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Abstract 

This thesis is concerned with resolving some important issues existing in nonlinear three

dimensional boundary element analysis. The new findings can be outlined as follows: 

• Two new simple auxiliary equations which are required to supplement the fundamental 

boundary integral equations in solving traction-discontinuity problems using multiple

node technique are derived from the symmetric property and the equilibrium equations 

of the stress tensor. These equations have been used to deal with the corners and edges of 

single region and multi-region problems,; 

• A sub-structure algorithm is developed for solving multi-region problems with corners 

and edges, using the derived auxiliary equations. This algorithm can deal with nodes 

where more than two materials intersect. 

• A novel infinite element formulation suitable for multi-layered media was developed. In 

particular, a set of useful analytical expressions was derived for evaluating strongly 

singular surface integrals over the infinite surface. 

• A set of unified elastoplastic constitutive relationships dealing with hardening, softening 

and ideal plasticity behaviour is derived from the Il'iushin postulate in strain space. 

These relationships are suitable for both small and finite deformation rate-independent 

elastoplastic problems. 

• Some new identities are derived for the initial stress and strain kernels. Based on these, 

a new transformation technique from domain integrals to cell boundary integrals is 

developed, for accurate evaluation of the strongly singular domain integrals pertaining 

to interior stresses. 

• Two new iterative schemes are introduced for the first time in the incremental variable 

stiffness method for solving the non-linear system of equations. In particular, in the 

second one, a novel assembly process was proposed, in which the system equations are 

expressed in terms of the plastic multiplier. 

• These formulations have been implemented within a Fortran computer code and 

illustrative numerical examples have been solved to demonstrate its practical utility. 
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Notation 

An attempt has been made throughout this thesis to keep the notation as consistent as 

possible. Each symbol is defined as it is introduced. Some of the more commonly used 

symbols are described below: 

t (or ti) 

u (or Ui) 

hi 

De (or D~kl) 

nep (or Dij~l) 

nt (or D~k1) 

f 

N' a 

G 

E 

[E] 

{X} 

Surface traction verctor 

Displacement vector 

Body force 

Elastic constitutive tensor 

Elastoplastic constitutive tensor 

Consistent tangent operator 

Loading function (yield function) 

Internal variables 

Shape functions 

Shape functions in sub-elements (or cells) 

Outward normal vector of a surface 

Jacobian of transformation 

Kel vin' s fundamental solutions for displacements and tractions 

Shear modulus of elasticity 

Young's modulus 

Fundamental solutions of initial stresses for displacement and 

stresses, respectively 

Coefficient matrix of initial stresses for system equations 

Boundary unknown vector 

viii 



{Y} 

P,p 

Q, q 

cr (or crij) 

cre (or cr~) 

E (or Eij) 

e P (or E~) 

}!' 'r' ",,11,,:> 

v 

n 
r 

The subscripts 

ijkl 

a 

comma 

Vector on the right-hand side of an equation 

Source points at boundary and interior, respectively 

Field points at boundary and interior, respectively 

Cauchy stress tensor 

Elastic stress tensor 

Plastic (initial) stress tensor 

Strain tensor 

Plastic strain tensor 

Equivalent plastic strain 

Plastic multiplier 

Intrinsic co-ordinates 

Intrinsic co-ordinates in sub-elements (or cells) 

Poisson's ratio 

Domain of a body 

Boundary of a body 

Cartesian co-ordinate system 

Shape function 

Differentiation with respect to a co-ordinate at the field point 

ix 



Chapter 1 Introduction 

Chapter 1 

Introduction 

1.1 General 

In general, it is not possible to obtain analytical solutions for stress analysis of practical 

engineering structures. Therefore, various numerical methods for the solution of such 

problems have been developed for this purpose. The principal numerical methods applied 

to the solution of boundary value problems in continuum mechanics are approximate 

discretisation methods such as the finite difference, finite element and boundary element 

methods. 

The finite difference method (Southwell, 1946) is carried out by directly discretising the 

governing differential equation at a series of points in the domain of the problem and 

results in an narrow-banded set of system equations. The drawbacks of this method are that 

a large number of points is required in order to obtain accurate solutions and boundary 

conditions are often difficult to deal with. 

The finite element method (FEM) (Zienkiewicz, 1977; Owen and Hinton, 1980) has 

been outstandingly successful in applications to a very wide range of problems. In this 

method, the domain of the body is divided into elements and distributions of the physical 

variables (e.g. displacements, potentials) in an element are entirely determined in terms of 

their local (nodal) values, via interpolation (shape) functions. The resulting system 

equations, involving the nodal values as unknowns, are banded and often symmetric. Since 

material properties are specified at element level, the FEM can deal with inhomogeneous 

materials as easily as single-material problems. This feature makes the FEM very versatile 

and consequently it has become the dominant numerical method. 



Chapter I Introduction 

There are, however, many classes of problems (principally, infinite or semi-infinite 

problems, fracture analysis and dynamics) for which FEM is not ideally suited and more 

efficient techniques, such as those based on integral equations, are available. 

The boundary element method (BEM) has emerged only in the last two decades as a 

powerful numerical method of analysis of continuum problems, although its roots lie much 

deeper in the mathematical theory of integral equations, largely associated with the work of 

Fredholm. In this technique, the governing differential equation is transformed into 

boundary integral equation by means of Betti's reciprocal work theorem(Cruse, 1969) or 

more generally by weighted residual techniques (Brebbia, 1978) with particular solutions 

(fundamental solutions). Since the resulting system equations only involve the variables 

defined over the boundary of the body, the dimensionality of the problem can be reduced 

by one. Moreover, the use of fundamental solutions implicitly incorporates the infinite 

boundary conditions, and allows greater resolution of stress concentrations. These 

advantages have spurred the use of BEM in a wide range of applications. 

1.2 Boundary Element Method in Solid Mechanics 

BEM can be classified into two groups: indirect and direct. In the indirect formulation, the 

integral equations are expressed in terms of density functions. 

Once the density functions are solved, the actual displacements and stresses can 

be easily computed. This method is particularly useful for displacement discontinuity 

problems (Crouch and Starfield, 1983). 

In the direct formulation, the integral equations are expressed in terms of the actual 

physical variables, such as tractions and displacements. Once the boundary unknowns are 

obtained, the displacements and stresses at selected internal points can then be calculated 

from these boundary values. The direct method is the far more common approach and in 

the sequel, only this method is addressed. Only a brief survey of the relevant literature is 

given in this chapter. More detailed citations are deferred to the relevant chapters. 

2 



Chapter I Introduction 

1.2.1 Boundary Element Method in Linear Elasticity 

The direct formulation of the BEM for linear elasticity was presented by Rizzo (1967). 

Cruse and Rizzo (1968) and Cruse (1968) extended the formulation to elastodynamics. 

Snyder and Cruse (1975), Stern et al (1976) and Cruse (1978) applied it to fracture 

mechanics. 

The fundamental solution used by Rizzo (1967) and Cruse (1969) is Kelvin's solution 

for a unit point load applied within the infinite medium. The Mindlin's singular solution 

(1936) was applied by Nakaguma (1979) to half-space problems and a special Green's 

function was employed by Cruse (1978) for cracked plates. 

Since the book by Brebbia (1978), the BEM has developed rapidly. Lachat and 

Watson (1975, 1976) and Watson (1979) contributed important work on higher order 

boundary elements in three dimensional (3D) problems. More recent notable advances 

focus on the treatment of the singularities during integration of the fundamental solutions 

(Banerjee and Butterfield, 1981; Mukherjee, 1982; Cruse, 1988; Hartmann, 1989; Sladek et 

aI., 1986; Bonnet, 1989; Gray et aI., 1990; Aliabadi, 1997). 

A general method for the evaluation of strongly singular and hypersingular integrals 

was reported by Guiggiani and Gigante (1990), using Taylor series expansions in a local 

coordinate system. Further applications were reported by Huber et al. (1993) and Mi & 

Aliabadi (1996). Their formulations can also be used for evaluation of singular surface 

integrals. Regularization of hypersingular boundary integral equations is described by 

Krishnasamy et al. (1992), Lutz et al. (1992) and Cruse and Richardson (1996). 

Perhaps the most successful applications of BEM are to fracture lnechanics, as 

exemplified by the works of Cruse and co-workers (Cruse, 1988; Cruse and Novati, 1992; 

Po1ch et aI., 1987; Richardson and Cruse, 1998), Aliabadi and co-workers (Aliabadi and 

Rooke, 1991; Aliabadi, 1997; Mi and Aliabadi, 1992) and Rudolphi et al. (1988). 

The singular quarter-point boundary element proposed by Blandford et al. (1981) 

and Martinez and Dominguez (1985) is reported to give accurate and stable results 

(Brebbia and Dominguez, 1992). Also, applications to dynamic analysis, e.g. Dominguez 

and Alarcon (1981), Nardini and Brebbia (1982) and Banerjee and co-workers (Banerjee et 

aI, 1986, 1992; Wilson et aI., 1990); and to infinite and semi-infinite region problems 

(Crouch and Starfield, 1983; Zheng and Gao, 1986; Wang and Gao, 1998). In semi-infinite 

3 



Chapter J Introduction 

problems, infinite boundary element techniques have been described by Watson (1979), 

Beer and Watson (1989), Davies and Bu (1996), Gao and Davies (1998a). 

1.2.2 Boundary Element Method in Elasto-plasticity 

In non-linear BEM, the initial work was done by Swedlow and Cruse (1971) and developed 

further by Riccardella (1973) and Mendelson and Albers (1975). Corrected formulations 

were published by Mukherjee (1977), Bui (1978) and Telles and Brebbia (1979). 

To avoid the strong singularity of the domain integrals arising in the direct evaluation 

of interior stresses, the stresses may be calculated from the nodal displacements by 

differentiating the shape functions, using methods similar to those employed in FEM 

(Banerjee and Cathie, 1980; Cathie, 1980; Wearing and Dimagiba, 1998). The singularity 

can also be circumvented by employing indirect approaches based on the application of 

known reference solutions (Telles and Brebbia, 1979; Brebbia et aI., 1984; Banerjee et aI., 

1989). To avoid discretising the whole body, multi-region BEM technique can be 

employed (Banerjee et al. 1989) or a second boundary may be defined (Lee and Fenner, 

1986). 

It is preferable to evaluate the interior stresses directly. For constant (or linear) cells, 

the singularities of the initial stress (strain) kernels can be eliminated analytically or semi

analytically (Riccardella, 1973; Mendelson and Albers, 1975; Zheng and Gao, 1986; Gao 

and Lu, 1992; Telles, 1983; Chandra and Saigal, 1991). For arbitrary cells of more complex 

geometry and higher order shape functions, however, more general techniques have to be 

used. To make the strongly singular domain integrals bounded, Banerjee and Davies (1984) 

and Banerjee and Raveendra (1986) excluded a small sphere around the singular point and 

employed the volume sub-division technique, proposed by Laehat and Watson (1975) and 

coded by Mustoe (1984), to accurately calculate the weakly singular integrals. 

A different approach for direct evaluation of principal value integrals was developed 

by Huber et al. (1996) and Cisilino et al. (1998), based on work by Guiggiani and Gigante 

(1990) and Guiggiani et al. (1992). 

Another strategy for evaluation of the strongly singular domain integrals is to isolate 

the singularity by subtracting the singular term from the principal value integrals, and then 

4 



Chapter 1 Introduction 

transforming the domain integrals, via Gauss theorem, into surface integrals (Huang and 

Du, 1988; Zhang et al., 1992; Chen et aI., 1996). To circumvent calculation of the 

transformed integrals over the whole surface of the problem, Dallner and Kuhn (1993) 

transformed the domain integrals into boundary integrals over the volume cells around the 

singular point. This improvement saves much computational effort, although, as for other 

transformation techniques, it has only been implemented with initial strain approaches. 

To solve the non-linear system equations, the iterative procedure described by Telles 

and Brebbia (1979, 1980) based on an initial strain approach is commonly used. On 

account of the unconditional stability and to speed up the iterative convergence, implicit 

solution schemes have been developed recently (Telles and Carrer, 1991; Bonnet and 

Mukherjee, 1996; Poon et aI., 1998b; Burghardt and Van, 1998). Among these works, 

Bonnet and Mukherjee (1996) first applied the consistent tangent operator method to the 

boundary element method. This method, which was first proposed by Sima and Taylor 

(1985) in the finite element method context, exploits the quadratic rate of convergence in 

the Newton-Raphson iterative process. 

A different type of solution strategy (incremental variable stiffness) was proposed by 

Banerjee and co-workers (Banerjee et aI., 1989; Banerjee, 1994). In this scheme, the 

internal variables are eliminated, by expressing them in terms of boundary variables, and 

consequently no iteration is needed. 

1.2.3 Boundary Element Method for Multi-Region Problems 

In many practical situations, it is necessary to solve problelTIS containing piece-wise 

homogeneous regions. To solve such problems, multi-region algorithms have 

been described: (Lachat and Watson, 1975; Brebbia and Walker, 1980; Brebbia et aI., 

1984; Banerjee and Butterfield, 1981; Crotty, 1982; Kane and Saigal, 1990). In these 

algorithms, the system equations are obtained by assembling each zonal set, by invoking 

the equilibrium and compatibility conditions at the interface nodes. 

The coefficient matrices in BEM, even for a single region, are non-symmetric and fully 

populated. Hence, it is practically impossible to establish the system equations in core, 

particularly for large 3D engineering problems. In consequence, a significant application of 

the multi-region BEM algorithm is to single-zone problems (Butenschon et aI., 1989) and 

5 
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also for eigenvalue extraction in free-vibration analysis (Wilson et aI, 1990; and Raveendra 

and Banerjee, 1992). The rationale here is that if the region of interest is (artificially) 

partitioned into a number of sub-domains, the resulting system equations become sparse 

and banded. The gain in computational efficiency more than compensates for the increase 

in the number of degrees of freedom (Gao and Davies, 1999a). 

1.3 Scope of Thesis 

Although much excellent work has been done on BEM techniques, many important issues 

still need to be resolved, such as the corner problem and related multi-region problems; the 

evaluation of strongly singular domain integrals as well as the solution techniques in non

linear BEM. The following is a short description of the work contained within this thesis. 

In Chapter Two, the basic formulation of the BEM in linear elasticity is introduced. 

Some numerical results demonstrate the application of BEM to half-space problems. In 

Chapter Three, the key element is the treatment of corners and edges arising in stress

discontinuity problems. A multiple-node technique is elnployed to solve the corner 

problem, where displacements are uniquely defined but tractions are multi-valued. Two 

simple auxiliary equations, which are required to supplement the fundamental boundary 

integral equations, are derived from the symmetric property and the equilibrium equations 

of the stress tensor. The numerical implementation of these equations is illustrated for two

and three-dimensional problems. 

Chapter Four is on the application of the BEM to multi-region problems, where the 

emphasis is on the use of the auxiliary .equations for the nodes where zones intersect, 

particular for nodes where more than two zones intersect. Some distinct features for the 

latter case are demonstrated in applications to a three-zoned cube and a four-zoned thick

wall cylinder. A sub-structure technique is used to establish the system equations, which is 

also used in Chapter Five to solve the multi-layered half-space problems with inclusions. A 

novel infinite element formulation suitable for multi-layered media is described in that 

Chapter and a set of useful analytical expressions is also presented there. Applications to 

the analysis of the interaction between a pier and the surrounding soil (a two-layered 

infinite medium) is presented to demonstrate the potential of the technique. 

6 



Chapter I Introduction 

In Chapter Six, general rate-independent elastoplastic constitutive relations used for the 

non-linear BEM are derived in strain space from Il'iushin's postulate (Il'iushin, 1961; 

Naghdi and Trapp, 1975b). These relations are valid for hardening, perfect plasticity and 

softening materials. Consistent tangent operator and Stress-return mapping algorithm for 

drawing stresses back to yield surface are also derived in this chapter. Formulations for 

four commonly used criteria with kinematic hardening are given in the final section of this 

Chapter. 

Chapters Seven and Eight are concerned with the further development of the non-linear 

BEM. An efficient method for evaluation of the strongly singular domain integrals is 

presented in Chapter Seven. In this method, the strong singularities appearing in the 

domain integrals are removed by transforming the domain integrals into cell boundary 

integrals, based on two identities for initial stress and initial strain kernels which are 

derived in the same Chapter. The formulations derived in the Chapter are fully numerical 

and have the same simple forms for both 2D and 3D problems. The internal stresses can be 

accurately calculated using these formulations. 

Solution techniques for the non-linear system equations are described in Chapter Eight. 

Two different techniques are presented there, i.e., a Newton-Raphson iteration scheme and 

an incremental variable-stiffness algorithm. The former incorporates the consistent tangent 

operator in the Newton-Raphson iterative process, so a quadratic rate of convergence can 

be achieved. In the latter, a new variable stiffness solution scheme is proposed, in which 

the system equations are expressed in terms of plastic multiplie1$'.Moreover, iterative 

processes are presented for both variable stiffness methods. These iterative schemes allow 

the use of larger load increments. In both solution techniques, since strain space 

constitutive relations are used, hardening, perfect plasticity and softening behaviour are 

treated in a unified way. Stress-return mapping algorithms are used in both processes. 

A brief description of the computer programs developed using the methods described in 

this thesis can be found in Chapter Nine, following which several benchmark tests are 

explored. Finally, some general conclusions and proposals for future work are drawn in 

Chapter Ten. 

7 
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Chapter 2 

Boundary Element Method for 3D Elasticity 

2.1 Introduction 

The pioneering work on boundary elements can be dated back to the 1960s to Jaswon and 

Ponter (1963) and Symm (1964) for torsion problems of shafts with regular cross-sections. 

Cruse (1969) first used the direct integral equation approach to solve three-dimensional 

problems employing flat triangular elements, with the displacements and tractions assumed 

constant over each element, analogous to Rizzo's work (1967) for two-dimensional 

problems. 

Although Cruse (1974) extended his work to linear elements, the substantial 

improvement to higher-order elements, as used in the finite element method, was first 

made by Lachat (1975) and subsequently published by Lachat and Watson (1976). 

Increasing activity in boundary element research followed the 

held at Southampton University in 1978. 

BEM conference 

In this chapter, the direct formulation of the BEM for three-dimensional elasticity is 

presented. The strongly singular integrals of the traction kernel are avoided by making usc 

of the rigid body motion condition and the weakly singular integrals of the displacement 

kernel are treated by utilizing the property of the degenerated element (Lachat, 1975). 

8 
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2.2 Governing Equations of Elasticity 

The governIng differential equations for elasticity are derived from the equilibrium 

condition: 

aO'ij - 0 -+b.-ax. J 
J 

(2.1) 

in which, b i and iii are the components of the body force and acceleration vectors 

respectively, p is the mass density, and O'ij is the symmetrical stress tensor. If the stress 

tensor at a boundary point is known, the tractions at this point are given via Cauchy's 

formula as: 

(2.2) 

where nj are the direction cosines of the outward normal. 

Hooke's law, relating the stress and strain tensors in an isotropic elastic solid, can be 

written as: 

(2.3a) 

or 
0' .. = D~klE .. IJ IJ IJ (2.3b) 

where, the fourth-order elastic constitutive tensor D~kl can be expressed as: 

(2.4) 

in which, G is the shear modulus and A is the Lame coefficient, which can be written as: 

A= 2Gv 
1-2v 

The strains can be expressed in terms of displacements as: 

Substituting (2.3a) in (2.1) and using (2.6), it follows that: 

(2.5) 

(2.6) 
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(2.7) 

Equation (2.7) is the well-known Navier's equations for elastostatic problems. After 

substitution of boundary conditions, the displacements can be solved from (2.7). The 

fundamental solution (particular solution) of equation (2.7), for a unit point force in an 

infinite medium, plays a central role in BEM algorithms. 

2.3 The Kelvin Fundamental Solution for 3D Elasticity 

Assuming that a· .!. point force Pi is applied at a source point p, a body force b~ at a field 

point q can be written as: 

b~(p,q) = 8(x(q) - x(p»)Pj (2.8) 

where 8(x(q) - x(p») is the Dirac delta function which has the following property for any 

continuous function f(x), XE n: 

r 8(x(q) - x(p»)f(q)dn(q) = f(p) Jl1 (2.9) 

Substituting (2.8) into (2.7), and noting (2.9), a set of fundamental solutions Uij for 

displacements can be obtained (Love, 1944). Since the components of the unit force Pi are 

independent, these solutions can be written as (Brebbia, 1978, for example) 

where 

r =.[r;: 

or r 
r.=--=-.!.. 

,I ox(q) r 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

From (2.6), (2.3) and (2.2), the fundamental solutions for tractions corresponding to (2.10) 

are gi ven by: 

10 
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(2.14) 

The solutions Ui/p,q) and Ti/p,q) are the well-known Kelvin fundamental solutions of 3D 

elasticity. They have the following properties: 

• Vanishing at infinity 

• Singularity 

Uij and Tij have singularities of orders 0«(1) and 0«(2), respectively. 

• Symmetry of Uij 

Ujj(p,q)= Ujj(q,p) 

• Anti-symmetry of Tij 

Ti/p,q)= -Tij(q,p) 

These properties are of considerable importance in BEM algorithms. The first property 

enables BEM to automatically model boundary conditions at infinity. 

On the other hand, they cause 

difficulties in the numerical evaiuation of the relevant integrals. Fortunately, these 

singularities can be treated by employing various transformation (and other) techniques. 

2.4 Betti's Reciprocal Theorem 

We assume that a body with domain n and boundary r is in two equilibrium states. The 

stresses and strains are denoted by (O'jj' Eij) and (O'ij, Eij) for the two states, respectively. 

Using (2.3a), we can see that: 

O'ijE~ = AOijEkkEij + 2GE jjEij 

= A£kkE~ + 2GE jjEij 

= (AOijE~ + 2Geij )Eij 
(2.15) 

11 
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So the following integral statement holds: 

(2.16) 

Integrating by parts both sides of (2.16) and using (2.1) and (2.6), leads to 

f b~ujdil + f t~ujdr = f bj u:dil + f tj u:dr (2.17) 
n r n r 

Equation (2.17) is Betti's "Reciprocal Theorem" . ~ which will be used to 

establish boundary integral equations, based on Kelvin's fundamental solutions. 

2.5 Boundary Integral Equation 

If the first (un-starred) set of quantities in (2.17) correspond to the problem under 

consideration and the second set of quantities are taken to be Kelvin's fundamental 

solution, then Betti's reciprocal theorem (2.17) becomes: 

u j (p) = J Uij (p, Q)t j (Q)dr(Q) - J Tjj (p, Q)u j (Q)dr(Q) 
r r 

+ f Ujj(p,q)bj(q)dn(q) 
(2.18) 

11 

in which, the lower case letters p and q represent the points taking values in the domain, 

while the upper case letters Q (and subsequently P) denotes the points on the boundary of 

the body. 

Equation (2.18) is only suitable for evaluation of the interior displacements. To obtain 

boundary integral equations, a limiting process needs to be taken, in which the interior 

point p is allowed to approach the boundary point P. The resulting formulation can be 

expressed (e.g., Brebbia, 1978) as: 

c ij (P)u j (P) + f Tjj (P, Q)u j (Q)dr(Q) 
r 

= fUij(P,Q)tj(Q)dr(Q)+ JUij(P,q)bj(q)dn(q) 
(2.19) 

r 11 

where Cij(P) is a constant depending on the geometric conditions of boundary point P, 

which can be resolved using either the analytical method proposed by Hartmann (1983) or 

the rigid body displacement method as described in the sequel. However, for a smooth 

12 
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boundary point there is a simple form, Cij(P)= 1I2oij. Comparing (2.19) with (2.18), we can 

see that the latter is a special case, with Cij=Oij. 

2.6 Numerical Implementation 

In principle, the boundary unknowns (displacements and/or tractions) can be obtained from 

equation (2.19) after imposing the specified boundary conditions. However, it is not 

possible to obtain closed form solutions in general. So recourse must be had to numerical 

techniques. The boundary element method (BEM) can be summarized as: 

• The boundary is discretised into, elements, over which geometry and field variables are 

approximated by nodal values via shape functions. 

• Source point P in (2.19) is collocated at each boundary node, resulting in a system of 

linear equations. 

• The system of equations is solved for the unknown displacements and tractions. 

The details of this procedure are described below. 

2.6.1 Boundary Discretisation 

We assume that the boundary r is sub-divided into N elements, each of which forms a 

piecewise continuous approximation to the boundary. On each element, the positional co

ordinates are calculated by: 

M 

xi(~,11) = LNa(~'11)x~ (2.20) 
a=l 

where, M is number of element nodes, x~ is the i-th component of the co-ordinates at node 

ex. and N a (~, 11) are termed "shape functions" which map the global co-ordinate system Xi 

,i= 1, 2,3, into an intrinsic co-ordinate system (~,11). In this work, 8-noded quadratic 

quadrilateral elements are employed. The shape functions take the form: 

13 
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1 
N 2 (~, 11) = -(1 + ~)(1-11)(~ -11- 1) 

4 
1 

N 3 (~, 11) = -(1 +S)(1 + l1)(S + 11- 1) 
4 
1 

N 4 (S, 11) = -(1- ~)(1 +11)(11- S -1) 
4 

1 
N s(S, 11) = - (1- ~2)(1-11) 

2 
1 

N6(~' 11) = -(1 + ~)(1-112) 
2 
1 

N 7 (S, 11) = - (1- S 2 )(1 + 11) 
2 
1 

N8(~' 11) = -(1- ~)(1-112) 
2 

Fig.2.1 shows a typical transformation from global to intrinsic co-ordinate systems. 

4 7 -(-1,1) (0,1) (1,1) 
3 

n 

:> 
84 .(-1,0) L~ (1,0)- 6 

(0,0) 

(-1.-1 ) (0.-1) (1,-1) -
z 1 5 2 

gx 
Fig.2.1 Transformation from global to intrinsic co-ordinate systems 

(2.21) 

The displacements and tractions can also be represented using these same shape functions 

by: 
8 

Uj(~,l1) = LNa(~'l1)uf 
a=l 

(2.22) 
8 

ti(~,Tt) = LNa(~,l1)t~ 
a=l 

Discretizing the boundary into Ne elements and substituting (2.22) into (2.19) for a 

collocation point P leads to (without consideration of body forces): 

14 
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Ne 8 1 1 

C ij (x p)U r + II u j LI LI Tij (x P ,x(~, ll))N a (~, ll)Jt~, ll)d~dll 
0=1 a=1 

Ne 8 I I 

= IItj LILI Ui/XP,X(~,l1))Na(~,l1)Jt~,l1)d~dll 
0=1 a=1 

(2.23) 

In (2.23), the nodal displacements uj and tractions tj have been taken out of the integrals 

as they are constants over an element. The Jacobian of the transformation from the global 

to the intrinsic co-ordinate system is given by: 

where 

in which, el, e2, e3 are the unit vectors of the global co-ordinate axes. 

The integral functions (containing the kernels) can be assembled 

where 

(2.24) 

(2.25) 

as fol1ows: 

(2.26) 

(2.27) 

Taking each node in turn as the collocation point P and performing the integrations 

indicated in (2.27), a system of linear algebraic equations is formed by assembling all 

element contributions, which can be written in matrix form as 

[H] { u } = [G] { t } (2.28) 

where {u} and {t} are 3N nodal displacement and traction vectors, respectively, and [H] 

and [G] are 3Nx3N coefficient matrices, with N being the total number of nodes. 

For a discretized boundary, all nodal degrees of freedom must have a prescribed value 

of some kind (displacements or tractions). To be able to use standard solvers (such as the 

15 

i 
:, 

'" 



Chapter 2 Boundary Element Method for 3D Elasticity 

Gaussian elimination technique), the matrices fH] and fG] in (2.28) must be rearranged 

according to the boundary conditions in such a way that all the unknowns are placed on the 

left-hand side and the prescribed values are multiplied by relevant coefficients and 

transferred to the right-hand side. This yields: 

[A]{x}={y} (2.29) 

The matrix [A] is un-symmetric and fully populated. In general, the unknowns can be 

obtained from (2.29) by standard matrix reduction methods. 

2.6.2 Weakly Singular Integrals-Element Subdivision 

Now let us examine the details of the integrals appearing in (2.27). From (2.10) and (2.14) 

it is observed that these integrals involve singularities as r tends to zero. Hence, special 

integration schemes become necessary. When the source point P and field point Q are 

located in different elements, standard Gaussian quadrature may be applied to the Uij and 

Tij kernels (no singularity). Thus: 

1 1 ~~ 1111 f(~,l1)d~dT1 = LLf(~m' T\n)W m w n 
m=1 n=1 

(2.30) 

where Gm and Gn are the numbers of Gaussian integration points and ~m and ~m are the 

Gaussian co-ordinates with associated weighting functions Wm and wn• 

When P and Q are located in the same element, the Uij and Tij kernels are singular 

because they contain terms of the orders lIr and lIr2, respectively. In this case, the direct 

application of Gaussian quadrature is inadequate. However, element sub-division 

techniques (Lachat, 1975; Lachat and Watson, 1976) can be used to reduce the 

order of these singularities. For weakly singular integrals, this technique is sufficient. 

In the element sub-division technique, an element containing the source node P is 

further divided into two (for a corner node) or three (for a mid-side node) triangular 

elements, with P located at a vertex of the triangle. In numerical implementations, two 

strategies can be used to achieve this purpose. The first is to sub-divide the original 

element (Mustoe, 1984) by re-determining the global co-ordinates for each sub-element 

(Fig.2.2). The alternative strategy is to sub-divide the intrinsic element (e.g., Becker, 1992) 

by determining intrinsic co-ordinates for each sub-element (Fig.2.3). 
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P 
(at a corner) 

P 
(at the mid-side) 

4 

84 

P 
1 

4 
1"'(-1.1) 

? 3 
(0.1) (1,1) 

n 
L~ (1,0)46 

(0,0) 

• .(-1.-1) (0::1) (1,-1) 

1 5 2 

Fig.2.2 Element subdivision and triangle-to-square transformation 

in global co-ordinate system 

7 
3 4 7 - 3 

(-1,1) (0~1) Off) t: 1, 1 ) (0,1) (1,1' 

11 .' 

W:i;:O)4 (-1,0) .W (l,Oh 6 84 ,(-1,0) • 6 
• (0,0) (0,0) .' 

. 
(.1,-1 ) (0, -1 ) (1 , -1 ) (-1,-1 ) (0,-.1') (1 ,-1 ) .... ..... 

5 2 5 P 2 

(P at a corner) 
(at the mid-side) 
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4 __ ----~7~----_.3 
(-1,1) (0,1) (~, f) 

8 (-1,0) 

p . 
1 (-1,-1) 

4 3 
(-1,1) (1,1) 

(-1 -1) p. ' 
1 

~' 

(O~l1' 
(1,-1) p 

2 

Fig.2.3 Element subdivision and triangle-to-square transformation 

in intrinsic co-ordinate system 

In the first strategy, the Gaussian quadrature formulation (2.30) can be directly applied to 

all sub-elements. The Jacobian in (2.27) tends to zero as 0 (r) as r ~ 0, i.e., 

J ~O(r) (2.31) 

as a result of the degeneracy of the nodes coincident with P (Lachat and Watson, 1976). 

For instance, nodes 1, 8 and 4 in Fig.2.2 have the same co-ordinates as point P. The zero 

Jacobian effectively reduces the order of singularity of the kernels by one. 

In the second strategy, a new set of intrinsic co-ordinates ~' and Tl' with their origin at 

the centre of the element needs to be defined for each sub-element (see Fig.2.3). Linear 

shape functions are used to determine the original intrinsic co-ordinates for a point in the 

new intrinsic co-ordinate system, as follows: 

4 

~(~', r() = L N: (~', Tl') ~a 
a=l 

4 

Tl(~" Tl') = L N: (~', Tl') Tl
a 

a=l 

where the linear rectangular shape functions are defined as: 

N~ (~', Tl') =.!. (1- ~')(1-11') 
4 

N; (~', 11') =.!. (1 + ~')(l-l1') 
4 

N; (~', Tl') =.!. (1 + ~')(1 + Tl') 
4 

(2.32) 
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N~ (~', r() = ! (1- ~')(1 + 11') 
4 

~(X and 11(X in (2.32) are the nodal values of the original intrinsic co-ordinates. Now the 

integrals for boundary element re can be transformed as follows: 

1r. f (P, Q)dr = J~1 Lll f (~, 11)1 (~, 11)d~d11 
e 

N, 1 1 

= ~ 1111 f (~(~', 11'), 11(~', 11'»1 (~(~', 11'), 11(~', 11'»1 5 (~', 11')d~' d11' 
s=1 

(2.33) 

in which Ns is the number of the sub-elements on the boundary element re and J s (~', 11') is 

the 1acobian of the transformation from the original to the new intrinsic co-ordinate 

system: 

1 (~' n') = a(~, 11) = 
s ~,. I a(~', 11') 

a~1 (~', 11') 

as' 
a~ 1 (~', 11') 

<h't' 

a~ 2 (~', 11') 

as' 
a~ 2 (~', 11') 

<h't' 
(2.34) 

The 1acobian 1 s (~', 11') tends t~ zero as 0 (r) as r ~ 0, since the original intrinsic co

ordinates of the two nodes associated with P take the same values in the transformed sub

element (Becker, 1992). For instance, the nodes 1 and 2 in the transformed sub-element in 

Fig.2.3 are made coincident by setting 

Again the zero Jacobian reduces the singularity of the boundary integrals by one. 

From (2.10) it can be seen that the kernel Uij are singular with order 0«(1), so the 

integrals in (2.27a) are weakly singular. After using the element sub-division technique, 

these singularities are eliminated. However, from (2.14) it is observed that the integrals 

involved in the integrals of (2.27b) are strongly singular. After using the element sub

division technique, one order of singularity still remains. Other techniques must be 

employed in this case. 
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2.6.3 Strongly Singular Integrals-Rigid Body Considerations 

The strongly singular integration in (2.27b), together with the constant Cij, yields the 

diagonal terms of the matrix [H] in (2.28). Accurate evaluation of these terms is critically 

important. Although direct evaluation of these integrals is possible by utilizing certain co

ordinate transformations (Guiggiani and Gigante, 1990), by far the most popular method is 

to use the rigid body motion constraint. Three cases need to be consided: 

• Closed region problems 

Assuming a unit rigid body displacement in the n-th direction of the cartesian co

ordinates, the tractions must all be zero, i.e., 

and hence from (2.28): 

[H]{I}n = 0 

(2.35) 

(2.36) 

where {I} n contains unit displacements for all nodes in the n direction and zero in any 

other direction. From (2.36) it is apparent that: 

N 

[Hli = -L[H]ij 
j=J 
j;ti 

(2.37) 

which implies that the diagonal terms of the matrix [H] can be determined from the sum of 

the corresponding off-diagonal terms. 

• Infinite region problems 

The boundary of infinite region problems can be divided into a finite part r and an 

infinite part r_. Assuming rigid body displacement and substituting (2.35) into (2.19), it 

follows that: 

c in (P) + J Tin (P, Q)dr(Q) + J Tjn CP, Q)dr(Q) = 0 
r r_ 

The last integral on the left-hand side can be integrated analytically, thus: 
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f~n (P,Q)df(Q) =-Bin (2.38) 
r. 

Consequently, the diagonal terms consisting of the free terms and singular components can 

be calculated from: 

where [I] is the 3x3 identity matrix. 

• Semi-infinite region problems 

N 

[Hh = [I] - L[H]ij 
j=1 
j;ti 

(2.39) 

As for infinite region problems, the boundary of semi-infinite regions can be divided 

into a finite part f, including the half-space surface, and the infinite half-spherical 

boundary f Hoo (Fig.2.4). 

Fig.2.4 Boundary division of semi-infinite region 

Using (2.35) in (2.19) it follows that 

cin (P) + J Tin (P, Q)df(Q) + J ~n (P, Q)df(Q) = 0 (2.40) 
r ~_ 

The last integral on the left-hand side can be integrated (Gao and Davies, 1998a) as 

f Tin (P, Q)df(Q) = -1. 0in 
rHo- 2 

(2.41) 

Hence, the diagonal terms can be determined from: 

1 N 

[Hl;; = 2 [I] - ~[H]ij (2.42) 

j;ti 
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Application and verification of (2.37) and (2.39) to closed and infinite regions can be found 

throughout the literature. However, few workers (Liu and Farris, 1993; Davies and 

Bu,1996; Gao and Davies, 1997, 1998a) have described the application of (2.42) to semi

infinite problems. In the next section, this formulation will be applied to flexible and rigid 

foundations embedded in semi-infinite media. 

2.7 Application to Foundation Problems 

The utility of the BEM algorithm described above is demonstrated by analyzing flexible 

and rigid foundations embedded in an half-space. Equation (2.42) is used to determine the 

strong singularity. The infinite (free) surface is truncated at a radius of 50 times the 

foundation dimensions. The region so enclosed is discretized using five (only) elements 

(excluding the foundation) in the radial direction. The exterior boundary is free, since the 

surface is assumed infinite. 

2.7.1 Square Flexible Foundation on a Semi-Infinite Medium 

The vertical displacements Uz on the surface of the elastic half-space due to uniformly 

distributed vertical pressure P acting on a square foundation (Fig.2.5a) are calculated. 

Fig.2.5b shows the BEM mesh of the foundation. Due to symmetry, only a quarter of the 

foundation is considered. The discretisation required (giving a total of 320 nodes) 95 

quadratic elements, including 25 elements for the foundation. Analytical solutions for points 

beneath the foundation by Giroud (1968) were used to verify the results. Tables 2.1-2.3 show 

the computed vertical displacements beneath the foundation. 
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y 
1[\ 

C 

A B 
(a) 

(b) 

Fig.2.5 Square foundation embedded in semi-infinite space 

(a) Schematic model; (b) BEM mesh (quadrant) 

Table 2.1 Dimensionless displacement (Gu/Pb) 

beneath corner of foundation (point C) 

v Current Analytical Error (%) 

0 0.5623 0.5611 0.21 

0.3 0.3931 0.3928 0.08 

0.5 0.2809 0.2806 0.11 

Table 2.2 Dimensionless displacement (GuzlPb) 

beneath centre of a side (point B) 

v Current Analytical Error(%) 

0 0.7637 0.7660 0.30 

0.3 0.5351 0.5362 0.20 

0.5 0.3834 0.3830 0.11 

-, x 
;' 
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Table 2.3 Dimensionless displacement (Gu/Pb) 

beneath centre o/the foundation (point A) 

v Current Analytical Error (%) 

0 1.1184 1.1222 0.34 

0.3 0.7846 0.7855 0.11 

0.5 0.5618 0.5611 0.12 

The agreement between the numerical results and the analytical solution is excellent. In this 

example, 25 elements were used for the foundation. However, it was found that if only one 

quadratic element was used over a quadrant of the foundation, the errors were still less than 

1 %. The reason for using so many elements is that the same mesh was employed for the rigid 

foundation: in that case, the tractions at the edge of the foundation are infinite. Of course, a 

mesh containing elements of greatly differing sizes requires careful integration of the kernel 

functions. An adaptive algorithm for this purpose is necessary (Gao and Davies, 1999b). 

2.7.2 Square Rigid Foundation on a Semi-Infinite Medium 

A smooth rigid square foundation, with the same geometry as in Example 2.7.1 is now 

considered. The BEM mesh used in above example is also adopted. The boundary 

condition is now vertical displacement rather than distributed force. The Poisson's ratio v 

takes the value of 0.3. Since, in theory, the traction tz at the edges of the foundation are 

infinite, the results are sensitive to the sizes of the element at the edges. Five different mesh 

schemes were employed, differing in the ratios adopted between the dimensions of adjacent 

elements. Fig.2.6 shows the variation of the traction tz along the central line AB for the 

case in which the edge element width is 0.41 % of the half-foundation width b. The 

tractions rise monotonically towards the edge and the edge singularity is clearly resolved. 

Numerical trials show that if one uses a coarse mesh, the singularity can contaminate the 

(traction) solutions towards the interior of the foundation. Nevertheless, the vertical 

compliance is determined satisfactorily even with a coarse mesh. Fig. 2.7 is a convergence 

study which depicts the results for various edge element sizes, where the total force F is 

calculated by integrating the vertical tractions. 
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x/b 

J 

Fig.2.6 Vertical traction along central axis (uz=l) 

N ....... .c 
N -w 
ii: 

1.4 ~;:t=:;==+==+==+==t==1~r=1=-t 1.2 +~~~~~--~-4--~~~~--~~--4 
1 

0.8 +-~--~-;--~~--~--~~--r-~ 
0.6 +-~--~~--~-4--~--r-~--r-~ 
0.4 +-~--~-;--~~--~--~~--r-~ 
0.2 +-~--~~--~-4--~--r-~--r-~ 
O+--+--~~~--+-~~--~-+~ 

o 5 10 15 20 25 30 35 40 45 50 

Edge element I b (%) 

Fig.2.7 Convergence study (edge element width) 

The approximate analytical solution (Whitman and Richart, 1967) relating vertical 

displacement to vertical load can be written as: 
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They obtained the value 1.087 for the coefficient ~z. However, the value for pz 
determined from the numerical results is 1.156 (approximately 7% higher). Since our 

numerical results converge to this latter value, we are reasonably confident that the 

approximate analytical solution is in error. 

2.7.3 Circular Rigid Foundation on Semi-Infinite Medium 

This example concerns a smooth circular rigid foundation (with radius a= 1) subjected to 

unit vertical displacement. The problem is discretized using 75 quadratic elements, 

including 45 foundation elements, with a total of 260 nodes. Fig.2.8 shows the schematic 

model and the BEM mesh for one quadrant of the foundation. Table 2.4 gives the 

computed values of the reaction F, for three valuesof Poisson's ratio, and for unit Young's 

modulus. 

(a) 

(b) 

Fig.2.8 Circular rigid foundation on semi-infinite space 

(a) Schematic model; (b) BEM mesh 

Table 2.4 Reaction F to rigid disk displacement (a=l, E=I) 

V Current Analytical Error (%) 

0.0 2.015 2. 0.7 

0.3 2.207 2.198 0.45 

0.5 2.671 2.663 0.3 
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From the comparison between the numerical and the analytical solutions (Poulos and 

Davis, 1974), it can be seen that although the vertical tractions are singular at the edge of 

the rigid foundation, the computational results are still in very good agreement with the 

analytical solutions. This lends weight to the earlier conjecture that the analytical solution 

for the square rigid foundation is inaccurate. 

2.7.4 Discussion 

From above examples, it is clear that excellent results can be obtained simply by truncating 

the infinite free surface sufficiently far from the region of interest. Moreover, the unloaded 

region can be modelled using only a coarse mesh, provided that diagonal terms are 

computed using (2.42). This treatment can save a great deal of computer memory and 

computational effort. One needs only contrast this with the demands of an equivalent finite 

element analysis to see how effective this BEM approach is. 

2.8 Summary 

In this Chapter, the basic boundary integral equations for elasticity are reviewed. The 

numerical implementation of these integral equations using the boundary element 

technique are described, with the focus on the treatment of the singularities. The weakly 

singular surface integrals are accurately evaluated by means of an element sub-division 

technique, while the strongly singular integrals are treated using the rigid body motion 

constraint. In addition to the well-known formulations (2.37) and (2.39) for closed and 

infinite problems, a formulation (2.42) is presented for semi-infinite problems. 

Applications to some simple foundation problems illustrate the effectiveness of the 

algorithm. 
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Chapter 3 

Corners and Edges in Discontinuous 

Traction Problems 

3.1 Introduction 

Boundary element method solutions are now available for many problems in applied 

mechanics and the method has substantial advantages over other numerical techniques, in 

some respects. However, in order to develop efficient numerical algorithms of general 

validity, a number of issues require special attention. 

One of these issues is the treatment of discontinuities in the geometry and in the 

boundary conditions. It is well known that at corner nodes, the displacements are uniquely 

defined but the surface tractions are multi-valued, due to the different outward normal 

vectors. One obvious way to tackle such problems is to "round-off' corners and edges 

(Jaswon and Symm, 1977). Alternatively, one can simply assume that the tractions are 

equal for each of the surfaces meeting at the corner node (Cruse, 1974). Lachat and Watson 

(1976) suggested that the errors incurred by this treatment were mainly confined to the 

corner and were not significant at distant points. But Alarcon et al. (1979) pointed out that 

this can lead to significant errors in the evaluation of the solution at interior points. 

Although it is not always necessary to obtain detailed results at or near a boundary 

discontinuity, these simple procedures can not be satisfactory since the results, even at 

some distance away from the rounded edges or comers, must be affected (Banerjee and 

Butterfield, 1981). Moreover, there is a large class of problems involving re-entrant 

corners, etc., where results at (or near to) the geometric discontinuity form the most 

important part of the solution. On the other hand, in multi-zone problems it is evidently 
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impossible to round-off the interface comers and edges. Particularly, for comers where 

more than two zones meet, the assumption of "equal tractions" usually leads to 

unacceptable results. 

In order to resolve the comer problem, Riccardella (1973) introduced the "double-node" 

concept for two-dimensional (2D) problems, whereby nodes were placed close to both 

sides of each corner. This technique requires a sufficiently large gap between the corner 

nodes, so that the equations written for each node are well-conditioned. Brebbia and 

Dominguez (1977) later elaborated the use of this technique (which they term 'binodes') 

for linear elements. Determining the optimal gap width is problematic. 

A popular method to treat the corner problems is the use of discontinuous elements 

(Patterson and Sheikh, 1984; Brebbia and Dominguez, 1992). In this method, the multiple 

nodes defined over different elements intersecting at a corner are moved inside their 

corresponding elements. This method can avoid the problems incurred at the corner but 

results in discontinuous boundary displacements and tractions. Although this method is 

very flexible, it does present some drawbacks: 

• The total number of degrees of freedom is greatly increased. 

• The interpolation functions depend on the position of the node inside the elements. 

• More refined numerical integration procedures are generally required due to the need to 

evaluate nearly singular integrals when integrating over neighbouring elements. 

• Some cases require the introduction of transitional semi-discontinuous elements. 

• It is difficult to resolve the stress concentration at comers or edges. 

On the basis of the symmetry of the stress tensor and the invariance of the trace of the 

strain tensor, Chaudonneret (1978) derived two auxiliary relationships among the traction 

components, consistent with 2D linear elasticity. A simpler approach using basically the 

same principle was developed by Yan and Lin (1994) and Mustoe (1980) who used a 

polynomial interpolation (within a local triangular region) to establish a relationship 

between tractions and displacements. Wardle and Crotty (1978) described a formulation of 

this type for linear elements while Rudolphi (1983) described an implementation using 

quadratic elements for zoned problems, including discontinuous stress components. In a 

different way, Zhang and Mukherjee (1991) generated auxiliary equations, for plane strain, 
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by expressing the stresses at a corner surface point as a linear combination of tractions and 

tangential displacement derivatives. 

Numerous other methods also have been suggested to treat corner problems. For 

example, Alarcon et al. (1979) related the displacements to the principal stresses at the 

corners, and used these principal stresses as the primary unknowns. Gray & Luts (1990) 

used multiple nodes to represent the geometry, and the auxiliary equations are obtained by 

differentiating the usual boundary integral equation. 

Most of the existing auxiliary equations are based on Hooke's law, and therefore rely 

on isotropic elastic material properties. It is difficult to establish unified equations for linear, 

non-linear, 2D and 3D problems. Besides, some auxiliary equations were derived from the 

"unique stress" assumption at a comer. This assumption does not hold true for some 

situations (Zhang and Mukherjee, 1991). 

In this Chapter, a novel set of auxiliary equations is derived from the symmetry property 

and the equilibrium equations of the stress tensors. These equations have been applied,' 

to multi..,region 3D problems. Detailed numerical 

implementation formulations are given and are followed by some numerical examples. For 

the purpose of further development, some 2D situations are also discussed in the chapter. 

3.2 Multiple Node Concept for Corners and Edges 

At a corner node, the displacements are uniquely defined but the tractions are multi

valued. We define a node for each of the elements (surfaces) which meet at the same corner 

(or edge) point, but have different outward normals. Thus, for N original boundary nodes, 

including corner nodes, and N additional corner and edge nodes, the resulting BEM 

equations will be 

[H]{u} = [G]{t} (3.1) 

where, [H] is a 3Nx3N matrix and [0] is a 3Nx3(N+N) matrix. 

We can see that the fundamental BEM formulation (2.26) can provide only 3N 

equations for displacements and tractions through collocation of points. The number of 

unknowns in the final system equations, after assembling the prescribed boundary 

conditions, depends on the situations at the corners. 
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Assuming that two elements share a common node at a corner, we can identify six 

possible scenarios, as shown in Fig.3.1. In this Figure, the notations u, t, ult denote the 

boundary conditions; displacements specified, tractions specified, and mixed conditions 

specified, respectively. 

t u 

(a) (b) (c) 

(d) (e) (f) 

Fig.3.t. Boundary conditions at a corner 

For scenarios (a), (b) and (c), the solution of equation (3.1) presents no difficulty, 

because after assembling the boundary conditions, only 3N unknowns remain. However, 

for scenarios (d) and (e) (mixed boundary conditions) and (f) (all the components of the 

displacements are prescribed), the tractions at the corner nodes can not be condensed, so 

that more unknowns than equations remain. Auxiliary equations must be established in 

these cases. 

3.3 Auxiliary Equations for Corners and Edges 

In this section, two sets of auxiliary equation are derived to supplement those from the 

boundary integral equations. The first of these sets of equations is novel and has been 

published (Gao and Davies, 1999a). Much of this Chapter is based on that paper. 
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3.3.1 First Auxiliary Equation based on the 

Stress Equilibrium Equation 

Differentiating (2.2), we obtain: 

and using the equilibrium equations (2.1) to eliminate the stress tensor, the following 

relationship can be derived, after replacing the index j by i in the final result: 

(3.2) 

(3.3) 

in which, the convention that the repeated subscript (i) implies summation is adopted, as 

elsewhere in this thesis. 

Although the traction vector has three components, it should be noted that the 

derivatives in (3.3) are only meaningful on a surface since the tractions are surface fields. 

As shown in the sequel, this means that we must operate on (3.3) over a boundary element. 

Although this yields only one auxiliary equation for each of the intersecting surfaces, they 

are linearly independent since they are derived from the geometry of different surfaces. 

Further, they are valid whether the stress field is continuous or discontinuous around a 

corner or edge, because the derivation is based only on the equilibrium equations of the 

stress tensors, which always hold true. 

For 2D corner problems, equation (3.3) provides exactly the right number of equations. 

However, in some 3D problems (e.g. edge in Fig.3.2 and corner in Fig.3.3), more equations 

are required. 

32 



Chapter 3 Corners and Edges in Discontinuous traction Problems 

Fig.3.2 Two surfaces meeting at an edge 

Fig.3.3 Three surfaces meeting at a corner 

3.3.2 Second Auxiliary Equation based on 

Stress Symmetry 

In order to obtain enough auxiliary equations, we assume that the stress tensor is 

continuous around a corner or edge. Referring to Fig.3.2, the unit outward normals on and 

Ob relate to surfaces Sa and Sb' respectively. Application of (2.2) to surfaces Sa and Sb' 

yields: 

(3.4) 

(3.5) 

Multiplying both sides of (3.4) and (3.5) by n~ and n~, respectively, yields: 

(3.6) 

(3.7) 
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Fig.3.2 Two surfaces meeting at an edge 

Fig.3.3 Three surfaces meeting at a comer 

3.3.2 Second Auxiliary Equation based on 

Stress Symmetry 

In order to obtain enough auxiliary equations, we assume that the stress tensor is 

continuous around a corner or edge. Referring to Fig.3.2, the unit outward normals nn and 

nb relate to surfaces Sa and Sb' respectively. Application of (2.2) to surfaces Sa and Sh' 

yields: 

(3.4) 

(3.5) 

Multiplying both sides of (3.4) and (3.5) by n~ and n~ . respectively, yields: 

(3.6) 

(3.7) 
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Using the symmetry property of the stress tensor, CJ ij = CJ ji ' (3.7) becomes 

(3.8) 

On contrasting (3.8) with (3.6), it follows that: 

or b a a b n ·t =n ·t (3.9) 

Equation (3.9) states that the projection of traction vector ta on the normal direction nb is 

equal to the projection of traction vector tb on the normal direction nat Obviously this is 

one of the basic results of the property of reciprocity (Saada, 1974). In the 2D case, it 

reduces to: 

(3.10) 

This is the result obtained by Chaudonneret (1978) by considering the symmetry of the 

stress tensor, CJ12=0"21' From the derivation of (3.9), it can be see that the property of the 

stress tensor, CJij=O"ji' only provides one additional equation for both 2D and 3D problems, 

notwithstanding published statements to the contrary (Chaudonneret, 1978). 

Equations (3.9) and (3.3) together generate enough supplemental equations for a 3D 

corner or edge. In the sequel, further details of the application of these results to specific 

problems are given for clarity. 

3.3.3 Remarks on the Application of the Auxiliary Equations 

Some remarks on the application of the auxiliary equations (3.3) and (3.9) is given in the 

following for 2D and 3D problems. 

• 3D single-region problems 

For the edge node, as shown in Fig.3.2, nine quantities are involved (three displacel!lent 

components, Ui, and six traction components, t~ and t~, i= 1 ,2,3). We have also nine 

equations (three from BEM equation (3.1), one from (3.9), two from (3.3) for surfaces Sa 
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and Sb respectively, and three from the prescribed boundary conditions: 

displacements/tractions or mixed). For three surfaces meeting at a corner node (see 

Fig.3.3), twelve quantities are involved (three displacement components, Ui' and nine 

traction components, t~, t~ and t~, i=1,2,3). For this case, we can establish twelve 

equations (three from (3.1), three from (3.9) for Sa-Sb, Sb-Sc and Sc-Sa respectively, three 

from (3.3) for surfaces Sa' Sb and Sc respectively, and three from the prescribed boundary 

conditions). So, for 3D single-region problems, the corner problem is resolved. 

• 2D single-region problems 

For 2D problems, there may be more equations than quantities, so we only need to 

choose some of equations obtained from (3.3) and (3.9) to assemble into the global system 

of equations. For example, for the corner shown in Fig.3.2, six quantities are involved (two 

displacement components, Uh and four traction components, t~ and t~ , i= 1,2), but we can 

establish seven equations (two from (3.1), one from (3.9), two from (3.3), and two from the 

prescribed boundary conditions). Only two of the auxiliary equations from Eq.{3.3) for the 

edges Sa and Sb are required. 

• Multi-zone problems 

Strictly speaking, for the corners on common boundaries shared by three or more 

regions, the use of (3.9) may lead to invalid results. As a example, we consider a point at 

which three regions intersect in a plane (Fig.3.4). For convenience of analysis, we separate 

the body along the common boundaries and analyze the normal tractions. 

a l a 
Zone 2 Zone 1 

Zone 3 

Fig.3.4. Separated comer of three-zone intersection 
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According to (3.9), we can establish the following equation for corner Lb'03c': 

b' e' e' b' n to = n to 

and using the interface equilibrium condition: 

we see that when P~180o, i.e., nb
' = ne

' ,the following result may be obtained: 

But this is false in general when the elastic moduli of zones 1 and 2 are different. 

On the other hand, (3.3) is valid for multi-zone problems. However, it should be noted 

that after using the interface equilibrium conditions, only one equation is independent for a 

common boundary, although two equations can be established using (3.3) for two surfaces 

in contact. Even so, we can still obtain enough equations to deal with problems involving 

the interaction of several zones. For example, after consideration of the interface 

equilibrium conditions, there are twelve unknowns for the 3D three-zone problem shown in 

Fig.3.4 (three displacement components and nine traction components associated with the 

three common surfaces). We can establish twelve equations (nine from (3.1) for the three 

zones and three from (3.3) for the three common surfaces). For more than three-zones, 

there may be more auxiliary equations available than unknowns. In such cases, the 

redundant equations may be discarded. 

3.4 Numerical Implementation of Auxiliary Equations 

No particular difficulties arise in incorporating (3.9) into the BEM code. But (3.3) is 

expressed in differential form, so this must be recast into a more convenient form. Further, 

as mentioned earlier, since tractions are surface fields, (3.3) must be expressed in terms of 

boundary quantities, i.e., nodal tractions and nodal coordinates. 
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Similar to (3.16), the following equations can be written: 

[~] = aNa t~ or [~] = [tUN'] 
a~ ik a~k a~ 

(3.19) 

where the elements of the matrices [t] and [N'} are: 

, aNa 
[N ]ak = a~k (3.20) 

Finally, substituting (3.19) into (3.13) and the result into (3.3), the following equation can 

be derived: 

(3.21) 

in which Tr denotes the trace of a matrix and [:~] is obtained from (3.18). 

In the sequel, this result (equation (3.21)) is elaborated for 2D and 3D problems. 

3.4.1 Formulation for two-dimensional problems 

Fig.3.5 shows a quadratic isoparametric boundary element for 2D problems. It is assumed 

that one of the nodes is at a corner or at an edge. 

y 

~ ____________________ ~x 

Fig.3.5 A quadratic boundary element for 2D problems 
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For this 2D case, equation (3.16) becomes: 

dX 
d~ 

[L] = ay 
d~ 

Substituting the above equation into (3.18), it follows that: 

where 

ax dX dy 
/( J

2 (J2 
tl = a~ a~ + a~ 

dX dy 
and the terms d~ and d~ are evaluated using (3.16). 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

It is evident that the terms tl and t2 shown by (3.24) are the direction cosines of the local 

axis ~ with respect to the global axes, and 111 is the Jacobian of the transformation. In the 

light of (3.20) and (3.23), and noticing that the index k is unity here, we obtain: 

Finally, substituting the above equation into (3.21), it follows that: 

dNa t.t~ =11In .(pii. -b.) 
d~ I I I I I 

Equation (3.27) is suitable for use with linear, quadratic and higher order boundary 

elements (corresponding to a=2,3 etc.). 

(3.27) 
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3.4.2 Formulation for three-dimensional problems 

Fig.3.6 shows a quadratic isoparametric boundary element for 3D problems, with the 

assumption that one of the element nodes is on a corner. 

r---------------------------~X2 

Fig.3.6 An isoparametric element for 3D problems 

According to (3.16): 

aX t aX t 
a~1 a~2 

[L] = aX 2 aX 2 

a~l a~2 
ax] aX 3 

a~t a~2 

ax. 
in which a~: are calculated using (3.16). 

Substituting (3.28) into (3.18) and after some matrix manipulation, we obtain: 

(3.28) 

(3.29) 
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where 

and 

e - S. ,S2 
cos -\SIIlS2\ 

1 
c=--;==== 

~1-cos2 e 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

In (3.29), 'II' ')2 and ')3' and '21' '22 and '23 are the components of the direction vectors 

SI and S2 (see Fig.3.6) which are aligned along the intrinsic co-ordinate axes ~I and ~2 

respectively, and 111 is the lacobian of the transformation. 

Substituting (3.29) into (3.21), a formulation similar to (3.27) is obtained: 

aN n . a \1\ (.. b) --'kit. = n· pu. - . 
a~k I I I I 

(3.37) 

in which, indices k=I,2; i=I,2,3 and a=l, ... , L, with L being the number of element nodes. 
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3.5 Numerical Example 

A three dimensional BEM computer code to treat the corner and edge problems using the 

formulations derived in this paper has been written. To demonstrate the validity of this 

method, several benchmark cases have been examined. One of these is presented here. 

More complicated applications can be found in Chapter 4. 

Fig. 3.7 shows a cube subjected to a uniformly distributed force of P I =1 on the top 

surface (z+) and P2=2 on the right surface (x+), sUbjected to the constraint boundary 

condition that the front (y-), back (y+) and left (x-) surfaces are roller supports and that the 

bottom surface (z-) is fixed. This 3D computational model is actually equivalent to a plane 

strain problem, as shown in Fig.3.8. 

z 

y 

11°· .... ~: ::~ ..... 
•• •• p..' B, 

'~<--10. ~ 

- -11- -
5 . 

Fig.3.7 A cube under tension 

z 

c 

Fig.3.8. Front surface (i) of the cube 

x 

42 



In Fig.3.7, points A and B are the comer nodes of the three intersecting surfaces, associated 

with three nodes (defined on the surfaces z·, x· and y. for point A, and z·, x+ and y. for point 

B). 

In the computation, the surfaces of the cube were discretized into eight-noded 

quadratic isoparametric boundary elements (with three elements in the y-direction and five 

elements in the x- and z-directions). The Young's modulus E and Poisson's ratio v were 

assumed to be unity and 0.3, respectively. For comparison purposes, the same problem was 

also analyzed using an elementary 3D-BEM program (BEM3D) and a standard plane-strain 

finite element (FE) program (OASYS). The plane-strain FE discretisation involved the use 

of one hundred quadratic elements. Tables 3.1 and 3.2 show the calculated tractions and the 

displacements for some selected points. Table 3.3 shows the stresses at the Gauss points 

computed by the FE program along the line z=O.1 057, and Figs.3.9 and 3.10 show the 

distributions of the shear and normal tractions on the bottom surface along the line of 

intersection of the front and bottom surfaces (the x axis). 

Table 3.1 Calculated tractions 

Point A Point B 

Program Face z· Face x· Face y. Face z· Face x+ Face y. 

Current -0.002 -0.619 O· -1.712 2.0· O· 

tx FEM -0.007 -0.612 O· -1.696 2.010 O· 

BEM3D -0.217 -3.149 
Current -0.003 O· -0.642 -0.005 O· 0.457 

ty FEM O· O· -0.632 O· O· 0.515 
BEM3D -0.229 0.351 
Current -1.385 O· 0* 

3.830 O· O· 
tz FEM -1.432 -0.007 o· 3.396 O· O· 

BEM3D -1.399 3.831 

Note: The superscript '*' indicates a prescribed value. 
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Table 3.2 Calculated displacements 

Point Program ux u1' uz 

Current 15.3302 0.0000· 0.0078 

C FEM 15.3800 0.0000* -0.0699 
BEM3D 15.3338 0.0000· 0.0102 

Table 3.3 Stresses at Gauss points (FE), along the line z=O.1 057 

No. 

1 

2 

3 

4 

5 

6 

x-coordinate O'xx O'zz O'xz O'vv 

0.1057 -0.6115 -1.375 -0.0078 -0.5959 

1.289 -0.6093 -1.3682 -0.0961 -0.5932 

3.289 -0.5962 -1.3302 -0.2564 -0.5779 

6.289 -0.5430 -1.1737 -0.5711 -0.5150 

8.817 -0.5624 -0.9437 -1.0716 -0.4518 

9.683 0.1900 1.5280 -1.6957 0.5154 

0.5.,--------------------, 

-0.5 
J 
~ -1 
o 
~ 

! -1.5 ... 
~ -2 
.c 
U) 

-2.5 

-3 

X-coordinates 

-ll-FEM 
-air- Current 

-e-SEM3D 

-3.5...1.....-------------------.J 

Fig.3.9 Shear tractions along bottom of the cube 
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4~--------------------------------~ 

3 -II- FEM 
--.- Current 

-e- BEM3D 

(ij 
E 

0 ... 
0 z 2 3 4 5 6 7 

-1 

-2 

X-coordinates 

Fig.3.10 Normal tractions along bottom of the cube 

The results shown in Table 3.1 illustrate the very good agreement between the results 

obtained using the current program and those from the finite element program. The 

discrepancies are believed to be due to discretisation effects and, particularly, the 

calculation and interpolation of the (FE) tractions from the stresses (given in Table 3.3) at 

the Gauss points (since stresses are not computed on the surfaces). 

By contrast, the elementary boundary element program (BEM3D) often yields 

misleading results. These appear in some instances to be (approximately) the 'average' 

value of the independent tractions at each of the intersecting surfaces, although this is not 

always the case. It should be noted that this program does return the correct traction value 

when only one value is unspecified. 

By contrast, in this particular case, the results recorded in Table 3.2 show that 

displacements are largely unaffected by the treatment of the comers. This is not a result 

which can be relied upon in general. 

Further detailed information on the distribution of tractions along the bottom of the cube 

is depicted in Figs.3.9 and 3.10. Particularly evident in Fig.3.9 is the improvement obtained 

by properly modelling the corner problem. 
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3.6 Summary 

Novel auxiliary equations, which are required to supplement the fundamental boundary 

integral equations in discontinuous boundary traction problems, are derived for 2D and 3D 

problems from the equilibrium equations and the symmetric property of the stress tensor. 

These equations can be used to deal with the comers and edges of single region and multi

region problems in elastostatics, plasticity and dynamics. For 2D problems, these auxiliary 

equations do not invoke the assumption of a continuous stress field, but this more 

restrictive assumption may be required for some 3D problems. 
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Chapter 4 

Boundary Element Method for 

Multi-Region Problems 

4.1 Introduction 

The boundary element method has developed rapidly for problems involving 

homogeneous regions. However, in many practical situations, it is necessary to solve 

problems containing piece-wise homogeneous regions. Consequently, several multi-region 

BEM algorithms have been developed (Lachat and Watson, 1975; Brebbia and Walker, 

1980; Brebbia et aI., 1984; Banerjee and Butterfield, 1981; Crotty, 1982; Kane and Saigal, 

1990). In these algorithms, the system equations are obtained by assembling each zonal 

set, by invoking the equilibrium and compatibility conditions at the interface nodes. 

The coefficient matrices in BEM, even for a single region, are non-symmetric and fully 

populated. Hence, it is practically impossible to establish the system equations in core, 

particularly for large 3D engineering problems. However, the use of multi-region BEM 

can significantly increase computational efficiency (Butenschon et al., 1989). The rationale 

here is that if the region of interest is (artificially) partitioned into a number of sub

domains, the resulting system equations become sparse and banded. The gain in 

computational efficiency more than compensates for the increase in the number of degrees 

of freedom. Other significant applications of the multi-region BEM algorithm are to 

fracture mechanics (Cruse and Myers, 1977; Perucchio and Ingraffea, 1985; Crotty and 

Wardle, 1985; Raveendra and Cruse, 1989; Beer, 1993) and eigenvalue extraction in free

vibration analysis (Wilson et aI, 1990; and Raveendra and Banerjee, 1992). 
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In multi-region BEM algorithms, two important issues must be paid particular 

attention. The first and most important issue is the treatment of comers and edges. It is well 

known that at comers or edges, the displacements are uniquely defined but the surface 

tractions are multi-valued. Although rounding-off corners and edges can indeed give good 

results for some single region problems, it is evidently impossible to round-off interface 

corners and edges in multi-zone problems. In the sequel, it is also demonstrated using 

numerical examples that the unique traction assumption at a two-zone intersecting corner 

(or edge) can provide reasonable approximate solutions, but for comers where more than 

two zones meet, the unique traction assumption usually leads to unacceptable results. 

The commonly accepted method for the treatment of comers and edges where several 

regions intersect is to introduce additional nodes at the corners and edges, and then 

develop auxiliary equations to determine the additional unknowns (Gao and Davies, 

1999a). For example, Banerjee (1994) introduced a resistance relationship, for potential 

problems, at each node of each interface element to eliminate the additional unknowns. 

Rudolphi (1983) described an implementation using quadratic elements for zoned 

problems, including discontinuous stress components. 

The second issue in multi-region BEM is the equation solution technique. The system 

equations, as noted above, are generally sparse, block-banded and nonsymmetric. They are 

also often not positive-definite nor diagonally dominant, and often ill-conditioned. 

Numerous solution strategies have been proposed for solving such equations. A direct 

matrix block factorization process has been described by Banerjee and Butterfield (1981), 

Brebbia and Walker (1980), Lachat and Watson (1975, 1977), and Crotty (1982) which 

exploits the substantial (block) sparsity. Tomlin (1972), Butterfield and Tomlin (1971), 

Bailecki and Nahlik (1987) and Bailecki (1987) have described unsymmetric sparse block

banded frontal equation solving algorithms. Kane et al. (1990) described a zone 

condensation technique to save computer storage space. 

Iterative solution techniques have recently begun to receive significant favourable 

attention from boundary element researchers (Kane et al., 1991; Prasad et a1., 1994 and 

Leung and Walker, 1997); the advantages of the GMRES algorithm described by Saad and 

Schultz (1986) are increasingly recognized. This algorithm operates directly on the original 

set of un symmetric matrix equations and therefore requires only one matrix-vector 

multiplication in each iteration. 
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Singular value decomposition (SVD) -<Press et al., 1992) deals with equation sets that 

are singular or nearly so. Although this technique is relatively slow, it is reliable. 

Consequently, it has been adopted in this study, whenever the need has arisen. 

In this Chapter, the multi-region problem is addressed using the multiple node concept 

and the auxiliary equations derived in the previous chapter are used to close the equation 

set. In addition, two assembly processes, which have some novel aspects, are also 

presented to establish the system equations. 

4.2 Multi-Region BEM Algorithms 

Various assembly methods can be used to establish the multi-region system equations (e.g. 

Banerjee and Butterfield, 1981; Brebbia et al., 1980, 1984; Kane et al., 1990). In the 

present study, we employ a different (substructure) technique. The discretized BEM 

equation (3.1) for the i-th zone can be expressed as: 

(4.1) 

[Hi] and [Gi] are square and rectangular coefficient matrices, respectively, and {ui} and {ti} 

are column vectors of nodal displacements and tractions. 

We collect the nodes for each zone into two sets. The first set includes the nodes solely 

associated with a single region. This set of nodes are called 'external nodes' and will be 

eliminated at the zonal level. The remaining nodes reside on region-to-region interfaces. 

For convenience, all the nodes associated with corner and edge points are classified into the 

latter set. Equation (4.1) can then be written in the form: 

(4.2) 

in which, the subscript I denotes displacements at the region-to-region interface nodes 

(FigA.l); the subscript S denotes tractions at the system nodes (interface and additional 

nodes), and the subscript E denotes the quantities at the remaining external nodes 

associated with a single region, and which will be eliminated at the zonal level. 
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interface node 

• additional node 

Fig.4.1 A two-zone problem 

The boundary conditions are applied at the zonal level and, after shifting the unknowns 

to the left-hand side, then the block-banded matrix (4.2) gives: 

[A ~E ] {X k } + [H ~I ] { u ; } = [G ks ] { t; } + {B i. } (4.3) 

and: 

[A! . ] { X ~ } + [H ~ ] { u ~ } = [G ~s ] { t ~ } + {B ~ } (4.4) 

From (4.3): 

Sub tituting the above equation into (4.4) yield : 

(4.6) 

where 

[D~s] = [a;s] - [A~ ][A~E ]-1 [a~] (4.7) 

It i convenient to define a global traction vector {ts} for all the interface node nd all 

the additional node, uch that the local traction vector {t~} can be expre sed in term of 

(ts} by the equation: 
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(4.8) 

where [Lti] is the 'traction location matrix' for zone i, consisting only of 0, 1 and -1. The 

construction of [Lti] takes into account the interface equilibrium conditions; for example, 

the condition {t~} = -{ t;} on the interface shared by zone 1 and zone 2 . 

. From (4.6) and (4.8), two assembly processes can be developed, as described below. 

4.2.1 Mixture Representation of System Equations 

In the similar way to the treatment of tractions, we define a global displacement vector [ud 

for all the interface and additional nodes and introduce a displacement location matrix 

[Lui] for zone i, consisting of 0, 1, namely: 

(4.9) 

The construction of [Lui] takes into account the displacement compatibility conditions, for 

example, the condition {u:} = {u:} on the interface shared by zone 1 and zone 2 

Applying (4.6), (4.8) and (4.9) to each zone and assembling all the zonal equations, 

together with the auxiliary equations (3.37) and (3.9), yields the final system equations. For 

problems containing m zones, we obtain: 

- [D!s][Ltl] 

-[D;s ][Lt2] 

_[D~][Ltm] 

[E A ] 

[ch HLUl] 

[C~ HLU2] 

(4.10) 

in which, [EA] and {VA} are generated using (3.37) and (3.9), after considering the 

traction boundary conditions. On solving the system of equations, we obtain the values of 

the displacements and tractions at the interface nodes and at the additional nodes. Then, 

through backward substitution, we find all the remaining unknowns. 

The advantage of the above assembly process is that we can solve (4.10) simultaneously 

for both displacements and tractions. The drawback is that it requires relatively large 

computer memory, although (4.10) only includes the displacements and tractions at 
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interface and additional nodes. Alternatively, we can employ the following assembly 

process which needs less storage space. 

4.2.2 Traction Representation of System Equations 

Since the matrix [D~s] in (4.6) is generally not square, no inverse matrix can be found. 

However, [Ch] is always square, so from (4.6) and (4.8), it follows that: 

i A i Ai 
{ u I } = [D IS ] { t S } + {YI } (4.11) 

Here: 

[D!s] = [C~ r l [D!s ][Lti] (4.12) 

ry1
i

} = [Ch r l {y; } (4.13) 

Applying (4.11) to each zone and assembling all the zonal contributions, together with the 

auxiliary equations (3.37) and (3.9), we obtain the final system equations. The assembly 

process is performed node-by-node and employs a cyclic rule for the displacement 

compatibility conditions, i.e. 

{u~} = {uD; 

i = 1, 2, ... , m-l; (4.14) 

j = i + 1, i + 2, ... , m 

for a node at the intersection of m zones. For example, for a point where three zones 

intersect, as shown as in Fig.4.2(b), compatibility yields: 

(4.15) 
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zone 2 

(a) (b) 

Fig.4.2 (a) Corners of two intersecting zones and (b) three intersecting zones 

Also, from (4.11): 

(4.16) 

Similarly, we can write two other equations ({u:} = {u~} and {u ; } = {u~} ) which, together 

with the auxiliary equation from (3.37) and (3.9), lead to the sy tern equation : 

[6; ]+[6;s] CYI
2 

} - CyI
I } 

" I " 3 Cy
l
3 } - {VII} [DIS] + [DIs] 

{tc } = ( 4.17) 
A 2 A 3 Cy

I
3 

} - Cy
l
2 } [D I ] + [D,s] 

[E A ] {YA } 

This y tern set of equation is compact and the unknowns involved are only the traction 

at the y tern nodes (interface and additional nodes), and hence Ie computer torage pace 

i required. A problem which often occurs in practical problem j that di placement ar 

pecified over orne of the y tern nodes. In that case, the corresponding column of the 

quare matrix [C~] in (4.6) are zero after as embling the boundary conditions, which 

prevent it inversion. In such ca es, we set the diagonal element of the e column to unity 

nd add the pecified di placement to the corresponding po ition of {Y;} in (4.6). The 

subsequent process is the same as de cribed above. 
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4.2.3 The Number of Necessary Auxiliary Equations 

Now we describe the number of the auxiliary equations required for different comer or 

edge situations. As indicated in chapter 3, equation (3.37) yields one auxiliary equation for 

each surface and (3.9) provides one equation for a pair of surfaces meeting at a corner or 

edge. It is noted that although an interface is shared by two zones, after taking into account 

the interface equilibrium conditions, the interface equations «3.37) and (3.9» for one zone 

only can be used. 

For the 3D two-zone edge intersection shown in Fig.4.2(a) (with two nodes associated 

with the point), and after consideration of the interface equilibrium conditions, there are 

nine unknowns (three displacement components and six traction components). 

Accordingly, nine equations are required. Six equations are provided by the fundamental 

BEM equation (4.1) and two auxiliary equations can be obtained from (3.37) and one from 

(3.9). 

For the 3D three-zone edge intersection shown in Fig.4.2(b) (with three nodes associated 

with the point), there are twelve unknowns (three displacement components and nine 

traction components). So, twelve equations are needed. The fundamental BEM equation 

(4.1) provides nine equations and hence three auxiliary equations are required. However, 

we can generate six auxiliary equations (three from (3.37) and another three from (3.9». In 

this case, we need to select three from these six. Our experience indicates that selection of 

equations from (3.37) is superior to those from (3.9). 

This analysis is also suitable for 2D comer or edge problems. The following expression 

can be used to calculate the number (m) of necessary auxiliary equations required for 

corner or edge points: 

m = d * (n - z + 1) (4.18) 

where, d=2 (3) for 2D (3D) problems, n is the number of the nodes associated with the 

corner or edge point, and z is the number of the zones meeting at the corner or edge point. 
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4.2.4 Solution Technique for Multi-Region System Equations 

In most cases, we can use Gaussian elimination to solve the system equations (4.10) or 

(4.17). However, if a region is not explicitly prevented from undergoing rigid body 

displacements, then the solution technique described by (4.l0) and inversion of [C~] in 

(4.11) fails. For this situation, the singular value decomposition technique (SVD) (Press et 

al. 1992) provides a convenient means of overcoming the problem, albeit at the expense of 

greater computational time. 

Numerical problems may occur if the ratio of the values of the coefficient matrices of 

(t s } and {ud become unduly large. This problem can be circumvented by normalising 

the coefficients by a representative value of shear modulus. Evidently, the same 

representative value must be used for all zones. 

4.3 Numerical Examples 

A 3-D elastostatic multi-region BEM computer code (ESMI-3D) based on the mixture 

representation (4.10) has been written in FORTRAN 77 using the algorithm presented in 

this chapter. This code can deal with arbitrarily many zones using 4-node linear and 8-node 

quadratic elements. As infinite boundary element technique (Davies and Bu, 1996; Gao and 

Davies, 1997) also has been incorporated into the code so that semi-infinite problems can 

be solved very efficiently. Two representative examples used to validate the code are 

described below; these were run on a 486DXl66 microcomputer, using single precision 

arithmetic. For any interface node, the tractions are referred to the surface of the lower 

numbered zone. The SVD technique was used for solving these problems, although no 

singularities were detected in these particular examples (which indicates the auxiliary 

equations generated using Eqs.(3.9) and (3.37) are linearly independent). 
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4.3.1 Three-zoned Cube Problem 

The first example is a cube, consisting of three zones, subjected to uniform extension, i.e. , 

u= 1 0 (Fig.4.3). Both the central point B and the bottom central point C are represented by 

three independent nodes, one for each of the faces. The cube is discretized into 88 eight

noded elements (40, 24 and 24 for zones 1, 2 and 3, respectively) with 212 original nodes 

and 20 additional nodes. All the elements have the same dimension (2.Sx2.S). 

z 

-----J!'\-. 

10 

Fig.4.3 A cube undergoing a displacement u= 1 0 

To compare with the analytical solution, firstly, we take the mechanical properties of the 

three zones to be same, i.e., El=E2=E3=1 and Vl=V2=V3=O. Table 4.1 show the computed 

tractions tz for the nodes associated with points A, Band C. Table 4.2 show the 

displacements at the point B, where the column headed by the title 'Auxiliary equation' 

indicates the results computed using the auxiliary equations presented in thi thesi ,and the 

columns headed by the titles 'Unique at C' and 'Unique at B' denote the result obtained 

by defining only one node at point C and B, respectively. It is evident that these implified 

methods fail to capture the correct solution. 
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Table 4.1 Calculated tractions tz for interface nodes 

(El=E2=E3=1 and Vl=V2=V3= 0) 

ux 

uy 

uz 

Node Analytical Auxiliary Unique Unique 
Solution equation atC AtB 

1.0 1.0000 0.9995 0.4857 

1 -1.0 -1.0000 -1.0089 

2 -1.0 -1.0000 -0.9994 -7.6385 

3 0.0 0.0000 0.0030 

1 -1.0 -1.0000 -24.0765 

2 -1.0 -1.0000 -0.0021 24.1647 

3 0.0 0.0000 -27.6547 

Table 4.2 Calculated displacements at point B 

(El=E2=E3=1 and Vl=V2=V3= 0) 

Analytical Auxiliary Unique Unique 
Solution equation at C AtB 

0.0 0.0000 -0.0005 -3.7981 

0.0 0.0000 -0.0006 -1.7823 

5.0 5.0000 4.9929 -0.8397 

Inspection of these Tables shows that the auxiliary equation algorithm presented in this 

thesis gives results in excellent agreement with the analytical solutions. The unique (single) 

node method can only provide approximate results for two zone intersections at corners or 

edges but for three zones intersecting at comers or edges, the computed results are 

u nacceptab Ie. 

Secondly, we take the mechanical properties of the three zones to be E1=5, E2=3 & 

E3=1, and VI=V2=V3= 0.2. The tractions at points Band C computed using the present 

algorithm are given in Table 4.3. 
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Table 4.3 Traction values 

(El=5., E2=3., E3=1., and Vl=V2=V3= 0.2) 

Node I tx I ty I tz 
1 1.5749 3.3347 -0.6671 
2 0.8857 -2.4120 -6.1122 
3 -0.8602 -3.2954 1.1881 
1 -2.4271 -5.6103 -0.4534 
2 -0.4655 3.2384 -6.6272 
3 -1.9077 -5.1288 2.1881 

From Table 4.3, we can see that the stress-discontinuity phenomenon due to the different 

stiffnesses of the materials can be clearly distinguished. This is impossible to discern using 

the unique node method. Moreover, the application of the unique node method in this case 

yields even worse results than before. 

4.3.2 Four-zoned Thick-Wall Cylinder Problem 

The second (three-dimensional) example is a thick circular cylinder subjected to internal 

pressure, p= 1. FigAA shows the mesh employed which is composed of 4 zones with 48 

eight-noded elements (12 elements for each zone), with 131 original nodes and 63 

additional nodes. A quarter of the cylinder is analysed. The x-y plane (at z=20) is subjected 

to 'roller' boundary conditions (uz=O) and symmetry is assumed about the z=O plane to 

simulate a state of plane strain. The vertical (x=O) and horizontal (y=O) boundaries are also 

'roller' supports (Le., ux=O and uy=O, respectively). 
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Fig.4.4 Cylinder subjected to internal pressure 

To compare with analytical solutions, we assume El=E2=E3= E4=1 and Vl=V2=V3=V4=O.3. 

Figs.4.5 and 4.6 show the variations of the radial displacement and circumferential 

stresses along the radial (r) direction. 

U r 
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10 12 14 16 18 20 22 24 26 28 30 
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--+- Analytical 
solution 

-II- Auxiliary 
equation 

Fig.4.5 Variation of radial displacement v . radial di tance 
(El=E2=E3= E4=1) 
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Figo4.6 Variation of circumferential stress vs. radial distance 
(E I =E2=E3= E4= 1) 

From Figs. 4.5 and 4.6, we observe that the auxiliary equation algorithm gives results 

which are in excellent agreement with the analytical solutions. The small discrepancies at 

the inner and outer surfaces may be due to the rather coarse mesh adopted. 

To compare the results obtained by analytical, auxiliary, and unique node methods, 

Table 4.4 shows the radial displacements at different points. Again, we see that the unique 

traction concept fails to capture the correct solutions, while the auxiliary equation method 

produces excellent results. 

Table 404 Radial displacements by different methods 

(E 1 =E2=E3=E4= 1) 

Point Analytical Auxiliary Unique Unique 

Solution equation atD AtB 

A 15.275 15.124 14.691 14.540 

B 8.613 8.587 8.107 7.731 

C 6.825 6.796 6.334 5.928 

To examine the effect of piece-wise (zonal) inhomogeneity, analyses have been carried 

out for E 1=E2=1, E3= E4=3 and E 1=E3=3, E2= E4=1. In these analyses, VI=V2=V3=V4=0.3. 

Figo4.7 shows the circumferential stress variation along the radius ABC (see Fig. 4.4) for 

these two cases. 
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Fig.4.7. Variation of circumferential stress along line ABC 

From Fig.4.7, one can observe that the circumferential stress is discontinuous at the point B 

(more starkly for the first case) because of the non-homogeneous material properties at this 

interface. This phenomenon can not be captured using the conventional multi-region BEM 

program. 

Radial displacements, also along ABC, are plotted in Fig. 4.8. Naturally, displacements 

are continuous and, as expected, in the case when the outer region is stiffened, there is a 

pronounced change in the gradient of the radial displacement. 
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Fig.4.8 Variation of radial displacement along line ABC 
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4.4 Summary 

Two approaches to the solution of the multi-region BEM system equations have been 

presented, which can deal with arbitrarily many zones. One of these (traction representation 

method) is particularly advantageous, if computer memory resources are limited. To the 

author's best knowledge, the multi-region comer/edge problem for more than two 

intersecting zones is dealt with here for the first time. Some representative numerical 

results are presented which demonstrate the validity and scope of the algorithm. 
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Chapter 5 

Infinite Boundary Element Technique 

for Multi-Layered Media 

5.1 Introduction 

In numerous practical engineering problems, the region of interest extends to infinity. The 

boundary element method (BEM) is ideally suited for the analysis of such problems 

because often only a finite region of the surface has to be discretized and the conditions at 

infinity are automatically satisfied by the fundamental solution. However, for half-space 

problems, the surface to be discretized also extends to infinity. Although such problems 

can sometimes be solved by using fundamental solutions for the half-space (TelIes and 

Brebbia, 1981; Jiang, 1986) such as the Mindlin's solution (or Melan's solution) instead of 

Kelvin's solution, there are some limitations to their use (Beer and Watson, 1989). As 

demonstrated in Chapter 2, some half-space problems can be satisfactorily solved by 

simply employing large elements to discretize the far-field of the infinite surface. However, 

the discretization of the far-field may require the introduction of many more degrees of 

freedom. A much more effective method is to incorporate infinite elements into the 

conventional boundary element analysis. Infinite boundary elements were first proposed by 

Watson (Watson, 1979) and later employed by Beer, Watson and Swoboda (1987) to 

model a small region of a long tunnel. Zhang et al. (1989) described the application of 

infinite elements to dam foundations. Beer and Watson (1989) introduced 'ghost' elements 

in their infinite element formulation in order to exploit the anti-symmetry of the traction 

kernel. Davies and Bu (1996) developed a semi-analytical approach based on a circular 
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region of exclusion in the far-field region. The approach is efficient for many problems, but 

requires the construction of an additional set of elements for each source point. 

In this Chapter, the algorithm described by Davies and Bu (1996) is significantly 

improved (Gao and Davies, 1998a) and extended to multi-layered problems (Gao and 

Davies, 1998c). Here, the integrals over the infinite surfaces are transformed into line 

integrals which form a closed contour and are evaluated analytically. Using this 

formulation, we obviate the need to perform numerical integrations over the entire region. 

The illustrative example of a deep foundation demonstrates the applicability and accuracy 

of this novel approach. 

5.2 Asymptotic Behaviour of the Far-Field 

In this thesis, the multi-layered problem is modelled by subdividing the continuum into 

SUb-regions, each consisting of a single material. All of the infinite urface (including the 

ground surface and the interfaces) bounding the layers are a sumed to be parallel. All the 

layered-regions are composed of two (upper and lower) infinite surface and an edge 

(bounding) surface (SH), except for the base region which i compo ed of on infinite 

surface and an hemisphere. Each infinite surface con ist of a finite core region Sp (near-

field) and an infinite surface S, (far-field). Fig.S.1 shows a three-layered infinite mod I, 

where the contour rr of the infinite surface Sf extends to infinity. 

Fig.S.1 Model of the three-layered half- pace problem 
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The traction and displacement conditions at infinity are automatically satisfied by the 

fundamental solution and we only need to discretise the layer interfaces (including the 

surface) into elements. For each of these surfaces, the near-field SF and the boundarie of 

any inclusions are modelled with (finite) boundary elements and the far-field SI i modelled 

by infinite elements, over which the tractions are assumed to be zero and the di placements 

and co-ordinates are mapped through co-ordinate transformation and decay functions, 

respectively. 

5.2.1 Mapping and discretisation of the Infinite Surfaces 

For the infinite boundary elements, the arne tandard hape function (2.21) are 

employed, but we allow one of the intrinsic function (11) to take the limits -1 to 00 in t ad 

of -1 to + 1 (see Fig.S.2) 

Fig.S.2 Infinite boundary Jernent. 

This is accomplished by introducing the tran formation : 

~=~', 
1 + 311' 

11 = ] I 

- 11 

where both ~' and 11' take value from -1 to +]. Accordingly 

(5.1) 
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(5.2) 

Thus, the integrals over infinite elements become: 

-+1 +1+1 

J J f (P, Q)d~d11 = f f f (P, Q)J (~', l1')d~' dll' (5.3) 
-1-1 -1-1 

where the Jacobian of the transformation is given by 

(5.4) 

5.2.2 Displacement decay functions 

In general, for the analysis of linear half-space problems, boundary elements need to be 

specified on the surface of the semi-infinite domain. However, the displacement behaviour 

over this unbounded surface, in the far-field, can be modeled through decay functions as: 

uj (~, 11) = DU j (~,-I) = L MaDuf (5.5) 
a 

in which, M(l=N(l(~,-I) with N(l(~,11) being the usual interpolation function (the radial 

direction is assumed to be along 11) and a taking values of 1, 2 and 5, u~ are the values of 

the displacements at node a, and two decay functions are used, namely: 

, 
D= ro , 

r 

D = el-r'/r~ 

(5,6) 

(5.7) 

where r~ is the distance from the point y (on the line 11=-1) to an arbitrary reference point 

c, while r' is the distance to the corresponding field point Q (with the same value of ~ as 

shown in Fig.5.2). Points y, Q and c are co-planar. In general, the reference point c will be 

located at the centre of the loaded area. The effectiveness of these two different decay 

functions is demonstrated by some numerical examples, in the sequel. 
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5.3 Infinite Boundary Element Formulations 

In the infinite boundary element approach, only the near-field needs to be discretized into 

elements and the outer elements bounding the near-field are served by the infinite elements. 

5.3.1 Discretisation of the Boundary Integral Equations 

Involving the Infinite Boundary 

With the aid of equation (5.5) and taking into account the traction-free and zero 

displacement conditions on the infinite surface, the discretised boundary element 

formulation of (2.19) for an infinite surface (see Fig.5.1) can be written as: 

8 8 8 

cijU j = LLtr JUjjNadr+ LLtr JUjjNadr- LLur JTijNadr 
M' a=1 ~SF M· a=1 ~F M' a=1 ~SF 

-L Iu)' JTuN".dr- Luj" JTijN".dr-Ltu] JTuM"Ddr (5.8) 
M· a:=1 e ~SF M· ~SF M' a=1 ~I a;/:a 

:\ -4 ?uj' JTijMa,Ddf-4uf JTijMaeDdf 
M a =1 e ~Sl M ~SI a';/:a 

in which, ~SF and ~Sl refer to finite and infinite element regions, M refers to elements 

and ex refers to nodes. The prime and the asterisk superscripts refer to non-singular and 

singular quantities, respectively. It should be noted that for the infinite elements, only the 

nodes in contact with the finite domain elements are assembled into the system of 

equations. 
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5.3.2 Rigid Body Motion Considerations 

The two strongly singular integrals, JTijNa.dr and JTijMa.Ddr, and the jump term cij 
.iSp .is. 

can be determined by indirect means by noting that, for a body undergoing rigid body 

motion, all of the boundary tractions are zero. However, the method can not be directly 

applied using equation (5.8) since it contains the decay function D which is incompatible 

with the rigid body motion constraint. However, the rigid body motion condition can be 

applied, as usual, to (2.19) from which it follows, for the L-th stratum, that: 

Cjj + L fTijNa·dr+ L fTijMa·dr=-LL JTijNa,dr-L JTijdr 
M· .iSp M' .is. M' a' .iSp M' .iSp 

(5.9) 

-L JTijdr-LL fTijMa,dr- fTijdr 
M' .is. M' a' .is. s~ 

The last integral (the azimuthal integral) on the right hand side of the above equation can 

be easily evaluated by making use of spherical polar co-ordinates, which yields: 

L J I-.!.o" for the half space I .. = T.dr= 2·J 
1J IJ 

s~ 0 for other layers 

(5.10) 

The penultimate integral in (5.9) can be evaluated analytically by the method described in 

the sequel. Meanwhile, substituting (5.9) into (5.8) leads to the regularized form: 

8 8 

{-I~ -Jij - LL JTijNadr-LL JTijNa,dr+ L JTijMa·(D-l)df}u j 

M' a=) .iSp M' a' .iSp M' .is. 

8 R 8 

= 4Lt~ JGijNadr+ 4Lt~ fGijNadr- 4LUf fTijNadr 
M a=1 .iSp M a=l ASp M a=l ASp 

(5.11) 

8 ~ -44U~' fTijNa,dr- LLU~ fTijMaDdr- 4~u~' fTjjMa,Ddr 
M a ASp M a=1 .is. M a .is. 

where 

Jij = fTjjdS (5.12) 
S. 
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which arises from the observation that the sum of all shape functions over an element is 

unity and that the union of all infinite elements constitutes the entire infinite surface. 

Evidently, all the integrals involved in (5.11) can be computed by means of the standard 

Gaussian quadrature except for the strongly singular integrals Jij which must be treated 

separatel y . 

5.4 Analytical Integration over Infinite Elements 

The integrals in (5.12) cannot be evaluated numerically by direct means. If the integrals are 

carried out element-by-element, the sub-integrals are unbounded. Here, this difficulty has 

been solved analytically by exploiting the anti-symmetry of the traction kernel over the 

infinite free surface. 

5.4.1 Infinite Boundary Integrals in Polar coordinate system 

The integral region, Le. S., is shown schematically in Fig.5.3 by the area bounded by the 

finite region boundary r F and the infinite boundary r _. 

r 
~~------~--~X 

Fig. 5.3 The integral region in the far-field. 

We consider a local polar coordinate system (r, 8) with the origin at point P' in the plane 

of the half-space surface. p' has the same co-ordinates Xl and X2 as the source point p, 

which may be inside the body. x3 is assumed to be in the direction normal to the surface 
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(Fig.5.3). Noting that n1 = n 2 = 0 and n3 = 1 , the components of the traction fundamental 

solutions (2.14) can be expressed in the fonn J f(8) !~ , where f(8) is a function of 8 only, 
s 

and R is the distance between source and field points (see Appendix A). Thus, 

Jf (8) dl = 192 
f (a)(J.R

- rdr ya 
R o 9 R R O 

s • F 

-192 
f (e) 1 (1 l}e 

- 9. (2 - n) ~R:-2 ~R~-2 

(5.13) 

for n::;t2, and: 

(5.14) 

for n=2. 

In (5.13) and (5.14), Rp and R_ denote the distances from the source point to the points 

located on the boundary rp and the infinite boundary 1_, respectively. 

5.4.2 Analytical Expressions for Infinite Elements 

From (A l-A4) in Appendix A, we observe that only the integrals of Tll , T22 , T33 and Tl2 

over rp remain, since the integrals over r_ tend to zero as R_ tends to infinity. The 

integrals of T13 , T31 , T23 and Tn can be easily shown to be zero since sine and cose are 

periodic functions and r_ is a closed circle. 

Consequently, the integrals over the far-field region SI reduce to line integrals along 

the boundary IF' To perform these integrations, we discretise the boundary rp into a set of 

line elements, each formed by two adjacent nodes located on rp. Fig.5.4 shows a typical 

element. 
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y 

1 

·~~--~------------~x 

Fig.5A Typical line element for nodes 1 and 2. 

Thus, (5.12) becomes: 

J jj = L f TjjdS (5.15) 
M ~rF 

These integrals are evaluated analytically (Appendix B). These results can be readily 

implemented within a computer code. All that is required is to define the line elements by 

identifying each pair of adjacent nodes in the contour bounded by the finite boundary 

elements and infinite elements, ensuring that all of the line elements have the node 

sequence shown in Fig.5A. 

The co-ordinates of the point H in Fig.5A and the distance D from p' to the line 

element ~rF are required and can be determined from: 

where 

Xh =xl+k(X2_Xl) 

yh = yl + k(y2 _ yl) 
(5.16) 

(5.17) 
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5.4.3 Elimination of Singularities 

The terms including sinS or cosS in equations (B5)-(B8) of Appendix B are zero after the 

assembly of all the infinite elements, since the boundary r F forms a closed contour. 

When the source point and the field point are at the same elevation, only the integrals (B9)

(B 12) are non-zero. Further, if the source point is a node of the element under 

consideration, all the integrals become zero since ~I = <1>2 in this particular case. Therefore, 

all the singularities can be explicitly eliminated. 

5.5 Application to Pier Foundations 

The infinite element approach has been incorporated into the multi-region computer code 

(ESMI-3D) and used to analyze various 3D soil-structure interaction problems. All these 

examples are solved using single precision arithmetic and quadratic quadrilateral 

parametric elements. 

5.5.1 Surface Loads 

In the first example, we calculate vertical displacements u on the surface of an elastic half

space (defined by its shear modulus G and Poisson's ratio v) due to uniformly distributed 

vertical pressure p acting on a square foundation. Analytical solutions for points beneath 

the foundation (dimension=2b) have been given by Poulos and Davis (1974). The 

foundation was discretised using 2x2 finite boundary elements. 

Comparisoll of Two Displacement Decay Functions: 

To examine the effect of the near-field size with different decay functions, firstly, the 

vertical displacement u at the foundation centre was computed using two decay functions 

«5.6) and (5.7)) for various ratios of (RIb), where R is the distance from the edge of the 

loaded area to the inner boundary of the infinite elements (Fig.5.5). In these calculations, 

the Poisson ratio (v) was assumed to be 0.2. From symmetry, the geometrical problem can 
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be reduced to half its original size. Fig.5.5 shows the discretisation employed and Table 5.1 

gives the results. 

........ 

Infinite element 

~ 

Vertical load area 

Fig.5.5 Foundation on half-space subjected to vertical load 

Table 5.1 Dimen ional di placement (Guv/pb) beneath centr of qu re foundation 

(v=0.2) (Analytical olution i 0.898) 

r-n........RIb 0 I 3 5 7 9 12 18 

rolr 0.902 0.899 0.899 0.899 0.899 0.899 0.899 0.900 

e I - r/ro 0.888 0.889 0.894 0.896 0.897 0.898 0.898 0.899 

It can be seen that the fir t decay function (ro/r) converge very quickly (a expected from 

theoretical considerations), and j therefore uperior to the alternative. 

Displacements Beneath the Foundation: 

Displacements beneath a corner, center of a side, and center of the quare foundation are 

computed for various Poisson ratios in thi ex mple. R ult are pre ented in Table 5.2 -

5.4 (in which the relative error refer to the difference between the infinite 1 m nt re ult 

and the nalytical olution) for five ca e : 

a) Finite region (A); only the foundation i discretised. (4 element, e ig.5.6 
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b) Finite region (B); the foundation and a ring of finite-size boundary elements around the 

foundation are discretised. Eight ring elements were used, with radial dimension b 

(Fig.5.7). 

c) Extended region (C); many elements (84 elements) were used and the far-field region 

extends to 900b along radial direction. The exterior boundary is free. 

d) Infinite element; the near-field of the region is discretised as in (b) above. The far-field 

is discretised into 8 infinite elements with radial dimension b. There are a total of 20 

elements (Fig.5.8). 

V 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

v 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

Table 5.2 Dimensionless displacement (Gu/pb) beneath 

comer of square foundation 

Finite Finite Extended Infinite Analytic 
region region (C) element solution 

(A) (B) 

0.4351 0.4846 0.5652 0.5606 0.5611 

0.4159 0.4521 0.5079 0.5047 0.5050 

0.3929 0.4163 0.4508 0.4488 0.4489 

0.3645 0.3767 0.3937 0.3928 0.3928 

0.3285 0.3321 0.3369 0.3367 0.3367 

0.2806 0.2806 0.2806 0.2806 0.2806 

Table 5.3 Dimensionless displacement (Gu/pb) beneath 

center of a side of square foundation 

Finite Finite Extended Infinite Analytic 
region region (C) element solution 

(A) (B) 

0.6000 0.6622 0.7654 0.7657 0.7660 

0.5724 0.6178 0.6891 0.6891 0.6894 

0.5395 0.5689 0.6127 0.6126 0.6128 

0.4993 0.5145 0.5362 0.5361 0.5362 

0.4489 0.4534 0.4595 0.4595 0.4596 

0.3829 0.3829 0.3829 0.3829 0.3830 

Relative 
error 
(%) 

0.089 

0.059 

0.022 

0.0 

0.0 

0.0 

Relative 
error (%) 

0.04 

0.04 

0.033 

0.02 

0.022 

0.026 
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Table 5.4 Dimensionless displacement (Gu/pb) beneath the 

center of the square foundation 

Finite Finite Extended Infinite Analytical 
region (A) region (C) element solution 

(B) 

0.8805 0.9587 1.1280 1.1253 1.1222 

0.8397 0.8970 1.0143 1.0121 1.0100 

0.7911 0.8284 0.9006 0.8990 0.8978 

0.7319 0.7513 0.7871 0.7862 0.7855 

0.6578 0.6636 0.6738 0.6735 0.6733 

0.5611 0.5611 0.5611 0.5611 0.5611 

R 5 

10 5 

2 4 2 2 
4 

7 3 3 2 

9 6 

1 2 
2 11 

~ 

Relative 
error (%) 

0.28 

0.21 

0.13 

0.09 

0.03 

0.0 

B 

9 

Fig.5.6 Finite region (A) mesh Fig.5.7 Finite region (B) mesh 
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Fig.5.S Infinite element mesh 

From the comparisons between the infinite element results and analytical solutions in 

Tables 5.1-5.3, we can observe that the infinite boundary element method yields essentially 

exact results. Of course, one can obtain very good results too with an extended mesh, but at 

the cost of solving for many degrees of freedom. If one simply uses a local mesh (A or B), 

then the results are quite poor. 

Independence of Near-Field Size: 

To examine the convergence of the algorithm, we increased the size of the near-field region 

and, accordingly, the number of elements in this region, while holding the number (S) of 

infinite elements constant. The uniformly distributed load acts on the central four elements 

in each case. Figs.5.9-5.13 show the meshes for five cases and Tables 5.5 and 5.6 show the 

results for Poisson's ratio v=O and v=O.2. 
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Fig.5.9 Mesh of 12 elements (case 1) Fig.S.IO Mesh of20 elements (case 2) 

Fig.5.ll Mesh of 28 elements (case 3) Fig.5.12 Mesh of 36 elements (case 4) 
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I~ / 
I~ / 
~ / 
~ / 

V ~ 
/ ~ 

L ~ 
V ~ 

Fig.5.l3 Mesh of 44 elements (case 5) 

Table 5.5 Dimensionless displacements (Gu/pb) for v=O 

corner center of center of 
side square 

case 1 0.4747 0.7449 1.1356 
case 2 0.5606 0.7657 1.1253 
case 3 0.5620 0.7617 1.1240 
case 4 0.5615 0.7613 1.1238 
case 5 0.5617 0.7615 1.1240 

Analytical solution 0.5611 0.7660 1.1222 

Table 5.6 Dimensionless displacements (Gu/pb) for v=O.2 

corner center of side center of square 
case 1 0.4111 0.6054 0.9041 
case 2 0.4488 0.6126 0.8990 
case 3 0.4491 0.6108 0.8987 
case 4 0.4490 0.6108 0.8987 
case 5 0.4491 0.6109 0.8988 

Analytical 0.4489 0.6128 0.8978 
solution 
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From Tables 5.5 and 5.6, we observe that the results converge very rapidly. Only if the 

infinite elements are located immediately adjacent to the loaded area, are the results 

significantly different from the analytical solution. 

5.5.2 Rigid Piers Subjected to Lateral Loads 

A more challenging example is presented here to demonstrate the practical application of 

this algorithm. This relates to a rigid square-section pier (Fig.5.14), of length L and width 

D. The relationship between pier head deflections (& rotations) and the applied loads (& 

moments) is of particular interest. The numerical results obtained here are compared with 

the analytical results for (hollow) tubular and flat (vertical plate) pier foundations obtained 

by Abedzadeh and Pak (1995) and Douglas and Davis (1964). 

~~~H " 'r 
L 

.&..:.-r. ". : •• " • ..l. 
(a) 

:0: . . 
(b) 

Fig.S.l4 (a) Pier SUbjected to lateral loads; (b) BEM mesh of medium 

The relationship between the loads and the deformations for the pier head can be expressed 

as: 

(5.18) 

where Hand M is the horizontal force and applied moment; u and 8 is the lateral 

displacement and rotation; and KHU ' KMU ' KH9 and K M9 are the stiffness coefficients. From 

the reciprocal work theorem, KH8 should be equal to K
MU

' 
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The stiffness coefficients in (S.18) are calculated by prescribing unit translation and 

rotation and then integrating the tractions along the pier surface to obtain the resultant 

horizontal force H and moment M. Fig.S.14(b) shows the boundary element mesh: typically 

this consists of lOS finite domain elements and 12 infinite elements. Figs.S.1S-S.17 are 

plots of the stiffness coefficients (normalised with respect to Young's modulus, E) for 

various values of Poisson's ratio. For comparison, the results by Abedzadeh and Pak 

(199S) and Douglas and Davis (1964) are also plotted for the case of v=O.S. 

K HU I (ED) 

14 

12 

-" /""1 ~ ~ -+- V =0.0 

10 • 
~ ~ ~ 8 --' 

........-~ ~ 9' 
6 

~d ~ ~ 4 
.J~ ~ 
~ :.x 2 y 

0 
0 1 2 3 4 5 6 7 8 9 

un 

(a) 

K Hu I (ED) 

0+--+--4-~--~--~-+--+--+--4-~ 

o 2 3 4 5 6 7 8 9 10 

un 

(b) 

__ v =0.5 

-..-V =0.5 
(Ref. 8) 

-M-V =0.5 
(Ref. 9) 

10 

-+- V=O.2 

__ V=O.4 

-..- V =0.2 
(Ref.24 ) 

~V=O.4 
(Ref.24) 

Fig.S.IS Effect of Slenderness Ratio (UD) on the Stiffness Coefficient KHU 

(a) v=O and v=O.S; (b) v=O.2 and v=O.4 
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-+- V=0.2 

__ V=0.4 
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-++- V=D.4 
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Fig.5.16 Effect of Slenderness Ratio (LID) on the Stiffness Coefficient KMU 

(a) v=o and v=O.5; (b) v=O.2 and v=OA 
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Fig.5.17 Effect of Slenderness Ratio (LID) on the Stiffness Coefficient KM8 

(a) v=O and v=O.5; (b) v=O.2 and v=OA 

The numerical results appear to be in excellent agreement with the analytical results, since 

the discrepancies may well be attributable to the shape effect. In particular, as might be 

expected, the stiffness coefficients for the flat (plate) pier are smaller than those obtained for 

the cylindrical pier which are in tum smaller than those of the square-section pier. The 

differences are greatest for the rotational stiffness terms, particularly for "short" piers 
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(UD<3), where the contributions of the base tractions for the square-section pier to the KM8 

term becomes dominant. The off-diagonal coefficients KMU and KHO were calculated 

independently, but their values differed by no more than 5%. The discrepancy is least for 

piers with higher slenderness ratios. The symmetry of these results indirectly demonstrates 

the validity of the calculation. 

5.5.3 Flexible Piers in Half-Space 

In this example, a square-section pier (Fig.5.18) embedded in a semi-infinite continuum 

was analysed to demonstrate the applicability of the infinite element approach in multi

region corner problems. 

infinite elements 

/~ 

60 

........... 1.... 

Fig.5.18 Discretisation for a square-section pier in soil 

Each surface of the pier was discretised using 2x2 quadratic elements. As for the 

surrounding medium, in addition to the 10 interface elements, the ground surface was 

approximated by 24 elements, including 8 infinite elements. The corners at the base of the 

pier are the corner nodes of three surfaces (elements). The corner IV (for example) is 

associated with three independent nodes (node 3 on base surface and nodes 1 and 2 on the 

side surfaces). Other nodes along the sides of the pier are defined by two independent 

nodes. Two different cases are considered here in order to validate the algorithm. 
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Case 1: 

The vertical displacements Uz of the pier head due to uniformly distributed vertical 

pressure pz=1 acting on the pier head (of dimension 2bx2b) are tabulated below (G is the 

shear modulus of the soil). In this calculation, Young's modulus E and Poisson's ratio v 

were assumed to be the same for both the pier and the surrounding medium, i.e., Ep=Es= 1; 

vp=vs=O. Because this is actually a half-space surface problem, the numerical results can be 

compared with analytical solutions. Table 5.7 shows that the computed vertical 

displacements are in excellent agreement, despite the coarse mesh employed. 

Table 5.7 Displacement (Gu/pzb) of the pier head due to vertical load 

point I II m 
(corner) (centre of side) (centre) 

computed result 0.5667 0.7673 1.1295 
analytical solution 0.5611 0.766 1.1222 

Case 2: 

In this case, a uniformly distributed lateral load (Px= 1) was assumed to act on the pier 

head. The material parameters for the two zones were as follows; Ep=2; Es=l; vp=vs=0.3. 

Tables 5.8 and 5.9 show the computed displacements and tractions for some selected points 

on the pier. 

T bl 58 C a e t d d' I f . d ompu e ISP acements 0 pIer ue to atera 11 d oa 
point I m V 

(top comer) (top centre) (centre of base) 

ux 11.9965 18.2807 2.8345 

Uy 1.0511 2.694E-6 2.997E-6 

Uz -2.1460 4.954E-6 2.026E-5 

T bl 59 T b a e ractlons at ase corner pomt IV 

node 1 2 3 
tx 1.1212 0.8079 -2.5080 

ty -0.8079 1.7397 -1.9817 

tz 2.5080 -1.9817 -0.0881 
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5.5.4 Flexible Piers in Multi· Layered Media 

To verify the validity of the program written employing the multi-region BEM algorithm 

described in Chapter 4 and the infinite boundary element technique presented in this 

Chapter, one more numerical example is given here. A square-section rod (pier) embedded 

in a three-dimensional two-layered medium, and subjected to uniformly distributed vertical 

and lateral loads, Pv and PH at the urface, a well a a moment, M, i depicted (in cros -

section) in Fig.S.19. In this problem, the layer 2 extend to infinity both laterc: lly nd 

vertically. From symmetry, half of the problem i di cretised into element. The 

discretisation of the infinite urfaces is exactly the same a hown in ig.S.S. Four element 

were u ed along the rod length ( ee Fig.S.20(a)). 

Pv 

Fig.5.19 A rod (pier) embedded in a two-I yer d medium 

Case 1: To demonstrate the corr ct implementation of the program for thi problem w 

a ume that PH=M=O, Pv= 1, nd the Young' modulu E and Poi on' r tio v r taken 

the arne values for each ub-region, i.e., Ep=EJ=E2=1, vp=vJ=v2=0.2. Thi r duce th 

problem to that of the fir t ca e in ection 5.5.1. The calculated re ult i GuvlPvb=0.8905 

nd compares well with the analytical olution (0.8978). 

Ca e 2: This ca e i intended to imulate a practical ituati n by a uming: p= 10000, 

E\=500, 2=2000; Vp=O.3, v\=0.2, v2=0.25; Pv=O, PH=200, M=33300. ig.5.20 h w th 

hori zont ] di placements along the right side urface of the pier, and the corr sponding 

traction. 
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(Base) Along pier len gth (Head) 

(a) (b) 

Fig.5.20 (a) Deformed Mesh; (b) horizontal displacement and traction along pier 

5.6 Summary 

In this chapter, an infinite boundary element technique is used to model the layered half

space, and employs a decay function representation of the far-field displacements at the 

free surface and the layer interfaces. The integrals over the far-field are evaluated 

analytically, resulting in an algorithm which permits rapid computation of the system of 

equations. Some non-trivial numerical examples are presented to illustrate the application 

of the algorithm to some typical problems, i.e. pier foundations, in geomechanics. The 

infinite boundary element approach enjoys the following advantages for half-space 

problems. 

• There is no truncation in the physical domain so that the far-field contribution to the 

calculations is handled correctly, leading to a highly accurate solution. 

• Only the actual surfaces needs to be discretized into elements (instead of all the surfaces 

of artificially truncated 3D closed bodies), greatly reducing the system size. 

• Using the novel analytical formulation described here, no numerical integrations over 

the entire region is needed, resulting in significant saving in the calculation time, and 

resulting in improved accuracy. 
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• Since the technique is computationally efficient, it can be used to attack more 

complicated problems than has been possible hitherto. 
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Chapter 6 

Rate-Independent Plasticity Theory 

6.1 Introduction 

In the classical (flow) theory of plasticity, the general elastoplastic constitutive relations are 

based on Drucker's postulate (e.g., Owen and Hinton, 1980; Chen and Han, 1988; Crisfield, 

1997). The origin of this postulate (Drucker, 1959) is based on net work dissipation over a 

closed stress cycle in stress space and this leads to the result that the plastic strain rate is 

directed along the normal to the loading surface in stress space. However, Drucker's 

postulate is only suitable for stable materials under stress control-with perfect plasticity 

as a limiting case (Naghdi and Trapp, 1975a; Lubliner, 1990). For some geotechnical 

materials, which exhibit unstable behaviour during deformation, Drucker's postulate is not 

valid. However, no such limitation applies to theories using strain as an independent 

variable. Surprisingly, such theories were not proposed until the 1960s, beginning with the 

pioneering work of Il'iushin (1961), followed by papers by Pipkin and Rivlin (1965), Owen 

(1968) and Nguyen and Bui (1974). The theory of plasticity in strain space, which is 

suitable for both stable and unstable behaviour, was extended to finite elastoplastic 

deformation by Naghdi and Trapp (l975a,b) from a physically plausible assumption 

concerning the non-negativeness of the work done by external forces acting on the body in 

a closed cycle of spatially homogeneous deformation. It worth noting that, based on this 

assumption, they derived an important inequality for restrictions on elastoplastic 

constitutive relationships from a special deformation cycle path. 

In this chapter, we seek to establish general constitutive relations, for a wide range of 

yield functions, which can be easily implemented in numerical codes. Firstly, the 

elastoplastic flow rule and loading rule are derived in strain space from Il'iushin's 

88 



Chapter 6 Rate-Independent Plasticity Theory 

postulate, following the basic ideas of Naghdi and Trapp (1975b) but develop the 

formulation for a prescribed (general ) closed cyclic strain path. This development is also 

based on the author's previous published work (Gao et aI., 1990; Gao and Zhong, 1992) 

but we include here more of the underlying mathematical manipulations. Based on these 

rules, a new set of unified constitutive equations for hardening, softening and perfect 

plasticity is obtained, which is suitable for a quite wide range of yield functions. This 

formulation demonstrates that Drucker's normality flow rule does not hold true universally. 

An expression for the angle of departure between the plastic strain-rate vector and the 

normal direction to the loading surface in stress space is given, and the normality flow 

conditions (for zero departure angle) are also derived. In the later part of this Chapter 

(section 6.6), we further develop the numerical implementation aspects, making use of the 

work by Simo & Taylor (1985) and Ortiz & Simo (1986) as well as the author's previously 

published work (Gao and Zhong, 1992), in order to arrive at a practical algorithm. The 

novel aspects of the present work and, also, notes on the provenance of some of the 

principal results are indicated, where appropriate. 

With respect to the notation employed in this Chapter, the following symbolic 

operations are implied: AB=AikBkj, A:B= AikBkit A®B= AijBkl and (Dijkl)t =Dklij , with 

proper extension to different order tensors. 

6.2 Strain Space Flow Rule and Loading Rule 

In general, the total stress-strain relationships may be written in the general form: 

a = a(£,£P, h a
) (6.1) 

in which, the a denotes the Cauchy stress for infinitesimal deformation problems or the 

symmetric Piola-Kirchhoff stress for finite deformation problems (Naghdi and Trapp, 

1975; Naghdi, 1990). Equation (6.1) implies that the total stress is a function of total strain 

E, plastic strain eP and some internal variables ha, a.= 1,2, ... , which measure the irreversible 

deformation history. For example, in damage mechanics, the internal variables may be the 

damage variables, e.g., the void ratio, (Lemaitre, 1992; Gao and Zhong, 1992; Mazars and 

Cabot, 1996). For linear elasticity, we can interpret the generalised Hooke's law (2.3) as a 

particular form of (6.1). The phenomenon in which elastic parameters (generally the 

Young's modulus) in (6.1) vary with plastic deformation is termed an 'elastic-plastic 
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coupling effect' (Sinha, 1964; Dafalias, 1977; Maier and Hueckel, 1979; Chen, 1994; 

Zhong and Gao, 1990). 

It is assumed that the expression (6.1) is invertible for fixed eP and ha in the form: 

(6.2) 

Furthermore, we assume that the total stress tensor a is derivable from a potential, such 

that the partial derivative of a with respect to e is symmetric, i.e. 

(6.3) 

where 

(6.4) 

We now assume that there is a loading function (yield surface) g(e,eP,ha)=O, in strain space 

which is equivalent to the loading function f(cr,eP,hu)=O in stress space such that: 

(6.5) 

The yield surfaces define the boundary of the elastic region. If a strain (or stress) lies inside 

the surface, we call it an elastic state and only elastic behaviour occurs. On the other hand, 

the state of strain (or stress) on the yield surface is termed a plastic state, and there elastic

plastic behaviour occurs. 

6.2.1 Work Inequality 

The Il'iushin postulate states that the work done in a closed strain cycle is non-negative, 

i.e., 

cr .. de .. = cr .. e.·dt ~ 0 ~ 112. 

1J 1J II 1J IJ 
(6.6) 

in which, tl and t2 represent the beginning and ending times of the strain cycle and the 

superposed dot denotes the derivative with respect to time. 

The inequality (6.6) was also derived by Naghdi and Trapp (1975b) for finite 

elastoplastic deformation and they state that it is valid for any smooth closed 

homogeneous deformation cycle. Thus, most relations derived in this chapter are also 

suitable for finite elastoplastic deformation. 

90 



Chapter 6 Rate-Independent Plasticity Theory 

Now let eO be any strain inside the loading surface and consider a strain cycle 

beginning and ending at £0. For this cycle, noting that £(tl)= £(t2)=£0, (6.6) can be written 

(through integration by parts) as: 

(6.7) 

From (6.7), an important inequality which places constraints on admissible elastoplastic 

constitutive relationships is derived by Naghdi and Trapp (1975) from consideration of a 

special strain cycle path. In the following, a more general cycle path is used to deduce a 

more general inequality. 

A typical stress-strain curve for uniaxial tests is shown in Fig.6.1: 

~----------~-------------------+E 

Fig.6.1 Typical stress-strain curve for uniaxial tests 

We consider a strain cycle in which the deformation takes place elastically from tl to a 

yield point ty, then continues elastoplastically to tz, and finally unloads elastically to point t2 

i.e., 
(6.8) 

During this strain cycle, plastic deformation occurs only in the stage ty ~ t z and elastic 

unloading does not (of course) produce irreversible deformation. Incidentally, for non

linear elastic materials, the elastic deformation paths, tl~ty and tz~t2 are not straight 

lines. Now, since ty and tz are the turning points between elastic and plastic deformations, 

we denote ty_ and ty+ as the left limit and right limit of the point ty, respectively, and 

similarly tz- and tz+. Evidently, ty+ and tz- are on the loading surface. Differentiating (6.1) 

with respect to time, leads to: 
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where 

(J = (D - De) : E + De : E + G 

O· - ad' .. p ad' h' a --.e +-aeP aha 

De = ao (t ) ae y-

(6.9) 

(6.10) 

(6.11) 

Since ty_ is located in the elastic region, the fourth order tensor De is called the 'elastic 

constitutive tensor'. In linear elastic infinitesimal deformation, it has the form of (2.4), 

Substituting (6.9) into (6.7), we have (Gao et aI., 1990): 

rt2 
(£-£0): (D- De): Edt + rt2 

(£-£0): De: Edt +£2 (£-£0) :Gdt ~ 0 (6.12) 
Jtl Jtl tl 

The second integral in (6.12) can be readily integrated to be zero, since £(tl)= £(t2)=£0. The 

last integral can be written in the following form, since only in the interval ty+~tz_ does the 

plastic strain £P and the internal variables ha alter. 

(6.13) 

Expanding (6.13), using Taylor's series about point ty+, yields: 

12 0' 0' • .. (~t)2 
(£-£ ) :Gdt = (e-e ) :G~t+[E:G +(£-£0) :G]--+O(~t)3 

tl 2 
(6.14) 

in which, L\t = tz- - ty+ = tz - ty, and O(L\t )3 represents the infinitesimal terms of third and 

higher orders of dt as dt~O. 

Similarly, the Taylor's series expansion of the first integral in (6.12) about ty+, leads to 

(see Appendix C): 

rt2 
(£ _ £0): (D _ De): Edt = (£ - £0) :[(D - De): E +.!. R : (£ _ £O)]~t 

J'I 2 

+ {E: (D - De): E + (£ _£0): [(D- De): £ + R: t]}(L\t)2 +O(L\t)3 
2 

Substituting (6.15) and (6.14) into (6.12), it follows that: 

(£-£0): {G +(D- De): t+ ~ R: (£-£O)}~t + 

{ . ° .. . }(dt)2 E :[G+(D-ne) :t]+(£-£ ) :[G +(D- De) :e+R :t] --
2 

+O(L\t)3 ~ 0 

(6.15) 

(6.16) 
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Inequality (6.16) is an approximate expression of work inequality (6.7), which plays an 

important role in the establishment of the constitutive relations in this chapter. 

6.2.2 Flow Rule and Loading Rule 

We now divide (6.16) by ilt, and then let ilt~O, to deduce: 

(£-£0): [G + (D- De): £]+1.(£_£0): R: (£-£O)~ 0 
2 

(6.17) 

We observe that the first and second terms on the left-hand side of (6.17) are linear and 

quadratic in (£-£0), respectively. Since (6.17) must hold true for any eO, we replace (e-eo) by 

pee-eo), with p being an arbitrary positive scalar; and then after dividing by p, and then 

letting p~O, we obtain: 

(£ - EO) : [G + (D - De): t] ~ 0 (6.18) 

We now return to inequality (6.16). Again, we replace (e-eo) by pee-eo) and let p~O. Then, 

after dividing by ilt and letting ~t~O, we finally obtain: 

t: [G +(D- De) :t] ~ 0 

With the help of (6.9) and (6.10), inequalities (6.18) and (6.19) can be written as: 

(e - eO): (0 - De : e) ~ 0 

t:(o-De:t)~O 

(6.19) 

(6.20) 

(6.21) 

We note that EO is any strain inside the loading surface g(£,£P,htt)=O and that a- De : t is 

independent of e-£o and varies on the loading surface. Therefore, from (6.20) we can 

conclude that cr- De : E (regarded as a vector in six-dimensional strain space) must be 

directed along the normal to the loading surface g=O, i.e., 

. De .. _ 'i ag 
(J- .e-- JI.. aE ' 

which can be expressed in an incremental form as: 

dO'jj - D~kldEkJ = -dA aag 
, dA ~ 0 

Eij 

(6.22) 

(6.23) 

where dA is a non-negative scaling factor called the plastic multiplier. Substituting (6.22) 

into (6.21), leads to: 
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ag d >0 -a ckl
ckI 

(6.24) 

Inequality (6.24) must hold when plastic strain occurs. Therefore, we call it the plastic 

loading rule. Inequality (6.23), which reflects the relationship between the stress increment, 

strain increments and the loading function, is called the plastic flow rule. From the 

derivation of (6.23) and (6.24), it can be seen that they are not limited to pure elastoplastic 

problems. Equations (6.1) and (6.5) might include other variables generated in irreversible 

process in addition to the plastic strain tensor, such as damage tensors, fabric tensors, 

crack density tensors, etc. However, we shall not discuss these cases here. 

It is noted that equation (6.23) was initially obtained by Gao et al. in 1990, based on 

linear stress-strain response. 

6.3 Constitutive Relations 

Equations (6.23) and (6.24) are quite general relations suitable for any rate-independent 

plasticity deformation. In the following, we assume that the derivatives of stresses with 

respect to strains are continuous during deformation from elastic state to elastoplastic state, 

so that: 

(6.25) 

Thus, from (6.23), it follows that: 

dO.. dO.. dg 
_IJ dcP + __ IJ dh a =-dA-
dc~ kl d ha dE jj 

(6.26) 

This equation was obtained by Naghdi and Trapp (1975b) who derived it for a special 

strain cycle. Although it is based on the continuous assumption, it holds for a wide range of 

materials. Therefore, in the following, we use (6.26) to develop a new and general 

elastoplastic constitutive relationship, based on the author's previous published work (Gao 

et aI., 1990; Gao and Zhong, 1992) but we include here more of the underlying 

mathematical manipulations. 

In view of the assumption that the internal variables are only associated with plastic 

deformation, we assume that: 
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(6.27) 

where MCl may be functions of (e,eP,hCl). For example, if plastic work is taken as an internal 

variable (dhw=cr:deP), then M Cl= cr. Substituting the above equation into (6.26), leads to: 

where 

From the consistency condition, d(g(e,eP,hCl»=O, i.e., 

dg :de+ dg :deP + dg dh" =0 
de aeP aha 

and using (6.27) and (6.28), we obtain: 

where 

1 dg 
dA,=--:de 

'If de 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

Substituting (6.31) into (6.23) and taking account of unloading cases, we can express the 

constitutive equations as: 

where 

and according to the loading rule (6.24): 

1
= 0 if g(e,eP ,ha) < 0 (elastic) 

< g >= = 1 if g(e,eP ,h") = 0 and g ~ 0 (loading) 

=0 if g(e,eP,h")=O and g<O (unloading) 

(6.33) 

(6.34) 

(6.35) 

Equations (6.28)-(6.35) are expressed in terms of the strain space loading function 

g(e,eP,hCl)=O. However, almost an loading functions (yielding functions) are established in 

stress space. Therefore, we employ the relationships (Naghdi and Trapp, 1975): 
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dg _ De. df -- .-, 
de dcr 

(6.36) 

and express them in terms of the stress space loading function f(cr,eP,hcx)=O as: 

dcr=DeP:de (6.37) 

deP=dAK: ~ = g K : ~ 
dcr '" acr 

(6.38) 

where 

Dep = De _ < g > De : ~ ® ~ : DC 

'" acr acr 
(6.39) 

",=~:De :~+r 
acr dcr 

(6.40a) 

r=-(~+~Ma):K:~ 
aeP dha dcr 

(6.40b) 

K={aa + aa ®Mu r :aa 
aeP aha de 

(6.41) 

g=~:De :de 
acr 

(6.42) 

The constitutive relations (6.37)-(6.42) are quite general and can be readily implemented in 

a computer code. 

Equations (6.37)-(6.39) are, in form, analogous to the conventional equations derived 

from the Drucker normality rule (Owen and Hinton, 1980; Chen, 1994; Crisfield, 1997). 

Close inspection of (6.24), (6.34) and (6.35) shows that one of the differences between the 

conventional constitutive relations based on Drucker's postulate and the current results is 

the plastic loading rule. In the former, plastic deformation occurs when (af/acr): dO' ~ 0 . 

However, during the softening stage of the deformation, this value is negative but still 

plastic deformation occurs. This drawback is overcome in the current formulation, i.e., 
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plasticity occurs when g =(aflacr):De
: de ~ 0, because g is always non-negative during 

plastic loading. 

Further inspection of (6.38) reveals that in general the plastic strain increment is not 

directed along the normal to the yield surface f=O, due to the presence of the fourth order 

tensor K which is termed as 'elastic-plastic coupling tensor', and for small-deformations 

reduces to the results of Yin and Qu (1982), where K was derived from Il'iushin's 

postulate using a simpler deformation path than used by Naghdi and Trapp (1975) and the 

similar idea was also demonstrated by Chen and Han (1988). Only in some particular cases, 

does the normality rule hold, and K becomes the identity tensor. 

6.4 Coupling Tensor and Normality Conditions 

The following work is based on the author's previous work (Gao et al. 1990). From (6.38) 

it can be observed that the plastic strain increment vector d£P is not orthogonal to the stress 

space loading surface f=O in general. Let e be the angle of departure (coupling angle) 

between the vector deP and the normal direction to f=O (Fig.6.2). 

ar 

~-----------------+cr 

Fig.6.2 Angle between d£P and aflacr 

Then, from (6.38) we have: 

cose = (~~: K: dd~)/ (~: af )(K: ~)t : (K:~) 
OV v dada da da 

(6.43) 
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Equation (6.43) can be used to calculate the coupling angle e. Conversely, we can 

determine some material constants contained in (6.1) and (6.5) using measured values of e 
from experiments. 

From (6.43), it can be easily seen that if, and only if, the elastic-plastic coupling tensor 

K equals 1 (I being the identity tensor), then e equals zero and the normality rule holds. In 

this case, from (6.41) it follows that: 

(6.44) 

By multiplying (6.44) with dEP and using (6.27), we can write: 

dcr . d p dcr dh a acr d P -. E +- =--: E 
aeP aha ae 

(6.45) 

On the other hand, in general from (6.27) we obtain: 

acr dcr aa 
dO' = -: dE + -: deP + --dh a 

dE dEP aha 
(6.46) 

Thus, substituting (6.45) into (6.46), it follows that: 

da da 
dO' = -: d£--: d£P 

de d£ 
(6.47) 

Contrasting (6.47) with (6.46), yields: 

(6.48) 

Evidently, the general solution for (6.48) is that a is a function of e-£P alone, i.e., 

(6.49) 

Equation (6.49) is a necessary condition for normality. Obviously, as described in the 

sequel, in elastic-plastic damage mechanics the condition (6.49) can not be satisfied since 

damage variables (regarded as internal variables) influencing the Young's modulus are 

included in the stress-strain response (Dafalias, 1977; Lemaitre, 1992; Gao and Zhong, 

1992; Chen, 1994), so the normality rule is not applicable. 

It may be noted that in this particular case (6.49), expression (6.40b) reduces to the 

result by Casey and Nag~di (1981). 
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6.5 Deformation State Function 

In general, for a plastic state (f=O), deformation may be unloading (g <0), neutral (g =0), 

and loading (g >0). Besides, during loading, a material may be in hardening, softening or 

ideally (perfect) plastic states. Knowledge of these states is helpful in choosing suitable 

hardening parameters or damage models. Therefore, we need to look for a function which 

can determine these states (Casey and Naghdi, 1981; Naghdi, 1990). To achieve this 

purpose, let us examine the following quantity: 

A af af 
f =-:dcr=-:dcr·. 

acr acr jj IJ 
(6.50) 

During loading (f=O, g >0), the value of f is positive during hardening, zero for ideally 

plasticity and negative during softening. Although i could be used to discriminate between 

these three deformation states, it is related to the stress increments, which is inconvenient. 

In view of the fact that the g is always positive during loading, Casey and Naghdi (1981) 

suggested employing i I g for this purpose, Le., 

f Ig>O 

i Ig=O 

i Ig<O 

hardening 

ideal plasticity 

softening 

(6.51) 

where f and g are determined from (6.50) and (6.42). In this thesis, definition (6.51) is 

adopted to derive a general function used for these three deformation states. 

Differentiating (6.5) and noting (6.27), yields: 

(6.52) 

Using (6.36), this equation can be written as: 

(6.53) 

Now substituting (6.41) into (6.38), and the resulting expression into (6.53), leads to: 
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(6.54) 

Using (6.40a), we obtain: 

(6.55) 

in which, r is determined from (6.40b). Since in plastic loading dA~O (see (6.23» and 

(ag I ae) : de ~ 0 (see (6.24», from (6.31) it is observed that: 

'P>O 

Therefore, expression (6.51) can be replaced by: 

hardening 

ideal plasticity 

r < 0 softening 

(6.56) 

(6.57) 

From (6.40b) we know that r is independent of stress (or strain) increments, i.e. it is a 

function of stress (or strain) states. Hence, this parameter is termed the 'deformation state 

function'. Although expression (6.57) was obtained by Casey and Naghdi (1981), from 

(6.49), we can see (from (6.40b» that it has wider application. 

6.6 Numerical Implementation 

In the numerical implementation of (6.37) and (6.38), one deals with infinitesimal 

quantities through increments. Therefore, for given finite strain increments, it is not 

immediately possible to satisfy exactly the condition f=O (Le., equation (6.5». 

Consequently, robust algorithms which draw the stresses back to the yield surface must be 

developed. 

6.6.1 Stress-Return Mapping Algorithm 

In what follows, the operator splitting methodology (Ortiz and Simo, 1986; Simo and 

Govindjee, 1991) and the consistent tangent operator method (Simo and Taylor, 1985) are 

adopted to develop a stress-return algorithm based on a Newton-Raphson iteration scheme. 
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Stress Return Using Residual of Global Stress-Strain Response 

For a given strain e, after the i-th iteration in the current increment, equation (6.1) is not, in 

general, satisfied. The residual tensor of (6.1) can be written as: 

(6.58) 

In order to reduce the residuals to a specified tolerance, the values of cr and 'A need to be 

modified for the (i+ 1)-th iteration, that is: 

cri+1 = cri + cr 
'Ai+l = 'Ai +~ 

(6.59) 

where a represents a change in d and ~ represents a change in 'Ai. Taking a truncated 

Taylor's series expansion of (6.58) about position i (noting that e is given), leads to 

R i+1 - Ri aR .' aR. -i _ Ri . ad'. -i 
- + acri . cr + a'Ai . I'v - + cr - a'Ai . "" 

The flow rule (6.23) can be written, using (6.36) as: 

af 
dcr = dO' = De : de- De: acr d'A 

The above equations yield: 

Substituting (6.62) into (6.60) and letting Ri+l=O, leads to: 

. _ Ri De. af -i cr-- - .-. I'v 
ocr· 

Similarly, the residual of the loading function f(cr,eP,h
Q

), namely: 

is given by: 

f i+l _ f i af.. af .. p af h' a 
- + ocri . 0' + ae p • e + ah a 

Substituting (6.27) and (6.38) into (6.65), it follows that: 

(6.60) 

(6.61) 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 
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where r is determined using (6.40b). Using the consistency condition, letting f+l=O and 

solving the set of equations formed using (6.63) for 'A., one obtains: 

(6.67a) 

Using (6.40a), this equation can also be written as: 

(6.67b) 

By substituting (6.67) into (6.63), the stress changes can be determined. The stresses and 

the plastic multiplier are then updated, by an amount equal to the residuals from iteration i 

to the next, i+ 1, using (6.59). 

Generally, the global stress-strain response (6.1) is easily satisfied in computation. In 

this case, the residual Ri can be regarded as zero and, consequently, (6.67) reduces to the 

results by Ortiz and Sima (1986) and Crisfield (1991) as well as those of Smith and 

Griffiths (1998) for perfect plasticity, with the difference that \jI is determined here using 

the more general form (6.40). An alternative approach to this problem is presented in the 

following section. 

Stress Return Using Residual of Incremental Stress-Strain Response 

In the following, the elastic constitutive tensor De is assumed constant and the normality 

rule holds true. We use an and An to denote the stress state and plastic multiplier at the end 

of the n-th increment, and a and A the current stress state and plastic mUltiplier. 

Substituting increments: 

for differentials in (6.61), one obtains: 

where 

af 
0' = al 

- ~ADe : aa 

(6.68) 

(6.69) 

(6.70) 

In the above equations, the subscript n refers to the quantities at the end of the previous 

increment, so for a given strain increment Ae, at is constant. Equation (6.69) is not in 
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general satisfied and, therefore, the stress state may lie outside the loading surface. 

Newton-Raphson iteration method is employed to draw the stress back to the loading 

surface. The residual of (6.69) for the i-th iteration can be written as: 

.. . af 
RI = crl _crt +IlAIDe 

:_. 

acrl 
(6.71) 

Now modifying d and Ai in the next (i+ l)-th iteration, as in (6.59) and taking a truncated 

Taylor's series expansion of (6.71) about position i, leads to: 

(6.72) 

where I is the identity tensor. In the above equation, we have assumed that De is a constant 

tensor, although this is not true in some cases (e.g., in damage mechanics). Setting Ri+1=O, 

we obtain from (6.72): 

. af . 
O'=-G: RI -G: De :-A 

dcr 
(6.73) 

where 

(6.74) 

Solving the set of equations (6.73) and (6.66), we obtain: 

(6.75) 

where 
- df e af 
\}I=-. :G:D :~+r 

dOl uo l 
(6.76) 

The expressions for calculating the second order derivatives of the loading function in 

(6.74) can be found in Pearce (1996) or Crisfield (1997). Once the value of ~ is obtained, 

the value of a can be determined from (6.73) and the updated stresses and plastic 

multiplier are calculated using (6.59). An iterative process is needed, until the values of 'A. 

anda are within a given tolerance. The Flow Chart 6.1 shows Newton-Raphson iterative 

processes for the two stress-return algorithm described above. 
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Flow Chart 6.1 Stress-return iterative process for obtained a and A, 

GSR 
(Global Stress-Strain Response) 

1. Evaluate total strain 

£=£n+~e 

2. Initialise iterative variables 

i=O; a i = a; A! = A 

3. Calculate residuals 

Ri = cri - 0'(£, £P, h U)i 

fi =f(a,eP,h<X) i 

4. Check convergence 

IF IRil < TOLR AND 

fi < TOLc THEN EXIT 

5. Evaluate modification values 

6. Update variables 

cri+1 = cri +a; A!+l = A! +~ 

£P =eP +tP ; h<X= h<X+M<X: t P 

7. Perform next iteration 

i=i+l and aOTO 3 

ISR 
(Incremental Stress-Strain Response) 

1. Evaluate elastic trial stress 

2. Initialise iterative variables 

i=O; cri = cr; A! = A 

3. Calculate residuals 
., . af 

RI =crl-cr t +~AIDe :_. 
acrl 

fi =f(cr,£P,h<x)I 

4. Check convergence 

IF IRil<TOLR AND 

fi < TOLc THEN EXIT 

5. Evaluate modification values 

6. Update variables 

cri
+

1 = cri + a; A!+l = A! + ~ 

7. Perform next iteration 

i=i+ 1 and GOTO 3 

Since the algorithm based on the residual of the incremental stress-strain response 

involves the second order derivatives of loading functions with respect to stresses, rapid 

convergence is expected. However, the first algorithm has a wider application range, since 

it does not have the limitation that De is a constant tensor. 

Inspection of (6.77) and (6.67a) shows that in the case of very small increments 

(~'),} ~O), the tensor G in (6.74) degenerates to the identity tensor and (6.75) reduces to 

(6.67), 
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Consistent Tangent Operator 

The two stress-return algorithms described above are based on local iterative processes 

using the Newton-Raphson method. Simo and Taylor (1985) proposed a consistent tangent 

operator which can be incorporated into a global iteration solution algorithm based on the 

Newton-Raphson method. This operator is consistent with the stress integration strategy 

and is characterised by a quadratic rate of convergence. 

The flow rule (6.23) can be written, using (6.36), in an incremental form as: 

(6.77) 

In order to determine the stresses and plastic multiplier in the next iteration from the 

converged results at the end of the i-th iteration, we substitute the following: 

L\O' = 0' - Oi 

Ae=e-e i (6.78) 

AA = A-IJ 

into (6.77), which leads to: 

(6.79) 

Differentiating (6.79) and noticing that Oi, ei and IJ are constant, it follows that: 

(6.80) 

Rearranging the above equation, one can readily obtain: 

(6.81) 

where 
(6.82) 

here, G is determined using (6.74). Using (6.27) and (6.38), the consistency condition, 

df=O, gives: 

(6.83) 
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in which, r is determined using (6.40). Substituting (6.81) into (6.83) yields an expression 

for ~: 
. 1 ar -- . 
A=--:D:£ 

\ji ao (6.84) 

where \ji is determined using (6.76). Substituting (6.84) into (6.81), we obtain: 

(6.85) 

where 

(6.86) 

Comparing (6.85) and (6.86) with (6.37) and (6.40a), respectively, we can see that the 

consistent tangent operator of (6.86) is analogous with the continuum tangent operator of 

(6.40a). In the case of very small increments (d').} ~O), the tensor G in (6.74) degenerates 

to the identity tensor and (6.86) reduces to (6.40a). It is noted that equation (6.86) was also 

derived by Pearce (1996) and Crisfield (1997). The difference is that here \f1 is determined 

using (6.76) and the strain space derived quantity g is used (which is determined using 

(6.42»). 

In a similar manner, for the cases in which the normality rule holds true (from equation 

(6.38) with K equal to the identity tensor); we have: 

A P _ A'\ af 
Ll£ - llA- (6.87) ao 

and obtain: 

• p _ "i af A '\ a 2f .' 
£ - I\. ~ + Lll\. '.:) '.:). 0' 

aO aO®aO 
(6.88) 

Substituting (6.83) and (6.85) yields: 

(6.89) 

For the sake of subsequent use, initial stresses are defined as: 

(6.90) 

Thus, using (6.89), we obtain: 
(6.91) 

where 
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(6.92) 

and (after using (6.81)) 

(6.93) 

Using (6.93), the consistent tangent operator Det in (6.86) can also be written as: 

(6.94) 

where G is determined using (6.74). Moreover, from (6.74), we know that: 

Substituting the above equation and (6.94) into(6.92), it follows that: 

(6.95) 

Since all the above equations involve the second order derivatives of the loading function 

with respect to stresses, use of these equation leads to a quadratic rate of convergence for 

iteration solution processes based on the Newton-Raphson method. 

It is noted that formulations (6.87)-(6.95) are obtained here for the first time. 

6.6.2 Constitutive Relations for Infinitesimal 

Elastoplastic Deformation 

The formulations described in the previous sections are applicable to non-linear stress

strain responses and general loading functions in finite elastoplastic deformation. This sub

section gives concrete numerical implementation formulations for infinitesimal 

elastoplastic deformation. In this case, the strain is decomposed into elastic and plastic 

parts: 

(6.96) 

The elastic stress-strain response is governed by the generalised Hooke's law: 

(6.97) 

107 



Chapter 6 Rate-Independent Plasticity Theory 

where De is determined from (2.4). In this thesis, the equivalent plastic strain £P is taken as 

the internal variable and the following type of loading function is considered: 

(6.98) 

in which p is the back stress. Here, the modified Melan's kinematic hardening model 

(Lubliner, 1990) is adopted, which can be written as: 

dp = cd£P - bpdeP (6.99) 

where 

(6.100) 

and c and b are material constants. If they are both zero, (6.98) becomes isotropic 

hardening. Note that the coefficient c' in (6.100) is a constant which makes the equivalent 

plastic strain eP equal to the uniaxial plastic strain under uniaxial yield tests (Chen, 1994). 

For example, c' =.J2/3 for the Von Mises loading function. 

As described in section 6.4, for materials described by (6.97) and (6.98), the 

elastoplastic coupling tensor K reduces to the identity tensor and consequently the 

constitutive relations (6.37)-(6.40) become: 

where 

where 

and 

'I' = ar : De : ar + r 
acr acr 

1
-0 if f(cr,e P ,hU) < 0 (elastic) 

< g >= : I if f(O',eP ,hU) = 0 and g ~ 0 (loading) 

=0 if f(cr,eP,hU)=O and g<O (unloading) 

(6.101) 

(6.102) 

(6.1 03) 

(6.104) 

(6.105) 

(6.106) 
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A dl e 
g = dO': D : de (6.107) 

Fron:t (6.98), we have: 
df _ df. dP ----.-, 
deP 00' OeP 

(6.1 08) 

and from (6.99), it follows that: 

op =cI 
OeP , 

(6.109) 

From the definitions (6.27) and (6.100) (and using (6.102», we can write: 

dEP = M: deP = dAM: at' and dEP = c'.jdeP : deP = dAC'~ at' : ae 
dO' dcr ocr 

(6.110) 

Comparing these two equations, we obtain: 

M : af" = c' ~ ae : ae 
00' ocr ocr 

(6.111) 

Finally, substituting (6.111), (6.109) and (6.108) into (6.105) leads to: 

r - (H' b df. ) , ~ ae . ae ae ae - - -.p c -.-+c-:-
ocr dcr ocr dcr ocr 

(6.112) 

where H' = a k is the local slope of the uniaxial stress/plastic strain curve, which can be 
o"EP 

determined experimentally. Expression (6.112) is original to this thesis. 

For the Von Mises yield function as described in the sequel, it can be easily shown 

that: 

,~af . ae =1 
c ocr· ocr ' 

In this case, H' reduces to the parameter "A" of Owen and Hinton (1980) for the 

following four yield criteria. We note that these two equations do not hold true for other 

yield criteria. 

Four Commonly-Used Yield Functions 

Although (6.101 )-(6.112) can be applied to quite general loading functions (yield criteria), 

only four commonly-used yield criteria, i.e., Tresca, Von Mises, Mohr-Coulomb, and 

Drucker-Prager, are employed in this thesis. These criteria have been discussed at length 
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in the literature (e.g., Owen and Hinton, 1980; Crisfield, 1997) and can be outlined as 

follows. In the following, a rigorous derivation of the constant c' has been followed 

leading to novel (to the author's knowledge) expressions for the Mohr-Coulomb criterion. 

Table 6.1 Representation of Four Yield Critera 

Yield Criterion f k 
, 

c 

Tresca 2.jr;cos8 cry + H'eP ~ 
Von Mises ~3J; cry + H'eP ~ 

J) sin <p/3+.jr; (cose 
c cos<p+ H'eP 

.J2(l + sin <p) 

Mohr-Coulomb - sin e sin <!>/.J3) ~3+2sin<l>+3sin2 <p 

aJ)+ji'; k' + H'eP 
la+l/~I 

Drucker-Prager .J3a2 + 1/2 

in which, J) is the first invariant of the stresses, J; and J; are the second and third 

invariants of the deviatoric stresses, respectively, and e (-1t1 6 ~ e ~ 1t1 6) is the Lode 

parameter, i.e., 

8 1. -1 [ 3.[3 J~ ] 
=-Sln -

3 2 (J;)3/2 
(6.113) 

The parameters c and <p in the last two criteria are the cohesion and angle of internal 

friction, respectively. Further, the parameters a and k' in the fourth (Drucker-Prager) 

criterion are determined using the equations: 

2 sin <p 
a= , 

.j3(3-sin<!» 
k' = 6ccos <p 

.J3(3- sin <p) 
(6.114) 
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The gradient of the yield functions now can be written as: 

where 

and from (6.113) 

df = C aJ I +C a.[f; +C aJ; 
dO 1 dO 2 ao 3 acr 

Table 6.2 gives expressions for C1- C3 for the four yield criteria. 

Table 6.2 Constants defined in (6.116) (8~±1t/6) 

Yield Criterion Cl C2 C3 

.J3 sin 8 
Tresca 0 2cos 8(1 + tan 8 tan 38) ---

J' cos 39 2 

Von Mises 0 J3 0 

(6,115) 

(6.116) 

(6.117) 

Mohr-Coulomb 1 . <I> -sin cos 8[1 + tan 8 tan 38 + ..J3 sin 8 + cos8sin (j> 
3 sin <t>(tan 38 - tan 8)/.fjl 2J; cos39 

Drucker-Prager a 1 0 

From Table 6.2 it can be seen that when 8 approaches ± 1t 16, C2 and C3 become 

indeterminate for Tresca and Mohr-Coulomb criteria. For these particular cases, C2 and C3 

can be directly derived from Table 6.1 by setting 8=± 1t16, which yields the results shown 

in Table 6.3. 

Table 6.3 Constants defined in (6.116) (9= ± 1t 16 ) 

Yield Criteria Cl C2 C3 

Tresca 0 .J3 0 

Mohr-Coulomb 1 . <I> 
Jj sin 8sin <I> 0 -sin --

J3 3 2 
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In numerical implementation, when lei ~ 29° , Table 6.2 (otherwise Table 6.3) is used to 

calculate the values of Cl to C3 for the Tresca and Mohr-Coulomb criteria. Physically this 

artifice corresponds to a 'rounding off' of the yield surface comers. 

6.7 Summary 

The elastoplastic flow rule and loading rule are derived from the assumption of non

negative work in closed cycles of deformation, from which the unified constitutive 

relations for hardening, softening, and ideal plasticity behaviour are developed. These 

relations are applicable to non-linear stress-strain response in finite elastoplastic 

deformation. It is shown that the Drucker's normality conditions is a particular case of the 

results derived in this chapter. Furthermore, expressions which are independent of stress 

(or strain) rates and can be used to evaluate the deformation hardening, softening, or ideal 

plasticity is presented. FiI:tally, a complete description of small elastoplastic deformation 

under kinematic hardening is provided for four common yield criteria. 
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Chapter 7 

Boundary Element Formulation for 

Non-Linear Analysis 

7.1 Introduction 

The earliest work on non-linear boundary element analysis was done by Swedlow and 

Cruse (1971), Ricardella (1973), and Mendelson & Albers (1975). Some errors in the 

earlier formulations were corrected by Mukherjee (1977), Bui (1978) and Telles & Brebbia 

(1979). However, some inherent difficulties, such as the strongly singular domain integrals 

and the stability of the system equations, have stymied development of this method. 

The crucial task is to remove (or regularise) the strong singularities arising in the 

domain integrals. The existing methodologies can be categorised as follows: 

(1) Interpolation using nodal displacements (differentiating the shape functions): 

(Banerjee et al. 1979; Gao and Zheng, 1990a; Wearing and Dimagiba, 1998). 

(2) Analytical and semi-analytical techniques: 

(Ricardella, 1973; Mendelson and Albers, 1975; Telles and Brebbia, 1979, 1983; 

Zheng and Gao, 1986; Chandra and Saigal, 1991). 

(3) Exclusion of a small sphere (using higher order volume cells): 

(Banerjee and Davies, 1984; Banerjee and Raveendra, 1986). 

(4) Transformation of domain integrals to surface integrals: 

(Huang and Du, 1988; Zhang et al. 1992; Dallner and Kuhn, 1993; Chandra and 

Mukherjee, 1996; Chen et al., 1996; Dong and Antes, 1998). 
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(5) Regularization of singular integrals: 

(Guiggiani et al. 1992; Huber et al. 1996; 

Cisilino et al. 1998; Poon et al. 1998a; Burghardt and Van, 1998). 

(6) Indirect approaches: 

(Telles and Brebbia, 1979; Brebbia et al. 1984; Lee and Fenner, 1986; Chen and 

Ii, 1987; Henry and Banerjee, 1988; Banerjee et al. 1989). 

In category (1), the internal stresses are calculated using nodal displacements by 

differentiating the shape functions using methods employed in FEM. Due to the properties 

of the shape functions and their derivatives, this local procedure is prone to significant 

errors especially in the case of coarse meshes and low order shape functions. Category (2) 

is only feasible with "constant" or "linear" cells, in which the singularities of the initial 

stress (strain) kernels can be eliminated analytically or semi-analytically. For arbitrary cells 

of more complex geometry and higher order shape functions, more general techniques have 

to be used. In category (3), the strongly singular domain integrals become bounded, if a 

small sphere around the singular point is excluded. Although this method can deal with 

higher order cells, with the help of the volume sub-division technique which was originally 

proposed by Lachat and Watson (1975) and coded by Mustoe (1984), it may give 

inaccurate results for cases in which the cells around the singular point are greatly different 

in shape or size. 

In category (4), the singularity is first isolated by subtracting a singular function from 

the original singular integral. The original strongly singular integral becomes weakly 

singular, which can then be integrated using standard Gauss quadrature. The singular 

function is transformed, via Gauss theorem, into a regular surface integral over the 

boundary of the body or plastic region. A rather different transformation was employed by 

Dallner and Kuhn (1993) in their initial strain algorithm. In their work, the transformed 

surface integral is mapped over the boundary of the elements surrounding the source point 

rather than over the body's surface. 

Another approach (category (5)) for direct evaluation of principal value integrals was 

suggested by Guiggiani and Gigante (1990), based on the regularisation of the singular 

integral by substracting the truncated Taylor series from the integrand. Although, in 

principle, this method can also be used for evaluation of singular surface integrals 

(Guiggiani et al. 1992), it is : robust only for smooth boundary points. All functions must 
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be expressed in a local spherical co-ordinate system. Then all integrands, including kernels, 

spatial derivatives, J acobians and shape functions are expanded in Taylor series form, in 

terms of the local co-ordinates. As a consequence, the calculations are tedious and 

complicated, and difficult to implement in a computer code. Another type of regularisation 

for directly calculating the boundary stresses is developed by Poon et al. (1998a). A simple 

equation was obtained by the use of three global modes of deformation: rigid-body 

displacement, linear displacement, and a fully constrained plastic solution. While their 

approach is relatively straightforward, computation would be prohibitive enormous, since 

the system equations now involve stresses, displacements and displacement gradients. 

In the last category (6), the singularities can be circumvented by employing indirect 

approaches, based on the application of known reference solutions. The drawback of this 

approach is that it requires discretisation of the cells through the entire region, which 

negates to a certain extent the advantage of BEM (namely, that only the yield zone needs to 

be discretised into cells). To avoid this discretisation, a multi-region BEM technique has 

been employed (Banerjee et al. 1989) or a second boundary defined (Lee and Fenner, 

1986). 

In Section 2 of this Chapter, the basic boundary integral equations are reviewed. In 

Section 3, a new method for efficiently dealing with the strongly singular domain integrals 

is developed, which, like that of Telles and Brebbia (1979, 1983) for two-dimensional 

linear cells, should fall into the categories (4) and (2). Two new identities for the initial 

stress and strain kernels are first derived; a novel transformation technique (from domain 

integrals to element surface integrals) is then proposed for removing the strongly 

singularities. The results are suitable for both 2D and 3D problems, linear and higher order 

cells, and both initial stress and strain approaches. Finally, explicit formulations for 

calculating boundary stresses using stress recovery method are derived in Section 4. 

7.2 Basic Non-Linear BEM Formulations 

In this section, the conventional elasto-plastic boundary integral equations are established, 

mainly based on the work of Swedlow and Cruse (1971), Telles and Brebbia (1979, 1983), 

and Banerjee (1994). 
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7.2.1 Boundary Integral Equations 

In non-linear problems, the physical quantities are usually formulated in terms of their 

incremental forms. The relationship between elastic stress increments and total strain 

increments can be defined as: 

(7.1) 

where the subscript dot denotes increment, and 

D~kl = AOijOkl + G(OikOjl + OjJOjk) (2.4) bis. 

We consider two elastic equilibrium states in the domain a, with boundary r, 

characterized by ( cr~, Eij) and ( cr~, E~). Thus, using (7.1), we have: 

= AEkkE~ + 2GEijE~ 

= (AOijE~ + 2GE~ )Eij 

= cr~E .. 
1J 1J 

Hence, the following integral statement holds: 

r cr~E~da = r O'~£ .. da In 1J 1J In IJ 1J 

(7.2) 

(7.3) 

In the following, small elastoplastic deformations are assumed. Thus, the total strain 

increments can be decomposed into elastic and plastic parts (e.g. Lubliner, 1990), i.e., 

• • e • P 
E·· =E·· +E·· 1J IJ 1J 

(7.4) 

where the elastic strain increments £~ are related to stress increments (e.g. Lubliner, 1990) 

by: 
(7.5) 

Using (7.1), equation (7.5) gives: 
cr·. = cr~ -a~ 1J 1J 1J 

(7.6) 

where 
(7.7) 

Now, equations (2.1), (2.2) and (2.6) can be written for the two equilibrium states as: 
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aa.. . 
_IJ+b.=O ai' Xj 

d(J~ 
_I) +b~ =0 
dX

j 
1 

t~ =(J~n. 
1 I) J 

£ .. _- -+-• .:.... 1 (au~ au; J 
IJ 2 aX

j 
aX

j 

Substituting (7.6) into (7.3) and using the above equations, the left-hand side of (7.3) can 

be manipulated as: 

i . e *dn - i' *dn i . P *dn - i . dU~ dn i . P *dn (J .. £ .. :a,,, - 0' .. £.. + 0' .. £.. - 0' .. - + cr··£ .. a IJ IJ a I) I) a I) 1J a 1J a a 1J 1J 
Xj 

-1 dCrjjU: 1 * aCrjj 1 . P * - dn- u· -dn+ cr .. £ .. dn a ax. a 1 ax. a Ij Ij 

J J 

= r cr .. u~n .dr + r u~b.dn + r Cr~£~dn Jr 1j 1 J Jo 1 1 Jo 1J IJ 

= r u~i.dr + r u~b.dn + i £~cr~dn Jr 1 1 Jo 1 1 a 1J 1J 

and the right-hand side of (7.3) can be manipulated as: 

"'\. "'\ *. "'\ • 

i *. i * aU. i a(Jiju j i . acrjj 
cr.·E .. dn= cr .. - I dn= dQ- u· -dQ 

a 1J IJ 0 1J dOd 0 1 a 
Xj Xj Xj 

= r cr~u.n.dr+ r u.b~dn= r t~u.dr+ r b~u.dn Jr 1J 1 J Jo 1 1 Jr 1 1 Jo 1 1 

Substituting the above two equations into (7.3), it follows that: 

J u~ij dr + J u:b j dn + J £~cr&dQ = J t~tijdr + J b:ujdn (7.8) 
roo r a 

Now we take the quantities with the superscript asterisk '*' in (7.8) to be Kelvin's 

fundamental solutions Uij and Tij , namely: 

(2.10) bis. 

(2.14) bis. 

And using the properties: 
b: (p, q) = b (x(q) - x(p) )pj 

(2.8) bis. 
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fa o (X(q) - x(p))f(q)dQ(q) = f(p) (2.9) bis. 

(where Pi is unity in the i direction), from (7.8) it follows that: 

Uj(p) = fUjj(p,Q)ij(Q)dr(Q)- fTij (p,Q)uj(Q)dr(Q) 
r r 

+ f Uij (p, q)b j (q)dQ( q) + f E jjk (p, q)crfk (q)dQ( q) 
(7.9) 

a n 

where p and q stand for the source point and field point, respectively, for internal points, 

and P and Q for boundary points, and 

- 1 (dUjj dU jk J E jjk (p,q) - 2' aX
k 

+ ax j 

= -1 2 {(l-2V)(rkO .. +r.o·k)-r'O·k +3r.r.rk} 161t(l- v)G r . 1J .J 1 .1 J .1 .J • 

(7.10) 

Equation (7.9) is only applicable for internal points. For points which are located on 

boundary, integral equations can be obtained by allowing the source point p approach a 

boundary point P, which results in (Swedlow and Cruse, 1971; Telles & Brebbia, 1979; 

Banerjee, 1994): 

cij(P)Uj(P) + fTjj (P,Q)uj(Q)dr(Q) = fUij(P,Q)i j (Q)dr(Q) 
r r 

+ f Ujj(P,q)bj (q)dQ(q) + f Eijk (P,q)crfk (q)dn(q) 
(7.11 ) 

a a 

where ci/P)=oi/2 for smooth boundary points. Equation (7.11) is expressed in terms of 

initial stresses. In terms of initial strains, the last integral on the right-hand side is replaced 

using the equations: 

fEijk(p,q)crjk(q)dn(q) = j:Ejjk(P,q)tfk(q)dn(q) (7.12) 
n n 

where 
(7.13) 

We observe that, apart from the additional domain integrals involving initial stresses (or 

initial strains), equation (7.11) is the same as that obtained earlier for linear elastic analysis. 
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7.2.2 Internal Stresses 

In order to evaluate the domain integrals involving the initial stresses in (7.9) and (7.11), 

the yield region (only) must be discretized (usually into internal cells). 

Differentiating (7.9) with respect to the source point p leads to: 

alij (p) = f aU jj (p, Q) t. (Q)dr(Q) - f aTjj (p, Q) li. (Q)dr(Q) 
ax p ax P J ax P J 

m r m r m 

f aUjj(p,q) . a f . P 
+ a p bj(q)dQ(q)+-a p Eijk(p,q)ajk(q)dQ(q) 

n Xm Xm n 

(7.14) 

Considering that the domain integral in the above equation includes the singular point p, 

this integral can be evaluated by excluding a small sphere D centred at p (Banerjee, 1994). 

Thus we have: 

• P ( ) l' J aE jjk (p,q) dn ( ) +ajk p 1m ~l. q 
D-+O ax p 

D m 

(7.15) 

in which, lim afk(q) =afk(p) has been used. Noticing that a(·)/ax~ =-a(·)/ax~ and 
D-+O 

using Gauss theorem, the last integral on the right-hand side of (7.15) can be integrated 

analytically, i.e., 

J aE~ (;' q) dfl( q) = - J E;jk (p, Q)n m (Q)df( Q) 
o xm D (7.16) 

= -1 {OjmOjk -(4-5v)(Oij0mk +OikOmj)} 
30(I-v)G 

Substituting (7.16) into (7.15) and the result into (7.14), and using (2.6), (7.5) and (7.7) we 

obtain: 

aij (p) = j U jjk Cp, Q)t k (Q)dr(Q) - J Tijk Cp, Q)u k (Q)drCQ) 
r r 

+jUijkCp,q)bkCq)dQCq)+ JEijkl(p,q)a~(q)dn(q) (7.17) 
n n 

+l1fkla~1 (p) 
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in which, a r I ax~ = -ar I ax~ = -~m has been used and all integrals are interpreted in the 

Cauchy principal value sense. The kernels and free term coefficients in (7.17) are given by: 

V jik = 1 2 {(1-2v)(rkOii +rjOoik -r,l00jok)+3r,l0rjOrk} (7.18) 
~ 81t(1-v)r ' ~ , , , 

G {ar ~ik = 3 3-[(1-2v)rkooo +v(roook +roOok)-5rorork] 
~ 41t(1- v) r an ,lj ,j 1 ,1 j ,1 ,j , 

-(1-4v)nkoij +3v(n jr,l.k +nl,jr,k) (7.19) 

+(1- 2v)(3nkfjfj + n l,j~k + njf,l,k)} 

1 
Ejik] = -(VoOk) + VOO) k) 

~ 2 lJ, lJ ' 

= 81t(l ~ v)r3 {(I- 2v) (Ii;k c'\ + Ii jk Ii. - Ii;jlikl + 31i;;~k r.1 ) (7.20) 

+3V(Oli~j~k +Djk~l~j + DikZ:lZ:j +()jlZ:j~k)r30kl~j~j -15~i~j~k~/} 

For initial strain approach, (7.17) can be expressed by using (7.7) as: 

where 

O'ij (p) = J U jjk (p, Q)tk (Q)dr(Q) - J Tjjk (p, Q)u k (Q)dr(Q) 
r r 

+ J V jjk (p,q)bk (q)dn(q) + J l:jjkl (p,q)e~ (q)dn(q) (7.22) 
n n 

+ l1;kl E~ (p) 

l:jjkl = E jjrs D ~skl (7.23) 

(7.24) 
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7.3 Accurate Evaluations of Strongly Singular 

Domain Integrals 

Apart from the domain integrals involving initial stresses (or strains), the other integrals are 

exactly the same as those in linear problems, and of course these can be treated as 

described in Chapter 2. The domain integrals involving the initial stresses (or strains) are 

weakly singular, and thus can be accurately evaluated using standard Gauss quadrature (by 

employing the cell sub-division technique described in Chapter 2). However, the domain 

integral in (7.17) is strongly singular. Consequently, the standard numerical integration 

fails. Advanced, and efficient, methods must be employed to evaluate this integral. 

The most popular method for treating strongly singular integrals consists of two steps, 

namely, isolation and transformation of the singularity (e.g., Krishnasamy et aI., 1992). 

Firstly, the singularity is isolated by subtracting a singular function from the original kernel 

so that the subtracted term becomes a weakly singular one, which can then be evaluated by 

standard numerical integration procedures. The isolated strongly singular integral is then 

evaluated by analytical methods or by integral transformation. 

7.3.1 Isolation of Strong Singularity 

To evaluate domain integrals, the domain is usually discretised into cells. For the cells 

including the source point p, we re-write equation (7.17) as: 

J Ejjkl (p, q)cr~ (q)dn( q) = f Eijkl (p, q) [cr~ (q) - cr~ (p) ]dn( q) 
n n 

+cr~ (P)(! EUkl (p, q)dU( q) J 
(7.25) 

For convenience, we express the kernel Eijkl in the form: 

(7.26) 

where (from (7.20)): 

121 



Chapter 7 Boundary Element Formulation for Non-Linear Analysis 

~"k] = 1 r(1-2V/O·kO). +O'kOli -O .. Ok] +30 .. f kf l ) 
IJ 81t(1- v) u ~ I ~ J IJ IJ. • 

+ 3V(Olif .fk + O·kf,f. + O·kf)f. + O.\f.fk ) ~ .j. j.,l I..j j.l • 
(7.27) 

+ 30k]f.f. -15f.f .fkf l ] 
.1 .j .1 .J. • 

The cell sub-division technique is now employed, i.e., when the SOUfce point p is located at 

a comef node, the cell is sub-divided into 3 tetrahedra; while when p is located at a mid

side node, the cell is sub-divided into 4 tetfahedra (Fig.7.1). These tetrahedra are defined 

by a vertex at point p and those surfaces of the cell not including p (in Fig.7.1). Then each 

sub-cell is mapped on to a unit parametric cell (Fig.7.2). 

(a) (b) 

" " " \. S1 
\ 

" 

Fig.7.1 Cell sub-division: (a) p at cornef; (b) p at mid-side 

(-1,1,1) 

(-1,·1,1) __ ------... 
~' 

, l' }'Ill' 
,,~~' 

(0,0,0) 

(1,1,1) 

. e:{ l' :() •..•..•.• 
. l I I 

(1,1,-1) 

(·1,·1,·1 ) (1,·1,·1 ) 

Fig.7.2 Geometrical mapping of a sub-cell on to a unit cube 
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This mapping scheme results in: 

(7.28) 

Furthermore, when the field point q approaches the source point p, we have: 

cr~ (q) - cr~ (p) ~ OCr) 

Thus, this cell sub-division technique renders the first integral on the right-hand side of 

(7.25) well-behaved. And hence its numerical integration presents no difficulty. However, 

the last integral on the right-hand side of (7.25) is still singular O(l/r) and this must be 

treated separately. In the following, a new efficient algorithm is developed for this purpose 

by exploiting the intrinsic properties of the strongly singular kernels, Eijkl and Lijkl. 

7.3.2 New Identities for Integrations of Strongly Singular Kernels 

We examine the integration of the strongly singular kernels, Eijkl and Lijkl over a sphere 

around the source point p with a radius R (Fig.7.3). 

Fig.7.3 A sphere with radius R 

First, we define a spherical co-ordinate system with origin at p (Fig.7.4): 
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z 

~----------~--------~y 

x 

Fig.7.4 Local spherical co-ordinate system 

Then relationships between the Cartesian and spherical systems are: 

I
x = rsin ecos<t> 

y = r sin e sin <t> 

z = rcase 

dQ=drdS 

where the differential element on the spherical surface (dS) is: 

dS = r2 sin eded<t> 

From (7.29), it follows that: 

ar ar ax ar ay ar az 
r· =-=--+--+--

,I dXj dX dXj dY dXj dZ dXj 

= Bli sin e cos <t> + B2i sin e sin <t> + B3j cos e 

(7.29) 

(7.30a) 

(7.30b) 

(7.31) 

If we substitute (7.30) and (7.31) into (7.25)-(7.27), we can see that the domain integration 

over the sphere OR can be separated into a radial part and a spherical surface part, Le., 

JEijkJdn = r f<J'I'ijkJdSI)dr <7.32) 
OR ~ 

where SI is a spherical surface with unit radius and 

dS. = sin eded<t> (7.33) 
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For such a spherical surface, we can easily show that: 

f dSI = r fo21t sin 9d<t>d9 = 41t 
8. 

fr.r .dSI = 41t 0 .. 
.1 .j 3 Ij 

SI 

f 41t 
r.r.rkrldSI =-(O .. Okl +O·kO·l +O·IO·k) 

,I .j. • 15 IJ I J I J 
5. 

Substituting (7.31) into (7.27) and using (7.34)-(7.36), we obtain: 

So from (7.32), it follows that: 

For the initial strain approach, from (7.23), it is obvious that: 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

These identities are independent of the sphere radius and provide the basis of accurately 

evaluating the strongly singular domain integrals of the kernels over cells. 

7.3.3 Transformation of the Strongly Singular Domain 

Integrals into Boundary Integrals 

Two novel methods of dealing with the strong singularity appearing in the domain integrals 

can be advanced, based on the identities established above. 

Spherical Exclusion Technique 

In this method, we employ the exclusion technique with arbitrary radius to accurately 

evaluate the strongly singular kernel arising in the last term of (7.25). Fig.7.5 shows the 
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exclusion pattern for a cross-section, where the cell Q c has been divided into two sub-cells, 

Q~ and n~. 

Fig.7.S Exclusion of a small sphere 

If the cells around p are identical in shape and size, the exclusion radius can be taken to be 

zero. For this particular case, we can directly evaluate the last integral on the right-hand 

side of (7.17) or (7.22) using only the cell sub-division technique (as described by Banerjee 

and Davies, 1984), since the shape functions used to approximate the initial stress 

increment a~ have the same values for all Gauss points symmetrically disposed about p. 

Consequently, (7.38) or (7.39) is implicitly satisfied after considering the contributions 

from all cells. However, if the cells around p are different in shape or size, direct 

application of the exclusion technique to the evaluation of the strong integral appearing in 

(7.17) or (7.22) will lead to inaccurate results. 

Full Numerical Formulation 

Although the exclusion technique together with the element sub-division technique can be 

used to accurately evaluate the strongly singular domain integrals, this process is 

cumbersome. An improved formulation can be derived by considering the following 

integration transformation. 

The cell sub-division technique is also needed herein and let us consider the integral of 

Eijkl over a sub-cell n~. Because the integration is carried out in the Cauchy principal 

value sense, we can cut off a small sphere with radius E around the singular point p 

(Fig.7.6). 
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Fig.7.6 Small exclusion cut off from a sub-cell n~ 

Thus from (7.26), we have: 

f 1 
. Ir<r:) 1 

Eijkldn = \}Ijjkl (lIm ~r)dSI 
s~ £~O £ r 

n" \: 

= r,r \}Ijjkl Inr(r: )dS, - lim In e r \: 'PjjkldSI Js. £-+0 Js. (7.40) 

Summing for all cells, the result LS~ forms a closed spherical surface, so according to 
c 

identity (7.37) the last integral in (7.40) is zero. Furthermore, with the help of Fig.7.7, 

n 

Fig.7.7 Relation between spherical surface (dS) and cell boundary (dr) 
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we have: 

dS = r2 sin eded<\> = drcos p = dr rjnj 
r 

(7.41) 

where P is the angle between the normal of the differential elements of the spherical 

surface dS directed along the r direction and the cell boundary surface dr with normal n. 

From (7.33) and (7.41), it follows that: 

(7.42) 

Eventually, substituting the above equation into (7.40) and using (7.26), we obtain 

JEijlddil= JEjjklrmnm lnrdr (7.43) 
n~ r: 

Similarly, for the initial strain approach, we can derive 

J Ljjlddil = J Lijklrmnm In rdr (7.44) 
n~ r: 

Now that the domain integrals have been transformed into non-singular cell boundary 

integrals, they can be calculated using standard Gaussian quadrature formulae. It should 

mentioned that for 2D problems, we can derive exactly the same results as (7.43) and 

(7.44) with the understanding that the integrals are carried out over line elements (Gao and 

Davies, 1998b). 

Equations (7.43) and (7.44) are very easy to use. The kernels of the transformed 

boundary integrals are simply formed by multiplying the original kernels, Eijk1 and Lijkh by 

the terms, rmnmlnr. The boundary integrals need to be carried out only over the outer 

surfaces of the volume cells around the source point p. Moreover, they have the same 

forms for 2D and 3D problems, so simplifying the task of developing unified code. 

lVeakly Singular Domain Integrals 

The transformation method described in this section can also be used to evaluate the 

domain integrals (in (7.9) and (7.11)) involving the initial stress (or strain) when the source 

point is located at any node of the cell under consideration. It is, of course, not necessary to 

evaluate these weakly singular domain integrals in this way: they can be evaluated using 
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the cell sub-division technique. However, in order to improve computational efficiency, 

this transformation method is also useful for treating this type of integral. 

The isolated form of the domain integrals in (7.9) and (7.11) can be written as: 

J E jjk (p, q)ajk (q)d1l( q) = J E jjk (p, q)[ajk (q) - ark (p) ]d1l( q) 
n n 

+crr. (p {! E;j. (P. q)dO( q) J 
where the kernel Eijk can be expressed as: 

q.,"k 
E jjk =+ r 

(7.45) 

(7.46) 

in which, ~jjk is only a function of e and <I> (see (7.10». In a similar manner to (7.40), the 

last integral in (7.45) can be written as: 

(7.47) 

Using (7.42) and (7.46), we obtain: 

fEijkdn = fEjjkrmnm dr (7.48) 
n~ r: 

Similarly, for the initial strain approach, we can obtain: 

JIjjkd1l= JLjjkrmnm dr (7.49) 
n~ r; 

7.4 Evaluation of Boundary Stresses 

The formulations described above are only suitable for evaluation of internal stresses. 

When a source point is located on the boundary, equations (7.17) and (7.22) become 

hypersingular. The existing methods for evaluating these integrals may be roughly divided 

into two types, Le., the direct method and the traction recovery method. The former is 

based on the 'regularization' of the hypersingular boundary integral equation by expanding 

the kernel in a Laurent series (Guiggiani et aI, 1992; Huber et aI, 1996) or by employing 

deformation modes (Poon et aI, 1998a), while the latter evaluates the boundary stresses 
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using specified traction values and tangential derivatives of the displacements (Telles and 

Brebbia, 1979; Banerjee and Davies, 1984). In this section, the regularization method based 

on the global modes and the stress recovery method are reviewed and developed. 

7.4.1 Regularization Based on Deformation Modes 

We begin the derivation with the equations for stresses at internal points (7.17). Then we 

let the internal point p approach a boundary point P to obtain the equations for the 

boundary stresses. For simplicity, body forces are not considered herein. 

Rigid-Body Mode: 

The Rigid-Body Mode (translation) condition yields: 

(7.50) 

Using this condition, it follows from (7.17) that: 

J Tjjk (p, Q)u k (p)dr(Q) = 0 (7.51) 
r 

Subtracting (7.51) from (7.17), we obtain: 

Crjj(p) = JUjjk(p,Q)tk(Q)dr(Q)- JTjjk(p,Q)[uk(Q)-uk(p)]dr(Q) 
r r 

+ J EijkJ (p, q)Cr~ (q)d!l( q) + l1~kl Cr~ (p) 
(7.52) 

Q 

The first and second integrands on the right-hand side of equation (7.52) are 0(1/r2) while 

the domain integrand is 0(1/r3). After using element (cell) sub-division technique, a 

singularity of order O(1/r) remains for each integral. Thus, further regularization must be 

carried out. 

Linear Displacement Mode: 

This mode, used by Krishnasamy et al. (1992) and Lutz et al. (1992) for applications in 

potential theory and linear elasticity, yields: 
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Uj (Q) = Uj (p) + Uj,n (p)rn 

Ui,n (Q) = Uj,n (p) 

tj (Q) = aij (Q) n j (Q) = a jj (p)n j (Q) 

a~(q) = 0 

(7.53) 

where uj,n stands for the derivative of the displacement increment u j with respect to the 

co-ordinate Xn• Using this mode, it follows from (7.52) that: 

aij (p) = f U jjk (p, Q)akl (p) n l (Q)dr(Q) - f Tijk (p, Q)uk,n (p) rndr(Q) (7.54) 
r r 

Subtracting (7.54) from (7.52) and using (2.2), leads to: 

0= f U jjk (p, Q)[akl (Q) - Okl (p) ]n. (Q)dr(Q) 
r 

-J Tjjk (p, Q)[u k (Q) - Uk (p) - Uk,n (p) rn ]dr(Q) (7.55) 
r 

+ J E jjkl (p, q)O~. (q)dQ( q) + I1fkl O~ (p) 
n . 

In equation (7.55), noting that term uk(Q)-uk(p)-uk,n(p)rnresults in O(r2) (e.g., 

Krishnasamy et aI. 1992), the first and second integrands in (7.55) are weakly singular. 

However, the domain integral is still strongly singular, and again regularization must be 

carried out. 

Constrained Plastic Mode: 

This mode was suggested by Poon et aI. (1998a). In this mode, the boundary of the body 

has zero displacement but the body undergoes plastic deformation, Le., 

llj(Q) = 0 

uj,n (p) = 0 

a~ (q) = a~ (p) 

aij (Q) = aij (p) = -a~ (p) 

tj (Q) = oij(Q) n j (Q) = -cr~ (p) n j (Q) 

Using this mode, it follows from (7.55) that: 

(7.56) 
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o = f EUk) (p, q)o~ (p )dQ( q) + I1jk) o~ (p) (7.57) 
n 

Subtracting (7.57) from (7.55), finally we obtain: 

0= f Djjk (p, Q)[Crkl (Q) - Crkl (p) ]n l (Q)dr(Q) 
r 

-J Tjjk (p, Q)[ ti k (Q) - ti k (p) - ti k.n (p) rn ]dr(Q) (7.58) 
r 

+ J E jjkl (p, q)[o~ (q) - o~ (p)]dil(q) 
n 

When the source point p approaches the field point Q (or q), the terms in (7.58) exhibit the 

following singularities: 

U jjk (p, Q) -7 0(r-2
) 

Tjjk (p, Q) -7 0(r-3
) 

E jjkl (p,q) -70(r-3
) 

ok) (Q) - crk) (p) -7 OCr) 

Uk (Q) - Uk (p) - Uk•n (p) rn -70(r2) 

cr~(q)-cr~(p) -70(r) 

(7.59) 

and after using boundary element and volume cell sub-division technique, we have from 

(2.31) and (7.28) that: 

dr(Q) -7 OCr) 

dil(q) -7 0(r2) 
(7.60) 

Thus, from (7.59) and (7.60) it can be seen that all the integrals in (7.58) are regular. It is 

therefore possible to take the limit of (7.58) as an internal source point approaches a 

boundary point. In other words, equation (7.58) can be used to evaluate boundary stresses. 

Following Cruse and Richardson (1996, for the elastic case) and Poon et al. (l998a), 

equation (7.58) is valid at any point (including edges and comers), provided that the stress, 

displacement gradient, and initial stress are continuous there. The drawback of using (7.58) 

is that the stress, displacement and displacement derivatives appear in the system 

equations, so computation is prodigious. 

Another method using the fully regularized direct boundary formulation uses the 

displacement gradients (as unknowns) in the boundary integrals. Details of this method can 

be found, for example, in Burghardt and Van (1998). 
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7.4.2 Traction Recovery with Initial Stresses 

The most popular method for evaluation of the boundary stress is the traction recovery 

method (Cruse, 1974; Telles and Brebbia, 1979; Banerjee and Davies, 1984; Kane, 1994). 

In this section, the detailed formulation for this method is derived. To date, no such 

detailed and rigorous formulation exists in literature, to our knowledge. 

First, we calculate the tangential strains over a boundary element. This requires the 

introduction of a local Cartesian co-ordinate system x: with the axes x~ and x~ tangential 

to the surface and x; in the n direction (Fig. 7.8). 

n 

Fig.7.8 Local orthogonal set of axes over a boundary element 

The local tangential strains can be expressed in terms of the differentials of the 

displacements as follows: 

where, 1= 1, 2; J= 1, 2; and 

., - 1 (au; au~ J Eu -- -;-;-+-;-;-
2 aX J aX. 

(7.61) 

(7.62) 

in which, K=l, 2 and ~l =~, ~2 = 11. The derivatives of the intrinsic co-ordinates with 

respect to the local co-ordinates are (Lachat, 1975; Becker, 1992): 
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a~ _ -cose . 

ax; -Imllsin e' 

en, _ 1 

ax; -lm2lsin e 

(7.63) 

(7.64) 

(7.65) 

The local displacement components in (7.62) can be expressed in terms of the global ones, 

i.e., 

(7.66) 

where 
8 

Uj(~,l1) = LNa(~'l1)u~ 
a=l (2.22) bis 
8 

tj (~, 11) = L Na(~''') t~ 
a=l 

and hj are the direction cosines of the local co-ordinate system with respect to the global 

co-ordinate system: 

I. =_I_axj . 
It Imll a~I' 1 = 1,2,3 

121 = n2113 - n3112 

122 = n3111 - nll)3 

123 = nll 12 - n2111 

(7.67) 

(7.68) 

Using (7.61)-(7.68), we can calculate the local tangential strain components. To obtain the 

local stresses, the local elastic stresses a~e and strains t~ are substituted in Hooke's law 

(2.3) and then after eliminating t~3' we obtain (see also Becker, 1992, for elastic 

problems): 
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• Ie 2G (. I • ') V . Ie 
0'11 =-- ell +Ve22 +--033 

I-v I-v 

• Ie 2G (. I • I ) V . Ie 
0 22 =-- £22 +V£II +--033 

I-v I-v 
(7.69) 

· Ie 20 ·1 
0 12 = £12 

where t; I' t;2 and t;2 are determined using (7.61), and 

• Ie • I • 'p 
0 22 = 0 22 + 0'22 

. Ie . I • Ip 
0'33 = 0'33 + 0'33 

(7.70) 

In (7.70), the local initial stresses 6~P can be expressed in terms of global ones by 

"p 1 1 . p a·· = ·k ·IO'kI IJ I J (7.71) 

Considering the equilibrium of the boundary segment gives: 

6;3 = t; = 13jtj 
• I • I • I l' 

0 23 = 0'32 = t2 = 2jtj (7.72) 
• I • I • I l' 

0'13 = 0'31 = tl = Ijtj 

where 

13 I = n I' 132 = n 2' 133 = n 3 (7.73) 

Substituting (7.66) and (7.62) into (7.61), and the results together with (7.70)-(7.72) into 

(7.69), one can obtain: 

• I _ 20 (a~K a~K I J au j v I' (I VI) . p 
all --- -a I llj +v-a I 2j a~ +-- 3jtj - Ilk Jl --- 3k I31 0kl 

I-v x x I-v I-v 12K 

• I _ 20 (a~K 1 a~K 1 J au j V I' (I I v 1 I ). P 0'22 --- -a I 2j +V-a I Ij a~ +-- 3jtj - 2k 21 --- 3k 31 0kl 
I-v x2 XI ~K I-v I-v 

(7.74) 

• I _ G (a~ K I a~ K 1 J au j I I . P 0'12 - ax; 2j + ax; Ij a~K - Ik 210'kl 

Finally, we can employ the transformation relation: 

. 1 I ., 
0mn = km Inokl (7.75) 
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to transform these local stresses (7.74) into global Cartesian stresses as follows: 

where 

Anmia = 2G{ I ~ v [I,ml,. ( ~:; I'i + v ;:; 12J }12mI2.( ;:; 12i + v ~:; I'i )] 

+ ~ (l'mI2n + 12ml'n {;:; 12i + ;:; I'i )} ~~: 

(7.76) 

(7.77) 

(7.78) 

(7.79) 

The explicit relationship (7.76) allows us to compute the stresses at a boundary node as an 

algebraic function of the nodal displacements of the element associated with that node and 

the tractions and initial stresses at that node. If the coefficients in (7.76) are assembled in 

the global stress computing matrices (for internal points, which is formed from (7.17)), the 

matrices corresponding to the boundary points are extremely sparse. For those nodes which 

are shared by several elements, two further operations are necessary: 

(a) Averaging 

Since equation (7.76) is performed over an element, the contributions from all adjacent 

elements to a common boundary node should be averaged, provided that tractions are 

continuous across the boundary node over these elements. 

(b) Traction Discontinuities 

For a boundary node where the tractions are discontinuous (Fig.7.9), multiple nodes 

should be defined. The number of nodes at this common point should be equal to the 

number of different traction values (including zero traction) at this point. For example, 

three nodes (Nl,N2, N3) are defined for the central point in Fig.7.9, in which node Nt is 

shared by boundary elements E. and E2• Stresses at Nt should be the average of the values 
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obtained by applying (7.76) to El and E2, while the stresses at node N2 is calculated from 

element E3 alone. 

Internal cell 

Fig.7.9 Multiple nodes at a traction discontinuity 

Multiple nodes are necessary for a traction-discontinuous boundary node in non-linear 

BEM analysis, even if all tractions are specified for the boundary elements sharing this 

node. This is because some internal cells will share the nodes of these elements. 

Accordingly discontinuous stresses should be distinguished for these cells. 

An alternative method for calculation of the boundary stresses using the traction 

recovery method is the implicit method (Mukherjee, 1982; Iwasaki and Ishizaki, 1986; 

Raveendra, 1984; Kane, 1994). In this method, a 9x9 square matrix for solving 

displacement gradients is formed from (2.2)-(2.6) and a chain relation between derivatives 

of displacements with respect to the intrinsic co-ordinates and to the global co-ordinates. 

After inverting this matrix, boundary stresses can be calculated through the displacement 

gradients. Apparently, this method requires more computation time. 

7.5 Summary 

In this Chapter, boundary integral equations are developed based on conventional non

linear boundary element theory. New identities (7.39) and (7.38) for initial stress and strain 
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kernels are derived, which provide the basis for a novel method of transforming the 

strongly singular domain integrals into surface ones. The resulting equations (7.43) and 

(7.44) can accurately evaluate the strongly singular domain integrals. Since the transformed 

surface integrals in (7.43) and (7.44) are performed only over cells' boundaries surrounding 

the source point, substantial computational effort is saved, comparing to the conventional 

transformed integrals over the whole boundary of the problem (category (4) methods in the 

Introduction). Moreover, these results are suitable for any isoparametric (linear or higher 

order) cells in 2D and 3D problems, for both initial stress and strain approaches. 

Two methods for computing boundary stresses are described. In particular, a complete 

explicit numerical implementation formulation is given, based on the traction recovery 

method. This is particularly efficient and easy to use. 
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Chapter 8 

Solution Schemes for Non-Linear 

BEM Equations 

8.1 Introduction 

Algorithms for solving non-linear BEM equations using the domain discretization methods 

have been developed by several workers. More often than not the algorithms are "explicit" 

as described in detail by Telles (1983) and Banerjee (1994). These solution algorithms can 

be roughly divided into two groups, Le., the initial strain approach (Riccardella, 1973; 

Mendelson and Albers, 1975; Kumar and Mukherjee, 1977; Mukherjee and Kumar, 1978; 

Telles and Brebbia, 1979, 1980; Lee and Fenner, 1986; Kane, 1994; Cisilino et al., 1998;) 

and the initial stress approach (Banerjee et al., 1979; Banerjee and Davies, 1979; 

Raveendra, 1984; Zheng and Gao, 1986; Henry, 1987). 

The choice between the use of initial stress or initial strain approaches is not critical. 

The initial stress approach, however, is capable of handling perfectly plastic materials, 

whereas the initial strain approach is more suitable for strongly strain-hardening materials 

(Becker, 1992). However, the initial strain approach has two distinctly different forms for 

plane stress and plane strain problems, while the initial stress approach takes the same form 

for both cases. 

A different type of solution strategy (incremental variable stiffness) has been 

successfully demonstrated by Banerjee and co-workers (Raveendra, 1984; Banerjee et al., 

1989; Banerjee, 1994). In this scheme, the internal variables are eliminated, by expressing 
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them in terms of boundary variables, and consequently no iteration is needed. Since the 

unknowns at internal nodes are eliminated, less computer memory is required. 

Recently, many workers have investigated implicit solution schemes on account of 

their unconditional stability (Telles and Carrer, 1991; Bonnet and Mukherjee, 1996; Poon 

et al., 1998b; Burghardt and Van, 1998). Among these works, Bonnet and Mukherjee 

(1996) first applied the consistent tangent operator method. This method, which was first 

proposed by Simo and Taylor (1985) in the finite element method context, exploits the 

quadratic rate of convergence by utilising the consistent elastoplastic constitutive relations 

in the Newton-Raphson iterative process. 

In this Chapter, the consistent tangent operator and the incremental variable stiffness 

solution schemes are developed for the initial stress method described earlier. In principle, 

the former is similar to that by Bonnet and Mukherjee (1996), but derived differently and 

expressed in a different form. In the latter, a new variable stiffness solution scheme is 

proposed, in which the system equations are expressed in terms of the plastic multiplier. 

Moreover, two iterative processes are presented for the first time for both the existing 

variable stiffness method (expressed in terms of boundary unknowns) and the new one. 

These iterative schemes enable us to use larger load increments. 

8.2 Domain Discretisation and System Equations 

The solution procedure can be summarized thus: 

• The boundary and (expected) yield region of the body are discretized into boundary 

elements and internal volume cells, respectively, over which geometry and field 

variables are approximated by nodal values via shape functions. 

• Source terms (7.11) are collocated at each boundary node, resulting in algebraic system 

equations, in terms of boundary values. 

• Algebraic equations are established for the stresses by using (7.76) for boundary nodes 

and (7.17) for internal nodes. 

• These equations are solved for the boundary unknowns, internal stresses and 

displacements, as well as other quantities such as equivalent plastic strains/stresses. 
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The discretization procedure for the boundary integrals appearing in (7.11) and (7.17) is 

similar to that described in Chapter 2. The discretization of the yield region into internal 

cells is elaborated below. 

We assume that the yield region is divided into Nc internal volume cells, each of which 

forms a piecewise continuous approximation to the yield region. Over each cell, the 

positional co-ordinates and initial stresses are interpolated using 20-noded quadratic shape 

functions, i.e., 

20 

Xi = 2:Na(~' 11,~)xf 
ex=1 

20 

cr~ = 2: Na (~, 11, ~)crija 
a=l 

where aija is the ij-th component of the initial stress at node ex and N a (~, 11,~) are: 

for comer nodes; and 

N" (~.11.~) = ~ (1 + ~,,~)(I + 11" 11)(1 + ~,,~) {I + (~! -I)~ 2 

+(11; -1)112 + (~; _1)~2} 

(8.1) 

(S.2a) 

(8.2b) 

for mid-side nodes. Fig.8.1 shows the values of the local co-ordinates (~a' 11a' ~a) at nodes 

over a cell. 

(·1,1,1) (0,1,1) (1,1,1 ) 

(0,·1,1) 

(·1,·1,1) __ --~-__ ----.. 

(·1,·1,0) 

(·1,-1,-1 ) 

• (·1,1.,0) 

<; 

~~ 
(0,0,0) 

(1,1,0) 

-('1'1' 1')' , ••••••• , •. ,. (1,1,·1) 
.' " " (0,1,·1) 

• -(.1,0,-1) (1,0,-1) 

(0,-',-') (',-',-1) 

Fig,8,l 20-noded iso-parametric cell 
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8.2.1 Discretization of Weakly Singular Domain Integrals 

Discretizing the yield region into Nc cells and using (8.1), the domain integrals in the 

boundary integral equation (7.11) can be written as: 

N 20 

fEjjk (P,q)crjk (q)dn(q) = !LEij~crj: 
n c=l a=l 

where 

for cells not including the collocation point P, and, 

dX dy dZ 

d~ d~ d~ 

.f(~, 11,~) = d(X, y, z) = dX dy dZ 
d(~, 11,~) a" en, en, 

ax ay dZ 

d~ a~ a~ 

For cells including the collocation point P, (8.4) is replaced by: 

(8.3) 

(8.5) 

(8.6) 

where Ns is the number of the sub-cells over the cell under consideration (see Figs.7.1 and 

7.2) 

(a) (b) 

" "' " \. S1 
\ 

" 

Fig.7.1 Cell sub-division: (a) p at corner; (b) P at mid-side 
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(-1,1,1) (1,1,1) 

(-1,-1,1) __ ------. 

(1,1,-1) 

(-1,-1,-1 ) (1,-1,-1 ) 

Fig.7.2 Geometrical mapping of a sub-cell on to a unit cube 

and J s is the Jacobian of the transformation from the original local co-ordinates to the new 

sub-cell intrinsic co-ordinate system, i.e., 

J (l:' ,,' Y') = d(~, 11, ~) 
s ~"" '" d(~', 11', ~') 

in which, the original local co-ordinates are calculated using: 

8 

~ = 2: N~ (~', 11', ~')~a 
a=l 

8 

11 = 2: N~ (~', 11', ~')11a 
a=l 

8 

~ = 2: N~ (~', 11', ~')~a 
a=l 

In (8.8), N:, a= 1, ... ,8, are the 8-noded shape functions: 

(8.7) 

(8.8) 

(8.9) 

in which, the values of (~:,11:,~:) are shown in Fig.7.2. Apparently, the linear mapping 

has been used here, since the variation of the local co-ordinates are linear in a cell. At the 

singularity, the sub-cell nodes degenerate to a single point. As a consequence, the Jacobian 

Js tends to zero as O(r2) as r~O, nullifying the weak singularity. 
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8.2.2 Discretization of Strongly Singular Domain Integrals 

After discretizing the yield region into Nc cells, using (8.1) the domain integrals appearing 

in the internal stress integral equation (7.17) (without consideration of body forces) can be 

approximated by: 

(8.10) 

where 

E~~ = JEjjkl(p,q)No(q)dil(q) (8.11) 
llc 

in which, ilc is the domain of the cell c. 

For cells not including the point p, (8.11) can be calculated in the usual way, i.e., 

(8.12) 

However, for the cells which include the source point p, we can not directly employ the cell 

sub-division technique, since the kernel Eijkl is strongly singular. Instead, as described in 

Chapter 7, we first isolate the singularity in (8.11) as follows: 

where 

Eij~l = J E jjkl (p, q){ N a (q) - Bop }dn( q) + Bop J E jjkl (p, q)dn( q) (8.13) 
llt llc 

when ex.=p 

when ex. *' p 
(8.14) 

Now the first integral on the right-hand side of (8.13) is weakly singular and can be 

evaluated by using the cell sub-division technique as: 

N 

E~~l = !, II. J~. fl E jjkl (x P ,x(;, 11, ~»{ N 0 (~, 11,~) - Bop}T (~, 11, ~)J 1(;', 11', ~')d~' dr( ds' 
5=1 

(8.15) 

in which, Js and ~', 11',~' are determined using (8.7)-(8.9). The last integral on the right-

hand side of (8.13) can be evaluated using (7.43); thus: 
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N N 

JEjjkldQ=! JEjjkldQ= !JEjjklrmnm Inrdr= 
nc 5=1 n~ 5=1 r: 

N 

! III fl E jjkl (x p , x (~, 11) )rm (x p , x (~, 11»)n m (~, 11) In r( x P , x (~, 11)) N a (~, 11)J (~, l1)d~dl1 
5=1 

(8.16) 

The last integration on the right-hand side of (8.16) is performed over the outer surface of 

the sub-cells (see Fig.7.6). And Na(~' Tn and J(~, 11) are determined using (2.21) and 

(2.24). 

8.2.3 Algebraic System Equations of Non-Linear BEM 

Collocating the source point P for each boundary node in tum using (8.3) and assembling 

these coefficients into a global system matrix, the following incremental matrix system 

equation can be formed from (7,11): 

[H] {~u} = [a] {~t} + [Eb] {~oP} (8.17) 

After applying the boundary conditions to (8.17), transferring all the boundary unknowns to 

the left-hand side and transferring the known matrix products to the right-hand side, we 

obtain: 

(8.18) 

where {LUe} are the boundary unknowns. 

Similarly, applying (7.76) to all boundary nodes, resulting in the following matrix 

equation: 

{Aob} = [Hb] {Au} + lab] {At} + [Eb] {~oP} (7.76b) 

where {~Ob} are stresses at boundary nodes. Since (7.76) is from the traction recovery 

method, the coefficient matrices [Hb
], [Gh

] and [Eb] are extremely sparse. And for internal 

nodes, using (8.10), equation (7.17) yields: 

(7.17b) 

where {AoI} are stresses at internal nodes. 
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Incorporating (7 .76b) and (7 .17b) into a unified global equation and using the prescribed 

boundary conditions, we can obtain the following equation: 

{Lla} = [A 0] {LlX} + {Ll yO} + [EO] {LlaP} (8.19) 

where {~a} is a global stress vector, consisting of stresses at both boundary nodes and 

internal nodes. 

In a similar manner, the following matrix equation can be written, using (7.9), for 

internal displacements: 

{~u} = [AU] {LlX} + {Ll yU} + [EU] {~aP} (8.20) 

Only (8.18) and (8.19) are necessary for the solution process, while equation (8.20) serves 

to compute (if required) the internal nodal displacements. In the following, two solution 

strategies are developed for solving the system equations. 

8.3 Newton-Raphson Iterative Method with 

Consistent Tangent Operators 

Eliminating {LlX} from (8.18) and (8.19), leads to: 

{Lla} = {Ll ye} + [E] {LlaP } 

where 

(8.21) 

(8.22) 

(8.23) 

Since the initial stress appears in (8.21), which is loading-path dependent, an incremental 

iterative process is needed. We use {a} nand {oP} n to denote the stress and initial stress, 

respectively, at the end of the n-th increment. Now the new stress and initial stress 

{a} and {oP} need to be determined from the imposed (n+l)-th load increment {~ye}. 

Substituting: 

into (8.21), yields: 

{ ~o} = {a} - { a} n 

{~aP} = {oP} - {aP} n 
(8.24) 
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{cr} - {cr} n = {~ye} + [E]({ crP } - {crP } n) (8.25) 

For the imposed new load increment {~ye}, (8.25) is not, in general, satisfied. The 

residual of (8.25) can be written as: 

{R} = {cr} - {cr} n - {~ye} - [E]({ crP } - {crP } n) (8.26) 

It is noted that now the {~ye}, {a} nand {aP } n in (8.26) are constants. To reduce the 

residual to a specified tolerance, the values of stress and initial stress need to be modified 

through iteration. We assume that, after the i-th iteration, the stress and initial stress are 

{cr} i and {crP } i , respectively, and, for the (i+ 1 )-th iteration, they are modified as: 

{ a } i+l = { a} i + { a} 

{ a P } i+l = {aP } i + { aP } 
(8.27) 

where the {a} and {aP} are determined in such a way that the residual shown in (8.26) is 

forced to be zero for the new stress and initial stress, i.e., 

O={R}i+1 ={R}i + aIR} {a}+ aIR} taP} 
ala} a{crP } (8.28) 

= {R}i + {a} -[EHaP } 

Now the relations (6.85) and (6.91) are used, i.e., 

{a} = [Dct He} 

{aP} = [DCP]{e} 

which are characterized by the consistent tangent operators Dct and DCP : 

[Dct ] = [G]([De] -[DPD 

[DCP] =[De
] _ [Dct ] 

(6.85)bis 

(6.91)bis 

(6.94)bis 

(6.95)bis 

Thus, writing (6.85) and (6.91) in matrix forms and substituting them into (8.28), yields: 

[Kt Ie} = {R}i (8.29) 
where 

(8.30a) 

In the case of very small increments (~A.i ~O), the tensor [G] degenerates to the identity 

matrix (see (6.74)) and (8.30a) reduces to: 
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(8.30b) 

and in terms of (6.82) and (6.93), [DP]i reduces to: 

(8.31) 

Once the non-linear equation (8.29) is solved for {E} , all the variables for (i+ 1 )-the 

iteration can be computed. The Flow Chart 8.1 shows the detailed computational process. 

Flow Chart 8.1 Iterative process with consistent tangent operators 

Equation Index 
Computational Process 

and notation 

1. Impose load increment 

{Ll ye} = {Ll yO} + [A O][Abr 1{Ll yb} (8.22) 

2. Scale stresses for each node 

{at} = {a} n + {d ye } Trial stress 
(constant in iteration). 

IF f( at )<TOLr THEN 

{a} n = {at} and next node Elastic state. 

ELSE IF f( an)<O THEN 

- f(a) 0.= 
f (at) - f (a) Cross yield surface. 

{a}n ={a}n +a.{dye} 

{dye} = (l-a){Llye} Scale to surface. 

END IF 

3. Initialise iterative variables for each node 

i=O; {ali = {oln; {aP}i = {aP}n; A! = An 

4. Calculate residual of the system equations 

{R}i ={a}i -{a}n -{dye}-[E]({aP}i -{aP}n) 

5. Check convergence 
(8.62) 

IF I{R}il < TOL R THEN 

ISR method in Flow Chart 6.1 for each node Local stress-return 
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GOTO 1 

END IF 

6. Evaluate non-linear matrices 

[G]i = ([I] + ~)} [De][ o2f ]i )_1 
ocr®ocr 

[DP t = [De] {of/ocr}i ({of /ocr}i)l [G]i [De]1 Gi 

[Dcl]i = [Gt([De]-[DP]i) 

[K]i = [E] ([De] _ [DCl]i)_ [DCl t 
7. Solve system equations for Ie} 

8. Evaluate changes in variables for each node 

{a} = [DCl]{e} ; laP} = [DCP]{e} 

'iv = {of /ocr}i [G]i [De] IE} I Gi 

{eP} =[DCrl{aP}; eP =c'~{tpr{tP} 

9. Update variables for each node 

{ cr} i+1 = {cr} i + { if}; {crP } i+1 = {crP } i + { aP } ; 

)J+I =)J + 'A.; k(eP) = k(eP) + k(eP) 

10. i=i+l; GOTO 4 

iteration. 

Go to next increment. 

(6.74) 

(6.93) 

(6.94) 

(8.30) 

(8.29) 

(6.85); (6.91) 

(6.84) 

(6.90); (6.100) 

Perform next iteration 

In principle, the method described above is similar to that by Bonnet and Mukherjee 

(1996), but it has been derived differently and expressed in a different form. 

Although this iterative method is relatively easy to code, it requires large computer 

memory. This is because the system equations are formulated in terms of strain increments, 

which have 6 degrees of freedom at each node. Even if the block decomposition technique 

is employed for the coefficient matrix, as described by Bonnet and Mukherjee (1996), the 

computer memory requirement is substantial. Thus, this method is impractical in real 

engineering applications. 
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8.4 Incremental Variable Stiffness Solution Schemes 

In this section, robust solution schemes are developed based on the variable stiffness 

approach (Raveendra, 1984; Banerjee et al., 1989; Banerjee, 1994). This approach requires 

less computer memory: for large problems, the number of degrees of freedom is equal to 

the number of nodes. Moreover, if small increments are applied, this method can give 

satisfactory results without iteration. 

8.4.1 Boundary Unknown Representation 

In this sub-section, the variable stiffness approach proposed by Raveendra (1984) and 

Banerjee et al. (1989) is described. 

The total number of nodes is denoted by N. For each node, say node n, the flow rule 

and the plastic multiplier can be written (see Chapter 6) in incremental matrix forms, as: 

where 

(~a}(n) = [DeH~£}(n) - M(n) [DeH ;~}(n) 

~A(n) =!{adf }(n/[De]{~E}(n) = {Vf",}~n){~ae}(n) 
'V cr 

1 af 
{Vf",}(n) =-{-a }(n) 

'V a 

{~ae }(n) = [De]{LlE}(n) 

and 'V is determined using (6.40a). From equation (7.6), i.e., 

we have: 

Using equation (8.35) and (8.36), equation (8.32) leads to: 

where 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

(7.6)bis 

(8.36) 

(8.37a) 

(8.38) 
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A global initial stress vector can be formed from (8.37) for each node as: 

{~oP} = [d f
] {~A} 

where [df ] is a 6NxN sparse matrix, formed from (8.38). 

Substituting (S.37b) into (S.lS) and (S.19), yields: 

where 

[A b] {~} = {~yb} + [EbA] {~A} 

{~o} = [A G]{~} + {~yG} +[EG][df]{~A} 

(S.37b) 

(8.39) 

(S.40) 

(8.41 ) 

Substituting (8.40) into (S.36), and the result into (S.33), then written in global form, we 

obtain: 

{~A} = [Vf",] ([A G] {LU(} + {~yG) + [EG] [df ] {IlA} + [df] {~A}) (8.42) 

where [Vf",] is a Nx6N diagonally dominated strip sparse matrix, formed by (Vf", }~n) in 

(8.34). Rearranging (8.42) gives: 

where 

Inverting (8.43) gives: 

[HI.] = [I] - [Vf",] ([EG
] + [I] )[d f

] 

[A A] = [Vf",HA G] 

{~y"} =[Vf",]{~yG) 

Finally, substituting (8.47) into (8.39), we obtain: 

where 

[A]{dX} = {~y} 

[A] = [Ab ]-[Eb"][H"r1[A "] 

{IlY} = {~yb} -[Eb"][H"rl{~y"} 

(S.43) 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

(8.48) 

(8.49) 

(8.50) 

Equation (8.48) is constructed and solved for the boundary unknowns {~X} for every 

increment of loading. Once these unknowns are obtained, we can obtain {~A} from 
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equation (8.47). Then, we can obtain the stress increment fda} from (8.40). The detailed 

solution process can be found in Banerjee (1994). 

In this solution scheme, the largest matrix is either [HA] of size NxN or [A] of size 

3Nbx3Nb, where Nb is the number of boundary nodes. In any case, this is much less than 

the size (6Nx6N) of the stiffness matrix [K] described in the preceding section. Therefore, 

much larger problems can be solved, other things being equal, using this scheme. 

Since both the square matrices [HA] and [A] are functions of stresses, in every 

increment they must be reformed. However, most of the computational time is spent in the 

evaluation of the inverse of the matrix [HA] in (8.47) and in the solution of equation 

(8.48). To save computational time, a more effective assembly process is needed: this is 

described in the following section. 

8.4.2 Plastic Multiplier Representation 

In this sub-section, anew, more efficient, assembly process for the variable stiffness 

approach is proposed. 

Inverting (8.18) and using (8.37b), it follows that: 

where 

{L\X} = {d yC} + [A C ][d f
] {IlA} 

{dYC} = [Abr1{llyb} 

[AC
] = [A brl[Eb] 

Substituting equations (8.51) and (8.37b) into (8.19), leads to: 

where 

{Ila} = {dye} + [EHd f
] (dA) 

{Il ye} = {~yO} + [A 0] {~yc} 

[E] = [EG]+[A GHAC
] 

(8.51) 

(8.52) 

(8.53) 

(8.54) 

(8.55) . 

(8.56) 

Substituting (8.54) and (8.37b) into (8.36), and the result into (8.33), written in matrix 

form, we obtain: 

{1lA.} = [V f'V] ( {Il ye } + [E] [d f ] {1lA.} + [d f ] {IlA} ) (8.57) 
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where [Vf",l is a Nx6N sparse matrix, formed from {Vf",}~n) in (8.34). 

Rearranging (8.57), we obtain the system equations: 

[H] {L~A} = {L\ yf} (8.58) 

where 

[H] = [I] - [Vf",][C][df ] (8.59) 

{L\ yf} = [Vf",HL\ ye} (8.60) 

In (8.59), [C] is a constant matrix: 

[C] = [I] + [E] (8.61) 

Once the {L\A.} is solved from (8.58), the increments of the boundary unknowns and 

stresses can be computed using (8.51) and (8.54), respectively. In all the equations, only 

[Vf",] and [d f
], which explicitly appear in equations and are determined using (8.34) and 

(8.38), respectively, involve stresses. Therefore, (8.58) is an explicit method for evaluation 

of the plastic multiplier increment {L\A}. Moreover, in computation, only the square 

matrix [H] with size NxN needs to be reformed for each increment. Hence, this solution 

scheme needs less computational time than the previous one. 

8.4.3 Iteration Schemes for Variable Stiffness Algorithms 

For small increments, no iteration is needed in the variable stiffness approach. However, 

what is meant by "small" in this context is difficult to quantify. In this sub-section, novel 

iterative procedures are proposed for the two variable stiffness approaches described 

earlier, in order to improve their accuracy in practice. 

The essential idea is to minimize the residuals of the system equations through an 

iterative process. These operations are described in what follows: 

Iteration Scheme for Boundary Unknown Representation 

In this approach, equations (8.39) and (8.40) are the system equations. The notation {a}n' 

{X}n and {A}n is used to denote the stress, boundary unknown and plastic multiplier 
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matrices, respectively, at the end of the n-th increment. For the new increments {L\ yb} and 

{L\ ya}, we use {a}i, {Xli and {A}i to denote the results after the i-th iteration. The 

residuals of equations (8.39) and (8.40) can be written as: 

{Rx}i = {L\yb}+[Eb).]i({A}i -{An})-[Ab]({X}i -{X}n) (8.62) 

{Ro}i = [AO]({X}i -{X}n)+{L\YO}+[EO][df]i({A}i -{An})-({a}i -{aln) (8.63) 

If one or both of the norms of {Rx}i and {Ro}i are greater than a given tolerance, then we 

replace {Ayb} and {L\ yO} with {Rx}i and {Ro}i in (8.39) and (8.40), and repeat the 

process. Flow Chart 8.2 shows the details. 

Flow Chart 8.2 Iterative process for Boundary Unknown Representation 

1. Impose load increment {L\ yb} and {A ya} and 

the corresponding elastic stress increment {Aye} 

2. Scale stresses for each node 

{at} = {a} n + {Aye} 

IF f( crt )<TOLf THEN {a} n = {at} and next node 

ELSE IF f( crn)<O THEN 

a= -f(a) {cr}n = {cr}n +a{Aye}; {L\ye} = (1-a){Aye) 
f(crt)-f(a) 

3. Initialise iterative variables for each node 

4. Calculate residual of the elementary equations 

{Rb}i = {Ayb}+[Eb).]i({A.}i -{A.n})-[Ab]({X}i -{X}n) 

{Ra}1 =[AO]({X}i_{X}n)+{AYO}+[EO][df]i({A}i -{An})-({a}i -{a}n) 

5. Check convergence 

IF \{Rb}i\<TOLb, AND \{Ro}i\<TOLo THEN 

Local stress-return iteration for each node (GSR method in Flow Chart 6.1) 

GOTO 1 for next increment 
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6. Evaluate non-linear matrices 

[HA]i = [I] - [Vf'l't ([EO] + [I]) [df t; 
{~yA}i = [Vf'l']i{Ro}i 

[At =[Ab]_[EbA]i([HA]irl[AA]i; {~y}i ={Rb}i _[Eb)']i([H)']irl{~yA}i 

7. Solve system equations for {~} by 

8. Evaluate change in plastic multiplier using {AX} 

{~A.}= ([HA]irl[A A]i{~}+ ([H).trl{~yA}i 

9. Evaluate change in stress using {~} and {~A.} 

10. Evaluate changes in internal variables 

{~eP} = [af /a<1]{~A.}; {~eP} = c' ~{~eP}' {~eP} 

11. Update variables for each node 

{a}i+1 = {ali + {~(J}; {X}i+l = {Xli + {~}; 

{A}i+1 ={A}i +{~A}; k(eP)=k(eP)+k(~eP) 

12. i=i+ 1; GOTO 4 for next iteration 

It is noted that in the above process, the matrices [Vf'l'] and [df] are zero for elastic nodes. 

Iteration Scheme for Plastic Multiplier Representation 

In this approach, equation (8.58) is the system equations. After the i-th iteration in the 

(n+ 1 )-th increment, the residuals of equations (8.58) can be written as: 

(8.64) 

If the norm of {R).}i is greater than a given tolerance, then we replace {~yf} with {RA}i 

and solve equation (8.58) for a new {~A}. Then, new changes in boundary unknowns and 

stresses can be computed using the terms involving {~A.} in (8.51) and (8.54). Flow Chart 

8.3 shows the details. 
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Flow Chart 8.3 Iterative process for Plastic Multiplier Representation 

1. Impose load increment {~yb} and {~ya} and corresponding elastic stress 

2. Scale stresses for each node 

{ at } = { a} n + {~ ye } 

IF f( at )<TOLr THEN {a} n = { at} and next node 

ELSE IF f(an)<O THEN 

-f(cr) 
a= f(at)-f(cr); {a}n ={a}n +a{~ye}; {~ye}=(1_a){~ye} 

3. Initialise iterative variables for each node 

4. Evaluate non-linear matrices using stress {a}i 

5. Calculate residual of the elementary equation 

{RA}i ={~yf}i _[H]i({A}i -{An}) 

6. Check convergence 

IF I{RA}il<TOLA THEN 

Local stress-return iteration for each node (OSR method in Flow Chart 6.1) 

OOTO 1 for next increment 

7. Solve system equations for {~A.} by 

8. Evaluate change in boundary unknowns using {~A.} 

{dX} = [A C ][d f t {~A.} 
9. Evaluate change in stress using {~A} 

10. Evaluate changes in internal variables 
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11. Update variables for each node 

{a}i+l = {ali + {~a}; {X}i+1 = {Xli + {~}; 

{A}i+l = {A}i + {~A}; keEP) = keEP) + k(~eP) 

12. i=i+ 1; GOTO 4 for next iteration 

It is noted that stress scaling (step 2, above) is necessary to determine the stress state in the 

current increment. Since in every increment the sum of the stresses at end of the previous 

increment and the elastic stress increment calculated for the current increment may cross 

the yield surface, determination of the stresses right at the yield point is critical in the 

calculation of correct non-linear matrices. On the other hand, the local stress-return 

iteration described in Flow Chart 6.1 to draw stress to the yield surface in step 6 is not 

essential. 

8.5 Summary 

In this Chapter, solution schemes for the Newton-Raphson iteration and variable stiffness 

algorithms are described. The former incorporates the consistent tangent operator method 

in the iterative process, so quadratic rate of convergence can be achieved. However, since 

the system equations are expressed in terms of strain increments, this scheme requires 

considerable computer memory. In the latter, apart from the existing variable stiffness 

solution scheme (Le., the boundary unknown presentation method), a novel plastic 

multiplier presentation method is proposed, which has greater computational efficiency. To 

improve computational accuracy, two iterative schemes for these two variable stiffness 

methods are proposed for the first time, which enable us to use larger increments. 

These solution scheme are coded in a computer program, which is described in the 

following Chapter, together with a number of numerical examples. 
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Chapter 9 

Applications of Non-Linear BEM 

The boundary element solution of three-dimensional problems of elastoplasticity is 

evidently complex and should be thoroughly validated. This chapter describes some work 

carried out for this purpose using the computer code (BEAN3D) which was developed 

during this research study. In addition to the 3D analyses described in the last three 

chapters, plane strain and plane stress analyses are also incorporated in the program. The 

program has the following features: 

• Boundary elements: 

2D: 2 noded Linear and 3 noded quadratic isoparametric elements 

3D: 4 noded Linear and 8 noded quadratic isoparametric elements 

• Volume cells: 

2D: 4 noded linear and 20 noded quadratic isoparametric cells 

3D: 8 noded linear and 20 noded quadratic isoparametric cells 

• Material models: Tresca, Von Mises, Mohr-Coulomb and Drucker-Prager. All with 

hardening, softening and perfect plasticity. 

• Solver of system equations: 

Newton-Raphson iterative scheme. 

Incremental variable stiffness technique. 

• Traction-discontinuous problems are solved using multiple-node technique. 

• Consideration of 7 symmetry conditions (about the axes): 

x, y, z, x-y, y-z, z-x, x-y-z. 
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• Self-adaptive algorithm in the evaluation of non-singular integrals (including 

automatically sub-dividing boundary elements and internal cells and choosing Gauss 

order). 

A number of 2D and 3D benchmark tests have been analysed using this program and some 

of these are described here. Apart from the first example, which was analysed using both 

the Newton-Raphson iterative scheme and the variable stiffness solution scheme, all other 

examples were analysed using the variable stiffness solution scheme. The Gauss-Jordan 

partial pivoting method (with single precision arithmetic) was used to solve the algebraic 

matrix equations in all cases. 

9.1 3D Cube Under Uniaxial Tension 

This first example deals with a cube subjected to tensile displacement (Fig.9.l). The 

material satisfies the Von Mises criterion, and this example is intended to illustrate 

hardening, perfect plasticity, and softening phenomena under uniaxial loading. 

z u=30 

E=l 

v=0.3 

i cry = 0.8 

Y 

~~~----------~I----~----~X 
I 

10. -. 

Fig.9.1 A cube under tension 

The cube was discretized by four boundary elements per surface and eight volume cells and 

the "roller" condition was imposed on the three planes x=O, y=O and z=O. The 

computation is displacement-controlled. Table 9.1 gives some values of selected 

components of the initial stress coefficients which are calculated, in the current method, 

using the equation: 
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N 

E~~ = JEijkJ (p,q){ Na(q) - Oap}dn(q) + Oap! JEjjkJ (p, Q) rmnm In rdr(Q) (8.13)bis 
~ ~~ 

and calculated, in the direct technique (Banerjee and Davies, 1984), using the equation, 

E~~ = JEijk] (p,q)Na(q)dn(q) . There is a marked difference (15-50%) between the two 
ac 

sets of coefficients which, in the light of the results obtained later, suggests that the error 

lies with the direct method. There appears to be no significant difference in the disparity 

between the two sets of coefficients whether one considers linear or quadratic cells., 

Table 9.1 Selected initial stress coefficients E~~ (x 1 0-2
) 

Eca 
1111 Eca 

1122 Eca 
2211 Eca 

1212 

Linear cell Current -50.778 6.3413 6.3413 -49.222 

and Element Direct -57.983 9.9438 9.9438 -42.017 

Quadratic cell Current -57.115 9.5101 9.5101 -42.885 

and Element Direct -64.320 13.113 13.113 -35.680 

Table 9.2 gives the computed results at the cube centre for a linear hardening case 

(H' = 0.1) , using linear and quadratic elements and cells. From Table 9.2 it is observed that 

the results calculated by the current method are in excellent agreement with the analytical 

solutions. The results obtained using the direct technique are poor, although they are 

distinctly better for the quadratic cells and elements. 

Table 9.2 Calculated results for the cube centre (H' = 0.1) 

azz E~z uz ux 

Linear cell Current 1.0000 2.0000 15.000 -6.500 

and Element Direct 0.9675 1.5552 13.948 -5.972 

Quadratic cell Current 0.9999 1.997 14.992 -6.498 

and Element Direct 1.0776 2.0473 15.479 -6.742 

Analytical Solution 1.0 2.0 15.0 -6.5 
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Fig.9.2 shows computed results for hardening (H' =0.1), perfect plasticity (H' =0), and 

softening (H' =-0.1). All of these results are, essentially, exact and illustrate the capacity of 

the program to cope with the spectrum of hardening rules. 
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Fig.9.2 Hardening, perfect plasticity, and softening performance 

This problem was analysed using both the Newton-Raphson iterative method and the 

variable stiffness method: both methods gave the same results. In this problem, the results 
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are essentially independent of increment size, provided that stress-scaling is carried out 

when the trial stresses {crt} cross the yield surface. 

9.2 2D Thick-Wall Cylinder Under Internal Pressure 

The second numerical example considered is a thick cylinder subjected to internal 

pressures (Fig.9.3), under plane strain conditions. The Tresca yield criterion is assumed and 

the numerical solutions obtained are compared with the theoretical results of Lubliner 

(1990). The pressure/radial displacement characteristics are shown in Fig.9.4 and radial and 

circumferential (hoop) stress distributions for specified pressure values, p=20 and p=18, 

are plotted in Fig.9.5. To examine the dependence of the results on load increment size, 

plots of radial and hoop stress against the number of the increments (for radius r= 1 00 

(inner surface) and r=150 (middle surface», are reproduced in Fig.9.6. 

100 

E = 21000 

v = 0.3 

100 

Fig.9.3 Mesh and material properties of an internally pressurised thick cylinder 
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Fig.9.S Radial and hoop stresses distributions along radius 

On the scale of Fig.9.4, the theoretical and numerical results are indistinguishable. 

Similarly, the radial stresses (Fig.9.S) are also essentially exact. Some discrepancies (2-3%) 

are apparent however in the hoop stresses at the higher load levels ( in the interior), 

although the hoop stresses at the outer boundary are well-captured. The reason for these 
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discrepancies have not been fully investigated, but may be due to direct or consequential 

effects of the geometrical discretisation. 
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Fig.9.6 Stresses versus number of increments (p = 20) 

5 

Fig.9.6 shows that, at the inner surface, a stable solution is obtained using very few 

increments of loading. However, the internal solution is more sensitive to the number of 

increments employed, presumably because the plastic front must be tracked quite 

accurately in order to determine these stresses accurately, especially given the fairly coarse 

mesh employed in the radial direction. 

9.3 2D Rigid Punch 

In this example, a rigid punch is impressed into a finite continuum under plane-strain 

conditions. Since the punch is rigid and the contact conditions are assumed to be 

frictionless, it is possible to simulate the contact by gradually increasing the vertical 

displacements at the nodes. Hence, this plasticity test is displacement-controlled. Fig.9.7 

summarises the model, in which only half of the punch is discretized into cells. The 

assembly consists of 528 nodes including 120 boundary nodes, 60 boundary elements, and 

143 internal cells. Computations were carried out using the Von Mises criterion for perfect 

plasticity (H' =0) and isotropic hardening (H' =O.IIIE). 
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Fig.9.7 Computation model of a 2D punch problem 

Figs.9.S and 9.9 show the computed results for these two ca es, with tre se for the point 

F, at coordinates (SO,20). The FEM results are from the benchmarks by Linkens (1993), 

where the stres values (at the point F) were obtained by extrapol tion fr m the G u 

points of the element at the upper left of the point F. Fig.9.S(a) depict the load

di placement response of the punch: there is very good agreement betw en th M 

(Reference) and current result. The reasons for the rna]] di crepancy j unknown. 

Fig.9.8(b) is a plot of the vertical tres beneath the edge of the punch, a a functi n 

punch displacem.ent. The stres gradient are high here 0 the extrapolation (emp! yed only 

in the FEM analysis) may not be entirely ati factory. Two FEM re u1t are hown: the 

"target" results were obtained u ing a mesh not unlike the B M cell con iguration, whil 

the "reference" re ults were obtained using an undefined (but presumably iner) me h. 

The "target" re ult do not appear to be entirely convincing (two inflection point). her 

is excellent qualitative agreement between the "reference' r ult and our "current" 

results, and fair quantative agreement. Certainly, the differenc between the BEM and 

"reference" result is far le than between the two et of FEM re ult. urth r 

convergence tudie would e tabli h a definitive an wer to this demanding te t of accuracy. 

Fig.9.8(c) hows the convergence characteri tic of our current method, in t rm of variou 

stress and strain components at the point ,where different increment are u ed for th 

arne input displacement 0.24. Sati factory convergence i achieved with ab ut 40 
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increments. From Fig.9.8(c) we can also observe that the (Mises) equivalent stress value of 

unity is reached quickly, while the FEM results (not plotted here) deviate from this value. 

This indicates that the current results are more credible than the FEM results. 
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Fig.9.8 Computed results for perfect plasticity (H' =0) 
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Fig.9.9(a)/(b) are illustrative results for hardening plasticity and again agree very well with 

the finite element (Reference) solutions. 
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Fig.9.9 Computed results for hardening material (H' =O.111E) 

9.4 Half-Space Under Vertical Loading 

This example pertains to the collapse behaviour of a square footing (with dimension B = 1) 

on the surface of a half-space. It is conventional practice to express the collapse load in 

terms of the undrained shear strength (Cu) of the soil. From the definition of the equiva1ent 

stress Oy (uniaxial tension yield limit) which characterises the von Mises yield criterion, it 
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can be easily shown that (jy = 2eu • The computation was carried out for flexible and rigid 

footings, using quadratic boundary elements and internal cells. The far-field ground surface 

was discretised using progressively larger boundary elements. At each n'ode shared by the 

footing and ground surface, two nodes were used to model the traction-discontinuity. 

Young's modulus E= 1 000 and Poison's ratio v=0.3 are assumed through out. The 

displacements in the following figures should be divided by 103 to recover the actual 

displacements. 

9.4.1 3D Flexible Footing 

In this case, uniform vertical pressure is applied on the footing and quadrantal symmetry is 

utilised. To examine the convergence characteristics, three analyses were performed: (a) 

155 nodes (including 48 boundary nodes), 11 boundary elements and 15 cells; (b) 476 

nodes (including 119 boundary nodes), 32 boundary elements and 64 cells; and (c) 1197 

nodes (including 200 boundary nodes), 57 boundary elements and 198 cells. The number of 

elements over (the quadrant 00 the footing is one, four and nine, respectively. Fig.9.10 

shows the meshes for each case (over the expected yield region only), depicting both the 

boundary elements and the corresponding cells. Figs.9.11-9.13 are load-displacement plots 

for the corner and the centre of the footing, as well as the "mean" displacement. The latter 

is approximated using the equation (Fox, 1948) u M =.!. (ucorner + 2ucentre )ne~ble. This should 
3 

yield approximately the same displacement as a rigid footing. 

1 element over footing 
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4 elements over footing 

9 elements over footing 

Fig.9.10 Boundary elements and internal cells for footing problem 
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Fig.9.12 Load versus central settlement, for a square flexible footing 

Fig.9.11 shows that there is little difference between the results up to a load level of 5CuB2. 

The coarse discretisations however fail to capture the collapse (at about 6CuB2) and instead 

return a monotonically increasing function to higher load levels. The convergence 

characteristics are more clearly illustrated in Fig.9.12. Here, one can see the departure 

between the three levels of discretisation, and the marked non-linearity of the load

displacement response, at load levels of 4CuB2 and above. Also, the relatively small 

difference between the results for four elements (over the footing quadrant) with respect to 

results for nine elements suggests that convergence is very nearly achieved at the latter 

level. The horizontal asympotote, indicating collapse, is also apparent in this case. Fig.9.13 

combines the data obtained from the previous two figures, using the equation given 

previously. This figure may be interpreted as an approximation to the load-displacement 

plot for a rigid footing. 
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Fig.9.13 Load versus mean settlement, for a square flexible footing 

To highlight the convergence, the loads corresponding to a normalised displacement of 

22.0 (in Fig.9.13) are replotted in Fig.9.l4. This suggests that the true collapse load is 

about 6.0. 
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Fig.9.14 Convergence of footing collapse load solutions 

Fig.9.l5 identifies which nodes yield (near to collapse) in plan and in transverse section. 

The yield region extends laterally to encompass an area equal to at least four times the 

footing area and to a depth rather greater than the footing width. 
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The exact solution to this problem is not known. However, the collapse load for a rigid 

circular footing under the same condition is given by Fc=6AcCu where Ac is the area of the 

footing, and it is probable that the collapse load for a square footing will not be much 

greater. 

9.4.2 3D Rigid Footing 

A rigid square footing with the same geometry as above is now analysed. As demonstrated 

in Chapter 2, a very fine mesh is necessary to capture the stress concentration at the edges 

reasonably accurately. Therefore, as well as using the 9 element mesh (over the footing), a 

finer mesh is also used here (2462 nodes, including 325 boundary nodes, 96 boundary 

elements and 448 cells). This mesh uses 16 elements to model one quadrant of the footing. 

Fig.9.16 depicts the boundary elements over the ground surface and a transverse section 

view of the cells (both within the expected yield region). 
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(a) (b) 

Fig.9.16 Boundary element discretisation (within expected yield region) 

(a) plan view (quadrant), (b) transverse section view 
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Fig.9.17 Load-settlement response for a square rigid footing 

Fig.9.17 is a plot of the load-settlement response for the 9- and 16-element meshes. There 

is a significant difference between the two sets of results, which means that convergence 

has not yet been attained. This is also evident from the fact that the horizontal asymptote 

has not been approached either. One might speculate that about thirty elements might be 

necessary to achieve satisfactory convergence. However, this level of discretisation is 

impractical with our current computing resources and this suggestion must therefore 

remain conjectural. Further, as the numbers of degree of freedom increases, the stability of 

the Gauss-Jordan solver used here must come into question. More stable and efficient 

solvers (see Leung & Walker, 1997) will certainly be required in this case. 
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9.4.3 2D Rigid Footing 

In this section, we analyse some two-dimensional (plane strain) rigid footing problems, 

using fine meshes. Fig.9.18 shows the computational model for a rigid footing (with 

dimension B=I) and, in particular, the internal cells, which is subjected to an eccentric 

vertical force F. The discretization consists of 623 nodes, 30 boundary elements and 180 

cells. 

y 

Aigid footing F 
Far-field area ~e~ Far-field area 

~ " 
x 

Fig.9.18 Mesh for rigid strip footing subjected to eccentric vertical load 

The boundary conditions are conveniently imposed by incrementing the centroidal 

displacement Uc and the rotation S, in such a way that the ratio of moment to vertical force 

is maintained constant (e) (Davies and Gao, 1999). Fig.9.19 is a plot of the load

displacement response for centric loading (e=O) and Fig.9.20 depicts the evolution of the 

yielded zone. As expected, yielding begins beneath the edges of the lOoting (Fig.9.20) and 

then the plastic enclave grows progressively, while always enclosing an elastic region 

centred underneath the footing centroid. Collapse occurs only when the plastic enclave 

reaches a depth in excess of 1.5B. In Fig.9.l9, we observe that collapse (indicated by 

solution instability) occurs at a load level of 5.11 BCu (Le., within 1 % of the theoretical 

collapse load of (1t+2)BCu). It is believed that a better equation solver might eliminate the 

spurious data generated at the collapse load level. 
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Fig.9.20 Growth of plastic yield zone under centric loading (e=O) 
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Figs.9.21 and 9.22 are the principal results obtained for one case of eccentric loading (elB 

= 0.2). This is a severe test of the model since the loading lies just outside the "middle

third". Hence, the vertical stresses at one edge are expected to be near zero, if not tensile. 

(The material model employed here, Von Mises does not incorporate a "tension cut-off" 

and therefore a "real" soil mechanics analysis is not being attempted here). Fig.9.21 (a) 

shoes how the edge displacement (on the load side) increases with increasing load. With 

little warning, at a load level of 3.2BCu, the solution becomes unstable which we interpret 

as the collapse load. From limit equilibrium conditions, we would expect collapse at about 

60% of the centric collapse load (Le. 3.07BCu), so this result seems reasonable. Indeed, 

from a physical point of view, it does seem likely that collapse would be very sudden under 

such eccentric loading. Rotations of the footing (Fig.9.21(b)) also increases steadily with 

increasing load and again there is little evidence of the impending collapse. Fig.9.21(c) 

demonstrates that the displacement-controlled algorithm correctly increments the 

momentlload condition: they remain proportional up to collapse. 
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Fig.9.21 Computed results (e=O.2B) 

Fig.9.22 depicts the growth of the plastic enclave with increasing load. This spreads out 

from beneath one edge steadily increasing in area until, very near to collapse, rapid 

expansion occurs. This, of course, reflects the sudden collapse noted earlier. It is also 

observed that at these higher load levels, a separate plastic enclave begins to develop under 

the opposite edge. When the two coalesce, rotational failure surely follows. Finally, it may 

be remarked that the maximum depth of the plastic enclave is less than the footing width 

(much less than in the case of centric loading). 
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(F=2.68) (F=3.1S) (After collapse) 

Fig.9.22 Growth of plastic yield zone under eccentric loading (e=O.2B) 

9.5 Summary 

In this Chapter, we have demonstrated the numerical performance of the elasto-plastic 

boundary element method described in this thesis. The comparisons with various 

benchmarks show that this method can give very satisfactory numerical solutions. Where 

(theoretical) stress singularities occur, as in rigid footing problems, it is necessary to use 

very fine meshes to achieve high accuracy. For such problems, it would probably be 

advantageous to use "non-conforming" elements (or multiple nodes) to isolate the 

singularity, but this has not been explored here. In the variable stiffness scheme, the 

number of degrees of freedom is equal to the total number of nodes (boundary elements 

and cells). This means that large matrices must be solved, yet these are still tractable for 3D 

problems of practical interest, even with quite modest computing resources. Nevertheless, 

it is evident (for reasons of solution stability as well as efficiency) that adoption of state-of

the-art matrix reduction algorithms (Le. GMRES) is desirable in demanding applications of 

the method. In the final Chapter of this thesis, these observations are drawn together to 

compile a list of desirable refinements of the current program. 
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Chapter 10 

Conclusions and Recommendations 

10.1 Summary and Conclusions 

This thesis was aimed at resolving some important issues in boundary element analysis in 

solid mechanics. Particular emphasis has been placed on the treatment of comers and edges 

arising in traction-discontinuity problems, especially in multi-region problems; development 

of the infinite boundary element technique for multi-layered media; the evaluation of 

strongly singular domain integrals in calculating interior stresses, and the solution 

techniques in non-linear BEM. The following conclusions can be made: 

• A multiple-node technique was employed to solve the corner problem, where 

displacements are uniquely defined but tractions are multi-valued. Novel auxiliary 

equations, which are required to supplement the fundamental boundary integral 

equations, are derived from the symmetric property and the equilibrium equations of the 

stress tensor. These equations are very simple and can be used to deal with the corners 

and edges of single region and multi-region problems in elastostatics, plasticity and 

dynamics. For 2D problems, these auxiliary equations do not invoke the assumption of a 

continuous stress field, but this more restrictive assumption may be required for some 

3D problems. 

• A sub-structure algorithm has been developed for solving multi-region problems with 

comers and edges, using the auxiliary equations. This algorithm can deal with arbitrarily 

many zones. We show that the conventional approach fails where more than two zones 

intersect. 
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• A novel infinite element formulation was developed, in which the strongly singular 

surface integrals over the infinite surface are evaluated analytically. Using these 

analytical formulation, no numerical integrations over the far field are needed, resulting 

in significant saving in the calculation time, and resulting in improved accuracy. 

• A new effective algorithm was proposed for accurate evaluation of the strongly singular 

domain integrals in calculating interior stresses. The results derived here provide a basis 

for removing the strong singularities in both initial stress and initial strain approaches. 

The resulting transformed integrals, which have the same simple forms for both 2D and 

3D problems and suitable for any isoparametric (linear or higher order) cells, are fully 

numerical and are performed only over cells' boundaries surrounding the source point 

rather than over the whole boundary of the body under consideration. This results in 

significant economics in computational time. 

• Two type of solution techniques for the non-linear system of equations have been 

advanced. The consistent tangent operator has been incorporated in the Newton

Raphson iterative process which leads to a quadratic rate of convergence. However, 

since the system equations are formulated in terms of the strain increments, it is 

impracticable for solving large-scale problems. In the second solution technique (Le., 

the incremental variable stiffness technique), a new assembly process was proposed, in 

which the system equations are expressed in terms of plastic multipliers-. This 

assembly process results in an explicit system equations and greater computational 

speed than the existing variable stiffness method. Since the number of the degrees of 

freedom is equal to the number of the nodes, larger problems can be solved using this 

technique. Further, iterative processes were proposed for both the existing variable 

stiffness method and the new one, so larger load increments can be used. In both 

solution techniques, since strain space constitutive relations are used, hardening, 

perfect-plasticity and softening behaviour are treated in a unified way. 
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10.2 Recommendations for Further Work 

The work described in this thesis provides an important basis for some further work in 

boundary element analysis. The suggestions that are considered most relevant are as 

follows: 

• Multi-region non-linear boundary element analysis: the non-linear formulations and the 

infinite boundary element technique described in this thesis should be combined with 

the multi-region boundary element algorithm described in the earlier part of the thesis, 

to deal with more complicated engineering problems. 

• Isotropic elastoplastic damage analysis: the strain-space elastoplastic constitutive 

relationships can be readily developed to solve damage mechanics problems. Damage 

variables can be regarded as internal variables in the loading functions. Softening is a 

major feature in the damage analysis. 

• Direct evaluation of the boundary stresses: the stress-recovery method employed in the 

current program gives unsatisfactory results for coarse meshes. To overcome this 

deficiency, the direct method based on the regularization using deformation modes 

(described in Chapter 7) could be developed to evaluate the boundary stresses. 

• Use of the discontinuous elements: the continuous elements used in current program 

requires use of fine meshes for solving some displacement-specified problems, such as 

the rigid foundation problems, where the stresses are singular at the edges. 

Discontinuous elements could obviate this problem, although perhaps at the loss of 

some rigour. 

In addition, pre- and post-processors need to be developed. Software such as Auto CAD 

may be useful for this purpose. More efficient equation solution techniques (e.g. GMRES) 

should also be incorporated. 

181 



References 

References 

[1] Abedzadeh, F. and Pak, R.Y.S. (1995) Horizontal translation and rocking rotation of a 

rigid tubular foundation. Geotechnique, 45, No.1, 83-94. 

[2] Alarcon, A., Martin, A. and Paris, F. (1979) Boundary elements in potential and 

elasticity theory. Comput. Struct., 10, 351-362. 

[3] Aliabadi, M. H. and Rooke, D.P. (1991) Numerical Fracture Mechanics, Kluwer 

Academic Publishers, Dordrecht, and, Computational Mechanics Publications, 

Southampton. 

[4] Aliabadi, M. H. (1997) Boundary element fonnulations in fracture mechanics. Appl. 

M echo Rev., 50, 83-96. 

[5] Bailecki, R. and Nahlik, R. (1987) Linear equations solver for large block matrices 

arising in boundary element methods. Boundary Elements IX, Vol. 1 , Computational 

Mechanics Publications, Springer-Verlag, Southampton and Boston. 

[6] Bailecki, R. (1987) Nonlinear equations solver for large equation sets arising when 

using BEM in homogenous regions of nonlinear material. Boundary Elements IX, 

Vol. 1 , Computational Mechanics Publications, Springer-Verlag, Southampton and 

Boston. 

[7] Banerjee, P. K. and Butterfield, R. (1981) Boundary element methods in engineering 

science, McGRAW-HILL Book Company (UK) Limited, pp.l68-176. 

[8] Banerjee, P.K. and Cathie, D.N. ( 1980) A direct formulation and numerical 

implementation of the boundary element method for two-dimensional problems of 

elasto-plasticity, Int. J. Mech. Sci., 22, pp. 233-245. 

182 



References 

[9] Banerjee, P.K., Cathie, D.N. and Davies, T.G. (1979) Two and three-dimensional 

problems of elasto-plasticity. In Developments in Boundary Element Methods, Elsevier 

Applied Science Publishers, London. 

[10] Banerjee, P.K., and Davies, T.G. (1979) Analysis of some case histories of laterally 

loaded pile groups. In: Proc. of Int. Conf. On Numerical Methods in Offshore Piling, 

Institution of Civil Engineers, London. 

[11] Banerjee, P.K., and Davies, T.G. (1984) Advanced implementation of the boundary 

element methods for three-dimensional problems of elasto-plasticity, in:Developments 

in Boundary Element Methods, Elsevier, London. 

[12] Banerjee, P.K. and Raveendra, S.T. (1986) Advanced boundary element analysis of 

two- and three-dimensional problems of elasto-plasticity, Int. J. Num. Meth. Engng., 

23, pp. 985-1002. 

[13] Banerjee, P.K., Ahmad, S. and Manolis, G.D. (1986) Advanced boundary element 

method for two and three-dimensional problems of elastodynamics. Int. J. Earthqu. 

Engng. Struct. Dynam., 14,933-949. 

[14] Banerjee, P.K., Henry, D.P. and Raveendra, S.T. (1989) Advanced inelastic analysis of 

solids by the boundary element method. Int. J. Mech. Sci., 31, 309-322. 

[15] Banerjee, P.K., Israil, A.S.M. and Wang, H.C. (1992) Time-domain formulations of 

BEM . for two-dimensional, axisymmetric and three-dimensional transient 

elastodynamics. In Advanced Dynamic Analysis by Boundary Elelnent Methods, 

Elsevier Applied Science, London and New York, pp.115-153. 

[16] Banerjee, P. K. (1994) The Boundary Element Methods in Engineering, McGRAW

HILL BOOK COMPANY, pp.73-75. 

[17] Becker, A.A. (1992) The Boundary Element Method in Engineering, McGRAW

HILL BOOK COMPANY, London. 

183 



References 

[18] Beer, G., Watson, J.D. and Swoboda, G. (1987) Three-dimensional analysis of tunnels 

using infinite boundary elements', Computers and Geotechnics, 3, 37-58. 

[19] Beer, G. and Watson, J.D. (1989) Infinite boundary elements. Int. J. Numer. Methods 

Eng., 28, 1233-1247. 

[20] Beer, G. (1993) An efficient numerical method for modelling initiation and 

propagation of cracks along material interfaces. Int. J. Numer. Methods Eng., 36, 3579-

3594. 

[21] Betti, E. (1872) Teoria dell elastica. Il Nuovo Ciemento, 1872, 7-10. 

[22] Blandford, G.E., Ingraffea, A.R. and Liggett, J.A. (1981) Two-dimensional stress 

intensity factor computations using the boundary element method. Int. J. Num. Metlz. 

Eng., 17, 387-404. 

[23] Bonnet, M. (1989) Regular boundary integral equations for three-dimensional finite or 

infinite bodies with and without curved cracks in elastodynamics. In: Boundary 

Element Techniques: Applications "in Engineering, Eds C. A. Brebbia and N. Zamani, 

Computational Mechanics Publications, Southampton, UK. 

[24] Bonnet, M. and Mukherjee, S. (1996) Implicit BEM formulations for usual and 

sensitivity problems in elasto-plasticity using the consistent tangent operator concept. 

Int. J. Solids Structures, 33, 4461-4480. 

[25] Brebbia, C.A. (1978) The boundary element method for engineers. Pentech Press, 

London. 

[26] Brebbia, C.A. and Dominguez, J. (1977) Boundary element methods for potential 

problems. Applied Mathematical Modelling, 1, 7. 

[27] Brebbia, C.A. and Dominguez, J. (1992) Boundary elements: an introductory course, 

Computational Mechanics Publications, McGraw-Hill Book Company. 

[28] Brebbia, C. A., Telles, J. C. F. and Wrobel, L. C. (1984) Boundary Elelnent 

Techniques, Springer, Berlin and New York. 

184 



References 

[29] Brebbia, C. A. and Walker, S. (1980) Boundary element techniques in engineering, 

Newnes-Butterworths, London and Boston. 

[30] Bu, S. and Davies, T.G. (1995) Effective evaluation of non-singular integrals in 3D 

BEM. Advances in Engng. Software, 23, 121-128. 

[31] Bui, H.D. (1978) Some remarks about the formulation of three-dimensional 

thermoelastoplastic problems by integral equations, Int. J. Solids and Structures, 14, 

pp. 935-939. 

[32] Burghardt, B. and Van, A.L. (1998) A fully regularized direct boundary formulation 

for three-dimensional elastoplastic problems. In: Boundary Element XX, Eds. by A. 

Kassab, C.A. Brebbia and M. Chopra, Computational Mechanics Publications. 

[33] Butenschon, H. J., Mohrmann, W. and Bauer, W. (1989) Advanced stress analysis by 

a commercial BEM code. In: Industrial Applications of Boundary Element Methods 

(Edited by P. K. Banerjee and R. B. Wilson), pp. 239. 

[34] Butterfield, R. and Tomlin, G. R. (1971) Integral techniques for solving zoned 

anisotropic continuum problems. Proc. Int. Conf. On Variational Methods in 

Engineering, Southampton University, pp. 9/31-9/51. 

[35] Casey, J. and Naghdi, P.M. (1981) On the characterization of strain hardening in 

plasticity. J. Appl. Mech., 48, 285-296. 

[36] Cathie, D.N. (1980) On the implementation of elastoplastic boundary element 

analysis, Proc. 2nd Int. Seminar on Recent Advances in Boundary Element Methods 

(Brebbia ed.), Southampton, pp.318-334. 

[37] Chandra, A. and Saigal, S. (1991) A boundary element analysis of the axisymmetric 

extrusion process. In. J. Nonlinear Mech., 26, 1-13. 

[38] Chandra, A. and Mukherjee, S. (1996) Boundary Element Methods in Manufacturing. 

Oxford University Press, Oxford, UK. 

185 



References 

[39] Chaudonneret, M. (1978) On the discontinuity of the stress vector in the boundary 

integral equation method for elastic analysis, in Recent Advances in Boundary 

Element Methods, ed C. A. Brebbia, Pentech Press, London. 

[40] Chen, W. F. and Han, D.J. (1988) Plasticity for Structural Engineers. Springer

Verlag, London. 

[41] Chen, W. F. (1994) Constitutive Equations for Engineering Materials. Volume 2: 

Plasticity and Modeling. Elsevier, London. 

[42] Chen, Z.Q. and Ji, X. (1987) Boundary element analysis of finite deformation 

problems of elasto-plasticity. In M. Tanaka and Q. Du, eds., Theory and Application 

of Boundary Element Methods, Proc. 1st Japan-China Symp. On Boundary Element 

Methods, Pergamon, Oxford, pp. 261-270. 

[43] Chen, H., Wang, Y.C. and Lu, P. (1996) Stress rate integral equations of 

elastoplasticity. ACTA Mechanica Sinica (English Series), 12,55-64. 

[44] Cisilino, A.P., Aliabadi, M.H. and Otegui, J.L. (1998) A three-dimension boundary 

element formulation for the elastoplastic analysis for cracked bodies. Int. J. Numer. 

Meth. Engng., 42, 237-256. 

[45] Crisfield, M.A. (1991) Non-linear Finite Element Analysis of Solids and Structures. 

John Wiley & Sons, Chichester. 

[46] Crisfield, M.A. (1997) Non-linear Finite Element Analysis of Solids and Structures. 

John Wiley & Sons, Chichester. 

[47] Crotty, 1. M. (1982) A block equation solver for large unsymmetric matrices arising 

in the boundary element method. Int. 1. Num. Meth. Engng., 18,997-1017. 

[48] Crotty, J. M. and Wardle, L.J. (1985) Boundary integral analysis of piecewise 

homogeneous media with structural discontinuities. Int. 1. Roch Mech. Min. Sci. 

Geomech. Abstr., 22, 419-427. 

186 



References 

[49] Crouch, S.L. and Starfield, A.M. (1983) Boundary element methods in solid 

mechanics. George Allen & Unwin, London. 

[50] Cruse, T.A. and Rizzo, F.J. (1968) A direct formulation and numerical solution of the 

general transient elastodynamic problem I. Journal of Math. Analysis and 

Applications, 22, 244. 

[51] Cruse, T.A. (1968) A direct formulation and numerical solution of the general 

transient elastodynamic problem II. Journal of Math. Analysis and Applications, 22, 

341. 

[52] Cruse, T.A. (1969) Numerical solutions in three dimensional elastostatics. Int. J. 

Solids and Structures, 5,1259-1274. 

[53] Cruse, T. A. (1974) An improved boundary-integral equation method for three 

dimensional elastic stress analysis. Comput. Struct., 4, 741-754. 

[54] Cruse, T.A. and Myers, GJ. (1977) Three-dimensional fracture mechanics analysis. 

1. Struct. Div. (ASCE), 103, 309-320. 

[55] Cruse, T.A. (1978) Two-dimensional BIE fracture mechanics analysis. Appl. Math. 

Modell., 2, 287-293. 

[56] Cruse, T.A. (1988) Boundary element analysis in computational fracture mechanics. 

Kluwer Academic Publishers, Boston, MA. 

[57] Cruse, T.A. and Novati, G. (1992) Traction BIE formulations and applications to 

nonplanar and multiple cracks. Fracture Mechanics: Twenty-Second Symposium, II, 

ASTM STP 1131. Ed. S.N. Atluri et aI., American Society for Testing and Materials, 

Philadelphia, 314-332. 

[58] Cruse, T.A. and Richardson, J.~. (1996) Non-singular Somigliana stress identities in 

elasticity. Int. J. Num. Meth. Engng., 39, 3273-3304. 

[59] Oafalias,Y.F.(1977) Elastoplastic coupling within a thermodynamic strain space 

formulation of plasticity. Int. 1. Non-Linear Mech., 12,327-337. 

187 



References 

[60] Dallner, R. and Kuhn, G. (1993) Efficient evaluation of volume integrals in boundary 

element method, Compo Methods in Appl. Mech. and Engng., 109,95-109. 

[61] Davies, T. G., and Bu, S. (1996) Infinite boundary elements for the analysis of 

halfspace problems. Computers and Geotechnics, 19, 137-151. 

[62] Davies, T. G. and Gao, X. W. (1999) A 3D non-linear BEM algorithm for solving 

rigid foundations. (In preparation) 

[63] Dominguez, J. and Alarcon, E. (1981) Elastodynamics, in Progress in Boundary 

Element Methods, Vol. 1 (C.A. Brebbia, Ed.), Pen tech Press, London. 

[64] Dong, C.Y. and Antes, H. (1998) An improved inner point stress integral equation 

and its application in 2-D elastoplastic problems. Engineering Analysis with 

Boundary Elements, 22, 133-139. 

[65] Douglas, D. J. and Davies, E. H. (1964) The movement of buried footings due to 

moment and horizontal load and the movement of anchor plates. Geotechnique, 14, 

No.2, 115-132. 

[66] Drucker, D.C. (1959) A definition of stable inelastic material. 1. Appl. Mech., 26, 

Trans. AS ME 81, Series E, 101. 

[67] Fox, E.N. (1948) The mean elastic settlement of a uniformly loaded area at a depth 

below the ground surface. Proc. 2nd Int. Conf. Soil Mechs. Fndn. Eng., Vol. 1, 

pp.129. 

[68] Gao, X. W. and Davies, T. G. (1997) 3D Boundary Element Analysis of Soil-Pier 

Interaction, In: Boundary Elements XIX (C.A.Brebbia et al. Eds.), pp,45-54, 

Computational Mechanics Publication. 

[69] Gao, X. W. and Davies, T. G. (1998a) 3-D infinite boundary elements for half-space 

problems. Engineering Analysis with Boundary Elements, 21, 207-213. 

188 



References 

[70] Gao, X. W. and Davies, T. G. (1998b) Accurate Evaluations of Strongly Singular 

Domain Integrals in Non-Linear BEM, In: Boundary Elements XX (C.A.Brebbia et a1. 

Eds.), pp.85-94, Computational Mechanics Publication, Southampton. 

[71] Gao, X. W. and Davies, T. G. (1998c) 3D BEM Analysis of Flexible Inclusions in 

Multi-Layered Media, In: Boundary Element Research in Europe (C.A.Brebbia Ed.), 

pp.43-52, Computational Mechanics Publication, Southampton. 

[72] Gao, X. W. and Davies, T. G. (1999a) 3D Multi-Region BEM with Corners and 

Edges, International Journal of Solids and Structures, (In press). 

[73] Gao, X. W. and Davies, T. G. (1999b) Adaptive algorithm in elasto-plastic 

boundary element analysis. Journal of the Chinese Institute of Engineers, 

(submitted). 

[74] Gao, X. W. and Zheng, Y. R. (1990a) Elastoplastic boundary element method 

formulated in displacement. The Combination of Analytic and Numerical Solutions in 

Engineering, Ed. by Li Jiabao et aI., Hunan University Press, P. R. China. 

[75] Gao, X. W. and Zheng, Y. R. (1990b) An Accelerating Convergence Method for 

Elastoplastic Iterative Computation in Strain Space, Proc. of Third Int. Con! 011 

EPMESC, MACAU. 

[76] Gao, X. W., Liu, J. and Zheng, Y. R. (1991) On Treatment of Measured 

Displacement and Back Analysis in Underground Excavation, Tunnel and 

Underground Engineering, No. I. 

[77] Gao, X. W., Zhang, D. C. and Y. R. Zheng (1990) The general relationship of elasto

plastic constitutive equations. Journal of NingXia University, 11, 28-37. 

[78] Gao, X. W. and Zhong, Z. Q. (1992) Elastoplastic Damage Theory in Isotropic 

Medium, Chinese Journal of Theoretical and Applied Mechanics, No.4. 

[79] Gao, X. W. and Lu, J. T. (1992) A Combination Method of FEM and BEM for 

Elastoplastic Problems, Proc. of Forth Int. Conf. on EPMESC, Dalian, China, Aug. 

189 



References 

[80] Giroud, J.P. (1968) Settlement of a linearly loaded rectangular area. Jnl. Soil Mechs. 

Fndns. Divn., ASCE, 94, No.SM4, 813-831. 

[81] Gray, LJ. and Lutz, E. (1990) On the treatment of corners in the boundary element 

method. J. Compo Appl. Math., 32, 369-86. 

[82] Gray, LJ., Martha, L.F. and In graffe a, A.R. (1990) Hypersingular integrals in 

boundary element fracture analysis. Int. J. Num. Meth. Engng, 29, 1135-58. 

[83] Guiggiani, M. and Gigante, A. (1990) A general algorithm for multidimensional 

Cauchy principal value integrals in the boundary element method. J. Appl. Mech., 57, 

906-915. 

[84] Guiggiani, M., Krishnasamy, G., Rudolphi, T.J. and Rizzo, FJ. (1992) General 

algorithm for the numerical solution of hyper-singular boundary integral equations, 

ASME J. Appl. Mech., 59,604-614. 

[85] Hartmann, F. (1983) Computing the C-matrix in non-smooth boundary point, in new 

developments. In Boundary Element Methods, ed. C.A. Brebbia. Butterworths, 

Southampton. 

[86] Hartmann, F. (1989) Introduction to boundary element theory and applications. 

Springer-Verlag, New York. 

[87] Henry, D.P. (1987) Advanced development of the boundary element method for 

elastic and inelastic thermal stress analysis. PhD Dissertation, State University of 

New York at Buffalo. 

[88] Henry, D.P. and Banerjee, P.K. (1988) A variable stiffness type boundary element 

formulation for axisymmetric elastoplastic media. Int. J. Num. Meth. Engng., 26, 

1005-1027. 

[89] Huber, 0., Lang, A. and Kuhn, G. (1993) Evaluation of the stress tensor in 3D 

elastostatics by direct solving of hypersingular integrals. Computational Mech~nics, 

12, 39-50. 

190 



References 

[90] Huber, 0., Dallner, R., Partheymuller, P. and Kuhn, G. (1996) Evaluation of the 

stress tensor in 3-D elastoplasticity direct solving of hypersingular integrals, Int. J. 

Num. Meth. Engng., 39, 2555-73. 

[91] Huang, Q. and Du, Q. (1988) An improved formulation for domain stress evaluation 

by boundary element methods in elastoplastic problems. Proc. China-U.S. Seminar 

on Boundary Integral Equations and Finite Element Methods in Physics and 

Engineering, Xian, China. 

[92] Il'iushin, A.A. (1961) On the postulate of plasticity. Prikl, Mat. Meh., 25, 503-507. 

[93] Iwasaki, R. and Ishizaki, T. (1986) Three-dimensional elastoplastic boundary element 

analysis. In: Betech 86, ed. J. J. Connor and C.A. Brebbia, Computational Mechanics 

Publications. 

[94] J aswon, M.A. and Ponter, A.R. (1963) An integral equation solution of the torsion 

problem. Proc. Roy. Soc. Lond, A275, 237-246. 

[95] Jaswon, M. A. and Symm, G.T. (1977) Integral equation methods in potential theory 

and elastostatics, Academic Press, London. 

[96] Jiang, Y.S. (1986) Half-plane with body force problem and its uses in geomechanics by 

BEM. in: J.J.Connor and C.A.Brebbia (eds), Proc. of the 2nd Boundary Element 

Technology Conference, Massachusetts Institue of Technology, USA, pp. 699. 

[97] Kane, J. H. and Saigal, S. (1990) An arbitrary condensing, noncondensing solution 

strategy for large scale, multi-zone boundary element analysis. Compo Methods Appl. 

Mech. Eng., 29, 219. 

[98] Kane, J. H., Kumar, B. L. K. and Saigal, S. (1990) An arbitrary multi-zone 

condensation technique for boundary element design sensitivity analysis, AIAA 11, 

28,1277 -84. 

[99] Kane, J. H., Keyes, D. E. and Prasad, K. G. (1991) Iterative solution techniques in 

boundary element analysis. Int. 1. Num. Meth. Engng., 31, 1511-36. 

191 



References 

[100] Kane, J. H. (1994) Boundary Element Analysis in Engineering Continuum 

Mechanics. Prentice-Hall, Englewood Cliffs, New Jersey 07632. 

[101] Krishnasamy, G., Rizzo, F.1. and Rudolphi, T.J. (1992) Hypersingular boundary 

integral equations: Their occurrence, interpretation, regularization and computation. 

In: Advanced dynamic analysis by boundary element methods (Eds by P.K. Banerjee 

and S. Kobayashi), Elsevier Applied Science, London and New York, pp.207-252. 

[102] Kumar, V. and Mukherjee, S. (1977) A boundary-integral equation formulation for 

time-dependent inelastic deformation in metals. Int. J. Mechanical Science, 19, 713-

724. 

[103] Lachat, J. C. (1975) A Further Development of the Boundary Integral technique for 

Elastostatics, Ph.D. Thesis University of Southampton. 

[104] Lachat, J. C. and Watson, J. O. (1975) A second generation boundary integral 

program for three dimensional elastic analysis. In T. A. Cruse and F. J. Rizzo (eds.), 

Boundary Integral Equation Method: Computational Applicatins in Applied 

Mechanics, AMD Vol. 1 1, ASME, New York. 

[105] Lachat, le. and Watson, l O. (1976) Effective numerical treatment of boundary 

integral equation, Int. J. Num. Meth. Engng, 10,991-1005. 

[106] Lachat, J.C. and Watson, J. O. (1977) Progress in the use of boundary integral 

equations, illustrated by examples. Compo Methods Appl. Mech. Eng., 10, 273-289. 

[107] Lee, K.H. and Fenner, R.T. (1986) A quadratic formulation for two-dimensional 

elastoplastic analysis using the boundary integral equation method, 1. Strain Analysis, 

21, No.3, pp. 159-175. 

[108] Lemaitre, J. (1992)A course on Damage Mechanics. Springer-Verlag, Berlin. 

[109] Leung, C. Y. and Walker, S. P. (1997) Iterative solution of large three-dimensional 

BEM elastostatic analyses using the GMRES technique. Int. J. Num. Meth. Engng., 

40, 2227-36. 

192 



References 

[110] Linkens, D. (1993) Selected benchmarks for material non-linearity. Published by 

NAFEMS (Ref: R0026). 

[111] Liu, M. and Farris, T.N. (1993) Three-dimensional infinite boundary elements for 

contact problems. Int. J. Num. Meth. Engng., 36, 3381-3398. 

[112] Love, A.E.H. (1944) A treatise on the mathematical theory of elasticity. Dover, New 

York. 

[113] Lubliner, J. (1990) Plasticity theory. Macmillan Publishing Company, New York; 

Collier Macmillan Publishers, London. 

[114] Lutz, E.D., Ingraffea, A.R. and Gray, LJ. (1992) Use of simple solutions for 

boundary integral methods in elasticity and fracture analysis. Int. J. Num. Meth. 

Engng.,35,1737-1751. 

[115] Maier, O. and Hueckel, T. (1979) Nonassociated and coupled flow rules of 

elastoplasticity for rock-like materials. Pergamon press ltd, 77-91. 

[116] Manolis, G.D. and Davies, T.G. (1992) Boundary element techniques In 

geomechanics, Elsevier Applied Science, London. 

[117] Martinez, J. and Dominguez, J. (1985) On the use of Quarter-point boundary 

elements for stress intensity factor computations. Int. J. Num. Meth. Eng., 20, 1941-

1950. 

[118] Mazars, J. and Cabot, G. P. (1996) From damage to fracture mechanics and 

conversely: A combined approach. Int. J. Solids Structures, 33, 3327-3342. 

[119] Mendelson, A. and Albers, L.V. (1975) An application of the boundary integral 

equation method to elastoplastic problems, Proc. ASME Con! On Boundary 

Integral Equation Methods, AMD II(Eds Cruse, T.A. and Rizzo, FJ.), New York. 

[120] Mi, Y. and Aliabadi M.H. (1992) Dual boundary element method for three

dimensional fracture analysis. Engng. Anal. Boundary Elements, 10, 161-171. 

193 



References 

[121] Mi, Y. and Aliabadi M.H. (1996) A Taylor expansion algorithm for integration of 

3D near-singular integrals. Comm. Num. Meth. In. Engng, 12,51-62. 

[122] Mi, Y. (1996) Three-dimensional analysis of crack growth. Topics in Engineering, 

vo1.28, ed., C.A. Brebbia and J. Connor, Computational Mechanics Publications, 

Southampton. 

[123] Mindlin, R.D. (1936) Force at a point in the interior of a semi-infinite solid. 

Physics, 7, 195-202. 

[124] Mukherjee, S. (1977) Corrected boundary integral equations in planar thermo

elastoplasticity, Int. J. Solids Structures, 13, 331-335. 

[125] Mukherjee, S. and Kumar, V. (1978) Numerical analysis of time dependent inelastic 

deformation in metallic media using boundary integral equation method, J. Appl. 

Mech., ASME, 45, 785-790. 

[126] Mukherjee, S. (1982) Boundary element method in creep and fracture. Applied 

Science Publishers, New York. 

[127] Mustoe, G. G. W. (1980) A combination of the finite element method and boundary 

integral procedure for continuum problems, Ph.D thesis, University of Wales, 

University College, Swansea. 

[128] Mustoe, G.G.W. (1984) Advanced integration schemes over boundary elements and 

volume cells for two- and three-dimensional non-linear analysis, in:Developments 

in Boundary Element Methods, Elsevier, London. 

[129] Naghdi, P.M. and Trapp, lA. (1975a) The significance of formulating plasticity 

theory with reference to loading surfaces in strain space. Int. J. Eng. Scie., 13, 785-

797. 

[130] Naghdi, P.M. and Trapp, J.A. (1975b) Restrictions on constitutive equations of 

finite deformed elastic-plastic materials. Q. J1. Mech. Appl. Math., XXVIII, 25-46. 

194 



References 

[131] Naghdi, P.M. (1990) A critical review of the state of finite plasticity. J. Appl. Math. 

and Physics (ZAMP), 41, 315-393. 

[132] Nakaguma, R.K. (1979) Three dimensional elastostatics using the boundary 

element method. Ph.D Thesis, University of Southampton. 

[133] Nardini, D. and Brebbia, C.A. (1982) A new approach to free vibration analysis 

using boundary elements. In C.A. Brebbia (ed.), Proc. 4th International Conference 

on BEM, Springer-Verlag, Berlin, pp.313-326. 

[134] Nguyen, Q. L. and Bui, H.D. (1974) Sur les materiaux elastoplastiques a ecrouissage 

positif ou negatif. J. Mechanique, 13, 321. 

[135] Ortiz, M. and Simo, J.C. (1986) An analysis of a new class of integration algorithms 

for elastoplastic constitutive relations. Int. J. Num. Meth. Eng., 23, 353-366. 

[136] Owen, D.R. (1968) Arch. Ration. Mech. Anal., 31, 91. 

[137] Owen, D.RJ. and Hinton, E. (1980) Finite elements in Plasticity: Theory and 

Practice. Pineridge Press Limited, Swansea, U.K. 

[138] Patterson, C. and Sheikh, M.A. (1984) Interelement continuity in the boundary 

element method. In Topics in Boundary Element Research, Vol. 1, ed. C.A. Brebbia. 

Springer-Verlag, Berlin. 

[139] Pearce, CJ. (1996) Computational Plasticity in Concrete Failure Mechanics. Ph.D 

Thesis, University of Wales Swansea. 

[140] Perucchio, R. and In graffe a, A.R. (1985) An integrated boundary element analysis 

system with interactive computer graphics for three-dimensional linear-elastic 

fracture mechanics. Comput. Struct., 20,157-171. 

[141] Pipkin, A.C. and Rivlin, R.S. (1965) Z. Angew. Math. Mech., 16,313. 

[142] Po1ch, E.Z., Cruse, T.A. and Huang, C.J. (1987) Traction BIB solutions for flat 

cracks. Computational Mechanics, 2,253-267. 

195 



References 

[143] Poon, H., Mukherjee, S. and Ahmad, M.F. (1998a) Use of "simple solutions" in 

regularizing hypersingular boundary integral equations in elastoplasticity. ASME, 1. 

Appl. Jrfech., 65, 39-45. 

[144] Poon, H., Mukherjee, S. and Bonnet, M. (1998b) Numerical implementation of a 

CTO-based implicit approach for the BEM solution of usual and sensitivity 

problems in elasto-plasticity. Engineering Analysis with Boundary Elements, 22, 

257-269. 

[145] Poulos, H.G. and Davies, E.H. (1974) Elastic solutions for soil and rock mechanics, 

John Wiley & Sons, New York. 

[146] Prasad, K. G., Kane, J. H., Keyes, D. E. and Balakrishna, C. (1994) Preconditioned 

KRYLOV solvers forBEA. Int. 1. Num. Meth. Engng., 37,1651-72. 

[147] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) 

Numerical recipes in FORTRAN: The art of scientific computing, Second Edition, 

Cambridge University Press. 

[148] Raveendra, S. T. (1984) Advanced development of BEM for two and three

dimensional inelastic analysis. PhD Dissertation, State University of Neww York at 

Buffalo. 

[149] Raveendra, S. T. and Banerjee, P. K. (1992) Eigenvalue analysis by boundary 

element method. In: Advanced dynamic -analysis by boundary element methods, 

Elsevier Applied Science, London and New York, 283-320. 

[150] Raveendra, S. T. and Cruse, T. A. (1989) BEM analysis of problems of fracture 

mechanics. In Industrial Applications of Boundary Element Methods (Ed. P. K. 

Banerjee and R. B. Wilson), Elsevier Applied Science, London and New York, 

pp.187-204. 

196 



References 

[151] Riccardella, P. (1973) An implementation of the boundary integral technique for 

planar problems of elasticity and elastoplasticity, Ph.D Thesis, Carnegie-Mellon 

University, Pittsurgh, PA. 

[152] Richardson, J.D. and Cruse, T.A. (1998) Nonsingular BEM for fracture modeling. 

Computers & Structures, 66, 695-703. 

[153] Rizzo, FJ. (1967) An integral equation approach to boundary value problems of 

classical elastostatics, Quart. Appl. Math., 25, 83-95. 

[154] Rudolphi, T. J. (1983) An implementation of the boundary element method for 

zoned media with stress discontinuities. Int. J. Num. Meth. Engng., 19, 1-15. 

[155] Rudolphi, T. J. , Krishnasamy, G., Schmerr, L.W. and Rizzo, F.J. (1988) On the use 

of strongly singular integral equations for crack problems. In: Boundary Elements 

10, Ed. C.A. Brebbia, Spinger-Verlag and Computational Mechanics Publications, 

Southampton, UK. 

[156] Saada, A. S. (1974) Elasticity: theory and applications. Pergamon, Oxford. 

[157] Saad, Y. and Schultz, M. H. (1986) GMRES: A generalised minimal residual 

algorithm for solving non symmetric linear systems. SIAM J. Sci. Statist. Comput., 

7,856-869. 

[158] Smith, I.M. and Griffiths, D.V. (1998) Programming the finite element method. 

JOHN WILEY & SONS, New York. 

[159] Simo, J.C. and Govindjee, S. (1991) Non-linear B-stability and symmetry 

preserving return mapping algorithms for plasticity and viscoplasticity. Int. 1. Num. 

Meth. Engng., 31, 151-176. 

[160] Simo, J .C. and Tayor, R.L. (1985) Consistent tangent operators for rate-independent 

elastoplasticity. Compo Metll. Appl. Mech. Engng, 48, 101-118. 

[161] Sinha, B. P., Gerstle, K.H. and Tulin, L.G. (1964) Stress-strain relation for concrete 

under cyclic loading. ACI Journal, 61, 195-211. 

197 



References 

[162] Sladek, V., Sladek, J. and Balas, J. (1986) Boundary integral formulation of crack 

problems. ZAMM Z Angew. Math. Mech., 66(2), 83-94. 

[163] Snyder, M.D. and Cruse, T.A. (1975) Boundary integral equation analysis of 

anisotropic cracked plates. Int. J. Fracture, 11,315-328. 

[164] SomigIiana, C. (1885) Sopra I' equilibrio di un corpo elastico isotropo. Il Nuovo 

Cimento, 3, 17-20. 

[165] Southwell, R.V. (1946) Relaxation methods in theoretical physics. Oxford 

University Press. 

[166] Symm, G.T. (1964) Integral equation methods in elasticity and potential theory. 

Ph.D. Thesis, London University. 

[167] Stern, M., Becker, E.B. and Dunham, R.S. (1976) A contour integral computation 

of mixed-mode stress intensity factors. Int. J. Fracture, 12, 359-368. 

[168] Swedlow, J.L. and Cruse, T.A. (1971) Formulation of boundary integral equations for 

three-dimensional elasto-plastic flow, Int. J. Solids and Structures, 7, pp. 1673-1683. 

[169] Tan, C.L. (1979) Three-dimensional Boundary Integral Equation Stress Analysis of 

Cracked Components, PhD Thesis, Imperial College, University of London. 

[170] Telles, J .C.F. (1983) The boundary element method applied to inelastic problems, 

Springer-Verlag, Berlin. 

[171] Telles, J.C.F. and Brebbia, C.A. (1979) On the application of the boundary element 

method to plasticity, Appl. Math. Modelling, 3, 466-470. 

[172] Telles, J.C.F. and Brebbia, C.A. (1980) The boundary element method in plasticity, 

Proc. Second Int. Conf. On Recent Advances in Boundary Element Methods, 

Pentech Press, Plymouth, pp. 295-317. 

198 



References 

[173] Telles, J.C.F. and Brebbia, C.A. (1981) Boundary element solution for half-plane 

problems. Int. J. Solids Structures, 17, 1149-1158. 

[174] Telles, 1.C.F. and Carrer, 1.A.M. (1991) Implicit procedures for the solution of 

e1astoplastic problems by the boundary element method. Math. Comput. Modelling, 

15, 303-311. 

[175] Tomlin, G. R. (1972) Numerical analysis of continuum problems in zoned 

anisotropic media. Ph.D Thesis, Southampton University. 

[176] Wang, Y. C. and Gao, X. W. (1998) Practicable BEM analysis of frictional bolts in 

underground opening, ASCE Journal of Structural Engineering, 124, 342-346. 

[177] Wardle, L. J. and Crotty, 1.M. (1978) Two-dimensional boundary integral equation 

analysis for non-homogeneous mining applications. in Recent Advances in 

Boundary Element Methods (Ed. C.A. Brebbia), Pentech Press, London, pp.233-

249. 

[178] Watson, J .0. (1979) Advanced implementation of the boundary element method for 

two-and three-dimensional elastostatics. in: Developments in Boundary Elelnent 

Methods-Ed. by P.K.Banerjee and R.Butterfield, Elsevier Applied Science Publishers, 

London, 31-63. 

[179] Wearing, J.L. and Dimagiba, R.R.M. (1998) The development of the boundary 

element method for three dimensional elasto-plastic analysis, in: Boundary Element 

Research in Europe (Brebbia ed.), Computational Mechanics Publications, pp.93-

102. 

[180] Whitman, R.V. and Richart, F.E. (1967) Design procedures for dynamically loaded 

foundations. Jn1. Soil Mechs. Fndns. Divn., ASCE, 93, No.SM6, 169-193. 

[181] Wilde, A.J. (1998) A Hypersingular Dual Boundary Element Fonnulatioll for 

Three-Dimensional Fracture Analysis. Ph.D Thesis, Wessex Institute of 

Technology, University of Wales. 

199 



References 

[182] Wilson, R. B., Miller, N. M. and Banerjee, P. K. (1990) Free-vibration analysis of 

three-dimensional solids by BEM. In!. J. Num. Meth. Engng, 29, 1737-57. 

[183] Xu, O. C. and Gao, X. W. (1987) The Analytic Expression of Initial Stress 

Coefficients in Elastoplastic BEM, Journal of Air Force College, No.1. 

[184] Yan, G. and Lin, F.B. (1994) Treatment of comer node problems and its singularity. 

Engineering Analysis with Boundary Elements, 13, 75-81. 

[185] Yin, Y.Q. and Qu, S.N. (1982), Elastic-plastic coupling and generalized normality 

rule. Acta Mechanica Sinica, No.1., 63-70 (in Chinese). 

[186] Zhang, Q. and Mukherjee, S. (1991) Design sensitivity coefficients for linear elastic 

bodies with zones and corners by the derivative boundary element method, Int. J. 

Solids Structures, 27, 983-998. 

[187] Zhang, Q., Mukherjee, S. and Chandra, A. (1992) Design sensitivity coefficients for 

elastoviscoplastic problems by boundary element methods, lnt. J. Num. Meth. 

Engng., 34, 947-966. 

[188] Zhang, C., Song, C., Wang, O. and Jin, F. (1989) 3-D infinite boundary elements and 

simulation of monolithic dam foundations', Communications in Applied NUlnerical 

Methods, 5, 389-400. 

[189] Zhang, D. C., Gao, X. W. and Zheng, Y. R. (1988) Back Analysis Method of 

Elastoplastic BEM in Strain Space, Proc. of Int. Con! on Nwnerical Method in 

Geomechanics (INNSBRUCK), Swoboda(ed.). 

[190] Zhang, W. X. and Gao, X. W. (1991) A New Iterative Method on Elastoplastic 

BEM, Chinese Journal o/Theoretical and Applied Mechanics, No.2. 

[191] Zheng, Y.R. and Gao, X.W. (1986) Application of Elastoplastic BEM to Back 

Analysis, Journal of Underground Technology, No.2. 

200 



References 

[192] Zheng, Y. R., Xu, G. C. and Gao, X. W. (1989) The Coupled Computational 

Method of Elastoplastic BEM and FEM, Chinese Journal of Engineering 

Mechanics, No.l. 

[193] Zhong, Z. Q. and Gao, X. W. (1990) The Defonnation Characteristic of 

Elastoplastic Coupled Materials, Chinese Journal of Theoretical and Applied 

Mechanics, No.1. 

[194] Zienkiewicz, D.C. (1977) Thefinite element method. McGraw-Hill. 

201 



Appendix A 

Components of the Traction Kernels in 

in Polar Coordinate System 

The coefficients of the traction kernels, using a polar coordinate system, can be written as: 

CZ 
Ttt = -3 [3cos2 8 + (1- 2v)] 

R 

CZ Z2 
T33 =-3 [-2 +(1-2v)] 

R R 

3CZcos8sin8 
Tt2 = T21 = --R-3--

C Z2 
Tl3 = -2 [3cos8-2 + (1- 2v)cos8] 

R R 

(At) 

(A2) 

(A3) 

(A4) 

(AS) 
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C Z2 
T3t = -2 [3cos8-2 -(1- 2v)cosS] 

R R 
(A6) 

T23 = C
2 

[3sinS Z: +(1-2v)sinO] 
R R 

(A7) 

(AS) 

where 

From equations (Al)-(A4), we can see that for the source points located on the surface of the 

half-space, the integrals of Ttt , T 22 , T33 and Tt2 are zero, since Z=Q for those points. 
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Appendix B 

Analytical Expressions for the Integrals 

of the Traction Kernels 

The analytical integrals of the strongly singular integrals are: 

J Tlldr = 3C {[.!.c) - d cos(2a)]p +.!. R' cos(2a) sin(2<p) 
~ 232 

- R' sin(2a.) cos2 <I> + d sin(2a.)LR } <1>2 

<PI 

J T22dr= 3C ([.!.c) +dcos(2a)]p-.!.R'cos(2a)sin(2<p) 
~ 232 

+ R' sin(2a) cos2 
<I> - d sin(2a.)LR } <P2 

<PI 

J T12dr = 3C {sin(2a.)[R' sin <I> cos <I> - dPl 
Arp 2 

+ cos(2a.)[R' cos2 <p - dLR l} <1>2 

<PI 

(B 1) 

(B2) 

(B3) 

(B4) 
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where, 

J T13dr = C {(R - 3)sin 8 + c2La cos ex, 
Afp 2 

+c1,¥sin a - (al +c1a2)LD cosa) $2 
$1 

J T23dr= C {(3-R)cos8+c2La sina 
AfF 2 

- cl,¥cos ex,- (a l + cla2)LD sin a) <1>2 
$1 

J T32dr = C {(3 +R) cos 8 - c2La sin a 
Afp 2 

-c3ycosa.+(a, -c3a2)Lo sin a.l !: 

c1 =S-4v, c2 =2-4v, c3 = 1+4v 

(BS) 

(B6) 

(B7) 

(BS) 
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~ = arCSin( ~ 1 ~ d sin <I> ). 

1 + sin<j> 
LR=ln[(R + Z)cos<l>l, Le=ln( ) 

cos<j> 

Lo = .!.In(Jl+d + sin <l>J 
2 Jl+d -sin<j> 

For the case of Z=O, Le., when the source point and the field point are located at the same 

elevation, only the integrals, J T13dS, J T31dS, J T23dS, J T32dS, are different from zero. 
Arp Arp Arp Arp 

They are as follows: 

(B9) 

(BIO) 

J T23dS =(1- 2v)CL9 sin a :2 
Arp I 

(B 11) 

J T32dS = - (1- 2v)CL9 sina :2 
Arp I 

(BI2) 
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Appendix C 

Since ty and tz in Fig.6.1 are turning points between elastic and plastic deformations, the 

above integral can be written as: 

(Cl) 

According to the Integral Mean Value Theorem, the second and fourth integrals are zero. 

Thus (Cl) becomes: 

(C2) 

The second integral on the right-hand side of (C2) can be expanded using Taylor's series 

about point ty+ as follows: 

rtl-(e _£0): (D- De): Edt = (£-£0): (D - De): E~t+ 
Jt,+ 

{E: (D- De): E+ (£ _eo): [0: E+ (D _ De): £]}(~t)2 +O(~t)3 
2 

(C3) 

The first integral on the right-hand side of (C2) can be expressed, through integrating by 

parts and taking account of (6.3), as: 

(C4) 

where 

(C5) 
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(C6) 

Since the interval tl~ty_ belongs to the elastic region, then in terms of (6.3), we have: 

(C7) 

in which 
a2a .. 

L - IJ -L -L 
ijklrs - a a - ijrskJ - rsklij 

ckJ Crs 

(C8) 

We assume that the curvatures of the arcs tl--ty and tz-t2 are not large, so that '--ijklrs in 

(C8) are approximately constants. (This assumption is true for most finite deformation 

problems. In fact, even if this is not the case, the final results are unaffected, since the 

higher order terms of ~t in the final results will be ignored). 

Substituting (C7) into (C5) and integrating by parts, we obtain: 

In a similar manner, the third integral on the right-hand side of (C2) can be derived as: 

1'2 (E - EO) : (D - De) : tdt 
t l + 

(CIO) 

where 

(CIl) 

Furthermore, due to the continuity of strain at ty, we have: 

Cij (tz+) = Cij (ty_) + tijL\t = Cjj (ty+) + EijL\t 

D jjk1 (t z+) = D ijkJ (ty_) + DijkJL\t = D~kl + DjjklL\t 

(CI2) 

Substituting (CI2) into (CII), and (CIO), it follows that: 
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rt2 
(e-eo):(D-De):Edt 

Jtu 
1 1 0' ° 1 0' . 2 

=-C1 +-(e-e ):R:(e-e )~t+-(e-e ):(R:E-D:E)(~t) 
222 

in which, e takes the value at ty+, and 

Finally, substituting (C13), (C6) and (C3) into (C2), we obtain: 

rt2 
(e _ eO): (D - De): edt = (e _eo) :[(D - De): E +.!.R: (e -eO)]~t 

Jt l 2 

+ {t: (D- De): t + (e-£o): [(D- De): e+ R: t]}(~t)2 +0(6t)3 
2 

(C13) 

(C14) 

(6.15) 
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