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Abstract 

A major part of this thesis involved using electrospray mass spectrometry to 

monitor the chemical modification of amino acid side chains in enzymes. The 

technique was used specially to locate active site residues in shikimate pathway 

enzymes and to monitor the dephosphorylation of a phospho enzyme intermediate. 

Firstly, site-specific chemical modification in combination with mass 

spectrometry was used to identify Arg-23 in Streptomyces coeltcolor type II 

dehydroquinase (DHQ) as a residue essential for enzyme function. This residue was 

replaced by lysine, glutamine and alanine residues using site-directed mutagenesis. 

All the mutants were shown to have much lower turn over numbers as well as lower 

Km values in comparison to the native enzyme. This makes a role for Arg-23 in 

substrate binding unlikely. A catalytic role for this residue in stabilising a negatively 

charged enolate transition state is proposed since the mutant R23A was found to be 10 

times less active than R23K and R23Q. Furthermore, Tyr-28 of S. coelicolol' DHQ 

and Arg-213 of Escherichia coli type I DHQ have been shown to be in or near the 

active site. 

Secondly, mass spectrometry was used to monitor the dephosphorylation of 

phosphorylated forms of phosphoglycerate mutases (POAM). The phosphorylated 

POAM from Saccharomyces cel'evisiae was shown to be at least 35 times more stable 

than the enzyme from Schizosaccharomyces pombe which does not contain a 

C-terminal segment of 14 amino acids which is probably responsible for the 

differences in stability. The phosphorylated mutant H163Q mutant of S. cerevisiae 

POAM appeared to be at least 400 times more stable than the native enzyme. 

Thirdly, chemical modification and mass spectrometry were used to identify 

active site residues in E. coli shikimate dehydrogenase (SDH). Two lysine residues 

were shown to be in or near the active site; the inactivation of SDH by treatment with 

the lysine specific reagent trinitrobenzenesulfonic acid was shown to be due to the 

modification of only one residue, Lys-65, which is proposed to be involved in binding 

the carboxylate group of shikimic acid. Arg-154 has also been identified as an active 

site residue and assigned a role in binding of the 2' phosphate group ofNADP. 
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Shikimate kinase from El'winia cl1Jysanthemi was overexpressed in E. coli to 

an amount of up to 30% of the total cellular protein. The enzyme was purified, 

characterised and crystallised in complex with shikimic acid and ADP. It was 

predicted that arginine residues would be present in the binding sites of ADP and 

shikimic acid. This was confirmed by solving the three dimensional structure of the 

enzyme. 
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1. Introduction 

1.1 The shikimate pathway 

In plants, as in micro-organisms, the biosynthesis of all aromatic compounds 

involved in primary metabolism proceeds by way of the shikimate pathway (Haslam, 

1993). Seven enzymes (Fig. 1-1) convert erythrose-4-phosphate (a product of the Calvin 

cycle and/or pentose phosphate pathway) and phosphoenolpyruvate (a glycolytic product) 

to chorismic acid. This is a common precursor for the synthesis of the aromatic amino 

acids and other aromatic compounds such as folic acid and vitamin K (Haslam, 1993), 

The shikimate pathway provides the precursors for many plant and microbial secondary 

metabolites like lignin and flavol1oids and it has been estimated that products of the 

shikimate pathway account for up to 35% of the dry weight of higher plants (Boudet 

et al., 1985). This pathway is essential to plants and microorganisms, but it is absent in 

animals. Inhibitors of the pathway enzymes are therefore potentially antimicrobial agents 

or herbicides with no mammalian toxicity (Davies et aI., 1994; Jude et aI., 1996), The 

commercially successful and widely used herbicide glyphosate is an inhibitor of EPSP 

synthase, the sixth enzyme of the shikimate pathway (Steinruecken and Amrhein, 1980) 

The complete pathway in micro-organisms was elucidated in the fifties by Davies 

and Sprinson who used radio labelled carbon compounds as well as auxotrophic mutants 

to isolate intermediates (Davies, 1955; Sprinson, 1961). The situation in plants is more 

complex: all shikimate pathway enzymes have been detected in higher plants (Jensen, 

1986) and there is evidence that the complete pathway occurs in chloroplasts 

(Schulze-Siebert, 1984; Mousdale and Coggins, 1985). However there is further evidence 

for a second, either truncated or incomplete shikimate pathway in the cytosol (Jensen, 

1986). 

The initial study of the pathway enzymes was difficult. This was mainly due to 

the enzymes being present at a very low level and, therefore, their purification was 

difficult. Those problems were overcome by the cloning and overexpression of all 

pathway enzymes in the eighties, especially by Coggins and co-workers (Coggins, 1989), 
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1.1.1 Organisation of shildmate pathway enzymes 

The seven enzymes of the shikimate pathway are structurally and 

mechanistically similar in all species capable of aromatic amino acid biosynthesis, but 

there are considerable differences in the supramolecular organisation of the enzymes. 

In Escherichia coli (and other prokaryotes like Salmonella typhi) the enzymes are 

monofunctional polypeptides and their genes are widely scattered throughout the 

chromosome (Table 1-1) (Bachmann, 1983; Sanderson and Roth, 1983). 

Table 1-1 The shildmate pathway enzymes of E. coli (taken from Haslam, 1993). 

Enzyme Gene Map pos. Amino Mr Quatemary 

(min) acids (calc.) structure 

DAHP synthase 

DAHP synthase (tyr) aroF 57 356 38804 DimeI' 

DAHP synthase (phe) aroG 17 350 37997 Tetramer 

DAHP synthase (trp) aroH 37 347 39000 Dimer 

3-Dehydroquinase synthase araB 75 362 38880 Monomer 

3-Dehydroquinase dehydratase aroD 37 240 26377 DimeI' 

Shikimate Dehydrogenase aroE 72 272 29380 Monomer 

Shikimate Kinase 

Shikimate Kinase I aroK 74 173 19526 Monomer 

Shikimate Kinase II aroL 9 173 18937 Monomer 

EPSP synthase aroA 20 427 46 112 Monomer 

Chorismate synthase aroC 51 357 38 183 Tetramer 

In the case of E. coli the enzymes do not tend to aggregate (Coggins and 

Boocock, 1986) and are separable (Chaudhuri and Coggins, 1985). In fungi, the 

enzymes catalysing the five consecutive steps involved in the conversion of DAHP to 

EPSP (Fig. 1-1) fonn a single pentafunctional polypeptide, known as the AROM 
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Figure 1-2 Model of the AROM protein as suggested by Hawkins and Lamb 

(1995). 

DHQS 

EPSPS 

SK 

DHQ 

SDHG 

Dehydroquinate synthase 

5~Enolpyrovyl shikimate 3-phophate (EPSP) synthase 

Shikimate kinase 

Dehydroquinase 

Shikimate dehydrogenase 
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complex (Giles et aI., 1967). The AROM protein was found to be the product of the 

arom gene cluster which consists of a single open reading frame (Duncan et aI., 1987; 

Charles et al., 1986). The existence of the pentafunctional AROM protein has been 

demonstrated directly for Neurospora crassa (Lumsden and Coggins, 1977), 

Aspergillus nidulans (Gillies, 1994), Saccharomyces cerevisiae (Graham et aI., 1993), 

other fungal and yeast species and in Euglena gracilis (Patel and Giles, 1979). The 

arom genes have been cloned and characterised from Aspergillus nidulans 

(Charles ef af., 1986), Saccharomyces cerevisiae (Duncan et a1., 1987) and 

Pneumocysfis carini; (Banerji et al., 1993). A high degree of conservation can be 

observed in a multiple sequence alignment of the AROM proteins with the five 

monofunctional E. coli enzymes, supporting the hypothesis that AROM proteins have 

evolved by fusion of ancestral monofunctional genes (Hawkins, 1987). 

The model of the AROM protein as shown in Figure 1-2 can be used to 

summarise our knowledge about that muItidomain protein. 

• The dehydroquinate synthase domain of the AROM protein (A. nidulans) can be 

overexpressed in E. coli and was found to retain efficient catalytic activity when 

compared with the intact pentafunctional AROM protein. (Moore et aI., 1994). 

• The three C-terminal domains (SDHG, DHQ, SK) function most efficiently as a 

tri-domain unit (Hawkins and Smith, 1991). 

• EPSP synthase is only active when covalently linked to DHQ synthase (Smith and 

Coggins, 1983; Moore and Hawkins, 1993). 

• The AROM protein is a homo-dimeI', DHQ synthase and shikimate dehydrogenase 

form part of the dimerisation interface (Case and Giles, 1971). 

• The isolated DHQ domain is a very poor enzyme when compared to the native 

Neurospora crassa AROM protein (Hawkins et aI., 1993). 

• Shikimate dehydrogenase and shikimate kinase domains are not active as 

monofunctional domains, but are active in combination with DHQ 

(Lamb ef a1. 1996). 

5 



The following advantages are usually put forward for the occunence of multidomain 

enzymes: a) the facility to produce enzymatic activities in a fixed stoichiometric ratio, 

b) the potential for interactions between domains thereby giving the potential for 

allosteric interactions and c) the potential for metabolite channelling and the 

protection of unstable intermediates (Hawkins and Lamb, 1995). The latter seems to 

be unlikely in the case of the AROM protein since the intermediates are reasonably 

stable. The five enzyme activities of the AROM protein are separately measurable 

(Coggins ef al., 1987) which indicates an unhindered movement of substrates and 

products. 

In plants the enzymes dehydroquinase and shikimate dehydrogenase which 

catalyse step three and four of the shikimate pathway, form a bifunctional enzyme 

whilst the other five enzymes are found to occur as monofunctional species (Polley, 

1978; Mousdale ef aI., 1987). The bifunctional enzyme gene has been cloned and 

characterised from PislIm safivU111 (Deka et al., 1994) and Nicotinaba tabacum 

(Bonner and Jensen, 1994). 

The following enzymes are being studied in this work. 

1.1.2 3-Debydroquinase (DHQ) 

HO CO2- cO2-

oDoli .... onoll + H2O -
I 
I I 

bH 
I 

bH 
Dehydroquinate (DHQ) Dehydroshikimate 

It is generally believed that enzymes have evolved to catalyse reactions by 

optimal mechanisms and it is therefore extremely unusual to find two mechanistically 

different enzymes that catalyse the same reaction. This is the case with the two types 
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of dehydroquinase (EC 4.2.1.10) which catalyse the dehydration of dehydroquinate to 

form dehydroshikimate. (Harris et a!., 1993). 

This reaction is common to two metabolic pathways: the biosynthetic shikimate 

pathway for the synthesis of aromatic compounds in plants and micro-organisms 

(Haslam, 1974) and the catabolic quinate pathway (Fig. 1-1) in fungi which enables the 

organism to use quinate as a sole carbon and energy source (Giles et al., 1985). There are 

two classes of DHQ which have different biochemical and biophysical properties 

(Table 1-2). The type I enzymes are only involved in the biosynthetic shikimate pathway 

(Chaudhuri et al., 1986), whereas type II enzymes have been found to have either a 

biosynthetic (White etal., 1990; Garbe et al., 1991; Bottomley eta!., 1996b) or a 

catabolic role (Hawkins et aI., 1982) and in at least one species a dual role 

(Euverink et al., 1992)(Table 1-2). 

1.1.2.1 The type I enzymes 

The type I enzymes are dimers with a Mr of about 56 000 , they are heat labile 

and catalyse a cis elimination of the elements of water (Hansen and Rose, 1963; 

Turner et al., 1975). The enzyme mechanism involves the formation of a Schiff-base 

intermediate between the substrate and a lysine residue of the enzyme followed by the 

abstraction of a proton by a general base (Butler et al., 1974; Chaudhuri et a!., 1991; 

Deka et aI., 1992). The resulting carbanion is stabilised by the Schiff-base which 

functions as a electron sink. In E. coli this lysine residue was identified as K -170 by 

trapping the Schiff-base intermediate using borohydride reduction and is conserved in all 

type I sequences (Chaudhuri et aI., 1991). The formation of a covalent enzyme-substrate 

intermediate might be the reason for the unusual cis-stereochemistry for the elimination 

of water. The enzymatic elimination of water usually proceeds in trans mode 

(Hupe, 1987). Using site specific chemical modification and site-directed mutagenesis 

the general base has been shown to be His-143 (Deka et al., 1992; Leech et aI., 1995). 

FurthelIDore, Met-23 and Met-20S have been identified as likely active site residues but 

their role in catalysis has not been established (Kleanthous and Coggins, 1990). 
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1.1.2.2 The type II enzymes 

The type II enzymes are heat stable do de earners with a Mr of about 190 000 

(Table 1-2). Unlike type I enzymes type II enzymes catalyse a trans elimination of the 

elements of water (Harris et at., 1993) and the enzyme was found to be resistant to 

borohydride treatment (Kleanthous et at. 1992). This observation together with the fact 

that there are no conserved lysine residues in a multiple sequence alignment of type II 

dehydroquinases provide evidence that the enzyme mechanism does not involve the 

formation of a Schiff-base. There are only a few mechanistic details known about the 

type II enzymes. An enolate intermediate in the enzyme mechanism has been proposed 

by Harris et al. (1996). 

The two types of DHQs can be compared with the two classes of aldolases which 

catalyse the conversion of fructose 1,6-bisphosphate to dihydroxyacetone phosphate and 

D-glyceraldehyde 3-phosphate (Lai and Horecker, 1972). The mechanisms of both types 

of aldolase proceed via the formation of a carbanion intermediate. Type I aldolases, like 

the type I DHQs, stabilise the carbanion intermediate by forming a Schiff-base with the 

substrate (Grazi et aI., 1962) whereas the type II aldolases employ a tightly bound metal 

ion for carbanion stabilisation (Kadonaga and Knowles, 1983). However, very recent 

studies have shown that the type II DHQ of Aspergillus nidulans does not require metal 

ions for enzyme function (Bottomley et aI., 1996a) and it is therefore still unclear how a 

negatively charged intermediate is stabilised by the type II enzymes. 

It has been suggested, that the two classes of DHQs have evolved as a result of 

convergent evolution (Hawkins, 1987). However, since both enzyme types are apparently 

unrelated at the sequence level (Kleanthous et aI., 1992) the only point of convergence 

seems to be the common overall reaction. 

Type I and type II enzymes have been clystallised (Boys et aI., 1992; 

Gourley et al., 1994) and the structure detenninations are in progress. 
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Table 1-2 Biochemical and biophysical properties of dehydroquinases. (updated version oftable from KIeanthous et al., 1992) 

S=shikimate; Q=quinate; Heat stability is indicated by survival of>90% of enzyme activity when heated to 70°C for 10 min. Unless otherwise 

stated, the Km was measured at pH 7.0 (25°C); * estimates from the DHQ domain of the AROM protein; t determined at pH 8.0 (37°C). 

Organism 

type I 

E. coli 

S. typhi 

N crassa 

A .nidulans 

S. cerevisiae 

Pisum sativum 

type II 

A. nidulans 

N crassa 

M tuberculosis 

A. methanolica 

S. coelicolor 

H pylori 

Path
way 

S 

S 

S 

S 

S 

S 

Q 

Q 

S 

Q/S 

S 

S 

Subunit Heat 

Mr 

27466 

27706 

25600* 

26377* 

28000 

16500 

18500 

14000 

12000 

16000 

18481 

Stability 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

sub
units 

No. 

2 

2 

2 

12 

12 

12 

12 

Km kcat kca/Km References 

(l-tM) (s -1) (M-Is-I) 

16 

18 

5 

37 

150 

70 

121 

650t 

590 

135 8.4 x 106 (Chaudhurietal., 1986; Chaudhurietal., 1991) 
7 200 1.1 x 10 (Servos et aI., 1991; Moore et aI., 1993) 

(Lumsden and Coggins, 1977; Gaertner and Cole, 1977) 

(Hawkins, 1987) 

(Duncan et aI., 1987) 

(Deka et aI., 1994) 

1300 8.7x 106 (Hawkins etal., 1982; Da Silva etal. 1986, 

50 

2 

9 

7.7 X 104 

3389 

Bottomley et aI., 1996a) 

(Hautalaetal. 1975; Geeveretal., 1989) 

(Garbe et aI., 1991) 

(Euverink et aI., 1992) 

(White et aI., 1990) 

(Bottomley, 1996b) 



1.1.3 Shikimate Dehydrogenase (SDH) 

CO2-n +NADPH 
o I OH 

+ NADP+ 

I 

OH OH 

Dehydroshikimate Shikimate 

The fourth step of the shikimate pathway, the reduction of dehydroshikimate to 

shikimate is catalysed by shikimate dehydrogenase (EC 1.1.1.25). The enzyme was found to 

be strongly selective for NADPH over NADH (Balinsky ef al., 1971). Early studies have 

shown that the enzyme can be inhibited by the cysteine specific reagent 

p-hydroxymercuribenzoate (Balinsky and Davies, 1961) and by a number of simple aromatic 

compounds like p-hydroxybenzoate or protocatechuic acid (Balinsky and Dennis, 1970). 

In general there are two groups of pyridine nucleotide dependent dehydrogenases; 

enzymes with or without catalytically active metal ions like zinc or iron (Aronson ef al., 

1989; Neale ef a1., 1986). Many metal independent dehydrogenases like lactate 

dehydrogenase (LDH) or malate dehydrogenase (MDH) (Adams, 1987) have been shown to 

possess a essential histidine residue which forms a hydrogen bridge with the carbonyl group 

of the substrate. This leads to a polarisation of the carbonyl group which initiates the hydride 

ion transfer. In metal dependant dehydrogenases, like alcohol dehydrogenase (Adams, 1987), 

the initial polarisation is achieved by the metal ion. SDH does not appear to need metal for its 

function since EDT A has no inhibitory effect on enzyme activity and divalent ions have no 

activating effect (Balinsky and Dennis, 1970). This is consistent with the observation that 

SDH can be inactivated by treatment with the histidine specific reagent diethylpyrocarbonate 

(Chackrewatihy, 1995). 

The E. coli SDH has been purified and the gene cloned in Glasgow. The enzyme was 

found to be a monomer with a calculated Mr of 29 414 which is unusual for a dehydrogenase 

(Chaudhuri and Coggins, 1985; Anton and Coggins, 1988). The availability of larger amounts 

of recombinant enzyme has facilitated studies of enzyme-substrate interactions. Substrate 

analogues which lack the C-4 and C-5 hydroxyl groups and the carbon-carbon double bond 

have been synthesised and enzyme kinetic parameters with these analogues determined (Bugg 

ef aI., 1988). Interestingly, the C5-deoxy analogue was found to be a reasonable substrate 
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with a kcat of75 S·1 (compared with kcat=lOO S·1 for dehydroshikimate) which implies that the C-5 

hydroxyl group has little effect on the specificity. In contrast the C4-deoxy substrate was a very 

poor substrate (kcat=0.06 S·I) indicating a crucial role for the C4-group in molecular recognition. 

This is in agreement with the occurrence of the so called VDL motif which is conserved in 

several shikimate pathway enzymes (Bugg et at., 1991). Since the C-4 hydroxyl group is present 

in all of the shikimate pathway intermediates it was suggested that this particular group forms a 

hydrogen bond with the aspartate residue of this motif (Bugg et at., 1991). 

1.1.4 Shikimate kinase (SK) 

(m 

Shikimate 

ADPMg2+ 

Shikimate-3-phosphate 

Shikimate kinase (EC 2.7.1.71), the fourth enzyme of the shikimate pathway, converts 

shikimic acid into shikimate-3-phosphate using ATP as a co-substrate (Weiss and Mingioli, 

1956). In E. coli this reaction is catalysed by two different isoforms, SKI anel SKU (Ely and 

Pittard, 1979; Berlyn and Giles, 1969). This is unusual for an enzyme in the middle of a 

metabolic pathway and it has been suggested that shikimate may be a branch point for another 

yet unknown pathway (Weiss and Edwards, 1980). 

1.1.4.1 The two isoellzymes of Shikimate kinase 

In E. coli, the aro genes which encode the enzymes of the shikimate pathway are not 

clustered into a single operon but are scattered around the chromosome (Table 1-1) 

(Pittard, 1987). The gene for SKII has been designated as aroL, which is the first gene of the two 

gene operon al'OLM and its expression is regulated by the tlpR and tyrR regulator gene (Ely and 

Pittard, 1979; De Fey tel' et al. 1986; Heatwole and Sommerville, 1992). The tyrR protein is of 

particular interest since it modulates the expression of at least eight unlinked operons 

(Cornish et aI., 1986). Seven of these operons are regulated in response to changes in 
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the concentration of the three aromatic amino acids, suggesting that these amino acids bind as 

co-factors to the tyrR protein to form an active regulatory molecule (Cornish et af., 1986). 

In contrast to that of SKIl, the activity of SKI in the cell is independent of both the 

amount of extracellular aromatic amino acids and the level of tyrR gene product (Ely and 

Pittard, 1979). One other aro gene which is not subject to tyrR repression or to end product 

repression is araB (Table 1-1), the gene for dehydroquinate synthase, the second enzyme of 

the shikimate pathway. Based on that observation it was possible to locate the al'oK gene, 

encoding SKI, in the region upstream of araB (L0bner-Olsen and Marinus, 1992; Whipp and 

Pittard, 1995). Both genes fOllll another two gene operon. 

The gene for SKII has been cloned and overexpressed and the enzyme was found to 

be a monomer with a calculated mass of 18 937 Da (Millar et al., 1986; De Fey tel' and 

Pittard, 1986a). The apparent Km for shikimate was 200 11M and 160 ~lM for A TP (De Fey tel' 

and Pittard, 1986b). Type I and type II enzymes share 30% sequence identity and are 

monomers of exactly the same length (173 amino acids) (Whipp and Pittard, 1995). However, 

in comparison to the type II enzyme the type I enzyme has a very much lower affinity for 

shikimate (Km=20mM) and its expression is constitutive. Therefore, SKII appears to playa 

dominant role in the shikimate pathway. The role of SKI is less clear. It has been suggested 

that in E. cot; SKI has been displaced by the catalytically more efficient and better regulated 

SKII (De Feyter and Pittard, 1986b). Another possible explanation might be that SKI 

normally carries out other functions in the cell and that it phosphorylates shikimate only 

fortuitously (De Feyter and Pittard, 1986b). This is consistent with the observation that SK I 

is associated with sensitivity to the antibiotic mecillinam which clearly implies an alternative 

biological role for SK I (Vinella et af., 1996). 

1.1.4.2 Sltikimate killases alld tlte A-motif 

From sequence comparison and crystallographic data it has been shown that a 

considerable number of proteins that bind ATP or GTP share a number of more or less 

conserved sequence motifs (Walker et ai, 1982; Moller and Amons, 1985; Fry et al., 1986; 

Dever et al., 1987; Saraste et af., 1990). The best conserved of these motifs is a glycine-rich 

region, which fonTIs a loop between a beta-strand and an alpha-helix (Mueller and Schulz, 

1992). This motif is generally refened to as the A-motif or P-Ioop and its consensus pattern 

is: [AG]-x(4)-G-K-[ST] (Walker et al., 1982). This loop forms the ATP-binding site of 
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Figure 1-3 Core motif for ATP/GTP binding proteins as proposed by Milner-White 

et al. (1991). 
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these proteins. The peptide-mainchain atoms in the loop contribute to the formation of 

hydrogen bonds with the phosphate groups of the nucleotides. 

There are numerous A TP- or GTP- binding proteins which contain the A motif; examples 

are the ATP dependent helicases (Lindner et at. 1989). Both SKI, SKII and the shikimate kinase 

domain of the AROM complex possess the type A motif. However, not all ATP-or GTP-binding 

proteins are picked up by this motif. A number of proteins escape detection because the structure 

of their A TP-binding site is different from that of the A-motif, for example the glycolytic kinases 

(Bennett and Steitz, 1980). 

It has been proposed by Milner-White et al. (1991) that this A -motif could be extended to 

a common core structure for A TP/GTP binding proteins. This core region (Fig. 1-3) consists of 

about 100 amino acids which form four central, parallel beta-strands and-four alpha-helices. The 

A motif is in the loop connecting the N-terminal beta-sheet to the first alpha-helix. 

1.1.4.3 Shikimate killases ill other species 

SK activity has been detected in several plant species (Koshiba, 1979; Mousdale and 

Coggins, 1985). Schmidt et al. (1990) purified SK from spinach chloroplasts to near 

homogeneity. The enzyme was shown to be a monomer with a Mr of 31 000 . The gene for SK 

has been cloned from of Lycopersicon esculentwl1 L. (tomato) (Schmid et aI., 1992). The open 

reading frame has the capacity to encode a peptide of 300 amino acids and the deduced amino 

acid sequence shows homology to bacterial and fungal SKs. The SK domains of the AROM 

complexes also show homology to the E. coli monofunctional enzymes. This is particularly 

obvious in the region around the A-motif. 

The SK of Erwinia cll1ysanthemi, studied in this work, is a SKII enzyme and has 53% 

amino acid sequence homology to the E. coli SKU. The enzyme was cloned and sequenced by 

Minton et al. (1989). The molecular weight of the enzyme, as derived from the nucleotide 

sequence, is 18 955 Da. The enzyme was predicted to have a three-dimensional structure similar 

to adenylate kinase, which also contains the A-motif (Matsuo and Nishikawa, 1994). 
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1.2 Phosphoglycerate mutase (PGAM) 

A 1 + 2,3-bisphosphoglycerate 

6-® 

\ 
Q 

C!fU 

Q 

C!f0 

1 

Figure 1-4 Conversion of 3-phosphoglycerate into 2-phosphoglycerate by 2,3-BPG 

dependent phosphoglycerate mutases (PGAM). 

Phosphoglycerate mutase (PGAM) is a glycolytic enzyme which catalyses the 

interconversion of 3-phosphoglycerate and 2-phosphoglycerate. There are two classes of 

enzymes; enzymes which need a catalytic amount of 2,3-bisphosphoglycerate (2,3-BPG) to be 

active and others which are active in the absence of 2,3-BPG (Fothergill-Gilmore and Watson, 

1989). Enzyme species studied in this work belong to the first group. For those enzymes 2,3-BPG 

donates either its 2- or 3-phosphoryl group to a histidine residue at the active site of the enzyme 

to generate the active (phosphorylated) form of the enzyme (Rose, 1970; Rose et aI., 1975). 

The isomerisation reaction (Fig. 1-4) begins with the binding of 3-phosphoglycerate to 

the phosphorylated enzyme, phosphohistidine of PGAM transfers its phosphoryl group to the 

2-0H of the bound substrate to form 2,3-BPG. The 3-phosphoryl group is then transferred to the 

histidine to generate 2-phosphoglycerate. Apalt from the mutase activity PGAM exhibit a 

phosphatase acti vity (Fothergill-Gilmore and Watson, 1989). 

Chapter 4 describes the measurement of the rate of dephosphorylation of the phosphorylated 

form ofPGAM using electrospray mass spectrometry. 
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1.3 Methodology 

1.3.1 Site specific chemical modification 

Site specific chemical modification is a useful technique to obtain information about 

structure and function of enzymes. A chemical reagent is placed in contact with the enzyme and 

a chemical reaction occurs in which the reagent will bind covalently to amino acid side chains 

and changes in biological activity are measured. Of the 20 amino acids, only those possessing a 

polar side chain are normally the object of chemical modification. The chemical reactivity of 

these groups is basically a function of their nucleophilicity. The hyper-reactivity of certain of 

these groups appears to be related to their catalytic function (Lundblad and Noyes, 1984). Few 

investigators have evaluated structural changes as a consequence of chemical modification; but 

in such instances only minor changes were seen (Plapp et aI., 1978). It can be argued that protein 

engineering techniques have taken the place of chemical modification experiments to study 

enzymes, but it's clear that the combined use of both techniques is extremely powerful (Czupryn 

et aI., 1995; Robertson et af., 1994). Very useful information about active site residues of 

enzymes can be obtained by differential labelling (i.e. modification in the presence and absence 

of substrate) (Singer, 1967; Urushibara et at. 1992). 

To obtain information from chemical modification experiments a relationship between 

the loss of biological activity and the rate of the modification of amino acid residues needs to be 

established (Ray and Koshland, Jr., 1961). Therefore, it is critical to establish the stoichiometry 

of reaction. If the enzyme-reagent complex has a specific spectral absorbance the extent of 

reaction can be determined spectrophotometrically (Bray and Clarke, 1995). Other possibilities 

include the use of radiolabelled reagents (Gadda et aI., 1994) or amino acid analysis (Ray and 

Koshland, Jr., 1962) of the modified protein. However, it is thereby assumed that the modified 

protein is homogenous. This assumption is not always justified and can cause errors in the 

interpretation of the obtained measurements. 

Another limitation of this technique is the question of the reaction specif1city. Ideally, the 

reagent should be selective to react with only one type of residue, but most of the common 

reagents are known to undergo side-reactions with other types of residues. Therefore, 

interpretation of chemical modification data needs considerable caution (Lundblad and Noyes, 

1984). 

The following chemical reagents were used in this work. 
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arginine residue phenyJglyoxaJ 

o 

HN NH 

';( 
( 
R 

singly modified arginine 
+116 amu mass adduct 

.. 

HO OH 

0) (H 
HN NH 

f 
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-H
2
0 II 

Takahashi adduct 
+250 amu mass adduct 

o 

Figure 1-5 The stoichiometry of reaction between phenyJgJyoxaJ and arginine residues. 
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1.3.1.1 Pltenylglyoxal (PGO) 

PGO is an arginine specific reagent and was first introduced as a modification reagent by 

Takahashi (1968). He demonstrated that two molecules of PGO condense with one arginine 

residue (Fig. 1-5). Since no mono-substituted derivatives were found he concluded that the 

reaction of arginine with the first molecule of PGO is rate-limiting. Werber et at. (1975) showed 

that the modification is not homogeneous since he observed two modification sites after the 

incorporation of 1.5 mole PGO per mole enzyme and proposed the existence of stable 

1 PGO : I arginine adducts (Fig. 1-5). In the same year Borders and Riordan (1975) repOlted the 

detection of a 1 : 1 adduct in borate buffer which appears to stabilise the 1 : 1 adduct. In the 

following years 1 : 1 adducts were detected even in non-borate buffer (Tedeschi et al., 1992) 

while other authors reported an uncertain reaction stoichiometry in non-borate buffers (Eum and 

Miles, 1984). Despite these contradictory findings it is still common practice to calculate the 

number of modified arginine residues from the amount of incorporated 14C PGO using 

Takahashi's 2 : 1 ratio (Kubiseski et al., 1994; Qamar et at., 1996) 

The increased interest in establishing the functional role of arginine residues probably 

arises from the proposal of Riordan and co-workers (Riordan et al., 1977; Riordan, 1979) that 

arginines function as general anion recognition sites in proteins. This theory was extended by 

Patthy and Thesz (1980) who suggested that arginine residues in anion binding sites have a lower 

pKa than typical arginine residues due to a special micro-environment in the binding site. 

Therefore, arginines in substrate binding sites appear to be hyper-reactive towards dicarbonyles 

such as PGO. There is substantial experimental evidence confirming that theory (Borders and 

Riordan, 1975; Mohan et al., 1988; Tedeschi et al., 1992) 

Chemical modification data obtained with PGO have to be discussed with caution since a 

secondary reaction of PGO with a-amino groups has been reported (Takahashi, 1968). 
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1.3.1.2 Tetrallitrometlzalle (TNM) 

OH 

+ 

R 

tyrosine residue 

0, .... 0 
"""'N~"" o 0 

'\:N+/t' 
~ ,~ o '0 

0.-;/ ~O 

tetranitromethane 

pH>8 .. 

OH 

R 

mass adduct of 45 amu 

Tetranitromethane (TNM) is a widely used reagent for tyrosine modification studies. 

(Sokolovsky et al., 1966). TNM nitrates tyrosine residues producing 3-nitrotyrosine which is a 

chromophore (characteristic absorbance at 428 nm) (Lundblad and Noyes, 1984). This offers the 

possibility of following the reaction spectrophotometrically. Essential tyrosine residues are 

mostly thought to be involved in substrateicoenzyme binding by establishing a hydrogen bond 

with an electrophile (Robertson et af., 1994) or to be part of the catalytic mechanism as a proton 

donor (Mueller et af., 1995). The presence of a strong electron withdrawing group at the 

3-position lowers the pKa of the hydroxyl group of the tyrosine residue which will affect its 

potential to maintain a hydrogen bond. Alternatively, substitution of a bulky nitro group can 

make tyrosine less or even not available by steric hindrance. 

The reaction of TNM with proteins is reasonably specific for tyrosine residues, however 

the oxidation of sulfhydryl groups has been reported (Sokolovsky et al., 1969) and must be 

considered in interpreting the data. 
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1.3.1.3 Trillitl'obellzellesu/follate (TNBS) 

0, ,/.:0 

H2N 
~N'/ 0, hO 

~N N'" 

pH>7 il il 
+ .. NH + S03H- +H+ 

0, hO 
""'N N'" 

R il °3H il 

R 

lysine residue TNBS mass adduct of 211 Da 

The reaction of TNBS is a useful tool to study the function and reactivity of the 8-amino 

group of lysine residues (Goldfarb, 1966). The modification with TNBS is easy to follow by 

spectral analysis at 420 nm or 367 nm (Lundblad and Noyes, 1984). Reactivity is a sensitive 

measure of the basicity of an amino group. Adjacent charged amino acid residues can create a 

special micro-environment around the lysine residue and thereby altering its pKa. An increase in 

the rate of reaction was observed for lysine residues in a positively charged environment and a 

decrease for lysines in a negatively charged environment (Means et aI., 1972). 

1.3.2 Mass spectrometry 

Mass spectrometry has been used for quite some time in biochemical research to measure 

the molecular weight of small and stable molecules. Recent advances in biophysical research 

made it possible to apply this technique for larger and less stable molecules such as proteins. 

Mass spectrometry is based on the production, differentiation and detection of ions in the gas 

phase. The transfer of small and stable molecules into the gas phase has traditionally been 

accomplished by thermal vaporisation. However, this method is obviously of little use to transfer 

larger and labile molecules (proteins) into the gas phase. The search for a suitable ionisation 

source resulted in the development of ES-MS (electrospray mass spectrometry) (Fenn et aI., 
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1989) and MALDI-MS (matrix-assisted laser desorption ionisation mass spectrometry) (Karas 

and Hillenkamp, 1988). 

1.3.2.1 Electl'ospray mass spectrometry (ES-MS) 

ES-MS is based on the generation of singly or mUltiply charged gaseous ions directly 

from an aqueous or aqueous/organic solvent by creating a fine spray of highly charged droplets 

in the presence of a strong magnetic field. Drying gas and heat are applied to evaporate the 

solvent causing the droplets to decrease while surface charge increases. Multiply charged ions 

are transferred into the mass analyser (usually a quadrupole analyser) which is able to separate 

ions according to their mass-to-charge ratio (not according to their mass). The series of multiply 

charged ions is then used to calculate the molecular weight (Siuzdak, 1996). 

ES-MS is now a very powerful method to determine the molecular weight of proteins and 

peptides. Conventional techniques, such as SDS-PAGE or ultracentrifugation produce 

measurements of molecular weights that are typically accurate to only ±5%, whereas ES-MS is 

generally better than ±O.O 1 %. Furthermore ES-MS is a very rapid and sensitive technique. A 

typical molecular weight determination, including processing takes only 15 min and as little as 1 

pmole of pure protein is needed for analysis (Siuzdak, 1996). 

Another application that has created excitement involves the ability of ES-MS to analyse 

biological non-covalent complexes in the gas phase. Since the publication of the first two papers 

describing ES-MS as a tool for the observation of non-covalent complexes (Katta and Chait, 

1991; Ganem et al., 1991), this particular technique found a broad application in the study of 

molecular interaction, such as the observation of the catalytic antibody-hapten complex (Siuzdak 

et at., 1994) or leucine zipper peptides (Li et at., 1993). 

ES-MS can also be used to probe protein conformational changes (Robinson et al., 1994; 

Katta and Chait, 1993). This method is based on the mass-spectrometric measurement of 

hydrogen-deuterium exchange that occurs in different protein conform~rs over a time. 

The main technical limitation of ES-MS is the sensitivity to the presence of non-volatile 

compounds such as buffers (Mann and Wilm, 1995). Ionic buffers disturb the spraying process 

and compete with analyte molecules for charges. Therefore it is essential to use volatile buffers 

or if possible only water. Other non-volatile substances can disturb the desorption process by 

forming a solid core in the evaporating droplet from which protein molecules cannot escape. The 

upper limits for non-volatile buffer substances like Tris/HCl is 5 mM but the quality of the 

spectra is always compromised (Pitt, 1996). 
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The processing of ES-MS raw data (series of peaks differing in their mass/charge ratio) 

using the Maximum Entropy (MaxEnt) deconvolution algorithm (Ferrige ef at., 1992) allows the 

semi-quantitative analysis of different protein species present in the analysed sample. The output 

of a MaxEnt deconvolution is a plot of relative abundance against molecular mass (not 

mass/charge as in the raw data) and quantification is achieved by integrating the area under those 

peaks. 

1.3.2.2 Liquid chromatography ES-MS (LCIES-MSj 

All the applications mentioned above require protein solutions containing only a 

restricted number of distinct protein species. To work with more complex mixtures of proteins or 

peptides it is necessary to link a liquid-based separation system such as HPLC to the mass 

spectrometer. Monitoring such separations by ES-MS provides a very powerful means of 

analysing proteins and peptides. 

This set-up is ideal to generate peptide maps of proteins. The protein is firstly fragmented 

into small peptides using a suitable protease, the peptide mixture is separated on a LC system and 

the eluate directly injected into the mass spectrometer. This technique was lIsed successfully to 

localise post-translational modifications like phosphorylation (Meyer et al., 1993; Taniguchi 

et al., 1994) and glycosylation (Schindler et (fl., 1995). LC/ES-MS based peptide mapping is very 

efficient compared with classical biochemical methods, in which each collected chromatographic 

fraction had to be sequenced by automated Edman degradation. 
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1.4 Aims of this project 

• The main aim of the project was to identify active site residues in the two types of 

dehydroquinases and in shikimate dehydrogenase using site specific chemical modification. 

The feasibility of using ES-MS to measure the amount and to establish the stoichiometry of 

the chemical modification was tested. The sites of modification were localised using 

LC/ES-MS in combination with proteolytic digestion. Further experiments were carried out to 

elucidate the mechanistic role of active site residues identified (chapter 3 and 6). 

• A seco11dnry aim was to explore the scope of ES-MS to analyse other chemically modified 

enzyme species. In particular the method was used to characterise a phospho enzyme 

intermediate in the phosphoglycerate mutase reaction and to measure of the rate of hydrolysis 

of phospho enzyme and mutant phospho enzyme (chapter 4). 

• The third aim was to characterise the P-Ioop lysine of shikimate kinase. This required 

purification and characterisation of the enzyme from El'winia c1llysanthemi. The 

E. chrysanthemi enzyme was also crystallised and its three dimensional structure determined 

(chapter 5). 
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2. Materials and Methods 

2.1 Protein estimation 

Protein concentrations were determined by the method of Bradford (1976) using bovine 

serum albumin as a standard, or spectrophotometrically at 280 nm in a PhiIlips Model PU8700 

spectrophotometer using quartz cuvettes. The extinction coefficients were calculated according 

to Gill and von Hippel (1989); the values agreed to within 5-10%. 

2.2 SDS-Polyacrylamide gelelectrophoresis (PAGE) 

Electrophoresis in the presence of SDS was performed by the method of Laemmli (1970), 

with a 3% stacking gel and a 15% running gel in running buffer comprising Tris/HCI (3 gil), 

glycine (15 gil) and SDS (1 gil). The ratio of acrylamide: bisacrylamide in all PAGE 

experiments was 30 : 0.8 and polymerisation was induced by 0.03% (v/v) TEMED and 0.05% 

(w/v) ammonium persulphate. Samples were denatured by boiling for 5 min after dilution in 

loading buffer comprising 60 mM Tris/HCI, pH 6.8, 2% (w/v) SDS, 20% (v/v) glycerol, 10% 

(v/v) j3-mercaptoethanol and 0.0025% (w/v) bromophenol blue. 

Protein was visualised on gels by staining with Coomassie blue. The Coomassie blue 

reagent was 0.1 % (w/v) Coomassie brilliant blue R-250 in 10% (v/v) glacial acetic acid, 50% 

(v/v) methanol; the destaining reagent was 10% (v/v) acetic acid, 10% (v/v) methanol. These 

procedures were carried out at 40°C. 

2.3 Synthesis of ammonium dehydroquinate 

The substrate for dehydroquinases dehydroquinate was synthesised from quinate 

according to the procedure of Grewe and Haendler (1966) and stored as the ammonium salt in a 

sealed container at -20°e. 

To check the purity 2 mg of the synthesised substrate was dissolved in 10 III of water and 

separated on a HPLC Organic Acid Analysis column which consists of Aminex Ion exchange 

resin, 300 x 7.8 mm (Bio-Rad, Richmond, CA). The compounds were eluted with a constant 

flow (I mllmin) of 10 mM acetic acid. Absorbal1ces were recorded at wavelengths of 215 11m, 

234 nm (absorbance of dehydroshikimate) and 280 nm. Fractions were collected and tested for 

dehydroquinate lIsing the DHQ assay. For experiments only substrate batches were used with 

relative dehydroquinate concentrations of more than 90%. 
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2.4 Enzyme assay 

2.4.1 Dehydroquinases 

Enzyme activity was determined by monitoring the formation of 3-dehydroshikimate at 

234 nm (8=12xI03 M-1cm-1 ) at 25°C. The assay mixture for the type I enzyme contained 

100 11M ammonium dehydroquinate as substrate in 100 mM potassium phosphate (PH 7.0); for 

the type II enzyme of Aspergillus nidulans the assay mixture contained 1 mM ammonium 

dehydroquinate in 50 mM Tris/acetate (pH 7.0); the assay for the type II enzyme of Streptomyces 

coehc%r was carried out in 50 mM Tris/acetate, (pH 8.0) containing 2 mM substrate. 

2.4.2 Shikimate kinase 

Shikimate kinase was assayed at 25°C by coupling the release of ADP to pyruvate kinase 

(EC 2.7.1.40) and lactate dehydrogenase (EC 1.1.1.27). Shikimate dependent oxidation of 

NADH was monitored at 340 nm (8=6180 M-1cm- 1). The assay mixture contained 

50 mM triethanolamine hydrochloride/KOH buffer, pH 7.0, 50 mM KCl, 5 mM MgCI2, 

1.6 mM shikimic acid, 5 mM ATP, 1 mM phosphoenolpyruvate, 0.1 mM NADH, 3 units of 

pyruvate kinase/ml and 2.5 units of lactate dehydrogenase/m!. 

2.5 Enzyme purification 

2.5.1 Dehydroquinases 

Type I DHQ was purified from an overproducing strain of Escherichia coli according to 

the procedure of Chaudhuri et at. (1986). The type II DHQs from Aspergillus nidu/ans, 

overexpressed in E. coli, was purified as described previollsly (Beri et at., 1990). DHQ from S. 

coelic%r, overexpressed in E. coli, was purified as follows: 

All manipulations following cell breakage were performed at 4°C, unless otherwise stated. 

Step 1: Extraction and centrifugation. A 20 g batch (wet weight) of E. coli 

BL21(DE3)pDHQpLysS was suspended in 20 ml 50 mM Iris/HCI, pH 7.5 (buffer A) and broken 

by two passages through a French pressure cell. This material was then centrifuged at 100 000 x 

g for 1 hour. DHQ was purified from the resulting cell-free extract. 
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Step 2. Anion exchange chromatography on DEAE-Sephacel. The supernatant was 

then applied (flow rate of 15 mllhour) to a DEAE-Sephacel anion exchange column 

(250 x 21 mm, diam.) equilibrated in buffer A. The column was washed (flow rate of 50 mllhour) 

with the same buffer until the A280 of the eluate was less than 0.3. The column was then washed 

(50 ml/hour) with buffer A containing 100 mM NaCI until the A280 of the eluate was again less 

than OJ. Protein was eluted (50 mllhour) with a gradient of 100-350 mM NaCI in 800 ml of 

buffer A and fraction (10 ml) collected and assayed as described. 

Step 3. Hydrophobic interaction chromatography on Phenyl-Sepharose. Pooled 

fractions were made up to ] M ammonium sulfate by addition of solid ammonium sulfate and 

applied to a Phenyl-Sepharose hydrophobic interaction column (100 x 9 mm, diam) equilibrated 

in buffer A containing 1 M ammonium sulfate. The column was washed with the same buffer 

over night (20 ml/hour). A 1-0 M ammonium sulfate gradient was run in a volume of 120 ml and 

2 ml fractions collected and assayed as before. 

Step 4. Anion exchange chromatography on Resource Q. This procedure was then 

carried out at room temperature using a Pharmacia FPLC system (Uppsala, Sweden). The 

enzyme solution was applied (1 mllmin) to an analytical Resource Q (Phanllacia, Uppsala, 

Sweden) anion exchange column (volume 6 ml) equilibrated in buffer A. Following washing 

with buffer A, protein was eluted (2 ml/min) with a gradient of 0-500 mM NaCI in buffer A and 

1 ml fractions collected. After assaying for DHQ activity appropriate fractions were run on a 

12% SDS-PAGE gel, dialysed against buffer A containing 30% glycerol and stored at -20°C. 

2.5.2 Shikimate kinase 

The gene encoding shikimate kinase of Erwinia clllJlsanthemi (Minton et aI., 1989) was 

cloned into pTB361 (Zeneca Pharmaceuticals, European patent application No. 92301456.8) and 

expressed in E. coli BL21(DE3)pLysS. The enzyme was purified as specified in chapter 5. 

2.6 Site specific chemical modification of enzymes 

Enzyme inactivations were carried out in a volume of 2 ml, at 25°C with constant 

stirring. During the inactivation enzyme aliquots were taken for enzyme assay. The percentage of 

inactivation was calculated as the ratio of enzyme activity after a certain time of treatment to the 

enzyme activity at time O. 
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2.6.1 Dehydroquinases 

2.6.1.1 Inactivation with phenylglyoxal (PGO) 

Aliquots of DHQ (l0-20 /!g/ml) were incubated in 100 mM sodium bicarbonate buffer, 

pH 9.4 for 5 minutes and then PGO was added (freshly made up 50 mM stock solution in water) 

to a final concentration of 0.5-4.0 mM. 

2.6.1.2 Inactivation with tetranitl'omethane (TNM) 

Type II DHQ (10-20 /!g/ml) was pre-incubated in 100 mM Tris/HCl, pH 8.0 for 5 min 

and then TNM (freshly made up stock solution of 15 mM in 95% ethanol) was added to a final 

concentration of 5-50 /!M. 

2.6.1.3 Inactivation with diethylpyrocarbol1ate (DEPC) 

Inactivation was carried out by incubating DHQ (10-20 /!g/mi) with DEPC in 50 mM 

potassium phosphate buffer, pH 6.0. A 50 mM solution of the reagent was freshly made up in 

ice-cold absolute ethanol before each experiment. 

2.6.2 Shikimate kinase 

2.6.2.1 Illactivation with PGO 

Aliquots of SK (5 /!g/ml) were incubated in 100 mM sodium bicarbonate buffer, pH 9.1 

for 5 minutes and then PGO was added (freshly made up 50mM stock solution in water) to a final 

concentration of 0.5-4.0 mM. 

2.6.2.2 Illactivatioll with tl'illitrobellzellesll/follic acid (TNBS) 

The inactivation with TNBS was carried out in the dark. The enzyme (4 ~tg/ml) was 

pre-incubated for 5 min in 50 mM borate buffer, pH 9.2. A 500 /!M TNBS solution in the same 

buffer was prepared and aliquots added to a final TNBS concentration of 0.5-2.5 11M. 

2.6.2.3 Substrate protection agaillst inactivation with PGO alUl TNBS 

For substrate protection experiments with SK 50 mM stock solutions of shikimate, ATP 

with the molar amount of MgCl2 and shikimate with ADP and molar amounts of MgCl2were 
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made up in the inactivation buffer and the pH readjusted using 4M KOH. Defined aliquots of the 

stock solution were added to the pre-incubation mix and then the group specific reagent added. 

2.6.3 Termination of inactivation reaction 

The reaction was stopped by applying the reaction mixture to a G-50 Sephadex column 

(200 mm x 17 cm, flow rate 15 ml/min), equilibrated with 10 mM ammonium bicarbonate. 

The enzyme was eluted and 2 ml fractions were collected. Enzyme containing fractions were 

pooled and concentrated in Centric on 10concentrators (Amicon, Stonehouse, Gloucestershire, 

UK). 

2.7 Proteolytic digest of DHQ 

2.7.1 Digest of native and modified type II DHQ with chymotrypsin 

All steps were perfonned at 25DC. The enzyme in water was denatured in 6 M GdnHCl in 

water for 15 min. The solution was diluted with ammonium bicarbonate (5 gil) to a GdnHCl 

concentration of 1 M and incubated with 2% (w/w) chymotrypsin (stock solution of 1 gil 

chymotrypsin in 1 mM HCI) for 45 min. The reaction was stopped by freezing the sample to 

-80DC. 

2.7.2 Digest of native and modified type I DHQ with trypsin 

Modified and native type I DHQ was digested at 3rc with continuous stirring. The 

enzyme in 0.4 M ammonium bicarbonate was denatured in 8 M urea for 1 hour. Water (3rC) 

was added to lower the urea concentration to 2 M and the mixture was incubated with 3% (w/w) 

trypsin (TPCK treated; 1 gil stock solution in 1 mM HCl) for 4 hours. Afterwards another 1 % 

(w/w) trypsin was added and the incubation continued for one hour. The reaction was stopped by 

freezing the sample to -80°C. 

2.8 Electrospray mass spectrometry (ES-MS) 

2.8.1 Sample preparation 

To remove low molecular weight contaminants and buffer substances prior to mass 

spectrometry the enzyme sampl,',; were washed twice by diluting 50-fold with HPLC grade water 

and reconcentrated using Centricon-lO centrifugal concentrators (Amicon, Stonehouse, 
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Oloucestershire, UK). Where proteins precipitated in water the same procedure was carried out 

using 1-5 mM ammonium bicarbonate. 

2.8.2 The standard set-up 

Mass spectrometry was performed on a VO Platform quadrupole mass spectrometer 

(2-3000 amu range) fitted with a pneumatically assisted electrospray (ionspray) source and 

controlled via the VO Mass-Lynx software (VO Biotech. Ltd, Altricham, Cheshire, UK). Carrier 

solvent (1 : 1 (v/v) acetonitrile: water) infusion was controlled at 10 Illlmin using a Harvard 

syringe pump (Harvard Apparatus, South Natic, MA, USA). Protein samples were dissolved in 

carrier solvent at a concentration of 20 pmol/lll , centrifuged at 5000 x g for 2 min and then 

10-20/-ll samples injected into the carrier stream. Capillary voltages were between 2.8 and 3.2 

kV, extraction cone voltages 20-30 V, and the focusing cone voltage offset by + 1 0 V. The source 

temperature was set at 6SoC, the nebulising gas flow at 10 IIh, and the drying gas flow at 2S0 IIh. 

Lens stack voltages were adjusted to give maximum ion currents. The m/z range 700-1S00, 

which contained >9S% of the signal intensity for protein samples, was scanned at least 10 times 

with a sweep time of 5s. The instrument was calibrated over this Mr range immediately before 

use with horse heart myoglobin. 

2.8.3 Processing of raw spectra 

Raw spectra were processed using the MassLynx software (VO Biotech. Ltd, Altricham, 

Cheshire, UK). 

2.8.3.1 .Molecular weight determi11atioll 

To determine the molecular weight of a protein the recorded raw spectra were processed 

using an algorithm which subtracted, smoothed and centred raw spectra followed by the actual 

mass calculation from the centred spectra. The following parameters were found to be suitable 

for processing a clean spectra with baseline resolution: 

subtract: 10-15% below curve 

smooth: peak width of 0.5-1 Da, I smooth 

centre: 2-4 Da peak width at half height 

component detection: manual, peak window 0.S-I.0 Da 
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2.8.3.2 Quantitative analysis 

The Maximum Entropy (MaxEnt) deconvolution procedure (Ferrige et at., 1992), was 

applied for quantitative analysis of raw data using 1.0-1.5 Da peak width and 1 Da/channel 

resolution. Typically, the MaxEnt procedure was stopped after 8-10 iterations. 

2.8.4 Liquid chromatography ES-MS (LCIES-MS) 

The proteolytic digests were separated by HPLC on a C-4 reverse phase column 

(Delta-PaktJn HPJ C4, 2.0 x ISO mm, Waters, Watford, Hertfordshire, UK) using 2% (v/v) 

acetonitrile in 0.1 % (v/v) trifluoracetic acid as the initial solvent (flow rate 0.3 ml/min); after an 

8 min wash to remove GdnHCI a linear gradient of 2-70% acetonitrile (v/v) in 0.1 % trifluoracetic 

acid was applied to elute the peptides. The column eluate was introduced directly into the mass 

spectrometer with the drying gas flow of 400 IIh and the source temperature set at 100°C. The 

absorption profile of the eluted peptides was recorded at 214 nm and centroid spectra in the range 

400-1800 mlz were recorded at 4 s intervals. 

2.9 Circular dichroism spectrometry (c. d.) 

The circular dichroism (c.d.) spectra were recorded in a Jasco J - 600 spectropolarimeter 

at the University of Stirling, BBSRC-funded c.d. facility by Dr. Sharon M. Kelly. Spectra in the 

far U.v. (260-190 11m) were recorded in cylindrical quartz cells of pathlength 0.02 cm and spectra 

in the near u.v. region (320-260 nm) were recorded in cells of path length 0.5 cm. The protein 

concentration was typically 0.5-0.6 mg/ml for far U.v. work and 5-6 mg/ml for the near u.v. c.d. 

experiments. All protein solutions were dialysed against 10 mM Tris/HCI, pH 7.5. The content of 

secondary structure elements was determined from the far u.v. spectrum using the CONTIN 

procedure (Provencher and Gloeckner, 1981). 

2.10 Isothermal titration calorimetry (ITC) 

Experiments were carried out in collaboration with Dr. Alan Cooper, University of 

Glasgow, Biophysical Chemistry Group. Binding of equilibrated substrate/product mixtures to 

native and mutant DHQ samples at 25°C was determined using a Microcal OMEGA isothermal 

titration calorimeter following standard LTC procedures (Wiseman et al., 1989; Cooper and 

Johnson, 1994). Protein samples (ca.! mg/mI), exhaustively dialysed against 10 mM Tris/HCI, 

pH 7.6, were degassed briefly before loading into the LTC cell (ca. 1.4 mI). Substrate (ammonium 

dehydroquinate, 50 mM) was dissolved in dialysis buffer together with a trace of native DHQ 
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and incubated at room temperature for IS hours to give the equilibrated substrate/product 

mixture prior to loading into the ITC injection syringe. [Note: use of pure substrate in these 

experiments would result in large heat effects from the enzymatically catalysed reaction, rather 

the heats of binding required here.] A typical titration experiment involved a series of up to 

twenty-five 10 III injections of ligand (substrate/product mix) into the enzyme solution at 3 min 

intervals, with continuos stirring. Integrated heat effects, after correction for dilution and mixing 

controls determined separately under identical conditions, were analysed by standard techniques 

using Microcal ORIGIN software assuming 1 : 1 enzyme: ligand complex formation. 

2.11 Dynamic light scattering 

The native molecular weight of enzymes was determined using a DYNA-PRO. 801 

dynamic light scattering/molecular sizing instrument (protein solutions, Buckinghamshire, UK), 

the recorded data were processed using the AUTOPRO software. Protein samples were 1 mg/ml 

in 50 mM TrisIHCI, pH 7.5. 

2.12 Protein crystallography 

2.12.1 Crystallisation of Shikimate kinase 

Enzyme samples were dialysed exhaustively into 20 mM Tris/HCI, pH 7.6. Afterwards 

shikimic acid (freshly made up solution in water, pH adjusted to 7.6 using 4 M HCl) and 

magnesium chloride were added to a final concentration of 5 mM and ADP (freshly made lip 

solution in water, pH adjusted to 7.6 using 4 M HCl) was added to a final concentration of 

10 mM. This increased the protein solubility from approximately 5 to at least 70 mg/ml. Enzyme 

was concentrated using Centricon-lO centrifugal concentrators (Amicon, Stonehouse, 

Gloucestershire, UK) to a concentration of 16 mg/m!. Crystallisation was achieved at 293K by 

the sitting-drop vapour-diffusion technique. In the final condition for crystallisation the reservoir 

solution contained 2.16 M Sodium chloride, 100 mM Hepes buffer, pH 6.9. Protein samples 

(6 Ill) were mixed with equal amounts of reservoir solution and allowed to equilibrate. Crystals 

appeared after 10-12 days and continued to grow as tetragonals up to a maximum size of 0.7 x 

0.2 x 0.2 mm. 
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2.12.2 The collection of a native data set 

A complete native data set was collected at beamline 9.6 at the CLRC Daresbury 

Laboratory at 0.87 nm wavelength using a MAR Research imaging-plate scanner. The crystal 

was soaked in crystallisation buffer containing 12.5% (v/v) glycerol and mounted in a loop. The 

crystal was immediately frozen to lOOK using a Oxford cryosystems cryocooler. A native data 

set diffracting to 1.9 A resolution was collected as 1 ° and 1.5°oscillation frames. 

2.13 Site-directed mutagenesis 

2.13.1 Strains, plasm ids and synthetic oligonucleotides 

The bacterial strains, plasm ids and synthetic oligonucleotides used in this project are 

listed in the tables below. Plasmid pDHQ was a kind gift of Prof. I.S. Hunter, University of 

Strathc1yde, Glasgow. 

2.13.2 Strategy 

Three mutants of Streptomyces coehcolor DHQ (R23K, R23Q, R23A) were prepared 

using PCR site-directed mutagenesis. The procedure is summarised in Figure 2-1. Primers were 

synthesised on a Applied Biosystems Model 280A DNA synthesiseI'. The 3 mutating primer 

(Table 2-3) contain the mismatch codon (highlighted in bold, GCG for R) and cover the Bg/II 

site which is located 10 bp downstream of arginine residue 23. The reverse-primer (Table 2-3) 

was complementary to a region 190 bp upstream containing a EcoRV site. The PCR products 

were cloned back into the BglIIlEco RV site of pDHQ. For protein expression the entire mutated 

sequences were cloned into the NdeIlHind III site of pT7-7 and oVf'rexpressed in E. 

coliBL21 (DE3)plysS. All clones were verified by DNA sequence analysis using the Sanger 

methodology (Sanger et al., 1980) and Sequenase Version II. 
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Table 2-1 Bacterial strains and their genotypes. 

Bacterial Strain Genotype 

Escherichia coli DH5a F- <l>80dlacZllMl5 recAI endAI gyrA96 thi-l hsdRI7(lkmk+) 

supE44 relAI deoR 1l(lacZYA-argF)U169 

Escherichia coli BL21 (DE3) F- ompTrB-,mB- ADE3 

Table 2-2 Plasmids used. 

Plasmid Remarks Reference 

pIBJ25 

pDHQ 

T7 expression plasmid (Dente et al., 1983) 

pIBI25 containing the DHQ gene of S. text 

coelicolor 

pT7 -7 T7 expression plasmid (Oi Ibert, 1991) 

pLysS T7 lysozyme plasmid (Moffatt and Studier, 1987) 

pDHQI-3 pIBI25 containing the mutated DHQ genes of S. text 

coelicolor 

pTKI-3 pT7-7 containing the mutated DHQ genes of S. text 

coelicolor 

Table 2-3 Synthetic oligonucleotides used. 

Primer Sequence Location in pDHQ 

DHQl 5'CCAGATATCAAATTAATACGACTCACTATAGG3' 232-264 

DHQ2 5'GTAGATCTCCGGCTGCTTCTGGCCGAGC3' 379-407 

DHQ3 5' GTAGATCTCCGGCTGCGCCTGGCCGAGC 3' 379-407 

DHQ4 5'GTAGATCTCCGGCTGCTGCTGGCCGAGC3' 379-407 

DHQ5 5' TACTCGCACACGTCCGTC 3' 569-587 

DHQ6 5' TTGGAGATGTGGACCTCC 3' 631-649 
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Figure 2-1 Site-directed mutagenesis of R23 of S. coelicolol'DHQ. 
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2.13.3 Culture media 

Bacteria were routinely cultured in Luria-Bertani medium (LB)( Bacto tryptone 10 gil, 

yeast extract 5 gil, NaCl 10 gil) and grown overnight at 37°C with shaking. For culture on solid 

media, Bacto agar (Difco, Detroit, USA) was added at 1.5% (w/v) to the above medium. 

Antibiotics were added to the culture medium at the following concentrations: ampicillin 

100 Ilg/ml, tetracycline 12.5 Ilg/ml, chloramphenicol 17 Ilg/ml (all from Sigma). Stock solutions 

were made up in water or ethanol as appropriate and filter-sterilised. 

2.13.4 Storage of strains 

The long term storage of bacteria was accomplished by making glycerol stocks of 

overnight cultures with the addition of sterile 80% (v/v) glycerol to a final concentration of 15% 

(v/v). These were stored at -80°C and never defrosted. For inoculation an upper piece of the 

frozen culture was chipped or melted off. ShOJi-term storage was accomplished with the use of 

agar plates sealed with tape and maintained at 4°C. 

2.13.5 PCR reaction 

The PCR reactions were performed in 100 III volumes (PCR tubes) using Vent 

polymerase (New England Biolabs, USA). The following components were added sequentially: 

10 III of lOx Vent buffer, water, 10 III of lOx dNTPs (30 mM), 100 ng template DNA and 

100 pmol of each primer. The mixture was overlaid with paraffin oil and kept on ice. The cycle 

profile used was: 94°C for Imin, 55°C for I min, noc for 30 sec, with 25 cycles being 

performed. The PCR tubes were placed into the thermal cycler once it had reached 94°C. 

2.13.6 Recovery of PCR products from reactions 

20 III of PCR product was run on a 1% (w/v) agarose gel to determine whether the PCR 

reaction had produced the desired amplion and whether other secondary PCR products were 

present. When only the desired ampIion was observed after agarose gel electrophoresis a Wizard 

peR clean-up kit (Promega, USA) was used with elution of the DNA into sterile distilled water. 
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2.13.7 DNA cloning procedures 

2.13.7.1 Restriction and purification of plasmid DNA 

5 I-tg of plasmid was digested in a volume of 50 III with 10-20 U of restriction enzyme in 

the corresponding buffer at 37°C for one hour. Restricted plasmid was separated on a low 

melting point gel and the band excised. An approximately equal volume of TE (10 mM Tris/HCI, 

pH 7.2, 1 mM EDTA), pH 7.2 was added together with an equal volume of TE saturated phenol, 

pH 7.2 and heated to 65° for 5 min, vOliexed and spun at full speed for 5 min. The aqueous layer 

was then promptly removed and further extractions of the aqueous layer with phenol, 

TE-saturated phenol/chlorofolm and TE saturated chloroform were performed. The DNA was 

recovered by adding an equal volume of isopropanol and 1/10 th volume of I M NaCl, vortexing 

and spinning at full speed in a microfuge for 15 min. The pellet was then dried and resuspended 

in a small volume of sterile, distilled water. 

2.13.7.2 Alkaline phosphatase treatment of restricted plasmid 

Calf intestinal alkaline phosphatase (ClAP) was added to the digested plasmid at a 

concentration of l.0 U per pmol of 3' or blunt ends and 0.1 U per pmol of 5' ends. The molar 

amount of plasmid ends was calculated according to the following formula: 

mass of plasmid [g] x No. of bases 

Mr of plasmid 

ClAP buffer was added and the volume made up to 100 III and incubated at 37°C for I hour. The 

enzyme was then subsequently removed using a Magic DNA clean-up column (Promega, USA) 

with elution of the purified DNA in water. 

2.13.7.3 Ligation of cut moieties 

Prior to ligation, concentrations of DNA were either measured accurately by 

spectrophotometry or by estimation from gel electrophoresis. Several ratios of vector DNA and 

inseli DNA (1 : 3 to 3 : 1 (w/w)) were used in separate ligations. The total amount of DNA per 

ligation was between 200-400 ng. The ligations were performed in 10 III volumes with 1-3 units 

ofT4 ligase and incubated overnight at 4°. 
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2.13.7.4 Preparation of competent cells and trallsformation 

Competent cells were made on the day they were required. A single colony of the 

appropriate strain of E. coli was picked from an agar plate or a loop was used to melt a small 

amount of culture from the top of a glycerol stock. This was used to inoculate 20 ml of LB 

medium which was incubated at 37°C overnight with shaking. 30 ml of fresh LB medium was 

inoculated with 600 ).tl of overnight culture and incubated at 3JOC for around two hours until the 

A600 reached around 0.3. The cells were then spun down at 3000 x g for 5 min and completely 

resuspended in one half volume of ice cold sterile 100 mM CaCI2. The cells were left on ice for 

around 20 min followed by centrifugation at 3000 x g for 5 min followed by resuspension in one 

tenth volume of ice cold CaCI2. The cells were usually left on ice for several hours prior to 

transformation. 

For transformation of the cells, 5 ~L1 of ligation mix was diluted with 45 /--ll of sterile, 

ice cold TNE buffer (50 mM Tris/HCI, pH 7.5,50 mM NaC!, I 111M EDTA) on ice and 100 ~tl of 

competent cells were added. Transformation controls were performed at the same time and were 

made up to an equal volume. The mixture was incubated on ice for 30 min ensuring the contents 

were thoroughly mixed. The tubes were then transferred to a 37°C waterbath for 90 sec without 

agitation and then immediately returned to ice for a further 30 min. 1 ml LB was added and the 

tubes were incubated at 37°C for 1-2 hours to allow expression of antibiotic resistance. Suitable 

aliquots were then plated onto selective plates and incubated overnight at 37°C. 

2.13.8 Plasmid DNA sequencing 

Plasmid DNA sequencing was performed on DNA isolated using a Quiagen plasmid kit 

(Quiagen, Germany). Typically 2.5-3 /--lg of DNA was used for each reaction using a Sequenase 

2.0 kit (Amersham, England). To denature the DNA: for each reaction, 8 ~d of plasmid DNA (i.e. 

total volume contains 2.5-3 /--lg) and 2 /--ll of 1 M NaOH, 1 mM EDTA were mixed in an 

eppendorf tube and incubated at room temperature for 5 min. 3 ~t1 of 3 M NaAc, 17 ~t1 distilled 

water and 30 )..!I were then added. The tubes were centrifuged at full speed for 15 min, drained, 

vacuum desiccated and the DNA dissolved in 7 )..!I of water. For each annealing reaction, 2 ).tl of 

Sequenase reaction buffer and 1 /--ll of primer (1-2 pmoll~t1) was added. This was heated at 100°C 

for 1 min before transferring the tubes to a 37°C waterbath for 20 min to allow the primer to 

anneal. 

For the sequencing reactions: the ddNTP mixes were dispensed into wells of a microtitre 

plate (Nunc plates are heat resistant). For 4 reactions 10)..!1 of ddNTP mix and 1 ~L1 of DMSO 
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were mixed together with 2.5 III amounts dispensed per well. The labelling mixture (L) was 

made up by adding, for four reactions, 2 III of labelling mixture, 1 III of OMSO and 7 III of water. 

To each template/primer mix 1 III of 0.1 M OTT, 0.5 III ofa35 [dATP] and 2 III ofmiYII!re L was 

added. The enzyme mixture (S), for 4 reactions, was prepared by mixing 1 0.6 ~t1 of enzyme 

dilution buffer and 1.4 III of Sequenase enzyme. 2 III of this was then dispensed into each 

template/primer/label mix and incubated at room temperature for 5 min. Finally, 3.5 ~tl of the 

complete mixture was dispensed into the 4 corresponding ddNTP wells for each reaction and 

incubated at 37°C for 5 min. 4 III of stop/loading dye was added and mixed before storing at 

-20°C until loading. 

2.13.9 Sequencing geJ and sample loading 

Sequencing gels were poured the day before running and stored at 4°C overnight. A 6% 

sequencing gel was prepared by mixing 63 g of urea, 22.5 ml of 40% (w/v) acrylamide solution, 

15 ml of 10 x TBE (900 mM Tris/HCl, 900 mM boric acid, 25 mM EOTA, pH 8.3) made to 

150 ml with distilled water. 750 ~t1 of 10% (w/v) ammonium persulphate and 125 III ofTEMEO 

were then added, the solution mixed and poured without degassing. The samples were heated to 

7S0C-80°C and placed on ice immediately before loading. 3 III of sample was loaded per well 

and the gel run at 40 mA for 4 hours or until the gel front reached the base of the gel. After 

electrophoresis the gel was fixed for 30 min in 2 litres of 10% (v/v) methanol, 10% (v/v) acetic 

acid then transferred to a sheet of 3MM Whatman paper and dried at 80°C under vacuum on a 

gel drier. An autoradiograph was then set up using Hyperfilm MP (Amersham, England) with 

exposure for around 18 hours and development using Kodak X -Omat. 

2.13.10 Expression in pT7-7 

The expression plasmid pT7 -7 contains an ampicillin resistance gene and a T7 RNA 

polymerase promotor. A number of host E. coli strains were used during studies on the 

expression of genes using the T7 expression plasl11ids. E. coli BL21 (DE3) was found to give the 

best level of expression. The latter strain was also used in conjunction with pLysS and pLysE 

plasmids. The inclusion of the gene for T7 lysozyme (which binds and inhibits T7 RNA 

polymerase) on plasmid pLysS provides means of controlling the basal levels of expressed 

protein prior to induction with IPTG. 

For expression 20 ml of an overnight culture was grown in LB plus antibiotic(s). 50 ml of 

LB plus antibiotic(s) were then inoculated with 5 ml of overnight culture and grown to an A600 
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of 0.6. The culture was then made 0.4 mM with respect to IPTO and grown for a further 5-6 

hours removing 1 ml samples at time-points. The A600 of the samples were measured and then 

they were centrifuged at full speed for 1 min in a microfuge. The cells were resuspended in 10)l1 

of SOS gel sample buffer for every 0.1 absorbance unit and boiled for 5 min before loading 20 ~t1 

per well onto a SDS gel. 

2.13.11 Expression for protein purification 

Large scale growth of bacteria for subsequent enzyme purification was accomplished by 

growing 500 ml cultures in 2 I flasks in a flat-box shaker at 37°C. Typically, flasks containing 

500 ml of LB plus appropriate antibiotics were inoculated with 25 ml of overnight culture. The 

antibiotics concentrations used were: 

E. coliBL21(DE3)pTB361SKpLysS - 12.5 )lg/ml tetracycline and 17 )lg/ml chloramphenicol 

E. coliBL21 (OE3)pOHQpLysS and 

E. coliBL21(DE3)pTKI-3pLysS - 17 ~lg/ml chloramphenicol and 100 )lg/ml ampicillin 

Growth for 2-3 hours at 37°C was usually sufficient before induction with IPTO and growth for a 

further 4-5 hours at 37°C for expression. 
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3. Active site studies on type I and type II Dehydroquinases. 

The use of electrospray mass spectrometry to identify active site arginine 

residues in type II debydroquinases. 

Tino Krell, Andrew R. Pitt and John R. Coggins (1995) FEES Lett. 360, 93-96. 

Localisation of tbe active site of type II dehydroquinases. Identification of a 

common arginine-containing motif in the two classes of dehydroquinases. 

Tino Krell, Malcolm 1. Horsburgh, Alan Cooper, Sharon M. Kelly and John R. Coggins (1996) 

Journal of Biological ChemistlY 271,24492-24497. 
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3.1 The use of electrospray mass spectrometry to identify active site arginine 

residues in type II dehydroquinases 

3.1.1 Abstract 

The arginine-specific reagent phenylglyoxal has been used to identify a hyper-reactive 

arginine residue which is essential for activity in the type II dehydroquinases of Streptomyces 

coelicolor and Aspergillus nidulans. Electrospray mass spectrometry was used both to characterise the 

phenylglyoxal modified protein, and to identify the phenyl glyoxal modified peptides following 

enzymatic digestion. The advantages of using electrospray mass spectrometry for monitoring arginine 

modification aimed at identifying functional residues in proteins are discussed. 

3.1.2 Introduction 

The type II dehydroquinases (3-dehydroquinate dehydratases, Ee 4.2.1.10) catalyse the 

conversion of dehydroquinate to dehydroshikimate. This reaction, which occurs on both the 

biosynthetic shikimate pathway and the catabolic quinate pathway [t -3], involves the trans 

elimination of water [4]. Little is known about the structure and mechanism of the type II 

dehydroquinases which are clearly mechanistically and structurally different from the better 

characterised class I enzymes [5,6]. The class I enzymes are exclusively biosynthetic [5], have a 

conserved active site lysine residue [7], and catalyse a cis elimination via an imine intermediate [4,8] 

with the participation of a conserved histidine residue as the general base [9]. In contrast the fungal 

type II enzymes have an exclusively catabolic role [2,10] while the bacterial enzymes may be 

exclusively biosynthetic [11,12] or be involved in both biosynthesis and catabolism [13]. There is 

preliminary chemical modification evidence for a role for histidine in the type II enzymes [5] but 

there are no conserved lysine residues and this together with the different stereochemistry and the 

failure of experiments to inhibit the type II enzymes with substrate and sodium borohydride [5] 

emphasises their mechanistic distinction from the class I enzymes. 

A type II dehydroquinase has recently been crystallised [7] and to facilitate the structure 

determination we have been using group specific chemical modification reagents to identify amino 

acid residues in the active site. Many enzymes which use carboxylic acids as substrates utilise an 

arginine residue for carboxylate recognition [14] and in several cases the functional arginine has 

proved to be hyper-reactive [15]. The reagent phenylglyoxal (PGO) has been widely used to 

demonstrate the involvement of arginine residues in enzyme function [16,17). However, the 
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identification of specific arginine residues is complicated by the relatively low stability of the adducts 

formed [17], their variable stoichiometry [17] and the necessity to use radiolabelled reagent. Also in 

the case of the type II dehydroquinases the identification of active site residues is fmiher complicated 

by the relatively low affinity of the enzymes for both substrate and product and the lack of tight 

binding competitive inhibitors [5]. To determine whether there was an active site arginine a method 

,vas needed for analysing enzyme in the early stages of modification and correlating the modification 

of particular residues directly with the loss of activity. We have used electrospray mass spectrometry 

to monitor the reaction of two type II dehydroquinases with PGO. This has permitted the simple 

characterisation of singly and mUltiply modified enzyme molecules and, through the direct analysis of 

enzymatic digests of the modified enzyme, the direct location of the modification sites without the 

necessity for sequencing or the use of radioactive or other labels. By this means we have identified a 

single hyper-reactive arginine residue in the substrate binding site of the type II dehydroquinases. 

3.1.3 Experimental 

The type II dehydroquinases from Streptomyces coelicolor [II] and Aspergillus nidulans [18] 

were overexpressed in Escherichia coli and purified as described previously [19,18]. DHQ activity 

was determined as described previously [5] and protein concentrations were determined 

spectrophotometrically at 280 nm using extinction coefficients calculated from the amino acid 

compositions [20]. 

Enzyme samples in 100 mM sodium bicarbonate buffer, pH 9.4 were pre-incubated for S min 

at 2S0C and then PGO (freshly made up SOmM stock solution in water) was added to a final 

concentration of 0.S-4.0 mM. Aliquots were removed at various times for enzyme assay. Enzyme 

inactivated to different extents for mass spectrometry was prepared by stopping the reaction by gel 

filtration on a Sephadex GSO column (200 mm X 17 mm, flow rate IS ml h- I ) equilibrated with 

10mM ammonium bicarbonate. To remove low molecular weight contaminants prior to mass 

spectrometry the enzymes samples were washed twice by diluting SO-fold with HPLC grade water 

and reconcentrated using Centricon-l0 centrifugal concentrators (Amicon, Stonehouse, 

Gloucestershire, U.K.). 

To prepare peptides from the native and modified enzyme protein samples were first 

denatured in 6 M GnHCI for IS min and then diluted with O.S% (w/v) ammonium bicarbonate to a 

GnHCl concentration of 1 M and incubated with 2% (w/w) chymotrypsin (stock solution 1 gil 

chymotrypsin in 1 mM HCl) for 4S min at 2S°c. The digestion was stopped by freezing the samples 

at -80°C. 
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Mass spectrometry was performed on a YO Platform quadrupole mass spectrometer fitted 

with a pneumatically assisted electrospray (ionspray) source and controlled via the YO MassLynx 

software (YO Biotech Ltd., AItrincham. Cheshire, U.K.). Carrier solvent [1:1 (v/v) 

acetonitrile: water, 0.2% formic acid] infusion was controlled at lO).!l/min using a Harvard syringe 

pump (Harvard Apparatus, South Natic, Mass., U.S.A.). Protein samples were dissolved in carrier 

solvent at a concentration of 20 pmol/).!l, centrifuged at 5000 x g for 2 min and then 10-20 ).!l samples 

injected directly into the carrier stream. MaxEnt deconvolution [21] was applied for quantitative 

analysis of the raw data using l.0 Da peak width and 1 Da/channel resolution. 

The peptide digests were separated by HPLC on a C-18 reverse phase column (mBondapak, 

Waters, Watford, Hertfordshire, U.K.) using 2% (v/v) acetonitrile in 0.1 % (v/v) trifluoracetic acid as 

the initial solvent (flow rate 0.5 mllmin); after an 8 min wash to remove OdnHCI a linear gradient of 

2-70% acetonitrile (v/v) in 0.] % (v/v) trifluoracetic acid was applied to elute the peptides. The 

column eluate was introduced directly into the mass spectrometer with a drying gas flow of 400 I h- I 

and the source temperature set at 100oC. The absorption profile of the eluted peptides was recorded at 

214 nm and centroid mass spectra in the range 400-1800 amll were recorded at 4 sec intervals. 

3.1.4 Results and Discussion 

The inactivation of the S. coelicolor type II dehydroquinase with POO followed pseudo-first 

order kinetics (Fig. 3-1). A secondary plot of the observed pseudo-first order rate constants against 

POO concentration was linear (data not shown) and gave a second order inactivation rate constant of 

89 M-lmin-l. 

Similar results were obtained for inactivation of the A. nidulans enzyme by POO; in this case 

the second order rate constant was 150 M-I min-I. These observations suggested that arginine 

residue(s) were required for the type II dehydroqllinase reaction. The relationship between the extent 

of inactivation and the number of arginine residues modified by POO was monitored by mass 

spectrometry; the spectra observed for three samples inactivated to different extents are shown in 

Fig. 3-2. During the early stages of inactivation (exemplified by 15% inactivation) the major peak was 

of unmodified enzyme and the only significant modified species had a mass difference of + 116 

(Mr= 16 666) (Fig. 3-2). This mass difference corresponds to the incorporation of one POO per site 

with the loss of water (Fig. 3-3). For low extents of inactivation there was a good correlation between 

the extent of inactivation and the relative size of this + 116 peak (Table 3-]). 
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Figure 3-1 Inactivation of the type II dehydroquinase of S. coelicolor by PGO. 

Semi-logarithmic plot of residual activity as a function of time, POO concentrations: 

0,5 mM (y), 1.0 mM (A), 2,0 mM ( .... ) and 4 mM (e), 
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Figure 3-2 Electrospray mass spectra of type II dehydroquinase from S. coelicolor at 

different extents of modification with pbenylglyoxaJ. 

a) 85% active, b) 60% active and c) 5% active. 
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Table 3-1 Relative amounts of adducts formed between PGO and the type II 

dehydroquinases. 

Samples were inactivated by treatment with PGO for various times, assayed for residual activity 

and then analysed by electrospray mass spectrometry (see Experimental section). 

Enzyme source % inactivation Relative percentage of adducts 

Native +116 +232 +250 +366 +482 +500 

S. coelicolor 15 77 23 

60 44 35 10 11 

95 2 31 19 21 18 4 5 

A. nidulans 10 82 18 

30 66 34 

90 16 58 14 12 

In the sample that was 60% inactivated the two major peaks due to the + 116 species and to 

unmodified protein together accounted for 80% of the material (Fig. 3-2). A number of minor 

modified species were also present including one with a mass difference of +250 (Mr=16 800), 

corresponding to the Takahashi adduct with two PGO's per arginine (see Fig. 3-3), and another with a 

mass difference of +232 (Mr= 16 782) corresponding to two different arginines, each modified with a 

single phenylglyoxal. These minor peaks were more significant in 95% inactivated enzyme (Fig. 3-2); 

in this sample very little unmodified protein remained, the singly modified + 116 species was the most 

prominent peak and there were also small peaks due to multiply modified species for example at 

+232, +250, +366 (250 plus 116), +482 (250 plus 1 16 plus 116) and at +500 (250 plus 250). These 

data suggest that the initial inactivation of the enzyme is due to the formation of a simple I: I adduct 

with phenylglyoxal followed by dehydration. 

To identify the primary site of modification samples of S. coelicolor dehydroquinase, 

modified to different extents with PGO, were digested with chymotrypsin and the peptides separated 

and analysed by reverse phase chromatography/electrospray mass spectrometry. In the 15% 

inactivated sample there was a single modified peptide of mass 3 2 I 9 which corresponds to residues 

I -28 of the enzyme + 116 mass units. This peptide contains 2 arginine residues (R2 and R23). In the 

aligned type II dehydroquinase sequences the A. nidulans enzyme has no residue corresponding to R2 
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Figure 3-3 Structures of adducts formed by the reaction of PGO with arginine residues. 

(s. coelicolor) but there is a so far totally conserved arginine residue, R19 (R23 in S. coelicolor) and 

so it seemed very likely that R23 was the site of initial modification in the S. coelicolor 

enzyme.Consistent with this observation the similarly modified A. nidulans enzyme was found to 

contain a peptide of mass 2852 which corresponds to residues 1-24 of the enzyme plus 116 mass 

units; this peptide contains a single arginine residue R 19 which corresponds to R23 in the S 

coelicolor enzyme. 
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In samples of 80% inactivated S. coelicolor enzyme the singly modified peptide 1-24 was found 

and in addition singly modified peptides corresponding to residues 84-116 (RI13) and 139-1S6 (R144 

and R1SS) were also observed. At this extent of modification it was not possible to detect any 

peptides containing the Takahashi adduct. The A. nidulans enzyme contains no arginine residues 

corresponding to R144 and RI55. It does contain a residue corresponding to Rll3 but even at 9S% 

inactivation no modification at this site was observed. The type II dehydroquinases contain an 

additional conserved arginine residue (RII7 in the S. coelicolor enzyme). No evidence that this 

residue is modified by phenylglyoxal has been otained but it should be noted that peptides containing 

this residue have proved difficult to detect by mass spectrometry. 

These results suggests that the conserved residue R23 in the S. coeUcolor enzyme (R 19 in the 

A. nidulans enzyme) is essential for enzyme function. This arginine is clearly hyper-reactive and on 

this basis is very likely to be involved in substrate binding as has been shown for hyper-reactive 

arginine residues in other enzymes [IS]. Much of the earlier work on arginine modification of 

enzymes with phenylglyoxal has assumed that the major initial reaction involved the formation of the 

2: 1 Takahashi adduct [17] and the extent of modification was usually estimated by monitoring the 

incorporation of radioactive phenylglyoxal and assuming this 2: 1 stoichiometry. Our results show that 

the initial phenylglyoxal modification of the type II dehydroquinases does not involve formation of 

the 2: 1 Takahashi adduct but instead a 1: 1 adduct forms which is then very rapidly dehydrated 

(Fig. 3-3). 

Our observations also confirm that the adducts formed between phenylglyoxal and proteins 

are sufficiently stable to be analysed by the standard conditions used for the electrospray mass 

spectrometry of proteins. A major difficult in locating the sites of phenylglyoxal modification is the 

poor stability of the phenylglyoxal modified peptides during purification, especially during reverse 

phase HPLC in the presence of 0.1 % trifluoroacetic acid. Although, under the conditions we describe 

there is undoubtedly significant hydrolysis of the phenylglyoxal peptide adducts the high sensitivity 

of electrospray masspectrometry still permits the simple and rapid identification of the major sites of 

arginine modification in proteins. 
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Localisation of the active site of type II dehydroquinases. Identification of a 

common arginine-containing motif in the two classes of dehydroquinases. 

3.2.1 Summary 

A novel method based on electrospray mass spectrometry (Krell, T., Pitt, A. R. and 

Coggins, J. R. (1995) FEBS Lett. 360, 93-96) has been used to localise active site residues in the 

type I and type II dehydroquinases. Both enzymes have essential hyper-reactive arginine residues 

and the type II enzymes have an essential tyrosine residue. The essential hyper-reactive R23 of 

the Streptomyces coelicolor type II enzyme has been replaced by lysine, glutamine and alanine 

residues. The mutant enzymes were purified and shown by c.d. spectroscopy to be structurally 

similar to the wild-type enzyme. All three mutant enzymes were much less active, for example 

the kcat of the R23A mutant was 30 OOO-fold decreased. The mutants all had reduced Km values, 

indicating stronger substrate binding, which was confirmed by isothermal titration calorimetry 

experiments. A role for R23 in the stabilisation of a carbanion intermediate is proposed. 

Comparison of the amino acid sequence around the hyper-reactive arginine residues of the two 

classes of enzymes indicates that there is a conserved structural motif which might reflect a 

common substrate binding fold at the active centre of these two classes of enzyme. 

3.2.2 Introduction 

It is generally believed that enzymes have evolved to catalyse reactions by optimal 

mechanisms. With the exception of the four classes of proteinases (1) and the two classes of 

aldolases (2) examples of mechanistically different pairs of enzymes that catalyse the same 

reaction are very rare. This unusual situation is found with the two classes of dehydroquinase 

(EC 4.2.1.10) which catalyse the dehydration of 3-dehydroquinate to form 

3-dehydroshikimate (3). The reaction is common to two metabolic pathways: the biosynthetic 

shikimate pathway which is used for the synthesis of aromatic compounds in plants and micro

organisms (4) and the catabolic quinate pathway which enables fungi and some other micro

organism to use quinate as a carbon and energy source (5). The type I dehydroquinases catalyse a 

cis elimination and are only involved in the biosynthesis of shikimate (6) whereas the type II 

enzymes, which catalyse a trans elimination (1), have been found to have either a biosynthetic 

(7) or a catabolic role (8) and in at least one species a dual role (9). 
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Besides being mechanistically distinct the two classes of DHQ have very different 

biophysical properties and are apparently unrelated at the level of primary structure (10,11). The 

type I enzymes are dimers with a Mr of about 46 000 , they are heat labile and use a mechanism 

which involves the fonnation of a Schiff-base intermediate between the substrate and a lysine 

residue of the enzyme followed by the abstraction ofa proton by a general base (12,13,14,15). In 

the case of the type I E. coli enzyme the lysine residue has been located (K170) by trapping the 

Schiff-base intermediate by borohydride reduction (12,13) and this residue is conserved in all 

type I sequences (12) as is His-143 (15,16) which is the general base. Both Met-23 and Met-20S 

(17) have also been identified as active site residues although their role in substrate binding or 

catalysis has not been established. 

In contrast the type II enzymes are heat stable dodecamers with a subunit molecular 

weight of about 16000 Da (11), they catalyse a trans elimination of the elements of water (3), 

there are no conserved lysine residues and they are resistant to inhibition by borohydride 

treatment (C. Kleanthous, R. K. Deka and T. Krell, unpublished results). Clearly the type II 

enzymes do not use the Schiff-base mechanism and it has been suggested that the two classes of 

DHQs are the result of convergent or parallel evolution (18). 

Both the type I and type II enzymes have been crystallised (19,20) and to aid structural 

analysis we have been using group-specific chemical modification to localise the active sites. 

Recently we have described a new method, based on electrospray mass spectrometry for 

monitoring the modification of proteins by the arginine-directed reagent phenyl glyoxal (PGO) 

(21). This method allows the direct measurement of the amounts of individually modified 

enzyme species. PGO rapidly inactivates the type II DHQs (21). In the early stages of 

inactivation only one modified species could be detected which correlated directly with the 

activity loss. The single site of modification was identified by HPLC-electrospray mass 

spectrometry based peptide mapping to be the hyper-reactive residue R23. Here we repOli the use 

of this methodology to identify further active site residues in the DHQs. Inactivation with TNM 

has identified an essential tyrosine in the type II enzymes and inactivation with PGO has 

identified a hyper-reactive arginine in the type I enzymes. The essential role of the active site 

arginine in the type II enzymes has been confirmed by site-directed mutagenesis and a number of 

mutant enzymes characterised kinetically, by circular dichroism (c.d.) and by isothermal titration 

calorimetry (ITC). This has led to the identification of a structural motif containing these 

essential amino acids which is common to both the type I and II DHQs. 
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3.2.3 Experimental Procedures 

Purification and Assay oj Type I and Type II DHQs-The type II DHQs from S. coelicolor 

(22) and Aspergillus nidulans (23) were overexpressed in E. coli and assayed and purified as 

described previously (24,25). Protein concentrations were determined spectrophotometrically at 

280 nm using extinction coefficients calculated from the amino acid compositions (26). 

The E. coli type I DHQ was purified from an overproducing strain according to the 

procedure of Chaudhuri et al. (6). Enzyme activity was determined by monitoring the formation 

of 3-dehydroshikimate at 234 nm (f': = 12 x 103 M- 1cm- 1 ) at 25°C. The assay mixture for the 

type I enzyme contained 100 j.tM ammonium dehydroquinate as substrate in 100 mM potassium 

phosphate (PH 7.0); for the type II enzyme of A. nidulans the assay mixture contained 1 mM 

ammonium dehydroquinate in 50 mM Tris/acetate (pH 7.0). The assay for the type II enzyme of 

S. coelicolor was carried out in 50 mM Tris/acetate (pH 8.0) containing 2 mM substrate. 

Inactivation with Phenylglyoxal (PGO)-Enzyme inactivation reactions were carried out at 

2SOC in a volume of 2 ml with continuous stirring. Samples of type I and type II DHQ (3 nM) in 

100 mM sodium bicarbonate buffer, pH 9.4 were pre-incubated for 5 min at 2SoC and then PGO 

(freshly made up SO mM stock solution in water) was added to a final concentration of 0.S-4.0 

mM. Aliquots were removed at various times for enzyme assay. 

Inactivation with Tetranitromethane (TNM}-Type II DHQ was pre-incubated in 0.1 M 

Tris/HCI, pH 8.0 for S min at 25°C and then TNM (freshly made up stock solution of 15 mM in 

9S% ethanol) was added to a final concentration of S-50 ~lM. Aliquots were removed at various 

times for enzyme assay. 

Preparation oj inactivated Enzyme Samples jor ES-MS-Enzyme inactivated to different 

extents was prepared for mass spectrometry by stopping the reaction by gel filtration on a 

Sephadex GSO column (200 mm x 17 mm, flow rate IS mllh) eluted with 0.5% (w/v) ammonium 

bicarbonate. To remove low molecular mass contaminants prior to mass spectrometry the' 

enzyme samples were washed twice by diluting SO-fold with HPLC grade water and 

reconcentrated using Centricon-IO centrifugal concentrators (Amicon, Stonehouse, 

Gloucestershire, UK). 

Proteolytic Digests-Modified and native DHQ were digested at 3rC. The enzyme in 0.4 

M ammonium bicarbonate was denatured in 8 M urea for I hour. Water (37°C) was added to 

lower the urea concentration to 2 M and the mixture was incubated with 3% (w/v) trypsin (l gil 

stock solution in 1 mM HC!) for 4 hours. Afterwards, another 1 % (w/v) trypsin was added and 

incubation continued for one hour. Digestion was stopped by freezing the samples at -80°C. 
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A10nitoring the Amount and localising the Site of Modification using ES-MS-Mass 

spectrometry was performed on a VG Platform quadrupole mass spectrometer fitted with a 

pneumatically assisted electrospray (ionspray) source and controlled via the VG MassLynx 

software (VG Biotech Ltd., AItrincham. Cheshire, UK). Carrier solvent [1: 1 (v/v) 

acetonitrile/water, 0.2% formic acid] infusion was controlled at 10 Illlmin using a Harvard 

syringe pump (Harvard Apparatus, South Natic, MA, USA). Protein samples were dissolved in 

carrier solvent at a concentration of 20 pmolllll, centrifuged at 5000 x g for 2 min and then 10-20 

III samples injected directly into the carrier stream. MaxEnt deconvolution (27) was applied for 

quantitative analysis of the raw data using a 1.0 Da peak width and 1.0 Da/channel resolution. 

The protein digests were separated by HPLC on a C-4 reverse phase column (2.0 x 150 

mm; Delta-pactm, Waters, Waterford, Hertfordshire, UK) using 2% (v/v) acetonitrile in 0.1 % 

(v/v) trifluoracetic acid as the initial solvent (flow rate 0.25 ml/min); after an 8 min wash to 

remove GdnHCl a linear gradient of 2-70% acetonitrile (v/v) in 0.1 % (v/v) trifluoracetic acid was 

applied to elute the peptides. The column eluate was introduced directly into the mass 

spectrometer with a drying gas flow of 400 IIh and the source temperature was set at 100°e. The 

absorption profile of the eluted peptides was recorded at 214 nm and centroid mass spectra in the 

range 400-1800 Da/z were recorded at 4 s intervals. 

Site-directed Mutagenesis-The plasmid containing the coding sequence of S. coelicolor 

DHQ cloned into the SmaI site of pIBJ25 (IBI/Eastman Kodak Co., New Haven, CT) (pDHQ) 

was a gift from Professor Ian S. Hunter, Strathclyde University, Glasgow. Three site-directed 

mutants (R23K, R23Q, R23A) were prepared using PCR site-directed mutagenesis (28). Primers 

were synthesised on an Applied Biosystems Model 280A DNA synthesiser. The three reverse 

PCR primers which contained the mismatch codon (highlighted in bold) overlap the BglII site 

which is located 10 bp downstream of arginine residue 23: 

5' GTAGATCTCCGGCTGCTTCTGGCCGAGC 3'(R23K) 

5' GTAGATCTCCGGCTGCGCCTGGCCGAGC 3'(R23A) 

5' GTAGATCTCCGGCTGCTGCTGGCCGAGC 3' (R23Q). 

The forward-primer was complementary to a region of the polylinker 190 bp upstream and 

contained an EcoRV site: 5' CCAGATATCAAATTAATACGACTCACTATAGG 3'. 

The PCR products were cloned back into pDHQ replacing the wild-type BglII-EcoRV fragment. 

The presence of only the desired mutations was confirmed by DNA sequencing on both strands 

(29). For protein expression the entire mutated sequences were cloned into the NdeIlHindIJI site 

of the expression-plasmid pT7 -7 (30) and overexpressed in E. coli BL21 (DE3 )plysS (31). The 
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mutant enzyme was purified by following the same protocol as the wild-type enzyme. The 

expression strain used has a native level of type I DHQ. The background activity could be 

detected as a distinct peak in the eluate of the Phenylsepharose column (second column in 

enzyme purification) and separated completely from mutant enzyme. As a control a fraction of 

the pure mutant enzyme was incubated at 75°C for 20 min (type II native and mutant enzymes 

are heat stable, type I enzyme is not). The enzyme activity before and after the heat treatment 

was identical. Otherwise, the mutant enzymes were purified and assayed as described above for 

the native enzyme. Pure mutant enzyme was subjected to ES-MS analysis. 

Circular Dichroism-The circular dichroism (c.d.) spectra of each protein were recorded 

1I1 a Jasco J-600 spectropolarimeter. Spectra in the far u.v. (260-190 nm) were recorded in 

cylinrlrical quat1z cells of pathlength 0.02 cm and spectra in the near u.v. region (320-260 nm) 

were recorded in cells of path length 0.5 cm. The protein concentration was typically 0.5-0.6 

mg/mt for far u.v. work and 5-6 mg/ml for the near u.v. experiments. All protein solutions were 

dialysed against 10 mM Tris/HCI, pH 7.5. The secondary structure content was determined from 

the data in the far u.v. over the range 190-260 nm using the CONTIN procedure (32). 

Isothermal Titration Calorimetry (ITC)-Binding of equilibrated substrate/product 

mixtures to native and mutant DHQ samples at 25°C was determined using a Microcal OMEGA 

isothermal titration calorimeter following standard ITC procedures (33,34). Protein samples 

(ca. 1 mg/ml), exhaustively dialysed against 10 mM Tris/HCl, pH 7.6, were degassed briefly 

before loading into the ITC cell (ca. 1.4 ml). Substrate (ammonium dehydroquinate, 50 mM) was 

dissolved in dialysis buffer together with a trace of native DHQ and incubated at room 

temperature for 15 hours to give the equilibrated substrate/product mixture prior to loading into 

the ITC injection syringe. [Note: use of pure substrate in these experiments would result in large 

heat effects from the enzymatically-catalysed reaction, rather the heats of binding required here.] 

A typical titration experiment involved a series of up to twentyfive 10 /-ll iftiections of ligand . 
(substrate/product mix) into the enzyme solution at 3 min intervals, with continuous stin·ing. 

Integrated heat effects, after correction for dilution and mixing controls determined separately 

under identical conditions, were analysed by standard techniques using Microcal ORlGIN 

software assuming I: I enzyme-complex formation (32). 
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3.2.4 Results 

Identification of an essential Tyrosine Residue (Y28) in the type II DHQ of 

S. coelicolor DHQ-S. coelicolor DHQ can be inactivated by treatment with the nitrating reagent 

tetranitromethane (TNM). This reagent is reasonably specific for tyrosine residues (35). 

Inactivation followed pseudo-first order kinetics (data not shown). The nitration of the aromatic 

ring of a tyrosine residue results in a mass increase of +45 Da. Enzyme inactivated to different 

extents showed only one modified tyrosine residue in the mass spectrometer (Fig. 3-4, 

exemplified by 30% and 70% inactivated species). A minor peak which corresponds to an 

oxidised species could also be detected. To localise the site of modification a 30 % inactivated 

sample was digested with trypsin. A peptide with the mass of 2096.3 Da could be detected which 

was not present in the tryptic digest of the native enzyme (data not shown). This mass 

corresponds to peptide 24-42 +45 Da. The sequence contains only one tyrosine residue (Y28) 

which is conserved in all the type II DHQs (Fig. 3-5). 

Identification of a hyper-reactive Arginine (R213) in the Type I DHQ of E. coli-The 

type I DHQs, like the type II enzymes, can be inactivated by PGO; in the case of the E. coli 

enzyme the inactivation follows pseudo-first order kinetics (data not shown). 20% inactivated 

enzyme showed only one modified species with a mass difference of + 116 Da which corresponds 

to the incorporation of one PGO per reacting site. Native and 20% inactivated enzyme were 

digested with trypsin, peptides separated by HPLC and injected directly into the electrospray 

mass spectrometer. Trypsin cleaves at unmodified arginine and lysine residues; no cleavage is 

expected after a modified arginine residue. Recorded spectra were therefore scanned for the 

theoretical tryptic peptides containing a single internal PGO-modified arginine residue 

(+ 116 Da). This tryptic digestion allows the precise location of the site of reaction. Three 

modified peptides were detected. From the peak size on the HPLC trace it was apparent that two 

of these modified peptides were only minor species whereas the third modified peptide was much 

more abundant. This abundant arginine-containing peptide corresponds to residues 208-229 

(Fig. 3-6, A), and identifies R213 as the hyper-reactive arginine residue (Fig. 3-5). Peptides 

208-213 and 214-229 are shown to demonstrate that the protease cuts the unmodified enzyme 

species at R213 (Fig. 3-6, B and C). The double peak in Figure 3-6, C is due to the occurrence in 

the tryptic digest of a second peptide (26-31) which has exactly the same mass as peptide 

208-213; these peptides have different mobilities on reverse phase HPLC. 
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Figure 3-4 MaxEnt deconvolution of electrospray mass spectra of S. coelicolor DHQ. 

(native molecular weight: 16550 Da) inactivated with tetranitromethane (TNM). 

The nitration of a single tyrosine residue results in a mass species of 16 595 Da (+ 45 

Da), the minor species with the mass of 16 628 Da is likely to be due to oxidised enzyme 

containing methionine sulfone; A, 30% inactivated enzyme; B, 70% inactivated enzyme. 
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The secondary sites of modification are at residues 38 and 48. The tryptic digest of native 

enzyme did not contain species with masses corresponding to the POO-modified peptides. 

Site-directed Mutagenesis of the hyper-reactive Arginine Residue in the Type II 

DHQ of S. coelicolol' -The hyper-reactive arginine (R23) of S. coelicolor DHQ (21) was 

replaced by a lysine, glutamine and alanine residue. The masses of purified mutant proteins were 

determined using ES-MS. All three masses were found to be very close to the theoretical values. 

Far u.v. c.d .. spectroscopy was employed to estimate the influence of the amino acid 

exchange on the secondary structure of the enzyme (Fig. 3-7 A, Table 3-2). The R23K and R23A 

substitutions caused no significant structural perturbation compared with the wild-type. The 

R23Q mutation resulted in a small decrease in the percentage of j3-sheet (Table 3-2), but this 

conclusion should be treated with caution in view of the noise in the spectrum below 195 nm. 

The near u.v. c.d. spectra (Fig. 3-7, B) also confirm that the tertiary structures of the mutant 

enzymes are very similar to the wild-type, although there are some small differences in the 

270 to 285 nm region suggesting a subtle change in the environment of one or more tyrosine side 

chains. 

Table 3-2 Estimation of secondary structure elements of native and mutant S. coelicolor 

DHQ 

[using the CONTIN procedure (32)J. 

a-Helix j3-sheet remainder 

% % % 

wild-type 21±1.1 41±1.l 39±2.0 

R23K 20±O.8 40±O.9 40±1.6 

R23Q 21±0.9 35±1.1 44±1.8 

R23A 22±1.2 41±1.3 36±2.3 
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Figure 3-5 Sequence alignment of currently available type II and monofunctional type I DHQs. 

Boxed amino acids form the common motif. Highlighted are the hyper-reactive arginine residues and the essential tyrosine. 
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Figure 3-6 Reverse phase chromatography/eJectrospray mass spectrometry 

(RPIES-MS) data of a tryptic digest of E. coli DHQ. 

20% inactivated after phenyl glyoxal treatment. The enzyme sample is a mixture of 80% 

native enzyme and 20% single-site modified enzyme, centroid spectra were collected 

every 4 sec.; traces A, Band C show the relative abundance of mass species in all the 

recorded spectra against retention time; A, scan within all the recorded spectra for a mass 

of modified peptide 208-229 + 116 Da (1 POO attached); B, scan for a mass of 

unmodified peptide 214-229; C, scan for the mass of unmodified peptide 208-213 (the 

double peak in this trace is due peptide 26-31 which has exactly the same mass as peptide 

208-213; these two peptides have different HPLC-mobilities); D, simple HPLC trace at 

215 run against retention time (min). 
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Figure 3-7 Superimposed circular dichroism spectra of native and mutant 

S. coelicolor DHQ. 

(--) wild-type; (-----) R23A; ( ..... ) R23K; (_. -. -) R23Q; A, far u.v.; B, near u.v. 
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Figure 3-8 Isothermal titration calorimetry curve - raw data 

Raw ITC data for successive 10 ).!l injections of ~quilibrated substrate/product mixture 

(50 mM) into native or mutant DHQ (40-80 ).!M). The dilution control shows data for 

identical injections of substrate/product mixture into buffer. Traces are off-set for clarity. 

Negative-going peaks indicate exothermic binding. 
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Figure 3-9 Isothermal titration calorimetry curve. 

Comparison of integrated heat of binding data. for native and mutant DHQ after 

correction for dilution controls. Lines are theoretical curves for 1: 1 binding with 

parameters given in Table 3-4. Note the expanded scale for the wild-type enzyme. 



o 5 10 15 20 25 o 5 10 15 20 25 

0.00 0.0 

-0.05 ~ -T r 1 1-0
.
5 

-0 10 
~ . ~ Wild-type -I I R23Q 

-I -1.0 
~ • C\j ...... 

-0.15 () 
0 

L J- -I -1.5 .-; 
~ ...... 

0\ <U +:- .....-. 
0 0.0 r _ ...••••••••••••• lr 

.ft ••••••••••••••••• -I 0.0 a -.... 
~ 
~ I ".- l- f -1 -0.5 

-0.5 

R23A 
-t -1.0 

R23K 

f I -1.0 r ' I ~ -1.5 

-2.0 

-1.5 ~ • 
11:1 

~ ~ -2.5 
I 

0 5 10 15 20 25 0 5 10 15 20 25 

Injection Number 



The kinetic parameters were determined as shown in Table 3-3. The Km values were 

calculated using a Lineweaver-Burk plot and the mutant enzyme activity was determined as 

described above for the wild-type enzyme. Surprisingly, the Km values of the mutant enzymes 

were found to be lower than those of the wild-type enzyme. 

Table 3-3 The Idnetic parameters of native and mutant S. coelicolor DHQ. 

Assays were performed in triplicate with the values within 10% for R23Q and R23K and within 

20% for R23A. 

kcat Km kcat/Km 

s-1 JIM s-1M-1 

wild-type 960 1100 8.7xI05 

R23K 0.35 250 1400 

R23Q 0.31 135 2300 

R23A 0.032 170 188 

This apparent increased affinity for substrate was confirmed by isothermal titration experiments 

of enzyme species with an equilibrated substrate/product mixture as illustrated in Fig. 3-8; 3-9 

and Table 3-4. 

Table 3-4 Apparent DHQ-substrate binding parameters of wild-type and mutant 

S. coelicolol'DHQ. 

determined from calorimetric titrations assuming 1:1 complex formation. 

enzyme 

wild-type 

R23K 

R23Q 

R23A 

Kapp 

1l1lv! 

5.40 

1.10 

033 

0.30 

LlHapp 

kJ 11101-1 

-11 

-25 

-24 

-29 

With wild-type enzyme the heat effects were relatively small but, after correction for dilution 

heat effects, consistent with weak exothermic 1: 1 enzyme-substrate complex formation 
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(Kapp~5 mM, see Table 3-4). In marked contrast, addition of substrate to mutant proteins gave 

significantly more exothermic initial heat effects, which decreased rapidly with subsequent 

injections in a manner consistent with much tighter binding (Kapp~0.3-1 mM; Fig. 3-9 and 

Table 3-4). 

3.2.5 Discussion 

Both chemical modification and site-directed mutagenesis of the conserved 

hyper-reactive arginine residue in the type II DHQs (R23 in the S. coelicolor enzyme) lead to 

loss of enzyme activity. Arginine residues with hyper-reactivity towards a-I ,2 dicarbonyls such 

as POO are often found to be involved in carboxylate binding. Such residues are located in 

special microenvironments and have lower pKa's than other arginine residues (36,37). Three 

mutants were made of the hyper-reactive R23 of S. coelicolor DHQ: R23K, R23Q, and R23A. 

Mass spectrometry and c.d. analysis revealed that the mutants were of the expected size 

and had the same or very similar secondary structure as the wild-type enzyme (Fig. 3-7; 

Table 3-2). All three mutants showed a much smaller turnover number (kcat), with R23K being 

in the same range as R23Q and with R23A still being another order of magnitude less active 

(Table 3-3). In contrast a decrease in Km values was observed, by a factor of 4 for the R23K 

mutant and by factors of 8 and 6 for the R23Q and R23A proteins respectively (Table 3-3). This 

behaviour was also confirmed more directly by calorimetric binding studies, which showed that 

binding of substrate was significantly enhanced by replacement of R23 with K, Q or A, as 

indicated by a 5 to IO-fold decrease in the apparent binding constant (Kapp) and significantly 

more exothermic binding. Direct comparison of Kapp with Km values is not strictly appropriate 

because Km's relate to initial substrate binding, rather than the equilibrated substrate/product 

mixture used for calorimetric experiments. They are, in any case, only related to substrate 

binding affinities within the validity of the Michaelis-Menten approximation. Nevertheless, Km 

and Kapp are of the same order of magnitude and, more importantly, show the same trends in the 

mutant enzyme. 

In other enzymes, where arginine residues are known to be involved in the recognition of 

substrates containing carboxyl groups, arginine mutation leads to a large increase in Km (38,39). 

Our results therefore suggest that R23 is not simply involved in substrate recognition but must 

have a catalytic role. One possibility is that a positive charge is required to stabilise a negative 

transition state such as an enolate. Although the R23K mutant retains the positive charge the 
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position of this charge will be significantly altered in the mutant. The full interpretation of this 

result must await the determination of the 3D structure of the enzyme. 

Chemical modification has also identified Y28 as a residue in or near the active site. Both 

R23 and Y28 are conserved in all type II DHQs (Fig. 3-5). The small changes observed in the 

near u.v. c.d. spectra (Fig 3-7) of the arginine mutant proteins can be explained by a change in 

the environment of a tyrosine residue. The proximity in the sequence of R23 and Y28 and the 

occurrence of these small spectral changes when the arginine is altered are both consistent with 

these residues being spatially close. 

Chemical modification experiments on the type I DHQs have also identified a 

hyper-reactive arginine (R213 in the E. coli enzyme) which appears to be essential for activity 

and is near the methionine residue previously identified as an active site residue (17). 

Comparison of the amino acid sequences around the hyper-reactive arginine residues of the two 

classes of enzyme (Fig. 3-5) indicates that there is a conserved structural motif, extending over 9 

residues, shown by the shaded region in Fig. 3-5. In the type I enzymes the essential tyrosine 

residue identified by TNM modification in the type II enzymes is replaced by a phenylalanine 

residue. Both the mechanistic experiments (3,13) and the sequence comparisons (11,40) have 

suggested that these two classes of enzyme are likely to be structurally very different and it will 

therefore be interesting to see whether this sequence similarity is reflected in a common substrate 

binding fold at the active centres of these two classes of enzyme. 
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4.1 The use of mass spectrometry to examine the formation and hydrolysis of 

the phosphorylated form of phosphoglycerate mutase. 

4.1.1 Abstract 

Electrospray mass spectrometry has been used to study the formation and hydrolysis of 

the phopshorylated forms of two phosphoglycerate mutases. The half-life of the enzyme from 

Saccharomyces cerevisiae was 35 min at 200 e in 10 mM ammonium bicarbonate, pH 8.0. 

Addition of 1 mM 2-phosphoglycollate reduced this value by at least 100-fold. The 

phosphorylated form of the enzyme from Schizosaccharomyces pombe was much less stable with 

a half life of less than 1 min. The results are discussed in terms of the kinetic properties of the 

enzymes. Mass spectrometry would appear to be a powerful method to study the formation and 

breakdown of phosphorylated proteins, processes which are of widespread significance in 

regulatory mechanisms. 

4.1.2 Introduction 

The advent of electrospray mass spectrometry with its ability to measure molecular 

masses with a precision of ±O.O 1 % has made it much easier to detect and characterise both post

translational and chemical modifications of proteins [1-3]. The introduction of the phospho group 

(-OP032-) in place of -H would lead to a mass increase of 78 units and thus be readily 

detectable. This approach has been used, for instance, in the delineation of the sites of 

phosphorylation in glycogen synthase [4] after separation of the modified peptides. However, 

examination of an intact phosphorylated protein by mass spectrometry does not appear to have 

been widely studied. In this paper we describe the use of electrospray mass spectrometry to 

monitor the formation of the phosphorylated forms of two phosphoglycerate mutases (PGAMs) 

and to examine the stability of these phosphorylated enzymes towards hydrolysis. 

The catalytic cycle of phosphoglycerate mutase is thought to proceed via an enzyme

substitution pathway involving the enzyme phosphorylated on a histidine side chain (His-8 in the 

case of S. cerevisiae PGAM) [5]. The phosphorylated PGAM is slightly unstable towards 

hydrolysis leading to a low level of phosphatase activity (approx. 0.002% that of the mutase 

activity in the case of the S. cerevisiae enzyme). It has been suggested [5] that the flexible 

e terminal segment (14 amino acids) of this enzyme may be important in preventing access of 

water to the active site and thus maintain a high level of mutase to phosphatase activity. Recently 
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the monomeric PGAM from the fission yeast Sch;zosaccharomyces pombe has been shown to 

lack this flexible C-terminal tail sequence [6]. The kinetic properties of the S. pombe enzyme 

have not yet been explored in detail. 

4.1.3 Experimental 

PGAM from an overexpressmg strain of S. cerevisiae was isolated as described 

previously [7], with the addition of a final FPLC Superose-12 gel-filtration step. The 

concentration of the enzyme was determined spectrophotometrically assuming a value of 1.45 for 

the A280 of a 1 mg/ml solution [8]. 

PGAM from S. pombe was produced using the PGK -based vector pMA91 [9] for the high 

level expression of recombinant GPA1~P in a transformed null mutant strain of S. cerevisiae 

(S ISO-gpm: :HIS3) [7]. The overexpressed S. pombe PGAM was purified in a similar manner to 

over-expressed S. cerevisiae PGAM [7]; routinely 10-15 mg of enzyme of at least 95% purity on 

SDS-PAGE [10] could be obtained per litre of cells. Full details of the expression system and 

enzyme purification will be published elsewhere (Nairn, Fothergill-Gilmore and Price, in 

preparation). 

The concentrations of the S. pombe enzyme were determined by a Coomassie Blue 

binding method [11] using bovine serum albumin as a standard or spectrophotometrically using a 

value for the A280 (1.40 for a I mg/ml solution) calculated from the aromatic amino acid content 

of the enzyme [6,12); the values agreed to within 5%. The assays of mutase, phosphatase and 

synthase activities were performed as described previously [7]. 

The phosphorylated forms of the PGAMs from S. cerevisiae and S. pombe were prepared 

by mixing the enzymes with 2,3-bisphosphoglycerate (BPG) in 10 mM Tris/HCI, pH 8.0, 

followed by rapid gel filtration on NAP 5 columns (Pharmacia) equilibrated with 10 mM 

ammonium bicarbonat~, pH 8.0, to remove free mono- and bis-phosphoglycerates. This 

procedure allowed samples to be studied by mass spectrometry within 3 min of the mixing. 

Mass spectrometry was performed on a VG Platform quadrupole mass spectrometer (2 -

3000 amu range) fitted with a pneumatically assisted electrospray (ionspray) source and 

controlled via the VG MassLynx software (VG Biotech. Ltd, Altrincham, Cheshire, U.K.). 

Carrier solvent (1: I (v: v) acetonitrile: water) infusion was controlled at 10 ml/min using a 

Harvard syringe pump (Harvard Apparatus, South Natic, Mass., U.S.A.). Capillary voltages were 

between 2.8 and 3.2 kV, extraction cone voltages 20 - 30 V and the focusing cone voltage offset 

by + 10 V. The source temperature was set at 65 0 C, the nebulising gas flow at 10 IIh and the 
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drying gas flow at 250 IIh. Lens stack voltages were adjusted to give maximum ion currents. The 

Mr range 700 - 1500, which contained> 95% of the signal intensity for both unmodified and 

phosphorylated forms of POAM, was scanned with a sweep time of 5 s. The instrument was 

calibrated over this Mr range immediately before use with horse heart myoglobin (Sigma). 

Samples for analysis were diluted with an equal volume of 4% (v : v) formic acid in acetonitrile 

and 10 - 20 ml aliquots injected directly into the carrier stream. The MaxEnt deconvolution 

procedure [13] was applied for quantitative analysis of the raw data using 1.0 Da peak width and 

1 DalchanneI resolution. 

4.1.4 Results and Discussion 

S. cerevisiae PGAM -The specific activities of the S: cel'evisiae enzyme in the mutase 

and the phosphatase assays (970 and 0.020 mmollmin/mg respectively) and the effect of I mM 

substrate analogue 2-phosphoglycollate on the latter activity (18 fold stimulation) were very 

similar to those described previously [7]. 

The mass spectrum of the S. cerevisiae enzyme shows a single peak of Mr 27478.9 ± 1.0 

consistent with the subunit Mr (27 477) calculated from the cDNA-derived sequence of the 

enzyme [14]. After addition of 0.8 molar equivalents (expressed per active site) of BPO, 

followed by rapid gel filtration, the mass spectrum clearly shows the formation of the 

(mono )phosphorylated enzyme, with a mass increase of 79 amu (Fig. 4-1, A). 

Under these conditions, 60% of the total enzyme was present in the phosphorylated form. 

There was little or no (,:::0.05 molar equivalents per active site) BPO or monophosphoglycerates 

either free or enzyme bound after the gel filtration. By increasing the molar ratio of BPO to 

10-fold more than 95% of the enzyme could be isolated in the phosphorylated form (data not 

shown). When the enzyme which had been prepared by reaction with the sub-stoichiometric 

amount of BPO and then gel filtered was subsequently incubated at 200 e, there was a slow loss 

of the phospho group from the enzyme. Fig. 4-1, B shows the mass spectrum of the sample taken 

after 18.5 min incubation. The data from three independent experiments expressed as a semi

logarithmic plot are shown in Fig. 4-2; in each case the proportion of the enzyme in the 

phosphorylated fonn is expressed relative to the initial proportion as 100%. From the semi

logarithmic plot the rate constant for the hydrolysis of the phosphorylated enzyme is 0.02 min-I, 

corresponding to a half-life of approximately 35 min. This direct estimate half-life of the 

phosphorylated form of S. cerevisiae POAM is rather longer than the value (1-2 min) quoted by 

Britton et af. [15] on the basis of unpublished work. 
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Figure 4-1 Formation and hydrolysis of the phosphorylated form of S. cerevisiae 

PGAM monitored by mass spectrometry. 

The spectra over the Mr range shown (27440 - 27680) were obtained by applying the 

MaxEnt deconvolution procedure to the raw data. In each case the size of the major peak 

is set as 100%. The peaks labelled E and E-P represent the dephosphorylated and 

phosphorylated forms of the enzyme respectively. (a) Mass spectrum of the sample 

immediately after gel filtration. (b) Mass spectrum recorded after a further 18.5 min 

incubation. 
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Figure 4-2 Semi-logarithmic plot to show the conversion of the phosphorylated form 

to the dephosphorylated form of the enzyme. 

Data from three independent experiments are plotted; in each case the initial proportion 

of pho spho enzyme (immediately after gel filtration) is scaled to 100%. 
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It is however clear from preliminary work that the measured phosphatase activity is 

markedly influenced by factors such as ionic strength and the presence of phosphorylated 

substrates and analogues, and this may well account for at least some of the observed differences 

in stability of the phosphorylated enzyme, i.e. the phosphorylated enzyme would appear to be 

much less stable when the enzyme is turning over. 

When the mass spectrometry experiment was repeated with 1 mM 2-phosphoglycoIIate 

added to the phosphorylated enzyme immediately after gel filtration, it was found that within 1 

min, less than 5% of the enzyme remained in the phosphorylated form (data not shown). This 

result indicates that in the presence of 2-phosphoglycollate the half-life of the phosphorylated 

enzyme is less than 20 s (i.e. the rate of the dephosphorylation reaction is accelerated at least 

100-fold in the presence of this substrate analogue; a somewhat greater effect than the 18-fold 

stimulation of phosphatase activity). 

In the presence of acetonitrile (50% (v : v), the phosphorylated enzyme showed no 

detectable breakdown after 70 min incubation (data not shown). Since this concentration of 

acetonitrile leads to a considerable loss of secondary structure (as shown by far u.v. c.d. 

measurements) it can be concluded that the denatured phosphorylated enzyme is considerably 

more stable towards hydrolysis than is the native phosphorylated enzyme. This conclusion would 

be consistent with earlier work in which negligible breakdown had been shown to occur over 120 

min in the presence of 1.5% (w/v) SDS [16]. 

S. pombe PGAM-In the mutase assays, the specific activity of S. pombe PGAM 

(215 ml11ollmin/mg) is about 20% of that of the S. cerevisiae enzyme, whereas in the 

phosphatase assay it is some 2.S-fold higher (0.06 mmollmin/mg). Thus the ratio of the 

phosphatase/mutase assays is 12-fold higher for the S. pombe enzyme. The degree of stimulation 

of the phosphatase activity by 2-phosphoglycollate is considerably lower in the case of the S. 

pombe enzyme (4.2-fold). 

The mass spectrum of S. pombe PGAM shows a peak at with an Mr of 23 679.4 ± 1.5, 

corresponding to that calculated from the published sequence [6] assuming that the initiating Met 

has been removed and the N-terminal threonine acetylated. On addition of 0.8 molar equivalents 

of BPG followed by gel filtration (a process lasting 3 min), less than 5% of the enzyme was 

present in the phosphorylated form (data not shown). This was not due to an inability to form the 

phosphorylated enzyme since the mixture prior to gel filtration showed that 60% of the enzyme 

was present in the phosphorylated form. From these results, it could be concluded that the half

life of the phosphorylated form of S. pombe PGAM was less than 1 min (at least 35-fold shorter 
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than that of the S. cerevisiae enzyme). This greater instability of the phosphorylated form of the 

S. pombe enzyme is in qualitative agreement with the higher ratio of phosphatase to mutase 

activities for this enzyme. 

In conclusion, mass spectrometry should prove to be a very useful technique for 

monitoring the phosphorylation and dephosphorylation of a number of enzymes and proteins, a 

process which has been recognised to be a key regulatory mechanism for a large number of 

crucial biological processes [17]. The mass spectrometric technique avoids the necessity of using 

radioactive isotopes. Further refinements would include increasing the time resolution, allowing 

the rates of faster processes to be monitored accurately. 
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Phosphoglycerate mutase from Scltizosaccltaromyces pombe; development of 

an expression system and characterisation of three histidine mutants of the 

enzyme. 

4.2.1 Summary 

The smail, monomeric, phosphoglycerate mutase (PGAM) from Schizosaccharomyces 

pombe has been overexpressed in a strain of Saccharomyces cerevisiae in which the gene 

encoding PGAM has been deleted, with a yield of purified enzyme of 10-15 mg per litre cell 

culture. Three mutants in which histidine residues in S. pombe PGAM have been substituted by 

glutamine have been purified and characterised. Two mutants (H 151 Q and H 196Q) have kinetic 

and structural properties very similar to wild-type enzyme, consistent with the proposed location 

of these (non-conserved) histidines on the surface of the enzyme. The third mutant (H 163Q) 

involving a histidine thought to be part of the active site has greatly reduced mutase and 

phosphatase activities. Mass spectrometry shows that the phosphorylated form of the H163Q is 

several hundred times more stable towards hydrolysis than the phosphorylated form of wild-type 

enzyme. The H 163Q mutant appears to be structurally quite distinct from wild-type enzyme. 600 

MHz 1 D proton NMR spectra of good quality have been obtained for wild-type enzyme and the 

H 151 Q and H 196Q mutants. 

4.2.2 Introduction 

Phosphoglycerate mutase (PGAM) (EC 5.4.2.1) catalyses the interconversion of 

2-phosphoglycerate and 3-phosphoglycerate. There are broadly two classes of PGAM; those 

which are active in the absence of 2,3-bisphosphoglycerate (BPG) and those which depend on 

BPG for activity [1]. The mechanism of the latter group is known to involve the formation of a 

phosphoenzyme, in which a histidine side chain is phosphorylated. The most extensively studied 

of the BPG-dependent PGAMs is the tetrameric enzyme from Saccharomyces cerevisiae, whose 

amino acid sequence [2] and X-ray structure at 0.28 nm resolution [3] have been published. 

Although relatively little is known about the mechanism of the BPG-independent enzymes and 

no stable phosphorylated enzyme intermediate can be isolated, there has been some recent 

evidence from both chemical modification and site-directed mutagenesis [4] that up to three 

histidine residues may be crucial for activity. 
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The BPG-dependent PGAM from the fission yeast Schizosaccharomyces pombe has been 

shown to be monomeric with a molecular mass of 23 kOa [5]. The amino acid sequence of the S. 

pombe enzyme is 43% identical with that of the S. cerevisiae enzyme, with conservation of the 

histidine which is phosphorylated during the reaction cycle (His-8 in the S. cerevisiae enzyme; 

His-IS in the S. pombe enzyme) and most of the other residues thought to be involved in the 

active site. However, significant differences exist in regions known to be important in the 

interactions between the subunits of the S. cerevisiae enzyme. Thus in the "0" (dimeI') interface 

region of the S. cerevisiae enzyme, a five residue loop which interacts with the adjacent subunit 

(Leu74-Trp-I1e-Pro-Val78) is replaced by Asn-Leu-Glu-Thr-Ile in the aligned S. pombe 

sequence. A 25 residue loop (Pro-I22 to Pro-I46) in the S. cerevisiae enzyme, part of which is 

involved in interactions across the "T" (tetramer) interface is deleted in the aligned S. pombe 

sequence. These changes may well account for the monomeric nature of the S. pombe enzyme. 

The small size of S. pombe PGAM puts it within the size range which is accessible to 

high resolution NMR spectroscopy. Application of this technique in conjunction with a 

programme of site-directed mutagenesis should yield new, detailed insights into the structure and 

dynamics of the active site of PGAMs. In this paper we describe the development of an 

expression system for S. pombe PGAM, and report on site-directed mutagenesis experiments 

aimed at examining the roles of histidine side chains. We also present preliminary 10 proton 

NMR spectra of the wild-type and mutant enzymes which demonstrate that the full assignment of 

the spectrum should be a feasible proposition with suitable isotopic labelling strategies. 

4.2.3 Experimental 

PGAM from cultures of S. pombe (i.e. chromosomal PGAM) was isolated as described 

[6], with the addition of a second chromatography step on Cibacron Blue-Sepharose eluted with 

1 M NaCI in order to remove any traces of cofactor or substrate which might interfere with 

subsequent assays. The NaCl was subsequently removed by dialysis against the appropriate 

buffer. The concentrations of the S. pombe enzyme were determined by a Coomassie Blue 

binding method [7] using bovine serum albumin as a standard. This method gave values within 

5% of those determined spectrophotometrically using a value for the A280 calculated from the 

aromatic amino acid content of the enzyme [8]. (The value calculated (1.40 for a 1 mg/ml 

solution) refers to the enzyme in 6 M GdnHCI, but for most proteins the value in buffer is 

generally within 10% of this value [8]). 
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The PGK-based vector pMA91 [9] was used for the high level expression of recombinant 

GPMP in S. cerevisiae. To generate GPMP for subcloning, two oligonucleotides were designed: 

one oligonucleotide corresponded to the upstream coding region of GPlvfP, with a BglII site 

added on to the 5' end of this ("sense") oligonucleotide 

(5'-GCCGAAGATCTATGACTACCGAAGCT -3'). The other ("anti-sense") oligonucleotide 

corresponded to the downstream coding region of GPMP, with a BglII site added on to the 3' end 

of this oligonucleotide (5'-GCCGAAGATCTCTAGTTGTCAATGAG-3'). These 

oligonucleotides served as primers for the amplification of GPMP such that a BglII site was 

introduced to allow direct cloning into the expression site of pMA91. Using the cDNA clone of 

GPMP (pbii.GPMP) [5] as the template, the PCR conditions used were as follows: 

3 mM MgS04, 350 mM dNTPs, 120 pmol of each primer and 2 units of Vent polymerase (New 

England Biolabs, Bishops Stortford, Herts., U.K.) per 100 ml reaction. After 30 cycles of 

denaturation (95°C, I min), annealing (55°C, I min) and extension (nOC, I min), the resultant 

fragment was isolated from an agarose gel, digested with BglIl and cloned into pMA91. pMA91-

GPMsP was transformed into the strain of S. cerevisiae (S 150-gpm: :HIS3) from which the 

chromosomal copy of the gene encoding S. cerevisiae PGAM has been deleted [10]. 

Overexpressed S. pombe PGAM was purified by ion-exchange on DE-52 in an analogous fashion 

to that described for the S. cerevisiae enzyme [10] with the addition of a final FPLC gel-filtration 

step on Superose-12. The Superose-12 column was eluted with 50 mM sodium phosphate, pH 

8.0. 

Site-directed mutagenesis of PGAM from S. pombe used the method outlined by Chen 

and Przybyla [11], involving two rounds of PCR with the appropriate primers. (In the following 

description, PI and P2 are respectively the 5'-+3' and 3'-+5' oligonucleotides used to introduce 

BglII sites in the construction of pMA91.GPMSP). The first round of PCR was carried out using 

the following reaction conditions:- 1 x Pfu buffer (20 mM Tris-HCl, pH 8.2, 10 mM KCI, 6 mM 

(NH4)2S04, 2 mM MgCI2> 0.1% (v/v) Triton X-IOO, 10 mg/ml BSA), 200 mM dNTPs, 100 pmol 

PI, 100 pmol mutagenic primer M, 500 pgpbii.GPMP and 2.5 units Pfll polymerase in 100 ml 

reaction volume. 25 cycles were carried out (95°C, I min; 53°C, I min; noc, 1 min). The 

product generated from this first round ofPCR (PCR-I) was purified using Wizard™ PCR Preps 

DNA Purification System (Promega). The second round of PCR was also performed for 25 

cycles under the following conditions (95°C, 1 min; an extended period (I min 15 s) of cooling to 

53°C; 53°C, 1 min; nOc, 1 min). A 100 ml reaction mixture contained 1 x Pfll buffer, 200 mM 

dNTPs, 100 pmol P2, 100 pmol PCR-I, 0.5 mg pbii.GPMP and 2.5 units Pfu polymerase. 
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The product generated from the second round of PCR was digested with BglIJ and purified from 

a low melting point agarose gel. This purified product was then ligated into BglII-treated 

pMA91. To confirm the desired mutation, the nucleotide sequence of the entire GPMsP coding 

region was determined using the dideoxy chain termination method [12J on alkaline denatured ds 

DNA. The mutagenic primers (altered sequences underlined) were designed using the published 

nucleotide sequence of the gene encoding S. pombe PGAM [5J:- (a) for the H151Q mutant, to 

replace H 111 the sequence IVPHILK by Q, the pnmer was 3'

TAACAGGGAGTTTAGGAATTC-5'; (b) for the H163Q mutant, to replace H in the sequence 

IAAHGNS by Q, the primer was 3'-TAACGGCGAGTTCCATTGAGA-5'; (c) for the HI96Q 

mutant, to replace H in the sequence PIVYHLD by Q, the primer was 3'

GGGTAACAGA TGGTTAACCTG-5'. 

The assays of mutase and phosphatase activities were performed at 300 C as described 

[10]. Mutase activity was measured in a system consisting of:- 30 mM Tris-HCI at pH 7.0, 

20 mM KCI, 5 mM MgS04, 0.2 mM ADP, 0.15 mM NADH, 10 mM 3-phosphoglycerate, 

0.2 mM BPG, 0.08 units/ml enolase and 0.5 units/ml of each of pyruvate kinase and lactate 

dehydrogenase. Phosphatase activity was measured in a similar system, except that the Tris-HCI 

buffer was at pH 8.0 and 3-phosphoglycerate was omitted. 

A model of the S. pombe PGAM was built based on the X-ray structure of S. cerevisiae 

PGAM [3J using standard procedures [13]. SYBYL (SYBYL 6.0 Manual (I994) Tripos 

Associates, St. Louis, MO) was used for all molecular modelling steps except final model 

refinement for which XPLOR [14] was used. Secondary structure prediction was by the HSSP 

[15] and SOPM [16] methods. The alignment ofPGAM sequences published previously [5] was 

used. Firstly, the portions of the crystal structure corresponding to the C-terminal tail and the 25 

residue deletion were removed. Then amino acid substitutions were made so that the new side 

chain occupied, as closely as possible, the same space as the original side chain [17]. If the new 

side chain was larger than the original, backbone-based side chain preferences [18] were used. 

The structure was inspected visually and minimally adjusted to relieve unfavourable steric 

contacts. Three new proline residues were introduced by the modelling. In two cases the marked 

backbone preferences of pralines and their preceding residues [19] combined with secondary 

structure predictions suggested that the existing backbone in the vicinity was incorrect. For these 

regions and for the 25 residue deletion, database loop searches [20] as implemented in SYBYL 

were used for backbone modelling. Loops were selected based on packing considerations, 

particularly exposure of charged residues and burial of hydrophobic residues, and for absence of 
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unusual backbone torsion angles. Model refinement was by a combination of Energy 

Minimisation (EM) and limited Molecular Dynamics (MD). Initial EM comprised 200 cycles in 

which only side chains were allowed to move, 200 cycles during which the structure in the 

vicinity of remodelled backbone was allowed to move and 200 cycles in which the whole 

structure was free to move. MD was in three similar stages with 5 ps simulation at 300K at each 

stage. A weak restraint was imposed on active site residues throughout the MD. Finally, a further 

200 cycles of EM were carried out to produce the final model. The model was assessed and 

compared to the crystal structure using PROCHECK [21], PROFILE [22] and PROSA [23]. 

CD measurements were performed on a JASCO J-600 spectropolarimeter. The molar 

ellipticities were calculated assuming a value of 112 for the mean residue weight of each enzyme 

[5]. Fluorescence spectra were recorded on a Perkin-Elmer LS50 spectrofluorimeter. 

Mass spectrometry analysis was performed on a VG Platform quadrupole mass 

spectrometer (2-3000 amu range) fitted with a pneumatically assisted electrospray source and 

controlled via the VG Mass-Lynx software (VG Biotech Ltd, AItrincham, Cheshire, UK) as 

described in detail [24]. The MaxEnt deconvolution procedure [25] was applied for (I'wntitative 

analysis of the raw data using 1.0 Da peak width and I Da/channel resolution. 

Proton NMR spectra of wild-type and mutant PGAMs were recorded (at protein 

concentrations in the range 6-8 mg/ml) both in H20 and D20 buffers (50 mM sodium 

phosphate) at 25 0 C, using the Varian 600 MHz instrument at the Department of Chemistry, 

University of Edinburgh. The pH (PO) ofthe samples was adjusted to be in the range 5.8-6.3, and 

the residual HOD signal (4.7 ppm) was used as a reference. I H spectra were acquired as a first 

increment of a phase-sensitive 20 NOESY experiment to achieve better suppression of residual 

water. The spectral width was 9000 Hz and the acquisition time 0.228 s. All spectra were zero 

filled to 8192 points prior to Fourier transformation. The resolution of the spectra was enhanced 

by Gaussian multiplication. The residual water signal of aqueous solution samples (90% H20, 

10% D20) was removed by post-acquisition processing using the FELIX routine with a sine 

shape convolution function. The number of transitions for each sample was between 256 and 

2048 depending on the sample concentration. 

4.2.4 Results 

Molecular modelling procedures -The model of ). pombe PGAM seems to be of 

comparable quality to the crystal structure on which it is based. One of the best measures of the 

quality of the structure is the percentage of residues in the core regions of the Ramachandran plot 
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[26]. The PRO CHECK analysis shows that the model has 59% of its residues in these regions. 

While this Figure compares only moderately with the 60-80% expected from an X-ray structure 

at 0.28 nm resolution, it appears to be considerably better than the S. cerevisiae structure [3] 

(46% of residues in the core regions). This improvement would arise during refinements of a 

model based on a crystal structure of only moderate resolution. In addition, by all the other 

backbone and side chain parameters measured, the model performs better than would be 

expected for a crystal structure at 0.28 nm resolution. The PROFILE and PROSA results for the 

model are comparable to those for the starting structure. There are 4 histidine residues in the 

model. Active site residues His- t 5 and His-163 (corresponding to His-8 and His-I81 respectively 

in the S. cerevisiae enzyme) are present in the same "clapping hands" orientation seen in the 

crystal structure. Residues His-I51 and His-196 are not conserved and are both fully solvent

exposed on the surface of the model. This suggests that they should both be amenable to 

replacement by any hydrophilic residue. 

Expression system for S. pombe PGAM-GPMsP was amplified and subcloned into the 

BglII expression site of the high efficiency S. cerevisiae expression vector pMA91. The resulting 

construct pMA91.GPMsP (Fig. 4-3) was transformed into the S. cerevisiae strain S150-

gpm::HIS3. As described by White and Fothergill-Gilmore [lOJ, SI50-gpm::HIS3 lacks GPMSC 

and consequently cannot utilise glucose as a carbon/energy source. Once transformed with 

pMA91.GPMsP, this strain could be grown in complex YEPD medium indicating that the small 

monomeric S. pombe PGAM complements the S. cerevisiae strain that lacks all phosphoglycerate 

mutase coding sequence. The S. pombe PGAM was expressed in high yield in S 150-gpm::HIS3 

and the yield of enzyme of at least 95% purity on SDS-PAGE amounted to 10-15 mg per litre 

cell culture. Similar yields were obtained of the three mutant enzymes. 

Kinetic properties of S. pombe PGAM -Table 4-1 shows the kinetic properties of 

chromosomal S. pombe PGAM as well as recombinant wild-type and mutant enzymes. It should 

be noted that in all cases the mutase activity was BPG dependent; in the absence of this cofactor, 

the activity was at least 50-fold lower. (The very small level of activity observed in the absence 

of the cofactor may result from traces of BPO contamination in the 3PGA). The recombinant and 

chromosomal S. pombe POAMs are very similar in terms of their kinetic properties. In the 

mutase assay, the specific activity of S. pombe POAM is about 20% of that of the S. cerevisiae 

enzyme (Table 4-1). However, the phosphatase activity of the S. pombe enzyme is about 6.5-fold 

higher than that of the S. cerevisiae enzyme. Thus the ratio of the phosphatase/mutase activities 
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is some 30-times higher for S. pombe PGAM than for the S. cerevisiae enzyme. In the case of the 

S. pombe enzyme the stimulation of the phosphatase activity by 2-phosphoglycollate is 2.1 fold. 

Table 4-1 Kinetic properties of wild-type and mutant PGAMs. 

The assays of mutase and phosphatase activities were performed as described previously [10]. 

Assays were performed in triplicate with the values within 5% for the mutase activities and 

within 10% for the phosphatase activities. 

Enzyme Mutase Phosphatase Phosphatase 
specific activity specific activity + I mM2-PG 
(mmollmin/mg) (mmollminlmg) (mmollmin/mg) 

S. cerevisiae 970 0.02 0.35 

S. pombe (chromosomal) 210 0.06 0.22 

S. pombe (recombinant) 218 0.13 0.27 

S. pombe (HI5IQ mutant) 221 0.14 0.55 

S. pombe (H163Q mutant) 0.91 <0.003 <0.003 

S. pombe (H196Q mutant) 238 0.14 0.68 

As shown in Table 4-1, the H lSI Q and H 196Q mutants have very similar kinetic 

properties to those of wild-type enzyme. This would be consistent with the proposal that these 

non-conserved histidines are located on the surface of the enzyme. The HI63Q mutant has a 

substantially reduced mutase activity (some 220 fold lower than wild-type enzyme). This mutant 

had no detectable phosphatase activity « 0.003 mmollmin/mg), which represents the lower limit 

of detection under the assay conditions employed). This is at least some 40 fold lower than that 

of wild-type enzyme. There was no effect of I mM 2-phosphoglycollate on this activity. 

Mass spectral analysis of wild-type and mutant enzymes-The mass spectra of 

wild-type PGAM and the three mutants are shown in Fig. 4-4. The mass of the wild-type enzyme 

is consistent with that calculated (23,678 Da) from the amino acid sequence, assuming that the 

initiating Met has been removed and the N-terminal threonine acetylated [5,24]. The His~Gln 

mutation would be expected to lead to a decrease in mass of 9 Da; within experimental error, this 

is consistent with the observed masses of the mutants (Fig.4-4). All three mutants can apparently 
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Figure 4-3 The expression plasmid pMA91-GPMsP• 

The gene encoding POAM from S. pombe is indicated by the solid bar. The hatched 

blocks indicate the S. cerevisiae POK promoter (POK 5') and the S. cerevisiae PGK 

temlination sequence (POK 3'). The E. coli origin of replication (ori 322) and the S. 

cerevisiae 2m origin of replication (2m ORl) are shown. The position and orientation of 

the defective LEU2-d gene and the b-lactamase gene (amp) are also shown. 
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be phosphorylated by BPO, as shown by an increase in mass of 78 Da. While it is very likely that 

this phosphorylation takes place on His-iS (which corresponds to His-8, the known site of 

phosphorylation in the S. cerevisiae enzyme), it would be necessary to isolate and characterise 

the appropriate modified peptide to substantiate this conclusion. As previously reported [24], the 

t1/2 of the phosphorylated form of the wild-type enzyme was found to be less than 1 min; this was 

also the case for the HISI Q and H196Q mutants. However, in the case of the H163Q mutant, the 

phosphorylated form was found to be much more stable. As shown in Fig. 4-S, there was very 

little breakdown after 183 min, indicating a tl/2 of at least 400 min for this process. There was no 

effect of I mM 2-phosphoglycollate on the stability of the phosphorylated form of the H163Q 

mutant (data not shown). 

Spectral characterisation of wild-type and mutant enzymes: 

CD spectra-The far UV CD spectra of wild-type S. pombe POAM and the three mutants 

are shown in Fig. 4-6. It is clear that the HISI Q and H196Q mutants have very similar secondary 

structures to wild-type enzyme, whereas the H163Q mutant has a significantly different structure. 

There was no detectable effect of BPO (2S mM) on the CD spectrum of the wild-type enzyme or 

the HI63Q mutant. 

Fluorescence spectra-When excited at 290 nm, the emIssIon maxima of wild-type 

POAM and the HISIQ and H196Q mutants are at 339 nm. The emission maximum of the 

H163Q mutant is blue-shifted by some 2 nm, with the peak intensity being within S% of that of 

the wild-type enzyme. 

NMR spectra-The I D proton NMR spectra for the wild-type and mutant POAMs 

(recorded in 90% H20) are shown in Fig. 4-7. The wild-type enzyme yields a spectrum with 

chemical shift dispersion and line widths consistent with a folded protein of molecular mass 20-

2S kDa. The spectra of the H 196Q and H lSI Q mutants are broadly similar to that of the 

wild-type enzyme, although the somewhat broader line widths in the latter suggest that there may 

be an increased tendency to aggregate. When transferred into D20 (99.9%), the wild-type 

enzyme showed a number of sharp peaks in the aromatic region which could arise from the 

histidine protons (data not shown). However, at the concentrations used it was not possible to 

observe correspondingly distinct peaks from the HI96Q and HISI Q mutants, thereby precluding 

any assignment of the peaks in the wild-type spectrum. The lack of dispersion and broad lines in 

the spectrum of the H 163Q mutant (Fig. 4-7) are indicative of poorly folded and/or unstable 

protein. 
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Figure 4-4 Mass spectra of S. pombe PGAM. 

Spectra were recorded on a VG platform quadrupole mass spectrometer as described in 

the text. Spectra of wild-type and mutant enzymes. Traces A, B, C and D correspond to 

H196Q, H151Q, H163Q and wild-type enzyme respectively. In each case the small peak 

to the right of the main peak represents the K+ adduct of the protein. 



10 
23669 

A 

% 

23669 
10 

B 

% 

10 
23668 

23678 
10 

o 
% 

~"""""'~""""'-r-T"""'I~~~::;::;:::-"""'--.-.-~;::::;:::;::;::;:::;::::;=;:=;:::::r:::;::=;=r: rna ss 
23600 23650 23700 23750 23800 

89 



Figure 4-5 Spectra of the H163Q mutant enzyme. 

Recorded inunediately after addition of 7 molar equivalents (100 mM) BPG and 

subsequent rapid gel filtration to remove excess BPG [24] (A) and after a further 183 min 

incubation (B). The peaks corresponding to the phosphorylated (E-P) and non

phosphorylated (E) fonns of the enzyme are indicated. 
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Figure 4-6 Far u.v. c.d. spectra of S. pombe PGAM. 

Spectra were recorded in cells of pathlength 0.02 cm at a protein concentration of 

0.3 mg/m!. 

The spectra are depicted as: wild-type, (--); H151Q, ( .... ); H196Q,( - - - _ -); 

H163Q, (- - - ). 
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Figure 4-7 600 MHz proton NMR spectra of wild-type and mutant PGAMs. 

Spectra were recorded at 2SoC in 90% H20 as described in the text. 
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4.2.5 Discussion 

The results described in this paper show that the gene encoding S. pombe POAM can be 

successfully expressed in strain S150-gpm::HIS3 of S. cerevisiae. Oood yields of both wild-type 

and mutant enzymes were obtained and easily purified to homogeneity. The mass spectra of the 

enzymes (Fig. 4-4) confirm directly the substitution of glutamine for histidine, and exemplify the 

exquisite resolving power of electrospray mass spectrometry in this type of application. 

In earlier work [24], mass spectrometry has been used to examine the formation and 

decay of the phosphorylated form of POAMs from S. cerevisiae and S. pombe. As previously 

reported the phosphorylated form of the S. pombe enzyme has a half life of less than 1 min at 

pH 8.0; this was confirmed in the present work and also found to be the case for the H151Q and 

H 196Q mutants. The similar behaviour of these mutants to the wild-type enzyme is consistent 

with their comparable kinetic properties (Table 4-1). 

As shown in Fig. 4-7, good quality lD proton NMR spectra can be obtained for wild-type 

S. pombe POAM and the H 151 Q and H 196Q mutant enzymes. Taken together with some 

preliminary 2D NMR spectral information on the wild-type enzyme (data not shown), it would 

appear to be feasible to undertake a full assignment and structural characterisation of the enzyme 

using multiple isotope labelling techniques. 

One aim of the experiments described in this paper was to examine the role of His-163 in 

S. pombe POAM. In the case of the S. cerevisiae enzyme (where the corresponding residue is 

His-lSI), it was found that the mutase activity of the HI SI A mutant was reduced by some 

104_fold compared with wild-type enzyme [27], consistent with the proposal that His-lSI is 

involved in proton transfer reactions which are associated with the transfer of the phospho group 

to a suitable nucleophile, either water or 2- or 3-POA. The decrease in the mutase and 

phosphatase activities (Table 4-1) and the increase in the stability of the phosphorylated form 

(Fig. 4-5) of the HI 63Q mutant of S. pombe POAM would at first sight appear to indicate that 

His-163 plays an analogous role in this enzyme. However, the results of the spectral studies 

indicate that the structure of this mutant (H l63Q) is different from wild-type enzyme, and it is 

therefore possible that the effects on the kinetic properties arise from these structural changes 

rather than from the alteration of the histidine per se. 

These data provide further cautionary evidence that conclusions regarding the functional 

role of particular side chains reached by site-directed mutagenesis studies should always be 

regarded as provisional until it has been shown the mutation causes no detectable structural 
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alteration of the protein. The effects of substitution of amino acid residues could be on the 

pathway of folding and/or on the final structure itself. It should, however, be noted that despite 

the alteration in structure, His-IS of the H 163Q mutant can be phosphorylated on addition of 

BPG (Fig. 4-5). 

Inspection of the X-ray structure of S. cerevisiae PGAM [3] indicates a possible reason 

for the structural changes observed in the H163Q mutant of the S. pombe enzyme. The conserved 

Glu-86 in the S. cerevisiae enzyme (Glu-93 in S. pombe sequence) is much less exposed to 

solvent than would be expected for a charged side chain and may well be stabilised by an ionic 

interaction with the adjacent His-181 (His-163 in the S. pombe enzyme). It is possible therefore 

that if the histidine is replaced by glutamine, disruption of this interaction would destabilise the 

local structure leading to an altered structure. It is of interest that the H 181 A mutant of 

S. cerevisiae PGAM has a similar structure to wild-type enzyme as detected by CD or 

fluorescence; however the I-Il81A mutant is less stable towards denaturation by GdnHCI. 

Addition of BPG to the H181A mutant (i.e. formation of the phosphorylated enzyme) is 

accompanied by very pronounced changes in both near and far UV CD spectra and by 

dissociation of the tetramer into dimers [27]. Further indications of the importance of interactions 

involving residues at or near the active site come from the observation that a number of patients 

with hereditary PGAM-M (muscle type enzyme) deficiencies have mutations in this region 

(E89A and R90W) [28] (the corresponding residues in the S. cerevisiae enzyme are Glu-86 and 

Arg-87). In the related enzyme, bisphosphoglycerate mutase, mutation of a corresponding 

residue (Arg-89) to cysteine, serine, glycine or lysine leads to derivatives which are much less 

active catalytically and also much less thermostable. Mutation of His-187 in this enzyme 

(corresponding to His-163 in S. pombe PGAM) to asparagine, tyrosine or aspattic acid also led to 

derivatives with similar losses of activity and stability [29,30]. Taken together, these findings 

clearly show the sensitivity of the overall structure of PGAM to perturbations at the active site. 
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Overexpression, characterisation and preliminary X-ray crystallographic 

analysis of Shildmate kinase from Erwinia chrysanthemi. Hyper-reactivity of 

the P-Ioop lysine at the ATP binding site. 

5.1.1 Summal"), 

Shikimate kinase from Erwinia clllysanfhemi has been overexpressed in Escherichia coli, 

purified and chemically and kinetically characterised. The lysine residue in the ATP binding site 

(the P-Ioop lysine) was found to be hyper-reactive to modification with trinitrobenzenesulfonic 

acid (TNBS). Light scattering was used to assess the suitability of different complexes of SK for 

crystallisation. The complex of SK with ADP and shikimate was the only monodisperse solution 

at 298K, and this combination was the only complex that gave crystals. The crystals, grown by 

the vapour-diffusion F1(>thod using sodium chloride as a precipitant, were tetragonal, space group 

P41212 or enantiomorph with cell dimensions a=b= 108.5 A and c=92.8A (at lOOK). Native 

crystals diffract to better than 2.6 A on a Synchrotron X-ray source. 

5.1.2 Introd uction 

Shikimate kinase (SK) (EC 2.7.1.71) catalyses the fifth reaction of the aromatic 

biosynthetic pathway (the shikimate pathway) converting shikimic acid into shikimate 

3-phosphate using ATP as a co-substrate. Unusually for enzymes in the middle of metabolic 

pathways SK occurs in two different isoforms, SKI and SKII, and it has been proposed that 

shikimate may therefore be a branch-point intermediate for two different pathways (Weiss and 

Edwards, 1980). Both the amL gene, which encodes SKII (De Feyter and Pittard, 1986a; 

Millar et aI., 1986), and the aroK gene, which encodes SKI, have been cloned and sequenced 

from E. coli (Whipp and Pittard, 1995; Lobner-Olsen and Marinus, 1992). SKII appears to playa 

major role in the shikimate pathway, its expression is controlled by the tyrR regulator gene and it 

is repressed by tyrosine and tryptophan (Ely and Pittard, 1979; DeFeyter et al., 1986). The role of 

SKI is much less clear, its expression is constitutive and the enzyme has a very much lower 

affinity for shikimate (Km for shikimate of 20 mM compared with 200 ).!M for SKII)(DeFeyter 

and Pittard, 1986b) and it has been suggested that in E. coli SKI has been displaced by the 

catalytically more efficient and better regulated SKU (Whipp and Pittard, 1995). Another 

possible explanation is that SKI normally carries out other functions in the cell and that it 
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phosphorylates shikimate only fortuitously (DeFeyter and Pittard, 1986b). This is consistent with 

the observation that SKI is associated with sensitivity to the antibiotic mecillinam which clearly 

implies an alternative biological role for SKI (Vinella et al., 1996). 

Shikimate kinases contain the Walker et al. (1981) type A-motif (GXXGXGK[T/S]), a 

common structural feature of many A TP/GTP-proteins. It was proposed by Milner-White 

et at. (1991) that this motif is part of a core structure consisting of four strands and four helices 

which is found in a very large number ATP/GTP-binding proteins. The GK[T/S] motif occurs in 

the P-loop which is the site of ATP/GTP binding (Mueller and Schulz, 1992). The lysine residue 

in the P-Ioop has been extensively studied by mutagenesis (Tian et a11990; Korangy and Julin, 

1992; Reinstein et at. 1990) and is thought to have a catalytic role (Reinstein et al., 1990). To 

provide further mechanistic and structural information about this important family of proteins we 

have chemically characterised the conserved lysine residue in the A TP-binding site and 

commenced a crystallographic study of SKII. Our initial attempts to crystallise SKU from E. coli 

failed, but the SK of Erwinia chrysanthemi, which appears to be an SKTI type enzyme 

(Minton et at., 1989), yielded crystals suitable for X-ray analysis. Since the only lysine residue in 

SK of E. chlJJsanthemi is the P-Ioop residue the chemical characterisation was particularly 

straightforward. 

5.1.3 Materials and Methods 

Expression in E. coli. The coding region of the aroL gene from E. chlJJsanthemi was 

amplified from the plasmid pASN32 (Minton et aI., 1989) using VENT polymerase (New 

England Biolabs) and the two synthetic oligonucleotides SKinl and SKin2. SKinl 

(TCGTGGGCATATGACAGAACCCATTTTTATG) contained an NdeI site (bold) to facilitate 

cloning and the 5' end of the coding sequence. SKinII 

(GGAGATCTTTAGGCCGCAGGCAGACGCAT) contained a BglJI site (bold) and had the 

TGA stop codon of the gene changed to TAA, which corresponds to TTA (italics) in 

5' -3' direction and which is a preferred codon for highly expressed genes in E. coli. 

Amplification was performed with 2.5 U of polymerase, 100 pmol of primers, 250 nmols of each 

deoxy-nucleosidetriphosphate and lOng of plasmid DNA. The amplified gene was cloned into 

the NdeI-BglII sites of the T7 expression vector pTB361 (Brockbank and Barth, 1993). The 

construct (pTB361 SK) was sequenced on both strands using synthetic oligonucleotide primers on 

denatured double-stranded DNA by the method of Sanger et al. (1980). 
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E. coli BL21 (OE3) was transformed with pTB361 SK lIsing a standard CaCI2 method 

(Sambrock et af., 1989) Afterwards a positive colony was transformed with pLysS (Studier and 

Moffatt, 1986) using the same methodology. 

For expressIOn studies 20 ml of an overnight culture of 

E. coli BL21 (OE3)pTB361 SKpLysS was grown in Luria Bertrami medium (LB) containing 

tetracycline (12.5 f-tg/ml) and chloramphenicol (17 ~lg/ml) at 37°C. 50 ml of LB plus antibiotics 

were then inoculated with 5 ml of overnight culture and grown to an A 600 nm of 0.6. The 

culture was then made 0.4 mM with respect to isopropyl-I3-0-thiogalactopyranoside (lPTG) and 

grown for a further 5-6 hours removing I ml samples at time-points. The A 600 nm of the 

samples were measured and then they were centrifuged at full speed for 1 min in a microfuge. 

The cells were resuspended in 10 f-tl of SOS gel sample buffer for every 0.1 A 600 nm unit and 

boiled for 5 min before loading 20 f-tl per well onto a SOS gel (Laemmli, 1970). 

Large scale growth of bacteria for subsequent enzyme purification was accomplished by 

growing 500 ml cultures in 2 I flasks in a flat-box shaker at 37°C. Typically 25 ml of overnight 

culture was inoculated into 500 ml of LB containing appropriate antibiotics. Growth for 

4-5 hours at 37°C was usually necessary before induction with IPTG and growth for a further 

4 hours at 37°C for expression. A 6-liter growth typically yields 12 g (wet weight) of cells. 

Protein Purification. All steps after cell breakage were performed at 4°C. 

E . coli BL21 (OE3)pTB361 SKplysS cells (14 g) suspended in 20 ml 50 mM Tris/HCI, pH 7.5 

containing 20 mM KCI, 5 mM MgCl2 and 0.4 mM OTT (buffer A) were broken by two passes 

through a French pressure cell. This material was then diluted with 80 ml buffer A and 

centrifuged at 100 000 x g for I hour. SK was purified from the resulting cell-free extract. 

The supernatant was applied to a OEAE-Sephacel anion-exchange column 

(25 cm x 2.1 cm diam., flow rate of 20 mllh) equilibrated in buffer A. The column was then 

washed with the same buffer until the A 280 nm of the eluate was less than 0.3. SK was eluted 

with a linear gradient of 0-300 mM KCI in 800 ml of buffer A (flow rate 40 ml/h) and fractions 

(14 ml) collected and assayed as described. 

Pooled fractions were made up to 1.2 M (NH4)2S04 by addition of solid (NH4)2S04 

and applied to a Phenyl-Sepharose hydrophobic interaction column (l0 cm x 1.1 cm diam., flow 

rate of 10 ml/h) equilibrated in 100 mM Tris/HCI, pH 7.5 containing 1.2 M (NH4)2S04 and 

0.4 mM OTT (buffer B). The column was then washed with 50 ml of buffer B, and the SK was 

eluted with a linear gradient (200 ml) of 1.2 M-O.O M (NH4)2S04 in buffer B. The flow rate was 

10 mllh and 4 ml fractions were collected and assayed. 

100 



Fractions containing SK activity were pooled and dialysed against 55 mM Tris/HCl, 

pH 7.5 containing 550 mM KCl, 5.5 mM MgCI2, 2.75 mM shikimic acid, 1.375 mM ADP and 

0.45 mM OTT. The dialysed material was concentrated by vacuum dialysis and glycerol was 

added to a final concentration of 10% (v/v). The enzyme solution was applied to a Sephacryl 

S200 (superfine grade) column (85 cm x 2.5 em diam., flow rate of 8 mllh) that had been 

equilibrated in 50 mM Tris/HCl, pH 7.5 containing 500 mM KCl, 5 mM MgCI2, 

2.5 mM shikimic acid, 1.25 mM ADP and 0.4 mM DTT and the enzyme was eluted with the 

same buffer (the flow rate 8 mllh, 4 ml fractions). Fractions containing SK activity were dialysed 

against buffer A containing 50% (v/v) glycerol before long-term storage at -20°e. 

Protein concentrations were determined by the method of Bradford (1976) using bovine 

serum albumin as a standard, or spectrophotometrically at 280 nm in a Phillips Model PU8700 

spectrophotometer using quartz cuvettes. The extinction coefficients were calculated according 

to Gill and von Hippel (1989). The concentration values determined by the two methods agreed 

within 5%. 

Enzyme Assay. SK was assayed at 25°C by coupling the release of ADP to pyruvate 

kinase (EC 2.7.1.40) and lactate dehydrogenase (EC 1.1.1.27). Shikimate-dependent oxidation of 

NADH was monitored at 340 nm (E=6180 M-Icm-I). The assay mixture contained 

50 mM triethanolamine hydrochloride/KOH buffer, pH 7.0, 50 mM KCI, 5 mM MgCI2, 

1.6 mM shikimic acid,S mM ATP, I mMphosphoenolpyruvate, 0.1 mMNADH, 3 units of 

pyruvate kinase/ml and 2.5 units of lactate dehydrogenase/m!. 

Mass Spectrometry. Positive ion electrospray mass spectrometry was performed on a 

VG Platform quadrupole mass spectrometer (2-3000 amu range) fitted with a pneumatically 

assisted electrospray (ionspray) source and controlled via the VG Mass-Lynx software 

(VG Biotech. Ltd, Altricham, Cheshire, UK). Carrier solvent (I: I (v/v) acetonitrile/water) 

infusion was controlled at I 0 ~lImin using a Harvard syringe pump (Harvard Apparatus, South 

Natic, MA, USA). Protein samples were dissolved in carrier solvent at a concentration of 

20 pmoll~l, centrifuged at 5000 x g for 2 min and then I 0-20 ~l samples injected into the carrier 

stream. The instrument was calibrated immediately before use with horse heart myoglobin. 

Enzyme Modification. Enzyme modification were carried out in a volume of 2 ml, at 

25°C with constant stirring. During the inactivation enzyme aliquots were taken for enzyme 

assay. The percentage of inactivation was calculated as the ratio of enzyme activity after a 

certain time of treatment to the enzyme activity at time O. 
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Modification of SK with phenylglyoxal (PGO)-Aliquots of SK (5 I1g/ml) were incubated 

in 100 mM-sodium bicarbonate buffer, pH 9.1 for 5 minutes and then POO was added (freshly 

made up 50 mM stock solution in water) to a final concentration of 0.5-4.0 mM. 

Modification of SK with trinitrobenzenesuljonic acid (TNBS)-The inactivation with 

TNBS was carried out in the dark. The enzyme (4 I1g/ml) was pre-incubated for 5 min in 50 mM 

borate buffer, pH 9.2. A 500 11M TNBS solution in the same buffer was prepared and aliquots 

added to a final TNBS concentration of 0.5-2.5 11M. 

Substrate Protection against Modification with PGO and TNBS-For substrate protection 

experiments with SK 50 mM stock solutions of shikimate, A TP with the molar amount of MgCI2 

and shikimate with ADP and molar amounts of MgCl2 were made up in the inactivation buffer 

and the pH readjusted using 4 M KOH. Defined aliquots of the stock solution was added to the 

pre-incubation mix and then the group specific reagent added. 

Dynamic Light Scattering, Crystallisation and X-ray Analysis. Experiments were 

carried out using a DYNA-PRO. 801 dynamic light scattering/molecular sizing instrument 

(Protein Solutions, Buckinghamshire, UK) and recorded data were processed using AUTO PRO 

software. Protein solutions (1 mg/ml) were in 50 mM Tris/HCI, pH 7.6. 

Enzyme samples were dialysed exhaustively into 20 mM Tris/HCI, pH 7.6. Afterwards 

shikimic acid and ADP (freshly made up solution in water, pH adjusted to 7.6) were added to a 

final concentration of 5 mM and MgCI2 was added to a final concentration of 10 mM. Enzyme 

was concentrated using Centricon-IO centrifugal concentrators (Amicon, Stonehouse, 

Oloucestershire, UK) to a concentration of 16 mg/m!. Crystallisation was achieved at 293K by 

the sitting-drop vapour-diffusion technique. In the final condition for crystallisation the reservoir 

solution contained 2.16 M sodium chloride, 100 mM Hepes buffer, pH 6.9. Protein samples 

(6 ~d) were mixed with equal amounts of reservoir solution and allowed to equilibrate. 

The X-ray diffraction data were collected on the 9.5 beam line at the CLRC Daresbury 

Laboratory at 0.9199 A wavelength using a MAR Research imaging-plate scanner. The crystal 

was soaked in crystallisation buffer containing 12.5% (v/v) glycerol for one minute and mounted 

in a loop. The crystal was immediately cryo-cooled to lOOK using an Oxford Cryosystems 

cryostream cooler. A native dataset to 2.6 A resolution was collected as I degree oscillation 

frames. Data frames were processed with DENZO and scaled with SCALEPACK (Otwinowski, 

1993). 
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5.1.4 Results and Discussion 

Overexpression and purification. SK of E. cll1ysanthemi is expressed as a soluble 

protein in E. coli where it accumulates to 20-30 % of the total soluble protein. The vector pLysS 

(Studier and Moffatt, 1986) was used to reduce the basal level of expression of SK prior to 

induction with IPTG. The pLysS plasmid was essential for overexpression since, in its absence 

cell growth was very poor. This suggests that SK is either toxic or inhibits cell growth. 

The purification protocol (see Materials and Methods, Table 5-1) is based on the 

purification of the E. coli enzyme (Millar et at., 1986). The main problem was the dramatic 

decrease of enzyme solubility after separation on Phenylsepharose. The enzyme was highly 

soluble in buffer A during cell-breakage and DEAE-Sephacel chromatography. However, 

dialysis of the SK containing eluate of the phenylsepharose column into buffer A resulted in 

major losses of the enzyme by irreversible precipitation. This problem could be circumvented by 

a dialysis into buffer A containing a substrate/product mixture of shikimic acid and ADP which 

increased enzyme solubility to at least 70 mg/m!. The substrate/product mixture needed to be 

present in the running buffer of the final Sephacryl S200 column. The adenylate kinases, a family 

of enzymes with high sequence homology to the shikimate kinases, have been shown to undergo 

major structural changes upon substrate binding (Vonrhein et at., 1995). The increase in 

solubility of SK accompanying substrate binding suggests that such changes also occur with SK. 

Characterisation. The purified protein was shown to be of high purity using electrospray 

mass spectrometry (Fig. 5-1). Two different enzyme species were detected, one corresponded to 

full-length enzyme (60%) and the other to enzyme lacking the N-terminal methionine (mass 

difference of 131 Da) (40%). This heterogeneity presumably results from incomplete processing 

of the enzyme by the E. coli cells due to the very high level of over-expression. 
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Table 5-1 Purification of shikimate kinase from E. coli BL21 (DE3)pTB361SKpLysS. 

The results presented are for a purification of 14 g of cells. Full details are given in the Material and Methods section. 

Vol. Activity Total Yield Protein Total protein Specific activity Purification 

activity 

ml Vlml V % mglml mg Vlmg fold 

crude extract 120 700 84000 100.0 13.8 1662 50.5 

D EAE-Sephacel 245 350 85781 102.1 4.9 1210 70.8 1.4 

Phenyl-Sepharose 128 495 63360 75.4 4.8 615 103.0 2.0 

Sephacryl S200 25 2192 54812 65.3 12.3 319 178.3 3.5 
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Table 5-2 Kinetic properties of shikimate kinases from E. cltrysallthemi and E. coli. 

Km values were calculated using Lineweaver-burk plots. The assay mix to measure 

Km(shikimate) contained 5 mM ATP and 3 mM shikimate for Km (ATP). a averaged 

value taken from Millar ct al. (1986) and De Feyter and Pittard (l986b); b values taken 

from De Feyter and Pittard (l986b). 

E. chrysanth. 

E. coli (SK 11) 

E. coli (SK 1) 

Km (shikimate) Km (ATP) kcat 

jiM jiM s-l 

330 700 57.1 

200b 160b 27.1 a 

20000b 

kcatlKm 

(shikimate) 

M-l s-l 

1.72 x 105 

1.36 X 105 

The major difference between SK I and SK II of E. coli is their Km for shikimic 

acid (Table 5-2). The Km and lecat/Km for the E. chrysanthe1l1i enzyme of 330 JlM and 

1. 72 x 105 M-l s-1 (Table 5-2) confirms the sequence based prediction that the 

E. clllysanthemi enzyme is a type II enzyme. 

TNBS is a lysine specific reagent which can be used to measure the basicity of 

amino groups (Means and Feeney, 1971; Lundblad and Noyes, 1984). E. chrysanthemi 

SK has only one lysine residue, the P-Ioop K 15. Incubation of SK with TNBS results in 

an extremely rapid decrease in enzyme activity (Fig. 5-2A) due to the reaction of the 

single, essential lysine residue. The inactivation shows pseudo-first order kinetics and the 

second order rate constant, as calculated from the plot of the apparent inactivation rate 

constants (kobs) obtained from Fig. 5-2A against the concentration of TNBS, was 

61 500 M-I min-I. The presence of ATP in the inactivation mixture affords protection 

from inactivation, whereas the presence of shikimic acid resulted in no significant change 

in the rate of inactivation (Fig.5-2B). Evidence from mass spectrometry (data not 

shown), indicated that there was a single site of modification and together with the 

protection data suggested that inactivation was due to the reaction of the active centre 

KI5. 
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Figure 5-1 MaxEnt deconvolution mass spectra of recombinant shildmate Idnase 

from E. chrysallthemi. 

MaxEnt spectra can be used for a quantitative analysis by comparing integrated peak

areas (Fenige et al., 1992). The crystallised protein was heterogeneous: the peak with the 

Mr of 18 955 confirms the theoretical Mr of 18 955.85 as deduced from the nucleotide 

sequence (Minton et al., 1989). The peak with Mr of 18 824 conesponds to enzyme 

species with the N-terminal methionine residue cleaved off (mass difference of 131 Da). 

The small peaks to the right of the major peaks are potassium adducts. 
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Another enzyme of the shikimate pathway, shikimate dehydrogenase, has been 

shown to have a lysine residue which is essential for enzyme activity (Chackrewarthy, 

1995). Shikimate dehydrogenase was inactivated with TNBS using exactly the same 

procedure and buffer system as described in this work (Chackrewarthy, 1995). However, 

the second order rate constant was found to be only 400 M-l min- 1 (Chackrewarthy, 

1995). This value is in agreement with TNBS inactivation studies of essential lysine 

residues of other non ATP utilising proteins (Goldin and Frieden, 1971; 

Suzuki et aI., 1995). Our data show that the P-Ioop lysine of SK is hyper-reactive and 

strongly suggest that the pKa of this lysine residue is very much lower than the pKa of 

typical protein lysine residues. This is consistent with the observation of Komatsutakaki 

(1995) which shows that the P-Ioop lysine of the j3-subunit of A TP synthase is 

hyper-reactive towards pyridoxal phosphate. Experiments involving the TNBS 

modification of pyruvate kinase have also identified an essential hyper-reactive lysine 

(Johnson et aI., 1979). Taken together these data suggests a general role for 

hyper-reactive lysine residues in the active site of ATP utilising enzymes. 

SK can be inactivated by the arginine specific reagent phenylglyoxal 

(Fig. 5-3, A). The reaction followed pseudo-first order kinetics (data not shown) and both 

shikimate alone and ADP alone provide significant protection against inactivation 

(Fig. 5-3, B) which implies a role for arginine residues both in shikimate and ADP 

binding. The second order rate constant for PGO inactivation of SK was 114 M-l min-I. 

This value is very similar to the rate of PGO inactivation for the type I dehydroquinase 

(E. coli) which has a second order rate constant of 107 M- I min- 1 (T. Krell, unpublished 

data) and suggests a common role for arginine residues in substrate recognition by these 

two shikimate pathway enzymes. In the case of the type I dehydroquinase this arginine 

has been identified by mass spectrometry as R213 (Krell et al., 1996). 
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Figure 5-2 Kinetics of inactivation of E. cit rysall tit emi shiltimate kinase with 

different concentrations of TNBS. 

A, Time course of reaction; B, Inactivation with TNBS (1.5 ~tM) in the presence of 

shikimate and A TP. Full experimental details in the Material and Methods section. 
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Figure 5-8 Kinetics of inactivation of E. c/lrysantltemi shikimate kinase with 

different concentrations of PGO. 

A, Time course of reaction; B, Inactivation with PGO in the presence of shikimate, 

ATP and ADP. Full experimental details in the Material and Methods section. The 

second-order rate constant, as calculated from the plot of the apparent rate constants 

(kobs) obtained from (A) against the concentration ofPGO, was 114 M-I min-I. 
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Table 5-3 Dynamic light scattering measurements of shikimate kinase 

(E. chrysalltltenll) in the presence of different additives. 

The hydrodynamic radius represents the median particle size present in the sample cell. 

The polydispersity value indicates the standard deviation of the spread of particle sizes 

about the reported average radius. A rise in pul) Jispersity in relation to the average 

radius represents greater spread in the size distribution. The estimated Mw is calculated 

from the hydrodynamic radius (RH) using an empirically derived relationship between 

the RH and Mw values for a number of well-characterised globular proteins in buffered 

solution. 

additives 

shikimate (5 mM) 
ADP (5 mM) 
MgCI2 (l0 mM) 

ADP (5 mM) 
MgCl2 (10 mM) 

shikimate (5 mM) 

hydrodynamic polydispersity 
radius 

11m 11111 

2.1±0.0 0.477±0.02 

3.0±0.0 1.698±0.01 

2.7±0.1 1.193±0.20 

estimated 

Mw 

kDa 

18 

43 

30 

conclusion 

mono disperse 

polydisperse 

polydisperse 

Dynamic Light Scattering, Crystallisation and X-ray Analysis. Dynamic light 

scattering experiments were carried out in parallel with crystallisation trials to assess 

conditions for the monodispersity of the enzyme. Several conditions were investigated 

and it was shown that 1l10nodispersity could only be achieved in the presence of the 

substrate shikimate with ADP and MgCI2 (Table 5-3). Under those conditions the 

molecular weight obtained was 18 000 Da which confirms the monomeric state of the 

enzyme. Furthermore, the solubility of the enzyme was found to be greatly increased in 

the presence of shikimate, ADP and MgCl2 (to at least 70 mg/ml). 

Crystallisation conditions were screened using the sparse-matrix method 

(Jancarik and Kim, 1991) at 293K using the sitting-drop vapour-diffusion technique and 

3 mg/ml protein. Crystallisation trials only yielded crystals in the presence of shikimate, 

ADP and MgCl2 which confirms the value of dynamic light scattering for assessing the 

suitability of conditions for protein crystallisation. The optimised crystallisation 
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conditions are shown in materials and methods. Crystals appear after 10-12 days and 

continue to grow as tetragonal bipyramids up to a maximum size of 0.7 x 0.2 x 0.2 mm 

(Fig. 5-4). 

Figure 5-4 A crystal of shildmate kinase from E. clzrysalltltemi. 

The size is approximately 0.6 x 0.175 x 0.175 mm. 
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Native crystals diffract to better than 2.6 A on a Synchrotron X-ray source at 

100K. Cryo-cooling was essential since crystals were radiation sensitive. A complete 

dataset was collected at the Daresbury SRS station 9.5. The data were processed with the 

programme DENZO (Otwinowski, 1993) and the crystals were found to belong to the 

tetragonal crystal system, with unit-cell dimensions of a=b=108.5 A and c=92.8 A. 

Analysis of the systematic absences in the data revealed absences at h=2 and 1=4n along 

the (hOO) and (001) axes, respectively, which are consistent with the space group of 

P412 j 2 or enantiomorph. An assumption of two molecules per asymmetric unit leads to 

an acceptable packing density, V m of 3.6 A3 Da- I
, corresponding to a solvent content of 

66% (Mathews, 1968). 
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Identification of active site residues of Escherichia coli Shikimate 

Dehydrogenase. 

6.1.1 Abstract 

The group specific reagents trinitrobenzene sulphonate and phenylglyoxal have 

been used to identify 3 active site residues (KI5, K65 and R154) in Escherichia coli 

shikimate dehydrogenase. Electrospray mass spectrometry was used to characterise both 

the modified enzyme and to identify the modified peptides following enzymatic 

digestion. The involvement of these residues in the catalytic mechanism of E. coli 

shikimate dehydrogenase and the advantages of electrospray mass spectrometry in 

identifying active site residues of proteins are discussed. 

6.1.2 Introduction 

The shikimate pathway is an important target for the development of herbicides 

and antimicrobial agents (Davies ef al., 1994; Jude ef aI., 1996). We are using a 

combined approach involving chemical modification and X-ray crystallography to 

characterise the active sites of the shikimate pathway enzymes to facilitate novel 

inhibitor design. Earlier work has indicated that lysine and arginine residues play key 

roles in substrate binding and catalysis for the dehydroquinases (Krell et aI., 1995; Krell 

et af. 1996a), EPSP synthase (Huynh et al., 1988; Huynh et af., 1988a; Padgette et al., 

1988) and for shikimate kinase (Krell et af., 1996b). Here we report an investigation of 

the role of lysine and arginine residues in shikimate dehydrogenase (SOH). 

SOH (E.C.l. t .1.25), which catalyses the fourth step in the shikimate pathway, 

uses NADPH to reduce 3-dehydroshikimate to shikimate (Yaniv and Gilvarg, 1955). The 

hydride transfer is stereospecific (Danzette and Azerad, 1974), the enzyme is monomeric 

(Chaudhuri et aI., 1987) with a chain length of 272 residues and an Mr of 29 414 

(Anton and Coggins, 1988). 

The lysine specific reagent trinitrobenzene sulfonate (TNBS) (Kotaki et af., 1964; 

Okuyama and Satake, 1960) and the arginine specific reagent phenylglyoxal (PGO) 

(Takahashi, 1968; Lundblad and Noyes, 1984) have been lIsed to demonstrate the 

involvement of two lysine residues and one arginine residue at the active site of 
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shikimate dehydrogenase. Electrospray mass spectrometry was used to monitor the 

reactions, to characterise singly and multiply modified enzyme species, and to localise 

the sites of modification. 

6.1.3 Experimental 

Materials-TNBS was from BDH; NADP from Boehringer (Mannheim, 

Germany); shikimate, PGO, trypsin and chymotrypsin from Sigma (Poole, Dorset, 

England), Guanidinium chloride from GibcoBRL (Paisley, Scotland). HPLC grade water, 

acetonitrile and trifluoroacetic acid were from Rathburn (Walkerburn, Scotland). Methyl 

shikimate was a kind gift from Dr. C. Abell (Department of Chemistry, University of 

Cambridge). 

Enzyme purification and assay-SDH was purified to homogeneity from an 

overproducing strain of E. coli according to the procedure described by 

Chaudhuri et al. (1987). Enzyme was assayed in the reverse direction by monitoring the 

reduction ofNADP at 340nm (e=6.2xl03M-1cm- 1) at 25°C. The standard assay mixture 

(1 ml) contained 2 mM NADP and 4 mM shikimate in 100 mM Na2C03, pH 10.6. 

Enzyme modification-Enzyme modification were carried out in a volume of 

2 ml, at 25°C with constant stirring. During the inactivation enzyme aliguots were taken 

for enzyme assay. The percentage of inactivation was calculated as the ratio of enzyme 

activity after a certain time of treatment to the enzyme activity at time zero. 

The modification of SDH with TNBS was carried out in the dark. The enzyme 

(30 ).lg/ml) was pre-incubated for 5 min in 50 mM borate buffer, pH 9.2. A 10 mM TNBS 

solution in the same buffer was prepared and aliguots added to a final TNBS 

concentration of30-175 ).lM. 

To modify SDH with PGO aliguots of enzyme (30 /lg/ml) were incubated in 

100 mM sodium bicarbonate buffer, pH 9.4 for 5 minutes and then PGO was added 

(freshly made up 50 mM stock solution in water) to a final concentration of 0.5-3.0 ruM. 

Substrate protection against modification with PGO and TNBS-For substrate 

protection experiments 50 mM stock solutions of shikimate, methyl shikimate and NADP 

were made up in the inactivation buffer and the pH readjusted using 4 M KOH. Defined 

aliquots of the stock solution were added to the pre-incubation mix and then the group 

specific reagent added. 
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Preparation of inactivated enzyme samples for ES-MS-Enzyme inactivated to 

different extents was prepared for mass spectrometry by stopping the reaction by gel 

filtration on a Sephadex GSO column (200 mm x 17 mm, flow rate IS ml/h) eluted with 

O.S% (w/v) ammonium bicarbonate, pH 8.0. To remove low molecular mass 

contaminants prior to mass spectrometry the enzyme samples were washed twice by 

diluting SO-fold with HPLC grade water and reconcentrated using Centricon-l0 

centrifugal concentrators (Ami con, Stonehouse, Gloucestershire, UK). 

Proteolytic digests-Modified and native SOH were digested in a total volume of 

2 ml with continuous stirring. 

PGO modified enzyme samples were denatured 111 O.S% (w/v) ammonium 

bicarbonate buffer, pH 9.0 containing 8 M urea for 1 hour at 37DC. O.S% (w/v) 

ammonium bicarbonate buffer, pH 9.0 (37DC) was added to lower the urea concentration 

to 2 M and the mixture was incubated with S% (w/w) trypsin (1 g/I stock solution in 

1 mM HCI) for 4 hours at 37DC. Afterwards, another 2% (w/w) trypsin was added and 

incubation continued for further two hours. The digestion was stopped by freezing the 

samples at -80DC. 

TNBS modified enzyme samples were denatured in 0.5% (w/v) ammonium 

bicarbonate buffer, pH 8.0 containing 4 M GdnHCl for IS min at 30DC. 0.5% (w/v) 

ammonium bicarbonate buffer, pH 8.0 (30DC) was added to lower the GdnHCL 

concentration to 1 M and the mixture was incubated with S% (w/w of SOH) 

chymotrypsin (fresh solution in water). Proteolysis was allowed to continue for 1 hand 

the digestion was stopped by freezing the samples at -80 DC. 

Electrospray mass spectrometry-ES-MS was performed on a VG platform 

quadrupole mass spectrometer (2-3000 amu range) filled with a pneumatically assisted 

electrospray source and controlled via the VG MassLynx software (VG Biotech Ltd., 

Altrincham, Cheshire, U.K.). Carrier solvent [1: 1 (v/v) acetonitrile: water, 0.2% formic 

acid] infusion was controlled at 10f.illminute using a Harvard syringe pump (Harvard 

Apparatus, South Natic, MA, U.S.A.). Protein samples were dissolved in carrier solvent 

at a concentration of 20 pmol/ml, centrifuged at 5000 x g for 2 minutes and then 10-20 f.il 

samples were injected. The MaxEnt deconvolution (Ferrige et at., 1992) was applied for 

quantitative analysis of raw data using 1.0 Oa peak width and 1.0 Oa/channel resolution. 

Liquid chromatography mass spectl'omeb-y (LCIMS)-The protein digests 

(typically 7S f.ig) were separated by HPLC on a C-4 reverse phase column 

119 



(2.0 x 150 mm; Delta-pactm, Waters, Waterford, Hertfordshire, UK) usmg 2% (v/v) 

acetonitrile in 0.1 % (v/v) trifluoracetic acid as the initial solvent (flow rate 0.25 mllmin); 

after an 8 min wash to remove GdnHCI a linear gradient of 2-70% acetonitrile (v/v) in 

0.1 % (v/v) trifluoracetic acid was applied to elute the peptides. The column eluate was 

introduced directly into the mass spectrometer with a drying gas flow of 400 IIh and the 

source temperature was set at IOO°e. The absorption profile of the eluted peptides was 

recorded at 214 nm and centroid mass spectra in the range 400-1800 Dalz were recorded 

at 4 s intervals. 

6.1.4 Results and Discussion 

Identification of active site lysine residues-SDH can be inactivated by 

treatment with the lysine specific reagent TNBS (Fig. 6-IA). The inactivation kinetics 

followed pseudo-first order kinetics (data not shown) and the second-order rate constant, 

as calculated from the plot of pseudo-first order rate constants against the concentrations 

of TNBS, was 405 M-l min-I. Shikimate and NADP afforded protection against 

inactivation, however maximum protection was observed in the presence of both 

shikimate and NADP (Fig 6-1, B) indicating that the inactivation was due to modification 

of residues in or near the active site. 

The stoichiometry of incorporation of TNBS into SDH was determined using 

ES-MS (Fig. 6-2). The 80% inactivated (unprotected) sample revealed modified enzyme 

species with three different masses (Fig. 6-2, A), corresponding to one, or two or three 

Iysines modified per peptide chain. The sample protected by both NADP and shikimate 

was 86% active and ES-MS showed that it contained only one modified species with a 

mass of 29 625 Da (29414 Da + 211 Da) (Fig. 6-2B) indicating that only one lysine was 

modified. Therefore, in the working enzyme, the substrates NADP and shikimate protect 

two lysine residues from reaction with TNBS. 

To identify the sites of modification, unmodified and modified (protected and 

unprotected) enzyme samples were digested with chymotrypsin, the peptides separated 

using HPLC and directly injected into the electrospray mass spectrometer. Mass spectra 

were recorded every 4 seconds. Afterwards, all recorded spectra from the digest of the 

unmodified enzyme were scanned for the theoretical masses of chymotryptic peptides. 

All recorded spectra for digests of the modified enzyme (protected and unprotected) were 

scanned for theoretical masses of the chymotryptic peptides and for chymotryptic 
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Figure 6-1 Kinetics of inactivation of E. coli SDH by TNBS. 

Enzyme (30 /lg/ml) was treated with TNBS in 50 mM borate buffer, pH 9.2 and aliquots 

were withdrawn at intervals for determination of activity. 

(A) Inactivation ofSDH by TNBS; the different concentrations ofTNBS are shown in the 

box. (B) Inactivation of SDH by TNBS (0.175 mM) in the presence and absence of 

shikimate and NADP. (C) Inactivation of SDH by TNBS (0.20 mM) in the presence and 

absence of shikimate and methyl shikimate. 
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Figure 6-2 MaxEnt deconvolution electrospray mass spectra of TNBS modified 

SDH. 

In the absence (A) and presence (B) of shikimate (2 mM) and NADP (2 mM). Both 

enzyme samples were incubated with a 30 fold molar excess of TNBS for 1 hour. 

Afterwards, the residual enzyme activities were measured as 20% (A) and 86% (B) and 

the inactivation reactions were stopped by loading the samples onto a gel filtration 

column. Samples for mass spectrometry were prepared as described in Experimental. The 

native Mr of SDH is 29414 Da and the reaction of one molecule TNBS results in a mass 

increase of 211 Da. 
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peptides with an additional mass of 211 Da which corresponds to the incorporation of one 

molecule ofTNBS. 

In the digest of the unmodified enzyme all the lysine containing chymotryptic 

peptides were identified. The scan for TNBS modified peptides in the unprotected 

modified enzyme resulted in the detection of three modified chymotryptic peptides, all 

containing a single TNBS group corresponding to an additional mass of 211 Da: peptides 

8-18 (1365.28 Da), 52-69 (2020.02 Da) and 216-222 (1015.94 Da) (Fig. 6-3, B). No such 

masses were detected in the digest ofthe unmodified enzyme. Peptide 52-69 contains two 

lysine residues one of which (K65) is next to a potential chymotrypsin cleavage site. The 

failure of chymotrypsin to cleave the peptide chain of the modified protein at position 64 

suggests that K65 is the site of TNBS modification. Peptide 52-64 was observed as a 

minor component of the chymotryptic digest confirming the ability of chymotrypsin to 

cut the unmodified enzyme at this position (the modified enzyme sample contained 20% 

unmodified enzyme, see Fig. 6-2, A) and no modified peptide 52-64 was detected. The 

three lysine residues modified in the unprotected sample are thus K65, K15 and K217 or 

K219 (peptide 216-222 contains two lysine residues). 

In the protected modified sample only peptide 216-222 showed an added mass of 

211 Da (Fig. 6-3, A). No signals were obtained for a mass corresponding to peptide 

8-18 +211 Da nor for mass corresponding to peptide 52-69 +211 Da indicating complete 

protection. From these data it appears that K65 and K 15 are completely protected by 

shikimate and NADP from TNBS modification. 

A plot of log kobs against log [TNBS] yielded a straight line with a slope of 1.07 

(data not shown) which suggests that only one essential lysine is responsible for the 

TNBS mediated inactivation of SDH. Comparison of SDH sequences from different 

organisms (Fig. 6-5) revealed that only K65 is completely conserved in an alignment of 

SDH sequences. There are no other conserved lysine residues, which provides further 

support for the proposal that K65 is the essential lysine residue in SDH. 

Lysine residues play an important role in binding anionic substrates in proteins 

(Wilderstein et al., 1992; Mildhausen and Levy, 1975). These experiments suggest that 

the essential lysine of SDH may be involved in binding the carboxylate group of 

shikimate. To test this hypothesis substrate protection experiments were carried out with 

the methyl ester of shikimate. As shown in Fig. 6-1 C methyl shikimate, in comparison to 
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Figure 6-3 LCIMS data of chymotryptic digests of E. coli SDH inactivated after 

TNBS treatment. 

Centroid spectra were collected every 4 sec.; traces I, II and II show the relative 

abundance of mass species in all the recorded spectra (around 650) against retention time; 

I, scan within all the recorded spectra for a mass of modified peptide 216-222 + 211 Da 

(1015.94 Da, corresponds to 1 TNBS attached); II, scan for a mass of modified peptide 8-

18 + 211 Da (1365.28 Da); III, scan for the mass 'of modified peptide 52-69 + 211 Da 

(2020.02 Da); IV, simple HPLC trace at 215 nm against retention time (min). 

(A) Inactivation in the presence of NADP (2 mM) and shikimate (2 mM). The enzyme 

sample is the chymotryptic digest of modified SDH as shown in Figure 6-2B (86% 

residual activity and one site of modification) Traces II and III are typical for background 

noise, no peptides of the searched masses were detected. In contrast trace I, with a distinct 

signal above background noise. 

(B) Inactivation in the absence of NADP and shikimate. The enzyme sample is the 

chymotryptic digest of modified SDH as shown in Figure 6-2A (20% residual activity 

and three sites of modification). 
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shikimate, affords only very little protection against TNBS inactivation, which is 

consistent with a role for the lysine in binding the shikimate carboxyl group. 

Identification of an essential arginine residue-Inactivation of SOH with the 

arginine specific reagent PGO followed pseudo-first order kinetics (data not shown). 

NADP afforded strong protection against inactivation, whereas neither shikimate alone 

nor shikimate in combination with NADP afforded significant protection (data not 

shown). 

Arginine residues react with PGO in a 1: 1 or 1 :2 stoichiometry 

(Krell et at., 1995). Such adducts can be detected in the mass spectrometer according to 

their shifts in Mr of + 116 Da (1: 1 stoichiometry) or +250 Oa (1:2 stoichiometry). The 

formation of the 1: 1 adduct proceeds more rapidly than the subsequent reaction of a 

second molecule PGO with the 1: 1 adduct (Krell et al., 1995, Krell et af. 1996a). 

In the early stage of the modification of SDH by PGO the inactivation is due to 

the reaction at two sites. Figure 6-4 shows a mass spectrum of a 60% active sample. The 

two major modified species (29 530 Da and 29 646 Da) correspond to protein modified 

in 1: 1 stoichiometry at one or two sites. The less abundant peak at 29 664 Da is due to the 

formation of a 1:2 adduct at a single site and the peak at 29 780 Da to protein modified at 

two sites, one containing a 1:2 adduct and the second a 1: 1 adduct. 

Proteolytic digestion in combination with LC/MS was again employed to localise 

the sites of reaction. Trypsin cleaves at unmodified arginine and lysine residues; no 

cleavage is expected after a modified arginine residue. Recorded spectra were therefore 

scanned for the theoretical tryptic peptides containing a single internal PGO-modified 

arginine residue (+ 116 Oa). This tryptic digestion allowed the precise location of the site 

of reaction. Two modified peptides were detected: peptide 151- 1 60 + 116 Da 

(1219.26 Da) and peptide 79-95 + 116 Oa (1874.04 Oa). No such masses were found in 

the tryptic digest of the unmodified enzyme. This indicates that R 154 and R90 are the 

major sites of modification. 

The inactivation reaction with PGO was repeated in the presence ofNADP. After 

the same time of modification the residual enzyme activity was 95% (compared with 

60% from the unprotected sample). However, the only modified peptide found in the 

mass spectrometer corresponded to residues 79-95 + 116 Da (1874.04 Oa). No signal was 

obtained for peptide 151-160 +116 Oa (1219.26 Oa), indicating that R154 is completely 

protected from PGO modification by NADP. 
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Figure 6-4 MaxEnt deconvolution electrospray mass spectra of PGO modified SDH. 

SDH was incubated in 1.5 mM PGO for 30 min. The residual activity was 60%. 
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1 15 45 
E. coli ... MET .. YA VFGNPIAHSK SPFIHQQFAQ QLNIEHPYGR VLAPINDFIN 
H. influenzae .. .MDL .. YA VWGNPIAQSK SPLIQNKLAA QTHQTMEYIA KLGDLDAFEQ 
P. aeroginosa .. .MDR .. YC VFGNPIGHSK SPLIHRLFAE QTGEALVYDA QLAPLDDFPG 
B. aphidicola MCKLEKFNYA LFGNPIDHSQ SPKIHNFFAT QTGILHIYKA INIPLDQFSS 

46 65 95 
E. coli TLNAFFSAGG KGANVTVPFK EEAFARADEL TERAALAGAV NTLMRLEDGR 
H. influenzae QLLAFFEEGA KGCNITSPFK ERAYQLADEY SQRAKLAEAC NTLKKLDDGK 
P. aeroginosa FARRFFEQG. KGANVTVPFK EEAYRLVDEL SERATRAGAV NTLIRLADGR 
B. aphidicola VVSDFFKKNI KGANVTAPFK KEAYFFSDKL TERAKIAQSV NTLKKISDKC 

96 143 
E. coli LLGDNTDGVG LLSDL.ERLS FIRPGLRILL IGAGGASRGV LLPLLSL.DC 
H. influenzae LYADNTDGIG LVTDL.QRLN WLRPNQHVLI LGAGGATKGV LLPLLQA.QQ 
P. aeroginosa LRGDNTDGAG LLRDLTANAG VDVRGKRVLL LGAGGAVRGV LEPFLGECPA 
B. aphidicola ILGDNTDGIG LLSDLV.RLN FIKI<NFSILI LGAGGAVKGV LLPLLSL.GC 

144 154 193 
E. coli AVTITNRTVS RAEELAKLFA HTGSIQALSM DELEGHEFDL IINATSSGIS 
H. inf 1 uen za e NIVLANRTFS KTKELAERFQ PYGNIQAVSM DSIPLQTYDL VINATSAGLS 
P. aeroginosa ELLIANRTAR KAVDLAERFA DLGAVHGCGF AEVEGP.FDL IVNGTSASLA 
B. aphidicola SVYILNRTIL NAKILVKQFN KYGKIFVFDR QNFKQQNFDL VINAMSRNTE 

184 241 
E. coli GDIPAIPSSL IHPG.IYCYD MFYQKG.KTP FLAWCEQRGS KRNADGLGML 
H. inf 1 uenzae GGTASVDAEI LKLG.SAFYD MQYAKGTDTP FIALCKSLGL TNVSDGFGML 
P. aeroginosa GDVPPLAQSV IEPGRTVCYD MMYAKEP.TA FNRWAAERGA ARTLDGLGML 
B. aphidicola KKNFTL ... I LITSKRFFYD MNYS.TRNTP FINWCSKAGG SFISNGIGML 

232 272 
E. coli VAQAAHAFLL WHGVLPDVEP VIKQLQEELS A. 
H. influenzae VAQAAHSFHL WRGVMPDFVS VYEQLKKAML 
P. aeroginosa VEQAAEAFFL WRGVRPASAP VLETLRRQLA TV 
B. aphidicola VFQAAYSFLE WHNVLPEINY IINILNIK .. 

Figure 6-5 Sequence alignment of monofunctional SDH sequences. 

The numbering refers to the E. coli enzyme, identified essential lysine and arginine 

residues are highlighted in bold. 
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The significant protection afforded by NAOP against PGO inactivation indicates 

the presence of at least one arginine residue at the coenzyme binding site of SOH. 

Chemical modification (Yang and Schwert, 1972; Foster and Harrison, 1974) and 

crystallography (Scrutton et ai., 1990; Mittl et ai., 1994) have demonstrated the presence 

of arginine residues in the coenzyme binding site of several NADP linked 

dehydrogenases. R154 identified here as an essential residue in the NAOP binding site of 

SOH is substituted by lysine or glutamine in some SOH sequences (Fig. 6-5). Since NAO 

does not provide any protection against PGO inactivation of SOH it seems likely that 

R154 hydrogen bonds to the 2' phosphate group ofNAOP. 

6.1.5 Conclusion 

This study demonstrates the simplicity of using electrospray mass spectrometry to 

monitor the stoichiometry of chemical modification reactions and for the rapid analysis 

of peptide maps for the location of modification sites. A particular advantage of this 

method for analysis chemically modified proteins is the lack of a need for radio-labelled 

reagents. 

Using this approach three residues in the active site of shikimate dehydrogenase 

have been identified. K65, which is conserved in all known SDH sequences is proposed 

to have a role in binding the carboxylate group of shikimic acid, R154 is proposed to 

have a role in NAOP binding. Protection studies with shikimate and NAOP also suggest 

that K15, which is not conserved in other SDH's, is also present in the active site of the 

enzyme. 
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7. General Discussion 

Arginine residue 23 in S coelicolor DHQ (corresponding to R19 in the 

A. nidulans DHQ) has been shown in both species to be essential for enzyme function 

(chapter 3.1). The residue was clearly hyper-reactive to the arginine specific reagent PGO 

and mass spectrometry was used to demonstrate that the loss of enzyme activity was 

caused by the modification of a single residue. According to Patthy and Thesz (1979) 

such hyper-reactive arginines are likely to be involved in binding the carboxylate group 

of substrates. 

R23 of S coelicolor DHQ was replaced by lysine, glutamine and alanine residues 

using site-directed mutagenesis (chapter 3.2) and the mutant enzymes were found to have 

a much reduced kcat. Interestingly, the Km values for all three mutants were lower than for 

the native enzyme, indicating tighter substrate binding, which was confirmed by direct 

measurements of substrate binding using isothermal titration calorimetry (ITC). Those 

findings make a role for R23 in substrate binding unlikely. R23A mutant is 10 fold less 

active than R23K and R23Q (Table 3-3) which indicates the importance of a positive 

charge at that position. Therefore, R23 is unlikely to be involved in substrate binding but 

it may have a role in stabilising a negatively charged transition state. 

Further support for this hypothesis comes from Bottomley et at. (1996a) who 

observed that the addition of a substrate/product mixture to the enzyme prior to PGO 

modification accelerates the rate of inactivation of A. nidulans DHQ. This is consistent 

with my observation that the presence of a substrate/product mixture does not protect 

R23 (S coelicolor) from PGO modification. Those data indicate conformational changes 

upon substrate binding which might bring R23 in vicinity to the substrate, making it 

thereby even more reactive towards PGO. 

The sequences of S coelicolor and Mycobacterium tuberculosis DHQ contain 

only a single tryptophane residue (W66 for S coelicolor). Using an approach of c.d. 

spectroscopy and fluorescence measurements the tryptophan residue was found to be 

close to the active site of both enzymes (Boam et al.). Furthermore, tyrosine residue 28 

(S coelicolor) has been identified as a residue in or close to the active site (Fig. 3-4). 

In the last year the three-dimensional structure of M tuberculosis DHQ (type II) 

has been solved (Gourley, 1996). Although the preliminary model of the enzyme is not 
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refined yet there is certainty about the protein topology, which is similar to p21 ras 

(Pai et al., 1989) and other A TP/GTP binding proteins. All three identified active site 

residues (R23, Y28, W66) appear to be in a pocket which is likely to be the active site 

pocket of the enzyme (D. Gourley, personal communication). 

The three-dimensional structure of the type I DHQ from S. typhi, complexed with 

borohydride reduced product, has also been solved (Polikarpov et al.). The overall 

structure is a parallel a/~-barrel with the active site located within the centre of the 

barrel. This general topology is similar to another hydro lyase, the glycolytic enzyme 

enolase (2-phospho-D-glycerate hydrolyase, EC 4.2.1.11) (Lebioda et al., 1989). 

However, the catalytic mechanism is totally different; a "catalytic" metal ion plays the 

major role in the function of enolase (Faller et al., 1977). Interestingly, the a/~-barrel 

topology has also been observed in structures of other enzymes employing Schiff-base 

formation in their mechanisms; examples are the class I aldolases (Sygusch et aI., 1987) 

and N-acetylneuraminate lyase (Izard et al., 1994). Arginine residue 213 of the E.coli 

enzyme was identified as hyper-reactive and essential for enzyme function (chapter 3.2). 

The X-ray structure of the type I enzyme shows that R213 is clearly involved in substrate 

binding by interacting with the carboxylate group of the product dehydroshikimate. This 

is in contrast to the type II enzyme where the hyper-reactive arginine is unlikely to be 

involved in substrate binding. 

Recombinant DHQ from S. coelicolor was expressed in E. coli, purified and 

characterised (chapter 3.2). However, the recombinant enzyme was found to be almost 

20 times more active and with an Km value almost twice as high as the previously 

isolated enzyme (White et al., 1990). When the kinetic characterisation of the 

recombinant enzyme was repeated with less pure substrate similar results to these of 

White et ai. (1990) were obtained. This suggests that the use of less pure substrate was 

the cause for the discrepancy in the kinetic data between the wild-type and the 

recombinant DHQ and underlines the necessity to check the purity of the synthesised 

substrate as shown in 2.4. Furthermore, those findings could be exploited to identify an 

enzyme inhibitor which is possibly present in the cruder substrate. 
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ES-MS was found to be a very useful tool to follow site-specific chemical 

modification of proteins. Clear information can be obtained about the number of 

modification sites as well as the stoichiometry of reaction. MaxEnt transformation 

allowed the relative quantification of modified species. The sites of modification were 

detected by measuring the masses of modified peptides after their separation on an 

on-line HPLC. The identification of essential amino acids was especially straightforward 

when initial inactivation of the enzyme was due to the reaction of a single amino acid 

residue. 

The main limitation of this technique turned out to be the specificity of the 

chemical reagent as well as the stability of the adduct. The identification of the 

potentially essential histidine residues was attempted for both type II DHQ and SDH 

(data are not shown). Both enzymes appeared to be sensitive to treatment with the 

histidine specific reagent diethylpyrocarbonate (DEPC) (Miles, 1977; Dumas and 

Raushel, 1990). However, reaction of DEPC with both enzymes was very rapid. Unlike 

the POO modifications no correlation between the relative amount of modified enzyme 

species (as observed in the mass spectrometer) to the residual enzyme activity 

(as determined by the enzyme assay) could be established. For example, a 20% 

DEPC-inactivated sample of SDH contained 5 modified species and very little native 

enzyme. 

Furthermore DEPC was not found to be very specific to histidine residues, as for 

example a 70% DEPC-inactivated sample of DHQ (s. coelicolor) contained more 

modified enzyme species than histidine residues. Two amino acid residues (probably 

histidine residues) of SDH were protected by its substrates from inactivation with DEPC. 

However, the localisation of the sites of reaction failed since no DEPC adducts were 

detected by the mass spectrometer. SDH was found to be very difficult to digest 

(Chackrewarthy, 1995); to achieve complete tryptic digestion the enzyme needed to be 

denatured using 6 M urea prior to the addition of the protease, which resulted in an 

increase in pH. DEPC adducts are known to have only a limited half life at pH>8 (Miles, 

1977). Therefore, the DEPC modifications which were detected mass spectrometrically 

for the enzyme were reversed during denaturation and tryptic digestion and this way 

escaped detection by LC/ES-MS. 

136 



No major difficulties were encountered in the detection of adducts caused by the 

modification by POO, TNM and TNBS. Under the described conditions POO was found 

to be very specific for arginine residues, not a single non-arginine adduct was ever 

identified in type I and type II DHQ as well as SDH samples modified with POO. The 

reaction stoichiometry was complex; in contrast to Takahashi (1968) the rate-limiting 

step appeared to be the second step, the formation of the 2 POO : I arginine adduct 

(Fig. 1-5). In the early part of the reaction (up to 70% of initial enzyme activity 

remaining) only I: I adducts were detected and only in the later stages of the 

inactivation reaction did 2 POO: 1 arginine adducts appear. This reaction scheme was 

found to be the same in all POO modification experiments which were canied out with 

enzymes from 5 different sources. Therefore, assuming a two phase reaction scheme, it is 

not possible to calculate the number of modified arginine residues in a protein from the 

amount of incorporated radio labelled POO using a 2 : 1 reaction stoichiometry. 

However, a strict 1 : 1 reaction stoichiometry was observed for the reaction of 

p-Iodo-phenylglyoxal (data not shown) which was synthesised from 

p-hydroxy-acetphenone (Fodor and Kovacs, 1949; D. Oourley, unpublished data). 

Stereochemical hindrance caused by the bulky iodo-substitution is likely to be the reason 

for the fixed stoichiometry. p-Iodo-phenylglyoxal was synthesised to introduce a heavy 

atom into DHQ using its hyper-reactivity towards POO. Introduction of heavy atoms into 

proteins is necessary if the crystallographic phase problem is to be solved by single or 

multiple isomorphous replacement. However, the p-iodo-phenylglyoxal adduct was not 

stable enough to survive the several weeks which were needed for crystal growth 

(D. Oourley, personal communication). 

TNM appeared to undergo a secondary reaction (chapter 3.2, Fig. 3-4). Besides 

the nitration of the tyrosine residue an oxidation of the nitrated enzyme also occuned. 

The localisation and identification of the secondary site of reaction failed which suggests 

that the modification was reversed during denaturation and proteolytic digestion. TNBS 

was selective to lysine residues and no secondary reactions were observed. 

Chapter 4 contains measurements of the rates of dephosphorylation of 

phosphorylated forms of phosphoglycerate mutases using ES-MS. Britton et al. (1972) 

have estimated the half life of the phosphorylated form of Saccharomyces cerevisiae 

POAM to be 1-2 min. To employ ES-MS for measurements is was therefore essential to 
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find a very quick way to separate the phosphorylated enzyme from its phosphorylating 

agent, 2,3-bisphosphoglycerate, and to transfer the enzyme quickly into either water or a 

low ionic strength volatile buffer. In standard mass spectrometric measurements the 

separation and transfer into a volatile solvent was usually accomplished by gel-filtration 

followed by several rounds of diluting and reconcentrating the enzyme using Amicon 

concentrators. This procedure, which takes usually one day, is obviously not suitable for 

measuring fast rates. Instead, phosphorylated enzyme was applied to a NAP 5 column 

(Pharmacia, Uppsala, Sweden), equilibrated with 10 mM ammonium bicarbonate. This 

procedure allowed samples to be analysed by ES-MS within 3 min of mixing the enzyme 

with 2,3-BPG. Only negligible traces of 2,3-bisphosphoglycerate as well as the 

monophosphoglycerates were detected in the mass spectrometer. 

In comparison to PGAM from Schizosaccharomyces pombe (Nairn et aI., 1994) 

the Saccharomyces cerevisiae enzyme (White and Fothergill-Gilmore, 1988) has been 

shown to have a C-terminal segment of 14 amino acids. This segment is thought to 

prevent water from entering the active site (Fothergill-Gilmore and Watson, 1989) which 

is reflected by the a lower phosphatase activity of the S. cerevisiae PGAM in comparison 

to the S. pombe enzyme (chapter 4. I). Interestingly, this was consistent with the 

measurement of the half life (tIl2) of the phosphorylated forms of the enzymes; 35 min 

for the S. cerevisiae PGAM and less than 1 min for the S. pombe enzyme. Addition of the 

substrate analogue 2-phosphoglycol\ate to the phosphorylated form of the S. cerevisiae 

PGAM resulted in an approximately 100-fold acceleration of the dephosphorylation 

reaction. A mutant of S. cerevisiae PGAM was prepared lacking the 14 C-terminal amino 

acids (J. Nairn, unpublished data) and its kinetic parameters are currently being 

determined. This should give further evidence for the importance of the C-terminal 

segment. 

Three site-directed mutants were prepared from the S. pombe enzyme, replacing 

histidine residues 15 I, 163 and 196 with glutamine residues. H 151 and H 196 are not 

conserved in multiple alignment of currently available PGAM sequences. However, 

Hl63 is a conserved residue and is thought to be involved in proton transfer reactions 

which are associated with the transfer of the phospho group to a nucleophile 

(White et aI., 1993). In comparison to the phosphorylated native enzyme the 

phosphorylated form of H 163Q was found to be extremely stable, with a t 112 of at least 

400 min which is a 400 fold increase in comparison to the native enzyme. Furthermore, a 
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230 fold decrease in the mutase activity of Hl63Q was observed. But it is unfortunately 

not possible to correlate those data since the amino acid substitution caused considerable 

changes in the secondary structure of the mutant enzyme as seen in both the near and far 

u.v.-c.d. spectra (Fig. 4-6). However, these experiments show the necessity of verifying 

the conformation of enzyme species altered by site-directed mutagenesis. The kinetic 

parameter of mutants Hl51 Q and H196Q were very similar to the wild-type enzyme. 

In previous years attempts to crystallise shikimate kinase II from E coli have 

failed. It was therefore attempted to obtain an SK II from another source. The cloning of 

a DNA fragment of Erwinia cll1ysanthemi with 53% sequence identity to the E coli 

SK II was reported in 1989 (Minton). This fragment, which was very likely to be a SK II 

enzyme, was cloned into a T7 based expression system and overexpression of the enzyme 

was achieved to an amount of up to 30% of the total cellular protein (chapter 5). 

A purification protocol, based on the purification of the Ecoli SKII 

(Millar et al., 1986), was developed. The main problem to overcome was the drastic 

decrease in enzyme solubility during dialysis into 50 mM Tris/Hel after separation on 

Phenyl-Sepharose. This might indicate the presence of a compound which forms a 

complex (regulatory protein?) with the enzyme during the initial steps of the purification 

and which is separated from SK by hydrophobic interaction chromatography. However, 

addition of ADP and shikimate greatly increased the solubility of SK to at least 

70 mg/m!. The increase in solubility suggests major structural changes accompanying 

substrate binding. This is in analogy with other kinases such as adenylate kinase 

(Schulz et aI., 1990). 

The purified enzyme was found to be heterogeneous, consisting of 60% full 

length enzyme and 40% with the N-terminal methionine cleaved off (Fig. 5-1). This 

incomplete processing of the enzyme by the E coli cells was probably due to the very 

high level of overexpression. The presence of the N-tenninal methionine was found to be 

very useful for crystallographic studies since it turned out to be a platinum binding site. 

Kinetic characterisation clearly classify the E cll1ysanthemi enzyme as a type II enzyme 

(Table 5-2). The role of SK I is still unclear, it must be somehow related to the 

biosynthesis of aromatic compounds since it is expressed in an operon together with 

another shikimate pathway enzyme. It has definitely a dual biological role 

(Vinella et at., 1996) but maybe its primary function has shifted during evolution from 
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being involved in the biosynthesis of aromatic compounds to a still unknown second 

biological role which is reflected by the un-physiologically low affinity for shikimic acid 

(De F eyter and Pittard, 1986b). 

E. chrysanthemi SK contains only one lysine residue, the one in the P-Ioop, which 

simplifies the characterisation of its chemical reactivity using the lysine specific reagent 

TNBS. The reactivity with TNBS measures the basicity of the lysine residue 

(Means et al., 1972). Experiments were repeated several times before the measured 

second order rate constant of 61 500 M-1 min- 1 was believed to be true. This value is 

around two orders of magnitude higher than that observed for lysine residues in non-A TP 

utilising enzymes (Chackrewarthy, 1995, Goldin and Frieden, 1971). However, there are 

reports about hyper-reactive lysine residues in the A TP binding sites of the J3-subunit of 

ATP synthase as well as pyruvate kinase (Komatsutakaki, 1995; Johnson et aI., 1979). It 

is tempting to suggest a general role for hyper-reactive lysine residues in the active sites 

of A TP utilising enzymes. 

SK of E. clllysanthemi can be inactivated by treatment with PGO. ADP as well as 

shikimic acid protect the protein from inactivation, suggesting roles for arginine residues 

in the binding of both substrates. 

The enzyme complexed with ADP and shikimic acid was crystallised using the 

sitting-drop vapor-diffusion method and NaCl as the precipitant. To specify suitable 

crystallisation conditions dynamic light scattering experiments were carried out. Several 

combinations of additives were tried; the only monodisperse solution was achieved in the 

presence of both ADP and shikimate, which confirms the value of dynamic light 

scattering for assessing conditions for protein crystallisation (Table 5-3). 

The structure of the enzyme complexed with ADP and shikimic acid was solved 

(Krell, unpublished data). Attempts to solve the phase problem using molecular 

replacement with adenylate kinase as a model failed. Instead phases were generated using 

multiple isomorphous replacement using a mercury and a platinum derivative. The 

enzyme showed an overall topology similar to adenylate kinase (Dreusicke et al., 1988). 

There are 5 central, parallel J3-strands with several helices either side. In analogy to 

adenylate kinase (Vonrhein et af., 1995) SK contains a so called lid-domain which is 

folded over the bound ADP molecule. The C4 hydroxyl group of shikimic acid is 

co-ordinated by D34 which is pali of the VDL motif (Bugg et aI., 1991) which confirms 
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the hypothesis of the authors that the conserved aspartate co-ordinates the "conserved" 

C4 hydroxyl group of the substrate. The structure clearly shows the core-motif as 

suggested by Milner-White et al. (1991). The conserved R139 is involved in binding 

shikimic acid by forming a hydrogen bond with the carboxyl group of shikimic acid, 

RII0 lines up parallel to the adenine ring system contributing to its positioning. Fmiher 

structural work will include the solution of unliganded SK structures as well as structures 

with substrate analogues which mimic transition states during enzyme action. 

SDH was inactivated by the lysine specific reagent TNBS; ES-MS showed that 

clearly two lysine residues were protected from inactivation by the presence of shikimic 

acid and NADP (Fig. 6-1). The two lysine residues were identified by LCIES-MS but 

from the analysis of the inactivation kinetics only one residue (K65) was found to be 

essential for enzyme function. This residue has been proposed to be involved in binding 

the carboxylate moiety of shikimic acid since methyl shikimate, in contrast to shikimate, 

did not provide protection from inactivation with TNBS (Chackrewarthy, 1995). 

In general essential lysine residues have been shown to be involved in substrate 

binding (Valentini et al., 1996), but seem to have more often a catalytic role (Kamps and 

Sefton, 1986; Au et al., 1989; Monnaie et al., 1994). In another dehydrogenase, 

glucose-6-phosphate dehydrogenase, an essential lysine residue has been identified using 

site specific chemical modification (Camardella et al., 1988) for which the authors 

proposed a role in substrate binding. However. site-directed mutants of the enzyme in 

which this lysine is replaced (Bautista et al., 1995) and the three dimensional structure of 

the enzyme (Rowland et al., 1994) have identified this lysine as a catalytic residue. 

Although there is strong evidence that K65 of SDH is involved in substrate binding, 

site-directed mutagenesis and the three-dimensional structure will be needed to clarify 

the situation. 

In three consecutive enzymes of the shikimate pathway, type I DHO. SDH and 

SK lysine residues are essential for enzyme action. Interestingly, the three Iysines have 

completely different roles: formation of a Schiff-base which functions as a electron sink 

stabilising a negatively charged intermediate (type I OHQ), substrate binding (SOH), and 

participating in the catalytic mechanism for the P-loop lysine of SK which is not thought 

to be primarily involved in binding nucleotide phosphates (Reinstein et al., 1990). 
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The identification of active site residues by chemical modification was shown to 

be consistent with the X-ray crystallographic studies. Mass spectrometry was found to be 

a very powerful method to follow chemical inactivation reactions. Many of the covalent 

adducts generated by site-specific chemical modification are stable enough for a 

localisation using a combined approach of proteolytic digestion and liquid 

chromatography mass spectrometry. Therefore, specific chemical modification 111 

combination with mass spectrometric techniques appears to be a very useful tool to 

obtain information about the chemistry of enzyme active sites. 
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