) 
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coupled with the complete absence of integration of the knockout plasmid in the absence of 

the complementation plasmid, provides compelling evidence that PfCK2β1 is essential to 

viability of the asexual erythrocytic stage parasites. 

 
Figure 3-10 Knockout studies of PfCK2β1 
3D7 parasites transfected with pCAM-BSD-KOPfCK2b1 with or without pCHD-PfCK2b1 were 
analysed by PCR and Southern blotting. Panel A: Diagram showing the locations of the 
primers used for PCR screening, and the restriction enzymes used to cut the gDNA to give a 
diagnostic pattern of bands for analysis by Southern blotting. Panel B: PCR screening of 
gDNA from two separate pCAM-BSD-KOPfCK2b1-transfected lines (KOCK2b1 1 and 
KOCK2b1 2), and parasites transfected with both the knockout plasmid and the 
complementation plasmid (KOCK2b1 + comp). 1: amplification of the wild type PfCK2β1 
locus. 2: amplification over the 5’ integration boundary. 3: amplification of the insert in the 
pCAM-BSD-KOPfCK2b1 plasmid. Evidence of integration is seen only in the gDNA from the 
doubly-transfected parasite culture (KOCK2b1 + comp, lane 2, faint band seen at 598bp). 
Parasite gDNA was digested using the restriction enzymes EcoRI and ClaI, and analysed by 
Southern blotting (Panel C), using BSD and PfCK2β1 as probes. 1: untransfected 3D7, 2: 
KOCK2b1 1, 3: KOCK2b1 2, 4: KOCK2b1 + complement. Stars mark unexplained bands. See 
text for discussion.  
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3.5 PfCK2β2  

3.5.1 In vivo tagging 

P. falciparum 3D7 parasites were transfected with p-CAM-BSD-HA-PfCK2b2 (see 

sections 2.3.2&3) and maintained under blasticidin selection. Screening for integration was 

first conducted at 90 days post-transfection, by gDNA extraction and PCR screening using 

TaKaRa ex Taq polymerase and the diagnostic oligonucleotide pairs detailed in Table 3-5. 

Evidence of integration was clearly seen (Fig. 3-11A, lane 2: 2255bp). Three clonal lines 

were produced by limiting dilution, and the clones screened for integration by PCR (two 

shown here, Fig. 3-11B&C). The 3' integration band was amplified (lane 3: 822bp) from 

these gDNA extractions, as well as the 5’ integration band seen in the uncloned population. 

Table 3-5 Oligonucleotide pairs for detecting integration of pCAM-BSD-HA-PfCK2b2 
The number in brackets after the oligonucleotide primer names is how the primers are 
identified in Fig. 3-11D. 

Band to be 
amplified 

Forwards 
oligonucleotide 

Reverse 
oligonucleotide 

Expected size of 
amplified band (bp) 

Wild type CK2b2ForBam (1) CK2b23primeRev (2) 1483 
5’ integration CK2b2ForBam (1) pCAMBSDRev (4) 2255 
3’ integration pCAMBSDFor (3) CK2b23primeRev (2) 822 
Plasmid pCAMBSDFor (3) pCAMBSDRev (4) 1615 
 
DNA from the clonal lines was also analysed by Southern blotting (Fig. 3-11E), alongside 

gDNA from untransfected 3D7 parasites. The parasite gDNA was digested using the 

restriction enzymes NcoI and ClaI to give a diagnostic pattern of bands when analysed by 

Southern blot. Panel D of Fig. 3-11 shows the expected size bands for the wild type and 

recombined locus. When the membrane was probed with BSD, bands of the expected size 

for the plasmid and the 3’ end of the recombined locus were seen in the lanes containing 

digested gDNA from the clonal lines (lanes 2 and 3). No bands were seen in the 

untransfected parasite gDNA (lane 1). When the membrane was reprobed with PfCK2β2, a 

band corresponding to the size of the wild type locus was seen in the lane containing 

digested gDNA from the untransfected parasites (lane 1), and not in the gDNA from the 

clonal lines (lanes 2 and 3). Bands of the expected size for the 5’ and 3’ ends of the 

recombined locus, as well as the plasmid, were recognised by the PfCK2β2 probe only in 

the gDNA from the clonal lines. These data indicate that the plasmid pCAM-BSD-HA-

PfCK2b2 is able to integrate into the PfCK2β2 genomic locus, demonstrating that the locus 

is amenable to recombination. The modified gene should encode an HA-tagged PfCK2β2 

subunit, allowing for purification of protein complexes containing PfCK2β2. The two 
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clonal lines were tested for the presence of HA-tagged PfCK2β2 subunits by anti-HA 

immunoprecipitation, using untransfected parasites as negative controls (see Fig. 5-7).  

 
Figure 3-11 HA tagging of PfCK2β2 
Panel A: PCR screening for integration in gDNA from parasites transfected with pCAM-BSD-
HA-PfCK2b2 revealed the presence of parasites in which integration events had occurred 
(lane 2: 2255bp). Panels B&C: PCR screening for integration in gDNA of clonal cultures 
derived by limiting dilution (B: clone D5, C: clone E2) revealed that the wild type band had 
been lost (lane 1) and the integration bands were seen (lane 2: 2255bp, lane 3: 822bp). 
These two clonal lines were further analysed by Southern blotting (Panel E). Panel D is a 
schematic of the chromosomal gene locus, the pCAM-BSD-HA-PfCK2b2 plasmid and the 
recombined locus, and shows the locations of oligonucleotide primers used for the PCR 
screens (Panels A-C). Oligonucleotide identities are listed in Table 3-5. The location of the 
recognition sites for the restriction enzymes NcoI and ClaI are depicted, and the expected 
sizes of the fragments of gDNA after restriction digestion are shown. Fragments of gDNA 
resulting from restriction endonuclease digestion were analysed by Southern blotting 
(Panel E), using BSD and PfCK2β2 as probes. gDNA from wild type 3D7 parasites (lane 1), 
and PfCK2β2HA clonal lines D5 and E2 (lanes 2 and 3), was digested using the restriction 
enzymes NcoI and ClaI. The wild type locus, recognised by the PfCK2β2 probe, disappears 
in the clonal lines, and integration bands of the expected sizes are seen, indicating that the 
plasmid successfully integrated into the locus. 
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3.5.2 Knockout and complementation 

The fragment of the PfCK2β2 gene (‘KOPfCK2b2’) that was amplified and cloned into 

pCAM-BSD for transfection of parasites was chosen as detailed above (section 3.2.2). Two 

independent transfections of pCAM-BSD-KOPfCK2b2 into 3D7 parasites were performed, 

and the parasite lines named KOCK2b2 1 and 2. Integration was monitored in the 

blasticidin-resistant populations by PCR (Fig. 3-12B), using primer combinations that 

allow discrimination between the episome, the wild-type locus and the disrupted locus 

(Table 3-6, locations of primers shown in Fig. 3-12A). Only the episome (1224bp 

diagnostic fragment amplified, lanes 3) and the wild-type locus (1356bp amplified 

fragment, lanes 1) were detectable, with no sign of integration even after prolonged culture 

(15 weeks). We have already confirmed that the PfCK2β2 locus is recombinogenic, since 

the pCAM-BSD-HA-PfCK2b2 plasmid was able to integrate into the locus (Fig. 3-11). 

Table 3-6 Oligonucleotides for detecting integration of pCAM-BSD-KOPfCK2b2 
The number in brackets after the oligonucleotide primer names is how the primers are 
identified in Fig. 3-12A. 

Band to be 
amplified 

Forwards 
oligonucleotide 

Reverse 
oligonucleotide 

Expected size of 
amplified band (bp) 

Wild type CK2b25primeF (1) CK2b2RSpe (2) 1356 
5’ integration CK2b25primeF (1) pCAMBSDRev (4) 1169 
Plasmid pCAMBSDFor (3) pCAMBSDRev (4) 1224 
 
To assess whether PfCK2β2 can be disrupted if the subunit is provided through expression 

of an episomal copy of the gene, a complementation plasmid (pCHD-PfCK2b2, Appendix 

1) was constructed, containing the full-length PfCK2β2 gene under the control of the 

PfHsp86 promoter and preceding a 3’UTR. Two populations of parasites were transfected 

with both pCAM-BSD-KOPfCK2b2 and pCHD-PfCK2b2 (‘KOCK2b2 + comp 1’ and 

‘KOCK2b2 + comp 2’), and kept in culture for the same amount of time as the parasites 

transfected with the pCAM-BSD-KOPfCK2b2 plasmid alone. PCR analyses (Fig. 3-12B 

and C) showed that disruption of the targeted locus occurred only in the gDNA from the 

doubly transfected, doubly resistant parasite cultures (lanes 3 and 4 of Fig. 3-12C show the 

integration band (1169bp)). Integration was detected at 10 weeks post-transfection (the 

first time it was tested) in the doubly-transfected parasite lines, whereas even after 16 

weeks post-transfection, no integration was detected in the singly-transfected lines. This 

result was corroborated by Southern blot analysis, which also showed that integration only 

occurred in the doubly-transfected parasites (Fig. 3-12D). The expected sizes of DNA 

fragments after digestion of gDNA using the restriction enzymes NcoI and ClaI is shown 

in Fig. 3-12A. When the membrane was probed with the BSD probe (Fig. 3-12D, left 
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panel), the only bands recognised other than the linearised plasmid were in lanes 4 and 5, 

implying that the only integration events occurred in the parasites transfected with both 

knockout and complementation plasmids. The membrane was stripped and reprobed with 

the PfCK2β2 probe (Fig. 3-12D, right panel), which hybridised to an 8.5kb band that 

represents the wild type locus. This band was recognised in the lane that contained gDNA 

from untransfected parasites and parasites transfected with the knockout plasmid alone 

(lanes 1-3). The band was almost undetectable in gDNA from parasites transfected with 

both the knockout and complementation plasmids (lanes 4 and 5), indicating that the gene 

can be disrupted only when an additional cassette coding for the PfCK2β2 subunit is 

provided to the parasites. Equal loading of gDNA in each lane is shown in the ethidium 

bromide-stained agarose gel (Fig. 3-12E). The membrane was stripped and reprobed with 

the PfCK2α probe to provide another control for equal loading, but there were no visible 

bands, indicating that a second stripping of the membrane had removed too much DNA for 

any further analysis to be possible. An attempt was made to produce clonal lines from the 

doubly-transfected cultures by limiting dilution, but analysis of the lines by PCR showed 

that they were not clonal (diagnostic bands for the wild type locus, and the recombined 

locus, were amplified from each parasite line). The dilution cloning must be repeated in the 

future, and the Southern blotting repeated using gDNA extracted from the clonal lines, to 

ascertain whether the wild type band completely disappears. Bands of a size diagnostic for 

integration were observed only in the doubly-transfected parasites (Fig. 12C, lane 4). 

Additional bands of unexpected size were observed (several bands, 9.5kb and larger), 

which may be explained by recombination between the two plasmids, before or after 

integration. A different set of bands was seen in the second doubly-transfected parasite 

culture (lane 5), not corresponding to the expected sizes for integration. This could be 

because of recombination between the two plasmids, before or after integration, leading to 

different length fragments on digestion. PCR analyses showed that amplification across the 

integration boundary was possible (Fig. 3-12C, lane 4), so integration had clearly occurred 

in the locus. Taken together, these data provide strong evidence that PfCK2β2 is essential 

to viability of the asexual erythrocytic stage parasites. 
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Figure 3-12 Knockout studies of PfCK2β2 
3D7 parasites transfected with pCAM-BSD-KOPfCK2b2 alone or alongside pCHD-PfCK2b2 
were analysed by PCR and Southern blotting. Panel A: Diagram showing the locations of 
the oligonucleotide primers used for PCR screening (indicated by numbered arrowheads), 
and the recognition sites for the restriction enzymes used to cut the gDNA to give a 
diagnostic pattern of bands for analysis by Southern blotting. Oligonucleotide identities are 
listed in Table 3-6. Panel B: PCR screening of gDNA from two separate pCAM-BSD-
KOPfCK2b2-transfected cultures (KOCK2b2 1 and KOCK2b2 2), and two separate cultures 
of parasites transfected with both the knockout plasmid and the complementation plasmid 
(KOCK2b2 + comp 1 and 2). 1: amplification of the wild type PfCK2β2 locus. 2: amplification 
over the 5’ integration boundary. 3:amplification of the insert in the pCAM-BSD-KOPfCK2b2 
plasmid. Evidence of integration is seen only in the doubly-transfected parasite lines 
(KOCK2b2 + comp 1 and 2), as confirmed by panel C, showing just the PCR products from 
the amplifications across the 5’ integration boundary. Lane 1: KOCK2b2 1. Lane 2: 
KOCK2b2 2. Lane 3: KOCK2b2 + comp 1. Lane 4: KOCK2b2 + comp 2. Amplification over the 
integration boundary is only possible in the parasite lines cotransfected with the knockout 
and complementation plasmids. Parasite gDNA was also analysed by Southern blotting 
(Panel D). The restriction enzymes ClaI and NcoI were used to digest the gDNA, and the 
fragments were analysed by Southern blotting using BSD and PfCK2β2 as probes. 1: 
untransfected 3D7, 2: KOCK2b2 1, 3: KOCK2b2 2, 4: KOCK2b2 + comp 1, 5: KOCK2b2 + 
comp 2. Stars mark unexplained bands. Panel E: ethidium-stained Southern blot gel 
showing equal loading of gDNA in each lane.  
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Higher organisms in which gene disruption experiments have been attempted possess a 

single copy of the CK2β gene, and it is essential in these organisms (Fraser et al., 2000, 

Lou et al., 2008). The yeast Schizosaccharomyces pombe also possesses a single copy of 

the CK2β gene, but in this organism it is dispensable for viability (Roussou and Draetta, 

1994). The only other organism expressing more than one isoform of beta subunit in which 

gene disruption experiments have been attempted is Saccharomyces cerevisiae, and in this 

organism the different forms display incomplete functional overlap, with each version of 

CK2β having a particular role, and single and double CK2β gene knockouts have been 

achieved (Ackermann et al., 2001, Bidwai et al., 1995, Reed et al., 1994). This does not 

seem to be possible in P. falciparum. The two beta subunits of P. falciparum are distinctly 

different from one another (see Fig. 5-1), which, combined with the inability to produce 

viable parasite populations lacking either of the two PfCK2β genes, leads to the hypothesis 

that the two PfCK2β subunits display non-redundant functions within the parasite, such 

that the presence of one cannot compensate for the absence of the other form. Thus the 

essentiality or dispensability of the beta subunit of CK2 is not related to adaptations to 

multicellular life.  

The many and varied functions of the CK2β subunit orthologues in model organisms (see 

section 1.6.2) preclude firm hypotheses regarding the roles of the CK2β subunits in P. 

falciparum, and the significance of the essentiality of both of the subunits must be further 

investigated. The subcellular localisation and trafficking of the subunits is of particular 

interest, to determine whether the PfCK2β subunits exist independently of the CK2 

tetramer, as has been amply proven in other systems (e.g. (Filhol et al., 2003, Salinas et al., 

2006)). Immunoprecipitation studies to ascertain whether the PfCK2β subunits have 

distinct binding partners, and are able to associate with other protein kinases in addition to 

CK2α, will be particularly informative as to their roles within the parasite. We have started 

to address this issue (see section 5.7.1).  
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3.6 Summary 

• Three-prime tagging plasmids were constructed for transfection into parasites, 

which on single crossover homologous recombination with a PfCK2 gene would 

add an HA tag to the 3’end of the locus, but otherwise leave the locus intact. PCR 

and Southern blot analysis of gDNA from transfected 3D7 parasites indicated that 

the plasmids were able to integrate at each of the gene loci encoding PfCK2 

subunits. The gene loci are thus not refractory to recombination. 

• The HA tagged lines were cloned by limiting dilution. 

• Disruption, or knockout, plasmids were constructed for transfection into parasites, 

which on single crossover homologous recombination with a PfCK2 gene would 

disrupt the coding region, resulting in a pseudo-diploid locus, neither half of which 

would be functional.  

• We are unable to detect integration of the knockout plasmids targeting PfCK2α, 

PfCK2β1, or PfCK2β2 in the absence of a complementation plasmid. This is strong 

evidence that each of the PfCK2 genes is essential for parasite survival. 

• Complementation plasmids were transfected into 3D7 parasites alongside the 

knockout plasmids. The complementation plasmids contain PfCK2α/β1/β2 

expression cassettes under the control of a Plasmodium promoter, and thus provide 

an extra functional copy of the gene to the parasites. PCR and Southern blot 

analysis of gDNA extracted from transfected parasite cultures showed that the 

knockout plasmid is able to integrate into the genome in the presence of the 

episomally expressed PfCK2, and not in its absence. The parasite cultures 

transfected with the knockout plasmid alone showed no evidence of integration, 

even after the same amount of time in culture (or longer) as the doubly-transfected 

parasites.  

• These results strongly suggest that the three PfCK2 subunits are essential to 

viability of the erythrocytic stage parasites.  
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4 Biochemical characterisation of PfCK2α  

4.1 Introduction 

Protein kinase CK2 has been found in all eukaryotic organisms whose genome has been 

fully sequenced, including the microsporidian Encephalitozoon cuniculi, which has an 

extremely reduced kinome of only 29 typical eukaryotic protein kinases (Miranda-

Saavedra et al., 2007). The number of isoforms for the alpha and beta subunits varies 

between species, usually ranging between 1 and 3 isoforms for each subunit (with some 

exceptions e.g. Arabidopsis thaliana possesses four isoforms of CK2α and four of CK2β 

(Salinas et al., 2006)). One gene encoding a CK2α subunit and two genes encoding CK2β 

subunits were found in the Plasmodium falciparum genome (Anamika et al., 2005, Ward et 

al., 2004). 

In this chapter we discuss the putative P. falciparum CK2α subunit, PF11_0096, its 

sequence, cloning and expression, characteristics it holds in common with CK2α of other 

organisms, biochemical characterisation, and susceptibility to small molecule inhibitors. 

We discuss the two PfCK2β subunits in the following chapter. 

4.2 Identification of a CK2α  subunit in P. falciparum 

Phylogenetic analysis of P. falciparum protein kinases identified the PlasmoDB 

(Plasmodium database, www.plasmodb.org (Bahl et al., 2003)) sequence PF11_0096 as 

that of a CK2α orthologue (Anamika et al., 2005, Ward et al., 2004). PF11_0096 clearly 

clustered with CK2α from humans and yeast in a three-species phylogenetic tree of CMGC 

kinases (Ward et al., 2004). The top hits from a BlastP search using PF11_0096 as the 

query were CK2α orthologues, with CK2α from the green plants Lolium perenne (70% 

identical) and Oryza sativa (69% identical) as the closest related sequences (excluding 

other Apicomplexa). PF11_0096 was therefore named PfCK2α. All four gene-prediction 

algorithms available on PlasmoDB predict a one-exon structure for PfCK2α, encoding a 

predicted protein of 335 amino acids (calculated molecular weight 39.9kDa). An alignment 

of PfCK2α with CK2α subunits from Homo sapiens and Zea mays (Fig. 4-1) reveals that 

PfCK2α possesses all 11 of the subdomains conserved across eukaryotic protein kinases 

(Hanks and Quinn, 1991, Hanks and Hunter, 1995), all twelve of the conserved residues 

across eukaryotic protein kinases (listed in section 1.5), and the majority of the conserved 
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features of CK2α subunits (Allende and Allende, 1995). Just downstream from subdomain 

II is a putative nuclear localisation signal ProValLysLysLysLysIle, conserved across 

CK2α homologues. PfCK2α also possesses three invariant residues common to CK2 

family members: the ATP binding motif present in most other protein kinases is Gly-x-

Gly-x-x-Gly, whereas in the CK2 family the motif is Gly-x-Gly-x-x-Ser (PfCK2α Gly50-

Ser55). The most highly conserved amino acid motif specific to members of the CK2 

family is Asp179-Trp-Gly181 (notation from PfCK2α; most protein kinases display Asp-

Phe-Gly at this position). Likewise, Gly203-Pro-Glu205 (notation from PfCK2α) is a 

common feature of the family, which diverge from the Ala-Pro-Glu motif present in the 

vast majority of other protein kinases; thus all three CK2-specific motifs are present in 

PfCK2α (indicated by boxes in Fig. 4-1).  

                              I 
ZmCK2α   MS---------KARVYADVNVLRPKEYWDYEALTVQWGEQDDYEVVRKVGRGKYSEVFEG 51 
HsCK2α   MSGPVP----SRARVYTDVNTHRPREYWDYESHVVEWGNQDDYQLVRKLGRGKYSEVFEA 56 
PfCK2α   MSVSSINKKIYIPKFYADVNIHKPKEYYDYDNLELQWNKPNRYEIMKKIGRGKYSEVFNG 60 
 
          II          III            IV          
ZmCK2α   INVNNNEKCIIKILKPVKKKKIKREIKILQNLCGGPNIVKLLDIVRDQHSKTPSLIFEYV 111 
HsCK2α   INITNNEKVVVKILKPVKKKKIKREIKILENLRGGPNIITLADIVKDPVSRTPALVFEHV 116 
PfCK2α   YDTECNRPCAIKVLKPVKKKKIKREIKILQNLNGGPNIIKLLDIVKDPVTKTPSLIFEYI 120 
 
     V                   VIa           VIb            VII 
ZmCK2α   NNTDFKVLYPTLTDYDIRYYIYELLKALDYCHSQGIMHRDVKPHNVMIDHELRKLRLIDW 171 
HsCK2α   NNTDFKQLYQTLTDYDIRFYMYEILKALDYCHSMGIMHRDVKPHNVMIDHEHRKLRLIDW 176 
PfCK2α   NNIDFKTLYPKFTDKDIRYYIYQILKALDYCHSQGIMHRDVKPHNIMIDHENRQIRLIDW 180 
 
                    VIII                  IX 
ZmCK2α   GLAEFYHPGKEYNVRVASRYFKGPELLVDLQDYDYSLDMWSLGCMFAGKIFRKEPFFYGH 231 
HsCK2α   GLAEFYHPGQEYNVRVASRYFKGPELLVDYQMYDYSLDMWSLGCMLASMIFRKEPFFHGH 236 
PfCK2α   GLAEFYHPGQEYNVRVASRYYKGPELLIDLQLYDYSLDIWSLGCMLAGMIFKKEPFFCGH 240 
 
             X 
ZmCK2α   DNHDQLVKIAKVLGTDGLNVYLNKYRIELDPQLEALVGRHRRKPWLKFMNADNQHLVSPE 291 
HsCK2α   DNYDQLVRIAKVLGTEDLYDYIDKYNIELDPRFNDILGRHSRKRWERFVHSENQHLVSPE 296 
PfCK2α   DNYDQLVKIAKVLGTEDLHAYLKKYNIKLKPHYLNILGEYERKPWSHFLTQSNIDIAKDE 300 
 
               XI 
ZmCK2α   AIDFLDKLLRYDHQERLTALEAKTHPYF-----QQVRAAENSRTRA-------------- 332 
HsCK2α   ALDFLDKLLRYDHQSRLTAREAMEHPYFYTVVKDQARMGSSSMPGGSTPVSSANMMSGIS 356 
PfCK2α   VIDLIDKMLIYDHAKRIAPKEAMEHPYF-----REVREES-------------------- 335 
 
 
ZmCK2α   ----------------------------------- 
HsCK2α   SVPTPSPLGPLAGSPVIAAANPLGMPVPAAAGAQQ 391 
PfCK2α   ----------------------------------- 

Figure 4-1 Alignment of CK2α sequences from Zea mays, Homo sapiens and Plasmodium 
falciparum. 
Protein sequences were aligned using ClustalW. Roman numerals above the alignments 
indicate the eleven subdomains conserved across protein kinases (Hanks and Quinn, 1991, 
Hanks and Hunter, 1995). The three CK2-specific family motifs (GxGxxS, DWG and GPE) are 
boxed. The putative nuclear localisation sequence PVKKKKI is underlined. Residues 
thought to be important for the utilisation of GTP as a co-substrate are highlighted in bold. 
The peptide used to raise anti-CK2α  antibodies is underlined in light blue. Highlights 
indicate conserved amino acids. 
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HsCK2α is phosphorylated at four positions within a C-terminal stretch that is also present 

in chicken and rat CK2α, but not in the alpha prime isoforms, or in the alpha subunits of 

CK2 from Xenopus, Drosophila, plants or yeast (Allende and Allende, 1995). The C-

terminal region containing these sites is only present in mammalian and avian CK2α 

(Blanquet, 2000), suggesting that this region may be involved in some specialised function 

in a subset of Metazoans.  

4.3 Transcription and expression 

Microarray data reveals that PfCK2α mRNA is present at all stages of the parasite lifecycle 

that were examined (Le Roch et al., 2003, Bozdech et al., 2003). Proteomics data from 

various stages of the parasite lifecycle confirm that the PfCK2α subunit is expressed as 

protein in sporozoites and all blood stages, including gametocytes (Florens et al., 2004, 

Florens et al., 2002). Proteomic studies of P. yoelii liver-stage parasite proteins revealed 

that the putative P. yoelii CK2α orthologue (PY05048) is present in the liver stage 

parasites (Tarun et al., 2008). In other organisms CK2 is involved in basic cellular 

functions (see section 1.6.2), and therefore to find it to be expressed throughout the 

Plasmodium lifecycle was not unexpected. 

We confirmed by western blot analysis of mixed erythrocytic stage parasite extract that the 

PfCK2α protein is expressed during the erythrocytic cycle (see section 5.3 for the PfCK2β 

subunits). Western blot analyses of mixed blood-stage parasite extracts were performed 

with affinity purified rabbit anti-PfCK2α antibodies directed against the PfCK2α-derived 

peptide ADVNIHKPKEYYDY, and pre-immune serum as a control (Fig. 4-2). The 

antibodies were ordered from BioGenes (Berlin). The antibodies were purified against the 

immobilised peptide that was used to raise the antibodies. We used recombinant GST-

PfCK2α (see below, section 4.4) as a positive control. The band in lane 5 between the 55 

and 72kDa markers has the expected size of the GST-tagged PfCK2α subunit, and 

although there is a small amount of background binding to this protein in the pre-immune 

serum control, there is much greater binding with the anti-PfCK2α antibodies. The smaller 

bands seen in this lane probably represent degraded recombinant protein. A band of 

roughly the expected size for PfCK2α (40kDa) is recognised in wild-type 3D7 extract by 

the anti-PfCK2α antibodies and not by the pre-immune serum. The band in the wild-type 

3D7 parasite extract recognised by the specific antibodies runs at a slightly lower 

molecular weight than that in protein extracts from parasites that had incorporated an HA 

tag at the 3’ end of the PfCK2α gene (see Chapter 3), as expected, thus providing 
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supporting evidence that this band is indeed PfCK2α. No bands of these sizes are 

recognised in the red blood cell extract (lane 1). Pre-immune serum dilutions of 1 in 500 

were used for western blotting controls. The bands recognised by the specific antibodies 

were not recognised by the pre-immune serum (Fig. 4-2, left panel). 

 
Figure 4-2 Western blot showing PfCK2α expression in erythrocytic stage parasites 
Protein extract from unsynchronised erythrocytic stage P. falciparum parasites was 
prepared from wild-type 3D7 parasites (lane 2), and from parasites with a sequence 
encoding an HA-tag incorporated at the 3’ end of the PfCK2α gene locus (lane 3: clone B3, 
lane 4: clone E1; see Chapter 3 for details of these parasite lines). Protein extract from 
unparasitized red blood cells (lane 1), and recombinant GST-PfCK2α (lane 5, see section 
4.4), were included as negative and positive controls. Two identical acrylamide gels were 
run, the proteins transferred to membrane, and western blots performed with 
immunopurified rabbit anti-PfCK2α  antibodies (right panel), or with pre-immune serum from 
the same rabbit as a negative control (left panel). The expected sizes of the proteins 
mentioned in the text are indicated with arrows. 

 

4.4 Cloning and expression of the PfCK2α  subunit 

4.4.1 Cloning 

The coding sequence for the putative PfCK2α gene (1008bp, one exon) was amplified 

from P. falciparum 3D7 cDNA by the polymerase chain reaction, using Pfx Platinum 

polymerase and the oligonucleotide primers CK2aForBam and CK2aRevSal, which 

introduced an N-terminal BamHI site and a C-terminal SalI site to the PCR product. After 

cloning into the vector pGEM-T-Easy (see section 2.5.2.1) for sequence verification, the 

insert was subcloned (see section 2.5.2.2) into pGEX-4T-3 between the BamHI and SalI 

sites. pGEX-4T-3 attaches an N-terminal GST tag to the recombinant protein. This plasmid 

was named pGEX-4T-3-PfCK2a, and its insert region was sequenced prior to use in 

recombinant protein expression. 
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Catalytically inactive recombinant PfCK2α was obtained by site-directed mutagenesis 

(Lys72Met) of pGEX-4T-3-PfCK2a by overlap extension PCR (Ho et al., 1989), as 

described in section 2.5.1.4. The lysine residue of subdomain II that was targeted for 

mutagenesis is involved in the correct anchoring and orientation of the ATP molecule and 

is conserved across all known protein kinases (Hanks and Hunter, 1995). For the first 

round of amplification by PCR, the oligonucleotide primers CK2aForBam and 

CK2aK72MRev, and CK2aK72MFor and CK2aRevSal, were used to generate two DNA 

fragments (237bp and 813bp) having one overlapping end containing the mutation. These 

were used as templates in the second round of PCR amplification, with the oligonucleotide 

primers CK2aForBam and CK2aRevSal. The PCR product, K72MPfCK2α, was cloned 

into pGEM-T-Easy, sequenced to verify the presence of the Lys72Met mutation and the 

absence of other mutations, then subcloned into pGEX-4T-3 as described for PfCK2α 

above. This plasmid was named pGEX-4T-3-K72MPfCK2a. The insert region of the 

plasmid was sequenced prior to use in recombinant protein expression. 

The pET29-PfCK2a plasmid was constructed in Debopam Chakrabarti’s laboratory 

(University of Central Florida). The insert region of the plasmid was sequenced prior to 

use, and contained the full PfCK2α sequence, between the NdeI and XhoI sites of the 

plasmid (see Appendix 1 for plasmid map), in frame with a sequence coding for a C-

terminal 6x His tag. 

4.4.2 Expression and purification 

Test expressions of PfCK2α (in pET29 and pGEX-4T-3) and K72MPfCK2α (in pGEX-

4T-3) were carried out to find the optimum expression conditions. Expression from pGEX-

4T-3-PfCK2a and pGEX-4T-3-K72MPfCK2a was tested in E. coli BL21 cells 

(Stratagene), and from pET29-PfCK2a in E. coli Rosetta 2 DE3 cells (Novagen), at a range 

of temperatures (37oC, 30oC and 20oC) and IPTG concentrations (0.1-1mM). Samples were 

taken before induction, after induction, from the soluble and insoluble protein fractions 

after lysis, and of the eluted proteins (see sections 2.6.1&2). Analysis of the samples by 

SDS-PAGE indicated that the conditions that yielded the most recombinant protein were 

the same for all three plasmids: induction at 20oC overnight with 0.1mM IPTG. Large-

scale expressions were performed using these conditions.  

Recombinant proteins were purified using batch glutathione affinity chromatography (see 

2.6.1) of the GST-tagged PfCK2α and K72MPfCK2α, and batch nickel affinity 
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chromatography (see 2.6.2) of the His-tagged PfCK2α. 250ml cultures were used for 

expression of recombinant proteins, and produced roughly 0.5mg of GST-PfCK2α, 0.4mg 

of K72MPfCK2α, and 0.3mg of PfCK2α-His. Samples taken during expression and 

purification of the three recombinant proteins were separated on 12 % acrylamide gels and 

visualised using Coomassie blue stain (Figs 4-3&4). 

 
Figure 4-3 Expression and purification of GST-PfCK2α  and GST-K72MPfCK2α  
Samples taken during the expression and purification of GST-PfCK2α and GST-
K72MPfCK2α were separated by SDS-PAGE on 12% acrylamide gels, which were then 
stained with Coomassie Brilliant Blue stain. 1: Sample of bacteria before induction of 
expression. 2: Sample of bacteria after expression was induced. 3: Insoluble protein 
fraction. 4: Soluble protein fraction. 5: Eluted proteins. 

 

 
Figure 4-4 Expression and purification of PfCK2α-His 
Samples taken during the expression and purification of PfCK2α-His were separated by 
SDS-PAGE on a 12% acrylamide gel, and stained with Coomassie Brilliant Blue. 1: Sample 
of bacteria before induction of expression. 2: Sample of bacteria after expression was 
induced. 3: Soluble protein fraction. 4: Proteins present on the Ni-NTA beads after washing.  
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4.5 Kinase activity of PfCK2α   

4.5.1 Kinase activity against artificial substrates 

Although PfCK2α contains all of the conserved kinase subdomains and catalytic residues 

(see section 4.2), we wanted to confirm that the recombinant protein does in fact possess 

kinase activity. Standard kinase assays (section 2.6.9.1) were performed using GST-

PfCK2α (or GST-K72MPfCK2α as a negative control) and a variety of substrates.  

 
Figure 4-5 Kinase activity of GST-PfCK2α  against various substrates 
The left hand panels in this figure are the photographic film exposed to the Coomassie-
stained gels (right hand panels) of the kinase assays. Top panels: kinase assays with GST-
PfCK2α. Lower panels: kinase assays with GST-K72MPfCK2α. Substrates: lane 1: No 
substrate; lane 2: α-casein; lane 3: β-casein; lane 4: mixed caseins; lane 5: MBP; lane 6: 
histone H1. The autophosphorylation band is marked with a star. 

Recombinant GST-PfCK2α showed kinase activity against a range of substrates (see Fig. 

4-5; top panels are kinase assays using GST-PfCK2α, lower panels are control assays 

using GST-K72MPfCK2α instead of GST-PfCK2α). HsCK2α is known to 

autophosphorylate (Boldyreff et al., 1994a), on Tyr182 (Donella-Deana et al., 2001), a 

residue that is conserved in PfCK2α. The function of this autophosphorylation in HsCK2α 

is unknown. As can be seen from this kinase assay, GST-PfCK2α is also able to 

autophosphorylate: the band at approximately 66kDa, present in each lane of the kinase 

assay, corresponds with the GST-PfCK2α band in the Coomassie-stained gel. The 

strongest GST-PfCK2α kinase activity was towards the caseins (lanes 2-4). CK2 substrates 

generally have highly acidic phosphoacceptor sites, often with 5 or more acidic residues in 
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the region immediately surrounding the serine or threonine (or tyrosine) phosphoacceptor 

residue, with the most important determinants being an acidic residue at the n+1 or n+3 

positions (Pinna, 2002, Meggio and Pinna, 2003). Casein is an acidic protein. Parallel 

assays performed with the K72M mutant version of PfCK2α (GST-K72MPfCK2α) were 

negative for autophosphorylation and kinase activity towards exogenous substrates (Fig. 4-

5, lower panels), demonstrating that the activity we see with GST-PfCK2α is really due to 

the recombinant PfCK2α subunit and not a co-purified bacterial contaminant. 

PfCK2α can also phosphorylate synthetic peptide substrates that mimic the consensus 

sequence for CK2 phosphorylation. The consensus sequence for CK2 phosphorylation has 

been the subject of a number of studies (Songyang et al., 1996, Pearson and Kemp, 1991, 

Kuenzel et al., 1987, Meggio et al., 1994b, Meggio and Pinna, 2003). CK2 phosphorylates 

acidic sequences, with the minimum consensus sequence S/T-D/E-X-E/D (phosphoserine 

can efficiently replace the aspartic acid and glutamic acid residues (Meggio and Pinna, 

2003)). A variety of peptide substrates that mimic the consensus sequence have been 

synthesised. Two such peptides were used in this study: the NEB peptide p6012 

(RRRADDSDDDDD) was used in the experiments performed in Glasgow, and the custom 

peptide RRREDEESDDEE (‘peptide 29’), obtained from NeoMPS, was used in the 

experiments I performed while visiting the laboratory of Claude Cochet (INSERM U873, 

Grenoble, France). The recombinant PfCK2α was able to phosphorylate both peptides: 

NEB p6012 with a Km of 135.4 µM, and peptide 29 with a Km of 115.4 µM (see section 

4.5.4, below). 

4.5.2 Kinase activity against P. falciparum substrates 

As a first step towards the identification of P. falciparum protein substrates for PfCK2α, P. 

falciparum 3D7 protein extract was heated to 55oC for 10 minutes to inactivate any kinases 

and phosphatases present, then used as substrate in a GST-PfCK2α kinase assay (Fig. 4-6). 

Parasite cultures were synchronized by sorbitol, and extracts prepared from synchronous 

ring stage and trophozoite cultures. Extracts were also prepared from unsynchronized 

cultures. The recombinant GST-PfCK2α was able to phosphorylate several proteins in the 

extract, from different parasite life stages. Control reactions contained GST-K72MPfCK2α 

instead of GST-PfCK2α, to ascertain whether the endogenous kinases had been fully 

inactivated. As can be seen from lanes 5-7, this was largely the case, with only a small 

amount of residual activity in the extract from mixed erythrocytic stage parasites (lane 7). 

It is likely that the number of parasite proteins that GST-PfCK2α is capable of 
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phosphorylating is much greater than the number observed in the kinase assay, because 

proteins present in the parasite extract would have been exposed to the endogenous 

parasite PfCK2 prior to heat-inactivation, and therefore many of the proteins in the extract 

capable of being phosphorylated by GST-PfCK2α would already be phosphorylated. 

Conversely, the bands seen in the assay may not be true in vivo substrates, because within 

the cell they may be located in compartments where they would not naturally come into 

contact with PfCK2. Additionally, the process of heat-inactivation may have altered the 

conformation of various proteins in the extract, rendering them unnaturally compliant with 

GST-PfCK2α phosphorylation.  

 
Figure 4-6 Phosphorylation of P. falciparum protein extract by PfCK2α  
Standard kinase assays were performed with 5µg of protein extract from synchronous or 
asynchronous parasite cultures as substrate. Lanes 1-4 contained GST-PfCK2α , lanes 5-7 
contained GST-K72MPfCK2α as negative controls. Substrates were: lane 1: no substrate 
(GST-PfCK2α  alone), lanes 2&5: ring-stage parasite extract, lanes 3&6: trophozoite-stage 
parasite extract, lanes 4&7: mixed erythrocytic stage parasite extract. Left panel: 
autoradiogram, right panel: corresponding Coomassie-stained gel of the kinase assay. The 
band marked with a star, just below the 72 kDa marker, is the autophosphorylation band 
(expected at 66kDa). There is a small amount of background phosphorylation activity in the 
mixed erythrocytic stage parasite extract (lane 7).   

A number of recombinant proteins from Plasmodium falciparum, including recombinant 

PfCK2α itself (Fig. 4-7A), shPfCK2β2 (the short version of the PfCK2β2 subunit, lacking 

the N-terminal extension, see Chapter 5; Fig. 4-7B), PfLSA-1 (a kind gift from David 

Lanar’s laboratory, Walter Reed Army Institute of Research, Maryland, USA), PfMyb1, 

PfHMGB1, and PfB7-NAP (kind gifts from Catherine Vaquero’s laboratory, INSERM 

U511, Paris, France) (Fig. 4-7C&D) function as in vitro substrates of recombinant 

PfCK2α.  
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Figure 4-7 In vitro recombinant Plasmodium protein substrates of PfCK2α 
For each of A-D, the left panel is the autoradiogram, and the right panel is the 
corresponding Coomassie-blue-stained gel of the kinase assay. A: Autophosphorylation 
can occur by a trans-reaction. 1: GST-PfCK2α . 2: GST-K72MPfCK2α . 3: PfCK2αHis. 4: 
PfCK2αHis and GST-K72MPfCK2α . B: Phosphorylation of PfCK2β2 by PfCK2α. Lanes 1-4 
are kinase assays with GST-PfCK2α , lanes 5-7 are the corresponding kinase assays 
containing GST-K72MPfCK2α. The substrates were as follows lane 1: No substrate; lanes 
2&5: GST-PfCK2β1; lanes 3&6: GST-shPfCK2β2; lanes 4&7: GST. C: Lanes 1-3 are kinase 
assays with GST-PfCK2α, lanes 4-6 are the corresponding kinase assays containing GST-
K72MPfCK2α. The substrates were as follows lanes 1&4: PfMyb1; lanes 2&5: PfHMGB1; 
lanes 3&6: PfNAP-B7. The substrate locations are indicated by arrowheads (see text for 
further discussion). D: Phosphorylation of LSA-1 by PfCK2α. 1: GST-PfCK2α and LSA-1 2: 
GST-K72MPfCK2α  and LSA-1. 3: LSA-1 alone. 4: GST-PfCK2α alone. 5: GST-PfCK2α  and 
casein. 

PfCK2α can autophosphorylate by a trans-reaction (Fig. 4-7A). GST-PfCK2α and 

PfCK2αHis autophosphorylate (lanes 1 and 3), GST-K72MPfCK2α does not (lane 2), but 

is phosphorylated in the presence of PfCK2αHis, indicating that the autophosphorylation 

of PfCK2α can occur by an intermolecular reaction.  

As mentioned above, CK2α has a preference for acidic substrates. shPfCK2β2, a good 

substrate for PfCK2α (Fig. 4-7B), possesses several serines and threonines with acidic 

residues at n+1 and/or n+3 positions (see Fig. 5-1). The function of the phosphorylation on 

the CK2β subunit remains unknown (Bibby and Litchfield, 2005), although mutant 

versions of human CK2β lacking the autophosphorylation sites were able to form a 

comparable holoenzyme to that of wild type CK2β (Bodenbach et al., 1994, Boldyreff et 

al., 1992, Meggio et al., 1993). We detected no apparent kinase activity towards the 

PfCK2β1 subunit.  
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The nucleosome assembly proteins (NAPs) have roles in the maintenance and remodelling 

of chromatin, gene expression, and histone shuttling. CK2 has been shown to 

phosphorylate several of these proteins, an event which modulates the transport of these 

proteins between the cytoplasm and the nucleus (Rodriguez et al., 2000, Krick et al., 2006). 

The Myb proteins are a family of transcription factors. CK2 has been shown to 

phosphorylate A- B- and c-Myb (Bergholtz et al., 2001), amongst others. The 

phosphorylation of c-Myb by CK2 prevents it from binding DNA, providing crucial 

regulatory control of this protein (Luscher et al., 1990, Oelgeschlager et al., 1995). CK2 

phosphorylation of SNAP(C) on the SNAP190 subunit (which has a Myb DNA binding 

domain) prevents the binding of SNAP(C) to DNA, which is required for U6 transcription 

activity of RNA polymerase III (Gu et al., 2007). 

High-mobility-group B (HMGB) proteins are chromosomal proteins that contain an HMG-

box domain, which binds bent, kinked or unwound DNA with high affinity (Stros et al., 

2007). The HMGB proteins play important architectural roles in the formation of 

complexes of nucleoproteins involved in transcription, and DNA replication and repair 

(Thomas, 2001, Travers, 2003). HMGB1 and HMGB2/3 are phosphorylated by CK2, 

which increases their thermal stability, and reduces their affinity for linear DNA (Stemmer 

et al., 2002). Phosphorylation of HMGB1 by CK2 abolishes its interaction with the 

transcription factor Dof2, and hence the binding of Dof2 to DNA (Krohn et al., 2002). 

Thus we had reason to believe that the PfMyb1, PfB7-NAP and PfHMGB1 proteins were 

good candidates for potential PfCK2 substrates.  

PfMyb1 (PF11_0088; 50kDa protein) and PfB7-NAP (PFI0930c; 32kDa protein) are 

proteins with several serines and threonines whose n+1 or n+3 sites are D/E residues (i.e. 

conform to the minimal consensus sequence for CK2 phosphorylation). PfHMGB1 

(PFL0145c) is an 11kDa protein with a single threonine that may be phosphorylated by 

CK2 (with an n+3 glutamic acid residue). Kinase assays were performed with all three 

proteins as substrates (Fig. 4-7C). We observed a unique band in the lane containing 

recombinant PfMyb1, of roughly 45kDa (indicated by an arrowhead in the left panel, lane 

1), but this is not quite consistent with the expected size of the protein (50kDa) or the size 

of the major band from the PfMyb1 preparation on the Coomassie-stained gel (roughly 

50kDa, indicated by arrowhead in the right panel, lane 1). Thus we remain cautious about 

the interpretation of these results. PfHMGB1 and PfNAP-B7 are weakly phosphorylated by 

PfCK2 in vitro (lanes 2 and 3), compared with β-casein or the shPfCK2β2 subunit (see 

Fig. 4-5 and Fig. 4-7B). The other bands seen in lanes 1-3 are from the recombinant GST-
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PfCK2α protein preparation. Although the proteins contain the minimal consensus 

sequence, its presence does not guarantee efficient phosphorylation, nor does its absence 

guarantee that CK2 does not phosphorylate the substrate. Some sequences are efficiently 

phosphorylated even though they do not conform to the consensus sequence (for example, 

Ser392 of the p53 tumour suppressor (Meek et al., 1990)), and the presence of the minimal 

consensus sequence does not guarantee that there will be efficient phosphorylation, which 

may depend on overall protein conformation (Meggio et al., 1994b). Thus with an 

inefficient in vitro phosphorylation such as that seen for the PfMyb1, PfB7-NAP and 

PfHMGB1 proteins, we cannot conclude whether or not they are efficiently phosphorylated 

in vivo: there may be other determinants such as priming kinases in vivo that would make 

them better substrates, or, on the other hand, that they are phosphorylated at all in vitro 

may be due to the high concentration of kinase and substrate, and they may not function as 

in vivo substrates. 

LSA-1 is a 230.1 kDa protein expressed in the liver stages of the parasite lifecycle in the 

parasitophorous vacuole (Fidock et al., 1994). The protein contains a central repeat region 

of 86 repeats of the 17-residue sequence EQQSDLEQERLAKEKLQ or minor variations 

(Zhu and Hollingdale, 1991). This repeat sequence contains a CK2-phosphorylation motif 

(underlined). High levels and prevalences of antibodies directed against the repeat region 

of LSA-1 are found in individuals from malaria-endemic areas, leading to suggestions that 

immune responses to LSA-1 might be involved in protection against pre-erythrocytic 

stages of malaria (Fidock et al., 1994). The biochemistry of this molecule is therefore of 

interest, and we were contacted by Dr Nicoll from Dr Lanar’s laboratory to test if it was 

indeed a PfCK2α substrate. The recombinant LSA-1 used in this study contained the N- 

and C-terminal regions and 2 of the 17-residue central repeats, and was phosphorylated by 

recombinant PfCK2α in in vitro kinase assays (Fig. 4-7D). However, questions remain 

about whether this phosphorylation occurs in vivo, and if it does, how it occurs, since LSA-

1 is localised to the parasitophorous vacuole and CK2 (in other organisms) has been shown 

to be predominantly nuclear in localisation. It is possible that some PfCK2 is exported as 

an ectokinase. Alternatively, LSA-1 could be phosphorylated by host CK2.  

The substrates identified in this section and in the previous section fulfil the first criterion 

for substrate identification: they are phosphorylated in vitro by the recombinant kinase. 

However, no attempt has yet been made to assess whether they fulfil the other five criteria 

for formal identification of a novel protein kinase substrate listed by Berwick and Tavare 

(Berwick and Tavare, 2004): i) significant stochiometry of in vitro phosphorylation 

(approaching 1mol phosphate per 1mol of phosphorylation sites), ii) the substrate should 
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be phosphorylated in vivo in response to stimuli that activate the kinase, iii) the site of 

phosphorylation on the protein substrate must be the same in vitro as in vivo (under 

criterion ii)), iv) the substrate must be phosphorylated by constitutively active mutants of 

the kinase, and v) in vivo phosphorylation of the substrate should be inhibited by 

dominant-negative mutants of the kinase, or by depletion of the kinase such as through 

RNAi, or should be blocked by small-molecule inhibitors of the kinase. 

4.5.3 Ability to utilise GTP and ATP as phosphoryl donors 

A feature often cited as characteristic of CK2 enzymes is that they have similar affinities 

for GTP and ATP. CK2 enzymes possess two amino acid differences from most protein 

kinases, A71➝V and F187➝W (notation from the reference kinase, PKA), which have 

been hypothesized to be responsible for their ability to use ATP and GTP equally 

efficiently as a phosphoryl donor (Blanquet, 2000, Taylor et al., 1993, Jakobi and Traugh, 

1992). PfCK2α possesses only the second of these two substitutions (W180, see Fig. 4-1). 

Another motif suggested to be important in the ability of CK2 to utilize GTP is the 

diasparagine (Srinivasan et al., 1999) indicated in Fig. 4-1. This motif is present in 

PfCK2α (amino acids 121 and 122). To assess whether PfCK2α was able to utilize both 

ATP and GTP as phosphoryl donors, we calculated Kms for both nucleotides (see Fig. 4-8 

and Table 4-1). The Kms of PfCK2α for ATP and GTP were determined by performing 

kinase assays with ATP concentrations of 100µM, 25µM, 6.25µM and 1.5625µM. 

Reactions were carried out in triplicate. The [γ-32P]ATP/GTP was added to the unlabelled 

ATP/GTP and diluted serially, to ensure a constant ratio of labelled to unlabelled 

ATP/GTP. The NEB peptide RRADDSDDDDD (100µM) was used as the substrate. The 

lack of the A71➝V substitution does not render PfCK2α unable to utilize GTP: both ATP 

and GTP are able to be used in in vitro assays as co-substrates. ATP is the preferred 

cosubstrate under these conditions, with a Km value roughly half that for GTP (Table 4-1). 
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Figure 4-8 Ability of PfCK2α  to utilize GTP and ATP as co-substrates 
The enzyme kinetics of PfCK2α  in Lineweaver-Burke presentation. The experiment was 
performed in triplicate. The data points represent the means, and the error bars represent 
three standard deviations. The graph was obtained by linear regression of the enzyme 
kinetic data for ATP and GTP. The intercepts on the x-axis give the negative reciprocal of 
the Km, and the intercepts on the y-axis give the reciprocal of the Vmax.  

 

Table 4-1 Km and Vmax of PfCK2α for ATP and GTP 
 Km (µM) Vmax (nmol/min) 
ATP 16.7 6.6 
GTP 34.9 2.1 
 

Few other protein kinases are able to use GTP as a co-substrate: to my knowledge, the 

delta isoform of PKC (Gschwendt et al., 1995), a mammalian STE20-like kinase 

(Schinkmann and Blenis, 1997), EGF-receptor kinase (Carpenter et al., 1979), and 

Pseudomonas aeruginosa AlgR2 (Roychoudhury et al., 1992) are the only others with 

reported ability to use GTP, and their dual-co-substrate specificity “is not as obvious as it 

is for CK2” (Niefind et al., 1999). Niefind and colleagues (Niefind et al., 1999) highlight 

several important potential consequences of the use of GTP by CK2: (1) rapidly 

proliferating cells have a higher GTP/ATP ratio, and higher levels of GTP, than normal 

cells, thus favouring CK2 above other kinases, which may have important implications for 

proliferation (see section 1.6.2.1 for roles of CK2 in proliferation). (2) Some 

phosphorylation events may be favoured by GTP above ATP, providing a means for the 

regulation of specific signalling events. For example, PKCδ autophosphorylation is “much 

more effective with GTP than with ATP” (Niefind et al., 1999), and the 

autophosphorylation with GTP occurs at some different sites from that using ATP. (3) The 
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use of GTP in conjunction with Mn2+ may be important in the phosphorylation of tyrosine 

residues. CK2 prefers GTP as a co-substrate when in the presence of Mn2+, but ATP in the 

presence of Mg2+. Phosphorylase kinase is a dual-specificity kinase (like CK2), whose 

tyrosine phosphorylation activity is activated by Mn2+. 

Other consequences of the ability of CK2 to utilize GTP include the use of GTP as a 

methodological tool: not many kinases can utilize GTP, so it could be used in functional 

studies in support of data showing that CK2 is responsible for a specific phosphorylation 

event. A common criticism of targeting protein kinases for inhibition is the potential for 

off-target effects, given the remarkable similarity between kinase active sites. The 

divergent features of the catalytic cleft that allow CK2 to use GTP as well as ATP could be 

targeted as part of the drug discovery process, either to inhibit all activity of the kinase, or 

to inhibit in a specific manner the GTP-catalysed phosphorylation events.  

4.5.4 Enzymological characterisation 

Kinase assays (using the scintillation counting method, section 2.6.9.2) were performed 

with peptide 29 (RRREDEESDDEE) and a range of enzyme concentrations (15-120ng 

total enzyme in 18µl reactions) to determine the linear range of the enzyme. Since 

comparisons between PfCK2α and HsCK2α were to be carried out (see section 4.6, 

below), the linear range of HsCK2α was also calculated. HsCK2α was produced in the 

laboratory of C. Cochet (INSERM U873, Grenoble, France). The linear range for both 

PfCK2α and HsCK2α is between 15 and 60ng of enzyme. In subsequent reactions, 36ng of 

enzyme per 18µl reaction was used.  

The Km of PfCK2α for ATP was determined using ATP concentrations of 100µM, 50µM, 

and 25µM. Reactions were carried out in triplicate. The [γ-32P]ATP was added to the 

unlabelled ATP and diluted serially, to ensure a constant ratio of labelled to unlabelled 

ATP. Peptide 29 (111µM) was used as the substrate. Km values are given in Table 4-2. 

Table 4-2 Kinetic parameters of PfCK2α 
 Km (µM) 
ATP 17.5 
Peptide 29 115 
NEB p6012 135.4 
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The Km values of PfCK2α for peptide 29 and NEB p6012 were also calculated, by varying 

the concentration of peptide used in the assay. Peptide concentrations used in each reaction 

were (µM): 666.7, 333.3, 166.7, 88.3, 41.7, 20.8, 10.4, and 0. PfCK2α was used at 36ng 

per reaction, and the reactions carried out in duplicate. Since comparative studies with 

PfCK2α and HsCK2α were to be carried out using peptide 29 as the substrate (IC50 values, 

section 4.6), the Km of HsCK2α for Peptide 29 was also calculated: HsCK2α had a Km of 

148 for peptide 29.  

4.6 Susceptibility of PfCK2α to CK2α inhibitors 

4.6.1 First inhibitor screen 

The first inhibitor screen was carried out using a set of compounds from Claude Cochet’s 

laboratory that act as HsCK2 inhibitors and their controls. Kinase assays were performed 

under linear kinetic conditions in 18µl volumes with 36ng PfCK2α, 25µM ATP, 20µM of 

compound, and the NEB peptide as a substrate. The experiment was repeated twice, and 

the resulting mean and standard deviations of activity incorporated into the peptide 

substrate are shown in Fig. 4-9. IC50 values were calculated for the best three inhibitors, 

3,4, and 11 (see section 4.6.1.1). These data indicate that PfCK2α is amenable to inhibition 

by small molecules. 
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Figure 4-9 Kinase assay screen of HsCK2α  inhibitors with PfCK2α 
Several compounds that inhibit the activity of HsCK2α  were screened against PfCK2α in a 
kinase assay screen using the NEB peptide as the substrate, 25µM ATP and 20µM of the 
following compounds (from stock solutions diluted in DMSO). 1: DMSO control, no 
compound. 2: TBB (3,4,5,6-Tetrabromobenzotriazole). 3: Non-competitive inhibitor A. 4: 
Non-competitive inhibitor B. 5: ATP-competitive inhibitor A. 6: EtOH as a control for 
Quercetine (number 7), which was diluted in EtOH instead of DMSO. 7: Quercetine. 8: ATP-
competitive inhibitor B. The amount of radiolabel incorporated into the peptide was 
measured by scintillation counting, and the results plotted as a percentage activity 
compared with the controls (lanes 1 and 6). The mean values for three experiments are 
plotted, with the error bars representing the standard deviations.  

4.6.1.1 IC50s of HsCK2α  inhibitors on recombinant PfCK2α   

IC50 values for the three compounds that reduced the activity of PfCK2α to the lowest 

level (compounds 3, 4 and 11; Fig. 4-9) were calculated. For each compound, two separate 

kinase assays were performed using the scintillation counting method, with the NEB 

peptide as a substrate, 36ng of PfCK2αHis, 25µM ATP and varying concentrations of the 

compound (0-42µM). Results are plotted in Fig. 4-10, and the IC50 values given in Table 4-

3. 

Table 4-3 IC50 values for compounds 3, 4 and 11 on PfCK2α and HsCK2α  
The values in brackets for PfCK2α  are the IC50s plus or minus one standard deviation. The 
HsCK2α  experiments are quoted for comparison, and were performed by the laboratory of 
C. Cochet.  

Compound IC50 for PfCK2α (-SD, +SD) IC50 (HsCK2α, C. Cochet) 
3 0.40µM (0.38, 0.42) 10nM 
4 2.5µM (2.36, 2.64) 0.2µM 
11 0.45µM (0.38, 0.52) 80nM 
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Figure 4-10 Inhibition curves for compounds 3, 4 and 11 on PfCK2α  activity 
The amount of radiolabel incorporated into the peptide was measured by scintillation 
counting, and the results plotted as a percentage activity compared with the control (no 
inhibitor). Data points represent the mean of the two experiments; error bars are the 
standard deviations. For clarity, only a subset of data points is displayed for compounds 3 
and 11.  

Inhibition experiments were conducted using the classic CK2 inhibitor TBB (compound 2 

in Fig. 4-9) on PfCK2α and HsCK2α, to compare the effect of the inhibitor on the two 

enzymes (Fig. 4-11). The IC50 curves plotted from the data are very similar, with the IC50 

of TBB on HsCK2α being 1.5µM, and on PfCK2α, 2µM. 
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Figure 4-11 Effect of TBB on PfCK2α  and HsCK2α  activity 
The inhibitor 3,4,5,6-Tetrabromobenzotriazole (TBB) was included in increasing 
concentrations in kinase assays with 25µM ATP, 36ng of enzyme, and peptide 29 as 
substrate. Activity was measured using the scintillation counting method, and results 
scored as a percentage of the control (no inhibitor). There was little difference in inhibition 
curves between the two enzymes. This experiment was carried out twice; this graph is 
representative. 

The differences in IC50 values between PfCK2α and HsCK2α for the inhibitors in Table 4-

2 may reflect differential inhibition between the two enzymes, or may just be an artefact, 

since the experiments were performed in separate laboratories, although under as similar 

conditions as was possible. I went on to perform subsequent experiments simultaneously 

on the two enzymes side by side, in C. Cochet’s laboratory in Grenoble.  

The classic CK2 inhibitor TBB inhibited PfCK2α to the same extent as HsCK2α (see Fig. 

4-11), indicating that TBB could potentially be used as a tool for functional studies of 

PfCK2α, as it has been used in many informative CK2 studies in the past. Interpretation of 

the effect of TBB on Plasmodium falciparum parasite cultures is, however, complicated by 

the presence of HsCK2 in the host erythrocytes (Wei and Tao, 1993), as one cannot 

exclude the possibility that the activity of the human enzyme in the erythrocyte might be 

important for parasite viability. 

4.6.1.2 IC50s of HsCK2α  inhibitors on malaria parasites 

The three compounds that were the most effective inhibitors of recombinant PfCK2α were 

tested for efficacy in inhibiting P. falciparum parasite growth using the [3H] hypoxanthine 

assay (Desjardins et al., 1979). Results are plotted in Fig. 4-12, and the IC50 values given in 

Table 4-3. 
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Figure 4-12 IC50 values for compounds 3, 4 and 11 on P. falciparum 3D7 
P. falciparum parasites were incubated for 48 hours at 37oC in 96 well plates with [3H] 
hypoxanthine (37Bq/well) and a range of inhibitor concentrations. The activity is plotted as a 
percentage of that of uninhibited controls. The experiment was performed in triplicate, and 
the values plotted are means, with the error bars being the standard deviations of the mean. 

 

Table 4-4 IC50 values for compounds 3, 4, and 11 on P. falciparum 3D7 growth 
Compound IC50 (µM) on P. falciparum parasites 
3 80 
4 28 
11 75 
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Because these compounds are known HsCK2α inhibitors (See Table 4-2 for IC50 values), 

we cannot draw conclusions about whether it is the inhibition of the parasite CK2 or the 

erythrocyte CK2 that results in the inhibition of parasite growth. Indeed, pharmacological 

experiments imply that interfering with erythrocyte kinases can result in parasite death 

(Doerig and Meijer, 2007). The IC50 values for compounds 3, 4, and 11 are high compared 

with those for compounds with proven effectiveness in clearing parasitic infections, such 

as Chloroquine, which had an IC50 of 5.5µM in our cellular tests. The IC50 test for 

Chloroquine was conducted in parallel with those reported in Table 4-3 above and is 

therefore directly comparable.  

4.6.2 Second inhibitor screen 

The first screen was carried out using compounds known to inhibit HsCK2α. We wished to 

discover whether we are able to differentially inhibit the human and Plasmodium CK2α, so 

performed an inhibitor screen against PfCK2α using the BioMol Enzyme Inhibitor 

Library: Kinase Inhibitors, Catalog No 2832A (V2), in an attempt to identify compounds 

that were more efficacious in inhibiting PfCK2α than HsCK2α. The screen was performed 

using the Kinase-GLO Luminescent Kinase Assay kit (Promega, see section 2.6.9.3), with 

20µM compound and 60ng of PfCK2α added to each assay point. The assay is luciferase-

based, and the luminescent signal produced is correlated with the amount of ATP present 

(and therefore is inversely correlated with the amount of kinase activity). The unusually 

high number of hits recovered by this screen led us to suspect that the Kinase-GLO system 

was giving false positives. We retested 38 of the presumptive hits in a conventional 

radiometric kinase assay, using 20µM compound, and peptide 29 as the substrate (see Fig. 

4-13). 
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Figure 4-13 Validation of hits from BioMol library of compounds 
Compounds 1-38 are the putative hits from the BioMol library, identified in the first screen 
using the Kinase-GLO system. These hits were then validated using phosphocellulose 
kinase assays under linear kinetic conditions. 39: control (no compound, 100% activity, 
highlighted in grey for clarity). Two of the putative hits (compounds 22 and 31, which are 
BioMol compounds E6 and F10) reduce the activity of PfCK2α to below 20% of the control.  

The two confirmed hits (compounds 22 and 31 in the secondary screen) were ML-7 and 

Rottlerin. Inhibition curves for these compounds on both HsCK2α and PfCK2α were 

plotted (see Fig. 4-14; IC50 values of ML-7 were roughly 4µM for both enzymes, IC50 

values of Rottlerin on PfCK2α were 7µM, and on HsCK2α, >>20µM). Compound 36, 

DRB (5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole), is a CK2 inhibitor, yet the activity 

of PfCK2α in the presence of 20µM of this compound is still 77% of the control. However, 

DRB has a relatively high reported IC50 on CK2 of around 20µM (Meggio et al., 2004), 

and therefore the low level of inhibition of PfCK2α is not unexpected.  
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Figure 4-14 Inhibition of PfCK2α  and HsCK2α  by ML-7 and Rottlerin 
The inhibitors ML-7 and Rottlerin were included in increasing concentrations in kinase 
assays with 25µM ATP, 36ng of enzyme, and peptide 29 as substrate. Activity was assessed 
using the scintillation counting method (2.6.9.2), and results scored as a percentage of the 
control (no inhibitor). A: For ML-7, there was little difference in inhibition curves between 
the two enzymes. B: Separation of the inhibition curves was observed with Rottlerin, and 
the experiment was repeated. Mean values from the two experiments are shown, with the 
error bars representing the standard deviations.  

Although we have identified in Rottlerin a compound that can distinguish between the 

human and Plasmodial CK2α enzymes, it is unlikely to represent a suitable starting point 

for antimalarial drug discovery, since Rottlerin has multiple targets (Davies et al., 2000). It 

is too weak and non-specific an inhibitor even to be used in cellular assays (Bain et al., 

2007), as a tool for understanding PfCK2 function. However, we have established that 

differential inhibition is possible, despite the 65% identity between the primary sequences 

of PfCK2α and HsCK2α, which is an encouraging starting point for future drug screening 

efforts.  
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4.7 Summary 

• We confirmed the identity of the PlasmoDB sequence PF11_0096 as the 

Plasmodium falciparum CK2α subunit: The most similar sequences to the 

predicted protein sequence PfCK2α, revealed by a BlastP search of the NCBI non-

redundant protein database, are CK2 alpha subunits, and the primary sequence of 

PfCK2α contains the eleven subdomains of protein kinases, and the conserved 

features of CK2 alpha subunits. 

• Recombinant PfCK2α possesses kinase activity, and can phosphorylate a range of 

proteins in vitro, including the recombinant P. falciparum proteins LSA1, 

PfHMGB1, PfB7-NAP, shPfCK2β2, and itself, in a trans-reaction.  

• PfCK2α exhibits features common to CK2 enzymes, such as constitutive activity, 

preference for acidic substrates, the ability to autophosphorylate, the ability to 

utilize GTP as well as ATP as the phosphoryl donor, and inhibition by the CK2-

specific inhibitor TBB. 

• PfCK2α can phosphorylate a number of proteins within heat-denatured P. 

falciparum protein extract. 

• PfCK2α is amenable to inhibition, and can be distinguished from HsCK2α by the 

inhibitor Rottlerin. 
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5 Biochemical characterisation of PfCK2β1 and 

PfCK2β2 

5.1 Introduction 

The catalytic subunit of CK2 is active independently of secondary messengers and 

phosphorylation events (Meggio and Pinna, 2003). CK2 falls in the CMGC group of 

protein kinases, which contains the cyclin-dependent kinases. These PKs are inactive as 

free catalytic subunits, and require heterodimeric association with a cyclin for activation. 

Full activation also requires phosphorylation of the activation loop and dephosphorylation 

of the glycine-rich loop. Unlike cyclin-dependent kinases, the CK2 catalytic subunit is 

active without such modifications or associations. Protein Kinase A (or cAMP-dependent 

protein kinase) has a similar quaternary structure to CK2, with two catalytic subunits 

(PKA-C) and two regulatory subunits (PKA-R). The PKA holoenzyme is inactive, whereas 

the free catalytic subunits are active; the association of the catalytic subunits with the 

regulatory subunits abolishes kinase activity. Unlike PKA, the CK2 holoenzyme, as well as 

the free catalytic subunit, is active. Thus CK2α subunits do not require the CK2β subunits 

for activity. Yet in every organism in which CK2 is found, the beta subunits are present 

alongside the alpha subunits. They do not function as absolute regulators of activity in a 

manner analogous to the activating role of cyclins towards CDKs or the inhibitory role of 

PKA-R towards PKA-C, but they do possess a variety of functions, including roles in the 

regulation of CK2 (reviewed in sections 1.6.2.6&7).  

In this chapter, we confirm the exon structure of the two PfCK2β subunits, describe their 

cloning and expression as recombinant proteins, show that the proteins are expressed in the 

erythrocytic stages of the parasite lifecycle, demonstrate that they interact with the 

PfCK2α subunit in vitro, elucidate some of the functional consequences of this interaction, 

and provide preliminary evidence that the PfCK2 subunits may interact in vivo.  

5.2 Identification of two CK2β  subunits in P. falciparum  

Two putative CK2β subunits were identified in P. falciparum (Ward et al., 2004, Anamika 

et al., 2005), PfCK2β1 and PfCK2β2 (PlasmoDB identifiers PF11_0048 and PF13_0232 

respectively). BlastP searches using the putative PfCK2β1/β2 amino acid sequences as 
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queries confirmed their identity as CK2β orthologues with the top hits being CK2β 

polypeptides from other apicomplexan species (see Table 5-1).  

Table 5-1 Percentage identities of PfCK2β1 and 2 to CK2β  from other species 
The conserved CK2β  domains of PfCK2β1 and 2 were used in BLASTP searches of the 
databases for various species. The best hits were CK2β  proteins. The identities of the 
closest matches for each species are given in brackets. Where more than one CK2β  protein 
record exists for a species, and the closest match differs between the P. falciparum CK2βs, 
the identities are given under each column. 

Species (NCBI protein identity) PfCK2β1 (AAN35637) PfCK2β2 (CAD52554) 
H. sapiens (CAI18394) 40%  40% 
M. musculus (NP_034105) 40%  40% 
X. tropicalis (CAJ83806) 40%  40% 
D. rerio (NP_571262) 40%  40%  
S. cerevisiae CKB1 (CAA96719) 31%  35%  
S. cerevisiae CKB2 (CAA99229) 40%  33%  
S. pombe (CAB62429) 41%  41%  
A. thaliana 40% (CAB10544) 39% (CAB87862) 
O. sativa (AAG60201) 37%  38%  
D. discoidium (EAL65139) 41%  37%  
C. parvum 44% (EAK89111) 43% (EAK88980) 
T. parva 42% (EAN32867) 40% (EAN34119) 
T. brucei (EAN80034) 38%  37%  
L. major (CAJ09481) 40%  39%  
T. gondii 47% (EEA98732) 40% (EEA98433) 
P. berghei 83% (CAH97991) 89% (CAH99986) 
P. yoelii 85% (EAA21344) 88% (EAA20924) 
P. vivax 88% (EDL45440) 86% (EDL44476) 
P. knowlesi 88% (CAQ39810) 85% (CAQ41198) 
 

All gene-prediction programmes on the Plasmodium database PlasmoDB predicted a one-

exon structure for PfCK2β1, encoding a predicted protein of 245 amino acids (calculated 

molecular weight 28.3kDa), and a two-exon structure for PfCK2β2, with the length of the 

predicted protein differing slightly between prediction programmes. We confirmed these 

exon structures and the length of the coding regions by PCR amplification from P. 

falciparum 3D7 cDNA. As expected from the homogeneity of the gene predictions for 

PfCK2β1, our experimental data were in agreement with the one-exon gene structure. The 

experimentally determined gene-structure for PfCK2β2 follows the majority prediction, 

which is the only prediction retained on the latest version of PlasmoDB (version 5.4). 

PfCK2β2 has an open reading frame of 1158bp, encoding a predicted protein of 385 amino 

acids (calculated molecular weight 45.3kDa). The PfCK2β2 sequence is composed of two 

exons, with the intron falling between the N-terminal extension and the beginning of the 

conserved CK2β coding region (bases coding for amino acids M1-T158 are in exon 1, 
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bases coding for amino acids V159-Q385 are in exon 2). Verifying the exon structure of 

PfCK2β2 by cDNA analysis also allowed us to confirm that the first exon – and therefore 

the N-terminal extension – of PfCK2β2 is actually transcribed. The full-length sequence 

was amplified and confirmed by DNA sequencing. There were some differences in the 

number of repeat codons coding for glutamic acid residues between the predicted and 

amplified sequence, but such length polymorphism can be expected in long repetitive 

sequences. Indeed, this N-terminal region of PfCK2β2 is the only region to possess SNPs 

as displayed on PlasmoDB (Bahl et al., 2003, Jeffares et al., 2007, Mu et al., 2007, 

Volkman et al., 2007).  

An alignment of the PfCK2β sequences with the human CK2β sequence (HsCK2β; Fig. 5-

1) reveals that many of the conserved features of CK2β subunits, including the four 

cysteine residues responsible for zinc-finger formation (Chantalat et al., 1999), are present 

in PfCK2β1 and PfCK2β2 (e.g. Cys117, 122, 145, 148 for PfCK2β1; indicated by arrows 

in Fig. 5-1). The human CK2β sequence has a well-documented CK2 phosphorylation site 

at the N-terminus (SSEE). The phosphorylatable residues of PfCK2β1 in this region, with 

the exception of Ser4, have basic residues in the n+1 to n+3 region, which are negative 

determinants for phosphorylation by CK2, or do not have acidic residues in either of the 

n+1 or n+3 positions, which is an absolute requirement for CK2-dependent 

phosphorylation (Meggio and Pinna, 2003). In contrast, PfCK2β2 possesses several 

phosphorylatable residues in the N-terminal region that are surrounded by a number of 

acidic residues, and could therefore be phosphorylated by CK2, and a TESSEE sequence at 

the C-terminus reminiscent of the HsCK2β N-terminal phosphorylation site (MSSEE). 

This lead to the hypothesis that PfCK2β2 is more likely than PfCK2β1 to be a substrate of 

PfCK2, a hypothesis supported by in vitro experimental data using recombinant proteins 

(see Fig. 4-7B). The physiological occurrence, and if so relevance, of this phosphorylation 

remains to be investigated.  
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HsCK2β   ------------------------------------------------------------ 
PfCK2β1  ------------------------------------------------------------ 
PfCK2β2  MEFVSNDESADDIIQDESNEGEVELTDADFYDLTVINDKIDEEIIEDDEEEADNDDQEND 60 
 
 
HsCK2β   ------------------------------------------------------------  
PfCK2β1  ------------------------------------------------------------  
PfCK2β2  NVQEVYNIDDEDNDIHNDKLLLDQQRDNDVNEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 120 
 
 
HsCK2β   --------------------------------MSSSEEVSWISWFCGLRGNEFFCEVDED 28 
PfCK2β1  --------------------MENSDSNKDLQDSKSDKSTSWVKWFNNRALSNFLVEVDNE 40 
PfCK2β2  DEDDDDDDDDDDDDDDDDDDDDYDDDDEYDEDDFNEATVSWIEWFCQLKQNLFLVEVDED 180 
 
 
HsCK2β   YIQDKFNLTGLNEQVPHYRQALDMILDLEPDEELEDNP-----------------NQSDL 71 
PfCK2β1  YITDSFNLYGLKTEIPNFNHLLSIIAGDAPEDDD---------------------DSKNS 79 
PfCK2β2  FIRDEFNLIGLQTKVPHFKKLLKIILDEDDDDDDDDDDDYDDEDDEINRDSEEMYKNKDM 240 
 
 
HsCK2β   IEQAAEMLYGLIHARYILTNRGIAQMLEKYQQGDFGYCPRVYCENQPMLPIGLSDIPGEA 131 
PfCK2β1  FSKDCICLYSLIHARFITTPKGLSLMKDKYIKGDFGTCPRVSCAQHNVLPIGLFDQMKIA 139 
PfCK2β2  HEQNAACLYGLIHSRFILTSKGLALMREKYKSGIYGTCPSIYCENAKLLPTAISEIPKFL 300 
 
 
HsCK2β   MVKLYCPKCMDVYTP-KSSRHHHTDGAYFGTGFPHMLFMVHPEYRPKRPANQFVPRLYGF 190 
PfCK2β1  KVHVYCPLCQEIYKIHEDEK-VYLDGSFFGTSFPHILLQTYPYYATLKTPPYCSSKIFGF 198 
PfCK2β2  SPLLYCPRCCETYYPSKNSLLNQLDGCYFGTSFASFFALSFNIASDKK-KVYYTPQICGF 359 
 
 
HsCK2β   KIHP-MAYQLQLQAASNF-----------------KSPVKTIR---- 215 
PfCK2β1  NVYHNFTRTEYKLAKGEFGIITRENFLKKNPKYFKKLRKEELQISET 245 
PfCK2β2  TINRNIRETLYMDVNKDN-----------------TESSEECQ---- 385 
Figure 5-1 Alignment of CK2β  protein sequences from Homo sapiens and P. falciparum 
Protein sequences were aligned using ClustalW, and by hand. PfCK2β1 has a C-terminal 
extension; PfCK2β2 has a long N-terminal extension and an insertion. Arrowheads and bold 
type indicate the conserved cysteine residues that form the base of the zinc finger. The 
residue that follows the artificially inserted initiating methionine in the shPfCK2β2 sequence 
is underlined (E156; see text for details). Amino acids thought to be important for the export 
of CK2 as an ectokinase are boxed. Peptides used to raise anti-CK2β1/β2 antibodies are 
underlined in light blue. Highlights indicate conserved residues. 

The N-terminal extension of PfCK2β2 is unusually long for CK2β proteins, with 160 

amino acids before the first conserved residue (Trp161 in PfCK2β2). Most CK2β subunits 

from vertebrates have only eight amino acids prior to this conserved residue (Homo 

sapiens, Gallus gallus, Mus musculus, Xenopus tropicalis, Bos taurus, Danio rerio); this 

N-terminal extension is expanded in yeast (Saccharomyces cerevisiae: 37 residues), 

discicristates (Trypanosoma brucei: 27, Leishmania major: 21), plants (Arabidopsis 

thaliana: 100, Oryza sativa: 92) and alveolates (Cryptosporidium parvum: 27, Theileria 

parva: 34). Within the alveolates, P. yoelii yoelii (125) and P. vivax (157) also have long 

extensions, but that of P. falciparum is the longest identified to date. Homorepeat-

containing proteins make up 35.7% of the proteome of P. falciparum, although the 

majority of these homorepeats are asparagines and lysines (Singh et al., 2004b), unlike the 

polymers of acidic residues present in PfCK2β2. One hypothesis for the function of this 

extension is the downregulation of the CK2α subunit. Polyglutamate is a potent CK2 
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inhibitor (Tellez et al., 1990), and the N-terminal extension of PfCK2β2 is rich in 

polyglutamate and polyaspartate. We have not been able to purify PfCK2β2 with the N-

terminal extension (see section 5.5.2), and therefore this hypothesis remains to be tested.  

The stretch of amino acids found to be necessary for the export of CK2 as an ectokinase 

(aa 20-33) (Rodriguez et al., 2008) is largely conserved in the PfCK2β sequences, leading 

to the intriguing possibility that PfCK2 may be exported from the parasite, to the 

parasitophorous vacuole or to the host erythrocyte. Although a destruction box motif has 

been found in HsCK2β (R47-D55 (Bibby and Litchfield, 2005, Glotzer et al., 1991)), this 

sequence is not conserved in the PfCK2β subunits, and a search of the PfCK2β sequences 

using the D-box finder (http://bioinfo2.weizmann.ac.il/~danag/d-box/main.html) revealed 

no destruction box motif sequence in either of the PfCK2β subunits. No typical D-box 

motifs were found in the P. falciparum cyclins either (Merckx et al., 2003), so perhaps P. 

falciparum possesses a divergent D-box motif. The acidic stretch responsible for 

downregulation of CK2 and association with the plasma membrane (HsCK2β D55-D64; 

(Leroy et al., 1999, Meggio et al., 1994a)) is present in PfCK2β1 (D68-D75), and extended 

in PfCK2β2 (D207-E226). Saccharomyces cerevisiae CK2β also has an insertion sequence 

of 30 amino acids in this location. The insertion occurs in a region looping out from the 

main protein structure (Chantalat et al., 1999, Niefind et al., 2001) (see Fig. 1-10). The 

human CK2β is phosphorylated on S209 in a cell-cycle dependent manner by p34cdc2 

(Litchfield et al., 1995, Litchfield et al., 1991, Meggio et al., 1995), although the function 

of this phosphorylation is unknown. P. falciparum possesses a p34cdc2 orthologue (Ward et 

al., 2004), and both PfCK2β subunits possess serine residues near the C-terminus that 

could be phosphorylated. However, p34cdc2 is a proline-directed kinase, and there are no SP 

motifs in the C-terminus of either PfCK2β subunit, though PfCK2β2 does possess an SP 

within the zinc finger (S301P302). The in vivo phosphorylation status of this serine residue 

remains to be investigated.  

5.3 Transcription and expression 

Microarray experiments reveal that the mRNAs encoding all three PfCK2 subunits are 

detectable throughout the parasite lifecycle (Le Roch et al., 2003, Bozdech et al., 2003). 

Proteomics data from the erythrocytic stages of the parasite lifecycle confirm that the 

PfCK2β1 subunit is expressed as protein in the asexual blood cycle and in gametocytes 

(Florens et al., 2004, Florens et al., 2002), but there is currently no available proteomic 

data for the PfCK2β2 subunit. Proteomic studies of P. yoelii liver-stage parasite proteins 
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revealed that a putative P. yoelii CK2β orthologue (PY01577) is present in the liver stage 

parasites (Tarun et al., 2008). 

 
Figure 5-2 Western blot showing PfCK2β1 expression in erythrocytic stage parasites 
Protein extract from unsynchronised erythrocytic stage P. falciparum parasites was 
prepared from 3D7 parasites (lane 2), and from parasites with a sequence encoding an HA-
tag incorporated at the 3’ end of the PfCK2β1 gene locus (lane 3: clone C9, lane 4: clone E8; 
see 3.4.1 for details of these parasite lines). Recombinant GST-PfKC2β1 (lane 5, see section 
5.4) and protein extract from unparasitized red blood cells (lane 1) were included as positive 
and negative controls. A. Two identical acrylamide gels were run, the proteins transferred to 
membrane, and western blots performed with affinity-purified rabbit anti-PfCK2β1 
antibodies (right panel), or with pre-immune serum from the same rabbit as a negative 
control (left panel). B. Close-up of part of anti-PfCK2β1 western blot, with relevant bands 
circled in red. 

Western blot analysis of mixed erythrocytic stage parasite extract confirmed that the 

PfCK2β proteins are expressed during the erythrocytic cycle (Figs 5-2 and 5-3). Affinity-

purified rabbit anti-PfCK2β-peptide antibodies were ordered from BioGenes (Berlin). The 

anti-peptide antibodies recognise the amino acid sequence DSNKDLQDSKSDKS from the 

N-terminus of PfCK2β1, and the sequence DEINRDSEEMYKNK from the insertion 

sequence of PfCK2β2. Two animals were immunised using each peptide, giving two 

independent antibody sera. The antibodies were purified against immobilised peptide. 

Western blots performed on parasite extract (and red blood cell extract and recombinant 

protein as controls) imply that the antibodies directed against the PfCK2β1 peptide 

specifically recognise PfCK2β1 (Fig. 5-2). The band in lane 5 at roughly the 55kDa marker 

has the expected size of the GST-tagged PfCK2β1 subunit. This band is not recognised by 

the pre-immune serum (although a larger band from the recombinant protein preparation is 

recognised). The affinity purified anti-PfCK2β1 antibodies specifically recognise a band of 
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roughly 28kDa, which is the expected size of PfCK2β1, in protein extract from 3D7 

parasites (lane 2). This band runs at a slightly higher molecular weight in protein extract 

from parasites that had incorporated an HA tag at the 3’ end of the PfCK2β1 gene (lanes 3 

and 4; see section 3.4.1), which is expected, and strengthens the evidence that this band is 

indeed PfCK2β1. Pre-immune serum dilutions of 1 in 500 were used for western blotting. 

The bands mentioned above were not recognised by the pre-immune serum (Fig. 5-2, left 

panel).  

 
Figure 5-3 Western blot showing PfCK2β2 expression in erythrocytic stage parasites 
Protein extract from unsynchronised erythrocytic stage P. falciparum parasites was 
prepared from 3D7 parasites (lane 2), and from parasites with a sequence encoding a HA-
tag incorporated at the 3’ end of the PfCK2β2 gene locus (lane 3: clone D5, lane 4: clone E2; 
see 3.5.1 for details of these parasite lines). Protein extract from unparasitized red blood 
cells (lane 1), and recombinant GST-shPfKC2β2 (lane 5, see section 5.6), were included as 
negative and positive controls. Two identical acrylamide gels were run, the proteins 
transferred to membrane, and western blots performed with affinity-purified anti-PfCK2β2 
antibodies from a rabbit, or with pre-immune serum from the same rabbit, as a negative 
control. 

Similar western blots were performed using affinity-purified rabbit anti-PfCK2β2 

antibodies and the corresponding pre-immune serum (Fig. 5-3). The band in lane 5 

between the 43 and 55kDa markers has the expected size of the GST-tagged shPfCK2β2 

subunit, and although there is a small amount of background binding to this protein in the 

pre-immune serum control, a much stronger signal is seen with the anti-PfCK2β2 

antibodies. Several bands from wild type 3D7 parasite protein extract were recognised by 

the affinity purified anti-PfCK2β2 antibodies (right panel, lane 2). The lowest band in the 

3D7 parasite extract recognised by the specific antibodies (just below the 43kDa marker) 

runs at a slightly higher molecular weight in protein extract from parasites that had 

incorporated an HA tag at the 3’ end of the PfCK2β2 gene (lanes 3 and 4; the bands are at 

the 43kDa marker), indicating that this band is likely to be PfCK2β2. Pre-immune serum 

dilutions of 1 in 500 were used for western blotting. These antibodies did not recognise the 

PfCK2β2 band (Fig. 5-3, left panel). Were the full length coding sequence for PfCK2β2 to 

be expressed, the expected size of the protein would be just over 45kDa. The protein may 
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run slightly aberrantly on the acrylamide gel, or the protein may be cleaved. Mass-

spectrometry analysis of immunoprecipitated PfCK2β2 would tell us whether the protein 

was expressed as full length or cleaved product. The larger bands recognised are 

presumably due to non-specific binding of the antibody. BLAST searches for other 

proteins containing the sequence of the peptide used for antibody generation returned one 

hit: PF13_0089, a 192 kDa protein with several amino acid sequences bearing some 

similarity to the PfCK2β2 peptide sequence. However, this protein is too large to be 

responsible for the additional bands seen in the western blot (the most significant bands 

being 55 kDa and 95 kDa), unless it is degraded or processed. 

5.4 Cloning and expression of the PfCK2β1 subunit 

5.4.1 Cloning 

The coding sequence for the putative PfCK2β1 gene (738bp, one exon) was amplified from 

P. falciparum 3D7 cDNA by the polymerase chain reaction, using Pfx Platinum 

polymerase and the oligonucleotide primers CK2b1ForBgl and CK2b1RevSal, which 

introduced an N-terminal BglII site and a C-terminal SalI site to the PCR product. BglII 

was used for cloning because PfCK2β1 has an internal BamHI site. BglII and BamHI 

generate compatible overhangs, so the BglII-digested PfCK2β1 fragment can be 

successfully ligated into the BamHI-cut pGEX-4T-3 and pQE-30 plasmids. The PCR 

products were first ligated into the vector pGEM-T-Easy for sequence verification, and 

subcloned into the BamHI and SalI sites of the pGEX-4T-3 and pQE-30 vectors. The 

pGEX-4T-3 plasmid attaches an N-terminal GST tag to the recombinant protein, and the 

pQE-30 plasmid attaches an N-terminal 6xHis tag to the recombinant protein. The insert 

regions of these plasmids (named pGEX-4T-3-PfCK2b1 and pQE-30-PfCK2b1) were 

sequenced prior to use. 

5.4.2 Expression and purification 

Test expressions of GST- and His-tagged PfCK2β1 were carried out to find the optimum 

expression conditions. Expression from pGEX-4T-3-PfCK2b1 was tested in E. coli BL21 

cells (Stratagene), and expression from pQE30-PfCK2b1 was tested in SG13009 E. coli 

(Qiagen), both at a range of temperatures (37oC, 30oC and 20oC) and IPTG concentrations 

(0.1-1mM). Recombinant proteins were purified using batch glutathione affinity 

chromatography (see 2.6.1) of the GST-tagged PfCK2β1, and batch nickel affinity 
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chromatography (see 2.6.2) of the His-tagged PfCK2β1. Samples of bacteria were taken 

before and after induction of protein expression, and samples were also taken from the 

soluble and insoluble protein fractions after lysis, and of the eluted proteins (see sections 

2.6.1&2). The samples were separated by SDS-PAGE on 12% acrylamide gels, and stained 

with Coomassie blue stain (Fig. 5-4).  

 
Figure 5-4 Expression and purification of tagged recombinant PfCK2β1 
Panel A: Samples taken during the expression and purification of GST-PfCK2β1 were 
separated by SDS-PAGE on 12% acrylamide gels, which were then stained with Coomassie 
blue stain. 1: Sample of bacteria before induction of expression. 2: Sample of bacteria after 
expression was induced. 3: Insoluble fraction. 4: Soluble fraction. 5: Eluted proteins. Panel 
B: Thrombin cleavage of purified GST-PfCK2β1. Panel C: Anti-His western blot of samples 
taken during test expressions of His-PfCK2β1. 1: Before induction, 2: After induction, 3: 
Insoluble fraction, 4: Soluble fraction. None of the conditions produced soluble recombinant 
His-PfCK2β1. 

For GST-PfCK2β1, the expression conditions that produced the most recombinant protein 

were: induction at 20oC overnight with 0.1mM IPTG. Large-scale expressions (250ml 

cultures) were performed using these conditions, which produced roughly 0.2mg of 

purified protein. The protein was purified along with another protein (larger band, between 

55kDa and 72kDa markers, Fig. 5-4A), which we hypothesize to be a chaperone protein. 

The GST-PfCK2β1 was identified by thrombin-cleavage of the GST moiety (Fig. 5-4B); 

the putative chaperone protein was not affected by the thrombin, indicating that the pattern 

of bands was not an aberrantly running PfCK2β1 with its degradation products. The 
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putative chaperone protein was not recognised by the antibodies raised against CK2β1, but 

was recognised by the pre-immune serum (see Fig. 5-2). None of the conditions tested 

produced significant quantities of soluble His-PfCK2β1 (Fig. 5-4C). 

5.5 Cloning and expression of the PfCK2β2 subunit 

5.5.1 Cloning 

The whole coding sequence for the putative PfCK2β2 gene (two exons, 1158bp excluding 

the intron) was amplified from P. falciparum 3D7 cDNA by the polymerase chain reaction, 

using the Pfx Platinum polymerase oligonucleotide primers CK2b2ForBam and 

CK2b2RevSal, which introduced an N-terminal BamHI site and a C-terminal SalI site to 

the PCR product. The PCR products were ligated into the vector pGEM-T-Easy for 

sequence verification, and then subcloned between the BamHI and SalI sites of the vectors 

pGEX-4T-3 and pQE-30. The insert regions of these plasmids (named pGEX-4T-3-

PfCK2b2, and pQE-30-PfCK2b2) were sequenced prior to use. 

5.5.2 Expression and purification 

Test expressions of GST- and His-tagged PfCK2β2 were carried out to find the optimum 

expression conditions. Expression from pGEX-4T-3-PfCK2b2 was tested in E. coli BL21 

cells (Stratagene), and expression from pQE30-PfCK2b2 was tested in SG13009 E. coli 

(Qiagen), both at a range of temperatures (37oC, 30oC and 20oC) and IPTG concentrations 

(0.1-1mM). Recombinant proteins were purified using batch glutathione affinity 

chromatography (see 2.6.1) of the GST-tagged PfCK2β2, and batch nickel affinity 

chromatography (see 2.6.2) of the His-tagged PfCK2β2. Samples were taken before 

induction, after induction, from the soluble and insoluble protein fractions after lysis, and 

of the eluted proteins (see sections 2.6.1&2). These samples were separated on 12 % 

acrylamide gels and visualised using Coomassie blue stain and western blotting. None of 

the expression conditions produced soluble recombinant protein (data not shown).  
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5.6 Cloning and expression of the shPfCK2β2 subunit 

5.6.1 Cloning 

Because the long N-terminal acidic repeat sequences of PfCK2β2 might have been 

responsible for the expression problems in E. coli, a sequence coding for the PfCK2β2 

subunit without the N-terminal extension (named shPfCK2β2) was constructed. This 

sequence began with an initiating methionine, then continued with E156 of the PfCK2β2 

sequence (see Fig. 5-1), which lies just N-terminal to the conserved CK2β domain. The 

sequence was amplified from the pGEX-4T-3-PfCK2b2 plasmid using Pfx Platinum 

polymerase and the oligonucleotide primers CK2b2shortForBam and CK2b2RevSal, 

which introduced an N-terminal BamHI site and a C-terminal SalI site to the PCR product. 

The sequence was ligated into pGEM-T-easy and subcloned into pGEX-4T-3 and pQE30 

as described above for full-length PfCK2β2. The insert regions of these plasmids (named 

pGEX-4T-3-shPfCK2b2 and pQE-30-shPfCK2b2) were sequenced prior to use. 

5.6.2 Expression and purification 

Test expressions of GST- and His-tagged shPfCK2β2 were carried out as detailed above 

for PfCK2β1 (section 5.4.2). The expression conditions that produced the most 

recombinant protein were the same for both tags: induction at 20oC overnight with 0.1mM 

IPTG. Large-scale expressions were performed using these conditions.  

Recombinant proteins were purified using batch glutathione affinity chromatography (see 

2.6.1) of the GST-tagged shPfCK2β2, and batch nickel affinity chromatography (see 2.6.2) 

of the His-tagged shPfCK2β2. 250ml cultures were used for expression of recombinant 

proteins, and produced roughly 0.8mg of GST-shPfCK2β2, and 0.8mg of His-shPfCK2β2. 

Samples taken during expression and purification of the recombinant proteins were 

separated on 12 % acrylamide gels and visualised using Coomassie blue stain (Fig. 5-5). 
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Figure 5-5 Expression and purification of tagged recombinant shPfCK2β2 
Samples taken during the expression and purification of GST-shPfCK2β2 (Panel A) and His-
shPfCK2β2 (Panel C) were separated by SDS-PAGE on 12% acrylamide gels, which were 
then stained with Coomassie blue stain. 1: Sample of bacteria before induction of 
expression. 2: Sample of bacteria after expression was induced. 3: Insoluble fraction. 4: 
Soluble fraction. 5: Eluted proteins (expected sizes: GST-shPfCK2β2: 53kDa, His-
shPfCK2β2: 28kDa). Panel B: GST-shPfCK2β2 is amenable to thrombin cleavage. 

 

5.7 Subunit interactions 

5.7.1 Pulldowns and co-immunoprecipitations 

To assess whether the two PfCK2 beta subunits are able to associate with PfCK2α in vitro, 

mixtures of His- and GST-tagged subunits were prepared, from which protein complexes 

containing GST-tagged subunits were purified using glutathione-agarose beads. The 

purified proteins were then subjected to western blot analysis using an anti-His antibody, to 

detect any bound His-tagged protein that was co-purified with the GST-tagged proteins. 

PfCK2α-His was co-purified with GST-PfCK2β1 and GST-shPfCK2β2, but not with GST 

alone (Fig. 5-6A). This reveals that the PfCK2 alpha subunit is able to interact with both of 

the PfCK2 beta subunits, at least in vitro. The amount of GST-PfCK2β1 purified from the 

protein mixture was lower than that of GST-shPfCK2β2 (see Fig. 5-6A, right panel, 
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Coomassie-stained gel), thus it is unsurprising that there was also less PfCK2α-His 

labelled in the western blot in the lane containing proteins purified from the GST-

PfCK2β1/PfCK2α-His mix than in the lane containing proteins from the GST-

shPfCK2β2/PfCK2α-His mix (Fig. 5-6A, left panel).  

 
Figure 5-6 Interaction of the PfCK2β  subunits with PfCK2α 
Panel A: Anti-His western blot of samples from pulldown experiments in which GST-tagged 
and His-tagged PfCK2 subunits were mixed, and complexes containing GST-tagged 
proteins were purified on glutathione-agarose beads. 1: PfCK2α-His. 2: His-shPfCK2β2. Left 
panel: Photographic film exposed to western blot membrane. Right panel: corresponding 
Coomassie-stained gel of pulldown samples. Panel B: Kinase assays after pulldowns using 
GST-tagged proteins as bait and PfCK2αHis as prey. The NEB peptide p6012 was used as 
the substrate in a scintillation count kinase assay. This experiment was repeated, with 
similar results. 

Pulldown experiments as described above were followed by kinase assays using the NEB 

p6012 peptide as a substrate. There was only background radioactivity incorporated in the 

assay containing proteins that had been pulled-down with GST, but much higher levels of 

radioactivity incorporated in the assays containing proteins that had been pulled-down with 

GST-PfCK2β1 or GST-shPfCK2β2. This confirms that the beta subunits are able to 

associate with the catalytic alpha subunit in vitro. The amount of radioactivity incorporated 

into the peptide substrate in the kinase reaction containing proteins purified from GST-

PfCK2β1/PfCK2α-His mixtures was lower than that in the kinase reaction containing 

proteins purified from GST-shPfCK2β2/PfCK2α-His mixtures. This is likely to be due to 



5. Biochemical Characterisation of PfCK2β1 and PfCK2β2 142 

unequal amounts of PfCK2α present (due to unequal amounts of beta protein present in the 

samples), as shown in the western blots and Coomassie gels from the pulldowns (Fig. 5-

6A&B), rather than different levels of stimulation of PfCK2α activity. Parallel experiments 

were performed with HsCK2α, with similar results, showing that the PfCK2β subunits are 

also able to associate with HsCK2α in vitro (data not shown; experiment performed in 

Grenoble). 

Co-immunoprecipitation experiments were performed to determine whether the native 

subunits interact in parasite extracts. Clonal parasite lines were produced (sections 3.3.1, 

3.4.1 and 3.5.1) that have integrated an HA tag at the 3’end of the PfCK2 genes. Protein A 

Sepharose beads coated in anti-HA antibodies were used to purify complexes containing 

the HA tags (and therefore the HA-tagged PfCK2 subunits) from protein extracts derived 

from these clonal parasite lines. Immunoprecipitations were also performed on wild type 

(untransfected) 3D7 parasite extract, to provide a negative control. Protein extract 

concentrations were standardized to 1mg/ml using the Bradford assay, and 200µg was used 

for each immunoprecipitation. Standard kinase assays were performed on the 

immunoprecipitated material, using a variety of potential substrates (mixed casein, MBP 

and histone H1; Fig. 5-7). The control reaction containing recombinant PfCK2α (lane 8) 

reveals the preferences of the catalytic subunit for the casein proteins (between the 26 and 

34 kDa markers). No kinase activity was seen in the reaction containing 

immunoprecipitated material from wild type 3D7 parasite extract (lane 1). Strong 

phosphorylation is seen in the lanes containing immunoprecipitated proteins from parasites 

harbouring HA-tagged PfCK2α subunits (lanes 2 and 3), with the banding pattern being 

similar to that for recombinant PfCK2α (lane 8). The same pattern of bands, although with 

a weaker signal intensity, was seen in the reactions containing material 

immunoprecipitated from PfCK2β1HA and PfCK2β2HA parasites lines (lanes 4-7), 

suggesting that the same kinase might be responsible for the activity seen in each lane, and 

therefore that the PfCK2α subunit may have been co-immunoprecipitated with the HA-

tagged PfCK2β subunits. We demonstrated in Chapter 3 that the HA tag plasmid integrated 

in the expected place in each parasite line (i.e. at the 3’ end of the PfCK2 gene loci), and 

therefore we can conclude that the phosphorylation activity seen is due to the presence of 

complexes containing the PfCK2 subunits. To confirm this result, we would need to 

perform anti-PfCK2-subunit western blots on the immunoprecipitated samples. These 

experiments were attempted, but cross-reactive bands caused by the presence of the anti-

HA antibody in the samples obscured any meaningful bands that may have been present. 

These experiments should be repeated using an immobilized anti-HA antibody, allowing 
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subsequent separation of the anti-HA antibody from the immunoprecipitated material. On 

Coomassie-stained gels it was not possible to identify bands that were visible in lanes 2-7 

but not in lane 1 (see Fig. 5-7, left panel). There were extremely faint bands on silver-

stained gels (data not shown, bands do not show up in scanned photographs), and mass-

spectrometry was attempted, but identification of the proteins was not possible. The 

phosphorylated band observed in lanes 2-7 and not lane 8 (roughly 43 kDa) may be a co-

immunoprecipitated substrate of PfCK2. It was not possible to see this band on silver-

stained gels, and therefore not possible to identify this band by mass-spectrometry.  

However, as stated above, the banding patterns seen in the kinase assay are suggestive of 

an in vivo association of the PfCK2 subunits, or at least that the PfCK2 beta subunits 

complex with a kinase (or kinases) with similar substrate preferences to those of PfCK2α.  

 
Figure 5-7 Co-immunoprecipitation of protein complexes containing HA-tagged PfCK2 
subunits 
Immunoprecipitations were carried out using the anti-HA antibody on 200µg of protein 
extract prepared from the following parasite lines: lane 1: Wild type 3D7; lane 2: HA-tagged 
PfCK2α, clone B3; lane 3: HA-tagged PfCK2α , clone E1; lane 4: HA-tagged PfCK2β1, clone 
C9; lane 5: HA-tagged PfCK2β1, clone E8; lane 6: HA-tagged PfCK2β2, clone D5; lane 7: HA-
tagged PfCK2β2, clone E2. Kinase assays were performed on the resulting beads, using 
casein, MBP and histone H1 as substrates. Lanes 8 and 9 contain the control reactions for 
the kinase assay. These control reactions contained the same set of substrates as lanes 1-7, 
and recombinant PfCK2αHis (lane 8) or buffer (lane 9). Left panel: Coomassie-stained gel of 
the kinase reactions. Right panel: autoradiogram of the kinase assays.  

 

5.7.2 Functional significance of the subunit interactions 

One of the proposed functions of the CK2β subunit is alteration of the substrate specificity 

of CK2. To investigate whether the PfCK2β subunits can alter the substrate specificity of 

the catalytic subunit, we performed kinase assays with calmodulin and β-casein. 

Calmodulin is a confirmed in vivo substrate for CK2 (Meggio and Pinna, 2003, Pinna, 

1990). It is a substrate for the free catalytic subunit, but there is little or no phosphorylation 
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of calmodulin by the CK2 holoenzyme (Benaim and Villalobo, 2002, Marin et al., 1999a, 

Meggio et al., 1987, Meggio et al., 1992a). It is the N-terminal acidic region of the CK2β 

subunit (residues 55-70 of HsCK2β) that hinders the phosphorylation of calmodulin by the 

holoenzyme (Meggio et al., 1994a). It had been thought that this was due to an interaction 

with a basic stretch of HsCK2α (residues 66-86), but the holoenzyme structure seems to 

refute this hypothesis (Meggio et al., 1994a, Niefind et al., 2001). The basic stretch is 

conserved in PfCK2α (see Fig. 4-1), and there are equivalent acidic stretches in both 

PfCK2β subunits, although the actual sequence conservation is not high (Fig. 5-1). Casein 

is the classic substrate for CK2, and gave the enzyme its name (CK2 is an acronym for 

‘casein kinase two’). We performed kinase assays (i) to determine whether calmodulin and 

casein are substrates for PfCK2α, and (ii) if so, ascertain whether the presence of the 

PfCK2β subunits significantly alters the phosphorylation of calmodulin and casein by 

PfCK2α. This was not found to be the case for calmodulin (Fig. 5-8A). Each time this 

experiment was repeated, the amount of radiolabel incorporated into calmodulin in the 

presence of the beta subunits was the same as, or slightly less than, the amount 

incorporated into calmodulin in the absence of the beta subunits. However, the presence of 

either PfCK2β subunit reduces the activity of PfCK2α towards β-casein (Fig. 5-8B). Such 

modulation of CK2 activity has been seen for other CK2α/β subunits, often in a substrate-

dependent fashion; for example CK2β stimulates HsCK2 activity towards topoisomerase II 

and p53, and as mentioned above, inhibits activity towards calmodulin (Bibby and 

Litchfield, 2005). The presence of two CK2β subunits in P. falciparum (whereas there is 

only one in human cells) is likely to allow fine control of the activity of the catalytic 

subunit. Experiments on a wider range of substrates are needed to show whether the two 

PfCK2β subunits differentially affect the activity of PfCK2α towards certain substrates. 

The wild-type human CK2α is stimulated four- to ten-fold towards the majority of 

substrates by the interaction with CK2β (Romero-Oliva et al., 2003), but under our 

conditions, and with these substrates, PfCK2α activity is not stimulated by the interaction 

with the beta subunits (Fig. 5-8). This could be explained by differences in the primary 

sequences of human and P. falciparum CK2α: a Val66Ala HsCK2α mutant was not 

stimulated by interaction with CK2β (Jakobi and Traugh, 1992), and PfCK2α has an 

alanine at the equivalent position. 
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Figure 5-8 Functional significance of the subunit interactions 
Panel A: Phosphorylation of calmodulin by PfCK2αHis is not greatly altered in the presence 
of increasing concentrations of GST-PfCK2β1 or GST-shPfCK2β2. Top panel: 
autoradiogram, bottom panel: corresponding Coomassie-stained gel of the kinase assay. 
Standard kinase assays were performed with 5µg of calmodulin, 1µg of PfCK2αHis, and 6µg 
of GST/GST-PfCK2β , in varying proportions. Panel B: Phosphorylation of β-casein by 
PfCK2αHis decreases in the presence of increasing concentrations of GST-PfCK2β1 or 
GST-shPfCK2β2. Top panel: Combined results of three experiments (means and standard 
deviations shown). Phosphorylation of β-casein by PfCK2αHis in the presence of increasing 
concentrations of GST-tagged PfCK2β  subunits (and concomitant decreases in the 
concentration of GST) was quantified by phosphorimaging. Bottom panel: Autoradiograms 
from one of the kinase assays, showing decreased incorporation of the radiolabel into β-
casein with increasing ratio of GST-PfCK2β:GST present in the reaction. Standard kinase 
assays were performed with 1µg of β-casein, 1µg of PfCK2αHis, and 6µg of GST/GST-
PfCK2β , in varying proportions. 

The association of the PfCK2β subunits with the PfCK2α subunit does not affect the Km of 

the enzyme for ATP (PfCK2α alone: 17.5 µM; PfCK2α/PfCK2β1: 21.3 µM; 

PfCK2α/shPfCK2β2: 14.1 µM). Although the rat CK2 holoenzyme was over 5 fold more 

active against the peptide RRRDDDSDDD than the catalytic subunit alone (Meggio et al., 

1992a), the PfCK2β subunits did not have a significant effect on the phosphorylation by 

PfCK2α of the similar NEB peptide RRRADDSDDDDD (data not shown). An important 

point to note, however, is that we do not know whether the recombinant PfCK2β subunits 

are correctly folded. Circular dichroism experiments, with the HsCK2β subunit for 

comparison, may be informative in respect to this question. 
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Figure 5-9 CK2β-dependent phosphorylation of eIF2β[1-22] and Olig2[1-177] 
Panel A: Phosphorylation of the eIF2β[1-22] peptide (Salvi et al., 2006) by PfCK2αHis or 
HsCK2α  in the presence and absence of GST-PfCK2β1, GST-shPfCK2β2, or HsCK2β  was 
analysed by kinase assay, and the amount of radiolabel incorporated into the peptide 
counted by scintillation. Results are shown as means of two experiments, with the error 
bars representing the standard deviations. Panel B: Phosphorylation of the GST-Olig2[1-
177] protein (Laudet et al., 2007) by PfCK2αHis (lanes 1-4) or HsCK2α  (lanes 5-8) alone (1,5) 
or in the presence of GST-PfCK2β1 (2,6), GST-shPfCK2β2 (3,7), or HsCK2β  (4,8). Top panel: 
autoradiogram. Bottom panel: corresponding Coomassie-stained gel of the kinase assay. 

A new tool has been developed for distinguishing the activity of the catalytic subunit of 

CK2 from that of the holoenzyme. In contrast to what is observed with calmodulin, the 

eukaryotic translation-initiation factor 2 beta (eIF2β) is phosphorylated by the CK2 

holoenzyme, but not by the free catalytic subunit (Llorens et al., 2003). A peptide derived 

from eIF2β has been produced (eIF2β[1-22], MSGDEMIFDPTMSKKKKKKKKP) that is 

also phosphorylated only in the presence of the beta subunit (Salvi et al., 2006). This 

peptide was used to assess the interaction of human and P. falciparum CK2 subunits (Fig. 

5-9). Kinase assays were performed on the eIF2β peptide by 30ng of CK2α subunit with or 

without 30ng of CK2β subunit. While the HsCK2β was able to recruit CK2α from both 

species to the peptide for effective phosphorylation (Fig. 5-9A), neither of the PfCK2β 

subunits was able to do so. Since we have already shown by pulldowns (Fig. 5-6A&B) that 

the PfCK2 subunits interact in vitro, this lack of phosphorylation is likely to be due the 

PfCK2β subunits being unable to recognize this particular substrate. The inability of the 

PfCK2β subunits to recruit the CK2α subunits to the eIF2β peptide may be explained by a 
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recent study (Poletto et al., 2008), in which both of the HsCK2β mutants DLE57 to AAA 

and R47A had vastly reduced ability to recruit the CK2α subunit to phosphorylate the 

peptide. This DLE motif and arginine residue are lacking from the equivalent positions in 

the PfCK2β1 and PfCK2β2 subunits. The N-terminus of the P. falciparum eIF2β 

orthologue (PF10_0103) does not resemble the N-terminus of human eIF2β (which 

includes the peptide used in this assay, eIF2β[1-22]), and does not possess 

phosphorylatable residues that conform to the CK2 consensus sequence. Therefore it is 

unlikely that in live parasites the PfCK2β subunits bring PfCK2α to PfeIF2β in order to 

phosphorylate it in an analogous manner to that seen with HsCK2α and HseIF2β. 

However, the ability of HsCK2β to recruit PfCK2α to phosphorylate the eIF2β[1-22] 

peptide indicates that although the human and P. falciparum CK2 beta subunits are very 

different in primary structure, there is functional conservation in ability to form complexes 

with alpha subunits. 

These findings are reinforced by a similar experiment involving the GST-Olig2[1-177] 

protein (Laudet et al., 2007), kindly provided to C. Cochet’s laboratory by Thierry Buchou 

(iRTSV/LTS). As is the case for eIF2β, Olig2 (oligodendrocyte lineage transcription factor 

2) is phosphorylated by the CK2 holoenzyme, not the free CK2α subunit (Thierry Buchou 

(Laudet et al., 2007)). The Olig2 protein was used in a similar experiment to that described 

above for the eIF2β peptide, to assess the interaction between the CK2 subunits. Standard 

kinase assays were performed with 2.7µg of GST-Olig2[1-177] protein, and 30ng of CK2α 

(alone or with 30ng of CK2β subunit). Kinase assays were performed under linear kinetic 

conditions, and terminated by the addition of Laemmli buffer. The proteins were separated 

on an acrylamide gel, which was stained with Coomassie Blue (Fig. 5-9B, lower panel) 

and exposed to film (Fig. 5-9B, upper panel). While the HsCK2β was able to recruit CK2α 

from either species to the Olig2 protein for effective phosphorylation, neither of the 

PfCK2β subunits was able to do so (Fig. 5-9B). Since we have shown that both CK2α can 

phosphorylate the protein, and that the CK2α interact with the PfCK2β subunits (Fig. 5-6, 

data not shown for HsCK2α, but similar to that shown for PfCK2α in Fig. 5-6C), the likely 

explanation for the observation that the PfCK2β subunits are unable to recruit the CK2α 

subunits to phosphorylate the Olig2 protein is that they are unable to recognise the 

substrate.  

These results demonstrate that the PfCK2α subunit is a functional CK2α subunit, able to 

interact with an established CK2β subunit and phosphorylate known CK2 substrates. 
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5.8 Summary 

• Plasmodium falciparum possesses two CK2 beta subunits, which are very different 

from each other in primary structure. 

• One of the subunits (PfCK2β2) exhibits several unusual features: a long, repetitive 

and acidic N-terminal extension, and an insertion region within the conserved 

CK2β domain. 

• Both subunits are expressed in erythrocytic stage parasites. This confirms the 

proteomic data available for PfCK2β1, and provides new information on PfCK2β2, 

for which no proteomic data were available.  

• Both subunits can be expressed as tagged recombinant proteins, but the N-terminal 

extension of PfCK2β2 must be removed before it can be successfully expressed, 

and the PfCK2β1 subunit cannot be expressed with a His-tag. 

• Both PfCK2β subunits are able to interact in vitro with PfCK2α and HsCK2α. 

• The interaction of PfCK2β with PfCK2α does not alter the Km of the enzyme for 

ATP, or the activity against calmodulin or the artificial NEB peptide substrate, 

though it does reduce the activity of PfCK2α against β-casein, suggesting a role for 

the PfCK2β subunits in substrate discrimination. 
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6 Discussion 

This thesis describes the initial characterisation of the three Plasmodium falciparum CK2 

subunit orthologues. PfCK2α looks like and behaves like a CK2α orthologue: it possesses 

conserved CK2 motifs (section 4.2), it is essential for parasite viability (section 3.3), it 

associates with both the P. falciparum and H. sapiens CK2β subunits (section 5.7), it 

autophosphorylates on both the PfCK2α and PfCK2β2 subunits (Fig. 4-7), it 

phosphorylates exogenous substrates at sites surrounded by acidic residues (section 4.5), it 

is able to use GTP as well as ATP as a co-substrate (Fig. 4-8), and it is inhibited by the 

classical CK2 inhibitor TBB (Fig. 4-11), with a similar IC50 value to that of TBB on 

HsCK2α. 

PfCK2β1 and PfCK2β2 look like and behave like CK2β orthologues: they contain the 

conserved CK2β motifs (section 5.2), they associate with both the P. falciparum and H. 

sapiens CK2α subunits (section 5.7), and they are able to modulate the activity of the 

PfCK2α subunit (towards β-casein, section 5.7.2).  

However, these conserved features and characteristics do not allow us to assume that the 

lists of functions and protein-protein interactions established for CK2 orthologues in other 

organisms will be conserved in P. falciparum. A number of wide-ranging studies have 

analysed the substrates of CK2, mainly in mammalian and yeast cells. An analysis of the 

published literature in 2003 identified 307 substrates for CK2 (Meggio and Pinna, 2003). 

The largest groupings of substrates were: transcription factors (60); nuclear proteins 

involved in gene expression or transcription (>40); and other signalling proteins (>80, 

including 10 protein kinases and 8 protein phosphatases) (Meggio and Pinna, 2003). That 

CK2 is highly involved in transcription is corroborated by systematic studies of yeast 

protein complexes (Gavin et al., 2002), which identified seven complexes in which two or 

more CK2 subunits were found; four of these were involved in transcription or DNA 

maintenance or chromatin structure (the other three were involved in RNA metabolism, 

protein/RNA transport, and signalling). An analysis of the protein-protein interactions of S. 

cerevisiae CK2 subunits present on the BioGRID repository also found that “the majority 

of the [CK2-] interacting proteins were related to nucleic acid synthesis and processing” 

(Gyenis and Litchfield, 2008). Many of the proteins listed in these studies have 

orthologues in P. falciparum; however, as was demonstrated for the PfMyb1, PfHMGB1 

and PfNAP-B7 proteins (Fig. 4-7C), this does not necessarily mean they will be good 

substrates for PfCK2. P. falciparum has a divergent kinome (section 1.5.2), and a very 
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different lifecycle to the two main organisms in which CK2 is studied (S. cerevisiae and H. 

sapiens), and is therefore likely to organise its protein signalling pathways and 

mechanisms of regulation in different ways to those organisms. It would not be unexpected 

for PfCK2 to diverge in its list of cellular substrates from those published for HsCK2 and 

ScCK2.  

A start has been made in identifying putative substrates for PfCK2: several proteins were 

phosphorylated in P. falciparum extract (Fig. 4-6), but these proteins have not been 

identified. Tools have been produced that will be invaluable in the identification of 

substrates: clonal parasite lines that have incorporated an HA tag at the 3’ end of the 

PfCK2 subunit genes. Immunoprecipitations of the HA-tagged subunits (Fig. 5-7) followed 

by kinase assays revealed the presence of a phosphorylated band not present in the kinase 

assay controls, which may be a co-immunoprecipitated substrate. These experiments need 

to be repeated: the kinase assay following the immunoprecipitation should be repeated 

without the addition of exogenous substrates, to clarify whether the band mentioned above 

is from the immunoprecipitated material; and the immunoprecipitations should be repeated 

using a kit that allows immobilization of the antibody (e.g. PIERCE ProFoundTM Co-

Immunoprecipitation kit) so that there is a minimal amount of this antibody present in the 

eluted samples, allowing for subsequent identification of the immunoprecipitated proteins 

by western blot without this antibody masking the signals. The amount of parasite material 

used in the immunoprecipitations should be increased, so that interacting partners can also 

be identified by mass-spectrometry.  

A yeast-two-hybrid study of P. falciparum protein-protein interactions has been published 

(LaCount et al., 2005). This study identified one partner for PfCK2α, PFF0220w, whose 

function has not been investigated. However, it was mapped in an interaction network with 

proteins involved in chromatin metabolism and transcription (LaCount et al., 2005), which 

fits with the studies mentioned above that demonstrate an important role for CK2 in 

transcription and the structure of DNA. PfCK2β2 (base pairs 2-1024 as the bait fragment) 

interacted with 84 prey fragments, and was therefore excluded from the analysis as a 

‘promiscuous fragment’. However, these interactions might not necessarily represent false 

positives, given that over 300 substrates had been identified for CK2 in 2003 (with more 

characterised since). Therefore it is a possibility that PfCK2β2 could interact with 84 

proteins, and perhaps these data should not have been excluded from the database. Another 

fragment of the PfCK2β2 gene (base pairs 259-617) was included in the study as a prey 

fragment; it interacted with PF07_0043, annotated as 60s ribosomal protein L34a 
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(putative) on PlasmoDB. No partners were reported for PfCK2β1, but since only a subset 

of the P. falciparum genome was examined (1,295 genes expressed in erythrocytic stage 

parasites), it is likely that it was not included in the analysis. This study did not find 

interactions between the PfCK2 subunits. However the alpha-beta interaction involves the 

C-terminus of the beta subunit as well as the central region (Niefind et al., 2001), and the 

PfCK2β2 fragment used in the study excluded the C-terminus. It was demonstrated in 

Chapter 5 that the PfCK2α and PfCK2β subunits can interact in vitro, and showed some 

preliminary evidence (Fig. 5-7, immunoprecipitations) that they may also interact in 

parasite extract. Further immunoprecipitations using immobilised antibody, and followed 

by western blots, should be performed to reveal whether the PfCK2α/β subunits associate 

in parasite extract. 

The two PfCK2β subunits are both essential for parasite viability (sections 3.4&5). This is 

unexpected given the dispensability of the beta subunits for viability in the single celled 

organisms S. cerevisiae (which has two CK2β subunits that can be knocked out 

individually or simultaneously (Ackermann et al., 2001, Bidwai et al., 1995, Reed et al., 

1994)) and Schizosaccharomyces pombe (which had a single beta subunit) (Roussou and 

Draetta, 1994). The single beta subunit present in Caenorhabditis elegans (Fraser et al., 

2000) and in mice (Buchou et al., 2003) is essential. Organisms that possess more than one 

gene coding for a CK2α subunit display some degree of redundancy between these genes. 

For example, knockout of CK2α2 in mice is well tolerated, indicating that CK2α1 can 

functionally compensate for CK2α2 (except in male spermatogenesis) (Escalier et al., 

2003, Xu et al., 1999). The two genes encoding the CK2 catalytic subunits of 

Saccharomyces cerevisiae (CKA1 and CKA2) can be individually disrupted, indicating 

functional compensation, but disruption of both simultaneously is lethal (Chen-Wu et al., 

1988, Padmanabha et al., 1990). Putting these data together, we had hypothesized that 

either (i) both PfCK2β subunits would be dispensable for parasite viability, as is the case 

for S. cerevisiae, or (ii) the presence of one beta subunit may be essential to the parasite, in 

a manner analogous to the catalytic subunits in mice or S. cerevisiae, in which case at least 

one of the two PfCK2β subunits could be disrupted. However, our data strongly suggest 

that both CK2β subunits are essential for P. falciparum viability, indicating that they have 

non-redundant functions in the parasite. The differing interactomes for the CK2β subunits 

in S. cerevisiae (Gyenis and Litchfield, 2008) is consistent with functional specialisation. 

However, as mentioned above, the individual CK2β subunits in S. cerevisiae are not 

individually (or corporately) essential for viability, so the importance of these non-

overlapping areas of function is questionable, and may just represent the limitation in our 
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knowledge of interaction data. The PfCK2 beta subunits cannot functionally compensate 

for each other: they have non-redundant functions. It is therefore of interest to investigate 

the different properties and functions of the CK2 holoenzymes built around PfCK2β1/β1, 

PfCK2β2/β2 and PfCK2β1/β2 dimers, and to clarify whether all three potential 

holoenzymes are present in the parasite. Potential experiments to address this issue are 

size-exclusion chromatography of parasite extract, followed by dot-blots of the eluted 

fractions, or western blots of anti-HA immunoprecipitated material from tagged parasite 

lines.  

Many intriguing hypotheses can be constructed regarding the reasons for the essentiality of 

both CK2β subunits in P. falciparum. CK2β subunits function as docking stations for CK2 

substrates, as modulators of CK2 activity, and they interact with scaffold proteins and 

regulatory proteins. So perhaps some substrates can only be phosphorylated by CK2 

containing the PfCK2β1 subunit, and others can only be phosphorylated by CK2 

containing the PfCK2β2 subunit. The PfCK2β subunits might differentially regulate 

PfCK2 activity towards some substrates. I did not observe differences in effects of the two 

PfCK2β subunits on activity towards calmodulin, β-casein, and peptide substrates, but this 

is a very limited set of non-physiological substrates, and the investigations were performed 

in vitro, whereas in vivo there may be other factors that mediate a differential regulation 

via the PfCK2β subunits. The PfCK2β2 subunit has an insertion of acidic amino acids in 

the acidic region of the conserved CK2β domain known to downregulate CK2α (Fig. 5.1) 

(Meggio et al., 1994a), lending weight to the differential-regulation hypothesis. The 

divergence in primary structure between the two PfCK2β subunits, along with the inability 

of the parasites to survive without either of them, leads to the conclusions that the PfCK2β 

subunits are likely to have different sets of interacting partners, as has been shown for the 

S. cerevisiae CK2 beta subunits (Gyenis and Litchfield, 2008). These different interacting 

partners could differentially localise the PfCK2β to different cellular compartments, 

allowing for subcellular regulation of CK2 activity. Immunofluorescence studies could be 

performed to support or refute this hypothesis, and would also be informative in assessing 

the possible functions of PfCK2: differential localisation of the alpha and beta subunits 

may point to CK2-independent subunit functions. There has been increasing interest in the 

CK2-independent functions of both CK2 subunits in recent years (see section 1.6.2.7). A 

very interesting hypothesis is that the PfCK2β subunits are each essential due to functions 

entirely independent of CK2, perhaps through their regulation of different protein kinases. 

Since we have a number of recombinant P. falciparum kinases available in the laboratory, 

an interesting experiment would be to determine whether the PfCK2β subunits are able to 
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modulate the in vitro activity or substrate selectivity of other P. falciparum kinases. 

Successful identification by mass spectrometry of binding partners for the PfCK2 subunits 

in parasite extracts (see section 5.7.1) would likewise be very informative in this respect. 

Many questions remain unanswered regarding the function and protein-protein interaction 

partners of PfCK2. It is difficult to study the function of essential genes in P. falciparum, 

because it is a haploid parasite, and lacks the machinery required for implementation of 

RNAi strategies (Ullu et al., 2004). An attempt to selectively knock out the function of 

PfCK2α using the analogue-sensitive kinase allele (ASKA) method was initiated. The 

ASKA technique, otherwise known as chemical genetics, involves producing a mutant 

version of the kinase of interest that has a smaller-than-usual residue at the entrance to the 

catalytic cleft, which is normally guarded by a bulky gatekeeper residue (Bishop et al., 

2001, Bishop et al., 2000). This modified kinase is introduced into the cell by gene 

replacement. The modified kinase alone amongst cellular kinases is sensitive to a bulky 

kinase inhibitor analogue, allowing selective inhibition. The mutated PfCK2α was 

produced as a recombinant protein, but was found to be lacking the desired biochemical 

properties in vitro (i.e. it lacked kinase activity, even when tested with high concentrations 

of ATP), and therefore the in vivo experiments were abandoned. A novel technique 

allowing the regulation of cellular levels of a particular protein by fusion to a 

destabilisation domain (Banaszynski et al., 2006) has been adapted for use in P. falciparum 

(Armstrong and Goldberg, 2007). The fusion of an engineered form of human FKBP12 to 

the N- or C-terminal end of a protein mediates its degradation. The protein is protected 

from degradation by an FKBP ligand, allowing fine control of protein levels. Armstrong 

and Goldberg have kindly made the plasmids developed for this technique available to our 

laboratory, so we now have more tools to aid the discovery of the cellular functions of 

PfCK2.  

The first requisite of a potential antimalarial drug target is that it is essential for parasite 

viability/survival, so that targeting the protein with an inhibitor will lead to the death of the 

parasite. The PfCK2 subunits have fulfilled this criterion (Chapter 3). A potential 

antimalarial drug target must also be distinguishable from the human orthologue by small 

molecule inhibitors. One example of a small molecule inhibitor with a much lower IC50 for 

recombinant PfCK2α than for recombinant HsCK2α (Rottlerin, see Fig. 4-14) has been 

discovered. As discussed in Chapter 4, Rottlerin is unlikely to represent a starting molecule 

for drug discovery, but it provides proof of principle that differential inhibition is possible. 

The attractions of kinases as drug targets have already been discussed (see section 1.5.1). 

The peculiarities of the binding site of CK2 that allow it to use GTP as well as ATP as co-
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substrate may reveal a promising way to develop inhibitors that do not interfere with ATP-

dependent protein kinases (Niefind et al., 1999).  

Hexadecyltrimethylammonium bromide (HDTAB) has recently been shown to be a potent 

inhibitor of P. falciparum choline kinase and of P. falciparum proliferation in vitro, while 

having no affect on the viability of red blood cells (Choubey et al., 2007, Leroy and 

Doerig, 2008). These results suggest that selectivity of small molecule inhibitors against P. 

falciparum kinases is achievable, although in this case the target is not a protein kinase. 

Compound 1 and Eimeria parasites provide an example of the ability to selectively inhibit 

a parasite protein kinase that has a host orthologue. Eimeria is an Apicomplexan parasite 

that infects chickens and is a major problem in the poultry industry. Compound 1 was 

identified as an in vitro and in vivo inhibitor of Eimeria, with cGMP-dependent protein 

kinase (PKG) being identified as the target (Gurnett et al., 2002, Donald et al., 2002). 

Chicken and bovine PKG are insensitive to Compound 1 (Wiersma et al., 2004). This 

differential effect was shown by mutagenesis to be due to T770 (Donald et al., 2002); 

chicken PKG has a methionine at this position, whose bulk interferes with the binding of 

Compound 1. A recent study of P. falciparum cAMP-dependent protein kinase (PfPKA) 

provides another example of the ability of small molecule inhibitors to distinguish between 

parasite and host kinase orthologues: the PfPKA catalytic subunit (PfPKA-C) was only 

weakly inhibited by the PKA-C inhibitor H89, compared with the inhibition of mammalian 

PKA-C (Sudo et al., 2008). Of course, anti-cancer drugs that target PKs face the issue of 

targeting of healthy cells, and this has been overcome: there are anti-cancer drugs in 

clinical use whose targets are PKs (see section 1.5.1). Treatment of severe malaria can only 

take a couple of days, therefore toxicity is not so much of a problem as for cancer 

chemotherapies, though of course, antimalarial prophylactics must have a very low toxicity 

(Doerig and Meijer, 2007).  

The rise of resistance in P. falciparum to many of the available antimalarials (see section 

1.4) means that consideration of the ease of developing resistance must be borne in mind 

when considering potential drug targets. Drug resistance due to single amino acid 

substitutions in the target protein can be a problem with drugs whose targets are protein 

kinases. In the Compound 1/Eimeria example above, mutational analysis of the parasite 

PKG revealed that a T770M mutation would allow the parasite to survive Compound 1 

treatment (Donald et al., 2002). The drug Gleevec® is used to treat chronic myelogenous 

leukaemia (CML), and its target is Abelson tyrosine kinase (Abl). Point mutations in Abl 

give rise to Gleevec®-resistance, and cause relapse in patients with advanced CML (Gorre 

et al., 2001, Shah et al., 2002). Any inhibitor compound which can be rendered ineffective 
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by one amino acid substitution in the target protein is unlikely to last long as an effective 

antimalarial drug. Targeting multiple pathways by combined therapy (as is already 

recommended for ACTs, see section 1.4.3) is expected to hamper the emergence of 

resistance phenotypes (Zimmermann et al., 2007). A possible approach to targeting PfCK2 

for antimalarial chemotherapy might be to target the interaction between the alpha and beta 

subunits, since we know that both beta subunits have essential functions in asexual blood 

stage parasites (Chapter 3). Targeting a region of the PfCK2β subunit that interacts with 

CK2α would circumvent the issue often raised with drugs based on kinase inhibition: off 

target effects due to the similarity of kinase active sites. Allosteric inhibition is becoming a 

matter of great interest, and inhibitors based on allosteric inhibition have been successfully 

developed (Leroy and Doerig, 2008, Pargellis et al., 2002). Small peptide inhibitors of 

CK2 alpha/beta subunit interaction have already been developed, which are able to disrupt 

the assembly of the tetrameric CK2 holoenzyme, and affect its substrate preference 

(Laudet et al., 2007). CK2 beta subunits interact with cellular proteins other than CK2 

alpha (see section 1.6.2.7), and if PfCK2β subunits behave in an analogous fashion, 

targeting the beta subunits would interrupt many protein-protein interactions, and it would 

be far more difficult for the parasite to develop resistance. However, our data showing that 

the PfCK2β subunits are able to interact with the HsCK2α subunit, and that the HsCK2β 

subunit is able to interact with the PfCK2α subunit (section 5.7), imply that the interaction 

regions are conserved between humans and P. falciparum, which would make selectively 

targeting the alpha/beta interaction of P. falciparum more problematic.  

Given that CK2 is a promising anti-cancer target, it is hoped that compounds that may be 

developed in the future as putative anti-cancer drugs based on CK2-inhibition, with good 

pharmacokinetic and safety profiles, could be used as the starting point for anti-malarial 

drugs, thereby hugely reducing the overall costs of the initial phases of drug discovery.  

In summary, recombinant PfCK2α possesses protein kinase activity, exhibits similar 

substrate and co-substrate preferences to those of CK2α subunits from other organisms, 

and interacts with both of the PfCK2β subunits in vitro. Gene disruption experiments show 

that the presence of each of the PfCK2 subunits is crucial to asexual blood stage parasites, 

and thereby validate the enzyme as a possible drug target. PfCK2α is amenable to inhibitor 

screening, and we report differential susceptibility between the human and P. falciparum 

CK2α enzymes to a small molecule inhibitor. Taken together, my data indicate that PfCK2 

is an attractive, validated target for antimalarial chemotherapeutic intervention. 
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Appendix 

Appendix 1: Plasmid maps for reverse genetics studies 

 
Figure A-1 Map of the pCAM-BSD-HA-PfCK2b1 plasmid.  
The plasmid differs from pCAM-BSD-HA-PfCK2a (Fig 3-1) only in the inserted sequence, 
which is the 3’ end of the PfCK2β1 gene instead of the 3’ end of the PfCK2α gene. 
Restriction enzyme sites in black are for the enzymes that have multiple sites in the 
plasmid, and those shown in red are for the enzymes that will only cut the plasmid in one 
location. Figure produced using Vector NTI software (Invitrogen). 

 
Figure A-2 Map of the pCAM-BSD-HA-PfCK2b2 plasmid. 
The plasmid differs from pCAM-BSD-HA-PfCK2a (Fig 3-1) only in the inserted sequence, 
which is the 3’ end of the PfCK2β2 gene instead of the 3’ end of the PfCK2α gene. 
Restriction sites in black are for the enzymes that have multiple sites in the plasmid, and 
those shown in red are for the enzymes that will only cut the plasmid in one location. Figure 
produced using Vector NTI software (Invitrogen). 
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Figure A-3 Map of the pCAM-BSD-KOPfCK2b1 plasmid.  
This figure shows the important features of the pCAM-BSD-KOPfCK2b1 plasmid. The 
KOPfCK2β1 fragment was inserted between the BamHI and NotI sites, and the plasmid lost 
the BamHI site in the cloning process (the fragment had a BglII-cut 5’ end, which was ligated 
to the BamHI-cut end of the plasmid, resulting in an asymmetrical site recognised by neither 
BamHI or BglII). Several of the restriction enzyme sites are shown. Those in black are for the 
enzymes that have multiple sites in the plasmid, and those shown in red are for the 
enzymes that will only cut the plasmid in one location. Figure produced using Vector NTI 
software (Invitrogen). 

 

 
Figure A-4 Map of the pCAM-BSD-KOPfCK2b2 plasmid.  
This figure shows the important features of the plasmid pCAM-BSD-KOPfCK2b2. The 
KOPfCK2β2 fragment was inserted between the BamHI and NotI sites. Several of the 
restriction enzyme sites are shown. Those in black are for the enzymes that have multiple 
sites in the plasmid, and those shown in red are for the enzymes that will only cut the 
plasmid in one location. Figure produced using Vector NTI software (Invitrogen). 
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Figure A-5 Map of the pCHD-PfCK2b1 plasmid.  
This figure shows the important features of the plasmid pCHD-PfCK2b1. The BamHI site of 
the expression cassette was lost when the NotI/BglII-cut PfCK2β1 was cloned into the 
NotI/BamHI sites. Other features are as Fig 3-3. Figure produced using Vector NTI software 
(Invitrogen). 

 

 
Figure A-6 Map of the pCHD-PfCK2b2 plasmid.  
This figure shows the important features of the plasmid pCHD-PfCK2b2. The plasmid 
contains an ampicillin resistance cassette for selection in E. coli, and a human dihydrofolate 
reductase cassette for selection in P. falciparum. Other features as Fig 3-3. Figure produced 
using Vector NTI software (Invitrogen). 
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Figure A-7 Map of the pET-29 plasmid.  
The plasmid contains a kanamycin resistance cassette for selection in E. coli. Figure from 
the Novagen website (www.merckbiosciences.co.uk). 
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Appendix 2: Compounds from BioMol library 

Table A-1 Identities of compounds from Figure 4-13 
The identifiers given to the compounds in Fig. 4-13 are listed in column 1, and their names 
or BioMol identifiers are listed in column 2. The presumptive targets of the compounds are 
listed in column 3.  

 Compound name or ID Target(s) 
1 SB-203580 p38 MAPK  
2 H-7 PKA, PKG, MLCK, and PKC 
3 H-9 PKA, PKG, MLCK, and PKC 
4 Staurosporine Pan-specific 
5 AG-494 EGFRK, PDGFRK 
6 Lavendustin A EGFRK 
7 Tyrphostin 51 EGFRK 
8 Tyrphostin 1 Negative control for tyrosine 

kinase inhibitors. 
9 Tyrphostin AG 1288 Tyrosine kinases 
10 Tyrphostin AG 1478 EGFRK 
11 Tyrphostin AG 1295 Tyrosine kinases 
12 Tyrphostin 9 PDGFRK 
13 AG-370 PDGFRK 
14 AG-879 NGFRK 
15 LY 294002 PI 3-K 
16 Wortmannin PI 3-K 
17 GF 109203X PKC 
18 HA-1077 PKA, PKG 
19 HDBA (2-Hydroxy-5-(2,5-

dihydroxybenzylamino)benzoic acid) 
EGFRK,  CaMK II 

20 KN-62 CaMK II 
21 KN-93 CaMK II 
22 ML-7 MLCK 
23 ML-9 MLCK 
24 SB-202190 p38 MAPK  
25 PP2 Src family 
26 ZM 336372 cRAF 
27 SU 4312 Flk1 
28 AG-1296 PDGFRK 
29 GW 5074 cRAF 
30 Palmitoyl-DL-carnitine Cl PKC 
31 Rottlerin PKC delta 
32 Quercetin dihydrate PI 3-K 
33 SU1498 Flk1 
34 ZM 449829 JAK-3 
35 BAY 11-7082 IKK pathway 
36 DRB (5,6-Dichloro-1-b-D- 

ribofuranosylbenzimidazole) 
CK II 

37 HBDDE (2,2',3,3',4,4'-Hexahydroxy-1,1'-
biphenyl-6,6'-dimethanol dimethyl ether) 

PKC alpha, PKC gamma 

38 SP 600125 JNK 
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Appendix 3: Accepted manuscript 


