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Abstract

The existence of Gravitational waves is a prediction that arose from Einstein’s

theory of general relativity. So far their direct detection has eluded scientists

with Einstein himself believing they would never be detected. However, recent

developments in advanced interferometric detectors should allow the first de-

tections to be made when they are commissioned later this decade. This will

open up an entire new field of astronomy giving deeper understanding to the

physics of and proving Einstein’s general theory of relativity.

Astronomers always want bigger telescopes whether it is to see further or to

see more detail and this will no doubt occur with gravitational wave telescopes.

Hence, further improvements in sensitivity will be required. This thesis exam-

ines techniques for improving sensitivity beyond the standard quantum limit,

a future limit to sensitivity, using optical rigidity.

By coupling two suspended cavity mirrors together using only the light cir-

culating between them the response of the system changes such that a linear

restoring force is created on both cavity optics, the “optical spring”.

The first experiment carried out in the scope of this thesis shows how an

intentionally applied signal that changes the position of the input mirror in a

rigidly coupled cavity is transferred via the optical spring to a position change
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of the output cavity mirror. A small independent interferometer, a so-called

local readout, is used to monitor the displacement of the output cavity mirror

allowing the position of the input mirror to be inferred. This experiment

verifies that it is possible to gather information on the position of the input

mirror via the local readout interferometer the photons of which have never

interacted with the input mirror. The local readout device was able to measure

a coupled motion between the cavity mirrors, via the optical spring, of 10−13 m

at 922 Hz. Hence this experiment can be considered as the first demonstration

of an optical bar configuration which has been previously shown to be a type

of quantum non-demolition measurement.

In the second experiment an optical spring, present in a 10 m cavity used as a

frequency reference, provides a peak in the optical gain of this cavity. The peak

in gain, due to the resonance of the optical spring, is then shown to enhance

the frequency stability of the 10 m cavity around the optical spring frequency.

An increase in sensitivity of 3 dB across a 50 Hz window centred around 200 Hz

was measured showing that this is a good example of how the optical spring

can also be used to improve high-precision classical measurements.

Overall this thesis provides examples of how optical springs can be used as

a building block for improvements of high precision interferometry and quan-

tum measurement. These technologies are likely to play a key role in future

gravitational wave detectors such as the Einstein Telescope.
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“Give me a lever long enough and a fulcrum on which to rest it, and I can

move the world.”

- Archimedes
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Preface

Chapter 1 - This chapter will give an introduction to the topic of gravitational

waves including the background theory and the properties of gravitational

waves. We will also discuss sources of gravitational wave signals, what we

expect them to look like and estimates of their size given realistic parame-

ters.

Chapter 2 - This chapter will focus on the history and development of gravita-

tional wave detection principles and methods. We will concentrate on ground

based detectors, specifically interferometry techniques, noise sources which

limit improved sensitivity and current limits of the technology. We will also

give some insight into how these detectors operate.

Chapter 3 - This chapter will discuss the basic concepts and mathematical

derivations of optical rigidity. We will look at the field equations of an optical

cavity and the power coupling that arises. In addition we will also look at

suspended mirror dynamics and finally how the two interact to create optical

rigidity.

Chapter 4 - This chapter details the experimental apparatus used that was

common to the two main experiments described in Chapters 5 and 6. It de-

scribes the lab environment, layout and some of the most important subsystems

vi



used.

Chapter 5 - This chapter describes the first experiment undertaken, showing

the first demonstration of an optical bar topology using local readout methods.

We show an opto-mechanically coupled cavity can be used to transfer motion of

one mass to the other via the light field. More so, by monitoring the position of

one mirror, information can be obtained about the motion of the other.

Chapter 6 - This chapter details the second experiment undertaken, showing the

idea of improving a classical measurement with quantum technology. Namely

using detuned reference cavities as a way to improve the sensitivity of a mea-

surement. Here a frequency noise limited cavity response can be altered by

introducing an optical spring.

Chapter 7 - This chapter sums up the conclusions and discussions of the work

in this thesis and finishes with future work to be done in this area.
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Constants, Variables and

Abbreviations

Symbol Description

c 2.99792458× 108m/s Speed of light in vacuum

CDS Control and data system

CTM Central Test Mass

δ Detuning (Hz)

δγ Detuning parameter δ/γ

∆x Difference in x

EOM Electro-optic modulator

ETM End Test Mass, cavity mirror furthest from laser

EUCLID Easy to Use CaLibrated Interferometric Device

fmod Modulation Frequency

flas Laser Frequency

fos Optical Spring Frequency

FRP Radiation pressure force

F Finesse

FSR Free spectral range (c/2Lcav)

GW Gravitational wave

γ Cavity Linewidth(Hz) (HWHM of Airy peak)

h 6.62606957× 10−34m2kg/s Planck’s Constant
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HWHM Half Width at Half maximum

ITM Input Test Mass, cavity mirror nearest the laser

kos Optical spring constant (n/m)

Kos(Ω) Frequency dependant optical spring response

Lcav Cavity length (m)

LIGO Laser Interferometer Gravitational wave Obvservatory

mred Effective mass or reduced mass of a system

Pin Power input to cavity

Pcav Intracavity power

PDH Pound Drever Hall

PZT Piezo transducer

ρ Reflectivity

SQL Standard Quantum Limit

τ Transmission

UGP Unity gain point (Servo gain = 1)

ω0 Laser angular frequency (2πflas)

Ω Sideband frequency
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Chapter 1

Gravitational Wave Theory

From General Relativity

1.1 Introduction

For many years Isaac Newton’s description of gravity [1] and how mass inter-

acts stood up to many tests and indeed led to the discovery of many planets

and astronomical events. The perihelion of Mercury was the first evidence of

shortcomings in Newton’s theory. One other problem with Newton’s theory

was the idea that moving one object instantaneously had an effect on another

regardless of the distance separating them. This in principle allowed faster

than light data transfer which requires an infinite amount of energy to acceler-

ate a particle, which has rest mass, to the speed of light. James Clerk Maxwell

was able to show for charged particles that moving one charge did not instan-

taneously effect another but created a disturbance in the magnetic and electric

field which propagated at the speed of light [2]. However, it was not until the

early 20th century when Albert Einstein was able to unify the classical laws

1



1.1 Introduction 2

of Newtonian physics with those of electrodynamics. Firstly with the theory

of Special Relativity [3] where the two main outcomes were that the laws of

physics held true in any inertial frame of reference and the speed of light in

a vacuum is constant. This theory only applied in the special case where the

effect of gravity was negligible. It was not until 1916 that Einstein was able to

incorporate gravitational effects and produce the General Theory of Relativity

[4].

Two main outcomes of General Relativity are that the speed of light is a

constant and that mass and energy are equivalent: E = mc2. One aspect of

this theory is that space time is altered by the presence of energy or mass and

this in turn gives rise to gravitational fields. This then shows that asymmetrical

accelerations of this mass would cause fluctuations or ripples in space time.

Furthermore, these ripples would propagate at the speed of light, carrying

with them information about the source that created them. The term used for

these is gravitational waves. This is analogous to the electromagnetic waves

produced by the acceleration of a charged particle in an electric field albeit on

a weaker scale. The gravitational force is considered around 1036 times weaker

than the electromagnetic force.

Due to the weakly interacting nature of the gravitational force, gravitational

waves will propagate where electromagnetic waves would scatter and be ab-

sorbed. They therefore give details on astronomical events that have so far gone

uninvestigated due to the lack of information provided by electromagnetic tele-

scopes. However, the weak coupling to matter also makes gravitational waves

very difficult to detect. Detection and analysis of gravitational waves would

open up a new branch of astronomy and improve our understanding of the

universe dramatically.

The following chapter gives a brief introduction to Relativity only so far as to
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explain the generation and some of the more interesting properties of gravita-

tional waves. Potential sources will then be discussed including the expected

waveform size and shape. Finally a measurement which indirectly proves the

existence of gravitational waves is discussed.

1.2 Relativity

A starting point for the mathematical description is to find and define the

correct measurement of the distance between two points xµ and xµ + dxµ in

space-time. This is called the invariant or proper distance and is given by

ds2 = gµνdx
µdxν , (1.1)

where gµν is the metric tensor determined through the Einstein field equations

described as,

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.2)

where R = gµνRµν is the scalar curvature, Rµν is the Ricci tensor, G is the

gravitational constant and Tµν is the energy momentum tensor. When oper-

ating in the weak field, space time can be thought of as approximately flat

meaning the equations can be linearised. In this case the metric tensor can be

written as the Minkowski metric of flat space-time plus a small perturbation

hµν :

gµν ≈ ηµν + hµν , (1.3)

where the Minkowski metric is,

ηµν =


−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.4)



1.2 Relativity 4

For a suitable gauge choice (Lorentz gauge condition) the field equations in

vacuum reduce to (
∇2 − 1

c2

∂2

∂t2

)
h̄µν = 0, (1.5)

which has a wavelike solution of the following form:

h̄µν = h0Aµνe
ikµxµ . (1.6)

For our gauge choice solutions to this are transverse waves propagating at

the speed of light. By operating in the transverse traceless gauge, a small ad-

justment to the original Lorentz gauge transformation and satisfies the Lorentz

condition, Aµν is constrained so that a wave traveling in the z direction is

h̄TTµν = hTTµν = h0A
TT
µν e

jk(ct−z), (1.7)

where

ATTµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.8)

Going back to the proper distance from the origin to point(x0, 0, 0)h+ = 1 then

gives

∆` =

∫
|ds2|

1
2 =

∫ ∞
0

|gxx|
1
2 dx ≈ [1 +

1

2
h0]x0. (1.9)

A similar argument applies for displacement from origin to (0, y0, 0) giving

∆` = [1− 1

2
h0]y0 (1.10)

∆x =
1

2
h0xo (1.11)

i.e. the displacement between two particles is proportional to the original sep-

aration. For this reason strain sensitivity will be discussed in future chapters

relating to gravitational wave detection as this is the important parameter to

be sensitive to for their detection.
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Figure 1.1: The effect a gravitational wave would have on a ring of particles

evolving in time from left to right. The top row depicts + polarisation, while

the bottom row depicts X polarisation with the rate of the contraction and ex-

pansion giving the frequency of the signal. The effect shown here is greatly

exaggerated for ease of viewing and assumes the wave propagation is perpen-

dicular to the page.

One of the interesting properties of gravitational waves is that they are pre-

dicted to be of quadrupolar nature, see Figure 1.1. This is due to mass al-

ways being positive and the gravitational force between objects being attrac-

tive.

1.3 Sources

From Einstein’s theory of general relativity it follows that all accelerating

masses emit gravitational waves. However, due to the mass dependance of

these waves the effect from two people passing one another in a corridor or two

lorries passing one another on a road will be extremely small. Astronomical
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events are chosen as prime targets due to both their very large masses and

in some cases very large accelerations. However a further problem is the 1/r

drop-off in signal amplitude as the waves travel through space-time isotropi-

cally from the source. Even so, large astronomical events at kiloparsec (kpc)

distance still have a much greater effect on space-time than any events that

could be created on earth. Typical sources will now be briefly discussed de-

scribing the mechanism that allows for gravitational wave emission along with

estimated strain given realistic parameters. The types of source we now de-

scribe are the most important signals for the frequency band of relevance to

this thesis, 10 Hz-1 kHz [5].

1.3.1 Inspiral

Two neutron stars, two black holes or a neutron star and black hole pair whose

orbits are decaying causing them to eventually coalesce are usually referred

to as inspiral signals. This will cause a signal which gradually increases in

amplitude over time as the period of the orbit decreases in the time before the

two objects coalesce. An estimate can be made on the expected strain of such

a signal using the following equation

h = 10−23

(
100 Mpc

r

)(
Mb

1.2M�

)5/3(
f

200 Hz

)
, (1.12)

where each bracketed property of the system is approximately unity.

1.3.2 Burst

So named as they are typically short, for example, collapsing supernovae and

gamma ray bursts. Very little is known about these types of sources as they

occur in violent events however the large masses and high accelerations involved
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are ideal sources of gravitational waves. As such a lot of interesting science

can be learnt from these types of signal.

1.3.3 Continuous Waves

These sources give rise to a repeatable pattern over a long time period and

as such allow the signal to be integrated over that time giving an improved

signal to noise ratio. For instance pulsars of uneven mass distribution would be

emitters of gravitational wave signals. Initial LIGO was able to set spin-down

limits from both the Crab and Vela pulsars[6]. Again an estimate can be made

on expected strain caused by such a signal using the following equation,

h = 10−22

(
f

100 Hz

)2(
1 kpc

r

)( ε

10−6

)
. (1.13)

1.3.4 Stochastic

A stochastic source arises from the leftover remnants of the big bang giving

an essentially white noise source in a similar way to the cosmic microwave

background. The gravitational wave signal will have to occur much earlier in

the explosion giving an even earlier view of the universe. Only non-standard

inflationary cosmological models would produce waves in the band of interest.

The BICEP experiment[7] gave some possible hints of this effect that are still

under investigation but would indicate against the non-standard inflationary

models. It is therefore unlikely to occur in this frequency band.
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1.4 Indirect Proof of Existence

At the time of writing there has yet to be a direct detection of a gravitational

wave. However, there has been indirect proof of their existence, i.e. measur-

ing the effect a gravitational wave or gravitational wave emission has had on

another object.

The most famous example of this is the Hulse Taylor pulsar or PSR B1913+16

which was seen to be orbiting a neutron star. The period of the radio pulses

was measured over several years and was seen to decay exactly in accordance

with the general theory of relativity shown in Figure 1.2 [8]. This suggested

that the reduction in period of orbit was due to conversion of energy into

gravitational waves. This work earned Hulse and Taylor the Nobel prize in

physics in 1993.
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Figure 1.2: Plot showing the decay of two orbiting Neutron stars over the

course of 30 years. Decay rate agrees exactly with Einstein’s prediction of

energy converted into gravitational waves [8].



Chapter 2

Gravitational Wave Detection

In the previous chapter the theory behind the production of gravitational waves

was discussed. This chapter will look at the history and development of the

field of gravitational-wave detection, focussing mainly on the ground-based in-

terferometric type. We will then go into some detail of the basic detection

principle of interferometry and move on to describe the sensitivity limitations

of current GW detectors, techniques proposed to improve the instrument per-

formance and finally we will give an outlook on potential long-term future

developments.

2.1 History of Detectors

Although predicted in 1916, it was not until the 1960s that the first serious

attempts were made to detect gravitational waves. This was due to many be-

lieving it to be near impossible to detect the very small strains caused by gravi-

tational waves. The first experiments began with Joseph Weber [9] attempting

10
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to measure the effect of a gravitational wave on a large aluminium bar. The

bar weighed around 2000 kg and had a very narrow-bandwidth mechanical-

mode resonance i.e. the oscillation was under-damped and so when excited

amplified the signal and so the system is said to have a large Q factor. The

principle of the experiment was that were a gravitational wave of the same

frequency as the bar resonance to pass through the detector the signal would

be amplified by the resonance to such an extent that it would be measurable

by transducers mounted on the bar.

It soon became clear that these devices were not suitable for astronomy pur-

poses as they are sensitive only at the very narrow linewidth, tens of Hz, of

the mechanical resonance. A broadband detector was then required to allow

events to be tracked as they evolve in frequency and also to allow a much wider

range of single frequency events to be measured, vastly increasing the number

of possible detections.

For this reason a new device needed to be developed to cover a much larger

frequency band with similar sensitivity. The Michelson interferometer became

the detection method of choice being a device that measures strain, with its

orthogonal arms being perfectly suited to maximising signal size from the

quadrupolar gravitational wave signal. Many years were then spent on de-

veloping techniques to increase the sensitivity of the Michelson interferometer

which I will now briefly outline, describing the main subsystems of the inter-

ferometers currently being used. The frequency band covered by Michelson

interferometers is currently around 10 Hz to 1 kHz and so is able to detect

sources similar to those described in section 1.3.
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2.2 Interferometry, Sensing and Control

The design of current gravitational wave detectors is centred around a tradi-

tional Michelson interferometer whereby the arm lengths are equal and com-

plete destructive interference occurs at the beam splitter and there is no light

detected at the output port. Differential motion of the end mirrors ideally

caused by a gravitational wave passing through the interferometer in a direc-

tion perpendicular to the plane of the arms causes a change in the interference

pattern measured at the dark port of the beam splitter.

There currently exists a worldwide network of detectors, GEO600 in Hannover,

Germany, two LIGO detectors, one in Livingston, Louisiana and the other in

Hanford, Washington and finally VIRGO near Pisa, Italy [10][11][12]. These

detectors were built in the 1990s and have already completed taking data for

several years at their design sensitivity. They are all now in the process of being

upgraded to the advanced generation GEO-HF [13], Advanced LIGO [14] and

Advanced VIRGO [15] and will all be an order of magnitude more sensitive.

There is also a Japanese detector KAGRA [16] currently under construction in

the Kamioka mine. The reason for the operation of many detectors is to allow

better triangulation based on the timing difference in detections; it also allows

for better sky coverage as each detector has a null point where a signal incident

upon it at a certain angle can cause the same amount of motion on both of the

end mirrors giving no differential motion and therefore no interference signal

at the beam splitter.
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(a) GEO 600 (b) LIGO Livingston

(c) LIGO Hanford

Figure 2.1: Aerial shots of the two LIGO detectors and the GEO detector

(Images from the LIGO scientific community).

2.2.1 Fabry-Pérot Cavities

As can be seen from the images in Figure 2.1, the arm lengths of these detectors

are very long, 600m in GEO and 4km in LIGO. The reason for this is that

interferometers measure differential changes in arm length, or strain δl/L, so

increasing L will make the detector more sensitive as explained in equation

1.11. There is still a limit based on technical challenges with making arm

lengths too long. These include large beam spot sizes requiring very large

mirrors, eventually the curvature of the earth and, of course, financial reasons

of vacuum systems becoming more expensive.

A different method of increasing the phase effect in the arm is by bouncing
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the light back and forth many times in a delay line [17], but this has quite

a limited improvement as the effective length increase is only the number of

reflections. The drawback of this method is that after a few round trips mirrors

are required to be very large to accommodate all the separate reflections so

factors of 10-20 are about all that can be done with this method. By collapsing

these into a single reflection, Fabry-Pérot cavities are formed which do not

require large mirrors and many more reflections take place, typically 1000’s.

Here the number of round trips each photon takes is set by the transmissive

and reflective properties of the mirrors and is fully derived in section 3.1. This

increases the effective length of the arm cavities by approximately the number

of round trips.

Figure 2.2: Michelson Interferometer with Fabry-Pérot arm cavities. The arms

are usually described by points of compass, so in this case ITM and ETM North

and East relative to the beam splitter.

As seen in Figure 2.2 a mirror called the input test mass (ITM) is inserted

close to the beam splitter at one end of the arm and another, the end test

mass(ETM), at the far end to create one of the Fabry-Pérot cavities which are

at either end of the beam tubes shown in Figure 2.1.
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2.2.2 Power and Signal Recycling

As mentioned previously the interferometer is set up to operate at the dark

fringe, i.e. when both arm lengths are equal, and complete destructive inter-

ference occurs at the beam splitter. Under this condition all of the light is

reflected back towards the input laser due to energy conservation and so the

interferometer behaves as a mirror. It is possible to recycle this potentially

wasted light by placing a mirror between the laser and beam splitter as shown

in Figure 2.3, labeled PR for power recycling. This creates another cavity with

the interferometer and if the mirror is correctly placed the field is resonantly

enhanced back into the interferometer. This increase in power in the cavity

arms means more photons sample the surface of each mirror, reducing pho-

ton counting errors and improving statistics. It also means that even a small

signal will have more photons in it, making it easier to measure. However,

as is always the way, this causes other problems due to thermal distortions

and radiation pressure, caused by absorption of some of the high power beams

which will be described in Section 5.0.1.

A similar approach can be taken with the output port. Although slightly coun-

terintuitive, placing a mirror in front of a photodiode has the effect that when

a signal is detected it is resonantly enhanced before reaching the photodiode

[18]. By placing a mirror at the dark port as shown in Figure 2.3, another

cavity is created with the interferometer which will resonantly enhance any

signal at the output. This also allows tuning of the detector response to be

more sensitive at some frequencies at the expense of others. This is done by

tuning this cavity slightly off resonance or by altering the transmission of the

mirror. A higher reflectivity means the signal will be resonantly enhanced for

longer, creating a larger signal, however this also reduces the bandwidth of the

signal recycling.
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Broadband signal recycling is a technique whereby the signal recycling cavity

is anti resonant with the carrier field. This increases the reflectivity of the

ITMs at the carrier frequency from the perspective of any differential signals

within the arm cavities. This means that signals remain within the cavity for

longer, interacting with the gravitational wave longer, giving bigger signals but

reducing the bandwidth. Although named broadband, this technique still has

a narrow bandwidth only not as extreme as the detuned case already discussed.

Another technique used is resonant sideband extraction [19], whereby the signal

recycling cavity is resonant with the carrier field. In this case the signal remains

in the arm cavities for a shorter time, thereby increasing the bandwidth but

reducing signal size.

Figure 2.3: Michelson Interferometer with Fabry-Pérot arm cavities, power

and signal recycling.

Advanced LIGO will be the first detector to use all three techniques, Fabry-

Pérot arm cavities, power recycling and broadband signal recycling with the

option to change to detuned at a later date. Initial LIGO used only Fabry-

Pérot cavities and Power recycling, GEO used dual recycling but only folded

arms.
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2.2.3 Length Sensing and Control

The detector has now gone from a simple Michelson interferometer with laser,

beam splitter, two mirrors and a photodiode to a complex system. This re-

quires exact control of mirror positions relative to one another and many sub-

systems must operate in harmony. We will now go through some of the control

requirements for these systems and how output signals are generated.

Each of these mirrors should be free to move from the effect of a gravitational

wave, however remain in the working condition for the interferometer. This

can be achieved by suspending the mirrors and other optics as the bottom

stage of a pendulum. This has the effect of each behaving as a free mass above

the pendulum resonance, and also isolates the mirrors from ground motion

which will be discussed in more detail in Section 3.2.

Forces are then applied to the mirrors through wound coils and magnets for

position and alignment control of the mirrors. This keeps the mirrors parallel

to one another and also keeps the separation of the mirrors to a multiple of

half the laser wavelength, which creates the resonant enhancement within the

cavities. This is discussed in further detail in Section 4.3.

Often control signals are created using RF modulation and demodulation

schemes. These require phase modulation sidebands to be imposed on the

light entering the experiment. When propagated inside a cavity the phase of

the carrier component moves relative to non-resonant sideband fields (which is

directly reflected from the ITM), resulting in a change to the relative strength

of the beat frequencies. Monitoring the fields exiting the cavity on photo

detectors, and demodulating at the modulation/beat frequency, reveals an an-

tisymmetric error signal. This length-sensitive signal can then be applied with

suitable negative feedback through electromagnetic actuators to control the
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cavity mirror positions. A mathematical explanation of this follows in Sec-

tion 3.1.2.

Usually Michelson interferometers are operated at the dark fringe such that

complete destructive interference occurs at the beam splitter. This helps

to suppress common-mode noise and maximise the effect of power recycling,

therefore maximising the signal to noise ratio. One technique to read out sig-

nals from the interferometer is heterodyne readout. Here, frequency separated

sidebands are applied to the input light field and a small, static, differential

arm-length change is applied to the interferometer, known as Schnupp asym-

metry. This allows propagation of the sideband field once it has interacted

with any gravitational wave signal to the output port where it can then be

demodulated at the sideband frequency leaving the gravitational-wave signal.

Another method, now more favored as the readout scheme for Advanced LIGO,

is the DC readout, a form of homodyne detection. In this scheme the local

oscillator is obtained by applying a slight offset to the arm length to allow a

small amount of carrier field to propagate to the output port. This setup has

the benefit of the carrier sharing the optical path with the sidebands, and so

remains perfectly in phase, optimising demodulation. Further details on both

detection principles can be found in [20].

2.3 Noise Sources

Trying to measure such small strains as h = 10−21 creates interesting problems

in suppressing all noise sources below this level. The noise sources in this

instrument have been broken down into four parts: noise sources that create

unwanted mirror motion, noise sources that act on the laser, noise sources that

act on gravity, and noise sources that arise from the quantum nature of light
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and matter. The first three of these noise sources have all required years of

research and design to produce subsystems of the interferometer that enable

us to reach the regime where instruments are expected to be limited by the

fourth, quantum noise. These four noise sources will now be discussed as to

where they arise from and the main subsystems developed to mitigate these

problems.

2.3.1 Mirror Motion

One of the key aspects required for Michelson interferometers to work as gravi-

tational wave detectors is that the mirrors used for measurements, i.e. the two

cavity mirrors in each arm and the beam splitter, must behave as free masses

in the detection band of interest. They must only move relative to one another

due to a gravitational wave; any other movement of an amplitude greater than

that of a gravitational wave is considered a noise and must be reduced below

this level, as otherwise it would mask the gravitational wave signal.

The first type of mirror motion comes from ground motion coupling to the

mirrors and requires the use of seismic isolation systems. There are several

subsystems that do this, low frequencies are accounted for by using Hydraulic

External Pre-Isolation (HEPI) and Internal Seismic Isolation (ISI). The main

isolation in the detection band is achieved by suspending the optics as the

bottom stage of a 4 level pendulum [21]. The pendulums ensure isolation in

the 6 degrees of freedom and allow the mirror to behave as a free mass at

frequencies that are large compared to their fundamental resonance frequency.

The bottom stage of the four is connected to the stage above by 4 very thin

(100µm) silica fibres. These fibres must be of very high quality as they fully

support the optic, which weighs 40 kg for reasons discussed in Section 5.0.1.
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This gives very high Q suspension modes, typically around 104 − 107. The

mathematical description of suspension isolation is given in Section 3.2.

Figure 2.4: Quad suspension being prepared to be installed into advanced LIGO.

red coloured object is the main mirror, coloured red due to being covered in

protective film that is only removed at the last minute (Image from the LIGO

scientific community).

The second type of mirror motion we shall consider is movements internal to

the mirror itself. It consists mainly of thermal effects, causing both Brownian

motion of the mirror surface but also internal mechanical modes. A high

quality optic substrate is required to absorb as little of the high power beam

as possible, typically < 2 ppm. Absorption, even if on a small scale, given

the extremely high circulating power (the reason for which will be discussed

later), will also cause expansion, causing lensing of the optic and also changes

of refractive index. This is countered through the use of ring heaters placed

near the optic to heat the outside edge of the optic by the same amount,
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negating the lens [22]. There also exist difficulties not only in achieving the

very high reflectivities of 99.99 % required using multi-stack coatings, but also

the smoothness of the final layer. The curvature and smoothness of optics is

vital to ensure maintaining as much of the light in the resonant cavity mode

as possible. The Advanced LIGO cavities are expected to have a round trip

loss of only 75ppm.

2.3.2 Laser Motion

Although a laser mode is thought of as a single-frequency beam, the reality is

that this single frequency changes over time due to fluctuations in the pump

power and the laser crystal temperature changing. For the purposes of in-

terferometry this is not usually considered a problem in a simple Michelson,

as when the arm lengths are the same, changes in frequency do not matter

as the light travels the same distance and destructive interference occurs at

the beam splitter with light of the same frequency. However, when arm cav-

ities, which can never be perfectly identical are used, this is no longer the

case and it becomes much more important to keep the frequency constant.

This is achieved in several ways, firstly the laser itself is very well designed

with spectral linewidth of 1 kHz over 100 ms and relative power fluctuations of

2 × 10−9. The input beam is also passed through mode cleaners which serve

the dual purpose of further stabilising the frequency of the laser beam before

it enters the interferometer and also of filtering out higher-order spatial modes

caused from unwanted distortion in the input optics. The output field of the

interferometer is also passed through a mode-cleaning cavity to remove noise

caused by mirror imperfections and slight misalignments.

Nowadays the maximal obtainable laser power is no longer limited by the
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available lasers, but by how much light power the system can handle without

creating thermal lenses too strong due to the bulk absorption of materials being

too high. With as little as 1 ppm absorption given the very high cicrculating

powers in the arm cavities of 100s kw it is easily possible to heat the optics.

For this reason Laguerre-Gauss(LG) modes were suggested for use in future

detectors, the reason being the intensity profile of the beam is more spread

out. This has many benefits, including thermal lenses being less strong, and

sampling a larger area of the mirror, reducing the effect of coating Brownian

motion. The first experiment of injecting an LG33 beam into a suspended

cavity was conducted at Glasgow with the results setting new requirements on

mirror surface quality to be achieved before using these types of beams will

become a viable option [23].

2.3.3 Gravity Motion

Caused by local changes in the gravitational field, direct coupling of mass

density fluctuations to the mirrors can exist, for example, seismically driven

density fluctuations of the ground surrounding the mirrors, clouds passing

overhead, tidal changes, vehicles moving nearby. As with all gravitational

interactions the masses need to be large or close by to have an appreciable

effect. However, it is very difficult to measure and model these effects as they

are generally not constant or predictable. For this reason very little can be

done and as such this sets the lower frequency sensitivity of ground based

detectors.

Some investigation is being made into ways of possibly using seismometer

arrays and feed-forward actuation onto the mirror, but this technology is not

ready for integration into detectors. Other suggestions of large trenches around
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the detector sites have been put forward as the most common way for gravity

wave fluctuations to disperse are as earth surface ripples. Realistically the best

option is to choose a seismically quiet, remote site, which is not feasible for

current detectors but an important consideration for any future detectors that

are to be built[24].

2.3.4 Quantum Motion

With other noise sources currently at such a low level, the quantum nature of

the light is now going to be one of the future major limiting noise sources for

interferometric detectors. This arises from the Heisenberg uncertainty principle

applied to continuously measuring the position of a free mass, in this case the

four cavity mirrors. This will be explained in more detail in Section 5.0.1.

Quantum noise consists of two parts: amplitude and phase noise, the two

separate quadratures which correspond to a photon-counting error, shot noise

and radiation pressure noise, amplitude noise. The shot noise of the light

affects the higher frequency and radiation pressure affects at lower frequency.

Generally increasing the light power is what we want to do as it is one of the few

ways to increase potential signal size whilst reducing photon counting error.

More light power means more photons seeing the effect of the gravitational

wave. This of course has the effect due to more photons hitting the mirror of

more error in the radiation pressure force caused by the change of momentum

of individual photons. One way to counter this is to increase the mass of the

mirrors as this will reduce the effect the force has on its displacement.

The current method of suppressing this noise source is by using a technique

called squeezing [25]. The idea here is that light is input to the system through

the output port of the beam splitter in a squeezed state. A squeezed state
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changes the property of the light such that the important phase information

noise is improved at the expense of intensity information. So far the best test

in large-scale interferometers have demonstrated a squeezing level of 3dB. This

is limited by loss in the injection paths of the squeezed light [26]. In future an

observed squeezing level of 6dB will be targeted.

Figure 2.5 shows a simulation of all the noise sources important in advanced

LIGO and the expected achievable strain sensitivity as the total sum of all of

these. The plot was produced in GWIC, a programme written by the gravita-

tional wave community to allow quick noise simulations to be carried out by

tweaking different system parameters and different detector layouts.

2.4 Upgrades

As the advanced generation of detectors are commissioned and begin to take

data, the limiting noise source across the majority of the detection band, 10 Hz

to 1 kHz, will be quantum noise. Further upgrades will require this limit to

be beaten or at least altered to allow measurements beyond this point. The

other noise source that is close to limiting advanced designs is likely to be

the thermal noise of the reflective coating of the mirrors. A lot of research

is currently underway to design new coatings or types of reflector that could

be used instead [27]. The point has now been reached where any increase in

sensitivity is very important as even a factor of two improvement corresponds

to a factor 8 in volume of sources that may now be detected.

Quantum non-demolition (QND) techniques is the name coined for topologies

that could theoretically surpass quantum noise limited sensitivities and will

be discussed in further detail in Section 5.0.3. Such techniques include the
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Figure 2.5: Predicted noise curves for advanced LIGO, a factor 10 improve-

ment over initial LIGO across all frequencies. Suspension thermal noise and

seismic noise are limiting at low frequency and quantum noise in the rest of

the frequency band. Coating thermal noise is also close around 60Hz. Curves

produced using GWIC, software written by LIGO community to simulate noise

performance in various detector configurations and detector properties.
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optical bar topology which will constitute a large portion of Chapter 5 of this

thesis.

Other ideas include switching to speed meters. These devices use a differ-

ent interferometric topology, namely, the Sagnac interferometer which can be

arranged such that the output contains information about the speed of test

masses and not the mirror position. Speed does commute with time and as

such can in theory be measured to arbitrary accuracy without being limited

by the Heisenberg uncertainty principle. This technology is currently far from

detector ready and a proof of principle experiment is currently being built in

the Glasgow 10 m prototype [28].

This section has concentrated on techniques for upgrades within current infras-

tructure at relatively small cost. Plans are currently underway at developing

a third generation of detector to achieve another factor 10 improvement in

sensitivity. This has been called the Einstein Telescope or ET project. This

would be a completely new-build detector which is currently in the early de-

sign stages [29]. It is likely to be underground in a seismically quiet area and

employ higher laser power, heavier mirror masses, taller suspensions and it will

also be configured in some type of QND setup such as an optical bar.

2.5 Other Types of Detector

For various different types of supernova or rotating neutron star much smaller

or larger masses or different astronomical events altogether, signals can occur

at many different frequencies and could easily be created from nHz up to MHz.

For this reason several other projects exist for detecting gravitational waves

over different frequency bands. In the scope of this thesis only interferometric
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ground-based detectors will be discussed, but for, completeness other types of

detectors will now be briefly summarised.

The Laser interferometric space antenna (eLISA) [30]1 is a planned space-based

project that uses interferometry in a similar way to ground-based detectors.

The main difference is that this device will be sensitive to signals in the mHz

regime due to low frequency noise sources not being as prominent in space.

Space and vacuum constrictions are not as great in space and so the arm

lengths will be of the order several million kilometres apart with test masses

located on separate spacecraft, so keeping these aligned brings its own set

of challenges. LISA pathfinder [31] is a project to test the technologies in a

space mission and is estimated to be launched in 2015. If this is successful,

the full eLISA detector could be launched by 2030. DECIGO, the Deci-Hertz

interferometric gravitational wave observatory, is another space-based project

which, as the name suggests, is most sensitive to signals in the frequency band

0.1 Hz to 10 Hz, filling the gap between LIGO and eLISA.

At very low frequencies, nHz, pulsar timing arrays such as the Square Kilometre

Array (SKA) monitor the very repeatable electromagnetic waves emitted from

pulsars. By using many detectors, very small changes in the frequency of

observation of the pulses can be used to calculate the effective stretching or

shrinking of space time caused by gravitational waves.

1 eLISA, formerly refereed to as LISA (Laser Interferometer Space Antenna), was re-

named eLISA after NASA withdrew funding in 2012 and the project was taken over by the

European Space Agency and so became known as the European Laser Interferometer Space

Antenna.



Chapter 3

Optical Rigidity

With the need for ever increasing optical power to be stored within the in-

terferometer, radiation pressure caused by the exchange of momentum from

photons to the optics can become a non-negligible noise source. The interac-

tion between radiation pressure effects and suspended optics is well known but

has rarely been investigated in the regime where the cavity response is any-

thing but flat. In this chapter I will describe numerically the field equations

for a single cavity, and subsequently the radiation pressure force. We will then

look at the mechanical response of a suspended optic and how light interacts

with mirrors in a suspended cavity. Finally we will show the coupling effect

between radiation pressure and the pendulum restoring force, known as the

optical spring.

28
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3.1 Cavity Dynamics-Optical

An optical cavity forms a crucial part of gravitational wave detectors and is

fundamental to many other optics applications. It is made up of two partially

reflective mirrors facing one another with a light beam incident on the back

surface of one. As the mirrors are also partially transmissive, some of this

field leaks through the mirror and then circulates between both mirrors before

leaking through one of the two mirrors. Dependant on reflectivity and trans-

missivity of the mirrors, the field can build up between the mirrors as photons

take many round trips before leaking out again. The following section details

how the fields propagate through an optical cavity.

3.1.1 Field Equations and Power Coupling

We now examine how the electromagnetic field propagates through an optical

cavity1. To start with we shall look at the basic case of the transformation

matrix applied to a light beam by a mirror or how a light field interacts with

a partially transmissive mirror with reflectivity ρ and transmission τ .

Figure 3.1: Field amplitude interactions at a mirror. A simple schematic of

input beams A and D and output beams B and C for a simple mirror.

1 This section will ignore scatter and absorption effects.
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Eb
Ec

 =

iτ ρ

ρ iτ

 .

Ea
Ed

 (3.1)

If we have an input field

Ei = Eoe
iωt, (3.2)

the transformation matrix can be applied to it to obtain the transmitted and

reflected fields of a mirror as follows:

Eb = iτEa(t) + ρEd,

Ec = ρEa(t) + iτEd.
(3.3)

By creating a two-mirror cavity, the propagation of the field changes and the

fields throughout the system can be calculated in the same way as above. The

Figure 3.2: Field amplitude interactions with a two-mirror cavity with in-

put beam Ei, reflected beam Er, transmitted beam Et and intracavity fields

Ec1,Ec2,Ec3 and Ec4

intracavity fields can then be described as:

Ec1(t) = τ1Ei(t) + ρ1Ec4(t),

Ec2(t) = Ec1(t+ c/L),

Ec3(t) = ρ2Ec2(t), (3.4)

Ec4(t) = Ec3(t+ c/L),
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where the fields Ec2 and Ec4 are simply phase changes of Ec1 and Ec3 re-

spectively due to propagating the length of the cavity. The important fields

are those transmitted and reflected from the cavity as they can be measured

without affecting the state of the system and are as follows,

Et(t) = τ2Ec2(t),

Er(t) = τ1Ec4(t) + ρ1Ei(t). (3.5)

For the static case and constant amplitude input light field the intracavity field

is

Ec1 = Aτ1 + Ec1ρ1ρ2e
−2iθ, (3.6)

which can be solved to give

Ec1 =
Aτ1

1− ρ1ρ2e−2iθ
. (3.7)

The reflected field is then

Er = Aρ12, (3.8)

where

ρ12 = ρ1 −
τ 2

1 ρ2e
−2iθ

1− ρ1ρ2e−2iθ
. (3.9)

We have therefore shown that the reflectivity of a static Fabry-Pérot cavity

is a function of the detuning phase, or how close the cavity length is to a

whole number of half wavelengths, and can be used effectively as a mirror with

variable reflectivity for monochromatic light as experimentally demonstrated

on an earlier Glasgow prototype [32].

Analogous to the above, we can express the transmitted field as

Et = Ec1τ2e
−iθ, (3.10)

Et =
Aτ1τ2e

(−iθ)

1− ρ1ρ2e−2iθ
. (3.11)
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Hence, the transmitted field is directly proportional to the intracavity field and

is often used to determine the stored power inside a cavity.

If the distance between the mirrors and the frequency of the laser are arranged

so that the light entering the cavity is in phase with the light already inside

the cavity, then the intracavity field is resonantly enhanced. The maximum

amplitude of the cavity field occurs when the term e−2iθ = 1. In this situation

the maximum amplitude gain of the cavity is

g12 =
τ1

(1− ρ1ρ2)
. (3.12)

We now consider the power inside the cavity if the cavity is not exactly a whole

number of half wavelengths in length which is given by

P = Ping12
1

1 + F sin2 θ
. (3.13)

This was calculated in [33] where θ is the detuning in terms of degrees from

resonance where λlas/2 = 180o and F is the finesse. This is a measure of how

quickly the power in the cavity falls off as it is detuned and is dependent on

the reflectivities of the cavity mirrors as follows:

F =
4ρ1ρ2

(1− ρ1ρ2)2
. (3.14)

The free spectral range (FSR) of a cavity is the frequency separation between

successive resonances. It can also be thought of as one over the time it takes

the light to complete one round trip of the cavity and is defined by

FSR =
c

2L
, (3.15)

where L is the the cavity length.

One of the most useful equations in interferometry is relating changes in fre-

quency to changes in length. By starting of with a resonant cavity the total
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cavity length must equal a whole number of half wavelengths on resonance,

Gouy phase affects have been omitted here for simplicity.

N
λlas
2

= Lcav (3.16)

substituting

c = flasλlas (3.17)

gives
Nc

2
= flasLcav. (3.18)

The above has to be true for any given resonance and so the fractional change

in length ∆` must equal the fractional change in frequency ∆f ,

∆`

L
=

∆f

flas
. (3.19)

The finesse (F), can also be described by the ratio of the FSR to the width of

the resonance peak, which is called the cavity linewidth γ, and is the HWHM

of the resonance peak as a function of detuning and can therefore be described

in frequency or length.

F =
FSR

2γ
. (3.20)

An optical cavity can exhibit very different behaviour based on the mirror

parameters. The different levels of transmission determine whether a cavity

is over-coupled (τ1 > τ2) or under-coupled (τ1 < τ2) or impedance-matched

(τ1 = τ2). This determines whether more light is reflected from or transmitted

through the cavity. For the purpose of the experimental setup used we deal

with an overcoupled cavity due to its similarity to an interferometer whereby

having more light reflected back to the beam splitter will improve signal con-

trast. For further detail and the derivations of this see [34].

The curvature of the mirrors will affect the beam size on each mirror, the

shape of beam inside the cavity and also the cavity stability. The beam size
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is important for GW detectors as we wish to make it as large as possible to

reduce thermal noise. As the beam size increases on the cavity mirrors, the

cavity stability decreases.

As the cavity will only resonate at certain frequencies it acts as a very good

filter as only one spatial mode order can be resonant at any one time. This

proves useful as cavities can be used to filter laser beams to only allow propa-

gation of a single mode. This technique is used in gravitational wave detectors

to filter both the input and output beams of the detector [34].

The cavity also behaves as a filter in the sense that higher frequency signals

are suppressed. As the storage time of the cavity increases (higher reflectivity

cavity mirrors), photons stay in the cavity longer and as such high frequency

effects are lost. The same effect also occurs due to the time it takes a photon

to travel the length of the cavity. A cavity therefore behaves as a first-order

low-pass filter, where the corner is at the cavity linewidth frequency [34].

Figure 3.3: Single spatial mode matched to cavity whereby the phase front

matched the radius of curvatures of each mirror. The topology is the same as

that implemented in experiments discussed in this thesis, consisting of a plane

input mirror and curved end mirror.

3.1.2 Modulation and Demodulation

To be able to control optical cavities and more complex interferometers it is

necessary to modulate the light beam as mentioned in Section 2.2.3. By adding
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sideband fields to the beam, the interaction with the cavity changes from the

expressions described previously as there are now different components to the

beam. These can be broken down into separate carrier and sideband fields

with different relative frequencies, meaning only one can resonate in the cavity

at any time. We can see in Figure 3.4 that as the cavity length is changed,

the carrier, sideband and higher-order sideband fields resonate at different

points.

We begin by showing how the amplitude modulation interacts with the light

field. The carrier field is simply

E = E0e
iω0t. (3.21)

When the carrier field is amplitude modulated, this becomes

EAM = E0e
iω0t(1 +m cos(ωmt)), (3.22)

where m is the modulation index and ωm the angular frequency of modula-

tion.

We now look at the mathematics of applying phase sidebands to the carrier

field.

EPM = E0e
iω0teim cos(ωmt)) (3.23)

which is different to the amplitude case as it now contains a periodic phase

term eim cos(ωmt). Expanding this with standard identities gives

E0e
iω0t

∞∑
k=−∞

ikJk(m)eikωmt, (3.24)

≈ E0e
iω0t(J0(m) + iJ1(m)eiωmt + iJ1(m)e−iωmt). (3.25)

Here Jk(m) are Bessel functions of the first kind of order k.

Photodiodes used to detect these fields output a signal proportional to the

power incident upon them. The output signal is obtained by multiplying the
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field with its complex conjugate. For an unmodulated beam this simply gives

the power, however, for a phase modulated beam it gives

Pdet = Pω0 + Pωm + P2ωm , (3.26)

where the ωm terms are zero unless there is a phase change between carrier and

sideband field e.g. when interacting with a cavity. As we are only interested in

the ωm we beat the whole signal Pdet with a ωm local oscillator. This gives a

signal at DC with information about the beat between carrier and sideband

which we are able to maximise by tuning the phase of the local oscillator.

This gives bi-polar length-sensitive signal which allows negative feedback to

be applied to actuators to control the cavity length. It is important to see that

when the carrier field resonates in the cavity the sideband fields are reflected off

the ITM and do not interact with the cavity. So the reflected carrier field that

has interacted with the cavity mixes with the reflected sideband field. When

the detected field is demodulated at the sideband frequency it gives a bi-polar

signal with a zero crossing at the peak of the resonance. This technique used

to readout cavity length changes is called the Pound Drever Hall method [35]

and is commonly used for control of optical cavities.
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Figure 3.4: Simulation of the free spectral range of a cavity shown on loga-

rithmic scale to illustrate the sideband structure. The inset shows the resonant

Airy peak. Multiple sideband terms are applied to the light if the expansion is

done completely at multiples of fmod.

3.2 Cavity Dynamics-Mechanical

As previously mentioned it is important that both cavity mirrors are isolated

from ground motion. One way of achieving this would be to float the mirrors

using magnets. However, this is very difficult to do in a controlled manner.

A much easier and more developed method is to suspend them as the bottom

stage of a pendulum. The basic dynamics of pendulums and how isolation is

provided will now be discussed.
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Figure 3.5: Cavity mirrors suspended as the bottom stage of a pendulum of

length Lpen. A photograph of a suspended mirror is shown in Figure 4.7.

Figure 3.6: Frequency response of a simple pendulum. Length = 0.25 m giving

resonance at 1 Hz.

Figure 3.6 shows the frequency response of a simple pendulum in terms of

motion transferred from the suspension point to the suspended object. It

is a model of a pendulum of length 0.25 m, giving a resonance at 1 Hz with

a Q of the resonance of 100. The Q value sets the bandwidth of the reso-
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nance, which, for the purpose of optics suspensions, we wish to make as large

as possible, therefore keeping the frequency it affects very small. Above the

resonance there is a drop-off in response of the form 1/f 2, meaning at high

frequencies almost no signal is transferred from the suspension point to the

object being suspended. This makes it perfectly suited to work as a higher

frequency isolation system for optics in gravitational wave detectors. By re-

ducing the fundamental frequency as low as possible, the drop-off starts at

lower frequency, increasing the magnitude of high frequency isolation. This

isolation can be further improved by cascading pendulums, suspending one

from the bottom stage of another. The 1/f 2 then becomes 1/f 4, improving

the isolation dramatically at higher frequencies.

3.3 Radiation Pressure

Gravitational-wave-detector cavities now use very high circulating powers to

reduce shot noise and increase signal size. The downside of this is that reflected

photons impart momentum onto the mirror, which at high power levels can

dominate the suspended-mirror dynamics. The radiation pressure force exerted

on an optic is proportional to the light-field power and the reflectivity of the

surface. The radiation pressure force is then (change in momentum)/time =

2meffc/t = 2hf/ct, where t = Ephoton/P , i.e.,

FRP =
(2hf/c)

(hf/P )
=

2P

c
(3.27)

assuming all the photons are reflected. The force exerted on the mirror by a

fully reflected 1 W beam is then 6.69× 10−9 N.
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3.4 Radiation-Pressure-Dominated Dynamics

of a Suspended Cavity

As most of the cavities dealt with in the field of gravitational wave detection

are suspended for reasons already mentioned, large radiation pressure forces

acting along the beam axis can cause an acceleration of the mirror from its

equilibrium position, which in turn is then balanced by the restoring force of

the pendulum. The dynamics of this will now be described.

The cavity no longer being static makes the cavity properties slightly harder to

measure. The finesse of the cavity can not simply be measured by comparing

the FSR to the resonance linewidth. This is an effect of using high-quality

mirrors such as those used in the experiments to follow in Chapters 5 and 6.

This gives rise to a very high finesse of >10000, i.e. more power stored in the

cavity, and so the linewidth is very narrow compared to the FSR. What is seen

experimentally as the mirrors swing and the cavity passes through a resonance

is that the light power rings with an exponential decay as shown in Figure 3.7.

This is caused by the longer storage time of the cavity. So, as the mirrors pass

through a resonance, the power builds up to maximum almost instantaneously.

Due to the higher finesse the storage time in the arm cavities is very long and

so light is still stored in the cavity long after the mirror has moved away from

resonance. At this point the decaying cavity field is reflecting back and beating

with the now out of phase input beam. This causes the decaying exponential

ringdown as seen in Figure 3.7.
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Figure 3.7: The plot shows voltage from a photodiode measuring reflected field

as the cavity is unlocked with a small longitudinal drive signal applied to the

ITM. The D.C. offset was removed to make the fitting of the exponential de-

cays easier. The final decay gave a measured finesse of 13000, which gives a

linewidth of 578 Hz for the cavity used in the experiments discussed later in

this thesis.

From this the finesse of the cavity can then be calculated. This is achieved first

by fitting an exponential envelope to the ringing decay giving the two curves

shown in red in Figure 3.7. The difference of these is ten taken to remove slow

drifts in the signal giving a final exponential decay with decay constant τ . The

FWHM is then given by πτ and from this the finesse can then be calculated

using equation 3.20.

Using figure 3.7 it is also possible to calculate the velocity of the mirror by

measuring the time between peak and trough of an oscillation. If the non-

resonant field is static and the cavity field is changing due to the mirror motion

the 180 degree of phase or half a wavelength must correspond to the difference
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between the peak and trough. This gives a value of 0.017 m/sec. The size of

this value is explained as during the measurement the ITM was being driven

longitudinally. By driving the mirror this moved the fringe through resonance

much quicker meaning the decay was only due to the field leaking out of the

cavity.

3.4.1 Optical Rigidity

Cavities are usually kept on resonance in one of two ways, either by changing

the laser frequency to follow the cavity-length changes or by actuating on one

of the mirrors’ position to keep the separation constant. As one offsets the

locking point to the side of the resonance peak, usually achieved by adding a

static offset voltage to one of the feedback mechanisms, the intracavity power

will drop and so the radiation pressure force will also drop. At this point a

change in mirror position in one direction will increase the radiation pressure

force due to moving closer to the cavity resonance and reduce the radiation

pressure force by moving away from the cavity resonance in the other direction.

The mirror motion also experiences another force when moving due to the

pendulum restoring force, shown in figure 3.8, which will increase as the mirror

moves away from its equilibrium and decrease as it moves closer to equilibrium.

On one side of the resonance curve a displacement will cause either an increase

or decrease in the radiation pressure. On the opposite side of the resonance

the same movement would have the opposite effect on radiation pressure due

to the slope having the opposite gradient. On one side the radiation pressure

force will act to oppose the restoring force (stable) and on the opposite it will

act in the same direction (unstable). The stable configuration is known as an
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Figure 3.8: Balancing of forces between radiation pressure and pendulum

restoring force.

optical spring, the unstable configuration as an anti-spring.

The optical spring behaves like a mechanical spring connecting both cavity

mirrors using only photons, and therefore in contrast to a mechanical spring

provides a spring without thermal noise. It behaves as any harmonic oscillator

with associated, Q values and an effective Young’s modulus, assuming the laser

beam is a bar of width equal to the 1/e2 value of the beam radius at the mirror

surface.

The mathematical derivation of the optical spring will now be discussed. We

begin with a standard spring response,

Frestoring = −kosx =
md2x

dt2

d2x

dt2
+
−k
m
x = 0.

(3.28)

The optical spring constant kos can be calculated by relating the radiation

pressure force to the pendulum restoring force, both as a function of detuning.

The further the system is detuned from resonance, the lower the radiation
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pressure force but the higher the pendulum restoring force.

Total restoring force = pendulum restoring force + radiation pressure force

dF = −mω2
pen︸ ︷︷ ︸

kpen

dx+
2P (dx)

c︸ ︷︷ ︸
kos

dx (3.29)

P (dx) =
∂P (θ)

∂θ

∂θ

∂x
(3.30)

Using the small-angle approximation for sin θ = θ and substituting Equa-

tion 3.13 we get
∂P (θ)

∂θ
= 2Pin

Fθ
(1 + Fθ2)2

(3.31)

and
∂θ

∂x
=

2π

λ
(3.32)

⇒ kos =
8πPinFθ

cλ(1 + Fθ2)2
(3.33)

As expected the above expression is dependent on the shape of Airy peak, the

finesse F , the amount of detuning θ, and the amount of input power to the

cavity Pin. The associated resonance frequency ωos in radians or fos in Hz can

then be calculated using the reduced mass of the system mred as follows:

ωos =

√
kos
mred

. (3.34)

The equations described above only hold true in the case in which the cavity

response can be considered instant, i.e. for fos � γ. We will now go on to

describe the optical rigidity effects when this is not true and the cavity response

has a large effect. The result of the cavity pole is that the optical spring

force on the mirror does not respond instantaneously to a change of cavity
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length. Khalili and Vyatchanin first showed this effect [36] and described it as

follows:

kos(Ω) = −2iω2
0Pin
cL

(
1

`(Ω)− 1
`∗(−Ω)

)
, (3.35)

where kos(Ω) is the frequency-dependent spring constant. Mirror motion at Ω

causes phase modulation of the carrier light with sidebands at ω0±Ω. The `(Ω)

places poles in K(Ω) at sideband frequencies γ ± δ which upon simplification

gives

kos(Ω) = kos
1 + δ2

γ

(1 + ıΩγ)2 + δ2
γ

, (3.36)

where kos is the same as Equation 3.33 and δγ is the detuning in Hz as a

fraction of the linewidth. The real part of kos(Ω) then gives the frequency-

dependent spring constant and the imaginary part gives the viscous damping

term plotted in Figure 3.9 and Figure 3.10 respectively. We also see that as

γ becomes large compared to Ω (that is to say the linewidth of the cavity is

much larger than the mirror-motion frequency or the cavity response is instant

compared the the measurement frequency) this term disappears and we are

left with kos.

It can be seen in Figure 3.10 that the points of positive spring constants co-

incide with a negative viscous-damping term and vice versa. This shows that

optical springs are inherently unstable and that is why feedback servos are

required to keep the system in its operating state.

Optical springs have been studied across a broad mass range from ng [37] up to

the g scale [38], but only recently at the 100g scale, using a previous incarnation

of the experiments discussed in this thesis. The experiments referenced above

all took place far away from the regime whereby the optical spring is affected by

the cavity pole and so making this a very interesting setup to work with.
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Figure 3.9: Plot showing frequency dependence of the optical spring constant

on detuning. The parameters used in this simulation are for the ones used in

the experiments of this thesis. The same applies for Figure 3.10.

Figure 3.10: Frequency dependence of velocity damping on detuning.
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3.4.2 Parametric Instabilities

Parametric instabilities can occur in radiation-pressure-dominated systems and

are caused by mechanical modes of the mirror substrate pushing light power

from the main carrier mode into sideband fields, which can further excite me-

chanical modes causing the so called parametric instability [39]. This phe-

nomenon is only mentioned for completeness as it is common among many

other optical-spring experiments due to the large radiation-pressure effects re-

quired to create optical springs. They do not affect our system for the following

reasons. The linewidth of the cavity used is very low, 570 Hz, meaning there

are very few photons in the cavity at the much higher-frequency mechanical

modes of the mirror substrate which are typically 10s kHz. It should also be

noted that parametric instabilities can occur in non-suspended cavities and

have nothing to do with optical springs. They are only prominent in this field

due to the large radiation pressure forces and lighter masses used.



Chapter 4

Experimental Apparatus and

Design

The following chapter describes the experimental setup common to all of the

experiments discussed in this thesis. The experiments are both centered around

a high-finesse, suspended, 10 m Fabry-Pérot cavity whose dynamics are domi-

nated by the radiation pressure effects of the circulating light field.

4.1 Glasgow 10 m Prototype Laboratory

The Glasgow 10 m prototype is a system which was designed for the rapid

prototyping of new interferometric technologies destined for integration into

the full-scale gravitational wave detectors. It fills the space between table-top

proof-of-principle and full integration by using scaled-down versions of the full

detectors; a required step due to the huge difference between setups and the

need to have detectors operational for as long as possible. Moreover, the use of

48
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prototype interferometers allows the testing of innovative technologies, while

leaving the detectors in “observation mode” for as long as possible to maximise

chance of detection. Prototypes are then required to minimise interference

whilst integrating into the full-scale detector. As such, the prototype system

has comparable parameter ratios with full-scale detectors, such as suspension

size to beam power, spot size to mirror size and it uses similar locking schemes

etc. The main difference between the prototype and a full-scale detector is

that the arm length is reduced from km-scale to 10 m. The system is folded

so that the arms are parallel rather than the traditional L shape due to space

constraints in the lab. However, this does not hamper measurements as it

was never designed as a detector for gravitational waves and thus there is no

need to be sensitive to perpendicular length changes. This combination of

mid-scale topology and easy reconfiguration makes the prototype system an

ideal test-bed for the validation of new interferometric techniques.



4.1 Glasgow 10 m Prototype Laboratory 50

Figure 4.1: Schematic overview of the vacuum system detailing the location of

each optic. The three main experimental areas coloured blue, green and red.

Figure 4.1 shows a schematic overview of the lab, indicating the 10 m arm

cavity, coloured blue, that was central to the work discussed in this thesis. The

10 m diffractive cavity in this diagram was used for other experiments taking

place in the lab and will not be mentioned again. The external frequency-

readout cavity in green is central to the experiment detailed in chapter 6 and

will be explained in full detail there.
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Figure 4.2: View of the clean-room section of the 10m prototype lab where all

experiments were undertaken. Long vacuum tube is skewed due to camera lens

and houses the 10 m cavity referred to throughout this thesis. The main optical

bench with laser, amplifier and conditioning optics is seen far left with the large

tanks shown that house the suspensions for the optics. Image- K. A. Strain.

Figure 4.2 shows the clean-room area where the experiments in this thesis

were undertaken. The area is a class-100 clean room with the tents around

the vacuum chambers kept to class 10 with the use of downward airflow to

maintain positive air pressure around the chambers and to keep the optics

as clean as possible. The 9 larger chambers house the suspensions and are

connected with a 60 cm-diameter beam tube.

4.2 Control and Data System

The lab uses a control and data system (CDS) based on a similar design to that

used in both GEO and LIGO for control, data acquisition and environmental

monitoring of the detectors. This allows the system to operate effectively as a

prototype using similar setups to those used at a detector site. The CDS has
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four core CPU’s, one for input/output control and three on which we can run

models for control and feedback. It allows data to be recorded on up to 32

inputs at up to 65 kHz sampling rate and has 16 outputs allowing it to be used

in control loops for some of the sub systems in the lab. The CDS is locked to

GPS signal, meaning times are noted whilst experiments are undertaken and

can be post analysed.

The system allows for fast and easy adjustment of feedback loops compared

to traditional analogue electronics, making the development, optimisation and

integration much quicker and easier. Alterations to these feedback loops can

be done in real time and without the need to switch anything on/off. It is

also possible to save and analyse data from multiple channels, simultaneously

shortening measurement times and improving accuracy.

Figure 4.3: Screen shot of CDS showing simulink schematic controlling input

to output commands and mathematical operations performed on signals.

The CDS is however not suitable for high-frequency feedback due to limitations

imposed by the sample rate and is not as quick as analogue electronics for this

purpose. An example of this is the laser-frequency feedback system that can

have a bandwidth of up to 100 kHz. However, it is possible to integrate CDS

with analogue control systems, which is what has been done in the laser-

feedback case described in more detail later in this chapter.
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Figure 4.4: Screen shot of CDS showing filter banks for different channels

(left), offset control (bottom right) and input output monitoring (top right).

In some scenarios read-in and readout noise can also be a problem, leading

to the requirement of integration of additional whitening and dewhitening fil-

ters.

4.3 Optics

The two optics that make up the input and output cavity mirrors are both

suspended as the bottom stage in a triple pendulum. The input steering optics

that align the beam into the cavity are not required to be isolated to the same

level, as the beam only hits them once, and so they only required a double

pendulum. The triple-pendulum suspension of the ITM was the basis of the

design for the GEO600 suspensions [40] and the LIGO quadruple suspensions

[21].

The two suspensions are slightly different in design. We will first describe

the three stages of the ITM triple suspension configuration. The top stage

is suspended from cantilever blades attached to the frame mounted in the

vacuum system to isolate vertical bouncing. Attached to this upper stage
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Figure 4.5: Side by side comparison of ETM (left) and ITM (right) masses.

are the position sensor flags and coils for the damping and alignment control

(discussed in the following paragraph), then two wire loops are used to suspend

the intermediate mass (also 2.7 kg) and finally two more wire loops are used

to suspend the ITM mirror at the bottom stage.

Figure 4.6: Flag position feedback sensor schematic. The magnet, and flag, are

attached to the ITM suspension while the coils are attached to a frame bolted

to the ground. Feedback is provided to all 6 degrees of freedom.
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The flag position sensors allow monitoring of the mass position on the upper

stage of the suspension and allow feedback to be applied to the mass to stabilise

any oscillations. The error signal here is achieved by setting the coil (with LED

and photodiode) shown in figure 4.6 such that the photodiode is neither fully

bright nor dark. This is then used as a zero point crossing for stabilising

suspension oscillations. The feedback is applied by applying a current through

a wound copper coil, mounted on the reaction suspension which produces a

magnetic field that’s polarity depends on the direction of current flow. This

actuates on the magnet attached to the main suspension allowing the mirror to

be pushed and pulled. Static offset voltages are applied to provide alignment

control. These actuators are located on the upper stage of the pendulum so

any electronic noise that is introduced is still filtered by the stages below. The

servo of this damping rolls on up to 0.3 Hz and is then flat. The feedback

loop has a lower unity gain point (UGP) at around 0.03 Hz and has gain of

around x10 from 0.3-0.58 Hz, at which point actuation drops off due to the

isolation of the pendulum, and has a higher unity gain point at 10 Hz. A step-

up differentiator is required in this range to change the 1/f 2 of the pendulum

to 1/f to provide stability at the unity gain crossing.

The ETM suspension was specifically designed for the first set of optomechan-

ical rigidity measurements done in the Glasgow prototype [41]. The use of a

light mass made it much more susceptible to the effects of radiation pressure

and also helps to simplify investigations as most movement due to radiation

pressure can be attributed to the ETM due to the ITM being much heavier.

It makes use of a slightly simpler design compared to the ITM suspension.

It uses passive eddy current damping, but still has coil-magnet control on an

upper stage for alignment control [42].

Both cavity mirror suspensions have a near identical reaction pendulum chain
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Figure 4.7: Side-by-side comparison of ITM and ETM suspensions.

which hangs behind the main optic suspension. The only difference being

the bottom stage is not a mirror, but in this case an aluminium blank of the

same weight as a mirror with a hole through the centre to allow the beam to

pass through. The main purpose for this is to allow actuation directly onto the

mirrors without seismically short-circuiting the main suspension. The reaction

chain also acts as an injection point for feedback actuation and to probe cavity

response. This is done in a similar way to the damping with magnets attached

to the mirror and wound coils through which current is passed attached to

reaction mass. A diagram showing the back surface of the ETM is seen in

Figure 4.8, showing the location of the magnets at 4,8 and 12 o’clock.
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Figure 4.8: Diagram of ETM showing beveled aluminium holder with small,

square, silvered mirror glued to the back surface (purpose explained in Chapter

5). Also shown are the clamping points on either side for the suspension wire

and also three neodymium magnets glued to the surface at 4,8 and 12 o’clock.

Each stage of the suspension chain has a length of 30 cm, giving a fundamental

resonance at 0.6 Hz which can be seen in figure A.2. Above this frequency, the

pendulum isolates 1/f 6 due to the cascaded three stages meaning the ground

vibrations of around 10−6 m are now down at 10−18 m by 100 Hz, well below

other noise sources in this range.

4.4 Laser Amplifier

To reach the regime whereby cavity dynamics are opto-mechanically domi-

nated, high input laser power is required for the sizes of mass used, 2.7 kg

and 100 g. The main laser used was a 1064 nm, 2 W, non-planar ring-oscillator

(NPRO) [43] which after beam conditioning optics, polarisers, Faraday iso-

lators etc was reduced to around 1 W. To achieve the power needed, a laser
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amplifier was built consisting of a KTP crystal (Pottassium titanyl phosphate)

through which the original beam was double passed off axis. This allowed opti-

mum gain by not saturating the crystal and also prevented potential parasitic

cavity problems caused by having the crystal perpendicular to the beam path.

The crystal was pumped with 20 W of 880 nm light, giving a maximum power

out of the amplifier of 5.2 W.

Figure 4.9: Energy level description of the amplifier setup. The crystal is a 4-

level system whereby the pump light creates a population inversion from ground

state E4 to upper state E1. A fast decay then occurs from E1 to E2. Stimulated

emission causes emission of photon of energy E2−E3 which gives 1064 nm. A

final fast decay from E3 to E4 brings the system back to its ground state.
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Figure 4.10: Optical layout of Laser amplifier showing the pump light entering

from the left through a fibre. The KTP crystal is mounted in the gold water-

cooled block, centre, and the pick off faraday isolator on the right.

4.5 Sensing and Demodulation

The arm cavity was setup to mimic the arm cavities used in a gravitational

wave detector and so Pound Drever Hall (PDH) reflection-locking [35] was used.

The input light was phase modulated using an electro optic modulator (EOM)

at 10 MHz and the reflected signal was then detected on the RF photodiode and

demodulated to give a control signal as described in Section 3.1.2. Throughput

and reflected photodiodes were also used for power monitoring purposes, with

the reflected signal giving a good estimation of visibility and throughput giving

a good measure of power stored in the arm cavity. Both traces help to optimise
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alignment of the cavity, together with rough alignment estimation based on the

image of the transmitted cavity TEM modes viewed on a CCD camera. By

observing the spread of mode-shape across vertical and horizontal axes it was

possible to correct for first-order mirror misalignments and bring the cavity

into auto-alignment range.

The main 10 MHz signal was taken from a Wenzel crystal oscillator [44], giving

a very stable reference. All other 10 MHz signal generators used were phase

locked to this, allowing individual optimisation of the demodulation phase.

The main reason for choosing the Wenzel device to generate the sideband

frequencies was the very low phase noise it produces, −165 dBc/Hz at 1 kHz,

which was required for one of the other experiments in the lab. An overview

of the full RF sensing and demodulation setup is shown in Figure 4.11

Figure 4.11: RF setup. A HELA is a low noise RF amplifier with 12 dB of

gain.
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As previously described in section 3.1 the sideband power related to the carrier

can be expanded in terms of Bessel functions. Simulating the cavity sensing

signals, it was decided that a modulation index of 0.6 would provide a strong

error signal with sideband powers of about 9% of the carrier without reducing

the carrier power used to produce the optical spring. This was measured using

a scanning Fabry-Pérot cavity. A standing-wave ratio meter was included

in the RF setup to ensure proper impedance matching and therefore power

coupling into the EOM circuit.

An EG&G InGaAs photodiode was used for its high speed (flat response up

to 75 MHz into a 50 Ω load) and low-noise performance. The output bench

shown in Figure 4.11 was set up so that approximately 10 mW of light was

incident upon the photodiode for optimum noise performance. It was then

wired as part of a transimpedance amplifier shown in Figure B.3. The signal

was then demodulated using a RAY-3 MiniCircuits mixer [45] which had a local

oscillator specification of 23 dBm, meaning the peak-to-peak error signal size

could be maximised to allow better fine-tuning and control over the detuning

parameter (DC offset) used to create the optical spring.

Taking into account a photodiode efficiency of 0.6 A/W and 10 mW incident

power gives 6 mA of photocurrent which flows through the 220 Ω resistor in the

transimpedance amplifier, giving voltage output from photodiode amplifier of

1.32 V. It is now possible to calculate the the peak-to-peak voltage or the error

signal by taking the RF power and converting it to voltage on the photodiode.

The RF power is given by
√

sideband power(1 mW) ×
√

carrier power(9 mW)

which gives 3 mW of RF power, giving a peak-to-peak error signal size of

0.4 V.
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Figure 4.12: Demodulated error signal from model.

4.6 Frequency Stabilisation Servo

The 10 m cavity-locking servo for feeding back to the laser frequency was

used for other experiments that were undertaken in the lab, and as such was

over-designed for the requirements of the optical rigidity work discussed here.

The control loop feeds back to the laser frequency via three channels, a high-

frequency electro-optic modulator (EOM) (10 kHz-100 kHz), laser PZT (10 Hz-

10 kHz) and the laser crystal temperature (<10 Hz). The loop has adjustable

unity gain from 8 kHz up to 100 kHz and DC gain up to 100 dB. For the pur-

pose of this experiment, the EOM was not used to allow the loop gain to be

reduced at the measurement frequency, the reasons for which will be discussed

later in this thesis. The full electronic schematics can be found in Appendix

B.
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Figure 4.13: Frequency stabilisation loop response for PZT (blue) and laser

temperature (green) and sum (red) feedback. The curves were produced us-

ing LISO and include the cavity pole and actuator response and the measured

response of the system is shown in black.

Figure 4.13 shows both the measured and the modeled open-loop transfer

function of the locked 10 m cavity frequency-stabilisation loop. The measured

result only shows the region of interest between 100 Hz and 20 kHz, mainly

because measurement towards lower frequency become difficult due to high Q

pendulum modes and no measurements were taken in this region. The model,

written in LISO, a linear analog electronic circuit simulation programme [46],

and has also taken into account the cavity response and a measure of the

gain based on the peak-to-peak voltage of the error signal. An additional

differentiator response was also included because the EOM feedback is not

being used in this configuration and electronics require additional phase at the

much lower UGP to maintain stability.

The actuator response of the PZT of 1.35 MHz/V was measured numerous
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times in numerous different lab experiments. For instance a measurement

based on a linear mode cleaner setup allowed the laser to be well characterised

as well as agreeing with the laser manual. It should also be noted that the

laser has a flat frequency response across the very wide frequency range we are

interested in. The temperature of the laser crystal is controlled with a peltier

cooler where the response rolls off due to the temperature dissipation in the

crystal. This has a cascading roll off effect from around 10 Hz; the response

is approximately 1 GHz/V, which again was characterised using a linear mode

cleaner. This number is not used for any calculations as measurements were

all done in the flat, PZT only, response frequencies.

The CDS already records the PZT feedback signal from the servo. This was

initially the signal that was filtered in the same analogue circuit to give the low

frequency feedback to the laser crystal temperature. This was then integrated

into a CDS filter bank to allow quick changes to be made to help optimise the

system. Large DC gain was required to suppress pendulum modes, which was

easy to do digitally with notches and resonant gain filters. The full filter bank

and properties are described in Appendix B.

One of the reasons for the large DC gain is the large unsuppressed motion

below the fundamental pendulum resonance; however, one of the more subtle

effects occurs as the cavity is detuned. As the cavity is offset from resonance to

create optical rigidity, the error signal becomes less linear as it moves towards

the peak or trough seen in Figure 4.12, at which point the signal response drops

to zero. The modeled error signal response for various detunings, calculated

in Finesse, is shown in Figure 4.14
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Figure 4.14: Finesse model highlighting the drop in gain at lower frequencies

as the cavity is detuned further from resonance. The plot shows the PDH signal

response for a variety of detunings in fractions of a linewidth (γ).

4.7 Auto Alignment Subsystem

Suspended optics, although good for isolation purposes, give rise to difficult

experimental challenges of keeping the cavity at the correct operating point.

Mirror motion away from the “aligned” state will cause the intracavity power

to reduce, which in turn reduces the radiation pressure force on the mirror.

This will then allow the pendulum restoring force to pull the pendulum back

to equilibrium, causing a change in alignment, again changing the intracavity

power. If this is a large effect, the system will become unstable. A further

experimental investigation of this effect is detailed in section 5.3.5. Slow drifts

of alignment also occur due to screws moving, optic mounts relaxing, doors

slamming in adjacent rooms and temperature fluctuations causing expansions

and contractions. All these effects can alter the alignment of the cavity and so
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for this reason a feedback loop is created to feedback to the mirror position to

keep it optimally aligned.

The technique of auto alignment has existed for a long time and is commonly

applied in gravitational wave detectors and prototype systems and was first

demonstrated in the Glasgow prototype many years before it looked the way

it does now [47][48].

By analysing the mode component in the beam reflected from the cavity, in-

formation can be obtained about the alignment of both mirrors in tilt and

rotation. Due to the carrier interacting with the cavity and the sideband

field being non-resonant, if there is a misalignment in the cavity, modes will

resonate. As the reflected signal is demodulated, cavity length information

is obtained, whereby higher order modes indicate misalignment of the cavity

mirrors.

At the heart of this system are the two quadrant photodiodes, one of which

is shown in figure 4.15, which is split unsurprisingly into four, allowing signal

fluctuations in tilt and rotation to be separated by summing two quadrants and

subtracting from the other two. Top two minus bottom two gives tilt signals,

two left minus two right gives rotation signals. These go to zero if the beam is

perfectly centred with the same amount of light on each quadrant and will be

used later on to create a zero-crossing point for a feedback loop to ensure the

beam remains centred. Demodulating these signals allows the mode content

to be seen, as tilt misalignment introduces 01 mode and rotation misalignment

introduces 10 mode1. Again these go to zero as the amount of each mode is

reduced as the system becomes better aligned.

1 Here the mode numbers refer to the mode indices of Hermite-Gaussian modes.
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During this work we had initially intended to only feedback to the ETM due

to the majority of motion suspected to be introduced from the lighter mass.

However, it became apparent that it was difficult to obtain information from

the demodulated signals about one mirror only and there was therefore a dan-

ger of feeding back movement of the wrong mirror and therefore introducing

noise. For this reason we set up two detectors, separated by 90 degrees in

Gouy phase, which gave near-field (ITM) and far-field (ETM) information and

so alignment information can be obtained from both mirrors. The Gouy phase

separation was calculated using the JamMt tool [49] allowing the position of

Gouy phase telescope lenses to be optimised (L1 and L2 in Figure 4.18).

Figure 4.15: Quadrant photodiode and some of the associated electronics. One

can just make out the split in the diode itself.

With the addition of a second detector it became apparent that not all noise on

signals came from the ITM. For this reason, spot centering was implemented to

keep the beams optimally aligned onto the photodiode. Having the beam off-
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centre produced offsets in the demodulated signal and therefore in the locking

point, which meant the cavity did not align to the optimum position and in

some cases introduced instabilities when the feedback was applied. To this

end, two scanning galvanometers were placed in the beam path, one in front of

each detector. The feedback servo electronics constructed in CDS are shown

in Appendix B. The locked transfer function of the centering servo is shown in

figure 4.16 for one galvanometer in one axis. A unity gain frequency of around

700 Hz was achieved, well above the resonance of the galvos seen at around

320 Hz.

Figure 4.16: Measured spot centering servo transfer function in rotation (X)

and tilt (Y).

To feedback rotation and tilt signals to the mass, the coil-magnet actuators

on the bottom stage masses are used. By feeding back separate sign and

magnitude to the three coils mounted at 4, 8 and 12 o’clock, tilt, rotational

and longitudinal actuation can all be achieved.

Longitudinal actuation is achieved by driving all three coils with the same sign
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and size of signal. Due to the bottom two magnets being positioned slightly

up from the bottom of the mass they do not have as strong an effect but as

there are two of them this balances the top coil. To achieve tilt actuation,

the sign of the top coil is reversed to provide a push-pull actuation. Rotation

can be achieved by driving the left and right coils with opposite signs with the

top coil magnitude reduced to account for the small amount of tilt introduced

by driving slightly below the centre of the mass. Each signal line has a small

trimmer included to allow for balancing of each coil individually, which is

required due to slight misalignments of the coil and magnet not being perfectly

aligned.

For the auto-alignment feedback it was possible to use CDS, due to not requir-

ing high frequency feedback, and simply feed the demodulated x and y directly

into CDS. This made it quick and easy to build up filters to test the feedback

system with. The Bode plot of the CDS filter bank is shown in Appendix

B.

The unity gain point for each degree of freedom was around 5 Hz. Low fre-

quency resonances make it difficult to increase this any further. The presence

of an auto-alignment system allowed us to monitor the state of alignment and

to switch on feedback as necessary. It was also possible to use these traces in

the time domain to determine if suspensions were oscillating and if the sys-

tem was well aligned. During measurements the auto alignment system was

disengaged to avoid cross coupling when driving signals.
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Figure 4.17: Measured transfer function of locked auto alignment on ETM tilt
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Figure 4.18: Readout bench optical layout consisting of two 50:50 beam splitters

(BS), L1 and L2 are lenses that set the correct Gouy phase of the two quadrant

photodiodes (QPD). The focal length of L1 is the optical path length to QPD1

and the focal length of L2 is the optical path distance to QPD2. The scanning

galvanometer Galvo1 centres the beam on QPD1 and Galvo2 on QPD2.

Figure 4.19 shows the time series development as feedback of three out of the

four degrees of freedom of the cavity is switched on. It shows the feedback

signals going to close to zero, the optimally aligned case, as the feedback is

switched on at time 5 sec. At time 26 seconds more integration is added

causing the slight instability. The initial reflected D.C. photodiode voltage

starts at 298 mV and once the feedback has been switched on this value drops

to 252 mV, showing there is less light on the reflected photodiode, i.e. more

light is coupled into the cavity due to better alignment.
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Figure 4.19: Time series showing auto alignment feedback being switched on

after 5 seconds and integration added at around 26 secs. Three of the four

demodulated traces move towards the zero crossing. The fourth, the reflected

DC level, reduces from 298 mV after 2 seconds to 252 mV after 40 seconds

showing more light is coupled into the cavity implying better alignment.

4.8 Experimental Modeling

Two separate programmes were used for modeling throughout the setup phase

of this experiment and also in confirmation of results. The first, Finesse [50]

was used for simulation and calculations regarding light fields, e.g. power

levels, modulation levels, effects of length changes on error signals, etc. Finesse

computes the light field amplitudes at every point in the interferometric setup,

assuming a steady state. To do so, it is translated into a set of linear equations

that are solved numerically.

The second programme, Optickle [51], includes the dynamics of the suspen-
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sion and includes the effects of radiation pressure which until very recently

Finesse did not. Optickle is able to study the dynamic effects in an interfer-

ometer where optics have associated mechanical transfer functions due to being

suspended. This is then perfectly suited for investigation of optical-spring ef-

fects.

A sample of the code written to model the setup in both Finesse and Optickle

is shown in Appendix C.



Chapter 5

Local Readout for Optical

Bars

With advanced detectors expected to be quantum-noise limited (Figure 2.5),

several topologies have been proposed for future upgrades. The Heisenberg

Uncertainty Principle applied to the continuous measurement of a free mass,

as the suspended optics are designed to be in the detection frequency band,

sets the limit to the precision with which their position can be measured in

the current configuration. By coupling these masses opto-mechanically, they

no longer behave as free masses and as such the free-mass standard quan-

tum limit no longer applies. The masses become harmonic oscillators with

resonant frequencies that can be arranged to be in the detection band of the

interferometer.

Methods have been proposed to give either a strong enhancement over a narrow

band [52] (e.g. 10 Hz) or a much smaller enhancement over a broad band [53]

(e.g. a factor of two improvement as might be obtained by applying squeezed

light). Between these extremes there are two topologies that are the subjects

74
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of this chapter: the local-readout and optical-bar topologies. An explanation

of how these techniques are able to surpass the standard quantum limit is

given, followed by detail of the first experimental proof of principle of such a

setup. The associated control requirements and comments on the suitability

for integration into a full-scale detector are presented.

5.0.1 Standard Quantum Limit

The standard quantum limit (SQL) arises from Heisenberg’s uncertainty prin-

ciple which states that there is a fundamental limit to how accurately a position

can be known without imparting momentum on the object to create an error on

its future position. This imposes a sensitivity limit on gravitational wave de-

tectors in their current configuration. Heisenberg’s uncertainty principle states

that two non-commuting variables cannot be simultaneously measured to arbi-

trary accuracy but are limited such that in the position(∆x)-momentum(∆p)

case the limit is set by Planck’s constant:

∆x∆p ≥ ~. (5.1)

The important requirement for a gravitational wave detector is that the mir-

ror surfaces behave as free masses and movement caused by ground vibrations,

Brownian noise of the mirror surface, or the fluctuations in radiation pressure

caused by the Poissonian nature of the laser beam, do not mask the gravita-

tional wave signal to be detected. The Heisenberg uncertainty principle applied

to a gravitational wave detector’s sensitivity limit appears in two forms: shot

noise and radiation pressure noise. As one noise is suppressed, the other in-

creases and vice versa; the equations that describe this are shown below and

the full derivation can be found in [52].
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hsn(f) =
1

Lcav

√
~cλ

2πPcav
(5.2)

hrp(f) =
1

mf 2Lcav

√
~Pcav
2π3cλ

(5.3)

Where hsn(f) and hrp(f) are the seperate strain sensitivities for shot noise and

radiation pressure noise at frequency f . Pcav is the intracavity power and m

is the reduced mass of the cavity mirrors and Lcav is the cavity length. It can

therefore be seen that the only way to improve sensitivity is by increasing the

mass of the optic. Advanced detectors will use 40 kg masses, which are at the

current limit of technology for creating a mirror that size out of material of

the required quality.

The quantum noise line shown in Figure 2.5 shows the sum of radiation pressure

noise and shot noise for a single-power level. The SQL line in Figure 5.1 is

obtained by varying power levels and creating a line from the minimum point

of each separate quantum-noise curve.

It is emphasised that the test described below is entirely classical and is in-

tended to demonstrate methods that may later be developed to show quantum-

mechanical behaviour.

5.0.2 Optical Bar in Advanced Detectors

The optical bar topology was first proposed by Braginsky [54]. The principle

behind this geometry is that an additional optic is added to the interferometer,

labeled CTM (central test mass) in Figure 5.2. This mirror forms a cavity with

both of the ETMs, each cavity is then detuned, opto-mechanically coupling the

CTM to each with optical springs. At this point any differential arm motion
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Figure 5.1: The SQL corresponds to the lowest sum of shot noise and radiation

pressure noise, shown here for 3 different power levels, 1, 10 and 100 Mw.

Increasing power level indicated by increase in darkness of blue/red.

caused by a GW signal will be transduced to a local movement of the CTM

at the GW frequency. Not only is it visible but the effect is also double due

to the push-pull effect along the beam path caused by one ETM getting closer

to the CTM and the other further away. By monitoring the position of the

CTM with a separate subsystem it would then be possible to measure the GW

signal. The separate subsystem, known as a local readout, shown in green in

Figure 5.2 does not interfere with the quantum state of the system and as such

allows the interferometer to surpass the SQL as well as benefiting from spring

resonant features.

Figure 5.2 is subtly different to standard GW detector in that the central beam

splitter is not really a beam splitter but a high reflector meaning that system

would be pumped from the back surface. Other more practical arrangements

have been discussed in [55].
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Figure 5.2: Schematic of optical bar topology. Both ETMs are coupled to the

CTM with optical springs, differential arm motion generates a push/pull effect

on the CTM. In green the local readout subsystem (not to scale) is shown

monitoring CTM displacement.

5.0.3 Local Readout in Advanced Detectors

The local readout scheme, first proposed by Rehbein [56], differs from current

Michelson interferometer configurations in two ways. Firstly, both arm cavities

are detuned from resonance to rigidly couple both cavity mirrors, and secondly

a separate subsystem is used to create another Michelson using the ITMs as

the new ETMs. An overview of this is shown in Figure 5.3. At this point

we will consider three gravitational wave frequency regimes: above, below and

close to the arm cavities’ optical spring resonance.

Above the optical spring frequency, the effect falls off as any harmonic os-

cillator above resonance as 1/f 2, so at higher frequencies does not affect the

system and the gravitational wave is measured using the standard Michelson.

At and around the spring frequency there is a resonant enhancement of the

gravitational wave signal caused by the optical spring and the signal is ampli-

fied and again read out in the standard Michelson. At frequencies below the
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optical spring frequency the masses behave as though rigidly coupled. With

this rigid coupling of the light field to the masses, a gravitational wave will

induce motion of the ETM onto the ITM and the gravitational wave signal can

then be read out using the subsystem of the inner interferometer.

Figure 5.3: Schematic of local readout topology proposed by Rehbein et al[56].

The subsystem denoted in green is creating a Michelson interferometer using

traditional ITMs as ETMs

The optimisation of parameters such as mirror mass, light power etc for this

type of setup were it to be integrated into an advanced detector has already

has already been undertaken [56]. The optimised sensitivity curves are shown

in Figure 5.5. These curves are taken from Rehbein [56] which describes a

realistic employment of this topology into a LIGO detector. The important

aspect of this setup is not only the resonant enhancement caused by the optical

spring but also the use of a subsystem to infer the ETM motion from photons

which have never interacted with the ETM, allowing the SQL to be surpassed.

Unfortunately this means the effect of the Fabry-Pérot cavities is negated as

there is no phase change effect from the cavities since, due to the optical spring,

the mirrors move together. This is a form of quantum non demolition (QND)
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measurement, a term for these types of measurement first used in [57].

Figure 5.4: The plot shows the change in the quantum-noise limit for varying

the second carrier power [56].

Figure 5.5: Potential sensitivity improvement in Advanced LIGO for local read-

out integration using carrier power of 4 kW [56].



5.1 Experimental Aim 81

5.1 Experimental Aim

The aims of the experiment were to undertake the first demonstration of an

optical bar setup and to investigate the development that would need to take

place before it was integrated into a full scale gravitational wave detector. To

achieve this, a subsystem was set up to continuously measure the displacement

of the ETM of an opto-mechanically coupled cavity. The plan is then to drive

the ITM along the cavity axis mimicking a GW signal, and to measure the

coupling of motion to the ETM using the sub system. This will show that

the sub system is able to measure the motion of the ITM using photons which

have never interacted with the other cavity mirror.

5.2 Local Readout Devices

For the purpose of this experiment, two separate systems were used as local

readout devices. The first was a displacement sensor monitoring the position

of the ETM cavity mirror. The other was a separate suspended cavity which

was able to measure the frequency of the light in the 10 m cavity.

The frequency-readout cavity will be described in full in the following chapter

but the key points are summarised here. The full layout of the system can

be seen in Figure A.1, showing how the cavity interacts with the rest of the

system. 30% of the light input to the system was picked off to an ultra-

low-noise cavity that was set up to show frequency noise by reducing mirror

displacement noise to 10−17 m/
√

Hz at 200 Hz. The cavity was locked using

reflection PDH and feedback was applied to the cavity length by actuating on

the ETM longitudinal coil drivers. This means that the error point signal gives

a good description of frequency changes of the light in the 10 m cavity.
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The second device used to monitor ETM motion along the cavity axis, was a

EUCLID (Easy to Use Calibrated Laser Interferometer Device) which was de-

veloped in Birmingham University [58]. It has a design sensitivity of 10−13 m/
√

Hz

at 100 Hz and was installed on a 5-axis micron alignment stage on top of a rub-

ber isolation platform. The vibration isolation reduced the influence of ground

motion, while the precision stage provided the necessary alignment of the EU-

CLID beam to within better than 1 degree as set out in its user manual.

The light source in the EUCLID is a 633nm Vecsel. To allow the resulting

beam to be reflected from the ETM back to the detection optics within the

EUCLID, a small aluminised mirror was mounted on the lower front surface

of the aluminium (mirror-holder) part of the ETM. An identical mirror was

also mounted on the back surface of the ETM to maintain the balance of the

suspension.

The EUCLID is basically a Michelson interferometer where one arm is internal

to the device and the other arm is ejected out and reflected of the surface one

wishes to measure. For best frequency-noise suppression this requires both

arm lengths to be close to identical, i.e. the EUCLID should be placed very

close to the object it is trying to measure due to the internal arm length being

quite short of the order 10’s mm. A full description of the EUCLID can be

found in [58].

5.2.1 EUCLID Readout

We now look at how to interpret the data acquired from the EUCLID. It was

connected via USB to a stand-alone lab computer where recording could be

controlled with the supplied software, allowing decimation rate, sample rates,

resolution and length of measurement to be set. The data was then recon-
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Figure 5.6: Image showing the bottom stage of the ETM suspension , reaction

mass suspension, one of the small silvered mirrors and the EUCLID.
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structed in a supplied Matlab script to create one time series of displacement,

allowing spectra to be created. At this point it becomes important to fully

understand as best as we can the spectra observed from the EUCLID and how

to interpret them.

The alternative ways to generate useful spectra are either to employ the entire

data set (windowed as necessary) to produce maximum resolution, or to av-

erage the results from shorter stretches, to give a better estimate of the noise

(with lower frequency resolution). Figure 5.7 shows the sensitivity curve mea-

sured by the EUCLID with low resolution/more averages. At low-frequency

the pendulum modes can be seen (see also figure A.2). At high-frequency, the

noise level matched the specification given in the EUCLID data sheet. The

mid-frequency noise shoulder is caused by up-conversion of large low frequency

motion. This was verified by injecting gradually larger signals onto ETM and

seeing the shoulder increase in frequency. It is possible to overcome this effect

by selecting only lower-velocity segments of the time series data, however then

the benefit of longer integration time is lost. The effects of up-conversion in

the measurements were minimised by taking data in the evening, when the

building was quieter.

From analysing the low frequency modes of the pendulum motion shown in

figure A.2 as well as other tests including the comparison with a commercial

Polytec vibrometer [59], the EUCLID is well calibrated in magnitude as a

function of frequency.

5.2.2 Required Signal Size

It is important to choose the optimal frequency for best SNR at which to inject

signals and characterise the system. The steps used for this calculation will
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Figure 5.7: EUCLID sensitivity curve. Figure A.2 shows the low frequency

end of the spectrum in more detail.

now be explained. In magnitude, the lower limit of the measurement is set by

the EUCLID sensitivity curve, with the upper limit is set by the distance the

mass can be pushed until the frequency stabilisation servo can no longer keep

the cavity locked.

With a cavity linewidth of 560 Hz, any strong optical resonance features will be

suppressed above this, and the EUCLID not having the required noise perfor-

mance below this frequency, it became clear that measurements would need to

be made in a frequency range above the optical spring resonance. The resulting

response is like any damped harmonic oscillator above resonance, e.g. the re-

sponse of the simple pendulum described in Section 3.2. As it was impractical

to synchronise EUCLID data with our signal sources, we did not investigate

the phase behaviour to confirm the expected 180 degree change.

The largest motion we can apply to the ITM is around 0.6×10−11 m or, and the

highest frequency is the cavity linewidth, γ = 570 Hz. There are two reasons
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for this limit, firstly, the amount of current that can be passed through the coils

to actuate on the mass, and secondly not injecting too big a signal such that

we approach the point of zero feedback in the error-signal slope at a detuning

of ± HWHM of the cavity (seen in Figure 4.12). The slope of the error signal

goes to zero as the linewidth is approached and so there is no feedback at

these points. The feedback servo works to counter any cavity-length change

by altering the laser frequency to follow the motion. How closely it follows is

dependant on the loop gain shown in Figure 4.13.

It is possible to calculate the amount of power fluctuation for a given dis-

placement by looking at the Airy peak of the cavity in figure 5.8. This is the

property we wish to try to maximise to get the largest power change for a

given length change ∂P (θ)
∂θ

in equation 3.32. This occurs at the steepest part of

the Airy peak around detuning of ± HWHM, however, this would mean only

small signals could be driven due to approaching the point of zero feedback in

the error signal slope so a compromise must be found. Smaller detuning means

larger signals can be driven, but this limits the optical spring strength.

Figure 5.8: Intracavity power as a function of cavity detuning in terms of

fraction of the cavity linewidth.
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5.3 Measurements

The main aim of the optical bar and local readout experiment was to add a

longitudinal (along cavity axis) signal onto the ITM of the detuned cavity and

measure the coupling of motion to the ETM with a separate subsystem. The

system setup for the experiment is shown in figure 5.9, with the full system

shown in figure A.1.

Figure 5.9: Schematic of experimental setup.

An extension of this idea was to actuate on the frequency of the light. This

provides a complementary test that removes some variables from the measure-

ment. Both modulation of the laser frequency and driving the test mass create

sidebands on the light. It was therefore important that the effects produced by

these two methods of introducing phase sidebands were in agreement. Modu-

lating the light frequency can be done directly, with a reliable calibration.
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Cavity Property

ITM transmission 416 ppm∗

ETM transmission 2.4 ppm∗

Finesse 12780∗

round trip loss 65 ppm

intracavity power 6 kW

Table 5.1: Table showing predicted and measured values of 10m cavity proper-

ties. * indicates measured values, other parameters are calculated from model.

5.3.1 Actuation on the Mass

Due to the impracticality of measuring the power directly incident on the 10 m

cavity when the system is in vacuum, the ratio of the power there to that at

a monitor point on the laser bench was established. This monitor was then

used as an indication of the power incident on the cavity. The power in the

system is accounted for as follows: 5.2 W leaving the amplifier with a wave

plate and polarising beam-splitter immediately afterwards which is used for

power control. This was set to reduce the power by 0.465 times. 50% of

the light light is directed, by a beam-splitter to a separate experiment (not

described in this thesis). A further 30% of the power goes to the frequency

readout cavity, giving a total of 850 mW incident on the ITM.

It was possible to drive the ITM longitudinally using coils mounted on the re-

action mass acting on magnets mounted on the bottom stage of the suspension

(i.e. on the ITM itself). The current was limited by selecting the appropriate

feedback resistor to set the ratio of voltage into the current driver to current

in the coils. The circuit of the current driver is shown in Appendix B. A

922 Hz signal was injected onto the ITM whilst the EUCLID recorded data for
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5 minutes. The longer the measurement time the better the SNR that is ob-

tained. Given the injection is single-frequency, the measurement is improved

as the square root of time. Figure 5.10 shows the spectra measured by the

EUCLID with a positive and negative detuning applied to the cavity (by the

same amount) and a tuned cavity. For all measurements a signal was injected

onto the ITM.

Figure 5.10: EUCLID spectra obtained from injecting a 922 Hz signal onto

ITM longitudinal drive coils for both a positively and negatively detuned cavity

as well as the on resonance tuned case.

From figure 5.10 we see, as expected, a signal at the injection frequency of

about the same size for positive and negative detunings with zero signal for

the tuned case. The lack of symmetry can be explained in two ways. Firstly

whilst detuned in the spring direction the cavity becomes stiffer and therefore

there is less movement of the ETM, the anti spring does not. The more likely

effect to cause the asymmetry is that small offsets can propagate through the

electronic frequency servo meaning the system is not locked to zero but a small

offset from this point.
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The second harmonic of the injected signal is seen for both detunings as well.

This can be explained by the non-linearity of power fluctuations as the cavity

moves along the Airy peak which will be explained in further detail in the

following section. For the tuned case the second harmonic is caused by the

power fluctuation oscillating around the top of the peak and so appears at

twice the injected frequency.

5.3.1.1 Expected Signal Sizes

Before the signal size is calculated it is important to be able to give a value to

the peak heights of the spectra. The peak values at 922 Hz are 4.8×10−13 m and

5.3×10−13 m for positive and negative detunings respectively and 5.7×10−14 m

for the tuned case. At the second harmonic at 1844 Hz the peak values are

4.8×10−13 m and 5.3×10−13 m for positive and negative detunings respectively

and 5.7× 10−14 m for the tuned case.

The error on these values is estimated by looking at the change in peak height

which is around a 20% change in the peak value or ±1 × 10−13 m at 922 Hz

and ±1× 10−14 m at 1844 Hz . The other main error source is the systematics

of the EUCLID, which are unknown.

There were three different ways to predict the amount of ETM motion based on

other system parameters that were recorded during the measurement. Firstly

based on power fluctuations observed on the photodiode located in transmis-

sion of the 10 m cavity we can infer the amount of radiation pressure force

fluctuation on the ETM and in turn the associated movement this force causes.

Secondly by calculating the amount of frequency change from the voltage feed-

back to the laser PZT the length change of the cavity can be predicted. Finally,

based on calibration of the amount of ITM motion for a given input voltage
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to the coil driver and the Optickle model of the system giving a ITM-to-ETM

coupling of motion transfer function, the ETM motion was obtained.

As stated in Equation 3.11, the transmitted field is directly proportional to

the light field circulating inside the cavity and therefore the light field inci-

dent on the ETM. The measured value at D.C. of this photodiode of 1.12 V

corresponds to the on resonance cavity power of 6 kW. From the spectra the

voltage at 922 Hz for the positive detuning is 1.012 × 10−2 V(rms), which is

2.86 × 10−2 Vpk, and for the negative detuning is 0.866 × 10−2 V(rms), which

is 2.45 × 10−2 Vpk. Given the photodiode response is flat in this region this

gives a power fluctuation of 154 W and 131 W respectively. This can then

be converted to a force 2P/c = 1.03 × 10−6 N and 0.87 × 10−6 N, which

in turn can be converted into an acceleration of the reduced mass (0.096)

Frp/mred =1.073 × 10−5 m/s−2 and 0.906−5 m/s−2. We can then calculate the

amplitude at 922 Hz as a/ω2 = 3.2× 10−13 m and 2.7× 10−13 m. These values

agree well with the spectra obtained from the EUCLID and are within the

error on the peak value.

Next we will consider the feedback voltage to the PZT of the laser. Whilst the

cavity is tuned, with the injection signal still being driven at 922 Hz, the spike

in the feedback at this frequency can be thought of as the ITM motion and

converted to an equivalent length change. This can then be subtracted from

the feedback voltage, again converted to metres and in the two detuned cases

giving the extra motion caused by the ETM.

The feedback voltage to the laser PZT for the tuned case was 2.63× 10−4 Vpk.

This can be converted to frequency, using the laser calibration of 1.35 MHz/V,

and then to a length change using Equation 3.19 which gives an ITM motion of

1.26×10−11 mpk. Subtracting this value from the two length changes calculated

in the same way for positively and negatively detuned PZT feedback gives 2.5×
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10−12 mpk and 3× 10−13 mpk which gives 3.98× 10−13 mrms and 3× 10−13 mrms.

These values also agree quite well with the EUCLID spectra in Figure 5.10

and it should be noted that the ratio of the two detuned values is the same as

those derived from the power fluctuation calculations detailed above.

Finally we will consider the Optickle model and the amount of ETM motion

that it predicts. First of all for this we need to know the amount the ITM

is being driven. This was calibrated using an unlocked cavity and driving a

slow triangular wave onto the mirror and counting fringes as FSR’s pass. This

then allows the amount of motion to be extrapolated to 922 Hz reasonably

easy as the pendulum responses are well characterised. The downside to this

is that the ETM is moving at the same time, however if a large signal is used

the effect will be small as the ETM may only pass through 1 fringe but the

ITM will pass through 20+. From this method the ITM was calibrated to give

a conversion factor m/V at 922 Hz. The signal output from CDS was 8000

CDS counts which corresponds to 2.44 V giving 9.272 × 10−12 mrms of ITM

motion. This was also calculated above for the PZT feedback calculation to

give 8.9× 10−12 mrms and will be the number used due to the directness of the

measurement.

Optickle can then be used to calculate the transfer function of ETM motion

for given ITM motion, taking into account suspension effects and radiation-

pressure effects caused by the optical spring. The transfer functions for various

detunings both positive and negative are shown in figure 5.11. As expected,

below the spring features you get a 1-to-1 coupling, and above the spring there

is a roll off. One can see that anti springs give essentially the same response

minus the resonance effect. This is good as it gives the same value of coupling

for positive and negative detuning at 922 Hz giving as we saw on the EUCLID

peaks of the same size for each detuning.
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Figure 5.11: Optickle transfer function of coupling between ITM and ETM

motion for positive and negative detunings. The value at 922 Hz is around 0.1

for the expected detuning of 0.05γ

From this we can multiply the ITM motion by the coupling factor predicted in

Optickle to give the amount of ETM motion. For the values of detuning used

this corresponds to a coupling of 0.06 multiplied by ITM motion of 9.272 ×

10−12 m, giving an ETM motion of 5.56× 10−13 m. This value agrees well with

the measured spectrum and does not have any asymmetry associated with it

and so is the same for positive and negative detunings.

5.3.1.2 Non-Linear Power Fluctuations

The above values deal only with the injection frequency at 922 Hz and the

value at that frequency. The bulge surrounding this in the EUCLID trace will

be discussed in Section 5.3.3.
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Figure 5.12: Simulation of power spectra for driving a signal up and down an

Airy peak, centered on no detuning and detuned. All parameters used, detuning

and signal size used were all the same as those of the measurement.

Whilst driving the ITM although the motion is sinusoidal the effective power

change it causes is far from it. Changes in cavity length cause changes in power

along the Airy-peak intensity profile which is non-linear. This causes signals

to appear at multiples of the driving frequency. The plot 5.12 shows the power

in each frequency bin by converting a sinusoidal time series of displacement

into a power value for each displacement and plotting the spectrum of this.

One can see the tuned case giving on-resonance or D.C. power as expected of

6 kW with 0 kW at 922 Hz, due to driving symmetrically around the top of the

Airy peak.

For the detuned case, the ratio of power in f to power in 2f gives the same

ratio as measured with the EUCLID. Table 5.2 summarises the peak-power

levels at the first and second harmonic for all three degrees of detuning.
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Frequency Tuned [W] Detuned[W]

0 Hz 5939 5506

922 Hz 0 304

1844 Hz 46 27

Table 5.2: Table showing modelled peak-power fluctuations caused by non-

linearity of Airy peak for tuned and detuned case.

5.3.2 Actuation on the Light

It was also possible to emulate the results of driving the ITM by actuating

directly onto the frequency of the light. Driving the mass creates frequency

sidebands on the light field. In this section it is described how sidebands

were applied directly to the light. This was achieved by adding our injection

signal directly into the frequency-stabilisation loop at the error point before

it enters the servo. For this reason the signal is not suppressed by the servo

gain. This actuation is much more sensitive, making it possible to drive much

larger signals which also allowed a good calibration to be made due to the

well-characterised nature of the feedback system. It also removed a degree of

inaccuracy caused by not being able to drive the ITM perfectly longitudinally

and hence introducing slight misalignments. Due to limitations in the amount

of current we are able to drive through the coils to actuate on the ITM, the

frequency actuation allowed us to see the effects on what would have been a

larger motion of the mirror.

The EUCLID spectra for this measurement are shown in Figure 5.13 and a very

similar spectrum is observed to that of the mass-pushing case in Figure 5.10.

This is good as it should essentially be measuring the same effect.
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Figure 5.13: EUCLID Spectra obtained whilst injecting 922 Hz signal onto laser

feedback servo.

5.3.2.1 Expected Signal Sizes

In the same way as in Section 5.3.1.1, the peak values at 922 Hz are measured

on the EUCLID to be 4.8×10−13 m and 4.9×10−13 m for positive and negative

detunings respectively and 2.7× 10−14 m for the tuned cases. In this case, the

error for the peak values is slightly less, due to the signal frequency being

clearly above the background. In this case the error is then ± 20% of the

background value either side of this frequency. This gives ±2×10−13 m for the

tuned and detuned values at 922 Hz and ±2× 10−14 m at 1844 Hz.

Using the same process as for the mass actuation, the expected ETM motion

can now be calculated using the three different methods. We shall again start

with power fluctuations on the transmitted photodiode and convert them to

a displacement of the ETM. The D.C. transmitted level is 1.02 V again cor-

responding to a tuned intracavity power of 6 kW. The peaks at 922 Hz for

positive and negative detuning are 1.454 × 10−2 Vrms and 1.334 × 10−2 Vrms
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respectively which give a power fluctuation of 242 W and 221 W and an ETM

displacement of 5.2 × 10−13 mrms and 4.59 × 10−13 mrms. Again these values

agree well with the observed spectra in Figure 5.13.

The tuned case PZT feedback voltage no longer directly corresponds to a cavity

length change as we are not driving the ITM. However, as has been described

the mass actuation simply applies frequency sidebands to the light field and so

the reverse process allows us to infer an ITM motion based on the sidebands we

inject onto the light. Therefore a PZT feedback voltage of at 2.126×10−4 Vrms

at 922 Hz gives an effective ITM motion of 3.51× 10−11 mrms. Subtracting this

from the positive and negatively detuned values of the PZT feedback give an

ETM motion of 3.51 × 10−13 mrms and 1.56 × 10−13 mrms. These values again

agree very well with the measured peak heights.

Finally we look at the Optickle model coupling factor. Again we need to infer

the ITM motion and will use the same value calculated in the PZT feedback

calculation. The coupling factor is the same as in Section 5.3.1.1 as the system

parameters have not changed. We therefore divide the ITM motion of 3.51×

10−11 mrms by the coupling factor 0.06 giving an expected ETM motion of 2.16×

10−12 mrms. This value, although bigger than that from previous calculations,

is still quite close to the expected value given the large error on the peak

height.

5.3.3 EUCLID Spectra Analysis

We will now discuss some of the surprises that arose from the experiment

and the reasons behind them. It is quite clear on the EUCLID spectra in

Figures 5.13 and 5.10 that we are seeing far more than a single frequency

injection. What we observe is a bulge centred around the injected 922 Hz.
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Looking more closely at the bulge it is possible to see that it has structure and

is symmetric around 922 Hz.

The fact that the bulge has symmetry suggests it arises from a non-linear

process in the system causing beating with the injection signal. Several checks

were made to pin down the source of this effect. First of all some of the

more obvious potential sources of this effect are dealt with. The signal we

are injecting is single-frequency and not drifting as the output comes from

CDS which is locked to a 10MHz GPS signal. Most importantly, in all of the

channels that were recorded it was possible to see the signal as a clear single

frequency. This eliminates many of potential causes as the feedback signal

being single frequency meant the cavity mirrors were not actually moving with

a bulge of frequency structure. The throughput power-monitoring photodiode

signal was also single frequency, meaning the change in radiation pressure on

the ETM was also a single-frequency force change.

The EUCLID was checked with no light in the system and simply driving the

coils of the ETM longitudinally. From this we saw some up conversion of low

frequency pendulum modes to beat with the injection frequency. Although the

injection spike was still quite clear above these and not the rounded bulge we

see in figures 5.13 and 5.10.

It was possible to quickly rule out other potential sources of noise such as

scatter by driving the ETM with light not locked but occasionally resonant in

the arm cavity which produced the same measured spectrum as when there

was no light present. It was also possible to rule out misalignment effects as

recording both photodiode and auto-alignment signals showed no bulge.

There remain only two other places in the system where additional non-linearity

can enter. Firstly the error signal demodulation mixer, if it is approaching satu-
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ration. This cannot be the case as this effect would be visible in the arm-cavity

error-signal spectrum which it is not. Secondly the non-linearity arising from

driving up and down the Airy peak of the cavity. This has already been shown

to cause the 2f signal peaks for the detuned cases but does not further explain

the bulge.

From previous experiments, the EUCLID is limited by noise due to up con-

version of large low frequency motion caused by pendulum modes. For these

reasons, and given the inner workings are not fully disclosed and the fact that

non-linear up-conversion has been seen in the EUCLID, this can be the only

way to explain the bulge effect seen.

It was possible to model these effects to try to recreate what has been mea-

sured. By taking the displacement time series data from the EUCLID with

no injections (just monitoring freely hanging ETM) and adding on a single

frequency injection and then adding on the non-linearity of the Airy peak and

then adding a non-linear process (assumed to be the EUCLID readout) it was

possible to create the spectrum shown in Figure 5.14. This was achieved by

adjusting the amount of second-order non-linearity which was seen to have the

effect of suppressing the injection frequency by putting power into the side-

bands or bulge. This is a good approximation of what is seen in figures 5.13

and 5.10.
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Figure 5.14: Simulation of the combination of non-linearities in the Euclid and

the Airy peak.

5.3.4 Static Radiation Pressure

With the use of a local readout it becomes possible to disentangle cavity mo-

tion, which cannot be separated from frequency with an exact measure of the

cavity mirror displacement. Here we investigate the static offset to the ETM

mirror position caused by the build-up of cavity power and hence radiation-

pressure force as the frequency stabilisation is switched on and the cavity

locks.
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Figure 5.15: Frequency stabilisation servo is switched on (red) or off (blue)

and the static offset caused by radiation pressure allows the intracavity power

to be calculated.

By looking at the static displacement offset of the mirror position caused by

locking the cavity, the increase in restoring force of the pendulum required to

balance the radiation pressure force described in Figure 3.8 can be calculated.

This then allows an estimate to be made of the intracavity power. Here we

assume the pendulum sits at equilibrium when unlocked and the displacement

when locked is entirely down to radiation pressure.

The average displacement (unlock) for first 20 secs = 2.279× 10−5 m

and for the last 15 secs = 0.922× 10−5 m.

The average displacement (lock) for first 10 secs = 0.729× 10−5 m

and for the last 25 secs = 2.0123× 10−5 m.

This gives a change in displacement of 1.39×10−5 m and 1.35×10−5 m respec-

tively.

Knowing the displacement of the pendulum from equilibrium, the resulting
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restoring force can be calculated. The optical power required to produce this

radiation-pressure force can then be derived.

For the pendulum length L = 0.3 m the last stage is what is most important

for small displacements. The displacement angle θ is then

θ = arctan(
Xeuc

Lpen
) = 1.079× 10−3 and 1.05× 10−3, (5.4)

where Xeuc is the displacement measured by the EUCLID. The pendulum

restoring force Fres can then be calculated to be

Fres = mg sin(θ) = 4.55× 10−5 N and 4.43× 10−5 N. (5.5)

This allows the intracavity power to be calculated as, Pcav = Fresc/2 = 6825 W

and 6645 W.

These values agree very well with the predicted values based on the measured

cavity finesse and input power. It is also possible to estimate intracavity power

by looking at the initial acceleration of the mass. As the servo is switched on

and the cavity is stabilised to the peak of a resonance, the power build-up is

almost instantaneous in a high-finesse cavity of the order ms (see figure 3.7).

It can then be said that the acceleration of the mass in the initial instance is

entirely dominated by the radiation pressure force. If we assume that the light

power is at full in this region we can then calculate first the acceleration of

the mass from the Euclid time series data, then the force required to acceler-

ate the mirror, and finally the associated optical power required to give that

force.

In practice it turns out this method is highly dependent on the start and end

times taken. The results obtained varied from predicted intracavity power as
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low as 2.5kW up to 12 kW. The reason for this is thought to be due to the

dynamic nature of the setup making measurements over short time periods very

difficult. With the mirrors moving freely, it is clear that the longer averaging

of the first method was the best way of calculating intracavity power in this

way.

5.3.5 Radiation Pressure Instability

In our experimental system it is also possible to see the effect of increased input

power not only changing alignment in a static way but also in a dynamic way.

By misaligning the cavity it was possible to see a pendulum-mode instability

caused by the non-centered beam acting on the mirror, seen in figure 5.16. The

beam being off centre exerts a torque on the mirror when power builds up in

the cavity, which in turn misaligns the cavity, reducing the radiation pressure

and torque, allowing the mirror to move back to the original position.

Figure 5.16: Lock capture with same input power but different alignment values.

Red trace shows the well aligned case and the blue trace the misaligned case.
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Figure 5.17: Illustration of the two Sidle Sigg instabilities. On the left a higher

frequency oscillation occurs and is a more unstable configuration. On the right

we see a more rigid, lower frequency, instability. The arrows indicate mass

rotation direction caused by increase in force along the beam axis and dots

indicate approximate centres of rotation.

As can be seen in Figure 5.16, the red trace indicates a well-aligned cavity

whereby before and after lock the cavity is stable and the ETM is not moving

more than expected. The blue trace shows the case of a misaligned cavity

whereby after the system is locked the ETM continues to oscillate, with less

power coupling given by the smaller displacement from equilibrium.

This instability is well documented and named the “Sidle Sigg” instability after

they were the first to witness the effect [60]. There are two types of instability

depending on the misalignment of the cavity, shown in figure 5.17. Both points

of reflection on the same side of the centre of rotation or one on either side,

causing an increase or decrease in the frequency of the oscillation.

This effect has been studied in prototype-sized devices [61], giving rise to the

following equation to calculate the frequency shift of the fundamental mode

based on input power and cavity geometry:

ω2
± = ω2

o +
PcavL

Ic

[
−(g1 + g2)±

√
4 + (g1 − g2)2

1− g1g2

]
, (5.6)

where g1,2 = 1− L
R1,2

with R1,2 the radius of curvatures of the cavity mirrors.
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For this measurement, Pcav = 6 kW, g1 = 1 as the input mirror is flat (i.e.

very large radius of curvature), and g2 = 1 − 9.78/15 = 0.348. With the

fundamental pendulum resonance ω0 = 0.55 Hz this gives a new fundamental

frequency caused by the instability of 0.576 Hz or 0.76 Hz, depending on the

misalignment of the cavity.

By calculating the frequency of the oscillation recorded it agrees very well

with the higher-frequency case. Regardless of direction of misalignment, the

higher-frequency oscillation was always seen. The reason for agreement with

the higher frequency is likely due to the much larger mass of the ITM, meaning

misalignment to either side of centre on the ETM causes a torque that has a

much greater effect on ETM rather than the ITM alignment.

5.4 Summary and Discussion

It was possible to show the coupling of motion from one mirror to another using

photons which had never“seen” the initial mirror. We were able to analytically

calculate the response of the system, showing that the main coupling comes

simply from a change in power from moving along the Airy peak, causing

a change in radiation pressure force. The detuned cavity therefore converts

phase fluctuations to amplitude fluctuations. By actuating on the light we

were able to successfully emulate the effect of mirror motion, achieving very

good agreement.



Chapter 6

Optical Spring Enhanced

Classical Measurement

In this chapter we investigate further applications of the optical-spring effect,

first to confirm the analysis of the previous chapter using a novel readout

method and secondly to show the increase in gain of the system due to the

resonance features and how it can be utilised.

The optical-spring effect allows the cavity response to be changed by varying

the detuning of the cavity. By these means it is possible to create responses

that give more signal gain than could be achieved by increasing the light power

or substituting mirrors of higher quality, if those options are even available.

This enhancement of frequency response can be applied to any relevant cavity,

a good example would be the signal-recycling cavity of a gravitational wave

detector. Furthermore, the option of detuning allows dynamic tuning of the

sensitivity of a detector, for example, to allow tracking of the dominant fre-

quencies in an evolving gravitational wave signal over time [62]. In this chapter

we use a novel readout method to determine the optical spring response in the
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region where the cavity linewidth has a large effect. It is further shown that

creating an optical spring can cause an increase in gain, such that frequency

noise is suppressed more than would otherwise be possible. Finally we show

that predictions from our numerical model of the system, i.e. the Optickle

model agrees very well with experimental results, and that with adjustments

to the setup much greater improvements could be realised.

6.1 Aim

The aim of this experiment is to show two things. First that for various

detunings the optical spring behaves as modeled for the parameters used in

Chapter 5. A test signal is injected into the detuned 10 m cavity and the

response is read out using the readout cavity. The spring response is then

calculated for various detunings and compared to the Optickle model. This

method of characterising the optical spring is significantly more sensitive than

that described in Chapter 5.

The second point is to show that the extra gain provided by the optical spring

resonance improves the frequency-noise limited sensitivity of the readout cavity

measurement. The idea behind this experiment is that the laser is stabilised

to the 10 m cavity and so the response of this cavity is imposed onto the light.

If the frequency-readout cavity is frequency-noise limited it should be possible

to see the change in response caused by detuning, and at some frequencies

improve on this value due to the optical-spring resonance.

Finally, we will show through simulation the best noise improvement that could

be obtained through this method whilst making only unobtrusive changes to

the system.
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6.2 Setup

This experiment uses a very similar setup to the one described in Chapters 4

and 5, an overview of which is shown in Figure 6.1. The main difference is

the addition of what has previously been referred to as the frequency readout

cavity. This cavity is 10 cm in length and both cavity mirrors are monolithically

suspended for ultra-low-noise performance. The 10 m cavity is locked to the

peak of the resonance by feeding back a correction signal to the laser frequency.

The 10 cm cavity is locked using feedback to the position of the ETM via coil-

magnet actuators.

Figure 6.1: Overview of the two-cavity setup showing the feedback to the laser

frequency and cavity length to control both cavities separately.

The 10 cm cavity uses two monolithically suspended mirrors to reduce ground

motion and thermal motion in the suspensions. The aim, as part of experiments

beyond the scope of this thesis, was to reduce all other noise sources to a level

below the thermal noise from the mirror coatings, to enable measurement of

that noise. The result, for application in the work of this thesis, is that the
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very low displacement noise associated with the mirrors of the 10 cm cavity

allows it to act as a sensitive measure of frequency noise because of its short

length relative to the 10 m cavity. It can therefore act as a sensitive probe of

the opto-mechanical interactions within the 10 m cavity as it is detuned.

Figure 6.2: From right to left: the beam-splitter picks off light for this cavity

from the main beam; the second of two steering mirrors (the first is off-right

in the image) directs the light to the cavity through the quarter-wave plate

polarising beam-splitter pick-off near the centre of the picture; finally, towards

the left of the image is the ITM seen supported on its 4 fused-silica fibres.

The frequency-readout cavity obtains its reflection PDH locking signal in the

same way as the 10 m cavity does, namely with a wave plate and PBS in

front of the cavity. The detected beam is then demodulated using an RF

photodiode in the same way as the 10 m cavity. The error signal is then fed to

an analogue electronic servo which feeds back to coils mounted on a reaction

mass that control the longitudinal position of the ETM. This gave a unity gain
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Cavity Property Value

Finesse 4870

Linewidth 306 kHz

FSR 1.49× 109 Hz

input power 360 mW

Table 6.1: Table showing measured properties of frequency readout cavity.

at around 2.2 kHz seen in Figure 6.3. The coil-magnet actuators are similar

to those used for damping the suspension oscillations in the 10 m ITM. The

suspensions themselves are damped using eddy-current dampers in the same

way as the ETM of the 10 m is, already described in Section 4.3.

The inertia of the suspended mirror gives the coil-magnet actuator a 1/f 2

response. The cavity fringes pass through relatively quickly as the suspended

mirrors swing (in the short cavity, a small motion corresponds to large changes

in resonant frequency) and locking is assisted by employing a trigger system

to activate the servo system only when the correct TEM00 mode is briefly

resonant. This allows the controller to be operated with high gain, yet avoids

the risk of the cavity locking on to unwanted modes.

As noted above, the coil-magnet actuator has a response of 1/f 2 and so the

locking servo needs to be rolling on in the area to balance the drop-off and have

the correct 1/f crossing, to give the desired phase margin around the UGP,

and thus ensure stability of the loop. The servo and electronics are shown in

Appendix B, and the locked cavity transfer function is shown in Figure 6.3.

The photodiode used to lock the 10 m cavity was optimised to allow for the

full range of detuning. The downside of this is that the frequency noise was
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Figure 6.3: Transfer function of the servo stabilising the length of the frequency

reference cavity.
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not suppressed as best it could be by using a much higher-gain photodiode

which could be tuned to detect the 10 MHz signal. Due to the lower-gain

photodiode, the UGP of the 10 m cavity lock was 8 kHz compared to 100 kHz

achievable using the high-gain photodiode and high-frequency EOM feedback

briefly described in section 4.6.

To determine that the measurement is indeed limited by frequency noise of the

laser, the recorded readout-cavity-feedback-signal spectrum was measured. It

was then possible to subtract the loop gain and the electronic transfer functions

to obtain the spectrum of the light entering the cavity, which should give

laser frequency noise. Figure 6.4 shows the feedback signal and the expected

frequency noise, and both agree very well in the 100 - 300 Hz region where the

measurements in this chapter have been taken.

Figure 6.4: 10 cm cavity feedback monitor adjusted for loop gain compared to

expected laser-frequency noise level.
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6.3 Measurements

6.3.1 Optical Spring Response

The objective of the first measurement was to show that the Optickle model

was a good match to the measured spring response for a range of detunings.

The lower measurement noise compared to the method of Chapter 5 allows the

system parameters to be matched to the model and therefore to be determined

more precisely. This also provides confirmation of the coupling of motion

predicted by the model.

A swept-sine frequency response measurement was taken for each value of

detuning of the 10 m cavity. The test signal was injected into the frequency-

stabilisation loop before the servo, shown in Figure 6.1. The signal was read

out at the 10 cm cavity error point. Both points are shown in Figure 6.1.

Due to frequency readout being 3 orders of magnitude more sensitive than the

EUCLID, smaller signals can be used and both higher and lower frequencies

can now be measured. Previous measurements of this type generally required

larger signals to be injected to propagate through the entire system. This has

the negative effect of generally changing the state of the system by changing

the operating point. Using smaller injection signals means this is not the

case. During these individual swept sine measurements for each detuning the

system maintained the same lock and the system was smoothly changed from

one detuning to the next to avoid step changes which would have brought

a risk of knocking the system out of lock. All of the individual swept-sine

measurements were taken during a single stretch of locking so as to provide

consistency of the locking points.

Each measurement taken was then divided by the non-detuned case to show the
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effect of detuning only. This removes the effects of electronic gains throughout

the feedback loop, and the actuator responses, and it makes visualising the

plots much more straightforward as the only difference between plots is caused

by the detuning.

Figure 6.5: Measured optical-spring response in sensitive cavity normalised to

the tuned case, measured (solid), and modelled (dashed).

Figure 6.5 shows the experimental measurements and the model which fits the

values of detuning to the curves obtained. These agree very well, which further

supports results obtained in the previous chapter. The feature seen at 210 Hz

is a mechanical mode of the system, thought to be a violin mode of one of

the suspensions and which has been rung up by different amounts by slightly

different alignments and cavity powers caused by detuning.
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6.3.2 Sensitivity Improvement

The aim of the second measurement is to improve the sensitivity of the readout

cavity by detuning the 10 m cavity to suppress frequency noise. The noise

spectrum of the 10 cm cavity error point was recorded in CDS for various

detunings. The cavity was only detuned small amounts as this gives optical

spring resonances with the largest Q. The larger the Q the greater the gain

and therefore the greater the frequency-noise suppression and also the most

obvious change in noise spectrum in the readout cavity.

Figure 6.6: Noise spectrum of measurement cavity with two detunings of fre-

quency reference showing a small improvement in performance.

In the frequency region from 200 - 300 Hz the noise is lower in the detuned

cases compared to the tuned case, representing an improvement in displace-

ment sensitivity in that region. This is due to the frequency-noise spectrum

having the response of the 10 m cavity imposed upon it. The extent of the

improvement agrees well with the spring measurements from figure 6.5 where
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the increase in sensitivity is the same as the amount of gain increase caused

by the optical spring for these levels of detuning. Larger detunings are not

shown, as in these cases there is no frequency at which the gain of the cavity

is greater than the non-detuned case and so no improvement would be seen in

the sensitivity measurements.

6.4 Further Simulation

A great deal has been learned about optomechanically coupled systems through-

out this work. The models have agreed well with all measurements in this

regime and it is interesting to look at relatively small changes that could be

made for future projects. The most important factor in the noise improvement

measurements was to have an optical spring resonance of as high a Q as pos-

sible, at the expense of bandwidth. The limiting factor in preventing this in

our system was the cavity linewidth, which cannot be easily changed without

replacing one of the cavity optics.

For discussion purposes we will now investigate the potential response from

the system given two realistic changes. Firstly increasing the cavity linewidth

by increasing the transmission of one of the cavity mirrors from 2.4 ppm to

240 ppm. This increases the cavity linewidth from 570 Hz to 1800 Hz. The

second change was to increase the input power to the system to the maximum

output from the laser amplifier, 5 W.

In Figure 6.7 the bulge in the 200-300 Hz region is much larger due to the

larger optical spring resonance. This shows it would be possible to achieve,

up to 10 dB of noise improvement across a broad frequency range 10’s-100 Hz.

Greater noise improvement would be possible at lower frequencies at the loss of
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Figure 6.7: Model of potential improvement by increasing cavity linewidth and

using full power available for different values of detuning.

bandwidth. A small penalty is paid at higher frequencies, but this is smallest

for small detunings such is the case here. It should be noted that the abso-

lute value of detuning in metres is now much larger due to the larger cavity

linewidth, but as a fraction of the linewidth this is still considered a small

detuning.

6.5 Summary and Discussion

The use of harmonic oscillators in suspended optical cavities can be employed

for narrow-band improvement in sensitivity if the resonance can be arranged to

be at the frequency of interest. This can be done dynamically in milliseconds

by adjusting the detuning of the cavity.

The limiting case in this experiment was the low linewidth of the cavity, giving
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a high finesse which helped to provide large amounts of circulating power. This

put an upper limit on the spring response that was not limited by the light

power but by the drop-off caused by the cavity at higher frequencies. It is

noted that, as only a small detuning is required to produce the highest-Q

optical spring, it may be possible to employ a photodiode amplifier of higher

gain as the full range of detunings may not be required.

The effects shown can be greatly amplified when applied to gravitational wave

detector setups. This is due to the much larger ratio of optical power to mirror

mass, 6 kW and 100 g in this experiment to 800 kW and 40 kg in Advanced

LIGO. However, the linewidth of the cavity still provides an upper limit to

radiation-pressure effects, due not to the finesse but to the much longer arm

lengths used.

Although the work described here has not been at the “quantum-level”, the

effects described will still behave in the same way in the quantum regime. Ra-

diation pressure will be caused by statistical variations in the light beam, but

if the cavity is detuned it will still behave as a harmonic oscillator. The res-

onance features described also can improve performance beyond the quantum

limits described in Chapter 5.



Chapter 7

Conclusions and Future Work

Optical rigidity has been suggested to be one of the key concepts in advanced

gravitational wave detectors. As such investigation was required at the pro-

totype level to ensure this technology is suitably mature for integration into

full-scale detectors.

This thesis aims to push optical-spring technologies forward in technical readi-

ness as well as prototyping innovative concepts. We were able to verify that

it is possible to gather information on the position of the input mirror of an

optically rigid cavity via the local readout interferometer, the photons of which

have never interacted with the input mirror.

We also showed that the presence of an optical spring in a 10 m cavity provides

a peak in the optical gain which enhances the frequency stability of the cavity.

So, this is a good example of how optical springs can be used to enhance the

precision of a classical interferometric measurement.

The work described in this thesis has paved the way for further experiments

in this field. Currently, work is beginning in the Glasgow 10 m prototype on
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a dual-carrier configuration in a coupled-cavity system whereby two separate

light fields interact with a common cavity mirror. The principle here is to

create an optical spring with one carrier and an anti spring with the other.

This improves the stability of the system due to the addition of a positive

damping term arising from the anti spring. Furthermore this setup allows us to

broaden the resonance feature, giving a wider bandwidth improvement.

One step before the dual carrier would be to investigate the high measure-

ment frequency and large cavity detuning region of Figure 3.9. At this point

the spring constant changes sign and therefore gives a region of both positive

spring constant and positive damping. This increase in stability could lead

to innovation in quantum locking setups and creation of stable feedback loops

without the need for electronics giving ultra-low noise performance.

In summary, gravitational wave detectors are soon going to be limited in sen-

sitivity by the quantum nature of light. The successful demonstration of an

optical-bar topology was an important step towards surpassing the standard

quantum limit.



Appendix A

Cavity Properties

A.1 10 m Cavity

Property Value

ETM transmission 2.4 ppm

ITM transmission 416 ppm

ETM loss 35 ppm

ITM loss 30 ppm

10 m Cavity length 9.78 m

10 cm Cavity length 10 cm

Modulation index 0.6

Linewidth 578 Hz

Input light power 850 mW

Intracavity power on resonance 6 kW
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Figure A.1: Full system layout
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Figure A.2: Low-frequency end of the spectrum obtained from EUCLID show-

ing Pendulum modes.



Appendix B

Electronics Circuit Diagrams

and CDS Filters

Figure B.1: Frequency readout servo electronics.
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Figure B.2: Frequency readout cavity servo electronics transfer function.

Figure B.3: 10 m cavity photodiode.
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Figure B.4: Bode plot of CDS filters used for Auto alignment feedback.

Figures B.5, B.6 and B.7 show the electronics of the frequency-stabilisation

servo, showing the common path electronics and the PZT feedback shaping

which is then applied to the PZT directly and also further filtered using CDS

as shown in Figure B.7.
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Figure B.5: Common path electronics of frequency stabilisation servo.
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Figure B.6: PZT frequency stabilisation feedback electronics.



129

Figure B.7: Bode plot of CDS filters used for laser crystal temperature feedback.

Notch filter at 32 Hz due to large suspension bounce mode at this frequency.
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Figure B.8: Coil driver electronics. Pairs of outputs are wired to either end of

the same coil and there are 3 coils and hence 6 outputs. The circuit differen-

tially recieves the tilt rotation and longitudinal signals before setting the gain

and the sign of the signal going to each coil.



Appendix C

Scripts and Code

C.1 Finesse

##Finesse model of high finesse cavity

m m1 0.999549 0.000416 0 n1 n2 # mirror R=0.999434 T=416ppm,

# phi=0 losses = 30 ppm

s s1 9.78 n2 n3 # space L=9.78m

m m2 0.9999686 0.0000024 0 n3 n4 # mirror R=0.9998476 T=2.4ppm,

# phi=0 losses = 30 ppm

l i1 0.85 0 n0 # laser P=850mW, f_offset=0Hz

mod eo1 10M 0.6 3 pm n0 n1 # phase modulator f_mod=10MHz

# midx=0.6 order=3

#pd1 transmitteddc 0 0 n4 #measure finesse
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#pd1 reflecteddc 0 0 n1 #measure visibility

pd1 interdc 0 0 n2 #intracavity power

#pd1 error 10M 0 n1 #demodulated error

xaxis m2 phi lin -0.1 0.1 5000 # xaxis: tune mirror m2

# from -0.5 to 0.5 (1000 steps)

yaxis abs # plot ‘as is’

C.2 Optickle

%% Create an Optickle Fabry-Perot

%% "definition file"

function opt = simple_cav

Pin = 0.85; %input power 2.5

vMod = (-1:1); %modulation freqeucies

fMod3 = 10e6; % modulation frequency 18MHz

vFrf = [ -fMod3 0 fMod3 ];

lCav2 = 9.78; % cavity length

%Mechanics

w = 2 * pi * 0.3; % pendulum resonance frequency

w_pit = 2 * pi * 0.5; % pitch mode resonance frequency

dampRes = [0.01 + 1i, 0.01 - 1i]; % assumpion

%mirror parameters
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tITM = 416e-6; % power transmission: assumming no losses

tETM = 2.4e-6; % power transmission: assumming no losses

lITM = 33e-6; % Power loss on reflection

lETM = 30e-6; % Power loss on reflection

mI = 2.7; % mass of input mirror

rIM = 0.15; % test-mass radius

tIM = 0.1; % test-mass thickness

mE = 0.1; % mass of end mirror

rEM =0.25;

tEM =0.019;

%%%%%%%%%%%%%%%%

% create model

opt = Optickle(vFrf);

%% add a source

%% [opt, sn] = addSource(opt, name, vArf, z0, z)

%% vArf - amplitudes of each RF component (Nrf x 1)

%% z0 - beam range = (waist size)^2 * pi / lambda

%% z - distance to waist (negative if beam is converging)

opt = addSource(opt, ’Laser’, sqrt(Pin) * (vMod == 0));

%% opt = addRFmodulator(opt, name, fMod, aMod)

%% [opt, sn] = addRFmodulator(opt, name, fMod, aMod)

%% name - name of this optic

%% fMod - modulation frequency
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%% aMod - modulation index (imaginary for phase, real for amplitude)

aMod = 0.6;

opt = addRFmodulator(opt, ’Mod3’, fMod3, 1i * aMod);

% [opt, snLink] = addLink(opt,snFrom,nameOut,snTo,nameIn,len)

opt = addLink(opt, ’Laser’, ’out’, ’Mod3’, ’in’, 0.1);

%% add mirrors

% opt = addMirror(opt, name, aio, Chr, Thr, Lhr, Rar, Lmd, Nmd)

%% angle, curvature, power transmission HR,

%% Loss HR, p reflectifity AR, loss, refractiv index

opt = addMirror(opt, ’ITM’, 0, 0, tITM, lITM);

opt = addMirror(opt, ’ETM’, 0, 1/15, tETM, lETM);

%

opt = addLink(opt, ’Mod3’, ’out’, ’ITM’, ’bk’, 3);

opt = addLink(opt, ’ITM’, ’fr’, ’ETM’, ’fr’, lCav2);

opt = addLink(opt, ’ETM’, ’fr’, ’ITM’, ’fr’, lCav2);

%% set some mechanical transfer functions

iEM = (3 * rEM^2 + tEM^2) / 12; % TM moment / mass

iIM = (3 * rIM^2 + tIM^2) / 12; % TM moment / mass

iI = mI * iIM; % moment of input mirror
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iE = mE * iEM; % moment of end mirror

opt = setMechTF(opt, ’ITM’, zpk([], -w * dampRes, 1/mI));

opt = setMechTF(opt, ’ETM’, zpk([], -w * dampRes, 1/mE));

opt = setMechTF(opt, ’ITM’, zpk([], -w_pit * dampRes, 1/iI),2);

opt = setMechTF(opt, ’ETM’, zpk([], -w_pit * dampRes, 1/iE),2);

%--------------------------

%% tell Optickle to use this cavity basis

% opt = setCavityBasis(opt, ’ITM’, ’ETM’);

%[opt, sn] = addSink(opt, name, loss)

%[opt, snLink] = addLink(opt,snFrom,nameOut,snTo,nameIn,len)

opt = addSink(opt, ’REFL’);

opt = addLink(opt, ’ITM’, ’bk’, ’REFL’, ’in’, 0.5);

%% detectors

%[opt,snProbe] = addProbeAt(opt,name,snOpt,nameIn,freq,phase);

opt = addProbeAt(opt, ’REFL_DC’, ’REFL’, ’in’, 0, 0) ;

opt = addProbeAt(opt, ’REFL_f3I’, ’REFL’, ’in’, fMod3, 0);

opt = addProbeAt(opt, ’REFL_f3Q’, ’REFL’, ’in’, fMod3, 90);

% add unphysical intra-cavity probes

opt = addProbeIn(opt, ’IX_DC’, ’ITM’, ’fr’, 0, 0);

opt = addProbeIn(opt, ’EX_DC’, ’ETM’, ’fr’, 0, 0);
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Now that the parameters of the system have been defined, the second section

of code below sets the variables you wish to vary and plots the results.

%%

%% run-file

%%

function simple_cav_run

% create the model

opt = simple_cav;

% get some drive indexes

nETM = getDriveIndex(opt, ’ETM’);

nITM = getDriveIndex(opt, ’ITM’);

% get some probe indexes

nREFL_f3I = getProbeNum(opt, ’REFL_f3I’);

nREFL_DC = getProbeNum(opt, ’REFL_DC’);

nIX_DC = getProbeNum(opt, ’IX_DC’);

nEX_DC = getProbeNum(opt, ’EX_DC’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ETM sweep %%%%%%%%%%%%%%%%%%%%%%

% takes all probes (from the "definition-file") and plots them

pos_start = zeros (opt.Ndrive, 1);

pos_end = zeros (opt.Ndrive, 1);
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pos_start(nETM) = -6e-7;

pos_end(nETM) = 6e-7;

x=linspace(pos_start(nETM), pos_end(nETM),5000);

[pos,sigDC,fDC]=sweepLinear(opt,pos_start, pos_end,5000);

figure()

plot (x,abs(sigDC))

plot(x,sigDC)

legend (’DC-AC’, ’I-AC’, ’Q-AC’,’test’)

grid on

xlabel(’ETM Displacement’)

ylabel(’power’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Retrieve some drive and probe serial numbers from

% the Optickle model

nEXdrive = getDriveNum(opt, ’ETM’, ’pos’);

nREFL_Iprobe = getProbeNum(opt, ’REFL_f3I’);

nREFL_Qprobe = getProbeNum(opt, ’REFL_f3Q’);

% Set up the limit of our sweep

pos = zeros(opt.Ndrive, 1);

pos(nEXdrive) = -8e-11; % [meters]

% 6e-7 for FSR; 8e-11 for Power peak

% Do the sweep
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[poses, sigDC, fDC] = sweepLinear(opt, pos, -pos, 201);

figure()

subplot(2,1,1);

plot(poses(nEXdrive,:), sigDC(nREFL_Iprobe, :), ’-’, ...

poses(nEXdrive,:), sigDC(nREFL_Qprobe, :), ’-’);

legend(’REFL I [phase = 0]’, ’REFL Q [phase = 90]’);

xlabel(’cavity detuning [meters]’);

ylabel(’signal [Watts]’);

title(’Pound-Drever-Hall error signal’);

grid on;

subplot(2,1,2);

nIXprobe = getProbeNum(opt, ’IX_DC’);

plot(poses(nEXdrive,:), sigDC(nIXprobe, :));

title(’Intra-cavity power’);

xlabel(’cavity detuning [meters]’);

ylabel(’power [Watts]’);

f = linspace(153, 853, 300)’;

% compute the DC signals and TFs on resonances

[fDC, sigDC0, sigAC0, mMech0, noiseAC0] = tickle(opt, [], f);

pos = zeros(opt.Ndrive, 1);

% compute the same a little off resonance

pos(nITM) = -1.6e-12;
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[fDC1, sigDC1, sigAC1, mMech1, noiseAC1] = tickle(opt, pos, f);

pos(nITM) = -3.2e-12;

[fDC7, sigDC7, sigAC7, mMech7, noiseAC7] = tickle(opt, pos, f);

pos(nITM) = -4.8e-12;

[fDC3, sigDC3, sigAC3, mMech3, noiseAC3] = tickle(opt, pos, f);

pos(nITM) = -6.4e-12;

[fDC6, sigDC6, sigAC6, mMech6, noiseAC6] = tickle(opt, pos, f);

pos(nITM) = -8.2e-12;

[fDC8, sigDC8, sigAC8, mMech8, noiseAC8] = tickle(opt, pos, f);

pos(nITM) = -10.54e-12;

[fDC9, sigDC9, sigAC9, mMech9, noiseAC9] = tickle(opt, pos, f);

pos(nITM) = 3.2e-12;

[fDC2, sigDC2, sigAC2, mMech2, noiseAC2] = tickle(opt, pos, f);

% make a response plot

h0 = getTF(sigAC0, nREFL_f3I, nITM);

h1 = getTF(sigAC1, nREFL_f3I, nITM);

h3 = getTF(sigAC3, nREFL_f3I, nITM);

h6 = getTF(sigAC6, nREFL_f3I, nITM);

h7 = getTF(sigAC7, nREFL_f3I, nITM);

h8 = getTF(sigAC8, nREFL_f3I, nITM);

h9 = getTF(sigAC9, nREFL_f3I, nITM);

h2 = getTF(sigAC2, nREFL_f3I, nITM);

h = [h9,h8,h6,h3,h7,h1,h0,h2];

hn = [h0,h0,h0,h0,h0,h0,h0,h0];

h = hn./h;
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ang = 180 * angle(h)/pi;

mags = abs(h);

magdb = 20*log10(mags);

figure()

subplot(2, 1, 2)

plot(f,ang, ’LineStyle’,’:’)

axis([153 853 -200 200])

ylabel(’phase[deg]’)

grid on

subplot(2, 1, 1)

plot(f, magdb, ’LineStyle’,’:’)

axis([153 853 -10 30])

ylabel(’mag[abs]’)

grid on

title(’AC-PDH Response for Detuned Cavity (ITM) divided by...

0 detuned case’, ’fontsize’, 18);

legend(’On resonance’,’-1.6e-12’,’-3.2e-12’,’-4.8e-12’,...

’-6.4e-12’,’-8.2e-12’,’-10e-12’,’+3.2e-12’);

%%%%%%%%%%%%%%%%%%%%%%
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