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Abstract 

Biosensors are often used to detect biochemical species either in the body or from 

collected samples with high sensitivity and specificity. Those based on piezoelectric 

sensing methods employ mechanically induced changes to generate an electrical response. 

Reliable collection and processing of these signals is an important aspect in the design of 

these systems. To generate the electrical response, specific recognition layers are arranged 

on piezoelectric substrates in such a way that they interact with target species and so 

change the properties of the device surface (e.g. the mass or mechanical strain). These 

changes generate a change in the electrical signal output allowing the device to be used as 

a biosensor. The characteristics of piezoelectric biosensors are that they are competitively 

priced, inherently rugged, very sensitive, and intrinsically reliable. In this study, a 

compound label-free biosensor was developed. This sensor consists of two elements: a 

Love wave sensor and an electrochemical impedance sensor. The novelty of this device is 

that it can work in both dry and wet measurement conditions. Whilst the Love wave sensor 

aspect of the device is sensitive to the mass of adsorbed analytes under both dry and wet 

conditions with high sensitivity, the sensitivity coefficients in these two conditions may be 

different due to the different (mechanical) strengths of interaction between the adsorbed 

analyte and the substrate. The impedance sensor element of the device however is less 

sensitive to the mechanical strength of the bond between the analyte and the sensing 

surface and so can be used for in-situ calibration of the number of molecules bound to the 

sensing surface (with either a strong or weak link): conventional Love wave sensors are not 

sensitive to material loosely bound to the surface. Thus, a combination of results from 

these two sensors can provide more information about the analyte and the accuracy of the 

Love wave sensor measurements in a liquid environment. The device functions with 

label-free molecules and so special reagents are not needed when carrying out 

measurements. In addition, the fabrication of the device is not too complicated and it is 
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easy to miniaturise. This may make the system suitable for point-of-care diagnostics and 

bio-material detection. 

The substrate used in these sensors is 64°Y–X lithium niobate (LiNbO3) which is a 

kind of piezoelectric material. On the substrate, there is a pair of interdigital transducers 

(IDTs) which are composed of 100 Ti/Au split-finger pairs with a periodicity (λ) of 40μm. 

The acoustic path length, between both IDTs, is 200λ and the aperture between the IDTs is 

100λ. On top of the substrate and IDTs, there is a PMMA guiding layer with an optimised 

thickness ranging from 1000 nm to 1300 nm. In addition, a gold layer with thickness 100 

nm is deposited on the guiding layer to act as the electrodes for the electrochemical 

impedance sensor. 

The biosensor in this study has been used to measure Protein A, IgG, and GABA 

molecules. 

Protein A is often coupled to other molecules such as a fluorescent dye, enzymes, 

biotin, and colloidal gold or radioactive iodine without affecting the antibody binding site. 

In addition, the capacity of Protein A to bind antibodies with such high affinity is the 

driving motivation for its industrial scale use in biologic pharmaceuticals. Therefore, 

measuring Protein A binding is a useful method with which to verify the function of the 

biosensor. 

IgG is the most abundant antibody isotype found in the circulation. By binding many 

kinds of pathogens including viruses, bacteria, and fungi, IgG protects the body from 

infection. Also, IgG can bind with Protein A well so the biosensor here could also measure 

IgG after a Protein A layer is immobilised on the sensing area.  

GABA is the main inhibitory neurotransmitter in the mammalian central nervous 

system. It plays an important role in regulating neuronal excitability throughout the 
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nervous system. The conventional method to measure concentrations of GABA under the 

extracellular conditions is by using liquid chromatography. However, the disadvantages of 

chromatographic methods are baseline drift and additions of solvent and internal standards. 

Therefore, it is necessary to develop a simple, rapid and reliable method for direct 

measurement of GABA, and the sensor here is an attractive choice. 

    When the Love wave sensor works in the liquid media, it can only be used to measure 

the mass of analytes but does not provide information about the conditions of molecules 

bound with the sensing surface. In contrast, electrochemical impedance sensing based on 

the diffusion of redox species to the underlying metal electrode can provide real-time 

monitoring of the surface coverage of bound macromolecular analytes regardless of the 

mechanical strength of the analyte-substrate bond: the electrochemical impedance 

measurement is sensitive to the size and extent of the diffusion pathways around the 

adsorbed macromolecules used by the redox species probe i.e. it is sensitive to the physical 

area of the surface covered by the macromolecular analyte and not to the mass of material 

that is sensed through a mechanical coupling effect (as in a Love wave device). Although 

electrochemical impedance measurements under the dry state are quite common when 

studying batteries and their redox/discharge properties, these are quite different sorts of 

systems to the device in this study. Therefore, integrating these two sensors (Love wave 

sensor and electrochemical impedance sensor) in a single device is a novel concept and 

should lead to better analytical performance than when each is used on their own. The new 

type of biosensor developed here therefore has the potential to measure analytes with 

greater accuracy, higher sensitivity and a lower limit of detection than found when using 

either a single Love wave sensor or electrochemical impedance sensor alone. 

Key words: biosensor, Love wave sensor, impedance sensor, piezoelectric sensing, 

label-free, IDTs, Protein A, IgG, Anti-GABA, GABA. 
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Chapter 1 Introduction 

1.1 The classification of biosensors 

Biosensors can be used to detect biochemical signals in the body with high sensitivity 

and specificity. In 2013, Ngoepe et al. illustrated the functions of biosensors in detail [1] 

and their report is cited in this thesis. Biosensors can provide a powerful opportunity in 

early diagnosis and treatment of illness. Early detection and diagnosis can greatly reduce 

the cost of patient’s medical care, associated with advanced stages of many diseases and 

far better can prevent a disease before it becomes a serious problem. From a diagnostics 

view point, accuracy of the diagnosis is vital in terms of the kind of therapy to be used. The 

major concern in diagnosis is patient compliance where invasive samples (blood and tissue) 

are routinely taken to analyse the severity of the disease. Prognosis only can estimate the 

probable result of a single patience’s disease, so there are limitations in general treatments. 

Both these affect disease management since dosage and period of treatment influence the 

level of disease, patient compliance and medical costs. Therefore, for chronic disease, 

continuous medical intervention is required to allow changing of the dosage and treatment 

period. This may evidently be observed in diabetes management where treating 

hyperglycemia can lead to hypoglycemia. Imbalances of glucose and cholesterol are a 

major concern because these two elements are the major reasons of fatal diseases. Glucose 

imbalance causes diabetes, which increases the risk of heart diseases, kidney failure, and/or 

blindness [2]. Both, high and low levels of glucose can result in disability or death. From 

the diagnosis and management point of view, diabetes mellitus requires a continuous 

monitoring of blood glucose levels. In 2012 glucose biosensors accounted for 

approximately 85% of the world market for biosensors [3]. Millions of people who suffer 

from diabetics test their blood glucose levels daily, thus making glucose the most 

commonly tested analyte. In 1962, the research group of Clark and Lyons [4] invented the 

first biosensor which successfully detected the glucose levels of the blood. This journal 
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paper indicated that glucose oxidase enzyme was entrapped on an oxygen electrode over a 

semi-permeable dialysis membrane. Glucose levels were indirectly measured by 

monitoring the amount of oxygen consumed by the enzyme. In 1973, Guilbault and 

Lubrano designed an amperometric (anodic) sensor to monitor the hydrogen peroxide, a 

glucose degradation byproduct [5]. 

    Prior to any major impacts, an illness can lead to serious problems to the patient such 

as neuropathy or retinopathy in terms of diabetes because there are a number of 

physiochemical changes which occur. Diabetic retinopathy which occurs due to low sugar 

levels in the eyes can cause blindness as the new capillaries that deliver blood to the eye 

are frail [6]. For cholesterol, there are a variety of physiochemical changes that take place 

before signifying future damage. The occurrence of stroke is usually due to blood clogging 

that causes the interference of blood flow near the nervous system. Prognosis of any illness 

plays a main role in illness management. However, through the process of diagnosis, 

chronic illnesses will require continuous monitoring for efficient management. The costs 

and patients compliance are highly affected by these processes. It is observed that 

self-monitoring of sugar levels has benefited patients in terms of costs and disease 

management. Design of self-monitoring devices for glucose levels such as SensoCard Plus 

(BBI Healthcare) and AccuCheck Compact (Roche) has assisted patients to monitor their 

glucose concentrations in order to delay or even prevent the progression of microvascular 

and macrovascular complications [7]. If patients feel comfortable to monitor analyte 

concentration daily and the processes of monitor are convenient, the patients’ willingness 

to conduct self-monitoring will increase substantially. For a better illness management, 

non-invasive/continuous sampling is required for optimum medical intervention. There are 

different kinds of glucose sensors which can be divided into two groups; enzymatic 

(finger-prick glucometer and urine dipstick), and continuous (non-invasive, minimally 

invasive and invasive). For continuous invasive sensors, these can be intravenous, 
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implantable, microdialysis (glucose oxidase electrochemical sensor) and subcutaneous 

sensors (enzyme electrodes-redox reaction analysis), while for minimally invasive ones, 

micropore or microneedle (collection of interstitial fluid for enzyme based electrode sensor) 

can be used [8]. 

For cholesterol monitoring, it has been shown that accumulative treatment 

discontinuations among long-term regimens of all types of drugs is about 50% of patients 

during first year and 85% of patients in the second year of treatment [9]. Similar to 

diabetes, cholesterol is detected by means of using immobilized enzymes (CholesTrak® , 

AccuTech, LLC). The enzyme cholesterol oxidase breaks down cholesterol into hydrogen 

peroxide and cholest-4-en-3-one in the presence of oxygen [10]. The level of cholesterol is 

then measured by an amperometric sensor that can detect hydrogen peroxide through redox 

mediator [11]. The methods that utilise enzymes for detection of any analyte have 

disadvantages such as short lifetime and lower sensitivity. This can be avoided by using 

two or more enzymes. In the case of cholesterol, cholesterol oxidase and cholesterol 

esterase can be used in combination [12]. Future cholesterol monitoring devices may 

include non-invasive mode of cholesterol level detection as in quantifying the levels of 

isoprene in human breath [13].  

For non-invasive sensors the mode of detection can be either optical or via 

transdermal analysis. For transdermal analysis, impedance spectroscopy (dielectric 

properties of a tissue), skin suction blister technique (vacuum application on the skin to 

obtain fluid for analysis), reverse iontophoresis (low electric current application) and 

sonophoresis (use ultrasound on the skin) may be used [14, 15]. For optical analysis the 

following methods may be employed; kromoscopy (electromagnetic radiation), 

photoacoustic spectroscopy (increased ultrasound pulse generated during absorption of 

light when there is high glucose levels), optical coherence tomography (tomographic 

imaging), scattering (relative refractive indices of a particle), occlusion spectroscopy 
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(produce high systolic pressure to occlusion of arterial flow), polarimetry (substances 

which can rotate the plane of polarized light), thermal infrared (glucose concentration 

correlates to temperature variation and mid-infrared, MIR, light scattering on the skin), 

fluorescence (light emission from molecules in different states), MIR spectroscopy 

(wavelength variations due to stretching and bending of molecules), near-infrared (NIR) 

spectroscopy (absorption based on molecular structure) and Raman spectroscopy 

(rotational or vibrational energy states within a molecule) [16]. 

Biosensors are of interest within the field of modern analytical chemistry and 

pharmaceutics. There are many published journal papers which displayed the diversity of 

approaches and techniques applied. This is due to new demands and opportunities that are 

appearing particularly in clinical diagnostics, environmental analysis, food analysis and 

production monitoring [17-19]. A biosensor can be defined as a device which can generate 

a signal that is proportional to the concentration of a particular biomaterial or chemicals in 

the presence of a number of interfering species [20]. This is accomplished by means of 

utilising biological recognition elements such as enzymes, antibodies, receptors, tissues 

and microorganisms as sensitive materials because of their selective functionality for target 

analytes. To develop a universal biosensor is very difficult, because it is impossible to 

discover an all-inclusive parameter estimation algorithm that would provide as much as 

information about material properties in all applications. Each application requires a 

unique choice of sensor design and associated parameter estimation algorithms. As a 

sensor system develops, the requirements for each element become clearer and affect the 

requirements for each element of the trinity displayed in figure 1.1. Sensors can be divided 

into various groups based on the mode of function in terms of sensing region and 

transduction. 

There are many classifications for biosensors. In the following sections, different 

types of biosensors are described in turn, according to the type of physical transduction 
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given in table 1.1. There are six main kinds of physical transductions: optical, thermal, 

mass, surface acoustic wave, conductance, and impedance. 

Table 1.1 Groups of biosensors based on transduction signal, their mode of detection and 

applications. 

Transduction Mode of Detection Application 

Optical Surface Plasmon Resonance: 

immobilizes antibodies/ ligands/ 

receptors. The analyte concentration is 

measured upon adsorption 

Hand held refract meter (Rhino 

Series, Reichert, Inc., USA). Detect 

analytes in urine 

Image-based method:  

fluorescence is generated with chemical, 

enzymatic and cellular changes by means 

of probing 

Fluorescence Resonance Energy 

Transfer-Protein and nucleic acid 

analysis (Invitrogen, USA) 

Thermal Calorimetric: measures a change in 

temperature in the solution containing 

specific analyte and converts it into 

concentration 

Auto-iTC200 system (GE Healthcare, 

USA) and DSC used for 

characterizing molecular 

interactions/ enzyme kinetics 

Mass sensitive Quartz crystal microbalance: consists of a 

thin quartz disk with electrodes plated on 

it. Measures a mass per unit area by 

measuring the change in frequency of a 

quartz crystal resonator 

QCM200, Stanford Research 

Systems, Inc., USA; Attana Cell 

200. Measure specific analyte 

concentration 

Surface 

acoustic wave 

Surface acoustic wave: generate and 

detect acoustic waves using inter-digital 

transducers. This will detect changes on 

the surface, such as mass loading, 

viscosity and conductivity changes 

VaporLab, Microsensor Systems, 

USA. Gas analysis on film swelling 

results in electrical signal. Breath 

analysis of volatiles 

Conductance Conductive properties of medium 

between two electrodes (ionic strength 

changes) 

Enzymatic reactions yielding 

charged substances. Enzyme 

field-effect transistor (EnFET); 

Nanowires 

Impedance Measure both resistance and reactance 

(change from weak or non-charge 

substances to highly charged) 

IQ Scientific Instruments, Inc. 

Field-effect Transistor (FET). Drug 

effects on cell based ionic 

signatures. 
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Figure 1.1 Every sensing application requires an optimum combination of inherently 

dependent elements of the measurement system comprising sensor design and parameter 

estimation algorithms. 

1.1.1 Optical Biosensors 

Two major kinds of biosensors using optical transduction method to detect analytes 

are surface-plasmon resonance (SPR) technology and imaging-based methods.  

SPR is a phenomenon which uses visible or near-infrared radiation from a 

monochromatic light source via a hemispherical prism to irradiate a metallic surface to 

generate an electromagnetic (optical) evanescent wave. A detector is setup at an angle 

related to the refractive index (RI). In the evanescent wave, the oscillation of free electrons 

generates a surface plasmon which can resonate and absorb light. The specific 

wavelength/angle at which this occurs is a function of the RI in the proximity of the 

metallic surface and relates to the type and amount of material on the chip surface. A 

change in this material (e.g. the amount adsorbed, or a mass change) will lead to a 

refractive index change and a shift in the resonance to a longer wavelength (if the 

refractive index increases). Such a change in mass can result from the immobilisation of a 

ligand and, subsequently, further interactions which take place when analytes are passed 

over the modified sensor surface [21]. 

A large selection of commercially available SPR optical biosensors can be used for 

pathogen detection. Wei et al. applied the SPREETA™ SPR system (Texas Instruments) to 

measure Campylobacter jejuni [22]. Here, biotinylated leporine polyclonal antibodies were 

immobilised directly on the sensor surface and the assay had a sensitivity of 1 × 10
3
 

Sensor design Parameter estimation 

algorithms 

Application 
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CFU/ml. Barlen et al. chose the Plasmonic SPR device (Plasmonic Biosensoren) for the 

detection of Salmonella typhimurium and S. enteritidis [23]. Salmonella typhimurium in 

milk was also successfully measured by the team of Mazumdar with the same SPR optical 

biosensor [24]. A range of other optical sensor platforms, including the ProteOn XPR36 

(Bio-Rad) and SensíQ (Nomadics) and Biacore™ also have the potential to be applied for 

pathogen monitoring. Oh et al. utilised a SPR-based protein chip assay format with 

immobilised monoclonal antibodies against S. typhimurium, E. coli O157:H7, Yersinia 

enterocolitica and Legionella pneumophila. 1 × 10
5
 CFU/ml of each pathogen could be 

specifically measured with their respective antibody [25]. 

Imaged-based optical biosensors are based on image recognition and technology has 

been developed which is particularly useful for cancer diagnosis and treatment. There are 

many problems in traditional methods to diagnose or cure cancer such as surgery, 

chemotherapy and radiation therapy. There are limitations and disadvantages to these 

modes of treatments due to the difficulty of getting early diagnoses, nonspecific drug 

distribution, systemic toxicity and unpredictable pharmacodynamics and pharmacokinetics 

[47]. When performing an operation, imaging would allow tracing cancer cells that are still 

localised in the body, and this can even be useful during biopsy investigations. For 

chemotherapy, carrier functionality would be beneficial as it offers target specificity and 

controlled drug release. Before the radiation therapies, imaged-based sensor can aid to 

identify the target region. Nanoparticle imaging would prevent radiation damage from 

harming other tissues around the target area, thus providing better therapeutic targeting. 

Targeting and controlled drug release will improve disease management by interfering with 

disease progression, while the use of biosensors will affect disease diagnosis and prognosis 

[48]. A fundamental method in some imaged-based sensors is using specific fluorescence 

molecules to conjugate with target cells or proteins. Then image recognition technology 

can be used to detect the bright parts in the image. 

Aside from the use of conventional fluorescence microscopy, optical imaging based 
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on bioluminescent bio-reporters carrying the bacterial lux gene cassette has been well 

established for the sensing and monitoring of select chemical agents. Their ability to 

generate target specific visible light signals with no requirement for extraneous additions 

of substrate or other hands-on manipulations affords a real-time, repetitive assaying 

technique that is remarkable in its simplicity and accuracy. The team of Steven Ripp et al. 

exploited bioluminescent assays for detecting Escherichia coli O157:H7 [40]. Organic dye 

doped nanoparticles made of silica, poly or PLGA and doped with dyes such as IRG-023 

Cy5, fluorescein isothiocyanate (FITC) and rhodamine B isothiocyanate (RITC) can also 

be used in image-based biosensors. Quantum dots are semiconductor crystals composed of 

elements from groups II to VI, III to IV or IV to VI from the periodic table while 

up-conversion nanoparticles are synthesized from LaF3, YF3, Y2O3, LaPO4, NaYF4 

co-doped with trivalent rare earth ions such as Yb3+, Er3+ and Tm3+ [47]. Other groups of 

imaging biosensors involve multifunctional nanoparticles which can be divided into 

metallic nanoparticles such as paramagnetic nanoparticles used in cancer therapy, liposome 

and dendrimers used in cancer and HIV therapy [49]. 

1.1.2 Thermal biosensors 

The working theory of thermal biosensors is to detect the heat from biological 

reactions. These reactions (which adsorb or evolve heat) cause changes in the temperature 

within the reaction medium. In earlier studies on calorimetry the change in heat was 

directly monitored to calculate the extent of reaction or structural dynamics of 

biomolecules in the dissolved state [21]. With the development of thermometric devices, 

researchers began to use these devices in the field of biosensors. These predominantly 

measure the changes in temperature of the circulating fluid following the reaction of a 

suitable substrate with the immobilized enzyme molecules. 

Thermometry basically means measurement of temperature. The essential version of 

such a device is a thermometer, which is routinely used for measurement of body or 
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ambient temperature. Based on similar principles, in thermometric devices the heat is 

measured using sensitive thermistors. Such devices are popularly referred to as an enzyme 

thermistor. Calorimetric devices for routine use were limited by cost of operation and 

relatively long experimental procedures. However, the invention of the enzyme thermistor 

based on flow injection analysis in combination with an immobilized biocatalyst and 

heat-sensing element, circumvented several of these shortcomings [26]. 

The thermometric technique has been used to select Trigonopsis variabilis strains for 

high cephalosporin-transforming activity by the team of Gemeiner [27]. Similarly, the 

cephalosporin-transforming activity of d-amino acid oxidase isolated from yeast was also 

identified. The adaptation of the thermal biosensor to enzyme linked immunosorbent assay 

has also been reported by Birnbaum et al., for the determination of hormones, antibodies 

and other biomolecules generated during the fermentation process [28]. In addition, 

genetically engineered enzyme conjugates were used for the measurement of insulin or 

proinsulin with thermal biosensor (Mecklenburg et al., 1993) [30]. Alkaline phosphatase 

was used as the enzyme label for such studies and the team of Danielsson detected insulin 

separation with a thermal biosensor [31]. 

1.1.3 Mass sensitive biosensors 

Mass sensitive biosensors operate on the principle that a change in mass, resulting 

from the bio-molecular interaction (combination between an antibody and its relative 

antigen) can be determined [21]. A well-known example of mass sensitive biosensor is the 

micro-cantilever system. By coating a recognition receptor layer over the upper side of a 

micro-cantilever beam can form a biosensor. Due to its label free detection principle and 

small size, this type of biosensor has applicable advantages in diagnostic applications, 

disease monitoring and research in genomics and proteomics [34]. A micro-cantilever 

biosensor functions by means of transduction of the molecular interaction between analyte 

and capturing molecule, immobilized as a layer on one surface of a cantilever. 
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Biomolecular interactions taking place on a solid-state interface leads to a mass increase 

[35]. This process results in bending of the cantilever. The capturing molecules are 

immobilized onto the cantilever by means of direct absorption or by means of covalent 

attachment to the surface modified with functional groups [36]. In the static mode of 

operation, the sensor response is represented by the beam bending with respect to a 

reference micro-cantilever. Alternatively, micro-cantilever biosensors can be operated in 

the dynamic mode. In this case, the beam vibrates at its resonance frequency and a 

variation in this parameter indicates the concentration of the analyte. Another example to 

use a micro-cantilever system as biosensor is setting a mesoporous polymer on the device 

surface. When an analyte of interest enters into the polymer nanopore, analyte particles 

will block the ion current, resulting in a downward current-pulse. Through this mechanism, 

analytes detection can be achieved by monitoring the blockage of nanopores before and 

after an immunological reaction as the current-pulse frequency is proportional to the 

concentration of the analyte [38]. 

Another kind of mass sensitive biosensors is quartz crystal microbalance (QCM) 

system, which mass changes result in alterations in resonance frequency [21]. Quartz is 

one kind of piezoelectric crystal. The QCM consists of a thin piezoelectric plate with 

electrodes evaporated onto both sides. Due to the piezoelectric effect, an AC voltage across 

the electrodes induces a shear deformation and vice versa. The electromechanical coupling 

provides a simple way to detect an acoustic resonance by electrical means. The electrodes 

at the front and the back of the crystal usually are key-hole shaped; thereby making the 

resonator thicker in the centre than at the border, and the overlapping perimeters of the 

metallic electrodes confines the displacement field to the centre of the crystal by a 

mechanism called energy trapping. The quartz crystal turns into an acoustic lens and the 

wave is focused to the centre of the crystal. Altering the thickness of the crystal can change 

oscillation frequency of QCM. During normal operation, all the other influencing variables 

remain constant. When mass is deposited on the surface of the crystal, the increased 
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loading leads to the frequency of oscillation decreasing from the initial value. Therefore, 

the QCM can be used to investigate interactions between biomolecules by arranging a 

recognition receptor layer on the surface. 

1.1.4 Surface acoustic wave biosensors 

Surface acoustic wave (SAW) devices were firstly used as filters and resonators in 

electronics and communications. Because the acoustic energy of these devices is confined 

at their surface, SAW devices are sensitive to any changes occurring on the substrate 

surface, such as mass loading, conductivity, and variations of viscosity [43]. This 

characteristic has attracted researchers to investigate and develop sensing applications. In 

the 1980’s, researchers tried to use a Rayleigh wave, which is one kind of SAW, to develop 

biosensors. They could successfully apply it to gas sensing but faced a serious problem 

when operating these devices in a liquid environment. This is because particle 

displacements in Rayleigh waves are normal to the surface of the device, which radiates 

compressional waves into the liquid and causes severe attenuation and high insertion losses. 

In order to avoid the high damping caused by the aqueous environment, the acoustic waves 

must be shear horizontally polarized in the liquid. The first successful approaches to use 

SAW devices sensing in liquid environment were Flory’s group and Moriizumi’s group, 

respectively, in 1987 [44]. Their SAW biosensors operated with shear horizontal polarized 

waves. Nowadays, SAW biosensors can be used to detect proteins, DNA, viruses, bacteria 

and cells [45]. 

There are some kinds of SAW suitable to use in biosensing applications which require 

fluid immersion. One of these types is based on leaky-SAW waves, where the wave is only 

partially confined to the surface. The leaky-SAW mode is mainly shear horizontal but not 

purely shear horizontal and consequently suffers extra attenuation under fluid immersion. 

Another type uses surface transverse waves (STW) which originate from a surface 

skimming bulk wave (SSBW) that travels very close to the surface but not exactly along it. 
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A metal strip grating located in the surface of the devices between the input and output 

IDTs produces a slowing effect on the wave propagation velocity and traps the energy of 

the wave in the surface of the device enhancing its surface mass sensitivity [44]. Love 

waves are another kind of shear-horizontal SAW that can be used for biosensing. Love 

wave devices are comprised of a substrate that primarily excites a SSBW, which is 

subsequently confined by a thin guiding layer located on the top of the substrate and IDTs. 

The condition for the existence of Love wave modes is that the shear velocity of the 

overlay material is less than that of the substrate [46]. The waveguide layer confines the 

wave energy keeping it near the surface and slowing down the wave propagation velocity. 

The sensitivity of a sensor is determined by the degree of wave confinement. If the wave is 

trapped tightly, it will be strongly perturbed by surface changes, yielding high sensitivity. 

Love wave biosensors can operate efficiently in both gas and liquid media. The parameters 

that determine the resonance frequency are the spacing of IDTs and the thickness of the 

wave guiding layer [44]. 

1.1.5 Conductance biosensors 

The concept of designing a conductance biosensor comes from monitoring electrical 

conductivity changes during biological reactions [21]. There are two major methods to 

realise conductance measurement. One method is to convert biological signals to electrical 

signals via a conductive polymer. The team of Hoa applied the method of conductance 

detection to measure E. coli and Salmonella spp [32]. A biological signal is successfully 

converted to an electrical signal via a conductive polymer. The materials of conductive 

polymer were polyacetylene, polypyrrole, and polyaniline, respectively. Muhammad-Tahir 

and Alocilja designed a conductance biosensor incorporating a polyclonal antibody-based 

sandwich assay format in which the detection antibody was labelled with polyaniline. The 

sensitivity of the sensor could reach to 79 CFU/ml and 83 CFU/ml of E. coli O157:H7 and 

Salmonella spp., respectively. 
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Another way is to use specific nanoparticles to capture analytes. These were 

subsequently bound on an electrode. Conductance measurements were facilitated through 

the application of an alternating-current voltage. Hnaiein et al. applied this method to 

design a conductance immunosensor for E. coli [37]. A biotinylated polyclonal antibody 

was captured on streptavidin-coated magnetite nanoparticles. These were subsequently 

bound on an electrode through the use of glutaraldehyde coupling. Conductance 

measurements were facilitated through the application of an alternating-current signal. The 

incorporation of nanoparticles facilitated an increase in conductivity, enabling 0.5 CFU/ml 

to be detected. 

1.1.6 Electrochemical impedance biosensors 

Electrochemical impedance biosensors can be based on the fact that the metabolic 

redox reactions of microorganisms are detectable and quantifiable when performed in the 

presence of a suitable mediator [39]. Radke et al. used a high-density microelectrode array 

to develop an impedance biosensor for measurement of E. coli O157:H7. The sensitivity of 

the sensor could reach to 10
7
 CFU/ml with coating a goat anti-IgG polyclonal antibody 

layer to capture targets [41]. An impedance sensor to measure internalin B was developed 

by the team of Tully in 2008 [42]. A biotinylated leporine polyclonal antibody and a L. 

monocytogenes cell-surface protein were applied in this platform. When captured on 

avidin-coated planar carbon electrodes modified with a conductive polymer (polyaniline), 

the limit of detection for internalin B was found to be 4.1 pg/ml 

1.2 The motivation of this research 

Piezoelectric biosensing methods are usually used on the applications of acoustic 

wave sensor and have a number of advantages. For example, compare with the optical 

biosensing methods, piezoelectric biosensing methods can be operated with simple and 

cheap electronic components. The cost per additional sample channel is low on acoustic 
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wave sensors. This allows the creation of cost-effective sensor arrays of a single device. 

Acoustic wave sensors are extremely versatile sensors that are just beginning to realize 

their commercial potential [50]. They are competitively priced, inherently rugged, very 

sensitive, intrinsically reliable, and offer the additional benefit of being passively 

wirelessly interrogated. Wireless sensors are beneficial when monitoring parameters on 

moving objects, such as tire pressure on cars or torque on shafts. Sensors that require no 

operating power are highly desirable in remote locations, making these sensors ideal for 

remote chemical vapour, moisture, and temperature sensors. As a result of their mass 

sensitivity, they can be used in numerous physical, chemical, and biological applications 

[50-52]. Other applications include measuring force and acceleration, shock, angular rate, 

viscosity, displacement, flow, and film characterization. The sensors also have an 

acoustoelectric sensitivity, allowing the detection of pH levels, ionic contaminants, and 

electric fields. SAW sensors have proven to be the most sensitive sensors in general, as a 

result of their larger energy density on the surface.  

For liquid sensing, a special class of SH-SAW sensors, called Love wave sensors, 

have been proven to be the most sensitive [50]. Furthermore, Love wave devices are 

attractive for biosensor application owing to providing a simplicity, small size, and 

real-time solution. However, there are some problems with the conventional measurement 

of Love wave biosensors. In the past, researchers usually used micro-channels or 

micro-chambers system to input and output the test specimens [58-62]. These methods 

were suitable for liquid sensing because it was easy to control the flow. But after the test 

specimens were loaded onto the platform, the residues of the test specimens can be found 

to be difficult to remove. Previous studies did not verify that the residues could be totally 

removed in the platforms with micro-channels or micro-chambers. Hence, it is doubtful 

whether the Love wave biosensors with micro-channels or micro-chambers is a suitable 

format for a reusable device. In this study, a droplet based technique was used to replace 

micro-channels or micro-chambers platform. After each measurement, the sensing area 
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could be treated with plasma to clean and remove all particles on the platform. This 

method has been verified as being useful for platforms that need to be reused several times. 

Another problem of the application of Love wave sensors is restricted to a single 

phase (gas, liquid, solid etc.). Consequently, researchers usually design the sensing film on 

the sensor to measure targets under specific conditions. If targets need to be observed and 

detected in the liquid phase as the first step, then removing the solution from the sensing 

area and measuring the immobilised particles in dry state, the traditional Love wave 

sensors do not readily satisfy this demand. In addition, the measurable parameter for a 

Love wave sensor is the mass change following target immobilisation. This leads to a 

problem, which is that the sensor can only measure the quantity of targets but cannot 

distinguish the elements of targets. In order to solve this problem, it is necessary to add 

another sensor to work with the Love wave sensor and provide an additional parameter to 

aid the identification of targets and/or calibrate the Love wave sensor response. The aim of 

this research is to develop a biosensor by employing a Love wave device and an 

electrochemical impedance sensor to solve the above problems. 

1.3 Literature review of Love wave biosensors 

The report published by Gaso et al. in 2013 was a detailed review about SAW 

biosensors [51]. According to this report, early studies in the 1980s that attempted to 

transfer the simple method of SAW gas sensing into a biosensor were not successful. This 

is because the researchers used Rayleigh Waves, which is a kind of SAW that includes both 

longitudinal and transverse motions. In these devices the signal attenuated sharply when 

immersed in liquids [45]. Early successful approaches using horizontally polarized shear 

wave (HPSW) on quartz devices in a delay line configuration could only be obtained in 

nonpolar liquid [113]. If immersed in water, such devices also suffered from higher 

attenuation. The reason to serious signal attenuation was from significant dielectric 

mismatch between the liquid and the substrate (dielectric constant of water is about 78, but 
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the dielectric constant of quartz is about 4). The team of Flory used a new acoustic wave 

type called surface transverse waves (STW) to design a biosensor [45]. This type of wave 

propagates on the surface of the device by a periodic mass grating with a periodicity of λ/2, 

where λ is the wavelength of the SAW. This way provided better energy confinement on 

the crystal surface than a pure HPSW traveling along the open surface of a crystal. 

Although this type of surface wave was more suited to applications in liquids, the substrate 

material was still quartz so the problem of dielectric mismatch still existed [45]. In order to 

operate efficiently in applications which require fluid immersion, the Shear Horizontal 

Surface Acoustic Wave (SH-SAW) sensor was developed. Researchers tried to find 

substrates that can generate SH-SAW, and they investigated the materials such as 36° Y–X 

LiTaO3 and 64° Y–X LiNbO3. Although the pure shear horizontal waves could not be 

generated in these substrates, another kind of SAW, leaky-SAW, was found in these 

materials. The leaky-SAW is mainly shear horizontal but not purely shear horizontal. 

Moreover, this wave extends several wavelengths into the device. But the dielectric 

constant of LiTaO3 and LiNbO3 are 47 and 85, respectively, which are closer to the 

dielectric constant of the water and lessen the effect of mismatch of dielectric constant 

[103]. The major disadvantage of leaky-SAW devices is that the IDTs are directly exposed 

to aqueous media, so the lifetimes of such devices are not long due to corrosion [103]. In 

order to prevent IDTs from corrosion in liquid, other scientists covered a thin polymer 

layer on the devices and another kind of SAW, a Love wave device, was generated when 

some particular conditions were met. The condition for the existence of Love wave modes 

is that the shear velocity of the overlay material is less than that of the substrate and the 

thickness of guiding layer is less than the wavelength of the shear wave [51]. The guiding 

layer confines the wave energy keeping it near the surface and slows down the wave 

propagation velocity. Because the Love wave is trapped tightly in the guiding layer, it is 

strongly perturbed by surface changes, yielding high sensitivity. This device operates with 

a surface wave with shear horizontal particle displacements. As a result, it can operate 
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efficiently in both gas and liquid media [103]. 

The first two research teams took advantages of Love wave devices for biochemical 

sensing were Kovacs et al. [52] and Gizeli et al. [53] in 1992. They demonstrated how to 

use such devices as mass sensing biosensors in liquids. After that, in 1997, Love wave 

devices were employed to detect real-time antigen-antibody interactions in liquid media 

[54]. In 1999, a contactless Love wave device was developed in order to protect electrodes 

from the conductive and chemically aggressive liquids used in biosensing [55]. The 

advantage of this technique is that no bonding wires are required. One year later, a dual 

channel Love wave device was used as a biosensor to simultaneously detect Legionella and 

E. coli by Howe and Harding [56]. In this approach a novel protocol for coating bacteria on 

the sensor surface prior to addition of the antibody was introduced. Quantitative results can 

reach to 106 cells/ml, which were obtained from both species within 3 hours. In 2003, a 

Love wave immunosensor was designed as a model for virus or bacteria detection in 

solution by Tamarin et al. [57]. They grafted a monoclonal antibody (AM13 MAb) against 

M13 bacteriophage on the device surface (SiO2) and detected the M13 

bacteriophage/AM13 immunoreaction. The authors suggested the potentialities of such 

acoustic biosensors for biological detection. The same year, it was shown that mass 

sensitivity of Love wave devices with ZnO layer was larger than that of sensors with SiO2 

guiding layers and the researchers monitored the adsorption of rat immunoglobulin G, 

obtaining mass sensitivities as high as 950 cm
2
/g [58]. They pointed out that such a device 

was a promising candidate for immunosensing applications. An aptamer-based Love wave 

sensor which allowed the detection of small molecules was developed by Schlensog et al. 

in 2004 [59]. This biosensor provides an advantage over immunosensors because it does 

not require the production of antibodies against toxic substances. A Love wave biosensor 

for the detection of pathogenic spores at or below inhalational infectious levels was 

reported by Branch et al. in 2004 [60]. A monoclonal antibody with a high degree of 

selectivity for anthrax spores was used to capture the non-pathogenic simulant Bacillus 
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thuringiensis B8 spores in aqueous conditions. Moreover, the Branch team stated that Love 

wave biosensors have widespread application for whole-cell pathogen detection. Moll et al. 

invented a new method with a Love wave biosensor to detect E. coli in 2007 [61]. This 

sensor consisted of grafting goat anti-mouse antibodies (GAM) onto the sensor surface and 

introducing E. coli bacteria mixed with anti-E. coli MAb in a second step. The sensor 

response time was shorter when working at 37°C, providing results in less than 1 hour with 

a detection threshold of 10
6
 bacteria/ml. More recently, the same group described a 

multipurpose Love wave immunosensor for the detection of bacteria, virus and proteins 

[62]. They successfully detected bacteriophages and proteins down to 4 ng/mm
2
 and E.coli 

bacteria up to 5.0 × 10
5
 cells in a 500 μL chamber, with good specificity and 

reproducibility. In addition, Moll et al. indicated that whole bacteria can be detected in less 

than one hour [62]. Andrä et al. used a Love wave biosensor to investigate the mode of 

action and the lipid specificity of human antimicrobial peptides [63]. They analysed the 

interaction of those peptides with model membranes. These membranes mimic the 

cytoplasmic and the outer bacterial membrane when attached to the sensor surface.  In 

2008, Bisoffi et al. [64] employed a Love wave biosensor to detect Coxsackie virus B4 and 

Sin Nombre Virus (SNV), a member of the Hantavirus family. They described a biosensor 

with working frequency at 325MHz, which has the specificity provided by monoclonal and 

recombinant antibodies for the detection of viral agents. Rapid detection (within seconds) 

for increasing virus concentrations was reported. The biosensor was able to detect SNV at 

doses lower than the load of virus typically found in a human patient suffering from 

Hantavirus cardiopulmonary syndrome. In 2009, it was shown the possibility to graft 

streptavidin-gold molecules onto a Love wave sensor surface in a controlled way and was 

demonstrated the capability of the sensor to detect nano-particles in liquid by Fissi et al. 

[65]. In 2010, a complementary metal-oxide semiconductor CMOS structure combined 

with a Love wave biosensor for breast cancer biomarker detection was presented by Tigli 

et al. [66]. This biosensor was fabricated by using CMOS technology and used gold as 
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guiding layer and as interface material between the biological sensing medium and the 

transducer. Love wave devices were used as sensors for okadaic acid immono-detection 

through immobilized specific antibodies by Fournel et al. [67]. They obtained three times 

higher frequency shifts with the okadaic acid than with an irrelevant peptide control line. A 

Love wave device based bacterial biosensor for the detection of heavy metal in aqueous 

media was reported in 2011 by Gammoudi et al. [68]. Whole bacteria (E. coli) were fixed 

as bioreceptors onto the acoustic path of the sensor coated with a polyelectrolyte multilayer 

using a layer by layer electrostatic self-assembly procedure. Changes of bacteria 

viscoelastic equivalent parameters in presence of toxic heavy metals were observed. A 

Love wave-based wireless biosensor for the simultaneous detection of anti- 

Dinitrophenyl-KLH (anti-DNP) immunoglobulin G (IgG) was presented by Song et al. in 

2011 [69]. They used poly (methyl-methacrylate) (PMMA) guiding layer and two sensitive 

films (Cr/Au). A Love wave biosensor which has phase shifts as a function of the 

immobilized antibody quantity, combined with an active acoustic mixing device, was 

reported by Kardous et al. [70] in 2011. They evaluated that mixing at the droplet level 

increases antibodies transfer to a sensing area surface and raised the reaction kinetics by 

removing the dependency with the protein diffusion coefficient in a liquid, while inducing 

minimum disturbance to the sensing capability of the Love wave device. Love wave 

biosensors have been also used to investigate the properties of protein layers [71], DNA 

[72] and detect the adsorption and desorption of a lipid layer [73]. In 2013, Matatagui et al. 

used electrospinning technique to set sensitive layers on Love wave sensors to form a 

sensor array [74]. This gas sensor can detect very low concentrations of target, such as 

0.2ppm of DMMP and 1ppm of DPGME. In 2014, Mitsakakis et al. integrated Love wave 

sensors with microfluidics to implement multi-sample sensing [75]. They demonstrated the 

quantitative correlation of the acoustic signal with the molecular weight of surface bound 

proteins under several binding conditions. Four cardiac marker proteins (from 86 kDa to 

540 kDa) have been measured by their sensors successfully and their results emphasized 
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the quantitative nature of the phase of the acoustic signal in determining mass of the bound 

proteins. 

Currently, the commercial Love wave biosensor system available in the market is 

SAW instruments GmbH, which is a German company started as an R&D-project at the 

Centre for Advanced European Studies and Research in Bonn in 2000. The sensor system 

can achieve a limit of detection of 0.05 ng/cm
2
 with a sample volume of 40-80 μL. Another 

France company, Mougins, has a commercially available microbalance development kit 

(SAW-MDK1) which consists of a two-channel Love wave delay lines. Generally speaking, 

Love wave biosensors have not been very well recognized by both the scientific 

community and the market [76]. This might be due to the technical hindrances found for 

applying this device as biosensor, since it is sensitive to changes in the viscoelastic 

properties of the coating, which complicates the results interpretation. Reports about 

applications where mass alterations are separated from viscoelastic effects can enhance the 

acceptance of Love wave biosensors and this point of view will be applied in this study. 
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Chapter 2 Methods and Materials 

2.1 Selection of piezoelectric materials 

Piezoelectricity was discovered in 1880 by two brothers, Jacques and Pierre Curie, 

who observed some crystals such as quartz, Rochelle salt and tourmaline which generate 

spontaneous polarization when mechanical stress are applied to these materials [50] and 

vice versa. There are two types of piezoelectric effect: 1) one is direct piezoelectric effect; 

2) the other is converse piezoelectric effect. When a mechanical stress is applied to the 

piezoelectric material, an opposite polarization occurs, and can be changed by inverting the 

direction of applied stress, as shown in Figure 2.1(a). This phenomenon is called the direct 

piezoelectric effect. The converse piezoelectric effect is opposite to the direct piezoelectric 

effect. When an electric field is applied to the piezoelectric material, the stress on the 

substance would be changed as function of the strength of the electric field, as shown in 

Figure 2.1(b). The transformation of the electric energy to the mechanical stress is called 

converse piezoelectric effect [77]. 

 

Figure 2.1 P is the electrical potential. ΔP is the change of the electrical potential. (a) Direct 

piezoelectric effect. F is the stress applied on the material. (b) Converse piezoelectric effect. 

The change of the electrical potential deforms the shape of piezoelectric material. 

Many different types of acoustic waves can propagate in solid materials, and Love waves 

are particularly investigated in this study [78]. The subject of surface acoustic wave (SAW) 

(a) 

(b) 
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devices is concerned with all types of surface waves that can propagate on a half-space, 

making use of piezoelectricity [79]. It will be seen that this includes piezoelectric Rayleigh 

waves, leaky surface waves, surface transverse waves (STWs), Bleustein-Gulyaev waves 

and, in layered systems, layered Rayleigh waves and Love waves. The key point to know 

how Love waves can be excited and propagate is to find solutions from wave equations. 

Let us consider a half-space of material covered by a layer of another material, with layer 

thickness d as displayed in Figure 2.2. If the layer thickness is small than the wavelength of 

the Love wave, the solutions that will be similar to the Rayleigh wave for a half-space and 

can be described as ‘layered Rayleigh waves’. The solutions may be found by summing 

partial waves. The layer material is taken to have plane-wave velocities Vl and Vt. In 

addition to layered Rayleigh waves, the layered system can also support surface waves 

with the displacements normal to the sagittal plane (x1, x3). These are known as Love 

waves [80]. In this case the partial waves are shear waves, with wave vectors kt = (β, 0, ±T) 

in the layer and kt’ = (β, 0, ±T’) in the half-space. Thus the displacements in the layer can 

be written [79]: 

 𝑢𝑡 = A(0,1,0) exp(−𝑗𝑇𝑥3) + B(0,1,0) exp(𝑗𝑇𝑥3) (2.1) 

and the displacement in the half-space is [79]: 

 𝑢𝑡
′ = C(0,1,0) exp(−𝑗𝑇′𝑥3) (2.2) 

where A, B and C are constants. The boundary conditions are the same as for the 

Rayleigh-wave case, which there should be no forces on the free surface at x3 =0, and 

applying these gives the dispersion relation [79]: 

 tan(𝑇𝑑) = j𝜇′𝑇′/(𝜇𝑇) (2.3) 

where μ and μ’ are respectively the rigidities of the layer material and the half-space 

material. Solving for β gives in general a number of modes. Solutions are obtainable only 

for Vt <Vt’, and the solutions must have velocities less than Vt’, so that T’ is imaginary and 

the displacement decays in the half-space. At zero frequency the Love-wave solution 
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becomes identical to the SH plane-wave solution for a half-space. Thus Love waves can be 

regarded as modified forms of the SH plane wave, where the presence of a layer with low 

acoustic velocity converts the plane wave into a surface wave and causes dispersion. 

 

Figure 2.2 The structure of a half-space of material covered by a layer of another material, 

with layer thickness d. Vt and V’t is the phase velocity for shear waves, respectively. Vl and 

V’l is the phase velocity for longitudinal waves, respectively. 

The effects associated with crystal symmetry can be summarized as follows (the 

reference coordinates is as shown in figure 2.2) [81]: 

(a) If the sagittal plane (x1, x3) is a plane of mirror symmetry of the crystal, then the 

transverse displacement u2 is decoupled from u1, u3 and Φ. In this case, there may be a 

piezoelectric Rayleigh-wave solution with u in the sagittal plane. 

(b) If the sagittal plane is normal to an even-order axis of the crystal, then the components 

u1 and u3 are decoupled from u2 and Φ. In this case, there may be a non-piezoelectric 

Rayleigh wave with u confined to the sagittal plane, and possibly also a Bleustein–

Gulyaev-wave solution. 

These solutions are called ‘pure’ modes. They have the property that the wave 

velocity in the (x1, x2) plane is symmetric about the x1 direction, and therefore it has a 

maximum or minimum in this direction. The Rayleigh-wave and the Bleustein-Gulyaev- 

wave solutions are strongly related to the Rayleigh- and the SH-wave solutions for an 

isotropic half-space, and these are in turn related to the solutions for a layered half-space. 

These relationships are summarized in Table 2.1. 

The piezoelectricity can only be present in the anisotropic materials. Moreover, its 

properties vary with direction in relation to the internal structure [82]. The requirements for 

x3 

x1 

Vt, Vl, μ 

V’t, V’l, μ’ 

d 
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surface-wave devices have led to a very substantial search for suitable materials, a complex 

topic because for each potential material it is necessary to assess the relevant properties for 

all crystal orientations. Important properties are the wave velocity, piezoelectric coupling, 

temperature effects, diffraction, attenuation and the level of unwanted bulk-wave 

generation. It was found that on some crystals the surface-wave propagation was almost 

ideal. 

Table 2.1. Summary of wave types. 

Isotropic half-space Anisotropic half-space 

Non-layered Layered  

Rayleigh wave 
Rayleigh wave 

(dispersive) 

Rayleigh wave 

Leaky surface wave 

SH plane wave 
Love wave SH 

(dispersive) 
Bleustein–Gulyaev wave 

However, even small imperfections can be relevant when exact requirements are to be 

met, and temperature effects always need to be considered. Since the material properties 

vary with direction, it is essential to quote the orientation when specifying a material. For 

example, a general case is 64°Y–X lithium niobate (LiNbO3). This is a rotated Y-cut. The 

surface normal makes an angle 64° with the crystal Y-axis and the wave propagates in the 

crystal X-direction as shown in Figure 2.3. This case has strong piezoelectric coupling, but 

the temperature stability is poor. The reverse is the case for ST–X quartz (SiO2). This is a 

42.7° rotated Y-cut, with wave propagation along X. It has good temperature stability, as 

quantified by the temperature coefficient of delay (TCD). TCD is the change rate of the 

velocity of acoustic waves with the variation of the temperature. The delay is maximized at 

21°C, where the TCD is zero, and for practical purposes the delay is a quadratic function of 

temperature. Many of the surface-wave properties of a material can be deduced by 

calculating the wave velocity, which is a complex calculation because it involves 

anisotropy and piezoelectricity. The wave velocities for a free surface and a metallized 
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surface are denoted by vf and vm, respectively. In the latter case, the surface has an 

idealized metal coating which shorts out the parallel component of electric field at the 

surface, but is too thin to have any mechanical effect. The fractional difference between 

these velocities, Dv/v, characterizes the piezoelectric coupling to the wave. It is also 

common to define a coupling constant K
2
 as twice this value, therefore [81] 

 ∆𝑣

𝑣
≡
𝑣𝑓−𝑣𝑚

𝑣𝑓
≡
𝐾2

2
 

(2.4) 

 

 

Figure 2.3 The orientation of the 64°Y–X LiNbO3. Y-axis is the normal direction of the cut 

face. X-axis is the direction of SAW propagation. 

Surface-skimming bulk waves (SSBW) is a kind of leaky surface in an isotropic 

material [83]. It is a plane shear horizontal (SH) bulk wave, which can propagate parallel 

to the surface without violating the boundary conditions, so it has no associated stress on 

the surface. Related cases occur in anisotropic materials, for example in quartz [84]. In 

particular orientations, the boundary condition is almost satisfied and low-loss propagation 

between two transducers can be obtained. Such waves can have high velocities, making 

them attractive for high-frequency devices. An example is 36°Y–X+90° quartz, which 
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gives a velocity of 5100 m/s and a temperature coefficient of delay (TCD) of zero. The 

delay is a quadratic function of temperature and the constant c is about 60×10
-9

 (°C)
-2

. 

Propagation is normal to the X axis. This case also gives zero piezoelectric coupling to a 

Rayleigh-type surface wave. Similar behaviour is found in 64°Y–X lithium niobate 

(LiNbO3) and in 36°Y–X lithium tantalate (LiTaO3). These orientations support leaky 

waves. 

If the analogy of an SH bulk wave is accepted, it might be expected that the amplitude 

of an SSBW will not be much affected by the presence of the surface. Thus, as for a 

cylindrical bulk wave in an infinite medium, an amplitude variation as x
-1/2

 is expected. 

This is indeed found experimentally when a transducer generates SSBWs in quartz [84]. In 

the above orientations of LiNbO3 and LiTaO3, amplitude variations as x
-1/2 

and exp(-αx) 

have both been reported [85]. These can be interpreted as SSBWs and leaky waves, 

respectively. Hashimoto gives a theoretical interpretation by making the approximation 

that the material has 6 mm symmetry, showing that both types of x variation can occur. The 

theory shows that the SSBW amplitude falls as x
-1/2

 at small x and as x
-3/2

 at large x [86]. 

Auld also showed that, in an isotropic material, a bulk SH wave can be guided along the 

surface by an array of grooves parallel to the wave front [87]. This concept can be applied 

to the SSBW in 36°Y–X+90° quartz, in which the wave can be trapped at the surface by 

the metal strips comprising reflecting gratings and single-electrode transducers. When used 

in this way, the wave is known as a surface transverse wave (STW) [88]. The SSBW 

orientations do give normal modes with low loss. Generally, the solution gives velocity 

higher than that of the slowest bulk wave, satisfying the boundary conditions but with 

some attenuation due to radiation of energy into the bulk. At particular orientations the 

attenuation may become insignificant because of decoupling between the wave and the 

lowest-velocity bulk wave, and then the wave may be suitable for practical devices. The 

term ‘leaky surface acoustic wave’ (LSAW), or ‘pseudo surface wave’ (PSAW), is used for 



27 

 

such cases when the attenuation is small or zero. In contrast, Rayleigh waves generally 

exist for all orientations. A wide variety of leaky-wave cases have been found, including 

the above orientations of quartz, LiNbO3 and LiTaO3 [89]. Generally, the solutions of wave 

equations of LSAW can have the following characteristics: 

(a) Low attenuation only at one specific orientation (at neighbouring orientations, the 

attenuation increases). 

(b) High velocity, higher than that of the slowest bulk wave, attractive for high frequency 

applications. 

(c) A grating is often necessary to trap the wave at the surface. 

(d) Piezoelectric coupling higher than that of surface waves, dependent on the grating 

thickness. 

(e) Temperature stability similar to that of surface waves, or better. 

Table 2.2 displays the properties of leaky waves on uniform metallized surfaces for 

several piezoelectric materials. The coupling constant of 64°Y-X LiNbO3 is the highest 

among these materials and it indicates the highest efficiency of the energy transformation 

from surface waves to electrical signals. Although the TCD of 64°Y-X LiNbO3 is a little 

high, this problem can be solved by temperature compensation through appropriate system 

design. A dual channel system is usually used to overcome the problem [51]. In this system, 

two delay lines are installed on the same substrate. The sensing area is set up on the one of 

them and the other is a reference channel. When conducting experiments, the substrate is 

arranged on a temperature-control plate to maintain the temperature constant. The 

interferences of measurement which is generated by TCD in the sensing channel can be 

neutralised by the measurement in reference channel [51]. As a result, I have chosen 

64°Y-X LiNbO3 as substrate in this study. 
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Table 2.2. Properties of leaky surface waves on uniform metallized surfaces [79]. 

An introduction of the nature of LiNbO3 is reported in the following paragraph. 

Lithium Niobate (LiNbO3, LN), is an artificial, negative, uniaxial, non-centrosymmetric, 

ferroelectric crystal. LiNbO3 is a widely used crystal in different fields of science and 

technology. As matter of fact, LiNbO3 is characterised by large pyroelectric, piezoelectric, 

nonlinear and electro-optic coefficients and it is also employed for applications in which 

acoustic and acousto-optic properties are required. The preferred method to growth this 

crystal is the Czochralski technique. Figure 2.4 shows the typical setup employed in this 

method [90] and an example of single crystal of LiNbO3 [91]. LiNbO3 is grown from pure 

powders of lithium carbonate (Li2CO3) and niobium pentoxide (Nb2O5) that are melted in a 

platinum crucible. The following chemical reaction regulates the crystal growth: 

Li2CO3 + Nb2O5  2 LiNbO3 + CO2 

The reaction occurs in the platinum crucible that is placed inside a furnace. The reactants 

are heated to the melting point, and then they kept in the liquid phase. Then a seed attached 

to the end of a pull rod is brought close to the melt surface, and heated to a temperature 

near the melting point of LiNbO3 (1250°C ) [92]. After that, the pulling rod is lowered to 

get into contact with the melt surface, so that the reaction at the solid–liquid interface takes 

place. At the right temperature, just above the melting point of LiNbO3, atoms from the 

liquid will adhere to the seed. At higher temperatures, the seed melts while on the contrary 

at lower temperatures the melt freezes locally around the seed. During the growth of the 

crystal, the rod is kept in rotation in order to guarantee homo-geneity and to avoid thermal 

gradients in the crystal. 

Material Velocity(m/s) K
2
(%) TCD (ppm/°C) Attenuation(dB/λ) 

36° Y-X LiTaO3  4109 5.6 32 0 

Quartz, ST-X 5078 0.03 0 0.008 

Y-Z LiNbO3 7178 3 94 1.5 

64° Y-X LiNbO3 4450 10.2 81 0.004 
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Figure 2.4 (a) Setup view for the growth by using Czochralski technique [90]. (b) Single 

Crystal of LiNbO3 [91]. 

The diameter of the crystal boule is kept constant during the growth until the desired 

length is reached. The control of boule dimensions is achieved by setting the choosing the 

diameter of the crucible, the rotation and the pulling rate. The crystal is finally separated 

from the melt by increasing the temperature and raising the rod. After the separation, the 

growth chamber is cooled down to room temperature. The crystal is then cut and polished. 

LiNbO3 can be grown in a wide range of compositions. The composition exactly matching 

the chemical compound LiNbO3, having a ratio of [Li]:[Nb]:[O] of 1:1:3 is commonly 

referred as Stoichiometric Lithium Niobate (SLN). However, due to the volatility of the Li 

ions and their consequent deficiency in the crystal, the growth of the stoichiometric 

composition is quite challenging. The composition that is commonly used and is easiest to 

grow with a good uniformity is the congruent one (C-LiNbO3). Historically, LiNbO3 has 

been prepared in both stoichiometric and congruent composition. The latter is now the 

preferred one because of its highest optical quality and uniformity. Figure 2.5 shows the 

phase diagram for LiNbO3 [93]. There is a unique point called congruent point, at which 

both the solid and the liquid phase can co-exist and it corresponds to the highest point on 

the melting temperature line. 
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LiNbO3 belongs to the perovskite crystal family. The crystal structure that consists of 

planar sheets of oxygen atoms in a distorted hexagonal close-packed configuration is 

shown in Figure 2.6 [94]. The interstices of the oxygen octahedra are filled one-third by 

lithium ions, one-third by niobium and one-third is vacant. In z direction, the atoms are 

placed in the interstices in the following order: Nb, vacancy, Li [95]. 

 

Figure 2.5 Li2O-Nb2O5 equilibrium temperature-composition phase diagram of LiNbO3 

[93]. 

 

Figure 2.6 (a) Paraelectric phase LiNbO3 (b) Ferroelectric phase LiNbO3 [94]. 

LiNbO3 is a trigonal crystal since it exhibits three-fold rotation symmetry around the 

c-axis. It exhibits mirror symmetry of three planes lying 60° apart and forming a threefold 

rotation axis, as shown in Figure 2.7. These two symmetries classify LiNbO3 as a member 
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of the 3m point group it also belongs to the R3c space group [96]. LiNbO3 is ferroelectric 

below the Curie temperature (1140°C) whereas when above (but below the melting 

temperature) the displacement of the Li and Nb ions in respect to the oxygen planes 

vanishes and therefore the spontaneous polarization vanishes too, then the paraelectric 

phase arises. 

The orientation of the c-axis is given by the position of two neighbour lithium and 

niobium atoms, as well as of the vacancies with respect to the closed-packed oxygen 

planes. The two atoms are displaced slightly away from the octahedra centre along c-axis, 

which arising a spontaneous polarization aligned along this axis. These pairs can work as 

individual axis and they can be aligned either up or down indicating the domain 

polarizations. The standard methods to determine the c-axis orientation is to compress the 

crystalline in the c-axis direction. The c
+
 face (the positive end of the ferroelectric dipole) 

will exhibit a negative charge under compression, when the niobium and the lithium ions 

move closer to their paraelectric position, thus reducing the dipole, while the c
-
 face (the 

negative end of the dipole) exhibits a positive charge under compression. 

The unit cell type of LiNbO3 in this study is showed in Figure 2.7. This is a hexagonal 

structure. In this structure, the z-axis is chosen to be parallel to the c-axis of the crystal. 

The y-axis is chosen to be parallel to one of the mirror plane, and the x-axis chosen so to 

form a right-handed system [97]. This conventional hexagonal unit cell contains six 

formula weights (147.843 amu). The three covalent bonds in the hexagonal unit cell are 

120 degree apart and lie in a plane normal to the c-axis. These axes are chosen to be 

perpendicular to the mirror planes (a1 and a2 are shown in Figure 2.7). It is conventional to 

take in this hexagonal unit cell the Nb as the origin, for the congruent compounds LiNbO3 

unit cell length a, are aH = 5.1536 Å . While in the other type rhombohedra unit cell, aR 

5.474 Å  and the angle α between these three axes are 56.180 degree [98]. 



32 

 

 

Figure 2.7 LiNbO3 symmetry mirror phase [97]. 

2.2 Using interdigital transducers to generate surface acoustic 

waves on piezoelectric materials 

In this section, the theory of electrical excitation by interdigital transducers and the 

effective permittivity for a piezoelectric half-space are discussed [99]. The method was 

first developed by Ingebrigtsen [100] on the situation of electrostatic case for a non- 

piezoelectric material. Afterwards, Greebe et al. [101] and Milsom et al. [102] applied it to 

analyse the electrical excitation on piezoelectric substrates. Other approaches are the 

perturbation theory [103] and normal mode theory [104]. They generated results which are 

basically the same as the method used here. Coordinate axes are defined as in Figure 2.8. 

 

Figure 2.8 General configuration of electrodes on a dielectric substrate. Fields are 

independent of x2, and the waves propagate in ±x1 directions. 

It is assumed that the variables (surface particles’ displacements) are proportional to 

exp(jωt), with the positive frequency ω. Initially a harmonic solution with variables 
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proportional to exp(jβx1), with β real, and generalize later using Fourier synthesis. Let us 

consider partial waves in which the displacements u’ and potential ∅’ have the form [99]: 

 𝐮′ = 𝒖′0𝑒𝑥𝑝(𝑗𝛾𝑥3)𝑒𝑥𝑝[𝑗(𝜔𝑡 + 𝛽𝑥1)] 

∅′ = ∅′0𝑒𝑥𝑝(𝑗𝛾𝑥3)𝑒𝑥𝑝[𝑗(𝜔𝑡 + 𝛽𝑥1)] 

(2.5) 

Where u’0 and ∅’0 are constants and γ is the x3 component of the wave vector, which 

by definition has no x2 component. These expressions are required to satisfy the equation 

of motion in an infinite medium with the material tensors rotated into the frame of the axes 

x1, x2, x3 as follows [99], 

 

𝜌
𝜕2𝑢𝑖
𝜕𝑡2

=∑∑{𝑒𝑘𝑖𝑗
𝜕2∅

𝜕𝑥𝑗𝜕𝑥𝑘
+∑𝐶𝑖𝑗𝑘𝑙

𝐸
𝜕2𝑢𝑘
𝜕𝑥𝑗𝜕𝑥𝑙

𝑙

}

𝑘𝑗

 

(2.6) 

Substitution into equations (2.6) gives four linear homogeneous equations in the four 

variables u’0 and ∅’0. Because they do not correspond to excitation at the surface, four of 

the roots are not acceptable. It is necessary to choose reasonable roots carefully to have a 

surface-wave solution. If the imaginary part of γ is negative, complex or imaginary values 

are acceptable so that u’0 and ∅’0 decay away from the surface. Real values of γ provide 

plane waves, and these are acceptable only if they carry energy away from the surface. 

Usually this requires γ to have its sign opposite to β. The four acceptable partial-wave 

solutions are written as [99]: 

 𝒖𝑚
′ = 𝒖0𝑚

′ 𝑒𝑥𝑝(𝑗𝛾𝑚𝑥3)𝑒𝑥𝑝[𝑗(𝜔𝑡 + 𝛽𝑥1)] 

∅𝑚
′ = ∅0𝑚

′ 𝑒𝑥𝑝(𝑗𝛾𝑚𝑥3)𝑒𝑥𝑝[𝑗(𝜔𝑡 + 𝛽𝑥1)] 

                        m = 1, 2, 3, 4 

(2.7) 

The total solution in the half-space has displacements 𝒖̃ and ∅̃, where the tilde 

indicates a harmonic solution with variables proportional to exp(jβx1). The total solution is 

taken as a linear combination of the partial waves, so that [99]: 

 

𝒖̃ = ∑ 𝐴𝑚𝒖𝑚
′

4

𝑚=1

 

∅̃ = ∑ 𝐴𝑚∅𝑚
′

4

𝑚=1

 

 

(2.8) 
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The mechanical boundary conditions require that there are no forces on the surface, so 

that T13= T23= T33=0 at x3=0, with the strain Tij. Tij can be written as the linear relation 

[99]: 

 𝑇𝑖𝑗 =∑∑𝐶𝑖𝑗𝑘𝑙
𝐸

𝑙𝑘

𝑆𝑘𝑙 −∑𝑒𝑘𝑖𝑗
𝑘

𝐸𝑘 (2.9) 

Here, the superscript on 𝐶𝑖𝑗𝑘𝑙
𝐸  identifies this as the stiffness tensor for constant 

electric field; that is, this tensor relates changes of Tij to changes of Skl when E is held 

constant. Therefore there are three homogeneous equations (2.5, 2.7, 2.8) relating the four 

(m=1,2,3,4) constants Am, and the relative values of these constants can be found. The 

relative values of 𝒖̃ and ∅̃ can be calculated from equation (2.8), giving a solution for 

any value of β. The surface boundary conditions concern the potential and the 

displacement 𝑫̃. The latter can be calculated from 𝒖̃ and ∅̃ by means of the following 

equation [99]: 

 𝐷𝑖 =∑𝜀𝑖𝑗
𝑠 𝐸𝑗 +∑∑𝑒𝑖𝑗𝑘𝑆𝑗𝑘

𝑘𝑗𝑗

 (2.10) 

Here 𝜀𝑖𝑗
𝑠  is the permittivity tensor for a constant strain. At the surface, the value of 

 𝑫3̃ is denoted by 𝑫3−̃ on the piezoelectric side, and 𝑫3+̃ on the vacuum side. The 

surface potential is ∅̃(𝑥1) ≡ ∅̃(𝑥1, 0). The ratio between 𝑫3−̃ and ∅̃(𝑥1) is determined 

by the above solution, and in general it is a function of β. 

In the vacuum x3 > 0, the potential satisfies Laplace’s equation ∇2∅̃ = 0. Since ∅̃ is 

proportional to exp(jβx1) and it must vanish for 𝑥3 → ∞, the x3 dependence is exp(-|β|x3), 

and so ∅̃(𝑥1, 𝑥3) ≡ ∅̃(𝑥1)exp(−|𝛽|𝑥3). It follows that [99]: 

 𝐷3+̃ = 𝜀0|𝛽|∅̃(𝑥1) (2.11) 

  At the surface, the discontinuity in 𝑫3̃ is related to the potential by the effective 

permittivity 𝜀𝑠(𝛽), defined by [99] 

 
𝜀𝑠(𝛽) =

𝐷3+̃ − 𝐷3−̃

|𝛽|∅̃(𝑥1)
 

(2.12) 

  The effective permittivity thus gives the electrical behaviour of the interface between 
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the vacuum and the piezoelectric half-space. If the 𝑫3+̃ and −𝑫3−̃ differ, there must be 

free charges present at the surface, implying the presence of electrodes. The charge 

densities on the upper and lower sides are respectively 𝑫3+̃ and −𝑫3−̃. Hence, if the total 

charge density is 𝜎̃(𝑥1), equation (2.12) becomes [99] 

 
𝜀𝑠(𝛽) =

𝜎̃(𝑥1)

|𝛽|∅̃(𝑥1)
 

(2.13) 

Where 𝜎̃(𝑥1) and ∅̃(𝑥1) are both proportional to exp[j(ωt+βx1)]. This corresponds 

to the electrostatic case and the total charge density can be presented as the following 

equation [99]: 

 𝜎̃(𝑥1) = 𝜎+̃(𝑥1) + 𝜎−̃(𝑥1) = (𝜀0 + 𝜀𝑝)|𝛽|∅̃(𝑥1) (2.14) 

In the above equations the potential ∅̃(𝑥1)  and charge density 𝜎̃(𝑥1)  are 

proportional to exp(jωt), and the frequency ω was taken to be a constant throughout. If ω is 

changed the value of 𝜀𝑠(𝛽) changes, so 𝜀𝑠(𝛽) is a function of ω as well as β. However, 

𝜀𝑠(𝛽) is essentially the ratio of 𝑫3̃ to 𝑬1̃, as displayed by eq. (2.12), and it can be seen 

that it remains unchanged if ω and β are changed in proportion. Consequently, 𝜀𝑠(𝛽) is a 

function of the normalized quantity β/ω. It has dimensions the same as the reciprocal of 

velocity. This method of analysis applies for a constant frequency, and the effective 

permittivity is written as 𝜀𝑠(𝛽) without showing the frequency dependence definitely. A 

more general solution in terms of charge density σ(𝑥1) and surface potential ∅(𝑥1) is 

readily obtained by Fourier synthesis. Equation (2.13) can be solved and a general solution 

is given as [99], 

 
𝜀𝑠(𝛽) =

𝜎(𝛽)

|𝛽|∅̅(𝛽)
 

(2.15) 

Where 𝜎(𝛽) and ∅̅(𝛽) are respectively the Fourier transforms of σ(𝑥1) and ∅(𝑥1). 

Thus, given a generic potential function ∅(𝑥1), the relates charge density may be obtained 

by transforming it to ∅̅(𝛽), and with a 𝜀𝑠(𝛽) to obtain 𝜎(𝛽), and then transforming back 

to the x1 domain. For the general solution the potential ∅(𝑥1) and charge density σ(𝑥1) 
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are proportional to exp(jωt), with the frequency ω regarded as a constant in the equation 

(2.15). In solving a particular problem it is usually found that the potential and charge 

density are functions of frequency, so their transforms 𝜎(𝛽) and ∅̅(𝛽) will also be 

functions of frequency. In the Fourier transform, the frequency ω is held constant during 

the integration. The relationship given by the effective permittivity, equation (2.15), applies 

for all values of ω. 

The above theory proves that surface acoustic wave (SAW) can be excited on the 

piezoelectric crystal or piezoelectric thin film by using the interdigital electrode pattern, or 

interdigital transducers (IDTs). This theory has been employed to design the mask of IDTs 

as show in figure 2.9. Adding electric potential between alternate connected electrodes 

causes a periodic electric field to be stimulated on the substrate. When applying the 

alternate voltage, a periodic strain filed is generated in the piezoelectric crystal so that 

produces a standing surface acoustic wave. Meanwhile, the wave front is parallel to the 

transducer fingers. The transducer operates most efficiently as the quarter SAW 

wavelength (λT) matches the periodic distance “d” of electrode. This happens when the 

transducer is excited at the synchronous frequency. 

The relation of the velocity of the SAW (v0) and the excited working frequency (f0) is 

given by following equation [85]: 

 
𝑓0 =

𝑣0
𝜆𝑇

=
𝑣0
4𝑑

 
(2.16) 

 

Figure 2.9 The design of IDTs mask. L is the propagation length and d is the width of 

L 

d d 
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electrode and distance between two electrodes. 

In addition, the propagation length (L) between two centres of the IDT pairs is called 

delay line. L influences the magnitude of the transmission power. The attenuation of the 

transmission power would rise with increasing L, so that shorter delay lines would prevent 

more power loss from transmitting signal. However, noise levels are reduced by increasing 

L. ΦE is the related phase shift of the electronic circuit and ωL/v is the phase shift 

associated with the acoustic wave. Since the main source of the random noise is the small 

phase shift (δΦE) in the electric circuit, the received signal frequency deviation can be 

expressed as [85]: 

 𝛿𝑓

𝑓
= −

𝜆𝛿Φ𝐸

2𝜋𝐿
 

(2.17) 

Each transducer finger may be considered to be a discrete source for the generation of 

surface acoustic wave in a piezoelectric medium because the piezoelectric stress varies 

with the position near each transducer finger. When the wave enters the receiving 

transducer, this potential induces a current flow in each transducer electrode. The 

combined current flow is detected by the external circuit. In relation to the bandwidth of an 

IDT frequency response, this will be narrower when increasing the number of finger pairs 

N. However, there is a limitation in the maximum N recommended, due to the fact that, in 

practice, when N exceeds 100, the losses associated with mass loading and the scattering 

from the electrodes increase [105]. This neutralizes any additional advantage associated 

with the increase of the number of the finger pairs. 

2.3 Sensing theory of Love wave biosensors 

In acoustic-wave sensor applications, one typically detects the change of wave 

velocity v and/or attenuation α that is induced as the device interacts with the surroundings 

[106, 107]. Changes in wave velocity and attenuation can be basically related to changes in 

wave energy density and power dissipation, respectively. With regard to wave velocity 
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changes, the power density P (power/area) carried by a wave correlates closely with the 

wave energy density U (energy/volume) stored in a lossless medium. Considering a wave 

propagates across a unit cube, the time for the wave through the cube is τ = 1/ v (figure 

2.10). 

 

Figure 2.10 Energy stored per unit volume is dependent upon incident power flow and 

propagation velocity. 

When the wave travels through the cube, the energy density in the cube increases by 

the incident power times the transit time: U = Pτ = P/v. Hence [107], 

 P = Uv (2.18) 

This relation can be used to explain how changes in wave energy density affect 

changes in wave velocity in a lossless medium; i.e., one in which P is constant. By 

differentiating equation (2.18) one obtains [107]: 

 ∆𝑣

𝑣0
=
−∆𝑈

𝑈0
 

(2.19) 

Where v0 and U0 indicate unperturbed propagation velocity and energy density 

respectively. Equation (2.19) represents an essential relation between wave velocity and 

energy density for a system excited at a given frequency: the fractional variation in wave 

velocity is equal to the negative of the fractional variation in wave energy density. It is 

reasonable if considering that in a system excited at a given frequency, the wave length 

alters so that the kinetic energy equals the peak potential energy of the wave. The effect is 
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that changes of the medium that influence the wave energy density will cause changes of 

the wave velocity. From equation (2.19), the fractional change is minus the fractional 

changes in mass density of the medium [107]: 

 ∆𝑣

𝑣0
=
−∆ρ

𝜌0
 

(2.20) 

Because of a change of the wave velocity, the signal transit time through the sensing 

surface is altered and it leads to frequency or phase shift. Therefore, detecting signal 

frequency or phase shift can be used to measure the quantity of change on the sensing 

surface. 

2.4 Fabrication of Love wave biosensors 

Love wave sensors designed and realised in this work are constituted by a 

piezoelectric substrate (64°Y-X LiNbO3), interdigital transducers (IDTs, 100pairs), a 

guiding layer (PMMA, thickness is 1156nm) and a rectangular sensing region (gold, 

thickness is 20nm, length is 5mm and width is 2mm, area is 10mm
2
). The orientation angle 

of LiNbO3 is 64° and refers to the sliced angle of the original wafer after a crystal is grown. 

Because different sliced angles will give a different atomic arrangement of the substrate 

(from the viewpoint of the Cartesian coordinate system), the resulting piezoelectric effect 

will not be the same. The sign “64°Y-X” means that the acoustic wave propagates along 

the x axis and the wafer sliced angle is 64° that is rotated from the y axis. The leaky SAW 

only can be excited at specific orientation angle of the lithium niobate crystal. In addition, 

the velocities of acoustic waves are not equal when they propagate at different orientation 

angles. The type of SAW and the velocity of acoustic waves are two major parameters 

when designing a Love wave biosensor. Therefore, it is important to use the correct 

orientation angle of the lithium niobate crystal and position the IDTs exactly. IDTs were 

deposited by lift-off photolithography in order to generate pure shear horizontal acoustic 



40 

 

waves propagating perpendicular to the X crystallographic axis. IDTs were composed of 

100 Ti/Au (thickness are 10/100nm) split-finger pairs with a periodicity (λ) of 40μm. The 

acoustic path length, between both IDTs, was 200λ and the IDTs aperture was 100λ (4mm). 

The detail fabrication steps of the sensor were as following described [59]. 

(1) In order to ensure the surface of the substrate is clean and prevent small particles 

contaminate the element, substrate has to be cleaned at the first step. Typically 

contaminants are generated from these sources: dust from scribing or cleaving, 

atmospheric dust, abrasive particles, lint from wipers, photoresist residue from previous 

photolithography, bacteria or solvent residue. The standard cleaning process involves the 

following steps: i) the substrate was immersed in acetone with ultrasonic agitation for 5 

minutes. ii) Then it was soaked in methanol with ultrasonic agitation for 5 minutes. iii) to 

immerse the substrate in DI water (deionized water) with ultrasonic agitation for 5 minutes. 

iv) after that, the substrate was rinsed under free flowing DI water then used clean nitrogen 

(N2) stream to blow off dry for tools and the substrate. If the standard cleaning process 

cannot remove all contaminants on the substrate, RCA cleaning processes are considered to 

employ [108]. First step of RCA cleaning processes was to immerse the substrate in the 

special solution, which was composed of 5 parts of deionized water, 1 part of aqueous 

NH4OH (ammonium hydroxide, 29% by weight of NH3), and 1 part of aqueous H2O2 

(hydrogen peroxide, 30%), at 75°C for 10 minutes. This base-peroxide mixture removed 

organic residues and was also very effective in removing particles from the surface. 

However, this treatment resulted in the formation of a very thin oxide layer (about 10 Å ) 

on the substrate surface, along with a certain degree of metallic contamination that shall be 

removed in subsequent steps. The second step was a short immersion in a 1:50 solution of 

HF + H2O at 25°C for about 15 seconds, in order to remove the thin oxide layer and some 

fraction of ionic contaminants. The third step was performed with a solution, which was 

composed of 5 parts of deionized water, 1 part of aqueous HCl (hydrochloric acid, 39% by 
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weight), and 1 part of aqueous H2O2 (hydrogen peroxide, 30%), at 75°C for 10 minutes. 

This treatment effectively removed the remaining traces of metallic (ionic) contaminants, 

some of which were introduced in the first step. The last step was to rinse the substrate 

under free flowing DI water for 5 minutes then used clean nitrogen stream to blow off dry 

for tools and the substrate [109]. 

(2) The next step was to bake the sample at 95°C for 3 minutes to remove moisture content 

on substrate surface to improve the adhesion of the photo resist. 

(3) Then the sample was held on a spinner chuck by vacuum and coated the prepared 

sample with S1818 positive photoresist layer with the spinner rotating rate of 4000 rpm for 

30 seconds. The reasons to use S1818 are: i) this kind of positive photoresist provides high 

resolution in photolithography technology and has been engineered to satisfy the 

microelectronics industry’s requirements for advance device fabrication. The adhesion and 

coating uniformity were excellent; ii) it was optimized for G-Line exposure and was 

suitable for operating by Suss MA6 contact mask aligner. The thickness of the photoresist 

could be measured by surface profilometry Dektak 6. The result was a uniform thickness 

of 1.9μm S1818 layer attached on the substrate. 

(4) The next process was soft bake, which was used to evaporate the coating solvent and to 

densify the resist after spin coating. The sample was baked on hot plate at 95°C for 10 

minutes. Hot plating the resist was usually faster, more controllable, and does not trap 

solvent like convection oven baking. 

(5) Before exposure process, the sample was soaked in standard developer (Microposit 

developer MicroDEV concentrate: H2O 1:1) for 60 seconds [110]. According to the 

previous investigations [111, 112], this process modified the top surface of the photoresist 

by removing short-chain molecules and forming long-chain, high molecular weight 
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molecules. It could increase hydrophobicity of the near-surface layer imparted by alkaline 

based developer incorporation. This treatment reduced development rate of the surface 

layer, whilst the resist beneath developed at the normal rate, therefore resulting in an 

undercut profile after development. This method was experimentally proven to increase the 

yield of qualified devices. Then the sample was loaded into mask aligner (MA6) which 

was mounted the photo mask (the IDTs patterns were on the chrome mask, which was Cr 

on soda lime glass) to expose the sample for 5 seconds. 

(6) After that, the sample was developed in the standard developer solution for 75 seconds. 

Subsequently, the sample was immersed under D.I. water for 60 seconds to fix the pattern. 

Then the sample was dried by clean nitrogen (N2) stream. The surface profile of the sample 

after development was observed by Dektak 6 and displayed in figure 2.11. 

(7) The next step was to evaporate metal layer on the sample. The gold (Au) was chosen 

for the main material to construct the IDTs patterns due to its high conductivity and is one 

of the least reactive chemical elements, which can prevent reaction with target specimens 

in biosensor application. Because the adhesion between gold and lithium niobate is not 

very good, thin titanium (Ti) layer should be deposited first on the substrate to increase the 

adhesion of metal IDTs on the lithium niobate substrate. The deposition thickness of Ti and 

Au were 10nm and 100nm, respectively. This process was operated by the metallization 

system (Plassys MEB 550S Electron Beam Evaporator). 

(8) Then the sample was soaked in acetone for 30 minutes to lift off the undesired metal on 

the substrate and the sample is dried by N2 stream again. The profile of the sample after 

metallization and lift off was also observed by Dektak 6 and displayed in figure 2.12. 

(9) Then a PMMA layer was coated on the substrate as a “Love wave” guiding layer for 

the sensor. The thickness of the PMMA layer was controlled by the spin coating between 
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1μm and 1.5μm to optimize the sensitivity of the device. Another important issue was to 

open the window (remove partial PMMA) on the signal metal contact pad for signal wire 

connection. 

(10) The next step was to establish a sensing area on the devices. A gold thin film with 

thickness 20nm was deposited upon the PMMA layer between IDTs pairs and its area was 

10mm
2
 (its length is 5mm and its width is 2mm). A narrow gap with 100μm width on the 

gold sensing area between IDTs was also arranged to provide another function to detect the 

impedance of specimen. 

 

Figure 2.11 The surface profile of the sample after development. The interdigital patterns 

are shown as periodical gaps in the profile and their width are about 10μm. The thickness 

of residual photoresist is approximately 1.9μm. 

 

Figure 2.12 The profile of the sample after metallization and lift off. The interdigital 

patterns are shown as periodical gaps in the profile and their width are about 10μm. The 

thickness of the metal IDTs is approximately 104nm. 
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From the effectively performed processing, two critical points were discovered and 

are briefly summarized here. They are partially base on the pictures taken during the 

processing and reported in figure 2.13. One critical point is the cleaning of the substrate. 

Although residues from the cleaning are scarce, their influence on the production process is 

dramatic and generally results in the discard of the processed wafer. The other critical point 

is that without the treatment of soaking samples in the standard developer before exposure 

and it causes some problems at the edges of patterns when gold lift-off. The realized Love 

wave sensor is displayed in figure 2.14. The flow chart of manufacture process of the 

sensor is shown in figure 2.15. 

  

  

Figure 2.13 (Left) the resist can stick to the mask (hard-contact photolithography) and 

damage the patterns. Without treatment of pre-soaking samples in the standard developer 

causes some problems at the edges of patterns when gold lift-off. (Right) Well patterned 

structures have the same width and are equally spaced. 

120μm 

120μm 
40μm 

40μm 
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Figure 2.14 The picture of the realized Love-wave sensor in this study. 

 

Figure 2.15 The flow chart of manufacture processes of the sensor. 

2.5 Measurement Setup 

The basic configuration of a two-port Love-wave sensor is illustrated in figure 2.16 

[51]. This structure operates as an electronics delay line device. D is the distance between 

input and output IDT. L is the centre-to-centre distance between the IDTs. W is the length 

of the electrodes in the IDTs. Thus, the sensor is a transmission line which transmits a 

mechanical signal (acoustic wave) launched by the input port (input IDT) due to the 

applied radio frequency (RF) electrical signal. After a time delay the traveling mechanical 

wave is converted back to an electric signal in the output port (output IDT). In general, 

1mm 

gap 

 electrode 

IDTs 
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changes in the coating layer and/or in the semi-infinite fluid medium produce variations in 

the acoustic wave properties (wave propagation velocity, amplitude or resonant frequency). 

These variations can be measured comparing the input and output electrical signal, since 

phase Vin remains unchanged, while phase Vout changes. Consequently, from an electric 

point of view, a Love-wave delay line can be defined by its transfer function H(f) = Vout/Vin, 

which represents the relationship between input and output electrical signal. H(f) is a 

complex number which can be defined as H(f)=Ae
jΦ, being A the amplitude (| Vout/Vin |) and 

Φ the phase shift between Vin and Vout. For biosensors application, biochemical interactions 

at the sensing area will modify the thickness and properties of the coating, and therefore 

variations in the amplitude and phase of the electrical transfer function can be measured. 

These variations can be monitored in real time, which provides valuable information about 

the interaction process. 

 

Figure 2.16 The configuration of a two-port Love-wave sensor. It is a delay line structure. 

RF signal is applied to the input IDTs which launches an acoustic propagating wave and 

the output signal is recorded at the output IDTs. D is the distance between input and output 

IDT. L is the centre-to-centre distance between the IDTs. W is the length of the electrodes 

in the IDTs. 

There are two methods to measure the signal change of the Love wave delay line 

devices. One is to combine with other electronic elements to set up an active electrical 

device (close loop configuration). The other is using passive way to measure signal directly 
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by connecting with network analyser (open loop configuration). The Love wave delay line 

can be used as frequency determining element in closed loop configuration to form an 

oscillator circuit. In an oscillator circuit the Love wave device is placed as a delay line in 

the feedback loop of an RF amplifier in a closed loop configuration [113, 114]. Therefore, 

a change in the wave velocity, due to a sensing effect, produces a time delay in the signal 

through the Love wave device which appears as phase-shift that is transferred in terms of 

frequency-shift in an oscillator configuration. The advantages of the oscillator 

configuration are the low cost of their circuitry as well as the integration capability and it 

can be applied in continuous monitoring surroundings. These reasons make the oscillators 

an attractive configuration for the monitoring of the determining parameter of the resonator 

sensor, which in the case of the Love wave device is the phase-shift of the signal at 

resonance [54, 57, 58]. However, in my opinion, the oscillators are not the best option for 

acoustic wave sensor characterization due to the following disadvantages: First, they do 

not provide direct information about signal amplitude. Second, they maybe stop oscillation 

if insertion losses exceed the amplifier gain during an experiment. Third, despite of the 

apparent simple configuration, a very good design is necessary to guarantee that a Love 

wave resonator will operate at a specific frequency, and this is not a simple task. In effect, 

in the same way as in QCM oscillators it is required to assure that the sensor resonates on 

one defined resonance mode and does not “jump” between spurious resonances [115], in 

Love wave oscillators one must assure that the sensor will operate at one phase ramp in the 

sensor response band-pass, and does not jump from one to another which are almost of 

identical characteristics. Moreover, when the resonator dimensions get smaller and the 

frequency increases this becomes more difficult to achieve, since when increasing 

frequency there is a decrease of the resonator quality factor, a decrease in frequency 

stability [116] and in Love wave the ramps become nearer to each other. On the other hand, 

the passive way measurement works in an open loop configuration. The input transducer is 

excited at a fixed frequency while the phase shift between Vout and Vin, Φ, is recorded. In 
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this configuration, in the absence of interferences, frequency variations measured 

experimentally can be related to changes in the physical properties of the layers deposited 

over the sensing area. Network analysers are the most commonly used instrumentation for 

characterizing Love-wave sensors in a passive way measurement as shown in figure 2.17. 

The result of the control experiment which there is no any test specimen on the sensing 

area is shown in figure 2.18. The frequency spectrum of interest is in the region between 

115 MHz and 118 MHz. The peak frequency of the Love-wave sensor reaches 116.466 

MHz, its insertion loss is -15.67 dB and the phase is -84.35 degree. 

 

Figure 2.17 figuration of passive way to measure characters of Love-wave sensor. The 

parameters which are recorded are frequency response to insertion loss (IL, the S22 

parameters) and phase. 

 

Figure 2.18 The result of the control experiment of the Love-wave sensor in this study. The 

frequency response of insertion loss (solid line) and phase (dotted line) were measured by 

using a network analyser. 
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In this study, frequency signals were used for sensing measurement. Although some 

previous researchers used phase signal for sensing applications [114] and the sensitivities 

of outcomes were satisfied, other researchers presented the disadvantage of the phase 

signals measurement and suggested to use frequency signals measurement [113]. The main 

disadvantage of phase signals measurement is the limit of phase system. When the signal 

waveform changes in a cyclic manner, one cycle waveform is defined as 360º. Hence, 

phase shift would be limit in the range between 0º and 360º (or from -180º to 180º), which 

would cause a problem when compared with results of measurements. For example, if two 

phase values, 43º and 56º, were observed respectively. The phase shift could not be simply 

determined as 13º from the equation “56º minus 43º” because there may be more than a 

cycle between these two values. In contrast, there is no similar question in frequency signal 

measurements. 

2.5.1 S-parameter measurement with vector network analyser 

The parameters of the result that signal is recorded by network analyser is 

S-parameters [117]. The reasons why S-parameters are measured with the vector network 

analyser are as follows [118]: At high frequencies, it is very hard to measure total voltage 

and current at the device ports. One cannot simply connect a voltmeter or current probe 

and obtain accurate measurements due to the impedance of the probes themselves and the 

difficulty of placing the probes at the desired positions. S-parameters have many 

advantages over the other parameters, such as H, Y or Z-parameters. “H-parameters” are 

also called as “hybrid parameters”, which represent input resistance, reverse voltage gain, 

forward current gain, and output conductance in a two-port network. “Y-parameters” are 

also called as “admittance parameters”, which means the input/output admittance 

relationship of the devices. “Admittance parameters” describe the behaviour of any linear 

electrical network which can be regarded as a black box with a number of ports. A port in 

this context is a pair of electrical terminals carrying equal and opposite currents into and 
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out-of the network, and having a particular voltage between them. The “Z-parameters” 

which are also called as impedance parameters describe the impedances of a device with 

open output ports. To measure H, Y or Z-parameters needs to know the exact current or 

voltage through the device and this is difficult to implement on high-frequency networks 

measurement. Therefore, that is why S-parameters (scattering parameters) were developed. 

S-parameters are defined in terms of voltage traveling waves, which are relatively easy to 

measure. S-parameters don’t require connection of undesirable loads to the device under 

test. The measured S-parameters of multiple devices can be cascaded to predict overall 

system performance. If desired, H, Y, or Z-parameters can be derived from S-parameters. 

And very important for RF design, S-parameters are easily imported and used for circuit 

simulations in electronic-design automation (EDA) tools. Also, S-parameters are the shared 

language between simulation and measurement [119]. An N-port device has N
2 

S-parameters. Hence, a two-port device has four S-parameters. The numbering convention 

for S-parameters is that the first number following the “S” is the port where the signal 

comes out, and the second number is the port where the signal is applied. For example, S21 

is a measure of the signal coming out port 2 relative to the RF stimulus entering port 1. 

When the numbers are the same (e.g., S11), it indicates a reflection measurement, as the 

input and output ports are the same. The incident terms (a1, a2) and output terms (b1, b2) 

represent voltage traveling waves. The concept of S-parameters is displayed in figure 2.19. 

S11 and S21 are determined by measuring the magnitude and phase of the incident, 

reflected and transmitted voltage signals when the output is terminated in a perfect Zo (a 

load that equals the characteristic impedance of the test system). This condition guarantees 

that a2 is zero, since there is no reflection from an ideal load. S11 is equivalent to the input 

complex reflection coefficient or impedance of the device under test (DUT), which is a 

Love wave biosensor, and S21 is the forward complex transmission coefficient. Likewise, 

by placing the source at port 2 and terminating port 1 in a perfect load (making a1 zero), 
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S22 and S12 measurements can be made. S22 is equivalent to the output complex reflection 

coefficient or output impedance of the biosensor. S12 is the reverse complex transmission 

coefficient. Figure 2.20 illustrates the method how to measure S-parameters of a two port 

device. 

 

Figure 2.19 The concept of S-parameters. The signal input from port 1 is a1. The signal 

input from port 2 is a2. The signal output from port 1 is b1. The signal output from port 2 is 

b2. S11 is a measure of the signal coming out port 1 relative to the RF stimulus entering port 

1. S21 is a measure of the signal coming out port 2 relative to the RF stimulus entering port 

1. S12 is a measure of the signal coming out port 1 relative to the RF stimulus entering port 

2. S22 is a measure of the signal coming out port 2 relative to the RF stimulus entering port 

2. 

 

Figure 2.20 The method of S-parameters measurement. Applying a perfect load (a load that 

equals the characteristic impedance of the test system) on port 2 makes a2=0. Then input a 

fixed signal a1 and detect the output signal b1 and b2, which can calculate S11 and S21, 

respectively. S22 and S12 can be obtained by a similar way to connect port 1 with a perfect 

load makes a1=0, input a fixed signal a2 and detect the output signal b1 and b2. 



52 

 

The figure 2.21 shows the essential parts of a typical 2-port vector network analyser. 

The signal source supplies the stimulus for this stimulus-response test system. The network 

analyser can sweep the frequency of the source and sweep its power level. Then the signal 

separation hardware provides two functions. The first function is to measure a portion of 

the incident signal to provide a reference for rationing. The second function is to separate 

the incident (forward) and reflected (reverse) traveling waves at the input of the DUT. The 

next portion of the network analyser is the signal detection block. The tuned-receiver 

approach is used in our vector network analyser. The tuned receiver uses a local oscillator 

(LO) to mix the RF down to a lower intermediate frequency (IF). The LO is either locked 

to the RF or the IF signal so that the receivers in the network analyser are always tuned to 

the RF signal present at the input. The “IF signals” is bandpass filtered which narrows the 

receiver bandwidth and greatly improves sensitivity and dynamic range. Analog-to-digital 

(ADC) and digital-signal processing (DSP) are used in the network analyser to extract 

magnitude and phase information from the IF signal. The last major block of hardware in 

the network analyser is the display/processor section. This is where the reflection and 

transmission data is formatted in ways that make it easy to interpret the measurement 

results. 

The accuracy of S-parameter measurements depends greatly on how good a 

termination the researchers apply to the load port (the port not being stimulated). Anything 

other than a perfect load will result in a1 or a2 not being zero (which violates the definition 

for S-parameters). In cases where the biosensor was connected to the test ports of a 

network analyser without a perfect test-port match, I have not done a very good job 

satisfying the optimal conditions for a termination. For this reason, two-port error 

correction, which corrects for source and load match, is very important for accurate 

S-parameter measurements. Thus, the thru-reflect-line (TRL) calibration needs to be used 

in this study to improve the result of the measurement. 
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Figure 2.21 The essential structure of a network analyser. The test signal is generated by a 

variable frequency continuous wave source and level adjustment can tune its power level. 

Signal separation switches can determine the direction of the test signal flow. When switch 

chooses the signal flow from incident transmitted, the system can measure S11 and S21. 

When the detection signal is from incident to reflected, the system can measure S22 and S12. 

Receiver and detector are working with the same reference oscillator, and they can 

compare the received signal with the reference signal to obtain the amplitude and phase of 

the signal at the test frequency. The processor can conduct and control the mathematical 

processing and deal with the output (phase and amplitude) display. 

2.5.2 TRL (through-reflect-line) calibration 

As a further application of signal flow graphs I consider the calibration of a network 

analyser using the thru-reflect-line (TRL) technique [120]. The general problem is shown 

in Figure 2.23 [121], where it is intended to measure the S-parameters of a two port device 

at the indicated reference planes. As discussed in the previous point of interest, a network 

analyser measures S-parameters as ratios of complex voltage amplitudes. The primary 

reference plane for such measurements is generally at some point within the analyser itself, 

so the measurement will include losses and phase delays caused by the effects of the 

connectors, cables, and transitions that must be used to connect the device under test (DUT) 
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to the analyser. In the block diagram of Figure 2.22 these effects are lumped together in a 

two-port error box placed at each port between the actual measurement reference plane and 

the desired reference plane for the two-port DUT. A calibration procedure is used to 

characterize the error boxes before measurement of the DUT; then the actual 

error-corrected S-parameters of the DUT can be calculated from the measured data. 

Measurement of a one-port network can be considered as a reduced case of the two-port 

case. 

 

Figure 2.22 Block diagram of a network analyser measurement of a two-port device. 

The simplest way to calibrate a network analyser is to use three or more known loads, 

such as shorts, opens, and matched loads. The problem with this approach is that such 

standards are always imperfect to some degree, and therefore introduce errors into the 

measurement. These errors become increasingly significant at higher frequencies and as 

the quality of the measurement system improves. The TRL calibration scheme does not 

rely on known standard loads, but uses three simple connections to allow the error boxes to 

be characterised completely. These three connections are shown in Figure 2.23. The “thru” 

connection was made by directly connecting port 1 to port 2, at the desired reference 

planes. The “reflect” connection used a load having a large reflection coefficient, ΓL, such 

as a nominal open or short. It is not necessary to know the exact value of ΓL, as this will be 

determined by the TRL calibration procedure. The “line” connection involved connecting 

ports 1 and 3 together through a length of matched transmission line. It was not necessary 

to know the length of the line, and it was not required that the line be lossless; these 
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parameters will be determined by the TRL procedure. 

   

 

 

Figure 2.23 (a) Block diagram and signal flow graph for the thru connection (b) Block 

diagram and signal flow graph for the reflect connection (c) Block diagram and signal flow 

graph for the line connection [121]. 

In the TRL calibration procedure, signal flow graphs will be used to derive the set of 

equations to find the S-parameters for the error boxes. With reference to Figure 2.23, 

“thru”, “reflect”, and “line” were applied to the connections at the reference plane for the 

(a) 

(b) 

(c) 
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biosensor, and measured the S-parameters for these three cases at the measurement planes. 

For simplicity, I assumed the same characteristic impedance for ports 1 and 2, and that the 

error boxes were reciprocal and identical for both ports. The error boxes were characterised 

by the S-matrix [S], and alternatively by an ABCD matrix. The ABCD matrix is also 

known as a Ray transfer matrix, which is a type of ray tracing technique used in the device 

network system. ABCD matrices involve the construction of a signal transfer matrix which 

describes the two port network system. Thus the relation S21=S12 was obtained for both 

error boxes, and an inverse relation between the ABCD matrices of the error boxes for 

ports 1 and 2, since they were symmetrically connected as shown in the figure. To avoid 

confusion in notation I will denote the measured S-parameters for the “thru”, “reflect”, and 

“line” connections as the [T], [R], and [L] matrices, respectively. Figure 2.23(a) shows the 

arrangement for the “Thru” connection and the corresponding signal flow graph. Observe 

that I have made use of the fact that S21=S12 and that the error using the decomposition 

rules to give the measured S-parameters at the measurement plane in terms of the 

S-parameters of the error boxes as [121]: 

 
𝑇11 =

𝑏1
𝑎1
|𝑎2=0 = 𝑆11 +

𝑆22𝑆12
2

1 − 𝑆22
2  

(2.18) 

 
𝑇12 =

𝑏1
𝑎2
|𝑎1=0 =

𝑆12
2

1 − 𝑆22
2  

(2.19) 

By symmetry I have T22=T11, and by reciprocity I have T21=T12. 

The reflect connection is shown in Figure 2.23(b), with the corresponding signal flow 

graph. Note that this arrangement effectively decouples the two measurement ports, so 

R21=R12=0. The signal flow graph can be reduced to show that [121]: 

 
𝑅11 =

𝑏1
𝑎1
|𝑎2=0 = 𝑆11 +

𝑆12
2 Γ𝐿

1 − 𝑆22Γ𝐿
 

(2.20) 

Because of symmetry R22=R11. The Line connection is shown in Figure 2.23(c), with the 

corresponding signal flow graph. A reduction similar to that used for the thru case gives 

[121]: 
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𝐿11 =

𝑏1
𝑎1
|𝑎2=0 = 𝑆11 +

𝑆22𝑆12
2 𝑒−2𝛾𝑙

1 − 𝑆22
2 𝑒−2𝛾𝑙

 
(2.21) 

 
𝐿12 =

𝑏1
𝑎2
|𝑎1=0 =

𝑆12
2 𝑒−𝛾𝑙

1 − 𝑆22
2 𝑒−2𝛾𝑙

 
(2.22) 

Because of symmetry and reciprocity L22=L11 and L21=L12. 

Above equations (2.18) – (2.22) have the five unknowns S11, S12, S22, ΓL, and e
-γl; the 

solution is straightforward. Since equation (2.20) is the only one that contains ΓL, the four 

equations in (2.18), (2.19), (2.21), and (2.22) can be solved for the other four unknowns. 

Equation (2.19) can be used to eliminate S12 from (2.18), (2.21), and (2.22), and then S11 

can be eliminated from (2.18) and (2.21). This leaves two equations for S22 and e
-γl [121]: 

 𝐿12𝑒
−2𝛾𝑙 − 𝐿12𝑆22

2 = 𝑇12𝑒
−𝛾𝑙 − 𝑇12𝑆22

2 𝑒−𝛾𝑙 (2.23) 

 𝑒−2𝛾𝑙(𝑇11 − 𝑆22𝑇12) − 𝑇11𝑆22
2 = 𝐿11(𝑒

−2𝛾𝑙 − 𝑆22
2 ) − 𝑆22𝑇12 (2.24) 

Equation (2.23) can now be solved for S22 and substituted into (2.24) to give a 

quadratic equation for e
-γl. Application of the quadratic formula then gives the solution for 

e
-γl in terms of the measured TRL S-parameters [121]: 

𝑒−𝛾𝑙 =
𝐿12
2 + 𝑇12

2 − (𝑇11 − 𝐿11)
2 ±√[𝐿12

2 + 𝑇12
2 − (𝑇11 − 𝐿11)2]2 − 4𝐿12

2 𝑇12
2

2𝐿11𝑇12
 

(2.25) 

The choice of sign can be determined by the requirement that the real and imaginary 

parts of γ be positive, or by knowing the phase of ΓL to within 180°. Next to multiply (2.18) 

by S22 and subtract from (2.19) to obtain [121]: 

 𝑇11 = 𝑆11 + 𝑆22𝑇12 (2.26) 

And similarly multiply (2.21) by S22 and subtract from (2.22) to get [121]: 

 𝐿11 = 𝑆11 + 𝑆22𝐿12𝑒
−𝛾𝑙 (2.27)  

Eliminating S11 from the above two equations gives S22 in terms of e
-γl 

[121]: 

 
𝑆22 =

𝑇11 − 𝐿11
𝑇12 − 𝐿12𝑒−2𝛾𝑙

 
(2.28)  

Solving (2.26) for S11 gives [121]: 

 𝑆11 = 𝑇11 − 𝑆22𝑇12 (2.29)  

And solving (2.22) for S12 gives [121]: 

 S12
2 = 𝑇12(1 − 𝑆22

2 ) (2.30)  

Finally, equation (2.20) can be solved for ΓL to give [121]: 
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Γ𝐿 =

𝑅11 − 𝑆11

𝑆12
2 + 𝑆22(𝑅11 − 𝑆11)

 
(2.31)  

Equations (2.25) and (2.28) – (2.31) give the S-parameters for the error boxes, as well 

as the unknown reflection coefficient, ΓL (to within the sign), and the propagation factor, 

e
-γl

. Then the calibration procedure relies on the TRL method could be completed. 

The S-parameters of the DUT can now be measured at the measurement reference 

planes shown in figure 2.22, and corrected using the above TRL error box parameters to a 

cascade of three two-port networks, it is convenient to use ABCD parameters. Thus, the 

error box S-parameters of the cascade is converted to the responding A
m

B
m

C
m

D
m

 

parameters. If A’B’C’D’ is used to denote the parameters for the DUT, then the matrix be 

obtained [121]: 

 
[
𝐴𝑚 𝐵𝑚

𝐶𝑚 𝐷𝑚
] = [

𝐴 𝐵
𝐶 𝐷

] [𝐴′ 𝐵′
𝐶′ 𝐷′

] [
𝐴 𝐵
𝐶 𝐷

]
−1

 
(2.32)  

From which I can determine the ABCD parameters for the DUT as [121]: 

 
[𝐴′ 𝐵′
𝐶′ 𝐷′

] = [
𝐴 𝐵
𝐶 𝐷

]
−1

[
𝐴𝑚 𝐵𝑚

𝐶𝑚 𝐷𝑚
] [
𝐴 𝐵
𝐶 𝐷

]
−1

 
(2.33)  

The practical TRL kits applied in this study are displayed in figure 2.24. After 

connecting TRL kits with network analyser and operating the TRL calibration function 

which is set in the instrument, it successfully eliminates the losses and phase delays caused 

by the connectors, cables, and transitions. Therefore, the results of measurement of the 

Love-wave sensors can present the true characteristics of the devices themselves. 

 

Figure 2.24. The practical TRL kits applied in this study. These kits are metal patterns on 

the 64° Y-X LiNbO3 substrate. The dimensions of these kits were calculated with the 

software “Microwave Office
®
”. The parameters that influence the dimensions used in 

software were as follows: the permittivity (85) of the material, thickness of the substrate 

(0.5 mm), working frequency of the device (115 MHz), and the metal was gold with 

thickness 100 nm. 
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2.5.3  Impedance matching between measuring instrument and Love 

wave biosensors 

The reasons why they are important to do impedance matching when connect the 

sensors to the measurement instrument are as follows: 

1. Maximum power is delivered when the load (sensor) is matched to the line (cable from 

the instrument), and power loss in the feed line is minimised. 

2. Impedance matching can improve the signal-to-noise ratio of the system. 

3. Impedance matching in a power distribution network will reduce amplitude and phase 

errors. 

The fundamental concept of impedance matching is displayed in Figure 2.25, which 

shows an impedance matching network placed between a load impedance and a 

transmission line [121]. The matching network is ideally lossless, to avoid unnecessary 

loss of power, and is usually designed so that the impedance seen looking into the 

matching network is Z0. Then reflections are eliminated on the transmission line to the left 

of the matching network, although there will be multiple reflections between the matching 

network and the load. This procedure is also referred to as tuning. 

 

Figure 2.25 A lossless network matching an arbitrary load impedance to a transmission 

line. 

As long as the load impedance, ZL, has some non-zero real part, a matching network 

can always be found. Factors that may be important in the selection of a particular 

matching network include the following: 

1. Complexity: As with most engineering solutions, the simplest design that satisfies the 

required specifications is generally the most preferable. A simpler matching network is 

usually cheaper, more reliable, and less lossy than a more complex design. 
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2. Bandwidth: Any type of matching network can ideally give a perfect match that means 

zero-reflection at a single frequency. In this application, however, it is desirable to 

match a load over a band of frequencies and the ways of doing this with a 

corresponding increase in complexity. 

3. Implementation: Depending on the type of transmission line or waveguide being used, 

one type of matching network may be preferable compared to another. 

4. Adjustability: In some applications the matching network may require adjustment to 

match variable load impedance, but in this study it is better to find an optimal matching 

network then fix the design of the sensor. 

In the beginning, the simplest type of matching network is the L-section, which uses 

two reactive elements to match an arbitrary load impedance to a transmission line. There 

are two possible configurations for this network, as shown in Figure 2.26. If the normalised 

load impedance, zL=ZL/Z0, is inside the 1+jx circle on the Smith Chart, then the circuit of 

Figure 2.26(a) should be used. If the normalised load impedance is outside the 1+jx circle 

on the Smith Chart, the circuit of Figure 2.26(b) should be used. The 1+jx circle is the 

resistance circle on the impedance Smith chart for which r =1. In either of the 

configurations of Figure 2.26, the reactive elements may be either inductors or capacitors, 

depending on the load impedances. Thus, there are eight distinct possibilities for the 

matching circuit for various load impedances. If the frequency is low enough and/or the 

circuit size is small enough, actual lumped-element capacitors and inductors can be used. 

This may be feasible for frequencies up to about 1 GHz. However, a large range of 

frequencies and circuit sizes where lumped elements may not be realisable. This is 

limitation of the L-section matching technique. The analytic expressions for the matching 

network elements of the two cases would be derived in figure 2.26. 



61 

 

 
Figure 2.26 L-section matching networks. (a) Network for Z inside the 1+jx circle. (b) 

Network for Z outside the 1+jx circle. 

Let us consider first the circuit of Figure 2.26(a), and let ZL = RL+jXL. The circuit 

would be used when zL = ZL/Z0 is inside the 1+jx circle on the Smith chart, which implies 

RL > Z0 for this case. 

The impedance seen looking into the matching network followed by the load 

impedance must be equal to Z0, for a match: 

 
𝑍0 = 𝑗X +

1

𝑗B + 1/(𝑅𝐿 + 𝑗𝑋𝐿)
 

(2.34) 

Rearranging and separating into real and imaginary parts gives two equations for the 

two unknown variables, X and B: 

 𝐵(𝑋𝑅𝐿 − 𝑋𝐿𝑍0) = 𝑅𝐿 − 𝑍0 (2.35) 

 𝑋(1 − 𝐵𝑋𝐿) = 𝐵𝑍0𝑅𝐿 − 𝑋𝐿 (2.36) 

Solving (2.35) for X and substituting into (2.36) gives a quadratic equation for B. The 

solution is 

 
𝐵 =

𝑋𝐿 ± √𝑅𝐿/𝑍0√𝑅𝐿
2 + 𝑋𝐿

2 − 𝑍0𝑅𝐿

𝑅𝐿
2 + 𝑋𝐿

2  
(2.37) 

Note that since RL >Z0, the argument of the second square root is always positive. 

Then the series reactance can be found as 
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 𝑋 =
1

𝐵
+
𝑋𝐿𝑍0
𝑅𝐿

−
𝑍0
𝐵𝑅𝐿

 (2.38) 

Equation (2.38) indicates that two solutions are possible for B and X. Both of these 

solutions are physically realisable, since both positive and negative values of B and X are 

possible. Positive X implies an inductor, negative X implies a capacitor, while positive B 

implies a capacitor and negative B implies an inductor. One solution may result in 

significantly smaller values for the reactive components, and may be the preferred solution 

if the bandwidth of the match is better, or the standing wave ratio (SWR) on the line 

between the matching network and the load is smaller. 

Let us consider the circuit of Figure 2.26(b). This circuit is to be used when zL is 

outside the 1+jx circle on the Smith chart, which implies that RL < Z0. The admittance seen 

looking into the matching network followed by the load impedance ZL=RL+jXL must be 

equal to 1/Z0 for a match: 

 1

𝑍0
= 𝑗𝐵 +

1

𝑅𝐿 + 𝑗(𝑋 + 𝑋𝐿)
 

(2.39) 

Rearranging and separating into real and imaginary parts gives two equations for the 

two unknowns, X and B: 

 𝐵𝑍0(𝑋 + 𝑋𝐿) = 𝑍0 − 𝑅𝐿 (2.40) 

 𝑋 + 𝑋𝐿 = 𝐵𝑍0𝑅𝐿 (2.41) 

Solving for X and B gives 

 𝑋 = ±√𝑅𝐿(𝑍0 − 𝑅𝐿) − 𝑋𝐿 (2.42) 

 
𝐵 = ±

√(𝑍0 − 𝑅𝐿)/𝑅𝐿
𝑍0

 
(2.43) 
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Since RL<Z0, the arguments of the square roots are always positive. 

In order to match an arbitrary complex load to a line of characteristic impedance Z0, 

the real part of the input impedance to the matching network must be Z0, while the 

imaginary part must be zero. This implies that a general matching network must have at 

least two degrees of freedom; in the L-section matching circuit these two degrees of 

freedom are provided by the values of the two reactive components. 

In practice, in order to reduce the passive elements and the complexity of the 

matching network, a continuously tapered line would be approached [121]. An 

approximate theory that is based on the theory of small reflections will be adopted to 

predict the reflection coefficient response as a function of the impedance taper, Z(z). 

Consider the continuously tapered line of figure 2.27 as being made up of a number of 

incremental sections of length Δz, with an impedance change ΔZ(z) from one section to the 

next, as shown in figure 2.27. 

 

Figure 2.27 A tapered transmission line matching section and the model for an incremental 

step change in impedance of the tapered line. 

Then the incremental reflection coefficient from the step at z is given by [121]: 

 
∆Γ =

(Z + ∆Z) − Z

(Z + ∆Z) + 𝑍
≃
∆𝑍

2𝑍
 

(2.44) 

In the limit as Δz → 0 [121], 
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𝑑Γ =

𝑑𝑍

2𝑍
=
1

2

𝑑(ln 𝑍/𝑍0)

𝑑𝑧
𝑑𝑧 

(2.45) 

Since [121] 

 𝑑(ln 𝑓(𝑧))

𝑑𝑧
=
1

𝑓

𝑓(𝑧)

𝑑𝑧
 

(2.46) 

Then, by using the theory of small reflections, the total reflection coefficient at z = 0 can 

be found by summing all the partial reflections with their appropriate phase shifts [121]: 

 
Γ(θ) =

1

2
∫ 𝑒−2𝑗𝛽𝑧
𝐿

𝑧=0

𝑑

𝑑𝑧
ln (

𝑍

𝑍0
) 𝑑𝑧 

(2.47) 

Where θ = 2βl. So if Z(z) is known, Γ(θ) can be found as a function of frequency. 

Alternatively, if Γ(θ) is specified, then in principle Z(z) can be found. 

In this study, the method of tapered transmission line was used to match the 

impedance between connectors and Love-wave sensors. Figure 2.28 represents the device 

with original rectangular connection electrode (left) and the device with taper line for 

matching (right). These two devices are connected to the network analyser (Agilent E5071) 

and measured their return losses (S11 parameters) by smith chart, respectively. The results 

of return losses on smith chart are displayed in figure 2.29. 

  

Figure 2.28 The pictures of the Love-wave devices with original rectangular connection 

electrode (left) and with taper line for matching (right). 
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Figure 2.29 The results of return losses on the smith chart. Red line is the result of the 

Love-wave device with original rectangular connection electrode. Blue line is the result of 

the Love-wave device with taper line for matching. The frequency measurement ranges 

from 100M Hz to 130M Hz. These two Love-wave devices have the same resonant 

frequency at 114.83M Hz. The impedance of the resonant frequency of the device with 

original rectangular connection electrode is |Z| = 45.53Ω (37.2Ω+j26.25Ω). The impedance 

of the resonant frequency of the device with taper line is |Z| = 49.92Ω (49.9Ω-j1.55Ω). It 

can be observed that the impedance of the device with taper line is closer to 50Ω (the 

centre point of the circle in the smith chart) than the impedance of the device with original 

rectangular connection electrode. 

These two Love-wave sensors are connected with a signal generator (Agilent, 

N5181A) and a RF signal power amplifier (Mini-Circuits, ZHL-5W-1). Then signal 

generator inputs a continuous sinusoidal signal to the Love-wave devices through power 

amplifier. A 5μl deionized water droplet is arranged on the surface of the device to absorb 

the energy that is transferred from the electric signal to the Love waves and using IR 

(Infrared) temperature sensor records the temperature change of the droplet. The total 

system setup is shown as figure 2.30. The results are illustrated in the figure 2.31. It can be 

observed that the temperature of the droplet rises with the increase of the input signal 

power. To compare with two devices which have different connection electrodes, the 

droplet temperature of the device with matching circuit (taper line) is obvious higher than 
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that the device without matching circuit (original rectangular connection electrode) at the 

same input power level. This result can explain that the Love-wave device with matching 

circuit not only prevent additional input signal from reflecting to the source but also 

exactly has a better efficiency to transfer input electric signal to output acoustic wave. 

 

Figure 2.30 To measure the temperature changes on the surface of the Love-wave devices. 

Signal generator inputs a continuous sinusoidal signal into the power amplifier. After 

amplifying the signal, the signal is transferred in to the Love-wave device with original 

rectangular connection electrode and the Love-wave device with taper line, respectively. 

IR temperature sensor is used to measure the temperature changes on the surface of the 

devices. 

 

Figure 2.31 The relationship between input power and the temperature of the droplet on the 

device surface. The Red line is the result of the Love-wave device with matching circuit 

(taper line). The blue line is the result of the Love-wave device without matching circuit 

(original rectangular connection electrode). 

2.6 The optimisation of the guiding layer thickness 

The difference between the mechanical properties of the piezoelectric substrate and 

the guiding layer generates a confinement of the acoustic energy in the guiding layer, 
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slowing down the wave propagation velocity, but maintaining the propagation loss [51, 

122]. In particular, the condition for the existence of Love wave modes is that the shear 

velocity of the guiding layer material (vL = (μL/ρL)
1/2

) is less than that of the substrate (vS = 

(μS/ρS)
1/2

) [123]. Here μ is the shear modulus, and ρ is the density of the material. The 

subscript L and S denotes the guiding layer and substrate respectively. When substrate and 

guiding layer have similar density ratio μS/μL determine the dispersion of the Love mode; a 

large value of that ratio (higher μS and lower μL) leads to a stronger entrapment of the 

acoustic energy [122] and greater sensitivity. Consequently, the benefit of the guiding layer 

is that an enhanced sensitivity to mass deposition can be obtained, but also to viscoelastic 

interactions [124]. 

The effect of the guiding layer on Love modes influences the substrate coupling factor 

K
2
 [125]. It also affects the temperature behaviour, since it modifies TCD compared to 

their parent leaky SAW device. 

In relation to the materials used for the guiding layer, those with a low shear velocity 

and low insertion loss seem to be the most promising materials for developing sensitive 

biosensors [122, 126, 127]. Materials such as silicon dioxide (SiO2) [128], gold (Au) [66], 

zinc oxide (ZnO) [129], and polymers [130] have been used as guiding layers. The acoustic 

properties of these materials are shown in table 2.3. 

Silicon dioxide (SiO2), which is also known as fused silica, is a standard material in 

semiconductor industry and offers low damping, sufficient low shear velocity and excellent 

chemical and mechanical resistance [41]. It is the only native oxide of a common 

semiconductor which is stable in water and at elevated temperatures, an excellent electrical 

insulator, a mask to common diffusing species, and capable of forming a nearly perfect 

electrical interface with its substrate. When SiO2 is needed on materials other than silicon, 

it is obtained by chemical vapour deposition (CVD), either thermal CVD or Plasma 

enhanced CVD (PECVD) [42]. The main shortcoming for SiO2 is that the optimum 

thickness, at which the maximum sensitivity is reached, is very high, so this complicates 
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the manufacturing process. Regarding gold guiding layers, they provide very strong wave 

guiding, since gold has a relatively low shear acoustic velocity and a high density. 

However, it couples the RF signal from input to output IDT. Using ZnO as guiding layer 

has some advantages over those with a different material. The research team of 

Kalantar-Zadeh has reported that a Love-wave sensor with ZnO/ST-quartz structure can 

provide significantly high sensitivity, small TCD and high K
2
 [129]. Moreover, 

ZnO/LiTaO3 devices were also found to have higher mass sensitivity than SiO2/LiTaO3 

devices [131]. However, there are several disadvantages with using ZnO. First, it is a 

wide-bandgap semiconductor of the II-VI semiconductor group and thus it can deteriorate 

the efficiency of the transducers and make some artefacts. Besides that, it gets easily rough 

when sputtered and is liable to react with acids, liquids, or moisture. Hence, it will dissolve 

if exposed to liquid environment, which is a severe problem in biosensors application. It is 

a better choice to use polymers as the guiding layer, such as polyimide, 

polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA). Because of their 

low shear velocity, the Love-wave device will have a higher sensitivity. In addition, 

polymers are usually resistant to chemical agents [71]. Although there is a problem with 

acoustic damping (losses) when using polymers [132], to choose an appropriate polymer 

and optimize the thickness of the guiding layer still can have a promising result with low 

losses and high sensitivity. 

In this study, PMMA is chosen as the guiding layer material. PMMA is a strong and 

light weight material. Its density is about 1.18 g/cm
3
. Although the impact strength of 

PMMA is lower than polycarbonate and some engineered polymers, it still has higher 

impact strength than glass or polystyrene [133]. PMMA ignites at 460°C and burns, 

forming carbon dioxide, water, carbon monoxide and low-molecular-weight compounds 

[134]. PMMA dissolves in many organic solvents because of its easily hydrolysed ester 

groups. In addition, its environmental stability is superior to most other plastics such as 

polystyrene and polyethylene [135]. Because PMMA is transparent and durable, it is a 
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versatile material and has been used in a wide range of fields and applications. For 

example, it has been used for rear-lights and instrument clusters for vehicles, appliances 

and lenses for glasses. PMMA in the form of sheets affords shatter resistant panels for 

building windows, skylights, bullet proof security barriers, LCD screens, furniture and 

many other applications. Methacrylate polymers are used extensively in medical and dental 

applications where purity and stability are critical to performance. Another characteristic of 

PMMA is that has a good degree of compatibility with human tissue. The hard contact 

lenses were frequently made of this material. In orthopaedic surgery, PMMA bone cement 

is used to affix implants and to remodel lost bone. Dentures are often made of PMMA, and 

can be colour-matched to the patient's teeth and gum tissue [136]. In semiconductor 

research and industry, PMMA plays a role as a resist in the electron beam lithography 

process. A solution consisting of the polymer in a solvent is used to spin coat on silicon or 

other kind wafers with a thin film. Patterns on this can be made by an electron beam, deep 

UV light, or X-rays. Exposure to these creates chain scission within the PMMA, allowing 

for the selective removal of exposed areas by a chemical developer, making it a positive 

photoresist. The advantage of using PMMA is that it admits for extraordinarily high 

resolution patterns to be made. Smooth PMMA surface can be easily nanostructured by 

treatment in oxygen radio-frequency plasma or vacuum ultraviolet (VUV) irradiation 

[137]. 

Table 2.3 The properties of variable materials using as guiding layer [138-140] 

Material Shear acoustic 

wave velocity(m/s) 

Density (Kg/m
3
) Sensitivity 

(Hz‧cm
2
/ng) 

Thickness(nm) 

Fused 

silica 

3764 2200 15 12000 

Zinc 2440 7100 16 7000 

Gold 1200 19700 20 1500 

Zinc 

Oxide 

2650 5606 950 6000 

PMMA 1100 1180 1500 3000 
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In order to discover the most appropriate thickness of PMMA in this study, the 

experiments of measuring the transmission gain with different thickness of PMMA were 

conducted. By using the spin coating technique, 24 different thicknesses of PMMA layers 

were arranged on the Love-wave devices. The range of the thickness was from 353nm to 

3862nm. Then the insertion loss at resonant centre frequency of the different thickness 

PMMA devices was recorded and compared them with the blank control device (no 

PMMA on the device) to obtain the transmission gain respectively. The result is reported in 

figure 2.32. From the results of the experiment, it can be found that the transmission gain 

rises with the increase of PMMA thickness when the thickness is below 1000nm. If the 

thickness of PMMA is higher than 1300nm, more loss will generate (lower transmission 

gain) with the thicker PMMA layer. Therefore, the optimum thickness of PMMA guiding 

layer will be between 1000nm and 1300nm. 

 

Figure 2.32 The relationship between transmission gain and the thickness of PMMA. The 

higher transmission gain represents the energy of Love-wave travelling in the guiding layer 

has a lower loss. With the increase of the PMMA thickness, more energy of acoustic waves 

could be trapped in the guiding layer. Hence, the transmission gain of the device became 

higher. However, PMMA is not a completely stiff material, which means that some energy 

of acoustic waves would be lost by travelling through the PMMA. If the thickness of 

PMMA increases, the loss that is induced by interactions with the material would rise. The 

sum of above two effects results in the outcome of the transmission gain. The optimum 

thickness of PMMA guiding layer in this study was suggested between 1000nm and 

1300nm because the maximum of transmission gain appeared in this range. 
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2.7 Compensation of temperature effect 

Because the temperature coefficient of delay (TCD) of the substrate 64° Y-X LiNbO3 

is not zero, the influence that changes of temperature affect the resonant frequency of the 

sensor was explored. The Love-wave sensor was placed on the hot plate. Then the 

temperature of the hot plate was tuned from 30°C to 60°C. The practical surface 

temperature of the sensor was monitored by the IR temperature sensor. The resonant 

frequency of the Love-wave sensor was recorded while the temperature of the surface 

changed. The result of temperature and resonant centre frequency is shown in figure 2.33. 

With the increase of the temperature from 30°C and 60°C, the resonant centre frequency of 

the Love-wave sensor decreases steadily from 116.46MHz to 116.22MHz. The relationship 

between resonant centre frequency and temperature was linear and the rate was -8 KHz/°C. 

This rate can be transferred as 78 ppm/°C. Compared with the report from Morgan [79] in 

table 2.2, the value of TCD in this device is similar to the previous study (81 ppm/°C). The 

experimental result was useful information to calibrate the data to compensate the 

influence of temperature changes under the sensing surroundings when measuring by the 

Love-wave sensor in this study. 

 

Figure 2.33 The result of resonant centre frequency changes with different temperature on 

the sensing surface of the Love-wave sensor. With the increase of the temperature from 

30°C and 60°C, the resonant centre frequency of the Love-wave sensor decreases linearly 

from 116.46MHz to 116.22MHz. 
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Chapter 3 Sensitivity and limit of the detection of the 

Love wave biosensor 

3.1 Modelling method 

Love-wave biosensors can be considered as devices which are consisted of two parts. 

The first part is the propagation of acoustic waves in the structure, and the second part is 

the sensing characteristics of the structure. Models allow relating changes to some 

characteristics of the wave, as with the velocity of changes in the physical properties of the 

layers deposited over the sensing area. In addition, models provide information about the 

sensing event [51]. Nevertheless, modelling Love-wave devices commonly requires 

simplified assumptions, or the use of numerical methods [131] because of the complex 

nature of SAW propagation in anisotropic and piezoelectric materials. In this section, 

information regarding the currently most popular models used for modelling Love-wave 

sensors is provided: the dispersion equation and the transmission line model. 

3.1.1 Dispersion equation 

The dispersion equation provides the wave phase velocity as a function of the guiding 

layer thickness. The procedure for obtaining this equation for a two-layer system (guiding 

layer and substrate) is detailed in the study of McHale et al. [141]. Broadly, this equation is 

reached after imposing the boundary conditions to determine the constants appearing in the 

particle displacement expressions of the waveguide and the substrate. These displacements 

are the solution of the equation of motion in an isotropic and non-piezoelectric material. 

After extensive algebraic manipulation, the dispersion equation for a two-layer system is as 

follows [142]: 

 

tan(𝑘𝐿𝑦𝑑) =
𝜇𝑠
𝜇𝐿

√
  
  
  
  
 
1 − (

𝑣𝜑2

𝑣𝑠2
)

(
𝑣𝜑2

𝑣𝑠2
) − 1

 

(3.1) 
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Where kLy is the guiding layer transverse wavenumber in y direction, given by [142]: 

 

𝑘𝐿𝑦 = √
𝜔2

𝑣𝐿
2 −

𝜔2

𝑣𝜑2
 

(3.2) 

Taking into account the relation between the frequency and wave wavelength, 

f = vφ/λ, the argument of the tangent in equation (3.1) can be written as [142]: 

 

𝑘𝐿𝑦𝑑 = 2π𝑣𝜑
𝑑

𝜆
√
1

𝑣𝐿
2 −

1

𝑣𝜑
2
 

(3.3) 

The ratio d/λ is the normalized guiding layer thickness. From the dispersion equation, 

the phase velocity can be solved numerically [127]. On the other hand, the group velocity, 

vg, as a function of the normalized guiding layer thickness can also be determined from the 

phase velocity by the equation [127]: 

 
𝑣𝑔 = 𝑣𝜑 [1 +

𝑑/𝜆

𝑣𝜑

𝑑𝑣𝜑

𝑑(𝑑/𝜆)
] 

(3.4) 

The phase velocity and group velocity of an 64°Y–X LiNbO3/PMMA x propagating 

(the direction of x-axis is also the direction of acoustic wave propagating, which is 

provided by the material vendor) layered structure were calculated using the dispersion 

equation (eq. (3.1)) solved numerically through the bisection method. The data used to 

solve the equation for this Love-wave structure are: vS = 4450 m/s, ρS = 4650 kg/m
3
, vL = 

1100 m/s, ρL = 1180 kg/m
3
 and λ = 40 μm. The respective shear modulus were obtained 

through μi = vi
2
ρi. Assuming that the perturbing mass layer deposited over the sensing area 

is of the same material than the guiding layer, this equation will provide information over 

the sensing event. Nevertheless, this assumption is far from the biosensor’s reality, where 

the consideration of a five–layer model is required as shown in figure 3.1. 
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Figure 3.1 Five-layer model of a Love-wave biosensor. Each layer has its material 

characteristics given by: the shear modulus μ, density ρ, and viscosity η. The subscript s, g, 

a, c, and t denotes the substrate, guiding layer, sensing area, selective coating and target 

specimen, respectively. Axes are set as following: the acoustic waves propagate in the 

direction x, the direction z is aligned to the normal of the layers. 

3.1.2  Transmission line model 

Because the assumption of the dispersion equation is far from the Love wave 

biosensor’s reality, the modelling result is just for reference. In order to develop a model 

that can get close to the experimental results, other researchers investigated another model 

– transmission line model [143, 144]. The first step is to set a reference coordinate plane 

(figure 3.1) that is representative of the problem. The direction of propagation of the wave 

is set as the x-axis that is parallel to the layer’s boundaries. The normal to the boundaries is 

arbitrarily set as the z-axis aligned from the substrate to the top layer. The position of the 

origin is set at the interface between the substrate and the guiding layer. The n layers that 

compose the Love plates which include guiding layer, sensing area, and selective coating, 

are numbered from 1 to n from bottom to top. The substrate is assumed to be an infinite 

half space so that no number is attributed to it. The top half space (target specimen is here) 

is also an infinite half space and no acoustic waves propagate in this region. 

    For the considered problem of shear waves propagating along direction x, one has to 

define the initial properties of that propagation. The wave is considered independent of the 

Selective coating  μc, ρc, ηc 

Sensing area   μa, ρa, ηa 

Guiding layer  μg, ρg, ηg 
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direction y. In addition, the wave is also considered to be polarised along this latter 

direction and so the local particle displacement u (or equivalently the local particle 

velocity v) has only y component [144]: 

 𝐮(𝑥, 𝑧) = [0 𝑢𝑦(𝑥, 𝑧) 0] 

𝐯(𝑥, 𝑧) = [0 𝑣𝑦(𝑥, 𝑧) 0] 

(3.5) 

For waves propagating in a waveguide structure, like the Love plate, an assumption 

has to be made: the main wave propagating in the x direction results from the interaction of 

two partial waves propagating in different directions. The other assumption is to consider 

all the materials as isotropic. Although it is not really the case for the piezoelectric 

substrate since it is a crystalline material, the approximation simplifies the problem, and 

remains meaningful if the anisotropy factor of the material is not too high. In each layer, 

the partial waves are propagating upwards and downwards, they are totally defined in the 

xz plane. The partial waves present the same component along the direction x and are 

symmetrical around this axis, the components along z are opposite. This effect results from 

the reflection of the partial waves at the layer interfaces, and is understood by considering 

the representation of the partial waves in the slowness curves of the materials (figure 3.2). 

A partial wave is considered to propagate along the direction z’. The direction is related to 

the axis by the angle θ that forms with one of the in-plane direction (figure 3.3). Arbitrarily 

the z direction is taken as reference [144]:  

 𝒛′ = [sin 𝜃 0 cos 𝜃] (3.6) 

It is easily seen that in each layer, the angles made by the two partial waves are 

supplementary, only θ has to be defined since the other one would be (π-θ). 

All those definitions allow the translational equation of motion and the constitutive 

equation of the solid to be written as [144]: 

 𝜕𝑇4(𝑥, 𝑧)

𝜕𝑧
+
𝜕𝑇6(𝑥, 𝑧)

𝜕𝑥
= 𝜌

𝜕𝑣𝑦(𝑥, 𝑧)

𝜕𝑡
 

(3.7) 
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𝑐44

𝜕𝑣𝑦(𝑥, 𝑧)

𝜕𝑧
=
𝜕𝑇4(𝑥, 𝑧)

𝜕𝑡
 

(3.8) 

 
𝑐44

𝜕𝑣𝑦(𝑥, 𝑧)

𝜕𝑥
=
𝜕𝑇6(𝑥, 𝑧)

𝜕𝑡
 

(3.9) 

 

Figure 3.2 Simplified description of Love-waves traveling in a guided structure. The 

Love wave results from the interaction in each layer of partial waves propagating in 

opposite direction along z but with the same component along x. The common 

component along x gives the Love wave velocity. The partial waves are described by 

the slowness curves for each layer. ω the angular frequency of the wave and k is the 

wavenumber of the wave, so ω/k is the speed that wave travels in the +x/z direction 

[51]. 

The spatial derivatives expressed for z’ are given by [144]: 

 ∂

∂𝑥
=

∂

∂𝑧′
sin 𝜃 

(3.10) 

 ∂

∂𝑧
=

∂

∂𝑧′
cos 𝜃 

(3.11)  

   To define T4’(z’) as (T4(x,z)cosθ+T6(x,z) sinθ), the relations are finally reduced to [144]: 

 𝜕𝑇4′(𝑧′)

𝜕𝑧′
= 𝜌

𝜕𝑣𝑦′(𝑧′)

𝜕𝑡
 

(3.12)  

 
𝑐44

𝜕𝑣𝑦′(𝑧′)

𝜕𝑧′
=
𝜕𝑇4′(𝑧′)

𝜕𝑡
 

(3.13)  

and obviously the rotation of the axis has not changed the polarisation of the wave so that 

vy’(z’)=vy(x, z). 
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Figure 3.3 The partial wave propagates along direction z’ that results of a rotation of the 

axis around y by an angle θ. 

This section reports the basic relations needed for further modelling of the acoustic 

wave device. The theory for transmission line has been reported in previous studies [143, 

144]. An infinitesimal length ∂r (<<λ) of transmission line is represented by a series 

impedance Z and a shunt admittance Y as shown in figure 3.4. The voltage V(r) and tension 

I(r) are linked together by the coupled equations [144]: 

 
−
𝜕𝑉(𝑟)

𝜕𝑟
= 𝑍𝐼(𝑟) 

(3.14)  

 
−
𝜕𝐼(𝑟)

𝜕𝑟
= 𝑌𝑉(𝑟) 

(3.15)  

 

Figure 3.4 Infinitesimal equivalent circuit of a transmission line [51]. 

The transmission line admits a characteristic impedance Zc = (Z/Y)
1/2

 and a 

propagation function γ = (ZY)
1/2

 = α + jβ. The voltage and tension at any point of the line is 

the summation of two partial values V
-
 and V

+
 that represent electrical waves propagating 

in opposite directions [51]: 

x 

x’ 

θ 

z’ 
z 

Direction of the partial wave propagation 
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 𝑉(𝑟) = 𝑉+𝑒−𝛾𝑟 + 𝑉−𝑒𝛾𝑟 (3.16) 

 𝑍𝑐𝐼(𝑟) = 𝑉+𝑒−𝛾𝑟 − 𝑉−𝑒𝛾𝑟 (3.17) 

For a transmission line of length L, the equivalent circuit is a quadrupole whose origin 

can be set to one end of the line. This origin is also considered as the attach point for any 

impedance loading. Due to the definition, voltage and current are easily computed at any 

point of the line if they are known at the origin as respectively V(0) and I(0) [51]: 

 𝑉(𝑟) = 𝑉(0) cosh 𝛾𝑟 + 𝑍𝑐𝐼(0) sinh 𝛾𝑟 (3.18) 

 
𝐼(𝑟) = −

𝑉(0)

𝑍𝑐
sinh 𝛾𝑟 − 𝐼(0) cosh 𝛾𝑟 

(3.19) 

For a line that only presents a partial value V
-
 and where (r ≤ 0), the equations are [51]:  

 𝑉(𝑟) = 𝑉(0)𝑒𝛼𝑟 cos(𝜔𝑡 − 𝛽𝑟) (3.20) 

 𝑍𝑐𝐼(𝑟) = 𝑉(0)𝑒𝛼𝑟 cos(𝜔𝑡 − 𝛽𝑟) (3.21) 

This case is typical of an infinite half-line. For a transmission line of length L loaded by an 

impedance ZL, the equivalent impedance seen at the end of the line is [51]: 

 
𝑍(𝐿) = 𝑍𝑐

𝑍𝑐 + 𝑍𝐿 coth 𝛾𝐿

𝑍𝐿 + 𝑍𝑐 coth 𝛾𝐿
 

(3.22) 

From the equations (3.12) and (3.13), a strong analogy with the fundamental 

equations of a transmission line is set. This analogy was known since a long time and has 

been reported for propagation of waves in the bulk of materials [144]. The analogy is given 

by comparing the mechanical stress T4’ to the inverse of the electrical voltage and the local 

particle velocity vy to the electrical current [51]: 

 𝑇4′(𝑧′) ≡ −𝑉(𝑟) (3.23) 

 𝑣𝑦(𝑧
′) ≡ 𝐼(𝑟) (3.24) 

Table 3.1. Comparison between the propagation of a shear wave in an isotropic 

medium and the propagation of an electrical wave in a transmission line. 

Acoustic wave propagation Electrical wave propagation 

∂𝑇4′(𝑧
′)

𝜕𝑧′
= 𝜌

𝜕𝑣𝑦(𝑧
′)

𝜕𝑡
= 𝑖𝜔𝜌𝑣𝑦(𝑧

′) 

𝑐44
∂𝑣𝑦(𝑧

′)

𝜕𝑧′
=
𝜕𝑇4′(𝑧

′)

𝜕𝑡
= 𝑖𝜔𝑇4′(𝑧

′) 

−
∂𝑉(𝑟)

𝜕𝑟
= 𝑍𝐼(𝑟) 

−
∂𝐼(𝑟)

𝜕𝑟
= 𝑌𝑉(𝑟) 
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Table 3.1 allows direct interpretation of the equivalence and helps to determine the 

equivalent parameters. In that table, the fields are assumed to be time-harmonic plane 

waves so that the time derivative is replaced by iω factor multiplication of the term. The 

equivalent parameters are Z = iωρ and Y = iω/c44 that correspond respectively to an 

inductance L (value ρ) and a capacitance C (value 1/c44). The equivalent model in 

transmission line of the isotropic and lossless medium is shown in figure 3.5 and the 

parameters are summarized in table 3.2. 

Table 3.2. Summary of the equivalent transmission line parameters for isotropic 

solids that have a bulk wave phase velocity V. The impedance Z and the admittance 

Y are defined for an infinitesimal length. For the line itself, the relevant parameters 

are the characteristic impedance Zc and the propagation function γ. 

Series impedance 𝑍 = 𝑖𝜔𝜌 

Shunt impedance 𝑌 = 𝑖𝜔/𝑐44 

Characteristic impedance 𝑍𝑐 = √𝑍/𝑌 = √𝜌𝑐44 = 𝜌𝑉 

Propagation function 

𝛾 = √𝑍𝑌 = 𝑖𝜔√
𝜌

𝑐44
=
𝑖𝜔

𝑉
 

Further models have been developed for viscous solids and piezoelectric solids. For 

viscous solids, the viscosity is represented by a conductance G in series with the shunt 

capacitance. The value of G is 1/η44. For piezoelectric solids, the situation is represented by 

the combination of a capacitance Cpiezo in series with C, the result is a stiffened capacitance 

Cstiffened whose expression depends upon the direction of propagation and is given by [51]: 

 1

𝐶𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑑
= 𝑐44 + (

𝑒𝑥4
2

𝜀𝑥𝑥
𝑠 𝑠𝑖𝑛22𝜃) 

(3.25) 

One has to be careful that the application of the equivalence is not direct for 

anisotropic solids, and requires usually better developments than shown here. These 

developments would not be reported here since they are irrelevant for the modelling of the 

Love-wave device. 
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The equivalence has been set for the specific propagation of the partial wave. The 

equivalence with the Love wave device is given by a decomposition of the Love wave that 

propagates in each layer of the device along the direction x and the direction z. Along the 

longitudinal direction x, the propagation is totally free. The ideal case corresponds to the 

propagation of the wave in an unbound medium. Along the transversal direction z the wave 

is submitted to a condition of resonance: at each boundary, the partial waves are reflected. 

Incident, transmitted and scattered waves interact together under specific conditions that 

are directly derived from transmission line theory. Figure 3.6 illustrates the decomposition 

of the Love wave device into the two equivalent transmission lines. The parameters of each 

transmission line are linked by the angle of propagation θi (with i different in each layer). 

(a) 

(b) 

(c) 

Figure 3.5 The equivalent transmission line model of the propagation of shear wave in 

different mediums: (a) isotropic, lossless medium, (b) isotropic, lossy medium, and (c) 

piezoelectric, lossless medium (for piezoelectric substrates this assumption is valid because 

of a low anisotropy). The inductance L has the value ρ and the capacitance C has the value 

1/c44. For a viscous medium, the shunt arm is the series combination of the mechanical 

capacitance with a conductance G that has the value 1/η44. For a piezoelectric media, a 

piezoelectric capacitance Cpiezo is included in series with the mechanical capacitance. The 

total effect of C and Cpiezo results the stiffened capacitance Cstiffened. 
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The selection of direction is important because the reference plane of atoms 

arrangement would be different. If choosing direction y (along y-axis) for the propagation 

direction of acoustic waves, the result would be not the same with the propagation 

direction of x-axis because the Love mode acoustic waves could not be excited. The 

decomposition allows the impedance of the line to be computed for the two main directions. 

The impedance matrices admit only non-zero component for the central component. The 

impedance value in the directions x and z are then [51]: 

 
(𝑍𝑥

𝑘)22 =
𝑐66𝑘 sin 𝜃

𝜔
 

(3.26) 

 
(𝑍𝑧

𝑘)22 =
𝑐44𝑘 sin 𝜃

𝜔
 

(3.27) 

The expression given by the impedances are in agreement with the decomposition 

approach; the impedances are given by the projection of the impedance experienced by the 

partial wave propagating along z’ on the main directions x and z. Since for isotropic solids, 

c44 = c66 and ω/k = V = (c44/ρ)
1/2

, the relations are as follows: 

 (𝑍𝑥
𝑘)22 = √𝜌𝑐44 sin 𝜃 (3.28) 

 (𝑍𝑧
𝑘)22 = √𝜌𝑐44 cos 𝜃 (3.29) 

The guiding of the Love wave in the structure is possible on the condition that the 

partial waves reflected and transmitted interact in phase to give rise to a coherent 

interference that holds the signal in the structure and embeds the wave in the layers. The 

partial waves are forced to verify the boundary conditions at each interface; these 

mechanical conditions are given by the relations of Snell’s law, and are directly solved in 

the decomposition, when the equivalent transmission lines in the direction z constitute a 

series network. The continuity of the equivalent voltage and current is appropriated to the 

continuity of the mechanical stress and particle velocity at each interface [143]. 
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(a) 

(b) 

(c) 

Figure 3.6 The equivalence between shear waves in solids and transmission line is applied 

to the Love wave device. (a) For a proper Love wave velocity, each layer (layer 1, 2 …) 

has a different angle of propagation θi (with i associated to each layer). (b) In the 

longitudinal direction x, the layers’ structure is the superposition of the equivalent 

transmission line of each layer. These lines are only linked by the angles θi and they all 

admit the same propagation function, which corresponds to the Love wave velocity. (c) In 

the transversal direction z, the device is the series network of the transmission lines 

associated to each layer. The Love wave corresponds to a resonating scheme in this 

structure. 

From the classical transmission line theory, waves are able to enter a resonating 

scheme in the structure if the impedances seen from any point of the structure in the two 

directions are opposite. Therefore, the impedance of the line seen at the point z0 when 

looking to the increasing values of z is Z
+
(z0), and the impedance of the line seen at the 

same point when looking to the decreasing values of z is Z
-
(z0) (figure 3.7). The resonance 

condition is then expressed as [51]: 

 𝑍+(𝑧0) + 𝑍−(𝑧0) = 0 (3.30) 
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It should be noticed that this expression is a general relation that may involve 

complex numbers; no restriction has been made on the nature of the impedances. In 

particular, the relation may involve complex values that have to be exactly equal. This 

means that two scalar relations have to be solved simultaneously to observe the resonance 

of the wave in the structure. The angle that checks the resonance condition corresponds to 

one Love mode. 

 

Figure 3.7 The equivalent network in the direction z set the resonance condition. The line 

presents two impedances Z
+
 and Z

-
 at any point z0 of the layered structure. These two 

impedances are a function of the geometry of the structure, of the materials’ combination, 

and of the angles of propagation of the partial waves. 

Another problem that needs to be solved is the determination of the impedance seen at 

the point z0. The geometry of the device has to be taken into account, in particular the 

thickness of the different layers. The first step is to determine the angle of propagation in 

all layers and in the substrate. Snell’s law links the angles. A particular layer is selected as 

the reference layer for the angle. It is usually easier to take the layer that presents the 

higher slowness, since the angle of resonance has to be a real number (a complex angle of 

propagation is related to evanescent fields). This angle is swept between 0 and π/2; the 

angles in the different layers must follow the variation of the angle in the reference layer. 

For a given angle, the acoustic impedance and propagation function of the layers are 

different. The impedance seen at the position z0 is directly deduced by the equation (3.22) 

where the length L of the transmission line is equivalent to the thickness of the layer. The 

relation has to be used from the bottom of the device (position 0) to z0 and from the top of 
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the device to z0. For modelling, the top layer is always considered to be a vacuum. It is a 

specific medium that is modelled by a zero-impedance element (short-circuit). 

Variations in amplitude and phase of the transfer function H(f) = Vout/Vin (due to 

perturbations in the acoustic wave) can be monitored in real-time. These perturbations can 

occur due to variations of the mechanical and geometrical properties of the layers 

deposited over the sensing area. Such physical changes affect the propagation factor of the 

wave, and the attenuation and phase velocity of the Love wave. Next, the relations between 

Love wave electrical parameters (phase shift, φ and insertion loss, IL) and the complex 

propagation factor are explained. 

The relation between the output and input voltage in a delay line (DL) of length l can 

be modelled by its transfer function HDL(f) in the following way [144]: 

 𝐻𝐷𝐿(𝑓) = 𝑒−𝛾𝑙 (3.31) 

where γ corresponds to the propagation factor of the wave in the line, which in this 

case corresponds to that of the guiding layer in the z direction γLz. Assuming that the 

transfer function of the input and output IDTs is equal to unit, the relation between the 

electrical signal in the output and input IDTs H(f) is the same than the one for the delay 

line [79]: 

 
𝐻(𝑓) =

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
|𝑉𝑜𝑢𝑡|

|𝑉𝑖𝑛|
𝑒𝑗(𝜑𝑜𝑢𝑡−𝜑𝑖𝑛) =

|𝑉𝑜𝑢𝑡|

|𝑉𝑖𝑛|
𝑒𝑗𝜑 = 𝑒−𝛾𝐿𝑧𝑙 

(3.32) 

 𝑒−𝛾𝐿𝑧𝑙 = 𝑒−(𝛼𝐿𝑧+𝑗𝛽𝐿𝑧)𝑙 (3.33) 

Thus, the normalized phase shift (φ) and insertion loss (IL) are given by [144]: 

 𝐼𝐿

𝑧
= −𝛼𝐿𝑧20 log 𝑒 

(3.34) 

 𝜑

𝑧
= −𝛽𝐿𝑧 

(3.35) 

The increment in IL/z and φ/z from a non-perturbed state γLz0 to a perturbed state γLz1 is the 
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following [144]: 

 
∆
𝐼𝐿

𝑧
= (𝛼𝐿𝑧1 − 𝛼𝐿𝑧0)20 log 𝑒 

(3.36) 

 
∆
𝜑

𝑧
= 𝛽𝐿𝑧1 − 𝛽𝐿𝑧0 

(3.37) 

The last set of equations provides a relation between the experimental data and the 

physical parameters of the layers. The extraction of the layers’ physical parameters is a 

major problem and is the limit of the transmission line model. It is possible to measure and 

extract related parameters when adding a layer on the device each time. But the parameters 

of the coating layer in total layers could not be extracted exactly. The reason is the 

mechanical characteristics of the coating layer when it is isolated or not in contact with, the 

test sample would be different from when the coating layer interacts with the test specimen. 

Even assuming that the physical properties of the substrate, guiding layer, gold and test 

specimen are known and these properties do not change during the sensing process (which 

can be the case in biosensing), still the parameters of the coating layer are not known. In 

Love-wave sensors, the assumptions that the thickness of the coating layer is acoustically 

thin and that biochemical interaction is translated to a simple mass change is not always 

valid. Therefore the experimental data obtained in Love wave devices (equation (3.36) and 

(3.37)) from sequential measurements of the device with and without the coating layer (and 

any bound analyte species) are not necessarily enough to extract the unknown parameters 

of the coating. Therefore, the results of transmission line model are slightly different from 

the practical experimental results. 

3.2 Experimental results of the sensitivity of the Love-wave 

biosensor 

The sensitivity of the Love-wave sensor on theoretical calculations has been discussed 

in the previous section. However, it is necessary to discover the practical sensitivity of the 

sensor in this study through measurement by conducting experiments. The means to 
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investigate the sensitivity is demonstrated as follow. First, a blank control experiment with 

no added test specimen on sensing area (just air, because the theoretical calculations 

indicate that the results of testing under air and vacuum are almost the same) was 

conducted. The measurement setup (including matching the connector, using TRL 

calibration, and temperature compensation) has been shown in figure 2.17. The frequency 

response to the insertion loss is recorded by network analyser. After that, a 10nm thickness 

of titanium layer was deposited on the sensing area (a rectangular region that in length is 

2mm and the width is 5mm). Then the frequency response about the insertion loss was 

measured again. Because the volume and the density of the Titanium (4.506g/cm
3
) were 

known, the mass on the sensing area of the sensor can be obtained by calculation. Then 

another 10nm thickness of titanium layer was deposited on the sensing area again, so the 

total thickness of titanium on the sensor was 20nm, and its frequency response data was 

measured. The measurement was repeated by 10 times and every time the thickness of 

titanium was increased by 10nm up to 100nm. The next step was to explore the resonant 

centre frequency shifts among these experiments. The definition of “frequency shift” is 

shown in figure 3.8. The peaks of curves are the resonant centre frequencies. In figure 3.8, 

the solid line represents data from the blank control experiment, and the dotted line 

represents the data of 100nm thickness titanium on the senor. The frequency peaks of these 

two curves are different. The peak frequency of the dotted line is lower than that of the 

solid line. The difference between them is the “frequency shift”. In this case, it can be 

observed that the frequency shift is 11.6 kHz. In addition, the insertion loss of the dotted 

line is lesser than that of the solid line by 0.3dB. The reason is that some energy of acoustic 

wave is lost in the layer of deposited titanium. It can be considered that most of the energy 

of acoustic is kept in the guiding layer due to Love wave is shear horizontal wave, and the 

loss will not affect the result of frequency shift. 
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Figure 3.8 The comparison between resonant centre frequency of the shift between the 

different conditions of Love-wave sensor 

The detail result of the relationship between frequency shift and thickness of titanium 

is shown in figure 3.9. With the increasing thickness of the deposited titanium layer, the 

frequency shift gradually rises. The mass of the deposited layer can be transferred from the 

data of titanium thickness. In addition, it can be found that the relationship between mass 

and frequency shift is linear. As a result, the sensitivity of the Love wave sensor in this 

study reaches 2574mm
2
/ μg. 

 

Figure 3.9 The comparison between resonant centre frequencies of the shift between the 

Love-wave sensors 
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3.3 Limit of detection (LOD) of the Love wave biosensor 

The limit of detection (LOD) is a very important characteristic of acoustic biosensors, 

since it gives the minimum surface mass that can be detected by the device. It can be 

directly derived from the ratio between the noise in the measured electrical signal Nf and 

the sensitivity of the device. It is usually recommended to measure a signal variation 

higher than 3 times the noise level in order to conclude from an effective variation [145]. 

From this recommendation, it emerges that the LOD is given by [146]: 

 
𝐿𝑂𝐷 =

3𝑁𝑓

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑓
 

(3.38) 

where f is the resonant centre frequency. The LOD can be improved by minimizing 

the influence of temperature on the sensor response [147]. The stability with respect to 

temperature can be achieved by implementing temperature control in the biosensor system. 

In this study, the noise Nf is the root mean square (RMS) value of the resonant centre 

frequency variation measured over a given period of time in stable and constant conditions. 

Under the condition of blank control experiment, the value of Nf is obtained as 2.2Hz. 

From previous section, the sensitivity of the Love wave sensor and the resonant centre 

frequency are 2574mm
2
/μg and 116.467 MHz, respectively. Hence, the LOD of the Love 

wave sensor in this study is 0.022fg/mm
2
.  
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Chapter 4 Experimental Results of Love-wave sensor 

4.1 Measurement of protein A 

Protein A is a kind of protein which is found on the surface of the cell wall of the 

bacterium Staphylococcus aureus. Its mass on a molecular scale is 42 kDa and its 

regulation is controlled by DNA topology, cellular osmolarity, and a two-component 

system called ArlS-ArlR [148]. Because of its ability to bind immunoglobulins, protein A 

is usually used in biochemical research. In this study, the Love wave sensor was used to 

measure the protein A and test the function of the sensor. The test specimen of protein A is 

purchased from Invitrogen (catalog number: 10-1011), ensuring that the product is in 10 

mM Phosphate buffered saline, pH 7.4 containing 1% ovalbumin, 40% glycerol and 0.1% 

sodium azide as preservative. It is composed of five homologous Ig-binding domains that 

fold into a three-helix bundle. Each domain is able to bind proteins from many mammalian 

species, most notably IgGs [149]. Protein A binds with high affinity to human IgG1 and 

IgG2 as well as mouse IgG2a and IgG2b. Protein A binds with moderate affinity to human 

IgM, IgA and IgE as well as to mouse IgG3 and IgG1. It does not react with human IgG3 

or IgD, nor will it react to mouse IgM, IgA or IgE. The capacity of protein A to bind 

antibodies with such high affinity is the driving motivation for its industrial scale use in 

biologic pharmaceuticals. The protein A used for production of antibodies in 

bio-pharmaceuticals is most commonly bound to a stationary phase chromatography resin 

[150]. Recombinant Staphylococcal Protein A is often produced in E. coli for use in 

immunology and other biological research [151]. Protein A is often coupled to other 

molecules such as a fluorescent dye, enzymes, biotin, and colloidal gold or radioactive 

iodine without affecting the antibody binding site. It is also widely utilised coupled to 

magnetic, latex and agarose beads. Protein A is often immobilised onto a solid support and 

used as reliable method for purifying total IgG from crude protein mixtures such as serum 
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or ascites fluid, or coupled with one of the above markers to detect the presence of 

antibodies. Immunoprecipitation studies with protein A conjugated to beads are also 

commonly used to purify proteins or protein complexes indirectly through antibodies 

against the protein or protein complex of interest [152]. A droplet platform was used in this 

study and a chamber was established on the sensing area to locate droplets for each 

experiment. 

In this study, protein A was used to test the efficiency of the Love wave sensor. In 

order to do this, experiments were conducted to examine whether Protein A could be 

immobilised on the sensing area of the sensor, and whether the sensor is capable of 

detecting the Protein A molecules. First, the sensing area (gold surface) of the sensor was 

immersed in buffer solution (Sigma Dulbecco’s Phosphate Buffered Saline, product 

number: D8537) for 30minutes and was shaken at a rate of 10rpm. After that, the surface 

was dried with a nitrogen stream and cleaned under the oxygen Plasma Asher (100Watt, 

180 seconds) to ensure that there was no impurity on the sensing area. The next step was to 

arrange a 2μl deionized water (Diwater, obtained from Milli-Q A10 Synthesis Ultrapure 

Water System) on the sensing area, then waited for 15 minutes to let the water evaporate 

naturally and measured the frequency shift of the sensor. The value of the frequency shift 

was 0.9 KHz. Then the sensing area was cleaned by buffer solution rinsing and oxygen 

Plasma Asher again. The next step was to arrange a 2μl buffer solution (PBS, Sigma, 

D8537) on the sensing area and waited for 15 minutes to let the PBS evaporate naturally. 

Then the buffer solution was used to wash the surface of the sensing area and measured the 

frequency shift of the sensor. The value of the frequency shift was 1 KHz. Then the sensing 

area was cleaned again by the same procedure as descripted above. The next step was to 

arrange a 2μl Protein A (Invitrogen, 10-1011) at a concentration of 15mg/ml on the sensing 

area and the frequency shift of the sensor was recorded. The value of the frequency shift 

was 66.4 KHz. After 15 minutes, the solvent of the Protein A solution evaporated naturally. 

The sensing area was rinsed with PBS to remove the molecules of Protein A that had not 
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immobilised well on the surface. After that, the surface was dried with a nitrogen stream, 

and the frequency shift of the sensor was measured to obtain the value of 25.2 KHz. Then a 

2μl buffer solution (PBS, Sigma, D8537) was arranged at the same location of the Protein 

A solution droplet, and measured the frequency shift again. The value of the frequency 

shift was 69.4 KHz. The whole procedure was repeated 5 times, and deviations of the 

results were less than 10%. In addition, the results, including the error bar, are displayed in 

figure 4.1.  

 

Figure 4.1 The frequency shifts of different kinds of materials and conditions on the Love 

wave sensor. The frequency shifts of Diwater and PBS under the dry state are both less 

than 1 KHz because there are almost no molecules left on the sensing area. The frequency 

shift of the liquid state of Protein A is more than that of the dry state of Protein A, by 41.2 

KHz. This is because the mass of solvent and the viscosity of the solution lead to increase 

frequency shift. The frequency shift of Protein A under the dry state after rinsing by the 

PBS is 25.2 KHz, which is supporting evidence that Protein A did immobilise on the 

surface of the sensing area, and its mass causes the change of the centre resonant frequency. 

The frequency shift of dry state Protein A plus PBS is more than that of Protein A solution 

by 3 KHz, and the reason is that the condition of the solvent is different (Protein A solution 

is not the same as PBS and some Protein A molecules were removed when rinsing). 

Some environmental factors would influence the frequency peak shift, such as the 

temperature and the connection state between cables and the sensor. The temperature factor 

was discussed in previous section (chapter 2.1) and the dual channel system could be used 
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to reduce the influence of temperature change. The state of connections between cables and 

the sensor would also affect the result of measurement. In early measurements, the 

electrode pads of the sensor were touched with probes to measure the signals. However, 

the variations of frequency peak shift between nominally the same measurements, were 

more than 3 KHz; even there was no added target on the sensing area. Consequently, 

connecting wires were stuck on the electrode pads with silver paste. This lead to variations 

in measurement results of less than 1 KHz. As a result, silver paste was adopted as the best 

method to fix wires on the electrode. 

After the immobilisation of Protein A on the sensor was confirmed, the next 

experiment was designed to discover the relationship between the concentration of Protein 

A and frequency shift. Before each measurement, the sensing area of was completely 

cleaned. The clean processes were the same with the above descriptions (PBS rinsed, 

treated with plasma, dried with nitrogen stream). The steps of arrange droplets to conduct 

experiment were as follows: to arrange a 2μl Protein A solution (Invitrogen, 10-1011) with 

a concentration of 5mg/ml on the sensing area. After 15 minutes, the solvent of the Protein 

A solution was evaporated naturally, leaving the Protein A molecules on the sensing area. 

Then, the surface was rinsed by PBS to remove Protein A molecules that were not firmly 

immobilised on the sensing area. Afterwards, there were still some Protein A molecules 

immobilised on the sensor, and the frequency shift of the device was measured. Next, 

measurement with the same concentration of Protein A was repeated 5 times. According to 

the above processes, the frequency shifts with different concentrations of Protein A 

solution (5mg/ml, 10mg/ml, 12mg/ml, 13mg/ml, 14mg/ml and 15mg/ml, respectively) 

were monitored. The relationship between frequency shift and concentration of Protein A is 

illustrated in figure 4.2. The data points in the figure are the medians for measurements at 

each Protein A concentration. The deviations at each measurement of concentration are less 

than 1 KHz, and shown in the error bars in figure 4.2. When the concentration of Protein A 
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is less than 14mg/ml, the relationship seems to be linear between the frequency shift and 

the Protein A concentration. The higher Protein A concentration resulted in more frequency 

shift. However, the Protein A concentration is higher than 14mg/ml. A very slightly 

increase of frequency shift (less than 2 KHz) was observed. This can be explained by the 

saturation of the sensing area by means of Protein A molecules occupied almost whole 

space on the sensing area. 

 

Figure 4.2 The relationship between frequency shift and Protein A concentration. Under the 

saturation concentration of 14 mg/ml, frequency shift almost rises linearly with the 

increase of Protein A concentration. When the concentration of Protein A exceeds 14mg/ml, 

higher Protein A concentration only causes slightly increase of frequency shift. This is 

because the sensing area is almost saturated by the Protein A molecules, and more Protein 

A molecules could hardly immobilise on the sensor to increase the mass on the surface of 

the sensing area. The measurement data includes medians and deviations (errors) are in the 

table of the figure. 

4.2 Measurement of IgG 

IgG (Immunoglobulin G) is a kind of protein that it belongs to an antibody isotype. 

The mass of IgG antibodies on a molecular scale is approximately 150 kDa.  IgG is 

composed of four peptide chains, which are two identical class γ heavy chains of about 50 
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kDa and two identical light chains of about 25 kDa; thus, there is a tetrameric quaternary 

structure, shown in figure 4.3 [153]. The two heavy chains are linked to each other and to a 

light chain each by disulfide bonds [154]. The resulting tetramer has two identical halves, 

which together form the Y-like shape. Each end of the fork contains an identical antigen 

binding site. The Fc regions of IgGs carry a highly conserved N-glycosylation site. The 

N-glycans attached to this site are two mainly core-fucosylated biantennary structures of 

the complex type. In addition, small amounts of these N-glycans also bear bisecting 

GlcNAc and α-2,6-linked sialic acid residues [155]. Representing approximately 75% of 

serum immunoglobulins in humans, IgG is the most abundant antibody isotype found in 

the circulation. IgG molecules are usually synthesized and secreted by plasma B cells 

[156]. 

 

Figure 4.3 The structure of IgG. It is composed of four peptide chains: two identical heavy 

chains and two identical light chains, arranged in a Y-shape typical of antibody monomers. 

Each IgG has two antigen binding sites [153]. 

Antibodies are major components of the immune system. IgG is the main antibody 

isotype, found in blood and extracellular fluid, allowing it to control infection of body 

tissues. By binding many kinds of pathogens — representing viruses, bacteria, and 

fungi — IgG protects the body from infection. IgG can work via several immune 

mechanisms: IgG-mediated binding of pathogens causes their immobilisation and binding 
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together via agglutination; IgG coating of pathogen surfaces (known as opsonization) 

admits their recognition and ingestion by phagocytic immune cells; IgG activates the 

classical pathway of the complement system, a cascade of immune protein production that 

results in pathogen elimination; IgG also binds and neutralizes toxins. Additionally, IgG 

also plays an important role in antibody-dependent cell-mediated cytotoxicity and 

intracellular antibody-mediated proteolysis, in which it binds to TRIM21 (the receptor with 

greatest affinity to IgG in humans) in order to direct marked virions to the proteasome in 

the cytosol [157]. IgG antibodies are generated following class switching and maturation 

of the antibody response, and participate predominantly in the secondary immune response. 

IgG is secreted as a monomer that is small in size, allowing it to easily perfuse tissues. It is 

the only isotype that has receptors to facilitate passage through the human placenta, 

thereby providing protection to the foetus in utero. Along with IgA secreted in the breast 

milk, residual IgG absorbed through the placenta provides the neonate with humoral 

immunity before its own immune system develops [158]. Colostrum contains a high 

percentage of IgG, especially bovine colostrum. In individuals with prior immunity to a 

pathogen, IgG appears about 24–48 hours after antigenic stimulation [159]. 

    The measurement of immunoglobulin G can be a useful diagnostic tool for certain 

conditions, if indicated by certain symptoms [160]. Clinically, measured IgG antibody 

levels are generally considered to be indicative of an individual's immune status to 

particular pathogens. A common example of this practice are titers drawn to demonstrate 

serologic immunity to measles, mumps, and rubella (MMR), hepatitis B virus, and 

varicella (chickenpox), among others. Besides that, IgG antibodies are also extracted from 

donated blood plasma and the antibodies could be used as a therapeutic known as 

intravenous immunoglobulin. This is used to treat immune deficiencies, autoimmune 

disorders and infections [159]. Since the Protein A has been immobilised on the sensing 

area of the Love wave sensor and the affinity between Protein A and IgG is strong, IgG 
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will be bound with Protein A, as in figure 4.4, and measured by the Love wave sensor in 

this study. 

The first experiment in this section was conducted to verify whether the sensor was in 

a stable state when IgG molecules bound with Protein A molecules are immobilised on the 

sensing area of the sensor. The processes of the experiment include three parts. First part 

was to remove whole particles on the sensing area and clean the device. The cleaning 

method was the same as the previous description in chapter 4.1. Second part was to 

immobilise a layer of Protein A molecules on the gold sensing area. Third part was to 

measure IgG solution with a concentration in different droplets. Because a Protein A layer 

had been immobilised on the sensor, the IgG molecules in the test specimens would be 

captured by Protein A. Although the sensing area of the device would be immersed in the 

liquid media during the measurement process, the electrodes were protected under the 

PMMA layer. Hence, the electrodes of the sensor could not touch the liquid and there was 

no short circuit problem. The processes of immobilising Protein A on the gold sensing area 

were in the following description. First, a 2μl Protein A droplet (Invitrogen, 10-1011) with 

a concentration of 15mg/ml was arranged on the sensing area. After 15 minutes, the solvent 

of the Protein A solution evaporated naturally, then the sensing area was rinsed by PBS to 

remove the molecules of Protein A that were not firmly immobilised on the surface. The 

next step was to arrange a 2μl IgG solution (IgG, from human serum, Sigma, I2511) with a 

concentration of 0.01mg/ml on the sensing area, then wait for 15 minutes to let the IgG 

molecules bind with Protein A molecules naturally. Then the sensing area was rinsed with 

PBS to remove the IgG molecules that were not firmly bound with Protein A molecules on 

the surface. Afterwards, the surface of the sensing area was dried by nitrogen stream and 

the frequency shift of the sensor was measured. After measurement, the sensing area was 

cleaned completely by rinsing and treated with plasma. Then the whole experimental 

processes were repeated 5 times, and the results of measurements are shown in figure 4.5. 
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Figure 4.4 IgG Measurement on Love wave sensor. The sensing area is a gold film with 

20nm thickness and Protein A molecules are saturated on this region. The frequency shift 

of the device is measured after IgG is arranged on the sensing area to bind with Protein A. 

 

 

Figure 4.5 The results of measuring frequency shift of the IgG solution with the 

concentration 0.01mg/ml. The experiments are repeated 5 times, and the median of 

measurements is 30.1 KHz. The variations among these 5 measurements are less than 1 

KHz. This experiment demonstrates that duration of 15 minutes is enough to let IgG 

molecules bind with Protein A firmly on the sensing area, and that the binding is insoluble 

by washing. 

In the next experiment, the relationship between frequency shift and concentration of 

IgG solution was investigated. Before each measurement, the sensing area of the sensor 

was completely cleaned with rinsing by PBS, treated with plasma, and dried with nitrogen 
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stream. The protein A layer was established according to the method that was descripted in 

the above paragraph. Afterwards, a 2μl IgG solution (IgG, from human serum, Sigma, 

I2511) with a concentration of 0.01mg/ml was arranged on the sensing area, and then 

waited for 15 minutes to let the IgG molecules bind with Protein A molecules naturally. 

Next, the sensing area was rinsed by PBS to remove the IgG molecules that were not 

firmly bound with Protein A molecules on the surface. After that, the surface of the sensing 

area was dried by a nitrogen stream, and the frequency shift of the sensor was measured. 

According to the above processes, the experiments used different concentrations of IgG 

solutions were conducted. The IgG concentration range was from 0.01mg/ml to 0.1mg/ml. 

There were five measurements in each concentration, and the deviations of the frequency 

shift were all less than 2 KHz. The results of the experiments are displayed in figure 4.6. 

 

Figure 4.6 The results of measuring frequency shift of the different concentration of IgG 

solution. Higher concentration of IgG solution causes more frequency shift of the sensor, 

and seems linear between IgG concentration and frequency shift. 

4.3 Measurement of Anti-GABA and GABA 

GABA (gamma-aminobutyric acid, γ-Aminobutyric acid) is a kind of zwitterion. 
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These compounds contain an ammonium and a carboxylate group as figure 4.7 [161]. The 

conformation of GABA depends on its environment. In the standard state (at 25 °C, 100 

kPa) its appearance is white microcrystalline powder. In addition, a more extended 

conformation is found in solid state, with a trans-conformation at the amino end and a 

gauche conformation at the carboxyl end, because of the packing interactions with the 

neighbouring molecules. GABA can also be dissolved in water. Moreover, five different 

conformations in solution state, some folded and some extended, are found as a result of 

solvation effects [161]. The conformational flexibility of GABA is important for its 

biological function, as it has been discovered to bind to different receptors with different 

conformations. Many GABA analogues with pharmaceutical applications have more rigid 

structures in order to better control the binding [162, 163]. 

 

Figure 4.7 The Structure of GABA. Its molecular formula is C4H9NO2 and molar mass is 

103.12 g/mol. In the standard state (at 25 °C, 100 kPa) its appearance is white 

microcrystalline powder. The density of GABA is 1.11 g/ml. In 100ml water, it can 

dissolve 130g GABA. Its melting point and boiling point are 203.7 °C and 247.9 °C, 

respectively [161]. 

GABA was first investigated in the late nineteenth century and was known as a plant 

and microbe metabolic product at that time. In 1950, GABA was discovered to be an 

integral part of the mammalian central nervous system [164]. GABA can be synthesized 

from glutamate using the enzyme L-glutamic acid decarboxylase and pyridoxal phosphate 

as a cofactor in the brain. Besides that, GABA is converted back to glutamate by a 

metabolic pathway called the GABA shunt, which the process converts glutamate into the 

principal inhibitory neurotransmitter [165-167]. 

GABA is the main inhibitory neurotransmitter in the mammalian central nervous 

system. It plays an important role in regulating neuronal excitability throughout the 
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nervous system. For example, GABA is a key factor of the regulation of muscle tone in 

humans [168]. Although it can be regarded as an amino acid in chemical terms, GABA is 

rarely referred to as such by the scientific communities, because GABA is not considered 

to be incorporated into proteins. In mammalian, GABA works on inhibitory synapses in the 

brain by binding to specific transmembrane receptors in the plasma membrane of both pre- 

and postsynaptic neuronal processes. This binding causes the opening of ion channels to 

allow the charged ions (chloride ions or potassium ions) entering or leaving the cell. When 

net chloride flows out of the cell, GABA is excitatory or depolarizing. On the other hand, 

when the net chloride flows into the cell, GABA is inhibitory or hyperpolarizing. When the 

net flow of chloride is close to zero, the action of GABA is shunting. Shunting inhibition 

has no direct effect on the membrane potential of the cell. However, it minimizes the effect 

of any coincident synaptic input, by decreasing the electrical resistance of the cell's 

membrane. A developmental switch in the molecular machinery controlling the 

concentration of chloride inside the cell is responsible for the changes in the functional role 

of GABA between the neonatal and adult stages. Consequently, the role of GABA changes 

from excitatory to inhibitory as the brain develops into adulthood [169]. 

Two general classes of GABA receptor are known: GABAA in which the receptor is 

part of a ligand-gated ion channel complex, and GABAB metabotropic receptors, which are 

G protein-coupled receptors that open or close ion channels via intermediaries (G proteins) 

[164]. Neurons that produce GABA are called GABAergic neurons, and have mainly 

inhibitory action on receptors. For example, Medium Spiny Cells are a type of typical 

inhibitory CNS GABAergic cells. In mammals, some GABAergic neurons, such as 

chandelier cells, are also able to excite their glutamatergic counterparts [170]. There are 

several papers and clinical reports to link GABA to mood disorders and depression 

[171-174]. Depression is usually associated with decreased GABAergic function, while 

various antidepressant manipulations incline to increase it [175]. Low GABA function is 
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proposed to be an inherited biological marker of vulnerability for depression. Positive 

modulators of GABA-A receptors can have antidepressant actions, while GABA-A 

negative modulators often produce depression. There is more evidence for the role of 

GABA in depression [176, 177]. 

 

 

Figure 4.8 The binding between Anti-GABA molecules and gold film sensing area. The 

Anti-GABA consists of sulfur head groups, alkyl chains, and terminal groups. A 

gold-sulfur bond is strong, not only involving inorganic sulfur ligands but also thiolates. 

Gold has a high electronegativity so it forms moderately strong bonds to sulfur. This bond 

is widely employed to attach biological linkers, functional groups and other molecules to 

Colloidal gold nanoparticles for research purposes [185].  

The conventional method to measure concentrations of GABA under the extracellular 

conditions is by using liquid chromatography, with electrochemical detection by pre-/post- 

column derivation [178-181], fluorescence, micellar electro-kinetic chromatography and 

laser-induced fluorescence detection [182-184]. However, the disadvantages of 

chromatographic methods are baseline drift and additions of solvent and internal standards 

[185]. Moreover, it is very difficult to detect GABA directly, because of its insensitive to 

spectroscopic method. Therefore, it is necessary to develop a simple, rapid and reliable 

method for direct measurement of GABA, and the Love wave sensor is an attractive choice. 

The first thing needed to consider was how to immobilise GABA on the Love wave sensor.   

It is difficult to directly bind GABA with gold sensing film on the sensor because there are 

no chemically specific gold-GABA bonds (in contrast to the strong gold-sulfur bond that 
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forms when thiols are immobilised on a gold surface). Nevertheless, I investigated whether 

any non-specific binding occurred by arranging solutions of GABA on the gold sensing 

area of the device. However, the measurement results showed that there was almost no 

frequency shift. This result implied that the binding between GABA and gold was weak 

and most GABA molecules were removed from the surface of the sensor after rinsed with 

buffer solution. However, if binding GABA molecules with its conjugate members, it is 

possible to fix the later on the gold film, then measuring GABA by Love wave sensor 

[185]. In this study, GABA powder was purchased from Sigma-Aldrich (Sigma, A2129) 

and its conjugate members, Anti-GABA, can also be provided from the same company 

(Sigma, A2052). In addition, it can be known that there is a thiol structure within the 

Anti-GABA molecule from the instructions of the product. Thiol structure organize a stable 

binding on gold surfaces by virtue of the strong affinity between sulfur head groups and 

gold substrates, and to intermolecular interactions (e.g., van der Waals interaction between 

the alkyl chains and electro- static interactions between the sulfur head groups and between 

charged or polar terminal groups) (figure 4.8) [185]. Because it is easy to prepare to 

immobilise Anti-GABA on the gold film, and its stability under ambient conditions, 

Anti-GABA was applied to the measurement of GABA. 

The first experiment in this section was conducted to verify that the binding between 

Anti-GABA and gold film of sensing area is a stable state. Before each measurement, the 

sensing area of the sensor was completely cleaned and the clean method was described in 

chapter 4.1. Next, a 2μl Anti-GABA droplet (Sigma, A2052) with a concentration of 

10mg/ml was dropped by using a pipette. After 15 minutes later, the solvent of the 

Anti-GABA solution evaporated naturally, and the sensing area was rinsed with PBS. The 

aim of this process was to remove the unfirmly immobilised Anti-GABA molecules on the 

surface. After that, the surface of the sensing area was dried by nitrogen stream, and the 

frequency shift of the sensor was monitored. Then the experimental processes were 

repeated 5 times and the results of measurement are shown in figure 4.9. 
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Now, the immobilisation of Anti-GABA on the sensor is stable has been confirmed. 

Because I would like to arrange as many Anti-GABA molecules on the surface of the 

sensing area as possible, the experiments to investigation the saturation concentration of 

Anti-GABA on the sensing area were designed. The processes of the experiments are as 

follows: First, the sensing area of the sensor was rinsed in PBS (Sigma, D8537) for 30 

minutes. After that, the nitrogen stream was used to dry the surface. Next, the sensor was 

treated in the oxygen Plasma Asher (100Watt, 180 seconds). The next step was to arrange a 

2μl Anti-GABA solution (Sigma, A2052) with the concentration of 1mg/ml on the sensing 

area. After 15 minutes, the solvent of the Protein A solution had been evaporated naturally, 

and only left the Anti-GABA molecules on the sensing area. Then, redundant Anti-GABA 

molecules that were not firmly immobilised on the sensing area will be removed by PBS 

rinsing for 10 minutes. Afterwards, there were still some Anti-GABA molecules 

immobilised on the sensor and the frequency shift of the device was measured. After 

measurement, the sensing area is cleaned again to remove all particles on the sensor. Next, 

the measurement with the same concentration of Anti-GABA will be repeated 5 times. 

According to the above processes, the frequency shifts with different concentrations of 

Anti-GABA solution from 1mg/ml to 10mg/ml were measured. The relationship between 

frequency shift and concentration of Anti-GABA is displayed in the figure 4.10. The data 

points in the figure are the medians for measurements in each Anti-GABA concentration. 

The deviations in each measurement of concentration were all less than 2 KHz, and shown 

in the error bars in the figure 4.10. When the concentration of Anti-GABA was less than 

7mg/ml, it seemed to be linear between the frequency shift and the concentration. A higher 

Anti-GABA concentration could lead to more frequency shift. However, when the 

Anti-GABA concentration exceeded 7mg/ml, the frequency shift of the sensor could only 

increase from 75.6 KHz to 76.6 KHz. The change of frequency shift in this range (from 

7mg/ml to 10mg/ml) was less than the measurement deviations, so the increase of the 

frequency shift can be neglected. It can be considered as saturation concentration was 
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7mg/ml. 

 

Figure 4.9 The result of measuring frequency shift of Anti-GABA solution with the 

concentration 10 mg/ml. The experiments are repeated 5 times and the median of 

measurements is 76.6 KHz. The variations among these 5 measurements are less than 1 

KHz. This experiment demonstrates that the binding between Anti-GABA molecules and 

gold film of sensing area is stable and insoluble. 

 

Figure 4.10 The relationship between frequency shift and Anti-GABA concentration. 

Under the saturation concentration of 7mg/ml, frequency shift rises almost linearly with 

the increase of Anti-GABA concentration. When the concentration of Anti-GABA is higher 

than 7mg/ml, frequency shift does not change significantly, because the sensing area is 

almost saturated by the Anti-GABA molecules. 

Since the Anti-GABA molecules had been successfully immobilised on the sensor, 
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they could capture GABA molecules in the test specimens and the frequency shifts of the 

sensor were monitored. The processes of the experiment include three parts. First part was 

to clean the device before each measurement and the cleaning method according to the 

description in chapter 4.1. Second part was to immobilise a layer of Anti-GABA molecules 

on the gold sensing area and it had been complete as the above paragraph. Third part was 

to arrange various concentrations of GABA solution on the sensor and the frequency shifts 

of the device were measured. The volume of the target GABA solution was 2μl. In addition, 

the time for GABA molecules binding with Anti-GABA molecules naturally was 15 

minutes. After 15 minutes, the sensing area was rinsed with PBS to remove the redundant 

GABA molecules that were not well bound with Anti-GABA molecules on the surface. 

Next, the surface of the sensing area was dried by nitrogen stream, and the frequency shift 

of the sensor was measured. The range of concentration of GABA solution was from 

0.01mg/ml to 0.1mg/ml. There were five measurements in each concentration, and the 

deviations of the frequency shift were all less than 2 KHz. The results of the experiments 

are displayed in the figure 4.11. 

 

Figure 4.11 The result of measuring frequency shift of the different concentration of 

GABA solution. With the increased concentration of GABA solution, frequency shift of the 

sensor rises linearly. 
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The Love wave biosensor in this study has the capability to work in dry or liquid 

states (not at the same time). Under the dry state, the experiments of measuring Protein A, 

IgG, Anti-GABA, and GABA molecules had been conducted and the results could confirm 

that the mass variations of the test specimens reflected the linear changes of frequency 

shifts of the device. However, if the measurement environment of the sensor was only 

immersed in the liquid, the frequency shift of the device would become unpredictable. 

Although the frequency shift of the device could still reflect the mass changes of the 

solutions, other variables (viscosity, conductivity of the solutions) would influence the 

measurement results. The result of figure 4.1 provides enough information to explain the 

suitable working environment of the Love wave sensor in this study is in the dry state. 

Therefore, it is necessary to develop another detection method to aid the Love wave sensor 

working in the liquid media. In addition, the aim of augmenting these measurements with 

electrochemical impedance ones is to enable the Love wave sensor to be used to accurately 

characterise the test specimens in pure liquid state. The electrochemical impedance 

measurement is especially applied in the liquid environment so an impedance sensor was 

selected to work together with the Love wave sensor. The details of working theory of the 

impedance sensor and how these two sensors cooperate to measure targets are in the 

following chapter. 
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Chapter 5 Experimental results of impedance sensor 

5.1 To add an impedance sensor on the Love wave sensor 

In the previous section 2.4, when fabricating the Love wave sensor, I deposited a 20 

nm thick gold film to act as the sensing area. This sensing area is rectangular in shape and 

has a 100 μm gap in the middle. The direction of the gap is perpendicular to the direction 

of propagation of the Love wave. This allows the two separated gold films to be used as 

the electrodes for electrochemical impedance sensing. Thus, the Love wave sensor in this 

device can be used to measure the mass of the immobilised analyte under both dry and wet 

conditions, with the impedance sensor function detecting the electrochemical impedance of 

the same immobilised analyte in liquid conditions alone. The biggest advantage of the 

impedance sensor is that it is sensitive to the surface coverage of molecules bound to the 

substrate and insensitive to the mechanical strength (viscoelasticity) of the bonds involved 

(strong or weak links) – the impedance measurements depend on the ability of redox and 

ionic species to diffuse around the adsorbed molecules and interact with the underlying 

metal electrode i.e. impedance measurement are sensitive to the area of the electrodes that 

are not covered by adsorbed molecules. In contrast, the Love wave sensor is sensitive to 

the mechanical rigidity of the coupling. This mechanical rigidity is especially sensitive to 

the solvation state of the bound molecules and thus to Love wave measurement in liquids. 

It is important to appreciate that although Love wave measurements are sensitive to the 

adsorption of molecules in liquids, absolute calibration of the amount (mass) of material 

adsorbed is problematic if there is a significant (unknown) viscoelastic component to the 

linkage between the molecules and the substrate. Therefore, using information from the 

electrochemical impedance results can provide more information about the analyte and the 

accuracy (or calibration) of the Love wave sensor measurements in a liquid environment 

(n.b. the titanium deposition calibration method was performed under dry conditions and it 

would be expected that the coupling between a metal film and the substrate would be much 
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more rigid than for macromolecular organic molecules such as IgG and Protein A).  

Usefully, neither of these two sensors requires special reagents so they are label-free 

sensors. In addition, the fabrication of the device is not too complicated and it is easy to 

miniaturise. This may make the system suitable for point-of-care diagnostics and 

bio-material detection. Moreover, the working frequency of the Love wave sensor in this 

study was about 115 MHz, and the frequency range of testing signals used in 

electrochemical impedance sensor was from 10 Hz to 1 MHz, respectively. Because the 

frequency ranges of signals used in these two sensors were very different, the problem of 

signal cross-talking or interference is avoided. 

The theory of an electrochemical impedance sensor has been well introduced in 

electrochemical technology books [186]. Like all electrochemical measurement techniques, 

employing impedance detection for biosensor technology has some fundamental 

characteristics. These dictate the electrical circuits used in the electrochemical 

measurement. The circuits generally detect an AC current following the application of an 

AC potential, which is the most commonly used method for impedance experiments. 

Alternating current (AC) voltage sources are usually specified to have a sinusoidal wave 

shape and defined frequency. Both voltage and current oscillate as in figure 5.1. When the 

voltage or current is applied to a system that has capacitive and resistive components, this 

oscillation causes a phase difference between the current and voltage, because AC 

excitation signal and sinusoidal current response are based on Ohm’s law. As can be seen 

in figure 5.1, the sinusoidal fluctuation of both current and potential show a difference, this 

difference, Φ, is a function of the AC resistance (or impedance). The relationship between 

current and voltage can be described by the equation (5.1) (Z: impedance, Vt: voltage in a 

time, It: current in a time, V0: voltage at zero point, I0: current at zero point, ω: frequency, t: 

time). 
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Figure 5.1 Alternative current (AC) is a kind of signal that magnitude varies with time and 

the range is from positive to negative. Φ is the phase difference between voltage (Vt) and 

current (It). 

In equation (5.1), impedance is represented by Z, and Φ is a phase shift of AC; 

furthermore this phase shift is angle of the impedance curve in a Nyquist plot. This theory 

has been used in biosensor technology for a long time; its aim is to examine the electrical 

characteristics of an electrode interface after formation of an immobilised layer and/or 

electron transfer interactions between solution or surface bound molecules and an 

underlying metal electrode. In general, the presence of charged groups of molecules in the 

solution between the two electrodes influences the system impedance, and those in layer 

nearest the electrode surface have the greatest influence on electrical characteristics of 

electrode. These ions cause changes in the distribution of electrode surface charge and 

consequently a variation in the capacitive current. The electrical measuring circuit of the 

system measures this as the impedance increases or decreases [187]. 
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(5.1) 

An advantage of electrochemical impedance sensor over other electrochemical 

measurement techniques is the opportunity to model the system response as an electrical 

circuit that comprises a combination of resistors and capacitors.  The model circuit is 

designed so that it will have the same electrical response as the measured Nyquist plot for 
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the electrochemical system. Figure 5.2 shows a typical electrical circuit model for an 

impedance curve obtained from simple electrochemical measurements. As you can see 

there are both resistors and capacitors in figure 5.2. The series capacitance element (Ctest) 

and resistance element (Re) represent the electrode surface impedance and the series 

resistance element (Rs) corresponds to the solution resistance. The capacitor Cd represents 

capacitance of electrical double layer between electrode and solution, resistor Re represents 

resistance of the electron transfer interactions on the surface of the electrode. In typical 

electrochemical impedance measurements, the Nyquist plot of the electrode does not start 

from the (zero, zero) point; this means that the solution in the cell has a non-zero resistance 

(If it started at the zero point, it would mean the resistance of solution “Rs” does not exist). 

Therefore a resistance element (Rs) is always added in circuit model. The next part of the 

curve (going from a high to low frequency) shows a semi-circular impedance curve; this is 

characteristic of resistance occurring in parallel with capacitance. Thus Re is added to the 

capacitance, Cd, which occurs because of the electrical double layer. Variations in the 

impedance curve will result in changes to the structure and values in the electrical circuit 

model; for example, a circuit element can be added in series after the Re circuit element 

[188]. This additional circuit element, a capacitor Ctest, represents the capacitance 

generated by the layer of test specimen on electrode surface. This capacitor occurs when an 

immobilised layer is deposited on the electrodes, the dielectric constant of which is 

different from redox couples in solution.  

The value of Ctest is related to the interaction between the electrode surface and 

solution and can correspond to a mass transfer towards electrode surface. However, this 

interaction is not only due to diffusion effects, but it also reflects electron transfer to/from 

molecules on the surface and in solution. Therefore at lower frequencies, after the 

semi-circle, the Nyquist curve varies in a linear shape (a straight line). The interaction 

between electrode surface and solution, determine the relative values of Ctest and electrode 
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surface resistance (Re). This balance can be influenced by mass transfer and after any 

increase in mass transfer the value of Ctest gets larger relative to the electrode surface 

resistance (Re) [189-191]. As you can see there are a number of factors in the impedance 

that contribute to the design of a circuit model. These include the surface of the electrode, 

content of the solution and characteristics of any redox couples present.  

 

Figure 5.2 (a) Nyquist plot curve of the measurement for impedance spectroscopy. The x 

axis is real part impedance and y axis is imaginary part impedance. The data points in this 

figure are measured from the same sample with a frequency range. (b) Equivalent circuit 

model for impedance sensor. The Nyquist plot curve belongs to the Faradaic impedance 

case. Cd represents capacitance of electrical double layer between electrode and solution. 

Re represents resistance of the interaction on the surface of the electrode. Rs represents 

resistance of the solution. Ctest represents capacitance which is related to the layer of test 

specimen on electrode surface. 

Impedance sensors which are based on electrochemical impedance spectroscopy (EIS) 

methods are being developed as high quality substitutes for fluorescent staining, magnetic 

counting, microdialysis, plate-culture techniques, and other clinical laboratory methods. 

For example, electrochemical biosensors offer a number of advantages over optical, 

ultrasonic, magnetic, and other diagnostic principles employed in clinical and biomedical 

settings. The increased interest in application of electrochemical technology as a basis for 

point-of-care biomedical diagnostic devices and sensors arises from high sensitivity, 
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selectivity, temporal and spatial resolution, rapid response, simplicity of rapid screening 

procedures, label-free non-invasive sensing, cost effectiveness, versatility, flexibility of 

design, easiness of integration, compatibility with micro-fabrication technology, high 

throughput screening, and the ability to perform in vivo and respond adequately to the 

dynamic nature of living systems [192]. The small size of electrochemical devices allows 

them to be used in microfluidic products and sensor arrays when simultaneous detection of 

several analytes present in low-volume sample is required. One of the examples of in vivo 

application of electrochemical technology is the use of fast scan voltammetry with 

implanted microelectrodes, which produced a unique fingerprint for dopamine with 

excellent selectivity and sensitivity [193]. Microelectrode arrays can often reliably record 

neural activity for several months after the implantation. Since the pioneering works of 

Schwan in 1950s, the foundation was laid for the impedance analysis and interpretation of 

biological cells dispersions [194]. Since then many researchers have characterized 

biological colloidal suspensions [195, 196], developed “Coulter counters” and capacitive 

cytometers for bio-particles detection [197, 198], designed enzyme-based biosensors for 

glucose monitoring [199], and practiced electrophoretic and dielectrophoretic separations 

of drugs, proteins, cells, DNA, and pathogenic bacteria [200-202]. Impedance 

spectroscopy has been used to study biomedical and pathogenic cell cultures, which is 

extremely useful for both medical diagnostics of many major clinical complications and 

early detection and prevention of infectious diseases [203]. 

To my knowledge, there is no related research about combining Love wave sensor 

with impedance sensor in the same device. As a result, I would like to invent a new type of 

sensor that can take advantage of these two sensors in one chip to measure analytes and 

determine or calibrate the accuracy of solution based Love wave measurements. 
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5.2 The calibration of the impedance sensor 

There are many factors that influence the measurement data of impedance sensors. 

For example, electrical conductivity of solution is very important for choosing frequencies. 

In high electrically conducting solutions, i.e. those in which the solution contains high ion 

concentrations, low frequencies can be used, especially in the presence of a redox couple 

solution. As indicated above, a potential must be applied to gain a proper current signal, 

this potential is called the AC excitation signal. When the solution includes redox couple 

such as ferricyanide or ferrocyanide, according to the oxidation or reduction potentials of 

the materials, the small applied AC potential corresponds to the beginning of the 

electrochemical transformation. In order to obtain higher sensitivities when doing these 

measurements, use of the faradaic impedance model is proposed as a method to allow 

lower frequencies to be used.  This is because at these frequencies the reduction/oxidation 

properties of redox couples allow the electrons (which are involved in this 

oxidation/reduction) to move more easily. This transportation can be measured as an 

electron transfer resistance. As stated above, the electrical circuit model is constructed by 

examining the characteristics of the impedance curve. Thus, impedance spectroscopy 

provides a sensitive and label free detection due to it being sensitive to the electrode 

surface character. Electrode surface modification plays a key role in impedance 

measurements. If the modification is inhomogeneous on the electrode surface or there are 

gaps in it, allowing a direct interaction between the bare electrode surface and electrolyte, 

the electrons can pass through the electrode surface without confronting any electrical 

resistance. This will strongly influence the impedance spectrum. In this case of 

inhomogeneity, the capacitance element of the circuit model is redefined as a constant 

phase (Warburg) element to solve this problem. Based on the above considerations, it is 

necessary to calibrate the sensor and regulate the measurement conditions. In this study, 

the sensor was connected to an impedance analyser (HP, 4192A), which is capable of 
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varying the measuring frequency from 5 Hz to 13 MHz and directly reporting the measured 

real and imaginary parts of the impedance. The magnitude of AC excitation signal was 

chosen to be 100mV so as to provide a small, rather than large, perturbation to the solution 

redox composition. Importantly, the solution contained both K3Fe(CN)6 and K4Fe(CN)6 to 

provide the redox couple ([Fe(CN)6]
3−

/[Fe(CN)6]
4−

) and their concentrations were 5 mM. 

The equivalent circuit model of total measurement system is shown as figure 5.3. 

The cell of the system was constructed using a PDMS (Polydimethylsiloxane) ring to 

define the area of electrodes exposed to the solution, as shown in figure 5.4. The ring was 

stuck across the two electrodes with the gap was bisecting the ring. The calibration of total 

measurement system in this impedance sensor was conducted according to the operation 

manual of the impedance analyser. 2μl the redox couple solution was dropped inside the 

PDMS ring to form the electrochemical cell. The observed value of Rconnect was 46 Ω and 

this value was far less than other resistances in this system, so it can be neglected when 

analysing the measurement data. After calibration, the values of Rs (307 Ω), Re (540 KΩ), 

and Cd (0.105 nF) were obtained respectively when fitting the data to figure 5.2. 

 

Figure 5.3 The equivalent circuit model of total measurement system in this impedance 

sensor. Rconnect represents resistance of wire and the connection interface with the electrode. 

After calibration, Rconnect can be neglected because their values are far less than other 

resistors in this system. Cd represents electrical double layer capacitance. Re represents 

interaction electrode resistance. Rs represents the redox couple solution resistance. Ctest 

represents capacitance that generated by the interaction of surface of the electrode and 

solution so the test specimen affects the value of Ctest significantly. 
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Figure 5.4 (a) Top view of the PDMS cell (b) Side view of the PDMS cell. 

Next, the experiment was designed to verify that equivalent circuit model used to 

describe our impedance sensor is reasonable. Three kinds of conditions (clean, PMMA 

coated and SAM coated electrodes) were chosen to create different electrode surfaces. 

Clean electrodes (it will be called as blank in the following description) represent the 

situation where there was only a redox couple solution in the cell and no other molecules 

immobilised on the surface of electrodes. PMMA coated represent the condition where 

there was a PMMA (Polymethylmethacrylate) layer of thickness 52nm on the surface of 

electrodes. The PMMA layer was spun coated on the electrodes and its thickness was 

determined by a stylus surface profiler (Dektak 6). SAM coated represents the formation of 

a thin SAM (Self-assembled monolayer) layer on the surface of electrodes. SAM-modified 

substrates were prepared as described previous documents [204-206]. The SAM was 

formed on the surface of the electrodes by first cleaning the device by immersing in 

piranha solution (30:70 v/v solution of 30% hydrogen peroxide H2O2 and concentrated 

sulphuric acid H2SO4) for 5 minutes, and then rinsed by deionized water for 30 minutes. 

After that, the device was dried by a nitrogen stream and treated under oxygen Plasma 

Asher (100 Watt, 180 seconds). The next step was to prepare enough solution for all 

samples to ensure the solution concentration is constant across the sample set. When 

preparing mixed thiol solutions, prepared a stock solution of each thiol separately, and then 

mixed them at the proper proportions for the final stock solution. All assembly containers 

were rinsed with 3-5 ml of solvent. Repeated 2 times and re-cap each container and rinsed 

all beakers, tweezers, etc., to be used in the experiment. The appropriate volume of solvent 
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was measured to a clean solution container. The volume of thiol was dispensed into the 

solvent. Then the solution was shaken for 10 minutes to dissolve. Once dissolved, 

dispensed the planned volume of solution into each sample container. The thiol solution in 

this study was hexadecyl mercaptan with concentration 2mM and was purchased from 

Sigma-Aldrich (1-Hexadecanethiol, 674516 Aldrich). Next, gold electrodes of the 

impedance sensor were immersed in container containing thiol solution. The device was 

handled with tweezers and minimized exposure to air. The samples were stored for 48 

hours because longer assembly times tend to result in better monolayer packing. After 48 

hours, samples were held with clean tweezers and rinsed with solvent for about 10 seconds 

using a clean solvent bottle. Then samples were dried with a nitrogen stream and placed 

each sample in a container with fresh solvent and close the cap. The samples were shaken 

for 3 minutes. Afterwards, all the samples were removed individually and rinsed again for 

about 10 seconds under a steady stream of ethanol. All samples were dried with a nitrogen 

stream and placed devices in clean Petri dishes. It is better to minimize time between 

preparation and use, because SAMs can oxidize over time. 

The measurement processes are as follows. First, the surface of ‘control’ electrodes 

was rinsed in buffer solution (Sigma, D8537) for 30 minutes, and then the surface was 

dried by a nitrogen stream and treated under the oxygen Plasma Asher (100Watt, 180 

seconds) to remove impurities on the sensing area. Next, the cell was filled with redox 

couple solution and connected the sensor with an impedance analyser, which was 

controlled by computer. Then the impedance was measured with a frequency scanning 

from 10 Hz to 10 MHz, and the data (real part impedance and imaginary part impedance) 

was transferred to the computer. This provided the calibration data corresponding to the 

impedance response of the particular redox solution being used. After that, a new 

impedance sensor was connected with a PMMA layer on the surface to the impedance 

analyser. The impedance of the sensor with a PMMA layer was measured and recorded. 
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Next, another new impedance sensor with a SAM layer on the surface was connected to the 

impedance analyser to measure its real part and imaginary impedance. These three sensors 

were thus measured under the identical conditions and any variation in the impedance 

response was due to the surface of the electrodes. The experimental result of these three 

sensors is displayed in figure 5.5. 

The Nyquist plot of experimental results above illustrates the impedance of the total 

measuring system. Since the calibration values of Rs (307 Ω), Re (540 KΩ), and Cd (0.105 

nF) are known in this system, the value of Ctest under different surface conditions on the 

electrodes could be calculated from the measured impedance. The capacitances 

transformed from the measured impedance are shown in figure 5.6. 

 

Figure 5.5 The Experimental Result of measuring different surface conditions on 

impedance sensor. Blank represents that there was only redox couple solution in the cell 

and no other molecules immobilised on the surface of electrodes. SAM represents that 

there was a SAM (Self-assembled monolayer) layer on the surface of electrodes. PMMA 

represents that there was a PMMA (Polymethylmethacrylate) layer with thickness 52nm on 

the surface of electrodes. The scanning frequency range is from 10 Hz to 10M Hz. The 

magnitude of AC excitation signal is 100 mV. 
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Figure 5.6 The transformation of imaginary part impedance to capacitance for different 

surface conditions on impedance sensor. C_blank represents the capacitance Ct of nothing 

on the surface of electrodes except redox couple solution in the cell. C_PMMA represents 

the capacitance Ct of 52nm thick PMMA layer on the surface of electrodes. C_SAM 

represents the capacitance Ct of the SAM layer on the surface of electrodes. 

With the increase of frequency, the capacitance Ctest decreases sharply. No matter 

what the surface conditions I measured, when the measuring frequency is more than 1 KHz, 

the value of capacitance Ctest approximates a constant that is much smaller than Cd. This 

phenomenon explains why the capacitance of double layer Cd dominates the capacitance of 

total system at high frequencies. However, at low frequencies such as 10 Hz, the value of 

capacitance Ctest is much larger than Cd; so Ctest becomes a main contributor in total system 

capacitance. Therefore, fixing the measuring frequency at a low value (10 Hz) can be used 

to obtain significant values of Ctest. Compared with three different surface conditions 

(blank, PMMA, and SAM), the highest capacitance occurred in the surface of electrodes 

with a PMMA layer; this is followed by the surface of electrodes with a SAM layer; the 

lowest capacitance occurred for the electrodes with a clean, control surface (C_blank). This 

result demonstrates that to coat or immobilise molecules on the impedance sensors can 

indeed change their surface capacitance. These changes influence the interaction of 
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transferring charges between electrodes and solution so that the capacitance value (Ctest) 

varies with different surface conditions of the electrodes. As a result, the equivalent circuit 

model in this study (figure 5.3) works and I can utilise it with the impedance sensor to 

detect the density of molecules binding on the surface of the electrodes. 

5.3 Measurement of Protein A 

As mentioned in the previous section 4.1, Protein A is a useful molecule in 

biochemical research and can be measured with using Love wave sensors. Now Protein A 

also could be measured with impedance sensor and examine the function of total 

measurement system. The first experiment in this section is to discover how much time I 

need to immobilise Protein A on the electrodes of the sensor in order to obtain stable, 

equilibrium measurements. There were three surface conditions in the following 

experiment. One is the control condition that I didn’t involve any Protein A molecules but 

included a SAM layer on the surface of the electrodes. Another is to immobilise Protein A 

molecules on the SAM layer. The last one is to immobilise Protein A directly on the 

surface of the electrodes. The experimental procedures are described as follows. First, it is 

necessary to form a SAM layer on the surface of the electrodes as above mentioned in the 

previous section 5.2. Then the sensor was connected with impedance analyser (HP, 4192A) 

and the cell on the surface of the electrodes was filled with the redox couple solution. Next, 

the impedance value of the sensor was recorded every 10 minutes. After 120 minutes, the 

impedance value was recorded every 30 minutes until 300 minutes. After the 

measurements, the inside of the cell was cleaned by buffer solution rinsing and treated by 

oxygen Plasma Asher to remove all the material from the surface of the electrodes. 

Afterwards, a 2μl protein A solution (Invitrogen, 10-1011) with concentration 25mg/ml 

was placed in the cell, then the cell was filled with the redox couple solution again. The 

next step was to connect the sensor with the impedance analyser and the impedance value 
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was monitored every 10 minutes. After 120 minutes, the impedance value was recorded 

every 30 minutes until 300 minutes. Next, another impedance sensor without SAM layer 

on the surface of the electrodes was used to detect directly the Protein A molecules 

immobilisation. Again, before measurement, inside of the cell was cleaned by buffer 

solution rinsing and treated by oxygen Plasma Asher to remove impurities on the surface of 

the electrodes. Next, a 2μl protein A solution with concentration 25mg/ml was arranged in 

the cell, then the cell was filled with the redox couple solution. Then the sensor was 

connected with the impedance analyser and measured the impedance value every 10 

minutes. After 120 minutes, the impedance value was recorded every 30 minutes until 300 

minutes. The result of the capacitance change during the period between 10 minutes and 

300 minutes is displayed in figure 5.7. It can be seen that C_SAM is constant. It expresses 

that the SAM is a stable layer and influence the value of capacitance Ctest as soon as SAM 

layer be formed on the surface of the electrodes. Both C_PA and C_SAM_PA 

(corresponding to Protein A being adsorbed onto clean and SAM modified electrodes) 

increased steadily from the beginning of the measurement to 120 minutes. Then the values 

of them did not change much and remained at a steady state for a further 2 hours. This 

phenomenon could be explained by the quantities of Protein A molecules immobilised on 

the surface increasing with time from start of the solution being added to the cell, up to a 

period of 120 minutes. Notably, the value of C_SAM_PA is larger than those of C_SAM or 

C_PA. This indicates that adding more molecules (SAM and Protein A) on the surface 

increases the capacitance. 
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Figure 5.7 The result of capacitance change with time. The x axis is the value of 

capacitance Ct in equivalent circuit (figure 5.3). C_PA represents the capacitance Ct of 

immobilising Protein A directly on the surface of electrodes. C_SAM represents the 

capacitance Ct of the SAM layer on the surface of electrodes. C_SAM_PA represents the 

capacitance Ct that coating a SAM layer first then immobilising Protein A molecules on 

SAM. 

The next experiment in this section was conducted to verify whether the 

immobilisation of Protein A molecules on the surface of the electrodes is a stable state. 

Before each measurement, the inside of the ring on the sensing surface was cleaned 

completely, and the cleaning processes were the same as above mentioned. A 2μl Protein A 

solution (Invitrogen, 10-1011) with concentration 25mg/ml was arranged in the cell, then 

the cell was filled with the redox couple solution. After 120 minutes, the cell was rinsed 

with buffer solution to remove the unfirmly immobilized molecules of Protein A. After that, 

the cell was filled with the redox couple solution again and impedance was monitored. 

These experimental processes were repeated 5 times. Next, a SAM layer was formed on 

the surface of the electrodes in the same device. Then a 2μl protein A solution 

(concentration 25mg/ml) was arranged into the cell, and the cell was also filled with the 

redox couple solution. After 120 minutes, the cell was rinsed with buffer solution to 

remove unbound Protein A molecules on the surface of the electrodes. Next, the cell was 

filled with the redox couple solution again and the impedance was measured. These 
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experimental processes were also repeated 5 times. The recorded impedance data were 

transferred to the capacitance value and the experimental result is displayed in figure 5.8. 

 

Figure 5.8 The result of measuring capacitance Ct of the Protein A solution with a 

concentration 15mg/ml. C_PA represents the capacitance Ct of immobilising Protein A 

directly on the surface of electrodes. C_SAM_PA represents the capacitance Ct that coating 

a SAM layer first then immobilising Protein A molecules on SAM. It can be found that the 

variations among these 5 measurements are less than 5%. This experiment interprets that 

the duration of 120 minutes is enough to let Protein A molecules immobilise firmly on the 

surface of the electrodes, and the binding is insoluble by washing. 

In the next experiment, the relationship between capacitance Ctest and concentration of 

Protein A solution was investigated. Before each measurement, the inside of the ring on the 

sensing surface was cleaned completely, and the cleaning processes were the same as 

above mentioned. The concentrations of Protein A solution used in this experiment were 

0.01mg/ml, 0.1mg/ml, 1mg/ml, 10mg/ml, 20mg/ml, and 25mg/ml, respectively. The 

processes of measurement were according to the above descriptions and the results are 

displayed in figure 5.9. 
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Figure 5.9 The result of measuring capacitance of different concentrations of Protein A 

solution with a frequency range from 10 Hz to 1000 Hz. 

From figure 5.9, it can be found that no matter what concentration of Protein A 

solution used in the experiment, the capacitance Ctest fall with the increase of the measuring 

frequency. In addition, I was interested in the values of capacitance that were measured in 

the low frequency range (below 100 Hz). In the low frequency range, the differences of 

capacitance among the different concentrations of Protein A solution are larger than those 

in the high frequency range. In particular, the data at frequency 10 Hz was focused where it 

was clear that the capacitance of Protein A solution obtained with high concentrations 

(10mg/ml, 20mg/ml, or 25mg/ml) was larger than that obtained with low concentrations 

(0.01mg/ml, 0.1mg/ml, or 1mg/ml). However, the differences among these three high 

concentrations were not significant. Thus, I focused on measuring the capacitance Ctest at 

10 Hz, and measured a wider range of different concentration Protein A solutions 

(0.008mg/ml, 0.009mg/ml, 0.05mg/ml, 0.5mg/ml, 5mg/ml, 12mg/ml, 13mg/ml, and 

14mg/ml, respectively). The data corresponding to these results is displayed in figure 5.10. 
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Figure 5.10 The relationship between capacitance Ctest and Protein A concentration on the 

impedance sensor without a SAM layer. The x-axis is Protein A concentration expressed in 

log scale. The y-axis is the value of capacitance Ctest. 

From figure 5.10, the value of capacitance Ctest increases with the increase of Protein 

A concentration in the range between 0.01mg/ml and 14mg/ml. When the concentration of 

Protein A is lower than 0.01mg/ml, variations in capacitance seems to be insensitive to the 

concentration of Protein A solution. As a result, the limit of detection (LOD) of this sensor 

can be considered as 0.01mg/ml. When the concentration of Protein A is higher than 

14mg/ml, higher Protein A concentration can only cause slightly increase of capacitance. 

The reason is that at this concentration, the surface of the electrodes is almost saturated by 

the Protein A molecules, and more Protein A molecules cannot be immobilized on the 

sensor and so change the value of capacitance Ctest. This result is similar to the Love wave 

experimental result in section 4.1, so the saturation concentration of Protein A in this 

system is 14mg/ml. In the range between 0.01mg/ml and 14mg/ml, the sensitivity of the 

impedance sensor can be calculated as 118nF·ml/mg. 

I was also interested in the sensitivity and LOD of the sensor with SAM layer on it, so 

the following experiment was conducted. The sensing area was cleaned completely before 

each measurement. The concentrations of Protein A solution used in this experiment were 
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0.8ng/ml, 0.9ng/ml, 1ng/ml, 10ng/ml, 100ng/ml, 1μg/ml, 0.01mg/ml, 0.1mg/ml, 1mg/ml, 

10mg/ml, 12mg/ml, 13mg/ml, 14mg/ml, 15mg/ml, 20mg/ml, and 25mg/ml, respectively. 

The processes of measurement were according to the above descriptions. The results of the 

experiments are displayed in the figure 5.11. 

 

Figure 5.11 The result of measuring capacitance of different concentrations of Protein A 

solution on the impedance sensor with a SAM layer. 

The trends of curves in figure 5.11 is similar to the result in figure 5.9. The data of 

measuring frequency at 10 Hz was focused and the relationship between capacitance Ctest 

and concentration of Protein A was transferred as figure 5.12. From figure 5.12, it can be 

found that higher concentration of Protein A solution causes the higher value of 

capacitance Ctest in the concentration range between 1ng/ml and 14mg/ml. When the 

concentration of Protein A is lower than 1ng/ml, again it seems to be insensitive to the 

change in capacitance. Therefore, the limit of detection (LOD) of the impedance sensor 

with a SAM layer could be considered as 1ng/ml; this value of the LOD is lower than that 

on the sensor without a SAM layer. Furthermore, again, when the concentration of Protein 

A exceeded 14mg/ml, higher Protein A concentrations led to only a slight increase of 

capacitance. This was again because Protein A molecules become difficult to immobilise 

on the sensor when the concentration of Protein A solution exceeded the saturation 

concentration. It can be known that the saturation concentration of Protein A in this system 
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is 14mg/ml, and this result is the same with figure 5.10 and the Love wave measurements 

of section 4.1. In the range between 1ng/ml and 14mg/ml, the sensitivity of this sensor can 

be calculated as 120nF·ml/mg. The sensitivity of the sensor with a SAM layer is not much 

different from that of the sensor without a SAM layer, but the detection limit is much 

lower. 

 

Figure 5.12 The relationship between capacitance Ct and Protein A concentration on the 

impedance sensor with a SAM layer. The x axis is Protein A concentration expressed in log 

scale. The y axis is the value of capacitance Ct. 

5.4 Comparison of impedance sensor and Love wave sensor 

measurements 

Now the biosensor which combined with two kinds of sensors (Love wave sensor and 

impedance sensor) was obtained. The Love wave sensor was capable of measuring the 

mass of the analyte under the dry state on the surface of the sensor based on the calibration 

data obtained from thin film Ti deposition. The impedance sensor could detect the 

immobilisation state of the analyte and its capacitance under the liquid state (the changes in 

capacitance are related to the fraction of the surface that is covered by the adsorbed 

species). As a third piece of the biosensor characterisation, it was an interesting issue to 

measure the analyte using Love wave sensor and impedance sensor at the same time under 
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liquid state. In order to understand what happens with these two measurements at the same 

time, the following experiment was designed. First, the inside of the cell was cleaned to 

remove all impurities on the sensing area. Next, the IDTs were connected to the network 

analyser to measure its central resonance frequency and this frequency was used as the 

reference frequency. The next step is to place a 2μl Protein A solution with a concentration 

0.1mg/ml in the cell, then the cell was filled with the redox couple solution. After 120 

minutes, the immobilisation state of Protein A molecules reached a steady state. Then the 

cell was rinsed by buffer solution to remove the molecules of Protein A that were not 

firmly immobilised on the sensing area. Then the cell was filled with the redox couple 

solution again and the electrodes were connected to the impedance analyser to measure its 

impedance. Following this, the IDTs were connected to the network analyser to measure 

central resonance frequency under the same conditions. The difference between reference 

frequency and central resonance frequency was calculated as the value of frequency shift. 

Next, the device was rinsed with buffer solution and dried by nitrogen stream, then treated 

in the oxygen Plasma Asher (100Watt, 180 seconds) again to remove all Protein A 

molecules on the surface of the device. According to the above processes, the experiments 

were repeated but changed the concentration of Protein A solution. The concentrations of 

Protein A solution I used were 0.1mg/ml, 0.5mg/ml, 1mg/ml, 5mg/ml, and 10mg/ml, 

respectively. The result of the experiment is displayed in figure 5.13. In this figure, the 

x-axis represents Protein A concentration in logarithmic (log) scale. It can be seen that 

increasing Protein A concentration can cause both capacitance and frequency shift rise for 

these sensors. Besides that, the relationship between capacitance and Protein A 

concentration (log scale) approximates linear for impedance sensor. However, the 

relationship between frequency shift and Protein A concentration (log scale) is a little 

complex. In the lower concentration range (between 0.1mg/ml and 1 mg/ml), the frequency 

shift only slightly increases when the Protein A concentration ascends. In contrast, for the 

higher concentration range (between 1mg/ml and 10mg/ml), the frequency shift increases 
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significantly with the increase of the Protein A concentration. 

 

Figure 5.13 The result of measuring different concentrations of Protein A solution by Love 

wave sensor and impedance sensor at the moment. For Love wave sensor, this figure 

presents the relationship between frequency shift and Protein A concentration. For 

impedance sensor, this figure presents the relationship between capacitance and Protein A 

concentration. The solid line is the trend line of the capacitance change for impedance 

sensor. The dot line is the trend line of the frequency shift for Love wave sensor. 

The following paragraph is the discussion that I tried to find the relation between the 

frequency shift from Love wave sensor and capacitance change from impedance sensor. 

First of all, I have known the relation between frequency shift and the mass change on the 

surface of the Love wave sensor is linear. After I calibrated the sensor, I observed a 

standard resonance frequency. Next, I immobilised target molecules on the Love wave 

sensor and measured the resonance frequency of the device. The degree of frequency shift 

was calculated relative to the standard resonance frequency with no added mass. From 

figure 3.9, the frequency shift is a function of the mass on the sensing surface as in 

equation (5.2). 

 ∆𝑓 ∝ 𝑚 (5.2) 
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Where m is the mass on the sensing surface. The mass m is equal to the density of the 

immobilised molecules multiplied by the volume of the immobilised layer. The volume of 

the immobilised layer is equal to the thickness of the immobilised layer multiplied by the 

area of the immobilised layer. Because the cell in this study is a round, the area can be 

expressed as the square of the radius of the cell multiplied by pi. The relation of the above 

description can be expressed in the following equation (5.3). 

 𝑚 = 𝜌𝑚𝑜𝑙𝑒𝑐𝑉𝑙𝑎𝑦𝑒𝑟 = 𝜌𝑚𝑜𝑙𝑒𝑐𝑑𝑙𝑎𝑦𝑒𝑟𝐴 = 𝜌𝑚𝑜𝑙𝑒𝑐𝑑𝑙𝑎𝑦𝑒𝑟𝑟𝑐𝑒𝑙𝑙
2 𝜋 (5.3) 

Where ρmolec is the density of the immobilised molecules. Vlayer is the volume of the 

immobilised layer. dlayer is the thickness of the immobilised layer. A is the area of the 

immobilised layer, and rcell is the radius of the cell. Then I transfer the equation (5.2) and 

(5.3) to a logarithm. The result can be expressed in the following equation (5.4). 

 log(𝑚) = 𝑘′ + 2 log(𝑟𝑐𝑒𝑙𝑙) 

log(∆𝑓) = 𝑘′ + 2 log(𝑟𝑐𝑒𝑙𝑙) 

(5.4) 

Where k’ means the coefficient that is transferred from the density of the immobilised 

molecules, the thickness of the immobilised layer, and π. There will be a linear relation 

between frequency (log scale) and the radius of the cell. In addition, I consider the factors 

that will influence the value of capacitance. It is known that the value of capacitance can 

be expressed as the following equation: 

 𝐶 = 𝜀𝑟
A

4π𝑑𝑙𝑎𝑦𝑒𝑟
 (5.5) 

Where εr is the relative permittivity of the immobilised molecules, and A is the 

effective area between two electrodes. The effective area is related to the coverage ratio of 

the immobilised molecules on the electrode surface. Here I proposed a hypothesis that the 

value of capacitance is a function of the coverage ratio in equation (5.6) 

 𝐶 = 𝑓(𝑐) (5.6) 
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Where f(c) is the function of the coverage rate. When I used Love wave sensor to 

measure Protein A, I obtained that the saturation concentration of Protein A is 14 mg/ml, 

and it is equal to 14 μg Protein A on the Love wave sensor. I assume that the coverage rate 

is 100% as 14μg Protein A on the sensing surface. In addition, I also has known the limit of 

detection (LOD) of the Love wave sensor is 0.022 fg/mm
2
, and it can be transferred to the 

whole LOD of the cell (the area of the cell is about 3.1416mm
2
) is 0.069 fg. Consequently, 

I set the coverage rate is 0% as 0.069 fg Protein A on the sensing surface. Then I 

transferred the data of frequency shift to the coverage rate, add the coverage rate data with 

the concentration of Protein A (dotted line) in figure 5.13, and the result is shown as figure 

5.14. It can be found that the value of capacitance is proportional to the coverage rate, so 

the above assumption I made is reasonable. With the higher concentration of Protein A, the 

coverage rate of immobilised molecules on the sensing surface increase. This is why the 

higher concentration of Protein A causes the larger value of capacitance. In addition, it can 

also be explained that the measurement result of Love wave sensor and impedance sensor 

is correlative. 

 

Figure 5.14 The result of measuring different concentrations of Protein A solution and to 

demonstrate the relationship between capacitance and coverage rate. The coverage rate of 

immobilised molecules on sensing surface is transferred from frequency shift in figure 

5.13. 
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The next experiment was to investigate whether to arrange an impedance sensor 

influence the measurement of the Love wave sensor. The experiments of using Love wave 

sensor to measure different concentrations of Protein A solution were repeated in another 

Love wave sensor which was also arranged an impedance sensor on it. The Result is 

displayed in figure 5.15. The LW1_sensor in this figure presents the data from original 

Love wave sensor, and LW2_sensor in this figure presents the data from another Love 

wave sensor. In each concentration, the measurements of experiments were repeated 5 

times. The error bars in this figure presents the deviations among these measurements. The 

trends of curves in these two sensors are similar, but the differences on frequency shift 

between these two sensors are larger than the error deviations in each concentration. This 

phenomenon can be explained that measurements for each sensor are repeatable, but it is a 

challenge to be reproducible in another sensor. Because the Love wave sensors are very 

sensitive to its sensing surface conditions, very small differences on electrodes of the 

impedance sensor and cell could affect the boundary condition of travelling Love waves 

and cause changes in the frequency shift. Therefore, if I would like to compare the results 

from different compound sensors (Love wave sensor and impedance sensor), it is 

necessary to calibrate these sensors to the same baseline in advance. 

 

Figure 5.15 The result of measuring different concentrations of Protein A solutions by 

different Love wave sensors on compound sensors. 
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The above experiments illustrate a problem in that the linearity of the calibration 

results from using Love waves to measure analytes under liquid conditions (Figure 5.15) is 

different to that obtained when the calibration is done using dry samples (Figure 4.2). This 

might be because the measurement results of Love wave sensors are related to the 

boundary conditions of sensing surface and the degree to which the molecules are on the 

sensing surface may vary depending on the liquid conditions surrounding the analyte 

molecules and the overall amount of analyte that is adsorbed. When the concentration of 

analyte is low, the molecules may be loosely packed on the surface and so be well solvated 

by the liquid, resulting in them being weakly bound to the surface. Therefore, this 

non-rigidity associated with the binding causes the frequency to shift only slightly when 

small amounts of material are adsorbed (low overall surface coverage). In contrast, when 

the concentration of analyte is high, the possibility of molecules binding on the surface 

increases substantially and they may be closely packed together. This compact nature of 

the adsorbed layer leads to a change of frequency shift that is more significant. In addition, 

the ideal condition for measurements using a Love wave sensor is that the binding state of 

molecules is a static state. However, in practical situations, in solution, the process of 

molecules binding is dynamic. In the beginning, molecules are distributed randomly and 

uniformly in the liquid. Then, some molecules are immobilised on the surface and the 

concentration becomes lower in the region near the surface. Other molecules will move 

from a region of high concentration to a region of low concentration, so that the viscosity 

of the liquid changes and affects the boundary condition of the sensing surface. Some 

molecules that are weakly bound with the surface are probable to solve into the liquid and 

depart from the surface. All these processes are dynamic and result in the uncertainty of 

measurement with using Love wave sensor under the liquid condition. However these 

effects would probably only affect dynamic/kinetic Love wave measurements, and not the 

static, steady state Love wave measurements done here. Notably, when using Love wave 

sensor under the dry state, the measurement results are stable because the molecules are 
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rigidly bound with the sensing surface. In contrast, the strength of binding of the analyte 

molecules to the sensor surface may not influence the measurement results of the 

impedance sensor. This is because the impedance sensor response is mainly influenced by 

the coverage area of molecules and the thickness of immobilised layer. That is why I 

integrate Love wave sensor and impedance sensor into the same device, and can use Love 

wave sensor under dry condition as well as utilise impedance sensor under liquid condition 

to measure analytes. Note, the measurements of Figure 5.15 indicate that whilst there is an 

‘offset’ in the frequency shift of the two devices (which may be a consequence of the 

device fabrication), the variation in frequency shift with Protein A concentration is similar. 

It is anticipated that optimisation of the fabrication, size, placement and connections 

associated with the electrochemical impedance electrodes will reduce the device-device 

offsets seen here. 
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Chapter 6 Conclusion and discussion 

6.1 Major finding 

In this study, I developed a biosensor based on the piezoelectric biosensing methods. 

This biosensor consists of a Love wave sensor and an impedance sensor, and both of them 

are label-free biosensor. When applying the sensor to measure analytes, it does not need to 

bind labels (radioactive particles, fluorescence particles, magnetic particles, etc.) or use 

enzyme to generate some special electrochemically active products. In order to maximize 

the performance of the sensor, I choose 64°Y–X lithium niobate (LiNbO3) which is a kind 

of piezoelectric materials as the substrate. On the substrate, there is a pair of interdigital 

transducers (IDTs) which are composed of 100 Ti/Au (thickness are 10/100nm) split-finger 

pairs with a periodicity (λ) of 40μm. The acoustic path length, between both IDTs, is 200λ 

and the IDTs aperture is 100λ. Upon the substrate and IDTs, there is a PMMA guiding 

layer which has an optimised thickness range from 1000 nm to 1300 nm. Through the 

experiments, I have known that the thickness of PMMA in this range can have the 

minimum loss for the travelling Love waves. In addition, a gold layer with thickness 100 

nm is deposited on the guiding layer as the sensing area. The width of the area is 2mm and 

its length is 5mm. Besides that, a 100 μm gap is arranged in the middle of the gold layer to 

separate the sensing area as two electrodes and these two electrodes can be used as 

impedance sensor. The Love wave sensor is measured with network analyser and using 

TRL calibration in advance. All connection with the device had been dealt with impedance 

matching to reduce reflection noise. The central resonant frequency of the Love wave 

sensor is 116.466 MHz; the insertion loss and phase at this frequency is -15.67dB, and 

-84.35 degrees, respectively. The mass sensitivity of this Love wave reaches to 2574 

mm
2
/μg. In addition, the limit of detection (LOD) is 0.022 fg/mm

2
. 

    The Love wave sensor can be used to measure Protein A, IgG, Anti-GABA, and 

GABA. In this study, I have verified that no matter what state Protein A was measured in 
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(dry state or immersed in liquid); the Love wave sensor is capable of providing response of 

frequency shift. However, comparison with electrochemical impedance measurements 

performed on the same samples, at the same time, showed that the Love wave response of 

immobilised Protein A measured in an aqueous solution is complex due to many factors 

(mass, viscosity, conductivity, etc.) which could affect the frequency shift of the device. 

Notably, this complex relation between Love wave frequency shift measured in solution, 

and the mass of immobilised species does not mean that the Love wave device cannot be 

used as a mass sensor in solution.  It just means that it needs to be calibrated and verified 

(standardised) using an additional measurement technique (i.e. in this case, electrochemical 

impedance measurements). Here, I used the dry state analyte measurements of the sensing 

surface to simplify the relation between the frequency shift and the quantities of the 

analytes and found these had a close to linear correlation with the capacitance 

measurements, whereas the solution based Love wave measurements did not. 

If there are more quantities of the analytes, the mass on sensing are is heavier and that 

causes more frequency shift. In addition, the saturation concentration of Protein A solution 

is 14mg/ml. If the concentration of protein A exceeds this value, it is difficult to 

immobilise more Protein A molecules on the sensing area of the Love wave. Besides that, 

experiments in this study also provide evidence that measuring IgG on the Love wave 

sensor by using Protein A to bind with IgG molecules is feasible. The response of 

frequency shift is linear when measuring IgG during the concentration range from 0.01 

mg/ml to 0.1 mg/ml. I use the similar method to measure Anti-GABA and GABA 

molecules. The saturation concentration of Anti-GABA solution for the Love wave sensor 

is 7mg/ml. The result of measuring frequency shift of the different concentration of GABA 

solution (from 0.01 mg/ml to 0.1 mg/ml) represents that with the increase concentration of 

GABA solution, frequency shift of the sensor rises linearly. 

    In this study, I also show that it is feasible to add an impedance sensor on the Love 
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wave sensor. This impedance sensor was calibrated under the specific condition that the 

cell on the electrodes filled with 5 mM redox couple solution (K3Fe(CN)6/K4Fe(CN)6). 

After calibration, this impedance sensor can measure the impedance of analyte under liquid 

state. In addition, the measured impedance can be transferred to the capacitance value Ct 

which is related to the interaction between analyte and electrodes. This impedance sensor 

was used to measure two different materials coating on the electrodes. One is a 52nm 

thickness PMMA layer. The other is a SAM (self-assembled monolayer) which was formed 

with hexadecyl mercaptan. This sensor can distinguish these two materials by their 

impedance values from Nyquist impedance plot. I also used the impedance sensor to 

measure different concentrations Protein A solutions. I discovered that the time of 

immobilizing Protein A molecules on the sensing area takes 120 minutes to reach a steady 

state. In addition, the saturation concentration of Protein A on the sensing area is 14mg/ml, 

and this result is the same as the measurement of the Love wave sensor. Besides that, I also 

discovered that the sensitivity of the sensitivity of the sensor with a SAM layer is not much 

different from that of the sensor without a SAM layer. When I used the impedance sensor 

with a SAM layer to measure Protein A, the sensitivity of the sensor is 120nF·ml/mg. The 

limit of detection (LOD) of the impedance sensor for measuring Protein A can be improved 

by applying a SAM layer on the sensing electrodes. The LOD of the impedance sensor 

with a SAM layer can reach to 10
-9

g/ml, but the impedance sensor without a SAM layer is 

only 10
-5

g/ml. 

6.2 Significance of this study 

In this study, I developed biosensors which are based on the interdigital transducers 

structures and piezoelectric materials. The innovative design of our sensors can combine 

Love wave sensor with impedance sensor in the same device. This device provides two 

kinds of conditions (dry state and wet state) to measure analytes. This biosensor can not 

only measure the mass of the analyte that immobilises on the sensing surface, but it also 
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detects the capacitance of the analyte when in solution. Besides that, I can calculate the 

sensing surface coverage rate of the analyte after calibration and data transformation. The 

sensor in this study has advantages of higher sensitivity and the ease of use on the 

measurement in comparison with recently previous research. The research group of 

Matatagui reported a Love wave sensor working in dynamic mode in 2013 [207]. The 

piezoelectric substrate of this sensor is ST-X Quartz and the material of guiding layer is a 

3.5μm thick SiO2. The working frequency of the device is 163 MHz. The sensitivity of this 

Love wave sensor is about 380mm
2
/μg, which is poorer than the sensor in this study (2574 

mm
2
/μg). Nanofibers could be arranged on the sensing surface and the Love wave devices 

could be used as gas sensor [74]. They demonstrated that in the dry state there are good 

linear correlations between the frequency shifts of the sensor and concentrations of the 

analyte and the limit of detection is about 0.5fg/mm
2
, which is larger than the device in this 

study (0.022fg/mm
2
). Another work about using Love wave sensor to investigate the 

quantitative correlation of the acoustic wave signal with the molecular weight of surface 

bound proteins has been implemented by Mitsakakis et al. in 2014 [75]. A linear 

relationship was found to exist between the phase change of the acoustic signal and the 

molecular weight of the proteins in specific binding. The Love wave sensor in this research 

was based on a quartz piezoelectric substrate and the guiding layer material is a 700nm 

thick PMMA film. The operation frequency of this device is 155 MHz and a flow-through 

microfluidic system was employed on the sensing area. The limit of detection in this 

device is about 0.5fg/mm
2
 and this value is worse than that in this study (0.022fg/mm

2
). In 

2014, Chowdhury et al. designed a biosensing platform by covalent attachment of 

biomolecules on PAni nano-wire (NW) decorated with gold nanoparticles (AuNP) [208]. 

They prepared a Pt electrode with a diameter of 2 mm on a mirror surface with Al2O3 

slurry and formed a structure of Pt||Au-PAni/LAA (antibody) on the electrode. The change 

in total impedance of the sensor electrode on attachment of the target molecule was 

monitored. They discovered that with attachment of protein molecules, the double layer 
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capacitance of the conducting surface was increased with simultaneous lowering of 

impedance, so they mainly observed in lower frequency region and have the same 

approach in this study. They also observed that when concentration was greater than 10 

mM, the response of the electrode was inclined to saturate. The reason is that all the 

properly oriented antibody molecules are occupied by the detectable proteins. The 

saturation concentration of Protein A in this study is 14mg/ml and this value is different 

from the research of Chowdhury. It is possible that different kinds of proteins on distinct 

electrodes surface may cause the different conditions of saturation. In 2014, Mok et al. 

reported a digital microfluidic assay for protein detection. They designed three electrodes 

impedance sensor and used a 300 mV AC signal with a frequency 700 kHz to excite the 

system [209]. The dynamic range of this sensor is greater than six orders of magnitude and 

that is similar to the impedance sensor with SAM layer in this study. If I compare the limit 

of detection (LOD) of the sensor in this study with that in this paper, I observe that LOD in 

this study (24 pM) is lower than that in previous research (50 pM). In conclusion, the 

sensor in this study has higher sensitivity and lower limit of detection. These two 

characteristics are very important to application of sensing. 

6.3 Future works 

There is still a problem to be solved in this study in the future. In chapter 5, I 

discussed that the baseline drift of frequency shift on Love wave sensor after combining an 

impedance sensor on the substrate. The precision of fabricating cell and electrodes of the 

impedance sensor will still have to improve. If the error of the mass on the guiding layer of 

the Love wave sensor could be ensured in a fixed range, I could develop a more efficient 

method to calibrate the sensors to reduce the measurement variances. Furthermore, our 

target is to explicitly present reproducibility data, such as by giving coefficient of variance 

of multiple experiments (ideally on different days using different sensors). The 

methodology for determining the response curve should be stated and reproducibility data 
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presented clearly along with it. 

Because the biosensor in this study can be classified as an affinity biosensor, it will 

also face a general problem of selectivity in the presence of large concentrations of 

nontarget material. Traditionally, this problem can be overcome by using labels and/or 

labeled secondary probes. However, both of these solutions are not suitable for the goal of 

developing a point-of-care detection device because they require extra time, add extra 

sample preparation steps, and increase overall system complexity. This challenge is 

common to all label-free affinity sensors. Therefore, I will pay attention to the nonspecific 

response of the sensors in the future, as well as demonstrate selectivity to the chosen 

analyte in the presence of large background concentration of nonspecific interferents [188]. 

A first step towards this goal is reporting the sensor response to a large concentration of 

nontarget, testing specificity. The next step is to include a small concentration of target in a 

background of nontarget. In my opinion, these efforts are as important as to investigate the 

limit of detection of specific targets. Mechanisms by which the affinity interaction changes 

the mass and impedance on measuring surface are poorly understood. Therefore, the in-situ 

measurement with continuous data recording should be conducted. There is need for both 

experimental and theoretical work in this topic in the future. With an understanding of the 

molecular mechanisms underlying mass and impedance change, the optimal conditions and 

an optimal measurement method can be chosen rationally. Although there are hundreds of 

publications about Love wave sensor and impedance sensor, no product based on Love 

wave and impedance biosensors has can success in widespread commercial market. 

To conclude, this study has commenced a new area of research that combine Love 

wave sensor and impedance sensor in the same device to proceed label-free biosensing. 

Future research in the area of label-free piezoelectric biosensing methods should aim at 

applications that take advantages of small size, low power, simplified sample preparation, 

and moderate multiplexing capability. 
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